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ABSTRACT

MATHEMATICAL STUDIES OF THE GLUCOSE-INSULIN REGULATORY

SYSTEM MODELS

Minghu Wang

May 22, 2015

Three dynamic models are proposed to study the mechanism of glucose-insulin

regulatory system and the possible causes of diabetes mellitus. The progression of

diabetes comes along with the apoptosis of pancreatic beta-cells. A dynamical system

model is formulated based on physiology and studied by geometric singular perturba-

tion theory. The analytical studies reveal rich analytical features, such as persistence

of solutions, Hopf bifurcation and backward bifurcation, while numerical studies suc-

cessfully fit available longitudinal T2DM data of Pima Indian tribe. These studies

together not only validate our model, but also point out key intrinsic factors leading

to the development of T2DM. We found that the intermittent rests of beta-cells in

insulin secretion are essential for the cells to survive through the observation of the

existence of a limit cycle. A delay differential equation model for IVGTT is also

studied thoroughly to determine the range of time delay and the globally asymp-

totic stability by Liapunov function. The third kinetic model aims to investigate the

scaling effect of local insulin in islet on proliferation and apoptosis of beta-cells. It

is revealed that the local concentration of monomeric insulin within the islet is in

the biologist defined picomolar ‘sweet spot’ range of insulin doses, which activate the

insulin receptors and have the most potent effects on beta-cells in vitro.
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CHAPTER I

INTRODUCTION

1 Diabetes statistics

During recent decades, diabetes mellitus has become an epidemic disease in

the sense of life style [56]. It shows a rapidly growing trend for the past years. In

2002, 20.8 million, or 7% of population in US are diabetics with health expenses at

$170 billion [1]. In 2011, the American diabetic population became 25.8 million, or

8.5% of the population in US. This number rapidly grew to approximately 30 million

in the most recent year [1]. Diabetes is the 7th leading cause of death in US. As of

2014, an estimated 387 million people worldwide suffer from diabetes [98]. Therefore,

diabetes has obtained the attention of researchers from different disciplines.

Diabetes mellitus, commonly referred to as diabetes, is a group of metabolic

diseases in which there are high blood sugar levels over a prolonged period [98].

Diabetes is a disease with considerable complications including but not limited to

retinopathy, nephropathy(kidney damage), peripheral neuropathy (nerve damage)

and blindness [16]. It is due to either the body not producing enough insulin or the

inability of cells properly using insulin to metabolize glucose [8]. There are three

main types of diabetes: type 1, type 2, and gestational diabetes [98]. Type 1 diabetes

mellitus (T1DM) results from body’s failure to produce enough insulin. It was also

referred to as ‘insulin-dependent diabetes mellitus’. Type 2 diabetes mellitus (T2DM)

begins with insulin resistance, a condition in which the cells fail to respond to insulin

efficiently. A lack of insulin secretion may also follow as the disease progresses. It was

often referred to as ‘non insulin-dependent diabetes mellitus’. Gestational diabetes
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occurs when pregnant women without a previous diabetic history develop a high blood

glucose level [98]. Out of the American diabetic population, nearly 95% are T2DM [1].

The problem is even greater for the minority and ethnic populations. For example,

the extreme incidence rates occuring among American Indians are noteworthy [1].

The diagnosis of diabetes relates to the sketch of the so-called metabolic por-

trait, including the insulin sensitivity and glucose effectiveness of the subject. Several

glucose tolerance tests have been developed and applied in clinics and experiments to

determine whether an individual subject has already been diabetic or has the poten-

tial to develop certain type of diabetes. These tests include the Intravenous Glucose

Tolerance Test(IVGTT) and the Oral Glucose Tolerance Test(OGTT) [7],[30].

Transplantation of the pancreas or the islets of Langerhans in the pancreas,

would be the only real cure for diabetes, at least for T1DM [21]. Unfortunately, due

to the immunological issues and the expense of transplantation, this approach is usu-

ally not practical. Further, approaches for beta-cell neogenesis and cell differentiation

from stem cells are still under research ([9], [21]). For these reasons, the daily insulin

subcutaneous injection is still the most widely used therapy of diabetes. This task is

fulfilled by the insulin analogues, such as Lispro, Aspart, Glargine and so on, with

the purpose of simply supplying the need of insulin in the body exogenously. These

insulin analogues are able to mimic the physiological insulin secretion occuring in

normal subjects.

2 Sketch of the objectives

General objectives of the studies in this area are to better understand how the

glucose-insulin regulatory system works, how the mechanism functions, and how to

determine the pathways of the dysfunctions of the system. To this end, we make

the effort to investigate the causes for the progression of diabetes, detect the onset

of diabetes(IVGTT, OGTT, etc) [8], and attempt to understand the insulin scaling
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effect. We hope these relevant studies can provide sufficient information to eventually

help develop reasonable, effective, efficient and economic clinical treatment (insulin

analogues, insulin pump, artificial pancreas) in the near future.

Insulin is secreted from beta cells, the only cell which produces insulin. Loss

of beta-cells will lead to diabetes over time. Therefore, the control of pancreatic

beta-cell function and survival is essential for maintaining glucose homeostasis and

preventing diabetes. It has been hypothesized that overworking leads beta-cells to

die. The goal of this dissertation is to study these understandings of beta-cells in a

mathematical context.

There are several popular approaches to conduct the analysis in regard to the

physiology. One of them is done as follows: first formulate or choose a well-developed

kinetic model based on the background of the objectives; then estimate the model

parameters with experimental data or adopt them from the literature; the model and

parameter values are used in numeric simulations in order to obtain physiological

information, for instance, insulin sensitivity and glucose effectiveness and further, to

make certain explanations and predictions. We utilize such an approach throughout

the dissertation, aiming to seek helpful advises in clinical practices in future treatment

of diabetes.

3 Background of glucose-insulin endocrine regulatory system

It is known that the human body maintains glucose homeostasis within a nar-

row range (70-109 mg/dl) [57]. In the glucose-insulin regulatory system, elevated

glucose level triggers secretion of insulin from the beta-cells in the pancreas. Insulin

augments the glucose utilization by muscle cells and adipose cells, which helps the

glucose concentration return to normal level. The secretion of insulin stops gradually

as the glucose level declines. For a normal subject, the basal plasma insulin level

is in the range of 5-10 µU/ml after an overnight fast [2]. Under continuous enteral

nutrition, however, this range can be as wide as 10-40 µU/ml [84]. It could also rises
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to as large as 30-150 µU/ml during meal consumption while the glucose level is high

[2]. The insulin secretion pathways consist of complex processes in molecular level,

involving typical electric and chemical events. They are summarized in Chapter 3,

section 2.

It is also worth-mentioning that the insulin secretion in the glucose-insulin

endocrine metabolic system in healthy subjects occurs mainly in an oscillatory man-

ner over a range of 50-150 min, and is usually referred to as ultradian oscillations

([89],[92],[84]). It is best observed after meal ingestion, oral glucose intake, intra-

venous glucose infusion and continuous enteral nutrition. This phenominon will be

discussed in more details in Chapter 2.

Evidence also suggests that there is another type of oscillation in addition to

the above mentioned ultradian oscillation. Numerous in vivo and in vitro studies have

revealed that the secretion of insulin also undergoes a rapid oscillation occuring with

a different time scale of 5-15 min compared to the ultradian oscillation [79]. This

rapid oscillations are superimposed on the slower ultradian oscillations according to

[89]. The mechanism underlying both types of oscillations is still under research. The

rapid oscillations may arise from an intra-pancreatic pacemaker mechanism which

causes a coordination of insulin periodic secretory bursting from beta-cells contained

in the millions islets of Langerhans ([89],[92]). At the basal level, these bursts are

believed to be the dominant mechanism of insulin release.

Although the precise mechanism remains unclear, the ultradian oscillations are

assumed to be the result of an instability in the glucose-insulin endocrine metabolic

regulatory system ([89],[92],[84],[62]). In addition to various types of glucose input

mentioned above, the continuous glucose utilization of muscles, the brain and nerves,

and other tissues complete the regulatory system feedback loop ([89],[92]). The hy-

pothesis that the ultradian oscillation results from instability in the regulatory system

has been the subject of a number of researches, ([89],[43],[92],[22],[6]) among which

several mathematical models are proposed to describe the glucose-insulin feedback
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loop ([89],[92]). However, rigorous mathematical proofs are still needed to show the

feedback system is the mechanism of the ultradian oscillation of insulin secretion. We

will be addressing this issue in the model analysis part in Chapter 2.

4 Existing studies of the glucose-insulin regulatory system

As we mentioned above, a number of studies on the regulatory system have

been conducted in the last few decades. Pioneering work to model such system and

the ultradian secretory oscillations can be traced back to Bolie (1961), in which a

linearized system in terms of differential equations was analyzed. In a paper by Topp

et al.[93], the authors proposed a model incorporating beta-cell mass as a variable, to

study the long-term effect of the regulatory system on the beta-cells. In the same year,

Sturis et al.[92] also published a paper studying the glucose-insulin feedback system

and the observed ultradian oscillatory behavior. Li, Kuang and Mason generalized

the modeling of such feedback system by proposing a system of delay differential

equations with two time delays, in a study in 2006 [57].

5 Contents organization

This dissertation is organized as follows. After introduction of the general

information of diabetes and the related physiological background in Chapter 1, Intro-

duction, we propose a dynamic model to study the glucose-insulin regulatory system

and beta-cell mass change over a long time frame in Chapter 2. The model formula-

tion will be thoroughly explained and examined. Then the mathematical properties

of such model will be carefully studied, such as the equilibrium points, their local

stability and the conditions of the existence of Hopf bifurcation. Next we are going

to carry out some numerical simulations with estimated parameters from the litera-

ture. These simulations are done to verify the preceding mathematical findings and

to explore some new features possessed by the model. The results of these simulations

are to be translated to physiological explanations of diabetic observations. Our effort
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to make such attempts will contribute to useful discussion of the likely treatment of

diabetic patients.

Chapter 3 introduces an IVGTT model in which delay effect is studied with

emphasis. The length of the delay time has been carefully studied. Further the delay-

dependent conditions of the global stability of the equilibrium point is obtained by

utilizing the Liapunov function. Numeric simulations are also conducted after the

analytical part and are followed by a discussion.

Chapter 4 focuses on discussing a microscopic view of the complex regulatory

system. The context of the study is a single islet of Langerhans in the pancreas.

The in vivo glucose and insulin concentrations in an islet are modeled by a system

of ordinary differential equations. The in vivo concentrations in such tiny micro-

organs are currently impossible to measure by existing techniques. Therefore our

mathematical analysis proves to be essential in understanding the dynamics in this

small scale. Experimental data also plays important role in estimating parameter

values in the numeric simulations thereafter.
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CHAPTER II

MATHEMATICAL STUDIES OF THE ANTI-APOPTOTIC

EFFECTS ON PANCREATIC BETA-CELLS

In this chapter, applying the Mass Conservation Law, we propose a system

of ordinary differential equations to model the glucose-insulin regulatory system and

beta-cell mass. Then we conduct a thorough mathematical analysis followed by nu-

meric simulations. Several core theorems are established in order to understand the

key characteristics of the model dynamics. The results obtained from the study would

be used to either explain the existing observations in diabetic patients, or to aim in

predicting potential diabetes.

1 Model formulation

The model is formulated by applying the Mass Conservation Law, similar to

the approach of [93]

Rate of Change = Input - Output.

The two major factors in the regulatory system to be modeled are glucose and

insulin. Let G(t) denote the plasma glucose concentration at time t ≥ 0. In order to

describe the complex mechanism of the regulatory system, we consider the insulin in

two compartments. One is plasma insulin and the other is interstitial insulin, which

are denoted by Ip(t) and Ii(t), respectively. The transport of insulin between them

is assumed to be a passive diffusion process driven by the difference in insulin, with
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transfer rate E [78]. Then we obtain the following word equation

dG(t)/dt = glucose production - glucose utilization,

dIp(t)/dt = insulin secretion - compartments exchange - insulin clearance,

dIi(t)/dt = compartments exchange - insulin clearance.

Further to access the complex mechanism of such regulatory system, we are

also interested in the rate of change for beta-cell mass, which is denoted by β(t).

dβ(t)/dt = formation - loss.

Next we discuss the physiology for each term in the above word equations and

determine their mathematical expressions.

Glucose production: There are two main sources of glucose production. Glu-

cose is released from dietary carbohydrates, subsequently being absorbed into the

blood. Meal ingestion, oral glucose and continuous enteral nutrition infusion are the

most common ways of glucose infusion ([89],[92]). We assume that the average glu-

cose infusion rate is a constant, denoted by Gin ≥ 0. The liver is the other source

of glucose production. When the blood glucose level drops, beta-cells stop releasing

insulin, but alpha-cells, also located in the Langerhans islets in the pancreas, start

to release another hormone, glucagon. Glucagon leads the liver to dispense glucose

through certain metabolic pathways. This part of glucose production is denoted as

f5(I) controlled by insulin concentration. It is assumed to satisfy that f5(0) > 0 and

f ′5 < 0 for x > 0. When the insulin level is three-fold above its basal level, glucose

production by the liver can be quickly halted. Therefore we also assume the functions

f5(x) and |f ′5(x)| are bounded above for x > 0, and f5(x) rapidly decreases to zero as

x increases (refer to Fig. 1 for the shape of function f5).

Glucose utilization: Glucose utilization also consists of two parts, namely,

insulin-independent utilization and insulin-dependent utilization. The main insulin-
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independent glucose consumers are brain and nerve cells. The utilization of this type

is denoted by f2(G) indicating its dependency on the glucose level alone. Further, we

assume that f2(x) > 0 is in the sigmoidal shape with f2(0) = 0, and f ′2(x) is bounded

for x > 0. The insulin-dependent glucose uptake is mostly due to muscle, fat cells

and other tissues. These cells consume the glucose and convert it into energy for the

body. We denote the insulin-dependent glucose utilization by f3(G)f4(Ip). Moreover,

we may reasonably assume that f3(0) = 0, 0 < f3(x) ≤ k3x, and f ′3(x) > 0 for x > 0,

where k3 is a constant. Similarly, f4(0) > 0, f4(x) > 0 and f ′4(x) > 0 are bounded

above for x > 0. Again we require that f4(x) has a sigmoidal shape according to [89]

(refer to Fig. 1 for the shape of functions f3 and f4).

Insulin production: Insulin can only be produced through beta-cell secretion,

mainly in response to elevated blood glucose level. Although other secretagogues

such as free fatty acid and most amino acids can still stimulate the insulin secretion,

glucose is the most critical stimulus for insulin release [2]. A series of complex elec-

tric processes occur inside of each islet upon glucose stimulus. Here f1(G) is used

to stand for insulin production stimulated by glucose concentration G. Likewise, we

assume f1(G) is bounded, of sigmoidal shape, f1(0) > 0, f1(x) > 0, and f ′1(x) > 0 for

x > 0.(refer to Fig. 1 for the shape of function f1)

Insulin degradation and clearance: Insulin is cleared by all insulin sensitive

tissues. The primary sites of portal insulin degradation and peripheral insulin clear-

ance are the liver and kidney, respectively. Insulin not cleared by these two organs is

ultimately removed by other tissues, for instance, muscle and adipose cells. Insulin

degradation is a regulated process involving insulin binding to its receptor, internal-

ization, and degradation as in other tissues. The function of insulin degradation and

clearance is to remove and inactivate circulating insulin, in order to control insulin

action [19]. Here insulin degradation is assumed to be exponential, with time con-
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stant tp for insulin in plasma and ti for insulin in the intercellular space.

Beta-cell proliferation: The proliferation of beta-cells is not surprisingly as-

sumed to be proportional to beta-cell mass itself. Furthermore, recent studies pro-

posed the ‘Sweet Spot’ hypothesis tempting to explain the complex non-linear concentration-

response profile of autocrine insulin signaling [39]. These studies speculated that

modestly increased local insulin might drive the compensatory beta-cell hyperplasia

that normally occurs before type 2 diabetes. Once local insulin increases past a cer-

tain level, it would cease to protect beta-cells or stimulate their growth. Beta-cell

mass is expected to decrease as a result, marking the transition to type 2 diabetes. To

model such phenomena, we assume that the proliferation rate p(Ip) = p0Ip
r0+I2p

, where

Ip
r0+I2p

reflects insulin signaling. This factor increases as insulin level increases to a

certain point, after which it starts to decrease.

Beta-cell apoptosis: In vitro beta-cell apoptosis has been shown to vary non-

linearly with glucose ([34],[20]). Increasing the glucose concentration from 0 to ap-

proximately 11 mM in the medium surrounding cultured beta-cells reduced the rate

of beta-cell death. However above 11 mM glucose level, beta-cell death is either re-

mained low or increased, due to the possible glucose toxicity. Thus we model such

behavior with a simple second-degree polynomial a(Ip, G) = a0Ip
r0+I2p

(1 − raG + rbG
2)

[93], still taking into account the insulin signaling factor, where a0 is the apoptosis

rate at zero glucose and ra, rb are constants.

The rate of change of glucose concentration is determined by the glucose infu-

sion rate, insulin independent glucose uptake, insulin dependent glucose uptake, and

hepatic glucogen store transformation. The rate of change of plasma insulin concen-

tration is determined by the beta-cell secretion, exchange with interstitial compart-

ment [78] and its degradation over time. Interstitial insulin comes from plasma, so
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its rate of change is the difference between the exchange with plasma insulin and its

degradation. The rate of change of beta-cell mass is a combining effect of proliferation

and apoptosis, but could be much slower than that of glucose and insulin.

We use the following state variables.

G - plasma glucose concentration

Ip - plasma insulin concentration

Ii - interstitial insulin concentration

x1, x2, x3 - auxilliary variables that mimic a delay of duration τ in the release of

glucose from hepatic glycogen stores

β - beta cell mass

By [77], the pancreatic insulin production stimulated by the glucose concen-

tration is specified by the function

f1(G) =
Rm

1 + exp((C1 −G/Vg)/a1)
.

Insulin-independent glucose utilization is described by the following funtion,

which is estimated in [97]

f2(G) = Ub(1− exp(−G/(C2Vg))).

Insulin-dependent glucose utilization depends on both insulin and glucose con-

centrations. The glucose-dependent term is assumed to be

f3(G) =
G

C3Vg
,

and the insulin-dependent term is determined ([80],[97]) by

f4(Ii) = U0 +
Um − U0

1 + exp(−βln(Ii/C4(1/Vi + 1/Eti)))
.

The hepatic glucose production by the influence of insulin, according to [80],

is well specified by the function

f5(x3) =
Rg

1 + exp(α(x3/Vp − C5))
.
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Figure 1. Sigmoidal functions used in the model

0 50 100 150 200 250 300
0

10

20

30

40

50

60

70
f1(larger range)

 

 

y=75.1191x6/(203.2816+x6)

y=70/(1+exp((200−x)/30))

0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
f2

 

 

y=0.796602x/(9.71601+x)
y=0.72(1−exp(−x/14.4))

0 50 100 150 200 250 300
0

1

2

3

4

5

6

7

8

9

10
f4

 

 

y=0.4+8.7662x2/(50.60022+x2)

y=0.4+9/(1+exp(−1.77log(11g/80(1/11+1/20))))

0 50 100 150
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
f5

 

 

y=1.7734*25.88678/(25.88678+x8)

y=1.8/(1+exp(0.29(x−26)))

The shapes of the functions, instead of their specific forms, are more essential

in analysis. Therefore, we further fitted these functions with sigmoidal type functions,

just for the sake of relative simplicity in mathematical manipulation.

The functions fj, j = 1, 2, 3, 4, 5, are fitted by functions in exponential forms.

The least quare method is used to determine the parameters of the sigmoidal func-

tions. The following figures presented show that the sigmoidal functions fit the func-

tions in exponential forms quite well. The new functions capture the key character-

istics of the functions used in [89].

The chain trick is applied to mimic the delay effect in the release of glucose

hepatic glycogen store. Eventually, the model is formulated as follow:
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

G′ = Gin − f2(G)− f3(G)f4(Ii) + f5(x3)

I ′p = βf1(G)− E(Ip − Ii)− Ip
tp

I ′i = E(Ip − Ii)− Ii
ti

x′1 = 3
td

(Ip − x1)

x′2 = 3
td

(x1 − x2)

x′3 = 3
td

(x2 − x3)

β′ = ε(p(Ip)− a(G, Ii))β

, (1)

where

f1(G) =
r1G

n1

kn1
1 +Gn1

,

f2(G) =
r2G

k2 +G
,

f3(G) = c1G,

f4(Ii) =
r3I

n2
i

kn2
3 + In2

i

+ c2,

f5(x3) =
r4k

n3
4

kn3
4 + xn3

3

,

p(Ip) =
p0Ip
r0 + I2p

,

a(G, Ip) =
a0Ip
r0 + I2p

(1− raG+ rbG
2).

With ε in the equation involving β being sufficiently small, system (1) is con-

sidered to be a fast-slow dynamical system.

2 Model Analysis

The model has two time scales: the fast scale in which glucose and insulin

dynamics are easily observable with beta-cell mass nearly unchanged, and the slow

scale in which beta-cell mass develops over a long period with relatively stable glucose
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and insulin levels.

More specifically, by fast system, we refer to the glucose-insulin regulatory

system in which the glucose and insulin level dynamics are studied, using minutes

as the time scale. The plasma concentrations by minutes are mainly taken into con-

sideration. At meantime beta-cell mass only changes slightly in minutes time scale.

By slow system, we mean the one in which the beta-cell mass dynamic noticably

takes place, using days, months or even years as the time scale. Although glucose

and insulin levels change quickly in this time scale, they can be treated as stable val-

ues, in days. The amount of beta-cell mass by days is the main variable to be studied.

By the general fast-slow system setting, we write the original model in simpli-

fied form. 
dY
dt

= F (Y, β)

dβ
dt

= εg(Y, β)
, (2)

where Y = (G, Ip, Ii, x1, x2, x3)
T are considered the fast variables and β the slow vari-

able.

To analyze such fast-slow system, we refer to Fenichel’s theory [28],

Theorem II.1 (Fenichel) Suppose M0 ⊂ {Y |F (Y, β) = 0} is compact, possibly

with boundary, and normally hyperbolic, that is, the eigenvalues λ of the Jacobian

∂F
∂Y

(Y, β, 0)|M0 all satisfy Re(λ) 6= 0. Suppose F and G are smooth. Then for ε > 0

and sufficiently small, there exists a manifold Mε, O(ε) close and diffeomorphic to

M0, that is locally invariant under the flow of the full problem (1).

This theorem gives us an approach to understand the dynamics of the full

system by knowing the dynamics on its critical manifold, which is usually of lower

dimension.
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The critical manifold of model (1) is given by

M0 = {Y |F (Y, β) = 0}. (3)

The dynamics on this manifold can give us a good approximation of the dynamics

of full system by Fenichel’s first theorem. Thus the next step is to do analyses on

critical manifold M0.

Now we consider the fast sub-system

G′ = Gin − f2(G)− f3(G)f4(Ii) + f5(x3)

I ′p = βf1(G)− E(Ip − Ii)− Ip
tp

I ′i = E(Ip − Ii)− Ii
ti

x′1 = 3
td

(Ip − x1)

x′2 = 3
td

(x1 − x2)

x′3 = 3
td

(x2 − x3)

, (4)

where we view β as a parameter of the fast sub-system.

Theorem II.2 System (4) has a unique equilibium point

E∗β = (G∗(β), I∗p (β), cI∗p (β), I∗p (β), I∗p (β), I∗p (β))

for each β ≥ 0.

Proof. We set the right-hand side of all equations of system(4) to zero. The resulting

system of equations to be solved is



Gin − f2(G)− f3(G)f4(Ii) + f5(x3) = 0

βf1(G)− E(Ip − Ii)− Ip
tp

= 0

E(Ip − Ii)− Ii
ti

= 0

3
td

(Ip − x1) = 0

3
td

(x1 − x2) = 0

3
td

(x2 − x3) = 0

. (5)
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By the last three equations, we have Ip = x1 = x2 = x3. The third equation

results in

EIp − EIi −
Ii
ti

= 0,

EIp = EIi +
Ii
ti
,

Ip = Ii +
Ii
Eti

,

Ip = (1 +
1

Eti
)Ii,

Ii = (1 +
1

Eti
)−1Ip.

If we denote c = (1+ 1
Eti

)−1, then Ip = cIi. Substituting it into the first two equations,

we have

 Gin − f2(G)− f3(G)f4(cIp) + f5(Ip) = 0

βf1(G)− E(Ip − cIp)− Ip
tp

= 0
. (6)

The second equation gives

βf1(G) − E(1− c)Ip −
Ip
tp

= 0,

βf1(G) −
(
E(1− c) +

1

tp

)
Ip = 0,

βf1(G) =
(
E(1− c) +

1

tp

)
Ip,

Ip = βf1(G)
(
E(1− c) +

1

tp

)−1
,

= βf1(G)
(
E(1− 1

1 + 1
Eti

) +
1

tp

)−1
,

= βf1(G)
(
E
( 1

Eti

1 + 1
Eti

)
+

1

tp

)−1
,

= βf1(G)
(
E
( 1

1 + Eti

)
+

1

tp

)−1
,
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= βf1(G)
( E

1 + Eti
+

1

tp

)−1
,

= βf1(G)
( 1

E−1 + ti
+

1

tp

)−1
.

Again if we denote c′ = ( 1
E−1+ti

) + 1
tp

)−1, then Ip = c′βf1(G). Next we substitute it

into the first equation of (6) to get

Gin − f2(G)− f3(G)f4(cc
′βf1(G)) + f5(c

′βf1(G)) = 0. Rearrange it to get

Gin + f5(c
′βf1(G)) = f2(G) + f3(G)f4(cc

′βf1(G)). (7)

Notice that the functions f1, f2, f3, f4 are increasing with respect to G on (0,∞),

while function f5 is decreasing. Thus it follows that the left side of equation (7) is

decreasing on (0,∞) with lower bound Gin, and the right side is increasing on (0,∞)

with no upper bound. Therefore, equation (7) has a unique solution G∗ on (0,∞).

Further, we are able to find the solution of system (5) as

(G∗, c′βf1(G
∗), cc′βf1(G

∗), c′βf1(G
∗), c′βf1(G

∗), c′βf1(G
∗)). (8)

Note again we view β as a varying parameter in the fast sub-system. Hence

we refer to the unique solution as

E∗β = (G∗(β), I∗p (β), cI∗p (β), I∗p (β), I∗p (β), I∗p (β)) (9)

for each β ≥ 0, which is the unique equilibrium point of the fast sub-system (4). The

proof is complete.

Moreover, we can find the equilibria of the whole system (1) by solving

ε(p(Ip)− a(G, Ip))β = 0 (10)

restricted on the critical manifold M0.
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Since p(Ip) = p0Ip
r0+I2p

, and a(G, Ip) = a0Ip
r0+I2p

(1 − raG + rbG
2), Eq. (10) can be

simplified as follows.

ε(p(Ip)− a(G, Ip))β = ε
( p0Ip
r0 + I2p

− a0Ip
r0 + I2p

(1− raG+ rbG
2)
)
β

= ε
Ip

r0 + I2p

(
p0 − a0(1− raG+ rbG

2
)
β = 0.

Since ε > 0 and Ip
r0+I2p

> 0, Eq. (10) is equivalent to

(p0 − a0(1− raG+ rbG
2))β = 0.

Then β = 0 or (p0 − a0(1 − raG + rbG
2)) = 0. The latter equation can be

rewritten as

−rbG2 + raG+ (p0/a0 − 1) = 0. (11)

The following theorem is the result.

Theorem II.3 Let ∆ = r2a + 4rb(p0/a0 − 1).

(1) if ∆ < 0, the complete model (1) has only one trivial equilibrium point.

(2) if ∆ = 0, the complete model (1) has two equilibrium points, one of which is

trivial.

(3) if ∆ > 0, the complete model (1) has three equilibrium points, one of which is

trivial.

Proof. This is the direct result from the property of quadratic equations. The

trivial equilibrium point is found by letting β = 0 and substituting it into the unique

solution (8) or (9), with one more coordinate for β. This results in

E(0) = (G∗(0), 0 · c′f1(G∗), 0 · cc′f1(G∗), 0 · c′f1(G∗), 0 · c′f1(G∗), 0 · c′f1(G∗), 0),

= (G∗(0), 0, 0, 0, 0, 0, 0),

E0 = (G∗0, 0, 0, 0, 0, 0, 0),
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where G∗0 is the solution of equation (7) when β = 0, i.e.

Gin + f5(0) = f2(G) + f3(G)f4(0),

Gin + r4 = f2(G) + c2f3(G).

When the quadratic equation (11) has two positive zeros G∗1 and G∗2, where

G∗1,2 =
ra ±∆1/2

2rb
. (12)

By (8) or (9) we end up with three equilibrium points of the complete model.

E0 = (G∗0, 0, 0, 0, 0, 0, 0),

E1 = (G∗1, I
∗
p1, cI

∗
p1, I

∗
p1, I

∗
p1, I

∗
p1, β

∗
1),

E2 = (G∗2, I
∗
p2, cI

∗
p2, I

∗
p2, I

∗
p2, I

∗
p2, β

∗
2).

The proof is complete.

Remark. This theorem has some physiological implications. Let us express

the conditions in another way. Starting from ∆ < 0, we make some transformations

∆ = r2a + 4rb(p0/a0 − 1) < 0,

4rb(p0/a0 − 1) < −r2a,

p0/a0 − 1 < − r2a
4rb

,

p0/a0 < 1− r2a
4rb

.

In the model, p0 is the proliferation parameter and a0 the apoptosis parame-

ter. Hence we consider the ratio value w = p0/a0 as the ‘relative strength of beta-cell

functionality’. The above condition becomes w < 1− r2a
4rb

. In physiological context, if

19



the relative strength of beta-cell functionality is too weak, the body will develop the

pathological state, which in our model is the trivial equilibrium point. However, if the

relative strength of beta-cell functionality is strong, with w > 1− r2a
4rb

, the body could

have healthy states, which in the model are represented by the interior equilibrium

points.

Suppose we consider the more common situation that three equilibrium points

exist. Plotting them on a three-dimensional phase space consisting of glucose, insulin

and beta-cell axis, we have the following Fig. 2. The green curve demonstrates the

shape of the critical manifold, along which the three equilibrium points locate. The

red dot represents the trivial equilibrium point E0, and the blue and purple dots

represent the other two the interior equilibrium points E1 and E2, standing for the

pathological state and the healthy states, respectively.
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Figure 2. Critical manifold M0 and equilibia of whole system

1 Local stability of the equilibria

The next step is to examine the stability of these equilibria of the fast sub-

system (4) corresponding to varying β.
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Carry out the linearization process and we have the Jacobian of system (4)

J |E∗
β

=

[
∂Fi
∂Yj

]
ij

|E∗
β

=



−q11 0 −q13 0 0 −q16
q21 −q22 E 0 0 0

0 E −q33 0 0 0

0 3
td

0 − 3
td

0 0

0 0 0 3
td
− 3
td

0

0 0 0 0 3
td

− 3
td


(13)

The following details show the calculation of this matrix.

∂F1

∂Y1
=
∂F1

∂G

=
∂

∂G
[Gin − f2(G)− f3(G)f4(Ii) + f5(x3)]

= − ∂

∂G
f2(G)− f4(Ii)

∂

∂G
f3(G)

= − ∂

∂G

r2G

k2 +G
− f4(Ii)

∂

∂G
(c1G)

= −r2
∂

∂G
(1− k2

k2 +G
)− c1f4(Ii)

= r2k2
∂

∂G
(k2 +G)−1 − c1f4(Ii)

= −r2k2(k2 +G)−2 − c1f4(Ii)

= − r2k2
(k2 +G)2

− c1(
r3I

n2
i

kn2
3 + In2

i

+ c2)

∂F1

∂Y2
=
∂F1

∂Ip
=

∂

∂Ip
[Gin − f2(G)− f3(G)f4(Ii) + f5(x3)] = 0.

∂F1

∂Y3
=
∂F1

∂Ii

=
∂

∂Ii
[Gin − f2(G)− f3(G)f4(Ii) + f5(x3)]
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= −f3(G)
∂

∂Ii
f4(Ii)

= −f3(G)
∂

∂Ii
(

r3I
n2
i

kn2
3 + In2

i

+ c2)

= −r3f3(G)
∂

∂Ii

In2
i

kn2
3 + In2

i

= −r3f3(G)
∂

∂Ii
(1− kn2

3

kn2
3 + In2

i

)

= r3f3(G)kn2
3

∂

∂Ii
(kn2

3 + In2
i )−1

= −r3f3(G)kn2
3 (kn2

3 + In2
i )−2(n2I

n2−1
i )

= −c1r3n2k
n2
3

GIn2−1
i

(kn2
3 + In2

i )2
.

∂F1

∂Y4
=
∂F1

∂x1
=

∂

∂x1
[Gin − f2(G)− f3(G)f4(Ii) + f5(x3)] = 0.

∂F1

∂Y5
=
∂F1

∂x2
=

∂

∂x2
[Gin − f2(G)− f3(G)f4(Ii) + f5(x3)] = 0.

∂F1

∂Y6
=

∂F1

∂x3
=

∂

∂x3
[Gin − f2(G)− f3(G)f4(Ii) + f5(x3)]

=
∂

∂x3
f5(x3) =

∂

∂x3

r4k
n3
4

kn3
4 + xn3

3

= r4k
n3
4

∂

∂x3
(kn3

4 + xn3
3 )−1

= −r4kn3
4 (kn3

4 + xn3
3 )−2(n3x

n3−1
3 )

= −r4n3k
n3
4

xn3−1
3

(kn3
4 + xn3

3 )2
.

∂F2

∂Y1
=

∂F2

∂G
=

∂

∂G
[βf1(G)− Ep(Ip − Ii)−

Ip
tp

]

= β
∂

∂G
f1(G) = β

∂

∂G

r1G
n1

kn1
1 +Gn1

= β
∂

∂G
r1(1−

kn1
1

kn1
1 +Gn1

)
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= −βr1
∂

∂G

kn1
1

kn1
1 +Gn1

= −βr1kn1
1

∂

∂G
(kn1

1 +Gn1)−1

= βr1k
n1
1 (kn1

1 +Gn1)−2(n1G
n1−1)

= βr1n1k
n1
1

∂F2

∂Y2
=

∂F2

∂Ip
=

∂

∂Ip
[βf1(G)− E(Ip − Ii)−

Ip
tp

]

= −E − 1

tp
.

∂F2

∂Y3
=
∂F2

∂Ii
=

∂

∂Ii
[βf1(G)− E(Ip − Ii)−

Ip
tp

] = E.

∂F2

∂Y4
=
∂F2

∂x1
=

∂

∂x1
[βf1(G)− E(Ip − Ii)−

Ip
tp

] = 0.

∂F2

∂Y5
=
∂F2

∂x2
=

∂

∂x2
[βf1(G)− E(Ip − Ii)−

Ip
tp

] = 0.

∂F2

∂Y6
=
∂F2

∂x3
=

∂

∂x3
[βf1(G)− E(Ip − Ii)−

Ip
tp

] = 0.

∂F3

∂Y1
=
∂F3

∂G
=

∂

∂G
[E(Ip − Ii)−

Ii
ti

] = 0.

∂F3

∂Y2
=
∂F3

∂Ip
=

∂

∂G
[E(Ip − Ii)−

Ii
ti

] = E.

∂F3

∂Y3
=

∂F3

∂Ii
=

∂

∂Ii
[E(Ip − Ii)−

Ii
ti

]

= −E − 1

ti
.
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∂F3

∂Y4
=
∂F3

∂x1
=

∂

∂x1
[E(Ip − Ii)−

Ii
ti

] = 0.

∂F3

∂Y5
=
∂F3

∂x2
=

∂

∂x2
[E(Ip − Ii)−

Ii
ti

] = 0.

∂F3

∂Y6
=
∂F3

∂x3
=

∂

∂x3
[E(Ip − Ii)−

Ii
ti

] = 0.

∂F4

∂Y1
=
∂F4

∂G
=

∂

∂G
[
3

td
(Ip − x1)] = 0.

∂F4

∂Y2
=
∂F4

∂Ip
=

∂

∂Ip
[
3

td
(Ip − x1)] =

3

td
.

∂F4

∂Y3
=
∂F4

∂Ii
=

∂

∂Ii
[
3

td
(Ip − x1)] = 0.

∂F4

∂Y4
=
∂F4

∂x1
=

∂

∂x1
[
3

td
(Ip − x1)] = − 3

td
.

∂F4

∂Y5
=
∂F4

∂x2
=

∂

∂x2
[
3

td
(Ip − x1)] = 0.

∂F4

∂Y6
=
∂F4

∂x3
=

∂

∂x3
[
3

td
(Ip − x1)] = 0.

∂F5

∂Y1
=
∂F5

∂G
=

∂

∂G
[
3

td
(x1 − x2)] = 0.

∂F5

∂Y2
=
∂F5

∂Ip
=

∂

∂Ip
[
3

td
(x1 − x2)] = 0.
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∂F5

∂Y3
=
∂F5

∂Ii
=

∂

∂Ii
[
3

td
(x1 − x2)] = 0.

∂F5

∂Y4
=
∂F5

∂x1
=

∂

∂x1
[
3

td
(x1 − x2)] =

3

td
.

∂F5

∂Y5
=
∂F5

∂x2
=

∂

∂x2
[
3

td
(x1 − x2)] = − 3

td
.

∂F5

∂Y6
=
∂F5

∂x3
=

∂

∂x3
[
3

td
(x1 − x2)] = 0.

∂F6

∂Y1
=
∂F6

∂G
=

∂

∂G
[
3

td
(x2 − x3)] = 0.

∂F6

∂Y2
=
∂F6

∂Ip
=

∂

∂Ip
[
3

td
(x2 − x3)] = 0.

∂F6

∂Y3
=
∂F6

∂Ii
=

∂

∂Ii
[
3

td
(x2 − x3)] = 0.

∂F6

∂Y4
=
∂F6

∂x1
=

∂

∂x1
[
3

td
(x2 − x3)] = 0.

∂F6

∂Y5
=
∂F6

∂x2
=

∂

∂x2
[
3

td
(x2 − x3)] =

3

td
.

∂F6

∂Y6
=
∂F6

∂x3
=

∂

∂x3
[
3

td
(x2 − x3)] = − 3

td
.
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Therefore, in the Jacobian matrix (13),

q11 =
r2k2

(k2 +G)2
+ c1(

r3I
n2
i

kn2
3 + In2

i

+ c2),

q13 = c1r3n2k
n2
3 G

In2−1
i

(kn2
3 + In2

i )2
,

q16 = r4n3k
n3
4

xn3−1
3

(kn3
4 + xn3

3 )2
,

q21 = βr1n1k
n1
1

Gn1−1

(kn1
1 +Gn1)2

,

q22 = E +
1

tp
,

q33 = E +
1

ti
.

By Jacobian of the sub-system (4), we obtain its characteristic equation

∆(λ) = λ6 + a1λ
5 + a2λ

4 + a3λ
3 + a4λ

2 + a5λ+ a6 = 0, (15)

where aj, j = 1, 2, . . . , 6 are expressions of all the given parameters.

The calculation details are presented as follows.

det(λI − J)|E∗
β

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ 0 0 0 0 0

0 λ 0 0 0 0

0 0 λ 0 0 0

0 0 0 λ 0 0

0 0 0 0 λ 0

0 0 0 0 0 λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−q11 0 −q13 0 0 −q16
q21 −q22 E 0 0 0

0 E −q33 0 0 0

0 3
td

0 − 3
td

0 0

0 0 0 3
td
− 3
td

0

0 0 0 0 3
td

− 3
td

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ+ q11 0 q13 0 0 q16

−q21 λ+ q22 −E 0 0 0

0 −E λ+ q33 0 0 0

0 − 3
td

0 λ+ 3
td

0 0

0 0 0 − 3
td

λ+ 3
td

0

0 0 0 0 − 3
td

λ+ 3
td

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (-1)1+6q16

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−q21 λ+ q22 −E 0 0

0 −E λ+ q33 0 0

0 − 3
td

0 λ+ 3
td

0

0 0 0 − 3
td

λ+ 3
td

0 0 0 0 − 3
td

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+(-1)6+6(λ+ 3
td

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ+ q11 0 q13 0 0

−q21 λ+ q22 −E 0 0

0 −E λ+ q33 0 0

0 − 3
td

0 λ+ 3
td

0

0 0 0 − 3
td

λ+ 3
td

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=-q16(−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−q21 −E λ+ q22 0 0

0 λ+ q33 −E 0 0

0 0 − 3
td

λ+ 3
td

0

0 0 0 − 3
td

λ+ 3
td

0 0 0 0 − 3
td

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+(λ+ 3
td

)(−1)5+5(λ+ 3
td

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ+ q11 0 q13 0

−q21 λ+ q22 −E 0

0 −E λ+ q33 0

0 − 3
td

0 λ+ 3
td

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=q16(−q21(λ+ q33)(− 3

td
)(− 3

td
)(− 3

td
))
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+(λ+ 3
td

)2(−1)4+4(λ+ 3
td

)

∣∣∣∣∣∣∣∣∣∣∣
λ+ q11 0 q13

−q21 λ+ q22 −E

0 −E λ+ q33

∣∣∣∣∣∣∣∣∣∣∣
=q16q21(

3
td

)3(λ+ q33)

+(λ+ 3
td

)3
(
(−1)1+1(λ+q11)

∣∣∣∣∣∣∣
λ+ q22 −E

−E λ+ q33

∣∣∣∣∣∣∣+(−1)2+1(−q21)

∣∣∣∣∣∣∣
0 q13

−E λ+ q33

∣∣∣∣∣∣∣
)

=q16q21(
3
td

)3(λ+ q33) + (λ+ 3
td

)3
(
(λ+ q11)[(λ+ q22)(λ+ q33)− (−E)2] + q21[0 ·

(λ+ q33)− (−E)q13]
)

=q16q21(
3
td

)3(λ+ q33) + (λ+ 3
td

)3
(
(λ+ q11)[(λ+ q22)(λ+ q33)− E2] + Eq21q13

)
=(λ+ 3

td
)3(λ+ q11)(λ+ q22)(λ+ q33)−E2(λ+ 3

td
)3(λ+ q11) +Eq21q13(λ+ 3

td
)3 +

q16q21(
3
td

)3(λ+ q33).

Then we are able to check the coefficient for every λj, j = 1, . . . , 6.

For λ5, (λ + 3
td

)3(λ + q11)(λ + q22)(λ + q33) contains the term in such order.

(λ + 3
td

)3 has λ3 + 3
(

3
td

)
λ2, which can contribute to the coefficient of λ5, while (λ +

q11)(λ + q22)(λ + q33) has λ3 + (q11 + q22 + q33)λ
2 to contribute. Thus we have the

coefficient

a1 = (q11 + q22 + q33) + 3
( 3

td

)
.

For λ4, (λ+ 3
td

)3[(λ+ q11)(λ+ q22)(λ+ q33)] and −E2(λ+ 3
td

)3(λ+ q11) contain

the term in such order. The latter one can only contribute −E2. For the former

one, we check the λ3λ, λ2λ2 and λλ3 formations, to get (q11q22 + q22q33 + q11q33),

3
(

3
td

)
(q11 + q22 + q33) and 3

(
3
td

)2
respectively. Thus we have the coefficient

a2 = (q11q22 + q22q33 + q11q33 − E2)

+3
( 3

td

)
(q11 + q22 + q33) + 3

( 3

td

)2
.
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For λ3, (λ+ 3
td

)3[(λ+q11)(λ+q22)(λ+q33)], −E2(λ+ 3
td

)3(λ+q11) and Eq21q13(λ+

3
td

)3 contain the term in such order. For the first one, we check the λ3λ0, λ2λ, λλ2 and

λ0λ3 formations, to get q11q22q33, 3
(

3
td

)
(q11q22 + q22q33 + q11q33), 3

(
3
td

)2
(q11 + q22 + q33)

and
(

3
td

)3
respectively. For the second one, we check only the λ3λ0 and λ2λ formations,

to get −E2q11 and −3E2
(

3
td

)
. The third one contributes only Eq21q13. Thus we have

the coefficient

a3 = (q11q22q33 − q11E2 + q13q21E)

+3
( 3

td

)
(q11q22 + q22q33 + q11q33 − E2)

+3
( 3

td

)2
(q11 + q22 + q33) +

( 3

td

)3
.

For λ2, (λ+ 3
td

)3[(λ+q11)(λ+q22)(λ+q33)], −E2(λ+ 3
td

)3(λ+q11) and Eq21q13(λ+

3
td

)3 contain the term in such order. For the first one, we check the λ2λ0, λλ and λ0λ2

formations, to get 3
(

3
td

)
q11q22q33, 3

(
3
td

)2
(q11q22 +q22q33 +q11q33), and

(
3
td

)3
(q11 +q22 +

q33) respectively. For the second one, we check only the λ2λ0 and λλ formations, to

get −3E2
(

3
td

)
q11 and −3E2

(
3
td

)2
. The third one contributes only 3Eq21q13

(
3
td

)
. Thus

we have the coefficient

a4 = 3
( 3

td

)
(q11q22q33 − q11E2 + q13q21E)

+3
( 3

td

)2
(q11q22 + q22q33 + q11q33 − E2)

+
( 3

td

)3
(q11 + q22 + q33).

For λ, all terms can contribute to it. Except for the last one, we check λλ0

and λ0λ formations.(λ + 3
td

)3[(λ + q11)(λ + q22)(λ + q33)] results in 3
(

3
td

)2
q11q22q33 +(

3
td

)3
(q11q22+q22q33+q11q33). −E2(λ+ 3

td
)3(λ+q11) gives −E2[3

(
3
td

)2
q11+

(
3
td

)3
]. And

Eq21q13(λ+ 3
td

)3 ends up with Eq21q13 ·3
(

3
td

)2
. q16q21(

3
td

)3(λ+q33) contains q16q21(
3
td

)3.

Thus, we have the coefficient
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a5 = 3
( 3

td

)2
(q11q22q33 − q11E2 + q13q21E)

+
( 3

td

)3
(q11q22 + q22q33 + q11q33 + q16q21 − E2).

For the constant term, we need only to find sum of the constants from each

individual expression, which turns out to be

a6 =
( 3

td

)3
(q11q22q33 + q16q21q33 − q11E2 + q13q21E).

To sum up, we obtained

a1 = (q11 + q22 + q33) + 3
( 3

td

)
,

a2 = (q11q22 + q22q33 + q11q33 − E2)

+3
( 3

td

)
(q11 + q22 + q33) + 3

( 3

td

)2
,

a3 = (q11q22q33 − q11E2 + q13q21E)

+3
( 3

td

)
(q11q22 + q22q33 + q11q33 − E2)

+3
( 3

td

)2
(q11 + q22 + q33) +

( 3

td

)3

a4 = 3
( 3

td

)
(q11q22q33 − q11E2 + q13q21E)

+3
( 3

td

)2
(q11q22 + q22q33 + q11q33 − E2)

+
( 3

td

)3
(q11 + q22 + q33),

a5 = 3
( 3

td

)2
(q11q22q33 − q11E2 + q13q21E)

+
( 3

td

)3
(q11q22 + q22q33 + q11q33 + q16q21 − E2),
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a6 =
( 3

td

)3
(q11q22q33 + q16q21q33 − q11E2 + q13q21E).

Note: qij ’s and ai’s are constant numbers evaluated at E∗β. And the following prop-

erty shows that all of them are nonnegative.

Property II.1 For parameter expressions qij and ai, i = 1, . . . , 6,

(i). qij ≥ 0 for all (i, j); (ii). ai ≥ 0 for i = 1, . . . , 6.

Proof. (i). Since all the parameters in the model are positive, by the definition

of above qij’s, it is obvious that qij ≥ 0 when evaluated at E∗β. The equal sign holds

for some qij at E∗0 .

(ii). To obtain ai ≥ 0, it is helpful to notice that

q22q33 − E2 =
(
E +

1

tp

)(
E +

1

ti

)
= E2 +

( 1

tp
+

1

ti

)
E +

1

tpti
− E2

=
( 1

tp
+

1

ti

)
E +

1

tpti
> 0

And it is easy to observe that for every negative term in the expression of ai,

i = 1, . . . , 6, it can be rearranged and factored out (q22q33 − E2), which is positive.

Thus we have ai ≥ 0 for i = 1, . . . , 6.

Theorem II.4 The fast sub-system (4) always has a locally stable trivial equilibrium

point E ′0.

Proof. For the fast sub-system, at E ′0 = (G∗0, 0, 0, 0, 0, 0), q13 = q16 = q21 = 0,

thus

∆(λ)|E′0 =
(
λ+

3

td

)3
(λ+ q11)[(λ+ q22)(λ+ q33)− EpEi]

= (λ+ q11)[λ
2 + (q22 + q33)λ+ (q22q33 − EpEi)]

(
λ+

3

td

)3
.
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For the second factor in the characteristics Eq. (15), notice that

δ = (q22 + q33)
2 − 4(q22q33 − E2)

= q222 + q233 + 2q22q33 − 4q22q33 + 4E2

= q222 + q233 − 2q22q33 + 4E2

= (q22 − q33)2 + 4E2

> 0.

Therefore this factor has two negative zeros. Hence, the characteristics Eq. (15) has

total six negative zeros, which are given by

λ1 = −q11,

λ2,3 =
−(q22 + q33)±

√
(q22 − q33)2 + 4EpEi

2
,

λ4,5,6 = − 3

td
.

This implies that the trivial equilibrium point E ′0 is locally stable for the fast

sub-system.

Remark. This result indicates that if a subject’s physical condition is ’near’

the pathological state, i.e. the beta-cell mass is too small, then the situation is irre-

versible and the subject will eventually develop T1DM with no insulin produced.

2 Conditions of local stability

Next, the local stability of equilibria of the fast sub-system is determined by

the varying β according to the following theorems.

We apply the Ruth-Hurwitz criterion to the characteristics Eq. (15).

Lemma II.1 (Routh-Hurwitz Criteria) Given the polynomial,

P (λ) = λn + a1λ
n−1 + · · ·+ an−1λ+ an,
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where the coefficients ai are real constants, i = 1, . . . , n, define the n Hurwitz matrices

using the coefficients ai of the characteristic polynomial:

H1 = (a1),

H2 =

 a1 1

a3 a2

 ,

H3 =


a1 1 0

a3 a2 a1

a5 a4 a3

 ,
...

and

Hn =



a1 1 0 0 · · · 0

a3 a2 a1 1 · · · 0

a5 a4 a3 a2 · · · 0
...

...
...

... · · · ...

0 0 0 0 · · · an


where aj = 0 if j > n. All of the roots of

the polynomial P (λ) are negative or have negative real part iff the determinants of all

Hurwitz matrices are positive:

detHj > 0, j = 1, 2, . . . , n.

For system (4), the determinants of Hurwitz matrices of its characteristic poly-

nomial are given by

detH1 = |a1| = a1,

detH2 =

∣∣∣∣∣∣∣
a1 1

a3 a2

∣∣∣∣∣∣∣ = a1a2 − a3,

detH3 =

∣∣∣∣∣∣∣∣∣∣∣
a1 1 0

a3 a2 a1

a5 a4 a3

∣∣∣∣∣∣∣∣∣∣∣
= a3|H2| − a1

∣∣∣∣∣∣∣
a1 1

a5 a4

∣∣∣∣∣∣∣
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= a3|H2| − a1(a1a4 − a5)

= a3|H2| − a21a4 + a1a5,

(expand by the last column)

detH4 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 1 0 0

a3 a2 a1 1

a5 a4 a3 a2

0 a6 a5 a4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= a4|H3| − a2

∣∣∣∣∣∣∣∣∣∣∣
a1 1 0

a3 a2 a1

0 a6 a5

∣∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣∣
a1 1 0

a5 a4 a3

0 a6 a5

∣∣∣∣∣∣∣∣∣∣∣
= a4|H3| − a2(a5|H2| − a21a6) + [a5(a1a4 − a5)− a1a3a6]

= a4|H3| − a2a5|H2|+ a21a2a6 + a1a4a5 − a1a3a6 − a25,

(expand by the last column and then expand by the last column for the minor deter-

minant)

detH5 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 1 0 0 0

a3 a2 a1 1 0

a5 a4 a3 a2 a1

0 a6 a5 a4 a3

0 0 0 a6 a5

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= a5|H4| − a3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 1 0 0

a3 a2 a1 1

a5 a4 a3 a2

0 0 0 a6

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
+ a1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 1 0 0

a3 a2 a1 1

0 a6 a5 a4

0 0 0 a6

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

34



= a5|H4| − a3a6|H3|+ a1a6

∣∣∣∣∣∣∣∣∣∣∣
a1 1 0

a3 a2 a1

0 a6 a5

∣∣∣∣∣∣∣∣∣∣∣
= a5|H4| − a3a6|H3|+ a1a6(a5|H2| − a21a6)

= a5|H4| − a3a6|H3|+ a1a5a6|H2| − a31a26,

(expand by the last column and then expand by the last row for the minor determi-

nant)

detH6 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 1 0 0 0 0

a3 a2 a1 1 0 0

a5 a4 a3 a2 a1 1

0 a6 a5 a4 a3 a2

0 0 0 a6 a5 a4

0 0 0 0 0 a6

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= a6|H5|.

(expand by the last row)

Therefore, the theorem follows.

Theorem II.5 The equilibrium point Eβ of system (4) is locally stable iff the follow-

ing conditions are met.

|H1| = a1 > 0,

|H2| = a1a2 − a3 > 0,

|H3| = a3|H2| − a21a4 + a1a5 > 0,

|H4| = a4|H3| − a2a5|H2|+ a21a2a6 + a1a4a5

−a1a3a6 − a25 > 0,

|H5| = a5|H4| − a3a6|H3|+ a1a5a6|H2| − a31a26 > 0.

Proof. This theorem is a direct result from Routh-Hurwitz Criteria. Hi’s are Hurwitz
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matrices after simplification. Particularly, noticing that a6 > 0 and |H6| = a6|H5|,

we can eliminate the last inequality, for that |H5| > 0 is equivalent to |H6| > 0.

Remark. The theorem gives us the condition, or alternatively a threshold

value of beta-cell mass when the body’s glucose/insulin levels and the beta-cell mass

tend to reach a steady state. This threshold value is determined by other physio-

logical parameters. Depending on the starting condition of the parameters, it can

approach either the pathological steady state or the healthy steady state. Namely,

the starting beta-cell mass needs to exceed the threshold value to prevent the body

from developing the diabetes.

3 Backward bifurcation

Let us take the relative strength of beta-cell functionality parameter w as a

bifurcation parameter. We are interested in the possible backward bifurcation. Then

examine the w-G bifurcation diagram, based on Eq. (12).

0 0.5 1 1.5
−200

0

200

400

600

800

1000

w = p0/a0

G

w = p0/a0 bifurcation: G

Figure 3. w bifurcation diagram against glucose
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By Eq. (12), the lower branch of the bifurcation diagram 3 has the expression

G =
ra −

√
r2a − 4rb(1− w)

2rb
. (16)

So we have

∂G

∂w
=
−1

2
(r2a − 4rb(1− w))−

1
2
∂
∂w

(r2a − 4rb(1− w))

2rb

=
−1

2
(r2a − 4rb(1− w))−

1
2 · 4rb

2rb

= −(r2a − 4rb(1− w))−
1
2 < 0.

The negative partial derivative shows that the lower branch represents a back-

ward bifurcation. That is, the glucose equilibrium concentration decreases as the

relative strength of beta-cell functionality increases. This result can be interpreted

as ‘the higher beta-cell functionality, the lower equilibrium glucose level’.

4 Hopf Bifurcation Analysis

Next we examine the case when the insulin secretion experiences the intermit-

tent rest. This behavior of the secretory regulation is hypothesized to help beta-cells

sustain.

The ultradian oscillation of glucose and insulin concentrations has been ob-

served in many studies. Model (1) should also possess similar features. We are mostly

curious about whether a limit cycle exists in the dynamic of our model. Thus in this

section, we try to find out the conditions under which the Hopf bifurcation exists.

We start by examining the sufficient conditions of the existence of Hopf bifurcation.

The following lemma helps us achieve this goal.

Lemma II.2 (Hopf) Suppose that the C4-system (4) with Y ∈ R6 and µ ∈ R

has a critical point Y0 for some parameter µ = µ0 and that J = DF (Y0, µ0) has a

simple pair of pure imaginary eigenvalues and no other eigenvalues with zero real
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part. Furthermore, suppose
d

dµ
[Reλ(µ)]µ=µ0 6= 0.

Then the Hopf bifurcation occurs at µ = µ0.

By the characteristic Eq. (15), if it has a simple pair of pure imaginary eigen-

values λ = ±ωi(ω > 0) at µ = µ0, then

ω6i6 + a1ω
5i5 + a2ω

4i4 + a3ω
3i3 + a4ω

2i2 + a5ωi+ a6 = 0,

−ω6 + a1ω
5i+ a2ω

4 − a3ω3i− a4ω2 + a5ωi+ a6 = 0,

(−ω6 + a2ω
4 − a4ω2 + a6) + (a1ω

5 − a3ω3 + a5ω)i = 0.

Thus the following holds  −ω
6 + a2ω

4 − a4ω2 + a6 = 0,

a1ω
5 − a3ω3 + a5ω = 0.

(17)

Since ω > 0, by the second equation of (17) we have that

a1ω
4 − a3ω2 + a5 = 0. (18)

Therefore, the pair of pure imaginary eigenvalues can be found as

ω2 =
a3 ±

√
a23 − 4a1a5

2a1
. (19)

Then substituting it into the first equation of (17) results in

−
(a3 ±√a23 − 4a1a5

2a1

)3
+ a2

(a3 ±√a23 − 4a1a5

2a1

)2
− a4

(a3 ±√a23 − 4a1a5

2a1

)
+ a6 = 0.

Next we compute dλ
dµ

for some parameter µ. Again, by characteristic Eq. (15),

it follows that

(6λ5 + 5a1λ
4 + 4a2λ

3 + 3a3λ
2 + 2a4λ+ a5)

dλ

dµ

+(
da1
dµ

λ5 +
da2
dµ

λ4 +
da3
dµ

λ3 +
da4
dµ

λ2 +
da5
dµ

λ+
da6
dµ

) = 0.
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Notice λ = ±ωi at µ = µ0,

(6ω5i5 + 5a1ω
4i4 + 4a2ω

3i3 + 3a3ω
2i2 + 2a4ωi+ a5)

dλ

dµ

+(
da1
dµ

ω5i5 +
da2
dµ

ω4i4 +
da3
dµ

ω3i3 +
da4
dµ

ω2i2 +
da5
dµ

ωi+
da6
dµ

) = 0,

(6ω5i+ 5a1ω
4 − 4a2ω

3i− 3a3ω
2 + 2a4ωi+ a5)

dλ

dµ

+(
da1
dµ

ω5i+
da2
dµ

ω4 − da3
dµ

ω3i− da4
dµ

ω2 +
da5
dµ

ωi+
da6
dµ

) = 0,

[(6ω5 − 4a2ω
3 + 2a4ω)i+ (5a1ω

4 − 3a3ω
2 + a5)]

dλ

dµ

+[(
da1
dµ

ω5 − da3
dµ

ω3 +
da5
dµ

ω)i+ (
da2
dµ

ω4 − da4
dµ

ω2 +
da6
dµ

)] = 0,

[(6ω5 − 4a2ω
3 + 2a4ω)i+ (5a1ω

4 − 3a3ω
2 + a5)]

dλ

dµ
=

−[(
da1
dµ

ω5 − da3
dµ

ω3 +
da5
dµ

ω)i+ (
da2
dµ

ω4 − da4
dµ

ω2 +
da6
dµ

)],

dλ

dµ
= −[(

da1
dµ

ω5 − da3
dµ

ω3 +
da5
dµ

ω)i+ (
da2
dµ

ω4 − da4
dµ

ω2 +
da6
dµ

)]/

[(6ω5 − 4a2ω
3 + 2a4ω)i+ (5a1ω

4 − 3a3ω
2 + a5)].

Therefore, we have

sign{ d
dµ

[Reλ(µ)]} = sign{Re(dλ
dµ

)}

= −sign (
da2
dµ

ω4− da4
dµ

ω2+
da6
dµ

)(5a1ω4−3a3ω2+a5)+(
da1
dµ

ω5− da3
dµ

ω3+
da5
dµ

ω)(6ω5−4a2ω3+2a4ω)

(5a1ω4−3a3ω2+a5)2+(6ω5−4a2ω3+2a4ω)2

= −sign[(da2
dµ
ω4 − da4

dµ
ω2 + da6

dµ
)(5a1ω

4 − 3a3ω
2 + a5)

+(da1
dµ
ω5 − da3

dµ
ω3 + da5

dµ
ω)(6ω5 − 4a2ω

3 + 2a4ω)]

= −sign[(da2
dµ
ω4 − da4

dµ
ω2 + da6

dµ
)(4a1ω

4 − 2a3ω
2)

+(da1
dµ
ω4 − da3

dµ
ω2 + da5

dµ
)(6ω4 − 4a2ω

2 + 2a4)ω
2]

= −sign[(da2
dµ
ω4 − da4

dµ
ω2 + da6

dµ
)(2a1ω

2 − a3)

+(da1
dµ
ω4 − da3

dµ
ω2 + da5

dµ
)(3ω4 − 2a2ω

2 + a4)].

By Eq. (19) it follows that

sign
{ d
dµ

[Reλ(µ)]µ=µ0
}
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= −sign[(
da2
dµ

(a3 ±√a23 − 4a1a5

2a1

)2
− da4
dµ

(a3 ±√a23 − 4a1a5

2a1

)
+
da6
dµ

)

(2a1
(a3 ±√a23 − 4a1a5

2a1

)
− a3)

+(
da1
dµ

(a3 ±√a23 − 4a1a5

2a1

)2
− da3
dµ

(a3 ±√a23 − 4a1a5

2a1
+
da5
dµ

)

(3
(a3 ±√a23 − 4a1a5

2a1

)2
− 2a2

(a3 ±√a23 − 4a1a5

2a1

)
+ a4)].

By the above analysis, we can now state the following result.

Theorem II.6 Suppose that parameter β varies while other parameters fix and sys-

tem (4) with Y ∈ R6 and β ∈ R has a critical point Y0 for parameter β = β∗. If the

parameters of the system satisfy

−(
a3 ±

√
a23 − 4a1a5

2a1
)3 + a2(

a3 ±
√
a23 − 4a1a5

2a1
)2

−a4(
a3 ±

√
a23 − 4a1a5

2a1
) + a6 = 0,

then system (4) has a simple pair of pure imaginary eigenvalues given by

λ = ±ωi = ±(
a3 +

√
a23 − 4a1a5

2a1
)
1
2 ,

or

λ = ±ωi = ±(
a3 −

√
a23 − 4a1a5

2a1
)
1
2 .

Furthermore, if

d

dβ
[Reλ(β)]β=β∗ =

(da2
dβ

(
a3 ±

√
a23 − 4a1a5

2a1
)2 − da4

dβ

a3 ±
√
a23 − 4a1a5

2a1
+
da6
dβ

)

(2a1(
a3 ±

√
a23 − 4a1a5

2a1
)− a3)

+
(da1
dβ

(
a3 ±

√
a23 − 4a1a5

2a1
)2 − da3

dβ

a3 ±
√
a23 − 4a1a5

2a1
+
da5
dβ

)
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(3(
a3 ±

√
a23 − 4a1a5

2a1
)2 − 2a2(

a3 ±
√
a23 − 4a1a5

2a1
) + a4) 6= 0,

the system (4) undergoes a Hopf bifurcation at β = β∗, for some β∗ > 0.

Next, we look for simpler and particular conditions that ensure the existence

of a Hopf bifurcation. Denote that

h(β) := −(
a3 +

√
a23 − 4a1a5

2a1
)3 + a2(

a3 +
√
a23 − 4a1a5

2a1
)2

−a4(
a3 +

√
a23 − 4a1a5

2a1
) + a6 = 0,

and attempt to show

h(0) > 0; h(∞) < 0.

Property II.2

a1a2|β=0 > a3|β=0.

Proof. To be concise, all the expressions |β=0 in this proof are implicit. We

show this property by proving a1a2 − a3 > 0, which is obtained by comparing the

terms of a1a2 and a3. By expressions of qij’s, q21 = 0. We create following notation

to simplify this discussion.

Let

Td =
3

td
,

e1 = q11 + q22 + q33,

e2 = q11q22 + q22q33 + q11q33 − EpEi,

e3 = q11q22q33 − q11EpEi + q13q21Ei. (20)
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Thus we have

a1 = e1 + 3Td,

a2 = e2 + 3Tde1 + 3T 2
d ,

a3 = e3 + 3Tde2 + 3T 2
d e1 + T 3

d .

Then it follows that

a1a2 − a3 = (e1 + 3Td)(e2 + 3Tde1 + 3T 2
d )− (e3 + 3Tde2 + 3T 2

d e1 + T 3
d ),

= e1e2 + 3Tde
2
1 + 3T 2

d e1 + 3Tde2 + 3T 2
d e1 + 9T 3

d − e3 − 3Tde2 − 3T 2
d e1 − T 3

d ,

= e1e2 + 3Tde
2
1 + 3T 2

d e1 + 8T 3
d − e3.

Now we examine the expressions of e1, e2 and e3. We can show that e1e2−e3 >

0.

Therefore a1a2 − a3 > 0.

Lemma II.3 If a4|β=0 <
a23−4a1a5

a21
|β=0 < (a22 − 4a4)|β=0, then h(0) > 0.

Proof. Similar to above treatment, the expressions |β=0 are implicit. Taking a square

root, we may rewrite the condition as
√
a4 <

√
a23−4a1a5
a1

<
√
a22 − 4a4. We are going

to show

h(0) = −
(a3 +

√
a23 − 4a1a5

2a1

)3
+ a2

(a3 +
√
a23 − 4a1a5

2a1

)2
−a4

(a3 +
√
a23 − 4a1a5

2a1

)
+ a6 > 0.

We have

h(0) = −
(a3 +

√
a23 − 4a1a5

2a1

)3
+ a2

(a3 +
√
a23 − 4a1a5

2a1

)2
−a4

(a3 +
√
a23 − 4a1a5

2a1

)
+ a6
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> −
(a3 +

√
a23 − 4a1a5

2a1

)3
+ a2

(a3 +
√
a23 − 4a1a5

2a1

)2
−a4

(a3 +
√
a23 − 4a1a5

2a1

)

= −
(a3 +

√
a23 − 4a1a5

2a1

)
[
(a3 +

√
a23 − 4a1a5

2a1

)2
− a2

(a3 +
√
a23 − 4a1a5

2a1

)
+ a4].

Thus it suffices to show that

h(0) = −
(a3 +

√
a23 − 4a1a5

2a1

)
[
(a3 +

√
a23 − 4a1a5

2a1

)2
−a2

(a3 +
√
a23 − 4a1a5

2a1

)
+a4] > 0.

or equivalently,

(a3 +
√
a23 − 4a1a5

2a1

)2
− a2

(a3 +
√
a23 − 4a1a5

2a1

)
+ a4 < 0. (21)

The left side of (21) is of quadratic form. To prove the above inequality, it is

equivalent to prove
a3+
√
a23−4a1a5
2a1

falls between the two roots of x2− a2x+ a4 = 0, i.e.

a2 −
√
a22 − 4a4

2
<
a3 +

√
a23 − 4a1a5

2a1
<
a2 +

√
a22 − 4a4

2
. (22)

First we consider the right-hand side inequality. By property (II.2), a3
a1
< a2. Together

with the condition

√
a23−4a1a5
a1

<
√
a22 − 4a4,

a3 +
√
a23 − 4a1a5

2a1
=

a3
2a1

+

√
a23 − 4a1a5

2a1

<
a2
2

+

√
a22 − 4a4

2

=
a2 +

√
a22 − 4a4

2
.

Then we consider the left-hand side inequality. By the condition
√
a4 <

√
a23−4a1a5
a1

,

a4 <
a23−4a1a5

a21
. Then
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a2 −
√
a22 − 4a4

2
=

(a2 −
√
a22 − 4a4)(a2 +

√
a22 − 4a4)

2(a2 +
√
a22 − 4a4)

=
a22 − (a22 − 4a4)

2(a2 +
√
a22 − 4a4)

=
4a4

2(a2 +
√
a22 − 4a4)

=
2a4

a2 +
√
a22 − 4a4

<
2a4

a3+
√
a23−4a1a5
a1

<
2a4

2
√
a23−4a1a5
a1

<
2
a23−4a1a5

a21

2
√
a23−4a1a5
a1

=

√
a23 − 4a1a5

a1

<
a3 +

√
a23 − 4a1a5

2a1
.

The proof is done.

Lemma II.4 If ∆ = r2a + 4rb(p0/a0 − 1) > 0, i.e. the complete model (1) has three

equilibrium points, then it holds that

h(β2) < 0,

where β2 is the β-coordinate of the equilibrium point E2 for the complete system (1).

Theorem II.7 If

a4|β=0 <
a23 − 4a1a5

a21
|β=0 < (a22 − 4a4)|β=0

and ∆ = r2a + 4rb(p0/a0 − 1) > 0, there exists β = β∗ ∈ (0, β2), at which the Hopf

bifurcation occurs.

Proof. This is a direct result by intermediate value theorem from the two

proceding lemmas and our Hopf theorem.
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5 Insulin sensitivity

Then insulin sensitivity is considered as a measure of how sensitive the glucose

concentration reacts to the secretion of insulin. It measures the ability of endogenous

insulin to take down glucose in extracellular fluids by stimulating the peripheral

consumption of glucose and inhibiting glucose release from the liver. The glucose-

clamp technique is used to measure insulin sensitivity in practice. Quantitatively, the

insulin dependent glucose uptake term in first equation of model (1) is used to define

such parameter.

The function f4(Ii) is of Mechaelis Menten form. Previous works present the

insulin dependent glucose uptake as a linear term SiGI, where Si is referred as the in-

sulin sensitivity. In model (1), the corresponding term is f3(G)f4(Ii) = c1Gf4(Ii). So

we propose that insulin sensitivity can be examined by the value c1 multiplied by the

tangent of the turning point of function f4(Ii), according to the linear form definition.

The following computation suggests the actual form of the insulin sensitivity.

∂

∂Ii
f4(Ii) =

∂

∂Ii
[
r3I

n2
i

kn2
3 + In2

i

+ c2]

= r3
∂

∂Ii

In2
i

kn2
3 + In2

i

= r3
∂

∂Ii
(1− kn2

3

kn2
3 + In2

i

)

= −r3kn2
3

∂

∂Ii
(kn2

3 + In2
i )−1

= r3k
n2
3 (kn2

3 + In2
i )−2(n2I

n2−1
i )

= r3n2k
n2
3 I

n2−1
i (kn2

3 + In2
i )−2

∂2

∂I2i
f4(Ii) =

∂

∂Ii
[r3n2k

n2
3 I

n2−1
i (kn2

3 + In2
i )−2]

= r3n2k
n2
3 [(n2 − 1)In2−2

i (kn2
3 + In2

i )−2 + In2−1
i (−2)(kn2

3 + In2
i )−3(n2I

n2−1
i )]

= r3n2k
n2
3 I

n2−2
i (kn2

3 + In2
i )−3[(n2 − 1)(kn2

3 + In2
i )− 2n2I

n
i 2]

45



To find the turning point, we let ∂2

∂I2i
f4(Ii) = 0 and thus have

(n2 − 1)(kn2
3 + In2

i )− 2n2I
n2
i = 0

(n2 − 1)(kn2
3 + In2

i ) = 2n2I
n2
i

(n2 − 1)kn2
3 + (n2 − 1)In2

i = 2n2I
n2
i

(n2 − 1)kn2
3 = (n2 + 1)In2

i

In2
i =

n2 − 1

n2 + 1
kn2
3

Ii = (
n2 − 1

n2 + 1
)

1
n2 k3

Then it is substituted into the expression of first derivative of f4(Ii), resulting

in

Si : = c1 · r3n2k
n2
3 [(

n2 − 1

n2 + 1
)

1
n2 k3]

n2−1(kn2
3 + [(

n2 − 1

n2 + 1
)

1
n2 k3]

n2)−2

= c1r3n2k
n2
3 (

n2 − 1

n2 + 1
)
n2−1

n2 kn2−1
3 (kn2

3 +
n2 − 1

n2 + 1
kn2
3 )−2

= c1r3n2k
2n2−1
3 (

n2 − 1

n2 + 1
)
n2−1

n2 [kn2
3 (1 +

n2 − 1

n2 + 1
)]−2

= c1r3n2k
2n2−1
3 k−2n2

3 (
n2 − 1

n2 + 1
)
n2−1

n2 (1 +
n2 − 1

n2 + 1
)−2

=
c1r3n2

k3

(n2−1
n2+1

)
n2−1

n2

(1 + n2−1
n2+1

)2

Therefore, we formally propose that the insulin sensitivity to be examined by

the following value

Si :=
c1r3n2

k3

(n2−1
n2+1

)
n2−1

n2

(1 + n2−1
n2+1

)2
(23)

Remark. This calculation of insulin sensitivity is in fact based on the lin-

earization of the Mechaelis Menten function. It is evaluated as the slope of the

tangent line at the turning point because it captures the geometric features of the

old definition. However, this new evaluation uses four parameters instead of only

one in old definition to be more acurate. c1 and r3 are the parameters relating to
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maximum insulin-dependent glucose uptake rate. k3 is the half saturation insulin

level for insulin-dependent glucose uptake. n2 is the order parameter in this term and

n2

(
n2−1

n2+1
)
n2−1
n2

(1+
n2−1

n2+1
)2

is an adjustment in the evaluation of insulin sensitivity.

6 Some useful mathematical results

For the sake of exploring the long term changes of body conditions, we are

curious about the long term trajectory behavior and have the following lemma.

Lemma II.5 If limt→∞ β(t) = 0, then the trajectory is attracted to E0.

Proof. We begin by adding up the second and third equations of model (1).

(Ip + Ii)
′ = βf1(G)− Ip

tp
− Ii
ti

< βf1(G)− Ip
tpi
− Ii
tpi

= βf1(G)− Ip + Ii
tpi

,

where tpi = max{tp, ti}.

Let I = Ip + Ii, then we have a new differential inequality

I ′(t) < β(t)f1(G)− I

tpi
(24)

Moreover, we have f1(G) = r1Gn1

k
n1
1 +Gn1

< r1, and thus

I ′(t) < r1β(t)− I

tpi
. (25)

The differential equation

J ′(t) = r1β(t)− J(t)

tpi
, J(0) = J0 (26)

can be solved in this way:
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J ′(t) +
J(t)

tpi
= r1β(t),

et/tpi(J ′(t) +
J(t)

tpi
) = et/tpir1β(t),

et/tpiJ(t)′ = r1e
t/tpiβ(t),

et/tpiJ(t)− e0/tpiJ(0) = r1

∫ t

0
et/tpiβ(t)dt,

et/tpiJ(t) = r1

∫ t

0
et/tpiβ(t)dt+ J0,

J(t) = r1e
−t/tpi [

∫ t

0
et/tpiβ(t)dt+ J0].

By comparison theorem, I ′(t) < J ′(t) leads to

I(t) < J(t) = r1e
−t/tpi [

∫ t

0
et/tpiβ(t)dt+ J0]. (27)

Therefore, if limt→∞ β(t) = 0, then there exists δ > 0 such that β(t) < δ

provided t > M , for some large enough M > 0. Then we have

I(t) ≤ r1e
−t/tpi [

∫ t

0
et/tpiδdt+ J0],

= r1e
−t/tpi [δtpi(e

t/tpi − 1) + J0],

= r1e
−t/tpi [δtpie

t/tpi + (J0 − δtpi)],

= r1δtpi + e−t/tpi(J0 − δtpi),

< r1tpiδ + J0δ = (r1tpi + J0)δ,

for t > M , i.e. limt→∞ I(t) = 0.

Then limt→∞ Ip(t) = 0 and limt→∞ Ii(t) = 0. This is to say the trajectory is

attracted to E0.

Proof is done.

Remark. This theorem suggests that if the beta-cell mass diminshes gradually

to zero, then the body develops the pathological state with almost zero insulin and
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extremely high glucose level. Further suppose G(t) and I(t) are periodic, or alterna-

tively undergoing the ultradian oscillation. Then the trajectory must not be attracted

to E0. Therefore, it implies that limt→∞ β(t) 6= 0. That said, the glucose/insulin level

oscillation keeps the beta-cell mass from dying out.

Next, we want to check the boundedness of all the solutions. The well-known

Fluctuation Lemma [33] will be of great help.

Lemma II.6 (Fluctuation) Let f be a differentiable function. If

l = lim inf
t→∞

f(t) < lim sup
t→∞

f(t) = L,

then there are sequences {tk} ↑ ∞ and {sk} ↑ ∞ such that, for all k

f ′(tk) = f ′(sk) = 0, lim
k→∞

f(tk) = L and lim
k→∞

f(sk) = l.

Moreover, the following differential inequality will also be applied several times

in the proof of boundedness.

Lemma II.7 If h′(t) ≤ p−qh(t), or h′(t) ≥ p−qh(t), on the interval (T1, T2), where

p, q > 0, then

h(t) ≤ p

q
+
(
h(T1)−

p

q

)
eq(T1−t),

or

h(t) ≥ p

q
+
(
h(T1)−

p

q

)
eq(T1−t),

for all t ∈ (T1, T2).

Proof. We make transformations on the differential inequality in this way: on

the interval (T1, T2), we have
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h′(t) ≤ p− qh(t)

h′(t) + qh(t) ≤ p

(h′(t) + qh(t))eqt ≤ peqt

(h(t)eqt)′ ≤ peqt

h(t)eqt|tT1 ≤ p
∫ t

T1
eqtdt, integrate both sides

h(t)eqt − h(T1)e
qT1 ≤ p

q
eqt|tT1

h(t)eqt − h(T1)e
qT1 ≤ p

q
(eqt − eqT1)

h(t)eqt ≤ p

q
eqt + h(T1)e

qT1 − p

q
eqT1 , multiply both sides by e−qt

h(t) ≤ p

q
+ (h(T1)−

p

q
)eq(T1−t)

When the inequality sign is reversed, the above transformations are exactly

the same. Thus the proof is done.

Theorem II.8 G(t) is uniformly bounded above and below away from 0.

Proof. Let us examine the expressions of functions in model (1) again.

f1(G) =
r1G

n1

kn1
1 +Gn1

,

f2(G) =
r2G

k2 +G
,

f3(G) = c1G,

f4(Ii) =
r3I

n2
i

kn2
3 + In2

i

+ c2,

f5(x3) =
r4k

n3
4

kn3
4 + xn3

3

,

p(Ip) =
p0Ip
r0 + I2p

,
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a(G, Ip) =
a0Ip
r0 + I2p

(1− raG+ rbG
2).

Notice that if G(t) = 0, for some t ≥ 0, then G′(t) = Gin−f2(0)−f3(0)f4(Ii)+

f5(x3) = Gin + f5(x3) ≥ Gin > 0. Thus G(t) ≥ 0 for all t ≥ 0. By Lemma II.6, there

is a sequence {sk} ↑ ∞ such that,

G′(sk) = 0, and lim
k→∞

G(sk) = G.

Thus by the first equation of model (1),

0 = G′(sk) = Gin − f2(G(sk))− f3(G(sk))f4(Ii(sk)) + f5(x3(sk)), for all k.

For any η > 0, there exists sk0 , such that,

G(sk0) < G+ η.

Since f2, f3, f4 are increasing functions and f5 is a decreasing function,

0 = G′(sk0) = Gin − f2(G(sk))− f3(G(sk))f4(Ii(sk)) + f5(x3(sk))

≥ Gin − f2(G+ η)− f3(G+ η)f4(r3 + c2)

f2(G+ η) + f3(G+ η)f4(r3 + c2) ≥ Gin

Letting η → 0, we obtain

f2(G) + f3(G)f4(r3 + c2) ≥ Gin.

Suppose G = 0, this equation implies that f2(0) + f3(0)f4(r3 + c2) = 0 ≥ Gin. A

contradiction occurs, as Gin > 0 by our model assumption. Thus G > 0, or there

exists δ > 0 such that G = δ.

Next we have

G′ = Gin − f2(G)− f3(G)f4(Ii) + f5(x3)

≤ Gin − c1Gc2 + r4

= (Gin + r4)− c1c2G
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By Lemma II.7, G(t) ≤ Gin+r4
c1c2

+ (G(0)− Gin+r4
c1c2

)e−c1c2t for all t ∈ (0,∞). Thus

G(t) ≤ Gin + r4
c1c2

+G(0)e−c1c2t ≤ Gin + r4
c1c2

+G(0), (28)

for all t ∈ (0,∞). The proof is done.

Remark. Our intensive numerical simulations demonstrate that the solutions

of the system are also bounded above. So we conjecture that the system is perma-

nent.

3 Numerical simulation

In this section, numerical simulations will be conducted by Matlab to validate

some findings of analytical results.

1 Phase space analysis

We analyzed the model numerically with parameters determined by experiment

data and literatures, and estimates as well.

The table given below includes important parameters used.
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TABLE 1

Parameters in model - [92] Table 1, unit conversion applied

Parameter Value Unit Interpretation

Gin 2.16 mg· dl−1 min−1 glucose infusion rate

tp 6 min delay time parameter

ti 100 min delay time parameter

td 36 min delay time parameter

E 0.067 min−1 transfer rate of insulin

between plasma and

intercellular space

r1 0.08 µ U ml−1 min−1 maximal secretion

rate of insulin stimu-

lated by glucose

k1 203.3 mg· dl−1 half saturation glucose

concentration

r2 0.8 mg· dl−1 min−1 maximal insulin-

independent glucose

consumption rate

k2 9.7 mg· dl−1 half saturation glucose

concentration

Using our model with the above carefully selected parameter values, we simu-

lated the dynamics of the glucose and insulin concentration along with the beta-cell

mass over a long time peroid.

First we analyze the case when taking β as a bifurcation parameter. Notice that

β is also the slow variable changing throughout time. Thus the type of equilibrium

of sub-system (4) may change as time passes.
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Based on the above theorem, we can prove there exists a value for parameter

β, denoted by β∗, where the sub-system (4) undergoes a Hopf bifurcation.

The following Fig. 4 is the bifurcation diagram for β, which is produced by

numerical simulation of fast sub-system dynamic.
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Figure 4. Bifurcation diagram for β

When the value of β is small, the fast sub-system has a unique stable equi-

librium point. As β increases and reaches the Hopf bifurcation value, the unique

equilibrium point becomes unstable and a limit cycle bifurcates out. Further, the

amplitude grows as β increases.

Then numerical simulation of the complete system was carried out.

When the initial β0 chosen is small, the Routh-Hurwitz criteria is satisfied.

Under such case, the fast sub-system equilibrium is locally stable. When viewing

the dynamics of the complete system, the trajectory will go to the critical manifold

through fast dynamics, and then be attracted to E0, the trivial equilibrium of the

system, through slow dynamics. Fig. 5 and Fig. 6 present the phase space trajectory

and the solution curves, respectively.
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Figure 6. Solution curves

This simulation result may indicate that if the beta-cell mass has not been
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formed sufficiently during embryonic and postnatal development, it might diminish

gradually and eventually die out over years. Under such circumstance, the body will

not produce any insulin, which is the typical symptom of T1DM.

Then the Pima indians T2DM development data is used to fit this dynamics.

Figure 7. Data from Pima Indian: glucose level versus age
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When β0 chosen is larger than β∗, the stability of the equilibrium point of (4)

changes. A limit cycle will be bifurcated out in the fast sub-system. The bigger β,

the larger amplitude of the limit cycle, which is observed in the bifurcation diagram,

Fig. 4. However, in the full system dynamics, this limit cycle breaks, since β changes

slowly over time. The following figure illustrates two trajectories starting from two

different initial conditions with only differences in β0.

This simulation finding has a similar dynamic to that of the ultradian os-

cillation of insulin secretion discussed in [92]. As suggested in previous literatures

([57],[92]), such oscillation may be the result of the Hopf bifurcation in the insulin-

glucose negative feedback mechanism. The profile shows a clear self-sustained oscil-

lation if we do not take into account the change in β over time.
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Figure 9. Trajectories starting from various initial conditions

The zoom-in trajectory is illustrated in the next figure, Fig. 10, together

with the corresponding solution curves, Fig. 11. The limit cycle predicted by the

bifurcation diagram for fast sub-system is ‘broken’ in the β direction in the phase

space.
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Figure 11. Zoom-in Trajectory - solution curves

Interestingly, we have also found the possibility of the existence of a global
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limit cycle for the full problem. As illustrated in the following figures, Fig. 12,

trajectories starting from different initial conditions show the trend approaching a

certain ‘limit cycle’. The left panel presents a trajectory that going spirally with

the β value increasing, while the right panel presents another trajectory that going

spirally with the β value decreasing. It is logically natural to speculate that there

exists a limit cycle of the full system between these two trajectories. That is, we

conjecture that the omega-limit set is a limit cycle of the full system.

In fact, the middle panel shows a simulation which appears to be a limit cycle of

the full system, even though numerical simulations cannot ensure it is one indeed.
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Figure 12. Trajectories approaching a limit cycle(purple) for the full system
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2 Insulin sensitivity analysis

The insulin sensitivity is a significant factor in development of diabetes. The

insulin sensitivity declining usually associates with the diabetes development. For

the insulin sensitivity index change over time, the following simulation results were

produced.

Sensitivity index Si is assumed to change over time in an exponentially de-

creasing manner, i.e. Si = e−at, which satisfies the equation dSi
dt

= −aSi. Fig. 16

presents this setting.
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Figure 16. Si development over time

Next, we carried out simulations for the system dynamics assuming that sen-

sitivity index Si behaves with a curve shown in Fig. 16. The glucose, insulin con-

centrations and beta-cell mass are graphed against the sensitivity index Si, we have

the following output. Higher Si corresponds to lower equilibrium glucose level, indi-

cating that sensitivity index plays crucial role in determining the blood glucose level.

As is clearly shown Fig. 17 below, low Si may reflect the hyperglycemia. As Fig.

62



18 illustrates, equilibrium insulin level is also reversely related to sensitivity index.

When the insulin sensitivity is low, high insulin level is present. This figure can be

explained by the compensatory insulin secretion to offset the low sensitivity index.

The beta-cell figure demonstrates similar profile. Beta-cell compensation is resulted

from low insulin sensitivity index or high insulin resistance. This series of simulation

results is a significant observation since both high glucose level and high insulin level

occur in typical T2DM diagnoses.
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Figure 17. Glucose concentration changes against sensitivity index
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Figure 18. Insulin concentration changes against sensitivity index
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Figure 19. Beta-cell mass changes against sensitivity index
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3 Bifurcation analysis for parameters w and E

Recall the complete model (1), where p0 is the proliferation parameter and a0

the apoptosis parameter. Recall that w = p0/a0 has been defined as the ‘relative

strength of beta-cell functionality’. And we do bifurcation analysis on this new pa-

rameter w. Simulation about different w is carried out to investigate its effect on the

whole system.
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Figure 20. w bifurcation diagram against glucose
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Figure 21. w bifurcation diagram against insulin

By Theorem II.3, if w < 1 − 4rb
r2a

, the system has only one trivial equilibrium

point. In such case, it is locally stable. If w = 1 − 4rb
r2a

, there is one additional

equilibrium point. If 1 − 4rb
r2a

< w < 1, there are total three equilibrium points.

If w ≥ 1, however, the quadratic equation (11) has one nonpositive root, which is

physiologically meaningless. In this case, the nonpositive root is trimmed out. In

Fig. 20, and Fig. 21, the trivial equilibrium point branch is drawn in as a red solid

line.

The w bifurcation diagram may be easily interpreted in physiological context.

When the relative strength of beta-cell functionality is weak, the body will eventu-

ally develop the theoretically pathological status, that is characterized by extreme

hyperglycemia, zero insulin secretion and no beta-cell mass.

Now we consider the exchange rate E as a bifurcation parameter. With w

assumed to be fixed at different values, let parameter E vary. The following results

show the bifurcation analysis of parameter E based on w = 0.3, w = 0.4, w = 1.2,
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respectively.
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Figure 22. E bifurcation diagram against glucose at w=0.3
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Figure 23. E bifurcation diagram against glucose at w=0.4
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Figure 24. E bifurcation diagram against glucose at w=1.2

When w = 0.3, as illustrated in Fig. 22, there exists only one trivial equilib-

rium point and the value of parameter E has no impact on the equilibrium glucose

level. When w = 0.4, in the simulation Fig. 23, the system has three equilibrium

points. The transfer rate parameter E influences the equilibrium glucose level for

equilibrium points E1 and E2. Particularly, when E is between the range 0.1 to

0.42, the glucose concentration oscillation is present around equilibrium point E2.

This might indicate that an appropriate transfer rate between plasma and interstitial

compartments is needed to ensure the glucose/insulin oscillatory behavior. When

w = 1.2, the simulation illustrated in Fig. 24 shows only two equilibrium points,

trimming out the nonpositive one, as we mentioned above.

4 Discussion

The mathematical and numerical analysis in the preceding sections provide us

with sufficient information in the attempt to explain and predict the observations in

diabetes. The above results have the following physiological interpretations.
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• Theorem II.6 shows that initial beta-cell mass may play a crucial part in main-

taining glucose homeostasis and preventing diabetes. If beta-cell mass formed

in embryo is not sufficient, the subject may experience hyperglycemia and de-

velop diabetes in later life stage. If beta-cell mass is big enough initially, the

oscillatory insulin secretion may be maintained and the subject will likely be in

healthy status.

• Our simulation results have also suggested that the insulin sensitivity is a cru-

cial indicator of the possible diabetic status. As is seen in diabetic subjects,

low insulin sensitivity is associated with hyperglycemia and hyperinsulinemia.

Subjects with low sensitivity, also referred to as insulin resistance, will require

a larger amount of insulin in the body either from endocrine pancreatic se-

cretion or exogenous injection in order to maintain the blood glucose level in

normal range. Having insulin resistance is a sign that the body has difficulty of

metabolising glucose.

• Another important factor to consider is the relative strength of beta-cell func-

tionality. This parameter is defined as the ratio of beta-cell proliferation param-

eter to apoptosis parameter. According to our numerical simulation, as shown

in Fig. 20 and Fig. 21, it must be above a threshold value to maintain the

secretory ultradian oscillations. If this parameter is too low, which indicates

poor beta-cell functionality, then the body may develop diabetes in the long

run.

A higher beta-cell functionality may be interpreted as that beta-cell proliferation

is faster than or of the same speed as its apoptosis. This could be well justified

not only in common sense, but also by our bifurcation analysis. However, if the

apoptosis rate is relatively high, then the beta-cell mass might not maintain its

proper level and would die out eventually, which is depicted as that trajectory

could only be attracted to the trivial equilibrium point.
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• It is also noted that an appropriate transfer rate between plasma and interstitial

compartments is necessary to ensure the ultradian oscillations to occur. We can

refer to our simulation result Fig. 23, the value should lie in the range of 0.1 to

0.42. This implies that if the transfer rate is too low or too high, the secretory

oscillation may not sustain and do no good to the body.

The transfer rate parameter is an indicator of the effectiveness of the insulin

transport between plasma and interstitial space. If its value is either too high

or too low, it may indicate malfunction of the transport process, which in turn

would affect the behavior of the ultradian oscillatory secretion. But the actual

mechanism should be further investigated by physiological experiments, rather

than relying solely on mathematical modeling.

To sum up, our model studies both in analytical part and numerical part have

suggested that there are several crucial factors that affect the development of diabetes

in a prolonged period. Those are initial beta-cell mass formed in embryonic and post-

natal development, insulin sensitivity, relative strength of beta-cell functionality, and

transfer rate between plasma and interstitial space. The findings in this chapter

could help us better understand the mechanism of the glucose-insulin endocrine reg-

ulatory system and the possible causes of diabetes. They may as well provide certain

guideline to help develop more reasonable, effective, efficient and economic clinical

treatment after necessary experiments. We also hope these mathematical studies

could be utilized to facilitate the physiological researches on diabetes related topics

in the future.
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CHAPTER III

THE GLOBAL STABILITY OF THE EQUILIBRIUM OF A TIME

DELAY IVGTT MODEL

In this chapter, we dedicate the effort to studying an IVGTT model, trying to

help diagnose diabetes in clinical studies and research. The main work is published

in

J Li, M Wang, A De Gaetano, P Palumbo, S Panunzi, The range of time delay

and the global stability of the equilibrium for an IVGTT model, Math. Biosci. (2011),

doi:10.1016/j.mbs.2011.11.005

Diagnostic protocol for onset of diabetes mellitus is the initial step in the treat-

ments. The intravenous glucose tolerance test (IVGTT) has been considered as the

most accurate method to determine the insulin sensitivity and glucose effectiveness.

However, the range of the length of the delay in the existing IVGTT models are not

fully discussed and thus in many cases the time delay may be assigned to a value

out of its reasonable range. Several attempts had been made to determine when the

unique equilibrium point is globally asymptotically stable. In addition, all these con-

ditions are delay-independent. In this chapter, we discuss the range of the time delay

and provide easy-to-check delay-dependent conditions for the global asymptotic sta-

bility of the equilibrium point for a recent IVGTT model through Liapunov function

approach. Estimates of the upper bound of the delay for global stability are given in

corollaries. In addition, the numerical simulation in this chapter is fully incorporated

with functional initial conditions, which is natural and more appropriate in delay

differential equation systems.
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1 Introduction

Human bodies need to maintain a glucose concentration level in a narrow range

(70-109 ml/dl or 3.9-6.04 mmol/l). If one’s glucose concentration level is significantly

out of the normal range (70-110 ml/dl), this person is considered to have a plasma

glucose problem: hyperglycemia or hypoglycemia. Diabetes mellitus, or simply, di-

abetes, is characterized by high blood glucose levels resulted from defects in the

glucose-insulin endocrine metabolic regulatory system, in which either the pancreas

does not release insulin, or the cells do not properly use insulin to uptake glucose.

Diabetes mellitus has become an epidemic disease in the sense of life style. To

diagnose whether or not an individual subject is already a diabetic or has the po-

tential to develop such disease, the so-called metabolic portrait, including the insulin

sensitivity index and glucose effectiveness, of the subject needs to be sketched. To

this end, several glucose tolerance tests have been developed and applied in clinics

and experiments ([58], [72], [89] and [10]). The fundamental idea of such tests is

to examine the response of insulin, called insulin sensitivity, after a large amount of

glucose is infused in to one’s body. A commonly used protocol is the intravenous

glucose tolerance test (IVGTT). In the procedure of IVGTT, the subject to be tested

needs to fast 8-10 hours and is then given a bolus of glucose infusion, for example,

0.33 g/kg body weight ([102]) or 0.5 g/kg body weight of a 50% solution, and is

administered into an antecubital vein in approximately 2 minutes. To observe the

metabolic regulation between the glucose and insulin, within the next 180 minutes,

the plasma glucose and serum insulin of the subject are sampled frequently at the

time marks 2’, 4’, 6’, 8’, 10’, 12’, 14’, 18’, 21’, 24’, 30’, 35’, 40’, 45’, 50’, 60’, 70’, 80’,

90’, 100’, 120’, 140’, 160’ and 180’. According to the rich information constituted in

the sampled data, appropriate analysis can reveal the metabolic portrait.

One popular approach of the analysis is as follows: 1) formulate or choose a

well-formulated kinetic model based on physiology; 2) estimate the parameters of the

IVGTT model with experimental data, and then 3) the parameter values are used to
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obtain physiological information, for example, the insulin sensitivity.

Several IVGTT models have been proposed and some are widely used ([7],

[15], [55], [70], [75], [74], [91]). All these models incorporate the insulin secretion

delay implicitly or explicitly. However, none of above work has discussed the reason-

able range for the time delay and how to estimate the reasonable value of the delay

according to the sampled data. Instead, the length of delay is often set to be larger

than 20 minutes, which is in contrast to that the delay is between 5 and 15 minutes

for normal subjects in normal environment ([79], [57], [89]). Intuitively, the length

of the delay in the glucose tolerance test should not be longer than that in normal

environment. In addition, several attempts have been made to obtain the conditions

for the global stability of the equilibrium point of the models ([29], [55], [75] and

[74]). Unfortunately all the conditions are delay-independent. For the information

about the delay τ > 0, it is only known that there exists a τ0 > 0 such that the

equilibrium point is locally stable if τ < τ0; and unstable otherwise (thus a periodic

solution is bifurcated out). To reveal the insight regarding the time delay, it would

be very helpful to know an estimate of the upper bound τ̄ so that the equilibrium

point is globally stable when τ ≤ τ̄ . Applying the Liapunov function approach, we

obtain delay dependent conditions for the global stability of the most recent delay

differential equation (DDE) model of IVGTT. Estimated upper bounds can be de-

rived from these conditions explicitly or implicitly. We also improve the numerical

studies by using functional initial conditions in the delay differential equation model,

which lacks in all existing work ([15], [29], [55], [70], [75], [74]). To simulate the bolus

glucose infusion and the abrupt insulin secretion, adjustments of the initial conditions

of glucose and insulin concentrations at time t = 0 have to be made in all current

work. This is neither natural to the design of the test, nor correct for a functional

differential equation system. In this chapter, we will shift the starting time of glucose

infusion to -2’ and use a non-constant function as the initial value in [−τ, 0]. The

simulations fit the sampled data better and thus give more accurate estimations of
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the parameters.

We organize this chapter as follows. We will first discuss the range of the length

of delay, and preliminarily demonstrate how to estimate the delay for each subject

according to the sampled data, secondly obtain delay-dependent conditions for the

global stability of the equilibrium point, from which estimated upper bounds of τ0

are given in corollaries, and lastly show the correct way in numerical simulations for

DDE IVGTT models. We first in Section 3 introduce the IVGTT models proposed

and studied in [29], [75] and [74], followed by the analysis of the models, in which delay

dependent conditions of global stability of the unique equilibrium are given by utilizing

Liapunov function in Section 4. In Section 5 we perform numerical simulations and

we end this chapter with discussions in Section 6.

2 Range of the time delay of insulin secretion

All discrete and distributed delay differential equation models for IVGTT in-

volve the time delay explicitly. Thus, it is intuitive to ask questions: What is the

definition of the time delay? How long is the delay? De Gaetano and Arino [15]

considered the length of delay as the the average of delays of all subjects. All IVGTT

models in [29], [55], [70], [75] and [74] follow the same definition. However, the delay

in existing models is assumed to be around 20 minutes without explanation in details

([29], [55], [70], [75] and [74]).

The events of the insulin secretion from pancreatic β-cells can be summarized

as follows according to [57] and the references therein. As the plasma glucose concen-

tration is elevated, the insulin secretion from β-cells takes several cascading complex

electric processes inside islet. These processes can be described in the following steps:

glucose transporter GLUT2 transports glucose molecules into islet, the ratio of ATP

over ADP is increased, the K+ channels are closed and consequently the Ca2+ chan-

nels open, and then the influx of Ca2+ ions triggers the insulin exocytosis from β-cell

granules. Obviously such a chain of events causes a time delay for insulin to release in
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responding to the elevated glucose concentration. Insulin release has effects on both

hepatic glucose production and insulin-dependent glucose utilization [13]. It takes

certain time for the newly synthesized insulin to cross the endothelial barrier and

eventually become the so-called ‘remote insulin’, then help to uptake glucose. This

total delay time is approximately in the range of 5-15 min ([13], [89], [92]).

Bolus glucose infusion causes abrupt increase in plasma glucose concentration.

Such an abrupt glucose increase stimulates bi-phasic insulin secretions, a rapid and

approximately linear but short first phase release, followed by a slower and longer

second phasic secretion. According to Overgaard et al.[73] and the references therein,

such secretions relate to multiple aspects including the impact of glucose on β-cells,

insulin synthesis, movements of insulin in β-cells, and eventually insulin release from

granules. As the glucose is infused in intravenous, the metabolic system responds

quickly. The rate of the proinsulin synthesis is approximately linearly increased in

translation of proinsulin mRNA. The proinsulin is split into insulin and C-peptide and

stored in granules. A fractional such granules are docked to the surface of the plasma

while others stay in the intracellular space with the ability of free movement. The

group of granules docked on the surface of the plasma is called readily-releasable pool

(RRP), the insulin in which is released at the quick infusion of the glucose and forms

the first phase of secretion. This release is instantaneous or almost instantaneous since

it takes almost no time for the glucose infuse in intravenous to transport to pancreas

and the insulin in the ready releasable pool. This instantaneous insulin release is

followed by the following actions: grandules in intracellular space are becoming in

PPR and then the insulin is released. This release forms the second phase of secretion.

As in the normal environment, the series of chemical and electrical events cause

that a time lag exists in the release after the observation of the increased glucose

concentration. This time lag can be a few minutes [73].

Apparently, the second phase secretion in IVGTT is not significantly distin-

guishable from the secretion under normal environment. Therefore time delay should

75



exist and the range of the delay should not be longer than that in normal status.

According to physiology cited in their work, Li et al.[57] defined the delay as the

length of the delay τ as “from the time that the glucose concentration level is ele-

vated to the moment that the insulin has been transported to interstitial space and

becomes remote insulin”, and determined that the possible value of the delay falls in

the biological range of 5 minutes to 15 minutes [79]. Therefore we suspect that for

most subjects, the length of the delay is shorter than 15 minutes in IVGTT. In most

of the previous work, the time delay was chosen between 18 minute and 24 minutes.

The mean value, according to [75] and [74], is 19.271 minutes. This is possibly due to

the observation of the time that the peak of the second physical insulin secretion is

achieved. However, the effect of stimulation by glucose starts at the valley before the

peak of the second phasic release. So intuitively the delay should be approximately

at the time such valley is reached, if the valley exists.

It is well known that a large delay can destabilize a system [44]. An accurate

estimation of such delay can play a critical role to estimate the parameters and thus

the insulin sensitivity index.

3 Single delay models for intravenous glucose tolerance test

1 The models

The Minimal Model, proposed by Bergman and his colleague in 1979 [7] and

1980 [91], is believed to be the first IVGTT model that is the most accepted and

the most widely used [61]. The Minimal Model is in fact a combination or unity of

two separate ordinary differential equation (ODE) models, one is for glucose kinet-

ics and one is for insulin kinetics. The time delay in the glucose-insulin regulatory

system was simulated by the chain trick trough an auxiliary variable [85]. However,

certain mathematical defects exist in this unity, for example, there does not exist any

equilibrium point. In 2000, De Gaetano and Arino [15] pointed out these issues and
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proposed the first and novel delay differential equation (DDE) model, called dynamic

model. This novel DDE model is not only well-posed in mathematics, but also more

physiologically appealing as the time delay is contained in the model explicitly. The

dynamic model was then generalized by Li et al.[55] in 2001, which takes even a later

proposed model in 2004 by Mukhopadhyay et al.[70] as a subfamily. De Gaetano

and his colleagues proposed a slightly different general model [75], and focused on a

special case of the model in their application work [74]. According to the authors of

[74], such a simplified model is close enough to model the tolerance test.

This simplified model [74] is given.
G′(t) = b− eG(t)− aG(t)I(t)

I ′(t) = df(G(t− τ))− cI(t)

(29)

where G(t) > 0 (mg/dl) and I(t) > 0 (µU/ml) are the plasma concentrations of

glucose and insulin at time t ≤ 0, respectively; b > 0 (mg/dl/min) is the constant

glucose input; e ≤ 0 (1/min) is the insulin independent glucose utilization by, e.g.,

brain cells; a > 0 (ml/µU/min) is the insulin dependent glucose utilization; c > 0

(1/min) is the insulin degradation; and the term df(G(t− τ)) is the insulin secretion

responded to the glucose stimulation with time delay τ ≥ 0

f(x) =
xγ

αγ + xγ
(30)

with d > 0 (µU/mg/min) as the maximum secretion, α > 0 as the half-saturation

and γ > 0. If γ ≤ 1, f(x) is in the shape of Mechaelis-Menton kinetics; if γ > 1,

f(x) is in sigmoidal shape. We would like to point out that this simplified model is

a special case of the model proposed by Li et al. in [55] as well, therefore all the

analytical results obtained in [55] apply.

Notice that for simplicity we use different notations of the parameters in model

(29) and the function (30) from that in [29], [75] and [74]. The relations are as follow:

a = Kxgi, b = Tgh/VG, c = Kxi, d = TiGmax/VI , and e = Kxg.

77



According to Minimal Model ([7], [91]) and the model (29) [74], the parameter

a is called the insulin sensitivity index, and the parameter e is called the glucose

effectiveness.

IVGTT has relatively short dynamics that has a duration of about two hours

after the injection of bolus glucose. In the short dynamics, the insulin independent

glucose utilization might be relatively small and thus was assumed negligible ([29], [75]

and [74]), i.e., e = 0, or the removal rate is relatively a constant and the parameter b

is considered as the net input of glucose, which results in e = 0 as well [74]. Therefore

model (29) is further simplified to following model [74]
G′(t) = b− aG(t)I(t)

I ′(t) = df(G(t− τ))− cI(t)

(31)

However, impaired insulin-dependent glucose disposal is one of the reasons of insulin

resistance that is typical in type 2 diabetes. Decreased insulin-dependent glucose

transport by GLUT4, which is associated with type 2 diabetes, and occurs, for ex-

ample, in chronic alcohol users [82]. Low insulin sensitivity in type 1 diabetes could

be caused by impaired GLUT4 translocation. GLUT4 contents in muscle are similar

in both normal subjects and type 1 diabetics. In addition, the function of insulin to

trigger GLUT4 translocation into the myocyte plasma membrane is erratic in type

1 diabetics [18]. This indicates that GLUT1 may be dominant in translocation of

glucose molecules [18]. Therefore, in modeling, we should not ignore the parameter e,

although it could be small, and furthermore we cannot simply conclude that e must

be smaller than the parameter a as well.

2 Existing analytical results and numerical observations

While analysis of the original Minimal Model focused on numerical simulations

([7] and [91]), a number of analytical studies for subsequent IVGTT models are carried

out ([15], [29], [55], [70], [75]). Typically, the authors studied the local stability of the
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unique steady state and then numerically demonstrated that larger delay would not

destabilize the steady state as numerically determined Hopf bifurcation point is far

beyond meaningful physiological range. Some analytical delay-independent conditions

for global stability of the steady state were obtained for the models proposed by [29],

[55], and [75]. Particularly, a set of sufficient and necessary conditions is given for

the model (29) [75]. However, physiology ([53], [57], [61], [79], [84], [89], [92]) and all

the clinical data ([29], [75], [74]) show the existence of the time delay of the glucose

stimulated insulin secretion. The existing delay dependent condition ([29], Theorem

3) on the global stability is not satisfied with clinical data ([75], Remark 11), although

the conditions hold with some critical modification, for example, the time delay has

to be smaller ([29], Remark 9).

Studies and applications of these models are extended by Panunzi et al.[74]

and Giang at al.[29]. For more details for the formulation and applications of model

(29) and model (31), interested readers can refer to [29], [75], and [74].

Let (G(t), I(t)) be a solution of (29) or model (31). Throughout this chapter,

we define

G = lim sup
t→∞

G(t), G = lim inf
t→∞

G(t) I = lim sup
t→∞

I(t), I = lim inf
t→∞

I(t).

We summarize in following the analytical results obtained in above references:

(A1) Model (29) and model (31) are persistent ([75], Theorem 2). Thus, the limits

defined above are finite.

(A2) Following inequalities hold ([75], Remark 5).

df(G) ≤ cI ≤ cI ≤ df(G)

(e+ aI)G ≤ b ≤ (e+ aI)G (32)

(A3) The necessary and sufficient conditions for delay independent global stability of

model (29) and model (31) is ([75], Theorem 4 and Theorem 6.)

γaIb

1 +
(
Gb
α

)γ ≤ e+ aIb. (33)
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(A4) If the inequality in (2) does not hold, then there is a τ0 > 0 such that (i)

when τ < τ0, the equilibrium (Gb, Ib) is locally stable; (ii) when τ ≥ τ0, the

equilibrium is unstable. In other words, the model (29) and the model (31)

undergo a Hopf bifurcation at τ = τ0 when τ increases from τ = 0. ([75],

Theorem 4 and Theorem 6.)

(A5) In the model (29), the equilibrium is a global attractor if

adGb

ce

√
sup
[0,Gb]

f ′(G) sup
[Gb,∞)

f ′(G) < 1.

([29], Theorem 2.)

(A6) Every fastly oscillated solution of the model (31) converges to the positive equi-

librium if

(1− e−2cτ )adGb

ceIb

√
GbM∗ sup

[0,Gb]

f ′(G) sup
[Gb,∞)

f ′(G) < 1,

where M∗ satisfies m∗f(M∗) = M∗f(m∗) = Gbf(Gb) for m∗ < Gb < M∗.

A fastly oscillated solution is defined as a solution (G(t), I(t)) that oscillates

around the equilibrium (Gb, Ib) and within two consecutive zeros t0 < t1 of

I(t)−Ib, I(t) attains its maximum or minimum at t∗ < t0+2τ . ([29], Definition

6 and Theorem 3.)

Both conditions in (A3) and in (A5) are delay independent globally asymp-

totical stability of the equilibrium. But (A3) is a necessary and sufficient condition,

so the result in (A5) shall be either a weaker condition or equivalent to (A3). Nev-

ertheless, according to [75], only 3% of clinical data satisfy the condition in (A3).

So to ensure the global attractive behavior of the tolerance test, analysis on delay

dependent global stability is necessary. Notice that the insulin dynamics in IVGTT

may often reach its basal level without oscillation ([75], [74]) as defined in [29], the

application of the result in (A6) is limited. In addition, (A6) requires τ to be small
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enough so that the parameters fitted from the clinical data satisfy the condition ([29],

Remark 9.)

4 Global stability of the equilibrium

Clearly, as discussed in [75], the model 29 has a unique equilibrium at baseline

(Gb, Ib) provided that the parameters satisfy

b = Gb(e+ aIb)

and

d = cIb(1 + (α/Gb)
γ).

This results in that the number of parameters to be estimated is six (including the

delay parameter τ), as Gb and Ib are known.

We state the following well known fact without proof, which is useful in esti-

mating the bounds of a solution (G(t), I(t)) of the model (29).

Lemma III.1 If h′(t) ≤ p− qh(t), or h′(t) ≥ p− qh(t), where p, q > 0, then

h(t) ≤ p

q
+
(
h(0)− p

q

)
e−qt,

or

h(t) ≥ p

q
+
(
h(0)− p

q

)
e−qt,

for all t ≥ 0.

A direct application of Lemma III.1 is to estimate the bounds of a solution (G(t), I(t)).

We have the following result.

Lemma III.2 If (G(t), I(t)) is a solution of the model (29), then

mI
.
= min

{
I(0),

k2
c

}
≤ I(t) ≤MG

.
= max

{
I(0),

d

c

}
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and

mG
.
= min

{
G(0),

b

k1

}
≤ G(t) ≤MG

.
= max

{
G(0),

b

k3

}
.

where k1 = e+ aMI , k2 = df(mG) and k3 = e+ amI .

The proof is straightforward.

Remark The bounds given by Lemma III.2 are more accurate than the conse-

quence in A2 of [75], which would result in

bc

ec+ ad
≤ G ≤ G ≤ bc

ec+ adf( bc
ec+ad

)
.

However the upper bound MG of G(t) for t > 0 rather than the bound at limiting

status of G(t) plays an important role when applying the theorem III.1 to determine

the global stability of the equilibrium. Notice that MG is dependent of the initial

values G(0) and I(0) of the solution (G(t), I(t)) only.

For the sake of convenience, we denote

L = d
(γ + 1)2

4γα

(γ − 1

γ + 1

) γ−1
γ , (34)

which is the maximum value of the derivative of df(G) for G > 0, and

R = e+ aIb, and K = aMG. (35)

By Lemma III.2, L,R and K are independent of τ . When consider the model (31),

R = aIb.

When τ = 0, model (29) and (31) become a two-dimensional ordinary differen-

tial equation system. It is easy to show that the unique equilibrium (Gb, Ib) is globally

asymptotically stable by Poincare-Bendixson Theorem. When τ > 0, the models are

functional differential equations. The Poincare-Bendixson Theorem does not apply.

To establish a criterion of delay dependent global stability, we build a Liapunov func-

tion and prove that the solutions of model (29) or model (31) are attracted to the

equilibrium (Gb, Ib).
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Theorem III.1 If there exist positive constants u > 0 such that

τ < min
{2u

L
,

2c

L(R + 2K)

}
, (36)

and

∆
.
= M2

u − 4R
(
u− τ

2
L
)(
c− τ

2
L(R + 2K)

)
< 0, (37)

where Mu = max{L,Ku}, then the equilibrium (Gb, Ib) of model (29) is globally and

asymptotically stable.

Proof. Let

W (G(t), I(t)) =
1

2
u(G(t)−Gb)

2 +
1

2
(I(t)− Ib)2, (38)

U(G(t), I(t)) = C
∫ t

t−τ

∫ t

z
(G(s)−Gb)

2dsdz +D
∫ t

t−τ

∫ t

z
(I(s)− Ib)2dsdz. (39)

where C = 1
2
RL and D = 1

2
KL.

Let

V (G(t), I(t)) = W (G(t), I(t)) + U(G(t), I(t)),

then, clearly, V is a Liapunov function.

By the Mean Value Theorem, we have

d(f(G(t− τ))− f(Gb)) = df ′(ξ)(G(t− τ)−Gb)

= df ′(ξ)
(
(G(t− τ)−G(t)) + (G(t)−Gb)

)

where ξ is between G(t − τ) and G(t). Also, since uv ≤ 1
2
(u2 + v2) for all u, v ≥ 0,

we have

(I(t)− Ib)(G(t)−G(t− τ)) = (I(t)− Ib)
∫ t

t−τ
G′(s)ds
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=
∫ t

t−τ

(
b− eG(s)− aG(s)I(s)

)(
I(t)− Ib

)
ds

=
∫ t

t−τ

(
e(G(s)−Gb)(I(t)− Ib) + aG(s)(I(s)− Ib)(I(t)− Ib)

+aIb(G(s)−Gb)(I(t)− Ib)
)
ds

=
∫ t

t−τ

(
(e+ aIb)(G(s)−Gb)(I(t)− Ib) + aG(s)(I(s)− Ib)(I(t)− Ib)

)
ds

≤ 1

2

[
(e+ aIb)

( ∫ t

t−τ
(G(s)−Gb)

2ds+ τ(I(t)− Ib)2
)

+aGM

( ∫ t

t−τ
(I(s)− Ib)2ds+ τ(I(t)− Ib)2

)]
≤ 1

2

[
R
∫ t

t−τ
(G(s)−Gb)

2ds+K
∫ t

t−τ
(I(s)− Ib)2ds

+τ(R +K)(I(t)− Ib)2
]
.

Then

d

dt
W = u(G(t)−Gb)

[
− e(G(t)−Gb)− a(G(t)(I(t)− Ib) + Ib(G(t)−Gb))

]
+(I(t)− Ib)

[
d(f(G(t− τ))− f(Gb))− c(I(t)− Ib)

]
= −ue(G−Gb)

2 − uaG(G−Gb)(I − Ib)− uaIb(G−Gb)
2

+d(I − Ib)
[
f(G(t− τ))− f(Gb)

]
− c(I − Ib)2

= −(ue+ uaIb)(G−Gb)
2 − AaG(G−Gb)(I − Ib)− c(I − Ib)2

+d(I − Ib)
[
f(G(t− τ))− f(Gb)

]
= −u(e+ aIb)(G−Gb)

2 − uaG(G−Gb)(I − Ib)− c(I − Ib)2

+df ′(ξ)(I − Ib)
[
(G(t− τ)−G(t)) + (G(t)−Gb)

]
= −u(e+ aIb)(G−Gb)

2 + (df ′(ξ)− uaG)(G−Gb)(I − Ib)− c(I − Ib)2

+df ′(ξ)(I − Ib)(G(t− τ)−G(t))

≤ −u(e+ aIb)(G−Gb)
2 + |df ′(ξ)− uaG||G−Gb||I − Ib| − c(I − Ib)2

+L|(I − Ib)(G(t− τ)−G(t))|

≤ −uR(G−Gb)
2 + |df ′(ξ)− uaG||G−Gb||I − Ib| − c(I − Ib)2

+
1

2
L
[
R
∫ t

t−τ
(G(s)−Gb)

2ds+K
∫ t

t−τ
(I(s)− Ib)2ds
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+τ(R +K)(I(t)− Ib)2
]
.

= −uR(G−Gb)
2 + |df ′(ξ)− uaG||G−Gb||I − Ib|

−
(
c− τ

2
BL(R +K)

)
(I − Ib)2

+C
∫ t

t−τ
(G(s)−Gb)

2ds+D
∫ t

t−τ
(I(s)− Ib)2ds

Furthermore,

dU

dt
= −C

[ ∫ t

t−τ
(G(s)−Gb)

2ds+
∫ t

t−τ
(G(t)−Gb)

2dz
]

−D
[ ∫ t

t−τ
(I(s)− Ib)2ds+

∫ t

t−τ
(I(t)− Ib)2dz

]
= −C

∫ t

t−τ
(G(s)−Gb)

2ds+ Cτ(G(t)−Gb)
2

−D
∫ t

t−τ
(I(s)− Ib)2ds+Dτ(I(t)− Ib)2

So, along the solution (G(t), I(t)) of model (29), we have

dV

dt
≤ −uR(G−Gb)

2 + |df ′(ξ)− uaG||G−Gb||I − Ib|

−
(
c− τ

2
L(R +K)

)
(I − Ib)2

+C
∫ t

t−τ
(G(s)−Gb)

2ds+D
∫ t

t−τ
(I(s)− Ib)2ds

−C
∫ t

t−τ
(G(s)−Gb)

2ds+ Cτ(G(t)−Gb)
2

−D
∫ t

t−τ
(I(s)− Ib)2ds+Dτ(I(t)− Ib)2

= −(uR− Cτ)(G−Gb)
2 + |df ′(ξ)− uaG||G−Gb||I − Ib|

−
(
c− τ

(1

2
L(R +K) +D

))
(I − Ib)2

= −
(
uR− τ

2
LR

)
(G−Gb)

2 + |df ′(ξ)− uaG||G−Gb||I − Ib|

−
(
c− τ

(1

2
L(R +K) +

1

2
LK

))
(I − Ib)2

= −R
(
u− τ

2
Lγ
)
(G−Gb)

2 + |df ′(ξ)− uaG||G−Gb||I − Ib|

−
(
c− τ

2
L(R + 2K)

)
(I − Ib)2

≤ −R
(
u− τ

2
Lγ
)
(G−Gb)

2 +Mu|G−Gb||I − Ib|
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−
(
c− τ

2
L(R + 2K)

)
(I − Ib)2

< 0

in observing that the conditions (a) and (b) hold.

Remark. Since Mu is dependent of G(0) and I(0), the global stability is not

uniform.

We derive two corollaries from the above theorem, which give the estimates of

the bounds for the delay τ , which ensures the equilibrium is globally stable. Denote

p1 =
cK + L(R + 2K)

KL(R + 2K)
, q1 =

4Rc−KL
KRL(R + 2K)

and

τ̃ = min
{ 2

K
,

2c

L(R + 2K)

}
.

Then we have the following result.

Corollary III.1 The unique equilibrium of the model (29) is globally asymptomati-

cally stable, if the delay τ satisfies either of the following conditions:

(i) τ < τ̃ , if p21 − q1 < 0;

(ii) τ < min{τ̃ , p1 −
√
p21 − q1}, if p21 − q1 > 0 and q1 > 0;

(iii) τ ∈ (p1 +
√
p21 − q1, τ̃), if p21 − q1 > 0 and p1 +

√
p21 − q1 < τ̃ ;

(iv) τ < τ̃ and τ 6= p1, if p21 − q1 = 0; (40)

Proof. Notice that Mu = max{L,Ku} in Theorem III.1. If Mu = L, u ≤ L/K. In

observing (37), we can choose u = L/K. Therefore (36) becomes τ < τ̃ , and (37)

holds if and only if

M2
u − 4R

(
u− τ

2
L
)(
c− τ

2
L(R + 2K)

)
= L2 − 4R

( L
K
− τ

2
L
)(
c− τ

2
L(R + 2K)

)
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= L
[
L− 4R

( 1

K
− τ

2

)(
c− τ

2
L(R + 2K)

)]
= L

[
L− 4R

( c
K
− τ

2
c− τ

2

L(R + 2K)

K
+
τ 2

4
L(R + 2K)

)]
= L

[
L− 4Rc

K
+ 2τR

(
c+

L(R + 2K)

K

)
− τ 2RL(R + 2K)

]
= −L2R(R + 2K)

[ −L+ 4Rc
K

RL(R + 2L)
−

2R(c+ L(R+2K)
K

)

RL(R + 2K)
τ + τ 2

]
= −L2R(R + 2K)

[ 4Rc−KL
KRL(R + 2K)

− 2(cK + L(R + 2K))

KL(R + 2K)
τ + τ 2

]
= −L2R(R + 2K)(q1 − 2p1τ + τ 2)

< 0.

Then it is straight forward to obtain the conclusion.

Denote

H = c− τ

2
L(R + 2K) and τ̄ =

2Rc

L(R +K)2
.

If τ < τ̄ , then

2RH −K2Lτ = 2RH −K2Lτ

= 2R
(
c− τ

2
L(R + 2K)

)
−K2Lτ

= 2Rc− (RL(R + 2K) +K2L)τ

= 2Rc− L(R(R + 2K) +K2)τ

= 2Rc− L(R2 + 2RK +K2)τ

= 2Rc− L(R +K)2τ

> 0.

Thus

u0 =
4RH +

√
8RH(2RH −K2Lτ)

2K2
> 0.

Therefore, we have the following result.

Corollary III.2 The unique equilibrium of the model (29) is globally asymptomati-

cally stable if
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τ < min
{2u0
L
, τ̄
}
, and u0 >

L

K
. (41)

Proof. We choose an appropriate u > 0 so that the inequality (37) holds. Let

u > L/K. Then Mu = Ku in Theorem III.1 and thus (37) holds if and only if

K2u2 − 4R(u− τ

2
L)H = K2u2 − 4RHu+ 2RLHτ < 0.

So the existence of such u > 0 is equivalent to

(4RH)2 − 4K2 · 2RLHτ = 8RH(2RH −K2Lτ) > 0,

and the larger root u0 of P (u) = K2u2 − 4RHu+ 2RKHτ = 0 is greater than L/K.

Notice (41). We choose any u ∈ (L/K, u0) so that both conditions in the Theorem

III.1 are satisfied.

Remark. The inequality of (i), (ii) and (iv) in corollary III.1 provide estimated

upper bounds of the time delay of insulin secretion stimulated by glucose. Since H

in (41) is dependent of τ , one can estimate an upper bound of τ implicitly.

We will apply Corollary III.1 and Corollary III.2 in next section with experi-

mental data obtained from [15] and [74].

5 Parameter estimate and numerical simulations

We use Matlab delay differential equation solver dde23 [83] and the weighted

least square method to estimate parameters of the model (29). We obtained three

set of experimental data from [15] listed in Table 2, and two set from [74] listed in

Table 3. It has been assuming that the time mark 0’ is the starting time of the bolus

glucose infusion is started, and the time mark 2’ is the first blood sampling time. We

make a -2’ shift of the time marks in observing that indeed the bolus glucose infusion

belongs to the initial condition of the delay differential equation model (29).
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The initial condition for a delay differential equation with maximum delay τ is

a function defined in the interval [−τ, 0]. Therefore we use a piece-wise liner function

φ(t) =


Gb, for t ∈ [−τ,−2]

G0 +
G0 −Gb

2
t, for t ∈ (−2, 0];

(42)

while I(0) = I0. Here Gb and Ib are taken from the first row at time mark −2′ in

the data tables and G0 and I0 are taken from the second row at time mark 0′ from

the data tables. Assume that φ(G) = Gb on [−τ,−2] to reflect that the subject has

been in fast state and has maintained the glucose level at baseline. Assuming that

φ(t) is linearly increasing from Gb to G0 in (−2, 0] is in observation that the glucose

infusion finishes in 2 minutes and the measurement starts. By comparison with the

simulations of these subjects, such an initial condition setup is not only correct in

mathematics, but it also produces more reasonable profiles (refer to Fig. 25 - Fig.

29, Fig. 1 - Fig. 3 in [15], and Fig. 3 and Fig. 4 in [74]). The first valleys in subject

6, 7, 13 and 27 are clearly seen.

The optimization is performed on minimizing the following function in esti-

mating the parameters:

z =
n∑
k=1

{(Gk − Ĝk)
2

G2
0

+
(Ik − Îk)2

I20

}
(43)

where {Gk} and {Ik} are the numerical solution values, and {Ḡk} and {Īk} are the

experimental data, k = 1, 2, 3, ..., N with N is the total number of samples. Since

function (43) is nonlinear, there could exist multiple local minimum points. With a

set of fixed parameters as a seed, we generate random values of the parameters with

a 300% range to perform optimization multiple times. Our simulations clearly show

that at least local minimum points are reached in relatively large scopes for each

subjects.

In applying the corollaries to these subjects after parameters are estimated,

we found that the parameters for subject 6 and 8 satisfy both Corollary III.1 and
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TABLE 2

Experimental data published in [15]. The first column is the time in minute to sample
the blood with a two-minute shift. The second and third columns are the data for
subject 6. The first valley is at about 8’ mark. The fourth and fifth columns are the
data from for the subject 7 and its first valley is at about 12’ mark. The sixth and
seventh columns are the data for subject 8 and there is no clear valley.

min G(mg/dl) I(µU/l) G(mg/dl) I(µU/l) G(mg/dl) I(µU/l)

-2 87.7358 67.9245 87.2117 38.5744 77.9874 57.9000
0 225.4717 413.2075 299.3711 179.4549 226.4151 1031.4000
1 214.1509 410.3774 259.9581 103.9832 228.9308 915.7000
4 203.7736 305.6604 253.2495 99.7904 203.7736 759.7000
6 200.0000 286.7925 244.0252 93.9203 201.2579 772.3000
8 195.2830 234.9057 225.5765 104.8218 196.2264 646.5000
10 192.4528 317.9245 223.8994 77.1488 183.6478 669.2000
13 174.5283 278.3019 203.7736 88.8889 173.5849 513.2000
18 158.4906 238.6792 188.6792 95.5975 148.4277 508.2000
23 150.0000 250.0000 170.2306 79.6646 123.2704 440.3000
28 131.1321 233.9623 150.9434 97.2746 115.7233 327.0000
33 118.8679 203.7736 134.1719 86.3732 100.6289 286.8000
38 115.0943 153.7736 119.9161 108.1761 95.5975 226.4000
48 106.6038 169.8113 101.4675 44.4444 85.5346 166.0000
58 93.3962 115.0943 89.7275 24.3187 75.4717 148.4000
78 82.0755 111.3208 85.5346 33.5430 72.9560 118.2000
98 77.3585 53.7736 85.5346 29.3501
118 83.0189 46.2264 88.0503 37.7358 77.9874 67.9000
138 83.0189 58.4906 87.2117 31.0273 80.5031 42.8000
158 82.0755 64.1509 86.3732 33.5430 77.9874 60.4000
178 85.8491 55.6604 87.2117 46.9602 80.5031 57.9000
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TABLE 3

Experimental data published in [74]. The first column is the time in minute to sample
the blood with a two-minute shift. The second and third columns are the data for
subject 13. The first valley is at 18’ mark. The fifth and sixth columns are the data
for subject 27. The first valley is at about 12’ mark.

min G(mg/dl) I(µU/l) min G(mg/dl) I(µU/l)

-2 74.20 24.0 -2 86.47 44.00
0 183.40 231.0 0 345.90 1036.00
2 171.90 127.5 2 275.64 1067.00
4 164.80 124.5 4 263.03 914.00
6 164.10 146.0 6 241.41 415.00
8 150.10 102.5 8 228.80 455.00
10 140.00 129.0 10 227.90 404.00
13 135.10 92.0 12 218.89 216.00
18 136.20 88.5 16 208.98 344.00
23 127.00 113.5 19 199.97 282.00
28 118.90 179.5 22 192.77 232.00
38 100.90 126.5 28 175.65 294.00
48 90.10 91.5 33 163.94 193.00
58 83.40 64.0 38 157.64 227.00
68 79.10 34.0 43 149.53 210.00
78 76.40 30.0 48 147.73 188.00
118 73.30 28.0 58 132.41 116.00
138 77.30 27.0 68 108.99 194.00
158 76.40 33.5 78 97.28 154.00
178 73.00 23.5 88 93.68 95.00

98 89.18 72.00
118 84.67 50.00
138 79.27 38.00
158 72.06 36.00
178 72.06 33.00
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Figure 25. Profiles of subject 6 in [15] produced by the model (29). The estimated parameters
satisfy the condition (40) in Corollary III.1, and both condition (41) in Corollary III.2. The upper
bound estimated by Corollary III.1 is 8.35226; while the bound estimated by Corollary III.2 is
17.2249.

Corollary III.2. Numerically we determined that an upper bound for the delay for

subject 6 is 8.35226 minutes, and 8.06007 minute for subject 8. However, the es-

timated parameters of subject 7, 13 and 27 do not satisfy either of the corollaries,

although numerically the global stability of the equilibrium is obvious. We noticed

in simulations that conditions of the corollaries are not satisfied due to the rough

estimate of the upper bound MG in Lemma III.2. We suspect that better estimate of

MG would improve the scope of applications of Corollary III.1 and Corollary III.2.

It is worthy to note that since the initial condition for G(t) in [−τ, 0) is set

differently from that in [15], [75] and [74], the estimated parameter values are not

the same (Table 4). A significant difference is the values of the delay parameter τ .

According to the profiles in this chapter and other references, the values taken in this

chapter seems more reasonable. Another difference is the parameter value e. In [75]

and [74], the parameter insulin-independent glucose elimination rate e is set to be zero

according to Akaike information Criterion (AIC) in model selection by comparing the

model (29), the model (31), and two other candidate models. However, difference of

the AIC values between these two models is only 0.73% (= (386.71− 383.90)/383.90)

and insignificant. Furthermore, the physiologically insulin-independent glucose elimi-
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Figure 26. Profiles of subject 8 in [15] produced by the model (29). The estimated parameters
satisfy the condition (40) in Corollary III.1, and both condition (41) in Corollary III.2. The upper
bound estimated by Corollary III.1 is 8.06007; while the bound estimated by Corollary III.2 is 15.474.
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Figure 27. Profiles of subject 8 in [15] produced by the model (29). The estimated delay parameter
τ is out of the upper bounds estimated by Corollary III.1 and Corollary III.2.
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Figure 28. Profiles of subject 13 in [74] produced by the model (29). The estimated delay parameter
τ is out of the upper bounds estimated by Corollary III.1 and Corollary III.2.
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Figure 29. Profiles of subject 27 in [74] produced by the model (29). The estimated delay parameter
τ is out of the upper bounds estimated by Corollary III.1 and Corollary III.2.
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TABLE 4
Parameters fitted by experimental data ([75], [29]).

τ a b c d e References

1 23.5 4.4300e-005 0.0122 0.1130 54.7372 0 Remark 11 in [75]
2 23.5 5.3000e-005 0.0145 0.0590 26.1868 0 Remark 9 in [75]
3 18 5.3000e-005 0.0145 1.0000e-003 0.4438 0 Remark 9 in [29]

nation rate could be not only greater than zero, but also larger than insulin-dependent

glucose elimination rate ([18], [82]). So the term for insulin-independent glucose elim-

ination rate should not be simply ignored.

6 Discussions

The length of delay in a delay differential equation model often plays a critical

role in that a large delay can destabilize the system. Determining the length of

delay based on physiology is appropriate in theoretical study and clinical data. In

this chapter, we suggest that the value of the delay parameter should be set at the

time mark of the first clear valley in insulin data. This would remove confusions in

determining such value in applications.

In addition, in performing numerical studies for delay differential equations,

functional initial condition is essential. In this chapter, we demonstrated that the

profiles produced by using functional initial conditions are better than that by using

constant values. This produces more accurate and convincible numerical results in

clinical applications.

It is important to find out delay dependent condition on the global stability

for the model (29), under which the clinical data satisfy the conditions. According to

Theorem III.1 and its corollaries, adding a term of insulin-independent glucose uptake,

although small, would help to ensure the global stability of the equilibrium. This has

been recognized by the authors of [29], [75] and [74] in their numerical studies, even
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though AIC does not support this addition from a mere statistical viewpoint, and

even though the physiological significance of this term is debatable. Indeed, setting

e = 0 or e > 0 small might not affect the remainder parameter point estimates to

substantial degree. Since a small value of insulin-independent glucose tissue uptake

cannot be excluded physiologically according to [18] and [82], we add it to the model in

order to exploit the mathematical advantage, which offers in satisfying the conditions

of both corollaries.
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CHAPTER IV

LOCAL INSULIN MODEL TO STUDY SIGNALING EFFECT IN A

PANCREATIC ISLET

In this chapter, we restrict our view to a single islet of Langerhans in pancreas.

By understanding the dynamics in the micro-organ, we might be able to aquire in-

depth knowledge about insulin signaling and beta-cell survival. The main work is

published in

M Wang, J Li, GE Lim, JD Johnson, Is dynamic autocrine insulin signaling

possible? A mathematical model predicts picomolar concentrations of extracellular

monomeric insulin within human pancreatic islets, PLoS ONE 8(6) (2013).

Insulin signaling is essential for beta-cell survival and proliferation in vivo. In-

sulin also has potent mitogenic and anti-apoptotic actions on cultured beta-cells, with

maximum effect in the high picomolar range and diminishing effect at high nanomolar

doses. In order to understand whether these effects of insulin are constitutive or can

be subjected to physiological modulation, it is essential to estimate the extracellu-

lar concentration of monomeric insulin within an intact islet. Unfortunately, the in

vivo concentration of insulin monomers within the islet cannot be measured directly

with current technology. Here, we present the first mathematical model designed to

estimate the levels of monomeric insulin within the islet extracellular space. Insulin

is released as insoluble crystals that exhibit a delayed dissociation into hexamers,

dimers, and eventually monomers, which only then can act as signaling ligands. The

rates at which different forms of insulin dissolve in vivo have been estimated from

studies of peripheral insulin injection sites. We used this and other information to
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formulate a mathematical model to estimate the local insulin concentration within a

single islet as a function of glucose. Model parameters were estimated from existing

literature. Components of the model were validated using experimental data, if avail-

able. Model analysis predicted that the majority of monomeric insulin in the islet is

that which has been returned from the periphery, and the concentration of intra-islet

monomeric insulin varies from 50C300 pM when glucose is in the physiological range.

Thus, our results suggest that the local concentration of monomeric insulin within the

islet is in the picomolar ‘sweet spot’ range of insulin doses that activate the insulin

receptor and have the most potent effects on beta-cells in vitro. Together with exper-

imental data, these estimations support the concept that autocrine/paracrine insulin

signalling within the islet is dynamic, rather than constitutive and saturated.

1 Introduction

There is increasing evidence that insulin has critical autocrine or paracrine

feedback actions within pancreatic islets [39], [49]. There are also data that suggests

that human islets may undergo insulin resistance in type 2 diabetes [32], potentially

unifying the etiology of type 2 diabetes. Two lines of evidence have been presented

that suggest that β-cell insulin signaling is physiologically relevant. First, in vivo

loss-of-function studies demonstrate that β-cell insulin signaling plays an important

role in the control of β-cell apoptosis, proliferation and mass. For example, Kulkarni’s

group has shown that knockout of the β-cell insulin receptor reduced functional β-cell

mass and increased apoptosis [46],[47],[95],[96]. Moreover, the same group has demon-

strated that β-cell proliferation in response to both genetic and diet-induced insulin

resistance was absent in mice lacking β-cell insulin receptors [72]. Our observation

that physiological hyperinsulinemia is required for the high fat diet-induced increase

in β-cells implies sensitivity to dynamic changes in insulin [64]. Complementing these

in vivo loss-of-function studies, we and others have shown that exogenous insulin pro-

tects primary human and mouse islet cells from serum-withdrawal-induced apoptosis,
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via NAADP-dependent Ca2+ release, a signalling hub involving 14-3-3ζ, RAF1, MEK,

ERK, and BAD, as well as master transcription factors such as PDX1 and FOXO1

[58],[41],[4],[3],[59]. We also showed that insulin, but not glucose, directly increases

proliferation of primary mouse dispersed islet β-cells [5]. These observations comple-

ment the work of multiple groups that suggest that insulin promotes β-cell survival.

Whether insulin can affect β-cell secretory function or protein synthesis acutely is

more controversial [10] and may depend on the dose, duration and context of the

insulin signal [60].

Perhaps the most unexpected observation of our previous studies was that the

dose-response relationships between insulin and apoptosis or proliferation did not

follow a typical dose-response relationship [39]. We have consistently observed that

lower doses of insulin, typically 200 pM, were more effective than higher doses in

the nanomolar range [58],[41],[4],[3],[40]. However, the in vivo relevance of signaling

events activated by picomolar insulin doses has been questioned due to the speculative

assumption that β-cells are exposed to extremely high levels of insulin within the islet.

Although it may seem intuitive to some that local insulin levels would be high near

the β-cell, there is no direct evidence for this. The insulin concentration in the native

β-cell microenvironment has never been measured experimentally. The physically

closest insulin measurements to the islet in vivo are those of the portal vein (400-

1200 pM depending on the glucose concentration)[88], but this represents the net

insulin release from 1 million islets dispersed throughout the pancreatic parenchyma

(40 cm3)[81] concentrated into the relatively small volume of a single vein. Moreover,

there are two important clues that support the possibility that β-cells may be exposed

to insulin concentrations less than that of the portal circulation. First, some β-cells

must be exposed first, before other cells, within the complex microvasculature of

the islet [58],[71], and would therefore be exposed to insulin levels identical to non-

endothelial cells bathed by the peripheral circulating insulin, which is 40-100 pM

at rest and 400 pM after a meal [88]. Second, it is known that insulin is stored
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and secreted as an insoluble microcrystal, dissolving only when exposed to the pH of

blood [66]. This means that the amount of local monomeric insulin capable of binding

to β-cell receptors depends on both the secretion rate and the rate at which insulin

crystals dissolve into active monomers. There is also the argument that β-cells would

be optimally tuned to the range of insulin they see in vivo, and we have shown they

are most responsive at 200 pM [58],[41],[4],[3],[40]. Insulin binding assays have shown

that the IC50 of the ligand for the insulin receptor is in the picomolar range (88 pM)

[102]. Given the current hurdles to experimentally measure the intra-islet insulin

concentration, a powerful alternate approach is to undertake quantitative estimates

using mathematical modeling [52]. We expect that the technology to measure insulin

monomer levels in vivo will eventually be developed and permit our predictions to be

tested experimentally.

An accurate model to distinguish the contribution of peripheral insulin and

newly secreted insulin on β-cell dynamics requires detailed knowledge of a number of

key parameters, including the rate of insulin secretion and the rate by which insulin

crystals convert to monomers. In this work, local insulin refers to the newly synthe-

sized and released insulin while peripheral insulin refers to insulin in blood entering

islets. The insulin surrounding the β-cell is therefore a blend of these two concen-

trations. After synthesis, insulin is packaged in dense-core secretory granules as an

insoluble zinc-associated crystal and is released following Ca2+-dependent exocytosis

in response to glucose [66],[68]. At high concentrations, such as those contained in

therapeutic insulin formulations, insulin is primarily aggregated into hexamers as the

default state [87]. Two sequential steps are required for the dissolution of the released

insulin crystal into monomers, which interact with their cognate receptors. Each in-

sulin hexamer must first dissolve into three dimers, followed by the breakdown into

six insulin monomers [87],[54],[69]. With these delays, a fraction of insulin crystals

may flow and/or diffuse away from the immediate vicinity of the β-cells. Therefore,

the concentration of the local monomeric insulin that contributes to active signaling
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could be lower than the total insulin released. Mathematical modeling becomes an

important in silico tool for biologists to better understand the properties and actions

of insulin in vivo in sites where it cannot be measured directly. Here, we report

the outputs from the first such model, which illustrates the possible kinetics of the

endogenous local insulin near β-cells. This work provides new insight into whether

signaling events activated by high picomolar insulin might be relevant in vivo.

2 Results

1 Model formulation and logical considerations

The islets of Langerhans are clusters of 50-1000 endocrine cells. They are

dispersed throughout the pancreas and represent 1-2% of the total pancreatic volume.

Pancreatic islets are highly vascularized micro-organs, with a central core of β-cells

surrounded by other endocrine cells, although this organization is less strict in adult

human islets [71] or >1 year-old adult mouse islets [38]. Insulin secreting β-cells

comprise the majority ( 50-70%) of islet endocrine cell types, although this can depend

on the islet and on the individual [11]. A pancreatic islet is composed of 65%

endocrine cells and 35% extracellular space and vasculature [76].

The present model is built on the logical assumption that the kinetics by which

insulin crystals dissolve plays a critical role in the local islet insulin concentration. The

release of intact insulin crystals from single β-cells has been demonstrated by multiple

groups (e.g. Fig. 3I, in reference [66]), and it follows that it must take some time for

these crystals to dissipate after exocytosis (Fig. 4F in reference [66]). The rate at

which insulin hexamers dissolve into dimers and then monomers after subcutaneous

injection at a point source has previously been addressed by our group and others

(Fig. 1 in Li and Kuang [54]) and it happens on a time-scale of hours [87],[94]. The in

vivo half-life of insulin is known to be 5-6 minutes [63], which means virtually all of the

body’s insulin must be replaced by the 1 million islets in 10 minutes. The baseline
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peripheral insulin concentration in the whole body circulation is 50-80 pM. While

we are not aware of studies that have directly measured insulin levels in arteries

flowing into the pancreas, one would assume that non-degraded peripheral insulin

returns to the pancreas at concentrations similar to any other organ. In addition to

the prominent insulin degradation in the periphery, we also expect significant insulin

re-uptake and degradation in islets, since β-cells are highly enriched with insulin

receptors [4] and the endocytosis of insulin: insulin receptor complexes leads to their

degradation in lysosomes (T. Albrecht, J.D. Johnson, unpublished data).

We initially considered whether the rate of blood flow in the pancreas might

also be an important component of the model. Arterial blood flows into the pancreas

through an artery connected to the aorta and flows out of the pancreas via the portal

vein after passing through a network of fine capillaries. Although it was originally

though that islet blood flow always proceeded from the inside out, recent in vivo

imaging of intra-islet blood flow in mice has revealed multiple patterns of local islet

blood flow (Fig. 5 in Meier et al. [71],[65]). There is also evidence that blood

can fill some whole islets evenly without a flow direction (Fig. 4 of Nyman et al.

[71]). Regardless of the direction, each case will have some ’prime’ or ’upstream’ β-

cells exposed to fresh arterial blood with other cells subsequently exposed to locally

released insulin. The percentage of cells exposed to fresh arterial blood is related to

the width of an islet, which is relatively uniform and conserved throughout evolution.

For simplicity, we will assume that, on average, the blood flow in the islet is irregular

relative to the location of a given β-cell. Islet capillaries have been shown by electron

microscopy to possess very thin endothelial cells, which are highly fenestrated and

permeable [48], suggesting that the local barriers to the movement of insulin crystals,

hexamers or dimers are negligible. For the sake of simplicity, this initial model will

not consider physical barriers between the β-cell and the circulation. Newly released

insulin flows out of the pancreas and into the liver through the hepatic portal vein

within a few seconds. The mean portal vein blood flow rate has been measured
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between 0.8 and 1.1 L/min, and no changes are observed between the basal state

and a hyperglycemic clamp [88]. The total rate of pancreatic blood flow through the

entire pancreas has been estimated using computed tomography to be 1.5 ml/min

per ml of pancreas tissue [67]. Since we only consider a single prototypical islet as

the point source in this model, and blood flow does not need to be considered, as its

rate is relatively constant in and out of the islet. In other words, the dilution of ’islet

blood’ with re-circulating insulin in peripheral blood cancels out the addition of new

insulin to the blood downstream of the islet.

All of the above considerations are summarized in the single islet model dia-

gram (Fig. 1). These can also be summarized in the following word equation system

for this model that considers a single islet and follows the law of mass action and the

law of conservation. The rate of change of the concentration of insulin in any form

can be expressed as the

Rate of Change = Input Rate - Output Rate.

We denote the concentration of insulin hexamers by H (in pM), dimers by D
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(in pM), monomers by M (in pM), and peripheral insulin monomers returned to the

islet by I (in pM). The transfer of peripheral insulin monomers should be same as

the monomeric insulin concentration that remains in the circulation. We therefore

obtain the following model for relative concentrations of local free insulin hexamers,

dimers and monomers, and peripheral insulin:



H ′ = f(G0)/6− p(H − qD3)

D′ = p(H − qD3)− r(D − kM2)

M ′ = r(D − kM2)− diM

I ′ = αM − diI

(44)

with the initial condition H(0) = H0 ≥ 0, D(0) = D0 ≥ 0, M(0) = M0 ≥ 0, I(0) =

I0 ≥ 0. The transport from newly secreted insulin to peripheral insulin is assumed to

be proportional to the level of monomers, g(M) = αM , α > 0, and the secretion of

insulin hexamers is stimulated by glucose, which follows the dynamics of Hill function

f(G) = σGn

an+Gn
, which has been employed in other models [54],[75],[74],[56],[57],[89].

The division of f(G0) by 6 is due to the secretion of insulin from the β-cells as insulin

hexamers. All parameters have the following meanings.

p (min−1) the dissolution rate from hexamer to dimer.

q (L2/pmol2) the coefficient of the aggregation from dimer to hexamer.

r (min−1) the dissolution rate from dimer to monomer. It is faster for a

dimer to dissolve into two monomers than for a hexamer to dissolve into

three dimers. Hence r > p.

k (L/pmol) the coefficient of the aggregation from monomer to dimer.

G0 (mM) the clamped glucose concentration (normal in vivo range is 3.9

6.1 mM)

di (min−1) the degradation rate of insulin (both local free and periph-

eral).
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σ (pM/min/mM) maximum secretion rate of insulin stimulated by glu-

cose.

α (min−1) the transfer rate of newly secreted insulin to peripheral in-

sulin.

a (mM) half-saturation point in Hill function f(G).

2 Model analysis

Next, we studied the qualitative behaviors of the model (44). The model has

a unique equilibrium E∗ = (H∗, D∗,M∗, I∗), given by

M∗ =
c

di
, I∗ =

αM∗

di
, D∗ =

c

r
+ kM∗2, H∗ =

c

p
+ qD∗3, (45)

where c = f(G0)/6. Since the system (44) is cooperative, it is intuitive that the

unique equilibrium is globally stable. To this end, we first obtain the following:

Theorem IV.1 Any solution of the model 44 with initial condition, H0 ≥ 0, D0 ≥

0, M0 ≥ 0, I0 ≥ 0, is positive and bounded.

The proof of this analytical result can be found below and in Figure 5. Then,

with direct application of Theorem IV.1, and Theorem 2.3.1 (in Smith, HL, page

8 of reference [86]), we obtain the following theorem that ensures that our model

is quantitatively reliable, and in next section we demonstrate that our numerical

analysis is qualitatively reasonable.

Theorem IV.2 The unique equilibrium point E∗ is globally asymptotically stable.

It can be seen by (45) that, at equilibrium, the concentrations of local insulin

M , peripheral insulin I, hexamers and dimers depend onG0 in nonlinear relationships.

However, the ratio of the newly synthesized insulin and the peripheral insulin at

equilibrium can be expressed by
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M∗

I∗
=
di
α
. (46)

The equation (46) indicates that the ratio of the concentration of local free

insulin and peripheral insulin is linearly dependent of insulin degradation di, and

inversely proportional to the transfer rate α. On the other hand, insulin concentration

of intra-islet can be estimated by

M∗ =
diI
∗

α
. (47)

3 Parameter estimation and numerical simulations

As detailed in the following section, model parameters were selected based

on the existing literature, regression fitting of experimental data found in the liter-

ature, or with reasonable assumptions from known physiological principles. Using

the resulting model, we then simulated insulin secretion dynamics under conditions

of various clamped glucose inputs. We chose the initial condition of the model as

H(0) = 0, D(0) = 0, M(0) = 0, and I(0) = 0 as Theorem IV.1 guarantees that

the equilibrium is globally stable and thus the initial conditions do not affect the

equilibrium.

The estimation of insulin secretion rate f(G) was as follows. It is widely

accepted that the insulin secretion response to glucose takes a sigmoid shape function,

namely Hill’s function f(G) = σG2

a2+G2 . To estimate the parameters σ, a and n, we

primarily used published data of in vivo insulin secretion rates at various glucose

levels in human subjects [77],[42] as shown in following Table 1 by employing the

Least Square Method. Additional points on the curve were estimated and added for

fitting. The fitting results in σ = 111.96, a = 9.34 and n = 3.15. Fig. 2 illustrates

the fitted curve. It is noteworthy that the estimated values are in agreement to those
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estimated in IVGTT models [75],[74],[56]. As mentioned, this secretion rate should

be divided by 6 to obtain the secreted concentration of insulin hexamers.

The estimation of p and q was as follows. We estimated the values of the

parameters p and q for human insulin based on insulin analogues, with the assumption

that the dissolution and aggregation rates of human insulin falls between the rates

associated with fast insulin analogues and slow insulin analogues. According to Li

and Kuang, 2009 [54]; Tarin 2005 [90] and Trajanoski 1993 [94], the value of the

parameter p (min-1) remains the same for fast and slow insulin analogues. So we

assume that p = 0.5 (min−1) for human insulin as well. Table 2, adopted from Tarin

2005 [90], shows the values of the parameter q (L2/pM2) for various insulin analogues.

Therefore, the parameter q for human insulin is estimated as the value for Semilente,

i.e., q = 7.6× 10−2 ml2/U2 = 1.6× 10−15 L2/pmol2 after unit conversion by a factor

2.1× 10−14.

The estimation of r and k was as follows. It is intuitive that it is faster for a

dimer to dissolve to two monomers than for a hexamer to dissolve to three dimers.

So it is reasonable to assume r = 3
2
× p = 0.75 min−1 and k = 2

3
× q = 1.0× 10−15.

The estimation of di was as follows. Values for the degradation rate di of insulin

have been reported within a wide range between 0.03-0.2 [22]. To select a reasonable

value for di, observing that in general a substrate decays exponentially, we considered

the following ordinary differential equation,

I ′ = −diI, I(0) = I0,

where the initial condition represents the case of no secretion. The solution of this

differential equation I = I0e
−dit represents the change of amount of insulin over time.

Notice that the half life of insulin is approximately in a range of 4-6 minutes [63].

Assuming that the half-life of insulin is 6 min, when t = 6 min, I = I0/2 and thus

I0/2 = I0e
−6di . Solving this equation for di yields di = (ln 2)/6 = 0.1 min−1.

The estimation of α was as follows. We estimated the parameter α(fraction

coefficient of peripheral insulin) as follows. As expressed in equation (44), the rate of
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change of the returned peripheral insulin concentration in an islet, I ′, is affected by its

degradation di and the concentration of newly secreted insulin monomers, M . Assume

that x units of insulin monomers are secreted by a single islet. Thus, a total of x

million units of insulin will be released into the portal vein from the one million islets

of the pancreas, after which it becomes peripheral insulin. It is established that 50%

of secreted insulin is removed from the circulation by the liver on the first pass. We

assume an insulin degradation rate of di = 0.1 min−1 according to the estimation of di

given above. Since it takes about 25 seconds for a complete circulation of blood, newly

released insulin must return to the pancreas in the same time, where it is assumed

evenly distributed among the one million islets. So, approximately 0.5xe−diT = 0.48x

units of insulin return the same islet. Therefore, we estimate that α = 0.48 min−1.

Using our model with the above carefully selected parameter values, we simu-

lated the dynamics of the various insulin concentrations at a range of clamped glucose

concentrations. A stepwise increase in glucose from 0 mM to any value we tested re-

sulted in an increase in peripheral insulin that reached a maximum in 30 minutes

(Fig. 3). As expected, the aggregated forms reached their peak much faster. The

concentration of monomeric insulin that has been newly release reaches only 100 pM

after a jump to 15 mM glucose (a glucose concentration is much higher than what is

seen in humans after a meal).

Importantly, we are able to use our model to estimate the total concentration

of insulin monomers within the islet (i.e. newly made insulin + insulin returning

from the periphery). By (46) and the parameter values we estimated above we can

derive the total monomeric insulin present in the islet at any glucose concentration.

Simple computation shows that 75% of local monomeric insulin is peripheral insulin

while 25% is new monomeric insulin (Fig. 4). Our simulations clearly show that the

majority of insulin in an islet is returned as monomeric peripheral insulin, whereas

the newly secreted monomeric insulin from the islet provides a minor contribution in

all cases tested. Therefore, our model predicts that the levels of insulin monomers in
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the islet do not exceed the picomolar range, even in extreme clamp studies (Fig. 4).

Physiological meal-induced glucose excursions rarely fall outside the 4 mM to 8 mM

range in normal humans, and our model suggests that monomeric insulin is unlikely

to exceed 300 pM in these conditions (Fig. 4).

3 Model validation

We validated the glucose-response component of our model by comparing the

model-predicted values of glucose-stimulated insulin responses with the experimental

data in [77]. The comparison is shown in Table 6.

It is well known that a swift increase of secretion occurs when glucose con-

centrations rise higher than fasting levels, but becomes saturated beyond the hyper-

glycemic range. No model can predict the true physiology perfectly, but we suggest

that this verification is valid because the response function of insulin secretion rate is

obtained statistically according to the experimental data. The model-predicted dose

response is in approximate agreement with the observed dose response in the same

experiment. Some aspects of the model simulations, namely the exact concentration

of monomeric insulin in the immediate vicinity of intact human islets in vivo must

await the technology to measure this directly.

1 Proof of Theorem IV.1

Notice that the first three equations of model (44) do not involve I, hence we

first consider the sub-model
H ′(t) = c− p(H(t)− qD3(t))

D′(t) = p(H(t)− qD3(t))− r(D(t)− kM(t)2)

M ′(t) = r(D(t)− kM(t)2)− diM(t)

(48)

and then the original model (44).
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The first quadrant of phase space is invariant. In fact, on the coordinate plane

H = 0, H ′ = c + pqD3 > 0; on D = 0, D′ = pH + rkM2 ≥ 0; on M = 0,

M ′ = rD ≥ 0. Therefore, trajectories starting from the first quadrant will not cross

any of the coordinate plane to negative side. We next construct a bounded region

Ω(see Fig. 30) in the first quadrant such that the trajectory γ(E0) starting from

E0 = (H(0), D(0),M(0)) will not cross the boundaries of Ω; that is, Ω is invariant,

thus γ(E0) is bounded. We choose a > max(H∗, H(0)) to be large. Let π1 be

the plane through the point P1(a, 0, 0) with the normal vector (−1, 1, 1). Plane π1

intersects the plane D = D∗ at the line P2P3, where P2 is on the plane M = 0 and P3

is on the plane M = M∗. Let P6 be the intersection point of the plane π1, D = 0 and

M = M∗. Thus P3P6 is parallel to P1P2, whose direction vector is (1, 1, 0). Let π2 be

the plane passing through the line P2P3 with the normal vector (−1,−1, 1). Then π2

intersects the plane H = 0 at the line P4P5, where P4 is on the plane M = 0 , P5 is

on the plane M = M∗, and a is large enough so that the point (H(0), D(0), 0) is on

the same side of the line P2P4 as the origin in the plane M = 0. Clearly the line P3P5

is in the plane M = M∗. Let π3 be the plane passing through the line P3P5 with the

normal vector (−1,−1,−1), where we require that a was chosen large enough so that

the point (H(0), D(0),M(0)) is on the same side of the plane π3 as the origin. Let π4

be the plane through the line P3P6 and perpendicular to the plane M = M∗. Since

P3P6 is parallel to P1P2 and the direction vector of P1P2 is (1, 1, 0), the inward normal

vector of π4 is (−1, 1, 0). Therefore, the planes πi, i = 1, 2, 3, 4 and the coordinate

planes H = 0, D = 0, M = 0 form a closed region Ω(refer to Fig. 30), and E0 ∈ Ω.
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Figure 30. Bounded area Ω

Now we shall show that the bounded area Ω is invariant and thus γ(E0) ∈ Ω.

To this end, we need only to show that the inner products of the inward normal

vectors of the plane πi, i = 1, 2, 3, 4, with the direction vector of trajectory starting

from these planes are nonnegative.

On π1, M ≤M∗, D ≤ D∗ and H ≥ H∗.

(H ′, D′,M ′) · (−1, 1, 1) = −H ′ +D′ +M ′

= −c+ p(H − qD3) + p(H − qD3)− r(D − kM2)

+r(D − kM2)− diM

= −c+ 2p(H − qD3)− diM

≥ −c+ 2p(H − qD3)− diM∗

= −2c+ 2p(H − qD3)

≥ 2c+ 2p(H∗ − qD∗3)

= 2(−c+ p(H∗ − qD∗3)) = 0.
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On π2, D ≥ D∗ and M ≤M∗, thus we have

(H ′, D′,M ′) · (−1,−1, 1) = −H ′ −D′ +M ′

= −c+ p(H − qD3)− p(H − qD3) + r(D − kM2)

+r(D − kM2)− diM

= −c+ 2r(D − kM2)− diM

≥ −c+ 2r(D − kM∗2)− diM∗

= −2c+ 2r(D − kM∗2)

≥ −2c+ 2r(D∗ − kM∗2)

= 2(−c+ r(D∗ − kM∗2)) = 0.

On π3, M ≥M∗, thus we have

(H ′, D′,M ′) · (−1,−1,−1) = −H ′ −D′ −M ′

= −c+ p(H − qD3)− p(H − qD3) + r(D − kM2)

−r(D − kM2) + diM

= −c+ diM ≥ −c+ diM
∗ = 0.

On π4, M ≥M∗, D ≤ D∗ and H ≥ H∗, thus we have

(H ′, D′,M ′) · (−1, 1, 0) = −H ′ +D′

= −c+ p(H − qD3) + p(H − qD3)− r(D − kM2)

= −c+ 2p(H − qD3)− r(D − kM2)

≥ −c+ 2p(H∗ − qD∗3)− r(D∗ − kM∗2)

= −c+ 2c− c = 0.

Therefore these inner products are nonnegative, which implies the trajectory

on boundaries πi, i = 1, 2, 3, 4 goes inward of Ω. Moreover, we have proved the first

quadrant is invariant. Therefore, we conclude that Ω is invariant.It is equivalent to
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say the solution to the sub-model 48 is bounded.Now for the model (44), since M is

bounded, thus clearly I is bounded. We complete the proof.

4 Discussion

The goal of the present work was to estimate the local insulin concentrations

within a working human pancreatic islet. This estimation is essential for efforts to

understand the physiological relevance and mode of islet paracrine insulin signaling.

More specifically, it has the potential to elucidate if signaling is constitutive as a result

of saturating local insulin levels or dynamic with monomeric insulin varying in a range

that permits optimal activation of the insulin receptor. To the best of our knowledge,

this is the first time any such estimation has been systematically generated. Our

model suggests that locally produced insulin at steady state makes a relatively minor

contribution to the local levels of monomeric insulin in an individual islet (estimated

to be 25%). In contrast, the majority of locally available monomeric insulin within the

islet derives from newly returned insulin from the peripheral circulation. Regardless,

our model indicates that within an islet, the percentage of new insulin converted to

monomers before being swept away by the blood flow is always less than the insulin

returned from the peripheral circulation. Since the peripheral insulin concentration

is well known, we can be confident that the total monomeric insulin concentration in

the islet is not in orders of magnitude higher than it is in the periphery, as has been

implied by some commentators. The model is dynamic, and our simulations show that

the majority of the changes take place within 30 minutes, regardless of the glucose

step. Since the initial conditions used in the simulations are somewhat arbitrary, one

should not imply too much from the shape of these curves. Nevertheless, it is clear

that the monomeric insulin concentration in the islet is relatively low in response to

an increase in glucose at each time point before equilibrium is reached. It should

also be noted that our model focuses primarily on glucose as the main stimulus for

insulin release, and does not exclude modulatory contributions of incretin hormones
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or neural inputs, which increase insulin levels.

Many studies have investigated the effects of insulin on pancreatic β-cells;

however, the vast majority have employed insulin doses in the high nanomolar range.

This, together with culture conditions that allow insulin to accumulate, may be one

of the reasons that some investigators have failed to observe significant effects of

insulin in their in vitro experiments. Our model suggests that such high doses are

non-physiological and up to 1000 times higher than the locally present levels. Im-

portantly, nanomolar doses of insulin would maximally stimulate IGF1 receptors [17],

which do not play an essential role in islet survival and have only a minor role on

beta-cell function [47],[45]. Our model also suggests that the concentration of free

monomeric insulin in the islet may not exceed 300 pM while glucose is in the physio-

logical range. Thus, local autocrine/paracrine insulin signaling is likely to be dynamic

and physiologically relevant in the picomolar range. This also means the experimen-

tally defined ‘sweet spot’ where β-cells respond in vitro optimally to picomolar insulin

is likely to be well within the in vivo physiological range [39]. This might seem coun-

terintuitive, but our model suggests that the slow kinetics by which insulin crystals

dissolve keeps the local monomeric insulin levels surprisingly low. Although we have

not considered the rate of islet blood flow in our model, it may nonetheless be impor-

tant and should be considered in future models. Changes in islet vasculature and/or

blood flow might therefore represent physiological and pathological modes of altering

local insulin signaling.

One important assumption of our model is that the percentage of insulin re-

leased in its crystalized form is high. This generally appears to be well supported

by the literature, but there are cases where it might not be as assumed here. Some

species of rodents (e.g. porcupines) have insulin genes with alterations in amino acids

known to be important in zinc binding and crystal formation [35]. In these examples,

we might therefore expect an increased ratio of monomeric to hexameric local insulin

and possibly a desensitization of islet insulin signaling, but this should be investi-
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gated in future modeling studies. Similarly, a human mutation (AspB10) has been

described that alters insulin binding to zinc and complex assembly, and we would

predict that autocrine insulin signaling might be altered in such patients, in addition

to multiple other defects [12]. It would also be interesting to determine if modifica-

tions in insulin packaging caused by recently described genetic polymorphisms in zinc

transporters might affect the ratio of insulin released in a post-crystalized form under

specific conditions [50]. In each of these cases, we expect insulin signaling pathways

to compensate in the face of altered monomeric insulin levels [36].

We speculate that our findings also have implications for efforts to understand

the evolution and function of the endocrine pancreas. Remarkably, the size of islets

is relatively similar between mammals of different body sizes, with the total number

of islets varying between small and large species. The islets of Langerhans are also

somewhat unique as an endocrine organ in that they are spread throughout the large

pancreas in a diffuse, but non-random manner. We speculate that this architecture

evolved to prevent the accumulation of high levels of insulin in and around the islets.

Insulin is a powerful mitogen [37] and we have shown it can stimulate primary islet

cell proliferation [5]. We have recently shown that pancreatic insulin hypersecretion is

required for the increase in islet size observed during high fat feeding [64]. Thus, the

diffuse distribution of relative small islets might be evolutionarily conserved to prevent

excessive local insulin concentrations that might increase the risk of pancreatic cancer.

Indeed, significant molecular, clinical and epidemiological findings point to important

links between hyperinsulinemia and pancreatic cancer [24],[31],[23],[14],[51].

This work is the first to model the intra-islet concentration of monomeric islet

insulin. We conclude that the major contributor to the human islet insulin levels is

peripheral insulin owing to the relatively slow dissolution of newly secreted insulin

crystals. We find that the total concentration of free monomeric insulin, capable of

activating the insulin receptor, remains in the picomolar range regardless of glucose

stimulation. Together, these findings add novel insight into pancreatic islet biology
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and provide context to the experimental studies focused on the effects of islet insulin

signaling. Our work helps contextualize in vivo and in vitro studies on the autocrine

effects of insulin and lay the groundwork for future mathematical and physiological

studies.

TABLE 5

Insulin secretion data rate and multiple glucose concentrations.

Glucose level(mM) Secretion rate(pM/min) References and Notes
3 1 Data point estimated and

added for fitting
4 10 Data point estimated and

added for fitting
5 16 The case of overnight fast in

[43]. Glucose level ranges
between 4 and 6 mM after
an overnight fast. We chose
5 mM.

7 33 The case of 24-h on mixed
diet in [43]. We assume at 7
mM.

9 47 [44]
16.5 102 The case of hyperglycemic

clamp at 16.5 mM in [43].
25 103 Data point estimated and

added for fitting

TABLE 6

Values of parameter q for different insulin formulations.1

Units Lispro Actrapid Semilente NPH, Glargine
ml2/U2 4.8× 10−4 1.9× 10−3 7.6× 10−2 3.0

L2/pmol2 9.8× 10−18 3.9× 10−17 1.6× 10−15 6.3× 10−14

1This table is adopted from Table IV in Tarin et al [90].
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CHAPTER V

A BRIEF SUMMARY

So far we have proposed three dynamical system models and studied them

with both analytical and numerical sessions. These works have revealed interesting

mathematical features and novel physiological insights. Let us reiterate them briefly.

The fast-slow model studies have suggested that several crucial factors con-

tribute to the development of diabetes in a prolonged period. Among these factors,

initial beta-cell mass formed in embryonic and postnatal development, insulin sensi-

tivity, relative strength of beta-cell functionality, and transfer rate between plasma

and interstitial space play significant roles. The local stability, Hopf bifurcation and

persistence of solutions also depict the rich features possessed by this model. We have

observed the existence of a limit cycle through intensive numerical simulations, while

these simulations also enable us to successfully fit available longitudinal T2DM data

of Pima Indian tribe as a validation of the model.

The IVGTT model with delay differential equations has deeply examined the

length of delay which often plays a critical role in that large delay can destabilize the

system. The value of the delay parameter is suggested to be set at the time mark

of the first clear nadir in insulin data. In addition, in performing numerical studies

for delay differential equations, the functional initial condition is essential to produce

more accurate and convincible numerical results in clinical studies when determining

insulin sensitivity and glucose effectiveness. A delay dependent condition on the

global stability for the model, under which many cases of clinical data satisfy the

conditions, has been given as well.

The analysis of the third kinetic model, formulated to study the insulin signal-
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ing effect within a single islet, suggests that local autocrine/paracrine insulin signaling

is likely to be dynamic and physiologically relevant in the picomolar range. The ex-

perimentally defined ‘sweet spot’ by biologists refers to that β-cells respond in vitro

optimally to picomolar insulin. As our model analyses and simulations have demon-

strated, the new concept ‘sweet spot’ is likely applicable to the in vivo physiological

range. Furthermore, this work is the first to model the intra-islet concentration of

monomeric islet insulin, which is not measurable under current technology.

The findings in this dissertation could help us better understand the mechanism

of the glucose-insulin endocrine regulatory system, the possible causes of diabetes and

pancreatic islet insulin scaling effect. They may as well provide certain guideline to

assist in developing more reasonable, effective, efficient and economic clinical treat-

ment after necessary experiments. We also hope these mathematical studies could

be utilized to facilitate future mathematical and physiological researches on diabetes

related topics and help contextualize in vivo and in vitro studies on the autocrine

effects of insulin.
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