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Electric vehicles (EVs) have known to have a potential for deep reduction in oil consump-

tion and emissions, but their successful adoption requires technological advances (batteries) and

overcoming customer barriers (high upfront cost). In this research, we analyze the impacts of in-

troducing inexpensive and efficient EVs on energy use and emissions from the U.S. transportation

sector using an integrated energy model, conduct life cycle assessment (LCA) for a pyrite battery

suitable for EV applications, and design efficient regionally targeted subsidies using a modified

cascading diffusion model which minimizes the social costs (MSC) of driving EVs in place of gaso-

line vehicles (GVs). Different policy scenarios targeting the well-to-wheel cycle are explored to

examine the impacts of greater EV penetration in the U.S. light duty vehicle (LDV) fleet from

now to 2055. Our results show that having 50% of the fleet demands fulfilled by BEVs as a re-

sult of technology advances can reduce the emissions from the LDV sector significantly, but the

reductions in economy-wide emissions are smaller. LCA is conducted on a newly developed solid-

state lithium pyrite battery to understand the impacts of vehicle cycle. The results show that the

cumulative energy demand (CED) and global warming potential (GWP) impacts associated with

battery production are significantly lower than well-to-wheel energy consumption and emissions.

The comparison between impacts of pyrite and Li-ion batteries are limited to GWP and CED, and

the impacts of pyrite battery are comparable to those of LIBs. To design more efficient subsidies

for the purchase of EVs, we augment the cascading diffusion model, which designs the minimum

subsidy based on customers direct willingness-to-pay, to minimize the social cost (subsidy minus

external benefits) by incorporating regionally differentiated air quality and climate externalities

from EVs. The results show that the environmental externalities from driving EVs in place of GVs



iv

vary significantly across the regions. When the environmental externalities are incorporated into

the U.S. regional market curves, the most favorable region to start the cascading diffusion changes.

Subsidies designed based on the MSC model are slightly higher than those from the original model,

but their social cost is significantly lower.
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Chapter 1

Overview

Transportation sector accounts for 27% of U.S. 2015 greenhouse gas (GHG) emissions (EPA,

2017a) and 72% of total U.S. 2012 oil consumption (EIA, 2012). Oil is the dominant primary

energy source for the transportation sector (93%) (EIA, 2012). The U.S. light duty vehicle (LDV)

sector is responsible for 60% and about 55% of the U.S. transportation GHG emissions and oil

consumption, respectively (EIA, 2016d; EPA, 2017a). Transportation sector is also responsible for

over 50% of NOx, 30% of VOCs and 20% of PM emissions in the U.S. (EPA, 2017d). In recent

years, electric vehicles (EVs), including both battery electric vehicles (BEVs) and plug-in hybrid

vehicles (PHEVs), have been considered as one of the promising alternative technologies to cut oil

consumption and emissions from the U.S. LDV sector (DOE, 2017b; NRC, 2013). Successful EV

adoption requires technological advances, in particular for batteries, as well as overcoming customer,

market, and infrastructure barriers; Among these barriers, the higher capital cost of EVs (mainly

from the battery cost) compared to their gasoline vehicle (GV) counterparts is the most significant

barrier to wider adoption (Deloitte Consulting LLC, 2010; Egbue and Long, 2012; Krupa et al., 2014;

NRC, 2013; Sierzchula et al., 2014; Tran et al., 2012). Addressing these requirements has been the

topic of a variety of ongoing studies such as developing new battery chemistries with higher energy

densities at lower costs. However, concerns about the effectiveness of LDV technology advances

on reducing GHG and air quality (AQ) constituents across the entire energy system in the U.S.

need to be addressed, including life cycle emissions associated with newly developed batteries. We

explore these concerns in the first and second parts of our research. Moreover, a variety of financial
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incentives and policies have been implemented to reduce EV capital costs and increase their market

penetration. U.S. federal income tax credits for EV purchases are offered uniformly throughout the

whole country. Some researchers have questioned the efficiency of these incentives because they fail

to reflect variations in potential social benefits or costs associated with EV operations in different

locations (Holland et al., 2016; Skerlos and Winebrake, 2010). Therefore, in the third part of our

research, we also explore how consideration of regionally differentiated willingness-to-pay (WTP)

and pollution externalities affect the minimum level of subsidies required to achieve a target level

of EV production in the U.S. We also analyze how incorporating pollution externalities in subsidy

design might minimize the social costs associated with driving EVs in place of GVs in different

U.S. regions.

In the first part of our research, we investigate how effectively advances in LDV technology

could reduce emissions from the entire U.S. energy system. Although EVs have low or no tailpipe

emissions, they may indirectly contribute to emissions, depending on the technology used to gen-

erate electricity for battery charging. They could also shift emissions to other sectors beyond the

electric sector. In this part of the analysis (chapter 2), we assume mass scale production of EVs has

been achieved and barriers to their adoption have been overcome. That is, they have become com-

petitive with GVs. We develop scenarios using an integrated energy model, ANSWER-MARKAL,

in connection with the U.S. Environmental Protection Agency’s (EPA’s) 9-region (US9R) database

to evaluate emissions associated with introduction of inexpensive and efficient EVs into the U.S.

LDV sector. We also seek to evaluate the U.S. energy system responses to such technology changes,

and we consider coordinated policies (such as technology advances along with emission fees) that

could increase EV penetration. The results of these scenarios show the possible emission reductions

from the LDV and other economic sectors from 2005 to 2055. In addition to the sectoral emissions,

our results provide insight into the well-to-wheel (WTW), or fuel cycle, emissions of vehicles, but

do not yet consider emissions from vehicle manufacturing. Our ANSWER-MARKAL modeling

assumes a future situation when EVs have reached the mass production, but do not investigate

the transition phase. ANSWER-MARKAL model provides both national and regional results for
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technology mixes, fuel mixes, and emissions that help us determine how different regions and the

country as a whole may benefit environmentally from adoption of improved EVs. However, this

analysis cannot provide insight about which would be the best region to introduce this emerging

technology, EV. It also does not provide social cost-benefit estimates of switching to EVs, which

can vary significantly depending on the location. That is, from economic performance and social

costs standpoints, the model does not suggest a market mechanism or a region to introduce the

new product.

To account for emissions from vehicle production cycle, we conduct life cycle assessment

(LCA) for manufacturing of a solid-state lithium pyrite battery, developed in the CU-Boulder

material group (Yersak et al., 2013), in a hypothetical BEV. For EV applications, Li-ion batteries

are used based on the current practices; however, the need for lighter batteries with higher energy

densities to provide longer vehicle range has encouraged development of new battery chemistries,

like lithium batteries which offer higher gravimetric and volumetric energy densities than Li-ion

batteries (Väyrynen and Salminen, 2012). On the other hand, solid-state batteries show potential

advantages over those using liquid electrolytes, due to lower safety issues which escalates when the

size of battery increases (Takada, 2013). We apply a process-based attributional LCA technique,

utilizing characterization of different mid-point indicators from a LCA database. Since we conduct

our analysis for a new solid-state pyrite battery which exists only in the lab scale, special treatment

is required to adapt a new battery assembly process based on current production practices for

liquid Li-ion batteries. Also, a battery mass inventory needs to be estimated for a battery with

suitable size for EV applications. We conduct these analyses in this part of our study. If we assume

the same size and vehicles, and account for drive train differences, the results from our LCA and

WTW emissions can provide insight into the life cycle emissions of BEVs compared to their GV

counterparts. The results of this chapter provide insight regarding the environmental impacts of

solid-state lithium batteries, suitable for EV applications that may be of value prior to finalization

of battery design and mass production.

In the last part of the research, we explore how EVs, as emerging technologies, should be in-
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troduced in an economically and environmentally viable manner in different regions in the U.S. Due

to differences in regional market conditions, some market mechanisms such as subsidies could be

designed and implemented to initially introduce new EVs to regions with more favorable economic

conditions. Targeting initial subsidies toward regions with the most favorable economic conditions

helps advance production levels along the learning curve to reduce costs, making EVs more com-

petitive in subsequent regions. To determine the subsidies that should be granted to which regions,

we adapt the framework of Herron and Williams (2013) for modeling the cascading diffusion of EVs

across regionally defined sub-markets in the U.S. The model accounts for consumer’s WTP for the

new technology along with the technology’s projected learning curve. We augment the cascading

diffusion model by considering whether the subsidies advance current social welfare by reducing

external damages. That is, we consider EV learning curves and direct WTP along with environ-

mental externalities from deploying EVs (or external cost of driving GVs) across nine U.S. regions.

The new model proposes subsidies based on the minimum social costs and accounts for spatial

differences in consumer and environmental benefits of EV applications in different U.S. regions by

linking market and air-quality models.

In the rest of this thesis, we explain the details of our energy modeling system and as-

sumptions, and the scenarios developed based on the LDV vehicle’s optimistic cost and efficiencies

(Chapter 2). We also provide the details of LCA analysis for the solid-state lithium pyrite battery

(Chapter 3). Next, we illustrate the results of subsidy and social cost analyses for promotion of

EVs (Chapter 4). Due to the diversity of topics covered in chapters 2–4, we provide subject-specific

introduction, motivation, and literature, individually, for each chapter. Finally, we conclude by

highlighting the main results and findings of this research (Chapter 5).



Chapter 2

Emission Impacts of Electric Vehicles in the U.S. Transportation Sector

Following Optimistic Cost and Efficiency Projections1

2.1 INTRODUCTION

A variety of alternative fuels, vehicle technologies, and policy options have been considered

to reduce dependence on oil and emissions from the transportation sector (DOT, 2010; Greene

et al., 2011; Heywood et al., 2009; Pedersen et al., 2011). In particular, greenhouse gas (GHG)

emissions from light duty vehicles (LDVs) can be reduced by improving efficiency of vehicles with

conventional internal combustion engines (ICEVs) and hybrid electric vehicles (HEVs) via load

reductions and powertrain improvements; however, deeper reductions may require electrification

(NRC, 2013).

This study evaluates potential emissions implications of future use of electric vehicles (EVs) in

the LDV sector, following optimistic assumptions about improvements in vehicle cost and efficiency.

We use an integrated energy system model to evaluate how the U.S. energy system might respond

to increased EV penetration. Although EVs, both plug-in hybrid (PHEV) and all-electric (BEV),

have low or no tailpipe emissions, they may lead to indirect emissions, depending on the technology

used to generate electricity for battery charging (Choi et al., 2013; Kromer et al., 2010; NRC,

2013; Peterson et al., 2011; Yeh et al., 2008). Moreover, increased penetration of EVs could shift

emissions in sectors beyond electricity generation (Loughlin et al., 2015). For example, increased

EV penetration could draw natural gas from the industrial sector to the electricity sector and push

1 The content of this chapter is from Keshavarzmohammadian et al. (2017).
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the industrial sector to use more carbon-intensive fuels.

Prior studies have examined potential reductions in fuel use and GHG emissions from the LDV

sector, including through introducing EVs (Bandivadekar et al., 2008; Choi et al., 2013; Elgowainy

et al., 2016, 2013; Kromer et al., 2010; Meier et al., 2015; Nealer et al., 2015; NRC, 2013; Peterson

et al., 2011). Some of these studies examined how to reduce emissions to a set target level (Elgowainy

et al., 2013; Kromer et al., 2010; Meier et al., 2015; NRC, 2013); others examined reductions

achievable under specified policies (Bandivadekar et al., 2008; Choi et al., 2013; Elgowainy et al.,

2016; Nealer et al., 2015; Peterson et al., 2011). The prior studies examined specific pathways such

as demand reductions or use of alternative fuels and technologies; some investigate electrification

in particular (Bandivadekar et al., 2008; Choi et al., 2013; Elgowainy et al., 2016; Loughlin et al.,

2015; Meier et al., 2015; Nealer et al., 2015; NRC, 2013; Peterson et al., 2011). However, recent

advances in EV technology have outpaced vehicle cost and performance assumptions used in earlier

assessments, so consideration of more optimistic projections is needed. Furthermore, most prior

studies of implications of EV introduction have focused on the transportation and electricity sectors

alone without considering implications for energy use in other parts of the economy (Bandivadekar

et al., 2008; Choi et al., 2013; Elgowainy et al., 2016, 2013; Kromer et al., 2010; Meier et al., 2015;

Nealer et al., 2015; NRC, 2013; Peterson et al., 2011). Although some studies have accounted for

“life cycle” emissions upstream of the electric sector (Bandivadekar et al., 2008; Elgowainy et al.,

2016, 2013; Meier et al., 2015; Nealer et al., 2015; NRC, 2013), they still lack the intersectoral

connections of an integrated model and a feasibility check for their exogenous assumptions such as

the assumed penetration rates of EVs. Integrated assessments are needed to develop coordinated

policies covering LDVs within the whole energy sector (NRC, 2013).

In one of the few previous cross-sectoral studies Yeh et al. (2008), applied the integrated en-

ergy modeling system ANSWER-MARKAL with the 2008 U.S. EPA 9-Region (US9R) database to

evaluate CO2 emission reductions and fuel use in the LDV sector considering PHEVs and ethanol

flex-fuel vehicles, but not BEVs, as alternative technologies. Their study suggests that a tight

economy-wide cap is required to be able to sharply reduce CO2 emissions from the transportation
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sector (Yeh et al., 2008). Loughlin et al. (2015) included deploying PHEVs and BEVs among

the pathways they investigated for reducing NOx emissions, using the 2014 EPA US9R database.

They find the EV pathway to be complicated due to offsetting emissions from intersectoral shifts

(Loughlin et al., 2015). Rudokas et al. (2015) used MARKAL with the 2012 US9R database and

examined the influence of system-wide CO2 emissions fees or a 70% CO2 emissions cap on the

transportation sector, looking out to the year 2050. They find that EV penetration increases with

a transportation sector CO2 emissions cap, but see little influence of economy-wide emissions fees

on that sector. Babaee et al. (2014) developed a U.S. data set for the MARKAL-EFOM (TIMES)

model and investigated combined HEV and EV penetration and associated emissions under numer-

ous combinations of assumptions about natural gas and oil prices, CO2 emissions cap, renewable

portfolio standards and battery costs. They find low battery costs to be an important driver of

EV and HEV adoption (Babaee et al., 2014). However, their national-level model ignores regional

trades and fuel supply curves, transmission constraints and energy conversion and processing tech-

nologies other than power plants. Furthermore, while Babaee et al. (2014) investigated the effect

of battery cost on EV penetration, their study ignores the effect of other technology improvements

on efficiency and cost, not only for EVs but also for other LDV technologies. Unlike these prior

studies, here we develop scenarios representing consistent optimistic technology advances across

ICEVs and EVs to investigate the effect of these advances on emissions not only from the LDV

sector, but also from the whole U.S. energy system.

In this study, we use ANSWER-MARKAL in connection with the EPA US9R database (ver-

sion v1.1; 2014) to examine the impacts of greater EV penetration in the U.S. LDV fleet from now

to 2055. Compared to prior studies, the model includes a relatively comprehensive suite of available

and viable forthcoming technologies, focusing on improved ICEVs and EVs, for meeting demand

for energy services in all economic sectors, including the LDV portion of the transportation sector.

Rather than pre-specifying mixes of energy sources and shares of technologies in any of the sectors

of the economy, we use an optimization model to determine the least costly choices for meeting

demand, with key cost and performance assumptions detailed below. We modeled an optimistic
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scenario by adapting cost and efficiency estimates for ICEV and EV technologies from the opti-

mistic case developed by the National Research Council Committee on Transitions to Alternative

Vehicles and Fuels (NRC, 2013). As shown below, this case projects greater improvements in vehi-

cle efficiency and cost than assumed in previous analyses. We compare results from this optimistic

scenario with those from EPA’s original 2014 US9R database. We also examine how the energy

system responds to GHG fees with and without the optimistic LDV assumptions, and examine the

sensitivity of the results with respect to the future level of LDV travel demand, oil prices, and

fees. In addition, we estimate well-to-wheel (WTW) GHG, SO2 and NOx emissions for BEV and

gasoline ICEV technologies based on our OPT scenario results.

2.2 METHODS

2.2.1 ANSWER-MARKAL

MARKAL uses linear programming to estimate energy supply shifts over a multidecadal time

frame, finding the least-cost means to supply specified demands for energy services subject to user-

defined constraints, assuming a fully competitive market (Loulou et al., 2004). The model computes

energy balances at all levels of an energy system from primary sources to energy services, supplies

energy services at minimum total system cost, and balances commodities in each time period

(Loulou et al., 2004). Outputs consist of the penetration of various energy supply technologies

at both regional and national levels, technology-specific fuel use by type, and conventional air

pollutant and GHG emissions.

2.2.2 EPA US9R Database

The 2014 EPA US9R database provides inputs to the MARKAL model for nine U.S. regions

(shown in Figure 2.3) and an international import/export region. The database specifies technical

and cost features of current and future technologies at five-year intervals, with a structure that

connects energy carriers (e.g., output of mining or importing technologies) to conversion or process
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technologies (e.g., power plants and refineries) and in turn to the transportation, residential, indus-

trial, and commercial end use sectors. Demand for energy services of end-use sectors is given from

2005 through 2055. Primary energy supplies are specified via piece-wise linear supply curves. The

database includes comprehensive treatment of air pollutant emissions from energy production, con-

version, and use, accounting for existing control requirements and including a range of additional

control options. Current regulations including Renewable Portfolio Standards and biofuel mandates

are included as constraints. The database includes joint Corporate Average Fuel Economy (CAFE)

and GHG emission standards for LDVs, requiring average fuel economy for passenger cars and light

trucks of 34.1 mpg by 2016, rising to 54.5 mpg by 2025 (EPA, 2012a; Federal Registrar, 2010). The

2015 Clean Power Plan (CPP) requirements are not included, since they were not finalized at the

time of the 2014 release (EPA, 2015). All costs are presented in 2005 U.S. dollars, with deflator

factors from the Department of Commerce Bureau of Economic Analysis used to adjust prices to

the base year. More details are provided in the US9R database documentation (Lenox et al., 2013).

Future LDV transportation demand in the US9R database is specified based on Annual

Energy Outlook (AEO) 2014 projections (EIA, 2014a), allocated to the model’s nine regions and

to seven vehicle size classes ranging from mini-compacts to light trucks. Demand rises from 2687

billion vehicle miles traveled (bVMT) in 2005 to 3784 bVMT in 2055. This future demand can

be met with gasoline (conventional), diesel, ethanol, CNG, and liquefied petroleum gas (LPG) or

flex-fueled ICEVs; HEVs; PHEVs; fuel cell vehicles; and BEVs. PHEVs have 20 or 40-mile ranges;

BEVs have 100 and 200-mile ranges. All technology and fuel combinations are available in all

size classes, except that mini-compact cars have limited options. That is, mini-compact cars are

only available for ICEVs, and BEVs. Technology-specific hurdle rates are used to reflect customer,

market, and infrastructure barriers. Hurdle rates range from 18% for gasoline and diesel ICEVs to

28% for BEVs. Cost and efficiency of vehicles other than BEVs are taken from AEO2014 projections

and data from EPA’s Office of Transportation and Air Quality. Cost and efficiency estimates for

BEVs are based on expert judgment (Baker, 2011). Emissions factors are calculated from the EPA

MOVES model (Lenox et al., 2013). For EV charging, the year is partitioned into summer, winter,
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and intermediate seasons and the day into am, pm, peak, and nighttime hours. The fraction of EV

charging in each time period is fixed as an input in the model and is uniform across regions. Most

charging happens at night in all seasons.

2.2.3 Changes to the EPA US9R Database and Scenarios Modeled

Table 2.1. Scenarios and sensitivity analyses included in this study.

Scenario
name

Description

BAU Reference scenario with unmodified 2014 EPA US9R database, including
EPA’s efficiency and cost estimates for future gasoline ICEV, HEV, PHEV,
BEV, and ethanol vehicles.

OPT Substitutes optimistic efficiency and cost improvement for gasoline ICEV,
HEV, PHEV, BEV, and ethanol vehicles from NRC (2013); adds and re-
fines upstream emissions and refines cost and performance estimates for
other sectors.

BAUFEE/
OPTFEE

Moderate CO2 and CH4 fees are applied to BAU and OPT scenarios,
starting in 2020, based on social cost of carbon and methane (Marten and
Newbold, 2012)

BAUHIFEE/
OPTHIFEE

CO2 fees are 52% higher in 2020 and 41% higher in 2050 compared to
moderate fees; CH4 fees are 36% higher in 2020 and 21% higher in 2050
(Marten and Newbold, 2012).

BAULOFEE/
OPTLOFEE

CO2 fees are 69% lower in 2020 and 63% lower in 2050 compared to mod-
erate fees; CH4 fees are 50% lower in 2020 and 48% lower in 2050 (Marten
and Newbold, 2012).

BAUHIDMD/
OPTHIDMD

LDV demand is increased by 0% in 2005 to 6% in 2040 relative to BAU
and OPT scenarios, based on AEO2014 high LDV demand projections.
See Figure 2.4 for complete high demand projections.

BAULODMD/
OPTLODMD

LDV demand is reduced by 0% in 2005 to 19% in 2040 relative to BAU
and OPT scenarios, based on AEO2014 low LDV demand projections (see
Figure 2.4).

BAUHIOIL/
OPTHIOIL

Oil prices are increased by 0% in 2005 to 78% in 2040 relative to BAU and
OPT scenarios, based on AEO2015 high North Sea Brent crude oil price
projections. For complete high oil price projections refer to Figure 2.5.

BAULOOIL/
OPTLOOIL

Oil prices are reduced by 0% in 2005 to 47% in 2040 relative to BAU and
OPT scenarios, based on AEO2015 low North Sea Brent crude oil price
projections (see Figure 2.5).

Table 2.1 lists the scenarios examined in this study. The reference case (BAU) uses the

unmodified 2014 EPA US9R database, including EPA’s efficiency and cost estimates for all LDV.
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In contrast, the optimistic scenario (OPT) uses cost and efficiency estimates for gasoline and ethanol

ICEV, HEV, PHEVs, and BEVs based on the optimistic projections given by NRC (2013). Costs

and efficiencies for other fuels and technologies, including FCEV and CNG vehicles, were not

modified for the OPT case as they were little used in the BAU case (as shown below) and were not

the focus of this study.

The NRC Committee developed their projections considering both technology-specific pow-

ertrain technology improvements and common improvements via reductions in weight and rolling

resistance and aerodynamic drag, and improved energy efficiencies for accessories across all tech-

nologies. Learning curves were considered for technology improvements and costs, which are cal-

culated based on mass production assumptions. According to the NRC Committee, meeting the

optimistic projections would entail significant research and development, but no fundamental tech-

nology innovations (NRC, 2013). The Committee also found that meeting these projections would

require significant incentives or regulatory requirements to spur development and increase produc-

tion levels. Compared to other available projections, the NRC estimates provide a more consistent

accounting of improvements across different technologies (DOT, 2010; EIA, 2014a; Elgowainy et al.,

2013; Plotkin and Singh, 2009), are more readily extended across vehicle sizes (DOT, 2010; Elgo-

wainy et al., 2016, 2013; Plotkin and Singh, 2009), and extend further into the future (Elgowainy

et al., 2016, 2013). For details of the assumptions and calculations see the NRC report and its

appendix F (NRC, 2013). Additional changes to the LDV segment in the OPT scenario are sum-

marized in Table 2.2, and discussed further in section 2.4.4. Section 2.4.4 also explains how the

NRC projections are extrapolated to the other vehicle size classes included in the US9R database.

In addition to the changes made for LDVs, the OPT scenario also incorporates refinements

for other sectors as described in the section 2.4.5, Brown (2014), Brown et al. (2014a), Brown

et al. (2014b), McLeod (2014), and McLeod et al. (2014). Overall, the changes provide for a more

comprehensive treatment of upstream emissions, an expanded set of emissions control options,

especially in the industrial sector, and updates and refinements to cost and equipment lifetime

estimates in the electricity sector.
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Table 2.2. Major changes to LDV sector inputs or constraints for the OPT scenario. See sections
2.4.2 and 2.4.4 for more information.

Parameter/
constraint

Description of modifications/ changes

LDV cost Estimated based on optimistic case of NRC (2013) for gasoline ICEV,
HEV, PHEV, BEV, and ethanol vehicle technologies for seven classes of
vehicles for the entire time horizon. For example, in 2050 the BEV100
vehicle costs range from 9% to 33% lower than in the BAU scenario.

LDV efficiency Same as cost. For example, in 2050 the BEV100 vehicle fuel economies
range from 30% to 90% higher than in the BAU scenario.

LDV demand Updated based on 2014 U.S. Census population projections, which results
in lower projections for LDV demand. LDV demand is reduced by 2% in
2050 relative to BAU.

Hurdle rate Assumed to be uniform at 24% for all technologies to reflect a fully com-
petitive market without customer and infrastructure barriers, compared
to 18% for ICEVs, 24% for HEVs and 28% for EVs in the BAU scenario.

CAFE Recalculated based on LHV (Lower Heating Value), which tightens the
constraint CAFE representation in the model by 7–9% in each year.

Investment
constraints

Removed for years after 2025, except for BEV with 100-mile range. Con-
straints updated for BEV100, reflecting limited market for shorter-range
vehicles.

The fees applied in the GHG fee scenarios are adapted from Marten and Newbold (2012),

which provides estimates for the social cost of methane from an integrated assessment model, rather

than more simplistic scaling based on global warming potentials (GWPs). Marten and Newbold

(2012) projections of social cost of CO2 (SCC) are almost equal to those reported by the Interagency

Working Group (IWG, 2013). The moderate CO2 (CH4) fees are 40 2005 U.S.$/metric tonne of

CO2 (1036$/tonne of CH4) in 2020, escalating to 80 (3107)$/tonne in 2055. High fees are a factor

of 1.5 (1.3) times greater, and low fees are 2.9 (1.9) times lower. The full set of values is given

in Table 2.6. CO2-eq is calculated considering CO2 and methane as the main GHG contributors,

using both a 20-year GWP of 84 and a 100-yr GWP of 28 for CH4 (Myhre and Shindell, 2013) as

we are interested in opportunities for reductions over a range of time horizons.

The BAU and OPT scenarios were also run with high and low LDV demand and high and
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low oil prices (Table 2.1) to test sensitivity to these assumptions. We also ran six diagnostic cases,

listed in Table 2.7, to identify which changes made between the BAU and OPT scenarios most

influence the results. One case includes all modifications implemented in the OPT scenario except

those specific to the LDV sector while the others isolate separate modifications to the LDV sector.

2.2.4 Well-To-Wheel Emissions Calculation

We use the results from MARKAL to estimate WTW emissions rates for GHG, NOx, and

SO2, in grams per mile, for ICEV and BEV technologies. WTW estimates focus on the fuel cycle

supporting vehicle operation and neglect emissions from vehicle manufacturing and recycling. We

calculate WTW emissions using vehicle efficiencies, upstream emission factors, and the electricity

mix corresponding to a certain scenario’s results in each year. We use a 100-year GWP for methane

for calculating WTW GHG emissions. Regional calculations for BEV emissions are estimated using

the electricity mix for each particular region in each scenario. For ICEV, regional differences are

much less significant, so only national average emissions rates are shown.

2.2.5 Comparison of LDV Efficiencies and Costs

Table 2.3 illustrates how the optimistic efficiencies from the NRC study compare to projec-

tions from the original EPA US9R database and other studies, for gasoline ICEV, HEV and BEV

(DOT, 2010; Elgowainy et al., 2016; Plotkin and Singh, 2009). For simplicity, comparisons are

shown only for the year 2030 and average or full-size vehicles. Comparisons for other years and

fuel-technology combinations are included in Figure 2.7. The NRC optimistic case projects higher

fuel economies across all vehicle types and sizes than the comparison studies. In particular, the

recent Argonne National Laboratory (ANL) study of prospects for LDVs (Elgowainy et al., 2016)

projects fuel economies for BEVs and HEVs that are higher than those in the EPA US9R BAU

case but lower than those in the NRC optimistic case.

Table 2.4 compares costs for full-size vehicles in 2030 and 2050 between the NRC optimistic

case and the original EPA US9R database. The NRC and EPA costs are similar for gasoline ICEV
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and HEV technologies in 2030 and 2050. However, for BEV100, the NRC costs are lower than

those projected by EPA. For 2030, the NRC’s incremental costs for HEV and BEV100 are also

relatively low compared to those for similar vehicles in the recent ANL study (Elgowainy et al.,

2016). Additional comparisons are provided in Figure 2.6.

Table 2.3. Comparison of projected efficiencies (mpge) for averagea or full-Sizeb LDVs for model
year 2030.

Technology NRC NRC EPA ANL ANL DOT DOT ANL
mid.c,1 opt.1 US9R avg.2 high2 min.3,a max.3,a 20164

ICEV 61 70 53 37 44 31 40 49
HEV 76 88 71 66 83 38 61 76
BEVd 180 207 96 144 163 - - 172
a This study focuses on the average vehicle size.
b Midsize and large cars are aggregated to the full-size category in the EPA database. We have

taken the same approach for the other studies to be able to compare the results. ANL 2016
(Elgowainy et al., 2016) values are for a midsize car.

c Estimates from NRC (NRC, 2013) are characterized as midrange (mid.) and optimistic (opt.);
from ANL (Plotkin and Singh, 2009) as average (avg.) and high; and from DOT (2010) as
minimum and maximum values.

d BEV range is 130 miles in NRC (2013); 100 miles in the EPA database, 150 miles in Plotkin and
Singh (2009), and 90 miles in Elgowainy et al. (2016).

1 NRC (2013).
2 Plotkin and Singh (2009).
3 DOT (2010).
4 Elgowainy et al. (2016).

Table 2.4. Comparison of projected cost (thousands 2010 $) for full-size vehicles for model years
2030 and 2050.

2030 2050
Technology EPA US9R NRC opt.1 EPA US9R NRC opt.1

ICEV 27.72 28.57 27.74 29.86
HEV 30.85 29.18 30.66 30.45
BEV100 34.95 28.40 32.73 28.01
1 NRC (2013).

2.2.6 Transition Policies

For contrast with the BAU scenario, our OPT scenario is constructed based on the assump-

tion that customer and market barriers for penetration of EVs have been lowered to make EVs
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competitive with gasoline vehicles, in particular after 2025. To get to this point, subsidies or reg-

ulations that will lower initial market barriers and encourage increased production volumes are

needed. Except for CAFE, these policies are not explicitly represented in our scenarios, but rather

they are approximated by the relaxed investment constraints and equalized hurdle rates in the OPT

scenario.

2.3 RESULTS AND DISCUSSION

2.3.1 LDV Penetration

Figure 2.1a shows national results for LDV penetration in terms of vehicle stocks for the

BAU and OPT scenarios. While gasoline vehicles dominate in the BAU scenario for the entire time

horizon, in the OPT scenario BEVs gain a LDV market share of about 15% (all from BEV100) by

2030 and 47% (with 20% share from BEV100 and 27% from BEV200) by 2050. In 2050, these BEVs

are mainly in the compact (6% from BEV100 and 21% from BEV200), full (4% from BEV100 and

6% from BEV200), and small SUV (10% from BEV100), size classes, which have relatively high

share and lower upfront cost compared to other size classes. HEVs play a negligible role in the

BAU scenario, but are adopted to a moderate extent in the midterm in the OPT scenario. Ethanol

vehicles account for about 3% of VMT in both scenarios in 2030, but are eliminated by 2050 in the

OPT scenario. Diesel vehicles account for a steady 4% in both scenarios.

As noted above, approaching the OPT scenario for EV penetration would require transition

policies to lower market barriers. These are not explicitly modeled in this study. That is, our

study assumes market barriers for deploying EVs have been conquered, such as charging stations

have become widely available. However, the NRC assessment (NRC, 2013) illustrates the level of

subsidy that might be required to lower market barriers for EVs. The NRC Committee used the

Light-Duty Alternative Vehicle Energy Transitions (LAVE-Trans) model of consumer demand in

the transportation sector to explore several transition policy scenarios, including one that assumed

optimistic EV technology advances together with EV subsidies. The current $7500 federal tax
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Figure 2.1. U.S. technology mix for (a) LDV and (b) electricity generation by scenario and year.
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credit for EVs was continued through 2020, briefly increased to $15000 in 2021 and then phased

out by ∼2030. This scenario achieved market shares of 8% PHEV and 33% BEV in 2050, with no

subsidies provided at that point in time (NRC, 2013). Our OPT case is somewhat more aggressive,

achieving about a 15% higher EV market share in 2050.

Regional results (not shown) generally follow the same pattern as the national scale results,

except that the ethanol vehicle share varies across the regions. In 2030, it ranges from 0% to 21%

for the BAU scenario and from 0% to 16% for the OPT scenario. In 2050, the ethanol share ranges

from 0% to 37% for the BAU scenario, but ethanol is not used in 2050 in the OPT scenario. The

highest ethanol penetration is in the East North Central region, where corn is relatively abundant

and ethanol fuel costs are relatively low. For the OPT scenario, the BEV share is about 15% in

2030 in all regions, but ranges from 40% to 52% across regions in 2050.

Six additional diagnostic cases (see Table 2.7) were run to understand which changes between

BAU and OPT were most influential. The results (see Figure 2.9) show that CAFE is the main

driving force for HEV penetration in the midterm (case D1). In case D1, HEVs account for

14% of total VMT in 2030, but are not used in 2050. The reason for this is that by 2025–2030,

ICEVs are not sufficiently efficient to satisfy CAFE requirements. HEVs are more efficient than

ICEVs, and are cheaper than other alternative technologies that could be used to satisfy the

standards. However, the database assumes ICEV efficiency will continue to improve and by 2050

they are sufficiently efficient to meet CAFE requirements. The model selects ICEVs over HEVs

at this point because ICEVs are less expensive. In isolation, incorporating optimistic LDV cost

and efficiency assumptions (case D2) or lowering hurdle rates and investment constraints (D3)

do not significantly alter BEV penetration compared to the BAU scenario. However, significant

BEV penetration occurs when these changes are combined (cases D4 and D5). Combining these

optimistic assumptions reflects a more realistic and consistent scenario than separating them, since

if cost and technological barriers of EVs have been addressed, it is expected that hurdle rates would

also be lowered. Lastly, modifications outside the LDV sector have negligible impact on the LDV

mix (D6).
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We also consider results from a variety of scenarios designed to explore the sensitivity of

our results to assumptions regarding VMT demand, GHG fees, and oil prices (Table 2.1). In the

low (high) LDV demand cases, input LDV demand was reduced (increased) by 12% (5%) in 2030,

and by 20% (4%) in 2050 in the BAU scenario, and by 19% (6%) in 2050 in the OPT scenario.

With lower demand, the VMT of gasoline cars was reduced by 14% in the BAU scenario and 24%

in the OPT scenario in 2030; and by 20% in both scenarios in 2050. In the OPTLODMD case,

HEV VMT is 36% higher in 2030 than in the OPT scenario. Increasing LDV demand results in

approximately proportional increases in the VMT of gasoline vehicles in both the BAU and OPT

scenarios. BEV VMT in the OPTHIDMD scenario also increases in proportion to overall VMT

demand. Sensitivity to oil prices was tested using AEO2015 projections (EIA, 2015). These changes

had negligible impact on the technology mix in the LDV sector in either the BAU or OPT scenario.

This is because, as shown in section 2.4.8, upfront vehicle costs have a much greater effect than

fuel costs on the annualized unit cost of vehicle ownership.

To examine how optimistic assumptions about LDV technology advances would alter the

response of the energy system to GHG fees, moderate system-wide fees were applied starting in

the year 2020 (BAUFEE and OPTFEE). The LDV segment of the transportation sector is able

to respond by shifting to more efficient vehicle technologies and/or to fuels with lower in-use and

upstream GHG emissions. As shown in Figure 2.1a, with BAU assumptions for LDV efficiency and

costs, applying moderate economy-wide GHG fees has little effect on the LDV technology and fuel

mix. With OPT assumptions, application of moderate fees increases the share of BEVs by 4.4%

in 2050. Some ethanol also enters the vehicle/fuel mix in 2050 in the OPTFEE scenario. Note

that there are uncertainties associated with upstream emissions for ethanol that could offset the

uptake of CO2 that is assumed in the model (Crutzen et al., 2008; Hill et al., 2006). Changing the

fees as indicated in Table 2.1 produced negligible change in the LDV technology mix in the BAU

scenario (results not shown). In the OPT scenario, increasing the fees does not change the share

of BEVs in 2050; decreasing the fees reduces the BEV share by 3%. Overall, the influence of GHG

emission fees on the LDV technology and fuel mix is limited due to their modest impact on the cost
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of vehicle ownership. For all vehicle technologies, the impact of emissions fees in future decades is

lower than it would be in the near term due to improvements in vehicle efficiency.

2.3.2 Electricity Mix

Use of an integrated energy system model allows for examination of how changes in the LDV

sector might affect energy choices in other sectors, including electricity generation. As shown in

Figure 2.1b, while the total electricity generation is equal in the BAU and OPT scenarios in 2030,

it is 4% higher in 2050 in the OPT scenario, mainly due to the increased use of BEVs. Electricity

generation from natural gas increases over time in both scenarios, whereas generation from existing

coal plants declines. Our diagnostic case D6 shows that the extra natural gas generation in the

OPT scenario compared to BAU is mainly due to the change we made to the EPA US9R database

in limiting the lifetime of existing coal plants to 75 years. In the original database, existing coal

plants could be used to the end of the modeled time horizon. Electricity generation from other

technologies including wind and solar are similar between the BAU and OPT scenarios, with these

two renewable technologies contributing about 9% of generation in 2050. Altering the LDV demand

changes the total electricity demand by less than 1% in both low and high demand cases, with either

BAU or OPT scenarios.

When moderate GHG fees are applied, total electricity demand in both scenarios decreases

by 3% in 2030 and 5% in 2050. Both BAUFEE and OPTFEE utilize more natural gas (49% and

41% in 2030, and 23% and 11% in 2050) and wind (44% and 42% in 2030, and 50% and 61% in

2050) and less coal (46% and 48% in 2030, and 50% and 56% in 2050) than the respective scenarios

without fees. Electricity consumption is 5% higher in the OPTFEE scenario in 2050 compared to

the BAUFEE scenario, due to greater BEV penetration. For both BAU and OPT, total electricity

generation is 1–3% higher in the low fee cases and 1–2% lower in the high fee cases, compared to

the corresponding moderate fee scenarios. Carbon capture and sequestration is applied to 4% of

generation in 2050 in the BAUHIFEE case and 3% of generation in the OPTHIFEE case.
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2.3.3 Crude Oil Consumption

Changes in crude oil consumption in the BAU and OPT scenarios and corresponding fee

and sensitivity cases are shown in Figure 2.10. Total crude oil consumption in the BAU scenario

decreases by 4% from 2010 to 2030, driven by reductions in gasoline, which are somewhat offset

by increases in diesel. The reductions in gasoline consumption correspond to average efficiency

improvements of 65% for gasoline ICEV, which offset the 18% increase in LDV VMT demand. The

increased diesel consumption is mainly for heavy-duty vehicles (HDV). In 2030, gasoline consump-

tion in OPT is 3% lower than in the BAU scenario, largely because 30% of VMT is met with HEVs

and BEVs. From 2030 to 2050, gasoline consumption remains steady in the BAU scenario despite

an increase in LDV VMT demand. By 2050, gasoline consumption in the OPT scenario is 62%

lower than in the BAU scenario, because BEV provide almost half of LDV VMT. The decrease in

gasoline consumption in OPT provides more capacity for other refined products, such as jet fuel

and petrochemical feedstock, so the total reduction in crude oil consumption from BAU to OPT is

not as large as the reduction in gasoline use. Consumption of imported refined products (including

gasoline) is almost five times lower than that of domestically refined products in both scenarios

throughout the time horizon.

In the sensitivity tests, increasing the LDV demand results in less than a 1% increase in crude

oil consumption in 2030 and 2050 in both the BAUHIDMD and OPTHIDMD cases. However,

reducing LDV demand decreases total crude oil consumption by 3% in 2030 in both cases, and by

6% (BAULODMD) and 3% (OPTLODMD) in 2050, mainly from reduced gasoline consumption.

With moderate GHG fees, the largest change is seen in 2050, where the total crude oil consumption

in the OPTFEE case is about 3.5% lower than in the OPT scenario.

2.3.4 GHG Emissions

Figure 2.2a shows GHG emissions for the BAU and OPT scenarios as CO2-eq using the

100-year GWP for methane. Results calculated using a 20-year GWP are shown in Figure 2.11
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and demonstrate similar patterns. Total GHG emissions decrease from 2010 to 2030 and then

increase from 2030 to 2050 in both scenarios. In the BAU scenario, GHG emissions from the LDV

sector decline by 53% from 2010 to 2030 and by an additional 21% from 2030 to 2050, due largely to

existing CAFE regulations. Correspondingly, in the BAU scenario the LDV share of total emissions

is reduced from 21% in 2010 to 10% in 2030 and 7% in 2050. Direct emissions from the LDV sector

contribute 9% and 5% of GHG emissions in the OPT scenario in 2030 and 2050, respectively. That

is, our OPT scenario results in GHG emissions from LDVs that are 36% lower than in the BAU

scenario in 2050.

Total GHG emissions in the OPT scenario are 5% lower than those in the BAU scenario in

2030 and 9% lower in 2050. This is a smaller percentage reduction than that from the LDV sector,

because LDV emissions represent a declining share of total emissions and because of intersectoral

shifts in emissions. The differences between the OPT and BAU scenarios come from greater reduc-

tions from the LDV segment (16% lower in OPT than BAU in 2030 and 36% lower in 2050); other

transportation (16% lower in OPT in 2030 and 25% lower in 2050); and from the electric power

sector (5% lower in OPT in 2030, and 7% lower in 2050). The Pacific region shows the largest

reductions in GHG emissions in the OPT scenario compared to BAU (23% in 2030 and 22% in

2050), and the West South Central region shows the least reductions (2% in 2030, and 4% in 2050).

In diagnostic case D5, with all the OPT improvements in the LDV sector but without modi-

fications in the electric sector, emissions from the electric sector are 2% higher in 2050 than in the

BAU scenario, due to greater LDV demand for electricity. The reduction in GHG emissions from

the non-LDV segment of the transportation sector in OPT versus BAU is mainly due to a shift to

more efficient technologies in freight shipping. Consistent with the results for the LDV mix, LDV

emissions are reduced or increased approximately in proportion to LDV demand, for both BAU

and OPT scenarios. Similarly, CO2-eq emissions do not change significantly in sensitivity tests

with modified oil prices applied in either the BAU or OPT scenarios.

For both the BAU and OPT scenarios, application of moderate GHG fees reduces total CO2-

eq emissions by 11% in 2030 and by 12% in 2050. In both comparisons, the main reductions are
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from the electric power sector, based on increased use of natural gas and some renewables in place

of coal. GHG emissions from the electric sector are reduced by about 40% in the BAUFEE and

OPTFEE scenarios in 2030 compared to 2005. For BAU and OPT, total GHG emissions are 9–10%

higher with low GHG fees and 7–9% lower with high fees compared to the moderate fee results

(Figure 2.12), again mainly due to changes in electric sector emissions. For the LDV segment,

GHG emissions in 2050 are only 9% lower in OPTFEE than in OPT. Thus, despite using more

optimistic assumptions for EV cost and efficiency than used by Rudokas et al. (2015), our results

agree with their conclusion that GHG fees would have little effect on LDV emissions. Moreover,

over time LDV emissions represent a sharply declining share of total GHG emissions, even without

more optimistic technology improvements or fees. On the other hand, the OPT scenario shows that

applying energy system-wide GHG fees could help curtail the industrial sector emissions increases

that might otherwise occur if widespread use of BEVs induced industrial sector fuel switching.

2.3.5 NOx and SO2 Emissions

Figures 2.2b and c show how NOx and SO2 emissions compare for the BAU, OPT and

corresponding fee scenarios. (Results for VOC emissions are presented in Figure 2.13.) In the BAU

scenario, NOx emissions from LDV decline from about 2 million tonnes in 2010 to 0.4 million tonnes

in 2030 and to 0.3 million tonnes in 2050, due to tailpipe emissions limits that have already been

promulgated. In the OPT scenario, direct NOx emissions from LDV are about 0.3 million tonnes in

2030 and 0.2 million tonnes in 2050, which is 35% lower than in the BAU scenario. However, total

energy system NOx emissions are about the same in 2050 in the OPT and BAU scenarios, because

industrial sector emissions are 27% higher in the former. In the OPT scenario, the industrial sector

shifts from use of electricity to use of combustion-based technologies for heat and power. However,

the increase in industrial NOx emissions in the OPT scenario is partially offset by a decrease in

HDV emissions that results from use of more efficient and less polluting technologies in freight

shipping, as more diesel is used in the industrial sector. Loughlin et al. (2015) similarly saw a shift

in NOx emissions from the transportation sector to other sectors in their study of NOx emissions
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reduction pathways, including vehicle electrification. Application of GHG emissions fees has little

impact on LDV NOx emissions.

The transportation sector makes a negligible contribution to SO2 emissions (Figure 2.2c).

However, SO2 is of interest with EVs because of the possibility of increased emissions from the

electric sector. In the BAU scenario, SO2 emissions from electricity generation fall from 5 million

tonnes in 2010 to 1.4 million tonnes in 2050 because of existing control requirements and the shift

away from coal-fired generation. This reduction is modestly countered in the BAU scenario by an

increase in SO2 emissions from the industrial sector. In the OPT scenario, SO2 emissions from

the industrial sector in 2050 are 20% higher than in the BAU scenario in 2050, due to increased

direct fuel use in place of electricity. This change offsets the reductions from the electric sector that

result from less use of coal-fired power generation in the OPT scenario. GHG fees reduce total SO2

emissions in the BAUFEE and OPTFEE scenarios, respectively, by 17% and 22% in 2030, and by

21% and 28% in 2050. Most of the reductions occur in the electric sector in the BAU scenario; in

the OPT scenario emissions from the industrial sector are reduced as well.

2.3.6 Well-To-Wheel Emissions

We highlight the impact of potential improvements in LDV efficiency by using our OPT

scenario results to calculate WTW GHG emissions from gasoline ICEV and BEV technologies.

WTW results for NOx, and SO2 were also calculated and are presented in Figures 2.14 and 2.15.

On average for 2010, we estimate WTW GHG emissions of 186 and 450 gCO2-eq mi−1 for full-size

BEV100 and gasoline-fueled ICEVs in the U.S., respectively. For BEV100, 89% of the emissions

are from electricity generation and 11% from upstream fuel sectors. For ICEVs, 88% of emissions

are from the use phase, 7% from the refinery, and 5% from fuel production. WTW GHG emissions

for full-size BEV100 drop to 94 gCO2-eq mi−1 in 2030 and 62 gCO2-eq mi−1 in 2050. For full-size

ICEVs, emissions are 181 gCO2-eq mi−1 in 2030 and 121 gCO2-eq mi−1 in 2050. Thus by 2050,

the WTW GHG emissions estimated for both technologies are about one-third of those estimated

for 2010. The percentage contributions across WTW stages are relatively constant over time, for
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both BEVs and ICEVs. Elgowainy et al. (2016) estimates higher WTW GHG emissions for midsize

ICEV, and BEV90 in 2015 and 2030, than our estimations for full-size (combination of midsize and

large) cars in those years. Our range for BEV is also slightly higher.

In addition to the WTW GHG emissions estimated based on the average national electricity

mix, we also calculated average WTW emissions for each MARKAL region (see Figure 2.16).

Regional WTW GHG emissions for full-size BEV100 range from 96 to 219 gCO2-eq mi−1 in 2010,

42 to 121 gCO2-eq mi−1 in 2030, and 35 to 83 gCO2-eq mi−1 in 2050. Thus the highest regional

WTW emissions in 2050 are less than the lowest regional WTW emissions in 2010. Across the full

time horizon, the lowest BEV WTW GHG emissions correspond to the Pacific region, which has a

low share of electricity from coal power plants and high hydropower resources. We find the highest

emissions for the West North Central region, which has the highest share of generation from coal

(59% in 2030 and 54% in 2050 in the OPT scenario). Our regional rankings for EV WTW emissions

in 2015 match those presented by Nealer et al. (2015); however, their study did not consider future

scenarios.

Although not directly examined in this study, vehicle cycle emissions are also important in

comparing across technologies. Elgowainy et al. (2016) estimated emissions from vehicle manufac-

turing of about 41 gCO2-eq mi−1 for current midsize ICEV, and about 64 gCO2-eq mi−1 for BEV90

vehicles. In the future, these emissions are expected to decline as electricity sector emissions are

reduced and manufacturing processes become more efficient. However, as light duty vehicles gen-

erally become more efficient, with lower WTW emissions, the vehicle production cycle will likely

comprise an increasing fraction of total life cycle emissions. Thus, in future assessments greater at-

tention needs to be focused on vehicle manufacturing and recycling impacts, as well as on upstream

emissions and on the potential for intersectoral shifts.
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2.4 SUPPORTING INFORMATION

2.4.1 MARKAL Regions

Figure 2.3 depicts the nine MARKAL regions, which are based on the U.S. Census Divisions,

and the states located in each region.

R1 New England

R2 Middle Atlantic

R3 East North 
Central

R4 West North 
Central

R5 South Atlantic

R6 East South 
Central

R7 West South 
Central

R8 Mountain

R9 Pacific

Figure 2.3. Map of U.S. Census Divisions (EIA, 2017b) and the U.S. EPA MARKAL region
associated with each Division (Lenox et al., 2013).

2.4.2 Light Duty Vehicle (LDV) Demand

LDV demand applied in the BAU scenario is based on AEO2014 (EIA, 2014a) reference LDV

demand projections. The reference demand is modified for the OPT scenario based on the 2014

Census population projections leading to lower demand after 2040 (U.S. Census, 2014). High and

low demands for sensitivity analysis are adapted from AEO2014, Figure IF4-2. Figure 2.4 shows

how these high and low demands compare with the updated LDV demand in the OPT scenario

and original LDV demand in the BAU scenario for the national level. Note that in the MARKAL

model, demand is specified separately by region, for each scenario.
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2.4.3 Oil Prices

The reference oil prices used by EPA and in our BAU scenario are from AEO2014 (EIA,

2014a). High and low oil price projections are adapted from AEO2015, Figure 3 (EIA, 2015).

Although domestic and international oil prices have diverged since mid-2010, they have followed

similar trends (EIA, 2014b). Accordingly, to impose high or low oil price market conditions in the

MARKAL model we apply the same trends to both mining and import supply curves. Oil prices

for 2045 to 2055 are estimated by applying price growth factors from the EPA database; moreover,

as oil supply curves are defined in five steps we have applied AEO price projections to step 3, as

the middle step. Other steps are scaled based on EPA assumptions for supply curves in the BAU.

In sensitivity cases with increased or decreased oil prices we have used reference LDV demand

projections because demand does not show a very strong correlation with oil prices. Figure 2.5

shows how high and low oil prices compare with the 2014 reference prices in the BAU scenario.
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Figure 2.5. Oil Price projections for BAU scenario, and high and low price sensitivity cases.
Values are adapted from EIA (2014a) and EIA (2015).

2.4.4 Changes Specific to the LDV Sector

2.4.4.1 Cost and Efficiency Projections of LDV Technologies Based on the Opti-

mistic Case of NRC (2013)

For cost and efficiency projections we have used the NRC (2013) Excel calculation sheet

(provided in Appendix F of the report). The report uses a set of base cars, including three cars from

compact, midsize, and large sizes (Toyota Yaris, Toyota Camry, and Chrysler 300C, respectively),

to draw an average car, and a set of base trucks, including three light trucks from small SUV,

minivan, and pick up sizes (Saturn Vue, Dodge Grand Caravan, and Ford F-150, respectively),

to draw an average truck. Characteristics of all base cars and trucks match their 2007 models.

NRC uses averaged characteristics of these three base cars and three base trucks to represent

the characteristics of its average car and truck, respectively. Average incremental costs over the

baseline ICE 2010 car and baseline ICE 2010 truck are estimated for the average car and light truck

in 2010, 2030, and 2050, for different technologies including ICEs, HEVs, PHEVs, and BEVs. For

this study, we have replaced the three NRC base cars (trucks), which are from different size classes,
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with three new base cars (trucks) from the same individual MARKAL size classes, to be able to

come up with incremental cost estimates for that particular size class. That is, we have provided

seven new sets of base cars and trucks, each including three cars or trucks of the same size class.

Table 2.5 shows how we mapped each set of base cars and trucks with each of the seven MARKAL

size classes. We have modified base cars (trucks) input characteristics, including weight, engine

capacity, number of cylinders, fuel consumption, and engine power, according to the characteristics

of the new base cars (trucks) in each set. Other parameters that are dependent on the vehicle’s

size, like battery size, are adjusted or calculated in the model based on the input characteristics

in each set. For example, battery size for BEVs are calculated as a function of vehicle’s range,

depth of charge, battery degradation, and vehicle’s efficiency in kWh mi−1. Vehicle efficiency is

estimated based on charging efficiency and averaged energy consumption in kWh 100mi−1, which

in turn is calculated based on averaged fuel consumption over the three base cars (trucks) in each

set. Further adjustments are also applied to adapt the PHEV and BEV range of 30 and 130 miles,

which are NRC default ranges for these technologies, to 20 and 40 miles for PHEVs and 100 and

200 miles for BEVs, which are the default ranges in the EPA database. Baseline prices for different

sizes of baseline ICE cars and trucks are extracted from the EPA database. Figure 2.6 shows the

projected costs for full-size cars of different technologies and a comparison with EPA database

(BAU) projections. Similar graphs are generated for other car and light truck sizes of compact,

mini-compact, small SUV, large SUV, minivan, and pickup.

The NRC Committee applied Ricardo’s computer simulation models (which are used in the

EPA energy audit data), and Meszler Engineering’s CAFE Cycle energy audit model in connection

with tractive energy estimation, including all load reduction and powertrain improvements, to

estimate miles per gallon for base vehicles and the other technologies in 2010, 2030, and 2050

(NRC, 2013). We did not have access to those models, consequently we have extracted scaling

factors from the input information to the models for different technologies in different years to

estimate improved efficiency of different vehicle sizes. These include scaling factors to project fuel

economy in 2010 for the ICE technology to 2030 and 2050, scaling factors to project fuel economy
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Table 2.5. Selected vehicle models for sets of base cars and trucks for each MARKAL size class.

MARKAL size classa Model1 Model2 Model3

Mini-Compact Aston Martin Lotus Evora Chevrolet Corvette
Compact Toyota Yaris Honda Civic Chevrolet Cruze
Full-size Honda Accord Toyota Camry Chrysler 300C
Small SUV Saturn Vue Jeep Patriot Honda CR-V
Large SUV Toyota FJ Cruiser Ford Explorer Nissan Armanda
Minivan Dodge Grand Caravan Nissan Quest Toyota Sienna
Pick-up Ford F-150 Chevrolet Avalanche Dodge Dakota
a EPA aggregates mini-compact and two-seater cars from AEO into mini-compact size class in MARKAL;

sub-compact and compact cars into compact; midsize and large cars into full-size; small and large vans into
minivan; small and large pickup trucks into pickup.
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Figure 2.6. Projected cost for the OPT scenario and comparison with BAU cost estimates for
full-size cars in U.S. 2010 $; values for the OPT scenario are estimated based on the optimistic case
in NRC (2013).

of other technologies in 2010 from ICE in 2010, and scaling factors to project fuel economy of each

alternative technology to 2030 and 2050. The fuel economy of the baseline ICE car in 2010 for each

technology is estimated from the average fuel economy of the same three sample vehicles used in

calculating the cost for each size. A separate scaling factor is calculated from the EPA database
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for BEVs to adjust the BEV range to the EPA database defaults. Fuel economy of PHEV vehicles

is treated separately as their fuel economy is assumed to be identical to their corresponding BEVs

in the charge depleting (CD) mode and to HEVs in the charge sustaining (CS) mode (NRC, 2013).

The following equations from Gonder and Simpson (2007) are used for calculation of PHEV fuel

economy:

mpgCD,UF =
1

UF
mpgCD

+ (1−UF )
mpgCS

, mpgcycle =
1

0.5
mpgCD,UF

+ 0.5
mpgCS

(2.1)

where UF is the utility factor, mpgCD is the fuel economy in the CD mode, mpgCS is the

fuel economy in the CS mode, mpgCD,UF is the fuel economy in the CD mode after applying UF,

and mpgcycle is the fuel economy in the full charge and discharge modes cycle.

The Utility Factor (UF) is defined as the ratio of miles driven under CD to the total miles

driven (Bradley and Quinn, 2010). There is uncertainty in the Utility Factor (UF) of PHEVs (Elgo-

wainy et al., 2009; Jorgenson et al., 2012; NRC, 2013; Simpson, 2006). Utility factors from the NRC

report are used in our study (35%, 46%, and 60% for PHEV20, 30, and 40, respectively). Figure

2.7 shows the projected fuel economy for full-size cars of different technologies and a comparison

with EPA database (BAU) projections. Similar graphs are generated for other car and light truck

sizes of compact, mini-compact, small SUV, large SUV, minivan, and pickup.

For both cost and efficiency estimations linear interpolation is applied to project the values

for the years in between 2010, 2030, and 2050. Also, the 2050 value is applied for 2055 estimations.

2.4.4.2 Representation of CAFE Standards

In the EPA database, CAFE standards are presented as an upper bound constraint on the

energy consumption in the LDV sector. The CAFE representation in the model accounts for energy

consumption of all LDV technologies including the electricity needed for EVs. EPA converts the

average fuel economies for the light duty sector to bVMT/PJ values using energy content (higher

heating value, HHV) in each gallon of gasoline. In the current study, we have recalculated bVMT/PJ

values based on lower heating value (LHV). This change tightens the CAFE implementations in

the model by 7–9% in each year. Figure 2.8 shows the difference between the two calculations.
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The rationale for using LHV instead of HHV is that the energy in the exhaust water vapor is not

recovered for the vehicle use therefore vehicles must be more efficient than EPA originally assumed

if CAFE standards are to be met. The new calculations are applied after 2010 for the OPT scenario

in this study.

2.4.4.3 LDV Investment Constraints

In the EPA database, user-defined technology investment constraints are applied to some

LDV technologies like BEVs to limit their adoption rates. Our study assumes that these constraints

are removed after 2025, except for the constraint that limits the adoption of BEVs with 100-mile

range. This modification helps to build a competitive market for alternative technologies. A

constraint should be kept in place for BEV100s, however, as not all consumers are able to adjust

their driving habits to short distances. The fractions for BEV100 investments are adapted and

updated from Pearre et al. (2011). The reason for choosing this study among the alternatives

(Scoffield et al., 2014; Smart et al., 2013; Tamor et al., 2013; Tamor and Milačić, 2015) is that

it gives nationwide estimates and uses real field data to study daily driving habits and distances,

rather than theoretical formulations or survey responses. Pearre et al. (2011) relate vehicle range to

the fraction of vehicles that can be utilized for different numbers of adjustment days. Adjustment

days are days when drivers would change their habits (i.e., use another transportation mode, or

borrow or rent vehicles) to be able to own vehicles with limited ranges like EVs. We use estimates

for “six adjustment days” for the OPT scenario in our study (Pearre et al., 2011).

2.4.5 Changes Applied to the Sectors Other than the LDV Sector

In this section, we provide a summary list of the modifications and corrections applied to

sectors other than the LDV sector. These modifications are mainly based on work done by other

members of our research group. More details about these changes can be found in Brown (2014);

Brown et al. (2014a,b); McLeod (2014); McLeod et al. (2014).

• Treatment of emissions:



34

∗ Upstream emissions, which are not treated completely in the EPA database, are added

to the end use sectors including commercial, industrial, and residential sectors; and to

the fuel and energy sectors including biomass, coal, electricity, natural gas, and oil.

∗ Sector-specific emissions are added to be able to have more detailed output and results

on emissions.

∗ Modifications are applied to the model to be able to calculate emissions from refinery

and hydrogen units separately from the industrial sector.

∗ Unreasonably high methane emissions for coal mining technologies, and very low CO2

emission for biomass IGCC technologies were replaced with estimates from Venkatesh

et al. (2011), and Rhodes and Keith (2005), respectively.

∗ Modifications are applied to VOC and methane emissions for natural gas production

technologies in order to separately account for emissions from shale gas and conven-

tional gas production.

• Treatment of technology:

∗ Investment costs of solar PV centralized generation technologies are updated.

∗ New technologies and a variety of emission control technologies are added to the

industrial sector.

∗ CCS technologies are added as a control option for cement plants.

∗ Domestic and international electricity trade costs have been modified.

• Treatment of constraints:

∗ A constraint is applied to limit the lifetime of coal-fired power plants to 75 years.

2.4.6 GHG Fees

Low, moderate, and high CO2 and methane fees have been adapted from Marten and Newbold

(2012). Table 2.6 presents these fee values in 2005 US $/Metric tonne.



35

Table 2.6. Social cost of CO2 and CH4 applied as economy-wide fees to BAU and OPT scenarios
(2005 US $/Metric tonne), years 2020-2055.

2020 2025 2030 2035 2040 2045 2050 2055

CO2 (Moderate) 40 44 49 55 60 67 73 80
CH4 (Moderate) 1036 1224 1507 1695 1977 2354 2731 3107
CO2 (High) 60 67 73 81 89 94 104 113
CH4 (High) 1412 1601 1883 2166 2542 2919 3296 3672
CO2 (Low) 12 14 16 19 22 24 27 30
CH4 (Low) 518 621 753 895 1036 1224 1412 1601

2.4.7 Diagnostic Cases

Table 2.7 shows the list of our six diagnostic cases, which are designed to help understand

the effect of each modification on the final results. Diagnostic case 1 (D1) includes only the

modifications applied to the CAFE constraints and input LDV travel demand that are described

in Table 2.2, with all other parameters kept the same as BAU. The rest of the cases are defined in

a similar way, with only the specified modifications in each case applied to the BAU. Results for

LDV fuel/technology penetration are shown in Figure 2.9 for each case.

Table 2.7. Description of diagnostic cases.

Diagnostic
case

Description

1 Incorporates CAFE and LDV demand modifications
2 Incorporates LDV efficiency and cost modifications
3 Incorporates LDV hurdle rate and investment constraints modifications
4 Incorporates Diag.2 and Diag.3 modifications
5 Incorporates all modifications in the LDV sector
6 Incorporates all modifications implemented in the OPT scenario except

those specific to the LDV sector

2.4.8 Annualized Unit Cost of Vehicle Ownership

The annualized unit cost of vehicle ownership in a certain year for a particular technology is

the sum of the annualized unit upfront cost, unit fuel cost, and unit fixed and variable operation
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Figure 2.9. Comparison graph of LDV penetration for the six diagnostic cases, BAU, and OPT
scenarios.

and maintenance (O&M) costs (Loulou et al., 2004). To convert the costs to the unit costs, EPA

assumes 11976 miles for average annual vehicle mileage for the LDV sector. Technology specific

hurdle rates (h), which are defined separately in the BAU and OPT scenarios (as mentioned in

Table 2.2), are used to convert the lump sum unit investment cost (INVCOST) of a technology to

annualized unit investment cost over its lifetime (LIFE) by using (Loulou et al., 2004):

ANNUALIZEDINV COST =
INV COST∑LIFE
j=1 (1 + h)−j

(2.2)

2.4.9 Additional Results

2.4.9.1 Crude Oil Consumption

Figure 2.10 shows the total crude oil consumption for BAU, OPT, BAUFEE, and OPTFEE

scenarios. The “error bars” show the crude oil consumption for the BAUHIOIL, BAULOOIL,

OPTHIOIL, and OPTLOOIL sensitivity cases. In the BAU scenario, gasoline consumption is

reduced in 2030 compared to 2010, but remains unchanged in 2050 compared to 2030, despite

increased LDV demand. Optimistic assumptions for LDV efficiency and cost in the OPT scenario
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result in significant reduction in gasoline consumption in 2030 and 2050 compared to BAU. However,

this reduction is offset by increases in other refined products. Application of moderate GHG fees

had negligible impact on total crude oil and gasoline consumption in both BAU and OPT scenarios

in the entire time horizon.
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Figure 2.10. Comparison graph of crude oil consumption (Mtoe) for BAU, OPT, BAUFEE, and
OPTFEE scenarios. The “error bars” show crude oil consumption for the high and low oil price
sensitivity cases.

2.4.9.2 GHG Emissions Calculated Based on GWP20

GHG emissions results with CO2-eq calculated based on the 20-year GWP for methane are

shown in Figure 2.11. The results show the same pattern as those calculated from GWP100, but

with a higher magnitude of CO2-eq emissions. For example, total emissions in 2010 are increased

from 6000 Mt CO2-eq with GWP100 to 7000 Mt with GWP20. The main difference comes from the

upstream emissions, where methane from coal mining and production of natural gas has a large

impact. Methane emissions are not significant in the LDV sector in this study, due to negligible

use of CNG vehicles.
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Figure 2.11. Comparison graph of GHG emissions calculated based on GWP20 for BAU, OPT,
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2.4.9.3 GHG Emissions for Low and High GHG Fees
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Figure 2.12. Comparison graph of GHG emissions calculated based on GWP100 for moderate,
high, and low GHG fee cases in Mt of CO2-eq.

Figure 2.12 compares the impact of high and low GHG fees with that of moderate fees on

GHG emissions for both BAU and OPT scenarios in 2030 and 2050. GHG emissions decrease and
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increase in response to the high and low fees, respectively, in both BAU and OPT scenarios. The

electric sector is the main contributor to the change in GHG emissions. Similar to the moderate

fees, low and high GHG fees have little impact on the LDV sector. In both BAUHIFEE and

OPTHIFEE cases, 3–4% of GHG emission reductions are achieved through electricity generation

from technologies equipped with carbon capture and sequestration.

2.4.9.4 VOC Emissions
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Figure 2.13. VOC emissions in 2050 in kt for BAU, OPT, BAUFEE, and OPTFEE scenarios
compared to BAU emissions in 2010.

Figure 2.13 depicts the VOC emissions in the BAU, OPT, BAUFEE, and OPTFEE scenarios
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in 2050. In the BAU scenario, VOC emissions from the LDV segment decline sharply from 1.4

million tonnes (30% of the total) in 2010 to about 0.3 million tonnes (11% of the total) in 2030 and

0.4 million tonnes (11% of the total) in 2050. The decline from the LDV sector is partially offset

by an increase in upstream emissions. These emissions could be mitigated by additional controls

in the oil and gas production sector that are not currently represented in the EPA US9R database.

In the OPT scenario, VOC emissions from the LDV segment are about 0.3 million tonnes in 2030

and 0.2 million tonnes in 2050, which is 45% lower than in the BAU scenario. However, total VOC

emissions are similar in the BAU and OPT scenarios in 2050, as the 0.1 million tonne reduction

in LDV emissions is offset by higher upstream and industrial emissions, due to increased use of

natural gas for electricity generation. Application of GHG emissions fees leads to negligible change

in total VOC emissions for both BAU and OPT scenarios.

2.4.9.5 Well-To-Wheel Emissions

Figure 2.14 compares the WTW NOx emissions of full-size BEV100 and gasoline ICEV in

2010, 2030, and 2050. Based on our OPT scenario, national average WTW NOx emissions from

a full-size BEV100 drop from 295 mgNOx mi−1 in 2010 to 143 mgNOx mi−1 in 2030, and to 84

mgNOx mi−1 in 2050. In comparison, WTW emissions from a full-size ICEV are estimated to be

191 mgNOx mi−1 in 2010, 114 mgNOx mi−1 in 2030, and 85 mgNOx mi−1 in 2050. Electricity

generation accounts for most of the WTW NOx emissions for BEV100. In 2010, just over half of

WTW NOx emissions for ICEV come the use phase, with the rest approximately split between

upstream production and processing. The share from the use phase increases in later years. In

2010, regional average BEV100 emissions range from 94 mgNOx mi−1 in the Pacific region to 396

in the West North Central region. This range drops to 41 to 218 mgNOx mi−1 in 2030, and to 30

to 133 mgNOx mi−1 in 2050, with the lowest emissions rate occurring in the New England region

in 2050.

Figure 2.15 compares the WTW SO2 emissions of full-size BEV100, and gasoline ICEV in

2010, 2030, and 2050. Under the OPT scenario, we find national average WTW SO2 emissions
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Figure 2.14. Comparison of WTW NOx emissions from the OPT scenario for full-size BEV100,
and ICEV technologies.

for a full-size BEV100 of 435 mgSO2 mi−1 in 2010, 203 mgSO2 mi−1 in 2030, and 102 mgSO2

mi−1 in 2050. In comparison, we find WTW emissions for a compact ICEV of 53 mgSO2 mi−1 in

2010, 18 mgSO2 mi−1 in 2030, and 13 mgSO2 mi−1 in 2050. WTW SO2 emissions for BEV100

are predominantly (98%) from electricity generation. Those for ICEV come mainly from refineries

(70% in 2010 changing to 64% in 2050). Regional WTW emissions for BEV100 in 2010 range from

45 mgSO2 mi−1 in the Pacific region to 664 mgSO2 mi−1 in the West North Central region. This

range is lowered to 20 to 362 mgSO2 mi−1 in 2030, and to 5 to 199 mgSO2 mi−1 in 2050. The

minimum emissions rate occurs in the New England region in 2050. Thus, whether BEV or ICEV

have lower WTW emissions of SO2 and NOx depends on location, due to sharp regional differences

in the electricity mix.

Figure 2.16 compares the WTW GHG emissions calculated for full-size BEV100 for each
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Figure 2.15. Comparison of WTW SO2 emissions from the OPT scenario for full-size BEV100,
and ICEV technologies.
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region based on regional electricity mixes from the OPT scenario. The maximum WTW GHG

emissions in the entire time horizon correspond to the West North Central region, which has the

largest share of electricity generation from coal. The minimum WTW emissions belong to the

Pacific region with little generation from coal and with high hydropower resources.



Chapter 3

Cradle-to-Gate Environmental Impacts of Sulfur-Based Solid-State Lithium

Batteries for Electric Vehicle Applications1

3.1 INTRODUCTION

Recent interest in fleet electrification to mitigate greenhouse gas (GHG) emissions and depen-

dence on oil has motivated research into developing high energy density batteries suitable for electric

vehicle (EV) applications, both plug-in hybrid (PHEV) and battery electric vehicles (BEV). Cur-

rently, Li-ion batteries (LIBs) are used for EV applications; however, the need for lighter batteries

with higher energy densities to provide longer vehicle range has encouraged efforts to develop new

chemistries. Lithium batteries offer higher gravimetric and volumetric energy densities than LIBs

(Väyrynen and Salminen, 2012). Lithium batteries utilize lithium metal for the anode, whereas

graphite or lithium titanate are used in LIBs (Väyrynen and Salminen, 2012). On the other hand,

solid-state batteries show potential advantages over those using liquid electrolytes, as they have

no electrolyte leakage and vaporization problems; they show very long cycle life, and they enable

the use of electrode materials delivering higher energy densities (Takada, 2013). They also are

considered a solution for safety issues associated with the flammable organic solvent used in LIBs

(Takada, 2013). The safety concerns worsen when the size of the battery increases for EV ap-

plications (Takada, 2013). For all of these reasons, solid-state lithium batteries are considered a

promising candidate for EV applications.

The biggest disadvantages of solid-state batteries are the low ionic conductivity of the solid

1 The content of this chapter is from a manuscript in preparation for submission to Journal of Cleaner Production



45

electrolyte, which has prompted ongoing research focusing on the development of solid electrolytes

with high conductivity (Takada, 2013). So far, high conductivities have been achieved in several

oxide- and sulfide-based electrolytes but not all are compatible with lithium electrodes, whereas one

of the main objectives for developing solid-state electrolytes is to enable the use of electrodes with

high energy densities (Takada, 2013). Compatibility with lithium anode is seen in the sulfide-based

glass electrolytes (Takada, 2013). However, application of lithium anode lowers the cell voltage

compared with graphite (Takada, 2013). Moreover, the sulfide-based systems are more convenient

for fabricating bulk-type solid-state batteries in contrast to the oxide systems (Takada, 2013).

This is because sulfide systems do not necessarily need any sintering process and preparation of

electrolyte materials is possible using mechanical milling (Takada, 2013). For all of these reasons, we

focus on sulfide systems, which show promise for mass production and EV applications (Goldman

Sachs Group Inc., 2017).

In this study, we address the cradle-to-gate environmental impacts of sulfur-based solid-state

lithium batteries using a process-based attributional life cycle assessment (LCA) method. We

identify the major differences in battery assembly processes and associated environmental impacts

of solid-state lithium batteries versus LIBs with the help of a case study of a solid-state pyrite

battery. This battery has shown a relatively high theoretical specific capacity of 894 mAh g−1 at

60 ◦C and is in the preparation stage for pilot-scale production by Solid Power (Yersak et al., 2013).

Our framework, however, can be applied to any other solid-state lithium batteries, in particular,

those with sulfide-based electrolyte.

Some common elements of LIBs are not required for solid-state lithium batteries, such as a

negative current collector (Cu), separator (as the solid electrolyte serves as the separator at the

same time), cooling system and corresponding thermal management system, formation cycling, and

charging for charge retention testing. The solid-state pyrite battery also requires thinner insulation

compared to the LIB. These features along with the relatively high specific capacity can offer the

environmental benefits over a counterpart LIB. However, the solid-state pyrite battery delivers

lower open circuit voltage (OCV) compared to the counterpart LIB (1.80 V vs. 3.95 V at 50%
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state-of-charge (SOC)), which results in needing more cells in series to build up the voltage for

EV applications (280-400 V) (Dunn et al., 2015b; Nelson et al., 2012; Zackrisson et al., 2010).

Moreover, the manufacturing of a sulfide-based solid-state lithium battery demands a larger clean

dry-room compared to the current chemistries for LIBs (Goldman Sachs Group Inc., 2017). The

energy requirement for the clean dry-room application is considered the most significant contributor

to the energy consumption and the environmental burdens of LIBs cell manufacturing (Dunn et al.,

2012; Ellingsen et al., 2014; Nelson et al., 2012). These factors potentially offset the environmental

benefits of a solid-state pyrite battery (Goldman Sachs Group Inc., 2017).

Previous EV-related LCA studies compared several battery chemistries including LIB chemistries

and pre-LIB chemistries such as lead-acid, nickel-cadmium, and nickel-metal hydride batteries, in

order to help identify environmentally reasonable choices for EV applications (Matheys and Aut-

enboer, 2005; Sullivan and Gaines, 2010, 2012). Over the past decade, several studies have tried

to address the environmental impacts of traction LIBs with different chemistries and performances

for EV applications. Peters et al. (2017) have provided a comprehensive review of this literature,

including 36 studies, most of which relate to traction batteries for EV applications. We add another

study conducted recently by Kim et al. (2016) to the LIB literature. Kim et al. (2016) address

the cradle-to-gate emissions from a commercial LIB for a Ford Focus BEV. Six of the EV-focused

studies (Amarakoon et al., 2013; Dunn et al., 2015b; Ellingsen et al., 2014; Majeau-Bettez et al.,

2011; Notter et al., 2010; Zackrisson et al., 2010) reviewed by (Peters et al., 2017) served as the

main sources for LCI data for the rest of the studies. Only a few LCA studies have considered

chemistries using Li metal for the anode (Deng et al., 2017; Lastoskie and Dai, 2015; Troy et al.,

2016; Zackrisson, 2017). Deng et al. (2017), in particular, focus on Li-S batteries based on the

notion that sulfur has a relatively high specific capacity, is abundant, and is known to be less en-

vironmentally harmful compared to the heavy metals in LIBs. However, their battery still utilizes

a liquid electrolyte. Two recent studies have analyzed the environmental impacts of known Li-ion

cathode chemistries with a solid-state electrolyte, again utilizing Li for the anode (Lastoskie and

Dai, 2015; Troy et al., 2016). In both studies, the electrolyte is an oxide-based material versus the
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sulfur-based electrolyte considered in this study (Lastoskie and Dai, 2015; Troy et al., 2016). Troy

et al. (2016) present LCA results for a small lab-scale battery (4.2 g); their study is not particularly

focused on the EV applications. Lastoskie and Dai (2015) consider a different battery assembly

process (vacuum vapor-deposited thin film) than examined by Troy et al. (2016) and in this study.

In summary, we contribute to the literature by investigating the environmental impacts of a pyrite

battery that benefits from sulfur-based material, a solid-state electrolyte, and lithium as the anode,

all at the same time. We compare our results with the environmental impacts of current traction

LIBs and these latter studies.

We conduct a prospective LCA because the pyrite battery is an emerging technology that

has been produced only at the lab-scale. We utilize a combination of laboratory data, U.S. patents,

thermodynamic and engineering calculations, existing literature and the US-EI 2.2 LCA database

to develop a battery manufacturing processing scheme for solid-state batteries and to estimate the

battery mass inventory, the energy requirements for battery manufacturing processes and clean

dry-room requirements, and the environmental impacts of different materials and processes in-

volved. We also conduct sensitivity analysis to examine the uncertainties associated with some

input assumptions, including the effect of cleaner electricity production on environmental impacts

of solid-state lithium batteries.

The goal of this study is to provide reasonable insight regarding the environmental impacts

of sulfur-based solid-state lithium batteries, suitable for EV applications, in the earlier stages of

development and to recognize the major contributors to the environmental burdens of this type

of battery. Although prospective LCAs are subject to larger uncertainties compared to the LCAs

conducted for mature established products, they can provide reasonable insight and recommen-

dations regarding the environmental burden of a new product before design and mass production

schemes are finalized. We use the solid-state pyrite battery for our case study; however, our ma-

jor conclusions and recommendations can be expanded to other sulfide-based solid-state lithium

batteries.
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3.2 METHODS

3.2.1 System Boundary

This study is focused on the cradle-to-gate LCA of a solid-state pyrite battery, applicable

as a traction battery for EVs. The study focuses on the battery itself; other EV components are

outside the system boundary. Our analysis does not include the impacts of manufacturing capital

equipment and infrastructure for the battery assembly processes. We further assume no credit from

recycling in our analysis, for a few reasons. First, the environmental benefits from recycling can

vary depending on the technology and battery chemistry, and no established recycling technology is

yet available on a large industrial scale for recycling of new battery chemistries including solid-state

pyrite batteries (Peters et al., 2017). Second, it is uncertain if the recycled materials are of adequate

grade to be reusable in battery manufacturing. Third, it is also uncertain how energy intensive

the recycling steps might be, or whether recycling might offset some environmental benefits from

switching to a new chemistry (Peters et al., 2017). Finally, according to Dunn et al. (2015a), if the

assembly process comprises up to 60% of battery cradle-to-gate energy consumption, significant

energy reduction may not be possible via recycling.

3.2.2 Functional Unit

We define the functional unit as the battery nominal energy capacity (80 kWh). This choice

is based on the rationale that the main function of the battery is delivering energy to EVs. Further-

more, this functional unit does not depend on assumptions about the powertrain and includes major

battery characteristics such as specific energy capacity, depth-of-discharge (DOD), and charging

efficiency (Majeau-Bettez et al., 2011). Presenting the results based on the nominal energy capacity

can be useful for a wide range of users, as they can be converted to results based on miles-driven

for any powertrain assumptions.
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3.2.3 Battery Characterization and Configuration

The battery uses iron pyrite (FeS2) for the cathode with titanium sulfide (TiS2) as the con-

ductive material, lithium as the anode, and lithium sulfide (Li2S) and phosphorous pentasulfide

(P2S5) for the solid-state electrolyte (Yersak et al., 2013). We consider a battery pack with tar-

get 80 kWh energy capacity and 100 kW power, capable of powering a BEV with 200-mile range

(BEV200) on the U.S. Environmental Protection Agency (EPA) Corporate Average Fuel Econ-

omy (CAFE) test cycle. The battery energy requirement for a specified BEV range is adapted

from estimates developed by the National Research Council (NRC) Committee on Transition to

Alternative Vehicles and Fuels (NRC, 2013). NRC (2013) estimated the required efficiency (kWh

mi−1) for driving a BEV with a certain range in two steps. First, they estimated the traction

energy that is delivered to the wheels of a vehicle and is required to navigate the CAFE test cy-

cle. In the second step, they estimated the required energy input to the vehicle (fueling rate) by

working backward from the wheels to the vehicle engine and considering various energy transfer

mechanisms and their associated losses (NRC, 2013). The NRC Committee estimated efficiencies

for an average car and an average truck with a 130-mile range. Our previous work presents how

we project these efficiencies for seven vehicle size classes and other BEV ranges including BEV200

(Keshavarzmohammadian et al., 2017). We utilize the efficiencies estimated for model year 2010.

The pack energy requirement is estimated by applying 80% depth of discharge (DOD), and 10%

battery deterioration over the battery cycle life (NRC, 2013). The cycle life of the pyrite battery is

not determined yet; however, our study assumes that the battery lasts the life of an EV. The battery

pack contains four modules in a row, each including 53 cells (212 cells per pack). This battery pack

configuration assumes no parallel cells and modules. According to the documentation of Argonne

National Laboratory (ANL) BatPac model, moving to cells with higher capacities and with only

series connections reduces the cost of the battery (Nelson et al., 2012). Based on these battery

characteristics and configuration, the average battery mass is estimated at 440 kg (358–554 kg).

Accordingly, the specific energy of the pyrite battery is estimated as 182 Wh kg−1 (144–223 Wh
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kg−1). This is higher than the specific energy of current LIB chemistries, including lithium nickel

cobalt manganese oxide (NCM), advanced lithium nickel cobalt manganese oxide (LMR-NCM),

lithium cobalt oxide (LCO), LMO, lithium iron phosphate (LFP), lithium nickel cobalt aluminum

oxide (NCA), and lithium nickel cobalt oxide (LCN), which are reported to range from 52–175 Wh

kg−1 (Kim et al., 2016; Peters et al., 2017). However, it is lower than those which are reported by

Lastoskie and Dai (2015) for solid-state batteries with NCA, LMO, NCM, and LCO chemistries

(ranging from 220–300 Wh kg−1); by Dunn et al. (2015a) for LMR-NCM with SiC anode (200 Wh

kg−1); by Li et al. (2014) for NCM with silicon nanowire anode (360 Wh kg−1); and by Deng et al.

(2017) for a Li-S battery (220 Wh kg−1). See also Table 3.4 in the results section. The pyrite

battery has only been produced at the lab scale. Section 3.4.1 explains how the mass of the battery

pack is estimated from the lab composition.

3.2.4 Battery Manufacturing and Assembly Process

The starting point for the manufacturing processes description for the pyrite battery is the

LIB production practices described in the BatPac documentation (Nelson et al., 2012). Adjustments

have been made for the pyrite battery based on personal correspondence with staff at Solid Power,

accounting for the different cell chemistry and structure from those of LIBs. Figure 3.1 illustrates a

simplified diagram of the pyrite battery assembly. Cathode components (positive active material,

the conductive material, binder, and solvent) are mixed to make the cathode paste. In LIBs, this

process is also done for the anode. However, Li serves as the anode for lithium batteries and this

process is eliminated. Accordingly, no copper current collector is needed. The cathode is then

coated on both sides of the aluminum foil (positive current collector) through the coating, drying

(the solvent), and calendering processes. While in LIBs the electrolyte is in the liquid form and is

added to the cell at the latter stages of the cell assembly, before the cell closure, here electrolyte is

treated in a similar way as the cathode. That is, the electrolyte paste (electrolyte materials, binder,

and solvent) is prepared through a mixing process and then is coated on the cathode-coated foil

through the same processes as those for the cathode. The electrolyte serves as the separator, as well.
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The coated foil undergoes a slitting and stacking process (during which the anode is also attached)

similar to the LIBs. Cell assembly is completed by laminating the cell, welding of cell terminals to

the electrodes, and enclosing the cell in a pouch. In LIBs, the pouch serves as the container for the

liquid electrolyte. The solid-state electrolyte does not actually need a sealed pouch; however, we

assume an enclosure is needed to avoid cell exposure to the air. Also, an enclosure is required when

the cell assembly is done in a different location than the module and pack assembly. Therefore, we

assume the same pouch as for LIBs is used for the pyrite battery (as is current common practice).

For the LIBs, the cells undergo formation cycling and charge retention testing before they are sent

to the module assembly units. The solid-state pyrite battery does not need formation cycling. This

chemistry presents in the fully-charged state initially, as opposed to LIBs with discharged initial

status. This feature eliminates the charging process needed before the charge retention testing for

the pyrite battery.

Battery 
Cell 

Cathode and 
Electrolyte 
Preparation

Cathode 
Coating and 
Calendering

Electrolyte 
Coating and 
Calendering

Foil Slitting and 
Punching

Cell Stacking 
including Attaching 
the Anode

▪ Cell Laminating
▪ Attaching Terminals
▪ Pouch Forming
▪ Cell Enclosure 

Cell Assembly

Module  Assembly

Attaching Module 
Terminals and SOC 
Regulator 

Module EnclosureBattery 
Module

Battery 
Pack

Pack  Assembly

Inter-connecting and 
Compressing the Modules

Attaching:
▪ Heater
▪ Integration Unit
▪ Battery Jacket
▪ Busbar

Figure 3.1. Simplified diagram for pyrite battery manufacturing

In the module assembly unit, the adjacent cells are connected via laser-welding, and the

module is assembled by welding the module terminals, attaching the SOC regulator, and enclosing

the module in its casing, using fasteners (Nelson et al., 2012). Note that the pyrite battery does

not need a cooling system or a spacer for gas release. Accordingly, all the required trays, radiators,
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and the coolant are eliminated for this battery.

For the pack assembly, the modules are compressed using compression plates and straps

(Nelson et al., 2012). A busbar is needed if the modules are arranged in one row (Nelson et al.,

2012). Battery heater and battery management system (BMS), are attached and the battery jacket

encloses the pack (Nelson et al., 2012). BMS measures the pack current and voltage, balances

the module voltages, estimates SOC and state-of-health (SOH) for both module and pack, and

monitors and signals the battery thermal management (Nelson et al., 2012). The pyrite battery

does not need a cooling system, which in turn can reduce the mass of BMS, also it needs thinner

insulation compared to the LIBs. However, we conservatively assume the same mass for BMS and

the same thickness of the insulation as those for LIBs, due to the uncertainty in the final design of

the solid-state pyrite battery.

3.2.5 Impact Assessment

The energy requirements per unit mass, area, or stroke of the individual processes are esti-

mated based on the energy requirements of laboratory equipment. To estimate the energy require-

ments for the clean dry-room, we choose the average climate design data of Reno, Nevada, with

average annual temperature and relative humidity of 12.1 ◦C and 45.6%, respectively (Weatherbase,

2017). Clean rooms demand higher air change rates (ACH) compared to general-purpose build-

ings (ASHRAE, 2015). We adapt the ACH from the American Society of Heating, Refrigerating

and Air-Conditioning Engineers (ASHRAE) recommendations for clean spaces (ASHRAE, 2015).

Section 3.4.2 details how we estimate the energy requirement for the clean dry-room and the re-

lated assumptions. The requirement of clean dry-room conditions for battery manufacturing could

impose a high energy demand for keeping the area dry and clean at the same time. Sulfur-based

solid-state lithium batteries need larger dry rooms compared to LIBs, for the same production

capacity (Goldman Sachs Group Inc., 2017).

To estimate the environmental impacts of the materials and the manufacturing processes, we

utilize the US-EI 2.2 database, which is one of the databases accessible from the Ecoinvent Center,
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and the Tool for the Reduction and Assessment of Chemical and other environmental Impacts

(TRACI 2.1 1, V1.02) for the impact assessment. The ten midpoint impact categories available in

TRACI 2.1 1 are ozone depletion potential (ODP), 100-year global warming potential (GWP100),

photochemical smog formation (PSF), acidification (ACD), eutrophication (EUT), carcinogenics

(CAR), non-carcinogenics (NCA), respiratory effects (RPE), ecotoxicity (ECO), and fossil fuel

depletion (FFD). We also add cumulative energy demand (CED) to the list of impacts. For the

description of these categories see Section 3.4.3.

Pyrite is an abundant mineral and can be found in different types of rocks, as well as coal

beds (Klein et al., 1993; Uni Of Minnesota, 2017). It is rarely mined for its direct use (Uni Of

Minnesota, 2017). Recently, however, pyrite has received attention due to its potential for cathode

applications (Kim et al., 2007; Yersak et al., 2013) and its significant share in the solid-waste from

coal mining (Oliveira et al., 2016). In the US-EI 2.2 database, the data for pyrite is approximated

from iron mining, lime crushing, and lime mining. This is due to a lack of information for production

processes of pyrite. See also Section 3.4.4.

For materials that are not found in the database (Li2S, P2S5, and TiS2) or are not commer-

cially available (TiS2), we use information in U.S. patents for the possible chemical reactions and

processes leading to that particular product from the precursor materials for which LCI data are

available (Jacob and Brown, 1978; Taylor, 1965; Wainer, 1958). We estimate the energy require-

ments for the associated heating processes for material production based on the thermodynamic

calculations (Section 3.4.4). Our calculation assumes 100% reaction yield. To examine the uncer-

tainty associated with this assumption we conduct a sensitivity case, described in the “Sensitivity

Analysis” section, below. For the processes that are similar to those for LIBs, we select the same

processes from the database as proposed by Ellingsen et al. (2014) (Section 3.4.4).

For battery manufacturing processes in the U.S., we adapt the medium voltage electricity

mix based on the US-EI 2.2 database. This mix assumes 46% generation from coal, 21% nuclear,

20% natural gas, 8% hydropower, 3% wind and solar, and 2% generation from other resources.

We examine the sensitivity of our results to a scenario with cleaner electricity production (see
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“Sensitivity Analysis” section).

The location of a solid-state pyrite battery factory in the U.S. is not defined yet, therefore,

we adapt the average distances and transportation modes from assumptions made by the U.S.

Environmental Protection Agency (EPA) (Amarakoon et al., 2013). Section 3.4.4 presents the main

assumptions about primary and secondary materials and transportation distances. To examine the

uncertainties associated with the assumptions regarding the shipping and transport distances, we

conduct a sensitivity analysis case (see “Sensitivity Analysis” section). Section 3.4.4 also presents

the detailed inventories of the battery pack components and processes and the corresponding impact

entries from the US-EI 2.2 database.

3.2.6 Sensitivity Analysis

To understand the impact of uncertainties associated with our input assumptions we examine

the sensitivity of our results to the reaction yields for TiS2, Li2S, and P2S5 production, shipping

and transport distances, and cleaner electricity mix. Table 3.1 lists the sensitivity cases and the

assumptions that distinguish them from the original calculations.

Table 3.1. Sensitivity cases in this study.

Sensitivity case Description

Reaction yield Assumes reaction yields for TiS2, Li2S, and P2S5 productions are
reduced to 50% vs. the original calculation assuming 100% reaction
yields.

Shipping and trans-
port distances

Assumes the shipping distance by oceangoing vessels from China
to California remains the same as the original calculation, but the
transport distances are doubled vs. the original calculation. This
case assumes shipping distance of 7300 miles by oceangoing vessels
from China to California and an average distance of 520 miles for 5%
of loads (by mass) transported by trucks and 1706 miles for 95% of
loads (by mass) transported by railcars for the domestic transport.

Cleaner electricity gen-
eration mix

Assumes generation from coal is halved, generation from natural gas
is doubled, and generation from wind and solar is increased by 10%
vs. the original calculation. This case assumes 23% generation from
coal, 13% from nuclear, 41% from natural gas, 5% from hydropower,
13% from wind and solar, and 5% from other generation technologies.
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3.3 RESULTS AND DISCUSSION

In this section, we present and discuss the battery mass inventory and total impact of battery

production for cumulative energy demand and for the ten midpoint impact categories, analyzed by

TRACI 2.1 1 (V1.02) based on the battery nominal energy capacity (kWh−1) functional unit. We

also present the contribution of each battery assembly stage to the total impacts for each category.

In addition, we present the sensitivity of our results to reaction yields, shipping and transport

distances, and a cleaner electricity generation mix.

3.3.1 Mass Inventory

Table 3.2 summarizes the mass of different elements used for a 440 kg battery pack with 80

kWh energy capacity. Table 3.6 provides a complete version of this table; it also presents the mass

inventory for the estimated maximum and minimum battery mass of 554 and 358 kg, respectively.

Table 3.2. Estimated mass inventory of a pyrite battery cell, module, and pack with 80 kWh
energy capacity.

Element Mass

Cell(g)

Positive active material (FeS2) 470
Cathode conductive material (TiS2) 470
Negative active material (Li) 109
Electrolyte (Li2S) 184
Electrolyte (P2S5) 259
Positive current collector foil (Al) 98
Terminals 84
Binder (PMMA) 73
Cell container (PET-Al-PP) 84
Total Cell 1833

Module (g)

Cells 97125
Module hardware 994
Total Module 98120

Pack (kg)

Modules 392.5
Pack hardware 47.5
Total Pack 440
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According to this estimation, battery cells comprise 88% of the total mass of the battery

pack mass. Kim et al. (2016) argue that in their study and also based on Ellingsen et al. (2014)’s

study of commercial batteries, the cells comprise about 60% of the total mass of the battery pack

for LIBs, while in the studies that are not based on primary manufacturer data, cells account for

more than 80% of total mass of the battery pack. In our study, this share increases compared

to LIBs, partly due to the elimination of some pack elements such as the cooling system and

trays. In the pyrite battery, cathode paste and positive current collector comprise 52.5% of total

pack mass, anode share is 5%, the share of electrolyte paste is 22.5%, and the share of the rest

of the battery components is about 20%. These numbers are different across studies even with

the same chemistry. Ellingsen et al. (2014) and Deng et al. (2017) present 25.7% and 49.16% for

aggregated cathode paste and current collector shares, respectively; 23.2% and 8.44% for aggregated

anode paste and negative current collector shares, respectively; 10.8% and 15.85% for aggregated

electrolyte and separator shares, respectively; finally, 40.3% and 26.55% for the shares of the rest

of the components, respectively. Shares from Kim et al. (2016) study are 40% for all electrodes

and current collectors, 12% for electrolyte and separator, and 48% for the rest of the components.

Note that Ellingsen et al. (2014) and Kim et al. (2016) both utilize NCM LIB battery chemistry

based on primary data and Deng et al. (2017) utilize Li-S chemistry with liquid electrolyte.

Figure 3.3 shows the breakdown of the mass composition by material. Pyrite and TiS2

(cathode active and conductive materials, respectively) have equal shares of the total battery mass,

23% each. Li2S and P2S5 (electrolyte) comprise 9% and 12% of total battery mass, respectively.

Lithium metal comprises 5% of total pack mass. In our battery, the shares of aluminum and plastics

are slightly lower (by 3%) than those reported by Ellingsen et al. (2014), but the shares of copper

and steel are significantly lower (by 9% and 12%, respectively). This is mainly because the pyrite

battery does not have a copper current collector or cooling system. The share of pyrite is almost

equal to the share of cathode paste in the NCM battery studied by Ellingsen et al. (2014). That is,

part of the energy-intensive metal extraction associated with cathode production in LIBs chemistry

is replaced with pyrite, which is abundant and less energy-intensive to extract (see also “Energy
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Use” section).

3.3.2 Energy Use

We present the direct energy requirements for manufacturing of a pyrite battery cell and

pack, as well as cradle-to-gate CED for the battery. We normalize the energy requirements by

capacity to facilitate comparison with other studies. The major processes in the cell manufacturing

with considerable energy consumption include different mixing processes, coating and calendering,

pouch forming, and the clean dry-room applications. We estimate 735 MJ kWh−1 for the cell man-

ufacturing direct energy requirements. The detailed energy requirements of each individual process

are listed in Table 3.16. The energy requirement for clean dry-room applications comprises 96%

of cell manufacturing direct energy requirements, assuming Reno, Nevada, for the location of the

factory and annual production of 28125 packs each having 80 kWh capacity. The total direct energy

requirement for the pack production is 736 MJ kWh−1, conveying the fact that cell production is

the major contributor to the direct energy requirements of total pack production. Although direct

energy requirements for battery assembly may be different for different battery chemistries, due to

mixing requirements and size of dry-room, CED is a more instructive impact category for overall

comparison of different chemistries. CED shows the life cycle energy requirements, accounting for

differences in embedded energy for production of different materials. We estimate the total CED of

about 3300 MJ kWh−1 for the pyrite battery. An estimated 72% of CED is from fossil fuels, 23%

from nuclear, and 5% from biomass, wind, solar, geothermal, and water (hydropower). Dry-room

has the biggest share of the total CED (75%), followed by the cathode paste (10%) (Figure 3.2).

Mining of pyrite has a negligible contribution to the CED impacts of cathode paste. Xylene is the

biggest contributor (56%) to the CED impacts of cathode paste, followed by TiS2 (30%).

Dunn et al. (2015a) estimate about 0.8 MJ mile−1 (0.5 MJ km−1) CED for production of an

electric vehicle excluding the battery. Our estimation of CED for pyrite battery production is 2.2

MJ mi−1, assuming 120000 miles for vehicle life. This is higher than CED for production of other

parts than battery. In our estimation for 80 kWh battery capacity, we utilized adjusted efficiency of
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35 kWh per 100 miles for BEV200 from our previous work (Keshavarzmohammadian et al., 2017),

adapted from NRC (2013). Assuming 90% charging efficiency and 35% average power generation

efficiency results in about 4.0 MJ mi−1 energy consumption for the use phase of an electric vehicle.

This compares at 2.2 MJ mi−1 for production of battery.
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Figure 3.2. Share of different battery stages to the battery production impacts for the average
battery weight. ODP: Ozone depletion potential; GWP100: global warming potential, calculated
based on 100-year; PSF: photochemical smog formation; ACD: acidification; EUT: eutrophication;
CAR: carcinogenics; NCA: non-carcinogenics; RPE: respiratory effects; ECO: ecotoxocity; FFD:
fossil fuel depletion; CED: cumulative energy demand.

3.3.3 Environmental Impacts

Table 3.3 shows total impacts of battery production based on the nominal energy capacity

functional unit. Figure 3.2 details the contribution of each battery stage to the total impacts for

the average weight. The numerical values for impacts of each stage are presented in Table 3.17.

As shown in Figure 3.2, the impacts of dry-room energy requirements are the biggest contrib-

utor to the total GWP100 and PSF impacts (73% and 66%, respectively), followed by cathode paste
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Table 3.3. The total impacts of production for a pack with a nominal capacity of 80 kWh. The
impacts are normalized by this nominal capacity

Impactsa Units

ODP kg CFC-11 eq kWh−1 1.02× 10−05

GWP100 kg CO2 eq kWh−1 1.99× 1002

PSF kg O3 eq kWh−1 9.81× 1001

ACD kg SO2 eq kWh−1 1.16× 1000

EUT kg N eq kWh−1 1.12× 1000

CAR CTUh kWh−1 1.63× 10−05

NCA CTUh kWh−1 1.51× 10−04

RPE kg PM2.5 eq kWh−1 8.66× 10−02

ECO kg CTUe kWh−1 3.68× 1003

FFD kg MJ surplus kWh−1 1.87× 1002

a ODP: Ozone depletion potential; GWP100: global
warming potential, calculated based on 100-year; PSF:
photochemical smog formation; ACD: acidification;
EUT: eutrophication; CAR: carcinogenics; NCA: non-
carcinogenics; RPE: respiratory effects; ECO: ecotoxoc-
ity; FFD: fossil fuel depletion.

(6% and 7%, respectively) and electrolyte (5% and 6%, respectively). Cell assembly has the same

share of total PSF impacts as electrolyte (6%). Dry-room energy requirements are also the biggest

contributor to the total RPE impacts (52%), followed by cell assembly (14%) and pack assembly

(10%). Overall, dry-room energy requirements are the biggest contributor to the impacts of eight

categories out of ten (ranging from 40% for EUT to 73% for GWP100), except for NCA (17 %)

and ECO (16%). Cell assembly has the biggest share of total impacts for NCA and ECO (36%

both). Impacts of cathode paste are also significant in ODP, ACD, and FFD categories. Similarly,

the impacts of pack assembly are significant in ECO, NCA, CAR, and EUT categories; those of

BMS are significant in ECO, NCA, EUT and ODP categories; finally, the impacts of electrolyte

are significant in FFD.

Dry room, cathode paste, and electrolyte are the stages that contribute most to GWP100

impacts, with the share from cathode paste coming mainly from TiS2 and xylene (40% each). Li2S

is the main contributor (31%) to GWP100 impacts of electrolyte. However, P2S5 and xylene show

a comparable share to those from Li2S (28% and 26%, respectively). Similarly, dry room, cathode
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paste, electrolyte, and cell assembly are the stages that contribute most to PSF impacts, with the

share from cathode paste coming mainly from TiS2 (46%). Li2S is the main contributor (42%)

to PSF impacts of electrolyte and cell terminal production is the main contributor (49%) to PSF

impacts of cell assembly. Finally, cell assembly and pack assembly are the stages that contribute

most to RPE impact, with the share from cell assembly coming mainly from cell terminal production

(80%). Production of busbar is the main contributor (56%) to the RPE impacts of pack assembly.

For the major contributors to the impacts of each stage and category see Table 3.18.

The GWP100 and FFD impacts of xylene are considerable for both cathode and electrolyte

pastes. It should be noted that in theory, the solvent is dried off completely in the drying step after

each round of coating and is recovered in solvent recovery units for reuse. That is, a certain amount

of solvent should be enough for mass scale production. However, as is common practice in Li-ion

LCAs, the solvent is considered for each pack individually. Other options of solvent for the pyrite

battery can be tetrahydrofuran (THF) and heptane. For all ten impact categories, THF generates

more impacts per kg than xylene (Figure 3.5). Heptane generates more impact than xylene for

eight categories out of ten, except for FFD and GWP100 (Figure 3.5).

Our results show that the energy requirements of clean dry-rooms are significant. This

conveys that significant attention should be paid to the location of the factory, with preference

given to locations with dry weather conditions, and to the dehumidification system design. Shifting

the location of the facility from Reno, Nevada (Section 3.4.2) to Sugar Land, Texas increased the

GWP100 impacts of the dry-room from 146 kg CO2 eq kWh−1 to 196 kg CO2 eq kWh−1 (by 34%,

proportional to the energy requirements). Other impacts of dry-room are also increased by the

same factor.

In our study, we do not address the impacts of capital equipment including the HVAC system.

Downsized HVAC equipment also helps to reduce those impacts. We also do not address the impacts

of capital equipment for capture and oxidation of CO, which is the by-product of the suggested

reaction for production of TiS2 (Section 3.4.4.2). Production of each pyrite pack with 80 kWh

energy capacity results in about 50 kg of CO emissions, assuming 100% reaction yield. Assuming
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28125 annual pack production, which is a moderate level, results in CO annual emission of 1403

metric ton, so a control device may be required to oxidize CO to CO2.

We estimate the GWP100 impact of about 133 g CO2 eq mi−1 for each pyrite pack with

80 kWh energy capacity, assuming 120000 miles for vehicle life. As we explained in the methods

section, this battery can power a BEV200 on the EPA CAFE test cycle. In our previous work,

we estimated well-to-wheel (WTW) GHG emissions of a full-size BEV200 and a full-size gasoline

vehicle (GV) in 2010 as 224 and 450 g CO2 eq mi−1, respectively (Keshavarzmohammadian et al.,

2017). These values are derived based on efficiencies and fuel economies adapted from the same

NRC report as that utilized here for sizing the battery (NRC, 2013). The efficiencies and fuel

economies used in WTW GHG emissions calculations are adjusted values (Keshavarzmohamma-

dian et al., 2017). Thus, GWP100 of pyrite battery pack production is lower than use phase impacts

of both technologies. Moving toward more efficient vehicles would reduce the impacts of use phase

for both technologies. WTW GHG emissions for the optimistic (OPT) scenario in 2030 from our

previous work are 114 g CO2 eq mi−1 for BEV200 and 181 g CO2 eq mi−1 for gasoline vehicle (GV)

(Keshavarzmohammadian et al., 2017). This scenario adapts the EV and GV efficiencies from the

optimistic case in the NRC report and assumes shorter life for coal power plants (Keshavarzmo-

hammadian et al., 2017; NRC, 2013). These results show that with improved vehicles’ efficiencies,

the GWP100 impacts of pyrite battery production becomes comparable with those from operation

of BEV200s and GVs.

Previous studies have estimated higher GHG emissions from BEV manufacturing compared

to the counterpart GV, where the difference mainly comes from the GHG emissions from the battery

manufacturing (ANL, 2016; Dunn et al., 2012; Hawkins et al., 2013; Kim et al., 2016; Majeau-Bettez

et al., 2011; Nealer et al., 2015; Notter et al., 2010). They also estimate lower GHG emissions from

battery production compared to the rest of the BEV components (ANL, 2016; Dunn et al., 2012;

Hawkins et al., 2013; Kim et al., 2016; Majeau-Bettez et al., 2011; Nealer et al., 2015; Notter et al.,

2010). The estimated GHG emissions from BEV manufacturing excluding battery manufacturing

(which is almost equal to GHG emissions from GVs production) in these studies range from 50–75 g
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CO2 eq mi−1, assuming 120000 miles vehicle life. The GWP100 impacts of pyrite battery production

(133 g CO2 eq mi−1) are higher.

Comparison of ACD impacts of battery production with WTW SO2 emissions is also instruc-

tive, although not all ACD impacts come from SO2 emissions. Thus, our comparison assumes SO2

emissions are the major contributor to the ACD impacts of battery production. In our previous

work, we estimated WTW SO2 emissions of a full-size BEV200 and a full-size GV in 2010 as 511

and 37 mg SO2 mi−1, respectively (Keshavarzmohammadian et al., 2017). We estimate ACD im-

pacts of about 733 mg SO2 mi−1 for production of the pyrite battery. This is higher than WTW

SO2 emissions from vehicle use phase.

3.3.4 Sensitivities

Our sensitivity analysis with respect to the reaction yield for TiS2, P2S5, and Li2S shows that

assuming 50% reaction yield increases total impacts of all ten categories by amounts ranging from

1.7% for ECO impacts to 13.5% for ODP. The increases come from the cathode and electrolyte

pastes. The increase in the impacts of cathode paste ranges from 25.8% for FFD to 88.1% for ODP.

Those for electrolyte paste range from 27.2% for FFD to 91.1% for NCA. A reaction yield normally

is under 100%, due to losses, impurities in reactants, side reactions, and incomplete reaction.

The share of transportation to the total impacts ranges from 0.1% for EUT to 2.3% for PSF

in the original calculations. Doubling the transport distances increases the shares of transportation

impacts ranging from 0.2% for ECO to 4.5% for PSF.

The cleaner electricity generation mix, which assumes halved generation from coal, doubled

generation from natural gas, and a 10% increase in generation from wind and solar compared to the

original electricity mix, reduces impacts in nine out of ten categories, ranging from a 6.6% reduction

in NCA to a 29.4% reduction in ACD. The reductions are due to the reduction in impacts of cell

assembly (ranging from 0.6% in ECO to 19.6% ODP) and dry-room operation (ranging from 14.4%

in GWP100 to 46.8% in EUT). FFD is increased by 35.6%, again due to an increase in impacts of

cell assembly (28.9%) and dry-room (68.6%).
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3.3.5 Comparison with Other Studies

Peters et al. (2017) compare CED for pack production of LIBs with different chemistries and

manufacturing modeling approaches (top-down versus the bottom-up approach) across 36 studies

and estimate an average value of 1182 MJ kWh−1 ranging from 100 MJ kWh−1 to 2500 MJ

kWh−1. The top-down approach historically has resulted in higher energy estimates compared

to the bottom-up approach, (Ellingsen et al., 2014; Peters et al., 2017) possibly due to the risk

of inclusion of inhomogeneous products in top-down models and the risk of missing processes in

bottom-up models (Ellingsen et al., 2014). Kim et al. (2016) estimate CED of 1500 MJ kWh−1 for a

Ford Focus LIB battery. Their estimate is also in the range summarized by Peters et al. (2017). Our

estimate of CED for pyrite battery falls on the upper side of this range (3300 MJ kWh−1). However,

it should be noted that the energy requirements of dry-room and production of TiS2 (which is not

commercially available) are both uncertain; more optimized design for dehumidification process and

TiS2 production can possibly reduce the CED of the pyrite battery. Moreover, continued research

and development (R&D) on pyrite battery has shown that TiS2 can be possibly eliminated.

Energy requirements and impacts of battery assembly process is the most uncertain part of

battery LCAs, mainly due to the lack of primary data (Kim et al., 2016; Peters et al., 2017). In

our study, we apply a bottom-up approach and we estimate energy use of 735 MJ kWh−1 for cell

production. This value is lower than the value estimated for LIB by Zackrisson et al. (2010) (793 MJ

kWh−1) and the average value for LIB found by Ellingsen et al. (2014) (2318 MJ kWh−1), but it is

higher than their lower-bound value (586 MJ kWh−1), which is a representative of mass production

in their study, and that found by Deng et al. (2017) for a Li-S battery (275 MJ kWh−1). Our battery

does not need charging for charge retention testing and formation cycling but needs a bigger dry-

room area. As shown in values by Ellingsen et al. (2014), increased annual production for the same

dry-room area reduces the cell manufacturing energy requirements. Zackrisson et al. (2010) and

Ellingsen et al. (2014) use bottom-up models utilizing manufacturers’ data; but in their studies,

it is not clear what portion of energy estimated is from formation cycling and charge retention
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testing, what is the area of dry-room in their facility, and what is the level of annual production.

Deng et al. (2017) use a bottom-up model and estimate the dry-room energy requirements in kWh

per kg of the cell through measuring and modeling of a pilot-scale dry-room facility of Johnson

Controls Inc. over 21 days. Based on their estimation, dry-room energy requirement comprises 42%

of cell manufacturing energy requirements which compares to a 96% share in our study. However,

their study does not detail the corresponding annual production to the assumed dry-room area.

Like the pyrite battery, a Li-S battery does not need any charging before charge retention testing

(Deng et al., 2017). On the other hand, there are different sources of uncertainty in our estimation,

which also makes the detailed comparison hard. First, we estimate the energy requirements for

the processes from the lab scale facilities. The manufacturing processes get more efficient in large-

scale production, compared to the small scale and energy input generally scales with the process

costs. The cost of process equipment is correlated with size or capacity following the formula

CostB = CostA

(
Capacity(size)B
Capacity(size)A

)b
, where b varies from 0.5–0.8 and will average between 0.6–0.7

for many types of equipment (Cooper and Alley, 2002; Peters et al., 1968). That is, with doubled

capacity and assuming b=0.6, the cost would be increased by 50% rather than doubled. However,

it would not be possible to get 100% yield and turn all input materials to the final products in

the large-scale production compared to the lab scale. Argonne assumes 90–98% yield factors for

different cell materials including current collector foils, 5% lost for solvent recovery, and 5% lost in

cells rejected after charge retention testing in annual production (ANL, 2017). Second, due to the

process-level approach and the emerging feature of the new chemistry, it is likely that some energy

flows are neglected in this estimation. Finally, the location of the factory would affect the energy

requirements of dry-room applications.

Comparison of environmental impacts across LCA studies is often difficult. Different studies

report results for different impact assessment systems which may utilize different impact categories,

units, or characterization factors. Even within the same impact assessment system, only a high-level

comparison would be possible, due to the differences in electricity mixes (in different locations),

the year in which a study is conducted, and the focused chemistry. GWP100 has been the most
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common impact category for comparison. Our estimate for GWP100 impacts of battery production

(199 kg CO2 eq kWh−1) is higher than average LIB value estimated by Peters et al. (2017) (110 kg

CO2 eq kWh−1, ranging from 40–350 kg CO2 eq kWh−1), and that estimated by Kim et al. (2016)

(140 kg CO2 eq kWh−1), but our value is in the range of average LIBs (Peters et al., 2017). Our

estimate is lower than that estimated by Deng et al. (2017) (234 kg CO2 eq kWh−1). As we assume

larger impacts from dry-room applications compared to those studies, this can be related to the

elimination of some elements in the pyrite battery compared to the Li-S battery such as current

collector foils, separator, and cooling systems. In our study, cell production accounts for 93% of

total battery manufacturing GWP100 impacts. Based on Ellingsen et al. (2014) estimates, GWP100

for cell manufacturing comprises 62% of the total GWP100 impacts of battery manufacturing in

the lower-bound case (87% in the average case), Zackrisson (2017) and Deng et al. (2017) estimate

53% and 60% for the same share, respectively.

Table 3.4 compares the GWP100 for each stage of pyrite battery manufacturing with Ellingsen

et al. (2014)’s lower-bound case for a NCM chemistry and with results from Deng et al. (2017) for a

Li-S chemistry. We chose these studies, since Ellingsen et al. (2014) is one of the most detailed recent

LCAs for LIB chemistry based on primary data and it is also the reference for impact assessment

of some components in our study; Deng et al. (2017) study a sulfur-based lithium battery, but with

liquid electrolyte. Both these studies break the stages almost similar to our study.

Table 3.4 shows that GWP100 impacts for most stages of pyrite battery are in the same order

as Ellingsen et al. (2014) lower-bound value, which is representative of mass scale production. Note

that their average estimation is higher than this lower-value. We expect that GWP100 impacts of

the pyrite battery would be lowered by switching from the lab-scale production to the mass-scale

production. Deng et al. (2017) estimate more impacts from cathode paste and anode (including

current collectors) and lower impacts for BMS, and packaging than our study and also Ellingsen

et al. (2014). Our estimate for aggregated GWP100 impacts of electrolyte paste, cell assembly, and

dry-room matches those estimated by Deng et al. (2017) but is higher than lower-bound value by

Ellingsen et al. (2014).
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Table 3.4. GWP100 comparison of different stages of battery manufacturing.

This Study Ellingsen et al.
(2014)

Deng et al. (2017)

Stage GWP100

(kg
CO2-eq
kWh−1)

Corresponding
stage

GWP100

(kg
CO2-eq
kWh−1)a

Corresponding
stage

GWP100

(kg
CO2-eq
kWh−1)

Cathode paste,
positive cur-
rent collector

15 Cathode paste,
positive current
collector

18 Cathode paste,
positive current
collector

45

Anode 8 Anode, negative
current collector

10 Anode, negative
current collector

20

Electrolyte
paste, cell
assembly,
dry-room

162 Manufacturing
of battery cell,
other battery cell
components

111 Electrolyte, separa-
tor, cell container,
cell manufacturing

161

BMS, Module
and pack
assembly

14 BMS, packaging,
battery assembly

29 BMS, module pack-
ing, pack packing

6

Cooling system 0 (not
applica-
ble)

Cooling system 4 Cooling system 2

Total 199 Total 172 Total 234
a Values correspond to the lower-bound case.

It should be noted that to be able to fairly compare the impacts of pyrite battery with the

LIBs, other impact categories should be also compared. That is because, for example, negative

current collector (Cu), which is not required for the pyrite battery, does not contribute significantly

to GWP100 but it is the main contributor to EUT (fresh water and terrestrial), toxicity (fresh-

water, marine, and human), and metal depletion in LIB production (Ellingsen et al., 2014). Its

contribution to the impacts of photo-oxidation formation, particulate matter formation, and ACD

is also considerable (Ellingsen et al., 2014). However, the cross comparison across studies is not

feasible when they differ in the impact assessment system. For example, we cannot compare our

results with Deng et al. (2017), Ellingsen et al. (2014), and most of the studies listed in the review

study by Peters et al. (2017), as these studies use other impact assessment systems (such as ReCiPe

Midpoint) than TRACI, which is used in this study. EPA’s (2013) study (Amarakoon et al., 2013)
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is one of the few studies that utilizes the TRACI 2.0 impact assessment system; this enables us

to compare five impact categories (including GWP100) from their study directly to those from our

study (Table 3.5). Table 3.5 presents a cross comparison between our study and average impacts

of LMO, NCM, and LFP chemistries for a 40 kWh BEV battery or a 11.6 kWh PHEV battery

(Amarakoon et al., 2013).

Table 3.5. Comparison of battery pack impacts between pyrite battery (this study) and average
LMO, NCM, and LFP LIB chemistries (Amarakoon et al., 2013). The values for this study are
presented excluding dry-room impacts.

Impactsa Unitsb This studyc EPA (2013)d

ODP kg CFC-11 eq kWh−1 3.91× 10−06 4.73× 10−06

GWP100 kg CO2 eq kWh−1 5.46× 1001 1.12× 1002

PSF kg O3 eq kWh−1 3.29× 1000 9.96× 1000

ACDI kg SO2 eq kWh−1 4.00× 10−01 1.59× 1000

EUT kg N eq kWh−1 6.69× 10−01 7.64× 10−02

a ODP: Ozone depletion potential; GWP100: global warming potential, cal-
culated based on 100-year; PSF: photochemical smog formation; ACD:
acidification; EUT: eutrophication.

b Normalized by cycle capacity.
c EPA study does not include the impacts of dry-room applications. Thus,

for the purpose of comparison, numbers presented here exclude those im-
pacts.

d Amarakoon et al. (2013).
I Units in EPA study (kg H+ Mole eq) are converted to SO2 eq for the

purpose of this comparison.

Pyrite battery impacts are lower than average LIB values in the EPA (2013) study (Ama-

rakoon et al., 2013) except for EUT. EUT is lower by a factor of 10 in EPA’s study than ours. In the

pyrite battery, the contribution of cathode paste to the EUT impacts is negligible, and cell assembly

is the largest contributor (39%), followed by module and pack assembly (22% each). The impacts

of cell assembly is in turn dominated by material production for positive and negative terminals

(aluminum and copper). In EPA’s study, however, these terminals are not modeled. Throughout

the whole comparison here, it should be note that despite using a primary data set, EPA estimate

a factor of 10 lower energy requirements for cell production compared to studies such as Ellingsen

et al. (2014). In EPA’s study, the cathode is the biggest contributor to the ODP impacts (36.3%),

followed by pack manufacturing (33.8%). The cathode is also the biggest contributor to the PSF
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impacts (42.3%), ACD impacts (52.6%) and EUR impacts (98%). Similarly, in the pyrite battery

cathode paste is the biggest contributor to ODP, but with a lower share. The share of cell assembly

to the total ACD impacts of pyrite battery is similar to the cathode (22%). The reduced share of

the cathode to the impacts of different categories in the pyrite battery compared to average LIBs

in EPA’s study is due to the use of pyrite as the cathode active material. As described before, the

impacts of cathode in pyrite battery are mainly dominated by production of TiS2, which can be

possibly eliminated based on the results of further R&D on the material structure of pyrite battery.

Our study shows that the energy requirements of clean dry-room applications are not well

understood, whereas it has a significant share of the impacts of battery production. Future work

quantifying those energy requirements and optimizing dry-room energy consumptions could improve

the LCA of battery production with different chemistries.

This paper focuses on the impacts of battery production only. Whereas, one advantage of

solid-state batteries over LIBs would be their potentially longer cycle life (Takada, 2013); another

potential advantage of solid-state batteries would be their lower use-phase impacts than LIBs.

Lastoskie and Dai (2015), show that use-phase impacts of BEVs with solid-state electrolyte are

5–6% lower than their counterpart LIBs, utilizing the same cathode chemistry and cycle life. They

related this conclusion to the higher cell energy density of solid-state structure which results in

lower battery mass and higher vehicle efficiency. The cycle life of pyrite battery is not defined yet,

also there are uncertainties in the mass inventory of a pyrite battery pack for EV applications.

Addressing these questions would help to understand the use phase benefits of solid-state lithium

pyrite battery over the LIB chemistries.

3.4 SUPPORTING INFORMATION

3.4.1 Mass Inventory for a Pyrite Battery Pack with 80 kWh Energy Capacity

The Pyrite battery exists only in the lab-scale. We develop a simple model, based on the

results from the lab experiments and reasonable assumptions from the Argonne National Laboratory



69

(ANL) BatPac model (ANL, 2017; Nelson et al., 2012) and the literature, to estimate the mass

of the battery pack. The BatPac model is a bottom-up cost model designed to estimate battery

costs (applicable to transportation) based on the material chemistry, battery design, and processes

(ANL, 2017; Nelson et al., 2012). However, we do not directly utilize this model in our study, as the

current version of the model focuses on the known chemistries for the liquid lithium-ion batteries.

Therefore, significant research and modification are needed to be able to adjust the model for

the solid-state lithium batteries. We take assumptions from the BatPac model wherever they are

applicable and relevant to our study. We start our estimation by calculating the cell mass, and add

the mass of necessary elements for modules and packs.

First, we estimate the mass of positive and negative active materials (FeS2 and lithium,

respectively) in each cell. In our study, the battery pack has 80 kWh energy capacity and is

designed for EV applications. The battery voltage for EV applications ranges from 280–400 V

(Dunn et al., 2015b; Nelson et al., 2012; Zackrisson et al., 2010). We choose 380 V for the purpose

of our calculation. This choice is similar to the ANL default assumption in the BatPac model

(ANL, 2017). These assumptions result in a battery pack capacity of 211 Ah. Assuming no parallel

modules and no parallel cells, which helps to minimize the number of cells in this battery pack and

reduce the cost of the battery (Nelson et al., 2012), results in 211 Ah module and cell capacities.

Based on laboratory experiments, the specific capacity is 448 mAh g−1 (350–560) for positive

active material (cathode) and 2557 mAh g−1 (2000–3200) for negative active material (anode).

Accordingly, the mass of positive and negative active materials can be estimated using cell capacity

and the corresponding specific capacity. Based on the laboratory data, the mass calculation for the

anode assumes 20% excess anode to assure the same charging capacity for anode and cathode and

assumes 10% negative space (Table 3.6).

Next, we estimate the mass of cathode conductive material (TiS2), the binder for cathode

paste (PMMA), and positive current collector foil (Al). Note that unlike Li-ion batteries the pyrite

battery does not need a negative electrode paste or a negative current collector (Cu). According

to laboratory data, the mass composition for the cathode is 47.5%, 47.5%, and 5% for FeS2, TiS2,
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and binder, respectively (equal to 95% for active and conductive materials). Using the FeS2 mass

from the earlier calculations and these compositions, the masses of TiS2 and binder are estimated

(Table 3.6). To estimate the mass of current collector foil we match the lab cathode compositions

for the pyrite battery with the default cathode compositions for the Li-ion chemistries in the

BatPac model. ANL assumes 89% positive active material, 6% conductive material (carbon), and

5% binder, respectively (equal to 95% for active and conductive materials) (ANL, 2017). Including

aluminum foil in this composition (9%) results in 81% positive active material, 5% carbon (equal to

86% active and conductive material), and 5% binder (ANL, 2017). We use the same compositions

(but with equal shares for active and conductive material) to estimate the mass of Al current

collector (Table 3.6).

Unlike the Li-ion batteries, the electrolyte in our battery is treated in a similar way as the

cathode. That is, it is produced by making a slurry paste and is coated on the cathode foil. We

estimate the mass of electrolyte (Li2S and P2S5) using the lab-scale cell composition (28% (FeS2),

12% (Li2S), 17% (P2S5), 28% (TiS2), 4.5% total binder for both cathode and electrolyte (PMMA),

and 10.5% (Li)) and the mass of FeS2, TiS2, binder for cathode, and Li from the earlier calculations

(Table 3.6). The mass of binder for electrolyte is estimated from the electrolyte composition of

39.5% (Li2S), 55.5% (P2S5), and 5% (PMMA) from the lab experiments and the electrolyte mass

(Table 3.6).

For terminals (positive and negative) and cell container (PET-Al-PP), we adapt their share

out of the total cell compositions from BatPac model. BatPac assumes 1% for positive terminal, 3%

for negative terminal, and 4% for the cell container (92% for the rest of elements) (ANL, 2017). We

adjust these percentages to our battery (1%, 3%, and 5%, respectively) by excluding the separator

and copper current collector.

The components that comprise the module mass include cells (53 in each module), module

terminals, state-of-charge (SOC) regulator, and module enclosure (Table 3.6). Note that the pyrite

battery does not need a cooling system and the spacer for gas release. We adapt the calculations

for the module elements from the BatPac model. The BatPac model assumes terminal heating and
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Table 3.6. Estimated mass inventory of a pyrite battery cell, module, and pack with 211 Ah
capacity.

Element Mass
Average Min Max

Cell (g)

Positive active material (FeS2) 470 376 602
Negative active material (Li) 109 87 139
Cathode conductive material (TiS2) 470 376 602
Binder (PMMA) for cathode 50 40 63
Positive current collector foil (Al) 98 79 126
Electrolyte (Li2S) 184 147 236
Electrolyte (P2S5) 259 207 331
Binder (PMMA) for electrolyte 23 19 30
Positive terminals 21 17 27
Negative terminals 63 50 81
Cell container (PET-Al-PP) 84 67 108
Total Cell 1833 1464 2343

Module (g)

Cells 97125 77613 124181
Terminals 62 62 62
SOC regulator 424 424 424
Module enclosure including fasteners 508 444 589
Total Module 98120 78545 125257

Pack (kg)

Modules 392.5 314.2 501.0
Module inter-connects 0.4 0.4 0.4
Compression plates and steel straps 2.6 2.1 3.3
Battery jacket 34.0 30.5 38.4
Busbar 6.5 6.5 6.5
Heater 0.2 0.2 0.2
BMS 4.0 4.0 4.0

Total Pack 440 358 554

resistance factors of 0.019 W g−1 and 0.00054 A-ohm cm−1, respectively (ANL, 2017). The masses

of module terminals are estimated from terminal heating and resistance factor, and maximum

current at full power (ANL, 2017). The maximum current at full power (A) is estimated from

target battery power, 100 kW for our study, cell OCV at full power or OCV at 20% SOC, 1.3 V

for our study, and target % OCV, 80% (ANL, 2017; Nelson et al., 2012). % OCV sets the battery

beginning of life voltage at rated power and shows the fraction of the OCV at which the rated
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power is achieved (Nelson et al., 2012). ANL suggested a minimum % OCV of 80% (Nelson et al.,

2012). ANL assumes each SOC regulator weighs 8 g. ANL assumes 1mm for module enclosure

thickness. For the module casing, we choose the same material, acrylonitrile butadiene styrene

(ABS) with 1.1 g cm−3 density, as Ellingsen et al. (2014). This choice is also consistent with

the ANL assumptions in the BatPac model, which uses 1.1 g cm−3 for a non-aluminum casing

(ANL, 2017). We assume that module fasteners comprise 4.8% of total module mass, based on the

assumptions from Ellingsen et al. (2014).

The components that comprise the battery pack mass include modules (4 in each pack),

battery jacket, module inter-connects, module compression plates and steel straps, busbar (if there

is one row of modules, in our case), battery heater, and battery management system (BMS) (Table

3.6). No coolant and coolant space is required for the pyrite battery. We adapt the calculations

from the BatPac model. ANL assumes each module interconnect is 5-cm long (ANL, 2017). The

mass of each module interconnect is calculated in a similar way to the module terminals using

the same heating and resistance factor, and maximum current at full power as those used for

module terminals (ANL, 2017). We assume the same thickness as the BatPac model (1.5 mm)

for steel compression plates. The battery pack jacket is made of aluminum with insulation. ANL

assumes a total thickness of 14 mm for the pack’s jacket (ANL, 2017). Although the pyrite battery

theoretically requires less insulation, we have assumed the same thickness as the default value in

the BatPac model (10 mm) for Li-ion batteries (ANL, 2017). ANL assumes the insulation is made

of a light-weight high-efficiency material, sandwiched between two aluminum layers, 2 mm thick

each (Nelson et al., 2012). However, it does not specify a particular insulation material. We assume

the insulation is made of polyurethane with an average density of 0.032 g cm−3 (ANL, 2017; Pode,

2004). The busbar is made of copper and is subject to 0.030 V voltage drop (ANL, 2017). To

estimate the battery heater mass, we also use the ANL assumptions for heater unit mass (0.2 kg

kW−1) and heater power (1.0 kW) (ANL, 2017). ANL assumes the BMS weighs 4.0 kg. We utilize

the same value in our estimation (ANL, 2017).

Figure 3.3 provides the battery mass composition by material. Detailed inventory can be
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found in Section 3.4.4
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Figure 3.3. Mass composition of a 440 kg pyrite battery pack by material.

3.4.2 Estimation of Energy Requirements for the Clean Dry-room

To estimate the energy requirements for a clean dry-room application, we assume a dehu-

midification process from the outdoor air condition to the dry condition with dew point of –50 ◦C

(informed by Solid Power) and the relative humidity of 100%. We consider this dehumidification

process is followed by a heating process with constant humidity ratio to heat-up the temperature to

the room temperature of 70 ◦F (21 ◦C). Figure 3.4 shows the schematic of the related psychometric

processes. We assume that the room pressure is the same as atmospheric pressure. However, in

the real applications, the room pressure is kept positive to avoid air infiltration. To accommodate

cleanroom requirements, we adapt the air change rate per hour (ACH) from the American Soci-

ety of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) recommendations for the

clean spaces (ASHRAE, 2015). According to the ASHRAE handbook, the following equation is

used for defining ACH:

ACH =
V

H
(3.1)
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Figure 3.4. Typical psychometric processes for dehumidification

In equation 3.1, ACH is the air change rate per hour, V is the room air velocity (m hr−1)

through the room horizontal plane, and H is the room height (m). According to the Solid Power

inputs, we assume a clean dry-room with about 8160 m2 area and 3 m height for annual production

of 28125 packs with 80 kWh. According to the Cleanroom Construction Associates’ (CCA) and

Cleanroom Technology websites, lithium-ion battery plants are categorized as Class 6 or Class 7

according to the International Standard Organization (ISO) classifications (ASHRAE, 2015; CCA,

2017; Cleanroom Technology, 2017). According to ASHRAE handbook, the velocity of room air

ranges from 0.12–0.18 m s−1 for Class 6 and 0.04–0.08 m s−1 for Class 7 (ASHRAE, 2015). We use

the Class 7 requirements with the room air velocity of 0.04 m s−1 in our calculation. That is, we

apply an ACH of 48 in our calculation.

The location of pyrite battery manufacturing facilities is not defined yet. The inlet air con-

dition may be subject to significant spatial, seasonal and diurnal variations. For the purpose of

our calculation, we choose Nevada (Reno) as one of the reasonable locations for battery production

with dry climate conditions. We choose the average climatic design information to estimate the an-

nual energy consumption for clean dry-room applications from weatherbase website (Weatherbase,

2017). That is, we assume average annual temperature and relative humidity of 12.1 ◦C and 45.6%,

respectively (Weatherbase, 2017). The standard pressure is 14.68 psi (101.21 kPa) (ASHRAE,
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2013). Equations 3.2 and 3.3 show the formula for calculating dehumidification Q̇d and heating Q̇h

loads, adapted from Çengel and Boles (2011). We utilize the Engineering Equation Software (EES)

to conduct the energy requirement estimation.

Q̇d = ṁair(h1 − h2)− ṁcondensatehcondensate (3.2)

Q̇h = ṁair(h2 − h3) (3.3)

In equations 3.2 and 3.3, Q̇d and Q̇h are the dehumidification and heating loads (kJ s−1),

respectively, ṁair and ṁcondensate are the mass flowrate (kg s−1) of entering air and condensate

generated during the humidification process, respectively, h1, h2, h3 and hcondensate are enthalpy

(kJ kg−1) for point 1, 2, 3 and the condensate, respectively, shown in Figure 3.4.

According to the ASHRAE handbook, different types of dehumidifiers are available for man-

ufacturing applications including dehumidifying coils and desiccant dehumidification (ASHRAE,

2016). Different systems may differ in the psychometric processes and they may need a cooling

process after the dehumidification process instead of a heating process (ASHRAE, 2016). For

highly dry applications (low dewpoints) and large factories, like our case, field built-up systems

are designed utilizing different equipment. Accordingly, it would be hard to predict which sources

of inefficiencies are introduced and what combination of energy sources are used. To simplify the

impact assessment, we assume the main energy source of energy for dehumidification systems is

electricity. Table 3.15 shows the dry-room energy requirement for a pack.

3.4.3 Description of Impact Categories

In this study, we utilize the Tool for the Reduction and Assessment of Chemical and other

environmental Impacts (TRACI 2.1 1, V1.02), developed by the U.S. Environmental Protection

Agency (EPA) for the impact assessment (Hischier et al., 2010). This methodology utilizes input

parameters that are consistent with U.S. locations (Hischier et al., 2010). Currently, TRACI 2.1 1

includes ten midpoint impact categories: ozone depletion potential (ODP), 100-year global warm-

ing potential (GWP100), photochemical smog formation (PSF), acidification (ACD), eutrophica-
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tion (EUT), carcinogenics (CAR), non-carcinogenics (NCA), respiratory effects (RPE), ecotoxicity

(ECO), and fossil fuel depletion (FFD). The TRACI tool does not include the land use and water

use impact categories, as further research is needed for these categories (Hischier et al., 2010).

ODP, expressed in kg CFC-11 eq, calculates the relative importance of substances that contribute

significantly to the breakdown of the stratospheric ozone layer, based on chemical’s reactivity and

lifetime (EPA, 2012b; Hischier et al., 2010). GWP100, expressed in kg CO2 eq, calculates the

potency of greenhouse gases (GHGs) relative to CO2 over the 100-year time horizon, based on the

GHGs’ radiative forcing and lifetime (EPA, 2012b; Hischier et al., 2010). PSF, expressed in kg O3

eq, measures the maximum incremental reactivity (MIR) values, which quantify relative ground-

level ozone impacts of different volatile organic compounds (VOCs) (EPA, 2012b). Ground level

ozone is formed following the reaction between nitrogen oxides (NOx) and VOCs in the presence of

sunlight (EPA, 2012b). ACD, expressed in kg SO2 eq, is the increasing concentration of hydrogen

ion within a local environment and shows the potential to cause wet or dry acid deposition through

the addition of substances (such as sulfuric acid and ammonia) that increase the acidity of the

environment (EPA, 2012b; Hischier et al., 2010). Eutrophication, expressed in kg N eq, is the

enrichment of an aquatic ecosystem with nutrients such as nitrates and phosphates that accelerate

biological productivity of algae and weeds (EPA, 2012b). CAR and NCA, expressed in Compara-

tive Toxic Unit (CTUh), calculate the potential of chemicals to cause human cancer and non-cancer

health impacts, respectively (Huijbregts et al., 2010). CTUh is equal to the number of cases per

kg of emissions (Huijbregts et al., 2010). RPE, presented in kg PM2.5 eq, is a measure of exposure

to criteria air pollutants including NOx, PM2.5, and SO2 from point and mobile sources (Hischier

et al., 2010). ECO, expressed in CTUe, calculates the potential of chemicals to cause ecological

harm (Hischier et al., 2010). CTUe (PAF m3 day kg−1 of emissions) is equal to ecological effect

factor (EF), which reflects the change in the Potentially Affected Fraction (PAF) of species due to

the change in concentration (PAF m3 kg−1), multiplied by the fate factor (FF), which represents

the persistence of the chemical in the environment in days (Huijbregts et al., 2010). FFD, expressed

in MJ surplus, measures the damage to fossil fuel resources and is expressed as the surplus energy
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needed for future extraction of fossil fuels as a result of lower quality resources (PRé, 2015). This

definition is based on the rationale that people always extract the best resources first and leave the

lower quality ones for future, demanding more effort for extraction. The extra effort is presented

as “surplus” energy (PRé, 2015). We also add cumulative energy demand (CED) to the list of

the impacts. CED demonstrates the energy use throughout the life cycle of a product or service,

including the direct and indirect energy consumptions, such as raw materials (Hischier et al., 2010).

3.4.4 Detailed Inventory and Corresponding Impact Entry in the US-EI 2.2

Database

In this section, we present the assumptions about primary and secondary materials, and

transportation distances; as well as the detailed inventory of the elements of the battery with an

average mass of 440 kg and the corresponding entries in the US-EI 2.2, used for the impact assess-

ment. We also explain the basis for the main assumptions and estimations whenever applicable.

3.4.4.1 Assumptions about Materials and Transportation Distances

Our calculations assume 70% primary and 30% secondary copper, respectively. These per-

centages are adapted from Annual Data for 1996–2016 developed by Copper Development Associa-

tion Inc. (2017). We use the default assumptions for primary and secondary aluminum production

as US-EI 2.2 (68% from primary resources, 21.6% from new scraps, 10.4% from old scrap). US-EI

2.2 assumes no primary sulfur production for the U.S. We find this assumption reasonable as ac-

cording to the U.S. Geological Survey (USGS), there is no primary sulfur production in the U.S.,

partly due to the sulfur removed from the transportation fuels (Ober, 2001). The U.S. elemental

sulfur is also imported from Canada and Mexico, both with no primary sulfur production (Ober,

2001).

We assume all materials and products are or can be produced in the U.S., except for battery

grade graphite and tin, which are assumed to be imported from China (Amarakoon et al., 2013;

USGS, 2017). EPA assumes a shipping distance of 7300 miles by oceangoing vessels from Shenzhen



78

in China to Long Beach in California (Amarakoon et al., 2013). For domestic transport, EPA

assumes that 5% and 95% (by mass) of load are transported for an average distance of 260 and 853

miles by trucks and railcars, respectively (Amarakoon et al., 2013). EPA has adapted these values

from Bureau of Labor Statistics data for Hazmat Shipment by Mode of Transportation (Bureau of

Labor, 2013). To examine the uncertainties associated with the assumptions regarding the shipping

and transport distances, we conduct a sensitivity analysis case (see “Sensitivity Analysis” section).

3.4.4.2 Cathode Paste

The energy requirement for the cathode paste include the energy requirement for material

productions of positive active material (FeS2), conductive material (TiS2), solvent (xylene), and

binder (PMMA); the energy requirement for the mixing process, which is a high shear mixing

according to the lab experiments; and the energy requirement for the transportation (Table 3.7)

Pyrite is an abundant mineral and can be found in igneous, sedimentary and metamorphic

rocks; it also exists in coal beds and is a solid-waste of coal mining (Klein et al., 1993; Uni Of

Minnesota, 2017). It is rarely mined for its direct use; it used to be mined as a source of sulfur

and sulfuric acid, but pyrite is not valued in the modern industry (Uni Of Minnesota, 2017).

Recently, pyrite has got attention due to its potential for cathode applications (Kim et al., 2007;

Yersak et al., 2013). Oliveira et al. (2016) propose beneficiation of pyrite from coal mining to help

reducing their solid-wastes with the rational that pyrite can be used as a precursor for production

of other products such as sulfur, sulfuric acid, fertilizers and ferrous sulfate. In US-EI 2.2 database,

the data for pyrite is approximated from iron mining, lime crushing, and lime mining. This is due

to the lack of information for production processes of pyrite.

TiS2 is not commercially available and we could not find the characterization of TiS2 produc-

tion in the US-EI 2.2 database. We estimate the energy requirements for TiS2 production based

on the U.S. patent for Ti production (Wainer, 1958). This patent shows that TiS2 is the interme-

diate product of Ti production and can be produced by heating TiO2 in an atmosphere of carbon

disulfide (CS2) at temperatures (T) higher than 1500 ◦C (Equation 3.4) (Wainer, 1958).
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CS2 + TiO2 + C → TiS2 + 2CO (at T ≥ 1500◦C) (3.4)

We estimate the energy requirements for the heating process based on the energy requirements

for heating CS2 from a standard temperature of 25 ◦C to 1500 ◦C. CS2 is a liquid at standard

temperature and pressure (STP) with a boiling point of 46 ◦C. Hence, it undergoes a phase change

during the process. TiO2 with a melting point of 1843 ◦C and a boiling point of 2972 ◦C, and C

with vapor point of 4027 ◦C remain in the solid state during the process. We assume no change in

the boiling point of CS2, which may happen due to the presence of solid TiO2 and C particles. For

CS2, we use the specific heat capacity of 1.04 J g−1 K−1 and 0.60 J g−1 K−1 for the liquid and gas

phases, respectively, and latent heat value of 363.15 J g−1. Our calculation assumes 100% reaction

yield. See also the “Sensitivity Analysis” section for a lower reaction yield.

Table 3.7. Detailed inventory and corresponding impact entry from US-EI 2.2 for the cathode
paste.

Component Quantitya Unit US-EI 2.2 Entry

Cathode paste
Positive active material (FeS2) 470 g Intral, at plant/US
Conductive material (TiS2) 470 g

TiO2 336 g Titanium dioxide, production mix,
at plant/US

CS2 320 g Carbon disulfide, at plant/GLO
C 50 g Graphite, at plant/US
Heating process 0.40 MJ Heat, unspecific, in chemical plant/US

Solvent (xylene) 1189 g Xylene, at plant/US
Binder (PMMA) 50 g Polymethyl methacrylate, beads,

, at plant/US
Mixing process 0.52 kWh Electricity, medium voltage, production

UCTE∗, at grid/UCTE
Transportation by truck 243.1 tkm Transport, Lorry >28t, fleet average/US
Transportation by railcar 42.0 tkm Transport, freight, rail, diesel/US
Shipping by oceangoing vessel 125.7 tkm Transport, transoceanic freight ship/OCE
a The quantities are for one cell.
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3.4.4.3 Positive Current Collector

The positive current collector is made of aluminum. We assume the same proxy process as

that assumed by Ellingsen et al. (2014) for the foil production (Table 3.8)

Table 3.8. Detailed inventory and corresponding impact entry from US-EI 2.2 for the positive
current collector.

Component Quantitya Unit US-EI 2.2 Entry

Positive current collector
Aluminum 98 g Aluminium, production mix, at plant/US
Current collector foil production 98 g Sheet rolling, aluminium/US
Transportation by truck 16.60 tkm Transport, Lorry >28t, fleet average/US
Transportation by railcar 2.87 tkm Transport, freight, rail, diesel/US
a The quantities are for one cell.

3.4.4.4 Anode

In the pyrite battery, the anode is made of Li metal. Li is normally produced in the ingot

form. For battery applications, Li foil is used. We were not able to find the characterization of

lithium sheet rolling in the US-EI 2.2 database. We use aluminum sheet rolling as the proxy for

lithium sheet rolling. Lithium is a softer metal than aluminum and is expected to have lower energy

requirement for the sheet rolling process. Table 3.9 details the inventories for the anode.

Table 3.9. Detailed inventory and corresponding impact entry from US-EI 2.2 for anode.

Component Quantitya Unit US-EI 2.2 Entry

Anode
Negative active material (Li) 109 g Lithium, at plant/GLO
Lithium foil production 109 g Sheet rolling, aluminium/US
Transportation by truck 18.3 tkm Transport, Lorry >28t, fleet average/US
Transportation by railcar 3.2 tkm Transport, freight, rail, diesel/US
a The quantities are for one cell.
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3.4.4.5 Electrolyte Paste

The energy requirements for the electrolyte paste include the energy requirements for ma-

terial production of Li2S, P2S5, solvent (xylene), and binder (PMMA); the energy requirements

for different mixing processes (including high shear and normal mixing) according to the lab ex-

periments; and the energy requirements for transportation (Table 3.10). We could not find the

characterization of Li2S and P2S5 production in the US-EI 2.2 database.

We estimate the energy requirements for Li2S production based on the U.S. patent for produc-

ing high purity lithium sulfide (Jacob and Brown, 1978). This patent shows that Li2S is produced

by reacting lithium carbonate powder with hydrogen sulfide at 500<T<700 ◦C (Equation 3.5)

(Jacob and Brown, 1978).

Li2CO3 +H2S → Li2S +H2CO3 (at 500 < T < 700◦C) (3.5)

We estimate the energy requirements for the heating process based on the energy requirements

for heating up Li2CO3 from 25 ◦C to 700 ◦C. H2S is passed through when Li2CO3 is heating up

or after (Jacob and Brown, 1978). Li2CO3 is in the powder form and has a melting point of 723

◦C and boiling point of 1310 ◦C, therefore it does not undergo phase change during the heating

process. We use the specific heat capacity of 1.32 J g−1 K−1 for the solid phase. Our calculation

assumes 100% reaction yield. See also the “Sensitivity Analysis” section for results assuming a

lower yield.

We estimate the energy requirements for P2S5 production based on the U.S. patent for pro-

ducing phosphorous pentasulfide (Taylor, 1965). This patent shows that P2S5 is produced by

reacting liquid sulfur at 300 ◦F (149 ◦C) with liquid phosphorous at 190 ◦F (88 ◦C) (Equation 3.6)

(Taylor, 1965).

2P + 5S → P2S5, (at S : T = 149◦C, P : T = 88◦C) (3.6)

We estimate the energy requirements for the heating process based on the energy requirements

for heating sulfur and phosphorous from 25 ◦C to 149 ◦C and 88 ◦C, respectively. S and P have
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Table 3.10. Detailed inventory and corresponding impact entry from US-EI 2.2 for the electrolyte
paste.

Component Quantitya Unit US-EI 2.2 Entry

Electrolyte paste
Li2S 184 g

Li2CO3 296 g Lithium carbonate, at plant/GLO
H2S 137 g Hydrogen sulphide, H2S, at plant/US
Heating process 0.26 MJ Heat, unspecific, in chemical plant/US

P2S5 259 g
P 72 g Phosphorus, white, liquid, at plant/US
S 187 g Secondary sulphur, at refinery/US
Heating process 0.03 MJ Heat, unspecific, in chemical plant/US

Solvent (xylene) 560 g Xylene, at plant/US
Binder (PMMA) 23 g Polymethyl methacrylate, beads, at plant/US
Mixing process 0.34 kWh Electricity, medium voltage, production

UCTE∗, at grid/UCTE
Transportation by truck 144.8 tkm Transport, lorry >28t, fleet average/US
Transportation by railcar 25.0 tkm Transport, freight, rail, diesel/US
a The quantities are for one cell.

melting points of 115 ◦C and 44◦C, respectively. We use the specific heat capacity of 0.71 J g−1 K−1

and 0.77 J g−1 K−1 for the solid phase of S and P, respectively; 1.10 J g−1 K−1 and 0.85 J g−1 K−1

for the liquid phase, respectively; and latent heat value of 39.2 J g−1and 21.1 J g−1, respectively.

Our calculation assumes 100% reaction yield. See also the “Sensitivity Analysis” section for results

with a lower yield.

3.4.4.6 Cell Assembly

The energy requirement for cell assembly includes the energy requirements for all processes

for manufacturing a cell, as well as the energy requirement for the production of cell terminals

and container (PET-Al-PP pouch). Energy requirements for cell assembly processes are estimated

based on the energy consumption by lab equipment. We assume the same proxy processes as

utilized by Ellingsen et al. (2014) for cell terminal and container production (Table 3.11).
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Table 3.11. Detailed inventory and corresponding impact entry from US-EI 2.2 for cell assembly.

Component Quantitya Unit US-EI 2.2 Entry

Cell Assembly
Coating and drying 1.71 kWh Electricity, medium voltage, production

UCTE*, at grid/UCTE
Calendering 0.17 kWh Electricity, medium voltage, production

UCTE*, at grid/UCTE
Slitting 0.01 kWh Electricity, medium voltage, production

UCTE*, at grid/UCTE
Electrode punching 0.003 kWh Electricity, medium voltage, production

UCTE*, at grid/UCTE
Cell stacking 0.01 kWh Electricity, medium voltage, production

UCTE*, at grid/UCTE
Hydraulic pressing 0.003 kWh Electricity, medium voltage, production

UCTE*, at grid/UCTE
Cell Terminals

Aluminum 21 g Aluminium, production mix, at plant/US
Al tab production 21 g Sheet rolling, aluminium/US
Copper, primary 44 g Copper, primary, at refinery/RNA
Copper, secondary 19 g Copper, secondary, at refinery/US
Cu tab production 63 g Sheet rolling, copper/US

Welding the terminals 0.01 kWh Electricity, medium voltage, production
UCTE*, at grid/UCTE

Pouch material 84 g
Aluminum 42 g Aluminium, production mix, at plant/US
PET 7 g Polyethylene terephthalate, granulate,

amorphous, at plant/US
Nylon 6 7 g Nylon 6, at plant/US
PP 27 g Polypropylene, granulate, at plant/US
LDPE (dry lamination) 2 g Packaging film, LDPE, at plant/US

Pouch production
Al sheet rolling 42 g Sheet rolling, aluminium/US
Injection molding 40 g Injection moulding/US

Pouch forming 0.44 kWh Electricity, medium voltage, production
UCTE*, at grid/UCTE

Pouch sealing 0.001 kWh Electricity, medium voltage, production
UCTE*, at grid/UCTE

Transportation by truck 32.0 tkm Transport, lorry >28t, fleet average/US
Transportation by railcar 5.5 tkm Transport, freight, rail, diesel/US
a The quantities are for one cell.
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3.4.4.7 Module Assembly

The energy requirement for module assembly includes the energy requirements for welding

of adjacent cells by a laser welding method, and welding of module terminals, as well as the energy

requirement for the production of module terminals, casing, fasteners, and SOC regulator. We

assume the same proxy processes as utilized by Ellingsen et al. (2014) for production of module

terminals, casing, fasteners, and SOC regulator (Table 3.12).

Table 3.12. Detailed inventory and corresponding impact entry from US-EI 2.2 for module as-
sembly.

Component Quantitya Unit US-EI 2.2 Entry

Module Assembly
Welding of adjacent cells 5.72 kWh Electricity, medium voltage, production

UCTE*, at grid/UCTE
Module Terminals 62 g

Aluminum 14 g Aluminium, production mix, at plant/US
Al tab production 14 g Sheet rolling, aluminium/US
Copper, primary 33 g Copper, primary, at refinery/RNA
Copper, secondary 14 g Copper, secondary, at refinery/US
Cu tab production 48 g Sheet rolling, copper/US

Welding the terminals 0.03 kWh Electricity, medium voltage, production
UCTE*, at grid/UCTE

Module casing 483 g
ABS 483 g Acrylonitrile-butadiene-styrene

copolymer, ABS, at plant/US
Injection molding 483 g Injection moulding/US

Module fasteners 24 g
Nylon 6 1 g Nylon 6, at plant/US
Steel, low-alloyed 23 g low-alloyed, at plant/US
Steel product manufacturing 23 g Steel product manufacturing, average

metal working/US
Injection molding 1 g Injection moulding/US

Module SOC regulator 424 g Printed wiring board, through-hole
mounted, unspec., Pb free, at plant/GLO

Transportation by truck 107.1 tkm Transport, lorry >28t, fleet average/US
Transportation by railcar 18.5 tkm Transport, freight, rail, diesel/US
a The quantities are for one module.
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3.4.4.8 Battery Management System

BMS measures the pack current and voltage, balances the module voltages, estimates SOC

and state-of-health (SOH) for both module and pack, and monitors and signals the battery thermal

management (Nelson et al., 2012). ANL assumes BMS weighs 4 kg. However, it does not provide

details for the BMS subcomponents. We adapt the mass fractions for BMS subcomponents from

Ellingsen et al. (2014). Ellingsen et al. (2014) defines battery module boards (BMBs), integrated

battery interface system (IBIS), IBIS fasteners, and a high voltage system and a low voltage system

as the subcomponents of BMS. It should be noted that BMB is equivalent to the SOC regulator in

the BatPac model and is already counted for in the module inventory (Table 3.12). Therefore, we

adjust the mass fractions from Ellingsen et al. (2014) to our study by excluding BMB. Accordingly,

IBIS, IBIS fasteners, high voltage system, and low voltage system comprise 52.6%, 0.3%, 32.9%,

and 14.2% of the mass of BMS, respectively. The mass fraction for subcomponents of IBIS, IBIS

fasteners, high voltage system, and low voltage system, as well as the material and processes for

BMS production, are also adapted from Ellingsen et al. (2014). Table 3.13 details the inventory of

BMS.

Table 3.13. Detailed inventory and corresponding impact entry from US-EI 2.2 for battery man-
agement system (BMS).

Component Quantitya Unit US-EI 2.2 Entry

BMS
IBIS 2.10 kg

Integrated circuit 0.04 g Integrated circuit, IC, logic type, at plant
/GLO

Connectors 44 g Connector, clamp connection, at plant/GLO
Printed board 231 g Printed wiring board, through-hole mounted,

unspec., Pb free, at plant/GLO
Steel components 1787 g Steel, low-alloyed, at plant/US
Brass parts 12 g Brass, at plant/US
Nylon parts 4 g Nylon 6, at plant/US
ABS 0.42 g Acrylonitrile-butadiene-styrene copolymer,

ABS, at plant/US
PET 14 g Polyethylene terephthalate, granulate,

amorphous, at plant/US

Continued on next page
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Table 3.13 – Continued from previous page

Component Quantity Unit US-EI 2.2 Entry

Steel product 1787 g Steel product manufacturing, average
manufacturing metal working/US
Casting brass 12 g Casting, brass/US
Injection molding 19 g Injection moulding/US

IBIS fasteners 13 g
Steel components 13 g Steel, low-alloyed, at plant/US
Steel product 13 g Steel product manufacturing, average
manufacturing metal working/US

High voltage system 1.31 kg
Copper, primary 249 g Copper, primary, at refinery/RNA
Copper, secondary 107 g Copper, secondary, at refinery/US
Polyphenylene 42 g Polyphenylene sulfide, at plant/GLO
sulfide
Tin 21 g Tin, at regional storage/US
Steel components 2 g Steel, low-alloyed, at plant/US
Aluminum 158 g Aluminium, production mix, at plant/US
components
Nylon parts 58 g Nylon 66, at plant/US
PET 75 g Polyethylene terephthalate, granulate,

amorphous, at plant/US
Synthetic rubber 5 g Synthetic rubber, at plant/US
Copper product 356 g Copper product manufacturing, average
manufacturing metal working/US
Metal product 21 g Metal product manufacturing, average
manufacturing metal working/US
Steel product 2 g Steel product manufacturing, average
manufacturing metal working/US
Aluminum product 158 g Aluminium product manufacturing, average
manufacturing metal working/US
Injection molding 180 g Injection moulding/US
Cables 591 g Cable, ribbon cable, 20-pin, with plugs/GLO

at plant/GLO
Low voltage system 570 g

Nylon parts 17 g Nylon 66, at plant/US
Electronic 553 g Electronic component, active, unspecified,
components at plant/GLO
Injection molding 17 g Injection moulding/US

Transportation by truck 2.3 tkm Transport, lorry >28t, fleet average/US
Transportation by railcar 0.4 tkm Transport, freight, rail, diesel/US
Shipping by 0.2 tkm Transport, transoceanic freight ship/OCE
oceangoing vessel
a The quantities are for one pack.
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3.4.4.9 Pack Assembly

The energy requirement for the pack assembly includes the energy requirements associated

with production of module copper interconnections, module compression plates and straps, busbar,

battery heater, and battery jacket. We assume the insulation is made of polyurethane (Pode, 2004).

Table 3.14 details the inventory for the pack assembly.

Table 3.14. Detailed inventory and corresponding impact entry from US-EI 2.2 for pack assembly.

Component Quantitya Unit US-EI 2.2 Entry

Pack Assembly
Copper interconnections 310 g

Copper, primary 216 g Copper, primary, at refinery/RNA
Copper, secondary 94 g Copper, secondary, at refinery/US
Copper product 310 g Copper product manufacturing, average
manufacturing metal working/US

Compression plates and 2.6 kg
steel straps

Steel components 2.6 kg Steel, low-alloyed, at plant/US
Steel product 2.6 kg Steel product manufacturing, average
manufacturing metal working/US

Busbar 6.5 kg
Copper, primary 4.5 kg Copper, primary, at refinery/RNA
Copper, secondary 2.0 kg Copper, secondary, at refinery/US
Copper product 6.5 kg Copper product manufacturing, average
manufacturing metal working/US

Heater 0.2 kg
Resistor 0.2 kg Resistor, unspecified, at plant/GLO
Resistor production 0.2 kg Production efforts, resistors/GLO

Battery Jacket 34 kg
Aluminum 33 kg Aluminium, production mix, at plant/US
Insulation 1 kg Polyurethane, rigid foam, at plant/US
Al sheet rolling 33 kg Sheet rolling, aluminium/US
Injection molding 1 kg Injection moulding/US

Transportation by truck 34.4 tkm Transport, lorry >28t, fleet average/US
Transportation by railcar 5.9 tkm Transport, freight, rail, diesel/US
a The quantities are for one pack.
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3.4.4.10 Dry-room

The estimation method for energy requirement of a clean dry-room is presented in section

3.4.2. Table 3.15 shows the energy requirement for one pack assuming 8160 m2 floor area for the

clean dry-room for annual production of 28125 packs with 80 kWh (estimated by Solid Power). We

assume the same medium voltage electricity profile as other battery assembly processes explained

in the earlier sections.

Table 3.15. Detailed inventory and corresponding impact entry from US-EI 2.2 for clean dry-room.

Component Quantitya Unit US-EI 2.2 Entry

Clean dry-room 15652 kWh Electricity, medium voltage, production UCTE∗,
energy requirements at grid/UCTE
a The quantities are for one pack.

3.4.4.11 Energy Requirements of Each Battery Assembly Process and Dry-room

Table 3.16 summarizes the energy requirements of each battery assembly process and the

dry-room from the earlier tables (3.7–3.15).

Table 3.16. Energy requirements of each battery assembly process and dry-room in MJ.

Process Quantitya

Mixing 654
Coating and drying 1305
Calendering 130
Slitting 5
Electrode punching 3
Stacking 4
Cell laminating 2
Tab welding 5
Pouch forming 339
Pouch sealing 0.6
Welding the adjacent cells 82
Welding the module terminals 0.5
Dry-room 56347
a The quantities are for one pack.
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3.4.5 Additional Results

Additional results are presented in this section. Table 3.17 shows the numerical results for

the environmental impacts of each battery stage. Table 3.18 represents the major contributor

to the environmental impacts of each stage for each impact category. Figure 3.5 compares the

environmental impacts of different solvent options.
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Figure 3.5. Comparison of environmental impacts of heptane, xylene, and tetrahydrofuran (THF).
In each category, the largest value is set as 100%.



Chapter 4

Regionally Targeted Subsidies for Electric Vehicles based on Ownership Costs

and Air Quality and Climate Benefits1

4.1 INTRODUCTION

Electric vehicles (EV) are increasingly receiving attention in the U.S. due to their potential for

reducing oil consumption and greenhouse gas (GHG) and other air pollutant (including precursors

of ozone and PM2.5) emissions (DOE, 2017b; NRC, 2013). Although EVs can offer savings to

purchasers in the form of reduced fuel costs, the higher capital cost of EVs compared to their

gasoline vehicle (GV) counterparts is the most significant barrier to wider adoption (Krupa et al.,

2014). Additional barriers include concerns about vehicle range, access to charging stations, limited

numbers of EV models on offer, and lack of familiarity with EV technology (Deloitte Consulting

LLC, 2010; Egbue and Long, 2012; Krupa et al., 2014; Sierzchula et al., 2014; Tran et al., 2012).

A variety of financial incentives and policies have been proposed, and some implemented, to

reduce EV capital costs and increase their market penetration, which in turn can lower manufac-

turing costs via learning by doing and economies of scale (Deloitte Consulting LLC, 2010; Egbue

and Long, 2012; Krupa et al., 2014; NRC, 2013; Sierzchula et al., 2014; Tran et al., 2012). The

U.S. government offers federal tax credits of up to $7500 for purchase or lease of qualifying plug-in

hybrid and battery EVs (PHEVs and BEVs), including passenger cars and light trucks. Reflecting

the program’s intent of helping manufacturers lower costs by achieving economies of scale, the

credits are phased out when a given manufacturer sells 200,000 qualifying vehicles for use in the

1 The content of this chapter is from a manuscript submitted to Energy Policy journal.
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U.S. (DOE, 2017a). More than a dozen states in the U.S. offer additional vehicle purchase or

lease incentives, such as state tax credits, rebates, and sales tax exemptions. As of August 2017,

California’s Clean Vehicle Rebate Program has distributed more than $300 million for purchase or

lease of approximately 120,000 BEVs, for an average rebate of about $2570 (CARB, 2017).

U.S. federal income tax credits for EV purchases are offered uniformly throughout the country

(as long as EVs are marketed in a particular location). Some researchers have questioned their

efficiency because they fail to reflect variations in potential social benefits or costs associated with

EV operations in different locations (Holland et al., 2016; Skerlos and Winebrake, 2010). Skerlos

and Winebrake (2010) argued that differentiated tax credits based on location of purchase could

achieve higher social benefits than a uniform subsidy for PHEVs. They suggested that larger

credits should be given in regions with higher net benefits of PHEV use, i.e., regions with higher

pollution levels and larger population exposure, low-carbon electricity generation, and greater miles

traveled per vehicle. However, they left the quantification of the differentiated social benefits and

corresponding credits for future research. Holland et al. (2016) proposed that optimal regionally

differentiated subsidies should be equal to the differences between damages over the lifetime of a

GV and an EV. Based on current vehicle technology and the 2011–2012 electricity generation mix,

and accounting for local air pollution and GHG impacts, they estimated that this difference ranges

from –$5000 to +$5000 for regions across the U.S. They found that in some regions EVs would

impose more environmental damages than GVs do, so that in those regions subsidies for EVs could

not be justified solely on current environmental externalities. Recent studies of other clean energy

and transportation technologies have similarly found that their environmental externalities and

private costs vary significantly across regions (Rhodes et al., 2017; Tamayao et al., 2015; Vaishnav

et al., 2017; Yuksel et al., 2016).

As demonstrated by Holland et al. (2016), consideration of pollution externalities as a basis

for subsidy designs highlights the importance of local factors, because benefits or damages differ by

location. The transportation sector contributes to ground level ozone, PM2.5, and CO2 emissions

and their associated health and environmental impacts. EVs reduce tailpipe emissions but those
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emissions reductions are offset by varying amounts depending on fuel sources and technologies

used to generate electricity for charging EVs in different locations. Moreover, shifting the energy

source to the electric sector correspondingly shifts emissions from mobile sources operating at

ground level to more remote power plants with tall stacks that distribute the emitted compounds

further downwind. In the case of secondary pollutants (ozone and secondary PM2.5), background

concentrations of precursors and variable atmospheric conditions affect the level of formation and

removal of these pollutants, further contributing to different levels of damages across the country.

Thus, the magnitude of avoided air pollution damages from the transportation sector and offsetting

damages from the electric sector vary across the country depending on the level of emissions, miles

driven per vehicle, and for air quality factors the location of sources and size of the exposed

population.

Holland et al. (2016) consider EV subsidies only for the purpose of addressing current exter-

nalities, neglecting their potential value in helping bring down future EV costs. On the other hand,

a key aim of EV purchase and leasing incentive programs in the U.S. is to increase production

experience in order to reduce costs of this new technology along a learning curve. Focusing on this

latter aim, Herron and Williams (2013) proposed a cascading diffusion model to estimate optimal

subsidies required to achieve specified levels of penetration for a new technology. They demon-

strate the model with the example of residential solid oxide fuel cells, considering consumers’ direct

willingness-to-pay (WTP) for the new technology along with the technology’s projected learning

curve. Herron and Williams (2013) recognize that WTP can vary in different sub-markets due to

differences in economic performance. Targeting initial subsidies toward sub-markets with the most

favorable economic conditions helps advance production levels along the learning curve to reduce

costs, making the technology more competitive in additional regions. Matteson and Williams (2015)

suggest that the cascading diffusion model could be applied for EVs, but leave the application for

future research.

The aim of this study is to show how consideration of regionally differentiated WTP and

pollution externalities affects the minimum level of subsidies required to achieve a target level of
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EV production in the U.S. For illustrative purposes, we target a level of 12 million BEVs. We adapt

the model of Herron and Williams (2013) for cascading diffusion of EVs across regionally defined

sub-markets in the U.S., accounting for cost reductions from EV production across international

markets. We augment the cascading diffusion model by considering whether the subsidies advance

current social welfare by reducing external damages. We go beyond previous studies by considering

EV learning curves and direct WTP along with environmental externalities from deploying EVs in

place of GVs across nine U.S. regions. Externalities for each region are estimated by monetizing

premature mortalities associated with exposure to PM2.5 and O3, adapted from Dedoussi and Bar-

rett (2014) and Pappin et al. (2015), as well as utilizing social cost of carbon (SCC) (Marten and

Newbold, 2012). Climate impacts of species other than long-lived GHGs are not considered. We

utilize global EV learning curves in our analysis since cumulative global sales are almost doubling

annually (Nykvist and Nilsson, 2015). That is, the cost of battery technology and BEVs is decreas-

ing based on global production levels and not merely based on the U.S. production. Therefore, in

addition to the U.S. regional markets, we also analyze the U.S. market within the international

market. The overall framework developed here can be applied to any group of sub-markets as well

as to other technologies such as PHEV, fuel cell vehicles or photovoltaic panels.

4.2 METHODS

4.2.1 Minimum Subsidy Based on the Cascading Diffusion Model

The cascading diffusion model is based on the notion that the subsidy needed to make a

new technology competitive can be minimized by introducing it first in sub-markets with more

favorable economic conditions, i.e.; those with the highest consumer WTP (Herron and Williams,

2013). The sub-markets are sorted in descending order, from the highest WTP to the lowest, and

the model assumes sequential adoption in favorable sub-markets (Herron and Williams, 2013). In

the case of BEVs, when the vehicle cost is higher than the WTP, the minimum subsidy (Equation

4.1) for a target level of production is calculated from the area between the learning curve for BEV
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cost and the WTP in each successive sub-market (Figure 4.1) (Herron and Williams, 2013). The

learning curve shows how the future cost of a technology declines as the cumulative production

level increases and follows the power law formula (Equation 4.2).

Minimum Subsidy(Pt) =

∫ Pt

Pi

{C(P )−WTP (P )}dP, C(P ) > WTP (P ) (4.1)

C(P ) = Ci

(
P

Pi

)b

, b =
log(LR)

log(2)
, LR = 1− PR, P > Pi (4.2)

In equations (4.1) and (4.2), Pt is the target level of production, C(P ) is the production cost

per vehicle at a cumulative level of P units, WTP (P ) is the descending staircase function for WTP

in different sub-markets up to the target level of production Pt , Pi is the initial level of production,

P is the further level of production, Ci is the cost of initial production, b is the learning coefficient,

LR is the learning rate, and PR is the progress ratio, which quantifies the fractional cost reduction

every time the cumulative production doubles. The overall market is deemed to be competitive

when subsidies in subsequent markets are not required.
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Figure 4.1. Original cascading diffusion model (left) and MSC model (right). Social cost is defined
as subsidy less external benefits (or plus external damages) with EVs.

The minimum subsidy designed based on the cascading diffusion model actually estimates

the lower bound for the amount of cumulative subsidies required to fill the gap between the cost of

BEVs and WTP, due to two main reasons. First, the subsidies calculated based on the technology
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learning curve assume continuous tapering while in the real world, subsides need to be tapered

in discrete steps to make their implementation feasible from an administrative standpoint. This

increases the amount of required cumulative subsidies compared to continuous tapering (Matteson

and Williams, 2015). Second, the cascading diffusion model assumes sequential adoption across

sub-markets, which is not likely to happen in the real world. Parallel adoption in different sub-

markets potentially increases the amount of required cumulative subsidies. This study uses this

lower bound formulation as the basis for examining how consideration of externalities might impact

regionally differentiated subsidies.

4.2.2 Minimum Social Cost

In this study, we modify the cascading diffusion model to account for external costs of vehicle

air pollution. The objective is altered to minimize the social cost, which for purposes of this study

is defined as the subsidy less the environmental benefits (or plus the damages) associated with the

target level of EV penetration (Equation 4.3). This definition incorporates the net air quality and

climate benefits or damages associated with emissions from operation of BEVs in place of GVs in

each U.S. region (Figure 4.1).

MinimumSocialCost(Pt) =

∫ Pt

Pi

[{C(P )−WTP (P )} − EE(P )]dP (4.3)

In equation (4.3), {C(P ) −WTP (P )} is the subsidy and EE(P ) is the environmental ex-

ternalities associated with driving P units of BEVs in place of GVs. EE(P ) has a positive value

if EVs provide net environmental benefits and a negative value if EVs provide net environmental

damages. Estimation of externalities is described in Section 4.2.6.

4.2.3 Model Implementation

Our study focuses on the market diffusion of BEVs in different U.S. regions; however, we

also analyze the U.S market within the international market, since the cost of BEV technology can

also drop following the global learning curve. Thus, we generate international market curves using
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the original cascading diffusion model, and the U.S. regional market curves using both the original

model and the minimum social cost (MSC) model that accounts for environmental externalities.

We analyze how considering the U.S. as a part of an international market reduces the level of

subsidies required for the U.S. to hit a specified EV penetration target. For illustrative purposes,

we choose a 12 million EV penetration target for both the international and U.S. regional markets.

This target spans most of the international market based on other countries’ stated EV targets

(Cazzola et al., 2016) (Table 4.15). It also helps to illustrate the sequence in which subsidies would

be targeted across different U.S. regions by encompassing multiple regional markets. The modeling

framework could equally be applied for other target levels.

The analysis is conducted for BEV technology with a 200 mile-range, assumed to be available

in seven size classes of mini-compact, compact, full-size, small SUV, large SUV, minivan, and

pickup. We originally generated optimistic, reference, and pessimistic EV market curves based

on the reference, low, or high fuel price conditions in each sub-market. The optimistic market

curves correspond to high gasoline and low electricity prices. Our analysis showed that in the case

of pessimistic market curves, corresponding to low gasoline and high electricity prices, both the

international and U.S. market curves are far below the EV cost learning curves, so they are excluded

from presentation of our results. We also generate optimistic and pessimistic cost learning curves

for BEV200 using the estimated upper and lower bound progress ratios for the battery technologies

that are applicable to BEV200s. The base year in our study is 2015 with all monetary values

presented in 2015 U.S. dollars (USD). Deflator factors from the Department of Commerce Bureau

of Economic Analysis have been applied to adjust dollars of other years to 2015 dollars.

4.2.4 Market Curves

Market Curves combine WTP curves with the market size for each sub-market (Herron and

Williams, 2013). Here, we explain the assumptions and input parameters used for generating

international and U.S. regional market curves for BEV200.
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4.2.4.1 Willingness-to-pay

WTP for BEV200 in each sub-market, S, is equal to the net present value (NPV) of the

difference between the future annual fuel expenses (A) for the operation of an average BEV200

compared to that for an average GV in that sub-market, where the future annual fuel costs are

discounted over the life of vehicle ownership (Equations 4.4–4.6).

WTPS = NPVDR,LIFE(AGV,S −ABEV 200,S) (4.4)

AGV,S =
MS

GS
FS (4.5)

ABEV 200,S = MSES(αFoff−peak,S + (1− α)Fpeak,S) (4.6)

In equation (4.4), DR is the discount rate and LIFE is the term of vehicle ownership. In

equation (4.5), MS is the annual miles per vehicle, GS is the fuel economy (mpg) of an average GV,

and FS is the gasoline cost ($ gallon−1). In equation (4.6), ES is the efficiency (kWh mi−1) of an

average BEV200, α is the fraction of charging that happens off-peak, and Foff−peak,S and Fpeak,S

are the off-peak and peak electricity prices ($ kWh−1), respectively. In equations (4.4)–(4.6), fuel

costs, vehicle size mix, fuel economy or efficiency, and vehicle mileage are differentiated by sub-

market (S).

We assume the annual fuel cost remains constant in each year over the life of vehicle own-

ership. In our base calculation, we assume 10 years of vehicle ownership and a 5% discount rate.

Ten years is selected based on the average age of passenger cars and light trucks currently in the

fleet, 10.8 years, according to Kelley Blue Book (KBB, 2012) and 11.6 years, according HIS Markit

(2016). Although BEVs are expected to have lower maintenance costs than GVs (INL, 2017), we

assume equal maintenance costs for both technologies, mainly because unanticipated malfunctions

are arguably more likely with the new technology. For our base calculation, we assume no battery

replacement over the years of vehicle ownership and no peak charging for BEVs with the notion

that consumers make rational decisions to maximize their benefits. To address the uncertainties

associated with the assumptions made in our base calculation, we examine the sensitivity of our



101

results to the discount rate, years of vehicle ownership, peak charging, and battery replacement (see

Section 4.2.7). We note that this WTP calculation ignores other factors that might influence the

purchase decision such as marketing (Deloitte Consulting LLC, 2010; Eppstein et al., 2011; Krupa

et al., 2014), styling (Deloitte Consulting LLC, 2010; NRC, 2013; Sierzchula et al., 2014), the social

influences of observing others’ purchases (Eppstein et al., 2011; Krupa et al., 2014; NRC, 2013;

Sierzchula et al., 2014), and preferences for “green” or advanced technology (Deloitte Consulting

LLC, 2010; Egbue and Long, 2012; Eppstein et al., 2015; Krupa et al., 2014).

For the international market, different countries serve as the sub-markets (Section 4.6.1). For

the U.S. market, we define the regions (as sub-markets) based on the nine U.S. Census Divisions

(Lenox et al., 2013) shown in Figure 4.4. The U.S. regions are New England (R1), Middle Atlantic

(R2), East North Central (R3), West North Central (R4), South Atlantic (R5), East South Central

(R6), West South Central (R7), Mountain (R8), and Pacific (R9). Section 4.6 details the annual

fuel cost calculations for GVs and BEV200s in both international and U.S. regional markets.

For the international market, we generate two sets of market curves, one that includes gaso-

line taxes in the gasoline prices, and a second that excludes them (Section 4.6.1). For the U.S.-only

analysis we exclude gasoline taxes from the gasoline prices based on the rationale that with signifi-

cant EV penetration in the U.S. market, current fuel tax policies may change to avoid lost revenues

for road infrastructure and maintenance (U.S. Congress, 2014).

4.2.4.2 Market Size

Market size is defined based on the potential market for BEVs in each sub-market. For the

international analysis, we define the market size in each country based on their targets for EV

stocks, presented in the Global EV Outlook (Cazzola et al., 2016) for most of the countries in our

study (section 4.6.2.1). For the U.S. market, we assume the market size in each region is 25% of

the regional new vehicle sales projections to 2020, from the U.S. Annual Energy Outlook (AEO)

(EIA, 2017a) (Table 4.16). In comparison, the EV stock target for the U.S. that is utilized in the

international market curves (about 1 million vehicles) equates to 7% of total new sales in 2020 or
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about 1% of total new sales from 2015–2025. The total U.S. market size considered here is thus

much larger than in the international market analysis because, with the rationale similar to that

used for setting the overall production target, this market size helps to illustrate the sequence in

which subsidies would be targeted across different U.S. regions by encompassing multiple regional

markets.

4.2.5 Learning Curves

We generate the incremental learning curves of average BEV200, applied to both the inter-

national and U.S. markets, from battery learning curves. The term “incremental” refers to the

difference between the upfront cost of an average BEV200 and a comparable GV. The average

is calculated from seven vehicle size classes. We adapt the battery learning curves from Nykvist

and Nilsson (2015), who estimated an initial battery cost of 300 $ kWh−1, corresponding to 5.2

GWh cumulative production in 2014, and a progress ratio of 6–9%. We assume the initial values

apply for 2015. The progress ratios of 6% and 9% correspond to our pessimistic and optimistic

learning curves, respectively. Section 4.6.3 provides a detailed explanation for how the battery

learning curves are converted to incremental cost learning curves for BEV200s. In brief, we add the

incremental costs, other than the battery costs, of an average BEV200 over an average GV to the

battery learning curve. We assume these costs also benefit from learning by doing and economies

of scale and consequently decline following the power law.

4.2.6 Environmental Externalities

To estimate the environmental externalities from deploying BEV200s in place of GVs in each

U.S. region, we assume BEV200s generate annual environmental benefits from removing the GV

tailpipe emissions and reducing the corresponding air pollution exposure, but these benefits are

potentially offset by a shift in emissions to the electric sector. The net environmental benefits or

damages are aggregated over the life of the vehicle as:
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Net EES =
LIFE∑
t=1

AEES

(1 +DR)t
(4.7)

where EES and AEES (calculated from Equation 4.8) are the cumulative ($/vehicle) and

annual ($/vehicle/year) environmental externalities in sub-market S, respectively. We assume a

discount rate (DR) of 5% and 10 years of vehicle ownership (LIFE). Our calculation assumes that

AEES remains constant over the years of vehicle ownership.

AEES =
3∑

j=1

AEBroad,S −
5∑

k=1

AEDelectric,S (4.8)

where AEBroad,S and AEDelectric,S are annual environmental benefits and damages from the

road and electric sector ($/vehicle/year), respectively, with j = CO2, NOx, and primary PM2.5

and k = CO2, NOx, primary PM2.5, SO2, and NH3. In our study, we include NOx and primary

PM2.5 as the precursors of PM2.5 for the road sector, and additionally consider SO2 and NH3

for the electric sector. SO2 and NH3 emissions from GVs in the light duty vehicle (LDV) sector

are assumed negligible. NOx is the only ozone precursor considered. Our calculations ignore the

impacts of VOC emissions on ozone, as NOx has been shown to be the most important contributor

to ozone mortality (Pappin and Hakami, 2013). In our study, we focus on the direct emissions

from the road and electric sectors, neglecting upstream emissions such as those associated with fuel

extraction, processing, and delivery. Estimation of annual environmental externalities for each of

these pollutants is described in more detail in the following sections.

4.2.6.1 Annual Environmental Externalities from PM2.5

PM2.5 consists of a mixture of solid and liquid particles, some of which are directly emitted to

the atmosphere (primary PM2.5) and some formed from gaseous precursors through accumulation

processes such as condensation on existing particles. Toxicological evidence and epidemiological

studies establish the link between long-term exposure to PM2.5 and premature mortality (WHO,

2006).

To estimate AEES from PM2.5 for each region, we first calculate the annual number of

avoided deaths per unit of emission reduction (kg) from the road and electric sectors, in each
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region (Table 4.18). To perform this task, we aggregate the grid-cell level numbers of deaths per

annual emission of each species, from Dedoussi and Barrett (2014), in each region for each sector.

Dedoussi and Barrett (2014) study focuses only on premature deaths. This assumption is justified

because human health-related damages contribute up to 95% of the total damages from PM2.5,

including premature deaths, morbidity, reduced timber and crop yields, materials damage, and

reduced visibility and recreation usage (Muller and Mendelsohn, 2009). Moreover, mortality is the

largest contributor to the monetized health impacts of improving air quality (EPA, 2011). Dedoussi

and Barrett (2014) apply the GEOS-Chem adjoint model to calculate the number of deaths in the

U.S. due to annual emissions of each species in each model grid cell. They use baseline all-cause

death rates for adults over 30 years old, and a concentration response function (CRF) derived by

EPA (2011). The CRF assumes a 1% increase in all-cause deaths for every 1 µg m−3 increase in

annual average PM2.5. The baseline values of all-cause deaths for adults over 30 are estimated from

the World Health Organization Global Burden of Disease (Mathers, 2008). They use population

data from the Global Rural-Urban Mapping Project (GRUMP) 2006 database (Balk et al., 2006).

The resolution of the three-dimensional GEOS-Chem grid is ∼50 km E-W × ∼50 km N-S, with 47

vertical layers extending to 80 km. For emissions, they use the 2005 National Emission Inventory

(NEI) (EPA, 2008). In our study, we focus on the damages from long-term exposure to PM2.5

versus short-term exposure due to the availability of adjoint sensitivity results.

For the road sector, we convert the annual number of avoided deaths per annual avoided

emissions (kg) in each region to annual number of avoided deaths per mile in each region, using the

emission factors (g mi−1) for different vehicle size classes of GV and BEV200, adapted from the

Greenhouse gas, Regulated Emissions, and Energy use in Transportation (GREET) model (ANL,

2016), and vehicle size distribution in each region, adapted from the Environmental Protection

Agency (EPA) U.S. 9-region (US9R) database (2016, V1.0) (Lenox et al., 2013). For the electric

sector, we convert the annual number of deaths per annual emissions (kg) in each region to annual

number of deaths per kWh in each region, using the environmental activity of different generation

technologies (g kWh−1 of input fuel), regional generation mix, and the average efficiency of each
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generation type, adapted from the EPA US9R database (Lenox et al., 2013). Section 4.6.4 provides

more details on these calculations.

For the road sector, AEES for each region and species per vehicle ($/year/vehicle) is calcu-

lated by multiplying the annual number of avoided deaths per mile by the value of a statistical life

(VSL), and annual vehicle mileage for that region (Table 4.8). For the electric sector, we multiply

the annual deaths per kWh by the VSL and the average annual kWh per vehicle (BEV200) for each

region. We use a VSL of 7.4 million (2006) USD, inflated to 8.9 million (2015) USD, from EPA’s

Mortality Risk Valuation (EPA, 2017c). Net AEES per BEV200 for each region is the difference

of total environmental benefits from the road sector and total damages from the electric sector.

4.2.6.2 Annual Environmental Externalities from Ozone

Ozone is a secondary pollutant formed from NOx and VOCs in the presence of sunlight.

Short-term exposure to ozone is associated with increased daily mortality (EPA, 2017b). We focus

on effects of short-term exposure as opposed to long-term exposure due to the availability of adjoint

sensitivity results for the former (Pappin et al., 2015).

For estimating AEES from ozone, we follow a similar procedure as described for PM2.5 and in

Section 4.6.4. For ozone, we estimate regional marginal benefits (MBs) per unit of NOx reduction

by aggregating grid-cell level MBs from Pappin et al. (2015) (Table 4.26). Pappin et al. (2015) use

CMAQ adjoint model to estimate the MBs of NOx emissions abatement ($ per ton) in each grid cell

and day of the 2007 ozone season. The MBs are partial derivatives of monetized premature deaths

in the U.S. attributable to short-term ozone exposure with respect to NOx emissions, with a model

grid resolution of 36 km × 36 km. The monetized total premature deaths are estimated using

all-age non-accidental mortality rate and population data obtained from the Centers for Disease

Control (CDC) at the county level (CDC, 2016), change in daily maximum 8-hour average ozone

concentration (DM8A) in each grid cell, a concentration response effect estimate of 4.27 × 10−4

deaths per ppb for DM8A ozone (Bell et al., 2004), and VSL (EPA, 2010). The VSL used in Pappin

et al. (2015) is $7.9 million (2008 USD) or $9.0 million (2015 USD). For emissions, Pappin et al.
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(2015) use the 2005 EPA NEI dataset (EPA, 2008) projected to 2007. Meteorological inputs are

from the Weather Research and Forecasting (WRF) model (Skamarock et al., 2008). They present

MBs for the baseline emission levels (2007 in their study) as well as for different emission abatement

scenarios. We use MBs from the 40% abatement scenario in their study for the road sector (mobile

sources), and the 0% abatement scenario for the electric sector (point sources), consistent with our

prior work on changes in emissions for these sectors with EV penetration (Keshavarzmohammadian

et al., 2017).

We opt to neglect the impact of VOCs on ozone mortality in our analysis. While this limi-

tation penalizes BEV, as VOC emissions from EV charging are negligible compared to those from

GV, we note that the sensitivity of ozone mortality to VOC emissions is, on average, considerably

lower than for NOx (Pappin and Hakami, 2013).

4.2.6.3 Annual Environmental Externalities from CO2

For CO2, we use the marginal damages of CO2 emissions from EPA’s estimate of the SCC

(Marten and Newbold, 2012) with a 3% discount rate (section 4.6.4.3), applied uniformly to all

sectors and regions. After adjusting estimates in the original from 2007 to 2015 USD, the value

used for this study is $40 metric ton−1. SCC incorporates the impacts of climate change on

different categories such as human health, coastal communities, energy production, water resources,

and biodiversity (Marten and Newbold, 2012). CO2 emission factors for different vehicle size

classes (Table 4.27) are adapted from the EPA US9R database (2014, V1.1), as estimated in our

previous study (Keshavarzmohammadian et al., 2017). CO2 emissions factors for different electricity

generation technologies are presented in Table 4.28 and are from the EPA US9R database (2016,

V1.0).

4.2.7 Sensitivity Analysis

To understand the impact of uncertainties associated with our assumptions we examine the

sensitivity of the reference WTP and related subsidies to the discount rate, years of vehicle owner-
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ship, battery replacement, and peak charging, and the sensitivity of environmental externalities to

the regional electricity mix. Table 4.1 lists the sensitivity cases and the assumptions that distinguish

them from the reference WTP calculations. Section 4.6.5 details the basis for these assumptions.

Table 4.1. Description of sensitivity cases.

Sensitivity case Description

Discount rates Low (3%) and high (10%) discount rates vs. the base cal-
culation assuming 5% discount rate.

Years of vehicle ownership Short (5) and long (15) years of vehicle ownership vs. base
calculation assuming 10 years of vehicle ownership.

Battery replacement One-time battery replacement in the tenth year of owner-
ship vs. base calculation assuming no replacement.

Peak charging 25% of charging happens during the peak hours vs. base
calculation assuming all charging off peak.

Cleaner electricity generation mix Less generation from coal (ranging from 2% less in R9 to
22% less in R7) and more generation from renewables and
natural gas (from 7% in R2 to 24% in R7). See Section
4.6.5 for further explanation.

4.3 RESULTS

In this section, we compare BEV learning curves with U.S. regional market curves, and

estimate the minimum cumulative subsidies required to stimulate the BEV200 market diffusion to

the set target level of production. Subsidy totals and external costs across U.S. regions are compared

based on two approaches – a cascading diffusion model based on WTP, and the augmented minimum

social cost (MSC) model that also considers how environmental externalities vary across regions.

Section 4.6.6.1 provides results for our international analysis, which shows the most favorable

countries for initial subsidies based on WTP, with and without including current gasoline taxes in

the calculation of GV operating costs.

4.3.1 U.S. Regional Market

Figure 4.2 shows reference and optimistic market curves for the nine U.S. regions for the

base calculation, starting from current production levels and incremental vehicle costs, and for a
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“pre-diffusion” case in which the incremental cost of BEV200 is reduced due to production for

international markets before diffusion starts in the U.S. In each case, the market size in each U.S.

region is taken as 25% of the region’s new vehicle sales projections to 2020. In the pre-diffusion case

the starting incremental cost of a BEV200 is reduced from the current value of $15062 to $9570

following the optimistic learning curve, or to $10732 following the pessimistic learning curve, due

to an assumed 4.2 million units of production for international markets before the U.S. diffusion

starts. This number of pre-diffusion units is taken from the reference WTP case with gasoline taxes

included in GV operating costs, and corresponds to filling BEV sales targets in the six countries with

the highest WTP: Korea, Norway, Ireland, the Netherlands, Great Britain, and France. Note that

if gasoline taxes are excluded, China and the U.S. would have the highest WTP in the international

market.

As shown in Figure 4.2, R7 (West South Central) shows the highest WTP in the reference

and optimistic market curves for the U.S., followed by R8 (Mountain). The differences between

the highest and lowest WTP across U.S. regions are 2667 $ vehicle−1 and 3188 $ vehicle−1 for

the reference and optimistic market curves, respectively. Reference gasoline prices do not vary

significantly across regions. Instead, the difference between regional WTP values is driven by

electricity prices and annual miles per vehicle. R7 has the highest annual miles per vehicle (14832

miles) among the regions and the lowest reference electricity price (8.3 cents kWh−1).

The minimum subsidies, calculated based on WTP, required to incentivize BEV200 purchases

to a target stock level of 12 million vehicles are shown in Table 4.2 for the base calculations and

for the case assuming 4.2 million pre-diffusion units are sold elsewhere. With zero pre-diffusion

units and with reference WTP, subsidies cannot make BEV200 vehicles competitive with GVs in

the remaining regions, even with the optimistic progress ratio. This also holds for the reference

WTP with 4.2 million pre-diffusion units. That is, the optimistic WTP level, more pre-diffusion

units, or larger market sizes than assumed in our calculation would be required to enable subsidies

for 12 million vehicles to suffice to make BEV200s cost-competitive.

In the case of optimistic WTP with the optimistic learning curve and 4.2 million pre-diffusion
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Figure 4.2. BEV learning curves (corresponding to 6% and 9% progress ratios), and optimistic
and reference WTP market curves for both cases with zero and 4.2 million pre-diffucion units in
the U.S. market.

units, which has the lowest amount of subsidies in Table 4.2, the average subsidy would be about 571

$ vehicle−1. In the case of reference WTP with the pessimistic learning curve and no pre-diffusion

units, which has the highest total subsidy amount, the average subsidy would be about 5031 $

vehicle−1. Both values are lower than the 7500 $ vehicle−1 Federal income tax credit currently

offered in the U.S. for purchasing EVs.

The results of our sensitivity cases show that using a lower discount rate and assuming longer

vehicle ownership increases WTP and decreases the required subsidy to meet the set target. One-

time battery replacement at the tenth year of vehicle ownership generates negative WTP in all
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Table 4.2. Minimum cumulative subsidies, calculated based on WTP, with a 12 million BEV
target production level for the U.S., with and without 4.2 million units of advance production for
international markets.

Market/Learning Subsidies (billion 2015 USD)
curves With no pre-diffusion units (Base)a With 4.2 million pre-diffusion unitsb

Reference/Optimistic 45.9 22.3
Reference/Pessimistic 59.6 32.3
Optimistic/Optimistic 18.9 4.08

(applied to 7.1 million units)
Optimistic/Pessimistic 32.6 14.0
a Subsidies are applied in R7, R8, R5, R6, R4, and R9.
b Subsidies are applied to R7, R8, and R5.

regions. In the reference case, WTP without the cost of battery replacement ranged from $3884

(R1, New England) to $6551 (R7); the cost of a replacement battery in year 10 reduced WTP to

the range of -$3143 (R1) to -$260 (R5, South Atlantic). Assuming 25% peak charging at tripled

electricity prices reduces WTP to the range of $2680 (R1) to $5643 (R7). These WTP reductions

would correspondingly increase the required amount of subsidies. More details on the sensitivity

analysis results are provided in section 4.6.6.2.

4.3.2 Environmental Externalities

Table 4.3 shows estimated PM2.5, ozone, CO2, and net environmental externalities (EES)

associated with switching from GV to EV over 10 years of vehicle ownership, for each U.S. region.

As noted above, environmental benefits for BEV would be somewhat higher if damages from GV

emissions of VOC were included in the analysis. Table 4.3 also shows how precursor species and

sectors contribute to the externalities for PM2.5, ozone, and CO2.

As shown in Table 4.3, switching to EVs is estimated to produce net environmental damage

from PM2.5 for all regions except R1 and R9 (Pacific). In all regions, contributions of reduced road

sector NOx and primary PM2.5 emissions to lowering PM2.5 concentrations contribute significantly

to benefits of switching to EVs. On the other hand, the contribution of power plant SO2 emissions
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to damages from PM2.5 exposure accounts for the largest share of damages from EVs in almost all

regions, with NOx emissions from power plants the second largest contributor (Table 4.3). Across

the regions, R6 (East South Central) has the largest share of SO2 damages from electric sector

emissions, because R6 has a high fraction of generation from coal (46%), including a relatively high

fraction from high sulfur coal.

Switching to EVs is estimated to provide net environmental benefits for ozone in six of the

nine regions. R9 has the highest ozone benefits from switching to EVs, due to high population

exposure and relatively clean electricity generation. In R3 (East North Central), R4 (West North

Central), and R6, the effect of increased NOx emissions from electricity generation outweighs the

reductions in NOx emissions from vehicles, to yield net ozone damages from switching to EVs

(Table 4.3).

CO2 externalities from switching to EVs are positive in all regions. R9 has the lowest CO2

benefits from removing GV road emissions and R7 has the highest benefit. These results are mainly

determined by annual vehicle mileage, as average fuel economies show small variations across regions

(Table 4.8). Similarly, in switching to EVs, R9 has the lowest CO2 damages from electric sector

emissions and R7 has the highest damages. R7 has the highest share of generation from coal and

natural gas (80%) and R9 has the lowest share (48%), almost all from natural gas (Table 4.23).

Figure 4.3 illustrates how the most favorable region to start the cascading diffusion and the

minimum subsidy required to meet the target production level changes when the environmental

externalities are incorporated into the U.S. regional market curves. While R7 is the most favorable

region based on WTP (Figure 4.2), R9 is the most favorable region when environmental externalities

are also considered. Table 4.4 compares the minimum subsidies needed to meet the 12 million

vehicle target when sub-markets are ordered by minimum social cost and compares them with

subsidies required when they are distributed based on WTP alone. As shown in Table 4.4, subsidies

distributed based on the MSC model are higher than subsidies distributed based on WTP, however,

the MSC-based subsidies sharply lower the social cost.

Table 4.4 shows that in the case with reference WTP and no pre-diffusion units, targeting the
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Table 4.3. Total and net PM2.5, ozone, and CO2 for each precursor species, sector, and region and
net environmental externalities (EES) for each region in $ vehicle−1. The negative sign indicates
EVs would cause greater damage than GVs. The net value for each species is calculated from the
total road sector benefits less total electric sector damages. Net EES is sum of net values for all
species.

Species R1 R2 R3 R4 R5 R6 R7 R8 R9

PM2.5

Environmental Benefits from the Road sector
NOx 1569 1726 1188 935 1205 771 789 345 1099
Primary PM2.5

a 930 1698 1003 465 805 563 587 470 1385
Total Road PM2.5 2499 3424 2191 1400 2010 1334 1376 815 2484
Environmental Damages from the Electric sector
NH3 157 269 105 42 87 96 63 18 46
NOx 144 621 1150 1312 805 824 567 329 62
Primary PM2.5 71 417 729 333 500 516 279 157 46
SO2 140 2209 2731 1472 1981 3945 1210 974 33
Total Electric PM2.5 510 3516 4714 3158 3373 5382 2119 1478 187

Net PM2.5 Externalities 1988 -93 -2523 -1758 -1363 -4048 -743 -663 2297

O3

Environmental Benefits from the Road sector
NOx 110 259 300 303 594 621 394 364 490
Environmental Damages from the Electric sector
NOx 13 198 454 456 543 653 253 317 20

Net O3 Externalities 97 61 -154 -153 51 -32 141 47 470

CO2

Environmental Benefits from the Road sector
CO2 1204 1269 1274 1327 1479 1615 1646 1422 1186
Environmental Damages from the Electric sector
CO2 235 273 435 479 448 523 545 497 199

Net CO2 Externalities 969 996 839 848 1031 1092 1102 925 987

Net Environmental Externalities (EES)

Net EES 3053 964 -1838 -1063 -281 -2988 499 309 3754
a Primary PM2.5 includes black carbon (BC) and organic carbon (OC).

regions based on the MSC model increases the subsidies by 4% and 3%, respectively, for optimistic

and pessimistic learning curves. However, the corresponding social costs are decreased by 68% and

52%, respectively. With 4.2 million pre-diffusion units, the subsidies estimated with optimistic and

pessimistic learning curves are increased by 18% and 12%, respectively, while the respective social

costs are decreased by 137% and 93%. In the case with 4.2 million pre-diffusion units, reference

WTP, and the optimistic learning curve, the external benefits exceed the subsidies.
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Figure 4.3. BEV learning curves (corresponding to 6% and 9% progress ratios), and reference
WTP market curves with and without environmental externalities from driving EVs in the U.S.
market. Sub-markets are ordered based on MSC.

The environmental externalities from deploying BEV200s in each region are sensitive to

electricity mix and the type of fuel used for electricity generation. We considered a cleaner electricity

mix adapted from MARKAL modeling for the year 2030 with implementation of the Clean Power

Plan provisions in the EPA US9R database (Table 4.1 and Section 4.6.5). As shown in Table

4.5, with less generation from coal and more generation from renewables and natural gas, the

environmental benefits of switching to EVs are increased in all regions compared to those estimated

in our base calculations (Table 4.3). The improvement ranges from 184 $ vehicle−1 in R9 to 2315 $

vehicle−1 in R3. The increased benefits are mainly from removing exposure to PM2.5 formed from

SO2 emissions. Regions R3 and R5 show positive environmental externalities from EVs with the

new electricity mix as opposed to the base mix. With the cleaner electricity mix used to estimate

externalities, the order in which subsidies would optimally be applied shifts to start with R7. As
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Table 4.4. Effect of WTP versus minimum social cost ordering of regional markets on subsidies to
achieve a 12 million BEV production level, air quality and climate externalities, and overall social
costs. Results are shown for reference market curves and pessimistic or optimistic learning curves.
All costs are in billion 2015 USD.

With no pre-diffusion units With 4.2 million pre-diffusion units
Market curve/ Reference Reference Reference Reference
Learning curve Optimistic Pessimistic Optimistic Pessimistic

Subsidies for vehicle purchasea 45.9 59.6 22.3 32.3
(based on WTP ordering)
Environmental Externalities 0.94 0.94 0.90 0.90
(based on WTP ordering)
Social Cost 45.0 58.7 21.4 31.4
(based on WTP ordering)

Subsidies for vehicle purchaseb 47.8 61.5 26.3 36.3
(based on MSC ordering)
Environmental Externalities 33.3 33.3 34.2 34.2
(based on MSC ordering)
Social Cost 14.5 28.2 -7.90 2.10
(based on MSC ordering)
a Subsidies are applied in R7, R8, R5, R4, R6, and R9 for the case with no pre-diffusion units and in R7, R8, and

R5 for the case with 4.2 million pre-diffusion units.
b Subsidies are applied in R9, R7, R1, R8, and R5 for the case with no pre-diffusion units and in R9, R7, R1, R8 for

the case with 4.2 million pre-diffusion units.

shown in Table 4.6, this case presents lower subsidies for vehicle purchase and lower social costs

compared to the cases with the current electricity mix. Except in the case with the pessimistic

learning curve and reference market curve, the social cost is negative, meaning external benefits of

EVs outweigh the subsidies.

Table 4.5. Net PM2.5, ozone, CO2, and environmental externalities (EES) in $ vehicle−1 for the
electricity mix sensitivity case in each region. Negative sign indicates damages.

Species R1 R2 R3 R4 R5 R6 R7 R8 R9

PM2.5 2286 534 -462 -1033 -4 -2404 642 -216 2395
O3 105 90 1 -83 271 163 304 140 481
CO2 1064 1049 939 933 1140 1192 1277 1045 1062

EES 3456 1673 478 -184 1407 -1049 2222 969 3938
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Table 4.6. Effect of cleaner electricity production on subsidies, air and climate externalities, and
overall social costs required for a 12 million BEV production level. All costs are in billion 2015
USD.

With no pre-diffusion units With 4.2 million pre-diffusion units
Market curve/ Reference Reference Reference Reference
Learning curve Optimistic Pessimistic Optimistic Pessimistic

Subsidies for vehicle purchasea 19.9 33.6 3.95 13.8
Environmental Externalities 28.0 28.0 21.3 21.3
Social Cost -8.10 5.60 -17.35 -7.50
a Subsidies are applied in R7, R9, R1, R5, and R8 for the case with no pre-diffusion units and in R7, R9, R1, and

R5 for the case with 4.2 million pre-diffusion units.

4.4 DISCUSSION

This study estimates how WTP and air quality and climate benefits of EVs differ across U.S.

regions and how these differences could be exploited to make EV subsidies more efficient. In order

to focus on these influences, the study makes the assumption that vehicle purchase choices are based

on cost of vehicle ownership over the lifetime of the vehicle. Other factors that influence consumer

purchases, including make and model preferences and infrastructure limitations, are neglected for

simplicity.

The choice of external damage estimates for air pollution emissions is an important source of

uncertainty in our study. As detailed in the methods section, we estimate the number of premature

deaths or marginal damages of PM2.5 and ozone precursors for each sector and region (Tables 4.18

and 4.26) using grid cell marginal damages from Dedoussi and Barrett (2014) and Pappin et al.

(2015), respectively. These specific studies were selected over other studies in the literature (e.g.,

Fann et al. (2009); Heo et al. (2016); Muller and Mendelsohn (2007); NRC (2010)) because their

results could be readily aggregated to match the U.S. regions and sectors required in our study.

While results cannot be directly compared at the regional level, it is instructive to compare

our external damage estimates with nationally averaged values from other references. Our estimates

of marginal damages due to exposure to PM2.5 from electric sector SO2 emissions range from $34491
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to $48830 (2015USD) per metric ton, corresponding to R8 and R3. These values are in the range of

previously published SO2 damage estimates summarized by Brown et al. (2013): from $1856 ton−1

for an average of all resources (Muller and Mendelsohn, 2007) to $98960 ton−1 for average power

plants (Fann et al., 2009). Our estimates of marginal damages due to PM2.5 from electric sector

NOx range from $9142 to $42268 (2015USD) per metric ton, for R8 and R2 (Middle Atlantic),

respectively. In comparison, Brown et al. (2013) report prior estimates for NOx damages ranging

from $458 ton−1 for an average of all resources (Muller and Mendelsohn, 2007) to $18555 ton−1 for

average power plants (Fann et al., 2009). Factors driving the differences in damage estimates include

the value and treatment of VSL, the emission sources or sectors considered, baseline emissions (year

and reference), urban or rural population exposure, and the concentration-response function used.

Uncertainties in the SCC estimates include those associated with quantifying the physi-

cal effects of GHG emissions and those associated with future changes in human behavior and

well-being such as population, economic growth, and GHG emissions (IWG, 2016). Since 2009,

the U.S. Government Interagency Working Group (IWG) has tried to harmonize key modeling

assumptions (including socio-economic-emission scenarios, discount rate, and climate sensitivity

probability distribution) used in the integrated assessment models (IAMs) by assuming five socio-

economic-emission scenarios and three discount rates and using three well-known IAMs (IWG,

2016; Marten and Newbold, 2012). Accordingly, their estimates of SCC for 2015 are 11, 36, 56,

and 105 2007USD metric ton−1 of CO2, corresponding to 5%, 3%, 2.5% discount rates, and 95th

percentile with 3% discount rate, respectively (IWG, 2016). This study used the value correspond-

ing to a 3% discount rate, inflated to 2015USD. While IWG was able to consider these sources of

uncertainty quantitatively, uncertainties that have not been fully quantified in the SCC estimates

include quantification of catastrophic damages, treatment of technology change and adoption, and

modeling of inter-regional and inter-sectoral linkages (IWG, 2016). We found that replacing GVs

with BEVs reduces CO2 emissions in all U.S. regions, so using a higher value of SCC would favor

BEVs in the externalities comparison.

A further limitation of our study is that it only covers a subset of health and welfare exter-
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nalities associated with vehicles. While mortality effects dominate air pollution damage estimates,

other endpoints could also present tradeoffs between GV and BEV. Effects neglected in our study

include morbidity effects for PM2.5 and ozone, and mortality from short-term exposure to PM2.5

and from long-term exposure to ozone. The contribution of VOC emissions to ozone-related dam-

ages is also neglected. Based on current inventories, our analysis assumes that the contribution of

NH3 emissions from GVs to PM2.5 formation is negligible. However, recent studies question the

NH3 emissions inventories for the road sector. Sun et al. (2017) measured NH3:CO2 emission ratios

and concluded that the current emission inventories underestimate NH3 emissions from the road

sector; our estimated benefits of switching to EVs would be biased low if a significant amount of

these under-reported emissions are associated with LDVs. Our study also overlooks environmental

or welfare damages from PM2.5 and ozone, including damage to crops, building materials, and

climate, as well as water consumption and land use tradeoffs from electricity generation and oil and

gas production. We also focus on direct emissions from GV or emissions from electricity generation

for EV, neglecting other stages of the well-to-wheels and vehicle life cycles (Nealer et al., 2015;

NRC, 2010; Tamayao et al., 2015; Yuksel et al., 2016). A more comprehensive suite of externalities

could be considered in future work that builds on the framework presented here.

Despite differences in the models used to estimate them, the general trend of our estimates of

emissions-related environmental externalities from replacing GVs with BEV200 is similar to that

found by Holland et al. (2016), who estimated state-level external costs of driving GV versus BEV

accounting for damages associated with CO2, SO2, NOx, PM2.5, and VOC emissions. They found

net benefits from EV adoption in California and Washington (R9), Utah, Colorado, and Arizona

(R8), and Texas (R7) and found net damages in Georgia, Florida, North Carolina, and Virginia

(R5), and Illinois and Ohio (R3).

4.5 CONCLUSIONS AND POLICY IMPLICATIONS

In this study, we utilize the cascading diffusion model to investigate how regionally hetero-

geneous subsidies could efficiently promote the diffusion of BEV200s internationally and across the
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U.S. For the U.S. analysis, we compare the minimum subsidies distributed based on WTP and

BEV200 learning curves, with those accounting for air quality and climate externalities. Although

the numerical results presented are specific to the assumed market sizes and target production

level, the framework can be applied to any set of markets with different sizes and target levels of

production.

Our analysis shows that WTP is mainly affected by gasoline prices, the annual miles driven

per vehicle, and the vehicle size distribution in a particular sub-market. Our U.S. analysis excluded

gasoline taxes from the price of gasoline, because tax policies may change in the future as more EVs

enter the fleet. Road-use taxes or other taxes that cover all types of vehicle technologies may be

required to avoid revenue losses (Aasness and Odeck, 2015; U.S. Congress, 2014). The international

analysis shows that if current gasoline taxes are omitted, markets with higher base fuel prices, such

as the U.S., are more favorable for advancing BEV diffusion.

Our results highlight the importance of the international market on the level of subsidies

required within the U.S. to achieve a specified EV penetration level. For example, with the se-

quential market curve in the U.S., advance international sales of about 4 million vehicles cuts the

subsidy required to reach a 12 million vehicle target in the U.S. by about half. The international

analysis presented in Section 4.6.6 also demonstrates how influential larger markets are for bringing

down the cost of BEV technology. Thus, in addition to the per vehicle subsidy amount, the overall

budget for cumulative subsidies, which accordingly defines the target level of production, is also

important.

Our estimates indicate that the air quality and climate externalities from deploying BEV200s

vary significantly across U.S. regions, depending on the fuel source for electricity generation and

the level of population exposure. Switching to BEV200s generates net benefits in regions with low

reliance on coal for electricity generation and with high population exposure to GV emissions (R1,

R2, R7, R8, and R9). However, BEVs create net damages in regions with high reliance on coal

and relatively low population exposure to GV emissions (R3, R4, R5, and R6). Our results convey

that incorporating environmental externalities into the subsidy design might change the choice of
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the more favorable region for applying targeted subsidies and starting the BEV200 diffusion with

respect to the ordering based only on WTP. In our analysis, for example, R7 shows more favorable

conditions for consumer WTP, but R9 gains the highest environmental benefits from deploying

EVs.

Our sensitivity analyses show that one-time battery replacement over the years of vehicle

ownership generates negative WTP in all U.S. regions. Previous studies have discussed the effect

of customers’ concerns about the battery life and replacement cost on EV adoption (Egbue and

Long, 2012; Eppstein et al., 2011; Krupa et al., 2014; Tran et al., 2012). Overall, they found that

in addition to the perceived benefits of EVs, the battery cost is among the most important factors

influencing EV purchases.

Our sensitivity analysis with respect to peak charging shows considerable reduction in WTP

in all regions, assuming 25% peak-charging at tripled electricity prices compared to the off-peak.

There is a large variation in electricity prices offered by the utilities across the country, which

results in different levels of reduction in WTP by peak-charging. Policies informing customers to

increase their benefits by avoiding unnecessary peak charging can help reduce the extra pressure on

the grid. However, Tamayao et al. (2015) suggest that with the 2009 U.S. generation mix, delayed

charging at midnight could lead to higher emissions than convenience charging, which starts upon

arrival home after last trip of day and occurs mostly during the peak hours, mainly due to the

increased electricity generation from coal at night. This issue warrants further investigation with

updated information on the electricity generation mix.

Our sensitivity analysis with respect to the electricity mix shows that policies boosting the

move toward more generation from renewables and natural gas switched the externalities associated

with EVs from negative to positive in regions R3 and R5. Switching to the cleaner electricity mix

might also change the order of regions in which the subsidies might be applied. In our case, with

the cleaner electricity mix the most favorable region for subsidies switches from R9 to R7.

Our analysis finds that with a 12 million vehicle target, external benefits of EVs exceed

subsidy costs in cases with an optimistic learning curve and pre-diffusion units sold elsewhere, or
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with a cleaner electricity mix. The analysis also shows that while required subsidies distributed

across U.S. regions based on the MSC approach would be modestly higher than those required if

distributed based purely on WTP, the MSC approach would deliver substantially higher external

benefits.

4.6 SUPPORTING INFORMATION

4.6.1 Willingness-to-pay Calculations

4.6.1.1 Annual Fuel Cost Calculation for Gasoline Vehicles

The annual fuel costs ($) for gasoline vehicles (GVs) in each sub-market “S” are calculated

from annual miles per vehicle in sub-market “S” divided by the average mpg in that sub-market

and multiplied by unit gasoline price ($ gallon−1) in that sub-market.

For the international market, different countries serve as the sub-markets. The countries

we have included in our analysis are Austria, Canada, China, Denmark, France, Germany, India,

Ireland, Japan, Netherlands, Norway, Portugal, South Korea, Spain, United Kingdom, and the

U.S. (We use ISO ALPHA-3 codes for naming the countries in our results). We have selected these

countries because they either had considerable EV stocks by 2015 or they have set EV stock targets

to 2020 (Cazzola et al., 2016). Table 4.7 shows the ISO ALPHA-3 codes (ISO, 2017), average annual

miles per vehicle (adapted from various references), average fleet fuel economy (An et al., 2011),

and reference, high, and low gasoline prices (World Bank, 2017) for each country. The average

annual miles per vehicle range from 3208 miles for JPN to 12304 miles for the U.S. The first set of

market curves considered in our analysis is based on prices that include gasoline taxes. Among the

reference gasoline prices (including taxes), the highest price belongs to NOR (9.25 $ gallon−1) and

the lowest belongs to the U.S. (3.10 $ gallon−1). The lowest of the low gasoline prices happens in

CHN (1.53 $ gallon−1) and the highest of high gasoline prices happens in NOR (10.38 $ gallon−1).

The low gasoline prices are 18%–68% lower (corresponding to JPN and CHN) than the reference

prices and high gasoline prices are 3%–46% higher (corresponding to DNK and JPN).
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Table 4.7. ALPHA-3 country code, average annual miles per vehicle, average fleet fuel economy,
gasoline prices (reference, low, and high), and gasoline taxes for all countries.

Country ISO Average Fuel Gasoline pricese Gasoline
ALPHA-3 annual economyc,d ($ gallon−1) taxesg

codea miles per (mpg) Reference Lowf Highf

vehicleb

AustriaI AUT 9658 43.1 6.52 4.27 7.43 2.62
Canada CAN 7288 28.7 4.77 2.24 5.42 1.33
China CHN 8777 34.0 4.77 1.53 5.62 0.62
DenmarkII DNK 8749 43.1 8.19 5.33 8.44 3.14
France FRA 8480 43.1 7.29 5.22 8.35 3.26
Germany DEU 7715 43.1 7.33 4.80 8.04 3.50
IndiaIII IND 5479 43.1 4.48 2.75 5.13 0.72
Ireland IRL 10497 43.1 7.82 3.80 8.29 3.14
Japan JPN 3208 41.0 5.62 4.62 8.20 2.30
Netherlands NLD 8078 43.1 8.76 5.44 9.56 4.03
Norway NOR 7697 43.1 9.25 6.25 10.38 3.91
Portugal PRT 3766 43.1 7.70 4.06 8.82 3.14
South KoreaI,IV KOR 12089 41.0 6.32 4.53 7.48 2.86
SpainI ESP 5956 43.1 6.64 3.85 7.18 2.50
United Kingdom GBR 9285 43.1 7.82 5.28 8.90 3.67
U.S. USA 12304 28.7 3.10 1.75 3.98 0.56
a ISO (2017)
b Data for Canada, China, France, Germany, Japan, United Kingdom, and the U.S. are from FHWA (2008).

Data for Austria and Spain are estimated from UNECE (2015).
Data for Denmark are estimated from Nielsen et al. (2012).
Data for India are from Schievelbein et al. (2017).
Data for Ireland are from SEI (2005).
Data for Netherlands are from CBS (2015).
Data for Norway are from Statistics Norway (2017).
Data for Portugal are from Azevedo and Cardoso (2009).
Data for South Korea are estimated from Statista (2017c) and from Iaych et al. (2009).

c Data from An et al. (2011).
d All fuel economies are adjusted values.
e Data from World Bank (2017).
f Low and high gasoline prices for each country correspond to the lowest and highest gasoline prices, since 1995, deflated

to 2015 USD.
g Data for OECD countries are from OECD (2014).

Data for India are from IEA (2013).
Data for China is from Lin and Zeng (2013).

I We estimated average annual miles per vehicle for these countries from total annual vehicle miles traveled and total
annual registered vehicles for passenger cars.

II For Denmark, we estimated the average annual miles per vehicle by taking the average of miles traveled by different
size classes, categorized by the engine capacity, in a year.

III We assumed the average fuel economy in India is similar to that of the European Union countries.
IV We assumed the average fuel economy in South Korea is similar to that of Japan.
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For the second set of international market curves, we calculate the annual fuel costs for GVs

excluding the gasoline taxes. For most of the countries in our study, the gasoline taxes, which

are shown in Table 4.7, are adapted from OECD (2014). We have studied both cases due to the

possibility that countries will change their fuel tax policies after deploying more EVs, in order to

avoid partial deficits in their revenue for road infrastructure and maintenance (Aasness and Odeck,

2015; U.S. Congress, 2014). That is, more equitable tax policies covering all technologies may apply.

However, due to the diversity and complexity of these policies, their purposes and their relations

with road funding inside and across the countries, it is hard to predict what changes would be

made and when they would happen. Therefore, we also include calculations for the international

market assuming no change in the current status of policies that currently tax gasoline and hence

favor EVs.

R1 New England

R2 Middle Atlantic

R3 East North 
Central

R4 West North 
Central

R5 South Atlantic

R6 East South 
Central

R7 West South 
Central

R8 Mountain

R9 Pacific

Figure 4.4. Map of U.S. Census Divisions (EIA, 2017b) and the U.S. EPA MARKAL region
associated with each Division (Lenox et al., 2013).

For the U.S. market, we define the regions (as sub-markets) as defined in the Environmental

Protection Agency (EPA) U.S. 9-region (US9R) database, which in turn are based on the U.S.

Census Divisions (Lenox et al., 2013). Figure 4.4 depicts the nine regions and the states located in

each region. To estimate the average annual gasoline expenses for each region, we first calculate the
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average fleet fuel economy for each region (Table 4.8) from the fuel economies for each vehicle size

class in 2015 (Table 4.9), adapted from NRC (2013). The NRC report presents the fuel economy

projections in specific years for average cars and trucks without distinction among vehicle size

classes. The results have been presented for two scenarios, including optimistic and midrange. Our

previous work (Keshavarzmohammadian et al., 2017) explained how we have extrapolated the NRC

efficiency projections for average cars and trucks in 2030, and 2050, to seven size classes and years

in between these years, with five year increments. We have repeated similar calculations here with

the only difference being in the NRC (2013) scenario used. Here, we apply our previous method

on the NRC’s midrange scenario with the low-volume production assumptions. In contrast, our

previous calculation was based on their optimistic scenario with mass volume production. This is

because our current study is focused on the transition period for deploying BEV200s. The average

fuel economy in each region is the sum of point-wise multiplication of region-specific vehicle size

distribution factors by the corresponding fuel economy for each size. The region-specific vehicle

size shares (Table 4.10), counting for the vehicle size distribution in each region, are fractions less

than one and are summed to one for each region. The regional vehicle size shares are from the

EPA US9R database (2016, V1.0) (Lenox et al., 2013). EPA presents the shares for all regions in

2010 and 2020. We estimate the shares in 2015 using interpolation. In all regions, the full-size

class has the biggest share, followed by the compact and small SUV classes. Table 4.8 also shows

the annual miles per vehicle for each region, which are calculated by taking a weighted average of

annual miles per vehicle for states located in a region, using the number of registered vehicles as

the weight factor for each region. The values for annual miles per vehicle and numbers of registered

vehicles in each state are taken from the Federal Highway Administration website (FHWA, 2017).

The annual miles per vehicle range from 10893 miles for R1 (New England) to 14832 miles for

R7 (West South Central). Gasoline prices in each region are estimated by taking the average over

gasoline prices in the states located in that region. Reference, high, and low gasoline prices for

each state (Table 4.8) are taken from the Energy Information Administration (EIA, 2016a) and

are converted to the gasoline prices excluding taxes using federal and state gasoline tax data from
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EIA (2016b). Among the reference gasoline prices, the highest price belongs to R9 (Pacific) (2.56

$ gallon−1) and the lowest belongs to R3 (East North Central) (2.05 $ gallon−1). In the bounding

cases, the lowest gasoline price happens in R5 (South Atlantic) (0.73 $ gallon−1) and the highest

price happens in R9 (3.02 $ gallon−1). The low gasoline prices are 18%–29% lower (corresponding

to R9 and R6 (East South Central)) than the reference prices and high gasoline prices are 71%–82%

higher (corresponding to R8 (Mountain) and R5).

Table 4.8. Average annual miles per vehicle, average fleet fuel economy, and gasoline prices
(reference, low, and high) for all U.S. regions.

Region Average annual Fuel Gasoline pricesa,b

miles per economy ($ gallon−1)
vehicle (mpg) Reference Lowc Highc

R1 10893 30.4 2.18 0.52 2.75
R2 11545 30.5 2.09 0.44 2.67
R3 11496 30.3 2.05 0.45 2.62
R4 11908 30.2 2.13 0.51 2.64
R5 13548 30.7 2.12 0.38 2.66
R6 14724 30.5 2.13 0.55 2.74
R7 14832 30.3 2.12 0.52 2.72
R8 12755 30.2 2.20 0.64 2.76
R9 10981 30.9 2.56 0.73 3.02
a Data is from the EIA (2016a).
b The numbers show gasoline prices excluding taxes. EIA website presents state

gasoline prices with taxes. We excluded Federal and states taxes, using the tax
information from EIA (2016b).

c Low and high gasoline prices for each region correspond to the lowest and highest
gasoline prices, since 1984, deflated to 2015 USD.

Table 4.9. Average fuel economy for different GV size classes in 2015, adapted from NRC (2013)
midrange scenario with low-volume production assumption.

Vehicle Compact Full-size Large Minivan Mini- Pickup Small
size class SUV compact SUV

Fuel 40 32 22 27 27 21 32
economy
(mpg)a

a All Fuel economies are adjusted values.
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Table 4.10. Regional vehicle size class shares in 2015, adapted from EPA US9R database (2016,
V1.0).

Size class R1 R2 R3 R4 R5 R6 R7 R8 R9

Compact 0.22 0.22 0.21 0.21 0.23 0.22 0.21 0.21 0.24
Full-size 0.27 0.27 0.26 0.26 0.28 0.28 0.26 0.25 0.29
Large SUV 0.13 0.13 0.13 0.13 0.12 0.12 0.13 0.13 0.12
Minivan 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
Mini-compact 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
Pickup 0.13 0.13 0.14 0.14 0.13 0.13 0.14 0.14 0.12
Small SUV 0.19 0.18 0.19 0.19 0.17 0.18 0.19 0.19 0.16

4.6.1.2 Annual Fuel Cost Calculation for BEV200s

Annual fuel costs ($) for electricity for BEV200s in each sub-market “S” are calculated from

annual miles per vehicle in sub-market “S” multiplied by average efficiency of BEV200s in that

sub-market (kWh mi−1) multiplied by unit electricity price in that sub-market ($ kWh−1).

To estimate annual electricity expenses for both international and the U.S. regional markets,

we follow a similar approach as explained for calculating annual gasoline expenses for the U.S.

regional markets. That is, we estimate the average BEV200 efficiencies for each country (Table

4.11) and region (Table 4.12), from the efficiencies for each BEV200 size class (Table 4.13), and

the size distribution for each country (Table 4.14) or region (Table 4.10). We adapted the efficien-

cies for each size of BEV200 from the NRC (2013) midrange scenario with low-volume production

assumptions in 2015, using the same approach introduced in our previous work (Keshavarzmoham-

madian et al., 2017). The same average annual miles per vehicle as those used in calculating annual

gasoline expenses are used here for each country and region (Tables 4.7 and 4.8). The electricity

prices (reference, high, and low) for each country and region are shown in Tables 4.11, and 4.12,

respectively. Electricity prices in each country are from various references. Electricity prices in

each U.S. region are estimated by taking the average over electricity prices in the states located in

that region. Reference, high, and low electricity prices for each state are adapted from EIA (2016c).

In the international market, among the reference electricity prices, the highest price belongs
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to DNK (33.7 ¢ kWh−1) and the lowest belong to CHN and IND (8.8 ¢ kWh−1). In the bounding

cases, the lowest electricity price happens in KOR (8.7 ¢ kWh−1) and the highest price happens

in DEU (42.5 ¢ kWh−1). In the U.S. regional market, among the reference electricity prices, the

highest price belongs to R9 (16.4 ¢ kWh−1) and the lowest belongs to R7 (8.3 ¢ kWh−1). The

lowest of the low electricity prices happens in R6 (7.3 ¢ kWh−1) and the highest of high prices

happens in R9 (17.9 ¢ kWh−1). The low electricity prices are 8%–34% lower than the reference

prices (corresponding to R6 and R7) and high electricity prices are 7%–34% higher (corresponding

to R7 and R9).

Table 4.11. Average BEV200 efficiencies, and electricity prices (reference, low, and high) for all
countries.

Country Average Electricity pricesb

efficiencya ¢ kWh−1

(kWh/mi) Reference Lowc Highc

Austria 0.17 22.2 22.2 30.1
Canada 0.19 10.7 9.4 11.6
China 0.17 9.0 8.8 9.7
Denmark 0.17 33.7 33.7 45.2
France 0.17 18.1 17.9 22.3
Germany 0.17 32.7 32.7 42.5
India 0.20 8.8 8.8 8.8
Ireland 0.17 25.2 25.2 32.9
Japan 0.18 22.5 21.6 31.5
Netherlands 0.17 20.7 20.7 33.2
Norway 0.17 9.5 9.5 19.6
Portugal 0.17 25.3 24.0 31.4
South Korea 0.19 10.3 8.7 11.9
Spain 0.17 32.5 21.8 32.5
United Kingdom 0.17 23.5 20.5 27.6
U.S. 0.19 12.7 12.4 13.5
World Average 0.18
a All efficiencies are adjusted values.
b Data for OECD countries are adapted from IEA energy prices in the

OECD (2017).
Data for China is adapted from Electricity Local (2017), OVO Energy
(2017), and Climate Scope (2017).
Data for India is adapted from OVO Energy (2017).

c Low and high electricity prices for each country correspond to the low-
est and highest electricity prices, since 2007, deflated to 2015 USD.
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Table 4.12. Average BEV200 efficiencies, and electricity prices (reference, low, and high) for all
U.S. regions.

Region Average Electricity pricesb

efficiencya ¢ kWh−1

(kWh/mi) Reference Lowc Hightc

R1 105.9 15.0 17.9 13.0
R2 106.3 13.5 16.1 12.1
R3 105.7 10.0 11.3 8.2
R4 105.3 9.0 10.4 7.7
R5 106.8 10.2 12.1 8.4
R6 106.4 9.1 9.9 7.3
R7 105.6 8.3 11.1 7.7
R8 105.2 9.0 10.4 7.4
R9 107.6 16.4 17.9 10.8
a All efficiencies are adjusted values.
b Electricity prices are adapted from the EIA (2016c).
c Low and high electricity prices for each region correspond to

the lowest and highest electricity prices, since 1990, deflated
to 2015 USD.

Table 4.13. Average efficiencies for different BEV200 size classes in 2015, adapted from NRC
(2013) midrange scenario with low-volume production assumption.

Vehicle Compact Full-size Large Minivan Mini- Pickup Small
size class SUV compact SUV

Efficiency 0.14 0.17 0.26 0.20 0.22 0.25 0.18
(kWh/mi)a

a All efficiencies are adjusted values.
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Table 4.14. Vehicle size class shares for each country, adapted from various references.

Mini- Compact Full-size SUV (Small Minivan Pickup
compact and Large)

Austriaa 9.9 51.2 12.8 20.7 3.9 1.5
Canadab 1.4 24.2 29.8 12.8 16.6 15.2
Chinac 5.9 46.3 13.8 9.9 22.7 1.5
Denmarka 9.9 51.2 12.8 20.7 3.9 1.5
Francea 9.9 51.2 12.8 20.7 3.9 1.5
Germanya 9.9 51.2 12.8 20.7 3.9 1.5
Indiad 46.0 23.0 2.0 9.0 16.0 4.0
Irelanda 9.9 51.2 12.8 20.7 3.9 1.5
Japane 29.7 33.7 28.7 6.9 1.0 0.0
Netherlandsa 9.9 51.2 12.8 20.7 3.9 1.5
Norwaya 9.9 51.2 12.8 20.7 3.9 1.5
Portugala 9.9 51.2 12.8 20.7 3.9 1.5
South Koreaf 17.3 22.3 34.2 21.8 2.6 1.8
Spaina 9.9 51.2 12.8 20.7 3.9 1.5
United 9.9 51.2 12.8 20.7 3.9 1.5
Kingdoma

United 1.3 21.9 27.0 31.1 5.2 13.2
States of
Americag

(the)
a The vehicle size distribution for European Union countries is adapted from ICCT (2017).
b The vehicle size distribution for Canada is adapted from Natural Resources Canada (2009).
c The vehicle size distribution for China is adapted from ICCT (2012).
d The vehicle size distribution for India is adapted from Sehgal (2011).
e The Vehicle size distribution for Japan is adapted from Statista (2017b).
f The Vehicle size distribution for South Korea is adapted from Kama (2013).
g The vehicle size distribution for the U.S. is adapted from EPA US9R database (2016, V1.0).

4.6.2 Market Size

4.6.2.1 International Market Size

For the international analysis, we define the market size in each country based on their targets

for EV stocks, presented in the Global EV Outlook (Cazzola et al., 2016) for most of the countries

in our study. We assume the same targets as presented in the Global EV Outlook for 2015–2020

(Table 4.15). The smallest and largest market sizes belong to NOR with 29 thousand units and

CHN with 4.3 million units, respectively.
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Table 4.15. Target market size of each country (2015–2020), adapted from various references.

Country Name Market Sizea (Thousand units)

Austria 195
Canadab 582
China 4288
Denmark 192
France 1946
Germany 951
India 294
Ireland 98
Japan 874
Netherlands 213
Norwayc 29
Portugal 198
South Korea 196
Spain 194
United Kingdom 1550
United States of America (the) 1099
Total 12897
a The market size for all countries expect Canada and Norway are adapted from

Cazzola et al. (2016).
b The market size for Canada is adapted from WWF (2012).
c The market size for Norway is adapted from CNBC (2016).

4.6.2.2 U.S. Regional Market Size

Table 4.16. Market size in each U.S. region, which is assumed as 25% of the 5-year (2015–2020)
new car sales projections, adapted from AEO, 2017 (EIA, 2017a).

Region Market Size (Thousand units)

R1 900
R2 2951
R3 3276
R4 1290
R5 4021
R6 1014
R7 2902
R8 1404
R9 2990
Total 20748
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4.6.3 Generating BEV200 Learning Curves from Battery Learning Curves

For this study, battery learning curves estimated by Nykvist and Nilsson (2015) are converted

to learning curves for BEV200. To do this, we first convert the units in the battery curve from

$ kWh−1 versus cumulative kWh production to $ vehicle−1 versus cumulative vehicle production.

We apply the world-average energy requirements for a BEV200 (35.7 kWh per vehicle) as the unit

conversion factor. The average energy requirement for an average BEV200 is calculated from the

world average efficiency of an average BEV200 (Table 4.11). In the next step, we add the average

incremental costs (excluding the battery cost) of BEV200 over an equivalent GV to the battery

learning curve. To this end, we calculate the world average incremental cost (excluding the battery

Table 4.17. Average BEV200 incremental cost (excluding the battery costs) over an average
GV for each size class, adapted from NRC (2013) midrange scenario with low-volume production,
following the approach from Keshavarzmohammadian et al. (2017).

Incremental cost excluding battery ($)

Production level (Million Units)

Size class 0.15 13.0 26.0 39.0 51.7 64.5 77.5 90.3

Compact 2707 1181 759 373 207 168 245 393
Full-size 4220 2418 1917 1506 1322 1300 1422 1636
Large SUV 7538 4657 3706 2909 2369 2074 1993 2032
Minivan 5027 2745 2033 1432 1067 899 907 1018
Mini-compact 7216 4742 3821 3009 2603 2377 2311 2340
Pickup 7443 4773 4026 3465 3117 3020 3146 3404
Small SUV 3599 1582 964 410 60 -118 -145 -85

cost) of BEV200 over an equivalent GV from the average incremental costs (excluding the battery

cost) for each country, which in turn is calculated from the incremental cost of BEV200 over an

equivalent GV for each vehicle size class and production level (Table 4.17), and vehicle size class

shares in each country (Table 4.14). The incremental cost (excluding the battery cost) of each size

class corresponding to each production level is adapted from NRC (2013) midrange scenario with

low-volume production. We apply the same approach as our previous work (Keshavarzmohamma-

dian et al., 2017) to estimate the incremental cost of each size class. We assume that the rest of

the incremental costs other than the battery costs follow the learning process. That is, we fit the
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power law to estimate the incremental costs for the production levels in between.

4.6.4 Annual Environmental Externalities (AEES)

4.6.4.1 Annual Environmental Externalities from PM2.5

To estimate the annual environmental externalities from PM2.5 for each region, we calculate

the annual number of avoided or caused deaths per annual avoided or emitted emissions (kg) from

the road and electric sectors, respectively, for each region by aggregating grid cell-level sensitivities,

adapted from Dedoussi and Barrett (2014), in each region for each sector (Table 4.18).

Table 4.18. Annual premature deaths per annual emissions (kg), due to the exposure to PM2.5

in each U.S. region per species and sector, adapted from Dedoussi and Barrett (2014).

Precursor R1 R2 R3 R4 R5 R6 R7 R8 R9

NH3 1.01 × 2.08 × 7.90 × 3.31 × 4.81 × 4.94 × 2.43 × 1.04 × 3.36 ×
Electric 10−4 10−4 10−5 10−5 10−5 10−5 10−5 10−5 10−5

NOx 4.54 × 4.77 × 3.49 × 3.57 × 3.10 × 2.46 × 2.49 × 1.03 × 2.75 ×
Electric 10−6 10−6 10−6 10−6 10−6 10−6 10−6 10−6 10−6

NOx 9.19 × 9.67 × 6.55 × 4.91 × 5.85 × 3.40 × 3.35 × 1.69 × 6.76 ×
Road 10−6 10−6 10−6 10−6 10−6 10−6 10−6 10−6 10−6

PM2.5 7.93 × 1.06 × 7.54 × 3.30 × 6.72 × 5.26 × 3.68 × 1.67 × 5.17 ×
Electric 10−5 10−4 10−5 10−5 10−5 10−5 10−5 10−5 10−5

PM2.5 1.86 × 3.23 × 1.89 × 8.41 × 1.32 × 8.41 × 8.55 × 7.91 × 2.84 ×
Road 10−4 10−4 10−4 10−5 10−4 10−5 10−5 10−5 10−4

SO2 4.19 × 5.26 × 5.51 × 4.90 × 4.71 × 5.06 × 4.89 × 3.89 × 4.58 ×
Electric 10−6 10−6 10−6 10−6 10−6 10−6 10−6 10−6 10−6

For the road sector, we convert the annual number of avoided deaths per annual avoided

emissions (kg) in each region to annual number of avoided deaths per mile, using the average

regional emission factors per species (Table 4.19). The average regional emission factors per species

are calculated from the sum of point-wise multiplication of emission factors (Table 4.20) for different

vehicle sizes from the Greenhouse gas, Regulated Emissions, and Energy use in Transportation

Model (GREET1), 2016 model (ANL, 2016) for the model year 2015, by the corresponding vehicle

size distribution factors in each region (Table 4.10). We adjust the three vehicle size classes in

GREET (car, LDT1, LDT2) to seven size classes in our study, which are similar to the size classes
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in the EPA US9R database.

Table 4.19. Average regional emission factors for the road sectors (g mi−1).

Emission R1 R2 R3 R4 R5 R6 R7 R8 R9
species

NOx 0.229 0.226 0.231 0.233 0.222 0.225 0.232 0.234 0.216
PM2.5 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.006

Table 4.20. Emission factors (g mi−1) for different vehicle size classes of GV and BEV, from
GREET model (ANL, 2016). Emission factors are from model year 2015 in GREET.

Technology GREET size EPA US9R NOx PM2.5
a

class (this study) (Exhaust + TBW)
size class

GV Car Mini-compact 0.111 0.009
Car Compact 0.111 0.009
Car Full-size 0.111 0.009
LDT2 Minivan 0.461 0.018
LDT2 Pickup 0.461 0.018
LDT1 Small SUV 0.157 0.014
LDT2 Large SUV 0.461 0.018

BEV Car Mini-compact 0.000 0.005
Car Compact 0.000 0.005
Car Full-size 0.000 0.005
LDT2 Minivan 0.000 0.007
LDT2 Pickup 0.000 0.007
LDT1 Small SUV 0.000 0.007
LDT2 Large SUV 0.000 0.007

a We use the difference between PM2.5 emissions of the GV and the BEV for each size class
in our calculation.

For the electric sector, we convert the annual number of deaths per annual emissions (kg)

in each region to annual number of deaths per kWh in each region, using the estimated average

emission factors (g kWh−1 of output electricity) per each emission species in each region (Table

4.21). These regional average emission factors are estimated by sum of point-wise multiplication

of average regional environmental activity (ENV-ACT) of each type of generation (g kWh−1 of

output electricity) and each species (Table 4.22) by the fraction of generation from that type of

generation in 2015 (Table 4.23), estimated from the EPA US9R database.
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Table 4.21. Average regional emission factors (g kWh−1 of output electricity) for electric sector
in 2015 per species.

Region NH3 NOx PM2.5 SO2

R1 0.011 0.222 0.006 0.235
R2 0.009 0.868 0.026 2.799
R3 0.009 2.189 0.064 3.296
R4 0.008 2.350 0.070 1.921
R5 0.010 1.484 0.042 2.402
R6 0.010 1.754 0.051 4.076
R7 0.013 1.171 0.039 1.272
R8 0.010 1.901 0.056 1.492
R9 0.010 0.160 0.006 0.052

Table 4.22. Average regional environmental activity (ENV-ACT) in g kWh−1 of output electricity
for each type of generation in 2015 per species.

Region NH3 NOx PM2.5 SO2

Generation from Natural gas (NG)

R1 0.020 0.116 0.003 0.001
R2 0.020 0.167 0.009 0.003
R3 0.020 0.260 0.019 0.005
R4 0.020 0.136 0.005 0.002
R5 0.020 0.114 0.002 0.001
R6 0.020 0.159 0.008 0.002
R7 0.020 0.177 0.009 0.002
R8 0.020 0.115 0.003 0.001
R9 0.020 0.154 0.008 0.003

Generation from coal

R1 0.011 3.714 0.107 5.341
R2 0.011 3.714 0.107 12.730
R3 0.011 3.736 0.107 5.711
R4 0.011 3.598 0.107 2.949
R5 0.011 3.720 0.107 6.164
R6 0.011 3.728 0.107 8.686
R7 0.011 3.361 0.107 3.934
R8 0.011 3.644 0.107 2.901
R9 0.011 3.762 0.107 2.160

The average regional ENV-ACT of each generation type and species (Table 4.22) is the sum

of point-wise multiplication of ENV-ACT for different technologies, utilized for each generation

type (for example gas turbine, steam turbine, and combined cycle technologies for natural gas
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Table 4.23. Regional generation mix (%) in 2015, estimated from EPA US9R database (2016,
V1.0).

Region Coal Nuclear Hydropower Renewablesa Natural Gasb

R1 4 31 8 5 51
R2 22 38 7 2 31
R3 58 25 1 3 13
R4 65 14 0 15 5
R5 39 26 3 2 30
R6 46 22 7 0 26
R7 32 11 1 8 48
R8 51 9 10 7 24
R9 2 6 33 12 46
a Renewables include generation from wind, solar, fuel cell, and biomass.
b Natural gas includes other generations than those listed here as well.

generation type), by the share of generation from each technology in each region. We take ENV-

ACT for different technologies from EPA US9R database (Table 4.24). We also estimate the regional

share by technology from EPA US9R database (Table 4.25). EPA US9R presents the ENV-ACT

based on the fuel input. We convert average emission factors for each region per species based on

the fuel input to the electricity output using the average generation efficiency for each generation

type (35% for generation from natural gas and 34% for coal) in 2015, estimated from the EPA

US9R database.

For the road sector, the annual environmental benefits for each region and species per vehicle

($/year/vehicle) is calculated by multiplying annual number of avoided deaths per mile by the

value of a statistical life (VSL), and annual mile per vehicle for that region (Table 4.8). For the

electric sector, we multiply the annual environmental damages by the VSL, and average annual

kWh per vehicle (BEV200) for each region, estimated before in our WTP calculations. Total

annual externalities per vehicle for each region is the difference of total environmental externalities

from the road sector and total damages from the electric sector.
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Table 4.24. Environmental activity (ENV-ACT) of different generation technologies (g kWh−1 of
input fuel) in 2015 per species from EPA US9R database (2016, V1.0).

Generation Type Technologya NH3 NOx PM2.5 SO2

Natural gas CC 0.007 0.032 0.000 0.000
GT 0.007 0.112 0.011 0.004
ST 0.007 0.241 0.011 0.000

Coal BH 0.004 1.246 0.036 4.269
BL 0.004 1.246 0.036 0.529
BM 0.004 1.246 0.036 1.893
LH 0.004 0.724 0.036 3.470
LM 0.004 0.724 0.036 2.405
SL 0.004 1.263 0.036 0.749
SM 0.004 1.263 0.036 1.296

a CC: Combined Cycle; GT: Gas Turbine; ST: Steam Turbine; BH: Bituminous
High sulfur; BL: Bituminous Low sulfur; BM: Bituminous Medium sulfur; LH:
Lignite high sulfur; LM: Lignite medium sulfur; SL: Subbituminous Low sulfur;
SM: Subbituminous Medium sulfur.

Table 4.25. Regional share (%) by technology per generation type, adapted from EPA US9R
database (2016, V1.0).

Technologya R1 R2 R3 R4 R5 R6 R7 R8 R9

Natural Gas

CC 90 71 39 83 93 74 70 89 73
GT 9 26 52 16 5 23 24 11 26
ST 1 3 9 2 2 3 5 0 1

Coal

BH 0 100 27 0 18 61 2 0 0
BL 7 0 12 1 9 4 1 16 11
BM 93 0 20 0 61 6 1 4 0
LH 0 0 0 0 0 0 7 0 0
LM 0 0 0 11 0 0 18 7 0
SL 0 0 40 76 12 28 71 55 89
SM 0 0 1 12 0 0 0 18 0
a CC: Combined Cycle; GT: Gas Turbine; ST: Steam Turbine; BH: Bituminous

High sulfur; BL: Bituminous Low sulfur; BM: Bituminous Medium sulfur;
LH: Lignite high sulfur; LM: Lignite medium sulfur; SL: Subbituminous Low
sulfur; SM: Subbituminous Medium sulfur.

4.6.4.2 Annual Environmental Externalities from Ozone

To estimate the annual environmental externalities from ozone, we follow a similar procedure

to that explained for PM2.5. We adapt the regional marginal benefits (MBs) from NOx emission
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abatement from Pappin et al. (2015) (Table 4.26). We use MBs from the 40% abatement scenario

in their study for the road sector (mobile sources) and we use results for the 0% abatement scenario

for the electric sector (point sources).

Table 4.26. Regional marginal benefits ($ kg−1) from summertime NOx emission abatement, from
mobile sources (40% abatement scenario), and point sources (0% abatement scenario), adapted from
Pappin et al. (2015).

R1 R2 R3 R4 R5 R6 R7 R8 R9

Mobile Source 5.71 12.87 14.68 14.14 25.59 24.30 14.68 15.78 26.72
(40% abatement scenario)
Point Source 4.44 16.83 15.00 12.06 21.99 20.04 11.71 9.79 8.39
(0% abatement scenario)

NOx emission factors for different vehicle size classes are presented in Table 4.20. NOx

environmental activity (ENV-ACT) of different generation technologies (g kWh−1 of input fuel) in

2015 are presented in Table 4.24.

4.6.4.3 Annual Environmental Externalities from CO2 Emissions

Following the same procedure as described for ozone, we take the marginal damages of CO2

emissions from EPA’s (Marten and Newbold, 2012) estimation of the social cost of carbon (SCC)

with 3% discount rate (0.04 $ kg−1 in 2015). CO2 emission factors for different vehicle size classes

Table 4.27. CO2 emission factors (g mi−1) for different vehicle size classes of GV and BEV200
in 2015, adapted from EPA US9R database (2014, V1.1). Estimated in Keshavarzmohammadian
et al. (2017).

Mini-compact Compact Full-size Minivan Pickup Small Large
SUV SUV

CO2 349.9 233.3 288.7 366.6 476.3 315.2 458.4

(Table 4.27) are adapted from the EPA US9R database (2014, V1.1), estimated in our previous

study (Keshavarzmohammadian et al., 2017). CO2 environmental activity (ENV-ACT) of different

generation technologies (g kWh−1 of input fuel) in 2015 (Table 4.28) is from the EPA US9R database
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(2016, V1.0).

Table 4.28. CO2 environmental activity (ENV-ACT) of different generation technologies (g
kWh−1 of input fuel) in 2015 from EPA US9R database (2016, V1.0).

Generation Type Technologya CO2

Natural gas CC 208.204
GT 198.074
ST 182.657

Coal BH 300.061
BL 300.061
BM 300.061
LH 315.209
LM 315.209
SL 308.819
SM 308.819

a CC: Combined Cycle; GT: Gas Turbine; ST: Steam
Turbine; BH: Bituminous High sulfur; BL: Bitumi-
nous Low sulfur; BM: Bituminous Medium sulfur;
LH: Lignite high sulfur; LM: Lignite medium sulfur;
SL: Subbituminous Low sulfur; SM: Subbituminous
Medium sulfur.

4.6.5 Assumptions for Sensitivity Cases

To understand the impact of key uncertainties associated with our input assumptions on the

results of the base calculations for the U.S. regions, we examine the sensitivity of the reference

WTP and the related subsidies to the discount rate, years of vehicle ownership, need for battery

replacement and peak charging; and the sensitivity of environmental externalities to the regional

electricity mix assumptions (Table 4.1).

The U.S. government’s cost-benefit assessments often use 5% and 3% discount rates, as

applied in our base calculations and low discount rate sensitivity case, as the upper range and

mean discount rate values. Our rough estimations of the cost of capital (COC) for Tesla Motors and

average COC for some gasoline car manufactures such as Honda, Toyota, and General Motors are

also close to 5%. Therefore, we chose 5% as the conservative discount rate for our base calculation

and 3% as the low discount rate. We chose a 10% discount rate as the upper bound to consider
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the uncertainties associated with the risk level in the car manufacturing market. Furthermore,

according to Tran et al. (2012) customers heavily discount (18%–30%) the future cost savings from

increased fuel economy.

A lower bound of five years of vehicle ownership (short) is chosen based on the average years

of vehicle ownership in the U.S. (5.25 years for used cars and 6.5 years for new cars (Statista,

2017a)). An upper bound of 15 years vehicle ownership (long) is chosen based on the average

scrappage patterns in the U.S. (12.2 to 15.6 years between 1970s and 2000s (Bento et al., 2016)).

To understand the effect of potential need for battery replacement on the WTP from operation

of BEV200, we assume the battery replacement is required in the tenth year of vehicle ownership.

We assume a price of $300 kWh−1 for battery replacement, which is equal to the current price of a

new battery in our learning curves. It should be noted that this a conservative assumption, as the

cost of batteries might come down, ten years from now, following the battery learning curves.

The peak charging sensitivity case assumes 25% of charging happens in the peak hour period

in all regions. We have estimated this number from the Idaho National Laboratory, Advanced

Vehicles, ARRA-Chrysler RAM PHEV Fleet- Phase 2 project (INL, 2014). We assume peak hours

extend from 2:00 pm to 9:00 pm. The estimate of 25% peak charging is close to the range assumed

in the Union of Concerned Scientists report (76%–94% off-peak charging) (Anair and Mahmassani,

2012). We assume electricity prices are three times higher in the peak hours compared to the off-

peak hours, based on the factor derived from time-of-use rates for EV charging by the Los Angeles

Department of Water and Power (Anair and Mahmassani, 2012).

To examine the sensitivity of the environmental externalities from deploying EVs in each

region to the way the electricity is generated, we consider a cleaner electricity mix for each region

than assumed in our base calculations. The corresponding changes range 2% less generation from

coal in R9 to 22% less generation from coal in R7; and from 7% higher generation from renewables

and natural gas in R2 (Middle Atlantic) to 24% higher generation from renewables and natural

gas in R7. This case also assumes more generation from combined cycle power plants versus gas

turbines for natural gas generation technologies, resulting in higher average efficiency for natural gas
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generation, and assumes less generation from high sulfur coal. This case is adapted from midterm

MARKAL modeling for the year 2030 with implementation of Clean Power Plan provisions in EPA

US9R database (2016, V1.0). Our cleaner electricity case assumes this electricity mix happens in

2015.

4.6.6 Additional Results

4.6.6.1 International Market

Figure 4.5 shows the estimated BEV learning curves and the reference and optimistic inter-

national WTP market curves based on the countries’ targets for 2020. WTP for each country is

shown with and without including gasoline taxes. When gasoline taxes are included, KOR shows

the highest WTP, followed by NOR in both the reference and optimistic market curves. Both

countries have relatively low electricity and high gasoline prices, which is favorable for promoting

BEV200s (Tables 4.7 and 4.11). KOR also has relatively large annual miles per vehicle (second after

the U.S.) resulting in the higher WTP (Table 4.7). JPN, at the other end of the range, has high

electricity and moderate gasoline prices with relatively low annual miles per vehicle. In comparison,

the U.S. has relatively moderate electricity and cheap gasoline prices, but high annual miles per

vehicle. The highest difference in WTP between the optimistic and reference WTP market curves

happens in the U.S. (2972 $ vehicle−1), shifting the U.S. to a more favorable condition within the

international market in the optimistic case.

Figure 4.5 also shows the learning curves and the international market curves with gasoline

taxes excluded from the WTP calculation. This lowers the highest reference and optimistic WTP

values by about 40% compared to the corresponding values with gasoline taxes included. Countries

with lower gasoline taxes and relatively higher annual miles per vehicle have more favorable market

conditions in this case. In particular, the U.S. becomes the most favorable market for BEV200

diffusion in the case with optimistic market curves.

The minimum subsidies (see Equation 4.1) required for stimulation of BEV200s to a target
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Figure 4.5. BEV learning curves (corresponding to 6% and 9% progress ratios), and optimistic
and reference WTP market curves for both cases including and excluding gasoline taxes in the
international market.

vehicle stock level of 12 million vehicles within the international market are shown in Table 4.29 for

the base calculations, including gasoline taxes. With the reference WTP and the optimistic learning

curve, a cumulative subsidy of about 11.8 billion dollars is required to stimulate purchase of 12

million vehicles, with the subsidy applied across all countries except Japan. With the reference

WTP and the pessimistic learning curve, a cumulative subsidy of about 25.5 billion dollars is

required in the same countries. With the optimistic WTP and optimistic learning curve a subsidy

of about 2.4 billion dollars applied to 1.8 million units in NOR, GBR, DEU, ESP, PRT, and

IND is required to meet the same target. In this case, after the implementation of subsidies in

GBR, BEVs become competitive with GVs in IRL, NLD, USA, FRA, CHN, AUT, CAN, DNK

and further subsidies are not required. Finally, with the optimistic WTP and pessimistic learning

curve a subsidy of about 5.7 billion dollars, applied to 7.2 million units in NOR, GBR, USA, FRA,
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Table 4.29. Minimum Subsidies, calculated based on WTP, required for 12 million target cumu-
lative production level for international market curves including gasoline taxes.

Market-Learning Curves Subsidies and Production Units

Reference - Optimistic A subsidy of 0.30, 0.05, 0.19, 0.44, 1.61, 1.80, 0.13, 2.60, 0.05,
0.24, 0.64, 1.56, 0.75, 0.87, and 0.58 billion dollars applied to
196, 29, 98, 213, 1550, 1946, 192, 4288, 195, 582, 1099, 951, 194,
198, and 125 thousand units in KOR, NOR, IRL, NLD, GRB,
FRA, DNK, CHN, AUT, CAN, USA, DEU, ESP, PRT, and IND,
respectively, is required.

Reference - Pessimistic A subsidy of 0.34, 0.06, 0.23, 0.57, 2.97, 3.93, 0.35, 7.93, 0.30,
1.00, 2.09, 2.83, 1.01, 1.14, and 0.75 billion dollars applied to
196, 29, 98, 213, 1550, 1946, 192, 4288, 195, 582, 1099, 951, 194,
198, and 125 thousand units in KOR, NOR, IRL, NLD, GRB,
FRA, DNK, CHN, AUT, CAN, USA, DEU, ESP, PRT, and IND,
respectively, is required.

Optimistic - Optimistic BEV200s are competitive in KOR.
A subsidy of 0.5 million dollars applied to 14 thousand units in
NOR (up to 356 thousand cumulative units) push the market to
371 thousand cumulative units.
A subsidy of 132.4 million dollars applied to 295 thousand units
in GBR (up to 666 thousand cumulative units) push the market
to 10.5 cumulative million units (end of DNK market).
A subsidy of 633.5, 469.3, 709.6, and 501.2 million dollars applied
to 951, 194, 198, 294, and 125 thousand units in DEU, ESP, PRT,
and IND, respectively, is required.

Optimistic - Pessimistic BEV200s are competitive in KOR.
A subsidy of 12 and 427.9 million dollars applied to 29 and 742
thousand units in NOR and GBR push the market to 2.2 million
units (end of NLD market).
A subsidy of 322.3 and 175.4 million dollars applied to 1.0 and
1.1 million units in USA and FRA (up to 4.5 million cumulative
units) push the market to 5.3 million cumulative units.
A subsidy of 305.3 million dollars applied to 2.0 million units in
CHN (up to 7.2 million cumulative units) push the market to 9.8
million cumulative units (end of AUT market).
A subsidy of 117.9, 98.50, 1902, 729.6, 975.8, and 669.5 million
dollars applied to 582, 192, 951, 194, 198, 294, and 125 thousand
units in CAN, DNK, DEU, ESP, PRT, and IND, respectively, is
required.

CHN, CAN, DNK, DEU, ESP, PRT, and IND is required for meeting the target. The market is

competitive in IRL and NLD in this case. Note that the subsidies shown are in addition to the
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favorable tax treatment of relatively high taxes on gasoline sales compared to those on electricity.

Table 4.30 provides additional results for the case excluding the gasoline taxes.

With both reference and optimistic market curves, the level of WTP in ESP, PRT, IND, and

JPN are so low that international subsidies for 12 million vehicles cannot make BEV200s compet-

itive with GVs with either the pessimistic or optimistic learning curves. Further cost reductions

would be required. This is also true for DEU with the reference WTP and pessimistic or optimistic

learning curves, or the optimistic WTP in combination with the pessimistic learning curve. These

results convey that both market size and WTP are important for pushing the new technology into

the market. While KOR and NOR have favorable WTP conditions compared to the other coun-

tries, their 2020 target market sizes are too small to provide a significant push. CHN, on the other

hand, has a relatively big market size, but moderate to low WTP.

Table 4.30. Minimum Subsidies, calculated based on WTP, required for 12 million target cumu-
lative production level for international market curves excluding gasoline taxes.

Market-Learning Curves Subsidies and Production Units

Reference - Optimistic A subsidy of 15.3, 0.09, 0.66, 3.56, 2.04, 0.37, 0.94, 9.28, 7.14,
0.87, 0.89, 1.61, 6.15, 1.26, and 0.19 billion dollars (50.3 billion
dollars total) in CHN, NOR, KOR, USA, CAN, IRL, NLD, FRA,
GRB, DNK, AUT, IND, DEU, ESP, and PRT respectively, is
required.

Reference - Pessimistic A subsidy of 19.3, 0.13, 0.89, 4.88, 2.76, 0.49, 1.20, 11.8, 9.17,
1.12, 1.15, 2.00, 7.42, 1.52, and 0.23 billion dollars (64.0 billion
dollars total) in CHN, NOR, KOR, USA, CAN, IRL, NLD, FRA,
GRB, DNK, AUT, IND, DEU, ESP, and PRT respectively, is
required.

Optimistic - Optimistic A subsidy of 3.76, 0.42, 4.14, 0.04, 1.22, 4.27, 0.26, 0.64, 5.67,
0.59, 0.79, 1.42, 1.00, 5.20, and 0.16 billion dollars (29.6 billion
dollars total) in USA , KOR, CHN, NOR, CAN, GRB, IRL,
NLD, FRA, AUT, DNK, IND, ESP, DEU, and PRT respectively,
is required.

Optimistic - Pessimistic A subsidy of 4.42, 0.59, 8.89, 0.07, 1.93, 6.22, 0.39, 0.91, 8.21,
0.85, 1.04, 1.82, 1.26, 6.47, and 0.20 billion dollars (43.3 billion
dollars total) in USA, KOR, CHN, NOR, CAN, GRB, IRL, NLD,
FRA, AUT, DNK, IND, ESP, DEU, and PRT respectively, is
required.
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4.6.6.2 Sensitivities

We examine the sensitivity to selected input assumptions of the reference WTP and the

corresponding subsidies required for a 12 million BEV target production level. Sensitivity analysis

is conducted by reference to the case for the U.S. with zero pre-diffusion units. Using 3% and 10%

discount rates results in a 10% increase and 20% decrease in the WTP in all regions, respectively.

Assuming a 3% discount rate reduces the amount of required subsidies (Table 4.31). However, with

a 3% discount rate, subsidies are unable to make BEV200 competitive with GVs in all regions with

either optimistic or pessimistic learning curves.

Table 4.31. Cumulative subsidies (billion dollars), calculated based on WTP, required for 12
million target cumulative production level for the reference WTP and sensitivity cases. Subsidies
assume zero pre-diffusion units.

Market-Learning
Curves

Subsidies (billion dollars)a

Base (with 5%
discount rate,
10-year vehicle
ownership,
and no peak
charging)

With 3%
discount
rate

With
15-year
vehicle
owner-
ship

With
25%
peak
charging

Reference - Optimistic 45.9 38.9 23.0 57.0
Reference - Pessimistic 59.6 52.7 36.7 70.7
a The subsidies are applied in R7, R8, R5, R4, R6, and R9 for all sensitivity cases.

Assuming 5 years or 15 years of vehicle ownership, instead of 10 years, the reference WTP

is decreased by 44% or increased by 34%, respectively. Assuming 15 years of vehicle ownership

reduces the amount of required subsidies (Table 4.31). However, subsidies applied to 12 million

vehicles are still unable to make BEV200 competitive with GVs in all regions with either optimistic

or pessimistic learning curves.

It should be noted that although longer years of vehicle ownership increases WTP and reduces

the amount of required subsidies, there is an increased risk of the need for a battery replacement in

the later years of the vehicle’s life, which in turn can offset those benefits. The battery cost ranges
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from about 8600–15700 $ vehicle−1 corresponding to the compact and pickup size classes, respec-

tively. The average battery cost across the regions, considering regional vehicle size distributions,

ranges from about 5800–7100 $ vehicle−1 corresponding to R8 and R5, respectively. Considering

one-time battery replacement in the tenth year of vehicle ownership results in negative WTP in all

regions, with values ranging from about –260 to –3143 $ vehicle−1, corresponding to R5 and R1.

Assuming that 25% of BEV charging occurs during peak electricity pricing periods with

tripled electricity prices reduces WTP by 14 to 31% (corresponding to R5 and R7). Accordingly, the

WTP in this case ranges from 2677 $ vehicle−1 in R1 to 5643 $ vehicle−1 in R7. This sensitivity case,

shows the importance of off-peak charging to the level of financial benefits gained by BEV owners.

R9 shows the biggest difference between reference WTP and WTP assuming the peak charging

(1300 $ vehicle−1), mainly due to the higher electricity prices in that region. Table 4.31 highlights

how much subsidies would need to increase in this case compared to the base calculation.



Chapter 5

Conclusion

In this section, we summarize and discuss the main findings of all three parts of our research.

We analyze the impacts of introducing inexpensive and efficient electric vehicles (EVs) on energy

use and emissions from the U.S. transportation sector using an integrated energy model, conduct

life cycle assessment (LCA) for a pyrite battery suitable for EV applications, and design efficient

regionally targeted subsidies using a modified cascading diffusion model which minimizes the social

costs of driving EVs in place of gasoline vehicles (GVs).

In the first part of this thesis, we analyze how application of improved electric vehicles, includ-

ing plug-in hybrid (PHEVs) and battery EVs (BEVs), in the U.S. light-duty vehicle (LDV) sector

affects emissions not only from the LDV and its upstream sectors (including the electric sector)

but also from entire sectors of the economy. We utilize ANSWER-MARKAL (MARKet ALoca-

tion) model in connection with the modified version of U.S. Environmental Protection Agency’s

(EPA) nine-region (US9R) database. This part of the analysis assumes EVs are improving follow-

ing optimistic assumptions about efficiencies and costs, they are produced in mass scale, and they

will become competitive with GVs in the midterm. However, EVs are not the only technologies

that are being improved and knowledge spill-over occurs across different technologies. Therefore,

we consider the technology improvement assumptions to apply consistently across major vehicle

alternatives including GVs and hybrid EVs (HEVs). The objective is to understand whether the

technology advances in the LDV sector, affecting fuel economies and technology mixes in different

sectors of the economy, could reduce emissions. For EVs in particular, these advances include
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the application of breakthrough battery technologies with new chemistries having higher energy

capacities and longer cycle life.

Our results show that compared to the base case (BAU scenario) in which GVs are the

dominant technology for the entire time horizon, the LDV technology mix changes under optimistic

assumptions about LDV technologies’ cost and efficiency projections (OPT scenario). The share

of BEV penetrations out of total demand increases in the midterm and long-term. HEVs gain the

same share as BEVs in the midterm but they vanish in the long-term. The regional results more

or less follow the same pattern as the national results, except that the ethanol vehicle share varies

significantly across regions, depending on the availability of corn and the relative price of ethanol.

The changes in the U.S. LDV technology mix in the OPT scenario result in an insignificant increase

in electricity demand. Changes in LDV demand (high and low) also have a negligible impact on the

electricity demand in both scenarios. In both BAU and OPT scenarios, the electricity generation

mix moves toward more generation from natural gas and less generation from coal. The changes in

the U.S. LDV technology mix in the OPT scenario result in a reduction in gasoline consumption

which provides more capacities in refineries for the production of other products such as jet fuel.

Therefore, the total change in oil consumption from BAU to OPT is not as large as the reduction in

gasoline use. The changes in the U.S. LDV technology mix in the OPT scenario result in significant

reduction in GHG emissions from the LDV sector but a smaller reduction in total GHG emissions

than that from the LDV sector. This is because LDV emissions represent a declining share of

total emissions, mainly due to the existing CAFE regulations, and because of intersectoral shifts

in emissions. The reduction in the GHG emissions in the OPT scenario compared to the BAU

scenario varies significantly across the regions with the most reductions in the Pacific region and

the least reductions in the West South Central region. The same pattern as the GHG emissions

is seen for other emissions including NOx and SO2, again due to the existing control technologies

and regulations and because of intersectoral shifts. We estimate higher well-to-wheel (WTW) GHG

emissions for GVs compared to BEVs. Following OPT assumptions, WTW GHG emissions for both

technologies are reduced by a similar factor throughout the time horizon. Regional WTW emissions
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vary significantly across the regions with the most reductions in the Pacific region (which has the

lowest share of electricity from coal) and the least reductions in the West North Central (which has

the highest share of generations from coal). We estimate higher WTW NOx and SO2 emissions

for BEVs than GVs throughout the entire time horizon. The influence of economy-wide GHG fees

on the LDV technology and fuel mix is limited, due to their modest impacts on the cost of vehicle

ownership. For all technologies, the impact of emissions fees in future decades would be lower than

it would be in the near term due to improved efficiencies. The GHG fees have little influence on the

total electricity demand; however, the generation mix moves toward more generations from natural

gas. The GHG fees have little impact on reduction in GHG emissions from the LDV sector but

have a modest impact on reduction in total emissions and significant impact on reduction in GHG

emissions from the electric sector. Application of GHG fees has little impact on NOx emissions

from the LDV sector and total NOx emissions but reduces the SO2 emissions from the electric

sector and total SO2 emissions. In the OPT scenario, the SO2 emissions from the industrial sector

are also reduced.

The results of MARKAL analysis should be interpreted with caution. It is notable that the

goal of the study is not to predict any outcome in the future. Instead, it sets a framework that shows

the extent to which the LDV technology improvements would be effective for emission reductions

from each sector and from the whole sectors of the economy. MARKAL is considered a bottom-up

model and is rich in the number of technologies it considers, in particularly for the LDV and electric

sectors, but there are still uncertainties in the input parameters such as costs and efficiencies. This

is partly due to uncertainties in projecting different parameters to the future (including population

growth, and demand), and partly due to use of an average value for each parameter (such as

emission factors and costs) instead of a distribution. End-use demands are also assumed inelastic

in the standard version of MARKAL used here. While this is not an improper assumption for the

LDV sector (as the LDV demand does not show strong elasticity to oil prices), this can affect the

results of other end-use sectors. Moreover, in the current version of the EPA US9R database, the

technology learning curves are treated exogenously. That is, the cost of a new technology comes
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down only over time. However, technology learning curves could be treated endogenously as well.

Therefore, the cost of a new technology comes down over time in addition to the level of investment.

Further, MARKAL is not a suitable tool for detailed impact analyses of different factors influencing

customer behaviors (such as make, and model) on the market penetration of a new technology like

EVs.

Our results show that having 50% of the fleet demands fulfilled by BEVs as a result of

technology advances including battery advances can reduce the emissions from the LDV sector

significantly, but the reductions in economy-wide emissions are smaller. It is important to note that

these reductions from the LDV sector are still important from the perspective of health impacts and

environmental externalities. The mobile emissions are harder to control and lead to a higher chance

of people being exposed to air pollution resulting from LDV emissions. In contrast, stationary power

plants with tall stacks can be controlled more easily and are mainly located in less populated areas.

It is expected that shifting the emissions from the LDV sector to remote areas generates health

benefits, particularly in more populated areas and regions relying on clean electricity generation.

However, our environmental externalities calculations across the U.S. regions (conducted in the

third part of our research for the purpose of the subsidy calculation) show that this conclusion is

subjective. That is, the environmental benefits are highly location-dependent and BEVs may even

result in environmental damages in less-populated areas with high reliance on generation from coal.

One of the reasons that market penetration of BEVs are more effective to reduce emissions

from the LDV sector and less effective to reduce total emissions is that LDV emissions represent

a declining share of total emissions. Due to the regulations such as CAFE and existing control

technologies, emissions from the LDV sector are declining even in the BAU scenario. Similarly, due

to existing control technologies and regulations such as renewable portfolio standard (RPS), shifting

emissions to the electric sector does not significantly change total emissions. This suggests that in

order to have more reductions in total emissions, additional policies targeting other sectors such as

the heavy-duty vehicle (HDV) and industrial sectors could be more effective. Moderate economy-

wide GHG fees are mainly effective at reducing emissions from the electric sector rather than other
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sectors. Another reason that total emissions do not change drastically is the intersectoral shifts

in emissions. It should be noted that we are not attempting to predict precise shifts in emissions

rather, our study suggests that having a significant technology change in one sector can affect

the energy carrier mix not only in the upstream sectors but also throughout the entire energy

system. This can change the technology mix and emissions in the sectors beyond the upstream

sectors, resulting in less or more reductions in total emissions compared to the case in which the

intersectoral shifts in emissions are ignored.

Using an integrated assessment model helps us to understand how the energy carrier mix

would change throughout the entire system when a transformative technology, like BEVs, is intro-

duced in one sector. The results of our study show that when BEV market penetration achieves

50% of the fleet, significant reduction in gasoline demand follows. This generates more capacity in

refineries for other refined products. This leads to no significant change in modeled oil consumption.

However, in reality, this outcome can result in critical policy decisions about changes in capacity

of oil production and imports, refined product imports and exports, and refineries.

We complement the first part of the research by conducting an LCA on a newly developed

solid-state pyrite lithium battery. This battery has higher energy density and potentially longer

cycle life compared to current Li-ion batteries (LIB) and holds high promise for EV applications.

The reason to focus on an LCA of the battery instead of the whole vehicle is because the battery

manufacturing for EVs has resulted in a majority of the cumulative energy demand (CED) and

global warming impacts compared to their GV counterparts (Dunn et al., 2012; Elgowainy et al.,

2016; Hawkins et al., 2013; Kim et al., 2016; Majeau-Bettez et al., 2011; Nealer et al., 2015; Notter

et al., 2010).

To conduct the LCA analysis, we utilize US-EI as one of the LCA databases in the Ecoinvent

center. It should be noted that although LCA databases provide useful inventories and characteri-

zations for production of different materials and processes, there are uncertainties associated with

them. First, they represent an average value for each material and process. Also, they consider

fixed fractions for input and output materials, emissions, wastes, and energy flows. Second, al-
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though they include some geographical variations in data, those assumptions may not be valid for

a certain study. Third, some portion of uncertainties come from characterization methods and how

the values are estimated. Finally, there are processes that are estimated based on other available

entries. This is mainly because the information for those processes is weak or limited. In the case

of our study, for example, due to the lack of information about pyrite mining, US-EI estimates

the impacts of pyrite production from iron mining. Moreover, despite a large number of entries

included in these type of databases, there is a high possibility that some processes and materials

cannot be found, in particular, if the LCA is prospective. Other available entries for similar ma-

terials and processes should be used as a proxy for missing ones. Otherwise, those materials and

processes need to be estimated using other sources. These estimations always face uncertainties. In

our study, for example, aluminum sheet rolling from US-EI is used as the proxy for Li sheet rolling;

cathode conductive material (TiS2) and electrolyte materials (Li2S and P2S5) are not available in

the database. Therefore, the energy requirements for their production are estimated based on three

U.S. patents (Jacob and Brown, 1978; Taylor, 1965; Wainer, 1958). The energy requirements for

processes related to the battery production are also estimated based on laboratory data.

In our study, we conduct a prospective LCA, as the pyrite battery is only available in the

lab-scale. This can impose different kinds of uncertainty in our results. Mass inventory for a

battery with suitable size for EV applications is estimated based on the lab compositions; the

location of the factory is not defined, therefore, energy requirements for dry-room application and

the assumed transportation distances are uncertain. It is also hard to track which exact pathways

the materials go through for a certain product in a certain location. The energy requirements for

processes related to the battery production are also estimated based on the lab data. It should

be noted that the manufacturing process gets more efficient in large-scale production, compared to

the small scale. Evaluating these assumptions based on primary data in the future, after moving to

pilot and mass scale productions, would help to better understand the source of these uncertainties.

Another limitation of our study is that we do not address the impacts of capital equipment; we also

assume no credit from battery recycling in our analysis, partly because no established recycling
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technology is yet available on a large industrial scale for recycling new battery chemistries including

solid-state pyrite batteries. Our study assumes 100% yield factor for different processes of battery

manufacturing, whereas in reality, it is not feasible to get 100% yield and turn all input materials

to the final products in the large-scale production compared to the lab scale.

Our results show that direct energy requirements for cell production and battery production

are almost the same. This conveys that cell production is the major contributor to direct energy

requirements of total pack production. The energy requirements for clean dry-room applications

comprise a significant portion of direct energy requirements for cell manufacturing, even with dry

climate conditions assumed for the location of the factory, such as Reno, Nevada. Our estimate of

CED for battery production falls on the upper side of the range for LIBs, summarized by Peters

et al. (2017). The dry-room and cathode paste (mainly from the production of TiS2) are the biggest

contributors to the battery CED. Mining of pyrite plays a negligible role in the CED impacts of

cathode paste. The energy requirements for dry-room and production of TiS2 are uncertain and

there is room for more optimized designs. Moreover, TiS2 can be possibly eliminated based on

the results of the further research on Pyrite battery. Our estimate of GWP100 impacts of pyrite

battery production falls in the range of average LIBs, but is higher than the average value estimated

by Peters et al. (2017). Our estimates of global warming potential based on 100-year (GWP100)

impacts of pyrite battery production are lower than that of Li-S battery. Owing to the fact that the

pyrite battery needs a bigger dry-room, this result can be related to the elimination of some elements

such as copper current collector, separator, and cooling system compared to LIBs and Li-S battery.

We estimate slightly higher CED and GWP100 from battery production than CED and GWP100

impacts from the production of other vehicle components. However, the CED impacts associated

with battery production are significantly lower than energy consumption in the use phase. The

GWP100 impacts of battery production are lower than WTW GHG emissions for BEV200 and GVs

in 2010, estimated in the first part of the thesis. However, moving toward more efficient vehicles in

the future may change this result. The acidification impacts (ACD) from the battery production

are slightly higher than WTW SO2 emissions in the use-phase for both technologies.
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To be able to fairly compare the impacts of the pyrite battery with the LIBs, other impact

categories should be also compared. That is because, for example, negative current collector (Cu),

which is not required for the pyrite battery, does not contribute significantly to GWP100 but is the

main contributor to EUT (fresh water and terrestrial), toxicity (freshwater, marine, and human),

and metal depletion in LIB production (Ellingsen et al., 2014). Its contributions to the impacts of

photo-oxidation formation, particulate matter formation, and ACD are also considerable (Ellingsen

et al., 2014). However, the cross-comparison across studies is not feasible when they differ in the

impact assessment system. For example, we cannot closely compare our results with most of the

studies listed in the review by Peters et al. (2017), as these studies use other impact assessment

systems (such as ReCiPe Midpoint) rather than TRACI, which is used in this study. Moreover, not

all studies have reported all the impact categories. Stage-by-stage comparison across the studies is

also hard as different studies utilize different inventories and process break down in their analysis.

These limitations prevent us from being able to fully understand the impacts of detailed differences

between the chemistry, structure, and production processes of solid-state lithium battery with the

counterpart LIBs.

Our results show that the energy requirements of clean dry-rooms are significant but uncer-

tain. This conveys that significant attention should be paid to the location of the factory, with

preference given to locations with dry weather conditions, and to the dehumidification system de-

sign. In our study, for example, shifting the location of the facility from Reno, Nevada to Sugar

Land, Texas increased the impacts of the dry-room by 34%. Maximized level of production per

certain dry-room area, also reduces the impacts of dry-room per each battery pack. This highlights

the importance of mass scale production on impacts of each pack. The pyrite battery does not need

any formation cycling and first charging for charge retention testing compared to the LIBs. These

benefits offset, along with negligible impacts from pyrite mining, the impacts of bigger dry-room

resulting in the impacts with almost the same order of magnitude as the LIBs.

This study focuses on the impacts of battery production only. Whereas, one advantage of

solid-state batteries over LIBs would be their potentially longer cycle life (Takada, 2013); another
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potential advantage of solid-state batteries would be their lower use-phase impacts than LIBs.

Lastoskie and Dai (2015), show that use-phase impacts of BEVs with solid-state electrolyte are

5–6% lower than their counterpart LIBs, utilizing the same cathode chemistry and cycle life. They

related this conclusion to the higher cell energy density of solid-state structure which results in

lower battery mass and higher vehicle efficiency. The cycle life of pyrite battery is not defined yet,

also there are uncertainties in the mass inventory of a pyrite battery pack for EV applications.

Addressing these questions enables us to understand the use-phase benefits of solid-state lithium

pyrite battery over the LIB chemistries.

In the last Chapter of this thesis, a cascading diffusion model is used to analyze how regional

differences in driving patterns, fuel prices, and external costs could be applied to design more

efficient subsidies for the purchase of EVs. Currently, we are in the transition phase in which EVs

are produced in low-volume and the upfront cost of EVs is one of their major barriers to adoption

(Krupa et al., 2014). The objective is to investigate how the willingness-to-pay (WTP) and air

quality and climate benefits of EVs differ across U.S. regions and how these differences could be

exploited to make EV subsidies more efficient. To this end, we develop a model which designs the

subsidies based on the minimum social cost (MSC) compared to the original cascading diffusion

model, developed by Herron and Williams (2013), which designs the minimum subsidies based on

the customers’ WTP, driven by economic performance.

Our results demonstrate that the West South Central region shows the highest WTP in

both reference and optimistic market curves (optimistic market curves are generated based on high

gasoline prices and low electricity prices), as it has the highest annual miles per vehicle among the

regions and the lowest electricity prices. WTP varies across the U.S. regions moderately. Reference

gasoline prices do not vary significantly across the regions. Thus, this result is mainly driven based

on differences in electricity prices and annual miles per vehicle. The environmental externalities

from driving EVs in place of GVs vary significantly across the regions. The Pacific region gains the

highest benefits from switching to EVs due to the high population density and low reliance on coal

generation. The East North Central region, on the other side of the spectrum, suffers the highest
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damages. This result is mainly driven by the environmental externalities from exposure to PM2.5,

which in turn is mainly driven by SO2 emissions from power plants. When the environmental

externalities are incorporated into the U.S. regional market curves, the most favorable region to

start the cascading diffusion changes. While the West South Central is the most favorable region

based on WTP, the Pacific region is the most favorable region when environmental externalities

are also considered. Accordingly, the minimum subsidy required to meet the target production

level changes. Subsidies designed based on the minimum social cost model are slightly higher

than those from the original model, but their social cost is significantly lower. Advance sales in

the international market decrease the required subsidies and social cost in the U.S. Our results

highlight the importance of the international market on the level of subsidies required within the

U.S. to achieve a specified EV penetration level. The international analysis also demonstrates

how influential larger markets are to lower the cost of BEV technology. Thus, in addition to per

vehicle subsidy amount, the overall budget for cumulative subsidies, which accordingly defines the

target level of production, is also important. Cleaner electricity production increases environmental

benefits and reduces the social cost. The most favorable region to start the cascading diffusion may

change when the electricity mix moves toward the cleaner production. Regions with less current

clean generation would benefit more by switching to cleaner electricity production.

Our analysis shows that WTP is mainly affected by gasoline prices, annual miles driven per

vehicle, and vehicle size distribution in a particular sub-market. Our U.S. analysis excluded gasoline

taxes from the price of gasoline because tax policies may change in the future as more EVs enter

the fleet. Road-use taxes or other taxes that cover all types of vehicle technologies may be required

to avoid revenue losses (Aasness and Odeck, 2015; U.S. Congress, 2014). The international analysis

shows that if current gasoline taxes are omitted, markets with higher base fuel prices, such as the

U.S., are more favorable for advancing BEV diffusion.

We have developed our MSC model based on the cascading diffusion model, developed by

Herron and Williams (2013). The minimum subsidy designed based on the cascading diffusion

model actually estimates the lower bound for the amount of cumulative subsidies required to fill
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the gap between the cost of BEVs and WTP, due to two main reasons. First, the subsidies calculated

based on the technology learning curve assume continuous tapering while in the real world, subsidies

need to be tapered in discrete steps to make their implementation feasible from an administrative

standpoint. This increases the amount of required cumulative subsidies compared to continuous

tapering (Matteson and Williams, 2015). Second, the cascading diffusion model assumes sequential

adoption across sub-markets, which is not likely to happen in the real world. Parallel adoption in

different sub-markets potentially increases the amount of required cumulative subsidies. Our study

uses this lower bound formulation as the basis for examining how consideration of externalities

might impact regionally differentiated subsidies.

When interpreting these results, it should be noted that the main goal of this study is

to demonstrate the difference between minimum differentiated subsidies which are driven from

economic performance and the subsidies designed based on the minimum social cost, rather than

calculating the exact subsidy amounts for each region. Otherwise, higher resolution sub-markets

and more precise treatment of environmental externalities and WTP calculations are required. We

also make the assumption that vehicle purchase choices are based on cost of vehicle ownership over

the lifetime of the vehicle. Other factors that influence consumer purchases, including make and

model preferences and infrastructure limitations, are neglected for simplicity.

The choice of external damage estimates for air pollution emissions is an important source

of uncertainty in our cascading diffusion study. We estimate the number of premature deaths or

marginal damages of PM2.5 and ozone precursors for each sector and region using grid cell marginal

damages from Dedoussi and Barrett (2014) and Pappin et al. (2015), respectively. These specific

studies were selected over other studies in the literature (e.g., Fann et al. (2009); Heo et al. (2016);

Muller and Mendelsohn (2007); NRC (2010)) because their results could be readily aggregated to

match the U.S. regions and sectors required in our study. In our study, we estimate the regional

environmental externalities; consequently, these results cannot be directly compared with nationally

averaged values from other references (although we provide such a comparison to draw a general

picture for their order of magnitude). Moreover, the nationally averaged estimates for different
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species and sectors vary significantly in the previous studies. Factors driving the differences in

damage estimates include the value and treatment of value of a statistical life (VSL), the emission

sources or sectors considered, baseline emissions (year and reference), urban or rural population

exposure, and the concentration-response function used. Harmonizing key factors across different

studies, similar to the work conducted by U.S. Government Interagency Working Group (IWG) for

estimating social cost of carbon (SCC), can help to reduce the sources of uncertainties across the

studies and make the comparison more informative. However, it should be noted that despite IWG

efforts, the SCC estimates still face uncertainties. These uncertainties include those associated

with quantifying the physical effects of GHG emissions and those associated with future changes in

human behavior and well-being such as population, economic growth, and GHG emissions (IWG,

2016). Since 2009, IWG has been able to harmonize key modeling assumptions including socio-

economic-emission scenarios, discount rate, and climate sensitivity probability distribution and has

been able to consider the sources of uncertainties quantitatively. Uncertainties that have not been

fully quantified in the SCC estimates include quantification of catastrophic damages, treatment of

technology change and adoption, and modeling of inter-regional and inter-sectoral linkages (IWG,

2016). In our study, we use the average estimates of SCC, so using a higher value of SCC would

favor BEVs in the externalities comparison, since we found that replacing GVs with BEVs reduces

CO2 emissions in all U.S. regions.

A further limitation of our study is that it only covers a subset of health and welfare exter-

nalities associated with vehicles. While mortality effects dominate air pollution damage estimates,

other endpoints could also present tradeoffs between GV and BEV. Effects neglected in our study

include morbidity effects for PM2.5 and ozone and mortality from short-term exposure to PM2.5 and

from long-term exposure to ozone. The contribution of VOC emissions to ozone-related damages

is also neglected. Based on current inventories, our analysis assumes that the contribution of NH3

emissions from GVs to PM2.5 formation is negligible. However, recent studies question the NH3

emissions inventories for the road sector. Sun et al. (2017) measured NH3:CO2 emission ratios and

concluded that the current emission inventories underestimate NH3 emissions from the road sector;
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our estimated benefits of switching to EVs would be biased low if a significant amount of these

under-reported emissions are associated with LDVs. Our study also overlooks environmental or

welfare damages from PM2.5 and ozone, including damage to crops, building materials, and climate,

as well as water consumption and land use tradeoffs from electricity generation and oil and gas

production. We also focus on direct emissions from GV or emissions from electricity generation for

EV, neglecting other stages of the WTW and vehicle life cycles (Nealer et al., 2015; NRC, 2010;

Tamayao et al., 2015; Yuksel et al., 2016). A more comprehensive suite of externalities could be

considered in future work that builds on the framework presented here.

In addition to the specific research results described above, work from this thesis lead to

several methodological developments that refine existing tools or provide new frameworks for future

studies. These include:

• The ANSWER-MARKAL energy model has been updated for a modified EPA database

including more optimistic treatment of EV technologies, which can be used for other sen-

sitivity and policy analyses.

• A framework has been developed for a process-based attributional life cycle assessment

of solid-state lithium batteries. The framework is being demonstrated for the battery

developed at University of Colorado Boulder and Solid Power but can be adapted for

application to other solid-state lithium batteries.

• A framework has been developed for combining ownership costs, environmental externalities

and production-based learning curves to estimate required subsidies and associated social

costs of achieving specified target levels of EV penetration. The proposed model designs

the efficient subsidies based on the minimum social costs in differentiated sub-markets and

could be applied to other regions/sub-markets and/or other technologies.

This thesis presents the impacts of battery technology advances, via electrification, on U.S.

emissions and fuel consumptions. The study aims to cover a reasonable suite of policies targeting

WTW and vehicle cycles, a multidecadal timeframe, and a transition phase toward mass production.
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However, there are still questions about implementation of such policies that remain to be further

explored. Until now, most EV-related policies have been inclined to promote more adoption and

the term “transition phase” refers to EVs. Provided that those transition policies work efficiently

and EVs become more and more competitive with GVs and abundant, transition policies related

to phasing out current technologies become important. That is, both technologies face a transition

phase. Those policies will likely depend on the fleet turn-over rate and geographical location. They

also can target many sectors such as refineries and the industrial sector. The results of our study

suggest that policies targeting other sectors such as heavy-duty and industrial sectors, coupled with

increased EV adoption, could be effective for emission reduction from all sectors of the economy.

Different scenarios that can be analyzed include impact the of shifting from diesel to gasoline

in other sectors (where feasible from a technical perspective) and desulfurization of fuel in other

sectors.

So far, the results of battery and EV LCAs are presented based on midpoint indicators (mainly

global warming potential). Further research on estimating endpoint indicators (such as health

effects and mortalities) from these midpoint indicators, beyond GHG and air quality emissions, can

improve subsidy design based on environmental externalities. The externalities can include other

impact categories than GWP from battery and vehicle manufacturing sectors. In this study, we

showed how moving toward more efficient vehicles can reduce the future WTW emissions for both

EV and GV technologies. This study sets a framework for designing efficient subsidies toward EV

adoption that are differentiated by sub-market and are designed based on minimum social cost.

However, the implementation methods would also be influential for effectiveness of these policies

and need to be investigated for each sub-market. The implementation decision in each sub-market

would include different layers of government that grant the subsidy, the agents that receive the

subsidy, overall budget, and the subsidy format (uniform or differentiated). Similar to the design

of subsidies, the implementation methods should be differentiated by sub-market, since economic

condition, level of income, and consumer behaviors are different.
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