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ABSTRACT

SPREADING SPEEDS ALONG SHIFTING RESOURCE GRADIENTS IN

REACTION-DIFFUSION MODELS AND LATTICE DIFFERENTIAL

EQUATIONS

Jin Shang

July 20, 2016

A reaction-diffusion model and a lattice differential equation are introduced to

describe the persistence and spread of a species along a shifting habitat gradient. The

species is assumed to grow everywhere in space and its growth rate is assumed to be

monotone and positive along the habitat region. We show that the persistence and

spreading dynamics of a species are dependent on the speed of the shifting edge of the

favorable habitat, c, as well as c∗(∞) and c∗(−∞), which are formulated in terms of

the dispersal kernel and species growth rates in both directions. When the favorable

habitat edge shifts towards the right, c > 0, we demonstrate that the rightward

spreading speed is c∗(∞) when c is relatively small and is c∗(−∞) when c is relatively

large, and the leftward spreading speed is c∗(−∞). When the favorable habitat edge

shifts towards the left, c < 0, we show that the rightward spreading speed is c∗(∞),

and the leftward spreading speed is one of |c|, c∗(−∞) or c∗(∞). We also show the

persistence and spreading dynamics of two competing species along shifting habitats

in the simplest situations. Their spreading behavior will be affected by the resource

distribution and habitat shifting speed.
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CHAPTER I

INTRODUCTION

The persistence and spread of a species in an environment have raised funda-

mental and longstanding questions in ecology. These questions have received more

and more attention in recent years since the stability of ecosystems change when con-

fronted with anthropogenic disturbances of the environment. Such anthropogenic dis-

turbances include climate warming, landscape conversion, species invasion, pollution

and so on. Anthropogenic disturbances have been blamed for widespread population

decline (Parmesan 2006) and the possible extinction of many species (Dover 2014).

At the same time, some species, like pest species and alien invasive species (Morrison

et al. 2005; Bradley et al. 2010; Paradis et al. 2008), are well adapted to thrive as a

result of specific disturbances caused by human activities. It is interesting to see the

conditions under which the species survive and spread in the environment and what

can cause their population to decline when the environment changes.

In early studies of species’ persistence and spread of the population system,

it was recognized that the spatial context, especially the combined effect of habitat

range and species dispersal, is one of the most important factors. Fisher’s equation

(Fisher 1937; Kolmogorov et al. 1937) was introduced as the prototypical framework

to study spatial population ecology. This framework can be used to describe the

propagation of a virile mutant in an infinitely long habitat (Fisher 1937) and can be

applied to analyze the population behavior for any mobile species (Al-Khaled 2001).

In order to analyze different biological problems, there are various extensions of Fish-

er’s equation. For example, Fisher’s equation was extended to model a system with

a general growth function by Aronson and Weinberger (1975) and was also imple-

mented in multiple dimension systems (Aronson and Weinberger 1978; Weinberger
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et al. 2002), specifically in the system with interacting species (Fagan et al. 1999;

Weinberger et al. 2002; Lewis et al. 2002; Li et al. 2005). The modified versions

of Fisher’s equation have been applied to discrete time systems in order to capture

seasonal life-histories and systems incorporating spatial heterogeneity or periodicity

(Shigesada et al. 1986; Andow et al. 1990; Weinberger 2002; With 2002; Fagan et

al. 2009; Huang and Shen 2009).

Attention has also been paid to analyzing the relationship between biological

invasion and climate change (Hobbs 2000; Rahel and Olden 2008). It was recognized

that climate change can result in habitat shifts (Polovina et al. 2011; Parr et al. 2012),

expansions (Ni 2000; Gonzalez et al. 2010; Lynch et al. 2012), and contractions (Ni

2000; Gonzalez et al. 2010; Parr et al. 2012). A vast body of literature studies

changes in the boundaries between forest and non-forest habitat types (e.g. Scheiter

et al. 2009; Gonzalez et al. 2010; Scheffer et al. 2012; Tng et al. 2012). Due to

rapid warming on the earth in the past few decades, many animals have shifted their

ranges northward or to higher altitudes, while for those animals that already live

in the Arctic, their habitat shrinks year after year. In other cases, suitable habitat

for some species are even expanding (Ni 2000; Gonzalez et al. 2010). This happens

frequently for invasive species. For example, the hemlock woolly adelgid (HWA)

was accidentally introduced from Japan into the southeastern United States in 1950.

Higher temperatures caused by global warming are good for HWAs’ growth, so they

have been expanding their habitat into half of the eastern portion of the hemlock’s

range. Since HWA can kill hemlocks and hemlocks are not suitable for the high

temperature area, hemlocks lose their habitat in this process (Orwig 2002).

The rate of habitat change is another important factor for impacting species’

persistence and spread. Usually, the habitat changes gradually (e.g., Polovina et

al. 2011; Parr et al. 2012). For example, the changes caused by continental drift,

and mountain-building occur over long time periods. In other cases, the habitat can

shift very fast (Scheffer et al. 2012) or even in response to a single climatic event

(Smale and Wernberg 2013), while the species might take a million years to adapt

to the climate change. A study (Quintero and Wiens 2013) has shown that climate
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change already exceeds the adaptation capability of many species. Many creatures

will face extinction. These threats associated with global change largely drive the

current interest in spatial ecology.

Considering climate-driven habitat shifts in spatial ecological models, Beresty-

cki et al. (2009) determined the minimum size of a moving habitat for species persis-

tence. They also expanded their results to discuss the persistence of a species in any

region with a shifting habitat. Similar work was done by Potapov and Lewis (2004) to

consider the effects of a shifting range boundary on a competition model. The math-

ematical framework created in Berestycki et al. (2009) was extended to an integro-

difference system by Zhou and Kot (2011). They concluded that the species will

become extinct if the speed of the range shift exceeds a critical rate.

In this dissertation, we introduce three related mathematical frameworks for

studying species range expansion in the context of climate change. In Chapter II,

we study a reaction-diffusion equation for a single species, which is based on Fisher’s

equation to study the impact of climatically driven habitat change for the persistence

and spread of an invasive species. In Chapter III, we generalize the mathematical

framework of Chapter II to describe the interaction between two competing species.

In Chapter IV, we provide the third mathematical framework by utilizing a lattice

differential equation, which expands the framework in Chapter II to a discrete space.

This framework of Chapter II, was also discussed in Li et al. (2015). In this

paper, the habitat of the species can be divided into two regions: a right region which

is suitable for population growth (i.e. a positive growth rate) and a left region which

is unsuitable for population survival (i.e. a negative growth rate). The boundary be-

tween these two regions was assumed to move toward the right so the suitable habitat

for species is drifting rightward with the rate c > 0. Li et al. (2015) demonstrated

that if habitat drift rate is higher than the maximum rate of expansion of the species

population, c > c∗(∞), then the species will become extinct in the habitat. When

habitat drifts more slowly than c∗(∞), then the species will persist and spread along

the shifting habitat gradient at speed c∗(∞). However, the effect in the case that the

habitat boundary drifts leftward is not considered in this paper.
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The goal of Chapter II in this dissertation is to extend results in Li et al. (2015)

to reaction-diffusion models with more general assumptions. We assume that the

species grows everywhere along the spatial gradient, but with differing levels of suc-

cess. The profile of the habitat quality function remains constant but drifts either

right or left at a constant speed c so that we can examine both expansion and con-

traction of the region of a favorable habitat.

In Chapter III, dealing with a two-species competitive reaction-diffusion mod-

el, we see these models can accommodate a wider range of persistence and spread

behaviors observed in real systems and their dynamics are more complex than the

reaction-diffusion equation and the lattice differential equation. In this Chapter, we

mainly discuss the simplest competition model, considering the impact of climate

change for persistence and spread of species. The habitat for each species is assumed

to be divided into two regions separately: the region which is suitable for population

growth and the region which is unsuitable for population growth. We assume both

their suitable habitats are drifting in opposite directions, so the impact of the com-

petitive interaction for population persistence and spread will become increasingly

weak.

The framework of Chapter IV, dealing with lattice differential equations, was

discussed in Hu and Li (2015). The lattice differential equation is a modified version of

the reaction-diffusion equation where space is divided into discrete patches which can

be considered spatially homogenous. Scheel (2009) showed that lattice dynamical sys-

tems naturally arise on infinite-dimensional invariant manifolds of reaction-diffusion

equations with spatially periodic diffusive fluxes. In Hu and Li (2015), modified

Bessel functions were initially introduced to express the solution of the lattice equa-

tion. They found that the spreading speed of species in the lattice space depends on

the shifting rate of the habitat boundary edge when the habitat is drifting rightward.

The habitat of the species in this paper can be divided into two regions: a right

region which is suitable for population growth (i.e. a positive growth rate) and a

left region which is unsuitable for population survival (i.e. a negative growth rate).

The boundary between these two regions was assumed to move toward the right so

4



the suitable habitat for species is drifting rightward with the rate c > 0. Similar

to reaction-diffusion equations, we will examine both expansion and contraction of

the region of a suitable habitat, as well as the case that the species grows everywhere

along the spatial gradient, but with differing levels of success. In general, the lattice d-

ifferential equation could behave differently from the corresponding reaction-diffusion

equation(Keener 1987; Wu and Zou 1997).

This dissertation is organized as follows. In the next chapter, we study the

reaction-diffusion equation in one dimensional space. We demonstrate that the right-

ward spreading speed and leftward spreading speed of the species are based on the

rate of climate change and the intrinsic rate of spread of the species. We examine the

impact of both expansion and contraction of the region of a favorable habitat on the

persistence and spread of the species. We also show some important simulations of

the model. In Chapter III, a specific Lotka-Volterra competition model is provided

and the main mathematical results for this model are presented. Their simulations

are provided at the end of this chapter. In chapter IV, we focus on the persistence and

spread of species along discrete shifting habitat using lattice differential equations.
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CHAPTER II

REACTION-DIFFUSION MODEL ANALYSIS

1 Reaction-Diffusion Model

Reaction-diffusion equations first arose in the context of chemistry and sub-

sequently were used to describe dynamic processes of a non-chemical nature. The

applications of reaction-diffusion systems can be found in biology, medicine (phys-

iology, diseases, etc.), genetics, physics, social science, finance, economics, weather

prediction, astrophysics, and so on (Aronson and Weinberger 1975; Grindrod 1996;

Murray 2012; Scott 2003).

In biology, reaction-diffusion equations are used to model the intrinsic reaction

activities of a species, such as birth, death, interactions with other species, and move-

ment of a species in a bounded or unbounded domain. Reaction-Diffusion equations

are created based on the assumptions that dispersal and growth take place contin-

uously in both space and time and that dispersal is conducted by random diffusion

(Lewis and Li 2012). These equations have been utilized in a large portion of mathe-

matical literature on spread and persistence of species (Lewis and Li 2012; Shigesada

1997; Murray 2002a; Murray 2002b; Cantrell and Cosner 2003).

Among the most known reaction-diffusion equations, we introduce the classical

Fisher’s equation (also known as Fisher-Kolmogorov- Petrovsky-Piskunoff (FKPP)

equation) (Fisher 1937; Kolmogorov et al. 1937) as follows:

∂u

∂t
= d

∂2u

∂x2
+ u(r − u). (1)

Here u = u(t, x) describes the density/concentration of the species of interest at time

t and position x ∈ R, and r is the carrying capacity of the environment. This model

contains two primary components: a reaction term (u(r − u)) and a diffusion term
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(d∂
2u
∂x2

). The reaction term f(u) = u(r − u) denotes the local reaction kinetics and

describes the process of density u(t, x) changes based on the factors except for diffu-

sion, (i.e. birth, death). The population in this model is governed by the logistic law.

For small populations the growth is exponential, but as the population approaches

the carrying capacity of the environment, growth slows to zero.

In FKPP model (1), d∂
2u
∂x2

is used to describe the diffusion of the population.

Diffusion is the tendency of species to spread out in order to occupy an available space

and can be considered as the continuum limit of the 1d random walk which begins at

a point and takes a step in a randomly chosen direction. The diffusion coefficient, d,

is determined by Fick’s laws, which address how the diffusive flux goes from regions

of high concentration to regions of low concentration (Fick 1855; Cantrell and Cosner

2003). It is easy to show that there are two equilibrium states for the FKPP model,

one of which (u(t, x) = r) is stable and another (u(t, x) = 0), which is unstable.

One important measure to mathematically analyze the spatial spread of a

species is to investigate the speed at which the species spreads into the new en-

vironment. Aronson and Weinberger (1975, 1977, 1978) introduced the concept

of spreading speed as a mechanism to quantify the spread. For the typical FKPP

reaction-diffusion equation, the spreading speed is defined as follows.

Definition II.1 c∗ is called the spreading speed of the model (1) if the solutions of

model (1) have the following properties:

1. If 0 ≤ u(x, 0) < r and u(x, 0) ≡ 0 for all sufficiently large |x|, then for any

positive ε

lim
t→∞

{
max

|x|≥(c∗+ε)t
u(x, t)

}
= 0;

2. If 0 ≤ u(x, 0) ≤ r, and if u(x, 0) 6≡ 0, then for any positive ε,

lim
t→∞

{
sup

|x|≤(c∗−ε)t
|r − u(x, t)|

}
= 0.

In this definition, the first statement shows that the speed of the traveling

wave cannot exceed spreading speed c∗, which means that if we move faster than

7



spreading speed, then we will always be in front of the advancing population and

see a population density of 0. The second statement asserts that the asymptotic

spreading speed cannot be slower than c∗. This means that if we move slower than

spreading speed then we will always be behind the leading edge of the advancing

population and see a population density of r. Therefore, this definition shows that c∗

is the asymptotic rate of spread of the solutions of the reaction-diffusion equation.

For a general reaction-diffusion system

∂u

∂t
= d

∂2u

∂x2
+ f(u),

u(0, x) = u0(x),

Aronson and Weinberger (1978) showed that, if f(u) describes the logistic population

growth, then the spreading speed is given by

c∗ = 2
√
df ′(0),

so that the spreading speed of model (1) is c∗ = 2
√
dr. This conclusion was conjectured

by Fisher (1937) and was proved by Kmologorov et al. (1937).

Fisher (1937) also showed that the scalar model (1) for the spread of a more fit

population into the territory of a less fit one will have traveling wave solutions of all

speeds c ≥ c∗ = 2
√
dr. The traveling wave solutions of the FKPP model with speed

c are solutions in the form of

u(t, x) := w(x− ct), (2)

where w(−∞) = r and w(∞) = 0, which connect the unstable equilibrium state

to the stable equilibrium state. From equation (2), we notice that the traveling

wave solution describes the propagation of a species as a wave whose shape remains

constant over time, but is translated by a fixed length for each iteration of time.

Similar results that the spreading speed is the slowest speed of a family of

traveling waves have been expanded to a more general class of models which includes

Fisher’s quadratic model as a special case (Weinberger 1982; Aronson and Weinberger

1975; Aronson and Weinberger 1978). Traveling wave solutions can help us to have

8



a better understanding how a species propagates in space and it is often easier to

calculate the slowest wave speed than to find the spreading speed.

2 Reaction-Diffusion Model with Shifting Habitat for One Species

As an extension study for spatial population ecology, our analysis is based on

reaction-diffusion models like Fisher’s equation and discusses the effect the rate of

climate change for the persistence and spread of species. The model is given by

∂u

∂t
= d

∂2u

∂x2
+ ur(x− ct)− u2. (3)

Here u is the population density of the species at time t and position −∞ < x <∞,

d is a constant diffusion coefficient, r(x− ct) represents the population growth rate,

and −u2 denotes the density dependent death.

We assume that r(x) is continuous and nondecreasing and bounded from below

by r(−∞) and above by r(∞) > 0. The monotonicity of r(x) in x reflects that the

quality of habitat improves to the right along the x−axis. The assumption r(x) ≤

r(∞) indicates that the population growth rate is limited by the maximum carry

capacity of the environment. We use the function r(x− ct) to represent the habitat

shifting with climate change, where c is a real number. The persistence and spread of

species along shifting habitat had been studied (Li et al. 2015) assuming r(−∞) < 0,

which means, to the left of the region of poor quality, the species cannot grow. In

this Chapter, we assume that when r(−∞) > 0, the species can grows everywhere

along the spatial gradient, but with differing levels of success. The potential domain

of the species is unbounded and can be distinguishable as a higher quality region

with higher population growth rate (favorable habitat) and a lower quality region

with lower population growth rate (less favorable habitat). The edge of the favorable

habitat for species is shifting at speed c. When c is positive, the function r(x − ct)

implies that the resource distribution propagates rightward at speed c, so that the

habitat with better quality contracts. When c is negative, this function implies that

the resource distribution propagates leftward at speed |c|, so that the habitat with

better quality expands. We are interested in the spread and persistence of the species

9



for different c values.

We make the following hypothesis for r(x) for our mathematical analysis:

Hypothesis II.1 r(x) is nondecreasing, bounded, and piecewise continuously differ-

entiable function in x for −∞ < x <∞, 0 < r(−∞) < r(∞) <∞.

We recall the classical definitions of upper and lower solutions corresponding

to (3) in Pao (1992).

Definition II.2 A function ũ(t, x) with t > 0 and x ∈ R is called an upper solution

of (3) if the following inequality is satisfied:

∂ũ

∂t
≥ d

∂2ũ

∂x2
+ ũr(x− ct)− ũ2. (4)

Similarly, û(t, x) is called a lower solution if the reversed inequality in (4) is satisfied.

The functions ũ(t, x) and û(t, x) are called ordered upper and lower solutions if

ũ(t, x) ≥ û(t, x) for all t > 0 and −∞ < x <∞. From the definition, ũ(t, x) = r(∞)

and û(t, x) = 0 are ordered upper and lower solutions of (3). To explore the existence

of a solution to (3), we need to verify some necessary conditions on the reaction

function. A basic assumption on f(u, t, x) = ur(x− ct)−u2 is the following one-sided

Lipschitz condition

f(u1, t, x)− f(u2, t, x) = u1r(x− ct)− u2
1 − (u2r(x− ct)− u2

2)

= (u1 − u2)(r(x− ct)− u1 − u2)

≥ −ρ(u1 − u2),

for 0 ≤ u2 ≤ u1 ≤ r(∞) and ρ is a constant. It is easy to prove that ur(x− ct)− u2

is Lipschitz continuous with ρ > 3r(∞), then the function

F(u, t, x) ≡ u(ρ+ r(x− ct)− u)

is nondecreasing in u for 0 ≤ u ≤ r(∞). By adding a dominant linear term ρu(t, x)

to both sides of (3), we obtain the equivalent equation of (3):

∂u

∂t
+ ρu = d

∂2u

∂x2
+ ρu+ ur(x− ct)− u2. (5)
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Obviously, u ≡ 0 is a trivial solution and u ≡ r(∞) is an upper solution of (5). From

Pao (1992), the solution, u(t, x), of model (5) with u(0, x) = u0(x), where u0(x) is

continuous in x and 0 ≤ u0(x) ≤ r(∞), can be expressed as the fixed point of the

nonlinear integral equation as follows,

u(t, x) =
∫ +∞

−∞
k(t, x− y)u0(y)dy +∫ t

0

∫ +∞

−∞
k(t− τ, x− y)u(τ, y)[ρ+ r(y − cτ)− u(τ, y)]dydτ,

where

k(t, y) =
1√

4πdt
e−ρt−

y2

4dt , (6)

and ∫ +∞

−∞
k(t, y)dy = e−ρt.

Consider the sequence u(n)(t, x) generated by:

u(n+1)(t, x) = Q[u(n)](t, x) =
∫ +∞

−∞
k(t, x− y)u0(y)dy +∫ t

0

∫ +∞

−∞
k(t− τ, x− y)u(n)(τ, y)[ρ+ r(y − cτ)− u(n)(τ, y)]dydτ,

(7)

where u(0)(t, x) = 0 or u(0)(t, x) = r(∞). Lemma 7.22 in Pao (1992) shows that the

sequence u(n)(t, x) is nondecreasing in n if u(0)(t, x) = r(−∞) and nonincreasing in

n if u(0)(t, x) = r(∞). Lemma 7.22 shows in both cases u(t, x) = limn→∞ u
(n)(t, x)

is the solution of (5) with u(0, x) = u0(x), and 0 ≤ u(t, x) ≤ r(∞). Theorem 2.1

in Pao (1992) and Lemma 1.2 in Wang (1993) show the existence and uniqueness of

the solution u(t, x) for model (5). As an application of Theorem 2.1 in Pao (1992),

we present below the comparison principle corresponding to the reaction-diffusion

equation, which will be the principal tool in subsequent discussions.

Lemma II.1 (Comparison Principle) If u(n)(t, x) and v(n)(t, x) are two sequences of

continuous and nonnegative functions with the properties v(n+1)(t, x) ≤ Q[v(n)](t, x)

and u(n+1)(t, x) ≥ Q[u(n)](t, x) for all nonnegative n and v(0)(t, x) ≤ u(0)(t, x) ≤ r(∞),

then v(n)(t, x) ≤ u(n)(t, x) ≤ r(∞) for all positive integers n.

11



Proof. We assume that v(n−1)(t, x) ≤ u(n−1)(t, x) ≤ r(∞) for some posi-

tive integers n. Since Q[u] is nondecreasing in u, v(n+1)(t, x) ≤ Q[v(n)](t, x) and

u(n+1)(t, x) ≥ Q[u(n)](t, x) for all nonnegative n, we have that

v(n)(t, x) ≤ Q[v(n−1)](t, x) ≤ Q[u(n−1)](t, x) ≤ u(n)(t, x).

Since v(0)(t, x) ≤ u(0)(t, x) ≤ r(∞), by induction, v(n)(t, x) ≤ u(n)(t, x) ≤ r(∞) is

valid for all positive integers n.

To consider the spreading speed of the reaction-diffusion equation, we introduce

some notations (Weinberger 1982; Li et al. 2015). Define

φ(x;µ) =
dµ2 + r(x)

µ
and ψ(µ) = 2dµ. (8)

Observe that ψ(µ) is a strictly increasing function for µ > 0 and φ(x;µ) is strictly

decreasing for 0 ≤ µ ≤ µ∗(x) at each number x. We have that φ(x;µ) > ψ(µ) for

0 < µ < µ∗(x). Furthermore, φ(x;µ) intersects with ψ(µ) at the coordinate where

the infimum of φ(x;µ) is attained.

From Li et al. (2015), the spreading speed

c∗(x) = inf
µ>0

φ(x;µ) = 2
√
dr(x),

which is the only minimum of φ(x;µ). Let µ = µ∗(x) =
√

r(x)
d

be the unique point

where the minimum occurs, i.e.,

c∗(x) = φ(x;µ∗(x)).

It follows that, when r(∞) > r(−∞) > 0,

c∗(∞) = 2
√
dr(∞) and c∗(−∞) = 2

√
dr(−∞),

so that

c∗(∞) ≥ c∗(−∞).

We will demonstrate that under appropriate conditions, the rightward spreading speed

is given by c∗(∞) or c∗(−∞), and the leftward spreading speed is given by c∗(∞),

c∗(−∞) or |c|.
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3 Upper Solutions

In this section, we discuss the upper solutions for model (5). When c = 0, we

provide a lemma for the equation

∂u

∂t
= d

∂2u

∂x2
+ r(x)u− u2, (9)

which is essentially Lemma 2.1 in Li et al. (2015).

Lemma II.2 Let ū(t, x) be the solution of model (9) with ū(0, x) = r(∞). Then

ū(t, x) is nonincreasing in t and nondecreasing in x, ū(t,−∞) = r(−∞), and ū(t,∞) =

r(∞) for t > 0.

The proof of this lemma is similar to the one of the Lemma 2.1 in Li et

al. (2015), so we omit the details.

Lemma II.3 Let u(t, x) be the solution of (5) with u(0, x) = u0(x), where 0 ≤

u0(x) ≤ r(∞). For any ε > 0, there exists sufficiently large T > 0 and M > 0,

such that, when t > T and x ≤ −M + ct,

u(t, x) ≤ r(−∞) + ε.

Proof. Firstly, we consider the case of c ≥ 0. For any ε > 0, we set

ε0 = (
√

(4 + r(−∞))2 + 4ε− 4− r(−∞))/2 > 0.

Let w(t, x) = u(t, x)− r(−∞)− ε0. Since u(t, x) is the solution of (5) with u(0, x) =

u0(x), w(t, x) satisfies the following equation:

∂w

∂t
= d

∂2w

∂x2
+ (w + r(−∞) + ε0)(r(x− ct)− w − r(−∞)− ε0),

which is equivalent to:

∂w

∂t
+ ρw = d

∂2w

∂x2
+ ρw + (w + r(−∞) + ε0)(r(x− ct)− w − r(−∞)− ε0)

= d
∂2w

∂x2
+ (w + r(−∞) + ε0)(ρ+ r(x− ct)− w − r(−∞)− ε0)

−ρ(r(−∞) + ε0), (10)
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with ρ > 3r(∞). The solution of the equation (10) with initial value w(0, x) =

u(0, x)− r(−∞)− ε0 satisfies the integral equation

w(t, x) =
∫ +∞

−∞
e−ρth(t, x− y)w(0, y)dy +∫ t

0

∫ +∞

−∞
e−ρτh(τ, y)[ρw(t− τ, x− y) + (w(t− τ, x− y) + r(−∞) + ε0) ·

(r(x− ct+ cτ − y)− w(t− τ, x− y)− r(−∞)− ε0)]dydτ,

where

h(τ, y) =
1√

4πdτ
e−

y2

4dτ .

Since 0 ≤ u(t, x) ≤ r(∞), it is easy to see that the following expression is

bounded:

|ρw(t− τ, x− y) + (w(t− τ, x− y) + r(−∞) + ε0) ·

(r(x− ct+ cτ − y)− w(t− τ, x− y)− r(−∞)− ε0)|

≤ r(∞)(ρ+ 2r(∞)) + ρ(r(−∞) + ε0).

Therefore,∫ ∞
0

∫ +∞

−∞
e−ρτh(τ, y)[ρw(t− τ, x− y) + (w(t− τ, x− y) + r(−∞) + ε0) ·

(r(x− ct+ cτ − y)− w(t− τ, x− y)− r(−∞)− ε0)]dydτ

≤
∫ ∞

0

∫ +∞

−∞
e−ρτh(τ, y)[r(∞)(ρ+ 2r(∞)) + ρ(r(−∞) + ε0)]dydτ

≤
∫ ∞

0
e−ρτdτ [r(∞)(ρ+ 2r(∞)) + ρ(r(−∞) + ε0)]

≤ r(∞)(ρ+ 2r(∞)) + ρ(r(−∞) + ε0)

ρ
.

It follows that, for the given ε0 > 0, there exists η > 0 and A > η, such that∫ η

0

∫ +∞

−∞
e−ρτ |h(τ, y)[ρw(t− τ, x− y) + (w(t− τ, x− y) + r(−∞) + ε0) ·

(r(x− ct+ cτ − y)− w(t− τ, x− y)− r(−∞)− ε0)]|dydτ < ε0

and ∫ ∞
A

∫ +∞

−∞
e−ρτ |h(τ, y)[ρw(t− τ, x− y) + (w(t− τ, x− y) + r(−∞) + ε0) ·

(r(x− ct+ cτ − y)− w(t− τ, x− y)− r(−∞)− ε0)]|dydτ < ε0.
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For m > 0, let∫ A

η

∫ +∞

−∞
e−ρτ |h(τ, y)[ρw(t− τ, x− y) + (w(t− τ, x− y) + r(−∞) + ε0) ·

(r(x− ct+ cτ − y)− w(t− τ, x− y)− r(−∞)− ε0)]|dydτ

= I(m) + II(m),

where

I(m) =
∫ A

η

∫ cτ−m

−∞
e−ρτ |h(τ, y)[ρw(t− τ, x− y) + (w(t− τ, x− y) + r(−∞) + ε0) ·

(r(x− ct+ cτ − y)− w(t− τ, x− y)− r(−∞)− ε0)]|dydτ,

and

II(m) =
∫ A

η

∫ ∞
cτ−m

e−ρτ |h(τ, y)[ρw(t− τ, x− y) + (w(t− τ, x− y) + r(−∞) + ε0) ·

(r(x− ct+ cτ − y)− w(t− τ, x− y)− r(−∞)− ε0)]|dydτ.

Changing the variable y to be z = y√
4dτ

, we have that

I(m) ≤
∫ A

η

∫ (cτ−m)/
√

4dτ

−∞
e−ρτ

1

π
e−z

2|ρw(t− τ, x−
√

4dτz) + (w(t− τ, x−
√

4dτz)

+r(−∞) + ε0) · (r(x− ct+ cτ − y)− w(t− τ, x−
√

4dτz)− r(−∞)− ε0)]|dydτ.

Since (cτ −m)/
√

4dτ uniformly converges to −∞ for any τ ∈ [η, A] as m→∞, and

|ρw(t− τ, x−
√

4dτz) + (w(t− τ, x−
√

4dτz) + r(−∞) + ε0)(r(x− ct+ cτ −y)−w(t−

τ, x −
√

4dτz) − r(−∞) − ε0)]| is bounded, for the given ε0, there exists sufficiently

large m0 such that

I(m0) < ε0.

Now we are going to prove II(m0) < ε0(r(−∞) + ε).

By the monotonicity of r(x), there is sufficiently large M1 > 0, such that for

x < −M1 + ct,

r(x− ct+m0) < r(−∞) + ε0.

From Lemma II.2, ū(t, x) is nonincreasing in t and nondecreasing in x, ū(t,−∞) =

r(−∞) and ū(t,∞) = r(∞) for t > 0. It follows that, for the given ε0, there are

sufficiently large T2 > 0 and M2 > 0, such that for t > A+ T2, and x < −M2,

ū(t− A, x− cA+m0) < r(−∞) + ε0.
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By the definition of II(m0), its integration variables τ and y satisfy cτ−y ≤ m0.

We have that

II(m0) =
∫ A

η

∫ ∞
cτ−m0

e−ρτ |h(τ, y)[u(t− τ, x− y)

(ρ+ r(x− ct+m0)− u(t− τ, x− y))− ρ(r(−∞) + ε)]|dydτ

≤
∫ A

η

∫ ∞
cτ−m0

e−ρτ |h(τ, y)[ū(t− τ, x− y)

(ρ+ r(x− ct+m0)− ū(t− τ, x− y))− ρ(r(−∞) + ε)]|dydτ

≤
∫ A

η

∫ ∞
cτ−m0

e−ρτ |h(τ, y)[ū(t− A, x− cA+m0)

(ρ+ r(x− ct+m0)− r(−∞))− ρ(r(∞) + ε0)]|dydτ

≤
∫ A

η

∫ ∞
cτ−m0

e−ρτ |h(τ, y)[(r(−∞) + ε0)(ρ+ ε0)− ρ(r(∞) + ε0)]|dydτ

= (r(−∞) + ε0)ε0

∫ A

η
e−ρτdτ

≤ (r(−∞) + ε0)ε0.

Since |w(0, x)| = |u(0, x)− r(−∞)− ε0| < r(∞)− r(−∞)− ε0,

∫ +∞

−∞
e−ρth(t, x− y)w(0, y)dy ≤ (r(∞)− r(−∞)− ε0)e−ρt.

We have that, for the given ε0, there exists T3 > 0, such that for t > T3,

∫ +∞

−∞
e−ρth(t, x− y)w(0, y)dy ≤ ε0.

Therefore, for t ≥ T := max{T2, T3} and x ≤ −M+ct withM := max{M1,M2},

w(t, x) ≤ ε0(4 + r(−∞) + ε0) = ε,

which implies that

u(t, x) ≤ r(−∞) + ε.

In this case of c < 0, we assume ū(t, x) to be the solution of model (9) with

ū(0, x) = r(∞). From Lemma II.2, ū(t,−∞) = r(−∞). Then for any ε > 0, there

exists T1 > 0 and M > 0 such that for x < −M , ū(T1, x) < r(−∞) + ε. Since ū(t, x)

is nonincreasing in t, we have that

ū(t, x) < r(−∞) + ε for t ≥ T1 and x ≤ −M.
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The function ǔ := ū(t, x− ct) satisfies

∂ǔ

∂t
= d

∂2ǔ

∂x2
− c∂ǔ

∂x
+ ǔ(r(x− ct)− ǔ).

Since c < 0, we have that

∂ǔ

∂t
≥ d

∂2ǔ

∂x2
+ ǔ(r(x− ct)− ǔ).

So ǔ(t, x) is an upper solution of model (3). Let u(0, x) ≤ r(∞), we have that

u(t, x) ≤ ǔ(t, x). It yields that

u(t, x) < r(−∞) + ε for t ≥ T1 and x ≤ −M + ct.

The proof is complete.

We introduce the following lemma regarding two upper solutions for model (3).

Lemma II.4 Assume that u(t, x) is a solution of model (3).

(a) If u(0, x) is zero for all sufficiently large x, and 0 ≤ u(0, x) ≤ r(∞), then for

any small positive number ε there exist positive numbers A and µε such that

u(t, x) ≤ Ae−µε(x−(c∗(∞)+ε)t).

(b) Assume c > −c∗(−∞). If u(0, x) is zero for all sufficiently negative x, and

0 ≤ u(0, x) ≤ r(∞), then for any positive ε1, there exist positive numbers B

and µ1 such that for all t > 0 and −∞ < x <∞,

u(t, x) ≤ w(t, x) = Beµ1(x+(c∗(−∞)+ε1)t).

Proof. We first prove the statement (a). For any ε > 0, since φ(x;µ) decreases

in 0 < µ < µ∗(x), there exist µε such that φ(∞;µε) = c∗(∞) + ε. We assume A is a

positive number and

û(t, x) = Ae−µε(x−(c∗(∞)+ε)t).

It is easy to show that û(t, x) is a solution of

∂u

∂t
= d

∂2u

∂x2
+ r(∞)u.
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Since r(∞)u ≥ u(r(x− ct)− u), û(t, x) is an upper solution of model (3). Choose A

sufficiently large such that u(0, x) ≤ û(0, x) = Ae−µεx. Then

u(t, x) ≤ û(t, x) = Ae−µε(x−(c∗(∞)+ε)t).

We now prove the statement (b). By the definition of c∗(x), we have that

c∗(−∞) = inf
µ>0

dµ2 + r(−∞)

µ
,

or equivalently,

c∗(−∞) = lim
δ→0

inf
µ>0

dµ2 + r(−∞) + δ

µ
.

Therefore, for any ε1 > 0, there exists δ > 0 and 0 < µ1 < µ∗(−∞), such that

c∗(−∞) + ε1 =
dµ2

1 + r(−∞) + δ

µ1

.

It follows that

µ1(c∗(−∞) + ε1) = dµ2
1 + r(−∞) + δ. (11)

Since r(x) is continuous and increasing in −∞ < x <∞, there exists x1 such that if

x < x1, then

r(x) ≤ r(−∞) + δ.

It follows that for any t > 0, if x < x1 + ct then

r(x− ct) ≤ r(−∞) + δ.

Additionally, there exists B sufficiently large such that Beµ1x1 = r(∞).

Let

S[u](t, x) =
∂u

∂t
− d∂

2u

∂x2
− r(x− ct)u+ u2,

then

S[w](t, x) =
∂w

∂t
− d∂

2u

∂x2
− r(x− ct)w + w2

= w(t, x)[µ1(c∗(−∞) + ε1)− dµ2
1 − r(x− ct) + w(t, x)]

= w(t, x)[r(−∞) + δ − r(x− ct) +Beµ1(x+(c∗(−∞)+ε1)t)].
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It follows that for any t > 0, when x < x1 + ct, we have that

S[w](t, x) ≥ w(t, x)Beµ1(x+(c∗(−∞)+ε1)t) > 0,

and when x > x1 + ct, we have that,

Beµ1(x+(c∗(−∞)+ε1)t) ≥ Beµ1(x1+ct+(c∗(−∞)+ε1)t) ≥ Beµ1x1 = r(∞).

So S[w](t, x) > 0 for any −∞ < x <∞ and t > 0.

Therefore, w(t, x) is an upper solution of u(t, x), i.e.

u(t, x) ≤ Beµ1(x+(c∗(−∞)+ε1)t).

The proof is complete.

The next lemma is necessary in proving the theorems in section 5.

Lemma II.5 Assume that c and µ are constants. For any ε > 0 sufficiently small,

there exist b > 0 sufficiently large and S0 a positive number such that for any real

number x, ∫ t

0

∫ ∞
−∞

k(τ, y)eµyr(x− y − c(t− τ))dydτ

≤ (1 + S0ε)
∫ t

0

∫ ∞
cτ−b

k(τ, y)eµyr(x− y − c(t− τ))dydτ,

where k(τ, y) is defined by the formula (6).

Proof. Choose η, A and m to be any positive numbers and ρ satisfying ρ > dµ2.

Let ∫ t

0

∫ ∞
−∞

k(τ, y)eµydydτ = I(η) + I(A) + I(m) + II(m),

where

I(A) =
∫ ∞
A

∫ ∞
−∞

k(τ, y)eµyr(x− y − c(t− τ))dydτ,

I(η) =
∫ η

0

∫ ∞
−∞

k(τ, y)eµyr(x− y − c(t− τ))dydτ,

I(m) =
∫ A

η

∫ cτ−m

−∞
k(τ, y)eµyr(x− y − c(t− τ))dydτ,

II(m) =
∫ A

η

∫ ∞
cτ−m

k(τ, y)eµyr(x− y − c(t− τ))dydτ.
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Here we have omitted explicitly listing the x dependency of I, and II. Since

I(A) ≤
∫ ∞
A

∫ ∞
−∞

k(τ, y)eµyr(∞)dydτ

= r(∞)
∫ ∞
A

e−ρτ+dτµ2
∫ ∞
−∞

1√
4πdτ

e−
(y−2dτµ)2

4dτ dydτ

= r(∞)
∫ ∞
A

e−ρτ+dτµ2dydτ

=
r(∞)

ρ− dµ2
e−(ρ−dµ2)A,

and

I(η) ≤
∫ η

0

∫ ∞
−∞

k(τ, y)eµyr(∞)dydτ =
r(∞)

ρ− dµ2
(1− e−(ρ−dµ2)η),

for any positive ε, there exist η sufficiently small and A sufficiently large, such that

A(η) < ε
4

and I(η) < ε
4
.

Changing the variable y to z = (y − 2dτµ)/
√

4dτ in I(m), we have that

I(m) ≤
∫ A

η

∫ cτ−m

−∞
k(τ, y)eµyr(∞)dydτ

= r(∞)
∫ A

η
e−ρτ+dτµ2

∫ cτ−m

−∞

1√
4πdτ

e−
(y−2dτµ)2

4dτ dydτ

= r(∞)
∫ A

η
e−ρτ+dτµ2

∫ cτ−2dµτ−m√
4dτ

−∞

1√
π
e−z

2

dydτ.

Since cτ−2dµτ−m√
4dτ

→ −∞ uniformly for τ ∈ [η,A] as m→∞, for the given ε > 0, there

exists sufficiently large m = b such that

I(b) <
ε

4
.

Additionally,

II(b) ≤
∫ A

η

∫ ∞
cτ−b

k(τ, y)eµyr(∞)dydτ

= r(∞)
∫ A

η
e−ρτ+dτµ2

∫ ∞
cτ−b

1√
4πdτ

e−
(y−2dτµ)2

4dτ dydτ

≤ r(∞)
∫ A

η
e−ρτ+dτµ2dτ

=
r(∞)

ρ− dµ2
(e−(ρ−dµ2)η − e−(ρ−dµ2)A).
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Similarly, we can prove that

II(b) ≥
∫ A

η

∫ ∞
cτ−b

k(τ, y)eµyr(−∞)dydτ,

≥ r(−∞)

ρ− dµ2
(e−(ρ−dµ2)η − e−(ρ−dµ2)A)− r(−∞)

r(∞)

ε

2
.

It follows that II(b) is positive and bounded. For the given ε, there exists a positive

number S0 such that

I(A) + I(η) + I(b) < S0εII(b).

Therefore,

∫ t

0

∫ ∞
−∞

k(τ, y)eµyr(x− y − c(t− τ))dydτ

≤ (1 + S0ε)
∫ t

0

∫ ∞
cτ−b

k(τ, y)eµyr(x− y − c(t− τ))dydτ.

The proof is complete.

4 Lower Solutions

Now we construct lower solutions for model (5) by extending the work in Li et

al. (2015). We provide a definition of a weak lower solution which was introduced in

Li et al. (2015) and is also a modified version of definition 1.1 in Wang (1993).

Definition II.3 We call a function u a continuous weak lower solution of model (3)

if u is continuous for t ≥ 0 and −∞ < x <∞, and

∂u

∂t
≤ d

∂2u

∂x2
+ ur(x− ct)− u2,

in the distributional sense, i.e., for any T > 0 and any η ∈ C2,1((−∞,∞) × [0, T ])

with η ≥ 0 and supp η(·, t) being a bounded interval for all t ∈ [0, T ],

∫ ∞
−∞

u(t, x)η(t, x)dx|t=T1t=0

≤
∫ T1

0

∫ ∞
−∞

[u(s, x)(dηxx + ηt)(s, x) + η(s, x)u(s, x)(r(x− cs)− u(s, x))]dxds

if T1 ∈ [0, T ].
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We recall the function v(µ;x) to construct the lower solution of system (3),

which was used in Li et al. (2015). The function v(µ;x) is given by

v(µ;x) =

 e−µx sin γx, if 0 ≤ x ≤ π
γ

0, elsewhere,
(12)

with γ > 0 and η > 0. This function was initially introduced in Weinberger (1982).

It is easy to see that v(µ;x) is continuous and second order derivative in x except at

the point x = 0 and x = π
γ
. The maximum of v(µ;x) occurs at σ(µ) = 1

γ
tan−1( γ

µ
).

The function σ(µ) is strictly decreasing in µ. We also need the function

v−(µ;x) = v(µ;−x), (13)

which was used in Weinberger (1982) as well.

For the positive number α and ` satisfying c∗(`) = c∗(∞) − ε, we recall the

function which was defined in Li et al. (2015) as follows. Let

wr(α, µ1, µ2; t, x) =



α1v(µ1;x− `− ψ(µ1)t), if `+ ψ(µ1)t ≤ x ≤ `+

σ(µ1) + ψ(µ1)t,

α, if `+ σ(µ1) + ψ(µ1)t ≤ x ≤

`+ 3π
γ

+ σ(µ2) + ψ(µ2)t,

α2v(µ2;x− `− 3π
γ
− ψ(µ2)t), if `+ 3π

γ
+ σ(µ2) + ψ(µ2)t

≤ x ≤ `+ 4π
γ

+ ψ(µ2)t,

0, elsewhere,

(14)

where α1 = α
v(µ1;σ(µ1))

, α2 = α
v(µ2;σ(µ2))

and ψ(µ) is defined by formula (8). For x in

the interval [
`+ σ(µ1) + ψ(µ1)t, `+

3π

γ
+ σ(µ2) + ψ(µ2)t

]
,

we have wr(α, µ1, µ2; t, x) = α, with the end points shifting rightward at speeds ψ(µ1)

and ψ(µ2) as t→∞.
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We define two similar functions. The first one is that

w(α, µ1, µ2; t, x) =



α1v−(µ1;x− `+ ψ(µ1)t), if `− ψ(µ1)t− π
γ
≤ x ≤ `−

σ(µ1)− ψ(µ1)t,

α, if `− σ(µ1)− ψ(µ1)t ≤ x ≤

`+ 3π
γ

+ σ(µ2) + ψ(µ2)t,

α2v(µ2;x− `− 3π
γ
− ψ(µ2)t), if `+ 3π

γ
+ σ(µ2) + ψ(µ2)t

≤ x ≤ `+ 4π
γ

+ ψ(µ2)t,

0, elsewhere,

(15)

where α1 = α
v−(µ1;−σ(µ1))

and α2 = α
v(µ2;σ(µ2))

. For x in the interval[
`− σ(µ1)− ψ(µ1)t, `+

3π

γ
+ σ(µ2) + ψ(µ2)t

]
,

we have w(α, µ1, µ2; t, x) = α, with left end point shifting leftward at speeds ψ(µ1)

and right end point shifting rightward at speeds ψ(µ2) as t→∞.

For the second function,

wl(α, µ1, µ2; t, x) =



α1v−(µ1;x− `+ ψ(µ1)t), if `− ψ(µ1)t− π
γ
≤ x ≤ `−

σ(µ1)− ψ(µ1)t,

α, if `− σ(µ1)− ψ(µ1)t ≤ x ≤

`+ 3π
γ
− σ(µ2)− ψ(µ2)t,

α2v−(µ2;x− `− 3π
γ

+ ψ(µ2)t), if `+ 3π
γ
− σ(µ2)− ψ(µ2)t

≤ x ≤ `+ 3π
γ
− ψ(µ2)t,

0, elsewhere,

(16)

where α1 = α
v−(µ1;−σ(µ1))

and α2 = α
v−(µ2;−σ(µ2))

. For x in the interval[
`− σ(µ1)− ψ(µ1)t, `+

3π

γ
− σ(µ2)− ψ(µ2)t

]
,

we have wl(α, µ1, µ2; t, x) = α, with both end points shifting leftward at speeds ψ(µ1)

and ψ(µ2) as t→∞.

The following lemma was given in Li et al. (2015) (Lemma 2.2) for −∞ <

r(−∞) < 0, but is valid for the case of 0 < r(−∞) < r(∞) as well.
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Lemma II.6 Assume that Hypothesis II.1 is satisfied and 0 ≤ c < c∗(∞). Assume

also that u(t, x) is a solution of model (3) with 0 < u(0, x) ≤ r(∞) for all x. For

any positive ε, there exists ` satisfying c∗(`) = c∗(∞) − ε. Let ψ(µ1) = c + ε and

ψ(µ2) = c∗(∞) − ε. Then there exist a > 0 and γ > 0 sufficiently small, such that

the functions ũ1(t, x) = av(µ1;x − ` − ψ(µ1)t) and ũ2(t, x) = av(µ2;x − ` − ψ(µ2)t)

with v defined by (12) are continuous weak lower solutions of model (3). Furthermore

if u(0, x) ≥ av(µi, x − `) for i = 1 and 2, then u(t, x) ≥ av(µ1, x − ` − ψ(µ1)t) and

u(t, x) ≥ av(µ2, x− `− ψ(µ2)t) for all t > 0.

The proof of this lemma is similar to the proof for Lemma 2.2 in Li et al. (2015),

so we omit the details.

Similar to Lemma II.6, the following lemma is about the lower solution of

model (3) when c ≥ c∗(∞).

Lemma II.7 Assume that Hypothesis II.1 is satisfied and c ≥ c∗(∞). Assume also

that u(t, x) is a solution of model (3) with 0 < u(0, x) ≤ r(∞) for all x. For any

positive ε, there exists ` satisfying c∗(`) = c∗(∞)−ε. Let ψ(µ1) = ψ(µ2) = c∗(−∞)−ε.

Then there exist a > 0 and γ > 0 sufficiently small, such that the functions ũ1(t, x) =

av−(µ1;x−`+ψ(µ1)t) and ũ2(t, x) = av(µ2;x−`−ψ(µ2)t) with v defined by (12) and

v− defined by (13) are continuous weak lower solutions of model (3). Furthermore if

u(0, x) ≥ av−(µ1, x − `) and u(0, x) ≥ av(µ2, x − `), then u(t, x) ≥ av−(µ1, x − ` +

ψ(µ1)t) and u(t, x) ≥ av(µ2, x− `− ψ(µ2)t) for all t > 0.

Proof. When µ = µ1, let z = ψ(µ) = 2dµ1. By using the definition of v− and

integration by parts, we have that∫ T1

0

∫ +∞

−∞
v−(µ;x− `+ zs)(dηxx + ηt)(s, x)dxds

=
∫ T1

0

∫ `−zs

`−π
γ
−zs

v−(µ;x− `+ zs)(dηxx + ηt)(s, x)dxds

=
∫ T1

0

∫ `−zs

`−π
γ
−zs

[d(v−)xx(µ;x− `+ zs)− (v−)s(µ;x− `+ zs)]η(s, x)dxds

+
∫ `−zs

`−π
γ
−zs

v−(µ;x− `+ zs)η(s, x)dx|T10

+γd
∫ T1

0
[e−µ

π
γ η(s, `− zs+

π

γ
) + η(s, `− zs)]ds. (17)
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By direct calculation, we have that for x 6= `− zt, and x 6= `− zt− π/γ,

dvxx(µ;x− `+ zt)− vt(µ;x− `+ zt) = −d(µ2 + γ2)v−(µ; (x− `+ zt)). (18)

Consider the definition of weak lower solutions and also the results of (17) and (18).

Let f(t, x, u) = u(r(x− ct)− u), then for sufficiently small a and γ, ũ1(t, x) satisfies∫ T1

0

∫ +∞

−∞
[ũ1(s, x)(dηxx + ηt)(s, x) + η(s, x)f(s, x, ũ1(s, x))]dxds

−
∫ ∞
−∞

ũ1(s, x)η(s, x)dx|t=T1t=0

= a
∫ T1

0

∫ `−zs

`−zs−π/γ
[r(x− cs)− dµ2 − dγ2 − av−(µ;x− `+ zs)]

·v−(µ;x− `+ zs)η(s, x)dxds+ aγd
∫ T1

0
[e−µ

π
γ η(s, `− zs+

π

γ
) + η(s, `− zs)]ds

≥ a
∫ T1

0

∫ `−zs

`−zs−π/γ
[r(−∞)− dµ2 − dγ2 − av−(µ;x− `+ zs)]

·v−(µ;x− `+ zs)η(s, x)dxds+ aγd
∫ T1

0
[e−µ

π
γ η(s, `− zs+

π

γ
) + η(s, `− zs)]ds

= a
∫ T1

0

∫ `−zs

`−zs−π/γ
[
(2 ∗ c∗(−∞)− ε)ε

4d
− dγ2 − av−(µ;x− `+ zs)]

·v−(µ;x− `+ zs)η(s, x)dxds+ aγd
∫ T1

0
[e−µ

π
γ η(s, `− zs+

π

γ
) + η(s, `− zs)]ds

≥ 0. (19)

According to the definition of a weak lower solution, when u(0, x) ≥ av−(µ1, x − `)

for x ∈ [`, `+ π/γ] then u(t, x) ≥ av−(µ1, x− `− ψ(µ1)t) for all t > 0, i.e. ũ1(t, x) is

a weak lower solution of model (3).

When µ = µ2, the function ũ2(t, x) = av(µ2;x− `−ψ(µ2)t) satisfies equations

(17) and (18). Since r(x− cs)− dµ2
2 ≥

(2∗c∗(−∞)−ε)ε
4d

, we have that ũ2(t, x) is valid for

the process of (19). Therefore, ũ2(t, x) is a weak lower solution of model (3).

The proof is complete.

Similarly, when c∗(−∞) > −c ≥ 0, we have the following lemma for the lower

solution of model (3).

Lemma II.8 Assume that Hypothesis II.1 is satisfied and c∗(−∞) > −c ≥ 0. As-

sume also that u(t, x) is a solution of model (3) with 0 < u(0, x) ≤ r(∞) for all x.

For any positive ε, there exists ` satisfying c∗(`) = c∗(∞) − ε. Let ψ(µ1) = −c − ε,
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ψ(µ2) = c∗(∞) − 2ε, ψ(µ3) = c∗(−∞) − ε, and ψ(µ4) = −c + ε. Then there ex-

ist a > 0 and γ > 0 sufficiently small, such that if u(0, x) ≥ av−(µi, x − `) for

i = 1, 3, 4 and u(0, x) ≥ av(µ2, x − `), then u(t, x) ≥ av−(µ1, x − ` + ψ(µ1)t),

u(t, x) ≥ av(µ2, x − ` − ψ(µ2)t), u(t, x) ≥ av−(µ3, x − ` + ψ(µ3)t) and u(t, x) ≥

av−(µ4, x− `+ ψ(µ4)t) for all t > 0.

The proof of this lemma is similar to the previous Lemma II.7. When µ = µ1,

we have that

r(x− cs)− dµ2
1 ≥ r(`− π

γ
− ψ(µ1)s− cs)− dµ2

1

= r(`− π

γ
+ (c+ ε)s− cs)− dµ2

1

≥ r(`)− dµ2
1

≥ (c∗(∞)− ε)2

4d
− (c+ ε)2

4d
> 0;

and when µ2, we have that

r(x− cs)− dµ2
2 ≥ r(`+ ψ(µ2)s− cs)− dµ2

2

= r(`+ (c∗(∞)− ε)s− cs)− dµ2
2

≥ r(`)− dµ2
2

≥ (c∗(∞)− ε)2

4d
− (c∗(∞)− 2ε)2

4d
> 0.

For µ = µ3 and µ = µ4, we have that r(x− cs) > r(−∞). We omit the details of the

proof here.

Additionally, we have lemmas for c∗(−∞) ≤ −c < c∗(∞) and −c ≥ c∗(∞).

We omit the proof here.

Lemma II.9 Assume that Hypothesis II.1 is satisfied and c∗(−∞) ≤ −c < c∗(∞).

Assume also that u(t, x) is a solution of model (3) with 0 < u(0, x) ≤ r(∞) for all x.

For any positive ε, there exists ` satisfying c∗(`) = c∗(∞)−ε. Let ψ(µ1) = −c−ε, and

ψ(µ2) = c∗(∞)− ε. Then there exist a > 0 and γ > 0 sufficiently small, such that if

u(0, x) ≥ av−(µ, x−`) and u(0, x) ≥ av(µ, x−`), then u(t, x) ≥ av−(µ1, x−`+ψ(µ1)t)

and u(t, x) ≥ av(µ2, x− `− ψ(µ2)t) for all t > 0.

26



Lemma II.10 Assume that Hypothesis II.1 is satisfied and −c ≥ c∗(∞). Assume

also that u(t, x) is a solution of model (3) with 0 < u(0, x) ≤ r(∞) for all x. For any

positive ε, there exists ` satisfying c∗(`) = c∗(∞)− ε. Let ψ(µ1) = ψ(µ2) = c∗(∞)− ε.

Then there exist a > 0 and γ > 0 sufficiently small, such that if u(0, x) ≥ av−(µ, x−`)

and u(0, x) ≥ av(µ, x − `), then u(t, x) ≥ av−(µ1, x − ` + ψ(µ1)t) and u(t, x) ≥

av(µ2, x− `− ψ(µ2)t) for all t > 0.

The following lemma shows that functions wl(α, µ1, µ2; t, x), wr(α, µ1, µ2; t, x)

and w(α, µ1, µ2; t, x) can translate to the lower solutions of system (3) under appro-

priate conditions.

Lemma II.11 Assume that Hypotheses II.1 is satisfied and u(t, x) is a solution of

model (3) with 0 < u(0, x) ≤ r(∞) for all x. Then for any small positive number

ε, there exist positive numbers α, γ, µ1, µ2, and a positive number t0. Let ` satisfy

c∗(`) = c∗(∞)− ε. Then for t > t0

(a) If c > c∗(∞), u(t, x) ≥ w(α, µ1, µ2; t− t0, x) with ψ(µ1) = ψ(µ2) = c∗(−∞)− ε;

(b) If 0 < c < c∗(∞), u(t, x) ≥ wr(α, µ1, µ2; t − t0, x) with ψ(µ1) = c + ε and

ψ(µ2) = c∗(∞) − ε; and, u(t, x) ≥ w(α, µ
′
1, µ

′
2; t − t0, x) with ψ(µ

′
1) = ψ(µ

′
2) =

c∗(−∞)− ε;

(c) If c∗(−∞) > −c ≥ 0, u(t, x) ≥ w(α, µ1, µ2; t − t0, x) with ψ(µ1) = −c − ε and

ψ(µ2) = c∗(∞)−ε; and, u(t, x) ≥ wl(α, µ
′
1, µ

′
2; t−t0, x) with ψ(µ

′
1) = c∗(−∞)−ε

and ψ(µ
′
2) = −c+ ε;

(d) If c∗(−∞) ≤ −c < c∗(∞), u(t, x) ≥ w(α, µ1, µ2; t − t0, x) with ψ(µ1) = −c − ε

and ψ(µ2) = c∗(∞)− ε;

(e) If −c ≥ c∗(∞), u(t, x) ≥ w(α, µ1, µ2; t− t0, x) with ψ(µ1) = ψ(µ2) = c∗(∞)− ε.

Proof. Now we are going to prove statement (d). Since c∗(−∞) ≤ −c < c∗(∞),

for any ε with 0 < ε < min{1, c
∗(∞)+c

3
}, let ` satisfy

c∗(`) = c∗(∞)− ε.
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Assume that ψ(µ1) = −c − ε and ψ(µ2) = c∗(∞) − 2ε. By Lemma II.9, u(t, x) ≥

av−(µ1, x− `+ ψ(µ1)t) and u(t, x) ≥ av(µ2, x− `− ψ(µ2)t) for all t > 0.

Since u(0, x) ≥ 0 and u(0, x) 6≡ 0, u(t, x) > 0 for any t > 0. Choose 0 < t0 <

σ(µ1)
ψ(µ1)

and α and γ are sufficiently small such that u(t0, x) ≥ α for x ∈ [`−π/γ, `+4π/γ].

Let α1 = α
v−(µ1;−σ(µ1))

and α2 = α
v(µ2;σ(µ2))

. From formula (15), assuming 0 ≤ s ≤ 3π/γ,

it is easy to see that

w(0, x) ≥ α1v−(µ1;x− `− s),

w(0, x) ≥ α2v(µ2;x− `− 3π/γ + s).

Since u(t0, x) ≥ α for x ∈ [`−π/γ, `+4π/γ], from Lemma II.9 we have that for t ≥ t0

and 0 ≤ s ≤ 3π/γ,

u(t, x) ≥ α1v−(µ1;x− `+ ψ(µ1)(t− t0)− s), (20)

u(t, x) ≥ α2v(µ2;x− `− 3π/γ − ψ(µ2)(t− t0) + s). (21)

Inequality (20) implies that for t ≥ t0,

u(t, x) ≥



α1v(µ1;x− `+ ψ(µ1)(t− t0)), if `− ψ(µ1)(t− t0)− π/γ ≤ x ≤

`− σ(µ1)− ψ(µ1)(t− t0),

α, if `− σ(µ1)− ψ(µ1)(t− t0) ≤ x ≤

`+ 3π
γ
− σ(µ1)− ψ(µ1)(t− t0),

0, elsewhere.

(22)

On the other hand, (21) indicates that for t ≥ t0,

u(t, x) ≥



α if `+ σ(µ2) + ψ(µ2)(t− t0) ≤ x

≤ `+ 3π
γ

+ σ(µ2) + ψ(µ2)(t− t0),

α2v(µ2;x− `− 3π
γ
− ψ(µ2)(t− t0)), if `+ 3π

γ
+ σ(µ2) + ψ(µ2)(t− t0)

≤ x ≤ `+ 4π
γ

+ ψ(µ2)(t− t0),

0, elsewhere.

(23)
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Let h = 3π/γ−σ(µ1)−σ(µ2)
ψ(µ2)+ψ(µ1)

> 0, then we have that ` + 3π/γ − σ(µ1) − ψ(µ1)(t − t0) ≥

`+ σ(µ2) + ψ(µ2)(t− t0) when t0 ≤ t ≤ t0 + h. In this case, combining (22) and (23)

together, we have that

u(t, x) ≥ w(α, µ1, µ2; t− t0, x). (24)

Now we are going to prove that (24) is valid for all t ≥ t0. Assume that (24)

is true for t0 ≤ t ≤ t0 + nh for some positive integers n. Then

w(nh, x) ≥ α1v−(µ1;x− `+ nhψ(µ1)− s),

w(nh, x) ≥ α2v(µ2;x− `− 3π/γ − nhψ(µ2) + s),

where 0 ≤ s ≤ 3π
γ

+ (ψ(µ1) + ψ(µ2))nh. Therefore,

u(t, x) ≥ α1v−(µ1;x− `− nhψ(µ1) + ψ(µ1)(t− (t0 + nh))− s), (25)

u(t, x) ≥ α2v(µ2;x− `− 3π/γ − nhψ(µ2)− ψ(µ2)(t− (t0 + nh)) + s). (26)

Following the same method to prove that (24) is valid for t0 ≤ t ≤ t0 +nh, the interval

for u(t, x) ≥ α from equations (25) and (26) overlap when

t0 + nh ≤ t ≤ t0 + 2nh+
3π
γ

+ σ(µ1)− σ(µ2)

ψ(µ1) + ψ(µ2)
= t0 + (n+ 1)h.

We therefore have that (24) holds if t0 + nh ≤ t ≤ t0 + (n+ 1)h. By induction, (24)

holds for all t ≥ t0.

This proves the statement (d). By using a similar method and Lemmas II.7

through Lemma II.10, we can prove the rest of the statements in this lemma.

5 Spreading Speed

We provide a theorem to show that when c is large, the species persists in

space and spreads to both right and left at the asymptotic spreading speed c∗(−∞).

Theorem II.1 Assume that Hypotheses II.1 is satisfied and c ≥ c∗(∞). Assume also

u(t, x) is a solution of model (3) with 0 < u(0, x) ≤ r(∞) for all x.
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(a) Let µ+ = µ∗(∞) =
√

r(∞)
d

, µ− = µ∗(−∞) =
√

r(−∞)
d

and c = µ+c∗(∞)−µ−c∗(−∞)
µ+−µ− .

If u(0, x) is zero for all sufficiently large x, 0 ≤ u(0, x) ≤ r(∞), and c > c, then

for any positive ε,

lim
t→+∞

[ sup
x≥t(c∗(−∞)+ε)

u(t, x)] = 0.

(b) If u(0, x) is zero for all sufficiently negative x, and 0 ≤ u(0, x) ≤ r(∞), then

for any positive ε

lim
t→+∞

[ sup
x≤−t(c∗(−∞)+ε)

u(t, x)] = 0.

(c) If u(0, x) > 0 on a closed interval and 0 ≤ u(0, x) ≤ r(∞), then for every ε > 0

lim
t→+∞

[ inf
−t(c∗(−∞)−ε)≤x≤t(c∗(−∞)−ε)

u(t, x)] = r(−∞).

Remark II.1 Biologically, this theorem implies that, if the species spreading speed

in the high quality environment is not sufficient to keep pace with the rate of climate

change, then the species can effectively only exist in the low quality environment.

Since the species is spreading only in the low quality environment, its leftward and

rightward spreading speeds are given by c∗(−∞). This theorem does not include the

case of c∗(∞) < c ≤ c. This case is discussed in Figure 1a, where our numerical

simulation suggests that both leftward and rightward spreading speeds are still c∗(−∞).

Proof. We first prove statement (a). From statement (a) of Lemma II.4, we

have that for any small positive number ε, there exist A1 > 0, such that

u(t, x) ≤ u1(t, x) = A1e
−µ1(x−(c∗(∞)+ε)t),

where µ1 is the smallest solution of φ(∞;µ) = c∗(∞) + ε. Additionally, from the

formula (11), for the given ε, there exists δ > 0 and 0 < µ2 < µ∗(−∞), such that

µ2(c∗(−∞) + ε/2) = dµ2
2 + r(−∞) + δ. We assume that

u2(t, x) = A2e
−µ2(x−(c∗(−∞)+ε)t)

and S = lnA1−lnA2

µ1−µ2 . It follows that

µ+ ≥ µ1 = µ+ +
ε−

√
ε2 + 4ε

√
dr(∞)

2d
> µ+ − ε

2d
,
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µ− ≥ µ2 = µ− +
ε−

√
ε2 + 4ε

√
dr(−∞)− 4dδ

2d
> µ− − ε

2d
.

By direct calculation,
µ1c
∗(∞)− µ2c

∗(−∞)

µ1 − µ2

=
µ+c∗(∞)− µ−c∗(−∞) + (µ+ − µ−)ε+ (

√
ε2 + 4ε

√
dr− − 4dδµ− −

√
ε2 + 4ε

√
dr+µ+)

µ+ − µ− + 1
2d

(
√
ε2 + 4ε

√
dr− − 4dδ −

√
ε2 + 4ε

√
dr+)

.

This formula converges to c as ε→ 0. Choose ε sufficiently small so that

0 <
µ1c
∗(∞)− µ2c

∗(−∞)

µ1 − µ2

≤ c+ ε.

When c > c+ 3ε and x > (c− ε)t+ S, we have that

u2(t, x)

u1(t, x)
=

A2

A1

eµ1(x−(c∗(∞)+ε)t)−µ2(x−(c∗(−∞)+ε)t)

=
A2

A1

e
(µ1−µ2)[x−(

µ1c
∗(∞)−µ2c

∗(−∞)

µ1−µ2
+ε)t]

≥ A2

A1

e(µ1−µ2)[x−(c+2ε)t]

≥ A2

A1

e(µ1−µ2)(S+(c−ε)t−(c−ε)t)

≥ A2

A1

e(µ1−µ2)S = 1.

It follows that, when x > (c− ε)t+ S, u(t, x) ≤ u1(t, x) ≤ u2(t, x).

On the other hand, we consider the case of x ≤ x0 + ct− b, where x0 satisfies

that for any x < x0, r(x) < r(−∞) + δ. Assume u(0, x) ≤ u2(0, x) = A2e
−µ2x and

b is introduced in Lemma II.5 with µ = µ2. The sequence u(n)(t, x) is defined in the

formula (7) with u(0)(t, x) = 0. Obviously, u(0)(t, x) = 0 is a lower solution of system

(3) and u(t, x) = limn→∞ u
(n)(t, x). We have that

u(1)(t, x) = Q[u(0)](t, x) =
∫ +∞

−∞
k(t, x− y)u0(y)dy

= A2e
−ρt−µ2x+dµ22t

= u2(t, x)e−ρt−(r(−∞)+δ)t ≤ u2(t, x).
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We compute that

Q[u2](t, x) =
∫ +∞

−∞
k(t, x− y)u0(y)dy +∫ t

0

∫ +∞

−∞
k(t− τ, x− y)u2(τ, y)[ρ+ r(y − cτ)− u2(τ, y)]dydτ

≤
∫ +∞

−∞
k(t, y)A2e

−µ2(x−y)dy +∫ t

0

∫ +∞

−∞
k(τ, y)A2e

−µ2(x−y−(c∗(−∞)+ε)(t−τ)[ρ+ r(x− y − c(t− τ))]dydτ

≤
∫ +∞

−∞
k(t, y)A2e

−µ2(x−y)dy + (1 + S0ε1) ·∫ t

0

∫ +∞

cτ−b
k(τ, y)A2e

−µ2(x−y−(c∗(−∞)+ε)(t−τ)[ρ+ r(x− y − c(t− τ))]dydτ

≤
∫ +∞

−∞
k(t, y)A2e

−µ2(x−y)dy + (1 + S0ε1)(ρ+ r(−∞) + δ) ·∫ t

0

∫ +∞

cτ−b
k(τ, y)A2e

−µ2(x−y−(c∗(−∞)+ε)(t−τ)dydτ

≤
∫ +∞

−∞
k(t, y)A2e

−µ2(x−y)dy + (ρ+ r(−∞) + δ)(1 + S0ε1) ·∫ t

0
eµ2(c∗(−∞)+ε)(t−τ)

∫ +∞

−∞
k(τ, y)A2e

−µ2(x−y)dydτ

≤ A2e
−ρt−µ2x+dµ22t + (ρ+ r(−∞) + δ)(1 + S0ε1) ·∫ t

0
eµ2(c∗(−∞)+ε)(t−τ)A2e

−ρτ−µ2x+dµ22τdτ

= A2e
−ρt−µ2x+dµ22t +

ρ+ r(−∞) + δ

dµ2
2 − ρ− µ2(c∗(−∞) + ε)

(1 + S0ε1) ·

Ae−µ2(x−(c∗(−∞)+ε)t)(e(dµ22−ρ−µ2(c∗(−∞)+ε))t − 1)

= u2(t, x).

By induction, u(n)(t, x) ≤ u2(t, x). Since u(n)(t, x) converges to u(t, x), so u(t, x) ≤

u2(t, x) for any x ≤ x0 + ct− b.

When t > Tε = (S+b−x0)
ε

, we have that (c − ε)t + S ≤ x0 + ct − b. Therefore,

u(t, x) ≤ u2(t, x) for any x and t sufficiently large.

Now we consider the statement (b). From the statement (b) in Lemma II.4,

for any ε > 0, there exist positive numbers B and µ1 such that

0 ≤ u(t, x) ≤ Beµ1(x+(c∗(−∞)+ ε
2

)t).
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It follows that

0 ≤ lim
t→+∞

[ sup
x≤−t(c∗(−∞)+ε)

u(t, x)] ≤ lim
t→+∞

[ sup
x≤−t(c∗(−∞)+ε)

Beµ1(x+(c∗(−∞)+ ε
2

)t)]

≤ lim
t→+∞

[Beµ1(−t(c∗(−∞)+ε)+(c∗(−∞)+ ε
2

)t)]

≤ lim
t→+∞

[Be−µ1
ε
2
t] = 0.

Therefore,

lim
t→+∞

[ sup
x≤−t(c∗(−∞)+ε)

u(t, x)] = 0.

Finally, we prove the statement (c). By using the conclusion in Lemma II.2,

for any ε > 0, there exists sufficiently large T1 > 0 and M > 0, such that, when t > T1

and x ≤ −M + ct,

u(t, x) ≤ r(−∞) + ε.

From Lemma II.4, we have that if u(0, x) is zero for all sufficiently large x, and

0 ≤ u(0, x) ≤ r(∞), then for any positive ε there exist positive numbers A and µε

such that

u(t, x) ≤ Ae−µε(x−(c∗(∞)+ ε
2

)t).

When x ≥ (c∗(∞) + ε)t,

u(t, x) ≤ Ae−µε
ε
2
t.

It follows that, for the given ε, there exists a sufficiently large T2, such that

u(t, x) < r(−∞) + ε for t ≥ T2 and x ≥ (c∗(∞) + ε)t.

Since c∗(∞) < c, there exists T3 > max{T1, T2} such that for t > T3, −M + ct >

(c∗(∞) + ε)t. Therefore, when t > T3, we have that u(t, x) ≤ r(−∞) + ε for any x.

On the other hand, from Lemma II.11, for any small positive number ε, there

exist α, γ, µ1, µ2, and a positive number t0, such that when t > t0,

u(t, x) ≥ w(α, µ1, µ2; t− t0, x),

where ψ(µ1) = ψ(µ2) = c∗(−∞)− ε/2.

For the given ε > 0, there is L > 0 such that∫ L

−L

1√
π
e−x

2

dx ≥ 1− ε,
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which also satisfies that

∫ L
√

4ds

−L
√

4ds

1√
4πs

e−
x2

4dsdx =
∫ L

−L

1√
π
e−ξ

2

dξ,

for any s > 0. u(t0, x) is assumed to be the initial value for the model (3). Then the

solution u(t, x) satisfies the integral equation for t > t0:

u(t, x) =
∫ +∞

−∞
k(t− t0, x− y)u(t0, y)dy

+
∫ t

t0

∫ +∞

−∞
k(t− τ, x− y)u(τ, y)[ρ+ r(y − cτ)− u(τ, y)]dydτ. (27)

When t > t0 and x satisfies

`−σ(µ1)−ψ(µ1)(t−t0)+L
√

4d(t− t0) ≤ x ≤ `+3π/γ+σ(µ2)+ψ(µ2)(t−t0)−L
√

4d(t− t0),

(28)

and y satisfies

−L
√

4d(t− t0) ≤ y ≤ L
√

4d(t− t0), (29)

we have that

`− σ(µ1)− ψ(µ1)(t− t0) ≤ x− y ≤ `+ 3π/γ + σ(µ2) + ψ(µ2)(t− t0). (30)

By direct calculation,

∫ +∞

−∞
k(t− t0, x− y)u(t0, y)dy ≥ (1− ε)αe−ρ(t−t0), (31)

and

∫ +∞

−∞
k(t−τ, x−y)u(0)(τ, y)[ρ+r(y−cτ)−u(0)(τ, y)]dy ≥ (1−ε)α[ρ+r(−∞)−ε−α]e−ρ(t−τ).

(32)

It follows from (27)-(32) that for t ≥ t0 and x satisfying (28)

u(t, x) ≥ ũ(1)(t),

where

ũ(1)(t) = (1− ε)αe−ρ(t−t0) +
∫ t

t0
e−ρ(t−τ)(1− ε)α[ρ+ r(−∞)− ε− α]dτ.
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It follows from this, (27), and induction that for t ≥ t0 and x satisfying (28),

u(t, x) ≥ ũ(n)(t),

where ũ(n)(t) satisfies

ũ(n+1)(t) = (1− ε)αe−ρ(t−t0) +
∫ t

t0
e−ρ(t−τ)(1− ε)ũ(n)(τ)[ρ+ r(−∞)− ε− 1

1− ε
ũ(n)(τ)]dτ

= an + bn(t)e−ρ(t−t0).

In this formula,

an =
(1− ε)an−1(ρ+ r(−∞)− ε− an−1)

ρ
,

a1 =
(1− ε)α[ρ+ r(−∞)− ε− α]

ρ
,

and bn(t) is the sum of polynomials, and products of polynomials and exponential

functions in the form of e−jρ(t−t0) with j a positive integer.

Since limt→∞ ũ
(n)(t) = an and limn→∞ an = r(−∞)−ε−ερ/(1−ε), there exists

a positive integer N sufficiently large and t2 > t0 such that for t > t2

ũ(N)(t) ≥ r(−∞)− ε− ερ/(1− ε).

Choose t1 > t2 sufficiently large such that when t > t1,

`− σ(µ1)− ψ(µ1)(t− t0) + LN
√

4d(t− t0)

≤ `+ 3π/γ + σ(µ2) + ψ(µ2)(t− t0)− LN
√

4d(t− t0), (33)

and also there exists t3 > t1 such that when t > t3

`+ σ(µ1)− ψ(µ1)(t− t0) + L
√

4d(t− t0) ≤ −t(c∗(−∞)− ε) ≤ t(c∗(−∞)− ε), (34)

t(c∗(−∞)− ε) ≤ `+ 3π/γ + σ(µ2) + ψ(µ2)(t− t0)− LN
√

4d(t− t0). (35)

Equations (33), (34) and (35) show that when t > t3 and −t(c∗(−∞) − ε) ≤ x ≤

t(c∗(−∞)− ε)

lim
t→∞

[
inf

−t(c∗(−∞)−ε)≤x≤t(c∗(−∞)−ε)
u(t, x)

]
≥ (1− ε)(r(∞)− ε).
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Since ε is arbitrary and u(t, x) ≤ r(∞) for all x and t, it follows that

lim
t→+∞

[ inf
−t(c∗(−∞)−ε)≤x≤t(c∗(−∞)−ε)

u(t, x)] = r(−∞).

The proof is complete.

The following theorem shows that if c∗(∞) > c ≥ 0, then the species persists

in space and spreads to the right at the asymptotic spreading speed c∗(∞) and to the

left at the asymptotic spreading speed c∗(−∞), forming a two-layer wave.

Theorem II.2 Assume that Hypotheses II.1 is satisfied and c∗(∞) > c ≥ 0. Assume

also u(t, x) is a solution of model (3) with 0 < u(0, x) ≤ r(∞) for all x.

(a) If u(0, x) is zero for all sufficiently large x, and 0 ≤ u(0, x) ≤ r(∞), then for

any positive ε

lim
t→+∞

[ sup
x≥t(c∗(∞)+ε)

u(t, x)] = 0.

(b) If 0 ≤ u(0, x) ≤ r(∞), u(0, x) > 0 on a closed interval, and u(0, x) is zero for

all sufficiently large x, then for every ε with 0 < ε < (c∗(∞)−c)
2

lim
t→+∞

[ sup
t(c+ε)≤x≤t(c∗(∞)−ε)

|r(∞)− u(t, x)|] = 0.

(c) If u(0, x) is zero for all sufficiently negative x, and 0 ≤ u(0, x) ≤ r(∞), then

for any positive ε

lim
t→+∞

[ sup
x≤−t(c∗(−∞)+ε)

u(t, x)] = 0.

(d) If u(0, x) > 0 on a closed interval and 0 ≤ u(0, x) ≤ r(∞), then for every ε > 0

lim
t→+∞

[ inf
−t(c∗(−∞)−ε)≤x≤min{t(c−ε),t(c∗(−∞)−ε)}

u(t, x)] = r(−∞).

Remark II.2 Here we mention some of its biological implications in the theorem.

Essentially, if the species’ spreading speed in the high quality environment is sufficient

to keep ahead of the rightward moving favorable habitat boundary, then the species will

continue to expand ahead in the high quality environment at speed c∗(∞). Similarly

the species will continue to expand leftward into the low quality environment at speed
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c∗(−∞). Statement (b) states that for regions behind the forward invasion front but

sufficiently in front of the favorable habitat boundary, the population will essentially

reach the high quality habitat equilibrium, r(∞). Similarly (d) states that for a region

in front of the rearward invasion but sufficiently behind the favorable habitat boundary,

the population will essentially achieve the equilibrium value of the poor quality habitat,

r(−∞).

Proof. Firstly, we prove statement (a). From statement (a) in Lemma II.4, we

have that for any positive ε, there exist positive numbers A and µε, such that

u(t, x) ≤ Ae−µε(x−(c∗(∞)+ ε
2

)t).

The trivial solution u = 0 is a lower solution of model (3), so u(t, x) ≥ 0 for all t > 0

and x. It follows that

0 ≤ lim
t→+∞

[ sup
x≥t(c∗(∞)+ε)

u(t, x)] ≤ lim
t→+∞

[ sup
x≥t(c∗(∞)+ε)

Ae−µε(x−(c∗(∞)+ ε
2

)t)]

≤ lim
t→+∞

[Ae−µε(t(c
∗(∞)+ε)−(c∗(∞)+ ε

2
)t)]

= lim
t→+∞

[Ae−µε
ε
2
t] = 0.

Therefore

lim
t→+∞

[ sup
x≥t(c∗(∞)+ε)

u(t, x)] = 0.

The proof of statement (b) is similar to the proof of statement(iii) in Theorem

2.2 of Li et al. (2015) and the proof of statement (c) is same as the proof of statement

(b) in Theorem II.1, so we omit their proofs here.

Finally, we prove the statement (d). From the proof of statement (c) in Theo-

rem II.1, we have that

lim
t→+∞

[ inf
−t(c∗(−∞)−ε)≤x≤t(c∗(−∞)−ε)

u(t, x)] ≥ r(−∞).

In other words, for any given ε > 0, there exists T0, such that

u(t, x) ≥ r(−∞), if t > T0, and − t(c∗(−∞)− ε) ≤ x ≤ t(c∗(−∞)− ε). (36)
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On the other hand, by using Lemma II.3, for the given ε > 0, there exists

sufficiently large T > 0 and M > 0, such that,

u(t, x) ≤ r(−∞) + ε, if t > T, and x ≤ −M + ct. (37)

If c ≤ c∗(−∞), it follows from (36) and (37) that when t > max{T, T0,
M
ε
}

and −t(c∗(−∞)− ε) ≤ x ≤ t(c− ε),

r(−∞) ≤ u(t, x) ≤ r(−∞) + ε.

If c ≥ c∗(−∞), it follows from (36) and (37) that when t > max{T, T0,
M

c−c∗(−∞)+ε
}

and −t(c∗(−∞)− ε) ≤ x ≤ t(c∗(−∞)− ε),

r(−∞) ≤ u(t, x) ≤ r(−∞) + ε.

Since ε can be any small positive number, we have that

lim
t→+∞

[ inf
−t(c∗(−∞)−ε)≤x≤min{t(c−ε),t(c∗(−∞)−ε)}

u(t, x)] = r(−∞).

The following theorem will show that when c∗(−∞) > −c > 0, the species

persists in space and spreads to the right at the asymptotic spreading speed c∗(∞)

and to the left at the asymptotic spreading speed c∗(−∞). The solution of model (3)

forms a two layer wave.

Theorem II.3 Assume that Hypotheses II.1 is satisfied and c∗(−∞) > −c > 0.

Assume also u(t, x) is a solution of model (3) with 0 < u(0, x) ≤ r(∞) for all x.

(a) If u(0, x) is zero for all sufficiently large x, and 0 ≤ u(0, x) ≤ r(∞), then for

any positive ε

lim
t→+∞

[ sup
x≥t(c∗(∞)+ε)

u(t, x)] = 0.

(b) If 0 ≤ u(0, x) ≤ r(∞), u(0, x) > 0 on a closed interval, and u(0, x) is zero for

all sufficiently large x, then for every ε with 0 < ε < (c∗(∞)−c)
2

lim
t→+∞

[ inf
−t(−c−ε)≤x≤t(c∗(∞)−ε)

u(t, x)] = r(∞).
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(c) If u(0, x) is zero for all sufficiently negative x, and 0 ≤ u(0, x) ≤ r(∞), then

for any positive ε

lim
t→+∞

[ sup
x≤−t(c∗(−∞)+ε)

u(t, x)] = 0.

(d) If u(0, x) > 0 on a closed interval and 0 ≤ u(0, x) ≤ r(∞), then for every ε > 0

lim
t→+∞

[ inf
−t(c∗(−∞)−ε)≤x≤−t(−c+ε)}

u(t, x)] = r(−∞).

Remark II.3 The theorem has some biological meanings. If the species spreading

speed in the low quality environment is in excess of the leftward drift of the favorable

habitat boundary, then the species will continue to spread leftward at a speed associated

with the low quality habitat, c∗(−∞). The rightward expansion will be at the speed

associated with the high quality environment, c∗(∞).

Proof. The proof for statement (a) and statement (c) are the same as those

for statement (a) and statement (c) in Theorem II.2. We omit them here.

Now we prove statement (b). From statement (c) of Lemma II.11, for any

small positive number ε, there exist α, γ, µ1, µ2, and a positive number t0, such that

when t > t0,

u(t, x) ≥ w(α, µ1, µ2; t− t0, x),

where ψ(µ1) = −c − ε/2 and ψ(µ2) = c∗(∞) − ε/2. If u(t0, x) is assumed to be the

initial value for the model (3), then the solution u(t, x) satisfies the integral equation

(27).

Since when t > t0, x satisfies

`−σ(µ1)−ψ(µ1)(t−t0)+L
√

4d(t− t0) ≤ x ≤ `+3π/γ+σ(µ2)+ψ(µ2)(t−t0)−L
√

4d(t− t0),

(38)

and y satisfies

−L
√

4d(t− t0) ≤ y ≤ L
√

4d(t− t0), (39)

we have that

`− σ(µ1)− ψ(µ1)(t− t0) ≤ x− y ≤ `+ 3π/γ + σ(µ2) + ψ(µ2)(t− t0), (40)
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so

x− y− ct ≥ `−σ(µ1)−ψ(µ1)(t− t0)− ct = `−σ(µ1) + ε/2(t− t0)− ε/2t0 ≥ `. (41)

Similar to the process in the proof of statement (c) of Theorem II.1, from (38)-(41)

we have that

u(t, x) ≥ ũ(n)(t),

where ũ(n)(t) satisfies

ũ(n+1)(t) = (1− ε)αe−ρ(t−t0) +
∫ t

t0
e−ρ(t−τ)(1− ε)ũ(n)(τ)[ρ+ r(∞)− ε− 1

1− ε
ũ(n)(τ)]dτ

= an + bn(t)e−ρ(t−t0),

with,

an =
(1− ε)an−1(ρ+ r(∞)− ε− an−1)

ρ
,

a1 =
(1− ε)α[ρ+ r(∞)− ε− α]

ρ
,

and bn(t) is the sum of polynomials, and products of polynomials and exponential

function in the form of e−jρ(t−t0) with j a positive integer.

Since limt→∞ ũ
(n)(t) = an and limn→∞ an = r(∞)− ε− ερ/(1− ε), there exists

a positive integer N sufficiently large and t2 > t0 such that for t > t2

ũ(N)(t) ≥ r(∞)− ε− ερ/(1− ε).

Choose t1 > t2 sufficiently large such that when t > t1

`−σ(µ1)−ψ(µ1)(t−t0)+LN
√

4d(t− t0) ≤ `+3π/γ+σ(µ2)+ψ(µ2)(t−t0)−LN
√

4d(t− t0),

(42)

and also there exists t3 > t1 such that when t > t3

`+ σ(µ1)− ψ(µ1)(t− t0) + L
√

4d(t− t0) ≤ −t(−c− ε) ≤ t(c∗(∞)− ε), (43)

t(c∗(∞)− ε) ≤ `+ 3π/γ + σ(µ2) + ψ(µ2)(t− t0)− LN
√

4d(t− t0). (44)

It follows from (42), (43) and (44) that

lim
t→∞

[
inf

t(c+ε)≤x≤t(c∗(∞)−ε)
u(t, x) ] ≥ (1− ε)(r(∞)− ε).
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Since ε is arbitrarily small and u(t, x) ≤ r(∞) for all x and t, it follows that

lim
t→+∞

[ inf
−t(c∗(−∞)−ε)≤x≤t(c∗(−∞)−ε)

u(t, x)] = r(∞).

Finally, we prove the statement (d). From statement (c) of Lemma II.11, for

any small positive number ε, there exist α, γ, µ1, µ2, and a positive number t0, such

that when t > t0,

u(t, x) ≥ wl(α, µ
′

1, µ
′

2; t− t0, x),

where ψ(µ
′
1) = c∗(−∞)− ε and ψ(µ

′
2) = −c+ ε. Using the same method to prove the

statement (c), we have that

lim
t→+∞

[ inf
−t(c∗(−∞)−ε)≤x≤−t(−c+ε)}

u(t, x)] ≥ r(−∞).

Additionally, by using Lemma II.3, for the given ε > 0, there exists sufficiently

large T > 0 and M > 0, such that, when t > T and x ≤ −M+ct, u(t, x) ≤ r(−∞)+ε.

Then when t > M
ε

, we have that −t(−c+ ε) < −M + ct, so that u(t, x) ≤ r(−∞) + ε

for any x. Therefore,

lim
t→+∞

[ inf
−t(c∗(−∞)−ε)≤x≤−t(−c+ε)}

u(t, x)] = r(−∞).

The following theorem deals with when the habitat shifts rapidly leftward,

c∗(∞) ≥ −c > c∗(−∞).

Theorem II.4 Assume that Hypotheses II.1 is satisfied and c∗(∞) ≥ −c > c∗(−∞).

Assume also u(t, x) is a solution of model (3) with 0 < u(0, x) ≤ r(∞) for all x.

(a) If u(0, x) is zero for all sufficiently large x, and 0 ≤ u(0, x) ≤ r(∞), then for

any positive ε

lim
t→+∞

[ sup
x≥t(c∗(∞)+ε)

u(t, x)] = 0.

(b) If u(0, x) > 0 on a closed interval and 0 ≤ u(0, x) ≤ r(∞), then for every ε

satisfying 0 < ε < c∗(∞)−ε
3

,

lim
t→+∞

[ inf
t(c+ε)≤x≤t(c∗(∞)−ε)

u(t, x)] = r(∞).
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(c) If u(0, x) is zero for all sufficiently negative x, and 0 ≤ u(0, x) ≤ r(∞), then

for any positive ε

lim
t→+∞

[ sup
x≤−t(−c+ε)

u(t, x)] = 0.

Remark II.4 Biologically if the leftward moving speed of the favorable habitat bound-

ary, |c|, exceeds the spreading speed in the low quality habitat, but is lower than the

spreading speed in the high quality habitat, then the species will effectively only ex-

ist in the high quality habitat. Its leftward spreading speed will be |c| and rightward

spreading speed will be c∗(∞).

Proof. Statement (a) is obvious, so we omit the details of the proof here. The

proof of statement (b) is similar to the proof of statement (c) in Theorem II.1 with

lower solution defined in statement (d) of Lemma II.11, which is that when t > t0

u(t, x) ≥ w(α, µ1, µ2; t− t0, x),

where ψ(µ1) = −c− ε and ψ(µ2) = c∗(∞)− ε. We omit the details of the proof here.

Now we are going to prove the statement (c). From the formula (11), for the

given ε, there exists δ > 0 and 0 < µ3 < µ∗(−∞), such that µ3(c∗(−∞) + ε/2) =

dµ2
3 + r(−∞) + δ. We assume that u3(t, x) = A3e

µ3(x+(c∗(−∞)+ε)t). Let x0 satisfies that

for any x < x0, r(x) < r(−∞) + δ, u(0, x) ≤ u3(0, x) = A3e
µ3x and b is the number

introduced in Lemma II.5 with µ = µ3. Assume the sequence u(n)(t, x) is defined by

the formula (7) with u(0)(t, x) = 0. Obviously, u(0)(t, x) = 0 is a lower solution of

system (3) and u(t, x) = limn→∞ u
(n)(t, x). When x ≤ x0 + ct− b, we have that

u(1)(t, x) = Q[u(0)](t, x) =
∫ +∞

−∞
k(t, x− y)u0(y)dy

= A3e
−ρt+µ3x+dµ23t

= u3(t, x)e−ρt−(r(−∞)+δ+
µ3ε

2
)t ≤ u3(t, x).

Since

Q[u3](t, x) =
∫ +∞

−∞
k(t, x− y)u0(y)dy +∫ t

0

∫ +∞

−∞
k(t− τ, x− y)u3(τ, y)[ρ+ r(y − cτ)− u3(τ, y)]dydτ
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≤
∫ +∞

−∞
k(t, y)A3e

µ3(x−y)dy +∫ t

0

∫ +∞

−∞
k(τ, y)A3e

µ3(x−y+(c∗(−∞)+ε)(t−τ))[ρ+ r(x− y − c(t− τ))]dydτ

≤
∫ +∞

−∞
k(t, y)A3e

µ3(x−y)dy + (1 + S0ε1) ·∫ t

0

∫ +∞

cτ−b
k(τ, y)A3e

µ3(x−y+(c∗(−∞)+ε)(t−τ))[ρ+ r(x− y − c(t− τ))]dydτ

≤
∫ +∞

−∞
k(t, y)A3e

µ3(x−y)dy + (1 + S0ε1)(ρ+ r(−∞) + δ) ·∫ t

0

∫ +∞

cτ−b
k(τ, y)A3e

µ3(x−y+(c∗(−∞)+ε)(t−τ))dydτ

≤
∫ +∞

−∞
k(t, y)A3e

µ3(x−y)dy + (ρ+ r(−∞) + δ)(1 + S0ε1) ·∫ t

0
eµ3(c∗(−∞)+ε)(t−τ)

∫ +∞

−∞
k(τ, y)A3e

µ3(x−y)dydτ

≤ A3e
−ρt+µ3x+dµ23t + (ρ+ r(−∞) + δ)(1 + S0ε1) ·∫ t

0
eµ3(c∗(−∞)+ε)(t−τ)A3e

−ρτ+µ3x+dµ23τdτ

= A3e
−ρt+µ3x+dµ23t +

ρ+ r(−∞) + δ

dµ2
3 − ρ− µ3(c∗(−∞) + ε)

(1 + S0ε1) ·

Aeµ3(x+(c∗(−∞)+ε)t)(e(dµ23−ρ−µ3(c∗(−∞)+ε))t − 1)

= u3(t, x).

By induction, u(n)(t, x) ≤ u3(t, x). Since u(n)(t, x) converges to u(t, x), so u(t, x) ≤

u3(t, x) for any x ≤ x0 + ct− b.

Since when t > Tε = (b−x0)
ε

, (c− ε)t ≤ x0 + ct− b, we have that

0 ≤ lim
t→+∞

[ sup
x≤−t(−c+ε)

u(t, x)] ≤ lim
t→+∞

[ sup
x≤−t(−c+ε)

A3e
µ3(x+(c∗(−∞)+ε)t)]

≤ lim
t→+∞

[A3e
µ3(t(c−ε)−(c∗(−∞)+ε)t)]

= lim
t→+∞

[A3e
µ3(c+c∗(−∞))t)] = 0.

The proof is complete.

The following theorem deals with when c∗(∞) ≤ −c, so the habitat shifts

extremely rapidly leftward.

Theorem II.5 Assume that Hypotheses II.1 is satisfied and c∗(∞) ≤ −c. Assume

also u(t, x) is a solution of model (3) with 0 < u(0, x) ≤ r(∞) for all x.
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(a) If u(0, x) is zero for all sufficiently large x, and 0 ≤ u(0, x) ≤ r(∞), then for

any positive ε

lim
t→+∞

[ sup
x≥t(c∗(∞)+ε)

u(t, x)] = 0.

(b) If u(0, x) > 0 on a closed interval and 0 ≤ u(0, x) ≤ r(∞), then for every ε

satisfying 0 < ε < c∗(∞)−ε
3

,

lim
t→+∞

[ inf
−t(c∗(∞)−ε)≤x≤t(c∗(∞)−ε)

u(t, x)] = r(∞).

(c) If u(0, x) is zero for all sufficiently negative x, and 0 ≤ u(0, x) ≤ r(∞), then

for any positive ε

lim
t→+∞

[ sup
x≤−t(c∗(∞)+ε)

u(t, x)] = 0.

Remark II.5 Biologically, if the leftward moving speed of the favorable habitat bound-

ary is extremely large, then the species will effectively only exist in the high quality

habitat. The species will persist and spread in both directions in the habitat with

asymptotic spreading speed c∗(∞). The lower solution defined in statement (e) of

Lemma II.11 can be used to prove this theorem. The proof is similar to Theorem II.4,

so we only provide the statement of the theorem without proof here.

6 Simulations for One Species Models

In this section, we present some numerical simulations for the model (3) with

r(x) =

 1 if x > 0

0.5 otherwise,

and the initial data

u(0, x) =

 0.5 sin(x) if 0 < x < π

0 otherwise.

The species was initially introduced on the interval [0, π]. The numerical simulations

with r(−∞) < 0 were provided in Li et al. (2015). Here we show numerically how
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c affects the spatial dynamics of model (3) when r(x) > 0 for all of x. Numerical

simulations were conducted using MATLAB.

Choose d = 2, so that, for model (3), c∗(∞) = 2.8284..., c∗(−∞) = 2 and

c = 4.8284.... In each of the simulation figures in this section, the red dashed curve

is the graph of r(x − ct) when t = 0. The travel direction of growth rate function

r(x− ct) is indicated with the arrow. The solid curves with different colors are used

to describe the densities of the species at time t, for all of x ∈ R. The speed of

the species spread in both directions is numerically calculated by using appropriate

level sets, which are close to the analytical spreading speeds. The speed c and the

numerical spreading speeds are provided on the top of the direction arrows.

Figure 1a displays the numerical solution with c = 3, which satisfies c∗(∞) <

c < c. We see the species is not able to keep up with the high quality habitat, and thus

effectively only experiences the low quality habitat and spreads in both directions at

speed c∗(−∞). In the case of c > c, the numerical solution is similar. This numerical

result supports Theorem II.1.

Figure 1b describes the numerical solution with c = 1, so c∗(∞) > c > 0. The

species is able to spread into the high quality habitat on the right at the asymptotic

spreading speed c∗(∞) and spreads to the left at the asymptotic spreading speed

c∗(−∞). The species distributes as a two-step hierarchy. This numerical result sup-

ports Theorem II.2.

Figure 1c provides us the numerical solution for c = −1 < 0, which satisfies

c∗(−∞) > −c. The species is able to keep up with the leftward moving boundary

and expand into the poor quality habitat at c∗(−∞) and expand into the high quality

habitat at c∗(∞). This numerical result supports Theorem II.3.

In Figure 1d, c = −3 < 0, and c∗(∞) < −c. The species is not able to expand

into the fast leftward moving low quality habitat, and effectively only experiences the

high quality habitat. The species persists in space and spreads both to the right and

left at the asymptotic spreading speed c∗(∞). In the case of c∗(−∞) < −c < c∗(∞),

the species persists in space and spreads to the right at the asymptotic spreading

speed c∗(∞) and to the left at speed c. This numerical result supports Theorem II.4
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and Theorem II.5.

7 Discussion for Reaction-Diffusion Chapter

In this chapter, we used a reaction-diffusion model to study the persistence

and spread of a species along shifting resource gradients. We considered that the

region suitable for species growth is expanding or contracting as well as assuming

that the species grows everywhere along the spatial gradient, but with differing levels

of success. We can summarize the key results as follows:

• When the favorable habitat for species growth is contracting, the rightward

spreading speed is c∗(∞) if the contracting speed c is relatively small and is

c∗(−∞) if the contracting speed c is relatively large. In this case, the leftward

spreading speed is c∗(−∞).

• When the favorable habitat for species growth is expanding, the rightward

spreading speed is c∗(∞), while the leftward spreading speed depends on who

fast climate change is occurring relative to the intrinsic rate of spread of invasive

species. We showed that the leftward spreading speed is c∗(∞) for relatively

rapidly expansion, |c| itself for relatively intermediate expansion, and c∗(−∞)

for relatively slow expansion.

• The solution of the reaction-diffusion equation can create a two-layer wave with

analytically determined propagation speeds, which was not found in the work

of Li et al. (2015).

This extends the work by Li et al. (2015) to study the the impact of an expand-

ing/contracting habitat edge on the persistence and spread of an invasive species. In

this model the region suitable for species growth was assumed to be contracting and

r(−∞) was assumed negative.

This work complements (Li et al. 2016) which modeled a similar shifting re-

source gradient but with an integral-difference model.
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(a) c = 3 (b) c = 1

(c) c = −1 (d) c = −3

Figure 1: Numerical Simulation for Reaction-Diffusion Equations
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CHAPTER III

LOTKA-VOLTERRA COMPETITION MODEL ANALYSIS

1 Lotka-Volterra Competition Model

The competitive Lotka-Volterra model is a simple model to analyze the popula-

tion dynamics of two or more species which are competing for some common limiting

resource. This means the demand on the resource is greater than the supply, for

example, food, nutrients, space, and nesting sites. The stronger competitor in the

system will affect the population size and growth rate of other competitors, which

in turn influences population dynamics. It has been demonstrated that the Lotka-

Volterra model could be utilized to sponsor beneficial invasions to control selected

pest problems and stem the invasion of introduced pests (Baker 1990; Lewis 1996).

One simple example of the Lotka-Volterra competition model may take the

form(Kan-on 1996; Morita 2009; Lewis 2002; Li 2005):
∂u
∂t

= d1
∂2u
∂x2

+ r1u− u2 − a1uv

∂v
∂t

= d2
∂2v
∂x2

+ r2v − v2 − a2uv.
(45)

Here u(t, x) and v(t, x) represent the densities of the competing species at time t, and

location x. Each species is assumed to have a linear growth term, a quadratic term

for self-competition as well as a term for the interaction with the other species. The

competitive interactions between two species may have a very important impact for

the persistence and spread of both species. The densities of both competing species

are required to be nonnegative and the parameters in this model d1, d2, r1, r2, a1 and

a2 are all positive constants.

In general, the model (45) has four constant equilibria: the unpopulated state

(0, 0); the first-species monoculture state (r1, 0); the second-species monoculture state
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(0, r2); and the coexistence state (u∗, v∗), where

u∗ =
r1 − r2a1

1− a1a2

, v∗ =
r2 − r1a2

1− a1a2

.

The dynamics of the Lotka-Volterra competition model is more complex than the one

dimension reaction-diffusion equation. Some well-known results for a scalar reaction-

diffusion equation can be extended to the reaction system, but care must be taken

with the assumptions. The uniqueness and existence of the solution for system (45)

have been provided in Pao (1998).

The dynamics of population spread and traveling waves can be extended be-

yond reaction-diffusion models to multi-species systems(Lewis 2002; Weinberger 1982;

Lui 1989a; Lui 1989b; Aronson and Weinberger 1975; Aronson and Weinberger 1978).

Lui showed how to define the spreading speed of a class of cooperative systems in pop-

ulation ecology and epidemic theory and established the existence of a single spreading

speed c∗ for all species. The spreading speed of one species invading habitat inhab-

ited by another species has been demonstrated to be the slowest speed of a class of

traveling waves. This result was generalized by Weinberger (2002) and introduced a

new possibility - different species may have different spreading speeds, so that there

are a slowest speed c∗ and a fastest speed c∗f . Li et al. (2005) showed that, for a large

class of multi-species systems, the slowest spreading speed c∗ is always characterized

as the slowest speed of a class of traveling wave solutions. These traveling waves

connect the unstable mono-culture equilibrium to the coexistence equilibrium or to

the other mono-culture equilibrium. Since the two-species competition model can be

converted into cooperative models by a simple change of variables, as an extension

of work by Weinberger (2002) and Lui (1989a), Lewis (2002) provided an analysis of

the spreading speed and linear determinacy for two-species competition models.

2 Lotka-Volterra Competition Model with Shifting Habitat

To explore the impact of climate change for the persistence and spread of two

competing populations, our analysis in this chapter is mainly based on the Lotka-
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Volterra model with shifting habitat as follows:
∂u
∂t

= d1
∂2u
∂x2

+ r1(x− ct)u− u2 − a1uv

∂v
∂t

= d2
∂2v
∂x2

+ r2(x+ ct)v − v2 − a2uv.
(46)

Here u = u(t, x) and v = v(t, x) are the densities of two competing populations. The

parameters d1 > 0 and d2 > 0 are the diffusion constants and a1 > 0 and a2 > 0 are

the coefficients describing competitions between the species. In this system, r1(x−ct)

represents the intrinsic growth rate function of the species u and r2(x+ ct) represents

the intrinsic growth rate function of the species v. To consider the effect of climate

change on population dynamics, we assume that both species are initially introduced

in a bounded area.

We begin our discussion by making the following hypothesis for ri(x), with

i = 1, 2.

Hypothesis III.1 r1(x) is a locally Holder nondecreasing, bounded, and piecewise

continuously differentiable function in x for −∞ < x < ∞, 0 < r1(∞) < ∞, and

−∞ < r1(−∞) < 0; r2(x) is a locally Holder nonincreasing, bounded, and piecewise

continuously differentiable function in x for −∞ < x < ∞, 0 < r2(−∞) < ∞, and

−∞ < r2(∞) < 0.

Since r1 has a sign change, the domain can be portioned into two regions. The

region where r1(x − ct) < 0 will be unsuitable for the growth of u, and the region

where r1(x − ct) > 0 is the region in which u can grow. Similarly, the domain of

species v can be portioned into a suitable habitat and an unsuitable habitat as well.

In this chapter, we assume that c > 0 so that the edge of the habitat suitable for

species u is moving in the positive direction and the edge of the habitat suitable for

species v is moving in the negative direction at speed c. That means, the suitable

habitat for both species are contracting.

In discussing the Lotka-Volterra model (46), we need to expand the monotone

property of the reaction function to competition models. We define the function

fi(x, y, u, v) with i = 1, 2 to be quasimonotone nondecreasing(resp., nonincreasing)

in u (resp.,v) if for fixed v (resp.,u), f is nondecreasing (resp., nonincreasing) in u
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(resp., v). Hence for the coupled reaction-diffusion system, there are three basic types

of quasimonotone functions.

Definition III.1 A function f = (f1, f2) is called quasimonotone nondecreasing (re-

sp., nonincreasing) in R×R if both f1 and f2 are quasimonotone nondecreasing (resp.,

nonincreasing) for (u, v) ∈ R×R. When f1 is quasimonotone nonincreasing and f2 is

quasimonotone nondecreasing (or vice versa), then f is called mixed quasimonotone.

For the Lotka-Volterra model (46), we assume that

(f1, f2) = (r1(x− ct)u− u2 − a1uv, r2(x+ ct)v − v2 − a2uv).

We have that
∂f1

∂v
= −a1u ≤ 0;

∂f2

∂u
= −a2v ≤ 0,

so that (f1, f2) is quasimonotone nonincreasing. Then we can extend the monotone

method for scalar problems to the coupled system (46) using upper and lower solutions

as the initial iterations. We have the following definition of ordered upper and lower

solutions, which were given in Pao (1992).

Definition III.2 A pair of functions ũ = (ũ, ṽ), û = (û, v̂) in C1,2([0,∞]× [−∞,∞])

are called ordered upper and lower solutions of model (46) with initial values u(0, x) =

u0(x) and v(0, x) = v0(x) if they satisfy the relation ũ ≥ û and

ũ(0, x) ≥ u0(x) ≥ û(0, x)

ṽ(0, x) ≥ v0(x) ≥ v̂(0, x),

and if

∂ũ
∂t
− d1

∂2ũ
∂x2
− f1(t, x, ũ, v̂) ≥ 0 ≥ ∂û

∂t
− d1

∂2û
∂x2
− f1(t, x, û, ṽ)

∂ṽ
∂t
− d2

∂2ṽ
∂x2
− f2(t, x, û, ṽ) ≥ 0 ≥ ∂v̂

∂t
− d2

∂2v̂
∂x2
− f2(t, x, ũ, v̂),

when (f1, f2) is quasimonotone nonincreasing.

It is easy to show that ũ = (r1(∞), r2(−∞)), û = (0, 0) are ordered upper and

lower solutions and û is the trivial solution of the system (46). For every (u1, v1) and
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(u2, v2), which satisfies 0 ≤ ui ≤ r1(∞) and 0 ≤ vi ≤ r2(−∞) for i = 1, 2, we have

that

|f1(t, x, u1, v1)− f1(t, x, u2, v1)| ≤ (3r1(∞) + a1r2(−∞))|u1 − u2|;

and

|f2(t, x, u1, v1)− f2(t, x, u1, v2)| ≤ (3r2(−∞) + a2r1(∞))|v1 − v2|,

so that (f1, f2) satisfies the Lipschitz Conditions. Define the function

F1(t, x, u, v) = βu+ f1(t, x, u, v)

F2(t, x, u, v) = βv + f2(t, x, u, v),

where β > max{3r1(∞) + a1r2(−∞), 3r2(−∞) + a2r1(∞)}. Then F1 and F2 are

Holder continuous and monotone nondecreasing in u and v separately. By adding

dominant linear terms to both sides of the equations in system (46), we obtain the

equivalent equation of (46):
∂u
∂t

+ βu = d1
∂2u
∂x2

+ βu+ r1(x− ct)u− u2 − a1uv

∂v
∂t

+ βv = d2
∂2v
∂x2

+ βv + r2(x+ ct)v − v2 − a2uv.
(47)

From Pao (1992), the solution of system (47) with u(0, x) = u0(x) and v(0, x) = v0(x)

satisfies the integral equation as follows:

u(t, x) = Q1[(u, v)](t, x) =
∫ +∞
−∞ k1(t, x− y)u0(y)dy

+
∫ t

0

∫ +∞
−∞ k1(t− τ, x− y)u(τ, y)[β + r1(y − cτ)− u(τ, y)− a1v(τ, y)]dydτ

v(t, x) = Q2[(u, v)](t, x) =
∫ +∞
−∞ k2(t, x− y)v0(y)dy

+
∫ t
0

∫ +∞
−∞ k2(t− τ, x− y)v(τ, y)[β + r2(y + cτ)− v(τ, y)− a2u(τ, y)]dydτ,

where

ki(s, y) =
1√

4πdis
e
−βs− y2

4dis , with i = 1, 2.

Then the system (46) is also equivalent to the system as follows:

(u(n+1), v(n+1)) = Q[(u(n), v(n))],
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where Q = (Q1, Q2), u(0)(t, x) and v(0)(t, x) are the given ordered upper and lower

solutions and (u(n)(t, x), v(n)(t, x)) are defined by u(n+1)(t, x) = Q1[(u(n), v(n))](t, x)

v(n+1)(t, x) = Q2[(u(n), v(n))](t, x).
(48)

Theory on the existence-comparison theorem for quasimonotone nonincreasing

functions has been well established (e.g. Theorem 8.3.2 in Pao (1992, page 397)). This

theory shows that the sequence {u(k), v(k)} and {u(k), v(k)} obtained from system (48)

with {u(0), v(0)} = (r1(∞), 0) and {u(k), v(k)} = (0, r2(−∞)) converges monotonically

to (u, v), which is the unique solution between ũ and û of the problem (46) with initial

values between ũ and û. The monotone property of the sequence is in the sense of

u(k) ≤ u(k+1) ≤ u(k+1) ≤ u(k), and v(k) ≤ v(k+1) ≤ v(k+1) ≤ v(k).

To consider the spreading speed of the Lotka-Volterra competition model, we

introduce some notations. Let

φi(x;µi) =
dµ2

i + ri(x)

µ
and ψi(µ) = 2diµi,

where i = 1, 2. When µi = µ∗i (x) =
√

ri(x)
di

, φi(x;µi) get its minimum

c∗i (x) = inf
µi>0

φ(x;µi) = 2
√
diri(x).

It is easily seen that φi(x;µi) > ψi(µi) for 0 < µi < µ∗i (x) and φi(x;µ∗i (x)) =

ψi(µ
∗
i (x)).

3 Non-persistence

In this section, we will prove that, if the region suitable for each competition

species contracts relatively fast, then both species will become extinct in the long

run. We first provide a useful lemma for equation (46).

Lemma III.1 Let (u(t, x), v(t, x)) be the solution of system (46) with initial value

0 ≤ u(0, x) ≤ r1(∞) and 0 ≤ v(0, x) ≤ r2(−∞). For any positive ε, there exist T > 0

and M > 0, such that

u(t, x) < ε for t > T and x ≤ −M + ct,

v(t, x) < ε for t > T and x ≥M − ct.
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Proof. Let (u̇(t, x), v̇(t, x)) be the solution of the model as follows:
∂u
∂t

= d1
∂2u
∂x2

+ r1(x− ct)u− u2

∂v
∂t

= d2
∂2v
∂x2

+ r2(x+ ct)v − v2.

In this model, the species u̇(t, x) and v̇(t, x) satisfy
∂u̇
∂t
≥ d1

∂2u̇
∂x2

+ r1(x− ct)u̇− u̇2 − a1u̇v̇

∂v̇
∂t
≥ d2

∂2v̇
∂x2

+ r2(x+ ct)v̇ − v̇2 − a2u̇v̇.

It is easy to prove that (u̇(t, x), v̇(t, x)) with (u̇(0, x), v̇(0, x)) = (r1(∞), r2(−∞)) is

an upper solution of the model (46). That means

0 ≤ u(t, x) ≤ u̇(t, x), and 0 ≤ v(t, x) ≤ u̇(t, x).

From Lemma 2.1 in Li et al. (2015), for any positive ε, there exists T > 0 and

M > 0, such that

u̇(t, x) < ε for t > T and x ≤ −M + ct,

v̇(t, x) < ε for t > T and x ≥M − ct.

Therefore,

u(t, x) < ε for t > T and x ≤ −M + ct,

v(t, x) < ε for t > T and x ≥M − ct.

The proof is complete.

This Lemma shows that since the compatible habitat for the respective species

becomes increasingly disjoint, we can safely ignore the effect of u when x→ −∞ and

the effect of v when x→∞.

We have the following theorem regarding the nonpersistence of both species.

Theorem III.1 Assume that Hypothesis III.1 is satisfied, c∗1(∞) < c, and c∗2(−∞) <

c. Let (u(t, x), v(t, x)) be the solution of the system (46) with initial values 0 ≤

u(0, x) ≤ r1(∞) and 0 ≤ v(0, x) ≤ r2(−∞), where u(0, x) is zero for sufficiently large

x and v(0, x) is zero for sufficiently negative x. For any positive ε, there exists T > 0

such that u(t, x) < ε and v(t, x) < ε for t ≥ T and −∞ < x <∞.
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Remark III.1 With the assumption, as throughout this paper, that r1(−∞) < 0,

r1(∞) > 0 and r2(−∞) > 0, r1(∞) < 0, we obtain the result summarized in theorem

III.1. That is, if c is large, then for any fixed point in space, after a sufficiently long

time, both species disappear from that point.

From a biological point of view this is not at all surprising as the suitable habitat

for u drifts right, eventually leaving any point in space in unsuitable habitat for u.

Similarly the suitable habitat for v drifts left, eventually leaving any point in space in

unsuitable habitat for v.

Proof. By the definition of φi(x;µ) with i = 1, 2, both decrease for 0 < µ <

µ∗i (x). Then for any ε > 0, there exist µ1 and µ2 such that φ1(∞;µ1) = c∗1(∞) + ε

and φ2(−∞;µ2) = c∗2(−∞) + ε. We assume A1 and A2 are positive numbers, and

(û(t, x), v̂(t, x)) = (A1e
−µ1(x−(c∗1(∞)+ε)t), A2e

µ2(x+(c∗2(−∞)+ε)t)).

It is easy to prove that (û(t, x), v̂(t, x)) is the solution of
∂u
∂t

= d1
∂2u
∂x2

+ r1(∞)u

∂v
∂t

= d2
∂2v
∂x2

+ r2(−∞)v.

Since

r1(∞)u > r(x− ct)u− u2 − a1uv,

and

r2(−∞)v > r(x+ ct)v − v2 − a2uv,

we can show that (û(t, x), v̂(t, x)) is an upper solution of the model (46). Choose A1

and A2 sufficiently large such that û(0, x) ≥ u(0, x) and v̂(0, x) ≥ v(0, x). It follows

that 0 ≤ u(t, x) ≤ û(t, x) and 0 ≤ v(t, x) ≤ v̂(t, x).

Similar to the proof of statement (c) in Theorem II.1, and applying the Lemma

III.1, we have that for every ε > 0, given u(0, x) is zero for sufficiently large x and

v(0, x) is zero for sufficiently negative x, there exists T > 0 such that for t ≥ T ,

u(t, x) < ε and v(t, x) < ε for all x.

The proof is complete.
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4 Spreading Speed

In the following Theorem III.2 we make the same assumptions on r1(x), r2(x)

as in theorem III.1. We also assume that the leftward spreading speed of v is

not sufficient to keep pace with the leftward shift of its suitable habitat boundary

(c∗2(−∞) < c). However, the spreading speed of u is sufficiently fast that u can keep

ahead of the rightward shift of its suitable habitat boundary (c < c∗1(∞)).

Theorem III.2 Assume that Hypothesis III.1 is satisfied and c satisfies c∗2(−∞) <

c < c∗1(∞). Let (u(t, x), v(t, x)) be the solution of the system (46) with initial val-

ues 0 ≤ u(0, x) ≤ r1(∞) and 0 ≤ v(0, x) ≤ r2(−∞). Then we have the following

statements:

(a) If v(0, x) is zero for sufficiently negative x, then there exists T > 0 such that

for t ≥ T , v(t, x) < ε for all x.

(b) If u(0, x) is zero for sufficiently negative x, then for any ε > 0,

lim
t→+∞

[ sup
x≤t(c−ε)

u(t, x)] = 0.

(c) If u(0, x) is zero for all sufficiently large x, then for any positive ε,

lim
t→+∞

[ sup
x≥t(c∗(∞)+ε)

u(t, x)] = 0.

(d) If u(0, x) > 0 on a closed interval, and u(0, x) is zero for all sufficiently large

x, then for every ε with 0 < ε < (c∗(∞)−c)
2

,

lim
t→+∞

[ sup
t(c+ε)≤x≤t(c∗(∞)−ε)

|r1(∞)− u(t, x)|] = 0.

Remark III.2 The biological interpretation of Theorem III.2 is as follows.

(i) The statement (a) shows that species v faces extinction in every part of the

spatial domain.

(ii) The statement (b) shows that the density of species u will approach zero for the

region behind the rightward moving habitat boundary for species u.
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(iii) The statement (c) shows that the density of species u will approach zero for

the region sufficiently in front of the advancing population of u, which would be

x > c∗2(∞) t.

(iv) The statement (d) shows that for the region of space between the suitable habitat

boundary for u and the leading edge of the advancing population of u, (c t < x <

c∗2(∞) t), the density of the species will approach the maximum carrying capacity

for u, r1(∞).

(v) Statement (b) and statement (d) show that the left wavefront of species u moves

to the right at speed c; statement (c) and statement (d) show that, the species

u persists and spreads to the right at asymptotic spreading speed c∗1(∞).

Proof. The proof of the statement (a) is similar to the proof of Theorem III.1,

and is omitted. It follows that when t ≥ T , v(t, x) < ε for all x. We assume t0 = T .

When t > t0, we have that u(r1(x− ct)− u− a1v) ≥ u(r1(x− ct)− u− a1ε), so that

the solution of model

∂u

∂t
= d1

∂2u

∂x2
+ (r1(x− ct)− ε)u− u2,

ù(t, x), is a lower solution of model

∂u

∂t
= d1

∂2u

∂x2
+ (r1(x− ct))u− u2 − a1v. (49)

Similarly, we can prove that the solution of model

∂u

∂t
= d1

∂2u

∂x2
+ r1(x− ct)u− u2,

ú(t, x), is an upper solution of system (49) with the same initial data.

Since ε can be arbitrarily small, the upper solution and the lower solution of

(49) have similar results as Theorem 2.2 in Li et al. (2015).

The proof is complete.

Similarly, we have a theorem corresponding to Theorem III.2 when c∗1(∞) < c

and c∗2(−∞) > c. Then the species u will eventually become extinct and the species v
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will dominate the whole spatial domain and move to the left at the asymptotic speed

c∗2(−∞). We omit this theorem here.

In the next theorem, we describe the scenario where for both u, v’s natural

spreading speed are sufficient for them to keep pace with their respective suitable

habitat boundaries.

Theorem III.3 Assume that Hypothesis III.1 is satisfied and c satisfies that c > 0,

c∗1(∞) > c and c∗2(−∞) > c. Let (u(t, x), v(t, x)) be the solution of the system (46)

with initial values 0 ≤ u(0, x) ≤ r1(∞) and 0 ≤ v(0, x) ≤ r2(−∞). Then we have the

following statements:

(a) For any ε > 0, let u(0, x) be zero for sufficiently negative x and v(0, x) be zero

for sufficiently large x, then

lim
t→+∞

[ sup
x≤t(c−ε)

u(t, x)] = 0,

lim
t→+∞

[ sup
x≥−t(c−ε)

v(t, x)] = 0.

(b) For any positive ε, let u(0, x) be zero for all sufficiently large x and v(0, x) be

zero for all sufficiently negative x. Then

lim
t→+∞

[ sup
x≥t(c∗1(∞)+ε)

u(t, x)] = 0,

lim
t→+∞

[ sup
x≤−t(c∗2(−∞)+ε)

v(t, x)] = 0.

(c) If u(0, x) > 0 on a closed interval, and u(0, x) is zero for all sufficiently large

x, and if v(0, x) > 0 on a closed interval, and v(0, x) is zero for all sufficiently

negative x, then for every ε with 0 < ε < min{ (c∗1(∞)−c)
2

,
(c∗2(−∞)−c)

2
}

lim
t→+∞

[ sup
t(c+ε)≤x≤t(c∗(∞)−ε)

|r1(∞)− u(t, x)|] = 0,

lim
t→+∞

[ sup
−t(c∗2(∞)−ε)≤x≤−t(c+ε)

|r2(−∞)− u(t, x)|] = 0.

Remark III.3 The theorem has the following interpretations.
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(i) The statement (a) shows that species u and v will both become extinct outside

of their respective suitable habitats.

(ii) The statement (b) shows that the species u will only spread rightward into its

suitable habitat at its asymptotic spreading speed c∗1(∞); similarly the species

v will only spread leftward into its suitable habitat at its asymptotic spreading

speed c∗2(−∞).

(iii) The statement (c) shows that for the region of space between the suitable habitat

boundary for u and the leading edge of the advancing population for u, (c t <

x < c∗2(∞) t), the density of the species will approach the maximum carrying

capacity for u, r1(∞). Similarly for the region of space between the suitable

habitat boundary for v and the leading edge of the advancing population for v,

(−c∗2(−∞) t < x < −c t), the density of the species will approach the maximum

carrying capacity for v, r2(−∞).

Proof. Since the solution of the model (49), (u̇(t, x), v̇(t, x)), is the ordered

upper solution of system (46), we have that

u(t, x) ≤ u̇(t, x) and v(t, x) ≤ v̇(t, x).

Since (u̇(t, x), v̇(t, x)) satisfies the Theorem 2.2 in Li et al. (2015), we have that for

every ε > 0, if u̇(0, x) is zero for sufficiently negative x, v̇(0, x) is zero for sufficiently

large x,

lim
t→+∞

[ sup
x≤t(c−ε)

u̇(t, x)] = 0,

lim
t→+∞

[ sup
x≥−t(c−ε)

v̇(t, x)] = 0.

When u̇(0, x) is zero for all sufficiently large x, v̇(0, x) is zero for all sufficiently

negative x,

lim
t→+∞

[ sup
x≥t(c∗1(∞)+ε)

u̇(t, x)] = 0,

lim
t→+∞

[ sup
x≤−t(c∗2(−∞)+ε)

v̇(t, x)] = 0.

Therefore, we have the statement (a) and (b).
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We now consider the statement (c). From Lemma III.1, for any positive ε,

there exists T > 0 and M > 0, such that

u(t, x) < ε for t > T and x ≤ −M + ct,

v(t, x) < ε for t > T and x ≥M − ct.

That means when t ≥ T , v(t, x) can be extremely small when x ≥M − ct. Similar to

the proof of statement (iii) of Theorem 2.2 in Li et al. (2015), we have that for the

model
∂u

∂t
= d1

∂2u

∂x2
+ (r1(x− ct)− ε1)u− u2,

when u(0, x) is zero for all sufficiently large x, then for every ε with 0 < ε <
(c∗1(∞)−c)

2
,

lim
t→+∞

[ sup
t(c+ε)≤x≤t(c∗(∞)−ε)

|r(∞)− ε1 − u(t, x)|] = 0.

Since ε1 can be arbitrarily small, when ε1 converges to zero, we have that

lim
t→+∞

[ sup
t(c+ε)≤x≤t(c∗(∞)−ε)

|r1(∞)− u(t, x)|] = 0.

Similarly, we can prove that if v(0, x) > 0 on a closed interval, and v(0, x) is

zero for all sufficiently negative x, then for every ε with 0 < ε ≤ (c∗2(−∞)−c)
2

,

lim
t→+∞

[ sup
−t(c∗2(∞)−ε)≤x≤−t(c+ε)

|r2(∞)− u(t, x)|] = 0.

The proof is complete.

5 Discussion for Lotka-Volterra Competition Model Chapter

In this chapter, we analyzed the simplest Lotka-Volterra competition model

by assuming the respective suitable habitats of species, represented by u and v, are

drifting away from the established population. We illustrated that

• When the drift speed of the habitats for competing species exceeds the respective

species’ spreading speeds, both of them will become extinct.

• When one species’ population expansion rate exceeds the habitat drift rate, this

species will persist and spread in its suitable habitat.
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• When the drift speed for the habitats of both species is slower than their re-

spective maximum population expansion rate, each of the species will survive

and spread into their respective habitats.

This extends beyond the reaction-diffusion models in Chapter II to the multi-

species systems and shows the impact of contracting habitat edges on the persistence

and spread of both competing species.

The discussions in this chapter are only the rudimentary work for multi-species

models. There are still various questions to be considered in future work. For example,

our results in this chapter can be extended to analyze two populations with similar

logistic dynamics that also interact with each other via a more general Lotka-Volterra

competition model. We are interested in those species’ persistence and spread in the

presence of climate-driven habitat shift. The model is given by
du
dt

= d1
∂2u
∂x2

+ u(r1(x− c1t)− u− a1v)

dv
dt

= d2
∂2u
∂x2

+ v(r2(x− c2t)− v − a2u).
(50)

Here u = u(t, x), and v = v(t, x) are densities of two competing populations. In

this model, r1(x− c1t) describes the intrinsic growth rates for the species u, which is

assumed to be a bounded piecewise continuously differentiable function. The spatial

domain can be divided into two parts for species u. If r1(x− c1t) < 0, then the region

is not suitable for the species u’s growth and when r1(x − c1t) > 0, then the region

is suitable for u to persist there. Similarly, r2(x− c2t) describes the intrinsic growth

rates for the species v, which is assumed to be a bounded piecewise continuously

differentiable function. The spatial domain is divided into the region which is not

suitable for species v’s growth when r2(x− c2t) < 0 and the region which is suitable

for the species v growth when r2(x− c2t) > 0. The signs of c1 and c2 determine the

direction of shift for the suitable habitat edge for each species. By varying the values

of c1, c2, and definitions of the function r1(x) and r2(x) in model (50), we may model

various scenarios of habitat shift. We will pick some more complicated scenarios and

provide their numerical simulations in the next section (Figure 5 to Figure 10 ).
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6 Simulations for two species model

We present some numerical simulations to model (46) with intrinsic growth

functions:

r1(x) =

 r+
1 if x < 0

r−1 otherwise,

r2(x) =

 r+
2 if x < 0

r−2 otherwise,

where r+
1 , r

−
1 , r

+
2 and r−2 can be any positive or negative numbers and the initial data

u(0, x) =

 sin(x− 50) if 50 < x < 50 + π

0 otherwise,

v(0, x) =

 sin(x+ 50 + π) if −50− π < x < −50

0 otherwise.

The species u was initially introduced on the interval [50, 50 + π] and the species v

was initially introduced on the interval [−50− π,−50]. Assume that d1, d2, a1 and a2

are positive parameters and habitat shifting speed c can be positive or negative.

In the discussion of the simulations for model (46), we assume that r+
1 >

0 > r−1 and r+
2 < 0 < r−2 , so that the maximum spreading speed for species u

is c∗1(∞) = 2
√
d1r

+
1 and the maximum spreading speed for species v is c∗2(−∞) =

2
√
d2r
−
2 . r1(x− c t) moves to the right at a speed c > 0 and r2(x+ c t) moves to the

left at a speed c > 0. Numerical simulations were conducted using MATLAB. In the

color map, red corresponds to species v, while blue corresponds to u. For each species,

dark color represents higher population density region, while light color represent low

population density region.

Figure 2 corresponds with Theorem III.1, which states that both species be-

come extinct if their maximum spreading speeds are exceeded by the climate change

speed c. The Figure 2 shows the front view (Figure 2a) and vertical view (Figure 2b)

of the numerical solution of model (46), assuming that r+
1 = 4, r−2 = 1, r−1 = r+

2 =

−0.1, d1 = 0.5, d2 = 1, a1 = 1, a2 = 2, so that c∗1(∞) = 2
√

2 = 2.828..., c∗2(∞) = 2.
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We also assume that r1(x) moves toward the right with speed c = 3 and r2(x) moves

toward the left with speed c = 3. So c > c∗1(∞) and c > c∗2(−∞). From Figure 2, we

can see that both species eventually become extinct from the spatial domain. We see

species u persists longer than species v, which is consistent with its spreading speed

2.828 being closer to the climate change speed c = 3.

(a) Front View (b) Vertical View

Figure 2: Numerical Solution for Model (46) when r+
1 = 4, r−2 = 1, r−1 = r+

2 =
−0.1, d1 = 0.5, d2 = 1, a1 = 1, a2 = 2, and c = 3

Figure 3 corresponds with Theorem III.2, which states that if u’s maximum

spreading speed exceeds c while v’s maximum spread speed is less than c, then u will

persist spreading at c∗1(∞) and v will face extinction. Figure 3 shows the front view

(Figure 3a) and vertical view (Figure 3b) of the numerical solution of model (46),

assuming that r+
1 = 4, r−2 = 1, r−1 = r+

2 = −0.1, d1 = 1.5, d2 = 1, a1 = 1, a2 = 2, so

that c∗1(∞) = 2 ∗
√

4 ∗ 1.5 = 4.898... , c∗2(∞) = 2. We also assume that r1(x − c t)

moves toward the right with speed c = 2.2 and r2(x+ c t) moves toward the left with

speed c = 2.2. So c∗1(∞) > c > c∗2(−∞). From Figure 3, we can see that the species v

eventually becomes extinct. The species u moves to the right at an asymptotic speed

c∗1(∞). The rear of the wave shifts to the right at speed c.

Figure 4, which corresponds with Theorem III.3, shows the front view (Figure

4a) and vertical view (Figure 4b) of the numerical solution of model (46), assuming

that r+
1 = 4, r−2 = 2, r−1 = r+

2 = −0.1, d1 = 1, d2 = 1, a1 = 1, a2 = 2, so that
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(a) Front View (b) Vertical View

Figure 3: Numerical Solution for Model (46) when r+
1 = 4, r−2 = 1, r−1 = r+

2 =
−0.1, d1 = 1.5, d2 = 1, a1 = 1, a2 = 2, and c = 2.2

c∗1(∞) = 4, c∗2(∞) = 2
√

2 = 2.828... We also assume that both r1(x − c t) moves

toward the right with speed c = 1.7 and r2(x+ c t) moves toward the left with speed

c = 1.7. So c∗1(∞) > c∗2(−∞) > c. From Figure 4, we can see that species u moves to

the right at an asymptotic speed c∗1(∞). Species v moves to the left at an asymptotic

speed c∗2(−∞). The left wavefront of species u moves to the right at speed c, similarly

the right of the species v wavefront moves to the left at speed c.

(a) Front View (b) Vertical View

Figure 4: Numerical Solution for Model (46) when r+
1 = 4, r−2 = 2, r−1 = r+

2 =
−0.1, d1 = 1, d2 = 1, a1 = 1, a2 = 2, and c = 1.7

The competition model can be a difficult model to extract analytic results

from, especially if exploring the persistence and spreading dynamics of both com-
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peting species along shifting habitats. Their spreading behavior will be affected by

the resource distribution, habitat shifting speed, and competition coefficients of both

species. In this chapter, we only analyzed the simplest situations, while there are

many more interesting and complicated questions we were not able to include. We

choose several of these more complicated scenarios and provide their numerical sim-

ulations here.

In these simulations, we model the following scenarios: To show the impor-

tance of competition coefficients, in Figures 5 and 6 we assume for both species the

high quality habitat lies to the right, and the left most habitat is not suitable for

survival. Further we assume both habitats drift rightward away from the established

population, so that their suitable habitats are contracting. For purposes of contrast,

we keep other parameters the same but vary the competition coefficients in Figures

5 and 6.

To show the importance of habitats shift directions, in Figures 7 and 8 we

assume for both species the high quality habitat lies to the right, and the left most

habitat is not suitable for survival. Further we assume both habitats drift leftward

towards the established populations, so that their suitable habitats are expanding.

For purposes of contrast with Figures 5 and 6, we keep other parameters the same

but vary the habitat drift direction for both species in Figures 7 and 8.

To show the importance of resource distribution for both species, in Figures 9

and 10 we assume for both species the high quality habitat lies to the right, and the

left most habitat is also suitable for survival but of lower quality. Further we assume

both habitats drift rightward away from the established populations. For purposes

of contrast with Figures 5 and 6, we keep other parameters the same but vary the

resource distribution for both species in Figures 9 and 10.

Figure 5 shows the front view (Figure 5a) and vertical view (Figure 5b) of

the numerical solution of model (50), assuming that r+
1 = 1, r+

2 = 2, r−1 = r−2 =

−0.1, d1 = 1.5, d2 = 2, a1 = 0.1, a2 = 1, so that c∗1(∞) = 2
√

1.5 = 2.449..., c∗2(∞) = 4.

We also assume that both r1(x) and r2(x) move toward the right with speed c = 2.

So c∗2(∞) > c∗1(∞) > c. From Figure 5, we can see the coexistence of species u
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(a) Front View (b) Vertical View

Figure 5: Numerical Solution for Model (50) when r+
1 = 1, r+

2 = 2, r−1 = r−2 =
−0.1, d1 = 1.5, d2 = 2, a1 = 0.1, a2 = 1, and c = 2

and species v near the ∞ of the spatial domain. Species v moves to the right at an

asymptotic speed c∗2(∞). The left wavefront of species u and v move to the right at

speed c.

(a) Front View (b) Vertical View

Figure 6: Numerical Solution for Model (50) when r+
1 = 1, r+

2 = 2, r−1 = r−2 =
−0.1, d1 = 1.5, d2 = 2, a1 = 1, a2 = 1, and c = 2

Figure 6 shows the front view (Figure 6a) and vertical view (Figure 6b) of

the numerical solution of model (50), assuming that r+
1 = 1, r+

2 = 2, r−1 = r−2 =

−0.1, d1 = 1.5, d2 = 2, a1 = 1, a2 = 1, so that c∗1(∞) = 2
√

1.5 = 2.449..., c∗2(∞) = 4.

We also assume that both r1(x) and r2(x) move toward the right with speed c = 2.

So c∗2(∞) > c∗1(∞) > c. From Figure 6, we can see that species u becomes extinct
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and species v moves to the right at an asymptotic speed c∗2(∞). The left wavefront

of species v moves to the right at speed c.

(a) Front View (b) Vertical View

Figure 7: Numerical Solution for Model (50) when r+
1 = 1, r+

2 = 2, r−1 = r−2 =
−0.1, d1 = 1.5, d2 = 2, a1 = 0.1, a2 = 1, and c = −2

Figure 7 shows the front view (Figure 7a) and vertical view (Figure 7b) of the

numerical solution of model (50), assuming that r+
1 = 1, r+

2 = 2, r−1 = r−2 = −0.1, d1 =

1.5, d2 = 2, a1 = 0.1, a2 = 1, so that c∗1(∞) = 2 ∗
√

1.5 = 2.449..., c∗2(∞) = 4. We also

assume that both r1 and r2 move toward the left with speed c = 2. So c < c∗1(∞)

and c < c∗2(−∞). From Figure 7, we can see that species u and species v coexist

everywhere in the spatial domain.

Figure 8 shows the front view (Figure 8a) and vertical view (Figure 8b) of

the numerical solution of model (50), assuming that r+
1 = 1, r+

2 = 2, r−1 = r−2 =

−0.1, d1 = 1.5, d2 = 2, a1 = 1, a2 = 1, so that c∗1(∞) = 2 ∗
√

1.5 = 2.449..., c∗2(∞) = 4.

We also assume that both r1(x) and r2(x) move toward the left with speed c = 2.

So c < c∗1(∞) and c < c∗2(−∞). From Figure 8, we can see that species u becomes

extinct. Species v moves to the right at an asymptotic speed c∗2(∞) and moves to the

left at speed c.

Figure 9 shows the front view (Figure 9a) and vertical view (Figure 9b) of

the numerical solution of model (50), assuming that r+
1 = 1, r+

2 = 2, r−1 = 0.8, r−2 =

0.6, d1 = 1.5, d2 = 2, a1 = 0.1, a2 = 1, so that c∗1(∞) = 2 ∗
√

1.5 = 2.449..., c∗2(∞) =

4, c∗1(−∞) = 2 ∗
√

0.8 = 1.789..., c∗2(−∞) = 2 ∗
√

1.2 = 2.191.... We also assume that
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(a) Front View (b) Vertical View

Figure 8: Numerical Solution for Model (50) when r+
1 = 1, r+

2 = 2, r−1 = r−2 =
−0.1, d1 = 1.5, d2 = 2, a1 = 1, a2 = 1, and c = −2

both r1(x) and r2(x) move toward the right with speed c = 2. So c < c∗1(∞) and

c < c∗2(−∞). From Figure 9, we can see that the species u and species v coexist

and compete with each other everywhere in the spatial domain. Species v moves

faster than species u in both directions. The spreading speed of species v in the right

direction is c∗2(∞) and in the left direction is c∗2(−∞).

Figure 10 shows the front view (Figure 10a) and vertical view (Figure 10b) of

the numerical solution of model (50), assuming that r+
1 = 1, r+

2 = 2, r−1 = 0.8, r−2 =

0.6, d1 = 1.5, d2 = 2, a1 = 1, a2 = 1, so that c∗1(∞) = 2 ∗
√

1.5 = 2.499.., c∗2(∞) = 4.

We also assume that both r1(x) and r2(x) move toward the right with speed c = 2.

So c < c∗1(∞) and c < c∗2(−∞). From Figure 10, we can see that species u becomes

extinct from the spatial domain. Species v moves to the right at an asymptotic speed

c∗2(∞) = 4 and to the left at speed c∗2(−∞).
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(a) Front View (b) Vertical View

Figure 9: Numerical Solution for Model (50) when r+
1 = 1, r+

2 = 2, r−1 = 0.8, r−2 =
0.6, d1 = 1.5, d2 = 2, a1 = 0.1, a2 = 1, and c = 2

(a) Front View (b) Vertical View

Figure 10: Numerical Solution for Model (50) when r+
1 = 1, r+

2 = 2, r−1 = 0.8, r−2 =
0.6, d1 = 1.5, d2 = 2, a1 = 1, a2 = 1, and c = 2
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CHAPTER IV

LATTICE DIFFERENTIAL MODEL ANALYSIS

1 Linear Lattice Differential Equations and Modified Bessel Functions

In this chapter we are concerned about the spread and persistence of some

species described by lattice differential equations. Lattice differential equations are

infinite systems of ordinary differential equations indexed by points on a spatial lat-

tice. Such systems have emerged in many applications, for example, in physics(Scott

2003), chemistry(Laplante and Erneux 1992), biology(Bell 1981, Winslow et al. 1993,

Aronson and Huang 1994) and material sciences(Cahn 1960, and Cook et al., 1969).

They are also found to be useful in the theory of bio-macromolecules, for example,

they have been successfully applied to describe the processes of the transformations

and binding in gene regulation and signal transduction (Zhang 2003, Teif 2010).

In our work, we are mostly interested in their applications in mathematical

population models, where the lattice can be regarded as patchy environments for some

species. We will use the lattice differential equations to characterize some biological

phenomena, like spread and persistence for some species. We like to mention that

there has been a large volume of work devoted to the study of existence of traveling

wave solutions to the lattice differential equations with various growth functions and

functionals (Chen and Guo 2002, Cahn 1998, Carr 2004, Chi et al. 1986, Chow et

al. 1998, Fang et al. 2010, Iooss 2000, Keener 1987, Ma and Zou 2005, Mallet-Paret

1999, Wu and Zou 1997, Zhang and Guo 2014, Zinner 1992, Zinner et al. 1992),

however to the systems under our interest, the existence of traveling wave solutions

remains to be discussed due to the inhomogeneity of the nonlinear terms.
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We begin with the linear lattice differential equations:
∂u
∂t

(t, x) = D[u(t, x+ 1)− 2u(t, x) + u(t, x− 1)], x ∈ H, t > 0,

u(0, x) = u0(x),
(51)

where the initial data u0 is assumed to be in L∞(H). Here H is the habitat which

can be the discrete integer space Z or the continuous space R. In this model, u(t, x)

represents the population density of the species at point x time t. The coefficient

D represents the diffusivity whose counterpart can be found in the classical heat

equations ∂u
∂t

= D ∂2u
∂x2

. The system of (51) can be viewed as approximation of the heat

equation by discretization in the spatial direction.

To proceed, we introduce some notations. Let ∆1 and ∆−1 be the shifting

operators as (∆1u)(x) = u(x+1) and (∆−1u)(x) = u(x−1) for any u ∈ L∞(H), and I

be the identity operator in L∞(H). It is trivial to notice that ∆1 ·∆−1 = ∆−1 ·∆1 = I.

The operator ∆1−2I+∆−1 is the discretized Laplace operator. With these notations,

the linear lattice differential equations (51) can be written as an abstract ODE system

in L∞(H),
∂u

∂t
= D(∆1 − 2I + ∆−1)u.

Following the work in Hu and Li (2015) concerning the fundamental solution theory

to the linear lattice differential model (51), the solution u(t, x) can be given by

u(t, x) = [eD(∆1−2I+∆−1)tu0](x)

= e−2Dt
∑
m∈Z

Im(2Dt)u0(x−m),

where Im,m ≥ 0 are defined as

Im(t) =
+∞∑
k=0

(t/2)m+2k

k!(m+ k)!
, (52)

and Im(t) = I−m(t) for m < 0. The sequence {Im(t)}m≥0 turns out to be the classical

first kind modified Bessel function of order m. As far as we know, Hu and Li are the

first to make the connection between the modified Bessel functions and fundamental

solutions to lattice differential equations.

As u(t, x) ≡ constant is a solution of model (51), it is easy to prove that

1 = e−2Dt[I0(2Dt) + 2I1(2Dt) + 2I2(2Dt) + 2I3(2Dt) + · · ·].
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Here we borrow some important estimates on Im(t) obtained in Hu and Li (2015) for

our analysis. The first one is Lemma 2.1 in Hu and Li (2015).

Lemma IV.1 For m ≤ 2Dt,

e−2DtIm(2Dt) ≤ C√
2π

e−α1
m2

2Dt

((2Dt)2 +m2)1/4
, (53)

e−2DtI
′

m(2Dt) ≤ C√
2π

((2Dt)2 +m2)1/4

2Dt
e−α1

m2

2Dt ,

For m ≥ 2Dt,

e−2DtIm(2Dt) ≤ C√
2π

e−α2m

((2Dt)2 +m2)1/4
, (54)

e−2DtI
′

m(2Dt) ≤ C√
2π

((2Dt)2 +m2)1/4

2Dt
e−α2m,

where α1 = ln(
√

2 + 1)− 1
2

and α2 = ln(
√

2 + 1) + 1−
√

2. C is an absolute constant

which may vary at each occurrence.

We comment that the estimate (53) shows that the kernel e−2DtIm(2Dt) be-

haves like the Gaussian kernel when m is small and the estimate (54) shows that

the kernel e−2DtIm(2Dt) behaves like the exponentially decaying when m is large as

the time t is fixed. We have the following corollary for the tail estimates on u(t, x)

(Corollary 2.2 in Hu and Li (2015)).

Corollary IV.1 For any positive ε ∈ (0, 1), there exists an M > 1 depending only

on ε, such that,

∑
|m|≥max{M,2Dt}

e−2DtIm(2Dt) ≤ ε

2
,

and

∑
|m|≥max{M,

√
2DMt}

e−2DtIm(2Dt) ≤ ε.
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By taking the resource limitations into consideration, we propose to study the

simplest nonlinear lattice differential equation model:

∂u

∂t
= D[u(t, x+ 1)− 2u(t, x) + u(t, x− 1)] + u(r − u), x ∈ H, t > 0. (55)

The constant r represents the capacity of the environment. This model was also

applied to nerve systems (Bell 1981). The spreading speed of the traveling wave

solutions connecting 0 and r of model (55) is obtained as c∗ = infµ>0
4D sinh2(µ/2)+r

µ

(Fang 2010, Liang 2007 and Weng 2003). The equation (55) is also an extension

of the famous Fisher-KPP equation for spatial population ecology in discrete space.

Additionally, with different growth functions and functionals, various extensions of

(55) have been proposed and investigated extensively in recent years (Chen 2002,

Cahn 1998, Carr 2004, Chi 1986). We conclude this section with the nonhomogeneous

system defined as follows
∂u
∂t

(t, x) = D[u(t, x+ 1)− 2u(t, x) + u(t, x− 1)] + f(t, x), x ∈ H, t > 0,

u(0, x) = u0(x),
(56)

where the initial data u0 is assumed to be in L∞(H) and f ∈ L∞(R+,H). With aid

of fundamental solutions of the linear lattice differential equation (51), the solution

of model (56) u(t, x) can be written as follows

u(t, x) =
+∞∑

m=−∞
e−2DtIm(2Dt)u0(x−m)

+
∫ t

0

+∞∑
m=−∞

e−2D(t−τ)Im(2D(t− τ))f(τ, x−m)dτ. (57)

2 Well-posedness of Lattice-Differential Model with Shifting Habitat

In this section we are concerned about the growth and spread of a species

described by the lattice differential equations with shifting habitat as follows:

∂u

∂t
(t, x) = D[u(t, x+1)−2u(t, x)+u(t, x−1)]+r(x−ct)u(t, x)−u2(t, x), x ∈ H, t > 0.

(58)

Here u(t, x) is the density function for the population at point x and time t, D > 0

is a constant diffusion coefficient, r(x) represents the population growth rate, −u2
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describes the death rate due to the resource limitation, and H is the habitat which

can be the discrete integer space Z or the continuous space R.

We assume that r(x) is continuous and nondecreasing and bounded from below

by r(−∞) and above by r(∞) > 0. The monotonicity of r(x) in x reflects that the

quality of habitat improves to the right along the x−axis. The assumption r(x) ≤

r(∞) indicates that the population growth rate is limited by the maximum carrying

capacity of the environment. We use the function r(x− ct) to represent the habitat

shifting with climate change, where c is a real number. When c is positive, the

function r(x − ct) implies that the resource distribution propagates rightward at

speed c, so that the habitat with better quality contracts. When c is negative, this

function implies that the resource distribution propagates leftward at speed |c|, so

that the habitat with better quality expands. The persistence and spread of species

in a discrete space with shifting habitat have been studied by assuming r(−∞) < 0

(Hu and Li (2015)), which means, to the left of the region of poor quality, the species

cannot grow. In this Chapter, we assume that r(−∞) > 0, then the species can grow

everywhere along the discrete spatial gradient, but with differing levels of success.

The potential domain of the species is unbounded and can be distinguishable as a

higher quality region with higher population growth rate (favorable habitat) and a

lower quality region with lower population growth rate (less favorable habitat). The

edge of the favorable habitat for species is shifting at speed c. We are interested in

the spread and persistence of the species for different c values.

We make the following hypothesis for r(x) for our mathematical analysis:

Hypothesis IV.1 r(x) is nondecreasing, bounded, and piecewise continuously dif-

ferentiable in x for −∞ < x <∞, 0 < r(−∞) < r(∞) <∞.

With regard to problem (58), we have the following definition of upper and

lower solutions.

Definition IV.1 A function ũ(t, x) with t > 0 and x ∈ R is called an upper solution

of (58) if the following inequality is satisfied:

∂ũ

∂t
≥ D[ũ(t, x+ 1)− 2ũ(t, x) + ũ(t, x− 1)] + ũr(x− ct)− ũ2, x ∈ H, t > 0. (59)
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Similarly, û(t, x) is called a lower solution if the reversed inequality in (59) is satisfied.

The functions ũ(t, x) and û(t, x) are called ordered upper and lower solutions

if ũ(t, x) ≥ û(t, x) for all t > 0 and −∞ < x < ∞. From the definition, it is clear

that ũ(t, x) = r(∞) is an upper solution and û(t, x) = 0 is a lower solution of model

(58). To study the existence of a solution to (58), we need some conditions on the

population growth function. A basic assumption on f(u, t, x) = ur(x− ct)−u2 is the

following one-sided Lipschitz condition:

f(u1, t, x)− f(u2, t, x) = u1r(x− ct)− u2
1 − (u2r(x− ct)− u2

2)

= (u1 − u2)(r(x− ct)− u1 − u2)

≥ −ρ(u1 − u2),

for 0 ≤ u2 ≤ u1 ≤ r(∞) and ρ is a constant. It is easy to prove that ur(x− ct)− u2

is Lipschitz continuous with ρ > 3r(∞), then the function

F(u, t, x) ≡ u(ρ+ r(x− ct)− u)

is nondecreasing in u for 0 ≤ u ≤ r(∞). By adding a dominant linear term ρu(t, x)

to both sides of model (58), we obtain the equivalent equation of (58):

∂u

∂t
+ ρu = D[u(t, x+ 1)− 2u(t, x) + u(t, x− 1)] + ρu+ ur(x− ct)− u2. (60)

Obviously, u ≡ 0 is a trivial solution and u ≡ r(∞) is an upper solution of (60). From

Hu and Li (2015), the solution of (60) with u(0, x) = u0(x), where u0(x) is continuous

in x and 0 ≤ u0(x) ≤ r(∞), can be expressed as the fixed point of the nonlinear

integral equation as follows,

u(t, x) = (T [u])(t, x)

=
+∞∑

m=−∞
e−(ρ+2D)tIm(2Dt)u0(x+m)

+
∫ t

0

+∞∑
m=−∞

e−(ρ+2D)(t−τ)Im(2D(t− τ))

·u(τ, x+m)[ρ+ r(x+m− cτ)− u(τ, x+m)]dτ, (61)

with ρ > 3r(∞).
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Consider the sequence u(n)(t, x) generated by:

u(n+1)(t, x) = (T [u(n)])(t, x), (62)

where u(0)(t, x) = 0 or u(0)(t, x) = r(∞). Theorem 3.1 in (Hu and Li, 2015) claims that

the sequence u(n)(t, x) is nondecreasing in n if u(0)(t, x) = r(−∞) and nonincreasing

in n if u(0)(t, x) = r(∞). In both cases u(t, x) = limn→∞ u
(n)(t, x) is the unique

solution of model (60) with u(0, x) = u0(x), and 0 ≤ u(t, x) ≤ r(∞).

Let

Lα := {u : 0 ≤ u(x) ≤ α for x ∈ H} ⊆ L∞(H).

We present below the comparison principle corresponding to the lattice differential

equation (ref. Corollary 3.1 in Hu and Li (2015)), which will be the principal tool in

subsequent discussions.

Lemma IV.2 (Comparison Principle) Let u, v ∈ C(R+,Lr(∞)), such that u(t, x) ≥

(T (u))(t, x) and v(t, x) ≤ (T (u))(t, x) for all (t, x) ∈ R+ × H and u(0, x) ≥ v(0, x)

for all x ∈ H. Then u(t, x) ≥ v(t, x) for all (t, x) ∈ R+ × H.

To consider the spreading speed of the lattice differential equation, we intro-

duce some notations. Define

φ(x;µ) =
4D sinh2(µ/2) + r(x)

µ
,

and

ψ(µ) = D(eµ − e−µ). (63)

Then following Hu and Li (2015), we define the spreading speed

c∗(x) = inf
µ>0

φ(x;µ),

which is the unique minimum point of φ(x;µ). Let µ = µ∗(x) be the unique point

where the minimum of φ(x;µ) occurs, then

c∗(x) = φ(x;µ∗(x)),

and by direct calculation, µ = µ∗(x) is increasing in x.
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Observe that ψ(µ) is a strictly increasing function for µ > 0 and φ(x;µ) is

strictly decreasing for 0 ≤ µ ≤ µ∗(x) at each number x. We have that φ(x;µ) > ψ(µ)

for 0 < µ < µ∗(x). Furthermore, φ(x;µ) intersects with ψ(µ) at the point where the

infimum of φ(x;µ) is attained, i.e.,

c∗(x) = φ(x;µ∗(x)) = ψ(µ∗(x)).

It is easy to prove that when r(∞) > r(−∞) > 0, c∗(∞) > c∗(−∞). We will

demonstrate that under appropriate conditions, the rightward spreading speed is

given by c∗(∞) or c∗(−∞), and the leftward spreading speed is given by c∗(∞),

c∗(−∞) or |c|.

3 Upper Solutions

In this section we discuss the upper solutions for model (58). When c = 0, we

provide a lemma for the equation,

∂u

∂t
= D[u(t, x+ 1)− 2u(t, x) + u(t, x− 1)] + r(x)u− u2, x ∈ H, t > 0,

which is essentially Lemma 4.1 in Hu and Li (2015).

Lemma IV.3 Let ū(t, x) be the solution of model (64) with ū(0, x) = r(∞). Then

ū(t, x) is non-increasing in t and nondecreasing in x, ū(t,−∞) = r(−∞), and

ū(t,∞) = r(∞) for t > 0.

The proof of this lemma is similar to the one of Lemma 4.1 in Hu and Li (2015),

so we omit the details.

Lemma IV.4 Let u(t, x) be the solution of model (58) with u(0, x) = u0(x), where

0 ≤ u0(x) ≤ r(∞). For any ε > 0, there exists sufficiently large T > 0 and M > 0,

such that, when t > T and x ≤ −M + ct,

u(t, x) ≤ r(−∞) + ε.

Proof. We first consider the case of c ≥ 0. For any ε > 0, we take

ε0 = (
√

(4 + r(−∞))2 + 4ε− 4− r(−∞))/2 > 0.
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Let w(t, x) = u(t, x) − r(−∞) − ε0. Since u(t, x) is the solution of model (58) with

u(0, x) = u0(x), w(t, x) satisfies the following equation:

∂w

∂t
= D[u(t, x+ 1)− 2u(t, x) + u(t, x− 1)]

+(w + r(−∞) + ε0)(r(x− ct)− w − r(−∞)− ε0), (64)

which is equivalent to:

∂w

∂t
+ ρw = D[u(t, x+ 1)− 2u(t, x) + u(t, x− 1)]

+ρw + (w + r(−∞) + ε0)(r(x− ct)− w − r(−∞)− ε0)

= D[u(t, x+ 1)− 2u(t, x) + u(t, x− 1)]

+(w + r(−∞) + ε0)(ρ+ r(x− ct)− w − r(−∞)− ε0)− ρ(r(−∞) + ε),

(65)

with ρ > 3r(∞). From formula (61), the solution of the equation (65), w(t, x), with

initial value w(0, x) = u(0, x)− r(−∞)− ε0 satisfies the integral equation

w(t, x) =
+∞∑

m=−∞
e−(ρ+2D)tIm(2Dt)w(0, x+m)

+
∫ t

0

+∞∑
m=−∞

e−(ρ+2D)τIm(2Dτ) · [(w(t− τ, x+m) + r(−∞) + ε0) ·

(ρ+ r(x− ct+ cτ − y)− w(t− τ, x+m)− r(−∞)− ε0)

−ρ(r(−∞) + ε0)]dτ.

Since 0 ≤ u(t, x) ≤ r(∞), it is easy to see that the following expression is

bounded:

|(w(t− τ, x+m) + r(−∞) + ε0) ·

(ρ+ r(x− ct+ cτ − y)− w(t− τ, x+m)− r(−∞)− ε0)− ρ(r(−∞) + ε0)|

≤ r(∞)(ρ+ 2r(∞)) + ρ(r(−∞) + ε0).

Therefore,

∫ ∞
0

+∞∑
−∞

e−(ρ+2D)τIm(2Dτ)[(w(t− τ, x+m) + r(−∞) + ε0)
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(ρ+ r(x− ct+ cτ − y)− w(t− τ, x+m)− r(−∞)− ε0)− ρ(r(−∞) + ε0)]dτ

≤
∫ ∞

0

+∞∑
−∞

e−(ρ+2D)τIm(2Dτ)[r(∞)(ρ+ 2r(∞)) + ρ(r(−∞) + ε0)]dydτ

≤
∫ ∞

0
e−ρτdτ [r(∞)(ρ+ 2r(∞)) + ρ(r(−∞) + ε0)]

≤ r(∞)(ρ+ 2r(∞)) + ρ(r(−∞) + ε0)

ρ
.

It follows that, for the given ε0 > 0, there exists η > 0 and A > η, such that∫ η

0

+∞∑
−∞

e−(ρ+2D)τIm(2Dτ)[(w(t− τ, x+m) + r(−∞) + ε0)

(ρ+ r(x− ct+ cτ − y)− w(t− τ, x+m)− r(−∞)− ε0)− ρ(r(−∞) + ε0)]dτ < ε0

and∫ ∞
A

+∞∑
−∞

e−(ρ+2D)τIm(2Dτ)[(w(t− τ, x+m) + r(−∞) + ε0)

(ρ+ r(x− ct+ cτ − y)− w(t− τ, x+m)− r(−∞)− ε0)− ρ(r(−∞) + ε0)]dτ < ε0.

For n > 0, let∫ A

η

+∞∑
−∞

e−(ρ+2D)τIm(2Dτ)[(w(t− τ, x+m) + r(−∞) + ε0)

·(ρ+ r(x− ct+ cτ − y)− w(t− τ, x+m)− r(−∞)− ε0)− ρ(r(−∞) + ε0)]dτ

= I(n) + II(n),

where

I(n) =
∫ A

η

∑
|m|≤n−cτ

e−(ρ+2D)τIm(2Dτ)[(w(t− τ, x+m) + r(−∞) + ε0)

·(ρ+ r(x− ct+ cτ − y)− w(t− τ, x+m)− r(−∞)− ε0)− ρ(r(−∞) + ε0)]dτ,

and

II(n) =
∫ A

η

∑
|m|>n−cτ

e−(ρ+2D)τIm(2Dτ)[(w(t− τ, x+m) + r(−∞) + ε0)

·(ρ+ r(x− ct+ cτ − y)− w(t− τ, x+m)− r(−∞)− ε0)− ρ(r(−∞) + ε0)]dτ.

By assuming n > (c+ 2D)A and using Lemma IV.1, we derive that

I(n) ≤
∫ A

η
e−ρτ

∑
|m|≥n−cτ

C√
2π

e−α2m

((2Dτ)2 +m2)1/4
[(w(t− τ, x+m) + r(−∞) + ε0)

79



(ρ+ r(x− ct+ cτ − y)− w(t− τ, x+m)− r(−∞)− ε0)− ρ(r(−∞) + ε0)]dτ

≤
∫ A

η
e−ρτ

∑
|m|≥n−cτ

C√
2π

e−α2m

((2Dτ)2 +m2)1/4
[r(∞)(ρ+ 2r(∞)) + ρ(r(−∞) + ε0)]dτ

≤
∫ A

η

C√
4πDA

e−ρτ
∑

|m|≥n−cτ
e−α2m[r(∞)(ρ+ 2r(∞)) + ρ(r(−∞) + ε0)]dτ

≤
∫ A

η

C√
4πDA

e−ρτ [r(∞)(ρ+ 2r(∞)) + ρ(r(−∞) + ε0)]
∫ ∞
n−cτ

e−α1mdmdτ.

Since
∫∞
n−cτ e

−α1mdm uniformly converges to 0 when n is sufficiently large, for the

given ε0, there exists sufficiently large n0 such that

I(n0) < ε0.

Now we are going to prove that II(n0) < ε0(r(−∞) + ε). By the monotonicity

of r(x), there is sufficiently large M1 > 0, such that for x < −M1 + ct,

r(x− ct+ n0) < r(−∞) + ε0.

From Lemma IV.3, ū(t, x) is nonincreasing in t and nondecreasing in x, ū(t,−∞) =

r(−∞), and ū(t,∞) = r(∞) for t > 0. It follows that, for the given ε0, there are

sufficiently large T2 > 0 and M2 > 0, such that for t > A+ T2, and x < −M2,

ū(t− A, x− cA+m0) < r(−∞) + ε0.

By the definition of II(n0), its integration variables τ and y satisfy cτ − y ≤ n0. We

have that

II(n0) =
∫ A

η

∑
|m|≤n0−cτ

e−(ρ+2D)τIm(2Dτ)[(w(t− τ, x+m) + r(−∞) + ε0)

(ρ+ r(x− ct+ cτ +m)− w(t− τ, x+m)− r(−∞)− ε0)− ρ(r(−∞) + ε0)]dτ

=
∫ A

η

∑
|m|≤n0−cτ

e−(ρ+2D)τIm(2Dτ)[u(t− τ, x+m)

(ρ+ r(x− ct+ cτ +m)− u(t− τ, x+m))− ρ(r(−∞) + ε0)]dτ

≤
∫ A

η

∑
|m|≤n0−cτ

e−(ρ+2D)τIm(2Dτ)[ū(t− τ, x+m)

(ρ+ r(x− ct+ cτ +m)− ū(t− τ, x+m))− ρ(r(−∞) + ε0)]dτ

≤
∫ A

η

∑
|m|≤n0−cτ

e−(ρ+2D)τIm(2Dτ)[ū(t− A, x+ n0 − cA)
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(ρ+ r(x− ct+ n0)− r(−∞))− ρ(r(−∞) + ε0)]dτ

≤
∫ A

η

∑
|m|≤n0−cτ

e−(ρ+2D)τIm(2Dτ)[(r(−∞) + ε0)(ρ+ ε0)− ρ(r(∞) + ε0)]dτ

≤ (r(−∞) + ε0)ε0

∫ A

η
e−ρτdτ

≤ (r(−∞) + ε0)ε0.

Since |w(0, x)| = |u(0, x)− r(−∞)− ε0| < r(∞)− r(−∞)− ε0,

+∞∑
m=−∞

e−(ρ+2D)tIm(2Dt)w(0, x+m) ≤ (r(∞)− r(−∞)− ε0)e−ρt.

We have that, for the given ε0, there exists T3 > 0, such that for t > T3,

+∞∑
m=−∞

e−(ρ+2D)tIm(2Dt)w(0, x+m) ≤ ε0.

Therefore, for t ≥ T := max{T2, T3} and x ≤ −M + ct with M := max{M1,M2},

w(t, x) ≤ ε0(4 + r(−∞) + ε0) = ε,

which implies that

u(t, x) ≤ r(−∞) + ε.

In the case of c < 0, let ū(t, x) be the solution of model (64) with ū(0, x) =

r(∞). From Lemma IV.3, ū(t,−∞) = r(−∞). Then for any ε > 0, there exists

T1 > 0 and M > 0 such that for x < −M , ū(T1, x) < r(−∞) + ε. Since ū(t, x) is

nonincreasing in t, we have that

ū(t, x) < r(−∞) + ε for t ≥ T1 and x ≤ −M.

The function ǔ = ū(t, x− ct) satisfies

∂ǔ

∂t
= D[ǔ(t, x+ 1)− 2ǔ(t, x) + ǔ(t, x− 1)]− c[ǔ(t, x+ 1)− ǔ(t, x)] + ǔ(r(x− ct)− ǔ).

Since c < 0, and ū(t, x) is nondecreasing in x, we have that

∂ǔ

∂t
≥ D[ǔ(t, x+ 1)− 2ǔ(t, x) + ǔ(t, x− 1)] + ǔ(r(x− ct)− ǔ).

So ǔ(t, x) is an upper solution of model (58). Let u(0, x) ≤ r(∞), we have that

u(t, x) ≤ ǔ(t, x). It yields that

u(t, x) < r(−∞) + ε for t ≥ T1 and x ≤ −M + ct.
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The proof is complete.

We introduce the following lemma regarding two upper solutions for model

(58).

Lemma IV.5 Let u(t, x) is a solution of model (58). Then

(a) If u(0, x) is zero for all sufficiently large x, and 0 ≤ u(0, x) ≤ r(∞), then for

any small positive ε there exist positive numbers A and µε such that

u(t, x) ≤ Ae−µε(x−(c∗(∞)+ε)t).

(b) Assume c > −c∗(−∞). If u(0, x) is zero for all sufficiently negative x, and

0 ≤ u(0, x) ≤ r(∞), then for any positive ε1, there exist positive numbers B

and µ1 such that for all t > 0 and −∞ < x <∞,

u(t, x) ≤ w(t, x) = Beµ1(x+(c∗(−∞)+ε1)t).

Proof. We first prove (a). For any ε > 0, since φ(x;µ) decreases in 0 < µ <

µ∗(x), there exists µε such that φ(∞;µε) = c∗(∞)+ ε. We assume that A is a positive

number and

û(t, x) = Ae−µε(x−(c∗(∞)+ε)t).

It is easy to show that û(t, x) is a solution of

∂u

∂t
= D[u(t, x+ 1)− 2u(t, x) + u(t, x− 1)] + r(∞)u.

Since r(∞)u ≥ u(r(x− ct)− u), û(t, x) is an upper solution of model (58). Choose A

sufficiently large such that u(0, x) ≤ û(0, x) = Ae−µεx. Then

u(t, x) ≤ û(t, x) = Ae−µε(x−(c∗(∞)+ε)t).

We now prove statement (b). By the definition of c∗(x), we have that

c∗(−∞) = inf
µ>0

4D sinh2(µ/2) + r(−∞)

µ

= inf
µ>0

4D( e
µ/2−e−µ/2

2
)2 + r(−∞)

µ

= inf
µ>0

D(eµ − 2 + e−µ) + r(−∞)

µ

= lim
δ→0

inf
µ>0

D(eµ − 2 + e−µ) + r(−∞) + δ

µ
.
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Therefore, for any ε1 > 0, there exists δ > 0 and 0 < µ1 < µ∗(−∞), such that

c∗(−∞) +
ε1
2

=
2D(eµ1 − 2 + e−µ1) + r(−∞) + δ

µ1

.

It follows that

µ1(c∗(−∞) +
ε1
2

) = 2D(eµ1 − 2 + e−µ1) + r(−∞) + δ. (66)

Since r(x) is continuous and nondecreasing in −∞ < x < ∞, there exists x1 such

that if x < x1, then

r(x) ≤ r(−∞) + δ.

It follows that for any t > 0, if x < x1 + ct, then

r(x− ct) ≤ r(−∞) + δ.

Additionally, there exists B sufficiently large such that Beµ1x1 = r(∞).

Let

S[u](t, x) =
∂u

∂t
−D[u(t, x+ 1)− 2u(t, x) + u(t, x− 1)]− r(x− ct)u+ u2.

Then

S[w](t, x) =
∂w

∂t
−D[w(t, x+ 1)− 2w(t, x) + w(t, x− 1)]− r(x− ct)w + w2

= w(t, x)[µ1(c∗(−∞) + ε1)−D(eµ − 2− e−µ)− r(x− ct) + w(t, x)]

= w(t, x)[r(−∞) + ε− r(x− ct) +Beµ1(x+(c∗(−∞)+ε1)t)].

It follows that for any t > 0, when x < x1 + ct, we have that,

S[w](t, x) ≥ w(t, x)Beµ1(x+(c∗(−∞)+ε1)t) > 0,

and when x > x1 + ct, we have that,

Beµ1(x+(c∗(−∞)+ε1)t) ≥ Beµ1(x1+ct+(c∗(−∞)+ε1)t) ≥ Beµ1x1 = r(∞).

So S[w](t, x) > 0 for any t > 0 and −∞ < x <∞.

Therefore, w(t, x) is an upper solution of u(t, x), i.e.

u(t, x) ≤ Beµ1(x+(c∗(−∞)+ε1)t).

The proof is complete.

The next lemma is necessary in proving theorems in section 5.
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Lemma IV.6 Assume c and µ are constants. For any ε > 0 sufficiently small, there

exist b > 0 sufficiently large and S0 a positive number such that for any real number

x,

∫ t

0

+∞∑
m=−∞

e−(ρ+2D)τIm(2Dτ)eµmr(x−m− c(t− τ))dτ

≤ (1 + S0ε)
∫ t

0

∞∑
cτ−b

e−(ρ+2D)τIm(2Dτ)eµmr(x−m− c(t− τ))dτ, (67)

where Im(2Dτ) is defined by the formula (52).

Proof. Choose η, A and h to be any positive numbers. When µ > 0, let

∫ t

0

+∞∑
m=−∞

e−(ρ+2D)τIm(2Dτ)eµmr(x−m− c(t− τ))dτ = I(η) + I(A) + I(h) + II(h),

where

I(A) =
∫ ∞
A

+∞∑
m=−∞

e−(ρ+2D)τIm(2Dτ)eµmr(x−m− c(t− τ))dτ,

I(η) =
∫ η

0

+∞∑
m=−∞

e−(ρ+2D)τIm(2Dτ)eµmr(x−m− c(t− τ))dτ,

I(h) =
∫ A

η

cτ−h∑
−∞

e−(ρ+2D)τIm(2Dτ)eµmr(x−m− c(t− τ))dτ,

II(h) =
∫ A

η

∞∑
cτ−h

e−(ρ+2D)τIm(2Dτ)eµmr(x−m− c(t− τ))dτ.

Here we have omitted explicitly listing the x dependency of I and II. We have that

I(A) ≤
∫ ∞
A

+∞∑
m=−∞

e−(ρ+2D)τIm(2Dτ)eµmr(∞)dτ

≤ r(∞)
∫ ∞
A

e−(ρ+2D)τ [
+∞∑
m=0

Im(2Dτ)eµm +
−1∑

m=−∞
Im(2Dτ)eµm]dτ

≤ r(∞)
∫ ∞
A

e−(ρ+2D)τ [
+∞∑
m=0

Im(2Dτ)eµm +
∞∑
m=1

Im(2Dτ)e−µm]dτ

≤ r(∞)
∫ ∞
A

e−(ρ+2D)τ [
+∞∑
m=0

Im(2Deµτ) +
∞∑
m=1

Im(2Dτ)]dτ

≤ r(∞)
∫ ∞
A

e−(ρ+2D)τ [e2Deµτ + e2Dτ ]dτ

= r(∞)[
e−(ρ+2D−2Deµ)A

ρ+ 2D − 2Deµ
+
e−ρA

ρ
]
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and

I(η) ≤
∫ η

0

+∞∑
m=−∞

e−(ρ+2D)τIm(2Dτ)eµmr(∞)dτ

≤ r(∞)
∫ η

0
e−(ρ+2D)τ [

+∞∑
m=0

Im(2Deµτ) +
∞∑
m=1

Im(2Dτ)]dτ

≤ r(∞)
∫ η

0
e−(ρ+2D)τ [e2Deµτ + e2Dτ ]dτ

= r(∞)[
1− e−(ρ+2D−2Deµ)η

ρ+ 2D − 2Deµ
+

1− e−ρη

ρ
].

We assume ρ is sufficiently large such that ρ+ 2D− 2Deµ > 0, then for any positive

ε, there exist η sufficiently small and A sufficiently large, such that A(η) < ε
4

and

I(η) < ε
4
.

Assuming h > (c+ 2D)A in I(h), we have that

I(h) ≤
∫ A

η

cτ−h∑
m=−∞

e−(ρ+2D)τIm(2Dτ)eµmr(∞)dτ

≤
∫ A

η
r(∞)

∞∑
m=h−cτ

e−(ρ+2D)τIm(2Dτ)e−µmdτ

≤
∫ A

η
r(∞)

∞∑
m=h−cτ

e−(ρ+2D)τIm(2Dτ)dτ

≤
∫ A

η
r(∞)

∞∑
m=h−cτ

e−ρτ
C√
2π

e−α2m

((2Dτ)2 +m2)1/4
dτ

≤
∫ A

η
r(∞)

∞∑
m=h−cτ

e−ρτ
C√
2π

e−α2m

√
2Dτ

dτ.

Since m = h− cτ →∞ uniformly for τ ∈ [η, A] as h→∞, for the given ε > 0, there

exists sufficiently large h = b such that

I(b) <
ε

4
.

Additionally,

II(b) ≤
∫ A

η

∞∑
m=cτ−h

e−(ρ+2D)τIm(2Dτ)eµmr(∞)dτ

≤
∫ A

η

∞∑
m=−∞

e−(ρ+2D)τIm(2Dτ)eµmr(∞)dτ

≤
∫ A

η
r(∞)e−(ρ+2D)τ [

−1∑
m=−∞

Im(2Dτ)eµm +
∞∑
m=0

Im(2Dτ)eµm]dτ
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≤
∫ A

η
r(∞)e−(ρ+2D)τ [e2Deµτ + e2Dτ ]dτ

≤ r(∞)
∫ η

0
e−(ρ+2D)τ [e2Deµτ + e2Dτ ]dτ

= r(∞)[
e−(ρ+2D−2Deµ)η−e−(ρ+2D−2Deµ)A

ρ+ 2D − 2Deµ
+
e−ρη − e−ρA

ρ
].

Similarly, we can prove that

II(b) ≥
∫ A

η

∞∑
m=cτ−h

e−(ρ+2D)τIm(2Dτ)eµmr(−∞)dτ

≥
∫ A

η

∞∑
m=0

e−(ρ+2D)τIm(2Dτ)eµmr(−∞)dτ

≥
∫ A

η
r(−∞)e−(ρ+2D)τ [

∞∑
m=0

Im(2Dτ)]dτ

≥
∫ A

η

r(−∞)

2
e−(ρ+2D)τe2Dτdτ

=
r(−∞)

2ρ
(e−ρη − e−ρA).

It follows that II(b) is positive and bounded. For the given ε, there exists a positive

number S0 such that

I(A) + I(η) + I(b) < S0εII(b).

Therefore, ∫ t

0

+∞∑
m=−∞

e−(ρ+2D)τIm(2Dτ)eµmr(x−m− c(t− τ))dτ

≤ (1 + S0ε)
∫ t

0

∞∑
cτ−b

e−(ρ+2D)τIm(2Dτ)eµmr(x−m− c(t− τ))dτ.

Similarly, we can prove that when µ < 0, equation (67) is also valid. The proof

is complete.

4 Lower Solutions

Now we construct lower solutions for model (58) by extending the work in Hu

and Li (2015). We recall the functions v(µ;x) to build the lower solution of system

(58), which was used in Hu and Li (2015). The function v(µ;x) is given by

v(µ;x) =

 e−µx sin γx, if 0 ≤ x ≤ π
γ

0, elsewhere,
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with γ > 0 and η > 0. This function is continuous and second order derivative in x

except at the point x = 0 and x = π
γ
, which was initially introduced in Weinberger

(1982). The maximum of v(µ;x) occurs at σ(µ) = 1
γ

tan−1( γ
µ
). The function σ(µ) is

strictly decreasing in µ. We also need the function

v−(µ;x) = v(µ;−x),

which was used in Weinberger (1982) as well.

We extend the definition of spreading speed by assuming

c∗γ(`) = inf
µ>0

φγ(µ, `),

where

φγ(µ, `) =
D[(eµ + e−µ) cos γ − 2] + r(`)

µ
.

It is easy to prove that φγ(µ, `) < φ(µ, `) and φγ(µ, `) converge to φ(µ, `) uniformly

for µ in any bounded interval as γ > 0. It follows that c∗γ(`) < c∗(`) and c∗γ(`)→ c∗(`)

as γ → 0. Define

ψ(µ, γ) =
D sin γ

γ
(eµ − e−µ).

For the positive number α and ` satisfying c∗(`) = c∗(∞) − ε, we recall the

function defined in Hu and Li (2015) as follows:

wr(α, µ1, µ2; t, x) =



α1v(µ1;x− `− ψ(µ1)t), if `+ ψ(µ1)t ≤ x ≤ `+

σ(µ1) + ψ(µ1)t,

α, if `+ σ(µ1) + ψ(µ1)t ≤ x ≤

`+ 3π
γ

+ σ(µ2) + ψ(µ2)t,

α2v(µ2;x− `− 3π
γ
− ψ(µ2)t), if `+ 3π

γ
+ σ(µ2) + ψ(µ2)t

≤ x ≤ `+ 4π
γ

+ ψ(µ2)t,

0, elsewhere,

(68)

where α1 = α
v(µ1;σ(µ1))

, α2 = α
v(µ2;σ(µ2))

and ψ(µ) is defined by formula (63). For x in

the interval [
`+ σ(µ1) + ψ(µ1)t, `+

3π

γ
+ σ(µ2) + ψ(µ2)t

]
,
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we have wr(α, µ1, µ2; t, x) = α, with the end points shifting rightward at speeds ψ(µ1)

and ψ(µ2) as t→∞.

Similar to the reaction-diffusion system, we define

w(α, µ1, µ2; t, x) =



α1v−(µ1;x− `+ ψ(µ1)t), if `− ψ(µ1)t− π
γ
≤ x ≤ `−

σ(µ1)− ψ(µ1)t,

α, if `− σ(µ1)− ψ(µ1)t ≤ x ≤

`+ 3π
γ

+ σ(µ2) + ψ(µ2)t,

α2v(µ2;x− `− 3π
γ
− ψ(µ2)t), if `+ 3π

γ
+ σ(µ2) + ψ(µ2)t

≤ x ≤ `+ 4π
γ

+ ψ(µ2)t,

0, elsewhere,

(69)

and

wl(α, µ1, µ2; t, x) =



α1v−(µ1;x− `+ ψ(µ1)t), if `− ψ(µ1)t− π
γ
≤ x ≤ `−

σ(µ1)− ψ(µ1)t,

α, if `− σ(µ1)− ψ(µ1)t ≤ x ≤

`+ 3π
γ
− σ(µ2)− ψ(µ2)t,

α2v−(µ2;x− `− 3π
γ

+ ψ(µ2)t), if `+ 3π
γ
− σ(µ2)− ψ(µ2)t

≤ x ≤ `+ 3π
γ
− ψ(µ2)t,

0, elsewhere.

(70)

We have that w(α, µ1, µ2; t, x) = α when x in the interval[
`− σ(µ1)− ψ(µ1)t, `+

3π

γ
+ σ(µ2) + ψ(µ2)t

]
,

with left end points shifting leftward at speeds ψ(µ1) and right end point shifting

rightward at speeds ψ(µ2) as t→∞. When x in the interval[
`− σ(µ1)− ψ(µ1)t, `+

3π

γ
− σ(µ2)− ψ(µ2)t

]
,

we have wl(α, µ1, µ2; t, x) = α, with both end points shifting leftward at speeds ψ(µ1)

and ψ(µ2) as t→∞.

The following lemma was given in Hu and Li (2015) (Lemma 5.1) for −∞ <

r(−∞) < 0, but is valid for the case of 0 < r(−∞) < r(∞) as well.
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Lemma IV.7 Assume that Hypothesis IV.1 is satisfied and 0 ≤ c < c∗(∞). Assume

also u(t, x) is a solution of model (58) with 0 < u(0, x) ≤ r(∞) for all x. For any

ε satisfying 0 < ε < c∗(∞)−c
5

, there exist ` such that c∗(`) = c∗(∞) − ε, and γ > 0

such that c∗(`) − c∗γ(`) ≤ ε. Let 0 < µ1 < µ2 < µ∗(`) with ψ(µ1, γ) = c + ε and

ψ(µ2, γ) = c∗γ(`)− ε. Then for µ ∈ [µ1, µ2], and 0 < a ≤ ε/µ2, the function ω(t, x) =

av(µ;x − ` − ψ(µ, γ)t) is a continuous lower solution of model (58). Furthermore if

u(0, x) ≥ av(µ, x− `), then u(t, x) ≥ av(µ, x− `− ψ(µ)t) for all t > 0.

The proof of this lemma is similar to the proof for Lemma 5.1 in Hu and Li

(2015), so we omit the details.

Similar to Lemma IV.7, the following lemma is about lower solutions of model

(58) when c ≥ c∗(∞).

Lemma IV.8 Assume that Hypothesis IV.1 is satisfied and c ≥ c∗(∞). Assume

also u(t, x) is a solution of model (58) with 0 < u(0, x) ≤ r(∞) for all x. For

any positive ε, there exists ` such that c∗(`) = c∗(∞) − ε, and γ > 0 such that

c∗(`) − c∗γ(`) ≤ ε. Let 0 < µ1 = µ2 < µ∗(`) with ψ(µ1, γ) = ψ(µ2, γ) = c∗γ(−∞) − ε.

Then for µ ∈ [0, µ2] and 0 < a ≤ ε/µ2, the function ũ2(t, x) = av(µ;x− `− ψ(µ, γ)t)

is a continuous lower solution of model (58), in the sense that if u(0, x) ≥ av(µ, x−`),

then u(t, x) ≥ av(µ, x− `−ψ(µ)t) for all t > 0; for µ ∈ [0, µ1], and 0 < a ≤ ε/µ1, the

function ũ1(t, x) = av−(µ;x − ` + ψ(µ, γ)t) is a continuous lower solution of model

(58), in the sense that if u(0, x) ≥ av−(µ, x− `), then u(t, x) ≥ av−(µ, x− `+ψ(µ)t)

for all t > 0.

Proof. From the proof of Lemma 5.1 in Hu and Li (2015), in order to prove

that ω(t, x) = ũ2(t, x) is a lower solution of model (58), it will suffice to prove that

for t > 0, `+ ψ(µ, γ) ≤ x ≤ `+ π/γ + ψ(µ, γ)t,

∂ω

∂t
(t, x) ≤ D[ω(t, x+ 1)− 2ω(t, x) + ω(t, x− 1)] + ω(t, x)(r(x− ct)− ω(t, x)). (71)

When ω(t, x) = ũ2(t, x), we have that

∂ω

∂t
(t, x) = ae−µ(x−`−ψ(µ,γ)t)ψ(µ, γ) ·

(µ sin γ(x− `− ψ(µ, γ)t)− γ cos γ(x− `− ψ(µ, γ)t)). (72)
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Also,

D[ω(t, x+ 1)− 2ω(t, x) + ω(t, x− 1)]

≥ Dae−µ2(x−`−ψ(µ,γ)t)[(e−µ + eµ) cos γ − 2] sin γ(x− `− ψ(µ, γ)t)

−Dae−µ(x−`−ψ(µ,γ)t)γψ(µ, γ) cos γ(x− `− ψ(µ, γ)t). (73)

Equations (71), (72) and (73) show that in order to prove ω is a lower solution of

model (58), we need to verify that

µψ(µ, γ) ≤ D[(e−µ + eµ) cos γ − 2] + r(x− ct)− av(µ;x− `− ψ(µ, γ)t).

Since r(x− ct) ≥ r(−∞), it suffices to prove that

µψ(µ, γ) ≤ D[(e−µ + eµ) cos γ − 2] + r(−∞)− a.

It follows that

ψ(µ, γ) ≤ φγ(µ,−∞)− a/µ2.

Therefore, we choose µ2 to satisfy that ψ(µ2, γ) = c∗γ(−∞)− ε with 0 < a < ε/µ2, so

that when µ ∈ [0, µ2], the function ũ2(t, x) = av(µ;x − ` − ψ(µ, γ)t) is a continuous

lower solution of model (58), which means that if u(0, x) ≥ av(µ, x−`), then u(t, x) ≥

av(µ, x− `− ψ(µ)t) for all t > 0.

Similarly, to prove that ω(t, x) = ũ1(t, x) is a lower solution of model (58), it

will suffice to prove that for t > 0, `− π/γ − ψ(µ, γ) ≤ x ≤ `− ψ(µ, γ)t,

∂ω

∂t
(t, x) ≤ D[ω(t, x+ 1)− 2ω(t, x) + ω(t, x− 1)] + ω(t, x)(r(x− ct)− ω(t, x)). (74)

When ω(t, x) = ũ1(t, x), we have that

∂ω

∂t
(t, x) = aeµ(x−`+ψ(µ,γ)t)ψ(µ, γ) ·

(−µ sin γ(x− `+ ψ(µ, γ)t)− γ cos γ(x− `+ ψ(µ, γ)t)). (75)

Also,

D[ω(t, x+ 1)− 2ω(t, x) + ω(t, x− 1)]

≥ −Daeµ(x−`+ψ(µ,γ)t)[(e−µ + eµ) cos γ − 2] sin γ(x− `+ ψ(µ, γ)t)

−Daeµ(x−`+ψ(µ,γ)t)γψ(µ, γ) cos γ(x− `+ ψ(µ, γ)t). (76)
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Equations (74), (75) and (76) show that, in order to prove ω is a lower solution of

model (58), we need to verify that

µψ(µ, γ) ≤ D[(e−µ + eµ) cos γ − 2] + r(x− ct)− av(µ;x− `− ψ(µ, γ)t).

Since r(x− ct) ≥ r(−∞), it suffices to prove that

µψ(µ, γ) ≤ D[(e−µ + eµ) cos γ − 2] + r(−∞)− a.

It follows that

ψ(µ, γ) ≤ φγ(µ,−∞)− a/µ1.

Therefore, we choose µ1 satisfies that ψ(µ1, γ) = c∗γ(−∞) − ε with 0 < a < ε/µ1, so

that when µ ∈ [0, µ1], the function ũ1(t, x) = av−(µ;x− `+ ψ(µ, γ)t) is a continuous

lower solution of model (58), which means that if u(0, x) ≥ av−(µ, x − `), then

u(t, x) ≥ av−(µ, x− `+ ψ(µ)t) for all t > 0. The proof is complete.

Similarly, when c < 0, we have the following lemmas for the lower solution of

model (58).

Lemma IV.9 Assume that Hypothesis IV.1 is satisfied and c∗(−∞) > −c ≥ 0.

Assume also u(t, x) is a solution of model (58) with 0 < u(0, x) ≤ r(∞) for all x.

For any positive ε, there exists ` such that c∗(`) = c∗(∞) − ε, and γ > 0 such that

c∗(`) − c∗γ(`) ≤ ε. Let ψ(µ1) = −c − ε, ψ(µ2) = c∗γ(l) − 2ε, ψ(µ3) = c∗(−∞) − ε,

and ψ(µ4) = −c + ε. Then for µ ∈ [0, µ2], and 0 < a ≤ ε/µ2, the function ũ2(t, x) =

av(µ;x − ` − ψ(µ, γ)t) is a continuous lower solution of model (58), in the sense

that if u(0, x) ≥ av(µ, x − `), then u(t, x) ≥ av(µ, x − ` − ψ(µ)t) for all t > 0; for

µ ∈ [0, µ1] or µ ∈ [µ4, µ3], and 0 < a ≤ ε/µ3, if u(0, x) ≥ av−(µ, x − `),the function

ũ1(t, x) = av−(µ;x − ` + ψ(µ, γ)t) is a continuous lower solution of model (58), in

the sense that if u(0, x) ≥ av−(µ, x − `), then u(t, x) ≥ av−(µ, x − ` + ψ(µ)t) for all

t > 0.

The proof of this lemma is similar to the previous Lemma IV.8. When µ ∈

[0, µ1], we have that

r(x− cs)− dµ2 ≥ r(`− π

γ
− ψ(µ1)s− cs)− dµ2

1
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= r(`− π

γ
+ (c+ ε)s− cs)− dµ2

1

≥ r(`)− dµ2
1

≥ (c∗(∞)− ε)2

4d
− (c+ ε)2

4d
> 0;

and when µ ∈ [0, µ2], we have that

r(x− cs)− dµ2 ≥ r(`+ ψ(µ2)s− cs)− dµ2
2

= r(`+ (c∗(∞)− ε)s− cs)− dµ2
2

≥ r(`)− dµ2
2

≥ (c∗(∞)− ε)2

4d
− (c∗(∞)− 2ε)2

4d
> 0.

For µ ∈ [µ4, µ3], we have that r(x − cs) > r(−∞). We omit the details of the proof

here.

Lemma IV.10 Assume that Hypothesis IV.1 is satisfied and c∗(−∞) ≤ −c < c∗(∞).

Assume also u(t, x) is a solution of model (58) with 0 < u(0, x) ≤ r(∞) for all x.

For any positive ε, there exists ` such that c∗(`) = c∗(∞) − ε, and γ > 0 such that

c∗(`) − c∗γ(`) ≤ ε. Let ψ(µ1) = −c − ε, and ψ(µ2) = c∗γ(`) − ε. Then for µ ∈ [0, µ2],

and 0 < a ≤ ε/µ2, if u(0, x) ≥ av(µ, x − `), then u(t, x) ≥ av(µ, x − ` − ψ(µ)t)

for all t > 0; for µ ∈ [0, µ1] and 0 < a ≤ ε/µ1, if u(0, x) ≥ av−(µ, x − `), then

u(t, x) ≥ av−(µ, x− `+ ψ(µ)t) for all t > 0.

Lemma IV.11 Assume that Hypothesis IV.1 is satisfied and −c ≥ c∗(∞). Assume

also u(t, x) is a solution of model (58) with 0 < u(0, x) ≤ r(∞) for all x. For any

positive ε, there exists ` such that c∗(`) = c∗(∞)−ε, and γ > 0 such that c∗(`)−c∗γ(`) ≤

ε. Let ψ(µ1) = ψ(µ2) = c∗γ(`) − ε. Then for µ ∈ [0, µ2], and 0 < a ≤ ε/µ2, if

u(0, x) ≥ av(µ, x− `), then u(t, x) ≥ av(µ, x− `−ψ(µ)t) for all t > 0; for µ ∈ [0, µ1]

and 0 < a ≤ ε/µ1, if u(0, x) ≥ av−(µ, x− `), then u(t, x) ≥ av−(µ, x− `+ ψ(µ)t) for

all t > 0.

The following lemma shows that functions wl(α, µ1, µ2; t, x), wr(α, µ1, µ2; t, x)

and w(α, µ1, µ2; t, x) can translate to the lower solution of system (58) under appro-

priate conditions.
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Lemma IV.12 Assume that Hypotheses IV.1 is satisfied and u(t, x) is a solution of

model (58) with 0 < u(0, x) ≤ r(∞) for all x. Then for any small positive number

ε, there exist positive numbers α, µ1, µ2, t0, and ` satisfying c∗(`) = c∗(∞) − ε. Let

γ > 0 such that c∗(`)− c∗γ(`) ≤ ε. Then for t > t0

(a) If c > c∗(∞), u(t, x) ≥ w(α, µ1, µ2; t− t0, x) with ψ(µ1) = ψ(µ2) = c∗(−∞)− ε;

(b) If 0 < c < c∗(∞), u(t, x) ≥ wr(α, µ1, µ2; t − t0, x) with ψ(µ1) = c + ε and

ψ(µ2) = c∗(∞) − ε; and, u(t, x) ≥ w(α, µ
′
1, µ

′
2; t − t0, x) with ψ(µ

′
1) = ψ(µ

′
2) =

c∗(−∞)− ε;

(c) If c∗(−∞) > −c ≥ 0, u(t, x) ≥ w(α, µ1, µ2; t − t0, x) with ψ(µ1) = −c − ε and

ψ(µ2) = c∗(∞)−ε; and, u(t, x) ≥ wl(α, µ
′
1, µ

′
2; t−t0, x) with ψ(µ

′
1) = c∗(−∞)−ε

and ψ(µ
′
2) = −c+ ε;

(d) If c∗(−∞) ≤ −c < c∗(∞), u(t, x) ≥ w(α, µ1, µ2; t − t0, x) with ψ(µ1) = −c − ε

and ψ(µ2) = c∗(∞)− ε;

(e) If −c ≥ c∗(∞), u(t, x) ≥ w(α, µ1, µ2; t− t0, x) with ψ(µ1) = ψ(µ2) = c∗(∞)− ε.

The proof of this lemma can be done by constructing a family of lower solutions

of model (58) as in the proof of Lemma II.11 and the proof for Lemma 5.2 in Hu and

Li (2015). We omit the details.
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5 Spreading Speed

Similar to Theorem II.1, we show that when c is large, the species persists in

a lattice space and spreads to both right and left at the asymptotic spreading speed

c∗(−∞) in the following theorem.

Theorem IV.1 Assume that Hypothesis IV.1 is satisfied and c∗(∞) ≤ c. Assume

also u(t, x) is a solution of model (58) with 0 < u(0, x) ≤ r(∞) for all x.

(a) Let µ+ = µ∗(∞) =
√

r(∞)
d

, µ− = µ∗(−∞) =
√

r(−∞)
d

and c = µ+c∗(∞)−µ−c∗(−∞)
µ+−µ− .

If u(0, x) is zero for all sufficiently large x, 0 ≤ u(0, x) ≤ r(∞), and c > c, then

for any positive ε,

lim
t→+∞

[ sup
x≥t(c∗(−∞)+ε)

u(t, x)] = 0.

(b) If u(0, x) is zero for all sufficiently negative x, and 0 ≤ u(0, x) ≤ r(∞), then

for any positive ε

lim
t→+∞

[ sup
x≤−t(c∗(−∞)+ε)

u(t, x)] = 0.

(c) If u(0, x) > 0 on a closed interval and 0 ≤ u(0, x) ≤ r(∞), then for every ε > 0

lim
t→+∞

[ inf
−t(c∗(−∞)−ε)≤x≤t(c∗(−∞)−ε)

u(t, x)] = r(−∞).

Remark IV.1 Biologically, this theorem implies that, if the species spreading speed

in the high quality environment is not sufficient to keep pace with the rate of climate

change, then the species effectively only exists in the low quality environment. Since

the species is spreading only in the low quality environment, its leftward and rightward

spreading speeds are that of the low quality environment c∗(−∞). This theorem does

not include the case of c∗(∞) < c ≤ c.

Proof. We first prove statement (a). From statement (a) of Lemma IV.5, we

have that for any small positive number ε, there exist A1 > 0, such that

u(t, x) ≤ u1(t, x) = A1e
−µ1(x−(c∗(∞)+ε)t),
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where µ1 is the smallest solution of φ(∞;µ) = c∗(∞) + ε. Additionally, from the

formula (66), for the given ε, there exists δ > 0 and 0 < µ2 < µ∗(−∞), such that

µ2(c∗(−∞) + ε) = 2D(eµ2 − 2 + e−µ2) + r(−∞) + δ.

We assume that

u2(t, x) = A2e
−µ2(x−(c∗(−∞)+ε)t),

and

S =
lnA1 − lnA2

µ1 − µ2

.

It is straightforward to prove that u2(t, x) is the solution of the following model:

∂u

∂t
= D[u(t, x+ 1)− 2u(t, x) + u(t, x− 1)] + (r(−∞) + δ)u, x ∈ H, t > 0,

so that u2(t, x) satisfies the following integral equation:

u2(t, x) =
+∞∑

m=−∞
e−(ρ+2D)tIm(2Dt)A2e

−µ2(x−m) +

∫ t

0

+∞∑
m=−∞

e−(ρ+2D)τIm(2Dτ)A2e
−µ2(x−m−(c∗(−∞)+ε)(t−τ))(ρ+ r(−∞) + δ)dτ.

(77)

For any ε1 > 0 sufficiently small, we can choose µ1 and µ2 satisfying that

µ+ ≥ µ1 > µ+ − ε1 and µ− ≥ µ2 > µ+ − ε1. So when ε1 → 0, we have that

0 <
µ1c
∗(∞)− µ2c

∗(−∞)

µ1 − µ2

≤ c+ ε.

Therefore, when c > c+ 3ε and x > (c− ε)t+ S, we have that

u2(t, x)

u1(t, x)
=

A2

A1

eµ1(x−(c∗(∞)+ε)t)−µ2(x−(c∗(−∞)+ε)t)

=
A2

A1

e
(µ1−µ2)[x−(

µ1c
∗(∞)−µ2c

∗(−∞)

µ1−µ2
+ε)t]

≥ A2

A1

e(µ1−µ2)[x−(c+2ε)t]

≥ A2

A1

e(µ1−µ2)(S+(c−ε)t−(c−ε)t)

≥ A2

A1

e(µ1−µ2)S = 1.
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It follows that, when x > (c− ε)t+ S, u(t, x) ≤ u1(t, x) ≤ u2(t, x).

On the other hand, when x ≤ x0 + ct − b, where x0 satisfies that for any

x < x0, r(x) < r(−∞) + δ. Assume u(0, x) ≤ u2(0, x) = A2e
−µ2x and b is introduced

in Lemma IV.6 with µ = µ2. The sequence u(n)(t, x) is defined in the formula (62)

with u(0)(t, x) = 0. Obviously, u(0)(t, x) = 0 is a lower solution of system (58) and

u(t, x) = limn→∞ u
(n)(t, x). We have that

u(1)(t, x) = Q[u(0)](t, x) =
+∞∑

m=−∞
e−(ρ+2D)tIm(2Dt)A2e

−µ2(x−m)

= A2e
−µ2x−(ρ+2D)t[

+∞∑
m=0

Im(2Deµτ) +
∞∑
m=1

Im(2Dτ)]

= A2e
−µ2x−(ρ+2D)te2Deµ2 t

= u2(t, x)e−(ρ+2D+c∗(−∞)+ε−2Deµ2 )t ≤ u2(t, x)

for ρ sufficiently large. We compute that

Q[u2](t, x) =
+∞∑

m=−∞
e−(ρ+2D)tIm(2Dt)u0(x+m) +

∫ t

0

+∞∑
m=−∞

e−(ρ+2D)(t−τ)

·Im(2D(t− τ))u2(τ, x+m)[ρ+ r(x+m− cτ)− u2(τ, x+m)]dτ

=
+∞∑

m=−∞
e−(ρ+2D)tIm(2Dt)u0(x−m) +

∫ t

0

+∞∑
m=−∞

e−(ρ+2D)τ

·Im(2Dτ)u2(t− τ, x−m)[ρ+ r(x−m− c(t− τ))− u2(t− τ, x−m)]dτ

≤
+∞∑

m=−∞
e−(ρ+2D)tIm(2Dt)A2e

−µ2(x−m) +
∫ t

0

+∞∑
m=−∞

e−(ρ+2D)τ

·Im(2Dτ)A2e
−µ2(x−m−(c∗(−∞)+ε)(t−τ))[ρ+ r(x−m− c(t− τ))]dτ

≤
+∞∑

m=−∞
e−(ρ+2D)tIm(2Dt)A2e

−µ2(x−m) + (1 + S0ε1)
∫ t

0

+∞∑
m=cτ−b

e−(ρ+2D)τ

·Im(2Dτ)A2e
−µ2(x−m−(c∗(−∞)+ε)(t−τ))[ρ+ r(x−m− c(t− τ))]dτ

≤
+∞∑

m=−∞
e−(ρ+2D)tIm(2Dt)A2e

−µ2(x−m) + (1 + S0ε1)(ρ+ r(−∞) + δ)

·
∫ t

0

+∞∑
m=cτ−b

e−(ρ+2D)τIm(2Dτ)A2e
−µ2(x−m−(c∗(−∞)+ε)(t−τ))dτ. (78)

Since ε1 is an arbitrary small number, (78) and (77) show that Q[u2](t, x) ≤ u2(t, x).

By induction, u(n)(t, x) ≤ u2(t, x). Since u(n)(t, x) converges to u(t, x), so u(t, x) ≤

u2(t, x) for any x ≤ x0 + ct− b.
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Let t satisfies t > Tε = (S+b−x0)
ε

, then (c − ε)t + S ≤ x0 + ct − b, so we have

that u(t, x) ≤ u2(t, x) for any x and t sufficiently large. Therefore, the statement (a)

is true.

Now we consider the statement (b). From the statement (b) in Lemma IV.5,

for any ε > 0, there exist positive numbers B and µ1 such that

0 ≤ u(t, x) ≤ Beµ1(x+(c∗(−∞)+ ε
2

)t).

It follows that

0 ≤ lim
t→+∞

[ sup
x≤−t(c∗(−∞)+ε)

u(t, x)] ≤ lim
t→+∞

[ sup
x≤−t(c∗(−∞)+ε)

Beµ1(x+(c∗(−∞)+ ε
2

)t)]

≤ lim
t→+∞

[Beµ1(−t(c∗(−∞)+ε)+(c∗(−∞)+ ε
2

)t)]

≤ lim
t→+∞

[Be−µ1
ε
2
t] = 0.

Therefore,

lim
t→+∞

[ sup
x≤−t(c∗(−∞)+ε)

u(t, x)] = 0.

Finally, we prove statement (c). By Lemma IV.4, for any ε > 0, there exist

sufficiently large T1 > 0 and M > 0, such that, when t > T1 and x ≤ −M + ct,

u(t, x) ≤ r(−∞) + ε.

Form statement (a) of Lemma IV.5, we have that if u(0, x) is zero for all sufficiently

large x, and 0 ≤ u(0, x) ≤ r(∞), then for any positive ε there exist positive numbers

A and µε such that

u(t, x) ≤ Ae−µε(x−(c∗(∞)+ ε
2

)t).

When x ≥ (c∗(∞) + ε)t, we have that

u(t, x) ≤ Ae−µε
ε
2
t.

It follows that, for the given ε, there exists a sufficiently large T2, such that

u(t, x) < r(−∞) + ε for t ≥ T2 and x ≥ (c∗(∞) + ε)t.

Since c∗(∞) < c, there exists T3 > max{T1, T2} such that for t > T3, −M + ct >

(c∗(∞) + ε)t. Therefore, when t > T3, we have that u(t, x) ≤ r(−∞) + ε for any x.
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On the other hand, from Lemma IV.12, choose 0 < ε < min{r(∞), c
∗(∞)−c

5
}

and t0 > 0, α > 0 and γ > 0 sufficiently small such that u(t0, x) ≥ ω(t0). We have

that for any t > t0, x ∈ H,

u(t, x) ≥ w(α, µ1, µ2; t− t0, x),

where ψ(µ1) = ψ(µ2) = c∗(−∞)− ε/2.

By using Corollary IV.1, for the given ε > 0, there is M > 0 such that

∑
|m|≤max{M,

√
2DMτ}

e−2DτIm(2Dτ) ≥ 1− ε,

for any τ > 0. If u(t0, x) is assumed to be the initial value for the model (58), then for

sufficiently large t1 ≥ t0, the solution u(t, x) satisfies the integral equation for t > t1

u(t, x) =
+∞∑

m=−∞
e−(ρ+2D)(t−t1)Im(2D(t− t1))u(t1, x+m)

+
∫ t

t1

+∞∑
m=−∞

e−(ρ+2D)(t−τ)Im(2D(t− τ))

·u(τ, x+m)[ρ+ r(x+m− cτ)− u(τ, x+m)]dτ. (79)

When t > t1, x satisfies

`− σ(µ1)− ψ(µ1, γ)(t− t0) + max{M,
√

2DM(t− t1)} ≤ x

≤ `+ 3π/γ + σ(µ2) + ψ(µ2, γ)(t− t0)−max{M,
√

2DM(t− t1)}, (80)

and m satisfies

−max{M,
√

2DM(t− t1)} ≤ m ≤ max{M,
√

2DM(t− t1)}, (81)

we have that

`− σ(µ1)− ψ(µ1, γ)(t− t0) ≤ x+m ≤ `+ 3π/γ + σ(µ2) + ψ(µ2, γ)(t− t0). (82)

By direct calculation, the linear part of equation (79) satisfies that

+∞∑
m=−∞

e−(ρ+2D)(t−t1)Im(2D(t− t1))u(t1, x+m)

≥
∑

|m|≤max{M,
√

2DM(t−t1)}

e−(ρ+2D)(t−t1)Im(2D(t− t1))α

≥ (1− ε)αe−ρ(t−t1). (83)
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In the nonlinear part, we have that

+∞∑
m=−∞

e−(ρ+2D)(t−τ)Im(2D(t− τ))u(τ, x+m)[ρ+ r(x+m− cτ)− u(τ, x+m)]

≥ (1− ε)α[ρ+ r(−∞)− ε− α]e−ρ(t−τ). (84)

It follows from (79)-(84) that for t ≥ t0 and x satisfying (80)

u(t, x) ≥ ũ(1)(t),

where

ũ(1)(t) = (1− ε)αe−ρ(t−t1) +
∫ t

t1
e−ρ(t−τ)(1− ε)α[ρ+ r(−∞)− ε− α]dτ.

It follows from this, (79) and induction that for t ≥ t1 and x satisfying (80),

u(t, x) ≥ ũ(n)(t),

where ũ(n)(t) satisfies

ũ(n+1)(t) = (1− ε)αe−ρ(t−t0)

+
∫ t

t0
e−ρ(t−τ)(1− ε)ũ(n)(τ)[ρ+ r(−∞)− ε− 1

1− ε
ũ(n)(τ)]dτ

= an + bn(t)e−ρ(t−t0).

In this formula,

an =
(1− ε)an−1(ρ+ r(−∞)− ε− an−1)

ρ
,

a1 =
(1− ε)α[ρ+ r(−∞)− ε− α]

ρ
,

and bn(t) is the sum of polynomials, and products of polynomials and exponential

functions in the form of e−jρ(t−t0) with j a positive integer.

Since limt→∞ ũ
(n)(t) = an and limn→∞ an = r(−∞)−ε−ερ/(1−ε), there exists

a positive integer N sufficiently large, for t > t1

ũ(N)(t) ≥ r(−∞)− ε− ερ/(1− ε). (85)

Choose t2 > t1 sufficiently large such that when t > t2,

`− σ(µ1)− ψ(µ1, γ)(t− t1) +N max{M,
√

2DM(t− t1)}

≤ `+ 3π/γ + σ(µ2) + ψ(µ2, γ)(t− t1)−N max{M,
√

2DM(t− t1)}, (86)
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and also there exists t3 > t2 such that when t > t3

`− σ(µ1)− ψ(µ1, γ)(t− t1) +N max{M,
√

2DM(t− t1)}

≤ −t(c∗(−∞)− ε) ≤ t(c∗(−∞)− ε)

≤ `+ 3π/γ + σ(µ2) + ψ(µ2, γ)(t− t1)−N max{M,
√

2DM(t− t1)}. (87)

Equations (85), (86) and (87) show that when t > t3 and −t(c∗(−∞) − ε) ≤ x ≤

t(c∗(−∞)− ε)

lim
t→∞

[
inf

−t(c∗(−∞)−ε)≤x≤t(c∗(−∞)−ε)
u(t, x)

]
≥ (1− ε)(r(∞)− ε).

Since ε is arbitrary and u(t, x) ≤ r(∞) for all x and t, it follows that

lim
t→+∞

[ inf
−t(c∗(−∞)−ε)≤x≤t(c∗(−∞)−ε)

u(t, x)] = r(−∞).

The proof is complete.

The following theorem shows that if c∗(∞) > c ≥ 0, then the species persists

in a lattice space and spreads to the right at the asymptotic spreading speed c∗(∞)

and to the left at the asymptotic spreading speed c∗(−∞), forming a two-layer wave.

Theorem IV.2 Assume that Hypothesis IV.1 is satisfied and c∗(∞) > c ≥ 0. As-

sume also u(t, x) is a solution of model (58) with 0 < u(0, x) ≤ r(∞) for all x.

(a) If u(0, x) is zero for all sufficiently large x, and 0 ≤ u(0, x) ≤ r(∞), then for

any positive ε

lim
t→+∞

[ sup
x≥t(c∗(∞)+ε)

u(t, x)] = 0.

(b) If 0 ≤ u(0, x) ≤ r(∞), u(0, x) > 0 on a closed interval, and u(0, x) is zero for

all sufficiently large x, then for every ε with 0 < ε < (c∗(∞)−c)
2

lim
t→+∞

[ sup
t(c+ε)≤x≤t(c∗(∞)−ε)

|r(∞)− u(t, x)|] = 0.

(c) If u(0, x) is zero for all sufficiently negative x, and 0 ≤ u(0, x) ≤ r(∞), then

for any positive ε

lim
t→+∞

[ sup
x≤−t(c∗(−∞)+ε)

u(t, x)] = 0.
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(d) If u(0, x) > 0 on a closed interval and 0 ≤ u(0, x) ≤ r(∞), then for every ε > 0

lim
t→+∞

[ inf
−t(c∗(−∞)−ε)≤x≤min{t(c−ε),t(c∗(−∞)−ε)}

u(t, x)] = r(−∞).

Remark IV.2 Here we mention some of its biological implications in the theorem.

Essentially if the species’ spreading speed in the high quality environment is sufficient

to keep ahead of the rightward moving favorable habitat boundary, then the species will

continue to expand ahead in the high quality environment at the speed c∗(∞). Similar-

ly the species will continue to expand leftward into the low quality environment at the

speed associated with the low quality environment, c∗(−∞). Statement (b) states that

for regions behind the forward invasion front but sufficiently in front of the favorable

habitat boundary, the population will essentially reach the high quality habitat equilib-

rium, r(∞). Similarly (d) states that for a region in front of the rearward invasion

but sufficiently behind the favorable habitat boundary the population will essentially

achieve the equilibrium value of the poor quality habitat, r(−∞).

Proof. We prove statement (a). From (a) of Lemma IV.5, we have that for

any positive ε, there exist positive numbers A and µε, such that

u(t, x) ≤ Ae−µε(x−(c∗(∞)+ ε
2

)t).

The trivial solution u = 0 is a lower solution of model (58), so u(t, x) ≥ 0 for all t > 0

and x. It follows that

0 ≤ lim
t→+∞

[ sup
x≥t(c∗(∞)+ε)

u(t, x)] ≤ lim
t→+∞

[ sup
x≥t(c∗(∞)+ε)

Ae−µε(x−(c∗(∞)+ ε
2

)t)]

= lim
t→+∞

[Ae−µε(t(c
∗(∞)+ε)−(c∗(∞)+ ε

2
)t)]

= lim
t→+∞

[Ae−µε
ε
2
t] = 0.

Therefore

lim
t→+∞

[ sup
x≥t(c∗(∞)+ε)

u(t, x)] = 0.

The proof of statement (b) is similar to the one of statement(iii) in Theorem

5.1 of Hu and Li (2015) and is omitted. The proof of the statement (c) is identical

to the proof of statement (c) in Theorem IV.1, so we omit the proof as well.
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Finally, we prove the statement (d). From the proof of statement (c) in Theo-

rem IV.1, we have that

lim
t→+∞

[ inf
−t(c∗(−∞)−ε)≤x≤t(c∗(−∞)−ε)

u(t, x)] ≥ r(−∞).

In other words, for any given ε > 0, there exist T0, such that

u(t, x) ≥ r(−∞), if t > T0, and − t(c∗(−∞)− ε) ≤ x ≤ t(c∗(−∞)− ε). (88)

On the other hand, by using Lemma IV.4, for the given ε > 0, there exists

sufficiently large T > 0 and M > 0, such that,

u(t, x) ≤ r(−∞) + ε, if t > T, and x ≤ −M + ct. (89)

If c ≤ c∗(−∞), it follows from (88) and (89) that when t > max{T, T0,
M
ε
}

and −t(c∗(−∞)− ε) ≤ x ≤ t(c− ε),

r(−∞) ≤ u(t, x) ≤ r(−∞) + ε.

If c ≥ c∗(−∞), it follows from (88) and (89) that when t > max{T, T0,
M

c−c∗(−∞)+ε
}

and −t(c∗(−∞)− ε) ≤ x ≤ t(c∗(−∞)− ε),

r(−∞) ≤ u(t, x) ≤ r(−∞) + ε.

Since ε can be any small positive number, we have that

lim
t→+∞

[ inf
−t(c∗(−∞)−ε)≤x≤min{t(c−ε),t(c∗(−∞)−ε)}

u(t, x)] = r(−∞).

The proof is complete.

The following theorem will show that when −c∗(−∞) < c < 0, the species

persists in a lattice space and spreads to the right at the asymptotic spreading speed

c∗(∞) and to the left at the asymptotic spreading speed c∗(−∞). The solution of

model (58) form a two-layer wave.

Theorem IV.3 Assume that Hypothesis IV.1 is satisfied and −c∗(−∞) < c < 0.

Assume also u(t, x) is a solution of model (58) with 0 < u(0, x) ≤ r(∞) for all x.
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(a) If u(0, x) is zero for all sufficiently large x, and 0 ≤ u(0, x) ≤ r(∞), then for

any positive ε

lim
t→+∞

[ sup
x≥t(c∗(∞)+ε)

u(t, x)] = 0.

(b) If 0 ≤ u(0, x) ≤ r(∞), u(0, x) > 0 on a closed interval, and u(0, x) is zero for

all sufficiently large x, then for every ε with 0 < ε < (c∗(∞)−c)
2

lim
t→+∞

[ inf
−t(−c−ε)≤x≤t(c∗(∞)−ε)

u(t, x)] = r(∞).

(c) If u(0, x) is zero for all sufficiently negative x, and 0 ≤ u(0, x) ≤ r(∞), then

for any positive ε

lim
t→+∞

[ sup
x≤−t(c∗(−∞)+ε)

u(t, x)] = 0.

(d) If u(0, x) > 0 on a closed interval and 0 ≤ u(0, x) ≤ r(∞), then for every ε > 0

lim
t→+∞

[ inf
−t(c∗(−∞)−ε)≤x≤−t(−c+ε)}

u(t, x)] = r(−∞).

Remark IV.3 The theorem has some biological meanings. If the species spreading

speed in the low quality environment is in excess of the leftward drift of the habi-

tat boundary, then the species will continue to spread leftward at a speed associated

with the low quality habitat, c∗(−∞). The rightward expansion will be at the speed

associated with the high quality environment, c∗(∞).

Proof. The proofs for statement (a) and statement (c) are the same as those

for statement (a) and statement (c) in Theorem IV.2. We omit them here.

Now we prove statement (b). From statement (c) of Lemma IV.12, for any

small positive number ε, there exist α, γ, µ1, µ2, and a positive number t0, such that

when t > t0,

u(t, x) ≥ w(α, µ1, µ2; t− t0, x),

where ψ(µ1) = −c − ε/2 and ψ(µ2) = c∗(∞) − ε/2. If u(t0, x) is assumed to be the

initial value for the model (58), then the solution u(t, x) satisfies the integral equation

(79). Since when t > t0, x satisfies

`− σ(µ1)− ψ(µ1, γ)(t− t0) + max{M,
√

2DM(t− t1)} ≤ x

≤ `+ 3π/γ + σ(µ2) + ψ(µ2, γ)(t− t0)−max{M,
√

2DM(t− t1)}, (90)
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and m satisfies

−max{M,
√

2DM(t− t1)} ≤ m ≤ max{M,
√

2DM(t− t1)}, (91)

we have that

`− σ(µ1)− ψ(µ1, γ)(t− t0) ≤ x+m ≤ `+ 3π/γ + σ(µ2) + ψ(µ2, γ)(t− t0), (92)

so

x−y−ct ≥ `−σ(µ1)−ψ(µ1, γ)(t− t0)−ct = `−σ(µ1)+ε/2(t− t0)−ε/2t0 ≥ `. (93)

Similar to the process in the proof of statement (c) of Theorem IV.1, from (90)-(93)

we can prove that

lim
t→∞

[
inf

−t(−c−ε)≤x≤t(c∗(∞)−ε)
u(t, x)

]
≥ (1− ε)(r(∞)− ε).

Since ε is arbitrary small and u(t, x) ≤ r(∞) for all x and t, it follows that

lim
t→+∞

[ inf
−t(−c−ε)≤x≤t(c∗(∞)−ε)

u(t, x)] = r(∞).

Finally, we prove statement (d). From statement (c) of Lemma IV.12, for any

small positive number ε, there exist α, γ, µ1, µ2, and a positive number t0, such that

when t > t0,

u(t, x) ≥ wl(α, µ
′

1, µ
′

2; t− t0, x),

where ψ(µ
′
1) = c∗(−∞)− ε and ψ(µ

′
2) = −c+ ε. Using the same method to prove the

statement (c), we have that

lim
t→+∞

[ inf
−t(c∗(−∞)−ε)≤x≤−t(−c+ε)}

u(t, x)] ≥ r(−∞).

Additionally, by using Lemma IV.4, for the given ε > 0, there exist sufficiently

large T > 0 and M > 0, such that, when t > T and x ≤ −M+ct, u(t, x) ≤ r(−∞)+ε.

Then when t > M
ε

, we have that −t(−c+ ε) < −M + ct, so that u(t, x) ≤ r(−∞) + ε

for any x. Therefore,

lim
t→+∞

[ inf
−t(c∗(−∞)−ε)≤x≤−t(−c+ε)}

u(t, x)] = r(−∞).

The proof is complete.

The following theorem deals with when the habitat shifts rapidly leftward,

c∗(∞) ≥ −c ≥ c∗(−∞).
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Theorem IV.4 Assume that Hypothesis IV.1 is satisfied and c∗(∞) ≥ −c ≥ c∗(−∞).

Assume also u(t, x) is a solution of model (58) with 0 < u(0, x) ≤ r(∞) for all x.

(a) If u(0, x) is zero for all sufficiently large x, and 0 ≤ u(0, x) ≤ r(∞), then for

any positive ε

lim
t→+∞

[ sup
x≥t(c∗(∞)+ε)

u(t, x)] = 0.

(b) If u(0, x) > 0 on a closed interval and 0 ≤ u(0, x) ≤ r(∞), then for every ε

satisfying 0 < ε < c∗(∞)−ε
3

,

lim
t→+∞

[ inf
t(c+ε)≤x≤t(c∗(∞)−ε)

u(t, x)] = r(∞).

(c) If u(0, x) is zero for all sufficiently negative x, and 0 ≤ u(0, x) ≤ r(∞), then

for any positive ε

lim
t→+∞

[ sup
x≤−t(−c+ε)

u(t, x)] = 0.

Remark IV.4 Biologically if the leftward moving speed of the favorable habitat bound-

ary exceeds the spreading speed in the low quality habitat, but is lower than the spread-

ing speed in the high quality habitat, then the species will effectively only exist in the

high quality habitat. Its leftward spreading speed will be the moving speed of habitat

boundary, c, and rightward spreading speed will be c∗(∞).

Proof. Statement (a) is obvious, so we omit the details of the proof here. The

proof of statement (b) is similar to the proof of statement (c) in Theorem IV.1 with

the lower solution defined in statement (d) of Lemma IV.12, which is that when t > t0

u(t, x) ≥ w(α, µ1, µ2; t− t0, x),

where ψ(µ1) = −c− ε and ψ(µ2) = c∗(∞)− ε. We omit the details of the proof here.

The proof of statement (c) is similar to the proof of statement (a) in Theorem

IV.1, so we omit the details. The proof is complete.

The following theorem deals with when c∗(∞) ≤ −c, so the habitat shifts

extremely rapidly leftward.
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Theorem IV.5 Assume that Hypothesis IV.1 is satisfied and c∗(∞) ≤ −c. Assume

also u(t, x) is a solution of model (58) with 0 < u(0, x) ≤ r(∞) for all x.

(a) If u(0, x) is zero for all sufficiently large x, and 0 ≤ u(0, x) ≤ r(∞), then for

any positive ε

lim
t→+∞

[ sup
x≥t(c∗(∞)+ε)

u(t, x)] = 0.

(b) If u(0, x) > 0 on a closed interval and 0 ≤ u(0, x) ≤ r(∞), then for every ε

satisfying 0 < ε < c∗(∞)−ε
3

,

lim
t→+∞

[ inf
−t(c∗(∞)−ε)≤x≤t(c∗(∞)−ε)

u(t, x)] = r(∞).

(c) If u(0, x) is zero for all sufficiently negative x, and 0 ≤ u(0, x) ≤ r(∞), then

for any positive ε

lim
t→+∞

[ sup
x≤−t(c∗(∞)+ε)

u(t, x)] = 0.

Remark IV.5 Biologically, if the leftward moving speed of the favorable habitat is

extremely large, then the species will effectively only exist in the high quality habitat.

The species will persist and spread in both directions in the habitat with spreading speed

c∗(∞). The proof of this theorem is similar to theorem II.4 whose lower solution is

defined in statement (e) of Lemma II.11. We only provide the theorem here.
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6 Discussion for Lattice Differential Model Chapter

In this chapter, we studied the growth and spread of a species associated to a

lattice differential model in a shifting habitat. In our study, the region suitable for

species growth was assumed to be expanding or contracting, the species was assumed

to grow in the whole lattice space, but with different levels of success. Results in this

chapter are extensions of the work by Hu and Li (2015) in the following sense. In

the work by Hu and Li (2015), the region suitable for species growth was assumed

to be contracting and species can persist at just one end. As our study shows, the

persistence and spread of an invasive species have been made more complicated to

analyze due to the interplay among the three speeds, c∗(−∞), c and c∗(−∞), and

some new wave propagation patterns have been found to exist. We summarize our

main results as follows:

• When the favorable habitat for species growth is contracting, the rightward

spreading speed is c∗(∞) if the contracting speed c is relatively small and is

c∗(−∞) if the contracting speed c is relatively large. In this case, the leftward

spreading speed is c∗(−∞).

• When the favorable habitat for species growth is expanding, the rightward

spreading speed is c∗(∞), while the leftward spreading speed depends on how

fast climate change is occurring relative to the intrinsic rate of spread of invasive

species. We showed that the leftward spreading speed is c∗(∞) for relatively

rapidly expansion, |c| itself for relatively intermediate expansion, and c∗(−∞)

for relatively slow expansion.

• The solution of the lattice differential equations can form a two-layer wave with

analytically determined propagation speeds, which was not found in the work

of Hu and Li (2015).
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CHAPTER V

DISCUSSION AND FUTURE DIRECTIONS

1 Conclusion

In this dissertation, we established the persistence and spreading dynamics a-

long a shifting habitat gradient of population with reaction-diffusion equations, the

Lotka-Volterra competition model and lattice differential equations. The models con-

sidered here are extended or modified versions of the basic Fisher’s equation. By using

these models, we showed the effect of climate changes on the population development

of different species. Climate change can result in habitat shifts (e.g., Polovina et al.

2011; Parr et al. 2012), expansions (Ni 2000; Gonzalez et al. 2010; Lynch et al. 2012),

and Contractions (Ni 2000; Gonzalez et al. 2010; Parr et al. 2012), causing the fa-

vorable habitat to either recede or envelope the established population. We analyzed

some important factors for population growth which include population growth rate,

resource distribution, speed and direction of habitat shift due to climate change in

continuous or discrete space. We also started the discussion of the persistence and

spreading dynamics for multiple species. We focused on the competition model with

the assumption that their suitable habitats move in opposite directions.

In Chapter II, for a single species we assume the resource quality is low in the

negative direction switching to high on the positive direction. The edge between areas

with good quality resources and areas with bad quality resources could shift toward

the positive(right) direction or the negative(left) direction. When the good quality

resource region is shrinking and the resource boundary moves faster than the maxi-

mum population expansion rate, i.e. c > c∗(∞), the spreading speed of the species

will approach the asymptotic spreading speed (c∗(−∞)) corresponding to the low
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quality habitat. When the resource boundary moves slower than the maximum pop-

ulation expansion rate, the species will persist and spread in the rightward direction

with the speed of c∗(∞) and in the leftward direction with the speed of c∗(−∞).

On the other hand, the suitable habitat can drift in the negative direction as

well. When the resource boundary moves slower than the asymptotic spreading speed

(c∗(−∞)) corresponding to the low quality habitat, i.e. −c < c∗(−∞), we find that

the spreading speed of the species in the negative direction equals c∗(−∞) and the

spreading speed in the positive direction would be c∗(+∞). When the expanding rate

of habitat space is greater than the minimum population expansion rate, i.e. −c >

c∗(−∞), the spreading speed of the species toward the left equals one of |c|, c∗(−∞),

or c∗(∞). These conclusions are also valid for the lattice differential equations, which

are discussed in Chapter IV.

In Chapter III, we analyzed the simplest Lotka-Volterra competition model,

assuming the respective suitable habitats of species, represented by u and v, are

drifting away from the established population. We illustrated that, when the drift

speed of the habitats exceeds the respective species’ spreading speeds, both of them

will become extinct. When the drift speed for the habitats of both species is slower

than their respective maximum population expansion rate, each species will survive

and spread into their respective habitats. Additionally, if one species’ population

expansion rate exceeds the habitat drift rate, this species will persist and spread in

its suitable habitat. The discussions in this chapter are only the rudimentary work

for multi-species models. There are still various questions to be considered in future

work. We provided examples of these at the end of Chapter III.

2 Discussion

Global change has become more and more rapid in recent years, which is

causing substantial changes for habitat gradients of many species. These gradients

includes abiotic conditions, the availability of food resources, the density or diversity

of interacting species, or other attributes. One of most common examples of gradi-

ents is the temperature gradient, which has moved both poleward and toward higher
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elevations. The temperature gradient might result in range expansions, range con-

tractions, and range shifts of many species, so many of them will need to migrate to

remain in a suitable habitat (Greenstein and Pandolfi 2008; Hodkinson 2005; Keleher

and Rahel 1996).

In this dissertation, we discussed the role of expanding/contracting habitat

gradients on single species populations in continuous space by using the reaction-

diffusion modeling framework in Chapter II and in discrete space by using the lattice

differential modeling framework in Chapter IV. We also analyzed multi-species popu-

lations by using the Lotka-Volterra competition model in Chapter III. Two scenarios

were considered. First, the favorable habitat of the species is contracting so the

species is faced with encroachment of a range boundary (i.e., range contraction). Sec-

ond, the favorable habitat of the species is expanding so the species is faced by range

expansion.

From our results, for the first scenario, persistence of habitats and species

requires that the species expand at a rate faster than the boundary recession rate.

If the species can expand at a rate faster than climate change, the species could

continue to spread even though they lose their habitat at one boundary. One good

example for species facing range encroachment is Scotch Broom (Cytisus Scoparius).

The natural spreading speed of Scotch Broom was estimated to be 0.5m/yr(Downey

and Smith 2000; Neubert and Parker 2004), and the velocity of climate change was

demonstrated to be 0.08-1.26km/yr(Loarie et al. 2009), so the spreading speed of

Scotch Broom is well below the velocity of climate change. Thus, Scotch Broom falls

under the conditions of Theorem II.1. This means that Scotch Broom will experience

a northern range contraction in Australia. This result was also predicted by Potter

et al. (2008).

Compared with Scotch Broom, the light brown apple moth (LBAM, Epiphyas

postvittana) is another example of a species facing range encroachment. Loarie et al.

(2009) showed that the estimated maximum spreading speed of LBAM is 6km/yr,

which is well above the velocity of climate change. Thus, LBAM falls under the

conditions of Theorem II.2. This means that LBAM will continue to spread with a
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northward spreading speed which is determined by the inherent LBAM rate of spread

and the velocity of climate change. Since extreme summer temperatures may decrease

the spreading speed of LBAM, especially in the southwestern USA (Lozier and Mills

2011), the southward spreading speed of LBAM is lower than the northward spreading

speed.

For the second scenario, we demonstrated that the spread of a species into less

favorable habitat requires that the species expand at a rate faster than the climate

expansion rate. The spreading speed of species within their less favorable habitat

is determined by how well the species can survive in the most extreme poor-quality

environment. One good example for species facing range expansion and spread into

less favorable habitat is the Hemlock Woolly Adelgid (HWA). HWA can destroy vast

forests of hemlock and affiliated communities within their habitat, while extreme cold

temperatures could prevent HWA’s spread. Many HWA die off in the winter, having

laid eggs that will hatch in the spring and also the spreading speed of HWA at the

northern range boundary is relatively low. These reduce their population growth

rate during the next spring and also restrict the northward spread of HWA. However,

global warming provides opportunities for HWA to spread into currently untouched

forests. Because the spreading speed of HWA is faster than the velocity of climate

change (Evans and Gregoire 2007; Loarie et al. 2009), from Theorem II.4 and II.5,

we predict that the northward spreading speed of HWA will be determined by the

inherent LBAM rate of spread in less favorable habitat and the velocity of climate

change. Similar results have been obtained by Paradis et al. (2008).

Compared with HWA, The Mediterranean Gecko (Hemidactylus turcicus) is

another example of a species facing range expansion (Meshaka et al. 2006). Locey

and Stone (2006) showed that the estimated spreading speed of this species is 20m/yr,

which is much slower than the velocity of climate change(Loarie et al. 2009). From

Theorem II.3, we predicted that Gecko will spread by its ability to colonize a new

location.
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3 Future Directions

Results in this dissertation can be extended in several different directions:

1. Periodicity in space or in time. Periodic phenomena are very common in

biology. They can appear in a heterogeneous environment which is composed of

two kinds of patches with different diffusivity and intrinsic growth rates, that

vary periodically (Shigesada et al. 1986). Periodicity can also happen in time,

for example, seasonality. Seasonal reproduction in mammals has been affected

by climate change and many species may face extinction if they cannot develop

new strategies for seasonal changes (Bronson 2009; Bradshaw and Holzapfel

2006). We can discuss the persistence and spread of species by considering

periodicity in space or in time, for instance by letting r(x, t) to be periodic in

x or t.

2. Density-dependent diffusion rate. Aggregation is an important social be-

havior in many species. Actually, it is hard to find animals that do not aggregate

in nature. Individuals tend to join together at low densities and repel each other

at high density. If the motion of individuals is influenced by their neighbors,

their motion is said to be density dependent; otherwise, their motion is density

independent. For density dependent aggregation, individuals attract each other

due to social interactions, for example, mating, settlement and so on, which

can help the population defend against predators (Fedotov et al. 2008). The

most common theoretical model to explain the species’ aggregation behavior is

known as the density-dependent Fisher equation. This equation requires only

one partial differential equation for the individuals’ motion but is nonlinear due

to density dependent diffusivity D(u) (Gurney and Nisbet 1975; Shigesada et

al. 1979; Petrovskii and Li 2003; Almeida et al. 2006; Balasuriya and Gottwald

2010; Kenkre and Kumar 2008).

3. Allee effect. The Allee effect is the positive correlation between population size

or density and the mean population growth rate per capita of a species(Stephens
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1999). The Allee effect means that when the population density is low, the

growth rate of the population is not optimal. This phenomenon is usually ob-

served in species that require the assistance of another individual; for example

species that hunt in packs would not be able to survive in smaller groups (Berec

2007). The steady state distribution of reaction-diffusion equations with Allee

effect growth has been studied (Ali et al. 2009) and it was also found that the

Allee effect can speed up or slow down population growth rate and invasion-

s(Allee 1932; Shaw and Kokko 2015). This could be incorporated by a reaction

term with the Allee effect.

4. Further scenarios for two species competing along shifting habitats.

In chapter III, we provided a very basic analysis and discussed the simplest

questions for a competition model along shifting habitat edges. Further analytic

explorations of the various scenarios regarding which direction habitats shift,

how resources are distributed, the competition coefficients of both species, etc.,

could be elaborated as well. We provided examples of these at the end of

Chapter III.

5. Stage-structured models with phonological variations. Another possible

direction is to consider the age structure for individuals in the model, i.e. divid-

ing populations of species into adults and juveniles. In this model, only adult

members of the population can reproduce. There might be no direct interaction

between adults and juveniles or they have to compete for common resources.

Some adults (black iguanas) will even eat juveniles during times of scarce food

sources. Their life-cycle takes place in a year and can be affected by seasonality.

For example, some species will be dormant in the fall and winter, and they will

grow and spread in the spring and summer(Meyer and Li 2013).

Future research based on the findings of this dissertation, as has been shown,

could take multiple directions and thus the method represented in this work holds

fruitful possibilities for further exploration.
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