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ABSTRACT

FACTORIZATION IN INTEGRAL DOMAINS

Ryan H. Gipson

May 1, 2017

We investigate the atomicity and the AP property of the semigroup rings

F [X;M ], where F is a field, X is a variable and M is a submonoid of the additive

monoid of nonnegative rational numbers. In this endeavor, we introduce the follow-

ing notions: essential generators of M and elements of height (0, 0, 0, . . . ) within a

cancellative torsion-free monoid Γ. By considering the latter, we are able to deter-

mine the irreducibility of certain binomials of the form Xπ− 1, where π is of height

(0, 0, 0, . . . ), in the monoid domain. Finally, we will consider relations between the

following notions: M has the gcd/lcm property, F [X;M ] is AP, and M has no

elements of height (0, 0, 0, . . . ).
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CHAPTER 1

INTRODUCTION

The purpose of this dissertation is to explore various factorization proper-

ties in integral domains. More specifically, we investigate the atomicity and AP

properties in a special class of commutative rings called monoid domains. For the

sake of comprehension, it is assumed that the reader has completed a minimum of

a year’s sequence in graduate level algebra, however, all relevant notions will be

treated in-turn within this text. Specifically, we will devote the bulk of Chapter 2

to introduce necessary definitions and propositions to further acquaint the reader

to integral domains, but first we will provide a brief glimpse into the mathematical

development of the topic.

The study of factorization in integral domains concerns itself with the de-

composition of nonunit nonzero elements into irreducibles. Historically, this study

has focused on those domains in which every nonzero nonunit element permits such

a factorization and said factorization is unique up to the order of the factors and

associates [1]. Indeed, this case has been well-studied and there are exellent re-

sources on the topic, however, in practice, most domains permit much more general

factorizations. There are domains R, in which, there is an element, say x, that

admits multiple factorizations unique only in the number of irreducible factors. In

fact, there are domains in which an element may have infinitely many factoriza-

tions, only one of which is finite. Indeed, factorization (or the lack thereof) may be

characterized in many forms, and in recent decades, great efforts have been made

to explore its various characterizations.
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In 1968, Paul Cohn in [7] presented a paper on Bézout rings where he in-

troduced the notion of an atom as well as the class of integral domains known as

atomic domains. Interestingly, in this paper, he mistakenly classified atomic do-

mains as being equivalent to ACCP domains (these are integral domains in which

the ascending chain condition is satisfied for all principal ideals). Indeed, in 1974,

Anne Grams, in her paper titled Atomic rings and the ascending chain condition

for principal ideals, [15], provides an example of an atomic domain that does not

satisfy the ACCP condition.

Clearly, the mathematical community needed a more robust classification for

domains with decidedly more general factorization properties. This dilemma was

remedied greatly in 1990 when D. D. Anderson, D. F. Anderson, and M. Zafrul-

lah, categorized all domains whose nonzero nonunit elements admitted at least one

factorization into a finite number of atoms in their paper Factorization in Integral

Domains, [1].

Gilmer’s research of commutative semigroup rings R[X;S] has provided a

compelling course in this area of mathematical research. In [12] he proposed the

generic question that he denotes as (QE). Here, E represents some particular ring-

theoretic property, say unique factorization, and Q represents the question, “Under

what conditions on S and R does the semigroup ring R[X;S] satisfy the given

property E?” For various concrete properties E Gilmer provided answers in [13],

e.g., related to our work, he provides sufficient and necessary conditions for which

a semigroup ring satisfies the unique factorization property.

In collaboration with Dr. Hamid Kulosman, I have extended the work of

these mathematicians and have provided sufficient and necessary conditions for

which semigroup rings exhibit ring-theoretic properities: atomicity and AP. To this

end, we introduce new notions such as essential generators of a monoid M , elements

of height (0, 0, 0, . . . ) in a torsion-free monoid M , Matsuda’s monoids, and others.
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In chapters 3,4, and 5 we will present the results of our investigation in

order of inspiration/motivation. In Chapter 3, we submit a new characterization

of principal ideal domains and in doing so we discover our impetus for researching

monoid domains. In Chapter 4, we will investigate the atomicity and AP condition

of the monoid domain F [X;M ] where M is a submonoid of (Q+,+). Then, in

Chapter 5, we will fully justify some assertions from Chapter 4 by providing a proof

for the irreducibility of certain binomials Xπ−1 in the monoid domains. Chapter 6

will be our last chapter of study and with it we will explore the existence of relations

between the following properties: the monoid M has the gcd/lcm property, F [X;M ]

has the AP-property, and there are no elements of height (0, 0, 0, . . . ) in M .

Finally, in chapter 7, we will discuss the many avenues of future research

that our results have presented. More concretely, we will present several questions

that are either further generalizations or natural extensions of our work.
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CHAPTER 2

PRELIMINARIES

Throughout this text, we will be discussing various properties of commu-

tative rings. For this purpose, we will list some basic definitions and well-known

propositions beginning with a precise definition of a ring. All the notions that we

use in this thesis, but do not define them, can be found in [10] and [19].

2.1 Rings

DEFINITION 2.1. A ring is a nonempty set R equipped with two binary operations

+ : R × R → R (addition) and · : R × R → R (multiplication), satisfying the

following conditions:

(M1) Under addition R is an abelian group;

(M2) Multiplication is associative;

(M3) There exists an element 1 ∈ R such that 1 · x = x · 1 = x for all x ∈ R. (We

call this element the multiplicative identity.)

(M4) The left and right distributivity of multiplication with respect to addition hold.

A ring R is said to be a commutative ring when x · y = y · x for all elements

x, y in R. It should be noted that most often we will write xy for x · y when the

context is clear.

From now on we will assume that all our rings are commutative (unless

specified otherwise). An element x ∈ R is said to be a zero divisor in R if there

4



exists a nonzero element y ∈ R such that xy = 0. If R is nonzero and has no

zero divisors, except 0, we say that R is an integral domain. Following, we give an

equivalent and useful definition.

DEFINITION 2.2. A commutative ring R 6= 0 is said to be an integral domain

if for any elements x, y, z ∈ R, xy = xz =⇒ y = z.

2.2 Integral Domains

For the remainder of this text, we will deal exclusiviely with integral domains.

Therefore, it is useful to discuss various types of domains and their properties. We

first give some basic definitions. Take x, y, z to be elements of the domain R:

(i) We say x is a unit if it is invertible with respect to multiplication;

(ii) We say x is irreducible (and we call it an atom) if it is nonzero, nonunit, and

x = yz implies either y or z is a unit;

(iii) We say x is prime if it is nonzero, nonunit, and whenever x|yz, then x|y or

x|z;

(iv) Two elements x, y ∈ R are said to be associates if x = uy, where u is a unit;

we then write x ∼ y.

Furthermore, an integral domain R in which every nonzero element is a unit is called

a field. Unless stated otherwise, we will consistently denote all fields by F .

DEFINITION 2.3. A principal ideal domain or PID is an integral domain in

which every ideal is principal, i.e., for every ideal I there is an element a such that

I = (a).

It is well known, that if one adjoins the variable X to F one obtains an

integral domain, denoted F [X], which is a principal ideal domain (in fact, F [X] is

5



a Euclidean domain). The elements of F [X] are all polynomials f(X) = a0 +a1X+

a2X
2 + · · · + anX

n where a0, a1, a2, . . . , an are elements of the field and n ≥ 0 a

nonnegative integer. If f 6= 0, we say that the degree of f(x) is equal to n and we

write deg(f(X)) = n. We then call anX
n the leading term. We define deg(0) = −∞.

It is not difficult to show that the set of units in F [X] is precisely the set of all

zero-degree polynomials, i.e., nonzero elements of F .

It is well-known that every prime element is an atom. However, the converse

is not true. For example, consider the integral domain D = Z[
√
−5]. The elements

of this domain are of the form {a + b
√
−5 : a, b ∈ Z}, and it can be shown that in

D the element 2 is an atom but not prime. However, for our purposes, it is more

interesting to consider the domain R = F [X2, X3] which consists of all polynomials

over F whose coefficient by the variable X is zero. A simple degree argument shows

that X2 is an atom in R. However, X2|X6 = X3X3, but X2 - X3 in R; thus, it is

not prime. Though irreducible does not always imply prime, there are domains in

which the notions are equivalent. Consider the following examples:

EXAMPLE 2.1. (1) Z the ring of integers;

(2) Z[X] the polynomial ring over Z;

(3) F [X1, X2, . . . , Xn] where n ≥ 0 is the polynomial ring over F with variables

X1, X2, . . . , Xn.

These examples, along with many others, motivate the following definition.

DEFINITION 2.4. The domain R is an AP-domain if the notions of an irre-

ducible and a prime element are equivalent.

One may wonder why we concern ourselves with the AP condition (that is,

the atoms are prime condition). Consider the following scenario. Let x be a nonzero

nonunit element of an integral domain D, and suppose that x can be factored as

x = p1p2 . . . pn where n ≥ 1 and p1, p2, . . . , pn are atoms. Suppose also that for some

6



i ∈ {1, 2, . . . , n}, pi is prime and consider another irreducible factorization of x, say

x = q1q2 . . . qm. Then, we can show that for some j ∈ {1, 2, . . . ,m}, pi ∼ qj.

Proof. From above, we know that p1p2 . . . pi . . . pn = q1q2 . . . qm. Hence, pi divides

q1q2 . . . qm, and because pi is prime, it in fact divides at least one of the factors

q1, q2, . . . , qm, say qj. Thus, since qj is irreducible and pi is not a unit, qj ∼ pi.

Therefore, for every decomposition into atoms that x admits, there exists a

factor which is an associate of pi. Thus, in an AP-domain, every nonzero nonunit

element x that admits some factorization into a finite number of irreducibles in fact

admits an essentially unique factorization. That is, for any two irreducible factor-

izations of x, say p1p2 . . . pn and q1q2 . . . qm, n = m and there exists a permutation

σ ∈ Sn such that for each i ∈ {1, 2, . . . , n}, pi = uiqσ(i) for some unit, ui, in the

integral domain.

EXAMPLE 2.2. In the AP-domain Z, the essentially unique factorization of the

element −156 into atoms is given by −156 = (−1) · 2 · 2 · 3 · 13 = (−1) · 22 · 3 · 13.

One may observe that in all of our examples, thus far, every nonzero nonunit

element in the domain could be factored into a unit and a finite number of atoms. It

should be noted this is not always the case. In fact, there are domains in which there

are no atoms at all (consider any field). Domains of this type are called antimatter

domains, however, in this text, we will not concern ourselves with such. Rather,

many of the domains we will study are those in which every nonzero nonunit element

admits at least one factorization into a finite number of irreducible elements, i.e.,

those domains which possess the atomic property.

DEFINITION 2.5. We say that a domain R is an atomic domain when every

nonzero nonunit element can be factored into a finite number of atoms.

The domains we have discussed thus far (fields, Euclidean domains, and

PIDs) are all atomic domains.

7



DEFINITION 2.6. We say that an integral domain R is a unique factoriza-

tion domain (or UFD) if it is atomic and for every nonzero nonunit x ∈ R the

factorization of x into a product of atoms is unique up to the order and associates.

2.3 Atomicity and AP Property and their Relations

The reader should note that UFDs satisfy both the atomic condition and the

AP condition. It can be shown that the converse holds as well. Hence, UFDs can be

characterized as atomic AP-domains. This leads us into our primary investigation:

what is the precise relationship between the properties AP and atomic. One may

reference the following implication diagram.

Figure 2.1: Atomic and AP Implication Diagram

domain

UFD ⇔ atomic AP atomic non-AP non-atomic AP non-atomic non-AP

PID

Euclidean domain

field

REMARK 2.1. The only equivalence is between the notions of UFD and atomic

AP. We will see that these implications are correct.

2.4 Monoids and Monoid Domains

With these definitions and notions we will begin our investigation into the

atomicity and AP property in integral domains. In doing so, we will focus much

8



of our attention on a special class of domains called monoid domains, denoted

F [X;M ].

DEFINITION 2.7. A commutative monoid, written additively, is a nonempty

set Γ with a binary operation + that is associative and has the identity element

denoted by 0 (and called zero).

We list some examples below.

EXAMPLE 2.3. (1) (N0,+), the set of nonnegative integers, is a commutative

monoid;

(2) (Q+,+), the set of all non-negative rational numbers, is a commutative monoid;

(3) Similarly, (R+,+), the set of all non-negative real numbers, is a commutative

monoid;

(4) Both M = {0, 2, 3, 4, 5, . . . } and M ′ = {0, 2, 4, 6, 7, 8, 9, . . . } with addition are

submonoids of (N0,+), and we say that they are generated by {2, 3} and {2, 5},

respectively. That is, every element of M can be written as 2s + 3t and every

element of M ′ can be written as 2s′ + 5t′ for nonnegative integers s, t, s′, t′.

Given a commutative monoid M , we may define the monoid ring R =

F [X;M ], where F is a field and X is a variable. The elements of F [X;M ] are

the polynomial expressions:

f(X) = a1X
α1 + a2X

α2 + · · ·+ anX
αn

where a1, a2, . . . , an are elements of the field and α1, α2, . . . , αn are elements of the

monoid. It is not difficult to verify that F [X;M ] is a commutative ring with the

following natural operations: for nonzero elements f, g ∈ F [X;M ], written as

f(x) = a1X
α1 + · · ·+ anX

αn ,

g(x) = b1X
β1 + · · ·+ bmX

βm ,

9



their product is written as f(X)g(X) = a1b1X
α1+β1 + · · · + anbmX

αn+βm ; under

addition, we combine terms with equal exponents by adding their coefficients. If

f = 0 or g = 0, then fg = 0. If M ⊆ R+ and if we assume the descending order

of the exponents, then, we say that deg(f(X)) = α1 (unless f = 0, in which case

we define def(f) = −∞). Now, we will verify that F [X;M ] is indeed an integral

domain, and by a simple degree argument, we will show that the set of units is

precisely the set of nonzero constants.

PROPOSITION 2.1. If M ⊆ R+, then the commutative ring R = F [X;M ] is an

integral domain.

Proof. Let f(X), g(X) be polynomials inR. We will first show that deg(f(X)g(X)) =

deg(f(X)) + deg(g(X)). Write f(X) = a1X
α1 + a2X

α2 + · · ·+ anX
αn and g(X) =

b1X
β1 + b2X

β2 + · · · + bnX
βm assuming descending order on the exponents. Then

f(X)g(X) = a1b1X
α1+β1 + · · · + anbmX

αn+βm which shows that deg(f(X)g(X)) =

α1 +β1 = deg(f(X))+deg(g(X)). This includes the possibility that f = 0 or g = 0,

since we define (−∞) + (−∞) = (−∞) and α + (−∞) = (−∞) + α = (−∞) for

α ≥ 0. Now, suppose that f(X) 6= 0 (i.e. deg(f(X)) ≥ 0), but f(X)g(X) = 0.

Thus, we have deg(f(X)g(X)) = deg(0) which implies deg(f(X)) + deg(g(X)) =

−∞, so that deg(g(X)) ≤ −∞. Hence, g(X) = 0 and R is an integral domain.

PROPOSITION 2.2. The set of units of R = F [X;M ] is precisely the set of nonzero

constant polynomials, i.e., the nonzero elements of the field.

Proof. Let U(R) be the set of units of R. Because F is a field, every nonzero

element of F is a unit, and, therefore, F \ {0} ⊆ U(R). Now, take the polynomial

f(X) ∈ U(R). Then, there exists an element g(X) ∈ R such that f(X)g(X) = 1.

Hence, deg(f(X)) + deg(g(X)) = deg(1) = 0. Since f 6= 0 and g 6= 0, we have f ≥ 0

and g ≥ 0; hence, deg(f(X)) = deg(g(X)) = 0 and so f(X) ∈ F \ {0}. Therefore,

U(R) = F \ {0}.
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EXAMPLE 2.4. (1) Let M = (Q+,+) and F be the field of real numbers; then

the monoid domain F [X;M ] = R[X;Q+] is the ring of polynomial expressions

whose exponents are non-negative rational numbers and whose coefficients are real

numbers. The units of R[X;Q+] are nonzero real numbers.

(2) Recall our earlier example R = F [X2, X3], the ring of polynomials over a field F

whose coefficient by X is zero. The domain R is in fact a monoid domain. Indeed,

let M = 〈2, 3〉; then, R = F [X;M ].

Let M,M ′ be two monoids. A monoid homomorphism from M to M ′ is a

map µ : M →M ′ such that µ(x+y) = µ(x)+µ(y) for all x, y ∈M and µ(0M) = 0M ′ .

If µ : M →M ′ is bijective, then we say that µ is a monoid isomorphism. For every

monoid isomorphism µ, there is an associated ring isomorphism φµ : F [X;M ] →

F [X;M ′] defined by:

φµ(a1X
α1 + a2X

α2 + · · ·+ anX
αn) = a1X

µ(α1) + a2X
µ(α2) + · · ·+ anX

µ(αn).

It is easy to show that φµ is an isomorphism if and only if µ is an isomorphism.

EXAMPLE 2.5. (1) Let M be a monoid and τ ∈ Q+ \ {0}. Then τM = {τm :

m ∈ M} is a monoid and the map µτ : M → τM defined by µτ (x) = τx for

all x ∈ M is a monoid isomorphism. Therefore, the naturally associated map

φµτ : F [X;M ]→ F [X; τM ], defined by

φµτ (a1X
α1 + a2X

α2 + · · ·+ anX
αn) = a1X

τα1 + a2X
τα2 + · · ·+ anX

ταn

is a ring isomorphism.

(2) More concretely, define M = 〈2, 5〉 = {0, 2, 4, 5, 6, 7, . . . }, and suppose τ =
1

2
.

Then, the map µ1/2 : M → 1
2
M defined by µ1/2(x) = 1

2
x for all x ∈ M is a monoid

isomorphism from M to 1
2
M =

〈
1,

5

2

〉
.
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2.5 Factorization process of f(X) ∈ F [X;M ]

Finally, to aid in our investigation, we will describe a factorization process

of a nonzero nonunit element of an integral domain. Let R be an integral domain

and x ∈ R a nonzero nonunit. We describe a factorization process of x. If x is

irreducible, we stop. If not, we decompose it as x = x0x1, where both x0 and

x1 are nonzero nonunits. If both x0, x1 are irreducible, we stop. If not, we take

the first from the left of the elements x0, x1 which is reducible and decompose it

as a product of two nonzero nonunits. Say x0 is reducible. We decompose it:

x0 = x0,0x0,1. Now we have x = x0,0x0,1x1. If all of the x0,0, x0,1, x1 are irreducible,

we stop. If not, we take the first from the left of the elements x0,0, x0,1, x1 which

is reducible and decompose it as a product of two nonzero nonunits. Say x0,1 is

reducible: x0,1 = x0,1,0x0,1,1. Now we have x = x0,0x0,1,0x0,1,1x1, etc. We call this

process a factorization process of x. If it stops after finitely many steps, we say that

this is a finite factorization process of x. If it never stops, we say that this is an

infinite factorization process of x.

To illustrate, we provide a brief example.

EXAMPLE 2.6. Consider the integral domain R = Z[X] and the polynomial

f(X) = X6 + 4X5 + 5X4 − 2X3 − 4X2 − 2X − 2.

In step 1 of the factorization process, we recognize that f(X) is reducible and we

factor it as

f(X) = (X2 +X + 1)(X4 + 3X3 +X2 − 3X − 2);

In step 2 of the factorization process, we see that X2 +X + 1 is irreducible and that

X4 + 3X3 +X2 − 3X − 2 is reducible, so we further factor f(X) as

f(X) = (X2 +X + 1)(X2 − 1)(X2 + 3X + 2);

12



In step 3 we recognize that X2 − 1, so we factor it as (X − 1)(X + 1) and get

f(X) = (X2 +X + 1)(X − 1)(X + 1)(X2 + 3X + 2).

In step 4 we recognize that X − 1 and X + 1 are irreducible and that X2 + 3X + 2

is reducible, so we factor it as (X + 1)(X + 2) and get

f(X) = (X2 +X + 1)(X − 1)(X + 1)(X + 1)(X + 2).

In step 5 we recognize that X + 1 and X + 2 are irreducible, so we stop. Thus f(X)

has a finite factorization process.

With these definitions and notions we have a firm foundation upon which

we can approach the remaining chapters in confidence. In Chapter 3, we will in-

troduce the principal containment property, by which we will provide a simple new

characterization of principal ideal domains.

13



CHAPTER 3

A NEW CHARACTERIZATION OF PIDS

In this chapter, we present a simple new characterization of principal ideal

domains. We introduce a new notion, namely, the principal containment condition

for integral domains which successfully generalizes previous advancements hereto-

fore. It is worth noting that it is in this context that we discovered our impetus to

further investigate monoid domains; indeed, we will make significant use of these

domains to prove that our classification is, in fact, more general. We will begin by

highlighting relevant advances in PID classifications.

For n ≥ 1, we say that an ideal I of a domain R is n-generated if there

exist x1, x2, . . . , xn ∈ R such that I = (x1, x2, . . . , xn). Note: Every k-generated

ideal, k ≥ 1, is an l-generated ideal for all l > k. Of specific interest to this

chapter are those domains whose every 2−generated ideal is principal; we call these

integral domains Bézout domains. The next two theorems are characterizations of

PIDs. The first one (Cohn’s Theorem) is Theorem 3.1 that was first stated in [3.1,

Proposition 1.2]. Even though it is well-known and often used, we were not able to

locate a proof in the literature. Cohn remarks in 3.1 that is is easy to prove that

Bézout’s domains which satisfy ACCP PIDs (however, ACCP is not equivalent to

atomicity, as it was later shown). The second one is Theorem 3.2, proved in 2008

by Chinh and Nam in [4].

THEOREM 3.1 (Cohn’s Theorem). If R is an atomic Bézout domain, then R is a

PID.

14



THEOREM 3.2 (Chinh-Nam Theorem). If R is a UFD in which every maximal

ideal is principal, then R is a PID.

Our next theorem, presented in our paper [5], improves both of the above

theorems. It weakens one of the conditions in Cohn’s theorem and both conditions

in Chinh and Nam’s theorem.

THEOREM 3.3. Let R be an atomic domain which satisfies the PC condition. Then

R is a PID.

One may observe the striking similarities between Cohn’s assertion and the

characterization proved by Chinh and Nam. In both of their hypotheses, there are

two restrictions to the given domain: 1) there is a restriction on the factorization

and 2) a restriction on ideals that are principal. Strictly speaking, their choice of

restrictions on the ideals cannot be compared; however, Cohn allows for a much

more general factorization property than Chinh and Nam.

Our characterization of PIDs is achieved by weakening each of the hypothe-

ses in Chinh and Nam’s result. By doing so, we improve upon Cohn’s assertion

and show that atomic Bézout domains are indeed principal ideal domains. Inspired

by these authors, we introduce a new condition concerning principal ideals of in-

tegral domains and we prove that this new condition is weaker than those utilized

heretofore.

DEFINITION 3.1. We call the condition that every 2-generated ideal of a domain

R is principal the Bézout condition.

It is straightforward to see that every PID is a Bézout domain, but we will

show that the opposite implication is not true. To do so, we will make use of a

specific ring construction R = D+XK[X]. Given a UFD D, a subring of a field K,

the construction R = D+XK[X] is an integral domain consisting of all polynomials

a0 + a1X + a2X
2 + · · ·+ anX

n where a0 ∈ D and a1, a2, . . . , an ∈ K.
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PROPOSITION 3.1 ([8, 9.4, Exercise 5, pages 306-307]). The Bézout condition for

integral domains is strictly weaker than the PID condition. Our provided counter

example is the domain R = Z +XQ[X], a Bézout domain that is not a PID.

Proof. By [8, Corollary 4.13], we know that R is a Bézout domain because Z is a

Bézout domain. To show that R is not a PID, we consider the ideal P = XQ[X] ⊆

R. We will show that P is not principal. In fact, we will show that P is not

finitely generated. Suppose to the contrary, and let P = (f1, f2, . . . , fk) for some

k ≥ 1. Each fi has constant term zero. Let q1,i be the coefficient by X for each

fi, i = 1, 2, . . . , k. Then, any element of P , say g1f1 + g2f2 + · · · + gkfk, has the

coefficient by X a member of the set Zq1,1 + Zq1,2 + · · · + Zq1,k 6= Q, because Q is

not a finitely generated group. Thus, P is not finitely generated, and, therefore, is

not principal. Thus, R is not a PID.

DEFINITION 3.2. We call the PIP condition the condition for integral domains

that every prime ideal is principal.

DEFINITION 3.3. We call the MIP condition the condition for integral domains

that every maximal ideal is principal.

Clearly, the PID condition implies the PIP condition and the PIP condition

implies the MIP condition. However, we can provide more precise relations as well.

PROPOSITION 3.2 ([8, 8.2, Exercise 6, pages 283]). The PID condition for integral

domains is equivalent to the PIP condition.

Proof. The forward direction is clear, so we only need to prove the backward direc-

tion. Suppose that every prime ideal of R is principal, however, suppose also that,

to the contrary, R is not a PID, i.e., that the set J of all ideals of R that are not

principal is nonempty. This set is partially ordered under inclusion. Let φ be a

chain of ideals in J and let J = ∪{I : I ∈ φ}. We claim that J is not principal.
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Suppose to the contrary. Then J = (a) for some a ∈ R. Then a ∈ I for some I ∈ φ.

Hence, J = (a) ⊆ I ⊆ J , so that I = J , hence J is not principal, a contradiction.

Thus, every chain in J has a majorant. Hence, by Zorn’s Lemma, J has a maximal

set.

Let I be a maximal element in J , i.e., an ideal of R which is maximal with

respect to the property of being non-principal. In particular, I is not prime. Hence,

there are a, b ∈ R such that ab ∈ I, but a /∈ I and b /∈ I. Let Ia = (I, a), the ideal

generated by I and a, and let Ib = (I, b) be the ideal generated by I and b. Since

Ia ⊃ Ib, Ia is a principal ideal. Let Ia = (α). Let J = (I : Ia) = {r ∈ R : rIa ⊆ I}.

Then, I ( Ib ⊆ J ; hence (J) = (β) is also a principal ideal. Now, IaJ = (a)(b) =

(αβ) ⊆ I, and since J = (I : Ia), we have that for every x ∈ I, x = sa for some

s ∈ J . Hence, I = IaJ and so I is principal, a contradiction. Thus R is a PID.

PROPOSITION 3.3. The MIP condition for integral domains is strictly weaker

than the PIP condition.

Proof. Consider the Bézout domain R = Z + XQ[X]. We showed in Proposition

3.1 that R is not a PID, hence, by Proposition 3.2, it does not satisfy the PIP con-

dition. Thus, we only need to justify that R satisfies the MIP condition. According

to [6, Theorem 1.3], the maximal ideals of R are of the following types: (1) the

contractions of the maximal ideals of Q[X] distinct from (X), and (2) the ideals

(p) +XQ[X], where p is a prime number. Let m = (f(X)) ∩R be a maximal ideal

of the first type, where f(X) = a0 +a1X+ · · ·+anX
n is irreducible in Q[X]. Then,

let f̃(X) = 1 +
a1
a0
X + · · · + an

a0
Xn, an element of R. Then, m can be written as

m = (f̃(X))R and m is principal. Now, let m = (p)+XQ[X], an ideal of the second

type. Then, m = (p)R. Hence, every maximal ideal of R is principal. Thus, we have

provided a domain that satisfies the MIP condition but not the PIP condition.

Now, we will introduce a new notion for an integral domain R concerning
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proper 2-generated ideals.

DEFINITION 3.4. We call the principal containment condition (PC) the

condition for integral domains that every proper 2-generated ideal is contained in a

proper principal ideal.

It is easy to see that the Bézout condition implies the PC condition. By

recalling Krull’s Theorem, which states that every proper ideal I of a commutative

ring R is contained in a maximal ideal of R, it is also clear that the MIP condition

implies the PC condition. However, asserting that the PC condition is strictly

weaker than the MIP and Bézout conditions requires justification. To do so, we will

need to recall the definition of the localization of a ring at a prime ideal.

DEFINITION 3.5. Given a domain R and a prime ideal p of R, the localization

of R at p, denoted Rp, is the set of elements
{m
n

: m,n ∈ R and n /∈ p
}

. (Rp is a

local ring.)

Note, that, because every maximal ideal is prime, we may consider the lo-

calization of a domain R at a maximal ideal m.

PROPOSITION 3.4. The PC condition is strictly weaker than the MIP condition.

Proof. We will provide an example of a domain that satisfies the PC condition but

not the MIP condition. We will begin with the monoid ring R = F [X;Q+]. Let

m be the maximal ideal of R consisting of all the polynomials in R whose constant

term is zero. Consider, then, the local ring D = Rm. Note that every non-zero

element of D has the form uXα, where u is a unit in D and α ∈ Q+. Indeed, every

nonzero element of D is of the form:

f =
a0 + a1X

α1 + · · ·+ anX
αn

b0 + b1Xβ1 + · · ·+ bmXβm
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where b0 is nonzero, 0 < α1 < α2 < · · · < αn and 0 < b0 < · · · < bm. If a0 6= 0, then

f is a unit. If a0 = a1 = · · · = ai−1 = 0, i ≥ 1, then we can write

f =
ai + ai+1X

αi+1−αi + · · ·+ anX
αn−αi

b0 + b1Xβ1 + · · ·+ bmXβm
·Xαi ,

and so f can be written in the form uXα. Now, the maximal ideal mRm of D

consists of all uXα where α > 0 and is not finitely generated. To show that mRm

is not finitely generated, we need only suppose that it can be finitely generated,

say mRm = (u1X
γ1 , . . . , ukX

γk), where k ≥ 1, r1, . . . , rk > 0, and ui is a unit for

i = 1, 2, . . . , k. Suppose that γ1 is the least exponent. Because (u1X
γ1 , . . . , ukX

γk)

generates mRm, then, there exists g1, g2, . . . , gk ∈ D such that:

X
γ1
2 = g1(u1X

γ1) + · · ·+ gk(ukX
γk)

= X
γ1
2 (g1(u1X

γ1
2 ) + · · ·+ gk(ukX

γk
2 )),

and by cancellation, we get that 1 ∈ mRm, an impossibility. Thus, D does not

satisfy the MIP condition.

Now, we show that D does satisfy the PC condition. For any two elements

uXα, vXβ ∈ D, α ≤ β, we have that uXα|vXβ and so (uXα, vXβ), an arbitrary

proper 2-generated ideal, is contained in (vXβ), a proper principal ideal.

PROPOSITION 3.5. The PC condition is strictly weaker than the Bézout condition.

Proof. We will provide an example of a domain that satisfies the PC condition but

not the Bézout condition. First, consider the subring R of R[X;Q+], consisting of

all the polynomial of the form: f(X) = a0 + a1X
α1 + · · · + anX

αn where a0 ∈ Q,

a1, . . . , an ∈ R, and 0 < α1 < · · · < αn. Let m be the maximal ideal of R consisting

of all the polynomials in R whose constant term is 0. Consider the local ring

D = Rm. The units of D are of the form

a0 + a1X
α1 + · · ·+ amX

αm

b0 + b1Xβ1 + · · ·+ bnXβn
,
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where a0 and b0 are nonzero rational numbers and the ai, bj ∈ R for all i =

1, 2, . . . ,m and j = 1, 2, . . . , n. Similar to Proposition 3.4, every nonzero element of

D can be written as uaXα where u is a unit in D, α ∈ Q+, and a is a non-zero real

number. Note, if α = 0, then a is rational. Let I = (aXα, bXb), 0 < α ≤ β, be a

proper 2-generated ideal of D, and let γ be a rational number such that 0 < γ < α.

Then, since Xγ divides both aXα and bXβ, I ⊆ (Xγ); hence D satisfies the PC

condition.

We now show that D does not satisfy the Bézout condition. We accomplish

that by considering the 2-generated ideal J = (X,
√

2X) and supposing that there

exists some element aXα ∈ D such that J = (aXα). Then, α must be equal to one

and from aX|X, we get that for some rational element b ∈ D, (aX)(b) = X, hence,

ab = 1 and a must be rational. However, it cannot then be true that aX divides
√

2X, a contradiction. Thus, D does not satisfy the PC condition. Therefore, the

PC condition is strictly weaker than the Bézout condition.

Now, with these relations proved, we present the implication diagram in the

figure on the next page.

Figure 3.1: Relations of Integral Domains and Domain Properties

atomic domain

UFD

PID

PC: every proper 2-generated ideal

contained in a proper principal ideal

Bézout: every 2-generated

ideal principal

MIP: every maximal

ideal principal

PID: every

ideal principal

PIP: every prime

ideal principal

20



One may notice that there is only one equivalence in the diagram, the rest

are strict implications. The higher one goes on each side of the diagram, the more

general the statement one obtains. For example, factorization properties in atomic

domains are weaker than those of UFD and PID. Also, the PC condition is more

general than the Bézout and MIP conditions. Thus, to improve upon the results

of Cohn and Chinh and Nam we will choose the most general conditions available;

that is, the atomic and PC conditions. Now, we present our characterization of

PIDs.

THEOREM 3.4. Let R be an atomic domain which satisfies the PC condition. Then

R is a PID.

Proof. It is enought to show that every prime ideal is principal. Let P 6= 0 be a

prime ideal of R. Then, there exists a nonzero nonunit element x ∈ P , and since R

is atomic, we may factor x into a finite number of atoms:

x = p1p2 . . . pk.

where k ≥ 1. Because P is a prime ideal, for some i ∈ {1, 2, . . . , k}, pi ∈ P .

We will show that P is, in fact, equal to (pi). Take y to be an element of P and

consider the 2-generated ideal (pi, y). Since (pi, y) is contained in P , it must be a

proper ideal of R; thus, by the PC condition, there is some element, say r, such

that (pi, y) ⊆ (r) ⊂ R. Therefore, r must divide both pi and y; because pi is an

atom, r ∼ pi. Thus, pi|y and P = (pi).

There we have a simple new characterization of PIDs. Take note that much

of the labor was spent in proving that the PC condition was indeed strictly weaker

than the Bézout and MIP conditions. In finding appropriate counter examples, we

made use of specific monoid domains. These examples, together with a theorem by

Daileda in [9], provided the proper impetus for our investigation into the atomicity
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and AP property in monoid domains which we discuss in the following chapter.

There, we will introduce Daileda’s theorem and improve upon our theory of monoid

domains. (Remark: It happens that the PC condition implies the AP property;

however, the converse does not hold. In the final chapter, we present two diagrams

with all relevant implications from our work.)
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CHAPTER 4

THE ATOMICITY AND AP PROPERTY OF F [X;M ]

In the previous chapter, we discussed the context under which monoid do-

mains initially became appealing in our study. In this chapter, and throughout the

remainder of this dissertation, we will analyze monoid domains and the monoids

which they are associated to uncovering sufficient conditions for the existence of

ring-theoretic properties of particular interest, more specifically, the atomic and AP

properties.

In 2008 Daileda showed in [7] that F [X;M ], where M = (Q+,+), is AP. Also,

it is common knowledge that the integral domain F [X], which is, in fact, a monoid

domain and can be written as F [X;N0], is a UFD, i.e., an atomic AP domain.

So it was natural to ask the question: for which submonoids M of (Q+,+) is the

monoid domain F [X;M ] AP? Moreover, what about atomicity? These questions

are particular instances of Gilmer’s “generic question” (QE) from [12]: if R is a

ring, Γ a monoid and E some ring-theoretic propery, under what conditions does

the semigroup ring R[X; Γ] have the property E?

We will begin our analysis with some simple, yet quite usefull, notions and

results.

4.1 Preliminary Notions and Results

PROPOSITION 4.1. If f(X) is a divisor in F [X;M ] of an element Xα, α ∈ M ,

then f(X) = aXβ with a ∈ F , β ∈M , and α− β ∈M .
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Proof. Let f(X) = a1X
α1 + · · · + anX

αn ∈ F [X;M ], where n ≥ 1 and α1 < α2 <

· · · < αn. Since f(X)|Xα, there exists an element g(X) = b1X
β1 + · · · + bmX

βm ∈

F [X;M ], where m ≥ 1 and β1 < β2 < · · · < βm, such that f(X)g(X) = Xα. Hence,

m = 1, n = 1, g(X) = b1X
β1 with a1b1 = 1 and α1 + β1 = α. This implies the

statement.

DEFINITION 4.1. We say that a fraction
m

n
, m ∈ N0, n ∈ N, is (written) in

reduced form if gcd(m,n)=1.

EXAMPLE 4.1. 1)
0

1
,

3

5
, 2 =

2

1
, and

17

8
are all written in reduced form;

2)
0

3
,

3

15
are not written in reduced form, however.

LEMMA 4.1 (Reduced Form Lemma). Let
k

l
,
m

n
∈ Q+ be two fractions in reduced

form. Then,

k

l
=
m

n
⇐⇒ k = m and l = n.

Proof. The equality
k

l
=
m

n
is equivalent with kn = ml. Suppose that for some

prime p, 0 ≤ β < α are such that pα is the highest power of p as a factor of l and

pβ is the highest power of p as a factor of n. By writing l = pαl′, m = pβn′, we have

kn′pβ = ml′pα, hence kn′ = ml′pα−β, so that pα−β | kn′, a contradiction. Similarly,

if we suppose that 0 ≤ β < α are such that pα is the highest power of p as a factor

of n and pβ is the highest power of p as a factor of l, we arrive at a contradiction.

It follows then that l = n, and this implies that m = n.

Having reviewed these definitions and results, we begin our study of monoid

domains F [X;M ] by first analyzing the submonoids M of (Q+,+). We do this by

considering another familiar notion, that of, a monoid’s generators.

4.2 Essential Generators
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Let A ⊆ Q+ and let A be the (nonempty) set of all submonoids of (Q+,+)

that contain A. Now, consider the set

M =
⋂
Ai∈A

Ai.

It is not difficult to show that M is a monoid, in fact, it is a submonoid of (Q+,+).

Indeed: each Ai contains 0, therefore, 0 ∈M ; for elements a, b ∈M , a+ b ∈ Ai for

all i, and, hence, a+ b ∈M ; finally, the operation + maintains associativity seeing

that it is induced from (Q+,+). Furthermore, it happens that M is the smallest

submonoid of (Q+,+) containing A. We say that M is the submonoid generated by

A and we write M = 〈A〉. The elements of 〈A〉 are of the form:

k1a1 + k2a2 + · · ·+ knan

where n ∈ N, ai ∈ A, ki ∈ N0 ∀ i = 1, 2, . . . , n. We call the elements of A generators

of M , and if a monoid M can be generated by a finite set A, then we say that M is

finitely generated. Otherwise, M is infinitely generated. Following are examples of

submonoids of (Q+,+) generated by finite and infinite sets.

EXAMPLE 4.2. (1) N0 = 〈1〉, and is, thus, finitely generated;

(2) {0, 4, 6, 8, 10, . . . } = 〈4, 6〉, and is, thus, finitely generated;

(3) Q+ is infinitely generated.

4.2.1 Essential Generators and the Monoid

All of the previous notions are well known. We now introduce a new no-

tion that will aid in our investigation of monoid domains F [X;M ], where M is a

submonoid of (Q+,+).

DEFINITION 4.2. An element a ∈ M is called an essential generator of M if

〈M \ {a}〉 6= M .
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A quick and useful deduction from the definition is that if a is an essential

generator of a monoid M , then a cannot be a member of 〈M \ {a}〉. Therefore, if

a is not an essential generator, a ∈ 〈M \ {a}〉, i.e., for a natural number n, there

exist nonnegative integers k1, k2, . . . , kn and elements of the monoid, x1, x2, . . . , xn,

all different than a, such that a may be written as the sum

a = k1x1 + k2x2 + · · ·+ knxn.

This implies that there exists elements α, β ∈ M where a = α + β. These implica-

tions prove particularly useful in later proofs. Below, we provide several examples

of submonoids of (Q+,+) and their essential generators (if they exist) and seve-

ral propositions revealing the relationships between essential generators of M and

generating sets of M .

EXAMPLE 4.3. (1) M = N0 = 〈1〉 is a finitely generated monoid and 1 is an

essential generator of M ;

(2) M = 〈2, 5〉 is a finitely generated monoid and both 2 and 5 are essential gene-

rators of M ;

(3) M = Q+ is an infinitely generated monoid with no essential generators;

(4) M =

〈
1

2
,

1

22
,

1

23
, . . .

〉
is an infinitely generated monoid with no essential gene-

rators;

(5) M =

〈
1

2
,

1

22
,

1

23
, . . . ;

1

5

〉
is an infinitely generated monoid with one essential

generator, namely
1

5
;

(6) M =

〈
1

2
,
1

3
,
1

5
, . . .

〉
is an infinitely generated monoid and each element

1

2
,
1

3
,
1

5
, . . .

is an essential generator;

(7) M = 〈0〉 is a finitely generated monoid with no essential generators since

M = 〈∅〉.
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PROPOSITION 4.2. Let a ∈M be an essential generator. If A ⊆M is a generating

set of M , then a ∈ A.

Proof. Suppose to the contrary; that is, a /∈ A. Since 〈A〉 = M , a can be written

as the sum

a = k1a1 + k2a2 + · · ·+ knan,

where n ≥ 1 is an integer, k1, k2, . . . , kn ∈ N0, and a1, a2, . . . , an ∈ A. However,

because A ⊂ M \ {a}, a is then a member of 〈M \ {a}〉, a contradiction since a is

an essential generator.

PROPOSITION 4.3. Let A be a generating set of M and let a ∈ A such that

〈A \ {a}〉 6= M . Then a is an essential generator of M .

Proof. Suppose to the contrary, that is, suppose that a is not an essential generator

of M , i.e., a ∈ 〈M \ {a}〉. Then, a can be written as the sum

a = k1x1 + k2x2 + · · ·+ knxn,

where n ≥ 1 is an integer, k1, k2, . . . , kn ∈ N0, and x1, x2, . . . , xn ∈M \{a}. At least

one of the elements x1, x2, . . . , xn cannot be generated by the elements of A \ {a};

otherwise, a ∈ 〈A \ {a}〉, a contradiction. Thus, for some i ∈ {1, 2, . . . , n}, we will

suppose that xi cannot be written as a linear combination of elements from A\{a}.

We may assume that ki > 0. Note also that if all kjxj (j 6= i) are 0, then ki ≥ 2

(otherwise xi = a). Hence,

xi = l1a1 + l2a2 + · · ·+ lmam + la,

where m ≥ 1 is an integer, l1, l2, . . . , lm ∈ N0, l ∈ N, and a1, a2, . . . , am ∈ A. By
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substitution, we then write

a = k1x1 + k2x2 + · · ·+ kixi + · · ·+ knxn

= k1x1 + k2x2 + · · ·+ ki(l1a1 + l2a2 + · · ·+ lmam + la) + · · ·+ knxn

= kila+
[
k1x1 + k2x2 + · · ·+ ki(l1a1 + l2a2 + · · ·+ lmam) + ki+1xi+1 + . . . knxn

]
,

and since xi 6= a, we have a false equality. The right-hand side of the equation is

greater than the left-hand side as either kil ≥ 2 or at least one of kjxj (j 6= i) is

6= 0.

PROPOSITION 4.4. If M = 〈A〉, then we may remove from A any finite set

consisting of nonessential generators of M and the set A′ obtained in such a way

still generates M .

Proof. Let n ∈ N and A\A′ = {a1, a2, . . . , an}. We will show by finite induction that

we can remove the elements a1, a2, . . . , an from A and still have a set which generates

M . The contrapositive of Proposition 4.3 asserts that 〈A \ {a1}〉 = M . Suppose

that for k > 1, k < n, 〈A \ {a1, a2, . . . , ak}〉 = M . Then, again, by utilizing the

contrapositive of Proposition 4.3, we have that 〈(A\{a1, a2, . . . , ak})\{ak+1}〉 = M ,

i.e., 〈A \ {a1, a2, . . . , ak+1}〉 = M . Thus, by induction, 〈A \ {a1, a2, . . . , an}〉 =

M .

PROPOSITION 4.5. Let M and M ′ be two monoids, µ : M → M ′ a monoid

isomorphism, and let a ∈ M . Then a is an essential generator of M if and only if

µ(a) is an essential generator of M ′.

Proof. It is enough to prove that if a is an essential generator of M , then µ(a) is an

essential generator of M ′ as µ−1 is also an isomorphism of monoids. Suppose to the

contrary; then, µ(a) is an element of the set generated by M ′ \ {µ(a)}. Thus, for

n ≥ 1, a natural number, there are nonnegative integers k1, k2, . . . , kn and elements
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of M ′ \ {µ(a)}, x1, x2, . . . , xn, such that

µ(a) = k1x1 + k2x2 + · · ·+ knxn.

Hence,

µ−1
(
µ(a)

)
= µ−1

(
k1x1 + k2x2 + · · ·+ knxn

)
,

i.e.,

a = µ−1(k1x1) + µ−1(k2x2) + · · ·+ µ−1(knxn)

= k1µ
−1(x1) + k2µ

−1(x2) + · · ·+ knµ
−1(xn),

where µ−1(x1), µ
−1(x2), . . . , µ

−1(xn) ∈M\{a}. Thus, a ∈ 〈M\{a}〉, a contradiction

since a is an essential generator.

In order to facilitate instruction, we have provided an examples below.

EXAMPLE 4.4. Let M be a numerical monoid. That is, define M to be generated

by the set {x1, x2, . . . , xk}, where x1, x2, . . . , xk ∈ N and gcd(x1, x2, . . . , xk) = 1.

An example of such a monoid is M = 〈2, 3〉 = {0, 2, 3, 4, 5, 6, 7, . . . }. Its associ-

ated monoid domain F [X;M ] is atomic since F [X;M ] is a subring of F [X] which

contains F . However, it is easy to show that F [X;M ] is not AP. Indeed, con-

sider X2 and X3. We have already shown that any divisor of X2 must be of the

form f(X) = a1X
β1 where a1 ∈ F and β1 ∈ M . Since 1 /∈ M , it follows that

X /∈ F [X;M ]. Hence, β1 = 0 or β1 = 2, and so X2 is irreducible. Similarly, if

g(X) = a2X
β2 divides X3 in F [X;M ], it must be that β2 = 0 or β2 = 3, and,

therefore, X3 is irreducible, as well. Notice that the element X6 ∈ F [X;M ] may

be factored in two ways: 1) X6 = X2X2X2 and 2) X6 = X3X3. Thus, X2|X3X3,

and since we know that X3 is irreducible, X2 - X3. Hence, X2 is not prime and

F [X;M ] is not an AP domain.
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Now, 2 and 3 are essential generators of M . Under the monoid isomorphism

µ2 : M → 2M , the elements 4 and 6 are essential generators of the monoid 〈4, 6〉.

Moreover, the monoid domain F [X;M ] is isomorphic to F [X; 2M ] via the ring

isomorphism φ2 : F [X;M ]→ F [X; 2M ] defined by

φ2(a0 + a1X
α1 + · · ·+ anX

αn) = a0 + a1X
µ2(α1) + · · ·+ anX

µ2(α2).

Therefore, F [X; 2M ] is also an atomic non-AP domain. Note, however, that 2M

is not a numerical monoid since gcd(4, 6) 6= 1.

We may arrive at a similar conclusion for any monoid of the form τM ,

where τ ∈ Q \ {0}, since µτ : M → τM is a monoid ismorphism. For example, the

monoid

〈
1,

3

2

〉
is also an atomic non-AP domain, because µ1/2 is an isomorphism.

4.2.2 Essential Generators and the Monoid Domain

At this point, one may wonder why we are lending significant attention to

particular elements of the monoid rather than to the elements of the associated

monoid domain F [X;M ]. The purpose of our investigation will become clear as

we explore the implications that essential generators of M have on the irreducible

elements of F [X;M ]. We will see that not every generator is equal.

PROPOSITION 4.6. Suppose that a is an essential generator of the monoid M and

M 6= 〈a〉. Then Xa is an irreducible non-prime element of F [X;M ].

Proof. Suppose there is an element b ∈M such that 0 < b < a. Let a =
p

q
and

m

n
.

Then

aq = p, nb = m;

hence,

a(mq) = pm,
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b(np) = pm.

Hence,

Xa | Xa ·Xa · · ·Xa︸ ︷︷ ︸
mq times

= Xpm = Xb ·Xb · · ·Xb︸ ︷︷ ︸
np times

,

however, Xa - Xb. Hence, Xa is not prime.

The same argument holds if we don’t have the condition 0 < b < a, but the

condition that b is another (different) essential generator instead.

The irreducibility of Xa follows from the fact that otherwise the relation

Xa = Xb ·Xc, b 6= 0,c 6= 0, would imply a = b + c, which is not possible since a is

an essential generator.

It remains to consider the option that a is the smallest non-zero element of M

and the only essential generator ofM . Consider the intervals [a, 2a), [2a, 3a), [3a, 4a), . . . ,

and let (ma, (m + 1)a) be the first interval in which we have an element, say b, of

M \ 〈a〉. Then, b = b1 + b2, where b1, b2 6= 0, and at least one of them, say b1, is

from M \ 〈a〉. Then, b1 ∈ (ma, (m+ 1)a), which implies b1 ∈ (0, a), a contradiction.

Thus, this option case cannot occur.

PROPOSITION 4.7. The irreducible elements of F [X;M ] of the form Xa, a ∈M ,

are precisely the elements Xa where a is an essential generator of M .

Proof. Let S be the set of all elements Xa ∈ F [X;M ] such that Xa is irreducible.

We will show that for all Xa ∈ S, a is an essential generator of M . Suppose there

exists some Xa′ ∈ S such that a′ ∈ M is not an essential generator. Then, there

exists α, β ∈ M such that a′ = α + β, α, β 6= 0. Hence, we may factor Xa into

two nonzero, nonunit factors, namely, Xa = Xα · Xβ, a contradiction. Therefore,

for every Xa ∈ S, a is an essential generator of M . The opposite direction follows

from Proposition 4.6 when M 6= 〈a〉 and it is clear when M = 〈a〉.

PROPOSITION 4.8. If M 6= {0} cannot be generated by essential generators, then

F [X;M ] is not atomic.
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Proof. Suppose to the contrary, that is, suppose that F [X;M ] is atomic. Let A be

the set of all essential generators of M . Since M 6= 〈A〉, there exists an element

a ∈M \ 〈A〉. Because F [X;M ] is atomic, Xa admits at least one factorization into

a finite number (≥ 1) of atoms, say,

Xa = f1(X)f2(X) . . . fn(X),

and from Proposition 4.7 we know that for each i = 1, 2, . . . , n, fi(X) is, up to

associates, the monomial Xαi ∈ F [X;M ] where αi ∈ M is an essential generator.

Hence,

Xa = Xα1Xα2 · · ·Xαn ,

so that a = α1 + α2 + · · ·+ αn, i.e., a ∈ 〈A〉, a contradiction.

The natural question to ask here is whether the converse of Proposition 4.8

holds. That is, if a monoid M can be generated by essential generators, is the

associated monoid domain F [X;M ] necessarily atomic? As we seek to answer this

question, we will begin by analyzing a particular case where the implication holds.

4.3 The Monoid M =

〈
1

2
,
1

3
,
1

5
, . . .

〉
In this section, we will assume thatM always denotes the monoid

〈
1

2
,
1

3
,
1

5
, . . .

〉
.

In our analysis of M , we discover useful tools and develop an intuition that aid in

further generalizations. We begin by supplying a unique representation for each

element of M . Then, we will find essential generators of M by utilizing the unique

representations of its elements.

LEMMA 4.2. Every element α ∈M can be uniquely written in the form

α = k +
a1
p1

+
a2
p2

+ · · ·+ ar
pr
, (4.1)
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where k ∈ N0, r ≥ 0 an integer, and p1, p2, p3, . . . , pr are distinct primes and

a1, a2, . . . , ar are integers such that 1 ≤ ai < pi for all i = 1, 2, . . . , r. We call

equation (4.1) the unique representation of α. (We call k the integer part of

α and
a1
p1

+
a2
p2

+ · · ·+ ar
pr

the fractional part of α.)

Proof. Let α ∈M . Then

α =
bi1
pi1

+
bi2
pi2

+
bi3
pi3

+ · · ·+ bin
pin

for some distinct primes pi1 , pi2 , . . . , pir and integers bi1 , bi2 , . . . , bir ≥ 1. For all

j = 1, 2, . . . , r,
bij
pij

can be written as

bij
pij

= kij +
aij
pij

where kij ≥ 0 is an integer and 0 ≤ aij < pij . By substituting k for the sum

ki1 + ki2 + · · · + kir and relabeling the denominators of each fraction
aij
pij

, in which

aij ≥ 1, as p1, p2, . . . , pr and each respective numerator as a1, a2, . . . , ar, we get

α = k +
a1
p1

+
a2
p2

+ · · ·+ ar
pr
.

Next, we will show that this representation is, in fact, unique. If we suppose

the contrary, then

α = k +
a1
p1

+
a2
p2

+ · · ·+ ar
pr

= l +
b1
q1

+
b2
q2

+ · · ·+ bs
qs

are two representations of α of the form (4.1). By combining each side into one

fraction, we get

kp1 · · · pr + a1p̂1 · · · pr + · · ·+ arp1 · · · p̂r
p1 · · · pr

=
lq1 · · · qs + b1q̂1 · · · qs + · · ·+ bsq1 · · · q̂s

q1 · · · qr

where each fraction is in reduced form (with regard to notation, p̂i and q̂jrepresents

the absence of the respective prime in the product from which it comes). Now, by
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employing the Reduced Form Lemma, we have that {p1, p2, . . . , pr} = {q1, q2, . . . , qs}.

Thus r = s, and after relabeling we have

k +
a1
p1

+
a2
p2

+ · · ·+ ar
pr

= l +
b1
p1

+
b2
p2

+ · · ·+ br
pr
.

Now, if for some i ∈ {1, 2, . . . , r}, ai > bi, we write:

k +
a1
p1

+ · · ·+ ai − b1
pi

+ · · ·+ ar
pr

= l +
b1
p1

+
b2
p2

+ · · ·+ bi−1
pi−1

+
bi+1

pi+1

+ · · ·+ br
pr

and so the left-hand side of the equation has a term with denominator pi while

the right-hand side does not, which is not possible since the left hand side and the

right hand side, when each is written as one fraction in reduced form, would have

different denominators of those reduced forms. Hence, for all i = 1, 2, . . . , r, ai = bi,

and, thus, k = l. Therefore, the representation of α of the form (4.1) is unique.

LEMMA 4.3. Let α, β, γ ∈M be such that α = β+ γ. Then the sum of the integer

parts of β and γ is less than or equal to the integer part of α. In particular, the

integer parts of β and γ are less than or equal to the integer part of α.

Proof. Since α, β, and γ are elements of M , each has a unique representation:

α = kα +
a1
p1

+ · · ·+ al
pl

;

β = kβ +
b1
q1

+ · · ·+ bm
qm

;

γ = kγ +
c1
r1

+ · · ·+ cn
rn
.

Then, by substitution α = β + γ becomes:

kα +
a1
p1

+ · · ·+ al
pl

= kβ +
b1
q1

+ · · ·+ bm
qm

+ kγ +
c1
r1

+ · · ·+ cn
rn
.

If for some i ∈ {1, 2, . . . ,m}, there exists j ∈ {1, 2, . . . , n} such that qi = rj, we

combine the fractions by writing
bi + cj
qi

. We then write:

bi + cj
qi

= kij +
dij
qi

34



where 0 ≤ dij < qi and kij ∈ {0, 1}. If dij = 0, we omit the fraction
dij
qi

. After

writing any applicable additions and omitions and after adding each kij to kβ + kγ,

the right-hand side of the equation is in unique representation form. Thus, when

comparing integer parts of the left-hand side and right-hand side of the equation,

we get:

kα = kβ + kγ +
∑

kij .

Hence, kα ≥ kβ + kγ, and, in particular, kα ≥ kβ and kα ≥ kγ.

LEMMA 4.4. The element
1

p
∈ M , p prime, cannot be written as

1

p
= α + β for

any α, β ∈M \ {0}.

Proof. Suppose to the contrary, i.e., that for some prime number p we have
1

p
=

α + β,where α, β ∈ M \ {0}. From Lemma 4.3, we know that the integer part of

both α and β is zero; thus, their unique representations have the form

α =
a1
p1

+
a2
p2

+ · · ·+ an
pn
,

β =
b1
q1

+
b2
q2

+ · · ·+ bm
qm
.

Clearly, for all i = 1, 2, . . . , n and j = 1, 2, . . . ,m, neither pi nor qj can be equal to p.

Otherwise, the right-hand side of the equation would be greater than the left-hand

side of the equation. By substitution, the equation
1

p
= α + β becomes

1

p
=
a1
p1

+
a2
p2

+ · · ·+ an
pn

+
b1
q1

+
b2
q2

+ · · ·+ bm
qm
.

If pi = qj, we combine
ai
pi

+
bj
qj

into
ai + bj
pi

. Note that we have ai+bj < pi, otherwise

we have a contradiction. After these combinings, on the right hand side we have

a sum of fractions with different prime denominators, with all of the denominators

p1, p2, . . . , pn appearing there. Then we add the fractions on the right hand side,

using the common denominator p1p2 · · · pnqi1 · · · qir , where qi1 , . . . , qir (r ≥ 0) are
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those of the elements q1, . . . , qn that were not equal to any pi. We get then

1

p
=

k

p1p2 · · · pnqi1 · · · qir

where the fractions on each side are in reduced forms, a contradiction.

Thus, we see that each element
1

p
∈M , p is prime, is an essential generator

of M , i.e., M is an infinitely generated monoid whose every generator is essen-

tial. Clearly, these are then precisely all the essential generators of M . This fact,

together with Proposition 4.7, gives us a particularly useful lemma for describing

certain irreducible elements of the monoid domain F [X;M ], and, hence, factoriza-

tion processes of polynomials in the same.

LEMMA 4.5. The irreducible elements of F [X;M ] of the form Xα, α ∈ M , are

precisely the elements X1/p, where p is a prime number.

Proof. Follows from above.

Recall how we describe a factorization process of a nonzero nonunit element

of an integral domain. Let R be an integral domain and x ∈ R a nonzero nonunit.

We describe a factorization process of x. If x is irreducible, we stop. If not, we

decompose it as x = x0x1, where both x0 and x1 are nonzero nonunits. If both

x0, x1 are irreducible, we stop. If not, we take the first from the left of the elements

x0, x1 which is reducible and decompose it as a product of two nonzero nonunits.

Say x0 is reducible. We decompose it: x0 = x0,0x0,1. Now we have x = x0,0x0,1x1.

If all of the x0,0, x0,1, x1 are irreducible, we stop. If not, we take the first from the

left of the elements x0,0, x0,1, x1 which is reducible and decompose it as a product

of two nonzero nonunits. Say x0,1 is reducible: x0,1 = x0,1,0x0,1,1. Now we have

x = x0,0x0,1,0x0,1,1x1, etc. We call this process a factorization process of x. If it

stops after finitely many steps, we say that this is a finite factorization process of

x. If it never stops, we say that this is an infinite factorization process of x.
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EXAMPLE 4.5. If R is a subring of the domain F [X], F a field, and R contains

F , then R is atomic. Indeed, by the degree argument any element f ∈ R of degree

n ≥ 1 can be decomposed into at most n irreducible factors, so every factorization

process of f is finite. (The elements of F are precisely the units of R.)

LEMMA 4.6. If the unique representation of α ∈M is α =
a1
p1

+ · · ·+ an
pn

, then

Xα = X1/p1 · · ·X1/p1︸ ︷︷ ︸
a1

· · · · ·X1/pn · · ·X1/pn︸ ︷︷ ︸
an

is, up to associates, the only decomposition of Xα into irreducibles. In particular,

any factorization process of Xα has a (the same) finite number of steps.

Proof. By Proposition 4.1, we know that any divisor of Xα must be of the form

aXβ, where a ∈ F , β ∈ M , and α − β ∈ M . Since α ∈ M , it may be uniquely

written in the form:

α =
a1
p1

+ · · ·+ an
pn
.

Thus, every factorization process of Xα will end in finitely many steps and be

factored as:

Xα = X1/p1 · · ·X1/p1︸ ︷︷ ︸
a1

· · · · ·X1/pn · · ·X1/pn︸ ︷︷ ︸
an

.

LEMMA 4.7. For every α ∈M \ {0}, Xα has every factorization process finite.

Proof. The proof is by induction on the integer part of α. If the integer part

of α is 0, the statement follows from Lemma 4.6. Suppose that for every α ∈

M \ {0} with integer part < k all factorization processes of Xα are finite. Let

α = k +
a1
p1

+ · · ·+ ar
pr

be the unique representation of α. Let Xα = Xβ · Xγ be

the first step of a fixed factorization process of Xα. If the integer parts of both

β, γ are < k, then both β, γ have all factorization processes finite by the inductive

hypothesis and so the factorization process of α is finite. Suppose that one of β, γ
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has the integer part equal to k and (by Lemma 4.3) the other one to 0. We will

assume that the integer part of β is k (it is not a big difference if we assume that

γ has the integer part k. It follows that, after relabeling,

β = k +
a1
p1

+ · · ·+ am
pm

+
bm+1

pm+1

+ · · ·+ bn
pn
,

γ =
cm+1

pm+1

+ · · ·+ cn
pn

+
an+1

pn+1

+ · · ·+ ar
pr
,

where m ≥ 0, n ≥ 0, bi+ ci = ai (i = m+1, . . . , n). Since γ has at least one addend

in its unique representation, the fractional part of the unique representation of β

is “smaller” than the fractional part of the unique representation of α. The next

step in the factorization process of Xα would be a factorization of Xβ, namely

Xβ = Xδ ·Xε. If both δ and ε have integer part < k, they have finite factorization

processes and since Xγ also has a finite factorization process, then the factorization

process of Xα = XδXεXγ is finite. If δ has the integer part equal to k (similarly if

ε has the integer part equal to k), then the fractional part of δ would be “smaller”

than the fractional part of β. There can be only finitely many steps in which the

integer part of one of the factors stays k and the fractional part is “smaller” and

“smaller”, so after finitely many steps the integer parts of both factors become < k

and we can apply the inductive hypothesis.

THEOREM 4.1. Let M =

〈
1

2
,
1

3
,
1

5
, . . .

〉
. Then the associated monoid domain

F [X;M ] is atomic and non-AP. Moreover, no nonzero nonunit element of F [X;M ]

has an infinite factorization process.

Proof. Let f ∈ F [X;M ] be a nonzero nonunit element. For atomicity of F [X;M ],

we must show that f has at least one finite factorization process. We will show, in

fact, that f has every factorization process finite. If we suppose that f actually has

some infinite factorization process, then we may assume that it has the following

form:

f = f0f1 = f0f1,0f1,1 = f0f1,0f1,1,0f1,1,1 = . . . ,
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after relabeling factors after each step. Denote the leading monomials of f , f0, f1, f1,0, f1,1, . . .

by Xα, Xα0 , Xα1 , Xα1,0 , Xα1,1 , . . . . Then

Xα = Xα0Xα1 = Xα0Xα1,0Xα1,1 = Xα0Xα1,0Xα1,1,0Xα1,1,1 = . . .

is an infinite factorization process of Xα, which is a contradiction by Lemma 4.6.

This is impossible, because by Lemma 4.7, Xαn must have every factorization pro-

cess finite. F [X;M ] is not AP since

X1/2 | X1/2X1/2 = X = X1/3X1/3X1/3

, however, X1/2 - X1/3. (X1/2 is irreducible by Lemma 4.5.)

We will now investigate the atomicity and the AP property of monoid do-

mains F [X;M ] associated to submonoids M of (Q+,+). We will first consider

the monoid domains F [X;M ] associated to finitely generated submonoids M of

(Q+,+).

4.4 The Case of Finitely Generated Submonoids of (Q+,+)

In this section we asume that M is a submonoid of (Q+,+).

PROPOSITION 4.9. If M 6= {0} is a finitely generated monoid, then M has essen-

tial generators a1, . . . , an such that M = 〈a1, . . . , an〉, i.e., every finitely generated

monoid can be generated by essential generators.

Proof. Let A = {b1, . . . , bm} be a finite generating set for M and suppose that

b1 < · · · < bm. Obviously b1 cannot be generated by {b2, . . . , bm}, hence b1 is an

essential generator for M (by Proposition 4.3). Let a1 = b1. Among the elements

b2, . . . , bm we find the first one from the left which cannot be generated by {a1},

say bi. That element cannot be generated by {a1, bi+1, . . . , bm}, hence it cannot be

generated by {b1, . . . , bi−1, bi+1, . . . , bm}. Hence it is an essential generator of M (by
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Proposition 4.3). Denote a2 = bi. Among the elements bi+1, bi+2, . . . , bm} we find

the first one from the left which cannot be generated by {a1, a2}, say bj. That ele-

ment cannot be generated by {a1, a2, bj+1, . . . , bm}, hence it cannot be generated by

{b1, . . . , bj−1, bj+1, . . . , bm}. Hence it is an essential generator of M (by Proposition

4.3). Continuing this process we get the elements a1, . . . , an such that each of them

is an essential generator of M and all of the elements b1, . . . , bm can be generated

by {a1, . . . , an}. Hence 〈a1, . . . , an〉 = M .

THEOREM 4.2. Let M be a finitely generated monoid. Then precisely one of the

following situations occurs:

(i) M = {0}; then F [X;M ] = F , a field;

(ii) M = 〈a〉, a 6= 0; then F [X;M ] ∼= F [X], a Euclidean domain;

(iii) M = 〈a1, . . . , an〉, n ≥ 2, all ai essential generators of M ; then F [X;M ] is an

atomic non-AP domain.

Proof. The case (i) is clear. The case (ii) follows from Proposition 4.3 and from

what we have previously stated about monoid isomorphism and their associated ring

homomorphisms. By Proposition 4.9, we the case (iii) is the only remaining case.

It follows from Proposition 4.6 that, in this case, F [X;M ] is non-AP. To show that

F [X;M ] is also atomic, we use the monoid isomorphism µτ : M = 〈a1, . . . , an〉 →

M ′ = 〈τa1, . . . , τan〉 ⊆ (N0,+). Since F [X;M ] is a subring of F [X], containing

F , then by Example 4.5, it is atomic. Hence, F [X;M ] is atomic too (since it is

isomorphic to F [X;M ′]).

4.5 The Case of Infinitely Generated Submonoids of (Q+,+)

In this section we assume that M is a submonoid of (Q+,+).
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PROPOSITION 4.10. Let M 6= {0} and suppose M cannot be generated by essential

generators. Then every generating set of M contains infinitely many nonessential

generators.

Proof. Suppose to the contrary. Let A be a generating set of M having only finitely

many nonessential generators, say a1, . . . , an. We may assume that all of them are

6= 0 and that a1 < · · · < an. Then the element
a1
2

can be generated by essential

generators (since each of a1, . . . , an is >
a1
2

). Hence a1 can be generated by essential

generators and so A \ {a1} is still generating set of M . Continuing this process we

get that A \ {a1, . . . , an} is a generating set of M , a contradiction.

LEMMA 4.8. Let
m1

n1

, . . . ,
mt

nt
∈ M , each in reduced form, at least one of them

nonzero. Then gcd(m1, . . . ,mt) and lcm(n1, . . . , nt) are relatively prime.

Proof. Suppose to the contrary. Then there is a prime p which divides both

gcd(m1, . . . ,mt) and lcm(n1, . . . , nt). Hence

(∀mi) p | mi,

(∃nj) p | nj.

Hence
mj

nj
is not in reduced form, a contradiction.

LEMMA 4.9. Let
m1

n1

, . . . ,
mt

nt
∈ M , each in reduced form, at least one of them

nonzero. Suppose that

gcd(m1, . . . ,mt)

lcm(n1, . . . , nt)
∈M.

Then,

τ =
lcm(n1, . . . , nt)

gcd(m1, . . . ,mt)

is an element of Q+, in reduced form, such that:

τ
mi

ni
∈ N0 for all i;

1

τ
∈M.
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Proof. From the previous lemma, it follows that τ is in reduced form. The first

claim is clear, because τ is in reduced form. The second claim follows directly from

the assumption.

Our next theorem, introduced in [14], is a slight generalization of a theorem

by R. Daileda from [7]. The proof follows Daileda’s proof.

THEOREM 4.3. Let M be a monoid such that for any elements
m1

n1

, . . . ,
mt

nt
from

M , all in reduced form, at least one of which is nonzero, we have

gcd(m1, . . . ,mt)

lcm(n1, . . . , nt)
∈M.

Then, F [X;M ] is AP.

Proof. Let f(X) = a1X
α1 + · · ·+ anX

αn be an irreducible element of F [X;M ]. We

will show that f is prime. Suppose that f(X) | a(X)b(X), where a(X), b(X) ∈

F [X;M ]. Then, there exists a polynomial h(X) ∈ F [X;M ] such that f(X)h(X) =

a(X)b(X). Define E(a), E(b), E(f), and E(h) to be the sets of the exponents of

a, b, f , and h, respectively, and take E to be their union. Let E =

{
m1

n1

, . . . ,
mt

nt

}
,

where each element is written in reduced form. Since f is irreducible, at least one of

the elements in E must be nonzero. Now, let τ =
lcm(n1, . . . , nt)

gcd(m1, . . . ,mt)
. In the monoid

domain F [X; τM ], we have the following relation:

φτ (a)φτ (b) = φτ (f)φτ (h)

and all the polynomials in this relation belong to F [X], a UFD. Hence, φτ (f)

divides φτ (a)φτ (b) in F [X]. Note that τM ⊇ N0 since
1

τ
∈ M ; hence, F [X; τM ] ⊇

F [X]. Because φτ is a ring isomorphism and f is irreducible in F [X;M ], φτ (f) is

irreducible in F [X], and since the notions of irreducible and prime are equivalent

in UFDs, φτ (f) is prime as well in F [X]. Therefore, either φτ (f) | φτ (a) or φτ (f) |

φτ (b). Without the loss of generality, we may assume that the former holds. Then,
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there exists an element, say a′(X), in F [X] ⊆ F [X; τM ] such that φτ (f) · a′(X) =

φτ (a). If we apply the inverse isomorphism φ1/τ : F [X; τM ]→ F [X;M ] and we get

a(X) = f(X) · φ1/τ (a
′), i.e., f(X) divides a(X). Thus, f(X) is prime, and, hence,

F [X;M ] is AP.

Motivated by this proof, we present the following new notion and corollaries.

DEFINITION 4.3. We say that a monoid M has the gcd/lcm property if

m1

n1

,
m2

n2

, . . . ,
mt

nt
∈ M , each in reduced form and at least one of which is nonzero,

implies that

gcd(m1, . . . ,mt)

lcm(n1, . . . , nt)
∈M.

Equivalently, we may say that a monoid M has the gcd/lcm property if for any two

elements
m1

n1

,
m2

n2

∈M , both in reduced form and at least one is not zero,

gcd(m1,m2)

lcm(n1, n2)
∈M.

We will prove this equivalence in Chapter 6.

COROLLARY 4.1 (Daileda, [9]). F [X;Q+] is a nonatomic AP domain.

Proof. F [X;Q+] is an AP domain by the previous theorem. It is nonatomic by

Proposition 13.

COROLLARY 4.2. Let M =

〈
1

2
,

1

22
,

1

23
, . . .

〉
. Then F [X;M ] is a nonatomic AP

domain.

Proof. F [X;M ] is an AP domain by the previous theorem. It is nonatomic by

Proposition 4.6.

Taking into account Corollaries 4.1 and 4.2, one may wonder if for any M

without essential generators, F [X;M ] is AP. To answer this question, we considered

monoids of a different sort. A relatively simple example of this sort is the monoid
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M =

〈
1

2
,

1

22
, . . . ;

1

5
,

1

52
, . . .

〉
. To see that M has no essential generators, one need

only consider two elements of M :
1

2k
and

1

5l
where k, l ≥ 1. We then see the

following:

1

2k
=

1

2k+1
+

1

2k+1

and

1

5l
=

1

5l+1
+

1

5l+1
+

1

5l+1
+

1

5l+1
+

1

5l+1
;

hence, neither
1

2k
nor

1

5l
is an essential generator for any positive integers k, l.

Moreover, the gcd/lcm condition for it does not hold. Indeed, for
1

2
,
1

5
∈ M , it is

easy to show that
gcd(1, 1)

lcm(2, 5)
=

1

10
/∈M . So we cannot use Theorem 4.3 to prove that

F [X;M ] is AP. One can wonder if it is then non-AP. We will prove later (Chapter

5, Proposition 5.2) that it indeed is.

PROPOSITION 4.11. For the submonoid M =

〈
1

2
,

1

22
, . . . ;

1

5
,

1

52
, . . .

〉
of (Q+,+),

the monoid domain F [X;M ] is a nonatomic non-AP domain.

Proof. To show that F [X;M ] is non-AP, we need to provide an irreducible element

of F [X;M ] that is not prime. The difficult part lies in finding an appropriate atom,

however, one such atom is the binomial X27/50 − 1 (in Chapter 5, Proposition 5.2,

we will prove that it is indeed irreducible). We now show that X27/50 − 1 is not

prime.

First note that (X27/50− 1) | (X27/25− 1), and X27/25− 1 can be factored in

the following way: X27/25 − 1=(X9/25 − 1)(X18/25 + X9/25 + 1). Hence, X27/50 − 1

divides the product (X9/25− 1)(X18/25 +X9/25 + 1). Now, since
9

25
<

27

50
, it is clear

that (X27/50−1) - (X9/25−1). Next, to show that (X27/50−1) - (X18/25+X9/25+1),

we need only show that
9

50
=

18

25
− 27

50
is not an element of M . Suppose to the
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contrary. Then
9

50
may be uniquely written in the following way:

9

50
=

5lm+ 2kn

2k5l

where m,n ≥ 1 are integers and the right hand side is in reduced form. Thus, k = 1

and l = 2, and, hence, 9 = 25m + 2n, an impossibility. Thus, we have shown that

the binomial X27/50 − 1 is indeed nonprime. Therefore, F [X;M ] is non-AP.

That F [X;M ] is nonatomic follows from Proposition 4.8.

THEOREM 4.4. If M is an infinitely generated monoid, then precisely one of the

following situations occurs:

(i) M has no essential generators; then F [X;M ] is non-atomic; it can be AP and

non-AP;

(ii) M has at least one essential generator but cannot be generated by essential

generators; then F [X;M ] is non-atomic and non-AP;

(iii) M can be generated by essential generators; then F [X;M ] is non-AP; it can

be atomic, but we do not know if it can be non-atomic.

Proof. (i) That F [X;M ] is nonatomic frollows from Proposition 4.8. Corollaries 4.1

and 4.2 are examples where F [X;M ] is AP and Proposition 4.11 gives an example

where F [X;M ] is non-AP.

(ii) F [X;M ] is non-atomic by Proposition 4.8 and non-AP by Proposition

4.6. An example of a monoid of this type is

M =

〈
1

2
,

1

22
,

1

23
, . . . ;

1

5

〉
.

(iii) F [X;M ] is non-AP by Proposition 4.6. It can be atomic (by example

from Section 4.2).

45



CHAPTER 5

THE IRREDUCIBILITY OF Xπ − 1 IN F [X;M ]

5.1 Introduction and preliminaries for Chapter 5

In the previous chapter we conclusively showed that there is no relation be-

tween the notions AP and atomic. That is, we provided examples of domains which

are atomic and AP, atomic and non-AP, non-atomic and AP, and, non-atomic and

non-AP. Of course, it is well known that integral domains that are both atomic and

AP are Unique Factorization Domains. To this end, we made significant use of es-

sential generators of additive monoids, and we considered the question: if M has no

essential generators, is the associated monoid domain F [X;M ] necessarily AP? We

answered this question in the negative, by considering the monoid domain F [X;M ]

with M =

〈
1

2
,

1

22
,

1

23
, . . . ;

1

5
,

1

52
,

1

53
, . . .

〉
and providing an irreducible element of

F [X;M ], namely X27/50 − 1, which is not prime. In the following pages, we will

justify that X27/50−1 is indeed an atom of F [X;M ] and we will introduce a theorem

which provides sufficient conditions for when the binomial Xπ − 1 is irreducible in

F [X;M ], but first we will provide necessary definitions and results.

We say that a monoid M is cancellative, and that it satisifes the cancellative

property, if for any elements α, β, γ ∈ M , α + γ = β + γ implies α = β. Moreover,

if M satisfies the condition that for any integer n ≥ 1 and any elements α, β ∈ M ,

nα = nβ implies that α = β, then M is said to be torsion-free. It’s not difficult to
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show that if M is a torsion-free monoid, then it also satisfies the following weaker

property: for any integer n ≥ 1 and every α ∈ M , nα = 0 implies α = 0. For

groups, these properties are equivalent and the latter is the way how the notion of

a torsion-free group is usually defined. Next, we will turn our attention to several

notions in number theory which proved to be invaluable in the proof of our theorem.

Let F be a field, k ∈ N, and X1, X2, . . . , Xk be variables over F . Then,

the elementary symmetric polynomials in these variables are the polynomials from

F [X1, X2, . . . , Xk] defined by the following:

σ1 =
∑
1≤i≤k

Xi;

σ2 =
∑

1≤i<j≤k

XiXj;

...

σk = X1 · · ·Xk;

and σe = 0 for all e > k. The power sums in the variables X1, X2, . . . , Xk are the

polynomials from F [X1, X2, . . . , Xk] defined by the following:

πe =
∑
1≤i≤k

Xe
i

for all e ≥ 1. The following is a theorem presented in [1, page A.IV.70] giving

the relations (called, the Newton’s relations) between the elementary symmet-

ric polynomials and the power sums in the variables X1, X2, . . . , Xk in the ring

F [X1, X2, . . . , Xk].

THEOREM 5.1 (Newton’s Relations). For every integer e ∈ {1, 2, . . . , k}, we have

πe = σ1πe−1 − σ2πe−2 + · · ·+ (−1)eσe−1π1 + (−1)e+1eσe.

Now, notice, if we replace the variablesX1, X2, . . . , Xk with elements x1, x2, . . . , xk

of F , respectively, we obtain Newton’s relations between the elementary symmetric
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polynomials and the power sums of the elements x1, x2, . . . , xk.

The next theorem, called Lucas’ Theorem, was proven by É. Lucas in 1878.

A simpler proof was given by N. J. Fine in [11].

THEOREM 5.2 (Lucas’ Theorem). Let p be a prime number and let

M = Mtp
t +Mt−1p

t−1 + · · ·+M2p
2 +M1p+M0,

N = Ntp
t +Nt−1p

t−1 + · · ·+N2p
2 +N1p+N0

be the expansions of the nonnegative integers M and N in base p (so that Mi, Ni ∈

{0, 1, . . . , p− 1}). Then(
M

N

)
≡
(
Mt

Nt

)(
Mt−1

Nt−1

)
· · ·
(
M2

N2

)(
M1

N1

)(
M0

N0

)
(mod p),

where we assume that
(
Mi

Ni

)
= 0 if Mi < Ni.

The final preliminary result that we will present was given by T. Y. Lam and

K. H. Leung in 2000 in [16], and it is worth noting that the result was previously

an open problem in number theory. We call their theorem Lam-Leung Theorem.

First, recall that for any integer n ≥ 1, we say that z is an n-th root of unity in

R if zn = 1. Now, let n be a natural number with the prime-power factorization

n = pv11 p
v2
2 · · · pvrr , and consider the n-th roots of unity in the field of numbers,

denoted C. The Lam-Leung Theorem describes all natural numbers t such that

there are t n-th roots of unity in C whose sum is 0.

THEOREM 5.3 (Lam-Leung Theorem). The set of all numbers t such that there

are t n-th roots of unity in C whose sum is 0 is equal to N0p1 + N0p2 + · · ·+ N0pr.

Along with these definitions and results, in the next section we will introduce

the notion of elements of height (0, 0, 0, . . . ) in torsion-free monoids.
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5.2 Elements of Height (0, 0, 0, . . . ) in Torsion-Free Monoids

For a torsion-free group G, the following notions are well-known. Let p be

a prime number; then, the p − height, hp(a), of an element a ∈ G is defined in [4,

p. 108] as the nonnegative integer r such that a ∈ prG \ pr+1G if such an integer

exists and is defined as ∞ otherwise. The height sequence of a is the sequence

(h2(a), h3(a), h5(a), . . . ) of p-heights of a as p increases through the prime numbers.

Of particular interest in this chapter are elements of height (0, 0, 0, . . . ); we will,

more generally, consider such elements in torsion-free monoids instead of groups.

DEFINITION 5.1. We say that an element a of a torsion-free monoid Γ is of

height (0, 0, 0, . . . ) if for every prime number p the equation a = px is unsolvable

in Γ.

EXAMPLE 5.1. (1) There are no elements of height (0, 0, 0, . . . ) in the torsion-free

monoids {0}, (Q+,+), or (R+,+).

(2) The only element of height (0, 0, 0, . . . ) in (N0,+) is 1.

(3) The elements of height (0, 0, 0, . . . ) in the monoid 〈2, 3〉 = N0 \{1} are precisely

the prime numbers 2, 3, 5, . . . .

(4) In the monoid 〈2, 5〉 = {0, 2, 4, 5, 6, . . . } the elements of height (0, 0, 0, . . . ) are

the prime numbers 2,5,7,11,. . . and the composite number 9. In fact, it can be easily

shown that for any submonoid M of (N0,+) and any prime number p /∈ M , the

composite number p2 is of height (0, 0, 0, . . . ) in M if it is an element of M .

(5) In the submonoid

〈
1

2
,

1

22
,

1

23
, . . . ;

1

5

〉
of (Q+,+), the only element of height

(0, 0, 0, . . . ) is
1

5
.

(6) There are infinitely many elements of height (0, 0, 0, . . . ) in the submonoid〈
1

2
,

1

22
,

1

23
, . . . ;

1

5
,

1

52
,

1

53
, . . .

〉
of (Q+,+). To show this, consider the element

5j + 2

2 · 5j
=

1

2
+

1

5j
∈ M , in reduced form and where j ≥ 1. Supposing that this element is not

of height (0, 0, 0, . . . ), there is an element, say
m · 5l + n · 2k

2k · 5l
where k, l,m, n ≥ 1
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and in reduced form, of M such that for some prime number p,

5j + 2

2 · 5j
= p · m · 5

l + n · 2k

2k · 5l
.

We have three cases: 1) Let p = 2; then k = 2 and l = j, and, thus, we have that

5j + 2 = m · 5j + n · 22, an impossibility; 2) Let p = 5; then k = 1 and l = j + 1,

and, thus, we have that 5l−1 + 2 = m · 5l + n · 2, an impossibility; finally, 3) Let

p 6= 2, 5; then k = 1 and l = j, and, thus, we have that 5l + 2 = p(m · 5l + n · 2), an

impossibility.

PROPOSITION 5.1. Let µ : Γ → Γ′ be an isomorphism between two torsion-free

monoids. For any a ∈ Γ, a is of height (0, 0, 0, . . . ) in Γ if and only if µ(a) is of

height (0, 0, 0, . . . ) in Γ′.

Proof. It is sufficient to prove the forward direction; that is, if a ∈ Γ is of height

(0, 0, 0, . . . ) in Γ, then µ(a) is of height (0, 0, 0, . . . ) in Γ′. Suppose not; then for

some prime number p the equation µ(a) = px is solvable in Γ′. If we now apply µ−1

we get: a = p · µ−1(x), a contradiction.

5.3 Matsuda’s lemma and Matsuda’s monoids

The next theorem is Lemma 2.2 in the paper [18] by R. Matsuda (we call it

Matsuda’s Lemma). For the sake of completeness we also include Matsuda’s proof.

THEOREM 5.4 (Matsuda’s Lemma). Let F be a field, G 6= 0 a torsion-free group,

and π an element of G of height (0, 0, 0, . . . ). Then Xπ−1 is an irreducible element

of F [G;X].

Proof. Suppose Xπ − 1 = gh, where g, h ∈ F [G;X]. Let H be the subgroup

generated by π and the power exponents appearing in g and h. By [15, Lemma

2.1], Zπ is a direct summand of H. Let H = Zπ ⊕ Ze1 ⊕ · · · ⊕ Zen, Xπ = Y , and
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Xei = Xi. The set Y,X1, . . . , Xn is algebraically independent over F . Hence Y −1 is

irreducible in FZ[Y,X1, . . . , Xn]. Here, FZ[Y,X1, . . . , Xn] denotes the quotient ring

of F [Y,X1, . . . , Xn] by the multiplicative system generated by Y,X1, . . . , Xn.

Inspired by Matsuda’s Lemma, we introduce the following notions relating

elements of height (0, 0, 0, . . . ) in cancellative torsion-free monoids and their asso-

ciated monoid domains.

DEFINITION 5.2. We call a cancellative torsion-free monoid Γ a Matsuda’s

monoid if for every element π ∈ Γ of height (0, 0, 0, . . . ) the binomial Xπ − 1 is

irreducible in the associated monoid domain F [X; Γ] for every field F .

DEFINITION 5.3. We call a cancellative torsion-free monoid Γ a Matsuda’s

monoid of type 0 (respectively, p) if for every element π ∈ Γ of height (0, 0, 0, . . . )

the binomial Xπ−1 is irreducible in the associated monoid domain F [X; Γ] for every

field F of characteristic 0 (respectively, p).

When a monoid Γ is, in fact, a group, we say a Matsuda group, a Matsuda

group of type 0, and a Matsuda group of type p.

Below, we provide examples of various Matsuda monoids.

EXAMPLE 5.2. (1) Every torsion-free group G is a Matsuda group by Matsuda’s

Lemma.

(2) The monoids {0}, (Q+,+), and (R+,+) have no elements of height (0, 0, 0, . . . ),

and so they are Matsuda monoids.

(3) In the monoid M = (N0,+), 1 is the only element of height (0, 0, 0, . . . ), and,

since, X1 − 1 is irreducible in F [X;M ] for every field F , M is a Matsuda monoid.

(4) In the monoid M = 〈2, 3〉, as we have shown already, the elements of height

(0, 0, 0, . . . ) are precisely the prime numbers. We may see that M is not a Matsuda

monoid of type 2 since 7 ∈ M is of height (0, 0, 0, . . . ) and in F2[X;M ], we have
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the following factorization:

X7 − 1 = (X4 +X3 +X2 − 1)(X3 +X2 + 1).

Moreover, it happens that M is not a Matsuda monoid of type 3 since 11 ∈M is of

height (0, 0, 0, . . . ) and in F3[X;M ], we have the following factorization:

X11 − 1 = (X6 −X5 + 2X4 −X3 +X2 − 1)(X5 +X4 + 2X3 +X2 + 2).

The last example, in particular, begs the question: is the monoid M = 〈2, 3〉

a Matsuda monoid of any finite type? We do not yet know the answer to this

question. However, as a result of our Theorem 5.5, which is the first theorem in the

next section, we may assert that M is a Matsuda monoid of type 0.

5.4 Submonoids of (Q+,+) are Matsuda’s monoids of type 0.

THEOREM 5.5. Every submonoid of (Q+,+) is a Matsuda monoid of type 0.

Proof. We begin by proving the statement for the submonoids of (N0,+) and then

we extend that proof to submonoids of the nonnegative rationals.

By Example 5.2 (3), we know that N0 is a Matsuda monoid. Let us assume,

then, that M is a proper submonoid of (N0,+), i.e. 1 /∈ M . Let n ∈ M be of

type (0, 0, 0, . . . ) with a prime factorization n = pv11 p
v2
2 · · · pvrr . It is enough to show

that Xn − 1 cannot be factored into a product of two polynomials of degree ≥ 1

in F [X;M ] for any algebraically closed field F of characteristic 0. So let F be an

algebraically closed field of characteristic 0. We may assume that F contains the

field A of algebraic numbers. Suppose to the contrary, that is, that the binomial

Xn − 1 can be factored F [X;M ] as g(X)h(X), where g and h are two monic

polynomials of degree k ≥ 1 and l ≥ 1, respectively. Without the loss of generality,

we will assume that k ≥ l. In F [X], the binomial Xn − 1 can be factored as a
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product of n monic linear polynomials X − ζ, where ζ is an n-th root of unity (in

A). Therefore, we have g(X) = (X−α1)(X−α2) · · · (X−αk), where α1, α2, . . . , αk

are n-th roots of unity (in A). Now, let βi = α−1i for i = 1, 2, . . . , k, and note that

βi is an n-th root of unity (in A) as well. Let us also write g(X) as

g(X) = Xk + gk−1X
k−1 + · · ·+ g1X + g0,

where g0, g1, . . . , gk−1 are elements in F .

Claim 1: Let e be an element of N0 such that e < k and e /∈M . Then

σe(β1, . . . , βk) = 0,

πe(β1, . . . , βk) = 0.

Proof of Claim 1: Since e /∈ M , the coefficient ge by Xe in g(X) is equal to 0.

Thus ∑
αi1αi2 · · ·αik−e = 0,

where the sum goes over all (k − e)-element subsets {i1, . . . , ik−e} of {1, 2, . . . , k}.

Hence, ∑
βj1βj2 · · · βje = 0,

where the sum goes over all e-element subsets {j1, . . . , je} of {1, 2, . . . , k}. Therefore,

σe(β1, . . . , βk) = 0.

Now, to prove the second relation, we use induction on e. For e = 1 we have

π1(β1, . . . , βk) = σ1(β1, . . . , βk) = 0.

Suppose that

πf (β1, . . . , βk) = 0

for all elements f ∈ N0 such that f < e and f /∈ M . We, then, have the Newton’s

relations

πe = σ1πe−1 − σ2πe−2 + · · ·+ (−1)eσe−1π1 + (−1)e+1eσe, (5.1)
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where each of σi, πi is a function of β1, . . . , βk. Since e /∈ M , σe = 0 by the first

relation. Also, in each of the sets {1, e− 1}, {2, e− 2}, . . . , {
⌊e

2

⌋
,

⌊
e+ 1

2

⌋
} at least

one of the elements is not in M , otherwise their sum, which is e, would be in M . If in

any of these sets {j, e− j} say j /∈M , then σj = 0 by the first relation of this claim

and πj = 0 by the inductive hypothesis. Hence, σjπe−j = 0 and σe−jπj = 0, and,

hence, all the addends on the right hand side of (5.1) are 0, i.e., πe(β1, . . . , βk) = 0.

Claim 1 is proved.

Claim 2: Let d < n be a divisor of n. Let e be an element of N0 such that ed ≤ k

and ed /∈M . Then

πe(β
d
1 , . . . , β

d
k) = 0,

σe(β
d
1 , . . . , β

d
k) = 0.

Proof of Claim 2: We have

πe(β
d
1 , . . . , β

d
k) = π1(β

d
1 , . . . , β

d
k) = 0

by Claim 1 as ed /∈ M . We prove the second relation by induction on e. For e = 1

we have

σ1(β
d
1 , . . . , β

d
k) = πd(β1, . . . , βk) = 0

by Claim 1 as d /∈ M . Let e be an element of N0 such that ed ≤ k and ed /∈ M .

Suppose that

σf (β
d
1 , . . . , β

d
k) = 0

for all elements f ∈ N0 such that f < e and fd /∈M . We have the Newton’s relation

σe =
(−1)e+1

e
[πe − σ1πe−1 + σ2πe−2 − · · ·+ (−1)e−1σe−1π1], (5.2)

where each of σi, πi is a function of βd1 , . . . , β
d
k . Since ed /∈ M , πe = 0 by the first

relation. Consider any of the sets {1, e − 1}, {2, e − 2}, . . . , {
⌊e

2

⌋
,

⌊
e+ 1

2

⌋
}, say

{j, e − j}. At least one of the elements jd, (e − j)d is not in M , otherwise their
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sum, which is ed, would be in M . If say jd /∈ M , then πj = 0 by the first relation

of this claim and σj = 0 by the inductive hypothesis. Hence, σjπe−j = 0 and

σe−jπj = 0. Hence, all the addends on the right hand side of (5.2) are 0 and so

σe(β
d
1 , . . . , β

d
k) = 0. Claim 2 is proved.

Let now j ∈ {1, 2, . . . , r}. For e = pv11 · · · p̂
vj
j · · · pvrr , by Claim 1,

πe(β1, . . . , βk) = βe1 + · · ·+ βek = 0,

i.e.,

σ1(β
e
1, . . . , β

e
k) = 0.

Each of the elements βe1, . . . , β
e
k is a p

vj
j -th root of unity, hence, by Lam-Leung

Theorem,

k ∈ N0pj.

We will prove by induction on s that k ∈ N0p
s
j for every s = 1, 2, . . . , vj. For s = 1

we have already done that. Suppose that k ∈ N0p
s−1
j for some s ∈ {1, 2, . . . , vj}.

We want to show that then k ∈ N0p
s
j . Suppose to the contrary, i.e., that k /∈ N0p

s
j .

Then k can be written as

k = ktp
t
j + kt−1p

t−1
j + · · ·+ ksp

s
j + ks−1p

s−1
j ,

where t is some number, kt, kt−1, . . . , ks, ks−1 are from {0, 1, . . . , p−1}, and ks−1 6= 0.

Let d = pv11 · · · p̂
vj
j · · · pvrr and e = ps−1j . Then by Claim 2,

σe(β
d
1 , . . . , β

d
k) = 0.

Since each βdj is a p
vj
j -th root of unity, the last equation is a vanishing sum of(

k
e

)
=
(

k
ps−1
j

)
p
vj
j -th roots of unity, hence, by Lam-Leung Theorem,(

k

ps−1j

)
∈ N0pj.
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However, by Lucas’ Theorem,(
k

ps−1j

)
≡
(
ks−1

1

)
= ks−1 6= 0 (mod pj),

a contradiction. Thus, k ∈ N0p
s
j , and since this holds for any s ≤ vj, we have

k ∈ N0p
vj
j .

This holds for all j = 1, 2, . . . , r; hence,

k ≡ 0 (mod n),

which is a contradiction with our starting hypothesis that Xn − 1 can be factored

into two nonconstant polynomials, one of which is of degree k. Hence, Xn − 1 is

an irreducible element of F [X;M ] and, in particular, of F [X;M ]. The statement

is proved for submonoids of (N0,+).

Now, let M be a submonoid of (Q+,+). Let π be an element of M of height

(0, 0, 0, . . . ). Suppose to the contrary, i.e., that Xπ− 1 = g(X)h(X), where g and h

are two elements of F [X;M ] of degree 6= 0. Let N be the submonoid of M generated

by π and the exponents of the polynomials of g and h. N is, therefore, a finitely

generated submonoid of M in which π is also of height (0, 0, 0, . . . ) and the factori-

zation Xπ − 1 = g(X)h(X) is in F [X;N ]. Let d be the least common denominator

of all the generators of N . Then µd : N → dN is a monoid isomorphism betweeen N

and the submonoid dN of (N0,+). By Proposition 5.1, the element dπ is of height

(0, 0, 0, . . . ) in dN . The associated ring isomorphism φd : F [X;N ] → F [X; dN ]

transports the factorization Xπ−1 = g(X)h(X) from F [X;N ] into the factorization

Xdπ−1 = φd(g)φd(h) in F [X; dN ], with both polynomials φd(g), φd(h) nonconstant.

We already proved that this is not possible for submonoids of (N0,+), so we arrived

at a contradiction, and the theorem is proved.
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5.5 An application: a submonoid M of (Q+,+) without essential generators,
such that F [X;M ] is not AP

In concluding this chapter, we will provide the reader with a useful appli-

cation of our main theorem. Recall that in the previous chapter, we offered as

an example of a nonatomic, non-AP domain the monoid domain F [X;M ] where

M =

〈
1

2
,

1

22
,

1

23
, . . . ;

1

5
,

1

52
,

1

53
, . . .

〉
. We proved that the element X27/50 − 1 is not

prime in F [X;M ], however, we did not justify that it is an atom. We will now

provide such a proof by applying our result.

PROPOSITION 5.2. Let M =

〈
1

2
,

1

22
,

1

23
, . . . ;

1

5
,

1

52
,

1

53
, . . .

〉
and let F be a field

of characteristic 0. Then, the monoid domain F [X;M ] is not AP.

Proof. We have shown in Example 5.1 (6) that the elements
1

2
+

1

5j
(j ≥ 1) are of

height (0, 0, 0, . . . ), so
1

2
+

1

52
is of height (0, 0, 0, . . . ) in M .

Hence, by Theorem 5.5, we have that the binomial X27/50 − 1 is irreducible

in the domain F [X;M ]. In Chapter 4, we showed that this same binomial is not

prime; therefore, F [X;M ] is non-AP.
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CHAPTER 6

RELATIONS BETWEEN GCD/LCM PROPERTY OF M , AP PROPERTY OF
F [X;M ], AND ELEMENTS OF HEIGHT (0, 0, 0, . . . ) IN M

In this chapter we always assume that M is a submonoid of (Q+,+).

6.1 Preliminary discussion of the relations.

In this final chapter of analysis, we will devote our energies to the following

properties of the monoid M and its associated domain F [X;M ]:

(1) M has the gcd/lcm property;

(2) F [X;M ] is AP;

(3) M has no elements of height (0, 0, 0, . . . );

and we will determine any relations that may exists between them.

For the case of M being finitely generated, we have the following cases:

(1) M = {0}, (2) M = 〈a〉, a 6= 0, and (3) M = 〈a1, a2, . . . , ak〉, k ≥ 2, all ai

essential generators (by our discussion of monoid isomorphisms, Proposition 4.5,

and Proposition 5.1 we may assume that M is a numerical semigroup).

1. In the first case, M satisfies the gcd/lcm property, M has no elements of

height (0, 0, 0, . . . ), and F [X;M ] = F is AP.

2. In the next case, M satisfies the gcd/lcm property, M has exactly one element

of height (0, 0, 0, . . . ), namely a, and F [X;M ] ∼= F [X] is AP.
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3. In the final case, M does not satisfy the gcd/lcm property, M has elements

of height (0, 0, 0, . . . ), namely a1, a2, . . . , ak (and others), and F [X;M ] is non-

AP.

For the case of M being infinitely generated, we have only two cases: (1) M

has at least one essential generator and (2)M does not have any essential generators.

1. In the former case, F [X;M ] is non-AP, hence, M does not satisfy the gcd/lcm

property (by Theorem 4.3), and M has elements of height (0, 0, 0, . . . ), e.g.,

every essential generator.

2. In the latter case, F [X;M ] can be AP and non-AP; M does not have to satisfy

the gcd/lcm property (e.g., whenever F [X;M ] is non-AP), but it can (e.g.,

M = Q+ or M =

〈
1

2
,

1

22
,

1

23
, . . .

〉
). Thus, all options are possible in this

second case.

We consider the diagram following only in the case where M is infinitely

generated and without essential generators (note: F [X;M ] is non-atomic).

M has the

gcd/lcm property

F [X;M ] has the

AP property

M has no elements

of height (0, 0, 0, . . . )

Figure 6.1: Relations of the properties: M has the gcd/lcm property, F [X;M ] is

AP, and M has no elements of height (0, 0, 0, . . . ).
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6.2 Some structural properties of submonoids of (Q+,+)

That M has the gcd/lcm property implies that F [X;M ] is AP follows from

Theorem 4.3. To show that M has the gcd/lcm property implies that M has no

elements of height (0, 0, 0, . . . ), we will prove that F [X;M ] is AP implies that M

has no elements of height (0, 0, 0, . . . ). We begin by investigating some structural

properties of M .

PROPOSITION 6.1. Let M and M ′ be submonoids of (Q+,+) and let µ : M →M ′

be a monoid isomorphism. Then µ = µτ where τ ∈ Q+ \ {0}.

Proof. If M = {0}, the satement is clearly true. Suppose M 6= {0}. Let M = 〈A〉

and let
a1
b1
6= 0 and

a2
b2

be two elements of A. Let

µ

(
a1
b1

)
=
c1
d1

and

µ

(
a2
b2

)
=
c2
d2
.

Let τ =
c1b1
d1a1

. Then

c1
d1

= τ · a1
b1
.

We have that

b1a2 ·
a1
b1

= b2a1 ·
a2
b2
.

Hence,

µ

(
b1a2 ·

a1
b1

)
= µ

(
b2a1 ·

a2
b2

)
,

hence,

b1a2 · µ
(
a1
b1

)
= b2a1 · µ

(
a2
b2

)
,

hence,

b1a2 ·
c1
d1

= b2a1 ·
c2
d2
,
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hence,

b1a2 · τ ·
a1
b1

= b2a1 ·
c2
d2
,

and, thus,

c2
d2

= τ · a2
b2
.

Therefore, once we fix the unique rational number τ > 0 such that µ

(
a1
b1

)
=

µτ

(
a1
b1

)
, then for any

a2
b2
∈ A we have

µ

(
a2
b2

)
= µτ

(
a2
b2

)
.

Hence, µ|A = µτ |A. Now, for any k1a1 + · · ·+ ktat ∈M (ki ∈ N, ai ∈ A) we have

µ(k1a1 + · · ·+ ktat) = k1µ(a1) + · · ·+ ktµ(at)

= k1µτ (a1) + · · ·+ ktµτ (at)

= τ(k1a1 + · · ·+ ktat)

= µτ (k1a1 + · · ·+ ktat).

Thus, µ ≡ µτ .

DEFINITION 6.1. Let R be a commutative ring, a1, a2, . . . , an ∈ R. An ele-

ment d ∈ R is called a greatest common divisor of a1, a2, . . . , an, and denoted

gcd(a1, a2, . . . , an) if the following hold:

(i) d | a1, d | a2, . . . , d | an;

(ii) if c | a1, c | a2, . . . , a | an, then c | d.

LEMMA 6.1. Let R be a PID, a1, a2, . . . , an ∈ R. Then d = gcd(a1, a2, . . . , an) if

and only if (a1, a2, . . . , an) = (d).

Proof. Burton, A First Course in Rings and Ideals, Theorem 6-3.
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LEMMA 6.2. Let R be a PID, n ≥ 2, a1, a2, . . . , an ∈ R. Then gcd(a1, a2, . . . , an) =

gcd(gcd(a1, a2, . . . , an−1), an).

Proof. Using Lemma 6.1, we have the following:

d = gcd(gcd(a1, a2, . . . , an−1), an) ⇐⇒ (d) = (gcd(a1, a2, . . . , an−1), an)

⇐⇒ (d) = (gcd(a1, a2, . . . , an−1)) + (an)

⇐⇒ (d) = (a1, a2, . . . , an−1) + (an)

⇐⇒ (d) = (a1, a2, . . . , an)

⇐⇒ d = gcd(a1, a2, . . . , an).

DEFINITION 6.2. Let R be a commutative ring, a1, a2, . . . , an ∈ R. An element

m ∈ R is called a least common multiple of a1, a2, . . . , an, and denoted by

lcm(a1, a2, . . . , an) if the following hold:

(i) a1 | m, a2 | m, . . . , an | m;

(ii) if a1 | m′, a2 | m′, . . . , an | m′, then m | m′.

LEMMA 6.3. Let R be a PID, a1, a2, . . . , an ∈ R. Then d = lcm(a1, a2, . . . , an) if

and only if (m) = (a1) ∩ (a2) ∩ · · · ∩ (an).

Proof. Burton, A First Course in Rings and Ideals, Theorem 6-5.

LEMMA 6.4. Let R be a PID, n ≥ 2, a1, a2, . . . , an ∈ R. Then lcm(a1, a2, . . . , an) =

lcm(lcm(a1, a2, . . . , an−1), an).

Proof. Using Lemma 6.3, we have the following:

m = lcm(lcm(a1, a2, . . . , an−1), an) ⇐⇒ (m) = (lcm(a1, a2, . . . , an−1)) ∩ (an)

⇐⇒ (m) = (a1) ∩ (a2) ∩ · · · ∩ (an−1) ∩ (an).
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PROPOSITION 6.2. The following are equivalent about any monoid M ⊆ (Q+,+):

(i) for any t ≥ 2,
a1
b1
, . . . ,

at
bt
∈M in reduced form, at least one 6= 0,

gcd(a1, . . . , at)

lcm(b1, . . . , bt)
∈M ;

(ii) for any
a1
b1
,
a2
b2
∈M in reduced form, at least one 6= 0

gcd(a1, a2)

lcm(b1, b2)
∈M.

Proof. Clearly, (i) =⇒ (ii).

Suppose (ii) holds and let
a1
b1
, . . . ,

at
bt
∈ M where t ≥ 2 is an integer. We

have:

gcd(a1, . . . , at)

lcm(b1, . . . , bt)
=

gcd(gcd(a1, . . . , at−1), at)

lcm(lcm(b1, . . . , bt−1), bt)

by Lemma 6.2 and 6.4. Now, by Lemma 4.8,
gcd(a1, . . . , at−1)

lcm(b1, . . . , bt−1)
is in reduced form.

Hence, by (ii),
gcd(gcd(a1, . . . , at−1), at)

lcm(lcm(b1, . . . , bt−1), bt)
∈M , i.e.,

gcd(a1, . . . , at)

lcm(b1, . . . , bt)
∈M .

DEFINITION 6.3. We say that a mnoid M satisfies the gcd/lcm property if the

equivalent conditions from Proposition 6.2 hold.

THEOREM 6.1. If M and M ′ are two isomorphic submonoids of (Q+,+), then M

has the gcd/lcm property if and only if M ′ has the same property.

Proof. Let µ : M →M ′ be a monoid isomorphism. From Proposition 6.1, we know

that µ may be written as µτ where τ ∈ Q+ \ {0}. Let τ =
r

s
, in reduced form, and

let
p1
q1
,
p2
q2
∈ M ′, in reduced form and at least one not zero. Note that

p1
q1

and
p2
q2

are images of elements from M , say
m1

n1

and
m2

n2

, respectively, in reduced form, i.e.,

µr/s

(
m1

n1

)
=
p1
q1

and

µr/s

(
m2

n2

)
=
p2
q2
.
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In fact, one may note that
p1
q1

and
p2
q2

are reduced forms of
r

s

m1

n1

and
r

s

m2

n2

re-

spectively. Thus, in order to prove our statement, we need to consider what these

reduced forms look like. To this end, we will write r = r′r1r2r1,2 where r1,2 is the

greatest factor that can be cancelled with factors in both n1 and n2, r1 is the great-

est factor from the remaining part that can be cancelled with factors from n1, r2 is

the greatest remaining factor from the remaining part that can be cancelled with

factors in n2, and r′ is the remaining factor after cancellation. We will also write

s = s′s1s2s1,2, defined similarly, with respect to m1 and m2. Now, with respect to

appropriate cancellations, we may define m1,m2, n1, and n2 in the following way:

m1 = s1s1,2m
′
1

m2 = s2s1,2m
′
2

n1 = r1r1,2n
′
1

n2 = r2r1,2n
′
2.

With these, we can see that gcd(s1, s2) = 1, gcd(r′, n1) = 1, gcd(s′,m1) = 1,

gcd(r1, r2) = 1, gcd(r′, n2) = 1, and gcd(s′,m2) = 1. Therefe, we may write

gcd(m1,m2) and lcm(n1, n2) in the following way:

gcd(m1,m2) = s1,2 · gcd(s1m
′
1, s2m

′
2) = s1,2 · gcd(m′1,m

′
2), (6.1)

lcm(n1, n2) = r1,2 · lcm(r1n
′
1, r2n

′
2) = r1,2r1r2 · lcm(n′1, n

′
2). (6.2)

We may also write

r

s

m1

n1

=
r′r1r2r1,2
s′s1s2s1,2

· s1s1,2m
′
1

r1r1,2n′1
=
r′r2m

′
1

s′s2n′1
,

in reduced form, and

r

s

m2

n2

=
r′r1r2r1,2
s′s1s2s1,2

· s2s1,2m
′
2

r2r1,2n′2
=
r′r1m

′
2

s′s1n′2
,

also in reduced form. Thus, p1 = r′r2m
′
1, q1 = s′s2n

′
1, p2 = r′r1m

′
2, and q2 = s′s1n

′
2,

and, hence,

gcd(p1, p2) = r′gcd(m′1,m
′
2) (6.3)
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and

lcm(q1, q2) = s′s1s2lcm(n′1, n
′
2). (6.4)

Now, since M satisfies the gcd/lcm property, from 6.1 that

s1,2gcd(m′1,m
′
2)

r1,2r1r2lcm(n′1, n
′
2)

=
gcd(m1,m2)

lcm(n1, n2)
∈M.

Finally, from equations 6.3 and 6.4 we need to show that M ′ satisfies the gcd/lcm

property, i.e., that

r′gcd(m′1,m
′
2)

s′s1s2lcm(n′1, n
′
2)
∈M ′.

Indeed, we have

r′gcd(m′1,m
′
2)

s′s1s2lcm(n′1, n
′
2)

=
r′r1r2r1,2
s′s1s2s1,2

· s1,2gcd(m′1,m
′
2)

r1,2r1r2lcm(n′1, n
′
2)

=
r

s
· gcd(m1,m2)

lcm(n1, n2)
∈M ′.

The other direction follows since µ−1 = µ1/τ : M ′ → M is also a monoid isomor-

phism.

6.3 The case when M is infinitely generated and without essential generators

THEOREM 6.2. Let M be an infinitely generated submonoid of (Q+,+) without

essential generators. If F [X;M ], where F is of characteristic 0, is AP, then M has

no elements of height (0, 0, 0, . . . ).

Proof. Our proof will be by contrapositive, i.e., we will assume that M has an

element of height (0, 0, 0, . . . ) and show that F [X;M ] is non-AP.

Let π be an element of M of height (0, 0, 0, . . . ). Since, by our hypothesis, π

is not an essential generator, π = π1 + π2 for some elements π1 =
m1

n1

and π2 =
m2

n2

(both in reduced form) of the monoid. We will sow that the element Xπ − 1 of

F [X;M ] is irreducible, but not prime. Under the monoid isomorphism τn1n2 : M →

M ′ = n1n2M , the element π is mapped to the element π′ = n1n2π = m1n2 + n1m2.
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The monoid M ′ is infinitely generated, without essential generators and π′ is an

element of M ′ of height (0, 0, 0, . . . ) which is a sum of two nonzero elements of M ′,

namely m1n2 + n1m2. Moreover, Xπ − 1 is irreducible and non-prime in F [X;M ]

if and only if Xπ′ − 1 is irreducible and non prime in F [X;M ′].

So it is enough to prove that if the monoid M in the statement of our theorem

contains an elements π of height (0, 0, 0, . . . ) such that π = m1 +m2, where m1,m2

are relatively prime elements of N, then Xπ − 1 is irreducible but not prime. Note

that m1 6= 1, m2 6= 1; otherwise π is not of height (0, 0, 0, . . . ). So m1 has at least

one prime factor, say p.

Under the monoid ismorphism τ1/m2p : M → M ′ =
1

m2p
M , the element

π = m1 +m2 is mapped to the element

π′ =
1

m2p
π =

m′1
m2

+
1

p
,

where m′1 =
m1

p
. The monoid M ′ is infinitely generated, without essential genera-

tors, and π′ is an element of M ′ of height (0, 0, 0, . . . ) which is a sum of two nonzero

elements of M ′, namely
m′1
m2

and
1

p
(both in reduced form). Moreover, Xπ − 1

is irreducible and non-prime in F [X;M ] if and only if Xπ′ − 1 is irreducible and

non-prime in F [X;M ′].

So it is enough to prove that if the monoid M in the statement of our

theorem contains an element π of height (0, 0, 0, . . . ) such that π =
m

n
+

1

p
, where

gcd(m,n) = 1, gcd(n, p), n 6= 1, then Xπ − 1 is irreducible and non-prime.

So let’s assume that we have this situation. Then, by Theorem 5.5, Xπ − 1

is irreducible. We will show that it is not prime.

We have π =
mp+ n

pn
. Hence, Xπ − 1 = (X

mp+n
pn − 1) | (X

mp+n
p − 1). We

have, also:

X
mp+n
p − 1 = (X

1
p )mp+n − 1

= (X
1
p − 1)(X

mp+n−1
p +X

mp+n−2
p + · · ·+X

1
p + 1).
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Since
1

p
< π, we have Xπ − 1 - (X

1
p − 1).

Suppose that

(Xπ − 1) | (X
mp+n−1

p +X
mp+n−2

p + · · ·+X
1
p + 1). (6.5)

Then,

X
mp+n−1

p +X
mp+n−2

p + · · ·+X
1
p + 1

= (X
mp+n
pn − 1)(Xα1 + g2X

α2 + · · ·+ gk−1X
αk−1 − 1), (6.6)

where α1 > α2 > · · · > αk−1 > 0 and g2, g3, . . . gk−1 are coefficients.

It follows that

α1 =
(mp+ n)(n− 1)− n

pn
.

Note that α1 6=
mp+ n− i

p
for all i = 2, 3, . . . ,mp+n−1, since, otherwise, we would

get (i− 2)n = mp, which is not possible since gcd(m,n) = 1 and gcd(p, n) = 1, one

can calculate that α1 <
mp+ n− 2

p
.

Hence, the exponent
mp+ n− 2

p
on the LHS of 6.6 has to be obtained from

X
mp+n
pn · (Xα1 + g2X

α2 + · · ·+ gk−1X
αk−1 − 1),

since it cannot be obtained from

(−1) · (Xα1 + g2X
α2 + · · ·+ gk−1X

αk−1 − 1)

(these two are parts of the LHS). But then it has to be either

mp+ n

pn
+ α2 =

mp+ n− 2

p
, (6.7)

or, if

mp+ n

pn
+ αi =

mp+ n− 2

p
, for some i ≥ 3, (6.8)
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then the terms with the exponents
mp+ n

pn
+ α2, . . . ,

mp+ n

pn
+ αi−1 would have to

be cancelled on the RHS, so that we would have

mp+ n

pn
+ α2 = α1,

mp+ n

pn
+ α3 = α2,

...

mp+ n

pn
+ αi−1 = αi−2.

Hence,

α2 =
(mp+ n)(n− 2)− n

pn
,

α2 =
(mp+ n)(n− 3)− n

pn
,

...

αi−1 =
(mp+ n)(n− i+ 1)− n

pn
,

and from equation 6.8

αi−1 =
(mp+ n)(n− i+ 1)− n

pn
>

(mp+ n)(n− 1)− 2n

pn
= αi,

which gives

n > (mp+ n)(i− 2), i ≥ 3,

which is not true. Hence, equation 6.7 holds. This gives

α2 =
(mp+ n)(n− 1)− 2n

pn
. (6.9)

Note that α2 6=
mp+ n− i

p
for all i = 3, 4, . . . ,mp+n−1, since otherwise we would

get (i − 3)n = mp, which is not possible since gcd(m,n) = 1 and gcd(p, n) = 1.

Also, note that

α2 <
mp+ n− 3

p
.
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Hence, the exponent
mp+ n− 3

p
on the LHS of equation 6.6 has to be obtained

from

X
mp+n
pn (Xα1 + g2X

α2 + · · ·+ gk−1X
αk−1 − 1)

(we noticed before that it cannot be equal to α1). Reasoning in the same way as

before we conclude that

α3 =
(mp+ n)(n− 1)− 3n

pn
, (6.10)

and by induction we get

αi =
(mp+ n)(n− 1)− in

pn
, (6.11)

for i = 2, 3, . . . , r, where r is the largest integer for which

mp+ n

pn
<
mp+ n− r

p
. (6.12)

From 6.12 we get

r < mp+ n− 1− mp

n
.

Hence,

r ≤ mp+ n− 2.

However, then

mp+ n− r
p

≥ 2

p
, (6.13)

so that all of the exponents
mp+ n− i

p
from the LHS are obtained as

mp+ n

pn
+αi.

As before, αr =
(mp+ n)(n− 1)− rn

pn
cannot be equal to any

mp+ n− i
p

, i =

r+ 1, r+ 2, . . . ,mp+n− 1, otherwise we would get n(i− r− 1) = mp, which is not

possible as gcd(m,n) = 1 and gcd(p, n) = 1. Now note that

αr <
mp+ n− (r + 1)

p
. (6.14)
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It follows that the exponent
mp+ n− (r + 1)

p
from the LHS cannot be ob-

tained from

X
mp+n
pn (Xα1 + g2X

α2 + · · ·+ gk−1X
αk−1 − 1)

since r was the largest integer for which 6.12 holds, nor from

(−1)(Xα1 + g2X
α2 + · · ·+ gk−1X

αk−1 − 1)

since 6.14 holds and no αi with i < r can be equal to any
mp+ n− i

p
, i = r+ 1, r+

2, . . . ,mp + n − 1. We got a contradiction, hence 6.6 does not hold, i.e., 6.5 does

not hold. So Xπ − 1 is not prime.

REMARK 6.1. We had before that for any monoid M ⊆ (Q+,+), if M has the

gcd/lcm property, then F [X;M ] is AP. Therefore, for the case of infinitely generated

monoid without essential generators, we have the following diagram:

Figure 6.2: Relations of the properties: M has the gcd/lcm property, F [X;M ] is

AP, and M has no elements of height (0, 0, 0, . . . ).

M has the

gcd/lcm property

F [X;M ] has the

AP property

M has no elements

of height (0, 0, 0, . . . )
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Note that if we only want to prove the implication “M has the gcd/lcm

property” =⇒ “M has no elements of height (0, 0, 0, . . . )”, we can do that in a

simpler way, as follows.

PROPOSITION 6.3. Let M be a nonmonogenerated monoid with the gcd/lcm prop-

erty. Then M has no elements of height (0, 0, 0, . . . ).

Proof. Suppose to the contrary, that is, that there is an element
m1

n2

∈M , in reduced

form, of height (0, 0, 0, . . . ). Because M is not monogerated, there exists a second

element, say
m2

n2

∈ M , in reduced form, such that
m2

n2

/∈
〈
m1

n1

〉
. Now, utilizing

our assumption that M has the gcd/lcm property, we know that
gcd(m1,m2)

lcm(n1, n2)
is

a member of the monoid. Hence, there are positive integers x, y such that m1 =

gcd(m1,m2) · x and n1 · y = lcm(n1, n2), and, therefore, we have that

m1

n1

=
gcd(m1,m2) · x
lcm(n1, n2)/y

= xy · gcd(m1,m2)

lcm(n1, n2)

where xy ≥ 1. If xy = 1, then x = y = 1. Hence, m1 | m2 and n2 | n1. Supposing

n2 · k = n1 and m1 · l = m2, we get that
m2

n2

= lk · m1

n1

, a contradiction since

m2

n2

/∈
〈
m1

n1

〉
. If xy 6= 1 we simply factor out a prime factor and we are finished.

Thus,
m1

n1

cannot be an element of height (0, 0, 0, . . . ).
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CHAPTER 7

REMARKS AND CONCLUSION

One of the main topics that we investigated are the properties of the monoid

domain F [X;M ], where F is a field and M is a submonoid of (Q+,+). We were par-

ticularly interested in the notions of atomicity and AP-ness of the domain F [X;M ]

and we obtained several results relating these properties of F [X;M ] with the pro-

perties of the monoid M . For example, in Chapter 6 we proved that

F [X;M ] AP =⇒ M has no elements of height (0, 0, 0, . . . )

and that

M has the gcd/lcm property =⇒ F [X;M ] AP.

Our main question, then, became the following: what is the precise property

P (M) of the monoids M ⊆ (Q+,+) such that

P (M) ⇐⇒ F [X;M ] AP?

From previous chapters, we have that

gcd/lcm property =⇒ P (M) =⇒ no elements of height (0, 0, 0, . . . ).

However, more recent results show that these implications are, in fact, equivalences.

Indeed, by considering other properties of the monoid M ⊆ (Q+,+), we have the

following results.

THEOREM 7.1. Let M be a submonoid of (Q+,+) and F a field. The following

are equivalent:
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(a) M is a Prüfer monoid (i.e., a union of an increasing sequence of cyclic

monoids);

(b) M is a half-group monoid (i.e., M = G∩Q+, where G is a subgroup of Q);

(c) M is difference-closed, (i.e., if a, b ∈M and a ≤ b, then b− a ∈M);

(d) M = Diff(M) ∩Q+;

(e) M satisfies the gcd/lcm condition;

(f) M ∼= N0 or M has no elements of height (0, 0, 0, . . . );

(g) M is integrally closed.

THEOREM 7.2. Let M be a submonoid of (Q+,+) and F a field.

(i) The conditions (a)-(g) from Theorem 7.1 are equivalent and each of them

implies that F [X;M ] is an AP-domain.

(ii) If F is of characteristic 0, then each of the conditions from Theorem 7.1 is

equivalent with F [X;M ] being an AP-domain.

From the literature, when considering the monoid domains F [X;M ] where

M ⊆ (Q+,+), the following domains are equivalent: Euclidean domains, principal

ideal domains, unique factorization domains, and Dedekind domains. Moreover, in

the same context, Bézout domains, Prüfer domains, integrally closed domains, GCD

domains, Schreier domains, and Pre-Schreier domains are also all equivalent. With

our new results we have shown that AP-domains are equivalent to the latter. More-

over, we found that those domains which satisfy the PC condition are equivalent to

the latter domains, as well. We display our findings in the figures following.
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Figure 7.1: Implications Between Some Types of Domains

Noetherian

Dedekind

Atomic

ACCP

PID

Euclidean

Field

Integral domain

UFD

Integrally

closed

Prüfer

AP

Pre-Schreier

Schreier

GCD

Bézout

PC

MIP

Diagram 1: Implications between some types of integral domains

The properties contained within their respective circles are equvialent in

F [X;M ] where M ⊆ (Q+,+). Related to this implication diagram, the next figure

shows relations for various properties of the submonoids of nonnegative rational

numbers.

74



Figure 7.2: Implications Between Some Types of Submonoids M ⊆ (Q+,+)

M submonoid of Q+

M has at least one

essential generator

or M = {0}

M can be generated

by essential generators,

i.e., M is atomic

M is ACCP

≡ F [X;M ] ACCP

M finitely generated

≡ F [X;M ] Noetherian

M = {0} or M ∼= N0

≡ F [X;M ] Dedekind domain

≡ F [X;M ] UFD

≡ F [X;M ] PID

≡ F [X;M ] Euclidean domain

M = {0}

≡ F [X;M ] field
M ∼= N0

M has no essential

generators or M ∼= N0

M satisfies the conditions

from Thm 7.1

≡ F [X;M ] pre-Schreier;

≡ F [X;M ] Schreier;

≡ F [X;M ] GCD;

≡ F [X;M ] Prüfer

≡ F [X;M ] Bézout

≡ F [X;M ] integ closed

≡ F [X;M ] MIP

≡ F [X;M ] PC

≡ F [X;M ] AP

Those properties contained within the larger rectangle on the left (respec-

tively, right) correspond to the domain properties contained within the smaller circle

(respectively, larger circle) in the previous figure. Notice, in the large rectangle on
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the right hand side of the diagram, we have highlighted our addition to the litera-

ture, that is, F [X : M ] being AP is equivalent to the other properties of the domain

contained within the same rectangle when M is as assumed.

We have, therefore, answered our main question fully in the case that F is

of characteristic 0. However, the question remains in the case where F is of finite

characteristic > 0.

In Chapter 5 we introduced the notion of Matsuda monoids and showed that

every monoid M ⊆ (Q+,+) is a Matsuda monoid of type 0. In our paper [6] we

raised the following questions:

(i) Is any proper submonoid of (N0,+) a Matsuda monoid of any finite type?

(ii) Is every cancellative torsion-free monoid a Matsuda monoid of type 0?

Aside from these three questions we would like to work on the relations

between properties of M ⊆ (Q+,+) and various other properties of F [X;M ], in-

cluding atomicity, ACCP, U-UFD, etc. (An integral domain R is U-UFD if for

every nonzero nonunit x ∈ R which has an irreducible factorization, that factoriza-

tion is its unique irreducible factorization, up to associates.) We would be especially

interested in studying the properties (of F [X;M ]) introduced in the paper [1].

Furthermore, in [17], Lebowitz-Lockard classified various subatomic domains,

e.g., Semi-Atomic, Almost atomic, Furstenberg, and Almost Furstenberg, etc. It

would be interesting to extend our research to consider relations between the pro-

perties of the monoid M ⊆ (Q+,+) and various subatomic properties of the domain

F [X;M ].

76



REFERENCES

[1] D. D. ANDERSON, D. F. ANDERSON, and M. ZAFRULLAH, Factorization

in integral domains, J. Pure Appl. Algebra 69 (1990), 1–19.

[2] D. M. BURTON, A first course in rings and ideals, Addison-Wesley Publishing

Company, Inc., 1970.

[3] , Abstract algebra, Wm. C. Brown Publishers, Dubuque, IA, 1988.

[4] N. Q. CHINH and P. H. NAM, New Characterization of Principal Ideal Do-

mains, East-West J. Math. 10 (2008), 149–152.

[5] K. CHRISTENSEN, R. GIPSON, and H. KULOSMAN, A new characterization

of principal ideal domains, Sarajevo J. Math., accepted.

[6] , Irreducibility of certain binomials in semigroup rings for nonnegative

rational monoids, Intern, Electr. J. Algebra 42 (2018), to appear.
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