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ABSTRACT

A STAGE-STRUCTURED DELAYED REACTION-DIFFUSION
MODEL

FOR COMPETITION BETWEEN TWO SPECIES

Chunwei Wang

June 5, 2013

We formulate a delayed reaction-diffusion model that describes competition

between two species in a stream. We divide each species into two compartments,

individuals inhabiting on the benthos and individuals drifting in the stream. Time

delays are incorporated to measure the time lengths from birth to maturity of the

benthic populations. We assume that the growth of population takes place on the

benthos and that dispersal occurs in the stream. Our system consists of two linear

reaction-diffusion equations and two delayed ordinary differential equations. We

study the dynamics of the non-spatial model, determine the existence and global

stability of the equilibria, and provide conditions under which solutions converge

to the equilibria. We show that the existence of traveling wave solutions can be

established through compact integral operators. We define two real numbers and

prove that they serve as the lower bounds of the speeds of traveling wave solutions

in the system.
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CHAPTER 1

INTRODUCTION AND BACKGROUND

1.1 Introduction

Many species, populations, communities, and ecosystems persist in environ-

ments where they spend some or all their life stages dispersing in media with strong

directional bias. Typical examples include plants with windborn seeds, aquatic or-

ganisms in streams, and marine organisms with larval dispersal influenced by ocean

currents. We focus on aquatic organisms living in streams, rivers, and estuaries

which are characterized by unidirectional net water movement. Species living in

such environments are facing the so-called “drift paradox” [1]. “Drift paradox” is

one key issue for theory in stream ecology and states that extinction is inevitable in

a closed population subjected only to downstream drift. We derive the ecological

niche for persistence and spread of populations to avoid being swept downstream

and out into habitats, where the physical or biotic environment is not conducive

to their growth and reproduction.

Various hypotheses involving some compensatory upstream movement have

been proposed as resolutions of the drift paradox. Müller [2, 3] claimed that adult

insects balance out the downward drift of the insect larvae by flying upstream

for oviposition. Waters [4] assumed that the drift paradox would be resolved if

the species resided mainly on the benthos (the bottom of the stream) and only

the surplus over the carrying capacity would drift in the stream. Persistence in
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streams could also be affected by some movement mechanisms which include refugia

in streams [5, 6, 7, 8, 9, 10] and variability effect in stream flow direction such

as turbulence [38]. Speirs and Gurney [11, 12] stated that insect swimming in

the water column and crawling on the benthos may permit the persistence of the

population. They also pointed out that Water’s hypothesis [4] neatly sidesteps the

problem of how lotic species are able to sustain population losses due to drift, and

implicit in their view is that drifting is merely a source of mortality. Experimental

studies have been conducted to provide evidence both supporting [1, 4, 14] and

contradicting [4, 15, 16] to the first hypothesis of upstream flight recolonization.

However, adult flight patterns strongly depend on the species that we considered,

and this hypothesis does not cover many important species often found in the drift

that have no aerial phases. For the statement of insects swimming in the stream

and crawling on the benthos, some experimental data were obtained [4, 17, 18, 19],

but those experiments were not conducted for the purpose of solving the drift

paradox.

Mathematical modeling studies have also been performed as the resolution

of the drift paradox. Anholt [20] used a simulation model and argued that, instead

of upstream-biased migration, density dependence was an essential factor in pop-

ulation persistence. (Density dependence: areas subjected to greater losses from

the drift will experience a higher rate of population increase.) However, his sim-

ulation results overly emphasized the effect of density dependence for persistence

and ignored the extinction that appeared in the simulations [11]. Humphries and

Ruxton [12] changed the way of parameterizing of the principal in Anholt’s model

and showed that small-scale, random undirected movements on the streambed

are enough to explain persistence of drifting organisms. Speirs and Gurney [11]

focused on the role of diffusive dispersal as the balancing mechanism for the down-

stream drift and constructed a simplified one-dimensional model with diffusion.
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Their model is given by

∂n

∂t
= f(n)n− v∂n

∂x
+D

∂2n

∂x2
. (1.1)

This model described a population residing in a stream, a river or an estuary

subject to advection and diffusion. Here, n(x, t) is the density of the population

per unit area, f(n) is the local per capita growth rate of the population, v is the

advection velocity and D is the diffusion coefficient. The advection term repre-

sents downstream drift and the diffusive term represents random movement. They

also applied the analytic results to four hydrodynamically disparate systems and

demonstrated that upstream diffusive movement balanced out downstream flow

for persistence.

The importance of involving diffusion is that random motion, due both

to turbulent water movement and to randomly directed movements by individual

organisms, is a key element in streams and rivers, and also a potential source of

upstream recolonization.

Based on Speirs’ model, Pachepskey [23] divided the population into two

interacting compartments: individuals residing on the benthos (the bottom of the

stream) and individuals drifting in the flow. They considered a population in which

individuals live and reproduce on the benthos, and occasionally enter the water

column to drift until they settle on the benthos again.

The importance of compartmentalization is that aquatic insect larvae spend

a considerable proportion of their time immobile on the benthos [21]. For example,

zebra mussels have two life stages: a free floating larval stage and an attached adult

stage. Larvae are planktonic for 2-4 weeks and adults are sessile. They spend 2%

of their lifetime in the water column. Moreover, the rates that insects switch

between benthos and drift can be set by insect behavior rather than by stream

hydrodynamics. For instance, some experiments showed that the entry rate to the
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drift can depend on the organisms response to environmental factors such as food

abundance and density dependence [1, 21, 22], and the settling rate to the benthos

can be approximately constant for some species [17].

Pachepskey’s model was given by

∂nd
∂t

= D ∂2nd
∂x2 − v ∂nd∂x + µnb − σnd

∂nb
∂t

= f(nb)nb − µnb + σnd,
(1.2)

where nd is the population density in the drift; nb is the population density on the

benthos; µ is the per capita rate at which individuals in the benthic population

enter the drift; σ is the per capita rate at which the insects return to the benthos

from the stream. In their work, they gave the critical domain size necessary for

population persistence, showed the positive effect of the stationary component on

the ability of the population to persist and spread by analyzing the propagation

speed of a population with two compartments. Some numerical results include:

1. The persistence of the population is guaranteed if, at low population den-

sities, the local growth rate of the stationary component of the population

exceeds the rate of entry of individuals into the drift;

2. Persistence and ability to spread are closely connected: if the population

cannot advance upstream against the flow, it also cannot persist on any

finite spatial domain;

3. Residence in the immobile state always enhances population persistence.

However, Pachepskey did not consider stage structure and time-delay for

the individuals to reach maturity from when they were born. A large number

of papers have been written on modeling single-species population growth with

various life stages using discrete models [25, 26, 27], continuous models [28, 29,

30, 31, 32, 33, 34], and stochastic models [35]. Aiello [24] developed a single-species
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growth model with stage structure consisting of immature and mature stages using

a discrete time delay from birth to maturity. They showed that there exists a

globally asymptotically stable positive equilibrium under certain conditions and

analytically and numerically addressed oscillation properties of solutions with time-

delay being considered. But they do not consider multiple species with competition

and existence of traveling wave solutions.

In this dissertation I construct a stage-structured delayed reaction-diffusion

model with competition between two species in a stream. This model has the

benefit of synthesizing and generalizing many of the aforementioned models, while

providing a clear focus on persistence of two species in a water flow.

In the construction of our system we allow different time delays for both

species from birth to maturity and compartmentalization. We include a classical

Lotka-Volterra type term which describes the interspecific competition between

the two different species. We also involve two stages of life history, immature and

mature, for both species.

In this chapter we aim to give the reader a brief but sufficient introduction

on reaction-diffusion equations and delay differential equations so that the core

content and results of this dissertation are accessible. Section 1.2 introduces the

concept of a reaction-diffusion equation and main results of spreading speeds and

traveling wave solutions. Section 1.3 introduces delay differential equations and

the typical methodology employed to analyze and study them.

1.2 Reaction-Diffusion Equations

Reaction-diffusion equations model the movement of many individuals

in an environment or media and a local reaction kinetics such as birth, death,

and other reaction process. Reaction-diffusion systems can explain the effects of
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the size, shape, and heterogeneity of the spatial environment on the persistence of

species and the structure of communities in ecology. Reaction (R(u)) and diffusion

(diffusion coefficient D) both contribute to the interesting dynamical behavior of

the solutions of the equation. We may describe the above mechanism by the

classical FKPP (Fisher’s equation) reaction-diffusion equation [36, 37]

∂u

∂t
= D

∂2u

∂x2
+R(u), (1.3)

where R(u) = u(1− u).

Diffusion can be considered as a random walk which starts at a point and

takes steps in a random direction. Fick’s laws can be used to solve for the diffusion

coefficient, D, and it addresses that the diffusive flux goes from regions of high

concentration to regions of low concentration. A special solution of the equation

(1.3) is a propagating front (also called traveling wave solution), separating two

non-equilibrium homogeneous states, one of which (u = 1) is stable and another

one (u = 0) is unstable [38, 39, 40]. Figure 1.1 depicts a numerical solution of the

FKPP equation (1.3) for six different time moments t = 0, 100, 200, 400, 600, 800

with initial condition u(x, 0) = f(x) = .05e−5x2
.

We notice, from Figure 1.1, that a small local initial fluctuation around u =

0 leads to an instability, and that develops in a nonlinear way: a front propagates

away from the initial perturbation. Finally, the uniformly stable state of u = 1 is

established on the whole space interval.

In the real world, there are many cases that species live in the media where

the diffusion moves to a certain direction. For example, the seeds flow in the wind

and organisms drift in the water flow. When one direction in the random walk is

favored, an equation with a first order derivative is the result:

∂u

∂t
= D

∂2u

∂x2
− v∂u

∂x
+R(u). (1.4)
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FIGURE 1.1 – Traveling wave solutions of FKPP equation, ∂u
∂t

= D ∂2u
∂x2 + R(u),

where R = u− u2

The fist order derivative term on the right hand side of the equation (1.4)

is called an advection term, and the equation (1.4) is called a reaction-diffusion

equation with advection.

1.3 Delay Differential Equations

Delay differential equations (DDEs) are a type of differential equation

in which the derivative of the unknown function at a certain time is given in

terms of the values of the function at previous times. We use DDEs because

many of the processes in the fields including biology, medicine, chemistry, physics,

engineering, and economics involve time delays. For example, in physical processes

acceleration and deceleration take little time compared to the times needed to

travel most distances, and in biological processes maturation time durations can

be large compared to the data-collection times in most population studies. One

simple example of DDEs is the Hutchinson equation:
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FIGURE 1.2 – Solutions of the Hutchinson equation, dx(t)
dt

= rx(1 − x(t − τ)/K),
where τ = 1, 3

dx(t)

dt
= rx(1− x(t− τ)/K). (1.5)

The dynamics of DDEs is more complex than that of ordinary differential

equations (ODEs). Figure 1.2 shows solutions of the Hutchinson equation with

delays τ = 1 and 3, respectively, and gives complex dynamics such as excessive

volatility and huge peak-to-valley ratios [43].

DDEs are mostly solved using the “method of steps” given initial condition

φ : [−τ, 0]→Rn. Then the solution on the interval [0, τ ] is obtained and is the

solution to the inhomogeneous initial value problem
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du(t)
dt

= −u(t− τ), τ > 0

u(t) = φ(t), t ∈ [−τ, 0].
(1.6)

This can be continued for the successive intervals by using the solution to

the previous interval as an inhomogeneous term. In practice, the initial value

problem is often solved numerically. Moreover, the existence of solutions of the

initial value problem has been given in Theorem 1.1.

THEOREM 1.1. Let f, fx ∈ C(R3), s ∈ R and let φ : [s−τ, s]→R be a continuous

function. Then there exists σ > s and a unique solution of the initial value problem

du(t)
dt

= f(t, x(t), x(t− τ)), τ > 0

u(t) = φ(t), t ∈ [s− τ, s].

on [s− τ, σ].

Existence of solutions of delayed reaction-diffusion systems was established

by Martin and Smith [45].

Similar to ODEs, many properties including stability of linear DDEs can be

characterized and analyzed using the characteristic equation. The characteristic

equation associated with the linear DDE with discrete delays

dx(t)

dt
= A0x(t) + A1x(t− τ1) + ...+ Anx(t− τn)

is

det(−λI + A0 + A1e
−τ1λ + ...+ Ane

−τnλ) = 0.

Because of the exponential in the characteristic equation, the DDE has

infinitely many eigenvalues and thus is more complicated to analyze its properties.

There are some studies being done to determine the stability of DDEs [41, 42, 43].

Aiello and Freedman [46] developed a time-delay model of single-species growth

with stage structure and showed that under suitable hypotheses there exists a

9



globally asymptotically stable positive equilibrium. Zhang et al. [64] studied

the stability and travelling waves for a time-delayed population system with stage

structure. However, it is known that some delay systems experience a change in

stability as the time delay increases, while such systems do not experience such

changes, the stability problem has not been solved for many general DDEs.
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The Spreading Speed

In mathematics, many studies have been done to explain why species persist

and even spread against the downstream flow and how quickly a population is

advancing or retreating in its environment. As a mechanism to quantify spread we

consider the asymptotic behavior of the solution as x approaches infinity, and this is

called the spreading speed introduced by Aronson and Weinberger [47, 48, 49]

for reaction-diffusion equations. We focus on the spreading speed and traveling

wave solutions as resolutions of the drift paradox.

For the classical reaction-diffusion equation (1.3) we define the spreading

speed c∗ in the following sense:

1. If 0 ≤ u(x, 0) < 1 and u(x, 0) ≡ 0 for all sufficiently large x, then for any

positive ε

lim
x→∞

{
max

|x|≥(c∗+ε)t
u(x, t)

}
= 0. (1.7)

2. For every positive number σ there exists a positive number rσ such that if

0 ≤ u(x, 0) ≤ 1, and if u(x, 0) ≥ σ on an interval of length rσ, then for any

positive ε,

lim
x→∞

{
sup

|x|≤(c∗−ε)t
(1− u(x, t))

}
= 0. (1.8)

The first statement says that c∗ is an upper bound for the spreading speed.

If c∗ is the asymptotic rate of spread, then we would expect that at time t, the

support of the solution would have grown by c∗t. Thus, points outside the expected

support of the solution (|x| ≥ (c∗ + ε)t) should not have individuals present. In

other words, if we always move faster than the rate of spread of the population,

we should always be in front of the advancing population.

Alternatively, the second statement says that c∗ is a lower bound for the

spreading speed. If we always move more slowly than the population (|x| ≤ (c∗ −

ε)t) then we should always be behind the leading edge of the advancing population.
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FIGURE 1.3 – Spread of the solution of FKPP equation with the speed of c∗ =
2
√
DR′(0)

.

In this case, the population will approach the steady-state, 1, over a long period

of time.

Connecting the first and second statements we conclude that c∗ is the

asymptotic rate of spread of the solutions of the reaction-diffusion equation (1.3).

Aronson and Weinberger [48, 49] proved that the spreading speed of FKPP

equation (1.3) is given by c∗ = 2
√
DR′(0) and the compact initial data expands

at speed c∗.

The formula c∗ = 2
√
DR′(0) can be obtained a similar formula through an

abstract operator Q, the time one solution map of (1.3),

u(x, t) = Q[u0](x), u0 = u(0, x) (1.9)

and its linearization map M defined by

M[u](x) =

∫ ∞
−∞

u(x− y)m(y)dy, (1.10)

where u is a vector of population distributions of species, Q is the time one solu-

tion map which models the growth, interaction, and migration of the species, and

m(y) = R′(0) 1
2
√
πD
e−
|y|2
4D is a nonnegative bounded measure [51]. In [51] Wein-

berger also provided the formula of the spreading speed c∗ for the reaction-diffusion

equation with advection (1.4), c∗ = v + 2
√
DR′(0).
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For a nonlinear multi-species reaction-diffusion system, there are multiple

spreading speeds. The slowest spreading speed c∗ and the fastest spreading speed

c∗+ are given by Weinberger et al. [52] and Li et al. [61]. An upper bound of

all spreading speeds c∗+ is also given in [52]. Moreover, if the nonlinear system

is dominated by a linear system in the direction of the vector corresponding to

the principal eigenvalue of the generating matrix, then the nonlinear system has

a unique spreading speed (i.e. c∗ = c∗+), which is equal to that of the linear

system [52]. This is known as linear determinacy. Li [53] studied partially

degenerate cooperative reaction-diffusion systems, and the result can be applied

on Pachepskey’s model (1.2).

In the next section we will discuss how the spreading speed is related to

traveling wave speeds.

13



FIGURE 1.4 – Traveling wave solution of the reaction-diffusion equation u(x, t) =
w(x− ct) with w(−∞) = 1 and w(+∞) = 0 exists if and only if c ≥ c∗.

Traveling Wave Solutions

We consider the continuous-time problems such as the reaction-diffusion

system

u,t = Du,xx − Eu,x + f(u),

u(0, x) = u0(x)
(1.11)

where D := diag(d1, d2, ..., dk) and E := diag(e1, e2, ..., ek) are constant diagonal

matrices. A traveling wave of the reaction-diffusion system (1.11) with speed c is

a solution in the form of W(x− ct), where c is a positive constant.

Note that traveling wave solutions do not explicitly depend on time. Indeed,

they are solutions retaining their shapes which are translated by a fixed length for

each iteration of time. Thus the solutions travel in space at the rate of c over time.

There have been a number of investigations of traveling wave solutions and

asymptotic behavior in terms of spreading speeds for various evolution systems in-

cluding nonlinear reaction-diffusion systems [54, 55, 56] and time-delayed reaction-

diffusion systems [57, 58, 59, 62]. Weinberger, Lewis and Li [52, 60, 61] developed

the theory of spreading speeds and monotone traveling wave solutions for cooper-

ative or competition models. For the reaction-diffusion equations (1.11) without

the advection term, it has been proved that the spreading speed c∗ can be char-

acterized as the slowest speed of a class of traveling wave solutions when all the

diffusion coefficients di > 0 [61]. Furthermore, the above statement holds if all

the linear determinacy conditions are satisfied when some but not all di = 0 [53].

14



Under appropriate assumptions, when c ≥ c∗ there exists a traveling wave solution

w(x − ct) which is non-increasing, and when c < c∗ there is no traveling wave

solution with speed c.

For a delayed Lotka-Volterra type competition model, Al-Omari and Gour-

ley [63] showed that for c ≥ c̃, where c̃ is some number, the system has a nonde-

creasing traveling wave solution connecting two mono-culture equilibria. Liang and

Zhao [67] discussed the existence of spreading speed and traveling wave solutions

for general delayed systems. Recently, Li and Zhang [62] proved the existence of

traveling wave solutions that connect a mono-culture equilibrium and a different

mono-culture equilibrium.

The connection between spreading speeds and traveling wave speeds is sig-

nificant because it is often more accessible to calculate the minimum speed of

traveling waves than it is to calculate the spreading speed.
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CHAPTER 2

THE MODEL

In this chapter we introduce a stage-structured delayed reaction-diffusion

model for competition between two species in a stream. The construction of our

model can be divided into two steps:

1. The Delayed Reaction-Diffusion Equations For Single Species With

Stage Structure: Construction of the delayed reaction-diffusion equations

is used to describe the growth processes of a single species with advection,

diffusion, and stage structure in a stream.

2. The Lotka-Volterra-type Competition Model Between Two Species:

We introduce another species with similar growth processes while considering

the Lotka-Volterra-type competition between the adult members to describe

the interaction between two species in a stream subjected to advection and

diffusion.

2.1 Delayed Reaction-Diffusion Equations
For Single Species With Stage Structure

We begin with an extension of Pachepskey’s model (1.2) as a delayed reaction-

diffusion two-patch model with age structure. In our single species model, there

are two interacting compartments: individuals residing on the benthos and indi-

viduals drifting in the flow, as was stated in Pachepskey’s model. Individuals live

and reproduce on the benthos, and occationally enter the water column to drift
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until they settle on the bethos again. We assume that only adult members on the

benthos could switch themself between two compartments and the immature in-

dividuals always stay on the stationary compartment until they grow to maturity

during a period of time. Therefore, we describe our assumption by introducing

the stage structure among the population on the benthos and using nbi and nbm to

represent the population density of immature members and the population density

of mature members on the benthos, respectively. Moreover, we incorporates a time

delay which represents the time from birth to maturity of the benthic population.

Before giving our model for single species, we make the following assump-

tions:

1. Assume that the rate of drift entry is constant, but the model we present is

formulated in a way that allows us to easily modify and improve these factors

in future work.

2. Assume that (a) transfer between mobile and stationary compartments is

via a Poisson process, (b) individual movement can be described as a com-

bination of advection corresponding to the one-dimensional medium with

a unidirectional flow as experienced by the organisms and diffusion corre-

sponding to the heterogeneous stream flow and individual swimming, and

(c) reproduction occurs on a local scale, i.e. adult members lay eggs where

they emerge. These assumptions are intuitively reasonable and have been

used in plant population models as well [23, 64].

Our delayed reaction-diffusion two-compartment model with age structure

for one species is given by:
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∂nd
∂t

= d∂
2nd
∂x2 − e∂nd∂x + δnbm − σnd

∂nbi
∂t

= rnbm − βnbi − re−βτnbm(t− τ, x)

∂nbm
∂t

= re−βτnbm(t− τ, x)− r(nbm)2

κ
− δnbm + σnd.

(2.1)

Here, the last term on the right hand side of the second equation represents the

individuals on the benthos born at time t− τ that are still alive at time t and have

reached maturity and arrived at x. The death rate of the mature on the benthos

is modelled by quadratic term, as in the logistic equation.

Table 2.1 gives a description of each parameter mentioned above.

2.2 Two Species Lotka-Volterra-type Competition Model

We next introduce another species with similar growth processes. In order

to study how two competing species can persist in streams for some common and

limited resource, we use the Lotka-Volterra formulation and add an additional

term for each species to account for the species’ interactions. We assume that the

competition only occurs between the benthic adult individuals and all interactions

must be harmful. Our Lotka-Volterra-type competition model is given by:

∂n
(1)
d

∂t
= d1

∂2n
(1)
d

∂x2 − e1
∂n

(1)
d

∂x
+ δ1n

(1)
bm − σ1n

(1)
d

∂n
(1)
bi

∂t
= r1n

(1)
bm − β1n

(1)
bi − r1e

−β1τ1n
(1)
bm(t− τ1, x)

∂n
(1)
bm

∂t
= r1e

−β1τ1n
(1)
bm(t− τ1, x)− r1(n

(1)
bm)

2

κ1
− δ1n

(1)
bm + σ1n

(1)
d − c1n

(1)
bmn

(2)
bm

∂n
(2)
d

∂t
= d2

∂2n
(2)
d

∂x2 − e2
∂n

(2)
d

∂x
+ δ2n

(2)
bm − σ2n

(2)
d

∂n
(2)
bi

∂t
= r2n

(2)
bm − β2n

(2)
bi − r2e

−β2τ2n
(2)
bm(t− τ2, x)

∂n
(2)
bm

∂t
= r2e

−β2τ2n
(2)
bm(t− τ2, x)− r2(n

(2)
bm)

2

κ2
− δ2n

(2)
bm + σ2n

(2)
d − c2n

(1)
bmn

(2)
bm,

(2.2)

where all the parameters have the same descriptions as those in Table 2.1 with

the indices i = 1, 2 indicating the first and second species, respectively, that we

consider. As we mentioned at the beginning of this section, we include an addi-
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TABLE 2.1

One Species Model - Parameter Descriptions

Parameter Description of Parameter

nd(x, t) population density in the drift at time t and point x

nbi(x, t) population density of immature members on the benthos at time

t and point x

nbm(x, t) population density of mature members on the benthos at time t

and point x

d diffusion coefficient

e advection speed experienced by the organisms

δ rate at which adult individuals on the benthos enter the drift

σ rate at which adult individuals return to the benthos from drift-

ing

r birth rate of the population

β death rate of the population

τ time delay from birth to maturity

κ maximum population density that the environment can carry

(carrying capacity)
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TABLE 2.2

Simplified Competition Model - Simplified Parameter Descriptions

Parameter Description of Parameter

n
(i)
b population density of adult members of the ith species on the

benthos at time t and point x, i = 1, 2

ri rate combining two factors: the per capita birth rate and the

survival rate of the immature for the ith species during the im-

mature stage, i = 1, 2

tional term for each species to account for their competitions. The parameter c1

represents the effect the second species has on the mature of the first species and c2

represents the effect the first species has on the mature of the second species. Also,

the definition of a competitive Lotka-Volterra system assumes that all c-values are

positive.

Note that the third and sixth equations in system (2.2) are uncoupled from

the second and fifth equations, it is sufficient to consider a simplified system with

the second and fifth equations merged:

∂n
(1)
d

∂t
= d1

∂2n
(1)
d

∂x2 − e1
∂n

(1)
d

∂x
+ δ1n

(1)
b − σ1n

(1)
d

∂n
(1)
b

∂t
= r1n

(1)
b (t− τ1, x)− r1(n

(1)
b )

2

κ1
− δ1n

(1)
b + σ1n

(1)
d − c1n

(1)
b n

(2)
b

∂n
(2)
d

∂t
= d2

∂2n
(2)
d

∂x2 − e2
∂n

(2)
d

∂x
+ δ2n

(2)
b − σ2n

(2)
d

∂n
(2)
b

∂t
= r2n

(2)
b (t− τ2, x)− r2(n

(2)
b )

2

κ2
− δ2n

(2)
b + σ2n

(2)
d − c2n

(1)
b n

(2)
b .

(2.3)

Some new parameters appear in our simplified model (2.3). A description

of these parameters can be found in Table 2.2.

In next chapters, we study the system (2.3) analytically and numerically.

Before that, we summarize the importance of our extension and difficulties of the
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model study as follows:

Importance of Our Extension

1. Many biological species reproduce themselves, but it takes some time for the

subsequent generation to mature and reproduce.

2. Competition both within and between species is an important topic in ecol-

ogy, especially community ecology. Competition is one of many interacting

biotic and abiotic factors that affect community structure.

Difficulties of The Model Study

1. The system with delay differential equations is hard to analyze its global

stability using general methods.

2. Since each species has two compartments, we have four equations including

two DDEs, which increases the difficulty of the proof of existence of traveling

wave solutions and the formulation of the spreading speed.
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CHAPTER 3

NONSPATIAL SYSTEM ANALYSIS

In this chapter we consider only the nonspatial system which models the

growth and dispersal of two stage-structured interactive species without the effect

of spatial advection and diffusion. We demonstrate that the global stability of the

equilibria in the model can be completely determined. The mathematical analy-

sis involves using the fluctuation lemma and constructing sequences approaching

equilibrium points.

3.1 Nonspatial System

Based on the model (2.3), the corresponding nonspatial system is yield:

∂n
(1)
d

∂t
= δ1n

(1)
b − σ1n

(1)
d

∂n
(1)
b

∂t
= r1n

(1)
b (t− τ1, x)− r1(n

(1)
b )

2

κ1
− δ1n

(1)
b + σ1n

(1)
d − c1n

(1)
b n

(2)
b

∂n
(2)
d

∂t
= δ2n

(2)
b − σ2n

(2)
d

∂n
(2)
b

∂t
= r2n

(2)
b (t− τ2, x)− r2(n

(2)
b )

2

κ2
− δ2n

(2)
b + σ2n

(2)
d − c2n

(1)
b n

(2)
b

(3.1)

with initial conditions

n
(i)
d (t), n

(i)
b (t) ≥ 0 for − τi ≤ t ≤ 0, and n

(i)
d (0), n

(i)
b (0) > 0 for i = 1, 2. (3.2)

It is easy to show that the system (3.1) has the trivial equilibrium E0 =

(0, 0, 0, 0), the mono-culture equilibria E1 = ( δ1κ1

σ1
, κ1, 0, 0) and E2 = (0, 0, δ2κ2

σ2
, κ2),

and the coexistence equilibrium

E∗ = (
δ1κ1r2(c1κ2 − r1)

(c1c2κ1κ2 − r1r2)σ1

,
κ1r2(c1κ2 − r1)

c1c2κ1κ2 − r1r2

,
δ2κ2r1(c2κ1 − r2)

(c1c2κ1κ2 − r1r2)σ2

,
κ2r1(c2κ1 − r2)

c1c2κ1κ2 − r1r2

).
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TABLE 3.1

Summary of Existence and Local Stability Criteria of Equilibria

Equilibrium Existence Criteria Stability Criteria

E0 always exists always unstable

E1 always exists r2 < c2κ1

E2 always exists r1 < c1κ2

E∗ If c1c2κ1κ2 > r1r2, The global stability analysis in section 3.3 shows that

r1 < c1κ2 and r2 < c2κ1 E∗ is asymptotically stable

If c1c2κ1κ2 < r1r2, if r1 > c1κ2 and r2 > c2κ1.

r1 > c1κ2 and r2 > c2κ1

3.2 Local Stability

We study local stabilities of the equilibria by analyzing the characteristic

equations of the linearized system. Here we sketch an outline of our analysis of

local stability criteria. Table 3.1 is the summary of our analytical results.

Outline for Local Stability Criteria:

1. Find the characteristic equations of the linearized system for each equilibrium

point;

2. Analyze the local stability when there is no time delay in the system, i.e.

when τi = 0, i = 1, 2;

3. Apply the theorem in [43] to the above analysis and get local stability

criteria.

3.3 Global Stability

In this section, we shall prove Theorem 3.1 on the global asymptotic sta-

bility of the equilibria E1, E2, and E∗. Since positivity implies that the system is
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persistent, by the initial condition (3.2), the persistence of the nonspatial system

(3.1) is guaranteed.

Before proceeding, we need the following lemmas.

The following two lemmas are elementary but useful in our proof. These

were proven in [65, 66].

LEMMA 3.1. (Barbǎlat Lemma) Let a be a finite number, and f : [a,∞)→R be a

differentiable function. If limt→∞ f(t) exists (finite) and f ′ is uniformly continuous

on [a,∞), then limt→∞ f
′(t) = 0.

LEMMA 3.2. (Fluctuation Lemma) Let a be a finite number, and f : [a,∞)→R

be a differentiable function. If lim inft→∞ f(t) < lim supt→∞ f(t), then there exist

sequences {tm} ↑ ∞ and {sm} ↑ ∞ such that limm→∞ f(tm) = lim supt→∞ f(t),

f ′(tm) = 0, and limm→∞ f(sm) = lim inft→∞ f(t), f ′(sm) = 0.

Lemma 3.2 states that for an oscillating function f , we can always find two

sequences satisfying the above conditions. Using Lemma 3.2, we can study the

long-term behavior by knowing what happens at the local minimum and maximum

points.

LEMMA 3.3. Consider the following one-species system

∂n
(1)
d

∂t
= δ1n

(1)
b − σ1n

(1)
d

∂n
(1)
b

∂t
= r1n

(1)
b (t− τ1, x)− r1(n

(1)
b )

2

κ1
− δ1n

(1)
b + σ1n

(1)
d .

(3.3)

Let (n
(1)
d (t), n

(1)
b (t)) be the solution of system (3.3), where n

(1)
d (t), n

(1)
b (t) > 0 for

−τ1 ≤ t ≤ 0. Then lim
t→∞

(n
(1)
d (t), n

(1)
b (t)) = ( δ1κ1

σ1
, κ1).

Proof. We shall prove the lemma with three cases:

Case i: When (n
(1)
d (t), n

(1)
b (t)) is eventually monotonically decreasing, posi-

tivity of solutions indicates that (n
(1)
d (t), n

(1)
b (t)) must approach some limit N̂1 ≥ 0.

This limit must be an equilibrium of (3.3) and is therefore either 0 or ( δ1κ1

σ1
, κ1).
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The trivial equilibrium 0 is ruled out since it is unstable by the local stability

analysis in Section 3.2.

Case ii: When (n
(1)
d (t), n

(1)
b (t)) is eventually monotonically increasing, then

n
(1)
b (t− τ1, x) ≤ n

(1)
b (t) for some sufficiently large t and all τ1 ∈ [0, τ ] so that

∂n
(1)
b

∂t
≤ r1n

(1)
b (t, x)− r1(n

(1)
b )

2

κ1

− δ1n
(1)
b + σ1n

(1)
d .

Hence lim
t→∞

(n
(1)
d (t), n

(1)
b (t)) exists and is an positive equilibrium of (3.3), i.e.

lim
t→∞

(n
(1)
d (t), n

(1)
b (t)) = ( δ1κ1

σ1
, κ1).

Case iii: (n
(1)
d (t), n

(1)
b (t)) is neither eventually monotonically decreasing

nor increasing. It means that n
(1)
d (t) and n

(1)
b (t) have infinite sequences of local

maxima and local minima. Define

lim supt→∞ n
(1)
d (t) = n

(1)
d ,

lim inft→∞ n
(1)
d (t) = n

(1)
d ,

lim supt→∞ n
(1)
b (t) = n

(1)
b , and

lim inft→∞ n
(1)
b (t) = n

(1)
b .

By Lemma 3.2, there exist {t(+)
1n }, {t

(−)
1n }, {s

(+)
1n }, and {s(−)

1n } such that

n
(1)
d (t

(+)
1n )→n(1)

d as t→∞, n
(1)
d (t

(−)
1n )→n(1)

d as t→∞,

n
(1)
b (s

(+)
1n )→n(1)

b as t→∞, and n
(1)
b (s

(−)
1n )→n(1)

b as t→∞

where (n
(1)
d (t

(±)
1n ))′ = 0 and (n

(1)
b (s

(±)
1n ))′ = 0.

Since δ1n
(1)
b ≤ σ1n

(1)
d ≤ σ1n

(1)
d ≤ δ1n

(1)
b , we have σ1 M n

(1)
d ≤ δ1 M n

(1)
b ,

where M n(1)
d = n

(1)
d − n

(1)
d and M n(1)

b = n
(1)
b − n

(1)
b .

Now considering the second equation of system (3.3), we have

0 = r1n
(1)
b (s

(±)
1n − τ1)− r1(n

(1)
b (s

(±)
1n ))

2

κ1

− δ1n
(1)(s

(±)
1n )

b + σ1n
(1)
d (s

(±)
1n ).

Taking the limit of both sides of the above equation as t→∞, then

0 = r1n̂
(1+)
b − r1(n

(1)
b )

2

κ1

− δ1n
(1)
b + σ1n̂

(1+)
d
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and

0 = r1n̂
(1−)
b −

r1(n
(1)
b )

2

κ1

− δ1n
(1)
b + σ1n̂

(1−)
d ,

where n̂
(1±)
b := limt→∞ n

(1)
b (s

(±)
1n − τ1) and n̂

(1±)
d := limt→∞ n

(1)
d (s

(±)
1n ).

Since n
(1)
b ≤ n̂

(1±)
b ≤ n

(1)
b , and n

(1)
d ≤ n̂

(1±)
d ≤ n

(1)
d , then

r1n
(1)
b + σ1n

(1)
d −

r1(n
(1)
b )

2

κ1
− δ1n

(1)
b ≥ 0

r1n
(1)
b + σ1n

(1)
d −

r1(n
(1)
b )

2

κ1
− δ1n

(1)
b ≤ 0.

Since σ1n
(1)
d ≤ δ1n

(1)
b and σ1n

(1)
d ≥ δ1n

(1)
b , then

n
(1)
b [r1 −

r1n
(1)
b

κ1
] ≥ 0

n
(1)
b [r1 −

r1n
(1)
b

κ1
] ≤ 0.

If n
(1)
b 6= 0, n

(1)
b ≤ κ1, and if n

(1)
b 6= 0, n

(1)
b ≥ κ1, then n

(1)
b ≤ n

(1)
b . Thus n

(1)
b = n

(1)
b

and M n(1)
b = 0. Since 0 ≤ σ1 M n

(1)
d ≤ δ1 M n

(1)
b , we have M n(1)

d = 0.

We know that
∂n

(1)
d

∂t
and

∂n
(1)
b

∂t
are bounded, and that (0, 0) is locally unstable.

By Persistence Theory, n
(1)
d , n

(1)
b > 0 and lim

t→∞
(n

(1)
d (t), n

(1)
b (t)) = ( δ1κ1

σ1
, κ1). The

proof of Lemma (3.3) is complete.

Using a similar argument, we can show that lim
t→∞

(n
(2)
d (t), n

(2)
b (t)) = ( δ2κ2

σ2
, κ2).

THEOREM 3.1. Let E1, E2 and E∗ be defined as above, then the following state-

ments are valid:

i. If r1 > c1κ2, r2 < c2κ1, then the mono-culture equilibrium E1 is globally

asymptotically stable;

ii. If r1 < c1κ2, r2 > c2κ1, then the mono-culture equilibrium E2 is globally

asymptotically stable;

iii. If r1 > c1κ2, r2 > c2κ1, then the unique coexistence equilibrium E∗ is globally

asymptotically stable.
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The approach of the proof of Theorem 3.1 is mainly to use the comparison

principle which is inspired by [63] and the Fluctuation Lemma.

3.3.1 Global Stability of the mono-culture

equilibria E1 and E2

We shall prove Theorem 3.1 part (i) on the global stability of the mono-

culture equilibrium point

E1 = (
δ1κ1

σ1

, κ1, 0, 0)

of the system (3.1), in the situation when the other boundary equilibrium

E2 = (0, 0,
δ2κ2

σ2

, κ2)

of the system (3.1) is locally unstable. This means that species one out-competes

species two in the environment.

Proof of Theorem 3.1 part (i). LetN1(t) = (n
(1)
d (t), n

(1)
b (t)), N2(t) = (n

(2)
d (t), n

(2)
b (t)),

and NB = ( δ1κ1

σ1
, κ1) be vectors.

Denote

lim supt→∞N1(t) = N1, lim inft→∞N1(t) = N1,

lim supt→∞N2(t) = N2, lim inft→∞N2(t) = N2.

Clearly, N1 ≤ NB. And by Persistence Theory, N2 ≥ 0.

Let (n
(2)
d (t), n

(2)
b1 (t)) be the solution of the following system:

∂n
(2)
d

∂t
= δ2n

(2)
b1 − σ2n

(2)
d

∂n
(2)
b1

∂t
= r2n

(2)
b1 (t− τ2, x)− r2(n

(2)
b1 )

2

κ2
− δ2n

(2)
b1 + σ2n

(2)
d .

(3.4)

Then lim
t→∞

(n
(2)
d (t), n

(2)
b1 (t)) = V1, where V1 = ( δ2κ2

σ2
, κ2).

By the Comparison Principle in [44], N2 ≤ V1.
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Let ε > 0 be sufficiently small such that 0 < ε < κ2(r1−c1κ2)
r2c1

. There exists

t1 > τ2 such that N2 ≤ V1 +

ε
ε

 for all t ≥ t1 where ε > 0 is a sufficiently small

number.

Let (n
(1)
d , n

(1)
b1 ) satisfy the following system:

∂n
(1)
d

∂t
= δ1n

(1)
b1 − σ1n

(1)
d

∂n
(1)
b1

∂t
= r1n

(1)
b1 (t− τ1, x)− r1(n

(1)
b1 )

2

κ1
− δ1n

(1)
b1 + σ1n

(1)
d − c1n

(1)
b1 (κ2 + ε).

(3.5)

Then lim
t→∞

(n
(1)
d (t), n

(1)
b1 (t)) = U1, where U1 = ( δ1κ1

σ1
, κ1[r1−c1(κ2+ε)]

r1
).

By the positiveness of ε and ε and Comparison Principle, N1 ≥ U1.

Let ε, ε > 0, there exists t2 > 0 such that N1 ≥ U1 −

ε
ε

 for all t > t2.

For t > t2, let (n
(2)
d , n

(2)
b2 ) satisfy the following system:

∂n
(2)
d

∂t
= δ2n

(2)
b2 − σ2n

(2)
d

∂n
(2)
b2

∂t
= r2n

(2)
b2 (t− τ2, x)− r2(n

(2)
b2 )

2

κ2
− δ2n

(2)
b2 + σ2n

(2)
d −

r2(U
(2)
1 −ε)n

(2)
b2

κ1
.

(3.6)

Since
∂n

(2)
b

∂t
≤ ∂n

(2)
b2

∂t
, by the arbitrariness of ε and Comparison Principle, N2 ≤

(n
(2)
d , n

(2)
b2 ). Hence N2 ≤ lim

t→∞
(n

(2)
d (t), n

(2)
b2 (t)) = V2, where V2 = ( δ2κ2

σ2
, κ2 − κ2U

(2)
1

κ1
).

Let ε, ε > 0, there exists t3 > 0 such that N2 ≤ V2 +

ε
ε

 for all t > t3. For

t > t3, let (n
(1)
d , n

(1)
b2 ) satisfy the following system:

∂n
(1)
d

∂t
= δ1n

(1)
b2 − σ1n

(1)
d

∂n
(1)
b2

∂t
= r1n

(1)
b2 (t− τ1, x)− r1(n

(1)
b2 )

2

κ1
− δ1n

(1)
b2 + σ1n

(1)
d − c1n

(1)
b2 (V

(2)
2 + ε).

(3.7)

Since
∂n

(1)
b

∂t
≥ ∂n

(1)
b2

∂t
, by the arbitrariness of ε and Comparison Principle, N1 ≥

(n
(1)
d , n

(1)
b2 ). Hence N1 ≥ lim

t→∞
(n

(1)
d (t), n

(1)
b2 (t)) = U2, where U2 = ( δ1κ1

σ1
,
κ1[r1−c1V (2)

2 ]

r1
).

Continuing this process, we obtain two vector sequences {Um} and {Vm},

m = 1, 2, 3, ... such that for m ≥ 2,

Um = (
δ1κ1

σ1

,
κ1[r1 − c1V

(2)
m ]

r1

)
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and

Vm = (
δ2κ2

σ2

,
κ2[r2 −

r2U
(2)
m−1

κ1
]

r2

).

Combining the above two equations, we have

Vm = (
δ2κ2

σ2

,
κ2c1V

(2)
m−1

r1

).

Since κ2c1
r1

< 1,

lim
m→∞

V (2)
m = 0.

Hence,

lim
m→∞

Um = NB.

Since the limits of n
(1)
d , n

(1)
b , and n

(2)
b exist, and lim

t→∞
n

(2)
b = 0, then lim

t→∞
n

(2)
d = 0.

Therefore, lim
t→∞

N1 = NB and lim
t→∞

N2 = 0. We use the notation 0 for the

constant vector all of whose components are 0. That is,

lim
t→∞

(n
(1)
d (t), n

(1)
b (t), n

(2)
d (t), n

(2)
b (t)) = (

δ1κ1

σ1

, κ1, 0, 0),

which completes the proof of Theorem 3.1 part (i).

Similarly, we can show that when E1 is unstable, E2 is asymptotically stable.

The proof of Theorem 3.1 part (ii) is omitted here.

3.3.2 Global Stability of the coexistence state E∗

In this subsection, we prove Theorem 3.1 part (iii) on the global stability

of the coexistence equilibrium

E∗ = (
δ1κ1r2(c1κ2 − r1)

(c1c2κ1κ2 − r1r2)σ1

,
κ1r2(c1κ2 − r1)

c1c2κ1κ2 − r1r2

,
δ2κ2r1(c2κ1 − r2)

(c1c2κ1κ2 − r1r2)σ2

,
κ2r1(c2κ1 − r2)

c1c2κ1κ2 − r1r2

)

of the system (3.1). We show that when both of the mono-culture equilibria E1 and

E2 are linearly unstable, the coexistence equilibrium E∗ is globally asymptotically

stable.
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Proof of Theorem 3.1 part (iii). Remark: The notations of N1, N2, N1, N1, N2,

andN2 are defined as same as those in the proof of part (i). To prove this statement,

it is equivalent to show that

lim
t→∞

N1 = U∗

and

lim
t→∞

N2 = V ∗

where

U∗ = (
δ1κ1r2(c1κ2 − r1)

(c1c2κ1κ2 − r1r2)σ1

,
κ1r2(c1κ2 − r1)

c1c2κ1κ2 − r1r2

), V ∗ = (
δ2κ2r1(c2κ1 − r2)

(c1c2κ1κ2 − r1r2)σ2

,
κ2r1(c2κ1 − r2)

c1c2κ1κ2 − r1r2

)

when E1 and E2 are both linearly unstable.

Let {Nu
m(t)}, {N v

m(t)}, {Mu
m(t)}, and {M v

m(t)} be four vector sequences

where m = 1, 2, 3, .... We shall need the above sequences satisfying that

Mu
m ≤ N1 ≤ N1 ≤ Nu

m

and

M v
m ≤ N2 ≤ N2 ≤ N v

m.

From positivity of solutions we obtain Nu
1 as follows:

∂n
(1)
d

∂t
= δ1n

(1)
b − σ1n

(1)
d

∂n
(1)
b

∂t
≤ r1n

(1)
b (t− τ1, x)− r1(n

(1)
b )

2

κ1
− δ1n

(1)
b + σ1n

(1)
d .

Hence

N1 ≤ Nu
1 , where Nu

1 = (
δ1κ1

σ1

, κ1).

In a similar way, we have

N2 ≤ N v
1 , where N v

1 = (
δ2κ2

σ2

, κ2).

Let ε, ε > 0 be sufficiently small such that ε < r2−c2κ1

c2
. Let t1 > 0 be such that

N1(t) ≤ Nu
1 +

ε
ε

 for all t ≥ t1.
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For t > t1, let mv
1(t) :=

mv(1)
1 (t)

m
v(2)
1 (t)

 be a solution of the following system

∂m
v(1)
1 (t)

∂t
= δ2m

v(2)
1 − σ2m

v(1)
1

∂m
v(2)
1 (t)

∂t
= r2m

v(2)
1 (t− τ2, x)− r2(m

v(2)
1 )

2

κ2
− δ2m

v(2)
1 + σ2m

v(1)
1 − c2(N

u(2)
1 + ε)m

v(2)
1 ,

with appropriate initial data on [t1 − τ2, t1]. Then lim
t→∞

m
v(2)
1 = κ2 − κ2c2(N

u(2)
1 +ε)

r2
.

Since N1(t) ≤ Nu
1 +

ε
ε

 for t ≥ t1,

∂N2(t)

∂t
≥ ∂mv

1(t)

∂t
.

So N2(t) ≥ mv
1(t) and hence

N2 ≥ lim inf
t→∞

mv
1(t) = (vl1, κ2 −

κ2c2(N
u(2)
1 + ε)

r2

), where vl1 = lim inf
t→∞

m
v(1)
1 (t).

By the arbitrariness of ε, we have

N2 ≥M v
1 , where M v

1 = (vl1, κ2 −
κ2c2N

u(2)
1

r2

).

With similar argument, we can show that

N1 ≥Mu
1 , where Mu

1 = (ul1, κ1 −
κ1c1N

v(2)
1

r1

) and ul1 = lim inf
t→∞

m
u(1)
1 (t).

Let ε, ε and t > 0, there exists t2 > 0 such that N2 ≥ M v
1 −

ε
ε

 for all t ≥ t2.

Then for t > t2,

∂n
(1)
d (t)

∂t
= δ1n

(1)
b − σ1n

(1)
d

∂n
(1)
b (t)

∂t
≤ r1n

(1)
b (t− τ1, x)− r1(n

(1)
b )

2

κ1
− δ1n

(1)
b + σ1n

(1)
d − c1(M

v(2)
1 − ε)n(1)

b .

Denote nu2(t) =

nu(1)
2 (t)

n
u(2)
2 (t)

 as the solution of

∂n
u(1)
2 (t)

∂t
= δ1n

u(2)
2 (t)− σ1n

u(1)
2 (t)

∂n
u(2)
2 (t)

∂t
= r1n

u(2)
2 (t− τ1, x)− r1(n

u(2)
2 )

2

κ1
− δ1n

u(2)
2 + σ1n

u(1)
2 − c1(M

v(2)
1 − ε)nu(2)

2 ,
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for t > t2 with appropriate initial data. Then N1(t) ≤ nu2(t) and thus

N1(t) ≤ lim sup
t→∞

nu2(t) = (uu1, κ1 −
κ1c1(M

v(2)
1 − ε)
r1

), where uu1 = lim sup
t→∞

n
u(1)
2 (t).

Since ε > 0 is arbitrary,

N1(t) ≤ Nu
2 , where Nu

2 = (uu1, κ1 −
κ1c1M

v(2)
1

r1

).

Similarly,

N2(t) ≤ N v
2 , where N v

2 = (vu1, κ2 −
κ2c2M

u(2)
1

r2

) and vu1 = lim sup
t→∞

n
v(1)
2 (t).

Now one can show that the transition from the (m− 1)th to the mth step in this

iterative process is given by

N
u(2)
m = κ1 −

κ1c1M
v(2)
m−1

r1
,

N
v(2)
m = κ2 −

κ2c2M
u(2)
m−1

r2
,

M
u(2)
m = κ1 − κ1c1N

v(2)
m

r1
,

M
v(2)
m = κ2 − κ2c2N

u(2)
m

r2
.

Of course, Mu
m ≤ N1 ≤ N1 ≤ Nu

m and M v
m ≤ N2 ≤ N2 ≤ N v

m for each m =

1, 2, 3, ....

Next we need to show that Mu
m and Nu

m both approach U∗ as m→∞ and

that M v
m and N v

m both approach V ∗.

Note that

Nu(2)
m = κ1 −

κ1κ2c1

r1

+
κ1κ2c1c2N

u(2)
m−1

r1r2

.

By the assumption of r1 > c1κ2 and r2 > c2κ1, we see that κ1κ2c1c2
r1r2

< 1. We claim

that N
u(2)
m is a monotonically decreasing sequence that is bounded below by U∗(2).

We consider
N
u(2)
m

N
u(2)
m−1

= κ1r1−κ1κ2c1

r1N
u(2)
m−1

+ κ1κ2c1c2
r1r2

≤ κ1r1−κ1κ2c1
r1U∗(2) + κ1κ2c1c2

r1r2

= 1,

32



so N
u(2)
m is monotonically decreasing. Hence N

u(2)
m converges to a limit, which is

U∗(2).

Certainly, convergence of N
u(2)
m implies convergence of M

v(2)
m , and it is eas-

ily checked that M
v(2)
m has the limit V ∗(2). The analysis for the remaining two

sequences is similar.

Now we have

lim
t→∞

n
(1)
b (t) =

κ1r2(c1κ2 − r1)

c1c2κ1κ2 − r1r2

and

lim
t→∞

n
(2)
b (t) =

κ2r1(c2κ1 − r2)

c1c2κ1κ2 − r1r2

.

Since lim
t→∞

∂n
(1)
d (t)

∂t
= 0 and lim

t→∞

∂n
(2)
d (t)

∂t
= 0, we have

lim
t→∞

n
(1)
d (t) =

δ1κ1r2(c1κ2 − r1)

(c1c2κ1κ2 − r1r2)σ1

and

lim
t→∞

n
(2)
d (t) =

δ2κ2r1(c2κ1 − r2)

(c1c2κ1κ2 − r1r2)σ2

.

The proof of Theorem 3.1 part (iii) is complete. Therefore we complete the proof

of Theorem 3.1.

By the study of the local and global stability of the equilibria of the non-

spatial system (3.1), we conclude that:

1. At least one of the two interactive species with stage structure can persist in

a stream due to the fact that the trivial equilibrium E0 is always unstable.

2. One species out-competes the other one. In other words, one of them will

die out due to the competition for the limited resource in the long run.

3. However, under the conditions that the two mono-culture equilibria E1 and

E2 are both unstable, the two species can coexist and approach a stable

population density in long term. This is the explaination of the fact that the
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unique coexistence equilibrium E∗ is globally asymptotically stable under

certain conditions given in Theorem 3.1 part (iii).
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CHAPTER 4

EXISTENCE OF TRAVELING WAVES

In this chapter we analyze the spatial system which models spread of two

competitive species with stage structure and time delay in a stream subjected to

advection and diffusion:

∂n
(1)
d

∂t
= d1

∂2n
(1)
d

∂x2 − e1
∂n

(1)
d

∂x
+ δ1n

(1)
b − σ1n

(1)
d

∂n
(1)
b

∂t
= r1n

(1)
b (t− τ1, x)− r1(n

(1)
b )

2

κ1
− δ1n

(1)
b + σ1n

(1)
d − c1n

(1)
b n

(2)
b

∂n
(2)
d

∂t
= d2

∂2n
(2)
d

∂x2 − e2
∂n

(2)
d

∂x
+ δ2n

(2)
b − σ2n

(2)
d

∂n
(2)
b

∂t
= r2n

(2)
b (t− τ2, x)− r2(n

(2)
b )

2

κ2
− δ2n

(2)
b + σ2n

(2)
d − c2n

(1)
b n

(2)
b .

(4.1)

Here n
(i)
d (x, t) represents the population density of the ith species in the drift at

time t and point x, n
(i)
b (x, t) represents the population density of adult members

of the ith benthic species at time t and point x, and the description of parameters

di, ei, σi, δi, ri and βi can be found in Tables 2.1 and 2.2. This is the system (2.3)

which was developed in Chapter 2.

In section 4.1 we define the integral system and show that a traveling wave

solution of the delayed reaction-diffusion system is equivalent to a fixed point of a

compact integral operator. In section 4.2 we prove that via integral systems there

exist traveling wave solutions with speeds above two extended real numbers.

4.1 Integral System

Assume E1 = ( δ1κ1

σ1
, κ1, 0, 0) is unstable, i.e., r2 > c2κ1.

Let n
(1)
d := δ1κ1

σ1
− n(1)

d and n
(1)
b := κ1 − n(1)

b . We convert the competition
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system (4.1) into the following cooperative system:

∂n
(1)
d

∂t
= d1

∂2n
(1)
d

∂x2 − e1
∂n

(1)
d

∂x
+ δ1n

(1)
b − σ1n

(1)
d

∂n
(1)
b

∂t
= r1n

(1)
b (t− τ1, x) +

r1(n
(1)
b )

2

κ1
− 2r1n

(1)
b − δ1n

(1)
b + σ1n

(1)
d − c1n

(1)
b n

(2)
b + c1κ1n

(2)
b

∂n
(2)
d

∂t
= d2

∂2n
(2)
d

∂x2 − e2
∂n

(2)
d

∂x
+ δ2n

(2)
b − σ2n

(2)
d

∂n
(2)
b

∂t
= r2n

(2)
b (t− τ2, x)− r2(n

(2)
b )

2

κ2
− δ2n

(2)
b + σ2n

(2)
d + c2n

(1)
b n

(2)
b − c2κ1n

(2)
b .

(4.2)

For this system, we denote

β = (
δ1κ1

σ1

, κ1,
δ2κ2

σ2

, κ2) (4.3)

and notice that 0 = (0, 0, 0, 0) and β are equilibria of the cooperative system (4.2).

We denote the system (4.2) in a more general form of

∂u

∂t
= D

∂2u

∂x2
− E

∂u

∂x
+ f(u(θ, t,x)) (4.4)

where D = diag{d1, 0, d2, 0}, E = diag{e1, 0, e2, 0},

f(u(θ, t, x)) =



δ1u2 − σ1u1

r1u2(t− τ1, x) + r1u2
2

κ1
− 2r1u2 − δ1u2 + σ1u1 − c1u2u4 + c1κ1u4

δ2u4 − σ2u3

r2u4(t− τ2, x)− r2u4
2

κ2
− δ2u4 + σ2u3 + c2u2u4 − c2κ1u4,


and u := (u1, u2, u3, u4) = (n

(1)
d , n

(1)
b , n

(2)
d , n

(2)
b ). Here, θ appearing in the function

f(u(θ, t, x)) represents the presence of time delays involved in the growth and

spread of the population. We use the notation

Cβ := {u : u(x) is continuous, and 0 ≤ u(x) ≤ β for all x}. (4.5)

We are interested in a nonincreasing traveling wave solution w(c; θ, x−ct) =

(φd(θ1, x−ct), φb(θ2, x−ct), ψd(θ3, x−ct), ψb(θ4, x−ct)} of our coorperative system

(4.2) with speed c connecting the equilibria 0 and β.
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Let ξ = x− ct. The wave equation of the coorperative system (4.2) is

d1φ
′′
d(ξ) + (c− e1)φ′d(ξ) + δ1φb(ξ)− σ1φd(ξ) = 0

cφ′b(ξ) + r1φb(ξ − cτ1) + r1(φb(ξ))
2

κ1
− 2r1φb(ξ)− δ1φb(ξ) + σ1φd(ξ)− c1φb(ξ)ψb(ξ) + c1κ1ψb(ξ) = 0

d2ψ
′′
d(ξ) + (c− e2)ψ′d(ξ) + δ2ψb(ξ)− σ2ψd(ξ) = 0

cψ′b(ξ) + r2ψb(ξ − cτ2)− r2(ψb(ξ))
2

κ2
− δ2ψb(ξ) + σ2ψd(ξ) + c2φb(ξ)ψb(ξ)− c2κ1ψb(ξ) = 0,

(4.6)

with limξ→−∞w(ξ) = 0 and limξ→∞w(ξ) = β.

Since some diffusion coefficients di = 0 in the cooperative system (4.2), the

compactness of solution operators cannot be guaranteed. Therefore we shall work

on the integral equation corresponding to the cooperative system (4.2) in order to

prove the existence of traveling wave solutions.

Choose κ > 0. Define H1(u)(ξ) = 1
κ



0

r1u2(ξ)

0

0


, H2(u)(ξ) = 1

κ



0

0

0

r2u4(ξ)


,

and H3(u) = (̃f(u) + κu) 1
κ

where

f̃(u(t, x)) =



δ1u2 − σ1u1

r1u2
2

κ1
− 2r1u2 − δ1u2 + σ1u1 − c1u2u4 + c1κ1u4

δ2u4 − σ2u3

− r2u4
2

κ2
− δ2u4 + σ2u3 + c2u2u4 − c2κ1u4


.

There is a proper subset Σ0 of {1, ..., k} such that di = 0 for i ∈ Σ0 and

di > 0 for i /∈ Σ0. For i ∈ Σ0, if c > 0, define

(mc)i(x) =


0 when x > 0,

κ
c
e
κ
c
x when x ≤ 0,

and if c < 0, define

(mc)i(x) =


κ
−ce

κ
c
x when x ≥ 0,

0 when x < 0.
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For i /∈ Σ0, define

(mc)i(x) =
κ

di(λi1 − λi2)


e−λi1x when x ≥ 0,

e−λi2x when x < 0,

where

λi1 =
(c−ei)+

√
(c−ei)2+4κdi
2di

> 0,

λi2 =
(c−ei)−

√
(c−ei)2+4κdi
2di

< 0.

Let

mc(x) = diag((mc)1(x), ..., (mc)k(x)).

We have that ∞∫
−∞

mc(x)dx = I.

Wu and Zou [69] used (mc)i defined above and studied traveling wave solu-

tions for delayed reaction-diffusion systems with di > 0 and ei = 0 for all i. Li [53]

introduced the function similar to (mc)i and investigated the existence of traveling

wave solutions for the cooperative reacion-diffusion system without time delay.

It is easy to verify that each (mc)i(x) defined above has the properties that

(mc)i(x) ≥ 0, (mc)i(x) is bounded, and
∫ +∞
−∞ (mc)i(x)dx = 1, so that (mc)i(x)

represents a probability density function.

Define the integral system

Tc[u](x) =
∞∫
−∞

[mc(x+ cτ1 − y)H1(u)(y) + mc(x+ cτ2 − y)H2(u)(y) + mc(x− y)H3(u)(y)]dy. (4.7)

We shall consider the integral system (4.7) in the proof of traveling wave solution.

THEOREM 4.1. Assume that di ≥ 0 for all i. Let c 6= 0 for all i with di = 0.

Then w(x− ct) is a nonincreasing traveling wave solution of (4.2) connecting two

different constant equilibria 0 and β if and only if w is a continuous nonincreasing

function satisfying

w = Tc[w](x)
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and connecting 0 and β.

The proof of Theorem 4.1 is similar to the proof of Theorem 3.1 in [53],

we thus omit the proof here. This theorem demonstrates that a traveling wave

solution of the system (4.2) is equivalent to a fixed point of an operator of the

compact integral system (4.7).

4.2 Traveling Wave Solutions

In this section we prove the existence of traveling wave solutions for the

cooperative system (4.2). The next theorem gives us the important connection

between traveling wave solutions of the cooperative system (4.2) and those of the

integral system (4.7).

Define

D(l) = D + (
1

l
)I

with l ≥ 1 and I the 4 × 4 identity matrix. Clearly, D(l) approaches D as l→∞.

And the solution map operators for

∂u

∂t
= D(l)∂

2u

∂x2
− E

∂u

∂x
+ f(u(t− τ,x)) (4.8)

are compact.

4.2.1 Recursions With Delay

We use H to denote the habitat where the species grow, interact and mi-

grate. H is either the real line (the continuous habitat) or the subset of the real

line which consist of all integral multiples of positive mesh size h (a discrete habi-

tat). Let τ be a nonnegative real number. We use boldface Roman symbols such

as u(θ, x) to denote k-vector-valued functions of the two variables θ and x, and
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boldface Greek letters to stand for k-vectors, which may be considered as con-

stant vector-valued functions. Here, u ≥ v means that ui(θ, x) ≥ vi(θ, x) for all

i = 1, 2, ..., k, θ ∈ [−τ, 0] and x ∈ H, and u� v means that ui(θ, x) > vi(θ, x) for

all i, θ and x. We also define max{u(θ, x),v(θ, x)} as the vector-valued function

whose ith component at (θ, x) is max{ui(θ, x), vi(θ, x)}.

Let C be the set of all bounded continuous functions from [−τ, 0] × H to

Rk, C̄ be the set of all bounded continuous functions from [−τ, 0] to Rk, and X be

the set of bounded continuous functions from H to Rk. If r ∈ C̄ with r � 0, we

define the set of continuous functions

Cr := {u ∈ C : 0 ≤ u ≤ r}.

Moreover, we define the metric function d(·, ·) in C by

d(φ, ψ) =
∞∑
k=0

max|x|≤k,θ∈[−τ,0] |φ(θ,x)− ψ(θ,x)|
2k

∀ φ, ψ ∈ C (4.9)

so that (C, d) is a metric space. The convergence of a sequence φn to φ with respect

to this topology is equivalent to the uniform convergence of φn to φ on bounded

subsets of [−τ, 0]×H.

We study the following discrete-time recursion with delay:

un+1 = Q[un], n = 0, 1, 2, ... (4.10)

where un(θ, x) = (u1
n(θ, x), u2

n(θ, x), ..., ukn(θ, x)), θ ∈ [−τ, 0], and x ∈ H represents

the population densities of k species at time n and point x with time delay τ . The

operator Q is said to be order− preserving if u ≥ v implies that Q[u] ≥ Q[v].

A recursion (4.10) in which Q has this property is said to be cooperative. A

function is said to be an equilibrium of Q if Q[w] = w, so that if ul = w in the

recursion (4.10), then un = w for all n ≥ l. We shall study the evolution of the

solution un of the recursion (4.10) from a u0 near an unstable constant equilibrium
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θ. By introducing the new variable û = u − θ if necessary, we shall assume the

unstable equilibrium θ from which the system moves away is the origin 0.

We define the translation operator

Ty[v](θ, x) = v(θ, x− y).

A set D ∈ Cr is said to be T -invariant if Ty[D] = D for any y ∈ H.

We shall make the following hypotheses on Q.

HYPOTHESES 4.1.

i. Q[0] = 0, and there is a vector β(θ) ∈ C̄ with β(θ) � 0 such that Q[β] = β,

and if u0 is any vector in C̄ with β(θ) � u0 � 0, then the vector-valued

function un obtained from the recursion (4.10) converges to β(θ) uniformly

on [−τ, 0] as n approaches infinity.

ii. Q is order-preserving on nonnegative functions, so that if u ≥ v ≥ 0, then

Q[u] ≥ Q[v] ≥ 0.

iii. Q is translation invariant so that Q[Ty[v]] = Ty[Q[v]] for all y.

iv. Q is continuous with respect to the topology determined by d(·, ·) given in

(4.9).

v. One of the following two properties holds:

a. Q[Cβ] is precompact in Cβ.

b. The set Q[Cβ](0, ·) is precompact in X , and there is a positive number

ζ ≤ τ such that Q[u](θ, x) = u(θ + ζ, x) for all θ ∈ [−τ,−ζ], and the

operator

S[u](θ, x) =


u(0, x), θ ∈ [−τ,−ζ),

Q[u](θ, x), θ ∈ [−ζ, 0],
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has the property that S[D] is precompact in Cβ for any T-invariant set

D ∈ Cβ with D(0, ·) precompact in X .

Hypotheses 4.1 represents a revised set of the hypotheses given in [67].

REMARK 4.1. Hypotheses 4.1 i-ii imply that Q takes Cβ into itself, and that the

equilibrium β attracts all initial functions in Cβ with uniformly positive compo-

nents. In biological terms, β is a globally asymptotically stable coexistence equi-

librium. There may also be other equilibria lying between β and the extinction

equilibrium 0, in each of which at least one of the species is extinct. In this paper,

we assume that the recursion (4.10) has a finite number of equilibria and that the

equilibria of (4.10) are completely separate in the sense that for any two equilibria

ν1(θ),ν2(θ) ∈ C̄ of (4.10), if νi1(θ) 6= νi2(θ) for some θ ∈ [−τ, 0], then νi1(θ) 6= νi2(θ)

for all θ ∈ [−τ, 0].

REMARK 4.2. Li and Zhang [62] proposed the very similar hypotheses for their

delayed cooperative systems. The difference between our system and theirs is that

we divide each species into two compartments which results in the formation of two

reaction-diffusion equations and two ordinary differential equations in our model.

But those hypotheses given in [62] for the solution operator Q can be applied for

our model.

Before proving the existence of traveling wave solution of the system (4.2),

we give the following lemma which is applied in our discussion and can be found

in [52, 67, 68].

LEMMA 4.1. (Comparison Lemma). Let R be an order preserving operator. If

un and vn satisfy the inequalities un ≤ R[un] and vn ≥ R[vn] for all n, and if

u0 ≤ v0, then un ≤ vn for all n.
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4.2.2 Existence of Traveling Wave Solutions

Next, we prove the existence of traveling wave solutions of system (4.2).

Our methods and arguments are highly inspired by the earlier works in [53, 67].

However, our extended model is nontrivial and needs some new ideas and tech-

niques such as taking the limit of a sequence of functions that are fixed points of

the integral system.

Recall the cooperative system (4.2),

∂n
(1)
d

∂t
= d1

∂2n
(1)
d

∂x2 − e1
∂n

(1)
d

∂x
+ δ1n

(1)
b − σ1n

(1)
d

∂n
(1)
b

∂t
= r1n

(1)
b (t− τ1, x) +

r1(n
(1)
b )

2

κ1
− 2r1n

(1)
b − δ1n

(1)
b + σ1n

(1)
d − c1n

(1)
b n

(2)
b + c1κ1n

(2)
b

∂n
(2)
d

∂t
= d2

∂2n
(2)
d

∂x2 − e2
∂n

(2)
d

∂x
+ δ2n

(2)
b − σ2n

(2)
d

∂n
(2)
b

∂t
= r2n

(2)
b (t− τ2, x)− r2(n

(2)
b )

2

κ2
− δ2n

(2)
b + σ2n

(2)
d + c2n

(1)
b n

(2)
b − c2κ1n

(2)
b ,

where 0 = (0, 0, 0, 0) and β = ( δ1κ1

σ1
, κ1,

δ2κ2

σ2
, κ2) are the only two equilibria in Cβ

when r2 > c2κ1, and the compact system (4.8)

∂u

∂t
= D(l)∂

2u

∂x2
− E

∂u

∂x
+ f(u(t− τ,x)).

DEFINITION 1. A function (ud(t, x), ub(t, x), vd(t, x), vb(t, x)) : [−τ, b)×R→R4, b >

0, with the properties that (ud, ub, vd, vb) is C2 in x ∈ R and C1 in t ∈ (0, b) is

called a super-solution (sub-solution) of (4.8) on [0,b) if for t ∈ [0, b), x ∈ R

∂ud
∂t
≥ (≤)dud

∂2ud
∂x2 − e1

∂ud
∂x

+ δ1ub − σ1ud

∂ub
∂t
≥ (≤)dub

∂2ub
∂x2 + r1ub(t− τ1, x) + r1(ub)

2

κ1
− 2r1ub − δ1ub + σ1ud − c1ubvb + c1κ1vb

∂vd
∂t
≥ (≤)dvd

∂2vd
∂x2 − e2

∂vd
∂x

+ δ2vb − σ2vd

∂vb
∂t
≥ (≤)dvb

∂2vb
∂x2 + r2vb(t− τ2, x)− r2(vb)

2

κ2
− δ2vb + σ2vd + c2ubvb − c2κ1vb.

LEMMA 4.2. For any (φd, φb, ψd, ψb) ∈ Cβ, system (4.8) has a unique classical

solution

(ud(t, x;φd, φb, ψd, ψb), ub(t, x;φd, φb, ψd, ψb), vd(t, x;φd, φb, ψd, ψb), vb(t, x;φd, φb, ψd, ψb))

for (t, x) ∈ [τ,∞)×R, where (ud(0, x), ub(0, x), vd(0, x), vb(0, x)) = (φd, φb, ψd, ψb).
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Furthermore, for any pair of super-solution (ūd(t, x), ūb(t, x), v̄d(t, x), v̄b(t, x)) and

sub-solution (ud(t, x), ub(t, x), vd(t, x), vb(t, x)) of (4.8) with

0 = (0, 0, 0, 0) ≤ (ud(t, x), ub(t, x), vd(t, x), vb(t, x))

≤ (ūd(t, x), ūb(t, x), v̄d(t, x), v̄b(t, x))

≤ ( δ1κ1

σ1
, κ1,

δ2κ2

σ2
, κ2) = β

for t ∈ [−τ, 0] and x ∈ R, the above compound inequality holds for t ≥ 0 and

x ∈ R.

Proof. Define fi : C × C→X , i = 1, 2, 3, 4, by

f1(φd, φb, ψd, ψb)(x) = δ1φb(0, x)− σ1φd(0, x)

f2(φd, φb, ψd, ψb)(x) = r1φb(−τ1, x) +
r1φ2

b(0,x)

κ1
− 2r1φb(0, x)− δ1φb(0, x)

+σ1φd(0, x)− c1φb(0, x)ψb(0, x) + c1κ1ψb(0, x)

f3(φd, φb, ψd, ψb)(x) = δ2ψb(0, x)− σ2ψd(0, x)

f4(φd, φb, ψd, ψb)(x) = r2ψb(−τ2, x)− r2ψ2
b (0,x)

κ2
− δ2ψb(0, x) + σ2ψd(0, x)

+c2φb(0, x)ψb(0, x)− c2κ1ψb(0, x).

(4.11)

The system (4.8) can be rewritten as

∂ud
∂t

= dud
∂2ud
∂x2 − e1

∂ud
∂x

+ f1(udt, ubt, vdt, vbt)(x)

∂ub
∂t

= dub
∂2ub
∂x2 + f2(udt, ubt, vdt, vbt)(x)

∂vd
∂t

= dvd
∂2vd
∂x2 − e2

∂vd
∂x

+ f3(udt, ubt, vdt, vbt)(x)

∂vb
∂t

= dvb
∂2vb
∂x2 + f4(udt, ubt, vdt, vbt)(x), t > 0, x ∈ R,

(4.12)

where udt, ubt, vdt, vbt ∈ C with udt(θ, x) = ud(t + θ, x), ubt(θ, x) = ub(t + θ, x),

vdt(θ, x) = vd(t+ θ, x) and vbt(θ, x) = vb(t+ θ, x) for θ ∈ [−τ, 0], x ∈ R.

Let {Tud(t)}t≥0, {Sub(t)}t≥0, {Tvd(t)}t≥0 and {Svb(t)}t≥0 be the solution
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semigroup on X generated by the heat equations

ud,t = dud∆ud − e1ud,x,

ub,t = dub∆ub,

vd,t = dvd∆vd − e2vd,x, and

vb,t = dvb∆vb.

Then we can write (4.12) as the following integral equations:

ud(t, x) = Tud(t)ud(0, ·)(x) +
t∫

0

Tud(t− s)f1(udt, ubt, vdt, vbt)(x)ds

ub(t, x) = Sub(t)ub(0, ·)(x) +
t∫

0

Sub(t− s)f2(udt, ubt, vdt, vbt)(x)ds

vd(t, x) = Tvd(t)vd(0, ·)(x) +
t∫

0

Tvd(t− s)f3(udt, ubt, vdt, vbt)(x)ds

vb(t, x) = Svb(t)vb(0, ·)(x) +
t∫

0

Svb(t− s)f4(udt, ubt, vdt, vbt)(x)ds, t > 0

(4.13)

where

Tud(t) = 1√
4πdud t

∞∫
−∞

e
− [(y−x)+e1t]

2

4dud
t dy,

Sub(t) = 1√
4πdub t

∞∫
−∞

e
− (y−x)2

4dub
t dy,

Tvd(t) = 1√
4πdvd t

∞∫
−∞

e
− [(y−x)+e2t]

2

4dvd
t dy,

Svb(t) = 1√
4πdvb t

∞∫
−∞

e
− (y−x)2

4dvb
t dy.

Under the abstract setting in Martin and Smith, a mild solution of (4.12)

is a solution to its associated integral equation (4.13). One can easily verify that

fi, i = 1, 2, 3, 4 are Lipschitz continuous on any bounded subset of C × C. Let

Z = BUC (R,R4) be the Banach space of all bounded and uniformly continuous

functions from R into R4 with the usual supremum norm. Let Z+ = {(φd1, φd2) :

(φd1, φd2) ∈ Z, φdi(x) ≥ 0, i = 1, 2}. We claim that fi, i = 1, 2, 3, 4 are quasi-
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monotone on C in the sense that

lim
h→0+

1
h
dist(φd2(0)− φd1(0) + h[f1(φd2, φb2, ψd2, ψb2)− f1(φd1, φb1, ψd1, ψb1)]; Z+) = 0

lim
h→0+

1
h
dist(φb2(0)− φb1(0) + h[f2(φd2, φb2, ψd2, ψb2)− f2(φd1, φb1, ψd1, ψb1)]; Z+) = 0

lim
h→0+

1
h
dist(ψd2(0)− ψd1(0) + h[f3(φd2, φb2, ψd2, ψb2)− f3(φd1, φb1, ψd1, ψb1)]; Z+) = 0

lim
h→0+

1
h
dist(ψb2(0)− ψb1(0) + h[f4(φd2, φb2, ψd2, ψb2)− f4(φd1, φb1, ψd1, ψb1)]; Z+) = 0,

(4.14)

for all φdj, φbj, ψdj, ψbj ∈ Cβ for j = 1, 2 with (φd2, φb2, ψd2, ψb2) ≥ (φd1, φb1, ψd1, ψb1).

From the definitions of fi, i = 1, 2, 3, 4 in (7.1) we see that

f1(φd2, φb2, ψd2, ψb2) − f1(φd1, φb1, ψd1, ψb1)

= δ1φb2(0, x)− σ1φd2(0, x)− (δ1φb1(0, x)− σ1φd1(0, x))

= δ1(φb2(0, x)− φb1(0, x))− σ1(φd2(0, x)− φd1(0, x))

and for sufficiently small h > 0,

φd2(0, x)− φd1(0, x) + h[f1(φd2, φb2, ψd2, ψb2)− f1(φd1, φb1, ψd1, ψb1)]

= (1− hσ1)(φd2(0, x)− φd1(0, x))

+hδ1(φb2(0, x)− φb1(0, x))

≥ 0;

similarly,

ψd2(0, x)− ψd1(0, x) + h[f3(φd2, φb2, ψd2, ψb2)− f3(φd1, φb1, ψd1, ψb1)]

= (1− hσ2)(ψd2(0, x)− ψd1(0, x))

+hδ2(ψb2(0, x)− ψb1(0, x))

≥ 0.
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For f2,

f2(φd2, φb2, ψd2, ψb2) − f2(φd1, φb1, ψd1, ψb1)

= r1φb2(−τ1, x) +
r1φ2

b2(0,x)

κ1
− 2r1φb2(0, x)− δ1φb2(0, x)

+σ1φd2(0, x)− c1φb2(0, x)ψb2(0, x) + c1κ1ψb2(0, x)

−[r1φb1(−τ1, x) +
r1φ2

b1(0,x)

κ1
− 2r1φb1(0, x)− δ1φb1(0, x)

+σ1φd1(0, x)− c1φb1(0, x)ψb1(0, x) + c1κ1ψb1(0, x)]

= r1(φb2(−τ1, x)− φb1(−τ1, x)) + σ1(φd2(0, x)− φd1(0, x))

+c1κ1(ψb2(0, x)− ψb1(0, x)) + (φb2(0, x)− φb1(0, x))

×[ r1
κ1

(φb2(0, x) + φb1(0, x))− 2r1 − δ1 − c1(ψb2(0, x)

+ψb1(0, x))] + c1(φb2(0, x)ψb1(0, x)− φb1(0, x)ψb2(0, x))

and for sufficiently small h > 0,

φb2(0, x) − φb1(0, x) + h[f2(φd2, φb2, ψd2, ψb2)− f2(φd1, φb1, ψd1, ψb1)]

= hr1(φb2(−τ1, x)− φb1(−τ1, x)) + hσ1(φd2(0, x)− φd1(0, x))

+(φb2(0, x)− φb1(0, x)){1− h[2r1 + δ1 + c1(ψb2(0, x)

+ψb1(0, x))− r1
κ1

(φb2(0, x) + φb1(0, x))− c1ψb1]}

+hc1(κ1 − φb1)(ψb2(0, x)− ψb1(0, x))

≥ 0

since β is the only interior equilibrium of (4.8). And

f4(φd2, φb2, ψd2, ψb2) − f4(φd1, φb1, ψd1, ψb1)

= r2ψb2(−τ2, x)− r2ψ2
b2(0,x)

κ2
− δ2ψb2(0, x) + σ2ψd2(0, x)

+c2φb2(0, x)ψb2(0, x)− c2κ1ψb2(0, x)

−(r2ψb1(−τ2, x)− r2ψ2
b1(0,x)

κ2
− δ2ψb1(0, x) + σ2ψd1(0, x)

+c2φb1(0, x)ψb1(0, x)− c2κ1ψb1(0, x))

= r2(ψb2(−τ2, x)− ψb1(−τ2, x)) + σ2(ψd2(0, x)− ψd1(0, x))

+(ψb2(0, x)− ψb1(0, x))[c2φb2(0, x)− r2
κ2

(ψb2(0, x)

+ψb1(0, x))− δ2 − c2κ1] + c2ψb1(0, x)(φb2(0, x)− φb1(0, x))

47



and for sufficiently small h > 0,

ψb2(0, x) − ψb1(0, x) + h[f4(φd2, φb2, ψd2, ψb2)− f4(φd1, φb1, ψd1, ψb1)]

= hr2(ψb2(−τ2, x)− ψb1(−τ2, x)) + hσ2(ψd2(0, x)− ψd1(0, x))

+(ψb2(0, x)− ψb1(0, x)){1− h[ r2
κ2

(ψb2(0, x) + ψb1(0, x)) + δ2

+c2κ1 − c2φb2(0, x)]}+ hc2ψb1(0, x)(φb2(0, x)− φb1(0, x))

≥ 0.

It follows that (4.14) holds. By Corollary 5 in [45], we can show the existence and

uniqueness of

(ud(t, x;φd, φb, ψd, ψb), ub(t, x;φd, φb, ψd, ψb), vd(t, x;φd, φb, ψd, ψb), vb(t, x;φd, φb, ψd, ψb))

with

(S1(t, s), S2(t, s), S3(t, s), S4(t, s)) = (S1(t− s), S2(t− s), S3(t− s), S4(t− s)),

(T1(t, s), T2(t, s), T3(t, s), T4(t, s)) = (T1(t− s), T2(t− s), T3(t− s), T4(t− s)),

for t ≥ s ≥ 0,

(B1(t, φd, φb, ψd, ψb), B2(t, φd, φb, ψd, ψb), B3(t, φd, φb, ψd, ψb), B4(t, φd, φb, ψd, ψb))

= (f1(φd, φb, ψd, ψb), f2(φd, φb, ψd, ψb), f3(φd, φb, ψd, ψb), f4(φd, φb, ψd, ψb)),

and v+ = β, v− = 0. Moreover, by the semigroup theory given in the proof of

Theorem 1 in [45], it follows that

(ud(t, x;φd, φb, ψd, ψb), ub(t, x;φd, φb, ψd, ψb), vd(t, x;φd, φb, ψd, ψb), vb(t, x;φd, φb, ψd, ψb))

is a classical solution for t > τ .

Let

Ψ(θ, x) = (ūd(t, x), ūb(t, x), v̄d(t, x), v̄b(t, x))

and

Φ(θ, x) = (ud(t, x), ub(t, x), vd(t, x), vb(t, x)),

48



θ ∈ [−τ, 0], x ∈ R. Then 0 ≤ Φ ≤ Ψ ≤ β with Φ ≤ Ψ in Cβ. Again by Corollary

5 in [45], we have

0 ≤ (ud(t, x; Φ), ub(t, x; Φ), vd(t, x; Φ), vb(t, x; Φ))

≤ (ud(t, x; Ψ), ub(t, x; Ψ), vd(t, x; Ψ), vb(t, x; Ψ)) ≤ β
(4.15)

for t > 0, x ∈ R.

Let v+ = β and

v− = (ud(t, x), ub(t, x), vd(t, x), vb(t, x)),

v+ = (ūd(t, x), ūb(t, x), v̄d(t, x), v̄b(t, x))

and v− = 0, respectively, we obtain

(ud(t, x), ub(t, x), vd(t, x), vb(t, x))

≤ (ud(t, x; Φ), ub(t, x; Φ), vd(t, x; Φ), vb(t, x; Φ))

≤ β

(4.16)

for t ≥ 0 and x ∈ R, and

0 ≤ (ud(t, x; Ψ), ub(t, x; Ψ), vd(t, x; Ψ), vb(t, x; Ψ))

≤ (ūd(t, x), ūb(t, x), v̄d(t, x), v̄b(t, x)),
(4.17)

for t ≥ 0 and x ∈ R.

It follows from (4.15)-(4.17) that

(ūd(t, x), ūb(t, x), v̄d(t, x), v̄b(t, x)) ≥ (ud(t, x), ub(t, x), vd(t, x), vb(t, x))

for all t ≥ 0, x ∈ R. This completes the proof.

Lemma (4.2) together with the global stability results of system (4.8) shows

that the time t solution map Qt of (4.8) with t > 0 exists, and it satisfies Hypothe-

ses 4.1 i-ii since (4.8) is an autonomous system.
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LEMMA 4.3. For any t > 0, Qt satisfies Hypothesis 4.1 iv with β given by (4.3).

Proof. Let Φ1,Φ2 ∈ Cβ. For any ε > 0 and t0 > 0, we define

H(t, x) := |ud(t, x; Φ1)− ud(t, x; Φ2)|+ |ub(t, x; Φ1)− ub(t, x; Φ2)|

+|vd(t, x; Φ1)− vd(t, x; Φ2)|+ |vb(t, x; Φ1)− vb(t, x; Φ2)|;

K := supt∈[0,t0],x∈RH(t, x);

Ωr(z) := [−τ, 0]× [z − r, z + r], ∀ r > 0, z ∈ R;

|Φ|Ωρ(z) := sup(θ,x)∈Ωr(z) |Φ(θ, x)|;

ε0 := ε
2(5+∆)t0e∆t0

;

where ∆ := 5r1 + 3r2 + 2(δ1 + δ2 + σ1 + σ2) + (c1 + c2)(2κ1 + κ2). Without loss

of generality, we assume K ≥ supθ∈[−τ,0],x∈RH(θ, x). Then, there exists (t∗, x∗) ∈

[0, t0]× R such that H(θ, x) ≤ H(t∗, x∗) + ε0 for (t, θ, x) ∈ [0, t0]× [−τ, 0]× R.

Define

Tud(t) = 1√
4πdud t

∫∞
−∞ e

− (y−x+e1t)
2

4dud
t dy, Tvd(t) = 1√

4πdvd t

∫∞
−∞ e

− (y−x+e2t)
2

4dvd
t dy,

Sub(t) = 1√
4πdub t

∫∞
−∞ e

− (y−x)2

4dub
t dy, Svb(t) = 1√

4πdvb t

∫∞
−∞ e

− (y−x)2

4dvb
t dy.

Then

ud(ξ, t) = Tud(t)ud(0, ·)(x) +
∫ t

0
Tud(t− s)f1(uds, ubs, vds, vbs)(x)ds

ub(ξ, t) = Sub(t)ub(0, ·)(x) +
∫ t

0
Sub(t− s)f2(uds, ubs, vds, vbs)(x)ds

vd(ξ, t) = Tvd(t)vd(0, ·)(x) +
∫ t

0
Tvd(t− s)f3(uds, ubs, vds, vbs)(x)ds

vb(ξ, t) = Svb(t)vb(0, ·)(x) +
∫ t

0
Svb(t− s)f4(uds, ubs, vds, vbs)(x)ds.
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We choose σ = ε
8e∆t0

and M = M(ε, t0) > 0 such that for any t ∈ [0, t0]

∫
|y|>M

1√
4πdud t

e
− (y−x+e1t)

2

4dud
t dy ≤ ε0

ud∗
,∫

|y|>M
1√

4πdvd t
e
− (y−x+e2t)

2

4dvd
t dy ≤ ε0

vd∗
,∫

|y|>M
1√

4πdub t
e
− (y−x)2

4dub
t dy ≤ ε0

ub∗
,∫

|y|>M
1√

4πdvb t
e
− (y−x)2

4dvb
t dy ≤ ε0

vb∗
,

Tud(t)Hs(0, x
∗) ≤ |Hs|ΩM (x∗) + ε0,

Tvd(t)Hs(0, x
∗) ≤ |Hs|ΩM (x∗) + ε0,

Sub(t)Hs(0, x
∗) ≤ |Hs|ΩM (x∗) + ε0,

Svb(t)Hs(0, x
∗) ≤ |Hs|ΩM (x∗) + ε0,

Sub(t)Hs(−τ1, x
∗) ≤ |Hs|ΩM (x∗) + ε0,

Svb(t)Hs(−τ1, x
∗) ≤ |Hs|ΩM (x∗) + ε0.
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For i = 1, 2 if |Φ1(θ, x)− Φ1(θ, x)|ΩM (x∗) < σ, then

|ud(t∗, x∗; Φ1)− ud(t∗, x∗; Φ2)|

=

∣∣∣∣Tud(t∗)ud(0, x∗; Φ1)

+

∫ t∗

0

Tud(t
∗ − s)f1(uds(·, ·; Φ1), ubs(·, ·; Φ1), vds(·, ·; Φ1), vbs(·, ·; Φ1))(x∗)ds

− Tud(t∗)ud(0, x∗; Φ2)

+

∫ t∗

0

Tud(t
∗ − s)f1(uds(·, ·; Φ2), ubs(·, ·; Φ2), vds(·, ·; Φ2), vbs(·, ·; Φ2))(x∗)ds

∣∣∣∣
≤Tud(t∗)|ud(0, x∗; Φ1)− ud(0, x∗; Φ2)|

+

∫ t∗

0

Tud(t
∗ − s)|f1(uds(·, ·; Φ1), ubs(·, ·; Φ1), vds(·, ·; Φ1), vbs(·, ·; Φ1))

− f1(uds(·, ·; Φ2), ubs(·, ·; Φ2), vds(·, ·; Φ2), vbs(·, ·; Φ2))|(x∗)ds

≤Tud(t∗)H(0, x∗) + δ1

∫ t∗

0

Tud(t
∗ − s)Hs(0, x

∗)ds+ σ1

∫ t∗

0

Tud(t
∗ − s)Hs(0, x

∗)ds

≤σ + ε0 + δ1

∫ t0

0

(|Hs|ΩM (x∗) + ε0)ds+ σ1

∫ t0

0

(|Hs|ΩM (x∗) + ε0)ds

≤σ + ε0(1 + δ1t0 + σ1t0) + (δ1 + σ1)

∫ t0

0

|Hs|ΩM (x∗)ds.

By a similar argument, we have

|vd(t∗, x∗; Φ1)− vd(t∗, x∗; Φ2)|

≤ σ + ε0(1 + δ2t0 + σ2t0) + (δ2 + σ2)
∫ t0

0
|Hs|ΩM (x∗)ds,
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and

|ub(t∗, x∗; Φ1)− ub(t∗, x∗; Φ2)|

=

∣∣∣∣Sub(t∗)ub(0, x∗; Φ1)

+

∫ t∗

0

Sub(t
∗ − s)f2(uds(·, ·; Φ1), ubs(·, ·; Φ1), vds(·, ·; Φ1), vbs(·, ·; Φ1))(x∗)ds

− Sub(t∗)ub(0, x∗; Φ2)

+

∫ t∗

0

Sub(t
∗ − s)f2(uds(·, ·; Φ2), ubs(·, ·; Φ2), vds(·, ·; Φ2), vbs(·, ·; Φ2))(x∗)ds

∣∣∣∣
≤Sub(t∗)|ub(0, x∗; Φ1)− ub(0, x∗; Φ2)|

+

∫ t∗

0

Sub(t
∗ − s)|f2(uds(·, ·; Φ1), ubs(·, ·; Φ1), vds(·, ·; Φ1), vbs(·, ·; Φ1))

− f2(uds(·, ·; Φ2), ubs(·, ·; Φ2), vds(·, ·; Φ2), vbs(·, ·; Φ2))|(x∗)ds

≤Sub(t∗)H(0, x∗) + r1

∫ t∗

0

Sub(t
∗ − s)Hs(−τ, x)ds

+ (4r1 + δ1)

∫ t∗

0

Sub(t
∗ − s)Hs(0, x

∗)ds

+ (σ1 + 2c1κ1 + c1κ2)

∫ t∗

0

Sub(t
∗ − s)Hs(−τ, x)ds

≤σ + ε0 + r1

∫ t0

0

(|Hs|ΩM (x∗) + ε0)ds

+ (4r1 + δ1 + σ1 + 2c1κ1 + c1κ2)

∫ t0

0

(|Hs|ΩM (x∗) + ε0)ds

=σ + ε0[1 + r1t0 + (4r1 + δ1 + σ1 + 2c1κ1 + c1κ2)t0]

+ (5r1 + δ1 + σ1 + 2c1κ1 + c1κ2)

∫ t0

0

|Hs|ΩM (x∗)ds.

Similarly, we have

|vb(t∗, x∗; Φ1)− vb(t∗, x∗; Φ2)|

≤ σ + ε0[1 + r2t0 + (2r2 + δ2 + σ2 + 2c2κ1 + c2κ2)t0]

+(3r2 + δ2 + σ2 + 2c2κ1 + c2κ2)
∫ t0

0
|Hs|ΩM (x∗)ds.
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Thus, we have

|Ht|ΩM (x∗) ≤ ε0 +H(t∗, x∗)

= ε0 + |ud(t∗, x∗; Φ1)− ud(t∗, x∗; Φ2)|+ |ub(t∗, x∗; Φ1)− ub(t∗, x∗; Φ2)|

+|vd(t∗, x∗; Φ1)− vd(t∗, x∗; Φ2)|+ |vb(t∗, x∗; Φ1)− vb(t∗, x∗; Φ2)|

≤ 4σ + ε0(5 + ∆)t0 + ∆
∫ t0

0
|Hs|ΩM (x∗)ds.

It follows by Gronwall’s inequality that

|Ht|ΩM (x∗) ≤ (4σ + ε0(5 + ∆)t0)e∆t0 , ∀t ∈ [0, t0].

We then obtain that for any small ε > 0, and compact subset ζ ⊂ [−τ, 0] × R,

there exist σ > 0 and a compact set ΩM(x∗) such that ζ ⊂ ΩM(x∗) and

|Ht|ζ ≤ |Ht|ΩM (x∗) < ε for t ∈ [0, t0] and |Φ1 − Φ2|ΩM (x∗) < σ.

This shows that Qt is continuous in Φ with respect to the compact open topology

uniformly for t ∈ [0, t0]. Note that the metric space (Cβ, d) is complete. By the

triangle inequality and the continuity of Qt in t from Lemma 4.2, it follows that

Qt(φ) is continuous in (t; Φ) with respect to the compact open topology. This

competes the proof of Lemma 4.3.

LEMMA 4.4. For any t > 0, Qt satisfies Hypothesis 4.1 v with β given by (4.3).

We can modify the proof of Lemma 3.3 in [62] by using the specific defini-

tion of Tud , Sub , Tvd and Svb in this paper to prove Lemma 4.4. Since the argument

is almost the same, we omit the proof.

LEMMA 4.5. Assume that w(l)(c; θ, x−ct) is a nonincreasing traveling wave solu-

tion of (4.8) with speed c 6= 0 for i ∈ Σ0. Then the family w(l) is an equicontinuous

family of functions.
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Proof. Define

(m(l)
c )i(x) =

κ

d
(l)
i (λ

(l)
i1 − λ

(l)
i2 )


e−λ

(l)
i1 x when x ≥ 0,

e−λ
(l)
i2 x when x < 0,

with

λ
(l)
i1 =

(c−ei)+
√

(c−ei)2+4κd
(l)
i

2d
(l)
i

> 0,

λ
(l)
i2 =

(c−ei)−
√

(c−ei)2+4κd
(l)
i

2d
(l)
i

< 0.

By Theorem 4.1, we have

w(l)(x) =

∞∫
−∞

m(l)
c (x− y)[H1(w(l))(y + cτ1) + H2(w(l))(y + cτ2) + H3(w(l))(y)]dy.

(4.18)

Then we can follow the proof of Lemma 4.1 given in [53], therefore we omit

the details here.

Define Rc[u](θ, s) = max{kΦ(θ, s),T−c[Q[u]](θ, s)} for u ∈ Cβ.

Define a sequence of vector-valued functions a
(l)
n (c, k; θ, s) of (θ, s) ∈ [−τ, 0]×

H by the recursion

a
(l)
n+1(c, k; θ, s) = Rc,k[a

(l)
n (c, k; ·)](θ, s), a

(l)
0 (c, k; θ, s) = kΦ(θ, s). (4.19)

and denote a(l) as the limit of a
(l)
n (c, k; θ, s) as n→∞. Note that a

(l)
n ≤ a

(l)
n+1 ≤ β

for all n, and a
(l)
n (c, k; θ, s) is nonincreasing in c and s and continuous in (c, k; θ, s).

Define

c(l)∗ := sup{c : a(l)(c, k; θ,∞) = β},

and

c(l)∗+ := sup{c : a(l)(c, k; θ,∞) 6= 0}.

Let

c̃∗ = lim inf
l→∞

c(l)∗ (4.20)
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and

c̃∗+ = lim inf
l→∞

c(l)∗+. (4.21)

THEOREM 4.2. Assume that Hypotheses 4.1 are satisfied. Then the following

statements are true for the system (4.2):

i. If c ≥ c̃∗ and c 6= 0 for i ∈ Σ0, there is a nonincreasing traveling wave solution

w(x− ct) with w(c; θ,−∞) = β and w(c; θ,∞) an equilibrium other than β.

ii. If there is a nonincreasing traveling wave w(c; θ, x− ct) with w(c; θ,−∞) = β

and w(c; θ,∞) an equilibrium other than β, then c ≥ c̃∗.

Proof. As shown in the proof of Theorem 4.2 of Liang and Zhao [67], {a(l)
n (c, k; θ, s) :

n ≥ 1, k ∈ (0, 1]} is a family of equicontinuous functions of (θ, s) in any bounded

subset of [−τ, 0]×H. Since a
(l)
n is nondecreasing in n, the whole sequence a

(l)
n (c, k; θ, s)

converges to a function a(l)(c, k; θ, s) uniformly for θ ∈ [−τ, 0] and s on bounded

sets. In particular, a(l)(c, k; θ, s) is a continuous function of (θ, s). By hypothesis

4.1 iv, we take limits of (4.19) and we have

a(l)(c, k; θ, s) = max{kΦ(θ, s),Q[a(l)(c, k; �)](θ, s+ c)}. (4.22)

Fix θ0 ∈ [−τ, 0]. For any integer g we define

Kk(g) :=
1

2
[a(l)(c, k; θ0, g) + a(l)(c, k; θ0, g + 1)]. (4.23)

Note that Kk(g) is nonincreasing in g. Since Kk(−∞) = β(θ0) and Kk(∞) = 0,

there exists gk such that

N − 2

N
|β(θ0)| ≤ Kk(gk) ≤

N − 1

N
|β(θ0)| , (4.24)

for some large positive integer N .

Now consider a(l)(c, k; θ, s+ gk).
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Claim: a(l)(c, k; θ, s) forms a family of equicontinuous function of (θ, s) in

any bounded subsets of [−τ, 0]×H.

For any θ1, θ2 ∈ [−τ, 0] and real numbers s1 and s2, we have that for any

positive integer n,

|a(l)(c, k; θ1, s1)− a(l)(c, k; θ2, s2)| ≤ |a(l)(c, k; θ1, s1)− a
(l)
n (c, k; θ1, s1)|

+|a(l)(c, k; θ2, s2)− a
(l)
n (c, k; θ2, s2)|

+|a(l)
n (c, k; θ1, s1)− a

(l)
n (c, k; θ2, s2)|.

Since a
(l)
n increases to a(l) uniformly on bounded sets and {a(l)

n (c, k; θ, s) : n ≥

1, k ∈ (0, 1]} is a family of equicontinuous functions of (θ, s), one can show that

the above claim is true.

Thus we can find a sequence ki→0 such that a(l)(c, ki; θ, s + gki) converges

uniformly for θ ∈ [−τ, 0] and s on bounded sets to a function w(l)(c; θ, s) that is

nonincreasing in s.

Taking limits in (4.22) with k = ki and s = s + gki − c and using the

translation invariance of Q, we find that

w(l)(c; θ, s− c) = Q[w(l)(c; ·)](θ, s). (4.25)

So un(θ, s) = w(l)(c; θ, s− nc) is a traveling wave solution of the recursion un+1 =

Q[un], n = 0, 1, 2, ....

Let s approach to −∞ in (4.25), then

w(l)(c; ·,−∞) = lim
n→∞

w(l)(c; ·, s−(n+1)c) = lim
n→∞

Qn[w(l)](·, s) = Q[w(l)(c; ·,−∞)]

for ∀s ∈ H, and subsequently we consider s approach to −∞, we have

w(l)(c; ·,∞) = lim
s→∞

w(l)(c; ·, s− c) = lim
s→∞

Q[w(l)](·, s) = Q[w(l)(c; ·,∞)],

for ∀s ∈ H. It follows that w(l)(c; ·,±∞) are equilibria of Q.
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The definition (4.23) shows that as ki→0 the sequence Kki(gki) converges

to 1
2
[w(l)(c; θ0, 0) + w(l)(c; θ0, 1)]. Since w(l)(c; θ, s) is nonincreasing in s,

N − 2

N
|β(θ0)| ≤ lim

ki→0
Kki(gki) ≤ w(l)(c; θ0,−∞)

and

w(l)(c; θ0,∞) ≤ lim
ki→0

Kki(gki) ≤
N − 1

N
|β(θ0)| .

Thus, we have w(l)(c; θ0,∞) 6= β and w(l)(c; θ0,−∞) = β due to the choice of N .

We have proved that (4.8) has a nonincreasing traveling wave solution w(l)(c; θ, s−

nc) with w(l)(c; θ0,−∞) = β and w(l)(c; θ0,∞), an equilibrium other than β.

Since β is the only interior equilibrium of Cβ, we can choose η > 0 small

enough such that there is no constant equilibrium other than β in the set {w ∈

Cβ : |β −w| ≤ η}. By the Intermediate Value Theorem, it shows that there exists

a real number s∗ at which
∣∣β −w(l)(θ0, s

∗)
∣∣ = η, since as s increases from −∞

to ∞, the continuous function
∣∣β −w(l)(θ0, s)

∣∣ increases from 0 to a positive real

number. We can assume s∗ = 0 by translating if necessary, and we have

∣∣β −w(l)(θ0, 0)
∣∣ = η.

By Lemma 4.5, w(l) is an equicontinuous family of functions. Then using Ascoli’s

Theorem, we have that w(l)(x) has a subsequence {w(lj)(x)} such that {w(lj)(x)}

converges to w(x) uniformly on every bounded interval. Clearly,

|β −w(θ0, 0)| = η. (4.26)

One can show that

lim
l→∞

∞∫
−∞

∣∣m(l)
c (x)−mc(x)

∣∣ dx = 0, (4.27)

where (m
(l)
c )i(x) is defined in the proof of Lemma 4.5. The proof can be found in

Li [53].
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Observe that w(lj) satisfies

w(lj)(x) =
∞∫
−∞

m
(lj)
c (x− y)[H1(w(lj))(y + cτ1)

+H2(w(lj))(y + cτ2) + H3(w(lj))(y)]dy

=
∞∫
−∞

mc(x− y)[H1(w(lj))(y + cτ1)

+H2(w(lj))(y + cτ2) + H3(w(lj))(y)]dy

+
∞∫
−∞

[m
(lj)
c (x− y)−mc(x− y)][H1(w(lj))(y + cτ1)

+H2(w(lj))(y + cτ2) + H3(w(lj))(y)]dy.

(4.28)

Taking limits of (4.28), we obtain

w(x) =

∞∫
−∞

mc(x− y)[H1(w)(y + cτ1) + H2(w)(y + cτ2) + H3(w)(y)]dy.

By Theorem 4.1, w(x) is a traveling wave solution of (4.2) with speed c̃∗. The

condition (4.26) and the definition of η indicate that w(−∞) = β and w(∞) is

a constant equilibrium of (4.2) other than β. This completes the proof of the

statement (i) of the theorem.

The proof of the statement (ii) is similar to the second part of the proof

of Theorem 3.1 in Li and Weinberger [61], we omit it here. So the proof of the

theorem is completed.

REMARK 4.3. Assume that Hypotheses 4.1 are satisfied. Then the following

statements are true for the system (4.2):

i. if c ≥ c̃∗+ and c 6= 0 for i ∈ Σ0, there is a nonincreasing traveling wave solution

w(x− ct) with w(c; θ,∞) = 0 and w(c; θ,−∞) an equilibrium other than 0;

and

ii. if there is a nonincreasing traveling wave w(c; θ, x − ct) with w(c; θ,∞) = 0

and w(c; θ,−∞) = β, then c ≥ c̃∗+.
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The proof is similar to that of Theorem 4.2 and can be found in [53].

In this chapter, we first constructed the integral system by defining H1(u),

H2(u), H3(u) and mc(x). Then we showed that a traveling wave solution of the

cooperative system (4.2) with a proper speed is a fixed point of a compact integral

operator. Finally we took the limit of a sequence of functions that are fixed points

of the related integral system, and Theorem 4.2 and Remark 4.3 showed that the

existence of traveling wave solutions can be established with speeds above two

extended real numbers, c̃∗ and c̃∗+.
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CHAPTER 5

CONCLUSION AND FUTURE DIRECTIONS

5.1 Conclusion

In this dissertation we formulated a system of delayed reaction-diffusion

equations which modeled growth, spread and competition of two species with stage

structure. This model is an extension of the time-delayed population system with

stage structure by Zhang et al. [64]. However, there is no compartmentalization

for both species in their model. The advantage of our model is that we take

all factors of compartmentalization, stage structure and interaction between two

species into consideration in order to provide a resolution to the drift paradox in

stream ecology. To the best of our knowledge, this is the first model involving all

these factors. The underlying dynamics are very complicated, however we can still

give a complete description of the global stability and traveling wave solutions.

In Chapter 3 we analyzed the non-spatial system (3.1) in which the effect of

spatial advection and diffusion is not involved. We obtained the existence and local

stability criteria of the equilibria of the non-spatial system (3.1). Then using the

fluctuation lemma and constructing sequences approaching equilibrium points we

showed that the global stability of the equilibria in our model can be completely

determined. The mathematical methods used in our proofs are inspired by Al-

Omari and Gourley’s work [63]. By the study of the non-spatial system (3.1),

we conclude that (i) the two interactive species with stage structure can persist
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in a stream; (ii) one species out-competes the other one, and the species cannot

coexist; (iii) the two species can coexist and approach a stable population density

in long term under certain conditions (i.e. the two mono-culture equilibria E1 and

E2 are both unstable).

The spatial system (4.1) is analyzed in Chapter 4. We defined the integral

system and showed that a traveling wave solution of a delayed cooperative reaction-

diffusion system with a proper speed is a fixed point of a compact integral operator.

Further, we established the existence of traveling wave solutions with speeds above

two extended real numbers by taking a limit of a sequence of functions that are fixed

points of related integral systems. In biology, traveling waves are spatial transitions

from an unstable state to a stable one. In other words, the existence of traveling

wave solutions connecting two equilibria means that the unstable equilibrium is

took over by the stable one in space as time increases.

5.2 Discussion

In Chapter 4 we proved the existence of traveling wave solutions with speeds

above two extended real numbers c̃∗ and c̃∗+. We are interested in how c̃∗ is related

to c∗ and how c̃∗+ is related to c∗+. We want to find conditions, under which the

linear determinacy conditions given in Weinberger et al. [52] are satisfied by (4.2),

such that c̃∗ = c̃∗+ = c∗ = c∗+ and they are all equal to the unique spreading speed

of (4.2).

Li in [53] showed that c̃∗ = c̃∗+ = c∗ = c∗+ = c̄ for the general partially

degenerate cooperative reaction-diffusion system

∂u

∂t
= D

∂2u

∂x2
− E∂u

∂x
+ f(u(t, x)), (5.1)

where

c̄ := inf
µ>0

(1/µ)γ1(µ) (5.2)
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and γ1(µ) is the principal eigenvalue of the first irreducible diagonal block of the

moment generating matrix Cµ of the linearized system of (5.1). He showed that c̄

can be characterized as the slowest speed of a class of traveling wave solutions by

verifying the linear determinacy conditions under appropriate assumptions.

However, in our system (4.4) the time delay is considered in the vector

function f(u(θ, t,x)). Consequently the principal eigenvalue γ1(µ) of Cµ and the

corresponding eigenvector ξ(µ) cannot be expressed explicitly. Thus the ideas used

in [53] cannot be applied in our system.

In order to verify the linear determinacy conditions, one might first write

the eigenvector ξ(µ) as a function of the principal eigenvalue γ1(µ). Then using

the fact that the wave speed equation φ(µ) = (1/µ)γ1(µ) is a convex function

and thus the infimum in Eq. (5.2) exists, one might provide an estimation of

γ1(µ) and therefore show that the linear determinacy conditions are satisfied under

appropriate assumptions.

Liang and Zhao [67] developed the analytical theory on the spreading speeds

for delayed cooperative systems, which can be applied on our cooperative model

(4.2).

5.3 Future Directions

This model can be extended in several different directions:

1. Consider species interaction in the streamflow. In stream ecology,

many studies have been done to study how different organisms interact with

each other and to understand the interconnections and impacts [21, 70, 71].

Different interactions include competition among individuals of the same

species, competition and predation between different species. We may add

terms for the populations in the drift to indicate their interaction, and these
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terms can even be nonlinear (density-dependent). By analyzing the new

model, one may predict the dynamics of species in the flow such as how

the numbers of each species are influenced by its prey, its competitors, its

predators, and even diseases.

2. Add age structure for adult individuals. New age structure among

adult members can be considered in the model, i.e. dividing each adult

population into two groups regarding their productivity, young adults and

old adults. Only young and healthy adult members have strong productivity,

and the old and unhealthy ones do not contribute to reproduction. One can

define ni, nmy and nmo to represent the population density of immature

members, young mature members and old members, respectively. Notice

that these three variables interact with each other.

3. Density-dependent diffusion rate. If organisms are either attracted to

each other or repelled from one another, then we may replace the simple

diffusion term by a biased random motion model [72]. In reality, organisms

tend to join together at low densities and to estrange one another at high

densities. Such a density-dependent response can be modeled by a function

ψ(u) of population density [73], where ψ(u) is negative at low densities and

positive at high densities and u is the population density.

4. Consider an Allee effect. Allee effect is the positive relationship between

population density and individual fitness [77]. In other words, at low density

the population does not grow optimally. Since many species experience an

Allee effect, we may add an Allee effect in the growth function of species.

Wang et al. [74] claimed that systems with Allee effect show destabilization

compared to a LotkaVolterra-type competitive system. However, they only

conducted phase plane analysis and numerical simulation, and the time delay
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was not considered.

5. Consider stochastic fluctuations in population growth. Population

dynamics is also determined by the environmental stochasticity, which in-

cludes climate effects, effects of human interaction and effects of food re-

sources. For example, in the summer a population may grow favorably be-

cause of an abundant food supply and the agreeable climate, while in the

winter they may experience a large number of deaths and low reproduction

rate due to drought or low temperature. Our present model assumes that

the environment is temporally constant, and we may use a stochastic variable

representing the growth function to model these random effects [75, 76].
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