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Michaela Farr, Ms. (M.S. Mechanical Engineering)

Bifidelity Methods for Polynomial Chaos Expansions

Thesis directed by Prof. Alireza Doostan

This thesis provides an in-depth evaluation of two multi fidelity uncertainty quantification

techniques, highlighting the key characteristics, benefits, and shortcomings therein. Physics based

simulations subject to uncertain inputs are used to demonstrate the efficacy of each technique

in reducing the computational cost of generating a polynomial chaos (PC) approximation of a

simulated quantity of interest(QoI). Considered is a weighted `1 minimization technique, wherein a

priori estimates on the decay of PC coefficients are used to generate sparse PC approximations of the

QoI. Also considered is a stochastic basis reduction method, which identifies a subspace that spans

the PC basis by principle component analysis of the covariance of the QoI. Numerical tests were

conducted upon 2 airfoil simulations subject to 6 uncertain inputs (one at high Mach number, one

at low) and a lithium ion battery simulation subject to 17 uncertain inputs to evaluate each method.

The examples studied illustrate the main characteristics of each method and provide insight to their

applicability to UQ in numerical simulations. Appreciable reductions in computational resources

were observed in all cases when compared to direct simulation of a high fidelity model.
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Chapter 1

Introduction

1.1 Uncertainty Quantification in Computational Sciences

Our ability to simulate complex physical phenomena has sky-rocketed with the advent of

modern computational resources. Simulations are an essential decision making tool for many fields

of engineering. As modeling capabilities expand, it becomes increasingly important to rigorously

identify the limitations and uncertainties associated with these models so that they are treated

neither with unfounded confidence nor skepticism. The uncertainties inherent in a simulated repre-

sentation of a quantity of interest (QoI) may be classified into two broad categories: epistemic and

aleatory. Epistemic uncertainty originates from an imperfect knowledge or representation of the

underlying physics of the system and may be non-trivial to quantify or alleviate. On the contrary,

aleatory uncertainties, which arise from intrinsic systemic variabilities, may be identified using

well established probabilistic techniques. Material properties such as Young’s modulus or viscosity,

or slight geometrical variations in the design of an airfoil, may be treated as aleatory uncertain-

ties. Statistical inputs into a given partial differential equation (PDE) solver impart probabilistic

character to would-be deterministic outputs, so that they are best represented by moments, proba-

bility of failure analysis, or probability density functions (pdf). Uncertainty quantification aims to

characterize this relationship between parameter uncertainties and predicted response behaviour,

specifically for computational models.
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1.2 Polynomial Chaos

The polynomial characterization of random physical behaviour has garnered much interest

within the UQ community. Seminally introduced by N. Wiener in 1938 [83], a summation of

orthogonal Hermite polynomials was used as a means of representing a Gaussian stochastic process.

It was later shown that such expansions yield universal L2 convergence to any process with finite

second order moments [38], an appropriate assumption given that most random physical processes

have finite variance. This polynomial expansion technique was subsequently generalized to include

functionals of other common distributions [4], as well as for distributions of arbitrary form. This

general class of methods is known as Polynomial Chaos (PC). Polynomial Chaos Expansions (PCEs)

have been utilized extensively for engineering applications as well as in other scientific facets such

as birth-death analysis [55] and in the integration theory of Brownian motion [83]. Ghanem and

Spanos successfully used PC methods to model uncertainty in various solid mechanics problems

solved using the finite element method [45, 46, 44, 43]. PC has also been implemented for modeling

uncertainty in fluids problems [87, 61, 58, 73] and shows great promise for performing optimization

under uncertainty [77, 90, 57].

1.3 Mathematical Formulation of the PCE

We can define a spectral representation of the QoI, u, as an infinite summation of multivariate

PC basis functionals:

u(ξ) =

∞∑
j=1

cjψj(ξ) (1.1)

where ξ = (ξ1, · · · , ξd) is a set of independent random variables, each with probability measure

ρ(ξk), characterizing the input uncertainty, e.g., in material properties, boundary conditions, etc.

In order to represent the QoI in this form, c = (c1, c2, · · · ), which are deterministic coefficients,

must be calculated. The multivariate PC basis, denoted by ψj(ξ), is generated from tensor products
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of univariate polynomials ψjk(ξk) of degree jk

ψj(ξ) =

d∏
k=1

ψjk(ξk). (1.2)

The univariate polynomials themselves, ψjk(ξk), are orthogonal with respect to their probability

measure, ρ(ξk), such that

〈ψik , ψjk〉 =

∫
Ω
ψik(ξk)ψjk(ξk)ρ(ξk)dξk = δikjk

〈
ψ2
ik

〉
(1.3)

where δ is the Kronecker delta and 〈·〉 is the expectation operator. Due to the independence of

ξk, the basis functionals ψ(ξ) are also orthogonal i.e., 〈ψi(ξ)ψj(ξ)〉 = δi,j
〈
ψ2
i

〉
. Several important

properties of the tensorized polynomials can be derived from their orthogonality. The first poly-

nomial in the summation, ψ1, also known as the degree zero polynomial is always equal to 1. It

follows that

〈ψ1(ξ)〉 =

∫
Ω
ψ1(ξ)ρ(ξ)dξ =

∫
Ω
ρ(ξ)dξ = 1. (1.4)

For ψj where j > 1, it can be shown that

〈ψj(ξ)〉 =

∫
Ω

1 · ψj(ξ)ρ(ξ)dξ =

∫
Ω
ψ1(ξ)ψj(ξ)ρ(ξ)dξ = 0. (1.5)

We can also show the variance to be

Var(ψj(ξ)) =
〈
ψ2
j (ξ)

〉
−

〈ψj(ξ)〉︸ ︷︷ ︸
0

2

=

∫
Ω
ψ2
j (ξ)ρ(ξ)dξ (1.6)

where Var(ψ1) = 0. For orthonormal polynomials, Equation (1.6) = 1. For many applications,

the uncertainty of the QoI may be adequately captured by the mean and variance alone. Higher

order moments can be evaluated, for instance, by quadrature approximations of integrals [67]. The

particular polynomial form of ψj is related to the probability density functions (pdf) of the random

inputs they sample from, denoted by ρ(ξk).

In practice, it is necessary to truncate PCE’s to a finite number of terms. An expansion can

be pared down in a number of ways, but the most straightforward truncation is by highest total

order of polynomial P . In total order truncation, only those terms in the tensor-products of the
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1D basis whose total order is less than p, i.e.,
∑d

k=1 jk ≤ p, are retained. The total number P of

basis functions of order less than p in stochastic dimension d is

P =
(p+ d)!

p!d!
, (1.7)

which results in an expansion of the form:

û(ξ) =
P∑
j=1

cjψj(ξ). (1.8)

In this form the problem of approximating the QoI essentially reduces to the problem of identifying

the PC coefficients cj .

Using the truncated PCE we can easily generate important statistics of the QoI such as the

mean and variance [18]. The mean of Eq. (1.8) is given by:

〈û(ξ)〉 =

〈
P∑
j=1

cjψj(ξ)

〉
=

P∑
j=1

cj 〈ψj(ξ)〉 .

As 〈ψj〉 = 0 for j > 1 , and 1 otherwise from Equation (1.5), this results in

〈û(ξ)〉 = c1. (1.9)

By similar reasoning, one can derive an expression for the variance:

Var (û(ξ)) =

〈
P∑
j=1

c2
jψ

2
j (ξ)

〉
−

〈
P∑
j=1

cjψj(ξ)

〉2

=

P∑
j=1

c2
j

〈
ψ2
j (ξ)

〉
− c2

1 =
P∑
j=2

c2
j

〈
ψ2
j (ξ)

〉
=

P∑
j=2

c2
j , (1.10)

which follows from Equation (1.6). With the appropriate choice of PC basis, and for a sufficiently

smooth û(ξ) (i.e., û contains no discontinuities or severe gradients w.r.t. ξ), a PC expansion

converges to a finite variance u in the mean-square sense as p→∞.

1.3.1 Convergence properties

It has been demonstrated that the convergence rate of Hermite chaos expansions is optimal

and in fact exponential for Gaussian processes [59]. Hermite polynomials often exhibit poor conver-

gence rates when they are used to approximate non-Gaussian processes however. This inspired the
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ρ(ξk) Polynomial Type support

Gaussian Hermite (−∞,+∞)
Gamma Laguerre (0,+∞)
Beta Jacobi [a,b]
Uniform Legendre [a,b]

Table 1.1: Wiener-Askey polynomial chaos with corresponding probability distributions [85].

generalization of the technique to polynomial functionals of other distributions [4] known as Wiener-

Askey polynomials. In [86] the convergence rate for a handful of the Wiener-Askey polynomials

was demonstrated for stochastic processes having exact solutions. Several of the Wiener-Askey

polynomials, including the Hermite and Legendre polynomials, are given in Table 1.1 alongside

their supports. Fig. 1.1 and Fig. 1.2 show the first few polynomials for the Hermite and Legen-

dre bases, respectively, along with their corresponding pdfs. Generalized PCE (gPCE) further

extended these concepts to distributions of arbitrary structure, as in the case where the analytical

form of the distribution is unknown, or is not included in the Wiener-Askey scheme. In this case,

orthogonal polynomials can be constructed numerically to deal with arbitrary probability measure

[86, 80].

1.4 Solving for the coefficients

The main challenge in using the PCE lies in determining the coefficients of the expansion,

c. c, may be computed either “intrusively”, via Galerkin projection [46], or “non-intrusively”, via

sampling based methods. As the name implies, intrusive PC usually requires modifications of the

original deterministic solvers, a task which may be infeasible either due to the inaccessibility of the

numerical solvers, as in the case of legacy codes, or due to the mathematical complexity of rewriting

governing equations. Non-intrusive PC is often more appealing; it treats a deterministic solver as

a black box for which N samples of the random inputs ξ are used to generate realizations of the
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Figure 1.1: (a) The first 5 Hermite polynomials and the (b) Gaussian Distribution.

QoI. The non-intrusive truncated system of equations can be explicitly written in matrix form as
ψ1(ξ1) . . . ψP (ξ1)

...
...

...

ψ1(ξN ) . . . ψP (ξN )


︸ ︷︷ ︸

Ψ


c1

...

cP


︸ ︷︷ ︸

c

=


u(ξ1)

...

u(ξN )


︸ ︷︷ ︸

u

Ψ ∈ RN×P

c ∈ RP×1

u ∈ RN×1

where P represents the total expansion order of our polynomials and N corresponds to the number

of samples of the QoI. The expansion coefficients can be identified via compressive sensing [9, 30,

51, 53], least squares regression [7, 81], or pseudo-spectral methods [84, 34, 25, 23], all of which

represent non-trivial computational expenditures.
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Figure 1.2: (a) The first 5 Legendre polynomials and the (b) Uniform distribution.

1.4.1 Sampling methods - Least squares regression

The PCE system of equations may be solved via `2 minimization (also known as regression)

by solving the following objective function:

c = {arg min
c
‖Ψc− u‖2}. (1.11)

In this expression ‖ · ‖2 denotes the `2 norm. `2 minimization can be thought of as the regression

of the exact solution u(ξ) onto the PC basis. When Ψ is full rank, the solution to c can be found

by solving the normal equation,

(ΨTΨ)c = ΨTu. (1.12)

A unique solution requires N > P realizations of u(ξ). It has been shown that for d > p the

required number of samples for a stable solution is

N ≥ 3pCP logP (1.13)

where C is an absolute constant [48]. N samples may be generated via Monte Carlo style sampling.

Generating N > P evaluations of the QoI may be impractical for complex problems, given that they

are likely to be high dimensional, or require high total order approximations, or both. However,

given sufficient smoothness of u(ξ) with respect to ξ, there is often some sparseness in the PC
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basis, which results in many entries of c being zero (or nearly zero). Using methods borrowed from

the field of compressive sampling, it is possible to exploit this “sparseness” and reconstruct c for

N < P .

1.4.2 Sampling methods - Compressive sensing

Compressive sensing is an important aspect of signal processing concerned with the task of

recovering sparse signals from limited or noisy data. The general idea is that, given an appropriate

basis and a sparsity enforcing solver, many signals are sparse and can be reconstructed with very

few samples [84]. Compressive sensing type methods have been used extensively in the fields of

medical imaging and electrical engineering. In the context of PCE compressive sensing can be used

to solve under-determined systems of equations, for c. Consider the following system

Ψc = u (1.14)

where Ψ, which is referred to here and in signal processing as the measurement matrix, is fat, (i.e.

N < P ). The PC system given in Equation (1.8) can be approximated by

û(ξ) =
∑
j∈S

cjψj(ξ) (1.15)

where S has fewer elements than P . The size of S is referred to as the “sparsity”. Using combina-

torial optimization techniques, compressive sensing seeks to solve the following problem:

P0 = {arg min
c
‖c‖0 : Ψc = u}, (1.16)

wherein ‖c‖0 is defined as the number of non-zero entries in c. In reality, this is an N − P hard

problem, and the cost of determining such a solution using `0 minimization can be prohibitively

expensive. Subsequently, the `0 problem is often approximated by the `1 minimization problem

P1 = {arg min
c
‖c‖1 : Ψc = u}, (1.17)

which can be solved using convex optimization solvers featuring linear programming. It has been

shown that `1 optimization returns an optimal sparse solution as long as certain conditions, such
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as the Restricted Isometry property (RIP) for the measurement matrix Ψ, are met [29, 28, 14]. For

approximately sparse and noisy signals, it is more practical to solve the basis pursuit de-noising

(BPDN) problem

P1,ε = {arg min
c
‖c‖1 : ‖Ψc− u‖2 ≤ ε} (1.18)

where the solution is relaxed by tolerance ε [20]. Here, ε designates the degree to which the observed

data points ξ and u(ξ) are fit, and care must be taken not to over-fit the data. Identification of

an appropriate ε can be crucial to the accurate recovery of coefficients that fit not only u(ξ) (u at

sampled points) but the solution u at sample points yet to be seen. Ideally, ε ≈ ‖Ψcexact − u‖2,

but as cexact is unavailable, it can be estimated using cross-validation techniques. It was shown in

[51] that for d dimensional Legendre polynomials of total order p, the number of samples required

for a stable solution recovery is

N ≥ 3pCS logP (1.19)

where S is the number of dominant coefficients. Given that N in Equation (1.13) is linearly

proportional to P and N in Equation (1.19) is proportional to S, it is evident that compressive

sensing will require fewer samples than least squares for convergence, when S < P .

1.4.3 Sampling methods - Spectral Projection

Yet a third class of methods for estimating the PC coefficients are those that rely on inte-

gration rules. In so called pseudo-spectral methods the QoI is evaluated at abscissa which may be

generated via a multi dimensional quadrature rule. A weighted interpolation strategy is then used

between quadrature points to estimate the volume under the curve. In tensor product quadrature,

abscissa are generated in d-dimensional space by the tensorization of 1-dimensional quadrature

rules.

Solving for PCE coefficients with a quadrature rule is referred to as spectral projection (NISP

for non-intrusive spectral projection). NISP solves for c by requiring that the error between the

QoI and its approximation, u(ξ)−
∑

j cjψj(ξ), be orthogonal to the span of the polynomial basis,
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i.e., 〈
u(ξ)−

∑
j

cjψj(ξ), ψj

〉
= 0 (1.20)

which leads to

cj = 〈u, ψj〉 =

∫
Ξ
u(ξ)ψj(ξ)ρ(ξ)dξ. (1.21)

[84]. The integrals on the right hand side of Equation (1.21) are approximated using an Nq point

quadrature rule where q refers to the number of quadrature points 1...Nq, such as

cj =

∫
Ξ
u(ξ)ψj(ξ)ρ(ξ)dξ =

Nq∑
q=1

u(ξq)ψj(ξ
q)wq. (1.22)

Here, ξ = {ξ1...ξNq} is the set of quadrature points with corresponding weights wq, which are

tensorized versions of the 1-D weights. When utilizing Gaussian quadrature, Equation (1.22) exactly

computes all polynomials less than degree 2Nq − 1 [34]. The computational burden of determining

coefficients in this fashion lies primarily in computing Nq model evaluations. In its most basic

form, tensor product quadratures are isotropic in all directions, i.e., there are an equal number

of tensorized grid points in each stochastic dimension d. Such schemes include Clenshaw-Curtis,

which utilizes abscissa of Chebyshev polynomials, Gauss quadrature , or the most basic trapezoidal

rule approximation. For low dimensional problems, tensorized quadrature rules can be exceedingly

accurate (Gauss quadrature features polynomial accuracy of 2N q − 1, CC polynomial accuracy of

N q − 1 ) [56, 34]. Quadrature rules are highly susceptible to the curse of dimensionality however,

as the most basic form scales like Nd
q . Sparse grid quadrature schemes, such as Smolyak sparse

grids (first introduced by [79]), have been proposed to help reduce the number of required QoI

evaluations. For the Smolyak sparse grid it can be shown that

N ≈ 2p
dp

p!
(1.23)

where q = d + p is a level parameter dictating the sparsity [5, 63]. Also of interest are so-called

adaptive sparse grids, [42] which adapt the number of quadrature points based on the complexity

of the dimension. The Sparse Psuedospectral Approximation Method (SPAM) may offer further
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improvement to sparse grids, which can exhibit unacceptable errors in predicting coefficients of

higher order polynomials [23].

1.5 Motivation

All non-intrusive PCE methods are notably limited by the so-called “curse of dimensionality”.

This phrase, common to the worlds of UQ and optimization, is an allusion to the exponential

dependence of the computational cost of performing iterative analysis on the dimension of the

problem (see Eq. (1.7)). For highly accurate simulations, for which a single evaluation of the QoI

may take minutes to days, sampling enough to form the PCE system of equations may represent a

colossal expenditure. This has motivated the search for improvements to typical PCE techniques

such as multi fidelity methods.

For a given application, the accuracy of a simulation is generally proportional to its compu-

tational cost. It is by this heuristic that one may define low and high fidelity models: namely, those

that are less accurate but are correspondingly less expensive, and those that are more accurate, but

are proportionally more expensive. Multi fidelity methods attempt to leverage the fast convergence

of low fidelity models to help accelerate design/statistical iterations while sparingly sampling high

fidelity models for corrective purposes. The resulting multi fidelity approximation of the QoI may

achieve similar accuracy to a high fidelity model for computational cost of a low fidelity model. A

comprehensive overview of the state of the art is given in [70]. In the niche realm of polynomial

chaos, success has been demonstrated with additive/multiplicative corrections [64, 69], incorpo-

ration of gradient information [68], and other forms of correction functions [74, 33]. This thesis

represents the contribution of two novel techniques to the growing field of multi fidelity PC.

1.5.1 Contributions of this thesis

The first method examined in this thesis is a weighted `1 minimization method which utilizes

a priori information to promote sparsity in the PCE basis. The second method explored is a basis

reduction method, which leverages a low fidelity model to form a spanning basis for a high fidelity
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PCE. Numerical tests on physics based models for a lithium ion battery and an airfoil showcase

the benefits and shortcomings of both techniques.

1.5.2 Bi fidelity weighted `1 minimization

Basic `1 minimization can be further improved with the introduction of a weighting matrix;

this is known as weighted basis pursuit denoising method (WBPDN for short). The WBPDN

objective function is the following:

PW
1,ε = {arg min

c
‖Wc‖1 : ‖Ψc− u‖2 ≤ ε} (1.24)

wherein the weighting scheme can sparsity in c. Here, the coefficients of a low fidelity PCE are

utilized to form W . This method is based on the assumption that a while the exact values of

the PCEs of a high fidelity model and a low fidelity model will differ, the sparsity and relative

contributions of the basis terms will be similar.

1.5.3 Bi fidelity stochastic basis reduction

Using a Karhunen Loeve expansion one can form a spanning basis to the PC basis which

may be significantly smaller in size. Unfortunately, to find such a reduced basis in this fashion still

requires solving the PCE system of equations and may therefore be computationally infeasible for a

high fidelity simulation. Making the assumption that errors between a low fidelity and high fidelity

model in the stochastic dimension are independent of errors in the spatial/temporal dimension,

a reduced basis is formed from the polynomial chaos expansion of a low fidelity model and used

with limited high fidelity samples to form a bi-fidelity approximation. Significant improvements in

accuracy over a high fidelity model alone are observed for all experiments.

With the preceding chapter we hope to have provided an overview of the current state of

the art of polynomial chaos for UQ and motivated the need for multi fidelity PC techniques. The

outline for the rest of this thesis as follows: Chapter 2 details the approach and numerical results of

the weighted `1 method. Chapter 3 expounds upon the basis reduction method and offers numerical
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results as proof of concept. Chapter 4 contains discussion, conclusions, and future work.



Chapter 2

Weighted L1 Minimization

2.1 Introduction

This chapter describes a new method for the recovery of sparse polynomial chaos expansions

(PCEs) of high fidelity simulations via a weighted `1-minimization approach. Weighting is derived

from a priori knowledge of the PC coefficients in the form of a low fidelity model. The weighted

basis pursuit denoising algorithm (WBPDN) is then used with a limited number of high fidelity

samples to yield a bi fidelity approximation of the PC coefficients. Proof of concept is demonstrated

upon two airfoil simulations subject to six stochastic dimensions (one at high Mach number, one at

low), and one lithium ion battery (LIB) simulation subject to 17 stochastic dimensions. Response

prediction accuracies are compared for weighted `1 minimization against both low and high fidelity

solutions using an equivalent numbers of high fidelity samples.

2.2 Compressive Sensing

Compressive sensing is a class of methods concerned with the low-complexity recovery of

signals admitting S sparse representations given a small number of signal samples, i.e. N < P . As

an alternative to regression, truncated PCE is approximated by

û(ξ) =
∑
j∈C

cjψj(ξ) (2.1)
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where C has fewer elements than P , assuming a certain level of sparsity in c. Using combinatorial

optimization techniques, compressive sensing solves for c via the following minimization problem:

P0 = {arg min
c
‖c‖0 : Ψc = u} (2.2)

wherein ‖c‖0 is defined as the number of non-zero entries in c. Solving the `0 minimization system

is an N −P hard problem [13] (the computational equivalent of a sudoku puzzle), and is commonly

approximated by the `1 minimization problem

P1 = {arg min
c
‖c‖1 : Ψc = u}, (2.3)

which has a computationally tractable solution. Equation (2.3) is solved using optimization meth-

ods based on linear programming techniques and is an O(N3) hard problem [16] (a much more

feasible task than solving Equation (2.2)). In seminal works by [15, 16] it has been shown that `1

minimization returns a comparable solution to `0 as long as the signal is sufficiently sparse and Ψ

satisfies the Restricted Isometry property (RIP) [39]. For a given measurement matrix Ψ ∈ RN×P

the δS = δS(Ψ)th RIP parameter of Ψ is defined as the smallest quantity δ ∈ (0, 1) that satisfies

(1− δ)‖c‖22 ≤ ‖Ψc‖22 ≤ (1 + δ)‖c‖22 (2.4)

for all S-sparse vectors c ∈ R1×P . In essence, the RIP requires that all sparse vectors in Ψ form an

approximately orthonormal basis [89]. Several theorems exist to describe the relationship between

the RIP and the likelihood of exact recovery of S-sparse signals via `1 minimization. For further

information the reader is referred to [39].

Each `p space (`2, `1, and `0, etc.) can be geometrically visualized as a volume [50] in d

dimensional space, as in Fig. 2.2. Norm minimization algorithms effectively contract or expand

the contour of the `p space until reaching a solution that satisfies a given system of equations. The

choice of norm influences the set of possible solutions - which may or may not include the sparsest

c. As p decreases, the corresponding `p volume decreases, thereby reducing the potential contact

points with a given solution. Smaller values of p help to promote sparsity; in the instance of the

`0 ball the only possible solutions lie on one of the axes. However, `p norm minimization for p < 1
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Figure 2.1: A comparison of the different `p norms of c in three dimensions.

is strongly N − P hard [40]. As such the `1 or `2 norms are generally looked to for solving large

systems of equations. One possible recourse to this dilemma is to weight the `1 norm. Weighting the

`1 norm allows us to further influence the set of possible solutions while still employing time-tested

`1 minimization algorithms.

2.3 Weighted BPDN

In reality, many signals are noisy or may be only approximately sparse. For these types of

problems it is more appropriate to solve the Basis Pursuit De-Noising (BPDN) problem:

P1,ε = {arg min
c
‖c‖1 : ‖Ψc− u‖2 ≤ ε}. (2.5)

The minimization of ‖c‖1 promotes sparsity in c by reducing the number of non-zero entries, while

at the same time satisfying the relationship u = Ψc by ‖Ψc−u‖2 ≤ ε within a prescribed tolerance.

The tolerance, ε, designates the degree to which the observed data points ξ and u(ξ) are fit, and

care must be taken not to over-fit the data. Identification of an appropriate ε can be critical in

accurately recovering c.

Typical BPDN algorithms tend to punish larger terms in c more heavily than smaller terms

in order to minimize the ‖c‖1 term. This can hinder the recovery of an optimally sparse signal as

more small coefficients may be retained than necessary. It has been shown that the introduction of

a weighting matrix to the BPDN problem can further enhance sparsity by deforming the `1 ball.

An illuminating description of this deformation for a generic signal can be found in [35] and it

is adapted here for the PCE problem in Fig. 2.2. The weighted BPDN objective function is the
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(a) (b) (c)

Figure 2.2: Recovery of a sparse c0 via standard and weighted `1 minimization. (a) The signal,
c0 ∈ R3 has a sparsity of 1 (i.e., has one non-zero entry) and therefor exists as a point on one
of the axes of the `1 ball. Assuming our system is under-determined, (u contains two or fewer
measurements) Ψ has a nullity of 1 (represented by the red line). Any point along this line satisfies
ΨC = U . It can be seen in (b) that there exists c 6= c0 for which ‖c‖1 < ‖c0‖1, resulting in
the algorithm returning a non-sparse c. Weighting the `1 term, as in (c), reduces the size of the
solution space, enforcing c 6= c0 for all ‖Wc‖1 < ‖Wc0‖1, and thereby increasing the likelihood
of returning a sparse c.

following:

PW
1,ε = {arg min

c
‖Wc‖1 : ‖Ψc− u‖2 ≤ ε}, (2.6)

where W is a diagonal weighting matrix. A number of schemes for constructing the W have

been suggested in the literature, but fundamentally, W is intended to steer the algorithm towards

one solution or another. Subsequently, the weights must be selected with great care, either using

theoretical analysis, or a priori information. Selecting the weights to be inversely proportional to

the expected signal entries, as in

wj = (cj)
−1, (2.7)

enforces a more “democratic” punishment of the entries of c, as large entries are effectively de-

creased, and smaller entries effectively increased.

Various formulations forW have been proposed including iterative re-weighting ([35, 19, 88]).

Unfortunately, such schemes can be prohbitively expensive, as they require iterative sampling of

the `1 solving algorithm. Some success has also been shown using theoretical guarantees on the

decay of coefficients [52]. Such methods tend to be very problem specific however. The remainder
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of Chapter 2 is devoted to the exploration of the use of a priori information about the decay of the

coefficients using a low fidelity PCE, known as the multi fidelity WBPDN.

2.4 Multi fidelity WBPDN

In the multi fidelity WBPDN, the entries of the weighting matrix, W , are given by

wj = (cLj + δ)−1 (2.8)

where cLj is the jth PC coefficient of a low fidelity model. Forming the weighting matrix in this

way forces the recovered signal to have a similar sparsity to cL. The locations of non zero entries

are retained, at the same relative magnitudes, but the exact values of the PC coefficients will not

be the same in cH and cL. The introduction of δ serves two purposes: 1) it ensures that there is

no division by zero, and 2) it sets a limit for the smallest coefficient that will be retained. If δ is

set to be a fraction of the largest low fidelity coefficient,

δ = δw max(cL) (2.9)

than all coefficients less than this are excluded. Studies have shown that the WBPDN method is

somewhat robust to the choice of δw [35] and it was set to 1e− 3 for all studies after a simple cross

validation study (detailed in Appendix A). Doing so effectively precludes all coefficients smaller

than 1e − 3 × max(cL) from the resulting solution. The bi fidelity system of equations is then

formed with limited numbers of high fidelity samples and solved via the multi fidelity WBPDN

objective function as

PW
1,ε = {arg min

c
‖Wc‖1 : ‖ΨHc− uH‖2 ≤ ε}. (2.10)

Here, ΨH ∈ RNH×P is the measurement matrix evaluated at NH high fidelity samples and uH ∈

RNH×1. The Spectral Projected Gradient algorithm SPGL1 package for MATLAB R© was employed

to solve all BPDN/WBPDN problems. The tolerance on the `2 residual was set to ε = 1e − 3 ×

norm(u) for all tests.
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2.5 Test Problems

Three benchmark problems were used to explore the multi fidelity WBPDN method. The

first and second studies concern NACA0012 airfoils, one at low Mach number, one at a higher

range. Both were subject to uncertainties in Mach number, angle of attack, and geometry. The

third study concerns a lithium ion battery (LIB) simulation, subject to 17 uncertain parameters.

2.6 NACA0012 airfoil

The NACA airfoil series is a family of airfoils whose geometry is dictated via analytical

equations that describe the thickness and curvature of the geocentric centerline. The NACA 4 digit

series are defined by 4 parameters: maximum camber m in percentage of the total airfoil chord

length, the maximum camber p as a percentage of the chord length, and maximum thickness t as

a percentage of the chord length. Airfoil performance is primarily measured through CD, the drag

coefficient and CL, the lift coefficient. Both of these forces results from the pressure distribution

over the surface of an airfoil [72], a quantity which is captured by the pressure coefficient Cf . For

low speed flow, Cf can be written as

Cf =
P − P∞
1/2ρU2

(2.11)

where P is static pressure, P∞ is the free stream pressure, U is free stream velocity and ρ is fluid

density.

2.6.1 Mach number M

Mach number is a dimensionless variable that inversely relates the flow velocity U past an

object to the speed of sound,c as:

M =
U

c
. (2.12)

Mach number is primarily used to determine the degree to which a flow can be treated as incom-

pressible. For M < 1, subsonic flow, compressibility can be ignored. At M = 1 a flow is said be



20

transonic, and compressibility effects become very important. At M > 1 a flow is said to be su-

personic (or hypersonic above M > 3) and compressible conditions and shock waves are generated

by the object. Two ranges of M were tested - high and low M . In both cases M was treated as a

uniformly distributed random variable.

2.6.2 Angle of attack α

The angle of attack refers to the angle between the chord of an airfoil and the direction of

the surrounding flow of fluid around it. The lift coefficient of an airfoil is a direct function of α,

and therefore is very closely related to boundary layer separation, which may be unpredictable and

difficult to simulate accurately. Here, α is treated as uniformly distributed.

2.6.3 Geometrical Parameters

Several geometrical parameters are also incorporated in the stochastic model. Camber is a

measure of the asymmetry between the top and bottom surfaces of an airfoil. Effectively, it gives

the thickness above the meridian line that divides the top and bottom surfaces. Adding camber

(asymmetry) to an airfoil generally increases the lift coefficient. Maximum camber (m) is given by

m

c
× 100 = %camber, (2.13)

and is here used as a uniformly distributed random variable. Chord length c, which refers to the

distance between the leading edge and trailing edge of an airfoil, is used as a random variable, as

is the location of maximum camber as a fraction of chord length, p, and the maximum thickness

as a fraction of chord length t. t is given by

t

c
× 100 = %thickness. (2.14)

These parameters can be seen in Fig. 2.3. A summary of the different inputs and their distributions

is given in 2.6.3. Given that all inputs are uniformly distributed, tensorized Legendre polynomials

of each variable were used in forming the PCE.
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Figure 2.3: NACA0012 airfoil parameters.

2.7 Numerical Tests

High and low fidelity commercial CFD codes were used to simulate the pressure coefficient,

Cp, over the surface of a NACA0012 airfoil as function of the 6 random variables. The low fidelity

model used was XFOIL [32], a coupled inviscid/viscous solver. It features rudimentary transition

and turbulence models, boundary layer equations, and is generally known to be accurate only in

the subsonic regime of flow. A given analysis took < 1 second. The high fidelity model used was

FLUENT R©, a finite volume CFD code, which uses the Spallart-Almaras turbulence model and a

NASA mesh with boundary layer resolution. In contrast to XFOIL, a given analysis could take

several minutes. The pressure profile was measured at 128 grid points along the surface of the

airfoil for 1200 total ensembles of random inputs for both high and low fidelity studies. This study

was conducted for two different Mach number ranges, one at relatively low Mach number and one

at relatively high Mach. These shall be referred to as airfoil Tests 1 and 2 respectively.

The performance of the multi fidelity WBPDN method was contrasted to a reference solution,

a low fidelity solution, and a high fidelity solution with a limited number of samples. The low fidelity

PCE approximation of the QoI, uL, was generated using the regular BPDN method with all available

low fidelity samples (NL = 1200). A high fidelity model, uH , was also generated with the regular

BPDN using a number of high fidelity samples, NH , which is considered insufficient to return an

accurate solution. Also computed was a reference PCE, which was formed using all available high

fidelity samples, denoted as uRef . In these studies uRef is held as the gold standard for accuracy

among the available models. It is used only for comparison purposes, so as to demonstrate the
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Random Input Nominal Value Distribution

high M 0.2 Uniform, [0.1, 0.3]

low M 0.4 Uniform, [0.3, 0.4]

α 0◦ Uniform, [-3, 3]

m 0.2 Uniform, [0, 0.4]

c 1.125 Uniform, [0.75, 1.5]

p 0.4 Uniform, [0.3, 0.5]

t 0.125 Uniform, [0.1, 0.15]

Table 2.1: List of random airfoil inputs used in this study.

efficacy of each method. The multi fidelity WBPDN method was then used to generate a bi fidelity

approximation, uB. Given that the computational cost for a low fidelity sample NL is negligible

compared to that for high fidelity sample, all metrics are given as a function of NH . The total

expansion order in each case was p = 5, resulting in 462 basis terms per expansion (Ψ ∈ RN×462).

The mean can easily be generated from the PCE as:

µu = c1. (2.15)

The variance can be generated from:

σ2
u =

P∑
j=2

c2
j . (2.16)

Samples of the mean Cp profile are shown in Fig. 2.4 and Fig. 2.5 for the low and high

M airfoil problems, respectively. The two bundles of curves in each plot represent a superposition

of the pressure coefficient on the upper and lower surfaces of the airfoil; this is common practice

for showcasing Cp. Each bundle contains 4 lines: the reference mean, the high fidelity mean for

low NH , the low fidelity mean and the bi fidelity mean. Black denotes the reference solution,

which is the PC approximation of the high fidelity model using all available high fidelity samples

(NRef = 1200). Green corresponds to the low fidelity approximation, uL. Red represents the high

fidelity PC approximation formed using low NH samples. Blue represents the bi fidelity solution,

which uses high and low fidelity samples (NH = 10 and NL = 1200). Upon closer inspection it

can be seen that the low fidelity model (green) in Fig. 2.4 better predicts the reference solution

than Fig. 2.5. This makes sense given that the low fidelity model would struggle to capture the
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Figure 2.4: (a) A sample mean profile for NH = 10 for airfoil Test 1 alongside (b) a close up of
mean for airfoil Test 1.

nuances of Cp as M increases. This trend is also observable in Fig. 2.6 and in Fig. 2.7 which show

sample profiles of the variance of Cp for the low and high M tests respectively. The high fidelity

model, which features very low NH , seems to give the poorest approximation of the reference

solution. The mean and variance profiles shown in Fig. 2.4, Fig. 2.5, Fig. 2.6 and Fig. 2.7 were

generated using 100 ensembles of NH = 10 and averaged. The discrepancy between models was

then quantified using the following metrics.

2.7.1 Metrics

The quality of approximation was characterized by two metrics, namely, the normalized `2

error of the mean with respect to the reference mean

errµ =
‖µRef − µ‖2
‖µRef‖2

(2.17)

and the normalized `2 error of the variance with respect to the reference variance

errσ2 =
‖σRef 2 − σ2‖2
‖σRef 2‖2

. (2.18)

The mean and variance as given in Equations (2.17) and (2.18) were generated for 100 ensembles

of NH samples and averaged. This was done for a range of NH .



24

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

x

C
p

 

 
B
H
L
Ref

(a)

0 0.05 0.1 0.15 0.2

−0.55

−0.5

−0.45

−0.4

−0.35

−0.3

−0.25

−0.2

x

C
p

 

 
B
H
L
Ref

(b)

Figure 2.5: (a) A sample mean profile for NH = 10 alongside (b) a close up of the mean for airfoil
Test 2.

2.7.2 Results

The average relative errors in the mean for airfoil Test 1 and 2 as a function of NH = 10 : 110

can be seen in Fig. 2.8 and Fig. 2.9, respectively. Evaluations of the low fidelity model are

computationally trivial compared to the high fidelity model, so all quantities are plotted as a

function ofNH .It can be seen in both cases that the high fidelity model performs poorly in predicting

the mean initially but overtakes the bi fidelity method around NH = 60. In both cases, the variance

in the mean error is consistently lower for the WBPDN method than the high fidelity model. The

bi fidelity error plateaus around NH = 60.

The relative errors in variance as a function of NH = 10 : 110 for airfoil Tests 1 and 2 can be

seen in Fig. 2.10 and Fig. 2.11. Again, it can be observed that the average relative error in variance

of the low fidelity model is lower for the low M range, indicating that higher M is problematic for

the low fidelity solver. The average error in variance is consistently lower for the entire range of

samples than the high fidelity model. Though it is not explicitly observed here, it is expected and

inevitable that the high fidelity model will eventually converge to the bi fidelity approximation in

accuracy.
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Figure 2.6: (a) A sample variance profile for NH = 10 alongside (b) a close up of the variance for
airfoil Test 1.

2.8 Lithium Ion Battery Model

The next example under consideration is a stochastic, physics based model for a Lithium-Ion

Battery (LIB). LIBs are popular for both consumer and commercial purposes as they are known for

their high energy density, good temperature range, low memory effect and long battery life. In the

particular battery model considered here, the anode is made from Lithium-Cobalt oxide LiCoO2.

The 2 main components of a LIB are the electrolyte and the electrodes. During discharge, oxidation

occurs at the anode and yields electrons to an external circuit, while the LiC6 cathode is reduced

by accepting the electrons back. Separating the two electrodes is an electrolyte. When the battery

is being charged Li+ ions migrate from the anode to the graphite layers of the cathode. A schematic

of a LI battery is shown in Fig. 2.12.

The fundamental metric for characterizing remaining battery life of a LIB is the distribution

of Li ions between anode and cathode, referred to as the liquid ion concentration, C. The discharge

cycle of a LiC6/LiCoO2 cell was simulated as a function of 17 uncertain input parameters, listed in

Fig. 2.8.7, at a discharge rate of 4C. The primary QoI studied was the liquid phase concentration

at a time snapshot of t = 2000s. Samples of the mean and variance of C for reference, high, low,

and bi fidelity methods, as described in the previous section, can be seen in Fig. 2.13.
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Figure 2.7: (a) A sample variance profile for NH = 10 alongside (b) a close up of the variance for
airfoil Test 2.

All model parameter ranges given are unique to the LiC6/LiCoO2 cell. Due to limited data

in the literature regarding the distributions of the parameters some assumptions had to be made

about their form. C was simulated using Newman’s model on a fine and coarse mesh, which are

considered the high and low fidelity models, respectively. The interested reader is directed to

[47] for a detailed description of the simulation, as well as a discussion of contemporary methods

for incorporating uncertainty into LIB simulations. The following section details the stochastic

parameters used. Exact numerical values can be found in table 2.8.7.

2.8.1 Porosity ε

Porosity is the fraction of the volume of the pores to the total volume in the battery. There

tends to be an inverse relationship between porosity and capacity [78]. Based on experimental data,

uniform distributions are assumed for the porosity at the anode, cathode, and separator.

2.8.2 Bruggeman coefficient, brugg

A volume averaged formulation is often used in porous electrode theory to describe the

position and shapes of pores and particles, as opposed to specifying them exactly [82]. For the

anode, cathode, and separator, uniform distributions were selected.
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Figure 2.8: (a) The average of the normalized error of the mean of errµ and (b) the variance of
errµ for airfoil Test 1.

2.8.3 LI+ transference number, t0+

The transference number defines the portion of current carried by the LI+ ions during dis-

charge of the battery. The transference t0+ is positively correlated with battery power. A uniform

distribution was assumed.

2.8.4 Diffusion coefficients, D and Ds

The salt diffusion coefficient in the liquid phase, D, characterizes the friction forces between

the ions and the solvents [66]. It is critical to have a high D to restrict salt concentration gradients,

which impede performance. Salt diffusion coefficient is positively correlated to battery power. We

assume it to have a uniform distribution. Also considered is the Diffusion coefficient of the solid, Ds

for all three battery sections. Ds impacts the performance of LIBs by impacting the intercalation

flux. For the anode, cathode, and separator, uniform distributions were selected.

2.8.5 Electronic conductivities, σ and σs

The capacity of LIBS is partially a function of the solid phase electronic conductivity σs [21].

There is limited available data about the distribution of σs, as it is often treated as a constant
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Figure 2.9: (a) The average of the normalized error of the mean of errµ and (b) the variance of
errµ for airfoil Test 2.

in the literature. We assume it to be normal distributed. The conductivity of the electrode

material is given by σ. There is a positive correlation between the battery capacity and the solid

phase electronic conductivity [47]. Both the anode and cathode were selected to be uniformly

distributed.

2.8.6 Reaction rate constant k

The reaction rate constant k can be calculated by known the initial state of the battery [71].

There is a positive correlation between reaction rate constant and reversibility of the battery cycle.

We assume its distribution to be uniform for anode, cathode, and separator.

2.8.7 Additional parameters

Also examined were some geometrical uncertainties, such as the lengths of the electrodes and

separator. All parameters and their distributions are summarized in Table 2.8.7. Note that all

parameters featured uniform distributions so Legendre polynomials were used in their PCE’s. A

total expansion order of P=3 was used resulting in 1140 basis terms in the expansion.
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Figure 2.10: (a) The average of the normalized error of the variance of errσ2 and (b) the variance
of errσ2 for airfoil Test 1.

Random Input Nominal Value Distribution

εa 0.485 Uniform, [0.46, 0.51]

εs 0.724 Uniform, [0.63, 0.81]

εc 0.385 Uniform, [0.36, 0.41]

brugga 4 Uniform, [3.8, 4.2]

bruggs 4 Uniform, [3.2, 4.8]

bruggc 4 Uniform, [3.8, 4.2]

t0+ 0.363 Uniform, [0.345, 0.381]

D [m2 · s−1] 7.5× 10−10 Uniform, [6.75, 8.25] ×10−10

Ds,a [m2 · s−1] 3.9× 10−14 Uniform, [3.51, 4.29] ×10−14

Ds,c [m2 · s−1] 1× 10−14 Uniform, [0.9, 1.1] ×10−14

σa [S ·m−1] 100 Uniform, [90, 110]

σc [S ·m−1] 100 Uniform, [90, 110]

ka [m4 ·mol · s] 5.03× 10−11 Uniform, [4.52, 5.53] ×10−11

kc [m4 ·mol · s] 2.334× 10−11 Uniform, [ 2.10, 2.56] ×10−11

La [µm] 80 Uniform, [77, 83]

Ls [µm] 25 Uniform, [22, 28]

Lc [µm] 88 Uniform, [85, 91]

Table 2.2: List of random LIB inputs used in this study.

2.9 Numerical tests

PC approximations of C were generated using the high fidelity model (for limited NH),

low fidelity model, reference model and bi fidelity model. Using Equation (2.17), the average of

the relative error in mean as a function of NH can be seen in Fig. 2.14 alongside the variance
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Figure 2.11: (a) The average of the normalized error of the variance of errσ2 , and (b) the variance
of errσ2 for airfoil Test 2.

of the same quantity. The average of the relative error in variance, given in Equation (2.18),

along with the variance of this quantity can be seen 2.15. Just as in the airfoil examples, the

multi fidelity WBPDN method outperforms the high fidelity model for low NH in predicting the

reference solution. By NH = 60 however, the high fidelity model outperforms the bi fidelity method

in predicting the mean. However, the bi fidelity method continues to outperform the high fidelity

model in predicting the variance until NH = 180.

2.10 Discussion

It was observed in all test cases that the multi fidelity WBPDN method outperforms the low

fidelity model and the high fidelity model in predicting the reference mean and variance. It also

tends to do so with less variance than the high fidelity model. The bi fidelity method obviously

shines in predicting the variance above the mean. In all three test cases the high fidelity model

tends to outperform the bi fidelity model around NH = 60 in predicting the mean, yet the bi fidelity

prediction of the variance continues to outperform well past that point in all cases. This could be

due to the fact that the bi fidelity model reproduces the overall contributions of the coefficients

without being particularly accurate with respect to any single coefficient. Subsequently, the mean,
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which is calculated from the first coefficient in the expansion, might be more obviously impacted

by these discrepancies. The variance however, which is calculated as

σ2
u =

r∑
i=1

c2
i (2.19)

and resembles a norm itself, may be more robust to small discrepancies among coefficients.
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Figure 2.13: (a) A sample of the mean and (b) variance profiles as predicted by uH (NH = 30),
uL, uBi, and uRef for the LIB model.
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Figure 2.14: (a) The average of the mean error and (b) the variance of the mean error for LIB
model.
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Figure 2.15: (a) The average of the variance error and (b) the variance of the variance error for
LIB model.



Chapter 3

Stochastic Reduced Basis Method

3.1 Introduction

This chapter explores a bi fidelity method for approximating a high fidelity quantity of

interest (QoI) with a low-dimensional manifold of polynomial chaos (PC) basis functions. The low-

dimensional manifold is identified using principle component analysis (PCA) of the nodal covariance

of a low fidelity model. This method relies on the assumption that errors in the stochastic space

are independent of physics-based errors and therefore a good approximation of the covariance

can be obtained using a low fidelity model. Analysis of the benchmark problems introduced in

Chapter 2 indicate greater returns in accuracy over a high fidelity PCE for an equivalent number

of samples.

3.2 Model Reduction

The objective of Reduced Order Modeling (ROM) is to obtain a parsimonious description

of multivariate data. Principal Component Analysis (PCA) is a classical dimension reduction

technique that transforms a set of observations of correlated variables into an orthogonal basis of

linear uncorrelated variables. PCA can be thought of as revealing the internal structure of data

in a way that best captures the variance of the data [54]. PCA appears under such monikers

as Proper Orthogonal Decomposition (POD) and is closely related Singular Value Decomposition

(SVD). The PCA basis is identified via eigenvalue decomposition of the nodal covariance matrix of

the QoI. It has been shown in multiple studies that considering only a few basis functions can result
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in a ROM that accurately approximates the QoI. PCA based model reduction has been applied

with much success to fluids problems, [75, 11], which tend to be high dimensional in nature and

require model reduction to eliminate degrees of freedom. Closely related to PCA is the Karhunen

Loeve expansion (KLE), a form of spectral decomposition for stochastic processes. The KLE uses

principle component analysis to form a reduced uncorrelated basis from the nodal covariance of

the solution field of the QoI. The KLE provides an optimal representation of u(x) in that, for a

given M -term expansion truncation, the mean squared error of the approximation is minimized as

compared to any other potential basis. It is leveraged here to form a reduced basis which spans

the PCE basis and will ultimately require fewer evaluations of a potentially expensive QoI to solve.

The mathematical formulation of the KLE follows.

3.3 Karhunen - Loeve Expansion

To form the KLE, eigenvalue decomposition is performed on the nodal covariance of the

solution field of the QoI. Consider the following spectral representation of the QoI vector, u = u(x):

u(x, ξ) = 〈u(x)〉+
∞∑
i=1

(u(·, ξ)− 〈u(x)〉φi(x)), φi(x). (3.1)

Here, {φi(x)} is an orthonormal basis with inner product defined by 〈·, ·〉. The spatial variable is

given by x ∈ RK×1. Because (u(·, ξ)− 〈u(x)〉 , φi(x)) is a random variable, it permits the following

representation:

(u(x, ξ)− 〈u(x)〉 , φi(x)) =
√
λiηi(ξ), (3.2)

where ηi is a zero mean random variable with unit variance and
√
λi is a normalizing constant.

This basis and normalizing constant are found from the covariance matrix of u(x, ξ), R. Because

R is positive semi-definite it can be restructured in terms of a sequence of positive eigenvalues λi

with corresponding eigenfunctions φi(x). φi(x) and λi are revealed by eigenvalue decomposition of

Rφi(x) = λiφi(x). (3.3)
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The covariance R of u(x, ξ) can easily be estimated from a polynomial chaos expansion as:

R(x1, x2) =

P∑
j=2

cj(x1)cj(x2), (3.4)

where cj are the PCE coefficients.

The eigenvalues and eigenvectors in Equation (3.3) are then used as basis functions

u(x, ξ) = 〈u(x)〉+

∞∑
i=1

(u(x, ξ)− 〈u(x)〉 , φi(x)), (3.5)

which yields

u(x, ξ) = 〈u(x)〉+
∞∑
i=1

√
λiηi(ξ)φi(x). (3.6)

The expansion in 3.6 is known as the KLE. For most practical applications, the solution field is

discrete. Subsequently, the KLE is a finite expansion of at most K terms, the size of the solution

field x. The magnitude of the eigenvalues (λk) are indicative of the relative contributions to the

variance along principle orthogonal axes. Based on the ordinarily rapid decay of λk the KLE is

truncated to r terms. One heuristic for truncation is

α =

∑r
k=1 λk∑K
k=1 λk

, (3.7)

where α represents the percentage of eigenvalue data captured by an r term truncation, out of the

total available eigenvalues K.

The formation of the KLE requires the covariance of the solution u(x, ξ). Generating the

solution space of a high fidelity QoI may be prohibitively expensive. If, however, it is assumed that

errors in the stochastic space are independent of physics-based errors (discretization, modeling

assumptions, etc.), the KL random variables can be estimated from a low fidelity solution uL, [2].

Once this is performed, the new basis is rewritten as a linear combination of PCE functionals.

3.4 Projection onto the PCE basis

The optimal basis set ηi can be rewritten as a linear combination of PC polynomials by

equating the KL expression of u(x) with its PC expression

P∑
j=1

cLj (x)ψj(ξ) = 〈u(x)〉+

r∑
i=1

√
λiηi(ξ)φi(x). (3.8)
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Subtracting the mean from both sides of (3.8) yields

P∑
j=2

cLj (x)ψj(ξ) =

r∑
i=1

√
λiφi(x)ηi(ξ). (3.9)

The new basis, ηi, is solved for from

ηi(ξ) =

P∑
j=2

〈
φi(x), cLj (x)

〉
√
λi

ψj(ξ). (3.10)

is effectively a linear transformation of the PCE basis with r terms. When λi decays quickly r � P .

The bi fidelity system can be constructed with the new reduced basis as

uH(x, ξ) ≈ uB(x, ξ) =

r∑
i=1

cBi (x)ηi(ξ) (3.11)

where the bi fidelity coefficients, cBi , are solved for via regression. In matrix form Equation (3.11)

can be written as 
1 η1(ξ1) . . . ηr(ξ

1)

...
...

...

1 η1(ξN
H

) . . . ηr(ξ
NH

)


︸ ︷︷ ︸

ΨB


c1(x)

...

cr+1(x)


︸ ︷︷ ︸

c

=


u(x, ξ1)

...

u(x, ξN
H

)


︸ ︷︷ ︸

uH

ΨB ∈ RN
H×r+1

c ∈ Rr+1×1

uH ∈ RN
H×1.

Given that r � P , this system of equations requires far fewer evaluations NH of the high fidelity

QoI, uH , to solve.

Proof of concept was first demonstrated in [2] (2007) when the basis reduction method was

performed on an intrusive PCE system of equations. More recently, a reduced basis orthogonal

non-intrusive PCE method was used for fluids problems with stochastic geometry [26]. In this

study the low and high fidelity models were mesh refinements of the same solver. The method

examined here is similar to [26]; however, here we show the viability of the method when the high
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and low fidelity models are two distinct solvers (XFOIL and FLUENT R©). A lithium ion battery

(LIB) model is also studied, wherein the low and high fidelity models are different meshes of the

same solver.

3.5 Numerical Tests

The basis reduction method was applied to two airfoil simulations (one at low M , one at

high) and a lithium ion battery (LIB) simulation. The quantity of interest for the airfoil problems

is the pressure coefficient Cp along the surface of the foil. For the LIB study, the quantity of

interest was the liquid concentration C across the battery at a snapshot of t = 2000s. The basis

reduction method was used to generate a PC approximation to the high fidelity model, which shall

be denoted by uB. Also computed was a high fidelity PCE which will be referred to as uH , which is

under-sampled. A low fidelity PCE, formed using all available low fidelity samples will be referred

to as uL. A reference PCE, generated by extensively sampling the high fidelity model, is denoted

as uRef , and it is the gold standard against which all other models are compared. The mean of the

reference, low and high fidelity models at a given point can be estimated from the PC expansion

as

〈u〉 = c1. (3.12)

The variance σ can be calculated from

σ2
u =

P∑
j=2

c2
j . (3.13)

The mean and variance of the bi fidelity model are similarly calculated to be:

〈u〉 = c1 (3.14)

and

σ2
u =

r∑
i=1

c2
i . (3.15)

The two main metrics used to evaluate performance for these methods are the mean and
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variance of normalized error between a given method and a reference solution as given by

errµ =
‖µRef − µ‖2
‖µRef‖2

(3.16)

and

errσ2 =
‖σRef 2 − σ2‖2
‖σRef 2‖2

(3.17)

respectively. The variance of both quantities given in Equation (3.16) and Equation (3.17) was also

analyzed. Mean and variance here refer to ensemble mean and variance, as each experiment was

repeated 100 times for a given number of high fidelity samples, NH .

Also examined was the truncation rank of the approximation. Table 3.5 shows α, which is

calculated from Equation (3.7) and represents the percentage of eigenvalue data captured by an r

term truncation, out of the total available eigenvalues. Any r > 10 for both airfoil simulations and

for the LIB simulation was found to result in α = 1.

r 1 2 3 4 5 6 7 8

AF Test 1 86.44% 93.40% 98.76% 99.49% 99.82% 99.92% 99.98% 99.99%

AF Test 2 86.20% 93% 98.60% 99.42% 99.77% 99.88% 99.98% 99.99%

LIB 96.31% 98.72% 99.35% 99.75% 99.87% 99.94% 99.97% 99.99%

Table 3.1: Table of relative error in eigenvalue data as a function of rank r.

3.5.1 Airfoil Results

The average relative errors in the mean as a function of NH = 20 : 120 and rank r = 1, 3, 8, 12

for airfoil Tests 1 and 2 can be seen in Fig. 3.1 and Fig. 3.2. Fig. 3.3 and Fig. 3.4 shows statistics

of the variance. It is evident that increasing the rank of approximation causes an improvement in

approximation of the bi fidelity model; however, a plateau is observed and around errµ ≈ 1e−3 for

the mean for both tests, and a plateau for errσ2 ≈ 1e− 2.5. Airfoil Test 1 performs slightly better,

as might be expected given that the low fidelity model better approximates the reference model for

low M . Over the range of NH selected, the high fidelity model never offers an improvement over

r = 8 or r = 12, either in predicting the variance, or the mean, or in the variances of the errors
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Figure 3.1: (a) The average of the error of the mean and (b) the variance of the error of the mean
for airfoil Test 1.

of these quantities for airfoil Test 1. For airfoil Test 2, the high fidelity model only improves upon

these quantities at the very end of our range of NH .

3.5.2 LIB Results

The statistics of the mean and variance of C for the LIB can be seen in Fig. 3.5 and Fig.

3.6. As with both airfoil problems, it is evident that the rank 8 and rank 12 approximations

offer improvement over the high fidelity model for most of NH in predicting the mean. What is

somewhat surprising is that the rank 8 approximation actually outperforms slightly the rank 12

approximation in predicting the variance. This is indicative that there may be an optimal rank

of approximation, above which errors are reintroduced. An examination of the eigenvalues of the

covariance matrix may help to shed light on this phenomena.

3.6 Discussion

The efficacy of the basis reduction method can be partially understood by examining the

decay of the eigenvalues of the covariance matrices (low, high, and reference models). The more

similar the decay of the eigenvalues of the low fidelity model to the eigenvalues of the reference

model, the more accurate the bi fidelity approximation will be. As was seen in both airfoil problems,
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Figure 3.2: (a) the average of the error of the mean (b) the variance of the mean error for airfoil
Test 2.

the rank 8 and 12 approximations consistently outperformed the high fidelity model, with the rank

12 performing best. Fig. 3.7 shows the first 8 eigenvalues of the airfoil models for the reference

model, the high fidelity model and the low fidelity model for NH = 10. It can be seen that the low

fidelity model does a much better job in predicting the eigenvalues of the covariance of the reference

model than the high fidelity model. For the LIB simulation however (eigenvalues shown in Fig.

3.8), the low fidelity model captures well the first few eigenvalues, but by the 5th eigenvalue no

longer obviously outperforms the high fidelity model. As the variance is calculated using (3.15) the

addition of more nodes will impact the accuracy of the variance, but not necessarily the accuracy

of the mean, which is based only on the first coefficient. It seems likely that there is an optimal

range of r, above which there is a reintroduction of low fidelity modeling errors. As this is likely

problem specific, optimal r may be non-trivial to determine.
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Figure 3.3: (a) The mean variance and (b) the variance of the variance for airfoil Test 1.
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Figure 3.4: (a) The average of the error of the variance and (b) the variance of the variance for
airfoil Test 2.
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Figure 3.5: (a) The average error of the mean and (b) the variation of the error of the mean for
LIB model.

50 100 150 200

10-2

10-1

100

A
ve

ra
ge

 r
el

at
iv

e 
er

ro
rs

 in
 v

ar
ia

nc
e

(a)

50 100 150 200

10-4

10-3

10-2

va
ria

nc
e 

of
 r

el
at

iv
e 

er
ro

r 
in

 v
ar

ia
nc

e

(b)

Figure 3.6: (a) The average error of the variance and (b) the variance of the error in predicted
variance for LIB model.
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Figure 3.7: (a) Normalized eigenvalues for airfoil Test 1 (b) and airfoil Test 2.
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Figure 3.8: Normalized Eigenvalues of the LIB model for NH = 30.



Chapter 4

Conclusion

4.1 Summary

This thesis presented two multi fidelity techniques for efficiently generating PC representa-

tions of high fidelity quantities of interest. A weighted `1 minimization method was employed to

promote sparsity in the PCE of a high fidelity model, thereby decreasing its computational cost. A

stochastic basis reduction method was employed to generate a smaller basis which could be used in

lieu of the full PCE basis, resulting in fewer required evaluations of the potentially expensive QoI.

These two methods were demonstrated upon three quantities of interest: the pressure coefficient

profile of two NACA0012 airfoil simulations (one at high Mach number, one at low) which utilized

two different solvers (XFOIL and FLUENT) for high and low fidelity approximations, and the

liquid phase concentration of a LIB, wherein high and low fidelity models were generated via mesh

refinement of the same solver. It was found in all cases that both methods offered improvement

in predicting the mean and variance of a reference solution as compared to a high fidelity solution

for an equivalent number of high fidelity samples and generally featured lower variance of these

quantities as well.

The weighted `1 minimization method used a priori information about the decay of the PC

coefficients of a low fidelity model to promote sparsity in a corresponding high fidelity model. This

method relies on the idea that while the actual values of the vector of sparse coefficients of the

PCE may differ between high and low fidelity models, their relative contributions and sparsity

should be similar. Improvements were observed for both the mean and the variance in the airfoil
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problems for low high fidelity samples NH over the high fidelity approximation. Variance in both

the mean and variance was also consistently lower for the bi fidelity approximations than the high

fidelity approximations for a given NH . Improvements in predicting the mean and variance were

also observed for the LIB model with low variance seen in both of these quantities. Though the

idea of weighting the BPDN algorithm is not new, using the coefficients of a corresponding low

fidelity model as the weights represents an original contribution to the UQ field.

It has been shown that an ideal basis for a stochastic QoI can be constructed from the

principle component analysis of its covariance matrix, which is formed from a polynomial chaos

expansion. Such a basis is truncated according to the (usually rapid) decay of its eigenvalues,

i.e., the relative contributions of its nodal modes, and subsequently, can feature significantly fewer

terms than the full PC basis. As the PCE and therefore covariance of a high fidelity model may

be unavailable, this method cannot be directly applied to a high fidelity model. However, if it is

assumed that errors in stochastic space are largely independent of errors in model physics (due to

discretization error, physics simplification, etc.), than the PCE of a low fidelity model may be used

instead of that of a high fidelity to form the covariance matrix. The resulting basis will be much

smaller, and therefore requires significantly fewer evaluations of a high fidelity quantity of interest

to fully determine. For an appropriately chosen rank of approximation, it was found that the basis

reduction method could offer roughly an order of magnitude improvement in approximating the

mean of the reference QoI over the high fidelity model alone for an equivalent number of high fidelity

samples. For the entire range of NH for both the airfoil problems and the LIB simulation, the high

fidelity model was never observed to overtake the basis reduction method either in predicting the

mean or the variance. The successful implementation of the basis reduction method upon high

and low fidelity models that featured two different solvers represents a new contribution to the UQ

body of literature.

In summary, this thesis has shown promising results for two new techniques for developing

cost effective PCEs for simulated high fidelity quantities of interest.
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4.2 Future Work

The methods explored in this manuscript present many avenues for future research. Provided

here is a compilation of two potential areas for further development for this topic, organized in

ascending order of difficulty.

(1) Explore optimal sampling of the stochastic reduced basis. The goal of optimal

sampling design is to intelligently select sampling points that will return sharp estimates

of parameters, such as PCE coefficients c, while minimizing the total number of samples

required; the choice of samples is optimal with respect to some statistical criteria, and can

include such strategies as A-optimality (which seeks to minimize the trace of the inverse

of the information matrix), D-optimality (which seeks to maximize the determinant of the

information matrix ), and E-optimality (which seeks to maximize the smallest eigenvalue of

the information matrix) [37]. Optimal sampling for PCE is a concept that has been explored

previously [48], but as the basis reduction method represents a linear transformation of the

PCE, it is unclear how this might impact sampling optimality. It is therefore of great

interest to investigate how appropriate sampling could further improve the computational

efficiency of this method.

(2) Develop a methodology for determining the quality of low fidelity models. Both

techniques entailed in this thesis relied on the ability of a low fidelity model to accurately

reproduce some quality of a high fidelity model, despite yielding an inaccurate approxima-

tion of the model overall. In the case of the basis reduction method, the low fidelity model

was able to accurately approximate the eigenvalue decay of the covariance of the refer-

ence solution. In the weighted `1 approach, the low fidelity model was able to capture the

approximate sparsity of the reference model and relative contributions of its coefficients,

thereby promoting accurate sparsity. However, the viability of a low fidelity model for

predicting some important quality of a high fidelity model is extremely problem specific,

and is still very much an open question in the UQ community. The development of an
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analytical framework for assessing the quality of a low fidelity model a priori is an essential

task that remains unfinished and would be invaluable for multi fidelity methods.
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[1] Alen Alexanderian, Oliver P. Le Mâıtre, Habib N. Najm, Mohamed Iskandarani, and Omar M.
Knio. Multiscale stochastic preconditioners in non-intrusive spectral projection. Journal of
Scientific Computing, 50, 2012.

[2] John Red Horse Alireza Doostan, Roger G. Ghanem. Stochastic model reduction for chaos
representations. Computer methods in applied mechanics and engineering, 196:3951 – 3966,
2007.

[3] Pankaj Arora, Ralph E White, and Marc Doyle. Capacity fade mechanisms and side reactions
in lithium-ion batteries. Journal of the Electrochemical Society, 145(10):3647–3667, 1998.

[4] R Askey and J Wilson. Some basic hypergeometric polynomials that generalize jacobi poly-
nomials, mem. Amer. Mark. Sot, 318, 1985.

[5] Volker Barthelmann, Erich Novak, and Klaus Ritter. High dimensional polynomial interpola-
tion on sparse grids. Advances in Computational Mathematics, 12(4):273–288, 2000.

[6] Max Gunzburger Benjamin Peherstorfer, Karen Willcox. Survey of multifidelity methods in
uncertainty propogation, inference, and optimization. Technical Report TR16-1, ACDL, June
2016.

[7] Marc Berveiller, Bruno Sudret, and Maurice Lemaire. Stochastic finite element: a non intrusive
approach by regression. European Journal of Computational Mechanics/Revue Européenne
de Mécanique Numérique, 15(1-3):81–92, 2006.

[8] Jeroen AS Witteveenvand Hester Bijl. Modeling arbitrary uncertainties using gram-schmidt
polynomial chaos.
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.1 Determination of δ

In the weighted BPDN method, a small damping parameter δ is added to the weights to

ensure stability:

wj = (cLj + δ)−1. (1)

Studies have shown the WBPDN algorithms to be somewhat robust to the choice of δ [35], but

one possible cross validation method is detailed here for the interested reader. Setting δ to be a

fraction of the largest low fidelity coefficient, max(cLj ), sets a threshold that is reasonable to the

magnitude of the problem at hand:

δ = δw max(cL). (2)

A cross validation study was performed upon a lower dimension airfoil simulation. Two

random inputs were used: M ∼ U(.1, .3) and α ∼ U(8, 12) degrees. As in the 6d airfoil analysis,

the 2d airfoil was simulated using XFOIL (the low fidelity solver) and FLUENT (the high fidelity

solver) as a function of the two random inputs. A reference PCE was formed using all available high

fidelity samples. δw was varied between δw = 1e− 2, 1e− 4 and the multi fidelity WBPDN method

was performed at each δw for a limited number of high fidelity samples. The relative error between

the bi fidelity coefficients and the reference coefficients was then examined for 100 ensembles of NH

and averaged. As can be seen in Fig. 1, very little difference could be observed in the errors, so

δw = 1e−3 was selected for all subsequent analyses. Computational resources did not allow for the

generation of an additional lower dimensional lithium ion battery simulation, so δw was selected to

be 1e− 3 for all LIB analyses as well.
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Figure 1: Study of δw using lower dimensional stochastic airfoil model.
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