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Alexander, Spencer R. (M.S., Mechanical Engineering)

Computational modeling of unsteady loads in tidal boundary layers

Thesis directed by Dr. Peter Hamlington

As ocean current turbines move from the design stage into production and installation, a

better understanding of oceanic turbulent flows and localized loading is required to more accurately

predict turbine performance and durability. In the present study, large eddy simulations (LES) are

used to measure the unsteady loads and bending moments that would be experienced by an ocean

current turbine placed in a tidal channel. The LES model captures currents due to winds, waves,

thermal convection, and tides, thereby providing a high degree of physical realism. Probability

density functions, means, and variances of unsteady loads are calculated, and further statistical

measures of the turbulent environment are also examined, including vertical profiles of Reynolds

stresses, two-point correlations, and velocity structure functions. The simulations show that waves

and tidal velocity had the largest impact on the strength of off-axis turbine loads. By contrast,

boundary layer stability and wind speeds were shown to have minimal impact on the strength of off-

axis turbine loads. It is shown both analytically and using simulation results that either transverse

velocity structure functions or two-point transverse velocity spatial correlations are good predictors

of unsteady loading in tidal channels.
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Chapter 1

Introduction

Deployments of renewable energy systems – including wind turbines, solar thermal collectors,

hydroelectric dams, and many other technologies – have grown at a considerable pace over the past

decade, and from 2005 to 2011 renewable energy capacity in the US increased by 300%[33]. In order

to sustain this rapid increase, however, additional deployments and new sources of renewable energy

are needed. Energy from the ocean has shown considerable promise as a predictable, abundant, and

ideally-located resource, and it is estimated that ocean energy – comprising wave, tidal, current,

and thermal energy – is capable of contributing an additional 400 TWh/yr, or 10% of the current

US energy needs, to the US energy portfolio [33].

In order to increase the feasibility of large-scale ocean energy installations, further research is

required to understand the turbulent oceanic environments in which ocean energy devices operate.

Unsteady stresses and loads on ocean current turbines, in particular, are not well understood

and may contribute to unexpectedly short turbine lifetimes due to gearbox and other component

failures. Although ocean current turbines can be placed in open water far from coasts, tidal

channels have long been seen as the most viable locations for such turbines due to the strong and

highly predictable nature of tidal currents. The flow in tidal channels is, however, typically highly

turbulent due to turbulence production by surface (i.e., wind) and bottom (i.e, no-slip) shears,

waves, variable bathymetry (or bottom boundary surface roughness), thermal instabilities, and

even turbines themselves (i.e., if a turbine is in the wake of another turbine). Turbulence from all

of these sources can create substantial small-scale temporal and spatial variability of the tidal flow
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field, resulting in potentially large off-axis and unsteady turbine loads.

In order to predict unsteady loads in such turbulent environments, simultaneous two-point

spatial measurements are required across and downstream of the rotor disc. Observational data

for such two-point statistics is, however, not yet available in tidal channels over the range of

spatial scales (i.e., from meters to hundreds of meters) relevant to tidal turbine arrays. High

fidelity computer simulations, by contrast, allow comparatively straightforward measurements of

two-point statistics over a broad range of scales. Using simulations, the turbulent environments

in which tidal current devices operate can be modeled, thereby enabling predictions of long-term

turbine performance and unsteady fatigue loading.

Much of the current computational knowledge of tidal current loading is based on experience

gained from studies of wind turbines, where attempts have been made to understand atmospheric

turbulent environments and to assess the effects of bending moments on turbines. The interaction

between the atmospheric boundary layer and utility scale wind turbines have been studied and

classified using large-eddy simulations (LES), weather forecasting models and experiments. Calaf,

Meneveau, and Meyers [4, 23, 24] developed an LES model to simulate an infinite wind farm and

studied the characteristics of momentum entrainment. Churchfield et al. [7] simulated the Lill-

grund offshore wind farm, both with and without turbines, with a particular focus on understanding

turbulent wake characteristics. Lavely et al. [17] have shown that bending moments obtained using

TurbSim [10] compare well to bending moments obtained from higher fidelity LES. Chamorro and

Porté-Agel [5] have collected experimental data from a reduced-size wind turbine in a wind tunnel,

and Porté-Agel et al. [29] have shown that the experimental measurements are reproduced with

reasonable accuracy by LES. Kelley et al. [14] have examined the impact of coherent turbulence on

the dynamic response and bending moments of wind turbines using both TurbSim and the Fatigue,

Aerodynamics, Structures, and Turbulence (FAST) code [11], showing that the highest loads occur

in stable, nighttime conditions.

Turbine loading and performance in the ocean have also been simulated, often with a strong

focus on accurately modeling boundaries such as channel bathymetry and turbine blade shape.
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Myers and Bahaj [26, 27, 3] have used blade element momentum (BEM) theory to understand

wake and stress characteristics of horizontal axis marine current turbines, and McSherry et al. [21]

and Malki et al. [19] both simulated the experimental setup of Bahaj et al. [2]. Churchfield et al.

[6] have performed LES of an ocean current turbine in a tidal channel, comparing several the mean

power output of several array configurations. Kang et al. [12, 13] have performed two studies

related to marine current turbines, focusing heavily on the near-field flow behavior on turbine loads

and torques; the simulations modeled bathymetry and turbine blades using curvilinear immersed

boundaries. Afgan et al. [1] have performed a similar study of loading on a tidal stream turbine

using LES.

By contrast to these prior studies, the present paper is focused on understanding the unsteady

loads that would be experienced by a tidal current turbine in a realistic ocean environment, as well

as how the loads correlate with fundamental turbulence statistics. These correlations are critical

for predicting loads and, ultimately, turbine performance and fatigue in advance of installation.

In order to resolve small-scale turbulent motions and increase the level of physical realism, LES

has been performed of the ocean boundary layer for a range of different physical scenarios. Two

of the scenarios are intended to simulate, as closely as possible, prospective tidal energy sites

at Admiralty Head and Nodule Point in Puget Sound. LES results for these two locations are

compared with observational measurements of the average velocity and turbulence intensity profiles

from Thomson et al. [32]. The observational measurements have been used previously to examine

turbulence intermittency, coherence, and anisotropy [20] and are used here to constrain the physical

parameters used in the simulations, as well as to gain confidence in the accuracy of the LES.

A number of simulations for different physical scenarios have been performed in order to

understand the effects of winds, waves, tidal velocity, stability, and tidal channel depth on the

loads that would be experienced by a tidal turbine. Changes to the wind and tidal velocities

result in changes to turbulence shear production, waves generate Langmuir turbulence [16, 22]

which increases vertical mixing near the surface, and boundary layer stability strongly affects the

creation and properties of convective turbulence. The LES model used in the present study has
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the capability to model all of these effects and has been used previously for several high-fidelity

process studies of atmospheric and oceanic flows[25, 22, 34, 9]. Probability density functions, two-

point correlations, velocity structure functions, Reynolds stresses, and other statistics are used to

understand the dependence of unsteady loads on each of these physical effects, and a connection is

made between loads and two-point turbulence statistics.

It should be noted that the present study is differentiated from prior research by the extent

of ocean physics included in the simulations and the focus on loads that would be experienced by a

tidal current turbine. Prior studies have often neglected the effects of wind, waves, or tidal motions

in order to decrease computational cost or to focus on impacts from other physical processes.

In perhaps the most comprehensive prior study of tidal flows, Li et al. [18] studied temporally-

varying tidal currents in an estuarine boundary layer, but did not consider waves, different stability

conditions, or varying tidal channel depth, and were not specifically focused on tidal turbine loading.

It should also be noted that the present study does not model turbines themselves. Rather, an

attempt is made to understand how the loads that would be experienced by a tidal turbine are

affected by different physical characteristics of the flow field in the tidal channel.



Chapter 2

Bending Moments and Loads

Quantification of the expected loads on a turbine in realistic ocean environments is an im-

portant objective of the present study. Prior research has been performed on wind turbine loading

for different atmospheric conditions [14, 11, 28, 15], including the specific loading associated with

the blade structure. Similar computational and experimental studies have been performed on loads

experienced by ocean current turbines [2, 26, 27, 3, 21, 19, 6, 12, 13, 1], but the dependence of such

loads on characteristics of the oceanic boundary layer such as wind and wave shear, boundary layer

depth, and stability conditions have yet to be performed.

In the present paper, the loads that would be experienced by a tidal turbine are considered,

without restricting the analysis to a specific choice of turbine design. The loads at location [x, y, z],

denoted Mi(x, y, z), are thus measured for a rigid, infinitesimally thin disc and are calculated by

an integral over the area of the disc as

Mi(x, y, z, t) =

∫
A
ρεijkrjukuxdA , (2.1)

where εijk is the cyclic permutation tensor, rj = [rx, ry, rz] is the distance from the central point

to a location on the disc, ux is the velocity normal to the disc, uk = [ux, uy, uz], and A is the

cross-sectional area of the disc. The velocities in this relation are evaluated at each location on the

disc, given by the vector (xi + ri), where xi = [x, y, z]. Since the disc is assumed to be infinitely
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thin, rx = 0 and (2.1) can be expanded as

Mx(x, y, z, t) =

∫
A
ρ(ryuz − rzuy)uxdA , (2.2)

My(x, y, z, t) =

∫
A
ρrzu

2
xdA , (2.3)

Mz(x, y, z, t) = −
∫
A
ρryu

2
xdA . (2.4)

The component Mx is about the axis normal to the turbine disk and provides a torque that either

accelerates or decelerates the turbine. The components My and Mz are bending moments about

the horizontal and vertical bisects of the turbine disk, respectively (see Figure 2.1), and are termed

in the following off-axis loads.

2.1 Relation to Turbulence Characteristics

The primary focus in this study is on the off-axis bending moments and loads, My and Mz,

which are related to the characteristics of the turbulent flow field. It can be anticipated that the

relevant turbulence characteristics are related to transverse velocity differences over different spatial

separations across the rotor disc. This can be shown explicitly by first noting that the integrals for

My and Mz in (2.3) and (2.4) can be equivalently written as

My(x, y, z) =

∫
ry

∫
rz

ρrz
[
u2x(x, y, z + rz)− u2x(x, y, z − rz)

]
drzdry, (2.5)

Mz(x, y, z) = −
∫
rz

∫
ry

ρry
[
u2x(x, y + ry, z)− u2x(x, y − ry, z)

]
drydrz, (2.6)

where the bounds of the integrals are determined by the specific shape and size of the rotor disc

and the time coordinate t has been suppressed to simplify the notation. The outer integrals in

(2.5) and (2.6) simply accumulate the moments about the y and z axes, respectively, and for the

purposes of the analysis it is informative to consider only the inner integrals. These integrals are

denoted my and mz and are given as

my(x, y, z) =

∫ az

0
ρrz (∆rzux) [ux(x, y, z + rz) + ux(x, y, z − rz)] drz , (2.7)

mz(x, y, z) = −
∫ ay

0
ρry

(
∆ryux

)
[ux(x, y + ry, z) + ux(x, y − ry, z)] dry , (2.8)
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where ay and az are the dimensions of the rotor diss along the y and z axes, respectively, and the

transverse velocity differences

∆rzux ≡ ux(x, y, z + rz)− ux(x, y, z − rz) , (2.9)

∆ryux ≡ ux(x, y + ry, z)− ux(x, y − ry, z) , (2.10)

have been introduced. Using the Reynolds stress decomposition ui = u′i +ui(z), where (·) is a time

or ensemble average, it is possible to rewrite my and mz as

my(x, y, z) ≈ 2ρux

[∫ az

0
rz
(
∆rzu

′
x

)
drz +

∫ az

0
rz (∆rzux) drz

]
, (2.11)

mz(x, y, z) ≈ −2ρux

∫ ay

0
ry
(
∆ryu

′
x

)
dry , (2.12)

where it is assumed that ρ is approximately constant (a safe approximation in reality and in the

context of the Boussinesq equations that are solved in the present simulations), that ux(z) ≈

[ux(z + rz) + ux(z − rz)] /2, and that |ux| is much greater than |u′x| (typically the latter is only

10% of the former). These are the only approximations used in the analysis outlined here.

In (2.11), there is a persistent contribution to my from the mean shear. In order to consider

only the turbulent parts of my and mz, the fluctuating moments can be separately written as

m′y = my −my and m′z = mz −mz, giving

m′y ≈ 2ρuxT
′
zx and m′z ≈ −2ρuxT

′
yx , (2.13)

where

T ′ix ≡
∫ ai

0
ri
(
∆riu

′
x

)
dri , (2.14)

and mz = 0. The corresponding average magnitudes of m′y and m′z are then given by

|m′y| ≈ 2ρux|T ′zx| and |m′z| ≈ −2ρux|T ′yx| , (2.15)

where ux is assumed positive. The statistics |T ′zx| and |T ′yx| represent the key turbulence metrics

for determining unsteady bending moments. Neither of these quantities are, however, standard
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turbulence statistics, and we can obtain upper bounds on the average magnitudes of m′y and m′z in

terms of a more conventional turbulence statistic using the triangle inequality, which gives

|m′y| . 2ρux

∫ az

0
rz|∆rzu

′
x|drz , (2.16)

|m′z| . 2ρux

∫ ay

0
ry
∣∣∆ryu

′
x

∣∣dry . (2.17)

These relations indicate that the first order transverse velocity structure function provides an

upper bound on the moments experienced by a turbine. The structure function is weighted by

the separation rz or ry and integrated in order to obtain the average turbulent bending moment

magnitudes. In the following, the correlation of the off-axis bending moments with the transverse

velocity structure functions will be examined for a range of oceanic conditions.
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Figure 2.1: Schematic showing the computational domain used in the simulations and the infinitely
thin disc about which the off-axis bending moments My and Mz are calculated. The disc diameter
is D and the hub height is denoted d.



Chapter 3

Details of the Numerical Simulations

In order to represent the effects of winds, waves, and tides, the numerical simulations solve

the forced Wave-Averaged Boussinesq (WAB) equations given by

∂u

∂t
+ ω × uL = −∇

(
p+

1

2
|uL|2

)
+ b + Fc + sgs, (3.1)

∂θ

∂t
+ uL · ∇θ = sgs, (3.2)

∇ · u = 0, (3.3)

where u is the three-dimensional Eulerian flow velocity, ω ≡ ∇ × u is the Eulerian vorticity,

uL = u + us is the Lagrangian velocity, us is the wave-induced Stokes drift velocity, p is the

pressure normalized by the background density ρ0, b is the buoyancy, Fc is a driving term used to

create the tidal current, θ is the potential temperature, and sgs represents subgrid-scale (sgs) terms

introduced by the LES modeling. Note that in the present study Coriolis effects are not considered;

a similar approach has been used in prior studies of tidal boundary layers [18] and rotational effects

are not expected to have a significant contribution to the dynamics at the range of scales examined

here. Closure of the governing equations is achieved by introducing an equation of state for the

density ρ, namely

ρ = ρ0 [1 + βT (θ0 − θ)] , (3.4)

where β = 2×10−4K−1 is the thermal expansion coefficient and salinity effects have been neglected.

The buoyancy is then obtained as b = bẑ where b = −gρ/ρ0. Parameter values used to obtain the

buoyancy are ρ0 = 1000kg/m3, θ0 = 290.16K and g = 9.81m/s2.
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Figure 3.1: 3d volume snapshot of ux for the B simulation

The simulations are fully periodic in the horizontal (x − y) directions for all simulation

variables. This results in an inflow that is directly tied to the outflow. On the top boundary, the

horizontal velocities are driven by a wind shear stress uτ in the ϑs direction – in these simulations,

ϑs is always chosen to be in the positive x direction, resulting in a wind shear stress of uτ in the x

direction and no shear stress in the y direction. The vertical velocity constrained to zero at the top

boundary. Depending on the stability of the simulations, either a cooling, warming, or adiabatic

boundary condition temperature flux, Q0, is applied at the top boundary. At the bottom boundary,

a no-slip condition is used for velocities in all three directions, and the temperature flux is zero.

The surface roughness for the bottom no-slip boundary is z0 = 0.001m, and the SGS model used in

the LES matches the log-law for the mean velocity at the lower boundary (as described in Sullivan

et al. [30]).

The WAB equations, which have been used previously in a number of computational studies

of wave-driven Langmuir turbulence [22, 34, 9], are a wave-averaged form of the standard Boussinesq

equations and include the effects of wave forcing via the Stokes drift velocity us. The Stokes drift
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velocity is modeled as

us = us(z) [cos(ϑs)x̂ + sin(ϑs)ŷ] , (3.5)

where us(z) is the Stokes drift velocity vertical profile and ϑs is the wave direction. Using the

Donelan empirical spectrum [8, 35] for the ocean wave field, the resulting vertical profile us(z)

decreases super-exponentially with depth. In the simulations, the Stokes drift velocity is assumed

to be the same at all horizontal (x − y) locations with an angle of ϑs = 0◦. That is, the wave

field is assumed to be perfectly aligned with the mean tidal direction (see the schematic in Figure

2.1). The magnitude of the Stokes drift is determined by assuming a 10m wind speed, U10, between

0m/s and 10m/s, resulting in a surface Stokes drift of 0.063m/s and a turbulent Langmuir number

Lat =
√
uτ/us(0) = 0.29, where uτ = 0.0061m/s is the top wind shear friction velocity.

The WAB equations with the Stokes drift given by (3.5) lead to the creation of near surface

Langmuir turbulence in the simulations [22, 34, 9]. Langmuir turbulence consists of disordered

collections of counter-rotating vortical cells (typically called ‘Langmuir’ cells). These cells are

typically 10m deep in the vertical and up to 1km long in the horizontal direction. They create

surface convergence zones where foam, plankton, and other debris collect, resulting in characteristic

‘windrows.’ The primary effect of Langmuir turbulence on the flow field is to create more intense

vertical mixing, which may substantially alter the loads experienced by a turbine in a tidal channel.

The forcing term, Fp = Fpx̂, in (3.1) creates the tidal current and is constant in both space

and time; following Li et al. [18], future work will vary Fp in order to consider situations in which

the tidal stream changes magnitude and direction. The strength of Fp is adjusted in order to create

the desired tidal velocity, which varied from 1m/s to 3m/s in the present simulations.

The SGS model used in the simulations was described by Sullivan et al. [30], and takes

into account not only sub-grid influences proportional to the resolved-scale strain rate Sij , but also

influences proportional to the horizontal average strain rate, Sij , namely

τij = 2νtγSij − 2νTSij , (3.6)

where τij are the SGS stresses, νt and νT are eddy viscosities, and γ is an isotropy factor. The
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Smagorinsky model is used to write νt as

νt = (Cs∆)2
√

2SijSij , Cs =

(
Ck

√
Ck
Ce

)1/2

, (3.7)

and the mean flow eddy viscosity, νT , is given by

νT = (CKLm)2

√(
∂ux
∂z

)2

+

(
∂uy
∂z

)2

, (3.8)

where ux and uy are horizontal velocities in the streamwise and transverse directions, respectively.

The model coefficients are Ck = 0.1, Ce = 0.93, and the product CKLm is chosen to match Monin-

Obukhov similarity theory near the bottom boundary [30]. The isotropy factor, γ, is given in terms

of the strain rate magnitudes S′ ≡
√

2S′2ij and S ≡
√

2S
2
ij as

γ =
S′

S′ + S
, (3.9)

where S′ij ≡ Sij−Sij . The additional influence of horizontal average strain rates introduced by the

2νTSij term in the expression for τij improves the agreement of vertical velocity and temperature

profiles with Monin-Obukhov theory.

The National Center for Atmospheric Research (NCAR) LES model has been used to perform

the simulations [25, 22]. The code solves the WAB equations on a structured, rectilinear grid. A

spectral method is used in horizontal directions and a second-order finite difference method is

used in the vertical direction for the velocities. A second-order finite difference method is used in

the vertical direction for scalar variables such as the potential temperature. A three-step explicit

Runge-Kutta method is used to advance the solution in time, and the Poisson pressure equation is

solved iteratively at each time step.

The physical setup and conditions used in the numerical simulations were chosen to represent

wind-, wave-, and tidally-driven ocean boundary layers that approximately correspond to those

found at Admiralty Head and Nodule Point in Puget Sound. These sites have been characterized

in Thomson et al. [32] and recently-collected data allows comparisons to be made between the

simulation and experimental results, thereby providing an assessment of the simulation accuracy.
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Since the present simulations are, however, more broadly focused on the effects of winds, waves,

boundary layer depth, instabilities, and tidal velocity, a series of 13 simulations corresponding to

11 different physical scenarios have been performed, as summarized in Table 3.1. The baseline

simulation (denoted ‘B’ in Table 3.1) has horizontal lengths Lx = 600m and Ly = 300m with depth

H = 39m, a tidal velocity of Ut = 2m/s, upper wind forcing resulting in uτ = 6.3mm/s, waves, and

no heat flux at the surface (corresponding to a neutral boundary layer). All other simulations have

identical Lx and Ly to the baseline case, but H is varied to 22m and 56m in two of the simulations

(denoted H− and H+ in Table 3.1). Similarly, the tidal velocity (T− and T+), wind strength (Wi−

and Wi+), wave strength (Wa− and Wa+), and surface heat flux (In− and In+) are each varied to

be successively smaller and larger than the baseline values, resulting in a series of simulations that

allow each of these effects to be individually measured. A final pair of simulations with identical

physical parameters to the baseline simulation but with doubled (B+) and halved (B−) resolution

are performed in order to ascertain grid convergence.
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Table 3.1: Summary of the physical setup used in each of the simulations. Horizontal and vertical
physical domain sizes are denoted Lx, Ly, and h, computational domain sizes are given by Nx,
Ny, and Nz, Ut is the tidal velocity, uτ is the surface friction velocity, τ is the wind stress, ϑw
is the wind direction with respect to the x-axis, us(0) is the Stokes drift velocity at the surface,
Lat = uτ/us(0) is the turbulent Langmuir number, ϑs is the Stokes drift direction with respect to
the x-axis, and Q0 is the surface heat flux. Parameters varied in each of the simulations are shown
in bold.

Simulation B B− B+ Wi− Wi+ Wa− Wa+ H− H+ In− In+ T− T+

Lx (m) 600 600 600 600 600 600 600 600 600 600 600 600 600
Ly (m) 300 300 300 300 300 300 300 300 300 300 300 300 300
h (m) 39 39 39 39 39 39 39 22 56 39 39 39 39

Nx 512 256 1024 512 512 512 512 512 512 512 512 512 512
Ny 256 128 512 256 256 256 256 256 256 256 256 256 256
Nz 128 64 256 128 128 128 128 72 184 128 128 128 128

Ut (m/s) 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 1.0 3.0

uτ (mm/s) 6.3 6.3 6.3 0.0 12.6 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3
τ (N/m2) 0.04 0.04 0.04 0.00 0.08 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04
ϑw (◦) 0 0 0 0 0 0 0 0 0 0 0 0 0

us(0) (m/s) 0.099 0.099 0.099 0.099 0.099 0 0.20 0.099 0.099 0.099 0.099 0.099 0.099
Lat 0.25 0.25 0.25 0.0 0.35 ∞ 0.18 0.25 0.25 0.25 0.25 0.25 0.25
ϑs (◦) 0 0 0 0 0 0 0 0 0 0 0 0 0

Q0 (W/m2) 0 0 0 0 0 0 0 0 0 -5.0 5.0 0 0
z0 (m) 10−3 10−3 10−3 10−3 10−3 10−3 10−3 10−3 10−3 10−3 10−3 10−3 10−3



Chapter 4

Results

After an initial spin-up period during which the boundary layer turbulence was allowed to

develop, each of the simulations summarized in Table 3.1 were run for a total of six hours of virtual

time, with an average timestep of 0.15 seconds for simulations of base resolution. Higher resolution

simulations (i.e., B+) had smaller average timesteps and more overall timesteps. The simulated

time was sufficient to allow turbulence to fully develop, and the ux velocity and Reynolds stress

profiles were stable and unchanging with additional simulation time.

In the following, a validation of the simulation results is outlined, including a study of grid

convergence. Single-point statistics of the velocity and temperature for the different simulations

are then presented, followed by an analysis of two point turbulence statistics. Finally, off-axis loads

for each of the different physical scenarios summarized in Table 3.1 are outlined.

4.1 Validation and Grid Convergence

Validation of the physical parameters and numerical methods is critical for grounding simula-

tions in reality and identifying lingering numerical issues. Validation of the simulations is performed

through comparison with theory, prior studies, and observational data from Thomson et al. [32].

Prior work by Sullivan and Patton in the atmospheric convective boundary layer [31] indicate that

mesh sizes of 2563 were sufficient for achieving scale separation between the large energy containing

eddies and the filter cutoff scale, and this study was the starting point for our mesh resolution

choices – below these choices are validated by comparing statistics from three mesh resolution
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Figure 4.1: Vertical profiles of (a) ūx, (b) diagonal Reynolds stresses, u′2x (solid), u′2y (dashed) and

u′2z (dash-dot), and (c) off-diagonal Reynolds stresses, u′xu
′
z (solid), u′xu

′
y (dashed), u′yu

′
z (dash-dot).

Each plot showing values for three different grid resolutions, corresponding to the simulations B
(solid black lines), B− (blue dashed lines), and B+ (red dash-dot lines), as a function of z/h.

studies.

Figure 4.1 shows vertical profiles of ux along with diagonal and off-diagonal Reynolds stresses

for the B, B− and B+ simulations. The profile of ux shows good agreement with the theoretically-

predicted log-layer profile and the qualitative behavior of the diagonal and off-diagonal Reynolds

stresses is consistent with prior studies of wall bounded shear flows. That is, u′2x > u′2y > u′2z and

u′xu
′
z < 0, with the greatest magnitudes of all stresses occurring close to the bottom boundary at

z ≈ 0. The vertical Reynolds stress profiles also show good agreement with previous studies of the

atmosphere [25, 31] and tidal channels [6].

From a more quantitative perspective, deviations of the simulation results from the theoretical

log-layer profile are characterized by the quantity φm, which is defined as [30, 6]

φm(z) ≡ κz

u∗

∂Us
∂z

, (4.1)

where US ≡ [uX + uy]
1/2, κ = 0.41, and u∗ is the friction velocity. While the φm profile for the

B simulation, shown in Figure 4.2, is not precisely unity, as would be expected in the case of a

perfect log-layer profile, the small deviations are consistent with previous studies of atmospheric and

oceanic boundary layers [30, 6]. The deviations are largest near the channel bottom, approaching
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a high value of 1.2 and a low value of 0.7. In the simulations, grid anisotropy (i.e., the ratio of ∆x

to ∆z) was found to have a large effect on the φm profile, with higher values of the ratio (> 10)

resulting in more substantial deviations from unity. Decreasing the grid anisotropy to a ratio below

four brought the φm profiles shown in Figure 4.2 in line with previous studies[30, 6].

Comparisons with the observational data of Thomson et al.[32] are made using the turbulence

intensity (TI), which is defined as

TI ≡ u′2x
1/2

ux
. (4.2)

The resulting vertical profiles of TI are shown in Figure 4.3 for the simulations B (correspond-

ing to a 39m depth), H− (corresponding to a 22m depth at the Nodule Point location), and H+

(corresponding to a 56m depth at the Admiralty Head location)[32]. Figure 4.3 shows that the

simulations correctly capture the basic shape of the observational TI profiles, but slightly under-

estimate the magnitude of the TI (note that observational data were only available up to roughly

18m above the ocean bottom). The LES results for all depths show a large increase in TI near the

bottom of the ocean boundary layer where ux decreases to zero. While the physical parameters in

the simulations were designed to match, as closely as possible, the roughness lengths inferred from

the observations, increases in the roughness length above the observed length were found to increase

the magnitude of the vertical profile of TI. It should also be noted that an increase in grid resolution

(B+) resulted in a slight (roughly 5%) increase in the magnitude of the TI profile. Nevertheless,

the good qualitative agreement and approximate quantitative agreement between the LES results

and observations shown in Figure 4.3 provides confidence in the validity of the simulations.

Finally, Figures 4.1 and 4.2 show the effects of varying grid resolution, corresponding to low

(the B− simulation), base (B), and high (B+) resolutions, on the velocity and Reynolds stress

profiles. The vertical profiles of ux in Figure 4.1(a) show that there is good agreement between the

base and high resolution runs, with slight deviations near the top of the boundary layer for the low

resolution run. The diagonal Reynolds stresses in Figure 4.2(b) show moderate variations for the

three runs along the entire depth of the domain, while the u′xu
′
z Reynolds stress in Figure 4.2(c)
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shows good agreement for z/h between 0.2 and 1, with more substantial deviations in the lower

resolution run. The φm profiles in Figure 4.2, show similar deviations from unity for all three

resolutions, but the deviations occur at heights proportional to the grid size. In particular, the φm

profile for the highest resolution run does not show substantially less deviation from unity, just a

deviation at a height closer to z/h = 0.

Overall, the simulations with different grid resolutions indicate that the resolution of the

base run (B) captures most statistics with acceptable accuracy relative to a simulation with grid

resolution doubled in each direction. In the interest of exploring as large a parameter space as

possible, the resolution of the base simulations appears to be appropriate for developing insights

into the variation of off-axis loads for varying winds, waves, stability, and other physical parameters.

4.2 Single-Point Statistics

Single-point statistics are the current norm in understanding ocean current environments.

The single point moments provide valuable information to developers, designers and simulators

regarding mean flow levels, turbulence levels, and transient effects. However, their ability to predict

bending moments and off-axis loading remains questionable. In this section, we describe the impact

of various physical parameters on single-point statistics, and in sections 4.4 and 5 link these single-

point statistics to bending moments.

Figures 4.4(a) and (c) show that profiles of the mean velocity ux do not change substantially

as either the wind or instability conditions change. Changes in the wave strength do, however,

affect ux near the surface, where ux for Wa+ decreases below the corresponding values for B and

Wa−, as shown in Figure 4.4(b). The increased wave strength for the Wa+ simulation, modeled

as a stronger Stokes drift velocity (see Table 3.1), results in an anti-Stokes effect, as previously

observed in Hamlington et al.[9]. The profiles of ux also change for T− and T+ as compared

to the base case due to the large changes in mean tidal velocity. Overall, the general uniformity

of the mean velocity profile with respect to changes in the wind, wave, and stability conditions

is significant in the design of loads, since a drastic change in vertical velocity profile for different
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physical parameters would result in added complexity towards addressing mean vertical shear.

The vertical profiles of Reynolds stress are shown in Figure 4.5 and provide insights into the

level of turbulent activity within the flow. Both the Wa+ and In+ simulations show a substantial

increase in u′2x compared to the base case, although little change is seen in either u′2z or u′xu
′
z.

This increase in u′2x represents a substantial increase in the largest component of turbulence kinetic

energy, and will impact not only the bending loads discussed in this paper, but also transient

torquing loads. Strong deviations from the base Reynolds stress profiles are present in the T− and

T+ profiles, and the magnitudes of the changes is worth noting: a 50% increase of mean velocity

approximately doubles the u′2x Reynolds stress, while halving the mean velocity results in roughly

a factor of four decrease in u′2x .

The mean temperature profiles remain close to the background value θ0 for all simulations

except the unstable (In−) and stable (In+) cases. Figure 4.6 shows that there is a sharp increase

in the mean potential temperature θ − θ0 for In+ due to heating at the surface while there is a

sharp decrease for In− due to surface cooling. These large changes in the temperature profiles are

accompanied by corresponding changes in the temperature fluxes, as shown in Figure 4.7. For the

unstable case (In−), u′xθ
′ < 0, corresponding to an anti-correlation between u′x and θ′, while for

the stable case (In+), u′xθ
′ > 0. In Figure 4.7(c), u′zθ

′ > 0 for the unstable case, corresponding

to an upward flux of low temperatures as the surface is cooled, while u′zθ
′ < 0 for the stable case,

corresponding to a downward flux of high temperatures as the surface is heated. The horizontal

fluxes in Figure 4.7(b) for the stable and unstable cases remain close to zero. It should be noted that

there are large variations in u′xθ
′ and u′yθ

′ for the base case (B). These variations are due primarily

to large θ′2 in the base simulation resulting from no imposed constraint on the correlation between

the horizontal turbulence velocities and θ′, other than the condition that the vertical flux of θ′ be

zero at the surface.
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4.3 Two-Point Statistics

Two-point velocity correlation functions and integral length scales have been shown in prior

studies[14] to be accurate predictors of wind turbine loading. The bending moment analysis in

Section 3 also indicates the importance of two-point statistics closely related to correlation functions

in understanding and predicting off-axis turbine loads. Prior studies[14] have shown that when the

integral length scale of the turbulence is similar to the diameter of the turbine rotor, the loads on

the turbine are greatest – turbulence with this characteristic length scale results in large velocity

gradients across the rotor swept area and corresponding high bending moments.

Figure 4.8 shows the longitudinal velocity correlation, f11, and transverse velocity correlation,

f12, as functions of height, where

f11(z,∆x) =
u′x(x, y, z)u′x(x+ ∆x, y, z)

u′2x
, f12(z,∆y) =

u′x(x, y, z)u′x(x, y + ∆y, z)

u′2x
, (4.3)

and the corresponding integral scales Λ11 and Λ12 are defined as

Λ11(z) =

∫ ∞
0

f11(z, x
′)dx′ , Λ12(z) =

∫ ∞
0

f12(z, y
′)dy′ . (4.4)

In the base case, the longitudinal length scale (i.e., the coordinate ∆x) varies from 20-50m (2-

5D for a 10m diameter turbine) and the transverse length scale (i.e., ∆y) varies from 0-20m (0-

2D for a 10m diameter turbine). Figure 4.8(a) shows that, generally, the turbulence remains

longitudinally correlated for larger ∆x as z/h increases, although the correlation approaches zero

at the upper surface; these variations are reflected in the increase of Λ11(z) with increasing z/h.

For the transverse correlation f12 in Figure 4.8(b), Λ12(z) increases monotonically with increasing

z/h, reflecting increased transverse correlations for larger ∆y from the bottom to the top of the

tidal channel.

As shown in Figure 4.9, the transverse correlation f12, which is of central importance in

understanding off-axis loading, is qualitatively similar for all of the simulations performed in the

present study. As in Figures 4.4 and 4.5 for the mean velocities and Reynolds stresses, respectively,

the largest changes in f12 occur as the wave forcing varies, with approximately a factor of two
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increase in Λ12 at all z/h for the Wa− simulation. This indicates that the greatest changes in

bending moments may occur as the wave forcing is varied. The transverse length scale also varies

for the other simulations, but magnitude changes are more modest, on the order of 10%.

In addition to understanding the scale of the turbulent fluxes present in the ocean boundary,

it is also important to understand the magnitude and distribution of these velocity variations – these

two properties feed directly into the distribution of bending moments experienced at the turbine

level, as discussed in Section 2. To understand these spatial velocity differences, Figure 4.10 shows

structure functions S1j , defined as

S1j(z, rj) =
|u′x(x + rj)− u′x(x− rj)|

u′2x
1/2

, (4.5)

where x is a position in space and rj is a vector of length rj in the xj direction. Each of the

structure functions shown in Figure 4.10 follow an approximate r1/3 scaling, in accordance with

classical Kolmogorov theory, although the departures from this scaling are greatest for S11 and

S12 near the surface. In both cases, the structure functions have reduced slope, indicating greater

prominence of large scale motions relative to small scales.

Finally, Figure 4.11 shows probability density functions (pdfs) of the transverse velocity

increments ∆ryux for different values of ∆ry . In general, the pdfs become increasingly non-Gaussian

as ∆ry decreases, and the pdfs for ∆ry at typical rotor radii (∼5m) show indications of non-

Gaussianity and intermittency. The implications of this are significant for models that assume a

normal distribution of velocity differences, since Figure 4.11 shows that extreme events, leading to

greater off-axis loads, will occur more frequently than expected from a normal distribution.

4.4 Bending Moments

The final component of the analysis regards bending moments, which are outlined analytically

in Section 2. These bending moments are primary drivers of turbine design, and understanding the

magnitude and physical properties of the moments will aid in designing and predicting performance

of ocean current turbines. Two primary types of bending moments are considered here: shear-
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dominated moments, My, and eddy-dominated moments, Mz. The eddy dominated moments are

so named since they have zero means for the x − y homogeneous tidal channels examined in the

present study.

Figure 4.12(a) shows that My is strongly dominated by mean shear in the flow and increases

substantially as z/h approaches zero where the mean shear is largest. The magnitude of the median

bending moment at the channel bottom is three times larger than the median bending moment

at the surface, with half of the change occurring in the bottom 10% of the ocean boundary. The

90th percentile bending moment is approximately double the median bending moment, and the

two vertical profiles are qualitatively very similar.

Changes to theMy bending moment for the different simulation cases, as shown in Figure 4.13,

are subtle but important. In Figures 4.13 (a) and (b), both decreasing the waves and increasing the

wind, which increases the turbulent Langmuir number (Lat), result in an overall decrease in My for

all z levels. The effect of increasing the wave forcing (bottom row of Figure 4.13(b)) and increasing

the turbulent Langmuir number is both more significant and more complex; My increases near the

surface but decreases in the middle half of the boundary layer. This change is attributable to a

similar change in the mean velocity profile, shown in Figure 4.4, where the increased wave forcing

case was the only case to substantially change the mean velocity profile. Changes in stability have

little impact on My and, as expected, the bending moments are very sensitive to changes in mean

tidal velocity (Figure 4.13(d)).

The eddy dominated bending moments, Mz, shown in Figure 4.12(b), are driven by horizontal

imbalances in downstream velocity across the rotor disk. The median moments at the channel

bottom are nearly double the surface value, and the increase between the surface and the bottom

is nearly linear. At mid-depths, the magnitude of Mz is similar to the magnitude of My. Much like

My, the magnitude of the 90th percentile bending moments is approximately double the mean.

For Mz, waves again have the largest impact on the magnitude and vertical profile of the

bending moment. In particular, increasing the wave strength (bottom row of Figure 4.13(b))

decreases the bending moments by 10-15% through the entire domain. Changes in wind shear
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(Figure 4.14(a)) and stability (Figure 4.14(c)) result in minimal changes to the bending moment,

while changes to the mean velocity (Figure 4.14(d)) again result in large changes to the magnitude

of Mz.
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and (d) T±. The top row shows Wi+, Wa+, In+, and T+ and the bottom row shows Wi−, Wa−,
In−, and T−. Solid black lines are Λ12 for each simulation and dashed black lines are Λ12 for the
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Figure 4.14: Eddy-dominated bending moments Mz for (a) Wi±, (b) Wa±, (c) In±, and (d) T±.
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Discussion

In Sections 2, 3, and 4, methodologies for simulating flows in ocean tidal channels have been

outlined and results pertaining to loading of ocean current turbines in these environments have

been presented. These methods and results have implications for turbine designers, observational

campaign managers, and channel simulation designers; implications for each of three groups are

outlined in more detail below.

5.1 Implications for Turbine Designers

Based upon the presented results, the most important consideration for a turbine designer

should be the choice of hub height. Turbines mounted near the ocean floor not only see much larger

bending moments (Figure 4.12), but also much lower velocities (Figure 4.4(a)), while turbines higher

in the ocean boundary harness power from much higher velocity flows with lower magnitude bending

loads. One of the main drivers of turbulence near the ocean surface – strong waves – have been

shown to actually decrease the bending moment at moderate depths (Section 4.4); it should be

noted, however, that this analysis only considers bending loads and not transient torque loads.

Effects of length scale and the structure function magnitude have also been shown to combine

in interesting ways that warrant additional investigation by turbine designers. The inclusion of

stronger waves in the simulation results in a large increase in the transverse length scale, which

is a likely contributor to overall decreased bending moments at many depths for the strong wave

simulation. Design flexibility in rotor diameter could allow for an opportunity to decrease overall
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loads by ensuring rotor diameter is a different order of magnitude than the scale of the turbulent

eddies.

Finally, turbine designers should keep in mind that the underlying drivers of bending moments

have been shown to deviate from a normal distribution. Extreme loads will occur more frequently

than a simple Gaussian distribution, which is fully characterized by its mean and standard deviation,

would imply. Designers should account for these higher probabilities in assessing turbine loads.

5.2 Implications for Observational Campaigns

Observational campaigns are critical for understanding the specific environment in which

a proposed turbine will be installed. These campaigns allow for very accurate understanding of

mean velocities and the primary component of turbulence kinetic energy. Of all physical properties

investigated in this paper, the mean tidal velocity has shown the largest impact on overall bending

moment magnitude.

Through the analytical derivation (Section 2), loads have been shown to tie closely to two

point correlations and structure functions. For these properties to be understood in a specific in-

stallation environment, two point measurements are needed – a single measurement device cannot

capture the transverse length scales and structure functions. While capturing a variety of mea-

surement widths and physical conditions will help understand bending loads, the present study

indicates that priority should be given to capturing information on transverse lengths of the same

scale as the turbine diameter and towards capturing diverse wave conditions.

Finally, as waves have been shown to have a very large impact on bending moments (Sec-

tion 4.4), campaign managers should consider capturing wave specific data, such as amplitude and

period, to accompany data on mean velocities and turbulence kinetic energy. These wave properties

will help designers and modelers better understand the turbulence oceanic environment. Stability

was found to be less important in understanding loads, though measurements of the temperature

flux would still aid future simulations.
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5.3 Implications for Ocean Channel Simulations

Ocean channel simulations have the potential to supplement and enhance measurement cam-

paigns in the design process. However, for maximum effect, simulations should include physics

most relevant to ocean current boundary conditions.

In the present analysis of bending moments, it was found that the most important variables

to consider in the simulation process were mean tidal velocity and waves. Simulations should assess

a variety of tidal velocities that are anticipated at the installation site, not just the mean velocity.

Waves were found to be important, particularly in the top 70% of the boundary layer, and should

be included in simulation physics.

One parameter that was found to have little effect on the resulting bending moments was

stability. The present set of simulations use the Boussinesq hypothesis (as described in Section 3),

but for estimating mean and 90th percentile loads, stability effects were negligible. However, this

study has only investigated moderate levels of surface heating and cooling; for areas with more

substantial heating and cooling effects, additional analysis is required.

Comparisons of the simulation results to the measurement campaigns from Thomson et

al.[32], show that the simulations underestimate the turbulence intensity profile in the tidal channel.

One possible explanation for this is the influence of distant bathymetry features on the free stream

turbulence. In the case of a complex surrounding environment, free stream turbulence in the

simulation may need to be supplemented to account for these non-local effects.

Finally, it was found in the simulations that high levels of grid anisotropy (the ratio of ∆x to

∆z) resulted in substantial deviations from a log-layer profile. While the ocean channel environment

lends itself well to anisotropic grids – the horizontal domain length is typically much larger than

the vertical – efforts should be made to either keep the grid anisotropy below four or to adapt the

sub-grid scale model of a length scale to account for the grid anisotropy.
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Conclusions

A set of large eddy simulations were run to better understand the tidal channel environment

and the unsteady loads and bending moments experienced by an ocean current turbine, with a

focus on the physical parameters which impact these loads. The simulations were validated against

past simulations as well as observational data from the Admiralty Head and Nodule Point inlets off

the coast of Washington. The simulations were found to match both prior studies and observational

data, although the simulations slightly underestimated the turbulence intensity profile.

In addition to simulation results and statistics, an analytical derivation was presented, linking

turbulent statistics, namely ∆ryu
′
x and ∆rzu

′
x, to bending moments. This derivation could provide

a means of estimating the maximum bending moments from a limited set of observational data.

The simulations were analyzed to present information on mean velocity, Reynolds stresses,

longitudinal and transverse correlations, length scales, structure functions and bending moment

distributions. The vertical and horizontal bending moments were found to be of the same order of

magnitude at moderate depths, though horizontal bending moments increased substantially near

the ocean floor. The mean tidal velocity profile and wave strength were found to be the most

important physical factors in determining the bending moment magnitude and distribution.

For future work, expanding the analysis to include statistics and distributions on transient

torque loads is the primary task. The analysis could also be expanded to run the resulting simula-

tion velocity snapshots through an advanced turbine simulator to provide statistics on all forms of

turbine load. Additionally, comparisons against other observational campaigns could further vali-
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date the simulation parameters while also providing guidance on any needed free stream turbulence

supplements for different environment types.
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