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ABSTRACT 

MODEL EXTENSIONS AND APPLICATIONS IN MATHEMATICAL 
IMAGING 

John Marion Cochran 

May 9,2009 

Mathematical imaging consists of many different applications including image seg­

mentation, image classification, and inpainting. This work deals more specifically with 

image segmentation: the partition of an image into the background and the objects present 

in the image. The main focus is the active contours without gradient model by Tony Chan 

and Luminita Vese which deals with fitting a curve imbedded in the plane image. The 

fitting of the curve comes from an evolutionary partial differential equation. 

The dissertation contributes three novel ideas: a linearized version of the active 

contours without gradient model published in [20]; a new procedure using fourth order 

fitting terms in place of the second order fitting terms which gives faster segmentation and 

may be used to provide a good initial condition; a novel way of tracking regions present in 

bulk data in order to gain an understanding of macroscopic details associated with some 

physical application. 

Results include images showing the accuracy of the segmentation for the methods, 

a discussion of the choice of initial condition, and discussion of feasibility for the data 

tracking. These results compare to those obtained with the nonlinear model and serve 

as a proof-of-concept for further investigation. The dissertation ends with a discussion of 

future research. 
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CHAPTER 1 

INTRODUCTION 

Mathematical imaging has seen many new models over the past three decades 

covering many different and diverse application areas including medicine and military 

science. When a human looks at an image, the brain processes the image in such a way 

that the person may distinguish objects in the image. The question is this: how can a 

computer be programmed to "see" an image? In other words, how may we use computers 

to process images in such a way that objects of interest may be distinguished easily with 

little or no human interaction? This concept essentially means that we wish to segment a 

given image such that all objects - or at least objects of interest - are separated from the 

image background. This chapter serves as an introduction to the dissertation and provides 

an overview of general techniques. We by no means give a complete review of the models 

and techniques which are now prevalent in the literature; however, for completeness, we 

treat the cornerstone models and their limitations. 

1.1 Mumford-Shah 

The Mumford-Shah functional was first introduced in [39] as a means to partition 

an image into regions of constant intensity. We let uo(x, y) represent the image and n be 

a bounded open set (Le., the domain of the image). Then the idea is to find (u, K) that 

minimizes 

F(u, K) = { (u - uo)2dxdy + a { IVul 2dxdy +,B { d(J (1.1) 
In-K In-K JK 

where K represents the set of discontinuities in the segmentation and the last term repre-

sents the length of K. In order for the above to be meaningful (Le., the length of K to be 

meaningful) we replace the last term by the (N - l}-dimensionaIHausdorff measure. The 
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existence and uniqueness results are already in the literature. See [5] for a good review of 

the technical details. 

Because we must find both the function u and the set K, there are many numerical 

difficulties which arise from the above representation. There have been several different 

methods for approximating the numerical solution. The main approaches include using 

1. Elliptic functionals [2] 

2. Second order singular perturbations [11] (see also [9][13]) 

3. Nonlocal terms [12] 

4. Finite differences [17][28] 

We now turn from image partition to object detection within an image. 

1.2 Snakes 

In 1987, Kass et.al. developed a new model they called "snakes". The name 

comes from the way that objects are detected. The idea is to evolve curves using energy 

minimization so that the curves stop on the edges of the image. The way these curves 

move resemble snakes, hence the name. For a detailed discussion of the model see [5][31]. 

Let r represent the set of edges (i.e., the boundaries of the objects) in the image. 

Let Cj be Cl closed curves in !)12. We define the function 9 : !)1 ----t !)1 as a detector function 

such that 

1. 9 is regular monotone decreasing, 

2. 9(0) = 1, 

3. lim 9(8) = O. s--)oo 

We assume that the domain of the image, 0, is bounded and we assume IV II E Wl,oo(O) 

where I represents the intensity of the image. (Recall that Wl,oo(O) is the Sobolev space 
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defined by Wl,OO(D) = {v : D ~ ~ : v E LOO(D), Dv E LOO(D)}.) Define the set C as 

C = {J: [a, b] ~ D, f piecewise C1(D), f(a) = f(b)} where a and b are real. 

With the above notational conventions and assumptions, we form.. the energy inte­

gral J (c) as follows 

J(c) = lb Ic'(q)1 2dq + !31
b 

Ic"(q)1 2dq +,,\ lb 92 (1\7 I(c(q)) I )dq (1.2) 

where c(q) = {Cl(q),C2(q)}, d(q) = {c~(q),~(q)}, and c"(q) = {d{(q), c~(q)}. The first 

two terms of J(c) represent the internal energy while the last term represents the external 

energy. The problem is to find C which minimizes J(c). The associated Euler-Lagrange 

equation (see below) is given by 

-C" + !3C(iv) + ,,\\7 F(c) 

c(a) 

where F(c) = 92(1\7 I(cb c2)1). 

o 

c(b) 

There are many problems with this method. They include 

1. J(c) is not convex which means we can only expect to find a local minimum. 

(1.3) 

2. J(c) depends upon the parametrization of c in the form of c(q). It may be possible 

to obtain another solution by using different parametrizations with the same initial 

data. 

3. The model does not handle topological changes. 

4. The initial curve must be close to the edges of the desired object for accurate de­

tection. 

5. There are also several numerical problems which may develop. See [46] for a complete 

discussion. 

There have been many models introduced to try and solve the above problems. To address 

the parametrization problems, [23] uses B-splines to model the contours while [3] models 

the curve evolution using a linked chain of control points. 
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Cohen [21] defines external forces in terms of pressure and treats the level set 

curves as balloons. This allows the initial curve to be located further from the edges of 

the image and still converge to the edges. Xu and Prince [50] introduce a new model using 

a different approach toward the external force which they call the gradient vector flow. 

The new model gives better convergence and also allows the initial curve to be placed 

anywhere for appropriate images. 

There have also been attempts to solve the problem of topology changes. McIner­

ney et.al. [38] develop a model that does split and merge to accommodate more sophisti­

cated objects. Many other models [16][15][32][37], however, approach the problem from a 

geometrical point of view similar to that of the Geodesic Active Contour model. 

1.3 Geodesic Active Contours 

The geodesic active contour model [5][16][15] begins by letting {3 = 0 in (1.2). This 

gives the following 

(1.4) 

The functional J1(c) is still not intrinsic (Le., it depends upon the paremetrization c(q)). 

To solve this problem, define J2 (c) as 

J2 (c) = 2~ lb g(I'\7 I(c(q))l)lc'(q)ldq. (1.5) 

In [6], the authors show that minimizing J1 (c) is equivalent to minimizing J2 (c). Recalling 

that the curvature is given by 

~ = div( I~~I) 
and letting 9 = g(I'\7 I(c(q))1) to simplify notation, the associated Euler-Lagrange equation 

is 

Ct = (g~ - '\7g. N)N. (1.6) 

We may improve the detection of nonconvex objects and increase the speed of convergence 

[16][15] by adding the term ag to the above model to obtain 

(1. 7) 
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Using this, the authors develop a level-set representation of the model. This gives the 

geodesic active contour model 

Ut = g(IVII)(K + a)IVul + Vg· Vu (1.8) 

where u is the function whose steady state gives the edge segmentation of the image. 

Many other related works follow the same procedure including the independent 

work by Kichenassamy et.al. in [32][33]. The four works [16][15][32][33] all have similar 

ideas and begin with energy minimization as seen above. [14],[37], and [36] develop the 

model based directly upon the level-set approach. In [48], the authors make a change to 

the)) constant inflation term)) by relating it to an area minimizing flow. 

Drawbacks of the geodesic model [5] include: 

1. Interior contours are not detected automatically. 

2. When the curve detects an object, it stops since the model is defined in terms of 

gradient. In other words, large gradients define edges. Once the gradient becomes 

large, the curve evolution stops. 

3. The level-set method assumes closed curves. These closed curves do not allow the 

detection of certain types of)) open)) objects. 

4. The initial surface is usually set to be the distance function to the level set. It 

is desireable to maintain the distance function properties and description, but the 

model does not preserve the distance function. The formal reasons may be found in 

[8]. This requires a distance function ))reconciliation)). This procedure is discussed 

in more detail next. 

These problems have been at least partly addressed by Chan and Vese in [18]. 

1.4 Reconciling the Distance Function 

In [29], Gomes and Faugeras give two reasons why the reconciliation is needed. 
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1. Given any surface S, the distance function, u, of S is uniquely defined. Further, if 

a function 'U satisfies the property IDul = 1, then it is the distance function of some 

curve S up to a constant [4]. Knowing properties of one of the two allows us to 

determine properties of the other. 

2. When computing the derivatives of a function u, we usually take a step size of, say, 

Llx. This step size will need to be changed according to the behavior of u in each 

neighborhood. So, if the derivative is large, we need to take smaller steps. If the 

derivative is small, we may take larger steps. The natural step size for an image is one 

pixel (i.e., ~x = 1). This means we need to know about the derivatives of u. If u is 

a distance function, we know that IVul = 1. So if u remains a distance function, we 

can be certain that the derivatives remain bounded and we avoid possible numerical 

problems. 

From the practical view, we need to reinitialize at least every 20 iterations of the model 

[5]. 

There are two methods used to reconcile the distance function [52]. Both methods 

concern the solution of the eikonal equation. The difference is the form of the equation. 

The first is a pde given by 

Ut + sign(voHIDul- 1) - 0 

u(x, 0) - Vo. (1.9) 

The parameter t is a dummy time variable which allows us to treat the above equation as 

an evolutionary pde. Details including the discretization of the equation may be found in 

[5]. See also [25] and [26]. 

The second method deals with solving the stationary pde 

IDul = 1 (1.10) 

and developing efficient numerical schemes to solve the equation. Two of the main methods 

are the fast marching method [30] [47] [49] [43] [1] and the fast sweeping method [10] 
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[51] [52]. Fas1 marching deals with updating the function grid point by grid point as 

the solution front moves. In [22], Covello and Rodrigue expand the method to include 

highly distorted grids and randomly located nodes. Fast sweeping updates the solution 

by sweeping along the grid in alternating diagonal directions. We use the fast sweeping 

method in the following. 

For ease of discussion, we assume a two-dimensional image, although in [52], Zhao 

presents the necessary framework for multi-dimensional solutions. Let U be a subet of 

~2. Let r denote the zero level set. In other words, r is the boundary to which we will 

construct the distance function U in U. We wish to find a solution U of the pde 

l\lul 1 in U 

U o on r. (1.11) 

As in [52] we use the Godunov upwind difference scheme [44] with the step size h = 1 

(1.12) 

for all internal points i = 2, ... , I - 1, j = 2, ... , J - 1 where we take a grid consisting 

of I points in the x-direction and J points in the y-direction. At the boundaries of the 

image, we use one-sided finite difference schemes. We also define 

Uxmin min( Ui-l,j, UHl,j) 

Uymin 

and 

{

V if V > 0 
v+ = 

o if V ~ 0 

Equation (1.12) may be solved explicitly to obtain 

_ {min( Uxmin, Uymin) + 1 
u= 

U",min +UI/min +v~-( U"min -Ul/min)2 
IUxmin - uyminl < 1 

The solution scheme to compute the viscosity solution u(x) ~ 0 then consists of 

the following steps. 
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1. Set r. 

2. Initialize the function u by determining all grid points on the boundary r. These 

points are given values of zero since they are on the zero level set. 

3. Determine the grid points which are near the boundary. These grid points have 

neighbors which are on or inside r. We need to determine the distance from these 

boundary points to the zero level set. These values will not be updated or modified 

in any way. They are fixed. All other grid points are set to some large value that 

must be at least as large as the maximum possible distance expected. 

4. Alternate between the four diagonal directions for sweeping and solve Equation 

(1.12). The updated value for Ui,j is the minimum of either u or the current value 

of Ui,j' 

5. Once the maximum error is within a specified tolerance, stop updating and display 

the results. 

The initialization step is the most difficult since we must not only locate r but also set the 

actual distance values for all boundary points. In the following numerical examples, we 

locate the zero level set by either looking for zero crossings at a grid location or checking 

for a sign change between grid points. All points where one of these criteria are met are 

flagged as boundary points. For all boundary points, we set the distance to be zero for 

any grid location on the zero level set. If a sign change occurs between two grid points, we 

use linear interpolation to find the approximate location of the zero level set. The values 

at each boundary point are then set to be the minimum distance to these approximations 

of r. 

It is also important to note that for imaging applications, we usually use signed 

distance functions. In other words, if r is the zero level set where the value of U is positive 

inside r and negative outside, we would like to initialize U to be the distance function of 

r but retain the sign of u. This was done by saving the sign of the initial function in 
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another matrix, reinitializing the function to be a distance function, and then adjusting 

the sign accordingly. 

FIGURE 1.1- One dimensional example of distance function calculation. Program exe­
cuted for 2 iterations, 0.08 seconds. The level set was defined to be the points {O, 5, 1O}. 

All of the following numerical results came from a Windows XP machine, 2 Ghz, 

1 Gig RAM, running Matlab. Figure 1.1 shows the distance function calculated using a 

level set of {O, 5, 10}. The program swept from left to right and then right to left. With a 

tolerance of 0.001, the program ran for two iterations and 0.08 seconds. Figure 1.2 shows 

another distance function for the level set defined by the interval [4,6]. 

Figure 1.3 shows a two dimensional distance function contour plot. The zero level 

set is {( 42,42), (42,84), (84,42), (84, 84)} and the tolerance is 0.0001. A mesh plot of this 

solution is provided in Figure 1.4. The image domain is 126 x 126. Figures 1.5 and 

1.6 show a signed distance function contour plot and corresponding mesh for a level set 

defined by a rectangular bar centered at (100,100) with a length and width of 30. The 

image domain is 200 x 200. Here, we have included a signed distance function where the 

values are positive inside the rectangle and negative outside. 

1.5 Active Contours Without Gradient 

The idea behind the active contours model is to evolve a curve C such that the 
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FIGURE 1.2 - One dimensional example of distance function calculation. Program exe­
cuted for 3 iterations, 0.08 seconds. The level set was defined to be the interval [4,6]. 
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FIGURE 1.3-Two dimensional example of distance function calculation. The level set is 
defined to be {(42,42), (42,84), (84,42), (84, 84)}. 
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FIG URE 1.4 - Two dimensional example of distance function calculation. The level set 
is defined to be {(42,42), (42,84), (84,42)' (84, 84)}. This is the mesh plot showing the 
actual distance values. 
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FIGURE 1.5-Two dimensional example of distance function calculation. The level set is 
defined to be a rectangular bar centered at (100,100) with width and length of 30. 
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FIGURE 1.6 - Two dimensional example of distance function calculation. This is the mesh 
plot showing the actual distance values for the rectangular zero level set. 

curve stops on the edges of a given image UQ. We summarize the model from [18]. To 

motivate the model, assume that we have an image which consists of two intensities given 

by uh and uS which represent the inside and the outside, respectively, of an object to be 

detected. We form the integral equation 

where Cl and C2 are the average intensities of the image inside C and outside C, respec-

tively. We wish to find the curve C which minimizes this integral equation. It is not 

difficult to show that the integral equation is minimized when the curve C lies on the 

edges of the object. In fact, if the object is completely contained inside C, Fl (C) > 0 and 

F2 (C) ~ O. Likewise, if the object is outside C we have Fl(C) ~ 0 and F2 (C) > O. If the 

object is both inside and outside the curve C, then both integrals are positive. Finally, if 

the curve C lies on the edges of the object, both integrals are almost zero. With this in 

mind, we define the function F as follows 

F(C, Cl, C2) = f.L length(C) + 1/ area(inside C) + 

AL 1. IUQ - cd 2
dxdy + 

inside(G} 

A2 r IUD - c21 2dxdy J outside(G} 
(1.13) 
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where v, p, AI, and A2 are constant parameters. We wish to minimize this function. Chan 

and Vese use a level-set approach to the solution. 

that 

Let CeO be the zero level set [18] [42] of a Lipschitz function ¢ : 0 -t R such 

C 

inside(C) 

outside (C) 

8w = {(x,y) EO: </J(x,y) = O} 

w = ((x,y) EO: </J(x,y) > O} 

O\w= {(x,y) EO: </J(x,y) < O}. 

Define the Heaviside function H and the Dirac function 60 (in the sense of distributions) 

as 

H(x) 

60 (x) = 

{

I if x ~ 0 

o if x < 0 

d 
dxH(x). 

We may now replace C by the function </J as follows 

length(C) 

area( inside( C) ) 

r IV' </Jldxdy 
Ja{.p=o} 

l60 (</J)IV'</JldXdY 

- j dxdy 
{ .p>0} 

= l H(</J)dxdy 

lluo -cI1 2H(</J)dxdy 

lluo -c212(1 - H(</J))dxdy. 

Finally, we have the model equation given by 

F(</J, CI, C2) = p l60 (</J)IV'</JldXdy + 1I l H(</J)dxdy + 

Al lluo -cd 2 H(</J)dxdy + 

A2 In luo - C212(1 - H(</J))dxdy. (1.14) 
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Minimizing F is equivalent to minimizing G 

G(¢, Cl, C2) = J.L L oo(¢)I'V¢ldxdy + 1I L H(¢)dxdy + 

'\1 In (uo - Ct}2 H(¢)dxdy + 

'\210 (uo - c2)2(1 - H(¢))dxdy. (1.15) 

If we hold ¢ constant and minimize F with respect to Cl and C2 we have 

Cl (¢) 

-2,\1 In (uo - cl)H(¢)dxdy 

In uoH (¢ )dxdy 
In H(¢)dxdy 

-2>'2 L (uo - c2)(1 - H(¢))dxdy 

In uo(1- H(¢))dxdy 
In(1- H(¢))dxdy . 

Chan and Vese have used the regularized version of H(x) and oo(x) given by 

1 2 x 
-(1 + -arctan( -) 
2 7f. € 

d 
dX H2e (x). 

Letting Fe denote the associated regularized F gives the following model 

Fe(¢, Cl, C2) = J.L 10 o2e(¢)I'V¢ldxdy + 1I In H2e(¢)dxdy + 

>'1 10 luo - cd2H2e(¢)dxdy + 

>'210 luo - c212(1 - H2e (¢))dxdy. (1.16) 

We may now develop a pde model using the Euler-Lagrange equation. 

1.6 Euler-Lagrange Description of Model 

A full treatment of the Euler-Lagrange equation of the model follows. We adopt the 

notation and procedure presented in [24]. Define the Lagrangian as L : !Rn x !R x !Rn ~ !R 

such that L = L(p, w, x). Define the integral functional f[u] as 

f[uJ = f L(Du, u, x)dx. (1.17) 
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Let us now assume that the function U : U ---+ !}? is the minimizer of flu] for U c !}?n. For 

any function v : U ---+ !}? for v E Cg"(U) we define i(T) as 

i(T) = f[u + TV] = j L(Du + TDv, U + TV, x)dx. (1.18) 

We will now minimize i(T) by recognizing that i'(O) = 0 since U minimizes f[u]. Differen-

tiating with respect to T gives 

i'(T) = jtLPi(DU+TDV,U+TV,X)VXi +Lw(Du+TDv,U+TV,X)vdx. (1.19) 
i=l 

Integrating the first term by parts and factoring gives 

i'(T) = j(- t(Lpi(Du+TDv,U+TV,X»Xi +Lw(Du+TDv,U+TV,X»vdx. (1.20) 
i=l 

Evaluating at T = 0 gives 

i'(O) = 0 = j(- i:)Lpi(Du,u,X»Xi + Lw(Du,u,x»vdx. (1.21) 
i=l 

This equation holds for any function v E C~(U); hence, we may write 

n 

- L(Lpi(Du,u,X»Xi + Lw(Du,u,x) = O. 
i=l 

In the case of the model equation, 

L(p, w, x) = J.l62e (w)lpl + VH2e(W) + Alluo - cd2 H2e(W) + 

A21uo - c212(1 - H2£(W». 

Differentiating the above with respect to w and Pi gives the following 

Pi 
J.l62£ ( W ) iPT 

J.lIPI6~e(w) + vc52e (w) + Alluo - clI 202e(W) - A21uo - c21202e(W). 

Substituting into equation (1.22) and replacing P = V" ¢ and w = ¢ gives 

o = - ~?J.lc52e(¢)I~X¢I)Xi +J.lIV"¢lo~e(¢) + 

V02e(¢) + >'duo - cd262e (¢) - A21uo - c21 262E (¢). 
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Simplifying the above gives 

and recognizing that the first term may be written using the divergence, we have 

If we now assign a parameter t to allow us to use a time dependent PDE, we may write 

this equation in the final form 

a¢ 
at 

¢(O,x) 
a¢ 
aii 

c52E(¢)(J1diV(I~:I) - 1/- Al(UO - Cl)2 + A2(UO - C2)2) 

¢o(x) 

o 

where ii denotes the unit normal vector to the boundary of the image. 

1. 7 Organization of Dissertation 

The remaining chapters are divided as follows. 

(1.24) 

1. Chapter 2 contains an analysis of a linearized model of active contours without 

gradient. We begin with the linearization, specify a possible numerical scheme, and 

then prove the convergence of the numerical scheme. Results include numerical 

examples for simple images. Results from this chapter have already been published 

in [20J. 

2. Chapter 3 continues the treatment of the Chan-Vese model by motivating a new 

procedure designed to aid in convergence. The material also considers numerical 

examples for both the model and the modified procedure. 

3. Chapter 4 introduces a new application. The application involves the tracking of 

regions of interest for physical models and opens with reasons why such a treatment 

may be of use. 
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4. Chapter 5 completes the dissertation with ideas for future research. 

The Appendix contains the Matlab code used for the numerical results. 
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CHAPTER 2 

LINEARIZATION OF CHAN-VESE MODEL 

2.1 Linearized Model 

To better understand the dynamics behind the Chan-Vese model, we consider a 

linearized form. We consider first the divergence term given by 

cPt = div( I~:I)' 
Using the following substitutions we may simplify notation. 

cPx 8 

cPy t 

cPxx u 

cPyy - v 

cPxy w 

cPyx - z. 

The divergence may then be written as a function of these variables as 

u+v 
g(8, t, U, v, w, z) = ---r=:;<====:;:: 

v'82 + t2 

(2.1) 

The idea is now to linearize the divergence term using the standard Taylor's expansion. We 

will truncate the second-order and higher terms and linearize around the initial condition 
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if>(x,y,O) = if>°(x,y). The derivatives are then given by 

98 = 
(U+V)8 38 2 2 

(82 + t2)3/2 + (S2 + t2)5/2 (s U + stw + 8tz + t v) -

1 
(S2 + t2)3/2 (28U + tw + tz) 

9t 
(u + v)t 3t 2 2 

(S2 + t2)3/2 + (S2 + t2)5/2 (8 U + 8tW + stz + t v) -

1 
(S2 + t2)3/2 (sw + sz + 2tv) 

1 8
2 

9u (82 + t2)1/2 (82 + t2)3/2 

1 t2 
9v = (S2 + t2)1/2 (82 + t2)3/2 

8t 
9w (82 + t2)3/2 

8t 
gz (S2 + t2)3/2' 

Substituting the initial condition into the Taylor's series and recognizing that 

(where D2 if>0 represents the Hessian matrix) we can then write the entire linearization as 

We may rewrite the above into a slightly more compact form as 

div{ I~:I) 
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where 

f:J.rjJ°,\ltjJO 3(V'rjJ0 0 D2rjJ0V'rjJ0) ° 
P(x,y) = - IV'rjJ013 + 1 V'rjJ0 15 V'rjJ -

IV'~013 (2rjJ~rjJ~x + rjJ~rjJ~y + rjJ~rjJ~X' rjJ~rjJ~y + rjJ~rjJ~x + 2rjJ~rjJ~y) 
f:J.rjJ0 ~ ° 

Q(X, y) = IV'rjJ01 - P(X, y) 0 V'rjJ . 

The linear model - with all terms - is then given by 

~ f:J.rjJ V'rjJ00 D2rjJV'rjJ0 
J.L(P{X, y) 0 VrjJ - 1 VrjJ° 1 - IVrjJ0 13 

+Q(X,y)) - ).1(UO - Cl(J»))2 + ).2(UO - C2(J>'))2. (2.2) 

Notice we have not included the term 62e(rjJ). The reason for this is discussed below when 

we analyze the full generalized numerical scheme. The linearization will be valid for very 

simple images and for level set functions which do not significantly change. We will use 

this linearization to better understand the convergence of the Chan-Vese model. The 

discretization of this linear model is discussed next. 

2.2 Discretization 

We will use the standard notation for the discretization of the derivatives. We also 

assume that the step sizes are h = k = 1 where h corresponds to the x coordinate and 

k corresponds to the y coordinate. In order to simplify the notation, we note that the 

coefficients in the above linearization depend upon the specific values of x and y - and, 

consequently, they will vary according to the grid used - but we do not specifically write 
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this dependence. Recalling that <Pi,i = <p(j h, ik), the finite differences are then given by 

<Pi,HI - <Pi,i-I 
2h 

<Pi+I,i - <Pi-I,j 

2k 
<Pi,i+l - 2<Pi,i + <Pi,i-I 

h2 

<Pi+I,i - 2<Pi,i + <Pi-l,i 
k2 

.2..-(<pi+l'i+l - <Pi+I,i-1 _ <Pi-l,i+l - <Pi-l,i-1) 
2k 2h 2h 
~(<Pi+l'Hl - <Pi-l,i+l _ <Pi+l,i-l - <Pi-l,i-l) 
2h 2k 2k 

where, as we would expect, the last two are equivalent. Define the coefficients Ao,o as 

Aoo 
<P~<P~ ---
2hk 

_(P2 1 + (<p~)2) 
2k + k2 

<P~<P~ 
2hk 
_(PI + 1 + (<p~)2) 

2h h2 

1 + (<p~)2 1 + (<p~)2 
-2( h2 + k2 ) 

PI 1 + (<p~)2 
2h h2 

<P~<P~ 
2hk 
P2 1 + (<p~)2 
2k k2 

<P~<P~ 
- 2hk· 

With these definitions and some simplification, the numerical scheme may be written as 

Aoo AOl A02 

AlO All A12 <Pi,i + Qi,j. 

A20 A21 A22 

This is a graphical representation of how to calculate the divergence on a grid point 

by using an eight point scheme. Relabeling the grid points correctly produces a tri­

diagonal matrix which corresponds to the above scheme. The solution will then be a 

vector containing these grid points as the elements. 
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One approach to proving the stability and also convergence of the scheme is to use 

the semi-discrete form. The idea is to discretize the spatial components - as given above-

and treat the grid as a system of continuous functions of time. This will produce a system 

of ordinary differential equations of the form 

dil .... 
dt = Ail + b. 

An equilibrium point of this system will correspond to a steady-state numerical solution 

of the partial differential equation. Stability of the equilibrium point(s) may then be 

established using the standard Lyapanov theory. To this end, we now assume that the 

grid used above has been relabeled in a reasonable way and we write all components of 

the linearized model including the fitting terms from the Chan-Vese model. This gives 

the following system of odes 

(2.3) 

where Q and ilo represent the function Q and the image Uo evaluated at the corresponding 

grid points contained in the vector ;;. 

2.2.1 Numerical Example 

Define the image as a 5 x 5 gray-scale with a white pixel having intensity of 100 in 

the center of the domain. With the standard boundary conditions as given by Chan-Vese, 

we will expect nine grid points which will need to be updated according to the numerical 

scheme proposed above. We choose the initial level-set function </>0 to be the distance 

function with the zero-level set at the boundary of the image. See Figure 2.1. Due to the 

nature of this particular image and since we are using the linearized model, the values for 

the constants Cl and C2 will not significantly change for each iteration of the numerical 

scheme. Thus, we will assume that the constants will be Cl = 100 and C2 = O. Also, note 

that we use J.L = 1 in the calculations and we have dropped the dependence of the term 

0(</». We will include a discussion of this later when we treat the more general system. 
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+1 ~ +3 +. +5 
+DzO +"=0 +"=0 +"=0 +"=0 
u"=0 U"=O U"=O U"=O U"=O 
+. .., +8 +8 +10 
+"=0 +"=1 +"=1 +"=1 +"=0 
U"=O U"=O U"=O U"=O U"=O 
+11 +12 +13 +1. +15 
+"=0 +"=1 +"=2 +"=1 +"=0 
u"=0 U"=O u"=100 u"=o u"=0 
+18 +17 +18 '+18 +20 
..,...-0 +,,=1 +"=1 +0.1 +"=0 
U"=O U"=O u"=0 U"=O u"=O 

~1 ~ +23 +2. +25 
+"=0 +"=0 +"=0 +DzO +"=0 
U"=O U"=O U"=O UO:O U"=O 

FIGURE 2.1-The values of the vector ¢, the image, and the level set function for the 
numerical example of linearized convergence. 

With these assumptions and using Matlab for the numerical computation, we define 

A and Q as 

-8.6250 -0.5625 0 -0.5625 -0.1250 0 0 0 0 

-1.0000 -8.0000 -1.0000 0 -2.0000 0 0 0 0 

0 -0.5625 -8.6250 0 -0.1250 -0.5625 0 0 0 

-1.0000 0 0 -8.0000 -2.0000 0 -1.0000 0 0 

0 -1.0000 0 -1.0000 -6.0000 -1.0000 0 -1.0000 0 

0 0 -1.0000 0 -2.0000 -8.0000 0 0 -1.0000 

0 0 0 -1.6875 -0.1250 0 -9.7600 -0.5626 0 

0 0 0 0 -2.0000 0 -1.0000 -8.0000 -1.0000 

0 0 0 0 -0.1260 -1.6875 0 -0,5626 -9.7500 

-3.1250 

0 

-3.1250 

0 

Q -4.0000 

0 

-3.1250 

0 

-3.1250 
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In this case, the matrix A is invertible. The equilibrium point may then be found by 

setting the time derivatives to zero to obtain 

o A¢ + Q - (ito - Cl(¢))2 + (ito - C2(¢))2 

¢ A-l(_Q + (ito - Cl(¢))2 - (ito - C2(¢))2) 

-0.9745 

-1.7154 

-0.9745 

-1.7554 

1000 2.8363 

-1.7554 

-0.6549 

-1.7953 

-0.6549 

Note that this equilbrium point corresponds to a steady-state solution of the linear pde. 

In this case, the segmentation is very good since the level-set would be surrounding the 

middle pixel (i.e., the" object" present in the image). 

Since A is invertible, we may rewrite the semi-discrete form as 

The quantity in parentheses is a constant vector and so we define the vector function ;f 

as 

The steady-state values will then be shifted by this same constant vector. The reason for 

doing this is so that we may use properties of the matrix A to show that the Lyapanov 

function is strictly negative. The semi-discrete form we will now work with is given by 

d;f = A;f 
dt . 

Define the function L : !R9 ~ !R as 
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where 'ljJss is the shifted equilibrium point found above. Note that L is just the square 

of the standard Euclidean distance from the equilibrium point in !R9
. This function is a 

Lyapanov function since it satisfies 

and L(,($) > 0 for all if =1= ifss. We also recall that AifsS = O. Then we may write 

dif = d(if - ifSS) = A(if _ ifSS). 
dt dt 

Differentiating L with respect to time gives 

dL 
dt 

~9 (01. ol.i) d'l/Ji 
2L.Ji=1 'l'i - 'l'SS dt 

... - dif 
= 2('IjJ - 'ljJss) 0 dt 

= 2(if - ifss) 0 d(if - ifSS) 
dt 

--+ ~ ..:..., --+ss 
2('IjJ - 'ljJss) oA('IjJ - 'IjJ ). 

To simplify notation, let X = if - ifss. Then, we have 

dL - --=XoAX. 
dt 

Calculating the eigenvalues of A reveals that all eigenvalues are negative. This implies 

that the quadratic form given above is negative definite; hence, X 0 AX < 0 for all X. 

This in turn implies that dL < 0 for all X. Since dd
L 

is strictly less than zero for any 
dt t 

choice of X and, hence, any choice of ¢, we conclude by classical Lypanov theory- that the 

equilibrium point found above is asymptotically stable. This means that the numerical 

scheme will converge to <Pss given above. This proves both stability and convergence of 

the linearized scheme for this particular initial condition. In this case, the steady-state 

solution has given a good segmentation of the " image" . Note that we cannot guarantee 

that a convergent numerical solution will give a good segmentation for every image. 

2.2.2 Comparison of Initial Conditions 

The semi-discrete approach allows us to actually solve the system of odes; therefore, 

we can obtain continuous functions which represent the actual value of the grid points as 
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functions of t. This allows us to compare the performance of various initial conditions. We 

have chosen six possible initial conditions which represent typical choices for the nonlinear 

system. By treating Cl and C2 as constants throughout the evolution (i.e., we do not update 

the values for each time increment): the linear system does not depend upon the actual 

values of ¢ at the grid points. Instead, the derivatives determine both the matrix A and 

the vector Q. This allows us to consider a seventh initial condition which gives a more 

general result. The inital conditions are given in matrix form by the following. 

0 0 0 0 0 

0 1 1 1 0 

IC1 0 1 2 1 0 

0 1 1 1 0 

0 0 0 0 0 

-1 -1 -1 -1 -1 

-1 0 0 0 -1 

IC2 -1 0 1 0 -1 

-1 0 0 0 -1 

-1 -1 -1 -1 -1 

-V2 -1 -V2 -1 -V2 
-1 0 -1 0 -1 

IC3 - -V2 -1 -V2 -1 -V2 
-1 0 -1 0 -1 

-V2 -1 -J2 -1 -V2 

-1 0 -1 0 -1 

0 1 0 1 0 

IC4 - -1 0 -1 0 -1 

0 1 0 1 0 

-1 0 -1 0 -1 
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1 0 -1 0 1 

0 -1 1 -1 0 -2 

105 -1 1 1 1 -1 -2 2 -2 

0 -1 1 -1 0 -2 

1 0 -1 0 1 

-2y'2 -J5 -2 -J5 -2y'2 

-J5 -y'2 -1 -y'2 -J5 
106 -2 -1 0 -1 -2 

-y'5 -y'2 -1 -y'2 -y'5 

-2\1'2 -V5 -2 -V5 -2y'2 

The first initial condition, 101, is the initial condition used above in the numerical example 

and represents a level set function where the level set is on the boundary of the image. 102 

is similar to 101 . Conditions 103-105 represent level sets which consist of seed squares. 

The last condition shows a function where the level set is contained within the object to 

be detected. Each of these is a typical initial condition for the nonlinear segmentation 

problem. We also note that, although the details have been omitted, all of these initial 

conditions are stable and convergent by the same techniques introduced above. 

We can also treat a more general initial condition as stated above. We define a 

general signed distance function whose level set represents a circle centered at the center 

of the image with radius R. This function can be written explicitly as 

r/>(x,y) = R - J(x - a)2 + (y - b)2 (2.4) 

where the point (a, b) gives the center of the image. Taking a radius of R = 2 and the 

center as (2,2) - which corresponds to the center of the image - gives the initial condition 
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Condition Time(r = 1) Time(r = 0.1) Time(r = 0.01) 

101 2.1551 3.1238 6.5829 

102 2.1060 2.8558 49.8644 

103 2.0679 2.8342 11.8013 

104 2.0675 2.8337 11.8011 

105 2.0416 3.1323 99.9414 

106 2.1109 2.7299 5.6137 

107 2.1021 2.7069 

TABLE 2.1- Initial conditions and stability for the linearized model. 

1C7 below. 

-0.8284 -0.2361 0 -0.2361 -0.8284 

-0.2361 0.5858 1.0000 0.5858 -0.2361 

IC7 ::::: 0 1.0000 2.0000 1.0000 0 

-0.2361 0.5858 1.0000 0.5858 -0.2361 

-0.8284 -0.2361 0 -0.2361 -0.8284 

For a given tolerance, we want to determine the time at which all values of the grid 

points are sufficiently close to their respective steady state values. We define the time as 

follows. Let r > 0 be a given tolerance. Let Y be a vector containing the solutions to the 

system of differential equations described above and let Yss represent a vector containing 

the steady-state solution of the system. The time,T, is then given by 

T ::::: min{t E [0,00]: IYi - Y;sl < r for all i E[1,9]}. 

Table 2.1 shows the various initial conditions with the time estimates. 

As shown in the table, the seed squares tend to give the fastest response and 

initial detection, but the slowest overall convergence. It is not surprising, then, that 1C6 

is the best overall choice, since this condition actually starts closer to the object and 

its corresponding steady state vector. The last initial condition, representing a level set 

consisting of a circle of radius R surrounding the object, gives respectable results. The last 

entry is blank, however, because the solution tended to oscillate around the steady-state 
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values. Even so, this shows that an entire class of initial conditions given l'>y Equation 

(2.4) converge and give a good segmentation. 

2.3 Generalized Numerical Analysis of the Linear Model 

In this section, we complete a more general analysis of the linearized model. To 

this end, we note that the preceding stability analysis does not lend itself to a general 

treatment. The reason is that without concrete examples, the form of the matrix A will 

not be obvious. This makes an analysis of the eigensystem quite challenging since the 

matrix depends not only upon the initial condition but also on the actual grid used for 

the discretization. Recalling that i corresponds to the y-coordinate, j corresponds to the 

x-coordinate, and the grid size is considered to be square (h = k), consider now the general 

numerical scheme given by 

<fJ?,jl - <fJ?,j 
tlt 

where Wi~j is given by 

(2.5) 

Notice that W is just the value of Q with the addition of the fitting terms at each grid point 

(ik, j h). In general, we need to show that the numerical scheme is consistent and stable. 

These two items are then needed to show that the numerical scheme converges. Each of 

these are presented in the following. In order to prove these properties, we will be making 

liberal use of Taylor's Series expansions. We must then assume that the solutions to the 

linearized pde are sufficiently smooth such that the derivatives in the following analysis 

have meaning. Other assumptions will be stated as needed. Here, we have included the 
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parameter J1 but we again leave the term o(¢» out of the model. In fact, the numerical 

results all use J1 = 1. We shall see that taking larger values of this parameter will require 

a more strict condition on the time step to maintain stability. 

2.3.1 Consistency 

We will adopt much of the notation of [35J and the concept of the Local Truncation 

Error (LTE) at each grid point, T[j. The LTE is found by replacing the actual solution, 

say v(x, y, t), in the difference equation representing the numerical scheme. We cannot 

expect the actual solution to satisfy that equation exactly, and so the LTE is the error 

associated with using the numerical scheme. Consistency may now be defined as follows. 

Definition 2.3.1. (Consistency) A numerical scheme is consistent if Ti~j -7 0 as h -7 0 

and t1t -7 O. 

In other words, the truncation error goes to zero as the grid becomes finer; there­

fore, if we could take a perfect grid (a continuous grid), the numerical scheme would 

approximate the pde without error. Determining the LTE is simply a matter of using a 

Taylor's expansion with the actual solution to the pde, v(x, y, t). The expansions may 
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then be written 

vf.t = vf.j + (vf.j}t~t + ~(viJ}tt~t2 + ~(vf.j}ttt~t3 + O(~t4) 

Vf-l,J·-l v!l. - (v!l·}xh - (v!l.}yh + ~(V!l.}xxh2 + (v!l·} Xy h2 + ~(V!l.}yyh2 + 
t,J t,J t,J 2 t,J t,J 2 I,J 

~[-(vf.j}xxxh3 - 3(vf.j}xxyh3 - 3(vf.j}xyyh3 - (vf.j}yyyh3] + O(h4) 

Vf+1,j-l - vf.j - (vf.j}x h + (vf.j)yh + ~(vf,j}xxh2 - (vf.j) Xy h2 + ~(vf.j)yyh2 + 

~[-(vf.j)xxxh3 + 3(vf.j}xxyh3 - 3(vf.j)xyyh3 + (vf.j}yyyh3] + O(h4) 

Vf-l,j+l vf.j + (vf.j}x h - (vf.j)yh + ~(vf.j}xxh2 - (vf.j} Xy h2 + ~(vf.j}yyh2 + 

~[(Vf.j)xxxh3 - 3(vf.j}xxyh3 + 3(vf.j)X1lYh3 - (vf.j}yyyh3] + O(h4) 

Vf+1,j+l = vf.j + (vf)x h + (vf.j)yh + ~(vf.j}xxh2 + (vf) xyh2 + ~(vf.j}yyh2 + 

n vi +1,j 

V~ 1 . 1- ,J 

n 
Vi,j+l 

V~· 1 I,J-

= 

= 

= 

~[(vf.j)xxxh3 + 3(vf.j}xxyh3 + 3(vf.j)xyyh3 + (vf.j)yyyh3] + O(h4) 

vf.j + (vf.j}yh + ~(vf.j)yyh2 + ~(vf.j}yyyh3 + O(h4) 

vf.j - (vf.j)yh + ~(vf.j}yyh2 - ~(vf.j}Yllyh3 + O(h4) 

v!l· + (v~ ·}xh + ~(V~ ·)xxh2 + ~(v!' ·}xxxh3 + O(h4) 
lJ ~J 2'~ 6 ,~ 

vf.j ~ (vf.j}x h + ~(vf.j}xxh2 - ~(vf.j)xxxh3 + O(h4) 

where O(hl} represents the I-order terms of the expansion. Using the numerical scheme 

introduced at the beginning of this section and substituting vi,j gives 

Each term in the previous expression may now be evaluated based upon the Taylor's 

expansions above. Then, for example, the first term may be written 
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Using this same approach for all of the terms and simplifying with the pde shows that the 

LTE is O(b.t + h2
). In other words, the method is first order accurate in time and second 

order accurate in space. This proves consistency since as the time step and spatial grid 

decrease, the LTE tends to zero. 

2.3.2 Stability 

We need to choose an appropriate norm to prove stability. Consider the sup-norm 

(or foo norm) applied to an N x N matrix Z = {(zkili, j = L.N} 

Now define the operator B as 

where the coefficients Ao,o are defined as before. The numerical scheme may now be 

written 

Each of these terms will require special treatment. Let us begin with Wi~i' 

Recall that ~~i is given by 

Wi~i = [I~::I -P(x, y) 0 'V¢o - Al(UO - Cl(¢n))2 + A2(UO - C2(<t>n))2ki' 

The image, Uo, may be taken to be bounded between some reasonable constants. For 

instance, for a grayscale image, we may be assume that the intensities found in the image 

are between [0,255] representing a range of intensities from black to white. From the 

Chan-Vese model, we know that the constants Cl and C2 represent the average intensity of 

the image inside and outside the zero level set, respectively. Thus, both of these constants 

are bounded by the image. This allows us to write 

IWi~il < II~::I -P(x, y) 0 'V¢oki + Al((UO - Cl(¢n))2)i,i + A2((UO - C2(¢n))2ki 

< II~::I -P(x, y) 0 V'rpOli,j + (AI + A2)lluoll~· 
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The last inequality comes from the fact that the fitting terms will not have values larger 

than the maximum intensity present in the image. Finally, we have 

Now, we consider terms of the form BV~j where Ilvlloo is finite. Returning to the 

definition of the operator B gives 

Recalling the definitions of Ao,o allows us to bound the sum. This bound is then 

Using all of these terms in the numerical scheme then gives 

< IEA.':·I + Iw.n·1 'l'l,3 l,3 

8 4 
< 11 + lL~t( - h2 - h21'VcpoI2)lllcpnII00 + M 

where M = 111~:~I- P(x, y)o 'V cpo I 100 + (AI + A2)lluoll~· Let a = 11 + lL~t( - :2 - ;21'VcpoI2)1· 
Then we may write 

Taking the supremum then gives 

Now applying the previous expression recursively gives 

If the right hand side of the above inequality is bounded, the solutions will be bounded 

at all time steps. We could rewrite the above expression as 
\ 
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which gives an explicit bound on cpn. If 0: < 1, we can guarantee that the right hand side 

of the inequality is bounded even as n ~ 00. This, then is the requirement for stability 

and gives a bound involving the time step and the initial condition. Further, as expected, 

the value of f.t enters into the stability requirement and forces the choice of a smaller time 

step. Moreover, if we also insert the term r5(cp) back into the model, the effect on stability 

is analagous to that of the parameter f.l since in practice we use a regularized version of 

the delta distribution. This regularized version will be smooth, and, hence, bounded. 

2.3.3 Convergence 

Now that we have consistency and criteria which guarantees stability, we may de­

termine whether the numerical scheme converges to the true solution. The approach is 

to consider the numerical scheme involving the estimate cpf,j and subtract the numeri­

cal scheme with the true solution Vrj including the LTE. This operation will produce a 

difference equation involving the global error, E defined by 

E!' . = cpr:. - v!'· 
I,} I,} I,}' 

The major difficulty now is that the" constants" Cl and C2 are found as average values 

of the level set function over the domain of the image. For now, we must assume that 

these values truly are constant for each time step. This situation would correspond to 

a stable segmentation of the image (i.e., a segmentation where the level set no longer 

moves). With this assumption, we will produce a difference equation for the global error 

given by 

From the stability analysis and for a specific time, T, where N t'lt = T, we may write 

This may be rewritten as 
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since we may simply take the maximum truncation error within all time steps up to and 

including the time step for N. We will now take the step sizes to zero; however, we cannot 

do this in an arbitrary way. In fact, the step sizes all go to zero such that a < 1 for all 

choices of (h,llt). From consistency, we know that the LTE approaches zero. Then, with 

appropriate initial data, the first term in the above inequality will also approach zero. 

This proves convergence of the numerical scheme and suggests a theorem for the previous 

results. 

Theorem 2.3.2. Let J1 > 0 be the parameter as defined in the active contours without 

gradient model. Let h be the step size of a square grid and let llt be the time step. The 

linear numerical scheme given by Equation 2.5 is consistent with first order accuracy in 

time and second order accuracy in spatial dimensions. Moreover, the method is stable for 

appropriate choices of h, llt, and initial condition ¢o that satisfy 

Finally, the method converges to a solution of the linear model. 

It is worth noting that the typical initial condition for imaging problems of this 

type is a signed distance function. Under this condition, the bounds given above simplify 

significantly since for a signed distance function IV¢ol = 1. 

2.4 Numerical Results For the Linearized Model 

In this section we present numerical results for the linearized model. The calcula-

tions have been completed on a machine running Windows XP with Matlab, a dual core 

1.60 Ghz processor, and 2 gigabytes of RAM. We will define the error as the maximum 

difference between successive iterations or more precisely by 

The relative error is then the error scaled by the previous iteration, or 

",n+l ",n 

R E I 'Pi,; - 'Pi,; I 
. rror = max(i,j) "'t'. . 

'Pt,] 
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Number Figures Error R. Error 

1 2.3, 2.4 1.82 * 10-12 4.69 * 10-16 

2 2.5,2.6 3.41 * 10-13 6.22 * 10-16 

3 2.7,2.8 1.82 * 10-12 6.61 * 10-16 

4 2.9, 2.10, 2.11 6.82 * 10-13 3.81 * 10-15 

5 0.0185 7.31 * 10-05 

TABLE 2.2 - Results of Linear Imaging. 

Results are shown in Table 2.2. All images use the same initial condition given by the 

function 

¢>O(x, y) = 80 - J(x - 100.5)2 + (y - 100.5)2 

and shown in Figure 2.2. The first four entries in the table all come from 200 iterations 

of the linearized model. 

Figures 2.3, 2.4 show the image and the segmentation, respectively, and give proof 

that the linearized model is giving very good segmentation results for simple images. We 

draw attention to the errors and relative errors in the table. Figures 2.5, 2.6 show the 

same image, but now we have introduced noise. The segmentation is again complete. The 

Chan-Vese model is robust in the presence of noise. This shows that the linear model 

inherits that same robustness. 

Figures 2.7, 2.8 show our standard image and the resulting segmentation given by 

the linear model. Again, we have very low errors and relative errors which imply that the 

solutions are close to numerical convergence. Further, the images show that we are able 

to detect objects no matter where the location of the initial zero level set - a particularly 

important property of the nonlinear model. 

Another important property of the nonlinear model is its ability to detect objects 

which are not defined by a gradient, such as those found in a smooth image. We might not 

expect the linear model to be able to segment these types of images as they are typically 

far removed from simple. However, as shown in Figures 2.9, 2.10, 2.11, the method works 

suprisingly well. 
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FIGURE 2.2-The initial condition used with the linearized model. 
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FIG URE 2 3 - Simple image containing no noise and one internal contour used with the 
linearized model. 
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FIGURE 2.4 - This figure shows the segmentation of a simple image with one internal 
contour. 
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FIGURE 2.5-Simple image containing noise taken from a uniform distribution. 
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FIGURE 2.6-The segmentation of an image containing noise. The linear model has 
inherited the nonlinear model's robustness. 
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FIGURE 2.7- Simple image containing more shapes and different types of internal con­
tours. 
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FIGURE 2.8~ Figure shows the segmentation of the simple image with more internal 
contours. The initial condition started both inside/outside the objects. 
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FIGURE 2.9-Smoothed synthetic image showing distinct intensity regions. 
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FIGURE 2.1O-This figure illustrates that the ability to detect objects in smooth images 
has been retained from the nonlinear model. 
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FIGURE 2.11- Image showing the segmentation overlayed on top of the image. 
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As stated earlier, we have removed the 6(¢» term from the linear model. The reason 

for this may be seen from the table. The last entry in that table shows the results of the 

linear model where the distribution has been inserted. The effect of this term is two-fold. 

First, the term forces the zero level contour to push toward the edges of the object at 

a much faster rate than any of the other contours. (Incidentally, as this contour moves 

toward the object boundaries, it pulls away from other contours which are moving in the 

same direction but at a much slower rate which can cause the function to experience high 

frequency oscillations in the region where two contours are pulling away - similar to that 

seen from instability.) Thus, the actual segmentation of the image may be quite rapid. 

However, the rapid detection ultimately leads to slow convergence since those contours 

that are "left behind" by the zero level set must now "catch up". In other words, when 

the zero level set stops moving, the remaining contours continue moving according to the 

fitting and regularizing terms. The segmentation comes - mostly - from the movement 

of the zero level set while the convergence comes from the movement of all other level 

sets. The second effect comes from this movement of all other level sets. As these level 

sets begin to catch up to the zero level set, they tend to smooth out the high oscillations 

and ultimately result in a solution which is bounded with regions characterized by small 

- almost constant - variations. Without that term, we obtain faster convergence since 

all level sets are capable of detecting the objects; however, the final result tends to be 

somewhat rough in appearance. Moreover, the model produces regions which have large 

gradients or zero gradients with more frequency. This makes the use of the distribution 

term necessary for the nonlinear model as this phenomena leads to significant numerical 

problems. The linear model, by contrast, does not suffer from these difficulties and just 

like reconciliation, the distribution term is not necessary unless the application requires 

a function which needs to have those low variation regions. We complete this chapter by 

mentioning that results for the linear model have been published in [20]. 
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CHAPTER 3 

NEW PROCEDURE USING FOURTH-0RDER FITTING TERMS 

The motivation behind this section· is to increase the rate of convergence of the 

level sets. In other words, we wish to detect the edges at a faster rate without losing the 

benefits of the model. One way to do this is to look at the energy integrals with a slightly 

different form. Consider 

F(C, Cl, C2) = J.L length(C) + v area(inside C) + 

Al r IUQ - cll 4dxdy + A2 r IUQ - c21 4dxdy (3.1) 
Jinside(C) J outside (C) 

where we retain all definitions and ideas previous. This equation will behave in a similar 

fashion to that proposed by Chan and Vesej however, we expect that objects are detected 

faster. For instance, if the object to be detected is completely inside the curve C, then 

Fl(C) > 0 and F2 (C) ~ o. However, large deviations from the average intensity will result 

in larger reponses from the evolution equation than the former model. This will cause the 

level set curve to shrink rapidly toward the edges of the object to be detected. Similarly, 

if the object to be detected contains the curve C, then Fl(C) ~ 0 and F2 (C) > O. In 

this case, the large deviatior: from the average intensity on the outside of the curve will 

force the level set to expand rapidly. The only expected consequence is that as the curve 

approaches the edges of the object, the deviation will be smaller than the deviation present 

in the original model. The fourth order polynomial will make this small deviation even 

smaller. This causes a smaller response to the deviation than the Chan-Vese model. So, 

as the curve gets closer to the edges of the object to be detected, we expect convergence 

to slow. The following will then serve as a proof of concept which will then suggest a new 

procedure for object detection. 

The derivation of the model follows a similar approach to that above. The new 
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model is then given by 

J.L In oo(¢)IV'¢ldxdy + J) In H(¢)dxdy + 

Al L IUo - cI14H(¢)dxdy + 

A2 In IUo - c214(1 - H(¢))dxdy. (3.2) 

Again, we wish to minimize this equation with respect to Cl and C2. This minimization 

problem is equivalent to minimizing G 

G(¢, Cl, C2) = J.L In oo(¢)IV'¢ldxdy + v in H(¢)dxdy + 

Al in (uo - Ct}4 H(¢)dxdy + 

A2in (uo - C2)4(1 - H(¢))dxdy. 

If we hold ¢ constant and minimize F with respect to Cl and C2 we have 

d~1 G(¢, CI, C2) = 0 = -4Al l (uo - cd3 H(¢)dxdy 

d~2 G(¢, Cll C2) = 0 = -4A2in (uo - C2)3(1 - H(¢))dxdy. 

Expanding and simplifying the above expressions gives 

-C~ in H(¢)dxdy + c~ 1n 3uoH(¢)dXdY-

Cl in3U~H(¢)dXdY + l u~H(¢)dxdy = 0 

-~ In (1 - H(¢))dxdy + ~ in3uo(1 - H(¢))dxdy­

C2ln3u~(1- H(¢))dxdy + In u~(1- H(¢))dxdy = O. 

(3.3) 

In order to solve these equations, we need to review the solution technique for cubic 

polynomial equations. Of course, numerical algorithms may be used to estimate the 

values of Cl and C2. 

3.1 Solution of Cubic Polynomials 
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Consider the equation 

ax3 + bx2 + cx + d = O. 

Let x = y - 3
b
a' This substitution gives 

a(y - ~ )3 + b(y - ~)2 + c(y - ~) + d 0 
~ 3a ~ 

3 b 2 b 2 b )3 2 b ( b )2 b 0 
ay - 3a 3a y + 3a( 3a) y - a( 3a + by - 2b 3a y + b 3a + cy - c 3a + d = 

3 (3ac-b2
) (2b3 -9a2bc+27a3d) 0 

y + 3a2 y + 27 a3 

y3 + py + q = 0 

where p = 3ac-b
2 and q = 2b

3
-9a

2
bc+27a

3
d. Now let y = z - .E... for z -'- O. Substituting and 

3a2 27a3 3z T 

multiplying by z3 gives 

(z - ~)3 + p(z - ~) + q 
. 3z 3z 

3 3 P 2 3( P )2 ( P )3 P z - -z + - z - - + PZ - P- + q 
3z 3z 3z 3z 

3 ( 3 P 2 ( P )2 ( P )3 p) Z Z - 3-z + 3 - z - - + PZ - P- + q 
3z 3z 3z 3z 

p3 
Z6 + qz3 _ (_) 

27 

This resulting equation is now quadratic in Z3. Solving gives 

_q±. Iq2 + ~ 
Z3 =. V 27 

2 

o 

o 

o 

O. 

Solving this final equation will give six values for z. With these values, we can now 

back-calculate to find y and then, finally, x. 

3.2 Final Model 

We may now return to the model derivation. This derivation will be analogous to 

Chan and Vese's derivation. The only differences will be the final form of the model and 

of course, the determination of the constants Cl and C2. Thus, we have the following 

at 
cP(O,x) 

acP 

02€(cP)(P diV(I~:I) - v - Al(UO - Cl)4 + A2(UO - C2)4) 

cPo (x ) 

- 0 an 

45 

(3.4) 



where Cl and C2 are found from the equations 

-C~ L H(<p)dxdy + c~ L 3uoH(<p)dxdy-

Cl L 3u~H(<p)dxdy + L u~H(<p)dxdy 0 

-~ L (1 - H(<p))dxdy + ~ L 3uo(1 - H(<p))dxdy-

C2 L 3u~(1- H(<p))dxdy + In u~(1- H(<p))dxdy - O. 

3.3 Numerical Examples and Discretization 

All numerical simulations have been done on a Windows XP machine, 2 Ghz pro­

cessor, 1 Gb of RAM, running Matlab. The figures are shown with values of the various 

parameters, the iterations of the program, and an estimate of the computation time. Un­

less otherwise noted, the mesh size .6.x = .6.y = h = 1 and .6.t = 0.1, and all images are 

size 200 x 200, grayscale. Note that the following results show "stable" level set curves 

and not proper mathematical convergence since the idea is to show the rapid response of 

the fourth order polynomial. Later in this chapter, we treat convergence with more care. 

Chan and Vese adopt the discretization of the divergence term found in [45] and 

use an iterative algorithm proposed in [7]. We use the divergence discretization found in 

[45] but, for now, we use a non-iterative algorithm derived from an explicit finite difference 

scheme. Let 

~:JP <Pi,j - <Pi-l,j 

~~<P <PHl,j - <Pi,j 

~~<P <Pi,j - <Pi,j-l 

~~cp = <Pi,j+ 1 - <Pi,j. 
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We may then calculate ¢n+l by using the following 

,+.n+l ,+.n 
'l'i,i - 'l'i,i 

6t 

The following results show the method in action. 
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FIGURE 3.1- The original image with objects to be detected. 

Figure 3.1 shows the initial images with some simple shapes we wish to detect 

while Figure 3.2 shows the initial level set function used. Following Chan and Vese, we 

use Al = A2 = 1 and lJ = O. In Figure 3.3 we show the resulting edges with f.L = 0.1 * 2552
• 

Using (3.4) instead, we need one iteration requiring only 0.53 seconds. Figures 3.4-3.7 

show a typical curve evolution for the Chan-Vese model. 

Figure 3.9 shows a synthetic image where noise has been introduced using a random 

number generator. Figure 3.8 shows the detected edges of the image. Figures 3.10-3.12 

show the evolution of the level set curves for iterations of 100, 500 and 1000, respectively. 

Here, we choose f.L = 10 * 2552 to limit the detection to larger groups of objects. The 

initial level set function is the same as that used for the first sample image. If we run 
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FIGURE 3.2- Initial level set curve given by ¢o(x, y) = 80 - J(x - 100)2 + (y - 100)2. 
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FIGURE 3.3-The final zero level set showing the detected edges. The parameter values 
are p, = 0.1 * 2552 , 11 = 0, Al = A2 = 1. Program ran for 101 iterations, 3.32 seconds. 
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FIGURE 3.4-The parameter values are f1 = 0.1 * 2552 , 1/ = 0, Al = A2 = 1. Program ran 
for 20 iterations. 
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FIGURE 3.5-The parameter values are f1 = 0.1 * 2552
,1/ = 0, Al = A2 = 1. Program ran 

for 40 iterations. 
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FIGURE 3.6-The parameter values are f.!::::: 0.1 * 2552
,1/ ::::: 0, Al :::::: A2 = 1. Program ran 

for GO iterations. 

20 

40 

:0 
100 

.. 

120 ------
@ 

140 

180 

180 

~L-~~~ __ ~~~ __ ~~~~ 

20 40 60 80 100 120 140 111) 180 ~ 

FIGURE 3.7-The parameter values are f.! = 0.1 * 2552
,1/ = 0, Al = A2 = 1. Program ran 

for 80 iterations. 
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FIGURE 3.B-The initial image with the noise introduced by a random number generator. 
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FIGURE 3.g-The image with the detected edges. The parameter values are J.L = 10*2552 , 

1/ = 0, Al = A2 = 1. The program ran for 1500 iterations, 44.2 seconds. 
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FIGURE 3.10-The parameter values are /-L = 10*2552
, 1I = 0, Al = A2 = 1. The program 

ran for 100 iterations. 
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FIGURE 3.11- The parameter values are /-L = 10 * 2552
, 1/ = 0, Al = A2 = 1. The program 

ran for 500 iterations. 
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FIGURE 3.12-The parameter values are J.L::;::: 10*2552
, /J::::: 0, AI::::: A2 = 1. The program 

ran for 1000 iterations. 

(3.4) we need only one iteration and 0.54 seconds. The results shown in Figure 3.13 are 

the result of using the explicit scheme. 

One of the strengths of the Chan-Vese model is that it detects edges that are not 

defined by gradient. Images that are blurred have smooth transitions between regions of 

constant intensity and, therefore, have edges which are difficult to detect with gradients. 

Figures 3.14-3.18 show the evolution of the level sets for the Chan-Vese model through 5000 

iterations of the program used on a blurred image. Figures 3.19-3.21 show the evolution on 

the same image but using our model. Note that we have achieved slightly better detection 

but with only 50 iterations requiring 5.47 seconds compared to the chan-vese model of 

5000 iterations and over two minutes. 

These results suggest a possible improvement over the Chan-Vese model. The 

suggested procedure is then given by the following. 

1. Initialize ¢>o to a signed distance function. 

2. Run the fourth order polynomial model for a few iterations. The result of this 

model will give us a new initial condition for the Chan-Vese model. Note that the 

this procedure could be used to specify a better initial condition for the original 

model. We discuss this later in this chapter. 
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FIG URE 3.13 - The level set for a noisy image. The parameter values are J.L = 10 * 2552 , 

1) = 0, Al = A2 = 1. The program ran for one iteration, 0.54 seconds. 
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FIGURE 3.14-The parameter values are J.L = 0.h2552
, 1) = 0, Al = A2 = 1. The program 

ran for 10 iterations. 
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FIGURE 3.l5-The parameter values are J1 = 0.1*2552, /J = 0, '\1 ='\2 = 1. The program 
ran for 50 iterations. 
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FIGURE 3.l6-The parameter values are p = 0.h2552, /J = 0''\1 ='\2 = 1. The program 
ran for 100 iterations. 
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FIGURE 3.l7-The parameter values are J.L = 0.h2552, /I = 0, Al = A2 = 1. The program 
ran for 1000 iterations. 
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FIGURE 3.l8-The parameter values are J.L = 0.h2552, /I = 0, Al = A2 = 1. The program 
ran for 5000 iterations, 140.97 seconds. 
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FIGURE 3.19 - The proposed model with parameter values J-t :=: 0.1 * 2552 , /J :=: 0, Al :=: 

A2 == 1. The program ran for one iteration. 

3. Take the level-set curve from the previous iterations and reconcile to the distance 

function if desired. 

4. Run the Chan-Vese Active Contours model as usual with the iterative numerical 

scheme. 

20 40 60 80 100 120 140 160 180 200 

FIGURE 3.20-The proposed model with parameter values J-t = 0.1 * 2552
, /J = 0, Al = 

A2 =: 1. The program ran for 10 iterations. 
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3.4 Comments on Numerical Convergence 

This section gives a more careful treatment of numerical convergence. We retain 

the definitions for error and relative error as given in the numerical section of the linearized 

model. The idea is that numerical convergence is achieved when the error or relative error 

falls below some predefined tolerance. The previous section showed that the segmentation 

occurs quite rapidly for both the Chan-Vese model and the new proposed fourth order 

model. Now, however, we are more concerned with actual numerical convergence. In 

this section, we will see that both models converge slowly, although the fourth order does 

speed convergence. 

20 40 60 80 100 120 140 160 180 200 

FIGURE 3.21- The proposed model with parameter values 11 = 0.1 * 2552
, II = 0, Al = 

.\2 =: 1. The program ran for 50 iteration, 5.47 seconds. 

The parameter values are taken to be fixed at 11 = 100, fJ.t = 0.1, and we are now 

using an iterative approach as prescribed in [7]. Further, the initial condition has also 

been fixed and possesses a zero level set consisting of one circle centered at (101,101) -

representing a pixel location - with a radius of 50 pixels. The numerical scheme is then 
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given by 

..J,n+l ..J,n 
'+'i,j - '+'i,j 

I::,.t [ 

I::,.x ¢r:-+:l 
(j h ( ¢?,j ) ~ I::,. ~ (-,:;:;( L:.;=:;+;=t/J3r,J~):;;:2 =:=;:(~=:'~;=,j +=1=-==;<fJ:;;;r,J=' -::::;1 )~2 ) 

h2 (2h)2 

I::,.Y ¢,,!+1 

+ [~ I::,.~ ( (L:.1I+t/Jr:')2 + (;+1 ,-t/Jr:'_1 .)2 ) 
hl,J + 1 'bh)2 IJ 

v - A,(UO,ij - C,(,pn))' + A,(UO,ij - c,(,pn)),] 

where all previous finite difference definitions are retained. Since the fourth order model 

will only be used to specify an initial condition for the second order Chan-Vese model, we 

, will continue to use an explicit procedure for its solution. There is, of course, the option 

of reconciling the output of the fourth order model before using it as the initial condition 

for the second order model. The rest of this section is then a discussion of results obtained 

from testing the procedures. The test image is given by Figure 2.3. 

We ran both the second order model and then the new fourth order procedure 

independently. Both programs ran for many hours to obtain the best possible results. 

We also note that both methods detect the object in the image accurately and both also 

detect the internal contour that is present. The second order model ran for 651, 000 

iterations without reconciliation and ended with an error of 7.447 * 10-4
. It is interesting 

to note, however, that at iteration 6,591, the energy of the segmentation as defined by 

Equation 1.16 was only changing by 1.59 with a relative change of 0.0001. This shows 

that even at this low iteration, the segmentation of the image is almost complete. The 

rest of the iterations are required for numerical convergence. In contrast, the fourth order 

procedure ran for 593,112 iterations. However, the results for this procedure include only 

one iteration of the fourth order code. The objective was to obtain the same error as in 

the second order model. The new procedure then gave a saving of approximately 60, 000 

iterations - or about one hour. Interestingly, at iteration 6,591, the fourth order model 

energy was changing by 0.0006 with a relative energy change of 2.371 * 10-6
• This shows 

that the new procedure speeds the detection and also aids in numerical convergence. 
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3.5 Initial Condition Considerations 

Since the new procedure may be used to specify a good initial condition for the 

active contours without gradient model, the choice of initial condition is not as important. 

Care must still be taken, however, since the new procedure inherits the lack of unique 

minimizers from the original model. In this section, we follow the ideas set forth in [19] in 

order to compare the effect of three initial conditions upon five different schemes. That 

particular analysis is carried out using multiple level set functions, but the ideas may still 

be applied here. The schemes are defined by 

CV 200 iterations of the original model by Chan and Vese 

NP1 one iteration fourth order, 200 iterations of Chan-Vese 

N P2 two iterations fourth order, 200 iterations of Chan-Vese 

N P5 five iterations fourth order, 200 iterations of Chan-Vese 

L = 200 iterations of the linear model. 

These schemes are compared with three initial conditions given by Figures 2.2, 3.22, and 

3.23 and used on the image shown in Figure 2.3. The first initial condition represents one 

large circle surrounding the objects. The second initial condition represents four circles 

each with radius of 30 pixels while the last condition represents a set of 1089 seed circles 

each with radius 2 pixels. The analysis set forth in [19] shows that initial conditions of 

the type in Figure 3.23 tend to give the best segmentation and lowest energy. Our results 

agree. 

The idea is to compare the energy at each iteration. The new procedure, however, 

shows such a large decrease in energy in just a few iterations that a graph is not feasible. 

Thus, we present results in Table 3.1. Parameter values for both the original model and 

the new procedure are J.L = 100 and tit = 0.1. The linear model uses the same value for 

J.L but we need 6.t = 0.001 for stability considerations. 

We show the energies after iteration five and after iteration 200. As can be seen 

from. the table, for each iteration, the lowest energy is obtained from N P5 . This is expected 

since the fourth order procedure has completely segmented the image before the second 
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FIGURE 3.22-Second initial condition used for comparison of methods. 
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FIGURE 3.23-Third initial condition used for comparison of methods. 
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Ie Iterations CV NPl NP2 NP5 L 

1 5 2.12 * 108 87.5 71.1 62.3 1.36 * 105 

200 3.75*104 87.3 71.1 62.3 1.36*105 

2 5 1.02 * 108 89.6 80.6 69.7 1.35 * 105 

200 3.57 * 104 89.5 80.6 69.7 1.82 * 105 

3 5 9.73 * 104 31.6 31.6 31.5 1.23 * 105 

200 3.03 * 104 31.6 31.6 31.6 1.04 * 105 

TABLE 3.1- Initial condition comparison. 

order even begins. In fact, all of the schemes involving the new procedure show very little 

change in the energy after the first few iterations. This is consistent with results shown 

previously as the claim is that the segmentation itself is quite fast. Finally, we mention 

that our results agree completely with those presented by Chan and Vese since we clearly 

see that initial condition three gives the lowest overall energy for all methods and also 

gives the fastest response (i.e., the fastest decrease of energy). 

Intuitively, this initial condition should be the best choice since we have more 

"detectors" present in the image. The more detectors present, the more objects we can 

detect and at a faster rate. Mathematically, the level set is actually starting closer to the 

edges of any object in the image. The closer the level set is to an object, the less time it 

should take for the front to reach the object edges. 
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CHAPTER 4 

DATA TRACKING 

Let us define an image in a more general way. Suppose that we have a function 

u : R2 X [0, (0) -t R which represents some physical data associated with a desired 

application. The function u could represent a temperature distribution, concentration of 

some reacting medium, etc. For a fixed time t, the function will give a set of data u(x, y; t) 

which will represent the physical quantities in the plane. This data may be interpreted as 

an "image" of the application. 

The Chan-Vese model segments an image into two regions with an average intensity. 

These intensities are given by Cl and C2 where the first gives the intensity "inside" the 

level set function <p and the second gives the average intensity outside <p. By treating 

the data as an "image", we can segment the data into regions of high intensity values 

and regions of low intensity values. This will allow us to track changes to each region 

and model the behavior of bulk data. This will be useful in applications where we are 

not concerned with solution behavior on a small scale but rather we are more concerned 

with macroscopic details. For instance, we may wish to detect the initial presence of high 

temperatures associated with some process. These high temperatures may cause material 

failure over extended periods of time. It is, therefore, essential to model how these regions 

behave as the model evolves. The region evolution may then be used to lower the risk of 

material failure and may also give clues as to the reason why such regions occur (e.g. lack 

of proper ventilation, stagnant fluids, etc.). With this in mind, we begin with two "toy" 

problems where we explore the feasibility of such an approach. 

The Chan-Vese model as written, however, is unsatisfactory for this particular 

application. The model will segment the data as described; however, we will have little to 
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no control over the segmentation. Moreover, the segmentation may create regions which 

have little or no interest. In order to provide more control over the segmentation, we 

modify the Chan-Vese model in the following way. Suppose that we wish to segment the 

data into regions which represent known contours. We will then want to segment the 

regions using some critical value. Let this critical value be represented by c. The value of 

c is given (i.e., provided by an external source). Let G(x) be given by 

{

X ifx>O 
G(x) = -

o if x < 0 

Also, we will use a power of four on the fitting terms to speed convergence. Using these 

modifications, we have the following pde. 

a¢ 
&t 

¢(O, x) 

a¢ 
aii 

-

02f(¢)(P, div( I~:I) - 1/ - AI(G(U - c) - cd 4 + A2(G(U - c) - C2)4) 

¢o(x) 

o 

where the function u = u(x, y, T) is the solution of the application for a given time T. The 

segmentation, then, is the steady-state solution of this pde. Now we continue with two 

examples: the transport equation and the heat equation. 

4.1 The Transport Equation 

Consider the two dimensional transport equation given by 

Ut + (v, Vu) 0 

u(x, 0) f(x) (4.1) 

where it is understood that x is a vector representing all spatial variables, (0,0) represents 

the usual dot product, and v = (VI, V2) is a fixed vector which represents the direction 

of transport. For completeness, we review the solution by the method of characteristics 

[24]. Parameterize a path (x(s), y(s), t(s)) with parameter s and initial position given by 

(xo, Yo, 0). Define z(s) as 

z(s) = u(x(s), y(s), t(s)). 
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Now, we differentiate z with respect to s to obtain 

z'(s) = uxx'(s) + uyy'(s) + utt'(s). 

If we define the following equations, z' (s) = 0: 

x'(s) VI 

y'(s) V2 

t' (s) 1 

where the initial conditions are x(O) = Xo, y(O) :::: Yo, t(O) = 0, and z(O) = u(xo, Yo, 0) = 

f(xo, yo). Solving this system gives the solution as 

u(x, y, t) = f(x - Vlt, Y - V2t). 

So, as expected, the solution is a translation of the initial condition which implies that 

the regions of interest are simply moving about the plane. 

To illustrate the technique, we consider an initial condition given by 

f(x) = 200e-fo«(x-20)2+(Y-20)2) 

and let V = (1,1). The solution then is given by 

u(x, y, t) = 200e-!o((x-t-20)2+(y-t-20)2). 

(4.2) 

(4.3) 

For all numerical results, we are using the following parameter values: J..L = 10, Al = 

1, A2 = 1,1/ = O. The numerical computations for segmentation use a time step of 0.1 and 

the pixel width for the spatial variables (i.e., h = D.x = D.y = 1). For the initial condition 

above, suppose we want to track regions that have concentrations of 100 or more (i.e., the 

critical value is c = 100). Then we produce the following numerical results. 

The initial contour used for detection is shown in Figure 4.1 while the final contour 

and the detected image are shown in Figures 4.2 and 4.3, respectively. Figures 4.5-4.9 

give the detected regions and detected images for times of t = 1, t = 3, t = 7. As can be 

seen from the figures, the region is being tracked as it moves in the direction of v. (Note 

that the images are inverted and that the direction of v is toward the lower right.) 
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FIGUBE 4)~The initial contour for the transport equation. 
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FIGURE 4.2 ~ The level set showing the region of interest for the initial condition of the 
transport equation. 
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FIGURE 4.3- The actual solution with the region overlayed. This is the initial condition. 
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FIGURE 4.4-The level set showing the region of interest for the transport equation with 
time of t = 1. 
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FIGURE 4.5 - The actual solution with the region overlayed for time t = 1. 
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FIG URE 4.6 - The level set showing the region of interest for the transport equation with 
time of t = 3. 
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FIGURE 4.7 - The actual solution with the region overlayed for time t = 3. 
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FIGURE 4.8 - The level set showing the region of interest for the transport equation with 
time of t = 7. 
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FIGURE 4.9-The actual solution with the region overlayed for time t = 7. 

4.2 The Diffusion Equation 

Now consider the two-dimensional heat equation. 

Ut = ab.u 

with appropriate boundary and initial conditions. Again, we treat u{x, t) as defined above. 

For purposes of this section, we let a = 1. To solve the equation numerically, we discretize 

as follows. 

(4.4) 

We have chosen to use h = 1, b.t = 0.01. The parameters values are the same as was 

used for the transport equation including the initial contour in Figure 4.1. We will use an 

initial condition of 

(4.5) 

and track regions of intensity 90 and above. Further, we assume adiabatic conditions at 

the boundary of the domain 

au 
at o on au (4.6) 
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where U is the complete domain of the equation. 

The dynamics of this equation are also well-known. The steady-state solution of 

the equation will be a constant function over the entire domain U. As time increases, we 

will see two effects depending upon the values of u. If u is greater than the steady-state 

solution, then u will decrease. If u is less than the steady-state solution, then u will 

increase. Thus, if we choose a critical value to be above the steady-state solution, the 

region we are tracking should decrease in 3ize as time increases and approach .:. single 

point. Alternatively, if we choose a critical value less than the steady-state, the region we 

are tracking will increase until the entire domain is contained inside the region. Choosing 

the critical value to be the steady-state value will result in no movement of the region 

initially. At the limit, however, the region will be the entire domain. For now, with the 

above conditions and a critical value of c = 90, we obtain the following results. 
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FIGURE 4.10-The final contour for the heat equation at time t = O. 

Again, the figures show both the final contour of the chan-vese segmentation and the 

final image which gives the solution to the heat equation with region tracking overlayed. 

As before, the solutions are inverted with the y-axis increasing as we go down the graph. 

From the figures, we see the region is decreasing. 
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FIGURE 4.1l-The final contour for the heat equation at time.t = O. 
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FIGURE 4.12-The final contour for the heat equation at time t = 30. 
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FIGURE 4.13-The final contour for the heat equation at time t = 30. 
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FIGURE 4.14-The final contour for the heat equation at time t = 120. 
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FIGURE 4.15-The final contour for the heat equation at time t = 120. 
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FIGURE 4.16-The final contour for the heat equation at time t = 240. 

74 



FIGURE 4.17 - The final contour for the heat equation at time t = 240. 
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FIGURE 4.18-The final contour for the heat equation at time t = 300. 
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FIGURE 4.19-The final contour for the heat equation at time t = 300. 

4.3 Reaction-Diffusion Equation 

In order to further substantiate the claims made above, we now turn our attention 

to a more complicated example: the reaction-diffusion equation. This type of equation 

may be written as 

Ut = D!.lu - R(u, t) 

where R(u, t) represents the reaction term and D is the diffusion coefficient. The notation 

above assumes that the equation is meant to represent the concentration of a reactant. 

We will choose a simple reaction, use an iterative scheme to solve the resulting pde, and 

then use mathematical imaging to track regions of interest. The difference in this section 

is that we will now use the linearized model for the segmentation. Since the linearized 

model gives fast segmentation and convergence for simple images, it is ideally suited for 

this particular application. Of course, we could also use the fourth order procedure as 

discussed in the previous sections. 

Consider a first-order ideal reaction given by 

A--tR 

where k is the reaction constant, A is the reactant, and R is the only product. We will 

use notation found in [27J; however, both Fogler [27J and Levenspiel [34J are classic books 
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on chemical reaction engineering. Further, Murray's classic books [40] [41] are also good 

references on the reaction-diffusion equation and give a complete analysis. 

Assume that the reaction is carried out on a square surface of dimensions Lx L but 

with negligible thickness (i.e., on a table top). So n = {(x, y) E R2 10 :::; x ~ L,O :::; y :::; L} 

is the domain of the concentration function. Define the concentration of reactant A as 

GA == CA(x, y, t). Also assume Neumann boundary conditions 

aGA 
an = 0 on an 

and initial condition of GA(x, y, 0) = GAO(x, y). We then define the rate of disappearance 

of the reactant A as 

Substituting into the equation gives our model 

(GA)t = 

aGA 

an 

CA(x, y, 0) 

o on an 

(4.7) 

Next, we wish to nondimensionalize the pde. This may be done by using the following 

substitutions. 

CA max(x,y)CAO(x, y) 

T kt 

(3 
D 
kL 
x 

x 
L 

y Y 
L 

GA 
GA 

= CA 

With these subsitutions and after some simplification, Equation (4.7) becomes 

(GA)t D~(GA) - kGA in n 
aGA o on an 
an 

GA(x, y, 0) GAO (x, y). (4.8) 
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4.3.1 Numerical Results 

We solve Equation (4.8) for 50 time steps with L = 10, D.x = D.y = 0.1, D.T = 0.01 

and (3 ::: 0.10. The results are shown for tracking concentration values of 0.8 or higher. 

The initial condition is given by 

whieh means that most of the concentration is found at the center of the domain. The 

following figures display the results. 
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FIGURE 4.20 - Reaction diffusion tracking results for a critical value of 0.8 for T = O. 

Figure 4.20 gives the tracking result for the initial condition. Inside the region, 

the concentrations are at least 80% of the maximum concentration. We should expect 

that the concentrations will be decreasing as in the results for the heat equation. The 

difference in this example, however, is that the concentration may not decrease in the 

strict sense. For instance, consider an isolated grid point. At this point, the reaction 

forces the concentration to decrease in a manner proportional to the concentration itself. 

This may cause a situation where the concentration at this point is lower than surrounding 

concentrations. Thus, we have a local diffusion which takes place and the concentration 

at our grid point may actually increase during the next time step. This exact situation 
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FIGURE 4.21- Reaction diffusion tracking results for a critical value of 0.8 for T = 0.1. 
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FIGURE 4.22 - Reaction diffusion tracking results for a critical value of 0.8 for T = 0.2. 
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FIGURE 4.23 - Reaction diffusion tracking results for a critical value of 0.8 for r = 0.3. 
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FIGURE 4.24 - Reaction diffusion tracking results for a critical value of 0.8 for r = 0.4. 
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FIGURE 4.25-Reaction diffusion tracking results for a critical value of 0.8 for T = 0.5. 

may be seen from the remaining figures, although the tendency for the region to shrink is 

obvious. For Figures 4.21-4.25, we have shown the results of the tracking every 0.1 units 

of time. 
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CHAPTER 5 

CONCLUSION AND DISCUSSION OF FUTURE WORK 

Surprisingly, the linearized form of the active contours without gradient model 

gave very good results - at least for simple images. This model also does not suffer 

from the numerical difficulties of most other imaging models in that reconciliation is not 

required. Further, the convergence rate is very fast. This warrants further investigation 

with more complicated images and extension of the model into both color images and 

multi-dimensional" images". We have tested the linear model for images which are not 

simple - including the results in Figures 2.9, 2.10, 2.11 - and find results comparable to 

the nonlinear model. 

After showing that the fourth order procedure does offer significant savings on 

computation time and resources, the next step would be to extend the procedure to color 

and multi-dimensional images and investigate the improvement over the second order 

model. We note here that using this procedure blurs the relative difference between 

initial conditions. The reason for this is that the fourth order model may be used to 

quickly obtain a reasonable segmentation of the image from any initial condition. This 

result may be smoothed by reconciliation. The overall result is that the Chan-Vese second 

order model is given a much better initial condition than may otherwise have been used. 

Finally, the examples given for data tracking show that the method does have some 

utility in visualizing regions of interest. Of course, the obvious step would be to look at 

much more sophisticated examples where visualizing data may be problematic. Three 

dimensional spatial data could be easily visualized using such an approach. Further, 

the extension of the procedure to track multiple regions would allow bands of data to 

be tracked easily. We believe this type of visualization can be quite useful for more 
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complicated applications. 
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APPENDIX I 

ACTIVE CONTOURS WITHOUT GRADIENT PROGRAM CODE 

This program calculates the results for the Chan-Vese Active Contours Without 

Gradient Model. The code uses an iterative approach. 

1.1 Main Code 

function [time ,energy_vector , loop_error_veetor , iterate_vector] = 

ae_jmc_seeond_order(mu,dt,U,lambdal,lambda2,nu,eolor,energy_tol, 

We want to time the calculations, so we use the commands tic-toc. 

tic 

We need to know the size of the image U. We will also set many of the variables which 

will be used based upon that size. 

[Y,X] = size(U); 

Energy = zeros(10,1); 

loop_error = zeros(10,1); 

loop_iterates = zeros(10,1); 

phi = zeros( size(U) ); 

phi_ree = zeros( size(U) ); 
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D1 = zeros( Y+2,X+2 ); 

D2 = zeros( Y+2,X+2 ); 

Gradient = zeros( size(U) ); 

The variable h will be the spatial step size. Since we are working on images, the step size 

will be one. 

h = 1; 

The variable DD represents the Dirac Delta function evaluations - recall that we are using 

a regularized version of the Dirac Delta function. 

DD = zeros( size(U) ); 

The following variables are used for the integration involved in finding the two constants 

Cl and C2. 

Energy_integrand = zeros( size(U) ); 

prod = zeros( size(U) ); 

prod1 = zeros( size(U) ); 

heavy = zeros( size(U) ); 

heavym1 = zeros( size(U) ); 

The next code allows us to specify either internally or externally defined initial conditions. 

This allows for flexibility in the choice of the initial condition. 

phi = special_ic; 

else 
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for i::::;l:Y 

for j=l:X 

phi(i,j) = initial_condition«i-l)*h,(j-l)*h); 

end 

end 

end 

We want to locate the approximate location of the level set curve. The following code 

does this by checking for sign changes between successive pixels. 

Zerolevelinitial = phi; 

for j=l:(X-l) 

for i"'l: (y-1) 

if ore or(and( phi(i,j»O,phi(i+l,j)<O), 

and(phi(i,j)<O,phi(i+l,j»O»,or(and( phi(i,j»O,phi(i,j+l)<O), 

and(phi(i,j)<O,phi(i,j+l»O») 

Zerolevelinitial(i,j)=O; 

else 

Zerolevelinitial(i,j)=255; 

end 

end 

end 
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Next, display the results of the level set location. 

figure 

imagesc(Zerolevelinitial), colormap(gray) 

Next, we initialize several variables which keep track of various program code. The error 

is the overall stopping criteria and is eventually compared to the overall tolerance. The 

relative_error 

represents the error scaled by the previous iteration and k keeps track of the number of 

iterations the global program executes. 

error::: 1000; 

k=O; 

If we reach the desired tolerance, we want to immediately stop the program. The following 

variable is then initialized here and checked further in the code. 

stop_program = 0; 

We now create the reflected boundaries by increasing the size of the initial condition, 

shifting the initial condition to the lower right, and reassigning the boundaries accordingly. 

phi(Y+1,:)=0;phi(Y+2,:)=0;phi(:,X+1)=0;phi(:,X+2)=0; 

phi = circshift(phi,[1,1]); 

newX = X + 2;newY = Y + 2; 

phi(1,:) = phi(2,:); 

phi(newY,:) = phi(newY-1,:); 
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phi(:,l) = phi(:,2); 

phi(:,newX) = phi(:,newX-l); 

At this point, the original matrix is now of size (Y + 2, X + 2) with the original initial 

condition found in (2,2) to (Y + 1, X + 1). To speed the program execution, we can 

vectorize the formulas. We only update values in the center of the matrix (Le., for rows 

2 ... Y - 1 and columns 2 ... X-I. 

I = 2: (newY-l) ; 

J = 2: (newX-i) ; 

a = mu/h~2; 

Now we begin the global iteration which will calculate the steady-state of the pde. The 

variables D1 and D2 represent the denominators of the discretization for the divergence 

term. 

while (error >= overall_tol)&&(stop_program -= 1) 

Dl(I,J) = sqrt( (phi(I,J+l) - phi(I,J».-2/h-2 + 

(phi(I+l,J) - phi(I-l,J».~2/(2*h)~2); 

D2(I,J) = sqrt( (phi(I,J+l) - phi(I,J-l».-2/(2*h)-2 + 

(phi(I+l,J) - phi(I,J».-2/h-2); 

Again, we wish to keep the previous iteration for comparison in order to calculate the 

error at the current iteration. 

The functions H(¢) and (1 - H(¢)) are then calculated using the following code. 

heavy = 1/2*(1+(2/pi).*atan(phi_temp./h»; 
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heavym1 = 1-heavy; 

To find the products uoH(¢) and uo(1- H(¢)), we need to convert the image to double 

precision which requires adding one due to the way Matlab handles 8-bit and 16-bit images. 

prod = (double(U)+1) .* heavy; 

prod1 = (double(U)+1) .* heavyrn1; 

The values for Cl and C2 are then given by 

c1 = jrnc_trapezoid(prod,h)/jrnc_trapezoid(heavy,h); 

c2 = jrnc_trapezoid(prod1,h)/jrnc_trapezoid(heavyrnl,h); 

We next make certain that the denominators have been reflected as well since the above 

calculation will not produce proper values for the boundaries. 

D1(1,:) = D1(2,:); 

D1(newY,:) = D1(newY-1,:); 

D1(: ,1) = D1(:, 2) ; 

D1(:,newX) = D1(:,newX-1); 

D2 (1, :) = D2 (2, : ) ; 

D2(newY,:) = D2(newY-1,:); 

D2(:,1) = D2(:,2); 

D2(:,newX) = D2(:,newX-1); 

The Dirac Delta and fitting terms are then calculated using the next code. 

DD(I,J) = 1/(pi*h) * 1./(1+ (phi(I,J)./h).-2); 
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Q(I-l,J-l) = -nu-lambdal.*(double(U(I-l,J-l))+1-cl).~2+ 

lambda2.*(double(U(I-l,J-l))+1-c2).-2; 

If this is the first time through the code, calculate the energy associated with the initial 

condition. 

if k==O 

Gradient(I-l,J-l)=sqrt«phi(I,J+l)-phi(I,J-l)).-2/(2*h)-2+ 

(phi(I+1,J) - phi(I-1,J)).-2/(2*h)-2); 

Energy_integrand(I-l,J-1)=mu*DO(I-1,J-l).*Gradient(I-1,J-1)+ 

lambda1*( double(U(I-1,J-1))+1-c1).-2 .* 

jmc_heaviside(phi_non_reflected(I-l,J-1))+ 

lambda2*( double(U(I-1,J-1))+1-c2).-2 .* 

(1-jmc_heaviside(phi_non_reflected(I-1,J-1))); 

Now assign that energy to the first entry in the variable Energy. 

Energy(l,l) = jmc_trapezoid(Energy_integrand,h); 

end 

Now we call the iterative program code - shown in the next section. This code calculates 

the grid function for the next time step. 

[phi,loop_error(k+1),loop_iterates(k+1)] = 

ac_jmc_cv_iterate(phi, newX, newY, I, J, DO, 01, 02, Q, dt, a, tol); 

The variable phi_non_reflected is the version of <p without reflections. This is now 

found and used to calculate the energy associated with this new estimate for <p. 

96 



phi_non_reflected(:,newX)=[] ; 

phi_non_reflected(newY,:)=[]; 

Gradient(I-l,J-l) = sqrt( (phi(I,J+l)-phi(I,J-l)).-2/(2*h)-2 + 

(phi(I+l,J) - phi(I-l,J)).-2/(2*h)-2); 

Energy_integrand(I-l,J-l) = mu*DD(I-l,J-l).*Gradient(I-l,J-l) + 

lambdal*( double(U(I-l,J-l))+1-cl).-2 .* 

heaviside(phi_non_reflected(I-l,J-l)) + 

lambda2*( double(U(I-l,J-l))+1-c2).-2 .* 

(l-heaviside(phi_non_reflected(I-l,J-l))); 

Energy(k+2,l) = jmc_trapezoid(Energy_integrand,h); 

We may wish to base the stopping criteria on energy rather than the actual values of the 

grid function for cP. If the flag energy_tol is zero, we let the error be defined as the 

maximum change in the grid function between the two successive iterations. 

if energy_tol == 0 

error = max( max( abs(phi_non_reflected-phi_temp))); 

Otherwise, we will use the energy _difference as the stopping criteria. 
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else 

energy _diff erence = abs ( Energy (k+2 , 1) - Energy (k+ 1,1) ) / 

max(Energy(k+2,l),Energy(k+1,l)); 

if energy_difference <= energy_tol 

error = overall_tol - 1; 

actual_energy_difference = 

abs( Energy(k+2,l) - Energy(k+1,l) ) 

else 

error = overall_tal + 1; 

end 

end 

As we have seen, the code may require many thousand iterations to converge. We want 

to save the results at different times so that we can obtain some results if something 

unforeseen causes the code to stop abruptly. The code as shown saves every ten iterations. 

if (mod(k,10) == O)&&(k -= 0) 

k 

save 'phi_output. out , phi_nan_reflected -ASCII -double 

save 'energy_output. out' Energy -ASCII -double 

save 'error. out , error -ASCII -double 

end 
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Now, we can increment the global iterations by one and check to see if we have reached 

the maximum iterations desired by the user. If so, we stop the program. 

stop_program = 1; 

end 

end 

Next, we show the user the final errors and set the function <p to be the last calculated 

result. 

error 

relative_error = max( max( abs( 

if energy_tol -= 0 

energy_difference 

end 

The rest of the code is used to locate the level set and show various results to the user. 

Zerolevel = phi; 

for j=1: ex-1) 
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for i=1: (Y-1) 

if ore or(and( phi(i,j»0,phi(i+1,j)<0), 

and(phi(i,j)<0,phi(i+1,j»0», 

or(and( phi(i,j»0,phi(i,j+1)<0), 

and(phi(i,j)<0,phi(i,j+1»0») 

Zerolevel(i,j)=O; 

else 

if phi( i , j ) ==0 

Zerolevel(i,j)=O; 

else 

Zerolevel(i,j)=255; 

end 

end 

end 

end 

We may also want to show the level set overlayed on top of the original image. This is 

accomplished using the following. 

if color -= (-1) 

B=U; 

for j=l:X 
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for i=i:Y 

if Zerolevel(i,j)==O 

B(i,j)=color; 

end 

end 

end 

figure 

imagesc(B),colormap(gray) 

end 

Now, show the results including the level set and ¢>. Further, assign the output values for 

the level set function ¢>, the energy, and errors. 

figure 

imagesc(Zerolevel), colormap(gray) 

figure. 

imagesc(phi),colormap(gray) 

figure 

mesh(phi) 

energy_vector = Energy; 

iterate_vector = loop_iterates; 
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Stop the internal timing. 

tirnE~=toc ; 

End the program. 

end 

1.2 Iteration Code 

fUnction [result,end_error,number_of_iterates] = 

aC_jrnc_cv_iterate(phi, newX, newY, i, j, DD, Dl, D2, Q, dt, a, tol) 

We begin with a guess for the solution at this iteration. 

guess = phi; 

The following terms are ratios of the denominators. In order to prevent division by zero 

- and the need to check every entry in the matrices - we can add a very small number in 

the form of f.2. Here, f. is the machine tolerance - or the difference between two successive 

real numbers. 

Dlr = 1./(eps~2+Dl); 

D2r = 1./(eps~2+D2); 

We want the code to execute at least once, so initialize the check variable to something 

larger than the stopping tolerance of the code. 

check = tol + 1; 

To make the code easier to read, we store the coefficients in a new matrix, and in order 

to keep track of the number of iterations for each loop of the iterative code, we initialize 

a variable l. 

coefficient(i,j) = 1./(1+a*dt*DD(i,j).*(Dlr(i,j)+Dlr(i,j-l)+ 
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D2r(i,j)+D2r(i-1,j»); 

1 = 1; 

The iterative portion of this program now begins by saving the original guess. The reason 

for this is so that we can compare the old guess to the new calculated guess in order to 

give an error estimate (Le., a check for the stopping tolerance). 

while (check >= tol) 

guessold = guess; 

Now calculate the new values fm; the function guess. 

guess(i,j) = coefficient(i,j).*( phi(i,j)+dt*DD(i,j).* 

(a*(guess(i,j+1).*Dlr(i,j) + guess(i,j-1).*D1r(i,j-l) + 

guess(i+l,j).*D2r(i,j) + guess(i-l,j).*D2r(i-1,j» + 

Q(i-l,j-l) »; 

We are using reflections to handle boundary terms, so now reflect the given function 

around its boundary. 

guess(l,:)=guess(2,:); 

guess(newY,:)=guess(newY-1, :); 

guess(:,l)=guess(:,2); 

guess(:,newX)=guess(:,newX-l); 

Next, we want to calculate the difference in the two functions - the old guess and the new 

one. 

guess_diff = abs(guess-guessold); 

103 



Of course, we do not want to count the reflected values in the error calculation, so we 

need to eliminate the boundary. 

guess_diff(newY,:) = []; 

guess_diff(:,newX) = []; 

guess_diff(l.:) = []; 

guess_diff ( : , 1) = []; 

Now, we can calculate the error and increment the number of iterations. 

check = max( max( guess_diff ) ); 

1 = 1 + 1; 

End the while loop. 

end 

The returned function <p is then the final guess, and we may also want to return the total 

iterations that were required and the final error. 

result = guess; 

end_error = check; 

End the program. 

end 
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APPENDIX II 

LINEARIZED MODEL CODE 

The program presented in this chapter details the calculation used for the linearized 

model. The code is analagous to the code in the previous section with minor differences. 

11.1 Main Code 

function [phi_out,zerolevel_out] = 

linear_rnodel(U,dt,N,mu,color,ireconcile,reconcile_iterations) 

Usually, we assign Al and A2 to be one and as usual, the spatial step size is one. 

lambda1 = 1; 

lambda2 = 1; 

h = 1; 

Find the size of the input image and define various functions. 

[Y,X] = size(U); 

phi = zeros( size(U) ); 

prod = zeros( size(U) ); 

prod1 = zeros( size(U) ); 

heavy = zeros( size(U) ); 
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heavyml = zeros( size(U) ); 

Zero level = zeros( size(U) ); 

We begin timing the calculations here and show the image. 

tic 

figure 

imagesc(U),colormap(gray) 

Next, define the initial condition. The code shows the function to be used. This could be 

modified or changed as needed, but this particular initial condition gives good results. 

[Yvals,Xvals] = meshgrid(1:1:Y,1:1:X); 

phi = 80 - sqrt( (Xvals-l00.5).~2 + (Yvals-100.5).~2 ); 

Again, we wish to locate the approximate level set curve. 

for i=1: (Y-1) 

if ore or(and( phi(i,j»0,phi(i+1,j)<0), 

and(phi(i,j)<O,phi(i+l,j»O)), 

else 

or(and( phi(i,j»O,phi(i,j+l)<O), 

and(phi(i,j)<0,phi(i,j+1»0))) 

Zerolevelinitial(i,j)=O; 

Zerolevelinitial(i,j)=255; 
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end 

end 

end 

figure 

imagesc(Zerolevelinitial), colormap(gray) 

Define the error, relative error, and initialize the iteration step. Further, we will save the 

current function <p for use later in the error calculations. 

error = 1000; 

relative_error = 0; 

k=l; 

As before, we will use reflections to handle the boundary terms. The reflections are found 

in a similar way 

phi(Y+1,:)=0;phi(Y+2,:)=0;phi(:,X+1)=0;phi(:,X+2)=0; 

phi = circshift(phi,[l,l]); 

newX = X + 2;newY = Y + 2; 

phi(l,:) = phi(2,:); 

phi(newY,:) = phi(newY-1,:); 

phi(:,l) = phi(:,2); 

phi(:,newX) = phi(:,newX-1); 
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Again, we wish to use vectorization to help speed program execution. 

I = 2: (newY-i) ; 

J = 2: (newX-i) ; 

Now, we call the function which will calculate the coefficients as discussed in the text. 

[AOO,AOl,A02,A10,All,A12,A20,A21,A22,first_terms_in_W] = 

linear_coefficients(X,Y,h); 

Begin the loop by checking to see if the user wishes to reconcile the result at this iteration. 

while (k<=N) 

if ireconcile -- 1 

if ( mod(reconcile_iterations,k)==O ) 

Reconcile the function to a signed distance function. 

phi = twoD_eikonal(phi, 0.1, 1000); 

And update the reflections as necessary. 

phi_non_reflected(:,newX) = []; 

phi_non_reflected(newY,:) = []; 

If we reconcile, we want to take that into account when we calculate the error; hence, the 

previous iteration becomes this reconciled version. 
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end 

else 

end 

Next, we calculate the values for Cl and C2 using the same methods as above. 

heavy; 1/2*(1+(2/pi).*atan(phi_temp./h)); 

heavyml ; i-heavy; 

prod; (double(U)+l) .* heavy; 

prodl; (double (U) +1) . * he avym t; 

cl ; jmc_trapezoid(prod,h)/jmc_trapezoid(heavy,h); 

c2 ; jmc_trapezoid(prodl,h)/jmc_trapezoid(heavyml,h); 

The values for the function W may now be found. 

lambdal.*(double(U(I-l,J-l))+1-cl).A2+ 

lambda2.*(double(U(I-l,J-l))+1-c2).A2; 

Update the values of the function using the numerical scheme and the linear coefficients 

found above. 

phi(I,J) ; phi(I,J) + dt*( mu*( 

AOO(I-l ,J-l) . *phi(I-l, J-l)+AOl (I-l, J) . *phi (I-1, J)+ 
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A02(I-l,J+l).*phi(I-l,J+l)+Al0(I,J-l).*phi(I,J-l)+ 

All(I,J).*phi(I,J)+A12(I,J+l).*phi(I,J+l)+ 

A20(I+l,J-l) .*phi(I+l,J-l)+A21(I+l,J) .*phi(I+l,J)+ 

A22(I+l,J+l).*phi(I+l,J+l) )+W(I-l,J-l) ); 

Next, reflect the function as needed to assign the boundary values and define a non­

reflected version for use in the error calculation. 

phi(l,:) = phi(3,:); 

phi(newY,:) = phi(newY-2,:); 

phi(: ,1) = phi(:,3); 

phi(:,newX) = phi(:,newX-2); 

phi_non_reflected(:,newX)=[]; 

phi_non_reflected(newY,:)=[]; 

phi_non_reflected(l,:) = []; 

Now calculate the error and relative error. 

error = rnax( rnax( abs(phi_non_reflected-phi_ternp))); 

relative_error = rnax( rnax( abs( 

Increase the iteration number by one. 
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k=k+l ; 

end 

If we have exited the loop, show the user the final error and relative error. And, as above, 

show the user results including the final level set and ¢J. 

error 

relative_error 

Zero level = phi; 

for j=l: (X-1) 

for i=l: (y-1) 

if ore or(and( phi(i,j»O,phi(i+l,j)<O), 

and(phi(i,j)<O,phi(i+l,j»O», 

or(and( phi(i,j»O,phi(i,j+l)<O), 

and(phi(i,j)<O,phi(i,j+l»O») 

Zerolevel(i,j)=O; 

else 

if phi{ i • j ) ==0 

Zerolevel(i,j)=O; 

else 

Zerolevel(i,j)=255; 
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end 

end 

end 

end 

if color -;; (-1) 

B=U; 

for j=l:X 

end 

end 

figure 

if Zerolevel(i,j);;;;Q 

B(i, j)=color; 

end 

imagesc(B),colormap(gray) 

end 

figure 

image(Zerolevel),colormap(gray) 

figure 

imagesc(phi),colormap(gray) 
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figure 

surf (Xvals,Yvals,phi) 

Finally, assign the output function if> and the output zero level curve. 

zero level_out = Zerolevel; 

End the code timer. 

toe 

End the program. 

end 

11.2 Determination of Coefficients Code 

The code presented in this section is self-explanatory. The entire purpose of this 

function is to calculate the various coefficients used in the linearized model. One conse­

quence of using an actual function for the initial condition is that the various derivatives 

may be found exactly without the introduction of various numerical error created by 

approximations. The code also simplifies significantly, as can be seen below. 

function [AOO,A01,A02,A10,A11,A12,A20,A21,A22,first_terms_in_W] = 

linear_coefficients(X,Y,h) 

We calculate the various derivatives as needed. 

[Yval, Xval] = meshgrid(1:1:Y,1:1:X); 

Denom = sqrt( (Xval-100.5).-2+(Yval-100.5).-2 ); 

-(Xval-100.5)./Denom; 
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tphi_y = -(Yval-100.5)./Denom; 

tphi_xx = ( (Xval-100.5)-Denom.-2 )'/( Denom.-3 ); 

tphi_yy = ( (Yval-100.5)-Denom.-2 )./( Denom.-3 ); 

tphi_xy = ( (Xval~100.5).*(Yval-100.5) )./( Denom.-3 ); 

The Hessian and laplacian can now be computed accurately along with various other 

parameters as seen in the text. 

We also need reflected versions of these functions, however. 

P1 = reflected_function(tP1,X,Y); 

P2 = reflected_function(tP2,X,Y); 

phi_y = reflected_function(tphi_y,X,Y); 
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The linear coefficients may now be calculated according to their associated definitions. 

AOl = -(P2/(2*h)+(1+phi_y.~2)/h~2); 

A02 = -AOO; 

A10 = -(Pl/(2*h)+(1+phi_x.~2)/h~2); 

All = -(2/h~2)*(2+phi_x.~2+phi_y.~2); 

A12 = -AlO; 

A20 = A02; 

A2l = A01; 

. A22 = AOO; 

End the program. 

end 
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