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ABSTRACT 

THE USE OF VARIABLE-BAGGING AND THE CROSS-VALIDATION SELECTOR 

IN THE PREDICTION OF ALZHEIMER’S USING THE ADNI DATABASE 
 

Michael W. Godbey 

October 17, 2014 

  

Dimensionality plays a huge part in the modeling process.  If there are more 

elements in a data set than variables in each element then there are very few restrictions 

in selection of an algorithm.  Bagging, bootstrap aggregating (Breiman, 1994), may also 

be used to improve a model’s prediction capability.   On the other hand, if there more 

variables in each observation than the number of observations in the dataset, the number 

of usable algorithms is greatly reduced.  The recently developed algorithm, support 

vector machines, was designed for such situations, in comparison to algorithms such as 

logistic regression which have instability issues caused by the dimensionality.  Localizing 

or reducing the variables is an option if the loss of information is of little importance.  

This paper introduces a method called variable bagging (a term which was inspired by 

bagging) which lifts the barrier imposed by dimensionality.  Instead of randomly 

selecting elements of the data set and using all the variables, variable bagging randomly 

selects variables and uses all the resultants of the data set to develop an appropriate 

model chosen by the cross-validation selector.  The procedure is repeated several times 

until a committee is formed in order to “vote” on the final outcome.    Theatrical results
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 justifying use of the cross-validation selector are also discussed.  In particular, this paper 

obtains and proves an improved upper bound for the risk of the cross-validation selector 

compared with similar upper bounds in existing literature.     
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1 THE DATA 

 
 

In any study using statistical methods and data mining techniques, the first order 

of business is the gathering of data.  The second is the transformation of this data into 

usable information. 

  The data in this case comes from The Laboratory of Neuro Imaging (LONI) Data 

Archive at UCLA, in particular the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 

database (adni.loni.ucla.edu).  The transformation of this collection of MRI brain scans 

into something which is both normalized and numerical requires some preprocessing.  All 

of this is needed in order to examine and develop statistical models which will distinguish 

between two groups of individuals, those with Alzheimer’s disease (AD) and those in a 

normal control group (NC).     

 

 

1.1  Alzheimer’s Disease 

 

Dementia is a devastating disease affecting memory and intellectual functions of 

the brain.  By definition, “patients with dementia must have memory disturbances as well 

as defects on other mental abilities such as abstract thinking, judgment, personality, 

language praxis and visuospatial skills.  The defects must be of sufficient magnitude to
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 interfere significantly with work or social activities.” (American Psychiatric Association, 

1994)  It is estimated that between 50 to 60% of all dementia cases in the United States 

and Europe is due to Alzheimer’s disease (AD) (R. P.  Friedland & Wilcock, 2000).  At 

the age of 65, a person has a 5.1% chance of developing AD in their lifetime and half of 

all people age 95 and older have some form of AD according to reports presented by the 

Government Accounting Office (1998). 

 

1.1.1  Degenerative changes 

 

The description below describes a seven-stage system by Dr. Barry Reisberg of 

the New York University School of Medicine’s Silberstein Aging and Dementia 

Research Center.  

In the beginning, a person having AD shows no signs of impairment.  A person 

may have AD for up to 20 years before any degenerative changes or clinical assessment 

has been made (Gomez-Isla et al., 1996).  Eventually, a small instance of memory lapses, 

mislaying objects or forgetting the proper word starts to creep in typical life.  Still these 

things cannot be clinically classified as AD and might be explained as part of the normal 

aging process.  The decline continues to a classification of mild cognitive impairment 

(MCI) where family and friends may begin to notice the person having a problem coming 

up with a proper word to use, having trouble remembering a name or misplacing objects. 

The person may start to have trouble with concentration, organization and planning. 

Clear cut symptoms can be detected in the early stage of AD.  A person may start 

to become moody or withdrawn in social situations. There is difficulty in decision 
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making such as budgeting, paying bills and even planning what to have for dinner. There 

is also forgetfulness of most recent and reoccurring events. 

In mid-stage AD, gaps in memory are quite noticeable.  Significant details about 

their life and family are still remembered; however incidental aspects may be forgotten, 

such as their own address or phone number.  The person may even become confused 

about where they are.   

Symptoms continue to worsen to a moderately severe AD.  Memory worsens to a 

point where they may forget their spouse’s name.  There may also be changes in 

personality.  Changes in sleep patterns occur where the patient tends to sleep during the 

day and is up during the night.  They also tend to wonder and bladder and bowel control 

may become an issue. 

In the end, the individual loses the ability to respond to their environment.  They 

need assistance with their daily care, personal hygiene and eating.  Control of movement 

is lost; as they may not be able to hold up their head and may have trouble swallowing. 

 

1.1.2 Anatomy of the Brain 

 

 The three main parts of the brain are, the cerebrum or also known as the cortex, 

which is the most prominent and noticeable, which is divided into two hemispheres, the 

cerebellum which is tucked under the cerebral hemispheres and the brain stem which 

connects the brain to the spinal cord, which is located in front of the cerebellum and 

below the cortex. 
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Each hemisphere of the cerebral cortex is divided into four lobes: the frontal, 

parietal, occipital and temporal lobes.  The frontal lobes are at the front of the cerebrum.  

The functions include reasoning, problem solving, planning and personal expression.  

The parietal lobes are behind the frontal lobes and are responsible for information 

processing, recognition, the sense of touch, speech and cognition.  The occipital lobes are 

at the back portion of the cerebral cortex.  These lobes are the center for visual perception 

and color recognition.  The temporal lobes are located on the sides of the cerebral cortex. 

The functions include: visual memories, short term memories, language recognition, 

emotion and processing sensory input (Dawbarn & Allen, 2007).  The parts of the brain 

and lobes are illustrated in Figure 1. 

 

 

 

Figure 1:Main parts of the brain.  
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1.1.2 Progression of Alzheimer’s 

 

Despite all the statistics on the number of AD patients, diagnosis for AD is 

currently based on clinical and psychometric assessment.  A definite diagnosis can only 

be made by having both amyloid plaques and neurofibrillary tangles (R. P. Friedland, 

2010).   A clear diagnosis of AD is usually made at autopsy.   

Amyloid plaques consist of deposits of aluminum silicate and bits of beta-amyloid 

protein (wiseGEEK.com; alz.org).  These deposits clumped together form an insoluble 

plaque which builds up on the outside of neurons.  A more modern theory suggest that 

the smaller pieces of the soluble beta-amyloid deposits known as oligomers and not the 

large invaluable amyloid plaques are the culprit that physically disrupts signing at the 

synapse of the neurons (Schnabel, 2010).  This disruption distresses the neuron causing 

the activation of the immune system leading to cell death (alz.org). 

Tau proteins, which are abundant in the neurons of the brain, are proteins that 

stabilize microtubules (Dawbarn and Allen, 2007).  Microtubules are long; hallow tubes 

that help maintain the structure of the cell and which act as a transport system for key 

materials and nutrients needed by the cell.  In a hyperphosphorylated state, mutations 

occur and cause tau to dysfunction.  Either tau losses the ability to interact with 

microtubules or there is an overproduction of tau (Goedert & Spillantini, 2000) causing 

tau to collapse into twisted bundles called tau tangles, which clog the microtubules 

(Alzheimer’s Association).  In the end the microtubules kink and eventually disintegrate. 

 In the earliest stages, amyloid plaque and neurofibrillary tangles start to form in 

and around the areas of the hippocampus and amygdala, both deep inside the temporal 



6 
 

lobes.  These areas are associated with long term memories and emotions. As the disease 

progresses, the amyloid plaques and tau tangles build up in those areas associated with 

memory and spread through the temporal lobes which affects the speaking and 

understanding language, and into the occipital lobes which is associated with orientation 

of self to the surrounding environment.    

 In the final stages of Alzheimer’s, most of the cerebral cortex is seriously 

damaged.  The brain and especially the hippocampus have dramatically shrunk.  The 

ventricles have grossly enlarged.  The ability to recognize family and to care for 

themselves is lost.  Figure 2 illustrates tissue atrophy and enlarged ventricles that can be 

seen for a sagittal slice of a brain image from an Alzheimer’s patient when compared 

with that of a normal patient.           

             

Figure 2: The changes of the brain.  The cerebral cortex shrinks causing the gyri (ridges) 

and sulci (grooves) to become more pronounced and the ventricles become larger.   

 

 

1.2  Description of the Data Archive 

 

 

 

“Data used in the preparation of this article were obtained from the Alzheimer’s 

Disease Neuroimaging Initiative (ADNI) database (adni.loni.ucla.edu). The ADNI 
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was launched in 2003 by the National Institute on Aging (NIA), the National Institute 

of Biomedical Imaging and Bioengineering  (NIBIB), the Food and Drug 

Administration (FDA), private pharmaceutical companies and non-profit 

organizations, as a $60 million, 5-year public-private partnership. The primary goal 

of ADNI has been to test whether serial magnetic resonance imaging (MRI), positron 

emission tomography (PET), other biological markers, and clinical and 

neuropsychological assessment can be combined to measure the progression of mild 

cognitive impairment (MCI) and early Alzheimer’s disease (AD).  Determination of 

sensitive and specific markers of very early AD progression is intended to aid 

researchers and clinicians to develop new treatments and monitor their effectiveness, 

as well as lessen the time and cost of clinical trials. 

“The Principal Investigator of this initiative is Michael W. Weiner, MD, VA 

Medical Center and University of California – San Francisco. ADNI is the result of 

efforts of many coinvestigators from a broad range of academic institutions and 

private corporations, and subjects have been recruited from over 50 sites across the 

U.S. and Canada. The initial goal of ADNI was to recruit 800 adults, ages 55 to 90, 

to participate in the research, approximately 200 cognitively normal older 

individuals to be followed for 3 years, 400 people with MCI to be followed for 3 years 

and 200 people with early AD to be followed for 2 years.”  (Further information can 

be found at  www.adni-info.org.) 

 

The ADNI study has brain image data which includes MRI and PET images 

which have been validated by the study.  The Laboratory of Neuro Imaging (LONI) Data 

Archive at UCLA is the environment through which outside investigators can obtain 

access to the data.  The ADNI study’s brain image data is not public, but is made 

available to the general scientific community through the website 

www.loni.ucla.edu/ADNI/ to investigators who successfully complete an on-line 

application.  Investigators wishing to obtain access to the data must submit this on-line 

application which requires information about the researcher’s purposed plans and 

requires the researcher to agree to the ADNI sharing and publication policies.  

Due to the archival nature of the study, there is no direct risk to the human 

subjects involved stemming from their participation of the study.  All data has already 

http://www.adni-info.org/
http://www.loni.ucla.edu/ADNI
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been collected and has been de-identified so that an investigator will have no access to 

protected health information (PHI).  As required, I have successfully filled out an 

application and been granted access to the data by ADNI’s Data Publication and Sharing 

Committee as indicated at http://www.loni.ucla.edu/ADNI/Data/ADNI_DataAccounts.jsp.  

Furthermore, I have successfully completed the CITI training course for Biomedical 

Responsible Conduct of Research and the CITI training course for Human Research.   

 

1.3 Outline of the Remainder of the Paper 

 

After the selection of the data, the MRI images must be converted into a useable 

form.  Chapter 2 describes the thought that went into finding a preprocessing program 

followed by a cookbook recipe on how to use the chosen program.  There are many 

image preprocessing programs available ranging from open source programs from the 

internet to those programs which are sold for thousands of dollars.  After reading several 

articles rating various programs, SPM’s DARTEL open source image preprocessing 

program was selected. 

Chapter 3 describes the statistical methods used in the development of this paper.  

No new methods are introduced in this section.  Methods used include: logistic 

regression, support vector machines, neural networks, decision trees and bagging.  The 

derivation and description of these methods can be easily be found in statistical and/or 

data mining texts.  

Chapters 4 and 5 are the major sections of the paper.  Chapter 4 starts out by 

describing and presenting the theoretical reasoning behind the cross-validation selector.  

http://www.loni.ucla.edu/ADNI/Data/ADNI_DataAccounts.jsp
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The section begins by introducing and proving background lemmas which include: 

Markov’s inequality, Chebyshev’s inequality, Chernoff’s bounding methods, Bernstein’s 

inequality, and Hoeffding’s inequality.  All these lemmas may be found in a source about 

nonparametric regression and are needed in order to prove Dudoit and van der Laan’s 

(2003) theorem on the upper bound for the risk of the cross validation.  I was able to 

obtain and improve this bound as shown in Theorem 2.  The section ends with the 

introduction of variable bagging, a method I developed specifically to aid those 

algorithms which have issues with dimensionality.  

Chapter 5 provides three examples illustrating the ideas presented.  The first 

example shows what a classical statistician might do in order to apply the logistic 

regression algorithm to a dimensionally dense data source such as MRI brain images.  

For this case, dimension reduction is mandatory.  Example two provides an alternative 

solution to the problem by using variable bagging.  The example also shows off the 

boosting capabilities of variable bagging by dramatically improving success rates of 

predictability.  The third example unlocks the restraints of using just one algorithm for 

modeling by incorporating the cross-validation selector into the variable bagging 

procedure.  The cross-validation selector allows the investigator to use many algorithms 

in the modeling process.  As a result, the cross–validation selector can produce success 

rates which are better than the success rates of any singular algorithm considered. 

Finally, the paper ends with a discussion of the findings.   
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2 IMAGE PREPROCESSING 

 

It is important to perform pre-processing on the T1 weighted structural MRIs 

before applying the statistical methods to the data.  Voxel-based analysis relies heavily on 

the accuracy of the matching of anatomical regions from subject to subject, i.e. spatial 

normalization.  Matching skull features does not necessarily provide a good match for the 

anatomical regions of brain tissue (Tosun-Turgut, 2012).  Thus skull stripping is usually 

performed before any spatial normalization.    

In pre-processing the images, it is first proposed that the N3 correction algorithm 

(Sled & Pike, 1998) should be used to iteratively estimate a smooth intensity mapping 

function and sharpen the peaks in the image histogram. Then, an intensity normalization 

step is used to remove outlier intensity values by eliminating intensity values below the 

percentile 0.1 and above the percentile 99.9. Then, spatial normalization is performed by 

transforming the coordinate system to a standard brain-based system (stereotaxic space) 

so that similar anatomical structures from different data sets are mapped to an equivalent 

system (Fox, Perlmutter, & Raichle, 1985; Mazziotta, Toga, Evans, Fox, & Lancaster, 

1995). The spatial normalization step also includes a registration algorithm (Collins, 

Neelin, Peters, & Evans, 1994) using an average MRI image based on optimizing 9 

parameters (3 translations, 3 rotations, and 3 scalings). Finally, a second pass of spatial 

normalization is performed to correct the intensities of each image with respect to the 
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patient-specific stereotaxic target after intensity normalization using least trimmed 

squares (Rousseeuw & Leroy, 1987). 

Selecting a pre-processing algorithm proved to be difficult, especially for 

someone not in the field of preprocessing.  There are many image preprocessing 

programs available ranging from the open source programs to those programs which are 

sold for thousands of dollars.  In the fast pace world of pre-processing development, 

many projects have not kept pace with the recent ideas about spatial alignment and 

nonlinear deformation.  Many algorithms available have, in fact, been abandoned by the 

developer and have become obsolete. Two well-known packages that are highly accepted 

in dementia research are LLDMM and SPM’s DARTEL.  These nonlinear high 

dimensional warping algorithms are well suited for accurate localized anatomical 

matching which is needed for voxel-based analysis.  In the end, SPM’s DARTEL was 

selected to do the pre-processing.  Section 2.2 list the steps needed for the preprocess 

procedure.  

 

 

2.1  Preliminary Decisions: Choosing the Pre-processing Algorithm 

 

The paper “Evaluation of 14 nonlinear deformation algorithms applied to human 

brain MRI registration” by Klein et al [2009] provided a good starting point and source 

for several of the freely available software.  In short, the results of their study concluded 

that ART, SyN, IRTK and SPM’s DARTEL were ranked highest in pre-processing of 

MRI brain scans. However, the value of the conclusions came into question when the 
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paper pointed out that the comparisons were made on “normal” brains.  Alzheimer’s 

brains cannot be considered “normal” because of the presence of lesions, enlarged 

ventricles and the presence of areas of atrophy.    

Brett et al. [2001] advocated cost function masking and found that cost function 

masking significantly improves non-linear registration/normalization results.  This 

method became the accepted method which overcame the difficulties related to the 

normalizing damaged brains.  In cost function masking, the voxels representing 

abnormalities are masked or blotted out, and the remaining regions of the brain are 

registered to the target.  After the registration, the masked areas are reinserted.  These 

abnormalities are identified by calculating the cost function or the “distances” between 

the intensities of the image and the target.  If this distance (cost function) is too large, the 

area is masked.  Andersen [2010] continued to agree with Brett’s results and concluded 

that the failure to use cost function masking results in less accurate results in terms of i) 

deformation field displacement, ii) voxelwise intensities of the lesion areas and iii) a 

significant underestimation of lesion volume.    

Cost function masking, however, may not be a viable choice, especially when 

registering a population with lesions that are large and/or are bilateral.  These traits are 

common to Alzheimer’s patients (Kim, Avants, Patel, & Whyte, 2008).   

Again, the idea of cost function masking is to first blot out defective areas, 

register the remaining brain tissue to a template and finally fit the masked portion to the 

resulting empty space, usually by affine transformations (Brett, Leff, Rorden, & 

Ashburner, 2001).  However, these affine transformations would be undesirable because 

of the non-linear nature of damaged portion of the brain, which for example might 
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include: the region being non-symmetric within itself and to the rest of the brain, the 

random occurrence of atrophy and/or ventricular enlargement.  A non-linear 

transformation for the injured portions of the brain would seem to be more desirable.   

Common non-linear transformations are based on linear combinations of 

polynomials or functions of cosine basis.  But again, these approaches have their 

limitations due to the assumption that the damaged area is small.  On the other hand, the 

DARTEL toolbox in SPM, the FLIRT tool in FSL, and the SyN in ANTS algorithms 

were designed using a diffeomorphism which can implement spatial normalization 

applications with large areas of deformation (Kim et al., 2008). 

Two well-known packages, LLDMM (C++ based) and DARTEL/SPM (Matlab 

based),  were recommended by Duygu Tosun-Turgut, an University of California San 

Francisco (UCSF) School of Medicine Assistant Professor (Through personal 

correspondence, June 29, 2012).  Professor Tosun-Turgut explained that these two 

nonlinear high dimensional warping algorithms are well suited for accurate localized 

anatomical matching which is needed for voxel-based analysis.  The programs have also 

been around for many years and are highly accepted in dementia research. 

Thus, based upon the discussions by Klein et al., Kim et al., and the 

recommendation by Dr. Tosun-Turgut, the Anatomical Registration Through 

Exponentiated Lie algebra (DARTEL) toolbox in SPM8 was chosen to perform the 

preprocessing and registration of the sample images. 
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2.2  SPM’s DARTEL 

 

 As the name indicates, DARTEL (Diffeomorphic Anatomical Registration 

Through Exponential Lie algebra) is a diffeomorphic algorithm.  A diffeomorphism is a 

one-to-one continuously differentiable mapping NMf : of a differentiable manifold 

M into a differentiable manifold N in which the inverse mapping is also continuously 

differentiable (www.Encyclopediaofmath.org).   As a result, this mapping will preserve 

topology (Ashburner, 2007) which is important in the circular nature of DARTEL. 

 DARTEL uses two approaches in the segmentation of brain images: tissue 

classification and registration to a template (Ashburner & Friston, 2005). 

 Tissue classification uses the intensities of each voxel.  The intensity distribution 

of any individual image can be represented by a mixture of three normal distributions 

representing the cerebrospinal fluid (CSF), gray matter (GM) and white matter (WM) 

(Magnin et al., 2009).  Each voxel is automatically classified, according to its intensity, to 

the particular tissue class which has the highest probability (Ashburner & Friston, 2005). 

 Registering to a template involves warping a template image to the subject’s 

image.  The regions of the template are pre-defined allowing for an automatic 

identification of the brain’s structure (Ashburner & Friston, 2005). 

 Classification in DARTEL requires the images to first be registered with tissue 

probability maps which will represent the prior probabilities.  These prior probabilities 

can then be used with tissue types classified from the image intensities to provide the 

posterior probabilities using Bayes rule. Thus a circular procedure revolves requiring an 

http://www.encyclopediaofmath.org/
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initial tissue classification for registration and an initial registration for tissue 

classification (Ashburner & Friston, 2005). 

 The main disadvantage of intertwining the two procedures is that it produces a 

complex algorithm requiring more time to run than the two procedures running 

separately.  The code itself also is hard to access.  However, the results are more accurate. 

     Performing pre-processing and registration to the T1 weighted MRI’s is important 

to insure that the various regions of the brain are lined up correctly. For the beginner the 

SPM8 manual, which is a 451 page pdf file, might prove to be a bit intimidating.  A great 

alternative is the “cookbook” type discussion entitled “VBM Tutorial” by John 

Ashburner  found at: www.fil.ion.ucl.ac.uk/~john/misc/VBMclass10.pdf .  The following 

notes follow this tutorial closely.  

 The first thing to notice is that the SPM8 package is actually a folder containing 

algorithms and files written in the MATLAB environment.  However, the knowledge of 

MATLAB is not necessary.  (Note: As of this writing, there exists a beta version of a 

stand-alone SPM8 for those who do not have the MATLAB program.)  The SPM8 

software, along with the “patches /fixes” may be downloaded from: 

http://www.fil.ion.ucl.ac.uk/spm/ .   

 

Step 0: Start up MATLAB and bring up the SPM environment. 

  

 Start up MATLAB.  In the “Command Window” type:  spm pet . (alternate: In the 

“Command Window” of MATLAB type spm, followed by the clicking on the “PET & 

VBM” button.) 

http://www.fil.ion.ucl.ac.uk/~john/misc/VBMclass10.pdf
http://www.fil.ion.ucl.ac.uk/spm/
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 SPM requires the T1-weighted images to be: 1) in the NIfTI format.  SPM does 

provide a way of converting many types of images that are in the DICOM format to the 

required format.  The images from the ADNI archive were already downloaded to the 

proper NIfTI format. 2) The images should be aligned within 5cm and 20 degrees of each 

other.  The “Check Reg” button will allow you to view several images at once to check to 

see if the images are in the proper orientation.  The “Display” button will allow you to 

readjust the tilt of the head or the origin of the axes. Historically the center is usually 

located near the anterior cingulate (AC).     

 

Step 1: Segmenting the image, i.e. skull stripping.  

  Batch  SPM  Tools  New Segment 

There are three main headings within the “Current Module: New Segment” 

window: Data, Tissues, and Warping & MRF.  Under the Data heading, the path of the 

images which need to be segmented are defined.  By highlighting the Volume subheading 

and clicking on the Select Files button, the path of the file which contains the images can 

be established.  The available images will appear in the right hand window.  By right 

clicking on the first image and clicking on “select all”, the path of all the images in the 

file will be identified for segmentation.  If select files are preferred, then click on only the 

individual files of interest.  Complete the selection by clicking the Done button. 

Under the Tissues heading, there are six other Tissue subheadings which will 

identify the six tissue categories of the head.  They are, in order: gray matter (GM), white 

matter (WM), cerebral spinal fluid (CSF), skull, soft tissue outside the brain (throat, 
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muscles, eyes etc), and the material outside the head.  Accept all defaults under the 

Tissues heading except for the “Native Tissue” entries for the first two Tissue 

subheadings which were changed from “Native Space” to “Native +DARTEL import”.  

Accept the defaults under the Warping & MRF heading. 

When ready, click the green triangle at the top to run the batch.  It takes 

approximately 11 minutes per image to run.  The batch will produce “Native Space” files, 

with prefixes c1, c2, c3, c4 and c5 representing, respectively, GM, WM, CSF etc.  The 

batch will also produce two DARTEL import files, prefixes rc1 and rc2, which will be 

used in the next step of the registration process. 

Step 2: Create Templates using DARTEL 

 

 In the current Batch Editor: 

 

  SPM  Tools  DARTEL Tools  Run DARTEL (create Templates) 

 

In this step DARTEL will simultaneously align the GM and WM of each image to 

create an inter-subject average template.  This is an iterative process, done at each voxel 

of the brain, which matches each image to an average template formed from all the 

images.  

To define the parameters in the “Current Module: Run DATREL (create 

Templates)” window, first create two Images subheadings under the main Images 

heading.  This is done by highlighting and replication the initial Images subheading. Then 

define the paths of DARTEL’s imported GM images (rc1’s) in the first Images 
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subheading and the imported WM images (rc2’s) in the second.  Make sure that the 

selection of the WM and GM images are made in the same order.  For the rest of the 

settings, use the defaults.  

The process takes approximately 40 minutes per image to run.  The result is a 

series of templates (zero through six) and a “u-rc1” image for each image.  The templates 

are averages of all the images which are registered to the MNI space, the last being the 

best representation of the registration.  The “u_rc1” images are the estimated 

deformations of the brain which will be used to encode the shapes of the brains to the 

MNI space. 

Step 3: Normalising the images to the MNI space. 

 

In the current Batch Editor: 

  SPM  Tools  DARTEL Tools  Normalise to MNI Space 

 

In this step, DARTEL generates images that are smooth, spatially normalized and 

Jacobian scaled gray matter which is in the MNI space.  The final image will have the 

prefix of “smwc1”.  

The “Current Model: Normalise to MNI Space” window has six headings to be 

considered: i) “DARTEL Template”, defines the path to the final template created in the 

last step.  ii) In the “Select according to” heading, select “Many Subjects”.  This will 

produce the sub-heading “Flow fields” in which the paths of the “u_rc1” images will be 

defined.  Under the sub-heading “Images” there is a double sub-heading “Images” which 

is used to define the paths of the gray matter images “c1”.  iii) The default in “Voxel” 



19 
 

will be used to indicate a voxel size of 1.5mm. iv) The default is also used for the 

“Bounding box” heading.  v) Under the “Preserve” heading, choose “Preserve Amount” 

in order to have the tissue volumes compared used in VBM studies.  The “Preserve 

Concentrations” choice is suggested for fMRI studies which have no modulation.  vi)  

Finally, the “Gaussian FWHM” is the size of the standard deviation of the Gaussian used 

for smoothing; the lower the smoothing constant, the more accurate the alignment will 

be.  A value of 8mm was used, i.e. [8 8 8 ], instead of the default of 10mm was used as 

suggested by Ashburner in his tutorial.   

Normalising the images to the MNI space took about 50 minutes per image. 
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3 METHODS 

 

The methods described in this section can be found in any good text about 

statistical learning theory (Hastie, Tibshirani, & Friedman 2009; Vapnik 1998).  The 

discussion about bagging came from the original paper (Breiman, 1994).  For the purpose 

of this paper, only four methods were considered even though many more algorithms 

could have been included.  The four methods are: logistic regression, support vector 

machines, neural networks, and decision trees.   

 

3.1  Local Logistic Regression 

 

Let the response variable, }1,0{iy , be binary for the ith subject and let

T

nyyy ],,[ 1  be the vector of responses of all n subjects of the data set.  Let xij be the 

intensity of the jth voxel for the ith subject and let
T

imii xxx ],,,1[ 1   be the vector of 

intensities for the ith subject where m is the number of voxels in each image. Furthermore, 

let jv  be the location of the jth voxel.  Define 
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to be the )1(  mn  design matrix for all voxel intensities for the data set.  Thus, at a 

single voxel located at v 3 , logistic regression models the data as follows. 
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Assume nyy ,,1   are independent random variables such that  yi  follows a Bernoulli(pi) 

distribution where 
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for i = 1, …, n.  Here T

m ],,,[ 10    is the vector of regression coefficients where 

)(00 v   is the intercept and )(vii   is a regression coefficient for the ith voxel for 

the model.  The weights wj are nonincreasing functions of the distances from vj to v 

defined on [0, ∞), and  W = W( v ) is a     11  mm  diagonal matrix having the 

elements mwww ,,,1 10   on the diagonal.  For example, one possible choice of weights 

is  
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The log-likelihood function for β is 
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Using  pi  from the equation above, we have 
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Thus the likelihood can be written as 
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To maximize l, find the value of β such that  

   .0)(  l  

Thus, it follows that 
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where p = [p1 , . . . ,pn]
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 Note that the solution to 0)(  l  is a global maximizer since 
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which is a nonpositive definite matrix (if X is of full rank then it is negative definite) 

where  WW
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There is no closed form to the solution of 0)(  l , thus numerical methods are 

needed to find the root of the equation.  The Newton-Raphson algorithm is one of the 

most widely used methods to find the root of equations of this form.  To find the root of a 

non-linear p-dimensional equation F(x) = 0, the multivariate version of the Newton-

Raphson algorithm is based on the first order Taylor approximation 
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If  x0 is the current estimate of the root then the updated estimate of the root is as follows: 
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In our case of local logistic regression, F is the same as l , thus the iterative step of the 

Newton-Raphson algorithm is 
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Hence the Newton-Raphson algorithm will proceed as follows: 

1.  Start with an initial estimate 0̂ .  A reasonable choice is the weighted least    

squares estimate       

                            WyXXWX TT 12

0
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2.  Update the estimate of β until convergence. 
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This algorithm is also called iterative reweighted least squares (IWLS) when used 

with logistic regression. 
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Note that the algorithm produces only a local maximum.  The algorithm should be 

run several times by taking various initial value of 0̂  in the domain.  A local maximum 

will be produced from each running of the algorithm.  Taking the maximum of all the 

local maximums is more likely to produce the desired global maximum for ̂ . 

 

3.2  Support Vector Machine 

 

3.2.1  Background Theorems 

For a more in depth discussion, please refer to Vapnik (1998).  In particular refer 

to section 9.5: “Three Theorems of Optimization Theory”. 

A support vector machine (SVM) is an example of a supervised classification 

method.  Intuitively, the idea is to not only be able to define a hyperplane separating two 

distinct groups but to define a hyper-boundary having a margin of 2M which separates 

groups.  The goal of the problem is to find this hyper-boundary which has the maximum 

margin.  

Three theorems play an important role in developing the theory associated with 

SVM.  The first is familiar to any Calculus student wanting to optimize a function with n 

variables. 
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Theorem (Fermat’s theorem for functions of n variables) 

Let f be a function of n variables, 
nxx ,,1  , and differentiable at the point 

),,( **

1

*

nxxx  .  If x* is a point of local extrema of f(x) then 

 0




ix

f
     for  .,,1 ni   

 In the case where )(xf is to be optimized given restrictive conditions, the 

Lagrange method can be used.  By introducing variables called Lagrange multipliers to 

help include the constraints into the original function, the Lagrange equation helps solve 

many conditional optimization problems.  

 

Theorem (Lagrange’s Theorem) 

 Let the functions mkxf k ,,1,0),(   be continuous and differentiable in a 

neighborhood about the point *x .  If *x is a point of local extrema then there exist 

Lagrange multipliers ),,( **

1

*

m  and 0 , where misi ,,1,'*   and 0  are not all 

equal to zero, such that the following conditions hold true: 
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is called the Lagrange function. 
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For example, in order to set up the Lagrange equation to find the maximizer (or 

minimizer) of a given function   

    ),,( 1 nxxf    

given the constraints  

    nmmjbxxg jnj  ,,1),,( 1 
,
 

first define the Lagrange multipliers mjj ,,1,  , to construct the Lagrange equation 
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In order to find the stationary points, the partial derivatives of L with respect to all the 

variables sxi '  and sj '  are set to zeros, i.e. 

 nifor
x

L set

i

,,10 



   and   mjfor

L set

j

,,10 





. 

  Thus in order to optimize the equation one has to solve the system of  m + n equations.  

 Lagrange was the one who introduced a method for solving the conditional 

optimization problem using equality type constraints.  It was Kuhn and Tucker who 

suggested a solution to the convex optimization problem which uses constraints of 

inequality type. 

Theorem (Kuhn-Tucker Theorem) 

Let X be a linear space and let A be a convex subset of X.  Also let 

mixf i ,,1,0),(   be convex functions.   If the point *x minimizes the function )(0 xf  

subject to the constraints 

mkxf k ,2,1,0)(     
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Ax
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then there exist Lagrange multipliers *
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b) mii ,,1,0,0*   

c) .,,10* mkf kk 
  

 

 

3.2.2 The Formulation of the Problem 

 

 For a more in depth discussion concerning the subject of this section refer to 

sections 10.1-10.3 of Vapnik (1998) and sections 4.5 and 12.1-12.2 of Hastie, Tibshirani, 

and Friedman (2009).  

In the separable case, the idea is to construct a hyperplane, i.e. a linear decision 

boundary in hyperspace, which will distinctly separate two sets of points. Further, it is 

ideal to define a region symmetrically about this hyperplane having a margin, M, of 

maximum distance.  The width of this region is therefore 2M.  The support vectors in the 

separable case will be those points which lie M units from the boundary.   

 However, in the nonseparable case there will be points which lie on the wrong 

side of the margin by the amount of jj M *
.  Those points on the correct side of the 
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margin have 0* j .  Thus, in the nonseparable case, the margin is maximized subject to 

the total distance of points on the wrong side of their margin, i.e. jM .  

 Using the training data  ),(,),,(),,( 2211 nn yxyxyx  , where p

ix   and 

 1,1iy , we will define the hyperplane as 

 0)(: 0  Txxfx  

with 1 .  The classification rule is the sign of  f(x).  Again the problem is to define a 

region symmetrically about this hyperplane having a maximum marginal distance of M.   

In other words, for all i, the problem for the separable case can be stated as 

M
1,, 0

max
  

subject to 

.)( 0 Mxy T
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We can eliminate the 1  condition by writing 

Mxy T

ii  )( 0
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or 
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0 Mxy T

ii  


 

This, by the way, will redefine 0  from the previous equation. 

By arbitrarily setting 
M

1
  the problem is more conveniently written as  

     
 0,

min  

subject to  
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.1)( 0  T

ii xy  

 Now for the nonseparable case, there are points which are on the wrong side of 

the margin by the distance of jj M *
.  The problem in this case still is to maximize M 

but it is allowable to have some points on the wrong side of the boundary.  Define the 

slack variables  n ,,1   such that iM  is the distance for which the ith   point is on 

the wrong side of the boundary.  It is easy to see that for all 0, ii              ( 0i  for 

those points that are on the correct side of the boundary).  Now set Ki

n

i





1

, for some 

constant K.  Note that misclassification occurs when 1i .  By setting a bound on i

n

i


1

, 

this sets a bound on the number of misclassifications for the training data.  

 Thus, the problem becomes: 
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 The problem is now quadratic with linear constraints.  In other words it is a 

convex optimization problem subject to Lagrange’s and to Kuhn-Tucker’s Theorems.  It 

is convenient to rewrite the problem in the following equivalent form which includes the 

number of misclassifications in the main optimization portion of the equation. 
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Hence, the primal Lagrange function becomes: 
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Substituting back into pL to produce the Lagrange dual problem DL  gives 
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Then maximize DL subject to: 
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and also the Kuhn-Tucker conditions 

     010  i

T

iii xy   
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Thus,   has the solution in the form 
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Those support vectors on the boundary of the margin have  0ˆ i . However, 

for those support vectors that are on the wrong side of the boundary, 0ˆ i , which 

implies that 0i and Ci ̂ (since ii C   ).  Finally for those support vectors 

on the margin, ( 0ˆ i ) along with i0 , so that 

 ˆˆ
0

T

ii xy  . 

 

 

3.3   Neural Networks 

 

Artificial neural networks had its motivation by the desire to model the human brain 

by a computer (Györfi, Kohler, Krzyżak, & Walk, 2002). This was one of the first ideas 

of how to construct a “learning machine”.  A simple model was introduced by McCulloch 

and Pitts (1943), where they modeled the neuron by a real valued function, g(x), in d  

which would apply a threshold function to a linear weighted combination of inputs.  The 

range of the threshold function being but the binomial set, {0, 1}.  The artificial neuron 

can thus be defined as: 

)()( 10 xxg
T

 
, 

where the input vectors, dx  , are weighted by dT
1 and 0 .  The 

construction of a network of neurons (i.e. a neural network) begins with the initial 0n   

inputs. The final outcome is but one output.  In between the initial inputs and final output 
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are several hidden layers.  The graph may be represented by a forward feeding network 

graph where the output of one layer will become the input of the next layer.   

 To estimate the unknown coefficients for all neurons, the threshold function is 

first replaced with a sigmoid function, ]1,0[:)( x which is defined as a 

nondecreasing function with 0)(lim 


x
x

  and 1)(lim 


x
x

 .  This is also referred to as a 

squashing function (Györfi et al., 2002).  Some of the more familiar squashing functions 

are: 

logistic squasher:  
xe

x



1

1
)( , 

Gaussian squasher:   













 


x

y

dyex
2

2

2

1
)(


      and 

arctan squasher: )arctan(
1

2

1
)( xx


  . 

 

To formulate the model, let  ),( YX be the set of training data where 

),,,(
021 nXXXX  is the set of input vectors, each having equal length, and Y the 

corresponding outputs.  Further, suppose that there are l different classifications for the 

outputs.   

 Now consider a neural network with 1m  layers.  Each layer will be connected 

with the previous layer.  For clarity, define the initial input data as the initial layer, i.e, 

 )0(,),0(),,,(
00 121 nn xxXXXX   , and the image of X at the thk level as: 

 )(,),()(
01 kxkxkX

kn  , for mk ,,1  .  Thus, for the thk level of the neural network 

and  the thi decision, li ,,1  , the neuron may be written as: 

))1(()( 0  kXkX i

T

kkki  . 
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A backpropagation algorithm was introduced by Rumelhart and McClellan 

(Rumelhart & McClelland, 1986).  The performance measure of the 
2L error function: 

 
2

1

)(



l

i

ii mxy is minimized by the technique of Lagrange multipliers (Vapnik, 1998).  

The Lagrange function becomes: 

   
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2
))1(()(()()(),,(  ,         

where )(ki are the Lagrange multipliers.  The process of finding the minimum follows 

the usual procedure of setting the gradient of L, with respect to all parameters, equal to 

zero.  First taking the partial of L with respect to the Lagrange multipliers, )(ki , gives 

an iterative procedure of defining the output vectors within the hidden layers which gives, 

what is called, a forward dynamic to the problem.  

0))1(()(
)(

0

set

i

T

kki

i

kXkX
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L





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
      or 

                       ))1(()( 0  kXkX i

T

kki        for mkli ,,1,,1   ,  

with the initial condition ii XX )0( .  

 Secondly, by taking the partial derivative of L with respect to the inputs iX , the 

resulting equations give a backward iterative definition to the Lagrange multipliers i .  

For the last layer:   

                      
0)())((2

)(

set

iii

i

mmxy
mX

L





     which implies  

            ))((2)( mxym iii        for   li ,,1     
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and for the hidden layers: 

                       0)1())(()(
)(

1)1(011
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kkk

T
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 Finally, the partial of L with respect to the weights i is taken.  For clarity, define 

the input vectors )(kX i  as augmented matrices.   Then we can write: 

)())(( 1)1(0 kXkX iki

T

kk    , where )(kX i on the right is an augmented matrix. 

Thus  
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This form, however, does not give a direct way for computing the weights k .   The 

algorithm called the steepest gradient descent, fortunately, may be used to estimate k . 

k

l

i

T

ii

T

kkitk kXkXk   




1

1 )1())1(()(  , 

where t  is defined as a small value used in each iteration t. 

It should be pointed out that the 2L error function,  
2

1

)(



l

i

ii mxy , is nonconvex 

and will have several local minima.  Thus, the final solution depends on the choice of 

starting weights k (Hastie et al., 2009).  Typically a number of random starting weights 

should be selected whereby the lowest result will be chosen as the minimum error.  In 
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addition in each trial, the weights should initially be chosen to be close to zero.  Choosing 

the weights to be close to zero causes the sigmoid function to be roughly linear in the 

early stages of the algorithm.  The model will become increasingly nonlinear as the 

weights increase as needed in the algorithm. 

 Another issue is overfitting due to the many weights associated with neural 

networks.  An early stopping point is usually implemented in which a validation set is 

used to determine the stopping point.  Another procedure used to avoid overfitting, called 

weight decay, places a penalty on to the error function similar to that of  ridge regression 

(Hastie et al., 2009). 

 By controlling the growth of the number of hidden layers m and bounding the 

Lagrange constant c
m

i

i 
1

 , where c is a finite constant, the empirical 2L error function 

minimization provides universally consistent neural network estimates (Györfi et al., 

2002). (The theorem and proof can be found on page 301 in “A Distribution-Free Theory 

of Nonparametric Regression” by Gyorfi et. al.)   

 

3.4   Decision Trees 

 

 One needs to realize that there is not a unique decision tree algorithm.  The major 

differences occur in the decision formula and in the pruning of branches.  Some of the 

more common classification tree algorithms are: CART (Leo Breiman, 1984), PART 

(Chambers & Hastie, 1993), C4.5 (Quinlan, 1993)  which is an extended version of ID3 
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and the CRAN r packages: “tree”(Ripley, 2013)  and “rpart”(Therneau, Atkinson, & 

Foundation, 2013). 

 As the name indicates, decision trees consist of nodes and branches.  Each node 

branches out indicating a decision has been made on how to group a new node, the data 

which best represents the dependent variable. This process continues until a final node, 

called a leaf, and a conclusion is reached. 

 In developing a decision tree, three decisions need to be made (Leo Breiman, 

1984): 

 i) how to select the splits,  

ii) how to determine if a new node is a terminal node (leaf) or not, 

iii) and how to make the assignment of each leaf to a particular class.   

 For splitting rules, define A to be a node which contains a set of data points.  Each 

data point, has J  attributes and a resultant term which corresponds to a particular class C.  

Define Aip ,  as the probability of being in class i from set A.  Define )(AI as the impurity 

of set A where 



Ci

AipfAI )()( ,  for some impurity function )(f . 

By choosing an impurity function that has the desirable properties of being 

concave and having the endpoints 0)1()0(  ff  the results would, by definition, 

guarantee that: 1) a “pure set” ( a set that is entirely of a single class) would have 

impurity of zero, i.e. 0)( AI , and   2)  by Jensen’s inequality (Royden, 1988; 

Billingsley, 1995), the impurity reduction would be nonnegative, i.e. 

0)()()()()()(  RRLL AIApAIApAIApI  

where LA and RA  are sets obtained from a partition of A. 
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Traditionally, there are two possibilities considered for the impurity function: the 

information index pppf log)(   and the Gini index )1()( pppf  .  Graphically, the 

two functions are similar and it has been observed that “final tree selection are 

surprisingly insensitive to the choice of splitting rule” due to the impurity function (Leo 

Breiman, 1984).   

 The general idea of the split is simple; we want to split the data in such a way as 

to be able to give an accurate prediction in terms of output (the class) of an independent 

sample by following the branches of the tree.  Thus, at each node a splitting decision is 

made by using a greedy search method.  By considering every possible split of every 

attribute, the split which produces the greatest “impurity reduction” will be accepted.   

In other words:    

Imax     where 

)()()()()()( RRLL AIApAIApAIApI   

  Typically, splits divide a group in two branches to produce a binary tree.  

Numerical attributes are ordered and splits   vs. > each of the elements are considered.  

For categorical attributes, every division resulting in two subgroups are considered.  

Multivariable splits are avoided since they could fragment the data too quickly with the 

possibility of having several categories with only one response (Shalizi, 2009). (Note: 

CRAN R’s package rpart uses several different measures of impurity in an attempt to 

avoid problem such as “ties”.) 

 A completed decision tree can be quite large and complex.  Decisions must now 

be made on how to prune the tree.  Stopping the splitting process at a node will make the 

model more predictable and it is expected to lower the predicted error rate (Kantardzic, 
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2003).  Early stopping rules included stopping if the size of the node was less than a pre-

assigned value and/or if the maximum decrease in the impurity was less than a given 

value, i.e. Imax (Breiman, 1984).  However, both of these criteria tend to give 

unsatisfactory results.  Other types of prepruning stopping criterion are based on some 

statistical test such as F or 2  test.  If there is no significant difference in accuracy 

before the split verses after the split, then the node is a terminal node.   

Postpruning first runs a decision tree to completion followed by the removal of 

the tree structure.  The package rpart chooses the minimum cost of every sub tree.  The 

cost for any sub tree iT   of tree T is defined as:    

iii TTRTR   )()(  , 

where  

   



iTofsubtree

jji TRTpTR )()()(  is the risk of iT ,  

   iT  is the number of nodes of iT , and 

   ),0[   is the “cost” of adding another number. 

Cross validation is used to choose the best value of  .  A more complete explanation 

may be found in the documentation for the rpart package (Therneau et al., 2013).  

 

3.5  Bagging 

Bagging or bootstrap aggregating “is a method for generation of multiple versions of 

a predictor and using these to get an aggregated predictor” as described by Leo Breiman, 

the developer of the method (Breiman, 1994).   It is a method which improves the 
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accuracy of an estimate or prediction by allowing several estimates to “vote” on the 

prediction. 

 Define  L to be a training set which contains a sample of independent elements (x, 

y) drawn from the distribution P. Define ),( Lxf  to be the predictor function of x based 

on the sample set L.  Define ),(),( LxfEPxf LA   to be an aggregate of predictors.   

Let X, Y be random variables from the distribution P and independent of L.  The 

average prediction error e in ),( Lxf is: 

 2, ),( LXfYEEe YXL  . 

Similarly the prediction error for the aggregate is: 

    2, ),( PXfYEe AYXA   

 Using the identity  22 )( EzzE   for any random variable z: 

  2

, ),( LXfYEEe YXL   

     22

, ),(),(2 LXfLXYfYEE YXL   

                                           2

,,

2

, ),(),(2 LXfEPXYfEYE AYXAYXYX   

     2

, ),( PXfYE AYX   

   Ae  

 

Hence, the aggregate predictor produces a lower error than an individual 

predictor.  This improvement depends on the difference in the identity,  22)( EzzE   i.e. 

and thus how unequal  22 ),(),( LXfELXfE LL   are.  The higher the variability is to 

the replicate of L, the more improvement the aggregate will produce.  Further notice that 
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the bagging aggregate is not ),( PXf A
 which is based on the entire distribution P, but 

rather a bootstrap approximation of P,
LP .  If the procedure is stable, then the aggregate is 

close to a predictive value, ),(),( LXfPXf LA  , and bagging will have little to no use. 

 

A more intuitive “proof” is achieved by assuming that the data 

),(,),,(),,( 2211 nn YXYXYX  is iid, and that the aggregate is the simple mean of the 

predicted values, 



m

i

iY
m

Z
1

ˆ1
, where ii YXf ˆ)(     is the estimator for iX  based on the 

training data L.  Z is as unbiased estimator of Y,                        
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If  22 )2( EZE   exist, the expected loss function for Z is:   

                          22 )()( EZZEyZE   

                                       )(2 Z  

                                           



m

i
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m 1
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2
)(

1
  

                                               )(
1 2 Y
m
  

 

Thus, as 0)(, 2  yZEm , i.e. by increasing the number of predictions, 

the mean of these predictions comes closer to the true value. 

Again this second derivation is intuitive, informal and provides the main idea of 

bagging.  However the previous derivation which was based on Leo Breiman’s proof, 
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provide the understanding of how much of an improvement bagging can produce for 

unstable situations. 
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4 THE CROSS-VALIDATION SELECTOR AND VARIABLE 

BAGGING 

 

The central idea of this section is Dudoit and van der Laan’s theorem (2003).  The 

theorem presented in this paper is more specific to the needs of the K-fold cross-

validation selector as opposed to the general form presented in the original paper.  In any 

event, a lot of background information is needed for the theorem’s understanding.  

Therefore, the section starts out by stating and proving background lemmas.  The lemmas 

include: Markov’s inequality, Chebyshev’s inequality, Chernoff’s bounding methods, and 

Bernstein’s inequality.  All these lemmas may be found in a complete text about 

nonparametric regression.  The proof of the theorem is quite involved, however, it 

provides an upper bound for the risk of the cross-validation selector.  With the use of 

Hoeffding’s inequality, the bound in Theorem 1 can be improved.  The statement and 

proof of this statement can be found in Theorem 2. 

The section ends with the introduction of a new procedure called variable 

bagging.  This method was specifically developed to aid those algorithms which have 

issues with dimensionality.  In later sections, both the cross-validation selector and the 

variable bagging process will be combined to build models with impressive results. 
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4.1  Introduction 

 

 Consider the following scenario.  Let 0P  is a specific, but unknown, true 

probability distribution set.   Let 
0P̂ be the empirical distribution of the random sample 

),(,),,( 11 nn YXYX   from the data generating distribution 0P  where j

iX   and 

iY  is the univariate outcome.  The goal is to model 0P   by using the data set
0P̂ .   

This is one of the main problems in statistics which can be filled with many pitfalls. In a 

traditional approach, the practitioner would assume the structure of the underlying 

distribution of 0P , i.e., the practitioner would assume a parametric model.  There are 

some advantages to this approach.  The model usually depends only on a relatively small 

number of parameters and this model would usually be easy to interpret (Györfi et al., 

2002).   However, by using the assumption of a parametric model from the beginning, the 

practitioner is admitting that the model is wrong. Thus, no matter how representative the 

data set may be, the resulting model is limited to the best model based on the 

predetermined parametric structure (Györfi et al., 2002).  Therefore the model is biased.  

This bias cannot be improved upon, no matter what the sample size (M. J.  van der Laan 

& Rose, 2011). 

One way to correct this problem is to let the model learn from the data which 

would discover the underlying trends represented by the data
0P̂  (M. J.  van der Laan & 

Rose, 2011).  A nonparametric statistical model assumes only that the empirical data 

contains n iid (independent, identically distributed) observations from the data generating 

distribution 0P  which is unknown.  The goal of this nonparametric model, also called 
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machine-learning, is to find an acceptable generalization which represents the underlying 

distribution by reviewing the data set (Kantardzic, 2003).   

Another drawback for both the parametric and the non-parametric model lies in 

the zeal of the practitioner in finding the “best” model.  This idea might seem confusing 

at first since it is the goal to produce the most accurate model in the prediction of future  

outcomes.  The problem lies in overfitting (Cawley & Talbot, 2010).  In parametric 

terms, overfitting occurs when the random error of the true model is incorporated in the 

model along with the underlying trend (Everitt, 2002).   In machine learning (non-

parametric modeling) overfitting occurs when the model memorizes the training data 

(Kantardzic, 2003) instead of representing the trend.  Methods in avoiding overfitting 

involving a finite data set include: k-fold cross-validation, pruning, early stopping, 

Bayesian priors on parameters and optimization of performance bounds (Cawley & 

Talbot, 2010).        

 The following section develops the nonparametric and semi-parametric theory 

which will be used in section 4.3 to prove the main theorem of the chapter which in turn 

is used in developing a model for classifying whether or not a MRI scan shows an 

Alzheimer’s case.  The data which will be used will be the LONI data set.  The theory not 

only gives validity for the use of k-fold cross-validation methodology but also extends to 

the practice of combining several models (both parametric and nonparametric) to come 

up with one “super learner” model  (M. J. van der Laan, Polley, & Hubbard, 2007).     
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4.2 Background Lemmas  

 

 In establishing the theory, it is helpful to start with the basic theorems pertaining 

to the theory of concentration of measure.  Though Markov’s inequality, Chebyshev’s 

inequality, Chernoff’s exponential bounding method and Bernstein’s inequality are easily 

found in many different sources, the first three were taken from Vincent, T. et al. 

(Vincent, Tenorio, & Walkin) and the latter from page 594 of Györfi et al.(2002). 

 Markov’s inequality is the basis in the theory of convergence.  For any non-

negative distribution and t>0, it provides an upper bound of the percentage of the tail of 

the distribution which is above t.  Of course if the distribution were known, better 

estimates are usually available.  Also, the inequality relates probability of a distribution to 

its expectation.  

 

Lemma 1 (Markov’s inequality) 

For any nonnegative random variable X with finite mean and t>0, 

 
t

X
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Pr


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Proof: For the continuous case, for the nonnegative random variable X and t>0 
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 Chebyshev’s inequality extends the ideas of Markov’s inequality for variances.  

Historical note: Markov was the student of Chebyshev and proved the inequality in his 

dissertation which Chebyshev stated 10 years earlier without stating a proof. (Taylor)   

Lemma 2 (Chebyshev’s inequality) 

For random variable X with finite variance ,2  

  
2

2

][Pr
t

tXX




     

for every t > 0. 

Proof:   

                22
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Using Markov’s inequality, 
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Notice in Chebysev’s inequality, the second moment is used before applying 

Markov’s inequality.  Extend the idea by using the moment generating function and 

relying on the monotonic property of the exponential function before using Markov’s 

inequality. 

 

Lemma 3 (Chernoff’s bounding method) 

For any random variable X and t>0, 
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s e

e
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
     if the RHS exist. 

Proof: 

For any s > 0, 
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using Markov’s inequality, 
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Since this is true for any s, it follows that 
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if the RHS exist. 

           ■ 

 

Chernoff’s bounding method is crucial in the proof of Bernstein’s inequality 

which in turn is used in van der Laan’s theorem showing the convergence of conditional 
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and optimal risk.  The proof follows the proof provided by Gyorfi et al. (2002) on page 

594. 

 

 

Lemma 4 (Bernstein’s inequality) 

Let

 
nXX ,,1   be independent real valued random variables.  Assume for each 

ni ,,1  , 
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From the first two terms of the Taylor expansion of xe , i.e. xex 1  for any x. 

 



52 
 

Now, set  
2

3

)( 







ab
s  , which satisfies the condition 1

3

)(


 abs
, then 

 

        
 



















3

)(

22

12
exp

abs

ns
sn
























































)(3

)(
12

)(
exp

2

3

)(

2

22

3

)(

2

2

3

)(

2















ab

abab
ab

nn

 

 


























3

)(2

3

)(

2

2

3

)(

2

2

3

)(

2

2)(
exp

abababab

nn













 




















 2

3

)(

2

22
exp




ab

n

 

Working with the negative portion in the absolute value yields the same result 

which proves the inequality. 

           ■ 

The following lemma and proof follow closely Lemma 2 on page 15 of Dudoit 

and van der Laan paper 126. 

 

Lemma 5 (Convergence in probability) 

Let

 

21, XX  be a sequence of random variables with finite expected value 

   )(ngOX n 

 

where g(n) is a positive function.  Then  )(ngOX Pn 

 

. 
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Proof: 

Pick any number 0  and let    )(ngOX n 
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■ 

In 1963 Wassily Hoeffding provided his own upper bound on the probability of 

the sum of the difference between random variables and their respected expected values.  

Hoeffding’s inequality is a more general case of Bernstein’s inequality and improves of 

the bound for values in the tails of the distribution as we will see later.  The proof below 

of Hoeffding’s inequality is based on the following papers: Hoeffding (1963), Györfi 

(2002), and Nowak (2007). 

Lemma 6 (Hoeffding’s inequality) 

Let

 
nXX ,,1   be independent real valued random variables.  Assume for each 

ni ,,1  , 
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Proof: 

Define    

 

)( iii XEXY    for i = 1…, n.  Then 0)( iYE and with probability 

one,  )(,)( iiiii XEbXEaY  . Working with the positive portion in the absolute 

value,  
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The proof begins by following the proof of the Bernstein’s inequality.  By using 

an arbitrary s > 0 and then using Chernoff’s exponential bounding method we have, 
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Define    
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Notice that     021
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This is true for all s, therefore minimize this upper bound by minimizing the exponent: 
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Working with the negative portion in the absolute value yields the same result which 

proves the inequality. 

           ■ 

4.3 The Cross-Validation Selector 

 

 We are now at a point where the two main theorems of the Super Learner 

algorithm are stated and proved.  The first places a bound on the cross-validation risk.  

The method of cross-validation studied by van der Laan and Dudoit (2003) is general and 

includes V-fold, Monte Carlo, Bootstrap cross-validation. Because of its low bias but 

high variance estimators, leave-one-out cross-validation is excluded from the studies 

since, among other things, it has been shown to perform poorly compared to the other 

forms of cross-validation (Breiman & Spector, 1992; Breiman, 1996). 

 Often as is the case in the field of data mining, many types of models (rules) are 

run on a data set.  The model, or rule, which performs the “best”, is selected as the model 

for the data set.  Why not combine all the models together to form one grand model?   

Van der Laan et al. (2007) does just that as they combine several models together, as long 

as the number is polynomial in sample size, into one super learner.  It is shown in 

Theorem 2 that this super learner will perform, on average, at least as well of any of the 

individual models used, at least in the asymptotic sense. 
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4.3.1  Notation 

The notation can become quite convoluted due to the use of various subsets of the 

data distribution set involved.  Consider the following data distribution sets: Define P to 

be the set of possible probability distributions for data (X,Y).  Let PP  (note the absence 

of a subscript) be a general theoretical distribution, and 0P  be a specific, usually 

unknown, true probability distribution.  Define 
0P̂ to be the empirical distribution of the 

random sample ),(,),,( 11 nn YXYX   from the data generating distribution 0P  where

p

iX  , p is the number of voxels, and iY  is the univariate outcome.  During       

K-fold cross validation, 
0P̂  is partitioned into K separate subsets which will be used as 

validation sets.  Let
kP̂ , where Kk ,,1  , denote the empirical distribution based on 

each of the K validation sets while kk PPP ˆ/ˆˆ
0)(  , the complement of

kP̂ , Kk ,,1  , are 

the empirical distributions for each of the respective training sets.  Let 
kn define the size 

of each validation set
kP̂ , which is approximately the same for all validation sets, i.e.  

ji nn   where ji  and },,1{, Kji  . 

In similar fashion, let F  be the set of all rules (models) which maps the 

distribution sets in P to a real value.  Define fF  to be a general theoretical rule.  Let 
0f  

be the true, usually unknown, rule for the probability distribution 0P .   

Define a loss function L(X,Y,f) which calculates a measure for the difference 

between the true outcome Y and the estimated or expected outcome )(Xf .  One of the 

more common loss function is the square loss function:  2
)(),,( XfYfYXL  .   
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In considering the J different rules which are fitted to the K different training sets,

)(
ˆ

kP  , define the double subscript for the modeling rule )(,
ˆ

kjf   as the modeling rule using 

the jth algorithm based on the (-k) training set.  We now need a way to determine the 

“best” preforming model.  One way is to find the smallest average loss using the 

validation sets, 
kP̂ , for each of the modeled rules, )(,

ˆ
kjf  .  This “best” fitted training 

model with respect to the validation sets is represented by 
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For the finite empirical distribution: 
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Extend the idea further by describing the “best” model of all the J different fitted 

models, )(,
ˆ

kjf  , which are again based on the K separate training sets 
kP

ˆ  .  However, use 

the entire distribution set 0P when calculating the loss.  Represent this model by 
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Finally, we will define the following for the three different quantities of risk. 

The optimal risk is the accumulation of loss using the best choice from all the rules in the 

universal set of estimator mappings F.  The data generating distribution is 0P . Note that 
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the optimal risk 0R   is not an estimate since it depends on the definite but unknown 

distributions 0P  and the true model 0f  F.  Therefore, define the optimal risk as:
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The conditional risk: 
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deals with the cross validation selector.  It is the risk associated with the estimated model 

found by using a training data set in the cross validation procedure. 

The conditional risk for the optimal selector: 
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 is the best of all the conditional risks in the cross validation procedure. 
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4.3.2  The Convergence of Conditional and Optimal Risks 

The proof of the following theorem is similar to the proof provided in the 

paper: “Asymptotics of Cross-Validated Risk Estimation in Estimator Selection and 

Performance Assessment” (Dudoit & van der Laan, 2003).  

 

Theorem 1 Assume that   )(| 0 XfXYE  ,  MY  a.s., and 
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a.s. where M is a constant.  Then for any 0 and using the quadratic loss function, 
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Proof: Consider the difference between conditional risk and the optimal risk. 
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Then the inequality can be written as: 
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Using the quadratic loss function,    2
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which implies: 
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     By defining the following, the expressions involving the expected difference of the 
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Using the previous relation between the variance and expected value, the right side of the 

above equation and applying the Bernstein’s inequality: 
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(Sub-lemma)  Claim for any u , 
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Corollary 1  Using the results from Theorem 1,  if 
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The proof follows immediately from Lemma 5. 

The results of Theorem 1 can be improved.  By using Hoeffding’s inequality, the 

upper bound for ][
ĵ

SE  and ][ ~
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TE  can be improved upon in the upper “tails” of s.   

Theorem 2 combines the better portions of both Bernstein’s inequality and Hoeffding’s 

inequality to produce an improved bound.   
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Proof: The beginning of this proof mirrors the proof of Theorem 1 up through the 

statement.  For any 0s  
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Case 1: When the Bernstein’s inequality is applied, 
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Case 2: When Hoeffding’s inequality is applied, 
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Compare the two cases to calculate when the Hoeffding’s bound (case 2) is better than 

the Bernstein’s bound (case 1).  Hoeffding’s bound is better when: 
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 Therefore, develop a function that combines both Bernstein’s and Hoeffding’s 

inequalities such that when
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  Continue the proof of the theorem by finding the minimum of f(u) by the use of 

the first and second derivative, w.r.t. u. 
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results. 
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4.3.3  Discussion  

 

A study of the result of Theorem 1 proves to be quite interesting. 

   
n

JK
CRRERRE

jj

)ln1(
2ˆ)21(ˆ0 0~0ˆ


    

As long as the number of models, J, does not grow exponentially with n, note that the 

bounding term approaches zero as the number of observations grows large, i.e.   
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from above for all 0 .  In other words, as the number of observations grows the model 

found by cross validation becomes closer, on average as expressed by the expected value, 

to the oracle model.  Thus the theorem has the following implications: 

First, the theorem provides some justification for K-fold cross validation.  In      

K-fold cross validation, the K different training/validation sets produces K different 

models.  The combinations of these K different models will perform, on average as 

indicated by the expected value in the theorem, at least as well as any of the validation 

models separately in an asymptotic sense.  

The theorem also provides a safe way of choosing a model from among a set of 

candidate models.  Here the combination of the J many separate rules from the set of all 

plausible rules, F, for the given, but unknown, distribution. The combination of the rules 

in conjugate will not, on average, perform any worse than the best performing rule 

separately even if one of the separate rules is the true rule of the distribution (van der 

Laan et al., 2007). 

Theorem 2 improves on the bound in Theorem 1 by combining the use of both 

Bernstein’s inequality and Hoeffding’s inequality.  Bernstein’s bound produces a lower 

upper bound for  kj
PsS  ˆ|Pr ˆ  when 

b

h
s ~

~

  , i.e. when s is less that the ratio of the 

Hoeffding’s constant to the Bernstein’s constant.  When 
b

h
s ~

~

  , Hoeffding’s bound is a 
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lower upper bound.  Figure 1 illustrates this concept.  Though the example is not 

necessarily realistic with K equal to only 3 models and the number in the training set, n, 

having 5,000 samples, the point is well illustrated showing that the upper bound produced 

from Bernstein’s inequality is lower than the upper bound produces from Hoeffding’s 

inequality up to the point 0134.0(~

~


b

h
s  in our example).  After this point the roles 

switch and the bound produced by Hoeffding’s inequality provides a lower upper bound. 

 

 

 

Figure 3: Hoeffding’s inequality vs. Bernstein’s inequality w.r.t. s.  In the example:

000,51,1,3  nandMK  , the use of Hoeffding’s inequality produces a lower 

upper bound for  kj
PsS  ˆ|Pr ˆ when s>0.0134.  



77 
 

Figure 2 illustrates how the improved bound of Theorem 2 is lower than the 

Bernstein’s bound produced in Theorem 1.  In this example, a training sample size of 

around n = 200 is needed to achieve an upper bound of 0.2 for ][
ĵ

SE using the improved 

bound where as a training sample of nearly n = 1570 is needed for the Bernstein’s bound.  

 

 

 

Figure 4: Hoeffding’s inequality vs. Bernstein’s inequality w.r.t. n, the number in the 

training sample size. The use of Hoffding’s inequality requires a smaller training sample 

sizes than the Bernstein’s inequality in order to produce equivalent results. 
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Figure 3 shows a comparison for the minimum lower bound of ][
ĵ

SE  using both 

the Bernstein’s bound and the improved bound for various deltas.  The improved bound 

of the minimum lower bound given delta is nearly linear whereas the Bernstein’s bound 

is quadratic at best.  In this example the two bound are closest at 21.1  with a 

difference of 0.03386.  This observation of where the two curves have the smallest 

deviation is not particularly important being that this is just a single example, however, 

the observation of where dramatic deviation occurs is of interest: when   approaches 

zero and when   is large. This observation seems to be typical.   

 

 

Figure 5: Hoeffding’s inequality vs. Bernstein’s inequality w.r.t.  .  The use of 

Hoeffding’s inequality produces lower upper bounds no matter what delta is used.    
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4.4  Variable Bagging 

 

The idea of variable bagging was motivated by bagging or bootstrap aggregating 

(Breiman, 1994).  As the name suggest, bagging repeatedly takes a random subset from a 

set of data point in the form of (Y, X), where Y is a numeric resultant and X is a multi-

dimensional vector of inputs, and develops a predictive or regression model for each of 

the random samples.  The final model is the aggregate mean of the random samples.   

Variable bagging, on the other hand, randomly selects a subset of positions of the 

X vector or the variables.  In this instance the number of data points used to train the 

model is not decreased but rather the dimension of each data point is decreased.   This 

dimension reduction proves quite valuable for those algorithms which would be restricted 

due to the dimension. 

Inspiration came, per say, not by viewing the procedure as reducing the number of 

variables but by rewriting the data set and taking liberties in the bagging procedure.  

Consider a training set of  l  data point in the form (Y, X), where Y is a numeric resultant 

and X is vector of length n.  Typically for bagging, random samples of around 80 to 90% 

of the data points are taken and models are developed.   However, in cases where n >> l, 

dimensionality eliminates from consideration many modeling algorithms due to the 

instability of the l x n matrix.  

Now consider rewriting the data set such that for each data point  ii XY ,  , where 

iX  is of length n, into a combination of mn C  subsets  
jii XY ,,   where jiX ,  is of length m 

with nlm  .  Now by randomly selecting the m variables from the iX ’s   , you are 

actually selecting l elements which will be used for modeling from the data set containing 
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mn Cl  elements.  The bagging theory does not specify what percentage of points needs to 

be selected for each trial in the bagging process. 

Intuitively, using the cross-validation selector within bagging could do better than 

using just one algorithm for all the trials in the bagging process.   

Using cross-validation on any individual trial can at most perform as well as the 

best algorithm available.  The previous theorem shows that cross validation will come 

close to the best.  In other words, cross-validation will not necessarily choose the best 

performing algorithm but will instead choose the safest algorithm.  This is quite 

reassuring especially when the best performing algorithm is not known beforehand.   

Bagging, as shown in previous sections, has the ability of improving 

predictability.  The amount of improvement depends on the variability of the data.  In 

combination with cross-validation within bagging, the aggregate model can not only be a 

safe model and come close to the best model which uses only a single algorithm, but has 

the possibility of beating this best uni-algorithm model.  This variability caused by the 

multi-algorithm cross-validation selection within variable-bagging aids in the 

predictability.   In short, there are instances (but not all the time) where the aggregate of 

the cross-validation selectors will perform better than the aggregate of using only a single 

algorithm.  This property is illustrated in the next chapter of Examples.   
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5 EXAMPLES 
 

 

 

This chapter explores the question: “How would you use logistic regression in the 

development of a prediction model to determine whether or not a brain has 

Alzheimer’s?”     

Logistic regression is a powerful tool for classification problems invloving two 

groups.  It is unfortunate that the only attempt I found using this powerful device defined 

the discriminators as the thickness of the entorhinal cortex, the thickness of the 

supramarginal gyrus and the volume of the hippocampus (Marcus et al., 2007).  

However, logistic regression has its limitations: dimensionality. This could be the reason 

for its lack of use.  The algorithm becomes unstable as the number of variables 

approaches the number of observations.  With 2,122,945 voxels (possible variables) in 

each image and only 149 images available for training, dimensionality is a problem. 

 Example 1 provides a typical solution to the question.  With the use of reason, a 

lot of work and luck, the dimension of the brain was reduced form 2,122,945 voxels to 

just a handful of 35 voxels.  Logistic regression was able to produce a model with a 

success rate of 84.93% which used the limited amount of information that the 35 voxels 

were able to provide. 



82 
 

 Using logistic regression again, example 2 demonstrates the prediction power of 

variable bagging.  The three cases within this example provide an illustration of how the 

combination of predictive models, even poor models, can yield a stronger model.  Case 3 

goes on to demonstrate the importance of variability within each model by developing 

models with as high as 87% success rates. 

 Why limit ourselves to using only logistic regression?  By incorporating other 

algorithms such as neural networks, support vector machines and decision trees, example 

3 does not limit itself to just logistic regression.  The cross-validation selector selects the 

best reasonable, or safe, algorithm to use on each of a given set of 35 randomly selected 

voxels. The result of the use of the cross-validation selector on each of the individual 

models within a bagged set of models produced success rates as high as 89.97%.           

The 295 MRI brain images were provided by the Alzheimer’s Disease Neuroimaging 

Initiative (ADNI) database (adni.loni.ucla.edu), and were divided, 149 training and 146 

test images, in accordance with the paper by Cuingnet et.al. (2010) paper which is used as 

a guide as reasonable outcomes for our examples. 

 

5.1 Example One: “Hand Picking” the Variables 

 

The ultimate goal is to develop a model having a high success rate in the 

classification Alzheimer’s from a MRI brain scan.  This example tries to develop a 

predictive model by way of combining specially selected variables.  The method of 

selecting these variables is through reasoning with the hope of coming up with a useful 

model.   
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5.1.1 Dimension Reduction 

A common procedure to test if there is a difference between two groups is the Welch’s 

 t-test (Salas-Gonzalez et al., 2010).  Since Alzheimer’s disease is a deterioration of 

portions of the brain, the identification of voxels with significant large positive and 

negative t-values would indicate areas with differences between the two groups: the 

normal control (NC) group and Alzheimer’s disease (AD) group.  Therefore, it is these 

areas of interest which should be the most helpful in classification.  The                

Welch’s t-statistic was calculated at each voxel using: 

AD

AD

NC

NC

ADNC

value

n

s

n

s

xx
t

22




      , 

where NCx  and ADx  are the average intensity, 2

NCs  and 2

ADs  are the variances of the 

intensities, and NCn  and ADn   are the numbers of the normal control and Alzheimer’s 

disease groups respectively. 

 From the 149 samples in the training group, 80 were classified as NC and 69 as 

AD.  The t-values ranged from -6.410 to 5.382.  Historically, those areas with t-values 

less than -1.96 and those greater than 1.96 are considered significant.  Using these 

historic criteria located 111,773 voxels with t-values less than -1.96 and 64,259 voxels 

with t-values greater than 1.96. 
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5.1.2   Further Reduction of Variables 

 The logistic regression algorithm is used to determine whether or not a given MRI 

brain scan should be classified as having Alzheimer’s disease or not.  The problem with 

using logistic regression is one of dimensionality.  The algorithm becomes unstable as the 

number of variables becomes close to and greater than the number of data values. 

 Voxels with large t-values (both positive and negative) should be good candidates 

for variables.  This criterion reduced the number of voxels to about 175,000 from over 

2.1 million voxels available in a brain scan.  Still this number is too large if the logistic 

regression algorithm is to be used.  To further reduce the number of variables, a second 

thought was considered, use only those voxels which have a high predictability property.  

To locate voxels with high predictability, local logistic regression was performed 

on 16,128 voxel clusters.  A voxel cluster consists of the center and the 6 closest voxels 

which are one voxel unit away.  The centers were chosen to be 5 voxel units apart.  Using 

the 149 training-sample MRI scans, a randomly selected set of 100 would serve as the 

training set, at each point cluster, using the local logistic regression algorithm.  The 

remaining 49 scans were used as a validation set. Each of the voxel cluster models were 

tested against the corresponding voxel clusters of the validation set and success rates 

were calculated. 

 A graph using the t-values and success rates was produced to see if there was a 

large correlation between the t-values and the success rates at each point cluster.  If there 

was a correlation between the two, a V-shaped image would be visible in the graph.  

Figure 1 show no distinct V-shape indicating a low correlation between t-values and 

success rates.  However, by inspection, the figure does indicate that the majority of 
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voxels with t-values between -2.5 and 2.5 had low accuracy rates (falling below 70%) but 

there is very little correlation that the t-values with the greatest negative or positive 

values produced the most accurate models.    

                 

Figure 6: The graph of success rates for t-values vs. local logistic regression calculated 

at every 5th voxel. 

 

Both ideas were combined to again reduce the dimensionality.  By considering 

those voxels with t-values greater than two standard deviations and the point clusters 

having a validation rate greater that 75% reduced the variables down to 12 voxel clusters 

centered at the following locations: 

Voxel number Centered at: 

Vox 1 (80,55,50) 

Vox 2 (85,50,45) 

Vox 3 (45,60,60) 

Vox 4 (80,85,40) 

Vox 5 (30,65,35) 
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Vox 6 (75,80,30) 

Vox 7 (40,90,35) 

Vox 8 (45,80,45) 

Vox 9 (75,80,40) 

Vox 10 (80,85,35) 

Vox 11 (45,80,40) 

Vox 12 (45,85,35) 

  

 

Remembering the smoothing practices in the preprocessing procedure, 

redundancy became a slight concern and an excuse to reduce the dimension, again, with 

respect to the distance between voxel clusters.    Voxels within 10 units of each other 

were grouped together. The voxel clusters with the highest validation rate were then 

chosen to represent the grouping.  This reduced the number of variables to only 5 voxel 

clusters.  In other words, out of over 2.1 million voxels available, 35 were selected. 

  Vox 1 represents the grouping of {Vox 1, Vox 2} 

  Vox 3 represents itself 

  Vox 4 represents the grouping of {Vox 4, Vox 6, Vox 9, Vox 10} 

  Vox 5 represents itself 

  Vox 7 represents the grouping of {Vox 7, Vox 8, Vox 11, Vox 12} 

 

Other statistics were also introduced in order to get a feel for the data.  Standard 

deviations of the rectangular areas covered were represented by the grouping of Vox 4, 

Vox 7, and the total 12 groupings were considered: SD 4 is the standard deviation of 

voxels ranging from x = 74 to x = 81, y = 79 to y = 86, z = 29 to z = 41; SD 7 is the 

standard deviation of voxels ranging from x = 39 to x = 46, y = 79 to y = 91, z = 34 to z = 
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46; SD Total is the standard deviation of voxels ranging from x = 29 to x = 86, y = 49 to 

y = 91, z = 29 to z = 51. 

 

5.1.3 Results 

Local logistic regression models were developed on combinations of the point 

clusters and the standard deviations of the areas covering the sets.  The success rates 

using the 146 test images are given in Table 1 below.  

 

  SD 4 SD 7 SD Total Sd 4,7 Sd 4,7,T 

  0.6849 0.6369 0.5548 0.6918 0.7055 

Vox 1 0.6164 0.7192 0.7877 0.7328 0.7808 0.7808 

Vox 3 0.6986 0.6918 0.7260 0.6849 0.7192 0.7192 

Vox 4 0.6986 0.6986 0.7123 0.6986 0.7123 0.6999 

Vox 5 0.5822 0.6096 0.6233 0.5959 0.6233 0.6369 

Vox 7 0.7534 0.7466 0.7740 0.7740 0.7603 0.7603 

Vox 1,3 0.7055 0.7329 0.7466 0.6849 0.7603 0.7603 

Vox 1,4 0.7397 0.7458 0.7740 0.7466 0.7739 0.7808 

Vox 1,5 0.6781 0.7192 0.7534 0.6986 0.7603 0.7603 

Vox 1,7 0.7466 0.7466 0.7466 0.7329 0.7534 0.7329 

Vox 3,4 0.7397 0.7329 0.7740 0.7329 0.7671 0.7612 

Vox 3,5 0.6781 0.6849 0.6986 0.6644 0.7055 0.7055 

Vox 3,7 0.7603 0.7603 0.7671 0.7397 0.7603 0.7397 

Vox 4,5 0.6644 0.6575 0.6918 0.6644 0.7055 0.6849 

Vox 4,7 0.7534 0.7603 0.7466 0.7534 0.7466 0.7603 

Vox 5,7 0.6849 0.6849 0.6781 0.6712 0.6712 0.6712 

Vox 1,3,4 0.7534 0.7397 0.7877 0.7534 0.7808 0.7603 

Vox 1,3,5 0.7192 0.7466 0.7671 0.7260 0.7671 0.7808 

Vox 1,3,7 0.7603 0.7740 0.7740 0.7534 0.7740 0.7671 

Vox 1,4,5 0.7877 0.8014 0.8082 0.8014 0.7945 0.7945 

Vox 1,4,7 0.7612 0.7740 0.7808 0.7397 0.7808 0.7192 

Vox 1,5,7 0.7534 0.7534 0.7397 0.7466 0.7534 0.7397 

Vox 3,4,5 0.7329 0.7466 0.7671 0.7397 0.7808 0.7466 

Vox 3,4,7 0.7945 0.8114 0.7808 0.7260 0.7740 0.7329 

Vox 3,5,7 0.7466 0.7466 0.7466 0.7466 0.7534 0.7330 

Vox 4,5,7 0.7663 0.7466 0.7740 0.7671 0.7466 0.7466 

Vox 1,3,4,5 0.7877 0.7877 0.8356 0.7945 0.7945 0.8219 
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Vox 1,3,4,7 0.7740 0.7740 0.7945 0.7945 0.7808 0.7534 

Vox 1,3,5,7 0.7945 0.7740 0.8082 0.8014 0.8014 0.7877 

Vox 1,4,5,7 0.8082 0.8082 0.8082 0.7808 0.8082 0.7877 

Vox 3,4,5,7 0.8014 0.8014 0.8151 0.7808 0.8082 0.7945 

Vox 1,3,4,5,7 0.8493 0.8493 0.8425 0.8082 0.8493 0.8356 

 

Table 1:  The success rate using the five specific point clusters.  Models were developed 

using the 149 training images and the local logistic regression algorithm.  Success rates 

were calculated using the 146 test images.  The highlighted cells are the maximums 

success rates for each of the combination numbers.     

 

 

 Looking at the first column of Table 1, the success rates generally increased with 

the addition of another voxel cluster.  The exception, it seems, occurs when a poor 

predictor is given too much weight in the grouping.  Of the 5 point clusters, Vox1 and 

Vox5 are the two lowest performers.  Though not particularly useful in the early 

combinations of two and three, Vox1 and Vox5 were part of the set of four which 

achieved the highest success rate in the combination number class.  Also note the nearly 

5% increase in success when Vox1 was added to the set Vox3,4,5,7.  Even though a point 

cluster might seem insignificant by itself, its inclusion within a set adds diversity and thus 

becomes a better representation of the population.  Adding more and more data which 

represents the population produces better models of prediction.  

 Achieving a success rate of 84.9% is fairly good and does fall within the range 

described in the Cuingnet et. al’s paper: “Automatic classification of patients with 

Azheimer’s disease from Structural MRI: A Comparison of ten methods using the ADNI 

database.”   However, it took a lot of work to find the voxels to achieve these results.  

This raises the question: is this procedure repeatable for other algorithms or is finding the 

variables a matter of luck?   
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5.2  Example Two: Variable Bagging 

  

 In this example, the logistic regression algorithm is used again to help illustrate 

the power and reliability of the variable bagging procedure.  When using variable 

bagging, a combination of statistical models performs better, on average, than any one 

singular model using the same algorithm.   Also, dimensionality is reduced by 

considering the t-values with significant values.   

 

5.2.1 Case 1: Variables with t-values < -1.96 

 

 Logistic regression was first performed using the entire training set and the 

variables defined as a random sample of 35 points from the set of voxels having 

 t-values < -1.96 .  This model was then used to find predictive values, represented by the 

probability of having Alzheimer’s, for each of the 146 images of the test data.  This 

procedure was repeated ninety-nine more times to produce a bagged model which found 

the mean of the 100 individual predictions to produce a final prediction.  Success rates 

are described as the ratio of number of correct predictions to the total number of images.   

For each of the individual models, success rates typically ranged from around 

0.55 to around 0.70, with a mean of 0.6357 (standard deviation 0.0391).  Below I have 

listed the success rates of the first and last 10 trials from a set of 100 models:  
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(0.6506849, 0.5890411, 0.6917808, 0.6917808, 0.5410959, 0.7397260, 0.6712329, 

0.6917808, 0.6438356, 0.5958904,  . . .  , 0.6917808, 0.6712329, 0.6095890, 0.7054795, 

0.6506849, 0.6095890, 0.6506849, 0.6780822, 0.6712329, 0.6369863) 

 

For comparison, for the variable bagged model, the mean of the 100 predicted 

values for the test data of the individual models had an overall success rate of 0.7328767.  

While this rate is not particularly high, this aggregated rate is higher than the success 

rates of 99 out of the 100 individual models.  It is also nearly 10 percentage points, or 2.4 

standard deviations, higher than the mean of the individual success rates.  

To illustrate consistency, the entire procedure was repeated 10 more times with 

the results shown below in Table 2.  

 

Success rates of the 

mean prediction 

values 

Percent of individual 

success rates beaten 

by the average 

predicted success rate 

0.712 96% 

0.733 99% 

0.740 100% 

0.719 98% 

0.726 98% 

0.712 98% 

0.767 100% 

0.747 100% 

0.733 99% 

0.736 99% 

 

Table 2: Applying variable-bagging with the variables having t-values < -1.96. These 

success rates show the results of models using the mean of 100 predictive values and then 

compares these aggregate models with the success rate of the individual models used in 

the aggregate.  
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 The chart illustrates that the success rate of the mean predicted values, or 

aggregate values, consistently beat most, if not all, of the success rates of the individual 

models.   Intuitively, the individual models can be thought as forming a committee which 

“votes” on the final outcome.  This aggregate vote produces a model which becomes 

stronger than most, if not all, of the individual models. 

 

5.2.2  Case 2: Variables with t-values > 1.96 

 

 

 The procedure was repeated a second time but the 35 random variables selected 

for each individual model were selected from the set of t-values having values greater 

than 1.96.  The results were not as strong as in case 1 but made the same points.  

Typically, the success rates for the individual models ranged from around 0.45 to almost 

0.70 success rate, with a mean of 0.578 (standard deviation of 0.0488) which is nearly 5 

percentage points lower than in the case above.     

Below the success rates of the first and last 10 individual trials, out of a set of 100 

models, are listed:  

 

(0.5821918, 0.5753425, 0.4726027, 0.5136986, 0.5684932, 0.5821918, 0.5342466, 

0.6301370, 0.6438356, 0.5890411, . . . , 0.5205479, 0.5205479, 0.5342466, 0.5547945, 

0.5821918, 0.6027397, 0.6095890, 0.5821918, 0.6095890, 0.5479452) 

 The success rate of the aggregate model was 0.6506849.  This rate is better than 

94 out of the 100 individual model’s success rates.  Upon repeating the procedure, this 
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seems to be an extreme case in relation to the number of times the aggregate model 

success rate beat the individual models success rates.  Table 3 shows the results of the 

procedure repeated ten more times.     

 

Success Rates of the 

aggregate model 

Percent of individual 

success rates beaten 

by the aggregate 

model 

0.651 89% 

0.658 91% 

0.601 80% 

0.589 68% 

0.623 78% 

0.623 81% 

0.589 70% 

0.610 79% 

0.623 79% 

0.603 68% 

 

Table 3: Applying variable-bagging with the variables having t-values > 1.96.  These 

success rates show the results of models using the mean of 100 predictive values and then 

compares these aggregate models with the success rate of the individual models used in 

the aggregate.  

 

Though the results are not particularly impressive, Table 3 does illustrate that the 

success rate of the aggregate model consistently beat most of the success rates of the 

individual models.   

Also, note that there are several individual models with success rates below or 

near the 0.50 value, a value that represents a guess.  Thus, this case shows that variable 

bagging can incorporate poor and non-predictive models to produce a more successful 

model.    

 



93 
 

5.2.3 Case 3: Mixture of Data with t-values < -1.96 and  > 1.96 

 

 In previous discussions about Bagging, the strength of the aggregate model 

becomes stronger as the variables become more diverse.  Therefore, we can guarantee 

diversity by selecting a set of randomly selected variables which come from both the set 

of t-value having values less than -1.96 and t-values having values that are greater than 

1.96.  A mixture of 18 voxels with  t-values that were less than -1.96 and 17 voxels 

greater than 1.96 were randomly picked from their respective sets.  The procedure was 

repeated a third time resulting with some surprising results. 

The success rates for the individual model typically ranged from about .65 to .75 with a 

mean of 0.6953 (standard deviation 0.0444).  Right away the improvement can be seen to 

be due to the diversity introduced.  The improvements show 5 percentage points better 

than the models using only the t-values less than -1.96 and about 10 percentage points 

better than the models using the data points from the set of t-values greater than 1.96. 

The first and last 10 success rates for the individual models are listed below: 

 

(0.6917808, 0.7328767, 0.7260274, 0.6506849, 0.6849315, 0.7602740, 0.6232877, 

0.6780822, 0.6986301, 0.6917808, . . . , 0.6643836, 0.6506849, 0.7397260, 0.6780822, 

0.7465753, 0.7328767, 0.7465753, 0.7671233, 0.6369863, 0.7328767)  

 

 The aggregate model for this combined data had the success rate of 0.8287671.  

This success rate is around 13 percentage points (3 standard deviations) better than the 
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average success rates of the individual models and was better than 99% of the 100 

individual models of this set.  

 Table 4 shows the results from 10 different trials.  Note that it was not 

uncommon for the success rate of the aggregate model to be better than all of the 100 

individual success rates.    

 

Success Rates of the 

mean prediction 

values 

Percent of individual 

success rates beaten 

by the average 

predicted success rate 

.870 100% 

.856 100% 

.836 100% 

.856 100% 

.849 100% 

.829 100% 

.849 100% 

.849 100% 

.829 100% 

.869 100% 

 

Table 4: Applying variable-bagging with the variables having both t-values< -1.96 and    

t-values > 1.96.  These success rates show the results of models using the mean of 100 

predictive values and then compares these aggregate models with the success rate of the 

individual models used in the aggregate.  

 

 

5.2.4 Discussion 

 

 The main point of this example is to demonstrate the power of variable bagging.  

First, by combining, or bagging, the separate models which predict the same event 

resulted in an aggregate model that was stronger, in most instances, than any of the 
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individual models.  As illustrated in Case 2, even in situations where the underlying 

models are weak or even non-predictive, the aggregate model improved the prediction 

performance. 

Secondly, diversity in the variables strengthen the model overall both for the 

individual models and especially in the aggregate models.  As in Case 1 and 2, the 

diversity came by randomly selecting 35 voxels or variables from a large sample set, 

Case 1 used negative t-values and Case 2 used positive t-values.  This diversity delivered 

a stronger model in the aggregate than in any of the individual models most of the time.  

However, by selecting variables from both the sets of negative and positive t-values, 

diversity was guaranteed and as a result the success rates of both the individual and 

aggregate models were improved.  

In the previous section it was questioned whether or not finding the 35 variables 

was luck.  This example produced similar success rates, a couple even higher, without the 

extensive dimension reduction.  One of the things that favored Example 1 was that the 

final model did have variables that included both positive and negative t-values.  

However, Example 2 did indicate that finding an individual model by randomly selecting 

variables from the positive and negative t-values did not guarantee such high success 

rates.   

 

 

  5.3 Example Three: Using K-Fold Cross Validation Selector 

   

So far in this section of examples, the logistic regression algorithm was used to 

model the data.  But is logistic regression the best algorithm to use?  Admittedly, logistic 
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regression was initially selected with spite because there were few procedures in the past 

that considered logistic regression.  Those that did, used the variable associated with 

areas of measurement, such as the thickness of the supramarginal gyrus and the volume 

of the hippocampus (Marcus et al., 2007), and never with individual voxels.     

V-fold cross-validation is a procedure which uses subsets of the training data to 

train a model and the remaining portion of the training set as a validation set to test the 

model.  This procedure eliminates bias.  However, the elimination of bias comes with the 

price of increased variance.   

V-fold validation randomly divides the training data into V nearly equal disjoint 

validation sets. This example will use V=5.  The compliment of each validation set will 

become the training set for the modeling algorithm.  Each model will then be “validated” 

or tested by the corresponding validation set.  Thus, from the five disjoint validation sets 

come prediction values for each data entry covering the entire training set.  From here a 

success rate can be calculated in order to assess how well the modeling algorithm 

preforms.  Please note that we are testing how well the modeling algorithm performs and 

not a particular model which was produced by the modeling algorithm since five 

different- but similar- models make up the resultant predicted values of the training set.       

 

5.3.1 Using the Cross-Validation Selector – Individual Case  

 

This example will use cross-validation to select an algorithm to be used for a 

given set of training data.  By first randomly selecting 35 variables or voxels (18 from the 

negative t-values and 17 from the positive t-values), cross-validation will be performed 
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using the modeling algorithms: logistic regression (lr), neural networks (nnet), support 

vector machines (svm) and decision trees (rpart).  Success rates will be calculated for 

each algorithm.  The algorithm with the highest success rate (fielders choice for ties) will 

be chosen to model the entire training set.  

To illustrate and to get a feeling for the procedure, the cross-validation selection 

was performed 100 times on the training data on 100 different randomly selected sets of 

variables.  Preliminary results are given below: 

 

 Training Data Test Data 

 lr nnet svm rpart lr nnet svm rpart 

Mean success 

rate 

 

0.718 

 

0.748 

 

0.741 

 

0.634 

 

0.695 

 

0.727 

 

0.717 

 

0.620 

Standard 

deviation 

 

0.033 

 

0.036 

 

0.040 

 

0.050 

 

0.044 

 

0.050 

 

0.050 

 

0.050 

Number of 

times chosen 

as maximum 

 

14 

 

56 

 

38 

 

0 

 

15 

 

49 

 

41 

 

1 

 

Table 5: Running the cross-validation selector on 100 individual trials. 

             Note: the number of times chosen as maximum is greater than 100 due to ties. 

 

Looking at the results from the training data, one would hope that the neural 

networks algorithm (nnet) would be chosen as the algorithm to use in modeling since it 

had the highest mean success rate (0.748) and was the algorithm in which the cross-

validation selector chose the most times (56). Indeed, when modeling the training data, 

neural networks did have the highest mean success rate (0.727) and the success rate was 

the highest most often (49).  However, the cross-validation selector selects the algorithm 

on the individual basis and not in aggregate.  The better question to ask is how many 

times the cross-validation selector correctly selected the best algorithm.  If one were to 

randomly guess, one should pick the correct algorithm about 25% of the time.  Even 
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knowing that the decision-tree algorithm usually came in last in the rankings, still one 

should pick the correct algorithm around 33% of the time.  The cross-validation selector 

successfully chose the winning algorithm 43.5 out of 100 times.  (The decimal accounts 

for ties.) 

Choosing the correct algorithm only 43.5% of the time may not impress many 

people but it is still better than random guessing.  Reproducing the example three other 

times produced results of 49, 46 and 48 out of 100 times for predicting the best algorithm 

used on the test data.     

 

 

5.3.2 Using the Cross-Validation Selector Inside Variable-Bagging 

 

 For this example, within each variable bagging model are 100 individual models.  

The cross-validation selector is not applied to the entire bagged model but to each 

individual trial within each bag.  Thus, it is possible for all algorithms to be represented 

within any one bag depending on the voxels used in the individual models.  For example, 

logistic regression might be used to model the first set of training data while support 

vector machines might have been selected to model the data which used a different set of 

randomly selected variables.  In case there is a tie between any of the algorithms during 

the selection portion, all algorithms associated with the tie will be used and the average of 

their predictions will be used as the result of the trial.   

 The example was run 100 times where each time the variable bagging model had 

100 individual trials.  
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 Training Data Test Data 

 lr nnet svm rpart lr nnet svm rpart 

Mean 

success 

rate 

 

0.8464 

 

0.8430

     

 

0.8489

    

 

0.7625 

 

0.8516 

  

 

0.8614 

  

 

0.8540

   

 

0.7942   

Standard 

deviation 

 

0.0124 

 

0.0111 

 

0.0104 

 

0.0167 

 

0.0127 

 

0.0121 

 

0.0107 

 

0.0150 

Number 

of times  

maximum 

 

44 

 

26 

 

63 

 

0 

 

25 

 

53 

 

26 

 

0 

 

Table 6: Comparison of 100 variable-bagged trials for each algorithm.   Note: the 

number of times chosen as maximum is greater than 100 due to ties. 

 

By looking at the results using the training data, it is hard to know which 

algorithm would be best to use for the prediction of the test data.  Considering the mean 

and/or the number of times an algorithm produced maximum results with respect to the 

100 bagged trials of the cross-validated training data, there is no way to suggest that nnet 

would give the best results when using the test data.  The more likely candidate would be 

the svm algorithm, if you were forced to pick. 

However, you do not have to choose which algorithm to use for the overall 

variable bagging trials if the cross-validation selector is used on each individual trial 

within a bagging model (averaging the predictors for ties).  The results using the cross-

validation selector on each of the individual trials within a variable-bagged set of 100 are: 

 

 100 variable bagging trials using the 

cross-validation selector at each 

individual trial.  

mean 0.8611 

Standard deviation 0.0118 

 

The mean result did not beat the mean result of the highest mean using single 

algorithms in the variable bagging procedure, which was neural networks, but it is very 
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close.  The theorem does not guarantee the best and actually says that the cross validation 

selector model is bounded above by the best possible model available in the individual 

results.  In other words, I did not know which model to choose in modeling the test data, 

however the cross-validation selector produced models, on average, that where very close 

to the best and was better than the model I would have guessed for this example.   

The breakdown of how well the cross-validation selector in the variable bagging 

models in relation to the other uni-algorithmic variable bagging models is given below: 

   1st ……………..... 20 

   Tied for 1st …..…. 31 

2nd …………….... 16 

Tied for 2nd …….. 12 

3rd …………….....  7   

Tied for 3rd …..… 10 

4th …………….....  3 

Tied for 4th …..…   1 

5th …………..…...  0 

 

Table 7: How the cross-validation within variable-bagging ranked in comparison to 

 uni-algorithmic variable bagging models of 100 trials.   

 

In other words, the variable bagging model which used the cross-validation selector at 

each trial had the highest success rate or tied for the highest success rate 51 out of 100 

times.  Furthermore it came in second or better 79 out of 100 times.   
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6  DISCUSSION 

 

 

6.1  Overview 

 

Several procedures have been used in the past which combine multiple statistical 

models in order to produce a single model which better describes the data to improve 

predictability and/or classification. Such ensemble methods include Stacking (Leo 

Breiman, 1996), Boosting, Blending(Hastie et al., 2009), and the Superlearner (M. J. van 

der Laan et al., 2007).   One of the most notable, if not the most famous, examples came 

from the Netflix Prize collaborative filtering competition (Bell, Koren, & Volinsky, 

2008).  The lesson learned from the winning team, Bellkor’s Pragmatic Chaos, was that 

the combination of many approaches from a diverse group performed better than a small 

number of more powerful algorithms.  The winning algorithm averaged the results of 

over 800 different algorithms to win the million dollar prize. The final team itself, 

Bellkor’s Pragmatic Chaos, was a combination of three separate teams created at the 

beginning. 

This idea of bring together many disperse models is also supported by the theory 

developed in several papers by Mark J. van der Laan and his collaborators (M. J. van der 
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Laan & Dudoit, 2003).  One of their theorems shows that, as the number of points in the 

training set grows, the expected value of the conditional risk for the model found by cross 

validation will be bounded above by a quantity close to the expected value of the 

conditional risk for the best model in consideration.  I was able to improve upon this 

bound by incorporating both the Bernstein’s inequality and Hoeffding’s inequality 

(Györfi et al., 2002).  

This current work uses these ideas of combining several different algorithms to 

come up with an overall algorithm which approaches the best algorithm in consideration.  

In practice when working big data problems, there is often no indication beforehand to 

know which algorithm should perform best.  This is the case in this work with real (non-

simulated) data on MRI brain scans for the prediction of Alzheimer’s disease.  The study 

used 149 scans as training data and 146 scans as test data.  These numbers and grouping 

of scans were chosen in accordance to a paper by Rémi Cuingnet et. al. (2011) to serve as 

a benchmark. Much credit must be given to the ADNI (Alzheimer’s Disease 

Neuroimaging Initiative) database for the data provided; data and information on this 

dataset may be found at www.adni.loni.ucla.edu/ .   

After preprocessing the scans for standardization, there were over 2.1 million 

voxels to work with for each subject.  Since we have only 149 training subjects, the 

number of voxels is far too large to directly use some of the most common classification 

algorithms such as logistic regression and neural networks due to dimensionality.  

Dimension reduction was achieved by considering those voxels with large (both positive 

and negative) t-values in the training set.  This left around 175 thousand voxels to 

consider, still too many for the common algorithms we considered.  To alleviate this 

http://www.adni.loni.ucla.edu/
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problem, a method referred to as Variable Bagging was introduced.  Similar to Bagging, 

but instead of repeatedly taking random samples of subjects and averaging the 

predictions, all the subjects were used and random samples repeatedly taken of the 

variables.  The average of the individual predictions provided the overall prediction, 

much like a vote of a committee.  Thus instead of using all 175 thousand voxels in the 

model, several sets of random samples containing 35 voxels were used.  Since Bagging 

works best when there is diversity in the variables, diversity was guaranteed by choosing 

nearly half the voxels having negative t-values with the rest having positive t-values.    

The procedure was refined by introducing the cross-validation selector to select 

which algorithm should be used on each individual set of random variables and thus 

removing the decision as to what algorithm to use. 

 

6.2 Advantages 

 

First and foremost, variable bagging allows models with dimensionality issues to 

be considered in the modeling process.  Thus, instead of using the entire brain image of 

2,122,945 voxels, variable bagging allows for the averaging of several models using just 

35 voxels each as variables. 

Taking a small random sample of the variables from the much larger set of voxels 

reduces the probability of over fitting the data to an absolute minimum.  It also reduces 

bias which provides confidence in the model chosen. 
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For the aggregate model, variable bagging boosted the success rates of the 

individual models.  Any increase in success is the result of the diversity within the 

individual models.  The greater the diversity, the more favorable the results.  

The cross-validation selector has the feature of ridding the investigator of having 

to make the decision of which algorithm to be used in modeling.  On the individual 

models, cross-validation can do no better than the best model in consideration; however, 

it is possible to perform better than any one algorithm available in the aggregate model.  

As the examples illustrate, the choices made by the cross-validation selector do not 

necessarily provide the best algorithm.  However, it will produce results that are, on 

average, very close to the best.  Any minor reduction in accuracy is a small price to pay 

for the insurance that nearly eliminates the chance of a random guess about which 

algorithm to use.  

The procedure reduces the effort of dimension selection, increases overall success 

rates, and atomizes the selection of algorithms used in the modeling process. 

 

6.3 Disadvantages 

 

Obviously, if the underlying distribution were known in advance then the single 

more accurate model could be produced instead of the model produced by the cross-

validation selector but this is typically not the case especially in real world situations.     

The cross-validation selector does rid the investigator of the burden of choosing 

the proper algorithm, but in so doing, it is vital that the investigator must know a variety 
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of data mining algorithms which would be appropriate for the modeling situation.  

Additionally, the investigator needs to know the format of the outputs of each algorithm 

so that the format the outputs are of a uniform manor.  

To guarantee diversity, voxels were classified into two sets, positive t-values and 

negative t-values.  Since bagging procedures rely of diversity to improve accuracy, it 

would make sense to identify more sets of diversity.  But, how many is too many?  By 

increasing the number of these diversity sets, the size of these sets themselves become 

smaller.  A smaller sample size decreases randomness which could create an artifact 

which would cause over fitting.  Too many diversity sets could cause, ironically, less 

diversity.  Many diversity sets would cause the voxels to fall into a more particular 

classification.  Thus, even though the sets are diverse, the voxels within each set are not 

causing the different models which represent all the sets to be similar.  Variable bagging 

would be of little use in such cases.   

           

6.4 Ideas for Improvement and for the Future 

 It is suspected that better voxel-based preprocessing method might help in the 

final outcome.  Admittedly my knowledge of preprocessing is limited and though it is my 

belief that the SPM preprocessing program was the best free-source available, I still have 

to wonder if there could be a program available that would be better for voxel-based 

imagery.   

 The results of this paper were based on only the gray matter of the brain.  White 

matter and spinal fluid amounts were not considered.  To increase diversity without 
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decreasing randomness it would seem advisable to consider both the white matter and 

spinal fluid.   

 Of the data mining algorithms available, this paper only considered four: logistic 

regression, neural networks with one internal node, support vector machines, and 

decision trees.  The inclusion of more algorithms would certainly make better use of the 

cross-validation selector.  Other algorithms might include, but not limited to: the lasso, 

principal components, neural networks with multiple hidden nodes and other learning 

type algorithms.   

 Other investigation for the future would be to test whether it is better to include 

all variables of the different diversity sets in each individual model and applying the 

bagging process on these models or having the models represent each diversity group 

separately then using the bagging process on the diverse models.   

 



107 
 

REFERENCES 

 

Ashburner, J. (2007). A fast diffeomorphic image registration algorithm. Neuroimage, 

38(1), 95-113. doi: 10.1016/j.neuroimage.2007.07.007 

 

Ashburner, J., & Friston, K. J. (2005). Unified segmentation. [Research Support, Non-

U.S. Gov't]. Neuroimage, 26(3), 839-851. doi: 10.1016/j.neuroimage.2005.02.018 

Bell, R. M., Koren, Y., & Volinsky, C. (2008). The BellKor 2008 Solution to the Netflix 

Priz. Retrieved from 

http://www.netflixprize.com/assets/ProgressPrize2008_BellKor.pdf 

Billingsley, P. (1995). Probability and measure (3rd ed.). New York: Wiley. 

Breiman, L. (1984). Classification and regression trees. Belmont, Calif.: Wadsworth 

International Group. 

Breiman, L. (1994). Bagging Predictors. Technical Report, No. 421. Retrieved from 

Department of Statistics website:  

Breiman, L. (1996). Stacked regression. Machine learning, 24, 49-64.  

Breiman, L., & Spector, P. (1992). Submodel selection and evaluation in regression. The 

X random case. International Statistical Review, 60(3), 291 - 319.  

Brett, M., Leff, A. P., Rorden, C., & Ashburner, J. (2001). Spatial normalization of brain 

images with focal lesions using cost function masking. Neuroimage, 14(2), 486-

500. doi: 10.1006/nimg.2001.0845 

Brieiman, L. (1996). Heuristics of instability and stabilization in model selection. Annals 

of Statistics, 24(6), 2350 - 2383.  

Cawley, G. C., & Talbot, N. L. C. (2010). On Over-fitting in Model Selection and 

Subsequent Selection Bias in Performance Evaluation. Journal of Machine 

Learning Research, 11, 2079-2107.  

Chambers, J. M., & Hastie, T. (1993). Statistical models in S. New York: Chapman & 

Hall. 

Collins, D. L., Neelin, P., Peters, T. M., & Evans, A. C. (1994). Automatic 3-D inter-

subject registration of MR volumetric data in standard Talairach space. JCAT, 

18(2), 192-205. 



108 
 

Dawbarn, D. & Allen, S.J. (2007). Neurobiology of Alzheimer’s disease (3rd ed.). Oxford; 

New York: Oxford University Press. 

Dudoit, S., van der Laan, (2003). Asymptotics of Cross-Validated Risk Estimation in 

Estimator Selection and Performance Assessment. U. C. Berkeley Division of 

Biostatistics Working Paper Series, Paper 126. Retrieved from 

http://bioiostats.bepress.com/ucbbiostat/paper126 

Everitt, B. (2002). The Cambridge dictionary of statistics (2nd ed.). Cambridge, UK ; 

New York: Cambridge University Press. 

Fox, P. T., Perlmutter, J. S., & Raichle, M. E. (1985). A stereotactic method of 

anatomical localization for positron emission tomography. J Comput Assist 

Tomogr, 9(1), 141-153.  

 

Friedland, R. P. (2010) Professor of Neurology, University of Louisville School of 

Medicine, personal conversation. 

Friedland, R. P., & Wilcock, G. (2000). Dementia. In J. G. Evans & T. F. W. O. U. Press 

(Eds.), Oxford Textbook of Geriatric Medicine (2nd ed., pp. 922-932). 

Goedert, M., Spillantini, M. G. (2000). Tau mutations in frontotemporal dementia FTDT-

17 and their relevance for Alzheimer’s disease. Biochimica et Biophysica, 1502, 

110 – 121. 

Gomez-Isla, T., West, H. L., Rebeck, G. W., Harr, S. D., Growdon, J. H., Locascio, J. J., 

Hyman, B. T. (1996). Clinical and pathological correlates of apolipoprotein E 

epsilon 4 in Alzheimer's disease. [Research Support, U.S. Gov't, P.H.S.]. Ann 

Neurol, 39(1), 62-70. doi: 10.1002/ana.410390110 

Györfi, L., Kohler, M., Krzyżak, A., & Walk, H. (2002). A Distribution-Free Theory of 

Nonparametric Regression. New York: Springer,. 

Hastie, T., Tibshirani, R., & Friedman, J. H. (2009). The elements of statistical learning : 

data mining, inference, and prediction (2nd ed.). New York: Springer. 

Hoeffding, W. (1963). Probability inequalities for sums of bounded random variables. 

Journal of the American Statistical Association, 58, 13 - 58.  

Kantardzic, M. (2003). Data mining : concepts, models, methods, and algorithms. 

Hoboken, NJ: Wiley-Interscience : IEEE Press. 

Kim, J., Avants, B., Patel, S., & Whyte, J. (2008). Spatial normalization of injured brains 

for neuroimaging research: An illustrative introduction of available options. 

NCRRN Methodology Papers. Retrieved from http://www.mrri.org 

Laboratory of Neuro Imaging (LONI),  www.loni.usc.edu. 

http://www.loni.usc.edu/


109 
 

Magnin, B., Mesrob, L., Kinkingnehun, S., Pelegrini-Issac, M., Colliot, O., Sarazin, M., 

Benali, H. (2009). Support vector machine-based classification of Alzheimer's 

disease from whole-brain anatomical MRI. Neuroradiology, 51(2), 73-83. doi: 

10.1007/s00234-008-0463-x 

Marcus, D. S., Wang, T. H., Parker, J., Csernansky, J. G., Morris, J. C., & Buckner, R. L. 

(2007). Cross-sectional MRI data in young, Middle aged, nondemented, and 

demented older adults. Journal of Congnitive Neuroscience, 19(9), 1498-1507.  

Mazziotta, J. C., Toga, A. W., Evans, A., Fox, P., & Lancaster, J. (1995). A probabilistic 

atlas of the human brain: theory and rationale for its development. The 

International Consortium for Brain Mapping (ICBM). Neuroimage, 2(2), 89-101.  

 

McCulloch, W., & Pitts, W. (1943). A logical calculus of ideas immanent in neural 

activity. Bulletin of Mathematical Biophysics, 5, 115-133.  

Nowak, R. (2007). Lecture 7: Chernoff’s Bound and Hoeffding’s Inequality 

Retrieved from http://nowak.ece.wisc.edu/SLT07/lecture7.pdf 

Office, G. A. (1998). Alzheimer's Diease; Estimates of Prevalence in the United States. 

(GAO/HEHS-98-16).  Retrieved from www.gao.gov. 

Quinlan, J. R. (1993). C4.5: Programs for Machine Learning: Morgan Kaufmann 

Publishers. 

Ripley, B. (2013). Package ‘tree’. Retrieved from cran.r-

project.org/web/packages/tree/tree.pdf  

Rousseeuw, P., & Leroy, A. (1987). Robust regression and Outlier Detection. Wiley 

Series in Probability and Mathematical Statistics.  

Royden, H. L. (1988). Real analysis (3rd ed.). New York, London: Macmillan;  

 

Rumelhart, D. E., & McClelland, J. L. (1986). Paralled Distributed Processing: 

Explorations in the Microstructure of Cognition. Foundations (Vol. 1). 

Cambridge, MA: MIT Press. 

Salas-Gonzalez, D., Gorriz, J. M., Ramirez, J., Lopez, M., Alvarez, I., Segovia, F., . . . 

Puntonet, C. G. (2010). Computer-aided diagnosis of Alzheimer's disease using 

support vector machines and classification trees. Physics in Medicine and 

Biology, 55, 2807 - 2817. doi: 10.1088/0031-9155/55/10/002 

Schnabel, J. (2010). Amyloid-beta ‘oligomers’ may be link to Alzheimer’s dementia, The 

DANA Foundation, www.dana.org 

Shalizi, C. (2009). Classification and Regression Trees. 

www.stat.cmu.edu/~cshalizi/350/lectures/22/lecture-22.pdf  



110 
 

Sled, J. G., & Pike, G. B. (1998). Standing-wave and RF penetration artifacts caused by 

elliptic geometry: an electrodynamic analysis of MRI. IEEE Trans Med Imaging, 

17(4), 653-662. doi: 10.1109/42.730409 

Taylor, C. What Is Markov's Inequality? About.com Statistics. 

Therneau, T. M., Atkinson, E. J., & Foundation, M. (2013). An Introduction to Recursive 

Partitioning Using the RPART Routines. CRAN R Project. Retrieved from 

http://cran.r-project.org/web/packages/rpart/vignettes/longintro.pdf 

Tosun-Turgut, D. (2012, June 29, 2012) Assistant Professor at University of California 

San Francisco (UCSF) School of Medicine, personal correspondence. 

van der Laan, M. J., & Dudoit, S. (2003). Unified Cross-Validation Methodology For 

Selection Among Estimators and a General Cross-Validated Adaptive Epsilon-

Net Estimator: Finite Sample Oracle Inequalities and Examples. U. C. Berkeley 

Division of Biostatistics Working Paper Series, Paper 130. Retrieved from 

http://biostats.bepress.com/ucbbiostat/paper130 website:  

van der Laan, M. J., Polley, E. C., & Hubbard, A. E. (2007). Super Learner. U. C. 

Berkeley Division of Biostatistics Working Paper Series, Paper 222. Retrieved 

from http://bioiostats.bepress.com/ucbbiostat/paper222 

van der Laan, M. J., & Rose, S. (2011). Targeted learning causal inference for 

observational and experimental data. New York: Springer,. 

Vapnik, V. N. (1998). Statistical learning theory. New York: Wiley. 

Vincent, T., Tenorio, L., & Walkin, M. Concentration of Measure: fundamentals and 

tools.  www.stat.rice.edu/~jrojo/PASI/lectures/TyronCMarticle.pdf 
 
 

 

 

 

 

 

 

 



111 
 

CURRICULUM VITAE 

2014 

 

Name:  Michael W. Godbey, Ph.D. 

Current Position: 

 Visiting Assistant Professor of Mathematics 

 School of Natural Sciences 

 Indiana University Southeast  

  

Home Address: 

 4969 Winding Spring Circle, Louisville, KY 40245        

Business Address:  

 School of Natural Sciences 

 Indiana University Southeast 

 4201 Grant Line Road 

New Albany, IN 47150 

Telephone: 812-941-2422 

Fax: 812-941-2637 

Email: mwgodbey@ius.edu 

 

Place of Birth: 

 Huntington, West Virginia 

Marital Status: 

 Married. Wife, Nancy L. 

Citizenship:  

 U.S.A. 

Undergraduate Studies: 

West Virginia University, Morgantown, WV 

B.A., May 1982; Major: Mathematics, 

mailto:mwgodbey@ius.edu


112 
 

Graduate Studies: 

 Marshall University, Huntington, WV 

M.A., December 1990 (Mathematics) 

 

University of Louisville, Louisville, KY 

Ph.D., December 2014 (Applied and Industrial Mathematics)  

 

Teaching and Research Positions: 

 Adjunct Instructor, Ohio University at Ironton, Department of Mathematics, 

 1997 – 1998 

 Term Instructor, Marshall University, Department of Mathematics, 1998 – 2003 

 Term Instructor, Rio Grande University and Community College, Department of 

Mathematics 2003 – 2004 

 Term Instructor, Marshall Technical and Community College, Department of 

Mathematics 2004 – 2006 

 Graduate Teaching Assistant, University of Louisville, Department of 

Mathematics, 2006 – 2013 

Term Instructor, University of Louisville, Department of Mathematics,           

2013 – 2014 

 Visiting Assistant Professor, Indiana University Southeast, School of Natural 

Sciences, 2014 – Present 

 

Undergraduate Teaching Experience: 

Contemporary Mathematics 

Pre-Algebra 

College Algebra 

Trigonometry 

Elementary Statistics 

Business Calculus 

Pre-Calculus 

Calculus I.       

 

Graduate Teaching Experience: 

 None 

 

Honors and Awards: 

 The Graduate Dean’s Citation 


	University of Louisville
	ThinkIR: The University of Louisville's Institutional Repository
	12-2014

	The use of variable-bagging and the cross-validation selector in the prediction of alzheimer’s using the adni database.
	Michael Wayne Godbey
	Recommended Citation


	tmp.1432909991.pdf.KEXGP

