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ABSTRACT 

Gu, Xiaokun (Ph.D., Mechanical Engineering)  

First-Principles Study of Phonon Transport in Two-Dimensional Materials and Phonon 

Transmission across Magnesium Silicide/Magnesium Stannide Interfaces 

Thesis directed by Professor Ronggui Yang  

 

Low-dimensional and nanostructured materials have been shown to be of exceptional 

electronic, optical and mechanical properties, with great potential for novel applications. 

Understanding the thermal transport properties of low-dimensional materials is essential for 

designing reliable devices with these novel materials. The objectives of this thesis are to develop 

numerical methods based on the first-principles calculations to predict the thermal transport 

properties of novel two-dimensional and nanostructured materials, to explore their unique phonon 

dynamics and to exploit them for thermal applications.  

In the first part of this thesis, the first-principles based Boltzmann transport equation approach 

is developed. We apply this approach to predict a series of novel two-dimensional materials, 

including silicene and single-layer transition metal dichalcogenides (TMDs). Their thermal 

conductivities are found to be highly correlated to their crystal structures and atomic masses. Using 

the same approach, we also study the layer thickness-dependence of thermal conductivity of MoS2. 

Unlike conventional thin film materials, whose thermal conductivity is usually suppressed when 

the thickness decreases due to phonon-boundary scattering, the thermal conductivity of MoS2 

decreases when increasing its thickness. It appears that both the phonon dispersion and the 
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anharmonicity change with the thickness of MoS2. To further reduce the thermal conductivity of 

single-layer MoS2 for potential thermoelectric applications, we study the thermal conductivity of 

Mo1-xWxS2 alloy embedded with WS2 nanodomains. The nanostructured two-dimensional alloy 

has a very low thermal conductivity, only one-tenth of MoS2, because both high-frequency and 

low-frequency phonons can be effectively scattered by atomic-difference and nanodomains, 

respectively. 

In the second part of this thesis, the first-principles-based atomistic Green’s function approach 

is developed to study phonon transport across interfaces between dissimilar materials. When two 

dissimilar materials with different lattice constants are connected at an interface, the lattice near 

the interface is usually distorted. Such a lattice distortion can extend to several unit cells away 

from the interface. Using direct first-principles calculations to model thermal transport near the 

interfacial region becomes infeasible. To overcome such numerical challenges, a methodology is 

developed to extract second-order harmonic interatomic force constants based on higher-order 

force constant model, which is originated from virtual crystal approximation but considers the 

local force field difference. Phonon transmission across Mg2Si/Mg2Sn interfaces and 

Mg2Si/Mg2Si1-xSnx is studied. The interfacial thermal resistance across Mg2Si/Mg2Si1−xSnx 

interface is found to be weakly dependent on the composition of Sn when the composition of x is 

less than 40% but increases rapidly when it is larger than 40% due to the transition of high-

frequency phonon density of states in Mg2Si1−xSnx alloys. 
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CHAPTER I INTRODUCTION 
 

I.1 Thermal Transport in Nanoscale Structures 
 
      Thermal conductivity plays a critical role in many applications such as nanoelectronic devices 

and thermoelectrics. In electronics, while the performance of semiconductor devices is improved 

by shrinking their characteristic size, the ability of thermal conduction is significantly reduced 

simultaneously, which might jeopardize the performance and reliability of the devices [1, 2]. Thus, 

how to dissipate heat efficiently is a challenging task for semiconductor industry. For 

thermoelectrics, however, low thermal conductivity materials are preferred. Different strategies 

have been proposed to suppress the thermal transport in the potential thermoelectric materials. One 

of the most efficient methods is nanostructuring [3-6]. In order to design devices or materials with 

desirable thermal transport ability effectively, it is essential to understand how heat is transported 

in nanostructures. While it is well-known that both electrons and phonons contribute to heat 

transfer in solid, this thesis mainly focuses on phonon transport only due to its dominant role in 

semiconductors and thermoelectric materials. 

 In nanostructures, the ability of heat transport due to phonons is dependent on both the 

dimension of nanostructures and the phonon mean free path (MFP) [7]. When the dimension of 

nanostructures is much larger than the phonon MFP, the phonon transport is diffusive and 

dominated by phonon-phonon scattering. On the other hand, when the dimension of nanostructures 

is much smaller than the phonon MFP, phonons travel ballistically and the interfacial scattering is 

important. If the two length-scales are comparable, both phonon-interfacial scattering and phonon-

phonon scattering becomes important. Recent theoretical and experimental works [8, 9] show that 

the phonon-mode-specific MFP can span at least three orders of magnitude.  Hence, to understand 
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the phonon transport in nanostructures and its related heat transport, both the two key factors, 

phonon MFP and phonon transmission coefficient across interfaces, should be well represented in 

the theoretical models. This raises significant challenges in the study of nanoscale heat transport. 

 

I.2 Numerical methods for phonon transport 

 
Over the past several decades, various theoretical simulation tools have been developed to 

understand the thermal transport in micro-/nano-scale, which heavily rely on many assumptions, 

such as relaxation time approximation. Recently, the integration of first-principles calculations 

with these phonon modeling tools made it possible to predict the phonon properties and thermal 

conductivity of various materials. The common theoretical approaches for investigating the 

phonon transport can be classified into two categories, including the Boltzmann transport equation 

(PBTE)-based method and molecular dynamics simulations. The required inputs of these methods 

are summarized in Figure I.1. 

 

 

Figure. I.1: Atomistic simulation methods for the calculation of phonon properties and thermal 

conductivity. 
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The first approach to study the phonon transport is PBTE-based method. Peierls extended the 

Boltzmann transport equation for describing the dynamics of gases to the study of phonons in 1929 

[10]. Later, the PBTE has been applied to a wide range of crystals for calculating lattice thermal 

conductivity [11-14]. Due to the complex of the phonon-phonon scattering, historically various 

approximations were proposed to estimate the scattering rate and phonon relaxation time [12-14]. 

Usually adjustable parameters are included in the expression, which limit the accuracy of PBTE 

to predict the thermal conductivity of materials. Recently, with enhanced computational power, 

the strength of scattering among any three phonon modes can be determined through Fermi’s 

golden rule only if the interatomic force constants are known. Meanwhile, the power of first-

principles as an accurate method of calculating the interatomic interactions is well established 

For a simple periodic crystal, the PBTE can be solved in reciprocal space. The group velocity 

and scattering rate of each phonon mode can be well determined, which serve as the input for the 

PBTE, and thus the thermal conductivity of the crystal material can be calculated by solving the 

PBTE. The thermal properties of quite a few three-dimensional materials are computed under the 

framework of the first-principles-based PBTE and show remarkably high agreement with 

experimental measurements [8, 15-17]. Inspired by the success of this method on regular materials, 

thermal transport properties of novel materials could be predicted by using first-principles-based 

PBTE. However, since the PBTE calculations are performed in reciprocal space, the formalism is 

difficult to be applied to non-periodic systems, though defects scattering [18, 19], boundary 

scattering in simple geometry [20] can be treated as perturbation. For more complicated geometries, 

other approaches are needed. 
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For nanostructured materials, the PBTE has to be solved in real space [21-23]. By assuming 

material-dependent relaxation time of each phonon mode, the phonon-phonon scattering within 

each material can be estimated. Also if the possibility of a specific phonon transmitting across the 

interface is known, one can estimate the interfacial scattering. Combining these two properties, the 

phonon transport in nanostructured materials can be predicted through direct solving of the PBTE 

or other numerical approaches. The real-space PBTE formalism has been demonstrated as a 

powerful tool to design nanostructured materials with desirable properties. While the phonon 

relaxation time can be directly computed through the Fermi’s golden rule, the mode-specific 

phonon transmission across the interface is more difficult to obtain. Several theoretical models 

have been proposed, including the DMM/AMM model [24], wavepacket method [25], lattice 

dynamics [26] and atomistic Green’s function (AGF) approach [27]. Among them, the AGF 

approach is the most promising one, because it requires less input parameters and also provides 

the strong capabilities to study materials with different atomic structures. First-principles 

calculations have also been proposed to be integrated into the AGF approach [28]. However, due 

to lattice mismatch and species mixing in the interfacial region, simulations with large domains 

are required, which make the first-principles calculations quite challenging. 

The second approach for predicting the phonon conductivity is molecular dynamics (MD) 

simulation based methods [29-31]. In MD simulations, phonons are not treated explicitly but the 

trajectories and velocities of all atoms are predicted by solving the Newton’s law. The most widely 

used approaches to calculate the thermal conductivity are the equilibrium MD method with Green-

Kubo formalism and the non-equilibrium MD method based on the Fourier’s law. Due to its 

atomistic nature, MD approach can easily deal with complicated systems, including superlattices, 

nanowires, nanocomposites etc. However, there are some drawbacks in MD simulations. One of 
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the most important concerns is the interatomic potential which describes the interactions between 

atoms and is vital to phonon transport properties of the materials studied. The accuracy of the 

empirical potentials is quite questionable, even for simple crystals, such as silicon [32]. Therefore, 

it is quite challenging to predict the thermal and phonon properties of the novel materials. Even 

though accurate ab initio molecular dynamics simulations [33] have been proposed to extract 

thermal conductivity so that the empirical potentials are not needed any more, such approaches 

suffer from the strong size effects, that is, the thermal conductivity is highly dependent on the size 

of system, due to the long mean free path of phonons [34]. While the simulation systems with a 

characteristic size less than 10 nm can be handled with first-principles method, the simulation 

domains that span up to tens or hundreds of nanometers are required to eliminate the size effects. 

Therefore, how to integrate first-principles calculations efficiently and effectively is a key issue to 

further improve the MD methods. 

Although great success has been made in the past few years to develop phonon modeling tools, 

there remain many challenges, in particular, to accurately and efficiently predict the thermal 

conductivity in different kinds of solid structures with the help of first-principles calculations. We 

will further develop the first-principles-based phonon modeling tools in this thesis, and mainly 

focus on two categories of materials, two-dimensional (2D) materials and Mg2Si-based 

thermoelectric materials. 

 

I.3 Two-dimensional materials 

 

Since its discovery in 2004 by Novoselov et al. [35, 36], graphene has attracted intensive 

attention due to its unique physical properties and potential applications in electronics, photonics 
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and many other fields [37, 38]. Inspired by the success of graphene, many other two-dimensional 

(2D) materials [39, 40], such as hexagonal boron nitride (h-BN), silicene, transition metal 

dichalcogenides (TMDs), transition metal oxides, five-layered V-VI trichalcogenides and black 

phosphorus, have been synthesized and studied. Figure I.2 shows the lattice structures of some 

typical 2D materials. Many of these 2D materials have been shown to have similar or even superior 

properties than graphene. For example, while pristine graphene has no bandgap, some monolayer 

transition metal dichalcogenides, including MoS2 and WS2, exhibit direct bandgap, making them 

ideal for a wide range of applications in electronics and optoelectronics [41, 42]. Compared to 

conventional silicon-based electronics, these 2D material-enabled devices promise to be more 

efficient due to their smaller sizes. However, heat dissipation of these devices could become a 

bottleneck limiting their performance and reliability as thermal conductivity of many of these 2D 

materials could be very low. Understanding phonon transport and thermal conductivities in the 2D 

crystals could be very important for the design of novel devices using the 2D materials.  

Significant progress has been made on understanding nanoscale heat transfer over the past two 

decades with the focus on nanostructures, such as such as thin films [43], nanowires [22, 44, 45], 

superlattices [46, 47] and nanocomposites [21, 23, 48, 49]. In these interface-dominant 

nanomaterials, interfaces play a crucial role on deviating thermal transport mechanisms from bulk 

materials, either through inducing an interfacial thermal resistance or the formation of new phonon 

bands [50]. The thermal conductivity of these nanostructures could be significantly lowered 

compared with their bulk counterparts, which can be exploited in various applications, such as 

thermoelectrics [51], thermal insulation [52] and thermal protection [53]. On the other hand, the 

surface of the ultrathin 2D materials does not necessarily hinder the thermal transport by scattering 
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energy carriers due to its atomic smoothness, which results in very different phonon transport and 

thermal conductivity in 2D materials from conventional thin films. 

There have been quite some studies on thermal transport in 2D materials. As the first 2D 

material that gained overwhelming attention, graphene has been intensively studied in the past few 

years [54-57]. With a very high thermal conductivity in the range of 2000-5000 W/mK at room 

temperature, even higher than diamond, many works have been centered around understanding the 

thermal transport mechanisms and exploiting the applications of this superior heat-conducting 

material. Apparently those studies on phonon transport and thermal conductivity of graphene have 

laid a great foundation for other emerging 2D materials. However, there are still quite some issues 

that the consensus has not been reached by researchers, even for graphene, the most well-studied 

2D material. In addition, the crystal structures of many novel 2D materials are different from the 

“one-atom-thick” graphene, making the direct deduction of the knowledge from graphene to other 

2D materials questionable.  

 

 
Figure. I.2: Top view and side view of some typical 2D materials. The primitive unit cell of each 

material is indicated by black lines in the top view. 
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Many geometrical constraints and physical factors can be used to change the thermal 

conductivity of 2D materials, which could lead to new applications in thermal management and 

energy conversion. For example, the thickness and the feature size in the basal plane of 2D material 

thin films can be tuned, which in turn can be used to control thermal transport of 2D materials. 

Defects and mechanical strains can also be utilized to manipulate the thermal conductivity. 

Furthermore, thermal transport in 2D materials is highly dependent on their interaction with the 

environment. For example, the coupling with substrates and other 2D crystals in heterostructures 

could significantly alter phonon transport in 2D materials. Surface functionalization and 

intercalation also significantly alter thermal transport of 2D materials. Figure I.3 summarize the 

geometric and physical factors that have been exploited to control the thermal conductivity of 2D 

materials. 

 

 
Figure I.3. The geometrical and physical factors that affect the thermal conductivity of 2D 

materials. 
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I.4 Thermoelectric materials 

  

Thermoelectric effects include the Seebeck effect and the Peltier effect. The Seebeck effect 

means the phenomenon that a voltage is generated when a temperature gradient is applied on a 

conductor or semiconductor, while the Peltier effect is that applying electrical current can create 

cooling or heat pumping at the junction between two dissimilar materials. Due to the strong need 

to replace the conventional fossil fuels with renewable energies, using thermoelectric effects to 

generate electricity became a hot research topic in the past two decades, and the main task is to 

seek the materials with exceptional thermoelectric performance. 

The thermoelectric performance of a material is usually characterized by the dimensionless 

figure of merit ZT, which is expressed as 

2

ZT
S

T



        (I.1) 

where S   is the Seebeck coefficient,   is the electrical conductivity, T   is the temperature, and 

   is the thermal conductivity. Obviously, achieving larger ZT requires a material with larger 

power factor 2S   and smaller thermal conductivity. 

 The research on thermoelectric materials dates back to 1950s. At that time most efforts were 

exerted to search bulk and alloy materials with high ZT. Some good thermoelectric materials were 

identified, such as Bi2Te3 and its alloy, PbTe and its alloy [58, 59]. In the following 30 years, 

progress on searching materials with high ZT was relatively slow until 1990s. Recent 20 years 

witness the renew of the research on thermoelectrics since some new concepts were proposed, 

such as nanostructuring.  

 The popular routes to achieve high ZT at present include searching bulk thermoelectric 

materials [60], fabricating individual nanostructures, such as nanowires [45], and synthesizing 
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bulk nanostructures, such as superlattice [61] and nanocomposites [48]. For the latter two 

approaches, the high ZT is mainly due to the low thermal conductivity of these nanostructured 

materials, and the low thermal conductivity is achieved by inducing strong phonon-interface 

scattering [6]. Therefore, understanding the interplay between phonons and interfaces is crucial to 

further enhance the thermoelectric performance of these nanostructured materials.   

  

I.5 Objectives of the thesis 

 

The main objectives of this study are to further develop first-principles-based theoretical 

modeling tools to understand the physics of phonon transport in solid materials as well as to predict 

the phonon transport properties in many novel materials. In particular, considering the importance 

of phonon MFP and phonon transmission, our efforts are mainly put to accurately predict these 

parameters with the state-of-art first-principles calculations. 

First, we demonstrate the use of PBTE-based method to predict the thermal conductivity of 2D 

materials and explore the phonon scattering mechanisms in these materials. Two kinds of novel 

2D materials will be studied, one is silicene, and the others are single-layer transition metal 

dichalcogenides.  

As many geometrical constraints and physical factors can change the thermal conductivity of 

2D materials, which could lead to new applications in thermal management and energy conversion, 

it is beneficial to understand the effects of these factors on thermal conductivity of 2D materials. 

We will focus on the effects of layer thickness and defects/nanodomains on the thermal 

conductivity of 2D materials. The first-principles-based PBTE method will be employed to study 
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the thermal conductivity of few-layer MoS2 and Mo1-xWxS2 alloy embedded with nanodomains as 

examples.  

In addition, we show the prediction of phonon transmission across the interfaces with 

complicated atomic structures using the AGF approach. Due to the numerical challenge for first-

principles to model an interfacial region, mass approximation is always employed, where the 

lattice mismatch and differences of force field are ignored. However, both factors are expected to 

change the phonon transmission. To avoid such simplification and to capture the essentials in the 

interfacial region, a method beyond the mass approximation is proposed to be integrated into the 

AGF. The adopted higher-order force constant model overcomes the numerical challenging in 

first-principles calculations and retains the accuracy. This integrated simulation method will then 

be applied to study the Mg2Si/Mg2Sn interfacial system with large lattice mismatch. 

 

I.6 Organization of the thesis 

       

In chapter I, the motivation and the objectives of this thesis for the phonon transport in two-

dimensional materials and nanostructures are discussed. In chapter II, we apply the PBTE 

formalism to predict the thermal conductivity of silicene. By comparing the phonon transport in 

graphene and silicene, we reveal the unique features of phonon transport in “non-one-atom-thick” 

2D materials. In Chapter III, we investigate another group of 2D materials, transition metal 

dichalcogenides (TMDs). The roles of atomic mass, bonding strength of single-layer TMDs, and 

the thickness of TMDs on the phonon transport are explored. In Chapter IV, we integrate the AGF 

approach with the BTE formalism and use this method to study the thermal conductivity of single-

layer molybdenum tungsten alloy embedded with nanodomains. Such alloy-based 2D materials 
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are of low thermal conductivity, and may find its application in thermoelectrics. In Chapter V, we 

extend the AGF approach by integrating the interatomic force constants from first-principles into 

the AGF formalism. With the developed DFT-AGF method, we study the effects of local strain 

field on the phonon transmission across Mg2Si/Mg2Sn interfaces and investigate how phonon 

transport across the pure material/alloy interface, which could potentially guide the design of 

nanostructures with superb thermoelectric performance. In Chapter VI, a summary of the thesis is 

presented and future work is proposed based on the discussions in the thesis. 
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CHAPTER II FIRST-PRINCIPLES PREDICTION OF PHONONIC 
THERMAL CONDUCTIVITY OF SILICENE: A COMPARISON WITH 

GRAPHENE 
 

 

II.1 Introduction 

 

Since its discovery, graphene has attracted great attention due to its superb material properties 

for both fundamental science and various technological applications [37, 62, 63]. Both theoretical 

and experimental work reported a very high thermal conductivity for graphene, in the range of 

2000 to 5000 W/mK at room temperature [54, 56, 57]. There have been thus a significant number 

of studies on the mechanism of phonon transport in graphene, although consensus has not yet been 

reached [13, 64-68]. and on the potential applications of graphene as an enabling thermal 

management material beyond its electronic and optoelectronic applications [69-73].   

Stimulated by the advances in graphene, more recently there has been great interest in many 

other two-dimensional materials [39, 74], such as silicene and MoS2 [75-78], which are expected 

to possess some of graphene’s excellent properties along with other unique properties that 

graphene does not have. One of the most promising materials is silicene, which is a two-

dimensional graphene-like honeycomb crystal made of silicon element that is expected to be more 

easily integrated with silicon-based semiconductor devices. Due to the similarity of the lattice 

structures of graphene and silicene, silicene shares many similar electronic properties with 

graphene. For example, the charge carrier of silicene is massless fermion just like as in graphene 

[77, 79]. However, compared with the planar structure of graphene, the honeycomb lattice of 

silicene is slightly buckled, which leads to some new characteristics. For instance, the buckled 
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structure breaks the symmetry of the crystal, making it possible to open a bandgap by applying an 

electric field [80, 81], which is a nontrivial challenge for graphene.  

Unlike electronic properties, the thermal transport properties of silicene are still not well 

studied, though they are crucial to the reliability and performance of potential electronic and 

optoelectric devices that integrate silicene as a component. Due to the similarities and differences 

of lattice structure between silicene and graphene, it is of great interest to explore and compare the 

phonon transport mechanisms in these two 2D materials, which might shed some light on the 

phonon transport mechanisms of other 2D material systems which might exhibit a large variation 

of thermal conductivity. The presence of flexural phonons, corresponding to out-of-plane atomic 

vibrations, is a key signature of two-dimensional materials. In graphene, such flexural phonon 

modes contribute more than 50% of its large thermal conductivity [66, 67]. Until now, it has been 

very unclear whether the flexural phonon modes in silicene are as important as they are in graphene. 

For example, recent classical molecular dynamics simulations gave the conflicting conclusions 

depending on the empirical potentials used by different authors [82, 83]. Another important and 

unsettled issue in two-dimensional materials is the length dependence of the thermal conductivity. 

Quite a few numerical calculations have been done, but the results have been contradictory. For 

example, most molecular dynamics calculations, which are limited by the finite size of simulation 

domains, have suggested that the thermal conductivity is finite when the length exceeds a critical 

value [65, 68], while some lattice dynamics calculations showed that it might be divergent [13]. 

On the experimental side, very recent measurements showed that the thermal conductivity of 

graphene keeps increasing even when the size of the graphene sheet is larger than 10 μm [84]. 

While most of these studies were focused on graphene, other two-dimensional materials, such as 

silicene, have not been well studied.  



15 
 

Most theoretical studies on phonon transport in silicene are based on classical molecular 

dynamics simulations, which heavily rely on the empirical interatomic potentials. The reported 

values of the thermal conductivity of silicene from these molecular dynamics simulations range 

about one order of magnitude, from 5 W/mK to 50 W/mK [82, 83, 85, 86]. Although some of the 

empirical potentials, such as the Tersoff potential [83] and the modified Stillinger-Weber potential 

[82], are able to reasonably reproduce the phonon dispersion calculated from first-principles 

calculations, the predicted thermal conductivities of silicene are quite inconsistent. Although there 

have been some efforts to correctly reproduce the buckled structure of silicene [82], the 

anharmonic interactions in such buckled structures are usually not taken into account when 

developing the empirical potentials. A more detailed investigation beyond using empirical 

potentials is very much desirable. 

Recently, the phonon Boltzmann transport equation (PBTE) formalism with both harmonic 

second-order and anharmonic higher-order force constants from the first-principles calculations 

has been used to study the phonon transport in a wide range of semiconductors [8, 15, 19, 87] and 

thermoelectric materials [88-90], both in crystalline form and nanostructured materials (including 

superlattice [91, 92] and nanowires [65, 93]), and two-dimensional materials, such as graphene 

[66, 94]. With the accurate and reliable inputs from first-principles calculations, the calculated 

thermal conductivity agrees quite well with experimental measurements. Furthermore, such newly 

developed simulation tool can accurately predict phonon dispersion, and the phonon scattering 

time of each phonon mode, which is essential to understand the thermal conduction mechanisms 

in unknown materials.  

In this chapter, we study phonon transport in silicene and compare it with phonon transport in 

graphene. The PBTE formalism with interatomic force constants from the first-principles 
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calculations is employed to predict the phononic thermal conductivity of silicene. The roles of 

different phonon branches are carefully examined. In addition, the length-dependent thermal 

conductivity and the corresponding mechanism are explored. 

 

II.2 Theoretical methods 

 

Both graphene and silicene have the honeycomb structure with two bases in the primitive cell. 

The crystal structure and the corresponding first Brillouin zone are shown in Fig. II.1 (a) and (b), 

where the two-dimensional material are placed in the x-y plane. Since thermal transport in 

graphene and silicene is isotropic due to the crystal symmetry, only the thermal conductivity in the 

x direction is considered. Figure II.1(c) shows that the two-dimensional sheet with an infinite 

lateral length is sandwiched between two reservoirs with a distance L apart. When the two 

reservoirs are kept as the same temperature T , the local heat flux, J , is zero. If a small temperature 

difference T  is applied to the two reservoirs, a steady state temperature profile will be 

established along the x direction leading to a nonzero heat flux J , which can be computed by 

summing up the contributions from all phonon modes through  

 3

1

2
x

s s s
s

J v n d


  q q q q ,     (II.1) 

where sq  stands for the s-th phonon mode at q  in the first Brillouin zone,   is the Planck 

constant, and sq , x
svq  and snq  are the phonon frequency, group velocity in the x direction and the 

non-equilibrium phonon distribution function of mode sq , respectively. After J is calculated from 

the contributions of each phonon mode, the macroscopic thermal conductivity can then be 

calculated from the Fourier’s law of heat conduction,  / /xxK J T L  . 
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In order to evaluate the heat flux driven by the steady-state small temperature difference, we 

need to calculate the phonon frequency, group velocity and phonon distribution of each phonon 

mode in Eq. (II.1), as presented below using first-principles-based phonon Boltzmann transport 

equation. 

 

 

Fig. II.1.  (a) Top and side views of the buckled atomic structure of silicene. The parallelogram 

denotes the primitive unit cell of silicene. (b) First Brillouin zone of silicene (as well as graphene). 

The black dots are the q-grid points used to calculate the thermal conductivity. (c) The schematics 

of the simulation domain for a finite size L sample. 

 

II.2.1 First-principles calculations for phonon dispersion and phonon 

scattering rate 
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First-principles calculations are employed to calculate phonon dispersion and phonon 

scattering rate by calculating the harmonic second-order force constants and anharmonic third-

order force constants which are the second and third derivatives of the total energy of the crystal 

with respect to the displacements of individual atoms in the crystal, respectively. The standard 

small displacement method, as described in Ref. [95]  is applied. One carbon (silicon) atom noted 

as R , i.e., the th  basis atom in the unit cell which is represented by the translation vectors R , 

in a graphene (silicene) supercell is displaced with a small distance 0.015   Å from its 

equilibrium position along the x , y  and z  directions, while other atoms remain in their 

equilibrium positions. The force acting on each atom due to this small displacement is recorded 

from the output of the first-principles calculations. The harmonic force constants with respect to 

the displacement of atom R  in the   direction and the displacement of atom ' 'R  in the   

direction can then be calculated as 

   ' ' ' '

, ' ' 2

F u F u   
   

 
    

 


R R R R

R R    (II. 2) 

where F  is the force and  u  is the displacement. Taking the advantage of the periodicity and 

symmetry of the lattice structure, moving one atom is enough to extract all independent harmonic 

force constants. With the harmonic force constants calculated from the first-principle calculations, 

the dynamical matrix D with the pairs  ,   and  ',   as indices can then be solved for phonon 

dispersion, 

'
' , ' '

''

1
( ) iD e

M M
 
  

 

   q R
0 R

R

q ,   (II.3) 

where M  is the atomic mass of the th  basis of the primitive cell. The phonon frequency sq  is 

the square root of the s-th eigenvalue of the dynamical matrix and the group velocity x
svq  is 
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calculated as /s xq q . The third-order force constants are calculated by the similar procedures 

but moving two atoms simultaneously. The third-order force constants with respect to the 

displacements of atom R , atom ' 'R  and atom '' ''R   along the  ,  , and   directions are 

written as 

   
   

, ' ', '' '' '' '' ' ' '' '' ' '2

'' '' ' ' '' '' ' '

1
, ,

4

, ,
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      
        

     
     

           
          

R R R R R R R R R

R R R R R R

.  (II.4) 

With the third-order force constants calculated from the first-principles, the three-phonon 

scattering rate can be calculated using the Fermi’s golden rule. Once three phonons satisfy the 

momentum conservation condition ' ''  q q q G , with G  representing a reciprocal vector, the 

transition probabilities of the three-phonon processes  ' ' '' ''s s s q q q  and ' ' '' ''s s s q q q  are 

written as [96] 

     2'' ''
, ' ' ' ' '' '' 3 ' ' '' ''2 1 , ' ', '' ''s

s s s s s s s sW n n n V s s s         q
q q q q q q q qq q q  

      2' ', '' ''
' ' '' '' 3 ' ' '' ''2 1 1 , ' ', '' ''s s

s s s s s s sW n n n V s s s         q q
q q q q q q qq q q , (II.5) 

where the delta function denotes the energy conservation condition ' ' '' ''s s s   q q q  for the three-

phonon scattering process, the + and - signs represent the annihilation and decay processes, 

respectively and 3V  is the three-phonon scattering matrix 

 
1/2 ' ''

' ' '' ''' ' '' ''
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(II.6) 

where e  is the eigenvector of the dynamical matrix, 0N  is the number of unit cells. We have 

considered both the normal (when G 0 ) and the Umklapp (when G represents a reciprocal vector)  
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three-phonon processes in current PBTE framework. All the first-principles calculations are 

performed with the first-principle software package Quantum-Espresso[97] using norm-

conserving pseudopotentials. Plane-wave basis sets with kinetic-energy cut-offs of 80 Ry and 60 

Ry are used in the graphene and silicene calculations, respectively. A 28281 Monkhorst-Pack 

k-point mesh is used to relax the structure. The kinetic energy cut-off and k-point mesh are 

carefully tested so that the calculated thermal conductivity will not change even if the number of 

k-point is decreased to the half and the kinetic-energy cut-offs are reduced by 20 Ry. The cutoffs 

of interaction are applied to the atoms within the ninth and third nearest neighbors for harmonic 

and third-order force constants, respectively. The dispersion relation is found not to change by 

taking more neighbors into account. The translational invariance is imposed to make the set of 

interatomic force constants physically correct. Because we extract the interatomic force constants 

when atoms are in their equilibrium position, the effect of temperature on the interatomic force 

constants are not taken into account. For most materials, the force constants at 0K provide 

reasonable description of the phonon transport processes [17]. 

 

II.2.2 Numerical solution of phonon Boltzmann transport equation 

 

The linearized PBTE is then solved to find the phonon distribution function snq  in Eq. (II.1) 

considering the balance between phonon diffusion driven by the small temperature difference and 

phonon scatterings due to various scattering mechanisms. 

In addition to the intrinsic three-phonon scattering described in Section II.2.1, the boundary 

scattering plays an important role at low temperature and in the low-dimensional systems. The 
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relaxation time of boundary scattering of phonons for finite size sample can be modeled using the 

partially specular and partially diffusive model, written as [98] 

B 1

1 2
s x

s

p L

p v
 


q

q

,     (II.7) 

where p  and 1 p  are the fractions of phonons that are specularly and diffusively scattered at the 

interface, respectively. By comparing the wavelength of the dominant phonon modes from 200 K 

to 800 K and the roughness of the boundary, we expect that the boundary scattering is 

predominantly diffusive [21]. Considering that directly quantify the specularity p is still a 

challenge, we use the fully diffusive scattering, i.e. 0p  , to model the boundary scattering. The 

thermal conductivity for a partially specular and partially diffuse boundary scattering can be 

extrapolated without significant difficulty. Such treatment of boundary scattering has been proved 

to correctly reproduce the transition between diffusive transport and the ballistic transport and has 

been employed in the studies on the phonon transport in many other low-dimensional materials, 

such as carbon nanotubes [12] and graphene [67].  

Taking both the intrinsic three-phonon scatterings and the phonon-boundary scatterings into 

account, the linearized PBTE is now expressed as [96] 

   
0 0

, ' ' '' '' ' ', '' ''
'' '' , ' ' ' ', '' ''

' ', '' ''

1

2
s s sx s s s s s s

s s s s s s s
s s s

n n nT
v W W W W

x T 
           

q q qq q q q q q
q q q q q q q B

q q q

. (II.8) 

To solve Eq. (8), we can write snq as  0 0 0 1s s s sn n n  q q q q  with the unknown deviation function sq  

[99], which is a function of the temperature gradient. When the temperature gradient vanishes, sq  

would be zero and the non-equilibrium phonon distribution function recovers to the equilibrium 

one. Expanding sq  into the Taylor series with respect to the temperature gradient and neglecting 

the higher-order terms in the limit of a small temperature gradient, sq  can further be assumed 
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proportional to the temperature gradient, s s

T
F

x
 


q q . We then can write 
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q q q q q . With this substitution, Eq. (8) is then recast to the form,  
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where '' ''
, ' '
s

s sW q
q q
  and ' ', '' ''s s

sW q q
q
  are the equilibrium transition probabilities, sharing the same form as 

Eq. (II.5) but with the non-equilibrium phonon distribution functions ( snq , ' 'snq , and '' ''snq ) 

replaced by the equilibrium functions ( 0
snq , 0

' 'snq , and 0
'' ''snq ). 

In order to perform the summation of the three-phonon scattering events in Eq. (9) to solve for 

the phonon distribution function sFq , the first Brillouin zone is discretized into a N N  Γ-point 

centered grid, as shown in Fig. II.1(b). The grid points are located at 1 2

m n

N N
 q b b , where 1b  

and 2b  are reciprocal primitive lattice vectors, and m and n are integers. The delta function in Eq. 

(II.5) that guarantees that the energy conservation in the three-phonon processes is replaced by a 

Gaussian function with adaptive broadening [93, 100]. 

    2 2
' ' '' '' ' ' '' ''

1
exp /s s s s s s       


     q q q q q q    (II.10) 

where 

' ' '' ''s s q     q q      (II.11) 

and q  is the distance between neighboring sampling points. Contrasting with the common 

practice of setting the broadening parameter   to a constant value for all the three-phonon 

scattering events [20, 94], the adaptive scheme is able to take the non-uniformity of the energy 
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spacing into account. Moreover, it avoids the relatively arbitrary choice of   in the constant 

broadening parameter scheme.  

The set of linear equations Eq. (II.9), with respect to sFq , can then be self-consistently solved. 

Here we employ the biconjugate gradient stabilized method (Bi-CGSTAB), a variant of the 

conjugate gradient algorithm, to iteratively solve it. The details of the algorithm are provided in 

Ref. [101]. This algorithm successfully removes the numerical instability [20, 102, 103] that 

appeared in the original iterative algorithm proposed by Omini and Sparavigna [102].  

After sFq  is calculated, the thermal conductivity of the two-dimensional material can be 

written as 

   0 0

2
0 0

2
1

3
x

xx s s s s s
s

K x v n n F
N a h

  q q q q q
q


.   (II.12) 

Aside from the iterative solution of Eq. (II.9), if ' 'sFq  and '' ''sFq  are set to be zero in Eq. (II.10), 

we can easily solve sFq  and obtain the widely used solution of PBTE under single-mode relaxation 

time approximation (RTA). The thermal conductivity under single-mode RTA is   

   
2

22 0 0

2 2
0 0 B

2
1

3
x

xx q s s s s
s

K v n n
N a hk T

   s q q q q
q


    (II.13) 

where ph B1/ (1/ 1/ )s s s   q q q  is the relaxation time of mode sq with the relaxation time due to 

phonon-phonon scattering, ph
sq , which is expressed as  

0 0
ph

'' '' ' ', '' ''
, ' '

' ', '' ''

( 1)

1
2

s s
s

s s s
s s s

s s

n n

W W





  
 


q q

q
q q q

q q q
q q

 
.     (II.14) 
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II.3 Phonon dispersion 

 

Our DFT calculation yields an equilibrium lattice constant a0 = 3.824 Å and buckling distance 

  = 0.42 Å for silicene. These lattice parameters are in good agreement with previous studies 

[104]. For graphene, a lattice constant of 0a  = 2.437 Å is obtained after relaxation. We use the 

nominal layer thicknesses h = 0.335 nm and h = 0.42 nm for graphene and silicene, corresponding 

to the van der Waals radii of carbon and silicon atoms [83] to report our results. 

Figure 2 shows the phonon dispersion of graphene and silicene in the high-symmetry directions. 

Due to two bases in the primitive unit cell of graphene and silicene, there are six phonon branches 

for each material: longitudinal acoustic (LA), transverse acoustic (TA), flexural out-of-plane 

acoustic branches (ZA), longitudinal optical (LO), transverse optical (TO), and flexural out-of-

plane optical (ZO) branches. The frequency of the LO (or TO) mode of graphene at the Γ point is 

1630 cm-1, which is in good agreement with the measured G peak Raman signal [105]. The 

calculated phonon dispersion of silicene is identical to other calculations considering different 

ranges of interaction cutoff and using different source codes in literature [80, 106, 107]. In the 

phonon dispersion of graphene and silicene shown in Fig. II.2, we notice that the ZA branch near 

the Γ point shows a quadratic trend for both materials, which is a typical features of two-

dimensional materials and could be explained by the macroscopic elastic theory of thin plates [62, 

108]. However, while the phonon dispersion of graphene’s ZA branch follows exactly the 

2
ZA q   relation near the Γ point, a small but non-zero sound velocity for the ZA branch of 

silicene with a value of 1010 m/s is observed, which is an order of magnitude smaller than that of 

LA and TA branches. This observation is consistent with density functional perturbation theory 

calculation from other studies [109]. The different shape of the ZA phonon dispersion makes the 



25 
 

group velocity and equilibrium phonon distribution function different for graphene and silicene 

near the zone center: v q  and 0 2n q  for graphene while  0v q  and 0 1n q  for silicene. 

This difference on the shape of ZA branches near the zone center comes from the structural 

difference of the two materials: graphene is planar while silicene is a buckled structure. From a 

microscopic point of view, the 2
ZA q   relation near the Γ point for graphene is the direct result 

of two factors: 1) the rigid rotational invariance when the material rotates along any axis within 

the plane and 2) the decoupling of in-plane modes and out-of-plane modes due to the one-atom-

thick nature of graphene. The details of the derivation can be found in the supplemental material 

of ref. [66]. However, silicene does not obey the rigid rotational invariance nor does it exhibit the 

decoupling of in-plane and out-of-plane phonon modes due to its buckled structure. In Appendix 

A.1, we provide a proof to show that the dispersion of the ZA branch of silicene near the Gamma 

point always contains a linear component, just as it does in an acoustic phonon branch in a 

conventional three-dimensional material.  

It is worthwhile to mention that the quadratic dispersion of the ZA branch might lead to 

problematically strong scattering for in-plane acoustic phonons [66, 103]. Mariani and von Oppen 

[110] theoretically proved that the coupling of bending and stretching modes renormalizes the 

quadratic ZA dispersion to 3/2q   as 0q  . In this work, the dispersion relation for ZA branch 

near the zone center in graphene is slightly modified to make the ZA dispersion follow the derived 

renormalized dispersion relation [110].  More discussions are given in Appendix A.2. In Sec.II.3.4, 

we show that we can get rid of the problematically strong scattering using the dispersion relation 

3/2q   for ZA branch. 
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Figure II.2. Phonon dispersion of graphene (a) and silicene (b) calculated from the first-principles. 

The red line in (a) is the renormalized dispersion curve for ZA modes which satisfies 
3/2q  

near the zone center. This renormalized dispersion relation is used to calculate and analyze the 

phonon scattering process and thermal conductivity of graphene in this work. 

 

II.4 Intrinsic thermal conductivity of graphene and silicene 

 

Figure II.3 shows the dependence of calculated thermal conductivity of graphene and silicene 

with the sample size 3 mL  as a function of the number of q-grids used. Thermal conductivities 

are found to increase with the number of q-grid sampling points. Such a dependence on the q-grids 

can be qualitatively explained by the single-mode RTA. The thermal conductivity formula under 

the single-mode RTA can be expressed as  

 2 2 ( 1)x
s s s s s

s

K v n n d   q q q q q q    (II.15)  



27 
 

If a coarse q-grid is used, the zone center will not be well sampled. Taking advantage of the 

isotropicity of the frequencies near the zone center, the double integrals over q vector in Eq. (II.15) 

can be transformed to a one-dimensional integral over scale q. The difference between the thermal 

conductivities calculated from an idealized infinitely dense grid and that from a finite q-grid can 

be estimated as 

 cut 2 2

0
( 1)

q

s s s s s
s

K v n n qdq    q q q q q ,    (II.16) 

where cutq  is on the order of the difference between two neighboring q points. Eq. (II.16) also 

gives the estimation of the contribution from long-wavelength phonons to the total thermal 

conductivity. If the integrand scales with nq  with 0n   as 0q  , the error K  converges 

rapidly to zero as 
cut 0q  . Otherwise, the   point becomes a singular point, which makes K  

highly dependent on cutq  and causes the q-grid dependence on the calculated thermal conductivity 

as shown in Fig. II.3. Since the long-wavelength acoustic phonons tend to be less scattered by 

other phonons, the relaxation time due to phonon scattering approaches infinity as 0q  . The 

relaxation time of the boundary scattering / 2s sL v q q   plays a more significant role than the 

intrinsic phonon-phonon scattering. As a result,  K  scale as 2
cutq  for acoustic phonons with linear 

dispersion relation.  

In order to get rid of the dependence of the thermal conductivity on the q-grid, we calculate 

the thermal conductivity using several q-grids with different number of sampling points up to 

16384 (N = 128) and then extrapolate the thermal conductivity to an infinitely dense grid using the 

relation 2
cutK q  , based on the above analysis, as shown in Fig. II.3. We also note that K  might 

not be exactly proportional to 2q  since the effective phonon relaxation time also has the 
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contributions from the intrinsic phonon-phonon scattering. To test the robustness of the 

extrapolation process, we also perform linear and cubic extrapolations. The difference between 

different extrapolation methods is within 2% of the thermal conductivity. 

 

 

Figure II.3. The dependence of the thermal conductivity on q-grid for graphene (a) and silicene 

(b) with sample size 3 mL  . 

 

To validate the approach that we employ, the calculated thermal conductivity of graphene was 

compared with the data available from literature, including both numerical simulations and 

experimental measurement. Figure II.4 shows the thermal conductivity of graphene as a function 

of temperature. The solid, dashed, dashed-dotted black lines are our calculated thermal 

conductivity for graphene with L=100 μm, 10 μm and 3 μm using the modified ZA dispersion as 

discussed in Appendix A.2. For completeness, we also show the thermal conductivity of the sample 

with L=100 μm using the ZA dispersion from DFT calculations, as indicated by the blue dotted 

line. It is clear that the modified ZA dispersion only slightly changes the value of the thermal 

conductivity of graphene. The green line is theoretical predictions from other groups’ work using 
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similar PBTE formalism [64]. Our calculated values for a graphene sheet with L=100 μm is very 

close to Singh et al’s calculation for an infinitely large graphene sheet [64], where they employed 

the optimized Tersoff potential [111] to describe the interatomic interaction of graphene. The 

slightly larger value obtained in our prediction is probably due to the different force constants used. 

Figure II.4 also includes several experimental measurements using Raman spectroscopy [112-115]. 

Since in thermal conductivity measurement experiments graphene sheets are always suspended 

above holes with diameters of several microns, it is more reasonable to compare these experimental 

results to our calculated values with L= 3 μm to 10 μm. Although the measurement data is quite 

scattered due to experimental accuracy and sample processing, the values from our theoretical 

calculations follow a similar trend as these experimental measurements. The results shown in Fig. 

II.4 indicate the PBTE approach with first-principles force constants is able to give reliable 

predictions for the thermal conductivity of two-dimensional materials.  

Figure 5 shows the temperature dependence of the thermal conductivity of silicene for different 

sample sizes. Dramatically different from graphene whose thermal conductivity is comparable to 

or even larger than its bulk forms, graphite or diamond, the thermal conductivity of silicene is an 

order of magnitude lower than that of bulk silicon. For example, it is around 26 W/mK for a silicene 

sheet with 10 mL   at 300 K while the thermal conductivity of silicon is ~140 W/mK at room 

temperature. Indeed the thermal conductivity of silicene with 10 mL   is comparable to the 

conductivity of silicon nanowires with a diameter of 55 nm [44] and thin films with a thickness of 

20 nm [116]. When sample length decreases, the thermal conductivity is further reduced and shows 

weaker temperature dependence due to the stronger boundary scattering.  
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Figure II.4. Thermal conductivity of graphene as a function of temperature. The solid, dashed, 

dashed-dotted black lines are the calculated thermal conductivity of graphene with sample sizes 

L=100 μm, 10 μm and 3 μm, respectively. The pink line is the PBTE solution from Singh et al’s 

work [64] for an infinite size sample. Experimental values [112-115] are represented by open 

symbols: circles [112] represent measured values for isotopically enriched graphene with 99.99% 

12C and 0.01% 13C, while triangles [113], diamonds [114] and pentagons [115] are the values for 

naturally occurring graphene. 

 

We notice that a very recent study using molecular dynamics simulations reported a much 

smaller thermal conductivity for silicene, ~5 W/mK, than our results. In their work, equilibrium 

molecular dynamics simulations is used to study the thermal conductivity of silicene with a 

modified Stillinger-Weber potential [82], which was originally developed for bulk silicon. 

Although the empirical potential they used has been optimized to better match the phonon 

dispersion of the silicene from DFT calculations than the original Stillinger-Weber potential [117], 
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the difference likely originates from two reasons: 1). the phonon dispersion relations from the 

empirical potential, especially the acoustic branches, are still different from those from DFT 

calculations; 2). anharmonic properties which are essential for predicting phonon-phonon 

scattering rate were not taken into account in the development of the potential. In addition to the 

quantitative difference on the predicted thermal conductivity, first-principle-based PBTE method 

provides much more detailed information of each phonon mode as discussed in this work. 

 

 

Figure II.5. Calculated thermal conductivity of silicene as a function of temperature. 

 

To understand why silicene has a much lower thermal conductivity than silicon and graphene, 

we examine the contributions of the different phonon branches in graphene and silicene, as shown 

in Fig. II.6. When L= 10 μm, while the ZA branch contributes about 75% of the large thermal 

conductivity of graphene, only around 7.5% is conducted by the ZA branch in silicene. The LA 

and TA branches together contribute 20% and 70% to the total thermal conductivity for graphene 

and silicene, respectively. From this comparison, one can conclude that the overall low thermal 
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conductivity of silicene should be related to the strong scattering of the ZA modes. It is noted that 

the relative contribution of the ZA modes to the thermal conductivity of graphene is different from 

some other theoretical works, including the calculations using relaxation time approximation73, 74 

and MD simulations.75, 76 Considering that the approximate nature of the empirical expressions for 

phonon relaxation time or empirical potentials employed, these methods might not give accurate 

results, though the studies could still provide valuable insights. 

 

 

Figure II.6. Scaled thermal conductivities from different phonon branches of (a) graphene and (b) 

silicene with sample size 10 mL  as a function of temperature.  

  

II.5 The role of the ZA branch 

 

Considering that there exists the significant difference in the contribution of the ZA modes to 

the total thermal conductivity in graphene and silicene, it is worthwhile to perform a more detailed 

investigation of the scattering mechanism of the ZA modes in graphene and silicene. Figure II.7 

shows the calculated scattering rates of acoustic phonons due to phonon-phonon scattering. The 
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scattering rate is defined as the inverse of the relaxation time, s q q  characterizing the strength 

of the scattering mechanism. The larger the scattering rate is, the more likely a phonon is to be 

scattered, i.e., with shorter lifetime. Figure II.7 shows clearly that the scattering rates of ZA modes 

in graphene modes are much smaller than the in-plane acoustic phonon modes. However, the 

scattering rates for the ZA modes in silicene are comparable to that of the other acoustic phonon 

modes. 

 

 

Figure II.7. Scattering rates of acoustic phonon modes of graphene (a) and silicene (b) along Γ-

M direction at 300 K.  

 

To understand the difference in the scattering rates of ZA modes in silicene and graphene, we 

decompose the total scattering rates of the ZA modes into different scattering channels, as shown 

in Fig. II.8. Figure II.8(a) shows that the ZA phonons in graphene are dominantly scattered through 

the absorption processes in which two ZA phonons combine to produce one in-plane acoustic 

phonon (LA or TA). However, Figure II.8(b) shows that absorption processes dominate the 

scattering channel of ZA modes where a ZA phonon is produced involving two in-plane LA or TA 
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acoustic phonons. The absorption processes also contribute to ~10% of the total scattering close 

to the zone center. These scattering channels are not observed in graphene. This is because of a 

symmetry selection rule [67] in graphene: for one-atom-thick materials, reflection symmetry 

makes the third-order force constants involving an odd number of z components vanish. As a result, 

scattering with odd number of out-of-plane modes, such as ZA+TA->LA and ZA+ZA->ZA, could 

never happen. However, due to the buckled structure in silicene, the symmetry selection rule does 

not apply. Therefore, the out-of-plane ZA phonon modes in silicene have more scattering channels 

than that in graphene as long as there is another out-of-plane or in-plane phonon available. To 

further explore the importance of the scattering channels involving an odd number of out-of-plane 

phonons on the total scattering rate of the ZA modes, Fig. II.8(b) also shows the scattering rate 

when these scattering channels are tuned off. The scattering rates of the ZA phonons, especially 

the long-wavelength phonons are greatly suppressed and reach a value comparable to the scattering 

rates in graphene. This investigation testifies that the scattering rate of the ZA modes in silicene is 

greatly increased, compared with graphene, due to the buckled structure where the symmetry 

selection rule that applies in graphene is broken. 
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Figure II.8. Scattering rates of out-of-plane acoustic phonon modes of graphene (a) and silicene 

(b) along Γ-M direction at 300 K.  

 

II.6 Length dependence of the thermal conductivity 

 

One might conceive that the thermal conductivity of silicene would saturate quickly as the 

length increases because the thermal conductivity of silicene is low and the phonon mean free path 

in silicene might be short. However, we observe a length-dependent thermal conductivity even 

when the length of the silicene sample is larger than 30 μm, as discussed below.  

Figure II.9 shows the thermal conductivity of graphene and silicene at 300 K as a function of 

sample size L. While the thermal conductivity of graphene appears to converge when the sample 

size is larger than 100 m , the thermal conductivity of silicene increases logarithmically with the 

sample size in the range studied in this work. The thermal conductivity of silicene increases from 

18 W/mK to 28 W/mK when the size is increased from 0.3 μm to 30 μm. The unbounded thermal 

conductivity occurs in the whole temperature range studied in this work. The divergent 

(unbounded) thermal transport phenomenon of silicene with the increase of sample size can also 
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be verified by examining the dependence of the thermal conductivity on the q-grid when the 

boundary scattering is absent, as shown in the inset of Fig. II.9(b). To understand such anomalous 

phenomenon, the contributions of thermal conductivity from different phonon branches are also 

shown in Fig. II.9. As the sample size increases, the contributions from the optical modes and the 

out-of-plane ZA acoustic phonon modes of silicene become constant when L > 1 μm. The 

continuous increase of the thermal conductivity with respect to the sample size is indeed due to 

the in-plane acoustic phonons. Therefore, we then examine how the thermal conductivity of in-

plane acoustic phonons varies with the sample size. Figure II.10 shows the accumulated thermal 

conductivity of the LA and TA in-plane phonon modes of two silicene sheets with different sample 

size, L = 10 μm and L = 30 μm, as a function of phonon frequency. It is obvious that the difference 

of the thermal conductivity between the L = 10 μm and L = 30 μm samples is caused by the low-

frequency/long-wavelength phonons.  

 

 

Figure II.9. Length dependence of thermal conductivity of each phonon branch of (a) graphene 

and (b) silicene. The inset in (b) is the q-dependence of thermal conductivity of silicene when the 

boundary scattering is not considered. 
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Figure II.10. Accumulated thermal conductivity of the LA and TA branches of silicene as a function 

of phonon frequency. The values are calculated using a 128 128  q-grid. 

 

With a known linear dispersion of long-wavelength in-plane acoustic phonons as discussed in 

Sec. II.3.1, we are able to find out whether the thermal conductivity becomes unbounded if the 

relaxation time is known. According to Eq. (II.16), a finite thermal conductivity will be obtained 

if the relaxation time of the long-wavelength in-plane phonons which has linear dispersion follow  

nq  if 2n   . We thus perform a careful investigation on how long-wavelength in-plane acoustic 

phonons are scattered in graphene and silicene. 

In Fig. II.11, the scattering rates of the LA and TA in-plane acoustic phonons are plotted using 

a log-log scale. Figure II.11(a) shows that the scattering rates of the in-plane acoustic phonons in 

graphene linearly decreases to zero with respect to the wavenumber q at the zone center as 0q  . 

We noticed that the LA and TA phonon modes of graphene in the region 00 0.05(2 / )q a   are 
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scattered almost exclusively by decaying into two out-of-plane ZA modes. We can now follow an 

approach similar to that presented by Bonini et al [66], where they studied the analytic limit as 

0q   by considering the decaying process of the scattering of LA and TA modes into two ZA 

modes on the quadratic dispersion.  In a similar analysis shown in Appendix A.3, we find that the 

analytic limit of the scattering rate is s q q  when in-plane acoustic phonon modes are scattered 

to two phonons on the ZA branch with 
3/2q  dispersion, which can explain well the numerical 

results observed. According to 1/s s q  q q , the thermal conductivity of the long-wavelength 

LA and TA branches of graphene should be finite, since the relaxation time follows the relation 

that ensures the finite thermal conductivity, 
n

s q q  with 1 2n     . In addition, the modified 

dispersion for ZA modes makes the product s s q q  approaches constant values, instead of zero as 

observed when the quadratic dispersion is used [66, 103]. From our numerical calculation, the 

constant values are around 8 for LA modes and 14 for TA modes, both of which are much larger 

than unity. The larger-than-unity constant values of s s q q  ensure the condition for the existence 

of phonons as elementary excitations [118] is valid for long-wavlength in-plane LA and TA 

phonons of graphene. Therefore, by considering the renormalization of ZA phonons [110] as 

discussed in Appendix A.2, the problematic large scattering of the long-wavelength in-plane 

acoustic phonons in graphene can be avoided. 
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Figure II.11. Scattering rates of in-plane LA and TA acoustic phonon modes in graphene (a) and 

silicene (b) along the Γ-M direction at 300 K using log-log scale.  

 

Figure II.11(b) shows that the scattering rates of silicene also approach zero when the 

wavenumber q goes to zero, but with a much steeper slope than that for graphene. It is found that 

the scattering of the in-plane LA and TA phonon modes also mainly comes from the decay 

processes into two ZA modes at the small wavenumber regime 0 00.01(2 / ) 0.1(2 / )a q a   . 

However, the out-of-plane ZA phonon branch on a linear dispersion is not able to scatter the LA 

and TA phonons as efficiently as that in graphene. The scattering process for three acoustic 

phonons on linear dispersions are derived in detail in Appendix A.4 which shows that the inverse 

of the scattering rate, or the relaxation time, scales with 
nq  with 3 2n      as 0q  .  

In addition to the decay processes, a long-wavelength LA or TA mode, sq , in silicene can  also 

annihilate with another mode, ' 'sq , and generate the third mode '' ''sq  which needs to satisfy the 

momentum conservation ( '' ' )  q q q G . The analytical limits of the scattering rate for the 

annihilation processes are also derived in Appendix A.4. If modes  ' 'sq  and '' ''sq  are on different 
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branches, for example, LA+LA/TA->TA/LA, the scattering rate of the in-plane acoustic phonons 

scales with 2q  as 0q  . If modes ' 'sq  and '' ''sq  are on the same branch, such as TA+ZO->ZO, 

the scattering rate of the in-plane TA branch has the form  1/s s q  q q  as 0q  . This linear 

dependence of the scattering rate on the wavenumber q for the in-plane TA modes ensures that the 

condition 
n

s q q  with 2n    is satisfied as 0q   and thus the thermal conductivity of TA 

branch is finite. 

However, unlike in-plane TA modes, the annihilation process for a long-wavelength in-plane 

LA phonon with two phonon modes on the same branch are always prohibited. This is because the 

group velocity of the long-wavelength in-plane LA modes, LAv , is the largest of all phonon modes 

so that the frequency of the long-wavelength in-plane LA mode sq , which can be estimated by 

LAv q due to the linear dispersion,  is always larger than the frequency difference between the modes 

' 'sq  and '' ''sq , which can be written as  ' ' ' ' LA s sv q v q  q qv q  as 0q  . As a result, the 

annihilation scattering with two phonon modes on the different branches becomes the dominant 

scattering mechanism for long-wavelength LA phonon as 0q  .  

The total scattering rate of the long-wavelength LA phonons would follows q2 as 0q  . 

According to Eq. (II.16), the thermal conductivity of the long-wavelength LA modes is 

cut 1

0

q
K q dq   , leading to a divergent thermal conductivity when the boundary scattering is 

absent. When the boundary scattering is included, 
cut

20
ln

q q
K dq L

q L
  

 . This analytical limit 

is consistent with the observation of our numerical results, as shown in Fig. II.9(b). However we 

wanted to that the derived scaling relation of the relaxation time or the scattering rate with respect 
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to the wavenumber q for long-wavelength in-plane phonon modes would hold in the region very 

close to the zone center. The logarithmic dependence on the sample length we observe should be 

the outcome of the combination of different phonon branches, not just from the long-wavelength 

LA phonons.  

We found a recent work on the prediction of the thermal conductivity of silicene from 

relaxation time approximation with interatomic force constants from first-principles calculations 

[119]. In their work, only three-phonon processes are considered and the calculated thermal 

conductivity is about 9 W/mK for an infinitely large silicene sheet, much smaller than the results 

from our calculations. The relaxation times of long wave-length acoustic phonon modes from their 

work approach zero as the wavevector 0q  , which is opposite to the scaling relation we derived 

in this work, and also contradicts the classical theory that low-frequency phonon modes are not 

likely to scattered. The possible reason is that a too small cutoff of the third-order anharmonic 

force constants is chosen in their work. If no translational invariance is imposed, the low-frequency 

phonons are unphysically severely scattered, and thermal conductivity tends to be underestimated 

[17]. 

Finally, we note that the observed logarithmic length dependence of the thermal conductivity 

in silicene might not hold when higher-order phonon scatterings are taken into account since our 

calculations and analysis only consider the three-phonon process. It is worthwhile to further study 

the dependence of thermal conductivity on sample size in two-dimensional materials at high 

temperature, where higher-order phonon scattering might play a role in some of the 2D materials. 

Currently there are no widely-accepted conclusions on the contributions of four-phonon processes 

to the thermal conductivity of solids. On one hand, Raman scattering experiments clearly show the 

importance of four-phonon processes on the frequency shift and line width of optical phonons,e.g. 
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Balkanski et al [120]. On the other hand, theoretical estimation of three-dimensional bulk materials 

by Ecsedy and Klemens [121], shows that the scattering rate of the four-phonon processes is at 

least two orders of magnitude smaller than the three-phonon processes even at the temperature as 

high as 1000 K. Whether the four-phonon processes are important in two-dimensional materials is 

even more unclear. It is thus very desirable to carry out first-principles calculations on the thermal 

conductivity arising from both cubic and higher-order anharmonicity. However, such a calculation 

is by no means trivial [120] due to the limitation of computational power. We have thus considered 

only the three-phonon processes and expect the results very likely to be valid for a wide range of 

temperature by looking at the contributions of optical phonons to the total thermal conductivity.  

 

II.7 Summary of this chapter 

 

In conclusion, we use the phonon Boltzmann transport equation with the phonon properties 

calculated by interatomic force constants from the first-principles to predict the thermal 

conductivity of silicene and graphene. With a detailed analysis on phonon scattering rate, we have 

shown that silicene has a much smaller thermal conductivity than graphene. Unlike graphene, 

where most of the heat is conducted by out-of-plane acoustic phonons, the out-of-plane acoustic 

phonons contribute to only ~10% of the thermal conductivity in silicene. More importantly, in-

plane acoustic phonons make the thermal conductivity of silicene unbounded with the increase of 

the sample size. The differences in phonon transport in silicene and graphene can be attributed to 

the buckled atomic structure. The buckled structure in silicene breaks the symmetry selection rule 

that applies to graphene, making the ZA phonon modes strongly scattered so that they contribute 

very little to heat transport in silicene. The buckled structure also changes the phonon dispersion 
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curve of the ZA branch from 
3/2q  in graphene to linear, so the most important scattering channel 

in silicene for long wavelength LA phonon modes, LA->ZA+ZA, becomes not as efficient as in 

graphene to render a finite value for the intrinsic thermal conductivity.  In contrast, we proved 

analytically that the thermal conductivity increases logarithmically with respect to the sample size 

when both intrinsic phonon-phonon scattering and boundary scattering are considered. This study 

might shed some light on the fundamental phonon transport mechanisms in other 2D materials 

such as transition metal dichalcogenides. For example, strong length-dependence of the thermal 

conductivity might be expected in MoS2 and WS2 due to a similarly linear dispersion of ZA 

phonons in these non-one-atom-thick two-dimensional materials.  
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CHAPTER III PHONON TRANSPORT IN SINGLE-LAYER AND FEW-
LAYER TRANSITION-METAL DICHALCOGENIDES 

 

 

III.1 Introduction 

 

As a family of novel two-dimensional (2D) materials beyond graphene, monolayer and few-

layer transition metal dichalcogenides (TMDs) have attracted considerable interests shortly after 

they were isolated or synthesized due to their unique physical properties and potential applications 

[40-42]. Generally monolayer TMDs can have a three-layer structure that one layer of transition 

metal atoms is sandwiched by two layers of chalcogenide atoms. Depending on how the 

chalcogenide atoms are sitting on each side of the metal layer, there are two polymorphs for 

monolayer TMDs: 1T phase with D3d point group and 2H phase with D3h point group, as shown in 

Fig. III.1. The physical properties of molybdenum disulfide (MoS2) with 2H structure, as a 

representative 2D TMD, have been widely studied. It exhibits a series of intriguing attributes that 

are different from its bulk form and from that of graphene, including the switchable thickness-

dependent band gap [122], strong photoluminescence [123] and significant anisotropic response 

under tensile strain [78]. In addition to MoS2, other TMDs with the same 2H crystal structure, such 

as MoSe2, WS2 and WSe2, might be of similar or even superior properties to MoS2. For example, 

these TMDs are also of the thickness-dependent band gap [124, 125]. Triangular WS2 monolayer 

displays strong room-temperature photoluminescence at the edge [126]. Compared with 2H TMDs, 

1T TMDs gain relatively less attention, but might also possess some interesting properties. For 
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example, 1T Zirconium and hafnium dichalcogenides are considered for photovoltaic application 

due to their suitable band gap for visible light absorption [127, 128]. In addition, both the bandgap 

of single-layer ZrS2 can be effectively tuned by mechanical strain [129].   

 

 

Figure III.1. Crystal structures of (a) MoS2 and (b) ZrS2 monolayers as examples for 2H and 1T 

single-layer TMDs, with the Mo atom in purple, the Zr atom in green, and the S atom in yellow.  

 

Unlike the electronic, optical and mechanical properties of single-layer or few-layer TMDs, 

which have been intensively explored, the study on the thermal properties are still in its infancy, 

though its importance on the performance and reliability on the nano-devices are well recognized. 

According to the classical theory, the thermal conductivities of TMDs are thought to be low due 

to their heavy atom mass and low Debye temperature [130]. This has led to the consideration of 

single-layer or few-layer TMDs as potential thermoelectric materials [131-133]. While it is 

generally true that the cross-plane thermal conductivity of TMDs are low due to the weak inter-

layer bonding [130], the in-plane thermal properties are unclear. There have recently been some 

studies on the in-plane thermal conductivity of monolayer or few-layer MoS2 [134-142]. While 

some classical molecular dynamics (MD) simulations using empirical interatomic potentials 

reported the thermal conductivity for the single-layer MoS2 to be less than 10W/mK [139, 140], 
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the measured thermal conductivity values for the single-layer and multilayer MoS2 are usually 

larger than 30 W/mK [134-136]. Considering the large uncertainty in the available thermal 

conductivity measurement data and the inaccuracy of the empirical potentials used in molecular 

dynamics simulations, the first-principles-based approach with predictive power has its unique 

strength to explore the phonon transport in 2D TMDs.  

In addition to the thermal conductivity of single-layer TMDs, the layer thickness-dependent 

thermal conductivity of TMDs is also of interest. In the past two decades, considerable attention 

has been paid to the size effects of phonon transport in semiconductor nanostructures, such as thin 

films [43], nanowires [22, 44, 45], superlattices [46, 47] and nanocomposites [21, 23, 48, 49]. In 

these semiconductor nanostructures, interfaces play a crucial role on reducing the thermal 

conductivity compared with their bulk counterparts by inducing additional interface scattering of 

phonons. However, such interface scattering might not be as important for the van der Waals solids, 

where two-dimensional layers are stacked together through very weak van der Waals bonding and 

the surface of few-layer two-dimensional materials can be atomically smooth when the thickness 

is reduced to only a few layers [143]. For example, both experiments [144] and numerical 

simulations [64, 145, 146] showed that the thermal conductivity of graphene gradually decreases 

when the layer number is increased and approaches to the bulk value when there are four to five 

layers. It is generally believed that the thermal conductivity reduction in few-layer graphene is due 

to the breakdown of the selection rule that arises out of the reflection symmetry of the single-layer 

graphene [67]. However, some other two-dimensional materials with different crystal structures, 

such as Bi2Te3 and TaSe2, exhibit quite different layer-dependence of the thermal conductivity 

from graphene. Pettes et al [147]. reported the trend of decreasing thermal conductivity when the 

thickness of suspended Bi2Te3 film decreases from 25 nm to 9 nm, indicating that the interfacial 
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scattering in Bi2Te3 is still non-negligible when the thickness is larger than 9 nm. Qiu and Ruan 

[148] found a non-monotonic dependence of the thermal conductivity on layer thickness of Bi2Te3 

from their equilibrium molecular dynamics simulations. The single-layer Bi2Te3 has the highest 

thermal conductivity, which is then reduced to the minimum value for the three-layer Bi2Te3, and 

then converged back to the bulk value. Yan et al. [149] measured the thermal conductivity of two-

dimensional transition metal dichalcogenide TaSe2 with 1T structure using the optothermal Raman 

measurement, and found that the thermal conductivity of these TaSe2 films at room temperature 

decreases from its bulk value of 16 W/mK to 9 W/mK in 45-nm-thick films. These studies indicate 

that the crystal structures of the two-dimensional materials might play an important role in 

determining their layer thickness-dependent thermal conductivity. Because the crystal structure of 

MoS2 is quite different from the materials studied before, it is unclear how the thermal conductivity 

of two-dimensional MoS2 changes with its layer thickness. 

Along this line of curiosity, many experimental works have been conducted to measure the 

thermal conductivity of single-layer, few-layer and bulk MoS2. The measured results are 34.5 

W/mK [135] and 84 W/mK [150] for single-layer one, 77 W/mK [150], 46 W/mK [136], 50 W/mK 

[136] and 52 W/mK [151] for 2-layer, 4-layer, 7-layer and 11-layer MoS2, respectively. Liu et al. 

[152] reported a large thermal conductivity value for bulk MoS2, around 100 W/mK. The details 

of these measurements are summarized in Table III.1. Direct comparison among these 

experimental data is challenging since both sample quality and experiment conditions are different 

from different research groups.  

Theoretical work has also been employed to study the thermal conductivity in single-layer and 

few-layer MoS2. A recent MD study using Stillinger-Weber (SW) potential showed that the 

thermal conductivity of MoS2 is about 5 W/mK for all MoS2 with different layer numbers [153]. 
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This calculated thermal conductivity is one to two orders-of-magnitude smaller than the measured 

results [152], which indicates that the anharmonicity of the intralayer interaction from the 

empirical potential is severely overestimated. On the other hand, the first-principles-based Peierls-

Boltzmann transport equation (PBTE) method [8, 16, 20, 103, 154, 155] has been applied to predict 

the thermal conductivity of many bulk and two-dimensional materials, including single-layer 

MoS2 [138, 156], which showed satisfactory agreement with the experiment results. 

 
Table III.1. Experimental studies on the thermal conductivity in MoS2. χ is the temperature 
coefficient of Raman signal and α is the absorption ratio used for data fitting. The details of 
measurements are summarized in a recent review (Ref. [143]). 

Ref. Method Sample type Room-
temperature 

thermal 
conductivity 

(W/mK) 

Experimental conditions 

Yan 
[135] 

Raman Exfoliated, 
transferred 

34.5±4 (1-Layer) A1g mode,  χ =0.011 cm-1/K, α=9±1% ,170 nm diameter 
laser spot, suspended on 1.2-μm-diameter holes, 

ambient condition 
Zhang 
[150] 

Raman Exfoliated, 
transferred 

84±17 (1-Layer) 
 

A1g mode,  χ =0.0203 cm-1/K, α=5.2±0.1%,460-620 nm 
diameter laser spot, suspended on 2.5-to-5.0-μm-

diameter holes, ambient condition 
Zhang 
[150] 

Raman Exfoliated, 
transferred 

77±25 (2-Layer) 
 

A1g mode,  χ =0.0136 cm-1/K, α=11.5±0.1%,460-620 
nm diameter laser spot, suspended on 2.5-to-5.0-μm-

diameter holes, ambient condition 
Jo 

[136] 
Micro-
bridge 

Exfoliated, 
transferred 

44–50 (4-Layer) Suspended sample; length: 3 μm, width: 5.2 μm. 

Jo 
[136] 

Micro-
bridge 

Exfoliated, 
transferred 

48-52 (7-Layer) Suspended sample; length: 8 μm, width: 2.2 μm. 

Sahoo 
[151] 

Raman CVD, 
transferred 

52 (11-Layer) A1g mode, χ= 1.23 × 10-2cm/K, α = 10%,1-1.5 μm laser 
spot, suspended on a 10- μm-radius quadrant, ambient 

condition 
Liu 

[152] 
Pump-
probe 

Bulk 85-112 Modulation frequency of pump beam: 10.7 MHz 

 

In this chapter, we first present a systematic study of the phonon transport in single-layer TMDs 

MX2 (M = Mo, W, Zr and Hf, X = S and Se) by solving the PBTE with interatomic force constants 

inputs from first-principles calculations. The validity of applying SMRTA to predict the thermal 

conductivity of single-layer TMDs is assessed first by comparing the calculation results of 
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SMRTA and the iterative solution of the PBTE on MoS2. The thermal conductivities of the eight 

single-layer TMDs are then predicted from the iterative solution of the PBTE. Much higher thermal 

conductivity is found in 2H TMDs, especially WS2, comparing to that of 1T TMDs. The origins 

of their distinct thermal transport properties are explored by detailed phonon scattering analysis. 

Then, we study the dependence of thermal conductivity of two-dimensional MoS2 on its layer 

thickness. Due to the computational power limitations, we calculate the thermal conductivity of 

one- to three-layer MoS2, but compare them with bulk MoS2. The thermal conductivity of single-

layer MoS2 is found to be the highest among all samples studied, and the thermal conductivity 

decreases with the thickness changing from one to three layers. Detailed phonon scattering rate 

analysis shows that the anharmonicity is significantly increased in the bi- and tri- layer MoS2 

compared with single-layer MoS2, which suppresses the heat conduction ability of flexural acoustic 

phonons.  

 

III.2 Numerical methods 

 
In the first-principles-based approach, the accurate second-order harmonic and third-order 

anharmonic force constants are first extracted from density functional theory, which are employed 

to calculate the phonon transport properties, including phonon dispersion relation and three-

phonon scattering rates. Such phonon dynamics information is then used as the inputs for the PBTE, 

which considers the balance between phonon diffusion driven by the small temperature difference 

and phonon scatterings due to various scattering mechanisms. Here, we consider three kinds of 

phonon scattering mechanisms, three-phonon scattering, isotope scattering and diffusive boundary 

scattering. The solution of PBTE provides the information of the population of each phonon mode 

and enables us to evaluate the thermal conductivity. The theoretical background of PBTE, 
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including the phonon scattering mechanisms and the solution of PBTE from the SMRTA and the 

iterative approach, can be found in Chapter II.  

Since phonon properties and the calculated thermal conductivity are very sensitive to the 

interatomic force constants, we perform the following tests to validate our extracted force 

constants. Figure III.2 shows the calculated phonon dispersion curves of bulk MoS2 using the 

extracted harmonic force constants, which are in reasonable agreement with the available 

experimental data of from the inelastic neutron scattering measurement [157]. 

 

 

Figure III.2. Phonon dispersion of bulk MoS2. Black lines are the results calculated using the 

second-order harmonic force constants from first-principles calculations. Dots are the 

experimental data from inelastic neutron scattering measurement [157]. 

 

0

100

200

300

400

500

MK 

 

 

F
re

q
u

en
cy

 (
cm

-1
)





51 
 

We then turn to the verification of the third-order anharmonic force constants. Recent studies 

have shown that the cutoff of anharmonic interaction is crucial to the calculation of thermal 

conductivity [158]. While too small a cutoff tends to overestimate the thermal conductivity, a 

larger cutoff requires much more computational resources. To make our calculations affordable, 

we carefully chose the range of anharmonic interaction to be 6 Å. We validate the extracted third-

order force constants by calculating the mode-specific Gruneisen parameters, which serve as 

indicators for the degree of anharmonicity of the crystal, using bulk MoS2 as a testing case. The 

mode-specific Gruneisen parameters can be calculated in two ways. The finite difference approach 

gives  

௦ܙߛ = −൫Δ߱ܙ௦/Δܸ൯/൫߱ܙ௦/ܸ൯,     (III. 1)   

with the crystal volume ܸ. 

From the perturbation theory using the third-order force constants as inputs,  the mode-specific 

Gruneisen parameter is expressed as [8, 159]  

௦ܙߛ =
ଵ

଺ఠࢗೞ
మ ∑ ∑ Ψ଴ఛ,ࡾᇲఛᇲ,ࡾᇲᇲఛᇲᇲ

ఈఉఊ
ఈఉఊ

ఌࢗೞ
ഓഀఌ

ᇲೞᇲࢗ
ഓᇲഁ

ඥெഓெഓᇲ
exp(݅ࢗ ∙ (ᇱࡾ ᇲᇲఛᇲᇲࡾ࢘

ఊ
ఛ,ࡾᇲఛᇲ,ࡾᇲᇲఛᇲᇲ ,  (III.2) 

where (ࡾ, ߬,  refers to the degree of freedom corresponding to the α direction of the τ-th basis (ߙ

atom in the unit cell located at position ࡾ, Ψ is the third-order anharmonic force constant, ε and ࢘ 

are the polarization vector component and equilibrium atomic position.  

Figure III.3 shows the calculated mode-specific Gruneisen parameters of acoustic and low-

lying optical (below the frequency gap at around 250 cm-1) phonon modes for bulk MoS2. These 

phonon modes account for more than 90% of its total thermal conductivity. Clearly, the results 

from these two computing methods are consistent with each other, confirming that our choice on 

the cutoff for the anharmonic interaction indeed gives converged results. 
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Figure III.3. Mode-specific Gruneisen parameters of acoustic and low-lying optical phonons of 

bulk MoS2. Dots and lines represent the Grunesien parameters calculated from the finite-

difference method and the perturbation theory, respectively. Different colors are assigned 

according to which branches the data represents (see Fig. III.2). 

 

III.3 Thermal conductivity of single-layer TMDs 

Table III.2 summarizes the calculated lattice constants for the eight TMDs studied in this work, 

which are in excellent agreement with the available measured values for monolayer [160] and bulk 

TMDs [161-163]. To report the values of thermal conductivity, the thicknesses of the monolayers, 

h, are also listed, which are defined as the measured cross-plane lattice constants or half of the 

lattice constants of the bulk materials, depending on 1T or 2H single-layer TMDs. We also 
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defined as the trace of the harmonic force constant tensor of the nearest neighboring atom pairs 

(the metal atom M and the chalcogenide atom X), and written as [164] xx yy zz
MX MX MXK      , where 

MX
  is the second derivatives of the energy with respect to the displacement of atoms M and X 

along the Cartesian axis  . Contradictory to the previous understanding that the bonding is weak 

in TMDs, the bonding in single-layer molybdenum and tungsten dichalcogenides are indeed 

surprisingly stiff, even stiffer than silicon with a spring constant of 9.7 eV/Å. In general, the 

sulfides are 15% stiffer than the selenides, while the molybdenum dichalcogenides are 4% less 

stiff than tungsten dichalcogenides. Considering that the difference in the bonding strength in the 

group of 2H TMDs is small, the mass of the basis atoms plays a key role in determine their phonon 

dispersion relations, which in term determines the related group velocity and thermal properties. 

Comparing to 2H TMDs, the bonding in the 1T zirconium and hafnium dichalcogenides is about 

50% weaker than their molybdenum and tungsten counterparts. 

 

Table III.2. Lattice constants and spring constants of single-layer TMDs from DFT calculations, and the 

lattice constants from literature.  

material lattice constant thickness spring constant 

 
a (Å) 
(DFT) 

a (Å)  
(Exp. momolayer) 

a (Å) (Exp. bulk) h (Å) (Exp.) K (eV/Å) 

MoS2 3.19 3.22a 3.16 b 6.15 b 11.2 
WS2 3.19 3.23a 3.15 c 6.16 c 11.7 

MoSe2 3.32 - 3.30 b 6.47 b 9.8 
WSe2 3.325 3.27a 3.28 c 6.48 d 10.2 
ZrS2 3.691 - 3.66 d 5.85 d 4.6 
HfS2 3.646 - 3.62 d 5.88 d 5.2 
ZrSe2 3.806 - 3.76 d 6.15 d 3.7 
HfSe2 3.771 - 3.73 d 6.14 d 4.2 

a Ref[[160]] 
b Ref[[161]] 
c Ref[[162]] 
d Ref[[163]] 
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Figure III.4 show the length-dependent thermal conductivity of MoS2 at 300K calculated using 

both the iterative solution of PBTE and from SMRTA. Our SMRTA results are very close to Li et 

al’s calculations using a similar approach [138]. When the length of the monolayer sheet L is 

smaller than 30 nm, the difference between two approaches is less than 5%. This is because the 

dominant phonon scattering comes from elastic boundary scattering when the concept of relaxation 

time is applicable. However, as the length increases where the phonon-phonon scattering becomes 

dominant, SMRTA cannot distinguish the resistive Umklapp process and the normal process, 

which does not directly provide the resistance to the heat flow. The under-prediction of SMRTA 

becomes distinguishable when the scattering due to normal process is strong. For example, when 

L = 1 μm, the thermal conductivity from the iterative solution of the PBTE is 103 W/mK, which 

is ~25% higher than the value of 83 W/mK from SMRTA. Due to such non-negligible difference 

between the two methods, PBTE is strictly solved with the iterative approach in this work to 

accurately predict the thermal conductivity of TMDs. Although SMRTA tends to underestimate 

considerably the thermal conductivity of single-layer TMDs, the concept of phonon lifetime or 

scattering rate, that is used in SMRTA, of each phonon mode can still provide useful information 

on the strength of phonon-phonon scattering. We have thus still employ SMRTA when needed to 

qualitatively interpret the scattering mechanism in different materials. 
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Figure III.4. The calculated thermal conductivity of MoS2 at 300K as a function of sample size. 

 

The calculated thermal conductivity of MoS2 using MD simulations with empirical interatomic 

potentials [139, 140] is shown in Fig. III.2. Clearly MD simulations have predicted a far too low 

thermal conductivity value comparing to the first-principles calculations. Although some of the 

potentials used in MD can reasonably reproduce the phonon dispersion, the anharmonicity was not 

taken into account when the empirical potentials were developed. The low thermal conductivity 

prediction from MD indicates that the anharmonicity in these empirical potentials has been 

overestimated. 

Figure III.5 shows the calculated thermal conductivities of TMDs with the sample size 

1 mL   as a function of temperature, along with the available measurement data of single-layer 

TMDs. Among the four single-layer 2H TMDs, WS2 is of the highest thermal conductivity, 142 

W/mK at room temperature and then followed by MoS2 (103 W/mK), MoSe2 (54 W/mK) and 
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WSe2 (53 W/mK).  It is notable that the thermal conductivity of WS2 is the highest among all 

TMDs studied and about 40% larger than that of MoS2. The atomic mass of W is about twice as 

heavy as Mo. Table III.2 shows that the bonding in WS2 is only ~ 4% stiffer than that in MoS2 

according to the spring constants. The large thermal conductivity of WS2 is contradictory to the 

classical theory which would expect a smaller phononic thermal conductivity due to the much 

heavier atom mass and weaker bonding stiffness [96]. Figure III.6 shows the phonon dispersion of 

MoS2 and WS2. As expected, all the three acoustic branches of WS2 are lower than that of MoS2 

due to the difference in atom mass and bonding stiffness between MoS2 and WS2. As a result, the 

group velocity and heat capacity of the acoustic phonons in MoS2 are larger than WS2, both of 

which facility the heat transport. However, much weaker phonon-phonon scattering is observed in 

WS2 is than in MoS2, especially for middle-range frequency phonon modes (50 cm-1 to 200 cm-1) 

by examining the phonon scattering rate, as shown in Fig. III.7.  

 

Figure III.5. The thermal conductivity of (a) 2H and (b) 1T TMD monolayers as a function of 

temperature. 
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Figure III.6. Phonon dispersion of (a) MoS2 and WS2, and (b) ZrS2 and HfS2 calculated from the 

first-principles simulations. 

 

In Figure III.6, we also observe a very large frequency gap between the optical and acoustic 

phonon branches in WS2, due to the large mass difference of the basis atoms of WS2. The 

frequency gap is as large as 110 cm-1, which is close to the range of acoustic phonons of WS2 (178 

cm-1), while the gap is only 45 cm-1 for MoS2, much smaller than the range of acoustic phonons 

(230 cm-1). Because of the large phonon frequency gap of WS2, one important phonon scattering 

channel, the annihilation process of two acoustic phonon modes into one optical one 

(acoustic+acoustic->optical), becomes ineffective due to the requirement on energy conservation 

for phonon-phonon scattering, although such scatterings are not totally prohibited. The scattering 

through such scattering channel is usually the resistive Umklapp scattering [165]. As a result, the 

weaker phonon-phonon scattering rate is observed in WS2 which renders to a much higher thermal 

conductivity.  
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Figure III.7. Phonon lifetime of MoS2 and WS2 at 300K as a function of phonon frequency. 

 

To further show that the large phonon frequency gap leads to the large thermal conductivity of 

WS2, we shift the phonon frequency of each optical phonon mode downward by the same amount 

to reduce the frequency gap, and then recalculate the thermal conductivity of the WS2-like material. 

Figure III.8 shows the calculated thermal conductivity as a function of the size of the phonon 

frequency gap. Clearly, the thermal conductivity monotonically decreases when the phonon 

frequency gap becomes smaller. In particular, when the frequency gap is the same as that of MoS2, 

the thermal conductivity is reduced to 60 W/mK, a value even smaller than that in MoS2. Recently, 

the first-principles calculations have been used to predict very high thermal conductivity of some 

three-dimensional bulk materials, such as Bas [165] and AlSb [17], primary due to a large 

frequency gap. Our simulations confirm that examining the acoustic-optical frequency gap could 

be a powerful search for 2D materials with high thermal conductivity. We also plot results 

calculated from SMRTA in Fig. III.8. The ratio between the thermal conductivities from the 

iterative solution and the SMRTA increases when the gap becomes large. This can be partially 
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attributed to less resistive Umklapp scattering through the channel of acoustic+acoustic->optical. 

This observation confirms the importance of fully solving the PBTE to accurately predict the 

thermal conductivity of TMDs. 

 

 

Figure III.8. Calculated thermal conductivity of WS2-like material at 300K as a function of the 

frequency gap between acoustic and optical branches. The black dashed lines indicate the 

frequency gap of MoS2 and WS2. 

 

Unlike the high thermal conductivity of 2H molybdenum and tungsten dichalcogenides, the 

thermal conductivities of zirconium and hafnium dichalcogenides are found to be much lower, 

ranging from 10 W/mK to 30 W/mK when the size of sample is 1 μm, as shown in Fig. III.6(b). 

To explore the origin of the low thermal conductivity of these materials, we examine phonon 

dispersion and phonon lifetime of 1T TMDs and compare them with 2H TMDs. Figure III.5(b) 

shows the phonon dispersion of ZrS2 and HfS2. The span of the phonon frequency is much smaller 

than 2H MoS2 and WS2, which could be attributed to the weak bonding stiffness. Figure III.9 show 
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the phonon lifetimes of both 2H and 1T TMDs. While the phonon lifetimes of 2H TMDs are all 

above 1 ps, the phonon lifetimes of 1T TMDs are almost one order-of-magnitude smaller than that 

of 2H TMDs. The strong scattering in 1T TMDs is also correlated to their relatively small range 

of the phonon frequency. In 1T TMDs, the separation between acoustic and the optical phonon 

branches is smaller, which results in much more frequent scattering between acoustic modes and 

optical modes. In addition, the strength of such scatterings is expected to be strong compared with 

the case in 2H TMDs, because the population of the lower-frequency optical phonon modes 

involving the scattering with acoustic modes is larger according to the Bose-Einstein statistics, and 

the elements of the three-phonon scattering matrix is larger due to it inversely proportional relation 

with the phonon frequency. 

 

 
Figure III.9. Phonon lifetime for (a) 2H TMDs and (b) 1T TMDs.  

 
 

III.4 Thermal conductivity of bulk MoS2 

 

Figure III.10 shows the calculated basal-plane thermal conductivity of an infinitely large bulk 

MoS2 as a function of temperature, in comparison with the available experiment data. The basal-

plane thermal conductivity of bulk MoS2 made up of the naturally occurring Mo and S isotopes 
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decreases from 340 W/mK to 73 W/mK when the temperature increases from 100 K to 400 K, 

while the cross-plane thermal conductivity changes from 11.4 W/mK to 2.6 W/mK. At room 

temperature, the basal-plane thermal conductivity from our calculation is 98 W/mK, which falls in 

the range of 85-112 W/mK obtained from a recent pump-probe measurement [152]. The thermal 

conductivity of isotopically pure MoS2 is also shown in Fig. III.10. Due to the absence of isotope 

scattering, the basal-plane thermal conductivity is 117 W/mK in the isotopically pure crystal, about 

20% higher than the naturally occurring one.  

 

 

Figure III.10. Basal-plane thermal conductivity of bulk MoS2 as a function of temperature. Blue 

dot is the experimental data from pump-probe measurement [152]. 

 

Figure III.11 shows the cross-plane thermal conductivity of bulk MoS2. The cross-plane 

thermal conductivity of the naturally occurring MoS2 is calculated to be 3.5 W/mK at room 
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temperature. We notice that the measured cross-plane thermal conductivity ranges from 2 W/mK 

to 2.5 W/mK using ultrafast laser-based pump-and-probe measurements [130, 152], which is 

consistently lower than the calculated value. This indicates that sample quality and measurement 

geometry could play an important role in the determination of the measured cross-plane thermal 

conductivity. 

 

Figure III.11. Cross-plane thermal conductivity of bulk MoS2 as a function of temperature. Blue 

and Green dots are the experimental data from pump-probe measurement [130, 152]. 

 

As shown above, our numerical results for basal-plane thermal conductivity are consistent with 

the measurements but those for cross-plane thermal conductivity are not. One possible explanation 

for this difference is that the thermal conductivity extracted from the pump-and-probe 

measurements is dependent on the modulation frequency [166]. The pump beam with a modulation 

frequency of  ߱୮୳୫୮ could only heat a limited region away from the surface heated by the beam 
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spot. The length scale of the heated region can be roughly estimated as the thermal diffusion depth 

݈ௗ= ඥ߱ܥߨ/ߢ୮୳୫୮ with the heat capacity of the material C (=1.89 J/cm3K for bulk MoS2).  For 

basal-plane transport, we use a basal plane thermal conductivity of 100 W/mK to calculate the 

thermal diffusion length in the radial direction and it ranges from 1 μm to 4 μm when the frequency 

changes from 10 MHz to 1 MHz. Because beam spot size in the measurements is usually very large, 

for example, a 12-μm-in-diameter spot size was used in Ref. [152], the excited phonons will travel 

through a long distance in the order of 10 μm on average to the unheated region. This length is larger 

than or comparable to the mean free path of most of the heat-carrying phonons. Therefore, the phonon 

transport along the radial direction is diffusive and the measured basal-plane thermal conductivity 

is close to our calculations. But for phonon transport in the cross-plane direction, we find that the 

thermal diffusion length is only about 200-300 nm with the common modulation frequency 

߱୮୳୫୮(≈ 10 MHz) [152] employed in these experiments, along with the estimated cross-plane 

thermal conductivity of bulk MoS2 , 2-5 W/mK. This indicates that the heat carried by the phonons 

with mean free paths larger than ~250 nm is suppressed in the pump-probe measurements. As a 

result, the deduced thermal conductivity from the pump-and-probe measurement has a lower value 

than its true thermal conductivity. To evaluate the contribution from these long mean free path 

phonons, we calculate the cross-plane thermal conductivity of MoS2 by leaving the two reservoirs 

250 nm apart, mimicking the phonon transport across the heating region in the pump-and-probe 

measurements. We find that the thermal conductivity from this simulation with short distance is 

about 2.1 W/mK, which indeed fall into the range of the measured cross-plane thermal 

conductivity of MoS2.  
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III.5 Layer-dependent thermal conductivity of MoS2 

 

After the validation of the theoretical calculations on bulk MoS2 with the insights to the pump-

and-probe measurements, we study the thermal conductivity of single- and few-layer MoS2. To 

mimic the measurement conditions for the in-plane thermal conductivity, where the characteristic 

size of the suspended samples is usually in the order of several microns, we impose a sample size 

of 10 μm to include boundary scattering to solve the PBTE. Figure III.12 shows the calculated 

thermal conductivity of MoS2 as a function of layer number at room temperature, in comparison 

with the recent measurement results [135, 136, 150-152]. For naturally occurring MoS2, the 

calculated thermal conductivity values are 138 W/mK, 108 W/mK, 98 W/mK and 94 W/mK for 

single-layer, bi-layer, tri-layer and bulk samples, respectively. For the isotopically pure samples, 

the thermal conductivity values are consistently higher at 155 W/mK, 125 W/mK, 115 W/mK, and 

112 W/mK, respectively. It is evident that the thermal conductivity of few-layer MoS2, both 

naturally occurring and isotopically pure, decreases with the thickness from single layer to three 

layers, and the thermal conductivity of the tri-layer MoS2 almost approaches to the bulk value.  

 



65 
 

 

Figure III.12. Room-temperature basal-plane thermal conductivity of MoS2 as a function of layer 

numbers. 

 

To understand the mechanisms of thermal conductivity reduction from single-layer MoS2 to 

thicker ones, we examine the contributions from the changed phonon dispersion curves of MoS2 

with one to three layers. Figure III.13 shows the dispersion curves of acoustic and low-frequency 

optical branches (< 250 cm-1), which together contribute to more than 90% of the total thermal 

conductivity. In the single-layer MoS2, there are three acoustic branches, including one 

longitudinal acoustic (LA) branch, one transverse acoustic (TA) branch and one flexural acoustic 

(ZA) branch, whose frequencies becomes zero as the wavenumber q approaches to zero, shown as 

the black solid curves in both Fig. III.13(a) and III.13(b). For N-layer MoS2 (N=2,3), there are 3N-

3 low-frequency optical phonon branches beneath the frequency gap around 250 cm-1 in addition 

to the 3 acoustic branches due to more basis atoms involved. It is clearly seen that the three groups 

of phonon branches, each of which involves N branches are almost degenerated/overlapped with 
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each other for the region away from the first Brillouin zone center, which is similar to the 

observation on multi-layer graphene. We denote these phonon branches in multi-layer MoS2 as 

LAi, TAi and ZAi branches (i = 1,.., N), where LAi (TAi and ZAi) are sorted ascendingly according 

to the phonon frequency at ݍ = 0.  

For multi-layer graphene, the N branches in each groups become nondegenerated near the first 

Brillouin zone center [64, 145, 167].  While the acoustic branch has a zero frequency at the zone 

center, the other N-1 (optical) branches gradually become less dispersive (for TAi and LAi 

branches) or even flat (for ZAi branches) as ݍ → 0. Unlike multi-layer graphene, the phonon 

dispersion in multi-layer MoS2 are dramatically different. Two acoustic branches and N-2 optical 

branch are found in the group of ZAi while one acoustic branch and N-1 optical branches in the 

group of TAi, and even more interestingly, all N LAi are optical modes. In Fig. III.13(a) and (b), 

we also observe kinks, indicated by arrows, occur at ݍ ≈  ,on the ZAi branches (଴ܽ/ߨ2) 0.05

changing the shapes of ZAi and LAi branches. Near each kink, the corresponding ZAi branch 

experiences a flat-to-dispersive transition as q decreases. The ZA2 even becomes an acoustic 

branch with a large sound velocity due to the transition. In contrast, LAi branches turn from 

dispersive to flat. As a result, the LA2 and the ZA2 in bi-layer MoS2, as well as the LA1 and the 

ZA2, or the LA3 and the ZA3 in tri-layer MoS2, do not cross each other. Similar phenomena have 

been also reported in other materials [168, 169], and are called avoided-crossing in literature [168]. 

For example, in some caged structures encapsulating guest atoms, such as clathrates [168], a 

dispersive acoustic-phonon branch and a flat branch corresponding to the movement of guest atom 

do not cross each other but transit to be flat and dispersive, respectively. The avoided-crossing in 

the few-layer MoS2 reduces the group velocity of the acoustic phonon modes nearby. In addition 

to reduced group velocities of the phonon modes near the avoided-crossing, the long-wavelength 
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optical phonon modes in few-layer MoS2 generally have slightly smaller group velocities than the 

acoustic phonons, reducing the average group velocity for the heat carrying phonons compared 

with the single-layer MoS2. 

One might expect that such changes in the phonon dispersion from one-layer to multi-layer 

MoS2 could lead to significant change on thermal conductivity, due to the lower group velocity. 

To test this hypothesis, we recalculate the thermal conductivity of naturally occurring bi-layer and 

tri-layer MoS2 using their own phonon dispersion as shown in Figure III.13, but ignoring the third-

order anharmonic force constants corresponding to the interlayer interaction and assigning their 

intralayer anharmonic force constants with the anharmonic force constants of single-layer MoS2. 

The recalculated thermal conductivity of bi-layer and tri-layer MoS2 is only 12% and 15% lower 

than the single-layer one, respectively, which is definitely smaller than 22% and 29% obtained 

from the calculations using their own anharmonic force constants. Apparently, the change in 

phonon dispersion is an important factor to reduce the thermal conductivity from a higher value at 

the single layer to the multi-layer MoS2.  However, phonon dispersion change is not the single 

factor. The change of anharmonic force constants could be as important in reducing the thermal 

conductivity values from single-layer to multi-layer MoS2. 
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Figure III.13. Phonon dispersion of few-layer MoS2. Black lines are the dispersion for single-layer 

MoS2. Blue, red and green lines refer to the ZAi, TAi and LAi branches, respectively. Dash, dash-

dot and short-dash lines refer to i=1, 2, 3, respectively. 

 

Figure III.14 shows the phonon scattering rate, or the inverse of phonon lifetime, of the acoustic 

and low-lying optical modes for single-layer and bi-layer MoS2 along the Γ-K direction, calculated 

using their respective third-order anharmonic force constants. Clearly the scattering rates for the 

in-plane phonon modes (TAi and LAi) in bi-layer MoS2, except the modes near the zone center, 

are almost unchanged compared with their counterparts (TA1 and LA1) in single-layer MoS2. Since 
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there is only a small fraction of phonons near the zone center, the total thermal conductivity of TAi 

and LAi branches should be very close to that of TA1 and LA1 in single-layer MoS2.  

 

 

Figure III.14. Scattering rates of the acoustic and low-lying optical branches of phonons in single-

layer and bi-layer MoS2. Black lines are the scattering rates for single-layer MoS2. Blue, red and 

green lines refer to the ZAi, TAi and LAi branches, respectively. Dash and dash-dot lines refer to i 

=1, 2, respectively. 

 

In comparison, the scattering rates of ZAi phonons in bi-layer MoS2 are significantly larger 

than ZA1 phonons in single-layer MoS2 throughout the entire first Brillouin zone. This could be 

understood by closely examining the third-order anharmonic force constants. Assuming that n, m 

and l refer to any Mo atoms in the same layer, the force constants, ߰௡,௠,௟
௭,௭,௭ , which are the third-order 

derivatives of the total energy of the crystal with respect to the z coordinates of atom n, m and l, 

are found to be zero in single-layer MoS2 because of the mirror symmetry. This means that there 

is no anharmonicity induced by the relative motion among the three Mo atoms along z direction. 
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Since the dominating atomic motion of ZA phonons is along z direction, the scattering rates of 

these ZA phonon modes are thus very small. When two MoS2 monolayers are in contact with each 

other, the mirror symmetry breaks down. As a result, the third-order anharmonic force constants 

߰௡,௠,௟
௭,௭,௭  become non-zero, leading to stronger scattering of ZAi phonons in bi-layer MoS2. In 

addition to the third-order anharmonic force constants involving the out-of-plane motion of three 

Mo atoms, the third-order anharmonic force constants corresponding to the interlayer interaction 

also contribute to the anharmonicity, which is absent in the single-layer MoS2.  

The observation of low scattering rate of ZA modes in single layer MoS2 induced by mirror 

symmetry is indeed similar to graphene. In graphene, the scattering with odd number of out-of-

plane modes, such as ZA + TA -> LA and ZA + ZA -> ZA, are totally prohibited due to its mirror 

symmetry [67]. However, there is still a notable difference between MoS2 and graphene. Because 

the atom vibration of ZA modes also involves S atoms, the forbidden scattering channels in 

graphene are not totally forbidden in MoS2. Therefore, while the thermal conductivity reduction 

from single-layer graphene to bi-layer graphene is mainly attributed to the stronger phonon 

scattering in bi-layer graphene due to the breakdown of the symmetry selection rule, which 

accounts for 70% reduction [145], both the change of phonon dispersion and the enhanced phonon 

scattering strength are important for explaining the thermal conductivity reduction from single 

layer to multilayer MoS2.  

 
 

III.6 Summary of this chapter 

 
In summary, we have used the first-principles-based PBTE approach to systematically predict 

the phononic thermal conductivity of eight typical single-layer TMDs. The validity of the single-
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mode relaxation time approximation to predict the thermal conductivity of TMDs is also assessed 

by comparing with the iterative solution of the phonon Boltzmann transport equation. We found 

that the thermal conductivities of MoS2 and WS2 are as high as 103 W/mK and 142 W/mK when 

the size of the sample is 1 μm, respectively. The large thermal conductivity of WS2 can be 

attributed to the large acoustic-optical frequency gap due to the large mass difference of W and S, 

which makes inefficient scattering among acoustic and optical phonon modes. The thermal 

conductivities of 1T-type TMDs are generally smaller than the 2H-type TMDs due to the low 

bonding stiffness.  

The basal-plane thermal conductivity of MoS2 is found to monotonically reduce from 138 

W/mK to 98 W/mK for naturally occurring MoS2 with a sample size of 10 μm, and from 155 

W/mK to 115 W/mK for isotopically pure MoS2, when its thickness increases from one layer to 

three layers. The thermal conductivity of tri-layer MoS2 approaches to that of bulk MoS2. Both the 

change of phonon dispersion and the thickness-induced anharmonicity are important for explaining 

such a thermal conductivity reduction. The increased anharmonicity in bi-layer MoS2 results in 

stronger phonon scattering for ZAi modes, which is linked to the breakdown of the symmetry in 

single-layer MoS2.  
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CHAPTER IV PHONON TRANSPORT IN TWO-DIMENSIONAL 
MOLYBDENUM TUNGSTEN ALLOY EMBEDDED WITH 

NANODOMAINS  
 

 

IV.1 Introduction 

 
Two-dimensional (2-D) transition metal dichalcogenides (TMDs) have shown numerous 

interesting physical and chemical properties [41, 42, 170], making them promising materials for 

electronic, optoelectronic, and energy applications. For many of these technological applications, 

materials are expected to possess a few desired functions or properties simultaneously, which can 

hardly be fulfilled by the intrinsic properties of a single material. Therefore, various attempts, such 

as reducing dimensions [171, 172], intercalation [173, 174], heterostructuring[175-177] and 

alloying [178, 179], have been made to tune the electronic and optical properties of 2-D TMDs to 

expand the applicability of 2-D TMDs for different applications.  

Phonon and thermal properties of 2-D TMDs is of great interest because it is highly relevant 

to the functionality, performance and reliability of 2-D TMD-enabled devices. Many efforts have 

been devoted to investigate the thermal conductivity of 2-D TMDs, both theoretically [138, 156, 

180] and experimentally [134-136, 181]. While the 2-D TMDs with high thermal conductivity 

might be beneficial to thermal management and electronic cooling, those with low thermal 

conductivity could be used as the thermal barrier materials [182] and thermoelectric materials [51]. 

Tuning the thermal conductivity of 2-D TMDs could significantly broaden their applications [143]. 
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For example, recent experiments showed that MoS2 is of a relatively high power factor [183, 184]. 

Apparently if the thermal conductivity of 2-D MoS2 can be suppressed without significant change 

in power factor, it could be a promising thermoelectric material. 

Inspired by the so-called “nanoparticle-in-alloy” approach used to reduce the thermal 

conductivity of three-dimensional (3-D) bulk materials, i.e., nanocomposites [48, 49, 185], one 

might expect very low thermal conductivity of 2-D TMD alloys when embedded with 

nanodomains. Interestingly, both 2-D MoS2-based alloys [178, 179] and heterostructures with 

triangular nanodomains have been recently synthesized [175-177], which laid the foundation for 

synthesizing 2-D TMD alloys embedded with nanodomains. However, it is unclear how low the 

thermal conductivity can be achieved using the “nanodomains in 2-D alloy” approach. This calls 

for a fundamental study on how alloying and embedding nanodomains affect phonon transport and 

thermal conductivity of 2-D TMDs. 

In this chapter, we study the lattice (phonon) thermal conductivity of single-layer Mo1-xWxS2 

alloy and Mo1-xWxS2 alloy embedded with triangular WS2 nanodomains. Since MoS2 and WS2 are 

almost lattice matched [156], the nanostructures we studied here could be dislocation free and are 

expected to retain a relatively high power factor without significantly shortening electron mean 

free paths [48, 49, 185]. The first-principles-based Pierels-Boltzmann transport equation (PBTE) 

approach is employed to calculate the thermal conductivity of the nanostructures. The phonon 

scattering mechanisms, including three-phonon scattering, phonon-alloy scattering and phonon-

nanodomain scattering, are all accounted for in the solution of the PBTE. The phonon scattering 

rates due to both alloying and embedding nanodomains are evaluated by the Green’s function 

approach [186, 187]. The effects of area fraction, nanodomain size and the composition of alloy 

on the thermal conductivity are investigated. The thermal conductivity was found to be reduced to 
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one-tenth of the defect-free single-layer MoS2 mainly due to the strong phonon-alloy scattering. 

Nanodomains can also play a role in thermal conductivity reduction.  

IV.2 Numerical methods 

IV.2.1 Pierels-Boltzmann transport equation for lattice thermal conductivity 

Figure IV.1 shows a single-layer Mo1-xWxS2 alloy embedded with triangular WS2 

nanodomains lying in the x-y plane. A typical atomic configuration for the alloy with nanodomains 

is also presented in Fig. IV.1. Assuming that all the nanodomains are of the same size but randomly 

embedded, the 2-D crystal is then characterized by three parameters, including the composition of 

alloy, x, the area fraction, ݂୒ୈ, and the side length, a, of WS2 nanodomains. ݂୒ୈ/ܣ୒ୈ  defines the 

number density of nanodomains per unit area ܰ୒ୈ, where  ܣ୒ୈ is the area of each nanodomain.  

 

 

Figure IV.1. The schematic of the simulation domain. The inset shows a typical atomic 

configuration for the Mo1-xWxS2 alloy embedded triangular WS2 nanodomains. 
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To calculate the in-plane thermal conductivity of the 2-D materials, a small temperature 

difference Δܶ is applied to the two ends of the monolayer with a distance L apart, resulting in a 

temperature gradient along x direction, ݀ܶ/݀ݔ. The effective thermal conductivity can then be 

expressed as the summation of the thermal conductivity contributed by each phonon mode in first 

Brillouin zone, and is written as [155, 188] 

௫௫ߢ =
ଵ

(ଶగ)మ௛
∑ ׬ ℏ߱ܙ௦ܙݒ௦

௫ ௦ܙ݊
଴ ൫݊ܙ௦

଴ + 1൯ܙܨ௦݀ܙ௦ ,     (IV.1) 

where ℎ is the thickness of the 2-D crystal, ℏ is the Planck constant, ݏܙ stands for the s-th phonon 

mode with ℏܙ momentum, ߱, ݒ and ݊଴ are the phonon frequency, group velocity and equilibrium 

phonon population, respectively, which are determined by the phonon dispersion relation of the 

material. ܙܨ௦  is the mode-specific deviation function, representing the difference of non-

equilibrium phonon population of mode ܙ݊ ,ݏܙ௦ ቀ= ௦ܙ݊
଴ + ௦ܙ݊

଴ ൫݊ܙ௦
଴ + 1൯

ௗ்

ௗ௫
 ௦ቁ, from equilibriumܙܨ

population ݊ܙ௦
଴ . The deviation function can be solved from the PBTE, which describes the balance 

between phonon diffusion and phonon scatterings due to various scattering mechanisms. Here, we 

consider the three-phonon scattering due to the anharmonicity of interatomic forces, phonon-

boundary scattering, phonon-alloy scattering and phonon-nanodomain scattering, and the 

corresponding PBTE is expressed as [20, 155] 
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where ܹܙ௦,ܙᇲ௦ᇲ
ᇲᇲ௦ᇲᇲܙ

 and ܹܙ௦
ᇲᇲ௦ᇲᇲܙ,ᇲ௦ᇲܙ

 are the transition probabilities for three-phonon annihilation and 

decay processes, and ܹܙ௦,ܙᇲ௦ᇲ
୅୪୪୭୷  and ܹܙ௦,ܙᇲ௦ᇲ

୒ୈ  are the transition probabilities for phonon-alloy and 
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phonon-nanodomain scattering processes. The last term in Eq. (IV.2) represents the phonon-

boundary scattering due to the limited length of the sample L. 

Since atoms in alloy are randomly distributed, it is ambiguous to define the phonon dispersion 

and other phonon properties of the alloy that are required in Eq. (IV.1) and Eq. (IV.2). The virtual 

crystal approximation is employed to take into account the alloy effect [189], where the Mo or W 

atoms in the alloy are replaced by virtual atoms with an atomic mass of (1 − ୑୭ܯ(ݔ +  ୛. Hereܯݔ

the lattice parameter and inter-atomic force constants of the virtual crystal are set according to the 

composition average of the quantities possessed by MoS2 and WS2. The optimized crystal 

structures and the inter-atomic force constants of both MoS2 and WS2 are obtained from the first-

principles calculations. The phonon dispersion of the virtual crystal is then computed with the 

obtained atomic masses and the second-order harmonic force constants of the virtual crystal. Under 

the virtual crystal approximation, the transition probabilities, ܹܙ௦,ܙᇲ௦ᇲ
ᇲᇲ௦ᇲᇲܙ

 and ܹܙ௦
ᇲᇲ௦ᇲᇲܙ,ᇲ௦ᇲܙ

, in Eq. (IV.2) 

can be straightforwardly computed using the Fermi’s golden rule with the third-order force 

constants of the virtual crystal as inputs. The expressions of ܹܙ௦,ܙᇲ௦ᇲ
ᇲᇲ௦ᇲᇲܙ

 and ܹܙ௦
ᇲᇲ௦ᇲᇲܙ,ᇲ௦ᇲܙ

 are given in 

in Section II.2. 

 

IV.2.2 Green’s function approach for phonon-alloy and phonon-nanodomain 

scattering rates 

Unlike the calculation of inelastic phonon-phonon scattering rates which is quite standard 

practice these days, it is more challenging to estimate the strengths of elastic scatterings, including 

phonon-alloy scatterings and phonon-nanodomain scatterings, since they are very sensitive to the 

detailed atomic configurations of the lattice imperfections. Compared to the virtual crystal, the 
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randomly distributed Mo and W atoms in the alloy serve as independent impurities of the virtual 

crystal, which scatter phonons. We note that the distribution of the impurities might lead to phonon 

interference effects which can result in a different thermal conductivity, but such effects are not 

considered here. In this work, we employed an assumption of random and uniform distribution of 

impurities, similar to the many previous theoretical works for the prediction of the thermal 

conductivity of a few alloys [19, 90] where the theoretical prediction were shown to be consistent 

with experimental measurements. The scattering strength due to phonon-alloy scattering, ܹܙ௦,ܙᇲ௦ᇲ
୅୪୪୭୷ , 

can then be decomposed into two parts, one due to the Mo impurities, ܹܙ௦,ܙᇲ௦ᇲ
୅୪୪୭୷,୑୭, and the other due 

to the W impurities, ܹܙ௦,ܙᇲ௦ᇲ
୅୪୪୭୷,୛. When WS2 nanodomains are embedded in the alloy, the W clusters 

in the nanodomains become another type of scatter centers in the virtual crystal leading to the 

scattering with the rate of ܹܙ௦,ܙᇲ௦ᇲ
୒ୈ . The main effects of these three types of scattering centers result 

in the mass and force field variation in the virtual crystal, both of which serve as the perturbations 

on the lattice vibration of the virtual crystal. Since the difference of the bonding stiffness in MoS2 

and WS2 is quite small (~4%) [156] compared with the mass difference between Mo and W atoms 

(~90%), we expect that the phonon scattering rate caused by the effects of force field variance is 

much smaller compared with that caused by mass variance. In fact, we can make a simple 

estimation on the ratio between phonon scattering rates due to the difference in the bonding 

stiffness and due to the atomic mass difference. According to the Klemens’ theory [190] for a point 

defect with respect to atom i, the ratio is expressed as 2ሾ((݃௜ − ௜ܯ))/(݃/(݃ −  ሿଶ , where(ܯ/(ܯ

݃௜ is the average stiffness constant of the neareast-neighbor bonds from the impurities to the host 

lattice, ݃ is the average stiffness constant for host atoms, ܯ௜ and ܯ are the mass of the impurity 

and the host atom. From the simple calculation, the ratio is found to be smaller than 0.5% when a 
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W atom is inserted into MoS2. To consider the force field variation after nanodomains are included, 

one has to perform the first-principles calculations with large supercells or employ higher-order 

force constant model [191] to obtain the interatomic force constants with respect to the atoms 

in/near the nanodomains. Considering the weak scattering caused by force field variance, in this 

work only the mass-difference-induced phonon scattering is taken into account when evaluating 

the phonon scattering rates due to alloy disorder and nanodomains.  

We employ the Green’s function approach to calculate the phonon scattering rates due to 

alloying and nanodomain embedding. This method takes into account fully the changes of 

dynamical matrix of the medium (virtual crystal) when scattering centers are introduced and thus 

could accurately estimate the strengths of elastic scatterings, including the phonon-alloy and 

phonon-nanodomain scatterings, as those applied to study the elastic phonon scattering due to 

Si/Ge nanoparticles in SiGe alloy [192] and due to vacancy defects in diamond [193]. The phonon 

scattering strength due to a specific type of scattering centers, j, is given by [192] 

Wܙ௦,ܙᇲ௦ᇲ
௝ = ܰ௝ ஐగ

ଶఠܙೞ
మ หൻݏܙห܂௝൫߱ܙ௦

ଶ ൯หܙᇱݏᇱൿห
ଶ

௦ܙ൫߱ߜ −  ᇲ௦ᇲ൯,    (IV. 3)ܙ߱

where ܰ௝(= ݂௝/ܣ௝) is number density of j-type scattering centers with the area fraction of the 

scattering centers ݂௝ and the total area of the unit cells occupied by each scatter center ܣ௝, Ω is the 

volume into which the phonon eigenstates |ۧݏܙ are normalized, and ܂௝  is the scattering matrix 

corresponding to the j-type scattering centers. While the area fraction for nanodomains is ݂୒ୈ, the 

area fraction is (1 − 1)(ݔ − ݂୒ୈ)  and 1)ݔ − ݂୒ୈ)  for Mo impurities and W impurities, 

respectively. The scattering matrix, T, is related to the perturbation matrix, ܄ , which is the 

difference between the dynamical matrix of the alloy embedded with nanodomains (perturbated 

crystal) and that of the virtual crystal one (unperturbated crystal), and the Green’s function of the 

virtual crystal, ܏ା. The T matrix is expressed as 
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௝(߱ଶ)܂ = ሾ۷ −  (IV.4)     .܄ାሿିଵ܏܄

Since only the mass difference is considered and the force field difference is ignored in this work, 

all of the non-zero elements of the perturbation matrix are the diagonal elements corresponding to 

the i-th degrees of freedom associated with the atom τ that has a different mass ܯఛ from the virtual 

atom with a mass of ܯ଴. The non-zero elements of the matrix is given by [192] 

௜௜܄ = −
ெഓିெబ

ெబ
߱ଶ.       (IV.5) 

The Green’s function component with respect to any two degrees of freedom i and j, is written as 

[186] 

௜௝܏
ା (߱ଶ) = lim

௭→ఠమା଴శ
∑ ൻ݅หݏܙൿൻݏܙห݆ൿ

௭ିఠܙೞ
మܙ௦ .     (IV.6) 

The Green’s function of unperturbated 3-D crystals can be numerically evaluated by the analytical 

tetrahedron method proposed by Lambin and Vigneron [194].  

With all scattering terms in Eq. (IV.2) are determined, the set of linear equations Eq. (IV.2), 

with respect to ࢗܨ௦
ఈ , is then self-consistently solved using the iterative method. Here we employed 

the biconjugate gradient stabilized method [101], a variant of the conjugate gradient algorithm, to 

iteratively solve Eq. (IV.2). In our calculation, we use 65×65×1 q-points to sample the reciprocal 

space for phonon scattering and thermal conductivity calculations respectively, which ensures the 

presented in-plane thermal conductivity data are converged, with less than 2% difference if the 

meshes are further refined. 
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IV.3 Thermal conductivity of Mo1-xWxS2 alloy 

With the phonon scattering rates due to alloying and nanodomain embedding calculated, the 

thermal conductivity of the alloy embedded with nanodomains can then be straightforwardly 

calculated using PBTE, i.e., Eq. (IV.2). Figure IV.2(a) shows the calculated thermal conductivity 

of Mo1-xWxS2 alloy with a sample length of 10 μm. It is found that the thermal conductivity reduces 

from 155 W/mK to around 25 W/mK when the composition of W, x, increases from 0% to 30% 

while the thermal conductivity is almost unchanged as x is in the range between 30% and 70%. 

Such a U-shape dependence of thermal conductivity on the composition is quite typical for alloys, 

as seen in 3D alloys such as Si1-xGex [189] and Mg2Si1-xSnx [195].  

 

Figure IV.2. (a) Thermal conductivity of Mo1-xWxS2 at 300K as a function of alloy composition x. 

(b) Thermal conductivity of Mo1-xWxS2 alloy embedded with W nanodomains as a function of the 

size of nanodomains. 
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By embedding triangular WS2 nanodomains into alloy, which serve as additional scattering 

centers for low-frequency phonons, the thermal conductivity of the alloys is further reduced. 

Figure IV.2(b) shows the dependence of thermal conductivity of Mo0.5W0.5S2 alloy embedded with 

WS2 nanodomains as a function of the area fraction and the size of nanodomains. The obtained 

thermal conductivity plotted as solid symbols, and is found to decrease with the size and area 

fraction of nanodomains when the area fraction increases from 0 to 10% and the size of 

nanodomains is changed from 1 to 10 unit cells. Apparently, embedding nanodomains 

considerably reduces the thermal conductivity below the alloy limit. For example, an additional 

16 % reduction is observed when the area fraction of nanodomains ݂୒ୈ is 10% and the side length 

of each nanodomain a is 10 unit cells. Although the degree of thermal conductivity reduction of 

Mo1-xWxS2 alloy due to nanodomains is smaller than some 3-D alloys, where additional factor of 

2 to 4 is found when nanoparticles are embedded [49], but it is comparable to nanostructured 

BiSbTe alloy [48]. In fact, the nanodomain/nanoparticle induced thermal conductivity reduction 

could be affected by many factors, including the alloy composition, crystal structures and so on. 

The dimensionality might be another factor that affects the thermal conductivity reduction, which 

calls for further investigation. 

To gain insights about the thermal conductivity reduction when nanodomains are embedded in 

an alloy matrix, we examine the accumulated thermal conductivity of Mo0.5W0.5S2 alloy and the 

alloy embedded with nanodomains whose area fraction and side length are 10% and 10 unit cells 

as a function of phonon frequency, as shown in Fig. IV.3. It is clearly seen that the thermal 

conductivity difference between the alloy with and without nanodomains is mainly caused by low-

frequency phonons. This indicates that the long-wavelength phonons are more effectively scattered 

by the nanodomains than by the alloy components that are replaced by the nanodomains.  
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Figure IV.3. The accumulative thermal conductivity of Mo0.5W0.5S2 with and without nanodomains 

embedded as a function phonon frequency. The thermal conductivity difference is mainly caused 

by low-frequency phonons. 

IV.4 Phonon-nanodomain scattering rates 

 

To understand the scattering mechanisms of long-wavelength/low-frequency phonons in the 

alloy embedded with nanodomains, we present the calculated phonon-nanodomain scattering rates 

of longitudinal acoustic phonons of single-layer Mo1-xWxS2 on a high symmetry line from the Γ 

point, (0, 0), to the M point, (0, π/a଴√3), as a function of phonon frequency in the log-log scale, 

which is shown in Fig. IV.4(a). The scattering rate of a specific mode due to the nanodomains is 

written as 

௦ܙ߁ = ∑ ᇲ௦ᇲܙ,௦ܙܹ
୒ୈ

ᇲ௦ᇲܙ ௦ܙ݊/
଴ ൫݊ܙ௦

଴ + 1൯,     (IV.6). 

Here the scattering rates are normalized by the area fraction of nanodomains in order to fairly 

compare the effects of nanodomains with different sizes on phonon scattering. As expected, the 
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strength of phonon-nanodomain scattering is greatly affected by both the phonon frequency and 

the size of nanodomains. For low-frequency phonons, whose wavelengths are much larger than 

the characteristic size of nanodomains, the frequency-dependent scattering rate follows a nice ߱ିଷ 

scaling relation, which is consistent with the characteristics of Rayleigh scattering in 2-D crystals 

[187]. The scattering rate also increases with the size of nanodomains for these long-

wavelength/low-frequency phonons. Figure IV.4(b) shows phonon-nanodomain scattering rates of 

long-wavelength acoustic phonons with a wavevector of 0.03(0, π/a଴√3) versus the number of W 

atoms in each nanodomain, N, where the scattering rate is found to be proportional to ܰ.  

In fact, the phonon scattering rate of the Rayleigh scattering can be easily obtained using the 

Born approximation, where the T matrix in Eq. (IV.3) is replaced by the perturbation matrix V. 

The obtained total scattering rate of a specific mode due to the nanodomains scales as  

௦ܙ߁ ∝
ଵ

ே
ቀܰ

௱ெ

ெ
ቁ

ଶ
.       (IV.7) 

From this simple relation between the scattering rate, ߁, and the number of W atoms in each 

nanodomain, N, one can expect that the ratio between the scattering rate due to nanodomains and 

that due to Mo and W impurities of alloy, which can be regarded as nanodomains with 1 atom, 

should scale proportionally with ܰ . As a result, the long-wavelength phonons could be more 

strongly scattered in the alloy embedded with nanodomains than the alloy only. 

On the other hand, Fig. IV.4(a) shows that the scattering rate of high-frequency phonons, 

whose wavevectors are close to the edge of the first Brillouin zone, decreases with the size of 

nanodomain, which is drastically different from the low-frequency phonons. Figure IV.4(b) shows 

the phonon scattering rates for the acoustic phonons at (0, 0.97M), which are taken as examples of 

short-wavelength phonons. The phonon scattering rate clearly follow Γ ∝ 1/√ܰ. This is because 

it is at the geometric scattering regime [196, 197] where the scattering cross section is limited by 
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the size of the nanodomain when the wavelength is smaller than the size of nanodomain [196, 198]. 

Since the scattering rate of the mode ݏܙ is linked to the scattering cross section through ߁୯ୱ =

ܰ୒ୈܙߪ௦ܙݒ௦  in the 2-D systems, where ߪ is the scattering cross section, ݒ is the phonon group 

velocity and ܰ୒ୈ  is the number density of the scatterers, the scattering rate is inversely 

proportional to the scattering cross section, or equivalently the side length, ܽ, of nanodomains, 

which scales as √ܰ.  

 

 

Figure IV.4. (a) The phonon-nanodomain scattering rates of LA phonons from the ߁ point to the 

M point as a function of phonon frequency. (b) The phonon-nanodomain scattering rates of long-

wavelength LA phonon at 0.03(0, ߨ/ܽ଴√3) and short-wavelength LA phonon at 0.97(0, ߨ/ܽ଴√3). 

The scattering rates are normalized by the area fraction of the nanodomains.   
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evaluate the thermal conductivity of the samples embedded with nanodomains using the Green’s 

function approach when the size of nanodomains is larger than 10 unit cells. However, as seen in 

Fig. IV.2(b), the optimal size of nanodomains could be around 10 unit cells, where the thermal 

conductivity of alloy embedded with nanodomains is almost unchanged with the size.  

IV.5 Thermal conductivity dependence of alloy composition 

 

Figure IV.5 shows the dependence of thermal conductivity of alloy embedded with 

nanodomains whose size is 10 unit cells and area fraction is 10% on the composition of alloy 

matrix. The thermal conductivity value changes non-monotonically with the composition of alloy 

matrix, just as the alloy without embedding nanodomains. But the minimum thermal conductivity 

occurs at the composition of ݔ ≈ 20%, while that of pure alloy is at ݔ ≈ 50%. This means that 

the pure alloy with the minimum thermal conductivity is not necessarily the best matrix for such 

nanocomposites to achieve lowest thermal conductivity. For example, the thermal conductivity of 

alloy embedded with 10-unit-cell-large WS2 nanodomains at 10% area fraction decreases from 

19.8 W/mK to 16.9 W/mK when the composition of W changes from 50% to 20%.  
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Figure IV.5. Thermal conductivity of Mo1-xWxS2 alloy embedded with 10-unit-cell-large WS2 

nanodomains at 10% area fraction at 300 K as a function alloy composition x. 

 

To understand the lower thermal conductivity in Mo0.8W0.2S2-based nanocomposites than that 

in Mo0.5W0.5S2-based nanocomposites with the same WS2 nanodomains, we compare the phonon-

alloy scattering rates and the phonon-nanodomain scattering rates in different alloy compositions, 

as shown in Fig. IV.6(a) and (b), respectively. As expected, it is seen from Fig. IV.6(a) that the 

phonon-alloy scattering rates in Mo0.8W0.2S2-based nanocomposite become smaller than those in 

Mo0.5W0.5S2-based one due to less disorder in Mo0.8W0.2S2 alloy-based nanocomposites. However, 

Fig. IV.6(b) shows that the scattering rates due to nanodomains become almost doubled in 

Mo0.8W0.2S2 alloy-based nanocomposites for low-frequency phonons, but the scattering rates are 

almost unchanged for high-frequency phonons. This is expected because the scattering rates for 
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Eq. (6), while for high-frequency phonons, the scattering rates are governed by the geometrical 

size of nanodomains, which is almost unchanged with respect to the alloy composition. Since most 

of heat is conducted by low-frequency phonons in the alloy and nanocomposites, as indicated from 

Fig. IV.4, the enhanced scattering for low-frequency phonons due to nanodomains can effectively 

reduce the total conductivity of alloys embedded with nanodomain.  

 

 

Figure IV.6. (a) Phonon-alloy scattering rates as a function of phonon frequency. (b) Phonon-

nanodomain scattering rates as a function of phonon frequency.  

IV.6 Summary of this chapter 

 In this work, we have demonstrated a possible way to significantly reduce the thermal 

conductivity of single-layer MoS2 through alloying and nanodomain embedding.  
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There are indeed plenty of rooms to further tune the thermal conductivity. In current study, all 

nanodomains are of the same size, but it is expected that embedding nanodomains with different 

sizes could help to reduce further the thermal conductivity. Another possibility is to either 

introduce MoSe2 and/or WSe2 components into the Mo1-xWxS2 alloy or use them as nanodomains. 

Because the mass ratio between Se and S atoms is larger than that between W and Mo atoms and 

the force field difference between the MoS2 and MoSe2 is also larger than that between MoS2 and 

WS2 [156]. alloying and introducing nanodomains on chalcogen atoms can enhance the phonon 

scattering in the 2-D alloy compared with the case that only the metal atoms are mixed. Once the 

monolayers after nanostructuring are obtained, one might be able to stack them together to form a 

layered material with very low thermal conductivity. Recent study showed that by intercalation 

layered materials with organic components, the thermoelectric properties can be significantly 

improved for layered materials mainly due to the lower thermal conductivity [173]. It might be 

possible to further optimize the obtained layered material through intercalation. Despite these 

possible approaches to further reduce the thermal conductivity of 2-D materials, it should be 

noticed that the parameters that determine the thermoelectric performance of the material are 

usually highly correlated. In order to optimize the thermoelectric performance of the 

nanostructured 2-D materials, more detailed analysis should be conducted, especially on the 

electronic properties. 

In summary, we study the phonon scattering mechanisms and thermal conductivity in Mo1-

xWxS2 alloy embedded with triangular WS2 nanodomains using first-principles-based PBTE 

calculations. The phonon scattering rates due to alloy and nanodomain are evaluated through the 

Green’s function approach. The thermal conductivity of Mo1-xWxS2 is found to be significant lower 

than MoS2. For example, the thermal conductivity of Mo0.5W0.5S2 is only 16% of MoS2 when the 
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sample size is 10 μm. By embedding WS2 nanodomains into Mo0.8W0.2S2, the obtained thermal 

conductivity of alloy can be 10 times smaller than that of MoS2 due to both the strong alloy 

scattering for high-frequency phonons and nanodomain scattering for low-frequency phonons. If 

the electronic properties of MoS2 can be retained after introducing nanodomains, Mo1-xWxS2 alloy 

embedded with WS2 could be a good thermoelectric material, which is worth further investigation.          
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CHAPTER V PHONON TRANSMISSION ACROSS MATERIAL 
INTERFACES: A FRIST-PRINCIPLES-BASED ATOMISTIC GREEN’S 

FUNCTION STUDY 
 

 

V.1 Introduction 

 

Understanding phonon transport in nanostructured materials and devices is of great importance 

in many technological fields, from thermal management in electronics and photonics [118, 199] to 

thermoelectric energy conversion [51, 52], to thermal insulation and thermal protection system 

[200]. Interfaces play a critical role in determining phonon dynamics and thermal conduction in 

nanostructures. The detailed information of how a phonon quanta with specific energy and 

momentum is scattered by an interface is essential for designing nanostructures with desirable 

thermal performance using mesoscopic modeling tools, such as phonon Boltzmann transport 

equation (BTE) based method and Monte Carlo simulations [21, 23, 201, 202]. 

In recent years, the atomistic Green’s function (AGF) approach has been shown to be an 

efficient method to study frequency-dependent phonon transport across interfaces of dissimilar 

materials [27, 203]. The phonon transmission is highly dependent on the details of atomic 

configuration and interatomic interaction around the interface [204, 205]. AGF approach has been 

applied to study a wide range of interfaces, including sharp (smooth) interfaces [28, 79, 206], 

rough interfaces [205], interfaces with vacancy defects and alloyed interfaces [204]. Often the 

empirical potentials are used in AGF calculations to describe the interatomic interactions [79, 204-

207]. The interatomic force constants from the first-principles calculations have also been 
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integrated with AGF method for studying interfaces of materials, especially when the empirical 

potentials are not readily available [28, 208, 209]. 

However, it would be quite challenging to extract the interatomic force constants of realistic 

material interfaces from the first-principles calculations. Comparing to the first-principles 

prediction of thermal conductivity of bulk crystals [8, 15-17, 164], the lattice near an interface of 

two dissimilar materials is likely to be distorted due to the lattice mismatch and the difference in 

the force field experienced by the atoms in the interfacial region. A large supercell would be 

required for the first-principles calculations to capture the essential characteristics of the lattice-

mismatched interface, which leads to severe numerical challenges. The mass approximation (MA) 

[28, 50] that was employed to calculate the thermal conductivity of alloys [16, 18, 19] has thus 

been used to extract interatomic force constants of the interfacial region from the first-principles. 

Under the MA, the differences in the lattice constants and the force fields between the two 

dissimilar materials are ignored and only the difference in atomic mass is taken into account. It 

was recently pointed out that the MA tends to overestimate the thermal conductivity due to the 

neglect of the local force-field difference [210]. Other studies showed that the MA under-predicts 

the contribution of high-frequency phonons, which leads to a lower thermal conductivity [211]. It 

is unclear whether MA is a reasonable approximation when integrated with the AGF approach to 

calculate the phonon transmission across the interfaces of dissimilar materials where there exist 

the differences in both lattice constants and force fields. 

In this paper, we propose an integrated first-principles-based AGF approach using higher-order 

force constant model (HOFCM) to compute phonon transmission across interfaces of dissimilar 

materials. By considering the lattice distortion and the species-dependent local force field, the 

accuracy of the interatomic force constants extracted is improved compared with that from the MA, 
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while the required computational resources are significantly less severe than directly extracting 

force constants from the standard first-principles calculations. As an example, we present the 

detailed studies of frequency-dependent phonon transmission across Mg2Si/Mg2Si1-xSnx interface, 

which is promising thermoelectric material system for intermediate temperature range energy 

conversion applications [212-214]. We systematically study how the lattice mismatch-induced 

local force field influences phonon transmission across the interfaces between dissimilar materials, 

which are inevitably ignored in the MA. This study could provide guidance for designing 

nanostructured materials with tunable thermal conductivity. 

 

V.2 Modeling approaches 

 

The AGF approach needs the harmonic interatomic force constants as inputs for the dynamical 

matrix to calculate phonon transmission. The conventional standard method that is used to extract 

the harmonic interatomic force constants of bulk crystals from the first-principles calculations is 

infeasible for interfaces where the lattice at the interfacial region is likely distorted due to the lattice 

mismatch and the local force fields. In this work, we employ the HOFCM, which originates from 

the MA but considers the local force difference due to the different species, to efficiently calculate 

the harmonic force constants of the interfacial regions, and then integrate the obtained force 

constants from the first-principles calculations with the AGF approach. In Sec. II A, we discuss 

the methods to extract the harmonic constants, including the standard direct methods from the first-

principles, the MA, and the HOFCM. A brief summary of the AGF method is given in Sec. II B 

where the details can be found in literature including the author’s prior work [79, 204]. Figure V.1 

summarizes the simulation procedures of the first-principles-based atomistic Green’s function 
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approach, including both MA- and the HOFCM-based approaches. The computational details are 

given in Sec. II C for Mg2Si/Mg2Si1-xSnx interface. 

 

Figure V.1. Numerical simulation procedure of the integrated DFT-AGF approaches: MA-AGF 

and HOFCM-AGF. In both approaches, an interfacial system is first converted to an effective 

virtual crystal. In MA, the harmonic force constants are computed from DFT calculations of the 

virtual crystal, and then directly used as the inputs for AGF calculations. In HOFCM, the 

interatomic force constants with respect to both the atom displacements and atom species are 

extracted from DFT calculations. Then a force-field using these interatomic force constants are 

constructed, which is used to determine the equilibrium configuration of the interfacial system and 

the corresponding harmonic force constants that are used in AGF calculations. 
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V.2.1 Interatomic force constants from the first-principles calculations 

 
The harmonic interatomic force constants K  that are used in AGF approach are the second-

derivatives of the total energy of a system E  with respect to the atom displacements 

2

'
'

E
K

u u


 



 RR

R R

,     (V.1) 

where u
R  denotes the displacement of an atom along the   direction whose equilibrium position 

is R . In principle, one could compute the harmonic force constants of a given atomic system from 

the first-principles by monitoring the response of the total energy of the whole system under small 

perturbations, such as the small-displacement method [95, 215, 216] or the perturbation approach 

[217]. For a bulk crystal with a small primitive unit cell, the calculations for harmonic force 

constants using both methods are computationally affordable. Take the small-displacement 

method as an example, in which the force constants are calculated in a supercell. A series of first-

principles calculations for total energy are performed when one atom in the primitive unit cell is 

moved with a small distance   in the order of 0.01 Å along a Cartesian direction. When all atoms 

in the primitive unit cell are displaced, the harmonic force constants are then extracted through 

either the finite difference scheme [95, 215] or fitting the displacement-force relation [216]. 

Although only the harmonic force constants involving the atoms in the primitive cell are obtained 

directly, other harmonic force constants between any two atoms in the crystal are extracted 

simultaneously by taking advantage of the periodicity of the crystal.  

However, when dealing with interfaces, such conventional methods would become 

computationally overwhelming due to the loss of the periodicity of the crystal. The force constants 

between every atom pair need to be determined independently at least along the direction 

perpendicular to an interface. In addition, the distortion of lattice due to the mismatch of lattice 
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constants could extend to several unit cells away from the interface, while the species mixing near 

the interface might span a few nanometers as well. As a result, very large supercells are needed 

for extracting the force constants. For example, if we use a supercell with a cross-sectional area of 

2 2  conventional unit cells to model an Mg2Si/Mg2Sn interfacial region with species mixing that 

spans 10 unit cells, we have to perform a series of first-principles calculations to generate the 

displacement-force relation. In each calculation, one atom is displaced from their equilibrium 

position and the forces on other atoms are recorded. The total number of these first-principles 

calculations would be at least as large as 40 12 3 2 2880     (40 conventional unit cells, 12 

atoms per unit cell for Mg2Si/Mg2Sn system, 3 degrees of freedom, and 2 directions along a 

Cartesian direction). Furthermore, the calculations have to be repeated when the atomic 

configuration is slightly changed in order to obtain the harmonic force constants of the new system. 

For convenience, we refer the method just discussed above that the entire interfacial region is 

modeled to extract harmonic force constants as the direct method. 

Due to the computational challenge in the direct method, the mass approximation that was 

employed to calculate the thermal conductivity of alloys is adopted recently, which models the 

interfacial region made up of two dissimilar materials to an imaginary (virtual) perfect 

homogenous bulk crystal so that the force constants can be easily extracted in first-principles 

calculations with the same procedures used for bulk crystals instead of modeling the entire 

interfacial region. In the density-functional-theory-based (DFT-based) approach, the type of atom 

is distinguished by its pseudopotential. A widely-used treatment of the MA in the DFT-based 

approach is to calculate the force constants in a virtual crystal [218], where the two types of atoms 

in the simulation are replaced by virtual atoms, whose pseudopotential is the percentage weighted 

pseudopotentials of the two types of elements through 
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   elem1 elem21 / 2 ( ) 1 / 2 ( )V V V           r r ,    (V.2) 

where elem1( )V r  and elem2 ( )V r  are the pseudopotentials for element 1 and element 2, and   

represents the likeliness of the virtual atom to be element 1 or 2. =1  and -1 represents element 1 

and 2, respectively. When =0 , the atom is of the averaged properties of element 1 and element 

2. =0  is the most natural choice for the virtual atoms for an interface constructed by connecting 

two pure materials with element 1 and element 2.  

Since the interfacial region can be treated as the homogenous crystal under the MA, the force 

field throughout the interfacial region is identical. As a result, the non-uniformity of the strain field 

resulted from the lattice mismatch in the interfacial region becomes absent. In addition, the local 

force fields within the bulk phases are no longer the actual ones, which should be determined from 

the direct method with the species’ own pseudopotentials, but shifted to an averaged one. In other 

words, the vibrational properties of the reservoirs (semi-infinite crystal) could be inaccurate. 

To overcome the limitations of the MA, we employ the HOFCM proposed by de Gironcoli 

[219] to extract the harmonic force constants for the interfacial region. The HOFCM was originally 

proposed to better describe the vibrational properties of Si/Ge systems beyond single crystals, 

including superlattices [220] and homogeneous Si1-xGex alloys [221]. Taking advantage of the 

HOFCM, the first-principles-based calculations can reproduce the Raman spectra of SixGe1-x alloy 

very accurately [219]. In this work, we first approximate an interfacial region of large dimension 

that contains two species as a virtual crystal. Comparing the realistic interfacial region with the 

virtual crystal, the difference of their total energies originates from two aspects: 1) the atoms in a 

real interfacial region are not uniformly distributed as in a virtual crystal but are of small 

displacements Ru  from their virtual crystal counterparts because the lattice is likely to be distorted 

near the interface. 2) The type of the atom  R  and the corresponding force field in the real system 
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is different from the virtual atom. Both of them make the harmonic force constants of the real 

interface deviated from the virtual crystal.  The higher-order force constants with respect to Ru  

and  R   is then used to refine the total energy of the virtual crystal so that the difference between 

the real interfacial system and the virtual crystal is eliminated.  

The difference between the total energy of the real interfacial region and that under the virtual 

crystal approximation is calculated using the Taylor’s expansion of the total energy of the reference 

virtual crystal with respect to  Ru  and  R  as 

     VC

VC VC

2

VC '
' 'VC VC

2 2

' '
' '' 'VC VC VC

2

0
'VC VC

,

...

...

E E
E E

E E
E

E E E

E E
E

 


  
  




  
       

  
        
   

               

 
     

  



 

  



R R R R
R R R

R R R
R RRR R R

R R R R R
R RR RRR R R R R

R R R
R R R R

u u
u

u u u u
u u u u

u u u
u u u



2

' '
' ' ' VC

...
E 


 
       

  R R
RR RR R R

u
u

  

 (V.3), 

where VCE  is the total energy of the virtual crystal. Because the second and the third terms in the 

second line of Eq. (V.3) involve only the atom type  R , they do not influence the forces on the 

atoms but just shift the total energy. We can simply combine these terms with VCE  and note as 

energy 0E , which is the total energy of the system taking into account atom type difference but 

with zero displacement. When the atom types are prefixed and the total energy is expanded up to 

the third-order terms with respect to the atom displacements, the expression can be further written 

as: 
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(V.4)

 
where the coefficients   and   are the derivatives of the total energy of the virtual crystal with 

respect to the displacement of atoms, which are the second-order harmonic and the third-order 

anharmonic force constants of the virtual crystal, and the coefficients G , J  and   are the 

derivatives with respect to both atom displacements and atom types. Once these coefficients in Eq. 

(V.4) are determined, the difference of the total energy from a real interfacial system to that under 

the virtual crystal approximation can be greatly compensated for by using these terms.  

To extract these coefficients in Eq. (V.4), we adopt the small-displacement method [216]. 

According to Eq. (V.4), the force on each atom is  
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If the atoms in virtual crystal are displaced by a small distance away from their equilibrium 

positions or the types of atoms are altered, the force will not be zero anymore and could be 

accurately predicted in first-principles calculations through the Hellmann-Feynman theorem [222]. 

By fitting these displacement-type-force relations, the coefficients could be obtained.  

We first determine the independent interatomic force constants based on the permutation 

symmetry of higher-order derivatives and the space group symmetry of the crystal [216]. Then one 

or two atoms in the virtual crystal are displaced from their equilibrium positions, and the types for 

all atoms are kept as  0 R . Through first-principles calculations, the forces on all atoms in the 



99 
 

virtual crystal are computed. Putting the obtained forces, the atomic displacement and   0 R  

into Eq. (V.5), we get a linear equation set with respect to   and   as unknown variables. Since 

the data set is usually larger than the number of independent force constants, the coefficients   

and   cannot be solved exactly but are extracted from the linear fitting. To obtain physically 

correct interatomic force constants, the translational and rotational invariances [216, 219] of these 

interatomic force constants are further considered in fitting procedures and serve as constraints in 

the fitting procedures. We use the singular value decomposition (SVD) technique to convert the 

constrained linear least-squares problem to an unconstrained one. The details of the invariances of 

interatomic force constants and how to impose the invariances are discussed in Appendix A.5. By 

solving the unconstrained equation sets, the coefficients   and   are extracted. 

Since the coefficients G , J  and   are related to both the atomic displacement and the atom 

types, we need to not only displace the atoms but also change the type of one or two atoms from 0 

to 1  so that the terms on G , J  and   could take effects on the forces on the atoms in the system. 

Plugging the atomic displacements, the atom type  R  and the values of the coefficients   and 

 , which have been obtained before, Eq. (V.5) becomes the linear equation set with respect to G , 

J  and  . Similar to the coefficients  and  , the physically correct coefficients G , J  and   

also need to satisfy their translational and rotational invariance relations [219], which can be found 

in Appendix A.5. With the SVD techniques, the coefficients G , J  and   are solved from the 

linear equation set with the same least-squares method as we used to extract the coefficients  , 

 .  

In AGF calculations, the atoms in the system need to be in the equilibrium positions. To 

determine the equilibrium configuration of the system, the analytical expression Eq. (V.4) are used 
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to determine the equilibrium configuration of the system by minimizing the total energy of the 

system. The corresponding harmonic interatomic force constants K  used in AGF simulations are 

then given by taking the derivative of Eq. (V.4): 
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There are a few advantages of using HOFCM for extracting the harmonic interatomic force 

constants compared with the direct method: 1) It avoids using a large supercell to model the 

interfacial region. Since all coefficients in Eq. (V.4) are the derivatives of the total energy of the 

virtual crystal, these coefficients can be extracted using a relatively small supercell just as that 

used to calculate the harmonic force constants in a bulk crystal with periodicity. 2) When the set 

of coefficients is obtained, it can be applied to systems with different atomic configurations. In 

contrast, in the direct method the force constants need to be recalculated every time when the 

configurations of interfacial regions are changed. 3) Using HOFCM, the system can be relaxed by 

minimizing the analytical expression of total energy, while system relaxation in DFT calculation 

requires a series of time-consuming self-consistent field calculations. 

 

V.2.2 AGF approach for phonon transmission 

 

A typical AGF simulation system for phonon transmission consists of three regions, one 

interfacial region and two semi-infinite reservoirs made up of bulk crystal 1 and 2. Phonon 

transmission across the interfacial region is calculated using the Green’s function, which gives the 

response of the system under small perturbation. Under harmonic approximation, the Green’s 

function ,d dG  corresponding to the interfacial region can be calculated as [203] 
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where   is the phonon frequency; dd ,H  represents the dynamical matrix of the whole interfacial 

region, 1Σ  and 2Σ  is the self-energy matrices of the left and right reservoirs, which are calculated 

from the dynamical matrices of reservoirs.[206] The elements in the dynamical matrices are 

written as 
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ij
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RR '
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,     (V.8) 

where i (j) stands for the ith (jth) degree of freedom in the system, or the  (  ) direction of the 

atom at R  ( 'R ); mR  is the mass of the atom at R . With the Green’s function, the total phonon 

transmission across the interfacial region is calculated as,  

][)( ,2,1
 ddddTr GΓGΓ ,     (V.9) 

where )( 111
 ΣΣΓ i , )( 222

 ΣΣΓ i  and “ + ” denotes the conjugate transpose of the matrix.. 

We use transmission per phonon ( )   to present our results, which is related to the total phonon 

transmission through [223] 

( ) ( ) ( )M     ,     (V.10) 

where )(M  is the total number of phonon modes at frequency ω from materials 1. More details 

can be found in Ref. [27, 204, 206].  

The interfacial thermal conductance can then be calculated with the Landauer formalism using 

the total phonon transmission [224]: 
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where A  is the cross-sectional area perpendicular to the heat flow direction,  ,f T  is the 

phonon occupation number at the temperature  T . It has been recognized that Eq. (10) gives a 

finite conductance for phonon transport across a non-existing interface within a bulk material, 

which is different from the conventional definition of interfacial conductance [225, 226]. To 

eliminate the finite conductance for a non-existing interface, we adopt the revised expression used 

by Tian et al. [28] to calculate the thermal conductance, 

 
0

0 1 0 21 / / / 2

G
G

G G G G


 
,     (V.12) 

where 1G  and 2G  are the thermal conductance of pure material 1 and pure material 2 calculated 

from Eq. (V.4).  

At low temperature, long-wavelength phonons dominate the interfacial thermal resistance across a 

sharp interface. The interfacial thermal conductance calculated from atomistic Green’s function approach 

is found great agreement with the acoustic mismatch model and found great agreement [206]. 

It is noted that anharmonicity is not included in the present AGF approach, but it might affect 

both the phonon transmission and the interfacial thermal conductance at high temperature. 

Anharmonicity can enhance the interfacial thermal conductance since the inelastic scatterings 

could convert some phonon modes to the modes that are easily travel across the interface [24]. 

However, there is no simple approach at present to quantitatively estimate the effects of 

anharmonicity on phonon transport across specific interfaces, which might worth further 

investigation.  

 

V.2.3 Implementation for Mg2Si/Mg2SixSn1-x interface 
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To illustrate the feasibility of our proposed first-principles-based AGF approach with HOFCM, 

we implemented the calculation for Mg2Si/Mg2SixSn1-x thermoelectric material system. 

Mg2Si/Mg2Sn-based materials have recently been studied intensively as promising middle 

temperature-range (400-800 K) thermoelectric materials [213, 214, 227] due to their reasonably 

high thermoelectric figure of merit, ZT ~1.1 at 700 K, as well as the abundance of the constituent 

elements and their nontoxicity. Recent work has suggested that the thermoelectric performance of 

Mg2Si-based materials could be further enhanced through nanostructuring, where interface 

scattering can significantly reduce the phononic thermal conductivity [16]. The understanding of 

phonon transmission and interfacial thermal conductance across Mg2Si/Mg2SixSn1-x interface 

would thus greatly benefit the design of high efficiency Mg2Si-based thermoelectric materials with 

low thermal conductivity.  

Mg2Si and Mg2Sn have cubic anti-fluorite (Fm-3m) structures [195]: Si and Sn atoms sit in the 

FCC sites while Mg atoms occupy the tetrahedral holes. The similarities and differences between 

Mg2Si and Mg2Sn are attributed to the nature of Si and Sn elements that sit in the same column of 

the periodic table. To apply the HOFCM, the Si and Sn atoms are replaced by a virtual element, 

whose pseudopotential is generated by averaging the pseudopotentials of Si and Sn elements 

according to Eq. (V.2).  The generation of the pseudopotential of the virtual element has been 

implemented in plane wave package QUANTUM ESPRESSO [97]. Using the same package, 

DFT-based first-principles calculations are performed to generate the displacement-type-force 

relations, which are used to extract the interatomic force constants. Local density approximation 

(LDA) of Perdew and Zunger [228] with a cutoff energy of 40 Ry is used for the plane-wave 

expansion. Considering that the decay of the third-order interatomic force constants ( J , , ) is 

faster than that of the second-order ones ( G , ) as the displacement distance between atoms is 
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increased, we choose a smaller interaction cutoff for the calculation of the third-order interatomic 

force constants ( 0.866a ) than that for the second-order ones ( 1.5a ), where a  is the lattice 

constant. The choice of the cutoff for the third-order force constants is validated by the recent 

thermal conductivity calculations on Mg2Si and Mg2Sn based on Peierls-Boltzmann transport 

equation (PBTE) theory with interatomic force constants from DFT as inputs, where the same 

cutoff was applied [16]. A supercell made up of 3 3 3   conventional unit cells with a 4 4 4   

Monkhorst-Pack mesh is employed to generate the displacement-type-force data needed for 

second-order force constants, where one atom is displaced or changed, while a smaller 2 2 2   

supercell with a denser 6 6 6   Monkhorst-Pack mesh is used for the third-order force constants. 

All the coefficients that are needed in the HOFCM are extracted through the DFT calculations 

using the procedures discussed in section II.A. All the simulations are conducted in the virtual 

crystal with lattice constant,  2 2Mg Si Mg Sn
0 0 0 / 2a a a  , where 2Mg Si

0a  and 2Mg Sn
0a  are the lattice 

constants of Mg2Si and Mg2Sn, respectively. 

After the interatomic force constants are determined, the atomic system for the AGF simulation 

system is constructed and then the position of each atom is optimized until the force on each atom 

becomes zero. The optimization is performed using the fast inertial relaxation engine (FIRE) 

algorithm [229], which is a molecular-dynamics-based method to find the minimum energy of an 

atomic system. The atomic positions are updated according to the forces that exerting on the atoms. 

The time steps and the atomic velocities are adjusted based on the forces and the velocities of the 

atoms so that the FIRE algorithm can efficiently relax the interfacial systems. The corresponding 

harmonic force constants K  of a given system in equilibrium are then calculated using Eq. (V.6).  

It is worthwhile to note that the harmonic force constants calculated are the zero-temperature 

values. When the temperature is higher than 0 K, the harmonic force constants could be slightly 
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changed due to thermal expansion, which could lead to some inaccuracy. According to the 

previous work reported by Li et al, [16] the difference between the calculated thermal 

conductivities and the measured ones at 300 K is only within 6%, where the thermal conductivities 

of Mg2Si, Mg2Sn and their alloy were calculated using the force constants at 0 K. The difference 

becomes larger to be about 20% for Mg2Si at 600 K. However, considering the relatively scattered 

values of the measured thermal conductivity of Mg2Si at high temperature, this difference might 

not be purely due to using the extracted force constants at 0K for high temperatures. We expect 

the force constants extracted from 0 K could provide a reasonable description of the lattice 

vibration properties of Mg2Si, Mg2Sn and their alloy from 0 K to 600 K. However, as mentioned 

earlier, quantitative estimate on the effect of anharmonicity on the phonon transmission has not 

been achieved and is worthwhile for further investigation. 

In AGF simulations, when dealing with large system with thousands of atoms, large-size 

matrix operation is computationally costly. We employ a recursive AGF approach to efficiently 

calculate phonon transmission across the interfacial region, as done in our previous work [79, 204]. 

To test the accuracy of the harmonic force constants from the HOFCM, the phonon dispersions 

of a few typical Mg2Si/Mg2Sn structures are computed and compared with direct method in Sec. 

V.3. Phonon transmission across a sharp Mg2Si/Mg2Sn interface is presented in Sec. V.4, while 

the phonon transmission and scattering across Mg2Si/Mg2Si1-xSnx interface are studied in Sec. V.5. 

  

V.3 Phonon dispersion of Mg2Si, Mg2Sn and their superlattice 

 

Since the lattice in the interfacial region is distorted and the atoms near the interface interact 

with other species, an accurate force field that can not only correctly describe the interatomic 
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interaction within the unstrained bulk phases, but also the strained ones with specie mixing is 

essential. To evaluate the performance of the MA and the HOFCM on predicting the harmonic 

force constants in Mg2Si/Mg2Sn systems, we study the phonon dispersion of the unstrained and 

strained Mg2Si and Mg2Sn crystals, and the phonon density of states (DOS) of a short-period 

Mg2Si/Mg2Sn superlattice using the three first-principles-based methods to generate harmonic 

force constants: (a) the direct method with the actual pseudopentials of Si and Sn, (b) the MA with 

the pseudopotential generated according to Eq. (2) with   0 R , and (c) the HOFCM, which 

improves the harmonic force constants from the MA with the higher-order terms, as detailed in 

Section II.(A). 

Figure 2(a) shows the calculated phonon dispersion curves of Mg2Si and Mg2Sn in comparison 

with the neutron scattering experimental data [230, 231]. The overall agreement between the 

experimental data and the direct DFT calculations with Si/Sn pseudopotentials is excellent, except 

that a small difference (approximately 10% at Γ point) exhibits in the optical phonon modes. This 

small discrepancy is mainly due to the well-known red shift of the longitudinal optical (LO) 

phonon modes away from the transverse optical (TO) phonon modes (LO-TO splitting) in polar 

materials [232]. Since we do not consider the long-range interaction raised by the Born effective 

charge, the LO and TO modes intersect at the Γ point. While such a discrepancy in dispersion 

curves could be corrected by introducing a non-analytical term that is related to the Born effective 

charge into the dynamical matrix, taking all force constants in real space into account could be 

challenging. Since only a small portion of phonons is affected compared with the whole first 

Brillouin zone, we can expect that the LO-TO splitting has negligible effects on phonon 

transmission and the interfacial thermal conductance. To directly evaluate the influence of LO-TO 

on phonon transport, we also calculated phonon DOS with and without LO-TO splitting by 
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including the non-analytical term into the dynamical matrix. Figure V.2(b) shows that the DOS is 

almost unchanged by including LO-TO splitting.  

 

 

Figure V.2. (a) Calculated phonon dispersions of Mg2Si and Mg2Sn using the force constants from 

the first-principles calculations: the direct method, the MA, and the HOFCM, in comparison with 

the measured phonon dispersions from inelastic neutron scattering experiments [230, 231]. (b) 

Calculated phonon DOS of Mg2Si from the direct method with and without including the long-

range interaction due to the Born effective charge. 

 

The phonon dispersion curves of both Mg2Si and Mg2Sn calculated using the HOFCM almost 

overlap with that from the direct method, indicating that the HOFCM has the similar accuracy as 

that of the DFT calculations using the species’ own pseudopotentials. It is rather clear that the MA 

underestimates the frequencies of both acoustic and optical modes of Mg2Si, but overestimates 
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those of Mg2Sn. By examining the spring constants between Mg and its first-nearest neighbor Si 

(or Sn), defined as the trace of the harmonic force constants of Mg and Si(Sn) pairs, the bonding 

in Mg2Si is found to be 16% stiffer than Mg2Sn. The bonding in the virtual crystal lies in the 

middle of those of Mg2Si and Mg2Sn. Consequently, under the MA, the bonding stiffness in Mg2Si 

is weakened which leads to the downshift of phonon dispersion, while the opposite trend occurs 

in Mg2Sn.   

Figure V.3 shows the phonon dispersion of the strained Mg2Si and strained Mg2Sn, which are 

stretched or compressed to the averaged lattice constant of them to mimic the deformed lattice near 

the interface. Similar to the unstrained cases, the phonon dispersions calculated using the HOFCM 

are in good agreement with the direct method, but the results from the MA deviate to some extent. 

It is noted that the third-order anharmonic force constants do not participate in the refining of the 

harmonic force constants in the HOFCM since the relative positions of atoms in the strained crystal 

are unchanged compared with the reference structure where the force constants are extracted. The 

differences of the harmonic interatomic force constants for the strained cases examined here from 

the MA and the HOFCM are thus purely originated from the third-order force constants involving 

the atom type   R . This observation indicates the importance of taking the atom type into 

consideration when determining the accurate interatomic force constants, which is ignored in the 

conventional MA. 
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Figure V.3. Phonon dispersions of stretched Mg2Si and compressed Mg2Sn computed using the 

force constants from the direct method, the MA, the HOFCM. Mg2Si and Mg2Sn are strained to 

the same averaged lattice constant of them to mimic the deformed lattice near the interface. 

 

To test whether the HOFCM can represent the interactions between different species, we study 

the phonon properties of a superlattice, whose crystal structure can be regarded as a conventional 

unit cell of Mg2Si but with half of the Si atoms replaced by the Sn atoms (See. Fig. V.4(a)). In this 

crystal, the Si atoms interact with the Sn atoms in a fashion similar to the interfacial region. The 

phonon DOS of this superlattice is shown in Fig. V.4(b). While the curve of the phonon DOS from 

the HOFCM almost follows that from the direct method, there is considerable deviation for middle-

to-high-frequency phonons in the MA from the direct method. The deviation could be related to 

the lattice deformation within the lattice. The phonons whose wavelengths are smaller than or 

comparable to the scale of lattice deformation are likely to be strongly affected [233]. Since the 
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MA does not consider the lattice deformation, the transmission of the short wavelength phonons, 

which are usually middle-to-high-frequency phonons, are not accurately calculated using the MA.   

 

 

Figure V.4. (a) Lattice structure of Mg2Si/Mg2Sn superlattice. The small, medium and large atoms 

are Mg, Si and Sn, respectively. (b) Phonon DOS of Mg2Si/Mg2Sn superlattice calculated using 

the force constants from the direct method, the MA, the HOFCM. 

 

V.4 Phonon transmission across a sharp Mg2Si/Mg2Sn interface 

 

To show the importance of accurate force constants on phonon transmission calculation, we 

study the phonon transmission across a sharp Mg2Si/Mg2Sn interface. Two bulk Mg2Si and Mg2Sn 

crystals are connected with each other in a periodic box to form two interfaces, as shown in Fig. 

V.5(a). After performing the minimization of the total energy of the crystal, we take half of the 

system with one interface as the interfacial region to conduct the AGF calculation, as shown in 

Fig. V.5(b). The harmonic force constants of the interfacial region are generated according to 

atomic configuration after energy minimization.  The atoms near the middle region of each phase 

are evenly distributed due to the reflection symmetry, and these regions are used to calculate the 

harmonic force constants of the two reservoirs. To ensure the distorted lattice near the interface, 
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which scatter the phonons, included in the interfacial region in our calculations, the total length of 

the simulation box is carefully tested. We calculate the phonon transmission using simulation 

boxes with total lengths of 36 times and 48 times of the average lattice constant 0a  of Mg2Si and 

Mg2Sn, which correspond to an 18 and a 24 unit-cell-long interfacial region, and found the phonon 

transmissions from the two calculations are identical. This indicates that an 18 unit-cell interfacial 

region is sufficiently long to include the distorted lattice and ensure that the calculated phonon 

transmission is converged if the size is further increased. For MA, we use Eq. (VI.2) to generate 

the pseudopotential with   0 R  for Mg2Si/Mg2Sn interfaces. 

 

 

Figure V.5. (a) The atomic system used to perform energy minimization. The arrows indicate the 

periodic boundary condition. (b) The atomic system for the AGF calculation. The yellow, cyan and 

pink atoms are Si, Sn and Mg, respectively. 

 

The phonon transmission curves from Mg2Si to Mg2Sn calculated from both the MA and the 

HOFCM are shown in Fig. V.6(a). The phonon DOS of the two reservoirs are also presented in 

Fig. V.6(b) and (c). Both phonon transmission curves show a similar trend.  In the middle 

frequency region ( 140.25 0.3 10   rad/s), there is a region with zero-transmission from both the 

HOFCM and the MA calculations. The zero phonon transmission is due to the frequency-gap 
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between the acoustic and optical branches of Mg2Sn. Any phonons in Mg2Si with frequency lying 

in the gap of Mg2Sn phonon dispersion cannot transmit, since Mg2Sn cannot support any phonon 

modes with such frequencies. At the low frequency region below the gap, the phonon transmission 

is relatively high, close to unity. This is because the phonon DOS in Mg2Sn side is much larger 

than that in Mg2Si and there can be multiple phonons in the Mg2Sn side with similar low-frequency 

to match the incoming phonons from the Mg2Si side [223]. At the high frequency region, the 

transmissions for both cases are much lower than unity, indicating that high-frequency phonons 

are more likely to be scattered at the Mg2Si/Mg2Sn interface since the phonon dispersions of Mg2Si 

and Mg2Sn become quite different. 

 

 

Figure V.6. (a) Frequency-dependent phonon transmission across a sharp Mg2Si/Mg2Sn 

interface. (b) Phonon DOS of Mg2Si. (c) Phonon DOS of Mg2Sn. 
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However, there are some quantitative differences. The MA predicts a smaller zero-

transmission gap than HOFCM. The difference in the zero-transmission gap could be explained 

by the phonon DOS of the Mg2Sn reservoir calculated from these two methods, as shown in Fig. 

V.6(c). By comparing phonon DOS calculated from the direct method, the MA and HOFCM of 

the DFT calculations, we found that the HOFCM gives almost identical phonon DOS results as 

the direct method and the MA renders a much smaller gap than the HOFCM and the direct method.  

In addition to the different DOS results calculated from the MA and HOFCM which can easily 

explain the difference in zero phonon transmission gap, the over-prediction of the phonon 

transmission at high-frequency (> 140.3 10  rad/s) by the MA, as shown in Fig. V.6(a), is likely 

due to the absence of the local force field scattering in the MA. This could be understood from the 

wave nature of phonons. Phonons are more likely to be scattered by the strain field whose 

characteristic size is comparable to the phonon wavelength  . Since the strain field around the 

sharp interface spans a few unit cells, the phonons with small wavelength or large wavenumber 

( 2 /k   ) are strongly affected. According to the phonon dispersion in Fig. V.3, low-frequency 

phonons are the modes in LA and TA branches with small wavenumber. On the other hand, 

phonons away from the Γ point are of middle and high frequency. Therefore, the transmission 

function of low-frequency phonons calculated from the MA and the HOFCM have a closer match, 

while the transmission of high-frequency phonons from the HOFCM is much smaller than that 

from the MA due to the strain field scattering. 

Due to the over-predicted phonon transmission for the entire phonon spectra, the interfacial 

thermal conductance is overestimated by the MA, as shown in Fig. V.7. The discrepancy becomes 

more evident at high temperature. The interfacial thermal conductance from the MA at high 

temperature is almost twice as large as that from the HOFCM. At low temperature the thermal 
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conductance is mainly contributed by low-frequency phonons and both methods give similar 

phonon transmission for these low-frequency phonons. At high temperature, the high-frequency 

phonons, whose transmission is more significantly over-estimated under the MA, are excited and 

begin to participate in the energy transport.   

 

 

Figure V.7. Interfacial thermal conductance across Mg2Si/Mg2Sn interface at different 

temperature. The MA overpredicts the interfacial thermal conductance.  

 

V.5 Phonon transmission across Mg2Si/Mg2Si1-xSnx/Mg2Si 

 

In this section, we study the phonon transmission and scattering across Mg2Si/Mg2Si1-

xSnx/Mg2Si structures with the HOFCM to explore the phonon transport across interfaces made up 

of a crystal and its alloys. This kind of interfaces play an important role in increasing the figure of 

merit of the “nanoparticle in alloy” thermoelectric materials by reducing its thermal conductivity 
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below the alloy limit [185, 234]. In “nanoparticle in alloy” thermoelectric materials, the short-

wavelength phonons are scattered by alloy scattering while the long-and-middle-wavelength 

phonons are scattered by the nanoparticles whose size can be tuned. Great progress has been made 

over the past decade on developing more efficient thermoelectric materials using such 

nanostructuring approach [51]. However, the detailed and systematic understanding on frequency-

dependent phonon transmission across such kind of interfaces has not been developed.  

Figure V.8(a) illustrates the atomic system used in the AGF simulations, where an Mg2Si1-xSnx 

alloy layer with a thickness of L unit cells is sandwiched between two semi-infinite Mg2Si crystals. 

The dimension of the cross-section is 0 02 2a a  and the periodic boundary condition is imposed 

when the simulation system is relaxed.  Figure V.8(b) shows the phonon transmission across the 

alloy layer with different Sn compositions, x, when the length of the alloy layer L is fixed at 10 

unit cells. When x is small, the phonon transmission always decreases with the increase of x for 

the entire phonon spectra due to the increasing scattering events in the alloy layers. The 

transmission curves exhibit a similar shape, where the peaks and valleys in the curves occur at the 

almost the same phonon frequency when the Sn concentration (x) is low. By examining the phonon 

transmission through alloy layers with other thickness, we even found that the phonon transmission 

across the alloy Mg2Si1-xSnx with a thickness of 2L ,  2
x
LT  , can be well approximated by that 

across the alloy Mg2Si1-2xSn2x with a thickness of L but with 2x Sn concentration  2 x
LT  , as 

shown in Fig. V.9(a) and (b). This indicates that the transmission is mainly determined by the total 

number of Sn atoms, which serves as alloy scattering centers, but is weakly dependent on the 

distribution of Sn atoms. Such a scaling relation indicates that the phonons are mainly scattered by 

the defects in the alloy layer and the scattering events due to the Sn defects can be regarded as 

independent events. However, when x > 0.4, such simple scaling relation does not work well. 
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T
2L
0.4    exhibits very different features from T

L
0.8   , as shown in Fig. V.9(c). For example, there 

is a zero-transmission region for middle-frequency phonons, which is the signature of phonon DOS 

in Mg2Sn. This is understandable because when x = 1.0, the interface becomes a sharp 

Mg2Si/Mg2Sn interface, but as x decreases, the Si atoms within the alloy layers act as defects 

leading to additional scattering.  

 

 

Figure V.8. (a) The schematic of the simulation system of Mg2Si/Mg2Si1-xSnx/Mg2Si structure.  (b) 

Phonon transmission across the Mg2Si/Mg2Si1-xSnx/Mg2Si structure as a function of phonon 

frequency for different Sn compositions (x). The length of the alloy layers is fixed at 10 unit cells. 
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Figure V.9. Phonon transmission across the Mg2Si/Mg2Si1-xSnx/Mg2Si structure as a function of 

phonon frequency for alloy layers with different Sn compositions and thickness. 

 

To observe the collective behaviors of all phonons transmitting through the structure, the 

thermal resistance, or the inverse of the thermal conductance, across the structures with different 

L  at 300 K, was calculated and shown in Fig. V.10. The total thermal resistance is found to be 

proportional to the length for each Sn concentration x , and their relation can be well fitted by 

total interface
alloy

2
L

R R
K

  ,     (V.12) 

In this relation, totalR is the total thermal resistance, the coefficients i nterfaceR  and alloyK  can be 

interpreted as the interfacial resistance of each Mg2Si/Mg2Si1-xSnx interface and the effective 

thermal conductivity of the alloy layer. By linear fitting of this relation, the interfacial resistance 

of Mg2Si/Mg2Si1-xSnx interfaces, as well as the thermal conductivity of Mg2Si1-xSnx alloy, can be 

extracted. Strictly speaking, both the interfacial thermal conductance and thermal conductivity 
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could be size dependent especially if the simulated size is smaller than the mean free path of 

phonons. We estimate the average mean free path of phonons using the simple kinetic theory. 

Considering the thermal conductivity of Mg2Si1-xSnx ~3 W/mK, the specific heat ~70 J/mol.K and 

the sound velocity ~ 5000 m/s, the average phonon mean free path is ~ 1 nm. The size of the alloy 

layers we simulated is usually larger than this value, which justifies the length-independent 

interfaceR  and alloyK .  

 

Figure V.10. The total thermal resistance of Mg2Si/Mg2Si1-xSnx/Mg2Si structure as a function of 

the thickness of alloy layers. 

 

The interfacial thermal resistance can be described as a piecewise linear function with x , as 

shown in Fig. V.11(a). The value of the interfacial resistance is small and weakly dependent on 

the composition when 0.4x  . This trend is consistent with the observation that the phonon 

transmission is dominated by the individual scattering events within the alloy layer when x is small. 

For 0.4x  , the slope of the interfacial resistance as a function of the Sn composition abruptly 

jumps to a larger value and the scattering at the interface dominates the transmission process. The 
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two regimes of interfacial thermal conductance can also be understood by looking at the transition 

of phonon DOS with the composition shown in Fig. V.12. While the DOS of the alloys retains the 

shape for high-frequency phonons as that of Mg2Si at a small x, the peaks seem to disappear when 

x is larger than 0.4. Therefore, high-frequency phonons from the Mg2Si phase are less likely to 

transmit across the Mg2Si/Mg2Si1-xSnx/Mg2Si interface due to the relatively small number of 

phonons available to match these incoming phonons. As a result, the interfacial resistance is larger 

at a large x because of the important role of high-frequency phonons on thermal conductance 

according to the Landauer formulism, Eq. (11).   

 

Figure V.11. (a) The extracted interfacial resistance of Mg2Si/Mg2Si1-xSnx interface as a function 

of x. (b) The extracted effective thermal conductivity of Mg2Si1-xSnx alloy as a function of x,  in 

comparison with the measured data from Ref. [195] and the PBTE calculation from Ref. [16].  

 

Figure V.11(b) shows the effective lattice thermal conductivity of Mg2Si1-xSnx as a function of 

the Sn composition, extracted from the AGF calculations, in comparison with the experimental 

data [195] as well as recent theoretical calculations based on the PBTE theory with interatomic 

force constants from DFT as inputs [16]. Overall the calculated values from the AGF resemble the 
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typical experimental trends of alloy thermal conductivity, where the thermal conductivity drops 

first, then becomes nearly independent of composition and increases again when x increases from 

0.1 to 0.9. However, the calculated value of thermal conductivity is smaller than the measured data 

taken from thermoelectric handbook [195]. This observation is counter-intuitive. One would 

expect that anharmonicity happening in the experimental samples that are not implemented in AGF 

calculations would lead to a smaller thermal conductivity than the calculated values. However, 

Paython et al had found the similar results in their atomic simulations several decades ago [235]. 

They provided the qualitative explanation as follows. Under the harmonic approximation, the 

impurities destroy the translational symmetry so that some of the phonon modes cannot travel from 

one end to the other end and become localized modes, which do not contribute the heat flux. But 

with the help of anharmonic coupling, an energy exchange between the localized modes is induced, 

thus the heat flux is enhanced. As a result, the thermal conductivity of the disorder anharmonic 

crystal (experimental data) would be even larger than the disordered harmonic crystal (as 

calculated using the AGF model).   

 

 

Figure V.12. The calculated phonon DOS of Mg2Si1-xSnx alloys. 
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V.6 Summary of this chapter 

 
In summary, we employ the HOFCM, which originates from the MA but considers the local 

force difference due to the different species (including both atom types and lattice constant 

difference), to efficiently calculate the harmonic force constants of the interfacial regions, and then 

integrate the obtained force constants from the first-principles calculations with the AGF approach 

to study phonon transmission across Mg2Si/Mg2Si1-xSnx interface. Starting from the harmonic 

interatomic force constants from the VCA, the HOFCM uses the higher-order terms which are 

related to the atomic displacement and atomic species to improve the accuracy of the harmonic 

force constants from the VCA. The HOFCM is found to be computationally affordable to extract 

the harmonic interatomic force constants from DFT calculations by taking the advantage of the 

VCA when comparing with the direct method, while yielding phonon dispersion closer to the direct 

DFT method in comparison with the MA. DFT-AGF approach was developed using the force 

constants calculated from both the MA and the HOFCM. It is found that the MA over-predicts the 

phonon transmission and interfacial thermal conductance across Mg2Si/Mg2Sn interface due to the 

absence of the internal strain field scattering for high frequency phonons in the MA. The 

frequency-dependent phonon transmission across an interface between a crystal and an alloy, 

which often appears in high efficiency “nanoparticle in alloy” thermoelectric materials was studied. 

The interfacial thermal resistance across Mg2Si/Mg2Si1-xSnx interface is found to be weakly 

dependent on the composition of Sn when the composition is less than 40%, but increases rapidly 

when it is larger than 40% due to the transition of the high-frequency phonon DOS in Mg2Si1-xSnx 

alloys.  
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CHAPTER VI CONCLUSIONS AND FUTURE WORK 
 

In this thesis, we have developed the first-principles-based simulation tools to predict the 

thermal conductivity of two-dimensional crystal materials and study the phonon transmission 

across interfaces between two dissimilar materials.  

The effects of crystal structure, atomic mass, bonding stiffness, layer thickness and embedded 

nanodomains on thermal conductivity of silicene and TMDs are investigated. These findings could 

guide the synthesis of novel two-dimensional materials with desirable thermal properties or 

fabricate high-performance and reliable two-dimensional-material-based nanodevices. There are 

still a few issues needed to be addressed in the future. 

The main inputs for thermal conductivity calculation are the interatomic force constants. In our 

current implementation, we extract these force constants under 0 K. However, it has been realized 

that using these force constants to calculate phonon dispersion and phonon scattering rates of the 

materials at high temperature condition could lead to deviation between the calculated results and 

the experimental data [236]. To solve this problem, ab initio molecular dynamics should be 

performed at the temperature that are of interest, and the interatomic force constants could be 

extracted by fitting the relation between atomic forces and displacements. Because of the thermal 

expansion effects, the lattice constants of the crystal cannot be determined through simple energy 

minimization as we do at 0 K condition. A series of ab initio molecular dynamics simulations have 

to be performed, which brings severe computational burden, in particular for crystals with less 

symmetry. It would be highly desirable if efficient methods can be proposed to accelerate the 

procedures to extract interatomic force constants at high temperature. 

 In our PBTE approach, we only considered the three-phonon, phonon-boundary, phonon-

isotope, phonon-alloy and phonon-nanodomain scatterings. However, a few scattering 
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mechanisms are ignored, some of which might not be neglected in some situations. For example, 

at high temperature four-phonon scattering processes should be important. Although some 

literatures suggested that it could be neglected below 1000 K [121], the criteria should be material-

dependent. In many device applications, two-dimensional materials are supported by the substrates. 

According to previous study on the supported graphene, the substrate could influence the thermal 

conductivity of two-dimensional materials in a complicated manner [237, 238]. The interaction 

between phonon and substrate should also be considered in the PBTE. 

Our efforts on AGF approach enable us to study phonon transmission and interfacial thermal 

conductance with accurate force constants from first-principles simulations. With this powerful 

tool, we are able to study the roles of mass disorder and strain field disorder on the phonon 

transport across the interface. However, the AGF approach studied in this thesis is based on 

harmonic approximation, and inelastic effects are ignored. It is clearly seen from Figure V.11 that 

the harmonic approximation could lead to underestimation of interfacial thermal conductance and 

thermal conductivity. The future work will aim to include the phonon-phonon scattering effects in 

Green’s function by solving the anharmonic self-energy term [239]. 
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APPENDIX 

 

A.1 The shape of silicene’s ZA phonon dispersion 

Instead of the definition of dynamical matrix from Eq. (II.3), the dynamical matrix can also be 

defined as [96] 

' '
' , ' '

''

1
( ) iC e

M M
 
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0 R
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q ,     (A.1) 

where ' 'RX  is the position of atom ' 'R . The two definitions of dynamical matrix give the 

identical phonon dispersion relation [96]. It is more convenient to derive the dispersion relation 

close to the Gamma point using Eq. (A.1) as the definition.   

 The dynamical matrix of a wavevector qq u  ( u  is a unit vector in the x-y plane) can be 

calculated from the dynamical matrix of its neighbor wavevector 0q  ( 0  q q q ) as a 

perturbation 
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If  0q  is chosen as the Gamma point, Eq. (A.2) can be simplified as 
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where (1)C  and (2)C  are real matrices. Then the eigenvalues are written as 

   * *2 2 (1) ' 2 (2) '
' ' ...s s s s s siq C q C       

         q 0 0 0 0 0      (A.4) 

where   is eigenvector of the dynamical matrix C , and is real at 0q . Since the eigenvalues of 

any dynamical matrix are always real, the second term in Eq. (A.4) naturally vanishes. Due to the 

crystal symmetry of silicene, it is easy to prove that (2) (2)
' ' 0xz yzC C   . Therefore, there is an 

acoustic branch where the corresponding atomic movement at the Gamma point is pure out-of-

plane motion (along z direction), or the ZA branch which is discussed in the main text. The 

components of its eigenvector are ,ZA 2 / 2z 0 , ,ZA ,ZA 0x y   0 0  at the Gamma point. The 

dispersion of this branch becomes quadratic only if the 2q  term in Eq. (A.4) is zero, or 

(2)
'

'

0zzC 


 ,     (A.5) 

which requires 

 2

' ' , ' ' 0zz
   R 0 Ru X .     (A.6) 

Physically, Eq. (A.6) indicates the energy of the 2-D crystal unchanged when every atom move a 

distance of  ' '   Ru X  along z direction, where   can be regarded as a small angle that the 
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atomic plane rotates, as illustrated in Fig. A.1. The deformation due to the shear leads to a relative 

displacement among atoms. Since the original silicene structure is the structure with the minimum 

energy, the distorted lattice structure has to be of higher energy. Therefore, Eq. (A.6) does not hold 

for silicene, and there is always a linear component in the ZA dispersion. Such proof provided here 

can also be applied to other 2-D materials, such as transition metal dichalcogenides. 

 

 

Fig. A.1. The schematic of the shear deformation of silicene. 

 

A.2 The long-wavelength ZA phonon modes in graphene 

 

Although the quadratic dispersion can be obtained from first-principles calculations and widely 

used for the flexural ZA phonons in graphene, some authors have recently pointed out that the 

quadratic shape of the ZA modes would lead to strong scatterings with long-wavelength LA and 

TA modes, making the phonon relaxation time of the LA and TA modes approach a constant for 

phonon near the zone center  0q  [66, 103]. Since the condition for the existence of phonons as 

elementary excitations is 1s s  q q  [118], the abnormal constant relaxation times of the LA and 

TA modes raise a concern on whether the phonon concept can even be applied to the long-

wavelength acoustic vibrations in graphene. The problem becomes more severe when the sample 
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size is larger than 1 μm, since the condition 1s s  q q  occurs in the region of the first Brillouin 

zone where 
5

05 10 (2 / )q a  , i.e., where the wavelength   > 1 μm [66, 103]. One possible 

way to avoid such a concern is to take into account the coupling of ZA and in-plane acoustic 

phonon modes, in which case the long-wavelength ZA dispersion has the form 
3/2q  [110]. In 

this work, we slightly modify the ZA dispersion by multiplying the original dispersion relation by 

the factor 
1/ 421 ( / )cq q   , where cq  is a cutoff wave vector, corresponding to the bending 

rigidity of 0 1.68   eV, similar to what Lindsay and Broido did in ref. [67]. The modified ZA 

branch is then plotted in Fig. 2(a). It is seen that such modification does not change the dispersion 

of middle- and short-wavelength phonons, but turns the quadratic dispersion to 
3/2q  near the 

zone center, making 
1/2v q  and 0 3 / 2n q   for long wavelength ZA phonons. We have thus used 

the modified dispersion for flexural ZA modes in the calculation of thermal conductivity and 

phonon scattering rate of graphene in this work. 

 

A.3 Analytical limit of the scattering rates of graphene’s acoustic phonon 

modes 

For a three-phonon process in a two-dimensional material, if the mode sq  is fixed and the 

branch indices 's  and ''s  of the other two modes, ' 'sq  and  '' ''sq  ( '' '  q q q G ), are given, 

the wavevector 'q  has to be on a loop  't q  in the first Brillouin zone that is determined by the 

energy conservation condition ' ' ( ' ) ''s s s     q q q q G . The two-dimensional integral, Eq. (II.14), 

can then be converted to a line integral, which is written as [66] 
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To scatter a long-wavelengh phonon mode sq  on a linear dispersion with two other phonon 

modes ' 'sq  and '' ''sq  which are on a dispersion with 
3/2q , it is easy to show that 

2/3'q q

and  
2/3''q q  to satisfy the energy conservation condition. As a result, the perimeter of the loop 

 't q  is on the of order 
2/3q , 

0 0
' ' '' ''(1 )s sn n q q  is on the of order 

1q  and the gradient is on the of 

order 
1/3q . Now, the only unknown quantity is the three-phonon scattering matrix element 

2

3V . 

Take the LA phonon in graphene as an example, Eq. (II.6) can be written as  
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By expanding the exponential in powers of q, we can get the terms of 1,
2/3q , q, 

4/3q , 
5/3q , 

2q , 

7/3q ,… In Ref. [66], the authors proved that the coefficients of the first six terms would be zero 

due to the acoustic summation rule and mirror symmetry of the graphene sheet. Since the first 

nonzero term is 
7/3q ,  the scattering matrix element 

2

3V  scales with 5 / 3q , and finally the 

scattering rate due to the  LA->ZA+ZA process should follow the relation as s q q  as 0q  . 
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A.4 Analytical limit of the scattering rates of silicene’s acoustic phonon modes 

In Sec. III(D), we discussed three possible scattering mechanisms for a long-wavelength 

acoustic  phonon mode sq that satisfies the same linear phonon dispersion. One is the decay 

process that scatters into two long-wavelength acoustic modes ' 'sq  and '' ''sq . The other two are 

the annihilation scattering with a high-frequency mode ' 'sq  and generate another high-frequency 

mode '' ''sq  that could be on the same branch as ' 'sq  or on a different branch. 

In the first case, all of the three long-wavelength modes are on the linear dispersion curves, 

and the scattering matrix can be derived from a continuum model, which gives 
2

3 ' ''V qq q  [99]. 

Since both 'q  and ''q  are in the order of q(otherwise energy conservation condition cannot be 

satisfied), we can get these scaling relations: 
2 3

3V q ,  0 0 1
' ' '' ''1 s sn n q  q q  and 

 ' ' ' '' '' 1s s s     q q q q
 through some algebra. In addition, the perimeter of the loop  't q  is 

in the same order of 'q . Therefore, the scattering rate sq  due to the decay processes into two 

long-wavelength modes is in the order of 
3q  according to Eq. (A.7). 

In the other two cases, ' 'sq  and '' ''sq  are not long-wavelength modes. The scattering matrix 

element 
2

3V  becomes proportional to q  and  0 0
'' '' ' 's sn nq q  can be estimated by 

     0 0 0
'' '' ' ' ' ' ' '/s s s sn n n vq q         q q q q

, which sv qq  is the energy of sq . If modes ' 'sq  

and '' ''sq  are on the same branch, the gradient  ' ' ' '' ''s s s    q q q q
 can be estimated by 

 ' ' / 's q   q q q  and the perimeter of the loop  't q  is a finite value. Then according to Eq. 
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(A.8) we can obtain s q q  for the second case. If ' 'sq  and '' ''sq  are not on the same branch, 

 ' ' ' '' '' ' ' '' ''s s s s s      q q q q q qv v is a finite number. Now,  
2

s q q  for the third case.  

 

A.5: Imposing translational and rotational invariance to the fitting for 

interatomic force constants 

First-principles calculations are performed to obtain the displacement-type-force relation, Eq. 

(VI.5), which are linear equations with respect to the interatomic force constants  ,  ,   J  and 

G . To obtain physically correct interatomic force constants, the translational and rotational 

invariances have to be considered when solving Eq. (VI.5) with linear fitting. The translational 

invariance relations, which indicate that the energy of a system is a constant value when all atoms 

are displaced the same amount distance along a given direction, are expressed as [216, 219] 

'
'

0  RR
R

,   , R   

' ''
''

0  RR R
R

,  ', RR
     (A.9)

 

' ''
'

0  RR R
R

,  ', RR      

The rotational invariances, which ensure the constant system energy when all atoms are rotated a 

small angle along any axis, are written as [216, 219] 

 '
'

' 0
    RR

R

R ,   , R   

 ' '' ' '
''

'' 0
             RR R RR RR

R

R ,  ', RR
   (A.10) 

 ' '' ''
'

' 0G
       RR R RR

R

R ,  '', RR   
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where 
  is the Levi-Civita symbol.  

These constraints can be observed by the weighted least squares or Lagrange multiplier 

approach [240] in the linear fitting process. However, the weighted least squares method involves 

the choice of weighting factor, which is rather arbitrary, and the Lagrange multiplier approach is 

more complicate to implement. Here, we propose a simple embedded method, converting the 

constrained problem to the unconstrained one based on singular value decomposition (SVD).  

For convenience, we convert both the displacement-type-force relation, Eq. (VI.5), to matrix 

form Ax b  and the translational and rotational invariance constraints, Eq. (A9-A10), to 0Cx , 

where x  is a vector whose elements are the interatomic force constants   ,  ,   J  and G  that 

need to be determined, A and C  are simply the coefficient matrix of the linear equation sets of the 

displacement-type-force relation and the constraints, and b  is a column vector. The constrained 

linear fitting problem is to minimize
2Ax b under the constraints Cx 0 . 

Suppose C is an m n  matrix where m  is the number of constraints and n  is the number of 

independent interatomic force constants, the rank of C, r , must be smaller than n .  Otherwise, 

the vector x  that satisfy Cx 0  has to be 0 . Through SVD, we have T C U V , where U  and 

V  are m m  and n n  unitary matrices, 1 2( , , , ,0, 0)rdiag        is an m n  rectangular 

diagonal matrix with r  positive numbers, i  , on the diagonal. It can be shown that the last n r  

column vectors of V  span the null space of C. In other words, any x  satisfying 0Cx  must be 

the linear combination of  1 2, , ...,r r n V V V ,  

1 1 2 2 ...r r n r ny y y     x V V V ,     (A.11) 

where iV  is the ith column of V  and iy  is a scalar. In matrix form, Eq. (A.11) is expressed as 

x Vy , where V  is the submatrix made up of the last n r  column vectors of V  and y  is a 
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  1n r   vector with iy  as its elements. Only if we can find the *y  which make 
2Ax b  

minimized, * *x Vy  strictly satisfying all constraints and is the solution of the original 

constrained least-squares problem, To find the *y , we plug in x Vy  to Ax b  and obtain 

  AV y b . The least-squares solution of   AV y b  is      
1

* '
T

y


 
 

AV AV AV b . 

Therefore, the extracted interatomic force constant vector is expressed as 

     
1

* * '
T 

  
 

x Vy V AV AV AV b .    (A.12) 
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