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Abstract 

	  

	  
Mersch IV, John (M.S., Mechanical Engineering) 

Simulations and experiments for fouling mitigation on patterned nano-imprint lithography ultra-

filtration membranes 

 

Thesis directed by Professor John Pellegrino 

Nano Imprint Lithography (NIL) endows Ultra Filtration (UF) membranes with a 

plethora of filtration benefits.  This research is to study for purposes of optimization the 

fundamental physics behind the fouling mitigation properties derived from the NIL patterns on 

UF membranes.  Simple silicon particle experiments have been performed initially and have 

generated a series of criteria believed to affect the fouling mitigation with patterned membranes.  

These factors are: pattern height, permeation rate, cross flow velocity, and angle of attack. 

Factors from literature that affect these criteria are shear rate, gradient of shear rate and the non-

linearity parameter, which is a ratio of the shear rate and it’s gradient. My work covers using 

computation fluid dynamic (CFD) simulations in an attempt to understand the underlying physics 

involved.  Furthermore, I perform milk filtration experiments to test the NIL UF membrane’s 

capabilities to handle complex fluids.  Milk is one of the most readily fouling substances that are 

filtered with UF membranes commercially. The hypothesis put forth and substantiated here 

follows the principles that it is a combination of non-linearity parameter and gradient of the shear 

rate that contribute most significantly to the fluid dynamic aspect of fouling reduction through 

the mechanism of shear induced diffusion.   
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CHAPTER I 

Arrangement of Thesis 

Chapter 2 

Details the background information necessary to have familiarity with the experimental 

subject matters.  It contains summary information on ultrafiltration (UF) membranes, fouling and 

cleaning, history of patterned membranes, computational fluid dynamics (CFD), milk filtration 

and the reference experiments on which the simulations are based.  The background on the UF 

membranes will cover membrane making techniques, cost, uses, lifetimes, modes of operation, 

as well as how membranes operate. Fouling will consist of an explanation into the four types of 

fouling that can occur while cleaning will focus briefly on cleaning theory and then list examples 

of cleaning methods to emphasize how costly and time intensive they can be. The history of the 

membrane will consist of a brief timeline of patterning technology, with a focus on some 

examples of how micron and nano sized patterns are made for both on and off membranes.  The 

CFD background will consist of general process, the three solving algorithms, meshing, and 

specific OpenFOAM files. The milk experimental background will consist of a review of 

literature regarding milk in industry, standard cleaning protocols, and our modified cleaning 

protocols along with some statistics about use and cost. Lastly the experiments and results 

achieved by Maruf whose experimental models we simulated will be set forth as the guideline 

for what we aim to achieve through experimentation.  

Chapter 3 
While there were a huge number (around 600) simulations completed, the vast majority 

of those will not be covered due to the errors in the simulations or the lack of their relevancy 

other than as a learning tool. To cover them all would be well beyond the scope of the thesis as 
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they only contained personal learning or mechanisms of a poorly documented program. What 

this section will contain are the three solver validation simulations, the jet flow simulations and 

the cross flow simulations.  The solver validations simulations consist of three standard analytic 

solution cases: moving top wall, slit flow, and cavity flow.  The jet flow cell consists of two 

regimes.  The first is the whole bulk flow cell where everything is calculated; the second is the 

nano scale pattern as a small piece of the bulk flow system using the bulk flow for boundary 

conditions.  The cross flow follows the same set up with a bulk flow section and a flow over 

imprint section.  

Chapter 4 
This chapter will feel incomplete by nature, as the experimental work was not finished 

either.  Due to the incomplete nature of the experiments, the first section will focus on the 

protocols I developed.  The second section will go over each set of experimental results even 

though the results may be inconclusive.  

Chapter 5 
This brief chapter will summarize the results that were achieved in the experimental 

sections.  It will end with a proposal of future work topics and ideas.  
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Chapter 2 

Background Information 

Ultrafiltration Membranes 
Membranes are semipermeable barriers that allow certain particles through while 

rejecting others.  Some membranes involve active transport systems such as those used in cell 

membranes.  Other membranes, such as those we will be concerned with, use a system of size 

exclusion through the use of pores to reject particles.  Of this type there are sometimes additional 

features, which allow for other types of selectivity including charge and polarization.  Depending 

upon pore sizes membranes can be classified as microfiltration (MF), ultrafiltration (UF), nano-

filtration (NF), and reverse osmosis (RO) (see Figure 1).  The membranes used in our labs and 

experiments are UF membranes and so I will focus on those for the background, although most 

of the general information applies to membranes as a whole. There are four main type of 

membrane configurations: spiral wound membranes, tubular membranes, hollow fiber 

membranes and plate and frame membranes [1].  Our lab uses a combination of plate and frame 

membranes and tubular membranes.  However, for the work I did, only sheet membranes were 

used.  Spiral wound membranes consists of flexible sheets of membrane, spacer and inlet feeds 

rolled together forming a spiral.  Tubular membranes are single layer membranes forming a 

circle with structure support underneath.  They can run with complicated solutions due to their 

ease of being cleaned and the high shear rate that can be generated.  Tubular membranes are used 

in the dairy industry for concentrating milk to be used in cheese making.  Hollow fiber 

membranes really maximize surface area but work best for low viscous fluids.  Sheet membranes 

as we use them in the lab are single layer flat membranes held by plates as a single physical 

barrier.  They are the easiest to do experimental work on.  Due to their large use of space, sheet 
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membranes configurations are typically not used in industry.  Figure 2 shows the three 

commercial types of membranes and their filtration process.  Figure 3 shows an actual cross 

section of an UF membrane.  

 
Figure 1: Classification of membranes by pore size and common foulants or permeates [2]. 
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1 
Figure 2: Displays the three commercial types of membrane configurations a) tubular, b) hollow 
fiber, and c) spiral wound. 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1 http://www.kochmembrane.com/Learning-Center/Configurations.aspx 
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Figure 3: Cross section SEM image of polyethersulfone (PES) UF membrane [3]. 

Membranes operate by a pressure gradient across the membrane driving fluid to flow 

through the pores.  The higher the pressure gradient or trans membrane pressure (TMP) the faster 

the fluid will flow through (permeate).  The fluid that is unable or that does not go through the 

membrane is called the retentate.  A solution that is being used with a membrane consists of a 

solvent and several solutes.  In a filtration system the carrier solvent is always able to pass 

through the membrane although it does meet resistance.  Then there are the desired and 

undesired solutes.  By choosing a specific membrane you can control which solutes (to a given 

degree of control) can pass through.  Those solutes play a role in fouling, but the measurement of 

them and the solvent that passes through the membrane is referred to as flux.  Those that are 

rejected are concentrated near the surface as a result leading to concentration polarization, 

increased osmotic pressure near the surface of the membrane (leading to a decreased trans 

membrane pressure) and fouling. Permeability is a characteristic of a membrane that determines 
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how easy it is for particles to move through and exit the membrane.  Another key quantity about 

membranes is termed membrane resistance.  Membrane resistance is a way of incorporating 

fouling into a predictive model like equation 1.1 [4]. (J is the flux, P is the pressure, µ is the 

permeate viscosity, Rm is the intrinsic membrane resistance, Rf is the fouling resistance) 

 J = ΔP / µRm + Rf( )   (1.1) 

There are two modes of operation for a membrane system: cross flow and dead end.  

Dead end flow consists of forcing through high-pressure fluid through the membrane.  There is 

no bulk fluid flow during this and if there is it is solely towards the membrane.  In a cross flow 

system, an applied pressure drives the fluid flow across the surface of the membrane and then the 

pressure difference between the fluid and the other side of the membrane drives some tangential 

flow through the membrane itself.  

As mentioned, membranes function by as separation systems separating out particles by 

size.  This size is characterized by a molecular weight cut off which describes the molecular 

weight for a mole of the material.  If the molecular weight is lower than the molecular weight cut 

off (MWCO) than the substance will pass through the membrane.  For UF membranes molecular 

cutoff can range from 1-1000kg/mol (or kilo Daltons).  Their average lifetime is 3-5 years and 

they typically cost between $3-$5/cm2.  They have a wide range of separation uses.  Some 

typical uses include: water purification, dairy industry cheese and whey powder making, enzyme 

recover, particle separation, and Dialysis and other blood treatments.  

The making of membranes is a topic in and of itself.  However it is beyond the scope of 

the research and not needed for this paper.  Techniques of membrane pattern making however 

will be covered in a later section including a membrane making technique called phase inversion. 
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Fouling, Mitigation and Cleaning  

Three factors affect membrane cost and use in industry: membrane production, operating 

TMP, and fouling and cleaning. Here we will focus on fouling and cleaning as my research 

pertains to that approach at cost reduction.  I will explain the four types of fouling, the 

description of membrane resistance, and summarize the types of cleaning commonly practiced. 

In order to understand fouling there are several terms that need to be defined.  The first 

term is the word fouling itself.  In simple English, it just means to make dirty or pollute, but for 

our purposes it is the process by which particles temporarily or permanently adhere in or on a 

membrane.  The next term, concentration polarization, and details an extra energy cost associated 

with running a permeation system.  Concentration polarization is an accumulation of solutes in a 

mass boundary layer near the surface of a membrane as a result of membrane operation [5].  This 

extra energy rears its head by increasing the osmotic pressure meaning we have to apply 

additional pressure to overcome that barrier.  Osmotic pressure is the minimum pressure needed 

to be applied to prevent the backflow of water across a semipermeable membrane [5] 

Next are the four types of fouling: adsorption, pore blockage, deposit and gel.  

Adsorption is a fouling mechanism caused by the attractive interactions between the solute and 

the membrane[5].  It is able to happen even when there is no permeate and no TMP.  Fat free 

milk exhibits this type of fouling behavior. Pore blockage occurs from the partial or full closing 

of membrane pores.  Pore blockage occurs internally like adsorption but is a physically blocking 

rather than a physical attraction that sets the particles [5].  Deposit is the growth of particle layer 

on the surface of the membrane [5].  These particles from the solvent are too large to enter and 

block the pores and traditionally form a several layers thick deposit called a "cake layer".  Gel is 

occurs only with certain molecules when the concentration from concentration polarization 
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exceeds a specific quantity dependent on the molecules and solvent and forms a gel on the 

surface of the membrane [5]. Dispersive forces keep these four fouling methods from always 

clogging the membranes. Figure 4 illustrates the reduced shear rate brought about by fouling. 

This will play an important part in understanding later when I get to the fouling mitigation 

section. 

 
Figure 4: Illustration of fouling and its affect on flow velocity and shear.  

The last two important concepts for fouling are critical flux and limiting flux (see Figure 

5).  Critical flux has two definitions: a strong form and a week form.  The strong form dictates 

that the critical flux occurs when flux at a given TMP deviates from the pure water permeance 

flux vs. TMP line.  The weak form of the critical flux is when the flux vs. TMP line deviates 

from linearity as at all TMP it is never matching the pure water permeance line outside of a TMP 

of 0. Limiting flux is the flux at which an increase in TMP no longer generates an increase in 

flux.  Limiting flux depends on a variety of conditions from membrane, temperature, solution 

composition and solvent concentration and species. The first paper where the idea of critical and 

limiting flux began to take shame began in 1986 with Cohen and Probsetin [6].  A critical flux is 

defined as the flux and conditions at which no fouling occurs.  A critical flux is unique for each 

membrane, solution temperature, and solution composition.  A critical flux is referred to by its 



	   10	  

flux and by the pressure at which it occurs. The critical flux functions at conditions on which the 

surface repulsive forces match the mass transport to the surface of the membranes.  

 
Figure 5: Representation of the two definitions of critical flux. [5] 

 N = JC − D dC
dy

+ p ζ( ) + q τ( )   (1.2) 

The net flux of material to the surface of the membrane can be summarized with where D 

is the Brownian diffusion coefficient, p ζ( )  is the migration due to surface interaction term, 

q τ( )  is the effect from hydrodynamics (this is the term we aim to affect via the nano scale 

patterns), dC
dy

 is the concentration gradient along the axis perpendicular to the surface of the 

membrane, J is the flux, C the concentration, N the net movement of particles [5].   

As a result fouling mitigation and membrane cleaning are very important.  For now will 

focus on fouling mitigation techniques and mechanics.  Fouling can be reduced by chemical 

modifications to the surface or membrane, or by changing the fluid flow around the membrane.  

Starting with chemical alterations there isn't much that can be done since membrane materials are 
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already limited due to rejection choice and run conditions necessary.  But optimization of 

membrane selection is of key importance.  The more manageable and supplementary choice of 

making the surface of the membrane more hydrophilic is often employed though.  This can cause 

problems as well if you have solutes that are also highly polar as it makes the surface more 

attractive of a binding location.  Since our lab does not focus on chemical alterations to the 

membrane I will stop here on background as it is outside the scope of needed knowledge.  

The next important thing to cover is the mechanisms behind fouling mitigation before we 

go about altering fluid flow to favor those situations.  There are currently four main mechanisms 

believed to control fouling mitigation.  More might exist but these four currently have enough 

evidence behind them but as I propose later another mechanism is needed to describe fouling 

mitigation when periodic nano-scale patterns are involved.  The four current mechanisms are: 

Brownian diffusion, shear induced diffusion, inertial lift and surface transport [7].  Brownian 

diffusion is the movement of particles by collision and a random walk.  As can be imagined it is 

more effective on moving smaller particles and in fact is primarily only important with 

submicron-sized particles.  There are theories and models presented in Belfort, but it is also 

mentioned that those models are shown to not accurately represent experiments. As such we can 

only take out of this that Brownian diffusion helps offset concentration polarization but to the 

degree we can't determine, nor need to for the purpose of this paper, as the mechanics behind it 

are the least likely to relate to our effects from the pattern. Next is shear-induced diffusion.  

Shear induced diffusion is the movement of particles away from the surface by a non linear shear 

gradient near the surface of the membrane and its action upon particles.  This will be discussed in 

further detail later. Inertial lift is a model that depends upon nonlinear interactions of a particle 

with the flow field.  While very convoluted it simplifies as fluid dynamic forces acting unequally 
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on a particle in a transverse flow field cause the particle to rise. Additional details will be 

covered later in the paper. Surface transport theory dictates particles slide and roll along the 

surface of a membrane in transverse flow and that the cake layer itself can leave the domain and 

is continuously replaced by a new cake layer.  

For fouling mitigation, common techniques are to introduce flow instabilities, vortices, 

and turbulence.  While a high Re causes turbulence, it can be caused at lower Re values through 

appropriate use of flow conditions such curvilinear flow.  Whole system turbulence though 

causes a bigger use in energy instead of just near surface mixing and fouling reduction and as 

such is not the focus of our work.  Instead we will focus on the flow instabilities and mixing 

vortices.  Instabilities are created in three general ways: geometry change to the flow channel 

(figure 6a, b, c), pulsatile flow (Figure 6d), and curvilinear flow under the correct conditions 

(Figure 6e, f) [7].  Pulsatile flow (Figure 6d) has the advantages of mimicking the cardiovascular 

system and pairs well with surface roughness.  Unfortunately it has a large energy cost, reduced 

net cross flow, and doesn't scale up well.  On the other hand curvilinear flow was actually 

studied for a commercial attempt.  Curvilinear Taylor vortices (Figure 6e) had very large wall 

shear rates and mixed the bulk fluid exceptionally well, but you could not backwash to clean 

(will cover that later), extremely difficult to repair, and touch to scale up, it had an exorbitantly 

high energy cost to constantly rotate at a high enough speed to create mixing. Curvilinear Dean 

vortices (Figure 6f) on the other hand were easy to scale up and successfully reduced solute build 

up at membrane surface but were too expensive to be used in large systems. Geometry 

modification is which our work actually belongs in.  In fact we are a new type that closely 

resembles protuberance, but I'll get to that soon.  One of my personal favorites, furrowed surface 

(Figure 6b), does superb mixing but as can be imagined, it is extremely difficult to scale and 
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manufacture this geometry. Inserts (Figure 6c) do not decrease membrane surface area unlike 

protuberance and cause large vortices but they aren't at the surface where they are needed to 

remove particles.  It also causes a large pressure drop, which means a lower TMP and permeates.  

And it doesn't scale up well as you imagine.  Protuberance creates vortices and mixing at the 

surface and has the smallest energy drop from only near surface instabilities.  Unfortunately with 

this model you have reduced surface area for permeation and only small vortices. Our system, 

which I will call "patterned”, is a seventh type.  The patterned type looses the disadvantage of 

surface area reduction and for micron scale patterns increases the surface area of the membrane.  

However, with our nano scale patterns due to current manufacturing techniques there is a small 

drop in permeation due to compression of parts of the membrane causing local drops in the 

permeance of the membrane.  Furthermore, thanks to the simulations, it looks like while this type 

(depending upon the surface type and cross flow rates) can generate vortices on the surface, it 

appears the flow instabilities only create and upward movement of particles away from the 

surface and on the nano scale form an additional steric hindrance to surface attachment.  
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Figure 6: Each method induces at least either instability or vortex formation a) Protuberance-
vortex formation and instabilities, b) Furrowed Surface (Corrugations) -vortex formation and 
instabilities c) inserts-vortex formations and instabilities d) pulsatile flow-instabilities, e) Taylor 
Vortices- vortex formation, f) Dean Vortices- vortex formation [7]. 

Lastly is the section on cleaning.  Besides operation this can be the most expensive part 

of membrane system operations.  For example, the dairy industry when making cheese uses a UF 

membrane filter called HFK328.  In order to make cheese they have to concentrate the milk by 

removing water from the system.  During this process, every day they have to stop for 7 hours to 

clean their membranes with acid, bases and enzymes.  That wastes a lot of time and has a large 

environmental impact even if they use cheap chemicals like they do. As such systems such as the 
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patterns that can improve ease of cleaning are useful in and of themselves.  Now the two types of 

cleaning are physical and chemical.  Typically most industries use both.  Physical cleaning 

requires using deionized (DI) water to remove foulants by either fluid dynamic flow or by 

diffusion of concentrated foulants on the surface into very clean DI water (for example, our lab 

uses 18MΩ DI water).  The first method where you flow water backwards through a membrane 

so is called back flow and is effective but not doable in all membrane systems.  Relaxation is the 

name where you let pure water soak the membranes and let foulants diffuse out.  Another 

approach is pulsatile and high agitation flow but as mentioned it is rather costly to do. Lastly 

there is a cross flow purge, which uses an increased surface shear to remove non-tightly adhered 

foulants.  In our milk experiments we will use relaxation and cross flow to clean out our 

membranes in our protocols.  In regards to chemical cleaning it really depends upon what the 

membrane is and what the foulant is. But for example in milk, which the primary foulant is 

casein micelle, a combination of acids, bases and enzymes are used to denature the protein and 

make it easier to remove (actually the acid step only serves to deactivate the enzyme given the 

acid they use, but more on that later in the milk section). 

OpenFOAM 
OpenFOAM is an open source C++ library for fluid dynamic simulations.  While the 

most basic uses are covered in an instruction manual, the lack of a gooey interface requires the 

user to be well versed in C++, mathematics and fluid dynamics to make advanced use of.  They 

are unfortunately known for having a harsh learning curve.  As such I'm going to cover the 

basics of OpenFOAM usage and leave the appendix for the detailed guide and the experimental 

section for how to duplicate my results.   
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There are three algorithms that handle the actual solution-solving portion.  They are the 

SIMPLE (Semi-Implicit Method for Pressure Linked Equations), PIMPLE (It doesn't actually 

stand for anything.  It is just a combination of PISO and SIMPLE so they merged the letters), and 

PISO (Pressure Implicit with Splitting of Operator) algorithms.  In our actual simulations we 

used SIMPLE for all the final results but used PIMPLE for some transient testing we did. The 

primary differences between PISO and SIMPLE besides the transient vs. steady state is that in 

PISO no under relaxation is applied and the momentum correction step can be performed more 

than once.  The PISO steps and a detailed OpenFOAM implementation of it can be found here2.  

PIMPLE is basically PISO but it is more robust than PISO and allows the user to input a control 

courant number and let the algorithm adjust the time step.  PISO you put the time step and need 

to make sure it will allow the courant number to be below one.   

I used the simpleFoam program to handle all the solving.  It uses the SIMPLE algorithm, 

so I will go into more details here of their processes.  SimpleFoam is a steady state solver 

designed for turbulent flows but with the ability to turn on the turbulent model and run laminar 

state systems.  It is unfortunately not designed for low Re solutions but with some solution 

control file modification it can run accurately if slightly slowly at low Re.  As usual it solves a 

modified navier-stokes equation and the continuity equation (equations 1.3 & 1.4).  A few notes, 

R is a modified term that encompasses the turbulent behavior by modification of the viscous 

stress but in our laminar case is  ∇ iR = −υ∇2U  and so simplifies to the normal navier-stokes. 

The terms are defined as follows: U is the velocity vector, ν is the kinematic viscosity, and p is 

the kinematic pressure. 

  ∇ i UU( ) +∇ iR = −∇p   (1.3) 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
2 https://openfoamwiki.net/index.php/OpenFOAM_guide/The_PISO_algorithm_in_OpenFOAM 
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  ∇ iU   (1.4) 

 

The SIMPLE algorithm is a standard segregated solution method meaning that U and p 

are solved separately and then coupled.  Convergence occurs when the residuals for each 

variable is reduced to below the convergence criteria specified by the user. The residuals are all 

actually normalized such that the residual is 1 on the first iteration (see equation 1.5 for residual).  

U is the velocity vector at a given iteration given by the subscript while r is the residual.  

 rn =
Un −Un−1

U1 −U0

  (1.5) 

The SIMPLE algorithm solves the breaks the navier stokes into several discretized matrix 

equations that it can actually solve. Equation 1.6 is the pressure equation, 1.7 is the continuity 

equation, 1.8 is the momentum equation and 1.9 while not having a name represents the 

neighboring cells and unsteady terms. (ap is a grouping of coefficients from the discretized 

velocity equations. p is the kinematic pressure, H(U) is an unnamed term that handles 

neighboring cells and unsteady terms, S is the outward facing face area vector, Uf is the velocity 

on the face, Δt is the time step) 3 
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3 http://openfoamwiki.net/index.php/The_SIMPLE_algorithm_in_OpenFOAM 
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 H (U) = − anUn
n
∑ + U

o

Δt
  (1.9) 

The SIMPLE algorithm is the following steps:4 

1. Set boundary conditions 

2. Solve discretized momentum equation to compute the intermediate velocity field 

3. Compute mass flux at each cell face 

4. Solver pressure equation and apply under-relaxation (under relaxation decreases 

the change between iterations as a mean to prevent overshooting the solution and 

increase solution stability at the cost of slowing down the rate at which the 

solution converges)  

5. Correct mass fluxes 

6. Correct velocities based off new pressure field (accuracy in pressure is the critical 

factor in SIMPLE so spend time in the fvSchemes and fvSolution file on the 

pressure terms) 

7. Update boundary conditions 

8. Repeat till convergence criteria is met for all variables 

Now I will explain the general premise of operation of OpenFOAM.  The first thing you 

do is creating your mesh.  Next you describe the initial conditions and boundary conditions in the 

"0" folder in your case file.  Each variable will have conditions. For a simple laminar flow only 

velocity and pressure are required to be described.  Next is the "constant" folder.  It consists of a 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
4 http://openfoamwiki.net/index.php/The_SIMPLE_algorithm_in_OpenFOAM 
https://en.wikipedia.org/wiki/SIMPLE_algorithm 



	   19	  

subfolder called "polyMesh" where that mesh you created in step 1 goes.  It also contains your 

transport, turbulence and RAS properties.  In our Newtonian laminar flow transport is just the 

kinematic viscosity.  Turbulence and RAS properties need to be turned off for the laminar flow.  

Lastly the "systems" folder contains much of the more complicated documents.  It contains the 

"controlDict", "decomposeParDict", "fvSchemes", "fvSolution", and "sampleDict".  These 

dictionaries and files determine the convergence, run time and accuracy of the solution along 

with post processing and parallelization.  More detailed information about everything can be 

found in the appendix; however, the velocity solver PBICG and pressure solver GAMG deserve 

a little more attention.  

The velocity solver, PBICG (Preconditioned Bi-Conjugate Gradient Solver for 

Asymmetric matrices) is more efficient for pressure when using over 1024 processors (which we 

were not).  It is a Krylov type solver.  Krylov Subspace solvers solve the matrix by use of 

orthogonal subsets that span the space.  They use schemes such as Lanczos iteration for 

hermitian matrices and Arnoldi iteration for general matrices to describe the space.  Lanczos is 

an adaption of the power methods to get the eigenvalues and eigenvectors of the space.  Arnoldi 

is also an adaption of the power methods but with general matrices.  As a result it produces a 

non-orthogonal basis that is than orthanormalized by the Gram-Schmidt method. [8] 

OpenFOAM stores its results as a single Matrix output of a list of values in order of 

stored points.  As such to gather and export data a subroutine called "sample" was used (hence 

the sample dictionary "sampleDict" in the systems folder).  Sample is one of the better defined 

and easier to use subroutines in OpenFOAM.  Sample functions by telling the type of 

information you want pulled along with all the various locations you want it pulled and what 

type of file format you want the exported data stored in.  Since OpenFOAM is a cell-based 
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system you also have to tell it an interpolation scheme and that can affect the values you receive 

so be careful and consistent. Post processing is handled visually in "paraFoam" or the paraview 

program or a third party software.  But the default post processing system does not have an easily 

accessible export system so come prepared with that foreknowledge.  

OpenFOAM has a few meshing requirements. The peskiest one is that no face can be 

shared by more than two cells.  This means that for hexahedral mesh that is generated in 

OpenFOAM is unable to have large meshing concentration gradients. Instead one must have 

dense meshing throughout the mesh.  I believe that uniform mesh is actually the best because it 

helps with post processing as well, but due to CPU hour constraints I understand the need to 

prioritize density in prime locations. As such third party software should be used for meshing 

either complicated geometry or geometry that requires significant concentration gradients.  I 

have additional information in the appendix on how to actually mesh in GMSH and open source 

meshing program and OpenFOAM directly along with the qualities of good mesh such as 

skewness, non-orthogonality and aspect ratio.  

Milk Experiments 
Milk is a complex fluid consisting of minerals, sugars, fats, and both soluble and 

insoluble proteins. As a complex fluid it was an asset for experimentation to further 

understanding of the industrial benefits of imprinted membranes.  Previous filtration had focused 

solely with silicon particles, which while informative, do not behave like most standard solutions 

that do need the filtration.  In addition, the dairy industry is a substantial user of membranes in its 

industrial processes.  The stage of filtration that our experiments are studying is an UF step 

where the products are an enriched casein micelles solution that is used for making cheese and a 

solution of soluble proteins, minerals, and lactose that is used for making whey [9].  One of the 
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reasons milk is being studied is that even now the fouling of skim milk is still not fully 

understood [10].  However, that isn't to say that we don't have several ideas of what is going on; I 

will address what is currently known later in the paper.  But first I would like to address where 

industry stands in its membrane and cleaning use.  Frequency of cleaning varied but the least 

frequently cleaned example was cleaning for 6 hours for every 25 hours of actual filtration [11].  

The problem is that frankly milk is highly fouling and it takes a lot of time and resources to clean 

it in place.  In addition, concerns for hygiene play a role in the frequency of cleaning [11]. This 

frequent use of cleaning cycles has an effect on both the lifetime (2-3 years) but also leads to a 

sizable decline in membrane performance during the early stages of its use [11].  Furthermore, 

the cleaning stages are not only expensive and time consuming but also contribute 1/3 of the 

negative environmental impacts of the whole process [10].  

While a complex solution, milk is a substance that experiences irreversible fouling while 

operating below the critical flux, even if that fouling is markedly reduced [12].  To make matters 

worse a significant portion of fouling can occur almost immediately [13].  In fact the fouling can 

occur just by dipping the membrane into milk [13].  This initial fouling is caused by protein 

adsorption on the surface of the membranes but tapers off within the first ten minutes of 

exposure [13].  To further exacerbate the problem there are several other fouling mechanisms at 

play and not all groups agree upon which mechanisms are dominant because several play 

different roles at different times. Some groups like Youravong and Metsamuuronen demonstrate 

that concentration polarization plays a major role in reduced permeate [12, 14]. Other groups like 

Rabiller illustrate that the gel layer that forms is ruled by casein micelles and how they deposit 

and bind to the surface [15].  He also put forward and agreed with Youravong that proteins 

caused the irreversible fouling and so cleaning should focus on that [15]. I think James does a 
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good job of describing the whole process.  Protein adsorption onto the surface and in the 

membrane can restrict pore access and ease of flow.  But the rejected proteins and other particles 

accumulate near the surface due to slow back mass transport (which is something we aim to fix 

with our patterns) and a concentration polarization occurs.  Then the concentration polarization 

can become dense enough to form a gel layer.  The gel layer can either further compact or grow 

restricting permeation [13].  Berg proposes that the three main solutes that cause fouling are 

salts, lactose (although the lactose can easily be washed away by a standard wash) and proteins.  

His experiments showed that while salt didn't foul itself it aided the fouling of the lactose and 

proteins [11].  He noted that the acid, which is used to dissolve inorganic salts such as calcium 

phosphate and wash them away, had a negligible effect on the development of resistance [11]. 

Jimenzlopez isolated Casein micelles as the primary irreversible foulant, but that various other 

factors (such as soluble proteins or salts) contributed to how much fouling occurred.  In 

particular he showed that the casein micelles (diameter 187nm±7nm) networked with calcium 

ions to bond to each other and the surface [9].   

Seeing how big fouling is, operating below the critical flux is often a goal of milk 

experimentation, even though UF of skimmed milk is often done in the limiting flux region far 

beyond the critical flux (see figure 7) [12].  Critical flux increases with wall shear stress but 

some work shows that protein denaturing from significant amounts of repeated cycles and high 

shear to cause an accumulation of membrane fouling leading to the postulation that their is an 

optimum cross flow velocity beyond which the critical flux decreases [12, 14].  
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Figure 7: Critical and limiting flux of skim milk plotted in traditional TMP vs. Flux format [10]. 

Lastly we will focus on industry cleaning and then the literature behind our own modified 

cleaning cycles.  The standard cleaning cycle follows similar to figure 8 but with significantly 

longer time and more repeated cycles. Meanwhile figure 9 shows the flux recovery observed 

from each of the stages.  Typically the milk in industry will be run at 50ºC [12] but this particular 

paper did not.  We do see that the enzyme does the majority of cleaning before appearing that the 

acid significantly cleans the surface.  I will now remind people that the acid serves to turn off the 

enzymes and to dissolves salts, however, other work showed that salts themselves don't 

particularly foul the membrane.   
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Figure 8: Standard lab cleaning cycle mirroring industry-cleaning procedures with reduced times 
[11]. 

 

Figure 9: Demonstrates the experimentally recovered fluxes after each of the individual steps 
[11]. 

As such Paugam's group decided to investigate and their discovery was remarkable.  

They found that nitric acid only increased the flux but did not clean the membrane by removing 

proteins (Figure 10).  In fact they found that just rinsing with water after the fat free milk UF that 

there were no minerals left (done by SEM-EDX) [16].  Now while all flux recovery is useful for 

industry, it isn't useful for laboratory experiments.  Since our lab did not have access to the 

enzyme and their proprietary surfactants and chelators [11] this work shows that the acid step 

should be left out.  This is because the higher the efficacy of the caustic cleaning, the lower the 

impact from nitric acid; however, the worse a job, the more nitric acid over estimates the 

cleaning efficiency[16].  This is due to the increase in overall hydrophobicity of the membrane 

due to the adsorption of the nitrate on proteins.  In face you can see acids like Citric acid remove 

proteins as well, but are unfortunately more expensive since they are derived from foods[16].   
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Figure 10: DI water flux recovery (bar charts) and % of removed proteins (black squares) after 
respective treatments [16]. 
Motivation  

This section will seek to address why we are interested in nano scale imprints given that 

random roughness is known to increase fouling.  To see what makes patterned periodic 

roughness different we must examine the work done by Maruf who studied experimentally nano 

scale patterned membranes. The benefits to the membranes can be summarized as increased flux 

rate, increased critical flux, later onset of fouling, slower growth of cake layer, and higher flux 

recovery.  I will now go figure by figure with why each is beneficial to the membrane filtration 

industry spending special attention with the implications with the dairy industry.   

Figure 11 shows that unlike micron sized patterns made with the phase inversion process, 

the increase in surface area does not directly translate to an increase in permeance.  In phase 

inversion the membrane is formed directly in contact with the a patterned surface substrate so 

when the membrane is finished forming it already has the pattern on it and the surface pores are 
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completely normal.  This allows for higher surface area to increase the permeation. With nano 

scale imprints, which cannot be imparted by the phase inversion process and are instead imparted 

through our NIL technology cause some deformation of the surface pores leading to an increased 

rejection.  What happens is on the surface that is compressed there is a slight decrease in porosity 

[3].  This translates to a slightly lower pure water permeance even with the increase in surface 

area.  However, the property that is more valuable than pure water permeance is flux during 

filtration.  Figure 11 illustrates that the patterned membrane has a higher permeate flux for a 

given TMP.  This is most likely due to the decrease in fouling and surface build up rather than 

the change to porosity given the results of pure water permeance but it hasn't been shown 

explicitly.  A factor we also see is the size dependence of the particle.  These experiments were 

all performed on membranes with patterns seen in figure 12 with a width of 417nm and height of 

110nm.  Changes to these parameters will impact the effect on particles.  This is important to the 

dairy industry and as well as other groups as it means more products for the same energy input 

and time.  
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Figure 11: Pure water permeance is plotted along the strait lines while filtrations done with two 
different sized particles were also performed and represented by the noted shapes [17] 

 
Figure 12: The spacing of the nano-scale imprinted membrane[17]. 

Figure 13 compares critical flux values as well as fouling behavior above them.  The 

critical flux was effectively doubled between patterned and unpatterned membrane.  For reasons 

explained with critical flux this means that while the energy cost increases you can run at a much 

higher flux rate, increasing the product per time ratio without having to do increased cleaning 

also entailing a profit for the industry. As seen when run above the critical flux fouling will cause 

the permeate to drop below the critical flux value explaining the logic behind why most systems 
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desire to run below the critical flux.  Unfortunately not all systems have clear critical fluxes.  As 

previously explained milk will foul under all circumstances but the fouling reduction is still 

useful but no longer a mandatory reason to remain below it.  

 

Figure 13: Experimental plot demonstrating the higher critical flux of the patterned membrane 
and the benefits of running below the critical flux for overall production capabilities.[17] 

In figure 14 the onset of fouling is directly related to the higher critical flux value for the 

patterned membrane.  The new information presented here is the decreased growth rate of the 

cake layer.  This corresponds to the ability to run for a longer period of time before having to do 

cleaning.  This would be particularly beneficial to the dairy industry but this particular property 

does not apply to complex fluids with milk's unique fouling capabilities, but will still be useful 

for a variety of other filtration applications.  
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Figure 14: Illustrates the delay of cake growth and the delay in the onset of fouling.[17] 

Figure 15 illustrates the real gold value for groups like the dairy industry, a more 

effective cleaning.  As mentioned previously cleaning is very expensive, takes a long time and 

has to be done frequently.  The only result we have so far obtained experimentally is that flux 

recovery is improved with the patterns and milk filtration.  However, for semi complex fluids the 

overall benefit to filtration industries is phenomenal.   
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Figure 15: Illustrates the recovery effect of the patterning.  Section three is a PBS filtration at 
276 kPa.  Section four is a PBS and BSA filtration at 276 kPa.  After section four there is a 
membrane cleaning cycle.  Section 5 is a fresh PBS filtration at 276 kPa.  Then there is a DI 
water flush.  Lastly in section seven there is another PBS filtration at 276 kPa. [3] 

I will now focus on why we chose the parameters that we did to study: the angle of 

attack, permeation rate, pattern height, and cross flow speed.  Some has already been explained.  

We theorized that different particle sizes would require different spacing’s and so we decided to 

vary pattern height.  As already mentioned fouling mechanisms relate to cross flow speed and so 

that was varied.  Due to critical flux we decided to vary the permeation rate with our CFD work.  

Angle of attack had initial demonstration that flow direction mattered with a patterned surface 

(figure 16).  However, all of these parameters were also studied with experiments by Maruf and 

so serve as a comparison point for our CFD solutions.  
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Figure 16: Depicts the fouling conditions and angles of attacks between a patterned and pristine 
membrane [17].  
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Chapter 3 

CFD Experiments 

Solver Validation 

When using a new CFD program it is important to validate the program's solutions with 

analytic cases before moving onto simulations with unknown answers.  The better this is done 

the more one can trust the results of the simulations whose answers are unknown.  As such it is 

important to validate the program under conditions similar to unknown solutions.  OpenFOAM 

as a program had a wide variety of solvers to choose from but no steady state laminar solver.  

This was initially a problem since we were trying to solve that type of problem.  However, 

OpenFOAM is readily modifiable for both code and case procedures.  With a significant amount 

of trial and error, settings were found that produced accurate results matching the analytic 

solution to these three cases: biharmonic equation (cavity with a lid), slit flow and lid driven 

flow.  In addition to the analytic cases, we will be doing a mesh sizing comparison of the actual 

experiment to make sure that all the particulars of the fluid flow are fully captured and the mesh 

is refined enough for our purposes.  

I will save the final specifics of the settings for the methods section of the experiment and 

instead walk through the analytic cases and our results.  The biharmonic equation (1.10)[18] in 

fluid flow is used to describe the flow and formation of vortices in a closed cavity with a moving 

lid.  The analytic solution of this case gives the location of the center of the recirculation centers 

as seen in figure 17 and table 1. We will validate the location of the first and second vortex but 

only visually confirm the existence of the corner vortices.   

 ∇4ψ = 0   (1.10) 
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Figure 17: Visual representation of the location of the vortices in the analytic solution and their 
values for a given aspect ratio of 2 [18].   
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Table 1: Biharmonic equation solution for moving lid in a cavity.  List of locations of the 
vortexes as a function of aspect ratio and mesh size.  Our simulation uses the aspect ratio of 
2[18]. 

The cavity simulation was run with the solver simpleFoam with an absolute convergence 

tolerance of 10-9.  This took 140,000 iterations to arrive at the solution. Due to the coding of 

OpenFOAM's stream functions the starting points and scaling factors of stream functions will be 

different then in the literature.  However, since we are seeking only the locations of the vortices 

that will be acceptable.  Figure 18 shows the whole domain that was simulated.  Due to axis 

choices mine is horizontal and not vertical.  Still the left wall is the wall that moves upward. 

Meanwhile, Figures 19-21 will show the vortices mentioned in Figure 17 and Table 1.  The error 

for both locations is less than 1% and as such is an acceptable value.  

	  

Fig 18: Shows the complete domain for an aspect ratio 2 in a cavity with a moving lid.  The 
picture depicts the various streamlines that are generated. 
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Fig 19: The first vortex generated by the simulation.  The black line represents the center of the 
vortex from the simulation while the red line indicates the anaytic center of the origin.  In this 
simulation it was only 2 mesh points away.  That corresponds to only a 0.4% error in the location 
of the vortex.  
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Fig 20: The second vortex is off by 3 mesh points.  Here the vortex center is 79.5% of the way 
down leading to a 0.75% error.  
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Fig 21: The corner vortex, while not having a specified location center does appear to show up 
like in the analytic solution at both corners.  However, it is at the scale where additional mesh 
refinement would prove useful.  

Overall simpleFoam, which is designed as a steady state turbulent flow solver, accurately 

predicts the locations of the vortices along with flow features.  The original case where this flow 

had the initial default conditions took 1.4 million iterations to reach the same result.  However, in 

the slit flow case the analytic solution was unachievable under the initial conditions.  

Slit flow is also known as plane Poiseuille flow (figure 22).  It is flow between two 

parallel plates where the width between two plates is much smaller than the length of the 

simulation.  The flow profile is parabolic and is driven by a pressure gradient but can also have a 

moving top plate.  In this simulation we used the simplest case, which is driven by only a 

pressure gradient.  This was represented by a uniform inlet velocity boundary to provide the 
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initial mass flow and to develop into the full parabolic solution.  This was done to make it easy to 

identify the max velocity which is 3/2 the average velocity which is also the inlet velocity.   

	  
Figure 22: The Plane Poiseuille flow case we are simulating which involves fixed walls5 

The initial results with the default conditions provided by OpenFOAM yielded the 

following disaster seen in figure 23 and 24.  This is why validation must be done.  It should be 

noted that the solution converged by OpenFOAM standards for simpleFoam under the default 

conditions.  By modifying the fvSchemes and fvSolution files to what is seen in the appendix 

and discussed in great details later in the methods section, I was able to then correct this to the 

analytic solution as seen in figures 24 and 25.  The fluid dynamic conditions applied in this flow 

is an inlet velocity of 0.25m/s with a Re of 1 and an aspect ratio of 1/2. I will note that in Figure 

27 we had been experimenting with the idea of non-uniform density of mesh spacing.  While it 

provides accurate results near the surface of the membrane our post processing system doesn't 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
5 https://uwaterloo.ca/applied-mathematics/sites/ca.applied-
mathematics/files/uploads/images/poiseuille_flow.jpg 
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handle smooth interpolation schemes well and so the data becomes rough and deviates as it gets 

farther away from the "membrane" surface.  

	  

Figure 23: The full velocity profile of the plane Poiseuille flow under default conditions.  It is 
fairly obvious that while the CFD is converged, that the simulation was not fully developed at 
all. 
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Figure 24: This is the velocity profile at the slice indicated by the red line in the previous picture.  
As is seen, the flow is strictly a plug flow and not slit flow result.   
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Figure 25: Velocity flow profile for slit flow after adjustments were made to the fvSchemes and 
fvSolutions files.  

	  

Figure 26: the velocity profile from the slit flow after the modifications to the fvSolution and 
fvSchemes file.  Details the correct result matching the analytic solution to within 0.5% 
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Using the same systems folder files the moving slit experiment was done with an inlet 

velocity of 20m/s and an aspect ratio of 2.  The analytic solution matched fairly well with our 

experimental results (Fig 27).  Figure 28 is included as a validation that it works for the whole 

domain. This concludes our matching to analytic solutions. Up next is mesh refinement.  

	  
Figure 27: The velocity profile for the analytic comparison of the moving top flow.  

	  
Figure 28: The horizontal velocity of a lid driven cavity at velocity of 20m/s with 5nm vertical 
mesh spacing.  
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Considering mesh refinement is an essential task for the validation of CFD results.  The 

nature of high cost of CFD means we want to make spacing as large as possible while still 

resolving the essential flow features. What follows is the result of three simulations of varying 

meshes densities (~10nm, ~20nm, and ~30nm).  Jumping to the point, in figure 29 they plainly 

overlap.  Furthermore, I checked error variation and while the error discrepancy was fairly large 

for the last points because my mesh got coarser than my sampling (two points were sampled in 

the same cell).  However, the average discrepancy was ~1% between coarsest ~30nm spacing 

and the most refined ~10nm spacing. As such, I am confident that my mesh spacing is refined 

enough to ensure accurate results.  Further mesh refinement would have only served to make the 

sampling easier, but is limited by CFD capabilities and the necessity to do the simulations in 3D.  

	  
Figure 29: Demonstration of a random slice of the 160nm patterned membrane 90-degree case 
with a Re of 239. 
Motivation on Fouling 

Earlier I promised more detailed information on a variety of subjects.  I will now address 

those topics here.  There will be a little bit of overlap, but much greater details here, especially 
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concerning modeling.  So the CFD focusing on examining previous experimental work [3, 4, 17] 

on the hydrodynamics in and around submicron patterns, which were imprinted on a commercial 

UF membranes. Experimentally it has been shown that with nano-scale patterns the fouling 

mitigation depends upon angle of attack, pattern height and cross flow speed, and permeation 

rate for simple solutions (silica particles of varying size).  In order to do simulation experiments 

with the critical flux we'd need a model that included particles.  That is currently outside the 

scope of our work but might be done with future work.  Our lab developed novel techniques to 

imprint nano-scale patterns on a membrane surface and retain its porosity replacing the older 

techniques of phase inversion that did not support nano scale patterns [19-22].  The motivation 

for the development of these membranes, and these modeling studies, is that flux-decline and 

fouling are major limiting factors for the continuous operation of pressure-driven separation 

processes such as ultrafiltration (UF), especially during the filtration of protein solutions [23, 

24]. Flux decline, and its major subset "fouling", is a natural result of selective membrane-based 

separations [5] and is a hindrance. The deposition of retained particles, macromolecules, 

inorganic and biological materials, at the membrane surface and/or inside the pores [25, 26], 

often can only be partially removed under harsh chemical treatment [27, 28] causing more 

energy consumption, loss of productivity, and shortened membrane lifetime [25].  Mitigation of 

membrane fouling still remains a grand challenge for most membrane applications.  

Many methods for fouling mitigation do exist.  The reason they have not been widely 

implemented in industry is due to flaws within each method that increase the difficulty, cost, or 

environmental impacts from the previous mitigation methods.  Controlling interactions between 

the membrane surface and the feed solution is critical for fouling mitigation [26, 29].  A popular 

and partially used method is modifying the surface of the membrane.  By increasing its 
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hydrophilicty you'll have an increased water permeance [26].  The downside is that it doesn't 

affect the internal parts of the membrane nor any solutes that are desired permeate that are less 

hydrophilic.  In other cases this technique is an undesired affect as it artificially makes the 

membranes look cleaner but does not largely contribute to the functionality of separation in 

membranes.  An example of this is nitric acid, which is used during the cleaning of membranes 

from milk filtration. It doesn't actually clean the membrane and is used only for shutting down an 

enzyme used for cleaning in the previous step[16]. Lastly while the cost of nitric acid isn't too 

bad, its not a particularly environmentally friendly chemical, especially in the concentrations 

used.  It takes a lot of resources to properly dispose of it. Another possible solution is surface and 

flow system topology.  By altering the membrane topology or the topology in the flow cell one 

can altar the fluid dynamics near the membrane surface or in the bulk flow.  By doing so many 

groups aim to reduce the fouling.  Several of these methods do indeed work but also have flaws, 

usually in the scale up to industry quantity. By altering the surface topology one can create near 

surface vortices, promote mixing and increase shear-induced diffusion.  Increased shear has been 

studied without the use of surface patterns and has been shown to be an effective way to reduce 

fouling[30]. Using patterns, the geometry can significantly affect the micron-scale pattern's 

positive effect.  Prism and triangle trenches, where recirculation vortices make up the bulk of the 

pattern [31-33], are not as effective as the sinusoidal patterns [34] where flow follows the 

surface.  While micron-sized patterns for particle fouling is still being investigated, the effect of 

these patterns on biofouling have been very successful [35, 36]. One pattern, not on a membrane, 

by the name of Sharklet® is already commercialized for resistance to bacteria settling on the 

surface [35].  Unfortunately, little study has been done with nano-scale patterns, where the 

pattern features are smaller than the primary chemical foulant. In fact of the many groups 
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running CFD simulations over patterned surface none simulate on nanometer sized patterns.  A 

group from Korea [33], runs simulations and experiments on membranes with 400µm x 200µm 

prism patterns. This is an entire three orders of magnitude larger than ours.  As a result different 

phenomena would play different roles between their work and ours.  Unfortunately current 

literature focuses on the hundreds of micron scales and the atomic scales at the moment meaning 

our results are all novel in nature.  

Models for fouling mitigation 
In the 1970's Eckstein and his colleagues first quantified the phenomena that would later 

be known as shear induced diffusion.  In their first paper, they related the self-diffusion 

coefficient (D) to concentration and several other terms in a dimensionless relation. While the 

full equation (1.11) shows a multitude of terms, the concentration φ( )  and the gradient of the 

strain rate 
a ∂

2u
∂y2

ω
 are the two most important quantities to us [37]. Unlike the nonlinearity term 

discussed later ω  is a constant. That concentration as the paper shows is the heaviest term is 

highly logical.  This term measures the gradient of the shear rate over the cross-section of a 

particle.  It gives the steady state slip velocity and the transverse lifting force [38]. The transverse 

lifting force in the patterned membranes is what we currently hypothesize to reduce the fouling 

(particle deposition). Specifically, our results to do not agree with the inertial lift theory (see 

equation 1.12) that is an alternative to the shear-induced diffusion models [39] nor with the 

critical flux modeling that had experimental fitting (equation 1.13)[4]. However under their 

experimental conditions the term that is of interest for the CFD, the strain rate term, is 

approximated as zero [37].   
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Ingber developed an improved transport model for shear-induced diffusion under 

physical conditions similar to those used in our experiment and simulations. Adding a slip 

boundary at the wall and modeling the diffusion coefficients as linear functions of a non-linearity 

parameter make these improvements.  The result is a non-linearity parameter that directly and 

linearly correlates with shear induced diffusion that can be used as a model for our data. A 

particular finding of Ingber's is that for neutrally buoyant particles, the particles migrate from a 

high shear rate to a low shear rate [40].  Our results show that over certain regions of the 

patterned membrane, near the surface there is an increase in shear rate over a flat membrane.  

This is part of what contributes to particle migration away from the surface more effectively than 

in pristine membranes. A previous study by Ingber in 2008 [41] showed the particle migration to 

areas of low shear when the flow had nonlinear shear.  In a smooth membrane the shear is of 

course linear.  Our patterns cause near surface nonlinearity guaranteeing this benefit and that the 

non-linear parameter (1.14) is valid for our case examinations.  

 
 
ξnl =

a ∇ !γ
!γ + !γ NL( )   (1.14) 

 
 
!γ NL =

a
R0
!γ 0   (1.15) 

In Ingber's paper he illustrates his model with a Couette flow system from a stationary 

outer cylinder and a rotating inner cylinder. For several reasons we choose to approximate that 
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 !γ NL  is 0.  One of such is that the paper admits that the non local shear rate  !γ 0  plays a minimal 

role in Couette flow which our simulation of the surface approximates [40].  In addition, since 

we are only using a small part of the system, the R0 term is significantly larger than the particle 

radius used in our lab experiments.  As such we choose for simplification of observations that is 

safe to reduce the nonlinearity parameter to the simple relationship in equation 1.16. Although 

our simulations did not include particles, we can still validate the correlation that was seen with 

the particle size in the experiments.  

 
 
ξNL =

a ∇ !γ
!γ

  (1.16) 

Geometry 
So now I need to provide the detailed information on the 4 geometries used in the case: 

the jet flow cell, cross flow cell and their each respective nano-scale cases.  So starting with the 

impinging jet flow cell, low-resolution (smallest elements ~10 µm) CFD modeling of the unique 

flow cell system used in [3, 17] was performed to determine the boundary conditions for analysis 

of fluid flow at the ~10 nm scale above the membrane. The cell is axisymmetric so a two-

dimensional model using radial symmetry (Figure 30a) with a high mesh density at the bottom 

surface (where the membrane is located) was generated. The feed entrance tube has a Reynolds 

number (Re) of 114, which is still in the laminar region. The second region consists of the rest of 

the flow cell, which has a Re of ~7.2 (also laminar flow regime). The two Re were derived from 

the inlet volumetric flow rate being used in the two different volume regions: the inlet tube and 

the free open bulk volume (see appendix). The finite volume domain mesh was created in GMSH 

with at total of 77584 cells giving a nearest neighbor node distance of 10 µm near the surface of 

the membrane. The mesh is hexagonal and has a non-orthogonality average of 7.3 and a 
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maximum of 31.6 (non-orthogonality is a measurement of mesh quality and a non-orthogonality 

below 40 is considered good mesh). 

	  
Figure 30: a) 2D axisymmetric domain of the impinging jet flow cell; b) 2D slice of the 90º and 
0º patterned simulation; and c) 2D slice of the base case used for comparison. Grey portion is the 
fluid domain and white is the domain boundary.  

The nominal geometry for the nano-scale patterned membrane used in the impinging jet 

flow experiments consisted of line gratings with a periodicity of 834 nm, depth of 110 nm and a 

line to space ratio of 1:1 (figure 30b). We examined the flow over these patterns using the 

domain depicted in Figure 1b. Its dimensions were 2000 nm height and 4587 nm length and 

width. The 90° case uses the left boundary (Figure 31) as the flow inlet surface (boundary 

condition), while the 0° case uses the front boundary as the flow inlet surface. The top is an open 

pressure and flow boundary that mimics the fact that this simulation is just a segment of a larger 

flow. The crenel extends down beyond the 2000 nm base. The base case (without patterns) is a 
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simple rectangle without the crenels and merlons at the bottom surface (Figure 31c). We 

incorporated the transition from bulk flow to this size pattern following figure 32. 

	  
Figure 31: The 90º and 0º flow directions on the patterned mesh domain. 
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Figure 32: Impinging Jet flow cell transition to the nano scale patterned case of membrane 
surface.  

3D cases were run for the 0°, 90° and base cases. Course uniform node spacing 

simulations were used to identify flow regions where high resolution was needed due to large 

gradients.  These areas were near the membrane and pattern.  The spacing and geometry was 

then organized to minimize CPU time cost for refined mesh runs. Periodic boundary conditions 

were used on the sides of the domain. Flow perpendicular to the periodic boundaries was below 

convergence criteria for the 90º and base case informing us that future runs could be done in 2D. 

All three meshes were generated in OpenFOAM with hexahedral mesh and have a non-

orthogonality of 0. The base cases had 690,000 cells with a node's nearest neighbor an average of 

10nm away (all internode distance refers to nearest neighbor). The 90º cases had a total of 
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2,864,400 cells with a node an average of every 10nm. The 0º case had 1,848,000 cells with a 

node an average of every 30nm. Both 0º and 90º in the crenels have mesh nodes every 10nm. 

The cross flow cell fixture (Figure 33a) used in later experiments [3, 25] had a cavity at 

the top (for a stirrer bar to promote turbulent mixing) that was just left open (without a stirrer) to 

the flow in these experiments. This fixture's simulation domain was also created in GMSH but 

with prism meshing and has an average node spacing of 0.17 µm with a total of 3609275 cells. 

The non-orthogonality of this mesh is about the same as the other domains with an average of 5.6 

and maximum of 33.7. In this cross flow cell fixture the membrane's pattern height and the Re 

were varied based on the specific experiments and had the Re's 120, 180, 239, 299 and 358 [4].  
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Figure 33: a) shows the 3D half-domain used in the cross flow cell. To reduce computational 
time, a symmetric plane boundary condition was used and the simulation was run over half the 
cell as shown. b) 2D slice of the membrane surface with the high pattern height. c) 2D slice of 
the membrane surface with the low pattern height. Grey portion is the fluid domain and white is 
the domain boundary. 

Using the simulations from the cross flow filtration cell a linear inlet velocity profile was 

created by a best fit from the previous simulation (Figure 34 for meshing change). Like the other 

near surface simulations, periodic boundary conditions are used on the sides and the top is an 

open domain condition. For comparison purposes the number of crenels was chosen so that the 

overall length of the domain would be similar to the near surface simulations of the jet flow cell. 

There is five types of cases run here: a base case with no patterns, and both 90º and 0º with low 
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and high pattern heights (low is 60 nm, high is 160nm) (Figure 33b,c). High 0º has 1,052,250 

hexahedral cells with an average density of 8,000 nm3 near the surface.  High 90º has 210,450 

hexahedral cells with an average nearest neighbor node distance of 20 nm3 near the surface.  

Base has 172500 hexahedral cells with an average nearest neighbor node distance of 20 nm3.  

Low 90º has 204450 cells with an average nearest neighbor node distance of 20 nm3. Low 0º has 

1,022,250 cells with an average nearest neighbor node distance of 34 nm3. 

	  
Figure 34: The magnification and progression of mesh from the flow cell to the near surface 
patterns.  
Solver Specifications 

The experimental results from an impinging jet flow cell system and a cross flow cell 

system are the subject of our studies. Two open source programs are used for creating the mesh 

geometry and running the simulations: GMSH6 and OpenFOAM7 (a C++ finite volume method 

library, with no graphical user interface (GUI), version 2.1.1 – Ubuntu pack). The simulations 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
6 GMSH, 2012 (http://geuz.org/gmsh/) 

7	  OpenFOAM,	  2012	  (http://www.openfoam.org)	  
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were run on a parallel research computer cluster ("Janus")8. Membrane and filtration parameters 

that were studied are permeation rate (normal velocity through the membrane); pattern height; 

near surface, cross flow rate, and angle-of-attack. Two angles-of-attack were used: 0° and 90° to 

the pattern's merlons (figure 35). Generating a suitable mesh for periodic boundary conditions, 

with an angle-of-attack of 45°, has proved problematic thus far. (Note: heretofore angle-of-attack 

cases will be referred to simply as either 0° and 90°.) 

 

Figure 35: The Merlon is the non-depressed portion of the membrane.  It has undisturbed 
permeability qualities.  The Crenel is the low part of the membrane and here represents the 
compressed potion of the membrane that gives it the pattern.  It suffers from a decrease in 
permeability caused by changes to the porosity during patterning.  

Two solvers were used in the simulations: simpleFoam and pimpleFoam. SimpleFoam is 

designed for use as a steady state, incompressible turbulent flow solver. However the turbulent 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
8	  This	  work	  utilized	  the	  Janus	  supercomputer,	  which	  is	  supported	  by	  the	  National	  Science	  Foundation	  (award	  number	  CNS-‐0821794)	  

and	  the	  University	  of	  Colorado	  Boulder.	  The	  Janus	  supercomputer	  is	  a	  joint	  effort	  of	  the	  University	  of	  Colorado	  Boulder,	  the	  University	  of	  

Colorado	  Denver	  and	  the	  National	  Center	  for	  Atmospheric	  Research.	  
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component can be removed or turned off. SimpleFoam uses the SIMPLE algorithm9, which is an 

iterative process that uses under-relaxation.  PimpleFoam uses the PIMPLE algorithm10, which is 

a hybrid algorithm of the SIMPLE and PISO algorithm11. PimpleFoam is a transient solver that is 

designed for large time steps and incompressible flow. It is a handy code in that you can set the 

Courant Number in the simulation and, thus, can exert finer control on the stability and speed of 

the solution and convergence. The Courant number, also referred to as the Courant-Friedrichs-

Lewy condition, states that the distance traveled by a particle in a cell should not exit the cell in a 

given time step. The Courant number (equation 1.17) in a transient simulation should always be 

below 1. 

 C = uxΔt
Δx

+
uyΔt
Δy

+
uzΔt
Δz

  (1.17) 

Steady state solvers were run to convergence except when unable to due to flow in the 

tertiary direction (perpendicular to periodic boundaries) being a number smaller than 

convergence levels but not fractional levels of change. On the other hand, when using the 

transient solvers it is often not possible to run for several domain residence times because of the 

computational time costs. Thus, we first ran a steady state solution initially and then performed a 

transient analysis to observe if there are any transient effects in the fully developed system. In 

general, the only transient effects observed were in the 0° case where the lack of fixed 

boundaries allows for time-dependent sideways oscillations transverse to the main flow 

direction. And now the details I promised you earlier.  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
9https://openfoamwiki.net/index.php/OpenFOAM_guide/The_SIMPLE_algorithm_in_OpenFOA
M 
10http://openfoamwiki.net/index.php/OpenFOAM_guide/The_PIMPLE_algorithm_in_OpenFOA
M 
11https://openfoamwiki.net/index.php/OpenFOAM_guide/The_PISO_algorithm_in_OpenFOAM 
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In the “fvSchemes” file the different finite volume discretization schemes are selected.  

There are seven different categories of schemes that need to be selected: time, gradient, 

divergence, laplacian, interpolation, surface normal gradient, and flux requirement. For the time 

scheme “steadyState” is specified for steady state systems of course, while with the transient 

system CrankNicolson with a value of 0.5 was used. With the interpolation scheme linear 

interpolation of velocity is specified while with under the flux requirement scheme no fluxes are 

required. The “snGradSchemes” is used to solve the Laplacian term by Gaussian integration. 

“Explicit non-orthogonal correction” (OpenFOAM users guide) is chosen as the condition for the 

surface normal gradient scheme. cellMDLimited Gauss linear 0.5 is specified for pressure and 

velocity for the gradient scheme, while Gauss linear corrected for the laplacian schemes. In 

divSchemes for the velocity component listed as div(phi,U) bounded Gauss linearUpwind 

grad(U) is specified but all other conditions can be set to Gauss linear. 

In the “fvSolution” file algorithms, tolerances, and linear equation solvers are specified.  

This is one of the more important files because it details not only convergence criteria but also 

the actual mathematical techniques that will be used to arrive at the numerical solutions.  There 

are three categories in this file: solvers, algorithm, and relaxation factors.  There are four solver 

categories: pressure, pressure final, velocity, and velocity final.  Depending upon your running 

conditions, the quality of the mesh, algorithm, and your discretization scheme, different solver 

options are useful.  For simplicity and briefness I will just describe the settings I used and 

additional information on the rest can be seen in (insert citations).  For pressure, the Generalized 

Geometric-Algebraic Multi-grid (GAMG) solver was used.  It is the optimal OpenFOAM 

pressure choice for parallelized systems with less than 1024 processors at which point the Krylov 

type solvers (PBiCG and PCG) tend to do better.  In fact PBiCG (preconditioned bi-conjugate 
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gradient) solver works fairly well for the velocity matrix manipulation. With the GAMG solver I 

used the DICGaussSiedel smoother with 100 cells in the coarsest levels and a tolerance and 

relative tolerance as 1e-11 and 0 for the final conditions.  DIC (simplified diagonal-based 

incomplete Cholesky smoother for symmetric matrices), GaussSeidel (Gauss Seidel method is a 

technique used to solve a linear system of equations.  The method is an improved version of the 

Jacobi method.  Convergence is only guaranteed if the matrix is either diagonally dominant or 

symmetric and positive definite) are combined into the DICGaussSeidel model which is an 

effective smoother that runs DIC and then Gauss Seidel to smooth any irregularity peaks from 

DIC.  Lastly for GAMG, the number of cells in the coarsest level determines that amount of 

smoothing that goes into the pressure.  This number should be carefully chosen based off the 

density of mesh and the desired resolution.  It corresponds to the number of cells that are 

temporarily merged together for a coarse pressure calculation before being fine-tuned for each of 

the cells in the domain.  The velocity condition PBiCG is much simpler and just requires a 

preconditioner instead of a smoother, which I chose DILU (Simplified diagonal-based 

incomplete LU smoother for asymmetric matrices).  Lastly, for velocity we chose a final 

tolerance of 1e-10 and relative tolerance of 0. This leads to the algorithm control. There are two 

key factors here: the Non Orthogonal Correctors which can be left as 0 for mesh geometries was 

a maximum mesh non-orthogonality less than 40; the second is the residual control. These 

numbers are the final convergence criteria. They need to be smaller than the individual pressure 

and velocity tolerances because otherwise the solution cannot converge.  I used 1e-9, which 

means that my accuracy affectively is around 6 to 7 significant figures. Lastly the relaxation 

factors affect the stability of the solution and the speed at which it converges.  For duplication I 

use 0.3 for pressure and 0.5 for velocity. 
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Metrics 
Next I need to cover the metrics we used. Our metrics of examination are the shear rate 

 !γ( ) , the magnitude of the gradient of the shear rate  ∇ !γ( ) , and the non linearity term ξnl( ) .  

Over all the patterned cases we examine those quantities.  A wide variety of literature focuses on 

the shear rate and its contribution.  The magnitude of the gradient appears in literature but is 

often dismissed by itself as not contributing much.  After our work we would propose that with 

patterned membranes unknown mechanics that depend upon it play a more significant role.  

Meanwhile, the nonlinearity term which we had theorized played a significant role, instead only 

describes one of the phenomena changes.  

Bulk Jet Flow Results 
The first experiment done used the impinging jet flow cell.  Its purpose was to measure 

the effect of angle of attack and determine the critical flux along with other properties.  As such 

it was the first system that we simulated and gathered initial data from.  I started off simulating 

the entire flow cell domain with a radially symmetric simulation to figure out starting points for 

the nano scale simulation over the pattern.  Due to the size difference of the whole cell vs. the 

patterns it is computationally impossible even with the largest supercomputer to simulate 

directly.  As such our simulation focuses on using it as a set up for the fouling cases.  Figures 36 

and 37 show the results in the relevant areas from the impinging jet flow cell.  There are no 

recirculation values near the membrane and in fact it is heavily parallel flow near the bottom. 

Table 2 will summarize the initial boundary condition data we collected from data fits.   
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Figure 36: Shows the magnitude of the velocity over the whole domain of the impinging jet flow 
cell.  There are no signs of recirculation in the domain and fluid flow is very standard. 
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Figure 37: Shows the streamlines and the velocity vectors in the area right above the membrane.  

 
Table 2: Shows the maximum radial velocities as a function of the permeate boundary condition 
values.  These radial velocities were used to help create the inlet condition for the detailed mesh 
simulations.   
Nano Jet Flow Results 

As with the bulk flow, I'll focus on showing the results over the whole domain first.  As 

mentioned shear stress is the component that I focused on this stage.  To make things clear, the 

shear rate described will always be in the flow direction with respect to distance away from the 

surface of the membrane.  Figure 38 shows the normalized shear stress (Pa/kg•m3) for the base 

Maximum'Radial'
Velocity'(cm/s)

Permeate'Velocity'
(μm/s)

2.335 23.6
2.330 16.7
2.329 15.8
2.322 8.3
2.312 0.0

Impinging'Flow'Simulation,'Velocity'Values'from'5'
Points'(140'μm)'Above'Membrane
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case, 0 degree case and the 90 degree case with no permeate.  Only one permeate rate is shown 

because as I show later, permeate plays a minute role in the change in fluid dynamics.  To 

describe the particular flow differences I have plotted in figure 39 slices along the crenel, merlon 

and from the unpatterned simulation. 

 

Figure 38: a) 0 degrees flow case where the flow direction is shear stress (yz), but is on the same 
scale as the one shown.  b) Shows the 90-degree flow case where the shear stress is xz.  c) Shows 
the base case without any patterns and the shear stress is along xz.  
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Figure 39: Shows how the merlon and crenel deviate from the unpatterned membrane.  These are 
the fundamentals of the changes brought about by the patterning of the membrane.  This is from 
the 0 permeate 90 degrees case.  

The influence of permeation rate and angle-of-attack on the near surface flow of the NIL-

imprinted membrane was studied in this enhanced view simulation of the jet flow cell. Based on 

previous literature results the three examined quantities are: shear rate [4, 7, 39-43], gradient of 

the shear rate [37]and the nonlinearity term[40, 41].  Results for near surface flow field (0 to 

400nm) indicate that the permeate rate had negligible effects (Figure 40) on any of the three 

physical quantities correlating with fouling reduction (Figure 41). The figures show that the 

permeate rate does not significantly affect the shear rate, gradient of the shear rate, or the non-
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linearity term.  It does show that angle of attack does correlate with the gradient shear rate and 

the non-linearity term, but that gradient shear rate matches best so far (Figure 42).  
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Figure 40: Flat membrane strain rate along the surface vat different permeate rates. 
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Figure 41: Impinging jet flow cell's summary of maximum data points on the merlon and crenel.  
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Figure 42: Summary of jet-flow membrane cell's gradient of strain rate vs. the height from the 
membrane. Results when varying the permeation rate would not be visible on this plot, so the no 
permeation case was plotted here. 

Strain rate values were taken across the whole length and at four equal spacing’s near the 

surface from 0 to 300 nm. Altogether 80 points were used to create this average. Figure 43 

indicates that the permeation through the membrane has negligible influence on the average 

shear generated in this region, and that the flat membrane (without a pattern) had a higher 

average shear than even the 90-degree case, which appeared to have the least fouling by particle 

deposition. These averages make sense when you take several slices of the shear rate 

horizontally.  I have done such a thing.  Figure 44 is at 1nm above the membrane surface while 

Figure 45 is 150nm above the surface.  Notice how while the base is lower than either's 

maximum its higher than the average height of the shear rate for the 90 and 0 degree cases.  

	  
Figure 43: Average near-surface (0-400nm) strain rate for the different permeate rates.  
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Figure 44: 1nm above the surface of the membranes for the permeate cases from the jet flow cell.  

 
Figure 45: 150nm above the surface of the membranes for the permeate cases from the jet flow 
cell. 
Bulk Cross Flow Results 

Unlike the impinging jet cell, the cross flow cell had a particularly large recirculation at 

the top of the domain inside the stir bar area (no stir bar actually present, so it is just a cavity for 

one).  However, it is certainly a much more complicated flow system and at higher Re values 

that the impinging jet flow cell.  However, they aren't as smooth and it looks like the flow near 

the surface of the membrane is actually much lower than the impinging jet flow cell.  Figures 46-

50 are various cross sections of the domain to describe what is going on.  
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Figure 46: 3D shots of the simulated cross flow cell.  The flat edge as mentioned is the symmetry 
plane boundary.  The second important feature is to see the location of the inlet and outlet.  The 
inlet is on the right while the outlet is on the left.  



	   69	  

 
Figure 47: in all pictures: the right is the inlet, the left is the outlet.  In addition, this is a slice of 
the flow cell in the center from entrance to exit.  a) velocity magnitude b) velocity moving right 
to left is positive.  Notice the recirculation and the unsteady flow. c) Due to the fact this slice is 
slightly off center, the into board direction isn't zero but it does help show the instabilities. d) the 
vertical direction e) zoom in of the cavity to show the instabilities.  
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Figure 48: Showing the instabilities.  This is a sidewise cut that allows you to see the flow along 
the circular cut.  a) the horizontal component of velocity isn't stable as you see b) the forward is 
pretty stable but it accelerates along the edges of the flow cell c) mixing is evident 
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Figure 49: taking a cross section and looking at the velocity profiles along the lines.  The letters 
correspond to the graphs in figure 50.  
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Figure 50: the velocity profiles along the lines from figure 49.  Purple is velocity magnitude.  
Red is perpendicular to the primary flow direction.  Blue is the primary flow direction and is 
along the y axis (entrance to exit).  Green is the vertical direction.  For all the graphs the 
horizontal axis is height and the vertical axis is velocity.   
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The cross flow filtration cell had several recirculation areas and in general parabolic flow, 

although nowhere was it full developed and it was strongly irregular in the center where the stir 

bar would have been.  The cross flow was fit with a 3rd and 4th order polynomial going through 

0 for each Re (Table 3). Those were then not used because they were too inaccurate near the 

surface of the membrane.  So instead best fits using the bottom to points forming a line were 

used (Table 4).  Two locations where initially examined (dead center of the cell) and center of 

side. Eventually slice e from figure 49 was chosen to be the inlet boundary condition location.  

The flow cell unfortunately shows that there is already a high degree of mixing in the cell and 

that near-surface flow, while more stable, is not absolutely laminar over larger distances. 

 
Table 3: The original R>.98 polynomial for the near the membrane side 

 
Table 4: The eventually used linear fit from the bottom two points.  
Nano Cross Flow Results 

In this section we finally have direct experiment comparisons to simulations.  Once again 

we examine the simulations with regards to the shear rate, gradient of the shear rate and the non-

linearity parameter.  Although we previously found no correlation with the shear rate, there was 

the possibility of it matching with either pattern height or Reynolds number.  Fist up is the 

domain slices showing the shear rate for the 5 separate cases.  Figure 51, 52, and 53 pair the high 

and low simulations to emphasize visual distinctions between the pattern heights.  There is a 

Case Outer)Edge Center)
Case430 1e4(34.4352z^2+0.0089z+0) 3.35935e5*z^3+2399*z^2+0.03606*y+4.65e37
Case431 z^2*35.327e4+138.2z+2.213e36 z^3*39.508e7+4.545e4z^2+61.61z+0.0006061
Case432 x^2*38.37e4+208.2z39.819e37 2.591e11*z^435.789e8z^3+2.05e5x^2+107.5z+0.001356
Case433 z^2*31.164e5z^2+252.3z+5.218e36 z^3*36.968e8z^3+2.13e5z^2+195.32z+0.002248
Case434 z^2*31.566e5+270.6z+7.678e35 z^4*35.379e11)3)7.663e8*z^3)+229800*z^2+293.6*z+0.00335

Outer&Edge
Case430 81.4*z
Case431 137*z
Case432 207*z
Case433 251*z
Case434 270*z
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fairly big difference between Figure 51 and 52 in that the 90 degrees case has significant shear 

rate over the crenel.  

 
Figure 51: Re 120 90º Cases a) is the high pattern case b) is the low pattern case.  They actually 
did not have significantly different shear rate profiles.  
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Figure 52: Re 120 0º Cases a) is the high pattern case b) is the low pattern case.  They actually 
did not have significantly different shear rate profiles.  
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Figure 53: Re 120 for base case.  

Figures 54 and 55 are complete summaries of the maximum values along given lines.  By 

tabulating the data like this I was able to observe the trends along different conditions.  Seeing all 

these conditions I was only able to conclude that the gradient of the shear rate best described the 

angle of attack and the Reynolds' Number.  However, in Figure 56 I was able to see that pattern 

height is governed by the non-linearity term. Choosing those that fit the most accurately, I 

assemble the comparisons with the experimental work done by Maruf.  
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Figure 54: A summary of the cases from the High cases.  Blue is 90º, Red is 0º, and Green is no 
pattern.  The horizontal axis is Reynolds' number while the vertical axes are the respective titles.  
a) Shear Rate Step 11.5 b) Shear Rate Step 12.5, c) Gradient Shear Rate Step 11.5, d) Gradient 
Shear Rate Step 12.5, e) Non Linearity Term Step 11.5, f) Non Linearity Term Step 12.5 
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Figure 55: A summary of the cases from the Low cases.  Blue is 90º, Red is 0º, and Green is no 
pattern.  The horizontal axis is Reynolds' number while the vertical axes are the respective titles.  
a) Shear Rate Step 11.5 b) Shear Rate Step 12.5, c) Gradient Shear Rate Step 11.5, d) Gradient 
Shear Rate Step 12.5, e) Non Linearity Term Step 11.5, f) Non Linearity Term Step 12.5 
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Figure 56: A summary of the comparison between high and low patterns as a function of angle of 
attack. a-b) shows the shear rate, c-d) shows the gradient of the shear rate, and e-f) show the non-
linearity term.  

In addition to angle of attack, the pattern height and the Re were varied both during the 

experiments and the simulations.  A full set of simulation results summary can be seen in the 

appendix. Figure 57 compares the experimental results from [4] with the simulation results from 

our experiment.  Our magnitude of our calculated strain rate transverse gradient over the Merlon 

appears to correlate well with the observed trends in for lower fouling in regards to the angle of 

attack as well as the cross flow velocity (Re). Meanwhile the nonlinearity parameter over the 

crenel describes the effect from pattern height and angle of attack on fouling reduction.   
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Figure 57) Side by side comparison of critical flux with the gradient of the shear rate and the 
non-linearity parameter as a function of the same variables.  d) 1 is 90 degrees, 2 is 0 degrees, 3 
is unpatterned. (56a and 56c are from [4]). 
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Chapter 4 
Milk Experiments 
Milk 

There were two types of milk used: skim milk and dry milk.  Dry milk was Kroger brand 

dry milk purchased at Kings Super.  Its official product title was "Instant Non-Fat Dry Milk: 

fortified with vitamins A & D".  It was used in a few experiments but there was a fundamental 

problem.  It would heavily fall out of solution during normal running procedures.  The dry milk's 

ingredient list on the box is the following: nonfat dry milk, Vitamin A, palmitate, Vitamin D3. 

The dry milk grams ratio is 125mg sodium to 12g sugars to 8g proteins to 23g of weight.  The 

percentage of daily intake (DI) of vitamins and minerals is as follows: 30% DI value of calcium, 

2%DI vitamin C, 10% DI vitamin A and 25% DI Vitamin D.  The liquid milk was purchased at 

Safeway and was Safeway brand fat free milk.  Its ingredient list is: nonfat milk, Vitamin A, 

palmitate, Vitamin D3.  The liquid milk ratio is 135mg sodium, 13g carbohydrates of which 12g 

are sugars, and 9g proteins.  That is for 240mL of liquid milk. The vitamins and mineral ratio are 

vitamin A 10%, calcium 30%, vitamin C 4%, and vitamin D 25%.   

Liquid milk was used in almost all experiments.  In addition, 0.2g of sodium azide was 

added as an antimicrobial component for each L of overall solution.  We used 4L of milk for our 

experiment since it provided the biggest basin for minimal changes in composition as the water 

and sugars were removed.  Milk experiments were initially done with cold milk but the fouling 

rate was extraordinarily high.  Since industry performs their filtration at 48ºC and the bulk of 

literature also filters at this rate due to the temperature's effect on the casein micelles we also 

decided to perform our experiments at this temperature.  In addition the same literature 

recommended that after the milk reach 48ºC to wait for one hour keeping it at that temperature 
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for the solution to reach a stable equilibrium.  We follow this protocol in all experiments with hot 

milk.  

Membranes 
There were two primary types of membranes used.  The first is the Koch HFK328 

membrane with a molecular weight cut off (MWCO) of 5kg/mol (kDal).  The second one is a 

PW membrane with a MWCO of 20kg/mol.  The HFK328 is the membrane used in the milk 

industry.  Relevant to our protocols are its pH tolerance for cleaning, pressure range and 

temperature range.  Of those, only the pH tolerance is close to our cleaning protocols with a 

tolerance for cleaning of 1.8 to 11pH.  The remainder of details for the HFK328 membrane can 

be found here.12 

The patterned and pristine membranes are kept in the original storage bags that they were 

purchased in.  This solution is designed to keep them hydrated but I do not know what is in the 

solution.  For preparation of membranes for all experiments the membranes are first cut into the 

appropriate shape and then soaked overnight in DI water to hydrate the membranes.  In the 

morning the membranes are switched to a solution that is 20% Isopropanol and 80% DI water 

(18MΩ) and cooked in an oven for 30 minutes at 50ºC.  To get the membranes were acquired as 

rolls and so have a tendency even after the pretreatment to curl up.  To rectify this long enough 

to securely close the flow cell without leaking an ethanol spray bottle was used to flatten the 

membrane (with ethanol, not the bottle itself).   

Experimental Set Up 
Our experimental setup was designed to run in triplicate.  From the CFD section you have 

an idea of what the flow cell looked like and the heavily mixed flow that was inside as a result of 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
12 http://www.kochmembrane.com/PDFs/Data-Sheets/Spiral/UF/hfk-328-food-dairy-
datasheet.aspx 
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the geometry.  It consists of a parallel set of plates with three compartments for membranes 

operating in a traditional filtration system with ports for flow feed, retentate and permeate.  The 

flow feed begins from one pump and splits into three new channels using a cross pipe fixture.  

From the retentate exits come half of a differential pressure transducer and then a backpressure 

regulator, which makes the pressure above the membrane with the other side held at atmospheric 

pressure.  On the permeate side comes the other half of the differential pressure transducer.  Then 

the retentate leads to 3 Sartorius balances.  Each permeate has its own balance.  Next to the pump 

is the hot water bath that keeps the feed solution warm.   

The Sartorius balances are digital balances with a ±0.1g tolerance.  A program called 

Winwedge, which records the weight for each scale in a text file at a repeated interval, controls 

the scales.  A scale that we use for weighing the ingredients and for the milk when requiring a 

high time resolution has a tolerance of ±0.0001g.  Our hot water bath is a Cole Parmer 12107-70.  

It is a several gallon container with a digital temperature control.  We use Ping-Pong balls to help 

insulate the bath when the top is open in order to put the flasks in for heating.  A wide variety of 

pumps were used throughout this experiment.  In the end a pump capable of providing 0.1L/s to 

each of the lines was used while still allowing the pressure to get up to 80psi under those cross 

flow conditions.  For other people attempting to duplicate the work, I would recommend a 

different pump.  One that could reach cross flow velocities of 3L/s.  For our pump we attempted 

to use a pulsation dampener but did not use one in our experiments.  Labview was used to record 

the data from the differential pressure transducers.   

Types of Filtration Experiments 
There are two types of filtration experiments: constant TMP and constant flux.  Constant 

flux involves a constant large pressure up top above the membrane and the pressure varies below 
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the membrane to create a TMP that provides the correct amount of flux.  The fixed amount of 

flux is controlled by a pump on the permeate side that pumps permeate out at a fixed rate 

controlled by the scientist.  Typically that pressure build up is due to a back up of flux.  Constant 

pressure involves keeping a fixed pressure above the membrane while exposing the permeate 

feed to containers that are exposed to atmospheric pressure.  This keeps the pressure across the 

membrane constant while allowing the flux to vary.  Our lab uses both types of experiments.  

However, due to the small size of our membranes (our flow cell had a membrane area of 

9.6cm2), constant flux experiments are more difficult to do.  As such we chose for most of our 

experiments to be constant pressure.   

The next break down in types of experiment is a stepping method or a constant value 

method.  For example, with constant flux you can use a constant flux value and record and run 

for a given period of time until the pressure stabilizes.  Then you raise the flux rate and wait for 

the pressure to stabilize.  The flux is stepped up and down.  The problem with this type of 

experiment is that milk is a continuously fouling substance at all conditions.  This means a true 

equilibrium is never achieved and that fouling is a function of time.  In a simpler solution, 

fouling is a function of TMP, cross flow and flux.  That is why our constant run conditions are 

used instead.  In this type of experiment you keep the pressure constant and watch as the flux 

varies as a function of time.  This provides a clearer image on the time-based nature of fouling 

along with ideas for pseudo equilibrium states.   

Experimental procedures 
I will run through the broad steps of the experiment before tackling the individual steps in 

greater detail.  The experiment begins with the membrane preparation.  Without proper hydration 

of the membranes than there will be little to no flux through the membrane.  After the 
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membranes are securely in place with no leaks and with permeate abilities in the filtration system 

then we begin set ups for recording.  First stage is the hot water compaction.  Second stage is the 

first hot milk filtration.  Third stage is cleaning.  Fourth stage is DI water recovery.  Fifth stage is 

second hot milk filtration.  Sixth stage is cleaning.  Seventh stage is second DI water recovery.  

Eighth stage is third hot milk filtration.  After the 8th stage we remove one membrane for 

examination under SEM and for testing.  Then we do a final clean stage.  The two cleaned 

membranes are also stored for examination under SEM and for testing.  Then a final cleaning of 

the whole system takes place to make sure no foulants remain in the flow system.  

The hot water compaction begins by heating water up to 48ºC in a hot water bath set to 

50ºC.  Typically I will heat them up together and so it takes around 1 hour to do so.  After the 

water is at the correct temperature, the scales are turned on and the Windwedge program is 

pulled up for each scale along with a text file to record the data.  At this point the Labview 

program that records the differential transducer data is turned on and set to begin recording.  

Then the scales are set to start recording.  Next the pump is turned on and set in our case to 

60Hz, which provided a stable flow to the system at our desired cross flow rate. Lastly fine tune 

adjustments made to the pressure through the use of the backpressure regulators are completed.  

The desired TMP pressure will be equal to the highest TMP that is planned to be used in the 

experiments.  For us, the desired TMP was 40psi. The hot water compaction stage ran for two 

hours for us to level out, but should be run until there is no change in pure water permeance with 

time.  In the compaction stage the scales record the weight of permeate every minute and the 

Labview records the pressure every 5 seconds.  

The hot milk filtrations are the most time consuming stages of the experimental 

procedure.  Under our systems the milk takes two hours to prep and the filtration lasts four hours 
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and then cleaning must be done before allowing the milk to settle.  So before starting the milk 

has to be heated to 48ºC and held at that temperature for one hour before filtration can begin.  

During this time, you should weigh and label six small vials to be used in the permeate collection 

during the first 20 minutes of the milk filtration.  It is also helpful during this time to prepare the 

base for cleaning or if you are doing other cleaning protocols the solutions needed.  Unlike water 

permeation, due to the small size of our membranes our time scale here will be different.  

Labview will still select pressure data every five seconds, but the weight collection time is 

different.  Due to our membranes our collection time set for the digital scales was 5 to 10 

minutes depending upon the permeate rate of the first 20 minutes of collection that were 

recorded by hand.  During the first 20 minutes a different scale that was significantly more 

sensitive was used (the ±0.0001g).  In order to measure the three different permeates we used 

two sets of three small vials.  Before the experiment begins each tube is in a vial marked 1, 2, or 

3 in the front row.  When the pump is turned on a timer begins, set for 1 minute.  After a minute 

the tubing is switched from the front row to the back row (approximately 2-3 seconds time).  

Then the sensitive scale issued to record the weight of those vials and then place them back in 

the front row.  At the second minute since the experiment began the tubes are switched back to 

the first row of vials and the second row is weighed.  This process repeats until twenty minutes 

have passed.  This hand monitoring has a two-fold purpose.  The first is as mentioned, in order to 

figure out the time scale needed for the less sensitive scale to be large enough.  The second is 

because the most fouling changes occur in the first 5 to 10 minutes due to a different fouling 

mechanism and we wanted to be able to resolve that feature. After the first 20 minutes are done it 

can be switched the digital system and left alone.  
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The cleaning phase used to be longer and more tedious involving and acid and base 

cleaning step; however, I already covered in the background why that is not done and why the 

new cleaning procedures only involved water flushes and hot base cleaning.  The first step of 

cleaning is a purging the milk from the pump chamber (only for pumps that use chambers and 

not tubing) and also from the flow cell.  This takes roughly 8L of DI water for our pump system 

combination but will depend upon your system and pump specifics.  Next, 4L of DI water 

(18MΩ) is heated to 48ºC and run through the system for 20 minutes.  The breakdown for that 

time consists of 5 minute run, 2 minute sit, 5 minute run, 4 minute sit, 1 minute run.  Then the 

base which, is composed of NaOH in a pH between 10 and 11 (I aim for 10.5), has been heated 

to 48ºC is then run through the system following the same run instructions as for water.  After 

this you must be careful, because you must collect the entire base to neutralize.  When purging 

the base, the retentate must be collected in a large flask for neutralization.  For our system this 

required a 4L container to catch the base and 4L water reservoir.  After that, I run the water on 

recycle for 20 minutes following the same protocols.  I then neutralize the base feed, and the 

purge based.  Once the water is done, I test the pH level.  If neutral then it is fine.  If it is basic I 

neutralize it and do another water flush and recycle system. For records, nitric acid was used for 

neutralizing the base.   

The last type of phase is a collection of the recovered pure water permeance again.  

Depending upon goals, you can run a pure water permeance before cleaning, but we avoid doing 

that because of the risk of further compacting the gel layer, but also because there are the side 

effects of cleaning it while running which will lead to unstable results during filtration.  As such, 

we run the permeate after the cleaning.  This can be done directly after the cleaning or in the 
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morning before the next hot milk filtration while waiting for compaction to occur again.  This 

segment occurs just as in the initial compaction.  

Preliminary Milk Experiments 
I am going to start off with HFK328 unpatterned membrane experiments that we 

performed.  These were performed with room temperature liquid milk.  This one was done at 

constant flux system of experiments (Figure 58).  During this experiment our pump was a tube 

based pump whose cross flow rate was around 0.01L/s and a maximum psi of 40.  What this 

means is that in Figure 58 that both 0.2mL/min and 0.1mL/min were too high compared to the 

actual production of permeate at a TMP of 40 psi.  This is why we stopped doing constant flux 

based experiments although we eventually did get a new pump head and new tubing to do even 

smaller flow rates.  We, however, decided to finish our current line of inquiry at the time before 

pursuing our old inquiry.   

 
Figure 58: Constant flux experiment done with pure Safeway milk at store concentration at room 
temperature using our first pump that had a maximum pressure of 40psi.  Done on HFK328 
membranes.  
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The next set of experiments was also done on HFK with cold milk, but used a newer 

pump that performed only slightly better. Here I measured a different set of parameters using a 

constant pressure system. It was always disheartening from the beginning that our membranes 

never did operate within their established parameters (Figure 59).  But we endured and I gathered 

some more data.  It was figures 60, 61 and most importantly 62 that sealed the deal on using hot 

water and hot milk for flux experiments. Figure 60's flux vs. TMP step tells us some very 

interesting behavior.  Because an ideal fluid would not have a decrease in flux with an increase 

in pressure like we observed.  Part of this may be due to continuous fouling, but most likely it 

was due to the cold temperature and the extreme fouling that would take place.  The gel 

formation layer would get near the size of the whole domain.  Figure 61 shows the slight 

deviation in permeance linearity showing a critical fouling point was reached, although 

permeance is a constant as a function of pressure. Figure 62 shows that the water permeance is 

much more effective when used warm and contributed greatly to our decision to do warm water 

and milk experiments.  
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Figure 59: Pure water permeance done at room temperature and 40 psi.  The expected min and 
max are the statistics from the membrane for using room temp (21 ºC) water and well 
independent of pressure because permeance is supposed to be independent of pressure.  The 
figure illustrates how bad the permeate really was with room temperature fluids with these 
membranes.  

 
Figure 60: For this experiment I stepped up pressure and took the lowest flux after 30 minutes 
and used that as the point.  Thus making a flux vs. TMP graph.  Given the 30-minute run times it 
was unable to go to completion but did provide some details about complex fluids.  The order of 
the flow was top left and then to the right.  

 
Figure 61:Permeance and Pressure from the same experiment in figure 59 
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Figure 62: Using a combination of hot water and hot milk to test recovery rates and the effect of 
heated milk on fouling.  

Moving onto PW membrane experiments we get an important set of results concerning 

permeance recovery.  In fact it is our only complete set of data involving a patterned and non-

patterned membrane.  The downside is that we used acid cleaning so the results are less 

conclusive than they could have been given the literature I already cited.  Table 5 summarizes 

the results from the completed experiments. Given that there is over 100% flux recovery I don't 

view the results as to reliable. 
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Table 5: The values were inconclusive since recovery is increased due to the acid step in 
proportion to the amount that it is fouled.  

What I feel is more meaningful is this dry milk filtration experiment (figure 63).  This 

experiment ran overnight so we were not there during the dramatic drop.  However, when we 

came in during the morning, the majority of the milk powder had fallen out of solution. We did 

not have a working waterproof stir bar.  As such we went back to using wet milk.  I was unable 

to determine the % of dry milk that fell out of solution. However, I find the result that we had a 

relatively slow decrease for several hours before it began to get worse at a significantly 

increasing rate. I think it would be worthwhile trying to study and determine what happened here 

and why would even a decrease in concentration cause the problem.  My hypothesis is that while 

milk fell out of solution in the flask in the 48ºC bath that it also fell out onto the membrane and 

throughout the flow cell system.  And this build up led to the sudden drop in permeance.  

 
Figure 63: The dry milk filtration experiment.  There was a 4% protein concentration and the 
milk solution was heated to 48ºC and kept there for an hour before filtration as the protocol 



	   93	  

dictates.  The color change was due to a recording error where the recording file missed a point 
due to the mouse being elsewhere there on the text.  As a result the colors switched. 

The experiment from figure 64 is a duplicate experiment of the experiment that gave us 

figure 62.  The only difference is that the experiment for figure 64 used wet milk.  There were 

two main differences; the first is that the standard deviation for the wet milk is significantly 

lower than the deviation for dry milk.  This deviation might have to do with the back flow 

regulators since eyes adjust those.  But it could also just be standard variation.  Next is the 

duration of run.  Further work would need to do an overnight experiment to see if wet milk had 

the same drop.  

 
Figure 64: This is a diluted down concentration of wet milk to match the 4% protein 
concentration from the dry milk experiment.  It was run under the same conditions. 
  



	   94	  

Chapter 5 
Conclusion 

The CFD experiments provide insight into the fluid mechanical workings of the fouling 

reduction due to the implementation of submicron scale patterns on membrane surfaces. Findings 

indicate that a combination of the fluid flow over the merlon and crenel contributes to the fouling 

reduction and that different fluid dynamic effects are behind each domain.  Over the crenel 

Ingber's modified shear induced particle migration model matches the experimental and 

simulation results [40].  Over the merlon Eckstein's work is the closest but there is a fundamental 

lack of models where the magnitude of the gradient of the shear rate plays a roll that is not 

neglected [37].  Future work would include the creation of such a model to better describe the 

fluid processes going on.  Meanwhile, the bulk of literature focuses on the shear rate's role in the 

fouling process but our simulation models return results indicating that it doesn't play a 

significant role in fouling reductions with patterns which is novel and significant in its own right. 

Furthermore, different forces and models control the different experimental phenomena (angle of 

attack, pattern height, cross flow velocity (Re), and permeate rate).  Permeate rate was shown 

that while linear in effect, the change it induces is so small that it is negligible in effect without 

particles being introduced into the system for the purpose of balancing the back mass diffusion 

coefficient. Cross flow velocity was shown to have no correlation with respect to the non 

linearity term but follows the magnitude of the shear gradient fairly well. Pattern height fails to 

be described by shear rate or its gradient alone, but matches Ingber's non-linearity factor fairly 

well.  Angle of attack is described both by the non-linearity factor and the gradient of the shear 

rate.  These results provide a pathway for optimization of patterned membrane design, as there is 

now shown to be a derived simulation result that can, perhaps, be modeled to search for a 

maximum fouling reduction. Further experimental and simulation work can focus on fine-tuning 
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the relationship and identifying if there are any other fluid dynamic quantities that will affect 

fouling mitigation. Additionally, this work also stimulates the development of more ambitious 

hybrid modeling of the multi-scale, mass transfer in the near-surface domain of the membrane. 

Unfortunately our conclusions regarding the milk are far from conclusive.  To many 

experiments under different conditions made it difficult to draw anything from the results.  In 

addition our one full set of experiments while complete and nothing went wrong, its results were 

brought into question because of the acid cleaning step, which can explain the recovery reaching 

above 100%.  What we did validate is that there is a time dependent fouling feature and that 

something we might be able to compare with future experiments is the onset of that significant 

decrease in flux.  

That concludes my conclusion on my last three and a half years of research.  I feel that so 

much of my time was dedicated to trial and error, especially regarding the CFD work because 

there was no parallel basis from which to drawn nor guidelines from which to work.  

Furthermore, exploring new territory where none had gone before proved to be a challenge for 

quantifying results but at the same time, the very things that made it inefficient were also the 

largest causes for growing and why it was real research and not just another lab experiment.  In 

regards to the milk, because of our limited supply of patterned membranes we were overly 

cautious in our experimental use of them and as such only had the one completed sets of results 

as we kept changing the laboratory procedure as we kept improving the methods to try to get 

more accurate results and more conclusive evidence.  I believe our current experimental model is 

sufficient to the task and only regret the lack of time to finish the experiments of the patterned 

HFK 328 membrane.  
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A: Flow Cell Write Up and Appendix 
Abstract 

The flow cell is designed to study the effects of energy dissipation from nano-imprinted 

(NI) membranes through pressure drop.  The second iteration of the design will incorporate 

constant permeate and constant trans membrane pressure (TMP) experiment capabilities to study 

the fouling and cleaning in greater detail rather than studying only fluid flow.  The importance of 

the first iteration is to validate the simulation model software that will be used to model the multi 

scale fluid flow over the NI membranes.  The key feature is the ability to place nano-imprinted 

tiles in with different patterns and orientations to gather experimental data on the effect of the 

patterned roughness and its geometry on both the nano scale and the bulk flow.  The principal 

variables controlled in the flow cell experiments are: channel height, inlet velocity/mass flow, 

and imprinted tile patterns.  Concerns that influenced the development of the flow cell are: cost, 

pressure, pressure drop, sensitivity and measuring pressure drop, flow development, lab space 

constrains, and reasonability to simulate domain.  

Flow Cell Design Parameters 
Several constraints are relatively simple restrictions on design.  The most challenging and 

complex restraints are computational domain size, sensitivity and measuring pressure drop, and 

flow development. Of these, flow development proves to be less consequential and undoable due 

to some of the simple constraints.  The simplest constraint, lab space, and limits our flow design 

to not much more than a foot long.   

To meet the first design criteria the flow cell needs to demonstrate the accuracy of the 

simulations.  To do so it must be able to distinguish the difference in pressure drop between a 

patterned and unpatented surface.  The longer the flow cell the larger this difference will be.  

However, the longer the domain the more computer resources are required.  Computational 
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resources are limited.  As such we want to minimize the distance needed using the best pressure 

sensors we can.   

 The moody chart connects pressure drop (through a friction factor), Reynolds number, 

and relative roughness of pipe.  The relative roughness is based on random roughness and not 

periodic roughness.  As such we specifically don't know how periodic will change the results one 

will presume that we need sensitivity a few orders smaller than the pressure drop one would 

achieve with normal roughness.  The smallest pressure drop will occur at the lower end of the 

Reynolds number and at the smaller channel height.  The transition region between laminar and 

turbulent region is of interest, but will not be examined in the initial work.  In particular, whether 

the transition region between laminar and turbulent shifts going from random roughness to 

periodic roughness is of interest.  Before starting, a few terms need to be defined: hydraulic 

diameter, Reynolds number, friction factor and relative pipe roughness.  Hydraulic diameter is 

the ratio of the area over the perimeter of an object.  For a circle it comes out simply to be the 

inner diameter of the pipe.  In slit flow it can be simplified to DH = 4 × Area
Perimeter

= 2hw
h +w

= 2h  

where h<<w that applies to slit flow.  The Reynolds number is Re = vDH

υ
= 2vh

υ
 and becomes a 

function of height and velocity.  The relative roughness factor in the moody plot is specifically 

for round pipes.  However, since the width is much greater than the height, for the energy loss 

due to roughness the distance in the vertical (shorter) dimension will play the primary role.  

Thus, the relative roughness factor will be defined as the root mean square (RMS) over the 

height of the channel RR =
ε
h

.  Root mean square is the square root of the sum of squares of the 

differences in height above or below the mean height of the bottom over the total number of 
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items summed.  So in our case with regular patterns the RMS is half the pattern height or 

RMS = 1
n
x1
2 + x2

2 + ...+ xn
2( ) = 1

2
(55nm)2 + (−55nm)2( ) = 55nm .  The height of the domain will 

vary from 1mm to 10 mm.  Thus the relative roughness factor will vary from 5.5e-5 to 5.5e-6.  

Since we are in the laminar region, we don't need the roughness factor yet and it will be 

applicable once we move into the transition region.  In the laminar region the friction factor is 

proportional only to the Reynolds number fD = 64
Re

.  The friction factor (fD) is defined 

fD = 2DH

ρv2L
Δp .  We are interested in the pressure drop per unit length so Δp

L
= fDρ

v2

2DH

.  

Substituting in the terms we desire we arrive at Δp
L

= 4 ρυ
2 Re
h3

 where ρ  is density 

(1000kg/m^3), υ  is kinematic viscosity (1e-6 m2/s), h is the height (0.001 m to 0.01 m) and Re 

the Reynolds number (varied from 1 to 2500).   

Reynold's*Number Height*1:*0.001m Height*2:*0.01m
1 4.00E+00 4.00E=03
10 4.00E+01 4.00E=02

100 4.00E+02 4.00E=01
1000 4.00E+03 4.00E+00
2500 1.00E+04 1.00E+01

Pressure*Drop*Per*Unit*Length*ΔP/L*(Pa/m)
Table*1:*Pressure*Drop*per*Unit*Length

 

Reynold's*Number Height*1:*0.001m Height*2:*0.01m
1 0.90680 0.00091
10 9.06800 0.00907

100 90.68000 0.09068
1000 906.80000 0.90680
2500 2267.00000 2.26700

Pressure*Drop*(Pa)
Table*2:*Pressure*Drop*over*10.5*inches
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Right now as part of saving money, we are using a pump that the lab already posses.  It's 

Reynolds’s number range for our cell is from 800 to 2000.  This gives us a pressure drop of 725 

Pa at Re= 800 and a pressure drop of 1800 Pa at Re=2000 for the default 1mm height.   

 Unfortunately the 10mm height pressure drop is too small to measure and differentiate 

between patterned and pristine surfaces with conventional differential pressures apparatuses.  As 

such the height selection will be re-evaluated after the technological limitations of differential 

pressure transducers is obtained.  The initial choice was Honeywell sensing differential pressure 

(digikey part number HSCMRRN001PDAA3-ND) whose uncertainty is ±17 Pa (.25%ffs of 

1psi).  This part is fine for only the 1mm height and really only useful above a Re of 1000.  As 

such additional parts need to be ascertained.  There is another part that is currently not stocked 

and so requires a large minimum order (digikey part number DC010NDR4-ND) that has a range 

of 0 to 2480 Pa with an uncertainty of ±1.24 Pa (.05%ffs of 0.36 psi).  This one covers the whole 

initial planned range but won't be able to cover the transition region.  Its uncertainty is an order 

10 better but minimum purchase quantity is 30, so unless it is restocked another supplier needs to 

be found.   

 Another sensitive differential pressure device is (digikey part number DC2R5BDR5-ND) 

which spans only 0 to 250 Pa, but has an uncertainty of ±0.125 Pa.  This one would be most 

useful for dealing with the third proposed height of 0.003m as well as most of the second height, 

but could not be used at all to measure the first height.  
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Reynold's*Number Height*1:*0.001m Height*2:*0.002m Height*3:*0.003m
1 0.90680 0.11335 0.03359
10 9.06800 1.13350 0.33585
100 90.68000 11.33500 3.35852
800 725.44000 90.68000 26.86815
1000 906.80000 113.35000 33.58519
2500 2267.00000 283.37500 83.96296

Pressure*Drop*(Pa)
Table*3:*Pressure*Drop*over*10.5*inches

 
 Both the second and third differential pressure transducers are three times as expensive 

for an individual unit and are not currently stocked requiring a minimum order of 30 (individual 

price for second and third are $113.70 and $137.56 respectively compared to $47.30 of the first 

one).  But using these three pressure transducers the pressure drops across the three heights in 

Table 3 can be ascertained with maximum precision to differentiate between patterned and 

pristine membranes and tiles.   

 The maximum pressure measured would be well below metal tolerance levels at 15.1 psi 

(.4 psi above atmospheric pressure).  That is until we add a pressure back regulator and are 

working on the membrane experiments.  However, the membrane permeate experiments will not 

be conducted with this model of the device so it is not a primary concern.  The current pressure 

used in trans membrane filtrations is 50 psi for top pressure.  

Using a pump we have access to Reynolds’s numbers of 800 to 2000 at various 

increments.  However, this pump tends to leak graphene into the fluid and so we have two filters 

that will separate the flow.  The first filter is a 5-micron filter and the second filter is a 0.5-

micron filter.  The flow rate needed for these filters is 10L/min.  Another option is that the 

carbon based O-ring simply needs to be replaced.  The company is readily available to replace 

the O-ring according to laboratory postdoc.  
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CFD Size Limitations 
Initially the goal was to use a hybrid molecular dynamics (MD) and computation fluid 

dynamics (CFD) simulation to reduce CPU hours required to simulate the domain.  The initial 

plan involved using hybrid code [44].  Their work showed that their hybrid system was efficient 

at operating at a domain size that was at the largest 12.7nm long and 88.9nm high.  This took 140 

CPU hours.  Unfortunately that domain is smaller than one imprint.  To scale our problem we 

shall simulate 5 full repeatable steps, and use only the time it takes for fluid to pass through them 

as the residence time the simulation needs to run for convergence.  In Cosden's paper they ran to 

21 residence times.  In addition, we will constrain the MD region (which is the limiting time 

factor by several orders of magnitude) to 10nm above the surface.  The paper used for MD a 

12.7nm cube for simulation.  Reducing to just surface area for ease of comparison under best 

case the paper's simulation is 161.29 nm2.  For a single step the required surface area is 10540 

nm2. 

417nm ×10nm( ) + 10nm ×10nm( ) + 110nm ×10nm( ) + 417nm ×10nm( )− 2 × 10nm ×10nm( )⎡⎣ ⎤⎦
+ 110nm ×10nm( ) + 10nm ×10nm( )

 

We will be using five steps for our back of envelope calculation.  For five steps the 

surface area is 52700 nm2, which is 326 times larger than the domain simulated in the paper.  

The time step for the MD simulation is 2*10-16 s.  The velocities will vary of course, but for a 

low Reynolds number (Re=10) the velocity is 0.01 m/s.  v = 0.01 l = 417nm × 2 × 5 = 4170nm  

tresidence =
l
v
= 4.17e

−6m
0.01m / s

= 4.17e− 4s  .  This means that our residence time is 12 orders of 

magnitude larger than our time steps.  This alone is prohibitively expensive.  So let say we don't 

have to run as long and only run as many time steps as the paper does.  In that case let us now 
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apply the calculations to an inch that we would have to simulate.  We cannot just simulate part of 

a domain because it has to be coupled for the whole length in order to have an accurate idea of 

the pressure drop.  Let us say for an inch how many CPU hours it would take.  There is 2.54e7 

nm in an inch and our 5 steps have a length of 4170nm.  So our domain size would increase by a 

factor of 6090.  Combined with the previous domain increase, our domain would be almost 2 

million times larger than their domain (1985340).  That would mean 31 CPU Millennia (instead 

of hours).  And that is just for one inch for 100,000 time step iterations, strictly not doable.   

In order to make a more accomplishable simulation a suggested approach that would 

have to be developed is to couple two CFD domains together.  OpenFOAM needs rectangular 

mesh and has a restriction that no face may be shared by more than 2 cells. In order to grasp the 

detail of the fluid flow nm size mesh is required, but once again that places an enormous 

computation strain on the domain.  For 1 inch by 1mm height that is 2.54e13nm^2 which is 

1.37e8 times more nodes than the other simulations I have run.  That corresponds to 312 CPU 

Millennium to run to convergence.  So just a small grid size through the whole domain is also 

unrealistic.  This leads us to the motivation for having the coupled CFD grids.  This would 

dramatically reduce computational cost.  

Now let us theorize that our domain of 1nm spacing stretches only 10nm above the 

topmost pattern (so for each period it is on average 60nm high) then we have about 50,000 points 

per period unit.  There are about 30,000 period units in an inch so 1.5e9 points in the domain.  

This following the same scaling procedure gives us 18 CPU Years per inch, which is still a little 

on large side, but more doable.   

Let us reduce to a 10nm layer again.  So from above that is 10540 points per period and 

30,000 periods in an inch. 3.16e8 points.  This is getting much more realistic as I have run 9e6 
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points for 20 nodes and finish in a few days (17280 CPU Hours).  So that simulation domain is 

only about 35 times larger and so would take a few months on the super computer. Now it is at a 

doable scale for the department of defense but still to large for us.   

Now I will move onto the next possibility, 10nm spacing (the domain would be 30nm 

above the raised surface so on average 7 points per 10nm of length. This gives us 17.8 million 

node points.  That is only twice now what my simulation was and so is now in our running length 

and capabilities.  And two weeks is a reasonable run time so under this domain setting with 60 

nodes instead of 20, we would be able to have a maximum flow cell length of 7 inches. So 7 

inches is our goal maximum length between two measuring points.  

Entrance Length 
Entrance length is the minimum length required in order to fully develop the flow.  In 

early designs this was a key criteria, however, this criteria was eventually discarded for several 

reasons.  The first is that it is impractically too long.  The domain ended up having to be several 

feet.  This is because of the extreme conditions the flow cell will run at.  The key reason is since 

we are interested in pressure drop and will be doing several control group experiments without 

patterns, we will have a base to normalize and use as a reference for the pressure change, so it 

doesn't have to be fully developed for us to make use of it.  As such I will only go briefly over 

references and how I figured out the fully developed length.   

Ideally we would like to be able to have an oscillating mode that requires the entrance 

and exit region to be symmetric about the center.  This feature will also most likely have to wait 

till the second iteration because our pumps are unable to do such a thing.  Smooth transitions and 

curves help minimize entrance length development and so are used.  Furthermore the entrance 
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length needed for a fully developed flow changes with channel height and Reynolds’s number 

I've plotted the entrance length over our experimental domain.   

Next is the entrance region to allow a fully developed flow to occur.  Since we want to 

have an oscillating mode that requires that the entrance region be symmetric about the center 

around the exit and entrance domain.  Smooth transitions and curves help minimize entrance 

length transitions so those are used.  In addition, since the length needed for fully developed flow 

changes with channel height and Reynolds’s number I've varied the flow for the pipes and 

plotted Reynolds’s number versus entrance length for both turbulent and laminar flow.  

Interestingly enough, it is the laminar flow that has the longest entrance length.  The entrance 

length is defined as xl = 0.06ReD  for laminar flow and xt = 4.4Re
1/6 D  for turbulent flow. 
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As such the circular pipe approximation doesn't serve us very well.  After all, we are in 

an extremely narrow channel and it shouldn't take that great of a distance to develop.  So looking 

at values from experimental approximations from the book "fundamentals of fluid dynamics".  

For rectangular duct flow with an aspect ratio of less than 2 (which is what our system is) the 

entrance length is xl = (0.25 + 0.03Re)Dh  where Dh is the hydraulic diameter that is used in 

calculating the Reynolds number with the hydraulic diameter.  The worst-case scenario the 

hydraulic diameter would be 0.0167m (the case of our 2 in wide channel and 1cm high).  Using 

this number we get a different graph. 

 
While this has a slightly better slope, it would still require over a meter for worst-case 

scenario.  This violates our space constraints.  Thus why we figured out a way around the fully 
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developed flow condition.  Interestingly enough, when running a simple simulation the entrance 

length was less than two inches.  Thus two inches was chosen to be used for the entrance length. 

General Design 
The flow cell consists of four main parts: top plate, bottom plate, spacer plate, O-rings.  

The flow cell is designed to go from 1mm height spacing to 10 mm.  This design height has been 

changed now to 1mm to 3mm height.  If it were possible we would do 1mm, 1.5 mm, and 2mm 

heights but the O-rings wouldn't allow for that.  In addition the flow cell needs to be able to 

handle 15.1 psi, which is only slightly above atmosphere.  For later experiments though it would 

need to be able to handle 50psi.  We need the surfaces inside to be as smooth as possible in order 

to best minimize noise from the system, but most importantly to try to keep cell height as 

uniform as possible because pressure drop goes as 1/h3.  Thus height affects the pressure drop the 

most (see equation #___).   

The height is controlled through the use of spacers.  The default channel height is 1mm.  

This is built into the top plate (see appendix ___).  Spacer plates are hollow plates that sit 

between O-rings and change the cell height.  Actual height will be determined and recorded by 

micrometer.  There is a trade off between number of heights we can reach and the chance for 

increased leaking due to multiple plates and O-rings.  We are constrained by budget from making 

as many plates as we want.  Overall the decision is to make a 1mm and either a .5mm or 2mm 

plate if it is permissible with the O-rings.  

The bottom plate is not very special at all.  It is a one-inch (might be later reduced due 

lower pressure constraints than initially thought) thick plate designed to be the structural support 

base.  Its purpose is to serve as the anchoring point for the screws that secure the system to 

prevent leaking.  Further design modification may serve to allow for nesting of O-rings but I 
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think it will be unnecessary.  There are 26 boltholes for securing all the plates together without 

leaking.  There will be imprinted tiles attached to both the top and bottom of the plate using an 

adhesive the releases with heat.  The adhesive in question still needs to be identified.  

The top plate is the most intricate and detailed piece of the whole set up.  The top plate is 

the most detailed because it contains the most features.  It will have tiles of printed pattern placed 

in it, the holes for securing the bolts, and the flow entrance and exit regions.  The flow entrance 

region is the most challenging part since it requires flow to be smooth when it reaches the 

pressure transducers.  The top plate has two pressure transducer tubing holes each 5.25 inches 

from the center of the flow cell.  Each hole has 2mm outer diameter tubing attached and welded 

in that is used to connect to the differential pressure transducer.  The entrance region consists of 

the pipe fitting attachment located in the vertical center and then that domain expands into a 

large region that is the full width of the cell (2 inches) and then encounters a frit which is chosen 

to be placed there to normalize the flow so that it is uniform upon entering the flow cell proper 

(see appendix).  Then there is a gradual slope to the bulk of the system where it flattens out.  This 

is designed to minimize flow disturbance and any turbulent tendencies in the flow.  

Overall the flow cell's toughest criteria are the need for minute tolerances and small 

channel height increments.  They have been addressed and are the top priority in the machining 

of the device.  Another possible option is instead of the plates being hollow we have thin and 

shallow bottom plates with carved out space that go onto the original bottom plate.  But this 

design has not been chosen because of its dramatic increase in cost.   
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Matlab Code 
WeightPost.m 
function [ W1, W2, W3]=WeightPost(Weight) 
a=length(Weight); 
b=floor(a/3); 
W1=zeros(b,1); 
W2=zeros(b,1); 
W3=zeros(b,1); 
for i=1:b 
    W1(i)=Weight(i*3-2); 
    W2(i)=Weight(i*3-1); 
    W3(i)=Weight(i*3); 
end 
R1=zeros(b-1,1); 
R2=zeros(b-1,1); 
R3=zeros(b-1,1); 
for i=1:b-1 
    R1(i)=W1(i+1)-W1(i); 
    R2(i)=W2(i+1)-W2(i); 
    R3(i)=W3(i+1)-W3(i); 
end 
T=[1:b-1]'; 
plot(T,R1,'r',T,R2,'b',T,R3,'g');legend('1st Scale', '2nd Scale', '3rd 
Scale');xlabel('time (min)');ylabel('Rate (mL/min)');title('Rate vs. Time'); 
end 
Averagern.m 
function Ave=Averagern(P,n) 
%P=input pressure column values 
%n=number of presures to average into a single value 
a=floor(length(P)/n); 
Ave=zeros(a,1); 
for i=1:a 
    b=0; 
    for j=1:n 
        b=(P((i-1)*n+j))+b; 
    end 
    Ave(i)=b/n; 
end 
end 
remover.m 
function out=remover(input) 
% Function removes spaces in weight matrix, but leaves a one in the first 
% spot and not the first data.  Needs to be manually copied over. 
a=length(input); 
b=a/2+.5; 
out=ones([1,b])'; 
for i=1:a 
    if mod(2,i)==0 
         
    else 
        out(floor(i/2)+1)=input(i); 
    end 
end 
end 
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Remote Access and Visualization 
new terminal window:  
ssh -X -l jome9631 login.rc.colorado.edu 
module load slurm 
sinteractive --qos=janus-debug 
cd (case) 
module load viz/paraview-4.0.0 
paraview 
 
(make sure that X11 is closed before running) 
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Milk Post Processing Steps Guide 
1. Copy	  the	  labview	  and	  text	  file	  into	  folder	  labeled	  with	  date	  and	  experiment	  name	  
2. Depending	   upon	   experiment	   type,	   save	   appropriate	   template	   in	   said	   folder	   with	  

date	  and	  name	  and	  descriptor	  of	  experiment	  
3. open	  text	  file,	  press	  select	  all	  and	  copy	  selected.	  	  
4. Paste	  in	  tab	  labeled	  "raw	  weight"	  	  
5. Open	   labview	   file,	  press	   select	  all	   (mac	  and	  PC	   is	   command	  a),	   copy	   (command	  c)	  

and	  paste	  into	  tab	  labeled	  "raw	  pressure"	  (command	  v)	  
6. Click	  save	  on	  the	  excell	  sheet	  
7. Open	  Matlab	  
8. under	  home	  tab	  on	  matlab,	  there	  is	  a	  green	  arrow	  pointed	  down,	  fifth	  button	  from	  

the	  left,	  labeled	  "Import	  Data".	  	  Click	  it	  
9. Now	  select	  the	  name	  of	  the	  excell	  document	  you	  just	  saved.	  	  You	  will	  have	  to	  change	  

and	   go	   to	   the	   folder	   in	  which	   it	   is	   saved.	   	   If	   you	   don't	   remember	   that,	   there	   is	   a	  
search	  bar	  on	   the	   top	  right	  you	  can	   type	   the	  name	  of	   the	  excell	   file	   into	   to	   find	   it.	  	  
Then	  click	  open	  

10. Click	  on	  the	  tab	  at	  the	  bottom	  labeled	  "Raw	  Weight"	  
11. In	  VarName1	  type	  Weight	  
12. on	  the	  top	  right	  there	  is	  a	  green	  checkmark	  labeled	  "Import	  Selection"	  click	  it	  
13. click	  on	  tab	  "Raw	  Pressure"	  
14. In	  "VarName1"	  through	  "VarName3"	  type	  "P1"	  to	  "P3"	  
15. Click	  on	  that	  "import	  selection"	  again.	  
16. Enter	  the	  following	  to	  create	  the	  average	  pressure.	  	  Since	  pressure	  is	  recorded	  every	  

5	  seconds	  and	  weight	  is	  recorded	  every	  minute,	  we	  average	  12	  pressures	  to	  average	  
over	   a	   minute.	   	   If	   a	   different	   weight	   measuring	   time	   is	   used,	   divide	   that	   time	   in	  
seconds	  by	  5	  and	  use	  that	  number	  as	  a	  replacement	  for	  12.	  

a. 	  P1A=Averagern(P1,12);	  
b. 	  P2A=Averagern(P2,12);	  
c. 	  P3A=Averagern(P3,12);	  

17. Then	   in	   the	  workspace	  double	  click	  on	  P1A	  and	   then	  copy	   those	  values	  and	  paste	  
them	  in	  the	  excell	  spreadseet	  in	  the	  pressure	  1	  column	  of	  the	  "final"	  page.	  	  	  

18. Repeat	  for	  each	  pressure	  
19. copy	  and	  paste	  "	  W=remover(Weight);"	  into	  the	  command	  prompt	  
20. then	  open	  both	  W	  and	  Weight	  
21. Copy	  the	  first	  value	  from	  Weight	  and	  replace	  the	  1	  in	  W	  with	  it.	  
22. then	  copy	  and	  paste	  "	  [W1,	  W2,	  W3]=WeightPost(W);"	  into	  the	  prompt	  
23. the	  graph	  will	  show	  you	  what	  the	  rates	  are	  and	  will	  help	  you	  figure	  out	   if	   there	   is	  

any	  data	  irregularities.	  
24. Open	  and	  Copy	  and	  paste	  the	  W1,	  W2,	  W3,	  files	  data	  into	  their	  respective	  slot	  in	  the	  

excell	  sheet	  
25. you	  may	  need	  to	  extend	  formula	  and	  graph	  area	  to	  view	  all	  data	  results.	  
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Sartorius Scale 
1) Port	  -‐-‐>	  Settings	  

a) select	  com	  for	  scale	  (it	  depends	  each	  time,	  just	  choose	  one,	  you	  can	  change	  this	  later	  
to	  the	  actual	  com)	  

b) 1200	  Band	  Rate	  
c) Odd	  Parit	  
d) 7	  Data	  Bit	  
e) 1	  Stop	  Bit	  
f) None-‐	  Flow	  Control	  

2) Port	  Analyze	  
a) cursor	  in	  output	  
b) ASCII	  Chart	  value	  27	  (<-‐-‐)	  
c) followed	  by	  capital	  P	  
d) send	  
e) quit	  

3) Define	  -‐-‐>	  Serial	  output	  strings	  
a) Interval	  (ms)	  ___	  place	  time	  (be	  careful	  it	  is	  in	  ms	  not	  seconds)	  
b) coursor	  to	  Timer	  Controlled	  Output	  string	  
c) ASCII	  Chart	  value	  27	  (<-‐-‐)	  
d) followed	  by	  capital	  P	  

4) Define	  -‐-‐>	  Hot	  Keys	  and	  Hot	  Key	  Action	  
a) Hot	  Key	  1	  
b) Hot	  Key	  Action	  (Enable	  Timer)	  
c) Hot	  Key	  Stroke	  (press	  F8	  while	  cursor	  is	  in	  box-‐	  the	  actual	  F8	  button,	  not	  F	  followed	  

by	  8)	  
d) Hot	  Key	  2	  
e) Hot	  Key	  Action	  (Disable	  Timer)	  
f) Hot	  Key	  Stroke	  (Press	  F9	  while	  cursor	  is	  in	  box)	  
g) click	  OK	  

5) Define	  -‐-‐>	  Input	  Data	  Record	  Structure	  
a) start	  of	  Record	  Event	  

i) any	  character	  received	  
b) End	  of	  Record	  Event	  

i) Carriage	  Return	  or	  CrLf	  recieved	  
c) continue	  
d) Each	  data	  record	  contains	  a	  single	  data	  field	  
e) continue	  
f) Input	  Filter	  

i) Change	  to	  "Numeric	  Data	  Only"	  
g) Click	  in	  Field	  Postable	  Keystrokes	  
h) click	  Keystroke	  List	  
i) Select	  "Enter"	  and	  click	  okay	  
j) click	  okay	  

6) Save	  
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OpenFOAM Solution and Algorithm Control Guide with Additional Tricks and 
Recommendations 
Reference	  Websites	  
http://www.tfd.chalmers.se/~hani/kurser/OS_CFD_2008/TimBehrens/tibeh-‐report-‐
fin.pdf	  
http://www.ara.bme.hu/~hernadi/OpenFOAM/	  
http://www.dicat.unige.it/guerrero/of2014a/14tipsandtricks.pdf	  
http://www.openfoamworkshop.org/6th_OpenFOAM_Workshop_2011/Program/Training
/deVilliers_slides.pdf	  
http://www.tfd.chalmers.se/~hani/kurser/OS_CFD_2008/TimBehrens/tibeh-‐slides.pdf	  
http://www.dicat.unige.it/guerrero/of2014a/5meshing.pdf	  
	  
	  
	  
	  
Different	  combinations	  for	  both	  u	  and	  p	  will	  work	  and	  not	  work.	  	  Some	  will	  work	  for	  p	  and	  
not	  for	  u.	  	  etc...	  or	  will	  only	  work	  if	  paired	  in	  a	  certain	  way.	  	  
	  
Linear	  system	  solvers	  

1. PBiCG	  =	  preconditioned	  bi-‐conjugate	  gradient	  solver	  for	  asymmetric	  matrices	  using	  
a	  run	  time	  selectable	  preconditioner	  

a. if	  over	  1024	  processors	  are	  used	  it	  is	  better	  than	  GAMG	  
2. PCG	  =	  preconditioned	  conjugate	  gradient	  solver	  for	  symmetric	  matrices	  using	  a	  run	  

time	  selectable	  preconditioner	  
a. if	  over	  1024	  processors	  are	  used	  it	  is	  better	  than	  GAMG	  

3. GAMG	  =	  generalized	  geometric-‐algebraic	  multi-‐grid	  solver	  
a. Often	  optimal	  choice	  for	  pressure	  equation.	  	  	  
b. works	  well	  for	  solving	  the	  pressure	  equation	  up	  to	  1024	  processors	  at	  which	  

point	  the	  Krylov	  type	  solvers	  (PBiCG	  and	  PCG)	  tend	  to	  do	  better.	  
c. not	  sure	  of	  use	  on	  U.	  	  
d. Uses	  principle	  of	  generating	  a	  quick	  solution	  on	  a	  course	  mesh	  and	  mapping	  

it	  onto	  a	  finer	  mesh	  to	  obtain	  accurate	  results.	  	  	  
e. faceAreaPair	  (apparently	  superior	  to	  algebraicPair)	  agglomerator	  
f. does	  this	  require	  similar	  face	  areas?	  	  
g. Overview	  of	  GAMG	  running	  through	  its	  loops	  

i. get	  the	  finest	  level	  interfaces	  from	  the	  mesh	  (mesh	  spacing?)	  
ii. start	  agglomeration	  from	  the	  given	  faceWeights	  (don't	  really	  

understand	  this	  part	  but	  it	  finds	  faces	  and	  then	  groups	  cells	  and	  faces	  
together)	  

iii. nCoarsestCells	  ends	  the	  agglomeration	  after	  the	  agglomeration	  
reaches	  the	  cell	  size	  listed	  as	  the	  most	  coarse	  with	  nCoarsestCells.	  	  
still	  not	  really	  sure	  how	  that	  works.	  	  Also	  maxLevels	  which	  places	  a	  
restriction	  on	  how	  many	  of	  loops	  i	  and	  ii	  can	  be	  done	  (how	  may	  
groups	  can	  be	  merged).	  	  It	  is	  hard	  coded	  to	  stop	  at	  50.	  	  
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h. mergeLevels	  =1;	  the	  amount	  of	  blocks	  combined	  at	  each	  step.	  	  Best	  to	  do	  1,	  
but	  fore	  really	  simple	  mesh	  could	  use	  2.	  	  

i. the	  solver	  is	  running	  a	  V-‐cycle	  at	  which	  the	  coarsest	  level	  matrix	  is	  solved	  
directly	  by	  specifiying	  "directSolve_Coarsest	  true"	  or	  using	  the	  iterative	  
ICCG/BICCG	  by	  default.	  	  The	  number	  of	  sweeps	  used	  by	  the	  selected	  
smoother	  when	  solving	  at	  different	  levels	  of	  mesh	  desnity	  are	  specified	  by	  
nPreSweeps,	  nPostSweeps,	  and	  nFinestSweeps.	  	  nPreSweeps	  is	  used	  when	  V	  
cycle	  is	  moving	  in	  coarser	  direction,	  nPostSweeps	  is	  used	  when	  algorithm	  is	  
refining,	  and	  nFinestSweeps	  is	  when	  solution	  is	  at	  its	  finest	  level.	  	  Defaults	  
are	  in	  the	  GAMG	  solver	  in	  GAMGSolver.C	  and	  can	  be	  overwritten	  by	  
definittion	  in	  fvSolution.	  

j. Defaults	  are:	  	  
i. cacheAgglomeration_(false)	  
ii. nPreSweeps_(0)	  
iii. nPostSweeps_(2)	  
iv. nFinestSweeps_(2)	  
v. scaleCorrection_(matrix.symmetric())	  
vi. directSolveCoarsest_(false)	  

k. when	  solving	  using	  multiphase	  problems	  there	  may	  be	  some	  problems	  
running	  in	  parallel.	  	  The	  problem	  is	  mainly	  related	  to	  nCoarsestCells	  
keyword,	  so	  he	  usually	  has	  to	  set	  a	  high	  value	  of	  cells	  (on	  the	  order	  of	  1000)	  

4. smoothSolver	  -‐	  solver	  using	  a	  smoother	  for	  both	  symmetric	  and	  asymmetric	  
matrices	  and	  uses	  a	  run	  time	  selected	  smoother	  	  	  

a. doesn't	  work	  with	  the	  other	  tutorial.	  	  ??	  on	  how	  it	  works.	  	  Worked	  with	  U	  so	  
long	  as	  paired	  with	  symGaussSeidel	  and	  P	  had	  PCG	  and	  DIC.	  

5. diagonalSolver	  =	  diagonal	  solver	  for	  both	  symmetric	  and	  asymmetric	  matrices.	  
a. Doesn't	  appear	  to	  actually	  exist	  in	  the	  usable	  solver	  options	  (at	  least	  for	  

asymmetric)	  .	  	  	  
6. BICCG	  =	  diagonal	  incomplete	  LU	  preconditioned	  BICG	  solver.	  	  Only	  there	  for	  

compatibility	  with	  old	  versions.	  	  Should	  use	  PBiCG	  instead	  
7. ICC	  =	  incomplete	  Cholesky	  preconditioned	  conjugate	  gradients	  solver.	  	  also	  for	  back	  

compatibility	  and	  PCG	  should	  be	  used	  instead	  now.	  	  
8. 	  

	  
Preconditioner	  

1. diagonalPreconditioner	  =	  Diagonal	  preconditioner	  for	  both	  symmetric	  and	  
asymmetric	  matrices.	  	  This	  preconditioner	  actually	  does	  not	  help	  with	  faster	  
propagation	  through	  the	  grid,	  but	  it	  is	  very	  easy	  and	  can	  be	  a	  good	  first	  step.	  	  The	  
reciprocal	  of	  the	  diagonal	  is	  calculated	  and	  stored	  for	  reuse	  because	  on	  most	  
systems	  multiplications	  are	  faster	  than	  divisions	  

a. not	  sure	  if	  that	  is	  the	  right	  command	  call.	  	  
2. DIC	  =	  diagonal	  incomplete-‐Cholesky	  

a. simplified	  diagonal-‐	  based	  incomplete	  Cholesky	  preconditioner	  for	  
symmetric	  matrices	  (symmetric	  equivalent	  of	  DILU).	  	  The	  reciprocal	  of	  the	  
preconditioned	  diagonal	  is	  calculated	  and	  stored.	  	  In	  lduMatrix	  folder	  it	  is	  
listed	  as	  DICPreconditioner	  
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3. DILU	  =	  diagonal	  incomplete	  LU	  
a. Simplified	  diagonal	  based	  incomplete	  LU	  preconditioner	  for	  asymmetric	  

matrices.	  	  The	  reciprocal	  of	  the	  preconditioned	  diagonal	  is	  calculated	  and	  
stored.	  	  	  

4. GAMG	  =	  geometric	  agglomerated	  algebraic	  multigrid=generalised	  geometric-‐
algebraic	  multi-‐grid	  

5. FDIC	  =	  Faster	  version	  of	  the	  DIC	  preconditioner	  for	  symmetric	  matrices	  in	  which	  the	  
reciprocal	  of	  the	  preconditioned	  diagonal	  and	  the	  upper	  coefficients	  divided	  by	  the	  
diagonal	  are	  calculated	  and	  stored.	  	  DIC	  will	  run	  fine	  though	  when	  FDIC	  doesn't,	  so	  
keep	  that	  in	  mind.	  	  	  

6. noPreconditioner	  =	  Null	  preconditioneer	  for	  both	  symmetric	  and	  asymmetric	  
matrices.	  	  No	  idea	  how	  or	  why	  it	  is	  called.	  	  

	  
Smoother	  

1. DIC	  =	  simplified	  diagonal-‐based	  incomplete	  Cholesky	  smoother	  for	  symmetric	  
matrices	  

2. DICGaussSeidel	  =	  combined	  DIC/GaussSeidel	  smoother	  for	  symmetric	  matrices	  in	  
which	  DIC	  smoothing	  is	  followed	  by	  GaussSeidel	  to	  ensure	  that	  any	  "spikes"	  created	  
by	  the	  DIC	  sweeps	  are	  smoothed	  out	  

3. DILU	  =	  simplified	  diagonal-‐based	  incomplete	  LU	  smoother	  for	  asymmetric	  matrices.	  	  
DILU	  smoothers	  are	  good	  smoothers	  for	  linear	  multigrid	  methods	  

4. GaussSeidel	  =	  the	  Gauss	  Seidel	  method	  is	  a	  technique	  used	  to	  solve	  a	  linear	  system	  
of	  equations.	  	  The	  method	  is	  an	  improved	  version	  of	  the	  Jacobi	  method.	  	  It	  is	  defined	  
on	  matrices	  with	  non-‐zero	  diagonals,	  but	  convergence	  is	  only	  guaranteed	  if	  the	  
matrix	  is	  either	  diagonally	  dominant,	  or	  symmetric	  and	  positive	  definite.	  	  	  

5. DILUGaussSeidel	  =	  Combined	  DILU/GaussSeidel	  smoother	  for	  asymmetric	  matrices	  
in	  which	  DILU	  smoothing	  is	  followed	  by	  GaussSeidel	  to	  ensure	  that	  any	  "spikes"	  
created	  by	  the	  DILU	  sweeps	  are	  smoothed-‐out.	  

6. symGaussSeidel	  
7. nonBlockingGaussSeidel	  
8. 	  

	  
Algorithms	  

1. PISO	  
2. SIMPLE	  

	  
Numerical	  Schemes	  

1. d2dt2Schemes	  
a. steadyState	  
b. Euler	  

2. ddtSchemes	  
a. backward	  

i. second	  order	  implicit	  scheme	  (unbounded)	  
b. bounded	  
c. CoEuler	  
d. CrankNicolson	  (number)	  
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i. second	  order	  implicit	  scheme	  (bounded)	  
e. Euler	  

i. first	  order	  implicit	  scheme	  (bounded)	  
f. localEuler	  
g. SLTS	  
h. steadyState	  

3. gradSchemes	  
a. fourth	  
b. gauss	  
c. LeastSquares	  
d. limited	  

4. divSchemes	  
a. gauss	  (requires	  an	  interpolation	  scheme)	  

5. laplacianSchemes	  
a. gauss	  (requires	  also	  interpolation	  scheme	  and	  a	  snGradScheme)	  

6. interpolationSchemes	  
a. biLinearFit	  
b. CenteredFit	  
c. clippedLinear	  
d. CoBlended	  
e. cubic	  
f. cubicUpwindFit	  
g. downwind	  
h. fixedBlended	  
i. harmonic	  
j. llimiterBlended	  
k. linear	  
l. linearFit	  
m. linearPureUpwindFit	  
n. linearUpwind	  
o. localBlended	  
p. localMax	  
q. localMin	  
r. LUST	  
s. midPoint	  
t. outletStabilised	  
u. pointLinear	  
v. PureUpwindFit	  
w. quadraticFit	  
x. quadraticLinearFit	  
y. quadraticLinearPureUpwindFit	  
z. quadraticLinearUpwindFit	  
aa. quadraticUpwindFit	  
bb. reverseLinear	  
cc. skewCorrected	  
dd. UpwindFit	  
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ee. weighted	  
ff. Centered	  Schemes	  

i. linear	  =	  linear	  interpolation	  (central	  differencing)	  
ii. cubicCorrection	  
iii. midPoint	  =	  	  linear	  interpolation	  with	  symmetric	  weighting	  

gg. Upwinded	  convection	  schemes	  
i. upwind	  =	  upwind	  differencing	  
ii. linearUpwind	  =	  linear	  upwind	  differencing	  
iii. skewLinear	  =	  linear	  with	  skewness	  correction	  
iv. filteredLinear2	  =	  linear	  with	  filtering	  for	  high	  frequency	  ringing	  

hh. TVD	  schemes	  
i. limitedLinear	  
ii. vanLeer	  
iii. MUSCL	  
iv. limitedCubic	  

ii. NVD	  schemes	  
i. SFCD	  =	  	  self-‐filtered	  central	  differencing	  
ii. Gamma	  =	  Gamma	  differencing	  	  

7. snGradSchemes	  
a. CenteredFit	  
b. corrected	  
c. faceCorrected	  
d. limited	  =	  	  requires	  also	  a	  number	  between	  0	  and	  1	  where	  0	  corresponds	  to	  

uncorrected,	  1	  corresponds	  to	  corrected,	  .5	  non	  orthogonal	  correction	  is	  less	  
than	  or	  equal	  to	  the	  orthogonal	  part.	  	  

e. linearFit	  
f. orthogonal	  
g. quadraticFit	  
h. uncorrected	  

8. fluxRequired:	  is	  a	  yes	  or	  no	  answer.	  
9. convectionSchemes	  

a. bounded	  
b. gauss	  
c. multivariateGauss	  

	  
	  
	  
	  
	  
	  
"Iterative	  methods	  for	  sparse	  linear	  systems"	  by	  Saad	  is	  available	  for	  free	  (first	  edition)	  and	  
might	  be	  useful.	  
	  
lduMatrix	  class	  is	  a	  class	  in	  which	  the	  coefficients	  are	  stored	  as	  three	  different	  arrays.	  (u)	  
upper	  triangle,	  (l)	  lower	  triangle,	  and	  (d)	  the	  diagonal	  of	  the	  matrix.	  	  Found	  in	  directory	  
source/OpenFOAM/matrices/lduMatrix	  
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A	  preconditioned	  iterative	  solver	  solves	  the	  system	  M −1Ax = M −1b 	  with	  M	  being	  the	  
preconditioner.	  	  The	  purpose	  of	  the	  preconditioner	  is	  to	  make	  sure	  that	  convergence	  for	  
the	  preconditioned	  system	  is	  much	  faster	  than	  for	  the	  original	  one.	  	  This	  leads	  to	  M	  usually	  
being	  an	  easily	  invertible	  approximation	  to	  A.	  	  The	  preconditioner	  leads	  to	  a	  faster	  
propagation	  of	  information	  through	  the	  computational	  mesh.	  	  	  
	  
Krylov	  Subspace	  solvers:	  PBiCG	  and	  PCG	  are	  Krylov	  subspace	  solvers.	  	  the	  order-‐r	  Krylov	  
subspace	  generated	  by	  the	  n	  x	  n	  matrix	  A	  and	  the	  vector	  of	  n-‐dimension	  b	  is	  the	  linear	  
subspace	  spanned	  by	  the	  images	  of	  b	  under	  the	  first	  r	  powers	  of	  A	  starting	  from	  the	  
Identity	  matrix	  as	  A0.	  	  Basically	  Kr (A,b) = span{b,Ab,A

2b,...,Ar−1b} 	  and	  each	  vector	  defining	  
the	  subspace	  is	  quickly	  and	  easily	  made	  up	  by	  multipling	  a	  matrix	  b	  the	  previous	  vector.	  	  so	  
b,	  then	  Ab,	  then	  A	  (Ab)	  then	  A	  (AAb)	  etc...	  The	  vectors	  tend	  to	  become	  almost	  linearly	  
dependent	  very	  quickly;	  methods	  involving	  Krylov	  subspace	  frequently	  rely	  on	  
orthogonalization	  schemes	  such	  as	  Lanczos	  iteration	  for	  Hermitian	  matrices	  or	  Arnoldi	  
iteration	  for	  general	  matrices.	  	  This	  technique	  is	  known	  as	  Krylov	  subspace	  methods.	  	  
	  
Although	  preconditioners	  can	  considerably	  reduce	  the	  number	  of	  iterations	  they	  do	  not	  
normally	  reduce	  the	  mesh	  dependency	  of	  the	  number	  of	  iterations.	  	  	  
	  
Numerical	  Schemes	  can	  be	  found	  in	  src/finiteVolume/finiteVolume/	  
	  
missing	  the	  previously	  used	  bounded	  schemes	  
	  
Interpolation	  schemes	  are	  uses	  for	  interpolations	  of	  values	  from	  cell	  centers	  to	  face	  
centers.	  	  Convection	  specific	  schemes	  calculate	  the	  interpolation	  based	  on	  the	  flux	  of	  the	  
flow	  velocity.	  Also	  which	  schemes	  can	  be	  used	  with	  the	  V	  vector	  ending?	  
	  
checkMesh	  -‐allGeometry	  -‐allToplogy	  

1. all	  topolgical	  errors	  must	  be	  repaired	  
2. you	  can	  run	  with	  mesh	  quality	  errors	  such	  as	  skewness,	  aspect	  ratio,	  minimum	  face	  

area,	  and	  non-‐orthogonality,	  but	  they	  will	  severely	  tamper	  the	  solution	  accuracy	  and	  
eventually	  can	  make	  the	  solver	  blow	  up	  

3. checkMesh	  will	  also	  write	  a	  set	  of	  the	  faulty	  cells,	  faces,	  and	  points	  to	  the	  directory	  
"constant/polyMesh/sets"	  

4. use	  of	  "foamToVTK	  -‐set_type	  	  name_of_sets"	  where	  set_type	  is	  the	  type	  of	  sets:	  
faceSet,	  cellSet,	  pointSet,	  surfaceFields.	  	  Name_of_sets	  is	  the	  name	  of	  the	  set	  in	  the	  
sets	  directory	  such	  as:	  highAspectRatioCells,	  nonOrthoFaces,	  wrongOrientedFaces,	  
skewFaces,	  unusedPoints.	  

5. foamToVTK	  will	  create	  the	  VTK	  folder	  that	  can	  be	  viewed	  with	  paraView	  to	  visualize	  
the	  failed	  sets	  

renumberMesh	  =	  renumbers	  the	  mesh	  to	  minimize	  its	  bandwidth	  helping	  to	  make	  the	  
solver	  run	  faster	  for	  the	  beginning	  time	  steps	  at	  least.	  	  Very	  useful	  with	  large	  meshes	  such	  
as	  I	  run.	  	  	  
Remember	  mesh	  quality	  is	  extremely	  important	  to	  get	  good	  results	  in	  an	  openFoam	  case	  
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Initial	  Conditions	  

1. a	  good	  initial	  condition	  can	  improve	  the	  stability	  and	  convergence.	  	  	  Unphysical	  
boundary	  conditions	  can	  slow	  down	  convergence	  or	  cause	  divergence	  

2. when	  possible,	  start	  off	  by	  using	  "potentialFoam"	  to	  get	  an	  initial	  solution	  as	  it	  is	  
computationally	  inexpensive	  and	  provides	  a	  good	  initial	  condition.	  	  

3. if	  you	  get	  a	  decent	  solution	  from	  a	  course	  mesh,	  you	  can	  use	  mapFields	  to	  map	  the	  
solution	  onto	  a	  finer	  mesh	  to	  do	  a	  higher	  resolution	  simulation.	  	  

4. if	  you	  are	  running	  a	  turbulence	  model	  you	  can	  initialize	  the	  velocity	  and	  pressure	  
fields	  from	  a	  solution	  obtained	  from	  a	  laminar	  case	  

5. initial	  conditions	  should	  be	  physically	  realistic	  
	  
Important	  Tricks	  and	  miscellaneous	  things	  

1. if	  "runTimeModifiable"	  is	  set	  to	  use	  in	  the	  controlDict	  than	  the	  controlDict,	  
fvSchemes	  and	  fvSolution	  can	  be	  edited	  and	  updated	  while	  the	  simulation	  is	  
running.	  	  	  

2. Never	  execute	  production	  runs	  or	  a	  final	  solution	  using	  first	  order	  schemes.	  	  They	  
are	  too	  diffusive,	  which	  means	  they	  will	  under	  predict	  the	  forces	  and	  smear	  the	  
gradients.	  	  You	  can	  start	  using	  a	  first	  order	  scheme	  and	  then	  switch	  to	  a	  higher	  order	  
scheme	  (start	  robustly	  and	  end	  with	  accuracy).	  	  

a. it	  will	  be	  important	  to	  organize	  the	  discretization	  schemes	  by	  order	  
3. time	  step	  continuity	  errors	  should	  be	  small	  (negative	  or	  positive),	  if	  it	  increases	  in	  

time	  something	  is	  wrong.	  	  
4. If	  after	  checking	  the	  mesh	  quality,	  the	  non-‐orthogonality	  is	  higher	  than	  80	  it	  is	  

prudent	  if	  possible	  to	  redo	  the	  mesh	  and	  improve	  the	  quality	  
5. If	  running	  LES	  mesh	  quality	  needs	  to	  be	  even	  better	  and	  non-‐orthogonality	  really	  

needs	  to	  be	  less	  than	  60	  and	  as	  low	  as	  possible.	  
6. do	  not	  try	  to	  push	  too	  much	  the	  numerical	  scheme	  on	  highly	  non-‐orthognal	  meshes.	  	  

You	  already	  know	  that	  the	  quality	  is	  low,	  so	  this	  highly	  influence	  the	  accuracy	  and	  
stability	  of	  the	  solution	  

7. Generally	  start	  with	  first	  order	  and	  looser	  convergence	  criterion	  and	  then	  as	  the	  
simulation	  runs	  switch	  to	  second	  order	  and	  tighter	  convergence	  criterion.	  

	  
	  
Convective	  terms:	  

1. for	  grad	  and	  div	  schemes.	  	  robust	  but	  highly	  diffusive	  
a. cellLimited	  Gauss	  linear	  1.0	  (for	  grad)	  
b. Gauss	  upwind	  
c. Gauss	  linear	  

2. accurate	  and	  stable	  	  
a. cellMDLimited	  Gauss	  linear	  0.5	  (grad	  scheme)	  
b. Gauss	  linearUpwind	  grad(U)	  

	  
diffusive	  terms	  

1. accurate	  schemes	  for	  orthogonal	  meshes	  
a. laplacian	  -‐-‐-‐	  Gauss	  linear	  corrected	  
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b. snGradSchemes	  -‐-‐-‐	  corrected	  
2. accurate	  scheme	  for	  orthogonal	  meshes	  with	  non-‐orthogonal	  corrections	  

a. laplacian	  -‐-‐-‐	  Gauss	  linear	  limited	  1	  
b. snGradSchemes	  limited	  1	  

3. less	  accurate	  numerical	  scheme	  valid	  on	  non-‐orthogonal	  meshes	  with	  non	  
orthogonal	  corrections	  

a. laplacianSchemes	  -‐-‐-‐	  Gauss	  linear	  limited	  0.5	  
b. SnGradSchemes	  -‐-‐-‐-‐	  limited	  0.5	  

4. 	  
	  
In	  the	  event	  of	  Non-‐orthogonality	  more	  than	  80	  it	  is	  highly	  recommended	  to	  not	  waste	  time	  
simulating	  and	  get	  a	  better	  mesh.	  	  But	  if	  it	  must	  run	  then	  it	  is	  highly	  recommend	  to	  use	  this	  
gradSchemes	  {	  default	  	   faceLimited	  leastSquares	  1.0;}	  
divSchemes	  {	  div(phi,U)	   Gauss	  linearUpwind	  grad(U);}	  
laplacianSchemes	  {	  default	  	   Gauss	  linear	  limited	  0.333;}	  
snGradSchemes	  {	  default	  	   limited	  0.333;}	  
	  
In	  the	  event	  of	  Non-‐orthogonality	  between	  70	  and	  80	  
gradSchemes	  {	  default	  	   cellLimited	  leastSquares	  1.0;}	  
divSchemes	  {	  div(phi,U)	   Gauss	  linearUpwind	  grad(u);}	  
laplacianSchemes	  {	  default	  	   Gauss	  linear	  limited	  0.5;}	  
snGradSchemes	  {	  default	  	   limited	  0.5;}	  
nNonOrthogonalCorrectors	  4;	  
	  
In	  the	  event	  of	  Non-‐orthogonality	  between	  60	  and	  70	  
gradSchemes	  {	  default	  	   cellMDLimited	  Gauss	  linear	  0.5;}	  
divSchemes	  {	  div(phi,U)	   Gauss	  linearUpwind	  grad(u);}	  
laplacianSchemes	  {	  default	  	   Gauss	  linear	  limited	  0.777;}	  
snGradSchemes	  {	  default	  	   limited	  0.777;}	  
nNonOrthogonalCorrectors	  2;	  
	  
In	  the	  event	  of	  Non-‐orthogonality	  between	  40	  and	  60	  
gradSchemes	  {	  default	  	   cellMDLimited	  Gauss	  linear	  0.5;}	  
divSchemes	  {	  div(phi,U)	   Gauss	  linearUpwind	  grad(u);}	  
laplacianSchemes	  {	  default	  	   Gauss	  linear	  limited	  1;}	  
snGradSchemes	  {	  default	  	   limited	  1;}	  
nNonOrthogonalCorrectors	  1;	  
	  
gradSchemes:	  defines	  the	  way	  we	  compute	  the	  gradients.	  	  Gradients	  can	  be	  computed	  using	  
the	  Gauss	  Method	  or	  the	  Least	  Squares	  Method.	  	  In	  practice,	  the	  least	  squares	  method	  is	  
more	  accurate	  but	  tends	  to	  be	  more	  oscillatory	  on	  tetrahedral	  meshes.	  	  Gradient	  limiters	  
avoid	  over	  and	  under	  shoots	  on	  the	  gradient	  computations.	  there	  are	  four	  available:	  (listed	  
from	  most	  diffusive	  to	  least	  diffusive)	  faceLimited,	  faceMDLimited,	  cellLimited,	  
cellMDLimited.	  	  	  
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Under-‐relaxation	  factors:	  because	  of	  the	  non-‐linearity	  of	  the	  equations	  being	  solved,	  it	  is	  
necessary	  to	  control	  the	  change	  of	  phi.	  	  In	  general,	  under-‐relaxation	  factors	  are	  there	  to	  
suppress	  oscillations.	  	  small	  under-‐relaxation	  factors	  will	  significantly	  slow	  down	  
convergence.	  	  They	  can	  even	  slow	  down	  convergence	  to	  the	  extent	  that	  it	  looks	  converged	  
before	  it	  is.	  The	  recommendation	  is	  to	  always	  use	  under-‐relaxation	  factors	  that	  are	  as	  high	  
as	  possible	  without	  resulting	  in	  oscillations	  or	  divergence.	  	  To	  find	  the	  optimal	  under-‐
relaxation	  factor	  for	  each	  case	  will	  usually	  take	  trial	  and	  error.	  	  it	  is	  recommended	  to	  start	  
with	  the	  default	  values	  and	  slowly	  decrease	  the	  value.	  	  a	  good	  number	  is	  usually	  0.3	  for	  
Pressure	  and	  0.7	  for	  Velocity	  
	  
For	  pressure	  a	  good	  starting	  point	  is	  usually	  the	  bellow	  with	  the	  tolerances	  later	  tightened	  
to	  1e-‐6,	  and	  0	  
p	  
{	  
	   solver	   	   	   	   GAMG;	  
	   tolerance	   	   	   1e-‐5;	  
	   relTol	   	   	   	   0.01	  
	   smoother	   	   	   GaussSeidel;	  
	   nPreSweeps	   	   	   0;	  
	   nPostSweeps	   	   	   2;	  
	   cacheAgglomeration	  	   on;	  
	   agglomeerator	   	   faceAreaPair;	  
	   nCellsInCoarsestLevel	   100;	  
	   mergeLevels	   	   	   1;	  
}	  
if	  not	  using	  GAMG	  starts	  often	  with	  this	  and	  increases	  tolerance	  to	  eventual	  finally	  1e-‐6	  and	  
0.	  
p	  	  
{	  	  
	  solver	  	   	   PCG;	  	  
	  preconditioner	  	   DIC;	  	  
	  tolerance	  	   	   1e-‐4;	  	  
	  relTol	  	   	   0.01;	  	  
}	  
	  
For	  the	  velocity	  equation	  this	  is	  usually	  a	  good	  place	  to	  start	  
U	  
{	  
	   solver	   	   	   PBiCG;	  
	   preconditioner	   DILU;	  
	   tolerance	   	   1e-‐8;	  
	   relTol	   	   	   0;	  
}	  
	  
when	  using	  the	  pimple	  solver,	  you	  have	  the	  option	  to	  limit	  your	  time	  step	  to	  a	  maximum	  
CFL	  (courant)	  number	  so	  the	  solver	  automatically	  chooses	  the	  time	  steps.	  	  	  
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If	  you	  are	  using	  the	  piso	  solver	  you	  need	  to	  give	  the	  time	  step	  size	  and	  cannot	  have	  it	  adjust	  
automatically.	  	  	  
	  
To	  do	  so,	  by	  setting	  the	  keyword	  "nOuterCorrectors"	  equal	  to	  1	  in	  the	  pimple	  solver	  is	  
equivalent	  to	  using	  the	  piso	  solver	  and	  then	  the	  Courant	  number	  can	  be	  specified.	  	  
	  
The	  pimple	  solver	  is	  a	  solver	  specially	  formulated	  for	  large	  time-‐steps.	  	  So	  in	  order	  to	  
increase	  the	  stability	  you	  will	  need	  to	  add	  more	  corrector	  steps	  (nOuterCorrectors	  and	  
nCorrectors)	  	  
	  
A	  smaller	  time	  step	  may	  be	  needed	  in	  the	  first	  iterations	  to	  maintain	  solver	  stability.	  	  First	  
time	  steps	  also	  may	  take	  longer	  to	  converge	  so	  do	  not	  be	  alarmed.	  	  
	  
If	  you	  are	  interested	  in	  the	  initial	  solution,	  start	  using	  a	  high	  order	  discretization	  scheme,	  a	  
tight	  convergence	  and	  the	  right	  flow	  properties.	  	  
	  
If	  you	  use	  the	  first	  order	  Euler	  scheme,	  try	  to	  use	  a	  Courant	  number	  less	  than	  1.0	  and	  
preferably	  in	  the	  order	  of	  0.5	  in	  order	  to	  keep	  temporal	  diffusion	  to	  a	  minimum.	  	  	  
	  
First	  order	  schemes	  are	  robust	  and	  second	  order	  schemes	  are	  accurate	  
	  
low	  residuals	  do	  not	  automatically	  mean	  a	  correct	  solution,	  nor	  do	  high	  residuals	  indicate	  a	  
wrong	  solution.	  	  Higher	  order	  discretization	  schemes	  will	  often	  have	  higher	  final	  residuals	  
than	  first	  order,	  but	  are	  still	  almost	  always	  better	  than	  the	  first	  order	  solution.	  	  	  
	  
OpenFoam	  works	  best	  with	  hexahedral	  meshes.	  	  Change	  in	  cell	  size	  should	  be	  smooth.	  	  In	  
boundary	  layers	  quad,	  hex,	  prism/wedge	  cells	  are	  preferred	  over	  triangles,	  tetrahedral	  or	  
pyramids.	  	  	  
	  
	  
functionObject	  can	  be	  used	  to	  monitor	  the	  simulations.	  	  	  
You	  can	  use	  the	  utility	  "execFlowFunctionObjects"	  	  which	  will	  calculate	  the	  quantities	  from	  
saved	  solutions.	  	  functionObject	  is	  added	  and	  defined	  in	  the	  "controlDict"	  file.	  	  	  
	  
Meshing	  Information	  

1. Mesh	  Orthogonality	  =	  the	  angle	  that	  the	  surface	  vector	  between	  two	  cells	  makes	  
with	  the	  line	  going	  between	  the	  two	  cell	  centers	  that	  share	  that	  face.	  

a. Plays	  a	  very	  big	  roll	  in	  mesh	  quality	  and	  fvSchemes	  choices	  (see	  above)	  
b. Affects	  the	  gradient	  of	  the	  face	  center	  
c. Adds	  diffusion	  to	  the	  solution	  

2. Mesh	  Skewness	  =	  the	  distance	  between	  the	  center	  of	  the	  surface	  of	  the	  face	  and	  the	  
point	  on	  the	  line	  (which	  connecting	  the	  two	  cell	  centers	  that	  share	  that	  face	  )	  
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intersecting	  with	  the	  face	  surface	  (see	  the	  delta	  symbol	  on	  the	  attached	  picture)

	  
a. Affects	  the	  interpolation	  of	  the	  cell	  centered	  quantities	  to	  the	  face	  center	  
b. Adds	  diffusion	  to	  the	  solution	  

3. Mesh	  Aspect	  Ratio	  =	  	  the	  ratio	  between	  the	  longest	  and	  shortest	  side	  of	  a	  cell.	  	  	  
a. Large	  AR	  are	  okay	  if	  gradients	  in	  the	  long	  direction	  are	  small.	  	  	  
b. High	  AR	  smear	  gradients.	  	  

4. Mesh	  Smoothness	  =	  is	  the	  expansion	  or	  change	  rate	  of	  cell	  size	  between	  adjacent	  
cells.	  	  in	  general	  you	  do	  not	  want	  any	  length	  to	  increase	  by	  more	  than	  20%	  of	  its	  
neighbor's	  size.	  	  (l2/l1<1.2)	  

a. Adds	  diffusion	  to	  the	  solution	  
	  
	  
Will	  want	  to	  test	  out	  "renumberMesh"	  and	  "refineWallLayer"	  
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OpenFOAM Compile Solver 
Openfoam	  Compile	  Solver	  
By:	  John	  Mersch	  IV	  
	  
Steps	  to	  Compile	  Solver:	  
	  
Making	  the	  New	  Solver	  

1. First	  Copy	  a	  solver's	  folder	  to	  a	  location	  for	  editing	  
2. Edit	  the	  solver	  files	  the	  SolverName.C	  and	  in	  the	  Make	  subfolder	  the	  file	  script	  called	  

"files".	  
a. In	  the	  "files"	  script	  

i. 	  first	  at	  the	  top	  line	  put	  the	  new	  solver	  name	  as	  "solverName.C"	  	  [if	  
your	  new	  solver	  is	  called	  Geroge.C	  then	  it	  would	  go	  right	  there]	  

ii. Second	  the	  file	  will	  read	  "EXE	  =	  $(FOAM_APPBIN)/icoFoam"	  (or	  the	  
solver	  you	  coppied	  is	  that	  last	  word).	  	  you	  will	  change	  it	  to	  "EXE	  =	  
$(FOAM_USER_APPBIN)/SolverName"	  (where	  SolverName	  is	  the	  
same	  name	  used	  in	  the	  first	  line	  

b. in	  the	  SolverName.C	  script	  you	  first	  need	  to	  change	  the	  name	  of	  the	  
document	  and	  then	  make	  your	  changes	  to	  the	  solver.	  	  Be	  sure	  to	  be	  working	  
off	  the	  newest	  version.	  	  

	  
The	  next	  phase	  is	  generating	  the	  directory,	  if	  you	  already	  have	  a	  $WM_PROJECT_USER_DIR	  
then	  skip	  the	  next	  step.	  	  

1. mkdir	  -‐p	  $WM_PROJECT_USER_DIR/applications/solvers	  
2. cp	  -‐r	  (pathway	  to	  the	  folder	  of	  the	  solver	  files	  you	  just	  made)	  

$WM_PROJECT_USER_DIR/applications/solvers/SolverName	  where	  SolverName	  is	  
the	  name	  of	  your	  new	  solver	  

	  
	  
Now	  Proceed	  to	  compiling	  steps	  

1. cd	  $WM_PROJECT_USER_DIR/applications/solvers/SolverName	  
2. remove	  the	  old	  dependency	  file	  (the	  file	  ending	  is	  ".dep"	  and	  has	  the	  name	  of	  the	  old	  

solver)	  
3. delete	  the	  old	  binaries	  subdirectory	  "rm	  -‐rf	  linuxGccDP0pt"	  (it	  is	  in	  the	  make	  

directory.	  	  you	  need	  to	  ender	  that	  directory	  with	  "cd	  make"	  or	  just	  manually	  delete	  
the	  file	  

4. "wmake"	  to	  compile	  	  
5. "ls	  $FOAM_USER_APPBIN"	  to	  check	  to	  see	  that	  the	  new	  solver	  has	  compiled.	  	  
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VirtualBox Instructions 
Download	  and	  install	  VirtualBox	  
Download	  the	  operating	  system	  you	  want	  to	  use	  
Go	  through	  instructed	  set	  up	  
Once	  Ubuntu	  is	  installed	  you	  will	  need	  to	  then	  install	  Guest	  Additions	  under	  the	  Devices	  
tab.	  	  	  
Allow	  it	  to	  run.	  
Then	  click	  on	  the	  folder	  share	  button	  on	  the	  bottom	  right	  (the	  image	  is	  of	  a	  folder)	  
click	  on	  the	  other	  button	  and	  then	  browse	  for	  your	  desired	  folder	  you	  want	  to	  link	  with	  the	  
Virtual	  machine	  
then	  under	  the	  terminal	  type	  "sudo	  passwd"	  and	  type	  the	  new	  root	  password	  twice	  
then	  	  

1. Open a terminal. 
2. Enter "su -" (without quotes), hit Enter. 
3. Enter the root password, hit Enter. 
4. Type in "usermod -a -G vboxsf username", without quotes, replacing 

username with the user you want to add to the group, hit Enter. 
5. You may have to reboot to remount the share, the easiest way to do 

this is probably to reboot the VM. 

and	  now	  you	  can	  access	  the	  folder	  that	  is	  shared.	  
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Git Guide Summary 
git	  Git	  Guide	  Summary	  

1. Initializing	  GIT	  
a. Type	  “git	  init”	  in	  the	  terminal	  

2. “git	  status”	  
a. current	  status	  of	  projects	  

3. “git	  add”	  
a. 	  using	  plane	  “git	  add”	  will	  track	  a	  file,	  while	  “git	  add	  <file>	  ….”	  Will	  add	  …	  as	  a	  

comment	  onto	  the	  <file>	  for	  you	  to	  see	  when	  you	  use	  “git	  status”	  
b. when	  it	  is	  tracked	  it	  will	  be	  tracking	  the	  changes	  to	  the	  file	  
c. 	  

4. Staging	  Area	  
5. “git	  rm	  –cached	  <file>…”	  to	  unstage	  
6. “git	  commit	  –m	  “…”	  to	  record	  comments	  on	  changes	  
7. can	  use	  the	  wild	  card	  function	  ‘*.txt’	  for	  the	  files	  
8. “git	  log”	  gives	  all	  the	  changes	  and	  commands	  in	  order	  from	  most	  recent	  to	  oldest	  
9. remote	  git	  repository	  
10. “git	  remote	  add	  <name	  or	  remote	  space>	  <url>”	  
11. “git	  push	  –u	  origin	  master”	  adding	  the	  “-‐u”	  tells	  it	  to	  remember	  the	  place	  so	  next	  

time	  we	  can	  just	  run	  “git	  push”	  and	  “master”	  is	  the	  default	  local	  branch	  name	  
12. “git	  pull	  origin	  master”	  pulls	  back	  the	  files	  that	  were	  pushed	  and	  allows	  us	  to	  see	  the	  

changes.	  
13. “get	  diff”	  allows	  us	  to	  see	  what’s	  different	  from	  our	  last	  commit,	  and	  “get	  diff	  HEAD”	  

acts	  as	  a	  pointer	  and	  does	  “get	  diff”	  on	  the	  most	  recent	  commit	  
14. “git	  reset	  <filepath/filename>”	  unstages	  a	  file	  
15. “git	  checkout	  -‐-‐	  <file>	  removes	  all	  changes	  since	  the	  last	  commit	  for	  the	  file.	  
16. For	  when	  working	  on	  debugs	  or	  a	  feature,	  its	  often	  best	  to	  create	  a	  copy	  to	  work	  on.	  	  

This	  is	  done	  by	  “git	  branch	  <branch	  name>”	  and	  once	  perfected	  can	  be	  merged	  with	  
the	  master	  branch	  

17. Can	  create	  and	  visit	  a	  branch	  all	  at	  once	  by	  “git	  checkout	  –b	  <branch	  name>”	  
18. You	  can	  switch	  branches	  using	  the	  “git	  checkout	  <branch>”	  command	  
19. “git	  rm	  ‘.txt’”	  will	  remove	  all	  the	  files	  and	  stage	  the	  removal	  of	  files	  in	  the	  current	  

directory	  
20. “git	  rm	  ‘<file	  name>’”	  will	  remove	  that	  given	  file	  
21. “git	  rm	  –r	  folder_of_cats”	  will	  remove	  all	  the	  files	  and	  folders	  in	  the	  given	  directory.	  

It	  might	  be	  “git	  rm	  –r	  <directory	  name>”	  
22. go	  back	  to	  the	  master	  directory.	  	  Then	  “git	  merge	  <branch	  name>”	  merges	  the	  

branch	  with	  the	  master	  section	  (might	  also	  work	  for	  higher	  order	  branching)	  
23. after	  merging	  to	  delete	  a	  branch	  “git	  branch	  –d	  <branch	  name>”	  

	  
1) Facts	  about	  Git	  

a) Git	  saves	  an	  entire	  copy	  of	  everything	  on	  each	  computer	  using	  it	  which	  is	  great	  in	  
the	  event	  of	  corruption	  

b) You	  can	  comment	  while	  not	  connected	  to	  the	  internet	  and	  update	  it	  when	  you	  can	  
connect	  to	  the	  internet	  



	  140	  

c) Very	  difficult	  to	  lose	  data	  so	  long	  as	  your	  remember	  to	  push	  after	  commenting	  	  
d) Three	  main	  stages	  the	  files	  can	  reside	  in:	  committed,	  modified,	  staged	  

i) Committed	  means	  that	  the	  data	  is	  safely	  stored	  in	  your	  local	  database	  
ii) Modified	  means	  you	  have	  changed	  the	  file	  but	  have	  not	  committed	  it	  to	  your	  

database	  
iii) Staged	  means	  you	  have	  marked	  a	  modified	  file	  in	  its	  current	  version	  to	  go	  into	  

your	  next	  commit	  snapshot	  
e) The	  git	  directory	  is	  where	  Git	  stores	  the	  metadata	  and	  object	  database	  for	  the	  

project	  
f) The	  working	  directory	  is	  a	  single	  checkout	  of	  one	  version	  of	  the	  project.	  	  They	  files	  

are	  placed	  on	  the	  disk	  for	  use	  or	  modify.	  
i) I	  will	  want	  to	  be	  careful	  that	  when	  I	  use	  these	  I	  don’t	  accidently	  add	  all	  the	  run	  

files	  to	  the	  git	  repository	  or	  it	  will	  be	  bogged	  down	  
g) The	  staging	  area	  is	  where	  you	  place	  files	  to	  be	  committed	  together	  

2) Git	  Workflow	  
a) You	  modify	  files	  in	  your	  working	  directory	  
b) You	  stage	  the	  files,	  adding	  snapshots	  of	  them	  to	  your	  staging	  area.	  
c) You	  do	  a	  commit,	  which	  takes	  the	  files	  as	  they	  are	  in	  the	  staging	  area	  and	  stores	  that	  

snapshot	  permanently	  to	  your	  Git	  directory	  
3) Help	  options	  

a) “git	  help	  <verb>”	  
b) “git	  <verb>	  -‐-‐help”	  
c) “man	  git-‐<verb>”	  

4) 	  
	  
	  
Setting	  up	  Git	  
1) Setting	  up	  your	  identity	  

a) “git	  config	  -‐-‐global	  user.name	  “<your	  name>”	  
b) “git	  config	  -‐-‐global	  user.email	  <your	  email>”	  
c) “git	  config	  -‐-‐global	  core.editor	  <txt	  file	  editor>”	  
d) “git	  config	  -‐-‐global	  merge.tool	  vimdiff”	  
e) “git	  config	  -‐-‐list"	  lists	  current	  settings	  

2) Initializing	  a	  Repository	  in	  and	  Existing	  Directory	  
a) “git	  add	  <files>”	  can	  do	  whole	  folders	  
b) “git	  commit	  –m	  ‘<project	  description/initial	  project	  version>’”	  

3) Cloning	  an	  Existing	  Repository	  
a) “git	  clone	  <url>”	  

4) How	  it	  works	  
a) So	  while	  you	  edit	  files	  on	  the	  desktop	  it	  keeps	  track	  of	  changes	  to	  files	  and	  the	  like.	  	  

So	  its	  really	  odd	  in	  that	  sense.	  	  Not	  sure	  quite	  how	  well	  it	  will	  pair	  with	  Globius,	  and	  
Janus,	  but	  we	  shall	  see.	  

5) It	  is	  important	  that	  after	  editing	  a	  file	  you	  use	  “git	  add”	  again	  so	  the	  newest	  version	  
from	  the	  directory	  is	  staged	  for	  comment	  

6) To	  ignore	  a	  file	  “cat	  	  >	  .gitignore”	  followed	  by	  what	  you	  want	  it	  to	  ignore.	  	  Examples	  are	  
“*~”	  go	  ignore	  any	  back	  up	  of	  files	  
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a) There	  is	  a	  further	  section	  on	  ignore,	  but	  it	  looks	  like	  you’d	  need	  a	  better	  cleaned	  
desktop	  anyway	  

7) “git	  diff”	  shows	  all	  the	  changes	  that	  you	  made	  with	  break	  ups	  for	  need	  to	  be	  commit	  and	  
staged	  vs.	  unstagged.	  	  Space	  bar	  to	  scroll,	  and	  q	  to	  end	  the	  examination	  and	  get	  back	  to	  
normal	  terminal	  prompt	  

8) to	  commit	  files	  can	  use	  “git	  commit”	  which	  allows	  you	  to	  then	  type	  stuff	  with	  #	  lines	  
being	  ignored.	  

9) “git	  commit	  -‐a"	  gives	  takes	  all	  the	  tracked	  files	  that	  have	  been	  modified	  and	  stages	  and	  
commits	  them.	  	  Can	  also	  do	  “git	  commit	  –a	  –m	  ‘<description>’”	  as	  well.	  

	  
	  
git	  remote	  add	  origin	  
https://JM4Boulder@bitbucket.org/JM4Boulder/jm4_firstreposity.git	  
	  

24. “git	  remote	  add	  <name	  or	  remote	  space>	  <url>”	  
25. “git	  push	  –u	  origin	  master”	  adding	  the	  “-‐u”	  tells	  it	  to	  remember	  the	  place	  so	  next	  

time	  we	  can	  just	  run	  “git	  push”	  and	  “master”	  is	  the	  default	  local	  branch	  name	  
	  
git	  add	  <folder>*	  
git	  commit	  -‐m	  ‘<message>’	  
git	  push	  -‐u	  origin	  master	  
	  
git	  init	  (only	  need	  be	  done	  once)	  	  
cd	  repos/jm4_firstreposity	  
git	  add	  <folder>	  
git	  commit	  -‐a	  -‐m	  '<message>'	  
git	  push	  
	  
Example	  of	  Successful	  Running	  
rl1-1-223-93-dhcp:jm4_firstreposity Dragon$ git add Case022 
rl1-1-223-93-dhcp:jm4_firstreposity Dragon$ git commit -a -m "Adding 
Case 22 to the git Repository" 
[master f47070d] Adding Case 22 to the git Repository 
 66 files changed, 6980930 insertions(+) 
 create mode 100644 Case022/.DS_Store 
 create mode 100644 Case022/0/.DS_Store 
 create mode 100644 Case022/0/U 
 create mode 100644 Case022/0/U~ 
 create mode 100755 Case022/0/p 
 create mode 100755 Case022/0/p~ 
 create mode 100644 Case022/2.99994e-06/U 
 create mode 100644 Case022/2.99994e-06/p 
 create mode 100644 Case022/2.99994e-06/phi 
 create mode 100644 Case022/2.99994e-06/uniform/time 
 create mode 100644 Case022/A0_26Case90Degrees.geo 
 create mode 100644 Case022/Parallel.sh 
 create mode 100644 Case022/Parallel2.sh 
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 create mode 100644 Case022/RunInstructions.txt 
 create mode 100644 Case022/constant/.DS_Store 
 create mode 100644 Case022/constant/polyMesh/.DS_Store 
 create mode 100644 Case022/constant/polyMesh/boundary 
 create mode 100644 Case022/constant/polyMesh/cellZones 
 create mode 100644 Case022/constant/polyMesh/faceZones 
 create mode 100644 Case022/constant/polyMesh/faces 
 create mode 100644 Case022/constant/polyMesh/neighbour 
 create mode 100644 Case022/constant/polyMesh/owner 
 create mode 100644 Case022/constant/polyMesh/pointZones 
 create mode 100644 Case022/constant/polyMesh/points 
 create mode 100644 Case022/constant/polyMesh/sets/inside 
 create mode 100755 Case022/constant/transportProperties 
 create mode 100755 Case022/constant/transportProperties~ 
 create mode 100644 Case022/dynamicCode/.DS_Store 
 create mode 100644 Case022/dynamicCode/CoutteBC/Make/SHA1Digest 
 create mode 100644 
Case022/dynamicCode/CoutteBC/Make/darwinIntel64Gcc46DPOpt/dependencies 
 create mode 100644 
Case022/dynamicCode/CoutteBC/Make/darwinIntel64Gcc46DPOpt/dependencyFi
les 
 create mode 100644 
Case022/dynamicCode/CoutteBC/Make/darwinIntel64Gcc46DPOpt/dontIncludeD
eps 
 create mode 100644 
Case022/dynamicCode/CoutteBC/Make/darwinIntel64Gcc46DPOpt/files 
 create mode 100644 
Case022/dynamicCode/CoutteBC/Make/darwinIntel64Gcc46DPOpt/filesMacros 
 create mode 100644 
Case022/dynamicCode/CoutteBC/Make/darwinIntel64Gcc46DPOpt/includeDeps 
 create mode 100644 
Case022/dynamicCode/CoutteBC/Make/darwinIntel64Gcc46DPOpt/localObjectF
iles 
 create mode 100644 
Case022/dynamicCode/CoutteBC/Make/darwinIntel64Gcc46DPOpt/objectFiles 
 create mode 100644 
Case022/dynamicCode/CoutteBC/Make/darwinIntel64Gcc46DPOpt/options 
 create mode 100644 
Case022/dynamicCode/CoutteBC/Make/darwinIntel64Gcc46DPOpt/sourceFiles 
 create mode 100644 Case022/dynamicCode/CoutteBC/Make/files 
 create mode 100644 
Case022/dynamicCode/CoutteBC/Make/linux64GccDPOpt/dependencies 
 create mode 100644 
Case022/dynamicCode/CoutteBC/Make/linux64GccDPOpt/dependencyFiles 
 create mode 100644 
Case022/dynamicCode/CoutteBC/Make/linux64GccDPOpt/dontIncludeDeps 
 create mode 100644 
Case022/dynamicCode/CoutteBC/Make/linux64GccDPOpt/files 
 create mode 100644 
Case022/dynamicCode/CoutteBC/Make/linux64GccDPOpt/filesMacros 
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 create mode 100644 
Case022/dynamicCode/CoutteBC/Make/linux64GccDPOpt/fixedValueFvPatchFie
ldTemplate.o 
 create mode 100644 
Case022/dynamicCode/CoutteBC/Make/linux64GccDPOpt/includeDeps 
 create mode 100644 
Case022/dynamicCode/CoutteBC/Make/linux64GccDPOpt/localObjectFiles 
 create mode 100644 
Case022/dynamicCode/CoutteBC/Make/linux64GccDPOpt/objectFiles 
 create mode 100644 
Case022/dynamicCode/CoutteBC/Make/linux64GccDPOpt/options 
 create mode 100644 
Case022/dynamicCode/CoutteBC/Make/linux64GccDPOpt/sourceFiles 
 create mode 100644 Case022/dynamicCode/CoutteBC/Make/options 
 create mode 100644 
Case022/dynamicCode/CoutteBC/fixedValueFvPatchFieldTemplate.C 
 create mode 100644 
Case022/dynamicCode/CoutteBC/fixedValueFvPatchFieldTemplate.H 
 create mode 100644 
Case022/dynamicCode/CoutteBC/fixedValueFvPatchFieldTemplate.dep 
 create mode 120000 
Case022/dynamicCode/CoutteBC/lnInclude/fixedValueFvPatchFieldTemplate.
C 
 create mode 120000 
Case022/dynamicCode/CoutteBC/lnInclude/fixedValueFvPatchFieldTemplate.
H 
 create mode 100644 Case022/dynamicCode/CoutteBC/lnInclude/uptodate 
 create mode 100644 
Case022/dynamicCode/platforms/linux64GccDPOpt/lib/libCoutteBC_feee7e64
a26080b770b89a0cc77aa23034bd0fdb.so 
 create mode 100755 Case022/system/controlDict 
 create mode 100644 Case022/system/decomposeParDict 
 create mode 100644 Case022/system/decomposeParDict~ 
 create mode 100755 Case022/system/fvSchemes 
 create mode 100755 Case022/system/fvSchemes~ 
 create mode 100755 Case022/system/fvSolution 
 create mode 100755 Case022/system/fvSolution~ 
rl1-1-223-93-dhcp:jm4_firstreposity Dragon$ git push 
warning: push.default is unset; its implicit value is changing in 
Git 2.0 from 'matching' to 'simple'. To squelch this message 
and maintain the current behavior after the default changes, use: 
 
  git config --global push.default matching 
 
To squelch this message and adopt the new behavior now, use: 
 
  git config --global push.default simple 
 
See 'git help config' and search for 'push.default' for further 
information. 
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(the 'simple' mode was introduced in Git 1.7.11. Use the similar mode 
'current' instead of 'simple' if you sometimes use older versions of 
Git) 
 
Counting objects: 60, done. 
Delta compression using up to 8 threads. 
Compressing objects: 100% (49/49), done. 
Writing objects: 100% (59/59), 43.69 MiB | 1.34 MiB/s, done. 
Total 59 (delta 5), reused 0 (delta 0) 
To https://JM4Boulder@bitbucket.org/JM4Boulder/jm4_firstreposity.git 
   3ce6fae..f47070d  master -> master 
 
 
Steps for Adding to Git repository 

1. git add <file/folder> 
2. git commit -a -m "comment" 
3. git push  

	  
	  
To	  put	  something	  on	  the	  GIT	  Repository	  

1. place	  files	  and	  folders	  in	  the	  jm4_firstreposity	  folder	  in	  the	  repos	  folder	  in	  the	  user	  
folders	  so	  

a. /repos/jm4_firstreposity	  
2. then	  go	  to	  the	  jm4_firstreposity	  folder	  in	  the	  terminal	  
3. git	  add	  <folder(s)	  of	  interset>	  
4. git	  commit	  -‐a	  -‐m	  "commit"	  
5. git	  push	  
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GMSH Janus Instillation Instructions 
How to install GMSH on Janus for your use: 
so when logging in, the first thing is to check to see what compiling nodes are being 
used.   
after doing (not quite sure how to check the compiling nodes—will make a note to ask 
later) 
 
but log on using janus-compile1 to 4 instead and then run or afterwards do ssh janus-
compile# 
 
module load intel/intel-13.0.0 
module load cmake/cmake-2.8.10.2 
mkdir GMSH 
wget http://geuz.org/gmsh/src/gmsh-‐2.8.3-‐source.tgz 
tar -xzf gmsh-2.8.3-source.tgz 
cd gmsh-2.8.3-source 
cmake -DCMAKE_INSTALL_PREFIX=~/GMSH 
make -j 
make install 
cd ../GMSH/bin/ 
 
and to view commands 
./gmsh 
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Derivation of Re 

 

Figure A1: The impinging jet flow cell is divided into three regions.  The black region is the inlet 

where the first Reynolds' Number is derived.  The middle gray region is where the bulk 

Reynolds's Number is calculated.  The light gray region is the exit zone and the Reynolds's 

Number was not calculated.  

Re1 =
QDH

υA
=
1.5 ⋅10−6m3 / s( ) 0.0168m( )
1⋅10−6m2 / s( ) 2.2 ⋅10−4m2( ) = 114.54   

For the second region the domain the hydraulic diameter and cross-area are broken down as 

follows A =V / h  and DH =
Do(y)− Di (y)( )dy

0

h

∫
h

 where A  is the average cross sectional area, V 

is the volume and h is the height of domain.  For the hydraulic diameter the annular duct 

formation was used and then the hydraulic diameter was integrated and normalized to provide an 

effective hydraulic diameter.   
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Re2 =
Q

Do(y)− Di (y)( )dy
0

h

∫
h

υV
h

=
Q Do(y)− Di (y)( )dy

0

h

∫
υV

  

The integral is solved by use of the trapezoid summation approximation, which is an exact 

solution.  The volume portion is calculated using the cylinder volume formula and the conical 

frustum formula.  

 

 

Figure A2: A breakdown of domain along with lengths necessary for trapezoidal summation for 

integral solution. 

Re2 =
Q Do(y)− Di (y)( )dy

0

h

∫
υV

=
1.5 ⋅10−6m3 / s( ) 0.0102m2( )
1⋅10−6m2 / s( ) 0.00209m3( ) = 7.3
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