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ABSTRACT 

Avoiding, Pretending, and Querying: Three Combinatorial Problems 

Adam S. Jobson 

18 November 2011 

A k-term quasi-progression of diameter d is a sequence {Xl, ... ,xd for which there ex-

ists a positive integerl such thatl ~ Xi-Xi-l ~ i+d, for all i = 2, ... ,k. Quasi-progressions 

may be thought of as arithmetic progressions with a certain amount of 'wiggle-room' al

lowed. Let Q(d, k) be the least positive integer such that every 2-coloring of {I, ... , Q(d, k)} 

contains a monochromatic k-term quasi-progression of diameter d. We prove a conjecture 

of Landman for certain values of k and d, provide counterexamples for some other cases, 

and determine that the conjecture always has the correct order of growth. 

Let A be the adjacency matrix of a non empty graph. Is there always a nonzero {O, 1}

vector in the row space of A that is not a row of A? Akbari, Cameron, and Khosrovshahi 

have shown that an affirmative answer to this question would imply bounds on many graph 

parameters as a function of the rank of the adjacency matrix. We demonstrate the existence 

of such vectors for certain families of graphs, examine techniques to find and verify the 

existence of such vectors, and show that if you generalize the problem to allow asymmetry 

in the matrices then some {O, 1 }-matrices do not have such vectors. 

In 1981, Andrew Yao asked "Should tables be sorted?". When the table has n cells 

that are filled with entries taken from a key space of m possibilities, he showed that it is 

possible to decide whether any member of the key space is present in the table by inspecting 

(querying) only one cell of the table if and only if m ~ 2n - 2. We make steps toward 

extending his result to the case where you are permitted two queries by considering several 

variations of the problem. 
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CHAPTER 1 

AVOIDING: COLORING QUASI-PROGRESSIONS 

Several! renowned open conjectures in combinatorics and number theory involve arith-

metic progressions. Van der Waerden famously proved in 1927 that for each positive integer 

k there exists a least positive integer w(k) such that any 2-coloring of 1, ... , w(k) produces 

a monochromatic k-term arithmetic progression. The best known upper bound for w(k) is 

due to Gowers and is quite large. Ron Graham [6] conjectures w(k) ::; 212-, for all k. 

1.1 - Introduction 

Brown, Erdos, and Freedman [3] introduced quasi-progressions as a way of generalizing 

arithmetic progressions: 

Definition 1.1 (Quasi-progression). A k-term quasi-progression (QP) of diameter d is a 

sequence {x!, ... , Xk} for which there exists a positive integer I such that! ::; Xi-Xi-! ::; I+d, 

for all i = 2, ... , k. 

I is called the low-difference of the QP. 

Arithmetic progressions are quasi-progressions with diameter zero. Analogous to the 

van der Waerden function w(k), Landman [8, 9] introduced a Ramsey function for quasi-

progressions. 

Definition 1.2. Q(d, k) is the least positive integer such that every two-coloring of the set 

{I, ... , Q(d, k)} contains a monochromatic k-term quasi-progression of diameter d. 

This function produces a lower bound for w(k) since 

w(k) = Q(O,k) ;::: Q(l,k) ;::: Q(2,k) ;::: Q(3,k) ;::: ... 

1 This chapter contains joint work with Andre Kezdy, Hunter Snevily, and Susan White, and has been 
submitted to a journal for publication. 
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So, it is of great interest to find bounds on Q(d, k) for various d, especially small values of 

d. Of particular interest is the rate of growth of Q( 1, k). Is it merely polynomial or is it at 

least exponential in k? Vijay [13]2 has recently established an exponential lower bound for 

Q( 1, k), so quasi-progressions of small diameter behave similarly to arithmetic progressions, 

at least with respect to these Ramsey functions. An interesting open problem is to determine 

the largest diameter d for which Q(d, k) is at least exponential (in k). 

Landman established several bounds on Q(d, k) and made several conjectures which we 

resolve in this paper. Our results, like Landman's, focus on large diameter; that is, d = k - i, 

for some positive integer i satisfying k 2': 2i 2': 1. The main difficulty is the upper bound 

on Q(k - i, k). Specifically, how can we tailor an argument that handles the large num

ber of extremal 2-colorings which seem to defy uniform description (cf. Landman's data 

at the end of his paper)? In section 1.2 we introduce superblocks, an equivalence relation 

that imposes sufficient structure on extremal 2-colorings to extract long monochromatic 

quasi-progression fragments via a greedy strategy. Through the superblock lens, the ex

tremal2-colorings coalesce. The superblock argument is used in section 1.3 where we show 

how to splice monochromatic fragments together to produce long monochromatic quasi

progressions. This yields an upper bound on Q(k - i, k); the bound is often sharp. One 

consequence is that, if k 2': 2i and k = mi + r for integers m, r such that 1 < r < i, then 

Q(k- i,k) ~ 2ik-4i+2r-1. 

This improves bounds given by Landman. 

Our main result is proven is section 1.4: 

Q(k - i, k) = 2ik - 4i + 2r - 1, 

if k = mi + r for integers m, r such that 3 ~ r < ~ and r - 1 ~ m. This disproves Conjecture 

1 of Landman's paper for these values of r. Residues r 2': i/2 that are not considered in this 

2We thank Bruce Landman for bringing our attention to Vijay's paper. 
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result appear to be more difficult. The techniques here are inadequate to resolve those values 

of Q(k - i, k). However, we also prove that, if k 2: 2i 2: 1, then 

Q(k - i, k) = 
2ik - 4i + 3 k _ 0 or 2 (mod i) 

2ik - 2i + 1 k 1 (mod i) 

thus proving Landman's conjecture in these cases. 

1.2 - Superblocks 

In this section we develop notation, concepts and tools to describe the structure of ex

tremal strings which avoid long monochromatic quasi-progressions. 

A k-term progression is an increasing sequence of k positive integers XI < X2 < ... < Xk. 

Given a k-term progression P = {Xj}j=I' the differences in P are the elements in the set 

D(P) = {Xj - Xj_1 :j = 2, ... , k}. 

The low-difference of P, denoted o(P) (or simply D), is the minimum element in D(P); 

the high-difference of P, denoted 6.(P) (or simply 6.), is the maximum. The diameter of P 

is d = 6. - O. Observe that arithmetic progressions are quasi-progressions with diameter 

d=O. 

Consider now 2-colorings of the positive integers. A quasi-progression is a good pro

gression if it is a monochromatic quasi-progression with length k and diameter at most d. 

Define Q(d, k) to be the least positive integer such that every 2-coloring of {I, ... , Q(d, k)} 

contains a good progression. Motivated by conjectures of Landman [8], we consider Q(d, k) 

for values of d and k satisfying d = k - i and k 2: 2i, where i is some fixed positive integer. 

So, for the rest of this paper d = k - i and a good progression means a monochromatic 

quasi-progression with length k and diameter at most k - i. To understand the structure 

of extremal 2-colorings avoiding good progressions, we now introduce two important sub

structures: blocks and superblocks. 
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Let C = CIC2 ... Ce be a binary string of length I!. A substring of C is a string of the 

form CpCp+1 .•• cq , for some positive integers 1 ::; p ::; q ::; I!. A block of C is a maximal 

monochromatic substring of C. We employ the usual shorthand notation in which, for x E 

{O, I}, the shorthand X' represents the string ~. There is a natural partition of C into 
n 

blocks: without loss of generality, the first block of C is a block of 1 s so 

where the aj are positive integers, except possibly ab which may be zero (in which case the 

final block of C is actually a block of Is). Note that 2::;=1 aj = I!. 

Now consider an extremal coloring C; that is, suppose that I! = Q(k - i, k) - 1 and C 

represents a 2-coloring of the integers 1, ... ,I! with no good progression. For convenience, 

blocks of C of length at most k - i are minor blocks; longer blocks are major. There are two 

important facts that motivate this dichotomy: 

(i) Quasi-progressions with low-difference 1 and diameter k - i can jump over any 

intermediate minor blocks. 

(ii) "Greedy monochromatic jumping" (in which jumps of length at least 0 but at most 

o + k - i are taken, for some choice of 0) can not get stuck in substrings that avoid 

major blocks of one color (see later Theorem 1.6 and Theorem 1.7). 

A consequence of observation (i) is that, in a substring in which only minor blocks of one 

color appear, all of the integers with the other color in this substring form a monochromatic 

progression with low-difference 1 and high-difference k - i + 1 (that is, a monochromatic 

quasi-progression with diameter k - i). 

Now we turn to the task of identifying monochromatic substructures of C with the prop-

erty that a greedy strategy can guarantee dense monochromatic progressions beginning and 

ending at endpoints of the substructure. To make this precise, we define the equivalence 

relation rv on the integers 1, ... , I! so that x rv y if and only if x and y are contained in a 

monochromatic quasi-progression P of C such that D(P) ~ {I, ... ,k - i + I} (the transi-

tivity of rv follows from the fact that the union of two intersecting monochromatic quasi-
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progressions with differences in {I, ... , k - i + I} is another such quasi-progression). The 

equivalence classes under rv are called superblocks. Superblocks are not necessarily sub

strings. Suppose that C has t superblocks BI , ... ,Bt • We naturally order superblocks this 

way: Bp < Bq if and only if min Bp < min Bq, where min Bp denotes the smallest integer in 

Bp (that is, the left-most one). A superblock is major if it contains all of the elements from a 

major block of C; otherwise it is minor. The extremes of a superblock are its minimum and 

maximum elements. 

Example 1.3. Consider k = 12, i = 6. Because Q(6, 12) = 123, an extremal string in this 

case has length 122. There are several extremal strings, one is shown below: 

C = 16 010 II 01 110 OIl III 010 II 01 110 010 II 01 110 OIl III 06 

This string has 18 blocks, but only 12 superblocks of which exactly two are minor. The 

cardinalities of the superblocks are (in this order) 

6, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 6. 

Theorem 1.4 (Superblock Upper Bound). If C is a 2-coloring with no good progression, 

then every superblock of C has cardinality at most k - 1. 

Proof The union of two intersecting monochromatic quasi-progression of C using differ-

ences from {I, ... , k - i + I} is also a monochromatic quasi-progression of C using differ-

ences from { 1, ... , k - i + I}. It follows that all of the elements of a superblock are contained 

in a single monochromatic quasi-progression of C using differences from {I, ... ,k - i + I}. 

Because C contains no good quasi-progression, each superblock contains fewer than k ele-

ments. D 

The following theorem lists basic facts about superblocks. 

Theorem 1.5 (Superblock Fundamentals). Suppose C is a binary string that represents a 

2-coloring with no good progression. If C has t superblocks BI < ... < B" then 

(i) all elements in a superblock have the same color (that is, superblocks are monochro

matic), 
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(ii) B 1, ••• ,Bt form a partition of C, 

(iii) consecutive superblocks have opposite color, 

(iv) superblocks B2 , .•• ,Bt- I contain exactly one major block (in particular they are ma

jor superblocks), 

(v) an extreme element of a superblock is adjacent to either the end of the string, a minor 

superblock, or the major block of neighboring major superblock, and 

(vi) a substring of C consisting of all characters between (and including) the extreme 

elements of a superblock contains exactly one major block. 

Proof (i) two elements are in relation rv if they are in a common monochromatic quasi

progression. Therefore their color is identical. (ii) the equivalence classes of an equivalence 

relation form a partition. (iii)-(vi) the boundary of a superblock is reached at the end of 

the string or at an obstructing major block of the opposite color. Thus each superblock 

with a neighbor, must contain a major block that defines the boundary of that neighbor. So 

superblocks alternate color. If a superblock contained two major blocks, then its size would 

exceed k - 1, contradicting Theorem 1.4. o 

Note that, by (ii), the length of C is f = 2:::;=1 IBjl. The basic approach for an upper bound 

on the length of C is based on this partition - we seek to bound the cardinality of each of 

the superblocks. To accomplish this, we need to argue that segments of a long monochro

matic quasi-progression can be strung together using fragments from each superblock. The 

technique relies on the following two fundamental theorems. 

Theorem 1.6 (Greedy Major Superblock Jumping). Assume k ~ 2i. If B is a major su

perblock of C and 1 ~ 8 ~ i, then B contains a monochromatic quasi-progression P such 

that 

(i) P has length at least r ~ 1, 
(ii) the low difference of P is at least 8, 

(iii) the diameter of P is at most k - i, and 

(iv) both extremes of B are in P. 
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Proof Without loss of generality, B has color 1. Let S denote the binary substring of C con

sisting of all characters between the minimum and maximum elements of B. By definition, 

S begins and ends with a 1. Let us suppose that p8 < IBI ::; (p + 1 )8, for some positive 

integer p. We must show that there is a monochromatic quasi-progression of length at least 

p + 1 (that is, a progression that satisfies (i) above) with the additional properties (ii)-(iv). 

First, create a monochromatic quasi-progression this way: start with the left-most 1 of Sand 

repeatedly jump right to the first available 1 that is distance at least 8, but no more than 

8 + k - i from the last chosen 1. Note that there can never be an obstruction to jumping to 

the next available 1 unless we reach the end of S because, if a jump to the next 1 required a 

length more than 8 + k - i, then the last k - i + 1 skipped elements would be a major block of 

Os in S which is impossible by Theorem 1.5 (vi). This means that when this greedy jumping 

reaches the end of S, it must land on a 1 that is distance at most 8 - 1 ofthe rightmost 1 of S. 

Also notice that each jump can pass over at most 8 - 1 ones. Thus each 1 in our constructed 

progression "consumes" at most 8 ones: itself plus the at most 8 - 1 ones that are skipped 

by the next jump. But, since there are more than p8 ones and we have not wasted any 1 s 

because we started at the beginning of S, our progression must have at least p + 1 ones. The 

only problem is that this progression may not end at the maximum element of B. We now 

address this problem. 

Let x denote the leftmost 1 of Sand Y the rightmost 1 of S. Suppose that our currently 

constructed progression from S is x = Xl < ... < xq, for some q ~ p+ 1. In a manner similar 

to the construction of this sequence, construct a new progression starting at Y and greedily 

jumping leftward toward x. Suppose that this second progression is Yh < ... < Y2 < Yl; that 

is, this progression begins at the rightmost element Yl = Y of S, jumps leftwards greedily 

until it reaches Yh and no further jumps are possible. A consequence of the next claim is that 

the x-progression and the y-progression have the same length (Le. h = q). 

CLAIM: Yj - Xq+l-j < 8, for j = 1, ... ,q. 

We prove this by induction on j. The basis case is true because Yl = Y and as noted 
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in the paragraph above, the progression of xs must end within 8 of y. Now suppose that 

Yj-Xq+l_j < 8, forsomej. Because the progression ofys must end within 8 of x, if q+ 1-j > 

1, the element Yj+l must exist. The distance Yj - Yj+1 must be at least 8 so Yj+1 < Xq+l_j' In 

particular, Xq_j ~ Yj+1 < Xq+l-j· Because the x-sequence did not jump from Xq_j to Yj+I' it 

follows that Yj+1 - Xq_j ~ 8 - 1, as desired. 

Observe that if Yj = Xq+l-j' for some j E {1, ... ,q} then the progression 

satisfies the conclusion of the theorem. 

So, we have proven that we may assume that these two sequences interlace: 

XI < Yq < X2 < Yq_1 < ... < Xq_1 < Y2 < Xq < YI' 

andYj -Xq+l_j < 8, forj = 1, ... ,q. 

Now let T denote the substring of S corresponding to the major block of 1 sin B. Because 

T is a major block, T is a substring of 1 s with length at least k - i + 1. In particular, since 

k ~ 2i, the length of T is at least i + 1, which is larger than 8. Now observe that among 

the differences between consecutive elements of the progression XI, ... ,xq , there must be a 

difference of exactly 8 because the first greedy jump that this progression makes into T must 

either have length exactly 8 or it hits the first element of T. In the latter event, the following 

jump must have length 8 because T contains at least 8 + 1 ones. 

So, there is somej E {1, ... ,q-1} such thatxq+l_j-xq_j = 8. Because Yj-Xq+l_j < 8, 

it follows that Yj - Xq_j ~ 28 ~ k - i + 8. Therefore, the progression 

satisfies the conclusion of the theorem. D 

Theorem 1.7 (Greedy Minor Superblock Jumping). Assume k ~ 2i. If B is a minor su

perblock of C, X is an extreme of B, and 1 ~ 8 ~ i, then B contains a monochromatic 

quasi-progression P such that 
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(i) P has length at least r ljil ' 
(ii) the low difference of P is at least 8, 

(iii) the diameter of P is at most k - i, and 

(iv) x E P. 

Proof We argue essentially the same way as in the proof of Theorem 1.6. Without loss 

of generality, B has color 1 and x is the leftmost element of B (that is, x = min B). Let 

S denote the binary substring of C consisting of all characters between the minimum and 

maximum elements of B. By definition, S begins and ends with a 1. Let us suppose that 

p8 < IBI ::; (p+ 1 )8, for some positive integer p. We must show that there is monochromatic 

quasi-progression of length at least p + 1 (that is, a progression that satisfies (i) above) with 

the additional properties (ii)-(iv). Create such a monochromatic quasi-progression this way: 

start with x and repeatedly jump right to the first available 1 that is distance at least 8, but 

no more than 8 + k - i from the last chosen 1. Note that there can never be an obstruction to 

jumping to the next available 1 unless we reach the end of S because, if a jump to the next 

1 required a length more than 8 + k - i, then the last k - i + 1 skipped elements would be a 

major block of Os in S which is impossible by Theorem 1.5 (vi). This means that when this 

greedy jumping reaches the end of S, it must lands on a 1 that is distance at most 8 - 1 of the 

right most 1 of S. Also notice that each jump can pass over at most 8 - 1 ones. Thus each 

1 in our constructed progression "consumes" at most 8 ones, itself plus the at most 8 - 1 

ones that are skipped by the next jump. But, since there are more than p8 ones and we have 

not wasted any Is because we started at the beginning of S, our progression must have at 

least p + 1 ones. D 

The next theorem brings together the previous two theorems and is a significant tool in 

later proofs. 

Theorem 1.8. Assume k 2:: 2i. Suppose C is a binary string that represents a {red, blue}

coloring of positive integers with no good progression. If C has no red major blocks of 

cardinality at least k - i + 8, for some 1 ::; 8 ::; i, and B), ... ,Bh are the blue superblocks 
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of C, then C contains a monochromatic quasi-progression P with diameter at most k - i, 

low-difference at least 0, and length at least 2:~1 f'i'l. 
Proof Apply Theorem 1.6 to superblocks B2 , ..• ,Bh- I to obtain monochromatic quasi

progression fragments P2 ,· .. ,Ph-I with length at least f'i'l, low-difference 0, diameter 

k - i and that contain both extremes of each of their major superblocks. Similarly, apply The-

orem 1.7 to superblocks BI and Bh to obtain monochromatic quasi-progression fragments 

PI and Ph with length at least f'i'l, low-difference 0, diameter k - i and that contain the 

maximum and minimum, respectively, of BI and Bh. Because C has no red major blocks of 

cardinality at least k - i + 0, jumps of length at most k - i + ° (and at least 0) can be made 

to join the extremes of these fragments into the desired monochromatic quasi-progression 

P. o 

1.3 - Some upper bounds 

This section establishes upper bounds on Q(k-i, k). In many cases the bounds are sharp. 

The proofs rely heavily on the superblock results from the previous section. 

Theorem 1.9. If k ~ 2i and k = 0 (mod i), then Q(k - i, k) = 2ik - 4i + 3. 

Proof The lower bound Q(k - i, k) ~ 2ik - 4i + 3 follows from Corollary I of Landman's 

paper [8]; so it suffices to prove the upper bound. Suppose that e = Q(k - i, k) - 1 and Cis 

a binary string of length e that represents a 2-coloring of the integers 1, ... , e with no good 

progression. We must prove that e :::; 2ik - 4i + 2. Assume that k = mi, for some m ~ 2. 

We claim that there can not be i major superblocks of the same color. To see this, suppose 

to the contrary, that B I , ... ,Bp (p ~ i) are all of the blue major superblocks of C. Apply 

Theorem 1.8 with ° = i to the substring of C between the minBI and the maxBi• This 

theorem guarantees a monochromatic quasi-progression of length at least 

p riB 11 p fk . II p L -+ ~ ~ -:+ ~ ~m ~mp ~ k, 
)=1 )=1 )=1 

a contradiction. So C has at most i-I major superblocks of each color. 
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Suppose that C has i - 1 major superblocks of the same color. We now claim that the 

total number of elements in minor blocks of that color is at most k - i. To prove this, suppose 

that C has i - 1 blue major superblocks B1, ••• ,Bi- I and two minor superblocks Bo and Bi 

(it is clear that there are most two blue minor superblocks, since there is at most one at each 

end). Again, apply Theorem 1.8 with [) = i to the substring of C between the min Bo and 

the max Bi . This theorem guarantees a monochromatic quasi-progression of length at least 

Since this sum is at most k - 1 = mi - 1, it follows that IBol + IBd ~ k - i. Consequently, 

the blue superblocks have cardinalities that sum to at most (i - 1) (k - 1) + (k - i). The 

same argument applies to the red superblocks. Therefore, the length of C is at most 

2(i - 1)(k - 1) + 2(k - i) = 2ik - 4i + 2, 

as desired. o 

Theorem 1.10. If k ~ 2i + 1 and k _ 1 (mod i), then Q(k - i, k) = 2ik - 2i + 1. 

Proof The lower bound Q(k - i, k) ~ 2ik - 2i + 1 follows from Corollary 1 of Landman's 

paper [8]; so it suffices to prove the upper bound. Let C be binary string realizing an extremal 

2-coloring with no good progression. We must prove that the length of C is at most 2i( k - 1). 

Let B1, ••• ,Bp be the blue superblocks of C and R1, .•• ,Rq the red superblocks. Because the 

superblocks form a partition, the length of C is 2:~=1 IBjl + 2:J=1 IRjl. However, applying 

Theorem 1.8 with [) = i to the substring of C between the minBI and the maxBp , we 

find that C contains a monochromatic quasi-progression of length 2:~=o 'Iill. Since this 

can not exceed k - 1, it follows that 2:~=1 IBjl ~ i(k - 1). A symmetric argument shows 

2:J=1 IRjl ~ i(k - 1). Therefore the length of C is at most 2i(k - 1), as desired. 0 

The next theorem gives a general upper bound that we shall show in the next section is 

sharp when k = mi + r for integers m, r such that 3 ~ r < ~ and r - 1 ~ m. 

Theorem 1.11. If k ~ 2i and k = mi + r for integers m, r such that 1 < r < i, then 

Q(k - i, k) ~ 2ik - 4i + 2r - 1. 
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Proof Suppose that f = Q(k - i, k) - 1 and C is a binary string of length f that represents 

a 2-coloring of the integers 1, ... , f with no good progression. We must prove that f < 

2ik - 4i + 2r - 2. We argue by contradiction: assume that f > 2ik - 4i + 2r - 2. 

For j = 0, 1, let aj denoted the number of superblocks of C that have size greater than 

mi. Apply Theorem 1.8 with 8 = i to the shortest substring containing all superblocks of 

color j: 

aj(m + 1) + L rl~ll ~ k - 1. 
B has colorj 

IBI~mi 

It follows that, for j = 0, 1, 

L IBI ~ i(k-l-aj(m+ 1)). 
B has colorj 

IBI~mi 

Therefore, the length of C can be bounded as follows: 

I I 

f=L L IBI +L 
j=O B has color j j=O B has color j 

IBI>mi IBI~mi 

~ (ao+ad(k-I) +i(k-l-ao(m+ 1)) +i(k-l-al(m+ 1)) 

= 2ik - 2i - a(i + 1 - r), 

where a = ao + al. Because we are assuming that f > 2ik - 4i + 2r - 2, we may conclude 

that a < 2. Without loss of generality, ao = 0 and al ~ 1. 

Because ao = 0, the coloring contains no superblocks of Os with cardinality larger than 

mi. Now apply Theorem 1.8 with 8 = i-r+ 1 to the substring of C containing all superblocks 

of color 1: 

L r IBI 1 < k - 1. i-r+l -
B has color 1 

Consequently the number of Is in C is at most (k - 1)(i - r + 1). Applying Theorem 1.8 

with 8 = i to the substring of C containing all superblocks of color 0 we find 

L rl~ll ~ k- 1. 
B has color 0 l 
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Therefore the number of Os in C is at most (k - l)i. It follows that the length of C can be 

bounded as follows: 

f = (# 1 s in C) + (#Os in C) 

:::; (k-l)(i-r+ 1)+(k-l)i 

= 2ik - 2i + (k - 1) (1 - r), 

which is at most 2ik - 4i + 2r - 2 since r > 1 and k > 2i. This contradicts that e > 

2ik - 4i + 2r - 2. o 

1.4 - A general lower bound 

In this section we exhibit an extremal2-coloring of positive integers avoiding monochro

matic k-term quasi-progressions of diameter k - i for many values of k and i. To describe 

this coloring we first introduce some notation. 

Recall that a block of a binary string is a maximal length monochromatic substring. 

A segment of a binary string is a maximal length substring in which all blocks have the 

same length. Its segments naturally partition a binary string. Therefore a binary string C 

can be abbreviated by an expression involving positive integers of the form a~1 ... a~s, which 

indicates that the jth segment consists of bj blocks of length aj (we assume that the first block 

is a block of Is). We adopt this notation in this section. Note that C has length L:;=l ajbj . 

Theorem 1.12. Suppose that k = mi + r for integers m, r such that 3 :::; r < ~. If r - 1 :::; 

m, then the following 2-coloring of the integers from 1 to 2ik - 4i + 2r - 2 contains no 

monochromatic k-term quasi-progression of diameter k - i: 

Proof Let C denote the binary string corresponding to this coloring. We assume that C 

begins with a block of 1 s. Observe that C is a palindrome and, because r - 1 :::; m, the 

initial block of Is is shorter than the others. For a positive integer 8, let Q8 be a longest 

monochromatic quasi-progression in C with low-difference 8, and let f be the length of Q8' 
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We must show I! ::; k - 1. Because C is a palindrome, we may assume that Qt5 consists of 

elements of color 1. If 0 < i - r + 1, then Qt5 can not jump across blocks of length mi 

or longer, so Qt5 has length at most k - 1 in this case. So it suffices to consider values of 

o 2:: i - r + 1. However, because C has only interior blocks of length mi or k - 1, we can 

restrict our attention of 0 = i - r + 1 (which permits leaps over blocks size mi but not k - 1) 

or 0 = i (which permits leaps over all block sizes). Upper bounds on I! for other values of 0 

follow immediately from the upper bounds on these two values of o. 

Assume first that 0 = i. The quasi-progression Qt5 can use at most r 1711 elements from 

a block B. Consequently, the length I! can be bounded this way: 

= (r - 2) + (i - l)m + (m + 1) 

=k-l 

as desired. 

Assume now that 0 = i - r+ 1. Clearly the quasi-progression Qt5 can use at most r iJ~L 1 
elements from a block B. There are two cases according to the parity of i. In each case the 

length of Qt5 is bounded from above: 

If i is even the extremal length occurs when Qt5 uses Is from the small beginning block, 

(i - 2)/2 intermediate blocks of size mi, and the large block of k - lones, so 

I!::; r i (r - 2) 1 i - 2 I mi 1 I k - 1 1 
i - r + 1 + -2-1 i - r + 1 + 1 i - r + 1 . 

OJ) 

If i is odd the extremal length occurs when Qt5 uses 1 s from (i - 1) /2 intermediate blocks 

of size mi, and the large block of k - lones, so 

I!<-- + . i-I I mi 1 I k - 1 1 
- 2 i-r+l i-r+l 0·2) 

Consider now the following upper bounds which, when substituted into inequalities (1.1) 

and (1.2), will show that I! ::; k - 1. 
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B 1· r mi l < . {2 1 2 2(r-I-m)} OUND . i-r+ I _ mm m - , m + i-I . 

. 2(r I m) . 
It suffices to prove that i-~~I ::; 2m - 1 + 7-~· Assume the contrary: i-~~I > 

2m - 1 + 2(r7~~m). Applying the assumption that 2r + 1 ::; i while solving for m, we find 

that 

(i - r + 1) (i - 2r + 1) 
i(i - 2r - 1) + 4(r - 1) > m. 

Because we have assumed that m ~ r - 1, it follows that 

(i - r + 1) (i - 2r + 1) -'------'--'---;----'-;- > r - 1. 
i(i-2r-l)+4(r-l) 

Consequently, 

o > (r - 1) [i(i - 2r - 1) + 4(r - 1)] - (i - r + 1) (i - 2r + 1) 

( 
2r - 5r+ 3) = (r - 2)(i - 1) i - --r ---2-

Because r > 2 and i > 1, we conclude that i < 2,.z;~;+3. However, since i > 2r we find that 

2r - 5r+ 3 
2r < r - 2 

which implies that r < 3, a contradiction. 

BOUND 2: r i~~~ I l ::; 2m. 

Assume, to the contrary, that i~~~1 > 2m. Substituting k = mi + r and solving for m 

produces the inequality i~;~2 > m. Because we have assumed that m ~ r - 1, it follows 

that i~;~2 > r - 1 which implies that i < 2r - 1, a contradiction. 

BOUND 3: r:~;:n ::; ~ + r - 2. 

It suffices to prove that :~;:i ::; ~ + r - 3. Assume, to the contrary, that :~;:i > ~ + r - 3. 

Equivalently, 

o > 2 (~ + r - 3 ) (i - r + 1) - 2i (r - 2) = (i + r - 3) (i - 2r + 2), 

a contradiction. 
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To complete the proof we show, using these bounds applied to inequalities (1.1) and 

(1.2), that £ :::; k - 1. Consider inequality (1.1): 

£:::; r i (r - 2) 1 i - 2 r mi 1 r k - 1 1 
i - r + 1 + -2- i - r + 1 + i - r + 1 

~ G+r-2) + (C~2>Zm_1)) +(Zm) 
=k-l 

Now consider inequality (1.2): 

£ :::; i ~ 1 r i _ 7~ 1 1 + r i ~ ~ ~ 1 1 
< ( C ~ 1) (2m + 2(r ~ ~ ~ m) ) ) + (2m) 

=k-l D 

Theorem 1.13. If k = mi + r for integers m, r such that 3 :::; r < 4 and r - 1 :::; m, then 

Q(k - i, k) = 2ik - 4i + 2r - 1. 

Proof Theorem 1.11 proves the upper bound and Theorem 1.12 proves the lower bound.D 

Theorem 1.14. If k ~ 2i and k 2 (mod i), then Q(k - i, k) = 2ik - 4i + 3. 

Proof Theorem 1.11 gives the upper bound Q(k- i, k) :::; 2ik-4i+3. Arguing in a manner 

similar to the proof of Theorem 1.12, one can show that 

is a 2-coloring of 1, ... , 2ik - 4i + 2 that avoids monochromatic k-term quasi-progressions 

of diameter k - i. D 

1.5 - Computational Results 

Landman [8] gave a table of maximal known 2-colorings avoiding quasi-progressions of 

length k and diameter k - i for various values of k and i. Here we present extended versions 
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Table 1.1: Verified and updated version of the table from [8] (i = 3) 

k Q(k - i, k) Maximal Valid Colorings 

3 3 9 24132113112311 , , 
4 3 19 36 

5 3 29 42324232 32423242 4132423241 3142324231 , , , 
6 3 27 315431 

7 3 37 66,316531 

8 3 39 627262 and 5 others 
9 3 45 618461 

10 3 55 96,619531,319561 

11 3 57 9210292 and 7 others 
12 3 63 9111491 

13 3 73 126,9112531,6112561,3112591 
14 3 75 122132122 and 9 others 
15 3 81 121144121 
16 3 91 156,12115531,9115561,6115561,31155121 

17 3 93 152162152 and 11 others 
18 3 99 151174151 

19 3 109 6 examples 
20 3 111 14 examples 
21 3 117 181204181 

of that table obtained using our own program. Results not included in the original table are 

indicated in bold; if the k and i values are bolded then the row did not appear in the original 

at all. A horizontal line separates the entries with k < 2i from the entries with k 2: 2i. The 

fact that Q( 13 - 5,5) = 115 is of particular interest; this is the easiest-to-compute value 

for which Landman's conjecture fails. 

A natural direction for further study is to try to obtain upper bounds similar to Theo

rem 1.11 for quasi-progressions with smaller diameter. While it seems unlikely that exact 

results can be obtained, it may be possible to get the correct order of growth. Landman 

proved Q( k - 1, k) = 2k - 1 and Theorem 1.11 says in essence that Q ( ~, k) :::; 2~. Ac

cordingly, we make the following conjecture. 

Conjecture 1.15. For a fixed positive integer r, there exists a constant c such that 

Q(~, k) :::; cl( 
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Table 1.2: Verified and updated version of the table from [8] (i = 4) 

k Q(k - i, k) Maximal Valid Colorings 

4 4 35 14 examples 
5 4 33 48 and 43 others 
6 4 49 544254 and 8 others 
7 4 65 6241624162416241,614162416241624161,4162416241624162 

8 4 51 417641 and 6 others 
9 4 65 88 418741 , 

10 4 67 839283 and 14 others 
11 4 75 6 examples 
12 4 83 8111681 and 6 others 
13 4 97 128 8112741 4112781 , , 
14 4 99 123 132123 and 20 others 
15 4 107 9 examples 
16 4 115 7 examples 
17 4 129 168, 12116741,8116781,41167121 

18 4 131 7 examples 
19 4 139 12 examples 
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Table 1.3: Verified and updated version of the table from [8] (i 2: 5) 

k Q(k - i, k) Maximal Valid Colorings 

5 5 178 96812 examples 
6 5 67 2252223222522232225222 
7 5 73 Four examples 
8 5 93 198 examples 
9 5 115 44 examples 

10 5 83 519851 and 25 others 
11 5 101 1010,5110951 

12 5 103 10 examples 
13 5 115 5110412210451 
14 5 123 5110213210213210251 
15 5 133 26 examples 
16 5 151 1510 10115951 51159 101 , , 
17 5 153 40 examples 

7 6 127 52256466664255246511566432362141, 
522564666642552466666432362141 

11 6 184 94 examples (see QPcirc) 
12 6 123 61 examples 
15 6 2: 161 6112514212561 

8 7 2: 194 7263634353377422552562575-
-12267472256226572133351 

9 8 2: 289 82836386822482622723782342252472-
-88578852484422168253442387428231 
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CHAPTER 2 

PRETENDING: THE ROW SPACE OF AN ADJACENCY MATRIX 

At the 21st British Combinatorial Conference, Peter Cameron posed this question: 

Question 2.1 (Cameron, [4]). Let G be a nonempty graph and letA be the adjacency ma

trix of G. Is there always a nonzero {O, 1 }-vector in Row A (over JR) that is not a row of 

A? 

While Cameron posed the question for vectors over the real numbers, lR, note that it 

suffices to work over the rational numbers, Q. 

2.1 - Introduction 

For basic linear algebra terminology, notation, and results, see [10]. For basic graph 

theory, see [14]. Recall the definition of the adjacency matrix of a graph. 

Definition 2.2. Let G be a graph with vertex set V(G) = {VI, V2, .. " vn}. The adjacency 

matrix of G, denoted A( G), is the n x n {O, 1 }-matrix with aij = 1 if and only if Vi and Vj 

are adjacent in G. 
u V w x 

u 0 1 1 0 

~ A(G) = 
1 0 1 1 
1 1 0 0 
0 1 0 0 w 

Definition 2.3. The rank of a graph G is the rank of A(G) (over JR). 

In their unpublished manuscript [1], Akbari, Cameron, and Khosrovshahi noticed that 

many graph parameters have bounds related to the rank of the graph. 

Proposition 2.4 ([1, p. 10-13]). Let G be a graph with rank r. Each of these graph param-

eters is bounded by a function of r. 

• The number of connected components (aside from isolated vertices) is at most l ~ J 
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with equality if and only if at most one component is complete tripartite and the rest 

are complete bipartite. 

• The clique number (jJ (G) S r, with equality if and only if G is a complete r-partite 

graph (possibly with isolated vertices). 

• The chromatic number X( G) is bounded by some function of r, but Raz and Spieker 

[11] have shown that X (G) is not bounded by any polynomial function of r. 

• For fixed k, the smallest number of factors in an edge partition into complete k-partite 

graphs is bounded by an unspecified function of r. 

• If G has no isolated vertices, then the domination number r( G) S r with equality if 

and only if G is a complete bipartite graph Kk,l with k, I ;::: 2. 

• If G has no isolated vertices, then the total domination number r t (G) S r with equality 

if and only if each component of G is complete bipartite. 

• If G is connected, then the diameter diam G S r. 

• The order of the largest composition factor of the group Aut( G) which is not an al

ternating group is bounded by r but not by a polynomial function of r. 

They are able to say more, but first we need some definitions. 

Definition 2.5. Let G be a graph and let u, v E V(G). If N(u) = N(v) then we say that u 

and v are twins in G. 
-+ 

Isolated vertices will induce 0 as a row of A ( G). Twin vertices will produce two copies 

of the same row in A ( G). Therefore adding or deleting isolated vertices or twin vertices will 

not affect the rank of G. 

Definition 2.6. A simple graph G is said to be a reduced graph if and only if G has no 

isolated vertices and G has no twins. 

Akbari, Cameron, and Khosrovshahi prove that there are only finitely many reduced 

graphs with a given rank. They give a lower bound on m(r), the largest order of a reduced 
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graph with rank r: 

2(r+2)/2 - 1 if r is even 
m(r) 2: 

5 . 2(r-3)/2 - 1 if r is odd and r > 1 

and conjecture that their bound is actually the correct value. If every graph has a vector as 

described in question 2.1, then m(r) is an increasing function. Thus we will reformulate 

question 2.1 as a conjecture. 

Conjecture 2.7. If G is a reduced graph then RowA(G) contains a nonzero {O, l}-vector 

that is not a row of the matrix. 

Definition 2.8 (hood vector). Let M be a {O, 1 }-matrix and let v E Row M be nonzero. 

We say v is a hood vector if v is a {O, 1 }-vector and v is not a row of M. If M = A( G) for 

some graph G, we also say that v is a hood vector of G. 

Rephrased in this language, Conjecture 2.7 says that every reduced graph has a hood 

vector. A hood vector of a graph 'looks like' the rows of A(G), which correspond to the 

neighborhoods of vertices of G. Thus the hood vector 'looks like' a neighborhood in G. 

Definition 2.9. Let G be a graph with a hood vector v. The shadow neighborhood of v in 

G is the set of vertices whose corresponding position in v is equal to 1. 

Definition 2.10. Let v be a vertex of a graph G. The neighborhood vector of v, denoted 
---+ 

N( v), is the row of A (G) corresponding to v. 

2.2 - Basic Results 
...... 

Any graph whose adjacency matrix has full rank will have 1 as a hood vector. Costello 

and Vu [5] have shown that the adjacency matrix of a random graph will almost surely have 

full rank. This suggests that a probabilistic approach will not yield the result. It may be 

fruitful to find some properties that any counterexample to Conjecture 2.7 must satisfy. 

Lemma 2.11. In any counterexample G to Conjecture 2.7, every edge of G must lie on a 

triangle. 
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Proof Assume G has an edge uv not on a triangle. This implies N( u) nN( v) = 0. Therefore 
---+ --+ 

N( u) + N( v) is a {O, 1 }-vector. Any vertex with this vector as its neighborhood would have 

to be adjacent to both u and v, which is impossible. Thus, the vector produced is a hood 

vector. o 

Proposition 2.12. Let G be a counterexample to Conjecture 2.7. If u and v are vertices of 

G with disjoint neighborhoods, then there exists a vertex w such that N( w) = N( u) U N( v). 
---+ --+ 

Proof The vector N(u) + N(v) is a {O, 1 }-vector that is 1 exactly in the positions corre-

sponding to N(u) U N(v). 

Corollary 2.13. If G is a counterexample to Conjecture 2.7 then diam G ~ 4. 

Proposition 2.14. If G is a counterexample to Conjecture 2.7 then diam G ~ 3. 

Proof Corollary 2.13 tells us that diam G ~ 4, so assume diam G = 4 to obtain a contradic

tion. Let u and v be vertices of G such that d(u, v) = 4. Not only are the neighborhoods of u 

and v diSjoint, we also know that no edges run between these neighborhoods. Let w E N( v). 

~-========~w v --------
--------

----------
---+ --. 

The vector N(u) + N(w) is a {O, 1 }-vector since no edges run between N(u) and N(v). 

This vector is 1 on v, all vertices in N( u), and possibly on some other vertices of no conse

quence. If this vector were the neighborhood vector of a vertex, that vertex would have to 

be in N(v) and adjacent to vertices in N(u), which is impossible. o 

Lemma 2.15. In any counterexample G to Conjecture 2.7, every triangle of G must be 

contained in a K4 or an induced lolliop L3,1. 

Lollipop ~,I 

Proof To obtain a contradiction assume that u, v, and ware vertices in G of a triangle not 

contained in any K4 or L3,1. Thus every vertex of G is adjacent to exactly ° or 2 of u, v, and 
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---+ ---+ ----+ 

w. Therefore the vector !N(u) + !N(v) + !N(w) is a {a, 1 }-vector. This vector describes 

a neighborhood containing u, v, and w, which implies the vector is a hood vector since no 

vertex in G is adjacent to all three of u, v, and w. o 

We can use Lemma 2.15 to obtain a nice result, but first we need some definitions. 

Definition 2.16 (From [14, p. 281]). Let G be a simple graph. 

A triangle T is odd if and only if some vertex of G is adjacent to an odd number of 

vertices of T. That is, there exists v E V( G) such that IN( v) n V( T) I is odd. 

A triangle T is even if and only if every vertex of G is adjacent to an even number of 

vertices of T. That is, for all v E V( G) we have IN( v) n V( T) I is even. 

Thus Lemma 2.15 says that in a counterexample, every triangle must be odd. Cameron 

stated that Conjecture 2.7 is true for line graphs. We can now prove this result using this 

characterization of line graphs ([12], paraphrased from [14, p. 281]): 

Theorem 2.17 (van Rooij and Wilf, 1965). The graph G is a line graph if and only if G is 

claw-free and no induced diamond of G has two odd triangles. 

Claw K1,3 Diamond K4 - e 

Theorem 2.18. Every line graph has a hood vector. 

Proof Let G be a line graph. If G has an induced diamond, then by Theorem 2.17 at least 

one of the triangles must be even and so G must have a hood vector. If G does not contain an 

induced diamond then G is claw-free. Every edge of G must be on a triangle by Lemma 2.11. 

Take a maximal clique C in G. Since every edge of G is on a triangle, C must have at 

-+ 
least three vertices. If C = G then A (G) has full rank and so 1 is a hood vector. Otherwise, 

choose a vertex v of G which is adjacent to some U E V( C) but is not itself in C. Since 

C is maximal, there is some w E V( C) such that v is not adjacent to w. In fact v cannot 

be adjacent to any vertex in C except u, since if there were some x E V( C) adjacent to v, 

{u,x, w, v} would induce a diamond. 
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Thus, G is composed of maximal cliques (each containing at least three vertices) joined 

at single vertices. Furthermore, since G is claw-free no vertex can be in more than two such 

cliques. Call this collection of maximal cliques M. We divide into cases based on 1M I. 
Case 1. If 1M I = 1 then G is a complete graph, a situation previously handled. 

Case 2. If 1M I = 2 then G is a pair of cliques Kk and K[ joined at a vertex v. We can obtain 
-+ 
1 as a hood vector G using the linear combination 

r = LaNW+bNM+ LcNW 
xEKk \ {v} xEKI\{ v} 

where a, b, c satisfy 

(k-2)a+b= 1 (k - l)a + (1- l)c = 1 b + (1- 2)c = 1 

This linear system has the solution 

2 -l 
a=------

3l + 3k - 2kl - 4 
b = 1 + k - kl 

3l + 3k - 2kl - 4 

2-k 
c=------

31 + 3k - 2kl - 4 

To see that this solution is always valid, assume 3l + 3k - 2kl - 4 = O. Then 

3k - 4 2k - 3 + k - 1 k - 1 
l=2k-3= 2k-3 =1+2k-3 (2.1) 

Since every clique in M has at least three vertices, k ~ 3 and 

(2k - 3) - (k - 1) = k - 2 ~ 3 - 2 = 1 > 0 

Therefore 2k - 3 > k - 1. But then equation 2.1 forces 1 < 1 < 2, which cannot possibly 

be a valid value for l. Thus the solution to this linear system is always valid. 

Case 3. If 1M I ~ 3, there are two possibilities. 

Case 3.1. First, suppose M contains three cliques X, Y, Z which all pairwise intersect. They 

do so at distinct vertices VXy, Vxz, and Vyz. Let z E Z \ {vxz, vyz}. This means z is adjacent 

to Vxz and Vyz but not VXy. Therefore {VXy, Vxz, vyz} induces a diamond, contradicting our 

assumptions. 
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Case 3.2. On the other hand if M has no triple that all pairwise intersect, then taking 

x, Y, Z E M, we can assume without loss of generality that X and Z do not intersect. If 

there exist x E X and z E Z such that x is not in a clique containing an element of Z and z 
------. ---+ 

is not in a clique containing an element of X, then the {O, 1 }-vector N(x) + N(z) is a hood 

vector. 

If such elements do not exist, then (without loss of generality) every element of X shares 

ac1ique with an elementofZ. Letx\ ,X2,X3 EX. There existz\, Z2, Z3 E Zand Y\, Y2, Y3 E M 

such that Xi, Zi E V( Y;). Since M has no triple that all pairwise intersect, two of {Y\, Y2 , Y3 } 

must not intersect; without loss of generality we will assume Y\ and Y2 do not intersect. - - - -Then the {O, 1 }-vector 4N(x\) + 4N(X2) + 4N(z\) + 4N(Z2) is a hood vector. 

All the cases are accounted for and thus we have the result. D 

One might be tempted to try to build a counterexample to Conjecture 2.7 by starting 

with some base graph and appending vertices corresponding to hood vectors in hopes of 

extinguishing the list. This next proposition shows that such an approach is unlikely to suc-

ceed. 

26 



Proposition 2.19. Let 0 be a graph with a hood vector X. Let 

----- --+ -------+- ----+ x = cIN(vI) + ... + CkN(Vk) + ck+IN(vk+l) + ... + cnN(vn) 

where VI, ... , Vk are the vertices in the shadow neighborhood of x and Vk+I, ... , Vn are 

the other vertices of O. Let 0' be the graph obtained from 0 by appending the vertex with 

neighborhood vector X. If CI + ... + Ck =1= 0 then 0' also contains a hood vector. 

Proof Append the vertex Vn+1 with neighborhood VI, V2, ... , Vk and let 

r = CI + C2 + ... + Ck =1= 0 

We can obtain a new hood vector y = \YI, ... ,Yn) by letting 

-+ CI ---+ Cn ---+ r - 1 ----. 
Y = rN(vd + ... + rN(vn) + -r-N(vn+l) 

which will produce 

YI = Yz = ... = Yk = Yn+1 = 1 Yk+1 = ... = Yn = 0 

which cannot be the neighborhood vector of any vertex since no vertex in 0 had neighbor-

hood VI, V2, ... , Vk. o 

2.3 - Generalization 

What is the adjacency matrix of a graph? Ultimately, it is just a symmetric {O, 1 }-matrix 

with 0 on the main diagonal. If Conjecture 2.7 is true, then it seems reasonable to ask 

whether each of these conditions is necessary. Perhaps Conjecture 2.7 follows as a corollary 

to a more general statement. 

Question 2.20. Does every {O, 1 }-matrix have a hood vector? 

The answer is no, as this example shows. 

Example 2.21 ({O, 1 }-matrix with no hood vectors). The matrix M has no hood vectors. 

0 1 1 0 0 1 1 
1 1 0 1 1 0 0 
1 0 1 0 1 1 1 

M= 1 1 0 1 0 1 1 
0 1 1 0 1 0 0 
1 0 1 1 0 0 1 
1 0 1 1 0 1 0 
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Proof In reduced row echelon form M is 

1 ° ° ° ° ° 
7 
:2 

° 1 ° ° ° ° 
3 
:2 

° ° 1 ° ° ° 
1 
:2 

° ° ° 1 ° ° -3 

° ° ° ° 1 ° -2 

° ° ° ° ° 1 -1 

° ° ° ° ° ° ° 
Thus rankM = 6 and n = (7,3,1, -6, -4, -2, -2) E NuIM. Moreover Span{n} = 

NuIM, so vectors in NulMhave the form k· n for some k E R Suppose a = (ai) E Row M. 

Then 

and so 

If a is a non-zero {O, 1 }-vector, then since all the left-hand coefficients are odd and all the 

right-hand coefficients are even, a must have a 1 in exactly two of the first three positions. 

Therefore the following solutions are the only possible. 

7+3+0=6+4+0+0 (1,1,0,1,1,0,0) = r; 

7+3+0=6+0+2+2 (1,1,0,1,0,1,1) =r: 

7+0+1=6+0+2+0 (1,0, 1, 1,0, 1,0) = r; 

7+0+1=6+0+0+2 (1,0,1,1,0,0,1) = ~ 

7+0+1=0+4+2+2 (1,0,1,0,1,1,1) = r; 

0+3+1=0+4+0+0 (0,1,1,0,1,0,0) = r; 

0+3+1=0+0+2+2 (0, 1, 1,0,0, 1, 1) = iT 

Thus a must be a row of M, and so M has no hood vectors. o 
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Note that M is not symmetric and has some 1 s on the main diagonal. Further, MT has 

forty hood vectors. Thus it seems unlikely that a simple modification to M will produce a 

counterexample to Conjecture 2.7. 

0 1 1 [!] 0 1 1 
1 0 01 1 0 0 
100 0 1 1 1 

M= o 10 0 0 1 1 
o 1 1 0 0 0 0 
1 0 1 1 0 0 1 
1 0 1 1 0 1 0 

That said, example 2.21 generalizes to an entire family of {O, 1 }-matrices without hood 

vectors. 

Example 2.22. Let m be even. Then the matrix M has no hood vectors. 

m 
A , 

0 1 1 0 0 1 1 1 
1 1 0 1 1 0 0 0 
1 0 1 0 1 1 1 1 
1 1 0 1 0 1 1 1 

M= 0 1 1 0 1 0 0 0 
1 0 1 1 0 0 1 1 
1 0 1 1 0 1 0 1 

1 0 1 1 0 1 1 0 

Proof We will construct a vector Ii E NulM that is orthogonal only to non-zero {O, 1}-

vectors that are rows of M. Let Ii = (a, b, c, x, y, w, w, ... , w). Then if Ii E Nul M, 

b+c+mw = 0 a+b+x+mw = 0 

a+b+x+y=O b+c+y=O 

a+c+ y+mw = 0 a+c+x+(m-l)w=O 

Thus 

y=mw x = (m + l)w 
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And so 

a+b+(2m+l)w=0 

a+c+2mw = 0 

b+c+mw = 0 

a = -(3m + l)w/2 

b = -(m + l)w/2 

c = -(m - l)w/2 

Letw = -2. Then Ii = (3m+l,m+l,m-l,-2m,-2m-2,-2,-2, ... ,-2).By 

construction Ii E NuIM. On the other hand, if y . Ii = 0 for some non-zero {O, 1 }-vector 

Y, then exactly two ofthe first three entries in y must be 1, and all possible ways to balance 

such a sum are already present in M. D 

Each member of this infinite family of examples has one asymmetry and four non-zero 

values on the main diagonal. However, the transposes of these matrices contain many hood 

vectors. Example 2.32 will show another family of {O, 1 }-matrices that avoid hood vectors 

in the matrix as well as the transpose, but that have a non-constant number of asymmetries 

and non-zero entries on the main diagonal. Furthermore, example 2.33 shows that there is 

a family of symmetric {O, ~, 1 }-matrices without hood vectors. 

These examples show that if Conjecture 2.7 is true then it is close to the best possible 

statement. It is hard to imagine that the main diagonal entries are of actual importance, so 

it is reasonable to strengthen Conjecture 2.7 by removing this requirement. 

Conjecture 2.23. Every symmetric {O, 1 }-matrix has a hood vector. 

2.4 - Searching and Verification 

This section investigates algorithmic aspects of the problem of finding hood vectors. By 

expressing the problem of finding a hood vector as an integer linear program we can enlist 

powerful computer libraries and toolkits to assist us in our search for a counterexample. We 

also develop a short certificate that allows us to quickly count the number of hood vectors 

without explicitly listing them. Linear algebra provides the framework for both aspects. 

Recall the following well-known theorem: 
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Theorem 2.24. Given a basis or, ... , n; for NuIM, a vector x E Row M if and only if 

x . Ii; for all i E [k]. 

Thus, if we have a basis for Nul M we can easily check if a given vector is in Row M. 

That test will become the linear program. We will approach the certification problem by 

producing a substitute for the basis, called a monopole. 

Linear Programming 

Let r;, ... , r: be the rows of the matrix M, let dj be the weight of row i, and let or, ... , n; 
be a basis for NuIM. Suppose we are given a {a, 1 }-vector x and we want to check if it is 

a hood vector of M. 

To ensure x is not already a row of our matrix, we can check that it differs in some 

position from each r;. Since x and r; are both {a, 1 }-vectors, x· r; will count the number 

of positions in which x and r; are both 1. Similarly (1 - x) . (1 - r;) will count the 

number of positions in which x and r; are both 0. Thus 

and therefore 

n ~ x . rj + 1 - x . 1 - rj -- (- -) (- -) 
n n 

= LXj' rij+ L(1-Xj)' (1- rij) 

j=l j=l 

n 

= L Xj . rij + 1 - Xj - rij + Xj . rij 

j=l 

n n 

j=l j=l 

n 

= L (2xj . rjj - Xj) + n - d j 

j=l 

n 

d j ~ LxA2rij - 1) 
j=l 

n 

j=l 

where equality holds if and only if x = r;. 
With this in mind we can formulate the problem of finding a hood vector as an integer 

linear program: 
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Maximize: 

i=1 

Subject to: 

n 

L Xj . nij = ° for all i E [k] 
j=1 

n 

LXj(2rij - 1) ~ di - 1 for all i E [n] 
j=1 

Xi E {a, I} for all i E [n] 

(2.2a) 

(2.2b) 

(2.2c) 

This program will return a {O, 1 }-vector of maximum weight in Row M that is not a row 
--. --. 

of M. Thus, if it does not return 0 it will return a hood vector, and if it does return 0 then 

M has no hood vectors. 

To find the dual problem we need to first replace the equality constraint 2.2a with a pair 

of inequality constraints. 

n 

L Xj . nij ~ ° for all i E [k] 
j=1 

n 

- '" x· . n·· < ° for all i E [k] L....tJ 1)-

j=1 

We also need to replace the integer linear program with its fractional relaxation by loos-

ening constraint 2.2c: 

Xi ~ 1 for all i E [n] (2.2c') 

Xi ~ ° for all i E [n] 

We introduce dual variables: at, ... , at for constraint 2.2a+; aj, ... , aJ; for constraint 

2.2a-; b l , ... , bn for constraint 2.2b; and Cb ... , Cn for constraint 2.2c'. The dual problem 

is given by: 

Minimize: 

n n 

Lbi(di - 1) + LCi 
i=1 i=1 
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Subject to: 
k n 

Cj + L:nij(at - at) + L:b;(2rij - 1) ~ 1 for allj E [n] 
;=1 ;=1 

at, at ~ ° for all i E [k] 

b;,c; ~ Oforalli E [n] 

Monopoles 

When an n x n matrix M has rank n - 1, we can use row reduction to obtain a nice 

integer vector v such that Span{ v} = NuIM. Thus we can check if a given {a, 1 }-vector 

is in Row M by checking if it is orthogonal to v and we can count how many {O, 1 }-vectors 

are in Row M by counting how many subcollections of {VI, ... ,Vn } sum to 0. If M has 

rank less than n - 1 it is not immediately obvious that we can find a vector with the same 

properties as v but we will establish that such a vector always exists. 

Definition 2.25 (monopole). We say that v E 7l.n is a monopole for a matrix M if for all 

{a, 1 }-vectors X, 

X E Row M if and only if x . v = ° 
We say v is a monopole for a graph G if v is a monopole for A ( G). 

Theorem 2.26. Every {a, 1 }-matrix has a monopole. 
-4 

Proof LetMbe a {a, 1 }-matrix with n columns. If Mhas full rank then 0 is a monopole for 

M. Otherwise, let {or, ... , i4} be a basis for Nul M and assume (without loss of generality) 

that ii7 E 7l.n for all i E [k]. 

Define ml, ... , mk by 

mj = -+ max n { I x . OJ I } 
XE{O,I} 

= max { (sum of the positive entries of OJ), I sum of the negative entries of Ojl } 

and define Cl, ... , Ck recursively by 

Cl = 1 
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Now let v E zn be defined as 

k 
-. '\""" -. v = L-,Ci· 0i 

i=1 

We will show that v is a monopole for M. Let x E {O, 1 r. 
Assume x E Row M. By Theorem 2.24 x· OJ = 0 for allj E [k]. 

~ -+- -+ -+ 

( 

k ) x . v = X· L Ci . 0i 

1=1 

k 
'\""" -.-. 

= L-, Ci . X . 0i 

i=1 

=0 

Now assume x· v = O. By Theorem 2.24 it suffices to show x· OJ = 0 for allj E [k]. 

Suppose not. Let 1= max{i I x· 0; i= o}. 

Therefore 

I-I 
'\""" -. -. -.-. o = L-, Ci • X . 0i + CI . X . 01 + 0 
i=1 

I-I 

CI :::; ICI . X . ~I = L Ci . X . 0; 
i=1 

I-I 

:::; L Ci . I x . 0;1 by the triangle inequality 
i=1 

I-I 

< '\""" c· . m· - L-, 1 1 

i=1 

< CI 

a contradiction. Thus x· OJ = 0 for allj E [k]. 
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Example 2.27. Neither M nor MT has any hood vectors. 

1 1 1 0 1 1 0 
1 1 0 1 1 0 1 
0 1 0 0 0 1 0 

M= 1 0 0 0 0 0 1 
1 1 0 0 0 1 1 
1 0 1 0 1 0 0 
0 1 0 1 1 0 0 

Proof In reduced row echelon form M is 

a b c d e f g 

1 0 0 0 0 0 1 
0 1 0 0 0 1 0 
0 0 1 0 1 0 -1 
0 0 0 1 1 -1 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 

Where e,j, g are independent variables. By choosing 

e = 3° = 1 f= 31 = 3 g = 32 = 9 

We obtain the monopole 

a b c d e f g 

Ii = (-9, -3, 8, 2, 1, 3, 9) 

1 1 1 0 1 1 0 
1 1 0 1 1 0 1 
0 1 0 0 0 1 0 

M= 1 0 0 0 0 0 1 
1 1 0 0 0 1 1 
1 0 1 0 1 0 0 
0 1 0 1 1 0 0 
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It is easy to see from the construction that Ii is orthogonal to every row of M. Suppose 

a = (ai) is a {O, I }-vector orthogonal to Ii. Then 

a· Ii = -9al + -3a2 + Sa3 + 2a4 + las + 3a6 + 9a7 = 0 

and so 

(2.3) 

If we can show that equation 2.3 has exactly seven non-zero solutions then it follows that M 

has no hood vectors. We do not count the solution where both sides sum to zero, since that 

represents -0. v = O. The right-hand side can sum to 0,3,9, or 12 in exactly one way each. 

Right 
sum ways 

0 1 
3 I 
9 1 

12 1 

We will construct a similar table for the left-hand side by considering each term in se

quence. At first, the only possible sum is O. After considering S, we have one way to get 0 

and one way to get S. When considering x, to determine the number of ways to get i, we 

just need to consider how many ways we could get i or i-x in the previous step. Figure 2.1 

illustrates this process. After considering all the terms on the left-hand side we will have a 

table similar to the one we obtained for the right-hand side. 

For each possible sum i, let li be the number of ways to obtain the sum i on the left and 

ri be the number of ways to obtain the sum i on the right. The total number of solutions to 

equation 2.3 will then be 

Lri·li 
i 

left r:-r-:-r-=-,......~r--=-,---::-r=-.--=-~'t-:-::-r:-:-r--"t--,---r:-:r:-:r:-::::r:-::-r:-::-r-:-r--.-:-:-r--1 
sum~~~~~~4-1-~~~~~~~~~~~~~~~F=~ 
ways 

L-L-L-+-~~~~~~-r-L-r-+~~~~~~~L-L-L-~ 

right .--.--.--+-~""'--r---.---.--~-r-r--r-l 
sum 

r-r-r-+-~~~~~~-r~-r-l 

ways~~~~~~~~~~~~~~ 
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consider 8 

consider 2 

sum 
~r-r-r-r-~~~+-+-~ 

waysLIT~~~~~~~~~~ 

consider 1 

sum~~~~~~~~~~~~ 
ways~~~~~~~~~~~~ 

consider 3 

sum 
~r-r-r-r-r-r-r-~~~~~+-~ 

ways~LITLITLIT~~~~~~~~~~~ 

consider 9 

sum 
~r-r-r-r-r-+-~+-+-+-+-+-+-+-~+-+-+-+-+-+-+-~ 

ways~~~~~L-L-~~~L-~~~L-L-~~~~~~~~ 

Figure 2.1: Building the table of possible sums using dynamic programming 

Thus in this case the number of valid solutions is 2 . 1 + 2 . I + 3 . 1 = 7. Therefore M has 

no hood vectors. The argument for MT is similar. o 

We can describe the general version of the technique we used in example 2.27 to count 

vectors orthogonal to the monopole, but first let us establish some simple facts about the 

structure of monopoles for counterexamples to Conjecture 2.7 and Conjecture 2.23. 
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Lemma 2.28. Let n ~ 2 and let M be a n x n symmetric {O, 1 }-matrix. If M has a row of 

weight 1, then M has a hood vector. 

Proof To obtain a contradiction assume M has no hood vectors. Let v be the row of weight 

1. For each row u =I- v, either u + v or u - v is also a row of M. Thus every column 

of M must have weight 0 or at least 2. But M has a row of weight 1, contradicting that M is 

symmetric. o 

Proposition 2.29. Let n ~ 2 and let M be an n x n symmetric {O, 1 }-matrix. Let v = 

(VI, ... , vn ) be a monopole for M. If Vi = 0 for some i E [n] then M has a hood vector. 

Proof Without loss of generality we may assume Vn = O. Since v . (0,0, ... ,0, 1) = 0, M 

has a row of weight 1. Thus M has a hood vector by Lemma 2.28. o 

Therefore the monopoles of any potential counterexample to Conjecture 2.7 or Conjec-

ture 2.23 cannot have a 0 in any position. -Proposition 2.30. LetMbe a {O, 1 }-matrix with no row equal to 0 and let vbe a monopole 

for M. If v does not have 0 in any position and has exactly one negative (or exactly one -positive) entry then M has 1 as a column. 

Proof Without loss of generality assume Vn is the only negative entry of V. Let r be a row 

of M. We need to show rn = 1. 

rl . VI + ... + rn-I . Vn-I + rn • Vn = 0 

rl . VI + ... + rn-I . Vn-I = -rn . Vn (2.4) 

Since r =I- 0, both sides of equation 2.4 must be nonzero. But the only way the right-hand 

side is nonzero is if rn = 1. Therefore the nth entry of every row of M is a 1 and so the nth -column of M is 1. o -Since 1 cannot be a column of the adjacency matrix of a graph, any monopole for a 

counterexample to Conjecture 2.7 must have at least two negative (and symmetrically, at 

least two positive) entries. 

Returning to the problem of counting hood vectors, suppose we have a monopole v = 

(VI,"" Vb -Vk+I,"" -Vn ). Without loss of generality suppose VI ~ V2 ~ .•• ~ Vk > 0 
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and Vk+1 ~ Vk+2 ~ ... ~ Vn > 0 (recall that Proposition 2.29 guarantees Vi =I- 0). Given 

a = (ai) is a {O, 1 }-vector orthogonal to n, we have 

(2.5) 

Thus the number of solutions to equation 2.5 is equal to the number of ways in which a 

subcollection of {VI, ... , Vk} sums to the same value as a subcollection of { Vk+I, ... , vn }. 

Phrased this way we have the enumeration version of the subset sum problem, a variant of the 

well-studied knapsack problem. This problem admits a pseudo-polynomial time algorithm 

via dynamic programming-the very algorithm we used in example 2.27 and illustrated in 

figure 2.1. 

Example 2.31. Neither M nor MT has any hood vectors. The bolded entries are the only 

asymmetries in M. 

1 1 0 0 1 0 1 0 1 1 0 1 0 
1 1 0 0 0 1 1 0 1 0 1 0 1 
0 0 1 1 1 0 0 1 1 1 0 1 0 
0 0 1 1 0 1 0 1 1 0 1 0 1 
0 1 0 1 0 0 0 0 0 1 0 1 0 
1 0 1 0 0 0 0 0 0 0 1 0 1 

M= 
1 1 0 0 0 0 0 0 0 1 1 0 0 
0 0 1 1 0 0 0 0 0 0 0 1 1 
1 1 1 1 0 0 0 0 0 1 1 1 1 
1 0 1 0 1 0 1 0 1 0 0 1 1 
0 1 0 1 0 1 1 0 1 0 0 1 1 
1 0 1 0 1 0 0 1 1 1 1 0 0 
0 1 0 1 0 1 0 1 1 1 1 0 0 
abcd efgh j kim 

Proof In reduced row echelon form M is 
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a b c d e j g h j k I m 

1 0 0 -1 0 0 0 0 0 0 1 -1 0 
0 1 0 1 0 0 0 0 0 1 0 1 0 
0 0 1 1 0 0 0 0 0 0 0 1 1 
0 0 0 0 1 0 0 1 1 1 0 0 -1 
0 0 0 0 0 1 0 1 1 0 1 -1 0 
0 0 0 0 0 0 1 -1 0 -1 -1 1 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 

This corresponds to 

a= d-k+l e=-h-i-j+m 

b=-d-j-l j=-h-i-k+l 

c=-d-l-m g= h+j+k-l-m 

Where d, h, i,j, k, l, m are independent variables. By choosing 

d = 3° = 1 

We obtain the monopole 

j = 33 = 27 

k= 34 = 81 

1 = 35 = 243 

m = 36 = 729 

abc de j g h j k 1 m 

\ 163, -271, -973, 1, 690, 150, -861, 3, 9, 27, 81, 243, 729) 

Verifying that there are exactly thirteen {O, 1 }-vectors orthogonal to this monopole is left 

as an exercise to the reader. D 

The matrices in example 2.27 and example 2.31 both come from a larger family of ma-

trices without hood vectors. 
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Example 2.32. Neither Mk nor M[ has any hood vectors. 

Let Dk be the 2k x 2k matrix with 2 x 2 blocks of 1 s along the main diagonal and 0 

elsewhere. For example, 

1 1 0 0 0 0 
1 1 0 0 0 0 

D3= 
0 0 1 1 0 0 
0 0 1 1 0 0 
0 0 0 0 1 1 
0 0 0 0 1 1 

Let Ak be the 2k x 2k - 1 matrix whose columns are indicator vectors for a nonempty 

subset of [k] with each entry repeated twice. For example, 

{I} {2} {3} {1,2} {1,3} {2,3} {1,2,3} 

1 0 0 1 1 0 1 
1 0 0 1 1 0 1 

A3 = 0 1 0 1 0 1 1 
0 1 0 1 0 1 1 
0 0 1 0 1 1 1 
0 0 1 0 1 1 1 

Let Olmxn be the m x n matrix whose entries alternate 0 and 1 in both row and column 

and with 0 in the upper-left entry. Let lOmxn be the same except with 1 in the upper-left 

entry. For example, 

O1,x4 = [! ~ ! ~ 1 
Recall that J is the all-ones matrix. For a given k, 

Dk 102kx2 Ak 
102k+2X2k 

OlzX2k 

0 
AT k AT k 

102kX2k+2 Ak J-Dk 

41 



Example 2.33. For each member of the family described in example 2.32, the matrix ob

tained by replacing the upper-left and lower-right blocks with ~J and swapping columns 

2k + 1 and 2k + 2 yields a symmetric matrix with no hood vectors. 

2.5 - Conclusion 

Thus far we have been unable to transform the families of matrices described in exam

ple 2.32 and example 2.33 into a counterexample to Conjecture 2.23. However we believe 

that Conjecture 2.23 is false and that some variation of these families should provide the 

counterexample, and possibly even a counterexample to Conjecture 2.7. If Conjecture 2.7 

or even Conjecture 2.23 is true, example 2.32 and example 2.33 demonstrate that it is true 

by a very narrow margin. Coupled with Costello and Vu's result [5] about random graphs, 

it is understandable that this problem is so resistant to attack. 

Monopoles provide an interesting side channel for attack. Given a monopole, we can 

count the number of {a, 1 }-vectors orthogonal to the monopole using the dynamic pro

gramming approach. In practice this algorithm can test hundreds of millions of monopoles 

per second on a desktop computer. With enough information about the structure of the 

monopoles of a potential counterexample we may be able to reduce the search space to 

a feasible size for a brute-force search. Proposition 2.29 and Proposition 2.30 are first steps 

in this direction. If a monopole has very few negative (or symmetrically, very few positive) 

entries then the search algorithm can be made even more efficient by limiting the growth of 

the dynamic programming table. Proposition 2.30 showed us that we cannot hope to have 

just a single negative entry, but will two suffice? Or perhaps three? In general a constant 

bound is unlikely, but perhaps there is a reasonable bound if we restrict ourselves to graphs 

of order at most n. 
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CHAPTER 3 

QUERYING: YAO'S PROBLEM 

Many fundamental problems in computer science involve storage and retrieval of infor

mation. Given tables of data, for instance the names of all the employees of a business, a 

storage scheme is devised to record the data in some manner. The retrieval aspect may be 

concerned with whether a certain entry is present in the table; call this question the member

ship question. Some algorithm is invoked to inspect the data and return a yes or no answer 

to the membership question. 

The naIve approach to answering the membership question is to inspect, or query, every 

cell of the table to see if it contains the data in question. If the table has n cells and we 

ask the membership question for an element that is not in the table, then this algorithm will 

require n queries to decide the membership question. But remember, we also have control 

over how data is stored. Suppose the table is sorted upon storage. Now a binary search can 

answer the membership question in at most flg(n + 1)1 queries. The extra time required to 

sort the table will be easily eclipsed by the time saved over multiple searches. 

3.1 - Introduction 

In 1981, Andrew Yao asked, 'Should tables be sorted?' [16]. In particular, he wondered 

if some restriction on the data could allow us to answer the membership question in fewer 

queries than the traditional sort/search described above. 1 He supposed that the table con

tained n elements chosen from a set of m elements (called the key space and denoted M), 

rather than from a potentially infinite set. Letf(n, m) be the number of queries needed in the 

worst case to answer this membership question. He showed that if the key space is signifi-

1 Binary search on a sorted table is not uniquely the fastest approach. There are other approaches, notably 
hashing or interpolation search that will perform better for certain applications but the worst-case scenarios 
still require a number of queries that is at least logarithmic in n. 
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cantly larger than the table then the traditional approach is optimal. That is, 

m ~ n ===> J(n, m) = flg(n + 1)1 

But when m and n are relatively close in size another store/query strategy can yield improved 

performance. 

He then looked at the question from a different angle: for a fixed k and fixed n, what is 

the largest m such that we can answer the membership question using at most k queries? Let 

g(n, k) be the largest m such thatf(n, m) = k. 

To obtain a simple lower bound, consider the case when m = n + 1; i.e., the table 

contains all but one element of the key space. Picture the key space as a sorted list wrapping 

around at the ends. Choose the element that is the successor to the missing element and 

place it in the first cell in the table. Now we can answer the membership question in one 

query by querying the first cell in the table. That will tell us which element is missing and 

by extension, which elements are present. Thus g(n, 1) ~ n + 1. 

However this simple approach does not fully take advantage of the tools at our disposal; 

we just blindly query the first entry of the table. More sophisticated techniques will yield 

improvements. Yao answered this question for k = 1 and so determined g(n, 1). 

Theorem 3.1 (Yao, [16]). 

g(n, 1) = 
3 if n = 2 

2n - 2 if n > 2 

Proof We will establish that for n > 2, g(n, 1) ~ 2n- 2 by providing a store/query strategy. 

Proving that 2n - 2 is best possible takes up several pages in [16] so the argument is omitted, 

but Theorem 3.2 will establish that 2n is impossible. 

Let m = 2n - 2. To establish a labeling scheme, suppose that we could force more than 

two keys to fit into a cell of the table. We could then fit the entire key space into the table by 

placing two keys in each of the first n - 2 cells, and one key in cells n - 1 and n. Label the 

keys in cell i by choosing one to be Kf (the 'lower key') and the other to be Kf (the 'upper 
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key'). Treat the lone keys in cells n - 1 and n as lower keys; these cells have no upper key. 

This gives our labeling for the key space: M = {KY, . .. ,K~, KY, . .. ,K~_2}' 

KU 
1 KU 

2 K~_2 

KL KL 
1 2 K~_2 K~_l KL 

n • • • 

1 2 n-2 n-l n 

Given a set N of n keys with which to fill the table, the storage scheme proceeds as 

follows: 

(i) For any cell i such that no key with cell label i is present in N, mark the cell as 

available for other use. 

(ii) If the keys with cell label n - 1 or n are present in N they are added to a list called 

the shuffle list and the cell is marked as a shuffle cell. 

(iii) For the first n - 2 cells: 

(a) If only one of the two keys with that cell label is present in N then that key is 

stored in the cell. 

(b) If both keys with that cell label are present in N then by the pigeonhole prin

ciple another cell must be marked as available via (i). The upper key for the 

current cell is stored in the available cell. The lower key for the current cell 

is added to the shuffle list. The current cell is marked as a shuffle cell. 

(iv) At this stage, every cell marked as available in (i) is filled with an upper key with a 

different cell label. The other cells are either filled with a key with the corresponding 

cell label or are marked as a shuffle cell. 

(v) The shuffle list must have at least two keys, since by the pigeonhole principle for 

each of K~_I and K~ that are not in N there must have been a cell for which both 

keys with that cell label are present in N. Note that every key on the shuffle list is a 

lower key and that there are the same number of shuffle cells as keys on the shuffle 
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list. Complete the table by assigning the keys from the shuffle list to shuffle cells in 

such a way that no shuffle cell is assigned a key with that cell label (a cyclic shift 

will suffice). 

To answer the membership question for a key with cell label i, we query cell i. 

• If cell i holds Kf or Kf then the key was assigned by (iiLa) and so the other key with 

that cell label is not in the table. 

• If cell i holds KY, j =I- i then the key was assigned by (iiLb). Therefore cell i was 

marked as available by (i) and so neither Kf nor Kf is in the table. 

• If cell i holds KJ,j =I- i then the key was assigned by (v). Therefore cell i was marked 

as a shuffle cell by (ii) or by (iiLb) and so both Kf and Kf (if i < n - 1) are present in 

the table. 

Thusf(n,2n - 2) = 1 and so g(n, 1) ~ 2n - 2. D 

Although Yao takes several pages to prove the upper bound half of Theorem 3.1, the 

start of his argument can be adapted into a quick proof leaving a gap of 1. 

Theorem 3.2. g(n, 1) ~ 2n - 1 

Proof Suppose we have a store/search strategy for a key space containing at least 2n keys. 

By the pigeonhole principle, the search strategies for at least two keys will query the same 

cell. Without loss of generality, the search for keys 1 and 2 both query cell 1. 

Let YI (the 'yes set' for key 1) be the set of keys whose appearance in cell 1 resolve the 

membership question for key 1 in the affirmative. All keys not in YI are in N I , the 'no set' 

for key 1. Define Y2 and N2 Similarly. 

CLAIM: I YII ~ n. 

If I YII > n, then there is a subset S of YI of cardinality n that does not contain key 1. But 

if the table is populated with the keys from S, then the first cell will contain a key that will 

falsely imply that key 1 is in the table, contradicting that this store/search strategy is valid. 

Therefore INII ~ n. Since key 1 is clearly in YI , we can populate the table with key 1 

and n - 1 keys chosen from NI without choosing key 2. The storage scheme must place key 
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I in cellI, and so key I must belong to N2• Similarly, key 2 must belong to N1• 

Now populate the table using key I, key 2, and n - 2 keys chosen from N1• The storage 

scheme must place key I in cell I since all other keys belong to N1• But since key 1 is in 

N2 , when we attempt to answer the membership question for key 2 we will see key I in cell 

1 and falsely imply that key 2 is not in the table. Thus, this search/store strategy cannot be 

valid. o 

3.2 - Two queries 

At his 2010 REGS, Doug West proposed [15] that we try to determine the maximum 

size of the key space when we are permitted two queries. 

If the table has only three cells then we can accommodate a key space of any size by 

storing the keys in the table in sorted order. With the first query we query the middle cell. 

If that is the key we are looking for then great, we are done. If that key is larger than the key 

we are looking for then we query the first cell. Otherwise we query the last cell. Therefore 

g(3,2) = 00 and more generally, using a similar sort/search strategy, g ( 2k - 1, k) = 00. 

Thus we only need to consider tables with at least four cells. 

Proposition 3.3. For n 2: 4, g(n, 2) 2: 3n - 4. 

Proof Start by labeling all the keys in M using a technique similar to Yao's from Theo

rem 3.1. For i E [n - 2], three keys will have cell label i: a 'lower key' Kf, a 'middle key' 

K~, and an 'upper key' KY. For i E {n - 1, n} only one key will have cell label i: K;:-l and 

KU 
1 KU 

2 K~_2 K~-l 

KM 
1 

KM 
2 K!;-2 KM 

n 

KL 
1 

KL 
2 • • • K~_2 

1 2 n-2 n-I n 
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Given a set N of n keys from the key space, the storage scheme works as follows: 

(i) Examine the first n - 2 cells. 

(a) If no keys in N have this cell label, then the cell is flagged as available. 

(b) If only one key in N has this cell label then that key is assigned to the cell. 

(c) If two of more keys in N have this cell label then we classify the cell by type: 

Type A TypeB TypeC TypeD 

Kl! 
I 

Kl! 
I 

Kl! 
I 

K~ 
I 

K~ 
I 

K~ 
I 

Kl: 
I 

Kl: 
I 

Kl: 
I 

(ii) Pair up cells of type A and B with other cells of type A and B. 

Type A 

Kf 

Type A 

Kl! 
J 

K~ K~ 
I J 

TypeB 

Kf 

TypeB 

Kl! 
J 

Type A TypeB 

(iii) We may have one extra cell of type either A or B. Now consider that extra cell i (if it 

exists) and cell n - 1. 

Type A 

Kl! 
I 

n-l 

D 
Type A n - 1 
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TypeB 

Kl! 
I 

Kl: 
I 

n-l TypeB n-l 

D 

(iv) Pair up cells of type C and D with other cells of type C and D. 

TypeC Type C TypeD TypeD Type C TypeD 

Kl! 
J 

(v) We may have one extra cell of type either Cor D. Now consider that extra cell i (if 

it exists) and cell n. 

Type C n Type C n 

Kf1 D 
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TypeD 

K'! 
I 

n 

D 

TypeD 

K'! 
I 

(vi) Fill any cells flagged as available with any remaining keys. 

n 

Thus we are able to answer the membership question in at most two queries for a table of n 

keys chosen from a key space of size 3n - 4 and so g(n, 2) ~ 3n - 4. D 

When we were permitted only a single query, we had to know in advance which cell 

we would choose to query when presented with the membership question for a specific key. 

With two queries this is no longer necessarily the case. While we still need to know the first 

cell to query, the strategy given in Proposition 3.3 is adaptive: it uses information gained 

from the first query to decide which other cell to query. We could mandate that the strategy 

be non-adaptive, meaning that when we are presented with the membership question for a 

specific key the algorithm decides which cells to query before making any queries to the 

table. The best-known upper bound for the two query problem was established by David 

Howard but is an upper bound only for the non-adaptive case. 

Proposition 3.4 (Howard, [7]). If restricted to non-adaptive strategies, 

Yao's original question was motivated by situations in which the key space was re

stricted. One approach to the two query problem is to impose further restrictions on the 

key space. If we can solve that problem, we may be able to solve the original problem by 

tiling the original key space with copies of the restricted space. 
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3.3 - Graph Queryability 

Yao restricted the key space by supposing that it contained only m keys. However, any 

subset of size n is permitted. Suppose we further mandate that only certain subsets of the key 

space are permitted. If we consider subsets of size 2 we can represent the restrictions as a 

graph with the key space as vertices and with edges between pairs of keys that are permitted 

to appear together. 

Example 3.5. Let {a, b, c, d} be the key space and suppose that we permit all pairs except 

{ b, d}. This can be represented as the diamond graph K4 - e, where bd is the deleted edge. 

c 
Diamond K4 - e 

Definition 3.6. A graph G is l-queryable means there exists a one-query sort/search strat

egy that will answer the membership question for any element of V( G) on any table formed 

from an edge of G. 

Example 3.7. The complete graph on three vertices, K3 , is l-queryable. 

Proof We will use this example to demonstrate how the sort/search strategy can be encoded 

into the graph. The table contains two cells. Every permissible subset of size 2 is an edge 

of the graph. To indicate how a given pair of keys will be stored in the table, we orient the 

corresponding edge such that the orientation u -+ v indicates that u will be stored in the 

first cell of the table and v will be stored in the second cell. So if we have the orientation 

and we are presented with {a, c} to store in the table, we will store c in the first cell and a 

in the second cell. 

When we are asked to answer the membership question for a key v, we must decide 
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which cell of the table to query. Suppose we decide to query the first cell. We can indicate 

this decision in the graph by coloring vertex v color O. So if we have the coloring 

1\ 
a~b 

then we will query the first cell when asked the membership question for a or c and we will 

query the second cell when asked the membership question for b. 

Under the encoding given, opening either door will determine exactly which edge is 

stored in the table. Thus K3 is l-queryable and the given encoding is valid. o 

It is refreshingly easy to characterize valid encodings. Notice that given a valid encoding, 

if we reverse the orientation of every edge and the color of every vertex then we have another 

valid encoding. We will use this fact on multiple occasions to fix the color of a vertex without 

any loss of generality. 

Lemma 3.8. An encoding of G is valid if and only if for every edge u --+ v: 

(i) if v has color 0 then d+(u) = 1 

(ii) if u has color 1 then d- (v) = 1 

Proof Suppose every edge satisfies (i) and (ii) and that we are asked to answer the mem

bership question for vertex a. Without loss of generality, assume a has color O. If we query 

the first cell and find a then we are done; if not, let b be the vertex found in the first cell. If 

ab is not an edge of G or if the edge is encoded as a --+ b then we conclude that a is not in 

the table. Otherwise the edge ab is encoded as b --+ a. Since a has color 0, we know that 

J+ (b) = 1 by (i). Therefore a must be in the second cell of the table. Thus we can decide 

the membership question in one query with this strategy and so the encoding is valid. 

Now suppose that some oriented edge c --+ d does not satisfy both (i) and (ii). If it does 

not satisfy (i) then d has color 0 and J+ (c) > 1. When the table contains the edge cd and 

52 



we are asked to solve the membership question for d, we will query the first cell and find c. 

But since at (c) > 1, there is another vertex x that is oriented c ---+ x. Thus we are unable to 

decide the membership question for d in one query using this encoding, and so the encoding 

is not valid. The argument is similar in the case that (ii) is not satisfied. o 

If G is a bipartite graph with partite sets X and Y, consder the encoding given by coloring 

all vertices in X color 0, all vertices in Y color 1, and orienting all edges to point from X to 

Y. This encoding will vacuously satisfy the requirements of Lemma 3.8. 

Corollary 3.9. Every bipartite graph is l-queryable. 

Lemma 3.10. In a valid encoding of a l-queryable graph, every triangle must be oriented 

as a directed cycle. 

Proof Let a, b, and c be the vertices ofthe triangle. Without loss of generality c is colored 0 

and the edge ab is oriented a ---+ b. It follows by Lemma 3.8 that ac must be oriented c ---+ a. 

To obtain a contradiction, assume bc is oriented c ---+ b. Both a and b must be colored 1 by 

Lemma 3.8. This is a contradiction, since d+(b) ~ 2. 

cA cA 
a~b a~b 

Lemma 3.11 (3-cbaining). Let vo, VI, . .. , Vn be a path in a graph G with d(Vi) > 3 for 

i = 1, ... n. If Vo and VI have color 0 and the edge Vo VI is oriented VI ---+ Vo then: 

(i) VI, ... , Vn all have color O. 

(ii) The edges Vi-I Vi are oriented Vi ---+ Vi-I for i = 1, ... , n. 

(iii) Every neighbor U of Vi has color 0 and UVi is oriented U ---+ Vi (except when U = Vi-I) 

for i = 1, ... ,n. 

(iv) For any 1 ~ i < j ~ n, if j =1= i + 1 then Vi is not adjacent to Vj. 

Proof The hypotheses, together with Lemma 3.8 imply that d+(vI) = 1, and so all edges 

incident to VI, aside from VOVI, must flow into VI. Thus d- (VI) ~ 2, so all vertices adjacent 

to VI must have color O. This provides the base case for the claim, and the rest follows by 
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induction on n. 

Corollary 3.12. Let C be an odd cycle in a graph G such that every vertex of C has degree 

at least 3. 

• C must be oriented as a directed cycle and must be monochromatic. 

• Any vertex in G - C that is adjacent to a vertex in C must also have that same color. 

• C acts as either a source or a sink for the vertices of G - C that are adjacent to a vertex 

of C, according to whether the color is a ° or aI, respectively. 

Lemma 3.13. Let G be a 1-queryable graph with no vertices of degree two. Either G is 

bipartite, or G is unicyclic. 

Proof Suppose G is neither bipartite nor unicyclic. G has an odd cycle C with minimum 

degree three, so by Corollary 3.12, C is monochromatic. Without loss of generality, C has 

color ° and is a sink. C cannot have a chord, as a chord would not be orientable. 

If another cycle shares two vertices with C then there is a path between two vertices u 

and v of C. Call the interior vertices of the path PI ,P2" .. ,Pk' Starting at v and applying 

Lemma 3.11, every Pi must be colored 0, and all edges must be oriented Pi -+ PHI' But now 

d+ (PI) = 2, contradicting Lemma 3.8. 

Thus any other cycle of G must be connected to C by a path. This is a contradiction to 

Lemma 3.11, completing the proof. o 

Lemma 3.14. Let G be a 1-queryable graph and let S be the set of all vertices of G of degree 
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two. Every component of G - S is either bipartite or unicyclic. 

Proof Suppose G - S has a component that is neither bipartite nor unicyclic. This compo

nent has at least one odd cycle, and since we removed all vertices of G of degree two, every 

vertex of this odd cycle has minimum degree at least three. Thus, by Corollary 3.12 it is 

monochromatic. The component also contains another cycle, which either shares vertices 

with the odd cycle or is connected to the cycle by a path. Either way, in G all the relevant 

vertices have minimum degree three, and so by Lemma 3.13, G has a subgraph that is not 

1-queryable, contradicting that G is 1-queryable. 0 

Theorem 3.15. Every 1-queryable graph has chromatic number at most three. 

Proof Let G be a 1-queryable graph and let S be the set of all vertices of G of degree two. 

By Lemma 3.14, every component of G - S is either bipartite or unicyclic and so can be 

colored with at most three colors. Hence G - S has a valid coloring using colors chosen 

from the set {a, b, c}. This coloring can be extended to a valid coloring of G by coloring 

each vertex v of S in turn. Since every vertex in S has degree two, at least one of the colors 

from {a, b, c} is unused by the neighbors of v. Thus the coloring can be extended to v and 

hence to all of G. 0 

3.4 - Conclusion 

This chapter studied a storage problem introduced by Yao and resurrected by Doug West 

in his 2010 REGS [15]. Section 3.2 gives a lower bound for the 2-query, adaptive version 

of this problem. No known upper bound even comes close to matching this lower bound, so 

section 3.3 revisits the structure of extremal 1-queryable graphs in the hopes that this will 

provide a tiling argument leading to a better upper bound for the 2-query case. While this 

section does give a near-complete characterization of 1-queryable graphs, a generalization 

to 1-queryable k-uniform hypergraphs is required to power this tiling which reduces the 

2-queryable problem to a 1-queryable problem with an open cell. An 'open cell' whose 

contents are always known. With one query and one open cell it is possible to accommodate 
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a key space of 2n - 1 keys, one more than Yao's bound for the basic I-query case; we 

conjecture that this is the best possible. Another variant is to allow for 'closed' cells: ones 

that cannot be queried. The bounds for this problem are very close to the bounds for the 

original problem. 

There has been some progress on characterizing I-queryable 3-uniform hypergraphs. If 

for every pair of vertices the co-degree 0 or at least 7 then the hypergraph must be tripartite. 

This is the 3-uniform analogue to the fact that if a I-queryable graph has minimum degree at 

least 3 then the graph must be bipartite. A complete characterization of I-queryable graphs 

is not yet known, nor is a generalization to graphs of higher uniformity. The co-degree 

restriction imposes a sort of edge-density requirement on the hypergraph. It remains an 

open problem to determine the maximum number of edges that can be contained in a k

uniform I-queryable hypergraph, but it is known that the extremal hypergraphs will not be 

k-partite. 
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GLOSSARY OF NOTATION 

AutG automorphism group of G 

X(G) chromatic number of G 

dc(u, v), d(u, v) distance from u to v in G 

dc(v), d(v) the degree of v in G 

di;(v), a+(v) the outdegree of v in G 

dc;(v), d-(v) the indegree of v in G 

~(G) the maximum degree of G 

o(G) the minimum degree of G 

diamG diameter of G 

r ( G) domination number of G 

rt ( G) total domination number of G 

Kn complete graph on n vertices 

Km,n complete bipartite graph 

Nc(v), N(v) the (open) neighborhood ofv in G 

Nc[v], N[v] the closed neighborhood of v in G 

Q) ( G) clique number of G 

P n path on n vertices 
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adjacency matrix, 20 

block,4 

major, 4 

minor, 4 

claw graph (K1,3), 24 

diameter 

of a quasi-progression, 1 

diamond graph (K4 - e), 24, 51 

even triangle, 24 

j(n,m),43 

g(n, k), 44 

graph 

1-queryable, 51 

valid encoding, 52 

adjacency matrix, 20 

rank,20 

reduced,21 

hood vector, 22 

line graph, 24 

lollipop graph (L3,1), 23 

INDEX 
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low-difference, 1, 3 

major block, 4 

major superblock, 5 

membership question, 43 

minor block, 4 

minor superblock, 5 

monopole, 31, 33-34 

neighborhood 

shadow, 22 

vector, 22 

neighborhood vector, 22 

odd triangle, 24 

Q(d, k), 1,3 

Quasi-progression, 1 

query, 43 

rank 

of a graph, 20 

reduced graph, 21 

shadow neighborhood, 22 

superblock, 5 

extremes, 5 



major, 5 

minor, 5 

triangle 

even, 24 

odd,24 

twin, 21 

valid encoding, 52 

van der Waerden number, 1 

vertex 

twin, 21 
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