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Uncertainty quantification (UQ) is an emerging research area that aims to develop methods

for accurate predictions of quantities of interest (QoI’s) from complex engineering systems,

as well as quantitative validation of the associated mathematical models, with presence

of random inputs. To perform a comprehensive UQ analysis, polynomial chaos expansion

(PCE) is now a commonly used approach in which the QoI is represented in a series of

multi-variate polynomials that are orthogonal with respect to the measure of the inputs.

Traditional methods for PCE, such as Monte Carlo, stochastic collocation, least-squares

regression, are known to suffer from either slow convergence rate or rapid growth of the

computational cost (as the number of random inputs increases) in identifying the PCE

coefficients. When the PCE coefficients are sparse, i.e., many of them are negligible, it has

been shown that compressive sampling is an effective technique to identify the coefficients

with smaller number of system simulations.

In the context of compressive sampling, this thesis presents new approaches which

improve the accuracy of identifying PCE coefficients, and therefore the PCE itself. In de-

tail, a weighted �1-minimization including a priori information about the PCE coefficients,

a bi-fidelity �1-minimization, a bi-fidelity orthogonal matching pursuit (OMP), and an �1-

minimization including the derivatives of QoI with respect to the random inputs are pro-

posed. Both theoretical analyses and numerical experiments are presented to demonstrate

that all the proposed approaches reduce the cost of computing a PCE.

For a QoI whose PCE with respect to the measure of the underlying random inputs is

not sparse, a polynomial basis design is proposed where, in addition to the coefficients, the

basis functions are also learned from the simulation data. The approach has been empirically
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shown to find the optimal basis which makes the PCE converge more rapidly, and enhances

the accuracy of the PCE approximation.
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CHAPTER 1

INTRODUCTION AND BACKGROUND

1.1 Uncertainty Quantification (UQ)

In the world of modeling and simulation of complex engineering systems, such as those

exhibiting multiple physics and/or multiple scales, two stark realities exist: First, all mod-

els are approximations of their target phenomena and, second, uncertainties exist due to

both lack of knowledge and inherent variability. Realistic analysis and design of such sys-

tems, therefore, require not only a deep understanding of the underlying physics and their

interactions but also recognition of modeling errors, uncertainties, and their influences on

quantities of interest (QoI’s). The means to formally assess the predictive capability of a

given simulation model has come to be known as model Verification and Validation (V&V).

Uncertainty quantification (UQ) [2, 3, 4] enters this process through a number of avenues:

(1) UQ tools are required to assimilate parameters of mathematical models (or often mod-

els themselves) based on their sparse and limited observations, (2) A challenging task is to

efficiently propagate model uncertainties to estimate uncertainties in response quantities of

interest (uncertainty propagation), and (3) UQ techniques are employed in the validation

process to meaningfully compare model predictions with often sparse and limited experimen-

tal data. There are two types of uncertainty: epistemic and aleatory. Epistemic uncertainty

is a potential deficiency that is due to a lack of knowledge, which can arise from assumptions

introduced in the derivation of the mathematical model, for instance, turbulence model as-

sumptions. Epistemic uncertainty can be reduced by increasing the knowledge about the
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system, such as a more accurate physical model or more experimental investigation. Aleatory

uncertainty is the intrinsic variability present in the system. Unlike epistemic uncertainty,

aleatory uncertainty cannot be reduced, and it can only be better characterized with ad-

ditional information. Research on UQ has received recent attention in a variety research

domains, such as computational fluid dynamics (CFD) [3, 5, 6, 7], computational structural

mechanics [8, 9, 10], and fluid structure interaction (FSI) [11, 12, 13].

There are two means to propagate uncertainty: intrusive [14] and non-intrusive [15, 16,

17, 18]. In this thesis, non-intrusive methods are adopted as they employ the legacy codes

as a black box to propagate uncertainty.

1.2 Polynomial Chaos Expansion (PCE)

Probability is a natural mathematical framework well suited for describing uncertainty, and

so we assume that the uncertain system inputs are described by a vector of independent

random variables, Ξ, defined on the probability space (Ω,F ,P), which is formed by the

product of d probability spaces, (R,B(R),Pk) corresponding to each coordinate of Ξ, denoted

by Ξk; here B(·) represents the Borel σ-algebra. We further assume that the random variable

Ξk is continuous and distributed according to the density ρk implied by Pk. Note that this

entails Ω = R
d, F = B(Rd), that each Ξk is independently distributed, and that the joint

distribution for Ξ, denoted by ρ, equals the tensor product of the marginal distributions ρk.

Spectral methods [3, 4] are commonly utilized to represent the QoI, denoted by u(Ξ),

as a function of Ξ, and in this work, we employ polynomial chaos expansions (PCEs) [19, 20].

Specifically, for each ρk we define {ψik}ik≥0 to be the complete set of orthonormal polynomials

of degree ik with respect to the weight function ρk [21, 20]. As a result, the multivariate

orthonormal polynomials for Ξ are given by the products of the univariate orthonormal

polynomials,

ψi(Ξ) =

d∏
k=1

ψik(Ξk), (1.1)
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where each ik, representing the kth coordinate of the multi-index i, is a non-negative inte-

ger. With these orthogonal polynomials, we can represent the QoI with finite variance as

a function of Ξ, in the form of spectral expansion, consisting of orthogonal polynomials,

{ψi(Ξ)}:
u(Ξ) =

∑
i∈I

ciψi(Ξ) , (1.2)

where the set of d-dimensional multi-index I = {(i1, . . . , id) : ik ∈ N∪{0}}. For computation,

we truncate the expansion in (1.2) to the set of P basis functions associated with the subspace

of polynomials of total order not greater than p, that is
∑d

k=1 ik ≤ p. For convenience, we

also order these P basis functions so that they are indexed by {1, · · · , P} as opposed to the

vectorized indexing in (1.1). The basis set {ψj}Pj=1 has the cardinality

P =
(d+ p)!

d!p!
. (1.3)

For the interest of presentation, we interchangeably use both notations for representing PCE

basis. With the latter notation, the PCE in (1.2) and its truncation are then defined by

u(Ξ) =

∞∑
j=1

cjψj(Ξ) ≈
P∑

j=1

cjψj(Ξ). (1.4)

Though u is an arbitrary function in L2(Ω,P), we are limited to an approximation in the

span of our basis polynomials, and the error incurred from this approximation is referred as

truncation error.

As the the PCE basis functions are orthogonormal,

∫
Γ

ψm(ξ)ψn(ξ)ρ(ξ)dξ = δmn, (1.5)

where δmn is the Kronecker delta, the coefficients may be computed by non-intrusive spectral

projection (NISP) [3], which projects u(Ξ) onto the basis function ψj(Ξ) such that

cj =

∫
Γ

u(Ξ)ψj(Ξ)ρ(Ξ)dΞ. (1.6)
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Assuming that for each k, ρk is known a priori, in Chapter 2-4, our study concentrates

on the cases that probability densities for ρk are uniform and Gaussian; the correspond-

ing polynomial bases are, respectively, Legendre and Hermite polynomials. In addition, in

Chapter 5, Beta probability density and Jacobi polynomials are also employed. We note

that there are more PCE basis functions and measure of Ξ could be utilized [20], depending

on the given problems.

1.3 Problem Setup

Let the random vector Ξ characterize the input uncertainties, and we consider the solution

of a partial differential equation defined on a bounded Lipschitz continuous domain D ⊂ R
D,

D ∈ {1, 2, 3}, with boundary ∂D. The uncertainty implied by Ξ may be represented in

one or many relevant parameters, e.g., the diffusion coefficient, boundary conditions, and/or

initial conditions. Letting L, I, and B depend on the physics of the problem being solved,

the solution u satisfies the three constraints

L(x, t,Ξ; u(t,x,Ξ)) = 0, x ∈ D,

I(x, 0,Ξ; u(0,x,Ξ)) = 0, x ∈ D,

B(x, t,Ξ; u(t,x,Ξ)) = 0, x ∈ ∂D.

(1.7)

In this work, we assume that conditioned on the ith random realization of Ξ, denoted

by ξ(i), the numerical solution to (1.7) may be calculated by a fixed deterministic solver;

for some of our examples we use the finite element solver package FEniCS [22]. For any

fixed x0, t0, our objective is to reconstruct the solution u(x0, t0,Ξ) using N realizations

{u(x0, t0, ξ
(i))}. For brevity we suppress the dependence of u(x0, t0,Ξ) and {u(x0, t0, ξ

(i))}
on x0 and t0, and simply write them as u(Ξ) and {u(ξ(i))}, respectively.

We use the realized samples ξ(i), i = 1, . . . , N , of Ξ to evaluate the PCE basis and

identify a corresponding solution u(ξ(i)) to (1.7). This evaluated PCE basis forms a row of

Ψ ∈ R
N×P , that is Ψ(i, j) = ψj(ξ

(i)). The corresponding solution u(ξ(i)) is the associated
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element of the vector u. Given these notations, PCE in (1.4) with these realized samples

can be written as

u = Ψc, (1.8)

where vector c ∈ R
P consist of PCE coefficients cj , j = 1, . . . , P . We are then faced with

identifying the vector of PCE coefficients c in (1.8).

1.4 Numerical Methods for PCE

To calculate cj in (1.6) numerically, sampling methods including Monte Carlo simulation [23]

and pseudo-spectral stochastic collocation [24, 25, 26, 27] may be applied. In the following

sections, these methods are briefly reviewed.

1.4.1 The Monte Carlo Method

The Monte Carlo method is a straightforward numerical technique. In the Monte Carlo

method, a sequence realizations, ξ(1), ξ(2), . . . , ξ(N), is sampled according to the probability

distribution of Ξ. Deterministic simulations are performed for each sampled ξ(i) to obtain

the realizations of the QoI, u(ξ(i)). The empirical integrals (1.6) of u may be calculated to

approximate cj,

ĉj =
1

N

N∑
i=1

u(ξ(i))ψj(ξ
(i)). (1.9)

As the number of samples increases, these empirical integrals converges to the exact values

asymptotically, i.e.,

lim
N→∞

ĉj = cj . (1.10)

The most significant advantage of the Monte Carlo method is that it is naturally

insensitive to the dimensionality of the random input space, and does not suffer from the

curse of dimensionality. Meanwhile, as different realizations do not depend on each other,

the Monte Carlo method is inherently parallelable. In addition, the Monte Carlo method is

robust, due to their simplicity. However, the major drawback of the Monte Carlo method is
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its slow convergence rate. The rate of convergence of (1.10) is governed by the central limit

theorem, and is of the order of 1/
√
N without an exception. The implication of this slow

convergence is high computational cost, or relatively large approximation error. Due to this

limitation, the Monte Carlo method can only be applied when the desired accuracy is not

high. If an accurate approximation of the QoI is desirable, using the Monte Carlo method

can be extremely computationally costly.

1.4.2 Stochastic Collocation

The idea of stochastic collocation is to approximate the integral (1.6) by quadrature [28, 29].

According to the probability distribution of random variables Ξ, stochastic collocation selects

a multi-dimensional grid ξ(1), ξ(2), . . . , ξ(Q), and approximate cj by

ĉj =

Q∑
i=1

u(ξ(i))w(i), (1.11)

where the weights w(i) > 0 depend on the probability density function ρ(Ξ).

Commonly used multi-dimensional grid types include tensor grids and Smolyak sparse

grids are constructed as nested one-dimensional grids following rules such as trapezoidal and

Clenshaw-Curtis rules. The one-dimensional quadrature grid (such as Gauss-Legendre and

Gauss-Hermite grid) points and weights can be computed by solving an eigenvaule problem.

The main advantage of stochastic collocation is a fast convergence. The error in ĉj

decreases approximately exponentially as the quadrature level in each dimension (if a tensor

product grid is used) or the total level (if a sparse grid is used) increases. Similar to the

Monte Carlo method, stochastic collocation solves a deterministic problem at each grid

point. However stochastic collocation suffers from the curse of dimensionality. When the

dimensionality d and the order p are both low, stochastic collocation performs well, but

it may become impractical for high-dimensional random inputs as the cost asymptotically

grows exponentially as d or p increases.
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1.4.3 Least-squares Regression

Least-squares regression [30, 31, 32] can be employed to identify the PCE coefficients c in

(1.8), by solving the following minimization problem,

ĉ = argmin
c
‖Ψc− u‖22, (1.12)

By setting the derivative of ‖Ψc − u‖22 with respect to c to be 0, it can be shown that if

ΨTΨ is full-rank, the solution to (1.12) is

ĉ = (ΨTΨ)−1ΨTu. (1.13)

AsΨTΨ needs to be full-rank, it generally requires N > P solution realizations as a necessary

condition to achieve a stable approximation of c. Therefore, for large d or p, it may be

computationally expensive to solve (1.7) for N times, particularly when the deterministic

solver has high complexity.

1.4.4 Compressive Sampling

Compressive sampling (also known as compressive sensing or compressed sensing) is a signal

processing technique for efficiently acquiring and reconstructing a signal, by finding solutions

to underdetermined linear systems.

Conventional sampling methods follow the Nyquist/Shannon sampling theory [33], i.e.,

the sampling rate must be at least twice the highest frequency of the signal. Similarly, the

fundamental theorem of linear algebra suggests that the number of collected samples (mea-

surements) of a discrete finite-dimensional signal should be at least as large as its length (its

dimension) in order to ensure reconstruction. However, a new paradigm in approximation

theory has emerged, the so-called compressive sampling [34, 35], which states that sparse

signals can be recovered from what was previously believed to be highly incomplete measure-

ments. It has been successfully applied to a growing number of applications across a wide

spectrum of disciplines including (medical) imaging [36, 37, 38, 39], seismic data-acquisition
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[40, 41, 42], remote sensing [43, 44], and high-dimensional data analysis [45, 46], among

others.

In the context of UQ, a sparse signal is the QoI that leads to a sparse PCE represen-

tation [47].

Sparse PCE

As u(Ξ) has finite variance, the cj in (1.4) necessarily converge to zero, and if this

convergence is sufficiently rapid, then u(Ξ) may be accurately approximated by

u(Ξ) =
∑
j∈C

cjψj(Ξ) + ε, (1.14)

where the index set C ⊂ {1, . . . , P} has few elements, and the truncation error ε is small.

When (1.14) occurs we say that u(Ξ) admits an approximately sparse PCE. The length of

the set C is defined as the sparsity.

As the sparsity of the vector c defined in Section 1.3 implies the sparsity of the QoI, the

practical advantage of representing the QoI with a small number of basis functions motivate

a search for an approximate c supported on C, which has few non-zero entries [48, 49, 47,

50, 51, 52, 53]. We seek to identify the small subset C and the corresponding cj , therefore

to achieve an accurate reconstruction of u(Ξ) with a small number of samples, and so look

to techniques from the field of compressive sampling [54, 55, 34, 56, 57, 35, 58, 59, 60].

Compressive sampling seeks a solution c with minimum number of non-zero entries by

solving the optimization problem

P0,ε ≡ {argmin
c
‖c‖0 : ‖Ψc− u‖2 � ε}. (1.15)

Here ‖c‖0 is defined as the number of non-zero entries of c, and a solution to P0,ε directly

provides an optimally sparse approximation in that a minimal number of non-zero entries

are used to recover u to within ε in the �2 norm. In general, the cost of finding a solution to

P0,ε grows exponentially in P [60]. To resolve this exponential dependence, approaches such

as greedy methods and �1-minimization are employed.
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Orthogonal Matching Pursuit

Orthogonal matching pursuit (OMP) is one of the commonly used greedy algorithms,

and we employ it to approximate the solution to (P0,ε) [61, 62]. Starting from c(0) = 0

and an empty active column set of Ψ, at any iteration t, OMP identifies only one column

to be added to the active column set. The column is chosen such that the �2-norm of the

residual, ‖Ψc(t)−u‖2, is maximally reduced. Having specified the active column set, a least-

squares problem is solved to compute the solution c(t). The iterations are continued until

the error truncation tolerance ε is achieved. The following exhibit depicts a step-by-step

implementation of the OMP algorithm.

Algorithm 1 Orthogonal matching pursuit (OMP)

Set t = 0, c(0) = 0, and r(0) = u−Ψc(0).

Set the initial solution support index set J (0) = ∅.
while ‖u−Ψc(t)‖2 > ε: do

for all j 
∈ J (t): do

Evaluate ε(j) = ‖ψjαj − r(t)‖2, with αj = ψ
T
j r

(t)/‖ψj‖22.
end for

Set t = t+ 1.

Update the support index set J (t) = J (t−1) ∪ {argminj ε(j)}.
Solve for c(t) = argminc ‖u−Ψc‖2 subject to Support{c} = J t.

Update the residual r(t) = u−Ψc(t).

end while

Output the solution c = c(t).

Theoretical analyses have been provided to show that OMP is guaranteed to recover

the PCE coefficients in problem P0,0, which is done via the concept of mutual coherence.

The mutual coherence of a matrix Ψ ∈ R
N×P is defined [63] by

µ(Ψ) := max
1≤i,j≤P,i �=j

|ψT
i ψj|

‖ψi‖‖ψj‖ . (1.16)
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where ψi and ψj are two columns ofΨ. The mutual coherence is a measure of how orthogonal

a matrix is. For instance, when µ(Ψ) = 0, the matrix Ψ is unitary, while µ(Ψ) = 1, at least

two columns of Ψ are identical. For any given Ψ, 0 ≤ µ(Ψ) ≤ 1. Specially, for under-

determined case, N < P , the mutual coherence µ(Ψ) is strictly positive.

Following Theorem 6 in [60], we know that for problem (P0,0), where N < P , if a

solution c0 exists satisfying

‖c0‖0 < 1

2

(
1 +

1

µ(Ψ)

)
, (1.17)

OMP is guaranteed to recover c0 exactly. Furthermore, for problems with high-dimensional

random inputs, Corollary 7.4 in [62] and Theorem 3.1 in [64] show that a upper bound of

µ(Ψ) exists, and that µ(Ψ) is within this upper bound with a high probability, i.e.,

Prob [µ(Ψ) ≥ δ] ≤ 23/4P 2 exp

(
− Nδ2

2C32p

)
, (1.18)

where rows of Ψ are the p-order Legendre polynomial chaos basis, independently realized in

d > p i.i.d. uniform random variables Ξ, and the constant C ≈ 13.12.

From (1.18), we can see that if the number of realizations N is larger, or the bound δ

is higher, the mutual coherence is more tightly bounded, since the probability of µ(Ψ) ≥ δ

drops exponentially. In addition, for a fixed set of d and p, as N increases, the upper bound of

µ(Ψ) may decrease, which enables OMP to recover a solution with more non-zero elements.

�1 minimization

The convex relaxation of P0,ε based on �1-minimization, also referred to as basis pursuit

denoising (BPDN), has been proposed to approximate the solution to P0,ε [54, 55, 56, 34, 60].

Specifically, �1-minimization seeks to identify c by solving

P1,ε ≡ {argmin
c
‖c‖1 : ‖Ψc− u‖2 � ε} (1.19)

using convex optimization algorithms [54, 65, 66, 67, 68, 69, 70, 71]. In practice, P0,ε and P1,ε

may have similar solutions, and the comparison of the two problems has received significant

study, see, e.g., [60] and the references therein.
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Note in (1.19) the constraint ‖Ψc− u‖2 � ε depends on the observed ξ and u(ξ). As

a result, c may be chosen to fit the input data, and not accurately approximate u(ξ) for

unobserved realizations ξ. To avoid this situation, we determine ε by cross-validation [47].

To solve problem (P1,ε), the majority of available solvers for �1-minimization are based

on alternative formulations of (P1,ε), such as the �1-norm regularized least-squares problem

(QPλ) ≡
{
argmin

c

(
1

2
‖Ψc− u‖22 + λ‖c‖1

)}
, (1.20)

or the LASSO problem, [72],

(LSτ ) ≡ {argmin
c

1

2
‖Ψc− u‖22 : ‖c‖1 ≤ τ}. (1.21)

It can be shown that for an appropriate choice of scalars ε, λ, and τ , the problems (P1,ε),

(QPλ), and (LSτ ) share the same solution [73, 60, 74]. Numerous solvers based on the

active set [65, 75], interior-point continuation [76, 69] and projected gradient [66, 67, 77,

78, 79, 73, 80, 81] methods have been developed for solving the above formulations of the

�1-minimization problem.

In this dissertation, we adopt the Spectral Projected Gradient algorithm (SPGL1)

proposed in [73] and implemented in the MATLAB package SPGL1 [70] to solve the �1-

minimization problem (P1,ε) in (1.19). SPGL1 is based on exploring the so-called Pareto

curve, describing the tradeoff between the �2-norm of the truncation error ‖Ψc − u‖2 and

the �1-norm of the solution ‖c‖1, for successive solution iterations. At each iteration, the

LASSO problem (1.21) is solved using the spectral projected gradient technique with a

worst-case complexity of O(P lnP ) where P is the number of columns in Ψ. Given the error

tolerance ε, a scalar equation is solved to identify a value for τ such that the (LSτ ) solution

of (1.21) is identical to that of (P1,ε) in (1.19). Besides being efficient for large-scale systems

where Ψ may not be available explicitly, the SPGL1 algorithm is specifically effective for

our application of interest as the truncation error ‖Ψc− u‖2 is known only approximately.

To show that �1-minimization indeed finds a solution to P0,ε, we investigate the case

whose ε = 0. We let c0 be the solution to P0,0, whose sparsity is s := ‖c0‖0, and c1 be the
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solution to P1,0. It has been shown in [64, 82] that when

N ≥ C(1 + β)3ps log(P ), (1.22)

where C is non-negative constant,

Prob [c1 = c0] ≥ 1− 6

P
− 6e−β. (1.23)

From (1.22) and (1.23), we can deduce that as the number of realizations N becomes larger,

a higher probability �1-minimization achieves in recovering the coefficients c0.

1.5 Organization of the Thesis

Taking advantage of the sparse PCE and compressive sampling, the purpose of Chapters

2-4 is to develop the numerical methods for UQ, such that the QoI can be approximated

significantly more accurately or cost-efficiently. For the QoI’s that do not yield to sparse

PCEs with traditional polynomial basis functions associated with the measure of random

inputs, such as a quantity including sharp gradients or discontinuity, in Chapter 5 we seek

to design an optimal basis that enhance the sparsity of the corresponding PCE, within the

Jacobi polynomial family. The structure of this thesis is organized as follows:

In Chapter 2, we modify the standard �1-minimization algorithm, using a priori infor-

mation about the decay of the PCE coefficients, when available, and refer to the resulting

algorithm as weighted �1-minimization. We provide conditions under which we may guaran-

tee recovery using this weighted scheme. Numerical tests are used to compare the weighted

and non-weighted methods for the recovery of solutions to two differential equations with

high-dimensional random inputs: a boundary value problem with a random elliptic operator

and a 2-D thermally driven cavity flow with random boundary condition. When such a

priori information is not available, we propose an alternative approach in Chapter 3.

In Chapter 3, we investigate bi-fidelity approaches for PCE, in which computationally

economical low-fidelity solution is utilized to improve the surrogate approximation of a QoI.



13

PCE coefficients computed from low-fidelity solution is used as a priori information about

the high-fidelity PCE coefficients, resulting in an improved accuracy in recovering the QoI.

This a priori information is involved via weighted �1-minimization and a modified orthogonal

matching pursuit (OMP), which is proposed as bi-fidelity OMP. Numerical experiments are

provided to compare the bi-fidelity and standard methods, and they all show that bi-fidelity

approaches admits solution recovery at improved accuracy.

In addition to a priori-relative approaches, in Chapter 4 we studied gradient-enhanced

UQ, in which the derivatives of a QoI with respect to the uncertain parameters are utilized

to improve the surrogate approximation. In detail, we investigate a gradient-enhanced �1-

minimization, where derivative information is computed to accelerate the identification of the

PCE coefficients. For this approach, stability and convergence analysis are lacking, and thus

we address these here with a probabilistic result. In particular, with an appropriate normal-

ization, we show the inclusion of derivative information will almost-surely lead to improved

conditions, e.g. related to the null-space and coherence of the measurement matrix, for a

successful solution recovery. Further, we demonstrate our analysis empirically via three nu-

merical examples: a manufactured PCE, an elliptic partial differential equation with random

inputs, and a plane Poiseuille flow with random boundaries. These examples all suggest that

including derivative information admits solution recovery at reduced computational cost.

In Chapters 2-4, the type of polynomial bases are chosen based the probability measure

of random inputs and from the so-called Askey family of orthogonal polynomials. However,

for an arbitrary QoI such an a priori choice of basis may result in slow decaying expansion

coefficients, which in turn may lead to large errors when small order PCEs are considered.

Increasing the order of the truncated expansion may enhance the solution accuracy, however,

at the expense of additional computation cost which may become prohibitive for complex

systems. Alternatively, in Chapter 5, a design strategy is proposed to choose an optimal PCE

basis, within the family of Jacobi polynomials, and the corresponding change of measure us-

ing (random) realizations of QoI, in an a posteriori manner. To this end, an alternating least



14

squares (ALS) regression is proposed to estimate the parameters of the Jacobi basis and the

expansion coefficients. It is demonstrated that the proposed PCE basis design leads to more

rapidly decaying coefficients, hence reduces truncation error and enhances solution accuracy,

relative to the PCE basis naturally orthogonal with respect to the probability measure of

inputs. Several numerical tests, with QoI’s exhibiting sharp gradients/discontinuities, are

provided to illustrate the performance of this approach.

In the final chapter, Chapter 6, we briefly summarize the work involved in this thesis

and present a outlook on future work.



CHAPTER 2

A WEIGHTED �1-MINIMIZATION APPROACH FOR SPARSE

POLYNOMIAL CHAOS EXPANSIONS1

Abstract

This chapter proposes a method for sparse polynomial chaos (PC) approximation of high-

dimensional stochastic functions based on non-adapted random sampling. We modify the

standard �1-minimization algorithm, originally proposed in the context of compressive sam-

pling, using a priori information about the decay of the PC coefficients, when available, and

refer to the resulting algorithm as weighted �1-minimization. We provide conditions under

which we may guarantee recovery using this weighted scheme. Numerical tests are used to

compare the weighted and non-weighted methods for the recovery of solutions to two dif-

ferential equations with high-dimensional random inputs: a boundary value problem with

a random elliptic operator and a 2-D thermally driven cavity flow with random boundary

condition.

2.1 Introduction

As we analyze engineering systems of increasing complexity, we must strategically confront

the imperfect knowledge of the underlying physical models and their inputs, as well as the

implied imperfect knowledge of a quantity of interest (QOI) predicted from these models.

The understanding of outputs as a function of inputs in the presence of such uncertainty falls

1 This chapter has been published by J. Peng et al. in Journal of Computational Physics, 267(0):92 111,
2014.



16

within the field of uncertainty quantification. The accurate quantification of the uncertainty

of the QOI allows for the rigorous mitigation of both unfounded confidence and unnecessary

diffidence in the anticipated QOI.

Probability is a natural mathematical framework for describing uncertainty, and so we

assume that the system input is described by a vector of independent random variables, Ξ.

If the random variable QOI, denoted by u(Ξ), has finite variance, then the polynomial chaos

(PC) expansion [19, 20] is given in terms of the orthonormal polynomials {ψj(Ξ)} as

u(Ξ) =
∞∑
j=1

cjψj(Ξ). (2.1)

A more detailed exposition on the use of PC expansion in this work is given in Section 2.2.2.

To identify the PC coefficients, cj in (2.1), sampling methods including Monte Carlo

simulation [23], pseudo-spectral stochastic collocation [24, 25, 26, 27], or least-squares re-

gression [30] may be applied. These methods for evaluating the PC coefficients are popular

in that deterministic solvers for the QOI may be used without being adapted to the proba-

bility space. However, the standard Monte Carlo approach suffers from a slow convergence

rate. Additionally, a major limitation to the use of the last two approaches above, in their

standard form, is that the number of samples needed to approximate cj generally increases

rapidly with the dimension of the input uncertainty, i.e., the number of random variables

needed to describe the input uncertainty. In particular, for asymptotically large dimensions,

such growth is exponential, see, e.g., [3, 4, 83, 31, 18].

In this work, we use the Monte Carlo sampling method while considerably improving

the accuracy of approximated PC coefficients (for the same number of samples) by exploiting

the approximate sparsity of the coefficients cj. As u has finite variance, the cj in (2.1)

necessarily converge to zero, and if this convergence is sufficiently rapid, then u(Ξ) may be

approximated by

û(Ξ) =
∑
j∈C

cjψj(Ξ), (2.2)
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where the index set C has few elements. When this occurs we say that û is reconstructed

from a sparse PC expansion, and that u admits an approximately sparse PC representation.

By truncating the PC basis implied by (2.1) to P elements, we may perform calculations on

the truncated PC basis. If we let c be a vector of cj , for j = 1, . . . , P , then the approximate

sparsity of the QOI (implied by the sparsity of c) and the practical advantage of representing

the QOI with a small number of basis functions motivate a search for an approximate c

which has few non-zero entries [48, 49, 47, 50, 51, 52, 53]. We seek to achieve an accurate

reconstruction with a small number of samples, and so look to techniques from the field of

compressive sampling [54, 55, 34, 56, 57, 35, 58, 59, 60].

Let ξ represent a realization of Ξ. We define Ψ as the matrix where each row corre-

sponds to the row vector of P PC basis functions evaluated at sampled ξ with the corre-

sponding u(ξ) being an entry in the vector u. We assume N < P samples of ξ, so that Ψ is

N × P , c is P × 1, and u is N × 1. Compressive sampling seeks a solution c with minimum

number of non-zero entries by solving the optimization problem

P0,ε ≡ {argmin
c
‖c‖0 : ‖Ψc− u‖2 � ε}. (2.3)

Here ‖c‖0 is defined as the number of non-zero entries of c, and a solution to P0,ε directly

provides an optimally sparse approximation in that a minimal number of non-zero entries are

used to recover u to within ε in the �2 norm. In general, the cost of finding a solution to P0,ε

grows exponentially in P [60]. To resolve this exponential dependence, the convex relaxation

of P0,ε based on �1-minimization, also referred to as basis pursuit denoising (BPDN), has

been proposed [54, 55, 56, 34, 60]. Specifically, BPDN seeks to identify c by solving

P1,ε ≡ {argmin
c
‖c‖1 : ‖Ψc− u‖2 � ε} (2.4)

using convex optimization algorithms [54, 65, 66, 67, 68, 69, 70, 71]. In practice, P0,ε and P1,ε

may have similar solutions, and the comparison of the two problems has received significant

study, see, e.g., [60] and the references therein.
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Note in (2.4) the constraint ‖Ψc−u‖2 � ε depends on the observed ξ and u(ξ); not in

general Ξ and u(Ξ). As a result, c may be chosen to fit the input data, and not accurately

approximate u(Ξ) for previously unobserved realizations ξ. To avoid this situation, we

determine ε by cross-validation [47] as discussed in Section 2.2.5.

To assist in identifying a solution to (2.4), note that for certain classes of functions,

theoretical analysis suggests estimates on the decay for the magnitude of the PC coeffi-

cients [84, 85, 29]. Alternatively, as we shall see in Section 2.4.2, such estimates may be

derived by taking into account certain relations among physical variables in a problem. It

is reasonable to use this a priori information to improve the accuracy of sparse approxima-

tions [86]. Moreover, even if this decay information is unavailable, each approximated set

of PC coefficients may be considered as an initialization for the calculation of an improved

approximation, suggesting an iterative scheme [1, 86, 87, 88, 51, 53].

In this work, we explore the use of a priori knowledge of the PC coefficients as a

weighting of �1 norm in BPDN in what is referred to as weighted �1-minimization (or weighted

BPDN),

P(W )
1,ε ≡ {argmin

c
‖Wc‖1 : ‖Ψc− u‖2 � ε}, (2.5)

where W is a diagonal weight matrix to be specified. Previously, �1-minimization has been

applied to solutions of stochastic partial differential equations with approximately sparse

c [48, 47, 51, 53], but these approximately sparse c include a number of small magnitude

entries which inhibit the accurate recovery of larger magnitude entries. The primary goal of

this work is to utilize a priori information about c, in the form of estimates on the decay

of its entries, to reduce this inhibition and enhance the recovery of a larger proportion of

PC coefficients; in particular those of the largest magnitude. We provide theoretical results

pertaining to the quality of the solution identified from the weighted �1-minimization problem

P(W )
1,ε .

This work specifically focuses on weights derived from a priori information for the
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anticipated solution vector as in Section 2.3.1. This a priori information, while not always

available, may be produced from analytical convergence analysis as examined in Section 2.4.1

or scaling arguments as considered in Section 2.4.2. Additionally, as samples from a low-

fidelity or low-order model are computationally cheaper to attain, an approximate PC solu-

tion may be cheaply computed. While not considered in this study, such a solution may be

used to identify weights for the associated high-fidelity or high-order model of interest. The

applicability of the present approach is restricted to cases where such a priori knowledge for

the anticipated PC solution is available or can be cheaply generated. In the absence of such

information the standard �1-minimization problem P1,ε may be applied.

We also present a theoretical contribution in Section 2.3.2 relating recovery in the

weighted �1 setting to that in the standard non-weighted setting utilizing results concerning

the Restricted Isometry Constant (RIC) [89, 90, 91]. These analyses yield conditions under

which recovery of the weighted �1 setting is assured.

The utilization of weighted �1-minimization for the solution of PDEs with random

inputs has been recently studied in [53]. However, as we shall describe in details in Section

2.3.1, our construction of the weights, a key step in this framework, is fundamentally different

from that of [53]. Additionally, the numerical experiments of Section 2.4 suggest higher

accuracies may be achieved by the approach presented in this work.

The rest of this paper is structured as follows. In Section 2.2, we introduce the problem

of interest as well as our approach for the stochastic expansion of its solution. Following that,

in Section 2.3, we present our results on weighted �1-minimization and its corresponding

analysis for sparse PC expansions. In Section 2.4, we provide two test cases which we

use to describe the specification of the weighted �1-minimization problem, and explore its

performance and accuracy. In particular, in Section 2.4.2, we utilize a simple dimensional

relation to derive estimates of PC expansion coefficients of the velocity field in a flow problem,

using which we set the weights in P(W )
1,ε .
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2.2 Problem Statement and Solution Approach

2.2.1 PDE formulation

Let the random vector Ξ, defined on the probability space (Ω,F ,P), characterize the input

uncertainties and consider the solution of a partial differential equation defined on a bounded

Lipschitz continuous domain D ⊂ R
D, D ∈ {1, 2, 3}, with boundary ∂D. The uncertainty

implied by Ξ may be represented in one or many relevant parameters, e.g., the diffusion

coefficient, boundary conditions, and/or initial conditions. Letting L, I, and B depend on

the physics of the problem being solved, the solution u satisfies the three constraints

L(x, t,Ξ; u(t,x,Ξ)) = 0, x ∈ D,

I(x,Ξ; u(0,x,Ξ)) = 0, x ∈ D,

B(x, t,Ξ; u(t,x,Ξ)) = 0, x ∈ ∂D.

(2.6)

We assume that (Ω,F ,P) is formed by the product of d probability spaces, (R,B(R),Pk)

corresponding to each coordinate of Ξ, denoted by Ξk; here B(·) represents the Borel σ-

algebra. We further assume that the random variable Ξk is continuous and distributed

according to the density ρk implied by Pk. Note that this entails Ω = R
d, F = B(Rd), that

each Ξk is independently distributed, and that the joint distribution for Ξ, denoted by ρ,

equals the tensor product of the marginal distributions {ρk}.
In this work, we assume that conditioned on the ith random realization of Ξ, denoted

by ξ(i), the numerical solution to (2.6) may be calculated by a fixed solver; for our examples

we use the finite element solver package FEniCS [22]. For any fixed x0, t0, our objective is

to reconstruct the solution u(x0, t0,Ξ) using N realizations {u(x0, t0, ξ
(i))}. For brevity we

suppress the dependence of u(x0, t0,Ξ) and {u(x0, t0, ξ
(i))} on x0 and t0.

The two specific physical problems we consider are a boundary value problem with

a random elliptic operator and a 2-D heat driven cavity flow with a random boundary

condition.
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2.2.2 Polynomial Chaos (PC) expansion

Our methods to approximate the solution u to (2.6) make use of the PC basis functions

which are induced by the probability space (Ω,F ,P) on which Ξ is defined. Specifically, for

each ρk we define {ψk,j}j≥0 to be the complete set of orthonormal polynomials of degree j

with respect to the weight function ρk [21, 20]. As a result, the orthonormal polynomials for

Ξ are given by the products of the univariate orthonormal polynomials,

ψα(Ξ) =
d∏

k=1

ψk,αk
(Ξk), (2.7)

where each αk, representing the kth coordinate of the multi-index α, is a non-negative

integer. For computation, we truncate the expansion in (2.1) to the set of P basis func-

tions associated with the subspace of polynomials of total order not greater than q, that

is
∑d

k=1 αk ≤ q. For convenience, we also order these P basis functions so that they are

indexed by {1, · · · , P} as opposed to the vectorized indexing in (1.1). The basis set {ψj}Pj=1

has the cardinality

P =
(d+ q)!

d!q!
. (2.8)

For the interest of presentation, we interchangeably use both notations for representing PC

basis. For any fixed x0, t0, the PC expansion of u and its truncation are then defined by

u(x0, t0,Ξ) = u(Ξ) =

∞∑
j=1

cjψj(Ξ) ≈
P∑

j=1

cjψj(Ξ). (2.9)

Though u is an arbitrary function in L2(Ω,P), we are limited to an approximation in the

span of our basis polynomials, and the error incurred from this approximation is referred as

truncation error.

In this work we assume that, for each k, ρk is known a priori. Two commonly used

probability densities for ρk are uniform and Gaussian; the corresponding polynomial bases

are, respectively, Legendre and Hermite polynomials [20]. We furthermore set Ξk to be

uniformly distributed on [−1, 1] and our PC basis functions are constructed from the or-
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thonormal Legendre polynomials. The presented methods, however, may be applied to any

set of orthonormal polynomials and their associated random variables.

We use the samples ξ(i), i = 1, . . . , N , of Ξ to evaluate the PC basis and identify a

corresponding solution u(ξ(i)) to (2.6). This evaluated PC basis forms a row of Ψ ∈ R
N×P in

(2.4), that is Ψ(i, j) = ψj(ξ
(i)). The corresponding solution u(ξ(i)) is the associated element

of the vector u. We are then faced with identifying the vector of PC coefficients c ∈ R
P in

(2.9), which we address by considering techniques from compressive sampling.

2.2.3 Sparse PC expansion

As the PC expansion in (2.9) is a sum of orthonormal random variables defined by ψj(Ξ), the

exact PC coefficients may be computed by projecting u(Ξ) onto the basis functions ψj(Ξ)

such that

cj = E [u(Ξ)ψj(Ξ)] =

∫
Ω

u(ξ)ψj(ξ)ρ(ξ)dξ.

To compute the PC coefficients non-intrusively, besides the standard Monte Carlo sampling,

which is known to converge slowly, we may estimate this expectation via, for instance, sparse

grid quadrature. While this latter approach performs well when d and q are small, it may

become impractical for high-dimensional random inputs. Alternatively, c may be computed

from a discrete projection, e.g., least-squares regression [30], which generally requires N > P

solution realizations to achieve a stable approximation.

We assume that c is approximately sparse, and seek to identify an appropriate C, as in
(2.2), having a small number of elements and giving a small truncation error. To this end we

extend ideas from the field of compressive sampling. If the number of elements of C, denoted
by |C|, is small, then using only the columns in Ψ corresponding to elements of C reduces

the dimension of the PC basis from P to |C|. This significantly reduces the number of PC

coefficients requiring estimation and consequently the number of solution realizations N .

We define ΨC as the truncation of Ψ to those columns only relevant to the basis functions
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of C, and similarly define cC as the truncation of c. If |C| < N , then the determination

of |C| coefficients gives an optimization problem less prone to overfit the data [92], even

when N < P . For example, the least-squares approximation of cC, ĉC = (ΨT
CΨC)−1ΨT

Cu,

minimizing ‖ΨCcC − u‖2 is well-posed and will have a unique solution if ΨC is of full rank.

Note that the identification of C is critical to the optimization problem P0,ε in (2.3).

If we instead have a solution to P1,ε, then we may infer a C by noting the entries of the

approximated c which have magnitudes above a certain threshold. Motivated to obtain

more accurate sparse solutions, we next introduce a compressive sampling technique which

modifies P1,ε by weighting each cj differently in ‖c‖1. As we shall discuss later, these weights
are generated based on some a priori information on the decay of cj , when available.

2.2.4 Weighted �1-minimization

To develop a weighted �1-minimization P(W )
1,ε in (2.5), we do not consider any changes to

the algorithm solving P1,ε, but instead transform the problem with the use of weights, such

that the same solver may be used. We define the diagonal weight matrix W , with diagonal

entries wj ≥ 0, and consider the new weighted problem P(W )
1,ε with

‖Wc‖1 =
P∑

j=1

wj|cj|. (2.10)

If a priori information is available for cj , it is natural to use it to define W [86].

Heuristically, columns with large anticipated |cj| should not be heavily penalized when used

in the approximation, that is the corresponding wj should be small. In contrast, |cj| which
are not expected to be large should be paired with large wj. This suggests allowing wj to

be inversely related to |cj|, [1],

wj =



|cj|−p, cj 
= 0,

∞, cj = 0.

(2.11)

The parameter p ∈ [0, 1] may be used to account for the confidence in the anticipated |cj|.
Large values of p lead to more widely dispersed weights and indicate greater confidence
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in these |cj| while small values lead to more clustered weights and indicate less confidence

in these |cj|. These weights deform the �1 ball, as Figure 2.1 shows, to discourage small

coefficients from the solution and consequently enhance the accuracy. A detailed discussion

of weighted �1-minimization and examples in signal processing are given in [1].

Ψc = Ψc0

c0

c

Ψc = Ψc0

c0, c

(a) (b)

Figure 2.1: Schematic of approximation of a sparse c0 ∈ R
3 via standard and weighted

�1-minimization (based on [1]). (a) Standard �1-minimization where, depending on Ψ, the
problem P1,0 with u = Ψc0 may have a solution c such that ‖c‖1 ≤ ‖c0‖1. (b) Weighted
�1-minimization for which there is no c with ‖Wc‖1 ≤ ‖Wc0‖1.

As in [87, 1], to insure stability, we consider a damped version of wj in (2.11),

wj = (|cj|+ εw)
−p , (2.12)

where εw is a relatively small positive parameter. In the numerical examples of this paper,

we set εw = 5 × 10−5 · ĉ1 to generate wj in P(W )
1,ε , where ĉ1 = 1

N

∑N
i=1 u(ξ

(i)) is the Monte

Carlo estimate of the degree zero PC coefficient (or, equivalently, the sample average of u).

Remark 2.2.1 (Choice of p in (2.12)). When defined based on the exact values |cj |, the

weights wj in (2.12) together with (2.10) imply an �r-minimization problem of the form

Pr,ε ≡ {argmin
c
‖c‖r : ‖Ψc−u‖2 � ε} to solve for c, where r = 1− p ∈ [0, 1]. Depending on

the value of r, such a minimization problem may outperform the standard �1-minimization,
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see, e.g., [87]. In practice, however, an optimal selection of r (or p) is not a trivial task and

necessitates further analysis. In the present study, similar to [1], we choose p = 1.

2.2.5 Choosing ε via cross validation

The choice of ε > 0 for the optimization problems P1,ε or P(W )
1,ε is critical. If ε is too small,

then c will overfit the data and give unfounded confidence in u(Ξ); if ε is too large, then

c will underfit the data and give unnecessary diffidence in u(Ξ). In this work, following

[47], the selection of ε is determined by cross-validation; here we divide the available data

into two sets, a reconstruction set of Nr samples used to calculate cr, and a validation set

of Nv samples to test this approximation. For the reconstruction set we let cr(εr) denote

the calculated solution to P1,ε or P(W )
1,ε as a function of εr, and in this manner identify an

optimal ε which is then corrected based on Nr and Nv. This algorithm is summarized below

where the subscript indicates which data set is used in calculating the quantity: r for the

reconstruction set; v for the validation set. We note that the optimal ε is dependent on the

Algorithm 2 Algorithm for choosing ε using cross-validation.

Randomly divide the N samples of Ξ, u(Ξ) into two sets, a reconstruction set with Nr

samples and a validation set with Nv samples.
Let ε∗ = argminεr>0 ‖Ψvcr(εr)− uv‖2.
Return ε =

√
N
Nr
ε∗.

algorithm used to calculate cr as well as the data input into that algorithm. In this paper

we set Nr = �45N� and Nv = N −Nr.

2.3 Setting Weights wj and Recovery Guarantees

We next introduce our approach for setting the weights wj in (2.5) and present theoreti-

cal guarantees on computing the PC coefficients c via weighted �1-minimization problem

P(W )
1,ε .



26

2.3.1 Setting weights wj

As the true c is unknown, an approximation of c must be employed to form the weights.

In [87, 1, 93, 53] an iterative approach is proposed wherein these weights are computed from

the previous approximation of c. More precisely, at iteration l + 1, the weights are set by

wj =
(
|ĉ(l)j |+ εw

)−1

,

where ĉ
(l)
j is the estimate of cj obtained from P(W )

1,ε at iteration l and wj = 1 at iteration

l = 1. However, the solution to such iteratively re-weighted �1-minimization problems may

be expensive due to the need for multiple P(W )
1,ε solves. Additionally, the convergence of

the iterates is not always guaranteed [1]. Moreover, as we will observe from the results of

Section 2.4, unlike the weighted �1-minimization, the accuracies obtained from the iteratively

re-weighted �1-minimization approach are sensitive to the choice of εw. In particular, for

relatively large or small values of εw, the iteratively re-weighted �1-minimization may even

lead to less accurate results as compared to the standard �1-minimization.

Alternatively, to set wj , we here focus our attention on situations when a priori knowl-

edge on cj in the form of bounds on |cj| or approximate |cj| is available. This includes

primarily a class of linear elliptic PDEs with random inputs [84, 85, 29]. While not consid-

ered here, similar decay rates are also available for semi-linear elliptic, [94], and parabolic,

[95, 96], PDEs with random inputs. We also provide preliminary results on a non-linear prob-

lem, specifically a 2-D Navier-Stokes equation, for which we exploit a physical dependency

among solution variables along with a simple scaling argument to generate an approximate

|cj|. We notice that the success of our weighted �1-minimization depends on the availabil-

ity of approximate |cj| and its ability to reveal relative importance of |cj | rather than their

precise values. As we shall empirically illustrate in Section 2.4, when such information on

cj is used, the weighted �1-minimization approach outperforms the iteratively re-weighted

�1-minimization.

To solve P(W )
1,ε , the standard �1-minimization solvers may be used. In this work we use
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the MATLAB package SPGL1 [70] based on the spectral projected gradient algorithm [73].

Specifically, c̃ =Wc may be solved from P1,ε with the modified measurement matrix Ψ̃ =

ΨW−1. We then set c =W−1c̃.

We defer presenting examples of setting wj to Section 2.4 and instead provide theoreti-

cal analysis on the quality of the solution to the weighted �1-minimization problem P(W )
1,ε . In

particular, we limit our theoretical analysis to determining if P(W )
1,ε is equivalent to solving

P0,ε, finding an optimally sparse solution c.

2.3.2 Theoretical recovery via weighted �1-minimization

Following the ideas of [90, 97, 98, 99, 34, 100], we consider analysis which depends on vectors

in the kernel of Ψ. We consider c0 to be a sparse approximation, such that Ψc0 + e = u

where ‖e‖2 ≤ ε indicates a small level of truncation error and/or noise is present, implying

that exact reconstructions are themselves approximated by a sparse solution. Stated another

way, c0 is a solution to P0,ε. Let c1 be a solution to P(W )
1,ε . Further, let C = Supp(c0), and

note that s = |C| is the sparsity of c0.

We are interested specifically in determining when c1 accurately approximates c0. The-

orem 2.3.1 below provides a condition for recovery in terms of the Restricted Isometry Con-

stant (RIC) – to be defined in (2.13) – when truncation error is present. Theorem 2.3.2

provides a result guaranteeing recovery in the absence of truncation error when a parameter

is below a threshold. Related to this, Theorem 2.3.3 allows a bound on this parameter and

leads to Corollary 2.3.1, which allows us to guarantee recovery with high probability when

a sufficient number of samples are drawn.

The statement and proof of Theorem 2.3.1 are closely related to Theorem 1 of [90],

providing a condition to compare a solution to P(W )
1,ε with a solution to P0,ε. This is done

in terms of the RIC δs, [89, 90], defined such that for any vector, x ∈ R
P , supported on at
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most s entries,

(1− δs)‖x‖22 ≤
1

N
‖Ψx‖22 ≤ (1 + δs)‖x‖22. (2.13)

While we follow Theorem 1 of [90] due to the simplicity of its proof, we note that improved

conditions on the RIC have been presented in more recent studies [101, 102] , and we invite

the reader to consult [90] for more motivation of the proof. Our contribution is the modest

adaptation from non-weighted �1-minimization to weighted �1-minimization.

Theorem 2.3.1. Let s be such that δ3s + 3δ4s < 2. Then for any approximate solution, c0,

supported on C with |C| ≤ s, any solution c1 to P(W )
1,ε obeys

‖c0 − c1‖2 ≤ C · ε,

where the constant C depends on s, maxj∈C wj, and minj∈Cc wj. Here we utilize c as a

superscript to denote the set complement.

Proof. Our proof is essentially an extension of the proof of Theorem 1 in [90] to account

for the weighted �1 norm. Let h := c1 − c0. Note that as c1 = c0 + h solves the weighted

�1-minimization problem P(W )
1,ε ,

‖Wc0‖1 − ‖Wh‖C,1 + ‖Wh‖Cc,1 ≤ ‖W (c0 + h) ‖1 = ‖Wc1‖1 ≤ ‖Wc0‖1,

where we use notation for an �r norm restricted to coordinates in a set S as ‖x‖S,r. It follows
that for some 0 ≤ β ≤ 1,

‖Wh‖Cc,1 ≤ β‖Wh‖C,1. (2.14)

Sort the entries of h supported on Cc in descending order of their magnitudes, divide Cc

into subsets of size M , and enumerate these sets as C1, · · · , Cn, where C1 corresponds to the

indices of the M largest entries of sorted h, C2 corresponds to the indices of the next M

largest entries of sorted h, and so on. Let S = C ∪ C1, and note that the kth largest (in
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magnitude) entry of any x accounts for less than 1/k of the ‖x‖1, so that

‖h‖2Sc,2 =
∑
k∈Sc

h2k ≤ ‖h‖2Cc,1

P∑
k=M+1

k−2 ≤ ‖h‖2Cc,1 ·
1

M
.

We now bound the unweighted �1 norm from above by the weighted �1 norm, to achieve

‖h‖2Cc,1 ·
1

M
≤ ‖Wh‖2Cc,1 ·

1

M mini∈Cc w2
i

.

From the condition (2.14),

‖Wh‖2Cc,1 ·
1

M mini∈Cc w2
i

≤ ‖Wh‖2C,1 ·
β2

M mini∈Cc w2
i

.

Bounding the weighted �1 norm from above by the unweighted �1 norm gives,

‖Wh‖2C,1 ·
β2

M mini∈Cc w2
i

≤ ‖h‖2C,1 ·
β2maxj∈C w2

j

M mini∈Cc w2
i

.

Bounding this by the �2 norm yields the desired inequality,

‖h‖2Sc,2 ≤ ‖h‖2C,2 ·
β2|S|maxj∈C w2

j

M mini∈Cc w2
i

.

Let

η :=
β2|S|maxj∈C w2

j

M mini∈Cc w2
i

.

It follows that

‖h‖22 = ‖h‖2Sc,2 + ‖h‖2S,2 ≤ (1 + η)‖h‖2S,2.

Following the proof from Theorem 1 of [90] we have that

‖Ψh‖2 ≥
(√

1− δM+|C| − |C|
M

√
1 + δM

)
‖h‖S,2,

and it follows that

‖h‖2 ≤
√
1 + η‖h‖S,2 ≤

√
1 + η√

1− δM+|C| − |C|
M

√
1 + δM

‖Ψh‖2,

≤ 2
√
1 + η√

1− δM+|C| − |C|
M

√
1 + δM

· ε,

which yields the proof with the remaining arguments from Theorem 1 of [90].
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In the case of recovery with no truncation error, that is ε = 0, we expand on the

consideration of the parameter β in the above proof. We note that results for the case of

ε = 0 may not guarantee that a sparsest solution to P0,ε has been found, but may help to

verify that as sparse as possible a solution to u1 = Ψc1 has been found. Stated another way,

the computed solution that recovers u1 may have verifiable sparsity, where u1 is close to u.

We show how W and C affect the recovery when ε = 0 through the null-space of Ψ.

Specifically, recall that the difference between any two solutions to Ψc = u is a vector in

the null-space of Ψ, denoted by N (Ψ). It follows that

βW = max
c∈N (Ψ)

‖Wc‖C,1
‖Wc‖Cc,1

, (2.15)

is a bound on β in (2.14) for the case that ε = 0.

When βW is small we notice that adding to the sparse solution, c0, any vector c ∈ N (Ψ)

will induce a relatively small change in ‖W (c0 + c)‖C,1 while inducing a larger change in

‖W (c0+c)‖Cc. We see that we may decrease βW if we make wj smaller for j ∈ C, and larger

for j ∈ Cc, and this is consistent with our intuition regarding the identification of weights.

As such, for small βW we expect that ‖c+ c0‖1 > ‖c0‖1 for all c ∈ N (Ψ), and the following

theorem shows that a critical value for βW is 1.

Theorem 2.3.2. If βW < 1, then finding a solution to P(W )
1,0 is identical to finding a solution

to P0,0. This result is sharp in that if βW ≥ 1, a solution to P(W )
1,0 , may not be identical to

any solution of P0,0.

Proof. Closely related to βW , we define the quantity γW given by

γW = max
c∈N (Ψ)

‖Wc‖C,1
‖Wc‖1 , (2.16)

where the two constants are related by

βW = (γ−1
W − 1)−1.
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Recalling that c0 is supported on C, we have that

‖W (c+ c0)‖1 = ‖W (c+ c0)‖C,1 + ‖Wc‖Cc,1.

Applying the reverse triangle inequality to ‖W (c+ c0)‖C,1, we have that

‖W (c+ c0)‖1 ≥ ‖Wc0‖C,1 − ‖Wc‖C,1 + ‖Wc‖Cc,1.

By the definition of γW in (2.16) we have that

‖Wc‖C,1 ≤ γW ‖Wc‖1,

‖Wc‖Cc,1 = ‖Wc‖1 − ‖Wc‖C,1,

≥ (1− γW )‖Wc‖1.

It follows that

‖W (c+ c0)‖1 ≥ ‖Wc0‖C,1 − γW ‖Wc‖C,1 + (1− γW )‖Wc‖1,

= ‖Wc0‖C,1 + (1− 2γW )‖Wc‖1,

which implies that when γW < 0.5, or equivalently when βW < 1,

‖W (c+ c0)‖1 > ‖Wc0‖C,1 = ‖Wc0‖1,

and as such c0 solves P(W )
1,0 . To show sharpness, let W be the identity matrix. For α > 0

define Ψ and u by

Ψ =


 α 0 1

0 α 1


 ; u =


 α

α


 .

Note that the solution to P0,0 is always (0 0 α)T , and as such βW = α/2. If βW = 1,

corresponding to α = 2, then (0 0 2)T or (1 1 0)T are both solutions to P(W )
1,0 . If βW > 1,

corresponding to α > 2, the solution to P(W )
1,0 is (1 1 0)T .

As an aside, we note that if βW < 1, corresponding to α < 2, the unique solution to

P(W )
1,0 is (0 0 α)T as guaranteed by the theorem.
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This result suggests βW as a measure of quality ofW with smaller βW being preferable.

The following bound is useful in relating the recovery via weighted �1-minimization of a

particular c0 to a uniform recovery in terms of the one implied by the RIC.

Theorem 2.3.3. Let

c := min
i∈C

wi/max
i∈Cc

wi;

C := max
i∈C

wi/min
i∈Cc

wi.

It follows that,

cβI ≤ βW = max
c∈N (Ψ)

‖Wc‖C,1
‖Wc‖Cc,1

≤ CβI . (2.17)

Further,

βI ≤
√
2δ2|C|

1− δ2|C| , (2.18)

where δ is a RIC.

Proof. We first note that (2.17) follows from the definition of βW in (2.15). To show (2.18),

note that by Lemma 2.2 of [103], it follows that for any vector x in the null space of Ψ,

‖x‖C,1 ≤
√
2δ2|C|

1− δ2|C|‖x‖C
c,1,

which shows the bound.

To complete our discussion on the theoretical analysis of weighted �1-minimization, we

require a sufficiently small RIC δ to bound βI and βW in Theorem 2.3.3, and hence β in

(2.14). For this, we report the result of [91, Theorem 4.3] – on general bounded orthonormal

basis {ψj} – specialized to the case of multi-variate Legendre PC expansions.

Corollary 2.3.1. Let {ψj}1≤j≤P be a Legendre PC basis in d independent random variables

Ξ = (Ξ1, . . . ,Ξd) uniformly distributed over [−1, 1]d and with a total degree less than or equal
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to q. Let the matrix Ψ with entries Ψ(i, j) = ψj(ξ
(i)) correspond to realizations of {ψj} at

ξ(i) sampled independently from the measure of Ξ. If

N ≥ C3qδ−2s log3(s) log(P ), (2.19)

then the RIC, δs, of
1√
N
Ψ satisfies δs ≤ δ with probability larger than 1 − P−γ log3(s). Here,

C and γ are constants independent of N, q, and d.

Proof. The proof is a direct consequence of Theorem 4.3 in [91] by observing that {ψj}1≤j≤P

admits a uniform bound supj ‖ψj‖∞ = 3
q
2 , see, e.g. [47].

Remark 2.3.1 (Weighted �1-minimization vs. �1-minimization). While our theoretical anal-

yses provide insight on the accuracy of the solution to the weighted �1-minimization problem

P(W )
1,ε relative to the solution to P0,ε or P0,0, they do not provide conclusive comparison be-

tween the accuracy of the solution to P(W )
1,ε and the standard �1-minimization problem P1,ε.

However, for cases where the choice ofW is such that the constant C in (2.17) is sufficiently

smaller than 1, more accurate solutions may be expected from P(W )
1,ε than P1,ε.

2.4 Numerical examples

In this section, we empirically demonstrate the accuracy of the weighted �1-minimization ap-

proach in estimating statistics of solutions to two differential equations with random inputs.

2.4.1 Case I: Elliptic equation with stochastic coefficient

We first consider the solution of an elliptic realization of (2.6) in one spatial dimension,

defined by

−∇ · (a(x,Ξ)∇u(x,Ξ)) = 1 x ∈ D = (0, 1),

u(0,Ξ) = u(1,Ξ) = 0. (2.20)

We assume that the diffusion coefficient a(x,Ξ) is modeled by the expansion

a(x,Ξ) = ā(x) + σa

d∑
k=1

√
λkϕk(x)Ξk,
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in which the random variables {Ξk}dk=1 are independent and uniformly distributed on [−1, 1].
Additionally, {ϕk}dk=1 are the eigenfunctions of the Gaussian covariance kernel

Caa(x1, x2) = exp

[
−(x1 − x2)

2

l2c

]
,

corresponding to d largest eigenvalues {λk}dk=1 of Caa(x1, x2) with correlation length lc =

1/16. In our numerical tests, we set ā(x) = 0.1, σa = 0.021, and d = 40 resulting in strictly

positive realizations of a(x,Ξ). Noting that d represents the dimension of the problem in

stochastic space, the Legendre PC basis functions for this problem are chosen as in (2.7),

where we use an incomplete third order truncation, i.e., q = 3, with only P = 2500 basis

functions. The PC basis functions {ψj} are sorted such that, for any given order q, the

random variables Ξk with smaller indices k appear first in the basis. The quantity of interest

is u(0.5,Ξ), the solution in the middle of the spatial domain.

Setting weights wj

Recently, work has been done to derive estimates for the decay of the coefficients

cα(x) in the Legendre PC expansion of the solution u(x,Ξ) ≈ ∑
α cα(x)ψα(Ξ) to problem

(2.20), [104, 29, 105]. Such estimates allow us to identify a priori knowledge of c and set

the weights wj in the weighted �1-minimization approach. In particular, following [29,

Proposition 3.1], the coefficients cα admit the bound

‖cα‖H1
0 (D) ≤ C0

|α|!
α!

e−
∑d

k=1 gkαk , gk = − log
(
rk/(
√
3 log 2)

)
, (2.21)

for some C0 > 0 and α! =
∏d

k=1 αk!. The coefficients rk in (2.21) are given by rk =

σa
√
λk‖ϕk‖L∞(D)

amin
, where amin = ā − σa

∑d
k=1

√
λk‖ϕk‖L∞(D). As suggested in [29], a tighter

bound on ‖cα‖H1
0 (D) is obtained when the gk coefficients are computed numerically using

one-dimensional analyses instead of the theoretical values given in (2.21). Specifically, for

each k, the random variables Ξj, j 
= k, in (2.20) are set to their mean values and the PCE

coefficients cαk
of the corresponding solution – now one-dimensional at the stochastic level

– are computed via, for instance, least-squares regression or sufficiently high level stochastic
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collocation. Notice that the total cost of such one-dimensional calculations depends linearly

on d. Using these cαk
values, the coefficient gk is computed from the one-dimensional version

of (2.21), i.e., |cαk
| ∼ e−gkαk . In the present study, we adopt this numerical procedure to

estimate each gk.

As depicted in Figure 2.2, the bound in (2.21) allows us to identify an anticipated

c, which we use for setting the weights wj in the weighted �1-minimization approach. The

magnitude of reference coefficients was calculated by the regression approach of [30] using a

sufficiently large number of solution realizations. We see that the reference values |cj| associ-

10
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|c j
|

Figure 2.2: Polynomial chaos coefficients c of u(0.5,Ξ) and the corresponding analytical
bounds obtained from (2.21) (� reference; • analytical bound).

ated with some of the second and third degree basis functions decay slower than anticipated,

but that the estimate is a reasonable guess without the use of realizations of u(x,Ξ).

Results

To demonstrate the convergence of the standard and weighted �1-minimization, we

consider an increasing number N = {81, 200, 1000} of random solution samples. For each

analysis, we estimate the truncation error tolerance ε in (2.4) based on the cross-validation

algorithm described in Section 2.2.5. To account for the dependency of the compressive

sampling solution on the choice of realizations, for each N , we perform 100 independent
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replications of standard and weighted �1-minimization, corresponding to independent solu-

tion realizations. We then generate uncertainty bars on solution accuracies based on these

replications. Specifically, the symbols identify the average error values, and the uncertainty

bars show the minimum and maximum error values among the 100 replications. We follow

the same process for generating the error plots in Section 2.4.2.

Figure 2.3 displays a comparison between the accuracy of �1-minimization, weighted �1-

minimization, iteratively re-weighted �1-minimization, and (isotropic) sparse grid stochastic

collocation with Clenshaw-Curtis abscissas. The level one sparse grid containsN = 81 points.

In particular, we observe that both �1-minimization and weighted �1-minimization result in

smaller standard deviation and root mean square (rms) errors, compared to the stochastic

collocation approach. Additionally, the weighted �1-minimization using the analytical decay

of |cα| outperforms the iteratively re-weighted �1-minimization. Moreover, for small sample

sizes N , the weighted �1-minimization outperforms the non-weighted approach. This is

expected as the prior knowledge on the decay of |cα| has comparable effect on the accuracy

as the solution realizations do. In fact, the trade-off between the prior knowledge (in the

form of weights wj) and the solution realizations (data) may be best seen in a Bayesian

formulation of the compressive sampling problem P1,ε. We refer the interested reader to

[106, 107] for further information on this subject.

In Figure 2.4, we compare the accuracy of weighted �1-minimization and iteratively re-

weighted �1-minimization in which the first iteration is performed via weighted �1-minimization

instead of the standard �1-minimization. As can be seen from that plot, no significant dif-

ference is observed between the two approaches, thus suggesting additional iterations may

not be necessary.

In the presence of the a priori estimates of the PC coefficients, one may consider solving

a weighted least-squares regression problem P(W )
2,ε ≡ {argmin

cC
‖WcC‖2 : ‖ΨCcC − u‖2 � ε},

in which cC ∈ R
P denotes vectors supported on a set C with cardinality |C| ≤ N identified

based on the decay of PC coefficients. For example, to generate a well-posed weighted
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least-squares problem, C may contain the indices associated with |C| ≤ �N/2� largest (in

magnitude) PC coefficients from (2.21). Stated differently, the estimates of PC coefficients

may be utilized to form least-squares problems for small subsets of the PC basis function

that are expected to be important. However, our numerical experiments indicate that, unlike

in the case of weighted �1-minimization, the accuracy of such an approach is sensitive to the

quality of the PC coefficient estimates, based on which C is set. Figure 2.5 presents an

illustration of such observation.

2.4.2 Case II: Thermally driven flow with stochastic boundary temperature

Following [6, 3, 108], we next consider a 2-D heat driven square cavity flow problem, shown

in Figure 2.6a, as another realization of (2.6). The left vertical wall has a deterministic,

constant temperature T̃h, referred to as the hot wall, while the right vertical wall has a

stochastic temperature T̃c < T̃h with constant mean ¯̃Tc, referred to as the cold wall. Both

top and bottom walls are assumed to be adiabatic. The reference temperature and the

reference temperature difference are defined as T̃ref = (T̃h + ¯̃Tc)/2 and ∆T̃ref = T̃h − ¯̃Tc,

respectively. In dimensionless variables, the governing equations (in the small temperature

difference regime, i.e., Boussinesq approximation) are given by

∂u

∂t
+ u · ∇u = −∇p+ Pr√

Ra
∇2u+ PrT ŷ,

∇ · u = 0,

∂T

∂t
+∇ · (uT ) = 1√

Ra
∇2T,

(2.22)

where ŷ is the unit vector (0, 1), u = (u, v) is velocity vector field, T = (T̃ − T̃ref)/∆T̃ref
is normalized temperature (T̃ denotes non-dimensional temperature), p is pressure, and

t is time. Non-dimensional Prandtl and Rayleigh numbers are defined, respectively, as

Pr = µ̃c̃p/κ̃ and Ra = ρ̃gβ∆T̃ref L̃
3/(µ̃κ̃), where the superscript tilde (̃ ) denotes the non-

dimensional quantities. Specifically, ρ̃ is density, L̃ is reference length, g is gravitational

acceleration, µ̃ is molecular viscosity, κ̃ is thermal diffusivity, and the coefficient of thermal
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(c) Relative rms error

Figure 2.3: Comparison of relative error in statistics of u(0.5,Ξ) for �1-minimization,
weighted �1-minimization, and isotropic sparse grid stochastic collocation (with Clenshaw-
Curtis abscissas) for the case of the elliptic equation. The uncertainty bars are generated us-
ing 100 independent replications for each samples size N ( �� �1-minimization; �� weighted
�1-minimization; �� iteratively re-weighted �1-minimization; �� stochastic collocation).
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Figure 2.4: Comparison of relative rms error of u(0.5,Ξ) for �1-minimization, weighted
�1-minimization, and iteratively re-weighted �1-minimization in which the first iteration is
performed via weighted �1-minimization. The uncertainty bars are generated using 100
independent replications for each samples size N ( �� �1-minimization; �� weighted �1-
minimization; �� iteratively re-weighted �1-minimization).
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Figure 2.5: Comparison of relative rms error for �1-minimization, weighted �1-minimization,
weighted least-squares regression, and sparse grid collocation for the case of the elliptic
equation. In the weighted least-squares approach the set C with cardinality |C| = �N/2�
contains the indices of the largest (in magnitude) upper bounds on the PC coefficients
( �� �1-minimization; �� weighted �1-minimization; �� weighted least-squares regres-
sion; �� stochastic collocation).
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expansion is given by β. In this example, the Prandtl and Rayleigh numbers are set to

Pr = 0.71 and Ra = 106, respectively. For more details on the non-dimensional variables in

(2.22), we refer the interested reader to [108, 6, 3].

On the cold wall, we apply a (normalized) temperature distribution with stochastic

fluctuations of the form

Tc(x = 1, y,Ξ) = T̄c + T ′
c,

T ′
c = σT

d∑
i=1

√
λiϕi(y)Ξi,

(2.23)

where T̄c is a constant mean temperature. In (2.23), Ξi, i = 1, . . . , d, are independent

random variables uniformly distributed on [−1, 1]. {λi}di=1 and {ϕi(y)}di=1 are the d largest

eigenvalues and the corresponding eigenfunctions of the exponential covariance kernel

CTcTc(y1, y2) = exp

(
−|y1 − y2|

lc

)
,

where lc is the correlation length. Following [109], the eigenpairs (λi, ϕi(y)) in (2.23) are,

respectively, given by

λi =
2lc

l2cω
2
i + 1

,

and

ϕi(y) =




cos(ωiy)√
0.5 + sin(ωi)

2ωi

, i is odd,

sin(ωiy)√
0.5− sin(ωi)

2ωi

, i is even,

where each ωi is a root of

(1/lc)− ωi tan(0.5ωi) = 0, iis odd,

ωi + (1/lc) tan(0.5ωi) = 0, iis even.

In our numerical test we let (Th, T̄c) = (0.5,−0.5), d = 20, lc = 1/21, and σT = 11/100.

A realization of the cold wall temperature Tc is shown in Figure 2.6b. Our quantity of

interest, the vertical velocity component at (x, y) = (0.25, 0.25) denoted by v(0.25, 0.25), is
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(b) A realization of Tc(x = 1, y).

Figure 2.6: Illustration of the cavity flow problem.
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expanded in the Legendre PC basis of total degree q = 4 with only the first P = 2500 basis

functions retained, as described in the case of the elliptic problem. We seek to accurately

reconstruct v(0.25, 0.25) withN < P random samples ofΞ and the corresponding realizations

of v(0.25, 0.25).

Approximate bound on PC coefficients

In order to generate the weights wj for the weighted �1-minimization reconstruction

of v(0.25, 0.25), we derive an approximate bound on the PC coefficients of the velocity v in

(2.22) at a fixed point in space.

For the interest of notation, we start by rewriting T ′
c in (2.23) as

T ′
c(y,Ξ) =

d∑
i=1

νi(y)Ξi, (2.24)

where νi(y), i = 1, . . . , d, is given by

νi(y) = σT

√
λi

0.5 + (−1)i−1sin(ωi)/2ωi

sin
(
ωiy +

π

2

(
(−1)i + 1

))
.

We write the PC expansion of v as v =
∑

j cjψj(Ξ) and seek approximate bounds on

|cj| to set the weights wj in the weighted �1-minimization results. By the orthonormality of

the PC basis, cj is

cj =

∫
[−1,1]d

v(ξ)ψj(ξ)

(
1

2

)d

dξ. (2.25)

To approximately bound the coefficients cj, we examine the functional Taylor series expansion

of v around v = v(T̄c). Note that by an appropriate definition of functional derivatives δkv
δT k

c

of v with respect to Tc, see, e.g., [110],

v(Ξ) =
∞∑
k=0

1

k!

∫
[0,1]k

δkv

δT̄ k
c

(y,Ξ)
k∏

j=1

T ′
c(yj,Ξ)dy, (2.26)

where yj is a copy of the spatial coordinate variable y. Plugging (2.26) in (2.25), we arrive

at

cj =

∫
[−1,1]d

ψj(ξ)

∞∑
k=0

1

k!

∫
[0,1]k

δkv

δT̄ k
c

(y, ξ)

k∏
j=1

T ′
c(yj, ξ)

(
1

2

)d

dydξ. (2.27)
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To handle the functional derivatives, we consider the dimensional relation∣∣∣∣ δkvδT̄ k
c

(y)

∣∣∣∣ ≈ C

∣∣∣∣v(T̄c)(
T̄c
)k

∣∣∣∣, (2.28)

which we assume to hold uniformly in y and Ξ, for some constant C ≥ 0. This, together

with (2.24), allows us to derive the approximate bound

|cj| � C|v(T̄c)|
∞∑
k=0

1

k!|T̄c|k

∣∣∣∣∣∣
∫
[−1,1]d

ψj(ξ)

(
d∑

i=1

tiξi

)k (
1

2

)d

dξ

∣∣∣∣∣∣ , (2.29)

where ti =
∫ 1

0
νi(y)dy. In (2.29), the approximation comes from the assumption (2.28) on

the functional derivatives. To evaluate the RHS of (2.29), we consider a finite truncation of

the sum and a Monte Carlo (or quadrature) estimation of the integral.

In Figure 2.7, we display the approximate upper bound on |cj| of v(0.25, 0.25) obtained
from (2.27) by limiting k to 4. To generate a reference solution, we employ the least-squares

regression approach of [30] with N = 40, 000 random realizations of v(0.25, 0.25). For the

accuracies of interest in this study, the convergence of this reference solution was verified.

For the sake of illustration, we normalize the estimated |cj | so that |c0|, the module of the

approximate zero degree coefficient, matches its reference counterpart. Despite the rather

strong assumption (2.28) on the functional derivatives, we note that the resulting estimates

of |cj | describe the trend of the reference values qualitatively well. As we shall see in what

follows, such qualitative agreement is sufficient for the weighted �1-minimization to improve

the accuracy of the standard �1-minimization for small samples sizes N .

Remark 2.4.1. We stress that the assumption (2.28), while here lead to appropriate es-

timates of |cj| for our particular example of interest, it may not give equally reasonable

estimates for other problems or choices of flow parameters, e.g., larger Ra numbers. A

weaker assumption on the functional derivatives in (2.28), however, requires further study

and is the subject of our future work.

Results
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Figure 2.7: Approximate PC coefficients of v(0.25, 0.25) vs. the reference coefficients
obtained by least-squares regression using sufficiently large number of realizations of
v(0.25, 0.25) (� reference; • approximate bound).
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We provide results demonstrating the convergence of the statistics of v(0.25, 0.25)

as a function of the number of realizations N . For this, we consider sample sizes N =

{41, 200, 1000} with N = 41 corresponding to the number of grid points in level one sparse

gird collocation using Clenshaw-Curtis abscissas.

Fig. 2.8 displays comparisons between the accuracies obtained to approximate v(0.25, 0.25).

Similar to the previous example, the weighted �1-minimization approach achieves superior

accuracy, particularly for the small sample size N = 41. The results obtained for the iter-

atively re-wighted �1-minimization correspond to εw = 5 × 10−2 · ĉ1, where ĉ1 is the sample

average of v(0.25, 0.25). This leads to the smallest average rms errors among the trial values

εw = {5× 10−2, 5 · 10−3, 5× 10−4} · ĉ1. To show the sensitivity of this approach to the choice

of εw, we present rms error plots in Figure 2.9 corresponding to multiple values of εw. In

particular, for the cases of εw = {5 × 10−3, 5 × 10−4} · ĉ1, when N = 1000 we observe loss

of accuracy compared to the standard �1-minimization. On the other hand, the weighted

�1-minimization results are relatively insensitive to the choice of εw, and best performance is

obtained with εw = 5× 10−4 · ĉ1, i.e., the smallest and most intuitive value among the trials.

Similar to the previous example, in Figure 2.10, we illustrate that weighted �1-minimization

results in similar accuracies given by iteratively re-weighted �1-minimization in which the first

iteration is performed via weighted �1-minimization. This implies that, given a priori knowl-

edge on the decay of PC coefficients, the utilization of iteratively re-weighted �1-minimization

may not be necessary.

We note that the rather poor performance of the sparse grid collocation is due to the

relatively large contributions of some of the higher order PC modes, as may be observed from

Figure 2.7. Figure 2.11 shows the magnitude of PC coefficients of v(0.25, 0.25) obtained using

standard and weighted �1-minimization with N = {200, 1000} samples. The better approx-

imation quality of the weighted �1-minimization may be seen particularly from Figs. 2.11a

and 2.11b. Finally, in Figure 2.12, we present a comparison between the rms errors ob-

tained from �1-minimization, weighted �1-minimization, weighted least-squares regression,
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and sparse grid stochastic collocation. The weighted least-squares regression approach per-

forms poorly for N = {200, 1000} as some of the basis functions are selected incorrectly

given the approximate bounds on the PC coefficients.

2.5 Conclusion

Within the context of compressive sampling of sparse polynomial chaos (PC) expansions, we

introduced a weighted �1-minimization approach, wherein we utilized a priori knowledge on

PC coefficients to enhance the accuracy of the standard �1-minimization. The a priori knowl-

edge of PC coefficients may be available in the form of analytical decay of PC coefficients,

e.g., for a class of linear elliptic PDEs with random data, or derived from simple dimensional

analysis. These a priori estimates, when available, can be used to establish weighted �1

norms that will further penalize small PC coefficients, and consequently improve the sparse

approximation. We provided analytical results guaranteeing the convergence of the weighted

�1-minimization approach.

The performance of the proposed weighted �1-minimization approach was demonstrated

through its application to two test cases. For the first example, dealing with a linear elliptic

equation with random coefficient, existing analytical bounds on the magnitude of PC coef-

ficients were adopted to establish the weights. In the second case, for a thermally driven

flow problem with stochastic temperature boundary condition, we derived an approximate

bound for the PC coefficients via a functional Taylor series expansion and a simple dimen-

sional analysis. In both cases we demonstrated that the weighted �1-minimization approach

outperforms the non-weighted counterpart. Furthermore, better accuracies were obtained

using the weighted �1-minimization approach as compared to the iteratively re-weighted �1-

minimization. Numerical experiments illustrate the sensitivity of the latter approach, unlike

the former, with respect to the choice of a parameter defining the weights. Finally, we demon-

strated that selection of subsets of PC basis and solving well-posed weighted least-squares

regression may result in poor accuracies.



48

While our numerical and analytical results were for the case of Legendre PC expansions,

our work may be extended to other choices of PC basis, such as those based on Hermite or

Jacobi polynomials.
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(c) Relative rms error

Figure 2.8: Comparison of relative error in statistics of v(0.25, 0.25) computed via �1-
minimization, weighted �1-minimization, iteratively reweighted �1-minimization, and stochas-
tic collocation. The error bars are generated using 100 independent replications with fixed
samples size N ( �� �1-minimization; �� weighted �1-minimization; �� iteratively re-
weighted �1-minimization; �� stochastic collocation).
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Figure 2.9: Relative average rms errors corresponding to multiple values of εw to set the
weights wj. The results demonstrate the sensitivity of the iteratively re-weighted approach
to the choice of εp ( �� �1-minimization; �� weighted �1-minimization; �� iteratively re-
weighted �1-minimization; solid lines εw = 5×10−2 · ĉ1; dashed lines εw = 5×10−3 · ĉ1; dotted
dashed lines εw = 5× 10−4 · ĉ1). Here, ĉ1 is the sample average of v(0.25, 0.25).
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Figure 2.10: Comparison of relative rms error of v(0.25, 0.25) for �1-minimization, weighted
�1-minimization, and iteratively re-weighted �1-minimization using the analytical decay of
|cα|. The uncertainty bars are generated using 100 independent replications for each samples
size N ( �� �1-minimization; �� weighted �1-minimization; �� iteratively re-weighted �1-
minimization).
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Figure 2.11: Approximation of PC coefficients of v(0.25, 0.25) using N = 200 samples (a), (b)
and N = 1000 samples (c), (d) (� reference; • �1-minimization; • weighted �1-minimization).
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Figure 2.12: Comparison of relative rms error for �1-minimization, weighted �1-minimization,
weighted least-squares regression, and sparse grid collocation for the cavity flow problem.
In the weighted least-squares approach, the set C with cardinality |C| = �N/2� contains
the indices of the largest (in magnitude) approximate upper bounds on the PC coeffi-
cients ( �� �1-minimization; �� weighted �1-minimization; �� weighted least-squares re-
gression; �� stochastic collocation).



CHAPTER 3

A BI-FIDELITY TECHNIQUE VIA �1-MINIMIZATION AND

ORTHOGONAL MATCHING PURSUIT FOR SPARSE POLYNOMIAL

CHAOS EXPANSION1

Abstract

In this chapter, we investigate bi-fidelity approaches for sparse polynomial chaos expansion

(PCE) in the context of compressive sampling, in which computationally economical low-

fidelity simulations are utilized to improve the surrogate approximation of a quantity of

interest (QoI). PCE coefficients computed from low-fidelity simulations are used as a priori

information about the high-fidelity coefficients, resulting in an improved accuracy in recov-

ering the solution, furthermore an improved quality in approximating the QoI. This a priori

information is involved via weighted �1-minimization and a modified orthogonal matching

pursuit (OMP), which is proposed as bi-fidelity OMP. Numerical experiments are provided to

compare the bi-fidelity and standard methods, and they all show that bi-fidelity approaches

admits solution recovery at an enhanced accuracy.

3.1 Introduction

Nowadays, engineering problems are described by highly complex models, in which stochastic

variables are used to represent the uncertain parameter inputs, introduced by imperfect

knowledge of the physics or inherent variability in the inputs. Uncertainty quantification

1 This chapter is in preparation to be submitted by J. Peng et al. to AIAA Journal.
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(UQ) [2, 3, 4] is a tool that aims at quantitatively understanding how the quantity of interest

(QoI) performs under effects of these uncertain parameters, representing the QoI as a function

of the uncertain inputs. These representations are commonly implemented via polynomial

chaos expansions (PCEs) [19, 20].

To quantitatively analyze uncertainties via PCE, we consider a natural framework,

probability, in which the uncertain inputs are modeled as a d-dimensional vector of indepen-

dent random variables Ξ := (Ξ1, . . . ,Ξd). This random vector yields to probability density

function ρ(Ξ). The QoI that we seek to approximate is denoted by a scalar u(Ξ), and as-

sumed to have finite variance. Therefore, we represent u(Ξ) by an expansion in multivariate

orthogonal polynomials ψj(Ξ),

u(Ξ) =
∞∑
j=1

cjψj(Ξ) ≈
P∑

j=1

cjψj(Ξ). (3.1)

We call (3.1) a PCE, in which cj , j = 1, 2, . . . , are the corresponding PCE coefficients. As

u(Ξ) has finite variance, (3.1) usually converges rapid, thereby u(Ξ) can be represented

by finite P terms without a significant loss of accuracy. Usually P is determined by the

dimension, d, and the highest total order of the PCE, p, which will be further explained in

Section 3.2.2.

Typically, it is unnecessary to use all P terms to represent u(Ξ), and we can restrict to

the polynomials indexed by j ∈ C, where the subset C ⊂ {1, . . . , P} is unknown, such that

|C|, the number of elements in C, is significantly smaller than P . Then, u(Ξ) is approximated

by

u(Ξ) ≈
∑
j∈C

cjψj(Ξ). (3.2)

We call (3.2) a sparse PCE, and |C|, the number of elements in C, is referred to as the

sparsity of the expansion. Identifying the small subset C and the values of the corresponding

coefficients falls within the context of compressive sampling [34, 35, 47].

Compressive sampling seeks to identify the PCE coefficients by solving the optimization
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problem

P0,ε ≡
{
argmin

c
‖c‖0 : ‖Ψc− u‖2 ≤ ε

}
, (3.3)

where the vector c := (c1, . . . , cP ) contains PCE coefficients, and ‖c‖0 denotes the number

of non-zero entries of c. In addition, the vector u and the matrix Ψ contains QoI and PCE

basis function evaluations at realizations of the random inputs,

u :=
(
u(ξ(1)), . . . , u(ξ(N))

)T
; (3.4)

Ψ(i, j) := ψj

(
ξ(i)

)
, (3.5)

where ξ(i) denotes the ith realization of Ξ, and N is the number of realizations.

A solution to P0,ε provides an optimally sparse approximation of u(Ξ) within ε in the

�2 norm. However, in general, solving P0,ε is an NP-hard problem, i.e., the cost of solving

it grows exponentially in P [60]. To resolve this exponential dependence, approaches such

as �1-minimization [54, 55, 56, 34, 60] and orthogonal matching pursuit (OMP) have been

proposed.

3.1.1 �1-minimization

As a convex relaxation of P0,ε, �1-minimization seeks to identify c by solving

P1,ε ≡
{
argmin

c
‖c‖1 : ‖Ψc− u‖2 ≤ ε

}
, (3.6)

via convex optimization algorithms [54, 65, 66, 67, 68, 69, 70, 71]. It is shown that in practice,

the solution to P1,ε is usually similar to P0,ε [111]. For computation, P1,ε may be solved in

form of the �1-norm regularized least-squares problem or the LASSO problem [72]. In this

study we use the MATLAB package SPGL1 [70] based on the spectral projected gradient

algorithm [73].

To show that �1-minimization indeed finds a solution to P0,ε, we let c0 be the solution

to P0,0, whose sparsity is s := ‖c0‖0, and c1 be the solution to P1,0. It has been shown in
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[64, 82] that when

N ≥ C(1 + β)3ps log(P ), (3.7)

where C is non-negative constant,

Prob [c1 = c0] ≥ 1− 6

P
− 6e−β. (3.8)

From (3.7) and (3.8), we can deduce that as the number of realizations N becomes larger,

a higher probability it achieves in recovering the coefficients c0. This is consistent with the

observations in our numerical results in Section 3.4.

3.1.2 Orthogonal matching pursuit (OMP)

Orthogonal matching pursuit (OMP) is one of the commonly used greedy algorithms, which

may be employed to approximate the solution to P0,δ [61, 62]. Denoting the PCE coefficients

in the tth iteration by the superscript (t), we start from c(0) = 0 and an empty active column

set ofΨ. At any iteration t, OMP identifies only one column to be added to the active column

set. The column is chosen such that the �2-norm of the residual, ‖Ψc(t) −u‖2, is maximally

reduced; or identically, the residual, Ψc(t) − u, has highest inner product with the selected

column. This active column selection process is also called the sensing part of OMP. Having

specified the active column set, a least-squares problem is solved to compute the solution

c(t). The iterations are continued until the error truncation tolerance ε is achieved. In

general, OMP is relatively fast compared to the �1-minimization algorithm (introduced in

Section 3.1.1), both in theory and practice, but most of them deliver smaller recoverable

sparsity compared to �1 minimization [47]. The following exhibit depicts an step-by-step

implementation of the OMP algorithm.
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Algorithm 3 Orthogonal matching pursuit (OMP)

Set t = 0, c(0) = 0, and r(0) = u−Ψc(0).

Set the initial solution support index set I(0) = ∅.
While ‖u−Ψc(t)‖2 > ε: do

for all j 
∈ I(t): do
Evaluate ε(j) =

∣∣ψT
j r

(t)
∣∣.

End for

Set t = t+ 1.

Update the support index set I(t) = I(t−1) ∪ {argmaxj ε(j)}.
Solve for c(t) = argminc ‖u−Ψc‖2 subject to Support{c} = I(t).
Update the residual r(t) = u−Ψc(t).

End while

Output the solution c = c(t).

Theoretical analyses have been provided to show that OMP is guaranteed to recover

the PCE coefficients in problem P0,0, which is done via the concept mutual coherence. The

mutual coherence of a matrix Ψ ∈ R
N×P is defined by

µ(Ψ) := max
1≤i,j≤P,i �=j

|ψT
i ψj|

‖ψi‖‖ψj‖ . (3.9)

where ψi and ψj are two columns of Ψ. The mutual coherence is a measure of the orthogo-

nality of a matrix. For instance, when µ(Ψ) = 0, the matrix Ψ is unitary, while µ(Ψ) = 1,

at least two columns of Ψ are identical. For any given Ψ, 0 ≤ µ(Ψ) ≤ 1. Specially, for

under-determined case, N < P , the mutual coherence µ(Ψ) is strictly positive.

Following Theorem 6 in [60], we know that for problem (P0,0), where N < P , if a

solution c0 exists satisfying

‖c0‖0 < 1

2

(
1 +

1

µ(Ψ)

)
, (3.10)

OMP is guaranteed to recover c0 exactly. Furthermore, for problems with high-dimensional

random inputs, Corollary 7.4 in [62] and Theorem 3.1 in [64] show a upper bound of µ(Ψ)
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exists, and µ(Ψ) is within this upper bound with a high probability, i.e.,

Prob [µ(Ψ) ≥ δ] ≤ 23/4P 2 exp

(
− Nδ2

2C32p

)
, (3.11)

where rows of Ψ are the p-order Legendre polynomial chaos basis, independently realized in

d > p i.i.d. uniform random variables Ξ, and the constant C ≈ 13.12.

From (3.11), we can see that if the number of realizations N is larger, or the bound δ

is higher, the mutual coherence is more tightly bounded, since the probability of µ(Ψ) ≥ δ

drops exponentially. In addition, for a fixed set of d and p, as N increases, the upper bound of

µ(Ψ) may decrease, which enables OMP to recover a solution with more non-zero elements.

This is also in accordance with the numerical results in Section 3.4.

3.1.3 Motivations

The research on developing �1-minimization and OMP to improve the efficiency (increase

the accuracy or decrease the computational cost) of compressive sampling has been thriving

recently [112, 113, 114, 115]. For instance, in [114], a modified data dependent sensing

dictionary has been unitized in OMP, the active column set is selected based on the projection

of realized samples u onto the polynomial basis functions. In each iteration, the column

with largest projection is added to the active set. Nevertheless superior performance has

been shown in [114], due to the nonlinearity of the problem of our interest, no significant

improvement has been observed. However, motivated by it, we modify the sensing part of

OMP with a priori information on the PCE coefficient, which will be described in Section

3.3.2. In [112], a weighted �1-minimization has been proposed when a priori information is

available, higher PCE accuracy is observed from the weighted �1-minimization, by solving

the problem

P(W )
1,ε ≡

{
argmin

c
‖Wc‖1 : ‖Ψc− u‖2 ≤ ε

}
, (3.12)

where W is a diagonal matrix to be specified using a priori information of the PCE co-

efficients, which may be obtained analyticall or by dimensional analysis. Nevertheless, in
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practice, this analytical information is not always available.

In the present study, we extend the weighted �1-minimization approach. To acquire the

a priori information, we first solve P1,ε in (3.12), with the vector u containing the evaluations

of the QoI in low fidelity, and the solution is used to form W in P(W )
1,ε . We refer to this

extended weighted �1-minimization as bi-fidelity �1-minimization. Additionally, we modify

the OMP algorithm to include the a priori obtained from low-fidelity solutions, and we call it

bi-fidelity OMP. Two numerical examples are used to demonstrate the bi-fidelity approaches:

an elliptical equation with stochastic diffusion coefficient; a steady state thermally driven

cavity flow problem with random temperature boundary condition.

The rest of this manuscript is organized as follows. In Section 3.2, we state the general

problem that is considered and introduce the formulation of PCE. In Section 3.3, we present

the bi-fidelity approaches, and provide the theoretical conditions that guarantee the recovery

of PCE coefficients via bi-fidelity �1-minimization. Two numerical experiments are used to

demonstrate the bi-fidelity approaches in Section 3.4: a spatially two-dimensional elliptic

PDE with stochastic diffusion coefficient and a thermally-driven cavity flow with random

temperature boundary conditions.

3.2 Framework of the Problem

3.2.1 Problem statement

Considering an engineering system modeled by differential equations on a domain D ∈
R

D, D ∈ {1, 2, 3}, in which one or many uncertain parameters are characterized by the

d-dimensional vector Ξ, e.g., boundary conditions and/or initial conditions. The solution u

is governed by the equations

L(x, t,Ξ; u(x, t,Ξ)) = 0, x ∈ D,

I(x,Ξ; u(x, 0,Ξ)) = 0, x ∈ D,

B(x, t,Ξ; u(x, t,Ξ)) = 0, x ∈ ∂D,

(3.13)
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where L, I, and B are differential operators depending on the physics of the problem, the

initial conditions, and the boundary conditions, respectively. We seek to approximate the

solution for some fixed spatial location x0 and time t0, u(x0, t0,Ξ), which is the QoI. For

brevity, we drop x0 and t0, and simply write the QoI and its evaluations as u(Ξ) and u(ξ),

respectively. In the present work, we use the finite element methods project FEniCS [116]

to solve (3.13) for the given problems in Section 3.4.

3.2.2 Polynomial chaos expansion (PCE)

To approximate the QoI, u(Ξ), we rely on the PCE (3.1). The inputs, Ξk, are assumed

to be independent random variables, and identically yield to probability density function

ρk. The complete set of polynomial basis functions is defined by {ψik(Ξk)}, which contains

polynomials of degree ik ∈ N∪{0} orthonormal with respect to the weight function ρk [21, 20].

Furthermore, the multivariate orthonormal polynomials in Ξ are given by the products of

the univariate orthonormal polynomials,

ψi(Ξ) =

d∏
k=1

ψik(Ξk), (3.14)

where the d-dimensional multi-index i ∈ {(i1, . . . , id) : ik ∈ N ∪ {0}}. For computation, the

expansion in (3.1) is truncated to the set of basis functions, {ψj(Ξ)}Pj=1, associated with the

subspace of polynomials of total order not greater than p, i.e.
∑d

k=1 ik ≤ p. The cardinality

P can be calculated by

P =
(d+ p)!

d!p!
. (3.15)

For convenience, we also order these P basis functions so that they are indexed by {1, . . . , P},
as in (3.1). We note that these two notations deliver the same PCE, and both of them may

be used without confusion. Representing u(Ξ) by PCE, the problem of approximating the

QoI reduces to the problem of identifying the PCE coefficients.
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3.3 Compressive Sampling via Bi-fidelity Technique

To increase the probability of accurately recover PCE coefficients, a larger number of samples,

N is required [47, 64]. However, the deterministic solver of u is often computationally

demanding, and hence it is expensive to compute the realized u(Ξ). UQ including a priori

on PCE coefficients has been shown to be accuracy-effective [112]. Analytical or approximate

decaying information about the PCE coefficients has been used as the a priori information,

however, it is not guaranteed that this kind of information is always available. In order

to sustainably obtain a priori in numerical simulations, we consider the so called bi-fidelity

approaches.

Usually, to accurately recover the PCE coefficients, the evaluations of the QoI are re-

quired to be calculated with high numerical accuracy, which may be computed on complex

models, fine mesh, high-order accurate schemes, etc.. It is often computationally expensive

to evaluate these high-fidelity samples, particularly for large scale complex simulations. Nev-

ertheless, if we evaluate the samples on simple models, coarse mesh, or low-order accurate

schemes, the computational complexity may be significantly reduced. Correspondingly, these

low-fidelity computations usually lead to low-accurate realized QoI evaluations, since noise

such as discretization errors, truncation errors are introduced. Therefore, we cannot trust

the PCE coefficients recovered with the low-fidelity samples, but they may be used as the a

priori information about the PCE coefficients.

3.3.1 Bi-fidelity �1-minimization

In bi-fidelity �1-minimization, we solve the weighted �1-minimization problem P(W )
1,ε , in which

the diagonal weight matrix W is defined with entries wj ≥ 0. We consider the weighted

problem P(W )
1,ε in (3.12) with

‖Wc‖1 =
P∑

j=1

wj|cj|. (3.16)
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To identify wj , we first solve P1,ε in (3.6) with low-fidelity realizations, giving the low-fidelity

PCE coefficients, denoted by cl. We then use cl, as the a priori information, to defineW [86],

wj =
(|clj|+ δw

)−q
, (3.17)

where δw is a relatively small positive parameter. The parameter q ∈ [0, 1] may be used to

account for the confidence in the anticipated |clj|. These weights deform the �1 ball, as Figure

3.1 shows, to discourage small coefficients from the solution and consequently enhance the

accuracy. We call |clj| the a priori information because the low-fidelity model is solved on

a coarse mesh, and evaluating the QoI in low-fidelity is computationally cheap. Therefore,

compared to solving P(W )
1,ε in high fidelity, the cost on solving for |clj| is usually negligible or

small.

Ψc = Ψc0

c0

c

Ψc = Ψc0

c0, c

(a) (b)

Figure 3.1: Schematic of approximation of a sparse c0 ∈ R
3 via standard and weighted

�1-minimization (based on [1]). (a) Standard �1-minimization where, depending on Ψ, the

problem P1,0 with u = Ψc0 may have a solution c such that ‖c‖1 ≤ ‖c0‖1. (b) Weighted

�1-minimization for which there is no c with ‖Wc‖1 ≤ ‖Wc0‖1.

To solve P(W )
1,ε , the standard �1-minimization solvers may be used. Specifically, c̃ =Wc
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may be solved from P1,ε with the modified measurement matrix Ψ̃ = ΨW−1. We then set

c =W−1c̃.

Theoretical recovery via weighted �1-minimization

In this section, we provide a theoretical condition that guarantees the recovery of

weighted �1-minimization, based on the Legendre polynomials chaos expansions. Assuming

that the solution to P0,ε is c0, whose support is C, and that s = |C|, we are interested in

the condition determining when c1 accurately approximates c0, where c1 is the solution to

P1,ε. This is done in the context of the Restricted Isometry Constant (RIC) [89, 90], which

is defined such that for a given vector, x ∈ R
P , with at most s non-zero entries,

(1− δs)‖x‖2 ≤ 1

N
‖Ψx‖2 ≤ (1 + δs)‖x‖2. (3.18)

Here δs is the RIC.

Lemma 3.3.1. Let {ψj}1≤j≤P be a Legendre PC basis in d independent random variables

Ξ = (Ξ1, . . . ,Ξd) uniformly distributed over [−1, 1]d and with a total degree less than or equal

to p. Let the matrix Ψ with entries Ψ(i, j) = ψj(ξ
(i)) correspond to realizations of {ψj} at

ξ(i) sampled independently from the measure of Ξ. If

N ≥ C3pδ−2s log3(s) log(P ), (3.19)

then the RIC, δs, of
1√
N
Ψ satisfies δs ≤ δ with probability larger than 1 − P−γ log3(s). Here,

C and γ are constants independent of N, p, and d.

Theorem 3.3.1. Let s be a sparsity such that δ3s + 3δ4s < 2. Then for any sparse solution,

c0, supported on C with |C| ≤ s, any solution c1 to P(W )
1,ε obeys

‖c0 − c1‖2 ≤ C · ε,

where the constant C depends on s, maxj∈C wj, and minj∈Cc wj.

Here Cc denotes the complement set of C. We note that the proofs of Lemma 3.3.1

and Theorem 3.3.1 are presented in [112], and invite interested readers to consult for more

detail.
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3.3.2 Bi-fidelity OMP

Similar to bi-fidelity �1-minimization, we also consider applying low-fidelity PCE coefficients

as the a priori information in OMP, where the low-fidelity PCE coefficients are calculated via

OMP with low-fidelity realizations. In order to employ this information, we modify the OMP

algorithm in the sensing part. In detail, we change the strategy how OMP selects the active

column set: in the OMP, the active columns are selected totally depending on the residual

reduction, and we modify the sensing process such that the a priori information about the

PCE coefficients helps in selecting the active column set. Let vector w := (w1, w2, . . . , wP )
T ,

where wj = |clj |, denoting the a priori information on the PCE coefficients, and we modify

the OMP algorithm with w as the following exhibit shows:

Algorithm 4 OMP with a priori on PCE coefficients

Set t = 0, c(0) = 0, and r(0) = u−Ψc(0).

Set the initial solution support index set I(0) = ∅.
While t ≤ tmax: do

for all j 
∈ I(t): do
Evaluate ε(j) =

∣∣ψT
j r

(t)
(‖r(t)‖2 − λwj

)∣∣.
End for

Set t = t+ 1.

Update the support index set I(t) = I(t−1) ∪ {argmaxj ε(j)}.
Solve for c(t) = argminc ‖u−Ψc‖2 subject to Support{c} = I(t).
Update the residual r(t) = u−Ψc(t).

End while

Output the solution c = c(t).

In the early iterations of Algorithm 4, the �2-norm of the residual, ‖r(t)‖2, is large, so
for early selections of the active columns, w is less important. As the iteration develops, the

residual is reduced, and columns are selected less by the reduction to the residual yet more
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by the a priori information. As the residual becomes very small, the choice will eventually

depend less on the reduction in residual. The parameter λ indicates how trustable the a

priori information, w, is. A larger λ shows more reliability on w, and the algorithm turns

to w for the active column selection earlier. In this work, an appropriate λ is chosen via

cross validation technique [47].

We note that in Algorithm 4, the stopping criterion is changed to t ≤ tmax. This

is because that the active column set in bi-fidelity OMP is not purely determined by the

residual decrements, and thus a stopping criterion completely depending the residual may

result in an considerable bias in the PCE basis functions selected. To avoid this, we set a

maximum iteration number tmax. In practice, an optimal tmax may also be calculated via

cross validation. In our numerical experiments, we set tmax = N/2.

3.4 Numerical Results

3.4.1 Case I: Two-dimensional elliptic PDE with random inputs

We first consider a two-dimensional elliptic PDE with stochastic coefficient:

−∇ · (a(x,Ξ)∇u(x,Ξ)) = 1, x ∈ D = (0, 1)× (0, 1) ,

u(x,Ξ) = 0, x ∈ ∂D ,

(3.20)

where the uncertain diffusion coefficient a(x,Ξ) is modeled as

a(x,Ξ) = ā + σa

d∑
k=1

√
λkφk(x)Ξk , (3.21)

in which d = 20, and Ξk, k = 1, . . . , d independently yield to uniform distribution, U(−1, 1).
In addition, ā = 0.1, σa = 0.05, and {φk}dk=1 are the eigenfunctions corresponding to the d

largest eigenvalues {λk}dk=1 of the Gaussian covariance kernel

Caa(x1,x2) = exp

[
−(x1 − x2)

2

l2c
− (y1 − y2)2

l2c

]
, (3.22)

whose correlation length lc = 1/16.
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The QoI u(Ξ) is chosen as the flux at boundary x = 1, i.e.,

u(Ξ) =

∫ 1

0

a ((1, y),Ξ)
du ((x, y),Ξ)

dx

∣∣∣∣
x=1

dy. (3.23)

Results

We first solve for u(ξ(i)) on a coarse 16× 16 uniform FEM mesh, which are considered

as the low-fidelity realizations. The high-fidelity realizations are performed on a 256 × 256

mesh, which yields accurate resolutions of the solution. The residual error from the numerical

solver and computational time (in seconds) are shown in Figure 3.2.
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Figure 3.2: Relative residual error and computation time (seconds) on M × M meshes

( �� computation time, �� relative residual error).

In this experiment, we seek to approximate u(Ξ) by Legendre PCE with P = 2500

polynomial basis functions of total order p ≤ 4. To compare the bi-fidelity approaches with

standard methods, we define an equivalent sample size N̂ = Nh + νNl, where Nh and Nl are

the numbers of high-fidelity and low-fidelity realizations, respectively, and ν is non-negative

number determined by the computational cost in a single low-fidelity simulation. In Fig. 3.2,

it shows that the computational cost of a low-fidelity simulation is approximately 10−3 times

that of a high-fidelity simulation, therefore, ν = 10−3. Hereby, N̂ = Nh for high-fidelity PCE,
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while N̂ = Nh+10−3Nl for bi-fidelity PCE. In addition, it is assumed that the computational

cost on solving P0,ε, P1,ε, and P(W )
1,ε is negligible compared to the cost of deterministic solver.

In Figure 3.3, we compare the mean and standard deviation of the relative root mean

square error (RRMSE) in reconstructing u(Ξ) via �1-minimization, using 100 independent

replications, with N̂ ∈ {20, 30, 80, 200}. The reference PCE coefficients are computed from

high-fidelity solutions by least squares regression [31] with 10000 independent samples. It

can be observed that although we use a large number of realizations Nl = 400 in low fidelity

to reconstruct u(Ξ), due to the significant simulation error, RRMSE in the reconstruction

via �1-minimization is relatively high. However, when we use the PCE coefficients from low-

fidelity simulations as the a priori information in bi-fidelity �1-minimization, with various

N̂ , bi-fidelity �1-minimization outperforms the standard �1-minimization in high fidelity. We

note that in bi-fidelity �1-minimization presented in Figure 3.3, the number of low-fidelity

realizations is fixed as Nl = 400, we only change Nh in N̂ .
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Figure 3.3: Comparison of the statistics of the RRMSE in reconstructing u(Ξ) via �1-

minimization. (a) Mean of RRMSE. (b) Standard deviation of RRMSE. ( �� high-fidelity

(256 × 256 mesh), �� bi-fidelity (16 × 16 and 256 × 256 mesh), low-fidelity (16 × 16

mesh), with 400 realizations.)
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In Figure 3.4, we compare the mean and standard deviation of the RRMSE in recon-

structing u(Ξ) via OMP, using 100 independent replications, with N̂ ∈ {20, 30, 80, 200}.
Similar to the bi-fidelity �1-minimization, the bi-fidelity OMP outperforms standard OMP

in high fidelity in approximating u(Ξ). Similar to bi-fidelity �1-minimization, in bi-fidelity

OMP presented in Figure 3.4, the number of low-fidelity realizations is fixed as Nl = 400,

we only change Nh in N̂ .
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Figure 3.4: Comparison of the statistics of the RRMSE in reconstructing u(Ξ) via OMP. (a)

Mean of RRMSE. (b) Standard deviation of RRMSE. ( �� high-fidelity (256× 256 mesh),

�� bi-fidelity (16 × 16 and 256 × 256 mesh), low-fidelity (16 × 16 mesh), with 400

realizations.)

To study how the accuracy of the low-fidelity PCE coefficients affects the performance

of bi-fidelity approaches, we repeat the same experiment with Nl = 20. According to Fig-

ure 3.5a and Figure 3.6a, the coefficients cl calculated from these realizations are noticeably

less accurate compared to the case with Nl = 400. We not that in both �1-minimization and

OMP cases, the mean RRMSE stopped decreasing when N ≥ 50, which is resulted from the

numerical errors in low-fidelity simulation.
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Figure 3.5: RRMSE in reconstructing u(Ξ) via �1-minimization. (a) Mean RRMSE using 100

independent replications in low fidelity (16 × 16 mesh). (b) Comparison of mean RRMSE.

( �� high-fidelity (256 × 256 mesh), �� bi-fidelity (16 × 16 and 256 × 256 mesh) with

Nl = 20).
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Figure 3.6: RRMSE in reconstructing u(Ξ) via OMP. (a) Mean RRMSE using 100 inde-

pendent replications in low fidelity (16 × 16 mesh). (b) Comparison of mean RRMSE.

( �� high-fidelity (256 × 256 mesh), �� bi-fidelity (16 × 16 and 256 × 256 mesh) with

Nl = 20).
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From Figure 3.5b and Figure 3.6b, we can observe that with a less accurate cl, the

accuracy in reconstructing the QoI via bi-fidelity methods decreases. This suggests that in

practice Nl should be appropriately chosen depending on the desired accuracy of bi-fidelity

approaches and the computational cost of low-fidelity simulations. We note that the accuracy

of cl may be enhanced by either increasing the fidelity of low-fidelity simulation or increasing

the number of low-fidelity realizations. For any given problems, the strategy should be

determined wisely, such that the computational cost on the deterministic simulations is

minimized.

3.4.2 Case II: Steady-state thermally driven flow with stochastic boundary

temperature

We next consider a 2-D heat driven cavity flow problem in steady-state, shown in Figure 3.7a.

The left vertical wall has a deterministic, constant temperature T̃h, referred to as the hot

wall, while the right vertical wall has a stochastic temperature T̃c < T̃h with constant mean

¯̃Tc, referred to as the cold wall. Both top and bottom walls are assumed to be adiabatic.

The reference temperature and the reference temperature difference are defined as T̃ref =

(T̃h + ¯̃Tc)/2 and ∆T̃ref = T̃h − ¯̃Tc, respectively. In dimensionless variables, the governing

equations (in the small temperature difference regime, i.e., Boussinesq approximation) are

given by

u · ∇u = −∇p + Pr√
Ra
∇2u+ PrT ŷ,

∇ · u = 0,

∇ · (uT ) = 1√
Ra
∇2T,

(3.24)

where ŷ is the unit vector (0, 1), u = (u, v) is velocity vector field, T = (T̃ − T̃ref)/∆T̃ref
is normalized temperature (T̃ denotes non-dimensional temperature), p is pressure, and

t is time. Non-dimensional Prandtl and Rayleigh numbers are defined, respectively, as

Pr = µ̃c̃p/κ̃ and Ra = ρ̃gβ∆T̃ref L̃
3/(µ̃κ̃), where the superscript tilde (̃ ) denotes the non-
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dimensional quantities. Specifically, ρ̃ is density, L̃ is reference length, g is gravitational

acceleration, µ̃ is molecular viscosity, κ̃ is thermal diffusivity, and the coefficient of thermal

expansion is given by β. In this example, the Prandtl and Rayleigh numbers are set to

Pr = 0.71 and Ra = 106, respectively. For more details on the non-dimensional variables in

(3.24), we refer the interested reader to [108, 6, 3].

On the cold wall, we apply a (normalized) temperature distribution with stochastic

fluctuations of the form

Tc(x = 1, y,Ξ) = T̄c + T ′
c,

T ′
c = σT

d∑
i=1

√
λiϕi(y)Ξi,

(3.25)

where T̄c is a constant mean temperature. In (3.25), Ξi, i = 1, . . . , d, are independent

random variables uniformly distributed on [−1, 1]. {λi}di=1 and {ϕi(y)}di=1 are the d largest

eigenvalues and the corresponding eigenfunctions of the exponential covariance kernel

CTcTc(y1, y2) = exp

(
−|y1 − y2|

lc

)
,

where lc is the correlation length. Following [109], the eigenpairs (λi, ϕi(y)) in (3.25) are,

respectively, given by

λi =
2lc

l2cω
2
i + 1

,

and

ϕi(y) =




cos(ωiy)√
0.5 + sin(ωi)

2ωi

, i is odd,

sin(ωiy)√
0.5− sin(ωi)

2ωi

, i is even,

where each ωi is a root of

ωi + (1/lc) tan(0.5ωi) = 0.
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0 0.2 0.4 0.6 0.8 1
−0.55

−0.5

−0.45

−0.4

−0.35

y

T
c(y

)

(b) A realization of Tc(x = 1, y).

Figure 3.7: Illustration of the cavity flow problem.

In our numerical test we let (Th, T̄c) = (0.5,−0.5), d = 20, lc = 1/21, and σT = 7/25. A

realization of the cold wall temperature Tc is shown in Figure 3.7b. Our quantity of interest,

the Nusselt number define by

Nu := −
∫ 1

0

∂T (x, y)

∂x

∣∣∣∣
x=1

dy, (3.26)

is expanded in the Legendre PCE basis of total degree p = 4 with only the first P = 2500 basis

functions retained, as described in the case of the elliptic problem. We seek to accurately

reconstruct Nu with N < P random samples of Ξ and the corresponding realizations of Nu.

Results

In this experiment, the low-fidelity simulations are performed on a uniform 16 × 16

FEM mesh, while 64×64 for high-fidelity mesh, with which we observe ν = 1/90. Therefore,

in this experiment, N̂ = Nh + 1/15Nl in bi-fidelity approaches, where Nl is fixed to be 400.

In Figure 3.8, we compare the mean and standard deviation of the relative root mean

square error (RRMSE) in reconstructing Nu via �1-minimization, using 100 independent

replications, with N̂ ∈ {30, 50, 80, 200}. The reference PCE coefficients are computed from

high-fidelity solutions by least squares regression with 10000 independent samples. It can be

observed that low-fidelity PCE leads to significant errors in reconstructing Nu, due to the
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numerical errors from the coarse mesh in the deterministic solver. However, when we use

the PCE coefficients from low-fidelity simulations as the a priori information in bi-fidelity

�1-minimization, with various N̂ , bi-fidelity �1-minimization outperforms the standard �1-

minimization in high fidelity.
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Figure 3.8: Comparison of the statistics of the RRMSE in reconstructing Nu via �1-

minimization. (a) Mean of RRMSE. (b) Standard deviation of RRMSE. ( �� high-fidelity

(64× 64 mesh), �� bi-fidelity (16× 16 and 64× 64 mesh), low-fidelity (16× 16 mesh),

with 400 realizations.)

In Figure 3.9, we show the comparison in reconstructing Nu via OMP, using 100 inde-

pendent replications, with N̂ ∈ {30, 50, 80, 200}. Similar to bi-fidelity �1-minimization, with

various N̂ , bi-fidelity OMP outperforms the standard OMP in high fidelity.
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Figure 3.9: Comparison of the statistics of the RRMSE in reconstructing Nu via OMP. (a)

Mean of RRMSE. (b) Standard deviation of RRMSE. ( �� high-fidelity (64 × 64 mesh),

�� bi-fidelity (16 × 16 and 64 × 64 mesh), low-fidelity (16 × 16 mesh), with 400

realizations.)

3.5 Conclusion

In this manuscript, we utilized bi-fidelity technique to provide a priori information about the

polynomial chaos expansion (PCE) coefficients on the quantity of interest (QoI), within the

context of compressive sampling. Furthermore, employed a weighted �1-minimization and

modified the orthogonal matching pursuit (OMP) algorithm to include this a priori, therefore

to improve the accuracy in approximating the QoI by PCE. In addition, we provide analysis

on weighted �1-minimization, when the a priori is inaccurate, for Legendre polynomial chaos.

Numerical examples were shown to demonstrate the bi-fidelity methods: a two-dimensional

elliptic equation with stochastic diffusion coefficient; a steady state thermally driven cavity

flow with random temperature boundary condition. In all examples, bi-fidelity methods were

consistently observed to improve the quality of solution recovery at the same computational

cost. As the solutions recovered by bi-fidelity approaches are sensitive to the accuracy of

the a priori information, which was observed in the first example, hence a wise strategy in
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determining the accuracy and number of realizations of low-fidelity simulation was suggested

with concerns about the computational cost.

In addition, although all the examples are presented with a bi-fidelity enhancement,

we note that the proposed approaches are not limited within bi-fidelity. One can easily

employ the bi-fidelity approaches recursively with multiple levels of fidelity, depending on

the availability of the low-cost deterministic solvers in each fidelity level.



CHAPTER 4

ON POLYNOMIAL CHAOS EXPANSION VIA GRADIENT-ENHANCED

�1-MINIMIZATION1

Abstract

Gradient-enhanced Uncertainty Quantification (UQ) has received recent attention, in which

the derivatives of a Quantity of Interest (QoI) with respect to the uncertain parameters

are utilized to improve the surrogate approximation. Polynomial chaos expansions (PCEs)

are often employed in UQ, and when the QoI can be represented by a sparse PCE, �1-

minimization can identify the PCE coefficients with a relatively small number of samples. In

this chapter, we investigate a gradient-enhanced �1-minimization, where derivative informa-

tion is computed to accelerate the identification of the PCE coefficients. For this approach,

stability and convergence analysis are lacking, and thus we address these here with a prob-

abilistic result. In particular, with an appropriate normalization, we show the inclusion of

derivative information will almost-surely lead to improved conditions, e.g. related to the

null-space and coherence of the measurement matrix, for a successful solution recovery. Fur-

ther, we demonstrate our analysis empirically via three numerical examples: a manufactured

PCE, an elliptic partial differential equation with random inputs, and a plane Poiseuille flow

with random boundaries. These examples all suggest that including derivative information

admits solution recovery at reduced computational cost.

1 This chapter has been submitted by J. Peng et al. to Journal of Computational Physics.
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4.1 Introduction

In complex engineering system analysis, inherent variability in inputs and imperfect knowl-

edge of the physics can lead to unfounded confidence or unnecessary diffidence in understand-

ing Quantities of Interest (QoI). Uncertainty Quantification (UQ) [2, 3, 4] as a study aims

to develop numerical tools that can accurately predict QoI and facilitate the quantitative

validation of the simulation model.

To characterize uncertainty, probability is a natural framework. We model the uncer-

tain inputs as a d−dimensional vector of independent random variables Ξ := (Ξ1, . . . ,Ξd),

with probability density function ρ(Ξ). The QoI that we seek to approximate is denoted by

a scalar u(Ξ). Here we utilize polynomial chaos expansions (PCEs) [2, 20] to approximate

u(Ξ), assumed to have finite variance. In this case, u(Ξ) can be represented as an expansion

in multivariate orthogonal polynomials ψj(Ξ), i.e.,

u(Ξ) =
∞∑
j=1

cjψj(Ξ) ≈
P∑

j=1

cjψj(Ξ) + εt(Ξ), (4.1)

where cj, j = 1, 2, . . . , are the corresponding PCE coefficients, and εt is the truncation error

associated with retaining P terms of a sorted basis. The PCE coefficients can be computed

by the projection

cj =

∫
u(Ξ)ψj(Ξ)ρ(Ξ)dΞ = E [u(Ξ)ψj(Ξ)] , (4.2)

where the operator E denotes the mathematical expectation. Here we assume that ψj(Ξ)

are normalized such that E
[
ψ2
j (Ξ)

]
= 1.

Typically, a full P term approximation is not necessary, and we can restrict to an

unknown subset C ⊂ {1, . . . , P} such that |C|, the number of elements in C, is significantly
smaller than P . In addition, |C| is referred to as the sparsity of the approximation. We

approximate u(Ξ) in (4.1) then by

u(Ξ) ≈
∑
j∈C

cjψj(Ξ). (4.3)
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This concept of using one basis, indexed by {1, . . . , P}, to compute an approximation in a

small but unknown subset of those basis functions, indexed by C, falls within the context of

compressive sampling [56, 34, 47, 112, 117].

To identify PCE coefficients, we consider non-intrusive sampling methods, in which

deterministic solvers for the QoI are not modified. Such methods include Monte Carlo

simulation [23, 3], pseudo-spectral stochastic collocation [24, 25, 3, 27], least squares regres-

sion [30, 118, 64], and �1-minimization [48, 47, 52, 53, 112, 117, 119, 120]. In this work, we

adopt �1-minimization to estimate the coefficients, solving the problem

argmin
c
‖c‖1 subject to ‖u−Ψc‖2 ≤ δ, (4.4)

where the vector c := (c1, . . . , cP ) contains PCE coefficients, while the vector u and the

so-called measurement matrix Ψ contains function evaluations at realizations of the random

input, Ξ. Specifically, denoting the ith realization of Ξ as ξ(i),

u :=
(
u(ξ(1)), . . . , u(ξ(N))

)T
; (4.5)

Ψ(i, j) := ψj

(
ξ(i)

)
. (4.6)

In (4.4), δ is a tolerance parameter necessitated by the truncation error, εt(Ξ), to reduce the

effect of overfitting. For this work, δ is identified via cross-validation [121].

It has been shown that as the number of samples, N , increases, the probability of

accurately recovering PCE coefficients experiences a corresponding increase [117]. Often

the deterministic solver of u is computationally demanding, and it is expensive to compute

realized u(ξ(i)). In order to deal with this situation, coefficient estimation based on gradient-

enhanced PCE has received recent attention [122, 123, 124, 11, 125, 120]. Specifically, the

gradient information utilized is

u∂ :=

(
∂u

∂Ξ1

(
ξ(1)

)
, . . . ,

∂u

∂Ξd

(
ξ(1)

)
, . . . ,

∂u

∂Ξ1

(
ξ(N)

)
, . . . ,

∂u

∂Ξd

(
ξ(N)

))T

(4.7)

and

Ψ∂((i− 1) · d+ k, j) :=
∂ψj

∂Ξk
(ξ(i)), k = 1, . . . , d. (4.8)
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With this gradient-enhancement, c is solved by minimizing ‖c‖2, in least squares regression,

or ‖c‖1, in compressive sampling, subject to a constraint on∥∥∥∥∥∥∥

u
u∂


−


Ψ

Ψ∂


Wc

∥∥∥∥∥∥∥
2

, (4.9)

whereW is a positive-diagonal matrix depending on the basis functions and their derivatives,

which we shall specify in Section 4.3.2. In this way, N realizations of the random inputs Ξ

provide an N(d+1)×P matrix, where the gradients ∂u/∂Ξk, k = 1, . . . , d, may be computed

at each evaluation of Ξ from, e.g., direct or adjoint sensitivity equations [126], or automatic

differentiation [127]. We assume that u(Ξ) and its partial derivatives are square integrable

with respect to the measure for Ξ, and are represented in the appropriate basis such that

the QoI and its derivatives correspond to identical coefficients.

In a related context, a gradient-enhanced sparse approximation based on �1-minimization

was proposed in [128], in which derivatives ∂u/∂Ξk, k = 1, . . . , d, are projected onto Legen-

dre PCE, with a corresponding coefficient vector c∂.

4.1.1 Contribution of this work

In this work, we investigate a gradient-enhanced �1-minimization approach as seen in [120],

in which the derivative information is empirically shown to improve the resolution of PCE

coefficients.

In Section 4.3, a theoretical contribution concerning the Restricted Isometry Constant

(RIC) is presented regarding recovery in �1-minimization with derivative information based

on Hermite PCE. The RIC is a constant associated with the measurement matrix that

provides fruitful (probabilistic) bounds for recovery of solutions via �1-minimization [103].

Additionally, under an appropriate normalization introduced byW in (4.9), it is guaranteed

that null-space, measurement matrix column inner-products, and coherence related measures

are almost-surely improved, implying that stability for solutions computed by (4.4) are not
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reduced by including derivative information. These analyses are original to the authors’

best knowledge, and provide a framework for analysis of recovery in other PCE bases. Also,

though not considered here, the approach may be extended to least squares polynomial chaos

regression [64].

Three numerical experiments are used to demonstrate the gradient-enhanced �1-minimization

in Section 4.4, among which a plane Poiseuille flow with random boundaries is simulated,

and the derivative information is approximated via an adjoint sensitivity method. The em-

pirical results agree with the theoretical analysis, and suggest that the inclusion of derivative

information can improve solution recovery at a lower overall computational cost.

The structure of the manuscript is as follows. In Section 4.2, we state our prob-

lem and introduce the formulation of the gradient-enhanced �1-minimization approach. In

Section 4.3, we present theoretical results concerning the stability and convergence of the

gradient-enhanced �1-minimization approach, in the context of Hermite PCE. In Section 4.4,

we demonstrate our analysis empirically via three numerical examples: a manufactured PCE,

an elliptic partial differential equation with random inputs, and a plane Poiseuille flow with

random boundaries. Section 4.5 presents the proofs to the results in Section 4.3.

4.2 Method Synopsis

4.2.1 Problem statement

We use differential equations to model engineering systems on a domain D ∈ R
D, D ∈

{1, 2, 3}, in which the uncertainty sources characterized by Ξ may be represented in one or

many relevant parameters, e.g., boundary conditions and/or initial conditions. The solution

u is governed by the equations

L(x, t,Ξ; u(x, t,Ξ)) = 0, x ∈ D,

I(x,Ξ; u(x, 0,Ξ)) = 0, x ∈ D,

B(x, t,Ξ; u(x, t,Ξ)) = 0, x ∈ ∂D,

(4.10)
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where L, I, and B are differential operators depending on the physics of the problem, the

initial conditions, and the boundary conditions, respectively. Our objective is to approximate

the QoI, here u(x0, t0,Ξ), for some fixed spatial location x0 and time t0. Since we denote

the realizations of the random inputs by ξ(i), the corresponding output is u(x0, t0, ξ
(i)). To

reduce notation, we drop the reference to x0 and t0, and simply write u(Ξ) and u(ξ(i)).

4.2.2 Polynomial chaos expansion (PCE)

We rely on the PCE (4.1) to approximate the QoI, u(Ξ). For convenience, we assume that

the input random variables, Ξk, are independent and identically distributed according to the

probability density function ρk, and define {ψik(Ξk)} to be the complete set of polynomials

of degree ik ∈ N ∪ {0} orthogonal with respect to the weight function ρk [21, 20]. Hence,

the multivariate orthonormal polynomials in Ξ are given by the products of the univariate

orthonormal polynomials,

ψi(Ξ) =
d∏

k=1

ψik(Ξk), (4.11)

where each i ∈ {(i1, . . . , id) : ik ∈ N ∪ {0}} is a d-dimensional multi-index of non-negative

integers. For computation, we truncate the expansion in (4.1) to the set of P basis func-

tions associated with the subspace of polynomials of total order not greater than p, that is∑d
k=1 ik ≤ p. For convenience, we also order these P basis functions so that they are indexed

by {1, . . . , P}, as in (4.1), where there should be no confusion in using either notation. The

basis set {ψj(Ξ)}Pj=1 has cardinality

P =
(d+ p)!

d!p!
. (4.12)

4.2.3 �1-minimization with gradient information

We generate derivative information for the QoI, denoted by u∂, and correspondingly evaluate

the derivatives of ψj(Ξ), j = 1, . . . , P , at the realizations ξ(i), i = 1, . . . , N , stored in a
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matrix Ψ∂, as in (4.7) and (4.8). For brevity, we define

ũ =


u
u∂


 (4.13)

and

Ψ̃ =


Ψ

Ψ∂


 , (4.14)

where ũ ∈ R
N(d+1)×1, and Ψ̃ ∈ R

N(d+1)×P is referred to as the gradient-enhanced measure-

ment matrix. Gradient-enhanced �1-minimization solves the problem

argmin
c
‖c‖1 subject to

∥∥∥ũ− Ψ̃Wc
∥∥∥
2
≤ δ, (4.15)

where δ generally differs from the choice in (4.4) and Ψ̃ is assumed to be normalized such

that E
[
N−1Ψ̃T Ψ̃

]
= I, the P × P identity matrix. Here, W is a positive-diagonal matrix,

whose definition is deferred until Section 4.3.2. We next begin a theoretical development to

justify this approach.

4.3 Theoretical Discussion

We present results supporting the premise that the inclusion of derivative information does

not reduce the stability of solutions recovered via (4.15) when compared to solutions re-

covered via (4.4), i.e., in the absence of derivative information. We refer to these solutions

and the methods to attain them using the adjectives gradient-enhanced and standard, re-

spectively. We perform our analysis here with Hermite polynomials as they possess the

convenient property that they and their derivatives are orthogonal with respect to the same

measure, as by (5.5.10) of [129]. While we consider the Probabilists’ polynomials here for

exposition, the Physicists’ polynomials would produce analogous results. Though we do not

consider the details here, this analysis may be extended to the case of Laguerre or Jacobi

polynomials where the derivative polynomials form an orthogonal system with respect to
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a measure that differs from the orthogonality measure, yet is still explicitly known, as by

(5.1.15) and (4.21.7) of [129], respectively.

First, we motivate and summarize results for standard �1-minimization. Then we

expand on these results in the case of gradient-enhanced �1-minimization. The path of this

analysis flows through the Restricted Isometry Constant (RIC) [56], which is denoted by

δs(Φ) and is defined to be the smallest number satisfying

(1− δs(Φ))‖y‖22 ≤ ‖Φy‖22 ≤ (1 + δs(Φ))‖y‖22. (4.16)

Here, δs(Φ) yields a uniform bound on the spectral radius of the submatrices of Φ formed

by selecting any s columns of Φ. Often, the matrix being considered is clear from context,

and we then shorten δs(Φ) to δs. Related to the RIC are restricted isometry properties that

occur when the RIC reaches a small enough threshold, and guarantee that �1-minimization

with the given matrix is a stable computation. An example of such a restricted isometry

property is given in Theorem 4.3.1 from [130]. This theorem shows that if δ2s < 3/(4+
√
6),

where s is dictated by the specific problem, then a stable recovery is assured.

Theorem 4.3.1. [130] Let c ∈ R
P represent a solution we seek to approximate, and let ĉ

be the solution to (4.4). Let

η := Ψc− u,

denote the contribution from sources of error, and let ε from (4.4), be chosen such that

‖η‖22 < ε. If

δ2s(Ψ) < δ� := 3/(4 +
√
6) ≈ 0.4652,

then the following error estimates hold,

‖c− ĉ‖2 ≤ c1√
s

inf
‖cs‖0≤s

‖cs − c‖1 + c2ε;

‖c− ĉ‖1 ≤ c3 inf
‖cs‖0≤s

‖cs − c‖1 + c4ε
√
s,
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where c1, c2, c3, and c4 depend only on δ2s, and ‖·‖0 refers to the number of non-zero elements

of the vector.

We note that, related to the discussion in Section 4.3.1, ε in Theorem 4.3.1 may be

selected so that ‖η‖22 < ε holds with high probability. Unfortunately, identifying the RIC for

a given matrix requires a computation for every submatrix of s columns, which is intractable

in most situations of interest. As a practical alternative we instead choose to bound the

RIC in a probabilistic sense, allowing us to identify a probability that the RIC is below a

chosen threshold. In this way we can guarantee that a restricted isometry property, such

as the one of Theorem 4.3.1, holds with a certain probability. To do so, we introduce a

definition of coherence, first considering the standard case, before expanding its definition

to the gradient-enhanced case.

4.3.1 Standard �1-minimization analysis

We consider here an approach that uses arguments similar to those in [131, 117]. We note

that those works did not proceed through the RIC as we do here. First, let Q be an arbitrary

subset of the sample space for Ξ, that is the values which Ξ can take. Here, Q is used to

truncate the domain to one on which the basis functions, here Hermite polynomials, can be

uniformly bounded. The coherence parameter for the standard approach [131, 117] is defined

to be

µQ := sup
k,ξ∈Q

|ψk(ξ)|22, (4.17)

which for a precompact Q is guaranteed to be finite. An example of a Q suitable for use

with Hermite polynomials, and used in [117, 64], is

Q := {ξ : ‖ξ‖22 ≤ (4 + εp,d)p+ 2}, (4.18)

where εp,d is a positive constant, which may be arbitrarily small but close to zero in an

asymptotic analysis of the behavior of Hermite polynomials. We note that this truncation
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has not been analyzed when the number of samples is exponentially greater than the number

of basis functions; however, this is not an issue here where the number of samples is typically

less than or not substantially greater than the number of basis functions. The definition of

coherence parameter as in (4.18) leads to the following theorem, taken from Theorem 4.1

of [117].

Theorem 4.3.2. For d-dimensional polynomials of order p ≥ 1, the coherence in (4.17) is

bounded by

µQ ≤ C0 · Cp
1 , (4.19)

where C0 and C1 are modest constants depending on d, p, εp,d. As p/d→∞, C0 decreases to

1, and C1 decreases to a limit of exp(2− log(2)) ≈ 3.7.

This shows an exponential dependence of the coherence parameter on p. LetXk denote

a row vector consisting only of basis polynomial evaluations at ξ(k). We bound the RIC for

the matrix Ψ defined as in (4.6).

Theorem 4.3.3. For any chosen Q, we may bound the RIC in a probabilistic sense by

P(δs < t) ≥ P(Q)N − exp

(
−CQ

Nt

sµQ
+ s+ log(2s) + s log(P/s)

)
.

Remark 4.3.1. We note that we do not generally require arbitrarily small δs, as is seen in

Theorem 4.3.1. The constant CQ scales with

εQ :=
∥∥E (

XTX|ξ ∈ Q)− I∥∥
2
, (4.20)

which is a bias that is negligible in practical contexts for Q as in (4.18) [117]. Truncating in

this way, neither CQ nor P(Q) are problematic in practice.

Remark 4.3.2. While our primary focus here is �1-recovery, the RIC corresponding to s = P

is useful for analyzing the stability of a least squares solution, and so this result is also

applicable to �2-minimization. For ways in which this parameter may bound error from
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solutions computed via �2-minimization we point the interested reader to [132, 64]. In this

case, a slight adjustment to the proof gives the bound

P(δP < t) ≥ P(Q)N − 2P exp

(
−CQ

Nt

PµQ

)
.

The following corollary, which follows from a rearrangement of the result of Theo-

rem 4.3.3, highlights the relationship between several quantities.

Corollary 4.3.1. To insure that δs < δ� with probability p�, it is sufficient to take N�

satisfying

N�δ� ≥ sµQ
CQ

[
s+ log(2s) + s log(P/s)− log

(
P(Q)N� − p�

)]
.

For example, using δ� as in Theorem 4.3.1, gives a guarantee for stability of solutions

to (4.4) when the number of samples N satisfies

N ≥ (4 +
√
6)sµQ

3CQ

[
s + log(2s) + s log(P/s)− log

(
P(Q)N − p�

)]
.

We note that N appears on both the left and right sides of the equation. This arises from the

truncation, which has a technical issue when N is exponentially larger than P ; specifically,

the probability that at least one sample had fallen in Qc becomes large, while the analysis

relies on this event being rare. As N is very often smaller than P , and rarely chosen to be

exponentially larger than P , this issue is not of practical concern. Next, we extend these

results to the case where gradient information is included.

4.3.2 Gradient-enhanced �1-minimization analysis

In the previous case the rows ofΨ were independent, while Ψ̃ has a more subtle independence

structure, as only the sets of rows associated with the independent samples are independent.

Related to this point, we let the (d+ 1)× P block of independent information related with
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the kth sample be given by Xk, with a generic realization given by X. Specifically,

X(i, j) =
∂ψj

∂Ξi

(ξ), i = 1, . . . , d;

X(d+ 1, j) = ψj(ξ).

That is, the last row corresponds to the realizations of the function, while the first d rows

correspond to the derivative information. We note that there is no effect in the computations

considered here by rearranging the rows of the matrix Ψ̃. The RIC will necessarily be larger

if the norms of the matrix columns are different. Adjusting for this can be done by adjusting

the basis functions themselves. In the case of standard �1-minimization, we use orthonormal

polynomials. Here, we will wish to include derivatives of those polynomials as well, requiring

a different normalization. We use the Probabilists’ Hermite polynomials, and the following

lemma is used to identify this normalization.

Lemma 4.3.1. For d-dimensional orthonormal Probabilists’ Hermite polynomials ψi and ψj

with order ik, jk in dimension k,

E

(
ψi(Ξ)ψj(Ξ) +

d∑
k=1

∂ψi

∂Ξk
(Ξ)

∂ψj

∂Ξk
(Ξ)

)
= δi,j

(
1 +

d∑
k=1

ik

)
, (4.21)

where δi,j is the Kronecker Delta.

This suggests a different normalization of the basis functions to enforce that columns

of the gradient-enhanced measurement matrix have the same expected �2-norm. We refer

to this normalization as gradient-normalization. Specifically, we multiply the orthonormal

basis function ψi by

w̃i :=

(
1 +

d∑
k=1

ik

)−1/2

, (4.22)

to gradient-normalize. We note that it is these weights that define the W in (4.9) and

(4.15). In this work, we assume that when derivative information is included, that those basis

functions are gradient-normalized, and that when derivative information is not included, that
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those basis functions are orthonormal, which we refer to as standard-normalization. This

insures that the expected norms for the columns of the sampled matrices are consistent in

both cases.

Recalling that N denotes the number of samples used, our analysis focuses on the

Gramian matrix

M :=
1

N

N∑
k=1

XT
kXk. (4.23)

Here, M = N−1ΨTΨ for the standard approach, while M = N−1Ψ̃T Ψ̃ for the gradient-

enhanced approach. We now present some summarized results for the standard approach

that will be compared to the results presented for the gradient-enhanced case. To analyze

the spectrum of M in the case of gradient-enhanced �1-minimization, we use the following

definition, which generalizes the �1-coherence as studied in [131, 117, 130] and defined in

(4.17). Let Q be an arbitrary subset of Ω, which we use to truncate the sample space to

insure a uniformly bounded polynomial system, e.g. as in [131, 117, 64], and let

βQ := sup
k,ξ∈Q

‖X(:, k)‖22. (4.24)

This parameter is a generalization of µQ in the case where rows are not independent, but

sets of rows are. Note that in the case thatX is a row vector, then this definition reduces to

(4.17). Specifically, the results of Section 4.3.1 all hold when substituted for this parameter,

which we highlight as a theorem.

Theorem 4.3.4. The theorems of Section 4.3.1 hold for the gradient-enhanced case when

µQ is replaced by βQ.

We conclude our analysis with three results which demonstrate that the inclusion of

derivative information, coupled with gradient-normalization, does not reduce stability over

the corresponding approach without derivative information.

The first result is an inequality concerning the coherence parameter defined in (4.17)

and (4.24), showing that including derivative information does not require any weakening of
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the bounds of Section 4.3.1 in the case without derivative information. This inequality then

directly applies to all of the theorems in Section 4.3.1.

The second result is a direct null-space comparison of the two different matrices, which

is known to be fundamental for recovery of exactly-sparse solutions [56, 97, 98]. Specifically,

as ‖Ψ̃c− ũ‖ < δ (or ‖Ψc−u‖ < δ) is enforced, the difference between potential solutions is

close to an element of the null-space of Ψ̃ (or Ψ), so reducing the dimension of the null-space

correspondingly reduces the space of potential solutions.

The third result concerns a bound on the inner-products of columns of the measurement-

matrix. This is related to the RIC in that if the inner-product between several pairs of

columns is of large absolute value then a linear combination of those columns will have small

norm, resulting in a larger RIC. Similarly, if those inner-products are of small absolute value,

then no linear combination will have a small norm. An analogous observation may be made

regarding a linear combination of columns having a much larger norm. For this reason it is

beneficial if the inner-product between columns is of small absolute value.

Theorem 4.3.5. Let Ψ̃ be a realized measurement matrix with derivative information that

is gradient-normalized. Similarly, let Ψ be a realized measurement matrix with standard-

normalization and no derivative information.

Assume that Ψ and Ψ̃ are formed from the same realized input samples, {ξ(i)}Ni=1, so

that up to row weighting, Ψ is a sub-matrix of Ψ̃. Then the following statements related to

the recovery of solutions via �1-minimization hold.

R1. Using the definition in (4.24) for the two different approaches,

βQ(Ψ̃) ≤ µQ(Ψ),

and this inequality is almost-surely strict.

R2. If N (·) represents the null-space, then N (Ψ̃) ⊂ N (Ψ), and this is almost-surely a

strict subset when Ψ is undersampled. Specifically, it almost-surely holds that dim(N (Ψ̃)) =

max{0, P − (d+ 1)N} while dim(N (Ψ)) = max{0, P −N}.
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R3. If subscripts of matrices correspond to the columns, and ik denotes the order of the

basis polynomial in the ith column in the kth dimension, then the associated inner product

of columns is bounded by,

sup
i �=j
|(Ψ̃i, Ψ̃j)| ≤ sup

i �=j

|(Ψi,Ψj)|(1 +
∑d

k=1

√
ikjk)√

(1 +
∑d

k=1 ik)(1 +
∑d

k=1 jk)
≤ sup

i �=j
|(Ψi,Ψj)|. (4.25)

Remark 4.3.3. The theorem is presented for full gradient information to ease presentation,

but the three points generalize to the case that derivative information is included for a fraction

of samples. Specifically, (1) holds with an appropriate adjustment to the dimensionality, (2)

holds with an adjustment to the basis dependent multiplicative constant, and (3) holds if Ψ̃

has derivative information for only a few samples. In summary adding derivative information

for even a percentage of the samples leads to bounds as in Theorem 4.3.5.

4.3.3 A note on potentially contrasting solutions

It is of practical importance to note what functions are recovered in an asymptotic sense

by the gradient-enhanced and standard approaches, as they may differ significantly. The

gradient-enhanced method gives û approximating u in a Sobolev type loss function,

L(û, u) := ‖û− u‖2
2(Ξ,N) +

d∑
k=1

∥∥∥∥∂(û− u)∂Ξk

∥∥∥∥
2


2(Ξ,N)

, (4.26)

where the �2(Ξ, N) indicates the discrete �2 norm usingN evaluations drawn from realizations

of Ξ, here (ξ(1), . . . , ξ(N)). This norm is also normalized by N−1 so that as N goes to infinity

this norm tends to L2(Ξ), the standard L2 norm associated with the distribution of Ξ.

Specifically (4.15) guarantees that NL(u, û) < δ. In contrast, without derivative information

using standard-normalization and producing a solution via (4.4), gives û approximating u

such that N‖û− u‖2
2(Ξ,N) < δ, that is the partial derivatives of the approximation need not

be approximated by those of the target function. As these loss functions differ, so too does

the limiting solution produced by each method for a finite expansion order p. However, the
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sequence of approximations given by the two loss functions and by using increasing p (and

accordingly N) will converge to u in the L2(Ξ) sense as p,N →∞.

4.4 Numerical Results

In this section, we empirically demonstrate the gradient-enhanced �1-minimization approach

via three numerical examples: a manufactured PCE; an elliptic PDE with stochastic coef-

ficient; and a plane Poiseuille flow with random boundaries. To compare the standard and

gradient-enhanced �1-minimization solutions, we define an equivalent sample size Ñ ,

Ñ := Ne + νNg, (4.27)

which accounts for the added cost of computing the derivative information. In (4.27), Ne

is the number of samples without derivative information, Ng is the number of samples with

derivatives (along all d directions), and ν is a positive parameter depending on the prob-

lem at hand and the approach employed to compute the derivatives. For the example of

Section 4.4.2, the cost of generating d derivatives of the QoI, obtained by the adjoint sensi-

tivity method, is roughly the same as that of evaluating the QoI, thus implying that ν = 2.

For transient problems for which the cost of solving the adjoint equations for derivative

calculations may be considerably more than that of a single QoI evaluation, then ν > 2.

Nevertheless, we here present all cost comparisons in terms of the number of equivalent sam-

ple size Ñ in (4.27), for choices of ν that we shall specify. For simulations based on standard

�1-minimization, we set Ñ = Ne. Additionally, for the interest of convenience, we ignore the

cost of solving the �1-minimization problems in (4.4) and (4.15). This is a valid assumption

as often that cost is negligible relative to the cost of evaluating the QoI or its derivatives.

For terminology, if X% of samples used in the computation of the solution contain derivative

information, then we say that method is X% gradient-enhanced. In this way, the standard

approach without derivatives would give a solution that is 0% gradient-enhanced, denoted as

standard in the subsequent figures. Similarly, if all samples include derivative information,
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the associated solution would be 100% gradient-enhanced.

4.4.1 Case I: A manufactured PCE

First, we consider the reconstruction of a manufactured PCE, in which the sparsity and the

entries of the coefficient vector c are a priori prescribed. Specifically, we set the dimension

of the expansion to d = 25 and use a p = 3 order PCE (hence P = 3276 basis functions) to

manufacture the QoI u(Ξ). To generate c, we first draw its P entries independently from

the standard Gaussian distribution. We then retain |C| ∈ {50, 150} coefficients with largest

magnitude and set the rest to zero. This gives a randomized sparsity support. Finally, the

realizations of u(Ξ) and its derivative with respect to Ξk, k = 1, . . . , d, are generated by

u(ξ(i)) =
P∑

j=1

cjψj(ξ
(i)) (4.28)

and

u∂k(ξ
(i)) :=

P∑
j=1

cj
∂ψj

∂Ξk
(ξ(i)), (4.29)

respectively. We then approximate the PCE coefficients c via (4.4) and (4.15) from these

generated data.

Results

Beginning with the |C| = 50 case, we seek to recover the manufactured c. If the

computed solution, denoted by ĉ, has a relative root-mean-square-error (RRMSE) below

0.01%, then we call it a successful recovery of c.

We first consider the case where evaluations of u(Ξ) and its derivatives are exact, i.e.,

noise free. In Figure 4.1, we compare the probability of successful recovery for gradient-

enhanced and standard approaches, using 100 independent replications for each Ñ . To set

Ñ , we pretend the cost of evaluating d derivatives of u(Ξ) is the same as that of evaluating

u(Ξ), and therefore we set ν = 2.
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Figure 4.1: Probability of successful recovery of manufactures PCE with sparsity |C| = 50

via gradient-enhanced and standard �1-minimization. (a) 100% vs. 0% gradient-enhanced.

(b) 20% vs. 0% gradient-enhanced. ( �� gradient-enhanced, �� standard)

In Figure 4.1a, we see that 100% gradient-enhanced �1-minimization helps in reducing

the computational effort to recover c, while Figure 4.1b, demonstrates a notable, but less,

improvement for 20% gradient-enhanced �1-minimization. The figure suggests that adding

derivative information is a cost-effective means to increase the probability of successfully

recovering c at low sample sizes Ñ .

Figure 4.2 shows similar results for sparsity |C| = 150. Since |C| is larger in this case,

both standard and gradient-enhanced methods require more samples for recovery with a

given success probability. This is consistent with the sampling rate presented in Corollary

4.3.1. We, however, note that the inclusion of derivative information still enhances the

solution recovery.
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Figure 4.2: Probability of successful recovery of manufactures PCE with sparsity |C| = 150

via gradient-enhanced and standard �1-minimization. (a) 100% vs. 0% gradient-enhanced.

(b) 20% vs. 0% gradient-enhanced. ( �� gradient-enhanced, �� standard)

In practice, there is often error (or noise) in the evaluation of u(Ξ) and its derivatives,

with the latter being more prone to errors. To model such inaccuracies, here we multiplying

the realizations of u(Ξ) and its derivatives from (4.28) and (4.29), respectively, by indepen-

dent realizations of (1+εN ), where εN is a zero mean Gaussian random variable with variance

10−5. In Figure 4.3, we consider the sparsity |C| = 50 case and compute the probability of

successful solution recovery as a function of Ñ . Similar as in the previous test cases, we use

an RRMSE error of 0.01% to identify a successful recovery. We observe that the inclusion

of derivative information, while imprecise, still improves the performance of the standard

�1-minimization.
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Figure 4.3: Probability of successful recovery of gradient-enhanced and standard �1-

minimization for the manufactured PCE case with sparsity |C| = 50. (a) 100% gradient-

enhanced. (b) 20% gradient-enhanced ( �� gradient-enhanced, �� gradient-enhanced with

noisy u∂ only, �� gradient-enhanced with both noisy u and u∂, �� standard, �� stan-

dard with noisy u)

4.4.2 Case II: Two-dimensional elliptic PDE with random coefficient

We next consider the two-dimensional (in space) elliptic PDE

−∇ · (a(x,Ξ)∇u(x,Ξ)) = 1, x ∈ D = [0, 1]2 ,

u(x,Ξ) = 0, x ∈ ∂D ,

(4.30)

where the diffusion coefficient a(x,Ξ) is modeled by the lognormal random field

a(x,Ξ) = exp

[
ā + σa

d∑
k=1

√
λkφk(x)Ξk

]
. (4.31)

Here, d = 30, and Ξk, k = 1, . . . , d, are independent standard Gaussian random variables.

In addition, ā = 0.1, σa = 0.5, and {φk}dk=1 are the eigenfunctions corresponding to the d

largest eigenvalues {λk}dk=1 of the Gaussian covariance kernel

Caa(x1,x2) = exp

[
−(x1 − x2)

2

l2c
− (y1 − y2)2

l2c

]
, (4.32)
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with correlation length lc = 1/16.

The QoI u(Ξ) is chosen as the solution to (4.30) at location x = (0.5, 0.5), i.e., u(Ξ) =

u ((0.5, 0.5),Ξ). The derivatives ∂u/∂Ξk are computed using the adjoint sensitivity method

explained in detail in Section 4.4.2. Both forward and adjoint solvers are implemented in

the finite element method (FEM) project FEniCS [116].

Adjoint sensitivity derivatives

The adjoint sensitivity methods are commonly used in research areas such as sensitivity

analysis [133, 134], optimization [135, 136], shape design [137, 138], etc., to compute the

derivatives of the solutions of interest with respect to the underlying model parameters. In

this work, we adopt the discrete adjoint sensitivity method to compute derivatives of the

QoI at the Ξ samples.

In detail, for the interest of convenience, we consider the discrete formulation of the

generic PDE in (4.10), at a fixed time, given by the residual equation

R(w,Ξ) = 0, (4.33)

where w ∈ R
M×1 contains the discrete values of solution over the spatial domain D, and M

is the number of solution degrees-of-freedom. Recalling that u(Ξ) (here a scalar functional

of the solution) denotes the QoI, we seek to compute the sensitivity derivatives du/dΞk from

du

dΞk
=

∂u

∂Ξk
+
∂u

∂w

∂w

∂Ξk
. (4.34)

Taking the derivative of (4.33) with respect to Ξk, we have

∂R
∂Ξk

+
∂R
∂w

∂w

∂Ξk
= 0, (4.35)

which results in ∂w/∂Ξk = − (∂R/∂w)−1 ∂R/∂Ξk. Plugging this in (4.34) gives

du

dΞk
=

∂u

∂Ξk
− ∂u

∂w

(
∂R
∂w

)−1
∂R
∂Ξk

,

which can be rewritten as

du

dΞk
=

∂u

∂Ξk
+ λT ∂R

∂Ξk
, (4.36)
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where λ is the solution to the discrete adjoint equation

(
∂R
∂w

)T

λ = −
(
∂u

∂w

)T

. (4.37)

For the case of elliptic PDE (4.30), ∂R/∂w is the symmetric stiffness matrix of the

FEM discretization and ∂R/∂Ξk in (4.36) can be computed semi-analytically from (4.31)

and the FEM formulation of (4.30). Here, we assume the inverse or a factorization of ∂R/∂w

is not stored when solving for w, and that the total cost of obtaining ∂R/∂Ξk is smaller

than that of computing w. Therefore, the cost of solving for λ from (4.37) is roughly the

same as solving for w, which in turn suggests that ν = 2 in (4.27).

Results

We approximate u(Ξ) in a Hermite PCE with total degree p = 3, and seek to approx-

imate the first 2500 coefficients. We sort the elements of {ψj} such that, for any given total

order basis, the random variables Ξk with smaller indices k contribute first to the basis.

To solve for the coefficients, we first generate the realizations u and u∂ using a 256×256
uniform, linear FEM mesh, which resolves both quantities with low numerical errors. In Fig-

ure 4.4, we compare the mean and standard deviation of the RRMSE for solutions computed

by the standard and gradient-enhanced �1-minimization, using 100 independent replications.

The reference PCE coefficients are computed using least squares regression [64] with 10000 so-

lution realizations and yields a relative error of 0.36% for 1000 additional validation samples.

From Figure 4.4, we observe that higher accuracies are achieved by the gradient-enhanced

�1-minimization with the same number of samples Ñ . In Figure 4.5, we show the mag-

nitude of the approximate PCE coefficients computed via standard and gradient-enhanced

�1-minimization with Ñ = 80 samples. More accurate coefficient estimates are obtained by

the gradient-enhanced �1-minimization.



99

101 102 10310-3

10-2

10-1

100

(a)

M
ea

n
R

R
M

S
E

Ñ

101 102 10310-4

10-3

10-2

10-1

(b)

S
td

of
R

R
M

S
E

Ñ

Figure 4.4: Comparison of the statistics of the RRMSE in reconstructing u ((0.5, 0.5),Ξ),

where the realizations of u and its derivatives are computed on a uniform 256 × 256 FEM

mesh. (a) Mean of RRMSE. (b) Standard deviation of RRMSE. ( �� 100% gradient-

enhanced, �� standard)
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Figure 4.5: Approximate PCE coefficients of u ((0.5, 0.5),Ξ) with Ñ = 80 vs. the reference

coefficients obtained by least squares regression. (• reference, ◦ standard �1-minimization, �

gradient-enhanced �1-minimization)

To study how the accuracy of derivative information affects the accuracy of solu-
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tion obtained by the gradient-enhanced �1-minimization, we repeat this experiment on a

coarser 16 × 16 mesh, where the derivative information is noticeably less accurate. We ob-

serve from Figure 4.6 that, the accuracy improvement achieved by the gradient-enhanced

�1-minimization is not as considerable as in the case of 256 × 256 mesh. This suggests

that high accuracy on the derivative samples u∂ may be required for the gradient-enhanced

�1-minimization to be most effective.
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Figure 4.6: Comparison of the statistics of the RRMSE in reconstructing u ((0.5, 0.5),Ξ)

via gradient-enhanced and standard �1-minimization. (a) Mean of RRMSE. (b) Standard

deviation of RRMSE. ( �� 100% gradient-enhanced, �� standard. Dashed and solid lines,

respectively, correspond to the 16× 16 and 256× 256 mesh simulations.)

4.4.3 Case III: Plane Poiseuille flow with random boundaries

We consider a 2-D plane Poiseuille flow with random boundaries as depicted in Figure 4.7.
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Figure 4.7: Schematic figure of plane Poiseuille flow with random boundaries.

The average width of the channel is 2R̄ = 0.2, and the width of the channel is model as

2R(x) = 2R̄+2r(x,Ξ), where 2r(x,Ξ) describes the random fluctuation of the channel width

around 2R̄. We use d = 20 independent standard Gaussian random variables Ξk, k = 1, . . . , d,

to represent the uncertainty in R, and let

r(x,Ξ) = exp

[
r̄ + σr

d∑
k=1

√
λkφk(x)Ξk

]
. (4.38)

Here, r̄ = −4, σr = 0.5, and {λk}dk=1 and {φk(x)}dk=1 are the d largest eigenvalues and

corresponding eigenfunctions of the exponential covariance kernel

Crr(x1, x2) = exp

(
−|x1 − x2|

lc

)
, (4.39)

where the correlation length lc = 1/21.

We seek to investigate the steady state velocity field of the flow, which is governed by

the incompressible steady state Navier-Stokes equations

(v · ∇)v − 1

Re
∇2v = −∇p, x ∈ D(Ξ), (4.40)

∇ · v = 0, x ∈ D(Ξ),

∂p

∂x
= G, x ∈ D(Ξ),

v = 0, y = ±R,

where the Reynolds number Re = 60, and p denotes pressure. Notice that in (4.40), we

assume that all physical quantities are non-dimensional. The flow is driven by a pressure

gradient G = −0.1.
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Figure 4.8: Velocity magnitude contours with two independent realizations of the random

inputs.

The QoI is vx(0.5, 0), the horizontal velocity at (0.5, 0), and we approximate it in a

Hermite PCE of total degree p = 3.

Adjoint sensitivity derivatives

To compute the derivative information, we again adopt the adjoint sensitivity method,

in which we approximate ∂R/∂Ξk, k = 1, . . . , d, in (4.36) via finite difference quotient

∂R
∂Ξk

≈ R(w,Ξ+∆Ξk)−R(w,Ξ)

ε
. (4.41)

Here, the mth entry of the vector ∆Ξk is defined as

∆Ξk
m =



ε, m = k,

0, m 
= k.

(4.42)

To solve the non-linear problem (4.40), we employ a standard Newton solver, in which

∂R/∂w from (4.37) is the Jacobian matrix. In (4.41), the discrete representation of the
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velocity field, w, is kept unchanged; hence, (4.40) does not need to be solved again. The

perturbed residual R(w,Ξ + ∆Ξk) is computed by deforming the mesh to conform to the

geometry corresponding to Ξ + ∆Ξk, without recomputing w. Compared to solving the

adjoint equation (4.37), the cost of calculating (4.41) is negligible. Additionally, in our

deterministic solver, computing w required on average 3 Newton steps. Therefore, the extra

cost of computing derivative information is roughly equivalent to 1/3 of the cost of computing

w, which in turn suggests setting ν = 4/3 in (4.27).

Results

We consider 0%, 20% and 100% gradient-enhanced �1-minimization, with Ñ ∈ {20, 40, 80, 160}.
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Figure 4.9: Comparison of the statistics of the RRMSE in reconstructing vx ((0.5, 0),Ξ)

via standard and gradient-enhanced �1-minimization, with 100 independent replications.

(a) Mean of RRMSE. (b) Standard deviation of RRMSE. ( �� 100% gradient-enhanced,

�� 20% gradient-enhanced, �� standard)

Figure 4.9 displays the comparisons of the mean and standard deviation of the RRMSE,

with 100 independent replications of computed PCE coefficients, showing that gradient-

enhanced �1-minimization again leads to cost-effective accuracy improvement.
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4.5 Proofs

4.5.1 Theorem 4.3.4

We prove our results here in the case of βQ defined as in (4.24), which due to the non-

independent rows is a slight generalization of the results using (4.17). Adjusting the proofs

present here to account for the latter case requires only the substitution of µQ for βQ, showing

this Theorem.

4.5.2 Lemma 4.3.1.

We begin by providing a brief proof for Lemma 4.3.1, which follows directly from the explicit

form for the Hermite derivative as in (5.5.10) of [129].

Proof. Note that linearity of expectation allows us to take the expectation inside the sum,

so that we may work on each term independently. For 1-dimensional orthonormal Hermite

polynomials, where i represents the order of the polynomial (5.5.10) of [129] shows that

∂ψi

∂Ξ
(Ξ) =

√
iψi−1(Ξ). (4.43)

As the tensor product of orthonormal polynomials is orthonormal, (4.21) for i = j follows

from the derivative being exactly in the direction of a Hermite polynomial. For i 
= j,

(4.21) follows because each term in the sum is the expectation of a product of orthogonal

polynomials that differ in at least one coordinate, and hence the integral is equal to zero.

�

4.5.3 Theorem 4.3.3

To prove Theorem 4.3.3, we appeal to a matrix variant of the Chernoff bound [139], which

is similar to approaches taken in [132, 131, 140, 64].
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Proof. Recall that Q represents a truncation for the domain of Ξ, and may be given by

(4.18). We have that

I = E
(
XTX|ξ ∈ Q)P(Q) + E

(
XTX|ξ ∈ Qc

)
P(Qc). (4.44)

A brief calculation gives that

εQ :=
∥∥E (

XTX|ξ ∈ Q)− I∥∥
2

(4.45)

≤ P(Qc)

P(Q)
(∥∥∥∥E

(
XTX

∣∣∣∣ξ ∈ Qc

)∥∥∥∥
2

+ 1

)
, (4.46)

bounds the bias introduced from not accepting samples within Qc. We note that with the

truncation in (4.18), and using this bound, εQ ≤ 0.1/
√
P [117], for all N considered here, and

in most similar problems. Specifically, an analytic issue does not arise until consideration

of exponential levels of oversampling. This analytic issue concerns with the truncated rare

events being reliably observed due to the very large sample pool.

Restating (4.45), let λmin(·) and λmax(·) correspond to the smallest and largest eigen-

values of the argument matrix, respectively. Then for any arbitrary set of columns, denoted

S,

1− εQ ≤ λmin

(
E
(
XT (:,S)X(:,S)|ξ ∈ Q)) (4.47)

≤ λmax

(
E
(
XT (:,S)X(:,S)|ξ ∈ Q)) ≤ 1 + εQ. (4.48)

From (4.24) we have that if each sample ξ(k) ∈ Q, then for all k,

‖Xk(:,S)‖22 ≤ sβQ, (4.49)

holds uniformly for all choices of S such that |S| < s. This provides an upper bound on the

singular values of our independent self-adjoint matrices, XT
k (:,S)Xk(:,S), uniformly over

all choices of S consisting of at most s elements. We define

MS :=
1

N

N∑
k=1

XT
k (:,S)Xk(:,S). (4.50)
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An application of the Chernoff bound as in Theorem 1.1 of [139] and Theorem 1 of [132]

gives that for δ ∈ [0, 1] and |S| ≤ s,

P

(
λmin (MS) ≤ (1− δ)(1− εQ)

∣∣∣∣∣ξ(k) ∈ Q ∀k
)
≤ s

(
e−δ

(1− δ)1−δ

)N(1−εQ)

sβQ
; (4.51)

P

(
λmax (MS) ≥ (1 + δ)(1 + εQ)

∣∣∣∣∣ξ(k) ∈ Q ∀k
)
≤ s

(
eδ

(1 + δ)1+δ

)N(1+εQ)

sβQ
. (4.52)

Note that

(1− δ)(1− εQ) ≥ 1− t =⇒ δ ≤ t− εQ
1− εQ ; (4.53)

(1 + δ)(1 + εQ) ≤ 1 + t =⇒ δ ≤ t− εQ
1 + εQ

. (4.54)

and so we have a critical δ, given by

δt := (t− εQ)/(1 + εQ), (4.55)

is such that for all δ < δt the matrixMS is guaranteed to satisfy ‖MS − I‖2 ≤ t. Note that

for 0 ≤ δ < 1,

e−δ

(1− δ)1−δ
≥ eδ

(1 + δ)1+δ
, (4.56)

and so we may bound the sum of the probabilities by

P

(
‖MS − I‖ ≤ t

∣∣∣∣∣ξ(k) ∈ Q ∀k
)
≤ 2s

(
e−δt

(1− δt)1−δt

)N(1−εQ)

sβQ
. (4.57)

We now bound this probability. We note that if εQ ≤ t then

0 < δt ≤ t− εQ
1 + εQ

≤ t− εQ. (4.58)

To create a bound without explicit dependence on εQ, we note that for

ct := t− εQ + (t + εQ) log(t + εQ);

e−δt

(1− δt)1−δt
≤ exp(−ct).
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Thus for t ∈ (0, 1),

P

(
‖MS − I‖ ≤ t

∣∣∣∣∣ξ(k) ∈ Q ∀k
)
≤ 2s exp

(
−ct(1− εQ)N

sβQ

)
; (4.59)

≤ 2s exp

(
−CQ

tN

sβQ

)
, (4.60)

where CQ is a reasonably large positive constant for most truncations. Via a union bound

over the
(
P
s

)
possibilities of subsets of P with cardinality s, it follows that

P

(
sup
|S|≤s

λmax(MS − I) ≥ t

)
≤ 2s

(
P

s

)
exp

(
−CQ

Nt

sβQ

)
. (4.61)

Recalling that

sup
|S|≤s

λmax(MS − I) = δs,

gives

P(δs ≥ t) ≤ exp

(
−CQ

Nt

sβQ
+ log

(
2s

(
P

s

)))
. (4.62)

We assume that having any sample ξ(k) ∈ Qc leads to an arbitrarily large λmax, hence yielding

the bound,

P(δs ≥ t) ≤ 1− P(Q)N + exp

(
−CQ

Nt

sβQ
+ log

(
2s

(
P

s

)))
. (4.63)

Using the relation, P(δs < t) = 1− P(δs ≥ t), gives that

P(δs < t) ≥ P(Q)N − exp

(
−CQ

Nt

sβQ
+ log

(
2s

(
P

s

)))
. (4.64)

Using the relation that (
P

s

)
≤

(
eP

s

)s

,

it follows that

2s

(
P

s

)
≤ 2ses

(
P

s

)s

; (4.65)

log

(
2s

(
P

s

))
≤ log(2s) + s+ s log(P/s), (4.66)
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which completes the proof. Remark 4.3.2 follows from taking s = P and using that
(
P
P

)
= 1.

�

We note that Corollary 4.3.1 follows from Theorem 4.3.3, by substituting p� for P(δs <

t); substituting δ� for t; and performing some algebraic manipulation.

4.5.4 Theorem 4.3.5

The proof of Theorem 4.3.5 relies on the properties of the measurement matrices Ψ̃ and Ψ

themselves. In an intuitive sense, the results follow from the two matrices having similar

properties, but the gradient-enhanced matrix having more rows, yielding better conditioned

Gramians.

Proof. We begin by showing R1 for the one-dimensional case. Note that for arbitrary ξ, and

i,

|ψi(ξ)|2 + i|ψi−1(ξ)|2
1 + i

≤ max
{|ψi(ξ)|2, |ψi−1(ξ)|2

}

and that equality can only hold if ψi(ξ) = ψi−1(ξ) for some i, which is an event that occurs

with probability zero. As this inequality holds for all i and ξ, being strict for almost all

ξ, R1 follows for the one-dimensional case. The d-dimensional analogue follows as the d-

dimensional polynomials are tensor-products of the one-dimensional polynomials.

To show R2, note that up to an invertible pre-multiplication, Ψ is a submatrix of Ψ̃,

and thus N (Ψ) ⊂ N (Ψ̃). Additionally, we notice that Ψ, and Ψ̃ are almost surely full rank

matrices.

We next show R3 in the case of 1-dimensional Hermite polynomials. Here subscripts

of matrices refer to the column corresponding to that polynomial order. We have by the

normalization (4.22) and (4.43) that

(Ψ̃i, Ψ̃j) =
(Ψi,Ψj) +

√
ij(Ψi−1,Ψj−1)√

(1 + i)(1 + j)
. (4.67)
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It follows that,

|(Ψ̃i, Ψ̃j)| ≤ |(Ψi,Ψj)|+
√
ij|(Ψi−1,Ψj−1)|√

(1 + i)(1 + j)
.

Applying a supremum,

sup
i �=j
|(Ψ̃i, Ψ̃j)| ≤ sup

i �=j

|(Ψi,Ψj)|+
√
ij|(Ψi−1,Ψj−1)|√

(1 + i)(1 + j)
,

≤ sup
i �=j
|(Ψi,Ψj)| 1 +

√
ij√

(1 + i)(1 + j)
,

where we have used the inequality

1 +
√

(i− 1)(j − 1)√
(1 + (i− 1))(1 + (j − 1))

≤ 1 +
√
ij√

(1 + i)(1 + j)
. (4.68)

This shows the result for the one-dimensional case. The d-dimensional case leads to a

decomposition in (4.67) with inner products of lower order along each dimension, and the

inequality in (4.68), is replaced by d similar inequalities.�

4.6 Conclusion

Within the context of compressive sampling of sparse polynomial chaos expansions, we inves-

tigated �1-minimization when derivative information of a quantity of interest (QoI) is present.

We provided analysis on gradient-enhanced �1-minimization for Hermite polynomial chaos,

in which we showed that, for a given normalization, including derivative information will

not reduce the stability of the �1-minimization problem. Further, we identified a coherence

parameter that we used to bound the associated Restricted Isometry Constant, a useful and

well-studied measure of the stability for solutions recovered by �1-minimization as in the

context used here.

Furthermore, we observed improved solution accuracy from gradient-enhanced �1-minimization

in three numerical examples: Manufactured polynomials; an elliptic equation; and a plane
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Poiseuille flow with random boundaries. Consistently, gradient-enhanced �1-minimization

was seen to improve the quality of solution recovery at the same computational cost, or

equivalently achieve the same solution quality at a reduced computational cost. As the QoI

derivatives are often more sensitive to discretization errors than the QoI itself, so too is

the accuracy of the solution obtained by the gradient-enhanced �1-minimization. This was

empirically observed in the second numerical example considered, thereby suggesting high

accuracy requirements on derivative calculations for the gradient-enhanced �1-minimization

to be most effective.



CHAPTER 5

DESIGN OF POLYNOMIAL CHAOS BASES FOR THE SOLUTION OF

DIFFERENTIAL EQUATIONS WITH RANDOM INPUTS1

Abstract

Expansion of stochastic quantities of interest (QoIs) into a basis of orthogonal polynomials,

referred to as polynomial chaos (PC), is now a standard technique for uncertainty quan-

tification. The type of these polynomial bases has been conventionally chosen based the

probability measure of random inputs and from the so-called Askey family of orthogonal

polynomials. However, for an arbitrary QoI such an a priori choice of basis may result in

slow decaying expansion coefficients, which in turn may lead to large errors when low order

PC expansions are considered. Increasing the order of the truncated expansion may en-

hance the solution accuracy, however, at the expense of additional computation cost which

may become prohibitive for complex systems. Alternatively, in this work, a design strategy

is proposed to choose an optimal PC basis, within the family of Jacobi polynomials, and

the corresponding change of measure using (random) realizations of QoI, in an a posteriori

manner. To this end, a variable projection approach with alternating brute-force search is

proposed to estimate the parameters of the Jacobi basis and the expansion coefficients. It is

demonstrated that the proposed PC basis design leads to more rapidly decaying coefficients,

hence reduces truncation error and enhances solution accuracy, relative to the PC basis

naturally orthogonal with respect to the probability measure of inputs. Several numerical

1 This chapter is in preparation to be submitted by J. Peng et al. to Computer Methods in Applied
Mechanics and Engineering.
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tests, with QoI’s exhibiting sharp gradients/discontinuities, are provided to illustrate the

performance of this approach.

5.1 Introduction

The credibility of computer simulations for design, analysis, and optimization of complex

engineering systems is affected by the degree to which model uncertainties and their influ-

ences on quantities of interest (QoIs) are accounted for and measured. Model uncertainties,

either parametric or structural, often arise due to, for instance, natural variability of the

underlying physical quantities and/or our imperfect knowledge about them. The emerging

field of uncertainty quantification (UQ) aims at developing numerical tools to characterize

these uncertainties from the available information as well as efficiently propagating them for

an accurate prediction of QoI and a quantitative validation of model predictions.

A common framework to represent uncertainty is based on the probability theory, where

inputs are modeled by a vector of independent random variables ξ := (ξ1, . . . , ξd), with a

probability density function (pdf) f(ξ), defined on a suitable probability space with sample

space Ω. The QoI, here a scalar function u(ξ), therefore depends on ξ, and the objective of

uncertainty propagation is to approximate the map ξ → u(ξ) directly and/or to estimate the

statistics of u(ξ). While several techniques are available for this purpose, see, e.g., [109, 3, 4],

we here adopt an approach based on polynomial chaos (PC) expansions, [109, 20], where

u(ξ), assumed to have a finite variance, is expanded into a basis of multi-variate orthogonal

polynomials Ψi(ξ), i.e.,

u(ξ) =
∞∑
i=1

ciΨi(ξ) ≈
P∑
i=1

ciΨi(ξ). (5.1)

Here, the size P of the truncated expansion is implied by the (total) degree p of Ψi(ξ). The

polynomials Ψi(ξ) are conventionally selected to be orthogonal with respect to the measure

f(ξ) of the inputs ξ, [20, 141]. For example, when ξ follows a jointly uniform or Gaussian

distribution (with independent components), Ψi(ξ) are multivariate Legendre or Hermite
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polynomials, respectively. For other instances of f(ξ), Ψi(ξ) may be chosen from the the

so-called Askey family of orthogonal polynomials, [21, 20], or may be generated numerically,

[142]. More details about the PC expansions considered in this work are provided in Sec-

tion 5.2.2. The coefficients ci specify the expansion in (5.1) and are given by the projection

ci =

∫
u(ξ)Ψi(ξ)f(ξ)dξ = E[u(·)Ψi(·)], (5.2)

where E denotes the mathematical expectation operator, and Ψi(ξ) are assumed to be nor-

malized such that E[Ψ2
i (·)] = 1. A standard result from PC theory is that as P → ∞,

the truncated expansion in (5.1) converges to u(ξ) in the mean-square sense, equivalently,∑∞
P+1 c

2
i → 0 as P → ∞ and the rate of convergence depends how fast the coefficients ci

associated with higher order Ψi(ξ) decay to zero.

In practice, the expectation in (5.2) is not available analytically; therefore, ci has to

be approximated via numerical integration, regression, or (Galerkin) projection when u(ξ)

is the solution to an operator equation, see, e.g., [3, 4]. In all these approaches, the accuracy

of the estimates of ci, denoted by ĉi, is limited by the level of noise/error in evaluating u(ξ)

as well as the truncation error εt(ξ) :=
∑∞

i=P+1 c
2
i , associated with the finite sum in (5.1).

These errors may be reduced, respectively, by increasing the spatial/temporal resolution of

deterministic solvers and the degree p of Ψi(ξ) retained in (5.1). In this work we assume

that the former error is negligible and focus on cases where the latter error is large, e.g.,

the ci for the standard choice of Ψi(ξ) does not decay to zero rapidly. Such scenarios arise,

for instance, when the map ξ → u(ξ) is non-smooth, e.g., exhibits discontinuities, sharp

gradients, or bifurcations, [143, 144], or when u(ξ) is obtained by a long-time integration of

an operator equation, [145, 146]. We rewrite (5.1) as

u(ξ) =
P∑
i=1

ciΨi(ξ) + εt(ξ) (5.3)

≈
P∑
i=1

ĉiΨi(ξ) + εt(ξ), (5.4)
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and highlight that, relative to the (optimal) ci in (5.3), the accuracy of estimated ĉi in (5.4)

is in practice affected by εt(ξ). A result demonstrating such an influence is presented later

in Theorem 5.2.1. The straightforward approach to enhance the accuracy is to increase the

expansion order p; however, obtaining a higher order expansion requires additional compu-

tation cost which may become prohibitive for large p and d.

To improve the convergence of global PC expansions, a number of techniques have been

proposed in recent years. In particular, the work in [147, 148, 149] proposes to enrich the

global PC bases with basis functions that are specifically tailored to the non-smooth behavior,

e.g., discontinuity, of the solution. Based on the observation that the pdf of the solution in an

unsteady problem may considerably evolve from that of the initial solution, the work in [146]

constructs PC basis orthogonal with respect to the solution pdf at selected time instances.

Another approach – related to that of [146] – is the iterative generalized PC (i-gPC), [16,

150], which recursively uses the approximation of the QoI to generate a new probability

density function and a corresponding set of orthogonal polynomials. In particular, i-gPC

has been shown to significantly improve the convergence of the PC expansion for problems

exhibiting discontinuities in the stochastic space.

Another class of techniques are based on (adaptive) partitioning of the support of ξ and

local polynomial expansions – instead of the global expansion in (5.1) – over each partition,

[151, 152, 153, 154, 155]. In this way, these methods seek to capture features of the solution

present over a small subset of the support of ξ that may not be seen by global polynomial

bases.

To enhance the convergence of PC expansions, we here present a different method

that selects a PC basis directly using the solution realizations, so that the truncation error

εt associated with a fixed expansion order p is reduced. The proposed PC design method

selects a PC basis for which the coefficients ci – and hence the truncation error – may

converge towards zero more rapidly that for the standard PC expansion. The overall idea

is to adaptively choose the proper orthogonal polynomials based on the realization of u.
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In order for the problem to be tractable, we limit the choice of orthogonal polynomials to

be from the Jacobi polynomial family. Therefore, the optimization problem becomes one

of finding the optimal parameters that define the beta distribution with respect to which

the Jacobi polynomials are orthogonal. We note that the Jacobi family includes familiar

polynomial bases such as Legendre, Chebyshev, and Hermite. Therefore, when the random

inputs follow a uniform distribution, for example, we anticipate that the proposed method

performs in theory at least as well as Legendre PC approximation.

In the signal processing domain, several methods for adaptively designing collections of

bases (often dubbed dictionary matrices) have gained recent attention. For instance, both

the method of optimal directions (MOD) [156, 157] and K-singular value decomposition (K-

SVD) [158, 159] have found successful application in image processing. The methods are of

interest because the basis matrices used to represent the QoI are computed adaptively from

the given data. However, these methods do not lead to structured basis matrices as in the

PC expansions. More precisely, the resulting bases are not readily tensor (outer) products

of one-dimensional orthogonal polynomials. Therefore, we do not consider such techniques

for the problem at hand.

The method we propose in this manuscript is an alternating optimization approach

to find the optimal parameters of the Jacobi basis dimension-wise, in which, according the

variable projection technique, the PC coefficients are computed by the (regularized) least-

squares regression. More specifically, we design optimal PC basis matrices within the Jacobi

PC family with arbitrary measure of the random inputs. We compare our method with the

traditional a priori way of choosing PC basis on several numerical experiments. Significant

advantages to our approach is that it reduces the nominally high-dimensional optimization

problem to a sequence of one-dimensional problems, and eliminates combination of linear and

nonlinear optimization into nonlinear only. The results indicate that the proposed method

improves the approximation accuracy over standard PC construction. We note here that

different to i-gPC, the proposed approach builds optimal orthogonal PC basis directly with
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respect to the random inputs, while i-gPC iteratively builds orthogonal PC basis with respect

to the approximated solution.

The rest of this paper is structured as follows. In Section 5.2, the problem setup and the

details about PC expansion are given. In Section 5.3.1, we give the formulation of the beta

distribution and Jacobi polynomials that we use to design the PC bases. The description of

the algorithm and pseudo-code is given in Section 5.3.2. Three numerical experiments and

their results are provided in Section 5.4.

5.2 Background

5.2.1 Problem statement

In this work, we consider systems modeled by differential equations defined on a domain

D ∈ R
D, D ∈ {1, 2, 3}, in which the uncertainty characterized by the d-dimensional vector

ξ = (ξ1, . . . , ξd) may be represented in one or many relevant parameters, e.g., boundary

conditions and/or initial conditions. Each coordinate of ξ, denoted by ξk, k = 1, . . . , d, is

defined on a probability space, such that ξ is defined on the probability space that is formed

by their product. The solution u satisfies the following equations

L(x, t, ξ; u(x, t, ξ)) = 0, x ∈ D,

I(x, 0, ξ; u(x, 0, ξ)) = 0, x ∈ D,

B(x, t, ξ; u(x, t, ξ)) = 0, x ∈ ∂D,

(5.5)

where L, I, and B are differential operators, depending on the physics of the problem.

Our objective is to approximate the QoI, u(x, t, ξ), for some fixed spatial location x0 and

time t0. We denote the realizations of the random inputs by ξ(i), thus the corresponding

output is u(x0, t0, ξ
(i)). For brevity, we write the QoI and its realizations as u(ξ) and u(ξ(i)),

respectively.
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5.2.2 Polynomial chaos (PC) expansion

We rely on PC expansions to approximate the QoI u(ξ) to (5.5). In details, for the interest

of presentation we assume that input random variables ξk are independent and identically

distributed according to fk, and define {ψik(ξk)} to be the complete set of orthonormal

polynomials of degree ik ∈ N ∪ {0} with respect to the weight function fk [21, 20]. As

a result, the orthonormal polynomials for ξ are given by the products of the univariate

orthonormal polynomials,

Ψi(ξ) =

d∏
k=1

ψik(ξk), (5.6)

where each i ∈ {(i1, . . . , id) : ik ∈ N ∪ {0}} is a d-dimensional multi-index of nonnegative

integers. For computation, we truncate the expansion in (5.1) to the set of P basis func-

tions associated with the subspace of polynomials of total order not greater than p, that

is
∑d

k=1 ik ≤ p. For convenience, we also order these P basis functions so that they are

indexed by {1, . . . , P}, as in (5.1), as opposed to the vectorized indexing in (1.1). The basis

set {Ψi(ξ)}Pi=1 has the cardinality

P =
(d+ p)!

d!p!
. (5.7)

Similarly, we define PC coefficients by the vector c = (c1, . . . , cP )
T . We interchangeably use

both notations for representing PC basis depending on the context.

5.2.3 PC expansion via least-squares regression

There are a number of sampling methods for estimating the PC coefficients including Monte

Carlo simulation [23, 3], pseudo-spectral stochastic collocation [24, 25, 3, 27], least-squares

regression [30, 160, 118, 161, 32], and �1-minimization for cases where c is approximately

sparse [48, 47, 52, 53, 112, 162]. With these methods, the deterministic solvers for the QoI

do not need to be adapted to the probability space and hence may be used in a black box

fashion. In this work, we use the least-squares regression to compute the PC coefficients c
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by solving the optimization problem

argmin
c
‖u−Ψc‖22, (5.8)

or its regularized formulation

argmin
c
‖u−Ψc‖22 + λ2‖c‖22, (5.9)

where u :=
(
u(ξ(1)), . . . , u(ξ(N))

)T
is the vector of the realizations of the QoI u, and

the entries of the N × P measurement matrix Ψ are the realizations of Ψj(ξ) such that

Ψ(i, j) = Ψj(ξ
(i)) for i = 1, . . . , N and j = 1, . . . , P . Additionally, λ in (5.9) is the Tikhonov

regularization parameter, which may be estimated using, for instance, the generalized cross-

validation approach [163]. The solution to (5.8) and (5.9) may be computed from the normal

equations ΨTΨc = ΨTu and (ΨTΨ + λ2I)c = ΨTu, respectively, where I is the P × P
identity matrix.

The approximation of u is limited to the span of the basis polynomials of total degree at

most p, and the error incurred from this approximation is referred to as the truncation error

εt, specified in (5.3). As u has finite variance, the PC coefficients necessarily converge to zero

when p→∞. How rapidly they converge to zero determines the accuracy of the truncated

PC expansion as well as the required cost, here, the number of solution realizations. The

following theorem, reported from [32], demonstrates a quality mean-squared convergence of

the solution to (5.8), with high probability, when the PC basis is of Legendre type. More

general presentations of this theorem, including results for Hermite PC expansions, may be

found in [32].

Theorem 5.2.1 (Stability of Legendre PC expansions via least-squares regression, [32]).

Let ξ be a d-vector of independent random variables uniformly distributed over [−1, 1] and
u(ξ) a finite-variance function of ξ. Let

û(ξ) =

P∑
i=1

ĉiΨi(ξ) (5.10)
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be the PC expansion of u(ξ) in Legendre polynomials Ψi(ξ) of total degree not greater than

p, where ĉ = (ĉ1, . . . , ĉP )
T is computed from (5.8) using N realizations of u(ξ) evaluated at

independent samples of ξ. It follows that

E
(‖u− û‖2L2(Ω,f)

) ≤ Var(εt)

(
1 +

4P exp(2p)

N

)
(5.11)

holds with probability P ≥ 1 − 1/P − 2P exp (−0.1N/ (P exp(2p))), in which εt is the trun-

cation error defined in (5.3), and Var(εt) is the variance of εt.

We note that the expectation E in (5.11) corresponds to the variability of û(ξ) with

respect to the random samples {u(ξ(i))}Ni=1 used to solve (5.8). Following Theorem 5.2.1, the

mean-squared error of the PC approximation grows proportional to Var[εt]. As mentioned

earlier, the truncation error is determined by the decay rate of the PC coefficients, and so is

its variance,

Var(εt) =
∞∑

i=P+1

c2i . (5.12)

When the total order p and the sample size N are fixed, if one can decrease the truncation

error εt, then the error of the approximation may be reduced. A lower εt, and therefore a more

accurate approximation of u, may be attained by reducing the magnitude of the truncated

coefficients. However, such a reduction may not be achieved by adopting a different PC basis

orthonormal with respect to f(ξ), the pdf of ξ. The following proposition demonstrates that

the variance of εt is independent of the choice of PC basis that are orthonormal with respect

to f(ξ).

Proposition 5.2.1. The truncation error associated with the approximation of u(ξ) in any

PC basis of maximum degree p and orthonormal with respect to f(ξ) has the same variance.

Proof. Let u(ξ) =
∑P

i=1 ciΨi(ξ)+ εt(ξ) and u(ξ) =
∑P

i=1 c̃iΨ̃i(ξ)+ ε̃t(ξ) denote, respectively,

the PC expansions of u(ξ) in two arbitrary PC bases {Ψi(ξ)} and {Ψ̃i(ξ)} of total degree
at most p. Both bases are assumed to be orthonormal with respect to f(ξ), and εt(ξ)
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and ε̃t(ξ) denote the corresponding truncation errors. It is straightforward to show that

c = T c̃, where T is a P ×P orthogonal matrix with entries T (i, j) = E(ψiψ̃j), thus implying

that ‖c‖22 = ‖c̃‖22. The statement of the Proposition follows by observing that Var(εt) =

E(u2)− ‖c‖22 = E(u2)− ‖c̃‖22 = Var(ε̃t).

Alternatively, the present study proposes a strategy to design the PC basis, along with

a change of measure of inputs, that possibly make the corresponding coefficients decay more

rapidly, thereby leading to a lower truncation error and enhanced PC approximation.

5.3 Design of PC basis: A Jacobi polynomial approach

In order to design a PC basis that leads to a lower truncation error, we generalize the least-

square problem (5.8) to learn the basis matrix Ψ, in addition to the coefficient vector c, by

solving the problem

min
c,Ψ
‖u−Ψc‖22 + λ‖c‖22. (5.13)

Finding an optimal solution to (5.13) requires two special considerations. Firstly,

the basis matrix Ψ must be structured; that is, it should consist of realizations of some

multi-variate polynomials orthogonal with respect to some probability measure. Therefore,

a direct minimization of (5.13) for an optimal Ψ, as in [156, 157, 158, 159], is not possible.

Alternatively, in this work, we limit the search for an optimal Ψ within the basis matrices

corresponding to the family of Jacobi polynomials that are orthonormal with respect to an

underlying beta pdf specified by d-vectors of parameters α and β. The problem (5.13) will

therefore simplify to

min
c,α,β
‖u−Ψ(α,β)c‖22 + λ‖c‖22, (5.14)

where the superscript (α,β) indicates the association of Ψ to the parameters of the under-

lying beta pdf’s.

Secondly, both (5.13) and (5.14) are non-linear and non-convex programs which may

not have unique solutions. While multiple approaches may be utilized to find an approximate
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(stationary) solution to (5.14), we here employ a variable projection approach [164, 165] in an

alternating manner that allows us to find approximate solutions c,α,β through a sequence

of optimization problems with fewer number of unknowns. In detail, we make (5.14) be an

optimization problem only dependent on the parameters α,β, by treating c as a function

of them, then we iteratively search for optimal (αk, βk), k = 1, . . . , d dimension-wise in a

greedy manner, till the convergence criterion is satisfied. Such an alternating minimization

approach requires a computation cost that grows linearly in d for the latter updates.

The following subsections present a detailed description of the proposed Jacobi PC

design.

5.3.1 Beta random variables and Jacobi polynomials

Let ξ̃ denote a beta random variable with pdf g(α,β)(ξ̃) given by

g(α,β)(ξ̃) =
(1− ξ̃)α(1 + ξ̃)β

2α+β+1B(α + 1, β + 1)
, ξ̃ ∈ [−1, 1], α, β ∈ (−1,∞), (5.15)

where B(α, β) = Γ(α)Γ(β)/Γ(α + β) is the beta function, and Γ is the gamma function.

The parameters α and β make g(α,β) and ξ̃ a family of densities and beta random variables,

respectively.

The design method we propose restricts the PC basis to be within Jacobi PC family

that are orthogonal with respect to g(α,β). The corresponding univariate PC basis functions

ψ
(α,β)
i (ξ̃), parameterized by α and β, satisfy the three-term recurrence relation,

2(i+ 1)(i+ α + β + 1)(2i+ α + β)ψ
(α,β)
i+1 (ξ̃) =

[
(2i+ α + β + 1)(α2 − β2) +

(2i+ α+ β + 2)!

(2i+ α + β − 1)!ξ̃

]
ψ

(α,β)
i (ξ̃)

− 2(i+ α)(i+ β)(2i+ α + β + 2)ψ
(α,β)
i−1 (ξ̃),

where i denotes the order of polynomials, and the first three polynomials are

ψ
(α,β)
0 (ξ̃) = 1;

ψ
(α,β)
1 (ξ̃) =

1

2

[
2(α + 1) + (α + β + 2)(ξ̃ − 1)

]
;

ψ
(α,β)
2 (ξ̃) =

1

8

[
4(α + 1)(α+ 2) + 4(α + β + 3)(α+ 2)(ξ̃ − 1) + (α + β + 3)(α + β + 4)(ξ̃ − 1)2

]
.

(5.16)
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Furthermore, these polynomials are normalized such that they are orthonormal with respect

to g(α,β)(ξ̃), ∫
ψ

(α,β)
i (ξ̃)ψ

(α,β)
j (ξ̃)g(α,β)(ξ̃)dξ̃ = δij, (5.17)

where δij is the Kronecker delta. We note that the Legendre and Chebyshev polynomials are

special instances of Jacobi polynomials for various values of α and β, as shown in Table 5.1.

In particular, when both α and β are large and approximately equal, beta distribution is

approximately normal.

As in the standard PC construction in (5.6), the multivariate Jacobi PC functions are

generated by the tensor product of univariate functions,

Ψ
(α,β)
i (ξ̃) =

d∏
k=1

ψ
(αk ,βk)
ik

(ξ̃k). (5.18)

To account for a possible anisotropic dependence of solution on ξ̃k, we allow different param-

eters (αk, βk) for each ξ̃k in (5.18). Therefore, each Jacobi basis function Ψ
(α,β)
i (ξ̃) is uniquely

identified by 2d parameters (α,β), α,β ∈ (−1,∞)d, which we learn from the observations

of QoI, as described in Section 5.3.2.

Polynomial α β

Legendre 0 0

Chebyshev -0.5 -0.5

Hermite ∞ ∞
Table 5.1: Correspondence of the type of three known polynomials to the values of α and β
in Jacobi polynomials.

5.3.2 Variable projection with alternating brute-force search

We find an approximate solution to the regression problem in (5.14) by a separable nonlinear

least squares approach, variable projection [164, 165]. In variable projection, with given α

and β, c is obtained by solving the linear least-squares problem

c(α,β) = Ψ(α,β)†u, Ψ(α,β)† = (Ψ(α,β)TΨ(α,β) + λ2I)−1Ψ(α,β)T , (5.19)
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which stands for the minimum-norm solution of the linear least-squares problem for fixed

(α,β). Substituting (5.19) back to (5.14), the minimization problem takes the form of

finding the optimal α and β by

α,β = argmin
α,β

∥∥∥(I −Ψ(α,β)Ψ(α,β)†
)
u
∥∥∥2

2
. (5.20)

The optimization problem in (5.20) is non-linear and non-convex. Motivated by the

tensor-product structure of the basis Ψ
(α,β)
i , an alternating optimization approach may be

devised to approximate (5.20) via a sequence of two-dimensional (non-linear) optimizations.

In particular, for a given direction k, the pair αk, βk may be updated from

αk, βk = argmin
αk ,βk

∥∥∥(I −Ψ(α,β)Ψ(α,β)†
)
u
∥∥∥2

2
, (5.21)

while fixing (αk̂ �=k, βk̂ �=k) at their current values. The optimization problem (5.21) is re-

peated for each direction k in each iteration �, until the convergence criterion is reached, i.e.,∥∥∥(I −Ψ(α,β)Ψ(α,β)†
)
u
∥∥∥2

2
does not decrease throughout the α,β updates.

Brute-force selection of (α
+1
k , β
+1

k ) The optimization problem (5.21) is non-

linear, non-convex, and possibly with multiple local minima. These limit the applicability

of standard gradient-based algorithms, although gradients of Ψ(α,β) with respect to α and

β are available analytically, e.g., following [166]. We therefore adopt a brut-force approach

where we search for an approximate global minimum (α
+1
k , β
+1

k ) among a set of discrete

values {(α(i)
k , β

(j)
k )}, i, j = 1, . . . ,M . That is, we set

(α
+1
k , β
+1

k ) = argmin
{(αk ,βk)∈(α(i)

k ,β
(j)
k )}

∥∥∥(I −Ψ(α,β)Ψ(α,β)†
)
u
∥∥∥2

2
, i, j = 1, . . . ,M. (5.22)

In our numerical experiments, we choose α
(i)
k and β

(j)
k from a two-dimensional uniform grid

of sizeM×M over the square domain (−1, 1)2. The upper limits of this search space may be

extended to values beyond unity at the expense of increasing the cost of finding an optimum

(α
+1
k , β
+1

k ). We next delineate the approach we follow to solve (5.21) and an adaptation of

it that empirically leads to more accurate basis design.
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We note that there is a difference between the approach of (5.20)-(5.22) and the meth-

ods presented in [164, 165]. In particular, as opposed to the alternating minimization ap-

proach presented here, in [164, 165] all the parameters α,β are computed simultaneously,

which may result in expensive computation when d is large. Additionally, in the present

work, the selection of optimal parameters α,β relies on a brute-force search over a set

of candidates, (5.22), while in [164, 165] this is achieved by a gradient-based optimization

scheme. In Section 5.4.3, we show that for a case when d = 8, the present approach out-

performs both simultaneous and alternating gradient-based methods. Furthermore, our PC

basis design strategy relies on a change of measure associated with α,β updates that is not

present in the standard variable projection technique. A detailed comparison between the

two approaches is a subject of an ongoing study.

5.3.3 Change of measure

The standard PC expansion utilizes basis functions that are orthogonal with respect to the

pdf of the inputs ξ. While not necessary, the orthogonality of PC basis Ψi(ξ) results in mea-

surement matrices Ψ whose columns are orthogonal in expectation. This, along with other

properties of Ψi(ξ), ensures the stability of the least squares problem (5.8), as described in

[32]. However, in the PC design approach of Section 5.3.2, the Jacobi basis functions are not

known a priori and change throughout the α,β updates. Thus, to maintain orthogonality

of the columns in Ψ (in expectation), our approach involves mapping the original random

inputs ξk to beta random variables ξ̃k with parameters αk and βk, in which the Jacobi basis

is constructed. For this purpose, we use the cumulative distribution functions (cdf’s) of ξk

and ξ̃k, receptively detonated by F (ξk) and G
(αk,βk)(ξ̃k). Specifically, for any trial values of

(α
(i)
k , β

(j)
k ) in (5.22), we set

ξ̃k =
(
G(α

(i)
k ,β

(j)
k )

)−1

(F (ξk)) =

((
G(α

(i)
k ,β

(j)
k )

)−1

◦ F
)
(ξk). (5.23)
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We note that, although we change the measure of each random input ξk adaptively based

on the values of (α
(i)
k , β

(j)
k ), the realizations of QoI u are untouched.

Remark 5.3.1. While the Jacobi basis functions Ψ
(α,β)
i (ξ̃) in (5.18) are polynomials in ξ̃,

they are generally not polynomial functions of ξ, given the nonlinear transformation (5.23).

Therefore, by Jacobi ‘polynomial’ chaos expansion of u, we refer to the representation of u

in a series of Jacobi polynomials in ξ̃.

Remark 5.3.2. We note that the integral statistics of u, e.g., mean and variance, may be

computed under the measure of either ξ or ξ̃. In particular, let û(ξ) =
∑P

i=1 ĉiΨ
(α,β)
i (ξ̃)

denote the optimal Jacobi PC expansion of u. The approximate mean and variance of u are

given by E(û) = ĉ1 and V ar(û) =
∑P

i=2 ĉ
2
i , respectively.

5.3.4 Algorithm

We summarize the steps required for the implementation of the Jacobi PC design in Algo-

rithm 5. As in the case of standard least-squares regression, the Jacobi basis design requires

the specification of the order of the expansion p, as well as the samples ξ(i) and the cor-

responding realizations of QoI u(ξ(i)), i = 1, . . . , N . In the numerical examples of Section

5.4, the samples of ξ are generated according to its joint pdf f(ξ). In Algorithm 5, the

parameter α,β are updated from the optimization problem (5.22), while the PC coefficients

c are computed via (5.19).
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Algorithm 5 Jacobi PC Design via Variable Projection

Inputs: Order of expansion p; realizations of inputs, ξ(i), and QoI, u(ξ(i)), i = 1, . . . , N ;

and joint cdf of ξ, F (ξ); a grid {(α(i)
k , β

(j)
k )}, i, j = 1, . . . ,M , for parameters (αk, βk),

k = 1, . . . , d, of Jacobi basis.

• Set � = 0 and the initial guess for optimal parameters (α,β), e.g., (α
,β
) = (0, 0).

Repeat

• ξ̃k ←
((

G(αl
k,β

l
k)
)−1

◦ F
)
(ξk), k = 1, . . . , d, (Change of measure from Eq.

(5.23))

• Generate Ψ(α�,β�) using realizations of ξ̃

for k = 1 : d do

for (αk, βk) ∈ {(α(i)
k , β

(j)
k )} do

• ξ̃k ←
((

G(α
(i)
k ,β

(j)
k )

)−1

◦ F
)
(ξk), (Change of measure from Eq.

(5.23))

• Fix (αk̂, βk̂), k̂ 
= k, at their latest values and update Ψ(α,β) using realiza-

tions of ξ̃k

• (α
+1
k , β
+1

k )← argmin
(αk ,βk)∈{(α(i)

k ,β
(j)
k )}

∥∥∥(I −Ψ(α,β)Ψ(α,β)†
)
u
∥∥∥2

2
,

with Ψ(α,β)† defined in (5.19),

End for

End for

• �← �+ 1

Until
∥∥∥(I −Ψ(α�,β�)Ψ(α�,β�)†

)
u
∥∥∥2

2
remains unchanged or � > �max

Outputs: α
, β
, and c = Ψ(α�,β�)†u

We note that, in Algorithm 5, the optimal Tikhonov regularization parameter λ may

change when the Jacobi basis is updated. However, here, we estimate λ using the GCV

approach only at each time when k alternates throughout all d dimensions and use this

estimate throughout the �th iteration.

Remark 5.3.3. The search for optimal parameters (α
+1
k , β
+1

k ) in (5.22) requires the eval-



127

uation of the cost function
∥∥∥(I −Ψ(α,β)Ψ(α,β)†

)
u
∥∥∥2

2
at all the grid points {(α(i)

k , β
(j)
k )},

which can be done in parallel. The code used for the numerical experiments of Section 5.4 is

implemented with multi-threading.

5.4 Numerical experiments

In this section, we empirically demonstrate the accuracy of the Jacobi PC design in esti-

mating statistics of solution to three differential equations with random inputs. In all three

cases, the solution of interest features sharp gradients or discontinuities with respect to the

random inputs, thus resulting in slow convergence of standard PC expansions. In the first

test case, we also provide a comparison between the quality of the approximation obtained

from the Jacobi PC design and the i-gPC approach.

5.4.1 Case I: Ordinary differential equation with stochastic coefficient

First, we consider the following ordinary differential equation, representing exponential pop-

ulation decay with a random reproduction rate [20, 146],

du(t, ξ)

dt
+ κ(ξ)u(t, ξ) = 0 (t, ξ) ∈ [0, T ]× Ω, (5.24)

with initial condition u(t = 0) = 1. The reproduction rate κ(ξ) is considered to be a random

variable uniformly distributed over [0, 1] and given by κ(ξ) = 1/2+1/2ξ, where ξ ∼ U [−1, 1].
The QoI is the solution u(t = 25, ξ) at time t = 25. The analytic solution to (5.24) is given

by

u(t, ξ) = e−κ(ξ)t, (5.25)

and thus the statistics of u can be computed exactly. It is known that the accuracy of a

fixed degree Legendre expansion of u(t, ξ) deteriorates as a function of time t, [146], i.e., the

so-called long-time integration issue.

We next compare the quality of approximation obtained from Legendre PC and the

Jacobi PC design approaches, using multiple numbers, N = 50, 200, 500, of random solution
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realizations. To examine the dependency on the choice of the solution realizations, for each

N , we perform three independent replications of Legendre PC and the Jacobi PC design

following Algorithm 5.
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Figure 5.1: Comparison of relative root mean square (rms) error with 10,000 validation
samples of u(t = 25), with PC expansions of different orders p. (a) p = 3; (b) p = 5.
( �� Legendre PC; �� Jacobi PC design; dashed lines denote two replications of expansion
with independent solution realizations.)

To compare the proposed approach with Legendre PC, we examined the error in ap-

proximation of u(t = 25) computed from 10, 000 validation samples, generated independently

from the N training samples. From Fig. 5.1, we observe that Jacobi PC design improves

the accuracy by multiple orders of magnitude. Additionally, the achieved accuracy becomes

less dependent on the samples used when N is sufficiently large, depending on the order of

expansion p. To further demonstrate this improvement, in Fig. 5.2, we compare the cdf of

the solution at p = 4 and N = 200. In Fig. 5.3, we plot the PC expansion coefficients of

u(t = 25) in both Legendre and optimal Jacobi bases. We observe that the Jacobi expansion

achieves a faster decay in the coefficients and hence smaller truncation error in accordance

with the objective of the Jacobi PC design.

As mentioned earlier, change of measure contributes in improving PC approximation
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accuracy. In Figure 5.4, the optimal Jacobi basis functions are shown in terms of the original

random input ξ. We note that, as opposed to the Legendre polynomials, these functions are

mostly variable over [−1, 0] where the solution of interest attains larger values.

Next we compare the results from i-gPC (with 10 iterations) with those obtained from

the proposed method. For p = 3, 5 and for increasing values of N , we observe from Fig. 5.5

that, while i-gPC is more accurate than the Legendre PC, it is not as accurate as the optimal

Jacobi PC approximation.

5.4.2 Case II: Woodward-Colella flow problem

We next consider the solution to a compressible channel flow problem with a forward fac-

ing step as shown in Fig. 5.6. This is a Riemann problem governed by the Euler equa-

tions and was previously studied in [167, 168]. The inflow Mach number, M , and heat

capacity ratio, γ, are assumed to be independent, uniform random variables. Specifically,

M ∼ U [2.4565, 3.0551] and γ ∼ U [1.35, 1.45], and to set up our experiment we consider

M = 2.7558 + 0.2993ξ1 and γ = 1.40 + 0.05ξ2, where ξ1, ξ2 are independent and uniformly

distributed over [−1, 1]. The QoI is chosen to be the pressure around the second Mach re-

flection point on the step, i.e., at location (1.6, 0.2) in Fig. 5.6, where the left bottom corner

point of the flow domain is assumed to be the origin (0, 0). The density field corresponding

to (M, γ) = (2.57, 1.4) is also shown in Fig. 5.6.

For this experiment, we report the solution accuracy as a function of the expansion

order p = 2, . . . , 6 and using N = 100, 300 solution realizations. The exact QoI, as a function

of (M, γ) is shown in Fig. 5.7a, from which we note the large gradients along γ leading to

the Gibbs phenomenon in both PC representations, Figs. 5.7b and 5.7c. We used p = 5 and

same samples of size N = 200 to generate the response surfaces in Figs. 5.7b and 5.7c. As

may be observed from these results, the Gibbs phenomenon is significantly less severe in the

case of the Jacobi PC design, as compared to the standard Legendre expansion. The more

quantitative results in Fig. 5.8, obtained with N = 100, 300 samples, illustrate the higher
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accuracy of the proposed method relative to the Legendre approximation. In particular, with

sample size N = 300, the Jacobi PC approximation improves the approximation error by

about one order of magnitude. In this case, the solution shows less sensitivity to the actual

samples utilized. We also compare the pdf of the approximate solutions in Fig. 5.9, from

which we observe that the optimal Jacobi PC approach leads to a more accurate pdf.

Looking at the PC coefficients of both approximations in Fig. 5.10, we can see that

those of the Jacobi PC decays slightly faster than for Legendre, leading to a lower truncation

error. This is a direct consequence of the optimal Jacobi PC construction, where the solution

residual is minimized further by allowing a basis possibly different from the one orthogonal

to the measure of the inputs.

In Fig. 5.11, the univariate Jacobi basis functions obtained with N = 300 samples are

shown in terms of the original uniform random variables ξ1 and ξ2. In particular, the basis

functions along ξ1, as displayed in Fig. 5.11a, while not actually polynomials are qualita-

tively similar to the Legendre basis. Along the same direction, the QoI varies smoothly as

illustrated in Fig. 5.7a. However, the basis functions along ξ2, shown in Fig. 5.11b, are

drastically different and vary the most in the neighborhood of ξ2 = 0, where the shockwave

exists. The rather local variation of the Jacobi basis in this direction leads to an enhanced

recovery of the QoI.

5.4.3 Case III: A kinetic problem with stochastic reaction rates

In this experiment, we apply our approach to a hydrogen oxidation problem previously

studied in [169, 17]. Here the evolution of seven species, namely [OH], [H], [H2O], [H2],

[O2], [HO2], and [H2O2], is governed by eight reversible reactions with stochastic reaction

rates. Following [17], each of these reaction rates is modeled as an independent, uniformly

distributed random variable, specified in Table 5.2. More precisely, kf,j , j = 1, . . . , 8, denotes

the forward reaction rate, and the corresponding reverse rate kr,j is determined by the
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deterministic equilibrium constants Kc,j via

kr,j = K−1
c,j × kf,j, j = 1, . . . , 8.

The forward reaction rates kf,j are linear transformations of independent random variables

ξj uniformly distributed in [−1, 1], such that kf,j follow the distributions given in Table 5.2.

Index Reaction Distribution of kf,j Equilibrium constant K−1
c,j

j = 1 OH+H � H2O U [4.68× 1013, 4.67× 1014] 0.3491× 10−30

j = 2 H2 +OH � H2O+H U [5.00× 1011, 7.93× 1011] 0.4380× 10−3

j = 3 H +O2 � HO2 U [5.26× 1013, 1.31× 1014] 0.1045× 10−08

j = 4 HO2 +HO2 � H2O2 +O2 U [5.16× 1011, 1.03× 1012] 0.9879× 10−13

j = 5 H2O2 +OH � H2O+HO2 U [2.20× 1012, 5.48× 1012] 0.3382× 10−08

j = 6 H2O2 +H � HO2 +H2 U [8.48× 1010, 3.39× 1011] 0.7723× 10−05

j = 7 H2O2 � OH+OH U [1.26 × 101, 1.26× 102] 0.1589× 10+12

j = 8 OH+ HO2 � H2 +O2 U [1.24× 1013, 1.24× 1014] 0.3534× 10−17

Table 5.2: Random reaction model (Units are in the cm-mol-s-K system).

The evolution of species concentration is governed by the non-linear system of first-

order ODEs,
dX(t, ξ)

dt
= F (X(t, ξ), ξ),

X(0, ξ) =X0,

(5.26)

where the operator F is governed by the reactions and the vector X consists of the species

concentrations, i.e.,

X = ([OH], [H], [H2O], [H2], [O2], [HO2], [H2O2]) .

As in [17], the following initial conditionX0 is considered: [H2](t = 0) = 2.06×10−6mol/cm3,

[O2](t = 0) = 1.04×10−6mol/cm3, and [H2O](t = 0) = 4.281×10−3mol/cm3. All other initial
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concentrations are zero. All reactions are assumed to occur at fixed temperature T = 823K

and pressure P = 246 bar.

The QoI of the problem is chosen to be the concentration of [H2O2] at the equilibrium

condition. In Fig. 5.12, we are showing the coefficients in the Legendre expansion with total

order p = 6, computed from 100,000 samples of [H2O2] concentration. From Fig. 5.12, we

note that the Legendre PC coefficients decay slowly. In other words, this representation has

a high truncation error.

To explore the performance of the optimal Jacobi basis, we approximate the concentra-

tion of [H2O2] with multiple values of p and accordingly with increasing sample sizes N . In

Fig. 5.12, we contract the optimal Jacobi expansion coefficients against the Legendre coun-

terpart, demonstrating a slightly faster decay and a smaller truncation error. To compare

the two reconstructions quantitatively, we independently generate another 10,000 samples,

and use the two expansions to predict these samples. In Fig. 5.13, we compare the rela-

tive rms error with the two approximations, from which we observe that with the optimal

Jacobi expansion, the approximation accuracy is improved. As total order p increases, the

accuracy is further improved. We note that the sample sizes N in that figure are sufficient,

but not necessary, to get converged solutions. Besides the rms error, we also compare the

probability density function of the QoI in Fig. 5.14. We observe that the optimal Jacobi PC

leads to a more accurate probability density function than the Legendre PC. It is worthwhile

highlighting that the Legendre PC expansion even gives highly negative, hence non-physical,

realizations of the concentration that are due to large approximation errors. This is much

less of an issue in the optimal Jacobi PC results.

Additionally, we also approximate the concentration of [H2O2] with optimal Jacobi

basis found by gradient-based optimization. In Fig. 5.15, we compare the relative rms

error in predicting the 10,000 samples with Legendre and the optimal Jacobi basis, which

are replications of the experiment shown in Fig. 5.13, except that the algorithms that are

used to calculate the optimal parameters for Jacobi basis are replaced with gradient-based
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optimization. In Fig. 5.15, opposite to the situation shown in Fig. 5.13, no significant

accuracy improvement is observed, which indicates that for this problem, gradient-based

optimization does not perform as good as brute-force search in calculating the values of

parameters associated with the optimal Jacobi basis. We note that in the gradient-bases

optimization, the derivatives may be obtained both analytically and numerically, in these

cases, we use finite difference to approximate the derivatives.

5.5 Conclusion

Within the context of polynomial chaos (PC) approximation of stochastic differential equa-

tions, we introduced an alternating least-squares (ALS) approach to design the PC basis

within the Jacobi polynomial family. The PC basis is designed from an optimization over

the Jacobi parameters without additional solution realizations. We argue that with the opti-

mal Jacobi PC basis the approximation may have more rapidly decaying coefficients leading

to a lower truncation error compared to conventional PC approximation. We noted that

as conventional choices of basis such as Legendre and Chebyshev PC are a special cases of

Jacobi family, the optimal Jacobi PC must have equal or better performance compared with

these PC expansions. To test the performance of the proposed PC basis design approach,

we applied it to three numerical test cases: an ordinary differential equation with stochastic

coefficient, the Woodward-Colella flow problem, and a kinetic problem with stochastic reac-

tion rates. In all three cases, the optimal Jacobi PC outperforms the Legendre PC, i.e. the

polynomials orthogonal to the measure of the inputs.

Although, the optimal Jacobi PC improves the accuracy in these test cases, this ap-

proach may not apply to all stochastic differential equations. For QoIs that do not lend

themselves to accurate representations in tensor product basis, the proposed PC design may

not be effective.
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Figure 5.2: Comparison of cumulative distribution function (cdf) of Legendre and Jacobi
approximations to u(t = 25) with p = 4 and N = 200 ( Legendre PC; Optimal
Jacobi PC; Exact).
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cobi PC with 10,000 validation samples of u(t = 25), where p = 5 and N = 200 ( �� Legendre
PC; � Jacobi PC design).
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Figure 5.5: Comparison of relative rms error computed via Legendre PC, the optimal Jacobi
PC, and i-gPC expansions with 10,000 validation samples of u(t = 25) ( �� Legendre
PC; �� Optimal Jacobi PC; �� i-gPC; dashed lines denote tow independent replications
with different choice of realizations).
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Figure 5.6: Schematics and density field of Woodward-Colella flow with M = 2.57 and
γ = 1.4.
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Figure 5.7: Response surface of the pressure at the second Mach refection point with respect
to γ and M . The Legendre and Jacobi PC response surfaces are obtained with p = 5 and
same solution realizations of size N = 200.
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Figure 5.8: The error in predicting 10,000 independent samples for the pressure at the second
Mach reflection point on the step. ( �� Legendre PC; �� Optimal Jacobi PC; dashed lines
denote two independent replications with different realizations of inputs).
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Figure 5.10: Comparison of PC coefficients obtained with p = 6 and N = 300 ( �� Legendre
PC; � Optimal Jacobi PC).
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Figure 5.12: Coefficients of Legendre and optimal Jacobi expansions, where the coefficients
are normalized such that |c1| = 1 ( �� Legendre PC; � Optimal Jacobi).
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Figure 5.13: Comparison of relative rms error in predicting 10,000 independent samples. For
Legendre and optimal Jacobi expansions of total order p = 3, 4, 5, and 6, we respectively used
solution realizations of sizes N = 500, 1000, 2000, and 5000 ( �� Legendre PC; �� Optimal
Jacobi PC; dashed lines denote an independent replications of solution with independent
input uncertainty).
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Figure 5.14: Comparison of cumulative distribution function (cdf) of [H2O2] approximated
via Legendre PC and the optimal Jacobi PC with p = 6 and N = 2000 ( Legendre
PC; Optimal Jacobi PC; Exact).
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Figure 5.15: Comparison of relative rms error in predicting 10,000 independent samples. For
Legendre and optimal Jacobi expansions of total order p = 3, 4, 5, and 6, we respectively used
solution realizations of sizes N = 500, 1000, 2000, and 5000 ( �� Legendre PC; �� Op-
timal Jacobi PC whose parameters are found simultaneously by gradient-based optimiza-
tion; �� Optimal Jacobi PC whose parameters are found dimension-wise by gradient-based
optimization; dashed lines denote an independent replications of solution with independent
input uncertainty).



CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Concluding remarks

Within the context of compressive sampling of sparse polynomial chaos expansions (PCEs),

I introduced three approaches to enhance the quality in quantitatively approximating the

quantity of interest (QoI). In addition, for QoI’s that an a priori choice of basis may re-

sult in slow decaying expansion coefficients, I introduced a PCE basis design approach to

enhance the sparsity of the corresponding coefficients, which in turn improve the quality of

the approximation.

In Chapter 2, I introduced a weighted �1-minimization approach, wherein I utilized a

priori knowledge on PC coefficients to enhance the accuracy of the standard �1-minimization.

The a priori knowledge of PCE coefficients may be available in the form of analytical decay

of PCE coefficients, e.g., for a class of linear elliptic PDEs with random data, or derived

from simple dimensional analysis. These a priori estimates, when available, can be used to

establish weighted �1 norms that will further penalize small PC coefficients, and consequently

improve the sparse approximation. I provided analytical results guaranteeing the convergence

of the weighted �1-minimization approach. The performance of the proposed weighted �1-

minimization approach was demonstrated through its application to two test cases, and

in both cases I demonstrated that the weighted �1-minimization approach outperforms the

non-weighted counterpart.

In Chapter 3, it was assumed that the analytical or approximate a priori information



143

about the PCE coefficients were not available, thus I utilized bi-fidelity technique to provide a

priori information about the polynomial chaos expansion (PCE) coefficients on the quantity

of interest (QoI), within the context of compressive sampling. Furthermore, I employed a

weighted �1-minimization and modified the orthogonal matching pursuit (OMP) algorithm

to include this a priori information, therefore to improve the accuracy in recovering the

PCE coefficients. In addition, I provided analysis on weighted �1-minimization,for Legendre

polynomial chaos. Numerical examples were shown to demonstrate the bi-fidelity methods,

and in all cases, the bi-fidelity approaches were observed to outperform standard appraoches.

In Chapter 4, I investigated �1-minimization when derivative information of a QoI

with respect to the random inputs is present. I provided analysis on gradient-enhanced

�1-minimization for Hermite polynomial chaos, in which I showed that, for a given normal-

ization, including derivative information will not reduce the stability of the �1-minimization

problem. Further, I identified a coherence parameter that I used to bound the associated

Restricted Isometry Constant, a useful and well-studied measure of the stability for solu-

tions recovered by �1-minimization as in the context used here. Furthermore, I observed

improved solution accuracy from gradient-enhanced �1-minimization in three numerical ex-

amples. Consistently, gradient-enhanced �1-minimization was seen to improve the quality of

solution recovery at the same computational cost, or equivalently achieve the same solution

quality at a reduced computational cost.

For all cases above, the type of polynomial bases is chosen a priori based the probability

measure of random inputs and from the so-called Askey family of orthogonal polynomials.

However, for an arbitrary QoI such an a priori choice of basis may result in slow decaying

expansion coefficients, which in turn may lead to large errors when low order PCEs are

considered. Hence, in Chapter 5, I introduced an alternating least squares (ALS) approach

to design the PCE basis within the Jacobi polynomial family. The PCE basis is designed

from an optimization over the Jacobi parameters without additional solution realizations. I

showed that with the optimal Jacobi PCE basis the approximation may have more rapidly
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decaying coefficients leading to a lower truncation error compared to conventional PCE

approximation. I noted that as conventional choices of basis such as Legendre and Chebyshev

PCE are a special cases of Jacobi family, the optimal Jacobi PC must have equal or better

performance compared with these PCE. To test the performance of the proposed PC basis

design approach, I applied it to three numerical test cases, and in all cases, the optimal

Jacobi PCE outperforms the Legendre PCE.

6.2 Future work

This section briefly describes future plans that may address the unresolved issues in the

ongoing work or extend the present work.

Recovery Guarantees for Bi-fidelity �1-minimization

In Chapter 3, I demonstrated an improved quality in approximating the QoI via

weighted �1-minimization, where the a priori is provided by the low-fidelity PCE coefficients.

The theoretical recovery guarantee for weighted �1-minimization was presented under the as-

sumption that the a priori information about the PCE coefficients are accurate. However,

in our numerical experiments, it was observed that the low-fidelity PCE coefficients are of-

ten inaccurate, but they still improve the coefficients recovery in high fidelity via weighted

�1-minimization.

To justify the observed phenomenon, theoretical supports are needed to show that even

when the a priori information is inaccurate, the recovery via weighted �1-minimization is

still feasible. Promisingly, this may be done via the concept weighted restricted isometry

constant introduced in [170], and the coherence defined in [162].

PCE Basis Design via �1-minimization

In Chapter 5, the optimal PCE basis was designed via the alternating least squares

(ALS) approach, which generally requires a large number of realizations N � P , where P

is the number of basis functions. However, for a problem whose deterministic solver has

high computational complexity, when the dimensionality of the random inputs is high, it is
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therefore unrealistic to evaluate the quantity of interest (QoI) N times. In addition, with

large N , the design process becomes computationally costly too. Nevertheless, it has been

observed that the optimal basis enhances the sparsity of the corresponding PCE, and that

compressive sampling approaches recover the PCE coefficients efficiently with N < P . It

is thus reasonable to consider replacing the ALS approach with a compressive sampling

approach such as �1-minimization, to reduce the computational expense in both evaluating

the QoI and basis design.

I seek to employ iteratively reweighted least squares (IRLS) approaches, in which the

solution from previous iteration is utilized to weight the �2 norm of the current solution, in

PCE basis design. It has been shown that in each iteration, IRLS has unique solution, and

the solution converges to the solution to P1,ε in (1.19) [87, 66], i.e., IRLS can be used for

�1-minimization.

Numerical experiments are needed to verify this idea of combining PCE basis design

and �1-minimization. If positive results can be observed, theoretical justifications show the

conditions that guarantee the success are needed.

Joint Approximation of QoI’s via Sparse PCE

In all the methods and numerical experiments presented in this thesis, the QoI’s were

chosen at some fixed spatial location x0 and time t0. In realistic, there are often quantities

at multiple spatial and/or temporal points that are of interest, as they may have same or

similar sparsity structure with respect to their PCEs. Taking advantages of these shared

sparsity structure may be helpful in reducing the number of realizations required and/or

lowering the computational cost in recovering the PCE coefficients.

For the case that the sparse PCE coefficients for all QoI’s have the same support, it has

been shown that algorithms concern with multiple measurement vectors (MMV) improve the

performance of compressive sampling, both theoretically and empirically [171, 172]. However,

the extent to the cases where the supports for the PCE coefficients are not exactly the same is

missing. New approaches are in need to benefit from correlated sparse coefficients supports.
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Furthermore, theorems and numerical experiments are needed to justify and verify these

approaches.
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