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ABSTRACT 

APPLICATIONS OF THE COMBINATORIAL NULLSTELLENSATZ 
ON BIPARTITE GRAPHS 

Timothy M. Brauch 

May 9,2009 

The Combinatorial Nullstellensatz can be used to solve certain problems in com-

binatorics. However, one of the major complications in using the Combinatorial 

Nullstellensatz is ensuring that there exists a nonzero monomial. This dissertation 

looks at applying the Combinatorial Nullstellensatz to finding perfect matchings in 

bipartite graphs. 

The first two chapters provide background material covering topics such as 

linear algebra, group theory, graph theory and even the discrete Fourier transform. 

New results start in the third chapter, showing that the Combinatorial Nullstel

lensatz can be used to solve the problem of finding perfect matchings in bipartite 

graphs. Using the Combinatorial Nullstellensatz also allows for a nice use of ma

troid intersection to find the nonzero monomial. By also applying the uncertainty 

principle, the number of perfect matchings in a bipartite graph can be bound. 

The fourth chapter examines properties of the polynomials created in the use 

of the Combinatorial Nullstellensatz to find perfect matchings in bipartite graphs. 

Many of the properties of the polynomials have analogous properties for the trans-

forms of the polynomials, which are also examined. These properties often relate 

back to the structure of the graph which gave rise to the polynomial. 

The fifth chapter provides an application of the results. Since finding a 
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nonzero monomial can be difficult and the polynomials created in this disserta

tion give polynomials with such a nonzero monomial the application shows how 

certain polynomials can be rewritten in terms of the matching polynomials. Such 

a rewriting may permit an easy method to find a nonzero monomial so that the 

Combinatorial Nullstellensatz can be applied to the polynomial. Finally, the fifth 

chapter concludes with some open problems that may be areas of further research. 

v 



TABLE OF CONTENTS 

CHAPTER 

1. LINEAR ALGEBRA, GRAPH THEORY, AND GROUP THEORY 1 

1.1 Matrices and Vectors 1 

1.2 Graphs 6 

1.3 Groups 15 

2. MATROIDS, CHARACTERS, AND FOURIER TRANSFORMS 19 

2.1 Matroids ................. 19 

2.2 Group Representations and Characters 22 

2.3 Fourier Transforms on Finite Abelian Groups 25 

2.4 Combinatorial Nullstellensatz 27 

2.5 Computational Complexity 29 

3. PERFECT MATCHINGS IN BIPARTITE GRAPHS. 31 

3.1 Circular Locks from Bipartite Graphs. 33 

3.2 Matroid Intersection .......... 38 

3.3 Fourier Transforms on Bipartite Graphs 40 

3.4 Bounds from the Uncertainity Principle 42 

4. PROPERTIES OF THE MATCHING POLYNOMIAL AND TRANS-

FORM .................... 46 

4.1 A Basis for Our Matching Polynomial 46 

4.2 A Basis for the Transform . . 51 

4.3 Coefficients as Determinants . 53 

5. APPLICATIONS, CONCLUSIONS, AND FUTURE WORK 58 

VI 



5.1 Applications. 58 

5.2 Conclusions . 62 

5.3 Future Work 65 

REFERENCES 67 

INDEX. . . . 70 

CURRICULUM VITAE . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 76 

Vll 



LIST OF TABLES 

Table 1.1. The Cayley Table of Z~ . . 

Table 2.1. The Character Table of Z4 

Table 2.2. The Character Table of Z~ .. 

Vlll 

17 

25 

25 



Figure 1.1. 

Figure 1.2. 

Figure 1.3. 

Figure 1.4. 

Figure 1.5. 

Figure 1.6. 

Figure 1.7. 

Figure 1.8. 

LIST OF FIGURES 

A Multigraph . . . . . . 

The Complete Graph K4 

A Graph G . ...... . 

A Graph G and an Induced Subgraph H 

A Bipartite Graph ......... . 

The Complete Bipartite Graph K 2,3 

A Matching ..... 

A Maximal Matching 

7 

8 

8 

9 

10 

11 

13 

13 

Figure 1.9. A Maximum Matching 14 

Figure 1.10. A Perfect Matching . . 14 

Figure 3.1. A Setting on a Circular Lock with the Corresponding Matrix 32 

Figure 3.2. The Bipartite Graph for Example 3.1 . . . . . . . . . . . .. 36 

Figure 4.1. 

Figure 5.1. 

Figure 5.2. 

All Bipartite Graphs on 4 Vertices with at least 1 Perfect Matching 47 

Bipartite Graphs on 6 Vertices . . . . . . . . . . . . 61 

All Bipartite Perfect Matching Graphs on 6 Vertices 63 

IX 



CHAPTER 1 

LINEAR ALGEBRA, GRAPH THEORY, AND GROUP THEORY 

This chapter provides an introduction to the linear algebra, graph theory, and 

group theory concepts that are used in this dissertation. This introduction is not 

meant to be an exhaustive list of these concepts nor as an overview of these areas 

in general but rather is intended to cover the topics important to this dissertation. 

Notations and definitions for the linear algebra topics follow from those used 

in Lay [15]. The definitions and notation for graphs is based on what is used in 

Chartrand [5] and in Wilson [24]. For the group theory topics the notations and 

definitions are based on the Gallian [9] and Artin [2]. 

1.1 Matrices and Vectors 

A matrix is a rectangular array and will be written either as a capital letter 

such as M or between brackets, as seen in Matrix 1.1. The elements in the cells are 

usually numbers or variables but can be any object which allows itself to be added 

and multiplied. Matrices are often used to describe systems of linear equations or, 

as is shown in Section 1.2, the adjacency and incidence of a set of vertices from a 

graph. 

A linear equation in the variables Xl, X2, ... ,Xn is an equation that can be 

written in the form alXl +a2x2+.' .+anxn = ao where each ai is a number, possibly 

complex. A system of linear equations is a collection of one or more linear equations 
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in the same variables such as 

(1.1 ) 

where some of the ai,j might be zero. 

The system of linear equations in (1.1) can be written 

Matrix 1.1: Matrix form of (1.1) 

with the coefficients of the linear equations making up the entries of the matrix. 

The horizontals in a matrix are called rows and the verticals are called 

columns. The dimensions of a matrix are the number of rows and the number 

of columns typically written as m x n where m is the number of rows and n is 

the number of columns. The dimensions are always given with the number of rows 

before the number of columns. A matrix with the same number of rows as columns, 

an n x n matrix, called a square matrix, is of importance in this dissertation. 

If a matrix has only one row or only one column it is called a vector. A 1 x n 

matrix is called a row-vector and a m x 1 matrix is called a column-vector. Each 

row (or column) of a matrix can also be considered a row (or column) vector. To 

denote a vector the symbol 11 is used or when the vector is described explicitly it 

will be written between angle brackets, as (vo, VI, ... , Vn-I). 

A matrix can be multiplied by a number c, also called a scalar by multiplying 

each entry of the matrix by c. Two matrices can be added, as long as they have 

the same dimensions, by adding each entry in the first matrix to the corresponding 

entry in the second matrix. 

An entry of a matrix is referenced by the row and column in which the entries 
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lies. That is, for a matrix A the value in the ith row and jth column is denoted by 

A matrix is called symmetric if ai,j = aj,i for all values of i and j. The 

transpose of a matrix A is the matrix AT where the columns of A form the rows of 

AT and the rows of A form the columns of AT, as shown, for example, in Matrices 

1.2 and 1.3. If a matrix A is symmetric, then A = AT. 

Matrix 1.2: The Matrix A 

Matrix 1.3: The Matrix AT 

A linear combination of vectors V""t, V;, ... ,~ is a vector 11 that can be 

written as a sum of the vectors V""t through ~ where each v: has been multiplied 

by an appropriate constant: 11 = C1 X V""t + ... Cn X ~. A collection of vectors is 

called linearly independent or said to exhibit linear independence if anyone vector 

cannot be written as a linear combination of the other vectors. That is, a set of n 

vectors is linearly independent if the only coefficients that make the equation 

(1.2) 

true are all equal to zero. It should be noted that the right hand side of (1.2) is a 
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vector of all zeros, not the number zero. Vectors that are not linearly indenpendent 

are said to be linearly dependent. 

The set of all linear combinations of a set of vectors -:vr, ... ,V; is denoted 

Span {-:vr, ... , V;} and called the subset spanned by -:vr, ... , V;. That is to say that 

Span{-:vr, ... , V;} = Cl-:vr, ... , cpV; for all possible scalars Cl, ... , cpo 

If the vectors that make up the rows (or columns) of a square matrix are 

linearly independent the matrix is said to be nonsingluar. Otherwise the matrix is 

called singular. 

For a permutation a let sgn(a) = (-l)(k), where a = Tl .. . Tk for transposi-

tions Ti. Then, for a square matrix, A, the determinant of A is a scalar associated 

with the matrix given by the equation: 

n 

det(A) = L sgn (a) II ai,cr(i) 
crESn i=l 

The trace of a square matrix is the sum of the entries along the diagonal, given by 
n 

the equation Tr(A) = L ai,i where A is an n X n matrix. 
i=l 

A complex number a + bi can be thought of as a vector (a, b). Using this 

convention, the absolute value (or modulus) of a complex number la + bil is the 

norm of the vector (a, b) and thus la + bil = Ja2 + b2 . 

A vector space V is a set of vectors that satisfy the following axioms. For all 

11, 11, and W in V and 0: and f3 constants if V 

---+ 
1. contains the zero vector: 0 E V, 

2. is closed under vector addition: 11 + 11 E V, 

3 . t . t . ---+ ---+ ---+ ---+ . IS ranSI lVe: u + v = v + u, 

4. is associative: (11 + 11) + W = 11 + (11 + w), 
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5. contains additive inverses: for each 1t there exists ~ E V with 1t + (~) = 

-+ 
0, 

6. is closed under scalar multiplication: a 1t E V, 

7. has a scalar distributive property: a(1t + 11) = a1t + a11, 

8. has a vector distributive property: (a + (3) 1t = a 1t + (31t, and 

9. has a scalar associative property: a((31t) = (a(3) 1t, 

then V is a vector space. 

A subspace H of a vector space V is a subset of V that satisfies the following 

properties. For all 1t and 11 in H and a constant, if H 

-+ 
1. contains the zero vector: 0 E H. 

2. is closed under vector addition: 1t + 11 E H. 

3. is closed under scalar multiplication: a 1t E H. 

then H is a subspace. 

PROPOSITION 1.1. A subspace H of a vector space V is a vector space. 

PROPOSITION 1.2. If::u{, ... , V; are in a vector space V, then Span{::u{, ... , V;} 

is a vector space and a subspace of V. 

The proof of these two propositions follows by checking that the definitions are 

satisfied. 

The column space of a matrix is another subspace associated with a ma-

trix. The column space of an m x n matrix A, written as Col(A), is the set 

of all linear combinations of the columns of A. If A = [at, ~, ... , ~l, then 

Col(A) = Span{at,~, ... , ~}. 
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COROLLARY 1.1. Col(A) is a subspace. 

This follows directly from the definition of Col(A) and Proposition 1.2. 
-t -t 

Let H be a subspace of a vector space V and let B = {b1 , ... , bp } be a set 

of vectors in V. If 

1. B is a linearly independent set, and 

-t -t 

2. H = Span{b1 , ... , bp }, 

then B is a basis for H. 

The dimension of a vector space, subspace, or basis is the maximum number 

of linearly independent vectors in the space. The rank of a matrix A is the dimension 

of the column space Col(A). 

1.2 Graphs 

In mathematics a graph is a mathematical structure used to model relation-

ships between objects. A graph G(V, E), often abbreviated simply as G, is collection 

of two sets. The first set, known as the vertex set, is a non-empty, finite set of ele-

ments called vertices and is denoted by V(G) or, when it is clear what graph is of 

interest, simply as V. The second set, known as the edge set, is a finite, possibly 

empty, set of unordered pairs of vertices of the graph G called edges and is denoted 

by E(G). If the graph that is being discussed is clear, the edge set is often denoted 

simply as E. The cardinality of V( G) is the number of vertices in G and is called 

the order of G. This number is denoted by 1 V ( G) I. Tbe number of edges in a 

graph, denoted IE( G) I, is called the size of G. A graph with n vertices is said to 

be a graph on n vertices. 

An edge, an unordered pair of vertices, e = {u, v}, often simply denoted 

e = UV, signifies there exists a relationship between the vertices u and v. In this 
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Figure 1.1-A Multigraph 

case u is said to be adjacent to v or u and v are adjacent. In this case u and v are 

also said to be incident to the edge e or that u and v lie on the edge e. If there 

exists another edge f = vw then, since e and f are both incident to the vertex v, e 

and f are called incident edges. 

An edge from a vertex to itself is called a loop. Pair of vertices that appear 

two or more times in E(G) are multiple edges. A graph with loops or multiple 

edges is a multigraph. A graph that is not a multigraph is a simple graph. Unless 

otherwise specified, all graphs in this dissertation are simple graphs. 

A graph is commonly represented as a diagram with the vertices drawn as 

small circles and the edges drawn as line segments, or arcs, connecting the circles. 

As an example, let G be a multigraph on four vertices with V (G) = {VI, V2, V3, V4} 

and E(G) = {VIV2,VIV2,V2V3,V3V3,V3V4,VIV4} (see Figure 1.1). 

A complete graph is a graph such that for every u and v III V (G) with 

u #- v the edge uv exists in G. The complete graph on n vertices is denoted 

Kn. As an example, let G = K4 be the complete graph on four vertices with 

V(G) = {Vl,V2,V3,V4} then E(G) = {VIV2,VIV3,VIV4,V2V3,V2V4,V3V4} (Figure 1.2). 

Representing graphs using matrices is useful. Let G be a graph with V (G) = 

{Vl,V2, ... ,Vn } and E(G) = {el,e2, ... ,em }, the adjacency matrix A(G) = [aij] is 
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Figure 1.2 - The Complete Graph K4 

an n x n matrix where 

An adjacency matrix for a graph G is always symmetric. 

Incidence matrix representations are also useful. Let G be a graph with 

[bij 1 is an m x n matrix where 

if Vi is incident to ej, 

if Vi is not incident to ej. 

The graph shown in Figure 1.3 has Matrix 1.4 as its adjacency matrix and 

Matrix 1.5 as its incidence matrix. 

Figure 1.3: A Graph G 
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VI V2 V3 V4 

VI 0 1 1 1 

V2 1 0 1 0 

V3 1 1 0 0 

V4 1 0 0 0 

Matrix 1.4: The Adjacency Matrix of of the graph in Figure 1.3 

vIII 1 0 0 

V2 1 0 0 1 0 

V3 0 0 1 1 1 

V4 0 1 0 0 1 

Matrix 1.5: The Incidence Matrix of the graph in Figure 1.3 

A graph H is a subgraph ofG if V(H) ~ V(G) and E(H) ~ E(G). If H is a 

subgraph of G it is denoted H ~ G. An induced subgraph of a graph G is a graph 

H ~ G such that for every u and v in V(H) if uv E E(G), then uv E E(H). If U 

is some subset of V(G), then the subgraph induced by U is written as (U) (Figure 

1.4). 

Figure 1.4: A Graph G and an Induced Subgraph H 

A bipartite graph is a graph in which the vertices can be partitioned into 

two partite sets VI(G) and V2(G) with V(G) = VI(G) u V2(G) such that every edge 
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Figure 1.5 - A Bipartite Graph 

e E E(G) contains one vertex from VI and one vertex from V2. A bipartite graph is 

illustrated in Figure 1.5. 

A complete bipartite graph is a bipartite graph such that for every VI E Vl (G) 

and V2 E V2(G) the edge VIV2 exists in G. If IVI(G)I = sand IV2 (G)1 = t, then 

the complete bipartite graph on these vertices is denoted Ks,t. Let G = K 2,3 be 

a graph with partite sets VI = {UI,U2} and V2 = {VI,V2,V3}. Then V(G) 

VI(G) u V2(G) = {UI,U2,VI,V2,V3} and E(G) = {uvlu E Vl and V E V2} 

{UIVI,UIV2,UIV3,U2Vl,U2V2,U2V3} (Figure 1.6). 
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Figure 1.6: The Complete Bipartite Graph K 2,3 

Since elements in the same partite set of a bipartite matrix are not ad

jacent, the adjacency matrix of a bipartite graph has a large number of zeroes 

as entries. If G is a bipartite graph with partite sets V = {Vl,V2,oo.,Vn } and 

U = {Ul' U2, ... , urn} the adjacency matrix has a block matrix form as seen in 

Matrix 1.6. 

o o 

o o 

o o 

o o 

Matrix 1.6: The Adjacency Matrix of a Bipartite Graph 

Since the adjacency matrix for a graph is always symmetric, the matrix in 

Matrix 1.6 can be written in block form as in Matrix 1.7 where A is the matrix as 
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given in Matrix 1.8. The matrix A is called the reduced adjacency matrix of the 

bipartite graph. 

A= V 

U 

v u 

Matrix 1.7: The Block Adjacency Matrix of a Bipartite Graph 

A= 

Matrix 1.8: The Reduced Matrix A 

A matching is a set of edges, M s:::; E(G), in a graph G such that no two 

edges in M are incident. An example of a matching is given in Figure 1.7. Such a 

set is also called an independent set of edges. A vertex that is incident to an edge 

in the matching is said to be matched while a vertex not incident to an edge in the 

matching is called unmatched. The collection of matched vertices is also commonly 

said to be covered by the matching. 

There are three major types of matchings: 

1. maximal matchings 

2. maximum matchings 

3. perfect matchings. 

All three of these matchings are extremal matchings in the sense that any other 

matching can be extended to one of these three by the addition of edges that are 

not incident to an edge already in the matching. 
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Figure 1. 7 ~ A Matching 

A maximal matching M ~ E( G) is a matching of a graph G such that no 

other matching properly contains M. In a maximal matching all vertices not covered 

by the matching are only adjacent to vertices that are covered by the matching. An 

example of a maximal matching is given in Figure 1.8. 

Figure 1.8: A Maximal Matching 

A maximum matching M ~ E( G) is a matching of a graph G such that no 

other matching has more edges than M. A maximal matching is not necessarily 

a maximum matching; however, every maximum matching is a maximal matching. 

Figure 1.9 shows a maximum matching for the graph used in Figure 1.8. 
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Figure l.9: A Maximum Matching 

A perfect matching M ~ E( G) is a matching of a graph G such that every 

vertex in V (G) is covered by the matching. Since each edge is incident to exactly 

two vertices, it follows that only graphs with an even number of vertices can have 

a perfect matching. A perfect matching is necessarily maximal since it is also a 

maximum matching. An example of a perfect matching is given in Figure l.10. 

p 
o 

Figure 1.10: A Perfect Matching 

Lawler describes in [14] an augmenting path algorithm to find a perfect 

matching (if it exists) in a bipartite graph. The algorithm given by Lawler is 

equivalent to finding a maximum flow in a combinatorial optimization problem. 

The algorithm is performed by introducing two new vertices, a source vertex which 

is adjacent to all vertices in one partite set and a sink vertex which is adjacent to 
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all vertices in the other partite set. Numerous paths are found one at a time from 

the source vertex to the sink vertex such that no edge is used in more than one 

path. The result is a maximal matching, found by looking at the edges between 

the partite sets. The matching is perfect if the number of edges in the matching 

is exactly one half the number of vertices in the graph. This algorithm can find a 

perfect mathing in O(n2 ) time for a bipartite graph on 2n vertices. 

The Hopcroft-Karp algorithm, first introduced in [11], greatly improves the 

speed of the maximum flow algorithm, running in O(my'ri) time where n is the 

number of vertices in the graph and m is the number of edges. In very dense graphs, 

however, this is actually worse, with a time bound near O(n5 /
2

) but for random 

graphs the algorithm is nearly linear. The main improvement to this algorithm 

comes by finding not just one path from the source to the sink but by finding a 

maximal set of shortest paths. 

1.3 Groups 

A binary operation IS a function that takes exactly two inputs and gives 

exactly one output. The associative property states that the order in which a 

sequence of certain binary operations is performed does not change the final answer. 

That is, a + (b + c) = (a + b) + c. This property is also called associativity. An 

identity is an element such that when a binary operation is applied to the identity 

and any other element a the resulting answer is a. An inverse of an element a is 

another a-I such that when a binary operation is applied to a and its inverse, the 

resulting answer is the identity. 

Let G be a non-empty set of elements with a binary operation + on those 

elements such that for any two elements a, bEG a + b is also an element of G. G 

is a group if the following three properties hold: 
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1. The binary operation is associative such that for all a, b, c E G, a + (b + c) = 

(a + b) + c. 

2. There is an identity element 0 such that for a E G, a + 0 = a = 0 + a. 

3. Every element a E G has an inverse -a E G such that a+( -a) = 0 = (-a)+a. 

The order of a group G, IGI is the number of elements in the group. 

A group of special interest in this dissertation is the group Z~. The elements 

of Z~ are n-tuples with each entry being an integer between 0 and n - 1. The 

binary operation is componentwise addition where addition is carried out modulo 

n for each component. The order of Z~ is nn. 

A concise way to illustrate a group and the binary operation is through a 

Cayley table. A Cayley table describes the structure of the group by labeling each 

row and each column with an element of the group so that every element in the 

group labels exactly one row and exactly one column. Such an arrangment is similar 

to an elementary multiplication or addition table. For two elements a, bEG with 

binary operation + the entry in the ath row and bth column is the element of the 

group a + b. In general, the order of the elements is important. If the order of the 

elements in the binary operation is not important, that is, if a + b = b + a then the 

group is abelian and the operation is commutative. 

EXAMPLE 1.1. Using Z~ = {(O, 0), (0, I), (1,0), (I, I)} as an example of a group, 

some of the properties defined above are illustrated. In this group, IZ~ I = 22 = 4. 

Let + be the binary operation, then (0,1) + (I, 1) = (0 + 1,1 + 1) = (1,2) = (1,0). 

The Cayley table for Z~ (Table 1.1) illustrates the group is abelian. The identity of 

this group is (0,0) which the Cayley table verifies. Inverses of elements can be found 

by looking in a column of the Cayley table and finding the identity; the inverse is 

the label of the row in which the identity is found. 
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+ (0,0) (0,1) (1,0) (I, 1) 

(0,0) (0,0) (0,1) (1,0) (1, 1) 

(0,1) (0,1) (0,0) (I, 1) (1,0) 

(1,0) (1,0) (1, 1) (0,0) (0,1) 

(1, 1) (1, 1) (1,0) (0, 1) (0,0) 

Table 1.1: The Cayley Table of Z~ 

A group homomorphism cP is a function from a group G to a group G', where 

it is possible G = G' that satisfies one property. For a, bEG 

cPc(a + b) = cPc(a) + ¢c(b) 

That is, to say, cP preserves the operation of the group. 

A homomorphism cP : G --+ G' that takes every element of G to exactly 

one element of G' (one-to-one) such that every element of G' is mapped to (onto) 

is called a isomorphism. If cP : G --+ G' is an isomorphism between G and G', 

then G is isomorphic to G'. If G' = G then an isomorphism maps each element 

to another element in the same group and is called an automorphism. The set of 

automorphisms of a group G forms a group Aut(G), the automorphism group of G. 

Let F be a non-empty set of elements with two binary operations + and x 

on those elements such that for any two elements a, b E F a + b and a x b are also 

elements of F. F is a field if the following three properties hold: 

1. The + operation makes F into an abelian group F+ with identity O. 

2. The x operation makes F/{O} = F X into an abelian group with identity 1. 

3. There is a distributive law that says for all a, b, C E F, a x (b+c) = a x b+a x c. 
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PROPOSITION 1.3. Zn is a field. 

The proof of Proposition 1.3 can be found in [2] or any beginning algebra 

text. 

For any group G, the conjugacy class of an element 9 EGis cl (g) = 

{xgx-1Ix E G}. These subsets partition G. For an abelian group, since the el

ements commute, each element is its own conjugacy class. 
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CHAPTER 2 

MATROIDS, CHARACTERS, AND FOURIER TRANSFORMS 

This chapter is meant as an introduction to matroids, characters, represen

tations, and Fourier transforms. These topics are defined as they relate to material 

that will be covered in later chapters, providing background material that can be 

referenced then. Matroid theory generalizes many of the ideas from graph theory 

and linear algebra. Characters and representations are extensions of group theory. 

Fourier transforms are discussed only enough to describe results in this dissertation. 

A very brief final section dealing with computational complexity, based on [10], ends 

the chapter. 

Notations and definitions for matroids are based on Oxley [16] and Wilson 

[24]. Conventions used in Artin [2] and Serre [19] are used for representations and 

characters. The information concerning Fourier transforms uses the style established 

in Terras's text [20]. The section on the Combinatorial Nullstellensatz comes from 

the original paper by Alon [1]. 

2.1 Matroids 

A matroid is a combinatorial structure that generalize the ideas of linear 

independence (see Section 1.1). Many of the ideas and terminology used when 

working with matroids come from linear algebra and graph theory. Whitney was 

the first to describe matroids in [23] and is credited with giving them the name 

matroid. 
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Because matroids generalize many of the ideas of linear algebra as well as 

graph theory, they provide a rich connection between the two subjects. Matroids 

have been studied extensively by Whitney [23], Oxley [16], Rota and Crapo [17], 

and various others. Many important properties of matroids have been discovered 

with one of the most notable being matroid intersection, defined later in this section. 

Matroid intersection provides a quick, efficient method for finding perfect matchings 

in bipartite graphs as described in this dissertation. 

Let 0 denote the empty set, the set with no elements. A matroid M = (E, I) 

is a nonempty, finite set E and a collection subsets of E called I satisfying three 

properties: 

1.0EI 

2. If I E I and I' ~ I then l' E I 

3. If II and 12 are in I and 1111 < 112 1, then there is an element e of h - II such 

that {h U e} E I 

The set E, occassionally written M(E), is the ground set of M and the members of 

I, occassionally written I(M), are the independent sets of M. A subset of E not 

in I is called dependent. 

There are many equivalent ways to define matroids, often naming types of 

matroids based on the definition most convenient for the application. Two specific 

types of matroids are a vector matroid and a partition matroid. 

PROPOSITION 2.1. Let E be the set of columns of an m x n matrix A over a field. 

Let I be the set of subsets S of E such that S is linearly independent (as described 

in Section 1.1). Then (E, I) is a vector matroid. 

Proof. To prove the proposition it is necessary to show it satisfies the properties of 

the definition of a matroid. The properties are shown to be satisified in the order 
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they are given in the definition. The empty set is independent by definition, thus 

property 1 is satisfied. A subset of an independent set is independent satisfying 

property 2. To show property 3, assume hand 12 are independent sets with 1111 < 

Ihl. Let W be the subspace spanned by hUh. Then Ihl :::; dim(W) since 12 ~ W. 

Assume that for all e E 12 - h that II U e is dependent. Then it must be the 

case that W is contained in the span of h and so 1121 :::; dim(W) :::; 1111 < Ihl or 

Ihl < 112 1, a contradiction. Therefore, there must be some e E 12 - II such that 

hUe is indepedent. Property 3 is satisfied. 0 

PROPOSITION 2.2. Let E be a finite set that has been partitioned into m non

empty partitions. Let I be the set of subsets S of E such that no two elements in 

S are in the same partition of E. Then, (E, I) is a partition matroid. 

Proof. Proving the proposition is accomplished by showing the properties of a ma

troid given in the definition are satsified by going through the properties in order. 

The empty set clearly does not have two elements from the same partition of E, 

thus property 1 is satisfied. A subset of a set without two elements from the same 

partition of E does not have two elements from the same partitition, satisfying 

property 2. To show property 3, assume hand 12 are independent sets (that is, no 

two elements from the same partition of E) with 1111 < 1121. Since there are more 

elements in h than II and no two elements are from the same partition in h there 

must be at least one element e in h that is from a partition not represented in II. 

Then hUe does not have two elements in from the same partition of E, thus is 

independent. Property 3 is satisfied. 0 

When two matroids Ml and M2 share on a common ground set E, their 

intersection, called a matroid intersection, can be defined. The set E is the ground 

set common to Ml and M 2 . The independent sets I are the subsets of E that are 

independent in both Ml and M2. That is, I(M) = I(Mr) n I(M2). In general, 
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the result from a matroid intersection is not, itself, a matroid, often failing to 

satisfy property 3. The idea of matroid intersection is important in combinatorial 

optimization with one application being to find a maximum size of a matching in a 

bipartite graph. 

2.2 Group Representations and Characters 

This dissertation concerns representations of finite abelian groups isomorphic 

to Z~. Group representations theory studies properties of groups (as defined in 

Section 1.3) through their representations as linear transformations of vector spaces. 

This allows group theory problems to be reduced to problems in linear algebra. 

Linear algebra problems tend to be more tractable. 

Frobenius initially developed representations and characters in [8]. Further 

work was done by Brauer in [4] and [3]. Group representations allow abstract groups 

to be described using vector spaces. Group elements can be represented as matrices 

allowing the group operation to be matrix multiplication. By changing the group 

operation to matrix mutliplication, studying groups is made easier because the op

eration is consistent over many groups. Characters of a representation provide much 

of the same information as the representation, but in a condensed form allowing for 

easier study of the structural properties of groups. 

For finite groups, character values are always sums of roots of unity. This 

property allows an easy connection to using matroid intersection and the Com

binatorial Nullstellensatz to find maximum size matchings in bipartite graphs, as 

explained later in this dissertation. 

A representation of a group is a homomorphism from the group to the auto

morphism group of a vector space. Let GL(V) be the group of isomorphisms of a 

vector space V onto itself. This group is isomorphic to the group of invertible n x n 
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matrices where n is the dimension of V. A representation of a group G on a vector 

space V over a field K is a homomorphism from G to G L(V) given by the map: 

p: G -----t GL(V) 

for all gl, g2 E G. In this case V is called the representation space and the dimension 

of V is the dimension of the representation. Often, the notation Pg is used for p(g), 

meaning the representation at the element g. 

Let p be a representation of a group G on a vector space V with W a subspace 

of V. If gw E W for all w E Wand all 9 E G then W is G-invariant. That is, the 

operation p acting on V is restricted to an operation on W. If a representation p of 

a group G on a vector space V does not have a proper G-invariant subspace then p 

is i'T"T'educible. 

PROPOSITION 2.3. Let G be a group of order n. There are the same number 

of irreducible representations as there are conjugacy classes in G. Furthermore 

if di is the dimension of the irreducible representation Pi and there are r such 

. d2 d2 d2 representatIOns, n = 1 + 2 + ... + r· 

The proof of this proposition can be found in [2] or [19]. 

PROPOSITION 2.4. If G is a finite abelian group of order n, then every irreducible 

representation of G is one-dimensional. 

Proof. Since G is abelian every element is its own conjugacy class, thus the number 

of conjugacy classes is n. By Proposition 2.3 there are n irreducible representations. 

Since n = di + d§ + ... + d; and di '" 0 it must be that di = 1 for all i. o 

Let p : G -----t G L(V) be a representation of a finite group G over the vector 

space V. For each 9 E G, let 
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The function XP is called the character of the representation p. The name character 

emphasizes the fact that Xp characterizes the representation p. A character is defined 

for a representation at an element. 

If the representation is being taken of the group G then the set of irreducible 

characters of G is the set G, called the dual. For an abelian group, G is isomorphic 
~ 

to G and G is a group. In particular, the irreducible characters are isomorphic to 

the elements of the group. 

EXAMPLE 2.1. Let en = {I, rl, r2, ... ,rn- l
} be the cyclic group of order n, where 

rn = 1. This is an abelian group under multiplication of the elements. It is isomor-

phic to the group Zn under the map ¢ : en -+ Zn given by ¢(rn) = n. According 

to Proposition 2.4 the irreducible representations en are all of degree 1, thus there 

are n irreducible representations. Let p(rk) = k be the representations and let 

w = e2ni/n . The irreducible characters Xo, Xl, ... ,Xn-l are given by 

EXAMPLE 2.2. For n = 4 it is easier to represent the irreducible characters in a 

character table as shown in Table 2.1 where the columns are labeled by the elements 

and the rows are labeled by the characters at irreducible representations. The entry 

in the table is the character at the irreducible representation of the row evaluated 

at the element of the column. 

EXAMPLE 2.3. The groups Z~ are used in the results in this dissertation. The 

character table for the group Z~ is given in Table 2.2. 

Even though IZ41 = IZ~ I, the groups are not isomorphic. This nonisomor-

phism becomes more clear by looking at the character tables; the tables differ. 
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1 r r2 r3 

Xo 1 1 1 1 

Xl 1 W w2 w3 

X2 1 w2 1 w2 

X3 1 w3 w2 w 

Table 2.1 - The Character Table of Z4 

1 r r2 r 3 

Xo 1 1 1 1 

Xl 1 1 w W 

X2 1 w 1 W 

X3 1 w w 1 

Table 2.2-The Character Table of Z~. 

2.3 Fourier Transforms on Finite Abelian Groups 

In a finite group G the Fourier transform uses the matrix entries of irreducible 

representations, as described in Section 2.2. That is, p : G ----+ U(n) such that 

p(gh) = p(g)p(h), where U(n) is the group of unitary n x n matrices. Since the 

only groups of interest in this dissertation are abelian groups, the representations 

are one-dimensional thus p : G ----+ Co 

The vector space L2 (G) for a finite group G is defined by L2 (G) = {f : G ----+ 

C} = the set of all complex-valued functions on G. 

The discrete Fourier transform (DFT) of f E L2( G) where G is abelian is 

Ff(xp) = !(Xp) = L f(g)xp(g) = (j, Xp), 
gEG 

for Xp E G. 

25 



The Fourier matrix of the discrete Fourier transform of order n, Fn is seen 

in Matrix 2.1, where e = w-k = e-27ri /n . 

1 1 

1 e 
1 

Fn= - 1 e 
Vn 

1 

e 
~4 

1 ~n-l e(n-l) 

Matrix 2.1: Fn 

1 

~n-l 

e(n-l) 

~(n-l)(n-l) 

Fn is symmetric and invertible. The inverse of Fn is its conjugate transpose, denoted 

F~ and is easily obtained from Fn by replacing ~ with w. 

The Vandermonde matrix V(z) = V(zo, Zl, ... , zn-d is defined as in Matrix 

2.2. 

1 1 1 1 

Zo 

Matrix 2.2: Vandermonde Matrix 

The Fourier matrix can be written as Fn = n-l/2V(~O,e, ... ,~n-l) by making the 

substitutions into the Vandermonde matrix as necessary. 

The Vandermonde identity which gives rise to the Vandermonde matrix is 

n-l 

V(x) = V(xo, Xl, .. ·, Xn-l) = IT (Xj - Xi) = L sign('iT) IT x7(i), (2.1) 
O::;i<j<n i=O 

where Sn is the set of permutations. See [20] for a proof of this identity. 
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2.4 Combinatorial Nullstellensatz 

In [ll Alon proved the following two thereoms, which when taken together, 

form the Combinatorial Nullstellensatz. 

THEOREM 2.1. Let F be an arbitrary field, and let 1 = 1(Xl,"" xn) be a 

polynomial in F[Xl,"" xnl. Let SI,"" Sn be nonempty subsets of F and de

fine gi (Xi) = II (Xi - s). If f vanishes over all the common zeros of gl, ... , gn 
SESi 

(that is, if 1(SI," ., sn) = 0 for all Si E Si), then there are polynomials hI"'" hn E 

F[Xl' ... ,xnl satisfying deg(hi) S; deg(j) - deg(gi) so that 

n 

1 = 'L.,higi. 
i=1 

Moreover, if 1, gl,"" gn lie in R[Xl, .. " xnl for some subring R of F then there are 

polynomials hi E R[Xl' ... 'Xnl as above. 

THEOREM 2.2. Let F be an arbitrary field, and let f = f(Xl,"" xn) be a poly-
n 

nomial in F[Xl,' .. , xnl. Suppose the degree deg(j) of f is L ti, where each ti is a 
i=1 

n 

nonnegative integer, and suppose the coefficient of II x~' in f is nonzero. Then, if 
i=1 

SI, ... , Sn are subsets of F with ISil > t i, there are 81 E SI,'" 8 n E Sn so that 

In short, these theorems imply that by constructing an appropriate non-zero poly-

nomial the existence of a certain combinitorial structure can be tested by looking 

at the evaluation of the polynomial. The Combinatorial Nullstellensatz is related 

to the discrete Fourier transform over a finite group. Exploring this relationship is 

the bulk of Chapter 3. 

The Combinatorial Nullstellensatz has been employed successfully in a vari-

ety of circumstances, but there is still no clear understanding of which circumstances 

are favorable to its application despite the many problems that are apparently prime 
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candidates. One of the main purposes of this dissertation is to show how it can be 

applied to the problem of detecting perfect matchings in bipartite graphs. Other 

problems for which it seems aptly suited include: the problem of showing that every 

tree has a fJ-valuation (see [12]), showing that every odd order Latin square has a 

Latin transversal (see [13]), and proving the existence of a Hamiltonian cycle in 

middle levels of the boolean lattice, just to name a few of the highly symmetric, 

famous and still open problems. 

In each of these problems it is straightforward to construct polynomials that 

vanish completely on some appropriate domain if and only if the desired combina

torial object does not exist. The main source of our frustration is the realization 

that the polynomials in question are presented in compact, factored form; determin

ing whether a nonzero coefficient appears in its expansion (modulo an appropriate 

ideal) is a formidable problem (in general, this problem is N P-hard, see Section 

2.5). Most successful applications of the Nullstellensatz technique so far, when ap

plied to problems with more than one instance of each size, have been to problems 

with the special property that all instances of a given size determine a collection 

of polynomials that have a common monomial with a nonzero coefficient; thus, 

proving the monomial is nonzero for one canonical instance shows it is nonzero for 

others. Many natural problem formulations do not share this property. The natural 

formulation of the p-valuations-for-trees problem, for example, does not have this 

property. Similarly, the natural formulation of the perfect-matching-in-a-bipartite 

graph problem also does not, as shown in this dissertation. Because this latter prob

lem is easy from a complexity point of view, one would expect a polynomial-time 

algorithm to find a nonzero coefficient in the expansion of the corresponding en

coding polynomial, if such a coefficient exists. The matroid-intersection algorithm 

suffices for this purpose. 

We hope that further investigation will provide a sharpened form of the Com-
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binatorial Nullstellensatz, perhaps incorporating elements ofthe matroid-intersection 

algorithm. It seems very likely a nice formulation along these lines awaits discov

ery. This dissertation demonstrates that such a formulation applies in the perfect

matching-in-a-bipartite graph problem. Formulating and solving this problem in 

the nullsellensatz fashion has shed some light on the relation between the number 

of perfect matchings and the number of maximum independent sets in the inter

section of certain matroids via the uncertainty principle, as formulated through the 

Fourier transform on a finite group. 

2.5 Computational Complexity 

One of the fundamental questions in the theory of computational complexity 

is whether P = N P or P f N P. In order to understand this statement it is 

necessary to know what P and N P mean. A decision problem is a problem for 

which the answer is either "yes" or "no," depending on the inputs. Traditional 

examples include asking whether a number n is prime. 

A problem is classified as being in P, standing for "polynomial" time, if it is 

a decision problem that can be solved by a deterministic Turing machine in a poly

nomial amount of time. Problems belonging to P are often said to be "tractable" 

problems. A problem is classified as being in N P, standing for "nondeterministic 

polynomial" time, if it is a decision problem and a positive answer can be veri

fied in polynomial time by a deterministic Turing machine. An alternate definition 

is a problem is classified as being N P if it is solvable in polynomial time by a 

non-deterministic Turing machine. 

If a problem can be solved m polynomial time by a deterministic Turing 

machine then such a solution can be checked in polynomial time by a deterministic 

Turing machine. Thus, P ~ N P. However, N P contains additional problems, 
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especially problems classified as NP-complete. A problem is classified as being N P

complete if the problem is in N P, thus a solution can be verified in polynomial time, 

and the problem is equivalent to all other problems that are in N P. An important 

note is that just because a problem is classified as N P does not necessarily mean a 

polynomial time algorithm for finding the solution cannot exist; it simply says that 

no such algorithm has been discovered. Discovering one would solve the question 

of whether P = N P in the affirmative. 

Problems considered #P, pronounced "sharp P" or "number P," are differ

ent sorts of problems. Problems in this complexity class are not longer decision 

problems. While P and N P problems ask whether something exists or not, or 

whether something is true or not, #P problems ask the question "how many?" A 

#P problem is as difficult as a corresponding N P problem; counting the number 

of positive solutions is at least as difficult as finding whether there is a positive 

solution. The complexity class #P was first introduced by Valiant in [21]. Similar 

to NP-complete, a problem is considered #P-complete if the problem is in #P and 

the problem is equivalent to all other problems in #P. 
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CHAPTER 3 

PERFECT MATCHINGS IN BIPARTITE GRAPHS 

Perfect matchings in bipartite graphs is a classic area of study in discrete 

mathematics. Hall's Marriage Theorem, one of the most widely recognized applica

tions of perfect matchings in bipartite graphs, is a very common topic for courses 

and is included in [24], an undergraduate text on graph theory. Algorithms to 

find such a matching can be found in [14]. The Combinatorial Nullstellensatz is a 

method to detect the existence of combinatorial structures. As stated in Section 2.4 

it has been applied in a variety of circumstances already. However, there are many 

problems for which the Combinatorial Nullstellensatz seems ideally suited but has 

not yet been applied. Finding perfect matchings in bipartite graphs seems ideal for 

applying the method. 

There are other known bounds for the number of perfect matchings in certain 

classes of bipartite graphs, such as the bound proven by Voorhoeve in [22] for cubic 

bipartite graphs which was improved by Schrijver in [18] for k-regular bipartite 

graphs on 2n vertices. The bound in this dissertation is different because it works 

for all bipartite graphs that have at least one perfect matching. However, finding 

a bound is not the main focus of this dissertation. In proving the main result of 

this section it shows how the Combinatorial Nullstellensatz and the discrete Fourier 

transform can be used together to solve problems for which the Combinatorial 

N ullstellesatz seems applicable, such as bounding the number of perfect matchings 

in bipartite graphs. The hope is that similar methods will work for other problems 

as presented in the last chapter. 
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Consider an n x n circular lock consisting of n equal-sized wheels placed one 

on top of the other. Each wheel has n cells of same size, filled with a complex 

number. Each wheel rotates independently, both clockwise and counter-clockwise, 

but only in discrete intervals corresponding to the cell sizes. After rotations are 

complete, cells align forming columns. A setting of the lock is such a rotation of 

the wheels. Because a setting of the lock means that the cells align, each setting 

determines (up to a rotation of all wheels by the same number of cells) an n x n 

matrix whose i, jth entry is simply the entry of the jth cell of wheel i (Figure 3.1). 

~ :;; 

-1 1 a a . 
1 0 0 -z 

1 1 0 a . 
1 0 0 't 

Figure 3.1: A Setting on a Circular Lock with the Corresponding Matrix 

A circular lock is unlocked or opens if its wheels are placed into a setting 

in which the corresponding matrix has nonzero determinant; otherwise, the lock 

remains closed. In this chapter, we explore what settings open a lock, if any at all 

do, by considering a polynomial designed to detect perfect matchings in bipartite 

graphs and its Fourier transform which detects maximum cardinality independent 

sets in the intersection of two specific types of matroids. Only circular locks arising 

from bipartite graphs, whose rows are coefficients of polynomials with zeros that 

are all nth roots of unity are considered. 
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3.1 Circular Locks from Bipartite Graphs 

This section will provide some background to see how the circular lock idea 

corresponds to finding perfect matchings in bipartite graphs. The Combinatorial 

Nullstellensatz, as it applies, is described first, and then two results are proven. The 

first result shows that the polynomial derived from the graph shows what perfect 

matchings exist in the graph, and the second (and main) result shows that the 

settings which open the circular lock correspond to the perfect matchings in the 

graph that gives rise to the lock. Each result is followed by examples. 

Let the symbol C denote the field of complex numbers and w = e27ri
/
n where 

i = yCI. For a positive integer n, let On = {WO, ... ,wn- 1
} be the set of nth roots 

of unity. 

Let G be a bipartite graph with vertex set AUB, where A = {O, 1, ... ,n -1} 

and B = On, and edge set E ~ {{a, b} : a E A, bE B}. From Section 1.2, a perfect 

matching is a matching in which every vertex of the graph is contained in an edge 

of the matching. The existence of a perfect matching has been well studied and 

there are many results. Hall's Theorem, as seen in [24J and others, is an example 

of a classical characterization of whether a bipartite graph has a perfect matching. 

To use the Combinatorial Nullstellensatz it is necessary to have an appropri-

ate polynomial. For i = 0,1, ... ,n - 1, introduce a variable Xi. The variable Xi is 

used to create a polynomial 

1 if Xi is adjacent to all vertices in B 

IT (Xi - wj
) otherwise. 

{i,w J }9!E 

For notational purposes, 9i(Xi) 1 if Xi IS adjacent to all vertices in B. The 

polynomial 

9i(Xi) = IT (Xi - wj
) 

{i,w j }9!E 
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is used throughout the dissertation. Also, as a notational convention, for any a E 
n-l 

'77n Cl' IT Cl'i 
fUn' X means Xi' 

i=O 

The Vandermonde polynomial V(x), along with the g/s of Equation (3.1), is 

used to construct the appropriate polynomial. 

PROPOSITION 3.1. There exists a perfect matching in G if and only if the poly-

nomial 
n-l 

fG(x) = fG(xo, Xl,···, Xn-l) = V(X) II gi(Xi) (3.2) 
i=O 

is nonzero for some input from O~. 

Proof. Assume a = (ao, al, ... , an-d E O~ describes a perfect matching; that is, 

i E A is adjacent to vertex ai E B = On. Because a is a perfect matching, the ai's 

are distinct. We must show that fG is nonzero at a. It is important to note that fG 

is a product of monomials and that the product of two or more nonzero elements is 

nonzero. 

Because of the the Vandermonde identity V(ao, al,'" an-d = IT (aj - ai) 
O"'Si<j<n 

and the fact that the ai's are distinct and nonzero, this factor is nonzero. Consider 

the gi factors. If vertex i E A is adjacent to all vertices in B, then gi = 1 and is 

nonzero. If vertex i is not adjacent to some vertex in B then gi is as described in 

Equation (3.1). By assumption, a is a perfect matching, thus there exists an edge 

from vertex i to vertex ai = wk, for some k. Thus the term (Xi - wk ) does not 

appear in gi. When substituting ai for Xi in gi the terms have the form (w k 
- wj ) 

with k oF j. These values are nonzero. Thus each gi is nonzero. Therefore, fG is 

a product of nonzero terms when evaluated at a perfect matching. Thus if a is a 

perfect matching, then f(a) oF O. 

Assume fG({3) oF 0 for some {3 = ({3o, (3l,'" (3n-l). As before, it is important 

to note that fG is a product of factors and that if anyone factor is zero, then the 

whole evaluation is zero. Because fG({3) oF 0, it must be the case that no factor in 
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fa is zero. In the Vandermonde factor V(,6), if no term is zero, then the difference 

between any pair f3i and f3j must be nonzero, so f3i i- f3j, for i i- j. For each 9i (13) 

to be nonzero means that each term is nonzero. The only way to have a zero term 

in a 9i is to attempt to evaluate at an edge that does not exist in the neighborhood 

of vertex i. Therefore, there must be an edge from vertex i to vertex f3i = wk for 

some k. Thus, 13 describes a set of distinct vertices in B in which every vertex in A 

is adjacent to exactly one vertex B; 13 is a perfect matching when f(f3) i- O. D 

Each polynomial 9i can be expanded into a sums of powers of Xi as 
n-l 

9i(Xi) = IT (Xi - w
j
) = L, lijx{. 

{i,w j }ltE j=O 

Let La = [lij] be the n x n matrix of the coefficients of the 9/S; that is, La is the 

circular lock derived from the graph G. Likewise, G L is the bipartite graph derived 

from a circular lock L. For any 0: E Z~, L[o:] is the matrix obtained from L by 

rotating row i to the left O:i units. Rotating the lock gives many different matrices, 

all describing the same graph. Therefore, the canonical circular lock is La = [lij] 

without any rotations. 

EXAMPLE 3.1. Let G be the bipartite graph given in Figure 3.2. The reduced 

---adjacency matrix of G, Aa , is Matrix 3.1. The polynomial fa is computed as 

90(Xo) 

91 (Xl) 

92(X2) 

fa(x) 

(Xl - XO)(X2 - XO)(X2 - xd 

(Xl - XO)(X2 - XO)(X2 - xd(xo - W2)(XI - WO) 

This gives a lock matrix La as in Matrix 3.2. A rotation of [1,2,2] is Matrix 3.3. 

The graph G has 3 perfect matchings given by 
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Figure 3.2: The Bipartite Graph for Example 3.1 

Wo WI W
2 

---- 0 1 1 0 
Ac = 

1 0 1 1 

2 1 1 1 

Matrix 3.1: The Reduced Adjacency Matrix Ac for Example 3.1 

Lc = -1 1 0 

100 

Matrix 3.2: The Coefficient Matrix Lc for Example 3.1 

Recall from Proposition 3.1 that there is a perfect matching in a graph G 

if and only if 1c is non-zero for some input. Finding the inputs for which 1c is 

nonzero is equivalent to finding the inputs for which it is zero. Let In be the ideal 

in C[XO,XI, ... ,Xn-I], the polynomials that vanish on all inputs from the nth roots 

of unity; that is, 1 E In if and only if 1(0:) = 0 for all 0: E n~. Kezdy and Snevily 
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Lc[1,2,1]= 0 -1 1 

o 1 0 

Matrix 3.3: The Rotated Coefficient Matrix Lc[1, 2,1] for Example 3.1 

in [13] showed that I = (xi - 1)~:Ol and so f(o:) = 0 over all roots of unity if and 

only if f(o:) E (xi - 1)~:Ol. 

THEOREM 3.1. A circular lock Lc opens if and only if G L has a perfect matching. 

Proof. Recall that there exists a perfect matching in G = G L if and only if the 

polynomial 

n-l 

fc(x) = V(x) II gi(Xi) (3.3) 
i=O 

is nonzero for some input from O~. Now consider the polynomial 

f(x) = fc(x) modulo In. 

We first prove that 

f(x) = L det(L[o:])xa (3.4) 
aEZg 

To prove Equation (3.4), it suffices to prove that, for all 0: E Z~, the constant 

coefficient of x-a f(x) modulo In is det(L[o:]) (all exponents are reduced modulo n). 

Now the computation 

x-a f(x) = V(x) (g Xi a,gi(Xi)) modulo In (3.5) 

shows that multiplying f(x) by x-a has the effect (modulo In) of shifting, for all i, 

the coefficients of each gi(Xi) to the left by O:i units in the matrix L. To obtain the 

constant coefficient of x-af(x), observe that the Vandermonde polynomial expands 
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into L:7rESn sign( 1f) n~==-ol x;(i) so, in order to obtain a constant coefficient, a mono

mial must be chosen from each of the factors X;aigi(Xi) that appear in Equation 

(3.5) in such a way that no two monomials have the same exponent; that is, we 

must select a transversal in the matrix L[o:]. This, along with the weightings of per

mutations by signs that appears in the expansion of the Vandermonde polynomial, 

means that the constant coefficient of x-a f(x) modulo 'In is det(L[o:]). 

Because f(x) has the form of Equation (3.3), it is clear that f(o:) #- 0, for 

some 0: E S1~, if and only if G L has a perfect matching. On the other hand, form 3.4 

of f(x) shows that f of:. ° modulo 'In, if and only if det(L[o:]) #- 0, for some 0: E Z~; 

the theorem follows. 0 

EXAMPLE 3.2. The graph from Example 3.1 has a perfect matching. Thus, Lc 

from that example has a setting that opens the lock. In fact, the rotation L[l, 2,1] 

as shown in Matrix 3.3 is one such setting. There are other settings which open the 

lock as well. 

3.2 Matroid Intersection 

The previous section showed that finding a setting to unlock the lock corre

sponds to finding a perfect matching in the graph. This section shows that a setting 

that opens the lock can be found efficiently by using matroid intersection. 

Assume a graph has a perfect matching, which can be checked efficiently 

using the Hopcroft-Karp algorithm (in [11]), for example. By Theorem 3.1 a lock 

Lc can be unlocked; however, the theorem does not give an efficient method to 

find a setting that opens the lock. Knowing that a setting exists to open the lock 

is nice but being able to find such a setting efficiently is of greater value. Simply 

knowing that one exists without being able to find it does not tell you how to 

open the lock. The Nullstellensatz method relies on finding a non-zero coefficient 
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which corresponds to the setting of the lock. In Section 2.1 two matroids were 

discussed, the vector matroid and the partition matroid. The intersection of these 

two matroids forms the focus of the proof of the next theorem. 

THEOREM 3.2. Let G(A U B; E) be a bipartite graph and fo the corresponding 

polynomial as in Equation (3.2). The settings that open the circular lock Lo corre

spond to the nonzero coefficients in the polynomial fo. Furthermore, such a setting, 

if it exists, can be found in polynomial time via matroid intersection. 

PlOOf. Consider a circular lock L = Lo , and its corresponding polynomial fo(x) 

as in Equation (3.3). As in the proof of Theorem 3.1 it suffices to show it is true 

for f(x) modulo an appropriate ideal as in Equation (3.4). The coefficients of f(x) 

correspond to determinants arising from rotations of the rows of L. Let 11, ... , In 

be the row vectors of L. Define Ej as the set of the n vectors obtained from Ij 

by cyclically permuting coordinates. Now define two matroids, Ml and M2 on the 

common ground set E = Uj=l Ej . The matroid Ml is the vector matroid on E in 

which a set of elements is independent if and only if they are linearly independent 

(over C). The matroid M2 is the partition matroid on E in which a set of elements 

8 ~ E is independent if and only if 18 n Ejl ::; 1, for all j = 1, ... , n. Now there 

is some a E Z~ such that det(L[a]) =I- 0 if and only if there exists a common 

independent set in Ml and M2 with cardinality n. Detecting the existence of such 

an independent set (and constructing such a set, if it exists) can be accomplished 

in polynomial time by Edmond's Matroid Intersection Algorithm, see [7]. D 

This theorem shows the connection between the coefficients of f (x) that 

correspond to the cardinality of n sets in the intersection of two matroids and the 

valuations of f (x) over D~ that correspond to perfect matchings in G L. 
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3.3 Fourier Transforms on Bipartite Graphs 

A few techinical calculations need to be carried out to further the goal of this 

chapter. Most of these calculations involve the discrete Fourier transform and thus 

this section will manipulate the transform and provide a result necessary to bound 
n-l 

the number of perfect matchings. Let p(z) = L ajzj be a polynomial of degree at 
j=O 

most n - 1. Linear algebra shows that p(z) is determined by its value at n distinct 

values, as we now review. If these n values are the roots of unity, then 

n 1/ 2 F* n (3.6) 

Recall that Fn x F~ = 1. Multiplying both sides of Equation (3.6) by n-1/2 Fn on 

the left transforms it into 

aO p(WO) 

al 
= n- 1

/
2 Fn 

p(w 1
) 

(3.7) 

an-l p(wn- 1 

Let G(AUB; E) be a bipartite graph where A = {O, 1, ... , n-1} and B = Dn. 

Recall Equation (3.2) 

n-l 
!e(Xo, Xl,· .. , xn-d = V(x) IT 9i(Xi). 

i=O 

Using the Vandermonde identity, !e can be written as 

n-l 

!e(xo, Xl,·'" Xn-l) = IT (Xj - Xi) IT 9i(Xi). 
05.i<j<n i=O 

Recall from Section 2.3 that the Fourier transform of !e : D~ --+ C is 

f(xp) = L !(O:)Xp(o:), 
aESl;:t 
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where 

n~l 

Xp(a) = IT a~r(i) 
i=O 

---and Xp is an element of the dual O~, which is isomorphic to O~ as O~ is abelian. 

Let a = {aI, a2, ... ,an~l} and Xp = {Xl, X2, ... ,Xn} with Xi = Wr(i). 

Consider the expansion of the Fourier transform: 

j(x) = I: f(a)x(a) 

I: det(V(al, ... , an)) (IT gi(ai)) (Ii a;r(i)) 
<l'E!1;:: t=O t=O 

I: det(V(w7i
\ ••• ,w7rn)) (IT (w7ri)~r(i) gi(W7ri )) 

7rESn t=O 

I: det(V(~o) ... )C~l). P7r) (IT(W7ri)~r(i)gi(W7ri)) 
7rESn 1=0 

~ dct(n' /2 F) det(P,) (g (w") "li)g,(W")) 

nn/2 det(F) I: det(P7r ) (Ii (w7ri)~r(i) gi(W 7r')) . 
7rESn t=O 

Because the remaining sum is a determinant, 

det 

(WO) ~r(O) go (WO) 

(WI )~r(O)go(wl) 

(w 2) ~r(O) go(w2) 

(wn- l )-r(O) go(wn-l) 
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(WO) ~r(n~l) gn~l (wO) 

(WI) -r(n~1) gn-l (WI) 

(w 2)-r(n-l) gn-l (w 2) 

( n-l)-r(n-l) (n-l) W gn-l W 



and because det(AB) = det(A) det(B), in particular, F can be factored out, 

nn/2 det F. 

(Wo) -reO) 90 (wO) 

(WI )-r(0)90(W I ) 

(w2 )-r(0) 90(W 2) 

From (3.7) the main observation follows: 

J(x) = nn Idet(L[r(i) + 1])1 

(W O) -r(n-I) 9n-l (WO) 

(WI )-r(n-l) 9n-l (WI) 

(W 2)-r(n-l) 9n-l (W 2 ) 

( n-l)-r(n-l) (n-l) W 9n-l W 

(3.8) 

where L is the n x n matrix defined in Section 3.1 and L[,6] is L with the rows 

rotated by ,6. 

This result answers the question of how many settings open the lock. The 
~ 

values for which the Fourier transform of f is nonzero, the support of f, correspond 

to the settings that open the lock L; that is, finding one is equivalent to finding 

the other. This equivalence is necessary to find a bound on the number of perfect 

matchings in a bipartite graph using the uncertainity principle, which is the focus 

of the next section. 

3.4 Bounds from the Uncertainity Principle 

In this section a bound for the number of perfect matchings is found. The 

bound found in this method is a good bound in the sense that the bound is acheived 

for certain classes of bipartite graphs such as the complete bipartite graphs. Bound-

ing the number of perfect matchings in a bipartite graph also has other uses. Note 

that computing the number of perfect matchings in a bipartite graph is a #P-

complete problem(see Section 2.5), as shown by Valiant in [21], and is equivalent to 

a permanent computation. 
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The permanent of a matrix A = [ai,j] is defined as 

n 

perm(A) = L II ai,O"(i)· 

O"ESn i=l 

Therefore, finding a bound on the number of perfect matchings provides a bound 

on the permanent. A bound on the number of perfect matchings (and thus the 

permanent of the matrix) can be found using the uncertainity principle. 

The uncertainity principle states that a nonzero polynomial and its transform 

cannot both be highly concentrated. In the case of Fourier analysis over a finite 

group, Donoho and Stark in [6] proved that for G a finite, abelian group and I a 

nonzero polynomial I : G --7 C 

supp(f)supp(j) :2: IGI (3.9) 

where supp(f) is the support of the polynomial I, or the values for which I has a 

nonzero evaluation. An example of this principle ends this section. In the previous 

section the equivalence between the support of the transform of I and the settings 

that open the lock L was established. The Donoho-Stark version of the uncertainity 

principle can be applied as in the following theorem: 

THEOREM 3.3. Let Le be a circular lock derived from a bipartite graph G. If 

G has at least one perfect matching, then the product of the number of perfect 

matchings in G times the number of rotations that open the lock Le is at least nn. 

--Proof. Let Ie be the matching polynomial of the graph G and Ie be the transform 

of Ie. From Proposition 3.1 

supp(fe) = number of perfect matchings of G, 

while Equation (3.8) shows that 

supp(!c) = number of rotations that open L. 
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By Equation (3.9) it follows that the number of perfect matchings of G times 

the number of rotations that open L is greater than or equal to IO~1 = nn and the 

result follows. D 

Let m(G) = supp(fe), the number of perfect matchings in the bipartite 

graph G, and r(G) = supp(k), the number of rotations that open the lock Le. 

The previous theorem states that m(G)r(G) ~ nn as long as m(G) #- 0. 

EXAMPLE 3.3. Let G be a bipartite graph such that the edge set of G is a perfect 

matching, then m(G) = 1 and r(G) = nn. Theorem 3.3 holds since m(G)r(G) = 

1 x n n ~ n n = 1 O~ I. 

EXAMPLE 3.4. Let G be the graph given in Figure 3.2. In Example 3.1 it was 
shown that m( G) = 3. It can be verified that the rotations that unlock the lock are 

{(O, 0, 2), (0, 1,0), (0, 1, 1), (0, 1,2), (0,2,0), (0,2,1), (0, 2, 2), 

(1,1,0), (1, 2,1), (1,2,2), (1,2,0), (1,0,1), (1,0,2), (1,0,0), 

(2,2,1), (2,0,2), (2,0,0), (2,0,1), (2, 1,2), (2, 1,0), (2, 1, 1)} 

so that r(G) = 21. In this case m(G)r(G) = 3 x 21 = 63 ~ 27 = 33 = IO~1 and the 

theorem holds. 

The bound found in Theorem 3.3 is a sharp bound for some cases, as proven 

in the next theorem. 

THEOREM 3.4. For a bipartite graph G(A U B, E) on 2n vertices with edge set 

exactly a perfect matching, the bound from Theorem 3.3 is sharp. 

Proof. In this case the number of perfect matchings, m( G) = 1. Thus it must be 

shown that the support of the transform, the number of rotations for which the 

determinant is nonzero is n n. Since the 9i (Xi) 's are determined by the edges that do 

not exist and each vertex in the partite set A is adjacent to one, distinct vertex in 

the partite set Beach 9i(Xi) is distinct. Thus every row in the coefficient matrix is 
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umque. This allows for any rotation to give a matrix with a nonzero determinant. 

There are IZ~I = nn possible rotations. 

Thus m(G) x r(G) = 1 x nn = nn for bipartite graphs whose edge set is a 

perfect matching. 0 

THEOREM 3.5. For a complete bipartite graph G(A U B, E) on 2n vertices there 

are n! perfect matchings and n! rotations that give a nonzero determinant for the 

coefficient matrix. 

Proof. Showing the number of perfect matchings is n! is fairly intuitive. The first 

vertex in the partite set A can be matched with any of the n vertices in partite set 

B, the second vertex can be matched with any of the n - 1 vertices left and so on. 

This gives n! perfect matchings in the graph. 

For a complete bipartite graph each of the 9i(Xi) = 1 for all i E {O ... n - I}. 

Thus each row in the coefficient matrix has exactly one 1 and the rest of the entries 

are zero. In order for the matrix to have a nonzero determinant no row can be a 

multiple of another row. In this case, this is equivalent to saying that each column 

must have exactly one 1. For the first row, the 1 can be placed in any of the n 

columns. For the second row the 1 can be placed in any of the n - 1 columns, 

avoiding the column of the 1 in the first row and so on for each of the rows. This 

gives n! matrices, all of which can be found by a rotation of the rows of the canonical 

matrix. o 

Thus, the bound found in Theorem 3.3 is sharp for the bipartite graph with a 

minimum number of edges for which the theorem applies. However, in the bipartite 

graph with the maximum number of edges the bound is not sharp, since when n > 2, 

nn < (n!)2. The case of a complete bipartite graph is the worst case, in regards to 

the bound. 
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CHAPTER 4 

PROPERTIES OF THE MATCHING POLYNOMIAL AND 
TRANSFORM 

Our matching polynomials and their transforms contain much information 

about the graphs on which they are based. There are some interesting combinatorial 

and algebraic properties and interpretations that relate back to the graphs. As was 

seen in the previous section, our matching polynomials allow the perfect matchings 

in a graph to be found; however, as this section will show, perfect matchings play 

a more important role for our matching polynomials and their transforms. In fact, 

two of the main theorems in this section show that the perfect matchings form a 

basis for our matching polynomials and their transforms. 

The coefficients of our polynomials also reveal some information about the 

functions. The last section in this chapter deals with the coefficients and how to 

find them. The result presented in that section mirrors a result given in Equation 

(3.8). 

4.1 A Basis for Our Matching Polynomial 

One interesting property of the matching polynomials is that for any bipartite 

graph on 2n vertices, the matching polynomial is a weighted average of the perfect 

matchings in the graph. The main theorem in this section will make this statement 

precise. This result is interesting because it shows that the perfect matchings can 

be used to build our matching polynomials. It also provides some algebraic insight 

as to why our matching polynomials evaluate to a nonzero result only on perfect 
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matchings. 

Before the main result of this section it is important to present some no~ 

tational conventions. The polynomial Ie for bipartite graph G(A U B; E) with 

A = {a, 1, ... , n - I} and B = Dn takes the form 

when expanded where a = (ao, aI, ... , an-I). The coefficients of these polynomials 

give rise to coefficient vectors in which the entries of the vectors are in a lexicographic 

monomial ordering. The next example shows this ordering. 

EXAMPLE 4.1. Let 1 (x) = 1xo + 2X1 + 3XOX1 + 4 = 1X6X? + 2xgx~ + 3X6Xi + 4xgx? 

To find the lexicographic monomial ordering look at the exponents on the terms. 

These can be thought of as the numbers 10, 01,11, and 00. The lowest of these 

numbers is 00 and thus the term that is first in a lexicographic monomial ordering 

is 4xgx? Thus corresponding coefficient vector would be (4, 2, 1, 3) . 

EXAMPLE 4.2. Consider the graphs given in Figure 4.1 

0---0 

Figure 4.1: All Bipartite Graphs on 4 Vertices with at least 1 Perfect Matching 

and their reduced adjacency matrices: 
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G6 ~ [: ~ ] , G, ~ [ ~ ~ ] , G9 ~ [~ ~ ] , Gll ~ [~ ~ ] , 

GI3 ~ [: ~], G14 ~ [ ~ : ] , G15 ~ [: :] 

These graphs are all of the bipartite graphs on 4 vertices with at least one perfect 

matching. From Equation (3.2), these graphs have polynomials 

f6(X) 2 + 2Xl - 2xo - 2XOXl 

h(x) -1 + -Ix! + 1xo + lxOXl 

fg(x) -2 + 2Xl - 2xo + 2XOXl 

f11 (x) -1 + lxl - 1xo + 1xoxl 

fl3(X) 1 - lxl + 1xo - lxox! 

/I4(X) 1 + lxl - 1xo - lxOXl 

/I5(X) o - lxl + 1xo + OXOXl 

where fi = fei' The terms of the polynomials are in lexicographic monomial order. 

The coefficient vectors of these polynomials are 

v;t = (2,2, -2, -2;, v:; = (-1, -1, 1, 1/, V; = (-2,2, -2, 2;, ~ = (-1,1, -1, I; 

~ = (1, -1, 1, -I;, V11 = (1,1, -1, -I;, ~ = (0, -1,1,0; 

In the previous example, the edge sets of G6 and Gg are perfect matchings. 

Call a bipartite graph with an edge set that is a perfect matching a perfect matching 

graph, the matching polynomial associated with the graph a perfect matching poly-

nomial, and the vector associated with the perfect matching polynomial a perfect 

matching vector. These perfect matching structures play an important role in both 

the graphs and in our matching polynomials. 
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THEOREM 4.1. The n-tuple perfect matching vectors form a basis for the n-

dimensional matching vectors corresponding to bipartite graphs on 2n vertices. 

Proof. Let B = {t;; I 7r E Sn} be the set of vectors determined by the perfect 

matching graphs on 2n vertices and V be the set of vectors determined by all 

bipartite graphs on 2n vertices with at least one perfect matching. From the end 

of Section 1.1, a basis is a set of linearly independent vectors that span a vector 

space. We must show that the perfect matching vectors are linearly independent 

and span. 
---t ---t 

To show B is linearly independent, assume bO' = L: C7rb7r for some con-

---7 

stants C7r , where bO' E B. This implies 

fO'(x) = L c7rf7r(x), (4.1 ) 
7rESn ,7ri'O' 

where fa(x) is the polynomial determined by a perfect matching graph. 

By Proposition 3.1, fO'(x) has a nonzero evaluation on exactly one input, a. 

If (4.1) is evaluated at a, the left hand side is nonzero while the right hand side is 

the sum of n! - 1 terms that all evaluate to zero. Therefore, the assumption that 
---t ---t 

bO' = L: C7r b7r is incorrect and, by contradiction, B is linearly independent. 
7rE5n ,7r =FO' 

To show B spans, let --:J ~ B be some vector determined by a bipartite 

graph on 2n vertices with at least one perfect matching. Let f (x) be our matching 
n! ---7 

polynomial for some graph G. We must show --:J = L: Ci bi or, equivalently, 
i=l 

n! 

i=l 

--7 

where fi = fy;; is the polynomial determined by the bi perfect matching graph. 

Let a = {ao, aI, ... ,an-d describe a perfect matching in the graph G where 

vertex i is adj acent to vertex ai = wk for some k E {O ... n - I}. When f (x) is 

evaluated at a, the result is nonzero by Proposition 3.1. Since the fi's are nonzero 
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only on a perfect matching, when evaluated at 0: all are zero except fOi(O:). Thus, 

we can write f(o:) = cOif 01(0:) for some constant COl' If (3 = {(3o, (31,"" (3n-d is not 

a perfect matching in the graph G then f ((3) = 0 by Proposition 3.1 and likewise 

Cf3 = o. 

Since the only points at which f(x) evaluates to a nonzero value are at perfect 

matchings, running through all perfect matchings yields the constants of the fi'S. 

Thus f(x) can be written as a linear combination of the fb;'s and similarly, V' can 
--7 

be written as a linear combination of the bi's. The definition of spanning a vector 

space is satisfied, showing B spans V. 

Since B is linearly independent and spans the space of all coefficient vectors, 

it is a basis for V. o 

COROLLARY 4.1. Our matching polynomial fc(x) = f(x) is a linear combination 

of the perfect matching polynomials for the perfect matchings in G. Furthermore, 

f(7f) = cn f.Tr(7f) where 7f is a perfect matching in the graph G. 

Proof. This result follows directly from the previous theorem and how the coefficient 

vectors are defined. o 

Through the main result in this section, theorem 4.1 and its corollary, the 

matching polynomial in a general bipartite graph can be viewed as this weighted 

average of the perfect matching polynomials. This result is a nice combinitorial 

interpretation of what is happening with these polynomials and how they interact 

with the perfect matchings in the graphs. Our matching polynomials are built on 

the perfect matchings in the graphs. 

The proof of Propostion 3.1, showing that there was a perfect matching if 

and only if f (x) had a nonzero evaluation, relied on the clever construction of our 

matching polynomials. The previous result further emphasizes this property and 

gives an intuitive reason for the results of evaluating our matching polynomial. 
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Since the perfect matching polynomials have exactly one input for which they are 

nonzero and our matching polynomial is a linear combination of the perfect match-

ing polynomials for the perfect matchings in the graph, it follows that our matching 

polynomial will have nonzero entries only on the inputs that correspond to perfect 

matchings in the graph. 

The next example demonstrates the theorem using the reults from the pre-

vious example. 

EXAMPLE 4.3. In Example 4.2 the perfect matching graphs are G6 and Gg with 

vectors vt = (2,2, -2, -2) and ~ = (-2,2, -2,2). 

---+ -1---+ ---+ 
V7 2V6 + OVg 

--+ ---+ 1---+ 
Vu OV6 + "2Vg 

--+ ---+ -1---+ 
VI3 OV6 + 2Vg 

--+ 1---+ ---+ 
VI4 "2V6 + OVg 

--+ - 1 ---+ - 1 ---+ 
VI5 -V6 + -Vg 

4 4 

This section concerned our matching polynomial. The next section will look 

at results on the transform of our matching polynomial. 

4.2 A Basis for the Transform 

Theorem 4.1 shows that the perfect matching polynomials form a basis for 

all matching polynomials of bipartite graphs. This section will give a similar result 

for the discrete Fourier transforms of the matching polynomials. By the end of this 

section we see that our perfect matching polynomials are also building blocks for 

the transforms of our matching polynomials. 

In order to prove the main result of this section, a lemma will be helpful. 

Recall that the discrete Fourier transform of our matching function is given by 
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LEMMA 4.1. If J7r is a perfect matching polynomial, then h(xp) = J7r(-rr)Xp(7r). 

Proof. Let J7r(Xp) be the transform of a perfect matching polynomial, J7r' By propo

sition 3.1, J7r is nonzero only when evaluated at 7r. Thus, 

D 

With this lemma, the main result for this section can be proven. 

THEOREM 4.2. The transform of a matching polynomial is a linear combination 

of the transform of the perfect matching polynomials. 

Proof. The transform of the matching polynomial, i(xp), is given by L J(a)Xp(a). 
aE!l;:: 

By Proposition 3.1, J(a) is nonzero only when a is a perfect matching realized 

in the graph and perfect matchings are equivalent to permutations. Therefore, 

L J(a)Xp(a) can be restricted to a E Sn. That is, 
aE!l:i 

!(xp) = L J(a)Xp(a). 
aESn 

Expanding the above sum yields 

where 7ri is an element of Sn. Using Corollary 4.1, J(7ri) = c7rJ7r;(7ri), the above can 

be written as 

Using Equation (4.2) from the lemma, Equation (4.3) can be rewritten as 

i(xp) = c7rl !:: (Xp) + C7r2~ (Xp) + ... + C7rn!~ (Xp) = L c7rh(xp). 
7rESn 

D 
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This theorem has a corollary which reveals a little more about the transform 

of the matching polynomials. 

COROLLARY 4.2. The transform of a matching polynomial is a linear combination 

of the perfect matching polynomials. 

Proof. This result follows from Theorem 4.2 and Lemma 4.1. o 

This result shows that the perfect matching polynomials are essential to the 

construction of both our matching polynomials and the transforms of our match

ing polynomials. This last result should not be surprising. The discrete Fourier 

transform of our matching polynomial is built on the matching polynomials and the 

main result of the previous section showed that our matching polynomials are built 

from the perfect matching polynomials. 

Theorem 3.3 gave a bound on the number of perfect matchings by using 

the uncertainity principle. The uncertainity principle relied on the support of the 

matching polynomial and the support of the transform of the matching polynomial. 

The above corollary shows that it is not necessary to compute the transform of the 

matching polynomial to find the bound because the transform is a linear combina

tion of the perfect matching polynomials, although the characters of the group Z~ 

are still necessary. 

4.3 Coefficients as Determinants 

The previous two sections helped give a combinatorial understanding of the 

coefficients of both the matching polynomials and the transforms of the matching 

polynomials. This section gives an algebraic interpretation of the coefficients of the 

matching polynomials. 

Equation (3.8), [(X) = nn Idet(L[r(i) + 1])1 shows that the transform of the 

matching polynomial can be thought of as the determinant of a matrix. The next 
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theorem will provide a similar result for the matching polynomial. 

Let f(x) be a polynomial in the variables xo, Xl, ... ,Xn~l modulo the ideal 

(xf-l)f=l' Thus, the exponents on the variables in f(x) range between 0 and n-l. 

For some term t = x~Ox~) ... X~~-ll, define the term annihilator of t, to be the term 

(t) ( ro rl rn-l ) n~ro n~rl n-rn-l Th t (t) n n n_ 
T = T Xo Xl .. 'Xn - 1 = Xo Xl .. 'Xn - 1 . en, x T = XOX I ·· 'Xn - l = 

1 modulo (xf - 1)r~ol; the variables are annihilated in the term and it becomes a 

constant. 

THEOREM 4.3. If 

then 

da = det L[(n - 1 - ao), (n - 1 - ad, . .. , (n - 1 - an~d] = det L[n - 1 - a] 

The proof of the theorem is easier to follow after having seen an example 

first. 

EXAMPLE 4.4. For some graph G, one can associate our matching polynomial 

f (x) and some coefficient matrix 

A= 

Then the following polynomials make up f(x). 

gl(Xl) 

g2(X2) 

g3(X3) 
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To find the constant term of f (x) the term annihilators of each term in V (x) 

must be found. Look at each term of V(x) and the corresponding term annihilator 

in 91 X 92 X 93: 

r(x2x~) 

r(x~x3) 

r(x1x~) 

r(x1 xD 

r(xi x3) 

r(xix2) 

Thus, the constant term of f(x) is 

This corresponds exactly to the determinant of A when each rOw has been rotated 

n - 1 positions. 

n 

Proof. Recall f(x) = TI 9i(Xi)V(X) and that we are working modulo the ideal (xi-
i=l 

n 

1)~1' Let G(x) = TI 9i(X·i); then, f(x) = G(x)V(x). Let A = [ai,j] be the coefficient 
i=1 

matrix defined by the graph from which the fuction f (x) is defined. The proof is 

accomplished by showing the constant term is the desired determinant, and then 

using the term annihilator to show the other terms. 

Since f(x) is the product of two functions, the constant term of f(x) is 

determined by each term of V (x) and the corresponding term annihilator for each 
n-l 

term of V(x). One formulation of V(x) is V(X) = 2: si9n(1f) TI X7(i). 
rrESn i=O 

Let trr = x~(O)X~(l) .,. X~~1-1) be a term of V(x). To construct r(t) from G(x), 

note that Xi appears only in 9i(Xi). The coefficient of x~-rr(i) is si9n(1f)ai,n-rr(i)' 
n-l 

Thus, r(t) = TI ai,n_rr(i)X~-rr(i). Note that the coefficient of the term annihilator of 
i=O 
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t7r is a transversal of the coefficient matrix where each row has been shifted n - 1 

positions. This gives one part of the constant term of f (x). 

Since V(x) runs through all permutations in Sn and the corresponding term 

annihilators give transversals of the shifted coefficient matrix, the constant term 

of f (x) is a signed sum of all transversals of the shifted coefficient matrix. This 

matches the definition of a determinant given in Section 1.1. Thus, the constant 

term is the determinant of the shifted coefficient matrix. 

To see that all other coefficients are also determinants, let t be the term under 

consideration. Multiplying f(x) by T(t) = xgox~l ... X~n~ll makes the coefficient of 

t in f(x) become the constant term in f(x) = T(t)f(x). It was just shown that 

the constant term is a determinant. The effect of multiplying f(x) by T(t) must be 

considered. 

Since multiplication is commutative and associative the effect of multiplying 

f(x) by T(t) is the same as multiplying each gi in f(x) by the appropriate X~i. Such 

a multiplication shifts the exponents on each Xi by bi. This has the same effect as 

rotating row i of the coefficient matrix by n - 1 - bi . The previous result on the 

constant term of f (x) holds for the constant term of f (x) which is the coefficient of 

the term t in f(x). 0 

These functions, both our matching function and its transform, hold much 

of the information about the graph. This chapter showed some of the properties of 

our these functions. One common property that appeared many times is that the 

perfect matchings are building blocks for the graphs and for the polynomials. This 

property appeared not only in our matching functions but also in the transforms of 

our matching functions. 

Another property that was explored in this section is how the transforms 

have many analogous properties of our matching functions. It was shown in Section 

3.3 that the transform of our matching function can be thought of as a determinant. 
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In this section it was shown how the coefficients of our matching function are related 

to a similar determinant. 

The next chapter will show how these functions can be helpful with other 

problems. 
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CHAPTER 5 

APPLICATIONS, CONCLUSIONS, AND FUTURE WORK 

This chapter provides an application of the work done in this dissertation 

as well as a summary of what was accomplished and where this idea might be 

extended in the future. We have spent the previous two chapters creating and 

examining properties of our matching polynomials and the transform. Here we see 

how to use this information in ways to solve other problems. 

5.1 Applications 

One of the more difficult aspects of applying the Combinatorial N ullstellen

satz to a problem is finding a nonzero coefficient in the polynomial used to model 

the problem. The methods discussed in this dissertation provide a quick way to 

check for a nonzero coefficient for our matching polynomial by using a matroid in

tersection algorithm. If such an approach could be applied to other functions, it 

would be an efficient method to apply the Combinatorial Nullstellensatz. 

EXAMPLE 5.1. Consider the following function: 

h(x) = -5 - 19xI + 13xo + 5XOXI' 

Does this polynomial vanish on all second roots of unity? For this polynomial, 

since there are only two variables, a brute force method of checking might make 

sense since only there would be only 4 possible options to consider: (xo = 1, Xl = 

1), (xo = 1,Xl = -1), (xo = -l,XI = 1), (xo = -l,Xl = -1). These are the only 
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options to consider because the two variables mean we are working over the second 

roots of unity. 

However, what follows is an alternate approach to check if it vanishes on all 

second roots of unity. The function h(x) can be rewritten as 

h(x) -5 - 19x1 + 13xo + 5XOXI 

h(x) + 4fl1(x) + 16!I5(x) 

where h(x), fl1(x), and !I5(X) are our matching polynomials defined in Example 4.2 

corresponding to the graphs given in Figure 4.1. It is known that these polynomials 

do not vanish on all second roots of unity. There is a possibility, however, that 

upon evaluation the results of our matching polynomials might sum to zero. In 

this instance that is not a problem as the coefficients on the polynomials are large 

enough to spread out the evaluations. 

The above polynomial was constructed specifically so that it would factor 

nicely into a linear combination of known matching polynomials. The next ex-

ample works through an algorithmic approach, namely the division algorithm over 

C[XOl Xl,···, Xn~l], when it might not be as clear that it can be written as a linear 

combination of our matching polynomials. 

EXAMPLE 5.2. Suppose we are given the following polynomial: 

For this polynomial attempting a brute force evaluation starts to become less 

tractable. Since there are three variables the 3rd roots of unity need to be con

sidered, and each needs to be considered for each variable. This gives 33 = 27 cases 

to consider. While 27 is not an overly large number, as the number of variables 
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increases to n the number of cases to consider for a brute force evaluation increases 

to nn, which grows very quickly, where as few as 8 variables gives rise to nearly 17 

million cases to consider. 

By choosing appropriate terms to add and subtract, h(x) can be transformed 

into a linear combination of our matching polynomials with some remainder. Ide-

ally the remainder can handled easily. Our matching polynomial for the complete 

bipartite graph on 6 vertices (see Figure 5.1) is given by: 

Adding and subtracting the terms of f511 invites a division algorithm. 

At first glance it does not appear that h( x) has been simplified or made easier to 

work with. In fact, by adding and subtracting f511 (x) it appears that more terms 

have been introduced. Continuing the process of adding and subtracting appropriate 

terms to find examples of our matching polynomial will provide additional insight. 

Our matching polynomial for the complete bipartite graph on 6 vertices 

missing one edge is given by: 

Checking the terms of h(x) against the terms in f51O(X) and we see that all of the 

terms of f51O(X) appear. Thus h(x) can be rewritten in terms of f511(X), f51O(X) and 

a remainder. In this case, h(x) = f511(X) + f51O(X) + 1. Since f511(X) and f51O(X) 

are examples of our matching polynomial we know that they do not vanish on all 
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third roots of unity. The remainder, 1, never vanishes either. Thus, h(x) will not 

vanish on all third roots of unity as long as one is careful to check that cancellation 

of the terms does not happen upon evaluation. 

It might appear that h(x) in Example 5.2 was chosen specifically so that 

when i511 (x) and i510 (x) were removed the remainder was something nice. The next 

example shows that while choosing the appropriate matching polynomial makes the 

problem simplify quicker, there are other possibilities as well. 

EXAMPLE 5.3. Consider the following graphs. 

Figure 5.1: Bipartite Graphs on 6 Vertices 

The reduced adjacency matrices of the graphs in Figure 5.1 are 

1 1 1 0 1 1 

G463 = 1 0 0 , G502 = 0 1 1 

1 1 1 1 1 1 

1 0 0 1 1 1 

G505 = 1 1 1 , G511 = 1 1 1 

1 1 1 1 1 1 
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The coefficient vectors for these graphs are 

v:w! (0,1, -1,0,1, -1,0, I, -1, -1,0,1, -1,0,1, -1,0, I, I, -1,0,1, -1,0,1, -1,0) 

~ (0,0,0, -1, -1, -1, 1, 1, 1, 1, 1, 1,0,0,0, -1, -1, -1, -1, -1, -1, 1, 1, 1,0,0,0) 

~ (0, -I, 1, 1,0, -1, -1, 1,0,0, -1, 1, 1,0, -1, -1,1,0,0, -1, 1, 1,0, -1, -1, 1,0) 

V51! (0,0,0,0,0, -1,0,1,0,0,0,1,0,0,0, -1,0,0,0, -1,0,1,0,0,0,0,0). 

Compare 

v:w! +~+~ = (0,0,0,0,0, -3,0,3,0,0,0,3,0,0,0, -3,0,0,0, -3,0,3,0,0,0,0,0) 

with 

3 x V51! = (0,0,0,0,0, -3,0,3,0,0,0,3,0,0,0, -3,0,0,0, -3,0,3,0,0,0,0,0). 

Thus, V51! = 1/3(v:w!+~+~). In Example 5.2,1511 (x) could have been replaced 

by 1/3(J463(x) + 1502 (x) + 1505(X)). 

The above example, though, is not the only way to rewrite 1511 (x) as a linear 

combination of other matching polynomials. Using Corollary 4.1, we have 1511 (x) = 

1/27(Js4(x) + 198(X) + !l40(X) + !l61(X) + h66(X) + h73(X)) where 1S4(X), 19S(X), 

1140(X), 1161 (x), h66(X), h73(X) are the perfect matching polynomials corresponding 

to the perfect matching graphs in Figure 5.2. Thus in Example 5.2, 1511 (x) could 

have been replaced by the perfect matching functions, with the appropriate scalar. 

Similarly, Corollary 4.1 allows us to write 1510 (x) as (-1/18-iV3/54)184(x)+ 

(-1/18+iV3/54)h8(x)+( -1/18-iV3/54)!l40(x)+( -1/18+iV3/54)1161 (x). Thus, 

there are many different ways to write h(x) in terms of our matching polynomials. 

A future goal, explained in more detail in Section 5.3 is to characterize which 

polynomials can be written as combinations of our matching polynomials. 
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0--0 0--0 

0--0 

Figure 5.2 ~ All Bipartite Perfect Matching Graphs on 6 Vertices 

5.2 Conclusions 

Finding an efficient method by which the Combinatorial Nullstellensatz can 

be used was the main goal of this dissertation. While finding the exact number 

of perfect matchings in a bipartite graph is #P-complete (see [21]), it is easy, in 

a complexity sense, to find a lower bound on the number of perfect matchings in 

a bipartite graph. The matroid intersection algorithm provides a polynomial time 

algorithm to find a nonzero coefficient in the expansion of our matching polynomial. 

The existence of a nonzero coefficient is necessary in order to apply the Combina

torial Nullstellensatz to the problem. 

The number of perfect matchings in a bipartite graph and the number of 

maxium independent sets in the intersection of two matroids are related. This re

lation is not obvious, however. Using the Nullstellensatz method and the discrete 
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Fourier transform, the relationship was revealed through the uncertainity princi

ple. This relationship has helped understand the application of the Combinatorial 

Nullstellensatz. It seems that incorporating the matroid intersection algorithm will 

allow for a sharper version of the Combinatorial Nullstellensatz, as it did in the 

problem of bounding the number of perfect matchigns in a bipartite graph. 

After using the Nullstellensatz method additional questions arose concerning 

the polynomials created by the instances that corresponded to the bipartite graphs. 

These polynomials contain information about the graphs, such as structural infor

mation. One thing that became apparent through the results in Chapter 4 was that 

the perfect matchings in the graph play an important role in the polynomials and 

their transforms. The perfect matching polynomials serve as building blocks for our 

matching polynomials and also for the discrete Fourier transforms of our matching 

polynomials. 

Our matching polynomials are well understood, in a Nullstellensatz sense. 

They are well behaved in that finding a nonzero coefficient can be done in polynomial 

time via the matroid intersection algorithm. Since finding a nonzero coefficient can 

be difficult, being able to use polynomials for which there is a known nonzero 

coefficient is useful if the Combinatorial Nullstellensatz is going to applied. It was 

shown that some polynomials can be written as a combination of our matching 

polynomials. In some cases where the polynomial is made up of only matching 

polynomials, it becomes clear that the polynomial does not vanish on all nth roots 

of unity. 

Unfortunately, not all polynomials can be written as a combination of only 

our matching polynomials. In some cases there is a remainder term. Since a brute 

force evaluation to see if the polynomial disappears on all nth roots of unity requires 

nn evaluations, it is possible that even with a remainder the evaluations that must 

be checked can be reduced. This case was seen in Example 5.2 where the remainder 
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term was a constant, thus it never vanished. 

5.3 Future Work 

There are several directions for further research. 

1). Extend these results to general matching and f-factor theorems. 

A perfect matching is also called a i-factor. The edges of a perfect matching form a 

subgraph containing every vertex of the graph and the degree of each vertex in the 

subgraph is one. In general, an f-factor of a graph is an subgraph such that every 

vertex appears in the subgraph and the degree of every vertex in the subgraph is f. 

Extending these results to 2-factors and beyond would be nice as well as extending 

to general matchings. 

2). Extend these results to different families of graphs. The results 

presented in this dissertation work for bipartite graphs, one family of graphs. There 

are many other graph families such as complete graphs (see Section 1.2) claw-free 

graphs, planar graphs, k-regular graphs, or triangle-free graphs, just to name a few. 

It would be nice if similar results could be found for some of these other families. 

3). Identify properties of these extensions that permit easy applica

tion of the Combinatorial Nullstellensatz. As was stated in Section 2.4, most 

of the successful applications of the Combinatorial N ullstellsatz have the property 

that for all instances of the same size have a common monomial with a nonzero 

coefficient. This allows finding a nonzero coefficient for all instances by looking at 

a canonical instance. 

4). Characterize which polynomials can be written as combinations 

of our matching polynomials. The applications given in Section 5.1 hint at this 

idea. Two polynomials are written as combinations of our matching polynomials in 

the examples presented. Both of these example polynomials were selected because 
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they allowed for an easy rewritting in terms of our matching polynomials. In general, 

though, it is not known which polynomials can be written as combinations of our 

matching polynomials. Being able to characterize such polynomials could allow for 

an efficient method to determine if a certain polynomial vanishes on all nth roots 

of unity and thus allow for an application of the Combinatorial Nullstellensatz. 

5). Relate r(G), the size of support of the discrete Fourier transform 

of our matching polynomial, to structural properties of G. It is clear how 

m( G), the size of the support of our matching polynomial, relates to the structure 

of the graph G. It tells exactly how many perfect matchings exist in the graph. As 

was seen in Chapter 4, many of the properties of our matching polynomials have 

analogous properties for the transforms. Since m( G) reveals a structural property 

of the graph there is hope that r( G) has a similar revelation about the structure of 

the graph. 

In writing this dissertation, much was discovered about the properties of our 

matching functions, their transforms, and how they relate to the structure of the 

graph. These discoveries have helped to understand perfect matchings in bipartite 

graphs as well as ways in which the Combinatorial Nullstellensatz can be applied 

in novel ways. Much of the future work described will continue to provide insight 

into the topics covered in this dissertation. 

66 



REFERENCES 

[1] Noga Alon, Combinatorial nullstellensatz, Combinatorics, Probability, and 

Computing 8 (1999), no. 1-2, 7-29. 

[2] Michael Artin, Algebra, Prentice Hall, Inc., Englewood Cliffs, 1991. 

[3] Richard Brauer, Investigations on group characters, Annals of Mathematics 42 

(1941), no. 2, 936-958. 

[4] Richard Brauer and Cecil Nesbitt, On the modular characters of groups, Annals 

of Mathematics 42 (1941), no. 2, 556-590. 

[5] Gary Chartrand and Lisa Lesniak, Graphs and digraphs, fourth ed., Chapman 

& Hall/CRC, Boca Raton, 2005. 

[6] David L. Donoho and Philip B. Stark, Uncertainity principles and signal re

covery, SIAM Journal of Applied Mathematics (1989), no. 3, 906-931. 

[7] Jack Edmonds, Discrete optimization {proc. adv. res. inst. discrete optimization 

and systems appl., banff, alta., 1977}, i., Annals of Discrete Mathematics 4 

(1979), 39-49. 

[8] F. Georg Frobenius, Gesammelte abhandlungen. bnde 2, 22, m {german}, 

Springer-Verlag, Berlin, 1969. 

[9] Joseph A. Gallian, Contemporary abstract algebra, fourth ed., Houghton Mifflin 

Company, Boston, 1998. 

67 



[10] Michael R. Garey and David S. Johnson, Computers and intractability: A 

guide to the theory of np-completeness, W. H. Freeman and Company, New 

York, 1979. 

[11] John E. Hopcroft and Richard M. Karp, An n 5/ 2 algorithm for maximum 

matchings in bipartite graphs, SIAM Journal of Computing 2 (1973), no. 4, 

225-231. 

[12] Andre E. Kezdy, p-valuations for some stunted trees, Discrete Mathematics 

306 (2006), no. 21, 2786-2789. 

[13] Andre E. Kezdy and Hunter S. Snevily, Polynomials that vanish on distinct nth 

roots of unity, Combinatorics, Probability, and Computing 13 (2004), no. 1, 

37-59. 

[14] Eugene Lawler, Combinatorial optimization: Networks and matroids, Dover 

Publications, Inc., Mineola, 1976. 

[15] David C. Lay, Linear algebra and its applications, second ed., Addison Wesley 

Longman, Inc., Reading, 1996. 

[16] James Oxley, Matroid theory, Oxford University Press, Oxford, 1992. 

[17] Gian-Carlo Rota and Henry H. Crapo, On the foundations of combinatorial 

theory: Combinatorial geometries, M.LT. Press, Cambridge, 1970. 

[18] A. Schrijver, Counting i-factors in regular bipartite graphs, Journal of Combi

natorial Theory, Series B 72 (1998), no. 1, 122-135. 

[19] Jean-Piere Serre, Linear representations of finite groups, second ed., Springer

Verlag, New York, 1977. 

68 



[20] Audrey Terras, Fourier analysis on finite groups and applications, London 

Mathematical Society Student Texts, no. 43, Cambridge University Press, 

Cambridge, fourth ed., 1999. 

[21] Leslie G. Valiant, The complexity of computing the permanent, Theoretical 

Computer Science 8 (1979), no. 2, 189-201. 

[22] Marc Voorhoeve, A lower bound for the permanents of certain (0, i)-matrices, 

Koninklijke Nederlandse Akademie van Wetenschappen. Indagationes Mathe

maticae 41 (1979), no. 1, 83-86. 

[23] Hassel Whitney, On the abstract properties of linear dependence, American 

Journal of Mathematics 57 (1935), 509-533. 

[24] Robin J. Wilson, Introduction to graph theory, fourth ed., Addison Wesley 

Longmann Limited, Essex, 1996. 

69 



INDEX 

(E,I), 20, see matroid 

A(G), 7, see matrix: adjacency 

AT, 3, see matrix: transpose 

B(G), 8, see matrix: incidence 

E, 6, see graph: edge set, 20, see matroid 

E(G), 6, see graph: edge set 

F, 17, see field 

Fn , 26, see matrix: Fourier 

F~, 26, see matrix: conjugate transpose 

G, 6, see graph, 15, see group 

G(V, E), 6, see graph 

GL(V), 23, see group: homomorphism 

K n , 7, see graph: complete 

Ks,t, 10, see graph: bipartite: complete 

L[o:], 35 

L2( G), 25, see vector space 

Lc = [tij], 35 

M(E), 20, see matroid: ground set 

M = (E,I), 20, see matroid 

N P, 29, see decision problem 

NP-complete, 30, see decision problem 

P, 29, see decision problem 

U(n), 25, see group: unitary matrices 

V, 6, see graph: vertex set 

V(G), 6, see graph: vertex set 

V(x), 26, see Vandermonde matrix 

[ai,j], 2, see matrix 

#P, 30, see decision problem 

#P-complete, 30, see decision problem 

On, 33 

Xp, 24, see character 

det(A), 4, see determinant 

0, 20, see empty set 

(U), 9, see induced subgraph 

(Vo, VI,.· ., Vn-I), 2, see vector 

C,33 

z~, 16, see group: Z~ 

I, 20, see matroid: independent set, 37 

I(M), 20, see matroid: independent set 

Col(A), 5, see vector space 

Tr(A), 4, see matrix: transpose 

sign( 0"), 4 

w,24 

perm(A), 43, see matrix: permanent 
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Xp(a),41 

<p, 17, see group: homomorphism 

Pg, see representation 

r(t), 54, see term annihilator 

-----7 
V , 2, see vector 

A, 11, see matrix: adjacency: reduced 
~ 

G, 24, see representation: dual 
"-

f, 25, see discrete Fourier transform 

f(x), 42 

e,26 

cl(g), 18, see conjugacy class 

f-factor, see factor: f 

fe, 47 

fe(x), 34, see matching polynomial 

i, 33 

m(G), 66, see matching polynomial 

p(z), 40 

r( G), 66, see discrete Fourier transform 

I-factor, see factor: 1 

abelian group, 16 

abstract algebra, see group theory 

adjacency matrix, see matrix: adjacency 

algorithm 

augmenting path, 14 

Hopcroft-Karp, 15 
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algorithms 

matroid intersection, 28 

applications, 58 

associative property, 15 

automorphism, 17 

basis, 46, 51 

matching polynomial, 46 

transform, 51 

vector, 6 

binary operation, 15 

bipartite graph, see graph 

block matrix, 11 

canonical lock, 35 

Cayley table, 16 

character, 22, 24 

table, 24 

circular lock, 32, 33 

bipartite graph, 33 

circular logic, see logic, circular 

column 

matrix, 2 

vector, 2 

column space, see vector space 

Combinatorial Nullstellensatz, 27 

complete graph, 7 

complexity, 29 



conjugacy class, 18 

conjugate transpose, see matrix: conJu

gate transpose 

covered, see matching 

decision problem, 29 

NP,29 

P,29 

#P,30 

determinant, 4, 53 

coefficients as, 53 

DFT, see discrete Fourier transform 

dimension 

matrix, 2 

representation space, 23 

vector space, 6 

discrete Fourier transform, 25, 40 

basis, 51 

edge, see graph: edge 

empty set, 20 

f-factor, see factor: j 

factor, 65 

j, 65 

1, 65 

field, 17 

Fourier matrix, 26 

Fourier transform, see discrete Fourier 

transform 

graph, 6 

bipartite, 9, 40 

circular lock, 33 

complete, 10 

complete, 7 

bipartite, 10 

edge, 6 

incident, 7 

loop, 7 

multiple, 7 

edge set, 6 

multigraph, 7 

order, 6 

perfect matching, 48 

simple, 7 

size, 6 

subgraph, 9 

induced, 9 

vertex, 6 

adjacent, 7 

incident, 7 

vertex set, 6 

graph theory, 6 

ground set, 20 

group, 15 
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abelian, 16 

automorphism, 17 

homomorphism, 17 

one-to-one, 6, 17 

onto, 17 

isomorphism, 17 

order, 16 

representation, see representation 

unitary matrices, 25 

Z~, 16 

group theory, 15 

homomorphism, see group 

one-to-one, see graph: vertex 

identity element, 15 

incidence matrix, 8 

independent set 

graph, see matching 

matroid, 20 

induced subgraph, 9 

inverse element, 15 

isomorphism, 17 

linear algebra, 1 

linear combination, 3 

linear equation, 1 

linearly dependent, see linearly indepen

dent 
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linearly independent, 3 

vectors, 3 

lock, 32 

canonical, 35 

lock setting, 32 

logic, circular, see circular logic 

matching, 12 

maximal, 13 

maximum, 13 

perfect, 14 

graph, 48 

polynomial, 48 

vector, 48 

matching polynomial, 34, 47 

matrix, 1 

adjacency, 7 

reduced, 12 

block, 11 

column, 2 

conjugate transpose, 26 

determinant, 4 

dimension, 2 

Fourier, 26 

incidence, 8 

nonsingular, 4 

permanent, 43 

rank, 6 



row, 2 

singular, 4 

square, 2 

symmetric, 3 

trace, 4 

transpose, 3 

Vandermonde, 26 

matroid, 19, 20, 38 

ground set, 20 

independent set, 20 

intersection, 21, 28, 38 

partition, 20 

vector, 20 

maximal matching, see matching: maxi

mal 

maximum matching, see matching: max

Imum 

multigraph, 7 

nonsingular matrix, 4 

order 

graph, 6 

group, 16 

partition matroid, 20 

perfect matching, see matching: perfect 

perfect matching graph, 48 

perfect matching polynomial, 48 

perfect matching vector, 48 

permanent, see matrix: permanent 

rank 

matrix, 6 

representation, 22 

character, 24 

character table, 24 

dual, 24 

G-invariant, 23 

irreducible, 23 

space, 23 

dimension, 23 

representation space, see representation 

row 

matrix, 2 

vector, 2 

scalar, 2 

simple graph, 7 

singular matrix, 4 

size 

graph, 6 

square matrix, 2 

subgraph, see graph: subgraph 

subset 

span, 4 

subspace, see vector space 
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support, 42 

symmetric matrix, 3 

term annihilator, 54 

trace of a matrix, 4 

transpose of a matrix, 3 

uncertainity principle, 42, 43 

Vandermonde identity, 26 

Vandermonde matrix, 26 

vector, I, 2 

basis, 6 

linear independent, 3 

perfect matching, 48 

vector matroid, 20 

vector space, 4 

L2( G), 25 

column space, 5 

dimension, 6 

subspace, 5 
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