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ABSTRACT
BAYESIAN REGRESSION ANALYSIS

Sara Evans

May 12, 2012

Regression analysis is a statistical method used to relate a variable of inter-
est, typically v (the dependent variable), to a set of independent variables, usually,
Z1,Z9,...,Ty. The goal is to build a model that assists statisticians in describing,
controlling, and predicting the dependent variable based on the independent vari-
able(s). There are many types of regression analysis: Simple and Multiple Linear
Regression, Nonlinear Regression, and Bayesian Regression Analysis to name a few.
Here we will explore simple and multiple linear regression and Bayesian linear re-
gression. For years, the most widely used method of regression analysis has been
the Frequentist methdds, or simple and multiple regression. However, with the ad-
vancements of computers and computing tools such as WinBUGS, Bayesian meth-
ods have become more widely accepted. With the use of WinBUGS, we can utilize
a Markov Chain Monte Carlo (MCMC) method called Gibbs Sampling to simplify
the increasingly difficult calculations. Given that Bayesian regression analysis is a
relatively “new” method, it is not without faults. Many in the statistical commu-
nity find that the use of Bayesian techniques is not a satisfactory method since the
choice of the prior distribution is purely a guessing game and varies from statisti-
cian to statistician. In this thesis, an example is presented using both Frequentist

and Bayesian methods and a comparison is made between the two. As computers

v



become more advanced, the use of Bayesian regression analysis may become more
widely accepted as the method of choice for regression analyses as it allows for the
interpretation of a “probability as a measure of degree of belief concerning actual

data observed.” [5]
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CHAPTER 1
FREQUENTIST REGRESSION ANALYSIS

1.1 Introduction

Frequentist statistics became widely used in the first half of the 20th cen-
tury, though the method of least-squares has been around since the early 1800s.
Discovered independently by Carl Friedrich Gauss in Germany and Adrien Marie
Legendre in France, the method of least-squares is the most frequently used regres-
sion method to date. In its early days, it was applied to astronomic and geodetic
data and was originally published in an appendix to a book published by Legen-
dre on determining the orbits of comets. Today, in many undergraduate statistics

courses, students may only be exposed to the “frequentist” approach to statistics.

9l

1.2 Simple Linear Regression

We begin with simple linear regression, the “simplest” of the regression anal-
yses. It is defined to be the least squares estimator of a regression model with a
single explanatory (independent) variable in which a straight line is fit through n
points so that the sum of squared residuals (SSR), >_ €?, is minimized. That is, the
distance between the regression line and the data points is minimal.

We can think of the model as similar to the slope-intercept form of a line



with an error (residual) term. The simple linear regression model is given by
v =a+ 8z, + €

for i =1,2,...,n, where y; is the response (dependent) variable, z; is the explana-
tory/predictor (independent) variable, o and 3 are the unknown parameters that
are to be estimated, and ¢; is the residual term. The e; term is independent and
identically distributed (iid) with a normal distribution with mean 0 and unknown

variance o2. Along with o and /3, 0 can be estimated.

1.2.1 Estimating the Unknown Parameters « and 3

The goal in estimating the unknown parameters is to find a line that “best”

fits the data. To do this we use an estimated regression line
Y =&+ BX,

where & and /3 are estimates of a and /. so that we may look at the size of the
residuals

é =y — (@ + /9;1;7;).

It is important to note any estimates will be denoted with a “hat” symbol, similar
to the estimates for « and j.

Similar to the residual. e;, the estimated residual, é;, is the vertical distance
between the estimated regression line and the data point (x;,y;). The idea is to
choose & and /3 so that the residuals are “small.” While there are several methods
with which to minimize the residuals, here we will use the method of least squares.

We measure the overall size of the residuals by > é?. The least squares
estimates of & and 3, & and j3, give the least SSR.

To estimate « and /3, first find the derivative of > ef with respect to o and



B, respectively.

o Ze —QZ i — a — Bx;)(—1)
% Zef = ZZ(% —a — fz;)(~1;)
i=1 1=1

Setting each derivative to zero gives us

n

Z(yi —a—fBz)r; =0 (1.2)

=1

From (1.1), we get

ny = na + nfT

J=a+pZ (1.3)

where 7 = + 3" 1y and T = & 3| 2; denote the averages of y; and w;, respec-

tively. From (1.2), we see that

n n n

2
§ xiyi=ag a:ﬁrﬁg ;.
i=1 i=1 i=1

We can rewrite this equation as

n n

Z(zi —I)y; —¥) +nZTY = naz + B Z(a:l —T)(z; — T) + nBT>

=1 i=1

Define

Then

Spy + NTY = naT + BSps + BT



Using (1.3), we have

Sey +NTY = nZ(G — BT) + BSe: + nBT?

Szy +NTY =NTY — nBT> + Sy + NPT

Sy
=5,
Hence
LA

Thus the estimates of a and [ are given by

~ Sxy —
=7— 1.4
a=y- 227 (1.4)
. Sy
= . 1.5
=5 (1)
[12]
The random variable (RV) Y given X = z will be denoted by Y,. When
choosing, in succession, values zy, o, ..., z, for z, a sequence

Yf171/5Z27"'7YT

of RVs is obtained. For convenience, we will denote this sequence of RVs as
Y1,Y,,..., Y,
To do statistical analysis, we make the following assumptions:
1. E(Y2) = a+ Bz so that y; = E(Y;) = a + Bx;;
2. Y1,Y,,...,Y, are independent RVs;
3. Each Y}, fori =1,2,...,n, has the same variance, o2

[10]



THEOREM 1.1. Under the above assumptions, the least squares estimators, & and

B, of the linear model E(Y |z) = a+ Bz are unbiased.

Proof.
~ Sev 1 - . —
ORI R E(Zm—r)(mm)
rr rr i=1
1< -
- oY (m DB -V)
T =1
n 1 n . 1 n
= S @ - DEW) - 5= S (@~ DET) = o= > (o~ DE(Y)
k& — o i
1 n
= (z; — ZT)(a + B z;)
Sxx -1
— Sl Z(z, T)a+ —p0 Z(xz —T)x;
2 zx
1< 1 < _
=3 B (z;—T)z; = BY (z;—T)(x; — )
T =] =1
Hence, E(B) = 4.




Hence E(a@) = a.

Thus, 3 and @& are unbiased estimators for 3 and a, respectively. [12] O

1.2.2 Hypothesis Testing

In a regression model if 5 = 0, then the response variable Y and the explana-
tory variable X are not related. Hence we test this relationship between Y and X
using a hypothesis test where the null hypothesis is H, : § = 0 and the alternative
hypothesis is H, : 8 # 0.

The null and alternative hypotheses allow for the comparison of the full

model

Y=a+6X+e

with the reduced model

Y=a+e¢

to determine whether the relationship between X and Y is significant.

Szy

To test the hypothesis that § = 0, use the least squares estimator 8 = <

and then estimate o2 This estimate can be found using the maximum likelihood

method and is given by
o1 Sy

" = E [Syy - szSmy} .

THEOREM 1.2. An unbiased estimator s* of o2 is given by

9 SSR ne?
§° = = .
n— 2 n—2




Proof. First, it should be noted that 2% ~ y2(n—2) and that E(x*(n—2)) = n—2.

g

I
3
W
BN
&
o
%3,
SN’

o
= E(x*(n -2
7B -2)
2
o
= -2
n — 2"
Hence, E(s?) = 02 and thus s is an unbiased estimator of ¢2.[12] O

We can calculate the standard deviation of 3 using the formula

SD(B) = —=

Here, o is the standard deviation of the population of errors. We really wish to use
the estimate of the standard deviation in subsequent steps so we must replace o
with an unbiased estimate, s, to obtain

e

p s
SD(B) = )
) Sez
Next, we evaluate the test statistic
B=B)
o= |2
SII
3 - -2 Sm:
_p-8 [(n=2) (1.6)
a n

and compare it to t,2(n — 2), the Student’s ¢t—distribution with n — 2 degrees of
freedom at a given significance level ~. [5]

The hypothesis test at a given significance level, 100(1 — )%, is then to

“Reject H, : 8 =0if [t| > t,/o(n —2)."



Rejecting the null hypothesis does not necessarily imply that we should ac-
cept the alternative hypothesis. However, it does indicate that there is a significant

relation between the explanatory and response variables X and Y, respectively.

1.2.3 Confidence Interval

In frequentist statistics, it is often necessary to give a range of values with
which we are 100(1 — v)% confident that S falls within that range. From (1.6), we

Then the

can determine a confidence interval for 3; that is, let § = & (n—;) 5

100(1 — v)% confidence interval is given by
P(B—Qt,y/g <B< B-’—Qt,y/g) =1-7.

In interval notation, we can express this as

~ . n ~ R n
ot ot

1.3 Multiple Linear Regression

Multiple regression occurs when there are two or more explanatory variables

present. This means the model, in terms of RVs, is given by
Y =0+ 505X +8:Xe+ -+ 5,X, +e
In terms of observed data, the model is given by
Yi = Bo + B1xin + Bozio + - - + Bpip + €

for i =1,2,...,n. Asis similar to simple regression, z;,¥; and e; are the explana-
tory, response, and residual variables, respectively. By, 81, ..., 3, are the unknown

parameters that are to be estimated. We note that, when p = 1, the multiple linear



regression reduces to simple linear regression and it is a generalization of the simple
linear regression.

To assist with calculations, we introduce some matrix notation. We use bold
face letters to denote matrices and vectors. We use upper case letters for matrices

and lower case letters for vectors to distinguish between the two. Let

- . _
Y1 I zpn z1p -+ 33119W
Yo 1 291 T9o -+ Ty
Y= y X = ’ 3
_yn_ Ll Tp1 Tp2 - -Tan
[ ] - 1
Bo €1
Io €2
B = , and e=
| B | | en |

[5] Using this notation, the observed data model can now be expressed as

y=XB+e.

1.3.1 Estimating the Unknown Parameters Vector 3

~

We define the estimates of the parameters Bo,51,...,0p as BO,Bl,...,Bp
where these estimates minimize the least squares residuals Y 2, where
€ =y; — (Bo + le“ 4+ ﬁpxip). When written out, formulas for these estimates
can become complex for each individual parameter. However, by introducing ma-
trix notation, the formula becomes compact. In fact, the formula for the the least

squares estimates is

B =(X"X)"'XTy, (1.7)



where X7 is the transpose of the matrix X. The objective in using this formula is

to minimize the Euclidean length of the difference
lly — X8|

Suppose

| A ]
is a minimizing vector. Then the line y = 85 + 8z + - -+ + B, x4y is referred to as
the least squares line fit to the data. To see how to find 3, fix a vector y in R™.
As 3 varies, the vectors XA form a subspace of R®. If we wish y — X,@I to have
minimum length, then it must be orthogonal to the column space of the matrix X.
Let B* be such a vector so that y — XB* is orthogonal to the column space. Then,

the inner product of y — X,B* with X3 is zero for any vector ,@ Thus,

~ ~

(XB)"(y - XB) =0
for all vectors ,B Recall that (XB)T = BTXT . Then, using a bit of algebra,
AL T Ty A
B Xy-X'XB)=0

for all vectors 3. The fixed vector XTy — XTX3" is orthogonal to every vector 3

if it is the zero vector. That, is,
XTy = XTX3".

Since X is a n x p matrix and XTX is a p x p matrix, and if XTX is invertible,

then XTy = XTXA3" has a unique solution 3 = 3" [4]. Namely,
B = (X"X)"'XTy.

10



1.3.2 Hypothesis Testing

Similar to Simple Linear Regression. we wish to test the significance of the
explanatory variables and whether these variables hold significant explanatory in-
formation. Our goal is to compare the full model, ¥ = gy + 51 X7 + -+ + 5, X, + ¢,
with the reduced model, Y = o+ 1 X1+ - -4+ 3, X, +e where g < p, to test whether
there is a significant difference between the two models. As one would expect, the

null hypothesis is given by

Rather than comparing the individual parameters and gathering data from
each, it may be simpler to compare the models instead. The size of the residual e,
tells the suitability of the model. “The smaller the residual, the better the model
fits the data™ [5]. Let the sum of squared residuals be denoted by SSR. Then
SS R and SS Riequced €an be used to compare the reduced model against the full

model. The test statistic for the null hypothesis is given by

. SSRreduced - SSRfull

F (p — q)5?

where 62 is an estimate of the distribution of the random errors. In order for 2 to

be an unbiased estimate of o2, define

~9 SSRfull
0° = ————
n—(p+1)
where n — (p + 1) is used rather than n — 1. The use of p + 1 comes from the fact
that we must estimate p+ 1 unknown parameters %y, 3..... 3, in order to form the
residuals é;. If we assume the random errors are distributed normally, then the test
statistic F' has an F' distribution with p — ¢ and n — (p + 1) degrees of freedom at
significance level vy, denoted by F,(p—¢q.n—(p+1)), when we fail to reject the null.

The hypothesis test is then to

“Reject Hy : fgp1 = =3, =01 F > F,(p—q,n—(p+1))."

11



Rejecting the null hypothesis indicates that there is a significant relation

between the response variable y and the explanatory variable X.

1.3.3 Confidence Interval

We can compute the 100(1 — )% confidence interval for multiple linear
regression models in a way similar to that discussed in Section 1.2.3. For a certain

B;,7=0,1,...,n, we have the 100(1 — )% confidence interval (see [3]) as

P (53 — topa(n— (p+ 1))\/Cj; < B; < Bj +ty2(n — (p+ 1))y ij) =1-7,

where C}; is the diagonal element of C', a symmetric variance-covariance matrix of

the estimated regression coeflicients defined by
C=6*(X"X)1,

that represents the variance of Bj. We use t,/2(n—(p+1)) for the confidence interval
rather than F,(p —q,n — (p + 1)) since we are finding the interval for a certain ;.

In interval notation, we can express this as

(85 = taa(n = (0 + D)/ Tsy By + tyaln = (0 + 1)/ T

12



CHAPTER 2
BAYESIAN REGRESSION ANALYSIS

2.1 Introduction

In 1764, over a year after his death, the theorem appropriately named for
its founder, Thomas Bayes, was published. It is this theorem that lends its name
to the modern Bayesian approach to data analysis. However, what we know as
Bayesian analysis today has not always had a “clear run” since 1764. In fact,
due to their inability to handle prior probabilities properly, Bayes’ methods lacked
respect in the 19th century. Without the aid of powerful computers, Bayesian
analysis, though not completely forgotten, was widely unused. Thanks to new
computational methods and the accessibility of more powerful computers in the
late 20th century, Bayesianranalysis has become widely popular. “The subsequent
explosion of interest in Bayesian statistics has led not only to extensive research in
Bayesian methodology but also to the use of Bayesian methods to address pressing
questions in diverse application areas such as astrophysics, weather forecasting,

health care policy, and criminal justice.” [§]

2.2 Bayes’ Theorem

Before we introduce Bayesian Regression Analysis, it is important to first
state Bayes’ Theorem, the idea behind Bayesian Analysis. Bayes’ Theorem is also

known as Bayes’ rule.

13



Bayes’ rule was introduced by Reverend Thomas Bayes as a means for cal-
culating conditional probabilities. Let S be a sample space and let A and B be
two events in S. Denote the probability of A occurring by P(A) and similarly
for B, P(B), where P(A) # 0 and P(B) # 0. The probability of an event A
occurring given B is denoted by P(A|B). The conditional probability formulas,

P(A|B) = sz;?) and P(B|A) = Pg&})s)’ are helpful in deriving Bayes’ rule.

Substituting P(AN B) = P(B|A)P(A) gives us

P(B|A)P(A)

(2.1)

We refer to (2.1) as Bayes’ rule.
In the case where A is a set of j mutually exclusive events, A4;, we use the

law of total probability in the discrete case to calculate P(B):
P(B) =) _P(B|A;)P(4;).
J

So, given that event B has occurred, the posterior probability of any of these 5

events occurring is

 P(B|A)P(A)
PUAB) = B 4,)P(4)

What is meént by prior probability and posterior probability? The prior
probability is an initial probability obtained prior to any additional information
being obtained, denoted by P(A). The posterior probability is a probability value
that has been revised using additional information obtained later. We denote the
posterior by P(A|B). We refer to the additional information obtained as the like-
lihood and marginal likelihood denoted by P(B|A) and P(B), respectively. Thus,
Bayes’ rule can be written as

likelihood x prior

terior = .
POSLEHior marginal likelihood

Bayes’ rule can best be summed up by the following quote presented in a

2000 article in the Economist on the Bayesian Approach:

14



The essence of the Bayesian approach is to provide a mathematical rule
explaining how you should change your existing beliefs in the light of
new evidence. In other words, it allows scientists to combine new data
with their existing knowledge or expertise. The canonical example is
to imagine that a precocious newborn observes his first sunset, and
wonders whether the sun will rise again or not. He assigns equal prior
probabilities to both possible outcomes, and represents this by placing
one white and one black marble into a bag. The following day, when
the sunrises, the child places another white marble in the bag. The
probability that a marble plucked randomly from the bag will be white
(i.e., the child’s degree of belief in future sunrises) has thus gone from
a half to two-thirds. After sunrise the next day, the child adds another
white marble, and the probability (and thus the degree of belief) goes
from two-thirds to three-quarters. And so on. Gradually, the initial
belief that the sun is just as likely as not to rise each morning is modified

to become a near-certainty that the sun will always rise. [2]

2.3 Priors

The most controversial element of Bayesian Analysis is the use of a prior

distribution. Criticized for introducing subjective information, the use of a prior is

purely an educated guess and can vary from one scientist to another.

There are two types of priors. The first type, called the Conjugate Prior,

occurs when the posterior distribution has the same form as the prior distribution.
The second type, called the Noninformative Prior, is used when we have very little

knowledge or information about the prior distribution. The noninformative prior is

used to “conform to the Bayesian model in a correct parametric form.” [13].

15



2.3.1 Conjugate Priors

To have a better understanding of conjugate priors, we use the following
example.

Suppose X is a random variable with a beta distribution, that is,
X ~ BETA(a,b), where a and b are known. Then X has probability distribution

function
9(1—1(1 . g)b—l
B(a,b)

where 0 < 6 < 1,a,b > 1. Let © ~ BIN(n,#), where n is known. Then the

f(z]8) = (2.2)

distribution of © is given by

h(8) = <n> 6° (1 — 6)"®,

x
where x = 0,1,2,...,n. Bayes’ Rule states that

prior x likelihood

hsterior = .
b marginal likelihood

Since the marginal likelihood is a constant we have that

k(9] ) o< h(8) x f(x]6),

or

posterior « prior x likelihood.

Therefore,

B(O]2) o 0%(1 = 0)" 61 (1 = 0)"!

o 91‘+a—1(1 . 9)n+b~r—1
Let A=zxz+aand B=n+b—-z. Then

k(|z) oc 0411 —9)B- 1, (2.3)

16



Prior Distribution

Likelihood

Posterior Distribution

Univariate Models

Beta Binomial Beta
Gamma Poisson Gamma
Gamma Exponential Gamma
Normal Normal Normal

(known variance, unknown mean)
Multivariate Models
Dirichlet Multinomial Dirichlet

Multivariate Normal Multivariate Normal Multivariate Normal

(known variance matrix)

Table 2.1-Commonly used conjugate priors [13]

We call k(6 |z) in (2.3) the conjugate prior since its distribution is similar to the
prior distribution in (2.2).
The conjugate prior simplifies the mathematics involved in Bayesian data.

analysis. Some commonly used conjugate priors are listed in Table 2.1.

2.3.2 Noninformative Prior

In the event that we have very little knowledge of the data set,we opt to use
a noninformative prior. The question then becomes, “How do I choose the prior?”
The answer is quite simple. The conservative, and most likely easiest, approach
to choosing priors is to assume very little is known about a parameter and to
use a noninformative prior. The most common choice is a Uniform prior, “a flat
distribution that assigns the same probability to every value of the parameter.” [14]

There arise a few problems, however, if the parameter is infinite in range and lacks

17



the ability to be described by a “proper prior.” This problem is not necessarily
serious if the likelihood has a bounded range such that the function is nonzero.
Rather than using a Uniform prior we may opt to use a BETA(1,1) prior,
which has the same result as a Uniform prior would. In fact, the BETA(1,1) prior is
a special case of the Uniform prior. In the event that we have a multivariate model,
we may choose to use the Dirichlet model with prior parameters set to 1. This is

the multivariate version of the BETA(1,1) model.

2.4 Estimating the Regression Line

2.4.1 Simple Linear Regression

Suppose we wish to estimate the regression line for a data set involving the
random variables z; and y;, where z; denotes the ith observation on the independent
variable and y; denotes the 7th observation on the dependent variable. We may use
the model

Yi |z = a+ Bz + e

where, o and § are unknown parameters. Assume, in order to obtain a third
unknown parameter, that the e; are independent and normally distributed. That
is, e; ~ N(0,0?%). Now we have the unknown parameters «, 3, and o?2.

Let
U1

Yn
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and

I

In

Then, the likelihood function becomes

1 1
fx,y|la,B,0)= 1;11 Wexp {—ﬁ(yi —-a— Ba:i)2}

1 1 &
X FGXP{‘T‘Q Z(yi_a_ﬂxi)z}a (2-4)

where we ignore the proportionality constant (27)~% in equation (2.4).

-

Choose a noninformative prior density, h(a, 8, 0), so that

h(a, B,0) = hi(a)ha(B)hs(o), (2.5)

where hy () o constant, hy(8) o constant, and hg(o) o <.
Now that we have the likelihood function and the prior density we can use
Bayes’ Theorem, k(o 8,0|x,y) = h(a,B8,0)f(x,y|a,B,0), to find the posterior

density. That is, multiply equations (2.4) and (2.5) to get

k 11 1 O )
(Oé,ﬁ’UIX,Y)“;a—nGXP —FiZI(yi—a—ﬂﬂfi)

1 1 <
= 71 OXP {—'ép > i—a- 5%‘)2} (2:6)
i=1

We take the estimates of a and 8 to be E(&) and E(3) under the posterior

distribution. Since these estimates are unbiased, that is, (&) = o and E(8) = 8,
then they are the same as the least-squares estimates discussed in Theorem 1.1.

That is,

where T=1%" 2,7 =13 4, Say = > (2 — T)(y: — ¥), and Sz = > (2; — 7)%. An

unbiased estimator of o2 is




Before continuing in our calculations, it is first important to note that

n n

Z(a — &)y — & — fay) = Z(Oé — &) (4 — T+ BT — B:)

1=1 1=1

= (a—&)(ny —ny + TLBT - nBT)

Hence,
n

S (a—a)(y —a— ;) =0. (2.7)

i=1

We also note that, given the result of (2.7), we have that

> (g — & — Bz:)(B — Bi) ﬁZ yi— &= Br) = B wilyi — 6 — By
g==1

=1

=0- Ble(yl — & — B:ri):ci (by 2.7)

ﬁ ( ~ T+ BT ~ Bz
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Hence,
n

> (g —a = i) (B — Bz =0
i=1

n

Rewrite > (y; — a — Bz;)? to get
S~ B = 3" (w6 - ) — e~ &) = (= B)a]
=1 i=1
Evaluating, we see that
Z(yz —a—ﬁxi)gz [(Z/i—@—ﬁﬂﬂi)* (a—a) - (5—3)%’]2
i=1 i=1

.Fﬁ:

[(yz‘ — & — Bl’z)Q + (@ —a)’ + (8- 3)23312
1

+2(a — &) (8 — B)x;
—2(y; — & — Bz;) (o — &)

~2(y — & — Bu)(8 - A

)

I

- Z(yi — &= fr;) +nla—a)°+) (8- 0)
+2(a—4&)(B — B)ZI’
= (n=2)s" +nla—a)+(B-H)7Y o

+2a-a)B-8)) w

n
Let ¢ = £ > (y; — a — fz;)? be a nonnegative constant. Integrating
i=1

k(a, 8,0 |x,y) with respect to o, we have

) &0 _ e
kl(a,ﬁlan):/O gn+le 2 do
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where £ > 0. Let z = fo~2. Then do = —iag’ dz. Then
1 g3 1 1 s
/0 Un+le ﬁda:/o ot <_§) (z) e " dz
° /1N /1N /1
= = i) (2 ) e2a
[ (@) (2) ()

Thus we have,

/CI(CY,B’X,)’) =

(2.9)

Together, both « and 3 follow a bivariate Student’s t—distribution. The
marginal distribution of « follows a univariate Student’s t{—posterior distribution

given by

(2.10)

£}
|
>
—
g
8
o
—
vl
2
=
3
!
n

The marginal distribution of 8 follows a univariate Student’s t— posterior distribu-

tion given by

B-p

([s,,]%>

Unlike frequentist statistics, in Bayesian data analysis, we use a credibility
1

~ t(n —2). (2.11)

' 2
statement instead of a confidence interval. In (2.10), let £ = { 52 2} . Then the
ER S

credibility statement is



where z, is the y—fractile point of the Student’s ¢-distribution. Similarly, in (2.11),

let = —*—. Then the credibility statement is

T

P</§—527§,8§5+527) =12y

Suppose we are asked to predict the outcome of y* given a new observation

x*. From our previous calculations, the model for the new point is
v |lz* =a+ prt +e,

where € ~ N(0, 02). In order to make a prediction, we calculate a predictive density,

given that the parameters have already been estimated.

DEFINITION 2.1. Let X3,...,X,, be a set of random wvariables with a density

flz1,...,z,|0). For the prior, h(8), we obtain the posterior

n

KOz, .. z0) o [] flzi | 0)R(6).

i=1

If we wish to predict a new observation y*, we utilize a predictive density for y*
gen by

P [5he o an) = [ 7 1Ok(O] 7. a2 0
[11]

Thus, the predictive density of y* is given by

"2 ///f 2%, 0, B,0)k(a, B, 0 |, v) do df do
/AN -

=1
+ Z y; —a — fz;) }} dadf do. (2.12)

Using similar techniques as above to calculate the two-dimensional posterior

density, we have that

Y ZaZhT ) (2.13)
[1+ +(I*‘“)2]§
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2.4.2 Multiple Linear Regression

The word “multiple” indicates that there is more than one independent vari-
able in the regression model. As seen in Section 2.4.1, the calculations can become
increasingly difficult. Similar to Section 1.3, we utilize matrix notation to simplify
our calculations. However, this does not aid in completely simplifying complicated
calculations. Instead, with the use of a computing tool, such as R in combination
with WinBUGS (Windows version of Bayesian inference Using Gibbs Sampling),
we can utilize Markov Chain Monte Carlo (MCMC) methods to assist in these

calculations. We outline this technique in Section 2.5.

2.5 Markov Chain Monte Carlo (MCMC) Methods

As the number of variables increases in our models, the more difficult it
becomes to evaluate and analyze the solution of a posterior distribution. Here is
where the MCMC Methods become quite useful. MCMC techniques simulate the
posterior so that it can be analyzed. The results can then be used to draw inferences
about the models and parameters. There are many MCMC algorithms with which

to choose.

2.5.1 Gibbs Sampling

Gibbs Sampling is one such algorithm and is especially useful in applications
of Bayesian analysis. The Gibbs sampler is a technique that generates random
variables indirectly from a distribution without having to calculate the density.
Thus, we are able to create a sequence of easier calculations while avoiding the
much more difficult ones.

The main idea of the Gibbs sampler is to fix all values of the random variables,
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save for one. In other words, we consider univariate conditional distributions.

Suppose we wish to obtain the marginal density,
f@)y= [ [ f(@,y1,....yn) dys - - dyy, of a given joint density f(z,y1,Ya,. -, ¥n)
in order to obtain the mean or variance. As we are often programmed to do, the
first natural instinct would be to calculate f(z) and obtain the desired information.
In many instances, however, the calculations of f(z) can become quite complicated
and an alternative method is needed. The Gibbs sampler, the alternative method,
generates a random sample X,..., X, ~ f(z) without requiring f(z). Any char-
acteristics drawn from f(z) can be calculated to the desired accuracy with a large
enough simulation sample.

As an example, consider a pair of random variables (X,Y). Rather than
sampling from f(z), the Gibbs sampler will generate a sampling from the conditional
distributions f(z|y) and f(y|xz). Given the initial value Y = y;, we can obtain a

“Gibbs sequence” [6] of random variables
Yy, Xo, Yy, X1, Y5, X5, Y, X (2.14)

by alternately generating values from

J J
Y] ~ fly| X) = ) (2.15)

We call the generation of (2.14) the Gibbs sampler. It turns out that, as k — oo,
the distribution of X}, tends to f(z). For a large k, the value X} = z}, is a point
from f(x).

For the frequentist statistician, the Gibbs sampler can be used to calcu-
late the likelihood functions and characteristics of likelihood estimators. For the
Bayesian statistician, the main use of the Gibbs sampler is to generate the posterior

distributions.
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As the dimension of a problem increases, the Gibbs sampler becomes more

useful since it allows us to avoid “prohibitively difficult” integrals in high dimensions.

26



CHAPTER 3
AN EXAMPLE

As seen in Chapters 1 and 2, the Frequentist and Bayesian data analysis
methods are quite different. In this chapter we will look at a simple linear regression

example as well as a multiple linear regression example.

3.1 Simple Linear Regression

Consider a set of fifteen women between the ages of 30 and 39 in Table 3.1.
For each subject, her height and mass was recorded.

A plot of the data points, where z is the height of the women in meters and
y is the mass of the women in kilograms, is shown in Figure 3.1 . The data set is

linear so we may apply the simple linear regression model

yi = a+ fr; + e
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Table 3.1 - Average mass of women age 30-39 as a function of their height [1]

Height Mass

meters(m) kilograms(kg)

x Y
1.47 52.21
1.50 53.12
1.52 54.48
1.55 55.84
1.57 57.20
1.60 58.57
1.63 59.93
1.65 61.29
1.68 63.11
1.70 64.47
1.73 66.28
1.75 68.10
1.78 69.92
1.80 72.19
1.83 74.46

28



0
N~
o
o |
M
o)
o)
g &7 o
@ 0
4]
= o
3 o
o
o
o)
0
w0 o
o
o
T T T T T T T
1.50 1.55 1.60 1.65 1.70 1.75 1.80

Height {(m)

Figure 3.1 -Plot of the average mass of women age 30-39 as a function of their

height data

3.1.1 Frequentist Methods

To perform the necessary calculations, we use R, a statistical computing

software [15], for assistance. We obtain the following:

15

1
- Z z; = 1.650667
n

T =
=1
1 15
= ui=062078
i=1
15
Szr = Z(xi —7)? = 0.1826933
=1
15
Say = Z = (z; — T)(y; — 7) = 11.19402
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Figure 3.2 -Plot of the average mass of women age 30-39 as a function of their
height data with estimated regression line

Substituting these values into the equations (1.4) and (1.5), we have that

S
&=7— g—y—f = —39.06196 (3.5)
A Sl,y
8= o = 61.27219 (3.6)

Thus, the regression line can be estimated by
7; = —39.06196 + 61.27219z;. (3.7)

We can see in Figure 3.2 that the sum of the squared residuals (SSR) is minimal.
Given a large data set, we can use R to perform these calculations as seen in
Figure 3.3.

Given a 95% significance level, we “Reject Hy : § = 0 if [¢| > 2.160.” In

order to calculate the confidence interval, we need to first calculate s. That is,

s= ,/iq%R = 0.7590763. (3.8)
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Call:
im(formula = yvar ~ xvar, data - Wikipedia)

Residuals:

Min 1@  Medion 3Q Max
-9.88171 -0.64484 -0.96093 @,34095 1.39385
Coefficients:

Estimate Std. Error t value Pr(>itl)

{Intercept) -39.862 2,938 -13.20 65.85e-99 w*»
xvar 61.272 1.776 34.50 3.b0e-14 %%

Signif. codes: @ "*%¥' 3. Q@1 "+*' ¢4.@1 "*' @05 ', 6.1 ' ' 1
Residual standard error: 8.7591 on 13 degrees of freedom

Multiple R-squared: ¢.9892, Adjusted R-squared: ©.9884
F-statistic: 1198 on 1 and 13 DF, p-wvalue: 3.604e-14

Figure 3.3 R output of Average mass of women data

Thus, with confidence level 95%, 3 lies in the interval

[67.436,65.108].

3.1.2 Bayesian Methods

Given that we have no prior knowledge of the data in Table 3.1, we will use

a uniform prior distribution

h(a, B,0) % (3.9)

Thus, we can use the likelihood function in equation (2.4).

Since the estimates of the parameters are unbiased, we can use the least
squares estimates found in (3.5) and (3.6). As well, we can use the values found in
(3.1) and (3.8). The marginal posterior densities are given in Figures 3.4 and 3.5.
The posterior means are approximately equal to the least-squares estimates of the

parameters and are given by

E(aly,x) = —39.05, E(By,x) = 61.26. (3.10)
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Figure 3.5—Posterior density of 5.

We compute these values using the 3-step method seen in Figure 3.7 to obtain the
data in Figures 3.4, 3.5, and 3.6 using WinBUGS [7].

Given 7, the credibility statement for o and 3 is as follows:

Z. ya
P(~9.062— T << —30.062 + —2 ):1—2 .
3 0340 =S T2+ s 7 (3:11)
P(61.272 — 1.7762, < B < 61.272 + 1.7762.) = 1 — 2. (3.12)

Unlike frequentist methods, the credibility statements can be used to predict the

true values of o and .

- 3.2 Multiple Linear Regression

node mean sd 2.5% median 97.5% sample
alpha -39.05 3.205 -45.35 -39.02 -32 67 10000
heta 61.26 1.937 5742 61.25 65.06 10000

Figure 3.6 - WinBUGS posterior data of parameters a and 8.
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17 Program code

moclel

{

fardiin 1:mn)

{¥[i] ~ dnormimuli] tau)
mufi ]=- alpha+beta*x[i]
H

alpha ~ dnorm(0,0.000000000001 )
beta ~ dnorm(0,0.000000000001)
tau ~ dgamma(0.001,0.001)

sigma =- 1fzqritau)

¥

2. Data
list(x=c(1.471.501.521.55157,
1601631651681.701.73,
1.75,1.78,1.80,1.83),

y=c(52.21 53.12,54.48 55.54,
57205857 599361 296311,
;’64.4?,88.28,88.1 069927219 74 46),
n=15)

3. Inttial values

list(alpha =0, heta =0,tau=1)

Figure 3.7-WinBUGS data input.

Consider a set of seventeen samples taken by a chemical analyst who expects
the yield to be affected by two factors, x; and z5. Table 3.2 lists the values recorded.
A plot of the data points, where x; and z5 are the two Factors and y is the yield, is

shown in Figure 3.8. The data set is linear so we may apply the regression model

yi = Bo + Bz + Bazio + €.
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Table 3.2—Chemical Analysis Data [3]

Factor 1 Factor 2 Yield

Ty T2 Y
41.9 29.1 251.3
43.4 29.3 251.3
43.9 29.5 248.3
44.5 29.7 267.5
47.3 29.9 273.0
47.5 30.3 276.5
47.9 30.5 270.3
50.2 30.7 274.9
52.8 30.8 285.0
53.2 30.9 290.0
56.7 31.5 297.0
27.0 31.7 302.5
63.5 31.9 304.5
65.3 32.0 309.3
71.1 32.1 321.7
77.0 32.9 330.7
77.8 32.9 349.0
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Figure 3.8 —Plot of chemical analysis data.
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3.2.1 Frequentist methods

To simplify the calculations we use matrix notation. Let

1 419 291
1 434 29.3
1 439 29.5
1 445 29.7
1 473 29.9
1 475 30.3
1 479 30.5
1 502 30.7
X=1|1 528 308 and 'y
1 53.2 309
1 56.7 315
1 57.0 31.7
1 635 31.9
1 653 32.0
1 711 321
1 77.0 325
1 77.8 329

-

Then, the estimates of the parameters can be written as

36

251.3
251.3
248.3
267.5
273.0
276.5
270.3
274.9
285.0
290.0
297.0
302.5
304.5
309.3
321.7
330.7

349.0
J



Thus, using equation (1.7), we find that

[ 336521 1228 —13.089 19028 |
B=1] 1228 0005 —0.049 | | 276614.4
~13.089 —0.049  0.511 1520211
[ 153512
=1 1.239
| 12,082
Therefore,
~153.512
B=| 1239 |. (3.13)
12.082

We can see in Figure 3.9 that the SSR is minimal. Given a large data set, we can
use R to perform these calculations as seen in Figure 3.10.
To test the significance of the parameter 8; = 0 we perform a hypothesis

test. We obtain the following values:

17
SSRfu” = Z(yi - BO - 311'2'1 — 32%2)2 = 423.374
i=1
17 . .
SSRreauced = Y _(Ys — Bo — Bomia)? = 83697.15

i==1
o2 _ SSRyu

n —

= 32.567.

Thus, the value of the test statistic F' is

B SSRreduced - SSRfull

5-2

F = 2556.98 (3.14)

Assuming normality of the distribution of the random errors, £’ ~ F(1,13). There-
fore, with a 95% confidence level, we “Reject Hy : 51 = 0if F' > 4.67.” In this case,
we reject the null hypothesis, which indicates there is a significant relation between

Yi and i1
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Figure 3.9 - Plot of chemical analysis data with estimated regression plane.
To construct the confidence interval, first we need to compute C = 62(XTX)~!

as seen in (3.15).

10959.571 40.002 —426.274
C = 40.002  0.168  —1.595 (3.15)
—496.274 —1.595 16.652

Thus C1; = 10959.571. The 95% confidence interval is given by

[—224.887, 227.365). (3.16)

3.2.2 Bayesian methods

To simplify our calculations, we utililize WinBUGS and the program code in

Figure 3.11. Since we have no prior knowledge of the data, we will use a uniform
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Call:
Im{formula = v ~ x1 + x2, data = Chemical)

Residuals:
Min 1Q Median 3Q Max
-8.098 -4.035 -0.318 4.267 £.6306
Coefficients:
Estimate Std. Error t value Pr{=1tl)
(Intercept) -153.5117 1¢6.8799 -1.522 0.15034

x1 1.2387 8.3946 3.139 8.08724 **
x2 12.9824 3.9323 3.073 0.00827 *»

Signif. codes: @ "***' § @01 "**' @.01 '*" 9,085 '." 9.1 " ' 1
Residual standard error: 5.499 on 14 degrees of freedom

Multiple R-squared: @.968, Adjusted R-squared: ©.9635
F-statistic: 211.9 on 2 and 14 DF, p-value: 3.419e-11

Figure 3.10-R output of chemical analysis data

prior. In addition, we assume that the parameters have a normal distribution. After
performing several iterations, we obtain the summary in Figure 3.12. As calculated
in the frequentist methods, we find that the estimates for 3 are given by (3.13).
We find that the marginal posteriors densities are given in Figures 3.13,
3.14, and 3.15. The posterior means are approximately equal to the least-squares

estimates of the parameters and are given by

E(Bo|y,X)=—-1534, E(B|y,X)=1238, E(f]y,X)=12.08. (3.17)
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node
hetal
betal
beta?

1) Progrom coce
mode L

for{i in 1:n)
{y[i] ~ dhorm{mu[i], tau}
mufij<- betod + betal¥x1[i] + beta2*x2[i]

¥

betoB ~ dnorm(8,0.000000BB6001 )
betal ~ dnorm(@,@.@@ﬁﬂﬂﬂﬂﬁﬂ@@i}
betaz ~ dnorm{@,ﬂ.ﬁ@@ﬂﬂ@@@@@@i}
tau ~ dganma(@.081,0.001)
sigma<-1/sqrt{tau)

¥

2. Data
list(x1=c(41.9,4
47.9,58,2,62.8,5
71.1,77.8,77.8
x2=c(29.1,29 3
39.7,30.6,38.9
y= c(251 3,251.
270.3,274.9,2
389.3,321.7,3
n=1?}

3. Initial values

list(betoB=0, betol=0, betaz=0, tau=1)

32.5,32.9),

Qmwu "\-\./- “

8
3

Figure 3.11-WinBUGS program code

mean sd 2.5% median 97.5%
-1534 109.4 -370.4 -154 .2 65.91
1.238 0.4291 0.3879 1.238 20386
12.08 4 265 355 1208 20.38

Figure 3.12 - Data summary in WinBUGS
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betad sample: 10000
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Figure 3.13 - Posterior density of
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Figure 3.14 —Posterior density of 5,

heta2 sample: 10000
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Figure 3.15— Posterior density of 5,
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CHAPTER 4
FREQUENTIST v. BAYESIAN

In the early 20th century, Frequentist methods of data analysis became more
and more popular, while Bayesian methods were tabled until proper advancements
had been made to handle the increasing difficulty of the calculations. In the late
20th and early 21st centuries, Bayesian methods have rapidly become more popular
with the use and availability of computers and new computational methods. Now
the question becomes which is better? Or is one truly better than the other? How
do we choose?

Frequentists will argue that Bayesian methods are not suitable and cannot
be reproduced from one statistician to another as the choice of the prior is purely
a guessing game. Bayesians, on the other hand, will argue that Bayesian methods
are much more accurate than the frequentist methods since the main focus lies on

the posterior distribution and the characteristics that can be drawn from it.

4.1 Frequentist Methods - The Method of Least Squares

The biggest advantage to the Method of Least Squares is its simplicity in
the calculations. As well, by definition, the estimates produced give the smallest
sum of squared residuals (SSR). “The least-squares estimate of 3; is the best linear
unbiased estimate (BLUE). That is, suppose we want to estimate §; by a linear
combination ay; + -+ + a,yn of the observed response variables and suppose we

want the estimate to be unbiased. Among all linear unbiased estimates of §;, the
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one with the smallest variance is the least-squares estimate.” [5]

The biggest disadvantage to the Method of Least Squares is that to obtain
optimality one must assume the random errors have a normal distribution or at-
tention should be restricted only to linear estimates. “When the distribution of the
errors is not normal, least-squares estimates and tests may lose much of their effi-
ciency. A few distant outliers can cause least-squares procedures to perform quite

poorly.” [5]

4.2 Bayesian Methods

Without any knowledge of prior information, it may seem pointless to use
Bayesian techniques. However, with some prior information available it seems point-

less not to use it.

The Bayesian approach can also be regarded as being more satisfac-
tory than the classical approach in that it produces a direct probability
statement about a parameter, or hypothesis, as opposed to the somewhat
awkward notions of confidence level or p-value, which are frequently mis-
interpreted by nonprofessional statistical users. It could also be viewed
as an advantage that Bayesian analysis allows one to interpret a prob-
ability as a measure of degree of belief concerning the actual observed
data rather than as a long-run frequency involving hypothetical obser-
vations that might have been obtained but were not. Moreover, the
Bayesian approach has the appealing feature that it provides a unified,

fairly straightforward way to analyze any statistical problem.

Critics of the Bayesian method say that it is too subjective, especially
with regard to the choice of a prior distribution for the parameters. In

response to this criticism, it can be said that statistical analysis cannot
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avoid being subjective, for example, in the choice of the model, and
that the data analyst should admit his or her subjectivity and explicitly
include it in the analysis. In doing this, however, one runs into the
difficulty of quantifying one’s prior knowledge and beliefs in the form of
a prior distribution. Another difficulty arises if the prior distribution is
not restricted to have a mathematically convenient form, because then

the computation of the posterior distribution can be unwieldy. [5]

4.3 Conclusion

In the end, which method is better? Ultimately, it is up to the statistician
to choose which method he or she prefers to use based on any prior knowledge of
the data. While the Method of Least Squares seems ideal because of its simple
calculations, the Bayesian approach provides a “direct probability statement about
the parameter.” Both methods can be equally criticized for the flaws that each
possess. Neither method is “better” than the other, it all depends on the prior
knowledge of the data and the decision of the statistician as to Which method he or

she uses.
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