
Western Michigan University
ScholarWorks at WMU

Master's Theses Graduate College

8-2017

Atmospheric Microbial Community Sampling
System for Varying Altitude Collection
Kenneth David Domingue
Western Michigan University, kenneth.domingue@gmail.com

Follow this and additional works at: http://scholarworks.wmich.edu/masters_theses

Part of the Aerospace Engineering Commons, and the Mechanical Engineering Commons

This Masters Thesis-Open Access is brought to you for free and open access
by the Graduate College at ScholarWorks at WMU. It has been accepted for
inclusion in Master's Theses by an authorized administrator of
ScholarWorks at WMU. For more information, please contact
maira.bundza@wmich.edu.

Recommended Citation
Domingue, Kenneth David, "Atmospheric Microbial Community Sampling System for Varying Altitude Collection" (2017). Master's
Theses. 1514.
http://scholarworks.wmich.edu/masters_theses/1514

http://scholarworks.wmich.edu?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F1514&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.wmich.edu?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F1514&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.wmich.edu?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F1514&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.wmich.edu/masters_theses?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F1514&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.wmich.edu/grad?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F1514&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.wmich.edu/masters_theses?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F1514&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/218?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F1514&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F1514&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.wmich.edu/masters_theses/1514?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F1514&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:maira.bundza@wmich.edu
http://scholarworks.wmich.edu?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F1514&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.wmich.edu?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F1514&utm_medium=PDF&utm_campaign=PDFCoverPages

ATMOSPHERIC MICROBIAL COMMUNITY SAMPLING SYSTEM FOR

VARYING ALTITUDE COLLECTION

by

Kenneth David Domingue

A thesis submitted to the Graduate College

in partial fulfillment of the requirements

for the degree of Master of Science in Engineering

Mechanical and Aerospace Engineering
Western Michigan University

August 2017

Thesis Committee:

Kristina Lemmer, Ph.D., Chair

Kathryn Docherty, Ph.D.

Peter Gustafson, Ph.D.

ATMOSPHERIC MICROBIAL COMMUNITY SAMPLING SYSTEM FOR

VARYING ALTITUDE COLLECTION

Kenneth David Domingue, M.S.E.

Western Michigan University, 2017

The study of airborne microbial communities in the vertical atmosphere is an

area of research in which very little data has been collected and analyzed. Developing

a vehicle to house biological sampling equipment that collects, and mitigates

contamination is required by a team of biology researchers to perform sampling of

atmospheric microbial communities. This study uses a sampler box that is attached

to aerostatic vehicles: zero pressure balloons and tethered balloon/kite structures.

Zero pressure balloons are used for sampling at altitudes above 150 m above sea level,

and tethered balloon/kite structures are used for sampling at 30 m and 150 m above

ground. Sampling also includes a ground-based platform at 2 m above ground. The

sampler box contains petri dishes that are used to collect atmospheric microbial

biomass from which community DNA is extracted. Material selection requirements

were set by the biologists to ensure the samples are not contaminated by the sampler

box and were reusable. The sampler box was designed and built to follow Federal

Aviation Administration regulations on unmanned free and moored balloons.

Therefore, the sampling box weighs less than 6 pounds. HAM radios are used to

communicate with and track the sampler box. Accounting for all of this, a sampling

system for varying altitude collection was developed.

ii

ACKNOWLEDGEMENTS

The work of this thesis has been done with numerous people and in this

section, I want to extend my utmost thank you for the contributions, support, and

help.

I want to start with my parents, David and Linda Domingue, for you guys

have always been there for me. The both of you have helped me in countless ways

and I for that, I am extremely grateful. My wife, Virginia Domingue, you have been

my biggest supporter outside of my research team. You have listened to all the

problems and solutions to every aspect of this thesis. There numerous times that

you have helped me out with along this adventure, and I cannot thank you enough

for that. To my family and my wife, thank you and I love all of you.

To Dr. Gustafson for being a part of my committee and always having his

door open to talk to. From the several classes that I have taken with you, I have

learned a lot about how to structures and materials, but I think most importantly is

you have taught me there is no absolutes with engineering and to defend and own

your work.

There are 3 undergraduates that have worked closely with me on this

research. Margaret Mooney, Thomas Kerber, and Allison Spring, have all been

some of the hardest working people that I have ever known and have contributed to

iii

Acknowledgements―Continued

this thesis more than I can describe in such a short section of my paper. Margaret

and Thomas are both undergraduate aerospace engineers working on this project

and without the hard work, determination, and true grit of these individuals, there

is no way this thesis could ever be accomplished. Allison Spring was an

undergraduate biology research (now in her master’s program), and has spent long

days sampling on roof tops, in tick invested fields, the frigid cold of Michigan

winters and so on, while right after doing all of that, going into the biology lab and

performing a DNA extract that lasts for full 8-hour days at times. She has been

additionally one of the hardest working people I know and has been able to

contribute to this thesis in numerous ways.

Dr. Kathryn Docherty, a member of my thesis committee, co-principal

investigator of this research, and most importantly a true mentor on so many levels.

Kathryn has the unimaginable determination to complete research and ability to

drive creative ideas to solve real problems. Thank you for being a mentor and fellow

researcher to me, and from you I have learned a lot about determination, teamwork,

leadership, communication, and always estimate double the amount of time I think

it will take to complete a project. There is numerous things to thank you for but the

number one this is that you have made me a better engineer from the demands that

you expected of this research, and for that I am extremely grateful.

iv

Acknowledgements―Continued

Finally, Dr. Kristina Lemmer, my faculty mentor for my thesis, co-principal

investigator of this research, leader of team engineering, and most importantly the

best mentor I could have. You have pushed me to work the hardest I have ever

worked, to understand and give logical reasoning behind my work, and challenge

myself to come up with creative solutions to solve problems. You have worked with

me since the start of this thesis and we both have had our victories and defeats

along the way. There is with no doubt that because of you, I am a better engineer,

researcher, and person. This thesis has been challenging but will be something that

I will never forget. Thank you for giving me this opportunity and working with me

on this adventure. Thank you!

Kenneth David Domingue

© 2017 Kenneth David Domingue

v

TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. ii

LIST OF TABLES ... viii

LIST OF FIGURES ... ix

LIST OF ACRONYMS .. xi

CHAPTER

I. INTRODUCTION .. 1

Scope .. 2

History of Ballooning .. 3

Buoyancy ... 10

Balloon Types .. 11

Expanding Volume Balloons .. 12

Constant Volume Balloons ... 13

Related Experiments .. 16

II. SAMPLING VESSEL ... 19

Design .. 19

Sampler Box Functionality ... 27

vi

CHAPTER

III. TETHERED SYSTEM ... 32

Latex Balloons ... 32

Helikite .. 33

IV. LAUNCHED SYSTEM .. 35

Manufacturing a Zero Pressure Balloon .. 35

Tracking and Ending Flight ... 38

Tracking Devices .. 39

Cut Down Devices .. 40

Launched Balloon Troubleshooting .. 44

V. FUNCTIONALITY EXPERIMENTS ... 48

Testing the Sampler Box .. 48

Collection of AMCs and Contamination .. 48

Functionality and Hallway Testing ... 49

Testing the Tethered Balloon System .. 51

Testing the Launched System .. 53

Tracking System ... 53

Cut Down System .. 55

Balloon Flight ... 56

vii

CHAPTER

VI. RESULTS ... 61

Sampler Box Results ... 61

Tethered System Results .. 64

Launched System Results... 65

VII. CONCLUSIONS AND FUTURE WORK .. 66

Future Work .. 67

BIBLIOGRAPHY ... 69

APPENDICES

A. Arduino Code for Tethered System ... 72

B. Arduino Code for Remote of Tethered System .. 84

C. Arduino Code for Launched Sampler Box ... 91

D. Arduino Code for Launched Tracker Bo .. 107

E. Balloon Template Values ... 112

F. Balloon Lift Calculations MATLAB Code .. 114

viii

LIST OF TABLES

1: Summary of Tethered System Tests ... 34

2: 5 km Zero Pressure Balloon Parameters .. 36

3: Sampler Box Collection and Contamination Test Results 49

4: Helikite Lift Calculations .. 51

5: Summary of Tests for the Launched System .. 60

6: Test 16S rRNA-based Sequence Data for Sampler Boxes...................................... 62

file:///C:/Users/Ken's/Desktop/Master%20Thesis_%20Domingue_Kenneth.docx%23_Toc490835750

ix

LIST OF FIGURES

1: Hydrogen Balloon Developed by Charles in 1783 [1] ... 3

2: Tetrahedral Balloons [1] .. 5

3: Natural Shape Zero-Pressure Balloon [16] ... 6

4: Zero Pressure Balloon Layout [1] .. 7

5: Flight Paths of all NASA Balloon Experiments in Antarctica [17] 8

6: Fully Inflated Super Pressure Balloon [18] .. 9

7: Example Flight Profile of Expanding Volume Balloon .. 13

8: Example of Flight Profile of Constant Volume Balloon ... 14

9: Night Time and Day Time Cycle of ZP and SP Balloons [20] 14

10: Accordion Array Prototype .. 20

11: Expanding Array Prototype .. 21

12: CAD Model of Sampler Box with 4 Tent Poles ... 23

13: Telescoping Pole Prototype .. 24

14: 1 Telescoping Pole Prototype ... 25

15: Final Sampler .. 26

16: Remote for Tethered Sampler Boxes .. 29

17: Close View of Tethered Helikite While in Flight ... 33

18: View of Tethered Helikite with Sampler Boxes ... 33

19: Gore Template.. 37

20: Load Ring ... 39

21: Launch Balloon Diagram... 41

file:///C:/Users/Ken's/Desktop/Master%20Thesis_%20Domingue_Kenneth.docx%23_Toc490836955
file:///C:/Users/Ken's/Desktop/Master%20Thesis_%20Domingue_Kenneth.docx%23_Toc490836956
file:///C:/Users/Ken's/Desktop/Master%20Thesis_%20Domingue_Kenneth.docx%23_Toc490836957
file:///C:/Users/Ken's/Desktop/Master%20Thesis_%20Domingue_Kenneth.docx%23_Toc490836958
file:///C:/Users/Ken's/Desktop/Master%20Thesis_%20Domingue_Kenneth.docx%23_Toc490836959
file:///C:/Users/Ken's/Desktop/Master%20Thesis_%20Domingue_Kenneth.docx%23_Toc490836960
file:///C:/Users/Ken's/Desktop/Master%20Thesis_%20Domingue_Kenneth.docx%23_Toc490836961
file:///C:/Users/Ken's/Desktop/Master%20Thesis_%20Domingue_Kenneth.docx%23_Toc490836962
file:///C:/Users/Ken's/Desktop/Master%20Thesis_%20Domingue_Kenneth.docx%23_Toc490836963
file:///C:/Users/Ken's/Desktop/Master%20Thesis_%20Domingue_Kenneth.docx%23_Toc490836964
file:///C:/Users/Ken's/Desktop/Master%20Thesis_%20Domingue_Kenneth.docx%23_Toc490836965
file:///C:/Users/Ken's/Desktop/Master%20Thesis_%20Domingue_Kenneth.docx%23_Toc490836966
file:///C:/Users/Ken's/Desktop/Master%20Thesis_%20Domingue_Kenneth.docx%23_Toc490836967
file:///C:/Users/Ken's/Desktop/Master%20Thesis_%20Domingue_Kenneth.docx%23_Toc490836968
file:///C:/Users/Ken's/Desktop/Master%20Thesis_%20Domingue_Kenneth.docx%23_Toc490836969
file:///C:/Users/Ken's/Desktop/Master%20Thesis_%20Domingue_Kenneth.docx%23_Toc490836970
file:///C:/Users/Ken's/Desktop/Master%20Thesis_%20Domingue_Kenneth.docx%23_Toc490836971
file:///C:/Users/Ken's/Desktop/Master%20Thesis_%20Domingue_Kenneth.docx%23_Toc490836972
file:///C:/Users/Ken's/Desktop/Master%20Thesis_%20Domingue_Kenneth.docx%23_Toc490836973
file:///C:/Users/Ken's/Desktop/Master%20Thesis_%20Domingue_Kenneth.docx%23_Toc490836974
file:///C:/Users/Ken's/Desktop/Master%20Thesis_%20Domingue_Kenneth.docx%23_Toc490836975

x

List of Figures―Continued

22: Tow Line and Hot Wire Schematic ... 43

23: Tow Line Release [27] .. 43

24: Ballast Mechanism .. 46

25: Ballast Connected to Sampler ... 47

26: Tandem Tethered Helikite Test .. 54

27: Tracker Box Testing in Lab ... 55

28: Leak Checking of ZP Balloon .. 56

29: Filling Zero Pressure Balloon .. 57

30: Launch System After Launching .. 59

31: Ballast Dropping with Increased Ascent Rate ... 59

32: Sequence Data from Contamination Test ... 63

33: Initial Results of Sampler Boxes from May 2017 Sampling 64

file:///C:/Users/Ken's/Desktop/Master%20Thesis_%20Domingue_Kenneth.docx%23_Toc490836976
file:///C:/Users/Ken's/Desktop/Master%20Thesis_%20Domingue_Kenneth.docx%23_Toc490836977
file:///C:/Users/Ken's/Desktop/Master%20Thesis_%20Domingue_Kenneth.docx%23_Toc490836978
file:///C:/Users/Ken's/Desktop/Master%20Thesis_%20Domingue_Kenneth.docx%23_Toc490836979
file:///C:/Users/Ken's/Desktop/Master%20Thesis_%20Domingue_Kenneth.docx%23_Toc490836980
file:///C:/Users/Ken's/Desktop/Master%20Thesis_%20Domingue_Kenneth.docx%23_Toc490836981
file:///C:/Users/Ken's/Desktop/Master%20Thesis_%20Domingue_Kenneth.docx%23_Toc490836982
file:///C:/Users/Ken's/Desktop/Master%20Thesis_%20Domingue_Kenneth.docx%23_Toc490836983
file:///C:/Users/Ken's/Desktop/Master%20Thesis_%20Domingue_Kenneth.docx%23_Toc490836984
file:///C:/Users/Ken's/Desktop/Master%20Thesis_%20Domingue_Kenneth.docx%23_Toc490836985
file:///C:/Users/Ken's/Desktop/Master%20Thesis_%20Domingue_Kenneth.docx%23_Toc490836986
file:///C:/Users/Ken's/Desktop/Master%20Thesis_%20Domingue_Kenneth.docx%23_Toc490836987

xi

LIST OF ACRONYMS

AMC Airborne Microbial Community

APRS Automatic Packet Reporting System

DTMF Dual Tone Multi-Frequency

CAD Computer Aided Drawing

FAA Federal Aviation Administration

GPS Global Positioning System

RC Remote Control

SP Super Pressure

ZP Zero Pressure

1

CHAPTER I

INTRODUCTION

Soil and water microbial communities are often-tested biological habitats

where DNA can easily be extracted from soil and water samples collected from desired

locations. Researchers use data from these samples to understand abiotic and biotic

interactions between microbial communities and the environment. The atmosphere

is another potential microbial habitat that should be tested because of the potential

for local and global distribution of microorganisms through the air. However, very

little research has been performed to investigate airborne microbial communities

(AMCs) to determine what communities exist in the atmosphere. The goal of this

work was to design, build and test a sampling mechanism to aid in the discovery of

relationships between ecosystem, altitude, season, atmospheric layer, and microbial

communities.

A collaborative research team of biologists and engineers was created to

develop a sampler system that collects AMCs. The biology team members set

requirements and criteria for the sampler system. These requirements include

material limitations, re-usability, and prevention of sample contamination. The

engineering team members used the requirements, combined with Federal Aviation

Administration (FAA) regulations and safety restrictions to design and develop a

method for obtaining the samples using balloon borne sampling boxes.

2

This chapter begins with a brief discussion of the project scope. Next is a

history of ballooning, followed by a description of buoyancy and the different types of

modern scientific balloons. Finally, there is a discussion of related experiments.

Following this introductory chapter, the sampler boxes are described. In

chapters 3 and 4, the tethered and launched balloons, respectively, are discussed.

Chapter 5 gives details of the experiments that were performed to verify functionality

of the sampling boxes, and chapter 6 gives results of those functionality experiments.

Finally, chapter 7 provides conclusions and suggestions for future work.

Scope

The scope of the project was to design a system capable of sampling airborne

microbes from within a specific altitudinal range, without introducing human or

ground-level contamination of the AMCs. The sampler box is the primary vessel for

transporting the microbial samples from sampling altitudes to the biologists.

Several criteria must be met to ensure the sampler box meets project requirements

and stays within FAA compliance. The developed tethered and launched sampling

systems carry the sampler boxes to their respective altitudes, and maintained there.

Additional subsystems for the launched and tethered systems that allow for

automatic opening and closing of the sampler box, tracking the sampler box, and

overall safety were developed. Finally, the sampler box was developed to minimize

the risk of contamination while providing a cost-effective solution for the materials

and processes required to make the sampling system.

3

History of Ballooning

The first test of a large scale balloon was an unmanned, hot air balloon flown

in June 1783 [1]. Flown in Annonay, France, the balloon was 700 m3, and achieved

a maximum altitude of approximately 2,000 m. The inventors of this balloon were

J.M. Montgolfier and J.E. Montgolfier (brothers). They furthered their experiments

and would inspire the work of César Charles to develop a hydrogen sealed balloon

in August of 1783, Figure 1. This balloon was sealed at the bottom, and as a result,

the increased pressure from the expanding hydrogen inside of the balloon during

ascent caused the membrane to burst. Following this flight, a venting system was

used to prevent bursting and later allowed for humans to fly on the balloons.

Figure 1: Hydrogen Balloon Developed by Charles in 1783 [1]

4

 These hydrogen balloons were used by explorers and scientists in the early

1800s for scientific observations, such as atmospheric changes with altitude [1]. The

balloons could reach altitudes of 10 km.

 Throughout the 1800s and early 1900s, these types of balloons were used for

exploration and research. Modern scientific balloons were developed in the 1930s

when low-density polyethylene was invented. Previously, the balloons were made

from silk or neoprene impregnated fabrics that were heavy and not as strong as

polyethylene [2]. Low-density polyethylene is thin, lightweight, and strong, and it is

still being used for scientific ballooning today [1].

Cylindrical balloons are relatively easy to make. Construction of a cylindrical

balloon requires two sheets of plastic film with the 4 edges fused together or a tube

of plastic film with the ends fused. During tests between 1945 and 1951, it was

found that the cylindrical balloon would not expand to its full volume near the base

as payload weight increased. This suggested that the circumferential stress was

zero in these sections of the balloons. To optimize these cylindrical balloons, the

sections that did not fill with lifting gas were removed. In further efforts to optimize

zero pressure balloons, tetrahedral balloons, as shown in Figure 2 were made based

on the ease of manufacturing. For testing purposes, these balloons were used to

investigate stresses on the balloon that would occur at the ceiling of flight. As

tetrahedral balloons were further optimized to suspend heavier payloads and

achieve higher altitudes, the “natural shape” balloon was being developed.

5

In the 1950s, a researcher from the University of Minnesota developed

equations for the natural shape of zero pressure balloons that are used to describe

the ideal shape and stress experienced in the balloon material [3]. Previously, the

shape of a balloon was developed based on a sphere atop a cone. The equations for

zero pressure balloon shape primarily related the stress experienced by the material

to the structural limitations the balloon could withstand. The “natural-shape”

balloons, shown in Figure 3, have extra material so that when the balloon is fully

expanded at its ceiling, the circumferential stress “or hoop stress” will only be

experienced at the balloon’s maximum diameter, or equator [2].

At sea level, helium in the balloon is not contaminated by external

atmosphere readily. This is because the difference in density between helium and

air at standard temperature and pressure is greater than that at higher altitudes.

Furthermore, when the balloon is only partially filled, the bottom of it is collapsed

Figure 2: Tetrahedral Balloons [1]

6

so that air cannot easily enter the envelop. As a zero pressure balloon ascends to

higher altitude, air can contaminate the helium within a few hours, causing balloon

performance to suffer, resulting in a loss of altitude. Ducts were implemented on

the sides of the balloons in the gore sections that were relatively short, in

comparison to the gore length, as illustrated in Figure 4. Ducts allow the bottom of

the balloon to be sealed while still allowing lifting gas to vent. When the balloon

reaches maximum altitude, the pressure inside of the balloon causes lifting gas to

vent out the ducts. The pressure of the venting gas will be greater than that of the

atmosphere on the outside of the balloon, preventing air from flowing into the

Figure 3: Natural Shape Zero-Pressure Balloon [16]

7

balloon [2]. When the pressure of the outside atmosphere and the lifting gas

equalize, the ducts collapse, preventing air from entering the balloon. These ducts

are typically placed near, and extend past, the bottom of the balloon [1].

Until 1967, zero pressure balloons were only capable of floating for a

maximum of 2 days. At that time, the use of ballast systems began to be employed

to extend the duration of flights. Ballast systems unload approximately 7% of the

mass of the combined payload and balloon every night to compensate for loss of lift

during the night to day transition [4]. The dropped mass is typically iron particles

or sand. To prevent having to use a significant amount of ballast, NASA began

flying zero pressure balloons in Antarctica during the summer months of December

1991, so the balloon would not experience a night time transition. This extended

flights to 42 days; however, the same balloon system would be far less functional if

Figure 4: Zero Pressure Balloon Layout [1]

8

flown closer to the equator [5]. Figure 5 shows a composition of the flight paths of

the scientific balloon tests that NASA performed in Antarctica. There are 22

different flights shown in the image that occurred from December 1991 through

December 2001. The longest flight lasted 42 days at a sustained altitude of 38 km

[6].

While long distance zero pressure balloons were being tested in Antarctica,

efforts to develop a super pressure balloon were in the works by NASA as part of

their Ultra-Long Duration Balloon (ULDB) project [5]. Super pressure balloons are

fixed volume balloons that are sealed from the atmosphere. These balloons are like

the balloons that César Charles developed back in the 1700s, but with new material

and technology advancements in ballooning. This prevents lifting gas from escaping

from the balloon, and the pressure in the balloon increases as it ascends. As a

result, the membrane and stress transferring features of a super pressure balloon

Figure 5: Flight Paths of all NASA Balloon Experiments in Antarctica [17]

9

must be stronger than a zero pressure balloon to prevent bursting or leaking.

Modern super pressure balloons are used for several different applications such as

instrument testing and conducting research [7]. These balloons have the capability

of reaching 33.5 km, and can fly for over 100 days while carrying over 2000 kg of

payload. Figure 6 is a fully inflated super pressure balloon from NASA.

With further advances in computational power, the ability to run simulations

of stresses on a balloon has allowed researchers to design and develop new

optimized balloons. These simulations include thermal performance [8], 3D

simulations of the ascent and floating performance [9], and trajectory simulations

[10]. As a result, modern scientific balloons have been able to carry heavier

payloads, sustain altitude longer, and further the research of balloon performance.

Future ballooning research is focusing on research balloons for other planets.

Researchers from the Jet Propulsion Laboratory, Wallops Flight Facility, Near

Figure 6: Fully Inflated Super Pressure Balloon [18]

10

Space Inc., and Raven Industries have been working on developing a ballooning

system for Mars [11]. The design allows scientific instruments, such as high

resolution imaging, magnetic field mapping and sub-surface radar mapping, near

the surface of Mars to cover long distances. Obtaining these data on Mars is

beneficial for future rover and manned Mars missions.

Buoyancy

 Balloons are built on the principle of buoyancy. Upward lifting force is

produced by a gas that has a lower density than air, such as hydrogen or helium.

This force is calculated from Equation 1 [1].

 𝐹𝐵 = (𝜌𝑎 − 𝜌𝑔)𝑔𝑉 (1)

where FB is the lifting force, 𝜌𝑎 is the atmospheric density, 𝜌𝑔 is the density of the

lifting gas, g is the gravity constant, and V is the balloon volume. For expanding

volume balloons (refer to Expanding Volume Balloons), the volume of the envelope

increases as the balloon ascends to the maximum altitude. Therefore, the balloon

will never reach a state of equilibrium, where the forces acting on the balloon

(gravity, wind, radiation) equal the buoyant force. For constant volume balloons, the

balloon envelope is fixed. Therefore, the balloon is designed to achieve a specific

altitude based on the density of the atmosphere at the ceiling altitude e and the

mass of the entire balloon system (balloon, payload, string, lifting gas, etc.).

Accounting for only forces that affect balloon performance in the vertical direction,

the sum of the forces at equilibrium is:

11

 ∑ 𝐹 = 0 = 𝐹𝐵 − 𝐹𝑔 (2)

where FB is the buoyant force, and Fg is the force due to gravity. Substituting

Equation 1 into Equation 2 with the definition of the force due to gravity gives:

 (𝜌𝑎 − 𝜌𝑔)𝑔𝑉 = 𝑚𝑔 (3)

where gravity can be eliminated from both sides of the equation. Equation 3 is

solved for the volume required to reach the ceiling altitude in Equation 4.

 𝑉 =
𝑚

(𝜌𝑎(ℎ) − 𝜌𝑔)
 (4)

The density of air, a(h), is a direct function of the ceiling altitude, h. Extensive

data and models are available relating atmospheric density to altitude.

Zero pressure and super pressure balloons are not filled to maximum volume

with lifting gas when launched. This causes the balloon to have a large rate of

ascent, and the balloon will pass the target altitude because of momentum. Doing

this with a zero pressure balloon will cause lift gas to vent from the balloon and

reduce performance. For super pressure balloons, this will cause an increased

pressure on the balloon membrane, requiring thicker balloon material. Therefore,

the amount of payload mass that the balloon can carry is decreased.

Balloon Types

 There are two types of scientific balloons: expanding volume balloons and

constant volume balloons. Volume is a reference to the balloon envelop (or the

inside of the balloon).

12

Expanding Volume Balloons

Latex, also called weather or sounding balloons, and rubber balloons are

expanding volume balloons. They are made from a membrane that stretches. As the

balloon increase in altitude, the pressure from the lifting gas inside the balloon

increases as a result of gas expansion. With no means to vent the lifting gas,

hydrostatic pressure, and therefore stresses, on the membrane increase. This

results in an expansion of the balloon envelope. Eventually, the weakest part of the

balloon will experience more displacement than the material can withstand and will

tear. The gas on the inside of the balloon will rapidly escape through the tear and

cause the balloon to burst.

An example of a flight profile of an expanding volume balloon is shown in

Figure 7. The balloon climbs to a maximum altitude, bursts, and then descends.

These balloons tend to be less expensive and are disposable. Additionally, a feature

of expanding volume balloons is that there is no need for additional flight

termination equipment, which is an FAA requirement for constant volume balloons

to end the flight. Typical scientific latex balloons can expand to more than 4 times

their deflated volume [12].

13

Constant Volume Balloons

 Zero pressure and super pressure balloons are considered constant volume

balloons. The volume of these balloons’ envelopes will remain the same or increase

minimally (due to pressure build up for the case of the super pressure balloon). Both

zero pressure and super pressure balloons are designed to have a sufficiently large

envelope to achieve a specified altitude based on the principles of buoyancy that are

discussed in Buoyancy. Both types of balloons are filled partially with sufficient

lifting gas to ascend to the desired altitude. Constant volume balloons have flight

profiles that allow the balloon to reach a specified altitude and then level off for a

duration of time, as illustrated in Figure 8. However, the balloons will only remain

at a constant altitude so long as the temperature remains constant. When the

temperature drops, for example at night, lift gas in the balloon will compress

(increased p), and the volume will decrease, as shown in Equation 5.

Figure 7: Example Flight Profile of Expanding Volume Balloon

14

 𝑝𝑉 = 𝑛𝑅𝑇 (5)

where T is temperature, p is pressure, n is the number of moles, R is the universal

gas constant (8.3145 J/mol K), and V is the volume. When the volume decreases, the

balloon will fall, according to Archimedes principle. As a result, super pressure

balloons will oscillate about a desired altitude, and zero pressure balloons will

descend until ballast is released. This can be seen from Figure 9, where the zero

pressure balloon is below the super pressure balloon. The shaded regions of the

image represent night, and lighter sections represent day.

Figure 8: Example of Flight Profile of Constant Volume Balloon

Figure 9: Night Time and Day Time Cycle of ZP and SP Balloons [20]

An

15

 Super pressure balloons differ from zero pressure balloons in that they are

sealed after the balloon is filled with sufficient lift. As a result, super pressure

balloons do not vent lifting gas once the envelope is fully inflated. As the name

suggests, once the lifting gas expands to fill the balloon envelope, there will be an

increase in pressure until the balloon reaches the ceiling altitude. These balloons

require a thicker membrane than a zero pressure balloon and utilize stronger load

tape to distribute hydrostatic loading from the membrane. Additionally, the load

tape must support payload weight. Super pressure balloons are also referred to as

pumpkin balloons because when the balloon achieves maximum internal pressure,

the wall of the membrane bulges out between lines of load tape, creating a

pumpkin-like look. Due to the sealed aspect of super pressure balloons, there is

minimal loss of lifting gas, but permutation of gas through the membrane can still

occur. Super pressure balloons from NASA have been known to stay aloft for over

100 days [13].

 Like super pressure balloons, helikites are super pressure balloons but

remain at a low altitude and don’t allow for gas expansion to cause the balloon to

burst. Helikites are used as tethered systems when there are high winds.

 Zero pressure balloons are open to vent excess lifting gas out of the balloon

once the envelope is fully inflated at the ceiling altitude. This causes the pressure

on the inside of the balloon to equalize to the pressure of the surrounding

atmosphere, resulting in minimal stress on the membrane from gas expansion. The

payload weight must still be supported by the load tape, but the membrane can be

16

significantly thinner than what is required for super pressure balloons. Although

these balloons can maintain altitude for several hours, they lack the ability to stay

aloft as long a super pressure balloon (with similar size, mass, and volume).

Related Experiments

 In this section, previous research in the area of biological air sampling and

different methods for collection are discussed. In 2014, a research team at Louisiana

State University (LSU) used latex balloons to sample microbial aerosols from high

altitudes [14]. Their sampling system achieved altitudes up to 38 km using a 2000-

gram latex balloon. The total mass of payload suspended below the balloon was 5.4

kg. They used the following equipment to perform the experiments: Trimble

Copernicus II global positioning system (GPS) receiver, Byonics Micro-Trak RTG

FA Automatic Packet Reporting System (APRS), Kodak Zx1 HD Camera, Arduino

Mega 2560 microcontroller, microSD card writing shield, four linear actuators, and

40 Rotorods for the sampling of the aerosols. This work showed that the sterilized

sampler that was launched with the balloon did not vary significantly from a

sterilized control that remained on the ground [14].

 In 2002, researchers from India used cryosampler assemblies attached to

latex balloons that achieved altitudes of 20 to 41 km. The goal of these experiments

was to show evidence that there were living microbial cells at these high altitudes.

In the cryosampler, 0.45 µm microspore filters were used to capture microbes that

were later examined. Results showed that clumps of living bacterial cells are in the

atmosphere between the altitudes at which they sampled at [15].

17

 Researchers from France in 2005 sampled clouds near Puy de Dôme in Massif

Central, France. The mountain has limited access to cars and the researchers

walked 5 km to the summit to prevent contamination. During the months of

November through March clouds form right over the summit of this mountain. They

used single-stage cloud collectors to sample cloud droplets and observed microbes

from them. Results show that microbes were found in cloud water [16].

 From January 2012 through March of 2013, researchers from the University

of Colorado sent out sampling kits to all 50 states plus District of Columbia to

participants to sample their exterior doors [17]. The sampling kit were sent in the

mail to 1,430 participants with instructions, and dual-tipped sterile BBL

CultureSwabs. Once the participants collected the sample from the top of an

exterior door, they were shipped back to the researchers and stored at -20°C until

they were processed. This research found that there was a correlation between

bacteria and fungi with different environmental factors.

 To look at the relationship between airborne bacterial community

composition and the amount of vegetation in urban areas, researchers from the

University of Oregon sampled 5 pairs of parks and parking lots around Eugene,

Oregon [18]. They used small vacuum pumps connected to 3 button samplers with

filters to trap the microbes, and 3 passive settling dishes. Their sampling was held

on July 24th, 2013 and lasted for 8 hours. Once the samples were collected along

with temperature, relative humidity, wind direction, and wind speed. No significant

18

difference was found between parks and parking lots, but they collected between

379,687 and 721,208 sequences using this method of sampling.

 Researchers form Georgia Institute of Technology in Atlanta, GA, used

NASA’s DC-8 platform to sample cloud and cloud free air masses over the

Caribbean Sea, and in two tropical storms, Earl and Karl [19]. The DC-8 platform is

a modified Douglas DC-8 jetliner that is used as a flying science laboratory. Vacuum

pumps connected to Whatman cellulose nitrate membranes filters that were

connected to the outside of the DC-8 airplane were used to collect samples. The

results from these experiments suggest that the microbes that were collected

possess traits that allow them to live in the troposphere.

 In 2008, a study was done on stratospheric microbiology at 20 km over the

Pacific Ocean using modified impactor plates [20]. These impactor plates were

mounted on the wing tips of a NASA modified Lockheed Martin ER-2 and were

pressured sealed to remain closed until the pilot triggered them to open. This

research was performed on April 28th, of 2008 and the plane flew at an altitude of 20

km. The samplers remained open for 7.5 hours. The results found from this research

showed that there are microbes that are in the stratosphere over the Pacific Ocean.

They mention that it since the external surface of the sampler was exposed

throughout the entire flight, contamination of the low altitude microbes may have

been seen in the results.

19

CHAPTER II

SAMPLING VESSEL

Design

 To collect AMCs, several sampling methods were considered, including petri

dishes, sticky ribbon tape, and a small vacuum pump that uses button samplers

with membrane filters. After several ground level experiments were performed by

biology researchers, the petri dishes and the vacuum pump were found to produce

similar results. The vacuum pump is approximately 2 lbs and has unreliable

programming features and battery life. Therefore, petri dishes are the chosen

sampling method for the project. Square petri dishes are being used rather than

conventional circular dishes because they have a higher packing coefficient. Since

no published information exists discussing the surface area required to obtain

sufficient DNA for atmospheric microbiome sampling, the surface area from an

original ground-based benchmark experiment conducted by the biologists was used:

20 circular petri dishes. By changing to square petri dishes, only 16 are required to

have an equivalent surface area as the circular dishes.

 The sampler box was designed to be compact and light weight, and the

biology research team required maximum air flow over the petri dishes. Several

ideas were developed including using a spiral array, fixed petri dishes in multiple

orientations, a circular array, and an expanding array.

20

It was thought that a spiral array would allow the petri dishes to be placed at

different heights on the sampler and allow for different orientations. Due to the

complexity of trying to keep the petri dishes protected from contamination, this idea

was developed into an accordion-type structure. The accordion structure expanded

in such a way that the petri dishes would experience a different orientation of the

air with each layer as it was expanded. A prototype of this idea can be seen in

Figure 10. Experiments with this prototype resulted in tangled strings, and it was

very time consuming to ensure the string lengths were the same. This made

reproducibility extremely difficult.

Figure 10: Accordion Array Prototype

21

The final decision was to use an expanding array. With this solution, the

bottom of the sampler box lowers so that the expanding array extends significantly

further than the height of the top of the box. This maximizes the amount of air flow

around and over the petri dishes while keeping the sampling system as simple and

compact as possible. The expanding array prototype was tested and can be seen in

Figure 11. These experiments were done to ensure that the sampler would collect

AMCs.

 Materials for construction of the exterior of the sampler box were chosen

based on several considerations. Two primary considerations are the weight that

the material adds to the sampling system and material cost. The sampler box

cannot weight more than 6 pounds to be within FAA regulations [21]. Several

Figure 11: Expanding Array Prototype

22

sampler boxes are required for the experiment; therefore, the cost per box was

minimized. Additionally, the biology team had the following requirements: the

sampler box shall be easy to decontaminate and the materials shall be inorganic.

Fibrous, and porous materials are difficult to sterilize, and organic materials were

restricted to prevent DNA from the sampler box contaminating the collected

samples. The material selected for the exterior of the sampler box is 1/32” thick

Aluminum 3003 sheet. Aluminum is a relatively lightweight and strong material.

Using the 1/32” thick aluminum allows for the box material to be light and capable

of bending in a pan break tool without failure due to crack propagation. The 3003

class of aluminum fits these requirements.

 The sampler box and its assembly were designed using computer aided

drawing (CAD) software, Autodesk Inventor 2017. Each part was created in this

software and later assembled in a full assembly drawing. This allowed for virtual

visualization of the sampler box. Modifications were made within the software to

ensure that there was enough space for moving parts and petri dishes. The CAD

model can be seen in Figure 12. Another requirement for the sampler box design

was the ability for the box to fit within a UV sterilization hood used by the biology

team to prepare the sampler box for sampling.

 The sampler box is designed to hold 16 square petri dishes on an extending

array. The array is made of G10/FR-4 board, stainless steel wire, and wire crimps.

The G10/FR-4 is a composite material commonly used for prototyping circuit boards.

23

This material was selected because of its strength and ability to be autoclaved, a

method for sterilizing sampling equipment by heating materials to 121˚C, which is

the temperature required to kill bacterial spores. Although this sterilization

method is not actively used for the current experiments, having this option for

sterilization of the array is a feature that could help with contamination mitigation.

A custom UV chamber was constructed to decontaminate sampler boxes with

chemical and UV sterilization methods. The chamber allowed for sterilization of a

sampler box in remote locations due to its portability. While the sampling box is in

the UV chamber, a 70% ethanol mixture is applied to the sampler box walls and

other surfaces within the sampler box to sterilize areas that not in direct line of

sight of the UV lightbulbs.

Figure 12: CAD Model of Sampler Box with 4 Tent

Poles

24

 Three options were considered for maintaining alignment while lowering the

array from the top lid of the sampling box. These methods included the use of 3

telescoping poles, 1 telescoping pole with spring steel for alignment, and aluminum

tent poles. The first method tested was to make loosely fitting telescoping

assemblies from aluminum tubing and attach them to the sampler box on two

corners and through the center of the box, as seen in Figure 13. This would have

allowed the sampling box to be stored in a very compact manner. One end of an

aluminum tube was beveled to prevent the inner tube from falling all the way out,

and the top of each tube was flanged, such that it would be stopped by the bevel.

After constructing several of these telescoping poles, the precision required to

machine the telescoping poles to easily slide was too high to be a functional solution

for the construction of many sampling boxes. Additionally, the telescoping tubes

caught on each FR-4 board layer of the array.

Figure 13: Telescoping Pole Prototype

25

 The next prototype used one telescoping pole in the center of the box, and

spring steel from a tape measure on the sides of the box, as shown in Figure 14. As

the box opened and closed, the spring steel kept the bottom lid in rotational

alignment with the top of the box, and the central telescoping pole prevented the

bottom lid from translating too far. Although this system worked, when tested on

the aerostatic helikite, the tossing and turning of the box in the wind caused the

tape measure to become twisted and rip from the bottom lid. Therefore, the

sampling box did not close properly.

 Finally, a sampler box that uses 4 aluminum tent poles, one at each corner on

the box, was made. A 3D printed part, the top tube collar, secures the tent poles to

the top of the box. The collar uses a clevis and cotter pin to prevent the tent pole

from falling out. The bottom lid has a sleeve through which the tent poles slide

freely. The bottom sleeve is 0.12 in larger in diameter than the 0.33-in-diameter

Figure 14: 1 Telescoping Pole Prototype

26

tent pole to maintain alignment with the top lid. The bottom sleeves are 2 in long

and prevent the bottom lid from kinking. This sampler box is shown in Figure 15.

Further improvements have been made on the sampler box. These include:

making the bottom tube sleeves taller to prevent them from getting caught on the

tent pole; increasing the size of the bottom lid to prevent misalignment and ensure

proper sealing; replacing foam on the bottom of the tent poles with rubber stoppers;

and adding elastic cord between each array layer to ensure the wires are folded

toward the center of the box as it is closing. These improvements are all reflected in

the sampler box shown in Figure 15. Additionally, the 3D printed parts were

Figure 15: Final Sampler

27

improved to either provide better functionality, provide improved print quality, or

reduce weight.

Sampler Box Functionality

 The sampler box is designed to lower the expanding array using a continuous

rotation servo motor that controls a crankshaft. Stainless steel uncoated wire is

used to connect the crankshaft to the bottom lid. For the tethered balloon system,

communication between the sampler box and the ground occurs between two

Arduino Mega 2560 microcontrollers. These microcontrollers are outfitted with a

wireless 433 MHz frequency communication chip called an HC-12. One

microcontroller is used as a remote control operated by a user on the ground. On the

remote, the user presses a momentary button, and the remote sends a unique signal

that correlates to a unique command on a specific sampler box. These commands

begin and end the sampling operation, open and close the locking arms and cause

the crankshaft to reel up and down for one second. The “begin sampling operation”

commands two servo motors to rotate the locking arms from a closed position where

they prevent the sampling box from opening, to an open position. Once the locking

arms are rotated, the expanding array rolls down to expose the petri dishes.

When the sampling box is opened, the onboard microcontroller performs a

software reset that returns the processor to an idle state. This idle state awaits

another HC-12 communication signal while collecting temperature, pressure, and

humidity data using a BME-280 sensor from Adafruit. The data are stored on an SD

28

card using an SD logging shield (also from Adafruit) with an internal clock that

time stamps the data. If the microcontroller on the sampling box does not receive a

signal from the remote control after 8 hours of sampling, it is automatically

programmed to carry out the “end sampling operation.” The "end sampling

operation" retracts the expanding array until a limit switch tells the microcontroller

that the box is closed. Then, the locking arms are rotated a closed position. The “end

sampling operation” can also be triggered from the remote.

In the event the box does not completely close, two additional momentary

buttons can be used on the remote control to open the locking arms, turn the

crankshaft up for one second and close the locking arms. The “one second”

momentary button will also cause the crankshaft to reel down for one second in the

case the sampler box does not open completely. These additional sampling box

control features were added after some experiments resulted in the expanding array

not rolling up or down completely, causing the locking arms to interfere with the

bottom lid when the box was further closed. With the open/close lockout arm

commands, the ground based operator can open the lock out arms, and then use the

one second up command” to ensure the box is completely closed. The locking arm

open and close operation is also beneficial in testing that the sampler boxes are

turned on and receiving a signal prior to attaching them to the balloon.

 For the tethered sites, there are 3 sampler boxes per site. The remote control

is set up in such a way that it can control the 3 sampler boxes at the testing site by

sending unique codes to each box individually. Additionally, there are 3 sites per

29

sampling location that may be as little as 1 km apart. The HC-12 wireless

communication chip is capable of an operating range of up to 1.2 km. To prevent

any cross communication between sample sites, each controller and sampler box are

programmed uniquely to read/send codes specified for an individual sampler box.

This ensures that only sampler boxes at the designated site will open when a

command is sent. A picture of the remote can be seen in Figure 16.

 Each sampler box has three servo motors. One is a high torque continuous

rotation servo, and the other two are high torque limited range servos. All servos

have metal gearing and shafts, and each servo requires a coupler to connect the

shaft of the servo to an aluminum tube. The continuous rotation servo is used as the

crankshaft motor. This servo can complete multiple revolutions allowing the servo

to lower and retract the expanding array based on the amount of time set in the

Figure 16: Remote for Tethered Sampler Boxes

30

microcontroller coding or the command that the microcontroller receives from the

remote control. This servo has an aluminum coupler that is made from 1/2-in-

diameter AL 6064 rod. The holes in the sides of the coupler are used to make

mechanical connections. This coupler connects the shaft of the servo to the 1/2-in-

diameter 3003 aluminum tube crankshaft.

The limited rotation servos are motors for the locking arms that have a 3D

printed plastic coupler connecting the servo shaft to a 1/4-in-diameter aluminum

tube. This aluminum tube is bent to provide a lock so the box's bottom lid remains

sealed shut when not sampling, preventing accidental contamination of the

sterilized box or collected samples. A spring pin is used to make the connection

between the lockout motor coupler and the aluminum tubing to prevent the tubing

from falling out of the coupler.

 All servos are powered by a 7.4-V 1000-mAh 2-cell lithium ion polymer

battery. Similarly, a separate 7.4-V 2200-mAh 2-cell lithium ion polymer battery is

used to power the onboard microcontroller. Each of the batteries have been altered

with a microfit connector that allows for a secured connection to power the

microcontroller and servos. Fully charged batteries are desired for all samplings;

therefore, rechargeable batteries reduce cost over time.

 Unlike the tethered system, the launched Arduino Mega system is

programmed to open and close automatically. The opening operation is triggered by

using the pressure that the BME 280 sensor reads. When the pressure read by the

Mega, is less than or equal to the pre-programed pressure associated with the

31

desired testing altitude, the box will open. If the balloon never reaches the target

altitude or the pressure sensor fails to read correctly, the sampler box will open

after one hour of flight. The box will remain open, sampling for 8 hours and close

automatically. Additionally, if the sampler box must be closed early, a command can

be sent to a dual tone multi-frequency (DTMF) decoder using HAM Radio signals.

This command activates a code on the onboard microcontroller that will close the

box and perform a cut down operation that will bring the balloon down to the

ground. The cutdown feature is discussed in the section Cut Down Devices.

 The Arduino codes for the tethered sampler box and remotes can be seen in

Appendix A: Arduino Code for Tethered System and Appendix B: Arduino Code of

Tethered System. Additionally, the Arduino codes for the launched sampler box and

Arduino mini for the cut down device can be seen in Appendix C: Arduino Code for

Launched Sampler Box and Appendix D: Arduino Code for Launched Tracker Box.

32

CHAPTER III

TETHERED SYSTEM

A tethered helikite system was used to perform sampling at 30 m and 150 m

above the ground. The tethered system consists of an aerostatic vehicle that is

anchored to the ground.

Latex Balloons

The first attempt at developing the tethered system used a latex weather

balloon connected to 100 lb break test fishing line. The balloon was filled with

helium to lift the sampling payload. The primary problem experienced during this

first attempt was that a balloon alone did not provide sufficient stability at high

wind speeds. To provide lift in stronger winds and increase stability, the next

system used a chambered kite structure suspended below the balloon. Stability in

this context means the helikite doesn’t sway vigorously in the wind. The goal of the

kite was to produce lift in high winds. The kite was constructed from PVC tubing

and monokote, a film that is typically used on remote controlled airplanes. During

testing on a windy day, the chambered kite did not provide sufficient stability to

keep the payload aloft. The kite needed to be attached to the balloon rather than

below it because the balloon and the kite pulled in opposite directions. Furthermore,

the lifting surface needed to be larger than what was used with the chambered kite.

33

Helikite

A helikite is an aerostatic vehicle that uses a balloon filled with lifting gas

attached above a kite section to produce lift and stabilization in windy conditions.

After designing and constructing a helikite in house, the time commitment and

resources required to be successful outweighed the cost of a commercial-off-the-shelf

helikite. Allsopp’s 16 m3 helikites, shown in Figure 17 and Figure 18, are used as

the tethered aerostatic vehicle. Table 1 shows all of the tethered tests throughout

the project. The final six tests were sampling field experiments for the biology team.

Figure 17: Close View of Tethered Helikite While in

Flight

Figure 18: View of Tethered Helikite

with Sampler Boxes

34

Table 1: Summary of Tethered System Tests

Date Test
Duratio

n
Comments

11/1/2015
Latex Balloon With Kite-

MonoKote

1

minutes

Fail – insufficient stability

and lift

2/6/2016
Plastic Balloon Homemade

Helikite - Mylar

2

minutes

Fail – Mylar material

failure

2/7/2016
Plastic Balloon Homemade

Helikite - Cloth

5

minutes
Fail – kite too loose

3/8/2016
Plastic Balloon Homemade

Helikite - Cloth

5

Minutes

Fail – kite too loose -

Tethers Broke

5/6/2016
Helikite 12 m3 with Dummy

Loads
4 Hours Fail – in sufficient lift

5/24/2016 Plastic Balloon with Array 4 Hours
Green Balloon - No box,

just plates

6/24/2016
Helikite 16 m3 with

Prototype Sampler
4 Hours Telescoping Prototype

10/15/201

6

Helikite 16 m3 with 2

Prototype Sampler
6 Hours

Spring Steel Prototypes –

Spring steel broke

12/20/201

6
2 Helikites - Grand Rapids 2 Hours Windy

12/21/201

6
2 Helikites - Kalamazoo 6 Hours

Finalized Samplers - two

helikites

12/23/201

6
3 Helikites - Kalamazoo 6 Hours

Finalized Samplers - All 3

helikites

1/15/2016 3 Helikites - Pellston 6 Hours Successful

2/11/2017 1 Helikite - Kalamazoo 6 Hours Successful

3/23/2017 3 Helikites - Kalamazoo 6 Hours Successful

5/3/2017 Jornada 6 Hours Successful

5/6/2017 Albuquerque 6 Hours Successful

5/11/2017 Denver 6 Hours Successful

5/13/2017 CPER 6 Hours Successful

5/17/2017 Kalamazoo 6 Hours Successful

5/19/2017 Pellston 6 Hours Successful

5/24/2017 Harvard Forest 6 Hours Successful

5/27/2017 Boston 6 Hours Successful

35

CHAPTER IV

LAUNCHED SYSTEM

The launched balloons are designed to hold the sampler box at 5000 meters

above sea level. As discussed in Chapter 1, an expanding volume balloon will not

maintain a specified altitude and therefore a constant volume balloon was used for

this research. Additionally, zero pressure balloons were selected because they can

maintain altitude, terminate the balloon flight by venting lifting gas, and are easier

to manufacture when compared with super pressure balloons.

Manufacturing a Zero Pressure Balloon

Initial attempts to make a zero pressure balloon used a MATLAB code from

Purdue’s AMET website [22]. This website provided insight on how to design, and

make a zero pressure balloon from painter’s tarp, packaging tape, and a hair

straightener. The painter’s tarp is a 0.9 mil thick polyethylene. The MATLAB code

inputs are: payload weight, desired altitude, number of gores, and lifting gas. The

tracker box, discussed in the section Tracking Devices, is approximately 4.2 lb and

sampler box is 5.21 lb. Other attachments to the launched balloon include a radar

reflector (0.8 lb), load ring (0.05 lb), and strings to attach all payloads (~0.1 lb) to

the balloon. For the initial design, these other items were approximated to have a

weight of 1 pound. The Matlab code calculates the approximate weight of the

balloon, so it is not required as an input. The altitude was set to 5 km, the number

of gores was chosen as 8, and helium is the lifting gas.

36

A gore is a section of the balloon; gores are fused together to make the

balloon. The number of gores selected is important for the performance of the

balloon. When more gores are used, less stress is experienced by the load tape.

However, aspects such as the weight, construction time, and probability of a leak

increase with more gores. The minimum number of gores a balloon can have is 2,

creating an envelope. More gores allow the balloon to achieve a natural shape,

discussed in Chapter 1, which allows for more payload to be launched. Eight gores

were used as an initial input to the Matlab code to determine the size of the gores.

 With the given inputs, the Matlab code outputs: gore shape, gore dimensions,

balloon full volume, and balloon volume at launch. For the 5 km altitude balloon,

these parameters are shown in Table 1.

Table 2: 5 km Zero Pressure Balloon Parameters

Parameter Value Units

Surface Area 16.57 m2

Volume SI 6.19 m3

Volume ENG 218.55 ft3

Mass 0.30 kg

Payload Mass 3.63 kg

Total Weight 38.51 N

Volume of Lifting Gas at Sea Level 131.33 ft3

Arclength of Gore 3.64 m

37

A 5 km altitude balloon gore template was made from coordinates produced

by the Matlab design code. These values can be seen in Appendix E: Balloon

Template Values. The gore template is made by taping paper to the ground and

plotting each point generated by the code. This template can be seen in Figure 19.

Packaging tape is taped to the gore template to prevent damage to the paper. The

polyethylene plastic tarp is placed over the template, and a PVC tube is used to

force air out from underneath the plastic. Box cutters are used to cut the plastic in

the shape of the gore. This is repeated for the designated number of gores required

to make the balloon.

Figure 19: Gore Template

38

The gores are fused together using heat. This is accomplished with a hair

straightener that has a temperature control feature. The reason for using a hair

straightener over other heating tools is because it has two heating surfaces and

provides sufficient surface contact for the desired 1-inch seam that runs along the

edges of each gore. The ideal temperature for the straightener is 275°F. When all

gores are fuse together, the balloon is turned inside out so that the sealed seams are

on the inside of the balloon. Then the outside of the seams are taped over with

packaging tape. The tape acts as a form of “load tape,” preventing seam failure.

Packaging tape is lighter than duct tape and has relatively good adhesion to

polyethylene.

A cross stitching ring serves as a load ring that is attached to the opening of

the balloon. It also allows for a location to attach the payloads to the balloon. Cross

stitch rings use a screw with concentric rings to secure fabric in place. This clamp is

used on the balloon by putting the balloon material around the inner ring, and the

outside clamping ring is tightened over the balloon plastic with the screw. The

payloads are also attached during this process by tying the connecting string

around the load ring. This is shown in Figure 20. The weight of the payloads is

transferred through this ring to the balloon tape and membrane plastic.

Tracking and Ending Flight

 To recover the AMCs collected form the launched sampling box, a tracker box

was developed. The tracker box has two major tasks: providing the location of the

balloon, and ending the flight of the balloon.

39

Tracking Devices

 The location of the balloon is tracked with several different devices. The first

is an automated position reporting system (APRS). An APRS tracker uses a global

positioning system (GPS) modem that receives the latitude, longitude, and altitude

from GPS satellites. It transmits that information using amateur HAM radio

frequencies. These packets of information are transmitted on 144.390 MHz, which is

the US frequency for APRS tracking. Packets can be seen by using a receiving radio

with APRS receiving capabilities or through the APRS online tracking network

through the use of internet or cellular service at aprs.fi. The capability of tracking

with a HAM radio that can decode APRS packets is necessary for when the balloon

travels over regions without cellular service. The APRS tracker, Byonics Micro-Trak

RTG 10Watt VHF Transmitter, uses a 2-meter bipolar antenna, and requires 8 AA

batteries.

Figure 20: Load Ring

40

 A Foxhunt transmitter, Byonics Micro-Fox MF-15, is another tracking

mechanism in the tracker box, that uses the same principles as radio telemetry.

This transmitter sends a series of tones through HAM radio frequencies for a person

with a hand-held HAM radio receiver to track. The tones can be heard up to 2 miles

using standard, inexpensive HAM radios. A technique called “body shielding” is

used to determine the direction of the foxhunt transmitter. This technique requires

the person tracking the foxhunt device to turn in a circle while listening to the tones

from the foxhunt device through the receiving radio and finding where the signal is

the weakest. Once determined, the foxhunt transmitter will be in the opposite

direction of the where the person is facing. As the tracker gets closer to the foxhunt

transmitter, the HAM radio receiver frequency may need to be changed from the

transmission frequency by a few kHz to provide a weaker signal.

 The third method for tracking the balloon and sampler box is a SPOT trace

GPS. This product is a GPS transmitter that provides latitude and longitude to the

SPOT website. It can then be tracked as long as the user has a subscription to the

SPOT tracking service. This service requires a connection to the internet, which is

not always available in the sampling locations.

Cut Down Devices

 Zero pressure balloons, as mentioned previously, will not pop when they

achieve their ceiling altitude. Rather, they will float at a relatively constant altitude

depending on sun radiation heating, cold or hot pockets of air, permutation of the

lifting gas through the plastic, mixing of the lifting gas and atmospheric air, and

41

leaks in the balloon. Therefore, it is necessary to be able to bring the balloon and

payload down to the ground. This is accomplished using two methods on the

launched system: a hot wire and a tow line release.

 The launched balloon system is assembled as shown in Figure 21. A deflate

line connects the top of the balloon to the tracker box. Either the load ring or a duct

is open to the inside of the balloon. The goal of the cut-down devices is to cause the

balloon to flip upside down, resulting in helium venting through the load ring or

duct.

Figure 21: Launch Balloon Diagram

42

 The first cut down method is the hot wire. The programming for this hot wire

method can be seen in Appendix D

Arduino Code for Launched Tracker Bo A tungsten wire is wrapped around the line

connecting the tracker box to the parachute. The wire is connected to alligator clips.

These clips have wires soldered to them that are connected to a 9-V battery pack

through a solid-state relay. The relay is connected to an Arduino Mini. The Mini

sends a high signal to the relay, which allows the 9-V battery pack to run current

through the high resistance tungsten wire. This wire heats up and burns the line,

resulting in the deflate line, which connects the tracker box to the top of the zero

pressure balloon, being the only string holding the tacker box to the balloon,

causing the balloon to invert. The relay is programmed to allow current to flow for

30 seconds.

The tow line release is a mechanism used for remote controlled airplanes that

tow glider planes. This mechanism is a mechanical switch that uses a servo motor

to release the line. Figure 22: Tow Line and Hot Wire Schematic and Figure 23

show a schematic of how the tow line release mechanism operates and an image of

the mechanism, respectively. The same line that is burned with the hot wire is

directly connected to a stainless steel, plastic-coated wire. This wire is latched into

the tow line release. The release is connected to a limited-rotation, metal-geared

servo controlled by the same Arduino Mini that controls the hot wire. When the

high signal for the servo is sent, it rotates the latch to release the wire. The lift of

the balloon, and the weight of the sampler box, and radar deflector will cause the

43

hotwire line break so that the only line attaching the tracking box to the balloon is

the deflate line.

 The ground system that is used to track the balloon and payload consists of

handheld HAM radios, cell phones, and a ground station HAM radio with a laptop.

As mentioned above, the handheld HAM radios are used for tracking the foxhunt

transmitter. The cell phones can be used to track APRS packets using the aprs.fi

Figure 22: Tow Line and Hot Wire Schematic

Figure 23: Tow Line Release [27]

44

website and track the SPOT using the SPOT Trace app or website. These options

are only possible where cellular service or Wi-Fi is available. The HAM radio

ground station is used for tracking the APRS tracker when there is no cellular

service or Wi-Fi availability.

Launched Balloon Troubleshooting

Launched balloons were tested with a dummy payload to substitute for the

sampler box. The dummy payload was a foam box that held the sampler box

controller and additional mass to simulate the weight of the sampler box. Results

from initial zero pressure balloon launches demonstrated that original balloon

design would not work. The zero pressure balloon ascended to a ceiling altitude,

leveled off for a short time, and then began a slow descent.

To maintain the ceiling altitude for at minimum 6 hours, a requirement set

by the biologists, modifications were required for the balloon. These changes

included: switching to a cylindrical balloon, adding a ballast system, and adding a

venting duct to the bottom of the balloon.

 The primary purpose of switching to the cylindrical balloon was to ensure

that the manufacturing process was not causing the early descent. With the natural

shape balloons from the Purdue AMET code, the seams of every gore must be fused

together with heat and then taped over with packaging tape. If the seam is the

means by which lift gas is lost, there is increased risk in having many seams sealed

by hand. The advantages of switching to a cylindrical balloon is the number of

seams is reduced significantly. The primary disadvantages with cylindrical balloons

45

is that with heavier payloads, there is an excess amount of plastic near the bottom

of the balloon. This results in a balloon that is not optimized and heavier than

necessary, as discussed the section Buoyancy, Cylindrical balloons can be made by

taking two sheets of plastic and sealing around all the edges or by obtaining a tube

and sealing the top and bottom. Marshal Plastic from Martin, Michigan donated a

roll of polyethylene 1.5 mil thick lay flat tube that is 20 feet in circumference. The

roll of flat tube is rolled out to 19.7 feet and cut from the rest of the roll. The top of

the flat tube is sealed completely, and the bottom is sealed leaving a 1.6-foot gap

where the load ring is placed. Like the natural shape balloons, the cylinder is then

flipped inside out and the seams are taped over with packaging tape. A test was

done by only switching to a cylindrical balloon and the results remained the same:

the balloon achieved a ceiling altitude and slowly descended. Although the results

did not suggest that the seams of a natural shape balloon were faulty, the ease of

manufacturing the cylindrical balloon led to its adoption for use for the remaining

tests.

 The next system that was tested is a ballast system that dumps sand when

the balloon descends below a specified altitude. When the balloon descends, its lift

must be less than the weight of the system. By removing mass from the system

(sand in this case), the lift will become greater than the weight and sustain the

sampling altitude longer. The ballast system is a 12-in-long, 2-in-diameter PVC

tube that holds the sand. 3D printed parts were designed to mount a servo motor to

the bottom of the PVC tube. This can be seen in Figure 24. A piece of polycarbonate

46

is attached to the servo to serve as a door to cover and uncover a hole through which

sand drops. The ballast system holds 1.2 lbs of sand that can be dropped during the

flight. The servo opens and closes the hole in the adapter for ~ 1 second. As a result,

the ballast system can drop sand 77 times before it runs out. This system is

suspended form the bottom lid of the sampler box, with a control cable that runs

through one of the tent poles to connect the sampler box microcontroller with the

servo. This can be seen in Figure 25.

 The ballast system acts as method to extend the flight time of the balloon,

but does not address the problem of why the balloon is descending early. Further

investigation of this issue found that at lower altitudes, air and helium do not mix

easily, but at higher altitudes this is not the case [2]. The method that is used to

prevent air and helium from mixing at higher altitudes is a collapsible venting duct

Figure 24: Ballast Mechanism

47

attached to the side of the zero pressure balloon in place of the hole at the bottom of

the balloons previously tested. To add this to the cylindrical balloon, the opening

where the load ring is attached is sealed and a plastic tube is attached to the side of

the balloon. This tube extends past the bottom of the balloon so that when the

helium expands in the balloon, it will fill the entire balloon envelope first before

venting out of the tube. When the balloon is ascending, the tube is collapsible and

mitigates the amount of air that can get into the envelope of the balloon. When the

balloon achieves ceiling altitude, the lifting gas will have expanded, filling the

bottom of the balloon and escaping through the duct, allowing the balloon to remain

a zero-pressure balloon.

Figure 25: Ballast Connected to Sampler

48

CHAPTER V

FUNCTIONALITY EXPERIMENTS

 To ensure that the sampler boxes, tethered balloon system and launched

balloon system will provide the information that the biology team needs, several

experiments were performed.

Testing the Sampler Box

Numerous experiments were performed on the sampler boxes including the

ability to collect samples, contamination experiments, cold weather functionality, 8-

hour automatic end sampling, simulating high wind conditions, 3D part quality,

and impact testing.

Collection of AMCs and Contamination

 The primary objective of the sampler boxes is to collect AMCs at the desired

altitudes. The biology team conducted several experiments to ensure that the

sampler boxes collect AMCs. These experiments tested sampling duration, petri

dish charge state, and collection substrates. The results of these experiments were

that an 8-hour sampling time on an uncharged petri dish coated with silica gel were

the ideal sampling conditions to allow for detectable amounts of AMCs.

 Another experiment was performed to compare microbial collection between

an open array, an open sampling box, and a closed sampling box. The biology team

wanted to ensure that the lid of the sampler box was not hindering the collection of

AMCs by preventing flow between the layers of the array and shielding the petri

49

dishes. Additionally, the sampler boxes are designed to prevent contamination.

When the box is closed, it should be sealed tight enough to prevent contamination of

the petri dishes. The amount DNA extracted using each technique is shown in Table

3.

Table 3: Sampler Box Collection and Contamination Test Results

Subject Value Units

Open Sampler Box 164 ng/mL

Closed Sampler Box Too Low to Detect ng/mL

Open Array 162 ng/mL

The tests show that the open sampler box collected as much DNA as the open array,

ensuring that the top of the sampler box is not preventing the collection of AMCs.

Additionally, the closed sampler box prevented DNA from getting on the petri

dishes.

Functionality and Hallway Testing

Every time a sampler prototype or final design sampler box was made, tests

were performed to check the functionality of the Arduino commands and box

deployment and retraction in simulated wind.

 The functionality tests included opening and closing the locking arms, and

ensuring that they sealed the foam in the bottom of the sampler box against the top

lid. This test also checked that the lock out aluminum arms were attached in the

correct orientation. Another functionality test was performed to check the timing of

50

the crankshaft servo. The servo motor used for the crankshaft is a continuous

rotation servo that turns for a specified time. The controller box is programmed

with the time to allow the array to be fully extended. Additionally, the box close

time is adjusted to ensure the crankshaft servo operates long enough to close the

box, but not too long that it will break the servo motor. After further improvements

of the sampler box, a limit switch was added to stop the crankshaft servo from

turning to close the box when it was compressed. This prevented the servo from

breaking. The final functionality test was to ensure the one second up and one

second down commands worked. on the sides of the boxes, and turning the

crankshaft up and down for one second. The same tests were performed with the

remote control 150 m from the sampler boxes to simulate the distance that the

remote will be from the highest tethered sampler box

 Another experiment tested the sampler box operation for the expected 8-hour

sampling time to ensure that the microcontroller code automatically closes the box

and the batteries have sufficient power to function. This same time test was

performed at cold temperatures to ensure the microcontroller system and batteries

function at lower temperatures for winter sampling. In addition, a hand warmer

was put inside of the control box to keep the microcontroller and batteries warm.

Finally, an experiment was performed to ensure that weather data recorded by the

microcontrollers are consistent and correct.

After these functionality tests were completed, the sampler box was moved to

an area that provides sufficient room to swing them around in vigorous motion to

51

test for necessary ruggedness of the box in windy conditions While the sampler

boxes were spun and pushed, the same functionality tests previously discussed were

performed.

Testing the Tethered Balloon System

 The tethered system uses an aerostatic vehicle called a helikite, which is a

product from Allsopp Company. Helikites are balloons with a kite structure

attached that provides additional lift with increased wind speeds and improved

stability in comparison to a simple tethered balloon.

 During an early sampling, the helikites struggled to maintain altitude as the

temperature increased throughout the day and in low wind situations. The loss of

lift due to decreased air density caused the 30-meter altitude sampler box to touch

the ground in one sampling location. An investigation of the amount of lift produced

by the helikite was performed to determine whether this problem would continue at

sampling sites located at higher elevations than Kalamazoo, MI. These calculations

Table 4: Helikite Lift Calculations

LOCATION ELEV PRESSURE
AVG. TEMP

MASS OF HELIUM BUOYANT FORCE EXCESS LIFT
Avg High

[-] [m] [Pa] [K] [kg] [N] [N]

Boston 9 101000 288 292 2.71 2.67 191.30 188.33 25.33 22.74

UMBS 233 98815 285 293 2.67 2.60 188.59 182.79 23.03 17.95

Kalamazoo 290 98070 288 294 2.62 2.57 185.00 180.68 19.90 16.11

Harvard 332 97562 287 293 2.62 2.57 184.75 180.45 19.70 15.93

Jornada 1428 85608 293 301 2.25 2.19 158.14 152.97 -3.30 -7.89

Albuquerque 1619 83136 291 298 2.20 2.15 154.78 150.39 -6.17 -10.06

Denver 1639 83136 285 292 2.25 2.19 158.51 154.15 -2.90 -6.72

CPER 1645 83272 286 293 2.24 2.19 158.14 153.78 -3.22 -7.05

52

(found in Appendix F: Balloon Lift Calculations MATLAB Code) required an

approximate value for the mass of the entire suspended system from the helikite.

The mass was determined by adding the mass of the sampler boxes, the helikite

poles, helikite, SPOT Trace, and the tethering line. The total weight was found to be

approximately 139.36 N. Equation 1 was used to determine lifting force of the

helikites. Table 4 shows input parameters and calculated expected lift at various

sampling locations across the United States for May 2017 sampling. Input values

include: elevation, average air pressure in May, average daily temperature in May,

and average high temperature in May. The average high temperature results and

values are in the shaded columns. Additionally, the table shows the amount of

helium, in kg, required to produce maximum lift from the 16 m3 helikite, assuming

no wind. The weight of the system is subtracted from the buoyant force resulting in

excess lift. Negative values of excess lift mean that the helikite is not capable of

lifting the sampling system, and these occur at higher elevations and warmer

temperatures. The most severe case is Albuquerque, NM where the elevation and

average high temperature would result in the need of over 10 N more lift than the

maximum that can be provided by the helikite to lift the entire sampling system.

Two options for solving the problem of insufficient lift were considered. The

first option was to reduce weight of the sampling system. Several 3D parts at

reduced infill densities and reduced build volumes were produced and tested to

determine the impact on the sampler box. This option would significantly decrease

53

the strength of the 3D printed parts and adversely impact the survivability of the

sampler boxes.

A second option is to increase the buoyant force by increasing the lift. This

was done using a technique called “tandem ballooning”. Tandem ballooning is a

method in which two or more balloons are connected to produce more lift. To

incorporate this idea with the helikite, a PVC advertising balloon was attached to

the tether line of the helikite between the sampler boxes. This solution is only

implemented in low wind conditions because the attached advertising balloon does

not have the stability of a helikite in high winds. Furthermore, the helikite

produces sufficient lift in high wind conditions where the kite increases the lift. A

picture of the tandem balloon configuration is shown in Figure 26.

Testing the Launched System

Due to the complexity and chance of error of the launched balloon system,

several experiments were done to ensure the system performed properly.

Tracking System

The tracking equipment consists of a SPOT trace, foxhunt device, and APRS

tracker (all discussed in the section Tracking Devices). The SPOT and APRS

trackers were tested during a tracking training performed by members of the team.

Two members of the team had the trackers and the remaining team tracked them.

This training/test determined that the APRS tracker can give a location if it is

captured by an APRS receiving HAM radio and laptop, or through local repeaters.

54

The SPOT tracking device was found to work well when it remained powered on.

The device will turn off automatically if it is still for too long. The foxhunt was

tested several times by hiding the device and using hand held HAM radios to find it.

Additionally, there was an event when a zero pressure balloon broke free of the

tether. With only the foxhunt sending a signal, the means of tracking the system

was done through the body shielding technique previously described. The

combination of all three devices has been a reliable means of tracking through

numerous testing and training exercises.

Figure 26: Tandem Tethered Helikite Test

55

Cut Down System

The tracker box also includes the cut down devices (hot wire and tow line).

Before attaching the tracker box to a zero pressure balloon, the cut down devices

were tested several time in the lab with a HAM radio. These tests were performed

to ensure confidence in the cut down system before attaching it to and launching a

zero pressure balloon that could be lost without a means to cut it down. A picture of

the in-lab testing is shown in Figure 27. The system shown in the figure is upside

down for in lab testing. The weight at the bottom of the figure represents the lift

force on the system, and the line securing the tracking box from above represents

where the sampler box and radar deflector are located.

Figure 27: Tracker Box Testing in Lab

56

Balloon Flight

 Leak checks on zero pressure balloons are performed in the lab before the

balloons are used for sampling by filling them with air, as shown Figure 28. After

the balloon is filled, a researcher looks, listens, and feels around the balloon for

leaks. After initial inspection is complete, the balloon is left inflated for a several

minutes and visual inspection of the balloon is done periodically to ensure the

absence of major leaking.

An indoor facility was utilized to test the cut down systems attached to a zero

pressure balloon without interference from wind. Miller Auditorium at Western

Michigan University was the indoor testing facility. Figure 29 shows the filling of a

Figure 28: Leak Checking of ZP Balloon

57

zero pressure balloon in Miller Auditorium. The balloon was tethered to a spool of

string attached to n the load ring to prevent the balloon from going to high. The

“Miller Test” consisted of testing both cut down mechanisms and seeing if the

parachute would slow the descent of the payload. This tested demonstrated flaws in

the tow line release mechanism and showed that the zero pressure balloon deflates

much slower than expected. As a result of the Miller Test, modifications to the tow

line release mechanism were made, including making a 3D part that would replace

the separate pieces of the tow line release and the hotwire, and using wire

connecters from the load ring to the parachute to ensure the load ring is level.

Furthermore, the size of the load ring was increased to create a bigger hole in the

bottom of the balloon from which lift gas can vent. This hole through the load ring

Figure 29: Filling Zero Pressure Balloon

58

was later replace with the venting duct discussed in the section Manufacturing A

Zero Pressure Balloon.

Outdoor testing was a replicate of the Miller test, but with modifications to

the tow line mechanism and load ring discussed above. The modifications improved

the performance of the tow line release and the rate at which the balloon deflated.

During one of the outdoor launched tests, it was visually observed that the

parachute slowed the payload descent.

 A view of the final attempted launched system can be seen in Figure 30. The

cylindrical balloon is at the top of the system, and has the duct extended past the

bottom of the balloon. The parachute is connected next, followed by the tracker box.

The radar reflector is connected in the middle of the line between the tracker box

and the sampler box. Lastly, the sampler box is at the very bottom with the ballast

system connected to it.

This test achieved sampling altitude (5 km) in 43 minutes and reached

ceiling of 6.4 km in in 62 minutes. It remained above the sampling altitude for 4

hours and 45 minutes, 1 hour and 15 minutes less than the desired time set by the

biologists to collect a sample. An Arduino corruption issue occurred 32 minutes into

the test, causing the ballast system to start dropping ballast. Figure 31 shows when

the ballast was being dropped. There was an increase of 71 ft/min increase in ascent

rate from after the ballast stopped dropping till the balloon achieved its ceiling. The

ascent rate was 73.7 ft/min, but increased to 144.7 ft/min. This was evidence that

59

the ballast mechanism worked. Since this flight, the Arduino code has been edited

to include a safe guard from corruptions like this happening again.

Figure 30: Launch System After Launching

Figure 31: Ballast Dropping with Increased Ascent Rate

0

20000

40000

60000

80000

100000

120000

7:55:12 8:09:36 8:24:00 8:38:24 8:52:48 9:07:12 9:21:36

P
re

ss
u
re

 [
P
a
]

Time

Pressure vs. Time

Ballast Dropping

60

Table 5 below summarizes the tests for the launched system.

Table 5: Summary of Tests for the Launched System

Date Duration Test
Max Altitude

[ft.]

6/10/2016 3 Hours Latex Balloon - Cut Down Test 83,000

2/15/2017 30 minutes Miller Auditorium 50

2/27/2017 2 minutes
Outdoor Cut down &

Parachute
100

3/2/2017 2 minutes
Outdoor Cut down &

Parachute
100

3/3/2017 45 minutes Latex Balloon - Cut down 9000

3/23/2017 5 minutes
Outdoor Cut down &

Parachute
200

4/8/2017
1 Hour 30

minutes
Natural Shape Balloon: Test 1 12,000

4/15/2017 3 Hours Natural Shape Balloon: Test 2 31,000

6/8/2017 3 Hours Natural Shape Balloon: Test 3 22,000

6/19/2017 40 minutes Advertising Balloon 8,000

6/25/2017
1 Hour 30

minutes
Cylindrical Balloon - Test 1 11,000

6/28/2017 4 Hours Cylindrical Balloon - Test 2 21,000

7/15/2017
4 Hours 45

Minutes
Cylindrical Balloon - Test 3 22,000

61

CHAPTER VI

RESULTS

Sampler Box Results

 To ensure the sampler boxes can collect samples and prevent unwanted

samples, a “contamination” experiment was done. The goal of the experiment was to

demonstrate that a closed sampler box would result in less extracted DNA and 16S

rRNA-based sequences (described below). The results of this experiment

demonstrated that the sampler boxes are working as expected, regarding the

collection of samples. This experiment used 14 sampler boxes that were all

sterilized with ethanol and sterile petri dishes mounted on the G10/FR-4 array. The

system was exposed to UV light for 20 minutes. Then 9 sampler boxes were set

inside a garage and remained closed. Two sampler boxes were hung in the same

garage but were opened to expose petri dishes, and 3 samplers were hung and

opened outside of the garage.

 The 2 open sampler boxes in the garage, and 3 open boxes outside of the

garage were open for 8 hours. The 9 closed sampler boxes stayed in the garage

closed for 24 hours. Once this test was complete, the petri plates were taken out of

the sampler boxes. Additionally, the box was sterilized with UV lights for 15

minutes before opening the sampler. The petri dishes were swabbed and then the

entire swab tip was placed into a bead-beating tube for DNA extraction using a

DNEasy PowerWater Kit (Qiagen). These sets of DNA extractions were sent to the

62

Genomics Core Facility at Michigan State University for 16S rRNA amplicon-based

sequencing using an Illumina Mi-Seq approach.

 The results received back from Michigan State University after sequencing

were evaluated by Kathryn Docherty Ph.D., a principal investigator of the project.

The results from the data are summarized in Table 6.

Table 6: Test 16S rRNA-based Sequence Data for Sampler Boxes

Table 6 shows the number of sequences that were collected from each of the sampler

boxes. As shown, the 9 closed sampler boxes had an average number of 528

sequences, with a maximum number of 2318. Although a closed sampler box still

Number of 16S rRNA sequences

Closed Box

 In Garage

Open Box

 In Garage

Open Box

Out of Garage

Sample 1 60 17,600 34,617

Sample 2 73 18,418 37,056

Sample 3 181 39,304

Sample 4 202

Sample 5 229

Sample 6 317

Sample 7 611

Sample 8 765

Sample 9 2318

Average 528.44 18,009 36,992.33

Number of Samples 9 2 3

Standard Deviation 711.85 578.41 2344.15

95% Confidence

Interval
465.07 801.63 2652.61

63

collected unwanted samples, the open sampler boxes collected 2 – 3 orders of

magnitude more sequences, as shown in Figure 32.

This research culminated in a sampling effort in May 2017. Different

ecosystems in both rural and urban locations were sampled, and initial results that

were analyzed by Dr. Kathryn Docherty also show comparable results regarding the

successful sampler box design. This is shown in Figure 33. The data used to develop

Figure 33 includes all 82 samples collected from the May 2017 sampling. The figure

shows that the boxes used for sampling have on average 3 times more sequences

than a sampler box used for a control (“Box Control”). The box control was a

sampler box that was sterilized and filled with petri dishes just like the regular

sampler boxes. It was brought out into the field but was never opened. Seeing the

Figure 32: Sequence Data from Contamination Test

Closed Garage Open Garage Open Yard

A
ve

ra
ge

 N
u

m
b

er
 o

f
Se

q
u

en
ce

s
+/

-
9

5
%

 C
I

Average Number of Sequences Detected

64

significant difference in the number of sequences between and open and closed

boxes demonstrates that the sampler design is a success. The small level of

contaminates there were seen in the controls could have been from several factors:

closed cell foam is hard to sterilize, dirt and dust could have been trapped in hard to

sterilize sections of the box, etc. None the less, these contaminates can be

subtracted from the entire sample population to provide contaminate free results.

Tethered System Results

During the May 2017 sampling effort, the tethered system was used

extensively. During this time, the use of advertising balloons allowed the tethered

system to maintain sufficient lift to suspend two sampler boxes from the tethering

Figure 33: Initial Results of Sampler Boxes from May 2017 Sampling

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

2m 30m 150m Box Control Extraction Control

Sequence Reads Per Sample

65

line of the helikite. In higher wind situations (greater than 15 mph), the tandem

advertising balloon was not used. The sampler boxes were all controlled from

remotes as mention in the section Sampler Box Functionality. The remotes worked

well with minimal issues. Finally, throughout the sampling trip, the equipment,

tools, and systems remained operable and safe for the researchers and the public

that approached the system.

Launched System Results

 The launched system had numerous obstacles that were experienced.

Although a zero-pressure balloon showed promising means of being able to perform

the desired sampling, the flight duration above 5 km was not long enough. The work

that was done here for the launched system could be investigated further and

modified to meet the demands that this system requires of it.

66

CHAPTER VII

CONCLUSIONS AND FUTURE WORK

The work done in this thesis provided a robust and flexible system capable of

sampling airborne microbial communities at a variety of altitudes. Experiments

performed with the sampler box showed that they prevent contamination while

closed and have the ability be sterilized. The number of sequences from a test done

with closed boxes and open boxes showed that the closed boxes collected almost 3

orders of magnitudes less sequences than open boxes.

The tethered system carried two sampler boxes, one at 30 m and one at 150

m above the ground, for 6 hours. The sampler boxes have remote control capability.

that functions over distances greater than 150 m. Helikites were used to ensure

stable flight in windy conditions, and tandem balloons were used to sustain altitude

in calm conditions. This system was used successfully sampling different

ecosystems across the United States in May 2017.

With the complexity of the launched system, the system did not satisfy the

requirements of the biologist to collect a sample. Although achieving sampling

altitude and maintaining it for a duration of time (4 hours and 45 minutes) was

achieved, the sampling time was not long enough to be able to compare the samples

between the launched system and the tethered system. The work done by this thesis

could lead the way in a solution for future researchers to develop or modify this

system that meets the required criteria.

67

Future Work

 Sampler boxes have opportunity for weight optimization. Although the

sampler is less than 6 lb, having a lighter sampler box is desired to allow for more

lift from both the tethered and launched systems. Optimization of weight on the 3

parts, battery size, and materials could all be considerations in efforts to reduce

weight.

 While on the May 2017 research effort, numerous times electrical components

and 3D had to be repaired or replaced. The abuse the sampler boxes experience in

field research can cause these issues and finding ways to improve the ruggedness of

the box would also be an improvement for the future work.

 Additionally, developing a way or method to prevent insects and pollen from

settling on the petri collection dishes would be an improvement desired from the

biologist. In the swabbing process of the petri dishes after the sampling has taken

place, the biologist swabbing the plates needed to avoid touching insects and other

large visible contaminates with the swab. The pollen showed in up in the

sequencing results as well, and is not a desirable result to have. Having a form of

netting or filtering screening could allow for this undesirable outcome from

occurring.

 The tethered system requires approximately 2 hours to go from arriving at

the sampling site to start sampling. Improving the efficiency of the amount of work

68

that is required to happen to start sampling would benefit the researchers from

performing long days. Furthermore, the tethered system is limited to ground that

can/allowed to be staked with long pieces of rebar. Having system that can be used

on pavement, fields with irrigations systems, and hard ground would be beneficial

to allowing additional sampling locations.

 Finally, the launch system requires another test flight to ensure that it is air

worthy of collecting samples for the biologist. Once this test is passed, collecting the

samples for the biologist would require 3 more flights to collect microbes at 5000

meters. The work done for the launched system could be used for further

experiments at different altitudes, and would require a different size balloon.

69

BIBLIOGRAPHY

[1] N. Yajima, N. Izutsu, T. Imamura and T. Abe, Scientific Ballooning, New York:

Springer Science, 2004.

[2] K. Hazlewood, "The Development of Plastic Zero Pressure Balloon Design

Since 1945," Adv. Space Res. , vol. 1, pp. 157-161, 1981.

[3] W. V. Jones, "Evolution of scientific balllooning and its impact on astrophysics

research," Advances in Space Research, vol. 53, no. 10, pp. 1405-1414, 2014.

[4] J. M. Simpson, "Overpressurized Zero Pressure Balloon System," in

International Balloon Technology Conference, Albuquerque, NM, 1991.

[5] I. S. Smith, "The NASA Balloon Program: looking to the future," Advances in

Space Research, vol. 33, pp. 1588-1593, 2003.

[6] D. D. Gregory and W. E. Stepp, "NASA's long duration balloon program: the

last ten years and the next ten years," Advances in Space Research, vol. 33, no.

10, pp. 1608-1612, 2004.

[7] National Aeronutics and Space Administration, "NASA Stratospheric

Balloons: Science at the edge of Space," National Science Foundation, 2010.

[8] Q. Dai, D. Xing, X. Fang and Y. Zhao, "Numerical research on the thermal

performance of high altitude scientific balloons," Applied Thermal

Engineering, vol. 114, pp. 51-57, 2017.

[9] R. E. Farley, "BalloonAscent: 3-D Simulation Tool for the Ascent and Float of

High-Altitude Balloons," in AIAA 5th Aviation, Technology, Intefration, and

Operations Conference (ATIO), Arlington, 2005.

[10] M. K. Heun, R. S. Schlaifer and K. T. Nock, "Trajectory simulation for single

balloons and networks," Advance Space Research, vol. 30, no. 5, pp. 1239-1244,

2002.

[11] V. V. Kerzhanovich, J. A. Cutts, H. W. Cooper, J. L. Hall, B. A. McDonald, M.

T. Pauken, C. V. White, A. H. Yavrouian, A. Castano, H. M. Cathey Jr, D. A.

Fairbrother, I. S. Smith, C. M. Shreves, T. Lachenmeier, E. Rainwater and M.

Smith, "Breakthrough in Mars balloon technology," Advances in Space

Research, vol. 33, pp. 1836-1841, 2004.

[12] D. J. Williams, "Thermodynamics and weather balloons," Weather, vol. 61, no.

10, pp. 286-287, 2006.

[13] I. S. Smith Jr., "The NASA balloon program: an overview," Advances in Space

Research, vol. 30, no. 5, pp. 1087-1094, 2002.

70

[14] N. C. Bryan, M. Stewart, T. G. Guzik and B. C. Christner, "A method for

sampling microbial aerosols using high altitude balloons," Journal of

Microbiological Methods, vol. 107, pp. 161-168, 2014.

[15] M. J. Harris, N. C. Wickramasinghe, D. Lloyd, J. V. Narlikar, P. Rajaratnam,

M. P. Turner, S. Al-Mufti, S. Ramadurai and F. Hoyle, "Detection of living cells

in stratospheric samples," in Instruments, Methods, and Missions for

Astrobiology IV, San Diego, CA, 2001.

[16] N. DeLeon-Rodriguez, T. Lathem, L. M. Rodriguez-R, J. M. Barazesh, B. E.

Anderson, A. J. Beyersford, L. D. Ziemba, M. Bergin, A. Nenes and K. T.

Konstantinidis, "Microbiome of the upper troposphere: Species composition

and prevalence, effects of tropical storms, and atmospheric implications,"

Proceedings of the National Academy of Sciences of the United States, vol. 110,

no. 7, pp. 2575-2580, 2013.

[17] A. Barberan, J. Ladau, J. W. Leff, K. S. Pollard, H. L. Menninger, R. R. Dunn

and N. Fierer, "Continental-scale distributions of dust-associated bacteria and

fungi," Proceedings of the National Academy of Scineces, vol. 112, no. 18, pp.

5756-5761, 2015.

[18] G. Mhuireach, B. R. Johnson, A. E. Altrichter, J. Ladau, J. F. Meadow, K. S.

Pollard and J. L. Green, "Urban greenness influences airborne bacterial

community composition," Scinece of the Total Enviroment, vol. 571, pp. 680-

687, 2016.

[19] N. DeLeon-Rodriguez, T. L. Lathem, L. M. Rodriguea-R, J. M. Barazesh, B. E.

Anderson, A. J. Beyersdorf, L. D. Ziemba, M. Bergin, A. Nenes and K. T.

Konstantinidis, "Microbiome of the upper troposphere: Species composition

and prevalence, effects of tropical storms, and atmospheric implications,"

Proceedings of the National Academy of Sciences, vol. 110, no. 7, pp. 2575-

2580, 2012.

[20] D. J. Smith, D. W. Griffin and A. C. Schuerger, "Stratospheric microbiology at

20 km over the Pacific Ocean," Aerobiologia, vol. 26, pp. 35-46, 2010.

[21] U.S. Goverment Publishing Office, "Electronic Code of Federal Regualtions,"

PART 101—MOORED BALLOONS, KITES, AMATEUR ROCKETS,

UNMANNED FREE BALLOONS, AND CERTAIN MODEL AIRCRAFT,

March 2017. [Online]. Available: http://www.ecfr.gov/cgi-bin/text-

idx?rgn=div5&node=14:2.0.1.3.15.

[22] P. AMET, "Zero Pressure Balloon," 17 April 2016. [Online]. Available:

http://purdueamet.info/projects/aerospace/guides/zero-pressure-balloon/.

[23] O. C. Winzen, "Modern-day, natural-shape balloon". United States od America

Patent 2,526,719, 24 October 1950.

71

[24] D. D. Gregory, "Implementing new strategic plans for NASA long duration

scientific balloons," Advances in Space Research, vol. 37, no. 11, pp. 2021-2025,

2006.

[25] National Aeronautics and Space Administration, "Scientific Balloons,"

Goddard Space Flight Center, [Online]. Available:

https://sites.wff.nasa.gov/code820/faq.html. [Accessed 28 June 2017].

[26] NASA, "Type of Balloons," Scientific Balloons, 27 August 2015. [Online].

Available: https://www.nasa.gov/scientific-balloons/types-of-balloons. [Accessed

July 2017].

[27] All IFlyTailies, "Tow Releases," IFlyTailies.com, [Online]. Available:

https://www.iflytailies.com/store/tow-releases/. [Accessed 21 July 2017].

72

Appendix A

Arduino Code for Tethered System

73

#include "RTClib.h"

#include <Wire.h>

#include <SPI.h>

#include <SD.h>

#include <Servo.h>

#include <Adafruit_BME280.h>

#define LEVER_SWITCH_PIN 25

int pressSwitch = 0;

int analogPin = 23;

int whilemillis = 0;

int endmillis = 0;

unsigned long samptime = 28800000;

int startTime = 0;

unsigned long previousMillis = 0;

int interval = 10000; //data read and stored once a minute

Servo CrankS, LO1, LO2;

#define hc12 Serial3

char daysOfTheWeek[7][12] = {"Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday",

"Saturday"};

const int chipSelect = 10;

int nosignal = 52;

int pos = 0;

#define HC12 Serial3

#define ledPin 13 //so we know what blinks

#define BME_VIN 33 //these let us use DIO pins to drive and read the BME280

#define BME_3VO 35 //without extra wires

#define BME_GND 37 //see BME init

#define BME_SCK 39 // Signal CloCK

#define BME_MISO 41 // Master In Slave Out//same as SDO

#define BME_MOSI 43 // Master Out Slave In //same as SDI

#define BME_CS 45 // Cable Select

Adafruit_BME280 bme(BME_CS, BME_MOSI, BME_MISO, BME_SCK);//here's where we tell the

library where we are pinned in

bool BME_GO=false;

#define SEALEVELPRESSURE_HPA (1013.25) //hectaPascal

RTC_PCF8523 rtc;

File logfile;

// read a Hex value and return the decimal equivalent

uint8_t parseHex(char c) {

74

 if (c < '0')

 return 0;

 if (c <= '9')

 return c - '0';

 if (c < 'A')

 return 0;

 if (c <= 'F')

 return (c - 'A')+10;

}

void error(uint8_t errno) {

 while(1) {

 uint8_t i;

 for (i=0; i<errno; i++) {

 digitalWrite(ledPin, HIGH);

 delay(100);

 digitalWrite(ledPin, LOW);

 delay(100);

 }

 for (i=errno; i<10; i++) {

 delay(200);

 }

 }

}

void setup()

{

 // Open serial communications and wait for port to open:

 Serial.begin(115200);

 //rtc.adjust(DateTime(2016, 10, 16, 11, 31, 0)); //adjust this for the date

 Serial.println(F("BME280 test"));

 //establish BME280 communication

 if (!BME_GO)

 {

 pinMode(BME_GND,OUTPUT); //This will be ground.

 digitalWrite(BME_GND,LOW); //We set it to low so it will sink current.

 pinMode(BME_3VO,INPUT); //We want this pin to float so that we neither load it or drive

it.

 pinMode(BME_VIN,OUTPUT); //Here's our power source good to 20 mA.

 digitalWrite(BME_VIN,HIGH);//and we turn it on

 pinMode(BME_CS,OUTPUT); //This is cable select. The library functions drive it but we must

make it output.

 Serial.print("establishing BME280 communication... ");

 if (bme.begin())

 {

 BME_GO=true;

 Serial.println("bme280 GO!");

 }

 else

75

 {

 BME_GO=false;

 Serial.println("bme280 NoGO");

 void(*resetfunc)(void) = 0;

 resetfunc();

 }

 }

 while (!Serial) {

 ; // wait for serial port to connect. Needed for Leonardo only

 }

 pinMode(6, OUTPUT);

 if(Serial.available()) HC12.write(Serial.read());

 if(HC12.available()) Serial.write(HC12.read());

 digitalWrite(6, LOW); //command mode

 HC12.begin(9600);

 HC12.print(F("AT+C001\r\n")); //set to channel 1

 delay(100);

 digitalWrite(6, HIGH);

 Serial.print("Initializing SD card...");

 // make sure that the default chip select pin is set to

 // output, even if you don't use it:

 pinMode(chipSelect, OUTPUT);

 digitalWrite(chipSelect, HIGH);

 // see if the card is present and can be initialized:

 if (!SD.begin(chipSelect)) {

 Serial.println("Card failed, or not present");

 // don't do anything more:

 while(1);

 }

 Serial.println("card initialized.");

 char filename[15];

 strcpy(filename, "KALLOG00.TXT");

 for (uint8_t i = 0; i < 100; i++) {

 filename[6] = '0' + i/10;

 filename[7] = '0' + i%10;

 // create if does not exist, do not open existing, write, sync after write

 if (! SD.exists(filename)) {

 break;

 }

 }

 logfile = SD.open(filename, FILE_WRITE);

 if(! logfile) {

 Serial.print("Couldnt create ");

 Serial.println(filename);

76

 }

 Serial.print("Writing to ");

 Serial.println(filename);

 Wire.begin();

 if(!rtc.begin()){

 logfile.println("RTC failed");

 Serial.println("Couldn't find RTC");

 }

 logfile.print("Date/time");

 logfile.print(',');

 logfile.print("Altitude (sea level Pressure)");

 logfile.print(',');

 logfile.print("Temperature");

 logfile.print(',');

 logfile.print("Pressure");

 logfile.print(',');

 logfile.print("Humidity");

 logfile.println("\n");

 Serial.print("Ready!");

 pinMode(nosignal, OUTPUT);

 pinMode(LEVER_SWITCH_PIN, INPUT);

 pressSwitch = digitalRead(LEVER_SWITCH_PIN);

 digitalWrite(29, LOW);

 analogWrite(analogPin, 0);

 Serial.println(pressSwitch);

}

void loop()

{

 unsigned long currentMillis = millis();

 DateTime now = rtc.now();

 if (HC12.available()>1){

 int input = HC12.parseInt();

 if (input == 3313) { //Site 1, 2m box, Down

 //Sampling begins; sampler opens

 Serial.print("Begin Sampling");

 logfile.println("Samplin Begin");

 delay(500);

 logfile.print("Begin Sampling");

 logfile.println();

 logfile.print(now.year(), DEC);

 logfile.print("/");

77

 logfile.print(now.month(), DEC);

 logfile.print("/");

 logfile.print(now.day(), DEC);

 logfile.print("/");

 logfile.print(now.hour(), DEC);

 logfile.print(':');

 logfile.print(now.minute(), DEC);

 logfile.print(':');

 logfile.print(now.second(), DEC);

 logfile.print(',');

 logfile.print(bme.readAltitude(SEALEVELPRESSURE_HPA));

 logfile.print(',');

 logfile.print(bme.readTemperature());

 logfile.print(',');

 logfile.print(bme.readPressure());

 logfile.print(',');

 logfile.println(bme.readHumidity());

 logfile.flush();

 delay(1000);

 LO1.attach(4);

 LO2.attach(5);

 delay(500);

 //this line is for the lockout servos

 for (pos = 180; pos >= 0; pos--)

 {

 LO1.write(pos);

 LO2.write(pos);

 delay(5);

 }

 LO1.detach();

 LO2.detach();

 delay(500);

 CrankS.attach(9);

 CrankS.write(0);

 delay(11000); // change this value for crank shaft time going down

 CrankS.detach();

 delay(500);

 HC12.print(3379); //G-A LED flash down

 delay(500);

 HC12.flush();

 void(*resetfunc)(void) = 0;

 resetfunc();

 }

 if (input == 3331){ //site 1, Box 2m, Lockout open

 LO1.attach(4);

78

 LO2.attach(5);

 delay(500);

 for (pos = 180; pos >= 0; pos--)

 {

 LO1.write(pos);

 LO2.write(pos);

 delay(5);

 }

 LO1.detach();

 LO2.detach();

 delay(500);

 void(*resetfunc)(void) = 0;

 resetfunc();

 }

 if (input == 3332){ //site 1, Box 2m, lockout close

 LO1.attach(4);

 LO2.attach(5);

 delay(500);

 for (pos = 0; pos <= 180; pos++)

 {

 LO1.write(pos);

 LO2.write(pos);

 delay(5);

 }

 LO1.detach();

 LO2.detach();

 delay(500);

 void(*resetfunc)(void) = 0;

 resetfunc();

 }

 if (input == 3323 || currentMillis - previousMillis > samptime){ //site 1, box 2m, up(end sample)

 //Sampling ends, box closes

 analogWrite(analogPin, 255);

 Serial.print("back up");

 Serial.println(now.year(), DEC);

 delay(500);

 logfile.print("Sampling End");

 logfile.println();

 logfile.print(now.year(), DEC);

 logfile.print("/");

79

 logfile.print(now.month(), DEC);

 logfile.print("/");

 logfile.print(now.day(), DEC);

 logfile.print("/");

 logfile.print(now.hour(), DEC);

 logfile.print(':');

 logfile.print(now.minute(), DEC);

 logfile.print(':');

 logfile.print(now.second(), DEC);

 logfile.print(',');

 logfile.print(bme.readAltitude(SEALEVELPRESSURE_HPA));

 logfile.print(',');

 logfile.print(bme.readTemperature());

 logfile.print(',');

 logfile.print(bme.readPressure());

 logfile.print(',');

 logfile.println(bme.readHumidity());

 logfile.flush();

 delay(1000);

 Serial.println(pressSwitch);

 CrankS.attach(9);

 delay(500);

 //startcs = millis();

 static unsigned long endmillis;

 int x = 20000;

 endmillis = millis()+ x;

 Serial.println(pressSwitch);

 millis();

 while(pressSwitch==0 && millis() < endmillis){

 Serial.println(millis());

 Serial.println(endmillis);

 CrankS.write(180);

 delay(500);

 pressSwitch = digitalRead(LEVER_SWITCH_PIN);

 Serial.println(pressSwitch);

 if(pressSwitch == 1){

 HC12.print(3378); //G-A LED flash up

 delay(500);

 HC12.flush();

 }

 }

 delay(100);

 LO1.attach(4);

 LO2.attach(5);

 delay(500);

80

 for(pos = 0; pos <180; pos++)

 {

 LO1.write(pos);

 LO2.write(pos);

 delay(5);

 }

 LO1.detach();

 LO2.detach();

 CrankS.detach();

 delay(500);

 analogWrite(analogPin, 0);

 // }

 void(*resetfunc)(void) = 0;

 resetfunc();

 }

 if (input == 3340){ //site 1, Box 2m, up 1 second

 CrankS.attach(9);

 CrankS.write(180);

 delay(1000);

 CrankS.detach();

 void(*resetfunc)(void) = 0;

 resetfunc();

 }

 if (input == 3350){ //site 1, Box 2m, down 1 second

 CrankS.attach(9);

 CrankS.write(0);

 delay(1000);

 CrankS.detach();

 void(*resetfunc)(void) = 0;

 resetfunc();

 }

 }

 if (currentMillis - previousMillis >= interval){

 Serial.print(now.year(), DEC);

 Serial.print("/");

 Serial.print(now.month(), DEC);

 Serial.print("/");

 Serial.print(now.day(), DEC);

 Serial.print("/");

 Serial.print(now.hour(), DEC);

 Serial.print(':');

 Serial.print(now.minute(), DEC);

 Serial.print(':');

 Serial.print(now.second(), DEC);

 Serial.print(',');

81

 Serial.print(bme.readAltitude(SEALEVELPRESSURE_HPA));

 Serial.print(',');

 Serial.print(bme.readTemperature());

 Serial.print(',');

 Serial.print(bme.readPressure());

 Serial.print(',');

 Serial.println(bme.readHumidity());

 delay(500);

 logfile.println();

 logfile.print(now.year(), DEC);

 logfile.print("/");

 logfile.print(now.month(), DEC);

 logfile.print("/");

 logfile.print(now.day(), DEC);

 logfile.print("/");

 logfile.print(now.hour(), DEC);

 logfile.print(':');

 logfile.print(now.minute(), DEC);

 logfile.print(':');

 logfile.print(now.second(), DEC);

 logfile.print(',');

 logfile.print(bme.readAltitude(SEALEVELPRESSURE_HPA));

 logfile.print(',');

 logfile.print(bme.readTemperature());

 logfile.print(',');

 logfile.print(bme.readPressure());

 logfile.print(',');

 logfile.println(bme.readHumidity());

 logfile.flush();

 delay(1000);

 previousMillis = currentMillis;

 }

 if (currentMillis-startTime >= samptime){ //site 1, box 150m, up(end sample)

 //Sampling ends, box closes

 Serial.print("back up");

 logfile.println("End Sampling");

 delay(500);

 logfile.print("End Sampling");

 logfile.println();

 logfile.print(now.year(), DEC);

 logfile.print("/");

 logfile.print(now.month(), DEC);

 logfile.print("/");

 logfile.print(now.day(), DEC);

 logfile.print("/");

 logfile.print(now.hour(), DEC);

 logfile.print(':');

 logfile.print(now.minute(), DEC);

82

 logfile.print(':');

 logfile.print(now.second(), DEC);

 logfile.print(',');

 logfile.print(bme.readAltitude(SEALEVELPRESSURE_HPA));

 logfile.print(',');

 logfile.print(bme.readTemperature());

 logfile.print(',');

 logfile.print(bme.readPressure());

 logfile.print(',');

 logfile.println(bme.readHumidity());

 logfile.flush();

 delay(1000);

 //LIMIT SWITCH OPERATION HERE

 analogWrite(analogPin, 255);

 Serial.println(analogPin);

 Serial.println(pressSwitch);

 CrankS.attach(9);

 delay(500);

 while(pressSwitch==0){

 CrankS.write(180);

 delay(500);

 pressSwitch = digitalRead(LEVER_SWITCH_PIN);

 Serial.println(pressSwitch);

 }

 CrankS.attach(9);

 CrankS.write(180);

 delay(15000); //change this for the value for the crank shaft going up

 LO1.attach(4);

 LO2.attach(5);

 delay(500);

 for(pos = 0; pos <180; pos++)

 {

 LO1.write(pos);

 LO2.write(pos);

 delay(5);

 }

 CrankS.detach();

 delay(500);

 HC12.print(3378); //G-A LED flash up

 HC12.flush();

 analogWrite(analogPin, 0);

 void(*resetfunc)(void) = 0;

83

 resetfunc();

 }

}

84

Appendix B

Arduino Code for Remote of Tethered System

85

#define hc12 Serial3

void setup()

{

 Serial3.begin(9600);

 Serial.begin(250000);

 //A

 pinMode(11, INPUT);

 pinMode(10, INPUT);

 pinMode(13, INPUT);

 pinMode(12, INPUT);

 pinMode(9, INPUT);

 pinMode(8, INPUT);

 //B

 pinMode(5, INPUT);

 pinMode(4, INPUT);

 pinMode(7, INPUT);

 pinMode(6, INPUT);

 pinMode(3, INPUT);

 pinMode(2, INPUT);

 //C

 pinMode(48, INPUT);

 pinMode(46, INPUT);

 pinMode(52, INPUT);

 pinMode(50, INPUT);

 pinMode(44, INPUT);

 pinMode(42, INPUT);

 pinMode(40, OUTPUT);

 pinMode(38, OUTPUT);

 pinMode(36, OUTPUT);

// pinMode(7,OUTPUT);

// if(Serial.available()) Serial3.write(Serial.read());

// if(Serial3.available()) Serial.write(Serial3.read());

// digitalWrite(7,LOW); // enter AT command mode

// Serial.begin(9600);

// Serial3.begin(9600);

// Serial3.print(F("AT+C001\r\n")); // set to channel 1

// delay(100);

// digitalWrite(7,HIGH);// enter transparent mode

}

void loop() {

 //A = 11 10 13 12 9 8

 int Adown = digitalRead(12);

 int Aup = digitalRead(13);

 int ALOO = digitalRead(11);

 int ALOC = digitalRead(10);

86

 int Adown2 = digitalRead(8);

 int Aup2 = digitalRead(9);

 //B = 5 4 7 6 3 2

 int Bdown = digitalRead(6);

 int Bup = digitalRead(7);

 int BLOO = digitalRead(5);

 int BLOC = digitalRead(4);

 int Bdown2 = digitalRead(2);

 int Bup2 = digitalRead(3);

 //C = 48 46 52 50 44 42

 int Cdown = digitalRead(50);

 int Cup = digitalRead(52);

 int CLOO = digitalRead(48);

 int CLOC = digitalRead(46);

 int Cdown2 = digitalRead(42);

 int Cup2 = digitalRead(44);

 hc12.flush();

 //HC-12 output to tethered box communication

 if(Adown == 1){//A down

 hc12.println(3113);

 Serial.print("\nA down");

 }

 delay(20);//delay little for better serial communication

 if(Aup == 1){//A up

 hc12.println(3123);

 Serial.print("\nA up");

 }

 delay(20);

 if(ALOO == 1){//A lockout open

 hc12.println(3131);

 Serial.print("\nA lockout open");

 }

 delay(20);

 if(ALOC == 1){// A lockout close

 hc12.println(3132);

 Serial.print("\nA lockout close");

 }

 delay(20);

 if(Adown2 == 1){// A down 1 second

 hc12.println(3140);

 Serial.print("\nA down2");

87

 }

 delay(20);//delay little for better serial communication

 if(Aup2 == 1){// A up 1 second

 hc12.println(3150);

 Serial.print("\nA up2");

 }

 delay(20);

 if(Bdown == 1){//B down

 hc12.println(3213);

 Serial.print("\nB down");

 }

 delay(20);

 if(Bup == 1){//B up

 hc12.println(3223);

 Serial.print("\nB up");

 }

 delay(20);

 if(BLOO == 1){//B lockout open

 hc12.println(3231);

 Serial.print("\nB lockout open");

 }

 delay(20);

 if(BLOC == 1){//B lockout close

 hc12.println(3232);

 Serial.print("\nB lockout close");

 }

 delay(20);

 if(Bdown2 == 1){// B down 1 second

 hc12.println(3240);

 Serial.print("\nB down2");

 }

 delay(20);//delay little for better serial communication

 if(Bup2 == 1){// B up 1 second

 hc12.println(3250);

 Serial.print("\nB up2");

 }

 delay(20);

 if(Cdown == 1){//C down

 hc12.println(3313);

 Serial.print("\nC down");

88

 }

 delay(20);

 if(Cup == 1){//C up

 hc12.println(3323);

 Serial.print("\nC up");

 }

 delay(20);

 if(CLOO == 1){// C lockout open

 hc12.println(3331);

 Serial.print("\nC lockout open");

 }

 delay(20);

 if(CLOC == 1){// C lockout close

 hc12.println(3332);

 Serial.print("\nC lockout close");

 }

 delay(20);

 if(Cdown2 == 1){// C down 1 second

 hc12.println(3340);

 Serial.print("\nC down2");

 }

 delay(20);//delay little for better serial communication

 if(Cup2 == 1){// C up 1 second

 hc12.println(3350);

 Serial.print("\nC up2");

 }

 delay(20);

//HC-12 INPUT communication

 if (hc12.available()>1){

 int input = hc12.parseInt();

 //BOX A LED OPERATION SLOWER-DOWN FASTER-UP

 if (input == 3179) { //Site Green, box A, Down

 digitalWrite(40, HIGH);

 delay(1000);

 digitalWrite(40, LOW);

 delay(500);

 digitalWrite(40, HIGH);

 delay(1000);

 digitalWrite(40, LOW);

 delay(500);

 }

89

 if (input == 3178){ //Site Green, box A, UP

 digitalWrite(40, HIGH);

 delay(500);

 digitalWrite(40, LOW);

 delay(250);

 digitalWrite(40, HIGH);

 delay(500);

 digitalWrite(40, LOW);

 delay(250);

 }

 //BOX B LED OPERATION

 if (input == 3279) { //Site Green, box B, Down

 digitalWrite(38, HIGH);

 delay(1000);

 digitalWrite(38, LOW);

 delay(500);

 digitalWrite(38, HIGH);

 delay(1000);

 digitalWrite(38, LOW);

 delay(500);

 }

 if (input == 3278){ //Site Green, box B, UP

 digitalWrite(38, HIGH);

 delay(500);

 digitalWrite(38, LOW);

 delay(250);

 digitalWrite(38, HIGH);

 delay(500);

 digitalWrite(38, LOW);

 delay(250);

 }

 //BOX C LED OPERATION

 if (input == 3379) { //Site Green, box C, Down

 digitalWrite(36, HIGH);

 delay(1000);

 digitalWrite(36, LOW);

 delay(500);

 digitalWrite(36, HIGH);

 delay(1000);

 digitalWrite(36, LOW);

 delay(500);

 }

 if (input == 3378){ //Site Green, box C, UP

 digitalWrite(36, HIGH);

 delay(500);

90

 digitalWrite(36, LOW);

 delay(250);

 digitalWrite(36, HIGH);

 delay(500);

 digitalWrite(36, LOW);

 delay(250);

 }

 }

}

91

Appendix C

Arduino Code for Launched Sampler Box

92

 #include "RTClib.h"

 #include <stdio.h> //used for SD file creation

 #include <Adafruit_BME280.h>// barometer, temperature and humidity sensor

 #include <SPI.h> //required by the BME280 and SD

 #include <SD.h> // For Logging Data on SD Card

 #include <Servo.h> // servo support for deployment actuators

 #define SEALEVELPRESSURE_HPA (1013.25) //hectaPascal

 #define HC12 Serial3

 Servo CrankS, LO1, LO2, BAL;

 RTC_PCF8523 rtc;

//limit switch

 #define LEVER_SWITCH_PIN 25

 int pressSwitch = 0;

 int reedSwitch = 0;

 int analogPin = 23;

 int whilemillis = 0;

 int endmillis = 0;

 const int REED_PIN = 2;

 #define ledPin 13 //so we know what blinks

 #define BME_VIN 33 //these let us use DIO pins to drive and read the BME280

 #define BME_3VO 35 //without extra wires

 #define BME_GND 37 //see BME init

 #define BME_SCK 39 // Signal CloCK

 #define BME_MISO 41 // Master In Slave Out//same as SDO

 #define BME_MOSI 43 // Master Out Slave In //same as SDI

 #define BME_CS 45 // Cable Select

 Adafruit_BME280 bme(BME_CS, BME_MOSI, BME_MISO, BME_SCK);//here's where we tell the

library where we are pinned in

 bool BME_GO=false;

//Creation of case structure. If you wish to add an additional case, just simple add the name here

 enum programState {ascend, deploy, collect, reploy, descend} state;

/////////////////////////Variables, timers, and pin select//////////////////////////////////

 const int chipSelect = 10; //SD data

 unsigned long startTime = 0; //beginning of sample time

 int pos = 0; //lockout servos

 int posbal = 0; // initial position of the ballast servo

 int record = 10000; //Records data every ten seconds

 unsigned long sampTime = 7200000; //Sample time - 2 hours. (millis)

 unsigned long previousMillis = 0;

 unsigned long PressureAltitude = 54019; //Pressure in Pa at 5km

 unsigned long openanyway = 3600000; //Open after 1 hour in air (millis)**** 1 hour = 3600000 ms

 unsigned long halfhour = 1800000; //half hour after box opens

 unsigned long pbottom = 4500; //if pressure varies by more than this, in pascals, do something

**** = 4500

// unsigned long pbottom2 = 57728; //pressure at 4.5km **** = 57728 Pa

 int balcount = 0;

 unsigned long CurrentPressure = 100000000; // Current Pressure

93

 File logfile;

 // read a Hex value and return the decimal equivalent

 uint8_t parseHex(char c) {

 if (c < '0')

 return 0;

 if (c <= '9')

 return c - '0';

 if (c < 'A')

 return 0;

 if (c <= 'F')

 return (c - 'A')+10;

 }

 void error(uint8_t errno) {

 while(1) {

 uint8_t i;

 for (i=0; i<errno; i++) {

 digitalWrite(ledPin, HIGH);

 delay(100);

 digitalWrite(ledPin, LOW);

 delay(100);

 }

 for (i=errno; i<10; i++) {

 delay(200);

 }

 }

 }

void setup() {

 Serial.begin(250000);

 Serial.println("\r\nBalloon Data Logger: Launched code");

 //BME Setup

 //establish BME280 communication

 if (!BME_GO)

 {

 pinMode(BME_GND,OUTPUT); //This will be ground.

 digitalWrite(BME_GND,LOW); //We set it to low so it will sink current.

 pinMode(BME_3VO,INPUT); //We want this pin to float so that we neither load it or drive

it.

 pinMode(BME_VIN,OUTPUT); //Here's our power source good to 20 mA.

 digitalWrite(BME_VIN,HIGH);//and we turn it on

 pinMode(BME_CS,OUTPUT); //This is cable select. The library functions drive it but we must

make it output.

 Serial.print("establishing BME280 communication... ");

 if (bme.begin())

 {

94

 BME_GO=true;

 Serial.println("bme280 GO!");

 }

 else

 {

 BME_GO=false;

 Serial.println("bme280 NoGO");

 void(*resetfunc)(void) = 0;

 resetfunc();

 }

 }

//HC12 setup

 pinMode(6, OUTPUT);

 if(Serial.available()) HC12.write(Serial.read());

 if(HC12.available()) Serial.write(HC12.read());

 digitalWrite(6, LOW); //command mode

 HC12.begin(9600);

 HC12.print(F("AT+C001\r\n")); //set to channel 1

 delay(100);

 digitalWrite(6, HIGH);

//SD setup

 Serial.print("Initializing SD card...");

 pinMode(chipSelect, OUTPUT);

 digitalWrite(chipSelect, HIGH);

// see if the card is present and can be initialized:

 if (!SD.begin(chipSelect)) {

 Serial.println("Card failed, or not present");

 // don't do anything more:

 while(1);

 }

 Serial.println("card initialized.");

 //Creation of the file

 char filename[15];

 strcpy(filename, "KALLOG00.TXT");

 for (uint8_t i = 0; i < 100; i++) {

 filename[6] = '0' + i/10;

 filename[7] = '0' + i%10;

 // create if does not exist, do not open existing, write, sync after write

 if (! SD.exists(filename)) {

 break;

 }

 }

 logfile = SD.open(filename, FILE_WRITE);

 if(! logfile) {

 Serial.print("Couldnt create ");

 Serial.println(filename);

95

 }

 Serial.print("Writing to ");

 Serial.println(filename);

//initializing RTC clock

 Wire.begin();

 if(!rtc.begin()){

 logfile.println("RTC failed");

 Serial.println("Couldn't find RTC");

 }

//tops of the columns for the text file

 logfile.print("Date/time");

 logfile.print(',');

 logfile.print("Altitude (sea level Pressure)");

 logfile.print(',');

 logfile.print("Temperature");

 logfile.print(',');

 logfile.print("Pressure");

 logfile.print(',');

 logfile.print("Humidity");

 logfile.println("\n");

 Serial.print("Ready!");

 //Limit switch initialization

 pinMode(LEVER_SWITCH_PIN, INPUT);

 pinMode(REED_PIN, INPUT_PULLUP);

 pressSwitch = digitalRead(LEVER_SWITCH_PIN);

 reedSwitch = digitalRead(REED_PIN);

 digitalWrite(29, LOW);

 analogWrite(analogPin, 0);

 Serial.println(pressSwitch);

}

void loop() {

 unsigned long currentMillis = millis();

 DateTime now = rtc.now();

/////////////////////////////Begin Case Structure//////////////////////////////////

 switch (state)

 {

 case ascend:

 CurrentPressure = (bme.readPressure());

 if (currentMillis - previousMillis >= record){

 collector();

 previousMillis = currentMillis;

 }

96

 if(currentMillis>=openanyway){

 Serial.println("Box opened due to 1 hour in air reached");

 logfile.println("Box opened due to 1 hour in air reached");

 delay(500);

 PressureAltitude = 61000;

 logfile.print("pressure for sampling is ");

 logfile.println(CurrentPressure);

 Serial.print("pressure for sampling is ");

 Serial.println(CurrentPressure);

 state=deploy; //run deploy case if the 1 hour in air

 }

 if(CurrentPressure <= PressureAltitude){

 Serial.println(CurrentPressure);

 logfile.print("Current Pressure = ");

 logfile.println(CurrentPressure);

 Serial.println("5km reached. Yey!");

 logfile.println("5km reached. Yey!");

 delay(500);

 state=deploy; //run deploy at 5km

 }

 if(HC12.available()>1){

 int input = HC12.parseInt();

 Serial.println("GOT IT");

 logfile.println("GOT IT");

 Serial.println("Recieved Signal from Tracker Box");

 logfile.println("Recieved Signal from Tracker Box");

 Serial.println(input);

 // HC12 Commands From Mini

 // * & 1 is 1424 (AKA HotWire Command)

 if(input == 1424){

 Serial.println("Burn Baby Burn! Hot Wire Command Triggered");

 hotwire();

 }

 if (input == 3863){

 Serial.println("LET IT GO! Tow Line Release Command Triggered");

 releaseTowline();

 delay(500);

 }

 }

 break;

 case deploy:

97

 Serial.println("Sampler Open Started");

 logfile.println("Sampler Open Started");

 deployTray();

 //start timing sampling

 startTime = currentMillis;

 Serial.println("Sampler is Open");

 logfile.println("Sampler is Open");

 state=collect;

 break;

 case collect:

// if(currentMillis-startTime<=halfhour){

// if (currentMillis - previousMillis >= record){

// collector();

// previousMillis = currentMillis;

// }

// if(currentMillis-startTime>=halfhour && bme.readPressure()>=pbottom){

// Serial.println("Box closing. Going below 4km");

// logfile.println("Box closing. Going below 4km");

// logfile.println();

// state=reploy;

// }

// }

// if(currentMillis - startTime>=halfhour){

//record weather data

 if (currentMillis - previousMillis >= record){

 collector();

 previousMillis = currentMillis;

 }

// if pressure is 4500 Pa more than the pressure at the designated altitude, then the balloon is too

low, drop ballast, as long as there is still ballast to drop

 if(bme.readPressure()>=(PressureAltitude+pbottom) && balcount<77){

 Serial.println("Dropping Ballast. Going below 4.5km");

 logfile.println("Dropping Ballast. Going below 4.5km");

 logfile.print("Ballast cycle number");

 logfile.println(balcount);

 Serial.println(bme.readPressure());

 Serial.println(balcount);

 Ballast();

 logfile.println();

 }

// if pressure is 9000 Pa more than the pressure at the designated altitude, then the balloon is WAY

too low, end sampling

 if(bme.readPressure()>=(PressureAltitude+2*pbottom) && balcount >= 77){

 Serial.println("Closing Box. Going below 4 km");

98

 logfile.println("Closing Box. Going below 4 km");

 logfile.println();

 state=reploy;

 }

 if(currentMillis-startTime>=sampTime){

 Serial.println("Box cloxing. Time reached");

 logfile.println("Box closing. Time reached");

 logfile.println();

 state=reploy;

 }

 if(HC12.available()>1){

 int input = HC12.parseInt();

 Serial.println("GOT IT");

 logfile.println("GOT IT");

 Serial.println("Recieved Signal from Tracker Box");

 logfile.println("Recieved Signal from Tracker Box");

 Serial.println(input);

 // HC12 Commands From Mini

 // * & 1 is 1424 (AKA HotWire Command)

 if(input == 1424){

 Serial.println("Burn Baby Burn! Hot Wire Command Triggered");

 hotwire();

 }

 if (input == 3863){

 Serial.println("Tow Line Release Command Triggered");

 releaseTowline();

 delay(500);

 }

 }

 break;

 case reploy:

 Serial.println("Sampler Close Started");

 logfile.println("Sampler Close Started");

 reployTray();

 Serial.println("Sampler is Closed");

 logfile.println("Sampler is Closed");

 state=descend;

 break;

 case descend:

 if (currentMillis - previousMillis >= record){

 collector();

 previousMillis = currentMillis;

 }

 if(HC12.available()>1){

 int input = HC12.parseInt();

99

 Serial.println("GOT IT");

 logfile.println("GOT IT");

 Serial.println("Recieved Signal from Tracker Box");

 logfile.println("Recieved Signal from Tracker Box");

 Serial.println(input);

 // HC12 Commands From Mini

 // * & 1 is 1424 (AKA HotWire Command)

 if(input == 1424){

 Serial.println("Burn Baby Burn! Hot Wire Command Triggered");

 logfile.println("Burn Baby Burn! Hot Wire Command Triggered");

 hotwire();

 hotwire();

 }

 if (input == 3863){

 Serial.println("Tow Line Release Command Triggered");

 logfile.println("Tow Line Release Command Triggered");

 releaseTowline();

 delay(500);

 }

 }

 break;

 }

}

//This is the collector method. It runs fairly similar to an interrupt. It runs in all cases except for

reploy and deploy

void collector(){

 DateTime now = rtc.now();

 Serial.print(now.year(), DEC);

 Serial.print("/");

 Serial.print(now.month(), DEC);

 Serial.print("/");

 Serial.print(now.day(), DEC);

 Serial.print("/");

 Serial.print(now.hour(), DEC);

 Serial.print(':');

 Serial.print(now.minute(), DEC);

 Serial.print(':');

 Serial.print(now.second(), DEC);

 Serial.print(',');

 Serial.print(bme.readAltitude(SEALEVELPRESSURE_HPA));

 Serial.print(',');

 Serial.print(bme.readTemperature());

 Serial.print(',');

 Serial.print(bme.readPressure());

 Serial.print(',');

 Serial.println(bme.readHumidity());

 delay(500);

 logfile.println();

100

 logfile.print(now.year(), DEC);

 logfile.print("/");

 logfile.print(now.month(), DEC);

 logfile.print("/");

 logfile.print(now.day(), DEC);

 logfile.print("/");

 logfile.print(now.hour(), DEC);

 logfile.print(':');

 logfile.print(now.minute(), DEC);

 logfile.print(':');

 logfile.print(now.second(), DEC);

 logfile.print(',');

 logfile.print(bme.readAltitude(SEALEVELPRESSURE_HPA));

 logfile.print(',');

 logfile.print(bme.readTemperature());

 logfile.print(',');

 logfile.print(bme.readPressure());

 logfile.print(',');

 logfile.println(bme.readHumidity());

 logfile.flush();

 delay(500);

}

//deploy trays method

void deployTray()

{

 Serial.println("Begin Sampling");

 logfile.println("Samplin Begin");

 DateTime now = rtc.now();

 delay(500);

 logfile.print("Begin Sampling");

 logfile.println();

 logfile.print(now.year(), DEC);

 logfile.print("/");

 logfile.print(now.month(), DEC);

 logfile.print("/");

 logfile.print(now.day(), DEC);

 logfile.print("/");

 logfile.print(now.hour(), DEC);

 logfile.print(':');

 logfile.print(now.minute(), DEC);

 logfile.print(':');

 logfile.print(now.second(), DEC);

 logfile.print(',');

 logfile.print(bme.readAltitude(SEALEVELPRESSURE_HPA));

 logfile.print(',');

 logfile.print(bme.readTemperature());

 logfile.print(',');

101

 logfile.print(bme.readPressure());

 logfile.print(',');

 logfile.println(bme.readHumidity());

 logfile.flush();

 delay(1000);

 LO1.attach(4);

 LO2.attach(5);

 delay(500);

 //this line is for the lockout servos

 for (pos = 180; pos >= 0; pos--)

 {

 LO1.write(pos);

 LO2.write(pos);

 delay(5);

 }

 LO1.detach();

 LO2.detach();

 delay(500);

 CrankS.attach(9);

 static unsigned long endmillis_reed;

 int y = 11000;

 endmillis_reed = millis()+ y;

// REED SWITCH

 while(reedSwitch==1 && millis() < endmillis_reed){

 CrankS.write(0);

 delay(500);

 reedSwitch = digitalRead(REED_PIN);

 }

 // delay(11000); // change this value for crank shaft time going down

 CrankS.detach();

 HC12.println(9999); //tells tracker box that the sampler is open

 HC12.flush();

 return;

}

void reployTray(){

 DateTime now = rtc.now();

 analogWrite(analogPin, 255);

 Serial.println(now.year(), DEC);

 delay(500);

 logfile.print("Sampling End");

 logfile.println();

102

 logfile.print(now.year(), DEC);

 logfile.print("/");

 logfile.print(now.month(), DEC);

 logfile.print("/");

 logfile.print(now.day(), DEC);

 logfile.print("/");

 logfile.print(now.hour(), DEC);

 logfile.print(':');

 logfile.print(now.minute(), DEC);

 logfile.print(':');

 logfile.print(now.second(), DEC);

 logfile.print(',');

 logfile.print(bme.readAltitude(SEALEVELPRESSURE_HPA));

 logfile.print(',');

 logfile.print(bme.readTemperature());

 logfile.print(',');

 logfile.print(bme.readPressure());

 logfile.print(',');

 logfile.println(bme.readHumidity());

 logfile.flush();

 delay(1000);

 Serial.println(pressSwitch);

 CrankS.attach(9);

 delay(500);

 //startcs = millis();

 static unsigned long endmillis;

 int x = 20000;

 endmillis = millis()+ x;

 Serial.println(pressSwitch);

 millis();

 while(pressSwitch==0 && millis() < endmillis){

 Serial.println(millis());

 Serial.println(endmillis);

 CrankS.write(180);

 delay(500);

 pressSwitch = digitalRead(LEVER_SWITCH_PIN);

 Serial.println(pressSwitch);

 }

 delay(100);

 LO1.attach(4);

 LO2.attach(5);

 delay(500);

 for(pos = 0; pos <180; pos++)

 {

 LO1.write(pos);

103

 LO2.write(pos);

 delay(5);

 }

 LO1.detach();

 LO2.detach();

 CrankS.detach();

 delay(500);

 analogWrite(analogPin, 0);

 HC12.println(1111);

 logfile.println("Hot Wire Command Sent To Tracker Box");

 delay(15000);

 HC12.println(2222);

 logfile.println("Release Line Command Sent To Tracker Box");

 return;

}

void hotwire(){

 Serial.println("\n\nHOT WIRE");

 logfile.println("\n\nHOT WIRE");

 DateTime now = rtc.now();

 analogWrite(analogPin, 255);

 Serial.println(now.year(), DEC);

 delay(500);

 logfile.print("Sampling End");

 logfile.println();

 logfile.print(now.year(), DEC);

 logfile.print("/");

 logfile.print(now.month(), DEC);

 logfile.print("/");

 logfile.print(now.day(), DEC);

 logfile.print("/");

 logfile.print(now.hour(), DEC);

 logfile.print(':');

 logfile.print(now.minute(), DEC);

 logfile.print(':');

 logfile.print(now.second(), DEC);

 logfile.print(',');

 logfile.print(bme.readAltitude(SEALEVELPRESSURE_HPA));

 logfile.print(',');

 logfile.print(bme.readTemperature());

 logfile.print(',');

 logfile.print(bme.readPressure());

 logfile.print(',');

 logfile.println(bme.readHumidity());

 logfile.flush();

 delay(1000);

104

 Serial.println(pressSwitch);

 CrankS.attach(9);

 delay(500);

 //startcs = millis();

 static unsigned long endmillis;

 int x = 20000;

 endmillis = millis()+ x;

 Serial.println(pressSwitch);

 millis();

 while(pressSwitch==0 && millis() < endmillis){

 Serial.println(millis());

 Serial.println(endmillis);

 CrankS.write(180);

 delay(500);

 pressSwitch = digitalRead(LEVER_SWITCH_PIN);

 Serial.println(pressSwitch);

 }

 delay(100);

 LO1.attach(4);

 LO2.attach(5);

 delay(500);

 for(pos = 0; pos <180; pos++)

 {

 LO1.write(pos);

 LO2.write(pos);

 delay(5);

 }

 LO1.detach();

 LO2.detach();

 CrankS.detach();

 delay(500);

 analogWrite(analogPin, 0);

 Serial.println("Sampling Complete");

 HC12.flush();

 delay(1000);

 HC12.print(1111);

 return;

}

void Ballast(){

BAL.attach(10);

 delay(500);

Serial.println("entering ballast");

 //open ballast

105

 for(posbal = 150; posbal >75; posbal--)

 {

 BAL.write(posbal);

 delay(5);

 }

 for(posbal = 75; posbal <150; posbal++)

 {

 BAL.write(posbal);

 delay(5);

 }

 BAL.detach();

 delay(2000);

 Serial.println("Dropping Ballast ended");

 logfile.println("Dropping Ballast ended");

 balcount = balcount+1;

}

void releaseTowline(){

 Serial.println("\n\nRelease Tow Line");

 logfile.println("\n\nRelease Tow Line");

 DateTime now = rtc.now();

 analogWrite(analogPin, 255);

 Serial.println(now.year(), DEC);

 delay(500);

 logfile.print("Sampling End");

 logfile.println();

 logfile.print(now.year(), DEC);

 logfile.print("/");

 logfile.print(now.month(), DEC);

 logfile.print("/");

 logfile.print(now.day(), DEC);

 logfile.print("/");

 logfile.print(now.hour(), DEC);

 logfile.print(':');

 logfile.print(now.minute(), DEC);

 logfile.print(':');

 logfile.print(now.second(), DEC);

 logfile.print(',');

 logfile.print(bme.readAltitude(SEALEVELPRESSURE_HPA));

 logfile.print(',');

 logfile.print(bme.readTemperature());

 logfile.print(',');

 logfile.print(bme.readPressure());

 logfile.print(',');

106

 logfile.println(bme.readHumidity());

 logfile.flush();

 delay(1000);

 Serial.println(pressSwitch);

 CrankS.attach(9);

 delay(500);

 //startcs = millis();

 static unsigned long endmillis;

 int x = 20000;

 endmillis = millis()+ x;

 Serial.println(pressSwitch);

 millis();

 while(pressSwitch==0 && millis() < endmillis){

 Serial.println(millis());

 Serial.println(endmillis);

 CrankS.write(180);

 delay(500);

 pressSwitch = digitalRead(LEVER_SWITCH_PIN);

 Serial.println(pressSwitch);

 }

 delay(100);

 LO1.attach(4);

 LO2.attach(5);

 delay(500);

 for(pos = 0; pos <180; pos++)

 {

 LO1.write(pos);

 LO2.write(pos);

 delay(5);

 }

 LO1.detach();

 LO2.detach();

 CrankS.detach();

 delay(500);

 analogWrite(analogPin, 0);

 Serial.println("Sampling Complete");

 Serial.println("REPLOY RAN");

 Serial.println("2222");

 HC12.println(2222); //tow line

 return;

}

107

Appendix D

Arduino Code for Launched Tracker Bo

108

#include <Servo.h>

 int n = 0; //hotwire

 int w = 0; //motor

 int f =0; //mexicao emergency

 int k = 0;

 int p=0;

 int pos = 0;

 int startTime=0;

 int currentmillis=0;

 unsigned long timer1 = 14400000; //4 hours

 unsigned long timer2 = 12600000; //3.5 hours

 #define HC12 Serial

 Servo servo;

// Void Set Up

 void setup(){

 Serial.begin(9600);

 servo.attach(10);

// DTMF Inputs

 pinMode(2, INPUT); // 4 on DTMF

 pinMode(13, INPUT); // 7 on DTMF

 pinMode(12, INPUT); // 6 on DTMF

 pinMode(11, INPUT); // "5"

 pinMode(9, OUTPUT); //LED flash

 pinMode(8, INPUT); //*

 pinMode(5, INPUT); //1

 pinMode(6, OUTPUT); //hot wire

 pinMode(7, INPUT); //#

 pinMode(4, INPUT); //2

 pinMode(10, OUTPUT); //motor

 for (pos = 0; pos <= 90; pos ++){

 servo.write(pos);

 delay(15);

 }

 servo.detach();

 }

// Void Loop

void loop(){

// Inputs from Sampler Box HC 12

 currentmillis = millis();

 if(HC12.available()>1){

 int input = HC12.parseInt();

 Serial.println(input);

109

 if(input == 1111){

 HotWireCutLine();

 }

 if(input == 2222){

 ReleaseTowLine();

 }

 if(input == 9999){

 p++;

 unsigned long openbox = currentmillis;

 }

 }

// LED Blink Light Code

 if(digitalRead(11) == HIGH){ //LED

 Serial.print("5555");

 digitalWrite(9, HIGH);

 delay(500);

 digitalWrite(9, LOW);

 delay(250);

 digitalWrite(9, HIGH);

 delay(500);

 digitalWrite(9, LOW);

 delay(250);

 digitalWrite(9, HIGH);

 delay(500);

 digitalWrite(9, LOW);

 delay(250);

 digitalWrite(9, HIGH);

 delay(500);

 digitalWrite(9, LOW);

 delay(250);

 digitalWrite(9, HIGH);

 delay(500);

 digitalWrite(9, LOW);

 delay(250);

 }

// DTMF: PTT + * + 1 Code

 if(digitalRead(8) == HIGH){

 n++;

 }

 if((digitalRead(5) == HIGH) && n >=1){

 digitalWrite(9, HIGH);

 delay(500);

 digitalWrite(9, LOW);

 delay(250);

 digitalWrite(9, HIGH);

110

 delay(500);

 digitalWrite(9, LOW);

 delay(250);

 Serial.println(1424);

 n=0;

 Serial.flush();

 }

// DTMF: PTT + # + 2 Code

 if(digitalRead(7) == HIGH){

 w++;

 }

 if((digitalRead(4) == HIGH) && w>=1){

 digitalWrite(9, HIGH);

 delay(500);

 digitalWrite(9, LOW);

 delay(250);

 digitalWrite(9, HIGH);

 delay(500);

 digitalWrite(9, LOW);

 delay(250);

 //Tell the mega code to close the box

 Serial.println(3863);

 delay(500);

 w=0;

 delay(500);

 }

// Mexico Cut Down Emergency Operation

 // DTMF = 7 + 4 + 6

 if(digitalRead(13) == HIGH){

 f++;

 }

 if(digitalRead(2) == HIGH && f>=1){

 k++;

 }

 if(digitalRead(12) == HIGH && k>=1){ //Mexico Emergency

 HotWireCutLine();

 delay(500);

 ReleaseTowLine();

 delay(500);

 Serial.println(6336); //Told mega emergency cut down

 Serial.println("Mexico Emergency triggered by DTMF");

 f=0;

 w=0;

 n=0;

111

 k=0;

 }

//

// if(currentmillis >= timer1 && p==0){

// ReleaseTowLine();

// delay(1000);

// HotWireCutLine();

// }

//

// if(currentmillis>=timer2 && p>=1){

// ReleaseTowLine();

// delay(1000);

// HotWireCutLine();

// }

}

//

// Methods called from loop

// Tow Line Release Function

void ReleaseTowLine(){

 servo.attach(10);

 for(pos = 90; pos >=0; pos--){

 servo.write(pos);

 delay(15);

 }

 servo.detach();

 return;

 }

// Hot Wire Function

void HotWireCutLine() {

 digitalWrite(6, HIGH);

 delay(10000);

 digitalWrite(6, LOW);

 return;

 }

112

Appendix E

Balloon Template Values

113

At 0.0 cm from bottom, gore is 0.00 cm from center

At 10.0 cm from bottom, gore is 3.07 cm from center

At 20.0 cm from bottom, gore is 6.13 cm from center

At 30.0 cm from bottom, gore is 9.19 cm from center

At 40.0 cm from bottom, gore is 12.25 cm from center

At 50.0 cm from bottom, gore is 15.29 cm from center

At 60.0 cm from bottom, gore is 18.30 cm from center

At 70.0 cm from bottom, gore is 21.28 cm from center

At 80.0 cm from bottom, gore is 24.23 cm from center

At 90.0 cm from bottom, gore is 27.10 cm from center

At 100.0 cm from bottom, gore is 29.91 cm from center

At 110.0 cm from bottom, gore is 32.61 cm from center

At 120.0 cm from bottom, gore is 35.19 cm from center

At 130.0 cm from bottom, gore is 37.63 cm from center

At 140.0 cm from bottom, gore is 39.88 cm from center

At 150.0 cm from bottom, gore is 41.90 cm from center

At 160.0 cm from bottom, gore is 43.68 cm from center

At 170.0 cm from bottom, gore is 45.13 cm from center

At 180.0 cm from bottom, gore is 46.23 cm from center

At 190.0 cm from bottom, gore is 46.95 cm from center

At 200.0 cm from bottom, gore is 47.19 cm from center

At 210.0 cm from bottom, gore is 46.98 cm from center

At 220.0 cm from bottom, gore is 46.26 cm from center

At 230.0 cm from bottom, gore is 45.02 cm from center

At 240.0 cm from bottom, gore is 43.31 cm from center

At 250.0 cm from bottom, gore is 41.10 cm from center

At 260.0 cm from bottom, gore is 38.48 cm from center

At 270.0 cm from bottom, gore is 35.52 cm from center

At 280.0 cm from bottom, gore is 32.23 cm from center

At 290.0 cm from bottom, gore is 28.73 cm from center

At 300.0 cm from bottom, gore is 25.06 cm from center

At 310.0 cm from bottom, gore is 21.27 cm from center

At 320.0 cm from bottom, gore is 17.41 cm from center

At 330.0 cm from bottom, gore is 13.51 cm from center

At 340.0 cm from bottom, gore is 9.59 cm from center

At 350.0 cm from bottom, gore is 5.67 cm from center

At 360.0 cm from bottom, gore is 1.74 cm from center

114

Appendix F

Balloon Lift Calculations MATLAB Code

115

%% Code for Ballooning
 % Written by: Kenneth Domingue
 % Note: SI Units

 close all
 clear all
 clc
%% Constants and Defining Altitude
 alt = 0:8:3200; % Altitude [m]
 grvty = 9.81; % Gravity [m/s^2]
 Ntolb = 0.224809; % Conversion from [N] to [lbf]
 kgtolb = 2.20462; % Conversion from [kg] to [lb]
 lbtoN = 4.448; % Conversion from [lb] to [N]
 TEA = 11.93 % Weight of the TEA [lb]
 Poles = 3.77 % Weight of the TEA Poles [lb]
 SPOT = 3.6/16 % Weight of the SPOT Trace [lb]
 LandS = 6.5/16 % Weight of the Streamers and

Lights [lb]
 Teth = 5 % Approx Guess Weight of Tether

[lb] (525 feet *1/128 pounds per foot)
 Samplers= 5*2 % Approx Weight of the Samplers

[lb]
 W = TEA+Poles+SPOT+LandS+Teth+Samplers % Weight of system

[lb]
 W_N = W*lbtoN; % Weight of system [N]
%% Altitude Loop
 for j = 1:length(alt)
 D = tsa(0:8:3200,'si'); % Dummy Index for TSA
 p = D(:,1); % Pressure at alt [kg/m^2]
 t = D(:,2); % Temperature at alt [Kelvin]
 rho = D(:,3); % Air Density at alt[kg/m^3]
 sigma = D(:,4); % Air Density at alt/ Air Density

at SL [-]
 end
%% Helium Calculations

 R_He = 2077; % Individual Gas Constant for

Helium [J/kg*K]
 R_dry_air = 287.05; % Individual Gas Constant for Dry

Air[J/kg*K]
 R_wet_air = 461.5; % Individual Gas Constant for Wet

Air[J/kg*K]
 Pc = 16547000 % Pressure of cyclinder of helium

[Pa]
 Vc = 0.04899732 % Volume of 300 Cyclinder

[m^3]
 rho_He_C = Pc/(R_He*294.261) % Density of Helium in Cyclinder

[kg/m^3]
 m_He_C = rho_He_C*Vc % Mass of He per cylinder [kg]

%% Code Benchmarking - Need 15m^3 for Helikite

 V_h = 16 % Volume of full helikite [m^3]

116

% Kalamazoo December 23rd, 2017

 P_kzoo_1223 = 99016.38 % Sea Level Pressure on 12/23/2016 in

Kalamazoo from Arduino Data [Pa]
 T_kzoo_1223 = 275.372 % Average Temperature on 12/23/2016 in

Kalamazoo from Arduino Data [K]
 Pws_kzoo_1223 = (2.718^(77.3450+0.0057*(T_kzoo_1223)...
 -(7235/T_kzoo_1223)))/(T_kzoo_1223^8.2);
 x_kzoo_1223 = 0.62198*(Pws_kzoo_1223)/(P_kzoo_1223-Pws_kzoo_1223);
 rho_kzoo_1223 = ((P_kzoo_1223/(R_dry_air*T_kzoo_1223))*...
 (1+x_kzoo_1223))/(1+(x_kzoo_1223*(R_wet_air/R_dry_air))); %

Air Density on 12/23/2016 in Kalamazoo [kg/m^3]
 n_kzoo_1223 = (P_kzoo_1223*V_h)/(m_He_C*R_He*T_kzoo_1223) % Number of

Cylinders needed [cyclinders]
 rho_he_kzoo_1223 = P_kzoo_1223/((R_He*T_kzoo_1223)); % Helium

Density in Helikite on 12/23/2016 in Kalamazoo [kg/m^3]
 Fb_kzoo_1223 = ((rho_kzoo_1223)*grvty*V_h)*Ntolb % Force from boyancy

force from helium [lbf]
 Fb_kzoo_1223_N = ((rho_kzoo_1223)*grvty*V_h); % Force from boyancy force

from helium [lbf]
 ExcessL_kzoo_1223 = Fb_kzoo_1223 - W - m_He_C*n_kzoo_1223*Ntolb;
 ExcessL_N_kzoo_1223 = Fb_kzoo_1223_N - W_N- m_He_C*n_kzoo_1223

% Pellston January 13th, 2017
 P_pell_113 = 101271.69 % Air Pressure at Fill on 1/13/2017 in

Pellston from Arduino Data [Pa]
 T_pell_113 = 255.372 % Temperature at Fill on 1/13/2017 in

Pellston from Arduino Data [K]
 Pws_pell_113 = (2.718^(77.3450+0.0057*(T_pell_113)...
 -(7235/T_pell_113)))/(T_pell_113^8.2);
 x_pell_113 = 0.62198*(Pws_pell_113)/(P_pell_113-Pws_pell_113);
 rho_pell_113 = ((P_pell_113/(R_dry_air*T_pell_113))*...
 (1+x_pell_113))/(1+(x_pell_113*(R_wet_air/R_dry_air))); % Air

Density on 1/13/2017 in Pellston [kg/m^3]
 n_pell_113 = (P_pell_113*V_h)/(m_He_C*R_He*T_pell_113) % Number of

Cylinders needed [cyclinders]
 rho_he_pell_113 = P_pell_113/((R_He*T_pell_113)); % Helium

Density in Helikite on 1/13/2017 in Pellston [kg/m^3]
 Fb_pell_113 = ((rho_pell_113)*grvty*V_h)*Ntolb % Force from boyancy force

from helium [lbf]
 Fb_pell_113_N = ((rho_pell_113)*grvty*V_h);
 ExcessL_pell_113 = Fb_pell_113 - W - m_He_C*n_pell_113*kgtolb
 ExcessL_N_pell_113 = Fb_pell_113_N - W_N - m_He_C*n_pell_113;
%% Interested Launches

% Standard Atmospheric Data
 Loc_mat = ['Bos' 'UMBS' 'Kzoo' 'Harv' 'Las' 'Albu' 'Den' 'CPER'];
 DUM_Loc_mat = transpose(Loc_mat);
 alt_mat = [9 233 290 332 1428 1619 1639 1645] % Altitudes of Launches

[Bos,UMBS,Kzoo,Harv,Las,Albu,Den,CPER]
 DUM_alt = transpose(alt_mat);
 Dum_mat = tsa(alt_mat,'si'); % Dummy Matrix of

TSA information
 P_mat = Dum_mat(:,1); % Column of

Pressures [Pa]

117

 T_mat = Dum_mat(:,2); % Column of

Temperatures [K]

 Pws_mat = (2.718.^(77.3450+0.0057*(T_mat)-7235*(T_mat.^-

1))).*(T_mat.^8.2).^-1;
 x_mat = 0.62198.*(Pws_mat).*(P_mat-Pws_mat).^-1;

 rho_mat = ((P_mat/(R_dry_air*T_mat))*...
 (1+x_mat))/(1+(x_mat*(R_wet_air/R_dry_air)));

 n_mat = (P_mat*V_h)/(m_He_C*R_He*T_mat); % Number of

Cyclinders Needed to Fill TEA
 n_mat_red = n_mat(:,1) % Column of

Number of Cyclinders Needed to Fill TEA

 rho_he_mat = P_mat/(R_He*T_mat); % Density of

Helium [kg/m^3]
 rho_he_redmat = rho_he_mat(:,1); % Column of

Density of Helium [kg/m^3]

 Fb_mat_N = ((rho_mat)*grvty*V_h); % Boyancy Force Produced

[N]
 DUM_Fb_mat_lb = ((rho_mat)*grvty*V_h)*Ntolb; % Boyancy Force

Produced [lbf]
 Fb_mat_lb = DUM_Fb_mat_lb(:,1)

 DUM_ExcessL_mat_N = Fb_mat_N-W_N - m_He_C*n_mat;
 ExcessL_mat_N = DUM_ExcessL_mat_N(:,1);
 DUM_ExcessL_mat = DUM_Fb_mat_lb-W - m_He_C*n_mat*kgtolb;
 ExcessL_mat = DUM_ExcessL_mat(:,1)
 format shortG
 X = [DUM_alt P_mat T_mat n_mat_red Fb_mat_lb ExcessL_mat]

% May Averages from Underground Weather.com
 % Input Data
 P_may = [101389 98815 98070 97562 85608 83136 83136 83272] % Station

Pressure [Pa]
 DUM_P_may = transpose(P_may);
 T_may = [15 12 15 14 20 18 12 13]+273 % Mean

Temp. [K]
 DUM_T_may = transpose(T_may);
 % Calculations
 Pws_may = (2.718.^(77.3450+0.0057*(T_may)-7235*(T_may.^-

1))).*(T_may.^8.2).^-1;
 x_may = 0.62198.*(Pws_may).*(P_may-Pws_may).^-1;

 rho_may = (P_may.*(R_dry_air.*T_may).^-

1).*(1+x_may).*(1+x_may.*(R_wet_air/R_dry_air)).^-1;

 DUM_n_may = (P_may*V_h).*(m_He_C*R_He*T_may).^-1 %

Number of Cyclinders Needed to Fill TEA
 DUM2_n_may = transpose(DUM_n_may);
 n_may = DUM2_n_may(:,1);

118

 rho_he_may = P_may.*(R_He*T_may).^-1; %

Density of Helium [kg/m^3]

 DUM_Fb_may_N = ((rho_may)*grvty*V_h); % Boyancy Force

Produced [N]
 DUM_Fb_may_lb = ((rho_may)*grvty*V_h)*Ntolb; % Boyancy Force

Produced [lbf]
 Fb_may_N = transpose(DUM_Fb_may_N);
 Fb_may_lb = transpose(DUM_Fb_may_lb)

 DUM_ExcessL_may_N = Fb_may_N - W_N - m_He_C*n_may;
 ExcessL_may_N = DUM_ExcessL_may_N(:,1);
 DUM_ExcessL_may = Fb_may_lb-W - m_He_C*n_may*kgtolb;
 ExcessL_may = DUM_ExcessL_may(:,1)
 format shortG
 Y = [DUM_alt DUM_P_may DUM_T_may n_may Fb_may_lb ExcessL_may]

% May Average Maximum Temps w/ Same Station Pressures
 % Input Data
 P_max = [101389 98815 98070 97562 85608 83136 83136 83272] % Station

Pressure [Pa]
 DUM_P_max = transpose(P_max);
 T_max = [19 20 21 20 28 25 19 20]+273 % Mean

Temp. [K]
 DUM_T_max = transpose(T_max);

 % Calculations
 Pws_max = (2.718.^(77.3450+0.0057*(T_max)-7235*(T_max.^-

1))).*(T_max.^8.2).^-1;
 x_max = 0.62198.*(Pws_max).*(P_max-Pws_max).^-1;

 rho_max = (P_max.*(R_dry_air.*T_max).^-

1).*(1+x_max).*(1+x_max.*(R_wet_air/R_dry_air)).^-1;

 DUM_n_max = (P_max*V_h).*(m_He_C*R_He*T_max).^-1; %

Number of Cyclinders Needed to Fill TEA
 n_max = transpose(DUM_n_max)
 rho_he_max = P_max.*(R_He*T_max).^-1; %

Density of Helium [kg/m^3]

 DUM_Fb_max_N = ((rho_max)*grvty*V_h); % Boyancy Force

Produced [N]
 DUM_Fb_max_lb = ((rho_max)*grvty*V_h)*Ntolb; % Boyancy Force

Produced [lbf]
 Fb_max_N = transpose(DUM_Fb_max_N);
 Fb_max_lb = transpose(DUM_Fb_max_lb)

 DUM_ExcessL_max_N = Fb_max_N-W_N - m_He_C*n_max;
 ExcessL_max_N = DUM_ExcessL_max_N(:,1);
 DUM_ExcessL_max = Fb_max_lb-(W+ m_He_C*n_max*kgtolb);
 ExcessL_max = DUM_ExcessL_max(:,1)

 format shortG
 Z = [DUM_alt DUM_P_max DUM_T_max n_max Fb_max_lb ExcessL_max]

119

%% Plots
 figure(1)
 [AX,H1,H2] = plotyy(alt,p,alt,t);
 grid on
 Kzoo = line([290 290],[0 1000000],'Color','r'); %Kalamazoo

Elevation [m]
 line([1645.0,1645.0],[0,10000000],'Color','k'); %CPER Elevation

[m]
 line([332.1,332.1],[0,10000000],'Color','m'); %Harvard Forest

Elevation[m]
 line([233.0,233.0],[0,10000000],'Color','k'); %UMBS Elevation

[m]
 line([1428.0,1428.0],[0,10000000],'Color','k'); %Las Cruces

Elevation [m]
 line([1618.5,1618.5],[0,10000000],'Color','m'); %Albuquerque

Elevation [m]
 line([1638.7,1638.7],[0,10000000],'Color','b'); %Denver Elevation

[m]
 line([8.9,8.9],[0,10000000],'Color','c'); %Boston Elevation

[m]
 xlabel('Altitude [m]')
 ylabel(AX(1),'Pressure [Pa*10^4]')
 ylabel(AX(2),'Temperature [K]')
 title('Pressure,Temperature vs. Altitude using TSA Code')
 legend('Pressure','Kalamazoo = 290','CPER = 1645','Harvard =

332','UMBS = 233','Las Cruces = 1428','Albuq. = 1618','Denver = 1638','Boston

= 8','Temp.')

	Western Michigan University
	ScholarWorks at WMU
	8-2017

	Atmospheric Microbial Community Sampling System for Varying Altitude Collection
	Kenneth David Domingue
	Recommended Citation

	Atmospheric Microbial Community Sampling System for Varying Altitude Collection

