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ABSTRACT

SPREADING SPEEDS AND TRAVELING WAVES
IN SOME POPULATION MODELS

Quancheng Meng

November 20, 2015

Virtually every ecosystem has been invaded by exotic organisms with po-

tentially drastic consequences for the native fauna or flora. Studying the forms

and rates of invading species has been an important topic in spatial ecology. We

investigate two two-species competition models with Allee effects in the forms of

reaction-diffusion equations and integro-difference equations. We discuss the spa-

tial transitions from a mono-culture equilibrium to a coexistence equilibrium or a

different mono-culture equilibrium in these models. We provide formulas for the

spreading speeds based on the linear determinacy and show the results on the ex-

istence of traveling waves. We also study a two-sex stage-structured model. We

carry out initial analysis for the spreading speed and conduct numerical simulations

on the traveling waves and spreading speeds in the two-sex model.

iv



TABLE OF CONTENTS

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

CHAPTER

1. INTRODUCTION AND BACKGROUND . . . . . . . . . . . . . . . 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Reaction-Diffusion Equations . . . . . . . . . . . . . . . . . . . 5

1.3 Integro-Difference Equations . . . . . . . . . . . . . . . . . . . . 7

1.4 The Spreading Speed . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Traveling Wave Solutions . . . . . . . . . . . . . . . . . . . . . 14

2. TWO-SPECIES REACTION-DIFFUSION COMPETITION MODEL

WITH ALLEE EFFECT . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Local Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Global Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 Spreading Speed and Linear Determinacy . . . . . . . . . . . . 27

2.5 Existence of Traveling Waves . . . . . . . . . . . . . . . . . . . 34

3. TWO-SPECIES DISCRETE-TIME SPATIO-TEMPORAL COMPE-

TITION MODEL WITH ALLEE EFFECT . . . . . . . . . . . . . . 38

3.1 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

v



3.2 Local Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3 Global Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4 Spreading Speed and Linear Determinacy . . . . . . . . . . . . 49

3.5 Existence of Traveling Waves . . . . . . . . . . . . . . . . . . . 54

4. TWO-SEX STAGE-STRUCTURED COMPETITION MODEL . . . 57

4.1 Model Formulation . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 The Linearization . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3 Spreading Speed of the Linearized System . . . . . . . . . . . . 66

5. NUMERICAL SIMULATION . . . . . . . . . . . . . . . . . . . . . . 69

6. CONCLUSION AND FUTURE DIRECTIONS . . . . . . . . . . . . 75

6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.2 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . 77

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

CURRICULUM VITAE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

vi



LIST OF TABLES

TABLE PAGE

2.1 Model (2.1) Parameter Descriptions . . . . . . . . . . . . . . . 17

2.2 Summary of Existence and Local Stability Criteria of Equilib-

ria in Model (2.1) . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1 Summary of Existence and Local Stability Criteria of Equilib-

ria in Model (3.1) . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.1 Two-Sex Model Parameter Descriptions . . . . . . . . . . . . . 60

5.1 Two-Sex Model Parameter Values . . . . . . . . . . . . . . . . 71

5.2 Comparison of cm
∗ and cf

∗ when τ = 0.3 . . . . . . . . . . . . 72

5.3 Comparison of cf
∗ and c̄ when τ = 0.3 . . . . . . . . . . . . . . 73

vii



LIST OF FIGURES

FIGURE PAGE

1.1 The population profiliation rate when there is (a) no Allee ef-

fect (b) weak Allee effect (c) strong Allee effect. . . . . . . . . 3

2.1 Equilibria and spatial transitions in the reaction-diffusion sys-

tem before and after the change of variables p = u, q = 1− v:

(a) Before the change of variables, when the two coexistence

equilibria exist, the spatial transition is from (0, 1) to E∗2 ; when

the coexistence equilibria do not exist, the spatial transition is

from (0, 1) to (k, 0). (b) After the change of variables, when

the two coexistence equilibria exist, the spatial transition is
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CHAPTER 1

INTRODUCTION AND BACKGROUND

1.1 Introduction

The ecology of invasions by animals and plants has received more and more

attention in recent years, chiefly because nearly every ecosystem has been invaded

by exotic organisms with potentially drastic consequences for the native fauna or

flora [22]. For example, Butomus umbellatus, which is also known as flowering

rush or grass rush in North America, has now become a serious invasive weed in

the Great Lakes area. The Asian tiger mosquito originally came from Southeast

Asia, has spread to Europe, the Americas, the Caribbean, Africa, and the Middle

East, and it is now one of the most invasive alien species in the world according

to the Global Invasive Species Database [1]. And there is a clear historical record

of the grey squirrel Sciurus carolinensis out-competing and replacing the local red

squirrel Sciurus vulgaris in the United Kingdom [50].

Biological invasions can be described as the study of how certain animals

or plant species spread across the globe [30]. Mathematical models that attempt

to describe or predict the fate of some particular invasions have long been central

to the development of spatial theory in ecology [15, 47, 48, 49, 50, 51, 52, 53].

One crucial measure of mathematically analyzing the invasiveness of a species is

to investigate the form and rate of its spread when it enters a new environment

[14, 22]. The early attempt can be traced back to 1937, when R.A. Fisher was
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interested in the spatial spread of new genes that appeared in a population. He

proposed the famous Fisher-KPP equation in [45]:

∂u

∂t
= ru(K − u) +D

∂2u

∂x2
, (1.1)

where x denotes the position, t denotes the time and u = u(x, t) is the local popu-

lation density. In this model, population expansion arises from a balance between

the local growth with maximum population density or carrying capacity K and the

linear growth rate rK, and the diffusion of individuals in space with the coefficient

of diffusion D [31]. Fisher used this model to describe the spatial spread of an

advantageous allele within a spatially extended population and explored its trav-

eling wave solutions. Later that same year, the model was used independently by

Kolmogorov, Petrovsky and Piskunov to describe the general growth and diffusion

processes [46, 31], and in 1951 by Skellam in the ecological context of the invasion

of the new territory by a colonizing species [47, 31].

The Allee Effect

In recent years, much attention has been paid to the Allee effect, simply

because it is extremely important for the control of invasive species. Allee effect

was originally proposed as a phenomenon associated with a paucity of reproductive

opportunities at low population densities. The name “Allee effect” comes from

W.C. Allee’s work on the cooperative behavior of animals [22, 25, 32]. Allee effect

can be caused by many factors such as difficulties in finding mates when population

density is low, social dysfunction at small population sizes, less efficient feeding at

low densities, and inbreeding depression.

Strong Allee effect occurs when there exists a critical threshold below which

the population growth is negative, and it may lead to the extinction of a species.

By contrast, there is no such critical threshold that the population must surpass

to reproduce and grow when weak Allee effect occurs [24].
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(a) No Allee Effect

(b) Weak Allee Effect

α

(c) Strong Allee Effect

FIGURE 1.1 – The population profiliation rate when there is (a) no Allee effect (b)
weak Allee effect (c) strong Allee effect.
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Figure 1.1 illustrates the density dependent population profiliation rate in

three different cases. It has been shown in some literatures that Allee effect may

reduce the traveling wave speed and thus lead to a slower asymptotic rate of spread

of an invasive species [10, 17, 22, 24]. In addition, the patterns of range expansion

may also be changed by Allee effect [41]. In this dissertation, we will investigate

the spreading speeds and traveling waves in two two-species competition models

with Allee effect.

Two-Sex Invasions

Most of the currently available models for biological invasions explicitly

track densities of only one sex. One-sex models are well suited to asexual or

hermaphroditic species, including some fish and most plants. However, the appli-

cation of one-sex invasion theory to dioecious species is more complicated due to

the fact that dispersal may be sex biased, with males and females moving different

distance [39].

In a two-sex invasion model, one should take gender-related factors into

consideration, such as mating formation, that are central to the study of the life

history of real populations [34]. Kendall [21] and Goodman [35] explored a number

of specific hypotheses on how the birth rate depends on the male and female

populations, for example:

Λ(M,F ) = MF, (MF )
1
2 ,

1

2
(M + F ), min(M,F ),

where F and M are the numbers of females and males respectively. Many two-sex

models concentrate on the evolutionary stability of specific traits such as sex ratio

[82, 83, 84], but give little or no attention to population dynamics. Those models

addressing dynamical issues are primarily concerned with the two-sex problem of

appropriately mating, or pair formation between genders [21, 85, 86, 87]. Ashih

et al. [40] constructed a two-sex single-species model of population dynamics in-
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corporating the fertilizaiton state of females and studied the spreading speed and

traveling waves. Miller et al. [39] established a two-sex integro-difference equation

model and derived an explicit formula for the invasion speed and used it to show

that sex-biased dispersal may significantly increase or decrease the invasion speed

by skewing the operational sex ratio at the invasion’s low-density leading edge.

1.2 Reaction-Diffusion Equations

Reaction-diffusion equations often yield elegantly tractable and compact

models of spread and persistence, they stand on the assumptions that the dispersal

and growth take place continuously in both space and time, and that the dispersal is

conducted by random diffusion [15]. A large portion of mathematical literatures on

spread and persistence rely on reaction-diffusion equations, and noteworthy success

has been made by reaction-diffusion equations in explaining the rates at which

species have invaded new environments as well as spatial patterns that species

have had established in bounded-patch habitats. It has been well documented

that the spatial theory about species spread and persistence matches the field

observations well in a large number of cases [15, 48, 51, 52, 53].

Reaction-diffusion equations are used to model the intrinsic reaction

activities of a species, such as birth, death, the interactions with other species, and

the movement of a species in a bounded or unbounded domain. A typical reaction-

diffusion equation comprises a reaction term and a diffusion term as shown below:

∂u

∂t
= D

∂2u

∂x2
+R(u). (1.2)

Here u = u(x, t) is a state variable and describes the population density at position

x at time t. D ∂2u
∂x2

is the diffusion term with the coefficient of diffusion D and R(u)

denotes the reaction term which describes the net population change from birth
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and death. Examples of some typical reaction terms are

1. Exponential growth:

R(u) = ru.

2. Logistic growth:

R(u) = ru(1− u

K
),

where K is a carrying capacity, which serves as the limitation of growth.

3. Strong Allee effect:

R(u) = ru(u− α)(1− u),

where 0 < α < 1. The basis of this model approach is still exponential growth,

but if the population is too low, i.e. 0 < u < α, extinction may occur.

The diffusion process can be considered as an ensemble of particles takes

random walk from a starting point to somewhere with a random direction. Fick’s

laws of diffusion were derived to describe this process by Adolf Fick in 1855. It

can be used to solve for the coefficient of diffusion D. In particular, Fick’s first

law postulates that the flux goes from regions of high concentration to regions of

lower concentration, and Fick’s second law predicts how diffusion would lead to

the concentration change over time [73].

Impulsive Reaction-Diffusion Models

When population dynamics contain growth and dispersal, as well as con-

tinuous and discrete components, traditional reaction-diffusion equations will not

be suitable to describe the spread and persistence of such population. For ex-

ample, many fish and large mammal populations exhibit a birth pulse growth

pattern, which was originally proposed by Caughley in 1977 [75]. That is, repro-

duction takes place in a relatively short period each year. Mortality takes its toll

in between these birth pulses, which leads to a decrease in population size. The
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dynamics of such populations usually consist of two stages: within-season stage

and between-season stage. Population mortality is continuous within a season,

while between seasons population growth is discrete [15]. Semi-discrete models

are often used to model populations in a birth pulse growth pattern, that is when

both discrete and continuous components need to be incorporated into one single

model [76, 77]. Especially, impulsive reaction-diffusion equations give a natural

depiction of such spatial dynamics of the population. Lewis and Li [15] built such

a model with a single species:

∂u
∂t

= d ∂u
∂x2

+ αu− γu2,

u(x, 0) = g(Nn(x)),

Nn+1(x) = u(x, 1).

(1.3)

They provided an explicit formula for the spreading speed and showed that the

spreading speed can be characterized as the slowest speed of class of traveling wave

solutions.

In this dissertation, the formulation of the two-sex stage-structured model

is inspired by the model (1.3).

1.3 Integro-Difference Equations

When it comes to univoltine populations such as many arthropod and an-

nual plant species, which have discrete time dynamics and is distributed in a con-

tinuous spatial habitat, reaction-diffusion equations are not a reasonable choice

for modeling such population dynamics. Instead, integro-difference equations have

been used broadly in literatures for such modeling purposes, especially for modeling

the invading organisms [24]. They can, like reaction-diffusion equations, generate

constant-speed traveling waves [3, 4, 5, 8, 9]. In addition, integro-difference equa-

tions can generate continually accelerating solutions with asympototically infinite
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speeds [10, 11, 12]. They can, in other words, account for invasions in which spread

rates increase with time.

To formulate an integro-difference equation, we assume there is a sedentary

stage at which the population grows, and a dispersal stage at which the popula-

tion migrates. These stages are assumed to occur independently with the growth

occuring in discrete-time intervals and the migration occuring in continuous one

dimensional space.

The population density at location x and time n+ 1 is given by the sum of

the contributions from all other locations y in the form of an integro-difference

equation:

un+1(x) =

∫ ∞
−∞

k(x− y)f(un(y))dy. (1.4)

We use equation (1.4) to model the dispersal and growth of populations. un(x)

is the population size or density at location x, f(un(y)) describes the density

dependent local population growth at location y, and k(x − y) is the probability

of the population moving from location y to x, which is often referred to as the

dispersal kernel. Since k(x) is a probability distribution function, we have that

k(x) must be nonnegative and
∫∞
−∞ k(x)dx = 1.

Note that integro-difference equations can be used to model multivoltine

populations as well, as long as the organism has non-overlapping generations.

In this case, t is not measured in years, but rather the time increment between

broods [78].

1.4 The Spreading Speed

One crucial measure of mathematically analyzing invasions is to investigate

the speed at which the invasive species spreads into a new environment. Aronson

and Weinberger [79, 80, 81] introduced the conception of spreading speed as a
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mechanism to quantify the spread, that is, to consider the asymptotic behavior of

the solution as x approaches infinity.

We introduce the precise definition of the spreading speed in reaction-

diffusion equations and integro-difference equations respectively. For the classic

reaction-diffusion equation (1.2), the spreading speed c∗1 is defined in the following

sense:

1. If 0 ≤ u(x, 0) < 1 and u(x, 0) ≡ 0 for all sufficiently large x, then for any

positive ε,

lim
x→∞

{
max

|x|≥(c∗1+ε)t
u(x, t)

}
= 0. (1.5)

2. For every positive number σ there exists a positive number rσ such that if

0 ≤ u(x, 0) ≤ 1, and if u(x, 0) ≥ σ on an interval of length rσ, then for any

positive ε,

lim
x→∞

{
sup

|x|≤(c∗1−ε)t
(1− u(x, t))

}
= 0. (1.6)

As for the integro-difference equation (1.4), we suppose there exists a positive

steady-state γ of the recursion. Then c∗2 is defined to be the spreading speed in

the following sense:

1. If un(x) is a solution of the recursion (1.4) with 0 ≤ u0(x) < γ uniformly in

x and u0(x) = 0 for all sufficiently large x, then for any positive ε,

lim
n→∞

{
sup

|x|≥(c∗2+ε)n

un(x)

}
= 0. (1.7)

2. For every 0 < σ < 1 there exists a positive number rσ such that if un is

a solution of (1.4) and if 0 ≤ u0(x) < γ and u0(x) ≥ σγ on an interval of

length rσ, then for any positive ε,

lim
n→∞

{
sup

|x|≤(c∗2−ε)n
(γ − un(x))

}
= 0. (1.8)
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Equation (1.5) states that c∗1 is the upper bound for the spreading speed of

(1.2). In other words, if an observer were to move faster than the rate of spread of

the population, he or she should always be in front of the advancing population.

On the other hand, equation (1.6) states that c∗1 is a lower bound for the

spreading speed. If an observer always moves more slowly than the population

(|x| ≤ (c∗1 − ε)t), then he or she should always be behind the leading edge of the

advancing population.

Together, it follows that c∗1 is the asymptotic rate of spread of the solutions

of the reaction-diffusion equation (1.2). Similar conclusion can be made for c∗2 by

combining the interpretations from equation (1.7) and (1.8).

Weinberger et al. [3, 80, 81] showed that for the reaction-diffusion equation

(1.2), if R(u) describes the logistic population growth, then the spreading speed is

given by

c∗1 = 2
√
DR′(0), (1.9)

at which the compact initial data expands. And for the scalar recursion (1.4),

under certain conditions, the spreading speed is given by

c∗2 = inf
µ>0

{
1

µ
ln

(
f ′(0)

∫ ∞
−∞

eµyk(y)dy

)}
. (1.10)

So far we have introduced the explicit formulas for the spreading speed of a

reaction-diffusion equation and an integro-difference equation respectively. How-

ever, for the general case of a nonlinear multi-species system, different spreading

speeds are expected since different species can move at different speeds. Partic-

ularly, Weinberger et al. [2] showed that there exists a c∗, which is the slowest

spreading speed, Li et al. [19] further showed that there exists an upper bound c∗+

for all spreading speeds.

Before proceeding, we introduce the general multi-species discrete-time, and
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possibly discrete-space recursions of the form

un+1(x) = Q[un](x), n = 0, 1, 2, ... (1.11)

Here the function un(x) is vector valued, and its components usually represent the

population densities at time n of the interacting species or age classes. Such a

formulation can also be applied to the reaction-diffusion systems of the form

[ui],t = di[ui],xx − ei[ui],x + fi(u), i = 1, 2, ..., k,

u(0, x) = u0(x)
(1.12)

by letting Q be the time-one map which takes the initial values u0(x) into the

value u(x, 1) at t = 1 of the solution u(x, t) of (1.12). It has been shown that the

operator Q can correspond to even more general class of models. For example, Q

may be a non-linear integral operator, or (1.11) may be an explicit finite difference

equation [19].

The linear operator M is defined to be linearization of Q at 0 if for any

ε > 0 there exists a δ > 0 such that ‖u‖ ≤ δ indicates ‖Q[u] −M [u]‖ ≤ ε‖u‖.

And for every bounded u ≥ 0, we have

M [u] = lim
ρ↘0

Q[ρu]

ρ
.

If u ≥ v implies that Q[u] ≥ Q[v], then Q is said to be order-preserving.

It means whenever there is an increase in any species, all species will eventually

benefit from that. And if this property is satisfied, then we say that the recursion

(1.11) is cooperative.

When Q is translation and reflection invariant, then so does M . In this

case, M can be represented by

(M [v](x))i =
k∑
j=1

∫ ∞
−∞

vj(x− y)mij(y, dy),

where each mij is a bounded symmetric nonnegative measure.
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It is helpful to consider the k × k matrix of two-sided Laplace transforms

Bµ =

(∫ ∞
−∞

eµymij(y, dy)

)
. (1.13)

Note that Bµα = M [αe−µx]|x=0 for every constant vector α. We assume that all

the matrices Bµ are in Frobenius form. It is known that any nonzero irreducible

matrix with nonnegative entries has a unique positive eigenvalue, which is called

the principal eigenvalue, with a corresponding principal eigenvector that has

strictly positive coordinates. It has been shown that the absolute values of all the

other eigenvalues are no larger than the principal eigenvalue [2].

In order to define the slowest spreading speed c∗, Weinberger et al. [2]

introduced a sequence a0(c; s) = φ(s), where φ(x) is a continuous vector-valued

functuon with the following properties:

1. φ(x) is non-increasing in x;

2. φ(x) = 0 for all x ≥ 0;

3. 0 � φ(−∞) � β, where β is a globally stable coexistence equilibrium of

the recursion (1.11).

Then the sequence an(c; s) can be defined by the recursion

an+1(c; s) = max{φ(s),Q[an(c;x)](s+ c)}. (1.14)

By definition, we have a1 ≥ φ > a0, and induction tells us that for all n, we have

an ≤ an+1 ≤ β. Note that an(c;x) is nonincreasing in c and x implies that the

sequence an increases to a limit function a(c;x) which is again nonincreasing in

c and x and bounded by β. With Hypothesis 2.1 and the Comparison Lemma

in [19], the slowest spreading speed can be defined as

c∗ := sup{c : a(c;∞) = β}, (1.15)
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and the upper bounds of all spreading speeds can be defined as

c∗+ := sup{c : a(c;∞) 6= 0}. (1.16)

The Comparison Lemma in [19] also implies that

c∗ ≤ c∗+.

However, when the nonlinear system is dominated by a linear system in the

direction of the vector corresponding to the principal eigenvalue of the generating

matrix, then the nonlinear system has a unique spreading speed, which is equal

to that of the linear system [2]. This is known as linear determinacy and the

spreading speed of the nonlinear system is said to be linearly determined in this

case. For general spatio-temporal models, the belief that a certain list of properties

implies the linear determinacy has been called linear conjecture [14].

We study the linear determinacy of a nonlinear system simply because it is

much easier to find an explicit formula for the spreading speed of the corresponding

linearized system. In fact, if a nonlinear system is linearly determinate then the

spreading speed c∗ is equal to the spreading speed c̄ of the linearized system, which

is given by

c̄ = inf
µ>0

{
1

µ
lnλ1(µ)

}
, (1.17)

where λ1 is the principal eigenvalue of the first diagonal block of the matrix Bµ

defined by (1.13). In addition, if the spreading speed of a nonlinear system is

linearly determined then

c∗ = c∗+ = c̄.

Lui [6, 7] obtained sufficient conditions for the linear determinacy of a cer-

tain class of multi-species cooperative models. Weinberger et al. [2] analyzed the

linear determinacy of the continuous and discrete-time models which require a

sharper set of conditions than Lui’s, and gave sufficient conditions for the linear
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determincy of those models. Lewis et al. [14] then carried out applications of

the theorems developed in [2], and obtained the parameter ranges for the linear

determinacy of the two-species Lotka-Volterra competition model

pt = d1pxx + r1p(1− p− a1q),

qt = d2qxx + r2p(1− q − a2p),
(1.18)

and the two-species discrete-time spatial spreading model

pn+1(x) =
∫
R1

(1+p1)pn(x−y)
1+ρ1(pn(x−y)+α1qn(x−y))

k1(y, dy),

qn+1(x) =
∫
R1

(1+p2)qn(x−y)
1+ρ2(qn(x−y)+α2pn(x−y))

k2(y, dy).
(1.19)

However, neither of the above models has taken Allee effect into consid-

eration. As an extension, we investigate two two-species competition models in

the forms of reaction-diffusion equations and integro-difference equations respec-

tively, and consider that the native species exhibit strong Allee effect. Then we

discuss the spreading speeds of the spatial transitions in those models and show

the existence of traveling wave solutions.

1.5 Traveling Wave Solutions

We consider the vector-valued reaction-diffusion equation system

u,t = Du,xx + f(u),

u(0, x) = u0(x),
(1.20)

where D := diag(d1, d2, ..., dk) is a constant diagonal matrix. We also consider the

vector-valued integro-difference equation system

un+1(x) =

∫ ∞
−∞

diag(k(x− y))f(un(y))dy, (1.21)

where k(x) is a diagonal matrix of dispersal kernels corresponding to the stage-

specific dispersal and f(u) describes how population densities fluctuate over time.
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A non-constant solution of the vector-valued reaction-diffusion system (1.20)

of the form

ut(x) = w(x− ct), (1.22)

or for the integro-difference system (1.21),

un(x) = w(x− nc), (1.23)

where c is a positive constant, is called a traveling wave solution with speed c.

Traveling wave solutions enable us to better understand how a species prop-

agates in space. From (1.22) and (1.23) we notice that traveling waves can be

interpreted as solutions which retain their shape but translate by a fixed length for

each iteration of time. Thus over time, the solutions travel in space at a constant

rate of c.

Li and Zhang [18] showed that for the discrete-time recursion (1.11), under

certain hypotheses and if c ≥ c∗+, then there is a nonincreasing traveling wave

solution W(c; x−nc) of speed c with W(c; ∞) = 0 and W(c; −∞) an equilibrium

other than 0, and such a traveling wave does not exist if c < c∗+. Similar conclusions

can be applied to continuous system such as reaction-diffusion equations when

considering the system as a continuous time semiflow {Qt}∞t=0.

As mentioned earlier, a multi-species system may have different spreading

speeds corresponding to different species. It has been shown for cooperative sys-

tems and some almost cooperative systems, the slowest spreading speed of those all

can be characterized as the minimum wave speed for a particular class of traveling

wave solutions [13, 19, 20].
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CHAPTER 2

TWO-SPECIES REACTION-DIFFUSION COMPETITION MODEL WITH
ALLEE EFFECT

In this chapter we extend the two-species Lotka-Volterra competition model

(1.18), such that the native species exhibits strong Allee effect. We demonstrate

the local stability of each equilibrium, as well as the global stability of a coexistence

equilibrium and a mono-culture equilibrium. We will discuss the spatial transitions

from a mono-culture equilibrium to a coexistence equilibrium or a different mono-

culture equilibrium. With certain assumptions, we provide sufficient conditions

for the linear determinacy of the model, and a formula for the spreading speed

of the spatial transitions based on the linear determinacy. We will also show the

existence of traveling waves based on the spatial transitions mentioned above.

2.1 The Model

We reconstruct the two-species reaction-diffusion competition model (1.18)

as the following:

ut = d1uxx + r1u(1− u
k
− a1v),

vt = d2vxx + r2v ((v − α)(1− v)− a2u) ,
(2.1)

given that all parameters are positive and 0 < α < 1, and that the population den-

sities u and v are required to be nonnegative. Table 2.1 describes each parameter

in the model.
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TABLE 2.1

Model (2.1) Parameter Descriptions

Parameter Description of Parameter

u(x, t), v(x, t) population density at time t and location x

d coefficient of diffusion

r intrinsic rate of increase

k maximum population size of the species that the environment

can sustain (carrying capacity)

a coefficient of competition

α critical population density

Existence of Allee Effect

The growth function of the native species v in model (2.1) is given by

g(v) = r2v(v − α)(1− v).

We note that the population has a negative growth rate when 0 < v < α, and a

positive growth rate when α < v < 1. It follows that the species v exhibits strong

Allee effect with the critical population density α, where 0 < α < 1.

Equilibria of the Model

In order to achieve the equilibria of the model, we consider the following

system of equations:

r1u(1− u
k
− a1v) = 0,

r2v ((v − α)(1− v)− a2u) = 0.
(2.2)

By solving the equations, we get the trivial equilibrium E0 = (0, 0), the mono-

culture equilibrium E1 = (0, 1), E2 = (0, α), E3 = (k, 0) and the coexistence
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equilibrium E∗1 = (u∗1, v
∗
1), E∗2 = (u∗2, v

∗
2) where

u∗1 = k(1− a1v
∗
1),

v∗1 =
1+α+a1a2k−

√
(1+α+a1a2k)2−4(α+a2k)

2
,

u∗2 = k(1− a1v
∗
2),

v∗2 =
1+α+a1a2k+

√
(1+α+a1a2k)2−4(α+a2k)

2
.

(2.3)

Note that E∗1 and E∗2 both exist if the following condition is satisfied:

2
√
α + a2k < 1 + α + a1a2k < min{1 + α + a2k, 2}. (2.4)

It is easy to see that v∗1 < v∗2, which implies u∗1 > u∗2. So E∗1 locates on the lower

right side of E∗2 when they both exist.

2.2 Local Stability

In order to understand the possible spatial transitions among these euqilib-

ria, we study the local stability of each equilibrium by analyzing the corresponding

characteristic equations of the following vector-valued function at each point:

f(u, v) =

 r1u(1− u
k
− a1v)

r2v ((v − α)(1− v)− a2u)

 . (2.5)

At E0 = (0, 0), the Jacobian matrix of (2.5) is given by

JE0 =

r1 0

0 −r2α

 .

The eigenvalues of the above matrix JE0 are λ1 = r1 and λ2 = −r2α. Note that

λ1 > 0 and λ2 < 0 since all parameters in this model are positive including r1, r2

and α. So the equilibrium E0 = (0, 0) is a saddle.

At E1 = (0, 1), the Jacobian matrix of (2.5) is given by

JE1 =

r1(1− a1) 0

−r2a2 r2(α− 1)

 .
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The eigenvalues of the above matrix JE1 are λ1 = r1(1 − a1) and λ2 = r2(α − 1).

We note that λ1 < 0 when a1 > 1 and λ1 > 0 when 0 < a1 < 1, and that λ2 < 0

since 0 < α < 1. So the equilibrium E1 = (0, 1) is a sink if a1 > 1, and it is a

saddle if 0 < a1 < 1.

At E2 = (0, α), the Jacobian matrix of (2.5) is given by

JE2 =

r1(1− a1α) 0

−r2a2α r2α(1− α)


The eigenvalues of the above matrix JE2 are λ1 = r1(1−a1α) and λ2 = r2α(1−α).

We observe that λ1 < 0 when a1α > 1 and λ1 > 0 when a1α < 1, and that λ2 > 0

because 0 < α < 1. So the equilibrium E2 = (0, α) is a source if a1α < 1, and it is

a saddle if a1α > 1.

At E3 = (k, 0), the Jacobian matrix of (2.5) is given by

JE3 =

−r1 −r1a1k

0 −r2(α + a2k)


The eigenvalues of the above matrix JE3 are λ1 = −r1, λ2 = −r2(α + a2k), which

are both negative since all parameters are positive. So the equilibrium E3 = (k, 0)

is a sink.

At E∗1 = (u∗1, v
∗
1), the Jacobian matrix of (2.5) is given by

JE∗
1

=

 −r1u∗1
k

−r1a1u
∗
1

−r2a2v
∗
1 −r2v

∗
1(1 + α− 2v∗1)

 .

The corresponding characteristic equation is then given by

(λ+
r1u
∗
1

k
) (λ+ r2v

∗
1(1 + α− 2v∗1))− (r2a2v

∗
1)(r1a1u

∗
1) = 0,

which can be rewritten as the standard form of the quadratic equation in the

following sense:

λ2+

(
r1u
∗
1

k
− r2v

∗
1(1 + α− 2v∗1)

)
λ−
(
r1r2u

∗
1v
∗
1(1 + α− 2v∗1)

k
+ a1a2r1r2u

∗
1v
∗
1

)
= 0.
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By applying the quadratic formula, we get the solutions of the above equation as

the following:

λ1 =
r2v∗1(1+α−2v∗1)− r1u

∗
1

k
+

√(
r1u

∗
1

k
−r2v∗1(1+α−2v∗1)

)2

+4

(
r1r2u

∗
1v

∗
1(1+α−2v∗1)

k
+a1a2r1r2u∗1v

∗
1

)
2

,

λ2 =
r2v∗1(1+α−2v∗1)− r1u

∗
1

k
−

√(
r1u

∗
1

k
−r2v∗1(1+α−2v∗1)

)2

+4

(
r1r2u

∗
1v

∗
1(1+α−2v∗1)

k
+a1a2r1r2u∗1v

∗
1

)
2

.

In order to obtain the local stability of this equilibrium, we need to determine the

signs of λ1 and λ2. For the sake of simplicity, we let

R1 = r2v
∗
1(1 + α− 2v∗1)− r1u∗1

k
,

R2 = 4
(
r1r2u∗1v

∗
1(1+α−2v∗1)

k
+ a1a2r1r2u

∗
1v
∗
1

)
.

So the two eigenvalues can be rewritten as

λ1 =
R1+
√
R1

2+R2

2
,

λ2 =
R1−
√
R1

2+R2

2
.

We observe that

R2 = 4r1r2u
∗
1v
∗
1

(
1 + α− 2v∗1

k
+ a1a2

)

= 4r1r2u
∗
1v
∗
1

1 + α− 2 · 1+α+a1a2k−
√

(1+α+a1a2k)2−4(α+a2k)

2

k
+ a1a2


= 4r1r2u

∗
1v
∗
1 ·
√

(1 + α + a1a2k)2 − 4(α + a2k)

k

> 0

if and only if

2
√
α + a2k < 1 + α + a1a2k. (2.6)

Note that (2.6) is valid when the existence condition (2.4) for E∗1 is satisfied. Thus,

as long as E∗1 exists, it is always true that

R2 > 0. (2.7)
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(2.7) then implies that

R1 +
√
R1

2 +R2 > 0,

R1 −
√
R1

2 +R2 < 0.

Thus we have λ1 > 0 and λ2 < 0, which indicates that E∗1 = (u∗1, v
∗
1) is a saddle.

At E∗2 = (u∗2, v
∗
2), the Jacobian matrix of (2.5) is given by

JE∗
2

=

 −r1u∗2
k

−r1a1u
∗
2

−r2a2v
∗
2 −r2v

∗
2(1 + α− 2v∗2)


The corresponding characteristic equation of the above matrix is then given by

λ2+

(
r1u
∗
2

k
− r2v

∗
2(1 + α− 2v∗2)

)
λ−
(
r1r2u

∗
2v
∗
2(1 + α− 2v∗2)

k
+ a1a2r1r2u

∗
2v
∗
2

)
= 0

For the sake of simplicity, we denote

C = −r1u
∗
2

k
+ r2v

∗
2(1 + α− 2v∗2).

Recall that

v∗2 =
1 + α + a1a2k +

√
(1 + α + a1a2k)2 − 4(α + a2k)

2
> 0,

which implies that

1 + α < 2v∗2,

thus we have

C < 0. (2.8)

In addition, we let

S = 4
(r1r2

k
u∗2v

∗
2(1 + α− 2v∗2) + a1a2r1r2u

∗
2v
∗
2

)
= 4r1r2u

∗
2v
∗
2

(
1 + α− 2v∗2

k
+ a1a2

)
.
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TABLE 2.2

Summary of Existence and Local Stability Criteria of Equilibria in Model (2.1)

Equilibrium Existence Condition Stability Criteria

E0 always exists always unstable

E1 always exists stable when a1 > 1

unstable when 0 < a1 < 1

E2 always exists always unstable

E3 always exists always stable

E∗
1 if (2.4) holds always unstable

E∗
2 if (2.4) holds always stable

By substituting v∗2 in part of the above equation with the formula given by (2.3),

we have

S = 4r1r2u
∗
2v
∗
2

(
1+α−2v∗2

k
+ a1a2

)
= 4r1r2u

∗
2v
∗
2

(
1+α−2·

1+α+a1a2k+

√
(1+α+a1a2k)

2−4(α+a2k)

2

k
+ a1a2

)
= −4r1r2u

∗
2v
∗
2

√
(1+α+a1a2k)2−4(α+a2k)

k

< 0

if and only if (2.6) holds.

We observe that the eigenvalues of the matrix JE∗
2

can be written as

λ1 = C+
√
C2+4S
2

,

λ2 = C−
√
C2+4S
2

.

Considering C < 0 and S < 0, we have that

λ1 < 0, λ2 < 0.

So E∗2 = (u∗2, v
∗
2) is a sink if and only if (2.6) holds.

Table 2.2 summarizes the existence condition and the local stability of each

equilibrium of model (2.1).
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2.3 Global Stability

In order to show the existence of traveling wave solutions in (2.1), we also

want to understand the global stability of certain equilibrium in the model. Before

proceeding, we need the following lemmas:

LEMMA 2.1. (Butler-McGehee Theorem) Suppose that P is a hyperbolic rest point

which is in ω(x), the omega limit set of γ+(x), but is not the entire omega limit

set. Then ω(x) has nontrivial (i.e., different from P ) intersection with the stable

and the unstable manifolds of P .

LEMMA 2.2. In the model (2.1), we denote the rectangle with the vertices E∗2 =

(u∗2, v
∗
2), E1 = (0, 1), (0, v∗2) and (u∗2, 1) as R1, and the rectangle with the vertices

E1 = (0, 1), E3 = (k, 0), (k, 1) and (0, 0) as R2. Then the following statements are

valid:

i. If the two coexistence equilibria E∗1 and E∗2 both exist, then R1 is an invariant

set;

ii. If the coexistence equilibria E∗1 and E∗2 do not exist, then R2 is an invariant

set.

Proof. We consider the corresponding ordinary differential equations of the model

(2.1) given by the following:

ut = r1u(1− u
k
− a1v),

vt = r2v ((v − α)(1− v)− a2u) ,
(2.9)

We prove the first statement in the lemma, that is when the two coexistence

equilibria E∗1 and E∗2 both exist.

When v = 1 and 0 < u ≤ u∗2, we have that

vt = −a2r2u,
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which is negative since 0 < u ≤ u∗2. It indicates that any point starting from the

upper edge of R1 will move towards the inside of R1.

When u = 0 and v∗2 ≤ v < 1, we have that

ut = 0,

which implies that any point starting from the left edge of R1 will stay on this

edge.

When v = v∗2 and 0 ≤ u < u∗2, we have that

vt = r2v
∗
2 ((v∗2 − α)(1− v∗2)− a2u) ,

which is positive because α < v∗2 < 1. It then indicates that any point starting

from the lower edge of R1 will move towards the inside of R1.

When u = u∗2 and v∗2 < v ≤ 1, we have that

ut = r1u
∗
2

(
1− u∗2

k
− a1v

)
,

which is negative since v > v∗2. It indicates that any point starting from the right

edge of R1 will move towards the inside of R1.

Thus we have shown that when the two coexistence equilibria E∗1 and E∗2

exist, the rectangle R1 is an invariant set. Similarly, we can show that R2 is an

invariant set when E∗1 and E∗2 do not exist.

THEOREM 2.1. Assume 0 < a1 < 1. Let E3 and E∗2 be defined as above in Section

2.1, then the following statements are valid:

i. If the two coexistence equilibria E∗1 and E∗2 both exist, then E∗2 is globally

asymptotically stable;

ii. If the coexistence equilibria E∗1 and E∗2 do not exist, then the mono-culture

equilibrium E3 is globally asymptotically stable.
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Proof. We shall prove this theorem by considering the following two cases:

Case i. If the two coexistence equilibria E∗1 and E∗2 both exist, we want

to prove that E∗2 is globally asymptotically stable. Lemma 2.2 tells us that the

rectangle R1 is an invariant set in this case, thus the monotone dynamical system

theory in [38] indicates that there are no limit cycles in R1. If we denote a solution

of (2.9) in R1 by x̂, and denote the limit set of this solution by ω(x̂), then we want

to show that

E1 /∈ ω(x̂). (2.10)

We validate (2.10) by using the method of contradiction. Note that the

mono-culture equilibrium E1 = (0, 1) is a saddle when 0 < a1 < 1. The stable

manifold of E1 is given by the set Ω1 = {(0, x) | x ∈ R, α < x < 1 or x > 1}.

Assume that E1 ∈ ω(x̂), then Lemma 2.1 indicates that the intersection Ω1 ∩ ω(x̂)

is nonempty and E1 is not in it. Thus in this intersection set, there exists a point

(0, x1) ∈ ω(x̂) with either x1 > 1 or α < x1 < 1. The invariant property of

the limit set ω(x̂) indicates that the solutions starting from the intersection point

(0, x1) as t→∞ or t→ −∞ are all in the limit set ω(x̂). Accordingly, we consider

the following two cases:

a. If x1 > 1, then the invariant property of the limit set ω(x̂) implies that

the set {(0, x) | x ∈ R , x > 1} ⊆ ω(x̂). This is a contradiction with that fact that

R1 is an invariant set.

b. If α < x1 < 1, then the invariant property of the limit set ω(x̂) implies

that (0, α) ∈ ω(x̂). On the other hand, since α < v∗2 and R1 is invariant, we have

that (0, α) /∈ ω(x̂). So this is again a contradiction.

Thus we have shown that E1 /∈ ω(x̂), which implies that the coexistence

equilibrium E∗2 is globally asymptotically stable.

Case ii. If the coexistence equilibria E∗1 and E∗2 do not exist, we want to

demonstrate that the mono-culture equilibrium E3 = (k, 0) is globally asymptot-
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ically stable. Lemma 2.2 tells us that the rectangle R2 is an invariant set in this

case, thus the monotone dynamical system theory in [38] indicates that there are

no limit cycles in R2. If we denote a solution of (2.9) in R2 by ŷ, and denote the

limit set of this solution by ω(ŷ), then we only need to show that

E0 /∈ ω(ŷ),

E1 /∈ ω(ŷ),

E2 /∈ ω(ŷ).

(2.11)

Since the equilibrium E2 = (0, α) is a source when 0 < a1 < 1, thus it

suffices to show that E2 /∈ ω(ŷ).

Note that the equilibrium E0 is a saddle. The stable manifold of E0 is given

by the set Ω2 = {(0, y) | y ∈ R, 0 < y < α or y < 0}. Assume that E0 ∈ ω(ŷ),

then Lemma 2.1 indicates that the intersection Ω2 ∩ ω(ŷ) is nonempty and E0

is not in it. Thus in this intersection set, there exists a point (0, y1) ∈ ω(ŷ) with

either y1 < 0 or 0 < y1 < α. The invariant property of the limit set ω(ŷ) indicates

that the solutions starting from the intersection point (0, y1) as t→∞ or t→ −∞

are all in the limit set ω(ŷ). Accordingly, we consider the following two cases:

a. If y1 < 0, then the invariant property of the limit set ω(ŷ) implies that

the set {(0, y) | y ∈ R , y < 0} ⊆ ω(ŷ). This is a contradiction with that fact that

R2 is an invariant set.

b. If 0 < y1 < α, then the invariant property of the limit set ω(ŷ) indicates

that (0, α) ∈ ω(ŷ), which is again a contradiction with the fact that E2 /∈ ω(ŷ).

Thus we have shown that E0 /∈ ω(ŷ).

We still need to show that E1 /∈ ω(ŷ). Recall that the equilibrium E1 is a

saddle and the stable manifold of E1 is given by Ω1 in Case i. We assume that

E1 ∈ ω(ŷ), then Lemma 2.1 indicates that the intersection Ω1 ∩ ω(ŷ) is nonempty

and E1 is not in it. Thus in this intersection set, there exists a point (0, y2) ∈ ω(ŷ)

with either y2 > 1 or α < y2 < 1. The invariant property of the limit set ω(ŷ) then
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indicates that the solutions starting from the intersection point (0, y2) as t → ∞

or t→ −∞ are all in the limit set ω(ŷ). Then we consider the following two cases:

a. If y2 > 1, then the invariant property of the limit set ω(ŷ) implies that

the set {(0, y) | y ∈ R , y > 1} ⊆ ω(ŷ). This is a contradiction with that fact that

R2 is an invariant set.

b. If α < y2 < 1, then the invariant property of ω(ŷ) indicates that

(0, α) ∈ ω(ŷ), which is again a contradiction with the fact that E2 /∈ ω(ŷ). So we

conclude that E1 /∈ ω(ŷ).

Thus we have demonstated that (2.11) is valid, which indicates that the

mono-culture equilibrium E3 = (k, 0) is globally asymptotically stable in this case.

2.4 Spreading Speed and Linear Determinacy

Weinberger et al. [2] have provided sufficient conditions for the linear de-

terminacy of the two-species cooperative models with certain assumptions. It is

well known that a simple change of variables can convert a two-species competition

model into a cooperative model. Take the competition model (2.1) as an example,

the change of variables

p = u, q = 1− v (2.12)

converts the model into

pt = d1pxx + r1p(1− p
k
− a1 + a1q),

qt = d2qxx + r2(q − 1)(q − q2 − αq − a2p),
(2.13)

which is a cooperative system in the biological realistic range 0 ≤ p ≤ 1, 0 ≤ q ≤ 1.

That is, increasing either p or q will lead to the increase of q and p respectively.

We use Ê0, Ê1, Ê2, Ê3, Ê∗1 and Ê∗2 to denote the equilibria of the coorpera-

tive system (2.13), then we have the following mapping of the equilibria from the
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competition model (2.1) to the cooperative system:

E0 = (0, 0) −→ Ê0 = (0, 1),

E1 = (0, 1) −→ Ê1 = (0, 0),

E2 = (0, α) −→ Ê2 = (0, 1− α),

E3 = (k, 0) −→ Ê3 = (k, 1),

E∗1 = (u∗1, v
∗
1) −→ Ê∗1 = (u∗1, 1− v∗1),

E∗2 = (u∗2, v
∗
2) −→ Ê∗2 = (u∗2, 1− v∗2).

We assume that

0 < a1 < 1, (2.14)

then E1 = (0, 1) is a saddle. E∗2 = (u∗2, v
∗
2) exists and is stable when (2.4) is

satisfied. Note that E3 = (k, 0) is always stable.

We consider the spatial transition from the unstable state E1 = (0, 1) to

the target stable state

E := (u, v) =


E∗2 = (u∗2, v

∗
2) if E∗1 , E

∗
2 both exist,

E3 = (k, 0) if E∗1 , E
∗
2 do not exist.

(2.15)

By changing the variables as shown in (2.12), the above transition is then turned

into the transition from Ê1 = (0, 0) to the converted target state

Ê := (p̂, q̂) =


(u∗2, 1− v∗2) if Ê∗1 , Ê

∗
2 both exist,

(k, 1) if Ê∗1 , Ê
∗
2 do not exist.

Figure 2.1 displays the coordinates of each equilibrium and the spatial transitions

before and after the change of variables.

THEOREM 2.2. Suppose that all parameters of the model (2.1) are positive, that

0 < a1 < 1 and that the conditions

d2
d1
≤ 2,

max
{

1
1−a1 ,

a1a2k+α−1
1−a1

}
≤ r2

r1

(
2− d2

d1

) (2.16)
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u0 k

v

α

1

E∗2

E∗1

(a)

p0 k

q

1− α

1

Ê2

∗

Ê1

∗

(b)

FIGURE 2.1 – Equilibria and spatial transitions in the reaction-diffusion system
before and after the change of variables p = u, q = 1− v: (a) Before the change of
variables, when the two coexistence equilibria exist, the spatial transition is from
(0, 1) to E∗2 ; when the coexistence equilibria do not exist, the spatial transition is
from (0, 1) to (k, 0). (b) After the change of variables, when the two coexistence
equilibria exist, the spatial transition is from (0, 0) to Ê∗2 ; when the coexistence
equilibria do not exist, the spatial tansition is from (0, 0) to (k, 1).

are satisfied. Then the spreading speed c∗ of the spatial transition from E1 to E is

equal to the spreading speed c̄ = 2
√
d1r1(1− a1) of the linearization of model (2.1)

at (0, 1). That is, the model (2.1) is linearly determinate.

Proof. This theorem is an application of Weinberger’s Theorem 4.2 in [2].

We aim to find an explicit formula for the spreading speed c̄ based on the

linear determinacy first. We consider the cooperative system (2.13) after changing

the variables in the competition model (2.1), then the linearization of (2.13) at

(p, q) = (0, 0) can be calculated as

pt = d1pxx + r1p(1− a1),

qt = d2qxx − r2(q − αq − a2p).
(2.17)

To apply Theorem 4.2 in [2], we need to find a matrix Cµ defined to be the

coefficient matrix for the vector of the linear combinations of α1 and α2 obtained
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by substituting p = α1e
−µx, q = α2e

−µx into the right-hand side of (2.17) and

setting x = 0. So Cµ can be calculated as

Cµ =

d1µ
2 + r1(1− a1) 0

r2a2 d2µ
2 + r2(α− 1)

 .

The principal eigenvalue of the first diagonal block of this upper triangular matrix

Cµ is then given by

γ1(µ) = d1µ
2 + r1(1− a1). (2.18)

An eigenvector corresponding to γ1(µ) is given by the vector (ζ1(µ), ζ2(µ)), where

ζ1(µ) = γ1(µ)− γ2(µ),

ζ2(µ) = r2a2.
(2.19)

It is shown in [2] that

Bµ = exp (Cµ) ,

so the principal eigenvalue λ1 of the first diagonal block of Bµ has the following

property:

λ1(µ) = eγ1(µ).

By applying the spreading speed formula (1.17) in Chapter 1, we get that

the invasive species u spreads to infinity with the asymptotic speed of

c̄ = inf
µ>0

{
1

µ
γ1(µ)

}
. (2.20)

The infimum in (2.20) can be fullfilled when µ takes the value

µ = µ̄ =

√
r1(1− a1)

d1

. (2.21)

By substituting (2.21) into (2.20), we have

c̄ = 2
√
d1r1(1− a1). (2.22)
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If the spreading speed of the model (2.1) is equal to c̄ in (2.22), i.e. c∗ = c̄ =

2
√
d1r1(1− a1), then the spreading speed of the model (2.1) is said to be linearly

determined. In order to find the sufficient conditions for the linear determinacy,

we shall make the following hypotheses which is a special case of Hypotheses 4.1

in [2].

HYPOTHESES 2.1.

i. There exist equilibria (0, 0) and (β1, β2) with β1 and β2 positive, and there is

no other constant all-species coexistence equilibrium (α1, α2) such that 0 <

α1 ≤ β1 and 0 < α2 ≤ β2, i.e., there is no constant all-species coexistence

equilibrium below (β1, β2).

ii. The system (2.13) is cooperative in the sense that the growth term in the

p-equation is nondecreasing in q, and the growth term in the q-equation is

nondecreasing in p, i.e., an increase in any species is beneficial to all species.

iii. Neither equations in (2.13) has explicit dependence on space or time.

iv. The growth functions are continuous and piecewise continuously differentiable

for 0 ≤ p ≤ β1 and 0 ≤ q ≤ β2.

v. The Jacobian matrix Cµ is in Frobenius form. The principal eigenvalue γ1(0) =

r1(1− a1) of its upper left diagonal block is positive and is strictly larger than

the principal eigenvalues γσ(0) of its other diagonal blocks.

vi. C0 has at least one nonzero entry to the left of each of its diagonal blocks other

than the uppermost one, i.e., the element c21 in C0, which is r2a2, is positive.

vii. With µ̄ defined by (2.21), γ1(µ̄) > γ2(µ̄).

viii. For every positive number ρ, each of the right-hand sides of the system (2.13)

evaluated at p = ρζ1(µ̄), q = ρζ2(µ̄) should be no larger than the corresponding
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right-hand sides of the linearization (2.17) evaluated at (ρζ1(µ̄), ρζ2(µ̄)).

For hypothesis i, we showed at the beginning of this section that Ê∗2 =

(u∗2, 1 − v∗2) and Ê1 = (0, 0) satisfy these conditions by letting β1 = u∗1 and β2 =

1 − v∗2. And it is easy to verify that the model (2.13) satisfies hypothesis ii to vi

when r1(1− a1) > 0 and r2a2 > 0.

For hypothesis vii, by (2.18) and (2.21) we have

γ1(µ̄) = 2r1(1− a1),

γ2(µ̄) = d2r1(1−a1)
d1

+ r2(α− 1).

In order to make γ1(µ̄) > γ2(µ̄), the following inequality must be satisfied:

α− 1

1− a1

<
r1

r2

(
2− d2

d1

)
. (2.23)

Hypothesis viii indicates that when p = ρζ1(µ̄) and q = ρζ2(µ̄), the following

inequalities

r1p(1−
p

k
− a1 + a1q) ≤ r1p(1− a1) (2.24)

and

r2(q − 1)(q − q2 − αq − a2p) ≤ −r2(q − αq − a2p) (2.25)

must be satisfied. After simplification, (2.24) is equivalent to

a1kq ≤ p. (2.26)

Substitute p = ρζ1(µ̄) and q = ρζ2(µ̄) into (2.26), we have that

a1kρζ2(µ̄) ≤ ρζ1(µ̄). (2.27)

We then substitute ζ1(µ̄) = γ1(µ̄)− γ2(µ̄) and ζ2(µ̄) = r2a2 into (2.27) and have

a1kρr2a2 ≤ ρ
(
γ1(µ̄)− γ2(µ̄)

)
. (2.28)
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We have shown that γ1(µ̄) = d1µ̄
2 +r1(1−a1) and γ2(µ̄) = d2µ̄

2 +r2(α−1) earlier,

so (2.28) can be written as

a1kρr2a2 ≤ ρ
(
d1µ̄

2 + r1(1− a1)− d2µ̄
2 − r2(α− 1)

)
. (2.29)

Substitute µ̄ =
√

r1(1−a1)
d1

into (2.29), we get that

a1kρr2a2 ≤ ρ

(
d1
r1(1− a1)

d1

+ r1(1− a1)− d2
r1(1− a1)

d1

− r2(α− 1)

)
,

which can be simplified and is equivalent to

a1a2k + α− 1

1− a1

≤ r1

r2

(
2− d2

d1

)
. (2.30)

On the other hand, (2.25) can be simplified and rewritten as

2q − q2 − αq − a2p ≤ 0. (2.31)

By substituting p = ρζ1(µ̄) and q = ρζ2(µ̄) into the above inequality, (2.31) be-

comes

2ρζ2(µ̄)−
(
ρζ2(µ̄)

)2 − αρζ2(µ̄)− a2ρζ1(µ̄) ≤ 0. (2.32)

By combining (2.18), (2.19) and (2.21), it follows that (2.32) is equivalent to

1− r2a2ρ

1− a1

≤ r1

r2

(
2− d2

d1

)
. (2.33)

The following inequality

1

1− a1

≤ r1

r2

(
2− d2

d1

)
(2.34)

can guarantee that (2.33) is satisfied for each positive ρ.

We note that the hypotheses vii and viii can be accepted when (2.30) and

(2.34) hold concurrently, that is when

d2
d1
≤ 2,

max
{

1
1−a1 ,

a1a2k+α−1
1−a1

}
≤ r2

r1

(
2− d2

d1

)
.

(2.35)

33



Thus Hypotheses 2.1 can be satisfied when all the parameters are positive,

0 < a1 < 1 and (2.35) all hold simultaneously. When all those conditions are

satisfied, the cooperative system (2.13) is linearly determinate. Since the coopera-

tive system (2.13) is equivalent to the original competition model (2.1), the above

sufficient conditions for the linear determinacy of the cooperative system can be

also applied to the competition model (2.1).

2.5 Existence of Traveling Waves

Li and Zhang [18] have established the existence of traveling wave solutions

for the delayed cooperative recursions and reaction-diffusion models that are al-

lowed to have more than two equilibria. In this section, we will apply Theorem

2.2 in [18] to the reaction-diffusion system (2.13) and show the existence of trav-

eling wave solutions connnecting a mono-culture equilibrium and a coexistence

equilibrium or a different mono-culture equilibrium in (2.1).

We have shown in Section 2.3 and 2.4 the global stability of Ê and that

the invasion of the unstable state Ê1 = (0, 0) always produces a transition toward

Ê = (p̂, q̂). And we note that if Ê∗2 exists, then v∗2 > α since

v∗2 − α =
1 + α + a1a2k +

√
(1 + α + a1a2k)2 − 4(α + a2k)

2
− α

=
1− α + a1a2k +

√
(1 + α + a1a2k)2 − 4(α + a2k)

2

>0.

This further implies

1− v∗2 < 1− α.

Meanwhile, it is easy to see that Ê∗2 locates on the lower left side of Ê∗1 , so

Ê∗2 = (u∗2, 1− v∗2) is vertically the lowest equlibrium besides Ê1 = (0, 0). With that

being said, Ê∗2 = (u∗2, 1− v∗2) is the equilibrium state which is the cloest to (0, 0) in
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the sense that there is no other constant equilibrium in the rectangle with vertices

(0, 0), (u∗2, 1− v∗2), (0, 1− v∗2) and (u∗2, 0) in (2.13).

THEOREM 2.3. Assume that 0 < a1 < 1. Let c∗+ be defined by (1.16) where Q is

replaced by its time one solution map Q1. Then for c ≥ c∗+ and c 6=
(
α− 1

2

)√
2d2r2,

the model (2.1) has a monotone traveling wave solution W (x− ct) connecting E1

to E defined by (2.15), and such a traveling wave does not exist if c < c∗+. In

particular, when the spreading speed of system (2.1) is linearly determined, such a

nonincreasing traveling wave solution exists if and only if c ≥ c∗+.

Proof. We shall prove this theorem by considering the cooperative system (2.13)

in the following two cases:

Case i: If (2.4) is satisfied, that is when the two coexistence equilibria

both exist, then Ê∗2 = (u∗2, 1 − v∗2) is the closest equilibrium to (0, 0) in the sense

that there is no other constant equilibruim (ρ1, ρ2) which satisfies 0 < ρ1 ≤ u∗2

and 0 < ρ2 ≤ 1 − v∗2. According to Theorem 2.1 and 2.2 in [18], it suffices to

show the cooperative system (2.13) has a nonincreasing traveling wave solution

W (x − ct) with W (+∞) = 0 and W (−∞) = (u∗2, 1 − v∗2) if and only if c ≥ c∗+.

So we only need to show that for any c ≥ c∗+ and c 6=
(
α− 1

2

)√
2d2r2, there is no

nonincreasing traveling wave solution of (2.13) which connects (0, 0) with either

(0, 1) or (0, 1− α) when the two coexistence equilibria do not exist.

Case ii: When the two coexistence equilibria Ê∗1 and Ê∗2 do not exist, we

assume there exists a nonincreasing traveling wave solution (p(x − ct), q(x − ct))

of (2.13) with c ≥ c∗+, which connects (0, 0) with either (0, 1) or (0, 1 − α), then

p = 0 and q(x− ct) is a nonincreasing traveling wave solution of

qt = d2qxx + r2q(1− q)(q − ν), (2.36)

given that ν = 1−α. Hadeler et al. [88] showed that there exists a unique traveling

wave solution of (2.36) connecting (0, 0) and (0, 1) with a unique wave velocity of
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c1, where

c1 =

(
1

2
− ν
)√

2d2r2 =

(
α− 1

2

)√
2d2r2.

Thus if c ≥ c∗+ and c 6=
(
α− 1

2

)√
2d2r2, there is no traveling wave solution of

(2.13) that connects (0, 0) and (0, 1).

Especially, when the linear determinacy conditions for system (2.1) hold,

we have

c∗+ = c̄ = 2
√
d1r1(1− a1).

Thus, we only need to show that

c∗+ > c1 =

(
1

2
− ν
)√

2d2r2, (2.37)

which guarantees c 6= c1 as long as c ≥ c∗+. We shall prove (2.37) by considering

the following two cases:

Case i: When 1
2
< ν < 1, (2.37) is simply true since c∗+ > 0.

Case ii: When 0 < ν < 1
2
, condition (2.16) implies that

r1(1− a1) ≥ r2

2− d2
d1

,

so that

c∗+ = c̄ ≥ 2

√
d2r2

2− d2
d1

=

√
4d2

1r2

2d1 − d2

.

On the other hand, we have

c1 =

(
1

2
− ν
)√

2d2r2 <

√
d2r2

2
.
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Thus we have (
c∗+
c1

)2

>
4d2

1r2

2d1 − d2

· 2

d2r2

=
8d2

1

(2d1 − d2)d2

>
8d2

1

2d1(2d1 − d2)

=
4d1

2d1 − d2

>
4d1

2d1

> 1,

that is, (
1

2
− ν
)√

2d2r2 = c1 < c̄ = c∗+.

Thus we have proved that (2.37) is true.

Besides, we assume there exists a traveling wave solution connecting (0, 0)

to the unstable source (0, ν), then it must spread at a unique wave speed which is

negative. This is a contradiction with the fact that c ≥ c∗+ > 0. Thus there is no

such traveling wave solution which connects (0, 0) to (0, ν).

So we have completed the proof of Theorem 2.3 considering that the coop-

erative system (2.13) is equivalent to the competition model (2.1).
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CHAPTER 3

TWO-SPECIES DISCRETE-TIME SPATIO-TEMPORAL COMPETITION
MODEL WITH ALLEE EFFECT

In this chapter we investigate the two-species discrete-time spatio-temporal

competition model with Allee effect, which serves as an extension of the two-

species discrete-time spatial spreading model (1.19). Similarly as in Chapter 2,

we demonstrate the local stability of each equilibrium, and the global stability of

a coexistence equilibrium and a mono-culture equilibrium. We will discuss the

spatial transitions from a mono-culture equilibrium to an all-species coexistence

equilibrium or a different mono-culture equilibrium. With certain assumptions, we

provide the sufficient conditions for the linear determinacy of the model as well

as a formula for the spreading speed of the spatial transitions based on the linear

determinacy. We will also show the existence of traveling wave solutions based on

these spatial transitions.

3.1 The Model

We introduce the two-species discrete-time spatio-temporal competition

model based on the integro-difference equations:

pn+1(x) =
∫
R1

(1+ρ1)pn(x−y)
1+ρ1(pn(x−y)+α1qn(x−y))

k1(y, dy),

qn+1(x) =
∫
R1

(1+ρ2)q2n(x−y)

1+ρ2(qn(x−y)+α2pn(x−y))2
k2(y, dy)

(3.1)

given that all parameters are positive and ρ2 > 1. pn(x) and qn(x) describe the

population densities of two species at time n and position x respectively, k1(y, dy)

and k2(y, dy) are the dispersal kernals.
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Note that this model assumes that the life cycle of the two species consists

of a sedentary stage at which the two species are sedentary and compete locally

by following the Beverton-Holt dynamics, and then the dispersal stage at which

both species diffuse without growing or dying.

The dispersal kernals k1(y, dy) and k2(y, dy) are probability measures for

the dispersals of the two species and satisfy∫
R1

ki(y, dy) = 1, i = 1, 2. (3.2)

We assume that the dispersal kernals ki have the symmetry property:

ki(−y, dy) = ki(y, dy). (3.3)

Property (3.3) and the convolution forms of (3.1) are reflections of the fact that the

dispersal is isotropic and the space is homogeneous in the sense that the growth

and dispersal properties are the same at each point.

Existence of Allee Effect

The growth function of the second species q in (3.1) is given by

g(q) =
(1 + ρ2)q2

1 + ρ2q2
, (3.4)

with g(0) = 0, g( 1
ρ2

) = 1
ρ2

, and g(1) = 1. It indicates that the population has a

negative growth rate when 0 < q < 1
ρ2

, and a positive growth rate when 1
ρ2
< q < 1.

Thus, the population q exhibits strong Allee effect with the critical population

density 1
ρ2

, where ρ2 > 1.

Equilibria of the Model

In order to achieve the equilibria of the model (3.1), we need to solve the

following system of equations:

(1+ρ1)p
1+ρ1(p+α1q)

= p,

(1+ρ2)q2

1+ρ2(q+α2p)2
= q.

(3.5)
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Then we obtain the trivial equilibrium E0 = (0, 0), the mono-culture equilibrium

E1 = (0, 1), E2 = (1, 0), E3 = (0, 1
ρ2

) and the coexistence equilibrium E∗1 = (p∗1, q
∗
1),

E∗2 = (p∗2, q
∗
2), where

q∗1 =
1+ρ2−2α2ρ2(1−α1α2)+((1+ρ2)2−4ρ2(1−α1α2)(α2(1+ρ2)+1−α1α2))

1/2

2ρ2(1−α1α2)2
,

q∗2 =
1+ρ2−2α2ρ2(1−α1α2)−((1+ρ2)2−4ρ2(1−α1α2)(α2(1+ρ2)+1−α1α2))

1/2

2ρ2(1−α1α2)2
,

p∗i = 1− α1q
∗
i , i = 1, 2.

Note that the coexsistence equilibria both exist when the following condition is

satisfied:

2
√
ρ2(1− α1α2)2(1 + ρ2α2

2) < 1 + ρ2 − 2ρ2α2(1− α1α2)

< min{1 + ρ2α
2
2 + ρ2(1− α1α2)2, 2ρ2(1− α1α2)2}.

(3.6)

Besides, since q∗1 > q∗2 and p∗1 < p∗2, it follows that E∗1 locates on the lower right

side of E∗2 when they both exist.

3.2 Local Stability

In order to discuss the possible spatial transitions among all these equilibria,

we study the local stability of each equilibrium by analyzing the corresponding

characteristic equations of the following vector-valued function at each point:

g(p, q) =

 (1+ρ1)p
1+ρ1(p+α1q)

(1+ρ2)q2

1+ρ2(q+α2p)2

 . (3.7)

At E0 = (0, 0), the Jacobian matrix of (3.7) is given by

JE0 =

1 + ρ1 0

0 0

 .

The eigenvalues of the above matrix JE0 are λ1 = 1 + ρ1, λ2 = 0. Since ρ1 > 0, we

have |λ1| = |1 + ρ1| > 1, thus the equilibrium E0 = (0, 0) is a saddle.

At E1 = (0, 1), the Jacobian matrix of (3.7) is given by
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JE1 =

 1+ρ1
1+α1ρ1

0

−2α2ρ2
1+ρ2

2
1+ρ2

 .

The eigenvalues of the above matrix JE1 are λ1 = 1+ρ1
1+α1ρ1

, λ2 = 2
1+ρ2

. Assume

0 < α1 < 1, then |λ1| = | 1+ρ1
1+α1ρ1

| > 1. Note that |λ2| < 1 since ρ2 > 1. Thus the

equilibrium E1 = (0, 1) is a saddle if 0 < α1 < 1.

At E2 = (1, 0), the Jacobian matrix of (3.7) is given by

JE2 =

 1
1+ρ1

− α1ρ1
1+ρ1

0 0

 .

The eigenvalues of the above matrix JE2 are λ1 = 1
1+ρ1

, λ2 = 0. Since ρ1 > 0, we

will have |λ1| = | 1
1+ρ1
| < 1 and |λ2| = 0 < 1. So the equilibrium E2 = (1, 0) is a

sink.

At E3 = (0, 1
ρ2

), the Jacobian matrix of (3.7) is given by

JE3 =

 1+ρ1
1+ρ1

α1
ρ2

0

− 2α2

1+ρ2
2

1+ 1
ρ2

 .

The eigenvalues of the above matrix JE3 are λ1 = 1+ρ1
1+ρ1

α1
ρ2

, λ2 = 2
1+ 1

ρ2

. Given ρ2 > 1,

it follows that |λ2| = | 2
1+ 1

ρ2

| > 1. So the equilibrium E3 = (0, 1
ρ2

) is unstable in the

case that ρ2 > 1. Addtionally, it is a saddle if 0 < α1 < 1.

It is difficult to determine the local stability of the coexistence equilibrium

E∗1 by analyzing its corresponding Jabobian matrix. A later discussion in Section

3.3 indicates that E∗1 is globally asymptotically stable, which indicates E∗1 is locally

stable as well. The global stability of E∗1 also implies that E∗2 = (p∗2, q
∗
2) is unstable.

Table 3.1 exhibits a summary of the existence condition and the local sta-

bility of each equilibrium.
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TABLE 3.1

Summary of Existence and Local Stability Criteria of Equilibria in Model (3.1)

Equilibrium Existence Condition Stability Criteria

E0 always exists always unstable

E1 always exists Unstable if 0 < α1 < 1

Stable if α1 > 1

E2 always exists always stable

E3 always exists Unstable if ρ2 > 1

E∗
1 When (3.6) holds always stable

E∗
2 When (3.6) holds always unstable

3.3 Global Stability

For the purpose of showing the existence of traveling wave solutions, we

shall study the global stability of the mono-culture equilibrium E2 = (1, 0) and

the coexistence equilibrium E∗1 = (p∗1, q
∗
1). Before proceeding, we need the following

lemmas.

LEMMA 3.1. (Monotone Convergence Lemma) If a sequence of real numbers is

increasing and bounded above, then its supremum is the limit; If a sequence of real

numbers is decreasing and bounded below, then its infimum is the limit.

LEMMA 3.2. (Squeeze Lemma) Let I be an interval having the point a as a limit

point. Let f , g and h be functions defined on I, except possibly at a itself. Suppose

that for every x in I not equal to a, we have:

g(x) ≤ f(x) ≤ h(x)

and also suppose that:

lim
x→a

g(x) = lim
x→a

h(x) = L.

Then

lim
x→a

f(x) = L.
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LEMMA 3.3. In the model (3.1), we denote the rectangle with the vertices E1
∗ =

(p∗1, q
∗
1), E1 = (0, 1), (0, q∗1) and (p∗1, 1) as R1, and the rectangle with the vertices

E0 = (0, 0), E1 = (0, 1), E2 = (1, 0) and (1, 1) as R2, then the following statements

are valid:

i. If the two coexistence equilibria E1
∗ and E2

∗ both exist, then R1 is an invariant

set;

ii. If the coexistence equilibria E1
∗ and E2

∗ do not exist, then R2 is an invariant

set.

Proof. We consider the corresponding difference equations of (3.1) given by the

following:

pn+1(x) = (1+ρ1)pn(x)
1+ρ1(pn(x)+α1qn(x))

,

qn+1(x) = (1+ρ2)q2n(x)

1+ρ2(qn(x)+α2pn(x))2
.

(3.8)

We shall prove this lemma by considering the following four different cases:

Case i: When qn(x) = 1 and 0 < pn(x) ≤ p∗1, then we have

qn+1(x) =
1 + ρ2

1 + ρ2 (1 + α2pn(x− y))2

<1

since 1 + ρ2 (1 + α2pn(x− y)) > 1. This implies that any point starting from the

upper edge of R1 will move towards the inside of R1.

Case ii: When qn(x) = q∗1 and 0 ≤ pn(x) < p∗1, we have that

qn+1(x) =
(1 + ρ2)q∗1

2

1 + ρ2 (q∗1 + α2pn(x))2

>
(1 + ρ2)q∗1

2

1 + ρ2 (q∗1 + α2p∗1)2

=q∗1.

(3.9)

Thus any point starting from the lower edge of R1 will move towards the inside of

R1.
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Case iii: When pn(x) = 0 and q∗1 ≤ qn(x) < 1, then we have

pn+1(x) = 0.

Thus any point starting from the left edge of R1 will stay on this edge.

Case iv: When pn(x) = p∗1 and q∗1 < qn(x) ≤ 1, then we have

pn+1(x) =
(1 + ρ1)pn(x)

1 + ρ1 (pn(x) + α1qn(x))

=
(1 + ρ1)p∗1

1 + ρ1 (p∗1 + α1qn(x))

<
(1 + ρ1)p∗1

1 + ρ1(p∗1 + α1q∗1)

=p∗1.

So any point starting from the right edge of R1 will move towards the inside of R1.

Thus it suffices to show that R1 is an invariant set when the two coexistence

equilibria exist. Similarly, we can prove that R2 is an invariant set when the two

coexistence equilibria do not exist.

LEMMA 3.4. The change of variables

un = pn, vn = 1− qn

converts the competition model (3.1) into the following system:

un+1(x) =
∫
R1

(1+ρ1)un(x−y)
1+ρ1(α1+un(x−y)−α1vn(x−y))

k1(y, dy),

vn+1(x) =
∫
R1

ρ2α2un(x−y)(α2un(x−y)+2−2vn(x−y))+2vn(x−y)−v2n(x−y)

1+ρ2(1−vn(x−y)+α2un(x−y))2
k2(y, dy).

(3.10)

Then (3.10) is order-preserving in the biological range 0 ≤ un ≤ 1, 0 ≤ vn ≤ 1.

Proof. To prove this lemma, we aim to show that increasing either un or vn will

lead to the increase of un+1 and vn+1.

Let

f(un, vn) = (1+ρ1)un
1+ρ1(α1+un−α1vn)

,

g(un, vn) = ρ2α2un(α2un+2−2vn)+2vn−vn2

1+ρ2(1−vn+α2un2)
.

(3.11)
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Then we have

f ′un =
(1 + ρ1) (1 + ρ1(α1 + un − α1vn))− ρ1(1 + ρ1)un

(1 + ρ1(α1 + un − α1vn))2

=
(1 + ρ1)(1 + ρ1α1(1− vn))

(1 + ρ1(α1 + un − α1vn))2

>0

since 0 ≤ vn ≤ 1. So f(un, vn) is increasing in un, and so is

un+1(x) =

∫
R1

f(un, vn)(x− y)k1(y, dy).

Similarly, we have

f ′vn =
−(−ρ1α1)

(1 + ρ1(α1 + un − α1vn)2

=
ρ1α1

(1 + ρ1(α1 + un − α1vn)2

>0,

which implies that f(un, vn) is increasing in vn, and so is

un+1(x) =

∫
R1

f(un, vn)(x− y)k1(y, dy).

On the other hand, we have

g′un =
(2ρ2α2

2un + 2ρ2α2 − 2ρ2α2vn)(1 + ρ2(1− vn + α2un)2)

(1 + ρ2(1− vn + α2un2))2

−(ρ2α2
2un

2 + 2ρ2α2un − 2ρ2α2unvn + 2vn − vn2)(2ρ2α2(1− vn + α2un))

(1 + ρ2(1− vn + α2un2))2

=
2ρ2α2(α2un + 1− vn)(1 + ρ2 − 2vn(1 + ρ2) + (1 + ρ2)vn

2)

(1 + ρ2(1− vn + α2un2))2

=
2ρ2α2(α2un + 1− vn)(1 + ρ2)(1− vn)2

(1 + ρ2(1− vn + α2un2))2

>0

since 0 ≤ vn ≤ 1 and all parameters are positive. Thus g(un, vn) is increasing in

un, and so is

vn+1(x) =

∫
R1

g(un, vn)(x− y)k2(y, dy).
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Similarly, we have

g′vn =
(−2ρ2α2un + 2− 2vn)(1 + ρ2(1− vn + α2un)2)

(1 + ρ2(1− vn + α2un2))2

−(ρ2α2
2un

2 − 2ρ2α2un − 2ρ2α2unvn + 2vn − vn2)(−2ρ2(1− vn + α2un))

(1 + ρ2(1− vn + α2un2))2

=
−2ρ2α2un + 2− 2vn + 2ρ2 − 2ρ2vn + 2ρ2α2un

(1 + ρ2(1− vn + α2un2))2

=
2(1 + ρ2)(1− vn)

(1 + ρ2(1− vn + α2un2))2

≥0

when 0 ≤ vn ≤ 1. Note that

g′vn = 0

when vn = 1. Hence g(un, vn) is increasing in vn, and so is

vn+1(x) =

∫
R1

g(un, vn)(x− y)k2(y, dy).

Thus we have shown that increasing either un or vn will lead to the increase

of un+1 and vn+1, that is, (3.10) is order-preserving in the biological range 0 ≤

un ≤ 1 and 0 ≤ vn ≤ 1.

We use Ê0, Ê1, Ê2, Ê3, Ê∗1 and Ê∗2 to denote the equilibria of the coorper-

ative system (3.10), and we have the following mapping of the equilibria from the

competition model (3.1) to the cooperative system as shown below:

E0 = (0, 0) −→ Ê0 = (0, 1),

E1 = (0, 1) −→ Ê1 = (0, 0),

E2 = (1, 0) −→ Ê2 = (1, 1),

E3 = (0, 1
ρ2

) −→ Ê3 = (0, 1− 1
ρ2

),

E∗1 = (p∗1, q
∗
1) −→ Ê∗1 = (p∗1, 1− q∗1),

E∗2 = (p∗2, q
∗
2) −→ Ê∗2 = (p∗2, 1− q∗2).

In the cooperative system (3.10), if we denote the rectangle with vertices

(0, 0), (0, 1 − q∗1), (p∗1, 1 − q∗1) and (p∗1, 0) by R̂1, and denote the rectangle with
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vertices (0, 0), (0, 1), (1, 1) and (1, 0) by R̂2, then it follows that R̂1 is an invariant

set when the two coexistence equilibria exist, and R̂2 is an invariant set when the

two coexistence equilibria do not exist. This is because the cooperative system

(3.10) is equivalent to the original competition model (3.1).

THEOREM 3.1. In the model (3.1), assume that 0 < α1 < 1. Let E2 and E∗1 be

defined as in Section 3.1, then the following statements are valid:

i. If the two coexistence equilibria E∗1 and E∗2 both exist, then E∗1 is globally

asymptotically stable;

ii. If the two coexistence equilibria E∗1 and E∗2 do not exist, then the mono-culture

equilibrium E2 is globally asymptotically stable.

Proof. We consider the coorperative system (3.10) which is equivalent to the orig-

inal competition model (3.1), then we want to first show that the equilibrium

Ê∗1 = (p∗1, 1− q∗1) is globally asymptotically stable when the two coexistence equi-

libria both exist.

Let λ1 be the principal eigenvalue of the Jacobian matrix of (3.11) at (0, 0),

and denote the eigenvector corresponds to λ1 by ζ1, then λ1 > 1 and ζ1 has two

elements which have the same signs. Inside the reactangle R̂1, let {Ėi}∞i=0 =

{(ṗi, q̇i)}∞i=0 be a sequence of solutions with pi > 0 and qi > 0 such that (ṗ0, q̇0) is

on the direction of ζ1 and thatṗ0

q̇0

−
0

0

 ≤
ε
ε


for any sufficiently small ε > 0 and ε > 0, i.e., Ė0 = (ṗ0, q̇0) is extremely close to

the origin 0. Let Q be the operator of the system of equations (3.11), then the

linear approximation theory indicates that

Ė1 := Q(Ė0) ≈ Q(0) + λ1(Ė0 − 0) > Ė0,
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that is, ṗ0

q̇0

 ≤
ṗ1

q̇1

 .

By induction, we have ṗ0

q̇0

 ≤
ṗ1

q̇1

 ≤
ṗ2

q̇2

 ≤ ...

Since R̂1 is an invariant set, according to Lemma 3.1, we have that

lim
i→∞

ṗi
q̇i

 =

 p∗1

1− q∗1

 .

Let (pi, qi) be any solution in R̂1 such thatṗ0

q̇0

 ≤
p0

q0

 ≤
 p∗1

1− q∗1

 .

The system (3.10) is order-preserving, thus we haveṗ1

q̇1

 ≤
p1

q1

 ≤
 p∗1

1− q∗1

 .

Induction then tells us thatṗi
q̇i

 ≤
pi
qi

 ≤
 p∗1

1− q∗1

 .

for i = 0, 1, 2, ....

Lemma 3.2 indicates that

lim
i→∞

pi
qi

 =

 p∗1

1− q∗1

 .

Thus any solution (pi, qi) starting from the inside of R̂1 will eventually approach

the coexistence equilibrium Ê∗1 = (p∗1, 1 − q∗1). That is, Ê∗1 is globally asymptoti-

cally stable in (3.10), i.e., E∗1 is globally asymptotically stable in the model (3.1).
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Similarly, we are able to show that E2 = (1, 0) is globally asymptotically stable

when the two coexistence equilibria do not exist in (3.1).

3.4 Spreading Speed and Linear Determinacy

In this section, we aim to provide the sufficient conditions for the linear

determinacy of the model (3.1) by applying Theorem 3.1 in [2].

Assume that 0 < α1 < 1, then the mono-culture equilibrium E1 = (0, 1) is

unstable. The coexistence equilibrium E∗1 = (p∗1, q
∗
1) exists and it is stable when

the inequality (3.6) is satisfied. Note that E2 = (1, 0) is always stable.

We shall consider the spatial transition from E1 = (0, 1) to the target state

E := (p, q) =


E∗1 = (p∗1, q

∗
1) if E∗1 , E∗2 both exist,

E2 = (1, 0) if E∗1 , E∗2 do not exist.

(3.12)

In section 3.3 we have shown that the change of variables un = pn and

vn = 1−qn converts the competiton model (3.1) into the cooperative system (3.10).

Accordingly, we consider an equivalent transition in (3.10) from Ê1 = (0, 0) to the

target state

Ê := (û, v̂) =


(p∗1, 1− q∗1) if Ê∗1 , Ê∗2 both exist,

(1, 1) if Ê∗1 , Ê∗2 do not exist.

(3.13)

Figure 3.1 displays the coordinates of each equilibrium and the spatial transitions

before and after the change of variables.

THEOREM 3.2. Assume that 0 < α1 < 1, ρ2 > 1, α1α2 ≤ 2, that the probability

measures k1 and k2 in (3.1) are invariant under the reflection x → −x, and that

their moment generating functions k̄1(µ) and k̄2(µ) are finite for all µ > 0. Let µ̄
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p0 1

q

1
ρ2

1

E∗1

E∗2

(a)

u0 1

v

1− 1
ρ2

1

Ê1
∗

Ê2
∗

(b)

FIGURE 3.1 – Equilibria and spatial transitions in the integro-difference system
before and after the change of variables un = pn, vn = 1−qn: (a) Before the change
of variables, when the two coexistence equilibria exist, the spatial transition is from
(0, 1) to E∗1 ; when the coexistence equilibria do not exist, the spatial transition is
from (0, 1) to (1, 0). (b) After the change of variables, when the two coexistence
equilibria exist, the spatial transition is from (0, 0) to Ê∗1 ; when the coexistence
equilibria do not exist, the spatial tansition is from (0, 0) to (1, 1).

be the value of µ where the infimum in

c̄ = inf
µ>0

{
µ−1 ln

(
(1 + ρ1)k̄1(µ)

1 + α1ρ1

)}
(3.14)

can be achieved. Assume that either

(a) µ̄ is finite, and

2 + 2ρ2max{α1α2, 1}
1 + ρ2

k̄2(µ̄) ≤ 1 + ρ1

1 + α1ρ1

k̄1(µ̄) ≤ 4ρ2 + 2

1 + ρ2

k̄2(µ̄), (3.15)

or

(b) µ̄ = +∞, and there exists a sequence µσ →∞ such that for each σ,

2 + 2ρ2max{α1α2, 1}
1 + ρ2

k̄2(µσ) ≤ 1 + ρ1

1 + α1ρ1

k̄1(µσ) ≤ 4ρ2 + 2

1 + ρ2

k̄2(µσ). (3.16)

Then the spreading speed c∗ of the spatial transition from E1 to E in the model

(3.1) is equal to the spreading speed c̄ defined by (3.14). That is, the model (3.1)

is linearly determinate.
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Proof. This theorem is a specialization of Weinberger and his coworkers’ Theorem

3.1 in [2].

We aim to find a formula for the spreading speed c̄ based on the linear

determinacy first. We consider the cooperative system (3.10) after changing the

variables in the original competition model (3.1), then the linearization of (3.10)

at (u, v) = (0, 0) is given by

un+1(x) =
∫
R1

(1+ρ1)un(x−y)
1+ρ1α1

k1(y, dy),

vn+1(x) =
∫
R1

2ρ2α2un(x−y)+2vn(x−y)
1+ρ2

k2(y, dy).
(3.17)

We need to find a matrix Bµ, which is defined to be the coefficient matrix

for the vector of the linear combinations of α and β. We substitute u = αe−µx and

v = βe−µx into the right-hand side of (3.17), then multiply the result by eµx and

write the vector as a matrix product Bµ

α
β

, thus we have

Bµ =

 1+ρ1
1+α1ρ1

k̄1(µ) 0

2α2ρ2
1+ρ2

k̄2(µ) 2
1+ρ2

k̄2(µ)

 ,

where k̄i(µ) =
∫ +∞
−∞ eµyki(y, dy), i = 1, 2.

The principal eigenvalue of the first diagonal block of this upper triangular

matrix Bµ is then given by

λ1(µ) =
1 + ρ1

1 + α1ρ1

k̄1(µ). (3.18)

An eigenvector ofBµ which corresponds to λ1(µ) can be given by ξ(µ) = (ξ1(µ), ξ2(µ))

where

ξ1(µ) = 1+ρ1
1+α1ρ1

k̄1(µ)− 2
1+ρ2

k̄2(µ),

ξ2(µ) = 2α2ρ2
1+ρ2

k̄2(µ).
(3.19)

Lemma 2.3 in [2] indicates that the spreading speed of the linearized model (3.17)

is given by

c̄ = inf
µ>0

{
µ−1 lnλ1(µ)

}
. (3.20)

51



By substituting (3.18) into (3.20), we have that

c̄ = inf
µ>0

{
µ−1 ln

(
1 + ρ1

1 + α1ρ1

k̄1(µ)

)}
. (3.21)

If the spreading speed of the model (3.1) is equal to the c̄ in (3.21), i.e.

c∗ = c̄, then the spreading speed of the model (3.1) is said to be linearly determined.

In order to find the sufficient conditions for the linear determinacy, we shall make

the following hypotheses which is a specialization of Hypotheses 2.1 in [2].

HYPOTHESES 3.1.

i. There exist equilibria (0, 0) and (β1, β2) with β1 and β2 both positive, and

there is no other constant all-species coexistence equilibrium (α1, α2) such that

0 < α1 ≤ β1 and 0 < α2 ≤ β2.

ii. The model (3.10) is order-preserving.

iii. The equations in the model have no explicit dependence on either space or

time.

iv. ki(y, dy) are nonnegative measures with ki((−∞,∞)) = 1, and ki(−y, dy) =

ki(y, dy) for i = 1, 2.

v. The Jacobian matrix Bµ is in Frobenius form. The principal eigenvalue λ1(0)

of its upper left diagonal block is greater than 1, and is strictly larger than the

principal eigenvalues λσ(0) of its other diagonal blocks.

vi. B0 has at least one nonzero entry to the left of each of its diagonal blocks other

than the uppermost one, i.e., the (2, 1) element of B0 is greater than 0.

vii. With µ̄ defined in the statement of Theorem 3.2, either

(a) µ̄ is finite, then λ1(µ̄) > λ2(µ̄), and each of the right-hand sides of the

system (3.10) evaluated at u = e−µ̄xξ1(µ̄), v = e−µ̄xξ2(µ̄) is no larger than
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the corresponding right-hand sides of the linearization (3.17) evaluated at the

same values of u and v,

or

(b) µ̄ = ∞, and there is a sequence {µσ} with µσ → ∞ as σ → ∞ such that

λ1(µσ) > λ2(µσ), and each of the right-hand sides of the system (3.10) evalu-

ated at u = e−µσxξ1(µσ), v = e−µσxξ2(µσ) is no larger than the corresponding

right-hand sides of the linearization (3.17) evaluated at the same values of u

and v.

It is easy to verify that the cooperative system (3.10) satisfies hypothesis i

to iv. Also note that we have shown that hypothesis ii is valid in Lemma 3.4.

For hypothesis v and vi, note that

B0 =

 1+ρ1
1+α1ρ1

0

2α2ρ2
1+ρ2

2
1+ρ2

,

which implies that

λ1(0) =
1 + ρ1

1 + α1ρ1

and

λ2(0) =
2

1 + ρ2

are the principal eigenvalues of the first and second diagonal blocks of B0.

It is easy to see that the (2, 1) element of B0 is greater than 0 since all

parameters are positive.

In order to make λ1(0) > 1, α1 must satisfy the following condition:

0 < α1 < 1. (3.22)

Meanwhile, in order to make λ1(0) > λ2(0), the following inequality must be

satisfied:

1 + ρ1

1 + α1ρ1

>
2

1 + ρ2

. (3.23)
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Since ρ2 > 1, the right-hand side of (3.23) is less than 1. On the other hand, we

have shown that the left-hand side of (3.23) is greater than 1, thus the inequality

(3.23) is satisfied.

To validate hypothesis vii, we shall consider the following two cases:

Case i: When µ̄ is finite, we first want this inequality λ1(µ̄) > λ2(µ̄) to be

satisfied. Note that ξ1(µ̄) = λ1(µ̄) − λ2(µ̄), so a sufficient condition for the first

part of this hypothesis actually takes the form of

ξ1(µ̄) > 0.

On the other hand, a sufficient condition for the second part of this hypothesis

takes the form of

ξ1(µ̄) ≥ α1ξ2(µ̄),

ξ2(µ̄) ≤ α2ξ1(µ̄) ≤ 2ξ2(µ̄),

which is equivalent to

max{α1,
1
α2
}ξ2(µ̄) ≤ ξ1(µ̄) ≤ 2

α2
ξ2(µ̄),

α1α2 ≤ 2.
(3.24)

By substituting ξ1(µ̄) and ξ2(µ̄) from (3.19) into (3.24), we get the same conditions

shown in (3.15). Besides, since ξ2(µ̄) > 0, (3.24) also implies that ξ1(µ̄) > 0. Thus

the first part of hypothesis vii can be satisfied when (3.24) is true.

Case ii: When µ̄ is infinite, then there is a sequence {µσ} with µσ → ∞

such that similar sufficient conditions will be needed by replacing the µ̄ with µσ in

each.

Since the cooperative system (3.10) is equivalent to the original competi-

tion model (3.1), the above sufficient conditions for the linear determinacy of the

cooperative system can be also applied to the competition model (3.1).
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3.5 Existence of Traveling Waves

In this section, we will apply Theorem 2.1 in [18] to the discrete-time model

(3.10) and demonstrate the existence of traveling wave solutions connecting a

mono-culture equilibrium and a coexistence equilibrium or a different mono-culture

equilibrium in (3.1). Before proceeding, we need the following remark that has been

proved in [28].

REMARK 3.1. By letting un(x) = 0, the cooperative system (3.10) will lead to the

following second order integro-difference equation:

vn+1(x) =

∫
R1

2vn(x− y)− v2
n(x− y)

1 + ρ2 (1− vn(x− y))2 k2(y, dy). (3.25)

Then there exists a unique traveling wave solution W (x−nc) such that W (−∞) = 1

and W (+∞) = 0, with a unique wave speed c∗1.

THEOREM 3.3. Assume that 0 < α1 < 1 and ρ2 > 1. Let c∗+ be defined by (1.16)

and c∗1 be defined as the spreading speed of the spatial transition in (3.25). Then

for c ≥ c∗+ and c 6= c∗1, the model (3.1) has a monotone traveling wave W (x− nc)

connecting E1 to E, and such a traveling wave does not exist if c < c∗+.

Proof. We shall prove this theorem by considering the cooperative system (3.10)

in the following two cases:

Case i: When the two coexistence equilibria Ê∗1 and Ê∗2 both exist, Theo-

rem 3.1 indicates that the equilibrium Ê∗1 = (p∗1, 1− q∗1) is globally asymptotically

attractive. If the unstable mono-culture equilibrium Ê3 = (0, 1 − 1
ρ2

) locates ver-

tically higher than the coexistence equilibrium Ê∗1 , then Ê1 = (0, 0) and Ê∗1 are

the only equilibria in the rectangle R̂1. Thus it suffices to show that system (3.10)

has a nonincreasing traveling wave solution W (x − nc) with W (+∞) = 0 and

W (−∞) = (p∗1, 1 − q∗1) if and only if c ≥ c∗+. On the other hand, if the unsta-

ble mono-culture equilibrium Ê3 = (0, 1 − 1
ρ2

) locates vertically lower than the
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coexistence equilibrium Ê∗1 , then Ê3 is an extra equilibrium in the rectangle R̂1

besides Ê1 and Ê∗1 . So we need to show that there is no nonincreasing traveling

wave connecting (0, 0) to Ê3. We assume that for c ≥ c∗+ and c 6= c∗1 there exists

a nonincreasing traveling wave w(x − nc) connecting (0, 0) to Ê3, then it follows

that c < 0 since Ê3 is a source. Then this is a contradiction with that fact that

c ≥ c∗+ > 0. Thus there is no nonincreasing traveling wave connecting (0, 0) to Ê3

when c ≥ c∗+ and c 6= c∗1.

Case ii: When the two coexistence equilibria Ê∗1 and Ê∗2 do not exist, we

consider the rectangle R̂2. Note that there are two extra equilibria Ê0 = (0, 1) and

Ê3 = (0, 1 − 1
ρ2

) in R̂2 besides (0, 0) and Ê1 = (1, 1). Thus we need to show that

there is no nonincreasing traveling wave connecting (0, 0) to either Ê0 = (0, 1) or

Ê3 = (0, 1− 1
ρ2

) when c ≥ c∗+ and c 6= c∗1.

Suppose that there exists a traveling wave solution W (x − nc) connecting

(0, 0) with (0, 1). According to Remark 3.1, the spreading speed of such a traveling

wave is equal to c∗1, and this spreading speed is unique. Hence as long as c 6= c∗1,

there is no such nonincreasing traveling wave solutions connecing (0, 0) with (0, 1).

On the other hand, if there exists a traveling wave solution W (x − nc)

connecting (0, 0) with (0, 1− 1
ρ2

), then its spreading speed must be negative, which

is surely less than c∗+ since c∗+ > 0. Thus, there is no nonincreasing traveling wave

solutions connecting (0, 0) with either (0, 1) or (0, 1− 1
ρ2

) when c ≥ c∗+ and c 6= c∗1.

Note that the cooperative system (3.10) is equivalent to the competition

model (3.1). Thus we have completed the proof of this theorem.
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CHAPTER 4

TWO-SEX STAGE-STRUCTURED COMPETITION MODEL

In this chapter, we construct a two-sex stage-structured competition model

with a birth pulse growth pattern, and carry out some initial analysis in the spread-

ing speed of the model.

4.1 Model Formulation

Let M and F represent the number of adult males and females respectively.

We assume that the contributions from the birth rates depend on the total popula-

tion size M +F , that is, neither the males nor females are marriage dominant [35].

Barrying any demographic differences between the females and males, the sex ratio

of the mating individuals, or the operational sex ratio, will reflect the sex ratio at

birth. The birth sex ratio, in turn, is constrained to an evolutionally stable value,

typically 0.5 due to the frequency-dependent advantage of producing the rarer

sex [39]. With λ representing the instantaneous birth rate, this simple marriage

function below will be applied into the model:

Λ(M,F ) =
1

2
λ(M + F ). (4.1)

We consider a two-sex population with two development stages: a repro-

ductive stage and a non-reproductive stage. At the reproductive stage, adult males

and females disperse with the diffusion coefficients d1 and d2, they mate and give

birth to the juveniles by following the marriage function given by (4.1). The juve-

nile males and females also diffuse at this stage, however, with relatively smaller
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diffusion coefficients d3 and d4 respectively. We assume that outside a reproduc-

tion season mortality takes its toll for adult male and female populations. As a

result, only juveniles born from the reproductive stage survive and continue to

disperse with the diffusion coefficients d5 and d6. Let un+1(x) and vn+1(x) denote

the density of the male and female populations at point x at the beginning of the

reproductive stage in the (n + 1)th year, then they are equal to the population

density of the males and females at the end of last year’s non-reproductive stage.

In both stages, adults and juveniles die continuously due to the interaction of the

population with the environment, as well as the competition between individuals

which follows the mass action law with β and γ describing the effect of competition.

We assume that the reproductive stage is from time 0 to τ , and the non-

reproductive stage is from time τ to 1, where 0 < τ < 1 with τ is closer to 0. So the

reproductive stage is relatively shorter than the non-reproductive stage. Then the

mathematical model that describes the spatial dynamics of the two-sex population

in a unbounded space is given by

Reprodutive Stage:

ut = d1uxx − α1u− γ1u
2 − β1uv,

vt = d2vxx − α2v − γ2v
2 − β2uv,

mt = d3mxx + 1
2
λ(u+ v)− α3m− γ3m

2 − β3mf,

ft = d4fxx + 1
2
λ(u+ v)− α4f − γ4f

2 − β4mf,

u(x, 0) = Mn(x),

v(x, 0) = Fn(x),

m(x, 0) = 0,

f(x, 0) = 0.

(4.2)
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Non-Reproductive Stage:

Mt = d5Mxx − α5M − γ5M
2 − β5MF,

Ft = d6Fxx − α6F − γ6F
2 − β6MF,

M(x, τ) = m(x, τ),

F (x, τ) = f(x, τ),

un+1(x) = M(x, 1),

vn+1(x) = F (x, 1).

(4.3)

All parameters are assumed to be positive. Table 4.1 describes each param-

eter in the model.

In this model, the reproduction is assumed to occur only once a year, as we

can see in many mannal species or the spawing season for many fish species. The

model can be used to study the case that impulsive harvesting occurs periodically in

a continuously growing and dispersing two-sex population. For example, it can be

employed to describe the situation that outside the winter the population dynamics

is governed by reaction-diffusion equations with certain mating pair formation, and

during the winter the population stops reproducing but continues moving, and the

population of the following season is recruited from the individuals that survive

the winter.

4.2 The Linearization

In order to obtain the formula for the spreading speed in the two-sex model

based on the linear determinacy, we consider the linearization of (4.2) and (4.3) at
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TABLE 4.1

Two-Sex Model Parameter Descriptions

Parameter Description of Parameter

u(x, t), v(x, t) population density of adult males and females at reproductive

stage at time t and location x

m(x, t), f(x, t) population density of juvenile males and females at reproductive

stage at time t and location x

M(x, t), F (x, t) population density of young adult males and females at non-

reproductive stage at time t and location x

d diffusion coefficient

α death rate

γ coefficient of competition between individuals in the same group

β coefficient of competition between genders

τ time separation of reproductive stage and non-reproductive

stage

λ instantaneous birth rate
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0 as shown below:

ut = d1uxx − α1u,

vt = d2vxx − α2v,

mt = d3mxx + 1
2
λ(u+ v)− α3m,

ft = d4fxx + 1
2
λ(u+ v)− α4f,

Mt = d5Mxx − α5M,

Ft = d6Fxx − α6F,

u(x, 0) = Mn(x),

v(x, 0) = Fn(x),

m(x, 0) = 0,

f(x, 0) = 0,

M(τ, x) = m(τ, x),

F (τ, x) = f(τ, x),

un+1(x) = M(1, x),

vn+1(x) = F (1, x).

(4.4)

To get the spreading speed, we solve the linearized system (4.4) and then get

the linearized moment generating matrix. We start by first solving the following

equations in (4.4):

ut = d1uxx − α1u,

vt = d2vxx − α2v
(4.5)

with the initial conditions

u(x, 0) = Mn(x),

v(x, 0) = Fn(x).

Before proceeding, we need the following remark.

REMARK 4.1. Let û(k, t) and v̂(k, t) denote the variable v(x, t) and v(x, t) re-

spectively after the Fourier transformation, then

ût(k, t) = ∂
∂t
û(k, t),

ûxx(k, t) = (ik)2û(k, t).
(4.6)
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By Remark 4.1, after applying the Fourier transform, the u - equation in

(4.5) turns into

∂

∂t
û(k, t) = d1(ik)2û(k, t)− α1û(k, t) (4.7)

with the initial condition

û(k, 0) = M̂n(k).

Equation (4.7) can be easily solved and we have

û(k, t) = M̂n(k)e−(d1k2+α1)t. (4.8)

By applying the inverse Fourier transform on û(k, t), we have that

u(x, t) =
(
M̂n(k)e−(d1k2+α1)t

)∨
=

1√
2π

∫ ∞
−∞

Mn(ε)e
− (x−ε)2

4d1t
−α1t · 1√

2d1t
dε

=
1

2
√
πd1t

∫ ∞
−∞

Mn(ε)e
− (x−ε)2

4d1t
−α1tdε.

And v(x, t) can be solved in a similar way. Thus the solutions of (4.5) are given

by:

u(x, t) = 1
2
√
πd1t

∫∞
−∞Mn(ε)e

− (x−ε)2
4d1t

−α1tdε,

v(x, t) = 1
2
√
πd2t

∫∞
−∞ Fn(ε)e

− (x−ε)2
4d2t

−α2tdε.
(4.9)

Then we consider the following equations in (4.4):

mt = d3mxx + 1
2
λ(u+ v)− α3m,

ft = d4mxx + 1
2
λ(u+ v)− α4f

(4.10)

with the initial conditions

m(x, 0) = 0,

f(x, 0) = 0.

By applying the Fourier transform with respect to x, the m - equation in (4.10)

turns into

∂

∂t
m̂(k, t) = d3(ik)2m̂(k, t) +

1

2
λ (û(k, t) + v̂(k, t))− α3m̂(k, t) (4.11)
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with this initial condition

m̂(k, 0) = 0.

Equation (4.11) can be solved as

m̂(k, t) =

∫ t

0

1

2
λ (û(k, τ1) + v̂(k, τ1)) e−(d3k2+α3)(t−τ1)dτ1. (4.12)

By applying the inverse Fourier transform to m̂(k, t), we have that

m(x, t) =

∫ t

0

(
1

2
λ (û(k, τ1) + v̂(k, τ1)) e−(d3k2+α3)(t−τ1)

)∨
dτ1

=
1√
2π

∫ t

0

dτ1

∫ ∞
−∞

1

2
λ (u(ξ, τ1) + v(ξ, τ1)) e

− (x−ξ)2
4d3(t−τ1)

−α3(t−τ1) dξ√
2d3(t− τ1)

=
λ

4
√
πd3(t− τ1)

∫ t

0

dτ1

∫ ∞
−∞

(u(ξ, τ1) + v(ξ, τ1)) e
− (x−ξ)2

4d3(t−τ1)
−α3(t−τ1)

dξ.

f(x, t) can be solved in a similar way. And we have the solutions of (4.10) as the

following:

m(x, t) =
∫ t

0
dτ1

∫∞
−∞K3(x− ξ, t− τ1) (u(ξ, τ1) + v(ξ, τ1)) dξ,

f(x, t) =
∫ t

0
dτ1

∫∞
−∞K4(x− ξ, t− τ1) (u(ξ, τ1) + v(ξ, τ1)) dξ

(4.13)

where Ki(x, t) = λ
4
√
πdit

e
− x2

4dit
−αit, i = 3, 4.

Then we solve the last two equations in system (4.4):

Mt = d5Mxx − α5M,

Ft = d6Mxx − α6F
(4.14)

with the initial conditions

M(x, τ) = m(x, τ),

F (x, τ) = f(x, τ).

After applying the Fourier transform with respect to x, the M - equation in (4.14)

becomes

∂

∂t
M̂(k, t) = d5(ik)2M̂(k, t)− α5M̂(k, t) (4.15)
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with

M̂(k, τ) = m̂(k, τ).

The equation (4.15) can be solved as

M̂(k, t) = m̂(k, τ)e−(d5k2+α5)(t−τ). (4.16)

To get M(x, t), we need to apply the inverse Frourier transform to (4.16), and

F (x, t) can be solved in a similar way. Thus we have the solutions of system (4.14)

as the following:

M(x, t) = 1

2
√
πd5(t−τ)

∫∞
−∞m(τ, δ)e

− (x−δ)2
4d5(t−τ)

−α5(t−τ)
dδ,

F (x, t) = 1

2
√
πd6(t−τ)

∫∞
−∞ f(τ, δ)e

− (x−δ)2
4d6(t−τ)

−α6(t−τ)
dδ.

In summary, the solutions of the linearization system (4.4) are given by

u(x, t) = 1
2
√
πd1t

∫∞
−∞Mn(ε)e

− (x−ε)2
4d1t

−α1tdε,

v(x, t) = 1
2
√
πd2t

∫∞
−∞ Fn(ε)e

− (x−ε)2
4d2t

−α2tdε,

m(x, t) =
∫ t

0
dτ1

∫∞
−∞K3(x− ξ, t− τ1) (u(ξ, τ1) + v(ξ, τ1)) dξ,

f(x, t) =
∫ t

0
dτ1

∫∞
−∞K4(x− ξ, t− τ1)[(u(ξ, τ1) + v(ξ, τ1)) dξ,

M(x, t) = 1

2
√
πd5(t−τ)

∫∞
−∞m(δ, τ)e

− (x−δ)2
4d5(t−τ)

−α5(t−τ)
dδ,

F (x, t) = 1

2
√
πd6(t−τ)

∫∞
−∞ f(δ, τ)e

− (x−δ)2
4d6(t−τ)

−α6(t−τ)
dδ,

(4.17)

where Ki(x, t) = λ
4
√
πdit

e
− x2

4dit
−αit, i = 3, 4.

In addition, based on the two conditions from (4.4):

un+1(x) = M(x, 1),

vn+1(x) = F (x, 1),
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(4.17) can be turned into

un+1(x) =M(x, 1)

=
1

2
√
πd5(1− τ)

∫ ∞
−∞

m(τ, δ)e
− (x−δ)2

4d5(1−τ)
−α5(1−τ)

dδ

=
1

2
√
πd5(1− τ)

∫ ∞
−∞

∫ τ

0

dτ1

∫ ∞
−∞

K3(δ − ξ, τ − τ1)((u(ξ, τ1)

+ v(ξ, τ1))e
− (x−δ)2

4d5(1−τ)
−α5(1−τ)

dξdδ

=
1

2
√
πd5(1− τ)

∫ ∞
−∞

∫ τ

0

dτ1

∫ ∞
−∞

K3(δ − ξ, τ − τ1)(
1

2
√
πd1τ1

∫ ∞
−∞

Mn(ε)e
− (ξ−ε)2

4d1τ1
−α1τ1dε

+
1

2
√
πd2τ1

∫ ∞
−∞

Fn(ε)e
− (ξ−ε)2

4d2τ1
−α2τ1dε

)
e
− (x−δ)2

4d5(1−τ)
−α5(1−τ)

dξdδ

=
1

2
√
πd5(1− τ)

∫ ∞
−∞

∫ τ

0

dτ1

∫ ∞
−∞

K3(δ − ξ, τ − τ1)
1

2
√
πd1τ1∫ ∞

−∞
Mn(ε)e

− (ξ−ε)2
4d1τ1

−α1τ1− (x−δ)2
4d5(1−τ)

−α5(1−τ)
dεdξdδ

+
1

2
√
πd5(1− τ)

∫ ∞
−∞

∫ τ

0

dτ1

∫ ∞
−∞

K3(δ − ξ, τ − τ1)
1

2
√
πd2τ1∫ ∞

−∞
Fn(ε)e

− (ξ−ε)2
4d2τ1

−α2τ1− (x−δ)2
4d5(1−τ)

−α5(1−τ)
dεdξdδ,

and

vn+1(x) =F (x, 1)

=
1

2
√
πd6(1− τ)

∫ ∞
−∞

∫ τ

0

dτ1

∫ ∞
−∞

K4(δ − ξ, τ − τ1)
1

2
√
πd1τ1∫ ∞

−∞
Mn(ε)e

− (ξ−ε)2
4d1τ1

−α1τ1− (x−δ)2
4d6(1−τ)

−α6(1−τ)
dεdξdδ

+
1

2
√
πd6(1− τ)

∫ ∞
−∞

∫ τ

0

dτ1

∫ ∞
−∞

K4(δ − ξ, τ − τ1)
1

2
√
πd2τ1∫ ∞

−∞
Fn(ε)e

− (ξ−ε)2
4d2τ1

−α2τ1− (x−δ)2
4d6(1−τ)

−α6(1−τ)
dεdξdδ.

So to summarize, the linearization system (4.4) eventually leads to the sys-
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tem of equations as shown below:

un+1(x) =
1

2
√
πd5(1− τ)

∫ ∞
−∞

∫ τ

0

dτ1

∫ ∞
−∞

K3(δ − ξ, τ − τ1)
1

2
√
πd1τ1∫ ∞

−∞
Mn(ε)e

− (ξ−ε)2
4d1τ1

−α1τ1− (x−δ)2
4d5(1−τ)

−α5(1−τ)
dεdξdδ

+
1

2
√
πd5(1− τ)

∫ ∞
−∞

∫ τ

0

dτ1

∫ ∞
−∞

K3(δ − ξ, τ − τ1)
1

2
√
πd2τ1∫ ∞

−∞
Fn(ε)e

− (ξ−ε)2
4d2τ1

−α2τ1− (x−δ)2
4d5(1−τ)

−α5(1−τ)
dεdξdδ,

vn+1(x) =
1

2
√
πd6(1− τ)

∫ ∞
−∞

∫ τ

0

dτ1

∫ ∞
−∞

K4(δ − ξ, τ − τ1)
1

2
√
πd1τ1∫ ∞

−∞
Mn(ε)e

− (ξ−ε)2
4d1τ1

−α1τ1− (x−δ)2
4d6(1−τ)

−α6(1−τ)
dεdξdδ

+
1

2
√
πd6(1− τ)

∫ ∞
−∞

∫ τ

0

dτ1

∫ ∞
−∞

K4(δ − ξ, τ − τ1)
1

2
√
πd2τ1∫ ∞

−∞
Fn(ε)e

− (ξ−ε)2
4d2τ1

−α2τ1− (x−δ)2
4d6(1−τ)

−α6(1−τ)
dεdξdδ.

(4.18)

(4.18) is in a form that will enable us to find the linearized moment generating

matrix, and thus the spreading speed of the linearized system.

4.3 Spreading Speed of the Linearized System

In this section, we aim to find the formula for the spreading speed of the

linearized system (4.4). Before proceeding, we need to find a matrix Bµ which is

defined to be the coefficient matrix for the vector of the linear combinations of γ1

and γ2 obtained by substituting Mn(x) = γ1e
−µx and Fn(x) = γ2e

−µx into (4.18)

and then multiplying both equations by eµx to offset the exponential terms. In

order to get Bµ, we need to apply a set of variable substitutions in (4.18):

δ′ = x− δ,

ξ′ = x− δ′ − ξ,

ε′ = x− δ′ − ξ′ − ε.

After applying the variable substitutions and substituting Mn(x) = γ1e
−µx and

Fn(x) = γ2e
−µx into (4.18), the integrations will finally offset the variables δ′, ξ′
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and ε′. Thus (4.18) turns into

un+1(x) =
γ1e
−µx · λe−α3τ+µ2d3τ−α5(1−τ)+µ2d5(1−τ)

(
e(α3−α1+µ2d1−µ2d3)τ − 1

)
2(α3 − α1 + µ2d1 − µ2d3)

+

γ2e
−µx · λe−α3τ+µ2d3τ−α5(1−τ)µ2d5(1−τ)

(
e(α3−α2+µ2d2−µ2d3)τ − 1

)
2(α3 − α2 + µ2d2 − µ2d3)

,

vn+1(x) =
γ1e
−µx · λe−α4τ+µ2d4τ−α6(1−τ)+µ2d6(1−τ)

(
e(α4−α1+µ2d1−µ2d4)τ − 1

)
2(α4 − α1 + µ2d1 − µ2d4)

+

γ2e
−µx · λe−α4τ+µ2d4τ−α6(1−τ)+µ2d6(1−τ)

(
e(α4−α2+µ2d2−µ2d4)τ − 1

)
2(α4 − α2 + µ2d2 − µ2d4)

.

The definition of Bµ implies thatun+1(x)

vn+1(x)

 = Bµ

γ1

γ2

 e−µx,

so we have

Bµ =

c11 c12

c21 c22

 ,

where

c11 =
λe−α3τ+µ

2d3τ−α5(1−τ)+µ
2d5(1−τ)

(
e(α3−α1+µ

2d1−µ
2d3)τ−1

)
2(α3−α1+µ2d1−µ2d3)

,

c12 =
λe−α3τ+µ

2d3τ−α5(1−τ)+µ
2d5(1−τ)

(
e(α3−α2+µ

2d2−µ
2d3)τ−1

)
2(α3−α2+µ2d2−µ2d3)

,

c21 =
λe−α4τ+µ

2d4τ−α6(1−τ)+µ
2d6(1−τ)

(
e(α4−α1+µ

2d1−µ
2d4)τ−1

)
2(α4−α1+µ2d1−µ2d4)

,

c22 =
λe−α4τ+µ

2d4τ−α6(1−τ)+µ
2d6(1−τ)

(
e(α4−α2+µ

2d2−µ
2d4)τ−1

)
2(α4−α2+µ2d2−µ2d4)

.

The spreading speed in (4.4) is given by

c̄ = inf
µ>0

(
µ−1 ln(λ1(µ))

)
, (4.19)

where λ1(µ) is the principal eigenvalue of Bµ.

The spreading speed formula in (4.19) is based on the linear determinacy of

the two-sex model. However, we are unable to obtain the sufficient conditions for

the linear determinacy of the model at this point. So in the next chapter, we will

conduct numerical simulations on the traveling waves and spreading speeds of the
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model, and discuss the parameter values that can make the two-sex model given

by (4.2) and (4.3) linearly determinate.
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CHAPTER 5

NUMERICAL SIMULATION

We realize the difficulty in explicitly providing the linear determinacy con-

ditions for the spreading speed in the two-sex stage-structured model given by

(4.2) and (4.3). However, we believe it is still meaningful to understand if there

is an opportunity for the model to be linearly determinate. In order to achieve

that goal, we assign reasonable values to the parameters in the model, and conduct

numerical simulations on the traveling wave solutions. By analyzing the traveling

waves at different time, we get an approximation for the spreading speeds in the

model. On the other hand, we calculate the spreading speed of the linearized sys-

tem by applying the same set of values into the formula given by (4.19) in Chapter

4, then compare it with the simulated spreading speed of the two-sex model. In

this chapter, we aim to find the the set of parameter values such that the two

spreading speeds are equal, i.e., the two-sex model is linearly determinate.

Before proceeding, we choose the commonly used sine functions as the initial

population densities for the adult male and female populations u and v, so we have

u(x, 0) = 0.5 sin(x),

v(x, 0) = 0.5 sin(x).
(5.1)
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Then the original two-sex model (4.2) and (4.3) turns into

ut = d1uxx − α1u− γ1u
2 − β1uv,

vt = d2vxx − α2v − γ2v
2 − β2uv,

mt = d3mxx + 1
2
λ(u+ v)− α3m− γ3m

2 − β3mf,

ft = d4fxx + 1
2
λ(u+ v)− α4f − γ4f

2 − β4mf,

Mt = d5Mxx − α5M − γ5M
2 − β5MF,

Ft = d6Fxx − α6F − γ6F
2 − β6MF

(5.2)

with the initial and boundary conditions

u(x, 0) = 0.5 sin(x),

v(x, 0) = 0.5 sin(x),

m(x, 0) = 0,

f(x, 0) = 0,

M(x, τ) = m(x, τ),

F (x, τ) = f(x, τ),

un+1(x) = M(x, 1),

vn+1(x) = F (x, 1).

As we program in Matlab, we need to assign values to the two step vari-

ables ∆x and ∆t, which define how the space and time intervals will be divided.

Experiments with various values of ∆x and ∆t have shown that ∆x = 0.2 and

∆t = 0.005 would be the optimal combination for a comprehensive consideration

of reasonable run time and less error.

In the model, we have assumed the reprouduction occurs only once a year,

and the populations exhibit a birth pulse growth pattern, i.e. the reproduction

period is relatively shorter than the non-reproductive stage. For the sake of sim-

plicity, we let T = 1 represent one year and assume that the length of reproduction

period is τ = 0.3.
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TABLE 5.1

Two-Sex Model Parameter Values

i di αi βi γi

1 1.000 0.190 0.200 0.200

2 1.000 0.201 0.200 0.200

3 0.800 2.000 0.200 0.200

4 0.800 2.010 0.200 0.200

5 1.000 0.195 0.200 0.200

6 1.000 0.190 0.200 0.200

Table 5.1 gives the set of values we have assigned to all parameters in the

model.

The Matlab figure 5.1a and 5.1b show the traveling wave solutions of female

and male populations at the end of year 1, 5, 10, 15, 20, 25, 30, 35, 40. As time pro-

ceeds, the speed of the traveling waves asymptotically approaches a constant value.

This value can be obtained by measuring the distance between any two traveling

waves after a certain period of time. We notice that the distance between any two

adjacent traveling waves are very nearly the same starting from year 6. In order

to improve the accuracy, we measured the distance between the traveling waves at

the end of year 35, 36, 37, 38, 38 and 40, then take the average.

Let cf
∗ and cm

∗ represent the spreading speeds of the female and male

populations at the non-reproductive stage respectively, then Table 5.2 exhibits a

comparison of these two with different values of the instantaneous birth rate λ. It

is no surprise that the male and female populations actually spread at the same

speed since they have the same life cycle.

At the end of Chapter 4, we provided the spreading speed formula in (4.19)

based on the linear determinacy of the model. In this section, we apply the same

set of parameter values given in Table 5.1 into the formula (4.19), and calculate

c̄ with the specific values of τ and λ, then compare it with the corresponding
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TABLE 5.2

Comparison of cm
∗ and cf

∗ when τ = 0.3

λ c∗m c∗f Difference Difference %

6 0.61 0.61 0.00 0%

8 1.22 1.22 0.00 0%

10 1.54 1.54 0.00 0%

12 1.76 1.75 0.00 0%

14 1.92 1.91 0.01 0%

20 2.25 2.25 0.00 0%

simulation of the female population’s spreading speed cf
∗ in the original nonlinear

model. Table 5.3 displays a complete comparison of c̄ and c∗f with different values

of the instantaneous birth rate λ.

We note that given the parameter values we have assigned into the model,

the two spreading speeds c∗f and c̄ have a better match when the instantaneous

birth rate λ turns larger. The relative difference turns to be relatively stable when

λ ≥ 75, which is less than 1%. Thus we conclude that with the parameter values

given in Table 5.1, τ = 0.3 and λ ≥ 75, the two-sex model given by (4.2) and (4.3)

is linearly determinate.
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TABLE 5.3

Comparison of cf
∗ and c̄ when τ = 0.3

λ c̄ c∗f Absolute Difference Relative Difference

8 1.2828 1.2222 0.0606 4.72%

10 1.5855 1.5376 0.0479 3.02%

12 1.7954 1.7527 0.0427 2.38%

14 1.9554 1.9140 0.0414 2.12%

20 2.2829 2.2473 0.0356 1.56%

30 2.6058 2.5753 0.0305 1.17%

50 2.9629 2.9319 0.0310 1.05%

75 3.2183 3.1944 0.0239 0.74%

100 3.3879 3.3602 0.0277 0.82%

125 3.5138 3.4857 0.0281 0.80%

150 3.6134 3.5887 0.0247 0.68%

500 4.2127 4.1871 0.0256 0.61%
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(a) Traveling wave solutions of the female population at the end of year 1, 5, 10, 15, ..., 40.

(b) Traveling wave solutions of the male population at the end of year 1, 5, 10, 15, ..., 40.

FIGURE 5.1 – Traveling wave solutions of female and male populations at the end
of year 1, 5, 10, 15, 20, 25, 30, 35, 40, given λ = 15 and τ = 0.3, with the initial
condition u(0, x) = v(0, x) = 1

2
sin(x).
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CHAPTER 6

CONCLUSION AND FUTURE DIRECTIONS

6.1 Conclusion

There have been extensive studies about the spreading speeds and traveling

waves in two-species competition models without Allee effect. Allee effect occurs in

many populations due to the difficulties in finding mates when population density

is low, social dysfunction at small population sizes as well as many other factors. In

this dissertation we proposed two two-species competition models with Allee effect,

one is in the form of reaction-diffusion equations and the other is in the form of

integro-difference equations which modeled the growth, spread and competition of

the two species. These two models are extensions of the Lotka-Volterra competition

model (1.18) and the discrete-time spatial spreading model (1.19) given in [14].

However, there is no Allee effect exhibited in those models.

In Chapter 2 and 3 we analyzed the reaction-diffusion system (2.1) and

the integro-difference system (3.1). We showed how Allee effect resides in these

models as well as how it affects the profiliation rate of the native species when

the population density is low. We then obtained the existence and local stability

criteria of the equilibria in the models. For the reaction-diffusion system (2.1),

we applied Butler-McGehee Lemma to show that the global stability of one of the

coexistence equilibria and one of the mono-culture equilibria can be completely

determined. And for the integro-difference model (3.1), we applied the famous
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monotone convergence theorem, the squeeze theorem and the method of induction

to show that the global stability of one of the coexistence equilibria and one of the

mono-culture equilibria can be completely determined as well. We then discussed

the spatial transitions from a mono-culture equilibrium to a coexistence equilibrium

or a different mono-culture equilibrium. By applying Weinberger and his cowork-

ers’ Theorems 3.1 and 4.1 in [2], we obtained the sufficient conditions for the linear

determinacy of the spreading speeds in both models. We also provided the formu-

las for the spreading speeds based on the linear determinacy conditions. We then

established the existence of the traveling wave solutions connecting a mono-culture

equilibrium with a coexistene equilibrium or a different mono-culture equilibrium

by applying Li and Zhang’ Theorems 2.1 and 3.1 in [18].

In Chapter 4 we proposed a two-sex stage-structured competition model

with birth pulse growth pattern consisting of a reproductive stage model (4.2) and

a non-reproductive stage model (4.3). We analyzed its linearization given by (4.4)

and obtained the formula for the spreading speed c̄ based on the linear determinacy

of the original nonlinear model. However, we were unable to get the parameters

range for the linear determinacy due to the complexity of the model. Hence in

Chapter 5 we carried out numerical simulations on the traveling wave solutions

and spreading speeds in the two-sex model. By adjusting the parameters in the

model, we achieved a good match between the linear determinacy based spreading

speed c̄ and the spreading speed c∗f of female population in the original nonlinear

model. By observing the simulation results we conclude that there exists a set

of values for the parameters in the model such that the two-sex model is linearly

determinate.
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6.2 Future Directions

For the two two-species competition models (2.1) and (3.1), we may consider

future research in the following directions:

1. Traveling wave connecting the origin and a coexistence equilibrium.

We have shown the existence of traveling wave solutions connecting a mono-

culture equlibrium to a coexistence equilibrium or a different mono-culture

equilibrium under certain conditions. However, we may be also interested

in showing the existence of traveling wave connecting the origin with a co-

existence equilibrium. This can be approached by constructing the lower

and upper traveling wave solutions of the model. This work has been done

before for the two-species competition modes without Allee effect. For the

two-species models (2.1) and (3.1) with Allee effect, the proof could be much

more complicated.

2. Larger parameter range for the linear determinacy of the models.

We have obtained some sufficient conditions which assure the linear deter-

minacy of the two two-species competition models in Theorem 2.2 and 3.2.

In the reaction-diffusion competition model (2.1), the condition d2/d1 ≤ 2

can be interpreted as requiring sufficiently large dispersal of the invader rel-

ative to the dispersal of the out-competed resident. And the condition that

max{1/(1− a1), (a1a2k + α − 1)/(1− a1)} is sufficiently small can be inter-

preted as requiring sufficiently weak interactions between the invader and

resident. These theorems only give sufficient but not necessary conditions

for the linear determinacy of the models. We may follow Hosono’s analysis in

the Lotka-Volterra model (1.18) in his paper [33] to seek a larger parameter

range for the linear determincy of our models.

3. Numerical simulations on the traveling waves and spreading speeds
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in the two models.

For the two-sex stage-structured competition model, we will consider the

following extentions in the future:

1. A more realistic mating formation. For simplicity, we started our work

with a linear mating function in the form of Λ(M,F ) = 1
2
λ(M + F ) in the

model. This format, however, has its drawbacks. For example, when either

the male or female population density equals 0, this mating function still

produces a positive birth rate, which is not realistic for dioecious species.

Perhaps a more realistic mating format is that corresponding to the choice

Λ(M,F ) = 2λmin(M,F ),

or

Λ(M,F ) =
λfλmFM

λfF + λmM

where λm and λf are positive constants. These forms apparently enhance the

difficulty in seeking the spreading speed formula based on linear determinacy.

2. Consider interactions from other species. In the model, we investigated

the spatial dynamics of the adult and juvenile populations with two sexes

within a species. However, we ignored the potential interactions from other

species. In the future, we may want to consider a two-species model which

is more realistic for biological invasions.

3. Consider Allee effect. We may follow Eskola and Parvinen’s work in [25]

to add Allee effect in the model by adjusting the mate finding process.

4. Consider different birth sex ratios for males and females in each

generation. We could assume a flexible sex ratio at birth in each generation,

such that a fraction s is females and a fraction 1− s is males.
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