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Almand-Hunter, Berkeley Blair (Ph.D., Mechanical Engineering)

Development of Low-Cost Sensing Technologies for Measuring Air Quality

Thesis directed by Prof. Michael Hannigan

In order to protect human health and the environment, it is necessary to measure ozone

concentrations in the atmosphere. State and federal regulatory agencies take continuous measure-

ments of ozone concentrations and fluxes at centralized locations, but current monitoring systems

are costly, and the number of sites is limited. The work discussed in this dissertation aims to ad-

dress this challenge through the development of low-cost instruments that measure ozone flux. We

developed low-cost flux chambers that accurately measure ozone dry deposition when paired with

2B ozone monitors. While we concluded that the least expensive sensors available, metal-oxide

ozone sensors, are not suitable for use with these chambers, the cost of the chambers in combina-

tion with 2B ozone monitors ( $7000) is much lower than the cost of eddy covariance measurement

systems. Additionally, many research groups already own ozone monitors, which can be attached

to a flux chamber, which results in an additional cost of only $2000. Also, a complete overhaul of

the models we use to calibrate metal-oxide ozone sensors for use in ambient ozone monitors resulted

in a 42% improvement in the prediction of high ozone concentrations. The modeling algorithms

developed in this work can be applied to all of the sensors used by our group, which will improve

results for a number of studies.
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Chapter 1

Introduction

Exposure to high concentrations of ozone and other air pollutants can cause a variety of neg-

ative health effects including lung inflammation, increases in respiratory-system-related hospital

visits, cardiopulmonary mortality, and alterations in sleep patterns, neurotransmitters, short and

long term memory, and motor activity (EPA, 2013; Lippmann, 1989). To protect human health,

state and federal regulatory agencies take continuous measurements of ozone concentrations at

centralized locations. However, because current ozone monitoring systems are costly and consume

large quantities of power, the number of monitoring sites is limited. Additionally, ozone concentra-

tions can vary spatially, and are often lower in the immediate vicinity of roadways due to reactions

with NO (EPA, 2013). Concentrations can also be higher in locations downwind of an urban area

than in the urban core, due to ozone‘s formation as a secondary pollutant. These local-scale varia-

tions can have a sizable impact on the relative magnitude of ozone concentrations in urban areas,

and can lead to error in estimates of personal exposure. Additionally, since the ratio of indoor

and outdoor ozone concentrations varies based on air-exchange rate and a number of other factors,

and the amount of time individuals spend indoors varies from person to person, ratios between

personal exposure and ambient outdoor concentration can vary between 0.1 and 0.9 (EPA, 2013).

More accurate measurements of personal exposure can be obtained through the use of monitoring

networks with high spatial coverage, as well as portable devices. This scale of measurements has

historically been prevented by the cost of monitoring devices.

In addition to the negative impacts of ozone on human health, deposition of ozone places
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environmental stress on sensitive vegetated landscapes and aquatic ecosystems (Fangmeier et al.,

1994; Williams and Tonnessen, 2000). Examples of this stress include increased susceptibility

to injury and decreased growth for sensitive plant species, decreased water quality, toxicity to

freshwater organisms, eutrophication, change in greenhouse emissions from soil (Fenn et al., 1998),

reduction in biodiversity, and interference with a plants uptake of other important cations, such as

potassium (Fangmeier et al., 1994). These negative effects can be particularly pronounced at high

altitudes, where buffering capacities can be below average (Benedict et al., 2013; Fenn et al., 1998;

Williams and Tonnessen, 2000). Understanding deposition and emission rates is also an important

piece of estimating atmospheric concentrations in the planetary boundary layer for climate and

weather models. Since it is not possible to measure flux everywhere, improving deposition models is

a crucial step in determining accurate transfer ratios. Efforts to improve models are ongoing (Brook

et al., 1999; Zhang et al., 2001, 2003); models estimate flux well under some conditions, but fluxes

determined by different models and observations can vary by a factor of 2 to 3 (Flechard et al., 2011;

Schwede et al., 2011; Wu et al., 2011). Direct dry-deposition measurements are needed to improve

and validate models for different ecosystems, and under varied environmental conditions, but the

current measurement schemes are cost prohibitive. This work addresses the need for low-cost

measurement devices through the development and validation of low-cost dynamic flux chambers,

which measure dry deposition, as well as improvement of quantification models for inexpensive

metal-oxide ozone sensors.



Chapter 2

Literature Review

Deposition of pollutants, including ozone, nitrogen, and acidic compounds (SOx, NOy), places

environmental stress on sensitive vegetated landscapes and aquatic ecosystems (Ashmore, 2005;

EPA, 2011; Fangmeier et al., 1994; Williams and Tonnessen, 2000). Examples of this stress include

increased susceptibility to illness and decreased growth for sensitive plant species (EPA, 2011, 2013),

decreased water quality, toxicity to freshwater organisms, eutrophication, increased greenhouse

emissions from soil (Fenn et al., 1998), reduction in biodiversity, and interference with a plant’s

uptake of other important cations, such as potassium (Fangmeier et al., 1994). These negative

effects can be particularly pronounced at high altitudes, where buffering capacities can be below

average (Fenn et al., 1998; Williams and Tonnessen, 2000).

Dry deposition, which is the process by which pollutants are transported from the atmo-

sphere to the earth’s surface without precipitation (Seinfeld and Pandis, 2006), is an important

component of atmospheric deposition. This process is estimated to account for up to 50% of total

atmospheric deposition in the United States (EPA, 2010; Wesely and Hicks, 2000). Despite this

sizable contribution to total atmospheric deposition, there is a lack of direct measurements for

dry-deposition in the US. Currently employed direct dry-deposition measurements are not part of

the routine measurement suite because they are prohibitively expensive and complex. This results

in significant uncertainty in deposition loads, specifically regarding transfer ratios (the relationship

between ambient concentrations and total deposition). Given the large spatio-temporal variability

in air-surface exchange rates of reactive compounds, there is a need for low-cost, easily deployable
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systems to directly measure dry deposition.

There has been significant debate over whether ozone damage to vegetation is best quantified

and regulated using ambient concentrations or atmospheric fluxes (EPA, 2013; Musselman et al.,

2006). While the use of ambient concentrations is certainly much simpler, fluxes have more physical

meaning. Understanding deposition and emission rates is an important piece of estimating atmo-

spheric concentrations in the planetary boundary layer for climate and weather models. Since it

is not possible to measure flux everywhere, improving deposition models is a crucial step in deter-

mining accurate transfer ratios. Efforts to improve models are ongoing (Brook et al., 1999; Zhang

et al., 2001, 2003), and models estimate flux well under some conditions, but agreement between

different models and observations can be off by up to 300% (Flechard et al., 2011; Schwede et al.,

2011; Wu et al., 2011). Direct dry-deposition measurements are needed to improve and validate

models for different ecosystems, and under varied environmental conditions.

Currently, the most common methods for measuring atmospheric fluxes are eddy covariance,

the inferential method, and the gradient method (Seinfeld and Pandis, 2006; Turnipseed et al.,

2009). Eddy covariance consists of taking high-speed measurements of concentration and three-

dimensional wind velocity. The flux is computed from the covariance between the fluctuating

components of wind velocity and concentration. This method is the most mathematically robust

and accurate way to acquire dry-deposition measurements, but it is expensive and technically diffi-

cult compared with indirect-measurement methods (Baldocchi et al., 1988). The gradient method

computes flux indirectly by combining vertical-concentration data and gradient-transport theory.

Another method for measuring flux, which is used more frequently to measure emissions than

it is to measure deposition, is the flux chamber. Advantages of flux chambers over current methods

include reduced cost, the ability to determine spatial variability in deposition, the capability of

taking measurements in areas with complex topography and areas with non-uniform vegetation

(eddy-covariance typically requires an area of uniform vegetation that is ≥100 m2, mobility, and

the potential to be used with inexpensive sensors. The main drawback of using chambers for flux

measurements is that they alter the environment in which they are placed. Static chambers, which
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are commonly used to measure emissions, significantly affect environmental conditions. Dynamic

chambers minimize this problem by operating in a normally open mode, with lids that close for

just a few minutes per hour. This keeps the environmental conditions in the chamber very close to

ambient (Pape et al., 2008). Another way to minimize the alteration of the ambient environment

is to maintain a high air-turnover rate in the chamber. This prevents changes in temperature and

humidity in the chamber, which both affect deposition processes. It is also critical to make flux

chambers out of highly transparent materials, which enables sunlight to reach the vegetation inside.

In 2008, Pape et al. designed an automatic, dynamic flux chamber, which addressed many

of the issues mentioned above. They tested their chambers against an eddy-covariance system at

a grassland site, and demonstrated good agreement for CO2 and methanol deposition (Pape et al.,

2008). Our research effort expands on this validation-based flux-chamber development through the

creation of an automated, inexpensive, and continuous multiple-species gas-flux monitoring system,

which can provide data for a variety of relevant atmospheric pollutants, including O3, CO2, and

NOx.

2.0.1 Dry Deposition Theory

Dry deposition flux (F ), or the amount of species depositing to a unit surface, is assumed

to be proportional to the species’ ambient concentration (C) at some reference height (Seinfeld

and Pandis, 2006). The proportionality constant between the concentration and flux is called

“deposition velocity,” (vd) (Chamberlain and Chadwick, 1953), such that

F = −vdC. (2.1)

vd has a negative direction, since it describes the downward movement of a species. Thus,

the minus sign in equation 3.8 cancels out the negative vd value, which results in a positive flux.

The deposition-velocity representation is convenient because of its simplicity. However, since vd

represents many complex chemical and physical processes, its value is difficult to determine (Seinfeld

and Pandis, 2006).
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The deposition process is described using a resistance analogy (Wesely and Hicks, 2000), in

which species transport from the atmosphere to the surface of a material is controlled by three

resistances in series.

vd =
1

rt
=

1

ra + rb + rc
, (2.2)

where rt is the total resistance to deposition, ra is the resistance to aerodynamic transport,

rb is the resistance to diffusion through the quasi-laminar boundary layer, and rc is the resistance

to uptake of the trace gas by the canopy. These resistances are shown in 2.1.

Surface Layer!

Quasi-Laminar!
        Layer!

Aerodynamic Resistance (ra)!

Quasi-Laminar Layer!
      Resistance (rb)!

Canopy Resistance (rc)!

C3!

C1!

C0 = 0!

C2!

Figure 2.1: Substances encounter three resistances on their way to deposition: aerodynamic resis-
tance, quasi-laminar resistance, and canopy resistance (Seinfeld and Pandis, 2006).

The resistor between C1 and C0 in Figure 2.1 represents the resistance offered by the sur-

face. The canopy (surface) resistance is affected by surface type (vegetation, soil, water), ambient

meteorological conditions (temperature, humidity, etc.), solar radiation, surface wetness, surface

compensation point, and chemical species (Seinfeld and Pandis, 2006).

Theory has been developed to describe dry deposition of both particles and gases to different
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surface types (Seinfeld and Pandis, 2006). This literature review will discuss gas-phase deposition

to vegetative canopies and soil, since these are the surfaces of concern for our flux chamber.

2.0.1.1 Calculating Aerodynamic Resistance (ra)

In order to solve Equation 3.9, we need equations for ra, rb, and rc. It is assumed that ra

can be expressed as turbulent eddy diffusivity times trace-gas-concentration gradient. Since eddy

diffusivity is not always known, it can be expressed as

ζ =
z

L
, (2.3)

where L is the Monin-Obukhov length and z is the height above the surface. L is related to

atmospheric stability, and is found by first determining the Pasquill Stability Class, which can be

found in Table 2.1, then calculating L using Table 2.2 and Equation 2.4,

1

L
= a+ b log zo. (2.4)

Table 2.1: Estimation of Pasquill Stability Classes

Windspeed Daytime Daytime Nighttime Nighttime
at 10 m Strong Moderate Slight Cloud Cover Cloud Cover
(m/s) Solar Radiation Solar Radiation Solar Radiation Fraction ≤ 4/8 Fraction ≤ 3/8

< 2 A A-B B - -
2-3 A-B B C E F
3-5 B B-C C D E
5-6 C C-D D D D
> 6 C D D D D

Key: A-extremely unstable, B-moderately unstable, C-slightly unstable, D-neutral, E-slightly sta-
ble, F-moderately stable. Strong solar radiation is defined as more than 700 W m−2, moderate
solar radiation is 350-700 W m−2, and slight solar radiation is less than 350 W m−2 (Turner, 1969).
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Table 2.2: Correlation Parameters for the Estimation of L (Seinfeld and Pandis, 2006)

Pasquill Stability Class a b

A (extremely unstable) -0.096 0.029
B (moderately unstable) -0.037 0.029
C (slightly unstable) -0.002 0.018
D (neutral) 0 0
E (slightly stable) 0.004 -0.018
F (moderately stable) 0.035 -0.036

The dimensionless temperature profile is given by Equation 2.5.

ΦT(ζ) =


1 + 4.7ζ for 0 < ζ < 1 (stable)

1 for ζ = 0 (neutral)

(1− 15ζ)−
1
4 for −1 < ζ < 0 (unstable)

(2.5)

and the aerodynamic resistance is

ra =


1
κu∗

[ln( zzo ) + 4.7(ζ − ζ0)] (stable)

1
κu∗

ln( zzo ) (neutral)

1
κu∗

[ln( zzo ) + ln( (ζ2
o+1)(ζ0+1)2

(ζ2
r+1)(ζr+1)2 )] (unstable),

(2.6)

where

η0 = (1− 15ζ0)
1
4 , (2.7)

ηr = (1− 15ζr)
1
4 , (2.8)

and

ζ0 =
z0

L
. (2.9)

This theory is only applicable to a maximum vertical height of ≈100m, in the surface layer,

where the flux is non-divergent (Seinfeld and Pandis, 2006).
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2.0.1.2 Calculating Quasi-Laminar Boundary Layer Resistance (rb)

Gas-phase transport through the quasi-laminar layer is governed by the molecular diffusivity

of the gas through the air. This is represented by the Schmidt number,

Sc =
ν

D
, (2.10)

where ν is the kinematic viscosity of air and D is the molecular diffusivity of the depositing

species.

Resistance to transport in the quasi-laminar layer can be determined, using the Schmidt

number, as

rb =
5 Sc

2
3

u∗
, (2.11)

where u∗ is friction velocity (see Table 2.3).

2.0.1.3 Calculating Canopy Resistance (rc)

The canopy resistance (rc), or surface resistance, is the most complicated and difficult to

calculate of the three resistances to dry deposition. Depending on the type of surface, rc is repre-

sented by either water resistance (rcw), ground resistance (rcg), or foliar resistance (rcf). Figure 2.2

illustrates the breakdown of the canopy resistance by surface (Seinfeld and Pandis, 2006).

If deposition occurs over a forest or plant canopy,

1

rc
=

1

rcf
+

1

rcg
, (2.12)

or, if it occurs over a wet vegetated surface,

1

rc
=

1

rcf
+

1

rcw
. (2.13)

The foliar resistance (rcf) comprises two pathways. The first is uptake via the cuticular

(epidermal) surfaces (rcut), and the other is via the plant’s stomata (rst).
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Table 2.3: Friction Velocity (u∗) estimates based on land-use categories (Zhang et al., 2003).

Land-Use Category Day Night Night Day
Dry or Rain Dry or Rain Dew Snow

1 water 0.3 0.25 0.2 0.3
2 ice 0.25 0.15 0.15 0.25
3 inland lake 0.25 0.2 0.2 0.25
4 evergreen needleleaf trees 0.6 0.3 0.2 0.45
5 evergreen broadleaf trees 0.7 0.35 0.2 0.5
6 deciduous needleleaf trees 0.6 0.3 0.2 0.45
7 deciduous broadleaf trees 0.6 0.3 0.2 0.45
8 tropical broadleaf trees 0.7 0.35 0.2 0.5
9 drought deciduous trees 0.6 0.3 0.2 0.45
10 evergreen broadleaf shrubs 0.4 0.2 0.2 0.3
11 deciduous shrubs 0.4 0.2 0.2 0.3
12 thorn shrubs 0.4 0.2 0.2 0.3
13 short grass and forbs 0.4 0.2 0.2 0.3
14 long grass 0.4 0.2 0.2 0.3
15 crops 0.4 0.2 0.2 0.3
16 rice 0.4 0.2 0.2 0.3
17 sugar 0.4 0.2 0.2 0.3
18 maize 0.4 0.2 0.2 0.3
19 cotton 0.4 0.2 0.2 0.3
20 irrigated crops 0.4 0.2 0.2 0.3
21 urban 0.6 0.3 0.2 0.45
22 tundra 0.25 0.15 0.15 0.25
23 swamp 0.4 0.2 0.2 0.3
24 desert 0.25 0.15 0.15 0.25
25 mixed-wood forests 0.6 0.3 0.2 0.45
26 transitional forest 0.6 0.3 0.2 0.45

rcf =

(
1

rcut
+

1

rst

)−1

(LAI)−1, (2.14)

where LAI is leaf-area index, which is the ratio of the total leaf-surface area to the area of

the ground. Incorporating LAI into the equation adjusts the proper magnitude of rcf in relation

to rcg or rcw. LAI varies throughout the year for some land-use categories (LUC), and Figure 2.3

displays the monthly LAI for each category. LAI values for LUCs with constant values can be

found in Table 2.4.
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(rcf)!

Mesophyllic!
resistance (rm)!

Water!
resistance!
(rcw)!

Ground!
resistance!
(rcg)!

Water!Ground!

Deposited       
Species!

Foliar Resistance weighted by     
leaf area index (LAI) !

Stomata pore!
resistance (rp)!Cuticular !

resistance!
   ( rcut)!

rst!

Vegetation!

Foilar !
resistance!

Figure 2.2: Depending on the type of surface, canopy resistance (rc) is represented by either water
resistance (rcw), ground resistance (rcg), or foliar resistance (rcf) (Seinfeld and Pandis, 2006).

Theory for the surface resistance for dry deposition of gases to water is available (Seinfeld

and Pandis, 2006), but will not be discussed in this literature review.

2.0.1.4 Improvements to Canopy Resistance

The theory in the previous section has been accepted for decades, and is summarized in

review papers and textbooks (Seinfeld and Pandis, 2006; Wesely and Hicks, 2000). More recently,

model improvements have been proposed, particularly for non-stomatal resistance (Zhang et al.,

2003). The theory discussed in this section is based on the work of L. Zhang and coworkers (Zhang

et al., 2001, 2003)).

Non-stomatal resistance (rns) includes any resistance to uptake that is not related to stomata.

This includes cuticular, soil, and in-canopy aerodynamic resistances. Zhang et al. (2003) charac-

terized non-stomatal resistance by studying the deposition of O3 and SO2 over 5 vegetation types,

and scaling the results to predict the behavior of other chemical species based on their physical

and chemical characteristics. Relative humidity (RH), leaf-area index (LAI), friction velocity, and
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Table 2.4: Leaf-Area Index (LAI) estimates based on land-use categories (Zhang et al., 2003).

Land-Use Category LAI

4 5.0
5,8 6.0
9,23 4.0
10,12 3.0
13 1.0
1-3,22,24 0.0

canopy wetness are input parameters to the model.

Canopy resistance is defined as

1

rc
=

1−Wst

rst + rm
+

1

rns
, (2.15)

where Wst is the stomatal blocking fraction under wet conditions, and rm is mesophyllic

resistance, which Zhang and coworkers treat as dependent only on species (Zhang et al., 2002,

2003). rm is assumed to be 0 for both NO2 and O3. Wst is zero in dry conditions. For wet

canopies,

Wst =


0 SR <= 200 W/m2

(SR− 200)/800 200 < SR <= 600 W/m2

0 SR > 600 W/m2,

(2.16)

where SR is solar radiation. The stomatal resistance (rst) is found using the equation,

rst =
1

Gs(PAR)f (T )f (D)f (ψ)Di/Dν
, (2.17)

where Gs(PAR) is the unstressed leaf-stomatal conductance, Di/Dν is the ratio of the molec-

ular diffusivity of water to the depositing gas, and f(T ), f(D), and f(ψ) are the conductance-

reducing effects of air temperature (T ), water-vapor deficit (D), and water stress (ψ) on stomatal

conductance, respectively.

Di/Dν values can be found in 2.5.
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Figure 2: Leaf area index in the Northern Hemisphere.
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Fig. 2. Leaf area index in the Northern Hemisphere.

Roughness length (z0) is needed for calculating friction
velocity, which subsequently affects aerodynamic, quasi-
laminar and non-stomatal resistances. z0 from GEM can-
not be used directly since it is treated together with topog-
raphy. Dorman and Sellers (1989) presented monthly z0 for
many different land types. Panofsky and Dutton (1984) and
Pielke (1984) also reviewed typical z0 values for different
land types. Based on these studies, z0 values for each LUC
are suggested and presented in Table 1. For water surfaces
(LUC 1 and 3), z0 is calculated as a function of wind speed
or friction velocity (e.g. Hicks and Liss, 1976). For some
surfaces a constant z0 value is suggested, while for others a
range of z0 values is given. For those surfaces that have vari-
able z0 values, a formula similar to Eq. (7a) is used to obtain
z0 for any time period based on LAI values:

z0(t) = z0(min) + LAI (t) − LAI (min)

LAI (max) − LAI (min)
×

[z0(max) − z0(min)] (11)

4 Model evaluation and example output

4.1 Comparison with measurements

The major improvement of the present model is in the
non-stomatal resistance parameterization, especially for wet
canopies. Thus, we chose the measurements of O3 and
SO2 dry deposition data at the Kane site (deciduous forest
in Pennsylvania, lat: 41.595◦ N, long: 78.766◦W, USA; 29
April to 23 October 1997; Finkelstein et al., 2000). This is
the only site that has a sufficiently large data set for O3 and
SO2 under wet canopy conditions to allow a thorough test
of the performance of the revised model. Measured meteo-
rological data (u∗, stability, solar radiation and wetness) and
biological (LAI ) information are used in calculating dry de-
position velocities. To show the improvements of the present
model compared to its earlier version (Zhang et al., 2002a),

results from both model versions for the mean diurnal cycle
of half-hourly Vd over wet canopies, along with the obser-
vations, are presented in Figs. 3b and d. For dry canopies,
only results from the present model are shown in Figs. 3a
and c since the differences between the present and the previ-
ous model diurnal average results are small because the same
stomatal resistance sub-model is used in both models.
The suitability of the present model can be seen from the

agreement of modelled O3 and SO2 deposition velocity com-
pared to the observations for both dry and wet canopies and
the improved results compared to its previous version for wet
canopies. It should be pointed out that the previous version
already considered, to some extent, dew and rain effects on
cuticle uptake based on the knowledge at the time the model
was developed. For example, a constant cuticle resistance
of 400 sm−1 and 800 sm−1 was used for O3 under rain and
dew conditions, respectively, and 100 sm−1 and 200 sm−1

for SO2 under rain and dew conditions, respectively (Zhang
et al., 2002a). However, this model did not agree well with
observations (Figs. 3c and d). It overpredictes O3 Vd during
nighttime and underestimates O3 Vd during the day. The new
version captures the higher daily values and also maintains
the lower nighttime Vd values. The previous version seems
to predict reasonable SO2 Vd during the night, but underes-
timates SO2 Vd during the day. It can be expected that other
models, which do not adequately treat dew and rain, will ex-
hibit even less diurnal variations than the results shown here.
Sensitivity tests show that the aerodynamic resistance

alone can only explain a small portion of observed diur-
nal variations over wet canopies, i.e. 20–40% for O3, 20–
50% for SO2, depending on the magnitude of the cuticle
and soil resistances (non-stomatal resistance). The larger
the non-stomatal resistance, the smaller the diurnal varia-
tion caused by aerodynamic resistance variation. Figure 3b,
which shows daytime wet canopy conditions, assuming that
stomatal uptake is not important for wet canopies in light of
stomata blocking by water drops and the presence of very

www.atmos-chem-phys.org/acp/3/2067/ Atmos. Chem. Phys., 3, 2067–2082, 2003

Figure 2.3: Leaf-Area Index (LAI) estimates based on land-use categories. Source: Zhang et al.
(2003).

Table 2.5: Di/Dν for various gases

Species Di/Dν

sulfur dioxide 1.89
ozone 1.63
nitrogen dioxide 1.6
nitric oxide 1.29
nitric acid 1.87
hydrogen peroxide 1.37
acetaldehyde 1.56
propionaldehyde 1.8
formaldehyde 1.29
methyl hydroperoxide 1.6
formic acid 1.6
acetic acid 1.83
ammonia 0.97
petrozyacetyl nitrate 2.59
nitrous acid 1.62
pernitric acid 2.09
hydrochloric acid 1.42

Source: Seinfeld and Pandis (2006)

f(T ) =
T − Tmin

Topt − Tmin

[
Tmax − T
Tmax − Topt

]bt
, (2.18)

where T is air temperature, Tmax and Tmin are the temperatures, in ◦C, above and below
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which complete stomatal closure occurs, and Topt is the temperature corresponding to maximum

stomatal opening (seeTable 2.6). The term, bt, is defined as

bt =
Tmax − Topt

Topt − Tmin
. (2.19)

f(D) = 1− bvpdDvap, (2.20)

where bvpd is the water-vapor-pressure-deficit constant in k Pa−1 (see Table 2.6), and Dvap is

the vapor pressure deficit in kPa.

Dvap = e∗(T )− e, (2.21)

where e∗(T ) is the saturation water-vapor pressure (kPA) at the ambient air temperature

(◦C) and e is the ambient water vapor pressure in kPa.

e∗ = 1013.25e13.3185a−1.97a2−0.6445a3−0.1299a4
, (2.22)

where

a = 1− 373.15

T
, (2.23)

and T is temperature in Kelvins.

f(ψ) =
ψ − ψC2

ψC1 − ψC2

, (2.24)

where ψC1 and ψC2 are parameters that specify leaf-water-potential dependency in MPa (see

Table 2.6), and ψ is defined as

ψ = −0.72− 0.0013SR, (2.25)

where SR is solar radiation. Non-stomatal resistance (rns) is defined as
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1

rns
=

1

rac + rcg
+

1

rcut
, (2.26)

where rac is the in-canopy aerodynamic resistance, rcg is the ground resistance, and rcut is

the cuticular resistance. rcg can represent deposition onto surfaces covered with ice (rice), snow

(rsnow), soil (rsoil), or water (rcw).

For SO2, the snow, ice, and water resistances are defined as

rsnow,ice SO2 = 70(2− T ), (2.27)

and

rwater SO2 = 20. (2.28)

rsoil can be broken down into resistance to deposition onto dry soil (rgd) (Table 2.6), soil that

has been wetted by rain (rgrain), and soil that has been wetted by dew (rgdew).

For O3, the snow, ice, and water resistances are defined as

rsnow,ice,water O3 = 2000. (2.29)

The soil resistance for O3 deposition to vegetated surfaces is defined as

rsoil O3 = 200, (2.30)

and for non-vegetated surfaces,

rsoil O3 = 500. (2.31)

When the ambient temperature is below -1◦C,

rgd,winter = rgde
0.2(−1−T ), (2.32)



16

where rgd,winter is the adjusted soil resistance when T< -1◦C. The cuticular resistance (rcut,dry)

in dry conditions is defined as

rcut,dry =
rcutd0

e0.03RHLAI(1/4)u∗
, (2.33)

where rcutd0 can be found in Table 2.6, u∗ is friction velocity, and LAI is leaf-area index.

Cuticular resistance in wet conditions rcut,wet is defined as

rcut,wet =
rcutw0

LAI(1/2)u∗
, (2.34)

where rcutw0 is 100 s m−1 for dewy conditions and 50 s m−1 for rainy conditions. This model

does not work well when u∗ > 2 m/s.

When the ambient temperature is below -1◦C,

rcut,winter = rcute
0.2(−1−T ), (2.35)

where rcut,winter is the adjusted cuticular resistance when T< -1◦C.

When snow is on the ground, the soil and cuticular resistances are modified as

1

rg,snow
=

1− 2fsnow

rg
+

2fsnow

rsnow
(2.36)

and

1

rcut,snow
=

1− fsnow

rcut
+
fsnow

rsnow
, (2.37)

where 2fsnow is the fraction of soil covered in snow, fsnow is the fraction of leaves covered in

snow, rg,snow is the modified soil resistance for snow cover, and rcut,snow is the modified cuticular

resistance for snow cover.

fsnow =
sd

sdmax
(2.38)
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where sd is the snow depth in cm and sdmax is the snow depth at which all leaves are covered

with snow (f = 1).

The in-canopy aerodynamic resistance is a function of friction velocity (u∗), leaf-area index

(LAI), and a reference value for in-canopy aerodynamic resistance (rac0), which depends on plant

species and seasonal variation in leaf coverage.

rac =
rac0LAI

1/4

u2
∗

, (2.39)

and

rac0(t) = rac0(min) + [rac0(max)− rac0(min)]
LAI(t)− LAI(min)

LAI(max)− LAI(min)
, (2.40)

where rac0(min) and rac0(max) correspond to periods of minimum (LAI(min)) and maximum

(LAI(max)) leaf coverage, respectively, and can be found in Table 2.6.

Typically, a roughness length (z0) can be assumed for each land-use category (LUC), and

values are listed in Table 2.6. Some categories have a constant roughness length, and others have

a listed range. For those with a range, z0 is

z0(t) = z0(min) + [z0(max)− z0(min)]
LAI(t)− LAI(min)

LAI(max)− LAI(min)
, (2.41)

where z0(t) is roughness length at a given time, z0(max) is the maximum roughness length,

and z0(min) is the minimum roughness length.

Zhang et al. (2003) evaluated the equations mentioned above, and found that the new model

provides more realistic deposition velocities for O3 deposition.

2.0.2 Previous Chamber Work

Many research groups have conducted experiments using static and dynamic flux chambers.

The main drawback of using any chambers for flux measurements, is that they can alter the envi-

ronment in which they are placed. Static chambers, which have been used extensively in soil flux
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measurements, can cause large increases in temperature and humidity, and decrease or completely

block solar radiation.

Dynamic flux chambers minimize these environmental changes by pumping ambient air

through the chamber. Table 3.1 lists previous flux-chamber measurements of NO, NO2, CO2,

and O3. One type of flux chamber listed in Table 3.1 is the leaf-scale dynamic chamber, which is

used to measure fluxes to and from individual leaves and branches (Altimir et al., 2002; Breuninger

et al., 2012a,b; Gessler et al., 2000; Sparks et al., 2001). While leaf-scale deposition measurements

are important for understanding leaf dynamics, they can be difficult to scale to the canopy scale,

and do not directly represent ecosystem-level flux.

Another type of chamber listed in Table 3.1, is the dynamic soil-flux chamber (Butterbach-

Bahl et al., 1997; Norman et al., 1997; Remde et al., 1993). A significant portion of the chambers

listed did not have open tops, and the soil or vegetation in the chamber was only exposed to ambient

conditions via air pumped into the chamber. These chambers, which are not normally open to the

ambient environment, have significant drawbacks. They all block a fraction of incoming solar

radiation, and in order to maintain ambient conditions, they have to be moved frequently, which

makes long-term or remote deployments difficult.

Several research groups have addressed these issues by developing chambers with lids that

open and close automatically ](Kitzler et al., 2006; Meixner et al., 1997; Pape et al., 2008). These

automatic chambers operate in a normally open mode, with lids that close for just a few minutes

per hour. Provided that the chambers are made out of highly transparent materials, so sunlight

can reach the vegetation inside, the environmental conditions in the chamber remain very close to

ambient (Pape et al., 2008).

While many chamber measurements have been made (Table 3.1), very few of these studies

compare NO, O3, and CO2 fluxes measured by chambers to measurements acquired via microme-

teorological techniques. Several groups have compared chamber measurements of NO fluxes from

soils to gradient measurements (Kaplan et al., 1988; Parrish et al., 1987; Stella et al., 2012)). Nor-

man et al. (1997) compared several types of static and dynamic chambers with each other and
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eddy correlation for measuring CO2 fluxes in forest soils, but only two data points for eddy corre-

lation were available for comparison, each representing one day. Li et al. (1999) compared chamber

measurements of NO fluxes from agricultural soils with eddy-correlation measurements, and found

that the fluxes measured by the chambers were higher than the eddy-correlation measurements,

but followed a similar diurnal trend. Pape et al. (2008) compared an automatic, dynamic flux

chamber with an eddy-covariance system at a grassland site, and demonstrated good agreement

for CO2 deposition. Due to the fact that these comparison studies are limited in number, and

sometimes did not yield good agreement between methods, further comparisons of flux chambers

and micrometeorological methods are warranted.

Pape et al. (2008) used measurements of mixing ratios and flow rate, in combination with a

mass balance equation, to determine flux. They began with the general equation,

V ρd
dµcham

dt
= AFcham −Qρd(µcham − µamb), (2.42)

where V is the chamber volume, ρd is the density of the air molecules, A is the soil surface-

area enclosed by the chamber, Fcham is the flux of an inert gas, Q is the chamber flow rate, t is

time, and µcham and µamb are the trace-gas-mixing ratios for the air leaving the chamber, and the

ambient air, respectively. Under steady state conditions, Equation 3.5 can be reduced to

Fcham = ρd
Q

A
(µcham − µamb). (2.43)

Equations 3.5 and 2.43 are based on the assumption that the chamber is well mixed. The

authors ensured good mixing by placing mixing fans inside their chamber.

Pape and coworkers point out that the flux chamber will inevitably alter the ambient aero-

dynamic transport of trace gases to the ground and vegetation. The trace gas flux in ambient

conditions can be written as

Famb =
ρd(µcomp − µamb)

ra + rb + rc
, (2.44)



21

Table 2.7: Summary of Selected Chamber Measurements of NO2, NO, O3, and CO2

Reference Gases Mea-
sured

Surface Chamber Type Validation Method

Aeschlimann et al.
(2005)

CO2 grassland dynamic none

Altimir et al. (2002) CO2, O3 Scots Pine Shoots dynamic, shoot cham-
ber

compared w/ typical O3

flux values
Aneja et al. (1995) NO2, NO Agricultural Soil dynamic none
Breuninger et al.
(2012b)

NO2, NO,
CO2, O3

Norway Spruce dynamic, branch
chamber

none

Breuninger et al.
(2012a)

NO2, NO,
CO2, O3

Norway Spruce dynamic, branch
chamber

none

Burkart et al. (2007) CO2 barley, sugar beet,
wheat

dynamic destructive harvest

Butterbach-Bahl et al.
(1997)

NO2, NO, O3 forest soil dynamic, automated
lids

none

Garcia et al. (1990) CO2 soybeans dynamic none
Gessler et al. (2000) NO2, CO2,

NH3

beech saplings and
twigs

dynamic none

Gut et al. (1999) NO wheat dynamic model comparison
Gut et al. (2002) NO2, NO,

CO2, O3

soil dynamic model comparison (using
ambient concentration )

Horváth et al. (2006) NO, O3 spruce and oak soil dynamic none
Kaplan et al. (1988) NO forest soil dynamic compared well with night-

time vertical profile
Kirkman et al. (2002) NO2, NO, O3 pasture dynamic none
Kitzler et al. (2006) NO2, CO2 forest soil dynamic, automated

lid
none

Laville et al. (2011) NO, CO2 agricultural soil dynamic, automated
lid

none

Li et al. (1999) NO agricultural soil dynamic chamber values larger than
eddy-covariance, but var-
ied similarly with time

Machon et al. (2010) NO grassland dynamic compared with model
Maljanen et al. (2007) NO dung and urine

patches on soil
dynamic none

Meixner et al. (1997) NO, NO2, O3 grassland & crops dynamic, automated
lid

none

Norman et al. (1997) CO2 forest soil dynamic & static compared 5 types of cham-
bers and 2 eddy-covariance
data points

Pape et al. (2008) NO2, NO,
CO2, O3

grassland dynamic, automatic
lid

very good agreement w/
eddy covariance for CO2

(did not compare NO,
NO2, & O3)

Parrish et al. (1987) NO grassland dynamic nighttime comparison with
gradient method

Pilegaard et al. (1999) NO, CO2 forest soil dynamic none
Pilegaard (2001) NO, NO2, O3 forest soil dynamic, automated

lid
none

Remde et al. (1993) NO, NO2, O3 marsh soil dynamic none
Roelle et al. (1999) NO, NO2 corn soil dynamic none
Roelle et al. (2001) NO agricultural soils dynamic none
Skiba et al. (1993) NO ryegrass dynamic none
Slemr and Seiler (1984) NO, NO2 grassland soil dynamic none
Sparks et al. (2001) NO2 25 leaf species dynamic leaf chamber none
Stella et al. (2012) NO agricultural soil dynamic, automated

lid
agreed with gradient
method for low fluxes, but
underestimated high fluxes

Unsworth et al. (1984) O3 soybeans dynamic, open top canopy resistances compa-
rable to other field studies

Dijk and Duyzer
(1999)

NO forest soil dynamic none

Williams and Davidson
(1993)

NO grassland dynamic comparison of 2 chamber
types

Yamulki et al. (1995) NO agricultural soil dynamic none
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where ra, rb, and rc are the turbulent resistance, quasi-laminar boundary-layer resistance,

and surface resistance to gas deposition, respectively. Famb is the true trace gas flux in ambient

conditions, and µcomp is the mixing ratio of the trace gas at the compensation point (concentration

at the low end of the resistance chain, such as inside the soil or plant leaf) (Pape et al., 2008).

The flux chamber modifies these resistances, with the change in ra (aerodynamic resistance)

being the most significant. Aeschlimann et al. (2005) imitated the diurnal variations in ambient

ra by using a slower chamber-purging flow rate at night than during the day. In the modified flux

equation, ra is replaced by two resistances in series. The first is the purging resistance (rpurge)

between chamber and ambient air. The second is the mixing resistance (rmix), which represents

the turbulent mixing inside the chamber. If the chamber air is well mixed, rmix is very small in

comparison with rpurge, and can be neglected. rb, the boundary layer resistance, is also altered by

the chamber, and Pape refers to the modified boundary layer resistance as r∗b (Pape et al., 2008).

For a well-designed chamber that maintains near-ambient conditions, rc (canopy resistance)

and µcomp (compensation point mixing ratio) inside the chamber should be very close to ambient.

Combining the chamber resistances and Equation 2.44 yields

Fcham

Famb
=
ra + rb + rc

rpurge
+ r∗b + rc, (2.45)

where

rpurge =
A

Q
(2.46)

and

r∗b(LAI) =
r∗b

1 + LAI
. (2.47)

For trace gases with zero compensation points, such as ozone,

r∗b(LAI) =
rpurge

µamb(O3)
µcham(O3) − 1

− rc(O3). (2.48)
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In order to use Equation 2.48, the value of rc(O3) must be known, which is typically not

the case. However, under optimal conditions for stomatal uptake (high LAI and solar radiation),

rc(O3) should approach its minimum value (Pape et al. (2008)), which has been reported to be

about 100 s m−3 (Wesely and Hicks (2000)).

It is important to consider photochemical reactions in flux chambers (Meixner et al. (1997);

(Pape et al., 2008)). A reaction that likely occurs in the chamber is the photolysis of NO2. The

primary reactions that occur between NO, NO2, and O3 are

NO + O3 → NO2 + O2 (2.49)

and

NO2 + hv
O2−−→ NO + O3, λ < 420nm. (2.50)

Because of the relationships between NO, NO2 and O3 displayed in reactions 3.11 and 3.12,

they must all be measured simultaneously, even if only one is of concern. Reactions 3.11 and 3.12

have the following kinetics:

dµ(NO)

dt
= −k µ(NO)µ(O3) (2.51)

dµ(NO)

dt
= j(NO2)µ(NO2), (2.52)

where k is the first-order rate constant of Equation 3.11, and j(NO2) is the photolysis rate of

NO2. Pape et al. (2008) found that the average value of j(NO2) inside their flux chambers was 48%

of the value outside their chambers. The net source (Sgp) of gas-phase NO resulting from reactions

3.11 and 3.12 within the chamber, is

Sgp(NO) = V[ j(NO2)µcham(NO2)− kµcham(NO)µcham(O3)]. (2.53)
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The reaction kinetics for NO2 and O3 are equal or inversely proportional to the reaction

kinetics for NO, such that

Sgp(NO) = Sgp(O3) = −Sgp(NO2). (2.54)

Combining these reaction sources or sinks with the mass balance from Equations 3.5 and 2.43

yields

V ρd
dµcham

dt
= AFcham −Qρd(µcham − µamb) + Sgp (2.55)

and

Fcham = ρd
Q

A
(µcham − µrf:amb)− 1

A
Sgp. (2.56)

2.0.3 Spatial Variability

Dry deposition flux varies spatially, due to both trace-gas concentration and deposition ve-

locity, and regional models must accurately predict both of these variables in order to accurately

estimate atmospheric fluxes. Emberson et al. (2000) evaluated different methods of estimating

ozone damage to vegetation. They estimated dry-deposition flux to vegetation in Europe using a

stomatal-conductance-based model, then based damage estimates on their calculated flux. They

compared their estimates of damage with those estimated using a concentration-based exposure

metric, which takes into account concentrations over a threshold of 40 ppb (AOT40). They found

that their stomatal-conductance-based modeling approach predicted very different spatial variabil-

ity of ozone damage than the AOT40 maps, which demonstrates the importance of considering

deposition velocity when creating atmospheric models.

It is also important to consider sub-grid spatial variability in deposition. Atmospheric models

typically assume grid cells ranging in size from 10-100 km and 100-500 km, for regional and global

models, respectively. The EPA operates the Community Multiscale Air Quality (CMAQ) model,
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which is used for air-quality management, with 12 km x 12 km grid cells. Large amounts of spatial

variability within a grid cell of a model can lead to poor estimates of trace-gas flux and concentra-

tion. With the reduction of sub-grid variability in mind, the monitoring sites used for model inputs

are chosen to be representative of the surrounding areas, but accurate representations of an entire

grid cell cannot always be achieved (Clarke et al., 1997).

Tong and Mauzerall (2006) evaluated the ability of the (CMAQ) model to capture spatial

variability in ozone concentrations in the United States. They compared summertime, surface-level

ozone concentrations predicted by CMAQ with observations from 987 Air Quality Systems (AQS)

sites and 123 Clean Air Status and Trends Network (CASTNET) sites. They found that CMAQ

systematically overpredicts O3 concentrations in the east by 15-20 ppbv, and underpredicts concen-

trations in the west by 10-15 ppbv. These over- and under-predictions can result from uncertainty

in many different variables (meteorological data, emissions, etc.), one of which is deposition veloc-

ity. These inaccuracies are a concern because studies have begun to use CMAQ concentrations to

evaluate the impacts of air pollution on health, and they can lead to great over- or underestimations

of exposure.

2.0.4 Low-cost Sensors

The instruments typically used to measure trace-gas concentrations in flux-measurement

systems cost between $5000 and $100,000. Flux chambers are advantageous because they do not

require the high-sampling-rate instruments needed for eddy covariance. Low-cost sensors have the

potential to be used for flux-chamber measurements.

Federal reference method (FRM) measurements of O3 are taken using monitors that rely on

the detection of chemiluminescence, which is the product of the reaction between O3 and ethylene

gas (EPA, 2013). These monitors typically cost USD 10 000 to 20 000, and use approximately 1 kW

of power. A slightly less costly method for measuring ozone concentrations is UV absorption, which

is a federal equivalence method (FEM). UV absorption sensors typically cost USD 2000 +. Metal

oxide (MOx) ozone sensors, which we use in our low-cost monitors, cost between USD 5 and 100,
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with power consumption as low as 90 mW. Metal-oxide sensors consist of a high surface-to-volume

ratio semiconducting material on a heated insulating substrate, between two electrodes (Moseley,

1997). Reactions with trace-gas molecules on the semiconductor surface change the density of charge

carriers available, which changes the conductance. The resistance across the electrode decreases

proportionally to the increase in trace-gas concentration.

The metal-oxide O3 sensors in the flux chambers have been used in other studies at CU.

(Piedrahita et al., 2014b) developed low-cost, wearable air-quality monitors, and evaluated their

performance. They calibrated their monitors in a collocation study, and found that the O3 sensors

had a median standard error of 9.7 ppb.

Other research groups, including Mead et al. (2013), Aoki et al. (2008), Williams et al. (2009)

and Hasenfratz et al. (2012) have used MOx sensors to measure ozone in previous studies. While

MOx sensors cost 0.05 - 5% as much as UV absorption and chemiluminescence sensors, their use

is not without challenges. MOx sensors respond to changes in ambient temperature and relative

humidity, and their output is non-linear with respect to gas concentration (Barsan and Weimar,

2001; Delpha et al., 1999; Marco, 2014; Masson et al., 2015; Piedrahita et al., 2014a; Romain et al.,

1997; Sohn et al., 2008). Additionally, response can vary from sensor to sensor (Romain and Nicolas,

2010). Correcting sensor responses to changes in temperature and humidity is particularly difficult

in dynamic flux chambers, since the humidity and temperature of the sample air change rapidly

when the chamber lid closes.

To account for these cross-sensitivities, and improve sensor calibrations, several groups have

explored the use of machine-learning algorithms. Sundgren et al. (1991) used partial least squares

and artificial neural network models to calibrate MOx H, NH3 and acetone sensors. Di Natale

et al. (2002) used independent component analysis to separate environmental disturbances from

the meaningful portion of their data for an electronic nose. Kamionka et al. (2006) calibrated

MOx O3 and NO2 sensors using neural networks. De Vito et al. (2009) used neural networks to

calibrate their MOx CO, NOx and NO2 sensors, which they used to monitor urban air pollution.

Zampolli et al. (2004) used a fuzzy associative memory neural network to calibrate MOx CO and
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NO2 sensors. Wolfrum et al. (2006) calibrated metal-oxide VOC sensors using principal component

analysis and partial least squares regression models. Vergara et al. (2013) calibrated a metal-oxide

sensor array using support vector machines.



Chapter 3

Chamber Validation Paper

The first paper on this work, which was published in Volume 8 of Atmospheric Measurement

Techniques, follows.

3.1 Introduction

Deposition of pollutants, including ozone, nitrogen, and acidic compounds (SOx, NOy), places

environmental stress on sensitive vegetated landscapes and aquatic ecosystems (Fangmeier et al.,

1994; Williams and Tonnessen, 2000). Examples of this stress include increased susceptibility

to injury and decreased growth for sensitive plant species, decreased water quality, toxicity to

freshwater organisms, eutrophication, change in greenhouse emissions from soil (Fenn et al., 1998),

reduction in biodiversity, and interference with a plant’s uptake of other important cations, such as

potassium (Fangmeier et al., 1994). These negative effects can be particularly pronounced at high

altitudes, where buffering capacities can be below average (Benedict et al., 2013; Fenn et al., 1998;

Williams and Tonnessen, 2000). There has been debate over whether ozone damage to vegetation

is best quantified and regulated using ambient concentrations or atmospheric fluxes (Musselman

et al., 2006). While the use of ambient concentrations is certainly much simpler, fluxes have more

physical meaning.

Additionally, understanding deposition and emission rates is an important piece of estimating

atmospheric concentrations in the planetary boundary layer for climate and weather models. Since

it is not possible to measure flux everywhere, improving deposition models is a crucial step in
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determining accurate transfer ratios. Efforts to improve models are ongoing (Brook et al., 1999;

Zhang et al., 2001, 2003); models estimate flux well under some conditions, but fluxes determined

by different models and observations can vary by a factor of 2 to 3 (Flechard et al., 2011; Schwede

et al., 2011; Wu et al., 2011). Direct dry-deposition measurements are needed to improve and

validate models for different ecosystems, and under varied environmental conditions.

Dry deposition, which is the process by which pollutants are transported from the atmo-

sphere to the earth’s surface without precipitation (Seinfeld and Pandis, 2006), is an important

component of atmospheric deposition. This process is estimated to account for up to 50 % of total

atmospheric deposition in the United States (EPA, 2010; Wesely and Hicks, 2000). Despite this

sizable contribution to total atmospheric deposition, there is a lack of direct measurements for sul-

fur and nitrogen dry-deposition in the US. Currently employed direct dry-deposition measurements

are not part of the routine measurement suite (Clean Air Status and Trends Network) because

they are prohibitively expensive and complex. This results in significant uncertainty in deposition

loads, specifically regarding transfer ratios (the relationship between ambient concentrations and

total deposition). Given the large spatio-temporal variability in air-surface exchange rates of reac-

tive compounds, there is a need for low-cost, easily deployable systems to measure dry deposition

directly. These measurement devices should be automated and remotely controlled, so that they

can be deployed for extended periods of time without excessive maintenance.

Currently, the most accurate direct method for measuring atmospheric fluxes is eddy co-

variance (Seinfeld and Pandis, 2006; Turnipseed et al., 2009). Eddy covariance consists of taking

high-speed measurements of concentration and three-dimensional wind velocity. The flux is com-

puted from the covariance between the fluctuating components of wind velocity and concentration

(Turnipseed et al., 2009). This method is the most mathematically robust and accurate way to

acquire dry-deposition measurements, but it is expensive and technically difficult compared with

indirect measurement methods (Baldocchi et al., 1988).

Another method for measuring flux, which is used more frequently to measure emissions than

it is to measure deposition, is the flux chamber. Advantages of flux chambers over eddy covariance
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include reduced cost, the ability to determine spatial variability in deposition, the ability to take

measurements in areas with complex topography and areas with non-uniform vegetation (eddy-

covariance typically requires an area of uniform vegetation that is ≥100 m2), mobility, and the

potential to be used with inexpensive sensors (Horst and Weil, 1994). The main drawback of

using chambers for flux measurements is that they alter the environment in which they are placed.

Static chambers, which are commonly used to measure emissions, significantly affect environmental

conditions (Pape et al., 2008).

Dynamic flux chambers minimize the alteration of environmental conditions by constantly

pumping ambient air into the chamber. Table 3.1 lists previous flux-chamber measurements of NO,

NO2, CO2 , and O3. One type of flux chamber listed in Table 3.1 is the leaf-scale dynamic chamber,

which is used to measure fluxes to and from individual leaves and branches (Altimir et al., 2002;

Breuninger et al., 2012a,b; Gessler et al., 2000; Sparks et al., 2001). While leaf-scale deposition

measurements are important for understanding plant dynamics, they can be difficult to translate

to the canopy scale, and do not directly represent ecosystem-level flux.

Another type of chamber listed in Table 3.1 is the dynamic soil-flux chamber (Butterbach-

Bahl et al., 1997; Norman et al., 1997; Remde et al., 1993). A significant portion of the chambers

listed did not have open tops, and the soil or vegetation in the chamber was only exposed to ambient

conditions via air pumped into the chamber. These chambers, which are not normally open to the

ambient environment, have significant drawbacks. They all block a fraction of incoming solar

radiation, and in order to maintain ambient conditions, they have to be moved frequently, which

makes long-term or remote deployments difficult.

Several research groups have addressed these issues by developing chambers with lids that

open and close automatically (Kitzler et al., 2006; Meixner et al., 1997; Pape et al., 2008). These

automatic chambers operate in a normally open mode, with lids that close for just a few minutes

per hour. Provided that the chambers are made out of highly transparent materials, so sunlight

can reach the vegetation inside, the environmental conditions in the chamber remain very close to

ambient (Pape et al., 2008).
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While many chamber measurements have been made (Table 3.1), very few of these studies

compare O3 fluxes measured by chambers to measurements acquired via micrometeorological tech-

niques. Several groups have compared chamber measurements NO fluxes from soils to gradient

measurements (Kaplan et al., 1988; Parrish et al., 1987; Stella et al., 2012). Norman and coworkers

(1997) compared several types of static and dynamic chambers with each other and eddy correla-

tion for measuring CO2 fluxes in forest soils, but only two data points for eddy correlation were

available for comparison, each representing one day. Li and coworkers (1999) compared chamber

measurements of NO fluxes from agricultural soils with eddy-correlation measurements, and found

that the fluxes measured by the chambers were higher than the eddy-correlation measurements, but

followed a similar diurnal trend. Pape and coworkers (2008) compared an automatic, dynamic flux

chamber with an eddy-covariance system at a grassland site, and demonstrated good agreement

for CO2 deposition. Due to the fact that these comparison studies are limited in number, and

sometimes did not yield good agreement between methods, further comparisons of flux chambers

and micrometeorological methods are warranted.

Our research effort expands on this validation-based flux-chamber development through the

creation of an automated, inexpensive, and continuous multiple-species gas-flux monitoring system,

which can provide data for a variety of relevant atmospheric pollutants, including O3, CO2, and

NOx. The chambers have automatic lids, which keeps the environment in the chambers close to

ambient, and eliminates the need to regularly remove them from sampling plots. This project is

unique, because, in addition to contributing to the very limited chamber-validation literature, our

chambers are designed to be very inexpensive (< $2000 each). The chambers are equipped with

inexpensive metal-oxide O3 and NO2 sensors, which cost between $10 and $100, and our ultimate

goal is to obtain fluxes using these inexpensive sensors. The first step toward reaching that goal

is to use data from established O3 monitors to validate the dynamic flux-chamber measurements,

which enables us to isolate the uncertainty related to the use of inexpensive sensors from chamber

performance. We present preliminary results, comparing chamber fluxes to eddy-covariance fluxes

for O3.
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Table 3.1: Summary of Selected Chamber Measurements of NO2, NO, O3, and CO2

Reference Gases Measured Surface Chamber Type Validation Method
Aeschlimann et al.
(2005)

CO2 grassland dynamic none

Altimir et al.
(2002)

CO2, O3 Scots Pine Shoots dynamic, shoot cham-
ber

compared w/ typical O3 flux values

Aneja et al. (1995) NO2, NO Agricultural Soil dynamic none
Breuninger et al.
(2012b)

NO2, NO, CO2,
O3

Norway Spruce dynamic, branch cham-
ber

none

Breuninger et al.
(2012a)

NO2, NO, CO2,
O3

Norway Spruce dynamic, branch cham-
ber

none

Burkart et al.
(2007)

CO2 barley, sugar beet,
wheat

dynamic destructive harvest

Butterbach-Bahl
et al. (1997)

NO2, NO, O3 forest soil dynamic, automated
lid

none

Garcia et al. (1990) CO2 soybeans dynamic none
Gessler et al.
(2000)

NO2, CO2,
NH3

beech saplings and
twigs

dynamic none

Gut et al. (1999) NO wheat dynamic model comparison
Gut et al. (2002) NO2, NO, CO2,

O3

soil dynamic model comparison (using ambient con-
centration )

Horváth et al.
(2006)

NO, O3 spruce and oak soil dynamic none

Kaplan et al.
(1988)

NO forest soil dynamic compared well with nighttime vertical
profile

Kirkman et al.
(2002)

NO2, NO, O3 pasture dynamic none

Kitzler et al. (2006) NO2, CO2 forest soil dynamic, automated
lid

none

Laville et al. (2011) NO, CO2 agricultural soil dynamic, automated
lid

none

Li et al. (1999) NO agricultural soil dynamic chamber values larger than eddy-
covariance, but varied similarly with
time

Machon et al.
(2010)

NO grassland dynamic compared with model

Maljanen et al.
(2007)

NO dung and urine
patches on soil

dynamic none

Meixner et al.
(1997)

NO, NO2, O3 grassland & crops dynamic, automated
lid

none

Norman et al.
(1997)

CO2 forest soil dynamic & static compared 5 types of chambers and 2
eddy-covariance data points

Pape et al. (2008) NO2, NO, CO2,
O3

grassland dynamic, automatic lid very good agreement w/ eddy covari-
ance for CO2 (did not compare NO,
NO2, & O3)

Parrish et al.
(1987)

NO grassland dynamic nighttime comparison with gradient
method

Pilegaard et al.
(1999)

NO, CO2 forest soil dynamic none

Pilegaard (2001) NO, NO2, O3 forest soil dynamic, automated
lid

none

Remde et al. (1993) NO, NO2, O3 marsh soil dynamic none
Roelle et al. (1999) NO, NO2 corn soil dynamic none
Roelle et al. (2001) NO agricultural soils dynamic none
Skiba et al. (1993) NO ryegrass dynamic none
Slemr and Seiler
(1984)

NO, NO2 grassland soil dynamic none

Sparks et al. (2001) NO2 25 leaf species dynamic leaf chamber none
Stella et al. (2012) NO agricultural soil dynamic, automated

lid
agreed with gradient method for low
fluxes, but underestimated high fluxes

Unsworth et al.
(1984)

O3 soybeans dynamic, open top canopy resistances comparable to
other field studies

Dijk and Duyzer
(1999)

NO forest soil dynamic none

Williams and
Davidson (1993)

NO grassland dynamic comparison of 2 chamber types

Yamulki et al.
(1995)

NO agricultural soil dynamic none

3.2 Methods

3.2.1 Overview

We conducted gas-phase dry-deposition experiments in a grassy clearing in the Blackwood

Division of Duke Forest in Orange County, North Carolina, USA (35.97 N, 79.09 W). The field is
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480 m x 305 m, and the vegetation is primarily tall fescue (Festuca arundinacea Shreb.), which is a

common C3 grass in the southeastern United States. Less-prominent vegetation includes C3 and

C4 grasses, herbs, and forbs, which are present in smaller amounts (Fluxnet, 2015).

We used five pairs of acrylic-glass flux chambers to measure dry deposition of O3 to the

grassland vegetation. Experiments were carried out in June and September, under a variety of

meteorological conditions. We compared the chamber results with eddy-covariance measurements,

which were conducted by the EPA at the same site.

3.2.2 Leaf-Area Index

The LAI in the field, as well as in Chambers A and B, was measured on November 11th. LAI

measurements in the open field were made by sampling at regular distances along 100 m transects

(n = 10 locations) to the southwest and northwest of the eddy-covariance tower (prevailing fetch)

with a LI-COR Model LAI-2000 plant canopy analyzer (LI-COR Biosciences, Lincoln, NE). LAI

measurements within the chambers were made by inserting the leaf area meter through a port at

the bottom of the chamber. Individual measurements consisted of one above-canopy measurement

and five below-canopy measurements. Three replicate measurements were taken in each chamber.

Measurements within the control chambers showed no difference between above- and below-canopy

measurements.

The LAI in the field was between 2.8 and 3.5, the LAI in chamber A was between 2.4 and

2.9, and the LAI in Chamber B was between 2.75 and 3.1. While the chamber-LAI measurements

were on the low end of the field measurements, they were inside the range of LAI measurements in

the field.

3.2.3 Eddy-Covariance Measurements

Briefly, the eddy covariance approach ((Baldocchi et al., 1988)) for measuring the vertical

exchange of momentum, heat, and mass is based on the simplified form of the mass balance for a

scalar (c), at time (t), in a notional control volume, at height (z) within the surface layer, expressed
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as:

∂c

∂t
+
∂wc

∂z
= Sδ(z), (3.1)

where wc is the total covariance of c and the vertical velocity, w, S is the surface exchange

rate, and δ(z) is the Dirac delta function. Overbars denote Reynolds averaging. If the scalar field is

stationary, the first term on the left-hand side of Equation (3.1) reduces to zero. After integrating

from z = 0 to the top of the control volume (h), Equation (3.1) further reduces to

wc(h) = S. (3.2)

Finally, the total covariance, wc, is decomposed into mean (wc) and fluctuating (w′c′, i.e.,

eddy flux) components, using an appropriate averaging operation (i.e., Reynolds decomposition),

such that wc = wc + w′c′. Assuming that the mean vertical velocity is zero, the surface exchange

(S) becomes equivalent to the eddy-covariance flux:

F = w′c′, (3.3)

where the overbar represents time averaging, usually 30 minutes, and the primes represent

deviations from the mean, e.g.,

c′ = c− c. (3.4)

Above-canopy fluxes of CO2, H2O, O3, sensible heat, and momentum were measured using an

instrument package, which consisted of an R.M. Young sonic anemometer (Model 81000V, Traverse

City, MI), aspirated thermocouple (Model ASPTC, Campbell Scientific, Logan, UT), LI-COR

(Lincoln, NE) Model 7500 (CO2 and H2O) open path infrared gas analyzer (IRGA), and a custom

fast chemiluminescence O3 sensor, positioned at 2.5 m above the canopy. Gas-phase instruments

were calibrated weekly by mass flow controlled dilution of compressed gas standards with clean air.

Wind speed components (u, v, w), temperature, and air concentrations were sampled at a frequency
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of 10 Hz, and data were recorded on a single laptop, using a custom data-acquisition system. Data

were reduced to 30-minute and hourly averages using a custom SAS program (Institute, 2003).

Eddy-covariance O3 fluxes were measured with a custom sensor that follows the basic design

of Guesten and coworkers (1992), which consists of a pump (Model BTC IIS miniature diaphragm

pump, Parker, Hollis, NH), a reaction cell, and a photomultiplier tube (Model H9306 side-on pho-

tosensor, Hamamatsu, Middlesex, NJ) (Guesten et al., 1992). While Guesten and coworkers (1992)

are generally credited with developing the first of these systems for flux measurement applications,

a number of variants of the original design have been developed over the following years (see Zahn

et al. (2012)). This measurement technique is known as “dry chemiluminescence”, and the air

sample passes over a disk, which is coated with Coumarin-1 dye (Bagus Consulting, Speyer, Ger-

many). The reaction of O3 with the dye results in luminescence, which is quantified by counting

the resulting photons with a photomultiplier tube that views the reaction chamber from the side

opposite the Coumarin disk. The ozone concentration is proportional to the number of photons

produced. However, this is not an absolute measurement, and the disks have a limited lifetime

over which the photon yield per unit O3 decreases. Thus, to calculate the absolute flux, the fast

sensor must be calibrated to a second collocated sensor. The second sensor measures absolute

O3 concentrations, at a frequency consistent with the time scale of the flux, which is 30 minutes

to one hour. The collocated instrument is a Model 205 dual-beam instrument (2B Technologies,

Boulder, CO), which measures O3 by UV absorption. Ozone fluxes were calculated from 10 Hz

measurements, calibrated to the 2B sensor, using the ratio-offset method recommended by Muller

and coworkers (Muller et al., 2010).

For flux calculations, 10 Hz data were subjected to spike filtering, 2-D coordinate rotation,

correction for the time delay between the chemical sensor and vertical velocity, application of Webb-

Pearmon-Leuning correction (CO2, H2O), and correction for high-frequency spectral attenuation

(O3) (Horst and Weil, 1994). The fast O3 sensor has an effective time response of approximately

1.5 Hz. At lower frequencies, the cospectra of O3 and vertical velocity match the shape of the tem-

perature/vertical velocity cospectra well, with both following the generalized cospectral character-
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istics described by Kaimal and Finnigan (Kaimal and J.Finnigan, 1994). In this case, the method

described by Horst (1997) was used to correct for spectral attenuation at frequencies >1.5 Hz (Horst

and Weil, 1994). Tests for stationarity and the presence of fully developed turbulence were also

applied (Foken and Wichura, 1996).

3.2.4 Ancillary Measurements

Ancillary measurements included net solar radiation (Rebs Q7.1 Net Radiometer, Campbell

Scientific, Logan, UT), photosynthetically active radiation (Model LI190 quantum sensor, LI-COR,

Inc., Lincoln, NE), soil heat flux (Model HP101 heat flux plate, Hukseflux USA, Inc., Manorville,

NY), soil temperature (thermocouple, OMEGA Engineering, Stamford, CT), soil volumetric water

(Model CS615 water content reflectometer, Campbell Scientific, Logan UT) leaf wetness (Model

237, Campbell Scientific, Logan UT) and rainfall (Model TE525 rain gauge, Campbell Scientific,

Logan, UT). Data are recorded on a Campbell Scientific CR23X data logger and reduced to 30-

minute and hourly averages.

3.2.5 Flux-Chamber Description

The dynamic flux chambers, which are shown in Figure 3.1, were constructed using clear,

cylindrically shaped acrylic. The chambers were constructed in pairs, and each pair had an open-

bottomed chamber, which measured deposition to the vegetation inside, and a “blank” chamber,

which had an acrylic bottom, and enabled us to measure deposition in the absence of vegetation.

The “blank” measurement represents trace-gas losses to the chamber walls as well as any chemical

reactions in the chamber that are unaccounted for in the flux calculations.

All of the chambers have a 45.7 cm diameter and 0.48 cm wall thickness. Four pairs of

chambers have a height of 83.8 cm, and the remaining pair has a height of 58.4 cm. The chambers

were designed with this height distribution because many species of natural vegetation, including

grassland, are taller than 58.4 cm. The shorter chambers were designed to measure fluxes over

shorter vegetation, such as alpine tundra, which is present in sensitive areas such as Rocky Mountain
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National Park. The shorter chambers are likely more accurate for vegetation below 59 cm tall, since

they increase the ratio of vegetative surface area to volume.

The chambers were designed to minimize deposition of trace gases to the chamber walls,

which was accomplished by placing the inlet and outlet holes in locations that limited contact

between the flow path and the chamber walls. Ambient air enters the chambers through four holes,

which are each 5.2 cm in diameter, and evenly spaced around the circumference of the chamber.

The chamber outlet is at the top of the chamber, as shown in Figure 3.2. The grass outside the

chamber, near the inlet holes, is removed, which prevents trace gases from depositing to external

vegetation before the air stream enters the chamber.

Air is pulled through the chamber by a US General 3 CFM Two-Stage Vacuum pump, and

concentration samples were measured in one of two polytetrafluoroethylene (PTFE) tubes at the

outlet. Gas-phase sampling is discussed in more detail in Section 3.2.6.

For most experiments, the pump was set to pull 80 L min−1 of air through the chamber. In

addition to the flow induced by the vacuum pump, the 2B ozone monitor pulled approximately

Figure 3.1: The photo above shows a pair of flux chambers at the field site in the Duke Forest.
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Figure 3.2: The plot above shows the dimensions of the chamber, and the locations of the air inlets
and outlet.

1 L min−1, and the small, inexpensive pump, which pulled air over the inexpensive sensors, pulled

5 L min−1. Thus, the total flow rate through the chamber was 86.35 L min−1, which equates to

a residence time of 1.5 minutes. Pape and coworkers found that other researchers have operated

dynamic flux chambers with residence times ranging from 10 seconds to 24 minutes, and chose to

operate their dynamic flux chambers at a residence time of 40 seconds (Pape et al., 2008). Gillis

and Miller found that changes in air-stream residence time in flux chambers caused proportional

changes in mercury flux for both absorption and emission (Gillis and Miller, 2000). Aeschlimann

and coworkers used a residence time of 15 seconds during the day and 60 seconds at night (Aeschli-
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mann et al., 2005), which reflects ambient diurnal variation in friction velocity. Low residence

times ensure that chambers are well-mixed, and minimize reactions between gases in the chamber.

However, reducing residence times also reduces the difference in ambient and steady-state trace-gas

concentrations in the chamber. Thus, as residence time is decreased, more precise instrumenta-

tion is required. We chose to operate our chambers with a 1.5-minute residence time, because

1.5 minutes is sufficiently low to keep environmental conditions close to ambient yet still yield a

trace-gas concentration change that is large enough to be detected by inexpensive sensors. This

residence time also translates to a flow rate that can be generated with an inexpensive pump. Fur-

ther reducing the residence time would have required investment in a significantly more expensive

pump, as well as more precise sensors, which would undermine the goal of creating an inexpensive

flux-measurement system.

Another way that we reduced the cost of the chamber, was by designing our own control

system, using inexpensive electronic components. A customized embedded-system platform was

used to automate the flux chamber sampling system. The system is based on the low-cost M-Pod

air quality monitor (Masson, 2015), with additional instrumentation for pump and actuator control.

Firmware running on the common Atmel (San Jose, CA) Atmega 328 microcontroller controls both

the data logging and flux-chamber sampling routine.

Each chamber runs approximately once an hour, and the main vacuum pump is off when the

chamber is not sampling. Once per hour, a predefined and automated sampling schedule begins,

and the vacuum pump turns on and runs with the lid open for 6.75 minutes. The pressure change

caused by the pump can cause fluctuations in instrument readings, and this boot up time allows

the instruments to stabilize before the chamber lid closes. After the 6.75 minute initialization,

the chamber lid closes, and remains closed for 5 minutes. It is important to note that the eddy-

covariance measurements are fluxes averaged over a 30-minute or 1-hour time period, and the

chamber measurements are a 5-minute average, taken every 53 minutes.

Fluxes were calculated based on the assumption that the chamber was well mixed. A mass

balance in the chamber yields the equation,
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V
dµj(t)

dt
= Qµj,amb −Qµj(t)− FjAs, (3.5)

where µj(t) is the mixing ratio in the chamber of gas, j, with respect to time, Q is the flow

rate of air through the chamber, µj,amb is the ambient mixing ratio of gas, j, t is time, As is the

surface area of the opening at the bottom of the chamber, V is volume of the chamber, and Fj is

the flux of gas, j, to the vegetation. Differentiating, µj(t) is found to be

µj(t) = µj,amb −
FjAs

Q
(1− e−

Q
V
t). (3.6)

The steady-state solution to this equation, solving for flux, is

F =
Q

As
(µj,amb − µj(τss)), (3.7)

where τss is the time when the trace-gas concentration in the chamber reaches steady state.

3.2.6 Gas-Phase Measurements

Figure 3.2 shows the flow path of sample air through the chamber. Gas-phase measurements

were conducted at the chamber outlet, which consisted of an 11.4 cm diameter PVC pipe. Chamber

air was pulled through the outlet via the main vacuum pump. Two 4.76 mm-diameter tubes were

attached to the sides of the PVC pipe on one end, and instruments on the other. One tube was

connected to a 2B Technologies Model 202 Ozone Monitor. The second tube was connected to a

small vacuum pump, which moved air through the chamber control box.

In addition to the control board, the box housed metal-oxide NOx and O3 sensors. Addi-

tional data was collected using these commercially available sensors, specifically the Sensortech

(Chemlsford, UK) (formerly e2v) MICs-2611 O3 sensor. All low-cost sensors implemented in the

flux-chamber system ranged in cost from $10-$100, and the O3 sensors had a detection limit well

within typical concentration changes seen in ground-flux measurements. Complex quantification

schemes are necessary to quantify the sensor output properly. Such schemes incorporate correction
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parameters for interference effects. Inexpensive sensor technology has the potential to be incorpo-

rated into a flux-chamber system effectively, which would make widespread flux measurements a

realizable objective. More information about the instruments is available in Table 3.2.

3.2.7 Comparison of Eddy-Covariance and Flux-Chamber Measurements

Theoretically, dry deposition flux (F ) is proportional to the ambient concentration (C) of

a trace gas at some reference height (Seinfeld and Pandis, 2006). The proportionality constant

between the concentration and flux is called “deposition velocity” (vd) (Chamberlain and Chadwick,

1953), and

F = −vdC. (3.8)

The deposition process has been described using a resistance analogy (Wesely and Hicks,

2000), in which species transport from the atmosphere to the surface of a material is controlled by

three resistances in series.

vd = rt = ra + rb + rc, (3.9)

where rt is the total resistance to deposition, ra is the resistance to aerodynamic transport,

rb is the resistance to diffusion through the quasi-laminar boundary layer, and rc is the resistance

to uptake of a trace gas by the canopy.

This resistance analogy is based on the assumption that the atmosphere is unaltered. It is an

accurate analogy for eddy-covariance measurements, but flux chambers alter the wind speed above

Table 3.2: Trace Gas Detectors, with Manufacturers’ Specifications

Gas Detection Method Manufacturer & Model Detection Limit Precision
O3 UV Light Absorption 2b Technologies (Boulder, CO) 202 1.5 ppb ± 1.5 ppb
NOx chemiluminescence Thermo Scientific (Waltham, MA) 42S 0.4 ppb ± 0.4 ppb
CO2 non-dispersive infrared LI-COR (Lincoln, NE) 7000 0 ppm 0.01 ppm
H2O non-dispersive infrared LI-COR (Lincoln, NE) 7000 0 ppm 0.01 ppm
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the canopy, so the resistance analogy must be adjusted. Pape and coworkers proposed an alternate

resistance scheme (Pape et al., 2008), which replaces ra with rpurge and rmix, which represent the

purging resistance between ambient and chamber air, and mixing in the chamber, respectively.

When the chamber is well mixed, rmix is very small, and it can therefore be neglected in this case.

rb is replaced with a modified boundary-layer resistance, r∗b. rc should be modified very little

by the chamber, provided the chamber does not substantially alter the environmental conditions

(temperature, relative humidity) of the natural environment.

Thus, the ratio of chamber flux to ambient flux can be written as

Fcham

Famb
=
ra + r∗b + rc

rpurge
+ ρd(µcomp − µamb), (3.10)

where ρd is the molar density of dry air molecules, and µcomp is the compensation point

mixing ratio (Pape et al., 2008).

The results presented in this paper are not corrected using this ratio. While this conver-

sion factor enables chamber flux to be scaled to eddy-covariance flux, it significantly increases the

complexity of data processing, and introduces modeling assumptions to an otherwise direct mea-

surement. We present a direct comparison between chamber and eddy-covariance measurements,

and will note any bias in chamber measurements.

3.3 Results & Discussion

3.3.1 Data Processing

We collected O3 flux data for 8 days. We used two pairs of identical tall chambers, and one

pair of shorter chambers. Each set of data was based on a five-minute sampling period, which

occurred once per hour. The flux during each sampling period was assumed to be constant. Each

data run was analyzed for noise and pattern, and some data sets excluded from results.

Figure 3.4 is an example of a sampling period that we excluded from our results. The ozone

concentration increased by an unreasonable amount when the chamber lid opened, which likely
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Figure 3.3: The plot above is an example of ozone data that can be analyzed using the steady-state
mass-balance equation. The data before the lid is closed and at the end of the sample both have
low noise, and stay relatively constant for at least one minute.

indicates malfunction in the 2B ozone monitor. 9 % of Chamber A data were excluded, 11 % of

Chamber B data were excluded, and 0 % of the Chamber C data were excluded.

Figure 3.3 shows the ozone concentration in the chamber during one sampling period, as an

example of ozone data that can be analyzed using the steady-state solution. The area before the

decline of the ozone concentration represents the time period when the chamber lid was open. After

the lid closed, the concentration began to decline, and eventually reached a steady-state value. This

data set met our data-quality requirements, as the data just before the lid closed and at the end

of the sample both have low noise, and stay relatively constant for at least one minute. Therefore,

the flux was computed using the steady-state solution (Equation (3.7)).

When the ambient ozone concentration is below 5 ppb, we assume that the ozone flux is zero.

Ambient O3 concentrations of 5 ppb or lower typically occur only at night, when wind speeds are

low, which means that the aerodynamic resistance to deposition is high, equating to a low flux.

The absolute highest flux rate that could occur, with an ambient concentration of 5 ppb, is 0.09µg

m−2 s−1 (from Equation (3.7)), and a flux rate this high is very unlikely with low wind speeds.

The median ozone-flux rate measured via eddy covariance, when the ambient ozone concentration



44

20:57 20:58 21:00 21:01 21:02 21:04 21:05 21:07 21:08 21:10

0

2

4

6

8

10

12

14

16

18

20

Time of Day

O
z
o
n
e
 C

o
n
c
e
n
tr

a
ti

o
n
 (

p
p
b
)

    vacuum pump

  pulls air through

  the chamber, and 

ozone concentration

   increases at an

   unrealistic rate

lid closes and

concentration 

  in chamber

      drops

concentration

  in chamber  

  approaches

 steady state

Figure 3.4: The plot above is an example of a run where the data could not be used to calculate a
flux. The ozone concentration increases by an unreasonable amount when the chamber lid opens,
which likely indicated malfunction in the 2B ozone monitor.

was ≤ 5 ppb, during the eight-day sampling period, was 0µg m−2 s−1, with a standard deviation

of 0.05µg m−2 s−1.

We did not use the blank chamber data to make any adjustments to the fluxes measured

by the dynamic chambers. The median difference between ambient concentration and steady-

state ozone concentration was 1.9 ppb for the blank chambers. Since the uncertainty in ozone

concentrations, measured by the 2B ozone monitor is ±1.5 ppb, the concentration difference is

within a 95 % confidence interval for noise. Thus, correcting chamber fluxes for blank flux would

only introduce more error into our measurements.

Also, the median flux measured by the blank chambers, when the open-bottom-chamber flux

was nonzero, was -0.001µg m−2 s−1. This value is less than 1 % of the median of the non-zero

open-bottom-chamber fluxes, which was -0.21µg m−2 s−1. Therefore, correcting for the blank

chamber fluxes would not have a significant impact on measurements. It was encouraging that the

blank fluxes were so small, since this indicated that wall losses do not have a significant impact on

the flux-chamber measurements. Since wall losses were insignificant, the chamber design could be

further simplified by eliminating the blank chambers.
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3.3.2 Photochemistry in the Chamber

Photochemical reactions between NO, NO2, and O3 can occur in the chamber, and therefore

must be considered in Equation (3.5) (Meixner et al., 1997), (Pape et al., 2008). The primary

reactions of concern are

NO + O3 → NO2 + O2 (3.11)

and

NO2 + hv
O2−−→,NO + O3, λ < 420 nm. (3.12)

Because of the relationships shown in reactions 3.11 and 3.12, NO, NO2 and O3 must all be

measured simultaneously (Pape et al., 2008). Using reactions 3.11 and 3.12, the change in NO and

NO2 mixing ratios is:

dµ(NO)

dt
= −k µ(NO)µ(O3) (3.13)

dµ(NO)

dt
= j(NO2)µ(NO2), (3.14)

where k is the first-order rate constant of Equation (3.11), and j(NO2) is the photolysis rate

of NO2 (Pape et al., 2008; Seinfeld and Pandis, 2006). The net source (Sgp) of gas-phase NO

resulting from Reactions (3.11) and (3.12) within the chamber, is

Sgp(NO) = V[ j (NO2)µcham(NO2)− kµcham(NO)µcham(O3)]. (3.15)

The rates of formation for NO2 and O3 are equal or inversely proportional to the rates of

formation for NO, and

Sgp(NO) = Sgp(O3) = −Sgp(NO2). (3.16)
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Combining these reaction sources or sinks with the mass balance from Equations (3.5) and

(3.7) yields

V
dCj(t)

dt
= Qµj,amb −Qµj(t)− FjAs + Sgp, (3.17)

and

F =
Q

As
(µj,amb − µj(t)) +

Sgp

As
. (3.18)

Pape and coworkers measured j(NO2) inside their chamber, and found that the average value

of j(NO2) inside the chamber was 48 % of the value outside the chamber (Pape et al., 2008). They

fit a curve of j(NO2) versus global radiation (G), and we used that curve in our calculations, since

our chambers were similar in shape and material. To quantify the impact of this assumption, we

calculated how increasing and decreasing j(NO2) by 25 % affects ozone flux, and found that this

changes ozone flux by <1 % in all cases. The maximum flux change due to photolysis in all of our

results is 1.7 %. Thus, the impact of photolysis on ozone flux was small during our study.

3.3.3 Results

We measured ozone dry deposition with flux chambers for two days in June, and eight days

in September. When compared with eddy-covariance measurements, flux-chamber ozone mea-

surements were able to capture the diurnal flux trends. It is important to remember that eddy-

covariance measurements are not without error. For an eddy-covariance system similar to the one

used in this study, Finkelstein and Sims ((Finkelstein and Sims, 2001)) found that mean sampling

errors for 30-minute-average eddy-covariance O3 fluxes were in the range of 27-33 %.

Figure 3.5 shows O3 fluxes measured via eddy covariance, and flux chambers A, B and C,

and also calculated using an indirect method, which combined meteorological data and surface-

exchange model for the time period between September 22nd and September 28th. The theory

used to calculate the model values is described by Wesely (1989) and Seinfeld and Pandis (2006).
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Figure 3.5: The plot above compares O3 fluxes measured using eddy covariance (solid black line and
black dots), surface-exchange modeling (red triangles), and flux chambers A (orange diamonds), B
(blue stars), and C (green dots). The tick marks represent midnight on the date listed.

The surface-exchange model results underestimated the mean eddy-covariance flux rate by

26 % between September 22nd and 27th. This is a good model-to-measurement match, but it

is important to remember that the models do not always predict flux accurately (Wu et al.,

2012), (Schwede et al., 2011).

Chamber A was moved from its original location in the field to a different position on Septem-

ber 24th. Prior to being moved, the chamber was on a plot of land with a less-prevalent vegetation

type, which had a higher LAI than the dominant vegetation (see Figure 3.6) . After the chamber

was moved to a location with more representative vegetation, the data matched the eddy-covariance

results much better. Before the chamber was moved (September 18th and 23rd), the mean ozone-

flux rate measured by eddy-covariance was -0.16µg m−2 s−1, and the mean chamber flux rate was

-0.23µg m−2 s−1, which is 48 % higher than the eddy-covariance measurement. After the move

(September 24th-27th), the mean eddy-covariance flux rate was -0.25µg m−2 s−1, and the mean

flux measured by the chamber was -0.26µg m−2 s−1, which is 4 % higher than the eddy-covariance

measurement. This difference in measurement agreement highlights the importance of selecting a
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Figure 3.6: Chamber A (left). Chamber B (right) – The vegetation in Chamber A, prior to being
moved on 9/24, was not representative of the typical vegetation type or LAI at the site. As a
result, flux measurements prior to the move were large when compared with measurements from
other chambers and eddy covariance. The vegetation in Chamber B was representative of the
vegetation in the field.

chamber placement that contains vegetation representative of that in the footprint of the eddy-

covariance tower.

Chamber B operated from September 18th to 19th, and again from September 23rd to

September 27th. The mean ozone flux measured by the flux chamber during this period was -

0.17µg m−2 s−1, which is 9 % higher than the mean eddy-covariance ozone flux during the same

period (-0.15µg m−2 s−1).

Chamber C, which is the shorter chamber, was operated between September 18th and 19th,

and again between September 24th and 27th. The mean chamber flux measured during this period

was -0.115µg m−2 s−1, which was 6 % lower than the mean eddy-covariance flux during the same

time period (-0.108µg m−2 s−1).

In addition to the September measurements, data were collected for four days in June. The

chambers underestimated ozone flux by 50-100 % in June, and we believe that this was because
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the the LAI was much lower in the chambers than in the field during that time. We did not

measure LAI during our June sampling period, but we estimate, by visual inspection, that LAI

in the chambers was about 50 % lower in June than in September. The mean grass height in the

field did not significantly change between June and November, and measured heights were 42.2

and 43.7 cm, respectively. Further studies that measure ozone deposition with various known LAI

values in the chamber could confirm the effects of changing LAI on measured flux.

There was not a systemic bias in the ozone flux data. The excellent agreement between the

September flux-chamber and eddy-covariance measurements demonstrates that the flux chamber is

capable of measuring ozone flux to grassland ecosystems when the LAI inside the chamber represents

the average LAI in the field. Therefore, we conclude that, under the environmental conditions in

this study, it is not necessary to use Equation (3.10) to scale the dynamic-chamber flux to the

eddy-covariance flux.

3.4 Conclusions

Ozone deposition onto grassland ecosystems was measured using dynamic flux chambers and

eddy covariance. Measurements from the two methods matched very well (4–10 % difference) when

the LAI inside the chambers was representative of the average LAI in the field. This discrepancy

is within the uncertainty of eddy covariance, and the flux chambers are considered an accurate

measurement system under these conditions. There was not a bias in the chamber data, when

compared with the eddy-covariance data.

When LAI inside the chambers was significantly higher or lower than the rest of the field,

chamber measurements over- or under-predicted flux, respectively. A discrepancy between chamber

and average LAI values can be caused by both inconsistency in vegetation density and differences in

vegetation species. Eddy-covariance systems can only measure net flux to an entire fetch (>100 m2),

which means that they measure a mean flux to all vegetation in the field, and cannot measure flux

to small patches of different vegetation types. Flux chambers are able to measure flux onto different

patches of vegetation, which enables the user to understand the relative contribution of different
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vegetation species to total flux.

We found that the median ozone flux measured by the blank chambers, when the open-

bottom-chamber flux was non zero, was -0.001µg m−2 s−1. This value is less than 1 % of the

median of the non-zero open-bottom-chamber fluxes, which was -0.21µg m−2 s−1. Therefore, we

can conclude that we achieved the design goal of minimizing trace-gas interactions with the walls

of the chamber.



Chapter 4

Metal-Oxide Sensor Calibration Methods Paper

The second paper on my work, which focuses on improving the performance of metal-oxide

ozone sensors via statistics and machine learning, follows this page. It is being submitted to

Atmospheric Measurement Techniques.

4.1 Introduction

Exposure to high concentrations of ozone can cause a variety of negative health effects (Lipp-

mann, 1989). These effects include lung inflammation, increases in respiratory-system-related hos-

pital visits, cardiopulmonary mortality, and alterations in sleep patterns, neurotransmitters, short

and long term memory, and motor activity (EPA, 2013). State and federal regulatory agencies take

continuous measurements of ozone concentrations at centralized locations. Because current ozone

monitoring systems are costly and consume large quantities of power, the number of monitoring

sites is limited.

Ozone concentrations can vary spatially, and are often lower in the immediate vicinity of

roadways due to reactions with NO (EPA, 2013). Concentrations can also be higher in locations

downwind of an urban area than in the urban core, due to ozone’s formation as a secondary

pollutant. These local-scale variations can have a sizable impact on the relative magnitude of

ozone concentrations in urban areas. This variability in outdoor ozone concentrations can lead to

error estimates of personal exposure. Additionally, since the ratio of indoor and outdoor ozone

concentrations varies based on air-exchange rate and a number of other factors, and the amount
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of time individuals spend indoors varies from person to person, ratios between personal exposure

and ambient outdoor concentration can vary between 0.1 and 0.9 (EPA, 2013). More accurate

measurements of personal exposure can be obtained through the use of monitoring networks with

high spatial coverage, as well as portable devices. This scale of measurements has historically been

prevented by the cost of monitoring devices, but recent development of low-cost monitors is aimed

at solving this problem (Almand-Hunter et al., 2015; Aoki et al., 2008; Hasenfratz et al., 2012;

Mead et al., 2013; Piedrahita et al., 2014a; Shum et al., 2011; Williams et al., 2009).

Federal reference method (FRM) measurements of O3 are taken using monitors that rely on

the detection of chemiluminescence, which is the product of the reaction between O3 and NO (EPA,

2013). These monitors typically cost USD 10 000 to 20 000, and use approximately 1 kW of power.

A slightly less costly method for measuring ozone concentrations is UV absorption, which is a

federal equivalence method (FEM). UV absorption sensors typically cost USD 2000 +, and consume

approximately 4 W of power. Metal oxide (MOx) ozone sensors, which we use in our low-cost

monitors, cost between USD 5 and 100, with power consumption as low as 90 mW.

Mead et al. (2013), Aoki et al. (2008), Williams et al. (2009) and Hasenfratz et al. (2012)

used MOx sensors to measure ozone in previous studies. While MOx sensors cost 0.05 - 5% as much

as UV absorption and chemiluminescence sensors, their use is not without challenges. MOx sensors

respond to changes in ambient temperature and relative humidity, and their output is non-linear

with respect to gas concentration (Barsan and Weimar, 2001; Delpha et al., 1999; Marco, 2014;

Masson et al., 2015; Piedrahita et al., 2014a; Romain et al., 1997; Sohn et al., 2008). Additionally,

response can vary from sensor to sensor (Romain and Nicolas, 2010).

Many groups have explored the use of machine-learning algorithms for improving sensing

results. Sundgren et al. (1991) used partial least squares and artificial neural network models to

calibrate MOx H, NH3 and acetone sensors. Di Natale et al. (2002) used independent component

analysis to separate environmental disturbances from the meaningful portion of their data for an

electronic nose. Kamionka et al. (2006) calibrated MOx O3 and NO2 sensors using neural networks.

De Vito et al. (2009) used neural networks to calibrate their MOx CO, NOx and NO2 sensors, which
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they used to monitor urban air pollution. Zampolli et al. (2004) used a fuzzy associative memory

neural network to calibrate MOx CO and NO2 sensors. Wolfrum et al. (2006) calibrated metal-

oxide VOC sensors using principal component analysis and partial least squares regression models.

Vergara et al. (2013) calibrated a metal-oxide sensor array using support vector machines.

This work is focused on the use of machine learning techniques for improving metal-oxide

ozone sensor calibrations. Collocation calibrations were performed, as previous deployments have

revealed that collocation calibrations, with real-world ambient conditions, provide more accurate

concentration estimates than laboratory calibrations (Piedrahita et al., 2014a).

4.2 Methods

4.2.1 Experimental Setup

Low-cost measurement pods, which we call pods, were equipped with Sensortech MiCS-2611

O3 sensors and Maxdetect RHT03 temperature and humidity sensors. The pods are based on the

Arduino UNO microcontroller and the Arduino programming language, and log data onto microSD

cards. Collocation calibrations were completed during two separate weeks (before and after a 4-

week field deployment) in July and August of 2014. The pods were placed on the roof of CAMP

(Continuous Air Monitoring Project), a reference station maintained by the Colorado Department

of Public Health and the Environment, in downtown Denver, CO (EPA Air Quality System Site

Number 080310002). A Teledyne T400E UV absorption O3 analyzer was used as an FEM reference

instrument, and the pods were placed approximately 3 m below the inlet of the reference monitor.

The average error for the Teledyne monitor ozone concentration measurements was -1.1% during

the collocation period. Pods were powered and continuously running throughout both calibration

periods.
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4.2.2 Data Analysis

4.2.2.1 Ozone, Temperature & Relative Humidity Correlations

As mentioned above, the metal-oxide ozone sensors respond to temperature and humidity

in addition to ozone, so it is important to include these parameters in calibrations. Figure 5.2

shows the correlations between reference ozone, MOx ozone sensor signal (mV), temperature and

humidity for Pod A. The correlation between the reference ozone and MOx ozone is -0.87, which is

reasonable, since the MOx ozone voltage response is inversely proportional to ambient ozone. The

correlation between the reference ozone concentration and temperature is 0.71, which is logical,

since ozone is typically high when ambient temperatures are high. The correlation between the

MOx ozone sensor and temperature is smaller, at -0.52 (the negative sign is because the sensor

response is inversely proportional to ambient ozone). The correlation between relative humidity

and reference ozone concentration is -0.46, which implies that high relative humidity is inversely

proportional to ambient ozone concentration, which is typically true, as relative humidity is usually

highest when temperatures are low. The correlation between the MOx ozone sensor signal and

relative humidity is -0.44, which means that relative humidity has the opposite effect on the sensor

signal than it has on ambient ozone concentration.

4.2.2.2 Data Preprocessing

The algorithms in this code were developed using the sci-kit learn, SciPy, and NumPy libraries

in Python (Jones et al., 01 ; Pedregosa et al., 2011). Before analyzing the data, we completed

several preprocessing steps. First, we removed any outliers that were clearly machine error. Next,

we applied a finite impulse response filter to the reference and pod ozone data, for intervals of 5,

10, and 20 minutes, but ultimately found that better models were produced with no smoothing.

The data were prescaled in two steps - first to a range between zero and one, then to zero mean

and unit variance.

After scaling the data, it is split into half-day long chunks, and three of these chunks were
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Figure 4.1: The visualization above shows the correlations between reference ozone, metal-oxide
ozone sensor signal, temperature and humidity..

randomly selected to use as holdout data. The rest of the data were used as a training set. We

chose to split data into chunks to prevent leakage of information from the training set to the cross-

validation set. The first and last 90-minutes of data for each training and holdout set were removed

to prevent contamination via the time-series features. The holdout data represents at least 15% of

each dataset. To aid in model selection, we used a custom cross-validation set, where one half-day

of data at a time was held out. Final model evaluations are based on the true holdout set.

4.2.2.3 Linear Regression

Linear regression assumes that the relationship between a predictor and response variable is

approximately linear, and because of its simplicity, it is a good jumping off point when developing a

regression model (Gareth et al., 2013). Additionally, we have found in previous studies that linear

regressions perform similarly to more complex calibration functions for MOx sensors (Piedrahita

et al., 2014a). The first step in this analysis was to perform simple linear regressions with the
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measured (base) features (raw metal-oxide ozone sensor signal, temperature, and humidity).

Figure ?? is a comparison between the ozone values predicted by a linear regression model,

using the data from the low-cost sensors, and the ozone values measured by a reference instrument.

The root-mean-square error (RMSE) for this regression is 6 ppb, which means that the mean differ-

ence between the reference ozone concentration measurements and the model predictions is 6 ppb.

This RMSE seems good, especially when you consider the fact that we’re comparing the perfor-

mance of a metal-oxide sensor to a reference instrument that uses UV photometry. However, when

you look at Figure ??, you can see that at high ozone values (¿ 50 ppb), the model significantly

underpredicts ozone (by an average of 10.4 ppb, with an RMSE of 11 ppb). Since exposure to high

ozone concentrations can negatively impact health, it is critical to measure high concentrations

accurately. Improving these high-value measurements without compromising overall accuracy was

a goal of this work.

Figure 4.3 shows the distribution of the predicted and reference data. The blue lines repre-

sent how the data would look if it were perfectly normally distributed, and examining the actual

data distribution in the bins shows us that the scaled data was approximately normally distributed.!
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Figure 4.2: The plot above shows the results of a linear regression model created using the measured
features (2b ozone sensor voltage signal, temperature, and humidity).
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Figure 4.3(b) shows the distribution of the reference data. There was an abrupt cutoff at a con-

centration of zero, since ozone concentration cannot be less than zero. Notice that when the ozone

concentration was above 50 ppb, the bins match the normal distribution very closely. The ozone

concentration predictions in Figure 4.3(a), on the other hand, abruptly drop off around 60 ppb, and

there were no predicted concentrations above 65 ppb.

4.2.2.4 Learning Curves

When data is fit poorly, it is important to determine whether the data has more of a bias

(underfitting) or variance (overfitting) problem before deciding how to proceed. In this work,

Predicted(Ozone(Concentra/on(

020( (((((((((0 (((((((((((((20 ((((((((((((40 (((((((((((60 ((((((((((80(

0.035(

0.030(

0.025(

0.020(

0.015(

0.010(

0.005(

0.000(
020(

Ozone(Concentra/on((ppb)(

(a)

!20$ $$$$$$$$$0 $$$$$$$$$$$$$20 $$$$$$$$$$$$40 $$$$$$$$$$$60 $$$$$$$$$$80$

0.030$

0.025$

0.020$

0.015$

0.010$

0.005$

0.000$
!20$

Reference$Ozone$Concentra8on$

Ozone$Concentra8on$(ppb)$

(b)

Figure 4.3: The figures below are histograms of the ozone concentrations measured by the reference
and pod results (base features, linear regression). The concentrations measured by the pods (figure
(a)) max out around 60 ppb, while the reference measurements (figure (b)) go up to 80 ppb.
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learning curves were used to evaluate where each model lies in the bias-variance spectrum. Learning

curves visualize how error (RMSE, in this case) for a cross-validation set and training set change

as the number of training samples increases (Friedman et al., 2001). Figure 4.4 shows learning

curves that indicate bias and variance problems. Figure 4.4(a) is a learning curve for a linear

regression with the base features, and it indicates a bias problem. The training and cross-validation

error converge at a somewhat high RMSE value. A model with a bias problem can be improved

by acquiring additional features, adding polynomial effects, and/or decreasing the value of the

shrinkage penalty. Figure 4.4(b), which is discussed in more detail below, shows a learning curve

for a fit with high variance. As the number of samples increases, the gap between the training

error and cross-validation error remains large. For a fit that suffers from high variance, measures

that may improve the fit include reducing the number of features, increasing the shrinkage penalty,

and/or acquiring more data.
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Figure 4.4: The figures below are learning curves, which indicate bias and variance. Figure 2(a)
indicates a bias problem. As the number of samples is increased, the training and cross-validation
error converge at high values. Figure 2(b) shows a variance problem. As the number of samples
increases, the gap between the training error and cross-validation error remains large.
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4.2.2.5 Feature Engineering

Since the base features (ozone, temperature and relative humidity signals) result in a fit

with high bias, additional features were created by transforming the base features; these included

polynomial features (x2, x3, xy, x2y2, etc.), logarithmic features, and square root features. To

characterize the time-series effects, we also created features representing the area under the ozone

sensor signal curve, temperature curve, and humidity curve for 5, 15, 30, 45, 60, and 90 minutes

before and after each data point. The slopes of the ozone, temperature and relative humidity

curves for the time periods mentioned above were included as features. Next, we created interaction

features for these curves, and also integral and slope features for the logarithmic base features.

After creating 320 additional features, learning curves were used to evaluate whether or

not the additional features led to high variance. Figure 4.4(b) is an example of a fit that led to

overfitting. This can be remedied by reducing the number of features used to create the fit. While

the learning curves for some sensors in this study did not indicate indicate serious overfitting,

finding the most important features is always advisable, as it is preferable to keep models as

simple as possible without compromising accuracy. As complexity increases, fitting becomes more

computationally expensive, and models become more difficult to interpret.

4.2.2.6 Forward-Stepwise Selection

Various methods (principal component analysis, best-subset selection, backward- and forward-

stepwise selection) can be used to extract the most important features for a model. For this work,

we started with forward-stepwise selection, as it provides a good balance between accuracy and

computational expense. A forward-selection algorithm starts with the intercept, then adds the

predictor that produces the best fit. Features are added sequentially, finding the best fit at each

step (Friedman et al., 2001). Various scoring functions (R2, mean-squared error, mean absolute

error) can be used to evaluate the quality of a fit and aid in selecting the most important features.

In this work, a custom error function was created to choose the best features. As mentioned in
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Section 4.2.2.3, a linear model of the base features underestimates ozone at high values. The custom

error function was designed to select features that optimize model fit at high values. Instead of

using the standard equation for MSE,

MSE =
1

n

n∑
i=1

(ŷi − yi)2, (4.1)

where yi are the reference values, ŷi are the predicted values, and n is the number of samples,

a custom error function was used.

error =
∣∣∣(Cm,r − Cm,p)−

√
MSEhigh + 0.1MSElow

∣∣∣ , (4.2)

where Cm,r is the median of the reference ozone data for high reference ozone concentrations

( ¿ 50ppb), Cm,p is the median of the predicted ozone data for high reference ozone, MSEhigh is

the mean squared error at high ozone values, and MSElow is the mean squared error at low ozone

values. The weights of MSEhigh and MSElow put ten times more emphasis on the MSE at high

values than low values. The Cm,r minus Cm,p term penalizes under predictions.

Using this modified error function to select the most important features improved the fit at

high values compared with the standard MSE function, without substantially increasing the overall

MSE.

A common approach to choosing important features is to select the most parsimonious model

which has error within one standard error of the minimum value (Friedman et al., 2001). Since

a custom error function was used to select the best features, and we needed to evaluate each

additional feature‘s effect on both the custom error and the overall RMSE, we did not use this

method. Instead, at each step, a combination of the custom score, RMSE, and learning curves were

used to evaluate whether or not to include additional features in the model.

Forward selection can reduce the error of a model and improve interpretability. However,

since features are either kept or removed, it is a discrete process, and can sometimes lead to high

variance, resulting in a model that does not have an improved prediction error (Friedman et al.,
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2001). Shrinkage methods, which place a penalty on high coefficient values, are more continuous,

and can reduce variance. In order to test whether forward selection or shrinkage methods result in

the best model for the ozone data, all three methods were explored. The first shrinkage method

applied was a ridge regression.

4.2.2.7 Ridge Regression

Ridge regressions are very similar to least squares regressions, and they minimize

n∑
i=1

yi − β0 −
p∑
j=1

βjxij

2

+ λ

p∑
j=1

β2
j . (4.3)

where β0 and βj are the model coefficients, yi are the observed values, and xij are the predictor

(feature) values, and λ ≥ 0 is a tuning parameter (Gareth et al., 2013; Hoerl, 1962). The sum on

the left side of the equation is the residual sum of squares, and Equation 4.3 can be written as

RSS + λ

p∑
j=1

β2
j . (4.4)

A least squares regression computes coefficients (β0, β1, ..., βi) that minimize the RSS. The

ridge regression adds a shrinkage penalty, λ
∑p

j=1 β
2
j , which penalizes large β values. The tuning

parameter, λ, which represents the bias-variance trade off, balances the weight of these two terms.

When λ = 0, the shrinkage penalty is zero, and the regression is equal to a least squares regression.

When λ is very large, the RSS term becomes small in comparison with the shrinkage penalty, and

the coefficient estimates approach zero. As the value of λ increases, the model flexibility decreases,

which reduces variance but increases bias (Gareth et al., 2013). To choose the best λ value, the

custom error was calculated (Equation 4.2) for a range of λ values. Our methods for choosing the

best value for lambda are described below.
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4.2.2.8 Lasso Method

The main disadvantage of ridge regressions for feature selection is that they include all of the

original features in the final model. While the shrinkage penalty forces the coefficients toward zero

as λ is increased, they will never reach zero (unless λ = ∞) (Gareth et al., 2013). This can make

interpreting models very challenging. Tibshirani (1996) developed a method, called the Lasso,

which overcomes this problem. The lasso coefficients, β̂Lλ , minimize

n∑
i=1

yi − β0 −
p∑
j=1

βjxij

2

+ λ

p∑
j=1

|βj | = RSS + λ

p∑
j=1

|βj |. (4.5)

The only difference between the equation for the ridge regression (equation 4.4) and the

lasso (equation 4.5) is the replacement of the β2
j term with |βj | in the penalty. This changes

the regularization penalty from type l2 to l1. l2 penalties shrink the coefficient values of less

important features, whereas l1 penalties force the less-important coefficients to zero, yielding a

sparse model. l1 penalties are also easier to interpret, since they have fewer features. When most of

the predictors in a model are important, l2 penalties are better at minimizing prediction error than

l1 penalties, since they do not remove features from the model. On the other hand, when the model

contains extraneous features, l1 penalties produce better results, as they remove these features.

Since the importance of each feature is never known a priori, the methods can be compared via

cross validation (Gareth et al., 2013).

It is important to choose the shrinkage parameter, λ, wisely for both ridge and lasso regres-

sions. Figure 4.5 consists of visualizations that aid in the selection of the lambda. The higher the

value of lambda, the larger the penalty placed on high coefficient values. Figure 4.5(a) shows how

the coefficients change as lambda is increased, and Figure 4.5(b) shows how the custom error func-

tion varies with lambda. The optimal lambda value is the one that results in the lowest error, and

a different lambda value was chosen for each pod. The best lambda values ranged from 0.000003

to 3138.
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Figure 4.5: The plots below are visualizations that aid in the selection of the shrinkage parameter,
lambda, for the lasso reduction method. The higher the value of lambda, the larger the penalty
placed on high coefficient values. Plot (a) visualizes how the coefficients change as lambda is
increased, and plot (b) shows how the custom error function varies with lambda. The optimal
lambda value is the one that results in the lowest error.

4.2.3 Ensemble Regression Methods

4.2.3.1 Random Forests

Random forests are a tree-based ensemble method, which combines many randomized decision

trees and outputs the mode of the mean predictions from all of the trees (Breiman, 2001). We

applied random forests to the calibration data for five pods in this study, using all of the engineered

features, as well as the best features chosen via forward selection. The models produced led to

results with very high variance. Because the results were far inferior to those produced using the

other methods mentioned in this paper, we chose not to apply random forests to the data for the
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remaining pods. This poor performance is likely due to the fact that random forests often overfit

noisy regression data. Additionally, while random forests are popular due to their ease of use and

typical good performance, their results are difficult to interpret.

4.2.3.2 Support Vector Machines

Support Vector Machines (SVM) are a machine learning algorithms that can be used in classi-

fication and regression problems (Vapnik et al., 1996). SVMs are an extension of the idea of separat-

ing hyperplanes, which are linear boundaries that separate data into different categories (Friedman

et al., 2001). Support Vector Machines for Regression (SVMR) work in a similar fashion to SVMs

(Smola and Schölkopf, 2004).

To estimate the coefficients, β, in a linear model, linear SVMRs minimize the function,

n∑
i=1

V (yi − ŷi) +
λ

2
||β||2, (4.6)

where

Vε(r) =


0 if |r| < ε,

|r| − ε otherwise.

r is the residual of a given data point, and Vε(r) is an “ε-insensitive” error measure, which

ignores errors smaller than the value of ε, and λ is a shrinkage parameter, similar to that of lasso

and ridge regressions. In essence, linear SVMRs are similar to shrinkage methods, but they only

consider data points with an error above some value, ε, in their minimization function. There

are also non-linear generalizations of Support Vector Machines, the most common of which is the

addition of a Gaussian Kernel.

In this work, models were generated using both linear and Gaussian SVMRs, and tried both

methods with all of the generated features. A grid search was used to find the best value of ε for

each metal-oxide sensor, and considered epsilon values of 0.1, 1, and 10.
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4.3 Results

4.3.1 Model Performance

Linear regression, feature creation, forward selection, ridge and lasso regressions, random

forests, and support vector machines were used to calibrate low-cost metal-oxide ozone sensors. The

use of a linear regression model with the best features, selected from a set of generated features,

substantially improved calibration accuracy. While the best features were selected using forward

selection with a custom error function, standard linear regression was used to create a model with

those features. For 75% of the pods, the best results were produced using a linear model with

the best features extracted via forward-stepwise selection. For the other 25% of pods, the lasso

regression method produced the best results. The cases that performed best with a lasso regression

had learning curves that indicated high variance (at least 3 ppb difference between training and

cross-validation RMSE for the 10 best features). The cases where linear regression with the best

features was most accurate, on the other hand, had learning curves that did not indicate high

variance for up to 15 features ( ¡ 2 ppb difference between training and cross-validation RMSE).

A comparison of the absolute differences between the medians of the reference and predicted

data for the various methods employed in this study is shown in Figure 4.6. Ridge regressions

produced inferior results to the methods above, probably because they have an l2 regularization

penalty, and do not reduce the number of features in a fit. SVMs, evaluated using all of the

generated features, did not perform as well as the best methods. Like ridge regressions, SVMs have

an l2 regularization penalty. Since we generated a large number of features, many of which are not

important, the lack of feature reduction in SVMs and ridge regressions led to overfitting. While

SVM’s emphasis on high-error data points can be good at reducing overall error, it does not place

the same emphasis on high ozone-concentration value errors as the methods that allowed the use

of the custom error function. This is an example of a case where the flexibility of simpler methods

outweighs the power of more complex methods. Using the best features chosen by forward selection

with ridge and lasso regressions and SVMs did not improve upon the forward selection results; the
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Figure 4.6: The box plots below show the absolute difference in medians between the reference and
pod ozone measurements for ambient ozone concentrations higher than 50 ppb. All of the methods
shown below outperformed linear regressions with the base features. The box, labeled “Best (FS)”
represents the outcomes of a linear regression with the best generated features, extracted using
forward-stepwise selection. The “Best Overall” box represents the models determined to be the
most accurate (best forward selection for 75% of pods and lasso for 25%). While switching 25% of
the pods to the lasso model slightly increases the absolute median difference between the pod and
reference measurements, it improved the RMSE for pods that had variance problems.

most important features were carefully chosen, so further reducing them did not improve the model.

Figure 4.7 compares results for ozone concentrations using a linear regression with the base

features and when the best regression model is employed (linear with forward-stepwise selection or

lasso). The performance metric used in Figure 4.7 is the absolute difference between the median

high-ozone value ( ¿ 50ppb) for reference data and the and the median high-ozone value for predicted

data. The linear model with base features produced differences in high ozone-concentration medians
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of up to 16 ppb, with a median difference of 4.9 ppb, and standard deviation of 4.1 ppb. The largest

absolute difference in high ozone-concentration median between the reference measurements and

pods for the best regression model is 5 ppb, with a median of 2.5 ppb and standard deviation of

1.3 ppb.

To further demonstrate the performance of the various models for high ozone concentrations,

we explored the RMSE for the model fits, using the holdout data. Figure 4.8(a) shows the high

ozone-value RMSE for the base features and best features. The high ozone-value RMSE is reduced

in 15 of the 16 pods. The median high ozone-value RMSE for the linear model with base features

is 6 ppb, with a standard deviation of 3.7 ppb. The median and standard deviation of the RMSE

values are reduced to 4 ppb and 1.1 ppb, respectively, when the best models are used.

The emphasis on improvements in the fit at high values did not lead to a less accurate model

at lower values (see Figure 4.8(b)). Employing the best models rather than a linear regression

with base features reduced the overall RMSE in 15 of the 16 pods. The median overall RMSE was

reduced from 6 ppb to 5 ppb, and the standard deviation was reduced from 2.5 ppb to 1.6 ppb.

For four weeks between collocation calibration studies, the pods were deployed across a 10 km

by 10 km region in Erie, CO. Pod P, however, was located at the collocation site for twenty days.

This relatively large dataset enabled us to evaluate the model on a larger holdout set. Figure 4.9

shows the results from holding out the first and last five days of data, and using the middle 10

days of data to train the model. Figure 4.9(b), which represents the holdout data, with the best-

features linear model applied, shows a substantial improvement over the base model (Figure 4.9(a)).

The overall RMSE, high ozone concentration RMSE, and high ozone value median difference were

reduced from 9 ppb to 4 ppb, 8 ppb to 3 ppb, and 8 ppb to 2.5 ppb, respectively, by using the best

models instead of a linear regression with the base features.

From July 22nd to August 20th, 2014, Pod I was at the Boulder Atmospheric Observatory,

and was approximately 50 m from an FEM ozone monitor (2b Technologies Model 202). The FEM

monitor was at a height of 10 m, and the pod was at a height of 1.5 m. Due to imperfect mixing

and dry deposition, the ozone concentrations measured at the two heights can not be expected to
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Figure 4.7: This slopegraph shows how the difference between the medians of high-ozone values
(> 50 ppb) measured by the reference instrument and the pods changes when the regression model is
changed from linear with the base features (pod ozone sensor signal, temperature, relative humidity)
to a linear model with the best created features.
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(a)

(b)

Figure 4.8: The bar graphs below show the high-value ( ¿ 50 ppb) RMSE and overall RMSE for
holdout data for linear models using the base features and best created features.

be exactly equal, but the concentrations should be similar, and comparing them is an interesting

exercise for contrasting the different models. Figure 4.10 shows a comparison of the FEM ozone

data, and the pod data, using the base calibration model and the best model described above. The
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Figure 4.9: The plots above show how reference and pod ozone measurements compare for Pod
P. Twenty days of data were collected, and the first and last five days were used as holdout data,
which is the data shown here. Plot (a) shows the results of a linear model with the base features
(pod MOx ozone senzor voltage, temperature, and relative humidity). Plot (b) shows the results
of a linear model with the best generated features extracted using forward stepwise selection. The
green lines represent a one-to-one fit.

best features model consistently provides higher estimates of daily peak ozone values than the base

model, and provides concentration estimates very close to those measured by the FEM monitor.

When the ambient ozone concentration is greater than approximately 75 ppb, the pod pre-

dicts lower concentrations than the FEM monitor. While this could be due to the difference in

measurement height, it is likely that, even with the improved model, the pod is still slightly under-

predicting the highest ozone concentrations. The training data for this pod, which were gathered

during the collocation calibration, were all at concentrations below 75 ppb. This highlights the im-

portance of calibrating the pods using data that contains the highest ozone values the pods could

encounter during deployments. This is a limitation of using collocation calibrations; we cannot

control atmospheric conditions, and it is probable that peak ozone values will not occur during

ambient-environment calibrations. Future work should combine real-world collocation data with
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Figure 4.10: The plots above show ambient ozone, measured by a Pod I, first calibrated using a
linear model with the base features (green), then a linear model with the best features (orange),
and finally a nearby FEM ozone monitor (purple).
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laboratory calibrations that represent the entire range of ozone values that could be observed during

a deployment, with emphasis on high values.

4.3.2 Implications of the Most Important Features

Table 4.1 lists the features that appeared in the “best features” list for four or more of the 16

pods. The most common feature,
∫ t+5
t ln (VO3), was important in 75% of the pods. VO3 is the raw

voltage reading from the MOx ozone sensor, and the fact that it is in natural log form means that

it emphasizes low values of VO3 . The ozone sensor response is inversely proportional to ambient

ozone concentration, so low VO3 equate to high ozone. The feature looks at the integral over the

5 minutes after the reading, which could imply a slower response to ozone changes from the MOx

sensor than the reference instruments, and/or act as a smoothing mechanism.

The next most common important feature is T 3, which was important for 56% of pods.

Cubing a feature emphasizes high values, and ambient ozone is typically high when temperatures

are high, so this effectively emphasizes periods of high ozone. Next is V 2
O3
T 2 (important for 56% of

pods), which looks at the interaction between V 2
O3

and T 2. The sensitivity of MOx sensors changes

with ambient temperature, so it is not surprising that an interaction term between sensor signal and

temperature is important (Masson et al., 2015; Piedrahita et al., 2014a). Additionally, response

can vary from sensor to sensor (Romain and Nicolas, 2010). Because the features are squared,

they both emphasize high values. The next most important feature is ln (VO3) (56% of pods),

which emphasizes low VO3 (high ambient ozone) values. ndays, which is the number of days since

the start of the first calibration, was important for 31% of the pods, and represents sensor drift.

V 2
O3
RH2 (31% of the pods) represents the interaction between V 2

O3
and RH2. As mentioned in

section 4.2.2.1, relative humidity has the opposite effect on the sensor signal that it has on ambient

ozone concentration, so considering the combination of the two signals is insightful.
∫ t
t−90 ln (T )

(31% of the pods) represents the area under the natural log temperature curve for 90 minutes

before the data point being analyzed. The natural log term emphasizes low temperature values.

This term implies that the sensor’s response to temperature is important for 90 minutes.
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Table 4.1: The features which appear in the “best features” list for at least four pods are listed
below.

Feature Number Feature Number of Pods

1
∫ t+5
t ln (VO3) 12

2 T 3 9

3 V 2
O3
T 2 6

4 ln (VO3) 6

5 ndays 5

6 V 2
O3
RH2 5

7
∫ t
t−90 ln (T ) 5

8
(∫ t+5

t ln (VO3)
)(∫ t+5

t ln(RH)
)

4

9
∫ t+5
t VO3 4

10 RH3 4

11
(
VO3,t

−VO3,t−90

90

)(
Tt−Tt−90

90

)
4

Features that are important for 25% of the pods include
(∫ t+5

t ln (VO3)
)(∫ t+5

t ln(RH)
)

,∫ t+5
t VO3 , RH3, and

(
VO3,t

−VO3,t−90

90

)(
Tt−Tt−90

90

)
. The meanings of the first three features are similar

to the features discussed above.
(
VO3,t

−VO3,t−90

90

)(
Tt−Tt−90

90

)
looks at the interaction between the

change in ozone sensor signal for 90 minutes before the data point being analyzed and the change

in temperature during the same time period.

4.4 Conclusions

Creating a large number of features, which leverage time-series data, as well as feature in-

teractions between the MOx ozone sensor, temperature, and relative humidity, then extracting the



74

best features led to substantial improvements in pod ozone measurements when ambient concentra-

tions are high. When learning curves did not indicate overfitting (75% of pods), forward stepwise

selection of the best features, using a custom error function, followed by linear regression with the

best features yielded the best results of the methods discussed in this work. When learning curves

indicated overfitting (25% of pods), extracting important features using the lasso method with a

custom error function produced the most accurate model.

These relatively simple methods of developing models outperformed the more complex meth-

ods, Random Forests and Support Vector Machines. The poor performance of Random Forests was

probably due to the fact that the random forest algorithm could not be customized to emphasize

high ozone concentrations. Like Random Forests, Support Vector Machines could not be customized

to emphasize high ozone concentrations. Also, SVMs do not reduce the number of features in a fit,

which can led to overfitting. The same is true of ridge regressions. While sophisticated algorithms

can be very powerful, they often lack the flexibility of their simpler predecessors, which, in this

case, meant that the simpler methods produced better models.

While the modeling in this work drastically improved our calibration results, sensors un-

derpredicted ozone values that were higher than those seen during collocation calibrations. We

recommend that future studies combine collocation calibrations, which represent real-world condi-

tions, with laboratory calibrations that include exposure to the highest ozone concentrations that

could be encountered in the field.

Finally, an inspection of the most important features across all 16 pods revealed that the

area under the natural log of the ozone signal, for five minutes after the data point being evaluated,

is the most important feature in creating an accurate model. Two of the eleven most common

features included temperature for ninety minutes before the data point being considered, which

indicates that the changes in temperature can affect the sensor signal for 90 minutes. Interaction

terms between ozone signal and both relative humidity or temperature were important, reaffirming

that both environmental conditions affect the sensor signal. Future laboratory experiments, where

one of the three conditions (ozone concentration, temperature and humidity) is changed at a time
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could improve understanding of these results and sensor response.



Chapter 5

Front Range Air Pollution and Photochemistry Experiment (FRAPPE)

Summertime ozone concentrations in the Northern Front-Range Metropolitan Area (NFRMA)

of Colorado frequently exceed the National Ambient Air Quality Standards (NAAQS). Atmospheric

modeling in the NFRMA is challenging due to the complex topography of the area, as well as the

diversity of pollutant sources (urban NOx and VOCs, power plants, oil and gas, agricultural emis-

sions, biogenic emissions, and wildfires). Modeling boundary-layer O3 deposition is challenging,

and varies spatially due to micrometeorology, variation in ambient concentration, and ecosystem

productivity. Model grid cells typically range in size from 10 to 100 km and 100 to 500 km, for

regional and global models, respectively, and accurate representations of an entire grid cell cannot

always be achieved. Large spatial variability within the grid cells of these models contributes to

poor estimates of trace-gas flux and concentration.

5.1 Methods

To address this issue, I used dynamic flux chambers with low-cost metal-oxide ozone sensors

to explore the spatial variability in ozone concentration and dry deposition during the Front Range

Air Pollution and Photochemistry Experiment (FRAPPE). The experiment consisted of three flux

chambers, and collected 720 hours of data for each chamber. All three chambers were within a 8.3

x 6 km square. One chamber was in the same location as the Boulder Atmospheric Observatory

(BAO) tower, and was connected to a 2B Technologies Ozone Monitor. The other two chambers

were at distances of 3.22 and 7.55 km from the tower. The largest distance between any two
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chambers was 8.5 km. All three chambers measured flux onto native grasslands across a range of

natural variability in species and ecosystem productivity.

Collocation calibrations were performed during the study, as previous deployments have

revealed that they provide more accurate concentration estimates than laboratory calibrations

because they expose the sensors to real-world ambient conditions (Piedrahita et al., 2014a). This

was the most challenging aspect of the study. As mentioned in Chapter 3, MOx sensors respond to

changes in ambient temperature and relative humidity, and their output is non-linear with respect

to gas concentration (Barsan and Weimar, 2001; Delpha et al., 1999; Marco, 2014; Masson et al.,

2015; Piedrahita et al., 2014a; Romain et al., 1997; Sohn et al., 2008). Additionally, response can

vary from sensor to sensor (Romain and Nicolas, 2010). Calibrating metal-oxide sensors for use

in flux chambers is even more challenging than for ambient measurements since the opening and

closing of the chamber lid leads to rapid changes in temperature and humidity.

One of the chambers was equipped with both MOx sensors and a 2B Technologies Ozone

Monitor for the entire study. This enabled us to compare the flux results from the MOx sensors

and 2B ozone monitor for the entire duration of the study.

5.2 Results

5.2.1 Environmental Conditions in the Chambers

Figures 5.1e and 5.1f show the temperatures in the pod for one measurement cycle in the

afternoon and one in the middle of the night, when ozone concentrations are high and low, re-

spectively. In both cases, the temperature rises after the chamber lid closes. During the day, the

increase in temperature is likely caused by solar radiation. However, the temperature also increases

in the pod in the middle of the night, so there must be another source of heat. The chamber op-

erates by pulling air into the pod from the outlet of the chamber, and this air is constantly cycled

through the pod at 5 L min−1. A larger pump pulls air at 80 - 90 L min−1 from the same outlet.

It is likely that the increase in temperature in the pod is related to the increase in pressure drop
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that results from closing the chamber. The volumetric flow rate to the pod is likely reduced as a

result of this increase in pressure drop, which reduces the rate at which the heat produced by the

electronics is removed. Regardless of the cause of the rise in temperature, it affects the sensitivity

of the ozone sensor.

Figures 5.1g and 5.1h show the absolute humidity during the afternoon and in the middle of

the night, respectively. During the day, the relative humidity in the chamber increases when the lid

closes, which is due to the evapotranspiration of the vegetation in the chamber. However, even in

the middle of the night, when there is no evapotranspiration, the relative humidity in the chamber

drops slightly when the lid closes. This is likely due to the increase in temperature, and does not

reflect a change in absolute humidity.

Figures 5.1a and 5.1b show how the raw voltage data from the ozone sensor changes during

a measurement cycle. During the day (Figure 5.1a), the raw signal increases during the chamber

closure. Since the sensor response is inversely proportional to ozone concentration, this is the

expected result. At night (Figure 5.1b), the sensor signal is approximately constant. The fact

that the change in ozone concentration is much smaller at night than during the day (50%, in this

case) contributes to this, but the response to temperature and humidity also affects the signal.

Figure 5.2 shows the correlations between sensor signal, ozone concentration, temperature and

humidity. Decreasing ozone and relative humidity are correlated with increasing sensor signal

(labeled “pod ozone” in the plot), but increasing temperature is correlated with a increase in sensor

signal. These effects are likely canceling out the response to change in ozone concentration, which

is why it is important to consider temperature and humidity in calibrations. These relationships

are explained in more detail in Section 2.2.1 of Chapter 3.

5.2.2 Flux Measurements with 2B Ozone Monitor

Flux data measured by Chamber 2 (at the BAO Tower) with the 2B Technologies Ozone

Monitor, between July 18th and August 12th, 2014 is shown in Figure 5.3. Peak daily O3 flux

rates occurred between 15:00 and 18:00 and had values of 0.2 to 0.5µg m−2 s−2. Minimum daily O3
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Figure 5.1: The figure above shows the MOx sensor signal, ozone concentration, temperature, and
relative humidity in the pod for one measurement cycle in the afternoon ((a), (c), (e), (g)) and
one in the middle of the night ((b), (d), (f), (h)), when ozone concentrations are high and low,
respectively.
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Figure 5.2: The matrix above show correlations between sensor signal, ozone concentration, tem-
perature and humidity.
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flux rates occurred between 5:00 and 7:00, and had values of -0.05 to 0.25µg m−2 s−2. Flux rates

followed a similar trend for most days, with a few outliers.

5.2.3 Sensor Calibration

I used the regression techniques described in Section 2 of Chapter 3 to calibrate the MOx ozone

sensors in the chambers. Figure 5.4 shows the ozone concentrations measured by the MOx ozone

sensors in chamber 2 on August 3rd and 4th, 2014. Data from eight minutes before the lid closure

and eleven minutes after were used to calibrate the sensor. The reference ozone concentration

during these periods decreases, which reflects the deposition of ozone. The ozone concentration

measured by the MOx sensors, on the other hand, stays relatively constant during each chamber

closure. This is due to poor calibration results, which are caused by the rapid changes in relative

humidity and temperature after the closure of the chamber lid.

I resolved this problem by developing two separate calibration models – one for the last eight

minutes before the chamber closed, and one for the last three minutes the chamber was closed

before reopening. Figure 5.5 shows the results of this dual calibration method for chamber 3. The

solid pink and purple lines represent reference measurements from the 2B ozone monitor for when

the chamber was open and closed, respectively. The orange and green dashed lines represent MOx

ozone sensor measurements for when the chamber is open and closed, respectively.

This method results in a much better match between the measurements from the MOx ozone

sensors and the 2B Ozone monitor. While the concentrations do not always match perfectly, they

follow the same trends, and the difference between the open and closed values is similar.

5.2.4 Comparison of 2B Ozone Monitor and MOx Sensor Results

Figure 5.6 compares between flux rates measured by Chamber 2, using the 2B ozone monitor

and MOx sensor from July 28th to August 11th, 2014. While the data loosely follow a one-to-

one trend, they are very spread out, and have a low correlation (R2 = 0.1). Because of this

poor fit, the measurements acquired using the flux chambers and the MOx sensors cannot be
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Figure 5.4: This plot shows the ozone concentrations measured by the MOx ozone sensors in
chamber 2 on August 3rd and 4th, 2014, using a single regression model.

Figure 5.5: This plot shows the ozone concentrations measured by the MOx ozone sensors and
2B Ozone Monitor with chamber 3 from July 26th through August 1st, 2014, using one regression
model for when the chamber lid was open, and a separate model for when the chamber lid was
closed.
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considered reliable for hourly measurements. The MOx sensors performed much better for time-

averaged measurements. For the 15-day period studied, the mean flux rate measured by the MOx

sensors was -0.23 µg m−2 s−1, which is a 21% overestimation of the flux measured by the 2B ozone

monitor (0.19 µg m−2 s−1). The source of much of this error is a 110% overestimation of fluxes at

ambient ozone concentrations below 20 ppb, when flux measurement uncertainty is highest. For

ambient ozone concentrations above 20 ppb, the MOx sensor measurements only exceeded the 2B

flux measurements by 14%.

5.2.5 Spatial Variability Results

Figure 5.7 shows ozone concentrations measured by Chamber 1 using the MOx ozone sensors

at the Erie Private Airport between July 26th and August 1st, 2014. Average afternoon ozone con-

centrations at the airport were about 10 ppb lower than those at the BAO tower. Figure 5.8 shows

chamber measurements of ozone, measured by Chamber 3 at Frederick High School in Frederick,

CO between July 26th and August 1st, 2014.

The average flux ozone flux values between August 1st and 6th, 2014 for Chambers 1, 2, and

3 (Erie Airport, BAO Tower, and Frederick High School) were 0.21 µg m−2 s−1, 0.28 µg m−2 s−1,

and 0.18 µg m−2 s−1, respectively. Ambient ozone concentrations at the BAO Tower were up to

20 ppb higher than Frederick High, which supports the lower flux rate. Given these results, we can

conclude that low-cost flux chambers with MOx ozone sensors can be used to measure time-averaged

spatial variability in ozone flux.
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Figure 5.6: The plot above compares flux rates measured by Chamber 2, using the 2B ozone monitor
and MOx sensor

Figure 5.7: The plot above shows ozone concentrations measured by Chamber 1 using the MOx

ozone sensors at the Erie Airport between July 26th and August 1st, 2014.
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Figure 5.8: The plot above shows ozone concentrations measured by Chamber 3 (at the Fredrick
High School) using the MOx ozone sensors between July 26th and August 1st, 2014.



Chapter 6

Conclusions

In order to better understand the behavior of atmospheric ozone, from ambient concentrations

to atmospheric deposition, it is crucial to acquire more measurements. This can be achieved through

the use of low-cost instrumentation, including metal-oxide ozone sensors. The first portion of this

work was centered around developing affordable dynamic flux chambers, which were demonstrated

to be capable of accurately measuring ozone flux to grassland vegetation when paired with 2B

Ozone Monitors. The next part of this work involved completing a field study using these flux

chambers, with the goal of incorporating low-cost metal-oxide sensors to measure flux. When

collocation calibrations proved to be difficult, the focus shifted to improving sensor quantification

models.

During the first part of this work, the flux chambers we developed were collocated with an

eddy covariance system in the Duke Forest in Chapel Hill, NC, and ozone deposition onto grassland

ecosystems was measured using both methods. Measurements from the two methods matched very

well (4–10 % difference) when the LAI inside the chambers was representative of the average LAI in

the field. This 4–10 % difference is within the uncertainty of the eddy covariance measurements, and

the flux chambers can be considered an accurate ozone-flux measurement system when combined

with 2B ozone monitors.

The next step was to use these chambers measure spatial variability in ozone deposition

using low-cost metal-oxide sensors with the dynamic flux chambers. Collocation calibrations of the

sensors proved to be very difficult because the ozone the sensors were exposed to abrupt changes in
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temperature and relative humidity every time the chamber lid opened and closed. Because of this

challenge, we deemed it necessary to improve the models that we use to calibrate our sensors. The

previous calibration models yielded particularly poor results at high ozone concentrations, even for

ambient measurements, so the next step was improve the performance of the models in the ambient

environment.

The first step in improving the models was to create a large number of features from the

original data, which leveraged time-series data, as well as feature interactions between the MOx

ozone sensor, temperature, and relative humidity. Next, we extracted the best features via forward

stepwise selection. Using these new features with a linear regression model led to a 42% reduction

in the underprediction of ozone at ozone concentrations > 50 ppb. The Lasso regression, which is a

linear regression with an L1 regularization, outperformed linear regression with forward selection

when learning curves indicated high variance.

These relatively simple methods outperformed the more complex ensemble methods, Random

Forests and Support Vector Machines, in this work. The lackluster performance of Random Forests

was probably due to the fact that the algorithm could not be customized to emphasize high ozone

concentrations. Support Vector Machines have the same problem. Also, SVMs do not reduce the

number of features in a fit, which can lead to overfitting. While sophisticated algorithms can be

very powerful, they lack the flexibility and interpretability of their simpler predecessors, which

exhibited superior performance in this work.

While model revisions led to greatly improved sensor performance in general, when ambient

ozone concentrations were much higher than during collocation calibrations, the underpredictions

of ozone concentration were more pronounced. We recommend that future ozone studies combine

collocation calibrations, which represent real-world conditions, with laboratory calibrations that

include exposure to the highest ozone concentrations that could be encountered in the field.

After developing more accurate models to calibrate the ozone sensors, we applied them to

the flux chamber collocation data. The new model resulted in more improved results for ambient

concentrations, but because of the rapid changes in temperature and relative humidity in the



88

flux chambers, results for flux measurements were inaccurate. The development of two separate

calibration models– one for the last eight minutes before the chamber closed, and one for the last

three minutes the chamber was closed before reopening, reduced this error. This improved results,

and concentrations measured with the MOx sensors followed the same trends, and had similar

concentrations to those measured by the 2B Ozone Monitor. While the results were improved,

the the correlation between the concentrations measured by the two devices was still low, and the

hourly measurements acquired using the flux chambers and the MOx sensors cannot be considered

reliable. The MOx sensors performed much better for time-averaged measurements. For the 15-day

period studied, the mean flux rate measured by the MOx sensors was only 21% greater than the

flux measured by the 2B ozone monitor. Therefore, the flux chambers with the MOx sensors can

accurately be used to measure weekly-average ozone flux.

In summary, this work resulted in low-cost flux chambers that accurately measure hourly

ozone flux rates when paired with 2B ozone monitors, and weekly ozone flux rates when paired

with MOx sensors. The cost of the chambers in combination with both 2B ozone monitors ($7000)

and MOx sensors ($2000) is much lower than the cost of eddy covariance. Additionally, a complete

overhaul of the models used to calibrate metal-oxide ozone sensors resulted in a 42% improvement

in the prediction of high ambient ozone values. The modeling algorithms developed in this work

can be applied to all of the sensors used by our group, which will improve results for a number of

studies.
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