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Abstract 

Stobbe, David (Ph.D., Mechanical Engineering) 

Lamb Waves with Conical Dispersion at Zero Wavenumber 

Thesis directed by Associate Professor Todd Murray 

 

Lamb waves are guided elastic waves in plates. These waves are dispersive, with the frequency 

and wavenumber related by the well-known Rayleigh-Lamb equation. Generally, at zero 

wavenumber the dispersion curves are parabolic and the waves are non-propagating thickness 

resonances. For distinct values of Poisson’s ratio, however, degeneracy can occur between 

thickness resonance modes. At these coincidence frequencies the dispersion curves become 

linear and in a three-dimensional representation the dispersion surface is shaped like a cone. This 

behavior is referred to as conical dispersion. Waves excited at coincidence frequencies maintain 

the infinite phase velocity associated with thickness resonances but transport energy at a finite 

group velocity. A unique characteristic of such waves is that they propagate with an infinite 

wavelength, resulting in uniform oscillation of the plate surface.  Conical dispersion essentially 

decouples the spatial and temporal behavior of the wave field and produces a field that is static in 

space yet oscillating in time. 

 The focus of this thesis is to investigate Lamb waves with conical dispersion in 

homogenous isotropic plates. The mode shapes and energy transport along the plate are analyzed 

in order to elucidate the origin of conical dispersion for a specific degenerate case. The 

theoretical group velocity is derived based on the velocity of energy transport. Conical dispersion 
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is measured in an aluminum plate by cooling the plate in order to tune Poisson’s ratio through 

the degenerate point. Linear dispersion at zero wavenumber is measured and found to agree with 

the theory. Waves excited near the degenerate frequency exhibited spatially uniform phase over 

the plate surface. Mode conversion upon encountering the free edge of the plate is studied. The 

mode converted field is found to propagate perpendicular to the plate edge, irrespective of angle 

of incidence.  This behavior is demonstrated by focusing a mode converted field from a semi-

circular edge in the plate. This peculiar type of lens will focus the field regardless of the location 

of the source on the plate. Experimental results also show that Lamb waves with conical 

dispersion flow around a hole in the plate without distortion. This phenomenon causes the hole in 

the plate to be hidden when observing just the long wavelength signal distal to the hole. All of 

the experimental results are confirmed by comparison with time domain finite element 

simulations. We propose that Lamb waves with conical dispersion allow the manipulation of 

elastic energy in novel ways and may find use in nondestructive evaluation of materials and 

development of acoustic devices. 
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Chapter 1 

Introduction 

1.1 Brief history of elastic waves 

Elastic wave propagation was first studied in the early 1800s by Young and Fresnel [1]. At the 

time they were investigating the nature of light, which, at the time, was thought to propagate 

through an elastic ether. Concurrently, the fundamental mathematics of classical elasticity was 

described by Cauchy and Navier [1] including the stress and displacement equations of motion. 

Additionally, Poisson [2] and Lamè [3] discovered that all elastic waves could be decomposed 

into dilatational (longitudinal) and equivoluminal (shear) waves, allowing the equations of 

motion to be represented by the sum of a scalar potential and a vector potential, each of which 

satisfies the wave equation. With these tools, 19
th

 century researchers studied the propagation of 

waves in elastic half spaces due to harmonic surface disturbances [4]. This work elucidated the 

existence and velocities of the common bulk wave modes: shear vertical (SV), shear horizontal 
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(SH), and dilatational (L), where the velocity of the first two are equal in the case of an isotropic 

medium. 

In the early 20
th

 century, interest in seismology spurred the study of wave propagation on 

elastic half spaces. Rayleigh was first to explore the behavior of waves propagating along the 

traction free surface of an elastic half space, leading to the discovery of the Rayleigh or surface 

wave [5]. Lamb then considered the propagation of a pulse through an elastic half space [6] and 

the problem now bears his name. Lamb’s problem was treated by later researchers [7] and most 

notably by Cagniard [8] who used Laplace and Fourier integral transforms to solve the transient 

wave problem. This technique is still used in modern elastodynamics, when finite element 

techniques are not employed. Love [9] considered modified Rayleigh waves which occur on the 

free surface of an elastic half space that is welded to another half space, where the upper half 

space has a low wave speed compared to the lower half space. Stonely [10] noted that in such a 

system a generalized Rayleigh wave occurs along the interface of the half spaces. This work laid 

much of the foundation for modern semiology. 

 Waveguides were first considered in the mid-18
th

 century as one-dimensional vibrating 

elastic bars and rods. The flexural (shear) vibrations of such bodies were derived by Euler and 

Bernoulli and the extensional (longitudinal) vibrations were derived by Navier [4]. In the late-

19
th

 century Pochhammer [11] formulated the general theory for vibrating cylinders of infinite 

length and traction free lateral surfaces. Pochhammer derived the frequency equations for such 

cylinders, which relates the frequency and wavenumber for flexural, extensional, and torsional 

waves. A similar analysis was performed on infinite plates that are traction free on the top and 

bottom surfaces by Lamb [12] and Rayleigh [13], where the frequency and wavenumber are 
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related by the Rayleigh-Lamb frequency equation. Waves which propagate in elastic plates are 

referred to as Lamb waves. 

Lamb waves 

The frequency equations for plates exhibit an infinite number of branches (modes) and due to the 

intractable nature of the equations, Lamb wave study was largely limited to the lowest frequency 

modes until the work performed by Mindlin in the mid-20
th

 century [14]. Mindlin was the first to 

sketch the shape of the higher-order real modes in an isotropic homogenous elastic plate of 

infinite dimension. He accomplished this by partitioning the frequency-wavenumber space using 

solutions to the uncoupled dilatational and equivolmunial waves. He then sketched the “terrace-

like” structure within these partitions of modes that occurred when the dilatational and 

equivolmunial waves interacted with one another. Mindlin curves are generally no longer 

necessary due to modern computers which are able to numerically solve the frequency equations. 

However, Mindlin curves are still useful in understanding the physics underlying Lamb waves 

and are but one of Mindlin’s many contributions to the field. The topic of elastic waveguides has 

been treated in great detail by several other modern authors: Miklowitz [4], Auld [15], Rose [16], 

and Achenbach [17].  

The renewed and continued interest in Lamb waves, since Mindlin’s work, has been due 

primarily to the engineering need for non-destructive structural health monitoring (NDSHM) and 

non-destructive evaluation (NDE) of materials. Lamb waves are useful in this regard due to their 

ability to inspect entire structures over long distances with high sensitivity to defects [18].  

Examples of Lamb waves used for NDSHM are: pipe systems, aircraft skin, and composite or 

layered structures [19-22]. Lamb waves are also used to characterize particular geometric 
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dimensions or material properties (NDE). A recent technique for measuring the elastic properties 

of plates using a laser excitation to excite selected plate resonances is discussed in detail in 

Section 1.2.1 due to its use in this manuscript. More recently, Lamb waves have drawn new 

interest due to advances in the field of metamaterials. Metamaterials are materials engineered to 

have properties which do not occur in nature and are often achieved using a repeated structure on 

or less than the wavelength scale of a particular phenomenon. Recently, metamaterials have been 

fabricated with a negative index of refraction; that is, they support backward propagating waves. 

Materials that display backward wave motion have been demonstrated in electro-magnetic and 

mechanical metamaterials [23-26], photonic and phononic crystals [27-29], and mechanical and 

electro-magnetic wave guides [30-35]. These materials allow for wave fields to be manipulated 

in novel waves including lensing from a flat interface [36-43]. Interestingly, simple elastic plates 

also support backward wave motion [44] and have been used to create a flat lens as well [45-46]. 

Backward propagating Lamb waves are discussed in more detail in Section 1.2.2 due to their 

relationship with conical point Lamb waves and this author’s own research on the matter. 

Another area of recent interest in both the photonics and acoustics communities is the 

development of metamaterials that exhibit conical dispersion at zero wavenumber [47-55]. This 

behavior is typically referred to as Dirac cone or Dirac-like cone dispersion and occurs in a 

material with a zero-index (ZIM) or near zero-index (NZIM) of refraction. These materials can 

be used to manipulate wave fields in novel ways including: tunneling, beam steering, total 

reflection, cloaking, and lensing [47-55]. Just as the case with backward waves, a similar 

behavior to Dirac cone dispersion also exists in Lamb waves. This fact was recently highlighted 

by Maznev [56] where he discussed the condition for occurrence of such waves in elastic plates 

and noted some of the similarities (and differences) between conical dispersion in plates and 
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metamaterials. This manuscript will demonstrate conical dispersion in a simple aluminum plate 

and experimentally show that Lamb waves with conical dispersion can be used to manipulate 

wave fields in interesting and novel ways. 

 

1.2 Modern topics in Lamb wave research 

1.2.1 Zero group velocity points 

A peculiar property of Lamb waves is the existence of frequency and wavenumber points where 

the phase velocity is finite but the group velocity is zero. These points are commonly referred to 

as zero group velocity (ZGV) points. One such point is shown and labeled as ZGV in Fig. 1.1, 

which shows the dispersion curves for a plate with Poisson’s ratio = 0.35. These points have 

been known since the 1950’s, but have recently experienced renewed interest [57-66] and have 

been shown to be a powerful NDE tool. Some NDE applications include: thin layer thickness 

measurement [63], interfacial stiffness measurement [64], and material property measurement 

[59]. ZGV Lamb waves are useful because the frequency at which they occur is a function of the 

plate thickness and elastic properties and their frequency can be measured with high accuracy. 

The high accuracy comes from the fact that ZGV points are stationary resonances and 

accordingly they slowly ring down over many cycles. This was first noted by Tolstoy and Usdin 

[67] who hypothesized the wave behavior of a ZGV point as “associated with a sharp continuous 

wave resonance and ringing effects”. Additionally, Prada et al. [58] reported that ZGV Lamb 

waves in thin plates could be excited with a low-power amplitude modulated laser source and  
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Fig. 1.1. Dispersion curves for Lamb waves in a plate with Poisson’s ratio = 0.35. The “S” and 

“A” refer to symmetric and antisymmetric modes, respectively. 

 

measured with a high-quality factor (Q) using an optical interferometer. A laser-based method 

for measuring Poisson ratio to within ±0.2% was presented by Clorennec et. al. [59]. The origin 

of ZGV points in the frequency dispersion stems from the repulsion of same symmetry modes 

[64]. The most commonly studied ZGV point is that shown in Fig. 1.1, which occurs at the 

intersection of the S1 and S2B modes and results from the repulsion of the S2 and S2B modes near 

zero wavenumber. One reason this ZGV point is of interest is because it occurs over the range of 

elastic properties commonly found in engineering materials (0 ≤ ν ≤ 0.43) [68]. The repulsion 

between the S2 and S2B modes near zero wavenumber causes a “dip” in the S2B mode and results 

in backward propagating waves in the S2B mode. Backward propagating waves are discussed in 

more detail in Section 1.2.2. The amount of repulsion between these modes is related to their 

proximity, which is set by the elastic properties of the plate. 
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1.2.2 Backward propagating Lamb waves 

For some Lamb wave modes, the dispersion curve has negative slope near zero wavenumber, as 

observed in the S2B mode in Fig. 1.1. This curvature results in backward propagating waves, 

which are waves with anti-parallel phase velocity and group velocity. Physically, backward 

waves emanate away from the source but the individual wave-fronts travel back toward the 

source. An interesting quality of such waves is that when they mode convert to or from a regular 

forward propagating wave, negative reflection and/or refraction occurs. Recent experiments have 

demonstrated that negative refraction can be used to create a flat tunable acoustic lens by 

machining a symmetric trough in an aluminum plate [45-46], an example of such a lens is shown 

in Fig. 1.2. 

 

Fig. 1.2. Normal displacement at 3.333 MHz of an aluminum plate excited by a pulse from a 

transducer array located at x = 0 mm and y = 0 mm. The wave field is focused within the 

symmetric trough due to negative refraction from the flat interface at x = 18 mm. The field is 

then focused again after the trough from the second flat interface at x = 51 mm [46]. 
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Further, consider a backward propagating Lamb wave that is incident on the free edge of a plate. 

The physics of such a scenario are interesting because if the incident backward wave mode 

converts to a forward wave upon reflection, it will be directed on the same side of the surface 

normal as the incident wave (negative reflection).  Negative reflection of Lamb waves was first 

shown by Germano et al. [69] by reflecting a forward propagating Lamb wave from the free edge 

of a steel plate and observing the reflected field on the same side of the surface normal as the 

incident wave. More recently, broad angle negative reflection was demonstrated by reflecting a 

backward propagating Lamb wave off the free edge of an aluminum plate [70-71]. Here the 

mode converted field was focused from the flat edge.  

 

Fig. 1.3. Normal displacement at 5.05 MHz of an aluminum plate excited by a continuous wave 

laser source at x = 0 mm and y = 0 mm. The plate has a flat edge located at x = 7 mm. The wave 

field is spatially bandpass filtered in order to isolate the reflected S1 mode. Negative reflection 

and field focusing can be observed [70]. 
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An interesting quality of dispersion curves that exhibit backward wave motion is that the 

backward propagating mode ultimately intersects with a forward propagating mode at a ZGV 

point. This is noteworthy because reflection between backward and forward modes (and vice 

versa) proximate to the ZGV point will nearly retrace one another. This behavior has been 

studied by Gérardin et. al. [71] where they show that “In the vicinity of the ZGV-point, wave 

numbers coincide and the wave is retro-reflected on the source. In this frequency range, the free 

edge acts as a perfect phase conjugating mirror.” 

This author has explored backward propagating Lamb waves and this work is detailed in 

Appendix A. In brief, this work used finite element analysis to explore aspects of negative 

refraction including Lamb wave steering and quantifying the ideal focusing resolution of an 

elastic lens.  The mode conversion efficiency between forward and backward Lamb waves as a 

function of temporal frequency, angle of incidence, and interface geometry was also explored. 

There is a demonstration of partial source annihilation using two sources, one generating a 

forward propagating wave and the other generating a backward propagating wave. Finally, 

although not discussed in Appendix A or in the current literature, it should be noted that regions 

of backward wave propagation appear to behave as a “complimentary material” [72] to regions 

of forward wave propagation. This author has briefly investigated this phenomenon and found 

that indeed regions of space can be effectively “cancelled out” using backward waves. This 

behavior and interpretation of backward waves is worthy of further investigation in this author’s 

opinion. 
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1.3 Dirac Points and Conical Dispersion 

The previous Sections discussed the Lamb wave topics of ZGV points and backward waves. It 

was noted that both of these features are a result of dispersion curve repulsion near zero 

wavenumber. The frequencies at which the dispersion curves cross zero wavenumber depend on 

the plate’s elastic properties and thickness. The relative proximity between modes at zero 

wavenumber depends solely on Poisson’s ratio. For example, the spacing between the S2 and S2B 

modes, at zero wavenumber, in Fig. 1.1 is determined solely by Poisson’s ratio. Mindlin [14] 

showed that for multiple distinct values of Poisson’s ratio some modes become coincident at zero 

wavenumber and in the cases where these modes are of the same symmetry degeneracy occurs. 

In these degenerate cases the dispersion curves become linear at zero wavenumber instead of 

parabolic. Linear dispersion at zero wavenumber in a three-dimensional representation assumes 

the shape of a cone [73] and accordingly is referred to as conical dispersion in this manuscript. 

This is remarkable because Lamb waves at zero wavenumber are normally stationary resonances. 

However, in the event of conical dispersion, Lamb waves at zero wavenumber become 

propagating waves that have an infinite wavelength and infinite phase velocity. An infinite 

wavelength essentially decouples the spatial and temporal behavior of the wave field and 

produces a field that is static in space yet oscillating in time [74]. Due to the recent interest in 

metamaterials with conical (Dirac) dispersion at zero wavenumber, Maznev published a paper 

[56] highlighting such behavior in elastic plates. Here he suggested tuning a plate’s Poisson’s 

ratio to a degenerate condition by coating the plate to create a bi-layer. This technique allows the 

tuning of the total effective Poisson’s ratio for the plate. This is the extent of the research into 

conical dispersion in elastic plates until the work performed in this manuscript [74-75]. 



11 

 

1.4 Objectives of this dissertation 

1.4.1 Scope 

The main objective of this manuscript is to study Lamb waves with conical dispersion at zero 

wavenumber in simple elastic plates. This work covers the theory for causing conical dispersion 

in plates and shows a way to induce this behavior in a commercially available aluminum plate. 

Multiple experiments and numerical simulations are then performed in order to both demonstrate 

conical dispersion and to show how it can be used to manipulate elastic waves in novel waves. A 

brief outline of the Chapters is given. 

Chapter 2 Lamb Wave Theory: provides the background and theory pertaining to 

Lamb waves with conical dispersion at zero wavenumber. The mode shapes of the simple 

thickness resonances are used to explain how coincident longitudinal and shear thickness 

resonances of the same symmetry lead to propagating waves. The group velocity of Lamb waves 

with conical dispersion at zero wavenumber are calculated from the modes shapes and are shown 

to agree with the group velocity previously derived by Mindlin [14].  

Chapter 3 Inducing and Measuring Conical Dispersion of Lamb Waves: details 

experimental results showing that conical dispersion can be induced in a simple aluminum plate 

by cooling the plate such that degeneracy occurs between the S2 and S2B modes at zero 

wavenumber. Linear dispersion is measured in the transition from backward to forward 

propagating waves near zero wavenumber and the group velocity proximate to zero wavenumber 

is measured and confirmed to agree with that predicted by theory. 
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Chapter 4 Reflection of Lamb waves with Conical Dispersion from a Free Edge: 

finite element simulation and experiment are used to demonstrate that Lamb waves with conical 

dispersion can be used to focus a mode converted reflected field from the free edge of a plate. 

The results show how conical point Lamb waves lose a sense of directionality and behave as if 

they were decoupled in space and time. Because of this, any mode converted wave is reflected 

normal to the edge and consequently the geometry of a reflected field can be controlled by the 

shape of the edge. 

Chapter 5 Scattering of Lamb waves with Conical Dispersion: finite element 

simulations and experiments are used to study how Lamb waves with conical dispersion scatter 

from single and multiple holes in a plate. Here it is shown that in the long wavelength limit the 

steady state field is unperturbed by a finite sized hole. It is also shown how this effect can be 

used to create a type of pseudo-cloaking. Specifically, single and multiple scatterers are hidden, 

when observing a mode converted field distal to the scatterers. It is also observed that a conical 

point Lamb wave reflects a mode converted field from scatterers. This reflected field is uniform 

around the scatterer, again confirming that the conical point wave is decoupled in space and 

time. 

Chapter 6 Conclusions and Future Work: summarizes the findings in this manuscript 

and details suggested areas of future investigation into conical dispersion of Lamb waves. 

1.4.2 Significance 

A theoretical background for the occurrence of conical dispersion in elastic plates and a physical 

explanation for why this occurs in presented. The finite group velocity that results from 

coincident longitudinal and shear simple thickness resonances, of the same symmetry, is 
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physically explained using displacement and stress mode shapes and the value of this group 

velocity is derived. Lamb waves with conical dispersion at zero wavenumber are measured for 

the first time in a simple elastic plate. Lensing a reflected wave field from a Lamb wave with 

conical dispersion is experimentally demonstrated for the first time. Finally, scattering a Lamb 

wave with conical dispersion from a finite sized hole is studied and demonstrated for the first 

time. These results are significant because they demonstrate new ways that elastic energy can be 

manipulated using a simple plate. 
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Chapter 2 

Lamb Wave Theory 

2.1 Introduction 

This Chapter introduces the necessary physics and mathematics for studying Lamb waves with 

conical dispersion at zero wavenumber (k). First, the dispersion of Lamb waves is examined in 

order to identify regions where conical dispersion at k = 0 can be induced, and then the 

mechanisms for such occurrences are discussed. This leads to the classification and mathematical 

description of the simple thickness resonance modes. It is shown how coincident simple 

thickness resonances of the same symmetry lead to conical dispersion at k = 0. It will also be 

shown how the group velocity of a Lamb wave at k = 0 can be calculated based on the 

displacement and stress mode shapes. Next, the response of a plate with conical dispersion at k = 

0 to an impulsive force is calculated and analyzed. Finally, some of the numerical methods used 

in the manuscript are introduced.  
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2.2 Lamb wave dispersion curves 

The geometry and boundary conditions for a free plate of infinite extent is illustrated in Fig. 2.1. 

 

Fig. 2.1 Geometry of the 2-dimensional fee plate problem. 

 

For the case of plane strain, vibration of a free plate consisting of homogenous isotropic linear 

elastic material results in wave motion according to Eq. 2.1 [1]:  

𝑢𝑝 = 𝛤�̅�(𝑧, 𝑘, 𝜔)𝑒𝑖(𝑘𝑥−𝜔𝑡)    (𝑝 = 𝑥, 𝑧),                 Eq. 2.1 

where ω and k are frequency and wavenumber, respectively, and 𝛤�̅�is a complex function of z, k, 

and ω. This solution, for a given ω and k, represents a traveling wave in the x-direction whose 

magnitude and phase depends on a “static” function of z. The static function through the plate 

thickness (z) is often referred to as a transverse resonance or mode shape [1]. The relationship 

ω(k) or k(ω) is given by solution of the Rayleigh-Lamb frequency equation [2,3]: 
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               (Eq. 2.3)        for antisymmetric modes. 

Where cL and cT are the longitudinal wave velocity and shear wave velocity, respectively. 

Symmetric and antisymmetric describe the normal displacement (z-direction) of the plate relative 

to the mid-plane, as depicted in Fig 2.2.   

 

Fig. 2.2 Pictorial representation of (a) symmetric and (b) anti-symmetric vibration of a plate. 

 

Equations 2.2 and 2.3 are transcendental equations which relate ω and k given cT, cL, and h.  For 

real positive values of ω there are an infinite number of k’s which satisfy Eq. 2.2 and 2.3: a finite 

number of real, a finite number of purely imaginary, and an infinite number of complex [4]. Real 

k represent undamped waves traveling in the x-direction, complex k represent evanescent or 

decaying waves traveling in the x-direction, and imaginary k represent non-propagating waves 
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with exponential decay in the x-direction. The solutions of Eq. 2.2 or 2.3 occur as continuous 

curves in the range of ω = 0 to ω = ∞, where the domain of k for each curve is the complex 

plane. The first 9 mode curves for real ±k are shown in Fig. 2.3, where the solution was obtained 

with the numerical method detailed in Section 2.6. 

 

Fig. 2.3 Dispersion curves for Lamb waves in a plate with Poisson’s ratio = 0.35. 

 

The individual curves in Fig. 2.3 are labeled in ascending order from 0 and labeled with an A or 

S according to their displacement symmetry as defined in Fig. 2.2. The dispersion curves in Fig. 

2.3 elucidate many features of wave propagation in a plate with consideration of the definitions 

for a wave’s phase velocity (cp) and group velocity (cg): 
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𝑐𝑝 =
𝜔

𝑘
     𝑎𝑛𝑑      𝑐𝑔 =

𝑑𝜔

𝑑𝑘
.                   Eq. 2.4 

Phase velocity defines the velocity of a stationary phase whereas cg defines the velocity at which 

energy propagates away from the source [4]. Examining the slopes of the mode curves (cg) it is 

observed that the dashed curves in Fig. 2.3 represent energy flow in the –x-direction and the solid 

lines represent energy flow in the +x-direction. In general, the +x traveling waves have a +k, 

meaning that the wave fronts travel in the same direction as the energy flow. However, for the 

region labeled with a “B” subscript, the phase and group velocity are opposite signed. In such 

cases the wave fronts travel backward with respect to the energy flow. This type of non-intuitive 

wave behavior has been studied in literature [5-11] and by this author in [12] and Appendix A. It 

is also observed that at k = 0 the modes all exhibit zero curvature. In the vicinity of k = 0 the 

dispersion curves are parabolic [13] (with the exception of the S0 mode, however the S0 mode 

crosses k = 0 at ω = 0, which is the trivial case of no motion). This means that at k = 0 Lamb 

waves are generally not propagating waves but rather are stationary resonances. These 

resonances are called simple thickness mode resonances [14] or simple thickness resonances. 

They occur at frequencies called the cutoff frequencies and are the topic of the next section. 

Examining Eq. 2.4 it is clear that if a dispersion curve has a linear slope, cp and cg are equal, and 

the waves are non-dispersive. If a mode curve is not linear, which is generally the case, the 

degree of dispersion is proportional to the curvature [14]. It was previously stated that each 

dispersion curve is a continuous line ranging from ω = 0 to ω = ∞, however, this is not 

immediately clear in Fig. 2.3. In order to fully visualize the dispersion behavior of an individual 

mode curve it can be helpful to observe the wavenumber over the entire complex plane, as 

shown for the first 3 symmetric modes in Fig. 2.4 [5]. Following the S0 mode in Fig. 2.4, for 

increasing ω starting at ω = 0, k is real for all ω. 
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Fig. 2.4 Frequency dispersion for first 3 symmetric modes including complex wave numbers. 

 

The S1 mode, however, starts out with a complex k at ω = 0 and approaches the real plane with 

increasing ω. The S1 mode then becomes real at the point labeled ZGV, and then remains real 

with increasing ω.  The S2 mode curve is particularly interesting because it crosses k = 0 twice. 

The S2 mode begins with complex k at ω = 0 and the real part is initially negative. The mode 

curve then approaches the real plane with increasing ω, and k becomes real and negative at the 

mirror point of ZGV (not labeled).  From this point k is real and negative and the mode curve has 

a positive slope.  This section of the S2 mode exhibits backward wave motion and accordingly is 

labeled with a “B” subscript [5].  The backward wave portion of the S2 mode ends at the lower of 

the two points where kr = 0.  The lower and upper kr = 0 points are connected via a purely 

imaginary k loop.  After this point, k is real and positive with increasing ω.  Interestingly, the 
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aforementioned imaginary loop can close if the two kr = 0 points become coincident 

(degeneracy).  This condition will be shown to cause linear dispersion at k = 0 instead of the 

usual parabolic dispersion and result in Lamb waves that propagate with a finite cg and an 

infinite wavelength (λ). 

 

2.3 Degeneracy of Simple Thickness Mode Resonances 

Although the specific numerical values of the dispersion curves depend on the plate’s elastic 

properties and thickness, the shape of the mode curves are uniquely defined solely by Poisson’s 

ratio (ν) (or a ratio of cL and cT, since ν is uniquely defined by cL/cT  as shown in Eq. 2.5). 

𝜈 =
𝑐𝐿

2−2𝑐𝑇
2

2(𝑐𝐿
2−𝑐𝑇

2)
=

(
𝑐𝐿

𝑐𝑇
⁄ )

2
−2

2((
𝑐𝐿

𝑐𝑇
⁄ )

2
−1)

 .                  Eq. 2.5 

Another feature of the dispersion curves in Fig. 2.3 is that mode curves of the same symmetry 

cannot cross one another [4]. Similarly, no one mode curve can cross itself. In fact, mode curves 

of the same symmetry will repel one another when proximate [15,16]. This phenomenon occurs, 

for example, in the S2 mode near k = 0. Fig. 2.5 shows the S2 mode near k = 0 for 3 different 

values of ν. Specifically, Fig. 2.5 shows the cases of strong interaction (ν = 0.34), weak 

interaction (ν = 0.40), and no interaction (ν = 0.46). Fig. 2.5 demonstrates that the existence of a 

backward propagating portion of the S2 mode is a result of the repulsion between the S2B and S2 

curves at k = 0. The closeness of these two points is set by the frequencies of the longitudinal and 

transverse simple thickness mode resonances. 



29 

 

 

Fig. 2.5 Frequency dispersion of S2 mode and S1 mode for ν = 0.34, 0.40, and 0.46, 

demonstrating the repulsion of mode curves of same symmetry. 

 

These resonances occur at the cutoff frequencies [14]: 
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Here, L and T are longitudinal or transverse (shear) and H is the plate thickness. These 

resonances are each a result of a bulk wave modes (longitudinal or shear vertical) reflecting 

normally between the top and bottom faces of the plate. The interaction of proximate resonances 

can be described mathematically by considering the dispersion branches in the vicinity of k = 0 

and expanding (k) in even powers, which preserves time reversal symmetry, giving [8]: 

 

0 1 2 3 4
5

6

7

8

9

10

S
1

S
1

S
2

S
2

S
2B

S
1

S
2


H

/c
T

kH

  = 0.34

  = 0.40

  = 0.46

S
2B



30 

 

   42

0

2

,

2

0

,,
2

1
kOk

k
k

k

m

mm 


























 ,        Eq. 2.7 

where  corresponds to either a longitudinal or transverse simple thickness mode resonance and 

the curvatures in the long wavelength limit are given by [8]: 

























































































L

T

L

TTTn

T

L

L

TLLm

c

cn

cn

hc

n

hc

k

c

cm

cm

hc

m

hc

k

1
2

tan
16

1
2

tan
16

22

2

2

,

2

222

3

2

,

2













 .       Eq. 2.8 

The first term in Eq. 2.7 is the cutoff frequency, as defined by Eq. 2.6, and the following terms 

describe the curvature of mode at k = 0. Consider the curvatures of the first longitudinal simple 

thickness resonance (m = 1), the first and second symmetric transverse thickness resonance (n = 

2 and n = 4), and the second and third antisymmetric transverse thickness resonances (n = 3 and 

n = 5). The normalized curvatures are plotted as a function of cL/cT (or ν) in Fig. 2.6. The 

curvatures in Fig. 2.6 show that the resonances m = 1 and n = 2 interact around cL/cT = 2 and are 

both divergent at cL/cT = 2 (𝜈 =  
1

3
 ). The curvatures of m = 1 and n = 4 interact around cL/cT = 4 

and are both divergent at cL/cT = 4 (𝜈 =  
14

30
 ). The curvature of m = 1 never interacts with n = 3 or 

n = 5, even when these curvatures are divergent at cL/cT = 1.5 and cL/cT = 2.5, respectively. This 

shows that modes of different symmetry do not interact with one another. Interestingly, the 

condition for two resonances curvatures to be simultaneously divergent is also the condition for 

coincidence and degeneracy. In general, in cases where the ratio of the wave velocities is equal 

to the irreducible ratio of two positive integers of different parity (one odd and one even)  
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Fig. 2.6 (a) Curvature of the dispersion curves for first symmetric longitudinal thickness 

resonance (m = 1), the first and second symmetric shear thickness resonances (n = 2 and n = 4), 

and the second and third antisymmetric shear thickness resonances (n = 3 and n =5). 

 

degeneracy between longitudinal and transverse simple thickness resonances of the same 

symmetry occurs [14]. In such circumstances the expansion in Eq. 2.7 is no longer valid. In the 

case of coincident resonances of same symmetry, Mindlin showed that the slope of the 

dispersion curve is nonzero at k = 0 and the local dispersion assumes the linear form [14]: 
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where the group velocity is given by: 
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The dispersion curves here consist of two lines intersecting at the coincidence frequency and k = 

0, with the line segments above 
0

,m  exhibiting forward wave propagation, and the line 

segments below showing backward wave propagation. The presence of two lines in the 

degenerate case ensures that (k) = (-k), which again is required by time reversal symmetry. In 

general, conical dispersion of Lamb waves is associated with closing the imaginary loop of 

individual modes that exhibit both longitudinal and shear thickness resonances. In the next 

Section the mechanism for energy transmission (non-zero cg) in such a case is calculated and 

physically explained by examination of the displacement and stress fields. 

 

2.4 Linear dispersion from degeneracy of simple thickness mode 

resonances of like symmetry 

In Section 2.3 it was stated that simple thickness resonances are degenerate when the ratio of the 

wave velocities is equal to the irreducible ratio of two positive integers of different parity. Fig. 

2.6 illustrated that the parabolic curvature of the dispersion curves was no longer valid in these 

cases and instead linear dispersion occurred according to Eq. 2.9 and Eq. 2.10. Here, the mode 

shapes of the simple thickness resonances are examined and the physics of why conical 

dispersion at k = 0 occurs in the degenerate case is explained. 

The simple thickness resonances arise from a longitudinal or shear wave normally 

reflecting from the interfaces at z = ±h [14]. For longitudinal waves the displacement is in plane 

with the boundaries and for shear waves the displacement is perpendicular to the boundaries 

(only the shear vertical wave is considered because the shear horizontal wave does not couple 
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into the longitudinal wave or the shear vertical wave). Mathematically, the displacement fields 

are found by solving the equations of elasticity while imposing the boundary conditions shown in 

Fig. 2.1, and assuming that the strain depends only on the z direction [14]: 

𝑢𝑧 = 𝐴 sin (
𝑚𝜋𝑧

2ℎ
) 𝑒𝑖𝜔𝑚

𝑜 𝑡     𝑓𝑜𝑟 𝑜𝑑𝑑 𝑚 (𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐)

𝑢𝑧 = 𝐵 cos (
𝑚𝜋𝑧

2ℎ
) 𝑒𝑖𝜔𝑚

𝑜 𝑡    𝑓𝑜𝑟 𝑒𝑣𝑒𝑛 𝑚 (𝑎𝑛𝑡𝑖𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐)
          𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙 𝑅𝑒𝑠𝑜𝑛𝑎𝑛𝑐𝑒𝑠 

𝑢𝑥 = 𝐶 sin (
𝑛𝜋𝑧

2ℎ
) 𝑒𝑖𝜔𝑛

𝑜𝑡     𝑓𝑜𝑟 𝑜𝑑𝑑 𝑛 (𝑎𝑛𝑡𝑖𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐)

𝑢𝑥 = 𝐷 cos (
𝑛𝜋𝑧

2ℎ
) 𝑒𝑖𝜔𝑛

𝑜𝑡    𝑓𝑜𝑟 𝑒𝑣𝑒𝑛 𝑛 (𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐)
          𝑆ℎ𝑒𝑎𝑟 𝑅𝑒𝑠𝑜𝑛𝑎𝑛𝑐𝑒𝑠.          Eq. 2.11 

Where 𝜔𝑚
𝑜  and 𝜔𝑛

𝑜 are define in Eq. 2.6, h is half of the plate thickness, and A, B, C, and D are 

constants. The mode shapes Uz and Ux for the first symmetric longitudinal mode (m = 1) and the 

first symmetric shear mode (n = 2) are given by: 

𝑈𝑥 = 0,    𝑈𝑧 = 𝐴 sin (
𝜋𝑧

2ℎ
) ,    𝑓𝑜𝑟 𝑚 = 1

𝑈𝑥 = 𝐷 cos (
𝜋𝑧

ℎ
),    𝑈𝑧 = 0,    𝑓𝑜𝑟 𝑛 = 2,

                          Eq. 2.12 

and are shown in Fig. 2.7. Here the longitudinal simple thickness resonance is seen to only have 

displacement in the z-direction and its mode shape is half of a sine cycle. The shear simple 

thickness resonance only has displacement in the x-direction and its mode shape is one cycle of a 

cosine. 
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Fig. 2.7 Displacement mode shapes for (a) the first symmetric longitudinal simple thickness 

mode (m = 1) and (b) the first symmetric shear simple thickness mode (n = 2). 

 

For each of these modes the strain mode shapes Exx, Exz, and Ezz are calculated using the strain 

compatibility equation [1] and are found to be: 

𝐸𝑥𝑥 = 0,    𝐸𝑥𝑧 = 0,    𝐸𝑧𝑧 = (
𝐴𝜋

2ℎ
) cos (

𝜋𝑧

2ℎ
) ,    𝑓𝑜𝑟 𝑚 = 1

𝐸𝑥𝑥 = 0,    𝐸𝑥𝑧 = −
1

2
(

𝐷𝜋

ℎ
) sin (

𝜋𝑧

ℎ
),    𝐸𝑧𝑧 = 0,    𝑓𝑜𝑟 𝑛 = 2.

                       Eq. 2.13 

Next, the stress mode shapes Sxx, Sxz, and Szz are calculated using the constitutive equations for an 

isotropic material [1] and are: 

𝑆𝑥𝑥 = 𝜆 (
𝐴𝜋

2ℎ
) cos (

𝜋𝑧

2ℎ
),    𝑆𝑥𝑧 = 0,    𝑆𝑧𝑧 = (𝜆 + 2𝜇) (

𝐴𝜋

2ℎ
) cos (

𝜋𝑧

2ℎ
) ,    𝑓𝑜𝑟 𝑚 = 1

𝑆 = 0,    𝑆𝑥𝑧 = −𝜇 (
𝐷𝜋

ℎ
) sin (

𝜋𝑧

ℎ
),    𝑆𝑧𝑧 = 0,    𝑓𝑜𝑟 𝑛 = 2,

           Eq. 2.14 

where λ and μ are the lame constants. The energy-flux mode shape along the plate (Ex) can be 

calculated using the following equation [5]: 
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𝐸𝑥 = 𝑆𝑥𝑥𝑈𝑥 − 𝑆𝑥𝑧𝑈𝑧 .                   Eq. 2.15 

Examining the stress and displacements components in Eq. 2.12 and Eq. 2.14, respectively, for 

the case where m = 1, it can be seen that the first term in Eq. 2.15 is zero since there is no 

displacement in the x-direction and the second term is also zero since there is no shear stress. 

Consequently, there is no energy transport in the x-direction. For the case where n = 2 the first 

term in Eq. 2.15 is zero since there is no normal stress in the x-direction and the second term is 

also zero since there is no displacement in the z-direction, again, there is no energy transport in 

the x-direction. This confirms the usual parabolic dispersion (cg = 0) at k = 0 for these simple 

thickness resonances, when they occur independently. 

 Now consider a plate where cL = 2cT and thus the first symmetric longitudinal simple 

thickness mode (m = 1) and the first symmetric shear simple thickness mode (n = 2) occur at the 

same frequency: 𝜔1,𝐿
𝑜 = 𝜔2,𝑇

𝑜 =
𝜋𝑐𝑇

ℎ
. Here, by superposition, the displacement and stress mode 

shapes are: 

𝑈𝑥 = 𝐷 cos (
𝜋𝑧

ℎ
),    𝑈𝑧 = 𝐴 sin (

𝜋𝑧

2ℎ
) ,    𝑎𝑛𝑑

𝑆𝑥𝑥 = 𝜆 (
𝐴𝜋

2ℎ
) cos (

𝜋𝑧

2ℎ
),    𝑆𝑥𝑧 = −𝜇 (

𝐷𝜋

ℎ
) sin (

𝜋𝑧

ℎ
),    𝑆𝑧𝑧 = (𝜆 + 2𝜇) (

𝐴𝜋

2ℎ
) cos (

𝜋𝑧

2ℎ
) .

         Eq. 2.16 

Using Eq. 2.15 the energy-flux mode shape can be calculated and is non-zero as shown in Fig. 

2.8: 

𝐸𝑥
𝐴𝐷⁄ = (

𝜆𝜋

2ℎ
) cos (

𝜋𝑧

ℎ
) cos (

𝜋𝑧

2ℎ
) + (

𝜇𝜋

ℎ
) sin (

𝜋𝑧

ℎ
) sin (

𝜋𝑧

2ℎ
) .              Eq. 2.17 
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Fig. 2.8 Energy-flux density mode shape at k = 0 in the x direction for coincident simple 

thickness resonances m = 1 and n = 2. 

 

Examining Eq. 2.15 and Fig. 2.8 it can be seen that the displacement and stress fields from each 

simple thickness mode resonance interact with one another in order create the energy flow along 

the wave guide. Each simple thickness resonance on their own does not propagate energy, 

however when simple thickness resonances of the same symmetry are coincident, there is energy 

propagation due to the interaction between the displacement and stress of each resonance with 

one another. It is observed that there is no energy flow if the resonances are of different 

symmetry when the same procedure as detailed above is followed. 

 For periodic elastic waves propagating in wave guides, Biot [17] showed that the energy 

propagates at dω/dk (cg) along the direction of the wave guide. As such, it should be possible to 

obtain the same Mindlin slopes in Eq. 2.10 by considering the velocity of energy transport. Here, 
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we consider the case where cL = 2cT, m = 1, and n = 2. The velocity of energy transmission in the 

x-direction is the ratio of the time average power over the time average total energy: [4] 

𝑐𝑒 =
1

𝑇
∫ (−1 ∫ (𝜎𝑥𝑥�̇�𝑥+𝜎𝑥𝑧�̇�𝑧)𝑑𝑧

ℎ
−ℎ

)𝑑𝑡
𝑇

0
1

𝑇
∫ (∫ 𝜌(�̇�𝑥

2+�̇�𝑧
2)𝑑𝑧

ℎ
−ℎ )

𝑇
0 𝑑𝑡

.                            Eq. 2.18 

For symmetric longitudinal and symmetric shear simple thickness resonances with unit 

amplitude the displacement components are: 

𝑢𝑥 = cos (
𝜋𝑧

ℎ
) cos(𝜔𝑡)

𝑢𝑧 = sin (
𝜋𝑧

2ℎ
) sin(𝜔𝑡)

.                             Eq. 2.19 

The stress components in Eq. 2.18, with consideration that the displacement functions have no x-

direction dependency, are: 

𝜎𝑥𝑥 = 𝜆
𝜕𝑢𝑧

𝜕𝑧
= 𝜆

𝜋

2ℎ
cos (

𝜋𝑧

2ℎ
) sin(𝜔𝑡)

𝜎𝑥𝑧 = 𝜇
𝜕𝑢𝑥

𝜕𝑧
= −𝜇

𝜋

ℎ
sin (

𝜋𝑧

ℎ
) cos(𝜔𝑡)

.                Eq. 2.20 

The velocity components in Eq. 2.18 are: 

�̇�𝑥 = −𝜔 cos (
𝜋𝑧

ℎ
) sin(𝜔𝑡)

�̇�𝑧 = 𝜔 sin (
𝜋𝑧

2ℎ
) cos(𝜔𝑡)

.                             Eq. 2.21 

The numerator in Eq. 2.18 can be found by substitution of Eq. 2.20 and Eq. 2.21: 

1

𝑇
∫ (−1 ∫ [

(−𝜆𝜔
𝜋

2ℎ
cos (

𝜋𝑧

2ℎ
) cos (

𝜋𝑧

ℎ
) sin2(𝜔𝑡)) +

(−𝜇𝜔
𝜋

ℎ
sin (

𝜋𝑧

2ℎ
) sin (

𝜋𝑧

ℎ
) cos2(𝜔𝑡))

]
ℎ

−ℎ
𝑑𝑧) 𝑑𝑡

𝑇

0
=

1

𝑇
∫ (𝜔 [

2𝜆

3
sin2(𝜔𝑡) +

8𝜇

3
cos2(𝜔𝑡)]) 𝑑𝑡

𝑇

0
       {𝜆 = 2𝜇 = 2𝜌𝑐𝑇

2}

2𝜌𝜔𝑐𝑇
2 1

𝑇
∫ 1𝑑𝑡

𝑇

0
= 2𝜌𝜔𝑐𝑇

2

.             Eq. 2.22 
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The denominator in Eq. 2.18 can be found by substitution of Eq. 2.21: 

1

𝑇
∫ (∫ 𝜌𝜔2 (cos2 (

𝜋𝑧

ℎ
) sin2(𝜔𝑡) + sin2 (

𝜋𝑧

2ℎ
) cos2(𝜔𝑡))

ℎ

−ℎ
)

𝑇

0
𝑑𝑡

1

𝑇
∫ (𝜌ℎ𝜔2(sin2(𝜔𝑡) + cos2(𝜔𝑡)))

𝑇

0
𝑑𝑡 = 𝜌ℎ𝜔2

.             Eq. 2.23 

Taking the ratio of Eq. 2.22 and Eq.2.23 and using the definition of ω when m = 1 and n = 2 

gives: 

𝑐𝑒 =
2𝜌𝜔𝑐𝑇

2

𝜌ℎ𝜔2 =
2𝑐𝑇

2

ℎ𝜔
        {𝜔 =

𝜋𝑐𝑇

ℎ
}         𝑐𝑒 =

2𝑐𝑇

𝜋
.               Eq. 2.24 

Equation 2.24 shows that the velocity of energy transmission, which is equal to cg, does in fact 

agree with the value obtained by Mindlin in Eq. 2.10. Mindlin’s derivation considered the slope 

of the dispersion curves when k→0. The above derivation does not consider the dispersion 

equation at all and still arrives at the conclusion that coincident resonances, of the same 

symmetry, will result in a propagating wave with a finite cg.  

Continuing the analysis of cg for coincident simple thickness resonances, the dispersion 

curves for the S2 mode near k = 0 are shown in Fig. 2.9 (a) for a plate with: H = 1.0 mm, cT = 3.0 

mm/μs, and cL = 6.0 mm/μs. The S2 mode is seen to be linear and continuous through k = 0 in 

transition from backward (S2B) to forward (S2) propagating. The slope of the curve is calculated 

at k = 0 and found to be 1.91 mm/μs. This agrees with the Eq. 2.10 and Eq. 2.24, which give cg = 

(4·3.0)/(2·π) ≈ 1.91 mm/μs. 
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Fig. 2.9 (a) Dispersion curves for the S2 mode of a plate with H = 1.0 mm, cT = 3.0 mm/μs, and 

cL = 6.0 mm/μs. Linear dispersion is observed at k = 0. (b) Magnitude of group velocity for the 

S2 mode and the S2B mode at and near k = 0. 

 

The group velocity curves in Fig. 2.9 (b) show that the linear dispersion is limited to k = 0. Also, 

the group velocity of the S2 mode is always larger than the S2B mode except at the coincident 

point, where they are equal. 

 This Section demonstrated why coincident simple thickness resonances of like symmetry 

result in linear dispersion at k = 0 based on an examination of the displacement and stress mode 

shapes. Also, the Mindlin group velocity equation was re-derived by computation of the velocity 

of energy transmission for the degenerate case at m = 1 and n = 2. In the next section, the 

response of a plate, which has conical dispersion, to an impulsive force is studied. 
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2.5 Plate with conical dispersion at k = 0 response to an impulse 

In order to explore the behavior of Lamb waves at and near the conical point, the integral 

transform technique [18] was used to calculate the normal displacement response of a 1.0 mm 

thick plate to an impulsive normal force with a Gaussian spatial distribution: full width at half 

max (FWHM) = 12.5 mm. The temporal profile of the source was also Gaussian with a FWHM 

of 10 ns, and the wave speeds were selected as cL = 6.0 and cT = 3.0 mm/s (ν = 1/3). 

Calculations were also performed with a thermoelastic laser source, however, a larger response 

from the conical mode was observed from a normally applied source. The calculated time 

domain displacement fields were bandpass filtered between 2.0 MHz and 4.0 MHz to isolate the 

S2/S2B mode near 3.0 MHz, the coincident frequency. The resulting waveforms gave the normal 

displacement as a function of time at several source-to-receiver distances and are shown in Fig. 

2.10. In general, the time domain responses show the arrival of two initial wave packets followed 

by a sustained surface oscillation. The initial wave packets are observed to slightly “stretch” with 

increased distance from the source due to dispersion. Referring to Fig. 2.9 (b), it is clear that the 

first wave packet observed in the time traces is the S2 mode and that the second, slower, packet is 

the S2B mode. 
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Fig. 2.10 (a) Theoretical surface normal displacement of a plate in response to a normal force. 

The plate has a thickness of 1 mm and cL = 6.0 mm/μs and cT = 3.0 mm/μs. (b) Zoomed in 

portion of the waveforms shown in (a) over 55 -  60 μs, showing uniform phase. 

 

In between these two packets is the conical point Lamb wave, which, after arriving, results in a 

sustained surface oscillation. The conical point cg can be estimated by computing the time lag of 

the point in between the packets over the 30 mm detection range and is found to be ~ 1.9 mm/μs, 

which agrees with Eq. 2.10. Observing the time traces in Fig. 2.10 (b) we can see that the 

sustained surface oscillations are perfectly in phase regardless of spatial location. The magnitude 

of the Fourier transform of the waveform at source to receiver distance of 30 mm is shown for 

the entire time window in Fig. 2.11 (a) and for a 55 – 60 μs time window in Fig. 2.11 (b). The 

spectrum shown in Fig. 2.11 (a) has strong peaks both above (S2 mode) and below (S2B mode) 

the conical point with a dip occurring at the coincidence frequency. Additional calculations show 

that increasing the excitation source size increased the response magnitude at the coincident 

frequency. 
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Fig. 2.11 (a) Magnitude of the Fourier transform of the waveform at a source to receiver distance 

of 30 mm. (b) Magnitude of the Fourier transform of the waveform at a source to receiver 

distance of 30 mm and time windowed between 55 and 60 μs. 

 

The spectrum in Fig. 2.11 (b) shows that after the initial wave packets pass the detection point 

the remaining surface oscillations occur at the predicted coincident frequency. This theoretical 

solution demonstrates that unlike conventional resonances, which have zero cg at k = 0 and 

slowly decay (depending on the local curvature), conical dispersion at k = 0 results in waves that 

propagate from the source with an infinite wavelength and finite group velocity, producing a 

spreading spatially uniform temporally oscillating perturbation over the sample surface. Because 

of this behavior, these waves can be thought of as a type of propagating resonance. This 

description also follows from the previous modal analysis where the plate vibration is observed 

to be the superposition of two simple thickness mode resonances. 

 It is noted here that this theoretical solution was also performed with the time domain 

finite element simulation software PZFLEX. The numerical simulation was observed to agree with 

the theoretical solution within numerical noise. The more geometrically complicated experiments 
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in this manuscript will be compared to numerical simulations since they cannot be solved with 

the integral transform technique. 

 

2.6 SAFE Method 

The Rayleigh-Lamb frequency equation (Eq. 2.2. and Eq. 2.3) is transcendental and the roots 

must be extracted numerically. An alternative method for solving the free plate problem and 

calculating the dispersion curves is to use an extended Ritz technique or semi-analytical finite 

element (SAFE) model [19-23].  For the case of plane strain, the plate can be discretized into 

finite elements along a line through the thickness (z-direction) as shown in Fig. 2.12.   

 

Fig. 2.12 Discretization of plate for solution using a semi-analytical finite element method. 

 

The solution then uses an explicit analytical expression for the traveling waves along the plate 

(x-direction) and unknown mode shapes through the plate thickness (z-direction): 

𝑢𝑥 = 𝑈𝑥(𝑧, 𝑡)𝑒𝑖(𝜔𝑡−𝑘𝑥)      𝑢𝑧 = 𝑖𝑈𝑧(𝑧, 𝑡)𝑒𝑖(𝜔𝑡−𝑘𝑥),               Eq. 2.25 
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with a quadratic interpolation function along each element using three nodes (upper (u), middle 

(m), and lower (l)): 

𝑈𝑗(𝑧, 𝑡) = 𝑈𝑗𝑏(𝑡) [1 − 3 (
𝑧

𝐻
) + 2 (

𝑧

𝐻
)

2

] + 𝑈𝑗𝑚(𝑡) [4 (
𝑧

𝐻
) − 4 (

𝑧

𝐻
)

2

] + 𝑈𝑗𝑡(𝑡) [2 (
𝑧

𝐻
)

2

− (
𝑧

𝐻
)]         𝑗 = 𝑥, 𝑧.  Eq. 2.26 

The Lagrangian (L) is then calculated for each element (n) by finding the kinetic (T) and 

potential (V) energy: 

𝛿𝐿𝑛 = 𝛿𝑇𝑛 − 𝛿𝑉𝑛, 

𝛿𝑇𝑛 =
1

2
∫ ∫ 𝜌(𝑢𝑥

2̇ + 𝑢𝑧
2̇ )𝑑𝑧𝑑𝑥

𝐻

0

2𝜋 𝑘⁄

0
, 

𝛿𝑉𝑛 =
1

2
∫ ∫ (𝐶11𝜀𝑥𝑥

2 + 2𝐶12𝜀𝑥𝑥𝜀𝑧𝑧 + 𝐶22𝜀𝑧𝑧
2 + 4𝐶66𝜀𝑥𝑧

2)𝑑𝑧𝑑𝑥
𝐻

0

2𝜋 𝑘⁄

0
, 

𝛿𝑉𝑛 =
1

2
{𝑞𝑛}𝑇[𝑘𝑛]{𝑞𝑛},    𝛿𝑇𝑛 =

1

2
{𝑞�̇�}𝑇[𝑚𝑛]{𝑞�̇�},   {𝑞𝑘}𝑇 = {𝑈𝑥𝑏 , 𝑈𝑧𝑏 , 𝑈𝑥𝑚, 𝑈𝑧𝑚, 𝑈𝑥𝑡, 𝑈𝑧𝑡}, 

           Eq. 2.27 

where kn and mn are the element stiffness and mass matrices and C11, C12, C22, and C66 are λ+2μ, 

λ, λ+2μ, and μ, respectively, for an isotropic material.  Summation of the element Lagrangians 

and application of Hamilton’s principal yields the Eigenvalue problem: 

𝐿 = ∑ (𝛿𝑇𝑛 − 𝛿𝑉𝑛)

𝑛𝑢𝑚 𝑒𝑙𝑒𝑚

𝑛=1

   =    
1

2
{�̇�}

𝑇
[𝑀]{�̇�} −

1

2
{𝑄}𝑇[𝐾]{𝑄}, 

[𝐾]{𝑄} + [𝑀]{�̈�} = 0,       {𝑄} = {𝑄𝑜}𝑒𝑖𝜔𝑡,   

 {[𝐾] − 𝜔2[𝑀]}{𝑄𝑜} = 0,                  Eq. 2.28 
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where K and M are the total stiffness and mass matrices.  The eigenvalues in Eq. 2.28 are the 

squared frequencies, ω, that solve Eq. 2.2 and Eq. 2.3 for a given k.  Each eigenvector, Qo, is the 

displacement mode shape for the associated Lamb wave.  The above detailed SAFE solution to 

the free plate plain strain problem was implemented in MATLAB® (Appendix B).  All of the 

dispersion curves shown in this manuscript were generating using this SAFE algorithm.  The 

accuracy of the solution depends on the number elements used.  Here, 200 elements were used 

which gives eigenvalue solutions accurate to +1.0x10
-8 

% of those found with a root finding 

routine (taken to accuracy where the values differed).  In terms of generating the full frequency 

dispersion, the SAFE method is several orders of magnitude faster than a root finding routine, of 

equal precision.  The SAFE method can be easily extended to solve multi-layer problems where 

each layer has independent thicknesses and material properties. Also, the SAFE solution 

automatically generates the displacement mode shapes, via the eigenvectors, which can then be 

used to calculate the stress mode shapes and energy flux density through the plate. 

 

2.7 Conclusions 

This Chapter details the behavior of Lamb waves at k = 0 for an isotropic homogenous plate. 

Specifically, it was shown that at k = 0 the plate vibrations are simple thickness resonances that 

generally have parabolic dispersion and do not propagate energy along the plate. It was shown, 

however, that if a shear and longitudinal simple thickness resonance, of the same symmetry, are 

coincident, the dispersion at k = 0 becomes linear and energy does propagate along the plate. One 

such case was shown to occur when cL = 2cT for the first symmetric longitudinal simple 

thickness resonance and the first symmetric shear simple thickness resonance. For this case the 
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displacement and stress mode shapes were analyzed and it was shown that the interaction 

between the two resonances causes the wave to propagate. 

 The response of a plate with cL = 2cT to an impulsive force was analyzed. It was observed 

that Lamb waves with an infinite wavelength and an infinite phase velocity were generated and 

propagated at the finite group velocity predicted by Mindlin and by the energy transport analysis. 

After the initial wave packets passed the observation point, the surface oscillations were 

observed to be uniform in space. Finally, a numerical method for calculating dispersion curves 

and mode shapes was presented. 
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Chapter 3 

Inducing and Measuring Conical Dispersion of Lamb Waves 

3.1 Introduction 

Theory predicts that conical dispersion at zero wavenumber (k) will occur in elastic plates 

whenever simple thickness shear and longitudinal resonances, of the same symmetry, are 

coincident. The condition for this was detailed in Chapter 2 and was shown to depend only on 

the elastic properties of the plate. Specifically, conical dispersion at k = 0 occurs when the ratio 

of the longitudinal and shear wave velocities is equal to an irreducible ratio of two positive 

integers of different parity (one odd and one even) [1]. The general condition for coincident 

simple thickness resonances, both degenerate and non-degenerate, can be expressed solely in 

terms of Poisson’s ratio (ν) [2]: 
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𝜈 =
𝑚2−2𝑛2

2(𝑛2−𝑚2)
  𝑤ℎ𝑒𝑟𝑒 𝑚 = 1,2,3 … 𝑎𝑛𝑑 𝑛 = 2,3,4 …        (3.1). 

The frequency at which the longitudinal (L) and shear (T) simple thickness resonances occur, in 

terms of m and n, respectively, is: 







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
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0

,







         (3.2). 

Here cL and cT are the longitudinal and transverse wave velocities, respectively, and H is the 

plate thickness. Degeneracy of two coincident simple thickness resonances will occur only if 

they are of the same symmetry (ie. symmetric or anti-symmetric). Equation 3.2 states that 

longitudinal resonances are symmetric when m is odd and anti-symmetric when m is even and 

shear resonances are symmetric when n is even and anti-symmetric when n is odd. Equation 3.1 

is solved for the first nine combinations of m and n in Table 3.1. 

Table 3.1 Some values of Poisson’s ratio at which simple thickness resonances are coincident. 

 m = 1 m = 2 m = 3 

n = 2 ν = 
1

3
 Undefined ν = 1

2

5
 

n = 3 ν = 
7

16
 ν = 

1

10
 Undefined 

n = 4 ν = 
14

30
 ν = 

1

3
 ν = -

1

9
 

 



51 

 

Examining Table 3.1 it can be seen that one condition for conical dispersion at k = 0 is when ν 

=  
1

3
. Here, the 1

st
 symmetric longitudinal thickness resonance (m = 1) and the 1

st
 symmetric 

shear thickness resonance (n = 2) are coincident and degenerate. The 1
st
 anti-symmetric 

longitudinal resonance (m = 2) and the 2
nd

 symmetric shear resonance (n =4) are also coincident 

when ν =  
1

3
, however, because of the difference in symmetry they are not degenerate. If Table 

3.1 were extended it would be seen that when ν =  
1

3
 there are degeneracies between odd m-order 

longitudinal resonances and 2n ordered transverse resonances and non-degeneracy between even 

m-order longitudinal resonances and 2m ordered transverse resonances. Table 3.1 also shows that 

there are other values of ν that cause degeneracy, for instance, the rows in the 1
st
 column 

alternate between degenerate and non-degenerate coincidences as n → ∞ and ν → 
1

2
. In this work 

we focus on the aforementioned degenerate case at m = 1 and n = 2. This case is interesting 

because common engineering materials are known to have ν close to  
1

3
 and the group velocity 

(vg) at this degeneracy is maximal for a given cT according to [2]: 

n

c

k
v T

k

m

g


  4

0

,

















.   ...4,3,2n           (3.2). 

Examining Eq. 3.2 it is clear that as n increases vg decreases, meaning the dispersion curves at k 

= 0 become flatter as n increases. Lamb waves with conical dispersion at k = 0 will behave least 

like typical non-propagating resonances when they not only have linear dispersion at k = 0 but 

also have a large vg. As such, the remainder of this manuscript will concentrate on conical 

dispersion at the degeneracy between the 1
st
 symmetric longitudinal thickness resonance and the 
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1
st
 symmetric shear thickness resonance (S2-S2B modes) which occurs in homogenous isotropic 

plates when the material’s ν =  
1

3
. 

 This Chapter will detail the process for selecting a suitable sample for demonstrating 

Lamb waves with conical dispersion at k = 0 and show how that sample’s elastic properties were 

manipulated in order to induce degeneracy. Further, the technique for generating and measuring 

conical Lamb waves will be shown. And finally experimental and theoretical results will be 

analyzed in order to understand the behavior of Lamb waves with conical and near conical 

dispersion at k = 0. 

 

3.2 Laser Ultrasonic Measurement of Poisson’s Ratio 

The first step in measuring Lamb waves with conical dispersion at k = 0 was to find a material 

with ν ~  
1

3
 and then to tune ν to as close to  

1

3
 as possible. This required a technique for very 

accurately measuring ν. The approach used here was a laser based ultrasonic technique 

developed by Clorennec et al [3]. In this technique a plate is excited with a pulsed laser and a 

zero-group velocity (ZGV) resonance and a simple thickness mode resonance are measured via 

optical interferometry. Normal displacement is recorded at the epi-center of the excitation in 

order to measure the ZGV and thickness resonances. The ratio of these two resonances uniquely 

defines ν and the numerical value of ν can be deduced from numerical solutions of the Rayleigh-

Lamb frequency equation. The literature shows that a thermoelastic excitation from a Gaussian 

laser source, where the laser spot on the sample has a full width at half max (FWHM) equal to ½ 

of the S2B/S1 ZGV’s wavelength, effectively excites that ZGV resonance [3-8]. Because the ZGV 
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resonance is non-propagating, it has a prolonged “ring” time when measured proximate to the 

source and can be measured with a high quality factor (Q). This excitation was shown to also 

excite the A2 simple thickness resonance. Measuring the ratio of these two resonances allows the 

determination of ν with ±0.2% accuracy [3].  

In this work a similar technique was used, however, the ratio of the S2B/S1 ZGV and 

S5B/S4 ZGV resonances was used instead. This change was made because it was observed that 

the S5B/S4 ZGV could be excited more efficiently and measured more repeatedly than the A2 

simple thickness resonance, for the samples tested. This observation is consistent with theory 

when performing this type of laser ultrasonic measurement on a material with ν ~  
1

3
. The 

excitability and detection of the S5B/S4 ZGV resonance exceeds that of the A2 simple thickness 

resonance when a plate is excited by a laser impulse and the material’s ν ~ 
1

3
  [9].  

 Here, Lamb waves were excited with a Nd:YAG laser operating at 532 nm with a 10 ns 

pulse length and a FWHM focused to 3.00 mm on the sample surface. The fluence of the 

excitation laser was attenuated to just below where sample ablation occurred. The normal 

displacement was measured on the opposite site of the plate as the source and on epicenter of the 

source using a Michelson interferometer. The interferometer used a single longitudinal mode 

frequency doubled Nd:YAG laser with an output of 150 mW. The detection laser was focused on 

the sample using a 10X microscope objective. The time domain response was measured using a 

digital oscilloscope where the time window was 100 μs, the sampling frequency was 100 MHz, 

and the waveforms were averaged 1000 times. The experimental setup for this measurement is 

shown in Fig 3.1. The foam box in Fig. 3.1 was only used in experiments where ν was measured 

at cooled temperatures.  
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Fig. 3.1 Experimental setup for measuring Poisson’s ratio. 

 

A typical time domain response and frequency domain response are shown in Fig. 3.2 for (a) and 

(b), respectively, after processing by a high pass filter (f = 1.0 MHz). The responses qualitatively 

agrees with those shown in literature [5,7] for similar experiments. 

 

Fig. 3.2 Normal displacement measured at source epicenter due to a laser impulse: (a) time and 

(b) frequency domains. 
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The time domain response in Fig. 3.2 (a) confirms the slow temporal decay of the ZGV and 

simple thickness resonances. The frequency domain response in Fig. 3.2 (b) shows the excited 

modes and their relative normal displacement response. The S2B/S1 ZGV mode has the largest 

response followed by the S5B/S4 ZGV and then the A2 simple thickness resonance, which agrees 

with the literature [9]. 

 The calibration curve for determining ν as a function of the ratio of the S5B/S4 ZGV 

frequency and S2B/S1 ZGV frequency was calculated by solving the Rayleigh-Lamb frequency 

equation using the SAFE method (Appendix B) for a range of ν (near 
1

3
 ) and then computing the 

ratio of the aforementioned ZGV frequencies. This calibration curve is shown in Fig. 3.3. 

 

Fig. 3.3 Calibration curve for measuring ν based on the ratio (R) of the S5B/S4 ZGV frequency 

and S2B/S1 ZGV frequency. 
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frequency and S5B/S4 ZGV frequency occur at 1.8480 MHz and 6.0439 MHz, respectively, 

giving an R value of 3.2705. Plugging this R into the equation shown in Fig 3.3 gives a ν of 

0.3339. The uncertainty of a single measurement can be calculated using the Q factor of the 

resonances as shown in the literature [3]. In this study, multiple measurements were performed 

and a statically approach was used to quantify the error.  

Poisson’s ratio for plates made from the following aluminum alloys and heat treatments 

were tested: 1100-O, 2024-O, 2024-T6, 3003, 5052-O, 6061-O, 6061-T6 and 7075-T6. For each 

sample, ν was measured multiple times at a single location and the mean and standard deviation 

of the mean was computed. It was determined that 6061-O had a ν closest to 
1

3
. For the 6061-O 

plate, ν was measured using the above detailed technique 30 sequential times at a given location. 

These 30 measurements were then repeated at 12 randomly chosen locations on the plate.  The 

results of these measurements are shown in Fig. 3.4. 

 

Fig. 3.4. Measurements of Poisson’s ratio on 6061-O aluminum plate. 
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The average value of ν was 0.3349 ± 0.0006, where the experiments were conducted with an 

average ambient temperature of 24°C. The variation in ν at different measurement locations is 

due to sample inhomogeny. Sources of local inhomogeny included chemistry, grain texture, and 

surface residual stress (from forming).  

The next step was to modify the elastic properties of the sample so that on average ν = 
1

3
. 

This was accomplished by changing the temperature of the sample. Specifically, literature [10] 

states that for pure aluminum Co  /104.5 5 . Since a 6061 alloy is 95.9 – 98.6 % aluminum 

[11], it is reasonable to expect that if the sample was cooled ~ 30°C its ν ~ 
1

3
. In order to measure 

the exact temperature at which the sample’s average ν =  
1

3
, the sample was placed into a cooling 

chamber, as shown in Fig 3.1, and the temperature was decreased to -15°C. Poisson’s ratio was 

then measured, using the ZGV technique, while the temperature slowly returned to 24°C. The 

results of this measurement are shown in Fig. 3.5. A linear fit to the measurements in Fig. 3.5 

yielded: Co  /106.5 5 . This relationship is similar to that reported in the literature for pure 

aluminum, which was expected. Using this calibration curve and the average ν measured across 

the sample, it was calculated that ν will be on average equal 
1

3
 at a temperature of -5

°
C. It should 

be noted that the data in Fig. 3.5 shows ν = 
1

3
 near 0

°
C not -5

°
C. This is because of the variation 

in ν along the sample, as was shown in Fig. 3.4. At the particular location of the plate that the 

data in Fig. 3.5 was measured, ν happens to be below the average value for the plate. However, 

in order to have the sample’s ν on average equal 
1

3
 the plate should be cooled to -5

°
C. 
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Fig. 3.5 Measurement of Poisson’s ratio as a function of temperature for a 6061-O aluminum 

plate. The solid line shows a linear fit of the data. 
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larger for a normal excitation than for a laser thermoselastic excitation, which is primarily a 

shear excitation. The transducer was driven by a 5 cycle sine wave at 2.04 MHz, from a function 

generator that was coupled to a 50 dB power amplifier. The resulting normal displacement of the 

sample was detected using an adaptive photorefractive crystal based interferometer which used a 

bismuth silicon oxide crystal. A 3.0 kHz, 3.0 kV field was applied to the crystal to enhance two-

wave mixing gain, and the laser source for the interferometer was a single longitudinal mode 

frequency doubled Nd:YAG laser with an output of 150 mW. Further details of the 

interferometer configuration are available in the literature [12]. The turning mirrors on the signal 

leg of the interferometer were mounted on a 2-axis translation stage in order to measure the 

displacement field over the plate surface. The output of the interferometer was sent through a 1.9 

MHz analog high pass filter and recorded on a digital oscilloscope at 50 MHz. Time domain 

responses were measured as the source to receiver distance was increased in 250 m steps for a 

total distance of 150 mm, starting 30 mm away from the center of the transducer excitation 

source. The experimental setup is shown in Fig. 3.6.  

The measured waveforms, providing the temporal response as a function of distance, 

were processed with a two-dimensional fast Fourier transform (FFT) which then gave the 

temporal frequency as a function of spatial frequency. The magnitude of the response in Fourier 

space is shown in Fig. 3.7 (a). Here the dispersion curves can be identified as the high magnitude 

lines in the image. The frequency and wavenumber along these lines was extracted to create 

experimentally measured dispersion curves which are shown Fig. 3.7 (b) along with the 

theoretical dispersion curves calculated using the Rayleigh-Lamb frequency equation. 
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Fig. 3.6 Experimental setup for measuring conical dispersion of Lambs waves. 

 

  

Fig. 3.7 (a) Magnitude plot of the 2D Fourier transform of the experimentally measured 

waveforms showing the temporal frequency as a function of spatial frequency. (b) 

Experimentally measured dispersion curves for 6061-O aluminum plate cooled to -5°C. 

-1 0 1 2 3 4 5

1.95

2.00

2.05

2.10

2.15

A
1

S
0

S
2B

F
re

q
u
en

cy
 (

M
H

z)

Wavenumber (mm
-1

) 

0.0 1.0

S
2

 

-1 0 1 2 3 4 5
1.95

2.00

2.05

2.10

2.15

A
0

S
0

S
2

S
2B

A
1

S
1

F
re

q
u

e
n

c
y

 (
M

H
z
)

Wavenumber (mm
-1

)

 Rayleigh-Lamb

 Experiment

(a) (b) 



61 

 

The dispersion curves for the S2 mode in Fig. 3.7 show that it exhibits linear dispersion in the 

transition from the backward propagating region (S2B) to the forward propagating region (S2) 

proximate to k = 0. Fig. 3.7 (a) shows that the largest response is from the S2 mode and that the 

A1 mode and the S0 mode are present, but that they have weaker measured responses to the 

excitation source. This is expected since the source is larger in size than the wavelength of all 

modes other than the S2 mode. In fact, as was seen in Chapter 2, if the excitation source were 

Gaussian, only the S2 mode would be excited. However, because the source is a top-hat, higher 

spatial frequency modes were excited due to the sharp edges of the source. The thickness of the 

cooled plate is 1.532 mm based on the room temperature measured thickness and application of 

the coefficient of linear thermal expansion: 24·10
-6

 / Δ°C [10]. Poisson’s ratio at -5°C was 

previously measured to be 
1

3
. Using the thickness and ν, the cT for the plate was determined to be 

3.138 mm/s by using a best fit of the theoretical dispersion curve to the experimental data. The 

cL is 6.276 mm/μs (2·cT). 

 The behavior of conical dispersion at k = 0 was further explored by examining the 

measured frequency dispersion of only the S2 mode near the coincident frequency. A zoomed in 

version of the data in Fig. 3.7 (a) is shown in Fig. 3.8 (a). The mode curve extracted from Fig. 

3.8 (a) is shown in Fig. 3.8 (b), along with numerical simulation results. The numerical 

simulation was performed using the finite difference software PZFLEX. The simulation used the 

same geometry and material properties as the experiment and the data was processed in the same 

manner. The forcing function for the simulation was a 12.7 mm diameter circular top-hat applied 

normal to the surface and driven with a 5 cycle sine wave at 2.04 MHz. 
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Fig. 3.8 (a) Magnitude plot of the 2D Fourier transform of the experimentally measured 

waveforms in the vicinity of k = 0. (b) Experimentally measured dispersion curve in the vicinity 

of k = 0 and simulation results. 

 

The magnitude plot in Fig. 3.8 (a) shows that the response of the Lamb waves in the immediate 

vicinity of k = 0 is diminished. This result is in agreement with the theoretical predictions shown 

in Chapter 2. One cause for this effect is the finite size of the source. Specifically, a Lamb wave 

in which k → 0 has a wavelength → ∞ and therefore a finite sized source should couple less 

efficiently. This effect was confirmed using the theoretical solution, where a larger response at k 

= 0 was observed as the source size was increased (making the plate thinner gives the same 

effect for a fixed source size). The dispersion curves in Fig. 3.8 (b) exhibit a slight deviation 

from linearity proximate to k = 0. The slope the dispersion curve is approximated through this 

deviation and found to be ≈ 2.00 mm/μs, which agrees with the theoretical value: cg = 2cT/π = 

2.00 mm/μs. The distortion was observed in both the experimental and numerical results. A 

possible cause of this distortion is operating in the near field of the source. This hypothesis was 

studied by observing time responses in multiple spatial windows, each with an increasing 
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distance from the source. This study was performed numerically and the results are shown in Fig. 

3.9. The dispersion curves shown in Fig. 3.9 demonstrate that as the detection window is moved 

progressively further from the source location, the deviation from linearity near k = 0 decreases. 

This result confirms that the deviation from linearity is in fact due to detecting the wave motion 

in the near field of the source. 

 

 

Fig. 3.9 Simulation results for dispersion in the vicinity of k = 0 moving the detection region 

further from the source. The deviation from linearity is seen to decrease with increasing distance 

from the source. 
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conical dispersion were measured on the sample in the manner described above except the plate 

was at room temperature instead of cooled to -5°C. The data was collected and processed in the 

same manner as in the cooled case and again compared with the results of an equivalent 

numerical simulation. The experimental and numerical results are shown in Fig. 3.10 in terms of 

extracted dispersion curves near k = 0. 

 

Fig. 3.10 Experimentally measured dispersion curve in the vicinity of k = 0 for the 6061-O 

aluminum plate at room temperature. Simulation results of the experiment are also shown. 
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is associated with a shear simple thickness mode resonance, which has no normal displacement 

at k = 0. As the dispersion curve approaches this resonance its displacement profile will tend to 

conform to this shape and therefore it becomes increasingly difficult to excite and detect. The top 

branch (S2), on the other hand, is associated with a longitudinal thickness resonance at k = 0, 

which has only displacement normal to the plate surface. Again, as this mode curve approaches 

the resonance its displacement profile will tend to this shape and therefore the upper mode curve 

can be resolved closer to k = 0 than the lower mode curve can, when exciting and detecting 

normal to the surface. 

The plate thickness was measured to be 1.533 mm and ν was measured to be 0.3349, at 

room temperature. Using these two values the cT was determined to be 3.125 mm/s by using a 

best fit of the theoretical dispersion curve to the experimental data and cL is 6.272 mm/μs. 

 The room temperature experiment demonstrates that without tuning the elastic properties 

of the plate to the degenerate condition linear dispersion is not observed in the vicinity of k = 0. 

This experiment does show, however, that Lamb waves with an extremely long wavelength and a 

finite group velocity can be generated in this sample at room temperature. For example, at 2.051 

MHz the wavelength is 220 mm and the group velocity is ~ 2.5 mm/μs. These Lamb waves, with 

long wavelength and large group velocity, can be used to study the behavior of conical point 

Lamb waves in certain situations. For example, this wavelength is suitable for studying what 

happens when a conical point Lamb wave mode converts upon reflection or refraction to other 

modes with very small wavelengths, as will be demonstrated in Chapter 4. 
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3.4 Conclusions and Significance of Findings  

This Chapter experimentally confirms that conical dispersion at k = 0 will occur in an isotropic 

homogeneous plate when the material’s 𝜈 =
1

3
. This result has been theoretically predicted [2,13] 

however this is the first time that it has been experimentally demonstrated. This was 

accomplished by temperature tuning the elastic properties of a 6061-O aluminum plate in order 

to induce degeneracy between the 1
st
 symmetric longitudinal simple thickness resonance and the 

1
st
 symmetric shear simple thickness resonance. Poisson’s ratio was measured using a laser 

ultrasonic technique at room temperature and as a function of temperature. The frequency 

dispersion was measured while the sample was cooled and linear dispersion in the vicinity of k = 

0 was confirmed. A piezoelectric contact transducer, which generated longitudinal vibrations, 

was able to effectively generate Lamb waves with conical dispersion at k = 0. The generation and 

detection of Lamb waves with extremely long wavelengths and finite group velocity were also 

measured in a 6061-O aluminum plate at room temperature.  

These results show that given the correct material parameters a simple plate can support 

propagating waves with an infinite wavelength and infinite phase velocity. The result is 

propagating waves that oscillate in time but are spatially uniform over the plate surface. This 

means that simple plates can be used to explore the physics of conical dispersion at zero 

wavenumber. Further, this unusual phenomenon may have application uses in acoustic devices 

and nondestructive testing. 
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Chapter 4 

Reflection of Lamb waves with Conical Dispersion from a Free Edge 

4.1 Introduction 

In Chapter 3 it was demonstrated that conical dispersion at zero wavenumber (k) occurs in elastic 

plates when the material’s Poisson’s ratio (ν) is equal to  
1

3
. Lamb waves excited at the degenerate 

frequency were observed to have an infinite wavelength (λ), an infinite phase velocity (cp), and a 

finite group velocity (cg). The physical behavior of such a wave field is that the surface of the 

plate oscillates in time but spatially is uniform. This Chapter will explore how such a wave 

behaves when it encounters the free boundary of a plate. This is accomplished by first analyzing 

a plane wave at the degenerate frequency reflecting normal to a free edge. This will provide 

insight into the expected mode conversion of a conical Lamb wave from a free edge. Then the 

angle of reflection of the predicted mode converted waves will be analyzed using Snell’s law and 
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consideration will be given to the behavior of a long, but not infinitely long, wavelength incident 

wave. Finally, an experiment is conducted where broad angle reflection is considered from a free 

boundary. Here the boundary is selected to focus the reflected field. The incident near conical 

Lamb wave and reflected fields are analyzed. The experimental results are also compared with a 

numerical simulation, where the material’s elastic constants are set to the exact degenerate case. 

 

4.2 Normal reflection of a plane wave from a free edge 

A 1.5 mm thick plate with a shear wave velocity (cT) and a longitudinal wave velocity (cL) equal 

to 3.0 mm/μs and 6.0 mm/μs, respectively, will have conical dispersion at k = 0 at a frequency of 

2.0 MHz. This occurs because of the degeneracy between the 1
st
 symmetric longitudinal simple 

thickness resonance and the 1
st
 symmetric shear simple thickness resonance, both of which are 

on the S2 mode (S2 and S2B curves, respectively). At this frequency, the S1, A1, S0, and A0 modes 

also exist in the plate and occur at wavelengths 3.34 mm, 2.80 mm, 1.56 mm, and 1.35 mm, 

respectively, as shown in Fig. 4.1.  
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Fig. 4.1 Dispersion curves for a 1.5 mm thick plate with cT = 3.0 mm/μs and cL = 6.0 mm/μs. 

A numerical simulation was performed of the above detailed plate using PZFLEX. The simulation 

was two dimensional and plane strain was assumed. The model geometry is shown in Fig. 4.2. 

The source function was a continuous 2 MHz sine wave applied normal to the surface with a 

Gaussian distribution, full width at half-max (FWHM) 12.5 mm. 

 

Fig. 4.2 Geometry for PZFLEX simulation of conical mode reflection from a free edge. 

  

 

The normal displacement on the top of the plate was measured from 100 mm to 150 mm from 

the source in 50 μm steps. The data was processed in time with an FFT which was windowed 
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from 120 μs to 150 μs. The normal displacement at 2 MHz is shown in Fig. 4.3 (a). At the phase 

shown in Fig. 4.3 (a) multiple spatial modes are observed. First, a dc offset corresponding to the 

conical mode can be seen. Additionally, a short wavelength mode can clearly be seen. This mode 

is also modulated by another, longer wavelength, mode. In order to determine the spatial modes 

present, this data was processed in space with an FFT. The incident and reflected field contains 

the conical mode (S2), the S1 mode, and the S0 mode as depicted in the spectrum shown in Fig. 

4.3 (b). The presence of only symmetric modes is expected since the incident mode is symmetric 

and the boundary is symmetric. Which modes are reflected and the magnitude of these reflected 

modes is determined by satisfying the stress free boundary condition at the edge.  

  

Fig. 4.3 (a) Normal displacement of plate at 2 MHz. (b) Spectrum of the incident and reflected 

wave field shown in (a). 

 

Each incoming and outgoing mode contributes an in-plane and normal stress distribution along 

the edge of the plate and, for a free edge, the summation of these stresses must be zero. This 

problem is generally difficult to solve analytically because an infinite number of evanescent 
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modes must be considered in the reflected near field [1]. Accordingly, numerical techniques are 

often used except in the simplest of cases [2-7]. The relevant result of this experiment is that a 

conical point mode normally incident on a flat free edge mode converts and reflects an S0 mode 

that can be strongly measured in the normal displacement. Additionally, we propose that a 

conical point mode has a loss of directionality, which means that these results should hold for 

any incident angle. The following Sections will explore the angle of reflection for mode 

converted waves from a conical point mode at broad angles. The results in the following Sections 

agree with the proposed loss of directionality.  

4.3 Broad angle reflection of conical and near conical point Lamb waves 

from the free edge of a plate 

In Section 4.2 it was demonstrated that when a conical point Lamb wave is incident on a free 

edge of the plate, mode conversion occurs upon reflection. This was shown for a plane wave at 

normal incidence. Here we consider broad angled reflection. The magnitude of the mode 

conversion is not considered here, but rather just the angle of reflection based on Snell’s law: 

   
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         (4.1). 

Where ω is frequency and the subscripts I and R are the incident wave and reflected wave, 

respectively. The angles in Eq. 4.1 are defined relative to the interface surface normal as 

illustrated in Fig. 4.4. 
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Fig. 4.4 Definition of incident angle (𝜃I) and reflected angle (𝜃R) for Lamb waves reflected from 

a free edge. 

Consider the case were the incident wave is a conical point wave, kI = 0 (λI = ∞). Examining Eq. 

4.1, the reflected angle must be zero for all finite values of kR and 𝜃I. This means that any 

mode converted wave that reflects from the boundary, when the incident wave is a conical point 

mode, must reflect normal to the interface. As such, the energy flow of the reflected field can be 

tailored and controlled by the geometry of the edge. A few examples of this concept are shown in 

Fig. 4.5. 
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Fig. 4.5 Mode converted reflected field from an incident conical point mode for a normal edge 

(a), angled edge (b), concave curved edge (c), and convex curved edge (d). 

 

 Figs. 4.5 (a) and (b) shows that for the radially spreading source the mode converted reflected 

field is parallel to the edge and appears like it is emanating from a line source on the edge. In 

Fig. 4.5 (c) the field is reflected from a concave curved edge and the effect is that the field is 

lensed. On the other hand, when the field is reflected from a convex curved edge the reflected 

field spreads. One remarkable feature of the mode converted reflected fields in Fig. 4.5 are that 

they are independent of the source location. These examples show the conical point wave’s loss 

of directionality. 
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Chapter 3 demonstrated that a 6061-O aluminum plate at room temperature had a ν very 

close to a degenerate case. It was also shown that very long wavelength Lamb waves could be 

effectively generated in this sample at room temperature, wavelengths ~ 220 mm. Here we 

consider how Lamb waves of this wavelength will approximate the conical point behavior 

illustrated in Fig. 4.5. This is accomplished by application of Snell’s law and the wavenumbers 

of the plate modes at room temperature, as detailed in Table 4.1. Table 4.1 demonstrates that for 

any angle of incidence and for any reflected mode, the reflected angle will be 𝜃R < 1°, relative to 

the interface normal. Further, the primary reflected mode is predicted to be the S0 mode, and this 

mode will always be reflected < 0.4°. Consequently, near conical Lamb waves excited in the 

6061-O aluminum plate at room temperature should demonstrate very similar behavior to the 

reflected wave fields shown Fig. 4.5 

 

 

Table 4.2 Angles of reflection for a near conical point Lamb wave reflected from the free edge 

of a 6061-O aluminum plate. 

Incident 

Angle 

Reflected angle from an S2 mode, λ = 220 mm 

S1, λ = 3.35 mm A1, λ = 2.82 mm S0, λ = 1.57 A0, λ = 1.38 mm 

0° 0° 0° 0° 0° 

±15° ±0.23° ±0.19° ±0.11° ±0.09° 

±30° ±0.44° ±0.37° ±0.20° ±0.18° 

±45° ±0.62° ±0.52° ±0.29° ±0.25° 
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±60° ±0.76° ±0.64° ±0.35° ±0.31° 

±75° ±0.84° ±0.71° ±0.40° ±0.35° 

±90° ±0.87° ±0.74° ±0.41° ±0.36° 

 

4.4 Experimental demonstration of conical point Lamb wave broad angle 

reflection from a curved free edge, resulting in mode converted field focusing 

A conical point Lamb wave behaves as if it were temporally and spatially decoupled, meaning 

that the plate’s surface displacement is oscillatory in time but stationary in space [8]. One result 

of this is that mode converted waves always reflect normal to the interface. In Fig. 4.5 it was 

demonstrated that a concave curved free edge would focus the field of mode converted waves. 

Here, a semi-circular edge is machined into a plate, near conical point Lamb waves are generated 

in the plate, and the reflected field is measured. The experimental setup is depicted in Fig. 4.6; 

the geometry of the semi-circle edge and the transducer location are also specified.  
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Fig. 4.6 Experimental setup for measured broad angled reflection of conical point Lamb waves 

from a semi-circle free edge of a 6061-O aluminum plate. 

 

The transducer was located at a random position with respect to the semi-circle edge in order to 

demonstrate the invariance of the source location to the focusing effect.  The transducer was 

driven with a 50-cycle tone burst at a frequency of 2.051 MHz, where the wavelength was 220 

mm and the associated phase velocity was 4.5 × 10
5
 m/s. The detection laser was scanned over a 

35 × 35 mm
2
 region of the plate, encompassing the semicircular feature, with a step size of 0.2 

mm along each axis, and the normal surface displacement was measured at each spatial position. 

The time domains were recorded for 200 μs at a sampling rate of 50 MHz. Five-hundred (500) 

waveforms were averaged for each location. The data was processed using an FFT over a 60 to 

100 μs time window. The magnitude and phase angle of the surface displacement at a frequency 
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of 2.051 MHz was then determined at each spatial position. The displacement amplitude at an 

arbitrary phase is shown in Fig. 4.7 (a).  

 

Fig. 4.7 (a) Normal displacement at a frequency of f = 2.051MHz from the experimental 

measurements. (b) Fourier domain representation of the measured wave field. The dominant 

modes are the incident S2 mode near k = 0 and mode converted S0 mode. 

 

The near-degenerate S2 mode has a wavelength much longer than the image size, therefore only 

contributing a dc offset to the image and little to no spatial structure. The primary spatial 

structure in Fig. 4.7 (a) is from the reflected S0 mode (λ = 1.57 mm). The wave field of this 

reflected mode is seen to focus at the geometric center of the semi-circle edge. The displacement 

data in Fig. 4.7 (a) was processed with 2D FFT in the x and y spatial directions, the magnitude of 

which is shown in Fig. 4.7 (b). The magnitude image in Fourier space shown in Fig. 4.7 (b) gives 

the spectral content of the incident and reflected field. The field primarily consists of the incident 
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S2 mode, which appears as a “hot spot” near (kx, ky) = (0, 0), and the reflected S0 mode, which 

appears as a semicircle ring with a radius of k ~ 4.00 mm
-1

. The magnitude of the S0 ring is quite 

uniform over the full 180° of the semi-circular edge. This supports the claim that the incident 

near conical mode has an almost total loss of directionality. The mode conversion from the flat 

edge above and below the semi-circular region can also be observed in Fig. 4.7 (a) and is seen to 

be normal to edge, similar to the behavior predicted in Fig. 4.5 (a), and results in the light-dark 

pattern near ky = 0 in Fig. 4.7 (b).   

The reflected S0 mode can be observed more clearly by spatially filtering the data in Fig. 

4.7 (a) with a bandpass filter (k = 3.0 – 5.0 mm
-1

), as shown in Fig. 4.8. (a).  

 

Fig. 4.8. (a) The displacement field in Fig. 4.7 (a) after a bandpass filter (k = 3.0 to 5.0 mm
−1

) in 

order to isolate the S0 mode arising from mode conversion from the plate edge. (b) Magnitude of 

the normal displacement field at 2.051 MHz showing focusing of the S0 wave field at the center 

of the lens. 

15 0 -15

-15

0

15

y
 (

m
m

)

x (mm)

-1.0 0.0 1.0
u

z
[arb. units]

(a)

15 0 -15

-15

0

15

y
 (

m
m

)

x (mm)

0.0 1.0

Magnitude (u
z
)

[arb. units]

(b)



81 

 

After spatial filtering, the reflected S0 mode is clearly seen to nearly uniformly mode convert 

from the free edge and reflects at an angle normal to the edge, as evident by the focusing. This is 

similar to the predicted result sin Fig. 4.5 (c). As was previously noted, a remarkable feature of 

this type of system is that the focusing is independent of the source location. A magnitude plot of 

the filtered field is shown in Fig. 4.8 (b). Here it is observed that the field magnitude is highest at 

the geometric center of the semi-circular edge, again confirming that the edge acts as a lens for 

mode converted reflections from the near conical point incident field. 

 The lensing experiment was conducted with a 6061-O aluminum plate at room 

temperature, where the material’s Poisson’s ratio was 0.3349 which was close to the degenerate 

case of  𝜈 =
1

3
. In Section 4.3 it is was shown that with this Poisson’s ratio the angle of mode 

conversion reflection is very close to normal to the interface for any incident angle. In order to 

investigate any potential differences in the wave field behavior that could occur at a true 

degeneracy, a simulation was performed using PZFLEX identical to the experiment with the 

exception of Poisson’s ratio, which was set to  
1

3
. The excitation source was a circular normal 

force with a diameter matching that of the transducer, and the mechanical properties were 

selected to match the cooled specimen discussed earlier in Chapter 3. The temporal excitation 

profile and data processing approach where identical to the experiment. In this case, the 

degeneracy occurs at a frequency of 2.048 MHz. Fig. 4.9 (a) and Fig. 4.9 (b) give the calculated 

displacement field and that field in Fourier space, respectively. Fig. 4.9 (c) and Fig. 4.9 (d) show 

the calculated bandpass filtered displacement and displacement magnitude plot, respectively. A 

qualitative comparison between all experimental and simulation plots shows good agreement 

between the two. Specifically, both show angle independent mode conversion and normal 

reflection for the S0 mode at the free edge. 
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Fig. 4.9 (a) Normal displacement at a frequency of f = 2.048 MHz found from the numerical 

simulation. (b) Fourier domain representation of the measured wave field. The dominant modes 

are the incident S2 mode near k = 0 and mode converted S0 mode. (c) The displacement field in 

(a) after a bandpass filter (k = 3.0 to 5.0 mm
−1

) in order to isolate the S0 mode arising from mode 

conversion at the plate edge. (d) Magnitude of the normal displacement field at 2.048 MHz 

showing focusing of the S0 wave field at the center of the lens. 
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 Returning to the experimental data, the incident S2 near conical point mode is examined. 

This was accomplished by first examining the time domain responses at four random locations in 

the lens as indicated in Fig. 4.10.  

 

Fig. 4.10 Location of four random positions on the plate where the temporal responses of the S2 

mode are examined. 

  

The data was low-pass filtered at a spatial frequency of 1.0 mm
−1

 in order to isolate the S2 mode 

and the resulting wave forms are shown in Fig. 4.11 (a). The time traces show an initial transient 

tone burst, due to the 50 cycle tone burst, followed by a prolonged ringing. This is similar 

behavior to the theoretical response to an impulse that was shown in Chapter 2. Fig. 4.11 (b) 

depicts the time traces in Fig. 4.11 (a) zoomed-in between 90 and 95 μs. The surface 

displacement at all four of these points oscillates with a nearly identical phase; this is expected 

due to the unusually large wavelength of the S2 mode. These results confirm the generation of 

the near conical point S2 mode and show the spatial invariance of this field. The wavelength of 
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this incident mode can be estimated by inspecting the phase delay of the displacement response 

at 2.051 MHz, as shown in Fig. 4.12.  

  

Fig. 4.11 (a) Time domain responses after a low-pass spatial filter (k = 1.0 mm
−1

), in order to 

isolate the S2 mode, at the four locations shown in Fig. 4.10. (b) Zoomed-in view of the time 

domain responses in (a) showing the uniform phase of the oscillations at the different spatial 

positions. 

 

Fig. 4.12 Phase of the oscillation of the S2 mode over the surface of the lens at 2.051 MHz. A 

low-pass spatial filter (k = 1.0 mm
−1

) was used to isolate the S2 mode.  
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The data was spatially low-pass filtered (k = 1.0 mm
−1

) and the phase angle found by using a 

temporal FFT of the wave forms in the 60–100 μs time window. The wavelength of the S2 mode 

was estimated to be 190 mm, with an associated phase velocity of 3.9 × 10
5
 m/s. Within the 

context of the ~ 30x30 mm
2
 window in Fig. 4.12, the phase of the incident S2 mode is nearly 

uniform at this frequency. The estimated wavelength of the S2 mode within the lens is slightly 

different that that predicted by the dispersion curve in Chapter 3. The dispersion curve in Chapter 

3 was measured in the middle of the sample not along the edge where this experiment was 

performed. This discrepancy is likely due to thickness variation in the plate.  

  

4.5. Conclusions and Significance of Findings  

In this Chapter angle independent mode conversion of a Lamb wave with conical dispersion 

from the free edge of a plate was experimentally demonstrated. This behavior was similar to that 

previously demonstrated by refracting waves to and from a zero-index meta-material [9-10] and 

zero-index wave guides [11] at curved interfaces. Here, however, the existence of multiple 

spatial modes of propagation at the degenerate frequency allowed the creation of a lens by 

reflecting a Lamb wave from a semi-circular edge. Theory predicted that a conical point S2 mode 

would mode convert primarily to an S0 mode upon encounter a free edge and that the angle of 

reflection would be normal to the interface for all incident angles. This behavior was 

experimentally confirmed by focusing the reflected S0 field from the semi-circular edge. The 

experiment showed that the mode conversion was uniform for the full 180° of the edge which 

confirmed that the conical point Lamb wave was spatially uniform. Examining time responses, 

the incident near conical point wave was observed to be oscillatory in time but have equal phase 
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throughout the region of observed space. This behavior confirms the hypothesis that a conical 

point wave is essentially decoupled in space and time. 

Numerical simulation demonstrated that for the experimental geometry there was little 

difference between the behavior of the near conical case and the true degenerate case. The 

critical parameters to achieve focusing from a semi-circular edge are that the incident mode’s 

wavelength be much longer than the reflected mode’s wavelength and that the phase of the 

incident mode be nearly uniform over the entire geometry of the lens. These two conditions were 

satisfied in the experiment, where the incident mode’s wavelength was two orders of magnitude 

larger than the reflected mode’s wavelength and was 6-7 times larger than the entire lens. 

The findings of this Chapter show that a simple plate, with elastic parameters such that 

conical dispersion (or near conical dispersion) exists at k = 0, can be used to control the flow of 

elastic energy in novel ways. Specifically it was shown that energy can be focused from the edge 

of a plate. It should also be possible to manipulate fields in other interesting ways including 

columnating a field from an interface and steering waves around 180° bends, to name a few. 
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Chapter 5 

Scattering of Lamb waves with Conical Dispersion 

5.1 Introduction 

Elastic wave scattering from discontinuities in solids is a subject of great interest [1]. The main 

driver for this attention is the need for quantitative ultrasonic flaw characterization, with the goal 

to characterize the size, orientation, and shape of a discontinuity based on information obtained 

from scattered ultrasonic waves [2]. The exact solution for wave scattering problems has only 

been solved for a few idealized systems. In these cases, the flaw is generally a smooth closed 

surfaces such as a spheroid or planar surface with sharp edges [3]. The applicable theory for 

analyzing a scattering problem is often based on the product of the incident wave’s wavenumber 

(k) and the general dimension of the discontinuity (a). For example, for spherical inclusions and 

ka < 1, the integral boundary Born approximation is valid and becomes more accurate as ka → 0 
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[4]. Alternatively, when ka > 1 a geometric diffraction theory is generally used [5, 6]. Note that 

when the ka > 1 the problem is sometimes referred to as wave diffraction instead of wave 

scattering. For more complicated discontinuities a numerical approach is often used such as 

boundary element modeling or finite element modeling [1]. 

 The more specific topic of elastic wave scattering in plates (Lamb waves) is also of great 

interest due to the prominent use of Lamb waves in non-destructive testing. Interpreting scattered 

Lamb wave fields is challenging due to the presence of multiple propagating modes and 

infinitely many complex modes. Even in the low frequency regime there are at minimum two 

propagating modes, a symmetric and an antisymmetric, and a third shear horizontal wave that 

can occur when these modes interact with a scatterer [7]. When the frequency is low and the 

scatterer has a simple geometry, analytical techniques can be used [8-13]. Lamb wave scattering 

for high frequencies, where many propagating and non-propagating modes must be considered, 

is generally studied with the aid of numerical modeling. For example, the finite element method 

(FEM) has been used [14,15], combinations of FEM and analytical solutions have been used 

[16,17], and a normal mode expansion and a boundary element method has been used [18]. Here, 

we examine how a Lamb wave with conical dispersion at k = 0 scatters from a finite sized hole in 

a plate. This topic is unexplored in the literature, owing to the fact that Lamb waves with conical 

dispersion are relative unexplored and had never been experimentally demonstrated. The 

approach will be to first use a simplified low frequency analytical model to examine wave 

scattering when ka → 0, then a 3D finite element model and experiments are conducted to 

examine a Lamb wave scattering from a hole when k = 0, and finally 3D finite element models 

and experiment is used to show how a propagating Lamb wave at k = 0 can be used to hide 

scatterers in the long wavelength field. 
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5.2 Compression waves in a thin plate scattering from a hole 

An analytical solution to the problem of a compressional wave incident on a hole in a thin plate 

is considered here. The aim of this analysis is to glean insight into how a Lamb wave with an 

infinite wavelength might interact with a finite sized hole. This is accomplished by examining 

how a single mode compressional wave scatters from a hole as its wavelength becomes large, 

with respect to a hole. 

 This simplified model considers a compressional wave in an infinitely extended elastic 

plate impinging on a finite sized hole in the plate [13]. A zero-order approximation of the three-

dimensional equations of elasticity is used, where the displacement components are independent 

of the plate thicknesses. This requires that the frequency is low enough that only the S0 mode and 

A0 mode are present, or, at a frequency lower than all of the simple thickness mode resonances.  

Additionally, the low frequency complex wavenumber modes are ignored, which is valid as long 

as the wavelength is long with respect to the plate thicknesses [13]. Fig. 5.1 depicts the 

simplified scattering problem. 
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Fig. 5.1. Geometry of compression wave in a thin plate incident on a hole of radius a. 

The general procedure for solving this problem is as follows:  

1. Write out the incident field and scattered field potential functions in polar 

coordinates. 

a. Note that the incident field consists only of a dilatational potential and the 

scattered field contains a dilatational and equivoluminal potential (allowing 

for mode conversion to a shear wave) 

b. The incident and scattered potentials are represented by infinite series of 

Bessel and Hankel functions, respectively 

2. The stress and displacement fields are written using the potentials. 

3. The stress free boundary condition along the hole surface (σrr & σrθ = 0 @ r = a) are 

enforced, which then allows for the calculation of the unknown series coefficients. 

This solution was implemented numerically using MATLAB® and is shown in Appendix C. An 

interesting feature of the normalized displacement and stress solutions are that the they depend 

only on the plate’s Poisson’s ratio (for an isotropic material) and the product of the incident 
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wave’s wavenumber and the radius of the hole (ka) [12,13]. The displacement magnitude in the 

x-direction and the y-direction, around the surface of the hole, is shown in Fig. 5.2 for the case 

where the incident wave’s wavelength is larger, but still similar in size, to the hole (ka = 1, or λ = 

4πa) and Poisson’s ratio was equal to ⅓. 
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Fig. 5.2 Normalized displacement field magnitude at r = a from an incident compressional wave 

scattered from a hole in a thin plate, where ka = 1. 

 

As a reference, the incident field, in absence of a hole, has a unit magnitude in the x-direction at 

every location and zero magnitude in the y-direction. In the case where ka = 1, the field has a 

“shadow” behind the hole, as evident by a magnitude less than unity from approximately 300° - 

60° (behind the hole). Much of the incident mode is scattered back toward the source as seen by 

the increase in magnitude from unity in the x-direction around 180°. There is mode conversion to 

a shear wave (A0) as evident by the non-zero displacement in the y-direction. The peak mode 

conversion occurs at around 60º and 300º. The behavior of an incident wave with a wavelength 
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much longer than the size of the hole was determined by setting ka = 0.001 and examining the 

displacement magnitude around the hole as shown in Fig. 5.3.  
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Fig. 5.3 Normalized displacement field magnitude at r = a from an incident compressional wave 

scattered from a hole in a thin plate, where ka = 0.001. 

 

Here, there is no mode conversion or scattering of the incident wave field. The displacement 

magnitude in the x-direction is uniformly equal to unity around the hole and the displacement 

magnitude in the y-direction is uniformly equal to zero around the hole. In the case where ka → 0 

the incident and scattered displacement field is simply equal to the incident field when there is no 

hole. This result should not be surprising since instead of making the incident wavelength long 

with respect to the hole’s radius we could have equivalently made the hole’s radius small with 

respect to the wavelength. From this perspective, the limiting case of ka → 0 would mean that 

the hole’s radius tended to zero or that the hole disappeared. These results are interesting in the 
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context of a conical point Lamb wave because they imply that an incident wave with zero 

wavenumber will not scatter from any finite sized hole. However, the analytical solution here 

assumes no field dependency through the plate thickness and is only valid at frequencies below 

any of the simple thickness mode resonances. In the next section a 3D finite element simulation 

is used to study the behavior of a conical point Lamb wave scattering from a finite sized hole. 

 

5.3 Numerical simulation of Lamb waves with conical dispersion at k = 0 

scattering from a hole 

In this section a numerical simulation is performed in order to investigate the scattering of a 

Lamb wave with conical dispersion at k = 0 from a finite sized hole in a plate. The simulation is 

performed using the finite difference software PZFLEX. A 1.5 mm thick (H) plate with 

longitudinal wave velocity (cL) = 6.0 mm/μs and shear wave velocity (cT) = 3.0 mm/μs is 

considered (ν = ⅓). The plate was modeled on an orthogonal grid with element dimensions 

50x50x25 μm
3
 (x,y,z). A 6 mm diameter hole was located at the origin of the coordinate system 

and a continuous sinusoidal line force was applied normal to the top of the plate at x = -35 mm. 

The excitation had a Gaussian distribution in the x-direction, centered at x = -35, with a full 

width at half max (FWHM) of 12 mm. The simulation geometry is shown in Fig. 5.4. The 

normal displacement on the surface of the plate was measured. The source was smooth and 

spatially large enough to suppress the excitation of all higher wavenumber modes and only excite 

the S2 mode at k = 0. The excitation frequency was 2.0 MHz (cT/H) which is the coincident 

frequency of the first symmetric shear and first symmetric longitudinal simple thickness 
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resonances and has been shown to generate Lamb wave’s with a finite group velocity and an 

infinite phase velocity (conical point Lamb waves). 

 

Fig. 5.4 Simulation geometry for Lamb wave with conical dispersion at k = 0 scattering from a 

finite sized hole in a plate. 

 

The time domain waveforms were windowed between 10 - 14 μs, 16 - 20 μs, 23 - 27 μs, and 36 - 

40 μs and in each case processed using a Fourier transform. The magnitude of the surface 

displacement at a frequency of 2.0 MHz was determined for each time window and at each 

spatial position, and the displacement amplitude is plotted in Fig. 5.5 (a) – (d). A low pass spatial 

filter (k = 0.5 mm
-1

) was applied in order to suppress the higher spatial modes that arise as a 

result of mode conversion from the hole. Remarkably, the incident conical point Lamb wave 

appears to “flow” around the hole without any distortion. This is similar to the behavior observed 

in the simplified model shown in Section 5.2. However, in the simplified model when ka → 0 

there was no mode conversion from the hole. 
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Fig. 5.5 Magnitude of normal displacement at a frequency of 2.0 MHz at various instants in time. 

The displacement is low pass filtered (k = 0.5 mm
-1

).  The hole in the plate has a 6 mm diameter 

and the plate has: cT = 3.0 mm/μs, cL = 2cT, and H = 1.5 mm.  

 

Here, the incident wave is observed to mode convert at the hole. This is expected since “A two-

dimensional solution, however, contains shearing stresses in addition to the longitudinal stresses. 

As the component of longitudinal stress reflects from a free edge with a change in sign and the 

component of shear stress without, it is impossible for the superposition of a right-traveling wave 
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and a left-traveling wave of the same and single wavelength to produce the desired condition of 

zero traction on the end face” [19]. The mode converted field consists mainly of the S0 mode and 

a smaller amount of the S1 mode (these results agree with the findings in Chapter 4). The steady 

state mode converted field is shown in Fig. 5.6 (a), where a high pass filter (k = 3.0 mm
-1

) was 

used to isolate the S0 mode. The field in Fig. 5.6 (a) is shown in Fourier space in Fig 5.6 (b). The 

most salient feature of the mode converted field is that it is uniform in magnitude and phase 

around the hole. This observation is also confirmed by inspection of the magnitude in Fourier 

space, which is a 360º ring of uniform amplitude with a radius ~ 4 mm
-1

. This means that the 

incident conical point field must also be uniform in magnitude and phase around the hole, since 

it is the source of the mode converted field. The incident Lamb wave field causes the hole to act 

as a pseudo-source for the mode converted field. However, the incident field itself appears 

unperturbed by the hole. Similar simulations were also performed where finite wavelength Lamb 

waves were instead excited. In these cases the presence of the hole caused perturbation to the 

incident field and the mode conversion was not perfectly uniform around the hole. 
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Fig. 5.6 Normal displacement at a frequency of 2.0 MHz at steady state (a). The field is high 

pass filtered (k = 3.0 mm
-1

).  (b) Fourier domain representation of field in (a).  

 

5.3 Experimental results of Lamb waves with conical dispersion at k = 0 

scattering from a hole 

In this section the scattering of Lamb waves with conical dispersion at k = 0 from a hole in a 

plate is experimentally measured. To begin, the dispersion curve for a 305 x 305 mm
2
 6061-O 

aluminum plate, with a measured thickness of 1.539 ± 0.003, was measured while the plate was 

cooled to approximately -5 ºC. The temperature was selected based on the Poisson’s ratio 

measurements of the 6061-O aluminum plate in Chapter 3. At this temperature, the plate should 

exhibit conical dispersion at k = 0 because its Poisson’s ratio will, on average, be = ⅓. Measuring 

the dispersion curve will confirm this and will give the frequency at which the degeneracy 

between the 1
st
 symmetric longitudinal simple thickness resonance and 1

st
 symmetric transverse 

simple thickness resonance occurs (conical point).  
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Lamb waves were excited using a contact transducer (Olympus v109) with an aperture of 

12.7 mm coupled to the sample with a thin oil layer. The transducer was driven by a 5 cycle sine 

wave at 2.0 MHz from a function generator that was coupled to a 50 dB power amplifier. The 

resulting normal displacement of the sample was detected using an adaptive photorefractive 

crystal based interferometer which used a bismuth silicon oxide crystal. A 5.0 kHz, 3.0 kV field 

was applied to the crystal to enhance two-wave mixing gain. The laser source for the 

interferometer was a single longitudinal mode frequency doubled Nd:YAG laser with an output 

of 150 mW. The turning mirrors on the signal leg of the interferometer were mounted on a 2-axis 

translation stage in order to measure the displacement field over the plate surface. The output of 

the interferometer was sent through a 1.9 MHz analog high pass filter and recorded on a digital 

oscilloscope. Time domain responses were measured as the source to receiver distance was 

increased in 200 m steps for a total distance of 20 mm, starting 100 mm away from the center 

of the transducer. The measured waveforms gave the temporal response as a function of distance 

and were processed with a two-dimensional FFT which then gave the temporal frequency as a 

function of spatial frequency. The wavenumber associated with the peak magnitude in Fourier 

space was found from 1.95 – 2.15 MHz in order to extract the dispersion curve of the S2 mode 

near k = 0. This dispersion curve, along with the theoretical dispersion curve calculated using the 

Rayleigh-Lamb frequency equation, is shown in Fig. 5.7. The coincident frequency is found to 

be 2.04 MHz. 
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Fig. 5.7 Experimentally measured dispersion curve near k = 0 for a 6061-O aluminum plate 

cooled to ~ -5°C and theoretical curve (cT = 3.138 mm/μs, cL = 2cT, and H = 1.539 mm). 

 

Using the above results, the behavior of a conical point Lamb wave scattering from a hole 

in a plate is examined. A 6 mm diameter hole was drilled near the center of the plate. The 

excitation transducer was located 100 mm from the center of the hole. Lamb waves were excited 

by driving the transducer with a continuous 2.04 MHz sine wave from a function generator 

coupled to a power amplifier. The peak-to-peak amplitude from the function generator was 300 

mV and the power amplifier gain was 50 dB. The output from the interferometer was fed to an rf 

lock-in amplifier. The reference signal for the lock-in came from the function generator. The 

lock-in time constant was 10 μs with a 12 dB per octave roll-off and the signal acquisition time 

was 70 μs. The plate was placed in a cooling chamber and cooled to ~ -5°C for the experiment. 

The experimental setup is shown in Fig. 5.8. 
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Fig. 5.8 Experimental setup for measuring scattering of Lamb waves with conical dispersion 

from a hole in a plate. 

 

A simulation of the experiment was performed using PZFLEX where the model 

parameters were chosen to match the experiment. The experimental and numerical results are 

shown in Fig, 5.9. The results have some similar and some different features than the findings 

shown in Section 5.2. The raw data for the in-phase component of the displacement field is 

shown in Fig. 5.9 (a) and (d) for the simulation and experiment, respectively. One difference 

from the previous results is the presence of additional modes generated from the source, as 

evident by the nearly planar S0 mode propagating in the x-direction. This is due to the top hat 

shape of the source which excites higher spatial modes due to its sharp edge. The primary modes 
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excited are the S2 (conical point) mode and the S0 mode. Because the S0 mode is also mode 

converted (scattered) from the hole, the steady state results shows interference between the 

incident S0 field and scattered S0 field. The presence of the conical point mode appears as a DC 

offset in the displacement data. The behavior of the conical point Lamb wave can be observed by 

applying a low pass filter (k = 0.5 mm
-1

) to the data, as shown for the displacement magnitude in 

Fig. 5.9 (b) and (e) for the simulation and experiment, respectively and for the displacement 

phase angle in Fig (c) and (f) for the simulation and experiment, respectively. The magnitude and 

phase of the conical point mode appears unperturbed by the hole. There is a small amount of 

spatial variation in the magnitude due the geometric decay of the source and from variations in 

the interferometer sensitivity for the experimental data. The geometric decay was not present in 

the previous results because a line source was used. The phase is almost perfectly uniform 

around the hole. These results confirm that in the long wavelength limit (k → 0), a conical point 

Lamb wave will flow around a finite sized hole and the field distal to the hole is undisturbed.  
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Fig. 5.9 Raw data for the in-phase normal displacement of a plate subject to a CW excitation at 

2.04 MHz. The simulation results are shown in (a) and the experimental results shown in (d). 

The magnitude of the normal displacement after processing with a low pass filter (k = 0.5 mm
-1

) 

for the simulation (b) and experiment (e). The phase angle of the normal displacement after 

processing with a low pass filter (k = 0.5 mm
-1

) for the simulation (c) and experiment (f). 

 

5.4. Simulations demonstrating pseudo cloaking of finite sized scatterers 

using Lamb waves with conical dispersion at k = 0 

It has been demonstrated that Lamb waves with extremely long wavelength, due to conical 

dispersion at k = 0, will “flow” around a finite sized hole and that the distal field is unperturbed. 

This means that the hole is essentially invisible or cloaked in the long wavelength field. A 

striking demonstration of this phenomenon can be achieved by creating a small, symmetric, 

thickness change in the plate distal to hole. In the thinner section of the plate the dispersion 

curves are shifted and consequently the incident waves will undergo mode conversion at the 
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interface. The goal here is to design the step so that a conical point Lamb wave will uniquely 

convert to at least one other mode in the thinner portion of the plate. If the hole is actually 

cloaked, this mode converted field should be independent of the presence or geometry of the 

hole. Also, because the conical point wave has an infinite phase velocity, if the interface is flat 

the mode converted field will also consist of plane waves (as shown in Chapter 4). 

 The thickness step in the plate is chosen by examination of the dispersion curves. 

Specifically, Fig. 5.10 shows the dispersion curves for a plate with cT = 3.0 mm/μs, cL = 2cT, and 

H1 = 1.5 mm, and H2 = 1.4 mm. 

 

Fig. 5.10 Dispersion curves for plate with cT = 3.0 mm/μs, cL = 2cT, H1 = 1.5 mm, and H2 = 1.4 

mm. At the coincident frequency (2 MHz) in the thicker side of the plate, the thinner side of the 

plate has an S2B mode at k ~ 0.6 mm
-1

. 
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At the conical point frequency in the 1.5 mm thick plate there exist an S2B mode in the thinner 

side of the plate with k = 0.6 mm
-1

. Simulations confirm that when incident waves from a top hat 

source, consisting of the conical point mode, S1 mode, and S0 mode, mode convert at the 

interface to the 1.4 mm thick portion of the plate, only the conical point wave mode converts to 

this S2B mode. This is likely due to the long, with respect to the other incident modes, 

wavelength of the S2B mode. 

 A finite difference simulation was performed where Lamb waves were excited in a plate 

by a 12.5 mm diameter top hat force applied normal to the surface. The excitation frequency was 

2.0 MHz. The excitation source was located 40 mm in the x-direction from a 20 mm diameter 

hole. The source was also located 80 mm in the x-direction from a symmetric step in the plate 

thickness. The elastic properties and thicknesses of the plate were the aforementioned parameters 

in the dispersion curves shown in Fig. 5.10. The normal displacement is shown at times = 12, 23, 

44, and 110 μs in Fig. 5.11 (a), (b), (c), and (d), respectively. The source is observed to generate 

mainly the conical point mode and secondarily the S0 mode (as previously shown). The conical 

point mode is seen to “flow” around the hole, as demonstrated in Section 5.2. Here, however, 

there is a mode converted field at a thickness change in the plate. The mode converted S2B field 

arises uniquely from the incident conical point mode. This field is observed to consist of plane 

waves and does not show any perturbation from the 20 mm diameter hole. These results again 

confirm that the conical point Lamb wave flows around the hole without distortion. The mode 

converted field from the conical point Lamb wave can also be observed as a circular field 

emanating, in phase, from the around hole. As previously noted, this field consists mostly of the 

S0 mode. 

  



107 

 

 

Fig. 5.11 Simulation results showing the normal displacement for a Lamb wave with conical 

dispersion at k = 0 propagating on a plate with a 20 mm diameter hole centered at x = 60 mm and 

a symmetric thickness step of 50 μm at x = 100 mm. The displacement is shown at t = 12, 23, 44, 

and 110 μs in (a), (b), (c), and (d), respectively. 

 

Similar simulations were run with no hole, multiple holes, and a slit (aperture). The 

steady normal displacement field for no hole, one 20 mm diameter hole, three 24 mm diameter 

holes, and a 14 mm wide aperture are shown in 5.12 (a), (b), (c), and (d), respectively. Each of 

the results in Fig 5.12 exhibits a mode converted S2B field consisting of plane waves. In each 

case, the mode converted S2B mode appears spatially uniform in the y-direction. The magnitude 

of the S2B field is observed to decrease in the cases where scatterers are present, with the most 
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noticeable effect in 5.12 (c) and (d), where the scatterers constituent a significant portion of the 

plate’s cross-sectional area. 

 

Fig. 5.12 Simulation results showing the steady state normal displacement field for a Lamb wave 

with conical dispersion at k = 0 propagating on a plate with a symmetric thickness step of 50 μm 

at x = 100 mm and various scattering geometry. (a) No hole. (b) One 20 mm diameter hole 

located at x = 60 mm. (c) Three 24 mm diameter holes x = 60 mm, (d) A 14 mm wide aperture 

located at x = 75 mm.  

 

The source of this magnitude decrease is likely from the conical point mode losing energy due to 

mode conversion. Interestingly, the magnitude reduction appears to be spatially uniform distal to 

the scatterers, unlike the shadowing effect that occurs when finite wavelength waves scatter from 
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holes. These simulations demonstrate how a Lamb wave with conical dispersion can be used to 

hide the presence of finite sized scatterers. 

 

5.5. Experimental demonstration of pseudo cloaking a finite sized hole using 

Lamb waves with conical dispersion 

The previous section used numerical simulations to show that Lamb waves with conical 

dispersion at k = 0 can be used to hide scatterers when observing a distal mode converted field. 

Here, the same principle is demonstrated experimentally. The 610 x 305 mm
2
 6061-O aluminum 

plate used in the experiments from Chapter 4 was used here. To begin, about half of the plate 

was dipped in an acid bath in order to symmetrically remove material. The thickness after 

dipping was measured to be 1.450 ± 0.003 mm. Then, a 20 mm diameter hole was drilled in the 

thicker side of the plate, 48 mm away from the thickness step. Near conical point Lamb waves 

were excited in the plate using the experimental procedure previously detailed in Section 5.3, 

with the exception that the transducer was driven at 2.051 MHz. Previous experiments have 

shown that at this frequency an S2 mode can be effectively generated which has a wavelength of 

approximately 200 mm. A diagram of the experimental setup is shown in Fig. 5.13. 
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Fig. 5.13 Experimental setup for demonstrating pseudo cloaking of hole in a plate by a Lamb 

with conical dispersion by measuring a mode converted field distal to the hole. 

 

The normal displacement was measured in the mode converted field over the 58 x 60 mm
2
 area 

depicted in Fig. 5.13. The dispersion curves for both sides of the plate are shown in Fig. 5.14 

where the excitation frequency is indicated. The elastic constants and thickness for the plate at 

room temperature were previously measured to be cT = 3.125 mm/μs, cL =6.272, and H = 1.533 

mm. 
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Fig. 5.14 Dispersion curves for plate with cT = 3.125 mm/μs, cL = 6.272 mm/μs, H1 = 1.533 mm, 

and H2 = 1.450 mm. At 2.051 MHz the S2 mode in the thicker side of the plate has a wavelength 

~ 200 mm and in the thinner side of the plate the S2B mode has a wavelength ~ 14.5 mm. 

 

The raw data for the in-phase component of the normal displacement is shown in Fig. 5.15 (a) 

and processed with a low pass filter (k = 1.0 mm
-1

) in Fig. 5.15 (b). The displacement field 

consists of plane waves and appears unperturbed by the presence of the hole. These results again 

confirm that in the long wavelength a Lamb wave will “flow” around a finite sized hole and 

effectively hide it when observing the distal field or a mode converted distal field originating 

from the conical point wave.  
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Fig. 5.15 Normal displacement of mode converted field distal to a 20 mm diameter hole in a 

6061-O aluminum plate. The in-phase component of the raw data is shown in (a) and the after a 

low pass (k = 1.5 mm
-1

) is shown in (b). 

 

5.6. Conclusions and Significance of Findings 

Numerical simulation and experiment demonstrate that a Lamb wave with conical 

dispersion at k = 0 will flow around a finite sized hole in a plate without field distortion. The 

incident Lamb wave mode converts from the hole. The mode converted field will look like it 
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emanates from a source with the same geometry as the scatterer. That is, it will be equal in 

magnitude and phase along the boundary of the scatterer. The incident field was observed to lose 

energy due to mode conversion distal to scatterers. This energy loss was small and only 

noticeable in cases where the scatterers constituted a significant portion of the plate’s cross-

sectional area. 

Numerical simulation and experiment showed how a conical point Lamb wave can be 

used to hide scatterers when observing the distal field. Specifically, a small symmetric thickness 

change in a plate was used to observe a mode converted field from a conical point Lamb wave 

distal to various scatterers. When measuring only the S2B mode converted field, without 

knowledge of the source strength, it was not possible to determine the presence, number, or size 

of the scatterers. 

These are the first findings into how a Lamb wave with conical dispersion at k = 0, 

excited at the k = 0 frequency, interact with holes and other scatterers in a plate. These results 

indicate that such waves are undisturbed by the presence of one more finite sized scatterers with 

the exception of energy lost due to mode conversion.   
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Chapter 6 

Conclusions 

6.1 Summary of work 

Lamb waves exhibit conical dispersion at zero wavenumber in isotropic homogenous plates for 

discrete values of Poisson’s ratio. At these values of Poisson’s ratio (ν) longitudinal simple 

thickness resonances and shear simple thickness resonances, of the same symmetry, occur at the 

same frequency and degenerate. In the case of degeneracy, the dispersion curves become linear 

at zero wavenumber instead of parabolic. This occurs because of the interaction between the 

stress and displacement fields of the two coincident simple thickness resonances. In Chapter 2 

the group velocity of a Lamb wave resulting from coincident simple thickness resonances was 

calculated by deriving the velocity of energy transport along the wave guide using the 

displacement field solutions of the two simple thickness resonances. The result agreed with the 

group velocity previously calculated by Mindlin, who considered the slope of the dispersion 
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curve for k → 0 in the degenerate case. The theoretical response of a plate to an impulsive force 

was considered for the degenerate case of ν = ⅓. The displacement response showed that a wave 

with an infinite phase velocity propagated away from the source at a finite group velocity and 

left the plate “ringing” in its wake. The ringing frequency was equal to the degenerate frequency 

and the vibrations were spatially in-phase (uniform). 

 In Chapter 3 a laser source was used to excite zero group velocity resonances in 

aluminum plates in order to measure Poisson’s ratio with a high degree of accuracy. Poisson’s 

ratio was also measured as a function of temperature in order to determine at what temperature to 

cool a 6061-O aluminum plate in order to induce conical dispersion. The frequency dispersion, 

while the plate was cooled, and linear dispersion in the vicinity of zero wavenumber was 

confirmed in the transition from forward to backward propagating Lamb wave modes. This 

experiment confirmed the previously predicted conical dispersion of Lamb waves in the case of 

degeneracy between simple thickness resonances of the same symmetry. These results show that 

given the correct material parameters a simple plate can support propagating waves with an 

infinite wavelength. 

 In Chapter 4 the broad angle reflection of Lamb waves with conical dispersion from a 

free edge were studied using experiment and simulation. It was shown that mode converted 

reflection always occurred at an angle normal to the interface, agreeing with Snell’s law. 

Experiment and simulation showed how a curved edge of a plate could be used to focus mode 

converted reflections from a conical point wave. Specifically, an experiment was conducted 

where an S0 mode was lensed from a semi-circular edge. The experiment showed that the mode 

conversion was uniform for the full 180° of the edge. This confirmed that the incident conical 
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point Lamb wave was spatially uniform. Examining time traces of just the incident mode also 

confirmed that it was oscillatory in time but spatially uniform. 

In Chapter 5 the scattering behavior of Lamb waves with conical dispersion was 

investigated. It was demonstrated that Lamb waves with conical dispersion flow around finite 

sized scatterers without field distortion. The conical point wave field did lose energy due to 

mode conversion from the scatterer, but the phase of unperturbed. The mode converted field 

emanated from around the scatterer with unvarying magnitude and phase and made the scatterer 

appear as a pseudo-source for the mode converted field. Numerical simulation and experiment 

also showed that a conical point Lamb wave hides scatterers in the long wavelength field. 

Observing a mode converted field from just the conical point wave distal to the scatterers, it was 

not possible to determine the presence, number, or size of the scatterers. 

 

6.2 Future work 

Based on this author’s research on Lamb waves with conical dispersion with zero wavenumber, 

the following are suggestions for improvement and additional topics on this work. 

 A source of complication when performing the experiments detailed in this thesis was the 

need to cool the plate in order to induce a true degeneracy. This involved implementing a cooling 

apparatus capable of reaching and maintaining -5 
o
C while allowing access for detection and 

sometimes excitation lasers. The setup was cumbersome and made isolating the sample from 

vibration extremely difficult. One solution to this problem is to create a plate that has a 

degenerate value of Poisson’s ratio at room temperature. One technique suggested by Maznev 

was to create a bi-layer sample. This could be done by iteratively spin coating material onto a 
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plate and then measuring ν until the desired value was reached. However, another approach 

could be to design an alloy which intrinsically had a degenerate value of ν. This approach seems 

possible based on the measurements made by this author on aluminum alloys. The aluminum 

alloys tested all had ν very close to ⅓, with 6061-O being the closest. The tested alloys only 

differed by small amounts or alloying elements or by the type of heat treatment. These 

differences manifested in small differences in ν between the alloys. It is likely that an alloy could 

be designed which had ν ≈ ⅓ at room temperature. This would allow greatly simplify the 

experiments. It would also make for an interesting new type of alloy, where this alloy would be 

distinguished by having conical dispersion or zero index of refraction at specific frequencies. 

 An improvement for experimentally studying Lamb waves with conical dispersion would 

be to use a source function that is Gaussian in space. Simulations and experiments demonstrated 

that transducers generate high spatial modes in addition to the conical mode. Transducers were 

selected over a laser based thermo-elastic source, which would have been Gaussian, because they 

generate normal forces, which were shown to couple into the conical mode much more 

efficiently than shear forces. The presence of these additional modes from the source complicates 

data interpretation. For instance, if the source only generated the conical point mode, the 

wavelength could be measured with extremely high accuracy by merely examining the phase 

delay between waveforms at two spatial locations. One way to generate a Gaussian normal force 

is to use a laser excitation and locally constrain the normal displacement of the sample. This was 

technique was briefly explored by this author; however, there was difficulty in getting repeatable 

measurements. 

 The following are some ways that Lamb waves with conical dispersion could be used to 

manipulate wave fields in other novel ways and possibly create devices. A conical point wave is 
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uniform in space. One consequence of this is that anywhere a wave mode converts from the 

conical point wave, at an interface, will be in phase. For example, imagine a conical point wave 

excited in a large plate with multiple exit locations located at different distances from the source. 

The mode converted waves at each exit interface will be in phase regardless of distance from the 

source. The conical point wave can be thought of as synchronizing all of the mode converted 

fields. This synchronization is interesting because it is independent of the position of the source 

or the exit points. 

 The scattering behavior of a conical point Lamb wave was studied in this manuscript but 

there are still some questions about the physics and ways a wave field could be manipulated. The 

most striking feature noted was how a conical point wave flows around holes without any 

distortion and with a small uniform decrease in magnitude, which was a result of energy lost to 

mode conversion. It would be interesting to quantify the energy lost to mode conversion in terms 

of the shape and size of the scatterer(s). Another interesting question is whether or not there is a 

type of scatterer that makes the steady state field of the conical point wave distal to the scatterer 

zero. This would represent a form of total reflection instead of the near total transmission that 

has been demonstrated with “free” holes. A scatterer that acts as an energy sink may have this 

effect. 

 In addition to the items listed above, there are other interesting wave field phenomena 

that have been demonstrated in the literature using zero-index of refraction meta-materials. This 

author would suggest that similar phenomena may exist in simple plates that exhibit conical 

dispersion. 
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Abstract 

Elastic wave guides are capable of supporting backward propagating waves over certain 

frequency wavenumber spaces.  For the case of a homogenous and isotropic plate, a Lamb wave 

at a specific frequency and wavenumber can occur as a forward propagating mode or as a 

backward propagating mode, depending on the plate thickness.  Negative refraction will occur 

when a forward mode converts to a backward mode (and vice versa).  This paper explores mode 

conversion between forward and backward propagating Lamb waves using numerical 

simulations of elastic plates.  Steering and focusing a Lamb wave field using negative refraction 

is demonstrated and analyzed.  Mode conversion between forward and backward modes as a 

function of incident angle and interface geometry is also explored.  Finally, it is demonstrated 

that a point source can be partially cancelled by an adjacent anti-source by employing forward 

and backward Lamb waves.  We propose that an understanding of the existence and behavior of 

backward propagating Lamb waves may lead to unique ways of manipulating acoustic energy for 

the purpose of nondestructive testing and the creation of new acoustic devices. 
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I. Introduction 

Recent work in acoustics and optics has shown that wave fields can be controlled and 

manipulated in novel ways using backward propagating waves. Materials that display backward 

wave motion are known to exist in electro-magnetic and mechanical metamaterials [1-4], 

photonic and phononic crystals [5-7], and mechanical and electro-magnetic wave guides [0-13]. 

One unique quality of materials that support backward waves is that they have a negative index 

of refraction [14]. Negative refraction can lead to unusual physical behavior including focusing a 

wave field from a flat interface [15-24]. Backward waves behave such that their phase velocity 

(cp) and group velocity (cg) are anti-parallel. A forward propagating wave converted to a 

backward propagating wave (or vice versa) will undergo negative refraction, meaning that the 

angle of refraction will be greater than the interface normal. Recent experiments have 

demonstrated that negative refraction can be used to create a flat tunable acoustic lens with a 

simple elastic plate [22,24]. This was accomplished by mode converting a forward propagating 

Lamb wave to a backward propagating Lamb wave (and vice versa) at a simple geometric trough 

in a plate.  

The existence of backward propagating mechanical waves was first mentioned by Lamb 

[25]. Backward wave propagation  in plate waveguides (Lamb waves) was first discussed in 

detail by Tolstoy and Usdin [0]. Lamb waves are generally dispersive and exhibit both normal 

and anomalous dispersion and consist of both propagating and decaying modes according to the 

Rayleigh – Lamb dispersion relationship [26]: 

𝜔4

𝑐𝑇
2 = 4𝑘2𝑞2 (1 −

𝑝

𝑞

tan(𝑝ℎ+𝛼)

tan(𝑞ℎ+𝛼)
) , 𝑤𝑖𝑡ℎ  𝑞2 =

𝜔2

𝑐𝑇
2 − 𝑘2,  𝑝2 =

𝜔2

𝑐𝐿
2 − 𝑘2, 𝑎𝑛𝑑  𝛼 ∈ {0,

𝜋

2
} (1) 



135 

 

where cL, cT, ω, k, and 2h are the longitudinal wave speed, shear wave speed, angular frequency, 

wave number, and plate thickness, respectively. The modes of wave propagation are defined as 

symmetric (α = 0) or anti-symmetric (α = π/2) according to their displacement about the plate 

mid-plane. The frequency and wavenumber space that backward waves occur can be identified 

by plotting the dispersion mode curves on an ω versus k plot as shown in Fig. 1. The phase and 

group velocities are defined as: 𝑐𝑝 = 𝜔 𝑘⁄  and 𝑐𝑔 = 𝑑𝜔/𝑑𝑘, respectively. Examining Fig. 1 it is 

clear that, for a 1 mm thick aluminum plate, the S2 mode exhibits opposite signed phase and 

group velocities in the range of 2.85 – 3.15 MHz, colored red in Fig. 1. This portion of the S2 

mode is referred to as the S2B mode and for this portion of this mode backward wave propagation 

will occur. In general, backward wave regions are possible in all of the modes except for the first 

three: A0, S0, and A1. The frequency and wavenumber space in which backward waves exist, for 

a given mode, is a function of the material’s Poisson’s ratio [0]. Additionally, changing the 

thickness of a plate will shift the dispersion curve up and down and compress and extend it. 

Using this property, a plate can be designed with two different thicknesses, where one thickness 

supports a forward propagating mode and the other thickness supports a backward propagating 

mode, at the same frequency. For example, an aluminum plate that is 1.2 mm thick on one half 

and 1.0 mm thick on the other half will support a forward S2 mode and a backward S2B mode, 

respectively, over the frequency range of 2.85 – 3.15 MHz.  
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Fig. 1: Dispersion curve for 1.0 mm thick aluminum plate.  The first six propagating modes are 

shown.  The sections in red are the backward wave portions of the S2 mode and are labeled as 

S2B. 

 

These two modes will cross at a wavenumber of 0.131 mm
-1

, as shown in Fig. 2 (a). 

Consequently, when excited near this frequency and wavenumber, a forward propagating S2 

mode can be partially mode converted to a backward propagating S2B mode at the thickness 

change. This mode conversation will result in negative refraction of the S2B mode. In general, if a 

plate experiences an abrupt change in thickness, a propagating Lamb wave will mode convert at 

the thickness change, reflecting some modes and transmitting others. The composition of the 

modes reflected and transmitted depends on satisfying the interface boundary conditions, which, 

in the case of a symmetric step, are traction free on the free interface surfaces and particle 

continuity of velocity and stress at the material interface. These types of interface problems are 

traditionally solved using finite element or semi-analytical finite element techniques [27-29].  



137 

 

 

Fig. 2. (a) Portion of the dispersion curves for a 1.2 mm and 1.0 mm thick aluminum plate.  For 

an excitation frequency near 2.92 MHz the modes are seen to cross at a wavenumber of 0.131 

mm
-1

.  (b) The frequency spectrum of the excitation source.  The center frequency is the crossing 

point of the S2 and S2B modes.  The out-of-plane surface displacement at 2.853, 2.920, and 2.972 

MHz are shown in (c), (b), and (e), respectively.  (f) The angle of refraction as a function of 

frequency based on the simulation results (red triangles) and Snell’s law (red line). 

 

Even the much simpler case of a Lamb wave reflected from a free edge, where the only boundary 

condition is traction free on the free surface, is generally solved using numerical methods, with 

the exception of normal incident cases [30-32]. 
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This paper uses finite element time domain commercial software (PZFlex, Weidlinger 

associates, Mountain View, CA) to explore the behavior of forward and backward Lamb wave 

mode conversion in simple plate structures. Aspects of negative refraction are examined 

including Lamb wave steering and quantifying the ideal focusing resolution of an acoustic lens. 

The mode conversion efficiency between forward and backward Lamb waves as a function of 

temporal frequency, angle of incidence, and interface geometry is also explored. Finally, a 

demonstration of partial source annihilation using backward propagating Lamb waves is 

demonstrated.   

 

II. Negative refraction of a plane wave as a function of frequency. 

Negative refraction of a plane wave is studied using a broadband frequency excitation on a plate 

that consists of two thicknesses. At each excitation frequency, an S2 mode is excited and mode 

converted to an S2B mode at the thickness change. The angle of refraction is calculated and 

explored as a function of the excitation frequency. 

An aluminum plate 152 mm in length (x-axis) and 83.6 mm in width (y-axis) is 

considered. The plate is 1.2 mm thick (z-axis) on the left half and 1.0 mm thick on the right half. 

At the middle of the plate is a symmetric 0.1 mm step on the top and bottom. The plate is 

considered homogenous and isotropic with cL and cT equal to 6.31 mm/µs and 3.11 mm/µs, 

respectively. A line source is excited at 30° to the interface normal and is applied as a surface 

normal pressure. The source magnitude is spatially scaled by a 4.5 mm full width half max 

(FWHM) Gaussian curve. The size and geometry of the source is chosen to suppress excitation 

of higher wavenumber modes. Temporally, the source is a Gaussian enveloped 3.5 µs pulse train 
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with a broadband frequency response centered at 2.922 MHz and a FWHM of 0.73 MHz, the 

frequency spectrum of the source is shown in Fig. 2 (b). This source is chosen in order to excite 

modes in the vicinity of the crossing point shown in Fig. 2 (a).   

An FEM is used to model the plate using an orthogonal grid with element dimensions: 

69x69x50 µm
3
 (x,y,z). The top, bottom, and free interface surfaces are traction free and the 

remaining exterior surfaces are energy absorbing. During the simulation the out-of-plane surface 

displacement of every grid point, on the top of the plate, is sampled at 39.4 MHz. The total 

simulation time is 100 µs. The frequency response at each point is calculated every 4.0 kHz via 

FFT. The out-of-plane surface displacement at 2.853, 2.920, and 2.972 MHz is shown in Fig. 2 

(c) through (e). These images are processed with a 2
nd

 order Butterworth low pass filter, cutoff 

wavenumber 0.233 mm
-1

. It is evident that an S2 mode is generated on the left side of the plate 

and then mode converts to an S2B mode on the right side of the plate, by inspection of the 

wavenumbers and comparison to the dispersion curves. It is also clear that the S2B mode 

undergoes negative refraction at the interface. As the excitation frequency becomes smaller than 

the crossing point frequency, the magnitude of the S2B wavenumber becomes larger than the 

magnitude of the S2 wavenumber and the refraction angle tends to the interface normal, as 

depicted in Fig. 2 (c). As the excitation frequency becomes larger than the crossing point 

frequency, the magnitude of the S2B wavenumber becomes smaller than the magnitude of the S2 

wavenumber and the refraction angle tends to the interface parallel, as depicted in Fig. 2 (e). For 

the case where the excitation frequency is equal to crossing point frequency, the magnitude of 

the S2B wavenumber is equal to the magnitude of the S2 wavenumber and the angle of refraction 

will be equal, but opposite in sign, to the incident angle, as shown in Fig. 2 (d). 
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The angle of refraction is determined by examining the displacement field in Fourier 

space. The angle is found by plotting the magnitude of the 2D spatial FFT on a wavenumber 

versus wavenumber axes (kx-ky). The angle of a vector from the origin to the peak response gives 

the angle of refraction. The angle of negative refraction as a function of excitation frequency is 

shown in Fig. 2 (f). These results are shown together with the theoretical results found by using 

Snell’s law: sin(θI)/cpI = sin(θR)/cpR, where θI, θR, cpI, and cpR are the angle of incidence, angle of 

refraction, incident phase velocity, and refracted phase velocity, respectively. The angles of 

negative refraction calculated in the simulation are in good agreement with those predicted by 

Snell’s law. The results in Fig. 2 (f) show that by modulating the excitation frequency the angle 

of negative refraction can be steered toward and away from the interface normal. These results 

show how to control the direction of energy flow, past the surface normal, using backward 

propagating Lamb waves. 

 

III. Mode conversion efficiency as a function of incident angle. 

Mode conversion between an S2 mode and an S2B mode, at the crossing point, is examined as a 

function of incident angle. Two approaches are taken, one where plane waves are generated at 

different discrete incident angles and another in which a point source is used to examine a 

continuous range of incident angles. The mode conversion efficiency is quantified by comparing 

the FFT magnitude of the refracted field and the incident field. These studies are conducted via 

FEM of an aluminum plate which is 1.2 mm thick on one side and 1.0 mm thick on the other 

side. The interface between the two thicknesses is a 0.1 mm symmetric step. The excitation 

sources are continuous wave (CW) 2.917 MHz sinusoidal surface normal pressures that are 
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spatially scaled by 4.5 mm FWHM Gaussian curves. The excitation frequency is determined by 

generating simulation based dispersions curves for a 1.2 mm thick plate and for a 1.0 mm thick 

plate and then finding the aforementioned crossing point. The simulation based crossing point is 

within 0.2% of the analytical based crossing point. The error is due to the numerical 

approximation of the grid size. The out-of-plane surface displacement of every grid point on the 

top of the plate is sampled at 39.4 MHz.   

The out-of-plane surface displacement field at 100 µs, for a line source incident at 45°, is 

shown in Fig. 3 (a). This image is processed with a 2
nd

 order Butterworth low pass filter, cutoff 

wavenumber 0.233 mm
-1

. Examining the wavenumber of the incident and refracted wave fields 

in Fig. 3 (a), it is clear that the source generates an S2 mode which then mode converts to an S2B 

mode at the interface, and that the S2B mode undergoes negative refraction. The incident and 

refracted angles are equal but opposite in sign because the source is exited at the crossing point. 

Some of the incident S2 mode is reflected at the interface as evident by the interference pattern 

adjacent to the interface. Equal sized portions of the incident and refracted wave fields are 

examined in Fourier space. The mode conversion efficiency is then calculated by comparing the 

maximum value of the 2D spatial FFT magnitude for the S2B mode and the S2 mode.  This ratio 

is shown in Fig. 3 (d) for discrete incident angles of 0, 15°, 30°, 45°, and 60°, by the red squares. 

This ratio is greater than unity in some cases because the refracted wave field occurs in a thinner 

plate. 

The out-of-plane surface displacement at 100 µs for a point source is shown in Fig. 3 (b). 

This image is processed with a 2
nd

 order Butterworth low pass filter, cutoff wavenumber 0.233 

mm
-1

. Similar to the previous case, the source generates an S2 mode which converts to an S2B 

mode at the interface and undergoes negative refraction. Large angle negative refraction is  
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Fig. 3. (a) The out-of-plane surface displacement of a plane wave, incident at 45°, on a plate with 

a symmetric thickness step. (b) The out-of-plane surface displacement of a point source on a 

plate with a symmetric thickness step. In both (a) and (b) the left side of the plate supports a 

forward propagating Lamb wave (S2 mode) and the right side of the plate supports a backward 

propagating Lamb wave (S2B mode), at the excitation frequency. (c) Fourier domain 

representation of the wave field on the left side of the plate is shown in (b). The refracted modes 

are labeled and consist of the backward propagating S2B mode and the forward propagating S1 

and S0 modes. (g) The ratio of the FFT magnitude between the refracted S2B mode and the 

incident S2 mode as a function of angle of incidence. 

 

observed in Fig. 3 (b). For any incident angle, the refracted angle is always equal but opposite in 

sign. Because of this, a focus is observed in the refracted field. The refracted field is examined in 

Fourier space. The magnitude of the 2D spatial FFT is shown in Fig. 3 (c). The refracted modes 

are labeled in this image by comparison with the dispersion curve. The S2B mode appears on the -

kx side of the spectrum and occurs at angles up to about 70°, which was the maximum incident 

angle of the FEM geometry. Mode conversion to the S2B mode occurred at all tested angles. The 



143 

 

S1 mode and the S0 mode both appear on the +kx side of the spectrum. Mode conversion to the S1 

mode occurs up to about 21° and mode conversion to the S0 mode occurs up to about 8.5°. The 

largest possible angle of refraction is given by: 𝜃𝑅 = sin−1(𝑘𝐼 𝑘𝑅⁄ ), and occurs for an incident 

angle of 90°. Using this relation, the maximum angles of refraction for the S1 mode and the S0 

mode are calculated to be 21.4° and 8.9°, respectively, which is in good agreement with the 

simulation results. The ratio of the refracted field’s 2D spatial FFT magnitude to the incident 

field’s 2D spatial FFT magnitude is computed. This ratio is used to measure the mode conversion 

efficiency between the S2 mode and the S2B mode and is shown in Fig. 3 (d). The results of the 

point source and the line sources are in agreement. The results show that the mode conversion is 

fairly uniform for angles up to around 45°.  Above 45° the mode conversion efficiency begins to 

degrade. The relative invariance in mode conversion with incident angle should allow for the 

creation an acoustic lens with good focusing resolution. 

 

IV. Focusing resolution of an acoustic lens. 

A flat acoustic lens is created using an aluminum plate that is 1.2 mm thick and has a 30.5 mm 

long symmetric trough in the middle.  The trough is 1.0 mm thick and is referred to as the lens. 

This acoustic lens is geometrically similar to the one experimentally demonstrated in the 

literature [22-24]. The plate is 319.4 mm in length by 121.7 mm in width. A surface normal 

pressure is applied 15.21 mm to the left of the trough. The excitation source is a CW 2.917 MHz 

sinusoidal surface normal pressure that is spatially scaled by 4.5 mm FWHM Gaussian curve. 

The plate is analyzed with an FEM having the aforementioned properties. On a portion of the 

plate, the out-of-plane surface displacement of every grid point is sampled at 52.6 MHz. The out-
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of-plane surface displacement at 90 µs is shown in Fig. 4 (a). The displacement magnitude is 

shown in Fig. 4 (b). These images are not filtered. In both the displacement and magnitude plots 

the field is observed to focus near the center of the lens and again in the plate past the lens. The 

focus in the lens is due to negative refraction from the S2 mode to the S2B mode. The second 

focus is due to negative refraction from the S2B mode to the S2 mode. The magnitude of the focus 

past the lens is smaller than the source magnitude due to energy lost in reflections at each 

interface, lost to mode conversion into non-focusing modes, and in non-propagating modes 

generated by the source. The magnitude of the focus in the lens is subject to similar losses; 

however, because the lens is thinner a direct magnitude comparison to the source is not 

insightful. The resolution of each focus is quantified by examining the lateral field distribution 

through the focal point. The displacement at 2.917 MHz is evaluated using an FFT over 90.0 µs 

to 95.1 µs (15 cycles). The squared displacement along the entire width of the plate is computed 

at a length of x = 47.02 mm and is shown in Fig. 4 (c) by the red circles. The same calculation is 

made at a length of x = 74.12 mm and is shown in Fig. 4 (d) by the red circles.  Each focus 

resolution is compared to the standard diffraction theory given by
 
[24]: 

I ∝ (
sin(ka sin(θ))

ka sin(θ)
)

2

  (2) 

where k is the wavenumber, a is the lateral distance from the focal point, and sin(θ) is the 

numerical aperture. For a numerical aperture of unity, diffraction limited, the FWHM resolution 

is 3.39 mm. The FWHM resolution of the focus within the lens is 3.52 mm and in the plate past 

the lens is 3.79 mm. The Lamb wave acoustic lens is observed to have nearly diffraction limited 

focusing resolution. This occurs because the mode conversion is fairly uniform over a large 

numerical aperture and there are no defects present. It does not appear possible to achieve  
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Fig. 4. (a) The out-of-plane surface displacement of a point source on a plate with a symmetric 

thickness trough (lens) in the center. (b) The out-of-plane surface displacement magnitude. At 

the excitation frequency, the left side of the plate supports a forward propagating Lamb wave (S2 

mode), the middle of the plate supports a backward propagating Lamb wave (S2B mode), and the 

right side of the plate supports a forward propagating Lamb wave (S2 mode). The result of this 

geometry is that the Lamb wave field focuses in the lens and again past the lens. The lateral 

intensity distribution is shown for the focus in the lens (x = 47.02 mm) and for the distal focus (x 

= 74.12 mm) in (c) and (d), respectively. (e) The temporal evolution of the distal focus is shown 

by comparing the lateral intensity distribution through the focus at times prior to steady state. 

 

subwavelength focusing with the acoustic lens as currently constructed. This would require mode 

conversion to backward propagating or backward evanescent modes with shorter wavelengths, 

which would necessarily result in a mismatched phase velocity to the incident wave and 

therefore a negative refraction angle not equal in magnitude to the incident angle. This non-

matched negative refraction angle would focus with aberration. 
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The temporal evolution of the focus after the lens is studied by examining the focus 

resolution at various times prior to steady state, as shown in Fig. 4 (e). The resolution is observed 

to temporally evolve, becoming better over time. This illustrates that the focus occurs because 

the individual rays propagate away from the source, undergo negative refraction at the interface, 

and then coalesce at the same point in space and arrive in phase. The rays at higher angles travel 

further and thus take longer to reach the focal point. The focus evolution occurs over a relatively 

long time. This focusing time could be made even longer by utilizing a system with a crossing 

point closer to the zero group velocity point. 

 

V. Negative refraction between modes other than an S2 mode and an S2B mode. 

Previous results in this paper examined mode conversion between a forward propagating S2 

mode and backward propagating S2B mode; however, mode conversion between other forward 

and backward propagating modes is possible and is demonstrated. A forward propagating anti-

symmetric A1 mode and the previously discussed backward propagating symmetric S2B mode are 

considered. Fig. 5 (a) shows the dispersion curves for a 0.55 mm thick aluminum plate and a 

1.00 mm thick aluminum plate. It is observed that at F = 2.917 MHz the A1 and S2B modes cross 

at a wavenumber equal to 0.129 mm
-1

. An aluminum plate 0.55 mm thick on one side and 1.0 

mm thick on the other side is examined. The transition between these two thicknesses is an 

asymmetric 0.45 mm step. The choice to use an asymmetric step was made by examination of 

the A1 and S2B normal and in-plane displacement mode shapes. Comparing the mode shapes 

indicated that the interface continuity boundary condition, between these two modes, would 

more readily be satisfied by an asymmetric step than by a symmetric step. The A1 mode is  
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Fig. 5. (a) Dispersion curves for aluminum plates of 0.55 mm and 1.0 mm thicknesses. (b) The 

out-of-plane surface displacement of a point source on a plate with an asymmetric thickness step.  

At the excitation frequency, the left side of the plate supports a forward propagating Lamb wave 

(A1 mode) and the right side of the plate supports a backward propagating Lamb wave (S2B 

mode). (c) The spatial frequency spectrum of the incident, reflected, and transmitted waves along 

a line at y = 93.26 mm (through the center of the source). (d) The normalized lateral intensity 

distribution at x = 48.31 mm. 

 

excited in the center of the 0.55 mm thick side of the plate using a CW 2.917 MHz sinusoidal 

surface normal pressure scaled by a FWHM 5.49 mm Gaussian curve. The system is analyzed 

with an FEM consisting of an orthogonal grid space of 50x50x50 µm
3
 (x,y,z). Fig. 5 (b) shows 

the out-of-plane surface displacement at 127 µs. Examining the refracted field it is seen that the 

S2B mode, among other modes, is converted to at the interface. The incident, reflected, and 

transmitted spatial frequency spectra at y = 93.25 mm are shown in Fig. 5 (c). The incident 

spectrum shows that the excitation source effectively generates the A1 mode on the 0.55 mm 
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thick side of the plate. The reflected spectrum shows that, at normal incidence, the A1, S0, and A0 

modes are reflected from the interface. The transmitted spectrum shows that, at normal 

incidence, the S2B, S1, A1, S0, and A0 modes are transmitted. The S2B mode undergoes negative 

refraction as evident by the focus in the refracted field and by the negative wavenumber in the 

frequency spectrum. The focusing resolution of the refracted wave field is evaluated using the 

previously detailed lateral distribution methodology and the results are shown in Fig. 5 (d). The 

FWHM resolution of the focus is 4.28 mm. The FWHM of the diffraction limit is 3.44 mm. The 

quality of the resolution gives an indication that the mode conversion is fairly uniform as a 

function of angle of incidence. The focus resolution in this case is not as good as it is in the S2 

mode to the S2B mode case (or vice versa). 

Another case that is investigated is where a forward propagating A2 mode is crossed with 

a backward propagating A2B mode. This is accomplished using a fused silica plate that is 2.3 mm 

thick on one side and 2.0 mm thick on the other side, with a 0.15 mm symmetric step. Poisson’s 

ratio (ν) for fused silica is 0.17, which is necessary to get backward wave motion in the A2 mode 

[0]. The results are not presented here, but good mode conversion was achieved and an FWHM 

focusing resolution of 4.94 mm was observed as compared to the diffraction limit of 4.16 mm.  

These results demonstrate that mode conversion between forward propagating modes and 

backward propagating modes can occur between modes of different families and can occur with 

good efficiency. Also, negative refraction by crossing two anti-symmetric modes was observed 

and again occurred with good efficiency. The modes that are reflected and transmitted at the 

interface are determined by satisfying the interface boundary conditions. If a backward mode is 

necessary to satisfy these conditions, then it will be transmitted or reflected accordingly. 
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VI. Mode conversion efficiency for varied interface conditions. 

The transmission efficiency of an S2 mode through a negative index lens is investigated. Two 

approaches are taken; one where the material properties of the lens are varied and the other 

where the lens interface geometry is varied. 

The first case considered is where the material properties of the lens are changed. The 

shape of a plate’s dispersion curve depends on the plate’s material properties. Changing the 

material stiffness (E) and/or ν shifts the curve up and down and stretches and compresses it. Fig. 

6 (a) shows an aluminum plate with a constant thickness and an insert with different material 

properties. At F = 2.917 MHz and k = 0.131 mm
-1

, this aluminum plate supports an S2 mode and 

the insert supports an S2B mode, for a set of (E,ν) pairs. The insert will act as a lens. 

Transmission efficiency of the S2 mode through this lens, at normal incidence, is studied for a 

range of (E,ν) pairs. One hundred and fifty four 2D plane strain FEM simulations are performed. 

Each simulation examines a value of ν between 0.136 – 0.373 for the lens material. Each 

simulation represents the plate on an orthogonal grid with element dimensions 50x50 µm
2
 (x,z). 

The out-of-plane surface displacement is sampled on the top of the plate 46 mm prior to the lens, 

the 46 mm lens, and 46 mm after the lens. For each case the spatial frequency spectrum is 

computed by FFT. The transmission ratio is calculated as the FFT magnitude of the S2 mode 

after and before the lens. The transmission ratio as a function of ν is shown in Fig. 7 (b). The 

maximum transmission ratio is 92% and occurs when the lens material properties are ν = 0.279 

and E = 113 GPa. For this case the spatial frequency spectrum of the incident, reflected, and 

transmitted waves are shown in Fig. 6 (c). The incident spectrum shows that the S2 mode and the 

S0 mode are generated by the source excitation. Nearly an equal magnitude S0 mode is reflected 

at the interface and a small S2 mode is reflected at the interface. After passing through the lens,  
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Fig. 6. (a) Cross section of an aluminum plate with a material insert in the center.  At the 

excitation frequency, the left side of the plate supports a forward propagating Lamb wave (S2 

mode), the material insert (lens) supports a backward propagating Lamb wave (S2B mode), and 

the right side of the plate supports a forward propagating Lamb wave (S2 mode). (b) The 

transmission efficiency of the S2 mode as a function of the material inserts’ Poisson’s ratio. (c) 

The spatial frequency spectrum of the incident, reflected, and transmitted Lamb waves when the 

material insert properties are: ν = 0.279, E = 113 GPa, and ρ = 2690 kg/m
3
. (d) Transmission of 

the S2 mode versus material insert length when the material insert’s properties are: ν = 0.339, E = 

102 GPa, and ρ = 2690 kg/m
3
. 

 

the resulting spectrum consists of the S2 mode and the S0 mode. The magnitude of the S2 

mode is smaller than that of source and the magnitude of the S0 mode is slightly greater than that 

of the source. The S2 mode transmission through the lens results in some mode conversion to the 
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S0 mode. The transmission of the S2 mode appears to oscillate with respect to ν. However, 

studying a fixed ν case and varying the length of the lens results in an oscillatory response as 

well, as shown in Fig. 6 (d). The spatial frequencies of this oscillation are close to the 

wavenumbers of the S0 mode and the S2B mode in the lens material. This suggests that the 

oscillatory dependence is caused by the relative phase of the modes within the lens. Additionally 

there may be a resonant effect occurring in the lens, as evident by the decaying envelope of the 

oscillations with increasing lens length. These results show that the previous oscillations with 

respect to ν should be viewed as an envelope of possible transmission values, where maxima and 

minima may be obtained by changing the lens length. 

Next the case is considered where the material of the plate remains constant but the 

geometry of the interface is changed from a step to a linear slope. An aluminum plate with a 

symmetric linear sloped thickness change is depicted in Fig. 7 (a). The grade of this slope is 

varied between 90° and 3.8°. Additionally, the total length of the lens is varied between 45 mm 

and 47 mm in 0.5 mm increments. A 2D plain strain FEM is used to simulate each case. The 

transmission ratio of the S2 mode through the sloped interface lenses is shown in Fig. 7 (b). The 

peak transmission is 93% and occurs when the interface slope is 3.8° and the lens length is 46.5 

mm. The spatial frequency spectrum of the incident, reflected, and transmitted waves are shown 

for this case in Fig. 7 (c). The spectra show that the sloped interface reduces the mode 

conversion of the S2 mode to the S0 mode through the lens, as evident by the relatively small 

magnitude of the transmitted S0 mode. In general the transmission improves with a more gradual 

transition between the two plate thicknesses. The transmission is also affected by the length of 

the lens as shown in Fig. 7 (b). This affect appears to diminish has the interface slope becomes 

smoother. These results show that a smooth linear transition between plate thicknesses will result 
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in mode conversion from an S2 mode to an S2B (and vice versa) with less mode conversion to 

other modes.  

 

 

Fig.  7. (a) Cross section of an aluminum plate with symmetric linear transitions between two 

thicknesses. At the excitation frequency, the left side of the plate supports a forward propagating 

Lamb wave (S2 mode), the middle of the plate (lens) supports a backward propagating Lamb 

wave (S2B mode), and the right side of the plate supports a forward propagating Lamb wave (S2 

mode). (b) The transmission efficiency of an S2 mode versus interface angle for several lens 

lengths. (c) The spatial frequency spectrum of the incident, reflected, and transmitted Lamb 

waves when the lens length is 46.5 mm and interface angle is 3.8°. 
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VII. Partial source annihilation using forward and backward propagating waves. 

A method of partially annihilating the displacement field of a point source using an adjacent anti-

source is presented [33]. This is illustrated using an aluminum plate measuring 122.4 mm in 

length by 122.4 mm in width. Half of the plate is 1.2 mm thick and the other half is 1.0 mm 

thick; there is a 0.1 mm symmetric step along the middle of the plate. Two excitation sources are 

used; both are CW 2.917 MHz sinusoidal surface normal pressures spatially scaled by 4.5 mm 

FWHM Gaussian curves. The source to be partially annihilated is located 7.65 mm to the left of 

the interface. The anti-source is located 7.65 mm to the right of the interface and is excited 180° 

out of phase, relative to the other source. The system is analyzed with an FEM using an 

orthogonal grid with element dimensions 69x69x50 µm3 (x,y,z). Fig. 8 (a) shows the out-of-plane 

surface displacement field at 1 µs. This is prior to any interaction between the source and anti-

source. The source consists mostly of a forward propagating S2 mode and the anti-source 

consists mostly of a backward propagating S2B mode. The sources are observed to be 180° out of 

phase. Fig. 8 (b) and (c) show the displacement field at 10.0 µs and 20.0 µs, respectively. These 

two images show the transient interaction between the source and anti-source displacement wave 

fields. Destructive interference occurs for regions not in-between the source and anti-source.  In-

between the sources the waves are traveling in opposite directions and a standing wave results.  

Fig. 8 (d) shows the displacement field near steady state, at 50 µs. In this image nearly half of the 

source’s displacement field is cancelled by the anti-source. Nearly half of the anti-source’s 

displacement field has a reduced magnitude. This occurs because the mode conversion efficiency 

is not the same between the S2 mode and S2B mode as it is between the S2B mode and S2 mode. 

There may be an interface condition in which these two are equal, and in such a case the entire 

wave field not in-between sources would be cancelled. The displacement images in Fig. 8 (a) 
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through (d) are each processed with a 2
nd

 order Butterworth low pass filter, cutoff wavenumber 

0.233 mm
-1

.  These results show that it is possible to partially annihilate a portion of a point 

source using an anti-source by application of negative refraction between forward and backward 

propagating Lamb waves.  This simulation also demonstrates that a backward propagating S2B 

mode can be effectively generated by application of a surface normal pressure of appropriate 

spot size. 

 

 
Fig. 8. The out-of-plane surface displacement at: 1.0, 10.0, 20.0, and 50.0 µs for two point 

sources on a plate with a symmetric thickness step.  At the excitation frequency, the left side of 

the plate supports a forward propagating Lamb wave (S2 mode) and the right side of the plate 

supports a backward propagating Lamb wave (S2B mode). The sources are 180° out of phase.  At 

steady state (d), the source on the right side of the plate is observed to partially cancel a portion 

of the source on the left side of the plate. 
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VIII. Conclusions. 

Wave fields can be controlled in novel ways using systems that support both forward 

propagating and backward propagating waves. One way these systems are unique is that forward 

and backward waves undergo negative refraction when they convert from one to the other. A 

simple homogenous elastic plate, with one or more thickness changes, is a system that supports 

both forward and backward propagating waves at the same excitation frequency. Therefore, a 

simple plate can be used to investigate the behavior and applications of backward propagating 

waves and negative index materials. Here it is shown that an aluminum plate with a symmetric 

thickness step can be used to steer a plane wave at a range of angles, greater than surface normal, 

by modulating the excitation frequency. It is also shown that the mode conversion between 

forward propagating Lamb waves (S2 mode) and backward propagating Lamb waves (S2B mode) 

is fairly uniform with angle of incidence. Consequently, a flat acoustic lens created using an 

aluminum plate with a symmetric trough (lens) is shown to focus the wave field within the lens 

and after the lens and the focal resolution is nearly perfectly diffraction limited. It is further 

shown that mode conversion and negative refraction can occur between antisymmetric (A1) and 

symmetric (S2B) modes and between only antisymmetric modes (A2-A2B). Next, the total 

transmission of a forward propagating Lamb wave (S2 mode) through a lens (S2B mode) is 

explored for various interface conditions. It is determined that a linear sloped interface reduced 

the mode conversion to other modes and 93% transmission of the S2 mode was achieved, at 

normal incidence. Finally, the ability to partially annihilate nearly half of a point source’s wave 

field (S2 mode) is demonstrated by application of a backward Lamb wave (S2B mode) anti-

source. 
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Appendix B: M-File for SAFE method of calculating dispersion curves and 

mode curves for an elastic plate. 

 
 

%M-file for generating dispersion curves using SAFE method for an isotropic 
%plate of constant thickness 

  
close all 
clear all 

  
%Define plate properties 

  
rho = 2690;     %density (kg/m^3) 
H = 1.5e-03;    %total thickness in (m) 
cT=3000;    %Shear wave speed (m/s) 
cL=6000;    %Longitudinal wave speed (m/s) 

  
% sig = 0.3349;     %Use Poisson's ratio and shear wave speed 
% cL = sqrt(cT^2*(2*(1-sig))/(1-2*sig));      %longitudinal wave speed m/s 

  
lam = rho*(cL^2-(2*cT^2));  %Lame constant 1 
nu = rho*cT^2;      %Lame constant 2 

  
% Calculate matrix stiffness values from Lame constants 
C11 = lam+(2*nu); 
C12 = lam; 
C22 = lam+(2*nu); 
C66 = nu; 

  
%Defines the wavenumber range and increments for the solution (m^-1) 
zeta = 0:100:5000; 

  
%Define number of elements through thickness 
num_elem = 200; 

  
%Calculate element thickness (m) 
h = H/num_elem; 

  
%Number of DOF based on number of elements 
N = (4*(num_elem-1))+6; 

  
%Loop over the wavenumber space 
mm=1; 
for mm = 1:length(zeta); 

     
    %Initial size of matrices 
    Kg = zeros(N); 
    Mg = zeros(N); 
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    for n=1:num_elem; 
        %get element matrices 
        [k,m] = quad_element(C11,C12,C22,C66,rho,h,zeta(mm)); 
        %put in matrix 
        mid = 4*n-(1/2); 
        Kg(mid-2.5:mid+2.5,mid-2.5:mid+2.5) = Kg(mid-2.5:mid+2.5,mid-

2.5:mid+2.5) + k ; 
        Mg(mid-2.5:mid+2.5,mid-2.5:mid+2.5) = Mg(mid-2.5:mid+2.5,mid-

2.5:mid+2.5) + m ; 
    end 

     
    %solve eigen value problem 
    v = eig(Kg,Mg); 
    %eigen values are w^2 rads/s 
    Omega(:,mm) = sqrt(abs(v)); 

     
end 

  

  
%Plot dispersion curves in F (Hz) versus wavenumber (mm^-1) 
figure(10); 
plot(10^-3*zeta,10^-6*(1/(2*pi))*(Omega(:,:)),'k-','linewidth',2) 
%Set axis range for display 
axis([0 5 0 5]) 
xlabel('Wavenumber (mm^{-1})') 
ylabel('Frequency (MHz)') 

 

 

 

 
%M-file for generating mode shapes using SAFE method for an isotropic 
%plate of constant thickness 

  
close all 
clear all 

  
%Define plate properties 

  
rho = 2690;     %density (kg/m^3) 
H = 1.533e-03;    %total thickness in (m) 
cT=3125;    %Shear wave speed (m/s) 
cL=6272;    %Longitudinal wave speed (m/s) 

  
% sig = 0.3349;     %Use Poisson's ratio and shear wave speed 
% cL = sqrt(cT^2*(2*(1-sig))/(1-2*sig));      %longitudinal wave speed m/s 

  
lam = rho*(cL^2-(2*cT^2));  %Lame constant 1 
nu = rho*cT^2;      %Lame constant 2 

  
% Calculate matrix stiffness values from Lame constants 
C11 = lam+(2*nu); 
C12 = lam; 
C22 = lam+(2*nu); 
C66 = nu; 
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%Defines the wavenumber of interest (m^-1) 
zeta = 500; 

  
%Define number of elements through thickness 
num_elem = 200; 

  
%Calculate element thickness (m) 
h = H/num_elem; 

  
%Number of DOF based on number of elements 
N = (4*(num_elem-1))+6; 

  
%Loop over the wavenumber space 
mm=1; 
for mm = 1:length(zeta); 

     
    %Initial size of matrices 
    Kg = zeros(N); 
    Mg = zeros(N); 

     
    for n=1:num_elem; 
        %get element matrices 
        [k,m] = quad_element(C11,C12,C22,C66,rho,h,zeta(mm)); 
        %put in matrix 
        mid = 4*n-(1/2); 
        Kg(mid-2.5:mid+2.5,mid-2.5:mid+2.5) = Kg(mid-2.5:mid+2.5,mid-

2.5:mid+2.5) + k ; 
        Mg(mid-2.5:mid+2.5,mid-2.5:mid+2.5) = Mg(mid-2.5:mid+2.5,mid-

2.5:mid+2.5) + m ; 
    end 

     
    %solve eigen value problem, request eigen vectors in addition to eigen 
    %values 
    [d,v] = eig(Kg,Mg); 
    Omega(:,mm) = sqrt(abs(diag(v))); 

     
end 

  

  
%Plot dispersion curves in F (Hz) versus wavenumber (mm^-1) 
figure(1); 
plot(10^-3*zeta,10^-6*(1/(2*pi))*(Omega(:,:)),'k-','linewidth',2) 
%Set axis range for display 
axis([0 5 0 5]) 
xlabel('Wavenumber (mm^{-1})') 
ylabel('Frequency (MHz)') 

  
%Select mode of interest 1 = A0, 2 = So, 3 = A1, ect. 
ii = 3; 

  
%Put x and y displacement in separate arrays 
mode_x = d(1:2:end,ii); 
mode_y = d(2:2:end,ii); 
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start = 1; 
%Calculate displacements/strain/stress from element shape function definition 
for kk = 1:num_elem 
    x2b = (0:1/9:1); 

     
    %Displacement 
    ux = (mode_x(start).*(1-3.*x2b+2.*x2b.*x2b))+(mode_x(start+1).*(4.*x2b-

4.*x2b.*x2b))+(mode_x(start+2).*(2.*x2b.*x2b-x2b)); 
    uy = (mode_y(start).*(1-3.*x2b+2.*x2b.*x2b))+(mode_y(start+1).*(4.*x2b-

4.*x2b.*x2b))+(mode_y(start+2).*(2.*x2b.*x2b-x2b)); 

     
    %Strain 
    ep11 = zeta*-1*ux; 
    ep22 = (1/h).*( (-1*mode_y(start).*(-3+4*x2b)) + (-1*mode_y(start+1).*(4-

8*x2b)) + (-1*mode_y(start+2).*(4*x2b-1)) ); 

     
    ep12_a = (1/h).*( (-1*mode_x(start).*(-3+4*x2b)) + (-

1*mode_x(start+1).*(4-8*x2b)) + (-1*mode_x(start+2).*(4*x2b-1)) ); 
    ep21_a = zeta*1*uy; 

     
    ep12 = 1/2*(ep12_a+ep21_a); 

     
    %Stress 
    sig11 = ( (lam+2*nu)*ep11 ) + ( lam*ep22 ); 
    sig22 = ( (lam+2*nu)*ep22 ) + ( lam*ep11 ); 
    sig12 = 2*nu*ep12; 

     
    %Energy flux along the plate 
    en_flux = (-1*sig11.*ux) - (-1*sig12.*uy); 

     
    start=start+2; 

     
    if kk==1; 

         
        x2_tot = [-H/2 + ((kk-1)*h) + (x2b*h)]; 
        ux_tot = [ux]; 
        uy_tot = [uy]; 
        ep11_tot = [ep11]; 
        ep22_tot = [ep22]; 
        ep12_tot = [ep12]; 
        sig11_tot = [sig11]; 
        sig22_tot = [sig22]; 
        sig12_tot = [sig12]; 
        en_flux_tot = [en_flux]; 

         
    else 

         
        x2_tot = [ [x2_tot(1:end-1)],[-H/2 + ((kk-1)*h) + (x2b*h)] ]; 
        ux_tot = [[ux_tot(1:end-1)],[ux]]; 
        uy_tot = [[uy_tot(1:end-1)],[uy]]; 
        ep11_tot = [[ep11_tot(1:end-1)],[ep11]]; 
        ep22_tot = [[ep22_tot(1:end-1)],[ep22]]; 
        ep12_tot = [[ep12_tot(1:end-1)],[ep12]]; 
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        sig11_tot = [[sig11_tot(1:end-1)],[sig11]]; 
        sig22_tot = [[sig22_tot(1:end-1)],[sig22]]; 
        sig12_tot = [[sig12_tot(1:end-1)],[sig12]]; 
        en_flux_tot = [[en_flux_tot(1:end-1)],[en_flux]]; 

         
    end 

     
end 

  
%Plot results 
figure(2);  
hold on 
plot(ux_tot,1000*x2_tot,'r','LineWidth',2) 
grid on; 
ylabel('Position Along Thickness') 
xlabel('Normed Displacment') 
legend('In Plane: U1') 
xlim([-1.5 1.5]) 
ylim(1000*[-H/2 H/2]) 
grid on 

  
figure(3);  
hold on 
plot(uy_tot,1000*x2_tot,'r','LineWidth',2) 
grid on; hold on; 
ylabel('Position Along Thickness') 
xlabel('Normed Displacment') 
legend('Out of Plane: U3') 
xlim([-1.5 1.5]) 
ylim(1000*[-H/2 H/2]) 
grid on 

  
figure(4); plot(10^-14*sig11_tot,1000*x2_tot,'r','LineWidth',2) 
grid on; hold on; 
ylabel('Position Along Thickness') 
xlabel('Stress') 
legend('Sig11') 
xlim([-1.5 1.5]) 
ylim(1000*[-H/2 H/2]) 
grid on 

  
figure(5); plot(10^-14*sig22_tot,1000*x2_tot,'r','LineWidth',2) 
grid on; hold on; 
ylabel('Position Along Thickness') 
xlabel('Stress') 
legend('Sig22') 
xlim([-1.5 1.5]) 
ylim(1000*[-H/2 H/2]) 
grid on 

  
figure(6); plot(10^-14*sig12_tot,1000*x2_tot,'r','LineWidth',2) 
grid on; hold on; 
ylabel('Position Along Thickness') 
xlabel('Stress') 
legend('Sig12') 



166 

 

xlim([-1.5 1.5]) 
ylim(1000*[-H/2 H/2]) 
grid on 

  
figure(7); plot(10^-14*en_flux_tot,1000*x2_tot,'r','LineWidth',2) 
grid on; hold on; 
ylabel('Position Along Thickness') 
xlabel('Energy Flux Density') 
title('Average Energy Flux Density') 
xlim([-1.5 1.5]) 
ylim(1000*[-H/2 H/2]) 
grid on 

 

 

 

 
function [k,m] = quad_element(c11,c12,c22,c66,rho,h,z) 

  
%This function returns a 6x6 matrix which contains the elemental stiffness 
%and elemental mass matrix for a 1D safe element that consists of 3 nodes 
%and uses quadratic shape functions 

  
%alpha = H / ( pi * zeta * h ); 

  
% G = [1 0 0 0 0 0;... 
%     0 1 0 0 0 0;... 
%     -3 0 4 0 -1 0;... 
%     0 -3 0 4 0 -1;... 
%     2 0 -4 0 2 0;... 
%     0 2 0 -4 0 2]; 

  
%element stiffness matrix 

  
k = zeros(6); 

  
k(1,1) = ((2/15)*c11*z*z*h)+((7/3)*c66/h); 
k(1,2) = (1/2)*(c66-c12)*z; 
k(1,3) = ((1/15)*c11*z*z*h)-((8/3)*c66/h); 
k(1,4) = (2/3)*(c12+c66)*z; 
k(1,5) = ((-1/30)*c11*z*z*h)+((1/3)*c66/h); 
k(1,6) = (-1/6)*(c12+c66)*z; 

  
k(2,1) = k(1,2); 
k(2,2) = ((2/15)*c66*z*z*h)+((7/3)*c22/h); 
k(2,3) = (-2/3)*(c12+c66)*z; 
k(2,4) = ((1/15)*c66*z*z*h)-((8/3)*c22/h); 
k(2,5) = (1/6)*(c12+c66)*z; 
k(2,6) = ((-1/30)*c66*z*z*h)+((1/3)*c22/h); 

  
k(3,1) = k(1,3); 
k(3,2) = k(2,3); 
k(3,3) = ((8/15)*c11*z*z*h)+((16/3)*c66/h); 
k(3,4) = 0; 
k(3,5) = ((1/15)*c11*z*z*h)-((8/3)*c66/h); 
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k(3,6) = (2/3)*(c12+c66)*z; 

  
k(4,1) = k(1,4); 
k(4,2) = k(2,4); 
k(4,3) = k(3,4); 
k(4,4) = ((8/15)*c66*z*z*h)+((16/3)*c22/h); 
k(4,5) = (-2/3)*(c12+c66)*z; 
k(4,6) = ((1/15)*c66*z*z*h)-((8/3)*c22/h); 

  
k(5,1) = k(1,5); 
k(5,2) = k(2,5); 
k(5,3) = k(3,5); 
k(5,4) = k(4,5); 
k(5,5) = ((2/15)*c11*z*z*h)+((7/3)*c66/h); 
k(5,6) = (1/2)*(c12-c66)*z; 

  
k(6,1) = k(1,6); 
k(6,2) = k(2,6); 
k(6,3) = k(3,6); 
k(6,4) = k(4,6); 
k(6,5) = k(5,6); 
k(6,6) = ((2/15)*c66*z*z*h)+((7/3)*c22/h); 

  
%element mass matrix 

  
m = zeros(6); 

  
m(1,1) = 4; 
m(1,2) = 0; 
m(1,3) = 2; 
m(1,4) = 0; 
m(1,5) = -1; 
m(1,6) = 0; 

  
m(2,1) = m(1,2); 
m(2,2) = 4; 
m(2,3) = 0; 
m(2,4) = 2; 
m(2,5) = 0; 
m(2,6) = -1; 

  
m(3,1) = m(1,3); 
m(3,2) = m(2,3); 
m(3,3) = 16; 
m(3,4) = 0; 
m(3,5) = 2; 
m(3,6) = 0; 

  
m(4,1) = m(1,4); 
m(4,2) = m(2,4); 
m(4,3) = m(3,4); 
m(4,4) = 16; 
m(4,5) = 0; 
m(4,6) = 2; 
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m(5,1) = m(1,5); 
m(5,2) = m(2,5); 
m(5,3) = m(3,5); 
m(5,4) = m(4,5); 
m(5,5) = 4; 
m(5,6) = 0; 

  
m(6,1) = m(1,6); 
m(6,2) = m(2,6); 
m(6,3) = m(3,6); 
m(6,4) = m(4,6); 
m(6,5) = m(5,6); 
m(6,6) = 4; 

  
m = (1/30)*rho*h.*m; 
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Appendix C: M-File for calculating theoretical scattering of compression 

wave from a finite sized hole in a thin elastic plate. 

 
%Pao paper "Dynamic Stress Concentration in an Elastic Plate" 
clear all 
close all 

  
a_a = 4.7124; %Product of wavenumber and hole radius 
nu = 1/3;     %Poisson's ratio 
ks = 2 / (1-nu);    %constant 
b_a = a_a * sqrt(ks);   %constant 

  
th = 0:2*pi/400:2*pi;   %Angle of inspection in radians 
sig_th = zeros(size(th));   %Stress_th initialized zeros 
sig_st = zeros(size(th));   %Stress_r initialized zeros 
u_r = zeros(size(th));      %Displacement_r initialized zeros 
u_th = zeros(size(th));     %Displacement_th initialized zeros 

  
%Loop over angles 
for m = 1:length(th); 

  
    %Number of terms in series 
    for n = 0:40; 
        %Calculate constants 

         
        Dna = ( (n^2+n-1/2*b_a^2)*besselj(n,a_a) ) - ( a_a*besselj(n-1,a_a) 

); 

         
        Ena = ( n*(n+1)*besselj(n,a_a) ) - ( n*a_a*besselj(n-1,a_a) ); 

         
        Fna = ( -1*(n^2+n-a_a^2+1/2*b_a^2)*besselj(n,a_a) ) + ( 

a_a*besselj(n-1,a_a) ); 

         
        sDna = ( (n^2+n-1/2*b_a^2)*besselh(n,a_a) ) - ( a_a*besselh(n-1,a_a) 

); 

         
        sEna = ( n*(n+1)*besselh(n,a_a) ) - ( n*a_a*besselh(n-1,a_a) ); 

         
        sFna = ( -1*(n^2+n-a_a^2+1/2*b_a^2)*besselh(n,a_a) ) + ( 

a_a*besselh(n-1,a_a) ); 

         
        sKna = ( -1*n*(n+1)*besselh(n,b_a) ) + ( n*b_a*besselh(n-1,b_a) ); 

         
        Kna = ( -1*(n^2+n-1/2*b_a^2)*besselh(n,b_a) ) + (b_a*besselh(n-

1,b_a)); 

         
        Jnp_aa = (1/2) * ( besselj(n-1,a_a) - besselj(n+1,a_a) ); 

         
        Hnp_aa = (1/2) * ( besselh(n-1,a_a) - besselh(n+1,a_a) ); 
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        Hnp_ba = (1/2) * ( besselh(n-1,b_a) - besselh(n+1,b_a) ); 

         
        del = det( [sDna,sKna;sEna,Kna] ); 

         
        delr = det( [a_a*Jnp_aa, a_a*Hnp_aa, n*besselh(n,b_a);... 
            Dna,sDna,sKna;... 
            Ena,sEna,Kna] ); 

         
        delth = det( [-1*n*besselj(n,a_a), -1*n*besselh(n,a_a), -

1*b_a*Hnp_ba;... 
            Dna,sDna,sKna;... 
            Ena,sEna,Kna] ); 

         
        delthth = det( [Fna, sFna, -1*sKna;... 
            Dna,sDna,sKna;... 
            Ena,sEna,Kna] ); 

  
        if n == 0; 

             
            u_r(m) = u_r(m) + ( 1*i^(n) * (delr/del) * cos(n*th(m)) ); 

             
            u_th(m) = u_th(m) + ( 1*i^(n) * (delth/del) * sin(n*th(m)) ); 

             
            sig_th(m) = sig_th(m) + ( 1*i^(n) * (delthth/del) * cos(n*th(m)) 

); 

             
        else 

             
            u_r(m) = u_r(m) + ( 2*i^(n) * (delr/del) * cos(n*th(m)) ); 

             
            u_th(m) = u_th(m) + ( 2*i^(n) * (delth/del) * sin(n*th(m)) ); 

             
            sig_th(m) = sig_th(m) + ( 2*i^(n) * (delthth/del) * cos(n*th(m)) 

); 

             
        end 

         
    end 
    sig_st(m) = 2/ks*(ks-1-2*cos(2*th(m))); 
end 

  
%Calculate stress 
sig_th = -2/((a_a^2)*ks)*sig_th; 
%Normalize displacements 
u_r = (1/a_a)*u_r; 
u_th = (1/a_a)*u_th; 

  

  
%Plotting Section 
figure(1); 
polarplot(th,abs(sig_th));hold on; 
polarplot(th,sig_st,'r-'); 
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thetalim([0 360]);rlim([0.0 3.0]); 
title('Stress (|\sigma_{\theta\theta}|)') 

  
figure(2); 
polarplot(th,abs(u_r));hold on; 
thetalim([0 360]);rlim([0 2]); 
title('Displacement (|u_{r}|)') 

  
figure(3);polarplot(th,abs(u_th));hold on; 
thetalim([0 360]);rlim([0 2]); 
title('Displacement (|u_{\theta}|)') 
legend('ka = 3.5','ka = 0.01','location','northwest') 

  
figure(6); 
polarplot(th,abs( (u_r.*cos(th))-(u_th.*sin(th)) ) );hold on; 
polarplot(th,abs( (u_r.*sin(th))+(u_th.*cos(th))) ); 
thetalim([0 360]);rlim([-1 2]); 
title('Displacement |u_x| and |u_y|') 
legend('|u_x| ka = 0.01','|u_y| ka = 0.01','location','northwest') 
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