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Christopher, Jason D. (Ph.D., Mechanical Engineering)

Approximate Bayesian Computation for Parameter Estimation in Complex Thermal-Fluid Systems

Thesis directed by Professors Peter E. Hamlington and Gregory B. Rieker

A major challenge in computational fluid dynamics (CFD) simulations of real-world flows is

the accurate assignment of boundary, initial, and geometric conditions, as well as fluid and material

properties. Despite advances in experimental techniques, however, acquiring the information neces-

sary to simultaneously set each of these conditions and properties remains a considerable challenge.

As a potential solution to this difficulty, recent advances in data-driven parameter estimation tech-

niques have provided flexible and increasingly sophisticated methods for improving the fidelity of

simulation configurations using experimental data. This dissertation applies, for the first time, a

technique called approximate Bayesian computation (ABC) to complex thermal-fluid flows in order

to determine numerical simulation parameters from experimental or other reference data.

In this dissertation, the ABC approach is demonstrated for several engineering test cases to

demonstrate its efficacy at determining unknown parameters in a wide variety of settings. As a

simple initial case, the logistics equation is used to demonstrate the technique. This is followed by

the case of a two-dimensional turbulent buoyant jet with variable inlet velocity. The jet is modeled

using a large eddy simulation (LES), and reference data is obtained from ensembles of both LES

(serving as a benchmark for the technique) and direct numerical simulation (DNS) cases. The

reference parameters are correctly identified based on either velocity or temperature measurements

at various heights. Using a similar setup, but now with a lightly forced helium plume, the puffing

frequency of the jet is identified and used to match experimental observations to predict inlet

composition.

Moving on to industrial engineering applications, a three-dimensional turbulent buoyant

jet with unknown temperature conditions is simulated using a Reynolds-averaged Navier Stokes

(RANS) simulation. In this application, reference observations come from the same RANS case
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with known parameters. The ABC procedure correctly identifies the inlet temperature boundary

conditions. In the next case, a rotating cylinder above a high-temperature turbulent buoyant jet is

investigated. Here the reference observations come from a two-dimensional RANS simulation. In

particular, the initial reference case has known jet inflow and cylinder rotational velocities, and the

ABC approach is shown to correctly identify the reference values of these parameters using sparse

temperature statistics within the domain. In an additional test using the two-dimensional rotating

cylinder case, the reference case has known species concentrations at the jet inflow and we show

that ABC can correctly identify the reference concentrations using sparse species and temperature

measurements within the domain.

The ultimate application of ABC in this dissertation uses the technique to determine three-

dimensional LES parameters based on comparisons with experimental observations. The experi-

mental temperature data are obtained above an industrially-relevant catalytic burner using laser

absorption spectroscopy. This final application identifies parameters that are not able to be mea-

sured experimentally, including inlet velocity and heat addition due to continued combustion within

the flow field.

These successes indicate that ABC can be extended to additional real-world engineering

systems, even when only sparse observational data is available. Using ABC and reference data, one

can accurately drive the selection of boundary conditions, as well as model parameters, in numerical

simulations. Furthermore, ABC can provide insights into quantities that are not easily measured

experimentally.
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Chapter 1

Introduction and Background Information

Computational simulations are widely used to design and analyze systems involving complex

thermal-fluid flows. From microscale heat transfer in thermal management devices to liquid propul-

sion in heavy-lift rockets, nearly all such simulations are intended to provide three-dimensional (3D)

spatially and temporally resolved numerical solutions of physics-based governing equations for re-

alistic geometries, boundary conditions, and material properties. Prior to making simulation-based

design and operational decisions, however, computational accuracy must be demonstrated by val-

idating against (typically experimental) reference data for realistic or canonical test cases. As

simulation fidelity has improved over the past decade with the development of higher-order and

geometry-resolving numerical techniques, as well as with the increasing use of petascale computing

resources to achieve very fine spatial resolutions and improved physical realism, a long-standing

difficulty in such validation efforts has come into sharper focus.

Namely: Even if a simulation is able to solve physically-realistic governing equations with

high accuracy, unavoidable uncertainties in real-world boundary conditions, material properties,

and other parameters result in ambiguity as to whether the computational and real-world systems

are actually equivalent. That is, there are few assurances that discrepancies between computational

and experimental results during a validation test are not simply due to differences in the initial or

boundary conditions between the real-world and simulated systems. This scenario can occur, for

example, in cases where knowledge of a real-world system is limited, perhaps in experiments that

were not originally intended for validation purposes, systems with limited access, or parameters
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that are difficult to measure directly [4]. Discrepancies may also be due to model parameters that

need to be optimized (see [5]). Moreover, agreement between simulations and experiments may also

be hampered by inadequate physics modeling (e.g., unresolved flow features due to discretization

or insufficient turbulence modeling, lack of combustion, lack of multiple present phases such as

soot or condensation). Thus, it is important to address as many of these simulation limitations

as is computationally affordable before trusting simulation results for the design and operation of

real-world systems.

In broad terms, this difficulty can be addressed by proposing distributions of likely parameter

values, performing simulations with parameters sampled from those distributions to determine the

spread of outcomes in a particular quantity of interest within a flow, and then using statistical

inference to determine likely distributions for unknown parameter values [4, 6–8]. This approach

can, in principle, be attempted using full Bayesian analyses, which have recently gained popularity

for parameter estimation in engineering applications [9–12]. However, in nearly all such analyses,

the requisite components of Bayes’ theorem (specifically, the likelihood function) may be unknown

or enormously costly to compute and, consequently, non-physics-based reduced-order surrogate

models have often been used to sample the unknown parameter space [10,11,13–15]. Optimization

techniques have also been used for parameter estimation (e.g., [16–20]), but these methods seek to

provide single values of unknown parameters, with no intrinsic measure of uncertainty when using

potentially imperfect computational models and real-world data.

In this dissertation, approximate Bayesian computation (ABC) is used, for the first time,

to estimate unknown parameters in thermal-fluid flows. The power of ABC lies in the fact that

far fewer simulations are required than in full Bayesian analyses since ABC does not require a

likelihood function, thus permitting the use of physics-based models. A wide variety of reference

data can also be used to drive the estimation, including measurements that are only indirectly

related to parameters of interest. The technique naturally provides probability distributions for

unknown parameters, allowing Bayesian confidence intervals to be obtained along with parameter

estimates.
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This dissertation is one of a growing number of efforts to use data-driven methods with either

experimental or higher-fidelity computational reference data to improve accuracy and quantify un-

certainty in turbulent flow simulations. For example, ensemble Kalman filtering (EnKF) approaches

have been used to assimilate reference data in simulations [21–24] and to infer turbulence model

discrepancies [25]. In such approaches, reference data are used to update the state of a simulation

or parameters in the simulation as the simulation progresses. Generally, however, EnKF methods

require extensive and high quality reference data to provide reliable state and parameter estimates.

The maximum a posterior (MAP) method has also been used to infer both parameter [26] and

model [27] uncertainties. This method maximizes the posterior using either an analytical function

or a Monte Carlo approach, but the analytical function used to represent the posterior (or the

likelihood function) is often only known approximately, and the number of simulations required in

even Markov chain Monte Carlo approaches can be enormous. Recently, the ABC method has been

used to infer Arrhenius parameters for chemical kinetics rate coefficients in the context of combus-

tion [28]. The present dissertation is specifically targeted at problems for which the reference data

are spatially and temporally sparse, statistical in nature, or otherwise lacking in sufficient detail to

update the model simulations at all locations and times (precluding the use of EnKF methods) and

for which the true posterior is either intractable or prohibitively expensive to compute (precluding

the use of MAP methods).

It should be noted that this dissertation focuses on demonstrating the use of ABC for estimat-

ing physical parameters that are difficult to obtain for real-world systems, as opposed to calibrating

model parameters used in reduced-order or engineering models of more complex phenomena. Such

model parameter calibrations are also possible using ABC and are the subject of future research [5].

1.1 Characterization, Analysis, and Design of Thermal-Fluid Systems

Numerical simulations and real-world experiments play key roles in understanding the types

of engineering systems that are ubiquitous in modern society. Numerical simulations provide a

wealth of data, often including fully resolved spatial and temporal domains with information on
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many key quantities of interest such as velocity, temperature, and species concentrations [29]. How-

ever, numerical simulations are plagued by a key limitation; namely, persistent questions regarding

the accuracy and reliability of simulation results and conclusions [4]. Experimental data derived

from measurements of physical systems largely avoid this problem by offering highly accurate results

for some of those same quantities. However, experiments are often limited in their dimensionality,

only recording data from a small portion of the domain at any given time and for a small sub-

set of the quantities of interest [30]. Thus, combining observations of the “truth” (which will be

defined various ways throughout this dissertation and usually referred to as the “reference” data)

with simulations provides a possible path to improving and overcoming these shortfalls. Specifi-

cally, the reference measurements bring credibility to the numerical simulations, while simulations

provide additional insights into the system of interest. This dissertation demonstrates an innova-

tive application of approximate Bayesian computation (ABC) to unify numerical simulations and

experimental measurements. Before experimental observational data are used, however, reference

data is drawn from either the same or higher fidelity simulations in order to benchmark how well

ABC performs in situations with complex thermal-fluid flows, with a particular focus on systems

involving coupled interactions between fluid mechanics and combustion.

In this dissertation, the term ‘combustion engineering’ is used in a general and broad sense

to include systems that may or may not have active reactions in the region of interest (e.g., above a

catalytic burner there are theoretically no additional significant reactions assuming complete com-

bustion within the burner, or only limited amounts of additional reactions if the catalyst becomes

saturated). The flow fields of interest, however, generally require combustion to provide the high

temperature inlet conditions. The desired outcome of combustion engineering usually relates to

answering a question regarding the performance of a system in one (or more) of three regimes: in

everyday settings, in extreme conditions, and/or throughout its lifetime. Within these three perfor-

mance areas, combustion engineering focuses on two primary tasks: characterization and analysis,

as well as design and optimization. Each of these tasks encompasses a vast array of unique chal-

lenges, yet together they yield solutions for systems ranging from rocket and jet engines, to internal
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combustion engines, to power generation and industrial processing techniques.

When completing the characterization and analysis of a combustion engineering system, it is

important to consider relevant quantities of interest for the task. The choice of pertinent quantities

of interest will often guide which method to use, depending on whether experiments, simulations

or analytic approximations can better provide the desired information. Often for combustion per-

formance, temperature and pressure are key drivers as they quantify an available potential to

perform work or drive a process. To achieve the necessary temperature and pressure, engineering

economics must address the efficiency and cost of a system. Pollution generation is also studied

in combustion-driven systems, and can be linked directly to their performance (i.e., certain pol-

lution reduction mechanisms also reduce performance). In this case, one needs to consider the

concentration of product species with a particular focus on radicals. Practical considerations also

bound engineering systems; combustion subsystems are often integrated into larger systems such

as aircraft and thus the weight and size are key design limitations. Another practical consideration

for the system focuses on its reliability, maintainability, availability, durability, and stability; if a

system has exceptional performance but does not operate when needed, it is of little use to the end

user.

Ultimately, the tasks of characterization and analysis focus on understanding existing sys-

tems. This includes modeling and measuring their performance across a wide array of operating

conditions and durations to accurately predict how systems will operate once fielded. Two primary

methods to characterize and analyze a system include simulations and experiments. Note that

theoretical or analytic approaches are not generally feasible for advanced fluid dynamics [29] or

combustion engineering [31] due to the complexities of the systems involved (e.g., due to complex

problem-specific geometries, the presence of nonlinear mixing by turbulent flow fields, heat release

and radiative effects due to complex chemical processes, highly-coupled physics spanning many

spatial and temporal scales).
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1.1.1 Numerical Simulation Overview

Numerical simulations of engineering systems span wide ranges of physical fidelity and com-

putational cost. Most often, these two attributes are proportional. On the low cost, low fidelity end

of the spectrum are reduced-order models based on simplified equations, geometries, and condi-

tions. On the other end of the spectrum are extremely expensive but much more accurate computer

models built from 3D computer-generated geometries that involve the solution of physics-based cou-

pled partial differential equations. Such CFD approaches [29] include direct numerical simulations

(DNS) (see for example, [32–35]), large eddy simulations (LES) (see for example [36–40]), and

Reynolds-averaged Navier-Stokes simulations (RANS) (see for example [41,42]). Simulations typi-

cally provide a wealth of information at comparatively affordable costs. Simulations are generally

considered “cheaper” to run than experiments because once capital expenditures are made up front

(which usually support a wide swath of computational challenges and, while high, are often paid for

by agencies besides the end user), the incremental costs to keep mainframe computers operational

are minor and shared by many users [43]. Simulations are often cheaper in terms of time, as well,

because models execute in minutes or hours, can be run in parallel, and can be modified and rerun

with little effort.

Simulations can provide data with extremely rich temporal and spatial resolutions, limited

only by the amount of computing power available. However, with these benefits come certain

limitations. In particular, many simulations of real-world systems are plagued by inaccuracies

that stem from the simplifications and physical approximations used to model such systems (e.g.,

discretization ensures that the system will not be modeled at every point in space and can thus

fail to capture certain phenomena, and the geometry of a model may not accurately represent a

complicated physical setup), as well as uncertainties in the boundary and initial conditions that

drive and bound the equations. Many of the physical parameters in the simulations might be

difficult to determine or are unknown (e.g. material properties, transport coefficients, chemical

composition, etc.), driving further potential inaccuracy into the results. These uncertainties lead
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to significant doubt about the wisdom of exclusively using models in engineering and, indeed, force

a complementary reliance on experimental data.

1.1.2 Experimental Overview

Experimental methods are highly robust in answering a variety of engineering analysis ques-

tions [30]. Trust in experimental data is an almost innate quality in humankind; each child starts

his or her own series of experiments early in life dropping an item off of a table to see what will

happen and forming conclusions about the way the world operates from such observations. The

history of academically accepting experimental evidence stems back to Galileo, widely known as

the first experimental scientist [44]. Experiments are so revered because they are based on the

truth. Though they may contain error, they are routed in actual phenomena capturing all of the

physics and chemistry that are extremely difficult to model at every scale. Data are often extremely

accurate based on known calibrations. Experimental methods can answer a variety of engineering

analysis questions and typically cannot avoid involving all of the relevant physics. For thermal-fluid

systems there exists an enormous variety of techniques to obtain data experimentally, depending

on the quantity one desires to measure. To measure pressure, for instance, one can use a fluid

barometer or manometer, a mechanical pressure gauge such as a Bourdon-tube gauge, a pressure

transducer such as a piezoelectric device, or even pressure sensitive paint [30]. Devices to measure

temperature are equally varied; one could use a traditional liquid thermometer, a thermocouple,

infrared thermography, or laser spectroscopy [30, 45]. Each of these experimental techniques has

associated strengths and weaknesses.

In general, experiments of thermal-fluid systems provide highly accurate information, but at

a limited number of locations and times, and only for a limited number of parameters (as compared

to simulations). Experiments are generally more expensive to conduct because they require costly

measurement equipment and require a mock-up of the system to be measured. Building and

configuring both of these components takes a considerable amount of time, in addition to the

duration of the experiments themselves and subsequent post processing and analysis. Lastly, once
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running, experiments can be inherently more dangerous than computer simulations, prohibiting

tests of extreme conditions (especially in the combustion realm). Thus, a key challenge existing

within combustion engineering is to utilize sparse experimental information to validate and improve

simulation accuracy. Tight coupling of experiments and simulations, to leverage the benefits of each

and minimize their weaknesses, will be the focus of subsequent efforts in this dissertation.

1.2 Combining Simulations and Experiments Using Data-Driven Techniques

All of the aforementioned strengths and weaknesses of experiments and simulations set the

stage for combining the two methods into an even more powerful tool. The benefits of experiments

can improve on the shortfalls of simulations (primarily, their uncertainty), while simulations are

able to address limitations of experiments (primarily, the restricted information content of mea-

surements). There are two aspects of overcoming simulation limitations: improving model fidelity

(including accurately replicating the physics represented by the model as well as the initial and

boundary conditions), and improving the speed of the model with minimal impact on its fidelity

(as will be discussed later, this is typically for optimization purposes). The challenge, then, is to

fuse simulations and experiments into a robust tool that provides useful, improved quantities of

interest relevant to the particular engineering system.

Within combustion research, an emerging area of interest combines experimental observations

with computational models typically developed by discretizing governing equations. There are sev-

eral methods to link these two unique sets of data depending on the final goal. Possible objectives

when connecting experiments with computations include estimating parameters, matching flow-field

statistics, or matching the field temporally and throughout the spatial domain. Looking at each of

these more specifically, parameter estimation aims to better understand boundary (or initial) condi-

tions (for instance, species concentration, thermodynamic properties such as a burner temperature

or pressure, or kinematic quantities such as an inlet velocity) and physical characteristics of the

problem (for instance, radiative heat loss or transport properties such as convection coefficients).

Studies considering flow-field statistics aim to match the observation and model domains during a
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prescribed time window on a purely statistical basis. This means that the temperature, velocity,

pressure, or species concentration, for example, are measured over a prescribed time duration in

both the model and observational domains, then statistics (e.g. mean, variance, skewness, etc.) of

time-averaged results are compared. Finally, matching the field step-by-step entails matching the

temperature, velocity, species concentrations, pressure, flame front position, etc. at each location in

the field at each time step corresponding to an observation. Depending on which of these objectives

one aims to achieve, the optimal method of combining simulations and experiments may differ.

First, consider the objective of parameter estimation. This task involves the determination

of correct input parameters for a model such that the model is then able to progress forward and

produce a field “similar” to that observed experimentally. “Similar” is, of course, a word that may

have different meanings in different contexts. This leads to the next objective of matching statistics

of the field versus matching the field point by point and from time to time. Here the methods are

focused on the statistics of the computational field based on the parameters chosen; thus, in this

context “similar” fields will have matching statistics. This focus on statistics is driven by the nature

of the system being modeled. The stochastic behavior of most combustion applications means that

the slightest anomaly in boundary or initial conditions can lead to a different time-dependent

solution; this is commonly referred to as the butterfly effect. Thus, since one can not know the

boundary or initial conditions exactly, the aim is instead to understand the general behavior of the

system through its statistics. This goal is most applicable to systems where long-term performance

is of ultimate interest; that is, when the primary mode of system operation is steady-state over a

long time duration. In such cases, the system performance over a longer duration of time is best

described by its statistical behavior. This description might apply to, for instance, an industrial

burner used to continuously affect a given process such as heat treating a film, cooking a food

item, or a jet engine operated with a constant throttle setting. With this objective in mind, one

should note that a field obtained computationally is averaged over time, and thus time dependence

is of little relevance as long as a time-dependent solution would provide the desired statistics.

Since the statistics are of value in the computational realm, the statistics are also valuable on the
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observational side. That is to say, the statistics of the observations are of prime importance when

linking experimental results to a computational model.

1.2.1 Overview of Data Assimilation Techniques

Data assimilation has been widely used in different fields to link observations with model

data, especially when a time-dependent, spatially accurate solution is of interest. Data assimila-

tion is commonly used for dynamical control systems in engineering application such as robotics

or aviation, where it is often accomplished through Kalman filtering [46]. It is also a prominent

technique in meteorology, where data assimilation is the preferred tool to connect a multitude of

observations (for example, space-based radiance measurements, radar measurements, wind stations,

buoys, weather balloons, etc. [47]) with highly complex three-dimensional models for forecasting

temperature, precipitation, and wind behavior, among other physical properties [48]. The assimi-

lation process ingests real observations to update the model and provide more accurate forecasting

at each location. The basic process relies on the use of Bayesian statistics to compare a prior distri-

bution (i.e., the initial state of the system, which could come from a model, empirical observations,

previous combinations of model and observations, etc.) to a likelihood distribution (i.e., the ob-

servations) in order to produce a posterior (i.e., the state of the system given the available model

and observation data, each weighted according to its expected accuracy as captured in the variance

of each data set) [49, 50]. These steps can be performed in real-time as data becomes available in

order to continually update the model state and provide better forecasts based on forward runs

of the model. This specific and narrow definition is what is meant by “data assimilation” in this

dissertation (as opposed to more broad interpretations that include virtually any combination of

observations and models).

Two of the primary techniques to conduct data assimilation include ensemble Kalman filter-

ing (EnKF) [50] and 4D-VAR [51]. These techniques both attempt to combine observation data

with models to improve predictions of the system’s state and allow for improved forward runs of

simulators. EnKF achieves this by acting as a particle filter running several parallel models simulta-
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neously and combining their results to account for the sample covariance in the model. Approaches

that use 4D-VAR assimilate data over a wide time window to improve agreement between the

model forecast and observations within the assimilation time window. Future efforts may continue

to combine these two approaches as seen in [52].

With this application in mind, it becomes readily apparent that the focus of data assimilation

is on applications wherein a time-dependent state estimation is desired. That is to say, data

assimilation is helpful when one desires to know each specific detail of a field (i.e., the entire

state vector) at each time step. For instance, in weather prediction it is desirable to know the

temperature, wind speed, and precipitation at each location at each moment in time – that is,

the information one seeks when looking up the weather at a particular place on the map for a

particular date. This approach also implies that the model itself, along with its boundary and

initial conditions and driving parameters, are less important as long as the prediction is accurate

for a short time forward (which is achieved by continually assimilating newly acquired data). Note

that weather forecasts 12 hours out are much less reliable than forecasts for the same time period

made 6, 3, or even 1 hour out from newly assimilated data [53]. Weather forecasting benefits

drastically in the near term due to data assimilation, as do other fields such as radar tracking

and guidance, navigation and control [46]. Data assimilation has also been applied to parameter

estimation as outlined in [24].

Extending these characteristics to combustion modeling, one can draw several conclusions

about the applicability of data assimilation. For combustion, and turbulent flows in general, one

is often primarily interested in flow-field statistics. This focus is driven by the stochasticity and

nonlinearity of the governing equations. A small perturbation in boundary or initial conditions, for

instance, can lead to a different solution. Thus, it is difficult to correctly predict each eddy and

perturbation of the flow field at a given instant in time. Instead, one is generally concerned with

the statistics of the flow field, e.g., the temporal temperature mean and standard deviation at a

particular location in the domain. The mean and standard deviation could come from running a

model for a long time or from executing multiple iterations of the model (giving ensemble statistics).
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These statistics would then allow a designer to know the characteristic behavior of the flow field

and plan accordingly when deciding how to construct an industrial system or machine.

As a result, data assimilation may not be the primary tool of interest when attempting to

utilize sparse observations in order to improve combustion engineering model performance (when

model performance is characterized by its ability to correctly match observation statistics without

being continually nudged by observations). However, if the time-dependent (instantaneous), spa-

tially accurate (local) solution to the model is desired, and an abundance of spatially and temporally

rich data is available, then data assimilation is an appropriate method. This latter performance is

indeed the primary goal of several existing combustion studies, including estimating the location of

a wild-fire flame front using a temperature field obtained with an aircraft mounted infrared cam-

era [54], determining the location of a 2D flame front using synthetically generated temperature

measurements from a model [55], or predicting the behavior of a flame in a scramjet combustor

using data from stereoscopic particle image velocimetry and coherent anti-Stokes Raman spec-

troscopy [56]. These problems all focus on cases where it is important to know the behavior of a

single implementation of a model versus the general behavior applicable to many executions of the

model. In the case of [55], the author uses data assimilation to drive a model to match observations

of a frame front location; from this match, the flame speed parameter can then be predicted.

Thus, data assimilation tools can be used to estimate parameters by augmenting the state

vector. However, this approach has its limitations. First, to be successful in thermal-fluid applica-

tions, predicting parameters using data assimilation typically requires extensive observations. For

example, in [55], the observations are synthesized from another run of the same model as the one

used in the assimilation, but with a different flame speed parameter chosen; in [57] many velocity

measurements throughout the domain are used to reduce model-form uncertainties in RANS. Sec-

ond, data assimilation is a less direct method of determining unknown parameters, particularly in

comparison to ABC, since parameter estimation using data assimilation requires state estimation

at each time step [24]). For these reasons, data assimilation has not been used as the tool to

determine unknown parameters in this work.
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1.2.2 Approximate Bayesian Computation (ABC)

A technique that appears ready to solve the problem of parameter estimation using flow field

statistics is approximate Bayesian computation (ABC). This method seeks to directly find a set of

parameters that would produce the appropriate statistics of the observations. ABC is introduced

in this section, and expanded more fully in Chapter 2.

The ABC technique [58, 59], like other Bayesian techniques, are based on their namesake,

Bayes’ theorem,

P (θ|D) =
P (D|θ)P (θ)

P (D)
, (1.1)

to solve for the probability of the parameters, θ, given the observations or data (D) available from

experimentats or, alternatively, a similar or more refined model [i.e., the goal is to solve for P (θ|D),

also known as the posterior]. The probability density function of the parameter, independent of

observations, is known as the prior and is denoted P (θ). The probability density function of the

experimental observations (data) is known as P (D); this is obtained through analyzing experimental

results, but it is often neglected since it serves merely as a normalization constant in Bayes’ theorem.

Lastly, the probability of the data occurring given the particular parameter, P (D|θ), is known as

the likelihood function.

Traditional full Bayesian techniques either approach the problem of finding the posterior

analytically (although this is often not feasible for complex models) or through Monte Carlo ap-

proaches. A standard Monte Carlo approach to find the posterior, called rejection sampling, is

presented in [60] for observations that can take countably many values (i.e., discrete and not con-

tinuous variables). In this method to find the exact posterior, many parameter values are chosen,

then the simulator is run forward to produce data. This data is compared to the observations and

if it exactly matches then the parameters are retained. These accepted parameters are then used

to construct the posterior. This method is not practical for many engineering systems as there

are too many degrees of freedom and variables are typically continuous; thus, the probability for

an exact match between observations and simulation data is extraordinarily small. Consequently,
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two approximations are made in order to form the basis of approximate Bayesian computation.

Namely: 1. the data are represented by their statistics and 2. the statistics of the simulation and

observations need not match exactly but rather are only required to agree within some prescribed

distance.

Next we examine these two approximations and ABC nomenclature in more detail. In ABC,

the observation data, D, 1 is typically represented by its statistics, S (for the approximate data

coming from a simulation, D̂, the statistics are Ŝ). Since the dimensionality of the data can be

extremely high in combustion and fluid dynamics systems, representative statistics of the data

are used throughout this dissertation. The likelihood function, P (D|θ), is usually very difficult to

obtain either due to its mathematical intractability or its computational in-feasibility. To quantify

this statement, consider the example of full Bayesian analysis given in [60]; to produce the posterior

and predict a single parameter based on observations with relatively few degrees of freedom, 20

million data sets were simulated. Indeed, in a complex combustion model or fluid dynamics model

one can safely assume the likelihood will not be available in the majority of cases. The lack of

an available likelihood function is where the ABC method reveals its value; instead of needing

to compute the exact likelihood function [i.e., P (D|θ)], the ABC method instead computes many

approximate realizations of the data (D̂). The method accomplishes this by first sampling values

of the parameter from the anticipated parameter space [i.e., from the prior, P (θ)]. The prior could

be a uniform distribution of each parameters or a Gaussian distribution, for example. The method

next takes a value of θ (i.e., a parameter) and runs the model forward to come up with model data

(D̂).

ABC then compares each approximate realization (D̂) with the experimental data, D, and

either keeps the parameters used to produce that data set, or rejects the parameters depending on

a predefined distance function δ(·, ·), and associated threshold (ε) [i.e., δ(D, D̂) < ε]. The distance

function could, for instance, compare the mean (a statistic of the data) of the reference data to

1 In this dissertation, “observation data” D may also be referred to as “reference data” (since it is the data ABC
refers to for comparisons) or “truth” data (since at times a value of parameters is chosen a priori then ABC attempts
to find these known true parameters).
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the mean of each simulation using an L1 norm (the metric). Once a comparison is made, the

resulting distance is compared to a threshold value. If the distance is less than the threshold, the

parameter is considered viable and it is added to the candidate pool. However, if the distance

exceeds the threshold, then the parameter is discarded because it did not produce a realistic model

outcome compared to the available observation. From all of the accepted parameter values, one can

then construct a distribution of likely parameters that would result in the given observations; this

distribution is representative of the true parameters assuming negligible bias in the data or model.

The distribution thusly created, PABC(θ|D) = P (θ|δ(D, D̂) < ε), which is an approximation of the

full Bayesian posterior, P (θ|D), is known as the posterior and is indeed the very item of interest.

Looking more closely at the particular application of a catalytic burner (an example case later

in this work), ABC is used to determine unknown boundary parameter values. Laser spectroscopy

methods are used to obtain line-of-sight (LOS) averaged, absorption-weighted temperature mea-

surements at various locations within the flow field. These measurements have very rich temporal

data that can be used to generate a probability density function (pdf) with relevant statistics (e.g.,

time-averaged temperature and associated variance or a complete pdf of temperature values or a

power spectral density estimate such as an FFT of the data); this is P (D) in Bayesian terms. Next,

a computational model simulates the same setup as was measured experimentally. The values for

parameters of interest (e.g., boundary conditions including inlet velocity at the burner in addition

to heat addition within the domain) are chosen according to a prior distribution, P (θ). The prior

distribution for these parameters is based on mass and energy balances as well as physical intuition

about the system. Each draw of parameters produces a separate solution (by computing a forward

solution using those parameters) whose statistics are analyzed and compared to the experimental

data. As described previously, if the statistics agree according to a predefined threshold, the pa-

rameters will be kept, or otherwise rejected. The resulting set of parameters makes up the posterior

distribution, PABC(θ|D) = P (θ|δ(D, D̂) < ε).

In summary, ABC is a powerful tool to develop estimates for parameters given a set of statis-

tical observations. The method works by sampling a large set of parameters from the anticipated
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parameter space and running a model forward using one of those parameters. It then compares

the resulting state space with the observed state space. If the results are close, then it keeps the

parameters; if the results are not close, then it discards the parameters. This process repeats until

many sets of parameters have been modeled and an adequate number have been accepted. These

parameters make up the desired posterior distribution.

1.3 Completing the Engineering Tasks of Design and Optimization

Returning to the overarching concept that combustion engineering aims to study the perfor-

mance of systems in several different realms, we next consider design and optimization. 2 This

area focuses on two main time frames within the development of a system. First, the design process

looks at a system from its genesis. It focuses on what a system will do that makes it unique and

worth creating versus using an existing system. Additionally, design might focus on modifying an

existing system to make it better match a new application or to improve its performance. In both

instances, design happens early in the life cycle of a system, whether it be during its creation or

during its modification. Because of the fast pace of creation, experiments are often not readily

executable due to a lack of existing hardware and constantly changing specifications. Instead, the

theory of operation and simulations can serve as primary tools early in the design process to flush

out ideas that will later be built and realized physically. Theoretical approaches usually provide the

basis for initial designs. They are based on idealized, simplified conditions that form the starting

point for more complex subsequent iterations. Simulations are particularly useful for design work

due to their flexibility in implementing new geometries and physical parameters.

The second portion of this task, optimization, is a highly versatile tool that provides deep

insight about the performance of a system and offers methods to improve the performance. A

variety of optimization tools exist, including linear and nonlinear, gradient-based or gradient-free,

2 This dissertation does not directly attempt to design or optimize systems; indeed this section is presented for
completeness for the engineering process. One interpretation of ABC is that it can be a form of optimization that
attempts to minimize the distance between a model and reference data. However, this description is not within the
intended definition of “optimization” presented here.
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and adjoint techniques [61]. Optimization techniques calculate a cost function to compare the

performance of a system to a desired outcome (which could be reference data from an experiment or

to maximize or minimize some performance characteristic) and a method to explore the parameter

space to find local and global minimum to the cost function. Optimization typically occurs during

the design process to affect the final design and lead to a better outcome. Because of this timing,

optimization is typically relegated to the same two methodologies as design, namely theory and

simulation. Additionally, optimization tools often require a large number of iterations making

experimental approaches unfeasible.

To successfully complete the task of designing and optimizing a system, one requires informa-

tive quantities of interest. These are often the same quantities investigated during characterization

and analysis of a system. For instance, when designing a combustion system it typically needs to

provide a given output of power or heat to serve the purpose for which it is being created. A step

to help quantify the output is to measure the designed operating temperature and pressure of the

system. Cost is a prime driver in most designs, so it must be tracked through a careful under-

standing of the price to procure parts, manufacture the device, and operate it. Securing long term

operations through improvements in the reliability, maintainability, and availability of a system

is a goal common to most industrial-grade engineering tasks for items that will be used for long

durations. The weight of the system must also be considered, as it will drive how a system can

be used (for transportation applications) or how much it costs to transport and deliver initially as

well as potentially impacting future maintenance activities (e.g., if an item needs to be elevated to

work on a certain component or shipped back to a factory for calibration or repairs). Additionally,

the pollution profile of a system will become increasingly important as more combustion systems

penetrate the market and emission regulations become more difficult to meet.

Optimization seeks to improve on any one of these parameters (or possibly several of them)

by changing design inputs, tracking results, and iteratively seeking to minimize a predefined cost

function that describes the performance of a system in terms of desired parameters. This is the goal

of many combustion engineering efforts. For instance, the National Renewable Energy Laboratory’s
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Co-Optimization of Fuels and Engines (Co-Optima) program [62] seeks to simultaneously optimize

engine fuel efficiency and the fuel they use, instead of a stove-piped approach to only improve

one or the other. With this task in mind, it is clear that a fast model will be required to enable

optimization techniques. One such technique is Bayesian emulation, along with other machine

learning techniques.

1.3.1 Bayesian Emulation

Bayesian emulation is a powerful tool used to create a simpler, cheaper alternative to an

expensive model [63, 64]. The basic premise of this technique is that a model simulation can be

very resource intensive to run. Thus, it can be helpful to develop an emulator to run in place of the

simulator (i.e, the original expensive model) to get a reasonable estimate for the state space that

would result from the simulator given a set of parameters/inputs. Note that in this thesis Bayesian

emulation is presented for context, however it is not implemented because the base RANS and LES

cases are computationally affordable enough to use directly with ABC without the needs to create

reduced order models.

As the name implies, this technique is also based on Bayesian statistics. The primary objective

of this technique is to develop a cheap statistical representation of an expensive model. To do this,

in a manner similar to ABC, a set of input parameters are chosen to run in the simulator. These

parameters should cover a wide range so as to simulate a large set of anticipated future parameters

of interest. The output of the simulator is then recorded for each set of inputs. The Bayesian

emulator is created from this training data and serves as a statistical model to predict, for a given

input, what the expected output would be. The emulator is, in statistical terminology, the posterior

distribution of the model outputs given the training data set [65]. An emulator must satisfy two

criteria [63]. First, it must return the exact simulator output with no uncertainty for inputs used

as training data. Second, it must give reasonable approximations of the output (i.e., close to what

the simulation would provide based on extrapolating or interpolating the training data) for another

input not used as training data with realistic uncertainty associated with those outputs. Bayesian
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emulation typically requires fewer executions of a model to produce a set of training data from

which the emulator can be developed when compared to a Monte Carlo based method such as

ABC (O’Hagan [63] suggests 100s of runs for emulation vs many thousands for MC). This comes

from the efficiency gained in the emulation process by extrapolating the data obtained from each

training point to the surrounding region [63].

Note that the primary objective of Bayesian emulation is not to determine a distribution of

parameters that match a given set of observations, but rather to come up with a cheaper alter-

native to the simulation. This means that once the emulator is developed, additional steps would

be required to ascertain what parameters would produce results close to the observations. This

could potentially revert back to a rejection sampling method, such as ABC, using the emulator

instead of the simulator to produce each approximate realization of the data needed to compare to

the reference observations. Additionally, optimization techniques could benefit from the emulator

by allowing the designer to tweak many parameters and using the emulator to quickly realize the

outcome of these modifications. The emulator outputs would then provide feedback to the opti-

mization process. It is clear, though, that creating the emulator is an extra unnecessary step if the

simulations are cheap enough to run many thousands of times when trying to ascertain parameters.

In this dissertation, therefore, emulation was deemed unnecessary as simulation costs were kept

low allowing the base simulator to be utilized hundreds or thousands of times in the examples that

follow.

1.4 Overview and Contribution of this Dissertation

To date, ABC has been used primarily for biological problems [66–70] and is becoming more

widely used in other fields such as the geophysical sciences [71–76], but is relatively unexplored for

engineering systems except for a few applications to structural engineering [77,78]. Several studies

have investigated parameter estimation for engineering problems using Bayesian methods [9–12],

although such approaches require knowledge of a likelihood function. Calculating the likelihood

function in these applications requires assumptions that have varying degrees of accuracy depending
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on the source of measurement data and the complexity of the model.

Thus, instead the approaches that have been applied in the past, ABC is investigated herein to

allow more robust, physics-based simulations to accomplish parameter estimation. This dissertation

presents an overview of work completed to introduce ABC to the engineering community through

a variety of applications. The initial application in Chapter 3 is focused on the logistics equation,

analogous to a zero-dimensional Navier Stokes equation, that is intended to serve as a preliminary

test of the ABC approach in a fluids-relevant problem. Next, a two-dimensional (2D) turbulent

buoyant jet is demonstrated using DNS and its parameters are estimated using LES. A similar

2D LES case, but now with a forced buoyant helium plume, is used to predict inlet composition

based on comparisons with experimental measurements of puffing frequency from Cetegen et al.

[3]. In Chapter 4, several industrially relevant applications are explored, including a turbulent

buoyant jet with unknown temperature mean and variation, a turbulent buoyant jet with a rotating

cylinder above it with an unknown rate of rotation and an inlet with unknown velocity and species

composition. Finally, in Chapter 5, we explore the use of ABC to predict boundary and internal

conditions for a turbulent buoyant jet 3D LES using experimental measurements of temperature

made using laser absorption spectroscopy. This dissertation demonstrates how effectively ABC

works as a tool for correctly estimating parameters in each of these cases, and thus provides evidence

that ABC could be applicable in a wide variety of engineering applications.

The following papers and conference presentations contain work I have contributed to (as

either a first author or a contributing author) while working on this dissertation:
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Chapter 2

Approximate Bayesian Computation (ABC) Methodology

Even for real-world flow and combustion problems where the underlying governing equations

can be solved with a high degree of accuracy (i.e., assuming a physically and numerically accurate

computational approach), the reliability and predicative capability of numerical simulations are

heavily determined by the accuracy with which boundary, initial, and geometric conditions are

represented. Fluid and material properties such as transport and heat transfer coefficients must

also be accurately represented in order to obtain simulation results that correspond closely to

reality. In many cases, simulations are designed to provide good agreement with data from an

experiment, and some of the necessary conditions and properties may be known with high accuracy

based on the setup of the experiment and other physical constraints. However, there are often

many other parameters that are not known with sufficient accuracy, to the extent that, despite our

best efforts, a computational simulation may model a fundamentally different problem than that

studied experimentally.

In order to overcome this knowledge gap and improve simulation accuracy, approximate

Bayesian computation (ABC) is used in this dissertation to reliably estimate boundary conditions

in simulations of a high-temperature turbulent buoyant jet in various configurations. This work

is one of the first attempts to apply ABC to a complex engineering-relevant compressible flow

problem.
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2.1 Approximate Bayesian Computation Background and Overview

The ABC method allows unknown parameters in a model or simulation to be determined by

comparing simulation results with the full data or statistics from experimental, or other “reference”,

observations. In addition to these optimal parameter estimates, ABC also provides meaningful

estimates of the uncertainty associated with each estimated parameter value. For additional details

regarding the choice to use ABC over other data-driven techniques, see Chapter 1.

The ABC framework is a relatively new approach for linking reference data to physical and

model parameters [2, 58, 59, 77, 84, 85, 98]. ABC was first conceptualized by Rubin in 1984 [99]

as a parameter estimation method for models that are sufficiently computationally inexpensive

that multiple simulations can be performed, but that are intractable with regards to calculating

likelihood functions. More than a decade passed, however, before the technique was applied to

problems of practical interest in the population genetics community [100, 101]. Since these early

implementations of ABC, many papers have reviewed ABC efforts and suggested improvements

to the method (e.g., see [58–60, 98]). ABC has increased in popularity in biological applica-

tions [66–70, 102, 103], in particular, and is becoming more widely used in other fields such as

the geophysical sciences [71–76, 104]. ABC has also recently spread to less traditional domains,

including financial modeling [105] and psychology [106]. Although ABC has been used recently in

the context of chemical kinetics modeling for combustion [28] and structural engineering [77,78], it

remains relatively unexplored for most engineering applications, particularly complex thermal-fluid

systems, and this dissertation provides one of the first attempts to apply ABC in an engineering

context.

From a fundamental perspective, the ABC method produces a posterior distribution of un-

known parameters given some reference data. This occurs by comparing observations or summary

statistics from the reference data to corresponding data or summary statistics from lower-cost

physics-based ‘model’ simulations (e.g., simulations with coarse spatial resolutions or lower-order

numerical schemes). The model simulations are repeated many times, with each simulation using
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parameters drawn from a prior distribution. The prior distribution is the best guess at the span

of the unknown parameter space; it must be wide enough to contain the true parameter values,

but narrow enough to keep the task computationally manageable. Parameter values are retained

if the model data or summary statistics are similar to the reference observations. Once many such

candidates are obtained, a posterior distribution is formed, providing estimates for the most likely

parameter values as well as their uncertainties, given the reference data.

Bayes’ theorem, P (θ|D) = P (D|θ)P (θ)/P (D) [see also Eq. (1.1)] provides the basis for the

ABC technique [2,58,59]. This theorem gives the probability, P (·), of obtaining different values of

an unknown model parameter, θ, given the observations or reference data, D. The model parameter,

θ, could be a boundary condition, material property, transport property, model parameter (e.g. a

turbulence model coefficient [5] or a parameter needed to adjust another model such as a heat

source term), or another physical property, for example. In this dissertation, we will investigate

how to solve for various parameters, including inlet temperature and velocity means (Chapters 3,

4, and 5), inlet temperature and velocity variations (Chapters 3 and 4), cylinder rotational velocity

(Chapter 4), inlet composition (Chapters 3 and 4), and parameters to model the addition of heat

into the domain from combustion (Chapter 5).

The probability density function of the unknown parameter, independent of any observations,

is known as the ‘prior’ and is denoted P (θ). The set of observations is denoted D and could be,

for example, a time series of 10,000 temperature, velocity and/or concentration measurements at

one or many points in space. Note that the data can also be represented by its statistics, S [e.g.,

the mean value from a longer time series of data, the probability density function (pdf) or a power

spectral density (psd) estimate]. The data may come from experiments or, alternatively, another

implementation of a model which may be more refined. The probability density function of the

data is P (D); this is obtained through analyzing experimental or other reference results, but is

often neglected in the equation since it can be treated as a normalization constant. The goal of

Bayes’ theorem is to solve for P (θ|D), also known as the Bayesian posterior (alternatively, it may

be called the “true” Bayesian posterior or the “full” Bayesian posterior because it does not contain
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the approximations made here); this provides the estimate for the unknown parameter conditioned

on the observed data. Lastly, the probability of the observed time series of data, D, occurring given

a set of parameter values, θ, P (D|θ), is known as the likelihood function. The likelihood function

is often difficult to obtain, either because of analytical intractability or due to the high cost of its

computational calculation. Indeed, in a complex fluid mechanics model, one can safely assume that

the likelihood function will not be available in the majority of cases.

The ABC method aims to calculate an approximation to the full Bayesian posterior, P (θ|D)

without explicitly evaluating the likelihood function. The ABC posterior distribution is denoted

PABC(θ|D) = P (θ|δ(D, D̂) < ε) (this is also what is being referred to in subsequent uses of the

word “posterior”). The ABC posterior distribution is not the same as the full Bayesian posterior,

but it approximates it whenever S is a set of ‘sufficient’ statistics as described below. ABC is most

relevant and useful when there is no available likelihood function. Instead of requiring the exact

likelihood function P (D|θ), the ABC method instead replaces the likelihood function with an ad

hoc distance function, δ(·, ·) to compare statistics from each simulation, Ŝ, with statistics from the

reference observation, S.

In order to generate each simulation used in the comparison, the method first samples values

of the parameter θ from the anticipated parameter space [i.e., from the prior, P (θ)]. For example,

the prior could be a uniform distribution of each parameter or a Gaussian distribution. The choice

of prior is based, as the name implies, on prior information a practitioner has about the possible

values a parameter might take. The posterior will mainly reflect the observational data as long as

the prior is sufficiently uninformative. A prior that is very dissimilar to the posterior will increase

computational costs as many of the simulated parameter values will be rejected. Once a set of

parameters, θ, are chosen, the method runs the model forward using those parameters to come up

with a set of synthetic observations, D̂ (whose statistics are denoted Ŝ). The ABC method then

compares statistics from each approximate realization, Ŝ, with the experimental statistics, S, and

either keeps the parameters used to produce that realization, or rejects the parameters depending on

a predefined distance function, δ(·, ·), and associated threshold, ε. The distance function is simply



28

a metric to compare simulation results to an observation; the distance function must be a metric

(i.e., symmetric, positive, and satisfy the triangle inequality) but is otherwise fairly arbitrary. The

distance function could, for instance, take the absolute value of the difference between the mean of

the observations to the mean of the simulation results generated with a set of parameters. Another

common choice for metrics when comparing probability distributions is the Hellinger distance; this

will be used extensively in Chapter 3.2.

When performing the comparison, the statistics (i.e., S) must accurately represent the data.

Ideally, ABC should be conducted with ‘sufficient’ statistics that represent all of the information

about θ contained in the data, D [58]. If the statistics are ‘sufficient’ to describe the data, then ABC

approximates the full Bayesian posterior. Put another way, if the statistics are ‘sufficient,’ then

the difference between the full Bayesian posterior, P (θ|D), and the ABC posterior, PABC(θ|D),

is controlled by the threshold, ε (i.e., the error goes to zero with ε). Often, however, ‘sufficient’

statistics are not available and lesser summary statistics must be used; these statistics must still

adequately describe the data and are therefore useful when comparing simulations and the reference

observations. Choosing an appropriate statistic to analyze the flow field is a complicated task

because many statistics will not contain the desired information about the flow field. In other

words, if one changes the parameter of interest, there may be only a negligible change in the statistic

since it has low identifiability [107]. Thus, choosing an appropriate and informative statistic is a

key task in successfully implementing ABC algorithms.

Once a comparison is made between each simulation and the reference observations, the

resulting distance is compared to a threshold value. If the distance is less than the threshold, the

parameter is considered viable and it is added to the candidate pool. However, if the distance

exceeds the threshold, then the parameter is discarded since it did not produce a realistic model

outcome compared to the available observation. Using all of the accepted parameter values, one

can construct a distribution of likely parameters that would result in the given observations; this

distribution is representative of the true parameters. The distribution thusly created, PABC(θ|D),

which can now be equivalently denoted as PABC(θ|δ(S, Ŝ) < ε), is known as the posterior and is
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the item one sought in the parameter estimation.

2.2 Approximate Bayesian Computation Algorithm

The basic idea underlying the ABC approach is that, based on system intuition, physical

constraints, previous experience, etc., a researcher typically has a range of probable values for a

parameter. These upper and lower limits bound the cases for which simulations must be run.

The ‘prior’ set of parameters must be large enough to ensure that it contains the ‘true’ solution,

however more simulations are required as the prior becomes wider, thereby significantly increasing

the computational cost. Once the reference case and a subsequent case, with parameter values

chosen from the prior distribution are complete, the next step is to study the flow fields of each

case. The statistics of each simulation are compared to statistics from the reference case. If the

results are similar, the simulated parameters are stored as a possible candidate values. If the results

are not similar, then the set of parameters used for that simulation is discarded. Another simulation

is then run with a new set of parameters and the process repeats until a sufficiently high number

of accepted parameter values exists from which conclusions can be made about the results.

This ABC algorithm, known as method D from Marjoram et al. [2], and herein as simply

algorithm 1 is summarized as follows:

(1) Generate parameter θ from the prior distribution P (θ).

(2) Simulate approximate data D̂ using parameter θ, and compute the corresponding statistics

Ŝ.

(3) Calculate the distance δ(S, Ŝ) between a reference statistic S and statistic from the simu-

lator Ŝ.

(4) Accept θ if δ ≤ ε (where ε is the ‘rejection distance’), and return to step 1 until sufficient

θ values have been accepted.

The distribution of accepted θ values comprise the ABC posterior, PABC(θ|D). An overview of the
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algorithm is shown in Figure 2.1.
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Figure 2.1: Algorithm depicts the steps required for the basic rejection algorithm described in
Section 2.2

2.3 Selection of Rejection Distance, ε

In ABC, once the summary statistic, S, is chosen and a distance calculated between each

simulation and the reference observation, the next task is to determine how small the ‘rejection

distance,’ ε, should be to ensure that each result is sufficiently close enough to the ‘true’ case in

order to be accepted. Recall that as ε goes to infinity the ABC procedure provides no additional

information compared to the initial prior distribution used for the Bayesian inference. Also, assum-

ing sufficient statistics, as ε decreases to zero the posterior converges to the full Bayesian posterior.

Hence, the preference for smaller ε values (to produce better posteriors) must be balanced against

the increasing computational cost required to reduce the Monte Carlo error [60].

The task of choosing an appropriate value for ε can be addressed by a variety of techniques,
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often relying on expert judgment to balance the spread in accepted parameter values with the

number of accepted samples. In general, as ε decreases from infinity to zero the ABC method goes

from accepting all of the simulations (i.e., the posterior would match the prior) to accepting the one

“true” simulation, which may not exist in most instances and hence zero cases would be accepted

since there is some finite difference between the best simulated case and the reference case when

continuous variables are used. As a result, often a relatively small (nonzero) value of ε is chosen

based on the behavior of the posterior as ε decreases. A more specific approach to select ε requires

a predetermined percentage of samples being accepted [66, 69] or choosing multiple ε values and

reporting the results simultaneously [2,58,59,104]. Marin et al. [59] argue that a smaller ε is better

generally, but the size is largely determined by the available computational resources. In subsequent

chapters we choose values for ε based on the simplest approach of balancing the precision in the

solution (low standard deviation) against having sufficient confidence in the results (high number

of accepted samples). Since the ‘true’ parameter values are known, this is a reasonable approach.

Once the true value of the parameter is unknown, however, it becomes less clear how well

this approach converges. Therefore, in Section 4.3 of Chapter 4, we introduce a novel approach

of choosing an ε value that minimizes the confidence interval of the posterior found by sweeping

across a wide range of ε values. The confidence interval is proportional to the standard deviation

of accepted parameter values divided by the square root of the number of accepted values. The

range of ε values must be wide enough so that the smallest value accepts very few of the proposed

parameter values while the largest ε accepts nearly all of the proposed parameter values. For very

small values of ε, the majority of the cases are rejected, resulting in a very small standard deviation

of the posterior. As ε increases, the number of accepted samples increases, initially reducing the

confidence interval width (assuming a unimodal posterior distribution). As ε continues to increase,

however, the standard deviation starts to increase faster than can be compensated for by the larger

sample size (recall that the sample size is to the 1/2 power), so the confidence interval width

increases until all of the simulations are accepted, at which point it remains constant.

The minimum confidence interval width observed corresponds to a ε value that strikes a
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balance between having high precision in the posterior (i.e., low standard deviation) and high

confidence in the posterior (i.e., a large number of accepted samples). Note that this approach

is not used exclusively in this dissertation because the standard deviation is susceptible to large,

fast initial growth when the first few samples are not tightly grouped. In this case, the “best” ε is

determined as the value required to only accept a single case. This is not desirable, however, as a

single case provides little confidence and little information about the possible distribution of likely

parameters.

2.4 Markov-chain Monte Carlo ABC

Markov-chain Monte Carlo approximate Bayesian computation (MCMC-ABC) is another

algorithm that can be used to find unknown parameters, and includes an additional level of com-

plexity. In particular, the MCMC-ABC algorithm is similar to method D from Marjoram et al. [2]

outlined above, but applies an additional constraint to generate each successive parameter value (in-

stead of choosing them all independently at random). The MCMC-ABC algorithm, known herein

as algorithm 2 and presented as method F in Marjoram et al. [2] is as follows:

(1) If now at θ propose a move to θ̂ according to the transition kernel q(θ → θ̂).

(2) Generate D̂ using model M with parameters θ̂.

(3) If δ(S, Ŝ) ≤ ε, go to step 4, and otherwise stay at θ and return to step 1.

(4) Calculate

h = h(θ, θ̂) = min

[
1,
P (θ̂)q(θ̂ → θ)

P (θ)q(θ → θ̂)

]
(2.1)

(5) Accept θ̂ with probability h and otherwise stay at θ, then return to step 1.

The MCMC-ABC algorithm has the benefit of utilizing past acceptable parameters to inform

its decision about the next parameter to choose. This approach can significantly reduce the number

of required simulations by more efficiently sampling the parameter space and focusing on regions

with higher probability of acceptable parameters. Instead of randomly or blindly choosing the next
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parameter from the prior distribution, as is done in algorithm 1, the MCMC-ABC method uses

an accepted parameter as a starting point and then moves a specified distance away from that

accepted parameter using the transition kernel, q, described in step 1. A transition kernel is simply

some function that describes how to move to the next parameter given a starting parameter. An

example transition kernel is to fit a Gaussian distribution with the current parameter as the mean

and a prescribed variance defined within the context of the particular problem; the next parameter

is then determined by generating a random parameter value from this Gaussian distribution.

The next difference of the MCMC-ABC algorithm is step 4; this equation calculates the

product of the prior distribution evaluated at the new parameter times the probability of moving

from that new parameter to the original parameter, all divided by the product of the prior evaluated

at the original parameter times the probability of moving from the original parameter to the new

parameter. For a Gaussian transition kernel, the probability of going from one parameter to the

next is the same as moving in the opposite direction, since each probability distribution function

is centered on the starting parameter and has the same variance. Thus, in the case of a Gaussian

transition kernel, these terms cancel out and the driving function becomes the prior; this means if

a new parameter is toward the center of a Gaussian prior distribution, for example, then the new

parameter is more likely to be accepted. Further, note that if the prior is uniformly distributed,

then the contribution from the evaluation of the prior will cancel out as well. Thus, with a uniform

prior and a Gaussian transition kernel, step 4 will always return h = 1, meaning that step 5 will

automatically accept any new parameter that passes the distance criteria of step 3 [2]. Note that,

in this dissertation, the MCMC-ABC algorithm is only used in Section 3.1.2 (i.e., not in the other

chapters) due to its inherent serial nature; the cost of subsequent simulations necessitates parallel

computation to achieve timely results.

2.5 ABC Summary

In summary, ABC is a versatile tool that can be used to develop estimates for parameter

values, including uncertainties in those values, given a set of observations. The method first samples
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a large set of parameters from the likely parameter space and runs a model forward using one of those

parameters. Next, ABC compares the data from the simulation against the reference observations.

If the simulation and observation are close, then ABC keeps the parameters; if the results are not

close, then it rejects the parameters. This process continues until many parameters have been

modeled and an adequate number have been accepted. These accepted parameters make up the

desired posterior distribution. A central tendency of the posterior, such as the mean, mode, or

median, can be used to obtain a single estimate for the unknown parameter, and a measure of the

posterior width, such as the standard deviation, can be used to estimate the uncertainty in the

parameter value.



Chapter 3

Demonstration of the ABC Approach

As mentioned in Chapter 1, approximate Bayesian computation (ABC) has, to date, been

mostly applied in fields outside of engineering, and has yet to be applied to parameter estimation

for systems involving complex thermal-fluid flows. This chapter will provide an illustrative example

of how ABC can be of great utility for fluid dynamics and combustion related engineering. First

the logistics equation, described in Section 3.1 as a zero-dimensional Navier Stokes equation, will

serve as an illuminating example for determining accurate values for unknown parameters. Then,

a two-dimensional turbulent buoyant jet will serve as a canonical flow case for testing the accuracy

of ABC by determining unknown inlet velocity conditions. Lastly, experimental measurements will

be used with this turbulent buoyant jet to predict inlet composition.

3.1 Approximate Bayesian Computation for the Logistics Equation

As an initial case to test the ABC method, the logistics equation has been examined. This

equation, given as

vt+1 = 4µvt(1− vt) , (3.1)

has been chosen for its complex behavior and for its relevance to fluid mechanics. Although Eq. (3.1)

is deterministic, it has stochastic-like behavior for µ values greater than approximately 0.89 (i.e.,

a small change in µ leads to an entirely different response) and it is nonlinear. Additionally, the

logistics equation can also be considered a zero-dimensional (0D) Navier-Stokes equation with µ
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playing the role of Reynolds number, and is thus a representative equation to investigate fluid

mechanics behavior.

The logistics equation has several regions of behavior corresponding to different µ values. In

region 0, for µ less than 1/4, the solution always goes to zero in the limit as t → ∞. In region

1, for 1/4 < µ < 3/4, the solution goes to a specific value, v∞, for each µ selected. In region

2, 3/4 < µ < µ∞ (where µ∞ ≈ 0.89248) the equation’s solution first oscillates between 2 values

and then increasingly more values. This behavior occurs until finally, for µ > µ∞ the solution is

non-periodic, highly sensitive to initial conditions, covers the full range [0, 1], and has long-term

behavior independent of the initial conditions.

An ABC algorithm was implemented to predict an unknown µ value. This was performed by

first simulating a solution to the logistics equation using a µ value sampled between 0 and 1; this

first parameter chosen will serve as µref for subsequent simulations to try to find. The mean and

variance of the resulting solution were then stored. Next, assuming the original µ was unknown, a

new µ value was randomly chosen and a simulation was run. Its resulting statistics were compared

to the stored values coming from the reference µ value, µref . If the results were similar, the new µ

value was stored as a possible candidate µ value; if the results were not similar, that µ value was

discarded. Another simulation was then run with a new, randomly chosen µ value and the process

repeated until a sufficiently high number of accepted µ values existed to draw conclusions about

the results. This first ABC algorithm, known as method D in Marjoram et al. [2], is presented in

Chapter 2, and repeated here for convenience:

(1) Generate parameter θ from the prior distribution P (θ).

(2) Simulate data D̂ from modelM with parameter θ, and compute the corresponding statistics

Ŝ.

(3) Calculate the distance δ(S, Ŝ) between S and Ŝ.

(4) Accept θ if δ ≤ ε (where ε is the rejection distance), and return to step 1.
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Note that the generic parameter, θ, that one seeks to find is µ when studying the the logistics

equation.

A Markov chain Monte Carlo (MCMC) approach can be utilized to increase parameter accep-

tance rates [2] as discussed in Chapter 2. With an MCMC method, instead of choosing parameters

θ independently to run each simulation, if a parameter is accepted then a new parameter is chosen

with a value close to that accepted parameter. From many simulations a posterior distribution

will emerge indicating which parameters (θ) are probable given the data (D); this is, again, the

posterior, P (θ|D). The primary limitation of an MCMC approach is its serial nature requiring

each simulation to complete before the next can begin. Indeed for more expensive simulations

parallel computing is a key factor enabling their implementation in ABC. Though parallel MCMC

algorithms using multiple chains have been proposed (see, e.g., [108–110]) here the focus is on tech-

niques that are embarrassingly parallel to enable the user to scale with more processors as needed

regardless of the length of the simulation time available (recognizing that many high performance

computing resources are set up to allow many thousands of simulations to run in parallel but restrict

reservation lengths to allow only a few simulations to run in sequence).

The MCMC-ABC algorithm, known herein as algorithm 2 and presented as method F in

Marjoram et al. [2], as well as in Chapter 2, is repeated here for convenience as follows:

(1) If now at θ propose a move to θ̂ according to the transition kernel q(θ → θ̂).

(2) Generate D̂ using model M with parameters θ̂.

(3) If δ(S, Ŝ) ≤ ε, go to step 4, and otherwise stay at θ and return to step 1.

(4) Calculate

h = h(θ, θ̂) = min

[
1,
P (θ̂)q(θ̂ → θ)

P (θ)q(θ → θ̂)

]
(3.2)

(5) Accept θ̂ with probability h and otherwise stay at θ, then return to step 1.

The MCMC-ABC algorithm has the benefit of utilizing past acceptable parameters to inform its

decision about the next parameter to choose. More details can be found in Chapter 2. Note that
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in this dissertation the MCMC-ABC algorithm is only used in this section (i.e. not in the other

chapters) due to its inherent serial nature; the cost of subsequent simulations necessitate parallel

computation to achieve timely results.

3.1.1 Results of Logistics Equation: Random Parameter Generation

The initial case studied investigates the behavior of the logistics equation using the first

algorithm above. Each execution of the logistics equation is run forward 1,000 steps so that the

statistics have approximately converged. One million µ values are simulated to ensure sufficient

accepted cases; this high number of cases helps fill in the resulting histograms of accepted values

for µ.

In region 0, the solution always converges to 0 regardless of the µ value chosen. Thus, the

method correctly predicts that 0 < µref < 1/4, but cannot provide any additional specificity. In

region 1, this method can easily predict values of µref since, again, the solutions behave linearly.

Note that decreasing the acceptance distance, ε, results in a narrower range of possible µref values

but decreases the number of accepted values potentially requiring more simulations to be run to

maintain high confidence in the resulting parameter. Thus, the decision for which ε value to use

must balance accuracy against computational burden. In region 2, the solution behavior is also

entirely linear with the solution oscillating between two unique values for each µ chosen. Thus, this

method is able to quickly determine the correct µref value.

In region 3, the task of finding µref becomes much more challenging due to the increasingly

nonlinear and stochastic behavior of the logistics equation. However, for sufficiently small ε values

for the mean and variance, the correct µref value emerges. When higher values of ε are chosen (e.g.,

0.01), the parameter space starts to include other values of µ that produce very similar statistics,

as shown in Figures 3.1 and 3.2. In Figure 3.1 each of the highlighted points has a converged

solution mean value (plotted on the vertical axis) within 0.01 of the solution’s mean value of 0.5765

found with µref = 0.989. In figure 3.2 each of the highlighted points has a converged solution

variance (plotted on the vertical axis) within 0.01 of the solution’s variance of 0.0991 found with
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µref = 0.989. Of the three points highlighted, only the right-most point (µ = 0.9898) represents a

solution coming from a µ value very close to µref while the other two points are substantially (i.e.,

more than 1%) different µ values.

Next, Figure 3.3 is a histogram of the accepted parameters found by implementing algorithm

1 with 1 million values of µ randomly drawn between 0.85 and 1 (i.e., this assumes a uniform distri-

bution of values in the prior with bounds closely aligned with region 3), with a rejection distance,

ε, of 0.01. This result clearly demonstrates the inability of the procedure to correctly identify µref

with this relatively large ε value. Figure 3.4 shows a simulation with identical parameters except

the rejection distance, ε, has been reduced to 0.001. With ε = 0.001, the two “false-peaks” have

been eliminated. This narrowly confined solution correctly identifies the value of µref with the

mean of the histogram equaling 0.9886 (0.04% error), however it rejects the vast majority of the

simulations accepting only 0.17% of the simulated µ values.
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Figure 3.1: Converged solution mean of the logistics equation taken after 1,000 simulation steps.
Note there are three µ regions (of which one value is shown per region) that result in mean values
(and associated variance values shown in figure 3.2) within an ε value of 0.01; thus all three indicated
µ values would be accepted with ε = 0.01.
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3.1.2 Results of Logistics Equation: MCMC Parameter Generation

Note that since there is only one parameter of interest in the logistics equation, and because it

is very inexpensive to compute, the basic ABC algorithm was sufficient to determine µref . However

for more complicated problems with higher-dimensional parameter space this may not be the case.

Hence, the MCMC-ABC algorithm was next implemented for the logistics equation to understand

how it complements the results. Following algorithm 2, a transition kernel q(θ → θ̂) was chosen to

start at the current θ value then add a noise value drawn from a zero-mean Gaussian distribution

with a specified standard deviation (σ = 0.01) (where the variance is σ2 = 0.012). The value

chosen for the transition kernel’s variance is very important. A variance that is too narrow means

the MCMC-ABC method will have a difficult time wandering around far enough to fully map out

the parameter space. A variance that is too wide means the MCMC-ABC method will revert to

q(θ → θ̂) = q(θ̂), meaning the next parameter value will essentially have no memory of the previous

parameter. Next, the prior distribution in each case presented herein is Gaussian with a mean at

0.9652 and a standard deviation of 0.01. Figure 3.5 shows a histogram produced by a simulation run

with the same conditions as above in Section 3.1.1, but with an MCMC-ABC method to determine

each successive µ value instead of a random draw from a uniform distribution. The prior is centered

at 0.9652 and hence values of µ closer to that mean are favored resulting in a histogram with a

bias toward the µ = 0.9652 peak instead of the right-most µ = 0.989 peak. Figure 3.6 shows

an identical procedure but with a reduced rejection distance, ε. Note that this results in a very

dense histogram around µref = 0.989; the mean of the accepted parameters is 0.9885 (0.05% error).

This highlights a benefit of using MCMC-ABC in that it fills in the parameter space close to the

reference parameter(s).
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Figure 3.2: Converged solution variance of the logistics equation taken after 1,000 simulation steps.
Note there are three µ regions (of which one value is shown per region) that result in variance
values (and associated mean values shown in figure 3.1) within an ε value of 0.01; thus all three
indicated µ values would be accepted with ε = 0.01.
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Figure 3.3: Histogram showing the number of accepted simulations versus values of µ. Simulation
was run with 1 million values of µ randomly distributed between 0.85 − 1, 1,000 steps, ε = 0.01.
Reference µ value shown in red.
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Figure 3.4: Histogram showing the number of accepted simulations versus values of µ. Simulation
was run with 1 million values of µ randomly distributed between 0.85− 1, 1,000 steps, ε = 0.001.
Reference µ value shown in red.
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Figure 3.5: Histogram showing the number of accepted simulations versus values of µ. Simulation
was run with 1 million values of µ chosen according to MCMC-ABC procedure, starting at µ =
0.9652, 1,000 steps, ε = 0.01. Reference µ value shown in red.
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Figure 3.6: Histogram showing the number of accepted simulations versus values of µ. Simulation
was run with 1 million values of µ chosen according to MCMC-ABC procedure, starting at µ =
0.9652, 1,000 steps, ε = 0.001. Reference µ value shown in red.
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3.2 Parameter Estimation in a Turbulent Buoyant Jet Using ABC

This section introduces ABC as an effective tool for estimating parameters in fluid mechanics

research, especially with an engineering focus. Building upon the initial success with the logistics

equation [84], this work demonstrates ABC is effective when the reference data comes from a either

an LES case or a DNS case that uses a different mesh and no modeling. This section is closely tied

to a paper under review with Physical Review Fluids [79].

Approximate Bayesian computation (ABC) is a data-driven technique that uses many low-

cost numerical simulations to estimate unknown physical or model parameters (e.g., boundary

conditions and material properties), as well as their uncertainties, given reference data from real-

world experiments or higher-fidelity numerical simulations. In this study, ABC is used to estimate

unknown parameters in complex thermal-fluid flows, and the technique is demonstrated on a pe-

riodically forced high-temperature jet and a steadily forced helium-air plume. In the first case,

computational reference data are used to assess the accuracy of ABC when estimating the fre-

quency, amplitude, and mean of the periodic velocity forcing at the jet inlet. These tests show that

ABC provides accurate and reasonably certain estimates of inflow parameters even when the model

simulations imperfectly represent the physics underlying the reference data. These tests also show

that measurements far from the inlet can be used to perform the estimation, and that temperature

measurements can be used to infer velocity inflow parameters. For the second case, ABC is used

to estimate the inlet Richardson number and its uncertainty given experimental measurements of

the Strouhal number within the plume. Once again, the approach is able to accurately estimate

unknown parameters with relatively low uncertainty. As a result, ABC is shown to be a versatile

technique for estimating unknown physical parameters when knowledge of a real-world system is

limited or incomplete.

In the present study, approximate Bayesian computation (ABC), a data-driven Bayesian

technique adopted from the biological and geophysical sciences, is used to estimate unknown pa-

rameters for complex, turbulent thermal-fluid flows. The power of ABC lies in the fact that far
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fewer simulations are required than in full Bayesian analyses since ABC does not require a likeli-

hood function, thus permitting the use of physics-based models. Rather than attempting to match

the observational data at all locations and times, as in full Bayesian analyses, the ABC method

develops an approximate posterior distribution for unknown parameters through comparison of

summary statistics from the reference data and model simulations. A wide variety of reference

data can be used to drive the estimation, including measurements that are only indirectly related

to parameters of interest. Because the technique naturally provides posterior distributions for un-

known parameters, Bayesian confidence intervals can be obtained along with parameter estimates.

Once parameter estimates are obtained, they can either be used in higher-fidelity numerical simu-

lations of the same system, or they can be considered as part of the description of the real-world

system itself (with appropriate uncertainty caveats).

This section outlines the estimation of inflow boundary conditions for two compressible tur-

bulent flows: (i) a periodically forced high-temperature jet, and (ii) a weakly but steadily forced

helium-air plume. Both cases are two-dimensional (2D), but are physically complex due to com-

pressibility and the corresponding coupling between temperature, density, buoyancy, and forced

advection. The first case is intended to demonstrate the utility and breadth of ABC by using

computational reference data to estimate the frequency, amplitude, and mean of the forced inflow.

Since these parameters and the underlying physical model are precisely known for the computa-

tional data, the success of the ABC approach can be quantified. The second case is a demonstration

of ABC using experimental measurements in an engineering context.

3.2.1 Demonstration Using Computational Reference Data

As a demonstration of ABC, inflow parameters for a periodically forced high-temperature

turbulent buoyant jet [111–115] are estimated using computational reference data. This case is ex-

amined due to the simplicity of the geometry combined with the complexity of the high-temperature

unsteady compressible flow physics. Large eddy and direct numerical simulations (LES and DNS,

respectively) are used as reference data, and model simulations are performed using LES.
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The use of computational reference data allows the success of ABC to be assessed when

the physics underlying the reference data, as well as all system parameters, are known exactly.

Three questions, in particular, are addressed: (i) How accurately can ABC estimate unknown

parameters when the reference data physics are exactly reproduced by the model simulations? (ii)

How accurately can ABC estimate unknown parameters using model simulations that imperfectly

represent the physics of the reference case? (iii) How accurately can ABC estimate unknown

parameters using reference data that are only indirectly connected to the parameters of interest?

The first question represents a ‘best case scenario’ where there is zero model error and is

examined using both model and reference data from LES. The second question pertains to a more

realistic application of ABC where the physics governing the reference data are not exactly rep-

resented by the model simulations. This question is examined here using LES model simulations

and DNS reference data, and is further addressed in Section 3.2.2 using experimental reference

data. The third question addresses the identifiability of unknown parameters using different types

of reference data, and is examined by performing ABC at different heights above the inlet using

either velocity or temperature measurements.

It should be noted that the test where both the model and reference data are obtained from

LES most closely resembles an observing system simulation experiment (OSSE), which is a common

technique used for the validation of data assimilation methods [116,117]. In the present context, the

OSSE represented by this test allows the choices of prior, summary statistic, distance function, and

rejection distance to be evaluated in the absence of model error. In this sense, these tests indicate

whether the ABC approach can ever be expected to succeed, and to what extent. The following

analysis shows that, even in such a ‘best case scenario’, the ABC parameter estimation does not

perfectly recover the true parameter values due to the presence of stochasticity in the model and

reference data. That is, the model and reference data are never in perfect local and instantaneous

agreement because each of the simulations are initialized with different random temperature fields

(even when using identical boundary parameter values), and thus the true parameter values are

only ever recovered approximately, even when the model error is zero.
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3.2.1.1 Physical and Numerical Setup

The reference buoyant jet has a sinusoidally varying inlet velocity with a frequency of 4 Hz,

an amplitude of 0.2 m/s, and a mean of 0.5 m/s. The inflow velocity is spatially uniform across

the inlet. The physical domain is 1 × 2 m and the inlet is 0.1 m wide. The ambient and inlet

temperatures are 300 K and 1700 K, respectively, resulting in substantial density differences and

buoyancy-driven flow. Instantaneous fields of velocity magnitude (i.e., speed) and temperature are

shown in Figure 3.7.

All of the computations were performed using the FireFoam solver [118] within OpenFOAM

[119,120]. The simulations were restricted to 2D to minimize computational cost, although the ABC

method is equally applicable in 3D. For the LES, the compressible filtered Navier-Stokes equations

were solved with second-order accuracy in space and time using the one-equation eddy viscosity

model [121] for closure of sub-grid scale stresses. The LES domain was discretized using 61, 088

cells, with grid stretching in the vertical direction and two levels of refinement near the jet inlet.

For the DNS computations, the compressible Navier-Stokes equations were solved in conjunction

with the total energy equation at a high spatial resolution, again using a second-order accurate

numerical scheme in space and time. The DNS domain was discretized using 745, 472 cells with

two levels of grid refinement, giving a grid that was over an order of magnitude larger than the

LES grid.

For both the LES and DNS, the ideal gas equation was used to relate state variables, and fluid

viscosity and specific heat varied with temperature according to the Sutherland model [122] and

JANAF tables [123], respectively. The LES and DNS numerical schemes were also the same, with

Crank-Nicolson time stepping and Gauss integration with linear interpolation for spatial derivatives.

Pressure-velocity coupling was accomplished using the PIMPLE algorithm, which combines the

pressure-implicit split-operator (PISO) and the semi-implicit method for pressure-linked equations

(SIMPLE). An adaptive time step was used to limit the maximum CFL condition to 0.5 for the

LES and 0.2 for the DNS.
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Figure 3.7: Representative fields of speed v (a) and temperature T (d) from DNS for the periodically
forced turbulent buoyant jet. Panels (b) and (c) show reference probability density functions (PDFs)
and power spectral densities (PSDs), respectively, of v at heights of 5, 10, 15, and 20 cm. PDFs and
PSDs at different heights are shifted vertically for clarity. Panels (e) and (f) show corresponding
PDFs and PSDs of T . Solid black lines in panels (b,c,e,f) show DNS reference data and dash-dot
blue lines show LES reference data. PSDs are computed using Thomson’s multitaper estimate [1].

3.2.1.2 ABC Overview

The specific ABC algorithm used in this work is Method D from Marjoram et al. [2]. Given

the summary statistic S obtained from reference data D, this algorithm involves the following steps

(see also the schematic in Figure 3.8):

(1) Generate parameters θ from the prior distribution P (θ).

(2) Simulate approximate data D̂ using parameters θ, and compute the corresponding statistic

Ŝ.

(3) Calculate the distance δ(S, Ŝ) between the reference statistic S and the simulated statistic

Ŝ.
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Figure 3.8: Schematic of the general ABC approach corresponding to Method D from Marjoram et
al. [2], and of the specific ABC implementation used in the present study.

(4) Accept θ if δ(S, Ŝ) ≤ ε (where ε is the ‘rejection distance’) and build the posterior distri-

bution of accepted parameters, denoted P [θ | δ(S, Ŝ) ≤ ε].

(5) Return to step 1 and repeat a total of N times until a reasonable estimate is obtained for

the posterior distribution.

In general, the parameters θ, data D and D̂, and summary statistics S and Ŝ are all multi-

dimensional and are correspondingly indicated by boldface notation.

In broad terms, the prior distribution is simply the initial guess for the values of the true

parameters. Greater confidence in the values of unknown parameters permits a more concentrated

prior distribution (e.g., a Gaussian instead of a uniform distribution). The only requirement on the

prior is that its range spans the true values of the unknown parameters. In many practical cases

a wide prior can be used initially to gain an approximate idea of the true parameter values, and
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then a narrower prior can be used to determine parameter values with greater precision.

The use of summary statistics is intended to reduce the overall computational cost of the

parameter estimation. Although it would be ideal to compare all of the available data D to all of

the simulation data D̂, this is typically a very high-dimensional problem and is not computation-

ally feasible in general. Thus, instead, summary statistics are used. A key challenge in successfully

implementing ABC is to identify relevant summary statistics that significantly reduce the dimen-

sionality of the data, while still maintaining sufficient identifiability of unknown parameters [107].

Examples of summary statistics include averages, standard deviations, probability distribution

functions (PDFs), and power spectral densities (PSDs).

The choice of distance function is typically based on the form of the summary statistic. For

example, the root mean square error can be used to compare spatial profiles of average quantities

and the Hellinger distance [124] or Kullback-Leibler divergence [125] can be used to compare PDFs.

The specific choice of rejection distance, ε, is typically determined by a balance between computa-

tional cost and parameter estimate uncertainty. Smaller values of ε lead to higher rejection rates

and reduced uncertainty in estimated parameter values [59], but also increase the number of model

simulations necessary to generate a sufficiently converged posterior.

With respect to evaluating the success of the ABC parameter estimation, “accuracy” can

be assessed either by comparing the approximate posteriors generated using ABC to the true

posteriors, or by comparing the estimated parameter values to the true parameter values, along with

a measure of certainty in the estimated values. In the present study, however, the true posteriors are

not known analytically and they are prohibitively expensive to compute numerically. As a result, the

accuracy of the ABC approach is quantified here by computing 95% Bayesian confidence intervals

(sometimes called credible intervals), denoted CB, from the approximate parameter posteriors, then

determining whether CB contains the true parameter value. The ultimate measure of accuracy in

the present study is indicated by how closely a central tendency of the posterior (such as the

mean) matches the true parameter value. The degree of certainty in the estimated parameter

value is determined by the width of CB, where narrower intervals indicate more certain parameter
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estimates.

Additional details on the specific choices for the prior, summary statistics, distance function,

and rejection distances used in the present ABC implementation are outlined in the following

sections, and are also summarized in Figure 3.8.

3.2.1.3 ABC Implementation

In this demonstration, ABC is used to estimate the frequency, amplitude, and mean of the

periodic forcing at the inlet of the buoyant jet given either LES or DNS reference data, with model

simulations from LES. The reference data consists of time series of speed or temperature measured

at nine heights above the inlet, ranging from roughly 0.5 mm up to 0.2 m. Time series at each height

were recorded over approximately 14 s after a 1 s initialization period, and PDFs and PSDs were

computed for each time series; these are the ABC summary statistics. The PSDs were calculated

using Thomson’s multitaper estimate [1, 126], which provides a robust estimate of the PSD by

reducing energy leakage across frequencies and reducing variance [127].

To ensure statistical convergence of the reference data, ensembles of 100 statistically indepen-

dent simulations were created using both LES and DNS. Each simulation had the same periodically

forced inflow at a frequency of 4 Hz, an amplitude of 0.2 m/s, and a mean of 0.5 m/s, but was

initialized using different stochastically generated temperature fields. The final reference data for

both the LES and DNS cases were then created by averaging the PDFs and PSDs for each of the

100 simulations in each ensemble, at each of the nine heights, giving the reference datasets shown,

for example, in Figure 3.7(b,c) for speed and in Figure 3.7(e,f) for temperature. Moreover, Figure

3.7 shows that the LES and DNS reference data are in reasonably good agreement.

Approximately 104 additional LES model cases were generated for the parameter estimation.

Each simulation was executed with a unique set of inlet parameters randomly sampled from prior

distributions for the frequency, amplitude, and mean of the sinusoidal velocity oscillations at the

inlet. The priors were uniform with bounds of 3.6–4.4 Hz for the frequency, 0.0–0.4 m/s for the

amplitude, and 0.0–1.0 m/s for the mean. Uniform priors were chosen to avoid the creation of
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Figure 3.9: Marginal posterior distributions from ABC (visualized using Gaussian kernel estima-
tion) for the frequency (a,b,g,h), amplitude (c,d,i,j), and mean (e,f,k,l) of the periodically forced
turbulent buoyant jet. Posteriors are calculated using measurements at heights from 0–20 cm (in-
dicated by colors from blue to yellow). Results are shown for speed-based reference data from LES
(a,c,e) and DNS (g,i,k), and for temperature-based reference data from LES (b,d,f) and DNS (h,j,l).
True parameter values are shown by vertical black dashed lines. Horizontal dash-dot lines and gray
regions show the priors.

anomalous biases in the posterior distributions. Although wider priors would result in greater

recovery of the edges of the posterior distributions, it will be seen in the following that nearly all

of the posteriors peak within the range of values present in the priors.

The Hellinger distance [124] was used to quantify the agreement between summary statistics

from the reference and model data. Values for ε were chosen such that a fixed percentage of

the tested parameters were retained in the final posterior [66, 69]. Parameter rejection was first

performed using the Hellinger distance for the PSD, where ε was selected to reject 80% of all

parameters tested. Subsequently, rejection was performed using the Hellinger distance for the

PDF, with ε chosen to reject 95% of the remaining parameters. With this sequential approach,

only 1% of the parameters tested were included in the final posteriors.

3.2.1.4 Inflow Parameter Estimation

Figure 3.9 shows marginal posterior distributions for each inflow parameter using both speed

and temperature reference data from LES and DNS at different heights. The posteriors are repre-
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Figure 3.10: Vertical profiles of 95% Bayesian confidence intervals, CB, for the marginal posterior
distributions in Figure 3.9 (cases shown in each panel are described in the caption of Figure 3.9).
Blue dash-dot lines and gray shading indicate the 95% Bayesian confidence regions, and the solid
red lines show the mean values of the posteriors. True parameter values are shown by vertical black
dashed lines.

Figure 3.11: Vertical profiles of Kullback-Leibler (KL) divergences for the marginal posterior dis-
tributions in Figure 3.9. Divergences for the frequency (black solid lines), amplitude (red dash-dot
lines), and mean (blue dashed lines) posteriors are shown for LES and DNS speed (v) based refer-
ence data (a,c) and for LES and DNS temperature (T ) based reference data (b,d). Each of the KL
divergences are normalized by their respective maximum values.

sented by Gaussian kernel estimations with bandwidths from Scott’s normal reference rule [128].

For both the LES and DNS speed-based reference data, Figure 3.9 shows that the true parameter

values are captured by the ABC posteriors. In general, the uncertainty is smallest at locations

close to the inlet, although reasonable estimates of the true parameters are still obtained at higher

locations.
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For the speed-based measurements, Figure 3.10 shows that CB is narrowest near the inlet

when using either LES or DNS reference data. This indicates that identifiability of the unknown

parameters is greatest near the inlet for speed-based reference data, although even higher in the

domain it is still possible to estimate inflow parameters, albeit with less confidence. Figure 3.10 also

shows that mean values from the posteriors are in good agreement with the true values, particularly

near the inlet for the amplitude and mean, and at all heights for the frequency.

Figure 3.10 additionally shows that CB is generally narrower for LES, as opposed to DNS,

reference data. This greater certainty is consistent with the exact representation of the underlying

physics by the model simulations when using LES reference data. However, even when using DNS

reference data, reasonable parameter estimates are still obtained. As a result, ABC is able to

provide predictions for unknown parameters using either exact or imperfect model simulations (as

compared to the reference data), and for locations that are indirectly related to the parameters of

interest (i.e., using measurements at locations far from the inlet).

The identifiability of unknown parameters using different measured quantities can be assessed

by repeating the ABC procedure using PDFs and PSDs computed from temperature time series.

Figure 3.9(c,d) shows that temperature-based frequency predictions are all centered on the true

parameter value, and Figure 3.10 shows that the posterior means are in good agreement with the

true value. The amplitude and mean posteriors are centered around the true parameter values in

the region from approximately 0.5 to 1.5 jet widths above the inlet. Below these heights, however,

there is not enough variation in the temperature field to aid in parameter estimation, given the

uniform inflow temperature. Because the PDFs were nearly identical at such low heights, the

ABC procedure was modified such that 15% of the simulated parameters were accepted based

solely on the PSD comparison. Higher than 1.5 jet widths above the inlet, the connection between

the temperature field and the inlet velocity becomes weaker, resulting in reduced identifiability of

velocity boundary conditions using temperature measurements. Despite these limitations, as shown

in Figure 3.10, all parameters are predicted for all heights within the CB intervals for each posterior.

Once again, the parameter estimation is generally more accurate using LES, as opposed to DNS,
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reference data, reflecting the additional model error introduced when using the DNS reference data.

The amount of information gained about the unknown parameters during the ABC procedure

can be quantified using the Kullback-Leibler (KL) divergence [125] between the prior and posterior

distributions. High values of KL divergence indicate the posterior is significantly different than

the prior (note that each KL divergence is normalized by its respective maximum value), while

values close to zero indicate posterior similar to the prior. Figure 3.11 shows vertical profiles of

the KL divergence for each of the different types of reference data, revealing that, in all cases,

at least some information about the unknown parameters is gained at nearly all locations within

the domain. For the speed-based reference data shown in Figures 3.11(a) and (c), the greatest

information about the unknown parameters is obtained near the jet inlet, and the posteriors for

the frequency generally provide more information higher in the domain than the posteriors for the

amplitude and mean. By contrast, for the temperature-based reference data in Figure 3.11(b) and

(d), the greatest information is obtained higher in the domain, close to 10 cm (corresponding to

one jet width above the inlet). In general, only the temperature-based data near the jet inlet fail

to provide significant information regarding the unknown parameter values.

3.2.2 Demonstration of ABC Using Experimental Reference Data

To demonstrate the utility of the ABC approach when the reference data are obtained from

an experiment, the ABC technique is next applied to a steadily forced planar plume for which

experimental data are available from Cetegen et al. [3]. In this experiment, a helium-air mixture

is weakly forced into 300 K ambient air, resulting in a natural oscillatory behavior of the plume.

By spanning a range of inflow conditions, Cetegen et al. [3] determined the empirical relation

St = 0.55Ri0.45 between the Strouhal, St = fw/vi, and Richardson, Ri = (1 − ρi/ρ∞)gw/v2i ,

numbers, where ρi is inlet density, ρ∞ is ambient density, g is gravity, w is inlet width, vi is inlet

velocity, and f is the frequency of the natural oscillation.

In this demonstration, ABC is performed assuming that the oscillation frequency above the

jet inlet, f , has been measured experimentally and that the density of the inflow mixture, ρi/ρ∞,
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is unknown (where ρi/ρ∞ = 0.14 for pure helium and 1 for pure air). All other properties of the

inflow, including vi and w, are assumed to be known. This case thus serves as the first experimental

demonstration that ABC is able to accurately estimate unknown parameters in complex thermal-

fluid flows, while also providing measures of uncertainty in the parameter estimates.

The model simulations were once again performed using LES in FireFoam [118]. The plume

had a width of w = 0.07 m and a steady uniform inflow velocity of vi = 0.067 m/s. The reference

Strouhal number was assumed to be St = 4, which is close to several values measured experimentally

(see Figure 3.13). The inlet width and velocity were held fixed for 100 LES runs while the inlet

density ratio varied from 0.14 to 0.6, corresponding to the published range of density ratios from [3].

The lowest density ratio corresponds to pure helium while the upper value was found in [3] to be the

bounding case beyond which the characteristic natural oscillation was not observed. The Strouhal

number was obtained from the peak frequency in a fast Fourier transform of vertical velocity a

distance w above the inlet; this was the summary statistic. The distance function consisted of an

L1 error norm between reference and model peak frequencies, and ε was chosen to retain 20% of

the parameter values from the model simulations. The characteristic oscillation of the plume is

captured by the LES, as shown in Figure 3.12.

Figure 3.13 shows that the estimated value of Ri from ABC for St = 4 agrees closely with the

experimental data. Additional tests for St = 2 and 3 were also performed using vi = 0.1 m/s and

0.15 m/s, respectively. These different inlet velocities were necessary to span a range of Ri while

constraining the physically allowable values of ρi/ρ∞ to between 0.14 and 0.6. Once again, Figure

3.13 shows that ABC provides estimates of Ri that are in close agreement with experiments. As a

result, ABC correctly identifies the unknown Ri that would provide the desired natural oscillation

frequencies for known inlet velocity and width.
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Figure 3.12: Representative 2D fields of density (kg/m3) from LES at six different times (a-f)
for the steadily forced plume described in Section 3.2.2. The fields shown begin at an arbitrary
time t0 late in the LES and are separated by a time interval spanning one complete period, tP
(tP = 1/f = 0.22 s).

Figure 3.13: Relationship between Strouhal number St = fw/vi and inlet Richardson number
Ri = (1−ρi/ρ∞)gw/v2i for the steadily forced helium-air plume. Experimental results from Cetegen
et al. [3] are indicated by open circles, and the empirical fit St = 0.55Ri0.45 is shown as a blue dash-
dot line. ABC results are indicated by filled red circles located at the mean Ri of the posterior
distribution. Uncertainty bars show the minimum and maximum values of Ri in the posteriors.
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3.3 ABC Methods: Additional Considerations

This effort builds upon the successes of Section 3.2.1.3. This section uses the same 2D

DNS reference data (based on 100-member ensemble) and approximately 10,000 LES cases. While

the results in those sections form a complete picture and successfully estimate several unknown

parameters (namely inlet velocity mean, amplitude, and frequency), additional work is performed

here to complement that analysis. Specifically, the following sub-sections will seek to address the

impact of varying quantities intrinsic to the ABC methodology such as rejection distance (ε) and

number of simulations computed. Additionally, techniques to improve the efficiency of the ABC

method will be explored; these include regression and parameter weighting by distance. Finally,

this section will also address remedies when a model contains known bias. This section is based on

a paper draft to be submitted to Journal of Computational Science.

3.3.1 ABC Implementation with “Basic” Parameters

The ABC procedure here uses single valued statistics to infer the mean, amplitude and fre-

quency at the inlet; specifically, this analysis finds the mean, standard deviation, and fast Fourier

transform (FFT) peak location for the reference data and the simulation. These statistics are used

instead of the the entire PDF and PSD used previously. This change in statistics simplifies (and in

some cases enables) the analysis and isolates the impact of various techniques being implemented.

The approach herein compares each simulations values to the reference value to obtain an absolute

distance corresponding to the three statistics (mean, standard deviation, and peak location). Then

to calculate an aggregate distance for each simulation, these values are combined together. Combi-

nation works by normalizing each of the three components of the distance (corresponding to mean,

standard deviation and peak location) by its maximum value (across all simulations), then adding

together the resulting normalized distances after weighting the frequency by 0.1. The low weight

for frequency was chosen because the combined distance contribution from frequency can dominate

the weight otherwise; this weighting scheme also illustrates the ability of various techniques below
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to narrow the width of a posterior that initially has limited information gain relative to the prior.

3.3.2 Impact of Rejection Distance (ε) on Posterior Convergence

One of the challenges that emerges with ABC is choosing an appropriate rejection distance,

ε. Generally it is acknowledged that a particular choice for rejection distance must balance bias in

the posterior against confidence in the posterior based on how many simulations are retained. By

this we mean that if the rejection distance is too large, then the posterior distribution will be biased

toward the prior distribution; in the extreme case, as the rejection distance grows the posterior

will identically match the posterior once all simulations are accepted. Conversely, as the rejection

distance decreases the number of simulations decreases which also decreases the confidence in the

parameter estimates coming from the posterior distribution; this is known as Monte Carlo error.

Marin et al. [59] and Lintusaari et al. [60] argue that a smaller ε is generally preferred, but the

size is largely determined by the available computational resources. Another approach proposed

by Christopher et al. [85] is to calculate the confidence interval (CI) of the posterior, which goes

as the standard deviation of the accepted simulations divided by the square root of the number of

accepted simulations. Assuming a unimodal, tight distribution of initial parameters this technique

suggests the CI will initially decrease due to accepting more and more simulations that are all

tightly clustered. Then, as more simulations are accepted, they will start to spread out across the

posterior increasing the variance of the posterior. This will increase the size of the CI until the

width of the posterior approaches approximately the full width of the prior distribution. Once

this happens, the CI will again decrease as more simulations are accepted while the width of the

posterior remains approximately constant. Note that the progression outlined here is one of several

possible evolutions of the CI as a function of rejection distance; how each system will evolve depends

on the growth rate in the standard deviation of the posterior versus the number of accepted samples

retained.

This behavior is illustrated in Figures 3.14 and 3.15. For this analysis, the LES simulations

were compared to DNS reference measurements at a height of 1 cm. For the statistics, the three
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“basic” parameters are used (mean, standard deviation, and FFT peak location) as described in

Section 3.3.1. Figure 3.14 shows the CI of the amplitude parameter posterior. Note that the

rejection distance is normalized so at a value of 1 we accept all parameter values. This figure shows

that for very small rejection distances we accept very few simulations so the CI is relatively large.

Then, as we increase the rejection distance we also increase the number of accepted simulations

tightly clustered around the initial value which decreases the confidence interval width; this trend

continues until a normalized rejection distance of 0.05 to 0.1. Beyond this range the posterior

begins to widen at a rate faster than the number of accepted simulations; as the posterior becomes

less concentrated, the CI increases. This occurs until a rejection distance of approximately 0.18;

after this many more simulations are accepted causing the CI to decrease. This suggests an optimal

ε corresponding to the normalized rejection distance of 0.05 to 0.1. The confidence interval of the

joint PDF for all three parameters is shown in Figure 3.15. It displays similar behavior to the

amplitude parameter posterior.

Figure 3.14: Confidence interval half-width plotted against normalized rejection distance for the
amplitude parameter posterior.
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Figure 3.15: Confidence interval half-width plotted against normalized rejection distance for the
joint posterior.

Figure 3.16: Posterior distributions for all three parameters created using “basic” statistics at 1
cm above the inlet. Posteriors are shown for two normalized rejection distances corresponding to
valleys in Figure 3.15.

The posterior distributions for all three parameters at normalized rejection distances of ap-

proximately 0.05 and 0.1, corresponding to the dips in the above CI plots (Figs. 3.14 and 3.15)

are shown in Figure 3.16. Notice that as the rejection distance is increased, the posterior widens

slightly but has approximately the same confidence interval half-width due to the increased number

of accepted samples.

Another approach to quantify how the posterior distributions change as a function of rejection
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distance is to consider the Kullback–Leibler divergence [125] from the prior to the posterior. The

Kullback–Leibler divergence is defined for a discrete probability distribution as

DKL(P ||Q) =
∑
i=1

P (i)log

(
P (i)

Q(i)

)
. (3.3)

Equation 3.3 provides the Kullback–Leibler divergence from Q to P (which is different than the

Kullback–Leibler divergence from P to Q as it is not symmetric). We define P(i) to be the posterior

probability distribution resulting from ABC. We further define Q(i) to be the prior probability

distribution from ABC. Thus, the Kullback–Leibler divergence tells us (in the Bayesian inference

context) the information gained by going from the prior probability distribution Q to the posterior

probability distribution P; thus, the higher the Kullback–Leibler divergence magnitude the more

information gained by using the posterior. This is clearly seen in the plot in Figure 3.17. This shows

the Kullback–Leibler divergence for each posterior as well as the joint posterior, each normalized

by their peak values (which all occur for the smallest normalized rejection distance as is expected

since that is the most peaked distribution). As more samples are accepted, the posteriors eventually

spread out and return to the uniform prior distribution; as the rejection distance increases toward

accepting all simulations the Kullback–Leibler divergence goes to zero. Note that because the

frequency is given a smaller weighting in the distance function it appears to become the worst (i.e.

returns to the prior distribution) the fastest with increasing rejection distance. This illustrates

how one is able to improve the estimate of one parameter (mean) at the expense of the ability to

simultaneously predict another parameter (frequency).
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Figure 3.17: Kullback-Leibler (KL) divergence from the prior to the posterior distributions. Each
KL divergence is normalized by it maximum value. High values of KL divergence indicate high
information gain, while values close to zero indicate a posterior that is similar to the prior distri-
bution.

3.3.3 Statistical Convergence of Posterior Profiles

Another avenue of study for ABC involves the efficiency of the method. A rough guideline

thumb indicates that the number of simulations (N) required to estimate n parameters goes as

(N ∼ O(10n)); thus for three parameters, 103 = 1, 000, so on the order of 1,000 simulations are

required. In this study, to ensure statistical convergence, approximately 104 simulations have been

used. Thus it is reasonable to consider how the posterior distributions would change if fewer sim-

ulations are used. The resulting posteriors from the first approach considered are shown in Figure

3.18. In this approach, the best 100 simulations are accepted regardless of the number of total

simulations performed. The quantity of total simulations is varied from 1% of all of the simula-

tions (100 simulations) to all of the original simulations (approximately 104 simulations). As the

total number of simulations increases, note how posterior distributions narrow and become more

concentrated around true values. As anticipated, this indicates that more simulations generally
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provide better posteriors. However, the question of how many simulations are needed has yet to be

answered. The most obvious answer is to conduct as many simulations as possible based on compu-

tational budgets. However, it is generally helpful to have an upper limit in mind so as not to waste

precious computing resources. Thus, one could consider the Kullback-Leibler divergence [125] from

each prior distribution to the corresponding posterior and determine when it asymptotes; after this

point additional simulations would add little to the parameter estimation. The mean and frequency

parameter posteriors exhibit this behavior in Figure 3.18. As more simulations are added beyond

20% of the total simulation pool size (i.e. 2,000 of 10,000 available) the posterior does not improve

substantially. The amplitude posterior does have a marked improvement between 30% and 100%

of the simulations being used, however. Lintusaari et al. [60] take this approach of considering

the Kullback-Leibler divergence of the posterior when comparing various rejection distances and

summary statistics. They are able to also include the full Bayesian posterior, however, adding

additional support to their conclusions of how many simulations are required before their approx-

imate posteriors asymptote. In the present analysis, the full Bayesian posteriors are prohibitively

expensive to compute and thus such a benchmark (converging to the full Bayesian posterior) is

unfeasible.

Figure 3.18: Posterior distributions for three inlet velocity parameters. Posteriors created by
accepting 100 closest simulations while increasing the size of the total simulations considered (from
1% of total ≈ 10, 0000 available to 100% of them); the lines are colored by total sample size
considered.

Another approach to decide when the posteriors have converged is to fix the number of
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simulations accepted at 2%, then vary the total number of simulations considered (this equates

to increasing the rejection distance as the number of total simulations considered increases). In

this approach, far fewer simulations are accepted compared to the first approach, until the total

number of simulations used for the analysis is 5,000 (i.e. 2% of 5,000 equals 100, which is the fixed

number of accepted samples in the first approach). The small numbers of accepted simulations

for this approach cause the posteriors, in general, to be narrower than the first case, as is seen in

Figure 3.19. All of the posteriors end up closely centered on the true values and have tight credible

intervals when approximately 1,000 or more simulations are used as the total pool size; this agrees

with with the guideline (N ∼ O(10n)) (before this the frequency posterior is quite spread out).

These two approaches highlight the inexorable connection between rejection distance and total

number of computations performed.

Figure 3.19: Posterior distributions for three inlet velocity parameters. Posteriors created by
accepting 2% of the total simulations considered that are closest to the reference DNS ensemble.
Each posterior has a unique number of the total simulations considered (from 1% of total ≈ 10, 0000
available to 100% of them); the lines are colored by total sample size considered.

3.3.4 Regression

A technique that is presented frequently in approximate Bayesian computation literature

pertains to regression [66, 129]. In principle regression is supposed to increase the computational

efficiency of ABC by allowing more simulations to be retained while still maintaining a relatively

narrow posterior. This works by applying the standard ABC rejection method to obtain the
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posterior, PABC(θ|D) (in the present case we accept ≈ 1.5% of the total ≈ 10, 000 simulations

and use the “basic” statistics and associated distance function from Section 3.3.1). However, after

creating the posterior, an extra step is taken. The parameters that are retained for the posterior

are plotted against their corresponding statistic. For this particular application, we show in Figure

3.20 the prescribed inlet mean velocity versus the mean velocity magnitude observed 1 cm above

the burner surface. In red we show the observed velocity from the DNS reference ensemble data.

Next, a linear regression of the parameters is performed along the best fit line for the simulation

data. In this case a linear regression appears to fit well, but nonlinear choices may better suit other

applications [130]. Once all of the parameters and their corresponding observations are regressed to

the reference observation then a new posterior is made based on the new locations of the parameters

(found by horizontally tracing each newly located simulation to the vertical axis on the regression

plot of Figure 3.20. Figure 3.21 shows the impact of performing the regression; note how much

more peaked the posteriors are after the regression. By concentrating the posteriors so dramatically,

regression allows fewer simulations, that may be spread out, to be retained for the final posterior

while still creating a posterior with narrow credible intervals and high information gain compared

to the prior.
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Figure 3.20: Regression schematic. Each blue dot represents a simulation output at its original
location; this data is used to compute the original posteriors. The green line shows the regression
line which is a best fit of the data. Each simulation is regressed along the green regression line until
the it reaches the reference observation data from DNS simulation at which point the posterior is
recomputed. An identical approach is applied for each parameter independently.

Figure 3.21: Posteriors before and after regression are presented. Regression causes each posterior
to narrow.

3.3.5 Weighting Parameters to Form Posterior

Another technique we propose to reduce the computational cost of the ABC procedure is

to keep all of the simulations (i.e. ε → ∞) but then to use information from each of them to

inform the posterior estimate. This is done by following the standard ABC procedure (given in

Section 3.3.1) with ε = ∞. Before generating the posterior, however, an extra step is taken since
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the posterior at this point would equal the prior distribution with all parameters accepted. Based

on the distance obtained for each simulation, the parameters for that simulation are weighted

accordingly. The simulation that is closest to the posterior receives the most weight, while the

simulation that is most dissimilar from the reference observation receives the least weight. Finally,

a posterior distribution is created based on the accepted parameters according to their weights. This

is illustrated in Figure 3.22. Various functions may be used to weight each simulation, however,

in this case to further differentiate the simulations that are close from those that are far from the

reference simulation, a weighting function of 1/distance2 was used.

Figure 3.22: Posteriors before and after weighting parameters by rejection. Weighting causes each
posterior to narrow.

3.3.6 ABC in the Presence of Model Bias

Model bias is a primary concern when performing ABC, because if a model is biased then

the parameter estimations it produces may also be biased. Though not always the case, bias in

a model may be known a priori due to calibration efforts with well-known conditions. In such

a case, model outputs can be adjusted to account for model bias. Such an approach is proposed

here. The DNS ensemble and LES ensemble serve as statistically-converged data sets representative

of behavior of either simulation method, respectively. Thus, comparing the mean speed profiles

produced by the DNS ensemble and LES ensemble provides information as to the biases in the LES

data; note that here we use the 100-member ensemble average taken after temporally averaging

each member’s speed profile. These biases arise due to differences in the DNS and LES solutions,
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primarily caused by turbulence modeling in the LES, higher resolution of the DNS grid, and tighter

constraints on the DNS time stepping scheme (i.e. CFL = 0.2 compared to CFL = 0.5 for LES).

Mean profiles for both the DNS and LES ensembles are shown in Figure 3.23 along with the bias

of the LES simulation. Note that the LES simulation starts biased toward slower speeds, but then

around 10 cm (i.e. 1 inlet width) above the inlet the bias flips signs and becomes positive (i.e. the

LES predicts higher speeds than the DNS). Using this observed bias, all LES vertical profiles are

corrected.

Figure 3.23: Vertical profiles of simulation speed are shown. One-hundred member ensembles
of DNS and LES were computed. Each ensemble member was temporally averaged. Then the
ensemble members were averaged together for either the DNS or LES ensemble. These means are
shown in red and blue, respectively. The difference in profiles at each height is reported as the bias
in the LES model and shown in green; the bias is close to 0 m/s for much of the domain.

Since the bias correction applied here is for the vertical profile of speed, it makes sense to

use the vertical profile of speed as the summary statistic to represent each simulation and the DNS

ensemble mean. To compare the vertical profile from each simulation to the DNS ensemble mean

vertical profile, the root-mean-square error (RMSE) is used. Thus, a larger RMSE indicates more
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disparity between a given simulation (and hence its parameters) and the DNS ensemble mean. Two

posterior histograms are shown in Figure 3.24 representing the inlet mean velocity predicted first

without, and then with, the bias correction applied. Note that the mean of the posterior improves

from 0.45 m/s to 0.48 m/s after applying the the bias correction (the error goes from over 10%

initially to less than 3.5% after fixing the bias in the LES simulations).

(a) Original profiles used (b) Bias-corrected profiles used

Figure 3.24: Histograms showing posterior estimations for inlet mean velocity parameter. The
uniform prior is indicated by the shaded gray box (normalized for the appropriate number of
accepted simulations). The true parameter value used to drive the reference DNS ensemble shown
with solid red line. Dashed blue line shows the mean of the posterior parameters. Dotted magenta
line indicates mode of distribution. Subfigure (a) was created using original speed profiles, while
subfigure (b) was crated using profiles after correcting for the LES bias.

Two additional posterior histograms are shown in Figure 3.25 representing the inlet velocity

amplitude predicted without and then with the bias correction applied. Note that the mean of the

posterior improves from 0.14 m/s to 0.19 m/s after applying the the bias correction (the error goes

from over 28% initially to just over 5% after fixing the LES bias). Thus, it is clear the mean speed

profiles provide useful information regarding both the inlet velocity mean and amplitude. The

inlet velocity frequency posterior is less clear, however, indicating the mean speed profile may not

contain sufficient information to accurately predict this parameter. This indicates the parameter
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is either unidentifiable or noninfluential using this summary statistic [107].

(a) Original profiles used (b) Bias-corrected profiles used

Figure 3.25: Histograms showing posterior estimations for inlet velocity amplitude parameter. The
uniform prior is indicated by the shaded gray box (normalized for the appropriate number of
accepted simulations). The true parameter value used to drive the reference DNS ensemble shown
with solid red line. Dashed blue line shows the mean of the posterior parameters. Dotted magenta
line indicates mode of distribution. Subfigure (a) was created using original speed profiles, while
subfigure (b) was crated using profiles after correcting for the LES bias.

3.4 Conclusions

Approximate Bayesian computation (ABC) has, for the first time, been used to estimate

unknown physical parameters in complex thermal-fluid flows. As a demonstration of the approach,

ABC was used to estimate the frequency, amplitude, and mean of the velocity inflow in a periodically

forced turbulent buoyant jet, as well as the inlet Richardson number for a steadily forced helium-

air plume. In the former case, computational reference data were used to drive the parameter

estimation, while in the latter case experimental reference data were used. For both cases, ABC

provided accurate estimates of unknown physical parameters even when the model simulations did

not exactly match the physics underlying the reference data (e.g., when using LES for the model

simulations and reference data from either DNS or experiments), and when the reference data were
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only indirectly connected to the unknown parameters of interest (e.g., when using measurements

distant from the jet and plume inlets, or when using temperature measurements to infer velocity

inlet parameters). The primary impacts of using imperfect model simulations or only indirectly

connected measurements were observed in the width of the Bayesian confidence intervals. As the

physics of the model simulations more closely matched that of the reference data, and as the

connection between the measurements and unknown parameters improved, the confidence intervals

were found to become more narrow.

Although the present demonstration indicates that ABC provides accurate estimates of pa-

rameter values with relatively little uncertainty, there are many directions for future research.

Different choices for the prior, summary statistic, distance function, and rejection distance can all

potentially lead to slightly different parameter estimates. Further work is required to determine

the specific effects of each of these choices on the accuracy and uncertainty of ABC. Markov chains

can also be used to significantly reduce the cost of ABC by limiting the number of parameter values

that are rejected, even for relatively small rejection distances [2]. Such approaches have become

more popular in recent years, but have yet to be applied in the present context. Finally, the true

power of ABC lies in its ability to predict unknown parameters in real-world systems, and future

work will more deeply explore the use of experimental reference data to drive parameter estimates,

particularly taking into account experimental uncertainty in the context of validation efforts for

simulations of complex thermal-fluid problems.



Chapter 4

Parameter Estimation for Industrial Applications using ABC

In this chapter, we use ABC to predict unknown temperature or velocity conditions in sim-

ulations of a three-dimensional (3D) turbulent, high-temperature buoyant jet, and then a two-

dimensional (2D) turbulent, high-temperature buoyant jet with a rotating cylinder above it. For

both test cases, reference data are obtained from corresponding simulations with known boundary

conditions and problem parameters. Using spatially sparse temperature statistics from each refer-

ence simulation, we show that the ABC method provides accurate predictions of the temperature

mean and variability at the jet inlet for the 3D case. We then show that similar spatially sparse

temperature statistics can be used with ABC to accurately predict the inlet velocity and cylinder

rotational velocity. The success of the ABC approach in the present tests suggests that ABC is

a useful and versatile tool for engineering fluid dynamics research. As pointed out in Section 1.4,

ABC has primarily been applied to biological and geophysical problems to date making this a

unique and novel application of ABC.

It should be noted that, by contrast to prior studies [10,11,14,131] where simplified surrogate

models have been used for parameter estimation in turbulent flows, here we instead perform more

complete CFD simulations during the ABC process. This chapter is focused on the case of a turbu-

lent buoyant jet due to the geometrically simple yet physically complex nature of this compressible

flow problem, which has many analogs in both engineering systems and environmental flows. The

case in Section 4.2.2 is an extension of this buoyant jet, but with an internal moving boundary

above it; industrially this could represent a roller used to treat a thin film. The approach of using



74

the same model to generate the reference observations and subsequent simulations provides a clear

indication of how well the ABC method can determine unknown parameters using only spatially

sparse reference data; in the data assimilation community this is known as an Observing-System

Simulation Experiment (OSSE) (see for example [116,117]).

4.1 Approximate Bayesian Computation for a Turbulent Buoyant Jet

With the ABC method successfully applied to a 2D turbulent buoyant jet in Chapter 3, the

method is next applied to CFD simulations of a 3D turbulent buoyant jet as originally reported

in [84]. This added complexity aims to demonstrate the efficacy of the method for a realistic

engineering application. The open-source computational fluid dynamics software OpenFOAM,

version 2.2.x, [119,132] was used to design and run unsteady 3D RANS simulations for this study.

The compressible RANS equations were solved in conjunction with the energy equation. Heat

transfer mechanisms that were modeled in this simulation include advection of temperature by

hot gases and radiation exchange between domain boundaries and the fluid within the domain.

The standard k-ε turbulence closure model [133] was used. The RANS equations were solved with

second order accuracy in space and time to obtain a solution. Limiters on velocity divergence and

Laplacian schemes were implemented to aid convergence. Fluid viscosity and specific heat were

assumed to be constant for the purpose of this study. The RANS simulation compares favorably

to results from a 3D LES [96].

4.1.1 Turbulent Buoyant Jet Simulation Setup

The RANS equations were solved on a 3D grid with 6,270 hexahedral cells. A high temper-

ature jet inflow is centered width- and length-wise at bottom of the domain. The mesh is more

refined at the jet to accommodate higher gradients. A schematic of the setup is shown in Figure

4.1(a) and an example temperature field is shown in Figure 4.1(b).

The domain dimensions were chosen to allow the bottom-driven jet to exit the domain pri-

marily vertically due to the vertical inflow velocity and buoyant forces. The jet inflow was centered



75

T
in

u
in

Jet

0.55 m

1.2 m
Gravity

0.25 m

0.075 m

0.375 m

z

y

x

(a) Simulation domain (b) 2D temperature slice (K)

Figure 4.1: (a) Schematic showing the setup of the RANS 3D domain. (b) Temperature field
showing a single snapshot in time of a simulation with inlet mean temperature of 1460 K and
temperature variability of 0.19. This 2D plane is a slice from the 3D volume; it is parallel to the
y-z plane (the normal is in the x-direction) and located at the center of the jet (x = 0.1875).

at the bottom of the domain and is 0.25 m wide and is 0.075 m across. The jet velocity, equal

to 0.5 m/s, is held constant for all time across all locations and for all simulations. Each com-

putational grid cell of the jet inflow is prescribed a temperature that is allowed to vary spatially

and temporally. The mean temperature and the temperature variation are fixed for the duration

of each simulation; these two values, temperature mean and temperature variation, comprise the

unknown parameters that are to be found using the ABC procedure in the present study. The

prior distributions for these two parameters vary for each simulation, and are thus specified in the

description of each simulation.

The jet inflow temperature is varied about a fixed mean at each computational grid cell

on the jet surface by setting several parameters in OpenFOAM. Specifically, in OpenFOAM the

temperature boundary condition at the jet is assigned a built-in type named “turbulentInlet”

with a unique reference field and fluctuation scale for each simulation. These settings instruct
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OpenFOAM to vary the temperature at each cell on the jet inlet around a set mean. The amount

of variation in temperature is drawn randomly from a Gaussian distribution that adds or subtracts

a value whose magnitude is determined by the prescribed temperature variability. The variability

is defined as the standard deviation divided by the mean; for example, for a simulation with a

mean temperature at the inlet of 1500 K, a variability of 0.1 will result in a Gaussian temperature

distribution being applied at the inlet with a standard deviation of 150 K. Additionally, these

temperatures fluctuate smoothly in time as specified by a correlation parameter α which was set to

0.1. A simulation is run with each set of inflow conditions. The resulting flow field is then compared

to a reference simulation. The reference simulation is an execution of the same code with known

inflow conditions. The comparison is made using statistics relevant to the flow field at hand, as

described in the following section.

4.1.2 ABC Statistic Selection

The ABC method applied is given as algorithm 1 in Section 3.1; this is the basic ABC

algorithm with no Markov-chain method (thus the parameters chosen for each run do not affect the

parameters chosen for the next computation). The MCMC-ABC algorithm is an area for future

research [5]. Choosing a statistic to represent each simulation is a key step in ABC. The statistic

must sufficiently reduce the data so a reasonable comparison can be made (most of the time it

is not computationally practical to compare the entire flow field at every location in space and

time; comparing the entire flow field would be very high dimensionally and would result in the vast

majority of simulated parameters being rejected). The statistic must also contain an identifiable

signature left by the parameter of interest; if the parameter is unidentifiable or noninfluential,

then the technique will not be able to discern the impact of changing the parameter from that

measurement [107]. To that end, a variety of metrics were considered for this study.

First, the study sought to determine the mean inflow temperature parameter. One could

reasonably assume based on the physics governing the simulation that the mean inflow temperature

is likely tightly coupled with the mean temperature in the space above the hot jet. Since the flow
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field is turbulent and nonlinear, the link between the inflow temperature and the flow field is most

directly linked as close as possible to the inlet. Thus, it is desirable to have measurements of

the mean temperature close to the jet surface. Next, the study sought to predict the the inflow

temperature variation. Based on the physics, one could reasonably assume that this parameter is

linked closely with the temperature standard deviation observed above the jet. As is the case for the

first statistic, due to turbulent mixing and the nonlinear behavior of the flow field, a measurement

close to the hot jet surface is desirable. To that end, the initial statistics focused on temperature

measurements centered above the jet and as close above it as possible. Measurements were taken

after the initial transient response had finished 100 seconds into the simulation. Measurements

were recorded for the times 100 seconds to 120 seconds every 0.1 seconds.

4.1.3 Turbulent Buoyant Jet Simulation Results: Iteration 1

A set of simulations was performed using the computational domain described in Section 4.1.1.

The jet inflow was prescribed a uniform velocity of 0.5 m/s. The mean temperature was assigned a

value between 1400 K and 1800 K (inclusive of the bounds). Using a 10 K increment resulted in 41

different temperature values. A temperature of 1600 K represents the reference temperature. The

temperature variability was assigned a value between 0 (no variation in temperature) and 0.2 (this

means the standard deviation for the Gaussian distribution from which temperatures are drawn

has a value of 20% of from the mean for that simulation), inclusive of the bounds. Using a 0.01

increment for the temperature variability resulted in 21 different parameter values. A temperature

variability of 0.1 represents the reference value. Together, then, the reference parameters indicate

that each cell of the jet will have a mean in time of 1600 K with standard deviation of 160 K.

Each combination of temperature mean and temperature variability was computed for 861 unique

simulations.

One should note that choosing the prior distribution of initial parameters can be a difficult

task. In this case, the truth was known so the prior needed to simply extend above and below the

known parameter values. When the truth is unknown, then the prior must be driven by knowledge
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of the system – the more knowledge, the narrower the prior. For instance, if the unknown parameter

is the inflow temperature, then the prior will be influenced by knowledge of what the fuel is and its

associated adiabatic flame temperature (for an upper bound) and some idea of flame temperatures

for very rich and very lean mixtures of burning that fuel (for a lower bound).

The ABC methodology was used to compare mean temperatures at 2 mm from the bottom

of the domain (i.e. from the jet inflow) and centered width- and length-wise in the domain; this

metric was used to predict the reference inlet mean temperature. Additionally, the temperature

standard deviation was analyzed and compared at this location; this metric was used to predict

the reference inlet temperature variability. Rejection distances of 20 K and 20 K were applied to

the temperature mean and temperature standard deviation values, respectively.

Figure 4.2 shows a plot of the posterior for the first parameter, the jet inflow temperature

mean. Note that the uniform distribution of initial temperatures morphs into a Gaussian distribu-

tion of accepted temperatures centered at 1603.5 K with standard deviation of 15.8 K. All of the

temperatures that are very far away from the reference (e.g., 1400 K or 1800 K) are successfully

rejected by the algorithm; this indicates that the initial prior was sufficiently wide. Similarly, Figure

4.3 shows a plot of the posterior for the second parameter, the jet inflow temperature variability.

Note that, again, the uniform distribution of temperature variability morphs into a Gaussian dis-

tribution of accepted temperature variability centered at 0.102 with standard deviation of 0.012.

The algorithm correctly rejected all of the temperature variability values that were far from the

reference (e.g. 0.0 or 0.2); this indicates that the initial prior was sufficiently wide.

Other sets of measurements were considered to see if they would provide more information

to the parameter estimation problem and yield better predictions. For another set of metrics,

temperature measurements from other heights were considered. The temperature mean and tem-

perature standard deviation at heights of 11.5 mm, 26.5 mm, and 40.5 mm all were obtained and

analyzed in a similar manner to the original data at 2 mm. The temperatures at these additional

heights produced posteriors located farther from the reference, with more spread and usually fewer

accepted values. Thus, for a single measurement the one closest to the jet inflow appears to provide
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Figure 4.2: Probability distribution showing the marginalized posterior of the inlet temperature
mean parameter. A total of 861 simulations were run with unique combinations of inlet temperature
mean and inlet temperature variability. The inlet temperature mean for each simulation was chosen
to be between 1400 K and 1800 K. The inlet temperature variations were between 0.0 and 0.2.
Rejection distances of 20 K and 20 K were applied in ABC method to the mean temperature and
temperature standard deviation measured just above the jet (with height equal to 2 mm) and
centered in the width and length directions. Accepted mean temperature values shown by green
circles. Reference temperature mean shown in red at 1600 K. The mode of accepted temperatures
is shown with the dashed blue line. The solid black line is a Gaussian curve with the mean of the
accepted values (shown with dashed black line) and standard deviation of the accepted values.

the best information for predicting inflow conditions.

Finally, we considered the original measurement at the bottom location (2 mm) in addition

to one of the other measurements. This set of two measurements also yielded posteriors centered

farther from the reference, with more spread and usually fewer accepted values. The marginal

posteriors are shown in Figures 4.4 and 4.5 for the case of using measurements at two heights.

This confirms that the initial set of metrics, informed by the physics governing the flow situation,

provides the best estimate of the parameters.
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Figure 4.3: Probability distribution showing the marginalized posterior of the inlet temperature
variation parameter. A total of 861 simulations were run with unique combinations of inlet temper-
ature mean and inlet temperature variability. The inlet temperature mean for each simulation was
chosen to be between 1400 K and 1800 K. The inlet temperature variations were between 0.0 and
0.2. Rejection distances of 20 K and 20 K were applied in ABC method to the mean temperature
and temperature standard deviation measured just above the jet (with height equal to 2 mm) and
centered in the width and length directions. Accepted temperature variation values shown by green
circles. Reference temperature variation shown in red at 0.1. The mode of accepted temperature
variabilities is shown with the dashed blue line. The solid black line is a Gaussian curve with the
mean of the accepted values (shown with dashed black line) and standard deviation of the accepted
values.

4.1.4 Turbulent Buoyant Jet Simulation Results: Iteration 2

Based on the results from the first set of 3D RANS simulations, an additional set of simu-

lations was executed using the same computational domain described in Section 4.1.1 but over a

different parameter space. The jet inflow was prescribed the same uniform velocity of 0.5 m/s. The

temperature parameters, however, were informed by the first iteration. Recognizing that the initial

prior was very wide, this second iteration had a much narrower prior to provide a more refined

estimate of the unknown parameters. The bounds for this second set of simulations were driven by

the initial results; the prior from the initial set of simulations was truncated to exclude values that



81

1400 1450 1500 1550 1600 1650 1700 1750 1800

Inlet Temperature Mean (K)

0

0.005

0.01

0.015

0.02

0.025

0.03

P
ro

b
ab

il
it

y

Figure 4.4: Probability distribution showing the marginalized posterior of the inlet temperature
mean parameter. A total of 861 simulations were run with unique combinations of inlet temperature
mean and inlet temperature variability. The inlet temperature mean for each simulation was chosen
to be between 1400 K and 1800 K. The inlet temperature variations were between 0.0 and 0.2.
Rejection distances of 26 K and 26 K were applied in ABC method to the mean temperature
and temperature standard deviation measured just above the jet (with height equal to 2 mm) and
centered in the width and length directions. Additionally, rejection distances of 39 K and 13 K were
applied in ABC method to the mean temperature and temperature standard deviation measured
farther above the jet (with height equal to 11.5 mm) and centered in the width and length directions.
Accepted mean temperature values shown by green circles. Reference temperature mean shown in
red at 1600 K. The mode of accepted temperatures is shown with the dashed blue line. The solid
black line is a Gaussian curve with the mean of the accepted values (shown with dashed black line)
and standard deviation of the accepted values.

were determined through ABC to be very unlikely. The mean temperature was assigned a value

between 1550 K and 1650 K (inclusive of the bounds). Using a 2.5 K increment (4 times more

refined than iteration 1) resulted in 41 different temperature values. A temperature of 1600 K again

represents the reference temperature. The temperature variability was assigned a value between

0.08 (up to 8% temperature variation from the mean for that simulation) and 0.12 (up to 12%

temperature variation from the mean for that simulation), inclusive of the bounds. Using a 0.002

increment (5 times more refined than the first iteration) resulted in 21 different parameter values.

A temperature variability of 0.1 represents the reference value. Each combination of temperature
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Figure 4.5: Probability distribution showing the marginalized posterior of the inlet temperature
variation parameter. A total of 861 simulations were run with unique combinations of inlet temper-
ature mean and inlet temperature variability. The inlet temperature mean for each simulation was
chosen to be between 1400 K and 1800 K. The inlet temperature variations were between 0.0 and
0.2. Rejection distances of 20 K and 20 K were applied in ABC method to the mean temperature
and temperature standard deviation measured just above the jet (with height equal to 2 mm) and
centered in the width and length directions. Additionally, rejection distances of 39 K and 13 K
were applied in ABC method to the mean temperature and temperature standard deviation mea-
sured farther above the jet (with height equal to 11.5 mm) and centered in the width and length
directions. Accepted temperature variation values shown by green circles. Reference temperature
variation shown in red at 0.1. The mode is not shown as there is no single mode. The solid black
line is a Gaussian curve with the mean of the accepted values (shown with dashed black line) and
standard deviation of the accepted values.

mean and temperature variability was thus once again computed for 861 unique simulations.

The ABC methodology was used to compare mean temperatures at 2 mm from the bottom

of the domain (i.e., from the jet inflow) and centered width- and length-wise in the domain; this

metric was used to predict the reference inlet mean temperature. Additionally, the temperature

standard deviation was analyzed and compared at this location; this metric was used to predict the

reference inlet temperature variability. Rejection distances of 12.5 K and 6.5 K were applied to the

temperature mean and temperature standard deviation values, respectively. Figure 4.6 shows a plot
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of the posterior for the first parameter, the jet inflow temperature mean. Note that the uniform

distribution of initial temperatures morphs into a Gaussian distribution of accepted temperatures

centered at 1588.5 K with standard deviation of 10.5 K. All of the temperatures that are far away

from the reference (e.g., 1550 K or 1650 K) are successfully rejected by the algorithm; this indicates

that the initial prior was sufficiently wide based on knowledge of the initial simulation. Similarly,

Figure 4.7 shows a plot of the posterior for the second parameter, the jet inflow temperature

variability. Note that, again, the uniform distribution of initial velocities morphs into a Gaussian

distribution of accepted velocities centered at 0.103 with standard deviation of 0.006. The algorithm

correctly rejected all of the temperature variability values that were far from the reference (e.g.

0.08 fluctuation or 0.12 fluctuation); this indicates that the initial prior was sufficiently wide.

The posterior shown in Figure 4.6 has a mean value farther from the reference value than the

initial analysis with a wider prior. This is counter intuitive since the parameters used to generate it

are much more tightly spaced. This apparent anomaly can be explained by Figure 4.8. This figure

shows the prescribed inlet temperature versus the measured temperature at a location used for

the above ABC analysis. Note that the mean temperature value observed for the reference case is

skewed left compared to the other simulations run with the same inlet temperature. Thus, the mean

temperature observed for the reference case appears, on average, more similar to cases executed

with lower inlet mean temperatures resulting in the biased posterior of Figure 4.6. This result is

not entirely surprising considering the nonlinear behavior of the Navier-Stokes equations; a small

change in inlet temperature can result in nonlinear changes in the resulting flow field. Additionally,

the stochastic nature of the jet can lead to periods with higher or lower mean temperatures than

the reference value. This serves as a valuable warning about the nature of the data used as a

reference; if it is biased, then the solution will also likely be biased. It is also important to put this

bias in perspective, however, since the observed posterior is still close to the reference value and

has less than 1% error indicating ABC still identified the correct parameter within the posterior.
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Figure 4.6: Probability distribution showing the marginalized posterior of the inlet temperature
mean parameter for Iteration 2. A total of 861 simulations were run with unique combinations of
inlet temperature mean and inlet temperature variability. The inlet temperature mean for each
simulation was chosen to be between 1550 K and 1650 K. The inlet temperature variations were
between 0.08 and 0.12. Rejection distances of 12.5 K and 6.5 K were applied in ABC method to the
mean temperature and temperature standard deviation measured just above the jet (with height
equal to 2 mm) and centered in the width and length directions. Accepted mean temperature
values shown by green circles. Reference temperature mean shown in red at 1600 K. The mode of
accepted temperatures is shown with the dashed blue line. The solid black line is a Gaussian curve
with the mean of the accepted values (shown with dashed black line) and standard deviation of the
accepted values.

4.2 Approximate Bayesian Computation for a Turbulent Buoyant Jet with

Rotating Cylinder

With the open case now analyzed (i.e. the burner alone with nothing above it), we next turn

to another industrial application, that of a turbulent buoyant jet impinging on a rotating cylinder

above it. Looking more closely at this configuration, ABC can be used to determine many unknown

parameter values of interest. For an example observation, laser diagnostic methods [45, 134, 135]

could be used to obtain line-of-sight average temperature or H2O concentration measurements at

various locations within the flow field. These measurements have rich temporal data that could

be used to generate a discrete probability density function with associated relevant statistics (e.g.,
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Figure 4.7: Probability distribution showing the marginalized posterior of the inlet temperature
variation parameter for Iteration 2. A total of 861 simulations were run with unique combinations
of inlet temperature mean and inlet temperature variability. The inlet temperature mean for each
simulation was chosen to be between 1550 K and 1650 K. The inlet temperature variations were
between 0.08 and 0.12. Rejection distances of 12.5 K and 6.5 K were applied in ABC method to the
mean temperature and temperature standard deviation measured just above the jet (with height
equal to 2 mm) and centered in the width and length directions. Accepted temperature variation
values shown by green circles. Reference temperature variation shown in red at 0.1. The mode
of accepted temperature variabilities is shown with the dashed blue line. The solid black line is a
Gaussian curve with the mean of the accepted values (shown with dashed black line) and standard
deviation of the accepted values.

time-averaged temperature and associated variance); this is P (D) in Bayesian terms. Next, a com-

putational model would simulate the experimental setup. The values for parameters of interest

(e.g., boundary conditions including inlet temperature and velocity, cylinder temperature, absorp-

tivity and rotational velocity, convection coefficient, species concentration, etc.) would then be

chosen according to a prior distribution, P (θ). Each draw of parameters would produce a separate

solution from a RANS simulation whose statistics would be analyzed and compared to the experi-

mental data. As described previously, if the statistics agree according to a predefined threshold, the

parameters are kept, or otherwise rejected. From many simulations, a posterior distribution will
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Figure 4.8: The plot’s vertical axis shows the prescribed inlet mean temperature that is assigned
and held constant for each simulation. The horizontal axis shows the observed temperature; this
value is the time averaged value of the temperatures measured at the center of the inlet (width
and length wise) at a height of 2 mm over the last 20 seconds of the simulation. The reference
simulation, with a prescribed mean of 1600 K, is indicated with the red circle.

emerge indicating which parameters (θ) are probable given the data D; this is, again, the posterior,

PABC(θ|D).

In this study, originally reported in [85], we have chosen to couple ABC with RANS simu-

lations, instead of using a full Bayesian approach with approximate surrogate models. Moreover,

observations from the case we wish to match come from a reference simulation using the same

RANS model with known parameters; using the same model for the reference observations and

comparison simulations provides the groundwork to estimate parameters for a complex flow sim-

ulation using ABC with limited reference data. This work is a precursor to the ultimate goal of

combining RANS (or LES) simulations with experimental data to improve simulation accuracy.
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4.2.1 Approximate Bayesian Computation Algorithm

In the present study, the ABC algorithm given in Section 2.2 was implemented to predict

unknown parameter values in simulations of a rotating cylinder above a high-temperature turbulent

buoyant jet. The first step in the analysis was to perform a reference RANS simulation using known

inflow velocity and composition and cylinder rotational velocity. In the first study presented in

Section 4.2.2, the inflow and cylinder rotational velocities comprised the parameters to be found.

In the next study shown in Section 4.3, the inlet ratio of fuel and air served as the unknown

parameter to see how well ABC could performing in determining species concentrations. These

parameters served as reference parameters that would be determined by the ABC approach. The

temperature and velocity at several points within the flow field were stored every 0.1 seconds for

the first case, while the H2O and temperature were measured for the second case in Section 4.3.

Next, assuming the reference parameters (inflow velocity and cylinder velocity for the first study

and inlet composition for the second study) were unknown, a range of parameters was chosen and

many different simulations were performed. The jet and cylinder rotational velocities, along with

inlet composition, simulated were chosen from a ‘prior’ estimation for what the true values might

be. The basic idea underlying the ABC approach is that, based on system intuition, physical

constraints, previous experience, etc., a researcher typically has a range of probable values that a

parameter might take on; these upper and lower limits bound the cases for which simulations need

to be run. The ‘prior’ distribution for this chapter was chosen based on reasonable assumptions

found from experimental measurements of a similarly sized system. Once the reference case and a

subsequent model case, with parameter values chosen from the prior distribution, are complete, the

next step is to study the flow fields of each case. The statistics of each simulation are compared to

statistics from the reference case. If the results are similar, the simulated jet and cylinder rotational

velocities are stored as a possible candidate pair of parameter values. If the results are not similar,

then that combination of velocities is discarded. Another simulation is then run with a new pair of

parameters and the process repeats until a sufficiently high number of accepted parameter values
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exists from which conclusions can be made about the results.

The ABC algorithm applied in this section is known as method D in Marjoram et al. [2] and

is detailed in Section 2.2. Note that in the present study, the parameters, θ, that one seeks to

find are a pair containing one inlet velocity and one cylinder rotational velocity for Section 4.2.2

and a fuel-to-air ratio for Section 4.3. The distributions of accepted θ values comprise the ABC

posteriors, PABC(θ|D).

4.2.1.1 Selection of Rejection Distance, ε

In ABC, once the summary statistic, S, is chosen and a distance calculated between each

simulation and the reference case, the next task is to determine how small the ‘rejection distance,’

ε, should be to ensure that each result is sufficiently close enough to the reference case in order

to be accepted. Traditionally this task is addressed by a variety of techniques, often relying on

expert judgment to balance the spread in accepted parameter values with the number of accepted

samples. In Section 4.2.2 we choose values for ε by balancing the precision in the solution (low

standard deviation) against having sufficient confidence in the results (high number of accepted

samples). Since the reference parameter values are known, this is a reasonable approach. Once the

true value of the parameter is unknown, however, it becomes less clear how to determine how well

this approach converges. Therefore, in Section 4.3 we introduce a novel approach of choosing an ε

value that minimizes the confidence interval of the posterior found by sweeping across a wide range

of ε values. The confidence interval is proportional to the standard deviation of accepted parameter

values divided by the square root of the number of accepted values. The range of ε values must

be wide enough so that the smallest value accepts very few of the proposed parameter values while

the largest ε accepts nearly all of the proposed parameter values. For very small values of ε the

majority of the cases are rejected resulting in a very small standard deviation of the posterior.

As ε increases, the number of accepted samples increases initially reducing the confidence interval

width. As ε continues to increase, however, the standard deviation starts to increase faster than

can be compensated for by the larger sample size (recall the sample size is to the 1/2 power), so
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the confidence interval width increases until all of the simulations are accepted at which point it

remains constant. The minimum confidence interval width observed corresponds to a ε value that

strikes a balance between having high precision in the posterior (i.e. low standard deviation) and

high confidence in the posterior (i.e. a large number of accepted samples).

4.2.2 Determination of Jet and Cylinder Velocities

The present study uses ABC for two tasks: (i) determining jet and cylinder rotational ve-

locities and (ii) determining the chemical composition of gases exiting the jet. The ABC approach

in both cases is based on both test and reference data taken from RANS simulations. This section

describes results for the first task and Section 4.3 describes results for the second task.

4.2.3 Simulation Setup

For the study of jet and cylinder rotational velocities, the buoyantPimpleFoam solver in the

open-source computational fluid dynamics software OpenFOAM [119, 120, 132] was used to solve

the compressible RANS equations in conjunction with the energy equation. The ideal gas equation

of state was used to relate thermodynamic variables. Heat transfer mechanisms modeled in this

simulation include convection from the cylinder surface, advection of temperature by hot gases, and

radiation exchange between domain boundaries. The Menter SST k-ω two-equation eddy viscosity

turbulence closure model [136] was chosen for its robustness and good performance at different

length scales. The RANS equations were solved with second order accuracy in space and a blend

of first and second order accuracy in time. Limiters on gradient and divergence schemes were

implemented to aid convergence; under-relaxation was also used to assist solution convergence.

Fluid viscosity and specific heat were assumed to be constant for the purpose of this study; the

fluid in the domain is assumed to be dry air.

The RANS equations were solved on a 2D grid with a high temperature jet centered along

the bottom of the domain. A schematic of the setup is shown in Figure 4.9(a) and an example

temperature field is shown in Figure 4.9(b). The domain dimensions of 1.875 m × 1.2 m were
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Figure 4.9: (a) Schematic showing the setup of the RANS simulation. Measurements taken along
the three green vertical dashed lines. (b) Temperature field averaged over the last 15 s of the
simulations with jet velocity 1 m/s and rotational velocity of 12.5 rad/s.

chosen to allow high temperature gases to exit the top of the domain primarily vertically, where

the flow within the domain is comprised of contributions due to the jet inflow, velocity imparted by

the rotating cylinder, and buoyant forces. The jet is centered at the bottom of the domain and is

0.075 m wide. In these simulations, the temperature and velocity of the jet inflow are assumed to

be constant over the entire jet surface, where the jet temperature for all simulations in this section

was held fixed at 1500 K. The jet is centered under a 10.5 inch diameter cylinder, with a 2.54 cm

(1 inch) gap separating the jet and cylinder for the results in this section. Note that the gap is

reduced to 1.27 cm (0.5 inch) in Section 4.3. The cylinder rotates counterclockwise about its center.

Fixed boundary conditions were imposed for the jet inlet and cylinder surface. The cylinder

temperature and angular velocity were fixed, as were the jet inlet temperature and vertical velocity.

All other domain boundaries were left open and allowed flow into or out of the domain. This is

of particular interest when considering the bottom boundary, as fluid entrainment can become an

important factor in fluid motion near the jet and cylinder. Pressure and temperature boundary

conditions were used to ease relaxation to ambient conditions at domain boundaries. The RANS
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Figure 4.10: Plot shows height above the hot jet versus the temporal average of simulation tempera-
ture at the jet centerline with fixed rotational velocity for the cylinder and fixed jet inlet conditions.
The red circles correspond to LES while the blue squares are from RANS data; both simulations
have the same boundary conditions and were run using OpenFOAM version 2.2.1.

simulation compares favorably with a three-dimensional large-eddy simulation within the region of

interest, as shown in Figure 4.10.

4.2.4 Approximate Bayesian Computation Setup

The ABC algorithm used to determine the jet and cylinder rotational velocities is the same

as that described in Section 4.2.1. Each simulation was run with a specified and constant velocity

at the jet inlet and for the cylinder. The resulting flow fields were then compared to a reference

simulation. The reference simulation was an execution of the same code with known conditions

corresponding to a jet velocity of 0.5 m/s and a cylinder angular velocity of 12.5 rad/s. Comparisons

were made using statistics relevant to the flow field at hand, such as the mean temperature at a

given location over the duration of the simulation, variance of the temperature, or a Hellinger

distance to compare full temperature probability density functions.

For the ABC analysis, three different sets of simulations were run each with a different

‘prior’ distribution of jet inflow and cylinder rotational velocities (i.e. the span of parameters and
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Table 4.1: ABC setup for baseline, refined, and further refined cases. This shows the range and
increment for each parameter along with the total number of simulations in each case. Note that
moving down in the table increases the refinement within the parameter space so that parameters
simulated are closer together.

Jet Inlet Velocity (m/s) Cylinder Rot. Vel (rad/s) Number of
Case Range Increment Range Increment Simulations

Baseline 0.0–1.0 0.05 3–28 0.5 1071

Refined 0.3–0.7 0.005 7.5–17.5 0.1 8181

Further Refined 0.48–0.52 0.001 10–15 0.05 4141

increment of parameters are different for each case). A summary of the three cases is found in Table

4.1. The ‘baseline’ case sweeps across a wide set of parameters. Its results drive the ‘refined’ case’s

range of parameters while the ‘refined’ case’s results inform the final ‘further refined’ case. These

three cases show how the posterior distribution narrows and becomes smoother as the density of

simulations close to the reference parameters increases.

As shown in Figure 4.9(b), a flow of hot gas enters the domain and then diffuses while

flowing around the rotating cylinder. Measurements were taken 0.1 seconds apart in the gap

between the cylinder and the jet. Measurement locations were at the jet centerline (i.e., the line

extending vertically from the center of the jet) and two transverse locations 1 cm from either end

of the jet (indicated by the green dashed lines in Figure 4.9(a)). Measurements were recorded at

approximately 10 separate heights between the jet and cylinder for each of the three locations.

Figure 4.11 shows a sample temperature measurement recorded during a simulation with

inlet velocity of 0 m/s and rotational velocity of 3 rad/s at a height of 4.1 mm above the jet inlet

and centered in the domain. Note that the first 15 seconds of each simulation were ignored in order

to eliminate the impact from transient startup effects. This period of time was determined through

qualitative analysis of the wake behind the cylinder and by observing the temperature fluctuations

within the gap between the cylinder and jet for bounding cases; the moving average shown in Figure

4.11 stabilizes after 15 seconds into the simulation.
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Figure 4.11: Temperature versus time along the jet centerline at a height of 4.1 mm above the jet.
The dash-dot blue line indicates the instantaneous temperature, while the solid red line shows the
moving average.

4.2.5 Selection of Simulation Statistics and Metrics

As will be shown in the following, the ABC method has been used to successfully identify the

prescribed parameter values (0.5 m/s for inlet velocity and 12.5 rad/s cylinder rotational velocity).

This success, however, required the selection of suitable statistics with which to analyze and de-

termine the ‘distance’ from the reference data. The distance is calculated as the absolute value of

the difference between the synthetic statistic and the reference statistic, namely δ(S, Ŝ) = |S − Ŝ|.

Here we have used three statistics:

(1) Time-averaged temperature at a single height close to the jet exit along the jet centerline.

This is denoted Statistic 1.

(2) Space- and time-averaged temperature over all available measurement heights along the jet

centerline in the gap between the jet and cylinder. This is denoted Statistic 2.

(3) Time-averaged temperature at a single height close to the cylinder surface along the jet

centerline. This is denoted Statistic 3.
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The first statistic was specifically chosen to allow determination of the jet velocity using the

ABC method. For the present geometry and setup, an increase in inlet velocity corresponds to an

increase in measured temperature above the jet, as shown in Figure 4.12(a). This is due to the

momentum imparted by the jet to the flow and its ability to carry high-temperature gases further

into the domain. Thus, by comparing the mean temperature in the domain at a particular location,

preferably close to the jet so that the influence of the rotating cylinder on the flow field will be

minimized, one can readily predict a reference inlet velocity. In the present study, Statistic 1 was

computed using measurements at a height of 4.1 mm above the jet.

In order to gain more insight into how the cylinder rotation impacts the flow field, more

complicated metrics are required to be used in addition to Statistic 1 (which is always required

to determine the jet inlet velocity). The temporal means of temperature at each measured height

for the slowest rotational rate (3 rad/s) and the highest rotational rate (28 rad/s) are shown in

Figure 4.12(b). Very near the jet exit, there is essentially no effect of rotation rate on the observed

temperature and, thus, a single point measurement close to the jet (i.e., Statistic 1) is insufficient to

constrain predictions of the cylinder velocity. Further above the jet, however, higher temperatures

are observed when the cylinder is spinning more slowly. This occurs because, when the cylinder

spins quickly, its boundary layer entrains more of the cold surrounding air and the wake separation

moves closer to the hot jet, thereby moving more cool air into the gap between the jet and cylinder.

Conversely, when the cylinder spins slowly, its boundary layer entrains less cold air, the wake

separation moves further from the hot jet, and thus the temperature in the gap is dominated by

the hot jet. With these insights, Statistic 2 was developed to compare each simulation to the

reference case. This metric is calculated by taking the spatial and temporal mean of temperature

over all available measurement heights along the jet centerline in the gap between the jet and

cylinder. Statistic 2 was computed using measurements at heights of 4.1, 8.1, 12.3, 16.3, 20.2, 21.7,

22.9, 23.8, 24.5, and 25.0 mm above the jet.

It should be noted, however, that Statistic 2 introduces substantial storage requirements since

a large amount of data is retained from the simulations. Additionally, the experimental burden to
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Figure 4.12: Temporal average (over 15 s) of temperature as a function of height along the jet
centerline. Panels show: (a) Variations in jet velocity, where blue circles correspond to a jet
velocity of 0.3 m/s while red diamonds correspond to a jet velocity of 0.7 m/s, with a cylinder
angular velocity of 12.5 rad/s in both cases; (b) Variations in cylinder velocity, where blue circles
correspond to a cylinder angular velocity of 3 rad/s while red diamonds correspond to an angular
velocity of 28 rad/s, with a jet velocity of 0.5 m/s in both cases.

obtain this many simultaneous temperature measurements would be immense. Therefore, a reduced

set of measurements is desired that produces comparable posterior parameter distributions. In the

present study, this set combines a measurement close to the jet along the jet centerline, at a height

of 4.1 mm (Statistic 1 to determine inlet velocity), and one additional measurement closer to the

cylinder, also centered and at a height of 25.0 mm above the jet exit. This is denoted Statistic 3.

For Section 4.2.6, pairs of jet and cylinder rotational velocities were retained or rejected based

on the agreement between simulated statistics and reference statistics. All ‘rejection distances’ (ε)

were chosen per guidance of Section 4.2.1.1 to reduce the number of accepted cases converging

toward the reference solution, while simultaneously leaving a sufficiently high number of accepted

cases to maintain confidence in the results. All results shown in Section 4.2.6 use metric 1 in

combination with either metric 2 or metric 3.
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Figure 4.13: Number of accepted simulations versus jet inflow velocity for ‘baseline’ case. Here
1071 simulations are performed over uniform priors with widths 0.0–1.0 m/s and 3–28 rad/s. The
reference velocity at 0.5 m/s is shown in red with the mean of accepted values using Statistic 1
combined with Statistic 2 (all measurement locations) shown in green at 0.501 m/s, while the mean
of the accepted values using Statistics 1 and 3 (two measurement locations) is shown in blue at
0.502 m/s (both green and blue lines are obscured by the red line).

4.2.6 Results: Finding Inlet and Rotational Velocities

Figure 4.13 shows the number of ‘accepted’ simulations for different values of the jet inflow

velocity. Although a uniform distribution of jet velocities is used in the simulations, spanning the

range from 0.0 m/s to 1.0 m/s, the resulting histogram of accepted values shrinks to a much more

narrow and uniform distribution centered on the reference value of 0.5 m/s. For Statistic 1, a

rejection distance of 3.5 K was applied when comparing the temporal mean at one location in each

simulation to the corresponding mean from the reference simulation. For Statistic 2, a rejection

distance of 95 K was applied. Finally, for Statistic 3, the rejection distance was 125 K. Using these

rejection distances, all jet velocities below 0.45 m/s and above 0.55 m/s have been rejected by the

ABC algorithm. The mean of the accepted jet velocities is 0.501 m/s, giving an error of less than

1% compared to the reference value.

Similarly, Figure 4.14 shows probability density functions (pdfs) of ‘accepted’ simulations for

different values of the cylinder rotational velocity, using Statistic 1 combined with either Statistic 2
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Figure 4.14: Probability density functions (pdfs) for the number of accepted simulations versus
values of cylinder rotational velocity. Solid black lines show Gaussian curves with the same mean
and standard deviation as the accepted values. Here in the ‘baseline’ case 1071 simulations are
performed over uniform priors with widths 0.0–1.0 m/s and 3–28 rad/s. Reference rotational
velocity shown in red at 12.5 m/s with the mean of the accepted values shown in green at 12.2
rad/s for case (a) and in blue at 12.6 for case (b).

or Statistic 3. Once again, the uniform distribution of initial cylinder rotational velocities morphs

into much narrower distributions of accepted velocities centered around a mean of 12.2 rad/s for

Statistic 2 and a mean of 12.6 rad/s for Statistic 3, giving errors of 2.4% and 0.8% compared to the

reference value of 12.5 rad/s. This demonstrates that combined with Statistic 1, both Statistic 2 or

Statistic 3 successfully identify the rotational velocity correctly. However, for the following studies,

only Statistic 1 combined with Statistic 3 will be used due to decreased storage requirements.

Although the results in Figures 4.13 and 4.14 provide informative initial predictions of the

distribution of likely parameter values for both the jet and cylinder velocities, the prior distribution

of parameters were chosen to be wide enough to ensure the reference value would reside somewhere

within its upper and lower bounds. As a result, the posterior parameter distributions are relatively

wide and coarse. Thus, a subsequent set of simulations was executed with a narrower prior. The

‘refined’ width of the prior for this next set of simulations was determined based on the accepted

range of parameters from the posteriors shown in Figures 4.13 and 4.14. Specifically, inlet velocities
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ranged from 0.3 m/s to 0.7 m/s with a 0.005 m/s increment (10 times more resolved than original

increment) while cylinder rotational velocities ranged from 7.5 rad/s to 17.5 rad/s with an interval

of 0.1 rad/s (5 times more resolved than original increment). This parameter range and associated

increment results in a prior distribution with 8,181 pairs of parameters (and consequently that many

additional simulations). The rejection distances (ε) used were reduced compared to the initial study;

this is permissible due to the high density of parameter values (i.e. with a smaller rejection distance

one still maintains a sufficiently high number of accepted cases). The specific rejection distances

used were 0.6 K for the temporal mean temperature comparison just above the jet inlet (Statistic

1) and 10 K for the temporal mean temperature comparison just below the cylinder (Statistic

3). Note for this ‘refined’ case, and the ‘further refined’ case, only two locations were used based

on the success demonstrated using a combination of Statistic 1 and Statistic 3 for the ‘baseline’

case. Because of the increased density of parameter values and smaller rejection distances applied,

narrower posterior distributions emerge indicating increased confidence; the posteriors are shown

in Figure 4.15. Here the uniform distributions of initial jet inlet and cylinder rotational velocities

morph into much narrower distributions of accepted velocities centered around means of 0.5003

m/s and 12.42 rad/s, giving errors of 0.06% and 0.64% compared to the reference values of 0.5 m/s

and 12.5 rad/s, respectively.

To test how well the posterior distribution would converge, a final set of simulations was run

with a ‘further refined’ prior distribution of parameters. Now, in an iterative fashion, the width of

the prior distributions were chosen based on the refined posterior distributions provided in Figure

4.15. Specifically, inlet velocities ranged from 0.48 m/s to 0.52 m/s with a 0.001 m/s increment (50

times more resolved than original increment) while cylinder rotational velocities ranged from 10

rad/s to 15 rad/s with an interval of 0.05 rad/s (10 times more resolved than original increment).

This parameter range and associated increment results in a prior distribution with 4,141 pairs of

parameters (and consequently that many additional simulations). The rejection distances (ε) used

were reduced compared to the initial study; this is permissible due to the high density of parameter

values. Because of the increased density of parameter values, narrower posterior distributions
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(b) Cylinder rotational velocity

Figure 4.15: Probability density functions for the number of accepted simulations versus all simu-
lated values of jet inlet velocity each with a pair of unique uniform velocity applied across the jet
and cylinder rotational velocity; this is the ‘refined’ case. Here 8081 simulations are performed over
uniform priors with widths of 0.3–0.7 m/s and 7.5–17.5 rad/s. Reference velocity shown in red at
0.5 m/s with the mean of the accepted values using only two measurement locations for metric 2
is shown in blue at 0.5003 m/s. Reference rotational velocity shown in red at 12.5 m/s with the
mean of the accepted values shown in blue at 12.42 rad/s.

emerge containing many more accepted simulations indicating increased confidence; the posteriors

are shown in Figure 4.16. Here the uniform distributions of initial jet inlet and cylinder rotational

velocities morph into much narrower distributions of accepted velocities centered around means

of 0.500001 m/s and 12.29 rad/s, giving errors of much less than 1% compared to reference inlet

velocity of 0.5 m/s and 1.7% compared to the reference rotational velocity of 12.5 rad/s. Note that

the mean accepted value for the inlet velocity is extremely close to the reference value while the

estimated rotational velocity is actually worse than the two previous cases with less refined prior

distributions of parameters. This is likely because the reference case produced statistics that are

more representative of cases with slower rotational velocities; said differently, the statistics may

be biased for the reference data causing bias in the resulting posterior, also. This is a natural

occurrence due to the stochastic nature of the simulations and the fact that the summary statistics

do not fully represent the underlying data. This provides a word of caution to users of ABC
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Figure 4.16: Probability density functions for the number of accepted simulations versus all sim-
ulated values of jet inlet velocity each with a pair of unique uniform velocity applied across the
jet and cylinder rotational velocity; this is the ‘further refined’ case. Here 4141 simulations are
performed over uniform priors with widths of 0.48–0.52 m/s and 10–15 rad/s. Reference velocity
shown in red at 0.5 m/s with the mean of the accepted values shown in blue at 0.500001 m/s.
Reference rotational velocity shown in red at 12.5 m/s with the mean of the accepted values shown
in green with the mean of the accepted values shown in blue at 12.29 rad/s.

that the resulting posterior, while “correct” in the sense that it causes the best match with the

available observations, may not be centered on the true parameter given potential shortcomings

of available observations. This is one reason why the distribution associated with the parameters

is so important. For instance, the inlet velocity prediction is very narrow while the rotational

speed is much wider indicating less certainty, as is warranted based on the discrepancy between the

predicted and reference parameters.

A joint pdf provides an additional method to gain insight into the pairs of jet inflow velocity

and cylinder rotational velocity that provide statistics most similar to the reference statistics.

Figure 4.17 shows the joint pdf of both parameters’ posterior values for the ‘further refined’ case.

The peak of this joint pdf occurs at 0.5005 m/s and 12.45 rad/s which is consistent with the values

shown in Figure 4.16.
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Figure 4.17: Joint probability distribution function (pdf) showing the accepted values for the
‘further refined’ case. Of the 4141 cases, 975 are accepted. The peak of this joint pdf occurs at
0.5005 m/s and 12.45 rad/s.

4.3 Determination of Jet Inflow Composition

The initial studies in this dissertation have focused on determining unknown boundary con-

ditions related to temperature and velocity; these included the jet inflow velocity and temperature,

as well as a moving wall boundary within the domain (i.e. the cylinder rotational velocity), . With

these boundary conditions estimated using the ABC method, an additional iteration of ABC was

performed to address another boundary condition of interest, namely the ratio of various gaseous

species in the jet. A new simulation was created in OpenFOAM to allow species to be advected

within the domain. A test case was performed wherein different mass fractions of species enter

the domain. The species tracked in this simulation include N2, O2, CO2, and H2O; these are the

dominant species resulting from the combustion of methane fuel (CH4) with dry air. The quantity

of each species was determined by altering the fuel-to-air ratio, φ, of a fictitious up-stream ‘burner’;

the reaction of methane fuel (CH4) and oxidizer (dry air) is assumed to be complete before entering

the domain leaving only products to enter the through the jet plus inert N2 and any additional O2

left over when there is insufficient fuel (i.e. for values of φ less than one). Values for φ ranged from
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0.3 (much excess air) to 1.0 (sufficient fuel to react with all of the O2 found in the air). These values

of φ were chosen to ensure the adiabatic flame temperature for the reaction was above the ‘burner’

temperature (set to 1,000 K) and also to ensure all of the CH4 would theoretically react in the

burner before entering the domain. This is a very relevant assumption for industrial applications

where the equivalence-ratio is usually set below 1 to ensure no fuel goes unburned. The final test for

ABC presented in this chapter, then, is to determine the correct φ value for this fictitious ‘burner’

based on some measurement of either H2O concentration or temperature at a location mid-way

between the inlet and the cylinder. Note that either of these quantities, H2O concentration or

temperature, can be measured using existing techniques [45, 81, 134, 135, 137]. This application of

ABC is relevant to experimental instances when H2O concentrations or temperatures are recorded

within a domain, but suspicion exists about the prescribed fuel-to-air ratio due to, for example,

experimental procedure, fuel contents, or equipment calibration.

4.3.1 Simulation Setup

The open source computational fluid dynamics software OpenFOAM, version 4.1, was used

to design and run RANS simulations for this study [119, 120]. The compressible RANS equations

were solved in conjunction with the energy equation using the fireFoam solver [118]. The ideal gas

equation was used to relate state variables. The fireFoam solver is very similar to buoyantPimple-

Foam used in the Section 4.2.2, however it allows species tracking within the domain. The presence

of multiple species, as opposed to only dry air, allowed the fluid viscosity and radiation properties

to vary within the domain. These fluid properties change according to which species are present at

each location as driven by the fluid dynamics governing the simulation. Heat transfer mechanisms

that were modeled in this simulation include convection from the cylinder surface, advection of

temperature by hot gases, and radiation exchange between domain boundaries and the fluid. The

Menter Shear Stress Transport (SST) Scale-Adaptive Simulation (SAS) k-ω two-equation viscosity

closure model [136, 138] was chosen for its robustness and good performance at different length

scales. The RANS equations were solved with second order accuracy in space and time to obtain
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Figure 4.18: Plot shows height above the hot jet versus the temporal average of simulation tempera-
ture at the jet centerline with fixed rotational velocity for the cylinder and fixed jet inlet conditions.
The red circles correspond to LES while the blue squares are from RANS data; both simulations
have the same boundary conditions and were run using OpenFOAM version 4.1.

a solution. Limiters on velocity divergence were implemented to aid convergence; under relaxation

also helped solution convergence. Fluid viscosity and specific heat were assumed to vary with

temperature according to the Sutherland model [122] and JANAF tables [123], respectively. The

RANS simulation compares favorably with a three-dimensional large-eddy simulation within the

region of interest, as shown in Figure 4.18.

Within the domain, the description of Section 4.2.3 is quite similar to this final set of simu-

lations however the gap between the inlet and the cylinder has been reduced to 1.27 cm (0.5 in.).

Additionally, the inlet velocity is fixed at 0.3 m/s with a temperature of 1,000 K while the rotational

velocity of the cylinder is fixed at 18 rad/s for all simulations. For these simulations, instead of

assuming dry air filled the domain, the inlet was prescribed appropriate mass fractions of N2, O2,

CO2, and H2O. The quantity of each species was determined based on the simulation’s prescribed φ

value and the associated reaction’s equilibrium products as determined using NASA-built software

Chemical Equilibrium with Applications (CEA) [139].
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4.3.2 Approximate Bayesian Computation Setup

The ABC algorithm used to determine the jet inflow species composition is the same as that

described in Section 4.2.1. Each simulation was run with a specified and constant species concen-

tration at the jet inflow. The resulting flow fields were then compared to a reference simulation.

The reference simulation was an execution of the same code with known conditions corresponding

to a φ of approximately 0.65.

4.3.3 Selection of Simulation Statistics

Two metrics were considered in this study, namely H2O concentration and temperature.

The first metric emerges naturally based on its connection to the parameter being changed. This

quantity is readily available computationally and experimentally making it an ideal candidate.

The ABC procedure was also implemented using comparisons of H2O concentration within the

domain at a single spatial location between the jet inflow and the cylinder; this is directly tied

to the species concentration at the boundary, though how it varies in the flow field is not readily

known without performing a simulation. Temporal averages were used for all measurements over

the last 10 seconds of 20 second simulations; here again we have ignored the transient behavior of

the simulations to obtain steady-state statistics. H2O mass fraction vertical profiles are shown in

Figure 4.19; these profiles demonstrate how dramatically the H2O profile and quantity can change

within the domain for different values of φ. Of particular interest is how several of the profiles

cross higher in the domain at a height of approximately 0.8 cm. Measurements were taken at

the jet centerline and at a height of approximately 1.09 cm. Measuring at this height allows the

complexities in the fluid domain to fully develop demonstrating how well ABC can perform with

less than ideal measurements of H2O concentration (note that at the jet inflow H2O measurements

are directly coupled to φ so predicting φ based on H2O measurements at the jet inflow is trivial).

The results of using H2O concentration measurements to determine φ are presented in Section

4.3.4. Comparisons were also made using the temporally averaged temperature within the domain



105

at the same single spatial location. Compared to H2O concentration measurements, temperature is

not as sensitive to changes in the φ parameter. At the jet inflow, temperatures are nearly identical

regardless of inlet φ; only at higher locations within the domain does φ have a noticeable impact

on temperature. At the chosen measurement location of 1.09 cm above the burner, temperature

provides a relevant observation by which to determine φ as shown in Section 4.3.5. This approach,

i.e. using temperature measurements to predict inflow equivalence ratio, parallels that of Section

4.2.2 wherein we determined velocity boundary conditions using temperature measurements.

As described in Section 4.2.1.1, here ε is chosen to minimize the confidence interval half

width. Figure 4.20(a) shows the confidence interval half width based on measurements of H2O

concentration versus a range of ε values. The confidence interval half width shown is calculated as

the standard deviation of accepted parameter values divided by the square root of the number of

accepted values multiplied by a scalar to obtain the 95th percentile. Note that any other percentile

could have been chosen resulting in the same suggested ε value to use, however the magnitude

of the confidence interval half width would have differed. This method suggests using a rejection

distance of 0.009 indicating how close the measured H2O concentration needs to be compared with

the reference H2O concentration. This value of ε strikes a balance between having high precision

in the posterior (i.e. low standard deviation) and high confidence in the posterior (i.e. a large

number of accepted samples). Note that this value of ε is quite small relative to how well one might

actually be able to experimentally measure H2O concentration, in which case one might prefer to

relax this constraint (i.e. increase ε). Increasing values of ε generally yield posteriors with similar

mean values but with larger standard deviations. This is promising as it indicates that using less

certain measurements would still yield reliable parameter estimates, albeit with less certainty.

4.3.4 Results: Finding φ Using H2O Concentration Measurement

For this ABC test case, approximately 10,600 simulations were run each with a unique φ value

randomly drawn from a uniform distribution between 0.3 and 1.0. Each simulation resulted in a

unique temporally averaged H2O concentration profile and temperature profile between the inlet
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Figure 4.19: Plot shows height above the hot jet versus the temporal average of simulation H2O
mass fraction at the jet centerline with fixed rotational velocity for the cylinder and fixed jet inlet
conditions. The φ values used to set the inflow conditions were evenly distributed from 0.3 to
1.0. Note that several of the profiles cross higher in the domain indicating a complex behavior
exists. Thus, an analytical solution is not practical and simulations are necessary to understand
the behavior of the fluid enabling accurate parameter estimation.

and the cylinder. Each simulation’s results were compared to a reference case which was chosen to

have a φ of approximately 0.65. Comparisons were made along the jet centerline at a height of 1.09

cm. This value of φ indicates there is excess air to ensure all of the fuel is adequately combusted.

Figure 4.20(b) shows how well the measurement of H2O concentration is able to provide an estimate

of the correct φ value. While rejecting nearly all of the very high and low values, ABC gradually

accepts more values close to the reference φ of ∼0.65 conforming closely to a Gaussian profile. The

mean of the accepted φ values is 0.6507 with an error of ∼ 0.17%.

4.3.5 Results: Finding φ Using Temperature Measurement

Again using the same ∼10,600 simulations but now considering temperature measurements,

we find an additional estimate of the appropriate φ value. The temporally averaged temperature

within the domain is compared at a height of approximately 1.09 cm along the jet centerline.

The rejection distance, ε, was again chosen by minimizing the confidence interval half width of
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Figure 4.20: (a) Confidence interval half width plotted against ε (rejection distance) values for H2O
concentration measurements. This value of ε strikes a balance between having high precision in the
posterior (i.e. low standard deviation) and high confidence in the posterior (i.e. a large number of
accepted samples). (b) Discrete PDF showing the number of accepted simulations versus values of
inlet fuel-to-air ratio, φ, along with a Gaussian curve with the same mean and standard deviation as
the accepted values. Here ∼10,600 simulations are performed over a uniform prior with φ 0.3–1.0.
Statistic used is temporal mean H2O concentration at one location in the domain. Reference φ
shown in red at ∼0.65 with the mean of the accepted values shown with a dashed blue line.

the posterior generated by varying ε. The results of this ε sweep are shown in Figure 4.21(a).

This method suggests using a rejection distance, ε, of 0.06 K indicating how close the measured

temperature needs to be compared with the reference temperature. Note that this value of ε is also

quite small relative to how well one might actually be able to experimentally measure temperature,

in which case one might prefer to relax this constraint (i.e. increase ε). Figure 4.21(b) shows how

well the temperature measurement is able to provide an estimate of the correct φ value. While

rejecting nearly all of the very high and low values, ABC gradually accepts more values close to

the reference φ of ∼0.65 conforming closely to a Gaussian profile. The mean of the accepted φ

values is 0.6517 with an error of ∼ 0.32%. Comparing the results of using either temperature or

H2O measurements, one finds that both approaches perform extremely well and predict the inlet

composition with less than 1% error. The temperature measurements perform slightly worse as

expected since temperature in the domain is linked to concentrations at the inlet but less so than
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Figure 4.21: (a) Confidence interval half width plotted against ε (rejection distance) values for
temperature measurements. This value of ε strikes a balance between having high precision in the
posterior (i.e. low standard deviation) and high confidence in the posterior (i.e. a large number of
accepted samples). (b) Discrete PDF showing the number of accepted simulations versus values of
inlet fuel-to-air ratio, φ, along with a Gaussian curve with the same mean and standard deviation as
the accepted values. Here ∼10,600 simulations are performed over a uniform prior with φ 0.3–1.0.
Statistic used is temporal mean temperature at one location in the domain. Reference φ shown in
red at ∼0.65 with the mean of the accepted values shown with a dashed blue line.

direct measurements of H2O concentration.

4.4 Conclusions

As simulations and computational resources become more abundant, their potential is con-

strained by how well they can approximate real-world applications. In this light, data-driven

engineering continues to be a rich field of research. The results shown in this chapter demon-

strate that ABC is a powerful technique to estimate parameters of interest in complex RANS

simulations, especially in many industrial applications. First, ABC successfully identified posterior

distributions for two key parameters (inlet temperature mean and variability) driving a 3D turbu-

lent buoyant jet problem. Through successive iterations the prior parameter space was effectively

narrowed to provide additional insight regarding the parameter posterior. The narrower parameter

space demonstrated how the stochastic nature of the unsteady 3D RANS simulations can cause the
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statistics from a simulation to differ from expectation, thereby biasing the results. This chapter

then presented a 2D case with a rotating cylinder above a turbulent, buoyant jet. In this case

ABC successfully identified inlet velocity and the cylinder’s rate of rotation. Next, ABC was able

to identify proper inlet species composition. Both cases in this chapter demonstrate key statistics

useful for identifying inlet parameters and provide valuable insights about where measurements

should be taken and how many are necessary to provide information about those parameters. This

study provides a basis of knowledge useful for moving into the final chapter of this dissertation

which focuses on a novel application of ABC to combine a complex 3D LES case with reference

observations coming from laser absorption experiments to predict several parameters of interest.



Chapter 5

Parameter Estimation in Turbulent Simulations using Approximate Bayesian

Computation with Laser Spectroscopy

With ABC now established as an effective tool to perform parameter estimation for engineer-

ing systems, the next challenge is to apply it using reference data obtained through experimental

measurements. 1 Specifically, the catalytic burner described in Chapter 4 will be measured using

laser absorption spectroscopy methods. The measurements obtained include temporally resolved

line-of-sight averaged values for temperature. Similar measurements are made in the numerical

simulation to be compared against the experimental values. The ABC method compares the ex-

perimental measurements and each simulation to reject simulations that do not align well with the

experiment and build a pdf of the likely parameters, while additionally providing insight about

continued combustion within the domain.

5.1 Introduction for ABC using Laser Absorption Spectroscopy

In this chapter, we outline the ABC approach then use the method to predict unknown

parameters for a turbulent, high-temperature buoyant jet above a catalytic burner. The unknown

parameters of interest include an inlet boundary condition (velocity) as well as parameters used

to model heat addition within the domain due to combustion. Experimental observations from a

real-world system are obtained using laser absorption spectroscopy. High-fidelity three-dimensional

(3D) large eddy simulations (LES) are used to model the corresponding flow field. ABC is used

1 This chapter is based on work to be submitted to Experiments in Fluids [80].
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to predict the inlet velocity boundary condition as well as heat addition parameters based on

comparisons between the experimental observations and simulation results. The success of the

ABC approach in the present tests suggests that ABC is a useful and versatile tool for engineering

research focused on fluid and thermal systems.

In numerical simulations of practical fluids and combustion problems, there are often many

parameters of interest – both known and unknown – that drive the solution. For instance, the inlet

temperature and velocity of a buoyant jet determine the behavior of the resulting flow field, as well

as the temperature distribution above the jet. The task of correctly assigning these parameters is

crucial to building reliable computational models of real-world engineering systems. Additionally,

experiments can be limited in the amount and type of data they collect so simulations can provide

additional information to improve understanding of the system under investigation.

Often many of the parameters that are crucial to obtaining relevant, descriptive, and even

predictive simulations, are unknown. This presents a problem when comparing simulation results

to experimental results. Namely, are the differences observed in experiments and simulations due

to modeling error (e.g. missing physics from the model) or due to not sufficiently characterizing all

of the simulation boundary and initial conditions, transport properties, material properties, etc.?

The difficulty of determining unknown parameters can be approached by identifying distri-

butions of probable parameter values, generating model data based on those parameters identified

a priori, and then generating distributions for unknown parameter values using statistical inver-

sions [4,6–8]. Various optimization methods have been used for parameter estimation (e.g., [16–20]),

but these techniques focus on single values of unknown parameters, with limited measures of un-

certainty when using potentially imperfect computational models and experimental data. Bayesian

techniques naturally overcome this limitation by providing probability distributions of parame-

ters. Several studies have investigated parameter estimation for engineering problems using fully

Bayesian methods [9–12,23], although such approaches require knowledge of a likelihood function.

Calculating the likelihood function in these applications requires extensive observations or simpli-

fying assumptions that have varying degrees of accuracy depending on the source of measurement



112

data and the complexity of the model. See [24] and sources therein for more details on parameter

estimation using full-Bayesian approaches such as ensemble Kalman filtering (EnKF) and maximum

likelihood (ML) estimation techniques.

In the present study, we use ABC to estimate parameters in a complex 3D computational

simulation in order to obtain agreement with experimental measurements of a corresponding physi-

cal setup. The turbulent, high-temperature buoyant jet above a catalytic burner is the focus of this

effort. This study focuses on a turbulent buoyant jet due to the geometrically simple yet physically

complex nature of this compressible flow problem, which has many analogs in both engineering sys-

tems and environmental flows. While laser absorption spectroscopy used in this approach (see [81])

is able to obtain accurate temperature measurements above the burner surface, it provides little

information about the inflow velocity. Additionally, temperature measurements suggest incomplete

combustion within the catalyst but do not provide specific details as to all of the species exiting the

burner and in what quantities they may be continuing to react above the burner surface. There-

fore, ABC is used to obtain both estimates for the inflow velocity as well as heat source addition

information for cases with continued combustion above the burner surface (indeed, for cases where

no additional combustion is suspected a priori, ABC also predicts minimal heat addition above the

burner). By performing ABC, we gain a much better understanding into the parameters (along

with uncertainty) that create the best agreement between the simulation and the experimental

observations; in addition to understanding the parameters, ABC also provides simulations with

statistics that closely match the experimental observations.

By combining the strengths of experiments and simulations, the sparsity of experimental data

and the unreliability of simulations can be overcome. A key challenge within engineering research

is thus the use of sparse experimental information to improve simulation accuracy, and conversely,

to use high-fidelity simulations to augment experimental observations.
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5.1.1 ABC applied to LES Simulations and Laser Absorption Spectroscopy Ob-

servations

The ABC method serves as a bridge between experimental observations and computer simu-

lations. It allows a set of unknown parameters in a simulation to be determined through comparison

of simulation results with statistics from experimental or other reference observations. The ABC

technique is described at length in Chapter 2. Considering more closely the particular application

of a buoyant jet, ABC can be used, for example, to determine boundary conditions at the jet’s

surface. For example, laser spectroscopy methods [81,134,135] could be used to obtain line-of-sight

absorption-weighted average temperature measurements at various locations within the flow field.

These measurements will have temporal data that will be used to generate a time-averaged tem-

perature vertical profile above the burner surface; this serves as a summary statistic S of the full

temperature field, D. Next, a computational model will simulate the experimental setup to create

full 3D temperature fields, D̂, and will be sampled to obtain an equivalent vertical temperature

profile, Ŝ. The values for parameters (θ) of interest (e.g., inlet velocity boundary condition and

heat addition characteristics) will be chosen according to a prior distribution, P (θ). Each draw

of parameters will produce a separate solution whose statistics will be analyzed and compared to

the experimental data using a distance function, δ(·, ·). As described previously, if the statistics

agree according to a predefined threshold, i.e. δ(·, ·) ≤ ε, the parameters will be kept, or other-

wise rejected; the resulting distribution of parameters is the much desired posterior and is denoted

P (θ|δ(S(D̂),S(D)) ≤ ε).

The rejection ABC algorithm described above and implemented in this chapter, known as

method D in Marjoram et al. [2], is summarized as follows:

(1) Generate parameter θ from the prior distribution P (θ).

(2) Simulate data D̂ from modelM with parameter θ, and compute the corresponding statistics

Ŝ.

(3) Calculate the distance δ(S(D),S(D̂)) between S(D) and S(D̂).
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(4) Accept θ if δ ≤ ε (where ε is the rejection distance), and return to step 1.

Note that the generic parameter, θ, that one seeks to find could be the inlet mean velocity or a

heat source strength in the domain when studying the turbulent buoyant jet.

In summary, ABC can be used to develop estimates for parameters given a set of observations.

The method first samples a large set of parameters from the likely parameter space and runs a

model forward using one of those parameters. Next, ABC compares the data from the simulation

against the reference observations. If the simulation and observation are close, then ABC keeps

the parameters; if the results are not close, then it rejects the parameters. This process continues

until many parameters have been modeled and an adequate number have been accepted. These

accepted parameters make up the desired posterior distribution.

5.2 Case Setup

Motivated by an industrial burner configuration which produces a canonical type of flow, the

system studied for this chapter is a heated turbulent buoyant jet created above a catalytic burner.

The catalytic burner is 0.25 m wide by 0.075 m deep and fueled by methane and desiccant-dried

air. An iron-chromium alloy catalyst bed is welded to an open-box metal frame. The catalyst is

used to achieve combustion at lower temperatures thereby reducing pollutant emissions [140]. To

premix the oxidizer and fuel, they pass through a bed of glass spheres within a cylindrical flame

arrestor mounted beneath the combustor before entering the burner. Experimental measurements

of the burner were made using laser spectroscopy, a technique which provides line-of-sight aver-

aged, absorption-weighted temperature and species concentration data. As shown in Figure 5.1

(a) measurements are parallel to the long dimension of the combustor (termed the width in the

remainder of the chapter and denoted by the z-axis). A CAD rendition of the burner is shown

in Figure 5.1(a) while an image of the actual burner and laser optics is shown in Figure 5.1(b).

A high-fidelity large eddy simulation (LES) case was developed to correctly model the relevant

physics of the experimental setup while still being computationally affordable enough to execute
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many (i.e. O(103)) times.

5.2.1 Experimental Approach: Laser Absorption Spectroscopy

An experimental apparatus was constructed to characterize the burner using tunable diode

laser absorption spectroscopy (TDLAS). The catalytic combustor used in this work is the subject

of previous efforts [82, 141]. It is a scaled down version of one that could be used for industrial

processing; thus it is desirable to have a sensor that can meet the requirements of an industrial

environment to aid in system monitoring and control. TDLAS provides a non-intrusive, absolute

(quantitative), time-resolved (i.e. millisecond time resolution), robust, and portable sensor [142,143]

to measure temperature at different locations in the buoyant jet. Other laser-based techniques

such as Raman or Rayleigh scattering and laser induced fluorescence can also provide quantitative

spatial and temporal information [144,145], however, such measurements often require large optical

setups that are not ideal for industrial applications. The optical configuration for the combustor

characterization is shown in Figure 5.1. A CAD rendition of the burner is shown in Figure 5.1(a)

while an image of the actual burner is shown in Figure 5.1(b).

Wavelength modulation spectroscopy (WMS), a specialized form of TDLAS, is utilized in

this effort. WMS also appears in studies of temperature and species mole fraction in a variety

of combustion environments, from shock tubes to atmospheric flames [137, 146–153]. In WMS,

the amount of light absorbed by a substance as a function of wavelength is quantified. Light is

absorbed if the wavelength is resonant with a quantum transition of a target molecular species.

The absorption by a particular quantum transition is directly and quantitatively related to the

macroscale thermodynamic properties of the target gas such as temperature, pressure and species

concentration. In TDLAS, the wavelength of a diode laser is tuned across one or two transitions

of the target species. WMS is a form of TDLAS that utilizes additional high frequency signals

and signal isolation to reduce noise for realistic systems. To conduct WMS, a fast modulation

is applied to the injection current of a tunable diode laser, which results in rapid wavelength

and intensity variations of the laser light. A lock-in amplifier isolates the series of harmonics
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(a) CAD Rendition of Catalytic Burner

(b) Physical Configuration of Burner

Figure 5.1: Experimental setup for laser absorption spectroscopy above catalytic burner
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in the signal measured at the detector that occur due to the fast intensity modulation and the

effect of absorption. The second harmonic is especially useful because it is distinctly sensitive to

absorption. Normalizing the second harmonic signal, denoted 2f , by the first harmonic (1f) creates

a ratio (i.e., 2f/1f) that is sensitive to absorption but insensitive to intensity fluctuations (i.e. this

ratio makes the sensor robust against harsh environments), and can deliver calibration-free absolute

measurements [134]. While the specific shape of an absorption transition depends on the other non-

absorbing gases present in the system (e.g., CO2, CO, etc. in combustion systems), the integrated

absorbance is independent of collision partner, and therefore does not require assumptions about,

or measurements of, the other gases in the system. Beer’s law, shown in Eqn. 5.1, simulates the

transmitted intensity of the laser through the absorbing gases. Beer’s law is given as

It(t) = I0(t)exp(−α(λ(t))), (5.1)

where It(t) is the intensity of the transmitted modulated light after it passes through the absorbing

gases, I0(t) is the initial (un-attenuated) intensity, λ(t) is the wavelength of the laser as a function

of time, and α(λ) is the absorbance of the probed molecular species as a function of wavelength.

The initial intensity, I0, is measured on a photodetector for each laser, while the absorbance, α(λ),

is simulated using a Voigt profile. Beer’s law combines all three quantities [i.e., I0(t), λ(t) and

α(λ)] to simulate It.

The integrated absorbance can be calculated through a fitting routine by scanning the laser

wavelength across an absorption transition [137, 154, 155]. The fitting routine used in the current

analysis is similar to the one described in Refs. [137, 154, 155], which simulates the laser tuning

over the entire absorption feature as the fast modulation is applied. Using the measured WMS

2f/21 as a baseline, the simulated 2f/1f signal is adjusted until the two match closely. To do so,

the Voigt line-shape profile parameters (line-center, integrated area, Doppler width, and Lorentz

width) are adjusted in a nonlinear fitting code until the profiles match. The spectral database

HITRAN 2012 and the validated line parameters from [156] are used to create initial estimates for

the Voigt parameters. The integrated areas that emerge from the fitted Voigt profiles for both of
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these two different measured H2O transitions permit the calculation of temperature.

Two-line thermometry calculates temperature using the integrated absorbance calculated

from the WMS fit to two H2O transitions. Integrated absorbance, A, can be calculated from

A =

∫
αdλ = S(T )PχabsL =

∫ L

0
S(T, x)Pχabs(x)dx, (5.2)

where S(T, x) is the line-strength of the probed transition at temperature T and location x, P is

the total pressure (assumed constant for the entire pathlength), χabs(x) is the species mole fraction

of the absorbing gas at location x, and L is the total pathlength of the laser beam across the gas.

Taking the ratio of the integrated areas (A1 and A2) of two absorption features yields a

quantity (R) that only depends on the line-strengths, which are given as functions of temperature

by

R = A1/A2 = f(T ). (5.3)

For more information on two-line thermometry see [157].

The ratio of the two absorption transitions is directly related to temperature while each is

independently related to species mole fraction. Based on a ratio of the signal absorbed at the

two different wavelengths (and hence for two different quantum transitions), a temperature can be

calculated [82].

The current effort uses two NEL Inc. distributed feedback (DFB) diode lasers centered on

H2O absorption transitions at 1391.7 nm and 1468.9 nm. These absorption transitions have two

primary advantages that make them ideal for temperature measurements in this system. First,

they have a large difference in the lower state energy (1045 cm−1 and 3319 cm−1, respectively);

this optimizes the temperature sensitivity at elevated temperatures. Second, Goldenstein and

Hanson [156] validated these line-strength parameters providing ideal conditions for fitting the

Voigt profile. The lasers are combined and simultaneously passed across the long dimension of

the burner (i.e. the lasers initially travel above the burner for 0.25 m parallel to the z-axis). To

increase signal-to-noise ratio, the laser is reflected twice, causing the laser to pass over the burner

three times creating an effective path length of 0.75 m. The sensor has been previously validated
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within a controlled system with known conditions [82]. The temperature measurements were found

to be accurate within 3%. Above this temperature, uncertainty values are extrapolated using the

nonlinear relationship between absorption and temperature resulting from eqn. 5.3.

5.2.1.1 Experimental Campaign

With the experimental technique established and setup built, an experimental campaign was

undertaken to characterize the heated buoyant jet above the burner using a vertical temperature

profile while the burner operates at several different conditions. A vertical profile yields valuable

information about the behavior of the flow field. It also can provide information about whether

continued combustion is likely occurring above the burner surface. Thus, a y-shaped optical stage is

mounted on a scissor jack that enables vertical translation of the laser beam. Laser measurements

were taken at heights of 0.5 mm to 10.5 mm in 2 mm increments, then 10.5 mm to 150.5 mm in

10 mm increments above the burner surface all centered depth-wise across the burner (i.e. 37.5

mm from the edge of the combustor); this results in temperature measurements at 20 vertical

positions. The tighter measurement spacing close to the burner provides additional information

in the region most likely to contain sustained combustion. The burner is fueled with methane

and run at two power fluxes, each with a unique equivalence ratio. The equivalence ratio, φ,

is a parameter used to describe the fuel-to-air ratio in combustion by dividing the actual fuel-

to-air ratio by the stoichiometric fuel-to-air ratio (φ < 1 is fuel-lean, φ = 1 is stoichiometric,

and φ > 1 is fuel-rich). Alicat mass flow controllers regulate the flow rates of air and methane

setting the incoming power flux and equivalence ratio. The first power flux is set to 16 W/cm2

with an equivalence ratio of φ = 0.80; these conditions define ‘Case 1’. Operating the burner at

this pair of conditions is thought to result in complete combustion within the catalyst such that

all of the reactions are essentially finished by the time the hot products exit the burner surface.

This assumption was verified by probing various equivalence ratios and powers and determining

a condition where OH, a radical that commonly appears during methane-air combustion, was not

detected. Additionally, temperature consistently decreases for this case indicating no significant
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Table 5.1: Experimental conditions

Case Power Flux (W/cm2) φ

1 16 0.80
2 27 0.85
3 27 1.00

heat addition above the burner (i.e. no significant combustion above the burner). An additional

case (referred to herein as ‘Case 2’) was investigated with inlet power significantly higher than

Case 1 but with a similar fuel-to-air ratio; its conditions are as follows: power flux of 27 W/cm2

and equivalence ratio set to φ = 0.85. Finally, an inlet condition was probed experimentally with

conditions that suggest continued reactions occurred above the burner surface; specifically, the

temperature increased vertically above the burner surface and a high temperature was maintained

farther into the domain. This case, which shall be referred to as ‘Case 3’, had inlet conditions as

follows: power flux of 27 W/cm2 and equivalence ratio set to φ = 1.00. Note that this power flux

is the same as Case 2, but the fuel-to-air ratio is significantly higher than Cases 1 and 2. The

additional fuel entering the combustor in Case 3 causes additional chemiluminescence above the

catalyst surface which would likely correspond with continued combustion. Experimental cases

are summarized in Table 5.1. A fume hood is located several feet above the burner to evacuate

exhaust gases while having negligible impact on the fluid and thermodynamics observed close to

the burner surface. A CAD rendition of the burner is shown in Fig. 5.1(a) while an image of the

actual burner is shown in Fig. 5.1(b). Calibration data, along with additional setup information

and data processing techniques, can be found in [82]. Ten minutes of data were obtained at each

height (starting sequentially from the bottom measurement) and for each set of burner conditions.

Based on an Allan deviation analysis, outputs were averaged with 0.25 s intervals. Time-averaged

vertical temperature profiles from the three experimental conditions are shown in Fig. 5.2.
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Figure 5.2: Vertical temperature profiles corresponding to three experimental cases. Experimental
uncertainty shown based on instrument validation

5.2.2 Computational Approach: Large Eddy Simulation (LES)

OpenFOAM, version 4.x [119, 120], was used to design and run a three-dimensional (3D)

LES computation for this study using the FireFOAM solver [118]. A non-reacting heated, buoyant

jet with a rectangular exit matching the size of the catalytic burner was simulated. The low-pass

filtered compressible Navier-Stokes equations were solved with second-order accuracy in space and

time in conjunction with mass, enthalpy, and species conservation equations using FireFOAM.

The resulting large eddy simulation (LES) equations were closed using a dynamic one-equation

eddy sub-grid scale model. Pressure-velocity coupling was accomplished using the PIMPLE al-

gorithm, which combines the pressure-implicit split-operator and the semi-implicit method for

pressure-linked equations. Heat transfer mechanisms modeled in this simulation include conduc-
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tion, advection of temperature by species within the domain, and radiative losses approximated

with the discrete ordinate method. The LES equations were solved on a 3D grid with approxi-

mately 2.4 million hexahedral control volumes stretched vertically to enhance resolution near the

burner, resulting in a maximum vertical resolution of approximately 0.8 mm. The grid was uniform

in horizontal directions. The domain is shown in Fig. 5.3 (a). Domain dimensions (0.35 m wide by

0.175 m deep by 1.2 m tall) were chosen to allow the bottom-driven jet to exit the domain primarily

vertically due to the vertical inflow velocity and buoyant forces. The jet inflow was centered at

the bottom of the domain and is 0.25 m wide and is 0.075 m across. Time stepping was adaptive

and controlled by a maximum CFL condition set to 0.4. After a sufficiently long period to allow

the flow field to fully develop, mean statistics for temperature were computed over a duration of 1

s. Samples obtained using this time period were found to be within approximately 1% of samples

obtained from a 20-second window while allowing many more simulations to be run with different

inlet parameters. Example temperature and speed fields from a simulation are shown in Fig. 5.3

(b) and (c), respectively.

Inlet conditions were fixed at the temperature measured at the combustor surface. Complete

combustion was assumed and mass fractions of N2, O2, H2O and CO2 were fixed accordingly as

specified by the NASA software Chemical Equilibrium Analysis (CEA) [139]; an equivalence ratio

was specified as φ = 0.80 for Case 1, φ = 0.85 for Case 2, and φ = 1.0 for Case 3 in order

to match experimental conditions. Although cases with continued combustion would not have

equilibrium conditions at the burner surface, the true composition of the species is unknown and

hence this serves an anchor point; since combustion is not modeled in the CFD simulation the

exact composition of the species at the inlet has limited impact on the conclusions of the analysis.

Additionally, post processing CFD simulations, as described in Section 5.2.5, does not depend on

the absolute quantity of H2O present in to domain, but rather the distribution of the H2O, which

is assumed to enter the domain uniformly in space and time.

To account for the possibility of continued combustion within the domain heat addition was

modeled above the combustor. This was accomplished by adding a source term to the enthalpy
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Figure 5.3: (a) Schematic showing the setup of the 3D LES domain. (b) Temperature field (volume
rendering within an isosurface at 500 K and additional volume rendering at higher locations) a
single snapshot in time of a simulation with inlet mean temperature of 1515 K and inlet speed of
0.38 m/s with no additional heat added above the burner surface. (c) Speed field corresponding to
temperature shown in part (b)

equation in OpenFOAM. The heat was added using a half-Gaussian distribution with the peak

occurring at the burner surface then trailing off in intensity as height increases above the burner

(in the y-direction) as depicted in Figure 5.3 (a). Heat was applied only in the 0.075 m by 0.25

m region directly above the burner; at x and z-locations beyond the edge of the burner the heat

addition is set to zero. The half-Gaussian distribution was parameterized using the total amount

of power added (also referred to as the “heat source strength”) and the height above the burner

corresponding to three standard deviations (also referred to as the “heat source height”). At y-

locations above the heat source height the heat addition is set to zero. This approach to heat

addition most closely resembles continued premixed combustion above the burner surface since the

most intense combustion occurs at the surface (where there would be sufficient mixed fuel and

oxidizer to react) then decreases as the flow moves away from the burner surface as combustion

reactants are consumed.
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5.2.3 ABC Statistic and Metric Selection

The ABC method applied is given in Section 5.1.1. In this ABC algorithm each set of

parameters is chosen from a uniform grid of values where one parameter is held fixed while the

other parameters are varied over a predefined set of values. Then, the first parameter is changed

slightly and again paired with the same group of values for the other parameters. Choosing a

statistic to represent each simulation is a key step in ABC. The statistic must significantly reduce

the data so a reasonable comparison can be made (usually it is not computationally practical to

compare the entire flow field at every location in space and time, so instead a summary statistic is

utilized). The statistic must also contain an identifiable signature left by the parameter of interest;

if the parameter is unidentifiable or noninfluential, then the technique will not be able to discern

the impact of changing the parameter from that measurement [107]. To that end, a variety of

statistics were considered for this study.

First, the study sought to determine the mean inflow velocity parameter. One could reason-

ably assume based on the physics governing the simulation that the mean inflow velocity is likely

coupled with the mean temperature in the space above the hot jet. This was demonstrated further

by Christopher et al. [79] wherein they showed that temperature measurements at single locations

within approximately 0.5 to 1.5 burner diameters above the burner could be used to infer inflow

velocity parameters. Here we have built upon that knowledge by using mean temperature values at

multiple locations simultaneously. This statistic is referred to as the vertical temperature profile.

Additional statistics of temperature were considered, including the full PDF, but due to the short

time duration of the simulations the higher order statistics are likely less converged. Additionally,

the mean temperature profile is considered by many as the benchmark for matching experimen-

tal observations. Temperature values were sampled from within the 3D domain according to the

experimental setup described in section 5.2.1.1.

Once the appropriate statistic is obtained (i.e. a vertical profile of temperatures), the next

step is to determine the appropriate metric by which to compare the observation data and the
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simulation data. Here L1 and L2 norms, along with RMSE, were investigated. Another approach

is to integrate the difference in temperature values along the height. This would mean measurements

closer in space (i.e. those nearest to the burner) would be weighted less than those spread out farther

(i.e. those highest up in the temperature profile). Posterior distributions were fairly insensitive to

the statistic chosen. Thus, we concluded using the RMSE provides a robust and common metric;

additionally, Chai and Draxler [158] show that RMSE is appropriate in many cases for comparing

model to observational data, especially when model error is assumed to be Gaussian, as is likely

the case here. We also choose to weight each measurement equally because, although the bottom

measurements are very close together, this spacing is intentional since matching the lower portion of

the profile is key to helping determine whether continued combustion is observed above the burner

surface.

Lastly, once the statistic and metric are chosen, one must decide how closely each simulation

must match each simulation in order to be deemed acceptable. The rejection distance, ε, used for

ABC is a threshold value; any simulations with a distance compared to the observations larger than ε

are rejected. Thus, it is important to carefully chose ε in order to obtain reasonable results. A value

of ε that is too large will return all of the simulations and produce a biased posterior distribution

identical to the prior distribution; thus, no additional information is gained. Conversely, an ε that

is too small rejects all but a single case resulting in a posterior with very low confidence (i.e. high

Monte Carlo error). Marin et al. [59] and Lintusaari et al. [60] argue that a smaller ε is generally

preferred, but the size is largely determined by the available computational resources. Based on

high computational costs associated with performing 3D LES simulations with sub 1 mm resolution,

a limited number (O(103)) of simulations can be performed for this study. Thus, using the approach

of previous efforts (e.g. [2, 58–60, 104]), posteriors corresponding to various ε values are displayed

showing convergence as epsilon is reduced.



126

5.2.4 ABC Prior Distribution Selection

Once experimental observations for the three separate cases were available, we implemented

the ABC procedure to identify the parameters, along with inherent uncertainty, that provide the

best agreement between simulations and the experimental results. The first step in this procedure

is to identify an appropriate prior distribution of parameters. The prior distribution needs to

be wide enough to encompass realistic values for the parameters, but narrow enough to keep the

procedure computationally affordable. The first decision was to use a fixed temperature for all

simulations for a given case. This decision was made to provide computational savings as each

parameter one seeks adds approximately one order of magnitude more simulations (i.e. the number

of simulations, N , needed to identify n parameters goes as N ∼ 10n). More importantly, the

temperature measurements at the lowest height are believed to represent the exit temperature of

the burner well since they should be relatively uniform and the measurement is extremely close to

the burner surface; in fact, the laser skims the burner surface. Thus, since there are approximately

three bottom temperatures observed (Case 1 is at approximately 1500 K, Case 2 is at approximately

1600 K and Case 3 is at approximately 1685 K at the inlet) there are three temperatures required

for all simulations. Next, the inlet velocity is a primary quantity of interest in these simulations as

it determines how much momentum enters the domain and hence how high the hot temperature

gases are vertically advected once in the domain. Knowledge of the likely velocities to simulate

comes from a mass balance based on measured fuel and air rates entering the combustor, along with

a known exit temperature, pressure and area. The next parameters relate to heat addition above

the burner and are used to determine whether additional combustion above the burner surface is

likely present in each case. The two parameters needed to characterize the heat addition are the

heat source strength (i.e. the quantity of power added in Watts) and the height of the addition,

i.e. how spread out the half-Gaussian distribution is. The lower limit for heat addition is zero

heat addition indicating no additional combustion; the upper limit on heat addition is determined

from an energy balance recognizing how much power is going into the system from the fuel and



127

how much energy it would take to heat the gases to the measured inlet temperature. Next, limits

were decided upon for height of heat addition. This parameter indicates where the half-Gaussian

distribution is three standard deviations tall and hence the majority of the energy has been inputted.

A lower limit was chosen to confine the heat addition very close to the burner. Based on previous

experimental measurements showing increases in temperature within the vertical profile above the

catalytic burner, an upper limit was chosen. With these three parameters identified (velocity, heat

source strength, and height of half-Gaussian heat addition), a uniform grid was established and

equally divided providing a structured grid of parameters to simulate. The uniform grid was chosen

to be the least biased within its domain of support. Admittedly, outside of this domain parameters

are not considered indicating confidence that the true parameters lie within the parameter bounds.

The grid of parameters was chosen over other viable options (i.e. random draws, Latin hypercube

sampling, etc.) due to the limited number of simulations to be computed; this method effectively

covers the entire parameter space.

5.2.5 Comparison of Computational and Experimental Results

In order to accurately compare the computational simulation results to the experimental

observations, great care was taken to ensure the measured temperatures were equivalent. Though

a spatial average of the cells through which the laser passes would be the simplest option, this

ignores the nonlinear effect of temperature on absorption and the proportional effect of the water

mole fraction. Thus, a more sophisticated approach is used to calculate a line-of-sight (LOS) aver-

aged absorption-weighted temperature from the computationally obtained 3D temperature fields.

Specifically, Eqn. 5.2 is used to calculate the integrated absorbance that would occur for each of

the two lasers passing through the CFD domain. Note that pressure is assumed to be constant for

the LOS and hence cancels out when taking the ratio of Eqn. 5.3. To accomplish this conversion,

the line strength (i.e. how much each laser is absorbed at a given temperature) corresponding to

each temperature is calculated based on the technique of [45]. The partition function used in this

equation is determined from [159]. The line strength is integrated, for each laser independently,
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across the entire LOS while weighting each value by the normalized water mole fraction at the

location corresponding to each temperature. The ratio of integrated line-strength values obtained

for each laser is used to calculate an LOS averaged absorption-weighted temperature as given in

Eqn. 5.3 at a given height. These temperatures can then be averaged in time to get a mean

temporal temperature value (for a given height). As discussed in Section 5.2.3, these temporally

averaged temperatures at all specified heights for a given simulation form the statistic (i.e. the

vertical temperature profile) to be compared for each simulation in the ABC method. Tempera-

tures were recorded within the computational domain at the same centered location (i.e. centered

in x-dimension 3.75 cm from burner edge) across the burner width (parallel to z-axis; see Figure

5.1 (a)) for each location above the burner corresponding to the heights used for the experimental

measurements (see Section 5.2.1.1 for more details). For each snapshot in time, all temperatures

and H2O mole fractions at a given height and for a given LOS are used to calculate an LOS

absorption-weighted temperature.

In addition to the LOS averaging and absorption weighting, the simulation data must also

be adjusted to account for uncertainty due to the measurement procedure. To account for this,

white noise was added to the simulation data. A random number between −3% and +3% was

drawn, then this amount of uncertainty was added to the entire profile of temperature means; this

assumes any bias observed for an experiment is correlated at all heights due to being part of one

continuous data set. This procedure was repeated one thousand times for each simulation. Note

that the variation from one profile to another is generally larger due to changing parameters versus

adding this uncertainty.

5.3 Results

Here we identify the most likely parameters needed to create agreement between the simu-

lation results and the experimental observations for each of the three cases. Marginal and joint

posterior distributions for simulation parameters show regions with likely parameter choices. These

results indicate probable inlet velocities for each case as well as identify when combustion is or is
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not likely to be occurring above the burner surface. Temperature profiles and fields for the simu-

lations with parameters drawn from the modal values of each posterior distribution are also shown

in order to illustrate the unique behavior exhibited by each of the three cases.

5.3.1 Posterior Distributions

ABC provides a distribution of the parameters most likely to generate statistics close to the

experimental observations. By collecting all of the parameters corresponding to simulations with

the smallest distance when compared to the experimental observation, one can construct posterior

distributions. In the current study posterior distributions indicate which velocity and heat addition

parameters are most likely to produce temperature profiles matching the experimental profiles.

Another outcome from ABC is realized if the model is assumed to have small error compared

to the experiment in terms of how it represents relevant physics, geometry, etc. If this is true,

then the parameters obtained provide information about the experimental setup itself that may

be unfeasible to obtain otherwise; potential reasons why experimental data might not obtainable

include limited system access, existing historical measurements that can not be readily reproduced,

limitations of current experimental techniques, etc. [4]. In this particular application, the inlet

velocity and heat source addition are not feasible to measure and must be inferred. The velocity

of the system is extremely difficult to probe experimentally because of the high temperatures and

complex combustion within, and potentially above, the catalyst. These conditions would melt

many velocity measurement instruments and make seeding the flow difficult, as would be needed

for particle image velocimetry (PIV). Any potential combustion occurring above the catalyst is also

extremely difficult to predict or quantify due to the complex nature of the reaction mechanisms

within the catalyst, combined with how it behaves across a variety of power fluxes and φ values.

For an additional example of information provided by ABC to predict a missing temperature value

in the vertical profile, see Section 5.3.3.

Next we review the posterior distributions for each case individually. For Case 1, which has

a power influx of 16 W/cm2 and φ = 0.80, the inlet speed estimation does well as shown in the top
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row of Fig. 5.4. The posterior distribution mode of 0.3 m/s, as given in Table 5.2, is slightly lower

than the predicted inlet speed region shown in red in Fig. 5.4. The range of inlet velocities for

the inflow speed accounts for uncertainty in quantities used to predict the inflow speed including

volumetric flow rates provided by flow meters, atmospheric pressure, and temperature. The lower

secondary peak at 0.13 m/s corresponds to cases with more heat addition; this shows that additional

heat addition can compensate for lower velocities; however, too much heat addition concentrated

within the domain combined with low inlet velocities can lead to increases in temperature in the

simulations that exceed the increase in temperature observed experimentally. Furthermore, this

case was probed experimentally and shows no signs of additional combustion (undetectable amounts

of OH and no appreciable increase in temperature above the surface as seen in Fig. 5.2); thus the

peak seen at 0.3 m/s corresponding to 0 W heat addition appears to be the most probable condition

corresponding to the experimental measurements. Turning next to the height of heat addition, the

posteriors appear to have little information gain compared to the prior. This is seen in the top

row of Fig. 5.5; for the lowest amount of heat addition (0 W) the heat height is spread out equally

among all possible options. This is because once the strength is set to zero, the height is irrelevant

because any height chosen results in no heat addition, and thus all heights are equivalent.

For Case 2, which has a power influx of 27 W/cm2 and φ = 0.85, the inlet speed estimation

does extremely well as shown in the middle row of Fig. 5.4. The mode of 0.63 m/s, as given in

Table 5.2, is extremely close to the mean speed of 0.65 m/s predicted experimentally. This case

was probed experimentally and shows no signs of additional combustion (low quantities of OH

and no appreciable increase in temperature above the surface as seen in Fig. 5.2); this matches

the posterior which appears to converge to 0 W of heat addition above the burner. Similar to

the description given for Case 1, with a heat addition of 0 W the resulting height is arbitrary

since all will produce identical results (no heat addition); this trend is observed in Fig. 5.5. The

primary difference observed in this case, then, compared to Case 1, is that additional power flux

into the system caused an increase in mass flow rate which resulted in an increase in velocity at

the boundary. This is captured very well by the inlet speed posteriors of Fig. 5.4. Additionally, no



131

combustion appears to occur above the burner surface and this is also corroborated by the posterior

distributions.

For Case 3, which has a power influx of 27 W/cm2 and φ = 1.00, conditions are substantially

different. The power flux in Case 3 is significantly higher than that of Case 1 indicating a significant

increase in the amount of reactions taking place in the burner. Compared to Case 2, the amount of

air accompanying the fuel is decreased substantially providing fewer opportunities for completely

mixed combustion to occur. Thus, in Case 3 it is more likely that a portion of the combustion

might not complete within the combustor causing some of the reactants to exit the burner surface.

Looking at the posteriors presented in the bottom row of Fig. 5.4, this prediction appears to be

correct as heat addition above zero Watts is most likely (the posterior peaks at approximately

750 W). The posterior estimate for heat addition is very interesting in that it shows additional

heat is usually needed in order to match the experimental profile. This makes sense as the profile

maintains a high temperature, even increasing in temperature as one moves away from the burner.

This behavior is very indicative of continued combustion above the burner and is supported by

the ABC parameter predictions. The height of the heat addition does not seem to have strong

identifiability based on the relatively flat posteriors (compared to the other parameters), but does

exhibit a slight preference toward more stretched out heat addition (peaking around 0.0625 m).

For heat addition sizes larger than this, the posterior starts to drop off. To fully characterize this

behavior, additional simulations were completed with heat addition occurring up to 0.1 m (which

is 0.03 m above the original cutoff). These more stretched out heat addition heights resulted in

lower densities within the posterior indicating that the identified peak of 0.0625 m is well within

the bounds of the prior distribution. Looking at the joint posteriors, an informative trends stand

out. As heat source strength increases, the heat source height also increases indicating that as more

power is added it must be spread out more. The inlet speed estimate is very close to the speed

predicted from the experimental mass balance approach; the speed is slightly lower than Case 2

due to the reduced air entering the system. Looking at the joint posteriors in the bottom row

of Fig. 5.5 it appears that lower velocities require very high amounts of heat addition in order to
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Table 5.2: Experimental conditions and parameters from posterior mode

Case Pwr Flx (W/cm2) φ Pred. In Spd (m/s) Inlet Spd (m/s) Ht Str (W) Heat Ht. (m)

1 16 0.80 0.37 0.30 0 N/A
2 27 0.85 0.65 0.63 0 N/A
3 38 1.00 0.62 0.47 750 0.06

produce profiles that match the experimental vertical temperature profile. While this is possible, it’s

more likely that higher velocities would be observed within the combustor corresponding to higher

velocities in the simulation of approximately 0.6 m/s. These velocities are within the support of the

posteriors for Case 3 as seen by the overlap in the red velocity prediction region and the posteriors.

Looking at all three cases together, it is clear that ABC consistently predicts both reasonable

inflow velocities as well as heat addition. These parameter predictions result in temperature profiles

from simulations that well match experimental observations as will be seen next.

5.3.2 Temperature Profile and Field Comparisons

The temperature profiles for simulations corresponding to the mode of the posterior distribu-

tions are shown in Fig. 5.6. These profiles correspond to the parameters listed in Table 5.2. Note

that while these parameters are the best estimates in order of providing profiles that consistently

match observations, different parameters may produce better singular profiles but these parameters

would have little statistical relevance.

The temperature fields corresponding to simulations with parameters at the mode of the

posterior distributions compared to the experimental cases (as listed in Table 5.2) are found in Fig.

5.7. These fields illustrate the unique behavior seen in each of the three cases. The low velocity

corresponding to Case 1 appears to substantially change the flow dynamics seen in Case 1 compared

to the other two cases.



133

5.3.3 Observing System Experiment

As a final test of this procedure to understand its predictive capabilities, an Observing System

Experiment (OSE) (see, for example, [160,161]) was conducted. In this test, ABC was performed in

the same fashion as above. However, one of the experimental measurements was excluded from the

reference data. After comparing all of the simulations to the reference data (with temperatures at

a particular height excluded from the comparison), a set of simulations is identified through ABC

as having the smallest distance from the experimental observation. These simulations provide an

estimate of the temperature at the chosen height above the burner surface; this temperature esti-

mate can be compared to the experimental data (which in this case is available but was not used

to generate the list of best simulations) and provides insight into how well the chosen simulations

can predict missing experimental data. The data for Case 1 is used as an example. Since there

appears to be a marked change in the temperature gradient at approximately 1.05 cm above the

burner surface, this temperature is removed from the data set and the ABC procedure is executed

as in Section 5.1.1 with ε set to accept 5% of the simulations. The ABC analysis proves extremely

informative and useful for this temperature inference. The original set of all simulations (i.e. the

prior) has a mean temperature of 1660 K (σ = 196K) at 1.05 cm; then, after ABC reduces the

candidate simulations to the posterior (which includes only 5% of the original set of simulations)

the resulting mean temperature is 1456 K (σ = 52K), which is within approximately 1% of the

experimentally measured temperature of 1439 K. Note that including the experimental measure-

ment at 1.05 cm above the surface improves the ABC prediction of this temperature to 1453 K.

This quick demonstration indicates ABC is extremely effective at providing predictive information

within the domain where the simulation and reference data match, even when there is no corre-

sponding reference data to inform the inference. In future efforts this approach could be used to

design experiments with the fewest necessary temperature measurements to still provide similar

parameter estimations.
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Figure 5.4: Posterior distributions for cases 1, 2 and 3 (top, middle and bottom row, respectively)
for inlet speed, height height, and power (left, middle and right columns, respectively). Line
colors correspond to percentage of accepted simulations as determined by ε parameter. Inlet speed
posteriors show range of predicted velocities in the experimental results
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Figure 5.5: Marginal posterior distributions for cases 1, 2 and 3 (top, middle and bottom row,
respectively) for two parameters taken when ε is set to accept 20% of simulations. Colors represent
density of posterior with yellow being highest density and blue being lowest density
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Figure 5.6: Temperature profiles for experimental data are shown with empty circles. Error bars
denote experimental uncertainty. Solid lines denote simulation data. Data colored according to
experimental case as determined by power influx

(a) Case 1 (b) Case 2 (c) Case 3

Figure 5.7: 2D slice of temperature fields (taken in the middle of the burner in the x-direction)
corresponding to three simulations, each with with parameters taken from the mode of the marginal
posterior distributions in Figure 5.4 and listed in Table 5.2 for each of the three cases.



137

5.4 Conclusions

The present study demonstrates that ABC is a powerful technique to estimate parameters

of interest in engineering applications, in particular those of complex thermal-fluid flows. ABC

successfully identifies a posterior distribution for three key parameters (inlet velocity, as well as heat

source strength and height) driving a 3D turbulent buoyant jet problem while the observations come

from a laser absorption spectroscopy experiment. This chapter demonstrates key statistics useful for

identifying inlet and model parameters and provides valuable insights about where measurements

should be taken to provide information about those parameters. Based on the parameter posteriors,

we gain additional insight into this case by identifying if combustion is likely occurring and in what

quantity. Additionally, using an OSE, we are able to successfully predict a missing temperature

from the experimental data.

This study leaves several questions to be answered in future efforts. First, how well will this

procedure work on more complicated 3D geometries? Additionally, how will this procedure extend

to physical setups containing known quantities of combustion (e.g. ribbon burner applications

as shown in [86]) where simulations include reaction mechanisms? Additionally, what turbulence

model parameters could be adjusted to better close the LES equations for this particular applica-

tion?



Chapter 6

Conclusions and Future Research

The tools built in this dissertation demonstrate the efficacy of using ABC to estimate param-

eters for computational engineering models. Specifically, the ABC method has been successfully

applied to a 0D Navier-Stokes (logistics) equation, a 2D high-temperature turbulent buoyant jet

using LES and DNS, a 2D RANS high-temperature buoyant jet with a rotating cylinder above it,

a 2D LES forced-helium plume, and a 3D RANS high-temperature buoyant jet; all of these cases

used data from simulations to characterize and develop ABC as a tool in this class of thermal-fluid

engineering problems with complex flows. As a final application, ABC was used with a 3D LES

high-temperature buoyant jet using laser absorption spectroscopy. This final case provided useful

information enabling the simulation to match the experiment better than seen previously, and also

provided additional insight about the real-world system. Each application is a novel use of ABC

to find parameters in flows of complex thermal-fluid systems. Parameters successfully estimated

include: a parameter analogous to the Reynolds number for the 0D Navier Stokes eqn., inlet mean

temperature and variability, inlet mean velocity, inlet composition, inlet velocity frequency and

amplitude, rate of rotation for a roller placed above the jet, and heat addition size and strength

above the jet to model heat addition resulting from continued combustion. Estimating each of these

parameters has required identifying useful statistics within the flow domain that are connected to

the parameters of interest and that reduce the dimensionality of the problem substantially. Specific

conclusions related to the ABC technique and each case follow.
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6.1 Conclusions

• Several comments can be made about the conclusions to be drawn concerning the statis-

tics used throughout the dissertation. Generally summary statistics have been required

to reduce the dimensionality of the data from thousands or millions of locations in space

and time, to a handful. Despite this drastic reduction, the summary statistics have usually

enabled unknown parameters to be identified. Statistics taken with the same variable as

the unknown parameter (i.e. velocity measurements to predict velocity parameter) gener-

ally performed best, though alternate approaches (temperature measurements to predict

velocity parameters) also proved to be effective. Also, for cases when the statistic and pa-

rameter variable matched, observations closest to the boundary of interest performed best.

When the variable was not the same, then space may be required between the boundary

and measurement to allow the information to propagate from one field to the other.

• The rejection distance, ε, is an important component of ABC that determines the inter-

pretation of results. Several strategies for selecting ε are proposed, however all still rely

on user judgment to ensure a balance exists between Monte Carlo error from having too

few simulations accepted and an unbiased simulation from too closely resembling the prior

distribution, while also keeping in mind computational affordability.

• Though only applied to the 0D Navier-Stokes equations, the Markov chain Monte Carlo

(MCMC) ABC approached proved very useful at concentrating effort in regions of the

parameter space with higher likelihood of producing acceptable simulation results. This

provides helpful guidance for choosing parameters specific to the MCMC approach such as

which transition kernel to use and how should it be specified.

• ABC using RANS simulations and reference data performed exceptionally well due to

the ability of the simulations to converge very well and their often monotonic change to

variations in input parameters. This enabled very slight changes in input parameters to
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yield appreciable differences in observations.

• Cases relying on LES reference data performed well, though required an ensemble average

for the reference data. This served as a “best case scenario” (or OSSE) to demonstrate the

capability of ABC to predict parameters in a very complex and dynamic flow field.

• Cases relying on DNS reference data performed well, though required an ensemble average

for the reference data which can be expensive to compute. This case demonstrated the

impact resulting from model bias; if bias is small then the parameters can still be well

predicted. For larger bias, however, parameter estimations become much less certain. Ex-

perimental reference data provides the most practically useful but challenging opportunity

for parameter estimation using ABC. The temperature profiles obtained from ABC allow

better agreement between simulations and experiments than has been seen previously (for

the catalytic burner shown in this dissertation). Additionally, the parameters resulting

from ABC provide previously unknown information regarding the system, namely the most

likely inlet velocity and the amount (or lack) of combustion above the catalytic burner.

6.2 Future Work

Several directions exist for future work and are presented next. These possibilities show a

handful of the bountiful future research opportunities for researchers using approximate Bayesian

computation (ABC).

• One of the most pressing future directions is to implement a more efficient method whereby

fewer simulations are rejected by careful sampling within the parameter domain space to

select more parameters with favorable statistics compared to the reference observations.

Two techniques that are adaptable to this need are sequential Monte Carlo [162] and ABC

using MCMC [2].

• More efficient ABC algorithms would allow more expensive simulations since fewer would

be required. This would enable future research opportunities to model combustion within
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the domain using reaction mechanisms. These results could then utilize an additional

observation from laser absorption spectroscopy, namely species concentration.

• Gains in efficiency would enable more complex parameter estimation problems such as pre-

dicting more parameters simultaneously (e.g. spatially and temporally varying temperature

and velocity).

• Turbulence parameters would ideally be found during the ABC process to ensure that the

turbulence modeling is optimal for the given application (see [5] for initial work in this

direction).

• ABC could be used to determine the optimal placement and required quantity of measure-

ments to obtain converged posterior estimates of parameters. This would inform future

experimental campaigns to ensure the requisite number of observations are obtained while

avoiding superfluous experiments.

• Parameters predicted through ABC could drive higher fidelity simulations that would then

provide additional information about the flow field not available from lower fidelity simu-

lations or through experiments.
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