
University of Colorado, Boulder
CU Scholar
Mechanical Engineering Graduate Theses &
Dissertations Mechanical Engineering

Spring 1-1-2015

Simulations and Experiments for Fouling
Mitigation on Patterned Nano-Imprint
Lithography Ultra Filtration Membranes
John Mersch IV
University of Colorado Boulder, jmerschiv@gmail.com

Follow this and additional works at: https://scholar.colorado.edu/mcen_gradetds

Part of the Food Processing Commons, and the Manufacturing Commons

This Thesis is brought to you for free and open access by Mechanical Engineering at CU Scholar. It has been accepted for inclusion in Mechanical
Engineering Graduate Theses & Dissertations by an authorized administrator of CU Scholar. For more information, please contact
cuscholaradmin@colorado.edu.

Recommended Citation
Mersch, John IV, "Simulations and Experiments for Fouling Mitigation on Patterned Nano-Imprint Lithography Ultra Filtration
Membranes" (2015). Mechanical Engineering Graduate Theses & Dissertations. 117.
https://scholar.colorado.edu/mcen_gradetds/117

https://scholar.colorado.edu?utm_source=scholar.colorado.edu%2Fmcen_gradetds%2F117&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.colorado.edu/mcen_gradetds?utm_source=scholar.colorado.edu%2Fmcen_gradetds%2F117&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.colorado.edu/mcen_gradetds?utm_source=scholar.colorado.edu%2Fmcen_gradetds%2F117&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.colorado.edu/mcen?utm_source=scholar.colorado.edu%2Fmcen_gradetds%2F117&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.colorado.edu/mcen_gradetds?utm_source=scholar.colorado.edu%2Fmcen_gradetds%2F117&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/85?utm_source=scholar.colorado.edu%2Fmcen_gradetds%2F117&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/301?utm_source=scholar.colorado.edu%2Fmcen_gradetds%2F117&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.colorado.edu/mcen_gradetds/117?utm_source=scholar.colorado.edu%2Fmcen_gradetds%2F117&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cuscholaradmin@colorado.edu

	 i	

	
	

	
	
	

SIMULATIONS	 AND	 EXPERIMENTS	 FOR	 FOULING	 MITIGATION	

ON	 PATTERNED	 NANO-‐IMPRINT	 LITHOGRAPHY	 ULTRA	 FILTRATION	 MEMBRANES	

By	

John	 Mersch	 IV	

B.A.,	 University	 of	 California,	 Berkeley,	 2012	
	
	
	
	
	
	

A	 thesis	 submitted	 to	 the	

	 Faculty	 of	 the	 Graduate	 School	 of	 the	 	

University	 of	 Colorado	 in	 partial	 fulfillment	

of	 the	 requirement	 for	 the	 degree	 of	

Masters	 of	 Science	

Department	 of	 Mechanical	 Engineering	

2015	
	

	
	
	
	
	

	
	 	

	

	 ii	

	
	
	

This thesis entitled:
Simulations and experiments for fouling mitigation on patterned nano-imprint lithography ultra-

filtration membranes
written by John Mersch IV

has been approved for the Department of Mechanical Engineering

John Pellegrino

Peter Hamlington

Date

The final copy of this thesis has been examined by the signatories, and we
find that both the content and the form meet acceptable presentation standards

of scholarly work in the above mentioned discipline.
(This statement must be included

on the signature page)

IRB	 protocol	 #	 ____________________	
(Must be included if your research
involved the use of human subjects)

IACUC	 protocol	 #	 __________________	

	 	

	 iii	

Abstract

	

	
Mersch IV, John (M.S., Mechanical Engineering)

Simulations and experiments for fouling mitigation on patterned nano-imprint lithography ultra-

filtration membranes

Thesis directed by Professor John Pellegrino

Nano Imprint Lithography (NIL) endows Ultra Filtration (UF) membranes with a

plethora of filtration benefits. This research is to study for purposes of optimization the

fundamental physics behind the fouling mitigation properties derived from the NIL patterns on

UF membranes. Simple silicon particle experiments have been performed initially and have

generated a series of criteria believed to affect the fouling mitigation with patterned membranes.

These factors are: pattern height, permeation rate, cross flow velocity, and angle of attack.

Factors from literature that affect these criteria are shear rate, gradient of shear rate and the non-

linearity parameter, which is a ratio of the shear rate and it’s gradient. My work covers using

computation fluid dynamic (CFD) simulations in an attempt to understand the underlying physics

involved. Furthermore, I perform milk filtration experiments to test the NIL UF membrane’s

capabilities to handle complex fluids. Milk is one of the most readily fouling substances that are

filtered with UF membranes commercially. The hypothesis put forth and substantiated here

follows the principles that it is a combination of non-linearity parameter and gradient of the shear

rate that contribute most significantly to the fluid dynamic aspect of fouling reduction through

the mechanism of shear induced diffusion.

	 iv	

Acknowledgements
 The author wishes to thank Professor Thomas Hauser who taught me the fundamentals of

the meshing tool GMSH and who provided a lot of guidance and advice with the program

OpenFOAM. I'd also like to thank him for all the technical support and strings he pulled so that

I could run the simulations on Janus in a timely fashion. I would also like to thank Timothy

Dunn for his constant help and support with Janus run errors. I am grateful that Sajjad Maruf

performed the experiments and made the patterned membranes for us to use in experiments.

Most importantly I would like to thank John Pellegrino, Thomas Hauser, and Peter Hamlington

for being very patient with all the errors and mistakes I made along the way.

	
	 	

	 v	

	
	
	
	
	

CONTENTS	
	
	

CHAPTER	
	
	 I.	 	 	 	 	 Arrangement	 of	 the	 Thesis	 ..	 13	
	 II.	 	 Background	 Information	 ...	 15	
	 	 	 Ultrafiltration	 Membranes	 ..	 15	
	 	 	 Fouling,	 Mitigation,	 and	 Cleaning	 ..	 20	
	 	 	 OpenFOAM	 ..	 27	
	 	 	 Milk	 Experiments	 ...	 32	
	 	 	 Motivation	 ..	 37	
	 III.	 	 CFD	 Experiments	 ...	 44	
	 	 	 Solver	 Validations	 ...	 44	
	 	 	 Motivation	 on	 Fouling	 ...	 55	
	 	 	 Models	 for	 Fouling	 Mitigation	 ...	 58	
	 	 	 Geometry	 ...	 60	
	 	 	 Solver	 Specifications	 ..	 66	
	 	 	 Metrics	 ..	 71	
	 	 	 Bulk	 Jet	 Flow	 Results	 ..	 71	
	 	 	 Nano	 Jet	 Flow	 Results	 ..	 73	
	 	 	 Bulk	 Cross	 Flow	 Results	 ..	 79	
	 	 	 Nano	 Cross	 Flow	 Results	 ..	 85	
	 IV.	 	 Milk	 Filtration	 Experiments	 ...	 93	
	 	 	 Milk	 ..	 93	
	 	 	 Membranes	 ...	 94	
	 	 	 Experimental	 Set	 Up	 ..	 94	
	 	 	 Types	 of	 Filtration	 Experiments	 ...	 95	
	 	 	 Experimental	 procedures...	 96	
	 	 	 Preliminary	 Milk	 Experiments	 ..	 100	
	 V.	 Conclusion	 ...	 106	
	
WORKS	 CITED……………………..…………………………………………	 ...	 108	
	
APPENDIX	
	

A. Flow	 Cell	 Write	 Up	 and	 Appendix	 ...	 111	
B. Matlab	 Code	 ...	 133	
C. Remote	 Access	 and	 Visualization	 ...	 134	
D. Milk	 Post	 Processing	 Steps	 Guide	 ...	 135	
E. Sartorius	 Scale	 ..	 136	

	 vi	

F. OpenFOAM	 Solution	 and	 Algorithm	 Control	 Guide	 with	 Additional	 Tricks	 and	
Recommendations	 ...	 137	

G. OpenFOAM	 Compile	 Solver	 ..	 148	
H. VirtualBox	 Instructions	 ..	 149	
I. Git	 Guide	 Summary	 ...	 150	
J. GMSH	 Janus	 Installation	 Instructions	 ..	 156	
K. Re	 Derivation	 ...	 157	

	 	

	 vii	

	
TABLES	

	
	

Table	
	
	 1.	 Table	 1:	 Biharmonic	 equation	 solution	 for	 moving	 lid	 in	 a	 cavity.	 	 List	 of	 locations	 of	
the	 vortexes	 as	 a	 function	 of	 aspect	 ratio	 and	 mesh	 size.	 	 Our	 simulation	 uses	 the	 aspect	 ratio	
of	 2	 	 45	
	 2.	 Table	 2:	 Shows	 the	 maximum	 radial	 velocities	 as	 a	 function	 of	 the	 permeate	
boundary	 condition	 values.	 	 These	 radial	 velocities	 were	 used	 to	 help	 create	 the	 inlet	 condition	
for	 the	 detailed	 mesh	 simulations.	 	 	 73	
	 3.	 Table	 3:	 The	 original	 R>.98	 polynomial	 for	 the	 near	 the	 membrane	 side	 	
	 	 	 	 85	
	 4.	 Table	 4:	 The	 eventually	 used	 linear	 fit	 from	 the	 bottom	 two	 points.	 85	
	 5.	 Table	 5:	 The	 values	 were	 inconclusive	 since	 recovery	 is	 increased	 due	 to	 the	 acid	 step	
in	 proportion	 to	 the	 amount	 that	 it	 is	 fouled.	 103	
	
	
	
	 	

	 viii	

	
	

FIGURES	
	

	
Figure	
 1. Figure 1: Classification of membranes by pore size and common foulants or
permeates 4

 2. Figure 2: Displays the three commercial types of membrane configurations a) tubular,
b) hollow fiber, and c) spiral wound. 5

 3. Figure 3: Cross-section SEM image of polyethersulfone (PES) UF membrane
 6

 4. Figure 4: Illustration of fouling and its affect on flow velocity and shear. 15
 5. Figure 5: Representation of the two definitions of critical flux. 16

 6. Figure 6: Each method induces at least either instability or vortex formation a)
Protuberance-vortex formation and instabilities, b) Furrowed Surface (Corrugations) -vortex
formation and instabilities c) inserts-vortex formations and instabilities d) pulsatile flow-
instabilities, e) Taylor Vortices- vortex formation, f) Dean Vortices- vortex formation 14

 7. Figure 7: Critical and limiting flux of skim milk plotted in traditional TMP vs. Flux
format 23

 8. Figure 8: Standard lab cleaning cycle mirroring industry cleaning procedures with
reduced times 23

 9. Figure 9: Demonstrates the experimentally recovered fluxes after each of the
individual steps 24

 10. Figure 10: DI water flux recovery (bar charts) and % of removed proteins (black
squares) after respective treatments 25

 11. Figure 11: Pure water permeance is plotted along the strait lines while filtrations
done with two different sized particles were also performed and represented by the noted shapes

 27
 12. Figure 12: The spacing of the nano-scale imprinted membrane 27

 13. Figure 13: Experimental plot demonstrating the higher critical flux of the patterned
membrane and the benefits of running below the critical flux for overall production capabilities.

 28
 14. Figure 14: Illustrates the delay of cake growth and the delay in the onset of fouling

 29
 15. Figure 15: Illustrates the recovery effect of the patterning. Section three is a PBS
filtration at 276 kPa. Section four is a PBS and BSA filtration at 276 kPa. After section four
there is a membrane cleaning cycle. Section 5 is a fresh PBS filtration at 276 kPa. Then there is
a DI water flush. Lastly in section seven there is another PBS filtration at 276 kPa. 30

	 ix	

 16. Figure 16: Depicts the fouling conditions and angles of attacks between a patterned
and pristine membrane 31

 17. Figure 17: Visual representation of the location of the vortices in the analytic solution
and their values for a given aspect ratio of 2 33

 18. Figure 18: Shows the complete domain for an aspect ratio 2 in a cavity with a moving
lid. The picture depicts the various streamlines that are generated. 34

 19. Figure 19: The first vortex generated by the simulation. The black line represents the
center of the vortex from the simulation while the red line indicates the anaytic center of the
origin. In this simulation it was only 2 mesh points away. That corresponds to only a 0.4%
error in the location of the vortex. 35

 20. Figure 20: The second vortex is off by 3 mesh points. Here the vortex center is 79.5%
of the way down leading to a 0.75% error. 36

 21. Figure 21: The corner vortex, while not having a specified location center does
appear to show up like in the analytic solution at both corners. However, it is at the scale where
additional mesh refinement would prove useful. 37
 22. Figure 22: The Plane Poiseuille flow case we are simulating which involves fixed
walls 38
 23. Figure 23: The full velocity profile of the plane Poiseuille flow under default
conditions. It is fairly obvious that while the CFD is converged, that the simulation was not fully
developed at all. 39

 24. Figure 24: This is the velocity profile at the slice indicated by the red line in the
previous picture. As is seen, the flow is strictly a plug flow and not slit flow result. 40

 25. Figure 25: Velocity flow profile for slit flow after adjustments were made to the
fvSchemes and fvSolutions files. 41

 26. Figure 26: the velocity profile from the slit flow after the modifications to the
fvSolution and fvSchemes file. Details the correct result matching the analytic solution to within
0.5% 41
 27. Figure 27: The velocity profile for the analytic comparison of the moving top flow.

 42
 28. Figure 28: The horizontal velocities of a lid driven cavity at velocity of 20m/s with a
5nm vertical mesh spacing. 42
 29. Figure 29: Demonstration of a random slice of the 160nm patterned membrane 90-
degree case with a Re of 239. 43
 30. Figure 30: a) 2D axisymmetric domain of the impinging jet flow cell; b) 2D slice of
the 90º and 0º patterned simulation; and c) 2D slice of the base case used for comparison. Grey
portion is the fluid domain and white is the domain boundary. 49

 31. Figure 31: The 90º and 0º flow directions on the patterned mesh domain. 50
 32. Figure 32: Impinging Jet flow cell transition to the nano scale patterned case of
membrane surface. 51

	 x	

 33. Figure 33: a) shows the 3D half-domain used in the cross flow cell. To reduce
computational time, a symmetric plane boundary condition was used and the simulation was run
over half the cell as shown. b) 2D slice of the membrane surface with the high pattern height. c)
2D slice of the membrane surface with the low pattern height. Grey portion is the fluid domain
and white is the domain boundary. 53
 34. Figure 34: The magnification and progression of mesh from the flow cell to the near
surface patterns. 54
 35. Figure 35: The Merlon is the non-depressed portion of the membrane. It has
undisturbed permeability qualities. The Crenel is the low part of the membrane and here
represents the compressed potion of the membrane that gives it the pattern. It suffers from a
decrease in permeability caused by changes to the porosity during patterning. 55
 36. Figure 36: Shows the magnitude of the velocity over the whole domain of the
impinging jet flow cell. There are no signs of recirculation in the domain and fluid flow is very
standard. 60

 37. Figure 37: Shows the streamlines and the velocity vectors in the area right above the
membrane. 61

 38. Figure 38: a) 0 degrees flow case where the flow direction is shear stress (yz), but is
on the same scale as the one shown. b) Shows the 90-degree flow case where the shear stress is
xz. c) Shows the base case without any patterns and the shear stress is along xz. 62
 39. Figure 39: Shows how the merlon and crenel deviate from the unpatterned membrane.
These are the fundamentals of the changes brought about by the patterning of the membrane.
This is from the 0 permeate 90 degrees case. 63

 40. Figure 40: Flat membrane strain rate along the surface vat different permeate rates.
 64

 41. Figure 41: Impinging jet flow cell's summary of maximum data points on the merlon
and crenel. 65

 42. Figure 42: Summary of jet-flow membrane cell's gradient of strain rate vs. the height
from the membrane. Results when varying the permeation rate would not be visible on this plot,
so the no permeation case was plotted here. 65
 43. Figure 43: Average near-surface (0-400nm) strain rate for the different permeate
rates.
 66

 44. Figure 44: 1nm above the surface of the membranes for the permeate cases from the
jet flow cell. 67

 45. Figure 45: 150nm above the surface of the membranes for the permeate cases from the
jet flow cell. 67

 46. Figure 46: 3D shots of the simulated cross flow cell. The flat edge as mentioned is the
symmetry plane boundary. The second important feature is to see the location of the inlet and
outlet. The inlet is on the right while the outlet is on the left. 68

	 xi	

 47. Figure 47: in all pictures: the right is the inlet and the left is the outlet. In addition,
this is a slice of the flow cell in the center from entrance to exit. a) Velocity magnitude b)
velocity moving right to left is positive. Notice the recirculation and the unsteady flow. c) Due to
the fact this slice is slightly off center, the into board direction isn't zero but it does help show the
instabilities. d) The vertical direction e) zoom in of the cavity to show the instabilities. 69
 48. Figure 48: Showing the instabilities. This is a sidewise cut that allows you to see the
flow along the circular cut. a) The horizontal component of velocity isn't stable as you see b) the
forward is pretty stable but it accelerates along the edges of the flow cell c) mixing is evident

 70
 49. Figure 49: taking a cross section and looking at the velocity profiles along the lines.
The letters correspond to the graphs in figure 50. 71
 50. Figure 50: the velocity profiles along the lines from figure 49. Purple is velocity
magnitude. Red is perpendicular to the primary flow direction. Blue is the primary flow
direction and is along the y axis (entrance to exit). Green is the vertical direction. For all the
graphs the horizontal axis is height and the vertical axis is velocity. 72
 51. Figure 51: Re 120 90º Cases a) is the high pattern case b) is the low pattern case.
They actually did not have significantly different shear rate profiles. 74
 52. Figure 52: Re 120 0º Cases a) is the high pattern case b) is the low pattern case. They
actually did not have significantly different shear rate profiles. 75
 53. Figure 53: Re 120 for base case. 76

 54. Figure 54: A summary of the cases from the High cases. Blue is 90º, Red is 0º, and
Green is no pattern. The horizontal axis is Reynolds' number while the vertical axes are the
respective titles. a) Shear Rate Step 11.5 b) Shear Rate Step 12.5, c) Gradient Shear Rate Step
11.5, d) Gradient Shear Rate Step 12.5, e) Non Linearity Term Step 11.5, f) Non Linearity Term
Step 12.5 77
 55. Figure 55: A summary of the cases from the Low cases. Blue is 90º, Red is 0º, and
Green is no pattern. The horizontal axis is Reynolds' number while the vertical axes are the
respective titles. a) Shear Rate Step 11.5 b) Shear Rate Step 12.5, c) Gradient Shear Rate Step
11.5, d) Gradient Shear Rate Step 12.5, e) Non Linearity Term Step 11.5, f) Non Linearity Term
Step 12.5 78

 56. Figure 56: A summary of the comparison between high and low patterns as a function
of angle of attack. a-b) shows the shear rate, c-d) shows the gradient of the shear rate, and e-f)
show the non-linearity term. 79
 57. Figure 57: Side by side comparison of critical flux with the gradient of the shear rate
and the non-linearity parameter as a function of the same variables. d) 1 is 90 degrees, 2 is 0
degrees, 3 is unpatterned. 80

 58. Figure 58: Constant flux experiment done with pure Safeway milk at store
concentration at room temperature using our first pump that had a maximum pressure of 40psi.
Done on HFK328 membranes. 88
 59. Figure 59: Pure water permeance done at room temperature and 40 psi. The expected
min and max are the statistics from the membrane for using room temp (21 ºC) water and well

	 xii	

independent of pressure because permeance is supposed to be independent of pressure. This
figure illustrates how bad permeate really was with room temperature fluids with these
membranes. 89
 60. Figure 60: For this experiment I stepped up pressure and took the lowest flux after 30
minutes and used that as the point. Thus making a flux vs. TMP graph. Given the 30-minute run
times it was unable to go to completion but did provide some details about complex fluids. The
order of the flow was top left and then to the right. 90
 61. Figure 61: Permeance and Pressure from the same experiment in figure 59 90

 62. Figure 62: Using a combination of hot water and hot milk to test recovery rates and
the effect of heated milk on fouling. 91

 63. Figure 63: The dry milk filtration experiment. There was a 4% protein concentration
and the milk solution was heated to 48ºC and kept there for an hour before filtration as the
protocol dictates. The color change was due to a recording error where the recording file
missed a point due to the mouse being elsewhere there on the text. As a result the colors
switched.
 92

 64. Figure 64: This is a diluted down concentration of wet milk to match the 4% protein
concentration from the dry milk experiment. It was run under the same conditions. 93

	

	 1	

CHAPTER I

Arrangement of Thesis

Chapter 2

Details the background information necessary to have familiarity with the experimental

subject matters. It contains summary information on ultrafiltration (UF) membranes, fouling and

cleaning, history of patterned membranes, computational fluid dynamics (CFD), milk filtration

and the reference experiments on which the simulations are based. The background on the UF

membranes will cover membrane making techniques, cost, uses, lifetimes, modes of operation,

as well as how membranes operate. Fouling will consist of an explanation into the four types of

fouling that can occur while cleaning will focus briefly on cleaning theory and then list examples

of cleaning methods to emphasize how costly and time intensive they can be. The history of the

membrane will consist of a brief timeline of patterning technology, with a focus on some

examples of how micron and nano sized patterns are made for both on and off membranes. The

CFD background will consist of general process, the three solving algorithms, meshing, and

specific OpenFOAM files. The milk experimental background will consist of a review of

literature regarding milk in industry, standard cleaning protocols, and our modified cleaning

protocols along with some statistics about use and cost. Lastly the experiments and results

achieved by Maruf whose experimental models we simulated will be set forth as the guideline

for what we aim to achieve through experimentation.

Chapter 3
While there were a huge number (around 600) simulations completed, the vast majority

of those will not be covered due to the errors in the simulations or the lack of their relevancy

other than as a learning tool. To cover them all would be well beyond the scope of the thesis as

	 2	

they only contained personal learning or mechanisms of a poorly documented program. What

this section will contain are the three solver validation simulations, the jet flow simulations and

the cross flow simulations. The solver validations simulations consist of three standard analytic

solution cases: moving top wall, slit flow, and cavity flow. The jet flow cell consists of two

regimes. The first is the whole bulk flow cell where everything is calculated; the second is the

nano scale pattern as a small piece of the bulk flow system using the bulk flow for boundary

conditions. The cross flow follows the same set up with a bulk flow section and a flow over

imprint section.

Chapter 4
This chapter will feel incomplete by nature, as the experimental work was not finished

either. Due to the incomplete nature of the experiments, the first section will focus on the

protocols I developed. The second section will go over each set of experimental results even

though the results may be inconclusive.

Chapter 5
This brief chapter will summarize the results that were achieved in the experimental

sections. It will end with a proposal of future work topics and ideas.

	 	

	 3	

Chapter 2

Background Information

Ultrafiltration Membranes
Membranes are semipermeable barriers that allow certain particles through while

rejecting others. Some membranes involve active transport systems such as those used in cell

membranes. Other membranes, such as those we will be concerned with, use a system of size

exclusion through the use of pores to reject particles. Of this type there are sometimes additional

features, which allow for other types of selectivity including charge and polarization. Depending

upon pore sizes membranes can be classified as microfiltration (MF), ultrafiltration (UF), nano-

filtration (NF), and reverse osmosis (RO) (see Figure 1). The membranes used in our labs and

experiments are UF membranes and so I will focus on those for the background, although most

of the general information applies to membranes as a whole. There are four main type of

membrane configurations: spiral wound membranes, tubular membranes, hollow fiber

membranes and plate and frame membranes [1]. Our lab uses a combination of plate and frame

membranes and tubular membranes. However, for the work I did, only sheet membranes were

used. Spiral wound membranes consists of flexible sheets of membrane, spacer and inlet feeds

rolled together forming a spiral. Tubular membranes are single layer membranes forming a

circle with structure support underneath. They can run with complicated solutions due to their

ease of being cleaned and the high shear rate that can be generated. Tubular membranes are used

in the dairy industry for concentrating milk to be used in cheese making. Hollow fiber

membranes really maximize surface area but work best for low viscous fluids. Sheet membranes

as we use them in the lab are single layer flat membranes held by plates as a single physical

barrier. They are the easiest to do experimental work on. Due to their large use of space, sheet

	 4	

membranes configurations are typically not used in industry. Figure 2 shows the three

commercial types of membranes and their filtration process. Figure 3 shows an actual cross

section of an UF membrane.

Figure 1: Classification of membranes by pore size and common foulants or permeates [2].

	 5	

1
Figure 2: Displays the three commercial types of membrane configurations a) tubular, b) hollow
fiber, and c) spiral wound.

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
1 http://www.kochmembrane.com/Learning-Center/Configurations.aspx

	 6	

Figure 3: Cross section SEM image of polyethersulfone (PES) UF membrane [3].

Membranes operate by a pressure gradient across the membrane driving fluid to flow

through the pores. The higher the pressure gradient or trans membrane pressure (TMP) the faster

the fluid will flow through (permeate). The fluid that is unable or that does not go through the

membrane is called the retentate. A solution that is being used with a membrane consists of a

solvent and several solutes. In a filtration system the carrier solvent is always able to pass

through the membrane although it does meet resistance. Then there are the desired and

undesired solutes. By choosing a specific membrane you can control which solutes (to a given

degree of control) can pass through. Those solutes play a role in fouling, but the measurement of

them and the solvent that passes through the membrane is referred to as flux. Those that are

rejected are concentrated near the surface as a result leading to concentration polarization,

increased osmotic pressure near the surface of the membrane (leading to a decreased trans

membrane pressure) and fouling. Permeability is a characteristic of a membrane that determines

	 7	

how easy it is for particles to move through and exit the membrane. Another key quantity about

membranes is termed membrane resistance. Membrane resistance is a way of incorporating

fouling into a predictive model like equation 1.1 [4]. (J is the flux, P is the pressure, µ is the

permeate viscosity, Rm is the intrinsic membrane resistance, Rf is the fouling resistance)

 J = ΔP / µRm + Rf() (1.1)

There are two modes of operation for a membrane system: cross flow and dead end.

Dead end flow consists of forcing through high-pressure fluid through the membrane. There is

no bulk fluid flow during this and if there is it is solely towards the membrane. In a cross flow

system, an applied pressure drives the fluid flow across the surface of the membrane and then the

pressure difference between the fluid and the other side of the membrane drives some tangential

flow through the membrane itself.

As mentioned, membranes function by as separation systems separating out particles by

size. This size is characterized by a molecular weight cut off which describes the molecular

weight for a mole of the material. If the molecular weight is lower than the molecular weight cut

off (MWCO) than the substance will pass through the membrane. For UF membranes molecular

cutoff can range from 1-1000kg/mol (or kilo Daltons). Their average lifetime is 3-5 years and

they typically cost between $3-$5/cm2. They have a wide range of separation uses. Some

typical uses include: water purification, dairy industry cheese and whey powder making, enzyme

recover, particle separation, and Dialysis and other blood treatments.

The making of membranes is a topic in and of itself. However it is beyond the scope of

the research and not needed for this paper. Techniques of membrane pattern making however

will be covered in a later section including a membrane making technique called phase inversion.

	 8	

Fouling, Mitigation and Cleaning

Three factors affect membrane cost and use in industry: membrane production, operating

TMP, and fouling and cleaning. Here we will focus on fouling and cleaning as my research

pertains to that approach at cost reduction. I will explain the four types of fouling, the

description of membrane resistance, and summarize the types of cleaning commonly practiced.

In order to understand fouling there are several terms that need to be defined. The first

term is the word fouling itself. In simple English, it just means to make dirty or pollute, but for

our purposes it is the process by which particles temporarily or permanently adhere in or on a

membrane. The next term, concentration polarization, and details an extra energy cost associated

with running a permeation system. Concentration polarization is an accumulation of solutes in a

mass boundary layer near the surface of a membrane as a result of membrane operation [5]. This

extra energy rears its head by increasing the osmotic pressure meaning we have to apply

additional pressure to overcome that barrier. Osmotic pressure is the minimum pressure needed

to be applied to prevent the backflow of water across a semipermeable membrane [5]

Next are the four types of fouling: adsorption, pore blockage, deposit and gel.

Adsorption is a fouling mechanism caused by the attractive interactions between the solute and

the membrane[5]. It is able to happen even when there is no permeate and no TMP. Fat free

milk exhibits this type of fouling behavior. Pore blockage occurs from the partial or full closing

of membrane pores. Pore blockage occurs internally like adsorption but is a physically blocking

rather than a physical attraction that sets the particles [5]. Deposit is the growth of particle layer

on the surface of the membrane [5]. These particles from the solvent are too large to enter and

block the pores and traditionally form a several layers thick deposit called a "cake layer". Gel is

occurs only with certain molecules when the concentration from concentration polarization

	 9	

exceeds a specific quantity dependent on the molecules and solvent and forms a gel on the

surface of the membrane [5]. Dispersive forces keep these four fouling methods from always

clogging the membranes. Figure 4 illustrates the reduced shear rate brought about by fouling.

This will play an important part in understanding later when I get to the fouling mitigation

section.

Figure 4: Illustration of fouling and its affect on flow velocity and shear.

The last two important concepts for fouling are critical flux and limiting flux (see Figure

5). Critical flux has two definitions: a strong form and a week form. The strong form dictates

that the critical flux occurs when flux at a given TMP deviates from the pure water permeance

flux vs. TMP line. The weak form of the critical flux is when the flux vs. TMP line deviates

from linearity as at all TMP it is never matching the pure water permeance line outside of a TMP

of 0. Limiting flux is the flux at which an increase in TMP no longer generates an increase in

flux. Limiting flux depends on a variety of conditions from membrane, temperature, solution

composition and solvent concentration and species. The first paper where the idea of critical and

limiting flux began to take shame began in 1986 with Cohen and Probsetin [6]. A critical flux is

defined as the flux and conditions at which no fouling occurs. A critical flux is unique for each

membrane, solution temperature, and solution composition. A critical flux is referred to by its

	 10	

flux and by the pressure at which it occurs. The critical flux functions at conditions on which the

surface repulsive forces match the mass transport to the surface of the membranes.

Figure 5: Representation of the two definitions of critical flux. [5]

 N = JC − D dC
dy

+ p ζ() + q τ() (1.2)

The net flux of material to the surface of the membrane can be summarized with where D

is the Brownian diffusion coefficient, p ζ() is the migration due to surface interaction term,

q τ() is the effect from hydrodynamics (this is the term we aim to affect via the nano scale

patterns), dC
dy

 is the concentration gradient along the axis perpendicular to the surface of the

membrane, J is the flux, C the concentration, N the net movement of particles [5].

As a result fouling mitigation and membrane cleaning are very important. For now will

focus on fouling mitigation techniques and mechanics. Fouling can be reduced by chemical

modifications to the surface or membrane, or by changing the fluid flow around the membrane.

Starting with chemical alterations there isn't much that can be done since membrane materials are

	 11	

already limited due to rejection choice and run conditions necessary. But optimization of

membrane selection is of key importance. The more manageable and supplementary choice of

making the surface of the membrane more hydrophilic is often employed though. This can cause

problems as well if you have solutes that are also highly polar as it makes the surface more

attractive of a binding location. Since our lab does not focus on chemical alterations to the

membrane I will stop here on background as it is outside the scope of needed knowledge.

The next important thing to cover is the mechanisms behind fouling mitigation before we

go about altering fluid flow to favor those situations. There are currently four main mechanisms

believed to control fouling mitigation. More might exist but these four currently have enough

evidence behind them but as I propose later another mechanism is needed to describe fouling

mitigation when periodic nano-scale patterns are involved. The four current mechanisms are:

Brownian diffusion, shear induced diffusion, inertial lift and surface transport [7]. Brownian

diffusion is the movement of particles by collision and a random walk. As can be imagined it is

more effective on moving smaller particles and in fact is primarily only important with

submicron-sized particles. There are theories and models presented in Belfort, but it is also

mentioned that those models are shown to not accurately represent experiments. As such we can

only take out of this that Brownian diffusion helps offset concentration polarization but to the

degree we can't determine, nor need to for the purpose of this paper, as the mechanics behind it

are the least likely to relate to our effects from the pattern. Next is shear-induced diffusion.

Shear induced diffusion is the movement of particles away from the surface by a non linear shear

gradient near the surface of the membrane and its action upon particles. This will be discussed in

further detail later. Inertial lift is a model that depends upon nonlinear interactions of a particle

with the flow field. While very convoluted it simplifies as fluid dynamic forces acting unequally

	 12	

on a particle in a transverse flow field cause the particle to rise. Additional details will be

covered later in the paper. Surface transport theory dictates particles slide and roll along the

surface of a membrane in transverse flow and that the cake layer itself can leave the domain and

is continuously replaced by a new cake layer.

For fouling mitigation, common techniques are to introduce flow instabilities, vortices,

and turbulence. While a high Re causes turbulence, it can be caused at lower Re values through

appropriate use of flow conditions such curvilinear flow. Whole system turbulence though

causes a bigger use in energy instead of just near surface mixing and fouling reduction and as

such is not the focus of our work. Instead we will focus on the flow instabilities and mixing

vortices. Instabilities are created in three general ways: geometry change to the flow channel

(figure 6a, b, c), pulsatile flow (Figure 6d), and curvilinear flow under the correct conditions

(Figure 6e, f) [7]. Pulsatile flow (Figure 6d) has the advantages of mimicking the cardiovascular

system and pairs well with surface roughness. Unfortunately it has a large energy cost, reduced

net cross flow, and doesn't scale up well. On the other hand curvilinear flow was actually

studied for a commercial attempt. Curvilinear Taylor vortices (Figure 6e) had very large wall

shear rates and mixed the bulk fluid exceptionally well, but you could not backwash to clean

(will cover that later), extremely difficult to repair, and touch to scale up, it had an exorbitantly

high energy cost to constantly rotate at a high enough speed to create mixing. Curvilinear Dean

vortices (Figure 6f) on the other hand were easy to scale up and successfully reduced solute build

up at membrane surface but were too expensive to be used in large systems. Geometry

modification is which our work actually belongs in. In fact we are a new type that closely

resembles protuberance, but I'll get to that soon. One of my personal favorites, furrowed surface

(Figure 6b), does superb mixing but as can be imagined, it is extremely difficult to scale and

	 13	

manufacture this geometry. Inserts (Figure 6c) do not decrease membrane surface area unlike

protuberance and cause large vortices but they aren't at the surface where they are needed to

remove particles. It also causes a large pressure drop, which means a lower TMP and permeates.

And it doesn't scale up well as you imagine. Protuberance creates vortices and mixing at the

surface and has the smallest energy drop from only near surface instabilities. Unfortunately with

this model you have reduced surface area for permeation and only small vortices. Our system,

which I will call "patterned”, is a seventh type. The patterned type looses the disadvantage of

surface area reduction and for micron scale patterns increases the surface area of the membrane.

However, with our nano scale patterns due to current manufacturing techniques there is a small

drop in permeation due to compression of parts of the membrane causing local drops in the

permeance of the membrane. Furthermore, thanks to the simulations, it looks like while this type

(depending upon the surface type and cross flow rates) can generate vortices on the surface, it

appears the flow instabilities only create and upward movement of particles away from the

surface and on the nano scale form an additional steric hindrance to surface attachment.

	 14	

	
Figure 6: Each method induces at least either instability or vortex formation a) Protuberance-
vortex formation and instabilities, b) Furrowed Surface (Corrugations) -vortex formation and
instabilities c) inserts-vortex formations and instabilities d) pulsatile flow-instabilities, e) Taylor
Vortices- vortex formation, f) Dean Vortices- vortex formation [7].

Lastly is the section on cleaning. Besides operation this can be the most expensive part

of membrane system operations. For example, the dairy industry when making cheese uses a UF

membrane filter called HFK328. In order to make cheese they have to concentrate the milk by

removing water from the system. During this process, every day they have to stop for 7 hours to

clean their membranes with acid, bases and enzymes. That wastes a lot of time and has a large

environmental impact even if they use cheap chemicals like they do. As such systems such as the

	 15	

patterns that can improve ease of cleaning are useful in and of themselves. Now the two types of

cleaning are physical and chemical. Typically most industries use both. Physical cleaning

requires using deionized (DI) water to remove foulants by either fluid dynamic flow or by

diffusion of concentrated foulants on the surface into very clean DI water (for example, our lab

uses 18MΩ DI water). The first method where you flow water backwards through a membrane

so is called back flow and is effective but not doable in all membrane systems. Relaxation is the

name where you let pure water soak the membranes and let foulants diffuse out. Another

approach is pulsatile and high agitation flow but as mentioned it is rather costly to do. Lastly

there is a cross flow purge, which uses an increased surface shear to remove non-tightly adhered

foulants. In our milk experiments we will use relaxation and cross flow to clean out our

membranes in our protocols. In regards to chemical cleaning it really depends upon what the

membrane is and what the foulant is. But for example in milk, which the primary foulant is

casein micelle, a combination of acids, bases and enzymes are used to denature the protein and

make it easier to remove (actually the acid step only serves to deactivate the enzyme given the

acid they use, but more on that later in the milk section).

OpenFOAM
OpenFOAM is an open source C++ library for fluid dynamic simulations. While the

most basic uses are covered in an instruction manual, the lack of a gooey interface requires the

user to be well versed in C++, mathematics and fluid dynamics to make advanced use of. They

are unfortunately known for having a harsh learning curve. As such I'm going to cover the

basics of OpenFOAM usage and leave the appendix for the detailed guide and the experimental

section for how to duplicate my results.

	 16	

There are three algorithms that handle the actual solution-solving portion. They are the

SIMPLE (Semi-Implicit Method for Pressure Linked Equations), PIMPLE (It doesn't actually

stand for anything. It is just a combination of PISO and SIMPLE so they merged the letters), and

PISO (Pressure Implicit with Splitting of Operator) algorithms. In our actual simulations we

used SIMPLE for all the final results but used PIMPLE for some transient testing we did. The

primary differences between PISO and SIMPLE besides the transient vs. steady state is that in

PISO no under relaxation is applied and the momentum correction step can be performed more

than once. The PISO steps and a detailed OpenFOAM implementation of it can be found here2.

PIMPLE is basically PISO but it is more robust than PISO and allows the user to input a control

courant number and let the algorithm adjust the time step. PISO you put the time step and need

to make sure it will allow the courant number to be below one.

I used the simpleFoam program to handle all the solving. It uses the SIMPLE algorithm,

so I will go into more details here of their processes. SimpleFoam is a steady state solver

designed for turbulent flows but with the ability to turn on the turbulent model and run laminar

state systems. It is unfortunately not designed for low Re solutions but with some solution

control file modification it can run accurately if slightly slowly at low Re. As usual it solves a

modified navier-stokes equation and the continuity equation (equations 1.3 & 1.4). A few notes,

R is a modified term that encompasses the turbulent behavior by modification of the viscous

stress but in our laminar case is ∇ iR = −υ∇2U and so simplifies to the normal navier-stokes.

The terms are defined as follows: U is the velocity vector, ν is the kinematic viscosity, and p is

the kinematic pressure.

 ∇ i UU() +∇ iR = −∇p (1.3)

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
2 https://openfoamwiki.net/index.php/OpenFOAM_guide/The_PISO_algorithm_in_OpenFOAM

	 17	

 ∇ iU (1.4)

The SIMPLE algorithm is a standard segregated solution method meaning that U and p

are solved separately and then coupled. Convergence occurs when the residuals for each

variable is reduced to below the convergence criteria specified by the user. The residuals are all

actually normalized such that the residual is 1 on the first iteration (see equation 1.5 for residual).

U is the velocity vector at a given iteration given by the subscript while r is the residual.

 rn =
Un −Un−1

U1 −U0

 (1.5)

The SIMPLE algorithm solves the breaks the navier stokes into several discretized matrix

equations that it can actually solve. Equation 1.6 is the pressure equation, 1.7 is the continuity

equation, 1.8 is the momentum equation and 1.9 while not having a name represents the

neighboring cells and unsteady terms. (ap is a grouping of coefficients from the discretized

velocity equations. p is the kinematic pressure, H(U) is an unnamed term that handles

neighboring cells and unsteady terms, S is the outward facing face area vector, Uf is the velocity

on the face, Δt is the time step) 3

∇ i

1
ap

∇p
⎛

⎝⎜
⎞

⎠⎟
= ∇ i

H (U)
ap

⎛

⎝⎜
⎞

⎠⎟
 (1.6)

∇ iU = SU f

f
∑ = 0 (1.7)

 U p =
H (U)
ap

− ∇p
ap

 (1.8)

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
3 http://openfoamwiki.net/index.php/The_SIMPLE_algorithm_in_OpenFOAM

	 18	

 H (U) = − anUn
n
∑ + U

o

Δt
 (1.9)

The SIMPLE algorithm is the following steps:4

1. Set boundary conditions

2. Solve discretized momentum equation to compute the intermediate velocity field

3. Compute mass flux at each cell face

4. Solver pressure equation and apply under-relaxation (under relaxation decreases

the change between iterations as a mean to prevent overshooting the solution and

increase solution stability at the cost of slowing down the rate at which the

solution converges)

5. Correct mass fluxes

6. Correct velocities based off new pressure field (accuracy in pressure is the critical

factor in SIMPLE so spend time in the fvSchemes and fvSolution file on the

pressure terms)

7. Update boundary conditions

8. Repeat till convergence criteria is met for all variables

Now I will explain the general premise of operation of OpenFOAM. The first thing you

do is creating your mesh. Next you describe the initial conditions and boundary conditions in the

"0" folder in your case file. Each variable will have conditions. For a simple laminar flow only

velocity and pressure are required to be described. Next is the "constant" folder. It consists of a

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
4 http://openfoamwiki.net/index.php/The_SIMPLE_algorithm_in_OpenFOAM
https://en.wikipedia.org/wiki/SIMPLE_algorithm

	 19	

subfolder called "polyMesh" where that mesh you created in step 1 goes. It also contains your

transport, turbulence and RAS properties. In our Newtonian laminar flow transport is just the

kinematic viscosity. Turbulence and RAS properties need to be turned off for the laminar flow.

Lastly the "systems" folder contains much of the more complicated documents. It contains the

"controlDict", "decomposeParDict", "fvSchemes", "fvSolution", and "sampleDict". These

dictionaries and files determine the convergence, run time and accuracy of the solution along

with post processing and parallelization. More detailed information about everything can be

found in the appendix; however, the velocity solver PBICG and pressure solver GAMG deserve

a little more attention.

The velocity solver, PBICG (Preconditioned Bi-Conjugate Gradient Solver for

Asymmetric matrices) is more efficient for pressure when using over 1024 processors (which we

were not). It is a Krylov type solver. Krylov Subspace solvers solve the matrix by use of

orthogonal subsets that span the space. They use schemes such as Lanczos iteration for

hermitian matrices and Arnoldi iteration for general matrices to describe the space. Lanczos is

an adaption of the power methods to get the eigenvalues and eigenvectors of the space. Arnoldi

is also an adaption of the power methods but with general matrices. As a result it produces a

non-orthogonal basis that is than orthanormalized by the Gram-Schmidt method. [8]

OpenFOAM stores its results as a single Matrix output of a list of values in order of

stored points. As such to gather and export data a subroutine called "sample" was used (hence

the sample dictionary "sampleDict" in the systems folder). Sample is one of the better defined

and easier to use subroutines in OpenFOAM. Sample functions by telling the type of

information you want pulled along with all the various locations you want it pulled and what

type of file format you want the exported data stored in. Since OpenFOAM is a cell-based

	 20	

system you also have to tell it an interpolation scheme and that can affect the values you receive

so be careful and consistent. Post processing is handled visually in "paraFoam" or the paraview

program or a third party software. But the default post processing system does not have an easily

accessible export system so come prepared with that foreknowledge.

OpenFOAM has a few meshing requirements. The peskiest one is that no face can be

shared by more than two cells. This means that for hexahedral mesh that is generated in

OpenFOAM is unable to have large meshing concentration gradients. Instead one must have

dense meshing throughout the mesh. I believe that uniform mesh is actually the best because it

helps with post processing as well, but due to CPU hour constraints I understand the need to

prioritize density in prime locations. As such third party software should be used for meshing

either complicated geometry or geometry that requires significant concentration gradients. I

have additional information in the appendix on how to actually mesh in GMSH and open source

meshing program and OpenFOAM directly along with the qualities of good mesh such as

skewness, non-orthogonality and aspect ratio.

Milk Experiments
Milk is a complex fluid consisting of minerals, sugars, fats, and both soluble and

insoluble proteins. As a complex fluid it was an asset for experimentation to further

understanding of the industrial benefits of imprinted membranes. Previous filtration had focused

solely with silicon particles, which while informative, do not behave like most standard solutions

that do need the filtration. In addition, the dairy industry is a substantial user of membranes in its

industrial processes. The stage of filtration that our experiments are studying is an UF step

where the products are an enriched casein micelles solution that is used for making cheese and a

solution of soluble proteins, minerals, and lactose that is used for making whey [9]. One of the

	 21	

reasons milk is being studied is that even now the fouling of skim milk is still not fully

understood [10]. However, that isn't to say that we don't have several ideas of what is going on; I

will address what is currently known later in the paper. But first I would like to address where

industry stands in its membrane and cleaning use. Frequency of cleaning varied but the least

frequently cleaned example was cleaning for 6 hours for every 25 hours of actual filtration [11].

The problem is that frankly milk is highly fouling and it takes a lot of time and resources to clean

it in place. In addition, concerns for hygiene play a role in the frequency of cleaning [11]. This

frequent use of cleaning cycles has an effect on both the lifetime (2-3 years) but also leads to a

sizable decline in membrane performance during the early stages of its use [11]. Furthermore,

the cleaning stages are not only expensive and time consuming but also contribute 1/3 of the

negative environmental impacts of the whole process [10].

While a complex solution, milk is a substance that experiences irreversible fouling while

operating below the critical flux, even if that fouling is markedly reduced [12]. To make matters

worse a significant portion of fouling can occur almost immediately [13]. In fact the fouling can

occur just by dipping the membrane into milk [13]. This initial fouling is caused by protein

adsorption on the surface of the membranes but tapers off within the first ten minutes of

exposure [13]. To further exacerbate the problem there are several other fouling mechanisms at

play and not all groups agree upon which mechanisms are dominant because several play

different roles at different times. Some groups like Youravong and Metsamuuronen demonstrate

that concentration polarization plays a major role in reduced permeate [12, 14]. Other groups like

Rabiller illustrate that the gel layer that forms is ruled by casein micelles and how they deposit

and bind to the surface [15]. He also put forward and agreed with Youravong that proteins

caused the irreversible fouling and so cleaning should focus on that [15]. I think James does a

	 22	

good job of describing the whole process. Protein adsorption onto the surface and in the

membrane can restrict pore access and ease of flow. But the rejected proteins and other particles

accumulate near the surface due to slow back mass transport (which is something we aim to fix

with our patterns) and a concentration polarization occurs. Then the concentration polarization

can become dense enough to form a gel layer. The gel layer can either further compact or grow

restricting permeation [13]. Berg proposes that the three main solutes that cause fouling are

salts, lactose (although the lactose can easily be washed away by a standard wash) and proteins.

His experiments showed that while salt didn't foul itself it aided the fouling of the lactose and

proteins [11]. He noted that the acid, which is used to dissolve inorganic salts such as calcium

phosphate and wash them away, had a negligible effect on the development of resistance [11].

Jimenzlopez isolated Casein micelles as the primary irreversible foulant, but that various other

factors (such as soluble proteins or salts) contributed to how much fouling occurred. In

particular he showed that the casein micelles (diameter 187nm±7nm) networked with calcium

ions to bond to each other and the surface [9].

Seeing how big fouling is, operating below the critical flux is often a goal of milk

experimentation, even though UF of skimmed milk is often done in the limiting flux region far

beyond the critical flux (see figure 7) [12]. Critical flux increases with wall shear stress but

some work shows that protein denaturing from significant amounts of repeated cycles and high

shear to cause an accumulation of membrane fouling leading to the postulation that their is an

optimum cross flow velocity beyond which the critical flux decreases [12, 14].

	 23	

Figure 7: Critical and limiting flux of skim milk plotted in traditional TMP vs. Flux format [10].

Lastly we will focus on industry cleaning and then the literature behind our own modified

cleaning cycles. The standard cleaning cycle follows similar to figure 8 but with significantly

longer time and more repeated cycles. Meanwhile figure 9 shows the flux recovery observed

from each of the stages. Typically the milk in industry will be run at 50ºC [12] but this particular

paper did not. We do see that the enzyme does the majority of cleaning before appearing that the

acid significantly cleans the surface. I will now remind people that the acid serves to turn off the

enzymes and to dissolves salts, however, other work showed that salts themselves don't

particularly foul the membrane.

	 24	

Figure 8: Standard lab cleaning cycle mirroring industry-cleaning procedures with reduced times
[11].

Figure 9: Demonstrates the experimentally recovered fluxes after each of the individual steps
[11].

As such Paugam's group decided to investigate and their discovery was remarkable.

They found that nitric acid only increased the flux but did not clean the membrane by removing

proteins (Figure 10). In fact they found that just rinsing with water after the fat free milk UF that

there were no minerals left (done by SEM-EDX) [16]. Now while all flux recovery is useful for

industry, it isn't useful for laboratory experiments. Since our lab did not have access to the

enzyme and their proprietary surfactants and chelators [11] this work shows that the acid step

should be left out. This is because the higher the efficacy of the caustic cleaning, the lower the

impact from nitric acid; however, the worse a job, the more nitric acid over estimates the

cleaning efficiency[16]. This is due to the increase in overall hydrophobicity of the membrane

due to the adsorption of the nitrate on proteins. In face you can see acids like Citric acid remove

proteins as well, but are unfortunately more expensive since they are derived from foods[16].

	 25	

Figure 10: DI water flux recovery (bar charts) and % of removed proteins (black squares) after
respective treatments [16].
Motivation

This section will seek to address why we are interested in nano scale imprints given that

random roughness is known to increase fouling. To see what makes patterned periodic

roughness different we must examine the work done by Maruf who studied experimentally nano

scale patterned membranes. The benefits to the membranes can be summarized as increased flux

rate, increased critical flux, later onset of fouling, slower growth of cake layer, and higher flux

recovery. I will now go figure by figure with why each is beneficial to the membrane filtration

industry spending special attention with the implications with the dairy industry.

Figure 11 shows that unlike micron sized patterns made with the phase inversion process,

the increase in surface area does not directly translate to an increase in permeance. In phase

inversion the membrane is formed directly in contact with the a patterned surface substrate so

when the membrane is finished forming it already has the pattern on it and the surface pores are

	 26	

completely normal. This allows for higher surface area to increase the permeation. With nano

scale imprints, which cannot be imparted by the phase inversion process and are instead imparted

through our NIL technology cause some deformation of the surface pores leading to an increased

rejection. What happens is on the surface that is compressed there is a slight decrease in porosity

[3]. This translates to a slightly lower pure water permeance even with the increase in surface

area. However, the property that is more valuable than pure water permeance is flux during

filtration. Figure 11 illustrates that the patterned membrane has a higher permeate flux for a

given TMP. This is most likely due to the decrease in fouling and surface build up rather than

the change to porosity given the results of pure water permeance but it hasn't been shown

explicitly. A factor we also see is the size dependence of the particle. These experiments were

all performed on membranes with patterns seen in figure 12 with a width of 417nm and height of

110nm. Changes to these parameters will impact the effect on particles. This is important to the

dairy industry and as well as other groups as it means more products for the same energy input

and time.

	 27	

Figure 11: Pure water permeance is plotted along the strait lines while filtrations done with two
different sized particles were also performed and represented by the noted shapes [17]

Figure 12: The spacing of the nano-scale imprinted membrane[17].

Figure 13 compares critical flux values as well as fouling behavior above them. The

critical flux was effectively doubled between patterned and unpatterned membrane. For reasons

explained with critical flux this means that while the energy cost increases you can run at a much

higher flux rate, increasing the product per time ratio without having to do increased cleaning

also entailing a profit for the industry. As seen when run above the critical flux fouling will cause

the permeate to drop below the critical flux value explaining the logic behind why most systems

	 28	

desire to run below the critical flux. Unfortunately not all systems have clear critical fluxes. As

previously explained milk will foul under all circumstances but the fouling reduction is still

useful but no longer a mandatory reason to remain below it.

Figure 13: Experimental plot demonstrating the higher critical flux of the patterned membrane
and the benefits of running below the critical flux for overall production capabilities.[17]

In figure 14 the onset of fouling is directly related to the higher critical flux value for the

patterned membrane. The new information presented here is the decreased growth rate of the

cake layer. This corresponds to the ability to run for a longer period of time before having to do

cleaning. This would be particularly beneficial to the dairy industry but this particular property

does not apply to complex fluids with milk's unique fouling capabilities, but will still be useful

for a variety of other filtration applications.

	 29	

Figure 14: Illustrates the delay of cake growth and the delay in the onset of fouling.[17]

Figure 15 illustrates the real gold value for groups like the dairy industry, a more

effective cleaning. As mentioned previously cleaning is very expensive, takes a long time and

has to be done frequently. The only result we have so far obtained experimentally is that flux

recovery is improved with the patterns and milk filtration. However, for semi complex fluids the

overall benefit to filtration industries is phenomenal.

	 30	

Figure 15: Illustrates the recovery effect of the patterning. Section three is a PBS filtration at
276 kPa. Section four is a PBS and BSA filtration at 276 kPa. After section four there is a
membrane cleaning cycle. Section 5 is a fresh PBS filtration at 276 kPa. Then there is a DI
water flush. Lastly in section seven there is another PBS filtration at 276 kPa. [3]

I will now focus on why we chose the parameters that we did to study: the angle of

attack, permeation rate, pattern height, and cross flow speed. Some has already been explained.

We theorized that different particle sizes would require different spacing’s and so we decided to

vary pattern height. As already mentioned fouling mechanisms relate to cross flow speed and so

that was varied. Due to critical flux we decided to vary the permeation rate with our CFD work.

Angle of attack had initial demonstration that flow direction mattered with a patterned surface

(figure 16). However, all of these parameters were also studied with experiments by Maruf and

so serve as a comparison point for our CFD solutions.

	 31	

	
Figure 16: Depicts the fouling conditions and angles of attacks between a patterned and pristine
membrane [17].

	

	 32	

Chapter 3

CFD Experiments

Solver Validation

When using a new CFD program it is important to validate the program's solutions with

analytic cases before moving onto simulations with unknown answers. The better this is done

the more one can trust the results of the simulations whose answers are unknown. As such it is

important to validate the program under conditions similar to unknown solutions. OpenFOAM

as a program had a wide variety of solvers to choose from but no steady state laminar solver.

This was initially a problem since we were trying to solve that type of problem. However,

OpenFOAM is readily modifiable for both code and case procedures. With a significant amount

of trial and error, settings were found that produced accurate results matching the analytic

solution to these three cases: biharmonic equation (cavity with a lid), slit flow and lid driven

flow. In addition to the analytic cases, we will be doing a mesh sizing comparison of the actual

experiment to make sure that all the particulars of the fluid flow are fully captured and the mesh

is refined enough for our purposes.

I will save the final specifics of the settings for the methods section of the experiment and

instead walk through the analytic cases and our results. The biharmonic equation (1.10)[18] in

fluid flow is used to describe the flow and formation of vortices in a closed cavity with a moving

lid. The analytic solution of this case gives the location of the center of the recirculation centers

as seen in figure 17 and table 1. We will validate the location of the first and second vortex but

only visually confirm the existence of the corner vortices.

 ∇4ψ = 0 (1.10)

	 33	

Figure 17: Visual representation of the location of the vortices in the analytic solution and their
values for a given aspect ratio of 2 [18].

	 34	

Table 1: Biharmonic equation solution for moving lid in a cavity. List of locations of the
vortexes as a function of aspect ratio and mesh size. Our simulation uses the aspect ratio of
2[18].

The cavity simulation was run with the solver simpleFoam with an absolute convergence

tolerance of 10-9. This took 140,000 iterations to arrive at the solution. Due to the coding of

OpenFOAM's stream functions the starting points and scaling factors of stream functions will be

different then in the literature. However, since we are seeking only the locations of the vortices

that will be acceptable. Figure 18 shows the whole domain that was simulated. Due to axis

choices mine is horizontal and not vertical. Still the left wall is the wall that moves upward.

Meanwhile, Figures 19-21 will show the vortices mentioned in Figure 17 and Table 1. The error

for both locations is less than 1% and as such is an acceptable value.

	

Fig 18: Shows the complete domain for an aspect ratio 2 in a cavity with a moving lid. The
picture depicts the various streamlines that are generated.

	 35	

	 	

Fig 19: The first vortex generated by the simulation. The black line represents the center of the
vortex from the simulation while the red line indicates the anaytic center of the origin. In this
simulation it was only 2 mesh points away. That corresponds to only a 0.4% error in the location
of the vortex.

	 36	

	 	

Fig 20: The second vortex is off by 3 mesh points. Here the vortex center is 79.5% of the way
down leading to a 0.75% error.

	 37	

	

Fig 21: The corner vortex, while not having a specified location center does appear to show up
like in the analytic solution at both corners. However, it is at the scale where additional mesh
refinement would prove useful.

Overall simpleFoam, which is designed as a steady state turbulent flow solver, accurately

predicts the locations of the vortices along with flow features. The original case where this flow

had the initial default conditions took 1.4 million iterations to reach the same result. However, in

the slit flow case the analytic solution was unachievable under the initial conditions.

Slit flow is also known as plane Poiseuille flow (figure 22). It is flow between two

parallel plates where the width between two plates is much smaller than the length of the

simulation. The flow profile is parabolic and is driven by a pressure gradient but can also have a

moving top plate. In this simulation we used the simplest case, which is driven by only a

pressure gradient. This was represented by a uniform inlet velocity boundary to provide the

	 38	

initial mass flow and to develop into the full parabolic solution. This was done to make it easy to

identify the max velocity which is 3/2 the average velocity which is also the inlet velocity.

	
Figure 22: The Plane Poiseuille flow case we are simulating which involves fixed walls5

The initial results with the default conditions provided by OpenFOAM yielded the

following disaster seen in figure 23 and 24. This is why validation must be done. It should be

noted that the solution converged by OpenFOAM standards for simpleFoam under the default

conditions. By modifying the fvSchemes and fvSolution files to what is seen in the appendix

and discussed in great details later in the methods section, I was able to then correct this to the

analytic solution as seen in figures 24 and 25. The fluid dynamic conditions applied in this flow

is an inlet velocity of 0.25m/s with a Re of 1 and an aspect ratio of 1/2. I will note that in Figure

27 we had been experimenting with the idea of non-uniform density of mesh spacing. While it

provides accurate results near the surface of the membrane our post processing system doesn't
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
5 https://uwaterloo.ca/applied-mathematics/sites/ca.applied-
mathematics/files/uploads/images/poiseuille_flow.jpg

	 39	

handle smooth interpolation schemes well and so the data becomes rough and deviates as it gets

farther away from the "membrane" surface.

	

Figure 23: The full velocity profile of the plane Poiseuille flow under default conditions. It is
fairly obvious that while the CFD is converged, that the simulation was not fully developed at
all.

	

	 40	

	

Figure 24: This is the velocity profile at the slice indicated by the red line in the previous picture.
As is seen, the flow is strictly a plug flow and not slit flow result.

	 41	

	

Figure 25: Velocity flow profile for slit flow after adjustments were made to the fvSchemes and
fvSolutions files.

	

Figure 26: the velocity profile from the slit flow after the modifications to the fvSolution and
fvSchemes file. Details the correct result matching the analytic solution to within 0.5%

	 42	

Using the same systems folder files the moving slit experiment was done with an inlet

velocity of 20m/s and an aspect ratio of 2. The analytic solution matched fairly well with our

experimental results (Fig 27). Figure 28 is included as a validation that it works for the whole

domain. This concludes our matching to analytic solutions. Up next is mesh refinement.

	
Figure 27: The velocity profile for the analytic comparison of the moving top flow.

	
Figure 28: The horizontal velocity of a lid driven cavity at velocity of 20m/s with 5nm vertical
mesh spacing.

0	

0.0000001	

0.0000002	

0.0000003	

0.0000004	

0.0000005	

0.0000006	

0	 5	 10	 15	 20	 25	

H
ei
gh
t	 (
m
)	

Ux	 (m/s)	

Simulation	

Analytic	 	

	 43	

Considering mesh refinement is an essential task for the validation of CFD results. The

nature of high cost of CFD means we want to make spacing as large as possible while still

resolving the essential flow features. What follows is the result of three simulations of varying

meshes densities (~10nm, ~20nm, and ~30nm). Jumping to the point, in figure 29 they plainly

overlap. Furthermore, I checked error variation and while the error discrepancy was fairly large

for the last points because my mesh got coarser than my sampling (two points were sampled in

the same cell). However, the average discrepancy was ~1% between coarsest ~30nm spacing

and the most refined ~10nm spacing. As such, I am confident that my mesh spacing is refined

enough to ensure accurate results. Further mesh refinement would have only served to make the

sampling easier, but is limited by CFD capabilities and the necessity to do the simulations in 3D.

	
Figure 29: Demonstration of a random slice of the 160nm patterned membrane 90-degree case
with a Re of 239.
Motivation on Fouling

Earlier I promised more detailed information on a variety of subjects. I will now address

those topics here. There will be a little bit of overlap, but much greater details here, especially

	 44	

concerning modeling. So the CFD focusing on examining previous experimental work [3, 4, 17]

on the hydrodynamics in and around submicron patterns, which were imprinted on a commercial

UF membranes. Experimentally it has been shown that with nano-scale patterns the fouling

mitigation depends upon angle of attack, pattern height and cross flow speed, and permeation

rate for simple solutions (silica particles of varying size). In order to do simulation experiments

with the critical flux we'd need a model that included particles. That is currently outside the

scope of our work but might be done with future work. Our lab developed novel techniques to

imprint nano-scale patterns on a membrane surface and retain its porosity replacing the older

techniques of phase inversion that did not support nano scale patterns [19-22]. The motivation

for the development of these membranes, and these modeling studies, is that flux-decline and

fouling are major limiting factors for the continuous operation of pressure-driven separation

processes such as ultrafiltration (UF), especially during the filtration of protein solutions [23,

24]. Flux decline, and its major subset "fouling", is a natural result of selective membrane-based

separations [5] and is a hindrance. The deposition of retained particles, macromolecules,

inorganic and biological materials, at the membrane surface and/or inside the pores [25, 26],

often can only be partially removed under harsh chemical treatment [27, 28] causing more

energy consumption, loss of productivity, and shortened membrane lifetime [25]. Mitigation of

membrane fouling still remains a grand challenge for most membrane applications.

Many methods for fouling mitigation do exist. The reason they have not been widely

implemented in industry is due to flaws within each method that increase the difficulty, cost, or

environmental impacts from the previous mitigation methods. Controlling interactions between

the membrane surface and the feed solution is critical for fouling mitigation [26, 29]. A popular

and partially used method is modifying the surface of the membrane. By increasing its

	 45	

hydrophilicty you'll have an increased water permeance [26]. The downside is that it doesn't

affect the internal parts of the membrane nor any solutes that are desired permeate that are less

hydrophilic. In other cases this technique is an undesired affect as it artificially makes the

membranes look cleaner but does not largely contribute to the functionality of separation in

membranes. An example of this is nitric acid, which is used during the cleaning of membranes

from milk filtration. It doesn't actually clean the membrane and is used only for shutting down an

enzyme used for cleaning in the previous step[16]. Lastly while the cost of nitric acid isn't too

bad, its not a particularly environmentally friendly chemical, especially in the concentrations

used. It takes a lot of resources to properly dispose of it. Another possible solution is surface and

flow system topology. By altering the membrane topology or the topology in the flow cell one

can altar the fluid dynamics near the membrane surface or in the bulk flow. By doing so many

groups aim to reduce the fouling. Several of these methods do indeed work but also have flaws,

usually in the scale up to industry quantity. By altering the surface topology one can create near

surface vortices, promote mixing and increase shear-induced diffusion. Increased shear has been

studied without the use of surface patterns and has been shown to be an effective way to reduce

fouling[30]. Using patterns, the geometry can significantly affect the micron-scale pattern's

positive effect. Prism and triangle trenches, where recirculation vortices make up the bulk of the

pattern [31-33], are not as effective as the sinusoidal patterns [34] where flow follows the

surface. While micron-sized patterns for particle fouling is still being investigated, the effect of

these patterns on biofouling have been very successful [35, 36]. One pattern, not on a membrane,

by the name of Sharklet® is already commercialized for resistance to bacteria settling on the

surface [35]. Unfortunately, little study has been done with nano-scale patterns, where the

pattern features are smaller than the primary chemical foulant. In fact of the many groups

	 46	

running CFD simulations over patterned surface none simulate on nanometer sized patterns. A

group from Korea [33], runs simulations and experiments on membranes with 400µm x 200µm

prism patterns. This is an entire three orders of magnitude larger than ours. As a result different

phenomena would play different roles between their work and ours. Unfortunately current

literature focuses on the hundreds of micron scales and the atomic scales at the moment meaning

our results are all novel in nature.

Models for fouling mitigation
In the 1970's Eckstein and his colleagues first quantified the phenomena that would later

be known as shear induced diffusion. In their first paper, they related the self-diffusion

coefficient (D) to concentration and several other terms in a dimensionless relation. While the

full equation (1.11) shows a multitude of terms, the concentration φ() and the gradient of the

strain rate
a ∂

2u
∂y2

ω
 are the two most important quantities to us [37]. Unlike the nonlinearity term

discussed later ω is a constant. That concentration as the paper shows is the heaviest term is

highly logical. This term measures the gradient of the shear rate over the cross-section of a

particle. It gives the steady state slip velocity and the transverse lifting force [38]. The transverse

lifting force in the patterned membranes is what we currently hypothesize to reduce the fouling

(particle deposition). Specifically, our results to do not agree with the inertial lift theory (see

equation 1.12) that is an alternative to the shear-induced diffusion models [39] nor with the

critical flux modeling that had experimental fitting (equation 1.13)[4]. However under their

experimental conditions the term that is of interest for the CFD, the strain rate term, is

approximated as zero [37].

	 47	

 D
a2ω

=℘ φ, a
w
, a
y
,
ρ f a

2ω
µ

,
a ∂

2u
∂y2

ω
,
g ρs − ρ f()a

µω

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

 (1.11)

vL ,0 =

ρ0r
3 !γ 0

2 f ŷ()
16η0

 (1.12)

Jc = 0.051Re

0.433 Sci
0.863 0.3 !γ di

2

dh
 (1.13)

Ingber developed an improved transport model for shear-induced diffusion under

physical conditions similar to those used in our experiment and simulations. Adding a slip

boundary at the wall and modeling the diffusion coefficients as linear functions of a non-linearity

parameter make these improvements. The result is a non-linearity parameter that directly and

linearly correlates with shear induced diffusion that can be used as a model for our data. A

particular finding of Ingber's is that for neutrally buoyant particles, the particles migrate from a

high shear rate to a low shear rate [40]. Our results show that over certain regions of the

patterned membrane, near the surface there is an increase in shear rate over a flat membrane.

This is part of what contributes to particle migration away from the surface more effectively than

in pristine membranes. A previous study by Ingber in 2008 [41] showed the particle migration to

areas of low shear when the flow had nonlinear shear. In a smooth membrane the shear is of

course linear. Our patterns cause near surface nonlinearity guaranteeing this benefit and that the

non-linear parameter (1.14) is valid for our case examinations.

ξnl =

a ∇ !γ
!γ + !γ NL() (1.14)

!γ NL =

a
R0
!γ 0 (1.15)

In Ingber's paper he illustrates his model with a Couette flow system from a stationary

outer cylinder and a rotating inner cylinder. For several reasons we choose to approximate that

	 48	

 !γ NL is 0. One of such is that the paper admits that the non local shear rate !γ 0 plays a minimal

role in Couette flow which our simulation of the surface approximates [40]. In addition, since

we are only using a small part of the system, the R0 term is significantly larger than the particle

radius used in our lab experiments. As such we choose for simplification of observations that is

safe to reduce the nonlinearity parameter to the simple relationship in equation 1.16. Although

our simulations did not include particles, we can still validate the correlation that was seen with

the particle size in the experiments.

ξNL =

a ∇ !γ
!γ

 (1.16)

Geometry
So now I need to provide the detailed information on the 4 geometries used in the case:

the jet flow cell, cross flow cell and their each respective nano-scale cases. So starting with the

impinging jet flow cell, low-resolution (smallest elements ~10 µm) CFD modeling of the unique

flow cell system used in [3, 17] was performed to determine the boundary conditions for analysis

of fluid flow at the ~10 nm scale above the membrane. The cell is axisymmetric so a two-

dimensional model using radial symmetry (Figure 30a) with a high mesh density at the bottom

surface (where the membrane is located) was generated. The feed entrance tube has a Reynolds

number (Re) of 114, which is still in the laminar region. The second region consists of the rest of

the flow cell, which has a Re of ~7.2 (also laminar flow regime). The two Re were derived from

the inlet volumetric flow rate being used in the two different volume regions: the inlet tube and

the free open bulk volume (see appendix). The finite volume domain mesh was created in GMSH

with at total of 77584 cells giving a nearest neighbor node distance of 10 µm near the surface of

the membrane. The mesh is hexagonal and has a non-orthogonality average of 7.3 and a

	 49	

maximum of 31.6 (non-orthogonality is a measurement of mesh quality and a non-orthogonality

below 40 is considered good mesh).

	
Figure 30: a) 2D axisymmetric domain of the impinging jet flow cell; b) 2D slice of the 90º and
0º patterned simulation; and c) 2D slice of the base case used for comparison. Grey portion is the
fluid domain and white is the domain boundary.

The nominal geometry for the nano-scale patterned membrane used in the impinging jet

flow experiments consisted of line gratings with a periodicity of 834 nm, depth of 110 nm and a

line to space ratio of 1:1 (figure 30b). We examined the flow over these patterns using the

domain depicted in Figure 1b. Its dimensions were 2000 nm height and 4587 nm length and

width. The 90° case uses the left boundary (Figure 31) as the flow inlet surface (boundary

condition), while the 0° case uses the front boundary as the flow inlet surface. The top is an open

pressure and flow boundary that mimics the fact that this simulation is just a segment of a larger

flow. The crenel extends down beyond the 2000 nm base. The base case (without patterns) is a

	 50	

simple rectangle without the crenels and merlons at the bottom surface (Figure 31c). We

incorporated the transition from bulk flow to this size pattern following figure 32.

	
Figure 31: The 90º and 0º flow directions on the patterned mesh domain.

	 51	

Figure 32: Impinging Jet flow cell transition to the nano scale patterned case of membrane
surface.

3D cases were run for the 0°, 90° and base cases. Course uniform node spacing

simulations were used to identify flow regions where high resolution was needed due to large

gradients. These areas were near the membrane and pattern. The spacing and geometry was

then organized to minimize CPU time cost for refined mesh runs. Periodic boundary conditions

were used on the sides of the domain. Flow perpendicular to the periodic boundaries was below

convergence criteria for the 90º and base case informing us that future runs could be done in 2D.

All three meshes were generated in OpenFOAM with hexahedral mesh and have a non-

orthogonality of 0. The base cases had 690,000 cells with a node's nearest neighbor an average of

10nm away (all internode distance refers to nearest neighbor). The 90º cases had a total of

	 52	

2,864,400 cells with a node an average of every 10nm. The 0º case had 1,848,000 cells with a

node an average of every 30nm. Both 0º and 90º in the crenels have mesh nodes every 10nm.

The cross flow cell fixture (Figure 33a) used in later experiments [3, 25] had a cavity at

the top (for a stirrer bar to promote turbulent mixing) that was just left open (without a stirrer) to

the flow in these experiments. This fixture's simulation domain was also created in GMSH but

with prism meshing and has an average node spacing of 0.17 µm with a total of 3609275 cells.

The non-orthogonality of this mesh is about the same as the other domains with an average of 5.6

and maximum of 33.7. In this cross flow cell fixture the membrane's pattern height and the Re

were varied based on the specific experiments and had the Re's 120, 180, 239, 299 and 358 [4].

	 53	

	
Figure 33: a) shows the 3D half-domain used in the cross flow cell. To reduce computational
time, a symmetric plane boundary condition was used and the simulation was run over half the
cell as shown. b) 2D slice of the membrane surface with the high pattern height. c) 2D slice of
the membrane surface with the low pattern height. Grey portion is the fluid domain and white is
the domain boundary.

Using the simulations from the cross flow filtration cell a linear inlet velocity profile was

created by a best fit from the previous simulation (Figure 34 for meshing change). Like the other

near surface simulations, periodic boundary conditions are used on the sides and the top is an

open domain condition. For comparison purposes the number of crenels was chosen so that the

overall length of the domain would be similar to the near surface simulations of the jet flow cell.

There is five types of cases run here: a base case with no patterns, and both 90º and 0º with low

	 54	

and high pattern heights (low is 60 nm, high is 160nm) (Figure 33b,c). High 0º has 1,052,250

hexahedral cells with an average density of 8,000 nm3 near the surface. High 90º has 210,450

hexahedral cells with an average nearest neighbor node distance of 20 nm3 near the surface.

Base has 172500 hexahedral cells with an average nearest neighbor node distance of 20 nm3.

Low 90º has 204450 cells with an average nearest neighbor node distance of 20 nm3. Low 0º has

1,022,250 cells with an average nearest neighbor node distance of 34 nm3.

	
Figure 34: The magnification and progression of mesh from the flow cell to the near surface
patterns.
Solver Specifications

The experimental results from an impinging jet flow cell system and a cross flow cell

system are the subject of our studies. Two open source programs are used for creating the mesh

geometry and running the simulations: GMSH6 and OpenFOAM7 (a C++ finite volume method

library, with no graphical user interface (GUI), version 2.1.1 – Ubuntu pack). The simulations

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
6 GMSH, 2012 (http://geuz.org/gmsh/)

7	 OpenFOAM,	 2012	 (http://www.openfoam.org)	

	 55	

were run on a parallel research computer cluster ("Janus")8. Membrane and filtration parameters

that were studied are permeation rate (normal velocity through the membrane); pattern height;

near surface, cross flow rate, and angle-of-attack. Two angles-of-attack were used: 0° and 90° to

the pattern's merlons (figure 35). Generating a suitable mesh for periodic boundary conditions,

with an angle-of-attack of 45°, has proved problematic thus far. (Note: heretofore angle-of-attack

cases will be referred to simply as either 0° and 90°.)

Figure 35: The Merlon is the non-depressed portion of the membrane. It has undisturbed
permeability qualities. The Crenel is the low part of the membrane and here represents the
compressed potion of the membrane that gives it the pattern. It suffers from a decrease in
permeability caused by changes to the porosity during patterning.

Two solvers were used in the simulations: simpleFoam and pimpleFoam. SimpleFoam is

designed for use as a steady state, incompressible turbulent flow solver. However the turbulent

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
8	 This	 work	 utilized	 the	 Janus	 supercomputer,	 which	 is	 supported	 by	 the	 National	 Science	 Foundation	 (award	 number	 CNS-‐0821794)	

and	 the	 University	 of	 Colorado	 Boulder.	 The	 Janus	 supercomputer	 is	 a	 joint	 effort	 of	 the	 University	 of	 Colorado	 Boulder,	 the	 University	 of	

Colorado	 Denver	 and	 the	 National	 Center	 for	 Atmospheric	 Research.	

	 56	

component can be removed or turned off. SimpleFoam uses the SIMPLE algorithm9, which is an

iterative process that uses under-relaxation. PimpleFoam uses the PIMPLE algorithm10, which is

a hybrid algorithm of the SIMPLE and PISO algorithm11. PimpleFoam is a transient solver that is

designed for large time steps and incompressible flow. It is a handy code in that you can set the

Courant Number in the simulation and, thus, can exert finer control on the stability and speed of

the solution and convergence. The Courant number, also referred to as the Courant-Friedrichs-

Lewy condition, states that the distance traveled by a particle in a cell should not exit the cell in a

given time step. The Courant number (equation 1.17) in a transient simulation should always be

below 1.

 C = uxΔt
Δx

+
uyΔt
Δy

+
uzΔt
Δz

 (1.17)

Steady state solvers were run to convergence except when unable to due to flow in the

tertiary direction (perpendicular to periodic boundaries) being a number smaller than

convergence levels but not fractional levels of change. On the other hand, when using the

transient solvers it is often not possible to run for several domain residence times because of the

computational time costs. Thus, we first ran a steady state solution initially and then performed a

transient analysis to observe if there are any transient effects in the fully developed system. In

general, the only transient effects observed were in the 0° case where the lack of fixed

boundaries allows for time-dependent sideways oscillations transverse to the main flow

direction. And now the details I promised you earlier.

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
9https://openfoamwiki.net/index.php/OpenFOAM_guide/The_SIMPLE_algorithm_in_OpenFOA
M
10http://openfoamwiki.net/index.php/OpenFOAM_guide/The_PIMPLE_algorithm_in_OpenFOA
M
11https://openfoamwiki.net/index.php/OpenFOAM_guide/The_PISO_algorithm_in_OpenFOAM

	 57	

In the “fvSchemes” file the different finite volume discretization schemes are selected.

There are seven different categories of schemes that need to be selected: time, gradient,

divergence, laplacian, interpolation, surface normal gradient, and flux requirement. For the time

scheme “steadyState” is specified for steady state systems of course, while with the transient

system CrankNicolson with a value of 0.5 was used. With the interpolation scheme linear

interpolation of velocity is specified while with under the flux requirement scheme no fluxes are

required. The “snGradSchemes” is used to solve the Laplacian term by Gaussian integration.

“Explicit non-orthogonal correction” (OpenFOAM users guide) is chosen as the condition for the

surface normal gradient scheme. cellMDLimited Gauss linear 0.5 is specified for pressure and

velocity for the gradient scheme, while Gauss linear corrected for the laplacian schemes. In

divSchemes for the velocity component listed as div(phi,U) bounded Gauss linearUpwind

grad(U) is specified but all other conditions can be set to Gauss linear.

In the “fvSolution” file algorithms, tolerances, and linear equation solvers are specified.

This is one of the more important files because it details not only convergence criteria but also

the actual mathematical techniques that will be used to arrive at the numerical solutions. There

are three categories in this file: solvers, algorithm, and relaxation factors. There are four solver

categories: pressure, pressure final, velocity, and velocity final. Depending upon your running

conditions, the quality of the mesh, algorithm, and your discretization scheme, different solver

options are useful. For simplicity and briefness I will just describe the settings I used and

additional information on the rest can be seen in (insert citations). For pressure, the Generalized

Geometric-Algebraic Multi-grid (GAMG) solver was used. It is the optimal OpenFOAM

pressure choice for parallelized systems with less than 1024 processors at which point the Krylov

type solvers (PBiCG and PCG) tend to do better. In fact PBiCG (preconditioned bi-conjugate

	 58	

gradient) solver works fairly well for the velocity matrix manipulation. With the GAMG solver I

used the DICGaussSiedel smoother with 100 cells in the coarsest levels and a tolerance and

relative tolerance as 1e-11 and 0 for the final conditions. DIC (simplified diagonal-based

incomplete Cholesky smoother for symmetric matrices), GaussSeidel (Gauss Seidel method is a

technique used to solve a linear system of equations. The method is an improved version of the

Jacobi method. Convergence is only guaranteed if the matrix is either diagonally dominant or

symmetric and positive definite) are combined into the DICGaussSeidel model which is an

effective smoother that runs DIC and then Gauss Seidel to smooth any irregularity peaks from

DIC. Lastly for GAMG, the number of cells in the coarsest level determines that amount of

smoothing that goes into the pressure. This number should be carefully chosen based off the

density of mesh and the desired resolution. It corresponds to the number of cells that are

temporarily merged together for a coarse pressure calculation before being fine-tuned for each of

the cells in the domain. The velocity condition PBiCG is much simpler and just requires a

preconditioner instead of a smoother, which I chose DILU (Simplified diagonal-based

incomplete LU smoother for asymmetric matrices). Lastly, for velocity we chose a final

tolerance of 1e-10 and relative tolerance of 0. This leads to the algorithm control. There are two

key factors here: the Non Orthogonal Correctors which can be left as 0 for mesh geometries was

a maximum mesh non-orthogonality less than 40; the second is the residual control. These

numbers are the final convergence criteria. They need to be smaller than the individual pressure

and velocity tolerances because otherwise the solution cannot converge. I used 1e-9, which

means that my accuracy affectively is around 6 to 7 significant figures. Lastly the relaxation

factors affect the stability of the solution and the speed at which it converges. For duplication I

use 0.3 for pressure and 0.5 for velocity.

	 59	

Metrics
Next I need to cover the metrics we used. Our metrics of examination are the shear rate

 !γ() , the magnitude of the gradient of the shear rate ∇ !γ() , and the non linearity term ξnl() .

Over all the patterned cases we examine those quantities. A wide variety of literature focuses on

the shear rate and its contribution. The magnitude of the gradient appears in literature but is

often dismissed by itself as not contributing much. After our work we would propose that with

patterned membranes unknown mechanics that depend upon it play a more significant role.

Meanwhile, the nonlinearity term which we had theorized played a significant role, instead only

describes one of the phenomena changes.

Bulk Jet Flow Results
The first experiment done used the impinging jet flow cell. Its purpose was to measure

the effect of angle of attack and determine the critical flux along with other properties. As such

it was the first system that we simulated and gathered initial data from. I started off simulating

the entire flow cell domain with a radially symmetric simulation to figure out starting points for

the nano scale simulation over the pattern. Due to the size difference of the whole cell vs. the

patterns it is computationally impossible even with the largest supercomputer to simulate

directly. As such our simulation focuses on using it as a set up for the fouling cases. Figures 36

and 37 show the results in the relevant areas from the impinging jet flow cell. There are no

recirculation values near the membrane and in fact it is heavily parallel flow near the bottom.

Table 2 will summarize the initial boundary condition data we collected from data fits.

	 60	

Figure 36: Shows the magnitude of the velocity over the whole domain of the impinging jet flow
cell. There are no signs of recirculation in the domain and fluid flow is very standard.

	 61	

Figure 37: Shows the streamlines and the velocity vectors in the area right above the membrane.

Table 2: Shows the maximum radial velocities as a function of the permeate boundary condition
values. These radial velocities were used to help create the inlet condition for the detailed mesh
simulations.
Nano Jet Flow Results

As with the bulk flow, I'll focus on showing the results over the whole domain first. As

mentioned shear stress is the component that I focused on this stage. To make things clear, the

shear rate described will always be in the flow direction with respect to distance away from the

surface of the membrane. Figure 38 shows the normalized shear stress (Pa/kg•m3) for the base

Maximum'Radial'
Velocity'(cm/s)

Permeate'Velocity'
(μm/s)

2.335 23.6
2.330 16.7
2.329 15.8
2.322 8.3
2.312 0.0

Impinging'Flow'Simulation,'Velocity'Values'from'5'
Points'(140'μm)'Above'Membrane

	 62	

case, 0 degree case and the 90 degree case with no permeate. Only one permeate rate is shown

because as I show later, permeate plays a minute role in the change in fluid dynamics. To

describe the particular flow differences I have plotted in figure 39 slices along the crenel, merlon

and from the unpatterned simulation.

Figure 38: a) 0 degrees flow case where the flow direction is shear stress (yz), but is on the same
scale as the one shown. b) Shows the 90-degree flow case where the shear stress is xz. c) Shows
the base case without any patterns and the shear stress is along xz.

	 63	

Figure 39: Shows how the merlon and crenel deviate from the unpatterned membrane. These are
the fundamentals of the changes brought about by the patterning of the membrane. This is from
the 0 permeate 90 degrees case.

The influence of permeation rate and angle-of-attack on the near surface flow of the NIL-

imprinted membrane was studied in this enhanced view simulation of the jet flow cell. Based on

previous literature results the three examined quantities are: shear rate [4, 7, 39-43], gradient of

the shear rate [37]and the nonlinearity term[40, 41]. Results for near surface flow field (0 to

400nm) indicate that the permeate rate had negligible effects (Figure 40) on any of the three

physical quantities correlating with fouling reduction (Figure 41). The figures show that the

permeate rate does not significantly affect the shear rate, gradient of the shear rate, or the non-

	 64	

linearity term. It does show that angle of attack does correlate with the gradient shear rate and

the non-linearity term, but that gradient shear rate matches best so far (Figure 42).

6983.2'

6983.3'

6983.4'

6983.5'

6983.6'

6983.7'

6983.8'

6983.9'

6984'

6984.1'

3.00E.06' 3.20E.06' 3.40E.06' 3.60E.06' 3.80E.06' 4.00E.06' 4.20E.06' 4.40E.06'

St
re
ss
&R
at
e&
(1
/s
)&

Length&Along&Step&(m)&

Permea7on&Effect&on&Near&Surface&Stress&Rate&

0'

.8.33E.06'

.1.58E.05'

.1.67E.05'

.1.94E.05'

	
Figure 40: Flat membrane strain rate along the surface vat different permeate rates.

	 65	

	
Figure 41: Impinging jet flow cell's summary of maximum data points on the merlon and crenel.

	 66	

Figure 42: Summary of jet-flow membrane cell's gradient of strain rate vs. the height from the
membrane. Results when varying the permeation rate would not be visible on this plot, so the no
permeation case was plotted here.

Strain rate values were taken across the whole length and at four equal spacing’s near the

surface from 0 to 300 nm. Altogether 80 points were used to create this average. Figure 43

indicates that the permeation through the membrane has negligible influence on the average

shear generated in this region, and that the flat membrane (without a pattern) had a higher

average shear than even the 90-degree case, which appeared to have the least fouling by particle

deposition. These averages make sense when you take several slices of the shear rate

horizontally. I have done such a thing. Figure 44 is at 1nm above the membrane surface while

Figure 45 is 150nm above the surface. Notice how while the base is lower than either's

maximum its higher than the average height of the shear rate for the 90 and 0 degree cases.

	
Figure 43: Average near-surface (0-400nm) strain rate for the different permeate rates.

6250	

6300	

6350	

6400	

6450	

6500	

6550	

-‐0.000025	 -‐0.00002	 -‐0.000015	 -‐0.00001	 -‐0.000005	 0	

Av
er
ag
e	
Sh
ea
r	
St
re
ss
	 (1
/s
)	

Permeate	 Rate	 	 (µm/s)	

Average	 Stres	 Rate	 (1/s)	 	

90	 Degrees	

0	 Degrees	

Base	

	 67	

Figure 44: 1nm above the surface of the membranes for the permeate cases from the jet flow cell.

Figure 45: 150nm above the surface of the membranes for the permeate cases from the jet flow
cell.
Bulk Cross Flow Results

Unlike the impinging jet cell, the cross flow cell had a particularly large recirculation at

the top of the domain inside the stir bar area (no stir bar actually present, so it is just a cavity for

one). However, it is certainly a much more complicated flow system and at higher Re values

that the impinging jet flow cell. However, they aren't as smooth and it looks like the flow near

the surface of the membrane is actually much lower than the impinging jet flow cell. Figures 46-

50 are various cross sections of the domain to describe what is going on.

4000#

5000#

6000#

7000#

8000#

9000#

10000#

11000#

12000#

13000#

0# 500# 1000# 1500# 2000# 2500# 3000# 3500# 4000# 4500# 5000#

Sh
ea
r&R

at
e&
(1
/s
)&

Length&Along&Flow&Cell&(nm)&

90#Degrees#

0#Degrees#

Base#

5000#

5500#

6000#

6500#

7000#

7500#

0# 500# 1000# 1500# 2000# 2500# 3000# 3500# 4000# 4500# 5000#

Sh
ea
r&R

at
e&
(1
/s
)&

Length&Along&Flow&Cell&(nm)&

90#Degrees#

0#Degrees#

Base#

	 68	

Figure 46: 3D shots of the simulated cross flow cell. The flat edge as mentioned is the symmetry
plane boundary. The second important feature is to see the location of the inlet and outlet. The
inlet is on the right while the outlet is on the left.

	 69	

Figure 47: in all pictures: the right is the inlet, the left is the outlet. In addition, this is a slice of
the flow cell in the center from entrance to exit. a) velocity magnitude b) velocity moving right
to left is positive. Notice the recirculation and the unsteady flow. c) Due to the fact this slice is
slightly off center, the into board direction isn't zero but it does help show the instabilities. d) the
vertical direction e) zoom in of the cavity to show the instabilities.

	 70	

Figure 48: Showing the instabilities. This is a sidewise cut that allows you to see the flow along
the circular cut. a) the horizontal component of velocity isn't stable as you see b) the forward is
pretty stable but it accelerates along the edges of the flow cell c) mixing is evident

	 71	

Figure 49: taking a cross section and looking at the velocity profiles along the lines. The letters
correspond to the graphs in figure 50.

	 72	

Figure 50: the velocity profiles along the lines from figure 49. Purple is velocity magnitude.
Red is perpendicular to the primary flow direction. Blue is the primary flow direction and is
along the y axis (entrance to exit). Green is the vertical direction. For all the graphs the
horizontal axis is height and the vertical axis is velocity.

	 73	

The cross flow filtration cell had several recirculation areas and in general parabolic flow,

although nowhere was it full developed and it was strongly irregular in the center where the stir

bar would have been. The cross flow was fit with a 3rd and 4th order polynomial going through

0 for each Re (Table 3). Those were then not used because they were too inaccurate near the

surface of the membrane. So instead best fits using the bottom to points forming a line were

used (Table 4). Two locations where initially examined (dead center of the cell) and center of

side. Eventually slice e from figure 49 was chosen to be the inlet boundary condition location.

The flow cell unfortunately shows that there is already a high degree of mixing in the cell and

that near-surface flow, while more stable, is not absolutely laminar over larger distances.

Table 3: The original R>.98 polynomial for the near the membrane side

Table 4: The eventually used linear fit from the bottom two points.
Nano Cross Flow Results

In this section we finally have direct experiment comparisons to simulations. Once again

we examine the simulations with regards to the shear rate, gradient of the shear rate and the non-

linearity parameter. Although we previously found no correlation with the shear rate, there was

the possibility of it matching with either pattern height or Reynolds number. Fist up is the

domain slices showing the shear rate for the 5 separate cases. Figure 51, 52, and 53 pair the high

and low simulations to emphasize visual distinctions between the pattern heights. There is a

Case Outer)Edge Center)
Case430 1e4(34.4352z^2+0.0089z+0) 3.35935e5*z^3+2399*z^2+0.03606*y+4.65e37
Case431 z^2*35.327e4+138.2z+2.213e36 z^3*39.508e7+4.545e4z^2+61.61z+0.0006061
Case432 x^2*38.37e4+208.2z39.819e37 2.591e11*z^435.789e8z^3+2.05e5x^2+107.5z+0.001356
Case433 z^2*31.164e5z^2+252.3z+5.218e36 z^3*36.968e8z^3+2.13e5z^2+195.32z+0.002248
Case434 z^2*31.566e5+270.6z+7.678e35 z^4*35.379e11)3)7.663e8*z^3)+229800*z^2+293.6*z+0.00335

Outer&Edge
Case430 81.4*z
Case431 137*z
Case432 207*z
Case433 251*z
Case434 270*z

	 74	

fairly big difference between Figure 51 and 52 in that the 90 degrees case has significant shear

rate over the crenel.

Figure 51: Re 120 90º Cases a) is the high pattern case b) is the low pattern case. They actually
did not have significantly different shear rate profiles.

	 75	

Figure 52: Re 120 0º Cases a) is the high pattern case b) is the low pattern case. They actually
did not have significantly different shear rate profiles.

	 76	

Figure 53: Re 120 for base case.

Figures 54 and 55 are complete summaries of the maximum values along given lines. By

tabulating the data like this I was able to observe the trends along different conditions. Seeing all

these conditions I was only able to conclude that the gradient of the shear rate best described the

angle of attack and the Reynolds' Number. However, in Figure 56 I was able to see that pattern

height is governed by the non-linearity term. Choosing those that fit the most accurately, I

assemble the comparisons with the experimental work done by Maruf.

	 77	

Figure 54: A summary of the cases from the High cases. Blue is 90º, Red is 0º, and Green is no
pattern. The horizontal axis is Reynolds' number while the vertical axes are the respective titles.
a) Shear Rate Step 11.5 b) Shear Rate Step 12.5, c) Gradient Shear Rate Step 11.5, d) Gradient
Shear Rate Step 12.5, e) Non Linearity Term Step 11.5, f) Non Linearity Term Step 12.5

	 78	

Figure 55: A summary of the cases from the Low cases. Blue is 90º, Red is 0º, and Green is no
pattern. The horizontal axis is Reynolds' number while the vertical axes are the respective titles.
a) Shear Rate Step 11.5 b) Shear Rate Step 12.5, c) Gradient Shear Rate Step 11.5, d) Gradient
Shear Rate Step 12.5, e) Non Linearity Term Step 11.5, f) Non Linearity Term Step 12.5

	 79	

Figure 56: A summary of the comparison between high and low patterns as a function of angle of
attack. a-b) shows the shear rate, c-d) shows the gradient of the shear rate, and e-f) show the non-
linearity term.

In addition to angle of attack, the pattern height and the Re were varied both during the

experiments and the simulations. A full set of simulation results summary can be seen in the

appendix. Figure 57 compares the experimental results from [4] with the simulation results from

our experiment. Our magnitude of our calculated strain rate transverse gradient over the Merlon

appears to correlate well with the observed trends in for lower fouling in regards to the angle of

attack as well as the cross flow velocity (Re). Meanwhile the nonlinearity parameter over the

crenel describes the effect from pattern height and angle of attack on fouling reduction.

	 80	

Figure 57) Side by side comparison of critical flux with the gradient of the shear rate and the
non-linearity parameter as a function of the same variables. d) 1 is 90 degrees, 2 is 0 degrees, 3
is unpatterned. (56a and 56c are from [4]).

	

	 81	

Chapter 4
Milk Experiments
Milk

There were two types of milk used: skim milk and dry milk. Dry milk was Kroger brand

dry milk purchased at Kings Super. Its official product title was "Instant Non-Fat Dry Milk:

fortified with vitamins A & D". It was used in a few experiments but there was a fundamental

problem. It would heavily fall out of solution during normal running procedures. The dry milk's

ingredient list on the box is the following: nonfat dry milk, Vitamin A, palmitate, Vitamin D3.

The dry milk grams ratio is 125mg sodium to 12g sugars to 8g proteins to 23g of weight. The

percentage of daily intake (DI) of vitamins and minerals is as follows: 30% DI value of calcium,

2%DI vitamin C, 10% DI vitamin A and 25% DI Vitamin D. The liquid milk was purchased at

Safeway and was Safeway brand fat free milk. Its ingredient list is: nonfat milk, Vitamin A,

palmitate, Vitamin D3. The liquid milk ratio is 135mg sodium, 13g carbohydrates of which 12g

are sugars, and 9g proteins. That is for 240mL of liquid milk. The vitamins and mineral ratio are

vitamin A 10%, calcium 30%, vitamin C 4%, and vitamin D 25%.

Liquid milk was used in almost all experiments. In addition, 0.2g of sodium azide was

added as an antimicrobial component for each L of overall solution. We used 4L of milk for our

experiment since it provided the biggest basin for minimal changes in composition as the water

and sugars were removed. Milk experiments were initially done with cold milk but the fouling

rate was extraordinarily high. Since industry performs their filtration at 48ºC and the bulk of

literature also filters at this rate due to the temperature's effect on the casein micelles we also

decided to perform our experiments at this temperature. In addition the same literature

recommended that after the milk reach 48ºC to wait for one hour keeping it at that temperature

	 82	

for the solution to reach a stable equilibrium. We follow this protocol in all experiments with hot

milk.

Membranes
There were two primary types of membranes used. The first is the Koch HFK328

membrane with a molecular weight cut off (MWCO) of 5kg/mol (kDal). The second one is a

PW membrane with a MWCO of 20kg/mol. The HFK328 is the membrane used in the milk

industry. Relevant to our protocols are its pH tolerance for cleaning, pressure range and

temperature range. Of those, only the pH tolerance is close to our cleaning protocols with a

tolerance for cleaning of 1.8 to 11pH. The remainder of details for the HFK328 membrane can

be found here.12

The patterned and pristine membranes are kept in the original storage bags that they were

purchased in. This solution is designed to keep them hydrated but I do not know what is in the

solution. For preparation of membranes for all experiments the membranes are first cut into the

appropriate shape and then soaked overnight in DI water to hydrate the membranes. In the

morning the membranes are switched to a solution that is 20% Isopropanol and 80% DI water

(18MΩ) and cooked in an oven for 30 minutes at 50ºC. To get the membranes were acquired as

rolls and so have a tendency even after the pretreatment to curl up. To rectify this long enough

to securely close the flow cell without leaking an ethanol spray bottle was used to flatten the

membrane (with ethanol, not the bottle itself).

Experimental Set Up
Our experimental setup was designed to run in triplicate. From the CFD section you have

an idea of what the flow cell looked like and the heavily mixed flow that was inside as a result of

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
12 http://www.kochmembrane.com/PDFs/Data-Sheets/Spiral/UF/hfk-328-food-dairy-
datasheet.aspx

	 83	

the geometry. It consists of a parallel set of plates with three compartments for membranes

operating in a traditional filtration system with ports for flow feed, retentate and permeate. The

flow feed begins from one pump and splits into three new channels using a cross pipe fixture.

From the retentate exits come half of a differential pressure transducer and then a backpressure

regulator, which makes the pressure above the membrane with the other side held at atmospheric

pressure. On the permeate side comes the other half of the differential pressure transducer. Then

the retentate leads to 3 Sartorius balances. Each permeate has its own balance. Next to the pump

is the hot water bath that keeps the feed solution warm.

The Sartorius balances are digital balances with a ±0.1g tolerance. A program called

Winwedge, which records the weight for each scale in a text file at a repeated interval, controls

the scales. A scale that we use for weighing the ingredients and for the milk when requiring a

high time resolution has a tolerance of ±0.0001g. Our hot water bath is a Cole Parmer 12107-70.

It is a several gallon container with a digital temperature control. We use Ping-Pong balls to help

insulate the bath when the top is open in order to put the flasks in for heating. A wide variety of

pumps were used throughout this experiment. In the end a pump capable of providing 0.1L/s to

each of the lines was used while still allowing the pressure to get up to 80psi under those cross

flow conditions. For other people attempting to duplicate the work, I would recommend a

different pump. One that could reach cross flow velocities of 3L/s. For our pump we attempted

to use a pulsation dampener but did not use one in our experiments. Labview was used to record

the data from the differential pressure transducers.

Types of Filtration Experiments
There are two types of filtration experiments: constant TMP and constant flux. Constant

flux involves a constant large pressure up top above the membrane and the pressure varies below

	 84	

the membrane to create a TMP that provides the correct amount of flux. The fixed amount of

flux is controlled by a pump on the permeate side that pumps permeate out at a fixed rate

controlled by the scientist. Typically that pressure build up is due to a back up of flux. Constant

pressure involves keeping a fixed pressure above the membrane while exposing the permeate

feed to containers that are exposed to atmospheric pressure. This keeps the pressure across the

membrane constant while allowing the flux to vary. Our lab uses both types of experiments.

However, due to the small size of our membranes (our flow cell had a membrane area of

9.6cm2), constant flux experiments are more difficult to do. As such we chose for most of our

experiments to be constant pressure.

The next break down in types of experiment is a stepping method or a constant value

method. For example, with constant flux you can use a constant flux value and record and run

for a given period of time until the pressure stabilizes. Then you raise the flux rate and wait for

the pressure to stabilize. The flux is stepped up and down. The problem with this type of

experiment is that milk is a continuously fouling substance at all conditions. This means a true

equilibrium is never achieved and that fouling is a function of time. In a simpler solution,

fouling is a function of TMP, cross flow and flux. That is why our constant run conditions are

used instead. In this type of experiment you keep the pressure constant and watch as the flux

varies as a function of time. This provides a clearer image on the time-based nature of fouling

along with ideas for pseudo equilibrium states.

Experimental procedures
I will run through the broad steps of the experiment before tackling the individual steps in

greater detail. The experiment begins with the membrane preparation. Without proper hydration

of the membranes than there will be little to no flux through the membrane. After the

	 85	

membranes are securely in place with no leaks and with permeate abilities in the filtration system

then we begin set ups for recording. First stage is the hot water compaction. Second stage is the

first hot milk filtration. Third stage is cleaning. Fourth stage is DI water recovery. Fifth stage is

second hot milk filtration. Sixth stage is cleaning. Seventh stage is second DI water recovery.

Eighth stage is third hot milk filtration. After the 8th stage we remove one membrane for

examination under SEM and for testing. Then we do a final clean stage. The two cleaned

membranes are also stored for examination under SEM and for testing. Then a final cleaning of

the whole system takes place to make sure no foulants remain in the flow system.

The hot water compaction begins by heating water up to 48ºC in a hot water bath set to

50ºC. Typically I will heat them up together and so it takes around 1 hour to do so. After the

water is at the correct temperature, the scales are turned on and the Windwedge program is

pulled up for each scale along with a text file to record the data. At this point the Labview

program that records the differential transducer data is turned on and set to begin recording.

Then the scales are set to start recording. Next the pump is turned on and set in our case to

60Hz, which provided a stable flow to the system at our desired cross flow rate. Lastly fine tune

adjustments made to the pressure through the use of the backpressure regulators are completed.

The desired TMP pressure will be equal to the highest TMP that is planned to be used in the

experiments. For us, the desired TMP was 40psi. The hot water compaction stage ran for two

hours for us to level out, but should be run until there is no change in pure water permeance with

time. In the compaction stage the scales record the weight of permeate every minute and the

Labview records the pressure every 5 seconds.

The hot milk filtrations are the most time consuming stages of the experimental

procedure. Under our systems the milk takes two hours to prep and the filtration lasts four hours

	 86	

and then cleaning must be done before allowing the milk to settle. So before starting the milk

has to be heated to 48ºC and held at that temperature for one hour before filtration can begin.

During this time, you should weigh and label six small vials to be used in the permeate collection

during the first 20 minutes of the milk filtration. It is also helpful during this time to prepare the

base for cleaning or if you are doing other cleaning protocols the solutions needed. Unlike water

permeation, due to the small size of our membranes our time scale here will be different.

Labview will still select pressure data every five seconds, but the weight collection time is

different. Due to our membranes our collection time set for the digital scales was 5 to 10

minutes depending upon the permeate rate of the first 20 minutes of collection that were

recorded by hand. During the first 20 minutes a different scale that was significantly more

sensitive was used (the ±0.0001g). In order to measure the three different permeates we used

two sets of three small vials. Before the experiment begins each tube is in a vial marked 1, 2, or

3 in the front row. When the pump is turned on a timer begins, set for 1 minute. After a minute

the tubing is switched from the front row to the back row (approximately 2-3 seconds time).

Then the sensitive scale issued to record the weight of those vials and then place them back in

the front row. At the second minute since the experiment began the tubes are switched back to

the first row of vials and the second row is weighed. This process repeats until twenty minutes

have passed. This hand monitoring has a two-fold purpose. The first is as mentioned, in order to

figure out the time scale needed for the less sensitive scale to be large enough. The second is

because the most fouling changes occur in the first 5 to 10 minutes due to a different fouling

mechanism and we wanted to be able to resolve that feature. After the first 20 minutes are done it

can be switched the digital system and left alone.

	 87	

The cleaning phase used to be longer and more tedious involving and acid and base

cleaning step; however, I already covered in the background why that is not done and why the

new cleaning procedures only involved water flushes and hot base cleaning. The first step of

cleaning is a purging the milk from the pump chamber (only for pumps that use chambers and

not tubing) and also from the flow cell. This takes roughly 8L of DI water for our pump system

combination but will depend upon your system and pump specifics. Next, 4L of DI water

(18MΩ) is heated to 48ºC and run through the system for 20 minutes. The breakdown for that

time consists of 5 minute run, 2 minute sit, 5 minute run, 4 minute sit, 1 minute run. Then the

base which, is composed of NaOH in a pH between 10 and 11 (I aim for 10.5), has been heated

to 48ºC is then run through the system following the same run instructions as for water. After

this you must be careful, because you must collect the entire base to neutralize. When purging

the base, the retentate must be collected in a large flask for neutralization. For our system this

required a 4L container to catch the base and 4L water reservoir. After that, I run the water on

recycle for 20 minutes following the same protocols. I then neutralize the base feed, and the

purge based. Once the water is done, I test the pH level. If neutral then it is fine. If it is basic I

neutralize it and do another water flush and recycle system. For records, nitric acid was used for

neutralizing the base.

The last type of phase is a collection of the recovered pure water permeance again.

Depending upon goals, you can run a pure water permeance before cleaning, but we avoid doing

that because of the risk of further compacting the gel layer, but also because there are the side

effects of cleaning it while running which will lead to unstable results during filtration. As such,

we run the permeate after the cleaning. This can be done directly after the cleaning or in the

	 88	

morning before the next hot milk filtration while waiting for compaction to occur again. This

segment occurs just as in the initial compaction.

Preliminary Milk Experiments
I am going to start off with HFK328 unpatterned membrane experiments that we

performed. These were performed with room temperature liquid milk. This one was done at

constant flux system of experiments (Figure 58). During this experiment our pump was a tube

based pump whose cross flow rate was around 0.01L/s and a maximum psi of 40. What this

means is that in Figure 58 that both 0.2mL/min and 0.1mL/min were too high compared to the

actual production of permeate at a TMP of 40 psi. This is why we stopped doing constant flux

based experiments although we eventually did get a new pump head and new tubing to do even

smaller flow rates. We, however, decided to finish our current line of inquiry at the time before

pursuing our old inquiry.

Figure 58: Constant flux experiment done with pure Safeway milk at store concentration at room
temperature using our first pump that had a maximum pressure of 40psi. Done on HFK328
membranes.

	 89	

The next set of experiments was also done on HFK with cold milk, but used a newer

pump that performed only slightly better. Here I measured a different set of parameters using a

constant pressure system. It was always disheartening from the beginning that our membranes

never did operate within their established parameters (Figure 59). But we endured and I gathered

some more data. It was figures 60, 61 and most importantly 62 that sealed the deal on using hot

water and hot milk for flux experiments. Figure 60's flux vs. TMP step tells us some very

interesting behavior. Because an ideal fluid would not have a decrease in flux with an increase

in pressure like we observed. Part of this may be due to continuous fouling, but most likely it

was due to the cold temperature and the extreme fouling that would take place. The gel

formation layer would get near the size of the whole domain. Figure 61 shows the slight

deviation in permeance linearity showing a critical fouling point was reached, although

permeance is a constant as a function of pressure. Figure 62 shows that the water permeance is

much more effective when used warm and contributed greatly to our decision to do warm water

and milk experiments.

	 90	

Figure 59: Pure water permeance done at room temperature and 40 psi. The expected min and
max are the statistics from the membrane for using room temp (21 ºC) water and well
independent of pressure because permeance is supposed to be independent of pressure. The
figure illustrates how bad the permeate really was with room temperature fluids with these
membranes.

Figure 60: For this experiment I stepped up pressure and took the lowest flux after 30 minutes
and used that as the point. Thus making a flux vs. TMP graph. Given the 30-minute run times it
was unable to go to completion but did provide some details about complex fluids. The order of
the flow was top left and then to the right.

Figure 61:Permeance and Pressure from the same experiment in figure 59

	 91	

Figure 62: Using a combination of hot water and hot milk to test recovery rates and the effect of
heated milk on fouling.

Moving onto PW membrane experiments we get an important set of results concerning

permeance recovery. In fact it is our only complete set of data involving a patterned and non-

patterned membrane. The downside is that we used acid cleaning so the results are less

conclusive than they could have been given the literature I already cited. Table 5 summarizes

the results from the completed experiments. Given that there is over 100% flux recovery I don't

view the results as to reliable.

	 92	

Table 5: The values were inconclusive since recovery is increased due to the acid step in
proportion to the amount that it is fouled.

What I feel is more meaningful is this dry milk filtration experiment (figure 63). This

experiment ran overnight so we were not there during the dramatic drop. However, when we

came in during the morning, the majority of the milk powder had fallen out of solution. We did

not have a working waterproof stir bar. As such we went back to using wet milk. I was unable

to determine the % of dry milk that fell out of solution. However, I find the result that we had a

relatively slow decrease for several hours before it began to get worse at a significantly

increasing rate. I think it would be worthwhile trying to study and determine what happened here

and why would even a decrease in concentration cause the problem. My hypothesis is that while

milk fell out of solution in the flask in the 48ºC bath that it also fell out onto the membrane and

throughout the flow cell system. And this build up led to the sudden drop in permeance.

Figure 63: The dry milk filtration experiment. There was a 4% protein concentration and the
milk solution was heated to 48ºC and kept there for an hour before filtration as the protocol

	 93	

dictates. The color change was due to a recording error where the recording file missed a point
due to the mouse being elsewhere there on the text. As a result the colors switched.

The experiment from figure 64 is a duplicate experiment of the experiment that gave us

figure 62. The only difference is that the experiment for figure 64 used wet milk. There were

two main differences; the first is that the standard deviation for the wet milk is significantly

lower than the deviation for dry milk. This deviation might have to do with the back flow

regulators since eyes adjust those. But it could also just be standard variation. Next is the

duration of run. Further work would need to do an overnight experiment to see if wet milk had

the same drop.

Figure 64: This is a diluted down concentration of wet milk to match the 4% protein
concentration from the dry milk experiment. It was run under the same conditions.

	 94	

Chapter 5
Conclusion

The CFD experiments provide insight into the fluid mechanical workings of the fouling

reduction due to the implementation of submicron scale patterns on membrane surfaces. Findings

indicate that a combination of the fluid flow over the merlon and crenel contributes to the fouling

reduction and that different fluid dynamic effects are behind each domain. Over the crenel

Ingber's modified shear induced particle migration model matches the experimental and

simulation results [40]. Over the merlon Eckstein's work is the closest but there is a fundamental

lack of models where the magnitude of the gradient of the shear rate plays a roll that is not

neglected [37]. Future work would include the creation of such a model to better describe the

fluid processes going on. Meanwhile, the bulk of literature focuses on the shear rate's role in the

fouling process but our simulation models return results indicating that it doesn't play a

significant role in fouling reductions with patterns which is novel and significant in its own right.

Furthermore, different forces and models control the different experimental phenomena (angle of

attack, pattern height, cross flow velocity (Re), and permeate rate). Permeate rate was shown

that while linear in effect, the change it induces is so small that it is negligible in effect without

particles being introduced into the system for the purpose of balancing the back mass diffusion

coefficient. Cross flow velocity was shown to have no correlation with respect to the non

linearity term but follows the magnitude of the shear gradient fairly well. Pattern height fails to

be described by shear rate or its gradient alone, but matches Ingber's non-linearity factor fairly

well. Angle of attack is described both by the non-linearity factor and the gradient of the shear

rate. These results provide a pathway for optimization of patterned membrane design, as there is

now shown to be a derived simulation result that can, perhaps, be modeled to search for a

maximum fouling reduction. Further experimental and simulation work can focus on fine-tuning

	 95	

the relationship and identifying if there are any other fluid dynamic quantities that will affect

fouling mitigation. Additionally, this work also stimulates the development of more ambitious

hybrid modeling of the multi-scale, mass transfer in the near-surface domain of the membrane.

Unfortunately our conclusions regarding the milk are far from conclusive. To many

experiments under different conditions made it difficult to draw anything from the results. In

addition our one full set of experiments while complete and nothing went wrong, its results were

brought into question because of the acid cleaning step, which can explain the recovery reaching

above 100%. What we did validate is that there is a time dependent fouling feature and that

something we might be able to compare with future experiments is the onset of that significant

decrease in flux.

That concludes my conclusion on my last three and a half years of research. I feel that so

much of my time was dedicated to trial and error, especially regarding the CFD work because

there was no parallel basis from which to drawn nor guidelines from which to work.

Furthermore, exploring new territory where none had gone before proved to be a challenge for

quantifying results but at the same time, the very things that made it inefficient were also the

largest causes for growing and why it was real research and not just another lab experiment. In

regards to the milk, because of our limited supply of patterned membranes we were overly

cautious in our experimental use of them and as such only had the one completed sets of results

as we kept changing the laboratory procedure as we kept improving the methods to try to get

more accurate results and more conclusive evidence. I believe our current experimental model is

sufficient to the task and only regret the lack of time to finish the experiments of the patterned

HFK 328 membrane.

	

	 96	

Works Cited
	
1.	 Bodzek,	 M.K.,	 Krystyna,	 Comparison	 of	 various	 membrane	 types	 and	 module	

configurations	 in	 the	 treatment	 of	 natural	 water	 by	 means	 of	 low-‐pressure	 membrane	
methods.	 Separation	 and	 Purification	 Technology,	 1998.	 14(1-‐3):	 p.	 69-‐78.	

	
2.	 Brans,	 G.,	 et	 al.,	 Membrane	 fractionation	 of	 milk:	 state	 of	 the	 art	 and	 challenges.	

Journal	 of	 Membrane	 Science,	 2004.	 243(1-‐2):	 p.	 263-‐272.	
	
3.	 Maruf,	 S.H.,	 et	 al.,	 Influence	 of	 sub-‐micron	 surface	 patterns	 on	 the	 deposition	 of	 model	

proteins	 during	 active	 filtration.	 Journal	 of	 Membrane	 Science,	 2013.	 444:	 p.	 420-‐
428.	

	
4.	 Maruf,	 S.H.,	 et	 al.,	 Critical	 flux	 of	 surface-‐patterned	 ultrafiltration	 membranes	 during	

cross-‐flow	 filtration	 of	 colloidal	 particles.	 Journal	 of	 Membrane	 Science,	 2014.	 471:	 p.	
65-‐71.	

	
5.	 Bacchin,	 P.,	 P.	 Aimar,	 and	 R.	 Field,	 Critical	 and	 sustainable	 fluxes:	 Theory,	 experiments	

and	 applications.	 Journal	 of	 Membrane	 Science,	 2006.	 281(1-‐2):	 p.	 42-‐69.	
	
6.	 Cohen,	 R.D.P.,	 R.	 F.,	 Colloidal	 Fouling	 of	 Reverse	 Osmosis	 Membranes.	 Journal	 of	

Colloid	 and	 Interface	 Science,	 1985.	 114(1):	 p.	 194-‐207.	
	
7.	 Belfort,	 G.D.,	 Robert;	 	 Zydney,	 Andrew,	 The	 behavior	 of	 suspensions	 and	

macromolecular	 solutions	 in	 crossflow	 microfiltration.	 1994.	
	
8.	 Behrens,	 T.,	 OpenFoam's	 basic	 solvers	 for	 linear	 systems	 of	 equations.	 February	 18,	

2009.	
	
9.	 Jimenezlopez,	 A.,	 et	 al.,	 Role	 of	 milk	 constituents	 on	 critical	 conditions	 and	 deposit	

structure	 in	 skimmilk	 microfiltration	 (0.1μm).	 Separation	 and	 Purification	
Technology,	 2008.	 61(1):	 p.	 33-‐43.	

	
10.	 Wemsy	 Diagne,	 N.,	 M.	 Rabiller-‐Baudry,	 and	 L.	 Paugam,	 On	 the	 actual	 cleanability	 of	

polyethersulfone	 membrane	 fouled	 by	 proteins	 at	 critical	 or	 limiting	 flux.	 Journal	 of	
Membrane	 Science,	 2013.	 425-‐426:	 p.	 40-‐47.	

	
11.	 Berg,	 T.H.A.,	 et	 al.,	 Investigation	 of	 Consecutive	 Fouling	 and	 Cleaning	 Cycles	 of	

Ultrafiltration	 Membranes	 Used	 for	 Whey	 Processing.	 International	 Journal	 of	 Food	
Engineering,	 2014.	 10(3):	 p.	 367-‐381.	

	
12.	 Youravong,	 W.,	 M.J.	 Lewis,	 and	 A.S.	 Grandison,	 Critical	 Flux	 in	 Ultrafiltration	 of	

Skimmed	 Milk.	 Food	 and	 Bioproducts	 Processing,	 2003.	 81(4):	 p.	 303-‐308.	

	 97	

	
13.	 James,	 B.J.,	 Y.	 Jing,	 and	 X.	 Dong	 Chen,	 Membrane	 fouling	 during	 filtration	 of	 milk––a	

microstructural	 study.	 Journal	 of	 Food	 Engineering,	 2003.	 60(4):	 p.	 431-‐437.	
	
14.	 Metsämuuronen,	 S.	 and	 M.	 Nyström,	 Critical	 flux	 in	 cross-‐flow	 ultrafiltration	 of	

protein	 solutions.	 Desalination,	 2005.	 175(1):	 p.	 37-‐47.	
	
15.	 Rabiller-‐Baudry,	 M.,	 et	 al.,	 Limiting	 flux	 in	 skimmed	 milk	 ultrafiltration:	 impact	 of	

electrostatic	 repulsion	 due	 to	 casein	 micelles.	 Desalination,	 2005.	 175(1):	 p.	 49-‐59.	
	
16.	 Paugam,	 L.,	 et	 al.,	 Cleaning	 of	 skim	 milk	 PES	 ultrafiltration	 membrane:	 On	 the	 real	

effect	 of	 nitric	 acid	 step.	 Journal	 of	 Membrane	 Science,	 2013.	 428:	 p.	 275-‐280.	
	
17.	 Maruf,	 S.H.,	 et	 al.,	 Use	 of	 nanoimprinted	 surface	 patterns	 to	 mitigate	 colloidal	

deposition	 on	 ultrafiltration	 membranes.	 Journal	 of	 Membrane	 Science,	 2013.	 428:	 p.	
598-‐607.	

	
18.	 Pan,	 F.A.,	 Andreas,	 Steady	 Flow	 in	 Rectangular	 Cavities.	 Journal	 of	 Fluid	 Mechanics,	

1967.	 28(4):	 p.	 643-‐655.	
	
19.	 Bessonov,	 A.,	 et	 al.,	 Design	 of	 Patterned	 Surfaces	 with	 Selective	 Wetting	 Using	

Nanoimprint	 Lithography.	 Macromolecular	 Chemistry	 and	 Physics,	 2010.	 211(24):	 p.	
2636-‐2641.	

	
20.	 Won,	 Y.-‐J.,	 et	 al.,	 Factors	 affecting	 pattern	 fidelity	 and	 performance	 of	 a	 patterned	

membrane.	 Journal	 of	 Membrane	 Science,	 2014.	 462:	 p.	 1-‐8.	
	
21.	 Maruf,	 S.H.,	 et	 al.,	 Influence	 of	 nanoimprint	 lithography	 on	 membrane	 structure	 and	

performance.	 Polymer,	 2015.	 69:	 p.	 129-‐137.	
	
22.	 Maruf,	 S.H.,	 et	 al.,	 Fabrication	 and	 characterization	 of	 a	 surface-‐patterned	 thin	 film	

composite	 membrane.	 Journal	 of	 Membrane	 Science,	 2014.	 452:	 p.	 11-‐19.	
	
23.	 Howe,	 K.C.,	 Mark,	 Fouling	 of	 Microfiltration	 and	 Ultrafiltration	 Membranes	 by	 Natural	

Waters.	 Environmental	 Science	 &	 Technology,	 2002.	 36(16):	 p.	 3571-‐3576.	
	
24.	 Ko,	 M.P.,	 John,	 Determination	 of	 Osmotic	 Pressure	 and	 Fouling	 Resistances	 and	 their	

Effects	 on	 Performance	 of	 Ultrafiltration	 Membranes.	 Journal	 of	 Membrane	 Science,	
1992.	 74:	 p.	 141-‐157.	

	
25.	 Le-‐Clech,	 P.,	 V.	 Chen,	 and	 T.A.G.	 Fane,	 Fouling	 in	 membrane	 bioreactors	 used	 in	

wastewater	 treatment.	 Journal	 of	 Membrane	 Science,	 2006.	 284(1-‐2):	 p.	 17-‐53.	
	
26.	 Rana,	 D.M.,	 T.,	 Surface	 Modifications	 for	 antifouling	 membranes.	 Chemical	 Reviews,	

2010.	 110(4):	 p.	 2448-‐2471.	
	

	 98	

27.	 Choo,	 K.-‐H.L.,	 Chung-‐Hak,	 Membrane	 Fouling	 Mechanisms	 in	 the	 Membrane	 Coupled	
Anaerobic	 Bioreactor.	 1996.	 30.	

	
28.	 Zhu,	 X.E.,	 Menachem,	 Colloidal	 Fouling	 of	 Reverse	 Osmosis	 Membranes:	 Measurements	

and	 Fouling	 Mechanisms.	 Environmental	 Science	 &	 Technology,	 1997.	 31:	 p.	 3654-‐
3662.	

	
29.	 van	 der	 Ber,	 G.B.S.,	 C	 A,	 Diffusional	 phenomena	 in	 membrane	 separation	 processes.	

Journal	 of	 Membrane	 Science,	 1992.	 73:	 p.	 103-‐118.	
	
30.	 Luo,	 J.,	 et	 al.,	 Threshold	 flux	 for	 shear-‐enhanced	 nanofiltration:	 Experimental	

observation	 in	 dairy	 wastewater	 treatment.	 Journal	 of	 Membrane	 Science,	 2012.	 409-‐
410:	 p.	 276-‐284.	

	
31.	 Choi,	 D.-‐C.,	 et	 al.,	 Three-‐dimensional	 hydraulic	 modeling	 of	 particle	 deposition	 on	 the	

patterned	 isopore	 membrane	 in	 crossflow	 microfiltration.	 Journal	 of	 Membrane	
Science,	 2015.	 492:	 p.	 156-‐163.	

	
32.	 Jung,	 S.Y.,	 et	 al.,	 Particle	 deposition	 on	 the	 patterned	 membrane	 surface:	 Simulation	

and	 experiments.	 Desalination,	 2015.	 370:	 p.	 17-‐24.	
	
33.	 Lee,	 Y.K.,	 et	 al.,	 Flow	 analysis	 and	 fouling	 on	 the	 patterned	 membrane	 surface.	 Journal	

of	 Membrane	 Science,	 2013.	 427:	 p.	 320-‐325.	
	
34.	 Jamshidi	 Gohari,	 R.,	 et	 al.,	 Effect	 of	 surface	 pattern	 formation	 on	 membrane	 fouling	

and	 its	 control	 in	 phase	 inversion	 process.	 Journal	 of	 Membrane	 Science,	 2013.	 446:	 p.	
326-‐331.	

	
35.	 T.	 Reddy,	 S.,	 Surface	 micropattern	 resists	 bacterial	 contamination	 transferred	 by	

healthcare	 practitioners.	 Journal	 of	 Microbiology	 &	 Experimentation,	 2014.	 1(5).	
	
36.	 Won,	 Y.J.,	 et	 al.,	 Preparation	 and	 application	 of	 patterned	 membranes	 for	 wastewater	

treatment.	 Environ	 Sci	 Technol,	 2012.	 46(20):	 p.	 11021-‐7.	
	
37.	 Eckstein,	 E.B.,	 Douglas;	 Shapiro,Ascher	 Self-‐diffusion	 of	 particles	 in	 shear	 flow	 of	 a	

suspension.	 Journal	 of	 Fluid	 Mechanics,	 1977.	 79:	 p.	 191-‐208.	
	
38.	 B.	 P.	 Ho,	 L.G.L.,	 Inertial	 migration	 of	 rigid	 spheres	 in	 two-‐dimensional	 unidirectional	

flow.	 Journal	 of	 Fluid	 Mechanics,	 1974.	 65:	 p.	 365-‐400.	
	
39.	 Membrane	 Handbook.	 Vol.	 1.	 2001.	
	
40.	 Ingber,	 M.S.,	 et	 al.,	 An	 improved	 constitutive	 model	 for	 concentrated	 suspensions	

accounting	 for	 shear-‐induced	 particle	 migration	 rate	 dependence	 on	 particle	 radius.	
International	 Journal	 of	 Multiphase	 Flow,	 2009.	 35(3):	 p.	 270-‐276.	

	

	 99	

41.	 Ingber,	 M.S.,	 et	 al.,	 The	 analysis	 of	 self-‐diffusion	 and	 migration	 of	 rough	 spheres	 in	
nonlinear	 shear	 flow	 using	 a	 traction-‐corrected	 boundary	 element	 method.	 Journal	 of	
Fluid	 Mechanics,	 2008.	 598.	

	
42.	 Tiwari,	 P.,	 S.P.	 Antal,	 and	 M.Z.	 Podowski,	 Modeling	 shear-‐induced	 diffusion	 force	 in	

particulate	 flows.	 Computers	 &	 Fluids,	 2009.	 38(4):	 p.	 727-‐737.	
	
43.	 Rusconi,	 R.	 and	 H.A.	 Stone,	 Shear-‐Induced	 Diffusion	 of	 Platelike	 Particles	 in	

Microchannels.	 Physical	 Review	 Letters,	 2008.	 101(25).	
	
44.	 Cosden,	 I.A.	 and	 J.R.	 Lukes,	 A	 hybrid	 atomistic–continuum	 model	 for	 fluid	 flow	 using	

LAMMPS	 and	 OpenFOAM.	 Computer	 Physics	 Communications,	 2013.	 184(8):	 p.	
1958-‐1965.	

	
	
	 	

	 100	

A: Flow Cell Write Up and Appendix
Abstract

The flow cell is designed to study the effects of energy dissipation from nano-imprinted

(NI) membranes through pressure drop. The second iteration of the design will incorporate

constant permeate and constant trans membrane pressure (TMP) experiment capabilities to study

the fouling and cleaning in greater detail rather than studying only fluid flow. The importance of

the first iteration is to validate the simulation model software that will be used to model the multi

scale fluid flow over the NI membranes. The key feature is the ability to place nano-imprinted

tiles in with different patterns and orientations to gather experimental data on the effect of the

patterned roughness and its geometry on both the nano scale and the bulk flow. The principal

variables controlled in the flow cell experiments are: channel height, inlet velocity/mass flow,

and imprinted tile patterns. Concerns that influenced the development of the flow cell are: cost,

pressure, pressure drop, sensitivity and measuring pressure drop, flow development, lab space

constrains, and reasonability to simulate domain.

Flow Cell Design Parameters
Several constraints are relatively simple restrictions on design. The most challenging and

complex restraints are computational domain size, sensitivity and measuring pressure drop, and

flow development. Of these, flow development proves to be less consequential and undoable due

to some of the simple constraints. The simplest constraint, lab space, and limits our flow design

to not much more than a foot long.

To meet the first design criteria the flow cell needs to demonstrate the accuracy of the

simulations. To do so it must be able to distinguish the difference in pressure drop between a

patterned and unpatented surface. The longer the flow cell the larger this difference will be.

However, the longer the domain the more computer resources are required. Computational

	 101	

resources are limited. As such we want to minimize the distance needed using the best pressure

sensors we can.

 The moody chart connects pressure drop (through a friction factor), Reynolds number,

and relative roughness of pipe. The relative roughness is based on random roughness and not

periodic roughness. As such we specifically don't know how periodic will change the results one

will presume that we need sensitivity a few orders smaller than the pressure drop one would

achieve with normal roughness. The smallest pressure drop will occur at the lower end of the

Reynolds number and at the smaller channel height. The transition region between laminar and

turbulent region is of interest, but will not be examined in the initial work. In particular, whether

the transition region between laminar and turbulent shifts going from random roughness to

periodic roughness is of interest. Before starting, a few terms need to be defined: hydraulic

diameter, Reynolds number, friction factor and relative pipe roughness. Hydraulic diameter is

the ratio of the area over the perimeter of an object. For a circle it comes out simply to be the

inner diameter of the pipe. In slit flow it can be simplified to DH = 4 × Area
Perimeter

= 2hw
h +w

= 2h

where h<<w that applies to slit flow. The Reynolds number is Re = vDH

υ
= 2vh

υ
 and becomes a

function of height and velocity. The relative roughness factor in the moody plot is specifically

for round pipes. However, since the width is much greater than the height, for the energy loss

due to roughness the distance in the vertical (shorter) dimension will play the primary role.

Thus, the relative roughness factor will be defined as the root mean square (RMS) over the

height of the channel RR =
ε
h

. Root mean square is the square root of the sum of squares of the

differences in height above or below the mean height of the bottom over the total number of

	 102	

items summed. So in our case with regular patterns the RMS is half the pattern height or

RMS = 1
n
x1
2 + x2

2 + ...+ xn
2() = 1

2
(55nm)2 + (−55nm)2() = 55nm . The height of the domain will

vary from 1mm to 10 mm. Thus the relative roughness factor will vary from 5.5e-5 to 5.5e-6.

Since we are in the laminar region, we don't need the roughness factor yet and it will be

applicable once we move into the transition region. In the laminar region the friction factor is

proportional only to the Reynolds number fD = 64
Re

. The friction factor (fD) is defined

fD = 2DH

ρv2L
Δp . We are interested in the pressure drop per unit length so Δp

L
= fDρ

v2

2DH

.

Substituting in the terms we desire we arrive at Δp
L

= 4 ρυ
2 Re
h3

 where ρ is density

(1000kg/m^3), υ is kinematic viscosity (1e-6 m2/s), h is the height (0.001 m to 0.01 m) and Re

the Reynolds number (varied from 1 to 2500).

Reynold's*Number Height*1:*0.001m Height*2:*0.01m
1 4.00E+00 4.00E=03
10 4.00E+01 4.00E=02

100 4.00E+02 4.00E=01
1000 4.00E+03 4.00E+00
2500 1.00E+04 1.00E+01

Pressure*Drop*Per*Unit*Length*ΔP/L*(Pa/m)
Table*1:*Pressure*Drop*per*Unit*Length

Reynold's*Number Height*1:*0.001m Height*2:*0.01m
1 0.90680 0.00091
10 9.06800 0.00907

100 90.68000 0.09068
1000 906.80000 0.90680
2500 2267.00000 2.26700

Pressure*Drop*(Pa)
Table*2:*Pressure*Drop*over*10.5*inches

	 103	

Right now as part of saving money, we are using a pump that the lab already posses. It's

Reynolds’s number range for our cell is from 800 to 2000. This gives us a pressure drop of 725

Pa at Re= 800 and a pressure drop of 1800 Pa at Re=2000 for the default 1mm height.

 Unfortunately the 10mm height pressure drop is too small to measure and differentiate

between patterned and pristine surfaces with conventional differential pressures apparatuses. As

such the height selection will be re-evaluated after the technological limitations of differential

pressure transducers is obtained. The initial choice was Honeywell sensing differential pressure

(digikey part number HSCMRRN001PDAA3-ND) whose uncertainty is ±17 Pa (.25%ffs of

1psi). This part is fine for only the 1mm height and really only useful above a Re of 1000. As

such additional parts need to be ascertained. There is another part that is currently not stocked

and so requires a large minimum order (digikey part number DC010NDR4-ND) that has a range

of 0 to 2480 Pa with an uncertainty of ±1.24 Pa (.05%ffs of 0.36 psi). This one covers the whole

initial planned range but won't be able to cover the transition region. Its uncertainty is an order

10 better but minimum purchase quantity is 30, so unless it is restocked another supplier needs to

be found.

 Another sensitive differential pressure device is (digikey part number DC2R5BDR5-ND)

which spans only 0 to 250 Pa, but has an uncertainty of ±0.125 Pa. This one would be most

useful for dealing with the third proposed height of 0.003m as well as most of the second height,

but could not be used at all to measure the first height.

	 104	

Reynold's*Number Height*1:*0.001m Height*2:*0.002m Height*3:*0.003m
1 0.90680 0.11335 0.03359
10 9.06800 1.13350 0.33585
100 90.68000 11.33500 3.35852
800 725.44000 90.68000 26.86815
1000 906.80000 113.35000 33.58519
2500 2267.00000 283.37500 83.96296

Pressure*Drop*(Pa)
Table*3:*Pressure*Drop*over*10.5*inches

 Both the second and third differential pressure transducers are three times as expensive

for an individual unit and are not currently stocked requiring a minimum order of 30 (individual

price for second and third are $113.70 and $137.56 respectively compared to $47.30 of the first

one). But using these three pressure transducers the pressure drops across the three heights in

Table 3 can be ascertained with maximum precision to differentiate between patterned and

pristine membranes and tiles.

 The maximum pressure measured would be well below metal tolerance levels at 15.1 psi

(.4 psi above atmospheric pressure). That is until we add a pressure back regulator and are

working on the membrane experiments. However, the membrane permeate experiments will not

be conducted with this model of the device so it is not a primary concern. The current pressure

used in trans membrane filtrations is 50 psi for top pressure.

Using a pump we have access to Reynolds’s numbers of 800 to 2000 at various

increments. However, this pump tends to leak graphene into the fluid and so we have two filters

that will separate the flow. The first filter is a 5-micron filter and the second filter is a 0.5-

micron filter. The flow rate needed for these filters is 10L/min. Another option is that the

carbon based O-ring simply needs to be replaced. The company is readily available to replace

the O-ring according to laboratory postdoc.

	 105	

CFD Size Limitations
Initially the goal was to use a hybrid molecular dynamics (MD) and computation fluid

dynamics (CFD) simulation to reduce CPU hours required to simulate the domain. The initial

plan involved using hybrid code [44]. Their work showed that their hybrid system was efficient

at operating at a domain size that was at the largest 12.7nm long and 88.9nm high. This took 140

CPU hours. Unfortunately that domain is smaller than one imprint. To scale our problem we

shall simulate 5 full repeatable steps, and use only the time it takes for fluid to pass through them

as the residence time the simulation needs to run for convergence. In Cosden's paper they ran to

21 residence times. In addition, we will constrain the MD region (which is the limiting time

factor by several orders of magnitude) to 10nm above the surface. The paper used for MD a

12.7nm cube for simulation. Reducing to just surface area for ease of comparison under best

case the paper's simulation is 161.29 nm2. For a single step the required surface area is 10540

nm2.

417nm ×10nm() + 10nm ×10nm() + 110nm ×10nm() + 417nm ×10nm()− 2 × 10nm ×10nm()⎡⎣ ⎤⎦
+ 110nm ×10nm() + 10nm ×10nm()

We will be using five steps for our back of envelope calculation. For five steps the

surface area is 52700 nm2, which is 326 times larger than the domain simulated in the paper.

The time step for the MD simulation is 2*10-16 s. The velocities will vary of course, but for a

low Reynolds number (Re=10) the velocity is 0.01 m/s. v = 0.01 l = 417nm × 2 × 5 = 4170nm

tresidence =
l
v
= 4.17e

−6m
0.01m / s

= 4.17e− 4s . This means that our residence time is 12 orders of

magnitude larger than our time steps. This alone is prohibitively expensive. So let say we don't

have to run as long and only run as many time steps as the paper does. In that case let us now

	 106	

apply the calculations to an inch that we would have to simulate. We cannot just simulate part of

a domain because it has to be coupled for the whole length in order to have an accurate idea of

the pressure drop. Let us say for an inch how many CPU hours it would take. There is 2.54e7

nm in an inch and our 5 steps have a length of 4170nm. So our domain size would increase by a

factor of 6090. Combined with the previous domain increase, our domain would be almost 2

million times larger than their domain (1985340). That would mean 31 CPU Millennia (instead

of hours). And that is just for one inch for 100,000 time step iterations, strictly not doable.

In order to make a more accomplishable simulation a suggested approach that would

have to be developed is to couple two CFD domains together. OpenFOAM needs rectangular

mesh and has a restriction that no face may be shared by more than 2 cells. In order to grasp the

detail of the fluid flow nm size mesh is required, but once again that places an enormous

computation strain on the domain. For 1 inch by 1mm height that is 2.54e13nm^2 which is

1.37e8 times more nodes than the other simulations I have run. That corresponds to 312 CPU

Millennium to run to convergence. So just a small grid size through the whole domain is also

unrealistic. This leads us to the motivation for having the coupled CFD grids. This would

dramatically reduce computational cost.

Now let us theorize that our domain of 1nm spacing stretches only 10nm above the

topmost pattern (so for each period it is on average 60nm high) then we have about 50,000 points

per period unit. There are about 30,000 period units in an inch so 1.5e9 points in the domain.

This following the same scaling procedure gives us 18 CPU Years per inch, which is still a little

on large side, but more doable.

Let us reduce to a 10nm layer again. So from above that is 10540 points per period and

30,000 periods in an inch. 3.16e8 points. This is getting much more realistic as I have run 9e6

	 107	

points for 20 nodes and finish in a few days (17280 CPU Hours). So that simulation domain is

only about 35 times larger and so would take a few months on the super computer. Now it is at a

doable scale for the department of defense but still to large for us.

Now I will move onto the next possibility, 10nm spacing (the domain would be 30nm

above the raised surface so on average 7 points per 10nm of length. This gives us 17.8 million

node points. That is only twice now what my simulation was and so is now in our running length

and capabilities. And two weeks is a reasonable run time so under this domain setting with 60

nodes instead of 20, we would be able to have a maximum flow cell length of 7 inches. So 7

inches is our goal maximum length between two measuring points.

Entrance Length
Entrance length is the minimum length required in order to fully develop the flow. In

early designs this was a key criteria, however, this criteria was eventually discarded for several

reasons. The first is that it is impractically too long. The domain ended up having to be several

feet. This is because of the extreme conditions the flow cell will run at. The key reason is since

we are interested in pressure drop and will be doing several control group experiments without

patterns, we will have a base to normalize and use as a reference for the pressure change, so it

doesn't have to be fully developed for us to make use of it. As such I will only go briefly over

references and how I figured out the fully developed length.

Ideally we would like to be able to have an oscillating mode that requires the entrance

and exit region to be symmetric about the center. This feature will also most likely have to wait

till the second iteration because our pumps are unable to do such a thing. Smooth transitions and

curves help minimize entrance length development and so are used. Furthermore the entrance

	 108	

length needed for a fully developed flow changes with channel height and Reynolds’s number

I've plotted the entrance length over our experimental domain.

Next is the entrance region to allow a fully developed flow to occur. Since we want to

have an oscillating mode that requires that the entrance region be symmetric about the center

around the exit and entrance domain. Smooth transitions and curves help minimize entrance

length transitions so those are used. In addition, since the length needed for fully developed flow

changes with channel height and Reynolds’s number I've varied the flow for the pipes and

plotted Reynolds’s number versus entrance length for both turbulent and laminar flow.

Interestingly enough, it is the laminar flow that has the longest entrance length. The entrance

length is defined as xl = 0.06ReD for laminar flow and xt = 4.4Re
1/6 D for turbulent flow.

	 109	

As such the circular pipe approximation doesn't serve us very well. After all, we are in

an extremely narrow channel and it shouldn't take that great of a distance to develop. So looking

at values from experimental approximations from the book "fundamentals of fluid dynamics".

For rectangular duct flow with an aspect ratio of less than 2 (which is what our system is) the

entrance length is xl = (0.25 + 0.03Re)Dh where Dh is the hydraulic diameter that is used in

calculating the Reynolds number with the hydraulic diameter. The worst-case scenario the

hydraulic diameter would be 0.0167m (the case of our 2 in wide channel and 1cm high). Using

this number we get a different graph.

While this has a slightly better slope, it would still require over a meter for worst-case

scenario. This violates our space constraints. Thus why we figured out a way around the fully

	 110	

developed flow condition. Interestingly enough, when running a simple simulation the entrance

length was less than two inches. Thus two inches was chosen to be used for the entrance length.

General Design
The flow cell consists of four main parts: top plate, bottom plate, spacer plate, O-rings.

The flow cell is designed to go from 1mm height spacing to 10 mm. This design height has been

changed now to 1mm to 3mm height. If it were possible we would do 1mm, 1.5 mm, and 2mm

heights but the O-rings wouldn't allow for that. In addition the flow cell needs to be able to

handle 15.1 psi, which is only slightly above atmosphere. For later experiments though it would

need to be able to handle 50psi. We need the surfaces inside to be as smooth as possible in order

to best minimize noise from the system, but most importantly to try to keep cell height as

uniform as possible because pressure drop goes as 1/h3. Thus height affects the pressure drop the

most (see equation #___).

The height is controlled through the use of spacers. The default channel height is 1mm.

This is built into the top plate (see appendix ___). Spacer plates are hollow plates that sit

between O-rings and change the cell height. Actual height will be determined and recorded by

micrometer. There is a trade off between number of heights we can reach and the chance for

increased leaking due to multiple plates and O-rings. We are constrained by budget from making

as many plates as we want. Overall the decision is to make a 1mm and either a .5mm or 2mm

plate if it is permissible with the O-rings.

The bottom plate is not very special at all. It is a one-inch (might be later reduced due

lower pressure constraints than initially thought) thick plate designed to be the structural support

base. Its purpose is to serve as the anchoring point for the screws that secure the system to

prevent leaking. Further design modification may serve to allow for nesting of O-rings but I

	 111	

think it will be unnecessary. There are 26 boltholes for securing all the plates together without

leaking. There will be imprinted tiles attached to both the top and bottom of the plate using an

adhesive the releases with heat. The adhesive in question still needs to be identified.

The top plate is the most intricate and detailed piece of the whole set up. The top plate is

the most detailed because it contains the most features. It will have tiles of printed pattern placed

in it, the holes for securing the bolts, and the flow entrance and exit regions. The flow entrance

region is the most challenging part since it requires flow to be smooth when it reaches the

pressure transducers. The top plate has two pressure transducer tubing holes each 5.25 inches

from the center of the flow cell. Each hole has 2mm outer diameter tubing attached and welded

in that is used to connect to the differential pressure transducer. The entrance region consists of

the pipe fitting attachment located in the vertical center and then that domain expands into a

large region that is the full width of the cell (2 inches) and then encounters a frit which is chosen

to be placed there to normalize the flow so that it is uniform upon entering the flow cell proper

(see appendix). Then there is a gradual slope to the bulk of the system where it flattens out. This

is designed to minimize flow disturbance and any turbulent tendencies in the flow.

Overall the flow cell's toughest criteria are the need for minute tolerances and small

channel height increments. They have been addressed and are the top priority in the machining

of the device. Another possible option is instead of the plates being hollow we have thin and

shallow bottom plates with carved out space that go onto the original bottom plate. But this

design has not been chosen because of its dramatic increase in cost.

References
Cosden, I. A. and J. R. Lukes (2013). "A hybrid atomistic–continuum model for fluid

flow using LAMMPS and OpenFOAM." Computer Physics Communications 184(8): 1958-
1965.

	 112	

 http://books.google.com/books?id=YCSSolzuu9IC&pg=PA486&lpg=PA486&dq
=entrance+length+rectangular+duct&source=bl&ots=LMC06HUIRM&sig=Piq6T1vPIADMWB
-
hKgbyKi6EEBU&hl=en&sa=X&ei=YFc8U_P7B4SiyAHOxYDwBA&ved=0CDEQ6AEwAQ#
v=onepage&q=entrance%20length%20rectangular%20duct&f=false

Fundamentals of Fluid Mechanics. Joesph A. Schetz and Allen E. Fuhs.
Drawings and Designs

 1
.0

0

	 113	

A

DETAIL A
SCALE 2 : 1

B

C

D

1 2

A

321 4

B

A

5 6

DRAWN

CHK'D

APPV'D

MFG

Q.A

UNLESS OTHERWISE SPECIFIED:
DIMENSIONS ARE IN MILLIMETERS
SURFACE FINISH:
TOLERANCES:
 LINEAR:
 ANGULAR:

FINISH: DEBUR AND
BREAK SHARP
EDGES

NAME SIGNATURE DATE

MATERIAL:

DO NOT SCALE DRAWING REVISION

TITLE:

DWG NO.

SCALE:1:5 SHEET 1 OF 1

A4

C

WEIGHT:

Flow Cell

	 114	

	 115	

	 116	

	 117	

	 118	

	 119	

 6
.0

0

 22.00

 18.00

 5.25
 0.08

 1
.0

0 B

 0
.0

4

0.

25

 0
.5

0

 0.50

 0
.1

3

 1.00

DETAIL B
SCALE 2 : 3

B

C

D

1 2

A

321 4

B

A

5 6

DRAWN

CHK'D

APPV'D

MFG

Q.A

UNLESS OTHERWISE SPECIFIED:
DIMENSIONS ARE IN MILLIMETERS
SURFACE FINISH:
TOLERANCES:
 LINEAR:
 ANGULAR:

FINISH: DEBUR AND
BREAK SHARP
EDGES

NAME SIGNATURE DATE

MATERIAL:

DO NOT SCALE DRAWING REVISION

TITLE:

DWG NO.

SCALE:1:1 SHEET 1 OF 1

A4

C

WEIGHT:

Top Plate Part2

	 120	

A

DETAIL A

	 121	

 0
.3

9

 2
.0

0

 18.00 6
.0

0

 22.00

 2
.0

0

 18.00
 1

.0
0

 1
.0

0

 1.00

 1.00

 1
.0

0

 2
.0

0
 2.00

0.

25

 2.00

	 122	

Matlab Code
WeightPost.m
function [W1, W2, W3]=WeightPost(Weight)
a=length(Weight);
b=floor(a/3);
W1=zeros(b,1);
W2=zeros(b,1);
W3=zeros(b,1);
for i=1:b
 W1(i)=Weight(i*3-2);
 W2(i)=Weight(i*3-1);
 W3(i)=Weight(i*3);
end
R1=zeros(b-1,1);
R2=zeros(b-1,1);
R3=zeros(b-1,1);
for i=1:b-1
 R1(i)=W1(i+1)-W1(i);
 R2(i)=W2(i+1)-W2(i);
 R3(i)=W3(i+1)-W3(i);
end
T=[1:b-1]';
plot(T,R1,'r',T,R2,'b',T,R3,'g');legend('1st Scale', '2nd Scale', '3rd
Scale');xlabel('time (min)');ylabel('Rate (mL/min)');title('Rate vs. Time');
end
Averagern.m
function Ave=Averagern(P,n)
%P=input pressure column values
%n=number of presures to average into a single value
a=floor(length(P)/n);
Ave=zeros(a,1);
for i=1:a
 b=0;
 for j=1:n
 b=(P((i-1)*n+j))+b;
 end
 Ave(i)=b/n;
end
end
remover.m
function out=remover(input)
% Function removes spaces in weight matrix, but leaves a one in the first
% spot and not the first data. Needs to be manually copied over.
a=length(input);
b=a/2+.5;
out=ones([1,b])';
for i=1:a
 if mod(2,i)==0

 else
 out(floor(i/2)+1)=input(i);
 end
end
end

	 123	

Remote Access and Visualization
new terminal window:
ssh -X -l jome9631 login.rc.colorado.edu
module load slurm
sinteractive --qos=janus-debug
cd (case)
module load viz/paraview-4.0.0
paraview

(make sure that X11 is closed before running)

	 124	

Milk Post Processing Steps Guide
1. Copy	 the	 labview	 and	 text	 file	 into	 folder	 labeled	 with	 date	 and	 experiment	 name	
2. Depending	 upon	 experiment	 type,	 save	 appropriate	 template	 in	 said	 folder	 with	

date	 and	 name	 and	 descriptor	 of	 experiment	
3. open	 text	 file,	 press	 select	 all	 and	 copy	 selected.	 	
4. Paste	 in	 tab	 labeled	 "raw	 weight"	 	
5. Open	 labview	 file,	 press	 select	 all	 (mac	 and	 PC	 is	 command	 a),	 copy	 (command	 c)	

and	 paste	 into	 tab	 labeled	 "raw	 pressure"	 (command	 v)	
6. Click	 save	 on	 the	 excell	 sheet	
7. Open	 Matlab	
8. under	 home	 tab	 on	 matlab,	 there	 is	 a	 green	 arrow	 pointed	 down,	 fifth	 button	 from	

the	 left,	 labeled	 "Import	 Data".	 	 Click	 it	
9. Now	 select	 the	 name	 of	 the	 excell	 document	 you	 just	 saved.	 	 You	 will	 have	 to	 change	

and	 go	 to	 the	 folder	 in	 which	 it	 is	 saved.	 	 If	 you	 don't	 remember	 that,	 there	 is	 a	
search	 bar	 on	 the	 top	 right	 you	 can	 type	 the	 name	 of	 the	 excell	 file	 into	 to	 find	 it.	 	
Then	 click	 open	

10. Click	 on	 the	 tab	 at	 the	 bottom	 labeled	 "Raw	 Weight"	
11. In	 VarName1	 type	 Weight	
12. on	 the	 top	 right	 there	 is	 a	 green	 checkmark	 labeled	 "Import	 Selection"	 click	 it	
13. click	 on	 tab	 "Raw	 Pressure"	
14. In	 "VarName1"	 through	 "VarName3"	 type	 "P1"	 to	 "P3"	
15. Click	 on	 that	 "import	 selection"	 again.	
16. Enter	 the	 following	 to	 create	 the	 average	 pressure.	 	 Since	 pressure	 is	 recorded	 every	

5	 seconds	 and	 weight	 is	 recorded	 every	 minute,	 we	 average	 12	 pressures	 to	 average	
over	 a	 minute.	 	 If	 a	 different	 weight	 measuring	 time	 is	 used,	 divide	 that	 time	 in	
seconds	 by	 5	 and	 use	 that	 number	 as	 a	 replacement	 for	 12.	

a. 	 P1A=Averagern(P1,12);	
b. 	 P2A=Averagern(P2,12);	
c. 	 P3A=Averagern(P3,12);	

17. Then	 in	 the	 workspace	 double	 click	 on	 P1A	 and	 then	 copy	 those	 values	 and	 paste	
them	 in	 the	 excell	 spreadseet	 in	 the	 pressure	 1	 column	 of	 the	 "final"	 page.	 	 	

18. Repeat	 for	 each	 pressure	
19. copy	 and	 paste	 "	 W=remover(Weight);"	 into	 the	 command	 prompt	
20. then	 open	 both	 W	 and	 Weight	
21. Copy	 the	 first	 value	 from	 Weight	 and	 replace	 the	 1	 in	 W	 with	 it.	
22. then	 copy	 and	 paste	 "	 [W1,	 W2,	 W3]=WeightPost(W);"	 into	 the	 prompt	
23. the	 graph	 will	 show	 you	 what	 the	 rates	 are	 and	 will	 help	 you	 figure	 out	 if	 there	 is	

any	 data	 irregularities.	
24. Open	 and	 Copy	 and	 paste	 the	 W1,	 W2,	 W3,	 files	 data	 into	 their	 respective	 slot	 in	 the	

excell	 sheet	
25. you	 may	 need	 to	 extend	 formula	 and	 graph	 area	 to	 view	 all	 data	 results.	

	 125	

Sartorius Scale
1) Port	 -‐-‐>	 Settings	

a) select	 com	 for	 scale	 (it	 depends	 each	 time,	 just	 choose	 one,	 you	 can	 change	 this	 later	
to	 the	 actual	 com)	

b) 1200	 Band	 Rate	
c) Odd	 Parit	
d) 7	 Data	 Bit	
e) 1	 Stop	 Bit	
f) None-‐	 Flow	 Control	

2) Port	 Analyze	
a) cursor	 in	 output	
b) ASCII	 Chart	 value	 27	 (<-‐-‐)	
c) followed	 by	 capital	 P	
d) send	
e) quit	

3) Define	 -‐-‐>	 Serial	 output	 strings	
a) Interval	 (ms)	 ___	 place	 time	 (be	 careful	 it	 is	 in	 ms	 not	 seconds)	
b) coursor	 to	 Timer	 Controlled	 Output	 string	
c) ASCII	 Chart	 value	 27	 (<-‐-‐)	
d) followed	 by	 capital	 P	

4) Define	 -‐-‐>	 Hot	 Keys	 and	 Hot	 Key	 Action	
a) Hot	 Key	 1	
b) Hot	 Key	 Action	 (Enable	 Timer)	
c) Hot	 Key	 Stroke	 (press	 F8	 while	 cursor	 is	 in	 box-‐	 the	 actual	 F8	 button,	 not	 F	 followed	

by	 8)	
d) Hot	 Key	 2	
e) Hot	 Key	 Action	 (Disable	 Timer)	
f) Hot	 Key	 Stroke	 (Press	 F9	 while	 cursor	 is	 in	 box)	
g) click	 OK	

5) Define	 -‐-‐>	 Input	 Data	 Record	 Structure	
a) start	 of	 Record	 Event	

i) any	 character	 received	
b) End	 of	 Record	 Event	

i) Carriage	 Return	 or	 CrLf	 recieved	
c) continue	
d) Each	 data	 record	 contains	 a	 single	 data	 field	
e) continue	
f) Input	 Filter	

i) Change	 to	 "Numeric	 Data	 Only"	
g) Click	 in	 Field	 Postable	 Keystrokes	
h) click	 Keystroke	 List	
i) Select	 "Enter"	 and	 click	 okay	
j) click	 okay	

6) Save	

	 126	

OpenFOAM Solution and Algorithm Control Guide with Additional Tricks and
Recommendations
Reference	 Websites	
http://www.tfd.chalmers.se/~hani/kurser/OS_CFD_2008/TimBehrens/tibeh-‐report-‐
fin.pdf	
http://www.ara.bme.hu/~hernadi/OpenFOAM/	
http://www.dicat.unige.it/guerrero/of2014a/14tipsandtricks.pdf	
http://www.openfoamworkshop.org/6th_OpenFOAM_Workshop_2011/Program/Training
/deVilliers_slides.pdf	
http://www.tfd.chalmers.se/~hani/kurser/OS_CFD_2008/TimBehrens/tibeh-‐slides.pdf	
http://www.dicat.unige.it/guerrero/of2014a/5meshing.pdf	
	
	
	
	
Different	 combinations	 for	 both	 u	 and	 p	 will	 work	 and	 not	 work.	 	 Some	 will	 work	 for	 p	 and	
not	 for	 u.	 	 etc...	 or	 will	 only	 work	 if	 paired	 in	 a	 certain	 way.	 	
	
Linear	 system	 solvers	

1. PBiCG	 =	 preconditioned	 bi-‐conjugate	 gradient	 solver	 for	 asymmetric	 matrices	 using	
a	 run	 time	 selectable	 preconditioner	

a. if	 over	 1024	 processors	 are	 used	 it	 is	 better	 than	 GAMG	
2. PCG	 =	 preconditioned	 conjugate	 gradient	 solver	 for	 symmetric	 matrices	 using	 a	 run	

time	 selectable	 preconditioner	
a. if	 over	 1024	 processors	 are	 used	 it	 is	 better	 than	 GAMG	

3. GAMG	 =	 generalized	 geometric-‐algebraic	 multi-‐grid	 solver	
a. Often	 optimal	 choice	 for	 pressure	 equation.	 	 	
b. works	 well	 for	 solving	 the	 pressure	 equation	 up	 to	 1024	 processors	 at	 which	

point	 the	 Krylov	 type	 solvers	 (PBiCG	 and	 PCG)	 tend	 to	 do	 better.	
c. not	 sure	 of	 use	 on	 U.	 	
d. Uses	 principle	 of	 generating	 a	 quick	 solution	 on	 a	 course	 mesh	 and	 mapping	

it	 onto	 a	 finer	 mesh	 to	 obtain	 accurate	 results.	 	 	
e. faceAreaPair	 (apparently	 superior	 to	 algebraicPair)	 agglomerator	
f. does	 this	 require	 similar	 face	 areas?	 	
g. Overview	 of	 GAMG	 running	 through	 its	 loops	

i. get	 the	 finest	 level	 interfaces	 from	 the	 mesh	 (mesh	 spacing?)	
ii. start	 agglomeration	 from	 the	 given	 faceWeights	 (don't	 really	

understand	 this	 part	 but	 it	 finds	 faces	 and	 then	 groups	 cells	 and	 faces	
together)	

iii. nCoarsestCells	 ends	 the	 agglomeration	 after	 the	 agglomeration	
reaches	 the	 cell	 size	 listed	 as	 the	 most	 coarse	 with	 nCoarsestCells.	 	
still	 not	 really	 sure	 how	 that	 works.	 	 Also	 maxLevels	 which	 places	 a	
restriction	 on	 how	 many	 of	 loops	 i	 and	 ii	 can	 be	 done	 (how	 may	
groups	 can	 be	 merged).	 	 It	 is	 hard	 coded	 to	 stop	 at	 50.	 	

	 127	

h. mergeLevels	 =1;	 the	 amount	 of	 blocks	 combined	 at	 each	 step.	 	 Best	 to	 do	 1,	
but	 fore	 really	 simple	 mesh	 could	 use	 2.	 	

i. the	 solver	 is	 running	 a	 V-‐cycle	 at	 which	 the	 coarsest	 level	 matrix	 is	 solved	
directly	 by	 specifiying	 "directSolve_Coarsest	 true"	 or	 using	 the	 iterative	
ICCG/BICCG	 by	 default.	 	 The	 number	 of	 sweeps	 used	 by	 the	 selected	
smoother	 when	 solving	 at	 different	 levels	 of	 mesh	 desnity	 are	 specified	 by	
nPreSweeps,	 nPostSweeps,	 and	 nFinestSweeps.	 	 nPreSweeps	 is	 used	 when	 V	
cycle	 is	 moving	 in	 coarser	 direction,	 nPostSweeps	 is	 used	 when	 algorithm	 is	
refining,	 and	 nFinestSweeps	 is	 when	 solution	 is	 at	 its	 finest	 level.	 	 Defaults	
are	 in	 the	 GAMG	 solver	 in	 GAMGSolver.C	 and	 can	 be	 overwritten	 by	
definittion	 in	 fvSolution.	

j. Defaults	 are:	 	
i. cacheAgglomeration_(false)	
ii. nPreSweeps_(0)	
iii. nPostSweeps_(2)	
iv. nFinestSweeps_(2)	
v. scaleCorrection_(matrix.symmetric())	
vi. directSolveCoarsest_(false)	

k. when	 solving	 using	 multiphase	 problems	 there	 may	 be	 some	 problems	
running	 in	 parallel.	 	 The	 problem	 is	 mainly	 related	 to	 nCoarsestCells	
keyword,	 so	 he	 usually	 has	 to	 set	 a	 high	 value	 of	 cells	 (on	 the	 order	 of	 1000)	

4. smoothSolver	 -‐	 solver	 using	 a	 smoother	 for	 both	 symmetric	 and	 asymmetric	
matrices	 and	 uses	 a	 run	 time	 selected	 smoother	 	 	

a. doesn't	 work	 with	 the	 other	 tutorial.	 	 ??	 on	 how	 it	 works.	 	 Worked	 with	 U	 so	
long	 as	 paired	 with	 symGaussSeidel	 and	 P	 had	 PCG	 and	 DIC.	

5. diagonalSolver	 =	 diagonal	 solver	 for	 both	 symmetric	 and	 asymmetric	 matrices.	
a. Doesn't	 appear	 to	 actually	 exist	 in	 the	 usable	 solver	 options	 (at	 least	 for	

asymmetric)	 .	 	 	
6. BICCG	 =	 diagonal	 incomplete	 LU	 preconditioned	 BICG	 solver.	 	 Only	 there	 for	

compatibility	 with	 old	 versions.	 	 Should	 use	 PBiCG	 instead	
7. ICC	 =	 incomplete	 Cholesky	 preconditioned	 conjugate	 gradients	 solver.	 	 also	 for	 back	

compatibility	 and	 PCG	 should	 be	 used	 instead	 now.	 	
8. 	

	
Preconditioner	

1. diagonalPreconditioner	 =	 Diagonal	 preconditioner	 for	 both	 symmetric	 and	
asymmetric	 matrices.	 	 This	 preconditioner	 actually	 does	 not	 help	 with	 faster	
propagation	 through	 the	 grid,	 but	 it	 is	 very	 easy	 and	 can	 be	 a	 good	 first	 step.	 	 The	
reciprocal	 of	 the	 diagonal	 is	 calculated	 and	 stored	 for	 reuse	 because	 on	 most	
systems	 multiplications	 are	 faster	 than	 divisions	

a. not	 sure	 if	 that	 is	 the	 right	 command	 call.	 	
2. DIC	 =	 diagonal	 incomplete-‐Cholesky	

a. simplified	 diagonal-‐	 based	 incomplete	 Cholesky	 preconditioner	 for	
symmetric	 matrices	 (symmetric	 equivalent	 of	 DILU).	 	 The	 reciprocal	 of	 the	
preconditioned	 diagonal	 is	 calculated	 and	 stored.	 	 In	 lduMatrix	 folder	 it	 is	
listed	 as	 DICPreconditioner	

	 128	

3. DILU	 =	 diagonal	 incomplete	 LU	
a. Simplified	 diagonal	 based	 incomplete	 LU	 preconditioner	 for	 asymmetric	

matrices.	 	 The	 reciprocal	 of	 the	 preconditioned	 diagonal	 is	 calculated	 and	
stored.	 	 	

4. GAMG	 =	 geometric	 agglomerated	 algebraic	 multigrid=generalised	 geometric-‐
algebraic	 multi-‐grid	

5. FDIC	 =	 Faster	 version	 of	 the	 DIC	 preconditioner	 for	 symmetric	 matrices	 in	 which	 the	
reciprocal	 of	 the	 preconditioned	 diagonal	 and	 the	 upper	 coefficients	 divided	 by	 the	
diagonal	 are	 calculated	 and	 stored.	 	 DIC	 will	 run	 fine	 though	 when	 FDIC	 doesn't,	 so	
keep	 that	 in	 mind.	 	 	

6. noPreconditioner	 =	 Null	 preconditioneer	 for	 both	 symmetric	 and	 asymmetric	
matrices.	 	 No	 idea	 how	 or	 why	 it	 is	 called.	 	

	
Smoother	

1. DIC	 =	 simplified	 diagonal-‐based	 incomplete	 Cholesky	 smoother	 for	 symmetric	
matrices	

2. DICGaussSeidel	 =	 combined	 DIC/GaussSeidel	 smoother	 for	 symmetric	 matrices	 in	
which	 DIC	 smoothing	 is	 followed	 by	 GaussSeidel	 to	 ensure	 that	 any	 "spikes"	 created	
by	 the	 DIC	 sweeps	 are	 smoothed	 out	

3. DILU	 =	 simplified	 diagonal-‐based	 incomplete	 LU	 smoother	 for	 asymmetric	 matrices.	 	
DILU	 smoothers	 are	 good	 smoothers	 for	 linear	 multigrid	 methods	

4. GaussSeidel	 =	 the	 Gauss	 Seidel	 method	 is	 a	 technique	 used	 to	 solve	 a	 linear	 system	
of	 equations.	 	 The	 method	 is	 an	 improved	 version	 of	 the	 Jacobi	 method.	 	 It	 is	 defined	
on	 matrices	 with	 non-‐zero	 diagonals,	 but	 convergence	 is	 only	 guaranteed	 if	 the	
matrix	 is	 either	 diagonally	 dominant,	 or	 symmetric	 and	 positive	 definite.	 	 	

5. DILUGaussSeidel	 =	 Combined	 DILU/GaussSeidel	 smoother	 for	 asymmetric	 matrices	
in	 which	 DILU	 smoothing	 is	 followed	 by	 GaussSeidel	 to	 ensure	 that	 any	 "spikes"	
created	 by	 the	 DILU	 sweeps	 are	 smoothed-‐out.	

6. symGaussSeidel	
7. nonBlockingGaussSeidel	
8. 	

	
Algorithms	

1. PISO	
2. SIMPLE	

	
Numerical	 Schemes	

1. d2dt2Schemes	
a. steadyState	
b. Euler	

2. ddtSchemes	
a. backward	

i. second	 order	 implicit	 scheme	 (unbounded)	
b. bounded	
c. CoEuler	
d. CrankNicolson	 (number)	

	 129	

i. second	 order	 implicit	 scheme	 (bounded)	
e. Euler	

i. first	 order	 implicit	 scheme	 (bounded)	
f. localEuler	
g. SLTS	
h. steadyState	

3. gradSchemes	
a. fourth	
b. gauss	
c. LeastSquares	
d. limited	

4. divSchemes	
a. gauss	 (requires	 an	 interpolation	 scheme)	

5. laplacianSchemes	
a. gauss	 (requires	 also	 interpolation	 scheme	 and	 a	 snGradScheme)	

6. interpolationSchemes	
a. biLinearFit	
b. CenteredFit	
c. clippedLinear	
d. CoBlended	
e. cubic	
f. cubicUpwindFit	
g. downwind	
h. fixedBlended	
i. harmonic	
j. llimiterBlended	
k. linear	
l. linearFit	
m. linearPureUpwindFit	
n. linearUpwind	
o. localBlended	
p. localMax	
q. localMin	
r. LUST	
s. midPoint	
t. outletStabilised	
u. pointLinear	
v. PureUpwindFit	
w. quadraticFit	
x. quadraticLinearFit	
y. quadraticLinearPureUpwindFit	
z. quadraticLinearUpwindFit	
aa. quadraticUpwindFit	
bb. reverseLinear	
cc. skewCorrected	
dd. UpwindFit	

	 130	

ee. weighted	
ff. Centered	 Schemes	

i. linear	 =	 linear	 interpolation	 (central	 differencing)	
ii. cubicCorrection	
iii. midPoint	 =	 	 linear	 interpolation	 with	 symmetric	 weighting	

gg. Upwinded	 convection	 schemes	
i. upwind	 =	 upwind	 differencing	
ii. linearUpwind	 =	 linear	 upwind	 differencing	
iii. skewLinear	 =	 linear	 with	 skewness	 correction	
iv. filteredLinear2	 =	 linear	 with	 filtering	 for	 high	 frequency	 ringing	

hh. TVD	 schemes	
i. limitedLinear	
ii. vanLeer	
iii. MUSCL	
iv. limitedCubic	

ii. NVD	 schemes	
i. SFCD	 =	 	 self-‐filtered	 central	 differencing	
ii. Gamma	 =	 Gamma	 differencing	 	

7. snGradSchemes	
a. CenteredFit	
b. corrected	
c. faceCorrected	
d. limited	 =	 	 requires	 also	 a	 number	 between	 0	 and	 1	 where	 0	 corresponds	 to	

uncorrected,	 1	 corresponds	 to	 corrected,	 .5	 non	 orthogonal	 correction	 is	 less	
than	 or	 equal	 to	 the	 orthogonal	 part.	 	

e. linearFit	
f. orthogonal	
g. quadraticFit	
h. uncorrected	

8. fluxRequired:	 is	 a	 yes	 or	 no	 answer.	
9. convectionSchemes	

a. bounded	
b. gauss	
c. multivariateGauss	

	
	
	
	
	
	
"Iterative	 methods	 for	 sparse	 linear	 systems"	 by	 Saad	 is	 available	 for	 free	 (first	 edition)	 and	
might	 be	 useful.	
	
lduMatrix	 class	 is	 a	 class	 in	 which	 the	 coefficients	 are	 stored	 as	 three	 different	 arrays.	 (u)	
upper	 triangle,	 (l)	 lower	 triangle,	 and	 (d)	 the	 diagonal	 of	 the	 matrix.	 	 Found	 in	 directory	
source/OpenFOAM/matrices/lduMatrix	

	 131	

	
A	 preconditioned	 iterative	 solver	 solves	 the	 system	 M −1Ax = M −1b 	 with	 M	 being	 the	
preconditioner.	 	 The	 purpose	 of	 the	 preconditioner	 is	 to	 make	 sure	 that	 convergence	 for	
the	 preconditioned	 system	 is	 much	 faster	 than	 for	 the	 original	 one.	 	 This	 leads	 to	 M	 usually	
being	 an	 easily	 invertible	 approximation	 to	 A.	 	 The	 preconditioner	 leads	 to	 a	 faster	
propagation	 of	 information	 through	 the	 computational	 mesh.	 	 	
	
Krylov	 Subspace	 solvers:	 PBiCG	 and	 PCG	 are	 Krylov	 subspace	 solvers.	 	 the	 order-‐r	 Krylov	
subspace	 generated	 by	 the	 n	 x	 n	 matrix	 A	 and	 the	 vector	 of	 n-‐dimension	 b	 is	 the	 linear	
subspace	 spanned	 by	 the	 images	 of	 b	 under	 the	 first	 r	 powers	 of	 A	 starting	 from	 the	
Identity	 matrix	 as	 A0.	 	 Basically	 Kr (A,b) = span{b,Ab,A

2b,...,Ar−1b} 	 and	 each	 vector	 defining	
the	 subspace	 is	 quickly	 and	 easily	 made	 up	 by	 multipling	 a	 matrix	 b	 the	 previous	 vector.	 	 so	
b,	 then	 Ab,	 then	 A	 (Ab)	 then	 A	 (AAb)	 etc...	 The	 vectors	 tend	 to	 become	 almost	 linearly	
dependent	 very	 quickly;	 methods	 involving	 Krylov	 subspace	 frequently	 rely	 on	
orthogonalization	 schemes	 such	 as	 Lanczos	 iteration	 for	 Hermitian	 matrices	 or	 Arnoldi	
iteration	 for	 general	 matrices.	 	 This	 technique	 is	 known	 as	 Krylov	 subspace	 methods.	 	
	
Although	 preconditioners	 can	 considerably	 reduce	 the	 number	 of	 iterations	 they	 do	 not	
normally	 reduce	 the	 mesh	 dependency	 of	 the	 number	 of	 iterations.	 	 	
	
Numerical	 Schemes	 can	 be	 found	 in	 src/finiteVolume/finiteVolume/	
	
missing	 the	 previously	 used	 bounded	 schemes	
	
Interpolation	 schemes	 are	 uses	 for	 interpolations	 of	 values	 from	 cell	 centers	 to	 face	
centers.	 	 Convection	 specific	 schemes	 calculate	 the	 interpolation	 based	 on	 the	 flux	 of	 the	
flow	 velocity.	 Also	 which	 schemes	 can	 be	 used	 with	 the	 V	 vector	 ending?	
	
checkMesh	 -‐allGeometry	 -‐allToplogy	

1. all	 topolgical	 errors	 must	 be	 repaired	
2. you	 can	 run	 with	 mesh	 quality	 errors	 such	 as	 skewness,	 aspect	 ratio,	 minimum	 face	

area,	 and	 non-‐orthogonality,	 but	 they	 will	 severely	 tamper	 the	 solution	 accuracy	 and	
eventually	 can	 make	 the	 solver	 blow	 up	

3. checkMesh	 will	 also	 write	 a	 set	 of	 the	 faulty	 cells,	 faces,	 and	 points	 to	 the	 directory	
"constant/polyMesh/sets"	

4. use	 of	 "foamToVTK	 -‐set_type	 	 name_of_sets"	 where	 set_type	 is	 the	 type	 of	 sets:	
faceSet,	 cellSet,	 pointSet,	 surfaceFields.	 	 Name_of_sets	 is	 the	 name	 of	 the	 set	 in	 the	
sets	 directory	 such	 as:	 highAspectRatioCells,	 nonOrthoFaces,	 wrongOrientedFaces,	
skewFaces,	 unusedPoints.	

5. foamToVTK	 will	 create	 the	 VTK	 folder	 that	 can	 be	 viewed	 with	 paraView	 to	 visualize	
the	 failed	 sets	

renumberMesh	 =	 renumbers	 the	 mesh	 to	 minimize	 its	 bandwidth	 helping	 to	 make	 the	
solver	 run	 faster	 for	 the	 beginning	 time	 steps	 at	 least.	 	 Very	 useful	 with	 large	 meshes	 such	
as	 I	 run.	 	 	
Remember	 mesh	 quality	 is	 extremely	 important	 to	 get	 good	 results	 in	 an	 openFoam	 case	

	 132	

	
Initial	 Conditions	

1. a	 good	 initial	 condition	 can	 improve	 the	 stability	 and	 convergence.	 	 	 Unphysical	
boundary	 conditions	 can	 slow	 down	 convergence	 or	 cause	 divergence	

2. when	 possible,	 start	 off	 by	 using	 "potentialFoam"	 to	 get	 an	 initial	 solution	 as	 it	 is	
computationally	 inexpensive	 and	 provides	 a	 good	 initial	 condition.	 	

3. if	 you	 get	 a	 decent	 solution	 from	 a	 course	 mesh,	 you	 can	 use	 mapFields	 to	 map	 the	
solution	 onto	 a	 finer	 mesh	 to	 do	 a	 higher	 resolution	 simulation.	 	

4. if	 you	 are	 running	 a	 turbulence	 model	 you	 can	 initialize	 the	 velocity	 and	 pressure	
fields	 from	 a	 solution	 obtained	 from	 a	 laminar	 case	

5. initial	 conditions	 should	 be	 physically	 realistic	
	
Important	 Tricks	 and	 miscellaneous	 things	

1. if	 "runTimeModifiable"	 is	 set	 to	 use	 in	 the	 controlDict	 than	 the	 controlDict,	
fvSchemes	 and	 fvSolution	 can	 be	 edited	 and	 updated	 while	 the	 simulation	 is	
running.	 	 	

2. Never	 execute	 production	 runs	 or	 a	 final	 solution	 using	 first	 order	 schemes.	 	 They	
are	 too	 diffusive,	 which	 means	 they	 will	 under	 predict	 the	 forces	 and	 smear	 the	
gradients.	 	 You	 can	 start	 using	 a	 first	 order	 scheme	 and	 then	 switch	 to	 a	 higher	 order	
scheme	 (start	 robustly	 and	 end	 with	 accuracy).	 	

a. it	 will	 be	 important	 to	 organize	 the	 discretization	 schemes	 by	 order	
3. time	 step	 continuity	 errors	 should	 be	 small	 (negative	 or	 positive),	 if	 it	 increases	 in	

time	 something	 is	 wrong.	 	
4. If	 after	 checking	 the	 mesh	 quality,	 the	 non-‐orthogonality	 is	 higher	 than	 80	 it	 is	

prudent	 if	 possible	 to	 redo	 the	 mesh	 and	 improve	 the	 quality	
5. If	 running	 LES	 mesh	 quality	 needs	 to	 be	 even	 better	 and	 non-‐orthogonality	 really	

needs	 to	 be	 less	 than	 60	 and	 as	 low	 as	 possible.	
6. do	 not	 try	 to	 push	 too	 much	 the	 numerical	 scheme	 on	 highly	 non-‐orthognal	 meshes.	 	

You	 already	 know	 that	 the	 quality	 is	 low,	 so	 this	 highly	 influence	 the	 accuracy	 and	
stability	 of	 the	 solution	

7. Generally	 start	 with	 first	 order	 and	 looser	 convergence	 criterion	 and	 then	 as	 the	
simulation	 runs	 switch	 to	 second	 order	 and	 tighter	 convergence	 criterion.	

	
	
Convective	 terms:	

1. for	 grad	 and	 div	 schemes.	 	 robust	 but	 highly	 diffusive	
a. cellLimited	 Gauss	 linear	 1.0	 (for	 grad)	
b. Gauss	 upwind	
c. Gauss	 linear	

2. accurate	 and	 stable	 	
a. cellMDLimited	 Gauss	 linear	 0.5	 (grad	 scheme)	
b. Gauss	 linearUpwind	 grad(U)	

	
diffusive	 terms	

1. accurate	 schemes	 for	 orthogonal	 meshes	
a. laplacian	 -‐-‐-‐	 Gauss	 linear	 corrected	

	 133	

b. snGradSchemes	 -‐-‐-‐	 corrected	
2. accurate	 scheme	 for	 orthogonal	 meshes	 with	 non-‐orthogonal	 corrections	

a. laplacian	 -‐-‐-‐	 Gauss	 linear	 limited	 1	
b. snGradSchemes	 limited	 1	

3. less	 accurate	 numerical	 scheme	 valid	 on	 non-‐orthogonal	 meshes	 with	 non	
orthogonal	 corrections	

a. laplacianSchemes	 -‐-‐-‐	 Gauss	 linear	 limited	 0.5	
b. SnGradSchemes	 -‐-‐-‐-‐	 limited	 0.5	

4. 	
	
In	 the	 event	 of	 Non-‐orthogonality	 more	 than	 80	 it	 is	 highly	 recommended	 to	 not	 waste	 time	
simulating	 and	 get	 a	 better	 mesh.	 	 But	 if	 it	 must	 run	 then	 it	 is	 highly	 recommend	 to	 use	 this	
gradSchemes	 {	 default	 	 faceLimited	 leastSquares	 1.0;}	
divSchemes	 {	 div(phi,U)	 Gauss	 linearUpwind	 grad(U);}	
laplacianSchemes	 {	 default	 	 Gauss	 linear	 limited	 0.333;}	
snGradSchemes	 {	 default	 	 limited	 0.333;}	
	
In	 the	 event	 of	 Non-‐orthogonality	 between	 70	 and	 80	
gradSchemes	 {	 default	 	 cellLimited	 leastSquares	 1.0;}	
divSchemes	 {	 div(phi,U)	 Gauss	 linearUpwind	 grad(u);}	
laplacianSchemes	 {	 default	 	 Gauss	 linear	 limited	 0.5;}	
snGradSchemes	 {	 default	 	 limited	 0.5;}	
nNonOrthogonalCorrectors	 4;	
	
In	 the	 event	 of	 Non-‐orthogonality	 between	 60	 and	 70	
gradSchemes	 {	 default	 	 cellMDLimited	 Gauss	 linear	 0.5;}	
divSchemes	 {	 div(phi,U)	 Gauss	 linearUpwind	 grad(u);}	
laplacianSchemes	 {	 default	 	 Gauss	 linear	 limited	 0.777;}	
snGradSchemes	 {	 default	 	 limited	 0.777;}	
nNonOrthogonalCorrectors	 2;	
	
In	 the	 event	 of	 Non-‐orthogonality	 between	 40	 and	 60	
gradSchemes	 {	 default	 	 cellMDLimited	 Gauss	 linear	 0.5;}	
divSchemes	 {	 div(phi,U)	 Gauss	 linearUpwind	 grad(u);}	
laplacianSchemes	 {	 default	 	 Gauss	 linear	 limited	 1;}	
snGradSchemes	 {	 default	 	 limited	 1;}	
nNonOrthogonalCorrectors	 1;	
	
gradSchemes:	 defines	 the	 way	 we	 compute	 the	 gradients.	 	 Gradients	 can	 be	 computed	 using	
the	 Gauss	 Method	 or	 the	 Least	 Squares	 Method.	 	 In	 practice,	 the	 least	 squares	 method	 is	
more	 accurate	 but	 tends	 to	 be	 more	 oscillatory	 on	 tetrahedral	 meshes.	 	 Gradient	 limiters	
avoid	 over	 and	 under	 shoots	 on	 the	 gradient	 computations.	 there	 are	 four	 available:	 (listed	
from	 most	 diffusive	 to	 least	 diffusive)	 faceLimited,	 faceMDLimited,	 cellLimited,	
cellMDLimited.	 	 	
	

	 134	

Under-‐relaxation	 factors:	 because	 of	 the	 non-‐linearity	 of	 the	 equations	 being	 solved,	 it	 is	
necessary	 to	 control	 the	 change	 of	 phi.	 	 In	 general,	 under-‐relaxation	 factors	 are	 there	 to	
suppress	 oscillations.	 	 small	 under-‐relaxation	 factors	 will	 significantly	 slow	 down	
convergence.	 	 They	 can	 even	 slow	 down	 convergence	 to	 the	 extent	 that	 it	 looks	 converged	
before	 it	 is.	 The	 recommendation	 is	 to	 always	 use	 under-‐relaxation	 factors	 that	 are	 as	 high	
as	 possible	 without	 resulting	 in	 oscillations	 or	 divergence.	 	 To	 find	 the	 optimal	 under-‐
relaxation	 factor	 for	 each	 case	 will	 usually	 take	 trial	 and	 error.	 	 it	 is	 recommended	 to	 start	
with	 the	 default	 values	 and	 slowly	 decrease	 the	 value.	 	 a	 good	 number	 is	 usually	 0.3	 for	
Pressure	 and	 0.7	 for	 Velocity	
	
For	 pressure	 a	 good	 starting	 point	 is	 usually	 the	 bellow	 with	 the	 tolerances	 later	 tightened	
to	 1e-‐6,	 and	 0	
p	
{	
	 solver	 	 	 	 GAMG;	
	 tolerance	 	 	 1e-‐5;	
	 relTol	 	 	 	 0.01	
	 smoother	 	 	 GaussSeidel;	
	 nPreSweeps	 	 	 0;	
	 nPostSweeps	 	 	 2;	
	 cacheAgglomeration	 	 on;	
	 agglomeerator	 	 faceAreaPair;	
	 nCellsInCoarsestLevel	 100;	
	 mergeLevels	 	 	 1;	
}	
if	 not	 using	 GAMG	 starts	 often	 with	 this	 and	 increases	 tolerance	 to	 eventual	 finally	 1e-‐6	 and	
0.	
p	 	
{	 	
	 solver	 	 	 PCG;	 	
	 preconditioner	 	 DIC;	 	
	 tolerance	 	 	 1e-‐4;	 	
	 relTol	 	 	 0.01;	 	
}	
	
For	 the	 velocity	 equation	 this	 is	 usually	 a	 good	 place	 to	 start	
U	
{	
	 solver	 	 	 PBiCG;	
	 preconditioner	 DILU;	
	 tolerance	 	 1e-‐8;	
	 relTol	 	 	 0;	
}	
	
when	 using	 the	 pimple	 solver,	 you	 have	 the	 option	 to	 limit	 your	 time	 step	 to	 a	 maximum	
CFL	 (courant)	 number	 so	 the	 solver	 automatically	 chooses	 the	 time	 steps.	 	 	

	 135	

If	 you	 are	 using	 the	 piso	 solver	 you	 need	 to	 give	 the	 time	 step	 size	 and	 cannot	 have	 it	 adjust	
automatically.	 	 	
	
To	 do	 so,	 by	 setting	 the	 keyword	 "nOuterCorrectors"	 equal	 to	 1	 in	 the	 pimple	 solver	 is	
equivalent	 to	 using	 the	 piso	 solver	 and	 then	 the	 Courant	 number	 can	 be	 specified.	 	
	
The	 pimple	 solver	 is	 a	 solver	 specially	 formulated	 for	 large	 time-‐steps.	 	 So	 in	 order	 to	
increase	 the	 stability	 you	 will	 need	 to	 add	 more	 corrector	 steps	 (nOuterCorrectors	 and	
nCorrectors)	 	
	
A	 smaller	 time	 step	 may	 be	 needed	 in	 the	 first	 iterations	 to	 maintain	 solver	 stability.	 	 First	
time	 steps	 also	 may	 take	 longer	 to	 converge	 so	 do	 not	 be	 alarmed.	 	
	
If	 you	 are	 interested	 in	 the	 initial	 solution,	 start	 using	 a	 high	 order	 discretization	 scheme,	 a	
tight	 convergence	 and	 the	 right	 flow	 properties.	 	
	
If	 you	 use	 the	 first	 order	 Euler	 scheme,	 try	 to	 use	 a	 Courant	 number	 less	 than	 1.0	 and	
preferably	 in	 the	 order	 of	 0.5	 in	 order	 to	 keep	 temporal	 diffusion	 to	 a	 minimum.	 	 	
	
First	 order	 schemes	 are	 robust	 and	 second	 order	 schemes	 are	 accurate	
	
low	 residuals	 do	 not	 automatically	 mean	 a	 correct	 solution,	 nor	 do	 high	 residuals	 indicate	 a	
wrong	 solution.	 	 Higher	 order	 discretization	 schemes	 will	 often	 have	 higher	 final	 residuals	
than	 first	 order,	 but	 are	 still	 almost	 always	 better	 than	 the	 first	 order	 solution.	 	 	
	
OpenFoam	 works	 best	 with	 hexahedral	 meshes.	 	 Change	 in	 cell	 size	 should	 be	 smooth.	 	 In	
boundary	 layers	 quad,	 hex,	 prism/wedge	 cells	 are	 preferred	 over	 triangles,	 tetrahedral	 or	
pyramids.	 	 	
	
	
functionObject	 can	 be	 used	 to	 monitor	 the	 simulations.	 	 	
You	 can	 use	 the	 utility	 "execFlowFunctionObjects"	 	 which	 will	 calculate	 the	 quantities	 from	
saved	 solutions.	 	 functionObject	 is	 added	 and	 defined	 in	 the	 "controlDict"	 file.	 	 	
	
Meshing	 Information	

1. Mesh	 Orthogonality	 =	 the	 angle	 that	 the	 surface	 vector	 between	 two	 cells	 makes	
with	 the	 line	 going	 between	 the	 two	 cell	 centers	 that	 share	 that	 face.	

a. Plays	 a	 very	 big	 roll	 in	 mesh	 quality	 and	 fvSchemes	 choices	 (see	 above)	
b. Affects	 the	 gradient	 of	 the	 face	 center	
c. Adds	 diffusion	 to	 the	 solution	

2. Mesh	 Skewness	 =	 the	 distance	 between	 the	 center	 of	 the	 surface	 of	 the	 face	 and	 the	
point	 on	 the	 line	 (which	 connecting	 the	 two	 cell	 centers	 that	 share	 that	 face)	

	 136	

intersecting	 with	 the	 face	 surface	 (see	 the	 delta	 symbol	 on	 the	 attached	 picture)

	
a. Affects	 the	 interpolation	 of	 the	 cell	 centered	 quantities	 to	 the	 face	 center	
b. Adds	 diffusion	 to	 the	 solution	

3. Mesh	 Aspect	 Ratio	 =	 	 the	 ratio	 between	 the	 longest	 and	 shortest	 side	 of	 a	 cell.	 	 	
a. Large	 AR	 are	 okay	 if	 gradients	 in	 the	 long	 direction	 are	 small.	 	 	
b. High	 AR	 smear	 gradients.	 	

4. Mesh	 Smoothness	 =	 is	 the	 expansion	 or	 change	 rate	 of	 cell	 size	 between	 adjacent	
cells.	 	 in	 general	 you	 do	 not	 want	 any	 length	 to	 increase	 by	 more	 than	 20%	 of	 its	
neighbor's	 size.	 	 (l2/l1<1.2)	

a. Adds	 diffusion	 to	 the	 solution	
	
	
Will	 want	 to	 test	 out	 "renumberMesh"	 and	 "refineWallLayer"	

	 137	

OpenFOAM Compile Solver
Openfoam	 Compile	 Solver	
By:	 John	 Mersch	 IV	
	
Steps	 to	 Compile	 Solver:	
	
Making	 the	 New	 Solver	

1. First	 Copy	 a	 solver's	 folder	 to	 a	 location	 for	 editing	
2. Edit	 the	 solver	 files	 the	 SolverName.C	 and	 in	 the	 Make	 subfolder	 the	 file	 script	 called	

"files".	
a. In	 the	 "files"	 script	

i. 	 first	 at	 the	 top	 line	 put	 the	 new	 solver	 name	 as	 "solverName.C"	 	 [if	
your	 new	 solver	 is	 called	 Geroge.C	 then	 it	 would	 go	 right	 there]	

ii. Second	 the	 file	 will	 read	 "EXE	 =	 $(FOAM_APPBIN)/icoFoam"	 (or	 the	
solver	 you	 coppied	 is	 that	 last	 word).	 	 you	 will	 change	 it	 to	 "EXE	 =	
$(FOAM_USER_APPBIN)/SolverName"	 (where	 SolverName	 is	 the	
same	 name	 used	 in	 the	 first	 line	

b. in	 the	 SolverName.C	 script	 you	 first	 need	 to	 change	 the	 name	 of	 the	
document	 and	 then	 make	 your	 changes	 to	 the	 solver.	 	 Be	 sure	 to	 be	 working	
off	 the	 newest	 version.	 	

	
The	 next	 phase	 is	 generating	 the	 directory,	 if	 you	 already	 have	 a	 $WM_PROJECT_USER_DIR	
then	 skip	 the	 next	 step.	 	

1. mkdir	 -‐p	 $WM_PROJECT_USER_DIR/applications/solvers	
2. cp	 -‐r	 (pathway	 to	 the	 folder	 of	 the	 solver	 files	 you	 just	 made)	

$WM_PROJECT_USER_DIR/applications/solvers/SolverName	 where	 SolverName	 is	
the	 name	 of	 your	 new	 solver	

	
	
Now	 Proceed	 to	 compiling	 steps	

1. cd	 $WM_PROJECT_USER_DIR/applications/solvers/SolverName	
2. remove	 the	 old	 dependency	 file	 (the	 file	 ending	 is	 ".dep"	 and	 has	 the	 name	 of	 the	 old	

solver)	
3. delete	 the	 old	 binaries	 subdirectory	 "rm	 -‐rf	 linuxGccDP0pt"	 (it	 is	 in	 the	 make	

directory.	 	 you	 need	 to	 ender	 that	 directory	 with	 "cd	 make"	 or	 just	 manually	 delete	
the	 file	

4. "wmake"	 to	 compile	 	
5. "ls	 $FOAM_USER_APPBIN"	 to	 check	 to	 see	 that	 the	 new	 solver	 has	 compiled.	 	

	 138	

VirtualBox Instructions
Download	 and	 install	 VirtualBox	
Download	 the	 operating	 system	 you	 want	 to	 use	
Go	 through	 instructed	 set	 up	
Once	 Ubuntu	 is	 installed	 you	 will	 need	 to	 then	 install	 Guest	 Additions	 under	 the	 Devices	
tab.	 	 	
Allow	 it	 to	 run.	
Then	 click	 on	 the	 folder	 share	 button	 on	 the	 bottom	 right	 (the	 image	 is	 of	 a	 folder)	
click	 on	 the	 other	 button	 and	 then	 browse	 for	 your	 desired	 folder	 you	 want	 to	 link	 with	 the	
Virtual	 machine	
then	 under	 the	 terminal	 type	 "sudo	 passwd"	 and	 type	 the	 new	 root	 password	 twice	
then	 	

1. Open a terminal.
2. Enter "su -" (without quotes), hit Enter.
3. Enter the root password, hit Enter.
4. Type in "usermod -a -G vboxsf username", without quotes, replacing

username with the user you want to add to the group, hit Enter.
5. You may have to reboot to remount the share, the easiest way to do

this is probably to reboot the VM.

and	 now	 you	 can	 access	 the	 folder	 that	 is	 shared.	
	 	

	 139	

Git Guide Summary
git	 Git	 Guide	 Summary	

1. Initializing	 GIT	
a. Type	 “git	 init”	 in	 the	 terminal	

2. “git	 status”	
a. current	 status	 of	 projects	

3. “git	 add”	
a. 	 using	 plane	 “git	 add”	 will	 track	 a	 file,	 while	 “git	 add	 <file>	 ….”	 Will	 add	 …	 as	 a	

comment	 onto	 the	 <file>	 for	 you	 to	 see	 when	 you	 use	 “git	 status”	
b. when	 it	 is	 tracked	 it	 will	 be	 tracking	 the	 changes	 to	 the	 file	
c. 	

4. Staging	 Area	
5. “git	 rm	 –cached	 <file>…”	 to	 unstage	
6. “git	 commit	 –m	 “…”	 to	 record	 comments	 on	 changes	
7. can	 use	 the	 wild	 card	 function	 ‘*.txt’	 for	 the	 files	
8. “git	 log”	 gives	 all	 the	 changes	 and	 commands	 in	 order	 from	 most	 recent	 to	 oldest	
9. remote	 git	 repository	
10. “git	 remote	 add	 <name	 or	 remote	 space>	 <url>”	
11. “git	 push	 –u	 origin	 master”	 adding	 the	 “-‐u”	 tells	 it	 to	 remember	 the	 place	 so	 next	

time	 we	 can	 just	 run	 “git	 push”	 and	 “master”	 is	 the	 default	 local	 branch	 name	
12. “git	 pull	 origin	 master”	 pulls	 back	 the	 files	 that	 were	 pushed	 and	 allows	 us	 to	 see	 the	

changes.	
13. “get	 diff”	 allows	 us	 to	 see	 what’s	 different	 from	 our	 last	 commit,	 and	 “get	 diff	 HEAD”	

acts	 as	 a	 pointer	 and	 does	 “get	 diff”	 on	 the	 most	 recent	 commit	
14. “git	 reset	 <filepath/filename>”	 unstages	 a	 file	
15. “git	 checkout	 -‐-‐	 <file>	 removes	 all	 changes	 since	 the	 last	 commit	 for	 the	 file.	
16. For	 when	 working	 on	 debugs	 or	 a	 feature,	 its	 often	 best	 to	 create	 a	 copy	 to	 work	 on.	 	

This	 is	 done	 by	 “git	 branch	 <branch	 name>”	 and	 once	 perfected	 can	 be	 merged	 with	
the	 master	 branch	

17. Can	 create	 and	 visit	 a	 branch	 all	 at	 once	 by	 “git	 checkout	 –b	 <branch	 name>”	
18. You	 can	 switch	 branches	 using	 the	 “git	 checkout	 <branch>”	 command	
19. “git	 rm	 ‘.txt’”	 will	 remove	 all	 the	 files	 and	 stage	 the	 removal	 of	 files	 in	 the	 current	

directory	
20. “git	 rm	 ‘<file	 name>’”	 will	 remove	 that	 given	 file	
21. “git	 rm	 –r	 folder_of_cats”	 will	 remove	 all	 the	 files	 and	 folders	 in	 the	 given	 directory.	

It	 might	 be	 “git	 rm	 –r	 <directory	 name>”	
22. go	 back	 to	 the	 master	 directory.	 	 Then	 “git	 merge	 <branch	 name>”	 merges	 the	

branch	 with	 the	 master	 section	 (might	 also	 work	 for	 higher	 order	 branching)	
23. after	 merging	 to	 delete	 a	 branch	 “git	 branch	 –d	 <branch	 name>”	

	
1) Facts	 about	 Git	

a) Git	 saves	 an	 entire	 copy	 of	 everything	 on	 each	 computer	 using	 it	 which	 is	 great	 in	
the	 event	 of	 corruption	

b) You	 can	 comment	 while	 not	 connected	 to	 the	 internet	 and	 update	 it	 when	 you	 can	
connect	 to	 the	 internet	

	 140	

c) Very	 difficult	 to	 lose	 data	 so	 long	 as	 your	 remember	 to	 push	 after	 commenting	 	
d) Three	 main	 stages	 the	 files	 can	 reside	 in:	 committed,	 modified,	 staged	

i) Committed	 means	 that	 the	 data	 is	 safely	 stored	 in	 your	 local	 database	
ii) Modified	 means	 you	 have	 changed	 the	 file	 but	 have	 not	 committed	 it	 to	 your	

database	
iii) Staged	 means	 you	 have	 marked	 a	 modified	 file	 in	 its	 current	 version	 to	 go	 into	

your	 next	 commit	 snapshot	
e) The	 git	 directory	 is	 where	 Git	 stores	 the	 metadata	 and	 object	 database	 for	 the	

project	
f) The	 working	 directory	 is	 a	 single	 checkout	 of	 one	 version	 of	 the	 project.	 	 They	 files	

are	 placed	 on	 the	 disk	 for	 use	 or	 modify.	
i) I	 will	 want	 to	 be	 careful	 that	 when	 I	 use	 these	 I	 don’t	 accidently	 add	 all	 the	 run	

files	 to	 the	 git	 repository	 or	 it	 will	 be	 bogged	 down	
g) The	 staging	 area	 is	 where	 you	 place	 files	 to	 be	 committed	 together	

2) Git	 Workflow	
a) You	 modify	 files	 in	 your	 working	 directory	
b) You	 stage	 the	 files,	 adding	 snapshots	 of	 them	 to	 your	 staging	 area.	
c) You	 do	 a	 commit,	 which	 takes	 the	 files	 as	 they	 are	 in	 the	 staging	 area	 and	 stores	 that	

snapshot	 permanently	 to	 your	 Git	 directory	
3) Help	 options	

a) “git	 help	 <verb>”	
b) “git	 <verb>	 -‐-‐help”	
c) “man	 git-‐<verb>”	

4) 	
	
	
Setting	 up	 Git	
1) Setting	 up	 your	 identity	

a) “git	 config	 -‐-‐global	 user.name	 “<your	 name>”	
b) “git	 config	 -‐-‐global	 user.email	 <your	 email>”	
c) “git	 config	 -‐-‐global	 core.editor	 <txt	 file	 editor>”	
d) “git	 config	 -‐-‐global	 merge.tool	 vimdiff”	
e) “git	 config	 -‐-‐list"	 lists	 current	 settings	

2) Initializing	 a	 Repository	 in	 and	 Existing	 Directory	
a) “git	 add	 <files>”	 can	 do	 whole	 folders	
b) “git	 commit	 –m	 ‘<project	 description/initial	 project	 version>’”	

3) Cloning	 an	 Existing	 Repository	
a) “git	 clone	 <url>”	

4) How	 it	 works	
a) So	 while	 you	 edit	 files	 on	 the	 desktop	 it	 keeps	 track	 of	 changes	 to	 files	 and	 the	 like.	 	

So	 its	 really	 odd	 in	 that	 sense.	 	 Not	 sure	 quite	 how	 well	 it	 will	 pair	 with	 Globius,	 and	
Janus,	 but	 we	 shall	 see.	

5) It	 is	 important	 that	 after	 editing	 a	 file	 you	 use	 “git	 add”	 again	 so	 the	 newest	 version	
from	 the	 directory	 is	 staged	 for	 comment	

6) To	 ignore	 a	 file	 “cat	 	 >	 .gitignore”	 followed	 by	 what	 you	 want	 it	 to	 ignore.	 	 Examples	 are	
“*~”	 go	 ignore	 any	 back	 up	 of	 files	

	 141	

a) There	 is	 a	 further	 section	 on	 ignore,	 but	 it	 looks	 like	 you’d	 need	 a	 better	 cleaned	
desktop	 anyway	

7) “git	 diff”	 shows	 all	 the	 changes	 that	 you	 made	 with	 break	 ups	 for	 need	 to	 be	 commit	 and	
staged	 vs.	 unstagged.	 	 Space	 bar	 to	 scroll,	 and	 q	 to	 end	 the	 examination	 and	 get	 back	 to	
normal	 terminal	 prompt	

8) to	 commit	 files	 can	 use	 “git	 commit”	 which	 allows	 you	 to	 then	 type	 stuff	 with	 #	 lines	
being	 ignored.	

9) “git	 commit	 -‐a"	 gives	 takes	 all	 the	 tracked	 files	 that	 have	 been	 modified	 and	 stages	 and	
commits	 them.	 	 Can	 also	 do	 “git	 commit	 –a	 –m	 ‘<description>’”	 as	 well.	

	
	
git	 remote	 add	 origin	
https://JM4Boulder@bitbucket.org/JM4Boulder/jm4_firstreposity.git	
	

24. “git	 remote	 add	 <name	 or	 remote	 space>	 <url>”	
25. “git	 push	 –u	 origin	 master”	 adding	 the	 “-‐u”	 tells	 it	 to	 remember	 the	 place	 so	 next	

time	 we	 can	 just	 run	 “git	 push”	 and	 “master”	 is	 the	 default	 local	 branch	 name	
	
git	 add	 <folder>*	
git	 commit	 -‐m	 ‘<message>’	
git	 push	 -‐u	 origin	 master	
	
git	 init	 (only	 need	 be	 done	 once)	 	
cd	 repos/jm4_firstreposity	
git	 add	 <folder>	
git	 commit	 -‐a	 -‐m	 '<message>'	
git	 push	
	
Example	 of	 Successful	 Running	
rl1-1-223-93-dhcp:jm4_firstreposity Dragon$ git add Case022
rl1-1-223-93-dhcp:jm4_firstreposity Dragon$ git commit -a -m "Adding
Case 22 to the git Repository"
[master f47070d] Adding Case 22 to the git Repository
 66 files changed, 6980930 insertions(+)
 create mode 100644 Case022/.DS_Store
 create mode 100644 Case022/0/.DS_Store
 create mode 100644 Case022/0/U
 create mode 100644 Case022/0/U~
 create mode 100755 Case022/0/p
 create mode 100755 Case022/0/p~
 create mode 100644 Case022/2.99994e-06/U
 create mode 100644 Case022/2.99994e-06/p
 create mode 100644 Case022/2.99994e-06/phi
 create mode 100644 Case022/2.99994e-06/uniform/time
 create mode 100644 Case022/A0_26Case90Degrees.geo
 create mode 100644 Case022/Parallel.sh
 create mode 100644 Case022/Parallel2.sh

	 142	

 create mode 100644 Case022/RunInstructions.txt
 create mode 100644 Case022/constant/.DS_Store
 create mode 100644 Case022/constant/polyMesh/.DS_Store
 create mode 100644 Case022/constant/polyMesh/boundary
 create mode 100644 Case022/constant/polyMesh/cellZones
 create mode 100644 Case022/constant/polyMesh/faceZones
 create mode 100644 Case022/constant/polyMesh/faces
 create mode 100644 Case022/constant/polyMesh/neighbour
 create mode 100644 Case022/constant/polyMesh/owner
 create mode 100644 Case022/constant/polyMesh/pointZones
 create mode 100644 Case022/constant/polyMesh/points
 create mode 100644 Case022/constant/polyMesh/sets/inside
 create mode 100755 Case022/constant/transportProperties
 create mode 100755 Case022/constant/transportProperties~
 create mode 100644 Case022/dynamicCode/.DS_Store
 create mode 100644 Case022/dynamicCode/CoutteBC/Make/SHA1Digest
 create mode 100644
Case022/dynamicCode/CoutteBC/Make/darwinIntel64Gcc46DPOpt/dependencies
 create mode 100644
Case022/dynamicCode/CoutteBC/Make/darwinIntel64Gcc46DPOpt/dependencyFi
les
 create mode 100644
Case022/dynamicCode/CoutteBC/Make/darwinIntel64Gcc46DPOpt/dontIncludeD
eps
 create mode 100644
Case022/dynamicCode/CoutteBC/Make/darwinIntel64Gcc46DPOpt/files
 create mode 100644
Case022/dynamicCode/CoutteBC/Make/darwinIntel64Gcc46DPOpt/filesMacros
 create mode 100644
Case022/dynamicCode/CoutteBC/Make/darwinIntel64Gcc46DPOpt/includeDeps
 create mode 100644
Case022/dynamicCode/CoutteBC/Make/darwinIntel64Gcc46DPOpt/localObjectF
iles
 create mode 100644
Case022/dynamicCode/CoutteBC/Make/darwinIntel64Gcc46DPOpt/objectFiles
 create mode 100644
Case022/dynamicCode/CoutteBC/Make/darwinIntel64Gcc46DPOpt/options
 create mode 100644
Case022/dynamicCode/CoutteBC/Make/darwinIntel64Gcc46DPOpt/sourceFiles
 create mode 100644 Case022/dynamicCode/CoutteBC/Make/files
 create mode 100644
Case022/dynamicCode/CoutteBC/Make/linux64GccDPOpt/dependencies
 create mode 100644
Case022/dynamicCode/CoutteBC/Make/linux64GccDPOpt/dependencyFiles
 create mode 100644
Case022/dynamicCode/CoutteBC/Make/linux64GccDPOpt/dontIncludeDeps
 create mode 100644
Case022/dynamicCode/CoutteBC/Make/linux64GccDPOpt/files
 create mode 100644
Case022/dynamicCode/CoutteBC/Make/linux64GccDPOpt/filesMacros

	 143	

 create mode 100644
Case022/dynamicCode/CoutteBC/Make/linux64GccDPOpt/fixedValueFvPatchFie
ldTemplate.o
 create mode 100644
Case022/dynamicCode/CoutteBC/Make/linux64GccDPOpt/includeDeps
 create mode 100644
Case022/dynamicCode/CoutteBC/Make/linux64GccDPOpt/localObjectFiles
 create mode 100644
Case022/dynamicCode/CoutteBC/Make/linux64GccDPOpt/objectFiles
 create mode 100644
Case022/dynamicCode/CoutteBC/Make/linux64GccDPOpt/options
 create mode 100644
Case022/dynamicCode/CoutteBC/Make/linux64GccDPOpt/sourceFiles
 create mode 100644 Case022/dynamicCode/CoutteBC/Make/options
 create mode 100644
Case022/dynamicCode/CoutteBC/fixedValueFvPatchFieldTemplate.C
 create mode 100644
Case022/dynamicCode/CoutteBC/fixedValueFvPatchFieldTemplate.H
 create mode 100644
Case022/dynamicCode/CoutteBC/fixedValueFvPatchFieldTemplate.dep
 create mode 120000
Case022/dynamicCode/CoutteBC/lnInclude/fixedValueFvPatchFieldTemplate.
C
 create mode 120000
Case022/dynamicCode/CoutteBC/lnInclude/fixedValueFvPatchFieldTemplate.
H
 create mode 100644 Case022/dynamicCode/CoutteBC/lnInclude/uptodate
 create mode 100644
Case022/dynamicCode/platforms/linux64GccDPOpt/lib/libCoutteBC_feee7e64
a26080b770b89a0cc77aa23034bd0fdb.so
 create mode 100755 Case022/system/controlDict
 create mode 100644 Case022/system/decomposeParDict
 create mode 100644 Case022/system/decomposeParDict~
 create mode 100755 Case022/system/fvSchemes
 create mode 100755 Case022/system/fvSchemes~
 create mode 100755 Case022/system/fvSolution
 create mode 100755 Case022/system/fvSolution~
rl1-1-223-93-dhcp:jm4_firstreposity Dragon$ git push
warning: push.default is unset; its implicit value is changing in
Git 2.0 from 'matching' to 'simple'. To squelch this message
and maintain the current behavior after the default changes, use:

 git config --global push.default matching

To squelch this message and adopt the new behavior now, use:

 git config --global push.default simple

See 'git help config' and search for 'push.default' for further
information.

	 144	

(the 'simple' mode was introduced in Git 1.7.11. Use the similar mode
'current' instead of 'simple' if you sometimes use older versions of
Git)

Counting objects: 60, done.
Delta compression using up to 8 threads.
Compressing objects: 100% (49/49), done.
Writing objects: 100% (59/59), 43.69 MiB | 1.34 MiB/s, done.
Total 59 (delta 5), reused 0 (delta 0)
To https://JM4Boulder@bitbucket.org/JM4Boulder/jm4_firstreposity.git
 3ce6fae..f47070d master -> master

Steps for Adding to Git repository

1. git add <file/folder>
2. git commit -a -m "comment"
3. git push

	
	
To	 put	 something	 on	 the	 GIT	 Repository	

1. place	 files	 and	 folders	 in	 the	 jm4_firstreposity	 folder	 in	 the	 repos	 folder	 in	 the	 user	
folders	 so	

a. /repos/jm4_firstreposity	
2. then	 go	 to	 the	 jm4_firstreposity	 folder	 in	 the	 terminal	
3. git	 add	 <folder(s)	 of	 interset>	
4. git	 commit	 -‐a	 -‐m	 "commit"	
5. git	 push	

	 145	

GMSH Janus Instillation Instructions
How to install GMSH on Janus for your use:
so when logging in, the first thing is to check to see what compiling nodes are being
used.
after doing (not quite sure how to check the compiling nodes—will make a note to ask
later)

but log on using janus-compile1 to 4 instead and then run or afterwards do ssh janus-
compile#

module load intel/intel-13.0.0
module load cmake/cmake-2.8.10.2
mkdir GMSH
wget http://geuz.org/gmsh/src/gmsh-‐2.8.3-‐source.tgz
tar -xzf gmsh-2.8.3-source.tgz
cd gmsh-2.8.3-source
cmake -DCMAKE_INSTALL_PREFIX=~/GMSH
make -j
make install
cd ../GMSH/bin/

and to view commands
./gmsh

	 146	

Derivation of Re

Figure A1: The impinging jet flow cell is divided into three regions. The black region is the inlet

where the first Reynolds' Number is derived. The middle gray region is where the bulk

Reynolds's Number is calculated. The light gray region is the exit zone and the Reynolds's

Number was not calculated.

Re1 =
QDH

υA
=
1.5 ⋅10−6m3 / s() 0.0168m()
1⋅10−6m2 / s() 2.2 ⋅10−4m2() = 114.54

For the second region the domain the hydraulic diameter and cross-area are broken down as

follows A =V / h and DH =
Do(y)− Di (y)()dy

0

h

∫
h

 where A is the average cross sectional area, V

is the volume and h is the height of domain. For the hydraulic diameter the annular duct

formation was used and then the hydraulic diameter was integrated and normalized to provide an

effective hydraulic diameter.

	 147	

Re2 =
Q

Do(y)− Di (y)()dy
0

h

∫
h

υV
h

=
Q Do(y)− Di (y)()dy

0

h

∫
υV

The integral is solved by use of the trapezoid summation approximation, which is an exact

solution. The volume portion is calculated using the cylinder volume formula and the conical

frustum formula.

Figure A2: A breakdown of domain along with lengths necessary for trapezoidal summation for

integral solution.

Re2 =
Q Do(y)− Di (y)()dy

0

h

∫
υV

=
1.5 ⋅10−6m3 / s() 0.0102m2()
1⋅10−6m2 / s() 0.00209m3() = 7.3

	University of Colorado, Boulder
	CU Scholar
	Spring 1-1-2015

	Simulations and Experiments for Fouling Mitigation on Patterned Nano-Imprint Lithography Ultra Filtration Membranes
	John Mersch IV
	Recommended Citation

	tmp.1494517380.pdf.2v6kn

