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ABSTRACT

LIKELIHOOD-BASED METHODS FOR ANALYSIS OF COPY
NUMBER VARIATION USING NEXT GENERATION

SEQUENCING DATA

Udika Iroshini Bandara

July 21, 2017

A Copy Number Variation (CNV) detection problem is considered using

Circular Binary Segmentation (CBS) procedures, including newly developed pro-

cedures based on likelihood ratio tests with the parametric bootstrap for mod-

els based on discrete distributions for count data (Poisson and negative binomial)

and a widely-used DNAcopy package. Results from the literature concerning maxi-

mum likelihood estimation for the negative binomial distribution are reviewed. The

Newton-Raphson method is used to find the root of the derivative of the profile log

likelihood function when applicable, and it is proven that this method converges to

the true MLE, if the starting point for the Newton-Raphson is selected appropriately

and the MLE exists. Simulation studies are conducted to examine the performance

of the CBS procedures under various scenarios. Also, the procedures are applied to

a real data example based on the baboon endogenous viral genome.
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CHAPTER 1

INTRODUCTION

In 2002, Charles Lee, a cytogeneticist at Brigham and Women’s Hospital

in Boston, was trying to identify the changes in chromosomes in individuals, who

were previously characterized with chromosomal imbalance. So, he used normal

healthy individuals as the control group, but he was repeatedly unsuccessful in

these experiments, because he found major aberrations in the gene sequence of

normal healthy people. What was more confusing to him was that, some of these

individuals in the control group carried more copies than the individuals in the ex-

perimental group, but they were perfectly healthy people. In late 2003, he met Steve

Scherer, a Canadian scientist who studies genetic variation in human disease at the

Hospital for Sick Children. He was also experiencing the same weird phenomenon

in normal healthy patients. They collaborated their research together to measure

the number of occurrences of the large scale copy number variations across the hu-

man genome. To investigate these copy number variants, they applied array-based

comparative genomic hybridization (arrayCGH) to the genomes of all unrelated in-

dividuals. Meanwhile, Michael Wigler, a molecular geneticist at Cold Spring Harbor

Laboratory in New York, was also observing major variations in chromosomes in

healthy normal people, using a different technology (Check 2005). In 2004, both

sets of researchers published their findings that indicated large-scale variations in

copy number contributing substantially to genomic variation between normal hu-

mans and susceptibility to some genetic diseases and both sets of researchers argued

for a more dynamic human genome structure (Iafrate et al. 2004, Sebat et al. 2004,
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Lobo 2008). These large variations in DNA segments are called copy number vari-

ants and they are described as a DNA segment of one kilo base(kb) or larger that is

present at a variable copy number in comparison with a reference genome (Redon

et al. 2006). Hence, year 2004 was a landmark year of genetic studies, because of

this new discovery related to the human genome, which is now leading researchers

to believe that copy number variations (CNVs) are as important a component of

genomic diversity as single nucleotide polymorphisms (SNPs – a variation in a single

nucleotide that occurs at a specific position in the genome differs between members

of a species) (Lobo 2008). These copy number variants can be seen in the forms

illustrated in Figure 1.1.

Figure 1.1: Copy Number Variations

With the huge development of DNA sequencing technologies, scientists have

more resources to increase research on genetic variations in the human population

as well as in other mammalian species. Because of the major breakthrough of

finding copy number variations (CNVs) in 2004, scientists began to link CNVs

in the genome to human health and complex diseases. Not all the CNVs have
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influence on diseases. It is found that some CNVs in healthy population have no

apparent influence on phenotype, for example, Enrique Gonzalez, a researcher at

Veterans Administration Research Center for AIDS and HIV-1 Infection, and his

colleagues found that individuals who have extra copies of CCL3L1 can protect

an individual against contracting HIV and developing acquired immunodeficiency

syndrome (AIDS) more effectively than individuals, who carried fewer copy number

variants encoding CCL3L1 than average, were significantly more susceptible to HIV

and AIDS (Gonzalez et al. 2005). That means, if an individual with extra copies

became infected by HIV, the individual will have very slow progress towards full-

blown AIDS (Check 2005). Similarly, other copy number variants carried by healthy

individuals that seem to have no function might actually be evolutionarily retained

in populations if they provide a selective advantage (Lobo 2008). There are as many

as 40 other CNVs which have been definitely linked with complex diseases. Also,

scientists found some evidence that whether CNVs have a detectable phenotypic

effect might be influenced by interaction with additional genetic or environmental

factors (Clancy 2008).

Discovering genes in which copy number is associated with diseases such as

cancer has the potential to provide diagnostic tools for these diseases. For instance,

overexpression of the ERBB2 gene has been associated with certain types of breast

cancer (Pollack et al. 1999). Moreover, more aggressive forms of breast cancer

are correlated with having a high number of copies of the ERBB2 gene (Peiró et

al. 2004). CNVs have been detected in genetic regions related to Alzheimer’s disease

and schizophrenia (Freeman et al. 2006; Redon et al. 2006). Prader-Willi syndrome

and Angelman syndrome have been connected with the imprinted chromosome 15

region (Redon et al. 2006). Down’s syndrome is known to occur when there are

three copies of chromosome 21 (see Hattori et al. 2000 and the references therein).

Spinal muscle atrophy and DiGeorge syndrome have been connected with CNVs in
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chromosome 22 (Redon et al. 2006).

With all these great discoveries, a new era has begun in gene science, and

overall, in the medical science field. Researchers have more opportunities to find

hidden secrets behind human genomes, such as copy number variation, and essential

facts about our evolution. Scientists now can screen patients with genetic diseases

and compare them with healthy patients in a control group to attempt to discover

which CNVs are actually associated with disease and which are instead common in

the overall population. Consequently, this could provide new discoveries of previ-

ous unknown relationships between genes and diseases (Lobo 2008). Many scientists

have been applying statistical approaches to develop new statistical tools to identify

the copy number variations more efficiently and accurately. Therefore, it is worth-

while to look at this aspect with a statistical eye. Throughout this work, we explore

this aspect in a statistical way and will apply the likelihood based methods to iden-

tify the copy number variation (tandem duplication region) in a viral genome. We

will illustrate the flow of our work as follows.

Before analyzing any problem in general, it is worthwhile to explore the back-

ground information and the past literature. We present this in Chapter 2, in a way

such that, it begins with discussing deoxyribonucleic acid (DNA) and its shape, the

structure of a DNA including directionality and nitrogenous bases as background

information regarding DNA, and also, we will briefly present the information re-

garding DNA sequencing, essentially more on Next Generation Sequencing and its

process. Finally, we will give information on the Burrows-Wheeler Aligner, an align-

ment software tool, and concepts related to copy number variation, more on tandem

duplication, and deletion.

Many researchers have been using statistical distributions for analyzing CNV

detection problems. It is more natural to use discrete distributions, for modeling

the counts of short DNA sequences (these are called as read counts) mapping to a
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long genome sequence. Under the assumption that reads are randomly and inde-

pendently sampled from any location of the target genome with equal probability,

it is often assumed that the distribution of the count reads that map into a specific

location of the reference genome can be approximated by a Poisson distribution.

However, some authors revealed that read counts generated by some instrumental

equipments (such as Illumina Genome Analyzer), follow a Poisson distribution with

a slight overdispersion (Bentley et al. 2008, Yoon et al. 2009). Alberto Magi and his

colleagues showed clear evidence that the read counts generated by high throughput

sequencing technologies can be modeled by a negative binomial distribution (Magi

et al. 2012). Therefore, in Chapter 3, we will describe one form of the negative

binomial distribution, which is the Poisson-gamma mixture, in detail. There we

present the maximum likelihood estimates (MLE) of negative binomial parameters

and review the results concerning the existence and the uniqueness of the MLE from

past literature. In particular, we carefully reformulate the important results from

Simonsen (1976). Then, we extend these results to make new statements about

the shape of the profile likelihood function for the negative binomial distribution.

Also, we describe the Newton-Raphson method and apply it to find the roots of the

derivative of the log likelihood function when applicable. Moreover, we use our re-

sults about the shape of the profile likelihood function to prove that, the algorithm

will definitely converge to true MLE, if the starting point for the Newton-Raphson

is selected appropriately and the MLE exists.

Statisticians and bioinformaticians have been widely using change point anal-

ysis for inventing computational tools for detecting CNVs. In Chapter 4, we start

by considering the problem of detecting CNVs with a simple change point model,

which has two changes, and applying the likelihood based methods to estimate

the MLEs for two cases (Poisson and negative binomial distributions). This in-

cludes estimating the means of each of the continuous segments, and the change
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point locations. Next, we extend our consideration to more than two changes by

discussing a well known algorithm called Circular Binary Segmentation (CBS). We

describe a widely-used R package DNAcopy package (Seshan and Olshen 2017) which

uses the CBS algorithm, and we develop CBS procedures using the likelihood ratio

tests based on the Poisson and negative binomial models and describe a parametric

bootstrap procedure for making decisions on whether to reject hypotheses at each

step. Finally, we perform simulation studies under various scenarios to examine the

performance of these CBS procedures.

Chapter 5 presents a comparison of the methods that we discussed in Chapter

4, for real data, by considering the baboon endogenous virus strain M7 proviral DNA

as the reference genome. We generate Illumina short reads from the test genome,

which is created by adding a tandem duplication region to the reference genome,

using a reads simulator called MetaSim. There we simulate Illumina short reads,

and each is 36 bases long, using the empirical error model. Assuming that the

locations of the simulated reads are unknown, we use the BWA aligner to attempt

to align the reads to the reference genome and then apply the CBS procedures to

analyze the resulting read counts for copy number variation.

Chapter 6 describes some conclusions, discussion and the future work related

to the current research. Discussion and output from the MetaSim and code used

for finding MLEs and performing the CBS procedure are provided in the Appendix.

6



CHAPTER 2

BACKGROUND

The young Swiss doctor Friedrich Miescher, who was working in the laboratory

of Felix Hoppe-Seyler at the University of Tbingen in the winter of 1868-1869,

performed experiments on the chemical composition of leukocytes that lead to the

discovery of DNA (Dahm 2008). Leslie Pray (2008) mentioned that 1869 was a

landmark year in genetic research, because of this enormous discovery of Miescher,

and now we continue to make great strides in understanding the human genome

and the importance of DNA to life and health.

The middle of the twentieth century was a great period of some of the most

fundamental discoveries in DNA research (Dahm 2008). In 1944, Avery and his

colleagues were the first ones who identified DNA as genetic material (Avery et

al. 1944). At the end of this decade, Erwin Chargaff and his group studied the

composition and structure of nucleic acids and discovered that the base composition

of DNA varies between species (Chargaff et al. 1949, Chargaff 1950, Chargaff 1951).

For the first time in the history, in 1953, James Watson and Francis Crick

discovered the double helix, the twisted-ladder structure of DNA, which is now

accepted as the first correct double-helix model of the DNA (Watson and Crick

1953). This was a huge milestone in the history of genetics and inspired the modern

molecular biology, and also a great help to understand the concepts behind the

genetic code and protein synthesis. These ground-breaking discoveries helped to

build new technologies, such as genetic engineering, rapid gene sequencing, etc.,

which are today’s multi million dollar bio-technology industries.
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2.1 What is DNA?

DNA (deoxyribonucleic acid) is the genetic material passed from generation

to generation in all organisms. Human DNA consists of about 3 billion bases, and

more than 99 percent of those bases are the same in all people. It is a complex

doubly stranded molecule present in the nucleus of all living cells. DNA is often

referred to as the “building block of life” (Mitra et al. 2014).

Albrecht Kossel, a German biochemist and pioneer in the study of genetics,

was the first one who was able to isolate and name the five nucleobases, which are

adenine [A], guanine [G], cytosine [C], thymine [T], and uracil [U] (Jones 1953). It

is now widely accepted that DNA contains only four chemical bases called adenine

[A], guanine [G], cytosine [C], and thymine [T] (Pray 2008). The DNA sequence

is essentially a collection of these nitrogen bases. Those nitrogenous bases are the

places, where all the biological information about a living organism are stored in.

The order, or sequence, of these bases determines the information to make proteins.

DNA bases pair up with each other, A with T and C with G, inside the

helix, and these units are called base pairs. Each base is also attached to a sugar

molecule (5- carbon sugar called deoxyribose) and a phosphate molecule. Together,

a base, a 5-carbon sugar, and a phosphate molecule are called a nucleotide. The

nucleotides are joined to one another in a chain by molecule bonds,which is a chem-

ical bond that involves the sharing of electron pairs between atoms, between the

sugar of one nucleotide and the phosphate of the next, resulting in an alternating

sugar-phosphate backbone. Nucleotides are arranged in two long strands that form

a spiral, called a double helix. The structure of the double helix is somewhat like a

ladder, with the base pairs resembling the steps of the ladder. The structure of the

DNA is shown in the Figure 2.1.
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This picture is redrawn from the Genetic Home reference-U.S. National Library of Medicine.

Figure 2.1: Structure of DNA.

2.1.1 Directionality

Each strand in the backbone is associated with a direction from top to bot-

tom. This direction is determined by the ending and starting carbons. The direc-

tions are commonly referred to as 5’- end or 3’- end. The 5’ or 3’ indicate the carbon

numbers in the DNA sugar backbone. The 5’-carbon is attached to a phosphate

group and the 3’-carbon is attached to a hydroxyl group. As shown in the Figure

2.2, five carbons in the sugar-phosphate backbone are numbered starting from the

“o” in the clockwise direction. So, the carbon which has the base attached is called

“1” and the next carbon is “2” and so on.

9



This picture is adapted from Directionality(molecular biology) Wikipedia.

Figure 2.2: DNA directionality.

2.1.2 Chemical Bases

Chargaff (1950) concluded that the amount of adenine [A] is usually similar

to the amount of thymine [T], and the amount of guanine [G] usually approximates

the amount of cytosine [C]. In other words, the total amount of purines [A + G]

and the total amount of pyrimidines [C + T] are usually nearly equal, which is

now known as “Chargaff’s rule ”. But he could not imagine the explanation of

these relationships, specifically, that A is bound to T and C is bound to G within

the molecular structure of DNA. Watson and Crick (Watson and Crick 1953) dis-

covered that, “A” fit together perfectly with “T” and “C” with “G”, with each

pair held together by hydrogen bonds (Pray 2008). That is, A forms 2 hydrogen
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bonds with T on the opposite strand and G forms 3 hydrogen bonds with C. This

is because purines (A and G) always bind with pyrimidines (T and C). Due to this

relationship, the sequence of bases on one strand uniquely determined the bases on

the opposite strand (Watson and Crick 1953). The length of a DNA fragment is

generally determined by the number of base pairs it has in kBp (kilo base pairs) or

mBp (mega base pairs). The following images in Figure 2.3 show the structures of

the four nitrogenous bases.

Figure 2.3: Nitrogenous Bases

After the great discoveries of many secrets behind DNA, scientists began
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to look for the DNA sequencing technologies, which is the process of determin-

ing the precise order of nucleotides within a DNA molecule. The first method for

determining DNA sequences was found by Ray Wu at Cornell University in 1970

(DNA sequencing wikipedia). In 1977, Frederick Sanger, a British biochemist, in-

troduced the “Sanger Method” which was a major breakthrough and allowed long

stretches of DNA to be rapidly and accurately sequenced. This DNA sequencing

information has been widely used in the bio-medical field, in a great deal to identify

and diagnose various kinds of genetic diseases, such as Down syndrome, cancers

etc.(Machado and Menck 1997). With the exceptional development of biological

and medical research, the demand of having a fast and accurate DNA sequencing

has risen. So, much research has been administered to discover fast, easy and ac-

curate DNA sequencing technologies. Nowadays, the next generation sequencing

technology is currently meeting this demand in an enormous way.

2.2 Next Generation Sequencing

Next-generation sequencing (NGS), also known as high-throughput sequenc-

ing, is the general term used to describe a variety of modern sequencing technologies.

NGS technologies provide a sensitive and accurate alternative approach for access-

ing genomic variations. The quality, speed and affordability give NGS a significant

advantage over the other DNA sequencing technologies.(Hurd and Nelson 2009, Su

et al. 2011, Wang et al. 2014). In the past few years, because of the rapid develop-

ment in NGS technology, many sequencing platforms have been released. Some of

these include:

• Roche 454 sequencing

• Ion torrent: Proton / PGM sequencing

• SOLiD sequencing
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• Illumina HiSeq

• Illumina MiSeq

These relatively new technologies enable DNA and RNA to be sequenced

more rapidly than the older DNA sequencing (Sanger sequencing). Also, NGS is

much less expensive and the price has continued to decrease as the technology has

been further developed. Basically, the NGS process includes a combination of tem-

plate preparation, sequencing and imaging, and genome alignment and assembling

(Metzker 2010).

2.2.1 Illumina Sequencing Technology

The NGS technologies using the Illumina platform employ a massively paral-

lel Sequencing by Synthesis (SBS) methodology which involves sequencing the ends

of millions, or even billions, of DNA fragments (called reads) in parallel and perform-

ing read assembly for analysis (Chaitankar et al. 2016). Illumina NGS workflows

consist of 4 basic steps. They are:

• Library Preparation

• Cluster Amplification

• Sequencing

• Allignment and Data Analysis

Fgirues 2.4, 2.5, 2.6, and 2.7 present pictorial illustrations of the above steps. All

the images are adapted from An Introduction to Next Generation Sequencing Tech-

nology (www.illumina.com/technology/next-generation-sequencing.html).
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Figure 2.4: Library Preparation.

Library preparation begins with the extraction and purification of genomic

DNA. The extracted DNA is then broken into several overlapping fragments followed

by 5’ and 3’ adapter ligation as illustrated in Figure 2.4. Adapter-ligated fragments

are then PCR amplified and gel purified.

Figure 2.5: Cluster Amplification.

The library is loaded into a flow cell and each fragment is then amplified into

distinct colonal clusters through bridge amplification. This generates thousands to

millions of copies of a particular DNA sequence as illustrated in Figure 2.5.
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Figure 2.6: Sequencing

In the sequencing process, the base pairs from the ends of the fragments

are read. Each DNA strand within a cluster incorporates one of the nucleotides.

This nucleotide is the same for all strands within a single cycle. In this process,

non- incorporated molecules are washed away. A detecting device then records the

fluorescent color corresponding to the sequenced base as illustrated in Figure 2.6.

Figure 2.7: Alignment and Data Analysis
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Finally, reads are aligned to a reference sequence with bioinformatics soft-

ware. Figure 2.7 illustrates an example of a few reads being aligned to a reference

genome. After alignment, differences between the reference genome and the newly

sequenced reads can be identified.

With the fast development of DNA sequencing technologies, an enormous

amount of reads can be generated. As a result of that, the necessity of fast and

accurate read alignment software tools is required. In the past few decades, many

read alignment software tools, such as the Burrows-Wheeler Alignment (BWA),

Bowtie, AlignerBoost etc., have been developed and massively used in the bio-

informatics field. Since we use BWA for our simulation study, we will illustrate it

briefly in the following section.

2.3 BWA - Burrows-Wheeler Aligner

In 2009, Heng Li and Richard Durbin introduced a read alignment software

package called the Burrows-Wheeler Alignment(BWA) tool (Li and Durbin 2009).

The BWA tool is a new read alignment software package that is based on backward

search with Burrows-Wheeler Transform (BWT). It aligns short sequencing reads

against a large reference sequence such as the human genome, allowing mismatches

and gaps. It consists of three algorithms:

• BWA-backtrack (Li and Durbin 2009),

• BWA-SW (Li and Durbin 2010), and

• BWA-MEM (Li 2013).

BWA-backtrack is designed for Illumina sequence reads up to 100bp, while

the BWA-MEM and BWA-SW for longer sequences ranged from 70bp to 1Mbp.

BWA-MEM and BWA-SW share similar features such as long-read support and
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split alignment, but BWA-MEM (which is the latest) is generally recommended for

high-quality queries as it is faster and more accurate. BWA-MEM also has better

performance than BWA-backtrack for 70-100bp Illumina reads.

With the vast development of NGS technology, the term “Copy Number

Variation (CNV)” is often associated with the genomic and medical fields, since it

plays an important role in studies of susceptibility or resistance to complex diseases.

CNVs can be found in both humans and other species. It is an unique identity for

gene family expansion and diversification, which is a crucial evolutionary force.

2.4 Copy Number Variation

“ Copy Number Variation ” is often defined by the situation in which sec-

tions of the genome are repeated and the number of repeats in the genome varies

between individuals in the human population. It is a form of structural variation

in the genome. Copy number variation is often associated with complex disorders

such as Down’s syndrome which is the duplication of part or all of chromosome

21, Schizophrenia (St. Clair 2009), Autism (Pinto et al. 2010), cancers (Shlien et

al. 2009), etc. In many cases, the term CNV refers to the duplication or deletion of

DNA segments larger than 1000 base pairs. These changes in the DNA segments

of a gene may disturb its own activity level. For example, if a DNA segment of a

gene is deleted, the cell may produce half as much protein as its normal activity

level. Figure 2.8 shows the situation in which duplication or deletion occur in a

gene. The duplicate regions can be located adjacent to each other (called tandem

duplication) or one of the duplicate regions can be in its normal location and the

other in a novel location on a different part of the same chromosome or even on

another chromosome (Griffiths et al. 2000).
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Figures are adapted from Copy Number Variation-wikipedia

Figure 2.8: Duplication and Deletion.
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CHAPTER 3

NEGATIVE BINOMIAL DISTRIBUTION

Several papers have considered maximum likelihood estimation of the parameters

of a negative binomial distribution. Page 367 of Anscombe (1950) correctly con-

jectured conditions under which the maximum likelihood estimate exists and con-

ditions under which it is unique. Simonsen (1976) and Simonsen (1980) gave a

detailed proof of Anscombe’s conjecture. Levin and Reeds (1977) gave an alternate

proof based on the variation diminishing property of Laplace transforms. Wang

(1996) reviewed some later attempts to prove Anscombe’s conjecture, pointing out

a flaw in one later paper, and proved that the unbiased estimator of the parameter

which is denoted by r in this chapter does not exist. Dai et al. (2013) proposed

a fixed point iteration algorithm to attempt to find the MLE and proved that the

algorithm converges to the MLE when the sample mean is no greater than 1.5.

In this chapter, we describe and examine computation of maximum likelihood

estimates of the parameters of the negative binomial distribution using the Newton-

Raphson method. First, we describe the negative binomial distribution, derive

expressions for the maximum likelihood estimate (MLE) of its parameters based on

a random sample of observations for this distribution, and review results concerning

the existence and uniqueness of the MLE from past literature. Then we describe

the Newton-Raphson method and apply it to find the root of the derivative of the

likelihood function when applicable. Finally, if the starting point for the Newton-

Raphson method is selected appropriately and the MLE exists, we prove that the

algorithm is guaranteed to converge to the true MLE.
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3.1 Probability Mass Function

The probability mass function (pmf) of a negative binomial distribution has

the form:

P (X = x) =
Γ(x+ r)

x!Γ(r)
px (1− p)r , (3.1)

where, x ∈ {0, 1, 2, . . .}, 0 < p < 1, and r > 0. Often, the parameter p is referred

to as the probability of success on a Bernoulli trial and, if r is an integer, then x is

the number of successes before the rth failure, and (x+ r) is the number of trials.

Note that this definition of the negative binomial distribution is more gen-

eral than the typical definition in an introductory probability text since r is not

restricted to positive integer values. One major application of the negative bino-

mial distribution is that it can play a role as a mixture distribution of Poisson

distribution with gamma mixing weights. In other words, the negative binomial

distribution can be considered as a Poisson distribution where the Poisson param-

eter itself is a random variable and distributed as a gamma distribution. Thus,

the negative binomial distribution is known as a Poisson-gamma mixture and the

number of failures r does not necessarily need to be a non-negative integer. The

following derivation clarifies the intution behind this statement.

Let X be a Poisson random variable with parameter Λ and, suppose that Λ

has a gamma distribution with shape parameter α = r and rate parameter β = 1−p
p

.

Then the joint density function of X and Λ is given by

P (X = x|Λ = λ) · P (Λ = λ) =
e−λλx

x!
· λr−1 e

−λ(1−p)/p(
p

1−p

)r
Γ(r)

.

Then, the unconditional distribution of X can be obtained as follows.

P (X = x) =

∫ ∞
0

e−λλx

x!
· λr−1 e

−λ(1−p)/p(
p

1−p
)r

Γ(r)
dλ
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P (X = x) =
(1− p)r

x! · pr · Γ(r)

∫ ∞
0

e−λ
(
1+ 1−p

p

)
· λ(x+r−1)dλ

=
(1− p)r · Γ(x+ r) · px

x! · Γ(r)

∫ ∞
0

e
−λ
p · λ(x+r−1)

px · pr · Γ(x+ r)
dλ

=
(1− p)r · Γ(x+ r) · px

x! · Γ(r)

∫ ∞
0

e
−λ
p · λ(x+r−1)

px+r · Γ(x+ r)
dλ.

Note that, the integral is equal to 1, since the integrand is the probability

density function of the gamma distribution. Hence, the unconditional distribution

of X is given by

P (X = x) =
Γ(x+ r)

x! · Γ(r)
· px(1− p)r.

If we simplify (3.1) further, we will get the following form of the pmf:

P (X = x) =
Γ(x+ r)

x!Γ(r)
px (1− p)r

=
(x+ r − 1) · · · r · Γ(r)

x!Γ(r)
px (1− p)r

=
(x+ r − 1) · · · r

x!
px (1− p)r .

The natural logarithm of the pmf is

lnP (X = x) = x ln p+ r ln(1− p) +
x−1∑
ν=0

ln(r + ν)− ln(x!).

3.2 Maximum Likelihood Estimation

Let x1, x2, . . . , xn be a random sample of observations from independent and

identically distributed (iid) random variables X1, X2, . . . , Xn which have the pmf

given by (3.1). Then the log likelihood function can be written as

l(p, r) =
n∑
i=1

{
xi ln p+ r ln(1− p) +

xi−1∑
ν=0

ln(r + ν)− ln(xi!)
}
. (3.2)
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Differentiating the log-likelihood with respect to p, we obtain

∂l

∂p
(p, r) =

n∑
i=1

{xi
p
− r

1− p

}
.

Solving ∂l/∂p = 0 gives the maximizer for p, say p̂(r), as a function of r:

∂l

∂p
(p̂(r), r) = 0

nr

1− p̂(r)
=

∑n
i=1 xi
p̂(r)

p̂(r) · nr =
n∑
i=1

xi − p̂(r)
n∑
i=1

xi

p̂(r)
(
nr +

n∑
i=1

xi

)
=

n∑
i=1

xi

p̂(r) =

∑n
i=1 xi

nr +
∑n

i=1 xi

p̂(r) =
x̄

r + x̄
(3.3)

where, x̄ =
1

n

n∑
i=1

xi is the sample mean of x1, . . . , xn. For each fixed r > 0 l(p, r) is

maximized at p̂(r) since
∂2l

∂p2
(p, r) = −

n∑
i=1

{
xi
p2

+
r

(1− p)2

}
< 0 for all p ∈ (0, 1).

Substituting (3.3) into (3.2), we can write the profile log-likelihood function

for r as

l(p̂(r), r) =
n∑
i=1

{
xi ln p̂(r) + r ln(1− p̂(r)) +

xi−1∑
ν=0

ln(r + ν)− ln(xi!)
}
.

and differentiate it to obtain

h(r) =
∂l(p̂(r), r)

∂r

=
p̂′(r)

p̂(r)

n∑
i=1

xi − nr
p̂′(r)

1− p̂(r)
+ n ln(1− p̂(r)) +

n∑
i=1

(
xi−1∑
ν=0

1

r + ν

)
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h(r) = n ln(1− p̂(r)) +
n∑
i=1

(
xi−1∑
ν=0

1

r + ν

)
, (3.4)

since

p̂′(r)

p̂(r)

n∑
i=1

xi − nr
p̂′(r)

1− p̂(r)
= p̂′(r)

[
nx̄

p̂(r)
− nr

1− p̂(r)

]
= np̂′(r)

[
x̄

x̄/(r + x̄)
− r

r/(r + x̄)

]
= np̂′(r) [(r + x̄)− (r + x̄)]

= 0.

By substituting equation (3.3) into equation (3.4), we get

h(r) = n ln

(
1− x̄

r + x̄

)
+

n∑
i=1

(
xi−1∑
ν=0

1

r + ν

)

= n ln

(
r

r + x̄

)
+

n∑
i=1

(
xi−1∑
ν=0

1

r + ν

)

= n ln

(
1

1 + x̄/r

)
+

n∑
i=1

(
xi−1∑
ν=0

1

r + ν

)

= −n ln

(
1 +

x̄

r

)
+

n∑
i=1

(
xi−1∑
ν=0

1

r + ν

)

=
n∑
i=1

(
1

r
+

1

r + 1
+

1

r + 2
+ . . .+

1

r + xi − 1

)
− n ln

(
1 +

x̄

r

)

=
n∑
i=1

(
xi∑
ν=1

1

r + ν − 1

)
− n ln

(
1 +

x̄

r

)

=
k∑
ν=1

(
n∑
i=1

I(xi ≥ ν)

r + ν − 1

)
− n ln

(
1 +

x̄

r

)

=

xi∑
ν=1

(
n∑
i=1

I(xi ≥ ν)(r + ν − 1)−1

)
− n ln

(
1 +

x̄

r

)
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h(r) =
k∑
ν=1

Nν(r + ν − 1)−1 − n ln

(
1 +

x̄

r

)
(3.5)

where, k = max(x1, x2, . . . , xn) and Nν =
n∑
i=1

I(xi ≥ ν).

Then solving the equation h(r) = 0 provides the maximum likelihood estimate

for r. Then, letting r̂ denote the solution, we have by (3.5)

h(r̂) =
k∑
ν=1

Nν(r̂ + ν − 1)−1 − n ln

(
1 +

x̄

r̂

)
= 0.

We introduce a function f(r), such that, f(r) = 1
n
h(r). Then,

f(r) =
k∑
ν=1

Nν

n
(r + ν − 1)−1 − ln

(
1 +

x̄

r

)
. (3.6)

After some simulation studies, we observed that f(r) = 0 has a unique

solution whenever σ̂2 > x̄ and has no solution whenever σ̂2 ≤ x̄;

where, σ̂2 =
1

n

n∑
i=1

(
xi − x̄

)2

.

Here are three examples of small data sets which demonstrate the possible

shapes of the graph of f(r) (shown in Figures 3.1, 3.2, and 3.3). The R code

and functions are included for computing f(r) and creating the graphs with the

examples.

Case I: The sample mean x̄ is larger than the sample variance σ̂2.

To illustrate this case, suppose that we observe x1 = 1, x2 = 4, and x3 = 2. As

shown in the output from the code below, x̄ = 7
3
> 14

9
= σ̂2. It appears that f is a

positive decreasing function from the graph of f(r) shown in Figure 3.1.

> x=c(1, 4, 2)

> n=length(x)

> x
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[1] 1 4 2

> n

[1] 3

> max(x)

[1] 4

> mean(x)

[1] 2.333333

> sigma2=sum((x-mean(x))^2)/n

> sigma2

[1] 1.555556

> calc_Nu <- function(v){

+ t = 0

+ for (i in 1:n){

+ if (x[i] >= v){

+ t = t+1

+ }

+ }

+ return(t)

+ }

> l=function(x,r.delta=.01,r.max=100,...){

+ r=seq(r.delta,r.max,by=r.delta)

+ f=rep(0,length(r))

+ for (j in 1:length(r)){

+ S=rep(0,max(x))

+ for (v in 1:max(x)){

+ S[v] = (calc_Nu(v))/(r[j]+v-1)

+ }

+ f[j]= (sum(S)/n) - log(1 +(mean(x)/r[j]))

+ }

> plot(r,f, main=expression(paste("Graph of f(r) when ", bar(x),

+ " > ",hat(sigma)^2 )),type="l",...)

+ abline(h=0,lty=2)

+ }

> l(x,xlim=c(0,80),ylim=c(-0.0025,0.01))
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Figure 3.1: Graph of f(r) for an example in the case when x̄ > σ̂2.

Case II: The sample mean x̄ equals the sample variance σ̂2.

Next, we consider the example where x1 = 3, x2 = 0, and x3 = 3. As shown in the

output from the code below, x̄ = 2 = σ̂2. Here, we use the same R functions which

are shown in Case I to calculate the function Nν and plot the graph of f(r). Just

as in Case I, it appears that f is a positive decreasing function from the graph of

f(r) shown in Figure 3.2.

> x=c(3,0,3)

> n=length(x)

> x

[1] 3 0 3

> n

[1] 3

> max(x)

[1] 3

> mean(x)

[1] 2

> sigma2=sum((x-mean(x))^2)/n
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> sigma2

[1] 2

Figure 3.2: Graph of f(r) for an example in the case when x̄ = σ̂2.

Case III: The sample mean x̄ is less than the sample variance σ̂2.

Next, we consider the example where x1 = 1, x2 = 2, and x3 = 6. As shown in the

output from the code below, x̄ = 3 < 14
3

= σ̂2. Here, we use the same R functions

which is shown in Case I to calculate the function Nν and plot the graph of f(r).

The shape of the graph of f(r) is shown in Figure 3.3. Here it appears that the

non-linear equation f(r) = 0 has a unique solution.

> x=c(1, 2, 6)

> n=length(x)

> x

[1] 1 2 6

> n

[1] 3

> max(x)

[1] 6
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> mean(x)

[1] 3

> sigma2=sum((x-mean(x))^2)/n

> sigma2

[1] 4.666667

Figure 3.3: Graph of f(r) for an example in the case when x̄ < σ̂2.

The limiting behavior of f(r) as r → 0 and r →∞ can be computed directly.

First, we will show lim
r→∞

f(r) = 0.

lim
r→∞

f(r) = lim
r→∞

{
k∑
ν=1

Nν

n
(r + ν − 1)−1 − ln

(
1 +

x̄

r

)}

= lim
r→∞

k∑
ν=1

Nν

n
(r + ν − 1)−1 − lim

r→∞

{
ln

(
1 +

x̄

r

)}

= lim
r→∞

k∑
ν=1

Nν

n

1

(r + ν − 1)
− lim

r→∞

{
ln

(
1 +

x̄

r

)}

=
k∑
ν=1

Nν

n
· 0− ln(1 + 0)

= 0.
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Next, we will show that lim
r→ 0+

f(r) =∞.

lim
r→ 0+

f(r) = lim
r→ 0+

{
k∑
ν=1

Nν

n
(r + ν − 1)−1 − ln

(
1 +

x̄

r

)}

= lim
r→ 0+

{
k∑
ν=1

Nν

n

1

(r + ν − 1)
− ln

(
1 +

x̄

r

)}

= lim
r→ 0+

{
ln e

{∑k
ν=1

Nν
n

1
(r+ν−1)

}
− ln

(
1 +

x̄

r

)}

= lim
r→ 0+

ln

{
e

{∑k
ν=1

Nν
n

1
(r+ν−1)

}
(
1 + x̄

r

) }

= ln

{
lim
r→ 0+

e

{
N1
nr

+
∑k
ν=2

Nν
n

1
(r+Cν )

}
(
1 + x̄

r

) }

where, Cν = (ν − 1) for ν = 2, 3, . . . , k. Since direct substitution yields the indeter-

minant form ∞
∞ , using L’Hôpital’s Rule, we get the following.

lim
r→ 0+

f(r) = ln

{
lim
r→ 0+

e

{
N1
nr

+
∑k
ν=2

Nν
n

1
(r+Cν )

}
·
{−N1

nr2
−
∑k

ν=2
Nν
n

1
(r+Cν)2

}(−x̄
r2

) }

= ln

{
lim
r→ 0+

e

{
N1
nr

+
∑k
ν=2

Nν
n

1
(r+Cν )

}
· −1
r2
·
{
N1

n
+
∑k

ν=2
Nν
n

1

(1+Cν
r

)2

}(−1
r2

)
x̄

}

= ln

{
lim
r→ 0+

e

{
N1
nr

+
∑k
ν=2

Nν
n

1
(r+Cν )

}
·
{
N1

n
+
∑k

ν=2
Nν
n

1

(1+Cν
r

)2

}
x̄

}

Then by applying the limits, we get the form ln

{
e∞ · N1

n

x̄

}
= ln(∞), so we have

lim
r→ 0+

f(r) =∞.

Simonsen (1976,1980) considered the question of solving the equation f(r) =

0, with different notation. There, the equation was written as

k∑
s=1

Ns

N0

(x+ s− 1)−1 − Log

(
1 +

m

x

)
= 0 (3.7)
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where, m =
1

N0

k∑
s=1

Ns. In (3.7), the index s is used instead of index ν, variable x

instead of variable r, and N0 instead of n in (3.4). For the remainder of this chapter,

we will try to avoid confusion by converting the notation from Simonsen (1976) to

the notation introduced herein. The following results concerning the existence and

uniqueness of a solution to (3.7) were proved in great detail in Simonsen (1976,1980).

THEOREM 3.1. (Simonsen)

Let S =
1

N0

k∑
ν=1

Nν(ν − 1) and C(r) =
x̄

k∑
ν=1

Nν(r + ν − 1)−2

− r.

(a) If k = 1 or if k ≥ 2 and m2 ≥ 2S, then f(r) > 0 for all r > 0.

(b) If k ≥ 2 and m2 < 2S, then the following statements are true.

(i) There is a positive number r∗ such that f(r) > 0 when r < r∗, f(r∗) = 0,

and f(r) < 0 when r > r∗.

(ii) There is a number ξ > r∗ such that f ′(r) < 0 when r < ξ, f ′(ξ) = 0 and

f ′(r) > 0 when r > ξ.

(iii)
1

x̄
r (r + C(r)) (r + x̄)f ′(r) = C(r)− x̄.

(iv) C ′(r) > 0 for all r > 0.

(v) C(r) > 0 for all r > 0.

Proof : For (a), see statement (i) in Section 4 of Simonsen (1976). For (b-i),

see statement (ii) in Section 4 and equation (5.4) of Simonsen (1976). For (b-ii),

see statement (B) in Section 5 of Simonsen (1976). Equation (b-iii) is equivalent to

equation (4.3) of Simonsen (1976). The inequality (b-iv) is equivalent to inequality

(3.2) which is proved in Section 3 of Simonsen (1976). Since f(r) is increasing by

(b-iv), the inequality (b-v) follows from (3.3) of Simonsen (1976) which states that

lim
r→0

C(r) = 0 and lim
r→∞

C(r) =
2S

x̄
.2

The following result relates the quantities m and S with the sample mean
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x̄ =
1

n

n∑
i=1

xi and sample variance σ̂2 =
1

n

n∑
i=1

(
xi − x̄

)2

.

THEOREM 3.2. If xi are nonnegative integers for i = 1, . . . , n, then

(a) m = x̄

and

(b) σ̂2 = 2S + x̄− x̄2.

Furthermore, if k = 0 or k = 1, then σ̂2 ≤ x̄.

Proof : First, we see that

n∑
i=1

xi =
n∑
i=1

k∑
s=1

I(xi ≥ s)

=
k∑
s=1

n∑
i=1

I(xi ≥ s)

=
k∑
s=1

Ns.

Dividing both sides by N0 = n, we obtain (a).

To prove (b), we see that

n∑
i=1

x2
i =

n∑
i=1

(
k∑
s=1

I(xi ≥ s)

)2

=
n∑
i=1

k∑
s=1

k∑
t=1

I(xi ≥ s)I(xi ≥ t)

=
n∑
i=1

k∑
s=1

k∑
t=1

I (xi ≥ max(s, t))

=
n∑
i=1

k∑
s=1

(
s∑
t=1

I(xi ≥ s) +
k∑

t=s+1

I(xi ≥ t)

)

=
n∑
i=1

k∑
s=1

(
sI(xi ≥ s) +

k∑
t=s+1

I(xi ≥ t)

)

=
k∑
s=1

(
s

n∑
i=1

I(xi ≥ s) +
k∑

t=s+1

n∑
i=1

I(xi ≥ t)

)

=
k∑
s=1

(
sNs +

k∑
t=s+1

Nt

)
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n∑
i=1

x2
i =

k∑
s=1

sNs +
k−1∑
s=1

k∑
t=s+1

Nt. (3.8)

Now, it is shown by induction that

k−1∑
s=1

k∑
t=s+1

Nt =
k∑
s=1

Ns(s− 1) for any nonnegative k. (3.9)

First, it is true for k = 2 since
1∑
s=1

2∑
t=s+1

Nt =
2∑
s=1

Ns(s− 1) = N2. (It is also trivially

true for k = 0 and k = 1.) Now suppose it is true for k = j; that is, suppose
j−1∑
s=1

j∑
t=s+1

Nt =

j∑
s=1

Ns(s− 1). Then it follows that

j∑
s=1

j+1∑
t=s+1

Nt =

j−1∑
s=1

j∑
t=s+1

Nt +

j−1∑
s=1

Nj+1 +

j+1∑
t=j+1

Nt

=

j∑
s=1

Ns(s− 1) +Nj+1(j − 1) +Nj+1

=

j∑
s=1

Ns(s− 1) +Nj+1j

=

j+1∑
s=1

Ns(s− 1)

which proves (3.9).

Substituting (3.9) into (3.8), we get

n∑
i=1

x2
i =

k∑
s=1

sNs +
k∑
s=1

Ns(s− 1)

= 2
k∑
s=1

Ns(s− 1) +
k∑
s=1

Ns.

Then it follows that

σ̂2 =
1

n

n∑
i=1

(
xi − x̄

)2

=
1

n

n∑
i=1

x2
i − x̄2

=
1

n

(
2

k∑
s=1

Ns(s− 1) +
k∑
s=1

Ns

)
− x̄2
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σ̂2 =
1

n

(
2nS +

n∑
i=1

xi

)
− x̄2

= 2S + x̄− x̄2

which proves (b). k = 0 implies that S = 0, since the term S does not exist, and

x̄ = 0. Then, it immediately follows from (b) that

σ̂2 = x̄− x̄2 = 0 = x̄.

Since k = 1 implies that S = 0, it immediately follows from (b) that

σ̂2 = x̄− x̄2 ≤ x̄.

2

The following theorem proves some useful statements about the shape of f(r)

where it is positive in terms of k, x̄, and σ̂2. This includes a statement about the

concavity of f(r) which is not discussed in Simonsen (1976).

THEOREM 3.3. (Shape of the positive portion of the profile likelihood

function f(r).)

If k > 0, then the following properties hold for f(r).

(a) If σ̂2 ≤ x̄, then f(r) is positive for all r > 0.

(b) If σ̂2 > x̄, then f(r) > 0, f ′(r) < 0, and f ′′(r) > 0 when 0 < r < r∗ where, r∗

is the positive number in Theorem 3.1(b-i).

Proof : If k ≥ 2 and σ̂2 ≤ x̄, then m2 = x̄2 = 2S + x̄− σ̂2 ≥ 2S so Theorem

3.1(a) implies that (a) holds. If k = 1 (in which case, Theorem 3.2 implies that

σ̂2 ≤ x̄), then Theorem 3.1(a) also implies that (a) holds.

If σ̂2 > x̄, then k > 1 and m2 = x̄2 = 2S + x̄− σ̂2 < 2S by Theorem 3.2. By

Theorem 3.1(b) parts (i) and (ii), f(r) > 0 when r < r∗ and f ′(r) < 0 when r < r∗

since r∗ < ξ. Thus, f(r) is positive and decreasing when 0 < r < r∗. To see that
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f(r) is concave upward on this interval, note that

A(r)f ′(r) = C(r)− x̄ (3.10)

where,

A(r) =
1

x̄
r(r + C(r))(r + x̄)

is a product of positive increasing functions by Theorem 3.1(b) parts (iii), (iv), and

(v). As a consequence of the product rule for differentiation, the derivative of a

product of positive increasing functions is positive, so A′(r) > 0. Differentiating

both sides of (3.10), we obtain

A′(r)f ′(r) + A(r)f ′′(r) = C ′(r). (3.11)

Solving (3.11) for f ′′(r), it is seen that

f ′′(r) =
C ′(r)− A′(r)f ′(r)

A(r)
. (3.12)

If 0 < r < r∗, then f ′′(r) > 0 since C ′(r) > 0, A′(r) > 0, f ′(r) < 0, and A(r) > 0,

and hence, f is concave upward on this interval. 2

It is also important to examine the behavior of the negative binomial distri-

bution as the parameter (r) goes to infinity, whereas the probability of success (p)

goes to zero. In particular, let us parametrize the mean of the distribution (3.1)

such that

µ = r
p

1− p
, which implies that p =

µ

µ+ r
.

Then, under this parametrization, the pmf for the distribution (3.1) can be

expressed as

P (X = x) =
Γ(x+ r)

x!Γ(r)

( µ

µ+ r

)x(
1− µ

µ+ r

)r
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P (X = x) =
Γ(x+ r)

x!Γ(r)

( µ

µ+ r

)x( r

µ+ r

)r
=

Γ(x+ r)

x!Γ(r)

( µ

µ+ r

)x 1(
µ
r

+ 1
)r

=
µx

x!
· Γ(x+ r)

Γ(r)(µ+ r)x
· 1(

µ
r

+ 1
)r .

Now, if we let r → ∞ we will show that
Γ(x+ r)

Γ(r)(µ+ r)x
converges to 1, and

1(
µ
r

+ 1
)r converges to e−µ.

Since

Γ(x+ r)

Γ(r)(µ+ r)x
=

(x+ r − 1)!

Γ(r)(µ+ r)x

=
(x+ r − 1) · · · r · Γ(r)

Γ(r)(µ+ r)x

=
(x+ r − 1) · · · r

(µ+ r)x

=
rx ·

(
x−1
r

+ 1
)
· · · 1

rx ·
(
µ
r

+ 1
) ,

it follows that

lim
r→∞

Γ(x+ r)

Γ(r)(µ+ r)x
= lim

r→∞

(
x−1
r

+ 1
)
· · · 1(

µ
r

+ 1
) = 1.

Next, let y = lim
r→∞

1(
µ
r

+ 1
)r . Then, we have

ln y = lim
r→∞

ln

(
1(

µ
r

+ 1
)r
)

= lim
r→∞
− ln

((µ
r

+ 1
)r)

= lim
r→∞
−r · ln

(µ
r

+ 1
)

= lim
r→∞
−

ln
(
µ
r

+ 1
)

1
r

.

Direct substitution yields the indeterminant form 0
0
. So, by applying the L’Hopital’s
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rule, we get

ln y = lim
r→∞
−

1(
µ
r

+1
) · (− µ

r2
)(

−1
r2

) = lim
r→∞
− µ(

µ
r

+ 1
) = −µ,

which implies that y = e−µ. Thus, we have

lim
r→∞

1(
µ
r

+ 1
)r = e−µ,

and hence,

lim
r→∞

P (X = x) =
µx

x!
· 1 · e−µ

=
µx · e−µ

x!
,

which is the pmf of a Poisson random variable with mean µ. Hence, the pmf of

a negative binomial distribution with p = µ
µ+r

approaches the pmf of a Poisson

distribution with mean µ when r is large.

This connection between the negative binomial and Poisson distributions is

helpful in understanding the supremum of the likelihood function when the MLE

does not exist. The following theorem discusses the existence and uniqueness of

the MLE as well as the supremum/maximum of the likelihood function. Note

that the supremum in part (a) is the maximum value of the likelihood function if

x1, . . . , xn is an iid sample from a Poisson distribution, and that in the case when

x1 = . . . = xn = 0, we define 0 ln 0 to be 0.

THEOREM 3.4. (Maximum likelihoood estimation for the negative bino-

mial distribution.)

(a) If σ̂2 ≤ x̄, then there is no maximizer of (3.2) and

sup
p,r

l(p, r) = nx̄ ln x̄− nx̄−
n∑
i=1

lnxi! .

(b) If σ̂2 > x̄, then the unique MLE of (p, r) is (p̂, r̂) where, p̂ =
x̄

r∗ + x̄
and r̂ = r∗

with r∗ being the positive number such that f(r∗) = 0, and max
p,r

l(p, r) = l(p̂, r̂).
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Proof : If σ̂2 ≤ x̄, then either k = 0 or k > 0. If k = 0, then the supremum

of l(p, r) = nr ln(1 − p) is clearly 0 by fixing r and letting p → 0, but it is not

attained since p ∈ (0, 1). Otherwise, if k > 0 and σ̂2 ≤ x̄, then f(r) is positive

for all r by Theorem 3.3(a) and thus (3.4) is positive for all r. Hence, there is no

maximizer of l(p, r) since l(p̂(r), r) is increasing for all r, and

sup
p,r

l(p, r) = sup
r

max
p
l(p, r)

= sup
r
l(p̂(r), r)

= lim
r→∞

l(p̂(r), r)

= lim
r→∞

n∑
i=1

{
xi ln p̂(r) + r ln(1− p̂(r)) +

xi−1∑
ν=0

ln(r + ν)− lnxi!

}

= lim
r→∞

n∑
i=1

{
xi ln

x̄

r + x̄
+ r ln

r

r + x̄
+

xi−1∑
ν=0

ln(r + ν)− lnxi!

}

= lim
r→∞

{
n∑
i=1

xi ln x̄+ nr ln
r

r + x̄
−

n∑
i=1

xi ln(r + x̄) +
n∑
i=1

xi−1∑
ν=0

ln(r + ν)− lnxi!

}

= lim
r→∞

{
nx̄ ln x̄+ nr ln

r

r + x̄
−

n∑
i=1

xi−1∑
ν=0

ln(r + x̄) +
n∑
i=1

xi−1∑
ν=0

ln(r + ν)− lnxi!

}

= lim
r→∞

{
nx̄ ln x̄+ nr ln

r

r + x̄
+

n∑
i=1

xi−1∑
ν=0

ln
r + ν

r + x̄
− lnxi!

}

= nx̄ ln x̄− nx̄−
n∑
i=1

lnxi!

since

lim
r→∞

r ln
r

r + x̄
= lim

r→∞

− ln
(
1 + x̄

r

)
1
r

= lim
r→∞

x̄
r2

− 1
r2

= −nx̄

and

lim
r→∞

n∑
i=1

xi−1∑
ν=0

ln
r + ν

r + x̄
=

n∑
i=1

xi−1∑
ν=0

ln

(
lim
r→∞

r + ν

r + x̄

)
=

n∑
i=1

xi−1∑
ν=0

ln 1 = 0.

If σ̂2 > x̄, then by Theorem 3.1(b)(i), there is a unique solution r̂ = r∗ to

the equation f(r) = 0. Also, f ′(r∗) < 0 by Theorem 3.1(b)(ii) so r∗ maximizes the
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profile log-likelihood l(p̂(r), r). Thus, (p̂, r̂) maximizes l(p, r) since

l(p̂, r̂) ≥ l(p̂(r), r) ≥ l(p, r) for all r and p. Hence (p̂, r̂) is the unique MLE. 2

3.3 Newton-Raphson Method

The Newton-Raphson method is a widely-used iterative algorithm for at-

tempting to find the solution of an equation f(r) = 0 using the function and its

derviative. Note that in this section, we use the Roman f to denote a general func-

tion and the Italic notation f to denote the function defined in (3.6). Specifically,

this method considers the first order Taylor series of the function f(r) at r̂j

f(r) = f(r̂j) + f ′(r̂j)(r − r̂j).

Now, solving the equation f(r) = 0 yields

r = r̂j −
f(r̂j)

f ′(r̂j)
. (3.13)

The function

g(r) = r − f(r)

f ′(r)

is called the Newton-Raphson iteration function. It is easy to see that g(r) = r,

when f(r) = 0. Thus, the Newton-Raphson iteration for finding the root of the

equation f(r) = 0 can be accomplished by finding the fixed point such that g(r) = r.

The Newton-Raphson method starts with an initial value r̂0, and updates

this value using (3.13) to obtain

r̂j+1 = g(r̂j) = r̂j −
f(r̂j)

f ′(r̂j)
(3.14)

for j = 0, 1, 2, . . .. The red line in Figure 3.4 illustrates the idea behind the Newton-

Raphson method; this is the tangent line to the curve y = f(r) at the point (rj, f(rj)).

The updated value rj+1 = g(rj) is the value rj+1 where the tangent line intersects

the horizontal axis.
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Figure 3.4: Illustration of a convex function with a root at r∗.

In general, there is no guarantee that the Newton-Raphson method con-

verges, but in some cases, results can be obtained based on convexity. See a general

discussion of the Newton-Raphson method in, Mathews (1992), for further details.

We will need the following definition of a convex function on an interval.

DEFINITION 3.1. A function f is said to be convex on the interval [a, b] if

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

for any x and y in [a, b] and λ in the interval [0, 1].

The blue line in Figure 3.4 illustrates Definition 3.1; the points on the seg-

ment of the secant line between the points (rj, f(rj)) and (r∗, 0) are above the curve

y = f(r).
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Now, we consider a special case where a function is positive, decreasing, and

convex on a certain interval. In light of Theorem 3.3, this result will be very im-

portant for studying the behavior of the Newton-Raphson method when applied to

finding the solution to the likelihood equation for the negative binomial distribution.

THEOREM 3.5. Suppose f is a differentiable function which is decreasing and con-

vex on the interval (0, r∗], f(r∗) = 0, and r0 ∈ (0, r∗]. Define the sequence

rj+1 = rj −
f(rj)

f ′(rj)

for all nonnegative integers j. Then
{
rj
}∞
j=0

is a nondecreasing sequence and

lim
j→ ∞

rj = r∗.

Proof : First, it is shown that
{
rj
}∞
j=0

is nondecreasing and bounded above

by r∗ by induction. By the assumption r0 ∈ (0, r∗], the basis step is satisfied. Now,

for the inductive step, suppose rj ∈ (0, r∗]. Since f(rj) ≥ 0 and f ′(rj) < 0, it is

easily seen that

rj ≤ rj −
f(rj)

f ′(rj)
= rj+1. (3.15)

Since f is a convex function on (0, r∗],

f((1− λ)rj + λr∗) ≤ (1− λ)f(rj) + λf(r∗)

for any λ ∈ [0, 1]. Let us define a function H(λ) such that;

H(λ) = (1− λ)f(rj) + λf(r∗)− f((1− λ)rj + λr∗). (3.16)

Then, H(λ) ≥ 0.

Since the function f is continuous and differentiable, H′(λ) can be computed

as follows:

H′(λ) = −f(rj) + f(r∗)− (r∗ − rj)f ′((1− λ)rj + λr∗).
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Then, it follows that

lim
λ→0
H′(λ) = −f(rj) + f(r∗)− (r∗ − rj)f ′(rj). (3.17)

Now we will show that lim
λ→0
H′(λ) ≥ 0. By the definition of a derivative at a given

point,

lim
λ→0
H′(λ) = lim

λ→0

H(λ)−H(0)

λ− 0
.

Then by (3.16), we know that H(0) = 0. Hence,

lim
λ→0
H′(λ) = lim

λ→0

H(λ)

λ
≥ 0 (3.18)

since H(λ) ≥ 0 and λ ∈ [0, 1]. Then by combining (3.17) and (3.18), we get

−f(rj) + f(r∗)− (r∗ − rj)f ′(rj) ≥ 0 (3.19)

which implies that

f(r∗)− f(rj) ≥ (r∗ − rj)f ′(rj)

f(r∗) ≥ f(rj) + (r∗ − rj)f ′(rj). (3.20)

Since f ′(rj) < 0, (3.20) implies that

f(r∗) ≥ f(rj)− (r∗ − rj)|f ′(rj)|

−f(r∗) ≤ −f(rj) + (r∗ − rj)|f ′(rj)|
−f(r∗)

|f ′(rj)|
≤ −f(rj)

|f ′(rj)|
+ r∗ − rj.

Then f(r∗) = 0 since r∗ is the root of f(r). Then employing this result to the above

inequality, we get

0 ≤ −f(rj)

|f ′(rj)|
+ r∗ − rj

rj ≤
−f(rj)

|f ′(rj)|
+ r∗

rj +
f(rj)

|f ′(rj)|
≤ r∗.
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Since f ′(rj) < 0 the above inequality can be written as

rj −
f(rj)

f ′(rj)
≤ r∗, (3.21)

and combining (3.21) with (3.15), we have

rj ≤ rj+1 ≤ r∗,

and the inductive step is proved.

Since
{
rj
}∞
j=0

is nondecreasing and bounded above,
{
rj
}∞
j=0

converges to

some value (say, r∞ ≤ r∗) such that, rj − rj+1 −→ r∞ − r∞ = 0 as j → ∞.

Now, f(rj) = f ′(rj)
(
rj − rj+1

)
. We will show that lim

j→ ∞
f(rj) = 0. Since f is a convex

function on (0, r∗], f ′(r) is increasing and f ′(r0) ≤ f ′(rj) ≤ f ′(r∗) < 0 for all j.

So, it follows that

lim
j→ ∞

f(rj) = lim
j→ ∞

f ′(rj)
(
rj − rj+1

)
= − lim

j→ ∞
f ′(rj)

(
rj+1 − rj

)
.

Then by the Squeeze Theorem,

−f ′(r0) lim
j→ ∞

(
rj+1 − rj

)
≥ lim

j→ ∞
f(rj) ≥ −f ′(r∗) lim

j→ ∞

(
rj+1 − rj

)
,

so that

0 ≥ lim
j→ ∞

f(rj) ≥ 0,

which implies that lim
j→ ∞

f(rj) = 0. By the continuity of f, it follows that

f

(
lim
j→∞

rj

)
= f(r∞) = 0,

and since r∗ is the unique root of f in (0, r∗], r∞ must be r∗; that is, lim
j→∞

rj = r∗. 2

Note that, if f is a twice differentiable function (as is the case for (3.6) with

the negative binomial model), then f is convex on an interval [a, b] if and only if
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f ′′(x) is nonnegative for all x in [a, b]; in this case, we could also prove the previous

result based on the second derivative.

Now we apply Theorem 3.5 to the problem of finding the MLE for the neg-

ative binomial distribution.

THEOREM 3.6. (Convergence of the Newton-Raphson method for finding

the MLE for the negative binomial distribution.)

Let f be the function defined in (3.6) and suppose σ̂2 > x̄. If r̂0 is selected such that

f(r̂0) > 0, then the Newton-Raphson iteration

r̂j+1 = r̂j −
f(r̂j)

f ′(r̂j)

for j = 0, 1, 2, . . . converges to r∗ where, r∗ is the unique root of f .

Proof : By Theorem 3.3(b), f is a differentiable function which is positive,

decreasing, and convex on the interval (0, r∗) and by Theorem 3.1(b-i), r∗ is the

unique root of f . Also, by Theorem 3.1(b-i), if f(r̂0) > 0, then r̂0 must be in the

interval (0, r∗). Thus, by Theorem 3.5, r̂j → r∗ as j →∞. 2

A natural question raised by the statement of Theorem 3.6 is how can

we choose the initial value r̂0 for the Newton-Raphson method to guarantee that

f(r̂0) > 0. Of course, a trial-and-error type method could be used to eventually

find an appropriate value, but it is of interest to determine if it is possible to find

a closed form for r̂0 that always works. In practice, this is important from a com-

putational standpoint since it eliminates the need to try several starting values to

guarantee that the method will find the MLE when it exists. The following result

gives a closed form for a starting value that is guaranteed to work.

THEOREM 3.7. Let f be the function defined in (3.6).

If k > 1, then f

(
N2

1

2n(nx̄−N1)

)
> 0.
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Proof : It suffices to find a value of r such that

ρt− ln(1 + t) > 0 (3.22)

where, ρ =
N1

nx̄
=

N1

N1 + . . .+Nk

and t =
x̄

r
. The inequality (3.22) is equivalent to

eρt > 1 + t. (3.23)

Since eρt = 1 + ρt + 1
2
ρ2t2 + . . . > 1 + ρt + ρ2t2, a value t̂0 > 0 which satisfies the

inequality (3.23) can be obtained by solving

1 + ρt̂0 +
1

2
ρ2(t̂0)2 = 1 + t̂0. (3.24)

Solving (3.24) for t, we obtain

t̂0 =
2(1− ρ)

ρ2
,

(note ρ ∈ (0, 1) which shows that t > 0) and consequently,

r̂0 =
x̄

t̂0
=

x̄
(
N1

nx̄

)2

2
(
1− N1

nx̄

) =
N2

1

2n (nx̄−N1)
.

Thus, we see that

f(r̂0) =
k∑
ν=1

Nν

n
(r̂0 + ν − 1)−1 − ln

(
1 +

x̄

r̂0

)
>
N1

nr̂0

− ln

(
1 +

x̄

r̂0

)
= ρt̂0 − ln(1 + t̂0)

> 0.

2
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CHAPTER 4

CNV DETECTION METHODS

In the earliest days of the cytogenetics, scientists used some traditional ap-

proaches to detect CNVs in human DNA, such as, Karyotyping, which is a test

to identify and evaluate the size, shape, and number of chromosomes in a sam-

ple of body cells, (Mayall et al. 1984, Bender and Kastenbaum 1969) and fluores-

cence in situ hybridization (FISH) (Langer-Safer et al. 1982). Then, Kallioniemi et

al. (1993) introduced a rapid new method for detecting and mapping DNA amplifi-

cation in tumors, called comparative genome hybridization (CGH). In 1998, Pinkel

and colleagues developed array comparative genome hybridization (aCGH) which

is now widely used to identify CNVs using micro-arrays (Pinkel et al. 1998). In

2003, genome-wide detection of CNVs was achieved using more accurate (aCGH)

and single-nucleotide polymorphism (SNP) array approaches (Carter 2007); these

approaches, however, have suffered from several inherent drawbacks, including hy-

bridization noise, limited coverage for genome, low resolution, and difficulty in de-

tecting novel and rare mutations (Snijders el al. 2001, Shendure and Ji 2008, Zhao

et al. 2013).

In the past few years, the NGS technology brought revolutionary break-

throughs in the bio-medical field and is used in various fields of life science (Schus-

ter 2008). Recently, a variety of CNV detection techniques were proposed, such

as, CNV-seq, CNVnator, readDepth, EWT, SegSeq, etc. Some researchers have

been studying these various kinds of CNV detection methods and comparing their

strengths and weaknesses (Duan et al. 2013, Zhao et al. 2013).
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4.1 Likelihood Based Methods

In this section, mathematically, we analyze our problem as a simple change

point problem, and then we evaluate the maximum likelihood estimates (MLEs) of

means of each of the continuous segments and the MLEs of change point locations,

by considering the data as discrete independent random variables. MLEs for the

parameters of the Negative Binomial Distribution and the Poisson Distribution are

illustrated, in order to estimate the means of the segments.

4.1.1 Change Point Analysis

The change point problem always refers to the problems of identifying changes

at an unknown time and estimating their locations in a series of events. Usually in

the change point analysis, we first try to detect whether there is any change in the

observed data, and if there is any, then estimate the number of changes and their

corresponding locations. The idea of the change point problem can be summarized

as described in Chen and Gupta (2011).

Let X1, X2, . . . , Xn be a sequence of independent random variables with

probability distribution functions F1, F2, . . . , Fn respectively. Then, in general, the

change point problem is to test the following two hypotheses, null (H0) versus al-

ternative (H1), where,

H0 : F1 = F2 = . . . = Fn

versus

H1 : F1 = . . . = Fm1 6= Fm1+1 = . . . = Fm2 6= Fm2+1 = . . . Fmk 6= Fmk+1 = . . . = Fn

where, 1 ≤ m1 < m2 < . . . < mk < n, k is the number of changes, andm1,m2, . . . ,mk

are the corresponding locations of the changes that have to be estimated. If the

distributions F1, F2, . . . , Fn belong to a common parametric family F (θ), then the
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change point problem is to test

H0 : θ1 = θ2 = . . . = θn = θ

V s.

H1 : θ1 = . . . = θm1 6= θm1+1 = . . . = θm2 6= θm2+1 = . . .θmk 6= θmk+1 = . . . = θn

where, θi; i = 1, 2, . . . , n are the population parameters, and θ is an unknown

parameter that needs to be estimated along with k, and m1,m2, . . . ,mk. This

hypothesis testing attempts to reveal the existence of any change point, number of

change point(s) and its(their) location(s).

A special multiple change points problem is the epidemic change point prob-

lem, which is defined by testing the following hypothesis,

H0 : θ1 = θ2 = . . . = θn = θ

V s.

H1 : θ1 = . . . = θα−1 = µ1 6= θα = . . . = θβ−1 = µ2 6= θβ = . . . = θn = µ1

where, 1 < α < β ≤ n + 1, and µ1, and µ2 are unknown. This epidemic change

point problem is of great practical interest, especially in bio-medical studies.

Nowadays, scientists in the bio-medical field often use the change point in-

ference methods to identify the copy number variation in the DNA segments. The

detection of CNVs in DNA or RNA is actually a change point problem, where

the read counts change in bins corresponding to copy number change. This has

been widely used in many CNV detection packages such as CNV-TV by Duan et

al. (2013), SeqBBS by Li et al. (2013), ReadDepth by Miller et al. (2011), PSCC by

Li et al. (2014), etc. Some frequently used methods for change point estimation in

the bio-informatics literature include the Bayesian test (BIC-Seq by Xi et al. 2011),

maximum likelihood ratio test (m-HMM by Wang et al. 2014), non-parametric test

(CNAseg by Ivanko et al. 2011, BreakDancer by Chen et al. 2009), and so on.
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In this section, we first consider a simple parametric change point model

under the epidemic alternative by making the following assumptions. In this model,

basically we are estimating the locations of the two change points where the tandem

duplication region of the genome occurs. But this model also covers the situation

of single change point model when the case of β = n + 1, where α and β are the

change point locations.

Suppose we observe n number of reads. Let Xi represent the starting genomic

position for the ith read, so that the read counts are independent random variables.

Assume that X1, . . . , Xα−1, Xβ, . . . , Xn are iid random variables with probability

mass function (pmf) Pθ0(X = x), and Xα, . . . , Xβ−1 are iid random variables with

pmf Pθ1(X = x). Here α ∈ {2, . . . , n− q + 1} and β ∈ {α + q, . . . , n+ 1} where, θ0

and θ1 are parameters of the outside segments and the middle segment respectively,

and are q-dimensional parameters. This change point model is illustrated in Figure

4.1.

Figure 4.1: Change point model.

4.1.2 Maximum Likelihood Estimation

In this subsection, we give a detailed description of the method of estimating

the maximum likelihood estimator of the parameters of each segment and the MLEs

of change point locations of the above model.

The log-likelihood function for the above model based on observed data
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x1, . . . , xn is,

L(θ0,θ1, α, β) =
α−1∑
i=1

lnPθ0(X = xi) +

β−1∑
i=α

lnPθ1(X = xi) +
n∑
i=β

lnPθ0(X = xi).

(4.1)

Then, the maximum likelihood estimate(MLE) of θ0, θ1, α, and β can be obtained

as follows. For a particular subset (say A), the MLE of the parameters is given by

θ̂A = argmax
θ

∑
i∈A

lnPθ(X = xi). (4.2)

Then, the MLE of α and β is determined by

(α̂, β̂) = argmax
α,β

L(θ̂{1,...,α−1,β,...,n}, θ̂{α,...,β−1}, α, β). (4.3)

That is, we evaluate (4.1) by replacing the parameters with their corresponding

MLEs, for all possible values of α and β and then find the best value for α and

β as (α̂, β̂), which will maximize the evaluated function. Finally, the MLE of the

parameters of the outside segments and the MLE of the parameters of the inside

segments are determined by

θ̂0 = θ̂{1,...,α̂−1,β̂,...,n}, and θ̂1 = θ̂{α̂,...,β̂−1}. jhgf (4.4)

4.1.3 Statistical Distributions

In our work, we map the short sequencing reads to the long reference genome

and we are interested in the starting genomic position of each read. This means,

the inputs for the statistical analysis are discrete non-negative integer values (count

data). So, one way to look at the appropriate statistical distributions for analyzing

these data is, usually, the negative binomial distribution and the Poisson distribu-

tion are often used to model the count data. Another way to look at this aspect is

the probability of the starting genomic position of a given read that to be mapped
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to any genomic position of the reference genome is rather small compared to the

number of reads we observe (n), then it can be well approximated by the Poisson

distribution. However, the Poisson assumption may not be as appropriate as the

negative binomial distribution when biological replicates are available and in the

presence of overdispersion, that is, when the variance is larger than or equal to the

mean (Dong et al. 2016).

Now, we derive the maximum likelihood estimators of each of the parameters

for the corresponding distributions.

4.1.4 MLEs for the Negative Binomial Model

There are two mathematically equivalent formulations of the negative bi-

nomial distribution. One is the traditional form, which is, the negative binomial

distribution estimates the probability of having a number of failures until a spec-

ified number of successes occur. The other definition is much more useful in the

sequencing data, which is the negative binomial distribution can be defined as a

Poisson-gamma mixture (see the discussion of the Poisson-gamma mixture in the

Section 3.1). Therefore, here we consider the model in the second definition as the

probability mass function of the negative binomial distribution. All the work of

deriving the MLEs of the negative binomial parameters (r, p), is shown in Section

3.2.

Figure 4.2: Change point model corresponding to the negative binomial distribution.

Consider the simple change point model illustrated in Figure 4.2. Assum-

ing that each segment from the above change point model is independent, let
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X1, X2, . . . , Xn be iid random variables from the distribution (3.1). Then the like-

lihood function L(x|p0, r0, p1, r1, α, β) for this model is given by,

L(x|p0, r0, p1, r1, α, β) =
α−1∏
i=1

Γ(xi + r0)

xi!Γ(r0)
p0
xi (1− p0)r0·

β−1∏
i=α

Γ(xi + r1)

xi!Γ(r1)
p1
xi (1− p1)r1

·
n∏
i=β

Γ(xi + r0)

xi!Γ(r0)
p0
xi (1− p0)r0 .

(4.5)

Employing the results of equation (3.2) to the equation (4.5), the log like-

lihood function for the negative binomial change point model (L) can be written

as

L(p0, r0, p1, r1, α, β) =
α−1∑
i=1

{
xi ln p0 + r0 ln(1− p0) +

xi−1∑
ν=0

ln(r0 + ν)− ln(xi!)
}

+

β−1∑
i=α

{
xi ln p1 + r1 ln(1− p1) +

xi−1∑
ν=0

ln(r1 + ν)− ln(xi!)
}

+
n∑
i=β

{
xi ln p0 + r0 ln(1− p0) +

xi−1∑
ν=0

ln(r0 + ν)− ln(xi!)
}
.

(4.6)

Letting

loutside(p0, r0, α, β) =

n0∑
i=1

{
x∗0,i ln p0 + r0 ln(1− p0) +

x∗0,i−1∑
ν=0

ln(r0 + ν)− ln(x∗0,i!)
}
,

and

linside(p1, r1, α, β) =

n1∑
i=1

{
x∗1,i ln p1 + r1 ln(1− p1) +

x∗1,i−1∑
ν=0

ln(r1 + ν)− ln(x∗1,i!)
}

where, n0 = n− β + α, n1 = β − α,

x∗0,i =

 xi if i < α

xi+β−α if i ≥ α
,
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for i = 1, . . . , n0, and x∗1,i = xi+α−1 for i = 1, . . . , n1, (4.6) can be expressed as

L(p0, r0, p1, r1, α, β) = loutside(p0, r0, α, β) + linside(p1, r1, α, β).

The following result describes the MLE of the parameters for the NB change

point model.

THEOREM 4.1. Suppose X1, . . . , . . . , Xn are independent random variables such

that X1, . . . , Xα−1, Xβ, . . . , Xn are negative binomial with parameters r0 and p0 and

Xα, . . . , Xβ−1 are negative binomial with parameters r1 and p1. Let x1, . . . , xn be

the realizations of X1, . . . , Xn. Let

f0(r, α, β) =
k∑
ν=1

N0,ν(α, β)

(n− β + α)(r + ν − 1)
− ln

(
1 +

1

r(n− β + α)

(
α−1∑
i=1

xi +
n∑
i=β

xi

))
,

and

f1(r, α, β) =
k∑
ν=1

N1,ν(α, β)

(β − α)(r + ν − 1)
− ln

(
1 +

1

r(β − α)

β−1∑
i=α

xi

)

where, k = max {x1, . . . , xn}, N0,ν(α, β) =
α−1∑
i=1

I(xi ≥ ν) +
n∑
i=β

I(xi ≥ ν), and

N1,ν(α, β) =

β−1∑
i=α

I(xi ≥ ν). If it exists, then the maximum likelihood estimate of

(p0, r0, p1, r1, α, β) is (p̂0, r̂0, p̂1, r̂1, α̂, β̂) where, r̂0(α, β) is the solution to

f0(r, α, β) = 0, r̂1(α, β) is the solution to f1(r, α, β) = 0,

p̂0(α, β) =

∑α−1
i=1 xi +

∑n
i=β xi

(n− β + α)r̂0(α, β) +
∑α−1

i=1 xi +
∑n

i=β xi
,

p̂1(α, β) =

∑β−1
i=α xi

(β − α)r̂1(α, β) +
∑β−1

i=α xi
,

(α̂, β̂) = argmax
α,β

L(p̂0(α, β), r̂0(α, β), p̂1(α, β), r̂1(α, β), α, β) with L defined in (4.6),

p̂0 = p̂0(α̂, β̂), r̂0 = r̂0(α̂, β̂), p̂1 = p̂1(α̂, β̂), and r̂1 = r̂1(α̂, β̂).
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Proof : First, consider α and β to be fixed. There is a unique maximizer of

loutside if and only if

1

n0

n0∑
i=1

x∗0,i <
1

n0

n0∑
i=1

(
x∗0,i −

1

n0

n0∑
j=1

x∗0,j

)2

(4.7)

by Theorem 3.4. If it exists, Theorem 3.4 implies this unique maximizer is

(p̂0(α, β), r̂0(α, β)) where r̂0(α, β) is the solution to f0(r, α, β) = 0 guaranteed by

Theorem 3.1 and

p̂0(α, β) =
1
n0

∑n0

i=1 x
∗
0,i

r̂0(α, β) + 1
n0

∑n0

i=1 x
∗
0,i

=

∑n0

i=1 x
∗
0,i

n0r̂0(α, β) +
∑n0

i=1 x
∗
0,i

=

∑α−1
i=1 xi +

∑n
i=β xi

(n− β + α)r̂0(α, β) +
∑α−1

i=1 xi +
∑n

i=β xi
.

Similarly, there is a unique maximizer of linside if and only if

1

n1

n1∑
i=1

x∗1,i <
1

n1

n1∑
i=1

(
x∗1,i −

1

n1

n1∑
j=1

x∗1,j

)2

, (4.8)

and, if it exists, it is (p̂1(α, β), r̂1(α, β)).

Next, when we compute

sup
p0,r0,p1,r1,α,β

L(p0, r0, p1, r1, α, β) =

max
α,β

{
sup

p0(α,β),r0(α,β)

loutside(p0(α, β), r0(α, β), α, β) + sup
p1(α,β),r1(α,β)

linside(p1(α, β), r1(α, β), α, β)

}
(4.9)

the supremums both exist only if (4.7) and (4.8) hold for at least one pair (α, β)

which maximizes (4.9). 2

Note that equation (4.9) can be used to compute the supremum of

L(p0, r0, p1, r1, α, β) even when the MLE does not exist. The supremums on the
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right side of (4.9) can be computed using Theorem 3.4 based on whether or not

conditions (4.7) and (4.8) are satisfied.

The expected value of the distribution (3.1) can be obtained as shown in the

following result.

THEOREM 4.2. If X follows a negative binomial distribution with parameters r

and p, then E(X) =
rp

1− p
.

Proof : By the definition of the mean, we have

E(X) =
∞∑
x=0

x · Γ(x+ r)

x!Γ(r)
px (1− p)r

=
∞∑
x=0

x · (x+ r − 1)!

x · (x− 1)! · (r − 1)!
px (1− p)r

= (1− p)r
∞∑
x=0

(x+ r − 1!)

(x− 1)! · (r − 1)!
px

= (1− p)r
∞∑
x=0

((x− 1) + (r + 1)− 1)!

(x− 1)! · (r − 1)!
px

= (1− p)r
∞∑
x=0

r · ((x− 1) + (r + 1)− 1)!

(x− 1)! · r · (r − 1)!
p · px−1

= (1− p)r · rp
∞∑
x=0

((r + 1) + (x− 1)− 1)!

(x− 1)! · r!
px−1

= (1− p)r · rp
∞∑
x=0

(
(r + 1) + (x− 1)− 1

(x− 1)

)
px−1.

Since 0 < p < 1, by the Newton’s generalized binomial theorem,

∞∑
x=0

(
(r + 1) + (x− 1)− 1

(x− 1)

)
px−1 =

1

(1− p)r+1
.

Thus, it follows that

E(X) = (1− p)r · rp · 1

(1− p)r+1

=
rp

(1− p)
. 2
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Therefore, by the invariance property of the MLE, the MLE of the mean

is given by, E(X) =
r̂p̂

(1− p̂)
. Consequently, the MLE of the means of the outside

segments is given by

µ̂0 =
r̂0 · p̂0

1− p̂0

and the MLE of the mean of the inside segment is given by

µ̂1 =
r̂1 · p̂1

1− p̂1

.

4.1.5 MLEs for the Poisson Model

In the literature, many authors have demonstrated that, when working with

the NGS data, the read counts follow the Poisson distribution. SeqCNV by Chen et

al. (2017), worked with the simulated data by assuming that the number of reads

for each target followed a Poisson distribution with the product of the affinity and

length, and coordinated within the range being sampled. Under the assumption

that the reads are randomly and independently sampled from any location of the

test genome with equal probability, Yoon et al. (2009) has considered the read

counts, that are mapped into a window of the reference genome, follows the Poisson

distribution. Bentley et al. (2008) and Yoon et al. (2009) have reported that read

counts generated by the Illumina Genome Analyzer platform follows a pattern of

Poisson distribution with slight overdispersion. Ji and Chen (2015) mentioned that,

the natural way to think about the re-alignment of the short reads to the genome is

to view this process as a Poisson process of observing the number of reads mapped

to a specific genomic region. If there are no CNVs, then the number of reads should

follow a homogeneous Poisson process with a fixed average mean read count. When

the Poisson process starts to depart from its homogeneous feature as indicated by a

non-constant average mean count, then there is an indication of presence of CNVs

in the genomic region. So, it is worthwhile to look at the MLEs for the means and
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change points under the simple epidemic alternative illustrated in Figure 4.3 when

the reads follow the Poisson distribution. Here µ is the parameter of the Poisson

distribution (which is the mean of the distribution) and δ is the height corresponding

to the jump.

Figure 4.3: Change point model corresponding to the Poisson distribution.

Let X1, X2, . . . , Xn be iid random variables from the distribution with the

probability mass function

P (X = x) =
e−µµx

x!
(4.10)

where, x ∈ {0, 1, 2, . . .}, and µ > 0. Then the likelihood function L(x|µ, δ, α, β) for

this model is given by,

L(x|µ, δ, α, β) =
α−1∏
i=1

e−µµxi

xi!
·
β−1∏
i=α

e−(µ+δ)(µ+ δ)xi

xi!
·
n∏
i=β

e−µµxi

xi!
. (4.11)

If we simplify (4.11) further, we can obtain the following simplified form of the

likelihood function.

L(x|µ, δ, α, β) =
α−1∏
i=1

e−µµxi

xi!
·
β−1∏
i=α

e−µ · e−δ(µ+ δ)xi

xi!
· µ

xi

µxi
·
n∏
i=β

e−µµxi

xi!

=
α−1∏
i=1

e−µµxi

xi!
·
β−1∏
i=α

{
e−µµxi

xi!
· e−δ

(µ+ δ

µ

)xi}
·
n∏
i=β

e−µµxi

xi!

=
n∏
i=1

e−µµxi

xi!
·
β−1∏
i=α

e−δ
(µ+ δ

µ

)xi
.

Then, the log likelihood function can be written as follows.

L(x|µ, δ, α, β) =
n∑
i=1

ln
(e−µµxi

xi!

)
+

β−1∑
i=α

ln
(
e−δ

µ+ δ

µ

)xi
(4.12)
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L(x|µ, δ, α, β) = −nµ+ lnµ
n∑
i=1

xi −
n∑
i=1

ln(xi!)− (β − α)δ + [ln(µ+ δ)− lnµ]

β−1∑
i=α

xi.

(4.13)

THEOREM 4.3. Suppose X1, . . . , . . . , Xn are independent random variables such

that X1, . . . , Xα−1, Xβ, . . . , Xn are Poisson with mean µ, and Xα, . . . , Xβ−1 are Pois-

son with mean µ + δ. Let x1, . . . , xn be the realizations of X1, . . . , Xn. Then the

maximum likelihood estimate of (µ, δ, α, β) is (µ̂, δ̂, α̂, β̂) where

µ̂(α, β) =
1

n− β + α

( α−1∑
i=1

xi +
n∑
i=β

xi

)
,

δ̂(α, β) =
1

β − α

β−1∑
i=α

xi −
1

n− β + α

( α−1∑
i=1

xi +
n∑
i=β

xi

)
,

(α̂, β̂) = argmax
α,β

L(µ̂(α, β), δ̂(α, β), α, β) with L defined in (4.13), µ̂ = µ̂(α̂, β̂), and

δ̂ = δ̂(α̂, β̂).

Proof : Differentating the log likelihood function with respect to δ, we get,

∂L

∂δ
(µ, δ) = −(β − α) +

β−1∑
i=α

xi

( 1

µ+ δ

)
. (4.14)

Partial differentiation of the log likelihood function with respect to µ yields,

∂L

∂µ
(µ, δ) = −n+

1

µ

n∑
i=1

xi +
( 1

µ+ δ
− 1

µ

) β−1∑
i=α

xi. (4.15)

Now we set
∂L

∂δ
= 0 and

∂L

∂µ
= 0, and let µ̃ and δ̃ denote values of µ and δ which

solve these pair of equations. Solving
∂L

∂δ
= 0 for β − α gives

β − α =
1

µ̃+ δ̃

β−1∑
i=α

xi

=
1

µ̃+ δ̃

β−1∑
i=α

xi.
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Then,

µ̃+ δ̃ =
1

β − α

β−1∑
i=α

xi. (4.16)

Using (4.15),
∂L

∂µ
= 0 gives

−n+
1

µ̃

n∑
i=1

xi +
( 1

µ̃+ δ̃
− 1

µ̃

) β−1∑
i=α

xi = 0. (4.17)

Then by applying the results of equation (4.16) to the equation (4.17), we get,

−n+
1

µ̃

n∑
i=1

xi +
(

(β − α)
1∑β−1
i=α xi

− 1

µ̃

) β−1∑
i=α

xi = 0

−n+
1

µ̃

n∑
i=1

xi + β − α−
(∑β−1

i=α xi
µ̃

)
= 0

n∑
i=1

xi −
β−1∑
i=α

xi = µ̃(n− β + α)

α−1∑
i=1

xi +

β−1∑
i=α

xi +
n∑
i=β

xi −
β−1∑
i=α

xi = µ̃(n− β + α)

α−1∑
i=1

xi +
n∑
i=β

xi = µ̃(n− β + α),

so that

µ̃ =
1

n− β + α

( α−1∑
i=1

xi +
n∑
i=β

xi

)
= µ̂(α, β). (4.18)

Then, substituting the equation (4.18) to the equation (4.16), we get

δ̃ =
1

(β − α)

β−1∑
i=α

xi −
1

n− β + α

( α−1∑
i=1

xi +
n∑
i=β

xi

)
= δ̂(α, β). (4.19)

Now, we show that, for fixed α and β, (µ̃, δ̃) maximizes L. To prove this, we show

that,
∂2L

∂2µ
(α, β) < 0 and the Hessian matrix H(µ, δ) is negative definite, which is,

the determinant of H(µ, δ) > 0. That is, |H(µ, δ)| = |∇2L(µ, δ)| > 0.
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First we show that,
∂2L

∂2µ
(α, β) < 0. Partial derivative of (4.15) with respect

to µ yields,

∂2L

∂µ2
(µ, δ) = − 1

µ2

n∑
i=1

xi −
1

(µ+ δ)2

β−1∑
i=α

xi +
1

µ2

β−1∑
i=α

xi

= − 1

µ2

α−1∑
i=1

xi −
1

µ2

β−1∑
i=α

xi −
1

µ2

n∑
i=β

xi −
1

(µ+ δ)2

β−1∑
i=α

xi +
1

µ2

β−1∑
i=α

xi

= − 1

µ2

α−1∑
i=1

xi −
1

µ2

n∑
i=β

xi −
1

(µ+ δ)2

β−1∑
i=α

xi

< 0.

Now we show that, |H(µ, δ)| = |∇2L(µ, δ)| =

∣∣∣∣∣∣∣∣
∂2L(µ,δ)
∂µ2

∂2L(µ,δ)
∂µ∂δ

∂2L(µ,δ)
∂δ∂µ

∂2L(µ,δ)
∂δ2

∣∣∣∣∣∣∣∣> 0.

We found that,

∂2L(µ, δ)

∂µ∂δ
=
∂2L(µ, δ)

∂δ∂µ
=
∂2L(µ, δ)

∂δ2
= − 1

(µ+ δ)2

β−1∑
i=α

xi.

Then, by applying these results to the Hessian matrix, we get

|H(µ, δ)| =

(
1

µ2

α−1∑
i=1

xi +
1

µ2

n∑
i=β

xi +
1

(µ+ δ)2

β−1∑
i=α

xi

)
·

(
1

(µ+ δ)2

β−1∑
i=α

xi

)

−

(
1

(µ+ δ)2

β−1∑
i=α

xi

)
·

(
1

(µ+ δ)2

β−1∑
i=α

xi

)
.

By simplifying this further, we obtain

|H(µ, δ)| =

(
1

µ2

α−1∑
i=1

xi +
1

µ2

n∑
i=β

xi

)
· 1

(µ+ δ)2

β−1∑
i=α

xi > 0

which completes the proof. 2

Hence, the MLE of the mean of the outside segments is given by,

θ̂0 = µ̂(α̂, β̂) =
1

n− β̂ + α̂

( α̂−1∑
i=1

xi +
n∑
i=β̂

xi

)
,
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and the MLE of the mean of the inside segment is given by,

θ̂1 = µ̂(α̂, β̂) + δ̂(α̂, β̂) =
1

(β̂ − α̂)

β̂−1∑
i=α̂

xi.

4.2 Circular Binary Segmentation

Circular Binary Segmentation was proposed by Olshen and Venkatraman

(2004) to identify DNA copy number changes in an aCGH database on the mean

change point model. In aCGH experiments, the detection of CNVs, gains or losses,

can be identified based on the ratio of the test sample intensity to the reference

sample intensity as the ratio being higher or lower respectively. Let Ti and Ri be

the test sample intensity and the corresponding reference sample intensity at the

locus i respectively. The log2
Ti
Ri

, is considered as a random variable used for the

derivation of a copy number, which is assumed to follow a Gaussian distribution with

mean 0 and constant variance σ2. Then, deviations from the constant parameters

(mean and variance) presented in log2
Ti
Ri

data may indicate a copy number change.

Here, log2
Ti
Ri

= 0 indicates no DNA copy number change at locus i, log2
Ti
Ri

< 0

reveals a deletion at locus i, and log2
Ti
Ri

> 0 signifies a duplication in the test

sample at that locus.

CBS is a modification of binary segmentation. (Sen and Srivastava 1975).

It is an estimation algorithm which uses a likelihood ratio statistic to test the null

hypothesis of no change points in a sequence. If the null hypothesis is rejected, the

sequence is split and the test is recursively applied to the resulting sub-segments

until no additional changes are detected (Erdman and Emerson 2008). We summa-

rized the CBS method as follows (Olshen and Venkatraman 2004);

Let X1, X2, . . . , Xn be the log ratios of the intensities of the n locis being

tested, and let Si = X1 +X2 + . . .+Xi, 1 ≤ i ≤ n, be the partial sums. When the
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data are normally distributed with a known variance, by considering the segment

to be spliced at the two ends to form a circle, the likelihood ratio test statistic for

testing the hypothesis, that the arc from i+1 to j and its complement have different

means (modification of the likelihood ratio test statistic by Sen and Srivastava

(1975)), is given by

Zij =

{
1

(j − i)
+

1

(n− j + i)

}−1/2

·

{
(Sj − Si)
(j − i)

− (Sn − Sj + Si)

(n− j + i)

}
.

Then, the CBS is based on the statistic

ZC = max1≤i<j≤n|Zij|.

Here, ZC allows for both a single change (j = n) and the epidemic alternative

(j < n). If the statistic exceeds an appropriate threshold level (critical value), then

it declares a change. When the data are normal, this critical value can be computed

using the Monte Carlo Simulations or the approximation given by Siegmund (1986)

for the tail probability. If the null hypothesis is rejected the change-point(s) is

(are) estimated to be i (and j) such that ZC = |Zij| and the procedure is applied

recursively to identify all the changes.

When the data, Xi’s, are not normal, Olshen and Venkatraman generalized

the above procedure to the non-normal data by generating a reference distribution

using a permutation approach, considering the Xi’s are identically distributed under

the null hypothesis of no change point. Let X∗1 , X
∗
2 , . . . , X

∗
n be random permuta-

tion of the data and let Z∗C = max|Z∗ij| be the statistic derived as above from the

permuted data. Here, for the estimation of p-value, it requires large number of

permutations and is computationaly intensive. Because of this computational com-

plexity, Venkatraman and Olshen proposed a faster circular binary segmentation

algorithm (Venkatraman and Olshen 2007).
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4.2.1 Likelihood Ratio Test with Parametric Bootstrap

A standard test when the parametric form of a model is known is the (log-)

likelihood ratio test. In change point problems, the sampling distribution of this

statistic is complicated, and parametric bootstrap procedures are often used to

estimate the p-value of the test. This section gives a general desription of the (log-)

likelihood ratio test with a p-value estimated by the parametric boostrap.

Consider the general setting where, Xi has pmf Pθ for i = 1, . . . , n, and the

likelihood function for X1, . . . , Xn is L(θ) where, θ ∈ Θ, and we wish to test the

null hypothesis H0 : θ ∈ Θ0 for some set Θ0 against the alternative H1 : θ ∈ Θ∩Θ′0.

The log-likelihood ratio test statistic is then defined to be

Λ(X1, . . . , Xn) = ln

sup
θ∈Θ

L(θ)

sup
θ∈Θ0

L(θ)
.

Given observed data (x1, . . . , xn), the null hypothesis H0 is rejected when

Λ(x1, . . . , xn) is sufficiently large.

The parametric bootstrap can be used to estimate the p-value for testing H0

versus H1. It uses the estimate of θ under H0 (say θ̂0) to generate B new bootstrap

samples (x
(1)
1 , . . . , x

(1)
n ),. . .,(x

(B)
1 , . . . , x

(B)
n ); for any i ∈ {1, . . . , n}, X(b)

i , b = 1, . . . , B,

are iid random variables with pmf Pθ̂0 . So, Λ(X
(b)
1 , . . . , X

(b)
n ), b = 1, . . . , B is a

sample from the sampling distribution of Λ under H0, and an estimate of the p-

value for testing H0 versus H1 is

p̂-value =
1

B

B∑
b=1

I
(

Λ(x
(b)
1 , . . . , x(b)

n ) ≥ Λ(x1, . . . , xn)
)
.

Finally, rejecting H0 if the p-value is less than α gives us an approximate

α-level test of H0 versus H1.
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4.3 CBS Procedures for CNV Detection and Estimation

In this section, we consider several procedures for detection of copy number

variation and estimation of the mean values for the read counts. Further, we per-

form various simulation studies to assess the performance of these procedures under

different true models.

4.3.1 CBS Procedures

A widely-used method in the literature is the segment function in the DNAcopy

package (Seshan and Olshen 2017). In this section, we use the default parameters

for this function except for the size which we change to alpha=0.05 to make it com-

parable to the other methods used in the simulation studies. In the simulations, we

refer to this methods as the DNAcopy method.

We also consider procedures which perform circular binary segmentation

using successive likelihood ratio tests based on the parametric bootstrap for two

different underlying models for discrete count data. The simpler model assumes

the Poisson model with the likelihood function defined in (4.11). We refer to the

likelihood ratio test with the parametric bootstrap as the Poisson CBS method.

A more flexible model designed to account for overdispersion assumes the

negative binomial model with the likelihood function defined in (4.5). We refer to

this likelihood ratio test with the parametric bootstrap as the Negative Binomial

CBS method.

4.3.2 Simulations Under Poisson Models

Here, we assume that the true underlying model is that X1, . . . , Xn are inde-

pendent Poisson random variables where, Xi has mean µi for i = 1, . . . , n under six

scenarios. For each of the methods, we generate R = 1000 data sets and, for each
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data set and method, we tabulate the number of estimated continuous segments,

and the root mean square error (RMSE)

RMSE =

√√√√ 1

n

n∑
i=1

(µ̂i − µi)2

where, µ̂i is the estimated mean of Xi at index i.

The first scenario considered is one in which there is no copy number varia-

tion. We generate R = 1000 samples of size n = 50. For each sample, the data is

simulated from the model

Xi ∼ Poisson(µ = 10), i = 1, . . . , 50.

We refer to this simulation pN1. Some results are shown in Table 4.1.

Method AveRMSE 1 2 3 4 5 6+

DNAcopy .4259 .956 .010 .031 .001 .002 .000

Poisson CBS .4341 .953 .002 .041 .001 .003 .000

Negative Binomial CBS .4102 .966 .002 .031 .001 .000 .000

Table 4.1: Results for simulation under Poisson scenario pN1.

The column labeled AveRMSE reports the average of the values of the RMSE for the

1000 simulated data sets. The last six columns labeled 1, 2, 3, 4, 5, and 6+ report

the proportion of simulated data sets for which the specified method identified 1,

2, 3, 4, 5, and more than 5 segments. All of the procedures identified one segment

about 95% of the time (all are slightly higher) so it appears that the nominal size

specified for each test is reasonable. Interestingly, even though in the true model

the random variables are Poisson, the average RMSE is highest for the Poisson CBS

method and lowest for the Negative Binomial CBS method.
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Next, in scenario pH1, we generate R = 1000 samples of size n = 50 where

the data is simulated from the model

Xi ∼


Poisson(µ = 10), i = 1, . . . , 15

Poisson(µ = 15), i = 16, . . . , 25

Poisson(µ = 10), i = 26, . . . , 50

.

Some results are shown in Table 4.2.

Method AveRMSE 1 2 3 4 5 6+

DNAcopy 1.5995 .287 .003 .641 .026 .042 .001

Poisson CBS 1.5081 .205 .001 .756 .002 .033 .003

Negative Binomial CBS 1.5459 .296 .001 .683 .002 .018 .000

Table 4.2: Results for simulation under Poisson scenario pH1.

The column labeled AveRMSE reports the average of the values of the RMSE for the

1000 simulated data sets. The last six columns labeled 1, 2, 3, 4, 5, and 6+ report

the proportion of simulated data sets for which the specified method identified 1,

2, 3, 4, 5, and more than 5 segments. In this setting, the Poisson CBS method

does best both in terms of correctly identifying the correct number of segments the

highest proportion of times (.756) and having the smallest RMSE (1.5081).

Next, in scenario pF1, we generate R = 1000 samples of size n = 50 where

the data is simulated from the model

Xi ∼


Poisson(µ = 10), i = 1, . . . , 15

Poisson(µ = 20), i = 16, . . . , 25

Poisson(µ = 10), i = 26, . . . , 50

.

Some results are shown in Table 4.3.
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Method AveRMSE 1 2 3 4 5 6+

DNAcopy 1.3029 .003 .000 .901 .049 .043 .004

Poisson CBS 1.1945 .000 .000 .923 .008 .064 .005

Negative Binomial CBS 1.1554 .001 .000 .955 .004 .039 .001

Table 4.3: Results for simulation under Poisson scenario pF1.

The column labeled AveRMSE reports the average of the values of the RMSE for the

1000 simulated data sets. The last six columns labeled 1, 2, 3, 4, 5, and 6+ report

the proportion of simulated data sets for which the specified method identified 1, 2,

3, 4, 5, and more than 5 segments. In this setting, it is again interestingly that the

Negative Binomial CBS method does best in correctly idenifying the 3 segments the

highest proportion of times (.955) and in having the smallest RMSE (1.1554). In

this case though the Poisson CBS clearly is second best among the three methods.

Now, we consider scenarios with a smaller mean read count. In scenario pN2,

we generate R = 1000 samples of size n = 50 where the data is simulated from the

model

Xi ∼ Poisson(µ = 2.5), i = 1, . . . , 50.

Some results are shown in Table 4.4.

Method AveRMSE 1 2 3 4 5 6+

DNAcopy .1958 .973 .006 .020 .001 .000 .000

Poisson CBS .2066 .958 .001 .040 .000 .001 .000

Negative Binomial CBS .1982 .967 .001 .032 .000 .000 .000

Table 4.4: Results for simulation under Poisson scenario pN2.

The column labeled AveRMSE reports the average of the values of the RMSE for the

1000 simulated data sets. The last six columns labeled 1, 2, 3, 4, 5, and 6+ report
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the proportion of simulated data sets for which the specified method identified 1,

2, 3, 4, 5, and more than 5 segments. The results for this scenario are similar to

what was seen for scenario pN1 in Table 4.1. Even though the true distribution is

Poisson, the average RMSE for the Poisson CBS method is highest (.2066) though

the proportion of times it fails to identify only one segment (1 − .958 = .042) is

closest to the nominal size .05. However, DNAcopy does have the smallest average

RMSE in this case, while the Negative Binomial CBS method had the lowest in

scenario pN1.

Next, in scenario pH2, we generate R = 1000 samples of size n = 50 where

the data is simulated from the model

Xi ∼


Poisson(µ = 2.5), i = 1, . . . , 15

Poisson(µ = 3.75), i = 16, . . . , 25

Poisson(µ = 2.5), i = 26, . . . , 50

.

Some results are shown in Table 4.5.

Method AveRMSE 1 2 3 4 5 6+

DNAcopy .5969 .818 .005 .162 .003 .012 .000

Poisson CBS .6141 .799 .003 .187 .000 .011 .000

Negative Binomial CBS .5883 .868 .001 .127 .000 .004 .000

Table 4.5: Results for simulation under Poisson scenario pH2.

The column labeled AveRMSE reports the average of the values of the RMSE for the

1000 simulated data sets. The last six columns labeled 1, 2, 3, 4, 5, and 6+ report

the proportion of simulated data sets for which the specified method identified 1,

2, 3, 4, 5, and more than 5 segments. In this setting, although Poisson CBS does

best in terms of having the highest proportion of times it correctly identifies three

segments (.187), it is worst with the highest RMSE, even though the true model
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is Poisson. The Negative Binomial CBS method is best in terms of lowest average

RMSE (.5883), though it is conservative and identifies three segments is lowest

proportion of times among these three methods.

Next, in scenario pF2, we generate R = 1000 samples of size n = 50 where

the data is simulated from the model

Xi ∼


Poisson(µ = 2.5), i = 1, . . . , 15

Poisson(µ = 5), i = 16, . . . , 25

Poisson(µ = 2.5), i = 26, . . . , 50

.

Some results are shown in Table 4.6.

Method AveRMSE 1 2 3 4 5 6+

DNAcopy .8693 .378 .003 .585 .016 .018 .000

Poisson CBS .8344 .280 .001 .681 .002 .035 .001

Negative Binomial CBS .8497 .387 .000 .596 .001 .016 .000

Table 4.6: Results for simulation under Poisson scenario pF2.

The column labeled AveRMSE reports the average of the values of the RMSE for the

1000 simulated data sets. The last six columns labeled 1, 2, 3, 4, 5, and 6+ report

the proportion of simulated data sets for which the specified method identified 1,

2, 3, 4, 5, and more than 5 segments. As opposed to scenario pF1, the Poisson

CBS method does better than the Negative Binomial CBS method with the lower

average RMSE (.8344) and the higher proportion of times it correctly identifies

three segments. In both scenarios, both methods do better than DNAcopy.

Overall, for the Poisson scenarios, we see that the Negative Binomial CBS

method does well under all scenarios, in some cases even doing better than the

Poisson CBS method, which might be expected to do best it has a correct and more

precise specification of the true model. The DNAcopy method also does reasonably
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well and appears robust among the scenarios considered; overall in these scenarios,

it does not do as well as the Negative Binomial CBS, particularly in terms of average

RMSE, but this should be expected since it does not make as strong of assumptions

about the true model. Of course, it should be noted that the Negative Binomial CBS

method has the highest computation time compared with the other CBS methods

due to the iterative nature of the Newton-Raphson method.

4.3.3 Simulations Under Negative Binomial Models

In this subsection, we instead assume that the true underlying model is

that X1, . . . , Xn are independent negative binomial random variables where Xi has

parameters ri and pi for i = 1, . . . , n under nine scenarios. For each of the methods,

we generate R = 1000 data sets and, for each data set and method, we tabulate the

number of estimated continuous segments and the root mean square error (RMSE)

RMSE =

√√√√ 1

n

n∑
i=1

(µ̂i − µi)2

where, µ̂i is the estimated mean of Xi at index i.

First, we consider scenario nbN1 in which there is no copy number variation

and generate R = 1000 samples of size n = 50 where the data is simulated from the

model

Xi ∼ negative binomial(r = 2.5, p = .8), i = 1, . . . , 50.

Note that in R the probability of success and failure is reversed, so the command

that generates each sample is rnbinom(50,prob=.2,size=2.5). Some results are

shown in Table 4.7.
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Method AveRMSE 1 2 3 4 5 6+

DNAcopy .9387 .962 .009 .029 .000 .000 .000

Poisson CBS 5.6732 .002 .001 .006 .002 .025 .964

Negative Binomial CBS .9225 .949 .001 .046 .001 .003 .000

Table 4.7: Results for simulation under negative binomial scenario nbN1.

The column labeled AveRMSE reports the average of the values of the RMSE for the

1000 simulated data sets. The last six columns labeled 1, 2, 3, 4, 5, and 6+ report

the proportion of simulated data sets for which the specified method identified 1,

2, 3, 4, 5, and more than 5 segments. In this setting, the Negative Binomial CBS

method has the lowest average RMSE (.9225) and DNAcopy is close with (5.6732);

for both of these methods, the nominal size specified is reasonable. The model is

misspecified for the Poisson CBS method, and it is seen that this causes the method

to almost always overestimate the number of segments and, in most cases (96.4%),

it found over five segments. Also, the average RMSE is very high (5.6732) relative

to the other methods.

Next, in scenario nbH1, we generate R = 1000 samples of size n = 50 where

the data is simulated from the model

Xi ∼


negative binomial(r = 2.5, p = .8), i = 1, . . . , 15

negative binomial(r = 3.75, p = .8), i = 16, . . . , 25

negative binomial(r = 2.5, p = .8), i = 26, . . . , 50

.

Some results are shown in Table 4.8.

Method AveRMSE 1 2 3 4 5 6+

DNAcopy 2.4687 .866 .006 .115 .004 .009 .000

Poisson CBS 6.0836 .000 .000 .002 .004 .016 .978

Negative Binomial CBS 2.4630 .893 .003 .139 .001 .016 .002

Table 4.8: Results for simulation under negative binomial scenario nbH1.
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The column labeled AveRMSE reports the average of the values of the RMSE

for the 1000 simulated data sets. The last six columns labeled 1, 2, 3, 4, 5, and

6+ report the proportion of simulated data sets for which the specified method

identified 1, 2, 3, 4, 5, and more than 5 segments. In this setting, the Negative

Binomial CBS method again has the smallest average RMSE (2.4630), DNAcopy

is very close (2.4687), and the Poisson CBS method is much worse (6.0836). The

Negative Binomial CBS method also correctly identifies the number of segments the

highest proportion of the time (.139), while the Poisson CBS method again almost

always find over five segments (97.8% of the time).

Next, in scenario nbF1, we generate R = 1000 samples of size n = 50 where

the data is simulated from the model

Xi ∼


negative binomial(r = 2.5, p = .8), i = 1, . . . , 15

negative binomial(r = 5, p = .8), i = 16, . . . , 25

negative binomial(r = 2.5, p = .8), i = 26, . . . , 50

.

Some results are shown in Table 4.9.

Method AveRMSE 1 2 3 4 5 6+

DNAcopy 3.9257 .564 .003 .389 .022 .021 .001

Poisson CBS 6.4815 .000 .000 .002 .001 .011 .986

Negative Binomial CBS 3.8534 .546 .003 .409 .007 .028 .007

Table 4.9: Results for simulation under negative binomial scenario nbF1.

The column labeled AveRMSE reports the average of the values of the RMSE for the

1000 simulated data sets. The last six columns labeled 1, 2, 3, 4, 5, and 6+ report

the proportion of simulated data sets for which the specified method identified

1, 2, 3, 4, 5, and more than 5 segments. In this setting, the Negative Binomial

CBS method again has the smallest average RMSE (3.8534) and the Poisson CBS
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method is much worse (6.4815). The Negative Binomial CBS method also correctly

identifies the number of segments the highest proportion of the time (.409), while

the Poisson CBS method again almost always find over five segments (98.6% of the

time).

Now, we consider scenarios where p is smaller so the variance is closer to the

mean. In scenario nbN2, we generate R = 1000 samples of size n = 50 where the

data is simulated from the model

Xi ∼ negative binomial(r = 10, p = .2), i = 1, . . . , 50.

Some results are shown in Table 4.10.

Method AveRMSE 1 2 3 4 5 6+

DNAcopy .2420 .954 .010 .032 .001 .002 .001

Poisson CBS .3324 .847 .008 .127 .000 .005 .000

Negative Binomial CBS .2439 .947 .003 .048 .000 .002 .000

Table 4.10: Results for simulation under negative binomial scenario nbN2.

The column labeled AveRMSE reports the average of the values of the RMSE for the

1000 simulated data sets. The last six columns labeled 1, 2, 3, 4, 5, and 6+ report

the proportion of simulated data sets for which the specified method identified 1, 2,

3, 4, 5, and more than 5 segments. In this setting, DNAcopy interestingly has the

lowest average RMSE (.2420) with the Negative Binomial CBS very close (.2439),

and both appear to have reasonable nominal size. The overdispersion is not as

severe and it is seen that the average RMSE for the Poisson CBS method (.3324) is

not as bad as in scenarios with p = .8 and the proportion of times that the number

of segments is not correctly determined to be one (1− .847 = .153) is closer to the

nominal size.
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Next, in scenario nbH2, we generate R = 1000 samples of size n = 50 where

the data is simulated from the model

Xi ∼


negative binomial(r = 10, p = .2), i = 1, . . . , 15

negative binomial(r = 15, p = .2), i = 16, . . . , 25

negative binomial(r = 10, p = .2), i = 26, . . . , 50

.

Some results are shown in Table 4.11.

Method AveRMSE 1 2 3 4 5 6+

DNAcopy .6205 .865 .007 .115 .003 .009 .001

Poisson CBS .7045 .668 .006 .290 .001 .034 .001

Negative Binomial CBS .6162 .857 .007 .131 .000 .005 .000

Table 4.11: Results for simulation under negative binomial scenario nbH2.

The column labeled AveRMSE reports the average of the values of the RMSE for the

1000 simulated data sets. The last six columns labeled 1, 2, 3, 4, 5, and 6+ report

the proportion of simulated data sets for which the specified method identified 1,

2, 3, 4, 5, and more than 5 segments. In this setting, the Negative Binomial CBS

method has the lowest average RMSE (.6162), DNAcopy is close (.6205), and the

Poisson CBS method is not too much higher (.7045). Interestingly here, the Poisson

CBS method does correctly identify three segments the highest proportion of times

(.290) among the three methods.

Next, in scenario nbF2, we generate R = 1000 samples of size n = 50 where

the data is simulated from the model

Xi ∼


negative binomial(r = 10, p = .2), i = 1, . . . , 15

negative binomial(r = 20, p = .2), i = 16, . . . , 25

negative binomial(r = 10, p = .2), i = 26, . . . , 50

.

Some results are shown in Table 4.12.

73



Method AveRMSE 1 2 3 4 5 6+

DNAcopy .9695 .500 .003 .468 .011 .018 .000

Poisson CBS .9526 .242 .005 .639 .006 .097 .011

Negative Binomial CBS .9463 .493 .001 .486 .003 .017 .001

Table 4.12: Results for simulation under negative binomial scenario nbF2.

The column labeled AveRMSE reports the average of the values of the RMSE

for the 1000 simulated data sets. The last six columns labeled 1, 2, 3, 4, 5, and

6+ report the proportion of simulated data sets for which the specified method

identified 1, 2, 3, 4, 5, and more than 5 segments. In this setting, the Negative

Binomial CBS method has the lowest average RMSE (.9463). Interestingly, the

Poisson CBS method is next closest (.9526), though DNAcopy is also close (.9695).

Again it is interesting that the Poisson CBS method does correctly identify three

segments the highest proportion of times (.639) among the three methods.

Now, we consider scenarios with p = .2 where r is larger so the mean is

larger. In scenario nbN3, we generate R = 1000 samples of size n = 50 where the

data is simulated from the model

Xi ∼ negative binomial(r = 40, p = .2), i = 1, . . . , 50.

Some results are shown in Table 4.13.

Method AveRMSE 1 2 3 4 5 6+

DNAcopy .4832 .948 .010 .039 .000 .003 .000

Poisson CBS .6785 .822 .008 .157 .001 .010 .002

Negative Binomial CBS .5026 .934 .005 .060 .000 .000 .001

Table 4.13: Results for simulation under negative binomial scenario nbN3.
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The column labeled AveRMSE reports the average of the values of the RMSE for the

1000 simulated data sets. The last six columns labeled 1, 2, 3, 4, 5, and 6+ report

the proportion of simulated data sets for which the specified method identified 1,

2, 3, 4, 5, and more than 5 segments. In this setting, interestingly DNAcopy has

the lowest average RMSE (.4832) and the proportion of times it does not correctly

identify that there is only one segment (1 − .948 = .052) is closest to the nominal

size. Again, the overdispersion does appear cause some problems for the Poisson

CBS method in this setting with p = .2, but not nearly as severe as the problems

when p = .8.

Next, in scenario nbH3, we generate R = 1000 samples of size n = 50 where

the data is simulated from the model

Xi ∼


negative binomial(r = 40, p = .2), i = 1, . . . , 15

negative binomial(r = 60, p = .2), i = 16, . . . , 25

negative binomial(r = 40, p = .2), i = 26, . . . , 50

.

Some results are shown in Table 4.14.

Method AveRMSE 1 2 3 4 5 6+

DNAcopy 1.7902 .395 .002 .547 .018 .037 .001

Poisson CBS 1.7455 .167 .005 .697 .005 .110 .016

Negative Binomial CBS 1.7617 .408 .000 .567 .003 .000 .022

Table 4.14: Results for simulation under negative binomial scenario nbH3.

The column labeled AveRMSE reports the average of the values of the RMSE

for the 1000 simulated data sets. The last six columns labeled 1, 2, 3, 4, 5, and

6+ report the proportion of simulated data sets for which the specified method

identified 1, 2, 3, 4, 5, and more than 5 segments. In this setting, it is interesting

that the Poisson CBS method has the lowest average RMSE (1.7455) as well as
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the highest proportion of times with correct identification of three segments (.697).

Both the Negative Binomial CBS method and DNAcopy are close in the average

RMSE, though a little conservative with higher percentages of times that only one

segment was identified.

Next, in scenario nbF3, we generate R = 1000 samples of size n = 50 where

the data is simulated from the model

Xi ∼


negative binomial(r = 40, p = .2), i = 1, . . . , 15

negative binomial(r = 80, p = .2), i = 16, . . . , 25

negative binomial(r = 40, p = .2), i = 26, . . . , 50

.

Some results are shown in Table 4.15.

Method AveRMSE 1 2 3 4 5 6+

DNAcopy 1.5869 .007 .000 .900 .046 .045 .002

Poisson CBS 1.6273 .000 .000 .780 .014 .176 .030

Negative Binomial CBS 1.4603 .003 .000 .925 .004 .066 .002

Table 4.15: Results for simulation under negative binomial scenario nbF3.

The column labeled AveRMSE reports the average of the values of the RMSE for the

1000 simulated data sets. The last six columns labeled 1, 2, 3, 4, 5, and 6+ report

the proportion of simulated data sets for which the specified method identified 1,

2, 3, 4, 5, and more than 5 segments. In this setting, the Negative Binomial CBS

method clearly does both with having the lowest average RMSE (1.4603) and in

correctly identifying three segments the highest proportion of times (.925). Notably,

the Poisson CBS method overestimates the number of segments a large percentage

of times (17.6%).

Overall, for the negative binomial scenarios, the Negative Binomial CBS

method does best in most scenarios and well in each as expected since the distribu-

tion is correctly specified. It seems that it might be a bit conservative in identifying
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splits in some scenarios, and it is interesting that the Poisson CBS or DNAcopy do

better in a few scenarios. The Poisson CBS method does incorrectly specify the

distribution – ignroing the overdispersion in the negative binomial random variables

– but does not do too badly in the scenarios with p = .2 where there is not too

much overdispersion. However, in the scenarios with p = .8 where there is a large

amount of overdispersion, the Poisson CBS method drastically overestimates the

number of segments.
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CHAPTER 5

COMPARISON OF METHODS

In the past few decades, due to the major breakthrough of NGS sequencing

technologies, there is a great need for appropriate computational and statistical

tools for assessing and validating biological models. As a result of that, better

computational methods and more efficient software tools are constantly being de-

veloped in recent years. Simulated data is crucial for guiding tool development

and evaluating tool performance, and therefore it is essential to develop simulation

software that can produce next-generation sequencing reads that captures the most

vital characteristics of real data (Huang et al. 2012). Hence, computer simulation

of genomic data has become more popular, and many simulation softwares for NGS

data analysis have been rising rapidly in the bioinformatics field. These tools have

very diverse input requirements and functionalities, which make it quite difficult

to choose “What is the most appropriate one for the problem” at hand (Escalona

et al. 2016). Some currently available software tools for the simulation of genomic

NGS data are, ART (Huang et al. 2012), Wgsim from the Samtools package (Li

and Durbin 2009), MetaSim (this can be used for metagenomic data too)(Richter

et al. 2008), 454Sim (Lysholm et al. 2011), etc. Almost all these programs work

well in their domain. Escalona et al. (2016) reviewed 23 currently available software

tools that were either recently published or developed, in most cases still maintained

and freely available, for the simulation of genomic NGS data (they focused on the

simulation of DNA sequences), and discussed their various features, such as the

required input, the interaction with the user, the sequencing platforms, the type of
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reads, the error models, the possibility of introducing coverage bias, the simulation

of genomic variants and the output provided.

In this chapter, we will illustrate in detail, the way we simulate Illumina reads

from a NGS read simulator package called “MetaSim”, which is mentioned above,

the output, and the appearance of the simulated Illumina reads. We also present the

detailed explanation about the genomic data we used for the data analysis, such as

the appearance of the reference genome, the way we created the target genome and

its appearance, etc. Then, we will explain briefly, using BWA (a reads alignment

tool) and its output. Finally, we will present the data analysis using the methods

similar to those present in Chapter 4.

5.1 MetaSim

MetaSim, a sequencing simulator for genomics and metagenomics, was intro-

duced by Daniel H. Huson and Felix Ott, with contributions from Ramona Schmid,

Alexander F. Auch and Daniel C. Richter in 2008. The input for MetaSim is a

set of known genome sequences (fasta files) and an abundance profile, reflecting

(adaptable) error models of current sequencing technologies. MetaSim simulates

both Sanger sequencing and Roche’s 454 (sequencing-by-synthesis) approach. Ad-

ditionally, it provides a flexible, empirical error model which is usable to simulate

Illumina’s short reads, where each read is 36 base pairs long.

MetaSim is written in the programming language Java and it provides ver-

sions that run under the Linux, MacOS, Windows and Unix operating systems, and

are freely available in their website at: http://www-ab.informatik.uni-tuebingen.

de/software/metasim. Since MetaSim is written in Java it requires a Java run-

time environment version 1.5 or newer, freely available from www.java.org. This

software package has a user manual, which is easy to understand, and it is freely
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available online.

5.1.1 Importing Genome Sequences to the Database

Upon first startup of the program, the internal database does not contain any

genome sequences. So, the user needs to import the necessary genome sequences

into the database. We worked with the virus sequences, and the data was down-

loaded from the link ftp://ftp.ncbi.nih.gov/refseq/release/viral/viral1.

genomic.fna.gz, which is given by the MetaSim user manual, and was installed ac-

cordingly. Finally, the file viral1.Genomic.fna.gz was imported into the database

(a screenshot is shown in Figure 5.1) and the baboon endogenous virus strain M7

proviral DNA was chosen as the Reference Genome. It consists of 8507 bases.

Interestingly, we found that the first 555 bases are repeating at 7953 locus in the

reference genome, which implies that, the first 555 bases are same as the last 555

bases in the reference genome. The format of this file is a fasta file, part of which

is shown in Figure 5.2.

Figure 5.1: The screenshot of baboon endogenous virus in the GUI mode.
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Figure 5.2: Baboon endogenous virus strain M7 proviral DNA.

Then the target genome was created by adding 20 new sequence lines (1600

bases long) to the reference genome. To do this, we used a software package called

Vim text editor. All the bases were copied from the sixteenth sequence line to the

thirty-fifth sequence line (which are 1121 – 2720 loci’s) and pasted next to it (which

are 2721 – 4320 loci’s), so that target genome has 10,107 bases, which is partly

shown in the Figure 5.3. In this figure, the duplicated region is shown in gray and

the new bases that were added are shown in yellow.
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Figure 5.3: Linear baboon endogenous virus tandem duplication strain M7 proviral

DNA.

After creating the target genome, it was imported into the database, and

10,000 Illumina short reads were simulated using the empirical error model.

5.1.2 Simulation of Illumina Short Reads

Once sequences are loaded into the database, we need to create a new project,

in order to simulate the Illumina short reads. MetaSim seems to consider each input

sequence to be circular. So, this may result in MetaSim simulating a read, which
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has a part (this may either be the first part or the last part) of the 36 bases in the

read corresponding to the started bases from the source genome sequence and the

remaining part (the last part or the first part) of the read sequence from the end

bases in the source genome sequence. Hence, in the alignment process, the alignment

software tools might not be able to recognize the best align position of this type of

read to the reference genome, and it will fall into the set of unmapped reads. As

a consequence of this, we will have data loss, since most alignment software tools

(such as Bowtie, BWA, etc.) allow less than 5 mismatches while a few alignment

software tools (such as PerM, RMAP, etc.) allow more than 5 mismatches by default

for short reads. Therefore, in order to eliminate some data loss, we simulated 10,000

Illumina short reads, which is 36 bases long, by considering the genome sequence

to be linear.

MetaSim uses fixed probabilities of sequencing errors (insertions, deletions

and substitutions) for the same base in different reads, in a single run (Jia et

al. 2013). Figure 5.4 shows a screenshot of part of the fasta file with the short

reads produced by MetaSim.
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Figure 5.4: Screenshot of fasta file with short reads.

This simulation generated 5600 substitutions, and no insertions or deletions.

The detailed information related to this simulation and its output is in the Ap-

pendix. Then using the BWA, we aligned the simulated reads to the reference

genome.

5.1.3 Aligning Reads to the Reference Genome

We used BWA-backtrack algorithm to align the reads to the reference genome,

because it is designed for the Illumina short reads up to 100bp and used Bio-linux

(Field et al. 2006) to run the BWA. The codes we ran and the detailed explanation

of the BWA output are shown in the Appendix. BWA output is shown in the Figure

5.5.
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Figure 5.5: Screenshot of sam file with aligned reads.

5.2 Copy Number Analysis of MetaSim Data

The read count data can be obtained from the sam file by extracting the 4th

column with the starting position of each read. These values are then tabulated

(with 0’s exlcuded) to obtain the read counts. Note that we only use the starting

position so each read is only counted once in the data set as opposed to “piling up”

the reads to count the number of reads that overlap each position as is sometimes

done with this type of data. The problem with the pile-up approach is that the

assumption of independence is violated.

The number of reads starting at each genomic position are plotted in Figure

5.6. The horizontal axis gives the genomic position. The vertical axis gives the

number of reads that start at each position. The points are plotted using R’s

jitter function so that each band corresponds to a single integer value, but a

small error is added to the vertical coordinate of each point to make it easier to

visualize the number of points corresponding to each of the read count values.
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Figure 5.6: Number of reads starting at each genomic position.

First, we analyzed the read count data with the DNAcopy method using its

defaults except the size alpha=0.05. The results are shown in Table 5.1. The first

column gives the estimated segment endpoints and the second column gives the

mean read count in each interval. This information is provided in the output of the

segment function of the DNAcopy package.
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Segment Mean of read counts in segment

[1, 1119] 0.573727

[1120, 1817] 1.823782

[1818, 2688] 2.328358

[2689, 2732] 1.613636

[2733, 6555] 1.199581

[6556, 8472] 0.626500

Table 5.1: Model estimates for MetaSim simulated reads based on DNAcopy.

Here, it appears that the mean read counts at locations on the intervals at

each end of the target genome ([1, 1119] and [6556, 8472]) is about half of what

it is on the largest continuous segment [2733, 6555]. There are three segments

([1120, 1817], [1818, 2688], [2689, 2732]) in the vicinity of the created duplication,

and the mean read count in the middle interval [1818, 2688] is about twice what it

is in [2733, 6555] while the mean read counts on the other two intervals [1120, 1817]

and [2689, 2732] are about 3/2 that of the interval [2733, 6555]; possibly, the mean

in [2689, 2732] is further from around 1.8 since it is a shorter interval.

Next, we want to use the methods based on likelihood ratio tests for the

Poisson model and the negative binomial model. However, due to the larger number

of bases in the reference genome, it is very time consuming to consider all possible

pairs of locations as possible endpoints for segments. As an alternative for this

example, we propose the following approach. Split the set of all 8507 − 35 = 8472

possible starting genomic positions in the reference genome into 169 bins where the

bin assignment for the ith position is computed using the formula

1 +
⌊ 169i

8473

⌋
.

Then we first apply the method to the counts in each bin and find the bins which
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are on the boundaries between two segments. Our method then considers only the

positions in these bins as candidates for endpoints of the segments when the method

is applied to the read counts at each genomic position.

The results for analyzing the aggregated data with the Poisson CBS method

are shown in Table 5.2. The first column gives the segment endpoints in terms

of the bin numbers and the second column gives the corresponding loci for the

genomic positions in the reference genome for the bins. The third column gives the

estimated parameter for each group of bins determined by the CBS method. The

fourth column gives the mean number of reads in each segment of bins.

Segment Loci µ̂ Mean reads per bin in segment

[1, 22] 1–1102 29.68421 28.50000

[23, 36] 1103–1804 90.13333 90.64286

[37, 54] 1805–2707 114.9444 114.9444

{55} 2708–2757 90.13333 83.00000

[56, 131] 2758–6567 59.97368 59.97368

[132, 134] 6568–6718 43.33333 43.33333

[135, 169] 6719–8472 29.68421 30.42857

Table 5.2: Model estimates for aggregated reads based on Poisson CBS.

Now, we create a list of candidates for possible positions where the copy

number changes based on the Poisson CBS method. The bins on the boundaries

based on the aggregated data are 22, 23, 36, 37, 54, 55, 56, 131, 132, 134, and

135 which correspond to loci 1053–1102, 1103–1153, 1755–1804, 1805–1855, 2658–

2707, 2708–2757, 2758–2807, 6518–6567, 6568–6617, 6669–6718, and 6719–6768,

respectively.

Then the next step applied the modified version of the Poisson CBS method
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in which α and β is restricted to the above loci. Based on this restriction (both in

computing the observed likelihood and the bootstraped likelihoods), the results of

this CBS procedure are shown in Table 5.3.

Segment µ̂ Mean of read counts in segment

[1, 1106] 0.590956 0.566908

[1107, 1119] 1.203560 1.153846

[1120, 1136] 2.325112 2.294118

[1137, 1817] 1.812041 1.812041

[1818, 2692] 2.325112 2.325714

[2693, 6555] 1.203560 1.203728

[6556, 6566] 0.590956 0.454546

[6567, 6692] 0.920635 0.920635

[6693, 8472] 0.590956 0.606742

Table 5.3: Model estimates for MetaSim simulated reads based on Poisson CBS.

Again, the segments on each end of the target genome ([1, 1106] and

[6556, 6566] ∪ [6693, 8472]) have a mean read count about half of what is seen in

the largest continuous segment [2693, 6555], though the loci in these interval differ

slightly. Unlike the DNAcopy method, the small segment [1107, 1119] is also grouped

with the largest continuous segment by Poisson CBS. Like DNAcopy, there are three

segments in the vicinity of the created duplication, but the middle one [1137, 1817]

has mean read count about 3/2 of what it is in [2693, 6555] while the other two

intervals [1120, 1136] and [1818, 2692] have mean read counts about twice of what it

is in [2693, 6555]. There is a small additional segment [6567, 6692] detected to have

a slightly larger mean inside [6556, 8472].

Next, we repeat the two-step CBS procedure with the negative binomial
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model. Table 5.4 shows the results of applying the Negative Binomial CBS method

to the aggregated data. The first column gives the segment endpoints in terms of

the bin numbers and the second column gives the corresponding loci for the genomic

positions in the reference genome for the bins. The third and fourth columns give the

estimated parameters r and p for each group of bins determined by the CBS method;

when these values do not exist, the MLE µ̂ of the Poisson model is given which

corresponds to the maximizer of the likelihood function of the negative binomial

model. The fifth column gives the mean number of reads in each segment of bins.

Segment Loci r̂ p̂ Mean reads per bin in segment

[1, 22] 1–1102 µ̂ = 29.86207 28.50000

[23, 36] 1103–1804 1572.767 0.054203 90.64286

[37, 54] 1805–2707 µ̂ = 114.9444 114.9444

{55} 2708–2757 1572.767 0.054203 83.00000

[56, 133] 2758–6668 295.6033 0.167767 59.58974

[134, 169] 6669–8472 µ̂ = 29.86207 30.69444

Table 5.4: Model estimates for aggregated reads based on Negative Binomial CBS.

The estimated segments for the aggregated data using the Negative Binomial

CBS method is very similar to the results in Table 5.2 based on the Poisson CBS

method, and only the last three segments are slightly different. Interestingly, most

of the parameter estimates for the negative binomial distributions do not exist (i.e.,

they correspond to r →∞, thus reverting back to Poisson distribution estimates).

The bins on the boundaries based on the aggregated data using the Negative Bi-

nomial CBS method are 22, 23, 36, 37, 54, 55, 56, 133, and 134 which correspond

to loci 1053–1102, 1103–1153, 1755–1804, 1805–1855, 2658–2707, 2708–2757, 2758–

2807, 6618–6668, and 6669–6718, respectively.
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Then the next step applied the modified version of the Negative Binomial

CBS method in which α and β is restricted to the above loci. Based on this restric-

tion (both in computing the observed likelihood and the bootstraped likelihoods),

the results of this CBS procedure are shown in Table 5.5.

Segment r̂ p̂ Mean of read counts in segment

[1, 1106] µ̂ = 0.600000 0.566908

[1107, 1119] µ̂ = 1.197512 1.153846

[1120, 1136] 54.57374 0.040864 2.294118

[1137, 1817] 135.3623 0.013210 1.812041

[1818, 2692] 54.57374 0.040864 2.325714

[2693, 6618] µ̂ = 1.197512 1.197657

[6619, 8472] µ̂ = 0.600000 0.619741

Table 5.5: Model estimates for MetaSim simulated reads based on Negative Bino-

mial CBS.

Again, the results based on the negative binomial model are very similar to

that of the Poisson model except for differences in [6556, 6693]. The fitted means

based on all three methods are shown in Figure 5.7. All of the statements about

the relative sizes of the mean read counts for the segments are similar to those for

the Poisson model. Interestingly, again several of the parameter estimates for the

negative binomial distributions do not exist and the other estimates of p are close

to 0, so it seems natural that the results are very similar.
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Figure 5.7: Fitted mean values for the DNAcopy, Poisson CBS, and Negative Bi-

nomial CBS methods.
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CHAPTER 6

CONCLUSIONS

6.1 Conclussion

In the past literature, many authors mentioned that DNA sequencing reads

obtained through NGS technologies have slight overdispersion that is not accounted

for by the Poisson distribution. Hence, the negative binomial distribution is con-

sidered for the read count data. It is known that, a major form of negative bi-

nomial distribution, which is a Poisson-gamma mixture, can be considered as an

appropriate distribution for genomic data. So, we described the negative binomial

distribution as a Poisson-gamma mixture and derived the MLEs for the parameters

of negative binomial distribution, r and p. First we derived the MLE for p as a func-

tion of r, and then we tried to solve the derivative of profile log likelihood function

with respect to r, which is equation (3.6), using the Newton-Raphson method. Af-

ter some simulation studies, we found that, equation (3.6) has a unique root, when

the sample mean (x̄) is less than the sample variance (σ̂2). On the other hand, if

the sample mean is greater than or equal to the sample variance, it showed that

the equation (3.6) has no root. We found that it agreed with what was found by

some authors in the literature, though there were some conflicting statements about

what has been proven. Moreover we proved the limiting behavior of the function

f(r) when the 1st condition, which is x̄ < σ̂2 holds. Simonsen (1976), considered

the equation (3.6), and proved that it has no solution, if k = 1, or if k > 2 and
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m2 > 2S, whereas equation (3.6) has a unique solution, if k > 2 and m2 < 2S, where

k = max(X1, X2, . . . , Xn), m is the sample mean, and S is defined in Theorem 3.1.

We found the relation between S and the sample variance σ̂2 and that led us to

prove the relation we found in the simulation studies in Chapter 3, which helps

clarify confusing issues in the literature. Hence, if the 1st condition holds, then we

proved that unique MLE exists for p and r, otherwise there is no maximizer for

equation (3.2). We also proved additional results about the shape of the profile

likelihood function for the negative binomial distribution. These results included

information about the second derivative of f(r) which allowed us to prove that, if

the starting point of the Newton-Raphson is selected appropriately, and the MLE

exists, then the Newton-Raphson converges to the true MLE.

Many researchers published articles, considering the Poisson distribution as

another appropriate statistical distribution for genomic data for finding CNVs. So,

we also considered the Poisson distribution and determined the MLE of its param-

eter mean. Another important fact that we looked at is, we examined the behavior

of negative binomial distribution as the parameter (r) goes to infinity, whereas the

probability of success (p) goes to zero. We found that, the probability distribution of

negative binomial distribution in this situation approaches the Poisson distribution.

We considered the CNV detection problem by starting with a simple para-

metric change point model. We estimated the MLEs of the means of each of the

continuous segments, and locations where the changes occur. Then we derived the

MLEs and found the supremum of the likelihood functions for these simple change

point models (with the Poisson and negative binomial distributions). Then to es-

timate the parameters and the change point locations for the full CNV detection

problem, we applied the Circular Binary Segmentation procedure. We proposed

the Likelihood Ratio test with parametric bootstrap, and we applied it to find the

means and the change point locations in our parametric models for count data. We
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carried out simulation studies using our new CBS procedures based on count data

assuming Poisson and negative binomial models. We compared our method with

DNAcopy package, which is a well known package that uses CBS method to detect

the CNVs. Our method is applied for data, which are simulated from either a Pois-

son distribution or a negative binomial distribution. In each setting, we varied the

parameters to correspond to the true model having one segment or having 3 seg-

ments and, for the models that had 3 segments, the mean of the outside segments

are equal to each other and the mean of the middle segment is either 1.5 or 2 times

that of the outside segments. Overall, the Negative Binomial CBS method does

well under all scenarios. The DNAcopy method also appeared to be reasonable,

but in most cases, had a higher average RMSE than the Negative Binomial CBS.

As expected, the Poisson CBS method works well when the count data follows a

Poisson distribution, but in some cases, significantly overestimated the number of

change points when there is a large amount of overdispersion.

We also analyzed read count data generated using the NGS Illumina read

simulator “MetaSim” based on a baboon endogenous virus genome. This genome

is considered the reference genome, and then we created a target genome by adding

1600 bases to the reference genome. The reads obtained from MetaSim were aligned

using BWA. Then count data was obtained, and also the CBS procedures were

applied to analyze this data. All three CBS procedures identified the main change

points that we artificially created, but it is interesting to note that each of the

procedures also found some other additional segments with different means.

6.2 Discussion: Advantages and Drawbacks

There are some advantages in our newly proposed method. The methods

presented here are designed for models using discrete distributions, such as the
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Poisson and negative binomial, on count data as opposed to methods designed

based on normal data. Furthermore, the circular binary segmentation algorithm is

ideally designed to be able to find segments with different parameter values in the

middle of the genome, even when the segment is short relative to the length of the

entire genome.

The DNAcopy package uses the test statistic which is proposed by Venkatra-

man and Olshen (2007). The test statistic they proposed there is similar to the

original CBS, which is explained in the section 4.2, to detect the change point,

but modifies the procedure to determine whether the change points are statistically

significant. They used the two sample t-statistic, which works better for the data

drawn from a normal distribution or data being close to normal. Also, they men-

tioned that the two sample t-statistics also works, when the data are not normal,

but only if the underlying distribution is not higly skewed (Venkatraman and Olshen

2007). It is also important to note that, the two sample t-statistic used in the

CBS uses the pooled variance, which is the Mean Squared Error(MSE) that they

mentioned in the 2007 paper. This indicates that, they assumed the two population

variances are to be equal or nearly equal. If this is not the case, then it may not find

the true changes in the model. Our model might work well in this situation, since

we are only considering the likelihood functions in the corresponding segments. We

have implemented the CBS approach using likelihood ratio tests based on discrete

distributions that are more appropriate for NGS count data.

Also, in analyzing NGS data, we use only the starting position for each

read instead of the pile-up approach where all reads which include the position are

counted. This avoids problems for the pile-up approach with its violation of the

assumption of independence.

A major drawback of our method is, it takes really large computational time

when analyzing a larger data set, especially for the Negative Binomial CBS method
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compared with the refinements made in the DNAcopy package. As an alternative for

this, we aggregated the data using a bin concept and obtained a list of candidate

values for change points and then refined on the next step. Instead of counting the

number of whole reads that mapped to each bin (that is what normally people do

when considering the bin concept), we were interested in counting the number of

starting positions of each read that mapped to each bin. This helps in great deal

to avoid the situation, such that a read overlap with two adjacent bins. Then some

natural questions that arise in here like, “Do we need to discard that read?” or

“Which bin does the read belong to?”. If we apply this situation for our case, that

is, even though a read overlap with two adjacent bins, it will not have an effect

here, since, if we are interested in the starting position, then the read belongs to

either one of them. If we find a change, to check where it actually occurs, (that is,

to avoid the confusion whether it occurs on the boundary of the bin or anywhere

inside the bin) we carried out our method for all the data inside the bin.

Now another question will arise here is, if the change occurs inside the bin,

then how can we compute the mean of the read counts in the bin? If the data come

from a Poisson distribution then the sum of Poisson variables is Poisson, and then

the mean can be computed and method applied accordingly. If the data come from

a negative binomial distribution having the same probability of success, say p, then

it would be easy to estimate the parameters, which is the parameters of a negative

binomial distribution having parameters r = r1 + . . .+ rm and p. But the problem

now here is, what if we have a different probability of success? How can we properly

estimate the parameters and then estimate the mean of each segment? So, we need

to improve our method by focusing on these concepts.

Another drawback to keep in mind when using CBS approaches for the mul-

tiple change point problem is that the successive tests in the CBS approach are not

independent. This is also a general problem for binary segmentation procedures,
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and an other alternative based on hypothesis testing such as backward search algo-

rithms are even more time consuming and have similar problems with dependence

on successive tests.

6.3 Future Work

Even though we developed novel methods to address a CNV detection prob-

lem, there are many questions that need to be answered as discussed above, which

could not be examined with great attention in this thesis. Therefore, we need to

look for further improvement of our method in the future. The following discus-

sion illustrates the different directions we could look for further improvement of our

method.

The most critical issue is reducing computation time so future research on

these methods should explore approximations for the MLE by not including all pos-

sible endpoints, exploring possible update formulas to reduce computation times on

successive steps, and/or obtaining the asymptotic distribution of the test statistic

or finding the limiting value of the tail probability for the test statistic so we can ob-

tain critical values for the tests (replacing the need for the bootstrap or permutation

tests).

Another direction is improving the bin method for larger data sets, such

as human chromosomes, by increasing the size of the bin. Then number of read

counts mapped to each bin is considerably large. So, we could then approximate

the distribution of read counts per bin with the normal distribution using the central

limit theorem. Then we can avoid almost all the problems that we discussed in our

method. But, still there is a question open to be answered for having a smaller bin

size. Additionally, it is important to further study the effective of the bin size in

the bin method to find an optimal balance of accuracy and compuation time.

98



Finally, it might be of interest to study cases where the underlying model

exhibits underdispersion and study approaches in alternative models for this case.
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2/neu amplification in endometrial carcinoma by chromogenic in situ hybridiza-

tion. correlation with fluorescence in situ hybridization, HER-2/neu, p53 and

Ki-67 protein expression, and outcome, Modern Pathology 17 (2004), no. 3,

277–287.

[54] D. Pinkel, R. Segraves, D. Sudar, S. Clark, I. Poole, D. Kowbel, C. Collins,

W. L. Kuo, C. Chen, Y. Zhai, et al., High resolution analysis of DNA copy num-

ber variation using comparative genomic hybridization to microarrays., Nature

Genetics 20 (1998), no. 2.

[55] D. Pinto, A. T. Pagnamenta, L. Klei, R. Anney, D. Merico, R. Regan, J. Con-

roy, T. R. Magalhaes, C. Correia, B. S. Abrahams, et al., Functional impact

of global rare copy number variation in autism spectrum disorders, Nature 466

(2010), no. 7304, 368–372.

[56] J. R. Pollack, C. M. Perou, A. A. Alizadeh, M. B. Eisen, A. Pergamenschikov,

C. F. Williams, S. S. Jeffrey, D. Botstein, and P. O. Brown, Genome-wide anal-

ysis of DNA copy-number changes using cDNA microarrays, Nature Genetics

23 (1999), no. 1, 41–46.

[57] L. Pray, Discovery of DNA structure and function: Watson and Crick, Nature

Education 1 (2008), no. 1, 565–581.

[58] R. Redon, S. Ishikawa, K. R Fitch, L. Feuk, G. H. Perry, T. D Andrews,

H. Fiegler, M. H. Shapero, A. R. Carson, W. Chen, et al., Global variation in

copy number in the human genome, Nature 444 (2006), no. 7118, 444–454.

106



[59] D. C. Richter, F. Ott, A. F. Auch, R. Schmid, and D. H. Huson, Metasim –

a sequencing simulator for genomics and metagenomics, PloS ONE 3 (2008),

no. 10, e3373.

[60] S. C. Schuster, Next-generation sequencing transforms today’s biology., Nature

Methods 5 (2008), 16–18.

[61] J. Sebat, B. Lakshmi, J. Troge, J. Alexander, J. Young, P. Lundin, S. Månér,
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APPENDIX

A.1 MetaSim Output for Illumina Short Reads

A.1.1 Simulator Log (.mprf file)

MetaSim generated 10,000 Illumina reads, each is 36 base long, with 5600

substitutions. Figure A.1 is the output of .mprf file, a simulator log, which is shown

below.

Figure A.1: Reads Simulator Log

110



Positional Substitution Counts indicate the number of reads that has a sub-

stitution for each base. That is, the number of reads in which the nucleotide in the

first base is substituted by another nucleotide is 53, the number of reads in which

the nucleotide in the second base is substituted by another nucleotide is 62, and so

on. So, we have 36 positional substitution counts as shown in the Figure A.1. The

entry A(C, T ) : 89 implies that there are 89 reads that has the substitution error

as base T for base C, when the preceding base is A; similarly A(A,C) : 123 implies

that there are 123 number of reads that has the substitution error as base C for base

A, when the preceding base is A; and so on. Likewise, we will have 48 possibilities

to create substitution errors, and all are listed in the Figure A.1. Moreover, it is

shown in fact that there are total of 94097 Cytosine base counts, 85231 Adenine

base counts, 93111 Guanine base counts, and 87561 Thymine base counts in the

simulation.

A.1.2 Fasta File

MetaSim output for the Illumina short read simulation is shown in Figure

A.2. Information on each of the 10,000 short reads is given in a group of three

consecutive lines. The third line gives the 36 base calls for each read, and the first

two lines are a comment which includes some important information from MetaSim

such as the read number(>ri.1 , where i = 1, 2, 3, . . . , 10, 000), the true positions

(inclusive interval with 36 bases) of the read from the target genome, the orientation

of the read (fw, forward, if the bases are read from the 5’-end and bw, backward, if

the bases are read from the 3’-end), and the bases on the read which are errors (with

bases on the read labeled from 0 to 35). For an example, “ERRORS={3:T,28:G}”

implies that, there is an error at the 4th base and the error is base T and also,

there is an another error at the 29th base, and the error is base G. This commented
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information on the first two lines corresponding to each read is assumed to be

unknown, and only the third line with the base calls for the reads is used in the

alignment step.

Figure A.2: Screenshot of fasta file with short reads.

A.2 BWA output

Figure A.3 shows a screenshot of the commands using BWA and samtools

software available in the terminal in Bio-linux.
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Figure A.3: Screenshot of BWA and samtools commands in Bio-linux terminal.

These commands create a sam file bab aln.sam with the alignments of the

short reads in the file baboon duplication linear reads.fna using the reference

genome baboon reference genome.fna.gz. Figure A.4 shows a screenshot of part

of the contents of the sam file.
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Figure A.4: Screenshot of sam file with aligned reads.

The first three lines in the sam file indicates the information about the files

that BWA used for the aligning (reference genome file and the illumina short reads

file). After that, the information on each of the aligned reads is given as a group

of two consecutive lines. The three different values 16, 0, and 4 in the first line of

the two consecutive lines gives the mapping information of the read. A “0” means

that the read matched on the forward strand fw, a “4” means that the read did not

match, and a “16” means it matched on the reverse strand bw. Thus, the values 37,

25, and 0 in the first line of the two consecutive lines gives the mapping quality of

each read aligning. A read alignment with a mapping quality 30 or above (in ours

it is 37) usually implies:

• The overall base quality of the read is good.

• The read has few or just one “good” hit on the reference. That is current

alignment is the best.
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Then, a read alignment with mapping quality 25 implies that there are two

mismatches in the read, and still it aligns to the best position on the reference.

Finally, a mapping quality 0 implies that there a several good hits on the reference,

which means that a read can be aligned equally well to multiple positions, so that

BWA will randomly pick one position and assign it a mapping quality 0. The

digits prior to the mapping quality indicates the true position of each read in the

reference genome. BWA generates the following optional fields. Tags starting with

X are specific to BWA. (See http://bio-bwa.sourceforge.net/bwa.shtml for

complete documentation of the fields.)

XT Type: Unique/Repeat/N/Mate-sw

NM Edit distance

X0 Number of best hits

X1 Number of suboptimal hits found by BWA

XM Number of mismatches in the alignment

XO Number of gap opens

XG Number of gap extensions

MD Mismatching positions/bases

Here MD:Z: 36 indicates all bases are mapped to the reference genome.

MD:Z:2G16C16 implies that there is an error base (mismatching base) at the 3rd

base and the correct base should be G, and also an another error at 20th base and

the correct base should be C.
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A.3 R Code

This section gives the custom R functions written for implementing the meth-

ods in this dissertation. First, we give functions implementing code for the Poisson

model.

The function mle.Pois finds the maximum likelihood estimator for µ given a

random sample of independent Poisson(µ) random variables. This function outputs

mu (the MLE of µ) and lik (the maximum of the likelihood function). The input to

this function is x (a vector with the observed count data from the random sample).

mle.Pois=function(x){

n=length(x)

x.bar=mean(x)

if (x.bar>0)

lik=n*x.bar*(log(x.bar)-1)

else

lik=0

list(mu=x.bar,lik=lik)

}

The function est.ij.Pois finds the maximum likelihood estimates based

on the model with the likelihood function in equation (4.13). The function outputs

mu.out (the MLE of µ), mu.in (the MLE of µ + δ), lik (the maximum value of

the likelihood function), alpha (the MLE of α), and beta (the MLE of β). The

inputs to the function are x (a vector with the observed count data from the random

sample), find.mle (the function used to find the MLE given a random sample of

independent Poisson random variables), ijSet (set of possible locations for α and

β, where the default 0 indicates that all integers from 1 to n are possible), and

print.out (indicating whether to print out messages with progress as the function

executes).

est.ij.Pois=function(x,find.mle=mle.Pois,ijSet=0,

print.out=FALSE){

n=length(x)
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temp=find.mle(x)

res=list(mu.out=temp$mu,mu.in=temp$mu,lik=temp$lik,

alpha=1,beta=n+1)

if (n>1){

if (ijSet[1]==0){

for (i in 1:(n-1))

for (j in i:(n-1)){

w=i:j

x.in=x[w]

x.out=x[-w]

temp.in=find.mle(x.in)

temp.out=find.mle(x.out)

temp.lik=temp.in$lik+temp.out$lik

if (temp.lik>res$lik)

res=list(mu.out=temp.out$mu,mu.in=temp.in$mu,lik=temp.lik,

alpha=i,beta=j+1)

if (print.out==TRUE)

cat("i=",i," j=",j," lik=",temp.lik,"\n")

}

}

else{

n.ij=length(ijSet)

for (i in 1:n.ij)

for (j in i:n.ij){

if (print.out==TRUE)

cat("i=",ijSet[i]," j=",ijSet[j],"\n")

w=ijSet[i]:ijSet[j]

if (length(w)<n){

x.in=x[w]

x.out=x[-w]

temp.in=find.mle(x.in)

temp.out=find.mle(x.out)

temp.lik=temp.in$lik+temp.out$lik

if (temp.lik>res$lik)

res=list(mu.out=temp.out$mu,mu.in=temp.in$mu,lik=temp.lik,

alpha=ijSet[i],beta=ijSet[j]+1)

if (print.out==TRUE)

cat("lik=",temp.lik,"\n")

}

}

}

if (print.out==TRUE){

cat("Inside interval:"," [",res$alpha,",",res$beta-1,"]\n")

}
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}

res

}

The function test.split.Pois performs the likelihood ratio test with the

parametric bootstrap described in section 4.2.1 using the Poisson model. The func-

tion outputs reject (the boolean value decision for whether or not to reject the

null hypothesis), p.val (the estimated p-value for the test), and model (the fitted

model output from the function est.ij.Pois using the alternative model if the test

is rejected or the null model if not). The inputs to the function are x (a vector with

the observed count data from the random sample), find.mle (the function used to

find the MLE given a random sample of independent Poisson random variables),

ijSet (set of possible locations for α and β, where the default 0 indicates that

all integers from 1 to n are possible), alpha (the nominal size of the test), B (the

number of bootstrap samples used), and print.out (indicating whether to print

out messages with progress as the function executes). Note that for computational

efficiency, the function does not necessarily use B bootstrap samples, but instead

proceeds sequentially and stops once the decision for the test based on the specified

alpha level has been determined.

test.split.Pois=function(x,find.mle=mle.Pois,ijSet=0,alpha=.05,

B=1000,print.out=FALSE){

n=length(x)

B.accept=ceiling(B*alpha)

B.reject=ceiling(B*(1-alpha))

obs.larger=0

obs.notlarger=0

null.model=find.mle(x)

mu.hat=null.model$mu

obs.lik.null=null.model$lik

alt.model=est.ij.Pois(x,find.mle,ijSet=ijSet)

obs.lik.alt=alt.model$lik

obs.logLambda=obs.lik.alt-obs.lik.null

if (print.out==TRUE)

cat("obs.logLambda=",obs.logLambda,"\n")
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while ((obs.notlarger<B.accept)&(obs.larger<B.reject)){

x.boot=rpois(n,lambda=mean(x))

boot.lik.null=find.mle(x.boot)$lik

boot.lik.alt=est.ij.Pois(x.boot,find.mle,ijSet=ijSet)$lik

boot.logLambda=boot.lik.alt-boot.lik.null

if (boot.logLambda<obs.logLambda)

obs.larger=obs.larger+1

else

obs.notlarger=obs.notlarger+1

if (print.out==TRUE)

cat("boot.logLambda=",boot.logLambda,"Obs Larger= ",

obs.larger,"/",obs.larger+obs.notlarger,"\n")

}

if (obs.larger==B.reject){

if (print.out==TRUE)

cat("Reject H0\n")

results=list(reject=TRUE,p.val=obs.notlarger/(obs.larger+

obs.notlarger),model=alt.model)

}

if (obs.notlarger==B.accept){

if (print.out==TRUE)

cat("Fail to reject H0\n")

results=list(reject=FALSE,p.val=obs.notlarger/(obs.larger+

obs.notlarger),model=null.model)

}

results

}

The function cbs.Pois performs the Poisson CBS method described in Sec-

tion 4.3. The function outputs a data frame with rows containing the segments

determined by the method and columns ID (a generic label “ID” for each segment),

chrom (with generic value 1 for each segment), loc.start (the smallest locus in

the segment), loc.end (the largest locus in the segment), num.mark (the number

of loci in the segment), and seg.mean (the estimated value of µ in the segment).

The inputs to the function are x (a vector with the observed count data from the

random sample), ijSet (set of possible locations for α and β, where the default 0

indicates that all integers from 1 to n are possible), print.out (indicating whether

to print out messages with progress as the function executes), and ep (a tolerance
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threshold used internally to cluster segment estimates).

cbs.Pois=function(x,ijSet=0,print.out=FALSE,ep=1e-4){

n=length(x)

null.model=mle.Pois(x)

estimated.segments=cbind(rep(null.model$mu,n))

unique.segments=unique(estimated.segments)

n.segments=nrow(unique.segments)

n.segments.last=0

while (n.segments>n.segments.last){

n.segments.last=n.segments

for (i in 1:n.segments){

w=which(abs(estimated.segments[,1]-unique.segments[i,1])<ep)

xw=x[w]

if (print.out==TRUE)

cat("Attempting split on indices:",w,"\n")

try.split=test.split.Pois(xw,ijSet=ijSet,print.out=print.out)

if (try.split$reject==TRUE){

new.estimates=cbind(

c(rep(try.split$model$mu.out,try.split$model$alpha-1),

rep(try.split$model$mu.in,

try.split$model$beta-try.split$model$alpha),

rep(try.split$model$mu.out,length(w)+1-try.split$model$beta)))

estimated.segments[w,]=new.estimates

if (print.out==TRUE){

cat("Split is statistically significant\n")

cat("New groups:\n")

if (try.split$model$alpha>1)

cat("Outer segment: ",w[1:(try.split$model$alpha-1)],"\n")

if (try.split$model$beta<=length(w))

cat("Outer segment: ",w[try.split$model$beta:length(w)],"\n")

cat("Inner segment: ",

w[try.split$model$alpha:(try.split$model$beta-1)],"\n")

}

}

}

unique.segments=unique(estimated.segments)

n.segments=nrow(unique.segments)

}

start=1

end=NULL

mark=NULL

mu=estimated.segments[1,1]

for (i in 2:n)

if (abs(estimated.segments[i,1]-estimated.segments[i-1,1])>ep){
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end=c(end,i-1)

mark=c(mark,max(end)-max(start)+1)

start=c(start,i)

mu=c(mu,estimated.segments[i,1])

}

end=c(end,n)

mark=c(mark,n-max(start)+1)

data.frame(ID="ID",chrom=1,loc.start=start,loc.end=end,

num.mark=mark,seg.mean=mu)

}

Next, we give functions implementing code for the negative binomial model.

The function getN computesN1, . . . , Nk based on observed count data x1, . . . , xn

using the formula in Chapter 3. This function outputs N (a vector with the observed

N ’s). The input to this function is x (a vector with the observed count data from

the random sample).

getN=function(x){

k=max(x)

N=rep(0,k)

for (i in 1:k){

N[i]=sum(x>=i)

}

return(N)

}

The function mle.nbinom.N finds the maximum likelihood estimator for r

and p given a random sample of independent negative binomial(r, p) random vari-

ables. This function outputs p (the MLE for p where -1 indicates that it does

not exist), r (the MLE for r where a negative value indicates that it does not ex-

ist), mu (the MLE of the mean), steps (the number of Newton-Raphson iterations

needed for convergence), score (the value of f(r) after the last Newton-Raphson

iteration), and lik (the supremum of the likelihood function). The input to this

function is x (a vector with the observed count data from the random sample),

ep (a threshold variable to determine when to stop Newton-Raphson iterations),

count.max (a threshold of the number of steps allowed for the Newton-Raphson
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iterations), print.out (indicating whether to print out messages with progress as

the function executes), and start (the starting value of r for the Newton-Raphson

method where a default of -999 indicates to use the value suggested by Theorem

3.7).

mle.nbinom.N=function(x,ep=.000001,count.max=10000,

print.out=FALSE,start=-999){

n=length(x)

Ns=getN(x)

x.bar=mean(x)

if (Ns[1]==0){

p.hat=-1;r.hat=-x.bar/2;count=0;f=-999

lik=0

}

else{

k=length(Ns)

sigma2.hat=sum((x-x.bar)^2)/n

count=0

if (x.bar>=sigma2.hat){

if (print.out==TRUE)

cat("There is no maximizer of the likelihood function\n")

p.hat=-1;r.hat=-x.bar/2;count=0;f=-999

lik=sum(x*log(x.bar))-n*x.bar-sum(lfactorial(x))

}

else{

if (start==-999)

r.temp=Ns[1]^2/(2*length(x)*sum(Ns[-1]))

else

r.temp=start

f=sum(Ns/(r.temp+(1:k)-1))/n-log(1+x.bar/r.temp)

df=-sum(Ns/(r.temp+(1:k)-1)^2)/n+x.bar/(r.temp*(r.temp+x.bar))

if (print.out==TRUE)

cat("count= ",count," r= ",r.temp," f= ",f," df= ",df,"\n")

while ((abs(f)>ep)&(count<=count.max)){

r.temp=r.temp-f/df

f=sum(Ns/(r.temp+(1:k)-1))/n-log(1+x.bar/r.temp)

df=-sum(Ns/(r.temp+(1:k)-1)^2)/n+x.bar/(r.temp*(r.temp+x.bar))

count=count+1

if (print.out==TRUE)

cat("count= ",count," r= ",r.temp," f= ",f," df= ",df,"\n")

}

r.hat=r.temp

p.hat=sum(x)/(n*r.hat+sum(x))
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lgr=lgamma(r.hat)

lik=log(p.hat)*sum(x)+n*r.hat*log(1-p.hat)+

sum(lgamma(x+r.hat)-lgr)-sum(lfactorial(x))

}

}

list(p=p.hat,r=r.hat,mu=x.bar,steps=count,score=f,lik=lik)

}

The function est.ij.nbinom finds the maximum likelihood estimates based

on the model with the likelihood function in equation (4.6). The function outputs

p.out (the MLE of p0 where -1 indicates that it does not exist), r.out (the MLE

of r0 where a negative value indicates that it does not exist), mu.out (the MLE of

the mean in the outside segment), p.in (the MLE of p1 where -1 indicates that it

does not exist), r.in (the MLE of r1 where a negative value indicates that it does

not exist), mu.in (the MLE of the mean in the inside segment), lik (the maximum

value of the likelihood function), alpha (the MLE of α), and beta (the MLE of

β). The inputs to the function are x (a vector with the observed count data from

the random sample), find.mle (the function used to find the MLE given a random

sample of independent negative binomial random variables), ijSet (set of possible

locations for α and β, where the default 0 indicates that all integers from 1 to n are

possible), and print.out (indicating whether to print out messages with progress

as the function executes).

est.ij.nbinom=function(x,find.mle=mle.nbinom.N,ijSet=0,

print.out=FALSE,...){

n=length(x)

temp=find.mle(x,...)

res=list(p.out=temp$p,r.out=temp$r,mu.out=temp$mu,p.in=temp$p,

r.in=temp$r,mu.in=temp$mu,

lik=temp$lik,alpha=1,beta=n+1)

if (n>3){

if (ijSet[1]==0){

for (i in 1:(n-2))

for (j in (i+1):(n-1))

if ((i>1)|(j<n-1)){

w=i:j
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x.in=x[w]

x.out=x[-w]

temp.in=find.mle(x.in,...)

temp.out=find.mle(x.out,...)

temp.lik=temp.in$lik+temp.out$lik

if (temp.lik>res$lik)

res=list(p.out=temp.out$p,r.out=temp.out$r,mu.out=

temp.out$mu,p.in=temp.in$p,r.in=temp.in$r,mu.in=temp.in$mu,

lik=temp.lik,alpha=i,beta=j+1)

if (print.out==TRUE)

cat("i=",i," j=",j," lik=",temp.lik,"\n")

}

}

else{

n.ij=length(ijSet)

for (i in 1:(n.ij-1))

for (j in (i+1):n.ij)

if ((i>1)|(j<n-1)){

if (print.out==TRUE)

cat("i=",ijSet[i]," j=",ijSet[j],"\n")

w=ijSet[i]:ijSet[j]

if (length(w)<n){

x.in=x[w]

x.out=x[-w]

temp.in=find.mle(x.in,...)

temp.out=find.mle(x.out,...)

temp.lik=temp.in$lik+temp.out$lik

if (temp.lik>res$lik)

res=list(p.out=temp.out$p,r.out=temp.out$r,mu.out=

temp.out$mu,p.in=temp.in$p,r.in=temp.in$r,mu.in=temp.in$mu,

lik=temp.lik,alpha=ijSet[i],beta=ijSet[j]+1)

if (print.out==TRUE)

cat("i=",i," j=",j," lik=",temp.lik,"\n")

}

}

}

if (print.out==TRUE){

cat("Inside interval:"," [",res$alpha,",",res$beta-1,"]\n")

}

}

res

}

The function test.split.nbinom performs the likelihood ratio test with the
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parametric bootstrap described in section 4.2.1 using the negative binomial model.

The function outputs reject (the boolean value decision for whether or not to

reject the null hypothesis), p.val (the estimated p-value for the test), and model

(the fitted model output from the function est.ij.nbinom using the alternative

model if the test is rejected or the null model if not). The inputs to the function

are x (a vector with the observed count data from the random sample), find.mle

(the function used to find the MLE given a random sample of independent negative

binomial random variables), ijSet (set of possible locations for α and β, where the

default 0 indicates that all integers from 1 to n are possible), alpha (the nominal size

of the test), B (the number of bootstrap samples used), and print.out (indicating

whether to print out messages with progress as the function executes). Note that for

computational efficiency, the function does not necessarily use B bootstrap samples,

but instead proceeds sequentially and stops once the decision for the test based on

the specified alpha level has been determined.

test.split.nbinom=function(x,find.mle=mle.nbinom.N,ijSet=0,

alpha=.05,B=1000,print.out=FALSE,...){

n=length(x)

B.accept=ceiling(B*alpha)

B.reject=ceiling(B*(1-alpha))

obs.larger=0

obs.notlarger=0

null.model=find.mle(x,...)

r.hat=null.model$r

p.hat=null.model$p

obs.lik.null=null.model$lik

alt.model=est.ij.nbinom(x,find.mle,ijSet=ijSet,...)

obs.lik.alt=alt.model$lik

obs.logLambda=obs.lik.alt-obs.lik.null

if (print.out==TRUE)

cat("obs.logLambda=",obs.logLambda,"\n")

while ((obs.notlarger<B.accept)&(obs.larger<B.reject)){

if (p.hat>0)

x.boot=rnbinom(n,prob=p.hat,size=r.hat)

else

x.boot=rpois(n,lambda=mean(x))
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boot.lik.null=find.mle(x.boot,...)$lik

boot.lik.alt=est.ij.nbinom(x.boot,find.mle,ijSet=ijSet,...)$lik

boot.logLambda=boot.lik.alt-boot.lik.null

if (boot.logLambda<obs.logLambda)

obs.larger=obs.larger+1

else

obs.notlarger=obs.notlarger+1

if (print.out==TRUE)

cat("boot.logLambda=",boot.logLambda,"Obs Larger= ",

obs.larger,"/",obs.larger+obs.notlarger,"\n")

}

if (obs.larger==B.reject){

if (print.out==TRUE)

cat("Reject H0\n")

results=list(reject=TRUE,p.val=obs.notlarger/(obs.larger+

obs.notlarger),model=alt.model)

}

if (obs.notlarger==B.accept){

if (print.out==TRUE)

cat("Fail to reject H0\n")

results=list(reject=FALSE,p.val=obs.notlarger/(obs.larger+

obs.notlarger),model=null.model)

}

results

}

The function cbs.nbinom performs the negative binomial CBS method de-

scribed in Section 4.3. The function outputs a data frame with rows containing the

segments determined by the method and columns ID (a generic label “ID” for each

segment), chrom (with generic value 1 for each segment), loc.start (the smallest

locus in the segment), loc.end (the largest locus in the segment), num.mark (the

number of loci in the segment), seg.mean (the estimated value of µ in the segment),

seg.p (the estimated value of p in the segment where -1 indicates that it does not

exist), and seg.r (the estimated value of r where a negative value indicates that

it does not exist). The inputs to the function are x (a vector with the observed

count data from the random sample), ijSet (set of possible locations for α and β,

where the default 0 indicates that all integers from 1 to n are possible), print.out
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(indicating whether to print out messages with progress as the function executes),

and ep (a tolerance threshold used internally to cluster segment estimates).

cbs.nbinom=function(x,ijSet=0,print.out=FALSE,ep=1e-4,...){

n=length(x)

null.model=mle.nbinom.N(x,...)

estimated.segments=cbind(rep(null.model$p,n),null.model$r)

unique.segments=unique(estimated.segments)

n.segments=nrow(unique.segments)

n.segments.last=0

while (n.segments>n.segments.last){

n.segments.last=n.segments

for (i in 1:n.segments){

w=which((abs(estimated.segments[,1]-unique.segments[i,1])<ep)&

(abs(estimated.segments[,2]-unique.segments[i,2])<ep))

xw=x[w]

if (print.out==TRUE)

cat("Attempting split on indices:",w,"\n")

try.split=test.split.nbinom(xw,ijSet=ijSet,print.out=print.out,...)

if (try.split$reject==TRUE){

new.estimates=cbind(

c(rep(try.split$model$p.out,try.split$model$alpha-1),

rep(try.split$model$p.in,try.split$model$beta-try.split$model$alpha),

rep(try.split$model$p.out,length(w)+1-try.split$model$beta)),

c(rep(try.split$model$r.out,try.split$model$alpha-1),

rep(try.split$model$r.in,try.split$model$beta-try.split$model$alpha),

rep(try.split$model$r.out,length(w)+1-try.split$model$beta)))

estimated.segments[w,]=new.estimates

if (print.out==TRUE){

cat("Split is statistically significant\n")

cat("New groups:\n")

if (try.split$model$alpha>1)

cat("Outer segment: ",w[1:(try.split$model$alpha-1)],"\n")

if (try.split$model$beta<=length(w))

cat("Outer segment: ",w[try.split$model$beta:length(w)],"\n")

cat("Inner segment: ",

w[try.split$model$alpha:(try.split$model$beta-1)],"\n")

}

}

}

unique.segments=unique(estimated.segments)

n.segments=nrow(unique.segments)

}

start=1
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end=NULL

mark=NULL

p=estimated.segments[1,1]

r=estimated.segments[1,2]

for (i in 2:n)

if ((abs(estimated.segments[i,1]-estimated.segments[i-1,1])>ep)|

(abs(estimated.segments[i,2]-estimated.segments[i-1,2])>ep)){

end=c(end,i-1)

mark=c(mark,max(end)-max(start)+1)

start=c(start,i)

p=c(p,estimated.segments[i,1])

r=c(r,estimated.segments[i,2])

}

end=c(end,n)

mark=c(mark,n-max(start)+1)

data.frame(ID="ID",chrom=1,loc.start=start,loc.end=end,

num.mark=mark,seg.mean=(1-p)*r/p,seg.p=p,seg.r=r)

}
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