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ABSTRACT 

SELF-DUAL CODES, SUBCODE STRUCTURES, AND 
APPLICATIONS 

Finley James Freibert 

May 11, 2012 

The classification of self-dual codes has been an extremely active area in 

coding theory since 1972 [33]. A particularly interesting class of self-dual codes 

is those of Type II which have high minimum distance (called extremal or near-

extremal). It is notable that this class of codes contains famous unique codes: 

the extended Hamming [8,4,4] code, the extended Golay [24,12,8] code, and the 

extended quadratic residue [48,24,12] code. We examine the subcode structures 

of Type II codes for lengths up to 24, extremal Type II codes of length 32, and give 

partial results on the extended quadratic residue [48,24,12] code. We also develop 

a generalization of self-dual codes to Network Coding Theory and give some results 

on existence of self-dual network codes with largest minimum distance for lengths 

up to 10. Complementary Information Set (CIS for short) codes, a class of classical 

codes recently developed in [7], have important applications to Cryptography. CIS 

codes contain self-dual codes as a subclass. We give a new classification result for 

CIS codes of length 14 and a partial result for length 16. 
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CHAPTER 1 

INTRODUCTION 

1.1 Brief History and Introduction 

The areas of Coding Theory and Information Theory date back to 1948 and 

Claude Shannon's influential paper "A mathematical theory of communication." In 

1950, Richard Hamming's paper "Error detecting and error correcting codes" was 

published. Hamming introduced an important class of codes, the Hamming Codes, 

which were some of the most useful codes at the time due to their error-correcting 

and detecting capabilities. Since that time many other important codes and classes 

of codes have been discovered. In 1954 the Reed-Muller codes were described in 

the papers "Application of Boolean algebra to switching circuit design and to 

error detection" by Muller and "A class of multiple-error-correcting codes and the 

decoding scheme" by Reed. The study of cyclic codes was begun by Prange in 

the 1957 report "Cyclic error-correcting codes in two symbols." Generalizations to 

other fields and other coding schemes have been made as well, such as convolutional 

codes, turbo codes, and algebraic-geometry codes. 

We will focus on the study of an important class of codes, the self-dual 

codes. The study of self-dual codes began with Vera Pless' paper "A classification 

of self-orthogonal codes over GF(2)" in 1972 [33]. Since that time self-dual codes 

have been one of the most active topics in algebraic coding theory [34, 9, 10, 4]. 

Self-dual codes are a particularly interesting class of codes due to the fact that 
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theorems such as those describing the weight distribution and divisibility of these 

codes follow from their strictly defined structure. These codes have interesting 

connections to groups, t-designs, lattices, and theta series [18, 26, 36]. Furthermore, 

many extremal self-dual codes often turn out to be the best among the linear 

codes with the same parameters. Nevertheless, little attention has been paid to 

the subcodes of self-dual codes, therefore since the structure and theory behind 

self-dual codes is so rich we investigate subcodes of self-dual codes and our results 

are found in Chapter 3. In Chapter 4, we consider the subcode structures of a 

class of codes called formally self-dual. Formally self-dual codes have also been a 

quite active topic in coding theory [2, 3, 13, 16, 40]. Formally self-dual codes are 

a generalization of self-dual codes. 

In another direction, Network Coding Theory is a recent coding scheme 

which generalizes many concepts from classical Coding Theory. Network Coding 

Theory was introduced by Yeung and Zhang [46] and later expanded upon in other 

directions [1, 22, 23]. A generalization of the classical concept of duality is what 

we are interested in for Network Coding. In Chapter 5, we describe some results 

in this direction. 

A final direction we take is to examine a new class of classical codes, called 

Complementary Information Set codes (abbreviated CIS codes), which have appli­

cations to cryptography. CIS codes were described in [7], and they contain self-dual 

codes as a subclass. In Chapter 6 we give some classification results for CIS codes 

of length 14 and 16. All computations are accomplished using the computer al­

gebra system Magma [6]. As a supplement, in the Appendix, we give the Magma 

code for computing the equivalency classes of GL(n, IF2) which is used to classify 

CIS codes. 

1.2 Channel Communication 
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Consider a non-empty set S of objects. There is a given source, given re­

ceiver, and a channel is positioned to connect the source for communication to the 

receiver. The source constructs a message x of positive integer length k using the 

alphabet S. The message is sent over the channel to the receiver. In a perfect world 

the received message x would be the same as the injected message x. However, 

if there is any interferance, noise, erasure, or error plaguing the channel, then the 

message will not be properly transmitted to the receiver. A practical solution to 

this problem is for the source to encode the message x of length k by incorperating 

a redundancy, so that if there is a resonable amount of damage during transmission 

the original message may still be recovered. A visualization of this scheme is given 

in the following diagram adapted from [18, p. 2]: 

Message Source 

A more precise mathematical definition is necessary to further meaning and 

analysis of this system of source-channel-receiver communication. Basic coding 

theoretical notations and definitions will be derived from [18], while general defi­

nitions involving abstract algebra and vector spaces will be based on [14]. 

1.3 Vector Spaces 

Let R be a non-empty set closed under two binary operations addition and 

multiplication. Given two elements a, b E R addition will be denoted a + band 

multiplication will be denoted abo R is a ring if for any a, b, c E R the following 

six properties hold: 

(1) a+b= b+a 

(2) (a + b) + c = a + (b + c) 

(3) :30 E R so that a + 0 = a (0 is called an additive identity) 
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(4) :3 - a E R so that a + (-a) = 0 (-a is the additive inverse of a) 

(5) a(bc) = (ab)c 

(6) a(b + c) = ab + ac and (b + c)a = ba + ca. 

A field IF is a ring such that for any a, b E IF the following three properties hold: 

(1) ab = ba 

(2) :31 -=/: 0 so that al = a (1 is a multiplicative identity) 

(3) if a-=/: 0 then there exists a-I E IF so that aa- I = l. 

A vector space V over a field IF is a non-empty set closed under addition and scalar 

multipliction (av E V if a E IF and v E V) such that for any u, v, W E V and any 

a, b E IF the following eight properties hold: 

(l)u+v=v+u 

(2) (u+v) +w = u+ (v+w) 

(3) there exists an additive identity) 0 in V 

(4) there exists an additive inverse -v for all v) 

(5) a(u + v) = au + av 

(6) (a+b)v=av+bv 

(7) a(bv) = (ab)v 

(8) Iv = v. 

The elements of a vector space are called vectors. A subset U of a vector space V 

is called a subspace of V if U is a vector space over IF under the same operations 

as V. A linear combination of vectors is a sum al v I + a2 v 2 ••• + an v n where 

VI, V2, ... ,Vn are vectors over IF with coefficients aI, a2, . .. ,an E IF. Let S be 

a set of vectors over a field IF; S is said to be linearly dependent if there exist 

VI, V2, ... , Vn E S and aI, a2, ... ,an E IF SO that aI, a2, ... ,an are not all zero and 

a I V I + a2 V 2 ... + an V n = o. If S is not linearly dependent, then S is said to be 

linearly independent. Given a vector space V over IF, a subset B of V is said to be 

a basis for V if B is linearly independent and every element of V may be generated 
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by a linear combination of vectors from B. A non-trivial vector space with a basis 

of size k has dimension k. 

1.4 Linear Codes 

Let IF q denote the finite field with q elements. Let lF~ = {( aI, a2, ... , an) lai E 

lFq}; this is the vector space of n-tuples over lFq. For convenience denote a vector 

(aI, a2, ... ,an) from IF~ by ala2 . .. an. Any subset C of a vector space is called a 

code and in particular C is an (n, M) code over IF q if C is a subset of size M from 

IF~. Any element of a code C is called a codeword. Codes over IF 2, IF 3, and IF 4 are 

respectively called binary, ternary, and quaternary codes. 

A code C is a linear code if it is a subspace of IF~; otherwise, C is a non­

linear code. C is an [n, k] code if C is a linear code of dimensionk. An [n, k]linear 

code has qk codewords. A k x n matrix C is called a generator matrix for an [n, k] 

code C if the rows of C form a basis for C. Given a code C with generator matrix 

C and any set of k linearly independent columns of C, the positions corresponding 

to the independent columns form an information set for C, and the remaining 

r = n - k positions are called a redundancy set and r is the redundancy of C. 

Thus, the channel communication, discussed in the first section, may be 

implemented with linear codes. With the alphabet lFq, construct a message x = 

XIX2 . .. Xk E lF~. Using a linear [n, k] code C with generator matrix C, encode the 

message as the codeword c = xC = CIC2 ... Cn E C. Transmit the codeword over 

the channel and error may be accumulated, this is modeled by an error vector 

e = el e2 ... en E ~. The vector y = c + e is received and decoded to an estimate 

x of the original message. 

The Hamming Weight of a vector x E lF~, denoted wt(x) is the number 

of nonzero coordinates of x. The Hamming Distance between two vectors x, y E 
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IF~, denoted d( x, y) is the number of coordinates in x and y which are different. 

The distance function satisfied the following properties of a metric on IF~: for all 

X,y,z E IF~, 

(1) d(x,y);::: 0 

(2) d(x, y) = 0 if and only if x = y 

(3) d(x, y) = d(y, x) 

(4) d(x,y):=; d(x,z) +d(z,y). 

Given a code C, d(C) := min{wt(x) : x E C and x is non-zero} denotes the 

minimum weight of C; if C is a linear code then d( C) is also the minimum distance 

of C. A linear code of length n, dimension k, and minimum distance d will be 

called an [n, k, d] code. If a code has minimum distance greater than or equal to d 

it will be called an [n, k, ;::: d] code 

Two binary codes are said to be equivalent if there exists a permutation of 

coordinates mapping one code onto the other code. An [n, k] binary code is said 

to be unique if it is the only code of length n and dimension k up to equivalence. 

1.5 Self-Dual Codes 

Given two vectors in IF~, v = ala2 ... an and u = blb2 ... bn, the usual dot 

product of u with v is the sum u . v := albl + a2b2' .. + anbn. This dot product is 

an inner product on a vector space V as it satisfies the following three properties 

for any u, v, w E V and any a, b E IF: 

(1) u·v=v·u 

(2) (au + by) . w = a(u· w) + b(v, w) 

(3) for fixed u E V if u . v = 0 for all v E V, then u = O. 

Two vectors u and v are orthogonal if u . v = O. If C is a linear code, then the 

set CJ.. := {x E V : x . v = 0 \;/v E C}. In particular, if C is contained in CJ.., 
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then C is called self-orthogonal. Note that C..l is always a subspace of V. In fact, 

dim( C) + dim( C..l) = dim(V) (which follows from the kernel extension theorem of 

linear transformations). Hence if C is an [n, k] code, then C..l is an [n, n - k] code. 

Further, if C is an [n, k] code and C = C..l, then C is called self-dual and k = ~; 

this implies that the length of any self-dual code must be even. 

A self-dual code is called Type I (or singly-even) if it contains a codeword 

c such that wt(c) = 2 (mod 4); otherwise, the self-dual code is called Type II (or 

doubly-even) as all codewords are divisible by 4. Type II codes of length n exist if 

and only if n is a multiple of 8 (this fact follows from Gleason Polynomials, p.344 

in [18]). If C is an [n, k, d] self-dual binary code then the minimum distance has 

the following upper bound [36]. 

{ 
4r~l +4 

d5, 
4r ~ 1 + 6 

: n #22 

: n = 22 

(mod 24), 

(mod 24). 

A self-dual code meeting this bound is called extremal. 

1.6 Weight Distribution 

Let Aw be the set of all vectors in a code C with weight w. The weight 

distribution of C is the list Ao, AI, ... , An; however, if Ai = 0 then we omit Ai 

from the list. A code which has the same weight distribution as its dual is called 

formally self-dual . 

A classical theory by MacWilliams relates the weight distribution of a code 

and its dual. 

Lemma 1.1. ({26, the Mac Williams Identities, p. 129j) Let C be an [n, k] code 

and denote Aw and A~; by the number of codewords of weight w in the code C and 

C..l respectively. Then 

n 

L AiPw(n, i) = 2k A~, for 0 5, w 5, n, 
i=O 
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where Pw(n, i) = 2:~~o(-1)j ( ; ) ( : =: ) is a Kmwtchouk polynomial. 

Lemma 1.1 is especially useful in determining the non-existence of a code. 

Non-existence is determined when a possible weight distribution has negative or 

non-integer values. In Section 3.5 this lemma is invoked to prove the non-existence 

of particular sub codes of the extended quadratic residue code. Lemma 1.1 is also 

applied to determine the possible weight distribution of a subcode, if it exists. 

1.7 Obtaining New Codes from Previous Codes 

Let C be an [n, k, d] code over lFq . Let T be a set of t coordinates. The 

code CT, obtained by deleting the coordinate positions in T, is called the code 

punctured on T Let C(T) be the set of codewords of C which are 0 on T. We 

puncture C(T) on T to get a linear code of length n - t called the code shortened 

on T and denoted by CT [18]. 

Lemma 1.2. ([18, Theorem 1.5. 7j) Let C be an [n, k, d] code over lFq . Let T be a 

set of t coordinates. Then the following hold: 

(a) (C1-h = (CT )1- and (C1-f = (CT )1-). 

(b) 1ft < d, then C T and (C1-h have dimensions k and n - t - k, respectively. 

(c) If t = d and T is the set of coordinates where a minimum weight codeword is 

nonzero, then CT and (C1-h have dimensions k - 1 and n - d - k + 1, respectively. 

Lemma 1.2 is useful in examining a code with particular parameters with 

known dual distance. It can be used in conjunction with Lemma 1.1 to prove the 

non-existence of a code as in Section 3.5. 
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CHAPTER 2 

MAXIMAL SUBCODES AND OPTIMUM DISTANCE PROFILES 

2.1 Motivations 

One of the main problems that has arisen in Coding Theory is the search for 

optimal codes with the largest size given a minimum distance or optimal codes with 

the largest minimum distance given a size [18, 26]. There has been extensive work 

in this direction [15]. Some well-known families of codes, such as the Reed-Muller 

codes or the cyclic codes, contain notable subcodes. However, comparatively little 

attention has been paid to the subcodes of an optimal linear code in general. It is a 

natural concern to determine which linear codes contain optimal (or near-optimal) 

subcodes. Among linear codes, we suggest self-dual, self-orthogonal, or formally 

self-dual even codes since their possible non-zero weights jump by 2 or 4. Thus 

there is a possibility to get subcodes with a large minimum distance. 

We show that in many cases optimal sub codes can be obtained by computing 

optimum distance profiles (ODPs), a concept introduced by Luo, Han Vinck, and 

Chen [25]. The authors [25] considered how to construct and then exclude (or 

include, respectively) the basis codewords one by one while keeping a distance 

profile as large as possible in a dictionary order (or in an inverse dictionary order, 

respectively). Thus fault-tolerant capability is improved by selecting subcodes 

in communications and storage systems. The practical applications are found in 

WCDMA [17], [41] and address retrieval on optical media [42]. 
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In [8J and [25], the authors give results on the ODPs of the binary Hamming 

[7,4,3J code, the binary and ternary Golay codes, Reed-Solomon codes, the first­

order and second order Reed-Muller codes. Since self-dual codes and formally 

self-dual codes are an interesting class of linear codes whose subcode structure 

and ODPs are not known yet, we propose to examine these codes in the following 

chapters. 

Recently, Yan, et. al. [45J considered the optimum distance profiles of some 

quasi-cyclic codes and proposed two algorithms, called the "subcodes traversing 

algorithm" and "supercodes traversing algorithm." These algorithms enumerate 

all subcodes of a given code. Hence they are rather inefficient in finding ODPs 

of linear codes with a relatively large dimension. Their examples have dimension 

10 only. Therefore we propose two full algorithms based on cosets, called the 

Chain Algorithms, and two random algorithms to find ODPs of the codes. These 

algorithms look at a chain of subcodes of a given code and consider the equivalence 

of the codes with the same dimension. Hence they are more efficient than the 

sub codes and supercodes traversing algorithm [45J. 

The following concept of optimal codes is proposed in [18, p. 53J. 

Definition 2.1. Let nand k be positive integers so that k ~ n. A linear [n, k, dJ 

code is minimum distance optimal if d is the maximum possible minimum distance 

among all [n, kJ codes. Given nand d, a linear [n, k, dJ code is dimension optimal 

if k is the largest possible. 

Grassl's online table [15J is a good source for optimal code parameters given 

reasonable lengths and dimensions for finite fields of order up to 9. 

Definition 2.2. Let C be a linear code. A subcode C 1 of C is maximal if there is 

no subcode C2 i= C of C such that C1 s: C2 and d(C2 ) = d(Cd. Given d' > d(C) 
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the maximum dimension in the set 

{dim( C) : d' = d( C i ) and C i is a maximal subcode of C} 

is called the maximum dimension corresponding to d'. 

2.2 Optimum Distance Profiles of Codes 

The concept of the optimum distance profile of a linear code was introduced 

in [8], [25] for details. We use the same basic definitions as these authors, although 

we will use a slightly different notation for the ODP entries which is more intuitive. 

Let C be a binary [n, k] code and let Co = C. A sequence of linear subcodes of 

C, Co :J C1 :J ... :J Ck - 1 is called a subcode chain, where the dimension of Ci is 

k - i for i = 0, ... k -1. Let di := d(Ci ) be the minimum distance of Ci . Then the 

sequence do ::; d1 ::; ••. ::; dk - 1 is called a distance profile of C. For the given code 

C a generator matrix with respect to the distance profile is a generator matrix of 

C where the top k - i rows generate C i for 0 ::; i ::; k - 1 (i.e., deleting the bottom 

i rows forms a generator matrix for Ci ). 

For any two integer sequences of length k, a = ao, ... , ak-1 and b = 

bo, ... ,bk - 1 , a is called an upper bound on b in the dictionary order if a is equal to 

b or there is an integer t such that 

Similarly, a is called an upper bound on b in the inverse dictionary order if a is 

equal to b or there is an integer t such that 

ai = bi for t + 1 ::; i ::; k - 1, and at > bt . 

It is noted that dictionary and inverse dictionary orders are analogous to the 

concepts of lexicographical order and reverse lexicographical order. 
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Definition 2.3. A distance profile of the linear code is called the optimum distance 

profile (or abbreviated ODP) in the dictionary order, denoted by ODpdiC[C](O) , 

ODpdiC[C](l), ... , ODpdic[C](k -1) if it is an upper bound on any distance profile 

of C in the dictionary order. Similarly, a distance profile of the linear block code 

is called the optimum distance profile in the inverse dictionary order, denoted by 

ODPinv[c](o), ODpinv[C](l), ... , ODPinv[C](k -1) if it is an upper bound on any 

distance profile of C in the inverse dictionary order. We also use ODP[C] to denote 

the optimum minimum distance profile in both orders. 

The ODP of a code and the maximum dimension with respect to a minimum 

distance are related concepts. Note that the first minimum distance d' to appear 

in the ODP in dictionary order corresponds to a maximal subcode with maximum 

dimension corresponding to d'. However, after this term, maximal subcodes in 

the subcode chain do not necessarily imply the maximum dimension. This is 

an observation which follows from the definition of a maximal subcode and the 

definition of ODP; we formalize the theory in the following lemmas. However, 

note that given a dimension k' ::; k there may be multiple minimum distances d' 

with respect to which k' is the maximum dimension. Therefore for the first lemma 

we define dk , to be the maximum of such minimum distances. 

Lemma 2.4. Let C be an [n, k] code. Let k' ::; k be given. Define dk , = max( {d' : k' 

is the maximum dimension in C with respect to d'}) and define dopt to be the optimal 

minimum distance attained among all [n, k'] codes (many values available at [15]), 

then 

Proof. The claim dopt ;::: dk , is clear since dopt is the maximum minimum dis­

tance possible among all [n, k'] codes. By the definition of dk" if C contains an 
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[n, k', d'] subcode, then dk, 2: d'. Since ODpdic[C]k; (respectively ODpinV[Ck) cor-

responds to a dimension ki subcode in the subcode chain having minimum distance 

ODpdiC[C]k; (respectively ODpinV[C]k;), the preceding claim proves the lemma. 0 

Corollary 2.5. Let C be an [n, k] code. Let k' ::; k be given. Define dk, and dopt 

as above. If ODpiiC[C]k' = dopt or ODpnv[c]k' = dopt ! then equality is implied in 

the above lemma: dopt = dk, = max( {ODpdic[C]kl, ODpinv[C]kl}). 

The necessity of defining dk" in Lemma 2.4, as a maximum is due to the 

fact that there may be multiple minimum distances yielding the same maximum 

dimension. An example where this occurs is the following: 

Example 2.6. Let C be the [6,3,1] code with the following generator matrix: 

11 11 00 

G = 11 00 11 

10 00 00 

The maximum dimension with respect to d1 = 4 is 2, due to the fact that the first 

two rows of G generate a [6,2,4] subcode of C with the following generator matrix: 

Similarly, the maximum dimension with respect to d2 = 3 is 2; this is obtained by 

adding the third row of G to each row in G 1 which yields a [6,2,3] subcode of C 

with the following generator matrix: 

G2 = [01 11 00 1 
01 00 11 

Notice that in Lemma 2.4 we fix the dimension k'; a dual statement where 

we instead fix the minimum distance is the following. 

13 



Lemma 2.7. Let C be an [n, kl code and let 0 ~ j ~ k - 1. Suppose dj is a 

minimum distance appearing as ODpiic[CL or ODpnv[Ck Define kj to be the 

maximum dimension with respect to d j , then kj 2:: j. 

Proof. The proof follows directly from the definition of maximal dimension with 

respect to dj , since a subcode with this maximal dimension will have dimension kj 

which is an upper bound on the dimension of any [n, j, djl subcode. 0 

The following lemma is a special case of Lemma 2.7; this lemma states that 

in fact the first minimum distance in the dictionary order ODP corresponds to a 

maximal subcode with respect to that minimum distance. 

Lemma 2.8. Let C be an [n, k, dl code. Suppose that for some j, ODpiic[Cl j is 

the first term in ODP greater than d. Then j is the maximum dimension with 

respect to ODpiic[CL. 

Proof. If ODPdic[Cl j is the first term in ODP greater than d, then ODpdic[Clj+l = 

d where 0 < j < k. Suppose to the contrary that j is greater than the maximum 

dimension with respect to ODpdic[Cl j , then there must exist an [n,j + II sub code 

with minimum distance ODpdic[CL. This implies ODpdic[Clj+l = ODpdic[Cl j 

by definition of the dictionary order. Compiling this information we obtain the 

contradiction: d = ODpdic[Clj+l = ODPdiC[Cl j > d. 0 

If a code contains an optimal subcode (minimum distance optimal, dimen­

sion optimal, or both) there are many cases where this subcode appears in the 

subcode chain involved in an optimum distance profile. However, this is not al­

ways the case as in the following example: 

14 



Example 2.9. Let C be the [6,5,1] code with the following generator matrix: 

11 11 00 

11 00 11 

G= 10 10 10 

10 10 00 

10 00 00 

By expurgating weight 1 vectors from C we may obtain [6,4,2] subcodes of C. 

Since there does not exist a [6,4,3] code (see [15]), we may conclude that ODPdiC[C]4 = 

2. By examining all [6,4,2] subcodes of C it can be determined that none contain 

a [6,3,3] subcode, and since no [6,3,4] code exists we obtain ODpdic[Ch = 2. 

Finally, there is a unique [6,2,4] code (which has a single non-zero weight of 4); as 

this code is a subcode of at least one [6,4,2] subcode of C, and since there does not 

exist a [6,2,5] code we may conclude ODpdic[Ch = 4 and ODPdiC[Ch = 4. There­

fore the optimum distance profile in dictionary order is ODpdic[C] = [1,2,2,4,4]. 

Using similar arguments the ODP in inverse dictionary order is obtained 

as ODPinV[C] = [1,2,2,3,5]. Notice that the first three rows of G generate an 

optimal [6,3,3] code (both minimum distance optimal and dimension optimal). 

Therefore the maximum dimension with respect to minimum distance d' = 3 is 

k' = 3. However, the subcodes of dimension 3 appearing in both ODP orders have 

minimum distance 2. An explanation for this phenomenon is that all supercodes of 

the [6,3,3] code in C have minimum distance 1. This is an example where equality 

is not possible in Lemma 2.4 and in Lemma 2.7. 

2.3 Equivalent Subcodes and Cosets in Binary Self-Dual Codes 

The following theory of equivalent codes is adapted from section 1.6 in [18]. 

These theories motivate the algorithms presented in the next section. 
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Lemma 2.10. Let C be a code and P be a permutation matrix. (CP).L = C.L P. 

Proof. The proof follows from a series of equivalent statements which imply con­

tainment. First, to show (CP).L c C.L P, let y E (CP).L which is equivalent to 

y . x = 0 '\Ix E C P by definition of the dual. Since each codeword in C P may 

be represented as xoP for some Xo E C we have y . (xoP) = 0 '\Ixo E C. Now 

applying permutations to y and xoP will not change the dot product value, hence 

yP-1 • (XOP)P- 1 = 0 '\Ixo E C. Simplifying we obtain yP-1 • Xo = 0 which implies 

yP-1 E C.L adn equivalently y E C.L P. Therefore (C P).L C C.L P. C.L P c (C P).L 

is shown in an equivalent manner. D 

Corollary 2.11. Given two binary codes C1 and C 2 ; C 1P = C2 for some permu­

tation matrix P if and only if C 1.L P = C2.L. 

Proof. C 1P = C2 is equivalent to (C1P).L = ct by definition of the dual. (C1P).L = 

ct is equivalent toC1 J_ P = ct by Lemma 2.10. D 

Corollary 2.12. Given two binary codes C1 and C2 such that C 1P = C2 for some 

permutation matrix P; if C1 is self-orthogonal, then C2 is self-orthogonal. 

Proof. C1 is self orthogonal implies that C1 c C 1.L. Hence C 1P C C1.Lp, which 

implies C 1P c (C1P/ by Lemma 2.10. Therefore C2 c C2 .L, so C2 is self-

orthogonal. D 

Given a linear code C and a sub code C' the codimension of C' in C is the 

difference dim(C) - dim(C'). 

Lemma 2.13. Given a binary [n, k] code C there is a one-to-one correspondence 

between codimension 1 subcodes of C and [n, n - k + 1] supercodes of c.L . 

Proof. Let 8 1 be the set of all [n, k - 1] inequivalent subcodes in C and let 8 2 

be the set of all [n, n -- k + 1] inequivalent supercodes of C.L. Consider the map 
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~: 51 -7 52. Clearly ~ -1_~. Clearly ~ is surjective since for any D E 52, 

C~ c D implies D~ c C and D~ is [n, k - 1] and hence D~ E 51. The fact 

that ~ is injective follows from Corollary 2.11 as for any D ¢ D' E 51 implies 

D~ ¢ D'~. D 

2.4 Algorithms to Output Maximal Subcodes 

Given an [n, k, d] code C which has small length and dimension it may be 

relatively easy to examine its subcode structure by a brute force generation of 

all possible subcodes. However, as length and dimension increase this method 

becomes very time consuming; this is why we propose four algorithms which are 

relatively efficient in comparison to the brute force search. The notions of equiv­

alence outlined in Lemmas 2.10, 2.11, 2.12 imply that it is redundant to consider 

equivalent subcodes. The first two algorithms are exhaustive in the sense that 

when applying them we obtain a complete list of inequivalent subcodes (respec­

tively supercodes), with prescribed minimum distance, contained in (respectively 

containing) the given code C; in this way, the redundant cases considered in a 

brute force search are eliminated. The two "Random" Algorithms are especially 

useful for very large length and dimension, where the exhaustive search is infea­

sible. The Random Algorithms can also give results much faster than the Chain 

Algorithms since all cases are not considered. Our first algorithm, (Subcodes) 

Chain Algorithm I, directly uses Lemma 2.13 to search for subcodes. 

(Subcodes) Chain Algorithm I: An algorithm to produce all maximal sub­

codes with maximum dimension k' and minimum distance d' 2 d. 

1. Input: Begin with a binary [n, k, d] code D and a positive integer d' > d 

(such that there exists a codeword of weight d' in D). 
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2. Output: Produce the maximum dimension k' among all maximal subcodes 

with minimum distance d' and a list of inequivalent maximal subcodes of this 

dimension and minimum distance d'. 

(a) Initialize the set Bl = {D~}. Begin with i = 1. 

(b) Build a set Bi+l of all inequivalent supercodes of dimension 1 higher of 

C for all C E B i . In order to do this we add coset representatives from 

IF~/C to each code C in B i . 

(c) Check if d(C~) = d' for any code C E Bi+l. If "No" for any C E Bi+l' 

then repeat step (ii) by increasing i to i + 1. If "Yes", then output 

the maximum dimension k' = k - i + 1 and the set of [n, k - i + 1, d'] 

subcodes of D. 

(Supercodes) Chain Algorithm II: An algorithm to find all [n, k, d] supercodes 

containing an [n, k', d'] code with d' 2: d and k 2: k' 

1. Input: Begin with a set Ck',d' of inequivalent [n, k', d'] codes (respectively 

self-orthogonal codes) with k 2: k' and d' 2: d. 

2. Output: For each code C in Ck',d', produce all [n, k, d] codes (respectively 

self-orthogonal codes) containing C. 

(a) Begin by building a set of all inequivalent supercodes (respectively self­

orthogonal supercodes) of dimension 1 higher of each code C in Ck',d' 

with minimum distance greater than or equal to d. In order to do 

this we add coset representatives from IF~ / C (respectively C~ / C if C is 

self-orthogonal) to each code C in Ck',d' and keep a set of inequivalent 

supercodes Ck'+l generated in this way. 
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(b) Repeat the first step, by replacing Ck',d' with C k'+l until the set of 

inequivalent codes which are generated have dimension k. 

(c) Stop once dimension k is reached. For each code C in Ck',d' output all 

[n, k, dJ supercodes of C. 

Example 2.14. As an example, we determine the ODPs for the four optimal 

[28,7,12J self-complementary codes classified in [11J. These codes are doubly-even 

with non-zero weights 12,16,28. We begin with a [28,3, 16J constant weight code 

(meaning the only non-zero weight is 16). There is only one such code due to the 

fact that all non-zero codewords must intersect in exactly 8 positions; if the first 

two basis vectors are fixed, then there is only one possibility (up to coordinate per­

mutation) for the third basis vector. By adding the all-one vector to the constant 

weight code we obtain a [28,4, 12J code with the following generator matrix: 

keeping doubly-even supercodes) we obtain all four self-complementary [28,7, 12J 

codes with the following generator matrices: 

G[28,4,16j 

0100010001011010010010111001 

0010011101110111001111001100 

0001000100011110010101010011 
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G[28,4,16j 

0100010001001101001110101010 

0010011101110111001111001100 

0001000100011110010101010011 



G[28,4,16] 

0100010001001011010100110110 

0010011101110111001111001100 

0001000100011110010101010011 

G[28,4,16] 

0101001100111010000010011010 

0011000000110011001100110011 

0000011001011010010110101100 

Let C be any [28, 7, 12] self-complementary code. Since the [28,3, 16] sub­

code is optimal, in light of Lemma 2.8, we determine ODpdic[Ch = 16. As a 

[28,3,16] subcode cannot contain the all-one vector, we determine the ODP in 

dictionary order: 

ODpdic[C] = [12,12,12,12,16,16,16]. 

The ODP in inverse order is clear since any supercode of the repetition 

code, containing a weight 16 vector, must also contain a weight 12 vector. Hence 

ODpinV[C] = [12,12,12,12,12,12,28]. 

We now introduce the random algorithms: 

Random (Subcodes) Algorithm I: An algorithm to search for maximal sub­

codes 

1. Input: A linear code C with parameters [n, k, d] and d' > d where Ad' is 

non-zero. 

2. Output: A maximal sub code C' of C with d'. 

(a) Take any codeword x from C such that wt(x) 2:: d'. Let C1 =< x >. 

(b) Choose any coset representative y of C/C1. Let C1 :=< y > +C1. 

Repeat this until d(Cd = d'. 
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(c) Repeat (2) until there is no coset representative such that d( Cd = d'. 

Let C' := C1. 

The below algorithm is somewhat opposite to Random Algorithm I. 

Random (Supercodes) Algorithm II: An algorithm to search for codes con-

taining good codes 

1. Input: A (best known) linear code C1 with parameters [n, k, d] and d' < d. 

2. Output: A code C' containing C1 with d' and k' > k. 

(b) Choose any coset representative y of C / C1. Let C1 :=< y > +C1. 

Repeat this until d(C1 ) = d'. 

(c) Repeat (2) until there is no coset representative such that d(C1 ) = d'. 

Let C' := C1 . 

Analysis and comparison of our algorithms: Our Chain Algorithms reduce 

the complexity of calculation by checking in each round the equivalence of all the 

codes of the same dimension in chains of codes obtained from a set of given codes. 

This is one of the two time consuming steps. Another time consuming step is to 

consider all coset representatives from IF~ / C. On the other hand, the algorithms 

given in Van, et. al. [45] construct all subcodes of the same dimension not neces-

sarily in chains of codes. Hence their algorithms are computing more than needed 

(hence less efficient) in calculating ODPs of linear codes. For example, a brute­

force search of the subcodes of dimension k' for an [n, k] code has complexity given 

by the Gaussian binomial coefficient [ :' l,. In Section 3.4 for some [32,16,81 

codes we determine the maximum dimension sub code with respect to d = 12 to 

have dimension 11. A brute-force subcode search (such as the sub codes traversing 
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algorithm in [45]) would have to enumerate [ :: ] 2 = 120,843,139,740,969,555 

subcodes; this task is not feasible. 

Example 2.15. Using their traversing algorithms, the authors [45] have deter­

mined ODPs of a quasi-cyclic [48,10,20] code C48 by finding all k-dimensional 

subcodes of C which is extensive work. Using the above Random Algorithms, we 

have also computed ODPs of C48 in the dictionary and inverse dictionary orders 

in a minute as follows: 

ODpdic[C48] = [20,20,20,20,24,24,24,24,32,32]' 

ODpinv[C48] = [20,20,20,20,20,20,20,24,28,36]. 
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CHAPTER 3 

SUBCODES AND OPTIMUM DISTANCE PROFILES OF 
SELF-DUAL CODES 

3.1 Motivations 

We plan to construct optimal (self-orthogonal) subcodes of a given linear 

(self-dual) code. In order to construct finite-state codes, Pollara, Cheung and 

McEliece [35] constructed the first [24,5, 12] subcode of the binary Golay [24, 12,8] 

code, improving a previously known [24,5,8] subcode. Maks and Simonis [30] have 

shown that there are exactly two inequivalent [32,11,12] codes in the binary Reed-

Muller code R(2, 5) which contain R(I, 5) and have the weight set {O, 12, 16,20, 32}. 

In this section, we give the ODPs of Type II self-dual codes of lengths up 

to 24 and the five extremal Type II codes of length 32, give a partial result of 

the ODP of the extended quadratic residue code Q4S of length 48, and give some 

directions towards finding optimal self-orthogonal codes of length 72. 

3.2 Optimal Subcodes of Type II Codes for n::; 16 

In this section, we begin with an example. 

Example 3.1. There exists a unique Type II code of length 8 (p.29 of [18]) . This 

[8,4,4] code is the Extended Hamming [7,4,3] code denoted es in [18]. Since this 

code is doubly-even and self-dual it contains weights 0,4, and 8. For d' = 8 it is 

clear that there exists a unique subcode (1) of es. It is also clear to see that (1) is 
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a maximal subcode and an optimal code. 

There are two Type II [16, 8, 4] codes denoted by d16 and 2es (in [18]). 

Lemma 3.2. d16 contains a unique optimal [16,5,8] code which is a maximal 

subcode with respect to minimum distance 8. Also, 5 is the maximum dimension 

corresponding to d' = 8. 

Proof. We construct a maximal sub code G1 , of d16 , with minimum distance 8. 

The maximum dimension possible for G1 is k = 5 as there is no [16, 6, 8] code 

by [15]. Now consider the following form of the generator matrix of d16 with row 

vectors labeled as {aI, a2, a3, a4, a5, a6, a7, y} and where A is a matrix with rows 

{a1,a2,a3,a4,a5,a6,a7}: 

11 11 a1 

11 11 a2 

11 11 a3 

11 11 a4 [ : ] 11 11 a5 

11 11 a6 

11 11 a7 

10 10 10 10 10 10 10 10 y 

Define the map 1YI : {00,11} ---t {O, I} where 00 ~ 0 and 11 ~ 1, and define a 

second map (P2 : (A) ---t IF~ where 

<P2([b1b2 b3b4 ... bL5 b16 ]) = [<PI (b1b2) <PI (b3b4) ... <PI (b 15b16 )] . 
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Then the image of (A) under ¢2 is the even space of lF~. 

1 1 

1 1 

1 1 

[(D2(A)] = 1 1 

1 1 

1 1 

1 1 

Let GCl be the generator matrix of G1. Take the top four rows of GCl (denoted 

G H) to be generated in (A) as the unique optimal code in ¢2( (A)) with minimum 

distance 4, the extended Hamming [8,4,4] code (es). Hence by adding the vector 

y to the generator matrix it is clear to see that y is independent from the rows of 

G Hand G1 has minimum distance 8. 

11 11 11 11 

[Gc,] = [_:H 1 
11 11 11 11 

11 11 11 11 

11 11 11 11 

10 10 10 10 10 10 10 10 

Therefore the maximal dimension of G1 is 5. The uniqueness of G1 is due to the 

uniqueness of the [16,5,8] Reed-Muller code R(I,4) (p. 81 of [18]). D 

Lemma 3.3. 2es contains a unique optimal [16,5,8] code which is a maximal 

subcode with respect to minimum distance 8. Also, 5 is the maximum dimension 

corresponding to d' = 8. 

Proof. To construct G1, a maximal subcode of 2es with minimum distance 8 similar 

arguments to above lemma are used. As above, the maximum dimension possible 

for G1 is k = 5 as there exists no [16,6,8] code by [15]. The maximum dimension 
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possible for C1 is k = 5. Consider the following form of the generator matrix of 

2e8 with row vectors labeled as {aI, a2, a3, a4, a5, a6, Zl, Z2} and where A is a matrix 

with rows {aI, a2, a3, a4, a5, a6}: 

11 11 

11 11 

11 11 
A 

11 11 

11 11 

11 11 a6 
--------------------------

10 10 10 10 Zl 

10 10 10 10 Z2 

By applying the shrinking maps defined in the above proof the following length 8 

generator matrix is obtained from the matrix A: 

1 1 

1 1 

1 1 

1 1 

1 1 

1 1 

This code contains an [8,4,4] code equivalent to the unique extended Hamming 

code. The pre-image of this [8,4,4] code is a 116,4,8] subcode of A. Applying a 

similar argument to the above proof, by appending the weight eight vector Zl + Z2 

(or Zl + Z2 + bi for some bi E (A)) to the generator matrix of the [16,4,8] code, a 

[16,5,8] code C1 is obtained. The uniqueness of C1 follows from the uniqueness of 

the [16,5,8] Reed-Muller code R(l, 4). 0 

The information from this section is summarized in the following table. 
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TABLE 3.1 

Maximum Dimension Subcodes of All Type II codes of n = 16 

Codes max. dim. max. dim. 

with d = 8 with d = 16 

d16 5 1 

2es 5 1 

3.3 Classification of Optimal Subcodes and ODP for Type II Codes 
of Length 24 

Consider n = 24. There are exactly nine Type II self-dual codes of length 24. 

These are denoted by A24(2d12 ), B24(dlO + 2e7), C24(3ds), D24(4d6), E24(d24 ), 

F24(6d4), G24(g24), d16 + es, and 3es in the notations of [9], [34]. The first seven 

codes are indecomposable and the rest are decomposable. Note that G24(g24) 

represents the binary Golay [24,12,8] code. 

Pollara, et. al. [35] constructed the first [24,5,12] subcode C~;/2 of g24, 

improving a previously known [24,5,8] subcode. Note that C~412 is unique [43], 

has only two non-zero weights 12 and 16, and has a [24,2, 16] subcode C~416. As 

C~416 satisfies the Griesmer bound, it has a generator matrix of which each row 

has weight 16 [43], [18]. Hence it is easy to see that C~416 is unique. 

Using this information, Luo, et. al. [25] have determined 

ODpdiC[g24] 

ODpinv[g24] 

[8,8,8,8,8,8,8,12,12,12,16,16] 

[8,8,8,8,8,8,8,8,12,12,12,24]. 

However, less is known of the subcodes of the other Type II self-dual codes 

of length 24. We have checked that the unique [24,5,12] code is contained in any 

of the nine Type II codes of length 24. 
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Using (Subcodes) Chain Algorithm I we obtain inequivalent maximal [24, k', 8] 

sub codes of each Type II code of length 24 (with minimum distance 4). Then ap­

plying (Supercodes) Chain Algorithm II to the unique [24,5,12] code for each 

Type II code of length 24 (with minimum distance 4) we obtain a [24, k', 8] code 

equivalent to one of the maximal subcodes. Therefore we determine the ODP in 

the dictionary order of the Type II [24,12,4] codes as follows. 

Theorem 3.4. 

ODpic[2d12 ] 

ODpic[dlO + 2e7] 

ODPic[3ds] 

ODpic[4d6 ] 

ODPic[d24 ] 

o D pic [6d4] 

ODpic[d16 + es] 

ODpic[3es] 

[4,4,4,8,8,8,8,12,12,12,16,16] 

[4,4,4,8,8,8,8,12,12,12,16,16] 

[4,4,8,8,8,8,8,12,12,12,16,16] 

[4,4,8,8,8,8,8,12,12,12,16,16] 

[4,4,4,4,8,8,8,12,12,12,16,16] 

[4,8,8,8,8,8,8,12,12,12,16,16] 

[4,4,4,8,8,8,8,12,12,12,16,16] 

[4,4,4,8,8,8,8,12,12,12,16,16] 

For each Type II [24,12,4] code we apply (Subcodes) Chain Algorithm I to 

the maximal [24, k', 8] sub codes (containing the all one vector) to obtain a [24, 4, 12] 

subcode (containing the all one vector). Therefore we may determine the ODP in 

the inverse dictionary order of the Type II [24,12,4] codes as follows. 

28 



Theorem 3.5. 

ODpnv[2dd 

ODpnv[dlO + 2e7] 

ODpnv[3ds] 

ODpnv[4d6] 

ODpnv[d24 ] 

ODpnv[6d4 ] 

ODpnv[d16 + es] 

ODPnV[3es] 

[4,4,4,8,8,8,8,8,12,12,12,24] 

[4,4,4,8,8,8,8,8,12,12,12,24] 

[4,4,8,8,8,8,8,8,12,12,12,24] 

[4,4,8,8,8,8,8,8,12,12,12,24] 

[4,4,4,4,8,8,8,8,12,12,12,24] 

[4,8,8,8,8,8,8,8,12,12,12,24] 

[4,4,4,8,8,8,8,8,12,12,12,24] 

[4,4,4,8,8,8,8,8,12,12,12,24] 

Table 3.2 gives the maximum dimension with respect to minimum distance 

d for the Type II length 24 codes. 

Corollary 3.6. For each Type II length 24 code, there are maximum dimension 

subcodes with respect to d = 8,12,16,24 (except 20) that are involved in the subcode 

chain for the ODP in dictionary order or the inverse order. Furthermore, each 

Type II length 24 code contains dimension optimal (and minimum distance optimal) 

subcodes with parameters [24,5,12]' [24,2,16]' [24, 1,24]. 
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TABLE 3.2 

Maximum Dimension Subcodes of All Type II codes of n = 24 

Codes max. dim. max. dim. 

with d = 8 with d = 12 

2d12 9 5 

dlO + 2e7 9 5 

3ds 10 5 

4d6 10 5 

d24 8 5 

6d4 11 5 

d16 + es 9 5 

3es 9 5 

g24 12 5 
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3.4 Classification of Optimal Subcodes and ODP for Extremal Type 
II Codes of Length 32 

As there are 85 Type II self-dual codes of length 32, we focus on extremal 

Type II self-dual [32,16,8] codes. There are exactly five Type II self-dual [32,16,8] 

codes, denoted by C81 (or Q32), C82 (or r32, R(2, 5)), C83 (or 2g16 ), C84 (or 8f4), 

C85 (1612) in the notation of [9], [10]. Using symplectic geometric approach, Maks 

and Simonis [30] show that the second order Reed-Muller code r32 contains exactly 

two inequivalent [32,11,12] codes, each of which further contains the first order 

Reed-Muller [32,6,16] code R(I, 5). Note that any [32,6,16] code is equivalent to 

R(I,5). FUrthermore, Jaffe [20] proved using his language Split that there exist 

exactly two [32,11,12] codes. These subcodes have optimal dimensions for each 

minimum distance. Hence Chen and Han Vinck [8] have determined the ODP in 

the dictionary order for r32 as follows: 

ODP[r32] = [8,8,8,8,8,12,12,12,12,12,16,16,16,16,16,32]. 

On the other hand, little was known of the sub codes of the other four 

extremal Type II [32,16,8] codes. We show that they also have the same optimum 

distance profiles as r32 does. 

Using (S u percodes) Chain Algorithm II with C k' .d' = {R (1, 5)}, we inde­

pendently construct two inequivalent [32,11,12] codes in r32 containing R(I,5), 

denoted by RC1 and RC2 • We note that dim(RC1 n RC2 ) = 10. Using (Super­

codes) Chain Algorithm II, we have checked that each of RC1 and RC2 is a subcode 

of any of the five Type II [32,16,8] codes. We denote the five codes based on RC1 

(RC2 , respectively) by C81 1
, ... , C85 1 (C81 2

, ... , C852 , respectively). 

Hence we obtain: 

Theorem 3.7. Each code C of the five Type II [32, 16,8] codes has 

ODP[C] = [8,8,8,8,8,12,12,12,12,12,16,16,16,16,16,32]. 
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One generator matrix for each Type II [32,16,8] code with respect to the 

ODP in the dictionary order is given at the end of this section. 

11111111111111111111111111111111 

00000000000000001111111111111111 

00000000111111110000000011111111 

00001111000011110000111100001111 

00110011001100110011001100110011 

RCI = 01010101010101010101010101010101 

10000001000101110100110100100100 

01000001000101000010011110001101 

00100001010001110111010000010010 

00001001000010010101110010100011 

00100001000100100001110111010001 

11111111111111111111111111111111 

00000000000000001111111111111111 

00000000111111110000000011111111 

00001111000011110000111100001111 

00110011001100110011001100110011 

RC2 = 01010101010101010101010101010101 

10000001000101110100110100100100 

01000001000101000010011110001101 

00100001010001110111010000010010 

00001001000010010101110010100011 

00100001000100100111101101001000 

Corollary 3.8. For each extremal Type II length 32 code, there are maximum 

dimension subcodes with respect to d = 12,16,32 that are involved in the subcode 
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chain for the aDP in dictionary order or the inverse order. Furthermore, each 

extremal Type II length 32 code contains dimension optimal (and minimum distance 

optimal) subcodes with parameters [32,11,12]' [32,6,16]' [32, 1,32]. 

C81 1 = 

10000000000000010001011000001110 

01000000000000100001010100110001 

00100000000000100011000101001001 

00010000000000010001000011001101 

00001000000100000010010100110010 

10000000000000010110111000011111 

01000000000000010010000000111011 

00100000000000010110110111010101 

00010000000000010000111001000101 

00001000000000010001101000010011 

10000001000100010011010101100110 

01000001000100100011011001011001 

00100001000100100001001000100001 

00010001000100010010001000100010 

00001001000000000001011100100010 
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C841 = 

C81 2 = 

10000000000000010001011000001110 

01000000000000100001010100110001 

00100000000000100011000101001001 

00010000000000010000000110110101 

00001000000100000011010001001010 

10000000000000010001011000001110 

01000000000000010101011111011010 

00100000000000010001101000110100 

00010000000000010000000110110101 

00001000000000010000010010011011 

RC2 

10000000000100000010010100101100 

01000000000100110010011011101100 

00100000000100110000001010010100 

00010000000100000010001111101111 

00001000000000010001011011101111 

10000001000101110001011101111110 

01000001000101000001010001000001 

00100001000100100001001000100001 

00010001000100010001000100010001 

00001001000001100000011000001001 
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10000001000100010011010101100110 

01000001000100100011011001011001 

00100001000100100001001000100001 

00010001000100010010001000100010 

00001001000000000001011100100010 

10000000000100000010010100101100 

01000000000100110010011011101100 

00100000000100110000001010010100 

00010000000100000011001001101000 

00001000000000010000011101101000 

10000000000100000010010100101100 

01000000000100000110011111110100 

00100000000100000100001110001100 

00010000000100000010001111101111 

00001000000000010001011011101111 
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3.5 Results Towards the ODP for the Unique [48,24,12] Code 

The extended QR code q48 is a unique [48,24,12] self-dual code. Using 

Random (Subcodes) Algorithm I, we find that for d' = 16, there is a maximal 

[48,14,16] subcode of q48. The best known minimum distance optimal [48,14] 

code has d = 16. (Note that 17 is the upper bound.) One code is given in Magma. 

We have checked that our code is not equivalent to this code. Similarly, for d' = 20, 

there is a maximal [48,9,20] subcode of q48. This is minimum distance optimal. 

One [48,9,20] code is given in Magma. We have checked that our [48,9,20] code 

is not equivalent to this code. For d' = 24, there is a maximal [48,6,24] subcode 

of Q48, which is in fact a unique code by [43]. This is minimum distance optimal. 

One code is given in Magma. We have checked that our code is equivalent to this 

code. 

With respect to the inverse dictionary order we have examined some self­

complementary subcodes of Q48. There is a [48,5,24] self-complementary subcode 

(note that k = 5 is the maximum dimension of a [48, k, 24] self-complementary sub­

code since the unique [48,6,24] code does not contain the all-one vector). There 

is a maximal [48,9,20] self-complementary subcode containing the [48,5,24] code 

(note that k = 10 is the maximum dimension of a [48, k, 20] self-complementary 

subcode). In what follows, we classify all possible weight distributions of a sup­

posed [48,10,20] self-complementary subcode of Q48. 

Lemma 3.9. IfG is a self-complementary !48,10,20j subcode ofQ48, then the non­

zero codewords of G have weights 20,24,28,48. 

Proof. Suppose to the contrary that G has non-zero weights 20,28,48. Then clearly 

A20 := 29 - 1. Using the MacWilliams Identities (Lemma 1.1) we obtain the 

equation 2256 + 16A2o = 210 A~. Hence A~ = \6:, a contradiction. 0 

Lemma 3.10. IfG is a self-complementary !48,10,20j subcode ofQ48, then d-L(G) =1= 
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2. 

Proof. Suppose to the contrary that d.l(C) = 2. Shortening C on a minimum 

weight codeword X2 of C.l yields a [46,9,20] code C46 with possible non-zero weights 

20,24,28 by Lemma 1.2 (here we switched the role of C and C.l). 

Define the following matrices: 

B [A~(C46) Af(C46 ) A~(C46) At (C46 )jT, 

A [AO(C46 ) A20 (C46 ) A24 (C46 ) A 28 (C46 )]T. 

Then the MacWilliams Identities yield the matrix equation 29 B = P A, where 

1 1 1 1 

46 6 -2 -10 
P= 

1035 -5 -21 27 

15180 -100 44 60 

By Grassl's table [15] there (respectively) does not exist a [45,9,20] linear code 

and there does not exist a [44,8,20] linear code, therefore respectively we have 

Af(C46 ) = 0 and A~(C46) = O. Combined with the fact that A~(C46) = 1 the 

above matrix equation yields a unique solution of: 

A = [1 243 147 121jT. (3.1 ) 

The possible weight distribution of C46 and C16 follows from (3.1). In particular, 

d( C16) = 3 which by shortening C46 on a minimum weight codeword of Cir, using 

Lemma 1.2 implies the existence of a [43, 7, 20] code with non-zero weights 20,24,28. 

This is a contradiction to the classification of [43,7,20] due to Bouyuklieva and 

Jaffe [5]. D 

Lemma 3.11. If C is a self-complementary {48,10,20j subcode of Q48, then there 

is one possible weight distribution of C: 

Ao = 1 A20 = 348 A24 = 326 A28 = 348 A48 = 1. 
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Proof. Define the following matrices: 

B 

A 

[A~ A~ A~]T o 2 4' 

[Ao A20 A24]T. 

Then the MacWilliams Identities along with the fact that C is self-complementary 

yield the matrix equation 210 B = P A, where 

P= 

2 

2256 

2 1 

16 -24 

389160 -600 276 

By the previous lemma A~ = 0, combined with the fact that Ao = A~ = 1 the 

above matrix equation yields a unique solution of: 

A = [1 348 326]T. 

D 

Lemma 3.12. There does not exist a self-complementary !48,k,16j subcode C of 

q48 for k ?:: 17. 

Proof. Suppose a [48,17,16] self-complementary subcode C exists. The possible 

non-zero weights of Care 16,20,24,28,32,48. Define the following matrices: 

B [A~ A~ At At]T, 

A [Ao A16 A20 A24JT. 

Then the MacWilliams Identities along with the fact that C is self-complementary 

yield the matrix equation 217 B = P A, where 

P= 

2 

2256 

389160 

2 2 

208 16 

40 -600 

1 

-24 

276 

24543024 -14544 5616 -2024 
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Isolating the matrix A yields the matrix equation 217 p-1 B = A where 

17/14 65/224 3/56 

217 p-1 = 
9729/2 17457/32 211/8 

207552/7 -1012/7 -752/7 

62040 -1605/2 162 

The first row of 217 p-l implies 

65 A~ ~A~ _1_A~ -_~ 
224 2 + 56 4 + 224 6 - 14 ' 

1/224 

-15/32 

12/7 

-5/2 

which is impossible as At ;::: 0 for all i. Hence no such code C can exist. 0 

The previous lemmas and example from this section yield the following 

theorem towards the inverse dictionary order ODP for q48. 

Theorem 3.13. 

a3,a4,a5,a6, b,20,20,20, 20, 24,24, 24,24,48] 

where ai E {12, 16} and b E {12, 16, 20}. 

Proof. Since q48 contains the all-one vector, the repetition code [48,1,48] must be 

the one dimensional subcode first appearing in the subcode chain. By [43] there is a 

unique [48,6,24] code with non-zero weights 24, 32; since this code does not contain 

the all-one vector it cannot be involved in the inverse dictionary order subcode 

chain. Hence k ::; 5 for a [48, k, 24] code involved in the subcode chain. Applying 

Random (Supercodes) Algorithm II to the [48,1,48] subcode of q48 we obtained a 

sub code chain involving a [48,5,24] code contained in a [48,9,20] subcode of q48. 

Therefore ODpinv [q48]i = 24 for 2 ::; i ::; 5, and ODpinv[q48]j = 20 for 6 ::; i ::; 9. 

The maximum dimension for a [48, k, 20] code is k = 10 by Grassl's table [15], hence 

ODpinv[Q48ho = b for b E {12, 16, 20} and also ODpinV[Q48]j = ai for 11 ::; j ::; 16 

and ai E {12, 16}. Finally, ODpinv[Q48]i = 12 for 17 ::; i ::; 24 by Lemma 3.12. 0 
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Lemma 3.14. There does not exist a [48,k,16j subcode C of q48 for k ~ 17. 

Proof Suppose a [48,17,16] subcode C of q48 exists. Since the self-complementary 

case is already considered in Lemma 3.12, we only need to examine the case 

where the maximum weight in C is 36 since the non-zero weights in q48 are 

12, 16,20,24,28,32,36,48. Hence the possible non-zero weights of Care 16, 20, 

24, 28, 32, 36. Define the following matrices: 

B [A~ At A~ At At At At]T, 

A [Ao A 16 A20 A24 A28 A32 A36JT. 

Then the MacWilliams Identities yield the matrix equation 217 B = PA, where 

1 1 1 1 1 1 1 

48 16 8 0 -8 -16 -24 

1128 104 8 -24 8 104 264 

P= 17296 304 -104 0 104 -304 -1736 

194580 20 -300 276 -300 20 7380 

1712304 -2672 456 0 -456 2672 -19800 

12271512 -7272 2808 -2024 2808 -7272 25080 

Isolating the matrix A yields the matrix equation 217 p-1 B = A where 

34/21 17/21 65/168 1/6 1/14 1/42 1/168 

4788 1698 2109/4 135 23 1 -3/4 

30000 4592 -61 -312 -92 -8 3 

217 p-1 = 61360 680 -965 140 132 20 -5 

212448/7 -39488/7 158/7 96 -536/7 -160/7 30/7 

4482 -1239 3633/8 -81/2 19/2 25/2 -15/8 

272/3 -272/3 65/3 -56/3 4 -8/3 1/3 

The first row of 217 p-1 implies 

17 A~ 65 A~ !A~ ~A~ ~A~ _1_A~ __ 13 
21 1 + 168 2 + 6 3 + 14 4 + 42 5 + 168 6 - 21 ' 
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which is impossible as Af ::::: ° for all i. Hence no such code C can exist. 

D 

Theorem 3.15. 

where ai E {12,16}, bk E {16,20}, Cl E {16, 20, 24}, d E {16, 20, 24, 28, 32}, and 

e E {20, 24, 28, 32, 36, 48}. 

Proof. Note that the non-zero weights in q48 are 12,16,20,24,28,32,36,48. Therefore 

by Grassl's table [15] we may deduce the following: 

ODpdiC[q48]j = 12 for 17:::; j :::; 24, by the previous lemma. 

ODpdiC[Q48]j = 16 for 11 :::; j :::; 14, because as mentioned at the beginning of 

this section, there exists a maximal [48,14,16] sub code of Q48. 

ODpdiC[Q48h = d for dE {16, 20, 24, 28, 32}. 

ODpdiC[Q48h = e for e E {20, 24, 28, 32, 36, 48}. 
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Note that 16 is not present for values of e because if so then the [48,14, 16J 

code involved in the subcode chain would have to be a constant weight code. There 

does not exist a constant weight code (with weight 16) of dimension greater than 

5 by the following reasoning. 

Suppose there exists a [48, k, 16J constant weight code. Define the following ma-

trices: 

B [At AtJT
, 

A [Ao A16J T
. 

Then the MacWilliams Identities yield the matrix equation 2k B = P A, where 

Since At = 1 = Ao, then the matrix equation yields the following system: 

2k 1 + A16 

2k At 48 + 16A16 . 

Solving for A16 in the first equation and substituting into the second equation 

yields: 

2k At = 48 + 16(2k - 1). 

Solving for At we obtain: 

At = 25
-

k + 16. 

And finally since At is an integer, then k :s: 5. D 

From the previous ODPs that have been found for Type II codes, dimension 

optimal subcodes are involved in subcode chains. Therefore we have the following: 
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Conjecture: A [48,6,24] code is involved in a subcode chain for the ODP 

in dictionary order. 

Thus we have the following corollary. 

Corollary 3.16. If a [48,6,24] code is involved in a subcode chain for the aDP 

in dictionary order, then 

where ai E {12, 16} and bj E {16, 20}. 

We were able to find a doubly-even self-complementary [48,16,16] code with 

generator matrix G[48,16,16]' Such a code was previously not known to exist. Only 

one singly-even self-complementary [48,16,16] code was found by A. Kohnert [24]. 

The dual code has minimum distance d = 4. The generator matrix for this 

doubly-even self-complementary [48,16,16] code is the following: 
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G[48,16,16] = 

100100000000001000110001001011100011100100010100 

010100000000000001111000001001001100110010110100 

001100000000001000101111000010101001010111011110 

000010000000001000101000111100101110101111000111 

000001000000000000011110010000101010101010110101 

000000100000001001001110101100000101100100001101 

000000010000000001111111110010100000011110000000 

000000001000000001100001101101000111111110000000 

000000000100000000110011100111100100110111111100 

000000000010000001001101100111100011001111111010 

000000000001001001110011111110000010100000101000 

000000000000101000010100011110000011000111001110 

000000000000011001111001100000000110000110011110 

0000000000000001 0000 11 01 0 1100 11 0 110 1 0110 1 0011000 

000000000000000010010010111001101101000011100110 

000000000000000000000000000000011111111111111110 

3.6 Examination of the Length 72 

Note that q72 (the extended quadratic residue code of length 72) is a Type 

II [72,36,12] code. Due to the complexity, we use Random (Subcodes) Algorithm 

1. For d' = 16, there is a maximal [72,29,16] sub code of q72 with A16 = 2160. 

The best known minimum distance optimal [72,29] code has d = 16 (and at most 

d ::; 21) with A 16 = 28417, given in Magma. Hence our code is not equivalent to 

this code. For d' = 20, there is a maximal [72,23,20] subcode with A20 = 3046. 

The best known minimum distance optimal [72, 23] code has d = 20 (and at most 

::; 24) with A20 = 7120 given in Magma. Hence our code is not equivalent to this 
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code. 

We start from a best known linear [72,31,20] code, given in Magma. Let C1 

be this code and let d' = 16 < d = 20. Using Random (Supercodes) Algorithm II, 

we have constructed in a few seconds a doubly-even self-orthogonal [72,35,16] code 

C' containing C1 with A16 = 129972. It is known from Magma that there is a best 

known minimum distance code with parameters [72,35,16]. This is a doubly-even 

self-orthogonal code with A 16 = 136116. Hence our code is not equivalent to the 

known code. We do not know how many doubly-even self-orthogonal [72,35,16] 

codes exist. 
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CHAPTER 4 

OPTIMUM DISTANCE PROFILES OF NEAR EXTREMAL 
FORMALLY SELF-DUAL CODES 

4.1 Optimum Distance Profiles for Near Optimal and Optimal FSD 
Codes of Length 16 

In this section, we determine the optimum distance profiles of some inter-

esting formally self-dual codes of lengths 16-22. In [3], Betsumiya and Harada 

classified the formally self-dual even codes of length 16. We examined the opti­

mum distance profiles of all near optimal formally self-dual even [16,8,4] codes; 

the results may be found in the tables at the end of this chapter. The tables ar-

range the codes first by their weight distribution in column 1, and second by their 

ODPs in column 2. Columns 3-4 total the number of codes with the given Weight 

Distribution and ODP which are respectively Self-Dual, Iso-Dual, and Formally 

Self-Dual. 

In another paper, Betsumiya and Harada have shown that there is a unique 

optimal [16,8,5] code, and in fact this code is formally self-dual [2]. We examined 

the optimum distance profiles of this code and found the following: 

Theorem 4.1. If C is the unique [16,8,5] code, then 

ODpiiC[C] = [5,6,6,6,8,8,8,10]' 

and 

ODpnv[c] = [5,5,5,6,7,8,10,12] 
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with generator matrix for each profile respectively: 

0000111111011101 0101010111111111 

0011001110101010 1011101110011001 

0101011001101100 1001110011100001 

1001010100011011 10010010010011 0 1 
G(C) = G(C) = 

0101010111111111 1000011010011111 

1000010001111101 1000010001111101 

1000000111001001 0100000001011100 

1000000010111000 1000000010111000 

Proof. (Subcodes) Chain Algorithm I can be applied recursively to give the ODP 

in dictionary order for C. The weight distribution of C is 

Ao = 1 A5 = 24 A6 = 44 A 7 = 40 As = 45 

Ag = 40 AlO = 28 All = 24 A12 = 10. 

To find the ODP in inverse dictionary order, one must consider some cases. Clearly, 

ODpinV[Ch = 12. By easy case analysis of length 16 binary vectors the sum 

of a weight 12 vector and a weight 11 vector has weight less than or equal to 

9. Therefore ODpinv[Ch ::; 10. By inspection of the weight 12 and weight 

10 vectors in C it is clear that there exists a subcode with weight distribution 

Ao = 1 AlO = 2 A12 = 1, hence ODpinv[Ch = 10 Let 0[16,2,10] be any [16,2,10] 

code with weight distribution Ao = 1 AlO = 2 A12 = 1, then there is only one 

code with this weight distribution up to equivalence (since fixing the support of 

any weight 12 vector Cl forces ICI n c21 = 6 for any weight 10 vector C2 in 0[16,2,10]' 

By applying (Supercodes) Chain Algorithm II to C[16,2,10] there is exactly one su­

percode of 0[16,2,10] with maximal minimum distance; this is a [16,3,8] code. Hence 

ODpinv[Ch ::; 8. In a similar manner we obtain ODpinv[C]4 ::; 7 as two inequiv­

alent [16,4,7] codes were generated from the [16,3,8] code. Continuing to apply 
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the algorithm to increase the dimensions of the subcode chains containing either of 

the [16,4,7] codes we notice that for dimension 6 there are exactly three inequiv­

alent [16,6,6] codes in the subcode chain; however, continuing with the algorithm 

none of these three [16,6,6] codes are contained in a [16,8,5] code. Therefore, 

we must proceed instead from all inequivalent [16,5,6] codes containing either of 

the [16,4,7] codes we generated (there are 12 such codes). Proceeding with the 

algorithm we obtain a [16,8,5] code in the final step (this code is equivalent to 

C as C is unique). Therefore we may conclude ODpinv[Ch = 8,ODpinV[C]4 = 7, 

D 

Corollary 4.2. The [16,8,5] code contains dimension optimal and minimum dis­

tance optimal subcodes with parameters [16, 7,6] and [16,2, 10] (these are maximum 

dimension subcodes with respect to d = 6 and d = 10). 

4.2 Optimum Distance Profiles for Near Optimal and Optimal FSD 
Codes of Length 18-22 

In 1992, Simonis showed that there is a unique [18,9,6] code [40]; it turns out 

that this code is also formally self-dual even. We examined the optimum distance 

profiles of this code and found the following: 

Theorem 4.3. If C is the unique [18,9,6] code, then 

ODpiiC[C] = [6,6,6,6,8,8,10,10,12]' 

and 

ODpnv[c] = [6,6,6,6,8,8,8,8,18] 
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with generator matrix for each profile respectively: 

111111001011101001 111111111111111111 

111010001100010111 111111100010100010 

100011111111000100 110001101011000111 

100011100010011001 100011101100110110 

G(C) = 010010000111110001 G(C) = 001011001110011011 

100011001011010010 100011100010011001 

100011000101111101 100011000101111101 

100010000100011010 100010000100011010 

100000000111010111 100000000111010111 

Proof. The ODP in dictionary order is found directly using (Subcodes) Chain Al­

gorithm I. The ODP in inverse dictionary order is also found directly using (Sub­

codes) Chain Algorithm I, but replacing lF~ by the unique even weight [18,17,2]. 

This is sufficient since the sub codes in inverse dictionary order must be self­

complementary, hence the only possible minimum weights are 6 and 8. D 

Corollary 4.4. The [18, 9, 6] code contains dimension optimal and minimum dis­

tance optimal subcodes with parameters [18,3,10] and [18,1, 18] (these are maxi­

mum dimension subcodes with respect to d = 10 and d = 18). 

Fields et. al. classified the even [20,10,6] formally self-dual codes; there are 

exactly seven codes [13]. We examined the optimum distance profiles of these 

codes and found the following: 

Theorem 4.5. If C is one of the seven formally self-dual even [20,10,6] codes, 

then 

ODpiiC[C] = [6,6,6,6,8,8,10,10,12,12]' 

and 

ODpnv[c] = [6,6,6,6,8,8,8,10,10,20]. 
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Proof. For the seven even formally self-dual [20,10,6] codes, (Subcodes) Chain 

Algorithm I is difficult to implement (this is due to the fact that the first maxi­

mal subcode with optimum minimum distance occurs at dimension 6). However, 

for each [20,10,6] code C we can obtain a set Csc:[20,8,6] of all self-complementary 

[20,8,6] subcodes of C using this algorithm. Jaffe has a classification for all even 

[20,7,8] codes [20] (generator matrices for these codes and the unique [20,8,8] code 

may be found at [19]). By applying (Supercodes) Chain Algorithm II to all [20,7,8] 

codes we determine that there are no even supercodes with parameters [20,10,6]; 

therefore ODpdic[C]i = 6 for 7 ::; i ::; 10. Since all formally self-dual even [20, 10,6] 

codes have non-zero weights 6,8,10,12,14,20 we may deduce from information 

about optimal codes at [15] that an upper bound on the ODP in dictionary order 

is given by [6,6,6,6,8,8,10,10,12,20]. Next we examine the three [20,4,10] codes 

(also classified by Jaffe [20]). We may disregard one of these codes since it contains 

a weight 16 vector. The ODP in dictionary order for these codes is [10,10,12,12]' 

hence a better upper bound on the ODP in dictionary order for each formally 

self-dual even [20,10,6] code is given by [6,6,6,6,8,8,10,10,12,12]. By applying 

(Supercodes) Chain Algorithm II we verify that this is in fact the ODP in dictio­

nary order for each code; this is accomplished by generating all [20,6,8] supercodes 

of the [20,4,10] codes, then finding a single self-complementary supercode of di­

mension 8 equivalent to a code in Csc:[20,8,6]' 

ODpinv[c] is obtained in a similar manner applied to the unique self­

complementary [20,3,10] code (this code is unique because when adding a vector 

to the unique [20,2,10] self-complementary code there is only one choice up to 

permutation to preserve the minimum weight). o 

Corollary 4.6. If C is a formally self-dual even [20,10,6] code, then C con­

tains dimension optimal and minimum distance optimal subcodes with parameters 

[20,4,10] and [20,1,20] (these are maximum dimension subcodes with respect to 
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d=10andd=20). 

For example, the first formally self-dual even [20, 10, 6] code in [13] has the 

following generator matrices in the dictionary and the inverse dictionary order 

respectively. 

01001011110001111101 11111111111111111111 

10111001101101000111 11111000001011100001 

10011111011111110100 11101010000101011010 

10001010100110101110 11100011010010001110 

10001010100101010001 11000010010100100011 
G(C) = G(C) = 

10001010011001011110 10000011101001001001 

10000111000101101011 10000011001101110101 

01000110001001110100 10000000001101111010 

10000100000101100100 00100001000101010010 

10000000001101111010 01000001000001100101 

Gulliver and Ostergard have shown that there is a unique formally self-dual 

odd [20,10,6] code [16]. We examined the optimum distance profiles of this code 

and found the following: 

Theorem 4.7. If C is the formally self-dual odd [20, 10, 6] code, then 

ODpiiC[C] = [6,7,8,8,8,8,8,8,12,16]' 

ODpnv[c] = [6,6,6,7,8,8,8,10,12,16] 

51 



with generator matrix for each profile respectively: 

01111011110111101111 11110111101111011110 

10010111011101110100 00001011011111110011 

01001010010100101001 11110010011010100010 

10010110000001101001 11100001110100110010 

10010100101001010010 11000011001101101111 
G(C) = G(C) = 

10001100011000110001 10000010000110110101 

10001000000101011011 00100010101010100100 

10000000101110001110 00100010001101010110 

01000000000100111110 01000000000100111110 

10000000001001111100 10000000001001111100 

Proof The ODP in both orders for this code may be found using the methods of 

the previous proof, and the classifications due to Jaffe [20J [19J. o 

Corollary 4.8. The [20, 10, 6J formally self-dual odd code contains dimension opti­

mal and minimum distance optimal subcodes with parameters [20,9, 7J and [20,8, 8J 

(these are maximum dimension subcodes with respect to d = 7 and d = 8). 

Betsumiya and Harada have also shown that there is a unique optimal 

[22,11,7J code, and in fact this code is formally self-dual [2J. We examined the 

optimum distance profiles of this code and found the following: 

Theorem 4.9. If C is the unique [22,11, 7J code, then 

ODpiiC[CJ = [7,8,8,8,8,8,8,8,12,12,16]' 

ODpnv[CJ = [7,7,7,7,7,7,8,11,12,12, 16J 
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with generator matrix: for each profile respectively: 

0110100011111110111111 1101011011111010111110 

0001010101001111110011 1100111100000110001111 

1010011000010111101101 1010100000101111111100 

0110100000110010011000 0110000101110110101010 

1010010001010000011001 0001100101000110000101 

G(C) = 0110000000001110110010 , G(C) = 0000010001101110111110 

0001010000011010011010 1010100000000010001101 

1010010000100110001010 0110000001010101010000 

1010000000010011010110 0110000000001110110010 

1000000000111011001001 1010000000010011010110 

1000000000010110111000 1000000000010110111000 

Proof. The ODP in dictionary order may be obtained directly using (Subcodes) 

Chain Algorithm I. The ODP in inverse order may be found using the methods 

of the previous proof, for the [16,8,5] code, by beginning with a [22,1,16] code 

and checking that supercodes with high minimum distance eventually generate 

the [22,11,7] code. o 

Corollary 4.10. The [22,11,7] formally self-dual odd code contains dimension op­

timal and minimum distance optimal subcodes with parameters [22, 10, 8], [22, 4, 11], 

and [22, 3,12] (these are maximum dimension subcodes with respect to d = 8, 11, 12). 
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TABLE 4.1 

ODP for Near Extremal FSD [16,8,4] codes (Part 1) 

Weight Distribution ODP SD ID FSD Total 

A O,16 = 1, A4,12 = 4, 
ODP = [4,6,6,8,8,8,8,16] 0 1 0 1 

A 6,10 = 96, As = 54 

AO,16 = 1, A 4,12 = 8, ODpdic = [4,4,6,6,6,6,10,12] 
0 1 0 

A 6,10 = 80, As = 78 ODpinv = [4,4,6,6,6,8,8,16] 

ODP = [4,4,6,6,8,8,8,16] 0 3 0 

ODP = [4,6,6,8,8,8,8,16] 0 1 0 5 

A O,16 = 1,A4,12 = 10, ODpdic = [4,4,4,6,6,8,10,12] 
0 0 1 

A 6,10 = 72, As = 90 ODpinv = [4,4,4,6,6,8,8,16] 

ODpdic = [4,4,6,6,6,8,10,12] 
0 0 7 

ODpinv = [4,4,6,6,6,8,8,16] 

ODP = [4,4,6,6,8,8,8,16] 0 6 2 

ODpdic = [4,6,6,6,8,8,8,10] 
0 1 0 17 

ODpinv = [4,4,6,6,8,8,8,16] 

A O,16 = 1, A 4,12 = 12, ODpdic = [4,4,4,6,6,8,10,12] 
0 0 1 

A 6,10 = 64, As = 102 ODpinv = [4,4,4,6,6,8,8,16] 

ODP = [4,4,4,6,8,8,8,16] 0 2 2 

ODpdic = [4,4,6,6,6,8,10,12] 
0 2 1 

ODpinv = [4,4,4,6,8,8,8,16] 

ODpdic = [4,4,6,6,6,8,10,12] 
0 1 1 

ODpinv = [4,4,6,6,6,8,8,16] 

ODP = [4,4,6,6,8,8,8,16] 0 14 25 

ODP = [4,4,6,8,8,8,8,16] 1 5 2 

ODP = [4,6,6,8,8,8,8,16] 0 1 0 58 
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TABLE 4.2 

ODP for Near Extremal FSD [16,8,4] codes (Part 2) 

Weight Distribution ODP SD ID FSD Total 

AO,16 = 1, A 4,12 = 14, 
ODP = [4,4,4,6,8,8,8,16] 0 0 4 

A 6,10 = 56, As = 114 

ODP = [4,4,4,8,8,8,8,16] 0 2 2 

ODpdic = [4,4,6,6,6,8,10,12] 
0 0 2 

ODpinv = [4,4,4,6,8,8,8,16] 

ODpdic = [4,4,6,6,8,8,8,10] 
0 0 8 

ODpinv = [4,4,4,6,8,8,8,16] 

ODpdic = [4,4,6,6,8,8,8,10] 
0 1 0 

ODpinv = [4,4,4,8,8,8,8,16] 

ODpdic = [4,4,6,6,8,8,8,12] 
0 1 1 

ODpinv = [4,4,4,6,8,8,8,16] 

ODpdic = [4,4,6,6,8,8,8,16] 
0 6 3 

ODpinv = [4,4,4,8,8,8,8,16] 

ODP = [4,4,6,6,8,8,8,16] 0 2 4 36 
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TABLE 4.3 

ODP for Near Extremal FSD [16,8, 4J codes (Part 3) 

Weight Distribution ODP SD ID FSD Total 

AO,16 = 1, A 4,12 = 16, ODpdic = [4,4,4,6,6,8,10,12] 
0 1 0 

A 6,10 = 48, As = 126 ODpinv = [4,4,4,6,6,8,8,16] 

ODP = [4,4,4,6,8,8,8,16] 0 2 2 

ODP = [4,4,4,8,8,8,8,16] 0 3 3 

ODpdic = [4,4,6,6,8,8,8,12] 
0 0 1 

ODpinv = [4,4,4,6,8,8,8,16] 

ODpdic = [4,4,6,6,8,8,8,12] 
0 0 1 

ODpinv = [4,4,4,8,8,8,8,16] 

ODpdic = [4,4,6,6,8,8,8,16] 
0 2 1 

ODpinv = [4,4,4,8,8,8,8,16] 

ODP = [4,4,6,6,8,8,8,16] 0 1 2 

ODP = [4,4,6,8,8,8,8,16] 0 2 0 21 

A O,16 = 1, A 4,12 = 20, 
ODP = [4,4,4,8,8,8,8,16] 0 3 0 

A 6,10 = 32, As = 150 

ODP = [4,4,6,8,8,8,8,16] 0 1 0 4 

A O,16 = 1, A 4,12 = 28, 
ODP = [4,4,4,8,8,8,8,16] 2 0 0 2 

As = 198 

Total 3 65 76 144 
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CHAPTER 5 

NETWORK CODING THEORY 

5.1 Random Network Coding Notations and Formulation 

The area of Network Coding Theory was introduced by Yeung and Zhang 

in 1999 [46]. Ahlswede, Cai, Li, and Yeung expanded the concept in their paper 

"Network Information Flow" [1]. Since that time, Network Coding Theory has 

become an active research area. A communication network is a finite directed 

graph G = (V, E) where V is a set of vertices (or nodes) and E is a set of edges 

(or channels). Symbols may be sent through the network from source nodes tosink 

nodes. In 2008, Koetter and Kschischang introduced network coding based on 

subspaces. We begin with a discussion of their formulation of random network 

coding. 

A general formulation of coding on a network is random network coding 

(based on formulation in [22]). Let N be a positive integer and IF q be a finite 

field. Given a single source and single sink network G with input (row) vectors 

PI, P2, ... ,PM in lFq N and error (row) vectors el, e2, ... ,eT in lFqN where M and T 

are non-negative integers. The sink receives the packets YI, Y2, ... ,YL for which 

M T 

Yj = L hj,iPi + L gj,tet (5.1 ) 
i=l t=l 

where hj,i, gj,t E IF q are unknown random coefficients. In matrix form Y = H P + Ge 
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where Hand G are random L by M and L by T matrices and 

Y= ,P= 

YL PM 

e= , 

Thus, given a network, a primary concern is to obtain the row space of Y 

and the row space of p. In order to model the relationship between these spaces, 

notation is needed. Let W be an N-dimensional vector space over IF q and let V 

be a subspace of W. Let k 2:: 0, if dim(V) > k, then 1{k(V) returns a randomly 

chosen k-dimensional subspace of V, otherwise 1{k(V) = V. Let P(W) denote the 

set of all subspaces of W (also known as the projective geometry of W). 

Given a network and an N-dimensional vector space W, the input and 

output (spaces) are elements of P(W). Let V denote the channel input (i.e., the 

row space of p) and U denote the channel output (i.e., the row space of y). If k = 

dim(U n V) and E is an error space, then we define U and V to always be related 

as 

(5.2) 

with p = dim(V) - k erasures and t = dim(E) errors. 

In this way, vector spaces are the "codewords" being sent so it is natural to 

define a metric on P(~V) to determine the "distance" between two spaces. Define 

d: P(W) x P(W) ---+ Z20 by 

d(A, B) = dim(A + B) - dim(A n B) = dim(A) + dim(B) - 2dim(A n B) (5.3) 

where A + B is the smallest subspace containing both A and B (i.e., A + B = 

{a + b: a E A, bE B}). 

5.2 Network Codes 
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In this section we see the relation between network codes and classical codes. 

Many classical theorems have been extended to network coding, primary examples 

being Sphere Packing Bound and Singleton Bound (in [22]); and Johnson Bounds 

(in [44]). 

Given a network and an N-dimensional vector space W over lFq, a (network) 

code C is a nonempty subset of P(W). The minimum distance of C is denoted by 

D(C) = min d(X, Y). 
X,YEC:X;;fY 

(5.4) 

The maximal dimension of the codewords of C is denoted by f(C) = maxXEC dim(X). 

So a code will be referred to as having type [N, f(C), logq ICI, D]. 

The dimension concept for network codes corresponds to the weight concept 

for classical codes. For a network code C, if the dimension of each codeword is 

the same, then C is a constant-dimension code. Hence a constant-dimension code 

is of type [N, f, logq ICI, D]. Constant-dimension codes are related to a Johnson 

scheme, a Grassmann graph, and rank metric codes. 

Koetter and Kschischang introduced many important theorems which are 

analogous to theorems in classical coding theory. The following four theorems 

are introduced in [22]. For a code C with given output U the minimum distance 

decoder returns a nearest codeword V from C (i.e., V is such that for all V' E 

C, d(U, V) ::; d(U, V') ). 

Theorem 5.1. Given a network and a code C, if V E C is the input and U = 

'l-lk(V) EB E is the received space, with dim(E) = t. Then the maximum number of 

erasures zs 

if f(C) - k > 0 
(5.5) 

otherwise 

and the minimum distance decoder decodes V from U as long as 2(t + p) < D(C). 
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Given an N-dimensional vector space Wand let P(W, f) be the set of all f­

dimensional subspaces of W. Define the sphere of radius t centered at V E P(W, f) 

as 

S(V, f, t) = {U E P(vl/, f) : d(U, V) :::; 2t}. 

Theorem 5.2. For t :::; f 

t 

IS(V,f,t)1 = 2:: qi
2 

(5.6) 
i=O 

where [;] q ~ rr;:~ ~:~:::,1 is the q-ary Gaussian coefficient which counts the 

number of i-dimensional subspaces of IF q n. 

Theorem 5.3. (Sphere-Packing Bound) 

Let C be a non-empty subset of P(W, f) with D(C) ~ 2t and let s = l t~l J. Then 

ICI < P(W, f) < 4q(C-s)(N-s-C). 

- S(V, f, s) 

Also, there exists a constant-dimension code C' with D(C') ~ 2t so that 

ICI P(W, f) > _l_q(C-t+l)(N-t-Hl) 

~ S(V,f,t-l) 16t 

Theorem 5.4. (Singleton Bound) 

Let C be any q-ary code in P(W, f) of type [N, f(C), logq ICI, D] then 

[

N - (D - 2)/2] ICI < 
rnax{ f, N - f} q 

(5.7) 

(5.8) 

(5.9) 

Inspired by the previous four theorems (from [22]), Fu and Xia extended the 

classical Johnson bounds for constant weight codes to the following two Johnson-

Type Bounds on constant-dimension network codes (in [44]). Let Aq[N, 2D, f] be 

the maximum size of a [N, f(C), logq ICI, D] constant-dimension code. 
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Theorem 5.5. (Johnson Type Bound 1) 

If (q£ - 1)2 > (qn - l)(qC-D - 1), then 

Theorem 5.6. (Johnson Type Bound 2) 

Aq[N, 2D, f] ::; l i~;=:? Aq[N - 1, 2D, f - l]J 

l
(qn-l) l(qn-l_l) l l(qn-l+D_l)J J J J or Aq[N, 2D, f]::; (qLl) (qi Ll) ... (qD_l) ... 

(5.10) 

5.3 Results on Self-Complementary and Self-Dual Network Codes 

In [22] the idea of a complementary code is introduced as an analog to 

the classical dual of a linear code. Let C be a constant-dimension code of type 

[N,f,logqICI,D] then the complementary code corresponding to C is C~ = {V~ : 

V E C} and C~ is of type [N, N - f, logq ICI, D]. Let C be a constant-dimension 

code and C = C~, then C is called a self-complementary code and C is of type 

[N, ~, logq ICI, D]. 

We develop the following theory as an analog to classical self-dual codes. 

If C is a set of classical self-dual codes of length N, then C is called a self-dual 

network code (we will just say self-dual code when the context is clear). Note that 

C is also a constant-dimension, self-complementary code. For positive integers i 

and j where j ::; i let mi,j denote the maximum number of self-dual codes in IF q 2i 

such that each pair intersect in exactly j dimensions (i.e., for A and B two classical 

self-dual codes in C, d(A, B) = 2i - 2j ). We will now discuss some results on mi,j. 

Proposition 5.7. mi.l ::; 2i
-

l + 1 for all positive integers i. 

Proof. The total number of even vectors in IF /i is 22i - l . Each self-dual code in 

this enumeration mi,l only intersects in the all-one and all-zero vectors. So each 
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self-dual code contains 2i - 2 vectors besides these two. Hence if C is a network 

. .. (22i - 1 _2) 2(2i - 1+1)(2i - 1 -1) i-I 
code meetmg thIs maxImum, then lei::; (2i_2) = 2(2i - L 1) = 2 + 1. D 

Conjecture: mi,l = 2i - 1 + 1 for all positive integers i. 

Lemma 5.8. The conjecture is true for i ::; 5. 

Proof. For i = 3 we have a self-dual code network code meeting the bound. This 

code consists of the following classical self-dual codes: 

11 00 00 10 00 10 10 01 00 

00 11 00 01 10 00 01 00 10 

00 00 11 00 01 01 00 10 01 

10 00 01 10 10 00 

01 01 00 01 00 01 

00 10 10 00 01 10 

For i = 4 we have a self-dual code network code meeting the bound. This 

code consists of the following classical self-dual codes: 

1100 0000 1010 0000 1001 0000 1000 1000 

0011 0000 0100 1000 0100 0100 0100 0001 

0000 1100 0001 0010 0010 0001 0010 0010 

0000 0011 0000 0101 0000 1010 0001 0100 

1000 0100 1000 0010 1000 0001 

0100 0010 0101 0000 0110 0000 

0010 1000 0010 0100 0001 1000 

0001 0001 0000 1001 0000 0110 
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1000 1101 

0100 0111 

0010 1110 

0001 1011 

1000 1110 

0100 1011 

0010 0111 

0001 1101 

For i = 5 we have a self-dual code network code meeting the bound. This 

code consists of the following classical self-dual codes: 

1100000000 1010000000 1001000000 1000100000 

0011000000 0100100000 0100010000 0101000000 

0000110000 0001001000 0010000100 0010000010 

0000001100 0000010010 0000100001 0000010100 

0000000011 0000000101 0000001010 0000001001 

1000010000 1000001000 1000000100 1000000010 

0110000000 0100000010 0100000001 0100011100 

0001000001 0010100000 0010001000 0010001101 

0000101000 0001000100 0001010000 0001011001 

0000000110 0000010001 0000100010 0000110101 

1000000001 1000010101 1000101010 1000001110 

0100010110 0100001000 0100000100 0100000111 

0010011100 0010010011 0010101000 0010010000 

0001001110 0001010110 0001100011 0001001011 

0000111010 0000100111 0000011011 0000101101 
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1000011010 

0100001110 

0010000001 

0001011100 

0000110110 

1000001101 

0100001011 

0010000111 

0001100000 

0000011110 

1000011100 

0100001101 

0010010101 

0001000010 

0000111001 

1000001011 

0100011001 

0010011010 

0001010011 

0000100100 

1000000111 

0100100110 

0010100011 

0001100101 

0000011000 

Proposition 5.9. mi,i-I = 3 for all positive integers i. 

D 

Proof. By Theorem 9 .. 5.4 (pp. 360) in [18], there are exactly three self-dual codes 

D I, D 2 , D3 containing a fixed [2i, i-I] self-complementary, self-orthogonal code. 

Therefore mi,i-I 2:: 3. So we need to show it is impossible to have a set of self-dual 

codes of size larger than three, such that each pair shares i-I dimensions (in 

pairwise intersection). Suppose there exists a self-dual code B where DI n B i= 

D2 n B yet d(DI' B) == 2 = d(D2' B). dim(DI n D2 n B) = i - 2 is obtained by 

applying pigeonhole principle, since the pairwise intersection of any of D I, D2 , or 

B has dimension i - 1. Let {V3' V4, ... ,Vi} be basis for DI n D2 n B. Fix VI, V2, U 

s.t. {VI, V2, V3, ... ,Vi} is basis for D I, and {u, V2, V3, ... ,Vi} is basis for A2. This 

implies {VI, u, V3, ... ,vJ must be a basis for B. But VI' Vj = 0 for all j E {2, ... ,i} 

as DI is self-dual and u . Vj = 0 for all j E {2, ... , i} as D2 is self-dual. Hence 

VI . U = l(if not then u E DI)' This contradicts the self-duality of B. D 

Our next aim is to show mi,j 2:: mi-j+I,1 for all positive integers i,j. The 

proof of this claim requires some notations and lemmas involving the trivial self­

dual code. Given any N positive even integer, let C~ll be the self-dual code 
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----------

generated by weight 2 vectors in IF 2N that are the rows of the block-matrix with 

~ blocks of the 1 by 2 matrix [11]. In other words, the code is generated by the 

matrix 

G~l] = [gi,j E lF2 : gi,j = 1 iff j E {2i - 1, 2i} and gi.j = 0 otherwise] 

For positive integers i and j where j ::; i let O!i,j denote the maximum number of 

self-dual codes in IF 2 2i such that each pair intersect in some j dimensional subspace 

S of cW] (so for A and B two self-dual codes in the enumeration An B = S). 

Lemma 5.10. mi,1 = O!i,l for all positive integers i. 

Proof. The single dimension shared is generated by the all-one vector. 0 

Lemma 5.11. mi,j 2:: O!i,j for all positive integers i, j. 

Proof. The proof follows directly from definitions since the latter is a special case 

of the former. o 

For a given set of vectors S of length N let (S)~o denote the set of all vectors 

of length N + 2k obtained from S by appending k pairs of zeros to the end of the 

vectors in S. 

Lemma 5.12. O!i-k,l ::; O!i,k+l for all positive integers i and k E {O, 1,2, ... ,i - I}. 

Proof. Fix any k E {O, 1,2, ... ,i - I}. Recall O!i-k,l is the maximum number of 

self-dual codes in IF 2 2i-2k intersecting in exactly < 1 > (where 1 is the all-one 

vector). Let C be a fixed set of such self-dual codes indexed by t. Let Bz denote 

a basis containing 1 for the corresponding code in C. Then a set C' of O!i,k+1 

self-dual codes in IF 2 2i intersecting in a k + 1 dimensional subspace of C}l1] , say 

< 1, gi,' .. ,gi-(k-l) : g/s are rows of G~~l] >, will be so that a subspace of C' can 

be generated by B{ := {1, gi,"" gi-(k-l)} U (Bz - l)~o. Hence the indices are the 

same for the codes from C in C'. Hence O!i-k,l ::; O!i,k+l' o 
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Example 5.13. This example is relavent to Lemma 5.12 Let i = 5 and k = 2 

0:3,1 ::; 0:5,3 

11 00 00 00 00 

11 00 00 00 11 00 00 00 

00 11 00 -+ 00 00 00 11 00 

11 11 11 00 00 00 00 11 

11 11 11 11 11 

10 01 00 00 00 

10 01 00 01 00 10 00 00 

01 00 10 -+ 00 00 00 11 00 

11 11 11 00 00 00 00 11 

11 11 11 11 11 

Now we may prove the proposition using the previous lemmas. 

Proposition 5.14. mi,j ~ mi-j+1,1 for all positive integers i, j. 

Proof. From the previous lemmas we have the following inequalities: 

mi-j+1,1 = O:i-j+1,1 (5.11) 

(5.12) 

0: .. < m·· t,J - t,J (5.13) 

Where (5.11) follows by Lemma 5.10, (5.12) follows by Lemma 5.12, and (5.13) 

follows by Lemma 5.11. Therefore mi,j ~ mi-j+1,1 for all positive integers i,j. D 
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CHAPTER 6 

COMPLEMENTARY INFORMATION SET CODES 

6.1 Motivations 

A generalization of self-dual codes was recently proposed by Carlet, Gaborit, 

Kim, and Sole in [7]. In the paper, a new class of codes, called complementary infor­

mation set (or CIS) codes, is defined. Given an integer n, a binary linear code with 

parameters [2n, n, d] which has two disjoint information sets is a complementary 

information set code. CIS codes have a variety of connections and applications; the 

authors (in [7]) note the direct applications found in Cryptography, with relations 

to Boolean S-Boxes, Boolean functions, and masking [27, 28, 29, 38]. In partic­

ular, coordinate permutations F on lF~, such that given some maximal integer d, 

for every pair of vectors a, b E lF~ such that (a, b) is nonzero and has Hamming 

weight less than d, the value of the Walsh Hadamard transform of F at (a, b) is 

null. These functions are called Graph Correlation Immune of order d (or d-GCI). 

A d-GCI function protects against an attack of order d and if the function is linear, 

then it is equivalent to a [2n, n, d] CIS code. 

In the paper [7], CIS codes are classified for 2n = 2,4,6,8, 10, 12. In the 

proceeding sections we classify [14,7, d] CIS codes (i.e. the case where n = 7), and 

we give some results towards the classification for 2n = 16. For length 14 we use 

a modified method involving equivalency classes of GL(n,lF2)' Using this method 

we verified that all CIS codes for lengths 2,4,6,8,10, and 12 are the same as the 
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classification given in [7J. For length 16 we classify all [16,8, 4J codes and verify 

which ones are CIS. 

6.2 A Classification Tool Using Graph Isomorphism 

The classification of various classes of binary linear [n, k, dJ codes is a classi­

cal problem; in the previous chapters we have discussed researchers' work towards 

the classification of self-dual and formally self-dual codes. Thus, an interesting 

problem in the area of CIS codes is the classification problem. One main diffi­

culty that arises when classifying codes is the equivalency test. When comparing 

a small set of codes the equivalency test can be implemented easily (in Magma [6]) 

by performing a pairwise comparison of all codes in the set. However, when com­

paring more than a few thousand codes the test becomes rather time consuming. 

A useful solution for this problem, proposed independently in 1978 by [12, 37], 

is to generate a list of inequivalent combinatorial objects (codes) by producing a 

"canonical representative" for each equivalency class. This method is described by 

Kaski and Ostergard and it is called Orderly Generation ([21J pp.120-124). There 

is no equivalence test in this method, the only criterion is set membership. 

The difficulty in applying the Orderly Generation method is finding a way to 

determine a "canonical representative" for each class. As suggested in [21], a clever 

navigation of this difficulty is to make use of Brendan McKay's graph isomorphism 

program nauty [31J. Two graphs G and G' with vertex sets V and V' are said to 

be isomorphic if there exists a bijection ¢ : V ---+ V' such that (u, v) is an adjacent 

pair of vertices in G if and only if (¢(u), ¢(v)) is an adjacent pair of vertices in G'. 

Given a graph G with vertex set V and a fixed labeling on the vertices with the 

integers 1,2, ... , lVI, nauty can output a "canonical" labeling among all isomorphic 

graphs. In fact, if the graph is a colored graph, then nauty will give a canonical 
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labeling which preserves the color among labels. In [32], Ostergard uses nauty 

functionality to classify binary linear codes of minimum distance greater than two 

for up to length 14. In [39], Schaathun implements a search which classifies all 

[36,8, 16] linear codes and uses nauty. 

6.3 A Correspondence Between Codes and Graphs 

Now we must describe how to transform a linear code to a colored graph. 

As per the formulations in [21, 32, 39], let a linear [n, k, d] code C be given. Let 

5 be the set of minimum weight in C. If 5 does not generate C, then include 

all codewords in C of weight 1 higher then the maximum weight in 5. Repeat 

the last step until 5 generates C. Fix an ordering on 5 so that Ci represents a 

specific element of 5 for i E {1, ... , 151}. Construct a set of 151 + n vertices labelled 

with the integers 1,2, ... ,151 + n (denote Vi the vertex with label i). Construct a 

bipartite graph in the following way. Let {Vl,V2, ""vlsl} be one partite set, and 

let the other partite set be {vlsl+I,vlsl+2,,,,,vISI+n}' Draw an edge (vi,vlsl+j if 

and only if Ci has a 1 in coordinate j. Color vertices {VI, V2, ... , vlsl} black. Color 

vertices {vISI+1, vlsl+2, ... , vISI+n} red. The following lemma is adapted from the 

known formulations in [21, 32, 39]. 

Lemma 6.1. A permutation 0:1 of the labels on the black vertices corresponds to 

a permutation of the O1'dering on the codewords. A permutation 0:2 of the labels of 

the red vertices corresponds to a permutation of columns of codewords. As a result, 

applying 0:1 and 0:2 to a graph G (constructed from a code C'), yields a graph G' 

(corresponding to a code C' equivalent to C). 

Proof. The first claim is clear from the construction since Ci corresponds to vertex 

Vi. The second claim follows from the fact that if 0:2(vlsl+i) = vlsl+j, then all 

codewords which had a 1 in column i, now have a 1 in column j after applying 0:2. 
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Since 01 and 02 correspond to permuting generators and columns in the 

code C to obtain G', then G' must correspond to a code C' equivalent to C. D 

Because of the functionality in nauty, a canonically labelled graph (with 

the color restriction described above) corresponds to a canonical form of a linear 

[n, k, dJ code. Therefore we may apply Orderly Generation. 

6.4 A Correspondence Between GL(n, IF2 ) and Graphs 

Given any linear [2n, n, dJ code C, it is clear that if the coordinate set 

{I, 2, ... , n} is an information set, then any generator matrix of C has the form 

G = [IIA], after performing Gaussian Elimination, where I is the n by n identity 

matrix and A is an n by n matrix. In [7J this is called the systematic form of 

the generator matrix for a [2n, n, dJ code C. C is CIS if and only if C may be 

converted to systematic form where A E GL(n,IF2 ), by Lemma IV.1 of [7J. Hence 

if the equivalency classes of G L( n, IF 2) are classified, then the classification of CIS 

codes can be obtained using the ideas of Section 6.3. Therefore an interesting 

related classification problem is to find all equivalency classes of GL(n, IF2 ) (under 

row and column permutations). 

We now describe how to transform an element of GL(n, IF2 ) to a colored 

bipartite graph. Similar to the method of Section 6.3, let A E GL(n, IF2). Construct 

a set of 2n vertices labelled with the integers 1, 2, ... , 2n (denote Vi the vertex with 

label i). Construct a bipartite graph in the following way. Let {VI, V2, ... , vn } be 

one partite set, and let the other partite set be {Vn+l,Vn+2' ... ,V2n}. Draw an edge 

(Vi, Vn+j if and only if row i has a 1 in column j. Color vertices {VI, V2, ... , vn } black. 

Color vertices {Vn+l' Vn +2, ... , V2n} red. The following lemma is adapted from the 

known combinatorial formulations in [21J. 

Lemma 6.2. A permutation Oraw (resp. Oeal) of the labels on the black (resp. 
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red) vertices corresponds to a permutation of rows (resp. columns). As a result, 

applying aTOW and acol to a graph G (constructed from A E GL(n, JF2 )), yields a 

graph G' (corresponding to an equivalent matrix A' E GL(n,JF2 )). 

Proof. The first claim follows from the construction since a row corresponds to a 

vertex in { VI, V2, ... , vn } and a column position corresponds to a vertex in { Vn+ 1, Vn+ 2, ... , V2n}. 

Since aTOW and acol correspond to permuting rows and columns in the matrix 

A to obtain G', then G' must correspond to a matrix A' equivalent to A. D 

6.5 Length 14 CIS Codes 

In order to apply the theories developed in the previous section we need a 

construction method for the elements of GL(n, JF2 ). Our aim in this section is to 

first classify elements (up to equivalence) in GL(n, JF2 ) for n ::; 7, then we use these 

elements to classify all CIS codes of length 14. 

We first discuss how to obtain matrices in GL(n, JF2 ) using inequivalent 

matrices from GL(n -1, JF2 ). The following two lemmas are adapted from Lemma 

VI.3 and Proposition VI.4 of [7]. 

Lemma 6.3. Any matrix A E GL(n, JF2 ) has a submatrix A' E GL(n - 1, JF2). 

Proof. Let ai be the ith column of A and let ri be the ith row of A where 1 ::; i ::; n. 

Delete al from A to obtain an n by n - 1 matrix AI. Let r~ be the ith row of 

AI. Since Al has rank n - 1, there exists a j such that {r~ : i =1= j} are linearly 

independent and rj = L cir; for uniquely determined Ci. Therefore by deleting rj 
itj 

from Al we obtain an n - 1 by n - 1 matrix A' having rank n - 1. D 

Lemma 6.4. For any matrix A' E GL(n-1, JF2 ), a matrix A E GL(n-1, JF2 ) may 

be obtained by the following: For any x, y E JF~-\ fix C := xA -1 and z := [1] + cyT, 

then 

71 



Proof. Since the rows of A' are linearly independent x must be a linear combination 

of the rows of A', which implies there exists acE lF~-l such that cA = x. Solving 

for c we obtain c = xA -1. To ensure that the top row of A is linearly independent 

from the other rows the value of z must be such that c[yT A'] =1= [z x]. Hence 

cyT =1= z, and as the values are binary this is equivalent to cyT + [1] = z. 0 

By applying this theory recursively to all representatives from equivalency 

classes of GL(n-1, lF2 ) along with the canonical selection method in Section 6.4 we 

may obtain all equivalency class representatives in GL(n, lF2)' For n = 1,2, ... , 7 we 

have obtained the number of equivalency classes given in Table 6.1. The Magma 

code for this computation is given in the Appendix. 

For each representative A from equivalency classes of GL(n, lF2)' appending 

the n by n identity matrix 1, [1 A] is a generator matrix for a CIS code. By 

applying the method introduced in Section 6.3 we can then obtain a set of all 

inequivalent CIS codes of length 2n. We have first verified that all CIS codes for 

lengths 2,4,6,8,10, and 12 are the same as the classification given in [7]. We then 

obtained a list of all inequivalent CIS codes for length 14. The number of [14,7] 

CIS codes is listed in Table 6.2, the rows give the possible minimum distances and 

the columns tell how many are self-dual, formally self-dual but not self-dual, and 

neither. 

6.6 [16,8,4] CIS Codes 

Since the number of equivalency classes of G L(7, IF 2) is very large, it is 

not feasible to determine the classes of GL(8,lF2 ). Therefore we consider another 
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method for considering the [16,8] CIS codes. We give the following lemma based 

on the theory of shortening codes in [18] to justify our method. 

Lemma 6.5. If C is a binary [n, k] with generator matrix in standard form G, 

then shortening C on the first column yields an [n, k - 1] code. 

Proof. Since G is in standard form the only row of the generator matrix with a 1 

in the first column is the first row. Therefore, shortening on the first column yields 

an [n, k - 1] code. o 

Applying this lemma recursively to any [n, k, d] code, a nested chain of 

subcodes is obtained, the smallest subcode having parameters [n - k + 1,1,2:: d]. 

Therefore, any [16,8,4] code has a nested chain of subcodes ("subcode" meaning 

by adding a zero column it is a subcode): 

[16,8, 4] ~ [15,7,2:: 4] ~ [14,6,2:: 4] ~ [13,5,2:: 4] 

~ [12,4,2:: 4] ~ [11,3,2:: 4] ~ [10,2,2:: 4] ~ [9,1,2:: 4] 

If we have a list of all inequivalent [n', k', 2:: 4] codes L we construct all [n' + 

1, k' + 1,2:: 4] supercodes by adding a zero column onto each code C in L and then 

increasing the dimension by adding vectors from lF~/+l IC. We apply this method 

recursively and keep only "canonical" representatives as in Section 6.3 to obtain a 

classification of 255,290 total inequivalent [16,8,4] codes. In the Table 6.3 we have 

the totals for how many of these codes are self-dual, only even formally-self-dual, 

only odd formally self-dual, and neither self-dual nor formally self-dual. We also 

include a column which states how many have d.l =J. 1, which means there are 

no zero columns in the generator matrix. We conclude that there are a total of 

267,442 [16,8,4] CIS codes. 
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TABLE 6.1 

Number of Equivalency Classes in GL(n, lF2 ) Under Row & Column Permutations 

n= 1 2 3 4 5 6 7 

Total 1 2 7 51 885 44,206 6,843,555 

TABLE 6.2 

Classification of Length 14 CIS codes 

Total CIS SD Only FSD Not SD or FSD 

d=2 62015 3 4407 57605 

d=3 22561 0 2160 20401 

d=4 1476 1 [7J 121 1354 

Total 86052 4 6688 79360 

TABLE 6.3 

Classification of [16,8,4] codes and [16,8,4] CIS codes 

Total d-L # 1 SD Only Even FSD Odd FSD Not SD 

or FSD 

CIS [16,8, 4J 267,442 267,442 3 141 12,827 254,471 

All [16,8, 4J 271,78;~ 268,261 3 [33J 141 [3J 12,827 255,290 
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CHAPTER 7 

CONCLUSION 

The classification of self-dual codes continues to be an extremely active 

area in coding theory. A particularly interesting class of self-dual codes is those of 

Type II which have high minimum distance (called extremal or near-extremal). It 

is notable that this class of codes contains famous unique codes: the extended Ham­

ming [8,4,4] code, the extended Golay [24,12,8] code, and the extended quadratic 

residue [48,24,12] code. A long standing open problem in coding theory is to prove 

the existence or non-existence of a Type II [72,36,16] code. 

The aim of Chapters 3 is to shed light on the structure of this interesting 

class of codes. We examine the maximal subcodes and ODPs of Type II codes 

for lengths up to 32. Of recent significance is the classification of length 40 Type 

II codes [4]. The examination of these codes would be extensive work as there 

are 16470 Type II [40,20,8] codes (the highest minimum distance in this case is 8 

which is not minimum distance optimal by [15]). Therefore we examined a more 

interesting case, the unique Type II code of length 48: Q4S. In the paper, we gave 

many partial results towards the ODPs of Q4S. Thus we propose the open problem: 

Open Problem: Determine completely the ODP in both orders for Q4S' 

In a similar direction to the Type II codes, we examine all optimal formally 

self-dual codes for lengths 16-22. We suggest that as the optimal formally self­

dual codes become classified for larger lengths, their optimum distance profiles 

and optimal sub codes should be examined. 

A new research area in Information Theory is the area of Network Cod-

75 



ing Theory. Many concepts of classical Coding Theory have been generalized to 

network codes. In Chapter 5, we develop a generalization of self-dual codes to 

Network Coding Theory and give results on existence of self-dual network codes 

with the largest possible minimum distance for lengths up to 10. 

A new application of Coding Theory to Cryptography has be formulated 

in [7]. Complementary Information Set (or CIS) codes were described and classified 

for lengths up to and including 12. In Chapter 6, we give classification results for 

length 14 CIS codes and give some partial results on the classification for length 

16 CIS codes. 

In conclusion, we have described subcode structures in the form of Optimum 

Distance Profiles and maximum dimension subcodes (with respect to given mini­

mum distance) for notable Type II codes and formally self-dual codes. We have 

discussed applications of self-dual codes in the areas of Network Coding Theory and 

Cryptography. In these applications we give results on codes of high minimum dis­

tance for self-dual network codes and classifications of CIS codes. As future work, 

we hope to extend our results to larger lengths and give generalizations of other 

concepts to Network Coding Theory. 
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APPENDIX 

Program Input: 

SetLogFile("GL_14.out"); 

liThe following program determines equivalency classes of GL(n,F_2) 

(up to row and column permutation) for lengths 2 through 7."; 

K:=GF(2); 

GL_Matrices:={ColumnSubmatrixRange(GeneratorMatrix( 

RepetitionCode(K,2)),2,2)}; 

GL_Matrices_temp:={@@}; 

n:=2; 

for R in GL Matrices do 

for x in KSpace(K,n-l) do 

for y in KSpace(K,n-l) do 

c:=Matrix(x)*(R--l); 

z:=Matrix(KSpace(K,l)! [l])+Matrix(c)*Transpose(Matrix(y)); 

Al:=VerticalJoin(HorizontalJoin(z,x),HorizontalJoin( 

Transpose(Matrix(y)),R)); 

GA:=Al; 

Ml MatrixRing( K, NumberOfRows(GA) ) !O; 
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M2 := MatrixRing( K, NumberOfColumns(GA) )!O; 

A := VerticalJoin(HorizontalJoin(M2,Transpose(GA)), 

HorizontalJoin(GA,M1)); 

P := Graph< NumberOfRows(GA)+NumberOfColumns(GA) I A>; 

L: = [] ; 

for i:=1 to #VertexSet(P) do 

vv:=Vertices(P)!i; 

if "red" in {Label(x) 

Append(-L,"blue"); 

x in Neighbors(vv) I IsLabelled(x)} then 

else 

Append(-L,"red"); 

end if; 

AssignVertexLabels(-P, L); 

end for; 

G2:=ColumnSubmatrix(RowSubmatrix(AdjacencyMatrix( 

CanonicalGraph(P)),1,NumberOfRows(GA)),NumberOfRows(GA)+1, 

NumberOfColumns(GA)); 

G:=ChangeRing(G2,K); 

end for; 

end for; 

end for; 
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1111.1111 • , , 

"Number of equivalency classes for n=2:"; 

n:=3; 

for R in GL Matrices do 

for x in KSpace(K,n-l) do 

for y in KSpace(K,n-l) do 

c:=Matrix(x)*(R~-l); 

z:=Matrix(KSpace(K,l)! [l])+Matrix(c)*Transpose(Matrix(y)); 

Al:=VerticalJoin(HorizontalJoin(z,x),HorizontalJoin( 

Transpose(Matrix(y)),R)); 

GA:=Al ; 

Ml MatrixRing( K, NumberOfRows(GA) )!O; 

M2 MatrixRing( K, NumberOfColumns(GA) ) !O; 

A := VerticalJoin(HorizontalJoin(M2,Transpose(GA)), 

HorizontalJoin(GA,Ml)); 

P := Graph< NumberOfRows(GA)+NumberOfColumns(GA) I A>; 

L: = [] ; 

for i:=l to #VertexSet(P) do 
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vv:=Vertices(P)!i; 

if "red" in {Label(x) x in Neighbors(vv) I IsLabelled(x)} then 

Append(-L,"blue"); 

else 

Append(-L,"red"); 

end if; 

AssignVertexLabels(-P, L); 

end for; 

G2:=ColumnSubmatrix(RowSubmatrix(AdjacencyMatrix( 

CanonicalGraph(P)),1,NumberOfRows(GA)),NumberOfRows(GA)+1, 

NumberOfColumns(GA)); 

G:=ChangeRing(G2,K); 

end for; 

end for; 

end for; 

1111.1111 • , , 

"Number of equivalency classes for n=3:"; 

85 



n:=4; 

for R in GL Matrices do 

for x in KSpace(K,n-l) do 

for y in KSpace(K,n-l) do 

c:=Matrix(x)*(R--l); 

z:=Matrix(KSpace(K,l)! [l])+Matrix(c)*Transpose(Matrix(y»; 

Al:=VerticalJoin(HorizontalJoin(z,x),HorizontalJoin( 

Transpose(Matrix(y»,R»; 

GA:=Al ; 

Ml MatrixRing( K, NumberOfRows(GA) ) !O; 

M2 MatrixRing( K, NumberOfColumns(GA) )!O; 

A := VerticalJoin(HorizontalJoin(M2,Transpose(GA», 

HorizontalJoin(GA,Ml»; 

P := Graph< NumberOfRows(GA)+NumberOfColumns(GA) I A>; 

L: = [] ; 

for i:=l to #VertexSet(P) do 

vv:=Vertices(P)!i; 

if "red" in {Label (x) 

Append(-L,"blue"); 

x in Neighbors(vv) I IsLabelled(x)} then 

else 

Append(-L,"red"); 

end if; 

AssignVertexLabels(-P, L); 
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end for; 

G2:=ColurunSubmatrix(RowSubmatrix(AdjacencyMatrix( 

CanonicalGraph(P)),l,NumberOfRows(GA)),NumberOfRows(GA)+1, 

NumberOfColumns(GA)); 

G:=ChangeRing(G2,K); 

end for; 

end for; 

end for; 

1111.1111 • , , 

"Number of equivalency classes for n=4:"; 

n:=5; 

for R in GL_Matrices do 

for x in KSpace(K,n-l) do 

for y in KSpace(K,n-1) do 

c:=Matrix(x)*(R--1); 
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z:=Matrix(KSpace(K,1)! [1])+Matrix(c)*Transpose(Matrix(y)); 

A1:=VerticalJoin(HorizontalJoin(z,x),HorizontalJoin( 

Transpose(Matrix(y)),R)); 

GA:=A1; 

M1 MatrixRing( K, NumberOfRows(GA) )!O; 

M2 MatrixRing( K, NumberOfColumns(GA) ) !O; 

A := VerticalJoin(HorizontalJoin(M2,Transpose(GA)), 

HorizontalJoin(GA,M1)); 

P := Graph< NumberOfRows(GA)+NumberOfColumns(GA) I A>; 

L: = [] ; 

for i:=1 to #VertexSet(P) do 

vv:=Vertices(P)!i; 

if "red" in {Label(x) 

Append(-L,"blue"); 

x in Neighbors(vv) I IsLabelled(x)} then 

else 

Append(-L,"red"); 

end if; 

AssignVertexLabels(-P, L); 

end for; 

G2:=ColumnSubmatrix(RowSubmatrix(AdjacencyMatrix( 

CanonicalGraph(P)),1,NumberOfRows(GA)),NumberOfRows(GA)+1, 

NumberOfColumns(GA)); 

G:=ChangeRing(G2,K); 
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end for; 

end for; 

end for; 

1111.1111 • , , 

"Number of equivalency classes for n=5:"; 

n:=6; 

for R in GL_Matrices do 

for x in KSpace(K,n-l) do 

for y in KSpace(K,n-l) do 

c:=Matrix(x)*(R~-l); 

z:=Matrix(KSpace(K,l)! [l])+Matrix(c)*Transpose(Matrix(y)); 

Al:=VerticalJoin(HorizontalJoin(z,x),HorizontalJoin( 

Transpose(Matrix(y)),R)); 

GA:=Al; 

Ml MatrixRing( K, NumberOfRows(GA) ) !O; 

M2 MatrixRing( K, NumberOfColumns(GA) ) !O; 
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A := VerticalJoin(HorizontalJoin(M2,Transpose(GA)), 

HorizontalJoin(GA,M1)); 

P := Graph< NumberOfRows(GA)+NumberOfColumns(GA) I A>; 

L: = [] ; 

for i:=1 to #VertexSet(P) do 

vv:=Vertices(P)!i; 

if "red" in {Label(x) x in Neighbors(vv) I IsLabelled(x)} then 

Append(-L,"blue"); 

else 

Append(-L,"red"); 

end if; 

AssignVertexLabels(-P, L); 

end for; 

G2:=ColumnSubmatrix(RowSubmatrix(AdjacencyMatrix( 

CanonicalGraph(P)),1,NumberOfRows(GA)),NumberOfRows(GA)+1, 

NumberOfColumns(GA)); 

G:=ChangeRing(G2,K); 

end for; 

end for; 

end for; 

1111.1111 • , , 
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"Number of equivalency classes for n=6:"; 

1111 • , 

n:=7; 

for R in GL_Matrices do 

for x in KSpace(K,n-l) do 

for y in KSpace(K,n-l) do 

c:=Matrix(x)*(R--l); 

z:=Matrix(KSpace(K,l)! [l])+Matrix(c)*Transpose(Matrix(y)); 

Al:=VerticalJoin(HorizontalJoin(z,x),HorizontalJoin( 

Transpose(Matrix(y)),R)); 

GA:=Al; 

Ml MatrixRing( K, NumberOfRows(GA) )!O; 

M2 MatrixRing( K, NumberOfColumns(GA) ) !O; 

A := VerticalJoin(HorizontalJoin(M2,Transpose(GA)), 

HorizontalJoin(GA,Ml)); 

P := Graph< NumberOfRows(GA)+NumberOfColumns(GA) I A>; 

L: = [] ; 

for i:=l to #VertexSet(P) do 
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vv:=Vertices(P)!i; 

if "red" in {Label(x) x in Neighbors(vv) I IsLabelled(x)} then 

Append(-L,"blue"); 

else 

Append(-L," red"); 

end if; 

AssignVertexLabels(-P, L); 

end for; 

G2:=ColumnSubmatrix(RowSubmatrix(AdjacencyMatrix( 

CanonicalGraph(P)),1,NumberOfRows(GA)),NumberOfRows(GA)+1, 

NumberOfColumns(GA)); 

G:=ChangeRing(G2,K); 

end for; 

end for; 

end for; 

1111.1111 • , , 

"Number of equivalency classes for n=7:"; 

1111 • , 
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Program Output: 

The following program determines equivalency classes of GL(n,F_2) 

(up to row and column permutation) for lengths 2 through 7. 

Number of equivalency classes for n=2: 

2 

Number of equivalency classes for n=3: 

7 

Number of equivalency classes for n=4: 

51 

Number of equivalency classes for n=5: 

885 

Number of equivalency classes for n=6: 

44206 

Number of equivalency classes for n=7: 

6843555 
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INDEX 

GL(n, lF2 ), see general linear group 

algorithm 

Random (Subcodes), see Random Al­

gorithm I 

Random (Supercodes), see Random 

Algorithm II 

Subcodes, see Chain Algorithm I 

Supercodes, see Chain Algorithm II 

canonical representative, see Orderly Gen­

eration 

Chain Algorithm 

Subcodes, see Chain Algorithm I 

Supercodes, see Chain Algorithm II 

Chain Algorithm I, 17 

formally self-dual, see formally self­

dual code 

linear, see linear code 

minimum distance of, see minimum 

distance 

minimum weight of, see minimum 

weight 

network, see network code 

optimal, see minimum distance op-

timal or see dimension optimal 

punctured, see punctured code 

self-dual, see self-dual code 

shortened, see shortened code 

Type I, see Type I code 

Type II, see Type II code 

Chain Algorithm II, 18 unique, see unique code 

CIS code, see complementary informa- complementary information set code, 67 

tion set code constant-dimension (network) code, 59 

code 

complementary information set, see 

complementary information set 

code 

dictionary order, 11 

dimension optimal, 10 

distance 

Hamming, see Hamming Distance 
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minimum, see minimum distance 

minimum (network code), see mini­

mum distance (network coding) 

network code, see distance (network 

coding) 

profile, see distance profile 

distance (network coding), 58 

distance profile, 11 

equivalent codes, 6 

canonical representative, see Orderly 

Generation 

graph isomorphism, see nauty 

nauty, see nauty 

formally self-dual code, 7 

general linear group, 70 

generator matrix, 5 

inverse dictionary order, 11 

linear code, 5 

MacWilliams Identities, 7 

maximal subcode, 10 

maximum dimension (network coding), 

59 

maximum dimension corresponding to d', 

11 

maximum dimension with respect to d', 

see maximum dimension corre­

sponding to d' 

minimum distance, 6 

minimum distance (network coding), 59 

minimum distance optimal, 10 

minimum weight, 6 

nauty,68 

network code, 59 with respect to the distance profile, 

see generator matrix with respect ODP, see optimum distance profile 

to the distance profile ODpdic, see optimum distance pro-

generator matrix with respect to the dis- file in dictionary order 

tance profile, 11 ODpinv, see optimum distance pro-

graph isomorphism, see nauty file in inverse dictionary order 

Hamming Distance, 5 

Hamming Weight, 5 

information set, 5 

optimal code 

dimension, see dimension optimal 

minimum distance, see minimum dis­

tance optimal 

95 



optimum distance profile, 12 

in dictionary order, 12 

in inverse dictionary order, 12 

order 

dictionary, see dictionary order 

inverse dictionary, see inverse dictio-

nary order 

Orderly Generation, 68 

punctured code, 8 

Random Algorithm 

Subcodes, see Random Algorithm I 

Supercodes, see Random Algorithm 

II 

Random Algorithm I, 20 

Random Algorithm II, 21 

random network coding, 57 

self-complementary network code, 61 

self-dual code, 7 

self-dual network code, 61 

shortened code, 8 

subcode 

chain, see sub code chain 

maximal, see maximal subcode 

subcode chain, 11 

Type I code, 7 

Type II code, 7 
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[48,24, 12], 36 

length 16, 23 

length 24, 27 

unique code, 6 

weight 

distribution, see weight distribution 

Hamming, see Hamming Weight 

minimum, see minimum weight 

weight distribution, 7 
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