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ABSTRACT

SEVERAL FUNCTIONAL EQUATIONS DEFINED ON GROUPS
ARISING FROM STOCHASTIC DISTANCE MEASURES

Heather B. Hunt

June 25th, 2014

Several functional equations related to stochastic distance measures have

been widely studied when defined on the real line. This dissertation generalizes

several of those results to functions defined on groups and fields. Specifically, we

consider when the domain is an arbitrary group, G, and the range is the field of

complex numbers, C.

We begin by looking at the linear functional equation f(pr, qs) + f(ps, qr) =

2f(p, q) + 2f(r, s) for all p, q, r, s ∈ G. The general solution f : G×G→ C is given

along with a few specific examples. Several generalizations of this equation are also

considered and used to determine the general solution f, g, h, k : G×G→ C of the

functional equation f(pr, qs) + g(ps, qr) = h(p, q) + k(r, s) for all p, q, r, s ∈ G.

We then consider the non-linear functional equation f(pr, qs) + f(ps, qr) =

f(p, q) f(r, s). The solution f : G×G→ C is given for all p, q, r, s ∈ G when f is an

abelian function. It is followed by the structure of the general solution, f , dependent

upon how the function acts on the center of the group. Several generalizations of

the equation are also considered. The general structure of the solution f, g, h :

G×G→ C of the functional equation f(pr, qs) + f(ps, qr) = g(p, q)h(r, s) is given

for all p, q, r, s ∈ G, dependent upon how the function h acts on the center of the

group. Future plans related to these equations will be given.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Let R denote the set of real numbers, R+ the set of non-negative real num-

bers, I the open unit interval (0, 1), and I1 the open-closed unit interval (0, 1]. Let

Γ0
n be the set of discrete probability distributions on a finite set, Ω of cardinality n,

that is

Γ0
n = {P = (p1, p2, ..., pn)|0 < pk < 1,

n∑
k=1

pk = 1}.

Several distance measures between discrete probability distributions have been pro-

posed and studied over the past several years, such as the Chernoff coefficient,

Hellinger coefficient, and Jeffereys’ distance (see [2]). Notably, for P and Q in Γ0
n,

Kullback and Leibler in [7] defined a measure of the distance between P and Q

that is both non-negative and non-symmetric. This measure, known as directed

divergence, is defined as follows: for P and Q in Γ0
n,

Dn(P ‖ Q) =
n∑
k=1

pk log2

pk
qk
.

Since it is neither symmetric nor satisfies the triangle inequality it is often

not useful as a metric. In order to restore symmetry, the symmetric divergence

between any two probability distributions, P,Q in Γ0
n, was introduced as follows:

Jn(P,Q) = Dn(P ‖ Q) +Dn(Q ‖ P ).
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Explicitly, Jn(P,Q) can be expressed as

Jn(P,Q) =
n∑
k=1

(pk − qk) log2

pk
qk
.

This measure, known as the J-divergence measure, satisfies the composition law

Jnm(P ? R,Q ? S) + Jnm(P ? S,Q ? R) = 2 Jn(P,Q) + 2 Jm(R, S)

for all P,Q ∈ Γ0
n and R, S ∈ Γ0

m, where

P ? R = (p1r1, ..., p1rm, p2r1, ..., p2rm, ..., pnr1, ..., pnrm).

Through this composition law and the sum property the measure has been charac-

terized (see [2]).

Numerous well-known generalizations have also been characterized. One

such generalization of the J-divergence measure being the symmetric divergence of

degree α given by

Jn,α(P,Q) =

n∑
k=1

(pαkq
1−α
k + qαk p

1−α
k )− 2

21−α − 1
,

where α 6= 1 and P,Q in Γ0
n. If α → 1, then Jn,α(P,Q) tends to Jn(P,Q). This

measure satisfies the following composition law [2]:

Jnm,α(P ? R,Q ? S) + Jnm,α(P ? S,Q ? R)

= 2 Jn,α(P,Q) + 2 Jm,α(R, S) + λ Jn,α(P,Q) Jm,α(R, S)

for all P,Q ∈ Γ0
n and R, S ∈ Γ0

m, where

P ? R = (p1r1, ..., p1rm, p2r1, ..., p2rm, ..., pnr1, ..., pnrm).

and λ = 21−α−1. Through this composition law and the sum property the measure

has been characterized (see [2]).
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Several functional equations were instrumental in both of these characteri-

zations, notably

f(pr, qs) + f(ps, qr) = (r + s) f(p, q) + (p+ q) f(r, s)

and

f(pr, qs) + f(ps, qr) = f(p, q) f(r, s)

for all p, q, r, s ∈ I1 and I respectively. These equations and numerous generaliza-

tions have been extensively studied when the unknown functions are defined on I1

and I and take values on the set R.

One such generalization of the first equation is the following:

f(pr, qs) + f(ps, qr) = g(r, s) f(p, q) + g(p, q) f(r, s)

for all p, q, r, s ∈ I1. The general solution of this functional equation was determined

in [9] (see also [10]). In order to determine the general solution, the solution of the

functional equation

f(pr, qs) + f(ps, qr) = 2 f(p, q) + 2 f(r, s)

for all p, q, r, s ∈ I1 was needed. Riedel and Sahoo [10] have generalized this equation

to

f(pr, qs) + g(ps, qr) = h(p, q) + k(r, s)

for all p, q, r, s ∈ I1. For more information in regards to functional equations as-

sociated with stochastic distance measures, the interested reader is referred to the

book [12].

A function L : R+ → R is said to be a logarithmic function if and only if

L(xy) = L(x) + L(y) for all x, y ∈ R+. A function L : R+ × R+ → R is called

bi-logarithmic if and only if it is logarithmic in both variables, that is, L(xy, wz) =

L(x,wz) + L(y, wz) = L(x,w) + L(x, z) + L(y, w) + L(y, z) for all x, y, z, w ∈ R+.
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A function m : R+ → R is said to be a multiplicative function if and only if

m(xy) = m(x)m(y) for all x, y ∈ R+.

In 1997, Riedel and Sahoo in [10] proved the following result on the open-

closed unit interval.

THEOREM 1.1. The functions f, g, h, k : I21 → R satisfy the functional equation

f(pr, qs) + g(ps, qr) = h(p, q) + k(r, s)

for all p, q, r, s ∈ I1 if and only if

f(p, q) = L(p, q) + L2(q) + `

(
p

q
,
p

q

)
+ φ(pq)− α

g(p, q) = L(p, q)− L2(q) + `

(
p

q
,
p

q

)
− φ(pq)− α

h(p, q) = 2L(p, q) + 2 `

(
p

q
,
p

q

)
+ 2 β − 2α

k(p, q) = 2L1(p) + 2L1(q) + L2(q)− L2(p) + 2 `

(
p

q
,
p

q

)
− 2 β,

where

L(p, q) = L0(q)− L0(p) + L1(p) + L1(q),

L0, L1, L2 : R+ → R are logarithmic, ` : R2
+ → R is bi-logarithmic, φ : R+ → R is

arbitrary, and α, β are arbitrary real constants.

The open-closed unit interval, I1, is a commutative unital semi-group under

multiplication. The unit element 1 played a pivotal role in solving the above func-

tional equation. In 1999, Sahoo in [11] gave a proof of Theorem 1.1 without using

the unit element 1.

Far fewer generalizations of the second equation,

f(pr, qs) + f(ps, qr) = f(p, q) f(r, s),

have been studied. In 1989 Chung, Kannappan, Ng, and Sahoo (see [2] and also

[12]) proved the following result on the open unit interval, I. The proof depends

highly on the commutativity of the real number system on the open unit interval.
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THEOREM 1.2. Suppose f : I2 → R satisfies the functional equation

f(pr, qs) + f(ps, qr) = f(p, q) f(r, s)

for all p, q, r, s ∈ I. Then

f(p, q) = m1(p)m2(q) +m1(q)m2(p),

where m1,m2 : I → C are multiplicative. Further, either m1 and m2 are both real

or m2 is the complex conjugate of m1. The converse is also true.

In 2014, Stetkær (see [15]) studied a similar equation on a non-commutative

semi-group, S. In the case that the semi-group is commutative, one can see that

the result is similar to that of Chung, Kannappan, Ng, and Sahoo.

THEOREM 1.3. Let S be a semi-group. Any solution f : S × S → C of the

functional equation

f(pr, qs) + f(sp, rq) = f(p, q) f(r, s)

has the form

f(p, q) = m1(p)m2(q) +m1(q)m2(p)

for all p, q, r, s ∈ S, where m1,m2 : S → C are multiplicative.

Using several previous results along with new techniques and ideas, we will

to extend several of these results to an arbitrary group.

1.2 Notation and Terminology

Let (G, ·) and (H, ?) be arbitrary groups. Let e denote the identity element

of any arbitrary group. A function θ : G→ H is said to be a homomorphism from

group G into group H if and only if θ(x · y) = θ(x) ? θ(y) for all x, y ∈ G. A

function ψ : G×G→ H is said to be a bi-homomorphism if it is a homomorphism

5



in each variable, that is, ψ(xy, wz) = ψ(x,wz) + ψ(y, wz) = ψ(x,w) + ψ(x, z) +

ψ(y, w) +ψ(y, z) for all x, y, z, w ∈ G. A symmetric bi-homomorphism is a function

ψ : G × G → H that is a bi-homomorphism and satisfies ψ(x, y) = ψ(y, x) for all

x, y ∈ G.

If G is an arbitrary group, then the group operation will be denoted by ·

and we write x · y simply as xy. In the case G is an abelian group, the group

operation will be denoted by addition. The set of all homomorphisms from G into

H will be denoted by Hom(G,H). When the groups G and H are abelian, the

homomorphism θ will be called an additive function and similarly ψ will be called

a bi-additive function. When the group H is abelian, the homomorphism θ will

be called an additive homomorphism and likewise ψ will be called an additive bi-

homomorphism. When the groups G and H are both arbitrary the homomorphism

θ will be called a multiplicative homomorphism and similarly ψ will be called a

multiplicative bi-homomorphism.

If K is a field, then the additive group of K will be denoted by K itself while

the multiplicative group of K will be denoted by K?. Specifically, we will denote

the field of complex numbers by C, and the field of non-zero complex number by

C?. Hence if K is a field, Hom(G,K) will denote the group of homomorphisms from

the group G to the additive group of the field K, while Hom(G,K?) will denote

the group of homomorphisms from the group G to the multiplicative group of the

field K. The set of all bi-homomorphisms from G × G into the additive group of

the field K will be denoted by Bihom(G × G,K), while the set of all symmetric

bi-homomorphisms will be denoted by SBihom(G×G,K). It should be noted that

SBihom(G×G,K) ⊆ Bihom (G×G,K).

A function f : G→ K is said to be a central function if and only if f(xy) =

f(yx) for all x, y ∈ G. A central function is a function invariant under conjugation.

A function f : G→ K is said to be an abelian function if and only if f(xyz) = f(xzy)

6



for all x, y, z ∈ G [14]. It is easy to see that every abelian function is central while

the converse is not true. An element f ∈ Hom(G,C?) is called a (group)character.

Hence a character is a non-zero multiplicative homomorphism from group G into

multiplicative group of non-zero complex numbers. For any function f we will use

the following notation: fx(y) = f(xy)− f(x) f(y) for all x, y ∈ G.

1.3 Examples of Central and Abelian Functions

In this section we give an example of a central function and an abelian

function.

EXAMPLE 1.1. Consider the non-abelian group of 2 × 2 invertible matrices over

R,

GL2(R) =


a b

c d

 | a, b, c, d ∈ R, ad− bc 6= 0

 .

Consider the function f : GL2(R)→ R defined such that f(A) = ad− bc = det(A)

for all ∈ GL2(R). It is known that the following holds for all A,B ∈ GL2(R):

det(AB) = det(A) det(B) = det(B) det(A) = det(BA).

Therefore, f(AB) = f(BA) although AB 6= BA.

One can easily see that this function is also an abelian function by the prop-

erties of the real numbers and the determinant. We will now give a more complex

example of an abelian function.

EXAMPLE 1.2. Consider the symmetric permutation group of order 6, that is the

group S3 = {e, (12), (13), (23), (123), (132)}. This group is a non-abelian group,

for instance (12)(13) = (132) but (13)(12) = (123). It can be shown that the

commutator subgroup, which is the set of elements given by aba−1b−1 where a, b ∈ S3,

7



is the set A3. The set A3 consists of the identity element and the two 3-cycles, i.e.

the set S ′3 = {aba−1b−1 | a, b ∈ S3} = {e, (123), (132)} = A3.

We consider the abelianization of S3, which is the quotient group S3/A3 =

{aA3 | a ∈ S3}. The abelianization creates a partition of the set S3. The subsets

within this partition are called the cosets. We have that there are two cosets: the

set of all three 2-cycles and the set with the identity and the two 3-cycles. If we

define a function that is constant on the cosets, i.e. f(xy) = f(x) for all x ∈ S3

and y ∈ S ′3, then we have created an abelian function. Thus, consider the function

f : S3 → R defined as follows:

f(x) =

 c1 if x ∈ {(12), (13), (23)}

c2 if x ∈ {e, (123), (132)}

where c1 and c2 are arbitrary real constants.

It is a well known that every permutation in Sn, for an arbitrary n, can be

broken down into a product of 2-cycles. In terms of S3 the set {(12), (13), (23)}

is the set of all odd permutations which are permutations that can be broken down

into an odd number of two cycles. The set {e, (123), (132)} is the set of all even

permutations which are permutations that can be broken down into an even number

of two cycles. The set of all even permutations is denoted An.

If we consider multiplying any three elements of S3 then the number of two

cycles that the product breaks down into will determine whether or not the product

is an even or odd permutation which will determine the value of our function. Thus,

if we consider three elements x, y, z ∈ S3 the function f will take the same value

for any permutation of these three elements. Therefore, this function is an abelian

function.

REMARK 1.1. The previous example can be generalized for any integer n ≥ 3. It

is known that the commutator subgroup for any symmetric group is the group of

8



even permutations, An. The quotient group Sn/An will always produce two cosets.

Hence, you can always create a function just like the one from the previous example.

Since every central function is not necessarily abelian, it is only fitting to

give an example of such a function.

EXAMPLE 1.3. Consider the non-abelian group of 2 × 2 invertible matrices over

R,

GL2(R) =


a b

c d

 | a, b, c, d ∈ R, ad− bc 6= 0

 ,

and the function f : GL2(R) → R defined such that f(A) = trace(A) for all A ∈

GL2(R), where the trace represents the sum of the elements on the main diagonal,

i.e. a+ d. It can be shown that the following holds for all A,B ∈ GL2(R):

trace(AB) = trace(BA).

Therefore, f(AB) = f(BA) although AB 6= BA. It is not necessarily true that

trace(AB C) = trace(AC B) for all A,B,C ∈ GL2(R). Since f(AB C) is not

always equal to f(AC B), we have that f is central but not abelian.

9



CHAPTER 2

SEVERAL LINEAR FUNCTIONAL EQUATIONS ON GROUPS
ARISING FROM STOCHASTIC DISTANCE MEASURES

2.1 Introduction: A Generalized Linear Functional Equation

The main goal of this Chapter is to find the general solution f, g, h, k :

G×G→ C of the linear functional equation

f(pr, qs) + g(ps, qr) = h(p, q) + k(r, s) (2.1)

on an arbitrary group. Here G denotes an arbitrary group and C denotes the field

of complex numbers. In order to achieve this task, we also determine the general

solution of three important functional equations, namely,

f(pr, qs) + f(ps, qr) = 2f(p, q) + 2f(r, s)

f(pr, qs) + f(ps, qr) = 2f(p, q) + f(r, s) + f(s, r)

and

f(pr, qs)− f(ps, qr) = f(r, s)− f(s, r)

for all p, q, r, s ∈ G. For the functional equation (2.1), no new solutions emerge in

this general setting. We will give several specific examples of solutions to the first

of the three equations given above.

One should note that the work within this Chapter has been accepted for

publication in the journal Aequationes Mathematicae, under the title “On a func-

tional equation on groups arising from the characterization of stochastic distance

measures” [5].
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2.2 Some Preliminary Results

We begin with an important result concerning the symmetrized homomor-

phism equation due to Corovei (see [3] and also [14]).

THEOREM 2.1. Let G be a group and K be a field with characteristic not equal to

2. The function f : G→ K satisfies the functional equation

f(xy) + f(yx) = 2 f(x) + 2 f(y) ∀x, y ∈ G

if and only if f ∈ Hom(G,K).

First, we determine the general solution of the functional equation

f(pr, qs) + f(ps, qr) = 2 f(p, q) + 2 f(r, s) (2.2)

on an arbitrary group G using some ideas from [2] and Theorem 2.1.

THEOREM 2.2. The function f : G×G→ C satisfies the functional equation (2.2)

for all p, q, r, s ∈ G if and only if f is of the form

f(p, r) = θ(p) + θ(r) + ψ(pr−1, pr−1), (2.3)

where θ ∈ Hom(G,C) and ψ ∈ SBihom(G×G,C).

Proof. It is easy to verify that f given by (2.4) is a solution of the equation (2.2).

Hence, we only prove the converse. Let r = s = e in (2.2). Thus,

f(p, q) + f(p, q) = 2 f(p, q) + 2 f(e, e),

giving us f(e, e) = 0. Switching r and s in (2.2) we find that

f(ps, qr) + f(pr, qs) = 2 f(p, q) + 2 f(s, r).

Subtracting this from (2.2) yields

f(r, s) = f(s, r)
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for all r, s ∈ G, thus f is symmetric. Now, let q = s = e in (2.2). Then

f(pr, e) + f(p, r) = 2 f(p, e) + 2 f(r, e)

for all p, r ∈ G. Define a function g : G→ C such that g(x) = f(x, e) for all x ∈ G.

Since f(e, e) = 0 we have that g(e) = 0. Using the definition of g the last equation

yields

f(p, r) = 2 g(p) + 2 g(r)− g(pr). (2.4)

Since f is symmetric, we can see that

g(rp) = g(pr)

for all p, r ∈ G. Thus, g is a central function. Now, let s = e in (2.2) to obtain

f(pr, q) + f(p, qr) = 2 f(p, q) + 2 f(r, e).

Using the definition of g, the fact that g is a central function, and (2.4) the previous

becomes

2 g(pr) + 2 g(q)− g(prq) + 2 g(p) + 2 g(qr)− g(pqr)

= 4 g(p) + 4 g(q)− 2g(pq) + 2 g(r)

and simplifies to

g(prq)− g(p)− g(rq) + g(pqr)− g(p)− g(qr) (2.5)

= 2 g(pr)− 2 g(p)− 2 g(r) + 2 g(pq)− 2 g(p)− 2 g(q).

For a fixed p ∈ G we define ω : G→ C such that

ω(r) = g(pr)− g(p)− g(r). (2.6)

Thus, (2.5) becomes

ω(rq) + ω(qr) = 2ω(r) + 2ω(q)
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for all q, r ∈ G. By Theorem 2.1 we have that ω is an additive homomorphism.

Since ω was defined for each fixed p, ω can be written as ω(r) = 2ψ(p, r), where

ψ : G × G → C is an additive homomorphism in the second variable. Using (2.6)

we get

g(pr)− g(p)− g(r) = 2ψ(p, r) (2.7)

for all p, r ∈ G. Interchanging r with p we get

g(rp)− g(r)− g(p) = 2ψ(r, p).

Comparing the two previous equations and using the fact that g is a central function

we find that ψ is a symmetric function. Hence, ψ is an additive homomorphism in

both variables and ψ ∈ SBihom(G×G,C). Now, define θ : G→ C such that

θ(p) = g(p)− ψ(p, p)

for all p ∈ G. Then

g(pr) = θ(pr) + ψ(pr, pr) (2.8)

for all p, r ∈ G. Since ψ is a symmetric bi-homomorphism, expanding ψ(pr, pr) we

get

ψ(pr, pr) = ψ(p, p) + ψ(r, r) + ψ(p, r) + ψ(r, p) (2.9)

Hence from (2.7), (2.9), and the symmetry of ψ we get

2ψ(p, r) = θ(pr) + ψ(pr, pr)− θ(p)− ψ(p, p)− θ(r)− ψ(r, r)

= θ(pr) + ψ(p, p) + ψ(r, r) + ψ(p, r) + ψ(r, p)

− θ(p)− ψ(p, p)− θ(r)− ψ(r, r)

which simplifies to

θ(pr) = θ(p) + θ(r)
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for all p, r ∈ G. Thus, θ is an additive homomorphism. Substituting (2.8) into (2.4)

and using (2.9) we find that

f(p, r) = 2 (θ(p) + ψ(p, p)) + 2 (θ(r) + ψ(r, r))− (θ(pr) + ψ(pr, pr))

= θ(p) + θ(r) + 2ψ(p, p) + 2ψ(r, r)− ψ(pr, pr)

= θ(p) + θ(r) + 2ψ(p, p) + 2ψ(r, r)− ψ(p, p)− ψ(r, r)− ψ(p, r)− ψ(r, p)

= θ(p) + θ(r) + ψ(p, p) + ψ(r−1, r−1) + ψ(p, r−1) + ψ(r−1, p)

= θ(p) + θ(r) + ψ(pr−1, pr−1).

Hence, f(p, r) = θ(p) + θ(r) + ψ(pr−1, pr−1) for all p, r ∈ G which is the asserted

solution (2.4). Now the proof of the theorem is complete.

This theorem leads us to several generalizations of the equation in terms of

two functions, hence the following corollaries.

COROLLARY 2.1. The functions f, g : G×G→ C satisfy the functional equation

f(pr, qs) + g(ps, qr) = 2 f(p, q) + 2 f(r, s) (2.10)

for all p, q, r, s ∈ G if and only if f and g are of the form

f(p, r) = θ(p) + θ(r) + ψ(pr−1, pr−1) + α

g(p, r) = θ(p) + θ(r) + ψ(pr−1, pr−1) + 3α,

where θ ∈ Hom(G,C), ψ ∈ SBihom(G×G,C), and α ∈ C is an arbitrary constant.

Proof. Let r = s = e in (2.10). Thus,

f(p, q) + g(p, q) = 2 f(p, q) + 2 f(e, e).

Let α be a constant in C such that α = f(e, e). The last equation then becomes

g(p, q) = f(p, q) + 2α
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for all p, q ∈ G. Substituting this back into (2.10) and rewriting we have

h(pr, qs) + h(ps, qr) = 2h(p, q) + 2h(r, s),

where h : G × G → C is defined by h(p, q) = f(p, q) − α for all p, q ∈ G. From

Theorem 2.2 we now have the following solution:

h(p, r) = θ(p) + θ(r) + ψ(pr−1, pr−1)

for all p, r ∈ G, where θ : G→ C is an additive homomorphism and ψ : G×G→ C

is an additive symmetric bi-homomorphism. Therefore, from the definition of h we

get

f(p, r) = θ(p) + θ(r) + ψ(pr−1, pr−1) + α

for all p, r ∈ G. Thus,

g(p, r) = θ(p) + θ(r) + ψ(pr−1, pr−1) + 3α

for all p, r ∈ G.

It is easy to check that the functions f and g given above are indeed the

solutions of the equation (2.10) and now the proof of the corollary is complete.

COROLLARY 2.2. If f, g : G×G→ C satisfy the following functional equation

f(pr, qs) + g(ps, qr) = 2 f(p, q) + 2 g(r, s) (2.11)

for all p, q, r, s ∈ G, then f and g are of the form

f(p, r) = θ(p) + θ(r) + ψ(pr−1, pr−1)− α

g(p, r) = θ(p) + θ(r) + ψ(pr−1, pr−1) + α,

where θ ∈ Hom(G,C), ψ ∈ SBihom(G×G,C), and α ∈ C is an arbitrary constant.

The converse of this is also true.
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Proof. Let r = s = e in (2.2). Thus,

f(p, q) + g(p, q) = 2 f(p, q) + 2 g(e, e)

for all p, q ∈ G. Let α be in C such that α = g(e, e). The previous gives us

g(p, q) = f(p, q) + 2α

for all p, q ∈ G. Substituting this back into (2.11) and rewriting we have

h(pr, qs) + h(ps, qr) = 2h(p, q) + 2h(r, s),

where h : G × G → C is defined by h(p, q) = f(p, q) + α for all p, q ∈ G. From

Theorem 2.2 we now have the following solution of the last functional equation:

h(p, r) = θ(p) + θ(r) + ψ(pr−1, pr−1)

for all p, r ∈ G, where θ : G→ C is an additive homomorphism and ψ : G×G→ C

is an additive symmetric bi-homomorphism. Therefore, from the definition of h

f(p, r) = θ(p) + θ(r) + ψ(pr−1, pr−1)− α

for all p, r ∈ G. Thus,

g(p, r) = θ(p) + θ(r) + ψ(pr−1, pr−1) + α

for all p, r ∈ G.

The converse is easy to verify and hence the proof of the corollary is now

complete.

COROLLARY 2.3. The functions f, g : G×G→ C satisfy the functional equation

f(pr, qs) + f(ps, qr) = 2 g(p, q) + 2 g(r, s) (2.12)

for all p, q, r, s ∈ G if and only if f and g are of the form

f(p, q) = θ(p) + θ(q) + ψ(pq−1, pq−1) + 2α

g(p, q) = θ(p) + θ(r) + ψ(pr−1, pr−1) + α,

where θ ∈ Hom(G,C), ψ ∈ SBihom(G×G,C), and α ∈ C is an arbitrary constant.
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Proof. Let r = s = e in (2.12). We then have the following:

2 f(p, q) = 2 g(p, q) + 2 g(e, e).

Let α ∈ C be a constant such that α = g(e, e). Thus, we have

2 g(p, q) = 2 f(p, q)− 2α

for all p, q ∈ G. Substituting this back into (2.12) we get

f(pr, qs) + f(ps, qr) = 2 f(p, q)− 2α + 2 f(r, s)− 2α

for all p, q, r, s ∈ G. Now, defining a function h : G × G → C such that h(p, q) =

f(p, q)− 2α for all p, q ∈ G, the previous equation reduces to

h(pr, qs) + h(ps, qr) = 2h(p, q) + 2h(r, s)

for all p, q, r, s ∈ G. Thus by Theorem 2.2 and the fact that f(p, q) = h(p, q) + 2α

and g(p, q) = f(p, q)− α we have the following:

h(p, q) = θ(p) + θ(q) + ψ(pq−1, pq−1),

f(p, q) = θ(p) + θ(q) + ψ(pq−1, pq−1) + 2α,

g(p, q) = θ(p) + θ(r) + ψ(pr−1, pr−1) + α

for all p, q ∈ G, where θ : G→ C is an additive homomorphism and ψ : G×G→ C

is an additive symmetric bi-homomorphism. This completes the proof.

So far we have been working with functional equations in which the more

prevalent function f is symmetric. We must now consider a generalization of the

functional equation (2.2) when the unknown function is not symmetric.

THEOREM 2.3. The function f : G×G→ C satisfies the functional equation

f(pr, qs) + f(ps, qr) = 2 f(p, q) + f(r, s) + f(s, r) (2.13)
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for all p, q, r, s in G if and only if f is of the form

f(p, q) = θ1(p) + θ1(q)− θ2(p) + θ2(q) + ψ(pq−1, pq−1),

where θ1, θ2 ∈ Hom(G,C) and ψ ∈ SBihom(G×G,C).

Proof. The only if part of the theorem is easy to verify. Thus, we only prove the if

part of the theorem. Let s = q = e in (2.13). Then we have

f(p, r) = 2 f(p, e) + f(r, e) + f(e, r)− f(pr, e) (2.14)

for all p, r ∈ G. Now, define two functions g, h : G→ C such that for all p ∈ G

g(p) = f(p, e) and h(p) = f(e, p).

Thus, (2.14) becomes

f(p, r) = 2 g(p) + g(r) + h(r)− g(pr) (2.15)

for all p, r ∈ G. Substituting p = r = e in (2.13) we get

f(s, q) = 2 f(e, q) + f(e, s) + f(s, e)− f(e, qs) (2.16)

for all q, s ∈ G. Using the definitions of g and h (2.16) reduces to

f(s, q) = 2h(q) + h(s) + g(s)− h(qs).

If we consider s = p and q = r in the previous we have

f(p, r) = 2h(r) + h(p) + g(p)− h(rp) (2.17)

for all p, r ∈ G. Comparing (2.15) and (2.17) and simplifying the resulting expres-

sion, we find that

h(rp)− g(pr) = h(r) + h(p)− g(p)− g(r) (2.18)
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for all p, r ∈ G. Interchanging p and r in (2.18) yields

h(pr)− g(rp) = h(p) + h(r)− g(r)− g(p). (2.19)

Now, adding (2.19) to (2.18) we get the following:

h(rp)− g(pr) + h(pr)− g(rp) = 2h(r) + 2h(p)− 2 g(p)− 2 g(r)

for all p, r ∈ G. Define a function θ1 : G→ C such that θ1(p) = h(p)− g(p) for all

p ∈ G, then the previous becomes

θ1(rp) + θ1(pr) = 2 θ1(p) + 2 θ1(r)

for all p, r ∈ G. By Theorem 2.1 (see [3]) we have that θ1 is an additive homomor-

phism. Therefore,

θ1(pr) = θ1(p) + θ1(r)

and using the definition of θ1, we see that

h(pr)− g(pr) = h(p)− g(p) + h(r)− g(r).

Comparing the last equality with (2.19) we have

g(pr) = g(rp)

for all p, r ∈ G. Similarly, using (2.15) we find that h(pr) = h(rp). Thus, both g

and h are central functions. Now, by the way θ1 was defined we get

h(p) = g(p) + θ1(p)

for all p ∈ G. Using this in (2.14) yields

f(p, r) = 2 g(p) + 2 g(r) + θ1(r)− g(pr).

Interchanging p with r in the last equation, we obtain

f(r, p) = 2 g(r) + 2 g(p) + θ1(p)− g(rp).
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Now, subtracting and using the fact that g is a central function we find that

f(p, r)− f(r, p) = θ1(r)− θ1(p)

for all p, r ∈ G. Using this in (2.13) we get the following:

f(pr, qs) + f(ps, qr) = 2 f(p, q) + 2 f(r, s) + θ1(r)− θ1(s)

for all p, q, r, s ∈ G. Since θ1 is an additive homomorphism we have that 2 θ1

is also an additive homomorphism. Thus, we can define θ2 : G → C such that

2θ2(p) = θ1(p) for all p ∈ G where θ2 is an additive homomorphism. The last

expression now becomes

f(pr, qs) + f(ps, qr) = 2 f(p, q) + 2 f(r, s) + 2 θ2(r)− 2 θ2(s).

Defining a function k : G×G→ C such that k(p, q) = f(p, q) + θ2(p)− θ2(q) for all

p, q ∈ G, the previous expression becomes

k(pr, qs) + k(ps, qr) = 2 k(p, q) + 2 k(r, s)

for all p, q, r, s ∈ G. This equation was solved in Theorem 2.2. Therefore, we have

that

k(p, q) = θ(p) + θ(q) + ψ(pq−1, pq−1)

for all p, q ∈ G, where θ : G→ C is an additive homomorphism and ψ : G×G→ C

is an additive symmetric bi-homomorphism. Therefore, using the definition of k we

have

f(p, q) = θ(p) + θ(q)− θ2(p) + θ2(q) + ψ(pq−1, pq−1),

where θ and θ2 are additive homomorphisms and ψ is an additive symmetric bi-

homomorphism. This completes the proof of the theorem.
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COROLLARY 2.4. The functions f, g : G×G→ C satisfy the functional equation

f(pr, qs) + f(ps, qr) = 2 f(p, q) + 2 g(r, s) (2.20)

for all p, q, r, s ∈ G if and only if f and g are of the form

f(p, q) = θ1(p) + θ1(q)− θ2(p) + θ2(q) + ψ(pq−1, pq−1) + α

g(p, q) = θ1(p) + θ1(q) + ψ(pq−1, pq−1),

where θ1, θ2 ∈ Hom(G,C), ψ ∈ SBihom(G × G,C), and α ∈ C is an arbitrary

constant.

Proof. It is easy to see that f and g as asserted in the corollary satisfy the functional

equation (2.20). So, we only prove the converse. Let p = q = e in (2.20). We get

f(r, s) + f(s, r) = 2 f(e, e) + 2 g(r, s)

for all r, s ∈ G. Let α ∈ C be a constant such that α = f(e, e). Then, the previous

becomes

2 g(r, s) = f(r, s) + f(s, r)− 2α (2.21)

for all r, s ∈ G. Substituting this into (2.20) we have the following

f(pr, qs) + f(ps, qr) = 2 f(p, q) + f(r, s) + f(s, r)− 2α

for all p, q, r, s ∈ G. Defining a function h : G×G→ C such that h(p, q) = f(p, q)−α

for all p, q ∈ G, the previous equation reduces to

h(pr, qs) + h(ps, qr) = 2h(p, q) + h(r, s) + h(s, r).

From Theorem 2.3 we obtain

h(p, q) = θ1(p) + θ1(q)− θ2(p) + θ2(q) + ψ(pq−1, pq−1),
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where θ1, θ2 : G→ C are additive homomorphisms and ψ : G×G→ C is an additive

symmetric bi-homomorphism. Therefore, using the definition of h, we have

f(p, q) = θ1(p) + θ1(q)− θ2(p) + θ2(q) + ψ(pq−1, pq−1) + α

for all p, q ∈ G. Now substituting this back into (2.21) and simplifying we get the

following:

g(p, q) = θ1(p) + θ1(q) + ψ(pq−1, pq−1)

for all p, q ∈ G and the proof of the corollary is now complete.

COROLLARY 2.5. If f, g, h : G×G→ C satisfy the following functional equation

f(pr, qs) + f(ps, qr) = 2 g(p, q) + 2h(r, s) (2.22)

for all p, q, r, s ∈ G, then f, g and h are of the form

f(p, q) = θ1(p) + θ1(q)− θ2(p) + θ2(q) + ψ(pq−1, pq−1) + β

g(p, q) = θ1(p) + θ1(q)− θ2(p) + θ2(q) + ψ(pq−1, pq−1) + β − α

h(p, q) = θ1(p) + θ1(q) + ψ(pq−1, pq−1) + α,

where θ1, θ2 ∈ Hom(G,C), ψ ∈ SBihom(G × G,C), and α and β are arbitrary

constants in C. The converse is also true.

Proof. Let r = s = e in (2.22). Then we have the following:

2 f(p, q) = 2 g(p, q) + 2h(e, e).

Let α ∈ G be a constant such that α = h(e, e), the previous then becomes

2 g(p, q) = 2 f(p, q)− 2α (2.23)

for all p, q ∈ G. Now, substituting back into (2.22) we get

f(pr, qs) + f(ps, qr) = 2 f(p, q)− 2α + 2h(r, s).
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Defining a function k : G×G→ C such that k(p, q) = h(p, q)− α for all p, q ∈ G,

the previous reduces to

f(pr, qs) + f(ps, qr) = 2 f(p, q) + 2 k(r, s)

for all p, q, r, s ∈ G. Using Corollary 2.4, we have

f(p, q) = θ1(p) + θ1(q)− θ2(p) + θ2(q) + ψ(pq−1, pq−1) + β (2.24)

k(p, q) = θ1(p) + θ1(q) + ψ(pq−1, pq−1) (2.25)

where θ1, θ2 : G→ C are an additive homomorphisms, ψ : G×G→ C is an additive

symmetric bi-homomorphism, and β is an arbitrary constant in C. Therefore,

h(p, q) = θ1(p) + θ1(q) + ψ(pq−1, pq−1) + α

for all p, q ∈ G. Finally, using (2.23) and (2.24) we have that

g(p, q) = θ1(p) + θ1(q) + ψ(pq−1, pq−1)− θ2(p) + θ2(q) + β − α

for all p, q ∈ G. The converse is easy to show and now the proof is complete.

COROLLARY 2.6. The functions f, g, h : G×G→ C satisfy the functional equation

f(pr, qs) + g(ps, qr) = 2 f(p, q) + 2h(r, s) (2.26)

for all p, q, r, s in G if and only if f, g and h are of the form

f(p, q) = θ1(p) + θ1(q)− θ2(p) + θ2(q) + ψ(pq−1, pq−1) + β − α

g(p, q) = θ1(p) + θ1(q)− θ2(p) + θ2(q) + ψ(pq−1, pq−1) + β + α

h(p, q) = θ1(p) + θ1(q) + ψ(pq−1, pq−1) + α,

where θ1, θ2 ∈ Hom(G,C), ψ ∈ SBihom(G × G,C), and α and β are arbitrary

constants in C.
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Proof. Since the only if part is easy to verify, we prove only the if part of the

corollary. Let r = s = e in (2.26). Thus,

f(p, q) + g(p, q) = 2 f(p, q) + 2h(e, e).

Let α be in C such that α = h(e, e). Thus, the previous becomes

g(p, q) = f(p, q) + 2α (2.27)

for all p, q ∈ G. Substituting this back into (2.26) we have that

f(pr, qs) + f(ps, qr) + 2α = 2 f(p, q) + 2h(r, s)

for all p, q, r, s ∈ G. Thus, defining two functions f1, h1 : G × G → C such that

f1(p, q) = f(p, q)+α and h1(p, q) = h(p, q)−α for all p, q ∈ G the previous equation

reduces to the following:

f1(pr, qs) + f1(ps, qr) = 2 f1(p, q) + 2h1(r, s)

for all p, q, r, s ∈ G. This is equation (2.20), which we have previously solved in

Corollary 2.4. Hence, we have the following:

f1(p, q) = θ1(p) + θ1(q)− θ2(p) + θ2(q) + ψ(pq−1, pq−1) + β

h1(p, q) = θ1(p) + θ1(q) + ψ(pq−1, pq−1),

where θ1, θ2 : G → C are additive homomorphisms, ψ : G → C is an additive

symmetric bi-homomorphism, and β is an arbitrary constant in C. Therefore, using

the definitions of f1 and h1 we obtain

f(p, q) = θ1(p) + θ1(q)− θ2(p) + θ2(q) + ψ(pq−1, pq−1) + β − α

h(p, q) = θ1(p) + θ1(q) + ψ(pq−1, pq−1) + α

for all p, q, r, s ∈ G. Now, by (2.27), we get the form of g as

g(p, q) = θ1(p) + θ1(q)− θ2(p) + θ2(q) + ψ(pq−1, pq−1) + β + α

for all p, q, r, s ∈ G. This completes the proof.
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The next two lemmas along with Theorem 2.3 will be essential when we make

the generalization of the functional equation (2.2) involving one unknown function

to four different unknown functions.

LEMMA 2.1. Let φ : G → C be an arbitrary function. Then the following two

conditions are equivalent:

(1) φ is an abelian function;

(2) φ is a central function and φ(prqs) = φ(qrps) for all p, q, r, s ∈ G.

Proof. First we show (1) implies (2). Let φ be an abelian function. Then for all

p, r, s ∈ G we have that φ(prs) = φ(psr), equivalently φ(prs) = φ(rps). Let p = e

in the first of the previous two equations. Then φ(rs) = φ(sr) for all r, s ∈ G and

hence φ is a central function. Consider φ(prqs), then using the fact that φ is central

and abelian, we have the following:

φ(prqs) = φ(p(rq)s) = φ(ps(rq)) = φ((ps)rq) = φ((ps)qr) = φ((ps)(qr)) = φ(qrps)

for all p, q, r, s ∈ G. This shows that (1) implies (2).

The implication (2) implies (1) is obvious and the proof is now complete.

LEMMA 2.2. The function f : G×G→ C satisfies the functional equation

f(pr, qs)− f(ps, qr) = f(r, s)− f(s, r) (2.28)

for all p, q, r, s in G if and only if f is of the form

f(p, r) = θ(p)− θ(r) + φ(pr)

for all p, r ∈ G, where θ ∈ Hom(G,C) and φ : G → C is an arbitrary abelian

function.
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Proof. We begin by interchanging p and q in (2.28). Thus, we have

f(qr, ps)− f(qs, pr) = f(r, s)− f(s, r). (2.29)

Subtracting (2.29) from (2.28) we obtain

f(pr, qs) + f(qs, pr) = f(qr, ps) + f(ps, qr)

for all p, q, r, s ∈ G. Defining a function g : G × G → C such that g(pr, qs) =

f(pr, qs) + f(qs, pr) the previous equation reduces to

g(pr, qs) = g(qr, ps)

for all p, q, r, s ∈ G. Letting r = s = e in the previous, we find that g is a

symmetric function. Letting q = s = e in the previous equation and using the

fact that g is symmetric we find that g(pr, e) = g(r, p) = g(p, r) = g(rp, e) for all

p, r ∈ G. Defining a function φ : G→ C such that φ(pr) = g(pr, e) for all p, r ∈ G

we have that φ(pr) = φ(rp). Thus, φ is an arbitrary central function such that

φ(prqs) = φ(qrps) for all p, q, r, s ∈ G. Applying our previous lemma we have that

φ is an abelian function. Since φ is an arbitrary abelian function, 2φ is also an

arbitrary abelian function. Thus, by the way g was defined

2φ(pr) = f(p, r) + f(r, p) (2.30)

for all p, r ∈ G. Now, adding (2.29) and (2.28) we get the following:

f(pr, qs)− f(ps, qr) + f(qr, ps)− f(qs, pr) = 2 f(r, s)− 2 f(s, r)

for all p, r, q, s ∈ G. Defining a function h : G × G → C such that 2h(pr, qs) =

f(pr, qs)− f(qs, pr), the previous becomes

2h(pr, qs) + 2h(qr, ps) = 4h(r, s) (2.31)

for all p, q, r, s ∈ G. Letting r = s = e in the definition of h we have that

2h(p, q) = f(p, q)− f(q, p)
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for all p, q ∈ G. Interchanging p and q in the previous and adding we find

2h(p, q) + 2h(q, p) = 0.

Therefore, h is an anti-symmetric function. Now, letting q = s = e in (2.31) yields

2h(pr, e) + 2h(r, p) = 4h(r, e).

Define a function k : G×G→ C such that k(p) = h(p, e) for all p ∈ G. Thus,

2h(r, p) = 4 k(r)− 2 k(pr).

Switching p and r and adding the two equations together yields

2h(r, p) + 2h(p, r) = 4 k(r)− 2 k(pr) + 4 k(p)− 2 k(rp).

Since h is an anti-symmetric function, the previous reduces to

k(pr) + k(rp) = 2 k(p) + 2 k(r)

for all p, r ∈ G. Therefore, from Theorem 2.1 we obtain k is an additive homomor-

phism. Using the definitions of k and h, we obtain

f(p, r)− f(r, p) = 4 k(p)− 2 k(rp)

for all p, r ∈ G. Adding the last equation to (2.30) we find that

f(p, r) = k(p)− k(r) + φ(pr)

for all p, r ∈ G. Renaming k as θ we have the asserted solution.

2.3 The Soltuion of the Generalizaed Linear Functional

We are now ready to prove the main result of this chapter.
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THEOREM 2.4. The functions f, g, h, k : G×G→ C satisfy the functional equation

f(pr, qs) + g(ps, qr) = h(p, q) + k(r, s) (2.32)

for all p, q, r, s in G if and only if f, g, h and k are of the form

f(p, q) = θ(p, q) + ψ(pq−1, pq−1) + θ3(p)− θ3(q) + φ(pq) + α + β

g(p, q) = θ(p, q) + ψ(pq−1, pq−1)− θ3(p) + θ3(q)− φ(pq) + α + β

h(p, q) = 2 θ(p, q) + 2ψ(pq−1, pq−1) + 2 β

k(p, q) = 2 θ1(p) + 2 θ1(q) + 2 θ3(p)− 2 θ3(q) + 2ψ(pq−1, pq−1) + 2α,

where

θ(p, q) = θ1(p) + θ1(q)− θ2(p) + θ2(q),

θ1, θ2, θ3 ∈ Hom(G,C), ψ ∈ SBihom(G×G,C), φ : G→ C is an arbitrary abelian

function, and α and β are arbitrary constants in C.

Proof. The only if part is easy to show. So we only prove the if part of the theorem.

Let r = s = e in (2.32). Thus,

f(p, q) + g(p, q) = h(p, q) + k(e, e).

Let α be in C such that α = k(e, e). The previous becomes

h(p, q) = f(p, q) + g(p, q)− α (2.33)

for all p, q ∈ G. Now, let p = q = e in (2.32). Thus,

f(r, s) + g(s, r) = h(e, e) + k(r, s).

Let β be in C such that β = h(e, e). The previous becomes

k(r, s) = f(r, s) + g(s, r)− β (2.34)
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for all r, s ∈ G. Substituting (2.33) and (2.34) into (2.32) we have

f(pr, qs) + g(ps, qr) = f(p, q) + g(p, q) + f(r, s) + g(s, r)− α− β (2.35)

for all p, q, r, s ∈ G. Now, interchanging r with s in (2.35) and adding the resulting

equation to (2.35), we get

(f+g)(pr, qs)+(f+g)(ps, qr) = 2 (f+g)(p, q)+(f+g)(r, s)+(f+g)(s, r)−2α−2 β.

Defining a function ` : G×G→ C such that `(p, q) = f(p, q) + g(p, q)− α− β the

previous reduces to the following:

`(pr, qs) + `(ps, qr) = 2 `(p, q) + `(r, s) + `(s, r)

for all p, q, r, s ∈ G. Using Theorem 2.3 we obtain ` as

`(p, q) = θ1(p) + θ1(q)− θ2(p) + θ2(q) + ψ(pq−1, pq−1)

where θ1, θ2 : G→ C are additive homomorphisms and ψ : G×G→ C is an additive

symmetric bi-homomorphism. Since θ1 and θ2 are additive homomorphisms we have

that 2 θ1 and 2 θ2 are also additive homomorphisms. Similarly, 2ψ is also an additive

symmetric bi-homomorphism. Therefore,

`(p, q) = 2 θ1(p) + 2 θ1(q)− 2 θ2(p) + 2 θ2(q) + 2ψ(pq−1, pq−1)

and hence

f(p, q) + g(p, q) = 2 θ1(p) + 2 θ1(q)− 2 θ2(p) + 2 θ2(q) (2.36)

+ 2ψ(pq−1, pq−1) + α + β

for all p, q ∈ G.

Now, interchanging s and r in (2.35) we have the following:

f(ps, qr) + g(pr, qs) = f(p, q) + g(p, q) + f(s, r) + g(r, s)− α− β.
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Subtracting this from (2.35) yields

(f − g)(pr, qs)− (f − g)(ps, qr) = (f − g)(r, s)− (f − g)(s, r)

for all p, q, r, s ∈ G. Defining a function m : G × G → C such that m(p, q) =

f(p, q)− g(p, q) for all p, q ∈ G the previous reduces to

m(pr, qs)−m(ps, qr) = m(r, s)−m(s, r)

for all p, q, r, s ∈ G. From Lemma 2.2 we know that

m(p, q) = θ3(p)− θ3(q) + φ(pq)

for all p, q ∈ G where θ3 : G × G → C is an additive homomorphism and φ :

G×G→ C is an arbitrary abelian function. Since θ3 is an additive homomorphism

and φ is an arbitrary abelian function we have that 2θ3 is also additive and 2φ is

an arbitrary abelian function. Therefore,

f(p, q)− g(p, q) = 2 θ3(p)− 2 θ3(q) + 2φ(pq). (2.37)

Since α and β are constants in C, 1
2
α and 1

2
β are also constants, say δ and γ

respectively. Now, adding (2.36) and (2.37) we have the following:

f(p, q) = θ1(p) + θ1(q)− θ2(p) + θ2(q) + ψ(pq−1, pq−1)

+ θ3(p)− θ3(q) + φ(pq) + δ + γ

for all p, q ∈ G. Now, subtracting (2.37) from (2.36) we have the following:

g(p, q) = θ1(p) + θ1(q)− θ2(p) + θ2(q) + ψ(pq−1, pq−1)

− θ3(p) + θ3(q)− φ(pq) + δ + γ

for all p, q ∈ G. Since we have found both f and g we can now find h and k.

Substituting (2.36) into (2.33) yields

h(p, q) = 2 θ1(p) + 2 θ1(q)− 2 θ2(p) + 2 θ2(q) + 2ψ(pq−1, pq−1) + 2 γ
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for all p, q ∈ G. Substituting f and g in (2.34) and using the fact that ψ(pq−1, pq−1) =

ψ(qp−1, qp−1) we get

k(p, q) = θ1(p) + θ1(q)− θ2(p) + θ2(q) + ψ(pq−1, pq−1)

+ θ3(p)− θ3(q) + φ(pq) + δ + γ

+ θ1(q) + θ1(p)− θ2(q) + θ2(p) + ψ(qp−1, qp−1)

− θ3(q) + θ3(p)− φ(qp) + δ + γ − 2 γ

= 2 θ1(p) + 2 θ1(q) + 2 θ3(p)− 2 θ3(q) + 2ψ(pq−1, pq−1) + 2 δ

for all p, q ∈ G. Hence, the proof is complete.

REMARK 2.1. The field of complex numbers has two binary operations, addition

and multiplication. The previous proofs given in this chapter rely solely on the

additivity of the complex numbers. The additivity alone gives us an abelian group

under addition. Hence, the field of complex numbers can be replaced by the group of

complex numbers under addition.

2.4 Several Examples Related to the Linear Functional Equation

We have shown that f : G×G→ C is a solution of the functional equation

f(pr, qs) + f(ps, qr) = 2 f(p, q) + 2 f(r, s)

for all p, q, r, s ∈ G if and only if f is of the form

f(p, r) = θ(p) + θ(r) + ψ(pr−1, pr−1),

where θ ∈ Hom(G,C) and ψ ∈ SBihom(G × G,C). When G is an abelian group

the above functional equation can be written as follows:

f(p+ r, q + s) + f(p+ s, q + r) = 2 f(p, q) + 2 f(r, s).
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In this section, we will present several examples of functions that satisfy the previous

functional equation. We begin with examples in which the domain is an abelian

group.

Let (R,+) denote the group of real numbers under addition and (C,+) the

group of complex numbers under addition. Let p be a complex number, then p

represents the complex conjugate of p.

EXAMPLE 2.1. Let θ : (R,+)→ (C,+) be a continuous additive function. There-

fore, θ ∈ Hom((R,+), (C,+)). From [13] we have that θ(p) = a p for all p ∈ (R,+),

where a is an arbitrary complex constant.

Let ψ : (R,+)× (R,+)→ (C,+) be a continuous bi-additive function. Thus,

from [13] we have that ψ(p, q) = b p q for all p, q ∈ (R,+), where b is an arbitrary

complex constant. By the commutativity of the real numbers we have that ψ(p, q) =

b p q = b q p = ψ(q, p) and hence ψ ∈ SBihom((R,+)× (R,+), (C,+)).

Therefore,

f(p, q) = θ(p) + θ(q) + ψ(p− q, p− q)

= a p+ a q + b (p− q) (p− q)

where a and b are arbitrary complex constants is a solution of the given functional

equation for all p, q, r, s ∈ (R,+).

EXAMPLE 2.2. Let θ : (C,+) → C be a continuous additive function. Therefore,

θ ∈ Hom((C,+),C). It is known, from [13], that θ(p) = a1 p+a2p for all p ∈ (C,+),

where a1 and a2 are arbitrary complex constants.

Let ψ : (C,+)× (C,+)→ C be a continuous bi-additive function. From [13]

we get that ψ(p, q) = b (p + p) (q + q) for all p, q ∈ (C,+), where b is an arbi-

trary complex constant. By the commutativity of the complex numbers we have

that ψ(p, q) = b(p + p) (q + q) = b (q + q) (p + p) = ψ(q, p) and hence ψ ∈

SBihom((C,+)× (C,+),C).
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It can be shown that

f(p, q) = θ(p) + θ(q) + ψ(p− q, p− q)

= a1 p+ a2 p+ a1 q + a2 q + b (p− q + p− q) (p− q + p− q)

= a1 p+ a2 p+ a1 q + a2 q + b (p− q + p− q) (p− q + p− q)

where a1, a2, and b are arbitrary complex constants is a solution of the given func-

tional equation for all p, q, r, s.

Lastly, we will consider an example in which the domain is a non-commutative

group. In this case, the functional equation with multiplictive notation is used,

f(pr, qs) + f(ps, qr) = 2 f(p, q) + 2 f(r, s).

EXAMPLE 2.3. Consider the group of two-by-two invertible matrices over the reals,

GL2(R) =


a b

c d

 | a, b, c, d ∈ R, ad− bc 6= 0


. Let θ : G→ C be a function such that θ(P ) = log(| det(P )|) for all P ∈ GL2(R).

Then we have for all P,Q ∈ GL2(R)

θ(PQ) = log(| det(PQ)|) = log(| det(P ) · det(Q)|) = log(| det(P )| · | det(Q)|)

= log(| det(P )|) + log(| det(Q)|) = θ(P ) + θ(Q).

Therefore, θ ∈ Hom(GL2(R),C). Define ψ : GL2(R) × GL2(R) → C such that

ψ(P,Q) = log(| det(P )|) · log(| det(Q)|) for all P,Q ∈ GL2(R). Thus for all
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P,R,Q, S ∈ GL2(R) the following holds:

ψ(PR,QS) = log(| det(PR)|) · log(| det(QS)|)

= log(| det(P ) · det(R)|) · log(| det(Q) · det(S)|)

= log(| det(P )| · | det(R)|) · log(| det(Q)| · | det(S)|)

=
(

log(| det(P )|) + log(| det(R)|)
)
·
(

log(| det(Q)|) + log(| det(S)|)
)

= log(| det(P )|) · log(| det(Q)|) + log(| det(P )|) · log(| det(S)|)

+ log(| det(R)|) · log(| det(Q)|) + log(| det(R)|) · log(| det(S)|)

= ψ(P,Q) + ψ(P, S) + ψ(R,Q) + ψ(R, S).

Therefore, ψ is a bi-homomorphism and

ψ(P,Q) = log(| det(P )|) · log(| det(Q)|)

= log(| det(Q)|) · log(| det(P )|)

= ψ(Q,P )

for all P,Q ∈ GL2(R). Hence, ψ ∈ SBihom(GL2(R)×GL2(R),C). We have that

f(P,R) = θ(P ) + θ(R) + ψ(PR−1, PR−1)

= log(| det(P )|) + log(| det(R)|) + log(| det(P )|) · log(| det(R)|)

for all P,R ∈ GL2(R) is a solution of the given functional equation.
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CHAPTER 3

A NON-LINEAR FUNCTIONAL EQUATION ON GROUPS
ARISING FROM STOCHASTIC DISTANCE MEASURES

3.1 Introduction: A Non-Linear Functional Equation

The main goal of this Chapter is to determine the structure of the general

solution f : G×G→ C of the non-linear functional equation

f(pr, qs) + f(ps, qr) = f(p, q) f(r, s) (3.1)

on arbitrary groups. If f is an abelian function, then the solution of (3.1) is of the

form f(p, r) = m1(p)m2(r)+m1(r)m2(p), where m1 and m2 are two characters (not

necessarily distinct) on G. In the case that there are no restrictions on f , whether

or not there is a c in the center of G such that 2f(c2, e) = f(c, e)2 gives us a different

picture for the structure of the solution. Specifically, we prove the following: if such

a c exists, then f(p, r) = m1(p)m2(r) +m1(r)m2(p) for two distinct characters m1,

m2 on G.

One should note that the work within this Chapter has been submitted for

possible publication in the journal Mathematicae Debrecen [4].

3.2 Previous Results on A Related Functional Equation

We will need the solution of the symmetrized sine functional equation

f(xy) + f(yx) = 2 f(x) g(y) + 2 f(y) g(x) (3.2)
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on an arbitrary group. Recently, this equation was studied in [16] by Yang when f

and g were defined on an arbitrary group G and took values on the field of complex

numbers C. The following two theorems due to Yang (see [16]) will be very useful in

proving our result. Recall that for any function f we will use the following notation:

fx(y) = f(xy)− f(x) f(y) for all x, y ∈ G.

THEOREM 3.1. Let G be a group. Let f, g : G→ C be solutions of the functional

equation (3.2) for all x, y ∈ G. Further, suppose that g is abelian. Then either

(i) g = π, a character on G; or

(ii) g =
φ(x) + ψ(x)

2
for two distinct characters φ, ψ on G.

THEOREM 3.2. Let G be a group. Let f, g : G→ C be solutions of the functional

equation (3.2) for all x, y ∈ G.

(i) If fc(c) = 0 with c ∈ Z(G), then

fc(x) = 0 for all x ∈ G.

(ii) If there is a c ∈ Z(G) such that fc(c) 6= 0, then there are 0 6= λ ∈ C and two

distinct characters φ, ψ : G→ C? such that

f(x) = λ (φ(x)− ψ(x)) and g(x) =
φ(x) + ψ(x)

2
∀x ∈ G.

3.3 A Structure Theorem

In this section, we first consider the solution of (3.1) on an arbitrary group

G when f is an abelian function. Then, using Theorem 3.2 and some ideas from [2]

and [1], we determine the structure of the general solution on an arbitrary group G.
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THEOREM 3.3. Let G be a group. Let f : G × G → C be a non-zero abelian

function that is a solution of the functional equation (3.1) for all p, q, r, s ∈ G.

Then

f(p, r) = m1(p)m2(r) +m2(p)m1(r) (3.3)

for all p, r ∈ G, where m1,m2 : G→ C? are characters.

Proof. Let r = s = e in (3.1), we have

f(p, q)(2− f(e, e)) = 0

for all p, q ∈ G. Since f 6≡ 0 we see that f(e, e) = 2. Now, q = s = e in (3.1) yields

f(pr, e) + f(p, r) = f(p, e) f(r, e) (3.4)

for all p, r ∈ G. Define a function g : G→ C such that g(x) = f(x, e). By definition,

f abelian implies g is abelian and hence central. Using the definition of g, equation

(3.4) becomes

f(p, r) = g(p) g(r)− g(pr). (3.5)

One can see that g being a central function implies f is symmetric. Since f 6≡ 0,

we see that g is not a character. Letting s = e in (3.1) we find that

f(pr, q) + f(p, qr) = f(p, q) g(r)

for all p, q, r ∈ G. Now, using (3.5) in the last equality yields:

g(pr) g(q)− g(prq) + g(p) g(qr)− g(pqr) = (g(p) g(q)− g(pq)) g(r). (3.6)

Since g is abelian (3.6) becomes

g(pr) g(q)− 2 g(pqr) = g(p) g(q) g(r)− g(p) g(qr)− g(pq) g(r) (3.7)

for all p, q, r ∈ G. Fix q ∈ G and define a function ` : G → C such that `(p) =

g(p) g(q)−2 g(pq) for all p ∈ G. Using the definition of `, the previous equality now

reduces to

`(pr) = `(p)
g(r)

2
+ `(r)

g(p)

2

37



for all p, r ∈ G. Since g is abelian we have that ` is central, therefore

`(pr) + `(rp) = `(p) g(r) + `(r) g(p)

for all p, r ∈ G. Thus from Theorem 3.1 (also from [1] or [6]) we have that

g(p) = 2m(p) where m is a character on G or g(p) = m1(p) +m2(p) for two distinct

characters m1,m2 on G. If g(p) = 2m(p) then by (3.5) we have that

f(p, r) = 2m(pr) (3.8)

for all p, r ∈ G. Hence f in (3.8) is of the form (3.3) with m1 = m2 = m. If

g(p) = m1(p) +m2(p), then substituting back into (3.5) we see that

f(p, r) =
(
m1(p) +m2(p)

) (
m1(r) +m2(r)

)
−
(
m1(pr) +m2(pr)

)
= m1(p)m2(r) +m2(p)m1(r)

for all p, r ∈ G, which gives us (3.3).

Now, we will consider when there are no restrictions on the function f .

THEOREM 3.4. Let G be a group and e be the identity element of G. Let f : G×

G→ C be a non-zero solution of the functional equation (3.1) for all p, q, r, s ∈ G,

then one of the following holds:

(i) if there is a c ∈ Z(G) such that 2 f(c2, e) 6= f(c, e)2, then there are two distinct

characters m1,m2 on G such that

f(p, r) = m1(p)m2(r) +m2(p)m1(r), (3.9)

for all p, r ∈ G;

(ii) if 2 f(c2, e) = f(c, e)2 with c ∈ Z(G), then

2 f(c, x) = f(c, e) f(x, e) (3.10)

for all x ∈ G.
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Proof. Let r = s = e in (3.1), we have

f(p, q)(2− f(e, e)) = 0

for all p, q ∈ G. Since f 6≡ 0 we see that f(e, e) = 2. Let p = q = e in (3.1), then

using the fact that f(e, e) = 2 we get the following for all r, s ∈ G

f(r, s) + f(s, r) = f(e, e)f(r, s) = 2f(r, s).

Therefore, f is symmetric. Now, q = s = e in (3.1) yields

f(pr, e) + f(p, r) = f(p, e) f(r, e) (3.11)

for all p, r ∈ G. Define a function g : G → C such that g(x) = f(x, e). Therefore,

g(e) = 2 and the equation (3.11) becomes

f(p, r) = g(p) g(r)− g(pr). (3.12)

One can see that since f is symmetric, g is a central function. Since f 6≡ 0, we see

that g is not a character. Letting s = e in (3.1) we find that

f(pr, q) + f(p, qr) = f(p, q) g(r)

for all p, q, r ∈ G. Now, using (3.12) in the last equality yields:

g(pr) g(q)− g(prq) + g(p) g(qr)− g(pqr) = (g(p) g(q)− g(pq)) g(r)

g(p) g(qr)− g(prq)− g(pqr) = g(p) g(q) g(r)− g(pq) g(r)− g(pr) g(q).

Multiplying the last equation by 2 and rewriting we find that

g(p) g(qr)− 2 g(pqr) + g(p) g(qr)− 2 g(prq) (3.13)

= (g(p) g(q)− 2 g(pq)) g(r) + (g(p) g(r)− 2 g(pr)) g(q)

for all p, q, r ∈ G. Now, fix p ∈ G and define a function h : G→ C as follows:

h(r) = g(p) g(r)− 2 g(pr) (3.14)
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for all r ∈ G. Hence by (3.14) and the fact that g is central, the equation (3.13)

reduces to

h(qr) + h(rq) = 2h(q)
g(r)

2
+ 2h(r)

g(q)

2
.

Defining a function k : G → C such that k(r) = g(r)
2

for all r ∈ G, the previous

equation becomes

h(qr) + h(rq) = 2h(q) k(r) + 2h(r) k(q)

for all q, r ∈ G, which is equation (3.2). Thus, we can apply Theorem 3.2. Using

the definitions of h and k we have that for c ∈ Z(G)

kc(c) = k(c2)− k(c)2 =
g(c2)

2
−
(
g(c)

2

)2

=
f(c2, e)

2
− f(c, e)2

4
.

Hence, kc(c) = 0 if and only if

2 f(c2, e) = f(c, e)2 (3.15)

for some c ∈ Z(G).

If there is a c ∈ Z(G) such that 2 f(c2, e) 6= f(c, e)2 (that is kc(c) 6= 0), then

there are two distinct characters m1,m2 : G→ C? and 0 6= λ ∈ C such that

k(x) =
m1(x) +m2(x)

2
and h(x) = λ (m1(x)−m2(x))

for all x ∈ G. Hence, by the definitions of k and g we have the following:

g(x) = m1(x) +m2(x)

for all x ∈ G. Now, using the previous equation in (3.12) yields

f(p, r) = (m1(p) +m2(p))(m1(r) +m2(r))− (m1(pr) +m2(pr))

= m1(p)m2(r) +m2(p)m1(r)

for all p, r,G, which is (3.9) and thus case (i) is complete.
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From Theorem 3.2 we know that if kc(c) = 0 with c ∈ Z(G), then kc = 0.

Since kc = 0, i.e. kc(x) = 0 for all x ∈ G and c ∈ Z(G), we have the following:

k(cx)− k(c) k(x) = 0,

which implies

2 g(cx) = g(c) g(x) (3.16)

and from the definition of g

2 f(cx, e) = f(c, e) f(x, e). (3.17)

Using (3.12) and (3.16) we have the following:

f(x, c) = g(x) g(c)− g(xc) = g(xc) = f(xc, e)

for all x ∈ G and c ∈ Z(G). Now, using (3.17), the fact that c ∈ Z(G), and the

previous equality we get that

2 f(c, x) = f(c, e) f(x, e) (3.18)

for all x ∈ G and c ∈ Z(G), which is (3.10). Hence, case (ii) of the theorem is now

complete. This finishes the proof of the theorem.

REMARK 3.1. If Z(G) = {e}, then c = e. A group in which Z(G) = {e} is refered

to as a centerless group. Since f(e, e) = 2, (3.15) and (3.18) hold. Therefore, in the

case that the group G is centerless Theorem 3.4 provides no information in regards

to the solution of (3.1) on such a group. For instance, consider the alternating

group A5; which is the subgroup of S5 containing the identity element and all of

the even permutations of S5. It is known that Z(A5) = {e}. Therefore, the above

theorem tells us nothing in regards to the solution of (3.1) on A5.
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CHAPTER 4

SEVERAL GENERALIZATIONS OF A NON-LINEAR
FUNCTIONAL EQUATION ON GROUPS ARISING FROM

STOCHASTIC DISTANCE MEASURES

4.1 Introduction: Generalizations of A Non-Linear Functional
Equation

In this Chapter we consider several generalizations of the non-linear func-

tional equation f(pr, qs) + f(ps, qr) = f(p, q) f(r, s). Specifically, we determine the

general structure of the solution f, g, h : G × G → C of the non-linear functional

equation f(pr, qs) + f(ps, qr) = g(p, q)h(r, s) for all p, q, r, s ∈ G. The structure of

the solution is dependent upon how the function h acts on the center of the group.

In order to determine the structure of this solution, we must consider the structure

of the solution of the functional equation f(pr, qs) + f(ps, qr) = f(p, q) g(r, s) for

all p, q, r, s ∈ G.

4.2 Generalization Theorems

We will now present the solution to several generalization of the functional

equation f(pr, qs) + f(ps, qr) = f(p, q) f(r, s). We begin with a case in which we

have two functions f and g.

THEOREM 4.1. Let G be a group and e be the identity element of G. Let f, g :

G×G→ C be a non-zero solution of the functional equation

f(pr, qs) + f(ps, qr) = f(p, q) g(r, s) (4.1)
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for all p, q, r, s ∈ G, then one of the following holds:

i) if there exists c ∈ Z(G) such that g(c2, e) = g(c, e)2, then

g(cx, e) = 0

for all x ∈ G;

ii) if there exists c ∈ Z(G) such that g(c2, e) 6= g(c, e)2, then there exists two

distinct characters m1,m2 : G→ C? and 0 6= λ ∈ C such that

f(p, r) =

(
λ+ α

2

)
m1(r)m2(p) +

(
α− λ

2

)
m2(r)m1(p),

g(p, r) = m1(p)m2(r) +m1(r)m2(p)

for all p, r ∈ G, where α is an arbitrary constant in C.

Proof. Switch r and s in (4.1). Then

f(ps, qr) + f(pr, qs) = f(p, q) g(s, r)

for all p, q, r, s ∈ G. Subtracting this from (4.1) we get that

0 = f(p, q)(g(r, s)− g(s, r)).

Since f is not identically zero, we can conclude that g is a symmetric function.

Now, let s = q = e in (4.1). This yields

f(pr, e) + f(p, r) = f(p, e) g(r, e) (4.2)

for all p, r ∈ G.

Now, define a function f1 : G → C such that f1(p) = f(p, e) for all p ∈ G

and a function h : G → C such that h(p) = g(p, e) = g(e, p) for all p ∈ G. Letting

r = s = e in (4.1) gives us

f(p, q) (2− g(e, e)) = 0
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for all p, q ∈ G. Since f is not identically, h(e) = g(e, e) = 2. Using the definition

of f1 and the definition of h, we have that equation (4.2) reduces to the following:

f(p, r) = f1(p)h(r)− f1(pr) (4.3)

for all p, r ∈ G.

Let p = r = e in (4.1), then we get that

f(e, qs) + f(s, q) = f(e, q) g(s, e)

for all q, s ∈ G. Defining a function f2 : G → C such that f2(p) = f(e, p) for all

p ∈ G and using the definition of h the previous becomes

f(s, q) = f2(q)h(s)− f2(qs)

for all q, s ∈ G. If we consider s = p and q = r we get

f(p, r) = f2(r)h(p)− f2(rp). (4.4)

Comparing (4.3) and (4.4) we get the following:

f1(p)h(r)− f1(pr) = f2(r)h(p)− f2(rp).

This equation can be rewritten as

f2(rp)− f1(pr) = f2(r)h(p)− f1(p)h(r) (4.5)

for all p, r ∈ G. Switching p and r in (4.5) yields

f2(pr)− f1(rp) = f2(p)h(r)− f1(r)h(p). (4.6)

Subtracting (4.6) from (4.5) and simplifying gives us the following:

(f2(rp) + f1(rp))− (f2(pr) + f1(pr)) = h(p) (f2(r) + f1(r))− h(r) (f2(p) + f1(p))
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for all p, r ∈ G. Defining a function k1 : G→ C such that k1(p) = f2(p) + f1(p) for

all p ∈ G the previous reduces to

k1(rp)− k1(pr) = h(p) k1(r)− h(r) k1(p) (4.7)

for all p, r ∈ G.

Define f(e, e) = α where α ∈ C. Then by definition, f(e, e) = f1(e) =

f2(e) = α. Therefore, k1(e) = 2 f1(e) = 2 f2(e) = 2α. Let r = e in the previous

equation (4.9). Then we have

0 = h(e) k1(r)− h(r) k1(e),

which is

0 = 2 k1(r)− h(r) 2α

for all r ∈ G. From the last inequality, we see that

k1(r) = αh(r)

for all r ∈ G. We will consider two cases, α = 0 and α 6= 0.

We begin with the case when α = 0. Since k1(p) = αh(p) for all p ∈ G, we

have that k1 = 0. This implies that

f2(p) = −f1(p)

for all p ∈ G. Substituting for f1 in (4.5) gives us

f2(rp) + f2(pr) = f2(r)h(p) + f2(p)h(r)

for all p, r ∈ G. This is the symmetrized sine equation. The solution of this equation

was obtained by Yang in [16] and is stated in Theorem 3.2. From Theorem 3.2 we

have two cases. If hc(c) = 0 for c ∈ Z(G), that is, if h(c2) = h(c)2 which is

g(c2, e) = g(c, e)2, then hc(x) = g(cx, e) = 0 for all x ∈ G and c ∈ Z(G).
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If there exists c ∈ Z(G) such that g(c2, e) 6= g(c, e)2, then there exists a

non-zero λ ∈ C and two distinct characters, m1,m2 : G→ C? such that

h(p) = m1(p) +m2(p) and f2(p) = λ (m1(p)−m2(p))

for all p ∈ G. Using (4.4) we get

f(p, r) = λ (m1(r)−m2(r)) (m1(p) +m2(p))− λ (m1(rp)−m2(rp)).

Using the fact that m1 and m2 are characters on G, f(p, r) can be rewritten as

f(p, r) = λ (m1(r)m1(p) +m1(r)m2(p)−m2(r)m1(p)−m2(r)m2(p))

− λ (m1(r)m1(p)−m2(r)m2(p)),

which simplifies to

f(p, r) = λ (m1(r)m2(p)−m2(r)m1(p))

for all p, r ∈ G. Substituting back into (4.1) yields

λ (m1(qs)m2(pr)−m2(qs)m1(pr)) + λ (m1(qr)m2(ps)−m2(qr)m1(ps))

= λ (m1(q)m2(p)−m2(q)m1(p)) g(r, s).

Using the fact that m1 and m2 are characters on G, we can rewrite the previous as

follows:

m1(q)m1(s)m2(p)m2(r)−m2(q)m2(s)m1(p)m1(r)

+m1(q)m1(r)m2(p)m2(s)−m2(q)m2(r)m1(p)m1(s)

= (m1(q)m2(p)−m2(q)m1(p)) g(r, s).

The previous factors into the following:

(m1(q)m2(p)−m2(q)m1(p)) (m1(s)m2(r) +m2(s)m1(r))

= (m1(q)m2(p)−m2(q)m1(p)) g(r, s),
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and thus simplifying gives us

g(r, s) = m1(s)m2(r) +m2(s)m1(r)

for all p, q, r, s ∈ G. Since λ is an arbitrary non-zero constant in C we have that

f(p, r) =
λ

2
m1(r)m2(p)−

λ

2
m2(r)m1(p) (4.8)

g(p, r) = m1(r)m2(p) +m2(r)m1(p)

for all p, r ∈ G. This completes the case when α = 0.

Now, we consider the case when α 6= 0. Adding (4.6) and (4.5) gives us

f2(rp)− f1(pr) + f2(pr)− f1(rp) = f2(r)h(p)− f1(p)h(r) + f2(p)h(r)− f1(r)h(p),

and hence

(f2(rp)− f1(rp)) + (f2(pr)− f1(pr)) = h(p) (f2(r)− f1(r)) + h(r) (f2(p)− f1(p))

for all p, r ∈ G. Defining a function k2 : G→ C such that k2(p) = f2(p)− f1(p) for

all p ∈ G the previous reduces to

k2(rp) + k2(pr) = h(p) k2(r) + h(r) k2(p)

for all p, r ∈ G. This is the symmetrized sine equation. From Yang’s Theorem 3.2,

we have two cases. If hc(c) = 0 for c ∈ Z(G), that is, if h(c2) = h(c)2 which is

g(c2, e) = g(c, e)2 then hc(x) = g(cx, e) = 0 for all x ∈ G and c ∈ Z(G). This is the

same condition we found when α = 0. Hence, if there exists c ∈ Z(G) such that

g(c2, e) = g(c, e)2 then g(cx, e) = 0. This completes the first case.

If there exists c ∈ Z(G) such that g(c2, e) 6= g(c, e)2, then there exists a

non-zero λ ∈ C and two distinct characters, m1,m2 : G→ C? such that

h(p) = m1(p) +m2(p) and k2(p) = λ (m1(p)−m2(p))
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for all p ∈ G. Recall that since α 6= 0 we have k1(r) = αh(r). Thus, by the way k2

and k1 were defined in terms of h we have that

f2(p)− f1(p) = λ (m1(p)−m2(p)) (4.9)

f2(p) + f1(p) = α (m1(p) +m2(p)) (4.10)

for all p ∈ G. From (4.3) and (4.4) we know that in order to find f we need either

f1 or f2. Thus, adding (4.9) and (4.10) and then dividing by 2 we get the following:

f2(p) =

(
λ+ α

2

)
m1(p) +

(
α− λ

2

)
m2(p)

for all p ∈ G. Now, substituting into (4.4) for both f2 and h gives us

f(p, r) =

((
λ+ α

2

)
m1(r) +

(
α− λ

2

)
m2(r)

)
(m1(p) +m2(p))

−
(
λ+ α

2

)
m1(rp) +

(
α− λ

2

)
m2(rp).

After multiplying out and then simplifying, the previous reduces to

f(p, r) =

(
λ+ α

2

)
m1(r)m2(p) +

(
α− λ

2

)
m2(r)m1(p) (4.11)

for all p, r ∈ G.

We can now use f to find g. Let p = q = e in (4.1). Then, since f(e, e) =

α 6= 0 we get that

1

α
f(r, s) +

1

α
f(s, r) = g(r, s)

for all r, s ∈ G. Substituting in for f and then simplifying yields

g(r, s) =
1

α

((
λ+ α

2

)
m1(r)m2(s) +

(
α− λ

2

)
m2(r)m1(s)

)
+

1

α

((
λ+ α

2

)
m1(s)m2(r) +

(
α− λ

2

)
m2(s)m1(r)

)
g(r, s) = m1(r)m2(s) +m1(s)m2(r)

for all r, s ∈ G. This completes the case when α 6= 0. One can easily see that when

g(c2, e) 6= g(c, e)2 we have that g takes the same form regardless of whether or not
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α is non-zero. It can also be seen that (4.11) is equivalent to (4.8) when α = 0.

Hence, this completes the second case and the proof.

COROLLARY 4.1. Let G be a group and e be the identity element of G. Let

f, g, h : G×G→ C be a non-zero solution of the functional equation

f(pr, qs) + f(ps, qr) = g(p, q)h(r, s) (4.12)

for all p, r, q, s ∈ G, then one of the following holds:

i) if there exists c ∈ Z(G) such that h(c2, e) = 2
β
h(c, e)2 where 0 6= β ∈ C, then

h(cx, e) = 0

for all x ∈ G;

ii) if there exists c ∈ Z(G) such that h(c2, e) 6= 2
β
h(c, e)2 where 0 6= β ∈ C, then

there exists two distinct characters m1,m2 : G→ C? and 0 6= λ ∈ C such that

f(p, r) =

(
λ+ α

2

)
m1(r)m2(p) +

(
α− λ

2

)
m2(r)m1(p),

g(p, r) =

(
λ+ α

β

)
m1(r)m2(p) +

(
α− λ
β

)
m2(r)m1(p),

h(p, r) =
β

2
(m1(p)m2(r) +m1(r)m2(p))

for all p, r ∈ G where α is an arbitrary constant in C.

Proof. Let r = s = e in (4.12). Then

2 f(p, q) = g(p, q)h(e, e)

for all p, q ∈ G. If h(e, e) = 0 then 2 f(p, q) = 0, which contradicts the assumption

that f is non-trivial. Therefore, h(e, e) = β 6= 0 where β ∈ C. This gives us that

2

β
f(p, q) = g(p, q)
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for all p, q ∈ G. By substituting into (4.12) we get the following:

f(pr, qs) + f(ps, qr) =
2

β
f(p, q)h(r, s)

for all p, q, r, s ∈ G.

Defining a function k : G×G→ C such that k(p, q) = 2
β
h(p, q) the previous

becomes

f(pr, qs) + f(ps, qr) = f(p, q) k(r, s)

for all p, q, r, s ∈ G. From Theorem 4.1 we have that if k(c2, e) = k(c, e)2 for

c ∈ Z(G), then

k(cx, e) = 0

for all x ∈ G and c ∈ Z(G). Using the definition of k, if 2
β
h(c2, e) =

(
2
β
h(c, e)

)2
,

that is h(c2, e) = 2
β
h(c, e)2 for c ∈ Z(G), then 2

β
h(cx, e) = 0 and hence h(cx, e) = 0

for all x ∈ G and c ∈ Z(G). This completes the first case.

If there exists c ∈ Z(G) such that k(c2, e) 6= k(c, e)2, that is h(c2, e) 6=
2
β
h(c, e)2, then there exists two distinct characters m1,m2 : G → C? and λ ∈ C

that is non-zero such that

f(p, r) =

(
λ+ α

2

)
m1(r)m2(p) +

(
α− λ

2

)
m2(r)m1(p)

k(p, r) = m1(p)m2(r) +m1(r)m2(p)

for all p, r ∈ G, where α is an arbitrary constant in C. From the way that g in

terms of f , substituting and simplifying yields

g(p, r) =

(
λ+ α

β

)
m1(r)m2(p) +

(
α− λ
β

)
m2(r)m1(p)

for all p, r ∈ G. The definition of k gives us

h(p, r) =
β

2
(m1(p)m2(r) +m1(r)m2(p))

for all p, r ∈ G, which completes the proof.
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Now, we will consider the functional equation

f(pr, qs) + f(ps, qr) = g(p, q) f(r, s) (4.13)

for all p, q, r, s ∈ G. If we were to take h to be f in Corollary 4.1 yields λ = 0,

which is a contradiction to our assumption in Corollary 4.1 that λ ∈ C is non-zero.

Therefore, we consider another method.

COROLLARY 4.2. Let G be a group and e be the identity element of G. Let

f, g : G × G → C be a non-zero solution of the functional equation (4.13) for all

p, q, r, s ∈ G, then one of the following holds:

i) if there exists c ∈ Z(G) such that f(c2, e) = 1
α
f(c, e)2 where 0 6= α ∈ C then

f(c, x) =
1

α
f(c, e) f(x, e)

for all x ∈ G;

ii) if there exists c ∈ Z(G) such that f(c2, e) 6= 1
α
f(c, e)2 where 0 6= α ∈ C, then

there exists two distinct characters m1,m2 : G→ C? such that

f(p, r) =
α

2
(m1(p)m2(r) +m2(p)m1(r)),

g(p, r) = m1(p)m2(r) +m1(r)m2(p)

for all p, r ∈ G.

Proof. Let r = s = e in (4.13). Then

2 f(p, q) = g(p, q) f(e, e)

for all p, q ∈ G. If f(e, e) = 0 then f(p, q) = 0 for all p, q ∈ G, which contradicts

the assumption that f is non-trivial. Therefore, f(e, e) = α 6= 0 where α ∈ C. This

gives us that

2

α
f(p, q) = g(p, q)
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for all p, q ∈ G. By substituting into (4.13) we get the following:

f(pr, qs) + f(ps, qr) =
2

α
f(p, q) f(r, s)

for all p, q, r, s ∈ G. Multiplying through by 2
α

and defining a function h : G×G→ C

such that h(p, q) = 2
α
f(p, q) the previous becomes

h(pr, qs) + h(ps, qr) = h(p, q)h(r, s)

for all p, q, r, s ∈ G. Therefore, from Theorem 2.2 we have that if there exists a

c ∈ Z(G) such that 2h(c2, e) = h(c, e)2, then

2h(c, x) = h(c, e)h(x, e)

for all x ∈ G and c ∈ Z(G). From the definition of h we get that if 2
α

2 f(c2, e) =(
2
α
f(c, e)

)2
, that is if f(c2, e) = 1

α
f(c, e)2 for c ∈ Z(G), then f(c, x) = 1

α
f(c, e) f(x, e)

for all x ∈ G and c ∈ Z(G). This completes the first case.

If there is a c ∈ Z(G) such that 2h(c2, e) 6= h(c, e)2, then there exists two

distinct characters m1,m2 on G such that

h(p, r) = m1(p)m2(r) +m2(p)m1(r),

for all p, r ∈ G. Therefore, if f(c2, e) 6= 1
α
f(c, e)2 for c ∈ Z(G) then

f(p, r) =
α

2
(m1(p)m2(r) +m2(p)m1(r))

for all p, r ∈ G. Substituting into the definition of g in terms of f we get that

g(p, r) = m1(p)m2(r) +m2(p)m1(r)

for all p, r ∈ G, which completes the second case and hence completes the proof.

Lastly, we will consider the functional equation

f(pr, qs) + f(ps, qr) = g(p, q) g(r, s)
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for all p, q, r, s ∈ G. Taking h to be g in Corollary 4.1 yields λ+α
β

= β
2

and α−λ
β

= β
2
.

By cross multiplying and setting the two equal one can easily see that λ = −λ,

which implies that λ = 0. This is a contradiction to our assumption in Corollary

4.1 that λ ∈ C is non-zero. Therefore, we again must consider another method.

COROLLARY 4.3. Let G be a group and e be the identity element of G. Let

f, g : G×G→ C be a non-zero solution of the functional equation

f(pr, qs) + f(ps, qr) = g(p, q) g(r, s) (4.14)

for all p, q, r, s ∈ G, then one of the following holds:

(i) if there exists c ∈ Z(G) such that g(c2, e) = 1
α
g(c, e)2 where 0 6= α ∈ C, then

g(c, x) =
1

α
g(c, e) g(x, e)

for all x ∈ G;

(ii) if there exists c ∈ Z(G) such that g(c2, e) 6= 1
α
g(c, e)2 where 0 6= α ∈ C, then

there are two distinct characters m1,m2 on G such that

f(p, r) =
α2

4
(m1(p)m2(r) +m2(p)m1(r))

g(p, r) =
α

2
(m1(p)m2(r) +m2(p)m1(r))

for all p, r ∈ G.

Proof. Let r = s = e in (4.14). Then

2 f(p, q) = g(p, q) g(e, e)

for all p, q ∈ G. Define g(e, e) = α, where α is a complex constant. If α = 0 we get

f(p, q) = 0 for all p, q ∈ G, which contradicts our assumption that f is a non-zero

function. Thus, α is a non-zero complex constant and

f(p, q) =
α

2
g(p, q)
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for all p, q ∈ G. Substituting into (4.14) for f yields the following:

α

2
g(pr, qs) +

α

2
g(ps, qr) = g(p, q) g(r, s)

for all p, q, r, s ∈ G. Define a new function h : G × G → C such that h(p, q) =

2
α
g(p, q). Then g(p, q) = α

2
h(p, q). Using the definition of h, the previous becomes

α

2

(α
2
h(pr, qs)

)
+
α

2

(α
2
h(ps, qr)

)
=
(α

2
h(p, q)

) (α
2
h(r, s)

)
,

which reduces to

h(pr, qs) + h(ps, qr) = h(p, q)h(r, s)

for all p, r, q, s ∈ G.

From Theorem 2.2 we now have that if there is a c ∈ Z(G) such that

2h(c2, e) = h(c, e)2, then

2h(c, x) = h(c, e)h(x, e)

for all x ∈ G. Using the definition of h we get that if there is a c ∈ Z(G) such that

2

(
2

α

)
g(c2, e) =

(
2

α
g(c, e)

)2

g(c2, e) =
1

α
g(c, e)2,

then

2

(
2

α

)
g(c, x) =

(
2

α
g(c, e)

) (
2

α
g(x, e)

)
g(c, x) =

1

α
g(c, e) g(x, e)

for all x ∈ G and c ∈ Z(G). This completes the first case.

If there is a c ∈ Z(G) such that g(c2, e) 6= 1
α
g(c, e)2 then there exists two

distinct characters m1,m2 on G such that

h(p, r) = m1(p)m2(r) +m2(p)m1(r)
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for all p, r ∈ G. Therefore, from the definition of h

g(p, r) =
α

2
(m1(p)m2(r) +m2(p)m1(r))

for all p, r ∈ G. From that way that f is defined in terms of g we get that

f(p, r) =
α2

4
(m1(p)m2(r) +m2(p)m1(r))

for all p, r ∈ G. This completes the second case and thus completes the proof.
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CHAPTER 5

CONCLUSION

5.1 Conclusion and Future Plans

The purpose of this dissertation has been to study and generalize the solu-

tions of several functional equations defined on the real line to an abstract group.

We have made great progress in generalizing several functional equations related

to stochastic distance measures. New methods have been created and considered

while old techniques and methods have been employed.

In regards to the linear equation, f(pr, qs) + g(ps, qr) = h(p, q) + k(r, s), we

have succeeded in finding the general solution on an arbitrary group. We have shown

that the solution to the above functional equation when defined on an arbitrary

group is similar to the solution when defined on the real line. Several examples

were given in the case that all four functions were the same. It would be nice to

find more examples, specifically for the generalizations to more than one function.

In regards to the non-linear equation, f(pr, qs) + f(ps, qr) = f(p, q) f(r, s),

we have shown that the solution on an arbitrary group is only similar to the solution

on the real line under specific conditions. Those conditions are related to whether

or not the function is abelian and how the function acts on the center of the group.

Since no information is given when the group is centerless it may be worth while to

attempt to study this equation on a centerless group.

There are many more things to continue considering with this equation. It
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is my hope that here are other methods that may help us extract more information

from the equation. When considering the generalizations of the non-linear functional

equation we have not yet been able to solve nor give the structure of the solution

when the functions on the left hand side are not the same, i.e. f(pr, qs)+g(ps, qr) =

f(p, q) f(r, s). We continue to work to find new methods to extend the study to

four different functions.

Recently, the non-linear equation has been considered by Stetækr [15] when

some of the variables are switched, that is the functional equation f(pr, qs) +

f(sp, rq) = f(p, q) f(r, s). He was able to find the solution on a semigroup. It hap-

pens to be a corollary to the solution of the functional equation f(xy)+f(σ(y)x) =

2 f(x) f(y), where σ is a homomorphism. By letting x = (p, q), y = (r, s), and

letting σ be a function that swaps variables one can see how the two are related.

Similarly, we would like to study the functional equation f(pr, qs) + f(sp, rq) =

g(p, q)h(r, s) by considering the functional equation f(xy) + f(σ(y)x) = g(x)h(y)

on a group or a semigroup.

It may be of interest to consider the generalized linear functional equation

with a switch of variables, that is f(pr, qs) + g(sp, rq) = h(p, q) + k(r, s). It can be

shown that the case in which all four functions are the same is a corollary to Theorem

2.2 and hence several generalizations follow. Using the previously stated technique

on the linear functional equation the functional equation f(xy)+f(σ(y)x) = 2 f(x)+

2 f(y) arises. Based upon some results of Ng and Zhao [8] it may be possible to

solve this on a free group, a symmetric group, and a few other specific types of

groups. Finding the solution on an arbitrary group may prove to be a bit more of

a challenge.

I have recently begun to consider a combination of the linear and non-linear

equations, that being the functional equation f(pr, qs) + f(ps, qr) = 2 f(p, q) +

2 f(r, s) + f(p, q) f(r, s). I have been able to solve this along with a few other
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generalizations. Ideally, I would like to study the functional equation f(pr, qs) +

g(ps, qr) = 2h(p, q) + 2 k(r, s) + j(p, q) t(r, s).

Hopefully the future work in this area will be as rewarding and fruitful as

this work has been!
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ity of a simple Levi-Civitá functional equation on non-unital commutative semi-

groups”, Proceedings Mathematical Sciences, Indian Academy of Sciences

Accepted for publication, May 2013

• Heather B. Hunt and Prasanna K. Sahoo, “On a functional equation on groups

63



arising from the characterization of stochastic distance measures”, Aequationes

Mathematicae

Available Online, October 2013

• Heather B. Hunt and Prasanna K. Sahoo, “On a non-linear functional equation

on groups associated with the characterization of stochastic distance measures”

Submitted

PRESENTATIONS

• “Several Examples of A Functional Equation Defined on Groups”, 2014 Annual

KYMAA Meeting, Murray State University, Murray, KY, March 28th, 2014

• “A Generalized Linear Functional Equation Defined on Groups”, National Joint

Mathematics Meeting, Baltimore, MD, January 16th, 2014

• “A Linear Functional Equation on Groups”, Central Sectional Joint Mathematics

Meeting, Washington University, St. Louis, MO, October 19th, 2013

• “Some Functional Equations on Groups Arising from Stochastic Distance Mea-

sures”, Candidacy Examination, University of Louisville, Louisville, KY, August

28th, 2013

• “An Introduction to Latex”, Research Methods in Mathematics Course, Univer-

sity of Louisville, Louisville, KY, May 29, 2013

• “A Functional Equation from Stochastic Distance Measure”, 2013 Annual KY-

MAA Meeting, Transylvania University, Lexington, KY, April 5, 2013

• “A Functional Equation on Groups”, 32nd Annual WKU Mathematics Sympo-

sium, Western Kentucky University, Bowling Green, KY, October 13, 2012

64



LEADERSHIP/ MENTORING

Department of Mathematics, University of Louisville, Louisville, KY

Peer Mentor for Mathematics Graduate Students 2012-Present

Help new graduate students feel welcome and become a part of the Mathematics

Department community, attempt to answer any questions that students may have

or direct them to someone who can answer their questions, create and maintain a

bulletin board informing mathematics graduate students about upcoming events,

conferences, funding opportunities, etc.; organize and plan a departmental mock

interview for students; plan a picnic at the end of the academic year hosted by the

graduate students for all faculty and staff in the Mathematics Department.

Department of Mathematics, University of Louisville, Louisville, KY

Assistant to professor for the purpose of coordinating the American

Mathematical Society Sectional Meeting Fall 2013

Recruit, organize, and schedule volunteers to direct visitors around campus and run

the registration desk, create signs to direct visitors to parking and different loca-

tions on the University of Louisville’s campus, and work with a company to have

the signs printed professionally by a given deadline.

University of Louisville, Louisville, KY

Graduate Student Council Department Representative 2012-Present

Attend monthly meetings, share the needs and concerns of the graduate students

within my department with others, occasionally fill in for representatives at the

graduate student senate meetings to vote on important items affecting the Uni-

versity’s graduate students, and relay all important information about upcoming

events, changes, and funding.

65



University of Louisville, Louisville, KY

Graduate Student Union Department Representative 2012-Present

Attend monthly meetings, open the lines of communication between graduate stu-

dents in the Department of Mathematics and graduate students in other depart-

ments, assist in organizing family friendly graduate student events, and relay all

important information about upcoming events, changes, and funding.

AWARDS

• Scholar Athlete Faculty Mentor, University of Louisville March 2014

• Graduate Student Spotlight Nominee, University of Louisville January 2014

• Service to Graduate Student Council, University of Louisville 2013 and 2014

• Teaching Assistantship, University of Louisville 2009-Present

• Robert B. Royster Award, University of Kentucky 2009

• JC Eaves Scholarship, University of Kentucky 2007

66


	University of Louisville
	ThinkIR: The University of Louisville's Institutional Repository
	8-2014

	Several functional equations defined on groups arising from stochastic distance measures.
	Heather B. Hunt
	Recommended Citation


	tmp.1450454923.pdf.zxmLi

