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ABSTRACT 

FORECASTING PRESCRIPTION OF MEDICATIONS AND COST ANALYSIS 
USING TIME SERIES ANALYSIS 

Mussie Angesom Tesfamicael 

August 04 2007 

 

The purpose of this research study is to examine the use of time series 

forecasting and text mining to investigate the prescription of antibiotics.  The 

specific objective is to examine the relationship between the total payments, 

private insurance payments, Medicare payments, Medicaid payments, number of 

prescriptions and quantity of prescriptions for different antibiotics.  Currently, 

there is no method available to forecast antibiotic prescription costs, so we have 

adopted several methods that will help health care providers and hospitals to 

know about the prescription of the antibiotics being prescribed.  The payment 

made for each antibiotic is based upon an average cost and total cost that will 

include the cost of the antibiotics and insurance payments.  It will be beneficial to 

show health care providers the trends of these antibiotics in terms of the cost 

analysis.  It is also beneficial to make comparisons between several antibiotics in 

terms of the number of prescriptions and to do further study as to why one 

antibiotic is prescribed more often than others.

 v



We developed time series models that will be used to forecast the prescription 

practices of the antibiotics. The time series models that we developed for 

antibiotic prescription are; simple exponential smoothing models, double 

exponential smoothing model, linear exponential smoothing model.  We used 

exponential models to develop forecasting for antibiotics on which cost increases 

exponentially.  We also developed an autoregressive integrated moving average 

model for non-stationary data on which the series has no constant mean and 

variance through time.  We developed Generalized Autoregressive Conditional 

Heteroskedastic Models for volatile variance, and we also incorporated the 

inflation rate as a model dynamic regressor to see the effect on model forecast.  

We finally used text mining and clustering to classify the ICD-9 codes into six 

clusters and make comparisons within each cluster, by plotting the data using 

kernel density estimation.  This project will be beneficial for health care 

institutions for predicting the trend of the antibiotic prescription, so that further 

studies can be made why one antibiotic is prescribed more often than others. 
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CHAPTER 1  

INTRODUCTION 

 

The purpose of this project is to develop time series models to investigate 

prescribing practices and patient usage of antibiotics with respect to the severity 

of the patient condition.  The cost of antibiotics is rising from year to year; some 

antibiotics are prescribed more often compared to others even if they have 

similar properties.  It would be of interest to pharmaceutical companies to know 

the reason for this.  

 

It is the purpose of this project to examine trends and patterns in the prescribing 

of antibiotic antibiotics.  We want to determine whether prescribing patterns 

change over time, and whether costs change as well.  We will develop time 

series models for each antibiotic to investigate physician practices.  

 

Time series methods have been used to investigate prescribing practices, usually 

to examine compliance with guidelines.1  However, these approaches do not yet 

take into consideration the more recently developed transactional time series 

methods that can be used with electronic information from the prescription 

database; for example, information from Pyxis Products (Pyxis Products; San- 
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Diego, CA) can be downloaded directly and used to investigate prescribing 

practices.1,2  One popular time series tool is that of interrupted time series 

analysis to investigate the impact of an intervention.3 

 

The patient condition is defined by a list of ICD9 (International classification of 

disease) codes developed by the World Health Organization5.  The ICD9 codes 

are a series of 5-digit numbers with the first 3 digits representing the main 

condition and the last 2 digits representing specifics of the condition.  For 

example, “599” represents other disorders of the urethra and urinary tract and 

“599.55” represents operations on the renal pelvis. 

 

It is the purpose of this research to develop time series models to predict the cost 

of antibiotics, private insurance payments, Medicaid payments, Medicare 

payments, the quantity of antibiotics, total payment and to study why the cost is 

rising in one antibiotic compared to others.  We will also investigate how much 

patients are spending on average for their prescriptions of antibiotics.  The data 

set we have does not take the inflation rate into account, but in this study, we will 

use the inflation rate as a time-dependent regressor to forecast the cost of 

antibiotics.  Both forecasts, the one that incorporates the inflation rates and the 

one that does not will be compared.  We will compare the cost of antibiotics with 

respect to the inflation rates.   
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It is noteworthy that some drugs are called by their generic or brand names.  The 

generic drug name is the chemical name of a drug referring to the chemical 

makeup of a drug rather than to the advertised brand name under which the drug 

is sold.6  

 

There are over 100 antibiotics in the market, but the majority of them come from 

only a few types of drugs.  The main classes of antibiotics are Penicillin such as 

penicillin and Amoxicillin, Cephalosporin such as Cephalexin (Keflex), Macrolides 

such as erythromycin, Clarithromycin and Azithromycin (Zithromax), 

Fluoroquinolones such as ciprofloxacin (Cipro), Levoflaxacin (Levaquin), and 

Tetracycline such as Tetracycline and Doxycycline (Vibramycin).  In this project, 

we will study the cost analysis of these antibiotics in relation to time 9. 

 

The data set was obtained from the Medical Expenditure Panel Survey (MEPS) 

on prescribed antibiotics, using data from 1996-2004, with 2004 the most current 

year posted.  The data for each year is contained in a separate dataset, for 

instance, the prescribed antibiotics for the year 1996 is on file HC-010A; this  file 

contains the patient’s antibiotic information and cost for the drugs.4  The other 

datasets also contain information for one of the years, 1997-2004.  Information is 

merged for all the years to have a single dataset.  The preprocessing is 

described in detail in chapter 2.  
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Antibiotics are among the most frequently prescribed medications nowadays.  

Antibiotics cure disease by killing or injuring bacteria.  The first discovered 

antibiotic was penicillin, which was discovered from a mold culture. Today, over 

100 different antibiotics are available to doctors to cure minor discomforts as well 

as life-threatening infections.  

 

Antibiotics only treat bacterial infection, although they are used in a wide variety 

of illnesses.  Antibiotics don’t cure viral infections such as the common cold; nor 

can they treat fungal infections9.  Most antibiotics have two names, a brand name 

created by the drug company that manufactures the drug and a generic name 

based on the chemical composition of the drug.  

Previous studies 

 

Prescription drugs account for 19.88 percent of total health care expenditures for 

the U.S. civilian, non-institutionalized population for the years 2003 and 2004.  

The prescription expenditure was 11.9 percent of total health expenditures in 

1996.  The increase of the overall costs of health care has a direct effect on the 

increase of the cost of prescription drugs; as a result, more attention has been 

given to studying these costs.  The percentage of total health care expenditures 

for prescription drugs increased from 11.5 percent in 1996 to 19.5 percent in both 

2003 and 2004 for persons under the age of 65 7. 
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The average expense per purchase for brand name and generic medications has 

increased over the years, 1999 to 2003, with the average expense for generic 

medication rising from $23.48 to $33.53 and the average expense for a brand 

name drug rising from $59.49 to $82.53 8. 

 

 

Previous studies have not developed time series models to investigate the cost 

and prescription practices for medications.  This research will also define a 

measure to classify the severity of a patient’s condition using ICD9 codes.  

 

Purpose of the Study 

 

The main purpose of this study is to develop time series models to forecast the 

cost of antibiotics and to classify patient usage of antibiotics with respect to 

patient conditions using text-mining clustering.  We will also study on average 

how much patients are spending on antibiotics. 

 

Another purpose of this research is the changing behavior of the cost of 

antibiotics by introducing intervention variables.  We will analyze these data 

using interrupted time series analysis.  We also examine the payments made for 

Medicare and Medicaid and study how much patients are spending on average 

for prescriptions.  We also want to clear that we have only studied the antibiotic 

prescription of the several medications that are available in the market. 
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In this dissertation, we develop time series models, such as ARIMA models, ESM 

(Exponential Smoothing Model), and the Heteroskedastic models (ARCH and 

GARCH).  Autoregressive procedures are used to develop a model for each 

antibiotic so that cost can be forecast.  We also use data mining techniques, in 

particular, text mining to classify the prescriptions based on the patient’s severity 

conditions using ICD9 codes.  Text mining is used to classify observations based 

on the content of the words listed in each variable with the expectation 

maximization algorithm (EM). 

  

This dissertation is organized as follows: Chapter two gives detailed information 

about how we preprocessed the data.  Chapter three introduces the Exponential 

smoothing models (ESM).  ESM starts with an infinite past and applies a 

weighted average with weights that exponentially decay to zero. Chapter four 

describes in detail the theory of ARIMA models.  Chapter five is about 

Heteroskedastic models.  It analyzes and forecasts for volatile time series data.  

Chapter six describes the theory of text mining and classification.  Chapter seven 

shows the results of our analyses through several different models.  Statistical 

data analysis and figures will be used throughout to determine the best model.  

Chapter eight gives the summary, conclusion and recommended follow-up 

studies.   
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CHAPTER 2  

DATA PROCESSING 

In this chapter, we give a detailed discussion of how the data were preprocessed 

before a model for prediction was built.  Most studies that involve simulation do 

not require preprocessing.  The researcher has to generate random data and 

build a specific model that fits the data generated.  However, in time series 

analysis, one has to preprocess the data before a model for prediction is built.  In 

particular, in this project, a large amount of time was required to preprocess the 

data.  The data set for this project was collected from the medical expenditure 

panel survey (MEPS) 4.  The MEPS contains new and extensive data on the use 

of health services and health care in the United States.  MEPS is conducted to 

provide nationally representative estimates of health care use, expenditures, 

sources of payment, and insurance coverage for the U.S. civilian non-

institutionalized population.   

 

MEPS consist of three surveys.  The Household Component (HC) is the core 

survey and forms the basis for the Medical Provider Component (MPC) and part 

of the Insurance Component (IC).  The MEPS household component (HC) survey 

collects data through contact with a household by a series of five rounds of 

interviews over a two and half year period.  Data are collected each year on a 
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new sample of households to provide current estimates of health care 

expenditures. 

 

The MEPS medical provider component (MPC) add-on certifies information on 

medical care events reported in the MEPS HC by contacting medical providers 

and pharmacies identified by household respondents.  The MPC sample includes 

all hospitals, hospital physicians, home health agencies, and pharmacies 

reported in the MEPS-HC. The MPC is conducted through telephone interviews 

and mailed survey materials. Sometimes, providers sent medical and billing 

records that were abstracted into the survey instruments. 

 

The MEPS insurance component (IC) collects data on health insurance plans 

obtained through employers, unions, and other sources of private health 

insurance.  Data obtained in the IC include the number and types of private 

insurance plans offered, benefits associated with these plans, premiums, 

contributions by employers and employees, eligibility requirements, and 

employer characteristics. 

 

Together, these surveys yield comprehensive data that provide national 

estimates of the level and distribution of health care use and expenditures, 

support health services research, and can be used to assess health care policy 

implications. 
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The data set we used consisted of the Medical Expenditure Panel Survey 

(MEPS) information on prescribed antibiotics, using data from 1996-2004, with 

2004 the most current year posted.  The MEPS prescription antibiotics datasets 

consist of the following datasets for the years 1996-2004: 

HC-010A 1996 

HC-016A 1997 

HC-026A 1998 

HC-033A 1999 

HC-051A 2000 

HC-059A 2001 

HC-067A 2002 

HC-077A 2003 

HC-085A 2004 

These datasets were in SAS transport format, so the following code was written 

to import the data directly into SAS: 

 

 

 

 

Libname Tseries V8 'F:\Dissertation'; 

FILENAME IN1 'F:\Disertation\H51A.SSP'; 
PROC XCOPY IN=IN1 OUT=TSERIES IMPORT; 
RUN; 
         SAS CODE 1 

Table 2.1 SAS code used to transport dataset in SAS format 

 

For each data set, we created a STARTMEDDATE (start date of antibiotic), and 

the number of prescriptions for each antibiotic (DRUG).  The following SAS code 

was written: 
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DATA SASUSER.H33A1; 

SET SASUSER.H33A; 

KEEP DUID RXBEGDD RXBEGMM RXBEGYR STARTMEDDATE RXICD1X 

PURCHRD RXNAME RXQUANTY 

RXMRX RXMDX RXPVX RXXPX DRUG; 

IF RXBEGDD THEN DO; 

RXBEGDD=ABS (RXBEGDD); 

STARTMEDDATE=MDY (RXBEGMM, RXBEGDD, RXBEGYR); 

END; 

IF RXQUANTY >0 THEN DO; 

DRUG=1; 

END; RUN; 

    SAS CODE 2

Table 2.2 SAS code used to create the format of the dataset 

 

Table 2.3 gives the description of the variables for the dataset, antibiotics.  We 

have mentioned earlier that the variable, STARTMEDDATE, was formed by 

concatenating RXBEGDD (day antibiotic taken), RXBEGMM (month antibiotic 

taken), and RXBEGYR (year antibiotic taken). 
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Variable DESCRIPTION 

DUID Unique Person Identifier 

RXQUANTY Quantity of prescribed antibiotic 

RXMRX Amount paid by Medicare 

RXMDX Amount paid by Medicaid 

RXPVX Amount paid by private insurance 

RXXPX Total amount paid (Cost of antibiotic) 

STARTMEDDATE Start date of antibiotic 

RXICD1X ICD9-CODE 

Table 2.3. The variables and their descriptions 

 

We created a time series variable by merging the day, month and year of each 

prescription with the label, STARTMEDDATE.  If one of these three values is 

missing, there will be a missing value for STARTMEDDATE.  A missing day is 

replaced by the beginning of the month and a missing month and year were 

deleted from the dataset; otherwise, imputing a value might distort the time series 

of the data.  

 

We then merged each year’s data set to create an antibiotics dataset for the 

years 1996-2004 combined.  The following SAS code was written to do the task. 
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data Sasuser.Antibiotics; 

length DUID 8 PURCHRD 8 RXBEGDD 8 RXBEGMM 8 RXBEGYR 8 

RXNAME $ 50 RXQUANTY 8 RXICD1X $ 3 RXMRX 8 RXMDX 8 RXPVX8 

RXXPX 8 STARTMEDDATE 8  DRUG 8;   

Set Tseries.H10a Tseries.H16a Tseries.h26a Tseries.h33a Tseries.h51a   

Tseries.h59a  Tseries.h67a  Tseries.h77a Tseries.h85a Tseries.hc10a ; 

keep DUID PURCHRD RXBEGDD RXBEGMM RXBEGYR RXNAME   

RXQUANTY RXICD1X RXMRX RXMDX RXPVX RXXPX 

STARTMEDDATE DRUG;  

run; 

    SAS CODE 3

Table 2.4 SAS code used to merge the dataset for each year 

 

When the variable to be analyzed is text, each text is considered as a single 

variable level.  For instance, Keflex 500MG and Keflex 250MG will be considered 

two different antibiotics if the text is not changed to Keflex.  In order to avoid this 

problem for each antibiotic investigated in this project, we did filter to a commonly 

known antibiotic.  The following code was written:  
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PROC SQL; CREATE TABLE SASUSER.ANTIBIOTICSFiltered AS SELECT 

Sasuser.DUID FORMAT=BEST12, Sasuser.PURCHRD FORMAT=BEST12., 

Sasuser.RXBEGDD FORMAT=BEST12., 

Sasuser.RXBEGMM FORMAT=BEST12., 

Sasuser.RXBEGYR FORMAT=BEST12., 

Sasuser.RXNAME FORMAT=$F50., Sasuser.RXQUANTY FORMAT=BEST12., 

Sasuser.RXICD1X FORMAT=$F3., 

Sasuser.RXMRX FORMAT=BEST12., Sasuser.RXMDX FORMAT=BEST12., 

Sasuser.RXPVX FORMAT=BEST12., asuser.RXXPX FORMAT=BEST12., 

Sasuser.STARTMEDDATE FORMAT=DATE9., 

Sasuser.DRUG FORMAT=BEST12., 

((CASE WHEN "KEFLEX 250MG"=Sasuser.RXNAME THEN "KEFLEX" 

WHEN "KEFLEX  500MG"= Sasuser.RXNAME THEN "KEFLEX" 

WHEN "KEFLEX (CEPHELEXIN)"= Sasuser.RXNAME THEN "KEFLEX" 
WHEN "KEFLEX - GENERIC"= Sasuser.RXNAME THEN "KEFLEX" 
 
         datalines deleted … 

WHEN "LEVAQUIN (FILM-COATED)"= Sasuser.RXNAME THEN "LEVAQUIN" 
WHEN "LEVAQUIN 500MG"= Sasuser.RXNAME THEN "LEVAQUIN"   
 
WHEN "LEVAQUIN 500MG TABS*50"= Sasuser.RXNAME THEN "LEVAQUIN" 
 
WHEN "LEVAQUIN LEVA-PAK (3X5,FILM-COATED)"= Sasuser.RXNAME 
THEN "LEVAQUIN"  

ELSE Sasuser.RXNAME END )) AS Recode_RXNAME 

FROM SASUSER.Antibiotics AS Antibiotics; QUIT; 

    SAS CODE 4 

Table 2.5 SAS code used to match observations 

 13



                                                                                          

Once the dataset was processed and filtered, we selected a set of antibiotics.  An 

antibiotic is a drug that kills or prevents the growth of bacteria but has no effect 

against viruses or fungal infections.  Antibiotics are less harmful to the patient or 

host compared to the infection, and therefore, can be used to treat infection. 

 

When analyzing time series data, each observation should have a unique 

identifier such that this identifier is the time upon which the event happened.  Due 

to scenarios that a patient might receive prescription antibiotics multiple numbers 

of times during the time interval under study, there might be several transactions 

made at a unique time point.  Our data set has multiple prescriptions at the same 

time point, and time series models don’t analyze such transactional data.  

Therefore, we converted the time identifier by accumulating the observations 

monthly, with the seasonal period set at 12 months.   

The time period used to accumulate data points depends on what the forecaster 

wants to know.  For instance, if we want to know the average number of 

prescriptions made during a month, then the accumulation will be an average.  

Since not every month has an equal numbers of days, we divide the total 

prescriptions made by the number of days in that particular month.  On the other 

hand, if the forecaster wants to know the total number of prescriptions made 

during a particular month, then the accumulation point will be a sum.  The 

accumulation point also could be the median, standard deviation, and so forth.  
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Accumulating data points depends on the specific research question needed to 

be addressed.   

 

Figure 2.1. The Prescription Data of Antibiotics. 

 

Figure 2.1 represents the format of the antibiotics data set analyzed in this 

project.  We can see that there are four transactions made on September 12, 

1996.  This is an indication of the data set as a transactional series.  Time series 

only analyze equal time intervals; as a result, we accumulated the data.  As the 

main aim of this study is to analyze prescription practices of antibiotics monthly, 

we forced the accumulation point to be total (Figure 2.2).  It is of interest to know 

the average number of prescriptions of antibiotics, so we accumulated on 

average (Figure 2.3).  When data are accumulated monthly, the total amount in 

that month is divided by the number of days in that month.  SAS Code 5 and SAS 
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Code 6 create a time series for antibiotic data by accumulating total and average 

respectively.  

 

       proc hpf data=data.amoxicillin out=sasuser.amoxicilintotal lead=0; 

            id startmeddate interval=month accumulate=TOTAL; 

 forecast  RXQUANTY RXMRX RXMDX RXPVX RXXPX; 

 by Rxname;  

run; 

SAS CODE 5 

 

 
 
 
 
 
 
 
 
 

Table 2.6 SAS code to create dataset Amoxicillin accumulation of monthly prescriptions 
 

 
 

Figure 2.2. The monthly prescriptions of Antibiotics 
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proc hpf data=data.amoxicillin out=sasuser.amoxicilinaverage lead=0; 

            id startmeddate interval=month accumulate=Average; 

forecast  RXQUANTY RXMRX RXMDX RXPVX RXXPX; 

by Rxname; 

run; 

SAS CODE 6 

 

 

 

 
 
 
 
 

Table 2.7 SAS code to create dataset Amoxicillin accumulation of average 
 
 

 

Figure 2.3 Average prescriptions of Antibiotics 

 

In this project, we will build a time series model to study the trend of prescription 

antibiotics.  We selected a set of antibiotics to be analyzed based on the 
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availability of enough data points.  This is due to the fact that some antibiotics are 

less prescribed compared to others and there are not enough data points 

collected to examine some of the sparsely used antibiotics.  As a result, we 

selected a set of 20 antibiotics to investigate the trend of prescription practices of 

antibiotics.  The description of the list of antibiotics investigated in this project is 

given in table 2.7. 

 

  Antibiotics 

  Amoxicillin Ampicillin Azithromycin Cefaclor 

Antibiotics Cefadroxil Cefuroxime Cephalexin Cipro 

  Clarithromycin Clindamycin Clotrimazole Dicloxacillin 

  Doxycycline Erythromycin Keflex Sulfamethroxazole

  Tequin Tetracycline Tobramycin Vancomycin 

 

Table 2.8 Antibiotics Investigated for model forecast 

 

Discussion 

 

In this chapter, we have discussed how to prepare messy data for analysis.  A 

statistical model analyzes a dataset to answer the research question of interest.  

In this project, we will build time series models to study and forecast prescription 

practices of antibiotics.  Since we are building time series models, the dataset 

must have the form of time series data.  A time series dataset is characterized by 

a series of fixed width time points.  However, our dataset was transactional, 
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without any fixed time points.  As a result, we preprocessed the dataset to have a 

format of time series.  Once the messy dataset has time series variables, a 

model can be built to forecast and study the prescription practices of antibiotics.  

 

 

 

 

 

 

 

 

 

 

 

 19



CHAPTER 3 
 

EXPONENTIAL SMOOTHING MODELS 

 

Exponential smoothing is a class of techniques in time series analysis.  

Exponential smoothing produces good forecasts because it contains a self-

adjusting mechanism for previous forecast errors, and because it assigns 

weights to previous data.  In exponential smoothing, we assume that the future 

characteristics of the variable (Medicare, for example) are influenced by the past 

behavior of the variable.  The main difference of exponential smoothing models 

from other time series models, for example ARIMA models, is that exponential 

smoothing assumes that a more recent event of a variable has more influence on 

future behavior compared to the distant past 12.  

 

Exponential smoothing models are used as an extension of weighted averages.  

The mean of the observations is the sum of the numbers divided by the total 

number of observations.  Mathematically, 
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The weight for each variable  in equation (3.1) is equal to tY
n
1 , where  is the 

time series point at time t .  Now, if we assume each  is independent and 

identically distributed, then equation (3.1) is the best predictor of the next 

observed value, , using a criterion such as least squares or maximum 

likelihood.  But in a time series, not all values have the same weight; recent 

values might have more weight compared to more distant values.  Therefore, the 

general weighted average can be written as 

tY

tY

1+tY

  

1  ,ˆ
11

== ∑∑
==

n

t
t

n

t
tt wYwY .                                                  (3.2) 

 

If the sample mean is used to forecast future values, the model used will be 

 

ttY εµ +=                                                                     (3.3) 

 

where , ),0(~ 2σε Nt 0),( =jtE εε , and jt ≠ .  If we assign a weight of one to the 

most recent observation, and a weight of zero to all other observations, we get a 

random walk model where the best predictor is the most recent observation, and 

all past observations provide no additional information to improve the prediction. 

Mathematically, the equation for a random walk model is 
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ttt YY ε+= −1                                                                      (3.4) 

 

where , and if the random walk is moved by an average, the 

mathematical equation will be  

),0(~ 2σε Nt

 

ttt YY εµ ++= −1                                                                    (3.5) 

 

Equation (3.5) is called a random walk with a drift. 

 

If we compromise between the mean model and the random walk model, we get 

an exponential smoothing model where the weights exponentially decay to zero 

as we use older and older observations.  To derive the equation for exponential 

smoothing models, we start with an infinite past and apply a weighted average 

with weights that exponentially decay to zero.  

 

Given a time series  for tY nt ,...,2,1= , the model assumed by the smoothing 

model has the following form:  

 

tpttt tstY εβµ +++= )(                                                            (3.6) 
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where tµ  represents the time varying mean term, tβ  represents the time-varying 

slope, represents the time-varying seasonal contribution for one of the )(ts p p  

seasons and tε  represent disturbances.  

 

If the smoothing model of equation (3.6) doesn’t have trend terms, then 0=tβ , 

and for a smoothing model without seasonal terms, 0)( =ts p .  If the smoothing 

model doesn’t have time varying slope and time-varying seasonality, then 

equation (3.6) reduces to equation (3.3), which is the mean model. 

 

The smoothing model estimates the time-varying components at each time t with 

the smoothing state.  After initializing, the smoothing state is updated for each 

observation using the smoothing equations.  The smoothing state at the last non-

missing observation is used for prediction.  

 

Smoothing State and Smoothing Equations 
 
 

The smoothing equations determine how the smoothing state changes with 

increasing time.  If we know the smoothing state at time t-1 and the time series 

value at time t, we can uniquely determine the smoothing state at time t.  We 

have several smoothing models, but the smoothing state at time t consists of the 

following:  is a smoothed level that estimates tL tµ ,  is a smoothed trend that 

estimates 

tT

tβ  and 1,...,1,0, −=− pjS jt  are seasonal factors that estimate .   )(ts p
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Once we have the smoothing equation, we need to initialize the smoothing state.  

Let  be a time series where ty nt ,...,2,1= .  Then the smoothing process first 

computes the smoothing state for time t=1.  This computation requires an initial 

estimate of the smoothing state at time t=0, in which no data exist before time 

t=0.  Therefore, we need to make an appropriate initial smoothing state where we 

back cast from the last time points, say t=n to t=1 to get a prediction at t=0.  The 

smoothing state at time t=0 obtained from the back cast is used to initialize the 

smoothing process from time t=1 to t=n 10. 

 

Seasonal Exponential Models 
 
 

Exponential smoothing models give more weight to recent observations instead 

of to distant observations.  Seasonal time series have strong autocorrelations 

that go far back into the past; therefore, simple exponential smoothing models 

don’t capture seasonal effects.  But if we add a seasonal component, then we 

can use the exponential smoothing model.  The seasonal exponential smoothing 

method does not have a trend component. 

 

An additive model is of the form tptt tsY εµ ++= )( , where tµ  is the linear term 

and  is the seasonal term.  A multiplicative model (Winter’s) is of the form )(ts p

tpttt tstY εβµ ++= )()( , which is the product of the linear term and the seasonal 
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term.  For the additive model, the seasonal factors sum to one, while for the 

multiplicative model, the seasonal factors average to one.  For models with 

seasonal terms, we normalize the smoothing state so that  for models 

that assume additive seasonality, and 

∑
−

=
− =

1

0
0

p

j
jtS

∑
−

=
− =

1

0
11 p

j
jtS

p
 for models that assume 

multiplicative seasonality such as Winter’s method.   

 

Statistically speaking, every model we build has an error term.  The model that 

will be built for forecasting has to have a minimal error, i.e. the predictions should 

be made with minimal error.  Predictions are made based on the last known 

value of the smoothing state.  

 

Let  denote the prediction made at time t  for  steps ahead, and let  

denote the prediction error, where .  As an example, a one step 

ahead prediction can be made at time 

)(ˆ kYt k )(ket

)(ˆ)( kYYke tk −tt = +

1−t  for one time unit into the future, which 

can be denoted as .  The one step-ahead prediction errors can be denoted 

by .  The data set analyzed for this project has some 

missing values at certain time points.  When a missing value is obtained by 

chance at time t, the smoothed values are updated using the error-correction 

form of the smoothing equations with the one step-ahead prediction error, , set 

to zero.  The missing value is estimated using the one-step-ahead prediction at 

time t-1, i.e. 

)1(ˆ
1−tY

)1(ˆ)1( 11 −− −== tttt YYee

te

)1(ˆ
1−tY 11.  
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Exponential smoothing models are categorized into four basic models. They are 

the simple exponential smoothing model, the double exponential smoothing 

model, the linear exponential smoothing model and the damped trend 

exponential smoothing model. 

 

Simple Exponential Smoothing Model 
 
 
Given a time series  where ,tY nt ,...,2,1= , the model equation for simple 

exponential smoothing is given by 

 

tttY εµ +=                                                                                (3.7) 

 

The smoothing equation is given by  

 

...)1()1()1(ˆ
3

3
2

2
11 +−+−+−+= −−−+ ttttt YYYYY ωωωωωωω             (3.8) 

 

If we factor out )1( ω−  from equation (3.8), then we will have  

 

...])1()1()[1(ˆ
3

2
211 +−+−+−+= −−−+ ttttt YYYYY ωωωωωωω ; 

 

hence, equation (3.8) can be reduced to  
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ttt YYY ˆ)1(ˆ
1 ωω −+=+                                                                  (3.9) 

 

where ω is the exponential weight.  

 

Double (Brown) Exponential Smoothing Model 

 
A double exponential smoothing model is applied to the data if a trend or 

seasonal factors appear in the data.  A trend can be either increasing or 

decreasing.  Double exponential smoothing considers a sequence of regression 

coefficients weighted more heavily towards the recent past.  

 

The model equation for double exponential smoothing is  

 

tt tY εββ ++= 10        (3.10) 

 

where 0β  and 1β  vary with time.  The prediction for k  units in the future from 

time t can be expressed in terms of a seasonal factor  and trend term .  

Mathematically, the seasonal term can be expressed as 

tS tT

1)1( −−+= ttt SSS ωω  and 

the trend term is expressed as 1)1( −−+= ttt TST ωω ; hence, the double 

exponential smoothing model can be expressed as:  
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The estimate of the slope at time t is given by ( ttt TS −
−

=
ω

)ωβ
1

ˆ
1  and an estimate 

of intercept at time t  is given by .  When we have real data 

with a trend and seasonality, the double exponential smoothing model will be 

applied where starting values for the slope and intercept are initialized.  The 

starting values for the slope and intercept are 

tttt tTS 10
ˆ2ˆ ββ −−=

0,10,00
ˆ1ˆ β

ω
ωβ ⎟
⎠
⎞

⎜
⎝
⎛ −

−=S  and 

0,1β̂0,00
12ˆ
ω
ωβ ⎟
⎠
⎞

⎜
⎝
⎛ −

−=T  respectively. 

 

Linear (Holt) Exponential Smoothing Model 
 
 

The linear exponential smoothing model employs two time varying parameters 

while double exponential smoothing employs a time varying linear regression 

model that only relies on one smoothing parameter.  As with the double 

exponential smoothing model, a linear exponential smoothing model is applied to 

model data with trend and seasonality. 
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For the linear (Holt) exponential smoothing, we begin with the same linear model 

as double exponential smoothing.  However, a second parameter γ  (trend 

smoothing weight) is added to equation (3.11).  The model equation for double 

exponential smoothing is given by: 

 

ttkt kTSY +=+
ˆ                       (3.12) 

 

where ))(1( 11 −− +−+= tttt TSYS ωω  and 11 )1()( −− −+−= tttt TSST γγ . 

 

Damped Trend Linear Exponential Smoothing Model 
 
A damped trend linear exponential smoothing model is a modification to the 

linear (Holt) exponential smoothing model where the contribution of past trend is 

dampened or reduced.  Adding a third parameter φ  (damping coefficient) to 

equation (3.12) gives damped trend linear exponential smoothing.  The model 

equation for damped trend linear exponential smoothing is given by:   
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where ))(1( 11 −− +−+= tttt TSYS φωω  and 11 )1()( −− −+−= tttt TSST φγγ . 
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Discussion 
 
 

Exponential smoothing is one of several techniques in time series forecasting 

models.  It is characterized by giving heavier weights to recent events and lower 

weights to past events.  To reduce forecasting error, an optimal smoothing 

constant (ω ) needs to be chosen.  The ideal situation is to vary the smoothing 

constant (ω ) until the prediction error is minimal.  The main point we have to 

keep in mind is that regardless of which exponential model is chosen (simple, 

double, linear and damped trend), the exponential model we build has to 

minimize the residual (actual value-forecasted value).   

 

To demonstrate the use of exponential smoothing models, we will build model 

forecasts for the antibiotics dataset.  According the nature of the time series, one 

of the exponential smoothing models will be built to forecast antibiotic 

prescriptions.  Once the exponential smoothing model is built for the antibiotic 

dataset, the forecasted values will be clustered into several clusters and 

compared to each other based on the severity of the disease.  
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Chapter 4 
 
 

ARIMA MODELS 
 

 
 

A time series that is a linear function of p past values plus an error is called an 

autoregressive process of order p , denoted by .  )( pAR

  

tptpttt YYYY εφφφ ++++= −−− ...2211       (4.1)  

 

where pφφφ ,...,, 21  are constants and tε  is a white noise series with mean zero 

and variance . 
2
εσ

 

A time series that is a linear function of past errors is called a moving average 

process of order , denoted by .       

q

q )(qMA

qtqttttY −−− ++++= εθεθεθε ...2211       (4.2) 

 

where qθθθ ,...,, 21  are parameters that determine the overall pattern of the 

process and tε  is a white noise.  A time series that is a linear function of p past  
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values plus a linear combination of  past errors is called an autoregressive 

moving average (ARMA) process of order , denoted by :  

q

),( qp ),( qpARMA

 

qtqtttptpttt YYYY −−−−−− ++++++++= εθεθεθεφφφ ...... 22112211    (4.3) 

 

Sometimes an ARMA model is called a mixture model, i.e. a mixture of 

autoregressive and moving average parts.  Another thing to be checked when 

building an ARMA model is to see if the series is stationary.  A time series is 

stationary if the mean and variance of the series is constant at all time points.  

 

Box-Jenkins (1976) modeling (also called ARIMA modeling) removes the non-

stationary components such as trend and seasonality, and modeling the 

stationary part that is left over.  Therefore, if a time series has a nonstationarity 

component, then an ARIMA model is used to forecast the series.  So, in order to 

check whether the stochastic process is stationary, the following conditions must 

be satisfied for all values of t : 

 

µ=)( tYE         (4.4)  

 

)0(])[( 22 γσµ ==− ytYE       (4.5) 

 

and  
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),()])([( τγµµ τ =−− −tt YYE  ,...2,1=τ                                  (4.6) 

 

Equations (4.4) and (4.5) define the mean and variance of the time series data, 

while equation (4.6) gives the autocovariance at lag τ .  A covariance stationary 

stochastic process is a sequence of uncorrelated random variables with constant 

mean and variance; a process of this kind is known as a white noise process that 

is denoted by tε , which is assumed normally distributed with mean and a 

variance of .   

0

2σ

 

The variables in a white noise sequence are uncorrelated; hence the 

autocovariances at non-zero lags are all zero.  Thus, 

 

⎩
⎨
⎧

=− ,0
,

)(
2σ
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The time domain properties of a stationary stochastic process can be 

summarized by plotting )(tτ  vs τ , which is known as the autocovariance 

function.  Standardizing autocovariances, that is, dividing through by the variance 

process gives the autocorrelation function, which is written as: 

 

)0(
)()(

γ
τγτρ = , ,...2,1,0=τ                   (4.7) 
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The back shift of a series denoted by B  shifts a time series by one time unit.  

The first lag is given by, 

 

1)( −= tt YYB .                     (4.8) 

 

Applying B  to equation (4.8) yields , so by 

repeating this process, we find  

21
2 )())(()( −− === tttt YYBYBBYB

 

τ
τ

−= tt YYB )(  for ,...3,2,1=τ        (4.9) 

 

Autoregressive Process 
 
 

An autoregressive process regresses a time variable on its own past values.  An 

autoregressive process of order p is written as           

 

tptptt YYY εφφ +++= −− ...11 , Tt ,...,2,1= ,              (4.10) 

 

so we can denote .  The back shift operator lags an observation back 

into the past; for example, 

)(~ pARYt

1)( −= tt YYB .  As a result, we can write equation (4.10) 

using the back shift operator as 
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tt
p

p YBBB εφφφ =−−−− )...1( 2
21                           (4.11) 

 

Letting , we can write equation (4.11) as p
p BBBB φφφφ −−−−= ...1)( 2

21

 

ttYB εφ =)(                                                  (4.12) 

 

The simplest autoregressive (AR) model is the first order model, denoted by 

AR(1).  The first-order Autoregressive model is denoted by:              

 

ttt YY εφ += −1 ,  Tt ,...,1= .                       (4.13) 

 

Using algebraic manipulation, (4.13) can be written as  

 

ttt YY εφ =− −1  ⇔ ttYB εφ =− )1( 1 .                   (4.14) 

 

Here, we have used the polynomial operating on the time series to produce a 

white noise error sequence for the AR(1) model. 

 

The series is assumed to have started at time 1=t , but the process is regarded 

to have started in the remote past.  Substituting repeatedly for lagged values of 

 gives  tY
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Taking the expectations of equation (4.15) and treating  as a fixed number, 

we obtain 

jtY −
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since .  As mentioned in the beginning of 

this chapter, a time series is stationary if the mean and variance of the series at 

any time 
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We have shown that equation (4.14) is a representation of a polynomial operator 

on the time series to produce a white noise error sequence; in fact, equation 

(4.14) is a representation of an AR(1) model.  We can also represent an AR(p) 

process by a characteristic polynomial, . p
p xxxx φφφφ −−−−= ...1)( 2

21

 

Another way of checking if a series is stationary is to see if the roots of the 

characteristic equation are less than one in absolute value.  For an 

autoregressive function of order p , i.e. AR (p), the characteristic equation is 

given by  
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0...1
1 =−−− −

p
pp xx φφ                   (4.17) 

 

Replacing x  by in equation (4.16) and multiplying by B/1 pB , we obtain a 

polynomial equation: 

 

0...1 1 =−−− p
p BB φφ                  (4.18) 

 

In order for AR(p) to be stationary, the roots of equation (4.17) should be less 

than one in magnitude or the root of equation (4.18) should be greater than one 

in magnitude. 

 

Moving Average Processes 
 
 

A moving average process of order q is written as  

 

qtqttttY −−− ++++= εθεθεθε ...2211 , Tt ,...,2,1=  and    (4.19) ),0(~ 2σε Nt

 

and is denoted by .  )(~ qMAYt

 

Let   be the MA(q) model given in equation (4.19).  Then the following hold: }{ tY

 

 37



0)( =tYE         (4.20) 

 

222
1 )...1()var( σθθ qtY +++=       (4.21) 
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Equation (4.22) can be shown as follows 
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The correlation at lag k is given by the following equation 
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The simplest moving average (MA) model is the first order model, denoted by 

MA(1).  The first-order moving average model is denoted by:              

 

1−+= tttY θεε ,  Tt ,...,1=              (4.24) ),0(~ 2σε Nt

 

Substituting repeatedly for lagged values of , equation (4.24) can be written as  tY
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We have seen that in order for AR (p) to be stationary, the roots of the 

characteristic polynomial of equation (4.18) must be larger than one in 

magnitude, whereas for MA (q), we have to consider invertability since the 

autocorrelation function after lag q vanishes for MA(q); it is stationary. 

 

 

Let , where  is given as equation (4.19).  Then we can write 

equation (4.19) as 

)(~}{ qMAYt tY

tt BY εθ )(= , where  with q
q BBBB θθθθ ++++= ...1)( 2

21

1)( −= ttB εε .  Therefore, in order for MA(q) to be invertible, the roots of the 

equation 0)( =Bθ  must all lie outside the unit circle13. 
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ARMA MODELS 
 

The AR (p) and MA (q) models are combined to give an ARMA (p, q).  By 

combining these models, we get an ARMA(p,q) model with few unknown 

parameters.  It should also be noted that both AR (p) and MA (q) are special 

cases, so it is legitimate to denote them by  and  

respectively.  An ARMA Model is represented as: 

)0,( pARMA ),0( qARMA

 

qtqtttptpttt YYYY −−−−−− ++++++++= εθεθεθεφφφ ΛΛ 22112211                           

(4.26) 

 

A time series  is said to be an ARMA(p,q) process if  }{ tY

(i) is stationary }{ tY

 (ii) , t∀ tt BYB εθφ )()( =  where . ),0(~ 2σε Nt

 

 

White Noise 

 

A process that is purely random is known as white noise.  Let { }  be a 

sequence of errors with mean and variance given by 

∞
∞−tε

{ } 0=tE ε  and { } 22 σε =tE  

respectively for which all the errors are uncorrelated across time, i.e. { } 0=τεεtE  
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for τ≠t .  A process satisfying these three conditions is called a white noise 

process. 

 

The characteristic polynomials are representations of Box-Jenkins models on 

which  

 

q
q BBBB θθθθ −−−−= Λ2

211)(  and . p
p BBBB φφφφ −−−−= Λ2

211)(

 

The simplest autoregressive moving average model is the first order model, 

denoted by .  The first-order autoregressive moving average model is 

denoted by: 

)1,1(ARMA

 

1111 −− −+= tttt YY εθεφ ,  Tt ,...,1=                                   (4.27) ),0(~ 2σε Nt

 

Alternatively, equation (4.27) can be written as )1()1( 11 BBY tt θεφ −=− .  Then 

 

 

 1111 −− −=− tttt YY εθεφ  tttt BBYY εθεφ 11 −=−⇔  )1()1( 11 BBY tt θεφ −=−⇔ .  

 

This is the form of an .  )1,1(ARMA
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Non-Seasonal ARIMA Models 

 

An ARIMA model is a generalization of an ARMA model on which differencing (d) 

is involved.  Let  and assume that  is an , i.e. t
d

t YBZ )1( −= tZ ),( qpARMA

tt BZB εθφ )()( = .  Then  

 

tt
d BYBB εθφ )()1)(( =− .       (4.28) 

 

where  

 

p
p BBBB φφφφ −−−−= Λ2

211)(  

q
q BBBB θθθθ −−−−= Λ2

211)(  

 

The process  is said to be an , autoregressive integrated 

moving average model

}{ tY ),,( qdpARIMA

14.  For instance an ARIMA(1,1,1) can be written as  

 

 

 

1)1)(1( −−=−− tttYBB θεεφ .       (4.29) 

 

Since equation (4.29) has a difference of 1, then 
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1)1( −−=−=−= tttttt YYBYYYBZ . 

 

Hence, summing  and assuming ,  can be 

derived from  by summing, and that is why we have the term, “integrated” in an 

ARIMA model. 
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SEASONAL ARIMA MODELS 

 

When a time series  exhibits a seasonal trend, then the ARIMA model will be 

used to fit the model with a seasonality term, and it is written as: 

}{ tY

 

t
s

Qt
Dsds

P BBYBBBB εθφ )()()1()1)(()( Θ=−−Φ     (4.30) 

 

where  

p
p BBBB φφφφ −−−−= Λ2

211)( , 

q
q BBBB θθθθ −−−−= Λ2

211)( , 

Ps
p

sss
p BBBB Φ−−Φ−Φ−=Φ Λ

1

211)( , 

Qs
Q

sss
Q BBBB Θ−−Θ−Θ−=Θ Λ

1

211)( . 

 

Therefore,  is denoted by ARIMA}{ tY sQDPqdp ),,(),,( × .  When a series has 

seasonality, then  is related to a series that cycles using an s time unit, in the 

}{ tY

tY
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past denoted by .  To demonstrate, let us consider a seasonal ARIMA(1,0,0) sY ×  

(0,1,1)12 time series of .  Then substituting }{ tY 12,1,1,0,0,1 ====== QDPdqp  

and  in equation (4.30), we get  12=s

 

12
12 )1)(1( −−=−− tttYBB θεεφ    

⇔ 12
1312 )1( −−=+−− tttYBBB θεεφφ  

 ⇔ 12
1312 )()()( −−=+−− tttttt YBYBYBY θεεφφ

⇔ 1213112 −−−− −=+−− tttttt YYYY θεεφφ  

⇔ 1213112 )( −−−− −+−+= tttttt YYYY θεεφ .  

 

Here we see that depends upon , , and tY 12−tY 1−tY 13−tY 12−tε . 

 

Model Validation and Holdout Sample 

 

Model validation is an important part of the model development process28.  Once 

the model produced is validated, it can be used for decision making.  For 

example, the forecasted model can be used as a model prediction for the cost of 

prescriptions.  It is advisable to ask whether the model of prediction is validated 

or not.  In practice, no model will fully fit the data perfectly (100%); there is some 

error to some extent.  So in model building, our main task is to reduce the error 

as much as possible.  Model validation assures that the prediction and forecast 

for the dataset analyzed is accurate and solves the problem being investigated.  
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Once the models built are validated, we can make future predictions or forecast 

for the prescription of antibiotics.   

 

The forecasting models that we build for the prediction of the cost of antibiotics 

may work well with the data to which they were fit; we also have to consider how 

well the models will fit to freshly collected data.  In order to solve this problem, we 

validate the model built.  By model validation, we mean to test the dataset on 

another independent dataset and see how well the model will fit the new dataset.  

The model built should work on an independent dataset which was not used for 

fitting the model equations.  For these reasons, we classify the dataset into 

portions; one of which is used for model fitting and the other for model validation.  

For this project, we will hold out 20% of the data for validation.  By hold-out 

samples, we mean that a portion of the data is used for model evaluation and the 

rest of the data are used for model forecasting.  If there is a hold-out sample, the 

period of fit is different from the period of evaluation, which we call a hold-out 

sample.  The period of fit ends at a time point before the series of data ends, and 

the remainder of the data are held out as a non-overlapping period for evaluation.  

Hence, a hold-out sample is a period used to compare the forecasting accuracy 

of models fit to past data.  
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Model Diagnostics 

 

In a time series model, each observation is correlated with past values, so there 

is some correlation of present values with past values.  An autocorrelation 

function gives the primary diagnostics for a model fit.  The autocorrelation 

function at lag k , denoted by ACF( ), represents the correlation of a time series 

with itself lagged by k  time units.  For a given model, we can check whether 

there is a need for differencing just by observing if the series autocorrelations at 

each lag die off quickly or not.  If the autocorrelation dies quickly, there is no 

need for differencing. 

k

 

The partial autocorrelation function, denoted by PACF( k ) measures the 

correlation of a time series with itself at lag adjusted for lags .  The 

partial autocorrelation function at lag  is the coefficient of the k

k 1,...,2,1 −k

k th order 

autoregressive term in an autoregressive model of order .  The partial 

autocorrelation function plot has similar diagnostic properties to the 

autocorrelation function plot. 

k

 

The inverse autocorrelation function denoted by IACF( k ) is an inverse of the 

autocorrelation function.  The inverse autocorrelation function identifies model 

behavior not detected by the PACF.  Chatfield (1980) suggests that IACF should 

replace the PACF as a model diagnostic tool15. 
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When a series of data is non-stationary, we use an ARIMA model to produce a 

forecast.  Nonstationarity is removed by taking differencing ( ) for each 

series and then building an ARIMA model for the differenced data.  If the 

differenced series of data is non-stationary, a second differencing ( ) is 

taken for each series, building an ARIMA model for the differenced data.  The 

antibiotics dataset has some missing values or zero for variables such as 

Medicare and Medicaid.  We want to test whether this series is white noise 

residual, so it is crucial to do a white noise test.   

1−− tt YY

2−− tt YY

 

The other model diagnostic statistics for an ARIMA model are Akaike's 

information criterion (AIC) (Akaike 1974; Harvey 1981)16 and Schwarz's Bayesian 

criterion (SBC) (Schwarz 1978)17.  Using AIC and SBC, we will compare several 

ARIMA models fit to the antibiotics dataset.  We will choose a model with the 

smallest information criteria.  Both AIC and SBC are called information criteria.  

The AIC is computed as  

kL 2)ln(2 +−                             (4.31) 

where L is the likelihood function and k is the number of free parameters.  The 

Schwarz’s Bayesian criterion (SBC) is computed as  

knL )ln()ln(2 +−                           (4.32) 
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where n is the number of residuals that can be computed for the time series.  

Sometimes, Schwarz's Bayesian criterion is called the Bayesian Information 

criterion (BIC). 

 

A stationarity test is very important in time series modeling, especially when an 

ARIMA model is built.  Hence, we will perform a stationarity test such as the 

Dickey-Fuller and Philips-Perron test. 

 
 
Dickey-Fuller Test: 
 
 

When a series has a unit root, the series is non-stationary and the ordinary least 

squares estimator is not normally distributed.  The limiting distribution of the 

ordinary least squares estimator of autoregressive models for time series with a 

simple unit root was studied by Dickey and Fuller (1979)18.  Dickey, Hasza, and 

Fuller (1984) obtained the limiting distribution for a time series with seasonal unit 

roots19.   

 

 

Let us consider the AR(p) model given in equation (4.10).  If all of the 

characteristic roots of equation (4.17) are less than unity in absolute value, then 

 is stationary.  If there is a unit root, then  is non-stationary )(~ pARYt )(~ pARYt

 48



and the sum of the autoregressive parameters given by  in equation (4.10) 

is equal to one.  As a result, we will test for a unit root by using the hypothesis 

H

∑
=

p

i
i

1
φ

0:  against H∑
=

=
p

i
i

1
1φ 1: ∑ .  The Dickey-Fuller test is used to test the null 

hypothesis that the time series exhibits a lag d unit root against the alternative of 

stationarity.  We will use the Dickey-Fuller test to test for stationarity and 

determine the order of differencing needed for the ARIMA modeling of the 

antibiotics time series data. 

 

=

≠
p

i
i

1
1φ

Phillips-Perron Test 

 

The Phillips-Perron is another test statistic for testing stationarity or unit roots.  It 

performs tests for zero mean and single mean in an autoregressive model.  A 

zero mean for an autoregressive model is given by 

 

ttt YY εφ += −1       (4.33) 

 

and a single mean is given by 

 

ttt YY εφµ ++= −1       (4.34). 

 

where tε  ~ serially correlated. 
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We will compute the Phillips-Perron test for the null hypothesis that  has a unit 

root against a stationary alternative.  The Philips-Perron tests are similar to 

Dickey Fuller tests, but Philips-Perron tests add an automatic correlation to the 

Dickey Fuller test procedure to allow for autocorrelated residuals.  For the 

Philips-Perron test, the errors are identically and independently distributed.   

tY

 

 

Discussion 

 

Time series data are stationary if the mean and variance of the series is constant 

through time.  However, in most situations, time series data are non-stationary.  

In order to build model prediction, we have to use an ARIMA model.  An ARIMA 

model builds a model prediction for a non-stationary time series.  An ARIMA 

model does differencing to the series of data, until the series of data becomes 

stationary; then a model for prediction is built.  In most cases, we first do 

differencing, but if the differenced series remains non-stationary, we repeat the 

differencing until the series becomes stationary.   

 

In statistics, we need to have a test to validate whether the selected model fits 

the data well or not.  For the models we build using ARIMA models, we will check 

several model diagnostic statistics.  As a model diagnostic, we will check 

Akaike’s information criterion (AIC), Schwarz’s Bayesian criterion, stationarity 
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tests such as Dickey Fuller and Philips-Perron.  Once these test statistics are 

checked, we will build a model forecast for the antibiotics data set.  We will also 

evaluate the model built by holding 20% of the dataset.  The hold-out sample is 

used for model evaluation and the remaining 80% of the dataset will be used for 

model development. 
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Chapter 5 

 

Heteroskedastic Models 

 

There is an interest in forecasting not only the levels of the time series , but 

also its variance.  The need to consider variance occurs when the series is more 

volatile at some times compared to others.  When the prescription of antibiotic 

varies very often, the variance of the series is volatile, so we will be forecasting 

not only the level of the series  but also the variance of the series.  As a result, 

we will use the generalized autoregressive conditional heteroskedasticity 

(GARCH) model to forecast the prescription of antibiotics.  The generalized 

autoregressive conditional heteroskedasticity (GARCH) model is an extension of 

the autoregressive conditional heteroskedasticity (ARCH) model.  We will first 

describe the model equation for ARCH; from that, we will set up the model 

equation for GARCH 

tY

tY

33. 

 

In chapter four, we defined and explained the model equation for an 

autoregressive process of order p that is denoted by AR(p).  The model equation 

for an AR(p) is given by  
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tptpttt YYYY εφφφ ++++= −−− ...2211 .    (5.1)  

 

where  tε  is white noise.  Given , we forecast .  An AR(p) is 

utilized to do this task by regressing the present value of  on its past values.   

pttt YYY −−− ,...,, 21 tY

tY

 

In this project, we will consider the effect of the inflation rate on the cost of the 

prescription antibiotics.  When there is a volatile inflation rate, it would be 

advisable to study changes in variance.  As a result, the changing variance also 

has significance on the estimation of the parameters of equation (5.1) that 

describe the dynamic of the level of the time series variable .   tY

 

In chapter four, we showed that the unconditional variance of the error term is 

constant; that means, 0)( =tE ε , while  for 
2)( σεετ =tE τ=t  and 

0)( =tE εετ  for τ≠t .  However, if we consider the conditional variance of the 

error term, tε  may not be constant due to the volatility of variance.  As a result, 

the error term could change from time to time.  One remedy to control the 

volatility of an error term tε  is to model the square of tε  as an autoregressive 

order p denoted by AR(p).  The modeling equation for the square of tε  is given 

by: 

 

tptpttt ωεαεαεαε ++++= −−−
22

22
2

11
2 Λ    (5.2) 
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where tω  is a white noise process for equation (5.2).  The expected value of the 

white noise in equation (5.2) is zero such that  for 
2)( βωωτ =tE τ=t  and 

0)( =tE ωωτ  for τ≠t .  We see that tε  is the error in forecasting  in 

equation (5.1).  A white noise process 

tY

tε  satisfying equation (5.2) is known as an 

autoregressive conditional Heteroskedastic process of order p, denoted by 

)(~ pARCHtε .  The conditional distribution of the square error term of a forecast 

of  on the previous p squared forecast errors is given by: tY

 

22
22

2
11

2
2

2
1

2 ,...),|(ˆ
ptptttttE −−−−− +++= εαεαεαεεε Λ   (5.3) 

 

For an ARCH model described in equation (5.2), we want to test whether the 

residuals tε  from a regression model exhibit time-varying heteroskedasticity 

without estimating the parameter estimates such as pααα ,...,, 21 .  The ARCH(p) 

process is regarded as an AR(p) process for the square of the error term in 

equation (5.1).  Bollerslev (1986) recommended the use of an ARIMA model for 

analyzing the autocorrelations of  2
tε

29 as an alternative to ARCH(p). 

 

We can also write an ARCH(p) process in a slightly different form than equation 

(5.2) as follows.  Suppose that 
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ttt vk .=ε     (5.4) 

where }{ tε  is an independent identically distributed (i.i.d.) sequence with zero 

mean and variance of one; mathematically, 0)( =tvE  and .  If  is 

defined by   

1)( 2 =tvE tk

 

22
22

2
11 ptptttk −−− +++= εαεαεα Λ   (5.5) 

 

and tε  is generated by equation (5.4) and equation (5.5) then )(~ pARCHtε  

process. 

 

Generalized Autoregressive Conditional Heteroskedasticity Models 

 

Engle (1982) introduced a model in which the variance at time t is modeled as a 

linear combination of past squared residuals, which is called an autoregressive, 

conditional, Heteroskedastic process (ARCH) 30.  On the other hand, if the 

variance model looks more like an ARMA than AR, we have a generalized 

autoregressive conditional Heteroskedastic model denoted by GARCH.  

Bollerslev (1986) introduced the GARCH models 29.   

 

Although the requirement of equal means can be dealt with using differencing, 

there is no way of dealing with the requirement of equal variances, called 
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Homoskedasticity.  On the other hand, if the variances are not equal, the series 

has heteroskedasticity.  The GARCH(p,q) process models the residual of a time 

series regression.  We now define a model for generalized ARCH as follows: let 

the time series  be defined as  tY

 

ttt XY εβ +=     (5.6) 

 

The residual is modeled as ttt vk=ε  where  

 

22
22

2
112211 qtqttptpttt kkkk −−−−−− +++++++= εθεθεθδδδ ΛΛ   (5.7) 

 

Equation (5.7) is the generalized autoregressive conditional heteroskedasticity 

model denoted by ),(~ qpGARCHtε . 

In the standard GARCH model,  has the unit Normal density, tv 2

2

2
1 tv

e
−

π
.  In 

addition, to preserve stationarity, the following constraints are placed on the 

coefficients: , 0>k 0≥δ , 0≥θ , and . 1<+∑∑
q

j
j

p

i
i δθ
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Discussion 

The ARCH/GARCH models are used when the variance of the data is changing 

from time to time; that is when there is volatility.  From the least squares model, 

we know that the expected value of the square of error terms is the same at any 

given point in time.  In this case, we have Homoskedasticity.  On the other hand, 

data on which the variances of the error terms are not equal to each other have 

heteroskedasticity when the error terms are higher at some time point and 

smaller at other time points.  When there is heteroskedasticity in the error term, 

the regression coefficients for ordinary least squares regression are unbiased, 

but the standard errors and confidence intervals estimated will be too narrow, 

giving incorrect precision.  The problem of heteroskedasticity is corrected using 

models ARCH and GARCH by modeling the variance 30.  

 

A GARCH model is a weighted average of past squared residuals; it has a 

declining weight on which recent observations are given larger weight than 

distant, past observations. The GARCH models are good in predicting conditional 

variances, so for the prescription of antibiotics where there is volatile variability in 

the prescription of antibiotics, we will apply the GARCH model as a forecasting 

tool.  We will also use the Lagrange multiplier to test to determine the order of the 

ARCH model appropriate for the data being analyzed.  If the tests are significant 

and for which we have smaller p-values through a given order, very high-order 

ARCH model will be needed to model heteroskedasticity.  
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Chapter 6 

Text Mining 

 
Text mining is the discovery of new, previously unknown information by 

extracting information from different written sources21.  Once the information is 

extracted, we link the information together to form new facts to be explored 

further.  We can ask what makes text mining different from web mining.   

 

Suppose we want to search for the word, antibiotics, in www.google.com.  The 

information that would be displayed includes known facts about antibiotics, even 

though we might not be sure about the meaning of the term.  Here, we are not 

finding new facts about antibiotics; the information was available from written 

sources.  In text mining, we are looking for new information that was not known 

before.  The new information that we found could be related to existing 

information.  Text mining finds interesting patterns from large databases.  For our 

database, we will use text mining to cluster the ICD-9 codes to a total of six 

clusters.  Once we classify the ICD-9 codes into six clusters, the antibiotics can 

be compared to each other based on the probability density curve of the cost 

variables; for example, the private insurance payments made.  
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Definition of Text Mining 

 

Text mining extracts the patterns from text language; on the other hand, data 

mining extracts patterns from structured databases.  If we want to extract some 

information from a database using a data mining approach, a computer program 

is written to extract the needed information.  In text mining, we don’t write 

computer programs, but rather, we link the information needed from the text 

available.  For instance, if we are looking for the word, diabetes, text mining 

analysis finds information that can be linked to diabetes, such as the term, 

insulin.   

 

The Webster’s online dictionary defines text mining as the process of extracting 

interesting and non-trivial information and knowledge from unstructured text22.  In 

text mining, we structure the input text by parsing, adding and removing some 

derived linguistic features to derive patterns within the structured data so that 

output can be evaluated and interpreted.  The ideal situation of using text mining 

is to classify and cluster the information so that a possible pattern will be 

discovered.   

 

Another important question to be addressed is how we discover useful 

information from a large number of text documents.  Nowadays, there has been a 

fast increase in the number of text sources on the internet, and the need to 
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extract important information from the text data has been growing.  The question 

arises as to how we extract the information available in the web to get the 

information that we need.  Text mining analyzes the unstructured web text data 

by finding information that is not immediately visible within the web documents 

using techniques from data mining, machine learning, and natural language 

processing 22.  

 

It should be noted that text mining is not an information extraction methodology 

or a text summarization method.  In order to classify a group of thousands of 

documents into identifiable categories without the need of reading every 

document, computer software is required.   

 

Text mining is the automated or partially automated processing of text by 

imposing structure upon text and extracting useful information from text24.  

Clustering algorithms, such as feature map algorithms based on the self- 

organization map (SOM) 25, are frequently used for the purposes of text mining.   

However, algorithms such as SOM group the text into clusters based on 

similarity.  Since we are using similarity, the textual data need to be converted to 

numbers, i.e. by converting the text into phrases or words and then encoding 

these phrases or words using techniques such as the Term Frequency-Inverse 

Document Frequency (TF-IDF) 26. 
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Text mining classifies the textual data into clusters so that meaningful information 

can be retrieved.  From each text, words or phrases are collected and a 

classification is made based on the frequency of occurrence.   

 

It should be noted that commonly existing words such as “a”, “is” and “of” are not 

used as part of the classification; as a result, they are put in the stop word list. A 

stop word list is a set of words not used in the classification26.  For this project, 

we used a set of words such as ‘have’, ‘is’, ‘before” as a stop word list.  As an 

application of text mining, let us consider physicians comments about patient 

conditions.  There is a clear difference from physician to physician on the amount 

of text (words) written; some physicians are very brief, but others are wordy.  As 

a result, there is a difference when analyzing, say some clinical condition, due to 

differences in the length of the wording. 

 

In the previous paragraphs, we have talked about the use of text mining in 

clustering unstructured text.  The antibiotics dataset we are investigating has a 

variable called ICD-9.  ICD-9 is a categorical variable that contains a set of five 

digits that are used to classify each disease condition.  The ICD-9 codes are 

used as textual content, so we have to devise a method to classify the ICD-9 

codes into meaningful clusters.  The antibiotics dataset has daily prescriptions for 

the years 1996-2004.  Analyzing each ICD-9 code would be cumbersome; as a 

result, we will employ text mining to analyze and cluster the ICD-9 codes to a 

reasonable number of clusters.  We will use a maximum of six clusters; once the 
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clusters are formed, we will use kernel density estimation to compare the 

probability distributions of each antibiotic. 

 

The next question we discuss is how to analyze text data using SAS software.  At 

this stage, we are considering for a given text datum how to classify it into an 

optimal cluster and analyze the text data results.   

 

Document Frequency Matrix 

 

Text mining creates frequency counts for each word or phrase classified in a 

cluster.  It can be considered as statistical summaries where word frequency is 

the statistical summary of interest.  When analyzing text data, each word or 

phrase is given a weight so that the document will be classified into groups.  SAS 

Enterprise Miner uses Entropy, Global Freq/IDF (GF-IDF), Inverse Doc Freq 

(IDF), Normal, None, Chi-Squared, Mutual Information and Information Gain as 

term weightings.  Raw counts don’t provide much help in discriminating between 

documents; therefore, weighing schemes are derived to separate documents into 

groups or clusters.   

 

In text mining, not all terms are important; some terms are more important 

compared to others.  As a consequence, term weighting are used to help 
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designate the importance of the terms.  Terms with the most discriminating 

power are those that occur most frequently, but in only a few documents. 

 

Transforming the Term by Document Frequency Matrix 

 

There are two main methods to work with a parsed matrix; they are singular 

value decomposition (SVD) and roll up terms.  Text parsing is the preliminary 

step to text mining.  Text parsing groups similar documents based on the terms 

used within the document, works with a frequency matrix table of terms by 

documents to cluster documents, and creates a term-document frequency matrix.   

 

The singular value decomposition for a matrix B is defined as  

 

       VUB Σ=                                                (6.1) 

 

where U is the matrix of the term vector; Σ  is a diagonal matrix with singular 

values along the diagonal; and V is the matrix of the document vector.  Both U 

and V have orthonormal columns.  The truncated decomposition of matrix B is 

when the SVD calculates only the first K columns of U, Σ  and V.  Each column o

document in matrix B can be projected onto the first K columns of U, and each 

row or term in matrix B can be projected onto the first K columns of V.  The 

r 
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column projection of matrix B is a method used to represent each document by K 

different concepts.  Therefore, for any collection of documents, the SVD forms a 

K-dimensional subspace that fits best to describe the data. 

 

On the other hand, the method of Roll up Terms uses the highest term weights in 

the document collection.  The term document frequency matrix is the number of 

roll up terms by the number of documents. 

 

Analyzing the Text Data 

 

Analysis of text data has three main purposes: exploratory analysis of the 

collection of documents (text data), clustering of data and finding relationships 

between terms.  Statistical methods such as the nearest neighborhood algorithm 

use distance proximity to cluster observations.  In text mining, we use 

hierarchical and expectation maximization to cluster the text data.   

 

Expectation Maximization (EM) clustering considers the data as a combination of 

probability functions that are normally distributed.  Suppose we want to cluster 

observations into two clusters, for two normally distributed populations with 

unknown parameters.  Since the parameters of the two normal distributions are 

unknown, we use an iterative algorithm to estimate the parameters from the data.  

Once the parameter estimates are obtained, an observation is assigned to 
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cluster one if the density function for cluster one is larger than for cluster two at 

that observation; otherwise it will be assigned to cluster two.   

 

We have seen that ICD-9 codes are a set of five digits which are used for a 

classification of a disease.  ICD-9 codes are better if they are treated as text 

rather than as category because the similarity between the codes can be related 

to similarities in patient conditions, taking full advantage of the stemming 

properties within the codes 27.  In this project, we will use text mining to minimize 

a large number of patient condition codes in to a set of clusters.  Existing 

methods, for example k-means clustering, cannot compress thousands of patient 

codes into a patient severity index.  The prescription of antibiotic dataset has 

multiple prescriptions for a single patient ID; as a result more than one ICD-9 

code is assigned to both patients and to antibiotics.   

 

We will use text mining and clustering to group similar patients together so that a 

meaningful analysis can be performed.  For example, we can study the 

difference in private insurance payments for antibiotic between the clusters, and 

a comparison can be made for analysis.  Once again, we will use text mining to 

process and analyze the ICD-9 codes.  For each patient for which antibiotic was 

prescribed, all the codes associated with multiple illnesses are combined into one 

text string.   
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For instance, when an antibiotic is prescribed for a patient, the physician who 

prescribes the antibiotic assigns the cause of the illness, which in turn defines a 

diagnosis code that is assigned to the patient.  On another visit, the same patient 

might have a different prescription of antibiotic with the same ID and a different 

diagnosis code.  What text mining does is to link all ICD-9 codes for the patient 

into one text string. 

 

In this project, we will use text mining to reduce a large number of patient 

condition codes, which are denoted by ICD-9 codes.  The ICD-9 codes are very 

large in number (in thousands).  It is unrealistic to analyze each ICD-9 code, but 

by classifying them into reasonable clusters, we can study the probability 

distributions of each antibiotic on a variable of interest (for example, private 

insurance payments).  For this project, we will classify the ICD-9 codes into six 

clusters to examine the relationship between different variables of interest; for 

example, total payment, private insurance payment, quantity of antibiotic, number 

of prescriptions, Medicare payment, and Medicaid payment.   

 

Since there is more than one transaction per given day for a patient, many ICD-9 

codes are assigned to the patient severity condition.  It is impractical to analyze 

each ICD-9 code; as a result, classifying the ICD-9 codes into a reasonable 

cluster simplifies the analysis.  We will use text mining to process and analyze 

the ICD-9 codes.  For each prescription, all ICD-9 codes relating to multiple 

severity conditions are combined into one text string. 
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Discussion 

For each prescription, there is a classification of disease, on which the ICD-9 

code is used to denote the condition of the disease.  As the number of 

prescriptions increases, the number of ICD-9 codes increases as well.  Hence, 

classifying and studying each ICD-9 code for each transaction becomes 

cumbersome.  We use clustering to define a small number of groups of 

documents so that documents within any one group are related and documents 

in different groups are not closely related.   

 

The clustering algorithm uses a distance measure to classify observations in the 

same cluster; in most cases, the raw data are numerical.  In contrast, text mining 

creates groups by looking at terms within each document.  Documents or text 

within a group are represented by a list of terms, and those terms will appear in 

most of the documents within the group; a cluster is defined 27.  Once the 

observations or terms are classified into groups or clusters, a name will be 

assigned as a label that best describes the contents of the cluster or group.  

Domain knowledge is important when labeling a cluster, and as a result, we 

consult a pharmacist to get more information.  
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Chapter 7 

ANTIBIOTICS RESULTS 

We begin with exponential smoothing model building to forecast the prescription 

of antibiotics for dataset.  As discussed in chapter 3, exponential smoothing 

models are characterized by giving heavier weights to recent events and lower 

weights to past events.  Before we build a model for the prescription of 

antibiotics, we set the fit period and evaluation period.  The fit period is the period 

on which the model fits the data; while the evaluation period is the period where 

we evaluate the model we built.  We used a hold out sample of 20% of the total 

data set.  By hold out sample, we mean we use 80% of the data to build a model 

and we use the remaining 20% to forecast for future values.  For a better fit, it is 

better if a hold out sample is chosen.   

 

As an example, we will build a model fit for the antibiotic, Amoxicillin.  The private 

insurance payments made for the prescription of Amoxicillin will be forecast.  

Here, we are building a time series model to study the prescription practice of 

Amoxicillin.  Plotting the forecasted private insurance payments vs. time gives 

the structure of the data, and gives a clue as to what kind of model might be 

appropriate for the dataset.  The plot of private insurance payments vs. time
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(Figure 7.4) shows how the series data grow or decay exponentially with a 

seasonal nature; as a result, we used exponential models.  As discussed in 

chapter 3, there are several exponential smoothing models, so the question 

becomes which exponential model to fit.  We used a simple exponential 

smoothing model, double (brown) exponential smoothing model, linear (holt) 

exponential smoothing model and damped trend linear exponential smoothing 

model.   

 

We fitted several models and we chose the model with smallest root mean 

square error (RMSE) as a model of prediction.  Statistically speaking, the model 

with the smallest error is considered the best.  We begin the analysis of the 

private insurance payment with Amoxicillin.  The prediction error plots for private 

insurance payments made for Amoxicillin are given in figure 7.1, while figure 7.2 

describes the autocorrelation plots (autocorrelation, partial autocorrelation and 

inverse autocorrelation).  Figure 7.3 describes a white noise plot and figure 7.4 

describes the forecast plot.  
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Figure 7.1 Prediction error Plots: Private Insurance Payment 

 

The residuals don’t appear to be white noise, with visual evidence of higher 

variability at the beginning of the time range.  Figure 7.1 is the residual error plot 

for private insurance payments for the antibiotic, Amoxicillin.  

 

The autocorrelation plot, figure 7.2, is within the bounds of 2 standard deviation 

errors, an indication that the residuals are white noise.  The partial 

autocorrelation plots also reveal that the correlations are within 2 standard errors; 

an indication that the residuals are white noise.  

 70



 

Figure 7.2 Prediction Error Autocorrelation Plots: Private Insurance Payments 

 

We did also check white noise, unit root test and seasonal unit root tests that are 

given in figure 7.3.  The white noise test indicates failure to reject a null 

hypothesis of white noise for alternative lags up to 24.  The unit root tests 

indicate a rejection of a null hypothesis of a unit root for all polynomials up to lag 

5, and the seasonal root tests indicate rejection of a null hypothesis of a seasonal 

unit root up to lag 5.  
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Figure 7.3 Prediction Error White Noise: Private Insurance Payments 

 

We chose the best model for the private insurance payment made for the 

antibiotic, Amoxicillin, based on the smallest root mean square error (RMSE).  

We fitted an exponential smoothing model, a simple exponential smoothing 

model, double (brown) exponential smoothing model, linear (holt) exponential 

smoothing model and damped trend exponential smoothing model.  From table 

7.1, we selected the best model of fit for the private insurance payments made 

for the antibiotic, Amoxicillin.   
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We can see that the seasonal exponential smoothing model is selected as a 

model of forecast, with the smallest RMSE.  The seasonal exponential smoothing 

model has also the smallest mean square error (MSE), mean absolute percent 

error (MAPE), mean absolute error (MAE) and largest Pearson correlation (R2) 

time series. 

 

Time series model MSE RMSE MAPE MAE R2

Seasonal exponential 

smoothing model 

6831 82.649 32.19 59.679 0.508 

Simple exponential 

smoothing model 

8344.5 91.348 34.519 72.565 0.284 

Double(brown) exponential 

smoothing model 

10797.5 103.911 35.754 76.145 0.073 

Linear Holt exponential 

smoothing model 

8338.7 91.316 34.388 72.597 0.284 

Damped trend exponential 

smoothing model 

8599.2 92.732 34.664 73.141 0.262 

Winters additive model 6898.6 83.058 32.513 68.925 0.408 

Winters multiplicative model 12111.1 110.051 32.484 74.254 -0.040 

 

Table 7.1 Exponential models and Statistics of Fit 
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Even though we used the RMSE for model selection in table 7.1, it is advisable to 

use MAPE for error interpretation since the RMSE value tends to be larger when 

compared to the MAPE.  The MAPE in table 7.1 indicates that many cases have 

a percent error less than 32%.  

 

The model estimate parameter of private insurance payment for the antibiotic, 

Amoxicillin is given in table 7.2.  

 

Model Parameter Estimates Std. Error T Prob>|T| 

LEVEL Smoothing weight 0.4230 0.0661 6.3971 <0.001 

Seasonal Smoothing Weight 0.0010 0.1107 0.0090 0.9928 

Residual Variance 7826    

Smoothed Level 339.3064    

Smoothed Seasonal Factor 1 205.1266    

Smoothed Seasonal Factor 2 99.9419    

Smoothed Seasonal Factor 3 106.0882    

Smoothed Seasonal Factor 4 -17.9435    

Smoothed Seasonal Factor 5 -67.4995    

Smoothed Seasonal Factor 6 -86.7825    

Smoothed Seasonal Factor 7 -77.4002    

Smoothed Seasonal Factor 8 -69.2203    

Smoothed Seasonal Factor 9 -33.8578    

Smoothed Seasonal Factor 10 -35.2863    

Smoothed Seasonal Factor 11 -49.4234    

Smoothed Seasonal Factor 12  26.1430    

 

Table 7.2 Parameter Estimates of Private Insurance Payment: Amoxicillin 
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The smoothed seasonal factor one is for January.  The exponential smoothing 

model detects a seasonal difference decrease of $105.18 (99.94191-

205.12659=105.18468) for February compared to January for private insurance 

payments made.  On the other hand, the smoothed seasonal factor eleven 

indicates November; the exponential smoothing model detects a seasonal 

difference increase of $75.56 (26.14302-(-49.42344)=75.566) for December 

compared to November private insurance payments made.   

 

We have shown so far that forecast values for private insurance payments of 

Amoxicillin were fit by the exponential smoothing model.  The seasonal 

exponential model has multiple steps ahead prediction, and table 7.2 gives up to 

a smoothed seasonal factor level 12; this is an indication that seasonal data 

forecast over a longer time period will be more accurate than forecasts over a 

short period of time.  Here, we are analyzing the private insurance payments 

made that were obtained by summing daily expenses paid for a period of every 

month. 
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Figure 7.4 Forecast for Private Insurance Payments: Amoxicillin 

 

The forecast plot for private insurance payments made for Amoxicillin shows 

seasonality with a period of approximately 12 months, which supports the model 

chosen.  Figure 7.4 reveals that predicted and actual private insurance payments 

are very close to each other, making the residual term very small. 

 

The predicted plot for private insurance payment for the antibiotic, Amoxicillin, 

also indicates that the values are higher around January and lower around June; 

this event repeats at approximately 12 months.  We observe that the predicted 

series is very close to the actual series, which is an indication that the model that 

we built fits the data well.  We have used the historical data to build what the 
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private insurance payment will be in the future.  One has to be cautious in 

forecasting for a longer period; in the future, the forecast might not be as 

accurate as we expect.  For this reason, we forecast what the private insurance 

payments might be for the next two years, i.e. for the years 2005-2006. 

 

We have also investigated on average how much patients are spending on 

prescriptions.  At this time, we predict the total payments made on antibiotics 

instead of private insurance payments made.   

 

 

Figure 7.5 Prediction Error Plots: Total Payments: Amoxicillin 
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The residuals do not appear to be white noise, with visual evidence of higher 

variability at the middle and at the end of the time range.  Figure 7.5 is the 

residual error for total insurance payment for the antibiotic, Amoxicillin.  

 

The autocorrelation plot, figure 7.6, is within the bounds of 2 standard deviation 

errors, an indication that the residuals are white noise.  The partial 

autocorrelation plots also reveal that the correlations are within 2 standard errors; 

an indication that the residuals are white noise.  

 

 

Figure 7.6 Prediction Error Autocorrelation Plots: Total Payments 
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We also checked white noise, unit root test and seasonal unit root tests, which 

are given in figure 7.7.  The white noise test indicates failure to reject a null 

hypothesis of white noise for alternative lags up to 24.  The unit root tests 

indicate a rejection of a null hypothesis of a unit root for all polynomials up to lag 

4, and the seasonal root tests indicate rejection of a null hypothesis of a seasonal 

unit root up to lag 5.  

 

 

Figure 7.7 Prediction Error White Noise: Total Payments: Amoxicillin 

 

We chose the best model for the total payment made for the antibiotic, 

Amoxicillin, based on the smallest root mean square error (RMSE).  It should be 
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noted that here we are investigating how much patients on average are paying 

for the antibiotic, Amoxicillin.  We fitted a seasonal exponential smoothing model, 

simple exponential smoothing model, double (brown) exponential smoothing 

model, linear (holt) exponential smoothing model and damped trend exponential 

smoothing model.  From table 7.3, we selected the best model of fit for the total 

payments made for the antibiotic, Amoxicillin.  We can see that the damped trend 

exponential smoothing model is selected as a model forecast, with the smallest 

RMSE.  The damped trend exponential smoothing model has also the smallest 

mean square error (MSE), mean absolute percent error (MAPE), mean absolute 

error (MAE) and largest Pearson correlation (R2) time series. 
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Time series model MSE RMSE MAPE MAE R2

simple exponential 

smoothing model 

0.4943 0.7031 27.4015 0.5496 -0.094 

Double(brown) exponential 

smoothing model 

0.5244 0.7242 28.2752 0.5817 -0.160 

Seasonal exponential 

model 

0.5145 0.7173 28.4545 0.5672 -0.138 

Linear Holt exponential 

smoothing model 

0.4968 0.7049 27.8328 0.5549 -0.099 

Damped trend exponential 

smoothing model 

0.4943 0.7030 27.4014 0.5495 -0.094 

Winters additive model 0.5207 0.72163 28.84722 0.5726 -0.152 

Winters multiplicative 

model 

0.5257 0.72506 29.10547 0.5694 -0.163 

 

Table 7.3 Exponential models and Statistics of fit 

 

Even though we used RMSE for model selection in table 7.3 as mentioned in the 

previous paragraph, it is advisable to use MAPE for error interpretation because 

the RMSE value tends to be larger when compared to the MAPE.  The MAPE in 

table 7.3 indicates that many cases have a percent error less than 27%.  The 

model estimate parameter of total payment for the antibiotic Amoxicillin is given 

in table 7.4.  
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Model Parameter Estimate Std. Error T Prob >|T| 

Level smoothing weight 0.24354 0.0722 3.3717 0.0019 

Trend smoothing weight 0.07557 0.1038 0.7280 0.4717 

Damping smoothing 

weight 

0.99106 0.1746 5.56775 <0.001 

Residual variance 0.81101    

Smoothed level 12.12410    

Smoothed trend 0.12634    

 

Table 7.4 Parameter Estimates of Total Payment on Average: Amoxicillin 

 

The t-test p-value in table 7.4 may be questionable due to the fact that the trend 

smoothing weight falls on the boundary of zero estimation bounds.   
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Figure 7.8 Forecast for Total Payments: Amoxicillin 

 

The forecast plot for total payments made for Amoxicillin shows a slightly 

increasing trend from January, 2001 up to June, 2002 with damping seasonality.  

Figure 7.8 reveals that predicted and actual total payments made are very close 

to each other, making the residual term very small. 

 

The predicted plot for total payment for the antibiotic, Amoxicillin, also indicates 

that the values are higher around January and lower around June; this event 

repeats at approximately 6 months.  We also observe that the predicted series is 

very close to the actual series, which is an indication that the model is a good fit.  

We used the historical data to build what the total payment will be in the future.   
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Erythromycin Results 

 

In this section of the analysis, we will talk about autoregressive models (AR), 

moving average models (MA), autoregressive moving average models (ARMA) 

and autoregressive integrated moving average models (ARIMA).  We will build 

models for the antibiotic, Erythromycin, prescription. We use this example in 

contrast to the use of Amoxicillin in the previous section because the optimal 

model is ARIMA in contrast to exponential smoothing. 

 

In chapter four, we have seen that an autoregressive process of order p is a 

linear function of p past values plus an error term.  We have shown in the 

previous section that if an autoregressive model doesn’t have a constant mean 

and variance through the sequence of time, there is a need for differencing.   

 

As a result, an autoregressive integrated moving average (ARIMA) model is 

introduced to solve the problem of non stationarity.  What an ARIMA model does 

is to take the difference of the series of data to make the series stationary. 
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As a start for the analysis of the antibiotic, Erythromycin, we plotted the total 

payment against the start date of antibiotics; this plot is given in figure 7.9.  We 

will fit an autoregressive model of order p, i.e., AR(p).  Based on the smallest 

MAPE, we will select p.  As a result, the AR(p) model that fits the data well will be 

selected.  We will analyze the fit of the data by checking autocorrelation plots, 

white noise and stationarity test, and the forecasted plot.  
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Figure 7.9 Plot of Total Payments vs. start date: Erythromycin 
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Figure 7.9 differs from that of figure 7.4 for Amoxicillin in the previous section in 

that there is variability in the payments made from January, 1997 through 

January, 1998, but for the case of Amoxicillin there is seasonal variability with 

exponential increasing in the payments made. 

 

We first investigated whether the series of data is generated from a white noise; 

to do this, we plotted the total payments made versus the start date of antibiotic, 

given in figure 7.9.  Visual inspection shows the series is not generated from 

white noise, but visual inspection is not enough to conclude whether the series is 

generated from a white noise or not.  As a result, we will check the residual plot, 

autocorrelation plot, white noise stationarity test and see how the model built fits 

the data.   
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Figure 7.10 Prediction Error Plots: Total Payments: Erythromycin 

 

The residual plot given in figure 7.10 does not appear to be white noise, even 

though there is some variability at the beginning of the series.  Figure 7.10 is the 

residual error for total payments made for the antibiotic, Erythromycin.  Figure 

7.10 differs from that of figure 7.5 in the previous section in that the residual is 

smaller and less variable in the distribution of the error terms.   

 

The autocorrelation plot, figure 7.11, is within the bounds of 2 standard deviation 

errors, an indication that the residuals are white noise, even though at lag twelve, 

the inverse autocorrelation is non-significant; that is, outside the bound of 2 
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standard deviation errors.  The partial autocorrelation plots also reveal that the 

correlations are within 2 standard errors; an indication that the residuals are 

white noise.  

 

 

Figure 7.11 Prediction error Autocorrelation Plots: Total Payments 

 

Figure 7.11 differs from that of figure 7.6 for Amoxicillin in the previous section 

since all lags are not significant while the inverse autocorrelation function value 

at lag 12 is marginally significant. 

 

We also checked white noise, unit root test and seasonal unit root tests, which 

are given in figure 7.12.  The white noise test indicates failure to reject a null 
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hypothesis of white noise for alternative lags up to 24.  The unit root tests 

indicate a rejection of a null hypothesis of a unit root for all polynomials up to lag 

5, and the seasonal root tests indicate rejection of a null hypothesis of a seasonal 

unit root up to lag 5.  

 

 

Figure 7.12 Prediction error White Noise: Total Payments: Erythromycin 

 

Figure 7.12 differs from that of figure 7.7 for Amoxicillin in that the unit root tests 

indicate a rejection of a null hypothesis of a unit root for all polynomials up to lag 

5 while in figure 7.7, the unit root tests indicates a rejection of a null hypothesis of 

a unit root for all polynomials up to lag 4. 
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We chose the best model for the total payment made for the antibiotic, 

Erythromycin, based on the smallest root mean square error (RMSE).  It should 

be noted that here we are investigating how much patients are paying in total for 

the antibiotic, Erythromycin.  The autoregressive order two, AR(2) was a perfect 

fit for the data and the parameter estimates of the model are given in table 7.5.  

We can see that the AR(2) model is selected as a model of forecast, with the 

smallest RMSE.  The MAPE in table 7.5 indicates that many cases have a 

percent error less than 27%. 

 

Time series 

model 

MSE RMSE MAPE MAE R2 AIC SBIC 

AR(1) 6487.7 80.546 28.985 59.98 -0.738 317.996 319.579 

AR(2) 6075 77.942 27.45 57.758 -0.627 317.629 320.797 

AR(3) 6694.1 81.817 32.856 63.131 -0.793 325.123 331.457 

AR(4) 7152.7 84.574 33.784 65.089 -0.916 327.509 333.843 

AR(5) 6505.7 80.658 34.765 61.600 -0.743 326.096 334.013 

 
Table 7.5 Autoregressive models and Statistics of fit 

 

We have mentioned in the analysis of the antibiotic, Amoxicillin, that the RMSE 

was very large when compared to the MAPE; but for the antibiotic, Erythromycin, 

the RMSE value is not that big as we can see from table 7.5.  For error 
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interpretation, the MAPE is better, and from table 7.5, the MAPE indicates that 

many cases have a percent error less than 27%.  The model estimate parameter 

of total payment for the antibiotic, Erythromycin is given in table 7.6.  

 

Model Parameter Estimate Std. Error T Prob >|T| 

Autoregressive, Lag 1 0.8536 0.118 7.213 <.0001 

Autoregressive, Lag 2 0.0629 0.118 0.531 0.598 

Model Variance  15839    

 
Table 7.6 Parameter Estimates of Total Payment: Erythromycin 

 
Even though the parameter estimate for autoregressive lag 2 in table 7.6 is non-

significant, an autoregressive model of order 2, AR(2) was perfectly fit to the 

data.   
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Figure 7.13 Forecast for Total Payments: Erythromycin 

 

The forecast plot for total payments made for Erythromycin shows a slightly 

decreasing trend starting January, 1998 and peaks starting January, 2005.  In 

contrast, the forecast for Amoxicillin shown in figure 7.8 is exponentially 

increasing through the range of time.  Figure 7.13 reveals that predicted and 

actual total payments made are very close to each other; except for values 

between June, 1997 and January, 1998; there is a small difference between the 

actual and forecasted values.  
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The predicted plot for total payment for the antibiotic, Erythromycin, also 

indicates that the values are higher around January and lower around June; this 

event repeats at approximately 6 months, and is similar to that for Amoxicillin.  

We also observe that the predicted series is very close to the actual series, which 

is an indication that the model is a good fit.  So far from our analysis examples, 

the cost analysis of antibiotics has a seasonal nature.  By seasonal nature, we 

mean that an event happens repeatedly; for example, if the event happens every 

six months, we say it has six-month seasonality.  

 

High Performance Forecasting 

 

In this section of the chapter, we will use the High Performance Forecasting 

procedure to forecast prescriptions of antibiotics.  The High Performance 

Forecasting analyzes time series (observations that are equally spaced at a 

specific time interval, for our case, month), or transactional data (observations 

that are not equally spaced with respect to a particular time interval as in our 

original antibiotic dataset).  We will also plot the forecast series for several 

antibiotics in the same plot; in that case, comparisons can be made very easily.  

The historical series and forecasted series for several antibiotics can be drawn in 

the same plot, so that comparisons can be made and further studies can be 

performed on the nature of the trend of the forecast.  In this section, we will 

identify and forecast series components such as the actual, predicted, lower 

confidence interval, upper confidence limit, prediction error, trend, seasonality 

 93



and error (irregular).  Trend usually refers to a deterministic function of time, 

which means the deterministic component exhibits no random variation and can 

be forecast perfectly, while a stochastic component is subject to random variation 

and can never be predicted perfectly except for chance occurrence.   

 

Seasonality refers to the repetitive behavior at known seasonal periods, for 

instance, six months for antibiotics prescription.  The High Performance 

Forecasting splits the current value of observation into trend, seasonal and error 

Components.  In contrast to the previous section on time series forecasting, high 

performance forecasting can be used to forecast several variables by group, 

determines the best model from a list of models using the technique HPF 

DIAGNOSE and HPF ENGINE and can be used to forecast for a database with a 

large number of observations. 

 

In this analysis section of the dissertation, we will use the antibiotic, Cipro, as an 

example to show and forecast the variables of interest (such as total payment, 

private insurance payment, quantity, amount of prescription, Medicare and 

Medicaid).  As mentioned in chapter two, the data analysis section, we have 

created an antibiotics dataset by concatenating each antibiotic.  Cipro is a 

commonly prescribed antibiotic, and the dataset we have shows a tremendous 

number of observations.  Figure 7.14 gives the plot of total payment, private 

insurance payment, Medicare payment and Medicare against the start date of 

antibiotic.  From this plot, we can visually inspect how much difference really 

 94



occurs between total payment, private insurance payment, Medicare payment 

and Medicare payments and give ideas as to what to expect when we make the 

forecast for these variables.  We have used SAS CODE 7 to create the Cipro 

dataset and plot the figure 7.14.  

Data cipro; set diser.disertation; 
where RXNAME IN ('CIPRO'); 
RUN; 
 
PROC SORT DATA=cipro; 
by RXNAME STARTMEDDATE; 
run; 
 
Proc hpf data=cipro out=cipro lead=0; 
id startmeddate interval=month accumulate=total; 
forecast RXMDX RXMRX RXPVX RXXPX /model=none; 
run; 

 
title1 'Cipro Variables'; 
axis2 label=(a=-90 r=90 "PAYMENT"); 
SYMBOL1 INTERPOL=JOIN HEIGHT=10pt VALUE=NONE CV=BLUE 
LINE=1 WIDTH=2; 
SYMBOL2 INTERPOL=JOIN HEIGHT=10pt VALUE=NONE CV=GREEN 
LINE=1 WIDTH=2; 
SYMBOL3 INTERPOL=JOIN HEIGHT=10pt VALUE=NONE CV=RED 
LINE=1 WIDTH=2; 
SYMBOL4 INTERPOL=JOIN HEIGHT=10pt VALUE=NONE CV=CYAN 
LINE=1 WIDTH=2; 
Legend1 FRAME; 
Axis1 STYLE=1 WIDTH=1 MINOR=NONE; 
 
PROC GPLOT DATA=CIPRO; 
PLOT RXMDX*STARTMEDDATE RXMRX*STARTMEDDATE 
RXPVX*STARTMEDDATE 
         RXXPX*STARTMEDDATE /OVERLAY HAXIS=AXIS1 
VAXIS=AXIS2 
         HAXIS='01JAN1996'D TO '01JAN2005'D BY YEAR 

   FRAME LEGEND=LEGEND1; 
RUN; 
     SAS CODE 7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 7.7 SAS codes for model forecasting and plotting: Cipro 
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Figure 7.14 Cipro variables plot vs. Start Date of Antibiotics 

 

We have used SAS CODE 7 to accumulate the daily observations into an 

accumulated sum of monthly values, and then plotted each variable of interest 

(Medicaid, Medicare, Private Insurance and Total Payment) against the start 

antibiotic date.  Figure 7.14 gives a starting point to see the relationships 

between these variables, and we can easily see that the Total Payment made 

surpasses Medicaid, Medicare and Private Insurance payments.  On the other 

hand, the Medicare payment made for Cipro is smaller when compared to the 

Medicaid for almost every time point.  As we can see from figure 7.14, the plot for 

insurance payment fluctuates randomly; this might indicate that the data for Cipro 
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is non stationary.  As a result, an ARIMA model is one of the choices as a model 

prediction. 

 

Also from figure 7.14, we can see that between April, 2002 and July, 2002, there 

is a sudden increase in the insurance payment made for Cipro.  We can think of 

this as level shift or an event that happened at that moment of time that makes 

the increase, or that particular observation could just be an outlier.  The model 

that we will build automatically detects whether a particular observation is an 

outlier or not.  The dataset, Cipro, has 1674 daily observations obtained from the 

means procedure given in table 7.8.  Cipro is a commonly prescribed antibiotic, 

and we have a reasonable number of observations for model building and 

forecasting; as a result, we will use it as an example to build a model for 

prediction.  The Proc Means SAS procedure given in SAS CODE 8 was used to 

analyze the distribution of the observations.  Once we have an idea how the 

observations are linked, we can select a model based on the number of 

observations, maximum, minimum and standard deviation of the antibiotics 

dataset.  
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The MEANS Procedure 
 
            Analysis Variable: RXPVX = PRIVATE INSURANCE 
 
ANTIBIOTICS NAME N Obs Sum Minimum Maximum STDV 

AMOXICILLIN 20457 44292.52 0.00 111.88  4.61 

AMPICILLIN   1038   1693.86 0.00   54.60  3.52 

AZITHROMYCIN    377   1985.20 0.00 262.27 18.45 

CEFACLOR    597 14392.84 0.00 187.05 30.07 

CEFADROXIL   239   5741.64 0.00 181.00 28.61 

CEFUROXIME    28   2039.83 0.00 156.80 41.52 

CEPHALEXIN 4788 41841.26 0.00 124.10 13.69 

CIPRO 1674 53009.37 0.00 323.45 44.45 

CLARITHROMYCIN   156   4785.03 0.00   87.38 35.39 

CLINDAMYCIN   403   4597.68 0.00 123.40 16.53 

CLOTRIMAZOLE   647   2210.43 0.00 142.11 14.63 

DICLOXACILLIN   487   1277.08 0.00   49.24   8.06 

DOXYCYCLINE 1054   8482.74 0.00 121.12 14.96 

ERYTHROMYCIN 2226   5077.73 0.00   62.16   5.60 

KEFLEX 1490  27802.95 0.00 115.78 29.37 

SULFAMETHOXAZOLE   113     561.46 0.00   19.00   8.10 

TEQUIN   408  11831.47 0.00 174.75 33.81 

TETRACYCLINE   477   1395.82 0.00   97.48 10.21 

TOBRAMYCIN   839           4003.18       0.00   44.69   5.16 

VANCOMYCIN     73     703.34        0.00 262.60 34.17 

 

Table 7.8. The means procedure for Private Insurance 
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Proc means data=Diser.Disertation sum nway min  

max std maxdec=2; 

 class RXNAME; 

 VAR RXPVX; 

RUN;    SAS CODE 8 

 

 

 

 

Table 7.9 SAS code for the Means procedure 

From the means procedure given in table 7.8, we selected the antibiotic, Cipro, to 

investigate the private insurance payments made.  As the main purpose of this 

dissertation is to build model forecasts for antibiotics, building model forecasts for 

Cipro’s private insurance payment would be an ideal situation.  

 

We will first build several models using the Proc hpfdiagnose statement shown in 

SAS CODE 9, and put the models into the model repository (warehouse).  We 

then utilize the models built in hpfdiagnose to the dataset using hpfengine.  

These methods select the best model using the criterion specified; for our case, 

we selected RMSE as an error of model selection.  The model repository is a 

collection of a set of models to use to forecast the antibiotic, Cipro.  The 

HPFDIAGNOSE procedure builds a model based on MODELREPOSITORY, and 

models specified such as ARIMAX (autoregressive moving integrated moving 

average model), ESM (exponential smoothing model) and UCM (unobserved 

components model).  The HPFENGINE procedure selects the models based on 

the smallest RMSE, and plots several graphs such as forecast, residual, 

autocorrelation plot etc.   
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We have built a model to forecast the private insurance payment made for the 

antibiotic, CIPRO.  The parameter estimates given in table 7.9 indicate that there 

is an outlier on September, 2002; we have visually estimated the range of points 

where an outlier might happen as discussed previously.  The plot of private 

insurance payments vs. start antibiotic date given in figure 7 14 gives a starting 

point to show how the data behave through time.  We can see that there is 

fluctuation of the data points across different time points, which we suspect 

indicates non-stationarity.  For this reason, an ARIMA model would be a typical 

model of choice.  We built a predictive model using the SAS CODE 9 for private 

insurance payments made for the antibiotic, Cipro.  

 

Parameter Estimates 

Component Parameter Estimate Standard Error t Value Approx
Pr > |t| 

RXPVX AR1_1 -0.52158 0.09584 -5.44 <.0001 

RXPVX AR1_2 -0.26791 0.09718 -2.76 0.0069 

AO01SEP2002D SCALE 1700.4 351.03913 4.84 <.0001 

Table 7.10 Parameter Estimates of Private Insurance Payment: Cipro 

The component in the parameter estimate given in table 7.10 suggests that the 

event in September, 2002 resulted in an increase of $1700.40 in the payment of 

private insurance for the antibiotic, Cipro.  We also have significant AR(1) and 

AR(2) parameters that indicate the model is well built.  The parameter, AR1_1, of 

the component, RXPVX (Private Insurance payment), represents an 

autoregressive process of order 1 with a difference of one, while AR1_2 is an 
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autoregressive process of order 2 of difference one.  The parameter, 

AO01SEP2002D, represents an additive outlier at September, 2002 and the 

scale indicates that the increase occurred due to the additive outlier.  

PROC HPFDIAGNOSE DATA=CIPRO  

 OUTEST=CIPROSTATE CRITERION=RMSE 

 BASENAME= AMXESM PRINT=SHORT 

 MODELREPOSITORY=SASUSER.ANTIBIOTICSMODELS; 

ID STARTMEDDATE INTERVAL=MONTH; 

FORECAST RXPVX ; 

ARIMAX PERROR=(12:24) P=(0:12) Q=(0:12) CRITERION=SBC  

METHOD=MINIC; 

ESM; UCM; 

RUN ;ODS RTF; 
ODS GRAPHICS ON; 
PROC HPFENGINE DATA=CIPRO 

MODELREPOSITORY=SASUSER.ANTIBIOTICSMODELS     

INEST=CIPROSTATE 

   GLOBALSELECTION=TSSELECT 

   PRINT=(SELECT ESTIMATES) LEAD=24 

   OUTFOR=CIPROTOTAL 

   OUTEST=CIPROTEST 
   OUTSTAT=CIPROSTAT PLOT=ALL; 
  FORECAST RXPVX; 
            ID STARTMEDDATE INTERVAL=MONTH; 
RUN; 
ODS RTF CLOSE; 
ODS GRAPHICS OFF;   SAS CODE 9 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 7.11 SAS code for building Private Insurance model for Cipro 
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The HPFDIAGNOSE procedure builds models from the selected list (ARIMAX, 

ESM and UCM); the MODELREPOSITORY is a warehouse for the model built 

and the model estimates are put in the OUTEST=dataset.  The HPFENGINE 

procedure builds the best model from the MODELREPOSITORY, which also 

uses some models from GLOBALSELECTION= where the new models built are 

stored in MODELREPOSITORY=SASUSER.ANTIBIOTICS.  The statements, 

OUTFOR= OUTEST= and OUTSTAT=, put the values of the forecast, estimates 

and statistics respectively in a dataset.   

 

The PERROR= specifies the range of the AR order for obtaining the series, 

P=specifies the AR order, Q= specifies the range of the MA order, 

CRITERION=SBC specifies that Swartz Bayesian Criterion is selected and the 

METHOD=MINIC specifies Minimum Information Criterion is selected.  We have 

selected the best model for Cipro private insurance payment from the listed 

models in SAS CODE 9.  The SAS CODE 9 selects the best model of forecast 

based on the smallest RMSE, and from table 7.12, we see that an ARIMA model 

with autoregressive order two and difference of one is chosen as the predictive 

model.  The model AMXESM50, AMXESM 51 and AMXESM 52 are the models 

that were selected from the list of models in the model repository.   

 

 

 

 102



 
Model Selection Criterion = RMSE 

Model Statistic Selected Label 

AMXESM50 398.24401 Yes ARIMA: RXPVX ~ P = (1,2) D = (1) NOINT 

AMXESM51 428.92004 No Simple Exponential Smoothing 

AMXESM52 511.79995 No UCM: RXPVX = LEVEL + ERROR 

 

Table 7.12 Model selection Private Insurance Payment: Cipro 

We have also investigated the prediction error for the normal curve and kernel 

density estimation for private insurance payments.  Figure 7.14 reveals that the 

normal curve fitting is closer to the kernel density estimation (for unknown 

distribution).  The occurrence of the outlier on September, 2002 caused the gap 

between the two fits.  

 

 

 

 

 

 

 

 

Figure 7.15 Prediction error for Insurance Payment 
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We have also investigated the prediction error for autocorrelation plot, partial 

autocorrelation plot and inverse autocorrelation plot.  Each observation in a time 

series is correlated with previous prescriptions made, so it is important to analyze 

the autocorrelation function plots.   

 

 

 

 

 

 

 

 

Figure 7.16. ACF plot of Private Insurance payment of Cipro 
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Figure 7.17 PACF plot of Private Insurance payment of Cipro 

 

The error prediction for the autocorrelation function (figure 7.16) and partial 

autocorrelation function (figure 7.17) for the ARIMA model built shows that the 

correlations are within the bound of two standard errors; this reveals that the 

models are fitting the data well.  As a consequence, we might adopt the ARIMA 

model as a model forecasting for the private insurance payment of the antibiotic, 

Cipro.  The autocorrelation function plot and partial autocorrelation plot are also 

associated with the forecast model plot.  The more the lags are outside the 

bounds of confidence, the more the model and forecast diverge.  We also 

investigated the predictive model for private insurance payments for Cipro.   
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Figure 7.18 Model and Forecast for Private Insurance Payment of Cipro 

 

The points in figure 7.18 represent the monthly private insurance payments for 

the antibiotic, Cipro and the thick blue line is the predictive model that we built.  

Most of the observations, with very few exceptions, lie within the 95% confidence 

band.  There is a fairly constant increase in Private Insurance payments until the 

middle of January, 2001; then there is a sudden increase in September, 2002.  

As mentioned earlier, in time series forecasting, we use the historical data to 

predict or forecast what tomorrow’s value will be based on today’s value.   

 

The fact of the matter is that we chose to forecast for two years (year 2005 and 

year 2006) to get a better fit of the data; otherwise, we could forecast for the next 
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50 years and so forth.  But forecasting for a very long period of range gives a 

poorer fit; the reason is that there might be some other covariates that will occur 

in the near future that influence the forecast method used at the present time.   

 

 

 

 

 

 

 

 

 

 

 

Figure 7.19 Stationarity Component Private Insurance for Cipro 

 

Figure 7.19 is the stationary component of the model that we built, and we can 

see that after differencing the data, which was done by the ARIMA procedure 

given in SAS CODE 9, the series is stationary. 
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Figure 7.20 Y Component of Private Insurance for Cipro 

 

Figure 7.20 is obtained by plotting each data point of the series forecast and 

connecting them by a line.  This plot also reveals that in September, 2002, there 

is a sudden increase, which we define as an outlier.  Figure 7.21 plots the outlier 

or event obtained through the model that we built.  Outliers or events can be 

taken as single data points that we call point interventions in a time series.  We 

will consider the data point of September, 2002 as a single data point; in other 

words, we will construct a dummy variable, and see if this can improve the 

forecast plot.   
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Figure 7.21 Outlier: Private Insurance for Cipro 

 

The payments made for all the antibiotics in our dataset were calculated without 

taking inflation rate as a factor.  But from an economic standpoint, inflation rate is 

important to consider when determining the price of items at a given period of 

time.  As the inflation rate increases, the price of commodities increases as well 

and vice versa.  Therefore, we introduced inflation rate as a dynamic regressor 

and compared the model error with the one without a dynamic regressor.  The 

difference between regressor variable and dynamic regressor is that the latter 

uses past values of the predictor series, so that it will help us to model effects 

that take place gradually.  We added inflation rate to the dataset of Amoxicillin 
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and investigated whether considering inflation rate as a dynamic regressor 

improves the model forecast.  

 

 

Figure 7.22: Forecasting Plot of Cipro using Inflation as Dynamic Regressor 

 

The new model, which includes a dynamic regressor (figure 7.22), fits the data 

much better than ARIMA (2, 1, 0) without a dynamic regressor (figure 7.18).  The 

predicted private insurance payment for the years 2005-2006 was constantly 

decreasing when a dynamic regressor was introduced.  One possible reason is 

that the inflation rate affects the payments made for private insurance, and also 

the inflation rate was increasing through the time period.  The root mean square 
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error was dropped from 559 to 430, which is an indication that introducing the 

dynamic regressor improved the model forecast.  The plot of inflation rates from 

1996-2004 is given in figure 7.23. 
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Figure 7.23: Inflation Rates as a Dynamic Regressor 
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Heteroskedasticity and GARCH Models 

 

In chapter five, we talked about approaches to dealing with heteroskedasticity. 

The ordinary regression model is used when the errors have the same variance 

throughout the time points; in such a scenario, the data are called 

Homoscedastic.  On the other hand, if the errors have non constant variances, 

then the data are called Heteroskedastic.  Erroneously using ordinary least-

squares regression for Heteroscedastic data causes the ordinary least squares 

estimate to be inefficient.  As a consequence, we look for models that account for 

the changing variances that make efficient use of the data.  On the other hand, 

heteroskedasticity can make the ordinary least squares estimates forecast error 

variance inaccurately, as the predicted forecast variance is based on the average 

variance instead of the variability at the end of the series 33.  

 

The weighted regression method is a good method if the error variance at 

different time points is known, but if the error variance at different time points is 

not known, we must estimate it from the data by modeling the changing error 

variance.  The generalized autoregressive conditional heteroskedasticity 

(GARCH) will be used to model for the heteroskedasticity errors.  The analysis of 

the antibiotic, Erythromycin given in the previous section of this chapter reveals 

that there is higher variability in the beginning of the series that is given in figure 

7.9.  A GARCH model is a weighted average of past squared residuals that has a 
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declining weight on which recent observations are given larger weight than 

distant, past observations.  Even if the series of time points given in figure 7.9 

looks Heteroskedastic, we need to test it statistically.   

 

Ods html; 

Proc autoreg data=hpfertro;  

 model RXXPX = STARTMEDDATE / nlag=12 archtest dwprob 

noint; 

      output out=out out=RXXPXresid;  

run;      

ods html close;   

SAS CODE 11 

 

 

 

 

 

 

Table 7.13 SAS code test heteroskedasticity 

 

We used SAS CODE 11 to test for heteroskedasticity, by regressing Private 

Insurance payments on start mediation date and we used the ARCHTEST option 

to test for Heteroscedastic ordinary least squares residuals.  We used the 

DWPROB option to test for autocorrelation.  
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Ordinary Least Squares Estimates 

SSE 4030688.02 DFE 107 

MSE 37670 Root MSE 194.08756

SBC 1448.12303 AIC 1445.4409

Regress R-Square 0.4108 Total R-Square 0.4108 

Durbin-Watson 0.3475     

Table 7.14 Ordinary Least Squares Estimates 

Q and LM Tests for ARCH Disturbances 

Order Q Pr > Q LM Pr > LM 

1 50.0071 <.0001 48.7292 <.0001 

2 77.6249 <.0001 49.1592 <.0001 

3 80.8958 <.0001 56.3419 <.0001 

4 81.1530 <.0001 56.4903 <.0001 

5 81.3417 <.0001 59.5441 <.0001 

6 82.0714 <.0001 59.5462 <.0001 

7 84.4500 <.0001 59.5559 <.0001 

8 88.7266 <.0001 60.2213 <.0001 

9 95.2285 <.0001 60.9780 <.0001 

10 96.1345 <.0001 66.4472 <.0001 

11 96.4317 <.0001 66.6586 <.0001 

12 97.0906 <.0001 67.2222 <.0001 

Table 7.15 Q and LM Tests for ARCH Disturbances 
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The Q statistic tests for changes in variance across time using lag windows 

ranging from 1 through 12.  The p-values for the test statistics are significant and 

strongly indicate heteroskedasticity, with p < 0.0001 for all lag windows.  The 

Lagrange multiplier (LM) tests also indicate heteroskedasticity.  Both Q statistics 

and the Lagrange multiplier help to determine the order of the ARCH model 

needed for modeling the heteroskedasticity, on which the changing variance is 

assumed to follow an autoregressive conditional heteroskedasticity model. 

 

Variable DF Estimate Standard Error t Value Approx
Pr > |t| 

STARTMEDDATE 1 0.0109 0.001261 8.64 <.0001 

Table 7.16 Parameter Estimate 

 

Ordinary Least Squares Estimates 

 

The parameter estimates given in table 7.15 are also significant, an indication 

that the data have a Heteroskedastic property.  Once we checked for 

heteroskedasticity of the data, then we used a generalized autoregressive 

conditional heteroskedasticity model (GARCH) that takes care of the 
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heteroskedasticity of the data.  SAS CODE 12 was used to build a GARCH 

model and test the parameter estimates.  

 

ods html; 

Proc autoreg data=hpfertro;  

model RXXPX = STARTMEDDATE / nlag=12 garch=(q=1,p=1) maxit=500 

noint;  

 output out=out cev=vhat;  

Run; 

ods html close;     

SAS CODE 12 

 

 

 

 

 

Table 7.17 SAS code to build GARCH model for Private Insurance of Cipro 

SAS CODE 12 was used to build GARCH (1, 1), by going back 12 lags into the 

past.  This code will test how many autoregressive orders are needed for the 

Heteroskedastic variable, Private insurance payments, made for the antibiotic, 

Erythromycin.  We fitted an AR(12) and GARCH(1,1) model for the Private 

Insurance Payment series regressed on start antibiotic date.  The AR(12) 

specifies an autoregressive error of order 12, while GARCH(1,1) specifies a 

conditional variance model.  SAS CODE 12 will compute the estimated 

conditional error variance at each time period in the variable VHAT (estimated 

conditional error variance series) and output the dataset named OUT. 
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GARCH Estimates 

SSE 1263311.36 Observations 108 

MSE 11697 Uncond Var 14945.1458

Log Likelihood -655.97225 Total R-Square 0.8153 

SBC 1382.17648 AIC 1341.94451

Normality Test 1918.0137 Pr > ChiSq <.0001 

Table 7.18 GARCH Estimates 

 

The normality test is significant (p < 0.0001), which is consistent with the 

hypothesis that the residuals from the GARCH model, 
t

t

k
ε , are normally 

distributed.  The parameter estimate is significant.  The parameter estimates 

given in table 7.19 include rows for the GARCH parameters. ARCH0 represents 

the estimate for the parameterω , ARCH1 represents 1α , and GARCH1 

represents 1δ .  The parameter estimates for the autoregressive errors are 

significant up to lag 1; as a result, we adopt AR(1).  Also, the GARCH1 

parameter estimate is significant.  The model for Erythromycin Private Insurance 

is therefore built with AR(1) + GARCH(1,1) on which the heteroskedasticity 

nature of the data is controlled.  As we have discussed in the beginning of this 

chapter, an AR(2) was the best model predicted with a negative correlation of 

R2=-0.627.   
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The autoregressive order of lag one is the only one significant, so we don’t need 

lags of up to 12.  The estimate of the mean term in the Hetereskedastic process 

is 0.0850, which is not significant, but the estimate of coefficient of the square of 

error terms 0.2103 is significant. The estimate of error variance at lag 1 is 

0.7376, which is significant at a 5% level of significance.  
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Variable DF Estimate Standard Error t Value Approx
Pr > |t| 

STARTMEDDATE 1 0.0185 0.005313 3.48 0.0005 

AR1 1 -0.5830 0.2065 -2.82 0.0047 

AR2 1 -0.3273 0.2008 -1.63 0.1030 

AR3 1 0.0545 0.2386 0.23 0.8195 

AR4 1 0.1816 0.2391 0.76 0.4474 

AR5 1 -0.0956 0.2075 -0.46 0.6448 

AR6 1 -0.0242 0.2607 -0.09 0.9260 

AR7 1 -0.1437 0.2584 -0.56 0.5782 

AR8 1 0.0351 0.3917 0.09 0.9286 

AR9 1 0.0115 0.3367 0.03 0.9726 

AR10 1 0.0312 0.2624 0.12 0.9055 

AR11 1 -0.0825 0.2040 -0.40 0.6858 

AR12 1 -0.004789 0.1342 -0.04 0.9715 

ARCH0 1 0.0850 0.0757 1.12 0.2614 

ARCH1 1 0.2103 0.0847 2.48 0.0130 

GARCH1 1 0.7376 0.0960 7.68 <.0001 

 

Table 7.19 GARCH parameter estimates 

We also investigated the average Medicare and Medicaid payments made for 

prescriptions of antibiotics.  The term Medicaid is referred to as the amount of 

support in terms of healthcare given to low income people.  A family is on the 

category of low income if the percentage of income of the household is less than 
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15,000 35.  Medicaid only consists of a very small portion of the total payment 

made; that means the majority cost is paid by the patient.  The government pays 

only a small portion of the total payment.  We have built a model of prediction for 

both Medicare and Medicaid payments made for the antibiotic, Cephalexin.  

Cephalexin is a commonly prescribed antibiotic.  A model of forecast was built for 

the Medicaid payment of Cephalexin; a double (brown) exponential smoothing 

model was built.  The Medicaid payment was increasing through the years 1996 

up to 2004, and the forecasted Medicaid payment for the years 2005 and 2006 

was increasing as well; this means the government was paying more money for 

Medicaid than the previous years.  One has to keep in mind that this increase in 

payment is due to cost increase; insurance payments increase overall due to 

total payment increase.   

              

Figure 7.24 Model forecast for Medicaid payment: Cephalexin 
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We also investigated the average Medicare payments made for the prescription 

of Cephalexin.  The term, Medicare, is referred to as the amount of support in 

terms of healthcare given to the American elderly people age of 65 or more.  

People with disabilities are also eligible for Medicare payments.  Figure 7.25 

indicates that on average, the government pays a maximum of less than three 

dollars for the prescription of Cephalexin.  The data for Medicare payment has 

many missing observations, but in order to maintain the series of the data, we set 

missing values to zero; that is why a mean model was built as a model of 

prediction.  As we can observe from figure 7.24, the model built did not capture 

most of the data; the reason being that the data has two observations of zero at 

November, 2004 and December, 2004.  Statistically speaking, when we have as 

many observations missing, it is ideal to consider the mean as a model of 

prediction.  
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Figure 7.25 Model forecast for Medicare payment: Cephalexin 

 

Comparing Medicaid payment (figure 7.24) and Medicare payment (figure 7.25), 

we see that Medicaid payments are three times as large as Medicare payments; 

further studies can be made if the number of low income people are three times 

as much as elderly or disabled people.  

 

We finally built a model of forecast for the remaining antibiotic for the total 

payment made.  As we have seen earlier in this chapter using the Means 

procedure, we found out that Amoxicillin was the most prescribed with 20,457 

transactions while Cefuroxime was the least prescribed with only 28 transactions.  

The model forecast for all antibiotics was built using SAS CODE 13.   
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Proc sort data=diser.disertation; 

by RXNAME STARTMEDDATE ; 

RUN; 

PROC HPF DATA=diser.disertation OUT=disertation LEAD=0; 

ID STARTMEDDATE INTERVAL=MONTH ACCUMULATE=TOTAL; 

FORECAST RXXPX RXPVX RXMDX RXMRX RXQUANTY DRUG 

/MODEL=NONE; 

BY RXNAME; 

RUN; 

Proc HPF data=disertation out=sasuser.forecast lead=24; 

id startmeddate interval=month; 

forecast RXXPX RXPVX RXMRX RXMDX RXQUANTY DRUG/select=mape 

holdout=36; 

BY RXNAME; 

Run;     SAS CODE 13 

Table 7.20 SAS code for all antibiotics model building 

 

Plotting the forecasted series of the antibiotics in one plot is the best way to 

compare the number of prescriptions, quantity of prescriptions and total 

payments made between several antibiotics.  We plotted all twenty antibiotics in 

one graph, but as we can see from figure 7.26, we can hardly make 

comparisons; the reason being the difference in total number of transactions 

made for the antibiotics.  As a result, we classified the antibiotics into classes of 

three based on the number of transactions.  
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Figure 7.26. Model forecast for Total payments for all antibiotics 

 

Figure 7.26 gives the forecasted plot of all the antibiotics for total payments made 

for all twenty antibiotics. 
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Figure 7.27. Model forecast for Cefaclor, Cefuroxime, Clarithromycin, Clotrimazole, 

Erythromycin, Keflex and Tetracycline: Total Payment 

 

The total payments made for Keflex is rising starting in January, 2001, while the 

forecast series for Clarithromycin is decreasing. 
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        Figure 7.28. Model forecast for Amoxicillin, Azithromycin, Cephalexin, Cipro, and 

Vancomycin: Total Payment 

 

The total payment for Vancomycin is highest on May, 2001; it is an outlier, while 

Ampicillin, Cipro, Azithromycin and Cephalexin increase through time with the 

forecast for Azithromycin decreasing. 
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Figure 7.29. Model forecast for Ampicillin, Cefadroxil, Clindamycin, Dicloxacillin, 

Doxycycline, Tequin and Tobramycin: Total Payment 

 

The total payment for Tequin is highest in January, 2002, while Dicloxacillin is at 

its peak around January, 2001. 
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Figure 7.30. Model forecast for Cefaclor, Cefuroxime, Clarithromycin, Clotrimazole, 

Erythromycin, Keflex and Tetracycline: Number of Prescription 

 

The number of prescriptions of Erythromycin was higher until January, 1999, and 

then the number of Keflex prescriptions surpassed the number of those for 

Erythromycin. 
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Figure 7.31. Model forecast for Amoxicillin, Azithromycin, Cephalexin, Cipro, and 

Vancomycin: Number of Prescriptions 

 

The number of prescriptions of Amoxicillin was greater than the number for 

Azithromycin, Cephalexin, Cipro, Vancomycin, but all prescriptions were 

seasonally increasing through time. 
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Figure 7.32. Model forecast for Ampicillin, Cefadroxil, Clindamycin, Dicloxacillin, 

Doxycycline, Tequin and Tobramycin: Number of Prescriptions 

 

The number of prescriptions for Ampicillin, Cefadroxil, Clindamycin, Dicloxacillin, 

Doxycycline, Tequin and Tobramycin are close to each other, with Dicloxacillin at 

its highest value on January, 2001. 
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Figure 7.33. Model forecast for Cefaclor, Cefuroxime, Clarithromycin, Clotrimazole, 

Erythromycin, Keflex and Tetracycline: Quantity 

 

The quantity of antibiotics prescribed is close for each antibiotic starting January, 

1999 with a slightly higher quantity of prescriptions for Keflex around May, 2003. 

 

 

 131



MEDI CATI ON NAME ( I MPUTED) AMOXI CI LLI N AZI THROMYCI N CEPHALEXI N
CI PRO VANCOMYCI N

           0

        5000

       10000

       15000

       20000

STARTMEDDATE

JAN1996 JAN1998 JAN2000 JAN2002 JAN2004 JAN2006 JAN2008

 

Figure 7.34. Model forecast for Amoxicillin, Azithromycin, Cephalexin, Cipro, and 

Vancomycin: Quantity 

Amoxicillin prescription quantity is higher compared to Cipro, Azithromycin, 

Cephalexin and Vancomycin, while Cipro and Vancomycin have the smallest 

quantity of prescriptions. 
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Figure 7.35. Model forecast for Ampicillin, Cefadroxil, Clindamycin, Dicloxacillin, 

Doxycycline, Tequin and Tobramycin: Quantity 

Ampicillin prescription quantity is higher from January, 1996 up to May, 1999, but 

the series of prescription quantity is about the same starting in January, 2000, 

with a sudden peak for Dicloxacillin, Ampicillin and Clindamycin. 

 

From an economic stand point, we know that the cost of an item is determined by 

the market; that means that the supply and demand play a major part.  By the 

same token, the cost of antibiotics depends on the number of prescriptions and 

the quantity of antibiotics sold.  One has to test statistically whether the number 

of prescriptions and the quantity of prescriptions significantly predict the total 

payments made for the antibiotics.  We regressed the total payment of antibiotic 
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on the quantity and the number of prescriptions.  We tested statistically if the 

quantity and the number of antibiotics affects the total payments made on 

antibiotic.  We picked the antibiotic, Amoxicillin, to demonstrate the effect of 

predictors (quantity and number of prescriptions) on predicting the total payment. 

 
DATA AMOXICILLIN; 

SET DISER.DISERTATION; 

WHERE RXNAME IN ('AMOXICILLIN'); 

RUN; 

PROC HPF DATA=AMOXICILLIN OUT=AMOXICILLIN LEAD=24; 

ID STARTMEDDATE INTERVAL=MONTH ACCUMULATE=TOTAL; 

FORECAST RXXPX/MODEL=NONE; 

FORECAST RXQUANTY/MODEL=BESTS SELECT=MAPE; 

FORECAST DRUG/MODEL=WINTERS TRANSFORM=LOG; 

RUN; 

PROC AUTOREG DATA=AMOXICILLIN; 

 MODEL RXXPX=RXQUANTY DRUG; 

 OUTPUT OUT=TOTAL P=PREDICTED; 

LABEL RXQUANTY='QUANTITY'; 

RUN;   SAS CODE 14 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 7.21 SAS code for regression procedure of total payment of Amoxicillin 

SAS CODE 14 was used to create the dataset, Amoxicillin, using the Data 

statement, with no predictive model for total payment, best seasonal model for 
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quantity of antibiotics, and Winter’s model with a log transformation for the 

number of prescriptions (drug).   

 

 

 

 

 

 

 

 

 

 

 

 

The AUTOREG Procedure 
 
                  Dependent Variable            RXXPX 
                                                       TOTAL PAYMENT 
 
 
                                   Ordinary Least Squares Estimates 
 
          SSE                        2513834.41                     DFE                             105 
          MSE                            23941                          Root MSE                   154.72970 
          SBC                              1406.49748               AIC                             1398.45109 
          Regress R-Square             0.9117                  Total R-Square                0.9117 
          Durbin-Watson                   0.7658 
 
 
                                                 Standard                    Approx 
  Variable       DF     Estimate        Error    t Value     Pr > |t|    Variable Label 
 
  Intercept       1       0.9126        34.2248      0.03       0.9788 
  RXQUANTY 1       0.0445         0.0167       2.66       0.0091    QUANTITY 
  DRUG          1       7.1520         1.2771        5.60      <.0001    NUMBER OF PRESCRIPTIONS 

 

Table 7.22 Parameter Estimates for Predicting Total Payment 

 

The parameter estimates for RXQUANTY and DRUG are significant with a p-

value of 0.0091 and <0.0001 at 5%.  The significant parameter estimates the 

number of prescriptions and the quantity of antibiotics indicates that both can 

forecast the total payment made for Amoxicillin.  About 91% of the time, the 

variation in total payment is explained by both the quantity and the number of 

antibiotics.  The R-square value close to one indicates that both the predictor 

variables, quantity and number of prescriptions, predict the total payment.  
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Hence, the model prediction for total payment can include the quantity of 

antibiotic and the number of prescriptions.  We also plotted the model forecast for 

total payment using the quantity of antibiotic and the number of prescriptions as 

predictors.   
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Figure 7.36. Prediction of Total Payment using Quantity and Number of Prescriptions for 

Amoxicillin. 

 

When we introduced the quantity of prescriptions and the number of prescriptions 

as predictor variables for total payment for the prescription of Amoxicillin, the R2 

value dramatically increased from -0.094 to 0.9117; this is a great improvement 

of the predictor variables’ influence on the total payment of Amoxicillin.  Also, 
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when compared to total payments made for Amoxicillin without the predictor 

variable (figure 7.8), figure 7.36 gave a better forecast plot with the total payment 

seasonally increasing or decreasing as we move from January, 1996 up to 

December, 2006.  

 

Patient Condition Severity 

 

We then used text mining with kernel density estimation to reduce a large 

number of patient condition codes to make a comparison between the severity of 

the patient condition on the use of antibiotics.  We condensed thousands of 

patient conditions into an index of 6 levels, and those levels are used to examine 

the relationship to different target variables of total payment and private 

insurance payments.  Since there are hundreds of ICD-9 codes, and most 

patients have more than one ICD-9 code assigned to them, we compress the 

codes into a total of six clusters.  We applied clustering and text mining to group 

similar patients together so that meaningful analyses can be performed examine 

cost.  We used text mining to process and analyze the ICD-9 codes and to find 

similarities between patients.  We then group similar patients together.   

 

Clustering was performed using the expectation maximization algorithm. It is a 

relatively new, iterative clustering technique that works well with nominal data in 

comparison to the K-means and hierarchical methods that are more commonly 
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used.  Six clusters were formed using the ICD9 codes based on the similarity of 

the text of each ICD-9 code. 

 

Proc sort data = sasuser.Antibiotics out= work.sort_out; 

     by duid rxicd1x; 

Run; 

 

options obs=max; 

 

Data work.sort_out1; 

     set work.sort_out; 

  icd9 = translate(left(trim(rxicd1x)),'_',' '); 

Run;                      

proc Transpose data=work.sort_out1 out=work.tran  

                   prefix=icd9_; 

     var icd9 ; 

     by duid; 

run; 

data work.concat( keep= duid icd9 ) ; 

 length icd9 $32767 ; 

 set work.tran ; 

 array rxconcat {*} icd9_: ; 

 icd9 = left( trim( icd_1 )) ; 

 do i = 2 to dim( rxconcat ) ; 

 icd9 = left(trim(icd9)) || ' ' || left(trim( rxconcat[i] )) ; 

 end ; 

run ;                                     SAS CODE 15 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 7.23 SAS code used to change ICD-9 codes to text and create clusters 
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Proc sql ; 
 select max( length( icd9 )) into :icd9_LEN from work.concat ; 

quit ;        
%put icd9_LEN=&icd9_LEN ; 

Data work.concat1 ; 

 length icd9 $ &icd9_LEN ; 

 set work.concat ; 

Run ; 

Proc contents data=work.concat1 ; Run;  SAS CODE 15 

Table 7.23 SAS code used to change ICD-9 codes to text and create clusters (continued) 

Using SAS CODE 15, six clusters were formed based on the ICD9 codes using 

Enterprise Miner 5.2.  We created six clusters with the cluster number given in 

table 7.24.  We will use these clusters to compare the distribution of antibiotics 

between the clusters using kernel density estimation.  Table 7.25 is the 

description of the clusters shown in table 7.24. 
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# Descriptive terms Freq Percentage

1 601,562,786,487,465,596,522,496,892,785,575,996,784 760 0.79249218 

2 716 2 0.00208551 

3 599,593,382,388,493,595 38 0.03962461 

4 473,490,519,401,429,477,592,491,311,686,919,428,492, 

486,595,478,590 

108 0.11261731 

5 780,v68,460,41,v25,272, 19 0.0198123 

6 244,518,998,590,493,486 32 0.03336809 

 
 

Table 7.24 Clusters of the ICD-9 Codes 
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Cluster 
Number 

ICD-9 
Codes ICD-9 Risk Factors 

Frequency Label 

1 601  
562  
786 
487 
465 
596 
522 
496 
892 
785 
575 
996 
784 

Prostatitis 
Diverticula of Intestine 
Respiratory & Chest symptom 
Influenza 
Upper respiratory infection acute 
Bladder disorder 
Pulp disease & peripheral tissues 
Chronic airway obstruction 
Open wound of foot 
Symptoms involving cardiovascular system 
Disorder of gallbladder 
Anastomosis, graft (bypass), implant 
Symptoms of head and neck 

760 Routine 
problems 

2 716 Other and unspecified arthropathies 2 Arthritis 
3 599 

593 
382 
388 
493 
595 

Other disorders of urethra and urinary tract 
Other disorders of kidney and ureter 
Suppurative and unspecified otitis media 
Other disorders of ear 
Asthma 
Cystitis 

38 Urinary tract 
infection, 
asthma 

4 473 
490 
519 
401 
429 
477 
592 
491 
311 
686 
919 
428 
492 
486 
595 
478 
590 

Chronic sinusitis 
Bronchitis, not specifies as acute or chronic 
Other diseases of respiratory system 
Essential hypertension 
Complications of heart disease 
Allergic rhinitis, hay fever spasmodic rhinorrhea 
Calculus of kidney and ureter 
Chronic bronchitis 
Depressive disorder 
Local infections of skin and subcutaneous tissue
Superficial injury  
Heart failure 
Chronic obstructive pulmonary disease 
Pneumonia, organism unspecified 
Cystitis, other disease of urinary system 
Other disease of upper respiratory tract 
Infections of kidney 

108 Severe 
complications 
of respiratory 
system 

5 780 
v68 
460 
041 
v25 
272 

Alteration of consciousness, hallucinations 
Persons encountering health service 
Acute nasopharyngitis (common cold) 
Bacterial infection 
Contraceptive management, sterilization 
Disorders of lipoid metabolism 

19 Mild risk 
factors 

6 244 
518 
998 
590 
493 
486 

Acquired hypothyroidism, like post-surgical 
Diseases of lung, pulmonary collapse 
Postoperative shock, hemorrhage 
Infections of kidney 
Asthma 
Pneumonia 

32 Moderate risk 
factor 

Table 7.25. Text Clusters Defined by Expectation Maximization 
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We used kernel density estimation to examine differences within the six clusters. 

Figures 7.24 and 7.25 are showing the graphs of total payments and private 

insurance payments respectively by cluster id for the antibiotic, Cipro.  Note that 

cluster 2 has a high probability of total charges and reimbursements compared to 

the other clusters where the amount is very low. These graphs demonstrate a 

natural ordering in the clusters that is defined within the text mining tool. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.37 Distributions of Total Payments for CIPRO 

 

The clusters formed based on the severity of the patient condition were 

compared using Kernel density estimation to examine total payments for the 
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antibiotic, Cipro (Figure 7.37).  For instance, for patients in cluster 3 taking Cipro, 

they have a higher probability of paying between 40-80 dollars. As the total 

payment exceeds 280 dollars, the severity of the disease does not play a role on 

the size of payment made.  

 

 

 

 

 

 

 

 

 

 

Figure 7.38 Distributions of Private Insurance Payments for CIPRO 

 

The clusters formed based on the severity of the patient condition were 

compared using Kernel density estimation to examine private insurance 

payments for each antibiotic (Figure 7.38).  For instance, for patients in cluster 3 

taking Cipro, they have a higher probability of paying between 30-60 dollars but 

patients in cluster 6 have a higher probability of paying between 115-180 dollars.  
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Discussion 

The rising cost of antibiotics is an important concern to health care providers and 

to society.  For many years, proper application of antibiotics has been difficult to 

regulate and to control.  Antibiotic costs have increased dramatically over the 

years with an overall trend to prescribe expensive, broad spectrum antibiotics 

rather than narrow-spectrum antibiotics.  The term trend of antibiotics cost is 

important knowledge to health care providers and insurance companies.  The 

trend analysis depends largely on an initial explanatory analysis of the data, and 

in identifying the appropriate models to predict the trend.  The best approach 

currently available to model trend is to eliminate the trend by differencing and 

data correction and to find an appropriate stationary model for the differenced 

series.   

 

Trend modeling requires finding the appropriate order of differencing, to correct 

the data for missing values, and to identify the appropriate order of stationary 

models for the differenced and corrected data 32.  We have investigated the 

changing behavior of the cost of antibiotics by introducing intervention variables.  

Usually, the increase of cost is related to a certain event; for instance, when 

September 11 happened, the airline industry lost tremendous amounts of 

business as a consequence of people not traveling by air.  
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In this dissertation, we are concerned not only with studying the increase in cost 

of antibiotics, but also with a sudden shift (both increase and decrease) in the 

cost of antibiotics.  For instance, if we examine the private insurance payment 

made for the antibiotic, Cipro, we observe that there was a constant increase 

until a sudden and tremendous increase in September, 2002.  Due to this 

tremendous increase, the forecast for the future is influenced if we don’t take this 

spike into consideration.  As a result, we introduced point and step interventions.  

A point intervention is assigned a value of one for September, 2002 and zero for 

all other time points, while step intervention is to assign the value zero before 

September, 2002 and assign a value of one for September, 2002–December, 

2004.   

 

We also analyzed the antibiotics data using GARCH models that take care of the 

heteroskedasticity of the data.  When applied to total payments made for 

Erythromycin, the model built was fit much better compared to the ARIMA(1,2,0) 

model that was fit earlier.  We used inflation rate as a dynamic regressor, which 

improved the model fit of the private insurance payment made for Cipro.  Finally, 

we analyzed the data using text mining and clustering the ICD 9 codes that 

defined the patient condition, and made comparisons between the clusters 

formed on the severity of the disease.  We used kernel density estimation to plot 

the six clusters on one plot for the antibiotic, Cipro, so that meaningful 

comparisons could be made.  
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CHAPTER 8  

CONCLUSION 

 

The aim of this dissertation was to develop time series models to investigate 

prescribing practices and patient usage of antibiotics with respect to the severity 

of the patient condition.  We have analyzed factors that contribute to the cost of 

antibiotics such as total payments and private insurance payments.  The amount 

of money spent varies between the severity of the patient condition; that means 

that patients who are more severely ill spend more money for antibiotics 

compared to patients who are less ill.  Our goal was to develop time series 

models so that we can compare between several antibiotics.  To reach this 

result, time series models and data mining tools such as text mining were used to 

investigate the prescription of antibiotics. 

 

The main analysis idea was to show that the increase in the cost of antibiotic is 

affected by the increase in private insurance payment, and Medicare and 

Medicaid payments made.  There was also a tremendous change in the number 

of prescriptions in one antibiotic compared to others.   
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We also investigated a sudden change, which we call it an outlier or event in time 

series theory.  We found out that an outlier or an event does change the 

predicted payments made for the antibiotics.  We also studied the effect of the 

inflation rate in cost of antibiotics, and found out the price prediction goes down.  

Since most of the antibiotics we studied are already available in generic form, or 

did not change to generic form during the time period under study, we could not 

take the switch in type into consideration. However, such a switch would involve 

a step function. 

 

We also found out that the trends in the prescription of antibiotics were 

increasing over the years 1996-2004.  There is a difference in the number of 

prescriptions of one antibiotic over another, with Amoxicillin mostly prescribed 

and Vancomycin least prescribed.  We also investigated how much patients are 

spending on the sum and average for antibiotics and found out the spending was 

increasing over the years, but increasing less than the inflation rate. We 

examined the average Medicare and Medicaid payments for the antibiotic, 

Cephalexin, and we found out that the predicted Medicaid payment is three times 

as large as the Medicare payment.  In terms of expenditure, the government’s 

expense on Medicaid was increasing from the model forecast.  

 

Text mining was used to reduce a large number of patient condition codes into 

an index of 6 levels, and to use those levels to examine the relationship between 

total payment and private insurance payments for different cluster levels. 
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The results of this study can be used by health care institutions and 

pharmaceutical companies to predict and forecast the distribution, cost, number 

of prescriptions, quantity of prescription dose, private insurance payment, 

Medicare payment and Medicaid payment.  The trend of prescription can be used 

to study what the effect really is on the decrease or increase in the prescriptions 

of antibiotics.
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