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ABSTRACT 

BAYESIAN REGRESSION ANALYSIS 

Sara Evans 

May 12, 2012 

Regression analysis is a statistical method used to relate a variable of inter

est, typically y (the dependent variable), to a set of independent variables, usually, 

Xl, X2, ... ,Xn . The goal is to build a model that assists statisticians in describing, 

controlling, and predicting the dependent variable based on the independent vari

able(s). There are many types of regression analysis: Simple and Multiple Linear 

Regression, Nonlinear Regression, and Bayesian Regression Analysis to name a few. 

Here we will explore simple and multiple linear regression and Bayesian linear re

gression. For years, the most widely used method of regression analysis has been 

the Frequentist methods, or simple and multiple regression. However, with the ad

vancements of computers and computing tools such as WinBUGS, Bayesian meth

ods have become more widely accepted. With the use of WinBUGS, we can utilize 

a Markov Chain Monte Carlo (MCMC) method called Gibbs Sampling to simplify 

the increasingly difficult calculations. Given that Bayesian regression analysis is a 

relatively "new" method, it is not without faults. Many in the statistical commu

nity find that the use of Bayesian techniques is not a satisfactory method since the 

choice of the prior distribution is purely a guessing game and varies from statisti

cian to statistician. In this thesis, an example is presented using both Frequentist 

and Bayesian methods and a comparison is made between the two. As computers 
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become more advanced, the use of Bayesian regression analysis may become more 

widely accepted as the method of choice for regression analyses as it allows for the 

interpretation of a "probability as a measure of degree of belief concerning actual 

data observed." [5] 
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CHAPTER 1 

FREQUENTIST REGRESSION ANALYSIS 

1.1 Introduction 

Frequentist statistics became widely used in the first half of the 20th cen

tury, though the method of least-squares has been around since the early 1800s. 

Discovered independently by Carl Friedrich Gauss in Germany and Adrien Marie 

Legendre in France, the method of least-squares is the most frequently used regres

sion method to date. In its early days, it was applied to astronomic and geodetic 

data and was originally published in an appendix to a book published by Legen

dre on determining the orbits of comets. Today, in many undergraduate statistics 

courses, students may only be exposed to the "frequentist" approach to statistics. 

[9] 

1.2 Simple Linear Regression 

We begin with simple linear regression, the "simplest" of the regression anal

yses. It is defined to be the least squares estimator of a regression model with a 

single explanatory (independent) variable in which a straight line is fit through n 

points so that the sum of squared residuals (SSR), L e7, is minimized. That is, the 

distance between the regression line and the data points is minimal. 

We can think of the model as similar to the slope-intercept form of a line 
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with an error (residual) term. The simple linear regression model is given by 

for i = 1, 2, ... ,n, where Yi is the response (dependent) variable, Xi is the explana

tory /predictor (independent) variable, ex and (-J are the unknown parameters that 

are to be estimated, and P; is the residmll tenn. Tlw P, term is independent and 

identically distributed (iid) with a normal distribution with mean 0 and unknown 

variance r;2. Along with c\' and /1, r;2 can be estimated. 

1.2.1 Estimating the Unknown Parameters ex and {-J 

The goal in estimating the unknown parameters is to find a line that "best" 

fits the data. To do this we use an estimated regression line 

Y = 0: + [3X, 

where ci and ,3 are estimates of Ct and /3, so that we may look at the size of the 

residuals 

ei = Yi - (It + 19J d. 

It is important to note any estimates will be denoted with a "hat" symbol, similar 

to the estimates for ex and fJ. 

Similar to the residual. Pi, the estimated residual, e;, is the vertical distance 

between the estimated regression line and the data point (Xi, Yi) . The idea is to 

choose 6, and /1 so that the residuals are "small." While there are several methods 

with which to minimize the residuals. here we will use the method of least squares. 

vVe measure the overall size of the residuals bv :z:= f~;. The least squares 

estimates of ex and [3, 0: and ;3, give the least SSR. 

To estimate ex and ;3, first find the deri\'ative of 2:= e; with respect to ex and 
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j3, respectively. 

Setting each derivative to zero gives us 

n 

(1.1 ) 
i=l 

n 

I)Yi - a - j3xi)Xi = 0 (1.2) 
i=l 

From (1.1), we get 

n n 

i=l i=l 

ny = na + nj3x 

y = a + j3x (1.3) 

where y = ~ L:~=l Yi and x = ~ L:~=l Xi denote the averages of Yi and Xi, respec-

tively. From (1.2), we see that 

n n n 

L XiYi = a L Xi + j3 L xT. 
i=l i=l i=l 

We can rewrite this equation as 

n n 

L(Xi - X)(Yi - y) + nxy = nax + j3 L(Xi - x) (:ri - x) + nj3x2
. 

i=l i=l 

Define 

n 

Sxy := L(Xi - X)(Yi - y) 
i=l 

n 

Sxx := L(Xi - X)(Xi - x). 
i=l 

Then 
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Using (1.3), we have 

Hence 

Sxy + nxy = nx(y - /3x) + (3Sxx + n(3x2 

Sxy = (3Sxx 

(3 = Sxy 
Sxx 

_ Sxy_ 
a=y- S X. 

xx 

Thus the estimates of a and (3 are given by 

[12J 

A _ Sxy_ 
a=y--x 

Sxx 
A Sxy 
(3=-s . 

xx 

(1.4) 

(1.5) 

The random variable (RV) Y given X = x will be denoted by Yx . When 

choosing, in succession, values Xl, X2, ... ,Xn for x, a sequence 

of RV s is obtained. For convenience, we will denote this sequence of RV s as 

To do statistical analysis, we make the following assumptions: 

1. E(Yx) = a + (3x so that Yi = E(Yi) = a + (3Xi; 

2. YI , Y2 , ... , Yn are independent RVs; 

3. Each }i, for i = 1,2, ... ,n, has the same variance, (J2. 

[10J 
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THEOREM 1.1. Under the above assumptions, the least squares estimators, 0: and 

$ , of the linear model E (Y Ix) = 0: + (3 x are unbiased. 

Proof. 

~ (SXy) 1 (~ _ - ) E((3) = E - = -E ~(Xi - x)(Yi - Y) 
Sxx Sx:r i=l 

1 n _ 

= S L(Xi - x)E(Yi - Y) 
xx i=l 

1 n 1 n _ 1 n 

= S L(Xi - x)E(Yi) - s L(Xi - x)E(Y) = S L(Xi - x)E(Yi) 
xx i=l xx i=l xx i=l 

1 
= -S (3Sxx = (3 

xx 

Hence, E(13) = (3. 

E(a) = E (Y _ SXYx) 
Sxx 

= E(Y -13x) 

= E(Y) - E(13)x 

= E (A t Yi) - (3x 
z=l 

1 n 

= - L E(Yi) - (3x 
n i=l 

1 n 

= - L(O: + (3 Xi) - (3x 
n i=l 

=o:+(3x-(3x 

=0: 
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Hence E(Ci) = C\:. 

Thus, band 0: are unbiased estimators for j3 and C\:, respectively. [12] o 

1.2.2 Hypothesis Testing 

In a regression model if j3 = 0, then the response variable Y and the explana-

tory variable X are not related. Hence we test this relationship between Y and X 

using a hypothesis test where the null hypothesis is Ho : j3 = ° and the alternative 

hypothesis is Ha : j3 -=I- 0. 

The null and alternative hypotheses allow for the comparison of the full 

model 

Y = C\: + j3X + e 

with the reduced model 

to determine whether the relationship between X and Y is significant. 

To test the hypothesis that j3 = 0, use the least squares estimator b = ~:~ 

and then estimate (72. This estimate can be found using the maximum likelihood 

method and is given by 

A 2 _ 1 [s Sxy S ] 
(7 - - yy - - xy . 

n Sxx 

THEOREM 1.2. An unbiased estimator S2 of (72 is given by 

2 SSR n(j2 
s =--=--

n-2 n-2 
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Proof. First, it should be noted that !!:~2 rv x 2(n-2) and that E(x2(n-2)) = n-2. 

Hence, E(82) = (J2 and thus 8 2 is an unbiased estimator of (J2.[12] o 

We can calculate the standard deviation of fJ using the formula 

~ (J 
SD(fJ) = VSxx' 

Here, (J is the standard deviation of the population of errors. We really wish to use 

the estimate of the standard deviation in subsequent steps so we must replace (J 

with an unbiased estimate, 8, to obtain 

~ 8 
SD(fJ) = ;c-. 

Next, we evaluate the test statistic 

It I = (~- fJ) 
fs2 VB;;; 

ySxx 

(1.6) 

and compare it to t,/2(n - 2), the Student's t-distribution with n - 2 degrees of 

freedom at a given significance level,. [5] 

The hypothesis test at a given significance level, 100(1 - ,)%, is then to 

"Reject Ho : fJ = 0 if It I > t,/2(n - 2)./1 
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Rejecting the null hypothesis does not necessarily imply that we should ac-

cept the alternative hypothesis. However, it does indicate that there is a significant 

relation between the explanatory and response variables X and Y, respectively. 

1.2.3 Confidence Interval 

In frequentist statistics, it is often necessary to give a range of values with 

which we are 100(1 -,)% confident that /3 falls within that range. From (1.6), we 

can determine a confidence interval for /3; that is, let B = CJ J (n-;)Sxx' Then the 

100(1 -,)% confidence interval is given by 

p (~ - BLy/2 < /3 < ,8 + Bt'/2) = 1 - ,. 

In interval notation, we can express this as 

1.3 Multiple Linear Regression 

Multiple regression occurs when there are two or more explanatory variables 

present. This means the model, in terms of RVs, is given by 

In terms of observed data, the model is given by 

for i = 1,2, ... ,n. As is similar to simple regression, Xi, Yi and ei are the explana-

tory, response, and residual variables, respectively. /30, /31) ... ,/3p are the unknown 

parameters that are to be estimated. We note that, when p = I, the multiple linear 
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regression reduces to simple linear regression and it is a generalization of the simple 

linear regression. 

To assist with calculations, we introduce some matrix notation. We use bold 

face letters to denote matrices and vectors. We use upper case letters for matrices 

and lower case letters for vectors to distinguish between the two. Let 

Y1 1 Xu X12 X1p 

Y2 1 X21 X22 X2p 

Y= X= 

Yn 1 X n 1 Xn2 xnp 

/30 e1 

/31 e2 
(3= , and e= 

/3p en 

[5] Using this notation, the observed data model can now be expressed as 

Y = X(3+e. 

1.3.1 Estimating the Unknown Parameters Vector (3 

We define the estimates of the parameters /30, /31, ... ,/3p as /30, /31, ... ,/3p 

where these estimates minimize the least squares residuals L e~, where 

ei = Yi - (/30 + /31 X i1 + ... + /3pXiP)· When written out, formulas for these estimates 

can become complex for each individual parameter. However, by introducing ma

trix notation, the formula becomes compact. In fact, the formula for the the least 

squares estimates is 

(1.7) 
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where X T is the transpose of the matrix X. The objective in using this formula is 

to minimize the Euclidean length of the difference 

//y - X,6//. 

Suppose 

A* 
(3 

is a minimizing vector. Then the line y = f30 + f3tXil + ... + f3;Xip is referred to as 

the least squares line fit to the data. To see how to find ,6, fix a vector y in ]Rn. 

As ,6 varies, the vectors X,6 form a subspace of ]Rn. If we wish y - X,6 to have 

minimum length, then it must be orthogonal to the column space of the matrix X. 
A* A* 

Let (3 be such a vector so that y - X(3 is orthogonal to the column space. Then, 
A * A A 

the inner product of y - X(3 with X(3 is zero for any vector (3. Thus, 

for all vectors (3. Recall that (X,6)T = ,6TXT. Then, using a bit of algebra, 

for all vectors (3. The fixed vector X T y - XTX,6* is orthogonal to every vector ,6 

if it is the zero vector. That, is, 

Since X is a n x p matrix and XTX is a p x p matrix, and if XTX is invertible, 

then XTy = XTX,6* has a unique solution ,6 = ,6* [4]. Namely, 
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l.3.2 Hypothesis Testing 

Similar to Simple Linear Regression. we wish to test the significance of the 

pxplanatory variables and whet hpr t hpsc \"Cuia bIt'S hold sigllificallt explanatory ill-

formation. Our goal is to compare the full model, Y = ;30 + ;31X1 + ... + j3pXp + e, 

with the reduced model, Y = IJO+/J1X1 + .. ·+jJqXq+e where q < p, to test whether 

there is a significant difference between the two models. As one would expect, the 

null hypothesis is given by 

Ho : (Jq+1 = ... = /Jp = O. 

Rather than comparing the individual parameters and gathering data from 

each, it may be simpler to compare the models illstead. The size of the residual ei 

tells the suitability of the model. "The smaller the residual, the better the model 

fits the data" [5]. Let the sum of squared residuals be denoted by SSR. Then 

S S Rfllll and S S Rredllced can be used to compare the reduced model against the full 

model. The test statistic for the null hypothesis is given by 

F = S S Rredllced - S S Rfllll 

(p - q)0-2 

where 0-2 is an estimate of the distribution of the random errors. In order for 0-2 to 

be an unbiased estimate of (12. defin(' 

,2 SSRfll11 
(J = 

n - (p + 1) 

where n - (p + 1) is used rather than n - 1. The use of p + 1 comes from the fact 

that we must estimate p + 1 unknown parameters 50. Sl . .... Bp in order to form the 

residuals ei' If we assume the random errors are distributed normally, then the test 

statistic F has an F distribution with p - q and n - (p + 1) degrees of freedom at 

sigllifinUlcc level I, denoted by F"( (p - q, n - (p + 1)), when we fail to reject the null. 

The hypothesis test is t.hen to 

"Reject Ho : /3q+1 = ... = ;3p = 0 if F > F"((p - q, n - (p + 1))." 
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Rejecting the null hypothesis indicates that there is a significant relation 

between the response variable y and the explanatory variable X. 

1.3.3 Confidence Interval 

We can compute the 100(1 - ,)% confidence interval for multiple linear 

regression models in a way similar to that discussed in Section 1.2.3. For a certain 

(3j, j = 0,1, ... ,n, we have the 100(1 - ,)% confidence interval (see [3]) as 

p (~j - t,/2(n - (p + 1))~ < {3j < ~j + t,/2(n - (p + 1))~) = 1 -" 

where Cjj is the diagonal element of C, a symmetric variance-covariance matrix of 

the estimated regression coefficients defined by 

that represents the variance of ~j. We use t,/2(n-(p+1)) for the confidence interval 

rather than F,(p - q, n - (p + 1)) since we are finding the interval for a certain {3j. 

In interval notation, we can express this as 
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CHAPTER 2 

BAYESIAN REGRESSION ANALYSIS 

2.1 Introduction 

In 1764, over a year after his death, the theorem appropriately named for 

its founder, Thomas Bayes, was published. It is this theorem that lends its name 

to the modern Bayesian approach to data analysis. However, what we know as 

Bayesian analysis today has not always had a "clear run" since 1764. In fact, 

due to their inability to handle prior probabilities properly, Bayes' methods lacked 

respect in the 19th century. Without the aid of powerful computers, Bayesian 

analysis, though not completely forgotten, was widely unused. Thanks to new 

computational methods and the accessibility of more powerful computers in the 

late 20th century, Bayesian analysis has become widely popular. "The subsequent 

explosion of interest in Bayesian statistics has led not only to extensive research in 

Bayesian methodology but also to the use of Bayesian methods to address pressing 

questions in diverse application areas such as astrophysics, weather forecasting, 

health care policy, and criminal justice." [8] 

2.2 Bayes'Theorem 

Before we introduce Bayesian Regression Analysis, it is important to first 

state Bayes' Theorem, the idea behind Bayesian Analysis. Bayes' Theorem is also 

known as Bayes' rule. 
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Bayes' rule was introduced by Reverend Thomas Bayes as a means for cal-

culating conditional probabilities. Let S be a sample space and let A and E be 

two events in S. Denote the probability of A occurring by P(A) and similarly 

for E, P(E), where P(A) =1= 0 and P(E) =1= O. The probability of an event A 

occurring given E is denoted by P(A I E). The conditional probability formulas, 

P(A I E) = P~~~f) and P(E I A) = P~~~f), are helpful in deriving Bayes' rule. 

Substituting P(A n E) = P(E I A)P(A) gives us 

P(A I E) = P(E I A)P(A) . 
P(E) 

(2.1 ) 

We refer to (2.1) as Bayes' rule. 

In the case where A is a set of j mutually exclusive events, Aj , we use the 

law of total probability in the discrete case to calculate P(E): 

P(E) = L P(E I Aj)P(Aj ). 
j 

So, given that event E has occurred, the posterior probability of any of these j 

events occurring is 

P(A-I E) = P(E I A)P(Ai ) 

2 L P(B I Aj)P(Aj )' 
j 

What is meant by prior probability and posterior probability? The prior 

probability is an initial probability obtained prior to any additional information 

being obtained, denoted by P(A). The posterior probability is a probability value 

that has been revised using additional information obtained later. We denote the 

posterior by P(A I B). We refer to the additional information obtained as the like

lihood and marginal likelihood denoted by P(B I A) and P(B), respectively. Thus, 

Bayes' rule can be written as 

likelihood x prior posterior = ____ ----'c--_ 

marginal likelihood 

Bayes' rule can best be summed up by the following quote presented in a 

2000 article in the Economist on the Bayesian Approach: 
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The essence of the Bayesian approach is to provide a mathematical rule 

explaining how you should change your existing beliefs in the light of 

new evidence. In other words, it allows scientists to combine new data 

with their existing knowledge or expertise. The canonical example is 

to imagine that a precocious newborn observes his first sunset, and 

wonders whether the sun will rise again or not. He assigns equal prior 

probabilities to both possible outcomes, and represents this by placing 

one white and one black marble into a bag. The following day, when 

the sunrises, the child places another white marble in the bag. The 

probability that a marble plucked randomly from the bag will be white 

(i.e., the child's degree of belief in future sunrises) has thus gone from 

a half to two-thirds. After sunrise the next day, the child adds another 

white marble, and the probability (and thus the degree of belief) goes 

from two-thirds to three-quarters. And so on. Gradually, the initial 

belief that the sun is just as likely as not to rise each morning is modified 

to become a near-certainty that the sun will always rise. [2J 

2.3 Priors 

The most controversial element of Bayesian Analysis is the use of a prior 

distribution. Criticized for introducing subjective information, the use of a prior is 

purely an educated guess and can vary from one scientist to another. 

There are two types of priors. The first type, called the Conjugate Prior, 

occurs when the posterior distribution has the same form as the prior distribution. 

The second type, called the Noninformative Prior, is used when we have very little 

knowledge or information about the prior distribution. The noninformative prior is 

used to "conform to the Bayesian model in a correct parametric form." [13J. 
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2.3.1 Conjugate Priors 

To have a bet.ter underst.anding of conjugate priors, we use t.he following 

example. 

Suppose X is a random variable wit.h a beta distribution, that is, 

X rv BETA(a, b), where a and b are known. Then X has probability distribution 

function 
Ba-l(l _ B)b-l 

f(xIB)= B(a, b) , (2.2) 

where 0 < B < 1, a, b > l. Let. e rv BIN(n, B), where n is known. Then the 

dist.ribution of e is given by 

where x = 0,1,2, ... ,n. Bayes' Rule states that 

prior x likelihood 
post.erior = . 

marginal likelihood 

Since t.he marginal likelihood is a const.ant. we have that 

k(B I x) ex: h(B) x f(x I B), 

or 

posterior ex: prior x likelihood. 

Therefore, 

Let. A = x + a and B = n + b - x. Then 

(2.3) 
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I Prior Distribution Likelihood I Posterior Distributio~ 
Univariate Models 

Beta Binomial Beta 

Gamma Poisson Gamma 

Gamma Exponential Gamma 

Normal Normal Normal 

(known variance, unknown mean) 

Multivariate Models 

Dirichlet Multinomial Dirichlet 

Multivariate Normal Multivariate Normal Multivariate Normal 

(known variance matrix) 

Table 2.1-- Commonly used conjugate priors [13J 

We call k( () I x) in (2.3) the conjugate prior since its distribution is similar to the 

prior distribution in (2.2). 

The conjugate prior simplifies the mathematics involved in Bayesian data 

analysis. Some commonly used conjugate priors are listed in Table 2.1. 

2.3.2 Noninformative Prior 

In the event that we have very little knowledge of the data set,we opt to use 

a noninformative prior. The question then becomes, "How do I choose the prior?" 

The answer is quite simple. The conservative, and most likely easiest, approach 

to choosing priors is to assume very little is known about a parameter and to 

use a noninformative prior. The most common choice is a Uniform prior, "a flat 

distribution that assigns the same probability to every value of the parameter." [14J 

There arise a few problems, however, if the parameter is infinite in range and lacks 
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the ability to be described by a "proper prior." This problem is not necessarily 

serious if the likelihood has a bounded range such that the function is nonzero. 

Rather than using a Uniform prior we may opt to use a BETA(I,l) prior, 

which has the same result as a Uniform prior would. In fact, the BETA(I,I) prior is 

a special case of the Uniform prior. In the event that we have a multivariate model, 

we may choose to use the Dirichlet model with prior parameters set to 1. This is 

the multivariate version of the BETA(I,l) model. 

2.4 Estimating the Regression Line 

2.4.1 Simple Linear Regression 

Suppose we wish to estimate the regression line for a data set involving the 

random variables Xi and Yi, where Xi denotes the ith observation on the independent 

variable and Yi denotes the ith observation on the dependent variable. We may use 

the model 

where, 0: and /3 are unknown parameters. Assume, III order to obtain a third 

unknown parameter, that the ei are independent and normally distributed. That 

is, ei rv N(O, (12). Now we have the unknown parameters 0:, /3, and (12. 

Let 

Y= 

Yn 
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and 

x= 

Then, the likelihood function becomes 

n 1 {I } f(x,yla,,8,a) = rr~exp --2(Yi- a -,8Xi)2 
. 27m2 2a 
z=l 

1 {I n } ex an exp - 2a2 8 (Yi - a - ,8Xi)2 , (2.4) 

where we ignore the proportionality constant (21T )-~ in equation (2.4). 

Choose a noninformative prior density, h(a,,8, a), so that 

(2.5) 

where hl(a) ex constant, h2(,8) ex constant, and h3(a) ex ~. 

Now that we have the likelihood function and the prior density we can use 

Bayes' Theorem, k(a,,8, a I x, y) = h(a,,8, a)f(x, y I a,,8, a), to find the posterior 

density. That is, multiply equations (2.4) and (2.5) to get 

1 1 {I n } k(a,,8, a I x, y) ex ~ an exp - 2a2 8(Yi - a - ,8Xi)2 

1 {I n } = an+1 exp - 2a2 8(Yi - a - ,8Xi)2 (2.6) 

We take the estimates of a and ,8 to be E(8:) and E(~) under the posterior 

distribution. Since these estimates are unbiased, that is, E(8:) = a and E(~) = ,8, 

then they are the same as the least-squares estimates discussed in Theorem 1.1. 

That is, 

8: = y - ,8x, 
A Sxy 
,8=-S ' 

xx 

unbiased estimator of a 2 is 

A2 2 1 L A A 2 a == s = -- (Yi - a - ,8xd . 
n-2 
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Before continuing in our calculations, it is first important to note that 

n n 

I)o: - &)(Yi -- & - SXi) = 2:)0: - &)(Yi - Y + Sx - SXi) 
i=l i=l 

= (0: - &)(ny - ny + nSx - nSx) 

=(0:-&)0 

=0 

Hence, 
n 

2:)0: - &)(Yi - & - SXi) = O. (2.7) 
i=l 

We also note that, given the result of (2.7), we have that 

n n n 

L(Yi - & - SXi)(f3 - SXi) = f3 L(Yi - & - SXi) - S L Xi(Yi - & - SXi) 
i=l i=l i=l 

n 

= 0 - S L Xi(Yi - & - SXi)Xi (by 2.7) 
i=l 

n 

= -S L(Yi - Y + Sx - SXi)Xi 
i=l 

~ -# [tXiYi - nxy - # t(Xi - X)Xi] 

~ -# [t XiYi - nxy - rl t(Xi - X)(Xi - )] 

= -S [L XiYi - nxy - SSxx] 
~=l 

, [~ __ Sxy ] = -f3 ~Xi - Yi - nxy - SSxx 
i=l xx 

~ -ri [t XiYi - nXi! - t,(Xi - X)(Yi - m] 

~ -# [t(Xi - X)(Yi - Yl - t(Xi - X)(Yi - Yl] 
=0 
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Hence, 
n 

L(Yi - a - /3X:i)(,B - ~)Xi = 0 

n 

Rewrite L (Yi - 0: -- (3Xi)2 to get 
i=l 

n n 2 

L(Yi - 0: ~ (3Xi)2 = L [(Yi - a - ~Xi) - (0: - a) - ((3 - ~)Xi] . 
i=l i=l 

Evaluating, we see that 

n n 2 

L(Yi - 0: - (3Xi)2 = L [(Yi - a - ~Xi) - (0: - a) - ((3 - ~)Xi] 
i=l i=l 

n 

n 

" [ A 2 2 A 2 2 == ~ (Yi- Oo -(3Xi) +(0:-00) +((3-(3) Xi 
i=l 

+2(0: - 00)((3 - ~)Xi 

-2(Yi - a - ~Xi)(O: - a) 

-2(Yi - a - ~Xi)((3 - ~)Xi] 

i=l 
n 

+ 2(0: - 00)((3 -~) LXi 
i=l 

i=l 

n 

= (n - 2)82 + n(o: - 00)2 + ((3 - ~)2 L X; 
'i=l 

n 

+ 2(0: - 00)((3 -~) LXi 
i=l 

Let P = ~ L (Yi - 0: - (3Xi? be a nonnegative constant. Integrating 
i=l 

k(o:, (3, 0' I x, y) with respect to 0', we have 

21 
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where f > O. Let z = fO'-2. Then dO' = _:feO'3 dz. Then 

100 _1 e--;Z dO' = 100 

~ (-~) (~) e-Z dz 
O'n+1 O'n+J 2 f o 0 

Thus we have, 

~ f e2»-1 (-D (De-'dZ 
roo n (1) ¥-1 (1) ( 1) 

= Jo Z2-
1 £ £ -2 e-

Z 
dz 

( 1) (1) ¥ roo .!!.-1 -z 
= -2 £ Jo Z2 e dz 

= ( -1) g- ¥ r (~) 

(2.9) 

Together, both 0: and fJ follow a bivariate Student's t-distribution. The 

marginal distribution of 0: follows a univariate Student's t-posterior distribution 

given by 
1 

(0: - &) [ 2 Sxx ]2 rv t(n - 2). 
L "'" x 2 
n D ~ 

(2.10) 

The marginal distribution of fJ follows a univariate Student's t- posterior distribu-

tion given by 

rv t(n - 2). (2.11) 

Unlike frequentist statistics, in Bayesian data analysis, we use a credibility 
1 

statement instead of a confidence interval. In (2.10), let ~ = [s:S£x;] 2. Then the 

credibility statement is 

P (
, Z"! A Z"! ) 
0: - - < 0: < 0: + - = 1 - 2"V 

~ - - ~ I' 
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where z-y is the ,-fractile point of the Student's t-distribution. Similarly, in (2.11), 

let 6 = -~. Then the credibility statement is 
[SuP 

Suppose we are asked to predict the outcome of y* given a new observation 

X*. From our previous calculations, the model for the new point is 

y* I x* = a + j3x* + e, 

where e rv N(O, (]"2). In order to make a prediction, we calculate a predictive density, 

given that the parameters have already been estimated. 

DEFINITION 2.1. Let Xl"'" Xn be a set of random variables with a density 

f(xI,"" xn I e). For the prior, h(e), we obtain the posterior 
n 

k(O I Xl,"" Xn) ex: II f(xi I e)h(B). 
i=l 

If we wish to predict a new observation y*, we utilize a predictive density for y* 

given by 

p(y* I x~, ... , x~) = J f(y* I e)k(e I x~, ... , x~) de. 

[ll} 

Thus, the predictive density of y* is given by 

p(y* I x*) = J J J f(y* I x*, a,B, (]")k(a, 13, (]" lx, y) da dj3 d(]" 

= jr' r r _1 exp { __ 1 [~(Y* _ a _ j3X*)2 
) } (]"2n+1 2(]"2 6 

i=l 

+ t,(Yi - " - !lXi)'] } d" d!l d". (2.12) 

U sing similar techniques as above to calculate the two-dimensional posterior 

density, we have that 

y* - a - j3x* 
----------0-

1 
rv t( n - 2). 

a- [1 + 1 + (X*-X)2] "2 
n SIX 

23 
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2.4.2 Multiple Linear Regression 

The word "multiple" indicates that there is more than one independent vari

able in the regression model. As seen in Section 2.4.1, the calculations can become 

increasingly difficult. Similar to Section 1.3, we utilize matrix notation to simplify 

our calculations. However, this does not aid in completely simplifying complicated 

calculations. Instead, with the use of a computing tool, such as R in combination 

with WinBUGS (Windows version of Bayesian inference Using Gibbs Sampling), 

we can utilize Markov Chain Monte Carlo (MCMC) methods to assist in these 

calculations. We outline this technique in Section 2.5. 

2.5 Markov Chain Monte Carlo (MCMC) Methods 

As the number of variables increases in our models, the more difficult it 

becomes to evaluate and analyze the solution of a posterior distribution. Here is 

where the MCMC Methods become quite useful. MCMC techniques simulate the 

posterior so that it can be analyzed. The results can then be used to draw inferences 

about the models and parameters. There are many MCMC algorithms with which 

to choose. 

2.5.1 Gibbs Sampling 

Gibbs Sampling is one such algorithm and is especially useful in applications 

of Bayesian analysis. The Gibbs sampler is a technique that generates random 

variables indirectly from a distribution without having to calculate the density. 

Thus, we are able to create a sequence of easier calculations while avoiding the 

much more difficult ones. 

The main idea of the Gibbs sampler is to fix all values of the random variables, 
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save for one. In other words, we consider univariate conditional distributions. 

Suppose we wish to obtain the marginal density, 

f(x) = J ... J f(x, Yl, ... ,Yn) dYl ... dYn, of a given joint density f(x, Yl, Y2, ... ,Yn) 

in order to obtain the mean or variance. As we are often programmed to do, the 

first natural instinct would be to calculate f (x) and obtain the desired information. 

In many instances, however, the calculations of f (x) can become quite complicated 

and an alternative method is needed. The Gibbs sampler, the alternative method, 

generates a random sample Xl, ... ,Xn rv f (X) without requiring f (x). Any char

acteristics drawn from f (x) can be calculated to the desired accuracy with a large 

enough simulation sample. 

As an example, consider a pair of random variables (X, Y). Rather than 

sampling from f(x), the Gibbs sampler will generate a sampling from the conditional 

distributions f(x I y) and f(y I x). Given the initial value Y~ = y~, we can obtain a 

"Gibbs sequence" [6] of random variables 

by alternately generating values from 

Xj rv f(x I Yj = yj) 

Yj rv f(YIXj = xj) 

(2.14) 

(2.15) 

We call the generation of (2.14) the Gibbs sampler. It turns out that, as k ---+ 00, 

the distribution of X~ tends to f (x). For a large k, the value X~ = x~ is a point 

from f(x). 

For the frequentist statistician, the Gibbs sampler can be used to calcu

late the likelihood functions and characteristics of likelihood estimators. For the 

Bayesian statistician, the main use of the Gibbs sampler is to generate the posterior 

distributions. 
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As the dimension of a problem increases, the Gibbs sampler becomes more 

useful since it allows us to avoid "prohibitively difficult" integrals in high dimensions. 
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CHAPTER 3 

AN EXAMPLE 

As seen in Chapters 1 and 2, the Frequentist and Bayesian data analysis 

methods are quite different. In this chapter we will look at a simple linear regression 

example as well as a multiple linear regression example. 

3.1 Simple Linear Regression 

Consider a set of fifteen women between the ages of 30 and 39 in Table 3.1. 

For each subject, her height and mass was recorded. 

A plot of the data points, where x is the height of the women in meters and 

y is the mass of the women in kilograms, is shown in Figure 3.1 . The data set is 

linear so we may apply the simple linear regression model 
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Table 3.1 - Average mass of women age 30-39 as a function of their height [1 J 

Height Mass 

meters(m) kilograms(kg) 

x y 

1.47 52.21 

1.50 53.12 

1.52 54.48 

1.55 55.84 

1.57 57.20 

1.60 58.57 

1.63 59.93 

1.65 61.29 

1.68 63.11 

1.70 64.47 

1.73 66.28 

1. 75 68.10 

1.78 69.92 

1.80 72.19 

1.83 74.46 
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Figure 3.1- Plot of the average mass of women age 30-39 as a function of their 
height data 

3.1.1 Frequentist Methods 

To perform the necessary calculations, we use R, a statistical computing 

software [15], for assistance. We obtain the following: 

1 15 

X = - LXi = 1.650667 
n 

i=l 

1 15 

Y = - LYi = 62.078 
n 

i=l 

15 

Sxx = L(Xi - x? = 0.1826933 
i=l 

15 

Sxy = L = (Xi - X)(Yi - y) = 11.19402 
i=l 
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Figure 3.2 - Plot of the average mass of women age 30-39 as a function of their 
height data with estimated regression line 

Substituting these values into the equations (1.4) and (1.5), we have that 

S 
do = Y - .....!:J!.x = -39.06196 

Sxx 

~ S 
f3 = Sx

y = 61.27219 
xx 

Thus, the regression line can be estimated by 

Yi = -39.06196 + 61.27219xi. 

(3.5) 

(3.6) 

(3.7) 

We can see in Figure 3.2 that the sum of the squared residuals (SSR) is minimal. 

Given a large data set, we can use R to perform these calculations as seen in 

Figure 3.3. 

Given a 95% significance level, we "Reject Ho : f3 = 0 if It I > 2.160." In 

order to calculate the confidence interval, we need to first calculate s. That is, 

)SSR s = 13 = 0.7590763. (3.8) 
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Call: 
lm(formula - yvar - xvur. data. Wikipedia) 

Residuals: 
Min 1Q Median 3Q 

-O,88171 -O,64484 -O,06993 O,34095 

Coefficients: 

Max 
1,39385 

Estimate Std. Error t value Pr(>itl) 
(Intercept) -39.062 2.938 -13.29 6.05e-09 *** 
xvar 61.272 1.776 34.50 3.60e-14 *** 

Signif. codes: o ,***, 0.001 ,**, 0.01 '*' 0.05 • I 0.1 I , 1 

Residual standard error: 0.7591 on 13 degrees of freedom 
Multiple R-squared: 0.9892. Adjusted R-squared: 0.9884 
F-statistic: 1190 on 1 and 13 DF. p-value: 3.604e-14 

Figure 3.3 - R output of Average mass of women data 

Thus, with confidence level 95%, (3 lies in the interval 

[57.436,65.108]. 

3.1.2 Bayesian Methods 

Given that we have no prior knowledge of the data in Table 3.1, we will use 

a uniform prior distribution 

1 
h(a,(3,cy) ex:-

CY 

Thus, we can use the likelihood function in equation (2.4). 

(3.9) 

Since the estimates of the parameters are unbiased, we can use the least 

squares estimates found in (3.5) and (3.6). As well, we can use the values found in 

(3.1) and (3.8). The marginal posterior densities are given in Figures 3.4 and 3.5. 

The posterior means are approximately equal to the least-squares estimates of the 

parameters and are given by 

E(a I y, x) = -39.05, E((31 y, x) = 61.26. (3.10) 
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Figure 3.4 - Posterior density of a. 

0.3 
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beta sample: 10000 

50.0 
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/ \ 
/ \ 

J ,~ __ ....--r- ~_ 

55.0 60.0 65.0 

Figure 3.5-Posterior density of (3. 

We compute these values using the 3-step method seen in Figure 3.7 to obtain the 

data in Figures 3.4, 3.5, and 3.6 using WinBUGS [7J. 

Given " the credibility statement for a and (3 is as follows: 

P (-39.062 - O.~~O ~ a ~ -39.062 + 0.~~0) = 1 - 2, 

P (61.272 - 1.776zl' ~ (3 ~ 61.272 + 1.776zl') = 1 - 2{-

(3.11) 

(3.12) 

Unlike frequentist methods, the credibility statements can be used to predict the 

true values of a and (3. 

node 
alpha 
beta 

mean 
-39.05 
61.26 

3.2 Multiple Linear Regression 

sd 
3.205 
1.937 

2.5% 
-45.35 
57.42 

median 
-39.02 
61.25 

97.5% 
-32.67 
65.06 

Figure 3.6 - WinBUGS posterior data of parameters a and (3. 
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1 ) Program code 
model 
{ 
for(i in 1 :n) 
{y[i] ~ dnorm(mu[i] ,tau) 
mu[i ]<- alpha+beta"'x[i] 
} 
alpha - dnoFm(O ,0 .000000000001 ) 
beta - dnorm(O ,0 .000000000001 ) 
tau - dgamma(O .001 ,0.001 ) 
sigma <- 1/sqrt(tau) 
} 
2. Data 
list(x=c(1.47,1.50,1.52,1.55,1.S7, 
1 .60,1 .63,1 .65,1 .68,1 .70,1 .73, 
1.75,'1.78,1.80,1.83), 
y=c(52.21 ,53.12,54.48,55.84, 
57.20,58.57,59.93,61 .29,63.11 , 
~4.47,66.28,68.1 0,69.92,72.19,74.46), 
n=15) 
3. Initial values 
list(alpha = 0, beta = 0, tau = 1) 

Figure 3.7 - WinBUGS data input. 

Consider a set of seventeen samples taken by a chemical analyst who expects 

the yield to be affected by two factors, Xl and X2. Table 3.2 lists the values recorded. 

A plot of the data points, where Xl and X2 are the two Factors and y is the yield, is 

shown in Figure 3.8. The data set is linear so we may apply the regression model 
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Table 3.2 - Chemical Analysis Data [3J 

Factor 1 Factor 2 Yield 

Xl :r:2 Y 

41.9 29.1 251.3 

43.4 29.3 251.3 

43.9 29.5 248.3 

44.5 29.7 267.5 

47.3 29.9 273.0 

47.5 30.3 276.5 

47.9 30.5 270.3 

50.2 30.7 274.9 

52.8 30.8 285.0 

53.2 30.9 290.0 

56.7 31.5 297.0 

57.0 31.7 302.5 

63.5 31.9 304.5 

65.3 32.0 309.3 

71.1 32.1 321.7 

77.0 32.5 330.7 

77.8 32.9 349.0 
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Figure 3.8 - Plot of chemical analysis data. 

35 



3.2.1 Frequentist methods 

To simplify the calculations we use matrix notation. Let 

1 41.9 29.1 251.3 

1 43.4 29.3 251.3 

1 43.9 29.5 248.3 

1 44.5 29.7 267.5 

1 47.3 29.9 273.0 

1 47.5 30.3 276.5 

1 47.9 30.5 270.3 

1 50.2 30.7 274.9 

x= 1 52.8 30.8 and Y= 285.0 

1 53.2 30.9 290.0 

1 56.7 31.5 297.0 

1 57.0 31.7 302.5 

1 63.5 31.9 304.5 

1 65.3 32.0 309.3 

1 71.1 32.1 321.7 

1 77.0 32.5 330.7 

1 77.8 32.9 349.0 

Then, the estimates of the parameters can be written as 

/30 

f3= (31 

(32 
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Thus, using equation (1.7), we find that 

336.521 1.228 -13.089 

f3= 1.228 0.005 -0.049 

-13.089 -0.049 0.511 

-153.512 

1.239 

12.082 

Therefore, 

-153.512 

f3= 1.239 

12.082 

4902.8 

276614.4 

152021.1 

(3.13) 

We can see in Figure 3.9 that the SSR is minimal. Given a large data set, we can 

use R to perform these calculations as seen in Figure 3.10. 

To test the significance of the parameter (31 = 0 we perform a hypothesis 

test. We obtain the following values: 

17 

SSRfull == L(Yi - ~o - ~IXil - ~2Xi2)2 = 423.374 
i=1 

17 

SSRreduced = L(Yi - ~o - ~2Xi2)2 = 83697.15 
i=l 

8-2 == SSRfull = 32.567. 
n-3 

Thus, the value of the test statistic F is 

F = SSRreduced - SSRfull = 255698 
8-2 . (3.14) 

Assuming normality of the distribution of the random errors, F rv F(l, 13). There

fore, with a 95% confidence level, we "Reject Ho : (31 = 0 if F > 4.67." In this case, 

we reject the null hypothesis, which indicates there is a significant relation between 

Yi and XiI· 
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Figure 3.9 ~ Plot of chemical analysis data with estimated regression plane. 

To construct the confidence interval, first we need to compute C = o-2(XTX)-1 

as seen in (3.15). 

10959.571 40.002 -426.274 

C= 40.002 0.168 -1.595 (3.15) 

-426.274 -1.595 16.652 

Thus Cll = 10959.571. The 95% confidence interval is given by 

[-224.887,227.365]. (3.16) 

3.2.2 Bayesian methods 

To simplify our calculations, we utililize WinBUGS and the program code in 

Figure 3.11. Since we have no prior knowledge of the data, we will use a uniform 
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Can: 
Im(formula - y - xl + x2, data - Chemical) 

Resi duals.: 
Min lQ Median 3Q Max 

8.630 -8.998 -4.035 -0.318 4.267 

Coefficients: 

(Intercept) 
xl 
x2 

Estimate 
-153.5117 

1.2387 
12.0824 

Std. Error 
100.8799 

0.3946 
3.9323 

t value Pr(>ltl) 
-1.522 0.15034 
3.139 0.00724·· 
3.073 0.00827·· 

Signif. codes: 0 'U.' 0.001 ' •• ' 0.01 I.' 0.05 ',' 0.1" 1 

Residual standard error: 5.499 on 14 degrees of freedom 
Multiple R-squared: 0.968, Adjusted R-squared: 0.9635 
F-statistic: 211.9 on 2 and 14 OF. p-value: 3.41ge-ll 

Figure 3.10-R output of chemical analysis data 

pnor. In addition, we assume that the parameters have a normal distribution. After 

performing several iterations, we obtain the summary in Figure 3.12. As calculated 

in the frequentist methods, we find that the estimates for j3 are given by (3.13). 

We find that the marginal posteriors densities are given in Figures 3.13, 

3.14, and 3.15. The posterior means are approximately equal to the least-squares 

estimates of the parameters and are given by 

E(f3o I y, X) = -153.4, E(f31 I y, X) = 1.238, E(f321 y, X) = 12.08. (3.17) 
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node 
betaO 
beta1 
beta2 

1) Program code 
modeL 
{ 
for(i. in 1 :n) 
{y[i] ~ dnorm(mu[i], tau) 
mu[i]<- beta0 + beta1*x1[i] + beta2*x2[i] 
} 
beta0 ~ dnorm(0,0.000000000001) 
beta1 ~ dnorm(0,0.000000000001) 
beta2 ~ dnorm(0,0.000000000001) 
tau ~ dgamma(0.001,0.001) 
sigma<-l/sqrt(tau) 
} 
2. Data 
List(x1=c(41.9,43.4,43.9,44.5,47.3,47.5, 
47.9,50.2,52.8,53.2,56.7,57.O,63.5,65.3, 
71.1,77.O,77.8), 
x2=c(29.1,29.3,29.5,29.7,29.9,30.3,30.5, 
30.7,30.8,30.9,31.5,31.7,31.9,32.O,32.1,32.5,32.9), 
y=c(251.3,251.3,248.3,267.5,273.0,276.5, 
270.3,274.9,285.O,290.O,297.O,302.5,304.5, 
309.3,321.7,330.7,349.O), 
n=17) 
3. InitiaL vaLues 
List(beta0=0, beta1=0, beta2=0, tau=l) 

mean 
-153.4 
1.238 
12.08 

Figure 3.11- WinBUGS program code 

sd 
109.4 
0.4291 
4.268 

2.5% 
-370.4 
0.3879 
3.55 

median 
-154.2 
1.238 
12.08 

97.5% 
65.91 
2.086 
20.38 

Figure :3.12 - Data summary in WinBUGS 
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betaO sample: 10000 
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Figure 3.13 - Posterior density of ,60 
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Figure 3.14 - Posterior density of /31 

beta2 sample: 10000 
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CHAPTER 4 

FREQUENTIST v. BAYESIAN 

In the early 20th century, Frequentist methods of data analysis became more 

and more popular, while Bayesian methods were tabled until proper advancements 

had been made to handle the increasing difficulty of the calculations. In the late 

20th and early 21st centuries, Bayesian methods have rapidly become more popular 

with the use and availability of computers and new computational methods. Now 

the question becomes which is better? Or is one truly better than the other? How 

do we choose? 

Frequentists will argue that Bayesian methods are not suitable and cannot 

be reproduced from one statistician to another as the choice of the prior is purely 

a guessing game. Bayesians, on the other hand, will argue that Bayesian methods 

are much more accurate than the frequentist methods since the main focus lies on 

the posterior distribution and the characteristics that can be drawn from it. 

4.1 Frequentist Methods - The Method of Least Squares 

The biggest advantage to the Method of Least Squares is its simplicity in 

the calculations. As well, by definition, the estimates produced give the smallest 

sum of squared residuals (SSR). "The least-squares estimate of (3j is the best linear 

unbiased estimate (BLUE). That is, suppose we want to estimate (3j by a linear 

combination alYl + ... + anYn of the observed response variables and suppose we 

want the estimate to be unbiased. Among all linear unbiased estimates of (3j, the 
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one with the smallest variance is the least-squares estimate." [5] 

The biggest disadvantage to the Method of Least Squares is that to obtain 

optimality one must assume the random errors have a normal distribution or at

tention should be restricted only to linear estimates. "When the distribution of the 

errors is not normal, least-squares estimates and tests may lose much of their effi

ciency. A few distant outliers can cause least-squares procedures to perform quite 

poorly." [5] 

4.2 Bayesian Methods 

Without any knowledge of prior information, it may seem pointless to use 

Bayesian techniques. However, with some prior information available it seems point

less not to use it. 

The Bayesian approach can also be regarded as being more satisfac

tory than the classical approach in that it produces a direct probability 

statement about a parameter, or hypothesis, as opposed to the somewhat 

awkward notions of confidence level or p-value, which are frequently mis

interpreted by nonprofessional statistical users. It could also be viewed 

as an advantage that Bayesian analysis allows one to interpret a prob

ability as a measure of degree of belief concerning the actual observed 

data rather than as a long-run frequency involving hypothetical obser

vations that might have been obtained but were not. Moreover, the 

Bayesian approach has the appealing feature that it provides a unified, 

fairly straightforward way to analyze any statistical problem. 

Critics of the Bayesian method say that it is too subjective, especially 

with regard to the choice of a prior distribution for the parameters. In 

response to this criticism, it can be said that statistical analysis cannot 
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avoid being subjective, for example, in the choice of the model, and 

that the data analyst should admit his or her subjectivity and explicitly 

include it in the analysis. In doing this, however, one runs into the 

difficulty of quantifying one's prior knowledge and beliefs in the form of 

a prior distribution. Another difficulty arises if the prior distribution is 

not restricted to have a mathematically convenient form, because then 

the computation of the posterior distribution can be unwieldy. [5J 

4.3 Conclusion 

In the end, which method is better? Ultimately, it is up to the statistician 

to choose which method he or she prefers to use based on any prior knowledge of 

the data. While the Method of Least Squares seems ideal because of its simple 

calculations, the Bayesian approach provides a "direct probability statement about 

the parameter." Both methods can be equally criticized for the flaws that each 

possess. Neither method is "better" than the other, it all depends on the prior 

knowledge of the data and the decision of the statistician as to which method he or 

she uses. 
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