
University of Colorado, Boulder
CU Scholar
Mechanical Engineering Graduate Theses &
Dissertations Mechanical Engineering

Spring 1-1-2018

Geometrically Exact and Analysis Suitable Mesh
Generation Using Rational Bernstein–Bezier
Elements
Luke H. Engvall
University of Colorado at Boulder, luke.engvall@gmail.com

Follow this and additional works at: https://scholar.colorado.edu/mcen_gradetds

Part of the Mechanical Engineering Commons

This Dissertation is brought to you for free and open access by Mechanical Engineering at CU Scholar. It has been accepted for inclusion in Mechanical
Engineering Graduate Theses & Dissertations by an authorized administrator of CU Scholar. For more information, please contact
cuscholaradmin@colorado.edu.

Recommended Citation
Engvall, Luke H., "Geometrically Exact and Analysis Suitable Mesh Generation Using Rational Bernstein–Bezier Elements" (2018).
Mechanical Engineering Graduate Theses & Dissertations. 170.
https://scholar.colorado.edu/mcen_gradetds/170

https://scholar.colorado.edu?utm_source=scholar.colorado.edu%2Fmcen_gradetds%2F170&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.colorado.edu/mcen_gradetds?utm_source=scholar.colorado.edu%2Fmcen_gradetds%2F170&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.colorado.edu/mcen_gradetds?utm_source=scholar.colorado.edu%2Fmcen_gradetds%2F170&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.colorado.edu/mcen?utm_source=scholar.colorado.edu%2Fmcen_gradetds%2F170&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.colorado.edu/mcen_gradetds?utm_source=scholar.colorado.edu%2Fmcen_gradetds%2F170&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=scholar.colorado.edu%2Fmcen_gradetds%2F170&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.colorado.edu/mcen_gradetds/170?utm_source=scholar.colorado.edu%2Fmcen_gradetds%2F170&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cuscholaradmin@colorado.edu

Geometrically Exact and Analysis Suitable Mesh

Generation using Rational Bernstein–Bézier Elements

by

Luke Houlden Engvall

B.S., University of New Mexico, 2012

M.S., University of Colorado, 2015

A thesis submitted to the

Faculty of the Graduate School of the

University of Colorado in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Mechanical Engineering

2018

This thesis entitled:
Geometrically Exact and Analysis Suitable Mesh Generation using Rational Bernstein–Bézier

Elements
written by Luke Houlden Engvall

has been approved for the Department of Mechanical Engineering

Assistant Prof. John A. Evans

Assistant Prof. Peter Hamlington

Prof. Kenneth Jansen

Prof. Daven Henze

Prof. Franck Vernerey

Date

The final copy of this thesis has been examined by the signatories, and we find that both the
content and the form meet acceptable presentation standards of scholarly work in the above

mentioned discipline.

iii

Engvall, Luke Houlden (Ph.D., Mechanical Engineering)

Geometrically Exact and Analysis Suitable Mesh Generation using Rational Bernstein–Bézier El-

ements

Thesis directed by Assistant Prof. John A. Evans

This dissertation presents two novel contributions to the fields of isogeometric analysis and

p-version finite elements. First, we present a framework for geometrically exact volumetric mesh

generation. By leveraging ideas from both traditional mesh generation as well as isogeometric

analysis, we develop a framework for volumetric mesh generation using rational Bernstein–Bézier

discretizations. Within this framework, we provide a set of easily verifiable sufficient conditions

for guaranteeing that a mesh will be geometrically exact. Second, we develop a complete theory

of mesh quality for these rational Bernstein–Bézier elements. From this, we derive a set of easily

computable mesh quality metrics for verifying that a rational Bernstein–Bézier discretization will

be analysis suitable.

Dedication

To my parents. You taught me to be curious, ask questions, and never stop learning.

v

Acknowledgements

This work would not have been possible without my advisor, Professor John A. Evans. His

mentorship has been invaluable throughout my graduate studies. I am also grateful to my fellow

graduate students and the members of the CMGLab for their camaraderie and collaboration over

the past five years. I would like to thank Joe Benzaken in particular for his insights regarding

mesh quality metrics. Finally, I owe an immense debt of gratitude to Jordan Marks. Her support

and encouragement has been indispensable while writing this dissertation, and her edits to this

dissertation greatly improved the finished work.

This material is based upon work supported by the National Science Foundation Graduate Research

Fellowship Program under Grant No. DGE 1144083.

vi

Contents

Chapter

1 Introduction 1

2 Review of the Literature 6

2.1 Computer Aided Design . 6

2.1.1 NURBS Objects . 7

2.1.2 B-Reps . 9

2.1.3 T-splines . 13

2.2 Mesh Generation . 16

2.3 Isogeometric Analysis and Surface-to-Volume Parameterization 19

3 Bernstein–Bézier Elements 25

3.1 Multi-Index Notation . 25

3.2 The Bernstein–Bézier Form . 26

3.3 Simplicial Elements . 29

3.3.1 Cartesian Coordinates . 29

3.3.2 Barycentric Coordinates . 30

3.4 Tensor Product Elements . 32

3.5 Wedges . 33

3.6 Pyramids . 34

vii

4 Three Dimensional Mesh Generation 37

4.1 Bézier Extraction and Bézier Projection . 37

4.1.1 Bézier Extraction . 38

4.1.2 Bézier Projection . 39

4.2 Geometric Polynomial Complexity . 43

4.3 Mesh Generation Procedure . 48

4.3.1 Generation of a Compatible Linear Mesh . 48

4.3.2 Degree Elevation of the Linear Mesh . 51

4.3.3 Surface Reconstruction . 53

4.3.4 Smoothing of Control Points and Weights . 57

4.3.5 Applications to Higher-Order FEA . 58

4.3.6 Construction of Structured Surface Meshes 59

4.4 Element/Mesh Refinement . 61

4.5 Mesh Gallery . 67

4.6 Numerical Examples . 72

4.6.1 Patch Test . 72

4.6.2 Method of Manufactured Solutions . 75

4.6.3 Practical Examples . 78

5 Mesh Quality 81

5.1 Notation and Preliminaries . 81

5.1.1 Bernstein–Bézier Elements . 81

5.1.2 Derivative Notation . 82

5.2 Review of Finite Element Interpolation Theory . 82

5.2.1 The Isoparametric Concept . 83

5.2.2 Finite Element Interpolation Theory: Linear Elements 83

5.2.3 Finite Element Interpolation Theory: Curvilinear Elements 87

viii

5.2.4 Element Distortion and Quality Metrics . 89

5.3 Interpolation Theory for Rational Bernstein–Bézier Elements 94

5.4 Regular Families of Curvilinear Elements . 102

5.5 Computable Distortion Metrics for Rational Bernstein–Bézier Elements 106

5.5.1 Computable Bounds on the Jacobian Determinant 107

5.5.2 Computable Bounds on Derivatives of the Mapping xe 115

5.6 Numerical Examples . 119

5.6.1 Mesh of a Rectangular Plate . 119

5.6.2 Plate with a Hole . 127

5.6.3 Convergence Under p-refinement . 131

5.6.4 Mesh Optimization . 135

6 Conclusions 139

Bibliography 141

Appendix

A Derivative Stencils 148

ix

Tables

Table

2.1 Comparison of existing surface-to-volume approaches. 23

4.1 Patch Test Results . 75

5.1 Various types of mesh refinement. In uniform refinement, the structure of the orig-

inal mesh is preserved in each level of refinement. In quasi-uniform refinement, the

structure is not preserved, but all elements belong to a regular family. In irregu-

lar refinement, the bottom elements become increasingly thin, and therefore do no

belong to a regular family. 88

5.2 Bounds on the derivatives of a cubic Bernstein–Bézier triangle. 117

5.3 Example of finding the Bézier coefficients for several different derivatives using a

stencil. 118

5.4 Mesh Family 1. 120

5.5 Mesh Family 2. 121

5.6 Mesh Family 3. 121

5.7 Meshes and two families of weighting functions for the plate with a hole. 128

5.8 Families of p-refined meshes of the quarter annulus. 132

5.9 Three mesh families for a plate with a hole and chamfered corners. 136

A.1 Partial derivative stencils for quadratic Bernstein–Bézier triangles. 149

A.2 Partial derivative stencils for cubic Bernstein–Bézier triangles. 150

x

A.3 Partial derivative stencils for bi-quadratic Bernstein–Bézier quadrilaterals. 151

A.4 Partial derivative stencils for bi-cubic Bernstein–Bézier quadrilaterals. 152

xi

Figures

Figure

2.1 (a) The B-spline basis functions and (b) the corresponding B-spline curve. 9

2.2 (a) The NURBS basis functions and (b) the corresponding NURBS curve. 10

2.3 (a) The NURBS basis function R{4,3}. (b) Corresponding NURBS control net and

resultant NURBS surface. 10

2.4 Examples of multipatch NURBS surfaces. Each NURBS patch is shown in a different

color. 12

2.5 Creating a junctions of two cylinders using trimming curves. 12

2.6 (a) The local knot vectors. (b) Local univariate basis functions defined over the

knot vectors. (c) The resulting local bivariate basis function. (d) A T-mesh with the

representative local knot vectors shown in red. 14

2.7 (a) The T-mesh in parametric space. (b) The T-spline control net. (c) The corre-

sponding T-spline surface. 16

3.1 Projective transformation from the control net for a projective element Ω̃e ∈ Rd+1

(shown in blue), to the physical element Ωe ∈ Rd (shown in grey). Points on the

projective element are given in projective coordinates {x̃1, ..., x̃d, w}. The physical

element is embedded in the w = 1 plane (gray grid), and points on the physical

element are given in terms of the physical coordinates {x1, ..., xd}. 28

xii

3.2 Simplicial Bézier element gallery. (a) The cubic triangular control net in parametric

space. (b) A cubic Bézier triangle in physical space. (c) The cubic tetrahedral control

net in parametric space. (d) A cubic Bézier tetrahedra in physical space. 31

3.3 Tensor product Bézier elements. (a) The bicubic quadrilateral control net in para-

metric space. (b) A bicubic Bézier quadrilateral in physical space. (c) The tricubic

hexahedral control net in parametric space. (d) A tricubic Bézier hexahedra in

physical space. 33

3.4 A cubic Bézier wedge in (a) parametric space and (b) physical space. 34

3.5 A cubic Bézier pyramid in (a) parametric space and (b) physical space. 36

4.1 Bézier extraction on a T-spline surface. (a) The control net for the extracted Bézier

elements. (b) The Bézier elements. 40

4.2 (a) The target function, f . (b) Local projection of f onto three Bézier curves. The

three Bézier curves are shown in different colors along with their control nets. (c)

The NURBS approximation to f . 43

4.3 A variety of surfaces with different P2 complexity: (a) Bilinear surface, P2 = 2, (b)

Cylinder, P2 = 3, (c) Pipe Elbow, P2 = 4, (d) S-Duct, P2 = 5, (e) Bi-cubic surface,

P2 = 6. 47

4.4 a) A valid and (b) an invalid linear mesh. Bézier element boundaries are shown in

bold, and invalid triangles are shown in red. 50

4.5 Triangular surface mesh generation. (a) The initial open cylindrical surface. (b)

Closing the surface with a trimmed plane. (c) Generation of an unstructured surface

mesh. 51

4.6 Cut view of the linear cylinder mesh. 52

4.7 Degree elevated cylindrical mesh. 53

xiii

4.8 Visualization of Bézier projection of a Bézier element onto a collection of Bézier poly-

gons. This illustrates the notation used in the surface reconstruction step presented

in Section 4.3.3. 55

4.9 Surface reconstructed cylindrical mesh. 56

4.10 Structured surface mesh generation. (a) Start with a closed surface. (b) Refine the

Bézier surface using Bézier extraction. (c) Degree reduce to arrive at a structured

quadrilateral surface mesh. 60

4.11 Refinement of a tricubic Bézier hexahedron. (a) Collocation points for calculating

Sij . (b-i) Collocation points for calculating Tk
ij . 63

4.12 Refinement of a cubic Bézier tetrahedron. (a) Collocation points for calculating Sij .

(b-m) Collocation points for calculating Tk
ij . We note that uniform subdivision of a

tetrahedron results in 4 tetrahedra and an a octahedron in the center. We choose

to split this octahedron into 8 tetrahedra as shown above, but other methods of

splitting are readily implemented. 64

4.13 Refinement of a cubic Bézier wedge. (a) Collocation points for calculating Sij . (b-i)

Collocation points for calculating Tk
ij . 65

4.14 Refinement of a cubic Bézier pyramid. (a) Collocation points for calculating Sij .

(b-k) Collocation points for calculating Tk
ij . 66

4.15 Uniform subdivision of the meshing primitives. 66

4.16 Geometrically exact mesh of a marine propeller using sextic Bézier tetrahedra. (a)

T-spline surface. (b) Surface mesh. (c) Surface mesh detail. (d) Cut view of interior

mesh. 69

4.17 Lower-order mesh of a bike frame using cubic Bézier tetrahedra. (a) T-spline surface.

(b) Surface mesh. (c) Surface mesh detail. (d) Cut view of interior mesh. 70

4.18 Mesh of the volume around an aircraft wing. (a) NURBS surface of the aircraft

wing. (b) Boundary layer mesh of hexahedra and pyramids. (c) Cut view of volume

mesh. (d) Volume mesh detail. 71

xiv

4.19 Undeformed meshes for the patch test. (a) Tetrahedral mesh. (b) Pyramidal mesh.

(c) Wedge mesh. 73

4.20 Deformations for the first patch test. (a)Tetrahedral mesh. (b) Pyramidal mesh. (c)

Wedge mesh. 74

4.21 Deformations for the second patch test. (a)Tetrahedral mesh. (b) Pyramidal mesh.

(c) Wedge mesh. 74

4.22 Boundary conditions for (a) the constant tension, and (b) the constant shear patch

tests. 74

4.23 Meshes used with the method of manufactured solutions. (a) Tetrahedral mesh (b)

Wedge mesh. (c) Mixed element hexahedral-pyramidal-tetrahedral mesh. (d) The

prescribed temperature field. 76

4.24 Convergence plots for three different meshes (a,b) L2 and H1 convergence plots for

the tetrahedral mesh. (c,d) L2 and H1 convergence plots for the wedge mesh. (e,f)

L2 and H1 convergence plots for the mixed element mesh. 77

4.25 Superparametric simulation of linear elasticity on the propeller. (a) Boundary con-

ditions. (b) Displacement magnitude. 79

4.26 Lower-order isoparametric simulation of linear elasticity on a bike frame. (a) Bound-

ary conditions. (b) Displacement magnitude. 80

5.1 Isoparametric mappings from a reference element Ω̂ in parametric space to physical

space. The element Ωe (shown by the bold line) is defined by the higher-order

mapping xe. The corresponding affine element Ω
e

(shown by the dashed line) is

defined by a purely affine mapping xe. 84

5.2 Element measures ρe and he for the linear quadrilateral element Ω
e

from Fig. 5.1. . 85

xv

5.3 Steps for basic curvilinear mesh generation on a plate with a hole. (a) Create an

initial linear mesh. A representative boundary element is highlighted in bold. (b)

Degree elevate the linear element by inserting higher-order control points. (c) Curve

the element to match the boundary by updating control point location. (d) Repeat

for each element int he mesh to yield the final curvilinear mesh. 90

5.4 Highly distorted triangular element with a scaled Jacobian of JS = 1. 93

5.5 Mapping F from the linear element Ω
e

to the curved element Ωe. 95

5.6 Differential 2-forms on a physical element and a projective element. 109

5.7 Convergence plots for the quadrilateral meshes. (a) L2 norm of the error for the L2

projection problem. (b) L2 norm of the error for Poisson’s problem. 123

5.8 Convergence plots for the triangular meshes. (a) L2 norm of the error for the L2

projection problem. (b) L2 norm of the error for Poisson’s problem. 123

5.9 Mesh distortion metrics for the quadrilateral meshes of the plate. (a) Lower bound

on the scaled Jacobian. (b) Upper bound on the first derivative. (c) Upper bound

on the second derivative. (d) Upper bound on the third derivative. 125

5.10 Mesh distortion metrics for the triangular meshes of the plate. (a) Lower bound on

the scaled Jacobian. (b) Upper bound on the first derivative. (c) Upper bound on

the second derivative. (d) Upper bound on the third derivative. 126

5.11 Convergence rate of the error in the L2-norm. 129

5.12 Mesh distortion metrics for the triangular meshes of the plate. (a) Lower bound on

the scaled Jacobian. (b) Upper bound on the first derivative. (c) Upper bound on

the second derivative. (d) Upper bound on the third derivative. 130

5.13 Convergence in the L2 error under p-refinement. 133

5.14 Scaled Jacobian metrics for the p-refined meshes of the quarter annulus. 134

5.15 Upper bounds on the higher order derivatives for the p-refined meshes of the quarter

annulus. The metrics for Family 1 are shown in (a) and the metrics for Family 2 are

shown in (b). 134

xvi

5.16 Convergence plots of the error in the L2 norm. (a) Error versus mesh size. (b) Error

versus nodal degrees of freedom in the mesh. 137

5.17 Mesh distortion metrics for the triangular meshes of the plate with a hole and cham-

fers. (a) Lower bound on the scaled Jacobian. (b) Upper bound on the first deriva-

tive. (c) Upper bound on the second derivative. (d) Upper bound on the third

derivative. 138

Chapter 1

Introduction

Computer aided engineering (CAE) has become an indispensable and ubiquitous tool for

practicing engineers. The concept of CAE is incredibly broad, and includes any computational tools

used in the engineering workflow, such as computer aided design (CAD), finite element analysis

(FEA), and computer aided manufacturing (CAM). The widespread adoption of CAE has been

largely spurred by the increasingly powerful computational resources available to scientists and

engineers. More powerful computers have not only allowed for increasingly complex designs in

the CAD environment, but have also enabled larger and more complex simulations using FEA.

However, as engineers rely increasingly on the CAE workflow, there is a greater need to ensure that

the numerics that underpin these software packages are robust, accurate, and efficient.

To motivate the importance of these numerical methods, it is illuminating to first consider

the current state of the CAE workflow, with a particular focus on CAD and FEA, the topics most

relevant to this work. When a product enters the CAE workflow, a design is first modeled in

computer aided design (CAD) software. In CAD software, products are typically modeled using

boundary representations (B-Reps), which represent solid objects as a collection of their bounding

surfaces. These surfaces are typically parametrized by trimmed non-uniform rational B-spline

(NURBS) surfaces, which give a mathematical description of the outer surface of the product. We

provide a more detailed description of both NURBS surface and B-Reps in Chapter 2.

Once a design has been established, engineering analysis is typically performed by solving the

partial differential equations that govern the system by some numerical method such as the finite

2

difference method, finite volume method or finite element method. Of these methods, one of the

most widely used is the finite element method (FEM), also referred to as FEA. In the finite element

method, the geometry is first discretized into a collection of finite elements, or mesh. Typically,

this mesh is constructed by an automated mesh generation program, with varying levels of user

oversight to ensure that the resulting mesh will be adequate for FEA. Once a mesh is obtained,

analysts run a simulation over the mesh, which informs design change. The CAD model is then

updated, and the process begins anew.

Ideally, engineers should be able to easily leverage both CAD and FEA in tandem to converge

on optimal designs. However, in the traditional CAD to FEA paradigm, this is not the case, due to

the difficulty associated with created finite element meshes from CAD geometries. In an internal

study at Sandia National Laboratories, Hardwick and Clay identified 10 distinct steps in their

design and analysis cycle [29]. They found that approximately:

• 4% of the total design cycle time was spent on creating the CAD model.

• 72% of the time was spent converting this CAD model to an analysis suitable mesh. This

includes the geometry de-featuring, mesh generation, and mesh manipulation, among other

steps.

• 24% of the time was spent on running the analysis. This includes simulation setup, run

time, and post processing.

This disconnect between CAD and FEA leads to what has come to be known as the design-to-

analysis bottleneck.

From this case study, it is immediately obvious that the design-to-analysis bottleneck is a

major hinderance to the engineering design process. Moreover, we note that the meshes generated

for analysis are most often comprised of linear (straight-sided) elements. These linear meshes are

completely náıve to the geometry of the original CAD model, and the analysis model is, at best,

a linear approximation of the true geometry of interest. The increased reliance on automated

3

CAE processes motivates the need for numerical methods that mitigate the effects of the design-to-

analysis bottleneck and allow for tighter coupling between CAD and FEA. Two fields of research

that have seen increased attention in recent years are p-version finite elements and isogeometric

analysis (IGA).

In p-version FEA, the mesh is generally composed of curvilinear simplicial or tensor prod-

uct elements, which give a piecewise polynomial parameterization of the domain. The solution is

then typically approximated by piecewise polynomial interpolation over each element in the mesh.

By discretizing the domain using curvilinear elements, the geometry can be approximated more

accurately while simultaneously using fewer elements than a corresponding linear discretization,

allowing for increased accuracy for a given computational cost. However, generating good qual-

ity, geometrically accurate curvilinear meshes over complex domains in an automated and robust

manner is non-trivial, and is still an area of active research [28, 34, 39, 45, 53, 56, 63, 64, 71, 76].

Isogeometric analysis was introduced in 2005 as an attractive alternative to p-version finite

elements [31]. In IGA, rather than discretizing the domain using a mesh, the NURBS objects from

CAD are used directly as the parametrization for analysis, and the solution is approximated by the

NURBS basis functions. This approach affords several advantages over traditional p-version finite

elements, including higher-order continuity of the basis and circumvention of the meshing process,

which results in a tight coupling between the CAD and FEA models. While IGA promises to

alleviate the need for traditional meshes, in many cases some amount of preprocessing of the CAD

model is still needed before the analysis step. In CAD software, B-Reps are composed of trimmed

NURBS surfaces. That is, wherever two bounding surfaces intersect, the surfaces are trimmed, and

the resulting surfaces are joined at the trimming curve. Unfortunately these trimming curves result

in implicit parameterizations of the surface, whereas an explicit parameterization is required

for analysis with IGA1 . However, even if we can obtain an explicit surface parameterization, we

still often require an explicit volumetric parameterization for engineering analysis. To make IGA

1 An explicit parameterization is required for classical isoparametric finite element methods. While there have
been a number of meshless and immersed methods proposed for both FEA and IGA [32, 35, 49, 51, 59], the classic
isoparametric paradigm is still the most widely used.

4

a truly automated design-through-analysis workflow, robust and efficient methods are required to

transform a B-Rep from CAD into an explicit parameterization that can be used for analysis. This

problem has been termed surface-to-volume parameterization and, as with mesh generation

for p-version FEA, is an area of active research [1, 3, 24, 25, 42, 43, 46, 72, 77, 80].

It is clear that there exists a need for robust, efficient, and automatic geometric preprocessing

algorithms for both traditional p-version finite elements and IGA. Furthermore, it is not enough to

simply create any explicit parameterization, but rather the resulting parameterization must also be

analysis suitable2 . When practitioners of FEA or IGA use automated geometric preprocessing

software, they must be able to easily verify if the resulting discretization can be expected to yield

accurate results when used for analysis. As such, a set of easily computable element quality

metrics is integral to any geometric preprocessing algorithm. Indeed, as discussed in Section

5.2.4, a suite of quality metrics for curvilinear discretizations already exist in both the FEA and

IGA communities [24, 26, 37, 54, 68, 78, 82]. However, to the best of our knowledge, the existing

metrics are not sufficient to guarantee the analysis suitability of curvilinear meshes!

This is troubling, as the metrics currently in use can admit non analysis–suitable discretizations

without any indication to the end user.

This dissertations presents two novel contributions that address these open problems in the

fields of IGA and p-version finite elements.

(1) Geometrically Exact Volumetric Mesh Generation

By leveraging ideas from both traditional mesh generation as well as IGA, we develop a

framework for geometrically exact mesh generation using rational Bernstein–Bézier dis-

cretizations. Within this framework, we provide a verifiable set of conditions for guaran-

teeing that a mesh will be geometrically exact.

2 We say a parameterization is analysis suitable if it is both invertible and well-conditioned. A parameteriza-
tion is invertible if the element-wise Jacobian determinant is bounded from both above and below. A parameterization
is well-conditioned if the parameterization does not adversely affect the approximation accuracy of the finite element
method.

5

(2) Sufficient and Computable Mesh Quality Metrics

We develope a complete theory of mesh quality for these rational Bernstein–Bézier elements.

From this, we derive a set of easily computable mesh quality metrics for verifying the

analysis suitability of these rational Bernstein–Bézier discretizations.

With these two contributions in mind, the remainder of this dissertation is organized as fol-

lows. Thus far, we have given only a cursory overview of CAD objects, mesh generation, and IGA.

We begin by providing an in-depth literature review in Chapter 2. Then, as rational Bernstein–

Bézier elements are central to this work, we dedicate the entirety of Chapter 3 to reviewing these

elements. With the necessary preliminaries established, we present original work of this disserta-

tion. In Chapter 4, we present an algorithm for geometrically exact mesh generation using mixed

element Bernstein–Bézier discretizations, and in Chapter 5, we present element quality metrics for

these Bernstein–Bézier discretizations. Finally, we provide some concluding remarks in Section 6

regarding the work done in this dissertation, its potential impact on the field, as well as unanswered

questions and directions for future research.

Chapter 2

Review of the Literature

To provide necessary background for later chapters, we first review the state of the art

of the three fields of research directly related to this dissertaion. First, Section 2.1 reviews the

mathematical descriptions used to represent three dimensional objects in CAD software. Then,

Section 2.2 reviews the field of mesh generation, which provides much of the inspiration for this

disseration. Finally, Section 2.3 reviews isogeometric analysis, with a particular focus on the

problem of surface-to-volume parameterization. This last section reviews previously attempted

solutions to surface-to-volume parameterization, as well as motivates the need for further work in

the area.

2.1 Computer Aided Design

We begin this section by discussing the construction of NURBS curves and surfaces. Because

these objects share largely the same construction, we will collectively refer to them as NURBS

objects, and will make the explicit differentiation between curves and surfaces where necessary.

We then present an introduction to B-Reps, which are one of the de-facto standards for representing

complex geometries in modern CAD packages1 . Finally, we discuss some of the limitations of these

representations, and discuss T-splines as an attractive alternative.

1 We note that constructive solid geometry (CSG) representations are also commonly encountered in CAD
packages, but as we are specifically interested in the problem of surface-to-volume parameterization, we limit our
discussion to B-Reps.

7

2.1.1 NURBS Objects

NURBS (Non-Uniform Rational B-spline) objects lie at the heart of modern CAD packages

due to their flexibility in representing a wide variety of geometries. The simplest NURBS object is

a B-spline curve. To define a B-spline curve of polynomial degree p, we require:

(1) A set of basis functions defined in dr-dimensional parameter space2. This is given by a

set of n univariate (dr = 1) B-spline basis functions of degree p, {Np
i }ni=1.

(2) A control net in ds-dimensional physical space2. This is given by a set of n control points,

{Pi}ni=1, that lie in Rds .

To define the B-spline basis in parameter space, we first define a knot vector, a set of non-

decreasing coordinates in parameter space, Ξ = {Ξ1 Ξ2 ... Ξn+p+1}. The B-spline basis functions

of degree p are then defined via the Cox-deBoor recursion formula as:

N0
i (ξ) :=

1 if Ξi ≤ ξ < Ξi+1

0 otherwise

Np
i (ξ) :=

ξ − Ξi
Ξi+p − Ξi

Np−1
i (ξ) +

Ξi+p+1 − ξ
Ξi+p+1 − Ξi+1

Np−1
i+1 (ξ) ∀ ξ ∈ [Ξ1,Ξn+p+1]

The desired B-spline curve is then defined as the sum of the B-spline control points multiplied with

their respective basis functions, viz.:

C(ξ) =

n∑

i=1

Np
i (ξ)Pi

As their name implies, NURBS are a generalization of B-splines, with the key difference being that

each NURBS control point has an associated weight, and the NURBS basis is a rational basis.

2 Here, the subscript r in dr stands for reference, and the subscript s in ds stands for spatial.

8

To define a NURBS curve, we require three things:

(1) A set of n B-spline basis functions {Ni}ni=1, in Rdr .

(2) A set of n control points, {Pi}ni=1, in Rds .

(3) A set of n control weights, {wi}ni=1.

Physically, a NURBS curve is the projective mapping of a B-spline curve in Rds+1 to Rds . The

control points of the B-spline curve in Rds+1 are the projective or homogenous NURBS control

points, P̃i. The homogenous NURBS control points are found as:

(P̃i)j = (Pi)jwi i ∈ {1, ..., n}, j ∈ {1, ..., ds}

(P̃i)ds+1 = wi

(2.1)

Numerically, a NURBS curve is defined as a linear combination of the product of the NURBS

control points with their respective basis functions, viz.:

C(ξ) =

n∑

i=1

Rpi (ξ)Pi =

n∑

i=1

Np
i (ξ)wi

n∑
j=1

Np
j (ξ)wj

Pi

where the NURBS basis, {Ri}ni=1, is defined from the B-spline basis and control point weights via

the relation:

Rpi (ξ) =
Np
i (ξ)wi

n∑
j=1

Np
j (ξ)wj

Note that when all the control point weights are identically unity, the NURBS basis functions

reduce to the B-spline basis functions, and the corresponding NURBS curve reduces to a B-spline

curve. In this sense, the B-spline basis functions and B-spline curves are a restricted subset of the

NURBS basis and NURBS curves, respectively. From an analysis point of view, the NURBS basis

exhibits several beneficial properties, including pointwise non-negativity, partition of unity, linear

independence, and compact support. From a geometric modeling point of view, NURBS curves

exhibit the beneficial properties of affine covariance and a strong convex hull.

Fig. 2.1 and Fig. 2.2 provide graphical representations of B-spline and NURBS curves, respec-

tively. Fig. 2.1 shows an example quadratic B-spline basis for the knot vector Ξ = [0 0 0 1 1 2 3 4 4 4]

9

and a corresponding B-spline curve. Fig. 2.2 shows the NURBS basis functions for the same knot

vector Ξ = [0 0 0 1 1 2 3 4 4 4]. Note that the control net for the NURBS curve in Fig. 2.2b is

the same as for the B-spline in Fig. 2.1a. However, a weight of 3 is applied to the third control

point, leading to a change in both the basis and shape of the curve. Extending our discussion to

0 0.5 1 1.5 2 2.5 3

ξ

0

0.5

1

(a) (b)

Figure 2.1: (a) The B-spline basis functions and (b) the corresponding B-spline curve.

NURBS surfaces is relatively straight forward, as the bivariate NURBS basis is simply the tensor

product of two sets of univariate NURBS basis functions of degrees p1 and p2, respectively. That

is, we define the bivariate (dr = 2) NURBS basis functions as:

R{i1,i2}(ξ) =
Np1
i1

(ξ1)Np2
i2

(ξ2)w{i1,i2}
n1∑
j1=1

n2∑
j2=1

Np1
j1

(ξ1)Np2
j2

(ξ2)w{j1,j2}

and we can then define a NURBS surface as:

S(ξ) =

n1∑

i1=1

n2∑

i2=1

Ri(ξ)Pi =

n∑

i=1

m∑

j=1

Np1
i1

(ξ1)Np2
i2

(ξ2)wi

n1∑
j1=1

n2∑
j2=1

Np1
j1

(ξ1)Np2
j2

(ξ2)wj

Pi

wherein i = {i1, i2} and j = {j1, j2} are a multi-indices over the NURBS basis functions. Fig. 2.3a

shows a representative bivariate NURBS basis function, and Fig. 2.3b shows the corresponding

control net and resulting NURBS surface.

2.1.2 B-Reps

As we have already discussed, solid objects in CAD packages are visually represented as a

collection of surfaces. These representations of solid objects by a collection of surfaces are called

10

0 0.5 1 1.5 2 2.5 3

ξ

0

0.5

1

(a) (b)

Figure 2.2: (a) The NURBS basis functions and (b) the corresponding NURBS curve.

(a) (b)

Figure 2.3: (a) The NURBS basis function R{4,3}. (b) Corresponding NURBS control net and
resultant NURBS surface.

11

boundary representations, or B-Reps. Along with NURBS, B-Reps have long been the standard in

CAD packages, due to their relative ease of implementation and flexibility in representing a wide

array of complex geometries.

When constructing B-Reps, NURBS surfaces are the predominant geometric entities used to

represent the bounding surfaces. The collection of NURBS surfaces comprising a B-Rep is known

as a multi-patch NURBS surface. With multipatch NURBS surfaces, we are able to represent a

wide array of geometries. Fig. 2.4 shows some simple examples of multipatch geometries, with

the individual NURBS patches shown in different colors. Although many geometries can be repre-

sented using multi-patch NURBS surfaces, each NURBS patch must be mappable to a rectangle in

parametric space. As such, surfaces that cannot be mapped to a rectangle cannot be represented

in this manner.

Traditionally, this limitation has been overcome by the introduction of trimming curves.

Complex objects are first modeled using a collection of NURBS surfaces. In the locations where

these surfaces intersect, the modeler introduces trimming curves to truncate the respective surfaces.

The trimmed surfaces can then be connected along this trimming curve. We provide context for our

discussion of B-Reps and trimming curves by considering the simple (yet commonly encountered)

example of modeling the T-junctions of two cylinders, shown in Fig. 2.5. First, the NURBS surfaces

defining the surfaces of the cylinder are created (Fig. 2.5a). Next, a trimming curve is created

along the intersection of the two cylinders, and the overlapping segments are removed. Figs. 2.5b

and c show this process, with the trimmed sections highlighted in red, and the resulting surface is

shown in Fig. 2.5d. Next, the ends of the cylinders, are capped with trimmed NURBS surfaces

(Fig. 2.5e). The final geometry is then defined by the volume bounded by the union of the trimmed

surfaces, shown in Fig. 2.5f.

While NURBS and B-Reps are undoubtably powerful tools for CAD, as evidenced by their

widespread use, there are some notable disadvantages to these representations. First, whereas a

NURBS parameterization is explicit, the introduction of trimming curves causes the underlying

parameterization to be implicit, which is undesirable from a numerical analysis standpoint. Ad-

12

Figure 2.4: Examples of multipatch NURBS surfaces. Each NURBS patch is shown in a different
color.

(a) (b) (c)

(d) (e) (f)

Figure 2.5: Creating a junctions of two cylinders using trimming curves.

13

ditionally, multi-patch geometries often have gaps and overlaps, and we therefore say they are not

watertight. While these discontinuities in the geometry may not be large, and thus not readily

apparent in CAD, they pose serious problems in the analysis framework. For instance, gaps and

overlaps in geometry result in crack-tip stress concentrations in structural analysis and leakage in

fluid flow simulations. Finally, it is impossible to perform local refinement of a NURBS surface.

Because of the tensor product nature of the NURBS basis, any refinement must propagate across

an entire NURBS patch. It is these shortcomings that motivated the advent of T-splines as an

alternative to NURBS based B-Reps in CAD packages [62].

2.1.3 T-splines

T-splines are a generalization of NURBS that allow for T-junctions in the parameterization

[7, 62]. To define a NURBS basis, one must simply define the knot vectors in each parametric

direction that define the basis. Because the knot span is then defined as the tensor product of these

knot vectors, NURBS are inherently a structured basis. T-splines on the other hand allow for more

geometric flexibility by defining a set of local knot vectors for each basis function. Each local set

is made up of dr knot vectors, one in each parametric direction, with each knot vector defining

a single basis function, N l
α. Once we have defined the local knot vectors and their corresponding

basis functions, we can then define a single dr-variate basis function for each control point, Pα, viz:

Bα(ξ) =

dr∏

l=1

N l
α(ξl)

Consider, for example, the point P{3,4} with local knot vectors Ξ1 = [1 2 3 4 5] and Ξ2 = [2 3 4 5 6]

shown in Fig. 2.6a. We can define the cubic basis functions N1
3 and N2

4 over their respective local

knot vectors (Fig. 2.6b). The bivariate basis function B{3,4} is then defined as the tensor product

of the two univariate basis functions, B{3,4} = N1
3 ⊗N2

4 (Fig. 2.6c).

Thus, much like with NURBS surfaces, each control point Pα in physical space will have a

corresponding basis function defined in parametric space, Bα. Then, to define a T-spline surface,

we need a set of T-spline control points, as well as a way to relate these control points to each other.

14

1 2 3 4 5

ξ
1

2

3

4

5

6

ξ
2

(a)

6

5
5

4

ξ
2

4

ξ
1

3

3 2

2 1

(b)

6

5
5

4

ξ
2

4

ξ
1

3

3 2

2 1

(c)

0 1 2 3 4 5 6 7 8

ξ
1

0

1

2

3

4

5

6

7

ξ
2

(d)

Figure 2.6: (a) The local knot vectors. (b) Local univariate basis functions defined over the knot
vectors. (c) The resulting local bivariate basis function. (d) A T-mesh with the representative local
knot vectors shown in red.

15

This is done via a T-mesh, which defines the topology and parameterization for the corresponding

T-spline surface. A representative T-mesh for a cubic T-spline is shown in Fig. 2.6d. At this point,

the theory for T-splines diverges slightly. For odd polynomial degree T-splines, each vertex in the

T-mesh defines an anchor, sα, and there is a direct mapping from every anchor in the T-mesh to

every control point Pα in physical space. For T-splines of even polynomial degree, the anchors are

instead defined at the center of each face in the T-mesh. However, bi-cubic T-splines have come

to be the de-facto standard in the CAD community, so we limit our discussion of T-splines to this

case. Also shown in Fig. 2.6 are representative local knot vectors for the anchors s{3,4}, and s{7,1},

where the hash marks indicate the location of a knot. Observe that for a cubic T-spline, the local

knot vectors are formed by extending a line in each parametric direction, until the line intersects

with two orthogonal T-mesh lines in each direction. For the anchor s{3,4} the local knot vectors

are Ξ1 = [1 2 3 4 5] and Ξ2 = [2 3 4 5 6]. In the case of the anchor s{7,1}, the local knot vectors

are Ξ1 = [4 6 7 8 8] and Ξ2 = [0 0 1 2 3], where we have repeated knots because of the intersection

with the T-mesh boundary.

Finally, as with NURBS, each T-spline control point has an associated control weight. Thus,

for each anchor in the T-mesh, we define a set of T-spline blending functions:

Rα(ξ) =
wαBα(ξ)∑

β∈A
wβBβ(ξ)

With these blending functions defined, we can then define our T-spline in physical space as:

S(ξ) =
∑

α=A

PαRα(ξ)

Fig. 2.7b shows a T-spline surface, and Fig. 2.7a shows the corresponding T-mesh. Note the

direct mapping of anchors in the T-mesh to control points of the T-spline. Finally, it is worth

emphasizing that NURBS are simply a restricted subset of T-splines that do not permit T-junctions.

A substantial amount of work has been done in recent years on the applications of T-splines, both in

the context of design and analysis. In this dissertation, we use T-splines only from the design point

of view, as mathematical representations of surfaces from CAD. In this context, T-spline surfaces

16

0 1 2 3 4 5 6 7 8

ξ
1

0

1

2

3

4

5

6

7

ξ
2

(a) (b) (c)

Figure 2.7: (a) The T-mesh in parametric space. (b) The T-spline control net. (c) The correspond-
ing T-spline surface.

exhibit many of the desireable properties of NURBS surfaces such as affine covariance and a strong

convex hull. However, is it worth mentioning that using T-splines as a basis for isogeometric

analysis is an area of active research. As they are presented here, T-spline blending functions are

not necessarily linearly independent. However, it has been shown that we can define a restricted

subset of T-splines, called analysis-suitable T-splines, which are guaranteed to exhibit linear

independence, point-wise non-negativity and partition of unity [40, 61]. Finally, as we will discuss

at length in Section 2.3, much work has been done to solve the surface-to-volume parameterization

problem using T-splines. While there have been many proposed methods for creating trivariate

T-spline discretizations for the use in isogeometric analysis, this is still largely an unsolved problem.

Because of this, we limit our treatment of T-splines in this dissertation to the bi-variate case, and

focus on their use as purely a design technology for representing surfaces in CAD.

2.2 Mesh Generation

As stated previously, the standard practice in the current engineering workflow is to start with

a design model from CAD. If some form of analysis needs to be performed on the design, the design

model must first be discretized into a mesh. Generally speaking, a mesh is a collection of polygons

(2D) or polyhedrons (3D) whose union provides an approximation to the area or volume of interest,

respectively. Meshes can be broken into two broad classes: structured and unstructured.

17

Structured meshes are characterized by the fact that each vertex (with the exception of

boundary vertices) in the mesh must have the same number of connecting edges. In two dimensions,

these meshes are almost exclusively composed of quadrilaterals, where each vertex has exactly four

connecting edges. Similarly, in three dimensions, structured meshes are almost always composed of

hexahedra, with six edges connecting at each vertex. Structured meshes often are able to provide

better accuracy per degree-of-freedom when compared to unstructured meshes. However, a severely

limiting factor is that to create a structured mesh, a 2D domain must be mappable to a square,

while a 3D domain must be mappable to a cube. As a result, this precludes the use of structured

grids for many engineering applications that involve complex geometries.

Unstructured meshes, on the other hand, allow for any number of edges to be connected to

any given vertex. More often than not, unstructured meshes are composed of triangular elements

in 2D and tetrahedral elements in 3D. This is due to the fact that triangles and tetrahedra are the

simplest geometric objects in each respective space, and therefore offer the most flexibility in the

meshing process. Unstructured triangular and tetrahedral mesh generation is a well established

field with a large body of literature from which we may draw inspiration. Generally speaking,

unstructured mesh triangular and tetrahedral mesh generation techniques can be further classified

into two subclasses: mesh first and geometry first methods.

In mesh first methods, unsurprisingly, the mesh is generated first. A mesh of triangles (2D)

or tetrahedra (3D) is created that completely covers the domain of interest. This is usually using

some form of quadtree decomposition in 2D [5, 58] or octree decomposition in 3D [79]. Then, the

elements that intersect the boundary of the domain (defined by curves in 2D or surfaces in 3D) are

manipulated so that their vertices lie on the boundary. The mesh first approach generally produces

high quality elements throughout the interior of the mesh, but quality can suffer at the boundaries

as a result of the mesh manipulation step.

In the geometry first approach, the geometry is discretized from the lowest dimensional geo-

metric entities upwards. In the case of 2D mesh generation, this simply means boundary curves are

first discretized into a collection of lines, and areas are then discretized into a collection of trian-

18

gles. In 3D mesh generation, curves are first discretized into lines, then surfaces into triangles, and

finally volumes into tetrahedra. Discretizing the domain into a collection of triangles or tetrahedra

is most often done using either Delaunay techniques [8, 14] or advancing front techniques [44, 48].

Geometry first techniques are particularly useful when user control over mesh parameters is desired

near domain boundaries, such as when creating a boundary layer mesh for fluid flow simulation.

In recent years, more and more research has been devoted to advanced meshing techniques,

which extend mesh generation beyond meshes composed of only linear triangles or tetrahedra. In

particular, mixed element mesh generation has been a research topic of great interest recently, with

a focus on generating hexahedral dominant meshes [9, 67], as well as generating boundary layer

meshes for fluid flow simulations, where hexahedral elements are used for the boundary layer, and

tetrahedra are used for the free stream [30, 47, 57]. Additionally, curvilinear mesh generation is

hardly limited to the purview of isogeometric analysis, and there has been a significant amount

of previous work on curvilinear triangular and tetrahedral mesh generation using other methods

[28, 34, 39, 45, 53, 56, 63, 64, 71, 76]. Despite this large volume of research into curvilinear

mesh generation, there are two drawbacks to existing techniques that should be highlighted. First,

existing curvilinear mesh generation techniques generally use polynomial elements, and are therefor

unable to capture conic sections exactly. Secondly, most existing mesh generation approaches

employ point interpolation in order to fit curvilinear elements to CAD geometries. This can lead

to stability issues, including the presence of spurious surface oscillations, that may result from a

poor choice of interpolation nodes [73].

Finally, we note that there exists a plethora of open-source meshing packages for both 2D and

3D mesh generation, such as MESH2D [23], Triangle [65], gmsh [28], and tetgen [66]. Additionally,

we note that by no means are the works cited above the full extent of the field of mesh generation,

nor is the listed software an exhaustive list of the available open source meshing software. Mesh

generation has been an incredibly active area of research for many years now, and a complete review

of the state of the art would be untenable. Instead, we have tried to list a few of the most impactful

and relevant papers, and direct the interested reader to the references above for more information.

19

2.3 Isogeometric Analysis and Surface-to-Volume Parameterization

As previously stated, isogeometric analysis was originally conceived as a means to mitigate the

design-to-analysis bottleneck inherent in the traditional engineering design cycle. The underlying

concept is surprisingly simple. Rather than start with a design model from CAD and then discretize

the model into a mesh for analysis, the analysis is performed directly on the CAD geometry (NURBS

and T-spline surfaces). Furthermore, in FEA, the solution of interest is represented by a linear

combination of basis function. Traditionally, when using linear triangular or tetrahedral meshes,

the solution was likewise represented as a linear combination of linear triangular or tetrahedral basis

functions. In isogeometric analysis, the solution is instead represented as a linear combination of

NURBS or T-spline basis functions. Isogeometric analysis offers several distinct advantages over

tradition FEA, namely:

(1) Exact Geometry: The analysis is performed on the exact geometric model from CAD,

not a linear approximation in the form of a mesh.

(2) NURBS as the Basis for Analysis: NURBS have several desirable properties that

make them advantageous as a basis for analysis, including linear independence, partition

of unity, pointwise non-negativity and higher-order continuity.

(3) A Tight Link with CAD: There is a direct link with the original CAD model. This can

be advantagous for several reasons:

(a) If the analysis suggests that the design should be changed, only one model needs to

be changed, rather than changing the CAD model and re-meshing.

(b) If adaptive refinement is needed during analysis, the analysis does not need to query

the CAD model.

(c) This tight mathematical link between design and analysis eases the implementation

of automatic shape optimization.

20

Recall that in CAD packages solids objects are usually represented by a collection of bounding

surfaces, commonly referred to as boundary representations or B-reps. While these representations

are adequate for providing a visual representation of objects, they do not provide an explicit pa-

rameterization of the interior volume. Thus arises the aforementioned problem of surface-to-volume

parameterization. For our purposes, we define the goal of surface-to-volume parameterization as

follows:

Given a NURBS or T-spline surface from CAD, automatically parameterize the corresponding vol-

ume such that:

(1) The parameterization is explicit.

(2) The parameterization exactly matches the geometry.

(3) The parameterization is analysis suitable.

(4) The parameterization is defined by piecewise polynomial or rational basis functions that

satisfy linear independence, partition of unity, positivity, and higher-order continuity.

The four properties listed above are necessary for a parameterization to be suitable for isogeometric

analysis. The surface-to-volume problem is non-trivial, and there exists a large body of work on

attempts to solve this specific problem using trivariate B-spline, NURBS, and T-spline parame-

terizations. However, it is the opinion of this author that none of the previous work successfully

addresses all of the goals listed above. Presented below is a short summary of the state of the

art, as well as a short discussion of the advantages and disadvantages of each of the methods with

respect to the goals listed above.

Early work into the problem of surface-to-volume parameterization focused on generating

trivariate B-spline and NURBS discretizations. One approach, proposed by Aigner et. al., is to

use swept volumes to create trivariate NURBS parameterizations, which has been shown to work

well for a suite of relatively simple geometries, such as low-genus topologies, and geometries with

small variations in cross-sectional profiles [1]. However, this method requires sweeping curves to

be defined, and is therefore not automatic. Additionally, there is no study of analysis suitability

21

of the parameterization, and the method is limited to the restrictive class of geometries described

above. Another method, proposed by Martin et. al. [46], attempts to fit trivariate B-splines to

tetrahedral meshes using harmonic functions. However, this method is not fully automatic, and is

also not truly isogeometric as it uses trivariate B-splines to parameterize the volume, and therefore

cannot exactly represent certain geometries of engineering interest, such as conic sections. Finally,

any method for volume parameterization using trivariate NURBS or B-splines suffers from the

same limitations as structured hexahedral mesh generation for classical FEM. As such, it is often

impossible automatically generate analysis suitable meshes of complex geometries using NURBS

or B-spline volumes.

Work has also been done to develop volumetric parameterizations using T-splines, which allow

for local refinement via T-junctions in the parameterization. A notable example is the meccano

method proposed by Escobar et. al. [24]. This method shows considerable promise, but the authors

acknowledge further work needs to be done to enable automatic mesh generation of arbitrary genus

solids, as well as to ensure analysis suitability of meshes.

Many methods for volume parameterization have also been proposed by the Zhang research

group. Wang et. al. proposed a method for T-spline parameterizations from boundary triangu-

lations [72]. This method has been successful in automatically parameterizing a wide variety of

complex volumes, but still suffers from poor mesh quality in some cases. Liu et. al. proposed a

method for T-spline construction using Boolean operations [42], but it has been shown that while

this method can automatically parameterize many complex volumes, it is unable to generate pa-

rameterizations for certain classes of geometries, such as tetrahedra and cones. Finally, Liu et.

al. recently proposed a method for T-mesh construction using skeleton-based polycubes [43], and

while this method has been shown to produce analysis suitable parameterizations for a variety of

geometries, user interaction is required in the preprocessing step.

A third area of research is to use Bernstein triangles and tetrahedra to generate volume

parameterizations. Zeng et. al. have developed a hybrid meshing technology that creates a bound-

ary layer mesh of trivariate B-splines and an internal mesh of Bézier tetrahedra [80]. George et.

22

al. proposed a method for generating tetrahedral meshes using 10-node Bézier tetrahedra [27].

However, both of these methods fail to be truly isogeometric in nature as neither use rational

Bézier representations and therefore cannot exactly represent volumes defined by NURBS surfaces.

Indeed, the ability to exactly represent conic sections is paramount for engineering applications,

where geometries such as cylinders and spheres are commonplace.

We include here a table that briefly compares each method discussed above. Specifically, we

evaluate each method based on how well it accomplishes the goals of surface-to-volume parameter-

ization as outlined above, based on four criteria:

(1) Automatic: Is the method capable of automatically creating a volumetric parameteriza-

tion from a CAD surface without user interaction?

(2) Complex Geometries: Is the method capable of parameterizing complex geometries, such

as arbitrary genus objects, and objects with large variations in length scales?

(3) Exact Geometry: Is the method capable of creating a geometrically exact parameterization

of engineering geometries, including conic sections?

(4) Analysis Suitable: Is it demonstrated that the method produces analysis suitable geome-

tries?

For each method and each criteria, we say that the method either (a) fulfills the criteria (X),(b)

does not fulfill the criteria (×), or (c) fulfills the criteria with some caveats (∼). Of course, this

ternary classification system obscures many of the nuances of each individual method. Additionally,

terminology such as “automatic” and “complex geometry” is somewhat vague, and can vary from

application to application. As such, Table 2.1 should be used as a quick visual reference to compare

various methods, and interested readers are directed to the original works for more information.

In this work, we propose to address the problem of surface-to-volume parameterization

through the use of unstructured Bernstein–Bézier discretizations. By employing rational Bernstein–

Bézier geometric primitives, our approach combines the robustness of unstructured mesh genera-

tion with the advantageous properties of IGA, namely geometric exactness and a tight link between

23

Table 2.1: Comparison of existing surface-to-volume approaches.

Automatic Complex
Geometries

Exact
Geometry

Analysis
Suitable

Swept Volumes [1] × × X X

NURBS from B-Reps [3] X ∼ × ∼

Trivariate B-splines [46] ∼ × × X

Multi-Block Domain [77] ∼ × × X

Hybrid B-spline/Tetrahedral
Discretizations [80]

X X × X

Meccano Method [24, 25] ∼ ∼ X ∼

T-splines from Boundary
Triangulations [72]

X × X X

T-splines From Boolean
Operators [42]

X × X X

Skeleton Based Polycubes [43] ∼ ∼ X X

24

CAD and FEA. Furthermore, we note that the analysis suitability of mixed-element tetrahedral-

hexahedral-pyramidal Bernstein-Bézier discretizations has already been demonstrated from a the-

oretical point of view, and it has also been shown that these discretizations benefit from good

computational efficiency [2].

Many researchers have performed preliminary work on surface-to-volume parameterizations

by first considering the two dimensional analog: curve-to-area parameterizations. Speleers et. al.

have used Powell-Sabin splines over triangular meshes to solve advection-diffusion-reaction problems

[68, 69]. While this paper presented a novel idea in the field of isogeometric analysis, the analysis was

limited to very simple geometries. Jaxon et. al. presented similar work, using Powell-Sabin splines

for linear elasticity and advection-diffusion problems, while also presenting the boundary replace-

ment method for elevating linear triangular meshes to higher order Bernstein-Bézier discretizations

[33, 75]. There has also been preliminary work into the use of rational Bernstein–Bézier tetrahedra

for surface-to-volume parameterization. Recently, Xia and Qian have succeeded in creating geo-

metrically exact, Cr-continuous discretizations using Bernstein-Bézier tetrahedra [74]. It should be

noted, though, that C1-continuous tetrahedral discretizations require the use of either nonic tetra-

hedra [81], or sextic tetrahedral macro-elements [36]. Moreover, achieving C2-and-higher continuity

requires the use of even higher order bases.

Our work on unstructured Bernstein–Bézier discretizations draws much of its inspiration from

the related previous work, but it diverges in a few key areas. The previous work has focused on using

Powell-Sabin or related splines to preserve higher order continuity of the basis over unstructured

triangular or tetrahedral meshes. We choose instead to focus on generating mixed-element meshes

composed of C0-continuous Bernstein-Bézier elements. For many problems of practical interest, we

believe the loss of Ck continuity is an acceptable tradeoff for the geometric flexibility and ease of

implementation of C0 Bernstein–Bézier elements. Moreover, we note that it is possible to combine

our approach to surface-to-volume parameterization with the Cr-continuous tetrahedra of Xia and

Qian to recover higher continuity, though this requires the use of relatively high order elements,

and is limited to purely tetrahedral meshes.

Chapter 3

Bernstein–Bézier Elements

In this chapter, we present the rational Bernstein–Bézier elements used throughout the re-

mained of this work. Before presenting the definitions for Bernstein–Bézier elements, we first

review multi-index notation in Section 3.1. With this notation established, we present the general

Bernstein–Bézier form in Section 3.2, the present the explicit definitions for various elements in

Sections 3.3–3.6.

3.1 Multi-Index Notation

Throughout this dissertation, we make heavy use of multi-index notation in order to simplify

the equations presented in the sections that follow. So that the meaning of the equations is unam-

biguous, we review this notation here. Let n and k denote 1× d multi-indices of natural numbers,

n = {n1, ..., nd} and k = {k1, ..., kd}, and let x denote a 1× d vector of real numbers. Then we use

the following notation to denote several common vector operations.

n! =

d∏

i=1

ni!

xn =

d∏

i=1

xni
i

xn =

d∏

i=1

xni

|n| =
d∑

i=1

ni

26
(

n

k

)
=

d∏

i=1

(
ni
ki

)

It is also beneficial to introduce a barycentric multi-index, k, which is a multi-index of length d+ 1

that satisfies the property |k| = n, where n is a positive integer. The conversion from k to k is

given by the equation:

k = {k}nk = {k, n− |k|}

When both k and k are used in the same equation this conversion is implied. For a barycentric

multi-index, we can define the multinomial coefficient
(
n
k

)
:

(
n

k

)
=
n!

k!

3.2 The Bernstein–Bézier Form

Generally speaking, to define an arbitrary Bézier element Ωe, we need three items:

(1) Bernstein basis functions defined over a reference element in parametric space {Bi(ξ)}i∈I ,

(2) A control net defining the element in physical space {Pb
i}i∈I , and

(3) Corresponding weights for each control point in the control net {wi}i∈I .

Here, I is an index set defining the ordering of the control points on the reference geometry. Then,

a Bernstein polynomial is defined as:

b(ξ) =
∑

i∈I
Bi (ξ)βi ∀ ξ ∈ Ω̂

Now, let us define a set of control points {Pb
i}i∈I in Rds . Then, a Bézier element is simply defined

through the mapping:

xe (ξ) =
∑

i∈I
Bi (ξ) Pb

i

Thus a Bézier element is defined via a polynomial pushforward mapping from parametric space,

Rdr to physical space, Rds . We note that in general, this mapping holds for any dr ≤ ds. When

dr = 1 we have a curve, when dr = 2 we have triangles or quadrilaterals, and when dr = 3 we have

tetrahedra, hexahedra, wedges, and pyramids.

27

In addition to the Bernstein basis functions and control points, let {wi}i∈I denote a set of

control weights corresponding to {Bi(ξ)}i∈I . Then we can define a set of corresponding rational

Bernstein basis functions as:

Ri(ξ) =
Bi(ξ)wi∑

j∈I
Bj(ξ)wj

=
Bi(ξ)wi

w(ξ)

where w(ξ) =
∑
j∈I

Bj(ξ)wj denotes the weighting function defined over the domain Ω̂. Then, a

rational Bernstein-Bézier element is defined by the mapping:

xe(ξ) =
∑

i∈I
Ri(ξ)Pb

i =
Bi(ξ)Pb

iwi∑
j∈I

Bj(ξ)wj

When working with rational Bézier elements, it is often convenient to consider the corresponding

polynomial element in projective space, Ω̃e ∈ Rd+1. The projective element is defined by the

mapping:

x̃e(ξ) =
∑

i∈I
Bi(ξ)P̃b

i

wherein {P̃b
i}i∈I is the set of projective control points, defined as:

(
P̃b

i

)
j

= wi

(
Pb

i

)
j

j ∈ [1, d]

(
P̃b

i

)
d+1

= wi

This allows us to write a rational Bézier element in Rd as the projective transformation of a

polynomial Bézier element in Rd+1, viz:

xe(ξ) =
[x̃e(ξ)]d
w(ξ)

wherein, [x̃e(ξ)]d denotes the first d components of x̃e(ξ). We illustrate the control points for a

rational Bernstein–Bézier element and the corresponding element in projective space in Fig. 3.1.

The Bernstein polynomials, and the resulting rational Bernstein–Bézier basis functions, ex-

hibit several desirable properties that make them suitable as a set of basis functions for finite

element analysis. These include partition of unity, point-wise non-negativity, linear independence

and compact support. From our general definition of a Bézier element in Eq. (3.2), together with

28

fx2

x2

w

x1

fx1

Figure 3.1: Projective transformation from the control net for a projective element Ω̃e ∈ Rd+1

(shown in blue), to the physical element Ωe ∈ Rd (shown in grey). Points on the projective element
are given in projective coordinates {x̃1, ..., x̃d, w}. The physical element is embedded in the w = 1
plane (gray grid), and points on the physical element are given in terms of the physical coordinates
{x1, ..., xd}.

29

the properties of the Bernstein polynomials, it can be shown that any Bézier element will exhibit

affine covariance, and a strong convex hull. Most importantly, note that in order to define an

arbitrary Bézier element, we need only to be able to define the Bernstein polynomials over a cor-

responding parametric reference geometry. This also illuminates another important property of all

Bézier elements: the boundary of a Bézier element is simply another Bézier element. That is, the

faces of Bézier hexahedra are simply Bézier quadrilaterals, and the faces of Bézier tetrahedra are

simply Bézier triangles. Likewise, the edges of Bézier quadrilaterals and triangles are simply Bézier

curves.

At this juncture, it is useful to make a few remarks regarding terminology. We use the

clarifier “Bernstein” when referring to the Bernstein polynomial basis and the clarifier “Bézier”

when referring to an element in physical space or the control net defining said element. We use

the clarifier “Bernstein–Bézier” when referring to the rational basis or the parametrization of the

element as these involve both the Bernstein basis and the Bézier control net.

3.3 Simplicial Elements

The simplest Bernstein-Bézier elements are the simplicial elements: curves (1-simplices),

triangles (2-simplices), and tetrahedra (3-simplices). When working with simplicial elements, it is

most common to work in barycentric coordinates. However, as we are particularly interested in the

derivatives of Bernstein polynomials with respect to the unit Cartesian reference triangle, it is also

convenient to work explicitly in terms of Cartesian coordinates. As such, we present both forms,

and switch between forms as necessary.

3.3.1 Cartesian Coordinates

We define the reference domain for a d-simplex as:

Ω̂ =

ξ ∈ R

d : 0 ≤ ξj ≤ 1,

d∑

j=1

ξj ≤ 1

30

and define the index set for the simplicial Bernstein polynomials of degree p as:

Ip := {i = {i1, ..., id} : 0 ≤ ij ≤ p, |i| ≤ p}

Then, we can define the simplicial Bernstein basis polynomials as:

Bp
i (ξ) = p!

d∏

j=1

(ξj)
ij

ij

(1− |ξ|)p−|i|

p− |i|

3.3.2 Barycentric Coordinates

For a d-simplex, we define the set of d+ 1 barycentric coordinates {λj}d+1
j=1 to be:

λj = ξj j ∈ [0, d]

λd+1 = 1−
d∑

j=1

λj

Then the reference domain is defined as:

Ω̂ = {� ∈ Rd+1 : 0 ≤ λj ≤ 1, |�| = 1}

and the index set for the simplicial Bernstein polynomials of degree p is defined as:

Ipi := {i = {i1, ..., id+1} : 0 ≤ ij ≤ p, |i| = p}.

This allows us to write the simplicial Bernstain polynomials incredibly compactly as:

Bp
i (�) =

(
p

i

)
�i

For simplicial elements, we differentiate between the Cartesian and barycentric forms by either

explicitly specifying the dependence on ξ or �, or implicitly by the index i or i. The index i is taken

to always be a multi-index of length d, whereas we understand i to denote a multi-index of length

d + 1 such that |i| = p. Figure 3.2 shows examples of two simplicial Bernstein–Bézier elements, a

Bernstein–Bézier triangle and a Bernstein–Bézier tetrahedron.

31

0 1

ξ
1

0

1

ξ
2

(a) (b)

1

1

ξ
3

ξ
2

1

ξ
1

0

(c) (d)

Figure 3.2: Simplicial Bézier element gallery. (a) The cubic triangular control net in parametric
space. (b) A cubic Bézier triangle in physical space. (c) The cubic tetrahedral control net in
parametric space. (d) A cubic Bézier tetrahedra in physical space.

32

3.4 Tensor Product Elements

We define Bernstein–Bézier quadrilaterals in R2 and hexahedra in R3 using a tensor product

construction. The reference domain is given by:

Ω̂ = (0, 1)d

and the index set for a tensor product construction is given by:

Ip := {i = {i1, ..., id} | 0 ≤ ij ≤ pj}.

Then, the Bernstein basis polynomials are defined as:

Bp
i (ξ) =

d∏

j=1

B
pj
ij

(ξj)

where B
pj
ij

are simply the univariate Bernstein polynomials from Section 3.3. We distinguish be-

tween simplicial and tensor product constructions implicitly by using a scalar superscript p for the

simplicial basis functions Bp
i , and a vector super script p for the tensor product basis functions Bp

i .

Figure 3.3 shows examples of the two tensor product Bernstein–Bézier elements, a Bernstein–Bézier

quadrilateral and a Bernstein–Bézier hexahedron.

33

0 1

ξ
1

1

ξ
2

(a) (b)

1

1

ξ
3

ξ
2

1

ξ
1

0

(c) (d)

Figure 3.3: Tensor product Bézier elements. (a) The bicubic quadrilateral control net in parametric

space. (b) A bicubic Bézier quadrilateral in physical space. (c) The tricubic hexahedral control net

in parametric space. (d) A tricubic Bézier hexahedra in physical space.

3.5 Wedges

A Bézier wedge is defined from the tensor product of Bernstein polynomials over a triangle

with the univariate Bernstein polynomials. Thus, we define the reference wedge in parameter space

as:

Ω̂ = {(ξ1, ξ2, ξ3) ∈ R3 : ξ1, ξ2, ξ3 ≥ 0, ξ1 + ξ2 ≤ 1, ξ3 ≤ 1}

The index set over the Bernstein basis polynomials is given by:

I{p1,2,p3} := {i = {i1, ..., id} | 0 ≤ i1 + i2 ≤ p1,2, 0 ≤ i3 ≤ p3}.

34

and the Bézier wedge of degree p in physical space is defined by the mapping:

xe(ξ) =
∑

i∈I{p1,2,p3}
Rwedgei (ξ)Pb

i ∀ξ ∈ Ω̂

where the basis functions
{
Rwedgei (ξ)

}
i∈I{p1,2,p3}

are defined from the tensor product of triangular

Bernstein basis functions and univariate Bernstein basis functions, viz.:

Rwedgei (ξ) =
B
p1,2
{i1,i2}(ξ1, ξ2)Bp3

i3
(ξ3)w{i1,i2}wi3∑

j∈I{p1,2,p3}
Btri
{j1,j2}(ξ1, ξ2)Bj3(ξ3)w{j1,j2}wj3

Figure 3.4a shows the control net for the cubic Bézier wedge in parametric space, and Figure 3.4b

shows a corresponding cubic Bézier wedge in physical space.

1

1

ξ
3

ξ
2

1

ξ
1

0

(a) (b)

Figure 3.4: A cubic Bézier wedge in (a) parametric space and (b) physical space.

3.6 Pyramids

Bézier pyramids take more care to define than the other primitives considered in this disser-

tation. First, let us define the unit reference pyramid as:

Ω̂pyr = {(ξ1, ξ2, ξ3) ∈ R3 : ξ1, ξ2, ξ3 ≥ 0, ξ1 + ξ3 ≤ 1, ξ2 + ξ3 ≤ 1, ξ3 ≤ 1}

However, unlike the other primitives considered in the dissertation, we do not have an immediate

definition of Bernstein polynomials over the reference pyramid Ω̂pyr. Rather, Chan et. al. [13]

35

recently showed that the Bernstein basis of degree p for a pyramid can first be defined over the

unit cube as:

Bi(a) = Bp−i1
i1

(a)Bp−i2
i2

(b)Bp
i3

(c) ∀a = (a, b, c) ∈ (0, 1)3

We can then map the basis to the reference pyramid via the Duffy transform. That is, the coordi-

nates (a, b, c) are found from (ξ1, ξ2, ξ3) as:

a =
ξ1

1− ξ3

b =
ξ2

1− ξ3

c = ξ3

and we can then define the rational Bernstein-Bézier basis over the pyramid as:

Rpyri (a) =
Bp−i3
i1

(a)Bp−i3
i2

(b)Bp
i3

(c)wi

p∑
j3=0

p−j3∑
j1=0

p−j3∑
j2=0

Bp−j3
j1

(a)Bp−j3
j2

(b)Bp
j3

(c)wj

We can finally define a Bernstein–Bézier pyramid of degree p using the mapping:

xe(ξ) =

p∑

i3=0

p−i3∑

i2=0

p−i3∑

i1=0

Rpyri (a(ξ))Pb
i ∀ξ ∈ Ω̂pyr

The Duffy transform can also be employed to define the Bernstein basis for a triangle by collapsing

the coordinate system for a quadrilateral. Under the Duffy transform, the polynomial basis over

the unit cube is transformed to a rational basis over the reference pyramid. Nevertheless, it can be

shown that this rational basis is complete in that it contains all polynomials of degree p. Moreover, it

can be shown that over each triangular face of the pyramid, the trace of the rational basis is spanned

by the triangular Bernstein basis of degree p, and over the rectangular face of the pyramid, the

trace is spanned by the tensor-product Bernstein basis of degree (p, p). It can also be demonstrated

that the Bernstein basis over a pyramid maintains all the beneficial properties of the Bernstein

polynomials, such as partition of unity, point-wise non-negativity, and linear independence. One

very important property of the Bézier pyramid is that it serves as a transition element between

Bézier hexahedra and Bézier tetrahedra. Figure 3.5a shows the control net for the cubic Bézier

wedge in parametric space, and Figure 3.5b shows a corresponding cubic Bézier wedge in physical

space.

36

1

1

ξ
3

ξ
2

1

ξ
1

0

(a) (b)

Figure 3.5: A cubic Bézier pyramid in (a) parametric space and (b) physical space.

Chapter 4

Three Dimensional Mesh Generation

In this chapter, we present the first novel contribution of this dissertation, geometrically

exact volumetric mesh generation. We begin by discussing Bézier extraction and Bézier projec-

tion, two numerical techniques central to this work. Then, we introduce the notion of geometric

polynomial complexity, which is imperative for ensuring that a mesh will be geometrically exact.

Next, we present the main contribution of this chapter: a framework for geometrically exact mesh

generation and mesh refinement. Finally, we conclude this section with some numerical examples

demonstrating the analysis suitability of these meshes.

4.1 Bézier Extraction and Bézier Projection

Thus far, we have presented NURBS and T-spline surfaces as methods for representing ob-

jects in CAD, and we have presented various Bézier primitives used to create analysis suitable

meshes. However, it remains to establish a relationship between these global NURBS and T-spline

representations, and the local Bézier elements. Specifically, we would like to establish a relationship

between NURBS curves and Bézier curves, and a relationship between NURBS or T-spline surfaces

and Bézier surfaces. Because the faces of Bézier hexahedra, tetrahedra, wedges and pyramids are

themselves Bézier quadrilaterals or triangles, this will then give us a relationship between CAD

surfaces (NURBS/T-splines) and the faces of the Bézier meshing primitives presented above. The

motivation for establishing this relationship will become clear in Section 4.3.3, where we use face

swapping on Bézier elements to reconstruct the surface mesh to match the CAD geometry. For

38

now, we introduce two tools necessary to do this task: Bézier extraction and Bézier projection.

In this section, and throughout the rest of this dissertation, it will be useful to introduce

some additional notation. When working with sets of points, we often find it useful to arrange the

members of the set into a matrix. We denote this matrix representation by dropping the index on

the variable. That is, for a set of Bézier points, we write the matrix representation as:

Pb =

(
Pb

1

)T

(
Pb

2

)T

.

.

(
Pb
n

)T

=

(
Pb

1

)
1

(
Pb

1

)
2
. . .
(
Pb

1

)
ds

(
Pb

1

)
2

(
Pb

2

)
2
. . .
(
Pb

2

)
ds

.

.

(
Pb
n

)
1

(
Pb
n

)
2
. . .
(
Pb
n

)
ds

4.1.1 Bézier Extraction

Bézier extraction was introduced by Borden et al. [10] as a means to express the relationship

between the B-spline basis and the Bernstein basis via an element-wise extraction operator, Ce.

Consider the set of univariate B-spline basis functions {Ni}ni=1, and corresponding control points

{Pi}ni=1. Over any given knot interval ξ ∈ [ξm, ξm+1), there exist a set of p + 1 non-zero basis

functions:

{N e
i }
p
i=0 := {Ni|Ni(ξ) > 0 ∀ ξ ∈ [ξm, ξm+1)}

We can then define these local B-spline basis functions {N e
i }

p
i=0 in terms of the Bernstein basis via

the element extraction operator:

N e
i =

∑

j

Ce
ijBj

Now let us also denote the set of p + 1 local control points that correspond to to the element B-

spline basis functions as {Pe
i}
p
i=0. We can then define the relationship between the element B-spline

control points and the Bézier control points for the current element, {Pb,e
i }

p
i=0 by the equation:

Pb,e = (Ce)TPe

39

When performing Bézier extraction on NURBS curves, the process is the same, but we perform

extraction on the homogenous element NURBS control points {P̃
e

i}
p
i=0 to arrive at the homogenous

Bézier control points {P̃
b,e

i }
p
i=0, viz:

P̃
b,e

= (Ce)T P̃
e

(4.1)

where we can find the homogenous NURBS control points via Equation (4.3). Finally, the Bézier

control points {Pb,e
i }

p
0=1 and weights {wb,ei }

p
i=0, are recovered by:

(Pb,e
i)j =

(P̃
b,e

i)j

wb,ei
i ∈ {0, ..., p}, j ∈ {1, ..., ds}

wbi = (P̃
b,e

i)ds+1

A nice property of Bézier extraction is that it extends directly to the multivariate case from the

univariate case. In fact, in order to perform Bézier extraction of NURBS or T-spline surfaces,

Equation (4.1) still holds, and we must simply define the appropriate element extraction operators.

This is powerful as it allows any NURBS or T-spline geometry to be defined by a collection of

Bézier elements, provided an extraction operator can be computed. Figure 4.1 shows the result of

performing Bézier extraction on the T-spline surface from Figure 2.7. Note that the T-junctions

remain in the Bézier extracted form of the T-spline surface. Interested readers are directed to

Borden et al. [10] for details on computing extraction operators for NURBS curves and surfaces,

and Scott et at. [60] for details on computing extraction operators for T-splines.

4.1.2 Bézier Projection

As stated earlier, we wish to define some relation between a global NURBS or T-spline surface,

and triangular and quadrilateral faces of the Bézier elements that lie on the global boundary of

the mesh. Bézier projection, proposed by Thomas et al. [70], is a element-based local projection

framework for splines that allows us to do exactly this. In Bézier extraction, we perform a local

projection of the spline basis onto the Bernstein basis via an extraction operator, Ce. In Bézier

projection, we instead project any function onto a spline basis, and as a result, we can approximate

any geometry as a spline object. More specifically, we are interested in projecting the global NURBS

40

(a)

(b)

Figure 4.1: Bézier extraction on a T-spline surface. (a) The control net for the extracted Bézier
elements. (b) The Bézier elements.

41

or T-spline surface onto a collection of piecewise Bézier elements. In this section, we introduce

Bézier projection for the univariate case by example. In Section 4.3.3, we will demonstrate how we

extend this to the bivariate case for the purposes of surface reconstruction.

First let us define what we mean by Bézier projection. Let Ω̂ ⊆ Rdr denote a given domain,

and let f : Ω̂→ Rds be a given target function to be approximated. For the case of interest, f is the

parameterization of the global NURBS or T-spline surface, and Ω̂ is the parametric domain for the

surface. We aim then to approximate f using a spline function fh within a set of candidate spline

function T . There exist many means of doing so, including point collocation and L2 projection.

Generally speaking, we aim to define a projection operator Π : (L2(Ω̂)) → T such that (1) Π is a

linear operator, and (2) Π is spline perserving in that Πf = f for all f ∈ T . That is:

fh = Π(f) =
∑

A

PA(f)NA

where PA are the control points of the spline approximation and NA are the spline basis functions

NA ∈ T . We note that if f ∈ T , then Bézier projection is exact.

It remains to describe precisely how the spline control points are found. With Bézier preo-

jection, we define the spline control points via a three step process, which we demonstrate below

in the univariate setting. Consider the function f(ξ) = [ξ, sin(ξ) + ξ], ξ ∈ [0, 3π] shown in Fig-

ure 4.2a. We desire to project the spline onto the B-spline curve defined over the knot vector

Ξ = {0 0 0 0 π π π 2π 2π 2π 3π 3π 3π 3π}. The process for Bézier projection is then carried out

as follows:

(1) Local projection onto the Bernstein Basis: First, the domain Ω̂ is partitioned into N

elements, Ω̂e ⊆ Ω̂, where the domain Ω̂e corresponds to the domain of a local Bézier curve.

For each subdomain, there exists a mapping φe : [0 1]→ Ω̂e that maps the unit interval to

the element e. Then, we find the local Bézier control points, Pb,e by solving the system:

p∑

j=0

(Bi, Bj)P
b,e
j (f) = (Bi, f ◦ φe) i = {0, ..., p}

42

where (f, g) denotes the L2 inner product over the unit interval, defined as:

(f, g) =

1∫

0

f(ξ)g(ξ)dξ

Note that this yields the L2 projection of f onto the space of Bernstein polynomials. Thus

the local projection of f onto the Bézier curve is given by:

Πe(f) =

p∑

i=0

Pb,e
i (f)Bi

Figure 4.2b shows the result of local projection of f onto three Bézier curves.

(2) Projection of local Bézier values onto local NURBS values: Once we have de-

termined the local Bézier control points for each element, we must project these values

onto the NURBS control points. To do so, we employ the element reconstruction operator,

which maps the Bernstein basis into the global spline basis for a given element. Recall that

in Bézier extraction, the element extraction operator Ce maps the NURBS control points

to the Bézier control points. It holds then that Re, can be defined as the inverse of the

element extraction operator, Re = (Ce)−1. Then, to exactly preserve the function Πe(f)

in terms of the spline basis, it is then sufficient to define the local spline control points as:

Pe(f) = (Re)TPb,e(f)

(3) Blending of local values to find global values: Finally, if f /∈ T , the reconstructed

NURBS control points will not coincide from element to element, as is readily seen in

Figure 4.2b. It remains then to somehow select a global control point from the collection

of element control points. We note that there exists a wide variety of possible choices for

selecting, averaging, or recombining these control points, and of the possibilities, none have

been shown to be provably optimal. However, Thomas et al. propose a weighted averaging

scheme based on element size, that has been demonstrated to yield good results. The global

NURBS control points are found from the local NURBS control points via the relation:

PA(f) =
∑

ωeAPe
A(f)

43

where the weights, ωeA, are defined as:

ωeA =

∫
Ωe NAdΩ∑

e′=EA

∫
Ωe′ NAdΩ

Figure 4.2c shows the resulting global NURBS curve approximation of f .

With our description of the Bézier projection process concluded, we take a moment to com-

ment briefly on a few more practical considerations. First, we note that much like with Bézier

extraction, when working with a rational spline basis, it is required to first transform the spline to

projective space, and perform projection there. Also, as with Bézier extraction, Bézier projection

extends readily to the multivariate case. Finally, we note that for the example considered here,

and the applications considered in this dissertation, we desire to simply project onto the piecewise

Bernstein basis. As such, the projection operation on the local Bézier control points simply has

the effect of performing a direct mapping from local Bézier control points to local spline control

points. Indeed, it can be verified that for the knot vector considered in this example, the element

extraction operators, and therefore the element reconstruction operators, are all simply the identity

matrix.

(a) (b) (c)

Figure 4.2: (a) The target function, f . (b) Local projection of f onto three Bézier curves. The
three Bézier curves are shown in different colors along with their control nets. (c) The NURBS
approximation to f .

4.2 Geometric Polynomial Complexity

Before proceeding forward to a discussion on mesh generation, we introduce one more fun-

damental concept. When dealing with higher-order surfaces, it is useful to define some notion of

44

the total (rational) polynomial complexity of the surface. That is, we would like to define an up-

per bound on the polynomial degree needed to exactly represent the surface. Recall from Section

4.1.2 that Bézier projection is exact for a target function f if f ∈ T . Thus, if we can determine

the polynomial complexity of the surface, we can determine what polynomial degree elements are

needed to create a geometrically exact mesh of the object. With this in mind, we introduce the

following two definitions.

Definition 4.2.1. P1 Complexity

A geometry Ω ⊂ Rds is said to have polynomial complexity, or P1-complexity, of degree p if

the following hold:

(1) There exists a set of non-overlapping open sets, Ωe, such that Ω =
n⋃
e=1

Ωe

(2) For each open set Ωe, there exists a bijective polynomial or rational1 map of degree p,

xe : Ω̂e → Ωe, where Ω̂e is an open set Ω̂e ⊂ Rdr .

(3) For each pair Ωi and Ωj , where i 6= j, and ∂Ωi ∩ ∂Ωj 6= ∅, the transition mapping,

~tij : Γ̂ij → Γ̂ji, defined by:

• ~tij := x−1
j ◦ xi

• Γ̂ij := x−1
i (∂Ωi ∩ ∂Ωj)

• Γ̂ji := x−1
j (∂Ωi ∩ ∂Ωj)

is affine.

Definition 4.2.2. P2 Complexity

A geometry Ω ⊂ Rds is said to have polygonal polynomial complexity, or P2-complexity, of

degree p if the above hold and the open sets Ω̂e are polygons.

1 We identify the polynomial degree of a rational map as the maximum of the degrees of the numerator and
denominator.

45

It should be noted that our definitions for P1 and P2 complexity accommodate for rational

maps in addition to polynomial maps. This is important as many geometric objects of engineering

interest including conic sections cannot be represented using polynomial maps of finite degree.

To illustrate the notion of polynomial complexity, we have included a collection of surfaces with

different P2 complexity in Figure 4.3. It remains to establish a simple computational test to

determine the P2 complexity of a surface. As it turns out, such a test is not readily available.

However, recall that for any given NURBS or T-Spline surface, we can define the surface as a

collection of Bézier quadrilaterals obtained through Bézier extraction. Each Bézier quadrilateral is

represented in terms of a parameterization xquad : Ω̂quad → R3. While we cannot directly measure

the geometric complexity of the surface, we can in fact design a test to measure the complexity

of the parameterization. To design such a test, we first consider the transformation from the

bivariate Bernstein basis to the power basis, which is defined as the complete set of polynomials of

degree p. For example, the bi-cubic power basis is defined as:

P = [1, ξ1, ξ2, ξ
2
1 , ξ

2
2 , ξ1ξ2, ξ

3
1 , ξ

3
2 , ξ

2
1ξ2, ξ1ξ

2
2 , ξ

3
1ξ2, ξ1ξ

3
2 , ξ

2
1ξ

2
2 , ξ

3
1ξ

2
2 , ξ

2
1ξ

3
2 , ξ

3
1ξ

3
2]

We then define the transformation matrix T, which defines the transformation from the power basis

to the Bernstein basis through the relation:

Bi =
∑

j

TijPj

This allows us to define the set of homogeneous power basis coefficients {P̃
p

i }ni=1 from the homoge-

neous Bézier control points {P̃
b

i}ni=1, via the relation:

P̃
p

= (T)T P̃
b

(4.2)

The power basis coefficients {Pp
i }ni=1, and their corresponding weights {wpi }ni=1 can be found as:

(Pp
i)j = (P̃

p

i)j/(P̃
p

i)ds+1 i ∈ {1, ..., n}, j ∈ {1, ..., ds}

wpi = (P̃
p

i)ds+1

(4.3)

46

It can be verified that the Bézier surface can then be defined in terms of the power basis and

corresponding coefficients in much the same way as it can using the Bernstein basis and Bézier

control points. That is:

xequad(ξ) =

∑
i
Pi(ξ)Pp

i

∑
j
Pj(ξ)wpj

(4.4)

Of course, the power basis coefficients give very little intuition into the shape of the surface, which is

why they are not used in the geometric modeling context. However these coefficients do give insight

into the polynomial degree of the parameterization. It can be readily seen from Equation (4.4) that

any polynomial degree that is not needed to parameterize the surface will have a corresponding

power basis coefficient Pp
i = [0 0 0]. In this way, we establish a simple, computationally efficient

test for the P2 complexity of a parameterization. The transformation matrix T is defined only as

a function of the two bases, and needs only be computed once. Then, for each Bézier element, the

power basis coefficients, and therefore the P2 complexity of the parameterization, can be found via

Equation (4.2).

Finally, we must clarify a somewhat subtle aspect of P2 complexity, namely the difference

between the P2 complexity of the geometry, and the P2 complexity of the parameterization.

The test for P2 complexity outlined in Equation (4.2) will yield the P2 complexity of the parameter-

ization, which is not necessarily equal to the P2 complexity of the geometry. For example, consider

that it is possible to parametrize a circle by a collection of C0-continuous quadratic Bézier curves,

or by a single C1-continuous quartic rational Bézier curve [16]. In both cases, the P2 complexity of

the geometry is P2 = 2. However, the P2 complexity of the C0-continuous quadratic parameteriza-

tion is P2 = 2, while the polynomial complexity of the C1-continuous quartic parameterization is

P2 = 4. It is useful to note that for any given geometry, the P2 complexity of the parameterization

serves as an upper bound for the P2 complexity of the geometry. While it is beyond the scope of

this work, it could be both interesting and useful in future work to develop a direct test of the P2

complexity of the geometry, as well as developing an algorithm to re-parameterize the geometry

to the lowest complexity parameterization.

47

(a) (b)

(c) (d)

(e)

Figure 4.3: A variety of surfaces with different P2 complexity: (a) Bilinear surface, P2 = 2, (b)
Cylinder, P2 = 3, (c) Pipe Elbow, P2 = 4, (d) S-Duct, P2 = 5, (e) Bi-cubic surface, P2 = 6.

48

4.3 Mesh Generation Procedure

With the relevant background introduced, we now turn our attention to the main focus of this

work: construction of higher-order, geometrically exact meshes. Generally speaking the procedure

is broken into four steps:

Step 1: Generation of a compatible linear mesh.

Step 2: Degree elevation of the linear mesh.

Step 3: Surface reconstruction.

Step 4: Smoothing of control points and weights.

The rest of this section will provide detailed descriptions of each of the steps listed above.

4.3.1 Generation of a Compatible Linear Mesh

The focus of this work is not on linear mesh generation technologies, and we do not propose

any new methods for mesh generation in this dissertation. Instead, we rely heavily on existing

mesh generation technologies, and this section serves to outline our requirements for the initial

linear mesh. In traditional linear mesh generation, the meshing process begins by first creating a

polygonal surface mesh, and a polyhedral volumetric mesh is created based off of this surface mesh.

Since CAD geometries are encoded by surfaces, we are specifically interested in ensuring that we

generate suitable linear surface meshes such that we are able to reconstruct the geometry in a later

step. To ensure that this is possible, we impose several constraints on both the CAD surface and

resulting linear surface mesh.

First, let the CAD surface be comprised of any number of non-intersecting, orientable, closed

manifolds without boundary. For each manifold, S, we require that the manifold be explicitly

parameterized by a watertight2 NURBS or T-spline surface. Thus for each manifold, we can define

a set of Bézier elements Ωe through Bézier extraction such that:

S =

n⋃

e=1

Ωe

2 By a water tight, we mean that the surface is free from gaps and self-intersections.

49

and for each Bézier element there exists a rational Bernstein-Bézier mapping xe : Ω̂quad → Ωe.

Thus the extracted elements provide an explicit, bijective, watertight parameterization of S.

Once we have ensured that the CAD surface is valid, we must generate a suitable linear mesh

of the surface. We call such a surface mesh compatible, and the requirements for a compatible

mesh are roughly stated as follows:

Requirement 1: Each vertex in the mesh is a point on the surface S.

Requirement 2: Each polygon in the mesh belongs to a unique Bézier element.

To make these requirements precise, we denote a linear surface mesh as M = {V,P}, where V is

the set of vertices in the mesh, and P is a polygonization of the vertices in V. Requirement #1,

mathematically speaking, requires that V ∈ S for every vertex V ∈ V. Requirement #2, on the

other hand, requires that each vertex for a given polygon pek ∈ P must lie on a unique Bézier element

Ωe ⊂ S. To illustrate this second requirement, Figure 4.4a shows an example of a compatible mesh,

while Figure 4.4b shows an incompatible mesh, with the incompatible polygons highlighted in red.

The motivation for this second requirement will become clear in Section 4.3.3, as it ensures that we

will be able to perform Bézier projection in order to recover the exact geometry. Again, we note

that there exists a wide variety of well established linear mesh generation algorithms [15, 28, 38].

Any one of these algorithms may be used produce the preliminary linear mesh, providing the above

conditions are met.

We must mention that there is one caveat on the precise requirements on the CAD surfaces

that we have listed above. Consider the cylindrical surface shown in Figure 4.5a. As it is, this

surface does not satisfy our criteria because it is open at the ends, and is therefore not a manifold

without boundary. However, for practical implementation, we permit the closure of open surfaces

using a trimmed surface, provided that the trimmed surface is planar. Figure 4.5b shows

the cylinder closed by a trimmed planar surface. The reasoning behind this caveat comes directly

from the surface reconstruction constraints. If a surface is planar, we are not required to perform

geometry reconstruction, and therefore do not require that the surface be explicitly parameterized

50

(a)

(b)

Figure 4.4: a) A valid and (b) an invalid linear mesh. Bézier element boundaries are shown in bold,
and invalid triangles are shown in red.

51

by Bézier elements. With a suitable surface mesh generated, it then remains to generate a linear

mesh of the volume. Figure 4.6 shows a cut view of the volume mesh of the cylinder from Figure

4.5c. The elements intersected by the cutting plane are highlighted in yellow.

(a) (b) (c)

Figure 4.5: Triangular surface mesh generation. (a) The initial open cylindrical surface. (b) Closing
the surface with a trimmed plane. (c) Generation of an unstructured surface mesh.

4.3.2 Degree Elevation of the Linear Mesh

Once we have generated a suitable linear mesh, we next degree elevate the mesh by locally

degree elevating the linear elements to create the control nets for our higher-order Bézier elements.

That is, we would like to generate some higher-order Bernstein–Bézier representation of the elements

in the linear mesh. To achieve this, let us first denote the set of nel polyhedrons in the linear mesh as

{Ωpoly,E}nel
E=1. We then define a mapping xpoly,E : Ω̂→ Ωpoly,E , that maps the reference polyhedron

Ω̂ to the physical polyhedron Ωpoly,E for each polyhedron in the mesh. Let us also define the

equispaced control net over the reference polyhedron {ξi}i∈I ∈ Ω̂. Examples of such reference

control nets are visualized for the cubic geometric primitives in the figures presented in Chapter 3.

Then, for each polyhedron in the linear mesh, we can define the higher order Bézier control net via

the mapping:

Pb,E
i = xpoly,E(ξi)

We note that the mapping xpoly,E is affine for tetrahedra, bilinear for wedges, and trilinear for

hexahedra and pyramids. Finally, during this step, we additionally set all of the control point

weights to unity. The result of this process is shown in Figure 4.7, which displays the degree

52

Figure 4.6: Cut view of the linear cylinder mesh.

53

elevated linear mesh of the cylinder from Figure 4.6 to a cubic tetrahedral mesh. With this step

complete, we have obtained a higher-order mesh, but it remains to encode the geometry from the

surface in the mesh. This is achieved through surface reconstruction procedure described in the

next section.

Figure 4.7: Degree elevated cylindrical mesh.

4.3.3 Surface Reconstruction

The next step is to update the newly generated control nets so that the mesh surface exactly

matches the CAD surface. Recall from Section 4.1.2 that Bézier projection allows us to project

any function onto a NURBS basis. In the context of surface reconstruction, we desire to project

the Bézier elements from our CAD surface onto a collection of Bézier quadrilaterals and trian-

gles. However, before we describe the exact process for performing surface reconstruction, we first

introduce some useful notation. Figure 4.8 serves to illustrate the notation introduced here.

Recall from Section 4.3.1 that each polygon in the surface mesh belongs to a unique Bézier

element. As a result, we can associate a unique set of polygons, which we denote as {pek}nk=1, with

54

each Bézier element Ωe. Then, for a given polygon pek, we define ψek : Ω̂k → pek to be the unique

mapping such that:

ψek((x
e)−1(V)) = V

for every vertex V of the polygon pek. This mapping is affine for triangles and bilinear for quadri-

laterals. Next, let us define the corresponding parametric polygon p̂ek as:

p̂ek = (ψek)
−1(pek)

Note that the set of parametric polygons {p̂ek}nk=1 forms a non-overlapping cover of Ω̂quad, meaning:

Ω̂quad = ∪p̂ek

∩p̂ek = ∅

Consequently, {p̂ek}nk=1 forms a watertight polygonization of the reference quadrilateral.

Now, let us introduce a few more mappings. Namely, let φek : Ω̂k → p̂ek be the unique mapping

from the reference polygon Ω̂k to the parametric polygon p̂ek. As with ψek, this mapping is affine for

triangles and bilinear for quadrilaterals. With φek defined, we can define the composite mapping:

xek := xe ◦ φek

where xek is a bijective mapping between Ω̂k and the physical entity xe(p̂ek) = Ωe
k ⊆ Ωe. The set

of physical entities {Ωe
k}nk=1 form a non-overlapping cover of Ωe, and thus our goal is to construct

a Bernstein–Bézier representation of each mapping xek : Ω̂k → Ωe
k. That is, for each entity Ωe

k, we

would like to find a representation of the form Ωe
k =

∑
i∈I

Ri(ξ)Pb,k
i , where {Pb,k

i }i∈I are the set of

Bézier control points for Ωe
k.

Thus, it remains to provide a method to find the Bézier control points for the surface elements.

Let us denote the control points of the Bézier element from the CAD surface as Pb,e
j . Let us also

denote the Bernstein basis functions defined over the unit reference polygon as {Bk
i }i∈I and the

basis functions defined over the unit reference quadrilateral as {Bquad
i }i∈I .Then, following Bézier

projection, we can then find the control points {Pb,k
i }i∈I by the relation:

Pb,k = M−1TPb,e (4.5)

55

1
0

1

0 1

1

(xe
k)

�1
xe

k

⌦e⌦e
k

(xe)
�1xe

⌦̂quad

⌦̂k

⇣
xpoly,e

k

⌘�1

xpoly,e
k

(e
k)

�1

 e
k

p̂p
k

pp
k

(�e
k)

�1
�e

k

Figure 4.8: Visualization of Bézier projection of a Bézier element onto a collection of Bézier poly-
gons. This illustrates the notation used in the surface reconstruction step presented in Section
4.3.3.

56

where Mij is defined as:

Mij =

∫

Ω̂k

BiBjdΩ̂k

and Tij is defined as:

Tij =

∫

Ω̂k

Bi(B
quad
j ◦ φek)dΩ̂k

In the case when the Bézier element Ωe is rational, we proceed similarly, but enforce Equation (4.5)

on the homogenous control points, viz.:

P̃
b,k

= M−1TP̃
b,e

Once we have successfully reconstructed the surface, we simply replace the control points

that lie on the surface of the degree elevated linear mesh with the control points obtained through

surface reconstruction. We likewise update the corresponding control point weights with the weights

obtained through surface reconstruction. Figure 4.9 shows the mesh of the cylinder displayed in

Figure 4.7 after surface replacement.

Figure 4.9: Surface reconstructed cylindrical mesh.

57

4.3.4 Smoothing of Control Points and Weights

At this point we have succeeded in our original goal of performing isogeometric degree ele-

vation of our mesh. However, we note that the process of surface reconstruction can often lead to

large distortion of certain elements. Chapter 5 provides a more detailed discussion of mesh quality

metrics, but for now we present a method for smoothing the internal control point locations and

weights in the reconstructed mesh. We have found that in many cases, this final smoothing step

can help to improve mesh quality, so we present it here as a useful tool in the meshing process.

When the control point weights are not all identically unity, we begin by solving a Laplace

smoothing problem to smooth the control point weights on the interior of the mesh. Let Ω denote

the degree-elevated, non-reconstructed mesh, and let ws denote the weighting function associated

with the surface obtained during the surface reconstruction process. Then, let Vh be the set of

candidate weighting functions that satisfy wh|Γ = ws. We can then smooth the interior control

point weights wh by solving the minimization problem:

min
wh∈Vh

1

2

∫

Ω

|∇wh|2dΩ

We can similarly smooth the internal control point locations by solving a linear elasticity problem.

Again, let Ω denote the degree-elevated, non-reconstructed mesh, and let ~ds, denote the displace-

ment of the surface nodes under the surface reconstruction process. We define Vh to be the set of

candidate displacement functions that satisfy ~dh|Γ = ~ds. Note that Vh is a set of rational functions,

with respect to the control point weights obtained in the weight smoothing step. We can then

smooth the interior control point locations by solving the following linear elasticity problem for the

control point displacement, ~dh:

min
~dh∈~Vh

1

2

∫

Ω

ε(~dh)Dε(~dh)dΩ

where D and ε are the elasticity tensor and strain vector, respectively.

58

4.3.5 Applications to Higher-Order FEA

We take this opportunity to discuss the nature of exact geometry. Recall from section 4.1.2

that Bézier projection is exact if and only if xek ∈ T . Thus in order to guarantee that our surface

reconstruction process is exact, we must ensure that the polynomial degree of our mesh is at least

as large as the P2 complexity of the parameterization given by xe. That is, if our parameterization

has a P2 complexity of P2 = 6, we require sextic triangles on the surface to exactly match the

geometry. Additionally, generally speaking, the mapping φek for a quadrilateral is bilinear. As

a result the composition of the mappings xek = φek ◦ xe has twice the polynomial degree of the

mapping xe. Thus we would require dodecic quadrilaterals to exactly match the geometry!

It would appear at this point that we have reached an impasse, as dodecic, or even sextic

elements are often impractical for simulation applications. However, we briefly suggest two alter-

natives. First, we recall that even in the case that Bézier projection is not exact, it will still yield

a curve or surface of best fit. Thus, it is still possible to use Bézier projection to perform surface

reconstruction as we have presented it in Section 4.3.3. While this surface reconstruction might

not be truly isogeometric, it does provide a best fit to the CAD surface, and it is certainly more

accurate than the linear mesh. Additionally, despite not being exact, we still recover an unstruc-

tured Bernstein–Bézier representation of the volume. We can then use these lower-order meshes to

perform an isoparametric FEA simulation on the geometry of interest. Another possible method

for reducing the computational complexity is to use a superparametric representation as is some-

times employed in traditional FEA. In a superparametric approach, the geometry is represented

by a basis that is of a higher polynomial degree than the basis used to represent the simulation

variables. For example, one could employ a discretization of sextic Bernstein-Bézier elements to

represent the geometry but use cubic Bernstein polynomials as the basis for FEA.

There are varying advantages and disadvantages of the approaches listed above. Lower order

mesh elevation can be computationally less intensive, but suffers from one of the main drawbacks

of traditional mesh generation: the initial mesh is still just an approximation, and does not en-

59

code the exact geometry. As a result, the geometric approximation error is “set” at the coarsest

level of mesh generation. Under mesh refinement, the geometric accuracy cannot be increased

without querying the CAD model. The superparametric approach on the other hand does not

suffer from this drawback. Because the initial mesh is exact, it can be refined without subsequent

queries to CAD. Additionally, a superparametric simulation is less computationally intensive than

a corresponding isogeometric simulation but is more computationally intensive than a lower-order

isoparametric simulation. In either case, it is most important to note that one of the main ad-

vantages to our approach is that it allows for a great deal of flexibility in both mesh generation

and simulation. We demonstrate this in Section 4.6.3 by providing numerical examples of purely

isogeometric simulations, as well as superparametric and lower-order isoparametric simulations.

4.3.6 Construction of Structured Surface Meshes

Before concluding this section, we make a quick aside regarding structured surface meshes.

While surface meshes of this type form a very restricted subset of all surface meshes, they arise

frequently when considering applications such as boundary layer meshing or hex-dominant meshing.

As such, it is useful to briefly make special mention of this subset of meshes. Consider the surface

mesh of the cylinder shown in Figure 4.10. The cylindrical surface shown in Figure 4.10a is refined

via knot insertion, resulting in the surface shown in Figure 4.10b. The surface can then be degree

reduced to form a surface mesh comprised of linear quadrilaterals, as shown in Figure 4.10c.

When the surface mesh over a Bézier element is derived in this manner, the surface recon-

struction step is much simpler. Since the linear mesh is derived from a refined surface, for each

quadrilateral on the surface, there exists an extraction operator Ck such that:

P̃
b,k

= (Ck)T P̃
b,e

It is therefore a simple task to find the reconstructed surface control points for each element in the

structured surface mesh, and reconstruct the original surface. We note that in the case of extraction

based structured surface meshes, the reconstructed surface is guaranteed to be geometrically exact.

60

(a) (b) (c)

Figure 4.10: Structured surface mesh generation. (a) Start with a closed surface. (b) Refine the
Bézier surface using Bézier extraction. (c) Degree reduce to arrive at a structured quadrilateral
surface mesh.

This gives us some confidence in the ability to generate geometrically exact meshes without the use

of dodecic elements.

This highlights one of the key advantages of Bézier pyramids: they allow us to transition

from a structured surface mesh to an unstructured volume mesh, and preserve the exact geometry

in the process. However, while mixed element mesh generation may seem like a panacea, offering

both geometric exactness and the benefits of unstructured meshing at relatively low polynomial

degree, we note that there are some distinct drawbacks to this approach. First, mixed element mesh

generation is still a relatively new field, and it will be some time before it reaches the maturity

and robustness of tetrahedral mesh generation. Second, refinement, and especially anisotropic

refinement, of mixed element meshes is a challenging task and an ongoing topic of research interest.

Largely due to these reasons, the use of all-tetrahedral meshes is still much more popular than

mixed-element meshes in a number of applications, including computational fluid dynamics. As

such, we have presented both tetrahedral and mixed-element approaches in this dissertation in

hopes to provide a flexible framework capable of handling a wide array of simulation challenges.

Finally, much like Bézier extraction is a special case of Bézier projection, surface reconstruc-

tion of structured meshes is simply a special case of the more general unstructured reconstruction

procedure. To wit, we will obtain exactly the same results if we use the Bézeir projection method

in lieu of the Bézier extraction method to reconstruct a structured surface mesh. However, if we

61

know a priori that we are working with a structured surface mesh, it is desirable to reconstruct

the surface using the extraction method, as it is simpler.

4.4 Element/Mesh Refinement

Before considering some numerical examples, it remains to briefly touch upon the topic of

mesh refinement. Indeed, mesh refinement is a topic as rich and complex as mesh generation

itself. There exist a broad array of algorithms for performing both local and global refinement, as

well as more advanced refinement techniques, such as adaptive mesh refinement for applications

such as shock capturing. We note that it is always possible to simply refine the linear mesh and

degree elevate the resulting refined linear mesh, provided that the refined linear mesh meets the

requirements outlined in Section 4.3.1. However, while this approach eases implementation, it

can be costly, as we must repeat the degree elevation process each time we refine. Additionally,

this method does not guarantee that the parameterization is exactly preserved, which is often

undesirable. In light of this, we present in this section a detailed method for performing refinement

via uniform subdivision of the coarse mesh. However, we are secure in the knowledge that we are

not restricted to only this type of refinement.

Consider a parent unit polyhedron in parametric space Ω̂ ⊂ Rdr , and the corresponding Bézier

polyhedra in physical space defined by m Bézier control points Pb
i ⊂ Rds i = 1,,m. Then, for

each subdivision polyhedra defined in parametric space Ω̂k ⊂ Ω̂, we seek a corresponding control

net in physical space defined by n Bézier control points, Pb,k
j ⊂ Rds j = 1, ..., n. To compute these

control points, we first define two sets of collocation points. Let {ξl}nl=1 ∈ Ω̂ denote the set of

collocation points in the reference polyhedra, and let {ξkl }nl=1 ∈ Ω̂k denote the corresponding set of

collocation points on the kth subdivision polyhedron. Then, we can find the control points Pb,k
j by

solving the system of equations:

n∑

j=1

Pb,k
j Bj(ξ

k
l) =

n∑

i=1

Pb
iBi(ξl) l = 1, ..., n

62

where Bj and Bk
j are the Bernstein basis functions defined over the parent unit polyhedra and

subdivision polyhedra, respectively. Rearranging, we can define a more explicit relationship of the

form:

Pb,k = (Mk)
−1

SPb (4.6)

where Mk
ij = Bj(ξ

k
i) and Sij = Bj(ξi). The astute reader will recognize that with this operation,

we are simply projecting the parent polyhedra onto the subdivision polyhedra.

When dealing with a rational Bézier polyhedra, we simply evaluate Equation (4.6) on the

homogenous control points, viz.:

P̃
b,k

= (Mk)
−1

SP̃
b

For brevity and ease of implementation, we can define a projection matrix for each subdivision

element of the form Tk = (Mk)−1S. Thus, to perform uniform subdivision on any given Bézier

element, we must simply define the projection operators. This in turn simply requires defining

collocation points at which to evaluate Mk
ij and Sij . Figures 4.11 through 4.14 shows the collocation

points for calculating Sij and Mk
ij , for the four geometric primitives discussed in this dissertation

and for the case of cubic Bernstein-Bézier discetizations. Note that the choice of the collocation

points is somewhat arbitrary, but the selection of equispaced control points as shown in Figures

4.11–4.14 is both simple and yields suitable results. Finally, it is worth recognizing that with

this approach, we are not required to subdivide a Bézier element into like elements. For example,

uniform subdivision of a pyramid will result in 6 subdivision pyramids, and 4 subdivision tetrahedra.

Figure 4.15 shows the result of performing uniform subdivision on some representative elements.

Finally, we make one last observation on our refinement process. Consider the uniform

subdivisions on hexahedra, tetrahedra, and wedges as presented above. The subdivisions of the

parent elements will result in a collection of child subdivision elements. Also note that the faces of

the parent elements are subdivided into a number of child subdivision faces. The key observation

is this: subdivision of the parent mesh element yields the same subdivision on the face as would

63

result from a subdivision of that face in isolation. The key consequence of this is that the coincident

faces of two neighboring elements will remain coincident after subdivision. This means that we can

locally subdivide each element in a mesh, and the resulting mesh will be valid.

0

0.5

1

1
0.5

10.50

(a)

0

0.5

1

1
0.5

10.50

(b)

0

0.5

1

1
0.5

10.50

(c)

0

0.5

1

1
0.5

10.50

(d)

0

0.5

1

1
0.5

10.50

(e)

0

0.5

1

1
0.5

10.50

(f)

0

0.5

1

1
0.5

10.50

(g)

0

0.5

1

1
0.5

10.50

(h)

0

0.5

1

1
0.5

10.50

(i)

Figure 4.11: Refinement of a tricubic Bézier hexahedron. (a) Collocation points for calculating Sij .
(b-i) Collocation points for calculating Tk

ij .

64

0

0.5

1

1
0.5

10.50

(a)

0

0.5

1

1
0.5

10.50

(b)

0

0.5

1

1
0.5

10.50

(c)

0

0.5

1

1
0.5

10.50

(d)

0

0.5

1

1
0.5

10.50

(e)

0

0.5

1

1
0.5

10.50

(f)

0

0.5

1

1
0.5

10.50

(g)

0

0.5

1

1
0.5

10.50

(h)

0

0.5

1

1
0.5

10.50

(i)

0

0.5

1

1
0.5

10.50

(j)

0

0.5

1

1
0.5

10.50

(k)

0

0.5

1

1
0.5

10.50

(l)

0

0.5

1

1
0.5

10.50

(m)

Figure 4.12: Refinement of a cubic Bézier tetrahedron. (a) Collocation points for calculating Sij .
(b-m) Collocation points for calculating Tk

ij . We note that uniform subdivision of a tetrahedron
results in 4 tetrahedra and an a octahedron in the center. We choose to split this octahedron into
8 tetrahedra as shown above, but other methods of splitting are readily implemented.

65

0

0.5

1

1
0.5

10.50

(a)

0

0.5

1

1
0.5

10.50

(b)

0

0.5

1

1
0.5

10.50

(c)

0

0.5

1

1
0.5

10.50

(d)

0

0.5

1

1
0.5

10.50

(e)

0

0.5

1

1
0.5

10.50

(f)

0

0.5

1

1
0.5

10.50

(g)

0

0.5

1

1
0.5

10.50

(h)

0

0.5

1

1
0.5

10.50

(i)

Figure 4.13: Refinement of a cubic Bézier wedge. (a) Collocation points for calculating Sij . (b-i)
Collocation points for calculating Tk

ij .

66

0

0.5

1

1

0.5
10.50

(a)

0

0.5

1

1

0.5
10.50

(b)

0

0.5

1

1

0.5
10.50

(c)

0

0.5

1

1

0.5
10.50

(d)

0

0.5

1

1

0.5
10.50

(e)

0

0.5

1

1

0.5
10.50

(f)

0

0.5

1

1

0.5
10.50

(g)

0

0.5

1

1

0.5
10.50

(h)

0

0.5

1

1

0.5
10.50

(i)

0

0.5

1

1

0.5
10.50

(j)

0

0.5

1

1

0.5
10.50

(k)

Figure 4.14: Refinement of a cubic Bézier pyramid. (a) Collocation points for calculating Sij . (b-k)
Collocation points for calculating Tk

ij .

(a) (b) (c) (d)

Figure 4.15: Uniform subdivision of the meshing primitives.

67

4.5 Mesh Gallery

With all of the technical details regarding mesh generation covered, we take this opportunity

to present a few example meshes generated using the methodology presented in this dissertation.

Figure 4.16 shows the mesh of a marine propeller, composed of sextic Bernstein-Bézier tetrahedra.

The original T-spline surface is shown in Figure 4.16a, followed by the surface mesh in Figure

4.16b. Figure 4.16c shows a detailed view of the surface mesh with the boundaries of Bézier

elements highlighted in bold, and Figure 4.16d shows a cut cell view of the volumetric mesh. To

create the mesh of the propeller, a compatible linear mesh was first created using Tetgen [66]. Then,

using our test for P2 complexity, we determined the P2 complexity of the propeller T-spline surface

to be P2 = 6. Finally, we created a geometrically exact mesh composed of sextic Bernstein–Bézier

tetrahedra through degree elevation and surface reconstruction.

Figure 4.17 shows the mesh of a bike frame, composed of cubic Bernstein-Bézier tetrahedra.

Again, the T-spline surface is shown in Figure 4.17a, followed by the surface mesh in Figure 4.17b,

a detailed view in Figure 4.17c, and a cut cell view in Figure 4.17d. As with the propeller, a

compatible linear mesh was created using Tetgen, and we found the P2 complexity of the surface

to be P2 = 6. However, to demonstrate the flexibility of our method, we elect instead to create a

lower-order mesh of the bike. This is achieved by simply performing degree elevation and surface

reconstruction using Bernstein-Bézier tetrahedra of polynomial degree p = 3 rather than p = 6.

Finally, Figure 4.18 shows a mixed-element boundary layer mesh around an aircraft wing,

composed of cubic Bernstein-Bézier elements. In this example, a boundary layer mesh of hexahedra

is created around the wing surface, but transitions to tetrahedra via a layer of pyramids in the far

field. Of course, a boundary layer mesh would normally consist of many, much thinner, hexahedral

elements, but we just show a single, thicker, layer here for illustration purposes. For this mesh

we begin with a NURBS representation of the aircraft wing shown in Figure 4.18a. Then, the

hexahedral and pyramidal boundary layer elements were created by our own simple boundary layer

mesh tool (Figure 4.18b). Triangle [65] was then used to create a quality linear surface mesh of

68

the bounding box, and Tetgen was then used to create the linear volumetric mesh (Figure 4.18c).

Figure 4.18d shows a detailed view of the boundary layer mesh transitioning to the tetrahedral

mesh.

These three examples highlight several key aspects of our meshing procedure. First, the

detailed views shown in Figure 4.16c and Figure 4.17c illustrate an important property of unstruc-

tured surface meshes. Namely, the length scale of the surface mesh is constrained by the length

scale of the local Bézier elements as a result of the criteria imposed on the surface mesh outlined

in Section 4.3.1. Second, the bike frame and the propeller serve to show how our method can

easily generate either geometrically exact meshes or lower-order approximations. It is also worth

noting that although the bike mesh is not geometrically exact, the lower-order mesh approximates

the exact geometry with a great deal of accuracy. Finally, the boundary mesh around the airfoil

illustrates one of the attractive advantages of mixed-element meshes, namely the ability to create

geometrically exact volumetric meshes at relatively low polynomial degree.

69

(a) (b)

(c) (d)

Figure 4.16: Geometrically exact mesh of a marine propeller using sextic Bézier tetrahedra. (a)
T-spline surface. (b) Surface mesh. (c) Surface mesh detail. (d) Cut view of interior mesh.

70

(a) (b)

(c) (d)

Figure 4.17: Lower-order mesh of a bike frame using cubic Bézier tetrahedra. (a) T-spline surface.
(b) Surface mesh. (c) Surface mesh detail. (d) Cut view of interior mesh.

71

(a) (b)

(c) (d)

Figure 4.18: Mesh of the volume around an aircraft wing. (a) NURBS surface of the aircraft wing.
(b) Boundary layer mesh of hexahedra and pyramids. (c) Cut view of volume mesh. (d) Volume
mesh detail.

72

4.6 Numerical Examples

We now turn our attention from the problem of mesh generation to that of the analysis

suitability of these discretizations. Specifically, we perform three numerical tests. First, a patch test

is performed to demonstrate that the elements presented here are capable of exactly representing

linear solutions, even under large deformation. Second, the method of manufactured solutions

is used to verify that optimal convergence rates are observed. Finally, we present the solution

of a linear elasticity problem over the bike frame from Figure 4.17 to demonstrate the analysis

suitability of a more complicated geometry. For brevity, we consider only cubic Bernstein-Bézier

discretizations in what follows.

4.6.1 Patch Test

Following Lipton et al. [41], we would like to show that these proposed higher order elements

are capable of exactly representing certain solutions, even under severe mesh distortion. Since the

behavior of hexahedra have already been extensively studied in the previous literature, we will limit

our tests to tetrahedra, pyramids and wedges. For each class of element, we create a discretization

of the unit cube using only that element type. in each case, the mesh is created so that each

element has at least one face on the global boundary of the cube, and all the elements share a

single vertex in the center. Figure 4.19 shows the meshes for each of the three geometric primitives.

Then for each mesh, we perform two patch tests to study the behavior of the elements under severe

distortion.

73

(a) (b) (c)

Figure 4.19: Undeformed meshes for the patch test. (a) Tetrahedral mesh. (b) Pyramidal mesh.
(c) Wedge mesh.

Test 1: In the first test, the center node that is shared by all elements is moved to one of the

corners of the cube, causing the mesh to become skewed as is shown in Figure 4.20. However, the

distribution of internal nodes still remains linear across the element. That is, the linear quality

degrades significantly with increasing distortion, but higher order quality remains the same.

Test 2: In the second test, the center node is left in the center, but internal nodes of the Bézier

elements are collapsed to the center point as shown in Figure 4.21. In this way, the linear quality

remains unchanged, but higher order quality degrades as the element is distorted.

We then solve two linear elasticity problems over each mesh, a constant tension, and constant

shear Dirichlet problem, as illustrated in Figure 4.22. In each case, the bottom nodes are held fixed.

In the constant tension case, we apply a uniform displacement of d = 0.1 in the z direction to the

top nodes. In the constant shear case, we apply a uniform displacement of d = 0.1 in both the x

and y direction to the top nodes. We also enforce zero z displacement on the sides of the cube.

For each test, we gradually increase the mesh deformation from 0 (no deformation) to 1 (fully

deformed), and evaluate the solution for each patch test at the control points on each element. If

the computed solution agrees with the theoretical solution to within 13 decimal places for both the

constant tension and constant shear case, we say that the patch test is passed. Table 4.1 shows the

maximum deformation achieved for each test and element type before the patch test was no longer

passed.

74

(a) (b) (c)

Figure 4.20: Deformations for the first patch test. (a)Tetrahedral mesh. (b) Pyramidal mesh. (c)
Wedge mesh.

(a) (b) (c)

Figure 4.21: Deformations for the second patch test. (a)Tetrahedral mesh. (b) Pyramidal mesh.
(c) Wedge mesh.

dz = 0.1

(a)

dy = 0.1

dx = 0.1

dz = 0

(b)

Figure 4.22: Boundary conditions for (a) the constant tension, and (b) the constant shear patch
tests.

75

Table 4.1: Patch Test Results

Test 1 Test 2

Tetrahedra 0.99 0.99

Pyramids 0.98 0.99

Wedges 0.5 0.99

4.6.2 Method of Manufactured Solutions

We also demonstrate higher order convergence of our method using the method of manufac-

tured solutions. For the test, we consider three different meshes of a cylinder, including (a) a pure

tetrahedral mesh, (b) a pure wedge mesh and (c) a mixed element mesh consisting of hexahedra,

pyramids, and and tetrahedra. The three meshes are shown below in Figure 4.23. For each mesh,

we define a temperature field over the cylinder defined by the function:

φ(x) = (x1/L)2x2
2x

2
3

The temperature field is shown in Figure 4.23d. We then enforce Dirichlet boundary conditions on

the faces of the cylinder, and solve Poisson’s equation for the temperature field over the domain

under successive levels of refinement. The convergence plots of the error in the L2 and H1 norms

versus the non-dimensional mesh size for each mesh are shown in Figure 4.24. As is readily seen

from Figures 4.24a-b, the tetrahedral meshes exhibit optimal convergence rates after several levels

of refinement. Additionally, both the wedge mesh and the mixed element mesh approach optimal

convergence rates under successive refinement, as can be seen in Figures 4.24c-d and Figures 4.24e-f,

respectively.

76

(a) (b)

(c) (d)

Figure 4.23: Meshes used with the method of manufactured solutions. (a) Tetrahedral mesh (b)
Wedge mesh. (c) Mixed element hexahedral-pyramidal-tetrahedral mesh. (d) The prescribed tem-
perature field.

77

0.1250.250.51

Mesh Size, h

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

L
2
E
rr
o
r

1
4.1

(a)

0.1250.250.51

Mesh Size, h

10
-3

10
-2

10
-1

10
0

10
1

H
1
E
rr
o
r

1

3

(b)

0.06250.1250.250.51

Mesh Size, h

10
-8

10
-6

10
-4

10
-2

L
2
E
rr
o
r

1
3.9

(c)

0.06250.1250.250.51

Mesh Size, h

10
-5

10
-4

10
-3

10
-2

10
-1

H
1
E
rr
o
r

1
2.96

(d)

0.1250.250.51

Mesh Size, h

10
-7

10
-6

10
-5

10
-4

10
-3

L
2
E
rr
o
r

1

3.9

(e)

0.1250.250.51

Mesh Size, h

10
-5

10
-4

10
-3

10
-2

H
1
E
rr
o
r

1

2.9

(f)

Figure 4.24: Convergence plots for three different meshes (a,b) L2 and H1 convergence plots for
the tetrahedral mesh. (c,d) L2 and H1 convergence plots for the wedge mesh. (e,f) L2 and H1

convergence plots for the mixed element mesh.

78

4.6.3 Practical Examples

Finally, we present some analysis results for some slightly more interesting geometries. First,

we simulate the effect of torsion on the propeller from Figure 4.16 by solving a linear elasticity

problem using a superparametric approach. We prescribe zero displacement boundary conditions on

the interior radius of the propeller, and prescribe set displacements for the propeller tips, as shown

in Figure 4.25a. We then solve the linear elasticity equations over the mesh of sextic tetrahedra,

while using cubic Bernstein polynomials as the basis for analysis. Figure 4.25b shows the resulting

displacement magnitude.

Next, we solve a linear elasticity problem over the bike frame from Figure 4.17. The head

tube and rear stays are held fixed as shown in Figure 4.26a, and a downward force is applied on

the top of the seat post. For the bike simulation, we employed an isoparametric approach, using

cubic Bernstein polynomials as the basis for a simulation over the cubic tetrahedral mesh. Figure

4.26b illustrates the magnitude of the displacement of the bike under the applied load. For both

examples, the results seem to be accurate, at least from an intuitive sense, and, coupled with

the other numerical tests in this section, give us confidence in the analysis suitability of these

discretizations.

79

(a)

Displacement

0.05

0.1

0.15

0.2

0.000e+00

2.402e-01

(b)

Figure 4.25: Superparametric simulation of linear elasticity on the propeller. (a) Boundary condi-
tions. (b) Displacement magnitude.

80

F"

(a)

0.2

0.4

0.6

0.8

0.000e+00

9.646e-01
Displacement

(b)

Figure 4.26: Lower-order isoparametric simulation of linear elasticity on a bike frame. (a) Boundary
conditions. (b) Displacement magnitude.

Chapter 5

Mesh Quality

With a framework for geometrically exact mesh generation established, it remains to provide

a means to verify that the resulting meshes are analysis suitable. In this chapter, we present

sufficient and computable mesh quality metrics for rational Bernstein–Bézier elements. I begin

by introducing some notation not yet used in this dissertation, and then provide a review of the

literature regarding finite element interpolation theory. I then present asymptotic error bounds on

interpolation error over rational Bernstein–Bézier elements. Using these error bounds, we derive

sufficient conditions for guaranteeing that a Bernstein–Bézier element is analysis suitable. Then,

we develop easily computable element quality metrics for verifying if these conditions hold. Finally,

we conclude this chapter with numerical examples demonstrating the use of these element quality

metrics.

5.1 Notation and Preliminaries

5.1.1 Bernstein–Bézier Elements

Throughout this chapter, we make heavy use of the notation for Bernstein–Bézier element

established in Chapter 3. In this chapter, we consider only simplicial and tensor product elements,

but the ideas presented here can be readily extended to wedge elements, as they are simply the

tensor product of a Bernstein–Bézier 1-simplex and a Bernstein–Bézier 2-simplex. Bernstein–

Bézier pyramids on the other hand are slightly more complicated, and as of yet, we have not

extended our theory to this case. Nonetheless, the results presented here are incredibly useful, as

82

simplicial and tensor product elements are by far the most commonly used elements for analysis.

Finally, we note that for in this chapter, we consider only the case wherein the element is a d

manifold with codimension zero. That is, we assume that for triangular and quadrilateral elements

d = dr = ds = 2, and for tetrahedral and hexahedral elements, we recognize that d = dr = ds = 3.

5.1.2 Derivative Notation

In order to write derivatives compactly, we denote the partial derivative operator of order

|α| with respect to the variables ξ as:

Dαξ =
∂|α|

∂ξr11 ∂ξ
r2
2 ...∂ξ

rd
d

The derivative of a vector–valued function f of length m is understood to result in a m× 1 column

vector, viz.:

Dαξ f =

Dαξ f1

...

Dαξ fm

and we denote the set of all partial derivatives of order k = |α| as the matrix:

∇k
ξf =

[
Dα1
ξ f Dα2

ξ f . . . Dαn
ξ f

]
∀ αi : |αi| = k

We note that ∇1
ξ = ∇ξ is the standard gradient operator, and that ∇0

ξ is understood to be

the identity operator. Additionally, to shorten certain equations, we at times omit the subscript

denoting the independent variable. That is, we write ∇f = ∇ξf when the choice of the independent

variable is unambiguous.

5.2 Review of Finite Element Interpolation Theory

Before proceeding to the novel contributions of this work, it is critical to understand the

existing theory regarding error bounds for finite elements, and how these error bounds motivate

the need for element quality metrics. First, we briefly review the isoparametric concept as it applies

to finite elements (Section 5.2.1). We then review the fundamental interpolation theory for both

83

linear (Section 5.2.2) and curvilinear (Section 5.2.3) finite elements. Finally, we present the current

state of the art with regards to element quality metrics for curvilinear finite elements (Section

5.2.4).

5.2.1 The Isoparametric Concept

Simply put, the isoparamtric concept allows us to define an element in physical space in terms

of a mapping from a reference element in parametric space. Let us denote a unit reference element

in parametric space Ω̂. Then we denote the element in physical space Ωe, and denote a mapping

xe that maps points on the parametric element to points on the physical element. In the case of

p-version finite elements, this is a higher-order mapping. Finally, we also consider the element Ω
e

which is the purely linear physical element. That is, Ω
e

is defined by an affine mapping xe. We

assume that the mapping xe is known. Then we define the linear mapping xe as:

xe(ξ) = xe(0) +

d∑

i=1

(xe(ei)− xe(0)) ξi

wherein ei is the unit vector in the ith parametric direction, and 0 is the d× 1 vector of zeros.

These mappings are illustrated in Fig. 5.1. We note that for simplicial elements, the linear

physical element is simply defined as the linear interpolant of the corners of the curvilinear physical

element. However, for tensor product elements (i.e. quadrilaterals or hexahedra), the affine element

will not necessarily interpolate every corner of the curvilinear element, as seen in Fig. 5.1. This is

due to the fact that the tensor product admits bilinear mappings for quadrilaterals and trilinear

mappings for hexahedra.

5.2.2 Finite Element Interpolation Theory: Linear Elements

The rigorous study of the mathematical foundations of the finite element method began in

earnest in the 1960’s and 1970’s [4, 11, 12, 17, 18, 83, 84]. Of particular note are the pioneering works

of Bramble and Hilbert [11, 12], and Ciarlet and Raviart [17, 18], which led to the interpolation

theory for finite elements. As this fundamental theory has close bearing on our current work, we

84

rs

rs

rs

rs

b

b

b

bb

b

x1

x2

ξ1

ξ2

xe

xe

Ω̂
Ω

e

Ωe

Figure 5.1: Isoparametric mappings from a reference element Ω̂ in parametric space to physical
space. The element Ωe (shown by the bold line) is defined by the higher-order mapping xe. The
corresponding affine element Ω

e
(shown by the dashed line) is defined by a purely affine mapping

xe.

85

take this opportunity to briefly review the theory here, introducing notation to be used throughout

the remainder of this dissertation.

In the finite element method, we approximate a domain Ω using a set of finite elements,

{Ωe}Ee=1, where each element Ωe ∈ Rd is an open simply connected set, with simply connected

boundary. Together, this collection of elements forms a finite element discretization or mesh, which

we denote as:

M =

E⋃

e=1

Ωe

Traditionally, a finite element mesh is composed of linear triangular or quadrilateral elements in

R2, and linear tetrahedral or hexahedral elements in R3. The study of mesh quality, then, concerns

itself with how the shapes and sizes of these elements affect the accuracy of the finite element

method. In order to begin this study, it is first useful to introduce some mesh measures. Let us

denote the diameter of an element as he, where we measure the diameter as the largest distance

between any two vertices of the element. Next, we denote the diameter of the incircle (in R2) or

insphere (in R3) of the element as ρe. These two metrics are visualized for a quadrilateral element

in Fig. 5.2.

he

ρe

Figure 5.2: Element measures ρe and he for the linear quadrilateral element Ω
e

from Fig. 5.1.

86

Given these element-wise measures, we can then define the corresponding global mesh mea-

sures as:

h = max
1≤e≤E

he

ρ = min
1≤e≤E

ρe

These mesh measures are useful, as they allow us to put certain classifications on our meshes.

Specifically, it allows us to introduce the notion of shape regularity. For a linear element Ω
e
, the

element shape regularity is given by:

σe =
he
ρe

and for a mesh of linear elements, the global shape regularity is given by:

σ =
h

ρ

The notion of shape regularity is important, as it is allows us to compare the shapes of elements

independent of their size. This is motivated by the fact that we are interested in the effect of

element shape on approximation error under mesh refinement, that is as h→ 0.

Let us consider a set of M increasingly refined meshes {M}Mi=1, with corresponding metrics

{hi}Mi=1 and {ρi}Mi=1 where h1 > h2 > . . . > hM . We say a refinement is uniform if each element

is simply split into a collection of similarly shaped sub-elements, thereby preserving the existing

geometrical structure of the parent mesh. Due to the ease of implementation, and constant element

shape, uniform refinements are frequently used with the finite element method. However, uniform

refinements are constrained by the choice of the initial mesh, and it is not always practical or even

possible to perform uniform subdivision on a given mesh. It is useful then to introduce the concept

of quasi-uniform refinement. Consider a series of refined meshes {M}Mi=1 with corresponding

global shape regularity metrics {σi}Mi=1. We say a series of refinements is quasi-uniform if we can

bound σi by some constant σ0, viz.:

σi ≤ σ0 i = 1, 2, ...,M

87

In the case of both uniform and quasi-uniform refinements, we say that the set of all elements in

the set of meshes belong to a regular family of elements. If a series of refinements is not uniform

or quasi-uniform, we say that the refinements are irregular, and the elements do not belong to a

regular family. These three classes of refinements are visualized for a simple mesh in Table 5.1.

With the necessary notation established, we can proceed to state the interpolation theory

for finite elements. Suppose we have a sequence of meshes {Mi}Mi=1. Given some boundary value

problem defined over the domain, we desire to approximate the true solution u using the finite

element method. That is, we desire to approximate u by some approximation function uh (a

piecewise polynomial of degree p) for each mesh in the series. Then, following Raviart and Ciarlet

[17], it can be shown that the error over a mesh with mesh size h is bounded by:

||u− uh||Hm(Ω) ≤ C
hp+1

ρm
|u|Hp+1(Ω)

wherein C is a constant independent of the mesh size h, and || · ||Hm(Ω) denotes the norm:

||f ||Hm(Ω) =

m∑

j=0

|f |2Hj(Ω)

1/2

and | · |Hj(Ω) denotes the seminorm:

|f |Hj(Ω) =

∫

Ω

∑

|α|=j

|Dαf |2 dΩ

1/2

Furthermore, we notice that if every mesh in series belongs to a regular family, this bound simplifies

to:

||u− uh||Hm(Ω) ≤ Ch
p+1−m|u|Hp+1(Ω)

5.2.3 Finite Element Interpolation Theory: Curvilinear Elements

Similar bounds have also been established for interpolation over curvilinear elements [18, 50].

In curvilinear mesh generation, the mesh is most often generated by first constructing a mesh of

straight sided elements, and then manipulating element nodes to curve the elements to better match

the geometry (see Fig. 5.3). Thus with curvilinear finite elements, there is the notion of both the

88

Table 5.1: Various types of mesh refinement. In uniform refinement, the structure of the original
mesh is preserved in each level of refinement. In quasi-uniform refinement, the structure is not
preserved, but all elements belong to a regular family. In irregular refinement, the bottom elements
become increasingly thin, and therefore do no belong to a regular family.

h = 0.5 h = 0.25 h = 0.125

Uniform Refinements

Quasi-Uniform
Refinements

Irregular Refinements

89

curvilinear mesh M, as well as the underlying linear mesh M. Now, let us denote a mapping xe

that maps a linear master element Ω̂ to the physical curvilinear element Ωe. Then, let us assume

that the following conditions hold for every element in the mesh.

Cond. (5.2.3.1) The underlying linear elements Ω
e

belong to a regular family.

Cond. (5.2.3.2) The mapping xe is invertible. That is:

xe(ξ) = x⇔ (xe)−1 (x) = ξ ∀ ξ ∈ Ω̂

Cond. (5.2.3.3) The derivatives of the mapping xe are bounded as follows:

sup
ξ∈Ω̂

max
|α|=k

∣∣Dαξ xe
∣∣ ≤ ckhk 1 ≤ k ≤ p+ 1

sup
x∈Ωe

max
|α|=1

∣∣∣Dαx
(

(xe)−1
)∣∣∣ ≤ c0h

−1

Then, for a series of meshes belonging to a regular family, we have the error bound:

||u− uh||Hm(Ω) ≤ C
sup
ξ∈Ω̂

|det J(ξ)|

inf
ξ∈Ω̂
|det J(ξ)|

hp+1−m||u||Hp+1(Ω) (5.1)

From this, we see that for a curvilinear mesh to exhibit similar convergence rates to a linear mesh,

several criteria must hold. First, as before, the underlying linear elements must be shape-regular

(Cond. 5.2.3.1). However, we must also ensure that the higher-order mapping is invertible (Cond.

5.2.3.2), and that its derivatives are bounded (Cond. 5.2.3.3). Put simply, we must ensure that the

curvilinear elements are not too curvilinear.

5.2.4 Element Distortion and Quality Metrics

The results of the previous section illuminate some important considerations regarding the

effect of element shape on the convergence rates of p-version finite element methods. From Cond.

5.2.3.2 and Cond. 5.2.3.3, there is a clear need to quantify the magnitude of element distortion, as

there is a direct effect on element quality. This need has led to the development of so called element

distortion metrics and element quality metrics. The precise definition of these terms is often

90

(a) (b)

(c) (d)

Figure 5.3: Steps for basic curvilinear mesh generation on a plate with a hole. (a) Create an
initial linear mesh. A representative boundary element is highlighted in bold. (b) Degree elevate
the linear element by inserting higher-order control points. (c) Curve the element to match the
boundary by updating control point location. (d) Repeat for each element int he mesh to yield the
final curvilinear mesh.

91

quite nebulous, and often varies from application to application. However, for the purposes of this

dissertation we say element distortion metrics quantify the difference between an arbitrary element

Ωe, and some ideal element Ωideal. Element quality metrics, then, are are simply taken as the

inverse of element distortion metrics. That is, element quality will increase as distortion decreases,

and vice-versa.

In general, since element distortion metics and element quality metrics are closely related,

we will refer to both with the umbrella term element metrics. To motivate the need for the novel

element metrics presented in this dissertation, we review the existing curvilinear element metrics

currently in use in the literature. We then argue that none of the existing element metrics are

sufficient for guaranteeing optimal convergence rates of the p-version finite element method over

curvilinear elements.

We begin our study of curvilinear element metrics by recognizing that Eq. (5.1) contains the

term:

1 ≤
sup
ξ∈Ω̂

|det J|

inf
ξ∈Ω̂
|det J|

<∞

If the mapping xe becomes singular, then inf
ξ∈Ω̂
|det J| = 0, and the error bounds in Eq. (5.1) will

tend towards infinity. It is perhaps due to this observation that the overwhelming majority of

curvilinear quality metrics are based on some measure of the Jacobian matrix. Of these Jacobian

based quality metrics, perhaps the most commonly used is the scaled Jacobian [20, 52], defined

as:

JS =

inf
ξ∈Ω̂
|det J|

sup
ξ∈Ω̂

|det J|
(5.2)

From Eq. (5.2), it is readily apparent that 0 ≤ JS ≤ 1, with element quality increasing as JS → 1.

For an affine element, the Jacobian is constant across the element, and the metric is identically

unity. For a singular or inverted element, inf
ξ∈Ω̂
| det J| = 0, and the metric is zero.

Besides the scaled Jacobian, there have been other proposed higher order quality metrics

all based on some measure of the Jacobian matrix, both in traditional p-version finite elements

[26, 37, 54], and in IGA [24, 68, 78, 82]. Despite the wide array of metrics currently in use, we

92

are not aware of any work relating bounds on these metrics to bounds on higher order derivatives.

Thus, to our knowledge, none of the existing quality metrics are sufficient for guaranteeing that

Cond. 5.2.3.3 holds. Because of this, we argue that existing curvilinear element metrics are insuf-

ficient for guaranteeing that an arbitrary curvilinear element is analysis suitable. To illustrate a

particularly egregious example, consider the element shown in Fig. 5.4, which has a scaled Jacobian

of JS = 1. While not all Jacobian based quality metrics will indicate that this element is of good

quality, it is troubling that the most commonly used quality metric for curvilinear elements cannot

distinguish between this highly skewed element and a purely linear triangle. We hope this example

motivates the need for further study of curvilinear element distortion metrics, and we identify two

key challenges to be addressed by the present work in Section 5.5.

(1) Bounds on the Jacobian Determinant of Rational Elements

In general, the Jacobian determinant of a polynomial mapping of degree p is itself a poly-

nomial of degree p′ = d(p − 1). As such, bounding the Jacobian determinant from above

and below is difficult for higher-order polynomial elements, and the task is even more dif-

ficult for elements defined by a rational mapping. We note that computable bounds have

been establish for polynomial elements [34], but are unaware of any analogous bounds for

rational elements.

(2) Bounds on the Higher Order Derivatives of the Parametric Mapping

We are not aware of any element metrics that quantify the magnitude of higher–order

partial derivatives of the parametric mapping xe : Ω̂→ Ωe. Furthermore, we are not aware

of any attempts to show that bounds on existing metrics imply bounds on higher–order

derivatives1 .

1 In their original paper, Ciarlet and Raviart do provide conditions to ensure boundedness of the higher–order
derivatives for certain classes of elements [18]. However, these conditions are too restrictive to be used effectively
with modern automated meshing algorithms.

93

Figure 5.4: Highly distorted triangular element with a scaled Jacobian of JS = 1.

94

5.3 Interpolation Theory for Rational Bernstein–Bézier Elements

With the necessary preliminaries established, we now turn our attention to the novel contribu-

tions of the present work. In this section, we present error estimates for rational Bernstein–Bézier

elements of simplicial or tensor product construction. The analysis follows closely the work of

Bazilevs et. al. [6], wherein interpolation error bounds were derived for IGA using NURBS.

Let us consider a rational Bernstein–Bézier element Ωe with corresponding reference element

in parametric space Ω̂. For simplicial elements, we denote the space of approximation functions of

degree p over the physical curvilinear element as:

Shp (Ωe) :=
{
uh ∈ L2(Ωe) : w(uh ◦ xe) ∈Pp

(
Ω̂
)}

where Pp
(

Ω̂
)

denotes the space of polynomials of degree p, and w ∈ Pp
(

Ω̂
)

is the weighting

function defined over the reference element. For tensor product elements, we denote the space

of tensor product approximation functions of degree p = {p, ..., p} over the physical curvilinear

element as:

Shp(Ωe) :=
{
uh ∈ L2(Ωe) : w(uh ◦ xe) ∈ Qp

(
Ω̂
)}

where Qp
(

Ω̂
)

denotes the space of tensor product polynomials of degree p, and w ∈ Qp
(

Ω̂
)

is

the weighting function defined over the reference element.

Furthermore, we note that the physical element has corresponding linear element Ω
e
, defined

by an affine mapping xe : Ω̂ → Ω
e
. We then define a warping function F that maps the linear

element to the curvilinear element, F : Ω
e → Ωe, and we note that the mapping xe is simply the

compositions of these two mappings, xe = F ◦xe. We can then derive error bounds for the element

Ωe in terms of the mapping F.

95

rs

rs

rs

rs

b

b

b

bb

b

Ω
e

Ωe

b x = F(x)

xbc

Figure 5.5: Mapping F from the linear element Ω
e

to the curved element Ωe.

96

Theorem 5.3.1. Over the physical element Ωe, there exists a constant cs independent of the mesh

size h, the warping function F, and the weighting function w, such that for all u ∈ Hp+1(Ωe), there

exists an approximation function uh ∈ Shp satisfying the estimate:

||u− uh||L2(Ωe) ≤ cshp+1
e cd(F)cv(F, w, u)

where:

cd (F) =
∣∣∣
∣∣∣det∇F1/2

∣∣∣
∣∣∣
L∞(Ω

e
)

∣∣∣
∣∣∣det∇F−1/2

∣∣∣
∣∣∣
L∞(Ωe)

and:

cv(F, w, u) =

p+1∑

k=0

k∑

j=0

cα (F, j, k)

∣∣∣∣
∣∣∣∣

1

w

∣∣∣∣
∣∣∣∣
L∞(Ω̂)

∣∣∣
∣∣∣∇p+1−kw

∣∣∣
∣∣∣
L∞(Ω

e
)
|u|Hj(Ωe)

wherein:

cα (F, j, k) =
∑

i1+i2+...+ik=j
i1+2i2+...+kik=k

(
||∇F||L∞(Ω

e
)

)i1 (∣∣∣∣∇2F
∣∣∣∣
L∞(Ω

e
)

)i2
...
(∣∣∣∣∇kF

∣∣∣∣
L∞(Ω

e
)

)ik

Proof. By definition, we have:

∫

Ωe

u2dx =

∫

Ω
e
(u ◦ F)2 det∇Fdx

Therefore, ||u||L2(Ωe) =
∣∣∣∣det∇F1/2u ◦ F

∣∣∣∣
L2(Ω

e
), and as a consequence, we can bound:

||u||L2(Ωe) ≤
∣∣∣
∣∣∣det∇F1/2

∣∣∣
∣∣∣
L∞(Ω

e
)
||u ◦ F||L2(Ω

e
)

Consequently for each approximation function uh ∈ Shp , it follows that:

||u− uh||L2(Ωe) ≤
∣∣∣
∣∣∣det∇F1/2

∣∣∣
∣∣∣
L∞(Ω

e
)
||u ◦ F− uh ◦ F||L2(Ω

e
)

Since the weighting function is bounded from above and below, it further follows that

||u− uh||L2(Ωe) ≤
∣∣∣
∣∣∣det∇F1/2

∣∣∣
∣∣∣
L∞(Ω

e
)

∣∣∣∣
∣∣∣∣

1

w

∣∣∣∣
∣∣∣∣
L∞(Ω̂)

||w (u ◦ F)− w (uh ◦ F)||L2(Ω
e
)

Now, we note that by construction of uh, the function w (uh ◦ xe) is an arbitrary polynomial

of degree p. Furthermore, we recognize that w (uh ◦ xe) = w (uh ◦ F ◦ xe). Thus, because the

97

mapping xe is purely affine, the function w (uh ◦ F) is similarly an arbitrary polynomial of degree

p. Therefore, by the classical Bramble–Hilbert lemma, we may select uh such that the following

inquality holds:

||w (u ◦ F)− w (uh ◦ F)||L2(Ω
e
) ≤ c1h

p+1 |w (u ◦ F)|Hp+1(Ω
e
)

where c1 = c1 (p, σe) is a constant that depends only on the polynomial degree p and shape regularity

σe of the linear element Ω
e
. We must now bound the seminorm |w (u ◦ F)|Hp+1(Ω

e
) appearing in

the above estimate by an analagous norm over the physical element Ωe. To do so, we first recognize

that:

|w (u ◦ F)|Hp+1(Ω
e
) ≤

p+1∑

k=0

∣∣∣
∣∣∣∇p+1−kw

∣∣∣
∣∣∣
L∞(Ω

e
)
|u ◦ F|Hk(Ω

e
)

It remains to bound the seminorms |u ◦ F|Hk(Ω
e
). We may easily obtain control of the H1-seminorm

using the estimate:

|u ◦ F|H1(Ω
e
) =

(∫

Ω
e
∇x (u ◦ F) ·∇x (u ◦ F) dx

)1/2

=

(∫

Ωe

∇xF∇xu ·∇xF∇xudet∇F−1dx

)1/2

≤ ||∇F||L∞(Ω
e
)

∣∣∣
∣∣∣det∇F−1/2

∣∣∣
∣∣∣
L∞(Ωe)

|u|H1(Ωe)

To obtain control of the higher–order seminorms, we simply recurse on the previous estimate, as is

done in [6], resulting in the estimate:

|u ◦ F|Hk(Ω
e
) ≤ c2||∇F||L∞(Ω

e
)

k∑

j=0

cα (j, k) (∇F) |u|Hj(Ωe)

where c2 = c2 (p, σe) is again a constant that depends only on the polynomial degree p of the

basis and the shape regularity of Ω
e
. Thus, letting cs = c1c2, we arrive at the bound presented in

Theorem 5.3.1.

Theorem 5.3.1 gives valuable theoretical insight into the convergence behavior of rational

curvilinear Bernstein–Bézier elements, as it clearly delineates the effect of the linear shape quality

(cs) and curvilinear shape quality (cd and cv) on the interpolation error bounds. However, its utility

98

is somewhat limited as the bound is given in terms of the warping function F, whereas Bernstein–

Bézier elements are defined by the mapping xe. Since the mapping xe is given explicitly by the

control points and weights, it is desirable to derive sufficient conditions based on this mapping

instead. We begin by deriving bounds on the gradients
∣∣∣∣∇k

xF
∣∣∣∣
L∞(Ω

e
) in terms of the gradients

∣∣∣∣∇k
ξx

e
∣∣∣∣
L∞(Ω̂)

(Theorem 5.3.2), as well as bounds on the gradients
∣∣∣∣∇k

xw
∣∣∣∣
L∞(Ω

e
) in terms of

the gradients
∣∣∣∣∇k

ξw
∣∣∣∣
L∞(Ω̂)

(Theorem 5.3.3). We then use the results of these theorems to prove

Theorem I.

Theorem 5.3.2. Given the mappings F and xe, there exist some constant c3 = cs (σe), dependent

only on the shape regularity of Ω
e
, such that:

∣∣∣∣∇kF
∣∣∣∣
L∞(Ω

e
) ≤ c

k
3

∣∣∣
∣∣∣∇kxe

∣∣∣
∣∣∣
L∞(Ω̂)

(
1

he

)k

Proof. We first recognize that the warping function F can be written as a composition of xe and

xe−1, viz:

F (x) = xe
(
xe−1 (x)

)

Thus, the gradient of F can be written:

∇xF =

[
∇ξx

e

][
∇ξx

e

]−T
(5.3)

We note that since Ω
e

is a linear element, the gradient ∇ξx
e is constant and ||∇ξx

e||L∞(Ω̂) is

bounded from below by the radius of the element incircle, ρe, viz.:

ρe ≤ ||∇ξx
e||L∞(Ω̂) (5.4)

and we can similarly bound the norm of the inverse mapping by:

∣∣∣∣∇x

(
xe−1

)∣∣∣∣
L∞(Ω̂) ≤

1

ρe
(5.5)

Now, let us define a constant c3 = c3(σe), which is independent of mesh size he, but is dependent

on the shape regularity of Ω
e
. Furthermore, let c3 satisfy the inequality:

c3 ≥ σe =
he
ρe

99

Then, we can rewrite Eq. (5.5) as:

∣∣∣∣∇x

(
xe−1

)∣∣∣∣
L∞(Ω̂) ≤ c3

1

he

Then, from Eq. (5.3) and Eq. (5.4), we can bound the norm of ∇F by:

||∇F||L∞(Ω
e
) ≤ c3 ||∇ξx

e||L∞(Ω̂)

(
1

he

)

Recursing on this process, we can bound the magnitude of the kth total derivative by:

∣∣∣∣∇kF
∣∣∣∣
L∞(Ω

e
) ≤ c

k
3

∣∣∣
∣∣∣∇kxe

∣∣∣
∣∣∣
L∞(Ω̂)

(
1

he

)k

Theorem 5.3.3. Given the weighting function w, there exist some constant c3 = c3 (σe), dependent

only on the shape regularity of Ω
e
, such that:

∣∣∣
∣∣∣∇k

xw
∣∣∣
∣∣∣
L∞(Ω

e
)
≤ ck3

∣∣∣
∣∣∣∇k

ξw
∣∣∣
∣∣∣
L∞(Ω̂)

(
1

he

)k

Proof. The proof of Theorem 5.3.3 is identical to the proof for Theorem 5.3.2.

100

Theorem I. Over the physical element Ωe, there exists a constant Cshape independent of the

mesh size h, the mapping xe, and the weighting function w, such that for all u ∈ Hp+1(Ωe),

there exists an approximation function uh ∈ Shp satisfying the estimate:

||u− uh||L2(Ωe) ≤ Cshapehp+1
e Cdet(x

e)Cvar(x
e, w, u)

where:

Cdet (xe) =
∣∣∣
∣∣∣det∇xe1/2

∣∣∣
∣∣∣
L∞(Ω̂)

∣∣∣
∣∣∣det∇xe−1/2

∣∣∣
∣∣∣
L∞(Ωe)

and:

Cvar(x
e, w, u) =

p+1∑

k=0

k∑

j=0

αj,k(x
e)

∣∣∣∣
∣∣∣∣

1

w

∣∣∣∣
∣∣∣∣
L∞(Ω̂)

∣∣∣
∣∣∣∇p+1−k
ξ w

∣∣∣
∣∣∣
L∞(Ω̂)

hp+1−k
e

 |u|Hj(Ωe)

wherein:

αj,k(x
e) ≤

∑

i1+i2+...+ik=j
i1+2i2+...+kik=k

(||∇xe||L∞(Ω̂)

he

)i1

∣∣∣∣∇2xe

∣∣∣∣
L∞(Ω̂)

h2
e

i2

...

∣∣∣∣∇kxe

∣∣∣∣
L∞(Ω̂)

hke

ik

Proof. Proving Theorem I amounts to simply bounding the constants cd and cv from Theorem 5.3.1

by analagous constants in terms of the mapping xe. We begin by recognizing that xe = F◦xe, and by

extension F = xe◦xe−1. Thus, we can write the gradient of the mapping F as ∇F = [∇xe] [∇xe]−T

and as a result, the determinant of ∇F can be written as:

det∇F =
det∇xe

det∇xe

allowing us to rewrite cd (F) in terms of xe and xe as:

cd (F) = Cdet (xe,xe) =

∣∣∣∣∣

∣∣∣∣∣

(
det∇xe

det∇xe

)1/2
∣∣∣∣∣

∣∣∣∣∣
L∞(Ω̂)

∣∣∣∣∣

∣∣∣∣∣

(
det∇xe

det∇xe

)1/2
∣∣∣∣∣

∣∣∣∣∣
L∞(Ω̂)

Then, recognizing that det∇xe is a constant, the above equations simplifies immediately to:

cd (F) = Cdet (xe) =
∣∣∣
∣∣∣det∇ξx

e1/2
∣∣∣
∣∣∣
L∞(Ω̂)

∣∣∣
∣∣∣det∇xxe−1/2

∣∣∣
∣∣∣
L∞(Ωe)

101

It remains then to bound the constant cv by a bound in terms of xe. We begin by substituting the

results of Theorem 5.3.2 into the expression cα (F, j, k), which yields.

cα (F, j, k) ≤
∑

i1+i2+...+ik=j
i1+2i2+...+kik=k

(
c3

||∇xe||L∞(Ω̂)

he

)i1
c2

3

∣∣∣∣∇2xe
∣∣∣∣
L∞(Ω̂)

h2
e

i2

...

...

ck3

∣∣∣∣∇kxe
∣∣∣∣
L∞(Ω̂)

hke

ik

Then, recognizing that ci13 c
2i2
3 ...ckik3 = ck3, we can factor out the constant c3, to arrive at the bound:

cα (F, j, k) ≤ ck3αj,k (xe) (5.6)

Finally, employing the results of Eq. (5.6) along with Theorem 5.3.3, we can bound cv (F, w, u) by:

cv(F, w, u) ≤
p+1∑

k=0

k∑

j=0

ck3αj,k(x
e)

∣∣∣∣
∣∣∣∣

1

w

∣∣∣∣
∣∣∣∣
L∞(Ω̂)

cp+1−k
3

∣∣∣
∣∣∣∇p+1−k
ξ w

∣∣∣
∣∣∣
L∞(Ω̂)

hp+1−k
e

 |u|Hj(Ωe)

which we can simplify to:

cv(F, w, u) ≤ cp+1
3 Cvar(x

e, w, u)

Thus, we arrive at the results of Theorem I, where Cshape = csc
p+1
3 .

The astute reader will recognize that the above results can be simplified even further. Indeed,

we have left Theorem I in its current form intentionally, as it clearly demonstrates the dependence

on he in each part of the error bound. This clear dependence on he will prove useful in the next

section. However, we similarly note that at times it is useful develop size invariant error bounds.

We further simplify the results of Theorem I to achieve error bounds that are independent of the

element diameter he.

Corollary 5.3.4. Over the physical element Ωe, there exists a constant Cshape independent of the

mesh size h, the mapping xe, and the weighting function w, such that for all u ∈ Hp+1(Ωe), there

exists an approximation function uh ∈ Shp satisfying the estimate:

||u− uh||L2(Ωe) ≤ CshapeCdet(xe)C ′var(xe, w, u)

102

where:

Cdet (xe) =
∣∣∣
∣∣∣det∇xe1/2

∣∣∣
∣∣∣
L∞(Ω̂)

∣∣∣
∣∣∣det∇xe−1/2

∣∣∣
∣∣∣
L∞(Ωe)

and:

C ′var(x
e, w, u) =

p+1∑

k=0

k∑

j=0

α′j,k(x
e)

∣∣∣∣
∣∣∣∣

1

w

∣∣∣∣
∣∣∣∣
L∞(Ω̂)

∣∣∣
∣∣∣∇p+1−k
ξ w

∣∣∣
∣∣∣
L∞(Ω̂)

|u|Hj(Ωe)

wherein:

α′j,k(x
e) =

∑

i1+i2+...+ik=j
i1+2i2+...+kik=k

(
||∇xe||L∞(Ω̂)

)i1 (∣∣∣∣∇2xe
∣∣∣∣
L∞(Ω̂)

)i2
...

(∣∣∣
∣∣∣∇kxe

∣∣∣
∣∣∣
L∞(Ω̂)

)ik

5.4 Regular Families of Curvilinear Elements

The results of Section 5.3 are convenient, as they clearly delineate the effect of element

shape on interpolation error bounds. Namely, Cshape quantifies the contribution of linear element

shape regularity, while Cdet and Cvar quantify the contribution of the higher–order mapping xe and

weighting function w. By writing the error bounds in terms of the mapping xe we may work directly

with the Bernstein basis functions defined over the reference element Ω̂, and the Bézier control

points in physical space. Furthermore, the results of Theorem I clearly delineate the dependence

of the interpolation error bounds on the higher–order derivatives of the mapping in terms of the

element size he. In light of this, we desire to develop sufficient conditions for guaranteeing that

rational Bernstein–Bézier elements will preserve optimal convergence rates under refinement. That

is, we desire to develop sufficient conditions for guaranteeing that:

||u− uh||L2(Ωe) < Chp+1
e

where C is some constant independent of element size he and the mapping xe. Indeed, as dis-

cussed in Section 5.2, such sufficient conditions have been developed for finite elements based on

polynomial mappings. In this section, we develop analogous sufficient conditions for rational

Bernstein–Bézier elements.

103

Theorem 5.4.1. Let there exist some constant, cw, dependent on p, but not on he such that:

∣∣∣∣Dαξ w
∣∣∣∣
L∞(Ω̂)

≤ cwh|α|e ∀α : |α| ≤ p+ 1 (5.7)

Then, there exists a constant, cinv, such that:

∣∣∣∣
∣∣∣∣Dαξ

(
1

w

)∣∣∣∣
∣∣∣∣
L∞(Ω̂)

≤ cinvh|α|e

Proof. By application of the multivariate Faà di Bruno’s formula [19], we write the derivative of

the inverse of the weighting function as:

Dαξ

(
1

w

)
=

∑

1≤|s|≤|α|

(−1)|s|
|s|!
w1+|s|

∑

p(α,s)

α!

|α|∏

j=1

(
D
`j
ξ w
)kj

kj ! (`j !)
kj

where p(α, s) denotes the set:

p(α, s) =

|α|⋃

s=1

ps(α, s)

ps (α, s) =

{(
k1, ..., k|α|; `1, ..., `|α|

)
:

0 < ki,0 < `1 < ... < `s,

s∑

i=1

ki = s and
s∑

i=1

ki`i = α

}

Then, by Eq. (5.7), we have:

∣∣∣∣
∣∣∣∣Dαξ

(
1

w

)∣∣∣∣
∣∣∣∣
L∞(Ω)

≤
∑

1≤|s|≤|α|

|s|!
w1+|s|

∑

p(α,s)

α!

|α|∏

j=1

(
cwh

|`j |
e

)kj

kj ! (`j !)
kj

Rearranging, and factoring out terms not dependent on he yields:

∣∣∣∣
∣∣∣∣Dαξ

1

w

∣∣∣∣
∣∣∣∣
L∞(Ω)

≤
∑

1≤|s|≤|α|

∑

p(α,s)

c1 (α, s)

|α|∏

j=1

(
h
|`j|
e

)kj
(5.8)

where:

c1 (α, s) =
|s|!α!

w|s|+1

|α|∏

j=1

c
kj
w

kj ! (`l!)
kj

Finally, noting that:

|α|∏

j=1

(
h
|`j |
e

)kj
= h

(|α|∑
j=1

kj |`j |
)

e

104

and that by construction of p(α, s):
|α|∑

j=1

kj |`j | = |α|

Inequality (5.8) becomes:

∣∣∣∣
∣∣∣∣Dαξ

1

w

∣∣∣∣
∣∣∣∣
L∞(Ω̂)

≤
∑

1≤|s|≤|α|

∑

p(α,s)

c1 (α, s)h|α|e

and the results of Lemma 5.4.1 follows directly, where cinv =
∑

1≤|s|≤|α|

∑
p(α,s)

c1 (α, s).

Theorem 5.4.2. Let us assume there exists a constant Cproj not dependent on he such that:

∣∣∣∣Dαξ x̃e
∣∣∣∣
L∞(Ω̂)

≤ Cprojh|α|e ∀α : |α| = k, k ≤ p+ 1 (5.9)

Then there exists a constant Cgrad, such that:

∣∣∣
∣∣∣∇kxe

∣∣∣
∣∣∣
L∞(Ω̂)

≤ Cgradhke

∣∣∣
∣∣∣∇kw

∣∣∣
∣∣∣
L∞(Ω̂)

≤ Cgradhke

Proof. We immediately recognize that since w = (x̃e)d+1, the inequality

∣∣∣∣Dαξ w
∣∣∣∣
L∞(Ω̂)

≤ Cprojhke (5.10)

holds by definition. It remains then to show that the bound on the derivatives of the projective

mapping x̃e imply a bound on the derivatives of the physical mapping xe. We begin by writing the

derivative Dαξ xe by the multi-variate product rule as:

Dαξ xe = Dαξ

(
x̃e

w

)
=
∑

k∈Iα

(
α

k

)
Dα−kξ (x̃e)Dk

ξ

(
1

w

)
(5.11)

Then, from Eq. (5.10) and Theorem 5.4.1, it is readily seen that:

∣∣∣∣
∣∣∣∣Dαξ

(
1

w

)∣∣∣∣
∣∣∣∣
L∞(Ω̂)

≤ cinvh|α|e ∀ α : |α| = k

Taking this result, along with Eq. (5.9), and substituting into Eq. (5.11) yields:

∣∣∣∣Dαξ xe
∣∣∣∣
L∞(Ω̂)

≤
∑

k∈Iα

(
α

k

)
Cprojh

|α|−|k|
e cinvh

|k|
e

105

which reduces immediately to:

∣∣∣∣Dαξ xe
∣∣∣∣
L∞(Ω̂)

≤ Cprojcinvh|α|e ∀ α : |α| = k (5.12)

Finally, we recognize that if Eq. (5.10) and Eq. (5.12) hold for every derivative of order k, then

there exists some Cgrad = Cgrad (Cproj , cinv) such that:

∣∣∣
∣∣∣∇k

ξw
∣∣∣
∣∣∣
L∞(Ω̂)

≤ Cgradhke

∣∣∣
∣∣∣∇k

ξx
e
∣∣∣
∣∣∣
L∞(Ω̂)

≤ Cgradhke

which are exactly the results of Theorem 5.4.2 that we set out to prove.

Theorem II. For a rational Bernstein–Bézier element Ωe of degree p with corresponding

projective element Ω̃e, let the following conditions hold for the mappings xe and x̃e:

Cond. (II.1) There exists a constant Cmax independent of the element size he, such

that:
∣∣∣
∣∣∣det∇xe1/2

∣∣∣
∣∣∣
L∞(Ω̂)

∣∣∣
∣∣∣det∇xe−1/2

∣∣∣
∣∣∣
L∞(Ωe)

≤ Cmax

Cond. (II.2) There exists a constant Cproj, independent of the element size he, such

that:

∣∣∣∣Dαξ x̃e
∣∣∣∣
L∞(Ω̂)

≤ Cprojh|α|e ∀α : |α| = k, k ≤ p+ 1

Then, there exist a constant C independent of the element size he such that:

||u− uh||L2(Ωe) ≤ Ch
p+1
e

We further say the rational Bernstein–Bézier element belongs to a regular family of curvi-

linear elements, and will exhibit similar convergence rates to traditional affine finite elements.

106

Proof. From Theorem I, we immediately see that if Cond. (II.1) holds, then Cdet ≤ Cmax. Next, if

Cond. (II.2) holds, we can bound Cvar using the results of Theorem 5.4.2 by:

Cvar(x
e, w, u) ≤

p+1∑

k=0

k∑

j=0

αj,k(x
e)

∣∣∣∣
∣∣∣∣

1

w

∣∣∣∣
∣∣∣∣
L∞(Ω̂)

(
Cgradh

p+1−k
e

hp+1−k
e

)
|u|Hj(Ωe)

wherein:

αj,k(x
e) ≤

∑

i1+i2+...+ik=j
i1+2i2+...+kik=k

(
Cgradhe
he

)i1 (Cgradh2
e

h2
e

)i2
...

(
Cgradh

k
e

hke

)ik

which reduces immediately to:

Cvar(x
e, w, u) ≤ Cgrad

∣∣∣∣
∣∣∣∣

1

w

∣∣∣∣
∣∣∣∣
L∞(Ω̂)

p+1∑

k=0

k∑

j=0

∑

i1+i2+...+ik=j
i1+2i2+...+kik=k

Cjgrad|u|Hj(Ωe)

Thus, we arrive at the results of Theorem II, wherein C = C(Cshape, Cmax, Cgrad, w, u) is a constant

independent of he.

With Theorem II, we have derived a set of two sufficient conditions for guaranteeing that a ra-

tional Bernstein–Bézier element will exhibit convergence rates similar to traditional affine elements.

Along with this, we have introduced the notion of a regular family of curvilinear elements.

Specifically, we say that if Cond. II.1 and Cond. II.2 hold, then a rational Bernstein–Bézier element

belongs to a regular family of curvilinear elements.

5.5 Computable Distortion Metrics for Rational Bernstein–Bézier Elements

With sufficient conditions for analysis suitability of rational Bernstein–Bézier discretizations

established, it remains to develop easily computable distortion metrics that are sufficient to show

that these conditions hold. In general, explicitly calculating distortion metrics for every element in

a mesh is computationally expensive, particularly when the elements are of high polynomial degree

p. As such, in this section, we present easily computable bounds on the element distortion. We

begin by considering easily computable upper and lower bounds on the Jacobian determinant that

may be used to bound the magnitude of Cmax. We then present easily computable upper bounds

107

on the derivatives of the mapping xe so that we may bound the magnitude of cproj .

5.5.1 Computable Bounds on the Jacobian Determinant

From Cond. II.1, we see that the ratio of the maximum and minimum values of the Jaco-

bian determinant must be bounded from above. As noted in Section 5.2.4, this is equivalent to

bounding the scaled Jacobian from below. However, efficiently computing bounds on the Jacobian

determinant is not a straightforward task. As previously mentioned, efficient algorithms have been

proposed for bounding the Jacobian determinant of polynomial elements [34], but no such bounds

have been proposed for rational elements. We do note, however, that for every rational element

Ωe ∈ Rd, there is a corresponding projective element Ω̃e ∈ Rd+1 that is defined by a polynomial

mapping. Naturally then, we seek a way to compute the Jacobian determinant of the physical

element in terms of the projective element.

For an element in Rd the differential d-form ω is given by the dth external product of the

directional derivatives of ∇xe. That is:

ω =
∂xe

∂ξ1
∧ ... ∧ ∂xe

∂ξd

where ∧ denotes the wedge product. For elements in R2 this yields a 2-form, which is a differential

area dA, and for elements in R3 this yields a 3-form, which is a differential volume element dV .

The Jacobian determinant then, is simply the Hodge dual of ω, viz:

det [xe] = ∗ (ω)

where ∗(·) is the Hodge star operator. For a vector space V ∈ Rd, the Hodge star operator denotes

the duality between k-forms and (d−k)-forms. For elements in Rd, ω is a d-form, and as such, ∗(ω)

is a 0-form, which is a scalar. Geometrically, the Jacobian determinant gives the area of 2-forms in

R2, and the volume of 3-forms in R3.

For projective elements in Rd+1, we can define the differential d-form ω̃ as:

ω̃ =
∂x̃e

∂ξ1
∧ ... ∧ ∂x̃e

∂ξd

108

As with the physical element, this yields area elements dA when d = 2 and volume elements dV

when d = 3. For projective elements however, the d-form is defined in the d+ 1 dimensional vector

space V ∈ Rd+1. As such, the Hodge dual of d-forms in Rd+1 are 1-forms, which are simply vectors.

We illustrate these concepts for a rational Bernstein–Bézier triangle, shown in Fig. 5.6. The 2-

form for the physical element is visualized by the blue parallelogram, and the Hodge dual of the

2-form gives the area of the parallelogram. The 2-form for the projective element is shown by the

yellow parallelogram, and the Hodge dual of the 2-form is the corresponding normal vector, and

this relation is denoted:

N = ∗
(
∂x̃e

∂ξ1
∧ ∂x̃e

∂ξ2

)
=
∂x̃e

∂ξ1
× ∂x̃e

∂ξ2

We take care to note that this vector N is not a unit normal. Rather, the magnitude of N is equal

to the area of the corresponding 2-form.

Visualizing the differential forms for volumetric elements becomes untenable, as the projective

elements are embedded in R4. However, for an arbitrary element in Rd+1, we can write the vector

N as:

N (ξ) =

d+1∑

i=1

(−1)d+1+iMiei (5.13)

wherein the minor Mi is the determinant of the d×d matrix formed by deleting the ith row of ∇x̃e.

Additionally, let x = xe (ξ) denote a coordinate on the physical element, and let x̃ = x̃e (ξ) denote

the corresponding coordinate on the projective element. With this nomenclature established, we

can present bounds on det [∇xe] in terms of the polynomial mapping x̃e.

Theorem 5.5.1. For any rational Bernstein–Bézier element, the Jacobian determinant can be

calculated by:

det [∇xe] =
N (ξ) · x̃e (ξ)

wd+1

Proof. First, let us denote the first d components of the mapping x̃e as
[
x̃e
]
d
. We then recognize

that we desire to calculate the determinant of the matrix:

det [∇xe] = det

[
∇ξ

([
x̃e
]
d

w

)]

109

fx2

x2

w

x1

fx1

Figure 5.6: Differential 2-forms on a physical element and a projective element.

110

By the quotient rule we have:

det [∇xe] det

[
1

w

[
∇ξ

[
x̃e
]
d
− x[∇ξw]T

]]

and, because for any given ξ ∈ Ω̂, w is some positive constant, we can factor out the weighting

function to write:

det [∇xe] =
1

wd
det

[
∇ξ

[
x̃e
]
d
− x[∇ξw]T

]
(5.14)

Then, by Eq. (5.13) we can write the vector N as:

N (ξ) =
d+1∑

i=1

(−1)d+1+iMiei

and as a result, we can write the dot product N · x as:

N · x =

d+1∑

i=1

(−1)d+1+iMixi = det

∇ξ

[
x̃e
]
d
x

∇ξw 1

which in turn can be written as:

N · x = det

∇ξ

[
x̃e
]
d
x

∇ξw 1

= det

[
∇ξ

[
x̃e
]
d
− x[∇ξw]T

]
(5.15)

Then, recognizing that N · x =
N · x̃
w

, and substituting the results of Eq. (5.15) into Eq. (5.14),

we get

det [∇xe] =
1

wd
N · x̃
w

from which the results of Theorem 5.5.1 follow immediately.

Conceptually, Theorem 5.5.1 can be thought of as projecting the vector N onto the w = 1

plane along the vector x̃, scaled by wd+1. Alternatively, det [∇xe] can be thought of as the apparent

magnitude of ω̃ as seen by an observer at the origin. Either way, we recognize that we can compute

the Jacobian determinant as the dot product of two vectors, normalized by the weighting function.

111

We recognize that for a rational Bernstein–Bézier element of degree p in Rd, both x̃ and N will be

vectors in Rd+1. It is readily seen that the vector x̃ can be written in Bernstein–Bézier form, as the

control points P̃b
i are known. However, we note that the equation for the surface normal N = N(ξ)

can also be written in Bernstein–Bézier form. It remains to present a method for calculating the

Bézier coefficients for the surface normal. We present formulas for these coefficients for simplicial

Bernstein–Bézier elements in Theorem 5.5.2 and for tensor product elements in Theorem 5.5.3.

We begin by considering simplicial elements. Let {Bp′

k }k∈Ip′ denote the set of simplicial

Bernstein polynomials of degree p′ = d (p− 1), and let {Nk}k∈Ip′ denote the set of Bézier coeffi-

cients for the vector N. Then, for a simplicial element in projective space we can write N (ξ) in

Bernstein–Bézier form as:

N (ξ) =
∑

k∈Ip′
Bp′

k Nk ∀ ξ ∈ Ω̂

wherein Ip
′

denotes the index set over the simplicial Bernstein polynomials of degree p′. Then, let

us denote a d-tuple of multi-indices as I = {i1, ..., id}, and let us we define the set Ip
′

k as:

Ip
′

k :=

I = {ij}dj=1 : ij ∈ Ip−1,

d∑

j=1

ij = k

Finally, let us denote the set of difference vectors in the ξj direction as {∆P̃b
ij
}ij∈Ip−ej , where we

define ∆P̃b
ij

as:

∆P̃b
ij

= P̃b
i+ej
− P̃b

i

Theorem 5.5.2. For a simplicial Bernstein–Bézier element of degree p in projective space, with

projective control points {P̃b
i}i∈Ip, the Bézier coefficients {Nk}k∈I′ for the vector N can be calculated

as:

Nk = ∗

∑

I∈Ip
′

k

ηk (I)
(

∆P̃b
i1 ∧ ... ∧∆P̃b

id

)

 (5.16)

wherein the coefficient ηk (I) is defined to be:

ηk (I) =
pd
(
p−1
i1

)
...
(
p−1
id

)
(
p′

k

)

112

Proof. We first recognize that a projective Bézier element is a d-manifold with codimension 1, and

as such the surface normal can be found as the Hodge dual of the wedge product of the parametric

derivatives, viz:

N = ∗
(
∂x̃e

∂ξ1
∧ ... ∧ ∂x̃e

∂ξd

)
(5.17)

Note that when d = 2, this is simply the cross product, but the above notation holds for arbitrary

d. Now, recognizing that the partial derivative with respect to the jth parametric coordinate can

be found as:

∂x̃e

∂ξj
= p

∑

ij∈Ip−1

Bp−1
ij

∆P̃b
ij

we rewrite Eq. (5.17) as:

N = ∗

p

∑

i1∈Ip−1

Bp−1
i1

∆P̃b
i1 ∧ ... ∧ p

∑

id∈Ip−1

Bp−1
id

∆P̃b
id

and since the distributive property holds, we can rearrange to yield:

N = ∗

pd

∑

i1∈Ip−1

...
∑

id∈Ip−1

Bp−1
i1

...Bp−1
id

∆P̃b
i1 ∧ ... ∧∆P̃b

id

Now, recognizing that we can write the product of the Bernstein basis functions as:

Bp−1
i1

...Bp−1
id

=

(
p−1
i1

)
...
(
p−1
id

)
(
p′

k

) Bp′

k

we arrive at:

N = ∗

pd

∑

i1∈Ip−1

...
∑

id∈Ip−1

(
p−1
i1

)
...
(
p−1
id

)
(
p′

k

) Bp′

k ∆P̃b
i1 ∧ ... ∧∆P̃b

id

Finally, rearranging the order of summation, we get:

N = ∗

∑

k∈Ip′
Bp′

k

∑

I∈Ip
′

k

pd
(
p−1
i1

)
...
(
p−1
id

)
(
p′

k

) ∆P̃b
i1 ∧ ... ∧∆P̃b

id

From which Eq. (5.16) immediately follows.

We can now derive similar results for tensor product elements. Let {Bp′

k }k∈Ip′ denote the

set of tensor product Bernstein polynomials of degree p′ = dp − 1, and let {Nk}k∈Ip′ denote the

113

set of Bézier coefficients for the vector N . Then, for a tensor product element in projective space

we can write N (ξ) in Bernstein–Bézier form as:

N(ξ) =
∑

k∈Ip′
Bp′

k Nk ∀ ξ ∈ Ω̂

Now, let us denote a d-tuple of multi-indices as I = {i1, ..., id}. Then, we define the set of d-tuples

Ip
′

k as:

Ip
′

k :=

I = {ij}dj=1 : ij ∈ Ip−ej ,

d∑

j=1

ij = k

wherein Ip
′

denotes the index set over the tensor product Bernstein polynomials of degree p′. As

before, let {∆P̃b
ij
}ij∈Ip−ej denote the set of difference vectors in the ξj direction.

Theorem 5.5.3. For a tensor product Bernstein–Bézier element of degree p in projective space,

with projective control points {P̃b
i}i∈Ip, the Bézier coefficients {Nk}k∈I′ for the vector N can be

calculated as:

Nk = ∗

∑

I∈Ip
′

k

ηk (I)
(

∆P̃b
i1 ∧ ... ∧∆P̃b

id

)

 (5.18)

wherein the coefficient ηk (I) is defined to be:

ηk (I) =
p1

(
p−e1
i1

)
...pd

(
p−ed
id

)
(
p′

k

)

Proof. The proof follows the proof for simplicial elements almost exactly. We simply recognize that

jth directional derivative for a tensor product element is:

∂x̃e

∂ξj
= pj

∑

ij∈Ip−ej

B
p−ej
ij

∆P̃b
ij

and that the product of tensor product Bernstein polynomials can be written as:

Bp−e1
i1

...Bp−ed
id

=

(
p−e1
i1

)
...
(
p−ed
id

)
(
p′

k

) Bp′

k

Then, using these identities along with Eq. (5.17), Eq. (5.18) can be readily obtained.

114

Theorem III. Let Ωe ∈ Rd be a rational Bernstein–Bézier element in physical space with

corresponding rational element in projective space Ω̃e ∈ Rd+1. Then, letting {P̃b
i}i∈I denote

the projective control points, and letting {Nk}k∈I′ denote the Bézier coefficients for the normal

vector N, the constant Cdet is bounded from above by:

Cdet ≤

max
j∈I

wj

min
j∈I

wj

d+1

max
i∈I
k∈I′

Nk · P̃b
i

min
i∈I
k∈I′

Nk · P̃b
i

Proof. From Theorem 5.5.1, we recognize that det [∇xe] is given by:

det [∇xe] =
N · x̃
wd+1

From this, we can rewrite det [∇xe] explicitly in terms of the Bernstein basis polynomials as:

det [∇xe] =
1

(
∑
j∈I

Bjwj

)d+1

∑

i∈I

∑

k∈I′
BkBiNk · P̃b

i

Then, because the Bernstein basis polynomials satisfy positivity and partition of unity, we can

bound the magnitude of the Jacobian determinant by:

min
i∈I
k∈I′

Nk · P̃b
i

(
max
i∈I

wi

)d+1
≤ |det [∇xe]| ≤

max
i∈I
k∈I′

Nk · P̃b
i

(
min
i∈I

wi

)d+1
(5.19)

Finally, recognizing that the equation for Cdet can be equivalently written:

Cdet =

sup
ξ∈Ω̂

|det [∇xe]|

inf
ξ∈Ω̂
|det [∇xe]|

1/2

and we use the results of Eq. (5.19) to arrive at the results of Theorem III.

115

5.5.2 Computable Bounds on Derivatives of the Mapping xe

With a method for calculating bounds on the Jacobian determinant established, we turn our

attention to computing bounds for higher order derivatives. Compared to bounds on the Jacobian

determinant, bounds on the higher order derivatives are relatively easy to derive. These bounds are

presented below in the proof for Theorem IV. With these bounds established, we have succeeded

in establishing a set of sufficient and computable validity metrics for rational Bernstein–Bézier

metrics.

Theorem IVa. Let us denote the projective control points of a simplicial Bernstein–Bézier

element of degree p as {P̃b
i}i∈Ip. Then, the αth partial derivative of the mapping x̃e is bounded

by:

||Dαx̃e||L∞(Ω̂) ≤
p!

(p− |α|)!
max

i∈Ip−|α|

∣∣∣∣∣∣
∑

j∈Iα
(−1)α+j

(
α

j

)
P̃b

i+j

∣∣∣∣∣∣

Proof. Consider a simplicial Bernstein–Bézier element in projective space, Ω̃e ∈ Rd+1 defined by

control points {P̃b
i}i∈Ip . We recognize that the derivatives of Bernstein polynomials are themselves

Bernstein polynomials of a lower degree [55]. Thus, we can recursively take the derivative of the

mapping x̃e, which yields the following equation for the αth partial derivative:

Dαx̃e =
p!

(p− |α|)!
∑

i∈Ip−|α|

Bp−|α|

i (ξ)
∑

j∈Iα
(−1)α+j

(
α

j

)
P̃b

i+j

Note, we take care to emphasize that the sum
∑
j∈Iα

is a sum over a tensor product index set. This

is a consequence of the fact that the partial derivative Dα has an inherently tensor product nature.

Then, because the Bernstein polynomials satisfy positivity and partition of unity, the bounds of

Theorem IVa are obtained.

116

Theorem IVb. Let us denote the projective control points of a tensor product Bernstein–

Bézier element of degree p as {P̃b
i}i∈Ip. Then, the αth partial derivative of the mapping x̃e is

bounded by:

||Dαx̃e||L∞(Ω̂) ≤
p!

(p−α)!
max

i∈Ip−α

∣∣∣∣∣∣
∑

j∈Iα
(−1)α+j

(
α

j

)
P̃b

i+j

∣∣∣∣∣∣

Proof. Consider a tensor product Bernstein–Bézier element in projective space, Ω̃e ∈ Rd+1 defined

by control points {P̃b
i}i∈Ip . As before, we write the derivatives of the Bernstein polynomials as

Bernstein polynomials of lower degree. This yields the following equation for the αth partial

derivative of the mapping x̃e:

Dαx̃e =
p!

(p−α)!

∑

i∈Ip−α

Bp−α

i (ξ)
∑

j∈Iα
(−1)α+j

(
α

j

)
P̃b

i+j

Then, because the Bernstein polynomials satisfy positivity and partition of unity, the desired bounds

are obtained.

With the relevant theory established, we now demonstrate a particularly convenient property

of the bounds presented in Theorem IVa and Theorem IVb. First, let us consider the case of finding

the higher order derivatives of a cubic Bernstein–Bézier triangle. Table 5.2 shows the bounding

expressions for several derivatives of the mapping xe. We see that the bounds on the first derivative

can be found by evaluating the expression:

∣∣∣3P̃b
i+{1,0} − 3P̃b

i

∣∣∣

on the sub-triangle containing points P̃b
i = {P̃b

{0,0}, P̃
b
{1,0}, P̃

b
{2,0}, P̃

b
{0,1}, P̃

b
{1,1}, P̃

b
{0,2}}. Similarly,

the bound on the second derivative is found by evaluating

∣∣∣6P̃b
i+{2,0} − 12P̃b

i+{1,0} + 6P̃b
i+{0,0}

∣∣∣

at the points P̃b
i = {P̃b

{1,0}, P̃
b
{1,0}, P̃

b
{0,1}}. Then, we note that for a simplicial element of degree

p, all partial derivatives of order |α| = p will be a constant across the element. As such, the third

117

derivative for a cubic Bernstein–Bézier triangle can be calculated analytically by the expression:

∣∣∣6P̃b
{3,0} − 18P̃b

{2,0} + 18P̃b
{1,0} − 6P̃b

{0,0}

∣∣∣

From this, it is apparent that bounds on the derivatives of Bernstein–Bézier elements can be

calculated using what is effectively a weighted finite difference method. To illustrate this notion,

Table 5.3 shows finite difference stencils for the each of the derivatives shown in Table 5.2. We

then show this stencil applied to the control points of the element, as well as the resulting Bézier

coefficients for the derivative, shown as vectors on the reference element.

For clarity, we have shown a non-rational cubic Bézier triangle in R2, but the concepts extends

readily to elements in projective space. We have also included the explicitly calculated stencils for a

variety of elements in Appendix A. This is not an exhaustive list, but we note note that the results

of Section 5.5 can be used to calculate stencils for any simplicial or tensor product Bernstein–Bézier

element.

Table 5.2: Bounds on the derivatives of a cubic Bernstein–Bézier triangle.

Derivative Bound

∂x̃e

∂ξ1
≤ max

i∈Ip−1

∣∣∣3P̃b
i+{1,0} − 3P̃b

i

∣∣∣

∂2x̃e

∂ξ2
1

≤ max
i∈Ip−2

∣∣∣6P̃b
i+{2,0} − 12P̃b

i+{1,0} + 6P̃b
i+{0,0}

∣∣∣

∂3x̃e

∂ξ3
1

=
∣∣∣6P̃b

{3,0} − 18P̃b
{2,0} + 18P̃b

{1,0} − 6P̃b
{0,0}

∣∣∣

118

Table 5.3: Example of finding the Bézier coefficients for several different derivatives using a stencil.

Derivative Stencil
Stencils Applied to the

Physical Triangle
Bézier Coefficients of

the Derivative

∂x̃e

∂ξ1

−3 3

∂2x̃e

∂ξ2
1

6 −12 6

∂3x̃e

∂ξ3
1

−6 18 −18 6

119

5.6 Numerical Examples

In this section, we present several numerical examples to demonstrate how our element dis-

tortion metrics may be used in practice. Our goals are threefold. First, we desire to confirm our

approximation results for shape regular refinements. That is, we desire to demonstrate that if

the sufficient conditions of Theorem I hold, then we will observe optimal convergence rates over

rational Bernstein–Bézier elements. Second, we demonstrate that our element distortion metrics

are capable of predicting whether a family of refinements is shape regular. Finally, we demonstrate

how the element distortion metrics presented here can be used for mesh optimization.

We provide four examples to benchmark our methods. First, we consider a simple rectangular

plate, meshed with distorted polynomial elements, to study the effect of control point distortion

under h-refinement. Next, we consider a plate with a hole, meshed with distorted rational elements,

to examine the effect of weighting function distortion under h-refinement. We then consider a

quarter annulus, meshed with rational elements, under p-refinement, and conclude with an example

of how our metrics may be used for mesh optimization.

The examples considered here are relatively simple, but they still demonstrate that poorly

shaped elements can have appreciable impacts on solution accuracy. We also note that the examples

shown here are constrained to the two dimensional case, as this allows for clear and easy visualization

of element shape. However, the implications of these 2D results extend immediately to elements in

three dimensions.

5.6.1 Mesh of a Rectangular Plate

To demonstrate the use of our validity metrics, we begin by considering several different

meshes of a rectangular plate. To account for both tensor product and simplicial elements, we

consider both quadrilateral and triangular meshes. The triangular meshes are formed by simply

bisecting each element in the quadrilateral mesh. For both types of elements, we construct an

initial mesh, and then create three families of refined meshes.

120

The initial curvilinear mesh is created by first creating a linear quadrilateral mesh, and degree

elevating to non-rational bi-cubic Bézier quadrilaterals. Then, for each element, we horizontally

perturb the middle two rows of control points,
{

Pb
{i1,i2}

}
i1={0,1,2,3},i2={1,2}

by some distance:

dPb
i = (−1)i2

2a

(4m)7/4

a−
∣∣(Pb

i

)
1

∣∣
a

(5.20)

wherein m denotes the mth mesh in the family, with m = 1 being the first mesh.

Then, for both the quadrilateral and triangular mesh, we create the three families of refined

meshes as follows. The first family of meshes, shown in Table 5.4, is created by simple uniform

subdivision of the original mesh. To create the second family of meshes, shown in Table 5.5, we

first perform uniform subdivision on the original linear mesh. We then create the mth curvilinear

mesh in the family by again perturbing the interior control points by Eq. (5.20). The final family

of meshes, shown in Table 5.6, is created analogously to the second family, but the perturbation

distance is instead given by the equation,

dPb
i = (−1)i2

8a

(4m)3

a−
∣∣(Pb

i

)
1

∣∣
a

With these three families of meshes established for both the quadrilateral and triangular case, we

Table 5.4: Mesh Family 1.

m Quad Family 1 Tri Family 1

1

2

3

121

Table 5.5: Mesh Family 2.

m Quad Family 2 Tri Family 2

1

2

3

Table 5.6: Mesh Family 3.

m Quad Family 3 Tri Family 3

1

2

3

122

use the method of manufactured solutions to study approximation error in each family of meshes.

However, when solving PDEs using finite elements, error can be introduced not only by the element

shape, but also by the choice of finite element method (e.g. Galerkin’s method). As such, over each

family of meshes, we solve two problems, an L2 projection and the Poisson problem. We solve the

L2 projection over the mesh so that we may isolate the effect of element shape on approximation

error. We then consider the Poisson problem so as to consider an example with practical engineering

applications. Given the domain Ω, let f denote a forcing function and let h denote a flux across

the boundary Γh. Then, letting V denote the space of trial solutions, we desire to find a solution

uh such that for all v ∈ V :

∫

Ω

∇v ·∇uhdΩ =

∫

Ω

vfdΩ +

∫

Γh

vhdΓ

For both cases, we attempt to approximate the manufactured solution

u (x) = (x1 − a)(x2 − b) cos
(x2

2a
π
)

sin
(x2

b
π
)

wherein a and b are the half-width and half-height of the plate centered at the origin. To study the

approximation error, we examine the convergence rate of the error ||u−uh|| in the L2 norm for both

problems over each family of meshes. Fig. 5.7 shows error convergence plots for the three families

of quadrilateral meshes, and Fig. 5.8 shows convergence plots for the three families of triangular

meshes. From the convergence plots, we see that in all cases the solution error for problems solved

over the first and second family of meshes are converging as expected. However, the error for the

problems over the third family of meshes is converging at a less than optimal rate for both the

quadrilateral and triangular meshes. To gain insight into this, we look to the distortion metrics

for each mesh family. Fig. 5.9 shows the mesh distortion metrics for each family of quadrilateral

meshes, and Fig. 5.10 the mesh distortion metrics for each family of triangular meshes.

From Fig. 5.9a, we see that the minimum scaled Jacobian is bounded from below for every

quadrilateral mesh family, and that in each case JS → 1 under mesh refinement. Furthermore,

we note that JS is larger for the third family of meshes (irregular refinements) than it is for the

123

10
-1

Mesh Size, h

10
-10

10
-5

10
0

L
2
E
rr
o
r

1
4

Quad Family 1

Quad Family 2

Quad Family 3

(a)

10
-1

Mesh Size, h

10
-10

10
-5

10
0

L
2
E
rr
o
r

1
4

Quad Family 1

Quad Family 2

Quad Family 3

(b)

Figure 5.7: Convergence plots for the quadrilateral meshes. (a) L2 norm of the error for the L2

projection problem. (b) L2 norm of the error for Poisson’s problem.

10
-1

Mesh Size, h

10
-10

10
-5

10
0

L
2
E
rr
o
r

1
4

Tri Family 1

Tri Family 2

Tri Family 3

(a)

10
-1

Mesh Size, h

10
-10

10
-5

10
0

L
2
E
rr
o
r

1
4

Tri Family 1

Tri Family 2

Tri Family 3

(b)

Figure 5.8: Convergence plots for the triangular meshes. (a) L2 norm of the error for the L2

projection problem. (b) L2 norm of the error for Poisson’s problem.

124

first family (uniform refinements). Similar behavior is also observed for the scaled Jacobian of the

triangular meshes, shown in Fig. 5.10a. At first blush, these observations seems contradictory, as

in both cases, the first family converges as expected, while the third does not.

The cause of the slowed convergence rates can be explained by instead looking at the norms

of the higher order derivatives, shown in Fig. 5.9b-d for the quadrilateral case, and Fig. 5.10b-d

for the triangular case. For each plot, we show the global upper bound on the derivatives Dαξ x̃e of

order |α| = k across the entire mesh. That is, for each k ≤ p, we plot the value of ∇k
max, where

∇k
max := max

e=1,...,nel
max
|α|=k

sup
ξ∈Ω̂

∣∣Dαξ x̃e
∣∣

From Fig. 5.9d, it is readily seen that the cause of the slowed convergence for the third family of

quadrilateral meshes is the fact that ||∇3xe||L∞(Ω̂) is converging at approximately O(h2), whereas

Cond. (I.2) requires that it converge at O(h3).

These results highlight how sensitive convergence rates for higher order elements can be,

and motivate the utility of the validity metrics developed in this work. Indeed, from the Jacobian

metrics shown in Fig. 5.9a and Fig. 5.10a, as well as visual inspection of the meshes, one might be

tempted to draw the conclusion that all three families should preserve optimal convergence rates,

even though we have observed that this is clearly not the case.

125

10
-1

Mesh Size, h

0

0.2

0.4

0.6

0.8

1

1.2

m
in
|J

S
|

Quad Family 1

Quad Family 2

Quad Family 3

(a)

10
-1

Mesh Size, h

10
-4

10
-2

10
0

10
2

∇
1 m
a
x 1

1

Quad Family 1

Quad Family 2

Quad Family 3

(b)

10
-1

Mesh Size, h

10
-4

10
-2

10
0

10
2

∇
2 m
a
x

1

2

Quad Family 1

Quad Family 2

Quad Family 3

(c)

10
-1

Mesh Size, h

10
-4

10
-2

10
0

10
2

∇
3 m
a
x

1

3

Quad Family 1

Quad Family 2

Quad Family 3

(d)

Figure 5.9: Mesh distortion metrics for the quadrilateral meshes of the plate. (a) Lower bound
on the scaled Jacobian. (b) Upper bound on the first derivative. (c) Upper bound on the second
derivative. (d) Upper bound on the third derivative.

126

10
-1

Mesh Size, h

0

0.2

0.4

0.6

0.8

1

1.2

m
in
|J

S
|

Tri Family 1

Tri Family 2

Tri Family 3

(a)

10
-1

Mesh Size, h

10
-4

10
-2

10
0

10
2

∇
1 m
a
x 1

1

Tri Family 1

Tri Family 2

Tri Family 3

(b)

10
-1

Mesh Size, h

10
-4

10
-2

10
0

10
2

∇
2 m
a
x

1

2

Tri Family 1

Tri Family 2

Tri Family 3

(c)

10
-1

Mesh Size, h

10
-4

10
-2

10
0

10
2

∇
3 m
a
x

1

3

Tri Family 1

Tri Family 2

Tri Family 3

(d)

Figure 5.10: Mesh distortion metrics for the triangular meshes of the plate. (a) Lower bound on
the scaled Jacobian. (b) Upper bound on the first derivative. (c) Upper bound on the second
derivative. (d) Upper bound on the third derivative.

127

5.6.2 Plate with a Hole

In the previous example, we examined the effect of element shape distortion on approximation

error by perturbing control points. In this example, we examine the effect of weighting function

distortion on the approximation error by perturbing control weights. We consider a mesh of a plate

with a hole, composed of cubic rational Bernstein–Bézier triangles, shown in Table 5.7. We note

that since the hole in the plate is circular, we must use rational elements to capture the geometry

exactly, and as a result, the control weights corresponding to the points on the boundary will be

non unity. However, it remains to set the control weights for the interior points in the mesh. We

consider two possible methods of setting control weights for a series of meshes. The first method

is to simply set the weights on the circular boundary, to the appropriate values, and set all other

weights to one. Then, under mesh refinement, we perform uniform subdivision on both the control

points, and control weights As a results, the weighting function remains the same under mesh

refinement. The second option we consider here is to perform uniform subdivision on the control

points, but not the control weights. Instead, only control weights corresponding to points on the

boundary are updated during each refinement step, and all other control weights are set to one.

Both of these families of refined weighting functions are shown in Table 5.7.

128

Table 5.7: Meshes and two families of weighting functions for the plate with a hole.

m Meshes Weight Family 1 Weight Family 2

1

2

3

129

With these two families establish, we study the approximation accuracy using the method of

manufacture solutions. As before, we solve Poisson’s problem, with the manufactured solution

u (x1, x2) = (x1 − a) (x1 + a) (x2 − a) (x2 + a)

(
r −

√
x2

1 + x2
2

)

wherein a is the half-width of the square plate and r is the radius of the hole, and the plate is

centered at the origin. Figure 5.11 shows the convergence rates of the L2 norm of the approximation

error over both mesh families.

From our results, we see that the first family of meshes converge as expected, while the second

does not. Again, we examine the distortion metrics, shown in Fig. 5.12, to gain insight into the

cause of the stalled convergence for the second family of meshes. We immediately see that the

higher-order derivatives are not converging for the second family of meshes. The reason for this

can be observed from the plots of the weighting functions in Table 5.7. Since only the weights

lying on the circular boundary are being updated, the gradient of the weighting function becomes

increasingly sharp under refinement.

0.15850.31620.63101.2589

Mesh Size, h

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

L
2
E
rr
o
r

1

4

Family 1

Family 2

Figure 5.11: Convergence rate of the error in the L2-norm.

130

0.15850.31620.63101.2589

Mesh Size, h

0

0.2

0.4

0.6

0.8

1

1.2

1.4

m
in
|J

S
|

Family 1

Family 2

(a)

0.15850.31620.63101.2589

Mesh Size, h

10
-3

10
-2

10
-1

10
0

10
1

10
2

∇
1 m
a
x

1
1

Family 1

Family 2

(b)

0.15850.31620.63101.2589

Mesh Size, h

10
-3

10
-2

10
-1

10
0

10
1

10
2

∇
2 m
a
x

1

2

Family 1

Family 2

(c)

0.15850.31620.63101.2589

Mesh Size, h

10
-3

10
-2

10
-1

10
0

10
1

10
2

∇
3 m
a
x

1

3

Family 1

Family 2

(d)

Figure 5.12: Mesh distortion metrics for the triangular meshes of the plate. (a) Lower bound on
the scaled Jacobian. (b) Upper bound on the first derivative. (c) Upper bound on the second
derivative. (d) Upper bound on the third derivative.

131

5.6.3 Convergence Under p-refinement

Thus far, we have considered the effect of both control point distortion and control weight

distortion on approximation error for cubic Bézier elements. We now consider the effect of mesh

shape on convergence under p-refinement. We consider the simple case of a quarter annulus meshes

with four rational bi-quadratic Bernstein–Bézier quadrilaterals, shown in Table 5.8. For this initial

mesh, we consider two series of p-refined meshes. The first series is created by simple degree

elevation of the bi-quadratic mesh. The second series is created using a linear elastic analogy, how

higher-order meshes are created in practice. For each level of refinement, we degree elevate the

underlying linear mesh to order p, and the geometry is recovered via edge replacement. Then, we

solve a linear elasticity problem to update the positions of the interior nodes. The series of p-refined

meshes with the Bézier control nets are shown in Table 5.8.

132

Table 5.8: Families of p-refined meshes of the quarter annulus.

p Family 1 Family 2

2

3

4

133

As before, we solve Poisson’s problem, with the manufactured solution

u (x1, x2) =
70 ln

(√
x2

1 + x2
2/ri

)
− 200 ln

(√
x2

1 + x2
2/ro

)

ln (ro/ri)

wherein ri and ro are the inner and outer radii of the quarter annulus. The convergence plots of

the L2 error with respect to the polynomial degree p are shown in Fig. 5.14.

2 4 6 8 10

Polynomial Degree, p

10
-10

10
-5

10
0

L
2
E
rr
o
r

Family 1

Family 2

Figure 5.13: Convergence in the L2 error under p-refinement.

We notice immediately that the first family of meshes exhibits exponential convergence, as is

expected. The second family, however, stagnates. The cause of this can be determined by observing

the plots of the higher order derivatives of the elements with respect to p, shown in Fig. 5.15. For

the first family of meshes (Fig. 5.15a), we see that every derivative up through order k = 10 is

bounded from above. For the second family of meshes (Fig. 5.15b), we see that for every level of

p refinement, the magnitude of every derivative of order k ≤ p increases.

134

2 4 6 8 10

Polynomial Degree, p

0

0.2

0.4

0.6

0.8

1

1.2

1.4

m
in
|J

S
|

Family 1

Family 2

Figure 5.14: Scaled Jacobian metrics for the p-refined meshes of the quarter annulus.

2 4 6 8 10

Polynomial Degree, p

10
0

10
5

10
10

10
15

∇
k m
a
x

k = 10

k = 9

k = 8

k = 7

k = 6

k = 5

k = 4

k = 3

k = 2

k = 1

(a)

2 4 6 8 10

Polynomial Degree, p

10
0

10
5

10
10

10
15

∇
k m
a
x

k = 10

k = 9

k = 8

k = 7

k = 6

k = 5

k = 4

k = 3

k = 2

k = 1

(b)

Figure 5.15: Upper bounds on the higher order derivatives for the p-refined meshes of the quarter
annulus. The metrics for Family 1 are shown in (a) and the metrics for Family 2 are shown in (b).

135

5.6.4 Mesh Optimization

Thus far, we have used our mesh distortion metrics to explain sub-optimal convergence rates

a posteriori. However, we recognize that since these metrics relate mesh distortion to error bounds,

we should be able to use these metrics for a priori mesh optimization. We consider again a plate

with a hole, but now with small chamfers at the corners of the plate.

We consider three families of meshes. In Family 1, we consider an initial coarse mesh, refined

by uniform subdivision. In Family 2, we create a new linear mesh at each refinement level m,

enforcing a maximum edge length hm of

hm =
h0

2m−1

We then degree elevate, and recover the geometry through edge replacement. The mesh is then

smoothed using a linear elastic analogy. In Family 3, we begin the same linear mesh at each

refinement step as with Family 2. However, rather than solve a linear elasticity problem to smooth

internal nodes, we seek to minimize the cost function

c (xe) = ||∇xe||L∞(Ω) + 2
∣∣∣∣∇2xe

∣∣∣∣
L∞(Ω)

+ 4
∣∣∣∣∇3xe

∣∣∣∣
L∞(Ω)

These three families of meshes are shown in Table 5.9. We note that visually, there is little difference

between the meshes of Family 2 and Family 3.

To study the effect of the mesh optimization on the accuracy, we solve Poisson’s problem

over each mesh family, with the manufactured solution

u (x1, x2) = (2a− c− x1 − x2) (2a− c− x1 + x2) (2a− c+ x1 − x2) (2a− c+ x1 + x2) ...

... (x1 − a) (x1 + a) (x2 − a) (x2 + a)

(
r −

√
x2

1 + x2
2

)

wherein a is the plate half width, r is the radius of the hole, and c is the length of the chamfer. We

plot the convergence rate of the error in Fig. 5.16.

136

Table 5.9: Three mesh families for a plate with a hole and chamfered corners.

m Family 1 Family 2 Family 3

1

2

3

137

10
0

Mesh Size, h

10
0

10
2

10
4

L
2
E
rr
o
r

1

4

Family 1

Family 2

Family 3

(a)

10
3

10
4

Mesh DOF

10
0

10
2

10
4

L
2
E
rr
o
r

Family 1

Family 2

Family 3

(b)

Figure 5.16: Convergence plots of the error in the L2 norm. (a) Error versus mesh size. (b) Error
versus nodal degrees of freedom in the mesh.

From Fig. 5.16a, we see that our proposed smoothing method (Family 3) outperforms both

uniform subdivision (Family 1) and linear elastic smoothing (Family 2) in terms of convergence

with respect to h. Furthermore, we note that the initial coarse mesh has small elements as a result

of the chamfers at the corners of the plate. As such, the meshes in Family 1 become overly refined

at the plate corners under uniform subdivision. If we instead plot solution error with respect to

system degrees of freedom, as done in Fig. 5.16b, we see that the advantages of our proposed

smoothing technique are even more dramatic. This is compelling, as we recognize that we may use

our element distortion metrics to optimize higher order meshes. We plot element distortion metrics

for the three families in Fig. 5.17.

138

10
0

Mesh Size, h

0

0.2

0.4

0.6

0.8

1

1.2

1.4

m
in
|J

S
|

Family 1

Family 2

Family 3

(a)

10
0

Mesh Size, h

10
-4

10
-2

10
0

10
2

∇
1 m
a
x

1
1

Family 1

Family 2

Family 3

(b)

10
0

Mesh Size, h

10
-4

10
-2

10
0

10
2

∇
2 m
a
x

1

2

Family 1

Family 2

Family 3

(c)

10
0

Mesh Size, h

10
-4

10
-2

10
0

10
2

∇
3 m
a
x

1

3

Family 1

Family 2

Family 3

(d)

Figure 5.17: Mesh distortion metrics for the triangular meshes of the plate with a hole and chamfers.
(a) Lower bound on the scaled Jacobian. (b) Upper bound on the first derivative. (c) Upper bound
on the second derivative. (d) Upper bound on the third derivative.

Chapter 6

Conclusions

The goal of this dissertation was to address two outstanding problems in the fields of IGA

and p-version finite elements. First, in an effort to mitigate the design-to-analysis bottleneck, we

presented a framework for geometrically exact mesh generation. Second, we presented sufficient

and computable element quality metrics that can be used to verify if curvilinear Bernstein–Bézier

elements are analysis suitable. Generally, this work was successful in addressing both of these prob-

lems, at least from a theoretical point of view. The work on geometrically exact mesh generation

resulted in academic publications on two-dimensional mesh generation using Bernstein–Bézier tri-

angles [21] and volumetric mesh generation using mixed–element Bernstein–Bézier discretizations

[22]. The work on element quality metrics is the subject of a forthcoming publication.

Moving forward, there are a variety of logical extensions to this work to integrate these the-

oretical results into software tools used in practice. In regard to the meshing framework presented

here, the next logical step is to consider trimmed B-Reps. As stated in Section 4.3.1, we have lim-

ited our discussion to CAD objects that do not contain trimming curves. This is because trimming

curves are implicitly defined, and cannot be represented exactly using Bézier curves. However,

most geometries of engineering interest contain trimming curves, so a method that cannot handle

geometries containing trimming curves proves to be rather limiting. To truly be able to handle

trimmed B-Reps, the mesh generation framework presented here will need to be integrated into a

fully featured commercial software.

140

Concerning element quality metrics, we note that the error bounds presented in Theorem I

hold in the limit of mesh refinement. As a result, these can be rather loose upper bounds on the

error, particularly over coarse meshes. As a further consequence of this, the conditions presented in

Theorem II are sufficient but not necessary conditions for analysis suitability of rational Bernstein–

Bézier elements. Thus, the element distortion metrics presented here are not always a good

indicator of the effect of element distortion on solution accuracy. As an example, it has been

observed that for boundary layer meshes, highly distorted elements yield better results per degree

of freedom than their affine counterparts. We are curious to see if the error bounds here can be

sharpened, particularly if something is known a priori about the PDE to be solved. We have

also presented easily computable bounds on element distortion, and demonstrated their use in a

few simple examples. However, the implementation of these metrics has not yet optimized for

computational efficiency, and the metrics have not been benchmarked on large problems. We are

curious to see how these metrics will perform when scaled to high performance computing and

benchmarked against existing distortion metrics.

Despite these unanswered questions, this work has important implications for anyone working

with curvilinear finite elements. Hopefully, this dissertation has successfully illuminated some of

the challenges and subtleties of curvilinear mesh generation, and provided theoretical insights that

will be prove useful in practical applications.

Bibliography

[1] M. Aigner, C. Heinrich, B. Jüttler, E. Pilgerstorfer, B. Simeon, and A.-V.
Vuong, Swept Volume Parameterization for Isogeometric Analysis, in Mathematics of Sur-
faces XIII, E. R. Hancock, R. R. Martin, and M. A. Sabin, eds., no. 5654 in Lecture Notes in
Computer Science, Springer Berlin Heidelberg, 2009, pp. 19–44.

[2] M. Ainsworth, O. Davydov, and L. L. Schumaker, Bernstein-Bézier finite elements on
tetrahedral–hexahedral–pyramidal partitions, Computer Methods in Applied Mechanics and
Engineering, 304 (2016), pp. 140–170.

[3] H. Al Akhras, T. Elguedj, A. Gravouil, and M. Rochette, Isogeometric
analysis-suitable trivariate NURBS models from standard B-Rep models, Computer Meth-
ods in Applied Mechanics and Engineering, 307 (2016), pp. 256–274.

[4] I. Babuška and A. Aziz, On the angle condition in the finite element method, SIAM Journal
on Numerical Analysis, 13 (1976), pp. 214–226.

[5] P. L. Baehmann, S. L. Wittchen, M. S. Shephard, K. R. Grice, and M. A. Yerry,
Robust, geometrically based, automatic two-dimensional mesh generation, International Jour-
nal for Numerical Methods in Engineering, 24 (1987), pp. 1043–1078.

[6] Y. Bazilevs, L. Beirão Da Veiga, J. A. Cottrell, T. J. R. Hughes, and G. San-
galli, Isogeometric Analysis: Approximation, stability and error estimates for h-refined
meshes, Mathematical Models and Methods in Applied Sciences, 16 (2006), pp. 1031–1090.

[7] Y. Bazilevs, V. M. Calo, J. A. Cottrell, J. A. Evans, T. J. R. Hughes, S. Lipton,
M. A. Scott, and T. W. Sederberg, Isogeometric analysis using T-splines, Computer
Methods in Applied Mechanics and Engineering, 199 (2010), pp. 229–263.

[8] M. Bern, D. Eppstein, and J. Gilbert, Provably good mesh generation, in , 31st Annual
Symposium on Foundations of Computer Science, 1990. Proceedings, Oct. 1990, pp. 231–241
vol.1.

[9] P. E. Bernard, J. F. Remacle, N. Kowalski, and C. Geuzaine, Frame field
smoothness-based approach for hex-dominant meshing, Computer-Aided Design, 72 (2016),
pp. 78–86.

[10] M. J. Borden, M. A. Scott, J. A. Evans, and T. J. R. Hughes, Isogeometric finite
element data structures based on Bézier extraction of NURBS, International Journal for Nu-
merical Methods in Engineering, 87 (2011), pp. 15–47.

142

[11] J. Bramble and S. Hilbert, Estimation of linear functionals on Sobolev spaces with
application to Fourier transforms and spline interpolation, SIAM Journal on Numerical Anal-
ysis, 7 (1970), pp. 112–124.

[12] J. H. Bramble and S. R. Hilbert, Bounds for a class of linear functionals with applications
to Hermite interpolation, Numerische Mathematik, 16 (1971), pp. 362–369.

[13] J. Chan and T. Warburton, A short note on a Bernstein-Bézier basis for the pyramid,
arXiv:1508.05609 [math], (2015). arXiv: 1508.05609.

[14] L. P. Chew, Constrained delaunay triangulations, Algorithmica, 4 (1989), pp. 97–108.

[15] , Guaranteed-quality Mesh Generation for Curved Surfaces, in Proceedings of the Ninth
Annual Symposium on Computational Geometry, SCG ’93, New York, NY, USA, 1993, ACM,
pp. 274–280.

[16] J. J. Chou, Higher order Bézier circles, Computer-Aided Design, 27 (1995), pp. 303–309.

[17] P. G. Ciarlet and P. A. Raviart, General Lagrange and Hermite interpolation in Rn

with applications to finite element methods, Archive for Rational Mechanics and Analysis, 46
(1972), pp. 177–199.

[18] P. G. Ciarlet and P. A. Raviart, Interpolation theory over curved elements, with
applications to finite element methods, Computer Methods in Applied Mechanics and En-
gineering, 1 (1972), pp. 217–249.

[19] G. M. Constantine and T. H. Savits, A multivariate Faà di Bruno formula with
applications, Transactions of the American Mathematical Society, 348 (1996), pp. 503–520.

[20] S. Dey, R. M. O’Bara, and M. S. Shephard, Curvilinear mesh generation in 3D, in
In Proceedings of the Eighth International Meshing Roundtable, John Wiley & Sons, 1999,
pp. 407–417.

[21] L. Engvall and J. A. Evans, Isogeometric triangular Bernstein–Bézier discretizations:
Automatic mesh generation and geometrically exact finite element analysis, Computer Meth-
ods in Applied Mechanics and Engineering, 304 (2016), pp. 378–407.

[22] , Isogeometric unstructured tetrahedral and mixed-element Bernstein–Bézier
discretizations, Computer Methods in Applied Mechanics and Engineering, 319 (2017),
pp. 83–123.

[23] D. Engwirda, MESH2D.

[24] J. M. Escobar, J. M. Cascón, E. Rodŕıguez, and R. Montenegro, A new approach
to solid modeling with trivariate T-splines based on mesh optimization, Computer Methods in
Applied Mechanics and Engineering, 200 (2011), pp. 3210–3222.

[25] J. M. Escobar, R. Montenegro, E. Rodŕıguez, and J. M. Cascón, The meccano
method for isogeometric solid modeling and applications, Engineering with Computers, 30
(2012), pp. 331–343.

143

[26] A. Gargallo-Peiró, X. Roca, J. Peraire, and J. Sarrate, Distortion and quality
measures for validating and generating high-order tetrahedral meshes, Engineering with Com-
puters, 31 (2015), pp. 423–437.

[27] P. George and H. Borouchaki, Construction of tetrahedral meshes of degree two, Inter-
national Journal for Numerical Methods in Engineering, 90 (2012), pp. 1156–1182.

[28] C. Geuzaine and J.-F. Remacle, Gmsh: A 3-D finite element mesh generator with built-in
pre- and post-processing facilities, International Journal for Numerical Methods in Engineer-
ing, 79 (2009), pp. 1309–1331.

[29] M. F. Hardwick and R. L. Clay, Dart system analysis, tech. rep., Sandia National Labo-
ratories, 2005.

[30] A. Haselbacher and J. Blazek, Accurate and Efficient Discretization of Navier-Stokes
Equations on Mixed Grids, AIAA Journal, 38 (2000), pp. 2094–2102.

[31] T. J. R. Hughes, J. A. Cottrell, and Y. Bazilevs, Isogeometric analysis: CAD, finite
elements, NURBS, exact geometry and mesh refinement, Computer Methods in Applied Me-
chanics and Engineering, 194 (2005), pp. 4135–4195.

[32] S. R. Idelsohn, E. Oate, N. Calvo, and F. D. Pin, The meshless finite element method,
International Journal for Numerical Methods in Engineering, 58 (2003), pp. 893–912.

[33] N. Jaxon and X. Qian, Isogeometric analysis on triangulations, Computer-Aided Design,
46 (2014), pp. 45–57.

[34] A. Johnen, J. F. Remacle, and C. Geuzaine, Geometrical validity of curvilinear finite
elements, Journal of Computational Physics, 233 (2013), pp. 359–372.

[35] D. Kamensky, M.-C. Hsu, D. Schillinger, J. A. Evans, A. Aggarwal, Y. Bazilevs,
M. S. Sacks, and T. J. R. Hughes, An immersogeometric variational framework for
fluidstructure interaction: Application to bioprosthetic heart valves, Computer Methods in
Applied Mechanics and Engineering, 284 (2015), pp. 1005–1053.

[36] M.-J. Lai and L. L. Schumaker, Spline Functions on Triangulations, Cambridge University
Press, Apr. 2007. Google-Books-ID: 6hvqGgbBmEoC.

[37] P. Lamata, I. Roy, B. Blazevic, A. Crozier, S. Land, S. A. Niederer, D. R. Hose,
and N. P. Smith, Quality metrics for high order meshes : Analysis of the mechanical
simulation of the heart beat, IEEE Transactions on Medical Imaging, 32 (2013), pp. 130–
138.

[38] T. S. Lan and S. H. Lo, Finite element mesh generation over analytical curved surfaces,
Computers & Structures, 59 (1996), pp. 301–309.

[39] X. Li, M. S. Shephard, and M. W. Beall, Accounting for curved domains in mesh
adaptation, International Journal for Numerical Methods in Engineering, 58 (2003), pp. 247–
276.

[40] X. Li, J. Zheng, T. W. Sederberg, T. J. R. Hughes, and M. A. Scott, On linear
independence of T-spline blending functions, Computer Aided Geometric Design, 29 (2012),
pp. 63–76.

144

[41] S. Lipton, J. A. Evans, Y. Bazilevs, T. Elguedj, and T. J. R. Hughes, Robustness
of isogeometric structural discretizations under severe mesh distortion, Computer Methods in
Applied Mechanics and Engineering, 199 (2010), pp. 357–373.

[42] L. Liu, Y. Zhang, T. J. R. Hughes, M. A. Scott, and T. W. Sederberg, Volumetric
T-spline construction using Boolean operations, Engineering with Computers, 30 (2013),
pp. 425–439.

[43] L. Liu, Y. Zhang, Y. Liu, and W. Wang, Feature-preserving T-mesh construction using
skeleton-based polycubes, Computer-Aided Design, 58 (2015), pp. 162–172.

[44] R. Löhner and P. Parikh, Generation of three-dimensional unstructured grids by the
advancing-front method, International Journal for Numerical Methods in Fluids, 8 (1988),
pp. 1135–1149.

[45] X.-J. Luo, M. S. Shephard, R. M. O’Bara, R. Nastasia, and M. W. Beall, Automatic
p-version mesh generation for curved domains, Engineering with Computers, 20 (2004),
pp. 273–285.

[46] T. Martin, E. Cohen, and M. Kirby, Volumetric Parameterization and Trivariate B-spline
Fitting Using Harmonic Functions, in Proceedings of the 2008 ACM Symposium on Solid and
Physical Modeling, SPM ’08, New York, NY, USA, 2008, ACM, pp. 269–280.

[47] D. J. Mavriplis and V. Venkatakrishnan, A Unified Multigrid Solver for the
Navier-Stokes Equations on Mixed Element Meshes, International Journal of Computational
Fluid Dynamics, 8 (1997), pp. 247–263.

[48] P. Möller and P. Hansbo, On advancing front mesh generation in three dimensions, In-
ternational Journal for Numerical Methods in Engineering, 38 (1995), pp. 3551–3569.

[49] N. Mos, J. Dolbow, and T. Belytschko, A finite element method for crack growth
without remeshing, International Journal for Numerical Methods in Engineering, 46 (1999),
pp. 131–150.

[50] J. T. Oden and J. N. Reddy, An Introduction to the Mathematical Theory of Finite
Elements, Courier Corporation, May 2012. Google-Books-ID: 2ZOGwDyB1IgC.

[51] J. Parvizian, A. Dster, and E. Rank, Finite cell method, Computational Mechanics, 41
(2007), pp. 121–133.

[52] P.-O. Persson and J. Peraire, Curved mesh generation and mesh refinement using
Lagrangian solid mechanics, 47th AIAA Aerospace Sciences Meeting including the New Hori-
zons Forum and Aerospace Exposition, (2008).

[53] P.-O. Persson and J. Peraire, Curved mesh generation and mesh refinement using
lagrangian solid mechanics, in Proceedings of the 47th AIAA Aerospace Sciences Meeting
and Exhibit, vol. 204, 2009.

[54] R. Poya, R. Sevilla, and A. J. Gil, A unified approach for a posteriori high-order curved
mesh generation using solid mechanics, Computational Mechanics, 58 (2016), pp. 457–490.

145

[55] H. Prautzsch, W. Boehm, and M. Paluszny, Bézier and B-Spline Techniques, Springer-
Verlag New York, Inc., Secaucus, NJ, USA, 2002.

[56] J.-F. Remacle, J. Lambrechts, C. Geuzaine, and T. Toulorge, Optimizing the
Geometrical Accuracy of 2d Curvilinear Meshes, Procedia Engineering, 82 (2014), pp. 228–239.

[57] O. Sahni, K. E. Jansen, M. S. Shephard, C. A. Taylor, and M. W. Beall, Adaptive
boundary layer meshing for viscous flow simulations, Engineering with Computers, 24 (2008),
pp. 267–285.

[58] H. Samet, The Quadtree and Related Hierarchical Data Structures, ACM Comput. Surv., 16
(1984), pp. 187–260.

[59] D. Schillinger, L. Ded, M. A. Scott, J. A. Evans, M. J. Borden, E. Rank, and
T. J. R. Hughes, An isogeometric design-through-analysis methodology based on adaptive
hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces,
Computer Methods in Applied Mechanics and Engineering, 249-252 (2012), pp. 116–150.

[60] M. A. Scott, M. J. Borden, C. V. Verhoosel, T. W. Sederberg, and T. J. R.
Hughes, Isogeometric finite element data structures based on Bézier extraction of T-splines,
International Journal for Numerical Methods in Engineering, 88 (2011), pp. 126–156.

[61] M. A. Scott, X. Li, T. W. Sederberg, and T. J. R. Hughes, Local refinement
of analysis-suitable T-splines, Computer Methods in Applied Mechanics and Engineering,
213–216 (2012), pp. 206–222.

[62] T. W. Sederberg, J. Zheng, A. Bakenov, and A. Nasri, T-splines and T-NURCCs, in
ACM SIGGRAPH 2003 Papers, SIGGRAPH ’03, New York, NY, USA, 2003, ACM, pp. 477–
484.

[63] M. S. Shephard, J. E. Flaherty, K. E. Jansen, X. Li, X. Luo, N. Chevau-
geon, J.-F. Remacle, M. W. Beall, and R. M. O’Bara, ADAPT ’03: Conference on
Adaptive Methods for Partial Differential Equations and Large-Scale ComputationAdaptive
mesh generation for curved domains, Applied Numerical Mathematics, 52 (2005), pp. 251–271.

[64] S. J. Sherwin and J. Peiró, Mesh generation in curvilinear domains using high-order
elements, International Journal for Numerical Methods in Engineering, 53 (2002), pp. 207–
223.

[65] J. R. Shewchuk, Triangle: Engineering a 2d quality mesh generator and Delaunay
triangulator, in Applied Computational Geometry Towards Geometric Engineering, M. C.
Lin and D. Manocha, eds., no. 1148 in Lecture Notes in Computer Science, Springer Berlin
Heidelberg, 1996, pp. 203–222.

[66] H. Si, TetGen, a Delaunay-Based Quality Tetrahedral Mesh Generator, ACM Trans. Math.
Softw., 41 (2015), pp. 11:1–11:36.

[67] D. Sokolov, N. Ray, L. Untereiner, and B. Lévy, Hexahedral-dominant meshing, Oct.
2015.

146

[68] H. Speleers and C. Manni, Optimizing domain parameterization in isogeometric analysis
based on Powell-Sabin splines, Journal of Computational and Applied Mathematics, 289
(2015), pp. 68–86.

[69] H. Speleers, C. Manni, F. Pelosi, and M. L. Sampoli, Isogeometric analysis with
Powell-Sabin splines for advection–diffusion–reaction problems, Computer Methods in Applied
Mechanics and Engineering, 221–222 (2012), pp. 132–148.

[70] D. C. Thomas, M. A. Scott, J. A. Evans, K. Tew, and E. J. Evans, Bézier projection:
A unified approach for local projection and quadrature-free refinement and coarsening of
NURBS and T-splines with particular application to isogeometric design and analysis, Com-
puter Methods in Applied Mechanics and Engineering, 284 (2015), pp. 55–105.

[71] T. Toulorge, C. Geuzaine, J.-F. Remacle, and J. Lambrechts, Robust untangling of
curvilinear meshes, Journal of Computational Physics, 254 (2013), pp. 8–26.

[72] W. Wang, Y. Zhang, L. Liu, and T. J. R. Hughes, Trivariate solid T-spline construction
from boundary triangulations with arbitrary genus topology, Computer-Aided Design, 45
(2013), pp. 351–360.

[73] T. Warburton, An explicit construction of interpolation nodes on the simplex, Journal of
Engineering Mathematics, 56 (2006), pp. 247–262.

[74] S. Xia and X. Qian, Isogeometric analysis with Bézier tetrahedra, Computer Methods in
Applied Mechanics and Engineering.

[75] S. Xia, X. Wang, and X. Qian, Continuity and convergence in rational triangular Bézier
spline based isogeometric analysis, Computer Methods in Applied Mechanics and Engineering,
297 (2015), pp. 292–324.

[76] Z. Q. Xie, R. Sevilla, O. Hassan, and K. Morgan, The generation of arbitrary order
curved meshes for 3d finite element analysis, Computational Mechanics, 51 (2012), pp. 361–
374.

[77] G. Xu, B. Mourrain, R. Duvigneau, and A. Galligo, Analysis-suitable volume
parameterization of multi-block computational domain in isogeometric applications,
Computer-Aided Design, 45 (2013), pp. 395–404.

[78] G. Xu, B. Mourrain, A. Galligo, and T. Rabczuk, High-quality construction of
analysis-suitable trivariate NURBS solids by reparameterization methods, Computational Me-
chanics, 54 (2014), pp. 1303–1313.

[79] M. A. Yerry and M. S. Shephard, A Modified Quadtree Approach To Finite Element
Mesh Generation, IEEE Computer Graphics and Applications, 3 (1983), pp. 39–46.

[80] S. Zeng and E. Cohen, Hybrid volume completion with higher-order Bézier elements, Com-
puter Aided Geometric Design, 35–36 (2015), pp. 180–191.

[81] A. Žeńı̌sek, Polynomial approximation on tetrahedrons in the finite element method, Journal
of Approximation Theory, 7 (1973), pp. 334–351.

147

[82] Y. Zhang, W. Wang, and T. J. R. Hughes, Solid T-spline construction from boundary
representations for genus-zero geometry, Computer Methods in Applied Mechanics and Engi-
neering, 249 (2012), pp. 185–197.

[83] M. Zlámal, Curved elements in the finite element method. I, SIAM Journal on Numerical
Analysis, 10 (1973), pp. 229–240.

[84] , Curved elements in the finite element method. II, SIAM Journal on Numerical Analysis,
11 (1974), pp. 347–362.

Appendix A

Derivative Stencils

This appendix includes lookup tables for several common 2D Bernstein–Bézier elements. Each

table contains stencils for every non-zero derivative over the respective element. Furthermore, the

nodes at which to apply the given stencil are shown on a reference element. We do not include

explicit stencils for 3D elements, as they are hard to visualize, but stencils for any 2D or 3D

simplicial or tensor product element can be derived using the equations derived previously in this

dissertation.

149

Table A.1: Partial derivative stencils for quadratic Bernstein–Bézier triangles.

First Order Derivatives, |α| = 1

Deriv. Stencil
Evaluation

Triangle
Deriv. Stencil

Evaluation

Triangle

∂x̃e

∂ξ1

−2 2
∂x̃e

∂ξ2
−2

2

Second Order Derivatives, |α| = 2

Deriv. Stencil
Evaluation

Triangle
Deriv. Stencil

Evaluation

Triangle

∂2x̃e

∂ξ2
1

2 −4 2
∂2x̃e

∂ξ2
2

2

−4

2

∂2x̃e

∂ξ1∂ξ2

2

−2

−2

2

150

Table A.2: Partial derivative stencils for cubic Bernstein–Bézier triangles.

First Order Derivatives, |α| = 1

Deriv. Stencil
Evaluation

Triangle
Deriv. Stencil

Evaluation

Triangle

∂x̃e

∂ξ1

−3 3
∂x̃e

∂ξ2
−3

3

Second Order Derivatives, |α| = 2

Deriv. Stencil
Evaluation

Triangle
Deriv. Stencil

Evaluation

Triangle

∂2x̃e

∂ξ2
1

6 −12 6
∂2x̃e

∂ξ2
2

6

−12

6

∂2x̃e

∂ξ1∂ξ2

2

−2

−2

2

Third Order Derivatives, |α| = 3

Deriv. Stencil
Evaluation

Triangle
Deriv. Stencil

Evaluation

Triangle

∂3x̃e

∂ξ3
1

−6 18 −18 6
∂3x̃e

∂ξ3
2

−6

18

−18

6

∂2x̃e

∂ξ2
1∂ξ2

−6

6

12

−12

−6

6

∂2x̃e

∂ξ1∂ξ2
2

−6

12

−6

6

−12

6

151

Table A.3: Partial derivative stencils for bi-quadratic Bernstein–Bézier quadrilaterals.

First Order Derivatives, |α| = 1

Deriv. Stencil
Evaluation

Quadrilateral
Deriv. Stencil

Evaluation

Quadrilateral

∂x̃e

∂ξ1

−2 2
∂x̃e

∂ξ2
−2

2

Second Order Derivatives, |α| = 2

Deriv. Stencil
Evaluation

Quadrilateral
Deriv. Stencil

Evaluation

Quadrilateral

∂2x̃e

∂ξ2
1

2 −4 2
∂2x̃e

∂ξ2
2

2

−4

2

∂2x̃e

∂ξ1∂ξ2

4

−4

−4

4

152

Table A.4: Partial derivative stencils for bi-cubic Bernstein–Bézier quadrilaterals.

First Order Derivatives, |α| = 1

Deriv. Stencil
Evaluation

Quadrilateral
Deriv. Stencil

Evaluation

Quadrilateral

∂x̃e

∂ξ1

−3 3
∂x̃e

∂ξ2
−3

3

Second Order Derivatives, |α| = 2

Deriv. Stencil
Evaluation

Quadrilateral
Deriv. Stencil

Evaluation

Quadrilateral

∂2x̃e

∂ξ2
1

6 −12 6
∂2x̃e

∂ξ2
2

6

−12

6

∂2x̃e

∂ξ1∂ξ2

9

−9

−9

9

Third Order Derivatives, |α| = 3

Deriv. Stencil
Evaluation

Quadrilateral
Deriv. Stencil

Evaluation

Quadrilateral

∂3x̃e

∂ξ3
1

−6 18 −18 6

∂3x̃e

∂ξ3
2

−6

18

−18

6

∂3x̃e

∂ξ2
1∂ξ2

−18

18

36

−36

−18

18

∂3x̃e

∂ξ1∂ξ2
2

−18

36

−18

18

−36

18

	University of Colorado, Boulder
	CU Scholar
	Spring 1-1-2018

	Geometrically Exact and Analysis Suitable Mesh Generation Using Rational Bernstein–Bezier Elements
	Luke H. Engvall
	Recommended Citation

	Introduction
	Review of the Literature
	Computer Aided Design
	NURBS Objects
	B-Reps
	T-splines

	Mesh Generation
	Isogeometric Analysis and Surface-to-Volume Parameterization

	Bernstein–Bézier Elements
	 Multi-Index Notation
	The Bernstein–Bézier Form
	Simplicial Elements
	Cartesian Coordinates
	Barycentric Coordinates

	Tensor Product Elements
	Wedges
	Pyramids

	Three Dimensional Mesh Generation
	Bézier Extraction and Bézier Projection
	Bézier Extraction
	Bézier Projection

	Geometric Polynomial Complexity
	Mesh Generation Procedure
	Generation of a Compatible Linear Mesh
	Degree Elevation of the Linear Mesh
	Surface Reconstruction
	Smoothing of Control Points and Weights
	Applications to Higher-Order FEA
	Construction of Structured Surface Meshes

	Element/Mesh Refinement
	Mesh Gallery
	Numerical Examples
	Patch Test
	Method of Manufactured Solutions
	Practical Examples

	Mesh Quality
	Notation and Preliminaries
	 Bernstein–Bézier Elements
	 Derivative Notation

	Review of Finite Element Interpolation Theory
	The Isoparametric Concept
	Finite Element Interpolation Theory: Linear Elements
	Finite Element Interpolation Theory: Curvilinear Elements
	 Element Distortion and Quality Metrics

	 Interpolation Theory for Rational Bernstein–Bézier Elements
	Regular Families of Curvilinear Elements
	Computable Distortion Metrics for Rational Bernstein–Bézier Elements
	 Computable Bounds on the Jacobian Determinant
	 Computable Bounds on Derivatives of the Mapping xe

	Numerical Examples
	Mesh of a Rectangular Plate
	Plate with a Hole
	Convergence Under p-refinement
	Mesh Optimization

	Conclusions
	 Bibliography
	Derivative Stencils

