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Myoelectric control systems (MECs) remain the technological bottleneck in the 

development of advanced prosthetic hands.  MECs should provide a human machine interface 

that deciphers user intent in real-time and operates effectively in daily life. Current MECs like 

finite state machines and pattern recognition systems require physiologically inappropriate 

commands to indicate intent and/or lack effectiveness in a clinical setting.  The work of this 

dissertation aims to develop and validate a novel MEC architecture, namely postural control, in 

order to supplant the current state of the art MECs and recreate more of the characteristics of the 

intact limb.  Specifically, the development of the postural control systems builds upon previous 

work based on principal component analysis of human grasping.  Novel attributes of the postural 

control system were then added to the MEC, empirically tested, and validated with able limbed 

subjects using a virtual hand interface.  Further investigation of the postural controller was 

performed by comparing it to state of the art commercial and research MECs with able limbed 

subjects using a physical prosthesis during activities of daily living.  The dissertation concludes 

by verifying the increased effectiveness and robustness of the postural controller compared to 

other MECs when used by persons with transradial limb loss to perform activities of daily living 

with a physical prosthesis. 

  



iv 

 

Dedication 

 

For my wife, Carrie.  To my father, Laurence J. Segil who inspired my love of science. 

  



v 

 

Acknowledgements 

 

I owe much gratitude to my advisor Professor Richard F. ff. Weir for his substantial time 

and effort dedicated to this project and many others during the past six years.  Also, my 

committee members Professor Derek Reamon, Professor Mark Rentschler, Professor Lawrence 

Carlson, and Professor Alena Grabowski contributed advice and encouragement throughout this 

project.  Several other people were helpful with specific challenges throughout the project.  Dr. 

Christian Cipriani was a great mentor and collaborator.  Stephen Huddle provided extensive help 

in preparing the experimental apparatus in Chapter 6.  Nick Stites, Darren McSweeney, Tim 

May, Jared Wampler, and Jay Franklin from the Integrated Teaching and Learning Laboratory 

aided the software and electronic designs throughout the project.  Professor Alena Grabowski, 

Professor Rodger Kram, and Professor Alaa Ahmed donated laboratory space and equipment as 

well as offered encouragement and advice.  Finally, many friends volunteered their time as 

subjects in all of the experiments and they all deserve acknowledgement as well.  This work was 

mainly supported by Award Number I01BX007080 from the Rehabilitation Research & 

Development Service of the VA Office of Research and Development.  Additional support was 

provided by the Whitaker Foundation, the Italian Ministry of Education University and Research 

under the FIRB-2010 MY-HAND Project [RBFR10VCLD], and by the European Commission 

under the WAY project (FP7-ICT-228844).  

 

 

  



vi 

 

Content 

DEDICATION ........................................................................................................................................... IV 

ACKNOWLEDGEMENTS ........................................................................................................................ V 

CONTENT ................................................................................................................................................. VI 

FIGURES .................................................................................................................................................... X 

ABBREVIATIONS ................................................................................................................................ XIV 

CHAPTER 1 - MOTIVATION AND SPECIFIC AIMS......................................................................... 1 

Specific Aim 1: Design and Validation of a Morphing Myoelectric Hand Posture Controller 

Based on Principal Component Analysis of Human Grasping ....................................................2 

Specific Aim 2: A Novel Postural Control Algorithm for Simultaneous and Proportional 

Control of Multi-Functional Myoelectric Prosthetic Hands .........................................................3 

Specific Aim 3: A Comparative Study of State of the Art Myoelectric Controllers for Multi-

Grasp Prosthetic Hands ..................................................................................................................4 

Specific Aim 4: Functional Assessment of Persons with Transradial Limb Loss Using a 

Myoelectric Postural Controller and Multi-functional Prosthetic Hand .....................................5 

CHAPTER 2 - BACKGROUND .............................................................................................................. 7 

Neuromuscular System ...................................................................................................................7 

Upper Limb Anatomy ................................................................................................................................................ 7 

Grasp Taxonomy ....................................................................................................................................................... 8 

Motor Control ........................................................................................................................................................... 9 

Introduction to Myoelectric Control Systems ..............................................................................11 

History of Myoelectric Control and Upper Limb Prosthetic Design ........................................................................ 11 

The Myoelectric Paradox......................................................................................................................................... 14 

Direct Myoelectric Control ...................................................................................................................................... 14 

Clinical Assessment Protocols ................................................................................................................................. 16 

State-of-the-Art Myoelectric Control Systems .............................................................................19 

Pattern Recognition Control Schemes .................................................................................................................... 19 



vii 

 

State/Binary Control Schemes ................................................................................................................................ 20 

Postural Control Schemes ....................................................................................................................................... 21 

CHAPTER 3 - DESIGN AND VALIDATION OF A MORPHING MYOELECTRIC HAND 

POSTURE CONTROLLER BASED ON PRINCIPAL COMPONENT ANALYSIS OF HUMAN 

GRASPING ............................................................................................................................................... 23 

Introduction ...................................................................................................................................23 

Development of Controller Architecture ......................................................................................25 

EMG Processing ....................................................................................................................................................... 26 

PC Domain Maps ..................................................................................................................................................... 27 

Joint Angle Transform ............................................................................................................................................. 30 

Experimental Methods ..................................................................................................................31 

Subject Information ................................................................................................................................................ 31 

Experimental Protocol ............................................................................................................................................. 32 

Testing Interface and Virtual Hand Model .............................................................................................................. 32 

Metrics .................................................................................................................................................................... 34 

Experimental Results and Discussion ..........................................................................................36 

Joystick Control vs. Myoelectric Control ................................................................................................................. 36 

Highest Performing Map ......................................................................................................................................... 37 

Correlation Analysis of Distance versus Performance ............................................................................................ 40 

Practice Session versus Experimental Session ........................................................................................................ 42 

Future Development ............................................................................................................................................... 42 

Conclusion .....................................................................................................................................43 

CHAPTER 4- A NOVEL POSTURAL CONTROL ALGORITHM FOR SIMULTANEOUS AND 

PROPORTIONAL CONTROL OF MULTI-FUNCTIONAL MYOELECTRIC PROSTHETIC 

HANDS ..................................................................................................................................................... 44 

Postural Control Algorithm ..................................................................................................................................... 45 

EMG Acquisition ...................................................................................................................................................... 46 

Vector Summation Algorithm ................................................................................................................................. 46 

Cursor Control Schemes and Potential Field ........................................................................................................... 47 

Joint Angle Transform ............................................................................................................................................. 48 

Methods .........................................................................................................................................51 

Apparatus ................................................................................................................................................................ 52 

Experiment A ........................................................................................................................................................... 52 

Experiment B ........................................................................................................................................................... 54 

Performance Metrics ............................................................................................................................................... 56 



viii 

 

Results............................................................................................................................................57 

Experiment A ........................................................................................................................................................... 57 

Experiment B ........................................................................................................................................................... 59 

Discussion......................................................................................................................................62 

Experiment A ........................................................................................................................................................... 62 

Experiment B ........................................................................................................................................................... 63 

Novel Aspects .......................................................................................................................................................... 65 

CHAPTER 5 - A COMPARATIVE STUDY OF STATE OF THE ART MYOELECTRIC 

CONTROLLERS FOR MULTI-GRASP PROSTHETIC HANDS ..................................................... 67 

Introduction ...................................................................................................................................67 

Methods .........................................................................................................................................68 

Controller 1: Commercially available finite-state machine ..................................................................................... 70 

Controller 2: Vanderbilt University controller ......................................................................................................... 71 

Controller 3: Postural controller ............................................................................................................................. 72 

Experimental Methods ............................................................................................................................................ 74 

Experiment A ........................................................................................................................................................... 75 

Experiment B ........................................................................................................................................................... 77 

Performance Metrics ............................................................................................................................................... 78 

Results............................................................................................................................................80 

Experiment A ........................................................................................................................................................... 81 

Experiment B ........................................................................................................................................................... 82 

Discussion......................................................................................................................................86 

CHAPTER 6 - FUNCTIONAL ASSESSMENT OF PERSONS WITH TRANSRADIAL LIMB 

LOSS USING A MYOELECTRIC POSTURAL CONTROLLER AND MULTI-FUNCTIONAL 

PROSTHETIC HAND ............................................................................................................................ 92 

Introduction ...................................................................................................................................92 

Methods .........................................................................................................................................94 

Prosthetic device ..................................................................................................................................................... 94 

Postural controller................................................................................................................................................... 97 

Southampton Hand Assessment Procedure.......................................................................................................... 100 

Participant details ................................................................................................................................................. 101 

Performance Metrics ............................................................................................................................................. 102 

Results..........................................................................................................................................103 

Subject population comparison ............................................................................................................................ 103 



ix 

 

Controller comparison .......................................................................................................................................... 104 

Prosthetic hand comparison ................................................................................................................................. 106 

Discussion....................................................................................................................................108 

Conclusion ...................................................................................................................................111 

CHAPTER 7 - CONCLUSIONS .......................................................................................................... 113 

Future Ideas ................................................................................................................................116 

Simultaneous myoelectric wrist and hand postural control for persons with transradial limb loss ..................... 116 

Intrinsic sensory feedback for stable force controlled grasping using myoelectric postural control ................... 117 

Novel Contributions ....................................................................................................................118 

Final Thoughts ............................................................................................................................121 

BIBLIOGRAPHY ................................................................................................................................. 122 

 

  



x 

 

Figures 

Figure 1. – The six most common grasp patterns including lateral prehension, tip prehension, power prehension, 

extension, tripod, and spherical prehension.  Image reproduced from Light et al [18]. 9 

Figure 2. – Examples of (a) body-powered (b) single degree of actuation and (c) multifunction prosthetic hands.  

The hands shown are the Hosmer Hook, the Otto Bock MyoHand VariPlus Speed, the Motion Control 

ProControl hand, the Touch Bionics iLimb hand, the RSL Steeper Bebionic hand, and the Otto Bock 

Michelangelo hand respectively. 12 

Figure 3. – Comparison between able-bodied and myoelectric control 13 

Figure 4 – The distribution of grasping postures in the principal component domain  found by Santello et al., 

1998.  Santello et al. found that the 1st and 2nd principal components (PC1 and PC2) accounted for more 

than 80% of the variance in the joint angles of grasping postures.  Therefore mapping two control input 

signals to PC1 and PC2 provides a means to command a prosthetic hand into numerous grasping postures 

using just two control inputs.  The four target postures used in this study are circled and shown.  The 

target postures were chosen because they are evenly distributed between the four quadrants of the PC 

domain and constitute 4 of the 6 functional grasps described by [4].  The bimodal trend in the distribution 

of postures is shown by the dashed lines. 24 

Figure 5 - Block diagram of the controller architecture based on principal components of human grasping.  The 

raw EMG control signals are processed using standard EMG processing techniques.  Four different PC 

domain maps are tested using various transformations of the EMG control signals on the PC domain.  The 

output of the maps is a PC coordinate (PC1, PC2).  The joint angle transform converts the PC coordinate 

into an array of 15 joint angles (equation 2).  The virtual hand visualizes the 15 joint angles in real time. 26 

Figure 6 - Maps 1-4 on the PC domain.  Map 1 translates the EMG signals to the third quadrant and aligns EMG A 

with PC1 and EMG B with PC 2.  Map 2 translates and rotates the EMG A and EMG B signals.  The rotation 

mimics the bimodal pattern seen in the grasping posture distribution from Santello et al.  Map 3 divides 

the PC domain into three equal portions using EMG A, B, and C.  Map 4 divides the PC domain into four 

equal portions using EMG A, B, C, and D. 28 

Figure 7 - The testing interface seen by the subjects.  The target posture is stationary during the trial but changes 

after each trial.  The maximum accuracy score displays the highest number of joints controlled accurately 

at any time during the trial. The pause button allows the subject to pause the experiment at any time.  The 

controlled posture morphs as the subject manipulates the control signals.  The current accuracy 

instantaneously displays the number of joints controlled accurately throughout the trial.  The two-four 

normalized EMG waveforms are displayed in real time. 33 

Figure 8 - Example of diagonal and perpendicular distance definition using Map 2.  The diagonal distance is 

measured from the origin of the map to the posture.  The perpendicular distance is the shortest distance 

from the posture to the nearest axis.  The amount of co-contraction necessary to acquire off axis target 

postures is quantified by the perpendicular distance metric. 36 

Figure 9- The number of joints controlled accurately for both myoelectric control and joystick control trials 

across maps and all subjects. 37 

Figure 10 - Comparison of performance metrics over all maps.  The performance of Map 2 was statistically 

greater than the other maps for both the number of joints controlled and completion rate metrics (p < 

0.05). 39 

Figure 11 - A correlation analysis between distance and all performance metrics.  The four rows correspond to 

the four performance metrics (Number of Joints Controlled, Completion Rate (CR), Time to Completion 

(TC), and Path Efficiency (PE)) and the two columns correspond to the two distance metrics (diagonal and 



xi 

 

perpendicular distance).  The least square fit line, goodness of fit measure, and p-value are shown for all 

comparisons.  The correlation between path efficiency (PE) and diagonal distance (circled) is the only 

relationship with a significant correlation.  This finding mirrors the trend shown in Figure 10 where PE was 

greatest for Maps 3 and 4 which have the shortest diagonal distances to all target postures. 41 

Figure 12 – Novel algorithm for a postural controller.  An untargeted surface electrode array acquires 

electromyographic (EMG) signals.  The filtered root mean square average (RMS) EMG values are 

passed to the VSA which produces a resultant vector ( ).  The resultant vector is used to calculate the 

PC Cursor coordinate (PCX,PCY) using various cursor control schemes and potential field designs.  

Finally, the JAT transforms the PC cursor coordinate to a joint angle array which is sent to the 

prosthetic hand. 46 

Figure 13 – Components of a postural controller.  (a) An untargeted electrode array is arranged about the cross-

section of the forearm.  Radius bone (R), ulnar bone (U), north (N), south (S), west (W), east (E). (b)  The 

vector summation map depicts exemplary RMS EMG activity as measured by the electrode array.  The VSA 

calculates the resultant vector ( ). (c) An example potential field design where the light/dark gray areas 

distinguish areas of zero/negative potential, respectively.  This potential field design was used in 

Experiment B (d).  An exemplary postural map design with seven postures arranged in a symmetric 

distribution about the PC domain (hand flat posture not shown at origin).  This postural map design was 

used in Experiment B.  TP – tip prehension, LP – lateral prehension, CP – cylindrical prehension, PT – 

pointer, HK – hook, PP – palmar prehension 51 

Figure 14 –Experiment A protocol for an exemplary single meeting.  The visual feedback paradigm for all 

sessions consisted of the PC domain including the target circle and PC cursor coordinate.  The sequence of 

control methods was presented in a pseudorandom fashion where the velocity and position control 

sessions and the order of electrode configurations within each session was randomized for each subject. 3-

site velocity (V3), 4-site velocity (V4), 12-site velocity (V12), 4-site position (P4), 12-site position (P12), 3-

site position (P3). 54 

Figure 15 –Experiment B single meeting protocol.  This protocol was repeated on D1-D3.  During all sessions, a 

computer monitor presented a virtual hand (VH) prosthesis that responded to the real-time output of the 

postural controller and a target posture (TP).  The additional visual feedback differed between PT/T, Tar, 

and nTar sessions.  All sessions used the same control method (3-site velocity, V3). 56 

Figure 16 – Raw PC cursor coordinate traces by a single subject.  Each window displays 36 attempts 

corresponding to a single experimental session.  The targets are shown as circles.  The twelve axes 

correspond to the twelve electrodes on the limb. 58 

Figure 17 – Experiment A performance metrics averaged across subjects for each control method. No difference 

was found when comparing the 12-site, 4-site, and 3-site electrode array sessions.  * indicates a p<0.05. 59 

Figure 18– Experiment B Testing (T) session performance metrics averaged over days for each subject. * 

indicates a p<0.05. 60 

Figure 19 – Experiment B PreTest (PT) session performance metrics averaged over subjects for each day.  * 

indicates a p<0.05. 61 

Figure 20 – Controller 1 (C1). A finite state machine based on the iLIMB prosthetic hand. 71 

Figure 21 – Controller 2 (C2). A finite state machine based on the Multigrasp Myoelectric Controller developed 

by Dalley et al. 72 

Figure 22 – Controller 3 (C3). A postural controller developed as described in Chapter 4. An arrangement of the 

target postures in the Postural Control domain is shown as well as the radial mapping of the EMG signals 

(F, E, and U). 74 

Figure 23 – a) The experimental platform consisting of Azzurra IH2 artificial hand mounted onto an able-bodied 

splint, a three-site surface EMG acquisition system, and the SHAP. b) The Azzurra IH2 artificial hand with 



xii 

 

nine joints (red circles) and five motors (dashed black circles, the ring and little fingers are coupled as 

shown by solid line). 77 

Figure 24 – The transformation of root mean square (RMS) EMG signals (E, F, and U) into five joint angles. The 

smoothed EMG signal in red from flexor digitorum (F), extensor digitorum (E), and extensor carpi ulnaris 

(U, only used in C3) showed the muscle activity after filtering and tuning. The joint angle traces from top to 

bottom for Thumb Abduction (AB), Thumb Flexion (TH), Index Flexion (IN), Middle Flexion (MI), Ring/Little 

Flexion (RL) in blue corresponded to the hand posture shown including tip prehension (TP), hand flat (HF), 

and opposition (OP). The state/posture of C1 and C2 (1-6) was depicted by the black trace and the co-

contraction trigger signal was highlighted by the vertical gray bar. It should be noted that C3 did not 

require a trigger signal since the postural control architecture controls the hand posture in a continuous 

domain without discrete states. 81 

Figure 25 – Experiment A results for each controller. The SS describes the artificial hand function where 100 

equals able-bodied, hand function. The SD is the percent difference of the SS of each controller compared 

to the subject mean. * indicate p-values < 0.05. 82 

Figure 26 – Experiment B results averaged for each controller. The CR refers to percentage of successful 

attempts during the virtual hand posture matching task. The MT describes the time to completion during 

the virtual hand matching task. The EMG AMP is a measure of effort based on the RMS average of the 

EMG activity and is calculated as the percent difference from the subject average. Positive AMP describes 

more than average EMG activity. * indicate p-values < 0.05 83 

Figure 27 – Experiment B results sorted by target type and controller. Solid outlines indicate 1-DoF targets; 

dashed outline indicates 2-DoF targets. 2-DoF targets require the activation of two EMG signals (a co-

contraction). * indicate p-values < 0.05 85 

Figure 28 –AMP sorted by posture and controller for a) C1, b) C2, c) C3 where positive EMG AMP refers to 

postures that require more EMG activity than the subject average and vice versa.  Postures are arranged 

along the x-axis based on the sequence of postures within each controller.   * indicate p-values < 0.05. 86 

Figure 29 – (a) The Bebionic v2 by RSL Steeper, U.K. with five degrees of actuation.  (b) A sixth degree of 

actuation was added in order to automate the positioning of the thumb ab/adduction.  The actuator 

including motor, transmission, and clutch were embedded into the palm as shown in red.  (c) Photos of the 

right and left hand configurations of the modified six degree of freedom Bebionic hand. 95 

Figure 30 – (a) The residual limb of person with congenital limb loss.  Three surface electrodes are placed on the 

limb (the third is not visible in image).  (b) A temporary cast was formed around the residual limb.  (c)  The 

prosthesis is mounted to the temporary cast in a physiologically appropriate manner. 97 

Figure 31 – Dynamic EMG tuning map in the PC domain.  The EMG gains (GI where i is the EMG signal) are 

determined by the location of the cursor in the PC domain.  Gio refers to the original EMG gain value for 

the ith EMG signal. 99 

Figure 32 – Postural control maps.  3-site maps (a) were used by subjects A1,A4, and all able bodied subjects (S1-

S4).  2-site maps were used by subjects A2 and A3. 100 

Figure 33 –The SHAP scores and functionality profile scores for subjects with limb loss (AMP) and able-bodied 

subjects (ABLE) when using the postural controller.  All scores were statistically equal between two 

populations (p > 0.05). 104 

Figure 34 – The SHAP scores for the modified Bebionic and Azzurra hands for each myoelectric controller.  The 

Azzurra SHAP scores are reproduced here from Chapter 5.  The increasing SHAP score from C1 to C2 to C3 

was similar across hands. 105 

Figure 35 – The average SHAP and functionality profile scores for the modified Bebionic and Azzurra hands 

averaged across all controllers.  The SHAP score and several functionality profile scores were significantly 



xiii 

 

different indicating that the mechanical design of the hand affected the ability of subjects to perform the 

SHAP test. 107 

Figure 36 – A possible simultaneous wrist and hand PC domain map.  Red text distinguishes the added 

simultaneous wrist degrees of freedom that are controlled.  Red arrows indicate the direction of wrist 

movement. 117 

 

  



xiv 

 

Abbreviations 

ABLE = able-bodied subjects 

ADL = activity of daily living 

AMP = subject with limb loss 

C1/C2/C3  = controller 1/2/3 

CR = completion rate 

CNS = central nervous system  

DoA = degree of actuation 

DoF = degree of freedom 

E = extension electromyographic signal  

EMG = electromyography 

F = flexion electromyographic signal  

FP = functionality profile 

HF = hand flat 

HK = hook 

HMI = Human-machine interface  

IMES = implantable myoelectric sensors 

JAT = joint angle transform  

LP = lateral prehension  

MCP = metacarpophalangeal joint 

MECs = myoelectric control systems  

MES = myoelectric signals 

MT = movement time  

OP = opposition  

P3/P4/P12 = 3, 4, 12-site position control 

PC = postural control  

PCA = principal component analysis 

PE = path efficiency 

PIP = proximal interphalangeal joint 

PP = palmar prehension  

PT = pointer  

RMS = root mean square 

SHAP = southampton hand assessment 

procedure  

SS = SHAP score 

T = trigger  

TC = time to completion 

TMR = targeted motor reinnvervation 

TP = tip prehension  

U = ulnar deviation electromyographic 

signal  

UPLOM = upper limb prosthetic outcome 

measures 

V3/V4/V12 = 3, 4, 12-site velocity control 

VH = virtual hand 

VSA = vector summation algorithm 

 



1 

 

 

“In the absence of any other proof, the thumb alone would convince me of God’s existence.” 

Sir Issac Newton 

Chapter 1 - Motivation and Specific Aims 

 

The development of advanced prosthetic limbs is an active and highly visible field of 

research.  Much attention in this field has focused on brain machine interfaces [1], [2], [3], 

peripheral nerve implants [4], [5], [6] and surgical techniques to augment the neuromuscular 

system [7], [8].  These technologies promise revolutionary therapies for persons with limb loss 

and other neuromuscular disorders however are far from clinical relevance today.  There is a 

great need for near term, clinically focused research.  A large portion of upper limb prosthetic 

device users still prefer body-powered, split hook devices [9], a World War II era technology.  

New multifunctional commercial prosthetic hands have recently become more prevalent [10] due 

to advances in microprocessor technology, electric motor design, and battery power.  Now, the 

technological bottleneck in the development of clinically viable advanced prosthetic limbs is the 

human machine interface. 

The prevailing clinically relevant human machine interfaces in the field of upper limb 

prosthetic control are myoelectric control systems.  Myoelectric control systems (MECs) should 

provide a human machine interface that deciphers users intent in real-time and operates 

effectively in daily life.  Many MECs have been developed including direct control schemes, 

pattern recognition systems, and finite state machines, however no MECs can recreate the 

fluidity, intuitiveness, and dexterity of the intact neuromuscular system.  In this dissertation, a 

novel MEC architecture, namely postural control, was developed and validated by the authors in 
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order to supplant the current state of the art MECs and recreate more of the characteristics of the 

intact limb.  This works aims to answer the hypothesis that postural control systems provide 

a more effective and clinically robust interface compared to state of the art systems in the 

commercial and research realms for persons with transradial limb loss using myoelectric 

prosthetic hands. 

This dissertation investigated this hypothesis in four aims.  More specifically, the original 

development of the postural control systems built upon previous work based on Santello et al.’s 

[11] study using principal component analysis of human grasping.  Novel attributes of the 

postural control system were then added to the postural controller, empirically tested, and 

validated with able limbed subjects using a virtual hand interface.  Further validation of the 

postural controller was performed by comparing it to state of the art commercial and research 

MECs with able limbed subjects using a physical prosthesis during activities of daily living.  The 

dissertation concludes by validating the effectiveness and robustness of the postural controller 

when used by persons with transradial limb loss.  The specific aims for this dissertation are: 

Specific Aim 1: Design and Validation of a Morphing Myoelectric Hand 

Posture Controller Based on Principal Component Analysis of Human 

Grasping
1
 

The principal component analysis (PCA) of human grasping performed by Santello et al. 

[11] provided the motivation for the development of a postural controller.  Santello et al., found 

that two principal components described the majority of the variance in human joint angles 

                                                 
1
 Segil, J.L.; Weir, R.F.F., "Design and Validation of a Morphing Myoelectric Hand Posture Controller Based on 

Principal Component Analysis of Human Grasping," Neural Systems and Rehabilitation Engineering, IEEE 

Transactions on , vol.22, no.2, pp.249,257, March 2014 doi: 10.1109/TNSRE.2013.2260172 
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during grasping.  In other words, most grasps performed during activities of daily living could be 

mapped to a two dimensional domain.  This finding inspired the design of a novel MEC, namely 

postural control.  This aim describes the design and validation of a morphing myoelectric hand 

controller based on principal component analysis of human grasping.  The postural controller 

commands continuously morphing hand postures including functional grasps using between two 

and four surface electromyography (EMG) electrodes pairs.  Four unique maps were developed 

to transform the EMG control signals in the principal component domain.  A preliminary 

validation experiment was performed by 10 non-amputee subjects to determine the map with 

highest performance.  The subjects used the myoelectric controller to morph a virtual hand 

between functional grasps in a series of randomized trials.    The number of joints controlled 

accurately was evaluated to characterize the performance of each map.  Additional metrics were 

studied including completion rate, time to completion, and path efficiency.  The highest 

performing map controlled over 13 out of 15 joints accurately. 

Specific Aim 2: A Novel Postural Control Algorithm for Simultaneous and 

Proportional Control of Multi-Functional Myoelectric Prosthetic Hands
2
 

The design of the postural controller developed in aim 1 was further advanced in this aim.  

Most significantly, the algorithm that allows for customizable, dynamic postural control domain 

maps was developed and integrated into the postural controller.  This attribute was previously 

impossible when the postural control domain was based solely on the PCA of human grasping.  

Additional design attributes were added including various cursor control techniques and potential 

wells.  Design parameters of the postural controller were empirically tested including 

                                                 
2
 Intended publication with Journal of Neural Engineering submitted January 2014 with co-author Richard F. ff. 

Weir, Ph.D. 
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position/velocity cursor control techniques, the necessary number of EMG control signals, and 

the robustness of the system to donning/doffing.  Here the novel algorithm for a postural 

controller is presented and tested during two experiments with eleven total able bodied subjects.  

The first experiment consisted of a center-out target acquisition task using various configurations 

of the myoelectric postural controller in order to empirically determine suitable design 

parameters.  The second experiment involved a hand posture matching exercise using a virtual 

hand interface and quantified subject performance and learning using the postural controller over 

a period of three days.  In the first experiment, we found that the performance increased when 

using a velocity cursor control technique versus a position cursor control technique.  Also, the 

performance did not change when using three, four, or twelve surface electrodes.  In the second 

experiment, subjects commanded a six degree of freedom virtual hand into seven functional 

postures without training with completion rates of 82% ± 4%, movement times of 3.5s ± 0.2s, 

and path efficiencies of 45% ± 3%.  Subjects retained the ability to use the postural controller at 

a high level across days after a single one-hour training session.  Our results substantiate the 

novel algorithm for a postural controller as a robust and advantageous design for a MEC of 

multi-function prosthetic hands. 

Specific Aim 3: A Comparative Study of State of the Art Myoelectric 

Controllers for Multi-Grasp Prosthetic Hands
3
 

The design of the postural controller was shown to be robust and effective during virtual 

hand posture matching tasks, however the efficacy of the system when implemented on a 

physical device required further evidence.  Here a comparative study of two types of finite state 

                                                 
3
 Intended publication with Journal of Rehabilitation Research and Development, submitted February 2014 with co-

authors Marco Controzzi, Ph.D., Richard F. ff. Weir, Ph.D., and Christian Cipriani, Ph.D. 
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machines and a postural control scheme using both virtual and physical assessment procedures 

with seven able-limbed subjects is presented. The Southampton Hand Assessment Procedure was 

used in order to compare the effectiveness of the controllers during activities of daily living 

using a multi-grasp artificial hand. Also, a virtual hand posture matching task was used to 

compare the controllers when reproducing six target postures. The performance when using the 

postural control scheme was significantly better (p < 0.05) than the finite state machines during 

the physical assessment when comparing within subject averages using the SHAP percent 

difference metric. The virtual assessment results described significantly greater completion rates 

(97% and 99%) for the finite state machines but the movement time tended to be faster (2.7s) for 

the postural control scheme. Our results substantiate that postural control schemes rival other 

state of the art myoelectric controllers during object manipulation tasks and other activities of 

daily living 

Specific Aim 4: Functional Assessment of Persons with Transradial Limb 

Loss Using a Myoelectric Postural Controller and Multi-functional Prosthetic 

Hand
4
 

Finally, the postural controller was tested by persons with transradial limb loss in order to 

answer the overarching hypothesis that the system provides a more effective and clinically robust 

interface when compared to state of the art systems in the commercial and research realms.  

Persons with transradial limb loss present additional complications with regards to the design of 

the postural controller due to the differences in residual limb size, musculature, and neural 

control.  Several design modifications were made in order to address these challenges and then 

                                                 
4
 Intended publication with Myoelectric Controls Symposium, submitted March 2014 with co-authors Stephen 

Huddle, M.S. and Richard F. ff. Weir, Ph.D. 

 



6 

 

 

tested.  Here a functional assessment of persons with transradial limb loss with a myoelectric 

postural controller and multi-functional prosthetic hand is presented.  Persons with transradial 

limb loss performed the Southampton Hand Assessment Procedure with a modified Bebionic 

hand and a postural controller.  Able-limbed subjects also performed the test with the identical 

prosthesis and controller for comparison.  The results describe that the transradial amputees and 

able-limbed subjects achieved the same performance indicating that the postural controller is a 

valid myoelectric control system after transradial limb loss.  The transradial amputees restored 

55% of typical hand function on average.  Also by deduction, the postural controller would 

perform better than the other state of the art MECS tested for persons with limb loss as well.  The 

results show that the postural controller compared favorably to other myoelectric controllers in 

the commercial and research realms and demonstrate the clinical efficacy of the postural 

controller for transradial amputees.   
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Chapter 2 - Background 

 

A brief overview of the neuromuscular system with an emphasis on upper limb anatomy, 

motor control theory, and grasp taxonomy is presented along with an introduction to myoelectric 

control systems.  A detailed review of the state-of-the-art myoelectric prosthetic hand control 

schemes concludes the section.  

Neuromuscular System 

Upper Limb Anatomy 

The human arm and hand is a complex and robust system capable of powerful grasps and 

fine manipulation.  In particular, the human hand has been described as nature’s most wondrous 

machine.  Sir Issac Newtwon once said, ‘In the absence of any other proof, the thumb alone 

would convince me of God’s existence’ [12].  The musculoskeletal system of the hand consists 

of at least 18 joint articulations controlled by over 30 muscles [13]. The hand has proprioceptors 

that sense the position of the hand in space and sensory receptors capable of sensing temperature, 

vibration, shear, and movement [14].   

Skeletal muscles are composed of muscle fibers that can be volitionally controlled.  A 

neural command causes the actin and myosin filaments within the myofibrils to ratchet along the 

length of the sarcomere and produce a muscle contraction.  The flow of ions across the muscle 

cell membrane during the contraction creates electric potentials that can be measured using 

electrodes.  This naturally occurring voltage produces a quasi-Gaussian distributed random noise 

electric field called the electromyogram.  Electromyography (EMG) is the study of these muscle, 

or myoelectric, signals (MES). The EMG signal can be measured from the surface of the skin 
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using surface electrodes and/or within the muscle fiber using intramuscular electrodes.  The 

EMG signal is a composite, or superposition, of the all of the electric potentials created within 

the electrode detection volume.  The measured signal is generally monotonic and is proportional 

to the amount of muscle activity in the detection volume [15].  The use of EMG in the control of 

prosthetic devices is discussed more thoroughly in the Introduction to Myoelectric Control 

Systems section. 

Grasp Taxonomy 

 

The complexity of the human hand has led to extensive research into its typical uses.  

Grasps taxonomies have been developed since the mid-20
th

 century in order to organize the ways 

the human hand is used [12], [16], [17].  In general, there is consensus on the six most common 

grasp patterns which include lateral prehension, tip prehension, power prehension, extension, 

tripod, and spherical prehension (Figure 1, [18]).  More specifically, palmar, lateral, and tip 

prehension are the most used grasps [16].  These six functional grasps can be organized further 

into opposed and unopposed grasps.  Opposed grasps including tripod, tip prehension, and 

extension are formed with the thumb adducted across the palm.  Unopposed grasps including 

lateral prehension, power, and spherical are formed with the thumb abducted away from the 

palm.  Other grasps can be included in order to target typical modern day uses like clicking a 

computer mouse (pointer) and/or pressing against a table to stand up (hand flat) [19], [20].  Some 

functional grasps are ignored when applied to a multi-function prosthesis because of the 

mechanical constraints of the device.  For example, the extension grasp is not possible with 

kinematic coupled joints in the digits of many prosthetic hands since the mechanical coupling 

forces all joints in the digits to flex in unison [10].  In general, grasp taxonomies inform the 

design of multi-function prosthetic hands as well as the associated myoelectric control systems. 
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Motor Control 

The neuromuscular system integrates sensory information and motor commands into 

coordinated skill and movements, namely the study of motor control. Even a seemingly simple 

task, like drinking a cup of coffee, requires an incredible harmonization of motor commands to 

redundant biomechanical systems and analysis of sensory information which all occurs in real-

time without excessive mental burden.  It is important to understand motor control in the intact 

system in order to better design replacements when part of the neuromuscular system is lost due 

to amputation.   

 

Figure 1. – The six most common grasp patterns including lateral prehension, tip prehension, 

power prehension, extension, tripod, and spherical prehension.  Image reproduced from Light 

et al [18].   
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The anatomy of the human neuromuscular system forms a redundant biomechanical 

machine where there are more degrees of actuation (DoA – muscles) and degrees of freedom 

(DoF – joints) than are necessary to achieve any given task [21].  As a result, tasks can be 

accomplished with a variety of kinematic, kinetic, and muscle activation strategies.  This feature 

is defined as motor variability and is a critical concept in the field of motor control.  As 

Bernstein described best, motor variability is ‘repetition without repetition’.   

Many theories exist today to explain the control method used to command this redundant 

biomechanical system with motor variability.  The uncontrolled manifold hypothesis describes a 

control strategy that allows for high variability among certain variables (i.e. – joint angles, 

muscle activations, etc.) as long as the desired task is accomplished [22],[23].  A similar theory, 

optimal feedback control, describes the use of feedback to optimally correct the deviations that 

affect the task goal and ignore the variability of the irrelevant variables [24].  The concept of 

muscular synergies describes the reduction of the number of control signals necessary to produce 

movement by grouping muscles into temporal or spatial sets [25], [26].  These muscle synergies 

are activated in a fixed balance (linear combination) such that specific tasks can be accomplished 

with a minimal amount of commands from the central nervous system (CNS).   

The synergy concept has been thoroughly investigated with regards to the control of 

grasping.  The work of Santello et al. [11] described the postural synergies that were present 

during human grasping trials.  A postural synergy, like a muscular synergy, is a pattern of joint 

angles that varies together (i.e. – a kinematic coupling).  Santello et al. found that two postural 

synergies described 80% of the variance in human grasping.  In other words, grasping is a low 

(~2) dimensional task.  Many studies further investigated the muscular and postural synergies 

used during grasping as reviewed by [27] and [28].  This work from the field of neuroscience has 
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created a translational topic in the field of robotic and prosthetic grasping and is discussed in 

more detail in the Postural Control Schemes section below. 

 

Introduction to Myoelectric Control Systems 

History of Myoelectric Control and Upper Limb Prosthetic Design 

Myoelectric control systems (MECs) were developed in order to control externally 

powered prosthetic devices.  Externally powered prostheses use battery power and motors to 

cause a desired function (e.g. – flex elbow, grasp cup).  Powered prostheses have been 

commercially available since the 1980s [29] and contained only a single DoA, (i.e. – number of 

actuators in device).  Only recently have multi-function, or advanced, prosthetic hands become 

commercially available (Figure 2).  These devices contain many DoAs and can produce multiple 

grasping postures.  In comparison, body-powered prostheses use cabling and harnesses to 

convert body motion into the same functions [30].  Both methodologies are attempting to 

recreate the lost function after an upper-limb amputation.  In 2005, there were an estimated 

41,000 Americas living with major upper limb loss [31].  These users describe similar areas of 

improvement for both methodologies including more intuitive control schemes and the ability to 

cause simultaneous and coordinated motion of multiple joints [32].  An intuitive MEC recreates 

the lost function using physiologically appropriate neural commands.  Powered prosthetic 

devices and MECs will be superior to body-powered devices (especially once appropriate 

sensory feedback is incorporated) and is therefore the focus of this work.   



12 

 

 

 

Myoelectric control systems have been clinically available for over 30 years [33].  This 

first evidence of a MEC was in 1948 used to control a Hufner hand and was then further 

developed by separate groups, the Russian hand and the French hand, in the 1950’s [29], [34].  

Over time, these systems have become more prevalent because they can be controlled using 

easily prepared and noninvasive techniques.  In addition, advances in micro-electronics, 

miniature-actuators, and battery technology have accelerated the number of developments in 

powered prostheses.  Figure 3 compares an able-bodied control system with a myoelectric 

control system. 

 

Figure 2. – Examples of (a) body-powered (b) single degree of actuation and (c) multifunction 

prosthetic hands.  The hands shown are the Hosmer Hook, the Otto Bock MyoHand VariPlus 

Speed, the Motion Control ProControl hand, the Touch Bionics iLimb hand, the RSL Steeper 

Bebionic hand, and the Otto Bock Michelangelo hand respectively. 
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As seen in Figure 3, the MEC uses the muscles as sources of control of signals.  The 

muscle contraction is measured using electrodes.  The site on the body where a myoelectric 

electrode is placed to measure an EMG signal is referred to as a control site.  The EMG signal 

can then be processed and used as a control signal to control the prosthesis.  This process has 

been extensively studied and is covered more thoroughly in several reviews [35],[36],[37]. 

In general, the goal of a MEC is to decipher user intent.  However, the subgoals of MECs 

are numerous.  Childress and Weir [15] define the objectives as the following: (1) low mental 

loading or subconscious control, (2) user-friendliness, (3) independence in multifunctional 

control, (4) simultaneous and coordinated control of multiple functions, (5) near-instantaneous 

response, (6) noninterference with the individual’s remaining functional abilities, and (7) a 

natural appearance and quiet movement.  While some of these goals are more or less important 

to the user, the objective that most research has focused on is goal (4) simultaneous and 

 

Figure 3. – Comparison between able-bodied and myoelectric control 
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coordinated control of multiple functions.  This objective is far from being achieved and is the 

motivation for this work as well as many others today.   

The Myoelectric Paradox 

MECs have a technological bottleneck in the communication between the user and the 

prosthesis. Parker et al. [33] describe this phenomenon as the myoelectric paradox:  “the 

functionality and thus control site requirements increase with the level of amputation while the 

number of sites decreases…” The myoelectric paradox is the primary limitation on the 

development of more dexterous prosthetic limbs.  While a prosthetic limb with almost all the 

degrees of freedom of an anatomical arm [38] has been built, no myoelectric control strategy can 

operate such a complex device with dexterity. 

The myoelectric paradox can also be posed as a Multiple Input, Multiple Output (MIMO) 

control challenge.  As described by the myoelectric paradox, the number of inputs to the 

controller is less than the required number of outputs when using advanced multifunction 

prosthetic limbs.  The methods used to solve this inherent imbalance in MEC have been studied 

for decades and are the foundation of the postural controller discussed below.   

Direct Myoelectric Control 

The original type of MEC used a direct control scheme.  Direct control schemes map a 

single EMG control signal to a single control variable like joint position or motor speed [39], 

[40].  Direct control schemes require little cognitive effort from the user, can occur with minimal 

computational delay, and a minimal number of EMG control sites are necessary.  Many 

commercial devices on the market today successfully implement direct control schemes like the 

Motion Control ETD [41], Hosmer Terminal Device
 
[42], and the Otto Bock System Electric 



15 

 

 

Hand [43].  However, these devices have a single DoA; they are considered ‘open-close’ 

prostheses.  Users indicate that multiple grasps and increased articulation are highly desirable 

design considerations [9], [32] but these functions are not possible when using single DoA 

prostheses with a direct MEC. 

In order to take advantage of the intuitive nature of direct MEC schemes, several 

techniques have been developed in order to increase the number of control signals to the MEC 

and thereby solve the myoelectric paradox.  Targeted Motor Reinnervation (TMR) is a surgical 

technique which increases the number of available control sites for myoelectric control [7].  

TMR rewires the efferent nervous system so that the musculature remaining after amputation is 

reinnverated with efferent nerves that used to control the amputated joints.  The result is an 

increase in the number of intuitive EMG control sites to be used in a direct MEC scheme.  TMR 

has been performed on dozens of patients so far with positive and dramatic results.  Another 

methodology to increase the number of input control signals is the use of implantable 

myoelectric sensors (IMES) [8].  The IMES are implanted inside the residual limb and 

communicate through wireless telemetry to the MEC.  Intuitive control sites can be created by 

implanting IMES into specific muscles within the residual limb that then control the 

physiologically appropriate joint in the prosthesis.  The localized EMG activity measured by the 

IMES is not possible to detect using standard-of-care surface electrodes.  Conclusive results have 

been produced verifying the efficacy of the IMES in human subjects using fine wire needle 

intramuscular electrodes [44], [45].  Current work at Walter Reed Medical Center is studying the 

ability of the first human subject using IMES to control a hand and wrist prosthesis.   
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Clinical Assessment Protocols 

The clinical assessment of MECs requires both reliable and validated testing protocols as 

well as reproducible hardware/software interfaces in order to make robust comparisons across 

studies.  Many clinical assessment procedures have been proposed in the previous decades using 

both virtual interfaces and physical testing protocols.  Virtual testing interfaces typically entail 

subjects matching a virtual limb/hand to a target posture.  Birdwell [44] used intramuscular fine 

wire electrodes to command a virtual hand posture matching exercise using both direct control 

and pattern recognition MECs.  Dalley et al. [46] used a state machine architecture in a posture 

matching exercise to command multiple functional postures.  Hargrove et al., [47] used a virtual 

clothespin task to quantify the efficacy of a pattern recognition MEC as opposed to standard 

offline metrics like classification accuracy and error.  Simon et al., [48] developed the Target 

Achievement Control Test in order to evaluate real-time pattern recognition MEC with various 

controller and task complexities.  Virtual assessment procedures can be advantageous since the 

need to use standardized prosthetic hardware is removed.  However, a virtual assessment 

procedure cannot perfectly simulate a real-world environment where grasp stability, load on the 

body due to limb position, temporal coordination of the digits within the prosthesis, and 

compensatory movements increase the complexity of a physical task compared to a virtual task.   

Physical assessment procedures more closely reproduce clinical situations and tasks.  The 

Academy’s State of the Science Conference on Upper Limb Prosthetic Outcome Measures 

(ULPOM) identified parameters that contribute to the usability of a prosthesis [49], [50].  The 

ULPOM group described three domains including the functional, activity, and participation 

domains which require differing assessment techniques like technical tasks, clinical assessment, 

and self-rating respectively. Other reviews describe both objective and subjective protocols to 
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measure functional outcomes [18], [51].  The Assessment of Capacity for Myoelectric Control 

(ACMC) is a subjective protocol that judges subjects as they perform activities of daily living 

(ADLs) focusing on four main types of tasks: gripping, holding, releasing, and coordinating.  

The box and blocks test as well as the clothespin test provide objective measures of a single 

ADL using a time based performance metric [52], [53].  Finally, the Southampton Hand 

Assessment Procedure (SHAP) test is an objective, time-based test that includes 26 ADL tasks 

which span the functional grasps detailed in Table 1 [16].  The SHAP was shown to be reliable 

and was validated so that results of independent studies can be compared [18].  This fact has led 

the field of prosthetic hand control and design to adopt it as a tool to assessment prosthetic hand 

and MEC function.  It is an easily reproducible test however it only requires planar motions/tasks 

(i.e. – no tasks that require reaching overhead or below the waist).  As examples, the i-LIMB and 

DMC hand was compared by Van Der Niet et al., [54] using the SHAP test and Dalley et al., 

[55] used the SHAP test to perform a functional assessment of the Multigrasp Myoelectric 

Controller using the Vanderbuilt Multigrasp Hand 
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Table 1 – Southampton Hand Assessment Procedure (SHAP) tasks 

Type Number Name Grasp  Type Number Name Grasp 
A

b
st

ra
ct

 O
b
je

ct
 T

as
k
s 

1 
Spherical 

(lightweight) 
PP  

A
ct

iv
it

ie
s 

o
f 

D
ai

ly
 L

iv
in

g
 

13 
Pick up 

coins 
TP 

2 
Tripod 

(lightweight) 
TP  14 

Button 

board 
PP 

3 
Power 

(lightweight) 
PP  15 

Food 

cutting 
LP 

4 
Lateral 

(lightweight) 
LP  16 

Page 

turning 
LP 

5 
Tip 

(lightweight) 
TP  17 Jar lid PP 

6 
Extension 

(lightweight) 
TP  18 

Jug 

pouring 
PP 

7 
Spherical 

(heavyweight) 
PP  19 

Carton 

pouring 
PP 

8 
Tripod 

(heavyweight) 
TP  20 

Heavy 

object lift 
PP 

9 
Power 

(heavyweight) 
PP  21 

Light 

object lift 
TP 

10 
Lateral 

(heavyweight) 
LP  22 Tray lift LP 

11 
Tip 

(heavyweight) 
TP  23 Rotate key LP 

12 
Extension 

(heavyweight) 
TP  24 

Open/close 

zip 
LP 

      25 
Rotate a 

screw 
PP 

      26 
Door 

handle 
LP 
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State-of-the-Art Myoelectric Control Systems 

Pattern Recognition Control Schemes 

Pattern recognition is a widely researched topic for the control of multifunctional 

prosthetic limbs [56],[57],[58].  It is based on measuring patterns of surface EMG signals and 

assigning each pattern to the desired posture/motion.  The EMG measurement of multiple control 

sites is preprocessed and segmented into windows over time.  Features are extracted from each 

window which contain information on the EMG signal.  The classifier then decides upon the 

desired posture/motion from the extracted features.  The pattern recognition system can 

recognize many patterns but must be trained for each pattern before use.  The postures/motions 

are predefined and cannot vary during use.   

Pattern recognition provides an intuitive method for controlling multiple degrees of 

freedom but sacrifices coordinated movement (e.g. each DoF must be actuated sequentially) and 

practical robustness.  Extensive research focused on the type of statistical algorithm to use as the 

classifier (a thorough review is provided by Scheme and Englehart [59]).  Most classifiers seem 

to produce similar classification accuracy and therefore secondary parameters like robustness to 

clinical conditions are more critical measures of a systems performance. Scheme and Englehart 

[59] discuss many of the pitfalls towards clinical robustness of the current state of the art pattern 

recognition techniques including electrode shift, variation in force of the contraction, limb 

position, and transient changes in the EMG signal.  Young et al., [60] documented the negative 

effects of electrode shift on the performance of pattern recognition systems.  Several studies have 

shown the negative impact various limb positions can have on the performance of pattern 

recognition systems [61], [62].  Other work focused on the development of simultaneous, 

coordinated motion across DoFs, but showed a decrease in performance compared to sequential 
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control pattern recognition schemes [63].  A technique to retrain the classifier ‘on the fly’ was 

developed in order to compensate for the deteriorating effects of the pitfalls described above 

[64].  This technique has shown promise and may enable these systems to move from the lab to 

the clinic. 

State/Binary Control Schemes 

Event driven finite-state schemes (also referred to as state machines or binary control 

schemes) consist of many predefined states each with a unique function (i.e. – posture or motion) 

that can be selected sequentially [65], [66], [67], [68].  The EMG input signal commands a 

transition between the states until the desired state is selected.  Then, the predefined function is 

performed.  The EMG input can be considered a ‘trigger’ which steps the prosthesis through 

various functions.  This type of control requires memorization but is a more clinically robust 

interface compared to pattern recognition schemes.  In fact, several commercially available 

prosthetic hands integrate simple state machines today [69], [19].   Of course, there are several 

pitfalls to state control schemes including a limited, predefined set of functions, time delays due 

to transitions between states, and most importantly an unintuitive control paradigm.  Several 

studies have shown that users can learn to control a prosthetic hand using a state machine control 

scheme to a high level of performance [55], [70] however these studies do not address the 

increase in mental burden due to the lack of intuitive control caused by the state machine control 

scheme.  Inherently, a state machine will never be intuitive because the physiological result of 

the measured EMG activity does not correspond whatsoever to function of the prosthesis.  

Nonetheless, state machine control schemes allow for a high level of performance and have 

commercial implementation as well.   
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Postural Control Schemes 

Postural control is a burgeoning technique that transforms the EMG input signals into an 

array of joint angles (i.e. – a posture) using a linear transformation (a kinematic coupling). The 

relative magnitude of each EMG signal modulates the contribution of each corresponding 

postural vector.  It could be considered a type of direct control except that it includes a 

dimensionality reduction step caused by the linear transform.  Several studies in both the robotic 

and prosthetic control literature used Principal Component Analysis (PCA) to derive the postural 

vectors (principal components - PCs).  These studies were motivated by the observations made 

by [11] that 80% of the variance in grasping of everyday objects can be explained using 2 

principal components as described in the Motor Control section.  Ciocarlie and Allen [71] used 

mathematical coupling based on principal components in the control of advanced robotic hands.  

The reduced dimensionality of the control system allowed for computational advantages when 

interfacing between the human and robot.  Ciocarlie and Allen focused on complex tasks like 

dexterous grasping and grasp stability which further demonstrates the utility of postural control 

schemes in the control of multi-DOF prosthetic hands. Matrone et al.  [72], [73] showed the 

efficacy of a postural control system for a myoelectric prosthetic hand based on principal 

component analysis.  In their work, principal components were derived in order to drive a 6 

DOA prosthetic hand using only two input command signals and single map onto the PC 

domain.  The experimental results proved the ability of this type of controller to drive a 

prosthetic hand into typical grasping postures using computer and myoelectric control.  

However, postural control schemes are also limited by the kinematic coupling. For example, the 

postural controller used in Specific Aim 1 cannot command the posture used when describing the 

number two (or the ‘peace’ sign).  This posture cannot be accomplished using the postural 
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controller since the mathematical coupling described by the principal components flexes all four 

digits in near unison.  Therefore, design of a postural controller must take into account the 

grasps/postures that are desirable to reproduce.  This dissertation describes the development and 

validation of a postural control scheme for advanced prosthetic hands that better recreates what 

was lost due to amputation.  
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Chapter 3 - Design and Validation of a Morphing Myoelectric Hand Posture 

Controller based on Principal Component Analysis of Human Grasping
5
 

Introduction 

The idea that grew into the postural controller stems from the work of Santello et al., 

study entitled Postural hand synergies for tool use [11].  Santello et al., measured the joint 

angles of the human hand while grasping and performed a principal component analysis on the 

resulting dataset.  The result proved that grasping was a low-dimensional task.  More 

specifically, Santello et al., showed that only two variables (principal components
6
) could 

describe over 80% of the variance in the hand postures.  The two principal components are two 

vectors that describe a kinematic coupling of the joints in the hand.  The linear combination of 

the two principal components could describe many of the hand postures used in activities in daily 

living.  In effect, the two principal components reduce the dimensionality of the hand and 

thereby the number of input commands necessary to command a hand posture.   

The first PC describes the flexion of the metacarpophalangeal (MCP) joint of the digits 

and the rotational/adduction of the thumb.  The second PC describes the extension of the MCP 

joints and flexion of the proximal interphalangeal joint (PIP) of the digits while the thumb 

follows the same pattern as in the first PC.  Figure 4 depicts the two dimensional domain 

(referred to hereafter as the principal component domain or postural control domain) and the 

coordinates of 57 different grasps tested in [11]. 

                                                 
5
 Segil, J.L.; Weir, R.F.F., "Design and Validation of a Morphing Myoelectric Hand Posture Controller Based on 

Principal Component Analysis of Human Grasping," Neural Systems and Rehabilitation Engineering, IEEE 

Transactions on , vol.22, no.2, pp.249,257, March 2014 doi: 10.1109/TNSRE.2013.2260172
 

6
 Depending on the field of research, the literature uses the terminology principal components, postural synergies, 

and eigengrasps to describe the mathematical coupling of joints in human hand.  This study uses the term principal 

components in all cases. 
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Other researchers integrated Santello’s technique into the control of robotic and 

prosthetic hands.  Ciocarlie and Allen [71] used mathematical coupling based on principal 

components in the control of advanced robotic hands.  The reduced dimensionality of the control 

system allowed for computational advantages when interfacing between the human and robot.  

Ciocarlie and Allen focused on complex tasks like dexterous grasping and grasp stability which 

 

Figure 4 – The distribution of grasping postures in the principal component domain  found by 

Santello et al., 1998.  Santello et al. found that the 1st and 2nd principal components (PC1 

and PC2) accounted for more than 80% of the variance in the joint angles of grasping 

postures.  Therefore mapping two control input signals to PC1 and PC2 provides a means to 

command a prosthetic hand into numerous grasping postures using just two control inputs.  

The four target postures used in this study are circled and shown.  The target postures were 

chosen because they are evenly distributed between the four quadrants of the PC domain and 

constitute 4 of the 6 functional grasps described by [4].  The bimodal trend in the distribution 

of postures is shown by the dashed lines. 
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further demonstrates the utility of PCs in the control of multi-DOF hands.  Matrone et al. [72]–

[74] showed the efficacy of a control system for a myoelectric prosthetic hand based on PCs.  In 

their work, PCs were derived in order to drive a 6 DOA prosthetic hand using only two input 

command signals and single map onto the PC domain.  The experimental results proved the 

ability of this type of controller to drive a prosthetic hand into typical grasping postures using 

computer and myoelectric control.   

The bimodal distribution of postures in the PC domain suggests that better (i.e. – 

faster/more accurate) control might be achieved if the EMG inputs were aligned to the 

distribution.  We tested this hypothesis by implementing novel transformations (maps) of the 

EMG signals on the PC domain [75].  The use of novel mappings motivated additional questions 

including the benefit of additional control sites (i.e. – a 2 DOF mapping versus a 4 DOF 

mapping).  This chapter details the control system architecture based on principal component 

analysis of human grasping, the experimental methods, and the ability of the control system to 

drive a high DOM virtual hand into functional grasps in a continuously morphing fashion. 

Development of Controller Architecture 

A block diagram of the controller architecture based on principal components is shown in 

Figure 5  The EMG control signals are processed using standard EMG processing techniques.  

The PC domain maps transform the EMG signals into a PC coordinate (PC1, PC2).  The Joint 

Angle Transform produces an array of 15 joint angles from the PC coordinate which is then sent 

to the virtual hand model for visualization.  It should be noted that the controller does not require 

any training unlike MECs based on pattern recognition techniques.  The following section 

describes the controller architecture in more detail. 
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EMG Processing 

The four EMG signals were acquired using ProControl2 electrode pairs (Motion Control, 

Inc.) and self-adhesive Ag/AgCl snap electrode stickers (Noraxon USA, Inc.).  Electrodes were 

placed on flexor digitorum superficialis (EMG A), extensor digitorum (EMG B), extensor carpi 

ulnaris (EMG C), and flexor carpi ulnaris (EMG D).  The location of the control sites were based 

on previous work [76] which found four independent surface EMG sites on the forearms of non-

amputee subjects.  The measured raw EMG signals from four control sites were amplified by the 

ProControl2 electrode and sent to a NI USB-6008 data acquisition device (National Instruments, 

Inc.).  The raw analog EMG signal was sampled at 1 kHz.  Then the signal was band pass filtered 

(30-450 Hz), notch filtered at 60 Hz, rectified, smoothed with a 200ms moving average filter, 

and normalized individually to the signal input range of the data acquisition device.  A tuning 

process was performed for each subject before the myoelectric sessions took place.  The tuning 

process included adjusting the gain and activation threshold for all EMG signals in order to 

produce the most comfortable control system for each subject. The gains were adjusted to ensure 

 

Figure 5 - Block diagram of the controller architecture based on principal components of 

human grasping.  The raw EMG control signals are processed using standard EMG 

processing techniques.  Four different PC domain maps are tested using various 

transformations of the EMG control signals on the PC domain.  The output of the maps is a 

PC coordinate (PC1, PC2).  The joint angle transform converts the PC coordinate into an 

array of 15 joint angles.  The virtual hand visualizes the 15 joint angles in real time. 
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that every task was achievable without overdue effort including co-contraction tasks (i.e. when 

postures lie far from the EMG signal axes in the PC domain).  The activation thresholds were 

adjusted to negate quiescent EMG signals.  All of the processing techniques described above are 

typical clinical practices and can be implemented when using many commercial prosthetic 

hands. 

PC Domain Maps 

The controller is based in the PC domain.  Various maps between the EMG control 

signals and the PC domain were investigated.  All maps as well as the target postures used in the 

experimental protocol are depicted in Figure 6.  The generalized equation of the mappings is 

described by equation ((1).  Table 2 specifies the unique transformation matrix [A] and offset 

vector [B] implemented by each map. 



28 

 

 

 

[
   
   

]     [

     
     
     
     

]      
(

(1) 

 

Figure 6 - Maps 1-4 on the PC domain.  Map 1 translates the EMG signals to the third 

quadrant and aligns EMG A with PC1 and EMG B with PC 2.  Map 2 translates and 

rotates the EMG A and EMG B signals.  The rotation mimics the bimodal pattern seen in 

the grasping posture distribution from Santello et al.  Map 3 divides the PC domain into 

three equal portions using EMG A, B, and C.  Map 4 divides the PC domain into four 

equal portions using EMG A, B, C, and D. 
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 Map 1 only utilizes EMG A and B and projects the EMG control signals to the third 

quadrant of the PC domain.  The EMG A and B axes correspond to the positive PC1 and PC2 

directions respectively.  This map was considered to be the simplest method of maneuvering in 

the PC domain.  Map 2 only utilizes EMG A and B as well.  However, Map 2 projects the EMG 

control signals to the fourth quadrant of the PC domain.  This map was developed to mimic the 

bimodal distribution of the postures in the PC domain (see dashed lines in Figure 4).  A set of 

vectors that best fit the distribution of postures in the PC-domain was derived using Principal 

Component Analysis and used as the transformation matrix [A] for map 2 (Table 2).  The vectors 

were then translated to ensure that the entire principal component domain was accessible using 

this map.  Map 3 utilizes EMG A, B, and C and divides the PC domain into three equal portions.  

Table 2 - Definitions of Maps 1-4 
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The EMG A axis is projected to the first quadrant of the PC domain.  The EMG B axis projects 

onto the negative PC1 axis.  The EMG C axis is projected to the fourth quadrant of the PC 

domain.  Map 4 utilizes all four EMG signals (A, B, C, and D) and divides the principal 

component domain into four equal portions.  The EMG A, B, C, and D axes follow the negative 

PC2 axis, negative PC1 axis, positive PC1 axis, and positive PC2 axis respectively.   

For all mappings, EMG signals were assigned in order to follow the most physiologically 

realistic maps by applying the following rules: 1) flexor digitorum superficialis (EMG A) drives 

the hand to close 2) extensor digitorum (EMG B) drives the hand to open 3) extensor carpi 

ulnaris (EMG C) drives towards lateral prehension/Zipper 4) flexor carpi ulnaris (EMG D) drives 

towards power grasp/Fry Pan.  In all cases, the result of the ((1) is a PC coordinate (PC1, PC2) 

which is the input to the Joint Angle Transform. 

Joint Angle Transform 

The joint angle transform converts the PC coordinate into a 15 element joint angle vector 

using a mathematical coupling based on the PCs of human grasping.  Each principal component 

vector (  ⃑⃑ ⃑⃑  ⃑
  and   ⃑⃑ ⃑⃑  ⃑

 ) is a 15-element vector describing a pattern of joint angles.  The principal 

component vectors are derived from physiological human grasping data, as calculated by [11], 

and are the source of the biomimetic characteristics of this control algorithm.  The linear 

combination of the two PC vectors and the PC coordinate (PC1,PC2) equals a joint angle 

command vector which controls the posture of the hand as described by ((2).   

[
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The control algorithm described by ((2) converts the EMG input signals into a 

continuously variable joint angle command vector.  In other words, the posture of the hand can 

continuously morph from posture to posture by varying the EMG control signals.  It should be 

noted that the input to the Joint Angle Transform (the PC coordinate) has two elements whereas 

the output of the transform (the joint angle vector) has 15 elements.  The Joint Angle Transform 

produces a dimensionality transformation between the PC domain and the joint angle domain.  

The mathematical coupling defined by the principal components of grasping enables this 

transformation to take place using biomimetic patterns.  However, the resulting posture is also 

limited by this coupling.  For example, the posture used when describing the number two (or the 

‘peace’ sign) cannot be accomplished using this controller since the mathematical coupling 

described by the principal components flexes all four digits in near unison.  This controller is 

designed to command grasping postures and can achieve all the functional grasps as shown in 

Figure 4.  

Experimental Methods 

Subject Information 

An experimental protocol was developed to validate the performance of the controller 

and to determine a preferred map.  Ten healthy, non-amputee subjects aged 22-58 were selected 

for the study.  All experiments were conducted using the dominant arm (nine subjects were right-

hand dominant and one was left-hand dominant).  The study took place over a single three hour 

meeting in the Integrated Teaching and Learning Laboratory at the University of Colorado at 

Boulder for each subject.  The Institutional Review Board at the University of Colorado at 

Boulder reviewed and approved the experimental protocol. 
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Experimental Protocol 

The experiment was separated into 3 sessions.  First, a joystick control session developed 

a performance benchmark for each subject using a Parallax 2-axis joystick (DigiKey 

Corporation).  Then a practice session where the subjects were first introduced to each map and 

posture using myoelectric control.  The experimental session produced the dataset analyzed in 

Section V using myoelectric control.   

Each session presented the subject with a randomized series of trials.  The task was to 

match the controlled posture to the target posture in ten seconds or less.  The subjects were 

provided instantaneous feedback on the number of joints controlled accurately through the 

testing interface.  The feedback was produced by comparing the joint angle command vector 

(calculated in real time using ((1) and ((2)) and the target posture.  The four target postures 

(lateral prehension – “zipper”, power grasp – “fry pan”, cylindrical prehension – “sugar cone”, 

and hand flat – “ashtray”) are shown in Figure 4.  These grasps were chosen because they are 

evenly distributed between the four quadrants of the PC domain and constitute 4 of the 6 

functional grasps described by [4].  The target posture and the map used in each trial were varied 

for a total of 16 unique combinations.  The target postures were randomized within each map.  

The order of the maps was randomized between subjects.  The 10 second trial was followed by a 

5 second break before the next trial.  The joystick control session, practice session, and 

experimental session consisted of 16, 16, and 64 trials respectively for each subject as prescribed 

by a power analysis [77]. 

Testing Interface and Virtual Hand Model 

The testing interface developed in LabView is shown in Figure 7.  The target posture is 

static image that varies across trials.  The maximum accuracy score displays the highest number 
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of joints controlled accurately at any time during the trial.  The pause button allows the subject to 

pause the experiment at any time.  The controlled posture morphs as the subject manipulates 

control signal.  The current accuracy instantaneously displays the number of joints controlled 

accurately.  The four normalized EMG waveforms are displayed in real time.  

 

The custom-built, virtual hand model can be controlled using a variety of interfaces 

(joystick, EMG, computer mouse, etc).  The model has 15 articulating joints corresponding to the 

 

Figure 7 - The testing interface seen by the subjects.  The target posture is stationary during 

the trial but changes after each trial.  The maximum accuracy score displays the highest 

number of joints controlled accurately at any time during the trial. The pause button allows 

the subject to pause the experiment at any time.  The controlled posture morphs as the subject 

manipulates the control signals.  The current accuracy instantaneously displays the number of 

joints controlled accurately throughout the trial.  The two-four normalized EMG waveforms 

are displayed in real time. 
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15 joints measured in [11]and is further described in Table 3.  All 15 joints can be manipulated 

in real time.  Joint angle limits corresponding to their anatomical range of motion were 

developed in order to disallow non-anthropomorphic motions [78].  The hand dimensions and 

joint ranges of motion are modeled after a 50% percentile male hand [78].  The thumb joint 

locations and axes of rotation were based upon anthropometric data and modeling studies of the 

thumb [79], [80].  

 

Metrics 

Several metrics were used to study the performance of each subject.  All the metrics were 

based on the postural envelope.  The postural envelope was defined as 25% of the total range of 

motion of each joint [46].  If a commanded joint angle was within the postural envelope, then 

that joint was considered to be controlled accurately.  The number of joints controlled was 

Table 3- Joints of the virtual hand model 
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defined as the maximum number of joints (out of 15 possible joints) that were ever 

simultaneously within the postural envelope during the 10 second trial.  The completion rate 

(CR) metric was defined as the number of successful trials per total number of trials.  A 

successful trial was when all 15 joints were held in the postural envelope for 0.5 seconds.  The 

time to completion (TC) metric measured the duration of the trial (in seconds) before a success 

occurred.  Finally, the path efficiency (PE) metric was defined the measured rotational distance 

(denominator in (3)) compared to the shortest possible rotational distance (numerator in (3)) 

between the starting posture and the target posture to produce an efficiency measure between 0 - 

100%.  The measured rotational distance was found by summing the difference in joint angle 

between sequential updates of the hand posture.  The total number of updates (N) depended on 

the length of the trial in time.    

  ( )  
∑ (                     )

  
   

∑ ∑ (             )
 
   

  
   

      (3) 

The various maps altered the distance between the EMG axes and the postures in the PC 

domain.  A correlation analysis was performed to study the relationships between the distance 

between the EMG axes and the postures in the PC domain.  The diagonal distance is defined as 

the distance between the origin and the posture (shown in Figure 8 by dashed lines).  The 

perpendicular distance is the distance between the posture and the closest point along any axis 

(shown in Figure 8 by solid lines).  MATLAB (The Mathworks, Inc.) was used to analyze the 

results. One way analysis of variance tests and Tukey-Kramer comparisons were used to 

determine significance.  The error bars in the figures represent one standard deviation.  A least 

square fit line was used in the correlation analysis and was derived by minimizing the sum of the 

squared residuals.    The goodness of fit (R
2
) measure describes the variance of the data about the 
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least square fit line and was found by subtracting the ratio of the sum of squared residuals over 

the total sum of squares from one.  The p-value describes the significance of the correlation and 

was considered statistically significant when having a value less than 0.05. 

 

 

Experimental Results and Discussion 

Joystick Control vs. Myoelectric Control 

The number of joints controlled accurately for both myoelectric control and joystick 

control trials across maps for all subjects is compared in Figure 9.  There was not a significant 

difference between the performance of each control method within each map or across maps.  

This is an interesting finding since joystick control was developed to be a benchmark for the best 

 

Figure 8 - Example of diagonal and perpendicular distance definition using Map 2.  The 

diagonal distance is measured from the origin of the map to the posture.  The perpendicular 

distance is the shortest distance from the posture to the nearest axis.  The amount of co-

contraction necessary to acquire off axis target postures is quantified by the perpendicular 

distance metric. 
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possible performance. Joystick control provides independent, or co-activation free, command 

input signals as compared to EMG signals.  Also, subjects using joystick control could command 

any PC coordinate free of bias to the location of the posture in the PC domain.  In contrast, 

subjects had to co-contract in order to reach regions of the PC domain not close to an EMG axis 

when using myoelectric control.  The results in Figure 9 show that the bias in the PC domain 

introduced when using myoelectric control did not significantly change the performance when 

compared to joystick control.  In other words, the use of myoelectric command signal is equally 

as effective as a joystick command signal in this experimental paradigm.  

 

 

Highest Performing Map 

The performance of all four maps for all metrics is displayed in Figure 10.  The maps 

respectively directed over 11, 13, 10, and 11 joints accurately.  The completion rate for each map 

was over 21, 37, 21, and 14 percent respectively.  The performance of Map 2 was statistically 

 

Figure 9- The number of joints controlled accurately for both myoelectric control and 

joystick control trials across maps and all subjects. 
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more accurate (p < 0.05) and had a statistically higher completion rate than any of the other maps 

(p < 0.05).  The seemingly low completion rates (less than 50%) are due to the complexity of the 

task.  The subject must position all 15 joints into the postural envelope at the same time in order 

for a successful trial.  These values were expected to be in this range.  The time to completion 

metric shows a similar trend in that Map 2 had the fastest average time to completion.  However, 

Maps 3 and 4 tended to have the highest path efficiency measures.  This result led to the 

correlation analysis discussed below.  In general, an increase number of control sites (Maps 3 

and 4) do not increase performance using the postural controller.    
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The design of Map 2 stemmed from the bimodal distribution of postures in the PC 

domain (see Figure 4).  Santello et al. describe that the trends seen in the distribution of the 

postures in the PC domain “points to the possible existence of two main synergies through which 

hand shape is modulated”.  Map 2 transforms the PC domain to align the 2 EMG control axes 

with these two main synergies.  This transformation yielded the highest performing map.  The 

other maps do not follow the distribution of postures in the PC domain and do not perform as 

 

Figure 10 - Comparison of performance metrics over all maps.  The performance of Map 2 

was statistically greater than the other maps for both the number of joints controlled and 

completion rate metrics (p < 0.05). 
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well.  This result motivates further investigation into the optimization of the projections of EMG 

input signals onto the PC domain for specific users. 

Correlation Analysis of Distance versus Performance 

In light of the results described in Part B, we posit that having to co-contract to reach 

postures lying far from EMG control axes was more difficult to achieve and therefore would tend 

to bias our results.  To test this hypothesis a correlation analysis was performed in order to 

determine if the diagonal and perpendicular distances from the EMG axes to the postures in the 

PC domain affected the performance of the controller (see Figure 8).  The scatter plots
7
 of the 

diagonal and perpendicular distances compared to each performance metric are shown in Figure 

11. 

The trends of the least square fit lines all show an inverse relationship between the 

performance and the Euclidian distance but only the correlation between path efficiency (PE) 

and the distance from the origin shows a statistically significant correlation (p < 0.05).  This 

result mirrors the trend shown in Figure 10 where the PE for Maps 3 and 4 were highest and 

have the shortest diagonal distances.  

This finding does not substantiate the hypothesis that an increase in distance from the 

control axes makes the task more difficult to achieve. This finding suggest that subjects were 

able to use co-contraction to achieve the target postures readily enough and that co-contraction 

did not adversely affect their performance as was shown in Figure 10.  

                                                 
7
 Not all scatter plots contain the same number of datum.  Missing datum are due to unsuccessful combinations of 

postures and maps across all subjects. 
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 The correlation between PE and diagonal distance shows the greatest goodness of fit (R
2
) 

and is the only correlation of statistical significance (p < 0.05). This trend suggests that Maps 3 

and 4 have greater PE because they have on average lower diagonal distances than Maps 1 and 2.  

The distance between the origin and the postures is shortened because the origin for Maps 3 and 

4 is centered on the origin of the PC axes and therefore closer to the postures.  The path 

efficiency metric describes the amount of ‘wandering’ in the PC domain that the subject 

performs during a successful trial (3).  The results suggest that the less wandering occurs when 

 

 

Figure 11 - A correlation analysis between distance and all performance metrics.  The four 

rows correspond to the four performance metrics (Number of Joints Controlled, Completion 

Rate (CR), Time to Completion (TC), and Path Efficiency (PE)) and the two columns 

correspond to the two distance metrics (diagonal and perpendicular distance).  The least 

square fit line, goodness of fit measure, and p-value are shown for all comparisons.  The 

correlation between path efficiency (PE) and diagonal distance (circled) is the only 

relationship with a significant correlation.  This finding mirrors the trend shown in Figure 10 

where PE was greatest for Maps 3 and 4 which have the shortest diagonal distances to all 

target postures. 
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the required distance is shorter.  This analysis also confirmed that the other performance metrics 

(accuracy, time to completion, and completion rate) were not significantly correlated to the 

diagonal or perpendicular distance metrics.  The metrics measured performance independent of 

the location of the target posture in the PC domain. 

Practice Session versus Experimental Session 

The average number of joints controlled accurately during the experimental session (11.7 

+/- 0.3) was significantly greater (p < 0.01) than during the practice session (10.5 +/-0.4) across 

all subjects.  This result indicates a brief practice session (i.e. less than 10 minutes in duration) 

increases the performance of the subjects significantly.  It should also be noted that the subjects 

were not provided any instruction as to how to best perform the task for each posture/map 

combination.  The subjects were naïve to the map used in each trial and therefore were not able 

to learn strategies for how to accomplish each specific map/posture combination.  This protocol 

forced the subjects to guess the function of each control site at the beginning of the trial before 

determining the best strategy.  As shown in [73], the authors would expect that additional 

instruction would increase the performance of the subjects.  

Future Development 

The development of the postural controller based on principal component analysis of 

human grasping enlightened the authors to the benefits of the joint angle transform (JAT) as a 

dimensionality augmentation technique.  This work used a JAT that was composed of the 

principal components empirically found by Santello et al.  The JAT can be composed of 

customizable kinematic couplings and could vary based on the location of the PC coordinate (a 

dynamic JAT).  The benefits of various mappings within the PC domain was shown with this 

work and motivated further investigation into customizable and dynamic JATs in order to 
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provide a more effective and intuitive MEC.  Chapter 4 focuses on these developments as well as 

others. 

Conclusion 

This aim verifies that a myoelectric controller based on principal components of human 

grasping can control a multi-multifunctional virtual hand in a continuously morphing fashion.  A 

validation experiment studied the performance of the controller using clinically practiced 

techniques including myoelectric control site selection, commercially available surface 

electrodes, and standard EMG filtering.  The map that mimicked the bimodal distribution of 

postures in the PC domain (Map 2) achieved the highest performance by directing over 13 joints 

accurately.  A correlation analysis was performed in order to understand the relationship between 

distance in the PC domain and performance.  The experimental results presented indicate that the 

controller based on PCA of human grasping provides an effective method for non-amputee 

subjects to morph a high DOM virtual hand into functional grasps. 
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Chapter 4- A Novel Postural Control Algorithm for Simultaneous and 

Proportional Control of Multi-Functional Myoelectric Prosthetic Hands
8
 

As demonstrated in Chapter 3, postural control is a technique that uses simultaneous and 

proportional surface EMG signals to drive a cursor in a two-dimensional domain which contains 

an arrangement of functional postures.  The controller outputs a continuously varying hand 

posture and does not require a training dataset like other MECs. Several studies in both the 

robotic and prosthetic control literature used Principal Component Analysis (PCA) to derive the 

postural vectors [71]–[73].  These studies were motivated by Santello et al. [11] who found that 

80% of the variance in grasping everyday objects can be explained using the first two principal 

components.  In other words, the linear combination of two postural vectors could accurately 

reproduce the hand postures needed for grasping of everyday objects.  Other studies project 

EMG signals to a two-dimensional domain similar to the PC domain.  De Rugy et al. [81] used 

forearm EMG signals for a two-dimensional target acquisition task in order to study muscle 

coordination under various biomechanical conditions.  Pistohl et al. [82] controlled individual 

digits of a virtual and prosthetic hand using intrinsic hand EMG by maneuvering a cursor in a 

two-dimensional domain allowing for simultaneous and proportional control of multiple DoFs.  

Radhakrishnan et al., [83] studied the ability to learn novel myoelectric control interfaces using a 

two-dimensional center-out target acquisition task.  However, none of these studies focuses on 

the clinical implementation like producing functional postures and using clinically available 

surface EMG control sites. 

                                                 
8
 Intended publication with Journal of Neural Engineering, submitted January 2014

 
 

 



45 

 

 

In the previous chapter, it was shown that a specific mapping of the EMG signals in the 

PC domain augmented the ability of subjects to drive a virtual hand into functional postures 

when using the principal components derived by Santello et al.  This work builds upon that 

finding by developing a novel algorithm for a postural controller that is not dependent on PCA to 

derive the postural vectors.  Namely, the postural vectors that compose the JAT are assigned 

dynamically as the user navigates the PC domain and are dependent on the two nearest posture 

within the PC domain map.  The novel algorithm of the postural controller is detailed here.  Also, 

two experiments were performed to empirically derive other design parameters of the controller 

and to quantify the performance of the subjects across days.  The experimental results and a 

discussion of the implications of these results on the efficacy of the novel algorithm for a 

postural controller are presented.  

Postural Control Algorithm 

The novel algorithm of the postural controller is detailed Figure 12.  In general, the 

controller transforms an array of EMG signals into a joint angle array (i.e. – a hand posture).  

Many parameters within this algorithm can be adjusted in order to build the most effective and 

intuitive interface.  The experiments discussed here compared several design parameters and 

quantified the clinical efficacy of the controller with able bodied subjects.  All components 

within this algorithm are discussed in more detail below. 
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EMG Acquisition 

An untargeted surface electrode array on the dominant forearm (Figure 13a) acquires 

myoelectric signals.  The array spans the circumference of the proximal third of the forearm with 

N electrodes in the longitudinal direction.  The humeral epicondyles locate the north-south axis 

and therefore orientate the array with respect to the arm.  The untargeted array distinguishes that 

specific muscles are not targeted by each electrode.  Standard clinical techniques process raw 

EMG signals into an array of root mean square (RMS) averages over 100ms non-overlapping 

time windows.  The EMG acquisition results in a ‘snap-shot’ of EMG activity within the forearm 

which the Vector Summation Algorithm further deciphers. 

Vector Summation Algorithm 

The vector summation algorithm (VSA) interprets the ‘snap-shot’ of EMG activity using 

a uniformly spaced vector summation map (Figure 13b). Electrodes on the dorsal/ventral side of 

the limb (wrist extension/flexion) correspond to the y-axis of the PC domain and electrodes on 

the medial/lateral side of the limb (ulnar/radial deviation) correspond to the x-axis of the PC 

 

Figure 12 – Novel algorithm for a postural controller.  An untargeted surface electrode array 

acquires electromyographic (EMG) signals.  The filtered root mean square average (RMS) 

EMG values are passed to the VSA which produces a resultant vector ( ⃑ ).  The resultant vector 

is used to calculate the PC Cursor coordinate (PCX,PCY) using various cursor control schemes 

and potential field designs.  Finally, the JAT transforms the PC cursor coordinate to a joint 

angle array which is sent to the prosthetic hand.   
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domain (for a right-sided limb).  The RMS EMG value determines the magnitude of each 

corresponding vector (represented by gray outline in Figure 13b).  The summation of all vectors 

produces a resultant vector,  ⃑⃑ .  Equation (4) describes the calculation of  ⃑⃑  where RMSi is the 

RMS value of the EMGi signal, θi is the control site angle in the PC domain, and N is the number 

of control sites.  The direction of the resultant vector indicates the area in the forearm with the 

most EMG activity and the magnitude indicates the relative amount of EMG activity. In short, 

the VSA reduces the RMS EMG array into a single resultant vector ( ⃑⃑ ) that subsequently drives 

the PC cursor coordinate (PCx, PCy) 

  ⃑⃑  ⃑( )   [
  ( )
  ( )

]   ∑[
    ( )      

    ( )      
]
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Cursor Control Schemes and Potential Field 

The resultant vector produced by the VSA ( ⃑⃑ ) controls the PC cursor coordinate (PCx, 

PCy) using a position or velocity cursor control scheme (compared in Experiment A of Chapter 

4).  The position control scheme interprets the resultant as a positional command vector (i.e. – 

units of distance).  In the position cursor control scheme the end point of the resultant vector 

equals the PC cursor coordinate (5).   

[
   ( )
   ( )

]   [
  ( )
  ( )

]     ⃑⃑  ⃑( ) (5) 

The velocity cursor control scheme interprets the resultant as a velocity command vector 

(i.e. – units of distance/time).  A discrete integration over time determines the cursor position (6) 

where ( ⃑⃑  ) is the instantaneous resultant vector, Δtj is the loop time, Vgain is the velocity gain, 

and j is the software loop count.  The velocity gain adjusts the maximum allowable speed (i.e. – 
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a speed limit).  In practice, the magnitude of the resultant corresponds to the speed of the cursor 

and the direction of the resultant corresponds to the direction the cursor moves. 

[
   ( )
   ( )

]         ∑(  ⃑⃑  ⃑
 ( )     )
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The potential field (Figure 13c) preferentially attracts the cursor coordinate to certain 

regions in the PC domain using a position feedback loop with proportional-derivative controller.  

The purpose of the potential field is to augment the ability of the user to perform functional 

grasps using the postural controller.  The potential field consists of potential wells surrounding 

the target positions and potential wedges emanating from the origin to the targets (targets are 

further detailed in the Joint Angle Transform section below).  The feedback controller forces the 

cursor to the areas of lowest potential (i.e. – the bottom of the wells and wedges).  All parameters 

of the potential field (diameter of the wells, width of the wedges, and depth of wells and wedges) 

can be adjusted in order to best aid the user in performing functional grasps.  In effect, the 

potential field adds a third dimension to the PC domain as visualized in Figure 13c where the 

light/dark gray areas have zero/negative potential, respectively.  The design of the potential 

fields was determined during pilot studies where various geometries (i.e. – only wells, only 

wedges, both wells/wedges) were compared.  The sequential processing of the resultant vector 

by the cursor control scheme and then the potential field produces a PC cursor coordinate (PCx, 

PCy) which the JAT converts into a hand posture.  

Joint Angle Transform 

The JAT converts the PC cursor coordinate into a hand posture based on the postural map 

at a rate of 10Hz.  The postural map defines the number and location of the grasps available to 

the user in the PC domain.  Points (targets) in the PC domain correspond to grasps.  When the 
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PC cursor coordinate equals the target, then the controller reproduces the grasp identically.  As 

the PC cursor coordinate moves between two targets, the controller produces a linear 

combination of those two postures.  A representative postural map is shown in Figure 13d (the 

hand flat posture is located at the origin of the PC domain but is not shown).  This algorithm 

allows for a large number of postures and freedom to position the postures within the PC domain 

unlike the controller used in Chapter 3  

The Joint Angle Transform (JAT) is a temporally and spatially dependent linear transform that 

converts the PC cursor coordinate into a joint angle array.  The generalized equation (7) defines 

the JAT where (PCx(t), PCy(t)) is the temporally dependent PC cursor coordinate based on the 

acquired EMG signals, JATk,l are the joint angles  for the two closest postures to the current PC 

cursor coordinate as determined by the postural map (k = 1-6 for a 6 degree of freedom hand, l = 

1-2 corresponding to the two closest postures), and θ is the joint angle array.  At any moment in 

time, the columns of the JAT are made up of two columns of Table 4 depending on the two 

nearest target postures.  A novel aspect of this postural control scheme is that the JAT is spatially 

dependent (i.e. – the columns of the JAT change depending on the PC cursor coordinate).  This 

fact differentiates this work from previous myoelectric control algorithms.  Also, the spatial 

dependence of the JAT allows for the freedom to position postures within PC domain without 

limitation.  This algorithm allows for any number of target postures and can be placed in any 

arrangement with in the PC domain.  The JAT ensures that the hand posture morphs as the cursor 

moves between targets in the PC domain. 
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This novel algorithm for a postural controller includes many customizable features 

(number of electrodes, cursor control schemes, potential field designs, postural map designs, 

etc.)  This fact motivated Experiment A where the preferred number of electrodes and cursor 

control scheme was determined.  Afterwards, Experiment B was designed in order to study the 

clinical efficacy of the postural controller by quantifying t he controller performance in a 

simulated real world setting.  Experiment B also studied the effects of visual feedback on 

performance and the learning rate across days.  

Table 4 - Joint angles for a 6 DoF prosthetic hand for 7 functional grasps (LP – lateral prehension, 

TP – tip prehension, PP – palmar prehension, HK – hook, PT – pointer, CP – cylindrical 

prehension, HF – hand flat. 
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Methods 

Eleven total subjects naïve to myoelectric control completed an experiment using the 

described postural controller.  Experiment A consisted of a target acquisition task using various 

(a)  (b)  

(c)  (d)  

Figure 13 – Components of a postural controller.  (a) An untargeted electrode array is arranged 

about the cross-section of the forearm.  Radius bone (R), ulnar bone (U), north (N), south (S), 

west (W), east (E). (b)  The vector summation map depicts exemplary RMS EMG activity as 

measured by the electrode array.  The VSA calculates the resultant vector ( ⃑⃑ ). (c) An example 

potential field design where the light/dark gray areas distinguish areas of zero/negative 

potential, respectively.  This potential field design was used in Experiment B (d).  An 

exemplary postural map design with seven postures arranged in a symmetric distribution about 

the PC domain (hand flat posture not shown at origin).  This postural map design was used in 

Experiment B.  TP – tip prehension, LP – lateral prehension, CP – cylindrical prehension, PT – 

pointer, HK – hook, PP – palmar prehension 
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configurations of the controller and was completed by seven subjects.  Experiment B consisted 

of a posture matching exercise using various forms of visual feedback across three days and was 

completed by four subjects (S1 - S4).  All subjects were healthy and claimed to have normal 

vision/upper limb function.  They conducted the experiment using the dominant limb (10 right-

hand dominant).  An experimental meeting took approximately two hours.  The Institutional 

Review Board at the University of Colorado at Boulder reviewed and approved all experimental 

protocols.  Informed consent was obtained before each experiment.  

Apparatus 

Subjects sat in an upright position with their dominant arm bent at the elbow and forearm 

pronated on the armrest of the chair in front of a computer monitor.  Experiments were carried 

out using an untargeted electrode array as described previously (Figure 13a).  Self-adhesive snap 

electrode pairs with 2 cm spacing (Noraxon #272) comprised the electrode array.  The array 

spanned the circumference of the proximal third of the forearm with the electrodes in the 

longitudinal direction.  A Noraxon Telemyo DTS system acquired the signals with a hardware 

sampling rate of 1.5 kHz.  A National Instruments data acquisition device 9205 interfaced with 

the analog output module of the Noraxon system and was controlled using a custom built 

LabView interface.  The LabView interface processed the EMG signals using standard 

processing techniques (band pass 30-450Hz, rectification, RMS moving average).  Individual 

gains, thresholds, and offsets tuned the system to produce a symmetric and comfortable system 

(i.e. – equivalent effort causes equivalent RMS average for all sites).   

Experiment A 

Experiment A took place in a single experimental meeting.  During a single trial, subjects 

performed a center out target acquisition task using one of two cursor control scheme and one of 
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three electrode configurations for a total of six control methods:  12-site position control (P12), 

12-site velocity control (V12), 4-site position (P4), 4-site velocity (V4), 3-site position (P3), 3-

site velocity (V3).  The sequence of control methods was presented in a pseudorandom fashion 

where the velocity and position control sessions and the order of electrode configurations within 

each session was randomized for each subject (an example protocol is shown in (Figure 14).  The 

4-site sessions used electrode numbers 3, 6, 9, and 12 and the 3-site sessions used electrode 

numbers 3, 7, and 11 as described in (Figure 13a).  The visual feedback paradigm for all sessions 

consisted of the PC domain including the target circle and PC cursor coordinate.  Twelve equally 

spaced targets with radii of 14% of the PC domain were set at a radius 70% between the origin 

and the edge of the PC domain [83] and aligned with the vector summation map.  Three 

randomized blocks of twelve targets were presented for each session.  No potential field was 

applied during Experiment A in order to isolate the differences between the experimental 

conditions.  A trial consisted of directing the cursor from the origin to the target within ten 

seconds (including the hold time) otherwise the trial was considered a failure.  Each session 

consisted of 36 trials and tested a single control method.   
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Experiment B 

Experiment B took place across three experimental meetings on three separate days (D1-

D3).  In a single trial, subjects were asked to command a six DoF virtual hand into one of seven 

functional postures using a 3-site electrode array and velocity cursor control scheme.  Each 

experimental meeting comprised of the same sequence of four sessions which presented differing 

visual feedback paradigms: 1) PreTest (PT) session, 2) Target Training session (Tar), 3) No 

Target Training session (nTar), and 4) Test (T) session.  During all sessions, a computer monitor 

presented a virtual hand (VH) prosthesis that responded to the real-time output of the postural 

controller and a target posture.  The additional visual feedback differed between experimental 

sessions (Figure 15). The PC domain was hidden during the PT session. The PC domain with the 

real time cursor position as well as the target position was presented in the Tar session.  The PC 

domain with the real-time cursor position but not the target position was presented in the nTar 

 

Figure 14 –Experiment A protocol for an exemplary single meeting.  The visual feedback 

paradigm for all sessions consisted of the PC domain including the target circle and PC cursor 

coordinate.  The sequence of control methods was presented in a pseudorandom fashion 

where the velocity and position control sessions and the order of electrode configurations 

within each session was randomized for each subject. 3-site velocity (V3), 4-site velocity 

(V4), 12-site velocity (V12), 4-site position (P4), 12-site position (P12), 3-site position (P3). 
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session.  The PC domain was hidden during the T session. The sequence of the sessions (PT, Tar, 

nTar, T) was designed to allow for the assessment of learning [84].  The PT and T session 

simulated a real-world environment where a screen displaying the PC domain would not be 

present thereby assessing the clinical efficacy of the system.  The Tar and nTar sessions used 

visual feedback to help teach the subjects to perform the task.  Six equally spaced targets with 

radii of 14% of the PC domain were located at a radius 70% between the origin and the edge of 

the PC domain (the seventh target posture, hand flat, was located at the origin of the PC domain, 

Figure 13d).  A trial consisted of matching the VH to the target posture within 10 seconds 

(including one second hold time) otherwise the trial was considered a failure.  The VH matched 

the target posture when the cursor was within the 14% radii of the target in the PC domain and 

was provided using a visual indicator.  The PT/T sessions consisted of 35 trials (5 attempts at 

each target) and the Tar/nTar sessions consisted of 70 trials (10 attempts at each target).  The 

identical potential field was applied during all experimental meetings and is depicted in Figure 

13c.  The EMG tuning parameters (gains, offsets, and thresholds) were defined during the first 

meeting and not altered during the second or third meetings.   
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Performance Metrics 

Several performance metrics were used to study the performance during experiments A 

and B.  The completion rate (CR) is the number of successful trials per total number of trials. 

The movement time (MT) is the duration of the successful trial in seconds not including the one 

second hold time.  The path efficiency (PE, equation ((8)) describes the degree to which the 

cursor trace erred from the most direct path between the origin and target during successful trials.  

The traveled distance is the discrete integral of the PC cursor coordinate path.  The ideal distance 

is the straight line distance between the target coordinate and the origin.  A PE equal to 100% 

signifies that the cursor traveled along a straight line between the origin and target.    

 

Figure 15 –Experiment B single meeting protocol.  This protocol was repeated on D1-D3.  

During all sessions, a computer monitor presented a virtual hand (VH) prosthesis that 

responded to the real-time output of the postural controller and a target posture (TP).  The 

additional visual feedback differed between PT/T, Tar, and nTar sessions.  All sessions used 

the same control method (3-site velocity, V3).   
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MT and PE were only reported for successful trials.  Better performance is quantified by 

higher CR, lower MT, and higher PE.  One/two-factor ANOVA’s and Tukey-Kramer post-hoc 

analyses were used when appropriate with a significance level of 0.05.  Experimental results 

report means ± standard error of the mean.   

Results 

Experiment A 

The PC cursor coordinate traces using the six control methods for a single subject are 

shown in Figure 16.  Each window displays the 36 trials performed using each control method.  

The twelve targets are shown as well as the vector summation map.  The red traces depict a 

failed trial while the blue traces depict a successful trial.  The top row of windows displays the 

position control trials and the bottom row of windows displays the velocity control trials.  Figure 

16 depicts qualitatively an increase in CR and PE of the velocity control sessions compared to 

the position control sessions shown by the increase in straighter blue traces.  Also, performance 

does not seem to change when using 3, 4, or 12-site electrode array.  These qualitative 

observations are tested statistically using the performance metrics described previously. 
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The across subjects average performance metrics for each experimental session are 

shown in Figure 17.  All metrics described the same two findings; the velocity control method 

allowed for better control than the position control and the number of control sites did not change 

the performance.  In detail, the CR was significantly greater using velocity control (84% ±3%) 

than position control (45%±3%, p <0.0001).  The MT was significantly lower using velocity 

control (5.3s ± 0.2s) than position control (6.1s ± 0.1s, p =0.0002).  The PE was significantly 

greater using velocity control (69% ± 3%) than position control (27% ± 2%, p<0.0001).  In 

addition, the number of control sites used during each session did not affect the CR, MT, and PE 

(p = 0.57, p = 0.34, p = 0.32 respectively).   

 

 

Figure 16 – Raw PC cursor coordinate traces by a single subject.  Each window displays 36 

attempts corresponding to a single experimental session.  The targets are shown as circles.  

The twelve axes correspond to the twelve electrodes on the limb. 
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Experiment B 

The ability of subjects to volitionally command a six degree of freedom virtual hand into 

seven functional postures was quantified (Figure 18) using the average CR, MT, and PE 

performance metrics for each subject (S1,…,S4).  During the testing session the average CR, 

MT, and PE across subjects was 82%±4%, 3.5s±0.2s, and 45%±3%.  The CR for S4 is a 

statistical outlier (p = 0.01) and is discussed in more detail below.  The average CR without S4 is 

88%±2%. 

 

Figure 17 – Experiment A performance metrics averaged across subjects for each control 

method. No difference was found when comparing the 12-site, 4-site, and 3-site electrode 

array sessions.  * indicates a p<0.05. 
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The retention of the ability to use the postural controller was tested by comparing 

performance metrics produced during the PT sessions for all subjects across days (Figure 19).  

The PT session occurred before the training sessions and thereby tested the retention of the 

ability to use the postural controller from the previous day.  The CR and PE results were 

significantly different across days (p << 0.001 and p = 0.002 respectively).  Post-hoc analysis 

showed that the CR and PE for day 1 was significantly lower than days two and three.  The CR 

and PE results showed no difference between days two and three (p = 0.47 and p = 0.08 

respectively).  The MT results showed no difference across days (p = 0.98).  

  

 

Figure 18– Experiment B Testing (T) session performance metrics averaged over days for 

each subject. * indicates a p<0.05. 
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The effect of visual feedback on performance was tested by comparing average metrics 

across days for the Tar, nTar, and T sessions (Table 5).  The CR during Tar and nTar sessions 

was significantly greater than T session for three out of four subjects.  The MT and PE did not 

change for any subjects across visual feedback paradigms (average p-values of 0.50±0.05 and 

0.83±0.08.  These results indicate the additional visual feedback provided during Tar and nTar 

sessions augments CR, but not MT or PE.  In other words, the additional visual feedback 

increased the frequency of successful trials but did not increase the speed or precision of the 

successful trials.   

 

Figure 19 – Experiment B PreTest (PT) session performance metrics averaged over subjects 

for each day.  * indicates a p<0.05. 
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Discussion 

Experiment A 

The results of Experiment A described a significant increase in performance using a 

velocity cursor control scheme compared to a position cursor control scheme.  Several factors 

were observed that differentiate the two cursor control schemes.  The position control scheme 

requires continuous activation of specific musculature in order to complete a successful trial 

since quiescent EMG activity (i.e. – rest) equates to the PC cursor coordinate position at the 

origin.  It was observed that subjects had difficulty holding specific muscular contractions in 

order to maintain the cursor in the target position.  The velocity control scheme allowed for 

sequential activations of specific musculature in order to complete a successful trial since 

quiescent EMG activity equates to a stationary PC cursor coordinate position.  As a result, 

subjects were observed using a ‘pulsing’ strategy where sequential muscle contractions moved 

the cursor small distances towards the target followed by a pause/rest to ensure an accurate 

completion of the task. Similar observations were described by Jiang et al. when comparing a 

position and velocity control scheme when using a non-negative matrix factorization algorithm 

[85].  This result designates velocity control as the favored cursor control scheme for the system.  

Table 5– Experiment B performance metrics averaged across days for each subject.  Results 

are shown for target training (Tar), no target training (nTar), and test (T) sessions.  P-value 

indicates statistical difference between sessions. 
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However, we acknowledge that the preferred cursor control technique may depend on the task 

(e.g. – a center out target acquisition task using a virtual hand versus an object manipulation task 

using a physical prosthesis) and should be studied further. 

The results of Experiment A found no difference in performance between the different 

electrode arrays tested. The 12-site untargeted electrode array is assumed to measure redundant 

EMG activity therefore a subset of electrodes could measure the equivalent information.  

Previously, we found that three statistically independent electrodes could be determined by 

performing a cross correlation analysis of the EMG activity measured using a 12-site untargeted 

surface electrode array for nine out of ten subjects tested [86].  For this task, the EMG activity 

collected by three electrodes provided sufficient information for the controller to decipher user 

intent with similar accuracy to the four and twelve electrode arrays.  The 3-site electrode array is 

thereby the preferred electrode array configuration for this system.  This finding has noteworthy 

clinical implications as well.  The number of electrodes necessary to control a myoelectric 

prosthesis should be minimized in order to reduce cost and complexity of a prosthetic hand 

system.   

Experiment B 

The clinical efficacy of the postural controller was studied using the T session 

performance metrics.  The average CR, MT, and PE during the T sessions are comparable to 

many of the current state-of-the-art myoelectric controllers [58], [59], [73].  Pistohl et al. used 

similar control architecture, but did not test a clinically viable system since the control sites were 

intrinsic to the hand and functional postures were not produced [82].  However, Dalley et al., 

reported better performance (higher CR and lower MT) than the work presented here using a 

state machine architecture [67] in a clinically viable system.  The state machine architecture 
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provides a more restrictive environment within which the user controls the hand posture as 

compared to the postural control architecture.  The state machine limits the user to specific 

transitions between neighboring postures using a physiologically inappropriate trigger command 

while the postural controller allows for direct transitions between all postures in the PC domain 

without a trigger command.  The state machine is a single dimensional architecture (i.e. – a 

linear arrangement of postures) whereas the postural control architecture is a two-dimensional 

architecture (i.e. – a planar arrangement of postures).  The added dimension in the postural 

control architecture provides additional freedom while, in this case, sacrificing performance as 

compared to the state machine in [67].  Chapter 5 presents a more in depth study of this tradeoff  

by comparing state machine and postural control architectures directly.   

The CR for S4 is significantly different compared to the three other subjects (p = 0.01).  

We feel that the EMG acquisition gains and thresholds were poorly tuned (the gains too high and 

thresholds too low) during D1 for S4.  The subject repeatedly overshot the target in the PC 

domain and lacked the precision to direct the cursor to the target consistently without visual 

feedback.  The experimental protocol disallowed for the EMG acquisition system to be reset 

after the first meeting.  The performance of S4 indicates the sensitivity of the system to the initial 

tuning of the EMG acquisition system.    

The pretest session allowed for an analysis of retention of the ability to use the postural 

controller across days. The performance of subjects (specifically CR and PE) increased and then 

persisted after only a single day of training.  In other words, a single training session is sufficient 

for high level use.  This implies that clinical implementation of the postural controller could 

occur during a single training session between the prosthetist and user.  Another important 

outcome when comparing performance across days is that performance is not affected by 
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donning/doffing of the myoelectric system.  The myoelectric interface was removed completely 

between days; however, the performance on average increased and then stabilized without 

retraining/tuning the myoelectric interface.  Specifically, this observation differentiates the 

postural controller from many pattern recognition systems previously developed which show 

deteriorating performance from donning/doffing [59].   

The effect of visual feedback on performance was shown to significantly augment the CR 

for three out of four subjects.  This finding was expected as the visual feedback provided during 

the training sessions was meant to assist the subjects complete the task.  The information 

provided by the real-time cursor position enabled the subjects to modulate the muscular activity 

in order to acquire the target in the PC domain.  The MT and PE metrics were unaffected by the 

various visual feedback paradigms.  This suggests that visual feedback assisted in the overall 

completion of the task (i.e. – matching postures) but not in the speed (MT) or precision (PE).  

However, this study did not test whether subjects would learn more effectively by exploring the 

PC domain without any visual feedback. 

Novel Aspects 

The postural controller presented here integrates several novel aspects with respect to 

previous work [71]–[73], [87].  Here, the postural map is fully customizable due to the novel 

derivation of the dynamic JAT. Previously, principal component vectors were used to derive the 

JAT and dictated the number and locations of the postures in the PC domain.  Now, the locations 

of the postures are defined by the postural map and implemented using equations (7).  The 

number and location of the postures in the PC domain is unlimited.  The exemplary postural map 

(Figure 13d) depicts a PC domain with 6 unique postures, however additional postures could be 

added circumferentially between the given postures, radially in front/behind the postures, etc.  
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The freedom provided by this architecture is greater than previous postural controllers due to the 

advancement in the derivation of the JAT.   

The development of the potential field also distinguishes this work.  The potential field 

effectively adds a third dimension to the PC domain.  The topography of the PC domain is 

determined by the design of the feedback controller and the tuning of the proportional and 

derivative gains.  The proportional gain adjusts the ‘steepness’ of the well/wedge while the 

derivative gain ‘flattens’ the bottom of the well.  An interesting viewpoint is that the potential 

field transforms the PC domain into a ‘soft’ state machine.  The preferred states are located at the 

areas with lowest potential and the harshness of the states is determined by the depth of the 

wells/wedges.  The exemplary potential field (Figure 13c) is a preliminary attempt to design a 

potential field that augments to performance of the postural controller.  Pilot studies indicated the 

utility of the potential field used here; however, the design of more optimal potential field 

requires further investigation.  Nonetheless, this chapter substantiates the novel algorithm for a 

postural controller as an effective and robust design for a MEC of multi-function prosthetic 

hands.  Many questions remain concerning the efficacy of the controller during object 

manipulation tasks and the benefits/pitfalls of the postural controller when directly compared to 

the state of the art MECs in the commercial and research realms.  These questions are addressed 

directly in Chapter 5. 
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Chapter 5 - A Comparative Study of State of the Art Myoelectric Controllers 

for Multi-Grasp Prosthetic Hands
9
 

Introduction 

As described in Chapter 4, the postural controller was effective at matching virtual hand 

postures with clinically realistic visual feedback and was robust to donning/doffing across days.  

However, it must be proven that the postural controller is also effective when implemented on a 

physical device and used to perform activities of daily living.  Additional challenges including 

stable grasp forces, temporal coordination of the digits in the hand, and co-activity of the EMG 

control sites due to the weight of the prosthesis must be overcome.  Here the postural control 

(PC) scheme is first implemented on a physical device and able-limbed subjects first use the 

postural controller to manipulate objects. 

In general, MECs address the challenge of an intuitive human machine interfaces with 

differing strengths and weaknesses.  Although comparisons across architectures are essential in 

order to assess the efficacy of each MEC, only few studies actually addressed this issue in a 

systematic manner. Previous works have compared pattern recognition MECs [63] and finite 

state machine MECs [88], but not the more recently proposed PC schemes. Thus, in this work 

two types of finite state machines and a PC scheme are compared using both virtual and physical 

assessment procedures with seven able-limbed subjects. Pattern recognition systems were not 

compared since they have not been shown to be viable to clinical conditions like electrode shift, 

limb position, sweat, etc.  We used the Southampton Hand Assessment Procedure (SHAP) [18] 

in order to study the effectiveness of each MEC to perform ADLs with a physical multi-grasp 

                                                 
9
 Intended publication with Journal of Rehabilitation Research and Development, submitted February 2014 with co-

authors Marco Controzzi, Ph.D., Richard F. ff. Weir, Ph.D., and Christian Cipriani, Ph.D. 

 



68 

 

 

artificial hand as well as a virtual hand posture matching task in order to measure the ability of 

subjects to reproduce six target postures [87]. 

Methods 

Three MEC architectures were compared in this study using a physical assessment 

(experiment A) and a virtual assessment (experiment B). The experimental setup consisted of a 

three-site EMG acquisition system and a laptop running a custom application (written using 

LabView, National Instruments, Inc). The latter processed the EMG signals, implemented the 

MEC algorithms (i.e.- generated control commands as outputs) and stored the data for off-line 

analysis. The outputs of the MECs were physically implemented by a multi-grasp artificial hand, 

connected to the laptop (during experiment A) or a virtual hand displayed on the laptop screen 

(during experiment B). 

The EMG signals were acquired using two surface electrodes targeting the flexor 

digitorum superficialis (F) and extensor digitorum (E) and a third surface electrode targeting 

extensor carpi ulnaris (U) muscles when necessary (cf. below). Self-adhesive snap electrode 

pairs with 2 cm center-to-center inter-electrode spacing were placed on the target muscle in a 

longitudinal orientation (Noraxon #272). A Noraxon Telemyo 2400R system sampled the EMG 

signals (3 kHz) with an analog low pass cut-off frequency of 500 Hz while a data acquisition 

board (NI-USB 6211) connected to the laptop digitized them. These signals were processed 

using standard techniques (band-pass 10-450Hz, rectification, 100ms moving average) and were 

used to produce control commands based on the specific MEC. Individual EMG gains and 

thresholds could be tuned for each subject.  
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Each of the three MECs had a unique architecture while all other parameters were 

standardized in order to ensure a robust comparison.  The hand posture was initialized to hand 

flat throughout each experiment for all MECs.  The closing speed of the finger for all controllers 

and postures was set to ~1 second.  The temporal coordination for each posture (i.e., the timing 

of the digit movements when closing the hand) was standardized across controllers.  The six 

target postures and hand flat were identical in each MEC (Table 6) which ensured equal grip 

forces across each MEC. The six postures comprised functional postures and grasps used in 

ADLs [16] and were chosen in order to replicate the experimental setup used by Dalley et al., 

[67].  Finally, the gains on the EMG signals were normalized to the maximum voluntary 

contraction of each subject. 
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Controller 1: Commercially available finite-state machine  

Controller 1 (C1) replicated the finite state machine implemented in a commercially 

available device: the iLIMB prosthetic hand (Touch Bionics, ltd. Livingstone, UK, Figure 20). 

This type of state machine is typical among available commercial prostheses [19], [20], [89]. The 

architecture consisted of six states corresponding to the six target postures, not including HF. A 

Table 6 –Target postures included in each MEC 

 

Palmar 

Prehension 

Tip 

Prehension 

Lateral 

Prehension 

Hook Pointer Opposition Hand Flat 

Thumb 

Rotation 

(˚) 

90 90 20 0 0 90 0 

Thumb 

Flexion (˚) 
65 65 90 0 90 0 0 

Index 

Flexion (˚) 
70 70 70 70 70 0 0 

Middle 

Flexion (˚) 
80 0 80 80 80 0 0 

Ring  

Flexion (˚) 

80 0 80 80 80 0 0 

Little 

Flexion (˚) 
80 0 80 80 80 0 0 

Posture 

Image        
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trigger (T) iteratively changed states in a specified order. The trigger allowed for a progression in 

the sequence of states in a single direction. The trigger command occurred when both EMG 

signals (F, E) supersede a tuned threshold (a brief co-contraction). An audible beep was provided 

by the experimental apparatus to indicate that a trigger command was recognized (like in the 

iLIMB prosthetic hand). Once inside a state, the magnitude of the difference between F and E 

was proportional to the speed of the hand and the sign of the difference corresponded to the 

opening/closing of the hand (a velocity control scheme). The fully closed posture of each state 

coincided to one of the target postures while the fully opened posture coincided to HF (full 

extension of all digits). Therefore, the only available postures within a state were a linear 

combination of the corresponding target posture and HF.  

 

Controller 2: Vanderbilt University controller 

Controller 2 (C2) replicated the Multigrasp Myoelectric Controller developed by Dalley 

et al. [67] (Figure 21) at Vanderbilt University. The architecture consisted of two states 

(opposition and reposition) with multiple target postures within each state. The two states were 

distinguished by the abduction position of the thumb: opposition and reposition. A co-

 

Figure 20 – Controller 1 (C1). A finite state machine based on the iLIMB prosthetic hand. 
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contraction trigger (T) switched between the two states. The trigger command and the hand 

opening/closing occurred identically to C1. The sequence of postures within each state ensured 

that the digits closed/opened in a coordinated manner. The transition logic between postures was 

not reproduced exactly as described in [67] due to mechanical constraints of the artificial hand 

used in the present study. Specifically, the actuator displacement and force thresholds were not 

available to use in the transition logic in our study. Instead, the transitions between the states 

were solely dependent on the volitional EMG input signals. The hand posture when transitioning 

between targets was a linear combination of the two nearest target postures. 

 

Controller 3: Postural controller 

Controller 3 (C3) was a postural controller based on previous work by the authors [87], 

[90] (Figure 22) as described in Chapter 4. The architecture used EMG signals like a joystick to 

morph the hand posture.  As described previously, the EMG signals are mapped into two control 

parameters that can be represented by a coordinate in the PC domain.  All locations in the PC 

domain corresponded to a hand posture.  In this work, the three EMG signals were mapped in a 

 

Figure 21 – Controller 2 (C2). A finite state machine based on the Multigrasp 

Myoelectric Controller developed by Dalley et al. 
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radial fashion about the origin of the PC domain (Figure 22). The vector summation of the RMS 

EMG values equaled the coordinate position in the PC domain. A position control scheme was 

used where quiescent EMG signals corresponded to the coordinate at the origin. The coordinate, 

[PCX, PCY], was converted into a joint angle array, ө, by a linear transform, the Joint Angle 

Transform (JAT, (9)). The JAT varied depending on the closest target postures to the coordinate 

at any given time (i.e., the JAT was spatially dependent).  At all times, the hand posture (i.e., the 

joint angle array) was a linear combination of the two closest target postures where when the 

coordinate equaled a target posture position, the MEC reproduced the target posture identically. 

The architecture did not include discrete states and therefore did not require a trigger signal.  

   [
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Experimental Methods 

Seven able-bodied subjects (aged 26 years ± 3years, all right handed) completed two 

experiments (A and B) using the three MECs. Experiment A consisted of the SHAP [18] using a 

modified Azzurra IH2 artificial hand (Prensilia Srl, Pisa, Italy) mounted onto a splint. 

Experiment A tested the ability of the subjects to manipulate physical objects. Experiment B 

instead consisted of a virtual hand posture matching task (as in [87]) in order to test the full range 

of postures for each MEC. In a single (two hour) experimental session both experiments were 

performed using a single controller (either C1, C2, or C3) with experiment A occurring first. 

Three sessions were scheduled on three different days for each subject. The order of the 

 

Figure 22 – Controller 3 (C3). A postural controller developed as described in Chapter 4. An 

arrangement of the target postures in the Postural Control domain is shown as well as the 

radial mapping of the EMG signals (F, E, and U). 
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controllers tested across the three days was randomized across subjects. All subjects claimed to 

have normal vision/upper limb function and were not practiced at myoelectric control. All 

subjects conducted the experiment using their left arm to match the handedness of the robot hand 

available. Informed consent according to the Declaration of Helsinki (BMJ 1991; 302:1194) was 

obtained before conducting the experiments.  

Experiment A 

In experiment A, the subjects performed the SHAP wearing the artificial hand. The hand 

was mounted on an able-bodied splint which included a handlebar so that the physiological limb 

would maintain an anatomically neutral position. The SHAP is a standardized time-based hand 

assessment procedure that measures the hand function relative to normal able-bodied function 

using 26 ADL tasks which span the functional grasps (Table 1, [18]). It was shown to be reliable 

and was validated so that results of independent studies can be compared [18]. For example, it 

was used by Van Der Niet and colleagues to compare the i-LIMB and DMC hands [54] and by 

Dalley et al. to functionally assess the Multigrasp Myoelectric Controller (i.e. the controller 

replicated in this work) [55]. As instructed by the SHAP protocol, subjects were asked to 

complete tasks consisting of the physical manipulation of abstract objects (cylinders, spheres, 

tabs, etc.) and physical ADLs (turning a door handle as in Figure 23a, picking up coins, moving 

containers, lifting a tray, etc.). The 26 tasks were performed as quickly as possible and were self-

timed by the subject using a start/stop button as prescribed by the SHAP  Only a subset of grasps 

(palmar, tip, and lateral prehension) in each MEC was necessary to perform the SHAP (Table 1). 

The duration of each task was used to calculate a SHAP score which described the overall 

function of the subject. The calculation of the SHAP score occurred by inputting the duration of 

the each task in seconds into the proprietary algorithm provided by the SHAP organization 
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through their website (http://www.shap.ecs.soton.ac.uk/index.php).  Since the SHAP used a 

time-based protocol, the best performance equated to the fastest average performance across all 

tasks.  

The artificial hand used during the SHAP was a modified IH2 Azzurra hand. The 

unmodified version of this hand consists of five underactuated digits (two joints per digit) driven 

by five motors which actuated the flexion/extension of the thumb, index, middle, ring/little as a 

pair and the ab/adduction of the thumb. The hand was modified in order to improve grasp 

stability during TP and LP. In particular the thumb and index fingers were splinted so that they 

became a single jointed digit about the metacarpophalangeal joint (Figure 23b) and compliant 

material was added to the fingertips.  

Before the experiment, the EMG control sites were located by palpating the forearm and 

the electrodes were fixed as described previously. Then the splint with the robot hand was fitted 

to the subjects’ forearms using adjustable straps in an anatomically correct position. As a 

standard procedure, the gains on the EMG signals were normalized to the maximum voluntary 

contraction of each subject as the subject suspended the hand and splint in order to best 

compensate for the nominal EMG activity due to the weight of the system.  For all controllers, 

there was a balance between too little gain (i.e., the tasks were too effortful for the subjects) and 

too much gain (i.e. the controller was unusable due to false triggers and/or poor cursor control in 

C3).  The experimenter tuned the EMG signals with the goal of finding the balance between 

these two extremes.   

During the experiment subjects sat in an upright position in front of a table where the 

SHAP materials were placed. The subject rehearsed each SHAP task until he/she was able to 

http://www.shap.ecs.soton.ac.uk/index.php
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reliably perform it as suggested by the SHAP assessor’s manual [91]. The subject performed the 

task until satisfied that the fastest possible time was achieved. Five tasks of the original SHAP 

were not included in our study (button board, food cutting, rotate key, zipper, and screwdriver 

tasks) due to mechanical limitations of the hand available and were given the maximum time, 

100 seconds, as prescribed by the SHAP assessor’s manual. Subjects were instructed to rest 

between SHAP tasks as needed.   

 

Experiment B 

In experiment B, the subjects performed a virtual hand posture matching task by 

controlling the movements of a virtual hand (VH) displayed on the laptop using the same EMG 

control sites as in experiment A. The VH posture matching task was meant to quantify the ability 

of the subjects to reproduce all six functional grasps available in each MEC (as opposed to the 

subset of grasps used during the SHAP).  The VH had the same physical architecture of the IH2 

Azzurra hand and responded in real-time to the output of the MECs. During the experiment 

  

(a)             (b) 

Figure 23 – a) The experimental platform consisting of Azzurra IH2 artificial hand mounted 

onto an able-bodied splint, a three-site surface EMG acquisition system, and the SHAP. b) 

The Azzurra IH2 artificial hand with nine joints (red circles) and five motors (dashed black 

circles, the ring and little fingers are coupled as shown by solid line).    
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subjects sat in an upright position in front of the laptop (the splint and the robot hand were not 

used). The subjects were asked to match the posture of the VH to one out of six randomly 

presented target postures as quickly as possible.  The random presentation of target postures was 

implemented in order to simulate everyday use when users choose between hand postures in a 

pseudo-random fashion. The target posture was displayed as a static image of the VH in the 

appropriate position [87]. A successful trial consisted of matching the VH to the target posture in 

ten seconds or less (including a one second hold time) otherwise the trial was considered a 

failure. The VH matched the target posture when the coordinate was within the 14% radii of the 

target position in the PC domain [83] and was indicated by the visual interface. The experiment 

consisted of 60 trials (10 attempts at each target posture). The sequence of target postures was 

randomized across subjects. Before experiment B the EMG acquisition was retuned. The VH 

task tested the ability of each subject to produce the specified target postures as opposed to the 

SHAP which required the completion of the task and not a specific posture.  

Performance Metrics 

In experiment A, the SHAP Score (SS) as defined by Light et al. [18] was used as one of 

the performance metrics. The SS was designed to measure a subject’s artificial hand function and 

was derived from the time to complete the SHAP tasks; a score of 100 corresponded to normal, 

able-bodied hand function while a score of 0 equated to minimal function [18].  The SS was 

calculated as an across subject average (unpaired) and was reported in order to compare the 

prosthetic system to previous studies using the SHAP. 

  In this work, we introduced the SHAP Percent Difference (SD) which was the percent 

difference from the subject average SS as described by equation (10) where N was the total 

number of subjects and c was the MEC. Positive SD occured when the SS for the MEC was 
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greater than the subject’s average and vice versa.  The SD was the preferred performance metric 

compared to the SS since it was a within subject comparison and therefore was a more sensitive 

measure of the relative utility of the MECs. 
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In experiment B, several metrics were used to quantify the performance. The completion 

rate (CR) is the number of successful trials per total number of trials. The movement time (MT) 

is the duration of successful trials in seconds not including the one second hold time. The 

average EMG amplitude (EMG AMP) is a measure of effort based on the RMS of the EMG 

activity from each electrode (i) for each posture (p).  AMP is a within subject measure and is 

calculated as the percent difference from the subject average RMS EMG amplitude for each 

controller (c, ((11)) [92]. Positive AMP occurs when the subject produces more EMG activity 

(i.e. – effort) for a controller/posture than the subject average and vice versa. The standardization 

of the EMG tuning methods, as detailed previously, ensured that the AMP metric accurately 

reflected the effort of the subject.  EMG AMP was only calculated for experiment B since the 

manipulation tasks in experiment A caused compensatory EMG activity which was not of 

interest.  
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Better performance in experiment A was quantified by higher SS and SD; better 

performance in experiment B was quantified by higher CR, lower MT, and lower EMG AMP. 

One-factor ANOVA’s were used throughout and Bonferroni post-hoc corrections for multiple 
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comparisons were used when applicable with a significance level of 0.05. Experimental results 

report means ± standard error of the mean. 

Results 

The transformation of EMG signals to joint angle commands for the artificial (or virtual) 

hand for each MEC was shown as a comparison (Figure 24). The representative plots in Figure 

24 depicted the differing logic performed by the three MECs while producing the same outputs. 

The control sequence for C1 showed a trigger command (vertical gray bar) into the TP state 

followed by extension, flexion, and extension EMG activity to cause HF, TP, and HF, 

respectively. The example for C2 showed a trigger command from the HF state into the OP state 

followed by a flexion and extension EMG activity to move between OP, TP, and OP. A second 

trigger command changed states from OP back to HF. The example for C3 showed 

predominately extension EMG activity that drives the hand posture from HF to TP followed by 

quiescent EMG activity which relaxes the hand posture back to HF.   
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Experiment A 

The SS’s for each controller were equal to 38 ± 2.5, 41 ± 1.9, and 45 ± 1.0 for C1, C2, 

and C3 respectively (Figure 25, left panel). The SS’s were not significantly different across 

MECs (p = 0.08). However, the within subject average SS ranged from 35 to 48 and was found to 

be significantly different (p < 0.05, not shown). In other words, some subjects were more 

 

Figure 24 – The transformation of root mean square (RMS) EMG signals (E, F, and U) into 

five joint angles. The smoothed EMG signal in red from flexor digitorum (F), extensor 

digitorum (E), and extensor carpi ulnaris (U, only used in C3) showed the muscle activity 

after filtering and tuning. The joint angle traces from top to bottom for Thumb Abduction 

(AB), Thumb Flexion (TH), Index Flexion (IN), Middle Flexion (MI), Ring/Little Flexion 

(RL) in blue corresponded to the hand posture shown including tip prehension (TP), hand flat 

(HF), and opposition (OP). The state/posture of C1 and C2 (1-6) was depicted by the black 

trace and the co-contraction trigger signal was highlighted by the vertical gray bar. It should 

be noted that C3 did not require a trigger signal since the postural control architecture controls 

the hand posture in a continuous domain without discrete states.  
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proficient at the SHAP than others irrespective of the controller. Therefore, the SD was the 

preferred performance metric  used since it normalized the SS to the subject average. The mean 

SD’s across subjects were equal to -8.0% ± 2.6%, -0.6% ± 1.6%, and 8.6% ± 2.2% for C1, C2, 

and C3 respectively (Figure 25, right panel). Post-hoc analysis found that the SD for C3 was 

significantly greater than both C1 and C2 (p < 0.001, p < 0.05) thereby suggesting that on 

average subjects performed the ADL’s more proficiently using C3 than C1 or C2.   

 

Experiment B 

The CR’s equaled to 97% ± 1.4%, 99% ± 0.3%, and 86% ± 2.9% for C1, C2, and C3 

respectively (Figure 26, left panel). Post-hoc analysis found that the CR for C3 was significantly 

 

Figure 25 – Experiment A results for each controller. The SS 

describes the artificial hand function where 100 equals able-

bodied, hand function. The SD is the percent difference of the SS of 

each controller compared to the subject mean. * indicate p-values 

< 0.05. 
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less than both C1 and C2 (p < 0.01, p < 0.001 respectively). The MT’s equaled 3.9s ± 0.3s, 3.3s 

± 0.2s, and 2.7s ± 0.4s for C1, C2, and C3 respectively (Figure 26, middle panel). There was no 

significant difference between the three controllers (p = 0.06), however there was strong trend 

where the MT decreased from C1 to C2 to C3. The EMG AMP equaled 25% ± 24%, -1% ± 26%, 

and -24% ± 13% for C1, C2, and C3 respectively (Figure 26, right panel). There was no 

significant difference between the three controllers (p = 0.31), however there was a trend where 

the EMG AMP decreased from C1 to C2 to C3.  To summarize, C3 was the least accurate 

controller in reproducing the six target postures, however tended to be the fastest and least 

effortful controller. 

 

 

Figure 26 – Experiment B results averaged for each controller. The CR refers to percentage of 

successful attempts during the virtual hand posture matching task. The MT describes the time 

to completion during the virtual hand matching task. The EMG AMP is a measure of effort 

based on the RMS average of the EMG activity and is calculated as the percent difference 

from the subject average. Positive AMP describes more than average EMG activity. * indicate 

p-values < 0.05 
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The same results were sorted by target posture in order to analyze the intricacies of the 

PC architecture used in C3 (Figure 27). In C3, the target postures that require the activation of a 

single EMG site (PP, TP, and LP) are considered 1 degree of freedom (DoF) targets. The 2-DoF 

targets postures (HK, PT, and OP) require the activation of two EMG control sites (i.e. – a co-

contraction). All target postures in C1 and C2 are considered 1-DoF since none require co-

contraction. The CR for the 1-DoF trials equaled 97% ± 1.4%, 99% ± 0.3%, 96% ± 2.2% for C1, 

C2, and C3 respectively. There was no difference in CR between the controllers for the 1-DoF 

trials (p = 0.40). However, the CR for C3 2-DoF trials equaled 78% ± 4.2% and was significantly 

different (p < 0.001) than the 1-DoF trials. In other words, the failed attempts when using C3 

occurred almost exclusively when the target posture required a co-contraction (a 2-DoF target). 

The MT for the 1-DoF trials equaled 3.9s ± 0.3s, 3.3s ± 0.2s, and 1.9s ± 0.4s for C1, C2, and C3 

respectively and the MT for the 2-DoF C3 trials equaled 3.8s ± 0.4s. The MT for the C3 1-DoF 

trials was significantly less than the MT for the C1, C2, and C3 2-DoF trials (p < 0.001). The 

EMG AMP for the 1-DoF trials equaled 25% ± 24%, -1% ± 26%, and -34% ± 11% for C1, C2, 

and C3 respectively, and the EMG AMP for the C3 2-DoF trials equaled -15% ± 15%. There was 

no significant difference between EMG AMP for the 1-DoF or 2-DoF trials (p = 0.24) however 

there was a trend where the EMG AMP decreased from C1 to C2 to C3 2-DoF trials to C3 1-DoF 

trials. In general, the C3 1-DoF trials were equally accurate, faster, and tended to be less effortful 

than C1 and C2. On the contrary, the C3 2-DoF trials were less accurate, equally timely, and 

were equally effortful as C1 and C2.  
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Further sorting was performed in order to provide insight into the EMG AMP required to 

produce the different target postures within each MEC (equation ((11 , Figure 28). It is worth 

recalling that a zero EMG AMP occurred when the posture required the average EMG activity 

for the subject. For C1 the EMG AMP monotonically increases from the initial target posture 

(TP) to the most distant one (OP). This finding is logical since a trigger command is required to 

sequentially move between states and thereby increases the required effort to reach the more 

distant target postures. For C2, the EMG AMP is significantly greater (p < 0.001) for target 

postures in the opposition state (OP,TP, and PP) than for the reposition state (PT,HK, and LP). 

Since the hand posture in experiment A was initialized to the HF state for all trials and MECs, 

the opposition state in C2 required an extra trigger command (more EMG activity) to switch 

 

Figure 27 – Experiment B results sorted by target type and controller. Solid outlines indicate 

1-DoF targets; dashed outline indicates 2-DoF targets. 2-DoF targets require the activation of 

two EMG signals (a co-contraction). * indicate p-values < 0.05 
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from the reposition state. For C3, the EMG AMP is significantly greater (p < 0.001) for the 2-

DoF target postures (HK, OP, and PT) than for the 1-DoF target postures (PP, TP, and LP). This 

is a logical finding since modulation of two control sites (a co-contraction) is a more effortful 

task. While the controllers were equally effortful on average, the effort for each target posture 

differed significantly within each control architecture. 

 

Discussion 

Significantly different results from both the physical and virtual assessment procedures 

were found. An asset of the present study was that it allowed for comparisons between MECs 

due to the standardized experimental design where the same interface and hardware was used for 

all conditions.  

In experiment A, C3 was shown to be the best performing architecture as described by SD 

(Figure 25).  The trigger command used in C1 and C2, but not in C3, inherently retarded the 

completion of the ADL. Subjects were observed producing the trigger command during the 

reaching phase of the ADL in order to complete the task as quickly as possible when using C1 

and C2. The absence of a trigger command in C3 proved to be advantageous. This finding 

   

(a) (b) (c) 

Figure 28 –AMP sorted by posture and controller for a) C1, b) C2, c) C3 where positive EMG 

AMP refers to postures that require more EMG activity than the subject average and vice 

versa.  Postures are arranged along the x-axis based on the sequence of postures within each 

controller.   * indicate p-values < 0.05. 
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supported a similar study in which pattern recognition (without trigger commands) and state 

machine MECs were compared [93]. Furthermore, the architectures of C1 and C2 required 

extension EMG activity in order to release an object whereas C3 required quiescent EMG 

activity (i.e. – minimal activity). These traits resulted from the velocity control scheme in C1 and 

C2 compared to the position control scheme in C3. A velocity control scheme deciphered EMG 

activity as a speed and direction of hand movement and therefore quiescent EMG activity 

equated to no hand movement. EMG activity was necessary to close and open the hand. A 

position control scheme deciphered EMG activity as a position within the architecture. In C3, 

EMG activity was only necessary to close the hand; the hand opened when quiescent EMG 

activity was detected. However, the velocity control scheme used in C1 and C2 allowed the user 

to relax while grasping an object as opposed to in C3 which required continual EMG activity in 

order to maintain a grasp. This fact could cause fatigue (although not noticed here) and might 

need to be mitigated with switches or other logic within C3. In general, the need for extension 

activity in order to release an object in C1 and C2 seemed to slow the completion of the tasks 

compared to C3.  

In experiment B, C3 was the least accurate (lowest CR) controller (Figure 26). We found 

that the dimensionality of the architectures affected the accurate reproduction of target postures. 

More specifically, the state machine architectures used in C1 and C2 restricted the subject to a 

linear arrangement of states, and therefore the posture matching task only required the 

modulation of one EMG signal at a time. This linear arrangement in C1 and C2 provided a more 

accurate interface.  The PC architecture used in C3 presented the same postures in a planar, two-

dimensional arrangement. Thereby, half of the target postures required the modulation of one 

EMG signal (1-DoF) and half required the modulation of two EMG signals (2-DoF) in order to 
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reproduce the target posture. The added dimension of the PC architecture in C3 (i.e. the need for 

co-contractions) negatively affected the CR of the MEC (Figure 27 – left panel). These results 

supported our previous findings that described a reduction in CR with an increase in 

dimensionality [87].  We believe that the dimensionality of the MEC is a major determining 

factor in the ability of a subject to control a prosthetic hand. 

The MT metric in experiment B described the same trend seen in the SS in experiment A 

(Figure 26). The MT tended to decrease from C1 to C2 to C3 which mirrored the SS and SD 

metrics. Furthermore, the MT for the C3-1DoF trials were significantly faster than the other 

controllers (Figure 27, middle panel). The similar trend between the SS and the MT metric was 

logical since both are time-based metrics. This trend supported the fact that both the physical and 

virtual assessment protocols limited confounding variables and therefore produced similar result 

across assessment techniques.   

The EMG AMP metric described the relative effort required for each controller/posture. 

While the controllers required equal effort on average (Figure 26, right panel), the effort for each 

target posture within each MEC differed significantly and was dependent on the controller 

architecture (Figure 28). In general, the sequential arrangement of states in C1 caused the closer 

postures to the initial position to be achieved more easily. Similarly in C2, the postures within 

the initial state (HF state) were achieved more easily than the postures not in the initial state (OP 

state). In C3, the EMG AMP metric highlighted the difficulty of commanding the 2-DoF target 

postures compared to the 1-DoF target postures. It should be noted that the EMG AMP metric 

was biased by controller architecture. The initial posture/state within each controller was the 

same for all trials in experiment B to ensure a standardized methodology across controllers. The 

reordering of states within C1 and/or the rearrangement of postures in the PC domain in C3 
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would have caused the EMG AMP values to differ for the specific postures. However, we 

concluded that the general insights still hold for all of the controllers; the effort increased with 

the number of trigger commands required in C1 and C2 and the 2-DoF postures in C3 required 

more effort than the 1-DoF postures.   

The clinical implementation of the three controllers is feasible today. The EMG 

acquisition and processing was performed using clinically available hardware and standard 

processing techniques. Several five motor prosthetic hands are available today [10], and six 

motor devices are becoming available [20]. A clinical consideration when implementing the 

state-machine architectures (C1 and C2) is the design of the trigger signal. This work 

implemented the same trigger design as [67] for both C1 and C2, however more complex trigger 

designs including hold open, double impulse, and/or triple impulse are clinically available [20]. 

In general, the trigger design must balance the ease of use for the subject with the reliability of 

the trigger signal. Subject over-exertion and/or false triggers should be minimized in order to 

maintain a high quality control interface when using state-machine architectures. A clinical 

consideration when implementing the PC architecture (C3) is the availability of three 

independent surface EMG sites on the residual limb of persons with transradial amputation. 

Three control sites are preferable to two in order to span the entire PC domain using a radial 

mapping of EMG signals in the PC domain. Previous work by the authors [87] discussed two, 

three, and four-site EMG control interfaces using different maps in the PC domain. Anecdotally, 

the authors have found that three independent sites can be found on the residual limbs of both 

subjects with congenital limb loss and trauma-induced limb deficiency [76]. However, the two-

site system used for both C1 and C2 is advantageous since it reduces cost of the prosthesis 

system compared to the three site-system required for C3. 
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The limitations of this work include the use of a left-handed prosthesis, the lack of 

training time, the lack of subjects with transradial amputation and the disregard for pattern 

recognition MECs.  The experiments were performed using the left limb of the subjects due to 

the handedness of the physical prosthesis even though all seven subjects were right handed.  We 

believe that the ability of subjects to use these MECs would change with additional training time, 

but that these results are robust to additional training and still describe the clear differences in 

MEC architectures. In the future, the authors plan to further test the PC architecture implemented 

in C3 within a population of persons with amputation.  We did not test a pattern recognition 

based MEC in this work since we are not aware of an algorithm that can classify seven hand 

postures reliably during a clinically focused test like the SHAP. A surprising development from 

this work was the advantage to using a position control scheme as opposed to a velocity control 

scheme in the postural control architecture. In Chapter 4, the opposite preference was described 

when the PC scheme was used in a virtual center-out target acquisition task.  In other words, the 

optimal parameters within the PC architecture are task-dependent; velocity control schemes are 

beneficial for target acquisition tasks (which do not require a ‘release’ action) while position 

control schemes are beneficial for physical tasks including object manipulation and other ADLs.  

Here the postural controller was shown to be a valuable alternative to the state of the art 

finite state machine architecture for clinically viable MECs using virtual and physical assessment 

techniques with standardized protocols.  Nonetheless, the remaining challenge in order to fully 

answer the overarching hypothesis is to prove clinical efficacy of the postural controller with 

persons with transradial limb loss.  Able-limbed subjects were always used previously in order to 

simplify the experimental protocols.  Now, the clinical complications like subject specific 
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musculature, lack of neural control, etc. must be overcome.  Chapter 6 describes the process of 

addressing and overcoming these complications. 
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Chapter 6 - Functional Assessment of Persons with Transradial Limb Loss 

Using a Myoelectric Postural Controller and Multi-functional Prosthetic 

Hand
10

 

Introduction 

The field of upper limb prosthetic design and control focuses on producing clinically 

relevant systems for use by persons with transradial amputation.  However, the development of 

many prosthetic hand systems takes place using virtual environments and able-bodied people as 

experimental subjects like in Chapters 3-5 and [44], [45], [87].  Virtual environments simplify 

the experimental protocol by removing the need for physical devices like multi-functional 

prosthetic hands while still allowing in-depth study of the myoelectric interface [48], [67].  Able-

bodied subjects ensure that the subject physiology is similar across subjects and are far more 

numerous than persons with transradial amputation.  For these reasons among others, much of 

the studies in the field of upper limb prosthetic design and control avoid performing functional 

assessments of persons with limb loss while performing activities of daily living.  However, here 

a functional assessment of persons with transradial limb loss using the postural controller to 

perform activities of daily living is first accomplished. 

There are numerous challenges when investigating prosthetic systems using this type of 

experimental paradigm.  The residual limb physiology is unique to each person and is dependent 

on the type of limb loss (amputation or congenital limb absence).  During an amputation, the 

goal is to maintain as much limb length as possible and to conserve as much musculature as 

possible [15].  Various surgical techniques are used to achieve this goal.  Myoplasty, connecting 
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antagonist-agonist muscle groups at the distal end of the residual limb, and myodesis, connecting 

the muscle directly to the bone, can occur in unique ways depending on the amputation and 

thereby severely alter the amputation physiology compared to intact physiology [15]. The 

residual limb physiology for a person with congenital limb absence is unique to the person and 

dependent on the amount of in-utereo development.   

 Another challenge when implementing prosthetic systems on persons with transradial 

amputation is the weight of the system on the residual limb.  The load on the residual limb is 

amplified due to a longer moment arm between the weight of the prosthesis and the limb in 

persons with limb loss.  In result, greater muscular activity is required to suspend the load of the 

prosthesis off of the residual limb.  The same musculature that stabilizes the limb is targeted by 

the MEC and thereby confounds the MEC’s ability to decipher user intent.  More generally, the 

reduction of weight of the prosthetic system is the number one concern for users of multi-

functional prosthetic hands [9].  Finally, the recruitment of persons with transradial amputation is 

not a trivial task.  For example, the Veteran Affairs Eastern Colorado Health Care System 

follows only 14 persons with transradial limb loss in all of Denver, Colorado
11

.  Fortunately, 

there are only approximately 41,000 persons with major upper limb loss in the United States in 

2005 [31].  In other words, only 0.01% of the U.S. population is available for subject 

recruitment.  When these challenges are overcome, the functional assessment provides a more in-

depth understanding to the true efficacy of the prosthetic system. 

Here the postural controller developed in Chapters 4-6 was tested in order to determine if 

it was an effective method to control a multi-functional prosthesis for persons with trans-radial 
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limb loss.  Persons with transradial amputation or congenital limb absence performed the 

Southampton Hand Assessment Procedure (SHAP) using a multi-functional prosthetic hand with 

a postural controller.  Able-bodied persons performed the same procedure using the identical 

hardware/software in order to provide a comparison.  The aim of this study is to provide 

evidence of the efficacy of the postural controller for use with persons with trans-radial 

amputation or limb deficiency. 

Methods 

Prosthetic device 

In order to implement the postural controller, the prosthetic hand required at least six 

DoA including an actuated thumb abduction joint.  The Bebionic hand (RSL Steeper Inc., United 

Kingdom) was a commercially available five DoA, multi-functional prosthesis with a manually 

positioned thumb abduction joint (Figure 29a). This hand was modified into a six DoA device for 

this work by adding an actuator to adduct the thumb (Figure 29b).  Both right and left handed 

devices were developed (Figure 29c).  A 10mm DC motor, 1.75:1 spur gear train, and 256:1 

planetary gearhead (MicroMo, Inc., Clearwater, FL) was embedded into the palm as shown in 

Figure 29b.  The adduction drive allowed for 90° of rotation about the thumb axis and thereby 

could position the thumb in a hand flat and opposed positions.  This function ensured that all 

functional grasps could be fully actuated using the postural controller including opposed grasps 

(tip prehension, palmar prehension) and lateral grasps (lateral prehension, hook, pointer).   
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The electronics in the original Bebionic hand were replaced with a custom motor 

controller system (Sigenics Inc., Chicago, IL).  The motor controller system included a controller 

 

 

(a) (b) 

 
(c) 

Figure 29 – (a) The Bebionic v2 by RSL Steeper, U.K. with five degrees of actuation.  (b) A 

sixth degree of actuation was added in order to automate the positioning of the thumb 

ab/adduction.  The actuator including motor, transmission, and clutch were embedded into the 

palm as shown in red.  (c) Photos of the right and left hand configurations of the modified six 

degree of freedom Bebionic hand. 
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board and six satellite boards referred to as penny boards.  The controller board consisted of an 

off-the-shelf Arduino microcontroller system (SparkFun Electronics, Inc., Boulder, CO) that 

translated serial communications from the USB connected personal computer to I2C commands 

for the penny boards.  Each penny board was connected across a four-wire I2C bus and was each 

associated with an actuator.  The penny board controlled the power provided to each actuator and 

deciphered the encoder information provided by each actuator.  (The thumb abduction actuator 

did not include an encoder.)   

For subjects with limb-loss, a temporary socket was built to mount the prosthesis to the 

residual limb (Figure 30).  Bipolar electrodes (Motion Control Inc., Salt Lake City, UT) were 

placed on the skin, covered with cotton padding, and then wrapped with fiberglass casting tape 

(Ossur, Inc. Iceland).  A modified quick disconnect wrist socket (Ottobock, Inc., Plymouth, MN) 

with laser-cut plastic struts was anchored to the residual limb by embedding the struts into the 

cast.  The prosthesis was then mounted to the wrist socket which allowed for the subject to 

passively rotate the hand during the experiment.  For able-bodied participants, a splint was built 

to mount the prosthesis distal to the physiological hand.  The splint was strapped to the forearm 

of the participant distal to the surface electrodes.  A handle was adjusted so that the wrist 

remained in a neutral posture.  A modified quick disconnect wrist socket was anchored to the 

splint using metal struts.   
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Postural controller 

The postural controller was embedded into a custom LabVIEW program that 

communicated with the modified Bebionic hand. The custom LabVIEW program sent and 

received commands through the USB serial connection to and from the controller board.  The 

program was responsible for the position control feedback loop including the desired position 

derived by the postural control algorithm, the measured position provided by the motor encoders, 

and the feedback loop gains for each actuator.  The program performed the postural control 

algorithm including EMG processing and then communicated with all six actuators in series in 

 

 

(a) (b) 

 
(c) 

Figure 30 – (a) The residual limb of person with congenital limb loss.  Three surface 

electrodes are placed on the limb (the third is not visible in image).  (b) A temporary cast was 

formed around the residual limb.  (c)  The prosthesis is mounted to the temporary cast in a 

physiologically appropriate manner. 
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120ms.  This update rate is sufficient for the control of myoelectric devices as determined by 

Farrell and Weir [53].   

The program implemented was identical to the system described in Chapter 5 with a few 

exceptions including a dynamic EMG tuning algorithm and an optional two-site PC domain map.  

The dynamic EMG tuning algorithm was implemented in order to ensure stable grasps even in 

the presence of co-activity across the three EMG control sites.  This algorithm implemented a 

‘first-on’ principal in the postural control domain.  When the cursor crossed the dynamic EMG 

threshold radius, the gains on the EMG signals (GF, GE, and GU) were modulated as shown by 

PC domain map in Figure 31.  When the cursor was within the green area, the EMG gains 

equated to the original gain (GFo, GEo, and GUo) for each EMG control signal.  When the cursor 

was in the blue, red, and gray areas, the gains were adjusted so that only the local EMG signal 

was ‘on’.  The gains on the other two EMG control signals were set to zero in order to ignore any 

co-activity during the grasp.  In effect, the dynamic EMG tuning algorithm implemented a ‘first-

on’ principal to the PC domain where only the greatest EMG signal (‘first-on’) was utilized 

while the others are ignored.   
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In response to the various residual limb physiologies of the subjects, a two-site PC 

domain was designed.  In some cases (two out of four subjects with limb loss), the residual limb 

physiology did not allow for the user to produce three independent EMG control sites; two 

independent EMG control sites were always available.  The 2-site PC domain map required only 

the wrist flexion (F) and extension (E) EMG control sites (Figure 32).  Only four functional 

postures were available to the user (palmar prehension, tip prehension, lateral prehension, and 

opposition) instead of the original seven.  These grasps were chosen in order to provide the most 

necessary grasps for activities of daily living [16] and thereby the most necessary for the SHAP.  

Also, the opposition posture was located on the origin of the PC domain (as opposed to hand flat) 

in order to allow subjects to better align the thumb with the object being grasped. 

 

Figure 31 – Dynamic EMG tuning map in the PC domain.  The EMG gains (GI where i is the 

EMG signal) are determined by the location of the cursor in the PC domain.  Gio refers to the 

original EMG gain value for the ith EMG signal. 
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Southampton Hand Assessment Procedure 

The Southampton Hand Assessment Procedure (SHAP) is a standardized hand 

assessment procedure that measures the hand function relative to intact individuals using their 

intact limb by measuring the time-to-completion of 26 activities of daily living (ADLs) which 

span the functional grasps [18].  This protocol was shown to be reliable and validated so that 

results from independent investigators can be compared.  The SHAP includes exact equipment 

and instructions for each of the tasks including the manipulation of abstract object tasks (moving 

cylinders, spheres, tabs, etc.) and ADLs (turning a door handle, picking up coins, moving 

containers, etc.)  The tasks were performed as quickly as possible and were self-timed by the 

subject.   

 

 

(a)  (b)  

Figure 32 – Postural control maps.  3-site maps (a) were used by subjects A1,A4, and all able 

bodied subjects (S1-S4).  2-site maps were used by subjects A2 and A3.  
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Participant details 

Four persons with transradial limb loss (AMP, 3 men, 1 woman; age 44 years ± 16years, 

1 with traumatic limb amputation, 3 with congenital limb absence) and four able-bodied control 

participants (ABLE, 3  men, 1 woman; age 34 years ± 3.9years) completed the experiment at the 

University of Colorado at Boulder.  The University of Colorado at Boulder institutional review 

board approved the study, and written informed consent was obtained from all participants.  The 

type of limb loss, affected side, length of residual limb, years with limb loss, typical type of 

prosthesis, and the number of control sites used during the experiment for each subject with limb 

loss are detailed in Table 7.  The number of control sites used by the able-bodied control 

participants was always three and were placed on the skin over flexor digitorum, exetensor 

digitorum, and extensor carpi ulnaris.  The number of control sites used by the persons with 

limb-loss was determined by empirically measuring the number of independent EMG signals 

prior to starting the SHAP. The control sites were localized based on normal anatomical 

locations and palpation of the limb.   
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Performance Metrics 

The SHAP Score (SS) described the subject performance during the SHAP over all tasks 

(also referred to as the Index of Functionality [18]).  The SS was an integer between zero and 100 

where a score of 100 correspo nds to normal, able-bodied hand function while a score of 

zero corresponds to no hand function.  The functionality profile (FP) scores described the subject 

performance during the SHAP specific to six functional grasps (spherical, power, tip, tripod, 

lateral, and extension) and used the same scale as the SS.  The FP provided detail on the 

performance of the subject when using specific grasps during the SHAP.  Pair-wise t-tests and 

one-factor analysis of variances with Bonferroni corrected post-hoc analysis were used when 

Table 7 –Persons with limb loss subject specific details 

Subject 
Type of 

Limb Loss 

Affected 

Side 

Length of 

Residual 

Limb 

Years 

with 

Limb 

Loss 

Typical Type 

of Prosthesis 

Number of 

Control 

Sites 

A1 Amputation Left 
4” below 

elbow 
43 years 

Body-powered 

prehensor 
3 

A2 

Congenital 

limb 

absence 

Right 
2” below 

elbow 
34 years 

Body-powered 

hook 
2 

A3 

Congenital 

limb 

absence 

Right 
4” below 

elbow 
51 years None 2 

A4 

Congenital 

limb 

absence 

Left 8” 27 years Cosmetic 3 
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appropriate.  Statistical tests were performed using a p-value of 0.05 and error bars represent 

standard error. 

Results 

Subject population comparison 

The SS equaled 56±1.0 and 55±1.8 on average for the subjects with limb loss and able-

bodied subjects respectively.  The SS and FP for the subjects with limb loss were statistically 

equal to the able-bodied subjects (p’s > 0.05, Figure 33).  This result indicated that the modified 

Bebionic hand with postural controller restored approximately 55% of typical hand function.  

The FP scores ranged between 22 to 82.  The whole hand grasp scores (67 ± 2.7 for spherical, 

power, and extension) produced significantly greater FP scores (p < 0.001) than the precision 

grasps (39 ± 3.5 for lateral, tripod, and tip) indicating the greater utility of the prosthetic system 

to manipulate larger, whole hand objects. The equal performance between populations indicated 

that the postural controller overcame the clinical challenges of persons with limb loss and was an 

effective control algorithm for myoelectric prosthetic hands.   
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Controller comparison 

As a supplement to Chapter 5, the able-bodied subjects completed the SHAP using the 

same three MECs (C1, C2, and C3) with the modified Bebionic hand as opposed to the Azzurra 

robotic hand.  The trend for the SS across controllers was similar for both hands; the SS for the 

Azzurra hand are reproduced from Chapter 5 (Figure 34).  The SS tended to increase from C1 to 

C2 to C3 (including C3 for persons with limb loss).  In other words, the relative performance of 

the three controllers was robust to two different experimental apparatuses.  However, the SS 

when using the Bebionic hand ranged from 48 to 56 whereas the SS for the Azzurra hand ranged 

 

Figure 33 –The SHAP scores and functionality profile scores for subjects with limb loss 

(AMP) and able-bodied subjects (ABLE) when using the postural controller.  All scores were 

statistically equal between two populations (p > 0.05). 
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from 38 to 45.  Independent of the controller, the SS produced when using the Bebionic hand 

were greater than the Azzurra.   

Also by deduction, this trend suggests that the C3 would perform better then C1 and C2 

for persons with limb loss as well (even though no persons with limb loss were tested using C1 

or C2 due to lack of available subjects).  Hence, the postural controller may be a more effective 

and clinically robust interface compared to state of the art systems in the commercial (C1) and 

research (C2) realms for persons with transradial limb loss. 

 

 

 

Figure 34 – The SHAP scores for the modified Bebionic and Azzurra hands for each 

myoelectric controller.  The Azzurra SHAP scores are reproduced here from Chapter 5.  The 

increasing SHAP score from C1 to C2 to C3 was similar across hands. 
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Prosthetic hand comparison 

In order to further study the differences between the two prosthetic hands, SS and FP 

scores across all controllers were averaged (Figure 35).  The averaged SS and FP scores 

emphasized the ways in which the hand (i.e. – hardware) affected the ability of subjects to 

perform activities of daily living independent of the MECs (i.e. – software).  The SS for the 

Bebionic hand (52 ± 1.1) was significantly greater (p < 0.001) than the SS for the Azzurra hand 

(41 ± 1.2).  Also, several grasps in the FP were significantly different (power, tip, and lateral 

prehension with p < 0.001, p = 0.001, and p < 0.001 respectively).  The differences in the SS and 

FP scores between hands indicate that the mechanical design of the prosthetic hand affected the 

ability of the subjects to perform activities of daily living.   
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The SHAP protocol ensured that independent experimental results could be compared.  

Table 8 compared SS and FP scores from two independent studies [54], [67] and the work 

described here.  The VMG & MMC hand was a three degree of actuation prosthetic hand with 

the Vanderbilt state machine control system (the motivation for C2) and outperformed the other 

prosthetic systems.  The DMC was a 1 degree of actuation prehensor from Otto Bock Inc.  The i-

LIMB is a five degree of actuation prosthetic hand which uses a state machine control system 

(the motivation for C1).  The SS and FP for the Azzurra hand with postural controller 

(reproduced from Aim 3) and the modified Bebionic hand with postural controller are most 

 

Figure 35 – The average SHAP and functionality profile scores for the modified Bebionic and 

Azzurra hands averaged across all controllers.  The SHAP score and several functionality 

profile scores were significantly different indicating that the mechanical design of the hand 

affected the ability of subjects to perform the SHAP test. 
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similar to the i-LIMB results.  In general, the whole hand grasps (spherical, power, and 

extension) produced higher scores than the precision grasps (tip, tripod, and lateral) as observed 

previously with the modified Bebionic hand. 

 

Discussion 

This chapter asked whether the postural controller was an effective method to control a 

multi-functional prosthesis for persons with trans-radial limb loss.  The postural controller was 

easily learned by the subjects (less than 10 minutes of practice before performing the beginning 

the SHAP) and it was robust to the varied residual limb physiology of the 4 subjects with limb 

loss.  Also, it was possible to tune the postural controller so that the limb position effects and 

dynamic motion effects including co-activity among EMG control sites were overcome.  The 

results indicated that 55% of typical hand function was restored using the modified Bebionic 

Table 8 – SHAP scores and functionality profiles for various prosthetic hands and control 

systems.  The standardized protocol demanded by the SHAP allows for robust comparisons of 

SHAP results across independent studies. 

Functionality 

Profile 

VMG & 

MMC 

(n=1)  

DMC  

(n=1)  

i-LIMB  

(n=1) 

 

Azzurra & 

Postural 

Controller 

(n=7) 

Bebionic & 

Postural 

Controller 

(n=8) 

SS 81 74 52 45±1.0 55±1.0 

Spherical 87 90 90 81±1.9 82±1.3 

Power 85 75 51 40±0.8 51±1.2 

Tip 59 39 42 19±2.3 33±2.6 

Tripod 71 76 32 23±0.5 23±1.3 

Lateral 88 69 23 46±1.0 61±2.4 

Extension 89 81 55 63±2.5 69±1.6 
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hand with postural controller for persons with trans-radial limb loss as shown by the SS metric.  

The ability of the subjects with limb-loss to complete 26 activities of daily living within a single 

experimental session was an existence proof of the efficacy of the postural control as a 

myoelectric control system for persons with transradial limb loss. 

The fact that the SS and FP for persons with limb loss were statistically equal to able-

bodied subjects (Figure 33) indicated that the postural controller was robust to differences in the 

residual limb physiology.  Many experimental factors were inherently different among the two 

subject populations including the placement of EMG control sites on the residual limb, the neural 

control of the residual limb musculature, and the mounting of the prosthesis with the quick-fit 

socket.  The placement of EMG sites on the residual limb varied among all subjects with limb 

loss.  As opposed to able-limbed subjects, those sites were identified by palpating the residual 

limb since the residual limb physiology was unfamiliar especially for subjects with congenital 

limb loss.  The neural control of the residual limb musculature was especially interesting for 

subjects with congenital limb loss since the hand never existed.  They described a variety of 

strategies including imagining wrist flexion/extension, pronation/supination, pressing against 

points within the socket, etc.  These strategies were developed by the subjects as they became 

accustomed to the postural control interface and were beneficial in their ability to control the 

prosthesis.  The temporary socket was not completely self-suspending and thereby the weight of 

the prosthesis was loaded onto the residual limb.  The mechanical loading of the residual limb 

changed the EMG signals by pressing or lifting the socket away from the surface electrodes, 

however the postural controller proved to be robust to these affects.  Here, we found that the 

postural controller withstood the inherent differences among persons with limb-loss compared to 

able-bodied persons.   
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The trend of increasing SS when using C1 to C2 to C3 from Aim 3 was reproduced using 

different hardware.  This reproduction further corroborates the results found in Aim 3.  The 

increase in absolute value of the SS when using the Bebionic hand irrespective of the controller 

further indicated that the SS was influenced by both the controller and mechanical device.  When 

averaged over all the controllers used, the SS for the Bebionic hand was greater than the SS for 

the Azzurra hand (Figure 35).  The mechanical design of the hands had a substantial effect on the 

SS and FP.  The Bebionic digits are actuated using a linear ball screw and rigid body kinematic 

linkage system whereas the Azzurra digits are actuated using a linear ball screw and cable-pulley 

system.  The mechanical performance of the hand (i.e. – grip strength, reliability, back-

drivability, etc.) was dependent on the efficiency of the actuation systems implemented (for more 

details see review paper by the authors [10]).  Several grasps especially benefitted from the 

mechanical design of the Bebionic hand (power, tip, and lateral, Figure 35).  During tip and 

lateral prehension, only one actuator/digit produces the force on an object as opposed to five 

actuators/digits.  The drive system in the Bebionic significantly improved the ability of the 

subjects to perform these grasps as compared to the Azzurra.  

Table 8 indicated that the SS and FP when using the postural controller were similar to 

previously published SHAP results using the commercially available i-LIMB hand.  However, 

the SS and FP of the Vanderbilt Multigrasp (VMG) hand with Multigrasp Myoelectric Controller 

(MMC) overwhelmed the scores when using the postural controller.  The previous literature cited 

referred to a single subject experiment (n=1) whereas the postural controller scores were 

averaged over seven and eight subjects (n = 7 and 8).  It should be noted that the mechanical 

device used in all the SHAP results listed were different (the VMG hand, DMC hand, i-LIMB 
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hand, Azzurra hand, and modified Bebionic hand).  The SS and FP when using the postural 

controller would hopefully increase when using a more effective device like the VMG hand. 

The major design adjustment in this work to the postural controller was the 

implementation of a 2-site PC domain map (Figure 32).  Previously, the authors found that three 

independent control sites could be found on trans-radial amputees [76].  However, the limb 

length and residual limb musculature for several subjects with limb loss (A2 and A3) did not 

allow for three independent sites.  We noticed a high level of co-activity in the residual limbs of 

A2 and A3 when suspending the prosthesis and/or manipulating objects.  Therefore, the 2-site 

PC domain map was beneficial since it ignored the co-activity of the third control site and 

provided a simpler control interface.  The disadvantage of the 2-site PC domain map was the 

decrease in hand postures available to the subject.  The ability of the postural controller to adjust 

to clinical considerations like the number of independent control sites makes the system even 

more clinically applicable. 

Conclusion 

Here the clinical efficacy of the postural control system was tested using a modified 

Bebionic hand with persons with limb loss.  The results provide an existence proof that the 

postural controller is an effective myoelectric control interface for persons with trans-radial limb 

loss.  The real world experimental demands of the SHAP ensured that the control system would 

be challenged.  The SHAP score and functionality profile were equivalent between the subjects 

with limb-loss and able-bodied subjects.  This result indicated that the postural controller was 

robust to the musculature, neural control, and residual limb size of persons with trans-radial limb 

loss.  Additionally, previously studied state machine control systems were compared to the 
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postural controller and the modified Bebionic hand was compared to the previously utilized 

Azzurra hand.  Therefore, the overarching hypothesis that postural control systems provide a 

more effective and clinically robust interface compare to the state-of-the-art systems in the 

commercial and research realms for persons with transradial limb loss has been verified.    

  



113 

 

 

Chapter 7 - Conclusions 

This dissertation describes the development of a myoelectric prosthetic hand controller 

across four aims.  The MEC design progressed using typical techniques like brainstorming, 

prototyping, testing, analyzing, and iterating upon the design.  This process occurred throughout 

each aim and is summarized below. 

Specific Aim 1: Based upon the work of Santello et al. [11], a two-dimensional domain 

was developed using a principal component analysis of human grasping.  EMG control signals 

were mapped onto this domain in various orientations.  The mappings used two, three, or four 

EMG signals and were tested by 10 able-bodied subjects during a virtual hand posture matching 

experiment.  The preferred map used only two EMG control signals and was oriented similarly to 

the distribution of the postures within the domain as shown by Santello et al.  The findings from 

this aim motivated the design of a customizable two-dimensional domain with functional grasps 

deliberately positioned with respect to the EMG control signals. 

Specific Aim 2:  Here we designed and tested a novel postural control algorithm.  The 

algorithm was motivated by the findings of Aim 1 and included a customizable two-dimensional 

domain, the postural control (PC) domain, with functional grasps deliberately positioned with 

respect to the EMG control signals.  New features in the postural control algorithm were 

developed here including the position and velocity cursor control schemes and gravity wells.  

Experiments were conducted using able-bodied subjects using a virtual hand interface.  Several 

parameters of the algorithm were decided upon empirically including the preferred number of 

surface electrodes (three) and cursor control scheme (velocity control for center-out target 

acquisition tasks).  Also the ability to learn the controller system was shown to take only a single 

one-hour training session.  The findings from this aim identified certain design parameters 
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(number of electrodes, cursor control scheme, amount of training) and provided encouraging 

results with respect to the clinical efficacy of the postural control scheme.   

Specific Aim 3: Here the postural control scheme was first implemented on a physical 

device and compared to other state-of-the-art myoelectric control schemes.  The postural 

controller used the preferred design parameters as determined by Aim 2.  The experimental 

protocol entailed able-bodied subjects using the Azzurra IH2 robotic hand to perform the 

Southampton Hand Assessment Procedure (SHAP).  Three experimental sessions took place 

where a different myoelectric controller (i.e. – software) was used with the same experimental 

apparatus (i.e. – hardware) thereby allowing for direct comparisons between the controllers.  

Also, a virtual hand posture matching exercise was performed.  The results showed that the 

postural control scheme was advantageous compared to the other controllers during activities of 

daily living, but was less adept during virtual hand matching exercises.  Again, these findings 

were encouraging in that they indicated the utility of the postural controller to control a 

prosthetic hand in real time and manipulate objects successfully. 

Specific Aim 4: Here the postural control scheme was used by persons with limb loss for 

the first time.  A functional assessment was performed by persons with limb loss using a 

modified Bebionic hand and the SHAP.  Able-bodied subjects performed the same experiment 

for comparison.  The results substantiate several initial assumptions about the ability of persons 

with limb loss to use the postural control scheme.  Without training, persons with limb loss were 

able to control the prosthesis and perform activities of daily living to the same ability of able-

bodied persons using the identical prosthesis.  In other words, the postural controller is robust to 

differences in musculature, neural control, and limb size between able-bodied and persons with 

limb loss.  Also, by deduction, it was found that the postural controller would perform better than 
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the state of the art MECs in the commercial and research realms by persons with transradial limb 

loss.  Therefore, the overarching hypothesis that postural control systems provide a more 

effective and clinically robust interface has been verified.   

This work was fundamentally a design project.  The technology itself was being 

developed in parallel with the experiments performed in Specific Aims 1-4.  In result, various 

aspects of the postural controller were modified, revised, and revisited in order to adapt the 

design to the new experiences and data.  The most noticeable example of this process should be 

highlighted.  The preference for a position cursor control scheme as opposed to a velocity control 

scheme during activities of daily living was found in Specific Aims 3 and 4.  This preference 

disagrees with the finding from Specific Aim 2 that the velocity control scheme was preferred 

during a center-out target acquisition task.  This apparent discrepancy informs the design of the 

postural controller by highlighting the fact that the preferred cursor control scheme is task 

dependent.  Tasks within a virtual environment like in Specific Aim 2 simply required the 

maneuvering of a cursor within the PC domain and do not require the user to acquire objects, 

produce force against objects, and release objects.  Physical manipulation tasks like in Specific 

Aims 3 and 4 required the user to interact with the world during which users anecdotally 

preferred the position control technique.  Of course, both techniques are possible within the 

postural control architecture and throughout our study we were able to discern the benefits and 

pitfalls of each.  As with any design process, testing and analysis informs future improvements.  

The postural control architecture is a work in progress and the findings reported here, even when 

describing an apparent discrepancy, are useful in the design process.   
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Future Ideas 

The postural control algorithm provides a valuable platform upon which exciting 

concepts can be implemented.  Throughout the design process, many design concepts were 

discussed but not implemented since they were outside the scope of this dissertation.  Two 

exciting future applications using the postural control platform are described here. 

Simultaneous myoelectric wrist and hand postural control for persons with transradial 

limb loss 

The utility of the wrist in performing activities of daily living is well documented [94], 

[95] however the simultaneous control of hand and wrist posture is not clinically available.  

Several groups have implemented simultaneous control of the wrist and hand using state-of-the-

art research techniques including pattern recognition algorithms [63] and/or implantable 

myoelectric sensors, but these technologies have not left the laboratory.  I would like to use 

standard of care surface electrodes to drive a cursor in a two-dimensional postural control 

domain which would simultaneously morph the wrist and hand posture.  A possible wrist and 

hand PC domain map is shown in Figure 36.  The postural control algorithm can be easily 

modified to include wrist joint angles (simply increase the dimensionality of the joint angle 

transform), however experimentation must be performed in order to determine what wrist 

postures should be coupled to each hand posture.  Able-bodied experiments will be performed 

where both hand and wrist postures are measured during activities of daily living.  These 

empirical results will drive the design of the PC domain to couple wrist and hand posture. 
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Intrinsic sensory feedback for stable force controlled grasping using myoelectric postural 

control 

The use of sensory feedback in our intact limbs has been shown to be critical to our 

ability to perform dexterous tasks with our hands [96], [97] however prosthetic hands do not 

have the sense of touch.  Many fingertip sensors have been developed for robotic applications 

[98], [99], but not for a prosthesis.  Here we will develop a multi-functional prosthetic hand with 

fingertip sensors based on the modified Bebionic hand used in Chapter 6.  A novel control 

algorithm using the postural control platform will then integrate the sensory feedback provided 

by the fingertip sensors into the robotic control loop (intrinsic feedback).  Using the force 

 

Figure 36 – A possible simultaneous wrist and hand PC domain map.  Red text distinguishes 

the added simultaneous wrist degrees of freedom that are controlled.  Red arrows indicate the 

direction of wrist movement. 
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feedback from the fingertip sensors, the postural control algorithm can be modified to control 

force as well as position thereby forming more stable grasps.  After the development of the 

sensing prosthetic hand and novel force control paradigm within the postural control algorithm, 

experiments will test the ability of subjects to perform activities of daily living with and without 

intrinsic feedback.  The experimental apparatus developed here could then be used in more 

advanced extrinsic sensory feedback studies where the user is provided the sensory information 

using advance human-machine interfaces [5], [100].   

Novel Contributions 

This work contributed novel concepts to the field of upper limb prosthetic control.  

Research in the field of upper limb prosthetic control has been dominated by the study of pattern 

recognition and state machines control algorithms.  Both techniques are well-developed (over 

20+ years of research) however still contain well-known benefits and pitfalls.  Pattern 

recognition techniques provide an intuitive interface however perform poorly in a clinical setting 

due to limb position affects, electrode shift, sweat, etc.  State machine algorithms provide a 

robust interface however require an unintuitive trigger command in order to change the function 

of the device.  The postural controller is a novel alternative to these standard-bearers.  This work 

indicated that the postural controller is easily learned, customizable, and an effective interface to 

control myoelectric prosthetic hands in a clinical setting for persons with transradial limb loss.  It 

is robust to limb position affects, electrode shift, sweat, etc.  It also does not require any trigger 

commands.  The customizable postural control domain can be arranged in order to make the 

most intuitive interface for the person.  The postural controller is an innovative contribution to a 

field that has been focused mainly on two other methods for 20+ years.  
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More specifically, the postural controller is a novel compilation of control techniques 

applied within the PC domain.  In general, these control techniques are well known within the 

field of upper limb prosthetic control; however this is the first time they have been compiled in 

this arrangement. 

 Customizable PC domain – Several other groups have used a two-

dimensional domain in the control of hand posture [73], [82], however here is the first 

development of a customizable two-dimensional domain where hand postures can be 

arranged in any way with respect to the EMG control signals.  The mathematics entails a 

simple linear transform between the cursor position and the joint angle vector (see 

Chapter 4).  In addition, the logic in order to determine the modified PC cursor 

coordinate is a simple percent difference calculation in radial coordinates.  The result is a 

continuously varying hand posture as the cursor maneuvers within the PC domain.   

 Position and velocity control schemes – The interpretation of the EMG 

control signals with respect to the cursor in the PC domain was studied using both a 

position and velocity control scheme.  The position control scheme equates to ‘spring-

return’ where the cursor moves away from the origin of the PC domain with EMG 

activity and then ‘spring-returns’ when the EMG signal is quiescent.  The velocity control 

scheme equates the EMG activity with a speed and a direction so that quiescent EMG 

activity causes the cursor to become stationary within the PC domain.  Both types of 

schemes have been used in the control of myoelectric prehensors previously, but this is 

the first implementation in this manner. 

 Potential wells – Potential wells are localized position feedback loops 

within the PC domain and can be visualized as depressions within the PC domain.  In 
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essence, the potential wells add a third dimension to the two-dimensional PC domain.  

The potential wells preferentially attract the cursor to certain areas within the PC domain 

where the functional postures are positioned.  This is the first implementation of such a 

concept in the control of upper limb prosthetic devices. 

 Dynamic EMG tuning – The dynamic EMG tuning technique was applied 

in order to compensate for co-activity within the musculature especially for persons with 

limb loss.  This technique is similar to the first-on procedure used in standard two-site 

myoelectric devise, however is applied to the EMG signals in the PC domain.  In result, 

more stable grasps can be achieved and the controller is more robust to limb position 

affects.   

Although not novel, the testing of this algorithm with persons with limb loss is a 

substantial contribution to the field.  Myoelectric control algorithms are too often tested only 

with intact individuals and/or virtual testing environments.  The clinical realities of persons with 

limb loss need to be addressed in order to invent devices and algorithms that benefit users of 

prosthetic devices.  I know that experiments with able-bodied subjects and/or virtual 

environments do not allow for a full understanding of the technology.   I feel that our field needs 

to stay grounded in the clinics and stay focused on providing the best technology to persons with 

limb loss.  We need to translate the research from the lab bench to the clinic.  This work 

attempted to do that by using standard of care techniques/equipment and by performing 

experiments requiring real-world tasks by persons with limb loss.  My interactions with subjects 

with limb loss were the most valuable experiences of my degree, and I hope to continue in this 

pursuit of providing innovative technology to persons with upper limb loss as a scientist in this 

field.    
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Final Thoughts 

The human hand is a complex mechano-sensory system capable of a wide range of 

functions from fine precision to powerful grasps. The challenge of replacing a lost limb demands 

technology from interdisciplinary fields like mechanical design, biomedical signal analysis, 

control theory, and many other specialties.  Myoelectric control systems offer the best 

opportunities to provide more functional and intuitive prosthetic limbs.  This project follows in 

that pursuit in the development of a postural controller for advanced myoelectric prosthetic hand.  

The controller developed has demonstrated encouraging performance compared to other state-of-

the-art MEC as well as in a functional assessment by persons with limb loss.  Hopefully, research 

in the field of prosthetic design will continue to absorb the best practices of related fields and 

continue to produce improved prostheses for those in need. 
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