
 

Abstract 

DU, SHUANG. Implementation of Genetic Algorithms and Parallel Simulated Annealing in 

OCEON-P. (Under the direction of Paul J. Turinsky). 

 

OCEON-P is a computer program whose purpose is to minimize the levelized fuel 

cycle cost over a multi-cycle planning horizon. It integrates a core simulator, fuel cycle cost 

calculator and mathematical optimization engine. The accuracy of the predicted fuel cycle 

cost, whose minimization guides the optimization of the decision variables, is directly related 

to the fidelity of the reactor core simulator used by the program. Unfortunately, high fidelity 

core simulators also require longer run times. To improve these run times, this project sought 

to parallelize the optimization process so that multiple processors may share the 

computational burden. In addition, an effort was made to reduce the number of fuel cycles 

that must be examined to complete the optimization, which also reduces the computer run 

times.  

Parallelization of the process was introduced by the replacement of the current serial 

simulated annealing method with parallel simulated and genetic algorithms. It was hoped that 

genetic algorithms would also reduce the number of fuel cycles that must be examined during 

the optimization search. However, it was found that although genetic algorithms could find 

the same caliber of best solutions as simulated annealing, simulated annealing could produce 

a better family of acceptable solutions. Furthermore, parallel simulated annealing was able to 

reproduce the same quality and robustness of serial simulated annealing while decreasing run 

times significantly through use of multiple processors. 
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1. Introduction 

1.1 Out-of-core Fuel Management Optimization 

1.1.1 Background 

Nuclear fuel management involves making decisions to determine the number of 

fresh assemblies to be inserted at the beginning of each cycle, the enrichment of these 

assemblies, as well as where these assemblies are to be placed. In addition, the burnable 

poison loadings must also be determined. In addition, for boiling water reactors, decisions 

regarding control rod programming and core flow rate must be made. The objective of 

nuclear fuel management is to minimize the total cost of creating electrical energy by 

considering the various components associated thereto. Generally, decisions which affect 

cost can be broken into in-core decisions, which are made for a particular cycle, and out-of-

core decisions, which refer to decisions regarding a multi-cycle planning horizon.  Since this 

project deals with the Out-of-Core Economic Optimization PWR code, henceforth referred to 

as OCEON-P, only the out-of-core decisions associated with pressurized water reactors will 

be considered. These decisions are constrained by power limits, fuel burnup limits, reactivity 

limits, thermal limits, and cycle energy production. Unfortunately, the dependence of the 

objective constraints on decision variables is non-linear. This means that a closed form 

mathematical optimization method, such as linear programming, cannot be used. The goals 

of this project are to attempt to improve the current optimization scheme used in OCEON-P 

through the use of genetic algorithms and parallel simulated annealing.  

 

1.1.2 Cost Components 

 The first cost of the nuclear fuel cycle is that which is associated with the mining and 

milling of uranium. Uranium is procured from parts of the world in which the uranium assay 

is high enough to justify mining. The raw uranium is then converted and enriched.  

 The objective of the conversion process is to turn the raw U308 powder into UF6 gas. 

This is a done via a chemical process. The UF6 is then enriched. The technologies which are 

used in the enrichment process include gaseous diffusion and gas centrifuge. Newer 

technologies such as laser enrichment are being developed but not yet commercially 
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available. After the UF6 is enriched, the material is made into a ceramic pellet so that it stays 

solid and retains fission by-products. These ceramic pellets are then placed in hollow tubes 

with favorable properties such as low neutron absorption and corrosion resistance. These 

rods are then bundled together into an assembly and shipped. 

 When the fuel assembly reaches the reactor, it is loaded during an outage. The 

assembly is kept in the reactor and the uranium is used to produce electrical energy until the 

balance in the chain reaction (criticality) cannot be maintained. The fuel is then sent to a 

spent fuel pool which removes the decay heat from the assembly. If the assembly is not re-

used, after five years or some other suitable time for the decay heat to die down, it is placed 

into dry cask storage. The dry cask is usually cylindrical in shape, made out of steel, and 

back-filled with inert gas. 

 This entire process from the mining and milling to the post processing from the spent 

fuel pool is called the nuclear fuel cycle, more specifically, the open nuclear fuel cycle. Each 

time the core is refilled, a new cycle begins. The costs associated with each step of the cycle 

together are called the fuel cycle cost. 

 

1.1.3 Design Constraints 

 The primary constraints for fuel management that must be satisfied for safety and 

economic reasons include power limits, fuel burnup limits, reactivity limits, thermal limits 

and cycle energy production limits.  

 Power limits deal with peaking factors. Since a reactor can only create as much 

electricity as its hottest fuel rod and pellet allows, smoother power distributions allow for 

better utilization of the available fuel without violating thermal limits. Resulting neutron 

leakage may, however, reduce reload cycle energy production. 

 Burnup limits refer to the expected life of the fuel in megawatt-days per MTU as 

licensed by nuclear vendors. The maximum burnup for each fuel assembly is expressed by 

limits on pin, batch and region burnups. Rotation of the fuel helps avoid violating burnup and 

peaking limits. 
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 Reactivity limits refer to shutdown margin, moderator temperature coefficient, fuel 

enrichment and soluble boron limits. 

 Thermal limits deal with the material properties of the fuel assemblies as influenced 

by heat. These include departure from nuclear boiling, centerline fuel melt, loss of coolant 

accident limits, and peak clad temperature limits. Most of the time, these limits can be 

translated into power limits. 

 The cycle energy production limit is the amount of energy that is expected to be 

produced per cycle. 

   

1.1.4 Design Decisions 

The main design decisions for the out-of-core problem are the number of fresh 

assemblies to be inserted in each cycle along with their corresponding enrichments, partially 

burnt fuel to reinsert, and burnable poison loadings. Once these design decisions are made, 

the remaining decisions become an in-core problem. In-core decisions include placement of 

fresh and burnt fuel assemblies and burnable poison material. Programs that deal with 

loading pattern optimization are typically used to obtain an in-core solution. One can see, 

therefore, that the in-core problem and the out-of-core problem are linked together in that the 

solution to one must affect the other. 

 

1.1.5 Historical Approach 

For in-core nuclear fuel management, nuclear design engineers create the loading 

pattern for the next reload cycle while satisfying all limits associated thereto. Typically, 

loading patterns for three subsequent cycles are also determined in this manner. The reason 

why loading patterns are generated for several subsequent cycles is because it is likely that 

the choices for loading patterns in the next cycle will affect the performance of three 

subsequent reload cycles. Additionally, generating the loading pattern for three subsequent 

reload cycles also gives a better projection of future fuel purchases.  

 As just noted, the fuel management problem is subdivided into the out-of-core and in-

core problems to simplify the design process. For out-of-core fuel management, five to ten 
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reload cycles are assessed since decisions made for the next reload cycle can impact the out-

of-core decisions, objective and some constraints over this number of reload cycles.   

 

1.2 Scope of Research 

 The OCEON-P computer program tries to find the lowest cost cycle scheme within 

constraints, i.e. determining decision variable values for a specified planning horizon. The 

program does this by choosing a cycling scheme, completing depletion simulations and then 

evaluating the fuel cycle cost and constraints.  

 One may therefore think of the OCEON-P program as consisting of three parts, the 

core simulator, the economic engine, and the optimization engine. The core simulator models 

the depletion of all cycles in the planning horizon, the economic engine calculates the cost of 

the scheme that was just burned by the core simulator, and the optimization engine chooses 

the next scheme to be tested such that the search progresses towards the most optimal 

configuration.   

 Previous versions of OCEON-P had used a biased integer based Monte Carlo method 

using hard constraints as the optimization engine. Recently, this method was replaced by 

Kenney Anderson with simulated annealing combined with soft constraints, which resulted in 

an increase in the quality and robustness of solutions found by OCEON-P. Simulated 

annealing is a serial algorithm, which means that each cycling scheme examined by the core 

simulator must be assessed one after another. This is not a problem if LRM or FLAC, core 

simulators used within OCEON-P with low computational requirements, are to be used since 

tens of thousands of histories can be run in minutes on a PC. However, such core simulators 

have limited fidelity. Utilities such as Duke Energy use as their reactor core simulator 

SIMULATE3, a high fidelity core simulator which takes far longer than LRM or FLAC to 

examine a given cycling scheme. The solution to the long wall clock times associated with 

SIMULATE3 is a parallel optimization algorithm that can allow multiple computers to share 

the burden of examining the different cycling schemes while retaining the quality and 

robustness that serial simulated annealing is able to achieve in the final solutions. 
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Furthermore, an optimization method that reduces the number of cycling schemes that must 

be examined to achieve a desired level of optimization will also reduce the clock times.  

 To this end, two new optimization methods which retain the important feature of 

inherent parallelizability will be implemented and tested. The first optimization method is 

called Genetic Algorithms, a method which draws its influences on the natural phenomena of 

survival of the fittest, breeding, and mutation. The second method is parallel simulated 

annealing, a process similar to serial simulated annealing except for certain fundamental 

differences which allow it to examine schemes in parallel. 

 Both these schemes will first be implemented and tested with the version of OCEON-

P that uses LRM and FLAC as its core simulators. This is because working with a code that 

performs runs in minutes rather than days will facilitate the optimization methods’ 

development and assessment. 

 The final step is to implement the new method into the version of OCEON-P which 

uses the SIMULATE3 core simulator.  

 

1.3 Review of Current Optimization Techniques 

1.3.1 Genetic Algorithms 

Genetic algorithms, hereafter referred to as GAs, are based upon the natural concept of 

natural selection and natural genetics [9]. They combine the ideas of survival of the fittest as 

well as stochastic, yet guided information exchange into a search algorithm which derives its 

inspiration from nature [9]. Following the natural analogue, the search progression of genetic 

algorithms is based on generations. In each generation, the GA operations are applied to the 

members of the population before moving on to the next generation. It is generally accepted 

in the field of GA optimization that members of the population are represented as strings of 

whatever descriptor is appropriate for the particular problem [8]. In the case of out-of-core 

fuel management optimization, the population must be composed of fuel cycling schemes. 

Therefore, it is fortuitous that fuel cycling schemes can be easily represented as a string of 

new feed region sizes across the planning horizon.  
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The main operators of genetic algorithms are crossover and mutation [8]. The importance 

of these operators in genetic algorithm theory and implementation has been recognized for 

some time [1]. Crossover acts as a means through which genes can be swapped by parents to 

pass on to the children of the next generation while mutation adds diversity to the gene pool 

[9]. Crossover is the primary method of gene swapping [8]. Offspring are created by 

swapping the elements of two strings. In the context of the out-of-core problem, it is the 

strings of feed region sizes that are swapped. Since it is important that crossed feed region 

sizes stay within their respective cycles, crossover in OCEON-P is what is referred to as 

linear. This means that a parent gene from location ‘a’ can only be used to make a location 

‘a’ gene in the relevant child.  

Crossover is perhaps best illustrated with an example. Take two strings, 

[ ]10,9,8,7,6,5,4,3||2,1=a , 

[ ]20,19,18,17,16,15,14,13||12,11=b  

The crossover location is indicated by the double line. Suppose the cross location is two. The 

two children would then be 

[ ]10,9,8,7,6,5,4,3||12,11* =a  

[ ]20,19,18,17,16,15,14,13||2,1* =b  

Crossover at multiple points is also possible. 

Many studies have been performed to find the optimal probability of these two tuning 

parameters. These studies include empirical studies by Grefenstette [2] and Schaffer [6] as 

well as theoretical considerations by Hesser [7]. The general consensus is that high crossover 

probabilities, in the range of fifty to one hundred percent and low mutation probabilities, on 

the order of half a percent to five percent are desirable.  

Selection processes are crucial to the field of genetic algorithms. Typically, either roulette 

wheel selection or ranking selection is used [8]. Roulette wheel selection involves assigning 

each string a probability of selection that is proportional to its fitness relative to the rest of 

the population. Ranking selection involves ranking each string in the pool and basing the 

probability of selection to the rank.   
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Directly related to the field of genetic algorithm research is the term ‘selection pressure’. 

Unfortunately, the term is used very loosely and it refers to a variety concepts. For the 

purposes of OCEON-P the definition provided by Reeves is used [8]. In his definition, 

population pressure is the probability of selecting the most desirable feed region sizes versus 

the probability of selecting the average feed region sizes.   

The population size refers to the number of strings available for crossover in the 

generational pool. The optimal population size that one should use for GA applications is an 

issue that, unfortunately, research in the field has not definitively answered. It is generally 

accepted that too small a population would not allow enough diversity in genes to completely 

explore the search area while too large a population impairs the efficiency of the algorithm 

[9]. Early research by Goldberg suggested that the optimal population size required should be 

an exponential function of string length. [1] This assertion was based upon the idea of 

schemata. Were this actually the case, fuel cycle optimization would be a difficult task, as the 

computational power required would increase exponentially with the number of cycles that 

needed to be analyzed. Luckily, empirical evidence from various computational experiments 

has gone against the exponential form of the dependence [2]. Indeed, later work by Goldberg 

has suggested a linear dependence of population size and string length [3]. Work by Reeves 

has attempted to answer the question by finding what the minimum population size must be 

if one wishes every combination to be accessible by crossover only in the initial population 

[4]. Reeves found in his work that this relationship follows a logarithmic behavior. If some 

relationship is assumed between minimum size of initial population with optimal population, 

then Reeves’ work, combined with empirical evidence as well as theoretical conjectures by 

Goldberg suggest that even in base ten (which is what the feed region sizes are kept in) the 

required population size will not grow uncontrollably with the length of the planning horizon.   

Early work on genetic algorithms have identified the positive effects of elitism in genetic 

algorithms, i.e. giving certain gene strands in the pool a free pass to the next generation in 

order to ensure that the best schemes are passed on [9]. It is not uncommon for current work 

in the field to utilize the elitism idea [10]. The percentage of the previous generation that the 

elitism operator is to be performed on is yet another tuning parameter that must be optimized. 



 8 

Generally, theory dictates that too high a elitism rate will impeded diversity while too low of 

an elitism rate will not spread the superior genes in the generation [8]. Work by Zitzler and 

Thiele suggest an elitism proportion of 4:1 or 20 percent to be acceptable [11]. 

 

1.3.2 Parallel Simulated Annealing 

Simulated annealing derives its inspiration from the way metallurgists heat and cool a 

material to increase the size of the crystals, thereby decreasing the number of imperfections 

[14]. These favorable crystal configurations occur when the internal energy of the material is 

as low as possible. The process of annealing involves heating the material so that atoms may 

move to places that previously had too high an internal energy. The material is then cooled so 

that atoms have a chance to move to lower energy configurations. The cooling is done at a 

very specific rate. The rate is important because if the material is cooled too quickly the 

atoms may not have a chance to move from their high potential states to low potential states 

before being frozen in place. It is known that when a material is cooled, the probability of a 

new state being accepted is  

)exp(
Tk

E
P

δ
−=                                                          (1.1) 

where δE is the change in the internal energy of the material, k is the Boltzmann 

constant, and T is the system temperature. Therefore, since the probability of acceptance 

decreases with temperature, the search for the minimum energy becomes narrower as the 

search progresses. Simulated annealing optimization takes this natural phenomenon and 

applies it to the search for the global optimum of some objective function rather than the 

system energy.  

 Traditionally, simulated annealing algorithms are run in serial form. The main 

problem with parallelization of simulated annealing is that instead of having one single 

Markov chain at each temperature, multiple smaller Markov chains would are examined at 

any particular temperature. One must assume, therefore, that having shorter Markov chains 

will not significantly decrease the quality of the solution or that the information exchange 

between processors at each update steps makes up for this. There are several approaches to 
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how specifically one may combine the information obtained from all processors at each 

cooling step. The approach used for the purposes of this project is to find the top number of 

solutions across all processors and to use this group to bias the probability distribution 

functions of feed region size for the next cycle for the next update step. The starting point of 

the next Markov chain would then be the best from this elite group. Another method, recently 

developed by David Kropaczek is to assign each accepted solution a fitness value and to 

stochastically choose which to use for the next update step [16].  

Chapter two will present the methodologies of the GA and parallel SA approaches to 

this out-of-core optimization process. Chapter three will present results derived from the 

implementation of these two processes. Conclusions and recommendations for future work 

are presented in Chapter four. 
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2 Methodologies 

Unless noted otherwise, the cycle energy production schedule used for testing of 

relevant GA and parallel SA parameters is as presented in Table 2-1. 

Table 2.1: Energy production schedule used 

Cycle # 
Cycle Length 
(Months) 

9 12 

10 12 

11 12 

12 18 

13 18 

14 18 

15 18 

16 18 

17 18 

18 18 

 

2.1 Genetic Algorithms 

2.1.1 Crossover Type 

  It is possible for crossover to be applied to multiple points. The mechanics of the 

operation are very similar. The only difference is that two or more crossover points are 

selected per set of strings. The theoretical reasoning behind multiple crossover points is that 

multiple crossover points allow a more uniform sharing of genes.  

In simulations, however, the difference between single point and dual point crossover 

in the out-of-core fuel management application was quite minimal, as illustrated in Figure 2.1 

and Table 2.2. The presented data was generated by executing OCEON-P one hundred times 

using different random seeds, with the composite results used to determine the average 

levelized fuel cycle cost and associated standard deviation.  
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Figure 2.1: Comparison of Crossover Types 

 

Table 2.2: Comparison of Crossover Types 

  AVG STD 

Single Point 7.2617 0.0171 

Dual Point 7.2631 0.0185 

 

2.1.2 Initial Population 

The initial population of feed region size per cycle in the planning horizon is 

generated from an equilibrium cycles approximation. Maximum diversity is desired in 

genetic algorithms because it is analogous to widening the gene pool as much as possible so 

that it is possible, for the very best schemes to be bred 

Steps have been taken to ensure that every possible feasible cycling scheme can be 

reached by crossover only. The equilibrium cycles approximation is used as a starting point. 

From this approximation, a matrix of possibilities is created from all possible cycling 
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schemes which fall within the equilibrium cycles and a pre-defined range. It is important to 

note that this range must be a multiple of the symmetry constraint on feed region size.  

Due to the way the matrix is defined, each cycle has the same number of possible 

sizes of fresh assemblies to be loaded. An example of such a matrix is the following. 

Table 2.3 Example of Possible Feed Region Sizes 

Cycle Possible Feed Region Sizes 

5 40 44 48 52 56 

6  52 56 60 64 68 

7  52 56 60 64 68 

 

In the above table, the left hand column shows the cycle number and the rows correspond to 

the possible feed region sizes for that cycle. OCEON-P chooses the relevant sizes by 

randomly generating a number between one and the total number of cells left in that cycle. 

For example, for the above scheme, the first iteration would pick a random number between 

one and five, as there are five different possible feed region sizes for each cycle. The number 

that is picked is then used as the feed region size for that cycling scheme on that particular 

cycle. The next iteration around, the code would pick a number, i, between one and four.  

The code would then find the ith feed region size that is not already taken. This process 

continues until the initial population is filled. If all the options in the matrix are taken before 

the initial population is filled, the selection matrix is emptied and the process starts over at 

whichever member of the initial population filled the matrix. This method ensures that all 

feed region ‘genes’ are represented. The number of cycling schemes required to span the 

entire space is quite small so having too small a population size to have all possible schemes 

reachable by crossover is not a concern. For example, if the user defined band is set so that 

ten feed region sizes are possible then an initial population of ten is all that is required to 

completely span the space.   

 

2.1.3 Soft Constraints in Genetic Algorithms 

The implementation of soft constraints in the previous version of OCEON-P with 

simulated annealing optimization lends itself quite well to the genetic algorithm. The 
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selection operator in genetic algorithms is mainly based on the fitness of the solution. Soft 

constraints, by adding the penalties on top of the true fuel cycle cost, create the type of 

fitness function that GAs demand. 

With consideration to the usage of soft constraints, the fitness function of each string 

is simply the augmented fuel cycle cost and can then be written as  

∑ Θ+=
n

nnFF λ
~

                                              (2.1) 

where F is the levelized fuel cycle cost. The lambda values denote penalty factor coefficients. 

The theta values are the penalty functions associated with the various OCEON-P violations. 

There are five such violations. The size of the violation is the absolute difference between the 

allowable limit and the value of the item being limited. The size of the violation is then 

weighted by the ratio of the number of violating assemblies and the total number of 

assemblies. For example, violations involving batches will be multiplied by the ratio of the 

batch and the total number of assemblies. Therefore, the summation denoted in equation 2.1 

extends over all constraints over all cycles, i.e. regions and batches in the planning horizon.  
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Similar to simulated annealing, as the search progresses the GA optimization is 

intended to cause any history with violations to become very expensive, decreasing the 

probability of selection in the genetic process. The lambda values are the means to this end 

by being a penalty factor coefficient that increases with each generation. Its purpose is to 

weight the relative importance of each penalty function as well as increasingly penalize the 

schemes with penalties as the search progresses. In utilizing the soft constraints, it is also 

necessary that the lambda multipliers are not too large at the beginning of the search because 

this would be detrimental to the diversity of the gene population by pushing the solution pool 

into a niche too early in the optimization. Therefore, we would like the lambda multipliers to 

be neither increased too quickly nor too slowly in the search. This is accomplished by 

retaining a similar version of the lambda multiplier adaptation from simulated annealing in 

the GA. The difference is that the lambda multipliers are updated at each generational step 

instead of each cooling step.   

The calculation of the values of lambda is based upon the three point iteration scheme. 
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In the above equation L is the length of the search, tN  is the total number of histories 

evaluated at the point of update, kN  is the number of histories evaluated in that particular 

update step, and kΛ  is the average size of a particular violation in the population for the 

particular update step. Chi and nΛ are fixed for each penalty type. The lambda multipliers are 

initiated at the beginning of the search based upon the initial population by the expression 

n

nnn σ
σ

λλλ 0~ˆ=                                                       (2.3) 

where the first two lambda values are constants, sigma naught corresponds to the standard 

deviation of the objective function and sigma n is the standard deviation of the n
th

 penalty 

function. 

An issue occurs, however, at high generational numbers when the lambda multipliers 

have grown to a large size. Because of the highly disruptive nature of the genetic algorithm, 

it is very possible that schemes with obscenely high violations will be created and put into 
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the gene pool. These high violation schemes combined with the exacerbating effect of high 

lambda multipliers will create unreasonably high augmented fuel cycle costs that have a 

significant adverse effect on the gene pool. The solution to this problem is an adaptation of 

what was done in the previous version of the code which utilized simulated annealing, which 

was to stop the lambda multiplier updates after they had reached a certain magnitude.  In GA, 

the lambda multiplier updates stop after a certain generation has been reached.  

 
2.1.4 Selection  

A commonly accepted means of selection is called ranking. This method involves 

ranking all schemes in the current gene pool from one to the number of schemes in the pool. 

This rank, k, is then used to create a probability distribution function which can take any 

number of forms. These forms are called scaling types. One of the simplest possibilities for 

scaling is the linear type, or 

bkak +=]Pr[                                                       (2.4) 

Power scaling is also possible. In this case the probability distribution for power two scaling 

would be expressed as 

2]Pr[ bkak +=                                                     (2.5) 

In any sort of ranking scheme, the probability distribution has certain properties that 

allow for the closed form solution of the constants a and b. Firstly, all probability 

distributions must sum to one. 

∑
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k
1

1]Pr[                                                       (2.6) 

Additionally, in order to control how likely a scheme of a particular rank will be selected, an 

expression for population pressure is required. Using the definition presented by Reeves, 

pressure is taken to be the probability of selecting the best string divided by the probability of 

selecting the median string. The pressure can thus be presented as 

2
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+

+
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Nb
a

ba
φ                                                  (2.7) 

for linear ranking and 
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4
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+
=

Nb
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φ                                                (2.8) 

for power two ranking. Note that the above two definitions for pressure imply that the best 

string is represented when k is equal to one. Additionally, since typically the total number of 

fuel cycling schemes in each generation is even, the median in both linear and power two 

scaling is simply expressed as the population size divided by two.  

Applying the restrictions imposed by equations 2.7 and 2.8 and utilizing certain 

summation equalities, the coefficients a and b for linear scaling are found to be 
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                                   (2.9) 

The resulting distribution looks like 

 

Figure 2.2: First Order Scaling Domain 
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It follows then that for linear scaling, the domain of the selection pressure is between 

one and two. This is because in the case of the 100
th

 ranked scheme, any pressure greater 

than two would result in a non-physical negative selection probability. 

 

Figure 2.3: First Order Domain Violation Range 

 

In a similar fashion, for power two scaling the coefficients are found to be 
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                            (2.10) 

This results in a distribution which looks like 
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Figure 2.4: Second Order Probability Distribution 

 

Similar to linear scaling, the power two scaling case also imposes restrictions on the domain 

of the pressure. In this case, pressure may go from one to 1.3 for the reason that anything 

beyond this value for the 100
th

 ranked case would result in negative probabilities. 

 

 

Figure 2.5: Second Order Domain Violation Range 
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To keep things in perspective a graph comparing the two ranking schemes is presented. Since 

the two ranking schemes have different domains, the domain for the combined graph as 

presented below is the percentage of the maximum allowable pressure. 

 

Figure 2.6: Scaling Domain Comparison 

Both figures 2.2 and 2.4 have the properties that at maximum pressure phi, the probability of 

selecting the worst scheme (k=population size) is near zero; at minimum pressure, the entire 

spectrum of ranks have a similar chance to be selected.  

It can be seen from figure 2.6, that the second order power selection does not favor 

the best schemes as strongly as the linear selection but rather disfavors the worst schemes 

more. Consequently, since the two selection schemes have the same normalization, this 

means that the second order power selection favors the lower ranks a little more heavily. 

Simulations show little difference between the two types of scaling as illustrated in figure 2.7 

and table 2.4. The presented data was generated by executing OCEON-P one hundred times 

using different random seeds, with the composite results used to determine the average 

levelized fuel cycle cost and associated standard deviation. 
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Comparison of Linear and Second Order Scaling
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Figure 2.7: Scaling Type Result Comparison 

 

Table 2.5: Scaling Type Result Comparison 

 AVG STD 

Linear 7.2636 0.0189 

Second 
Order 7.2658 0.0243 

 

2.1.5 Archiving and Elitism 

Genetic algorithms are very disruptive in nature, at least much more than in simulated 

annealing. For example when two schemes are selected for crossover, most times multiple 

elementes of the loading scheme, i.e. feed region sizes. In contrast, simulated annealing will 

only change one element of the loading scheme at a time. It is due to this highly disruptive 

nature that each given pool of loading schemes is likely to contain a wide variety scheme 

types. It is also for this reason that the final generation gene pool will not necessarily contain 
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he best solution found by the GA throughout the entire search. Two solutions are applied 

which attempt to solve this problem, elitism and archiving. 

The idea behind elitism carryover is that the best cycling schemes from the previous 

generation should be implemented in the current generation so that their good genes are 

passed on. Care is taken with the elitism carryover not to re-run the case as it has been saved. 

Furthermore, the operations of GA (crossover, mutation) etc., are only applied after the best 

from the current generation is saved.  

It is possible, however, since elitism deals with augmented fuel cycle costs, that the 

carried over schemes may contain violations. This is where the advantage of archiving 

becomes apparent. If the conditions for entrance into the archive are stringent enough, no 

violations will be present for the stored schemes. The two criterion used for entrance into the 

archive are no violations must be present and that the scheme to be archived must be less 

expensive than the most expensive scheme currently in the archive. The no violation 

requirement is difficult for GA to achieve in large quantities, as indicated in the lambda 

multiplier section. Table 2.5 indicates the effect of archiving.  

Table 2.6: Archiving Implementation 

Archive No-Archive Difference 

7.286699 7.29244 0.00575 

7.279001 7.27900 0 

7.270708 7.27609 0.00538 

7.26642 7.26642 0 

7.286699 7.29244 0.00575 

 

2.1.6 Probability Distributions for Feed Size Selection 

Mutation in GA is biased by the probability distribution functions that were 

implemented in the previous version of the code. The idea is that as the search progresses the 

probability distributions would more accurately represent acceptable solutions. Issues arise, 

however, due to the intrinsically disruptive nature of genetic algorithms. In the serial 

simulated annealing version of the code, the probability distributions are updated at each 

cooling step. In the update process, the binning of the distribution was expanded if, for a 

particular cycle in that particular cooling step, there was a scheme in which the number of 
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assemblies was at the edge of the distribution. An example to illustrate this point is the 

following. Suppose the minimum and maximum assemblies for a particular cycle are 40 and 

100. The distribution is reset to 36 and 104 if there was a scheme that called for 40 new 

assemblies in that particular cycle.  

This method is not acceptable in the GA method of optimization because at high 

mutation rates, it is highly probable that this increase in scope will go beyond the range of the 

array. This in turn causes severe problems with the code. The solution to this problem 

involved only expanding the distribution range if it became smaller than the bands placed 

around the equilibrium cycle approximation used to generate the initial population.  

 

2.1.7 Crowding and Niching 

It has been proposed in the field of GAs that having too many genes with similar 

characteristics in the gene pool is undesirable. The theory is that these genes create a niche 

that only cuts down on the diversity of the population on a whole. A common distance 

keeping scheme is based upon the sharing function proposed by Goldberg and Richardson. 

[15]  

Each cycling scheme has a distance from every other cycling scheme. This distance is 

taken to be the root mean square difference of two schemes. For example, the distance 

between cycling schemes 

[ ]gfeda ,,,=  

[ ]nmlkb ,,,=  

would be 
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2222
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=                        (2.12) 

where the denominator is the maximum distance that two schemes can be apart, which is 

twice the maximum range between region sizes defined by the user multiplied by the number 

of total schemes in the planning horizon. Since we define two schemes being too close to 

each other as bad from a diversity standpoint, an inversion takes the following form, 
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D
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0=ijh  if Dd ij >                                                 (2.13) 

where the value D gives the user additional control to increase or decrease the severity of the 

anti-grouping function. Finally,  
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is the crowding factor. 

 

It is easy to see that, due to the nature of its derivation, Q will be bigger in schemes which are 

closer to other schemes (because 
D

d ij
 would be smaller if ijd  is small, or the schemes are 

‘close’). Therefore, if we multiply the augmented fuel cycle cost by the scaling factor, we 

have effectively made less likely that the schemes that are closer to other schemes will be 

selected to breed.  

The disadvantage, however, of crowd control is that by breaking up crowds of similar 

cycling schemes, one may be breaking up groups of good genes. In this argument lies the 

crux of the niching theory, and any optimization scheme. In most real world problems it is 

impossible to know which crowds are around the true minimum and which crowds are just 

local minima. The presented data was generated by executing OCEON-P one hundred times 

using different random seeds, with the composite results used to determine the average 

levelized fuel cycle cost and associated standard deviation 
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Crowd Control Function Effects
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Figure 2.8: Niche Control Implementation 

 

Table 2.7: Niche Control Implementation 

  AVG STD 

CC 7.289011 0.022927 

No CC 7.261716 0.017142 

 

The tables and figures above show that the application of this particular niching 

scheme in OCEON-P yields undesirable cycling schemes. The most likely explanation is that 

the crowding scheme is breaking up groups of similar cycling schemes which contain 

favorable solutions.  

 

2.1.8 Tuning Parameter Optimization 

 One of the challenges of GA optimization is the large amount of tuning parameters, 

all of which affect one another. In fact, it is recognized that the optimization of genetic tuning 

parameters for specific problems is an optimization problem in and of itself. The literature 
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gives a general idea of the regimes in which certain common parameters should reside. 

However, in order to obtain a more narrow set of parameters in the specific context of the 

OCEON-P computer code, it is necessary to perform tests to find the optimum set of GA 

tuning parameters. 

 The test performed involved generating sets of tuning parameters which were allowed 

to vary within the ranges prescribed by literature. In other words, each tuning parameter 

within each set is randomly generated within a certain domain. Each set was then repeated 

multiple times using a different random number seed to obtain the average levilized fuel 

cycle cost for feasible schemes and the associated standard deviation. 
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Figure 2.9: FCC sensitivity to population size. 
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FCC Standard Deviation with Population Size Variation

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

50 55 60 65 70 75 80 85 90 95 100

Population Size

S
ta
n
d
a
rd
 D
e
v
ia
ti
o
n

 

Figure 2.10: FCC standard deviations with changing population sizes 
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Figure 2.11: FCC sensitivity to crossover probability 
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Standard Deviations for Varying Crossover Probability
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Figure 2.12: FCC standard deviations with changing crossover probability 
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Figure 2.13: FCC sensitivity to mutation probability 
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FCC Standard Deviations with Mutation Variation
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Figure 2.14: FCC standard deviation with mutation probability variation 
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Figure 2.15: FCC sensitivity to pressure variation 
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FCC Standard Deviation with Pressure Variation
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Figure 2.16: FCC standard deviation with variation in pressure 
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Figure 2.17: FCC sensitivity to elitism percentage 
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FCC Standard Deviation with % Carried From Previous Generation 

Variation
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Figure 2.18: FCC standard deviation with elitism percentage variation 

 

When examining the results presented in the figure, what is desired are parameter 

values that produce low fuel cycle costs in combination with low standard deviations. 

Generally, the sensitivity analysis of the GA tuning parameters in OCEON-P agreed with the 

values prescribed by the literature. High standard deviations are prevalent, however, because 

of the randomness of selecting the parameter sets. That is to say, it was possible for an 

optimal and non-optimal parameter values to be paired together. Without knowing how 

tuning parameters affect each other exactly, however, it would have been unfair to perform 

the test in another manner. The effect of other parameters can be seen in the figures if more 

than one result is shown for a fixed value of the parameter being presented in the figure, i.e. 

the x axis. 

  Fuel cycle costs for population sizes greater than sixty five are very similar. The 

robustness of the genetic algorithm does not change with respect to population size. 
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Results for the crossover optimization of the OCEON code generally confirm the 

empirical and theoretical assertion from the literature that high crossover probabilities 

generally lead to superior results.  

Mutation variations in the OCEON code also have a predictable effect on the fuel 

cycle costs; that is, lower mutation probabilities generally causes a more favorable result. It is 

also worth noting that lower mutation probabilities result in a more robust solution. This is 

not surprising because lower mutation implies that less variation is introduced to the gene 

pools over the course of the optimization. 

The above figures also show that the highest selection pressure is desirable in finding 

the lowest fuel cycling scheme. This implies that although a high selection pressure will have 

the effect of decreasing the diversity of the gene pool by continually selecting the best 

schemes, the positive effect of pushing the gene pool towards the more feasible schemes 

dominates.  

The tests imply an advantage to the inclusion of the elitism parameter. Generally, 

elitism rates of over twenty percent are undesirable. Standard deviations on the fuel cycle 

costs also generally increase after a twenty percent carry rate. This result generally agrees 

with the literature. 

 

2.2 Parallel Simulated Annealing 

2.2.1 Exchange of Information 

Exchange of information in the parallel simulated annealing case begins with a 

certain number of acceptances having occurred across all processors. The processors then 

‘fan in’ and send information about their archived solutions to a central processor. This 

central processor then sorts through the solutions from all processors and pulls out the best 

cycling schemes while ignoring duplicates to fill the new archive that all the processors will 

start from at the beginning of the new update step. In this manner, the probability 

distributions are reset at the beginning of each update step to represent the best schemes 

found so far. 
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The new temperature and lambda multipliers to be used in the next cooling step are 

based upon statistics generated across all processors.  

In the non-parallel case, the temperature was updated according to 

                         kk TT α=+1                                                         (2.15) 

where 

)exp(
f

kT

σ
ν

α −=                                                     (2.16) 

Nu is a constant and sigma is the standard deviation of the objective function. The initial 

cooling step is used to gather statistics required to tabulate initial penalty multipliers and 

initial temperature. As such, there are no rejections in the initial cooling step. The initial 

temperature is calculated as 

                                                            fAT σ=                                                            (2.17) 

where A  is also a constant. This temperature is then used to calculate acceptance 

probabilities in the next cooling step. In the parallel case, the difference is that the sigma 

values now correspond to the objective function standard deviations of all histories examined 

up until the end of the initial cooling step from all the parallel processors. It follows, 

therefore, that the values of T in the above equations would then refer to the temperatures 

used by all processors.  

 The values for lambda multipliers are also updated to use the information obtained 

from all processors. The three point iteration scheme (Equation 2.2) is still the basis of the 

calculations. The difference is that now the variables refer to a global value. For 

example tN would now correspond to the total number of histories evaluated across all 

processors. Similarly, the gamma values would refer to the average size of a certain violation 

when all histories from all processors are considered. Similarly, the values within the 

expression for the initial value of the lambda multipliers  

n

nnn σ
σ

λλλ 0~ˆ=                                                         (2.18) 

also now refer to their globally compiled versions.  
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2.2.2 MPI Overhead 

The major source of overhead in the case of MPI implementation is the time required 

to pass information between processors. Message passing time is primarily a function of the 

size of the message. Work performed at the Sandia National Laboratories by Ron Brightwell 

and Douglas Doerfler (12) using different programs which resolve send and receive latency 

have shed light on this relationship. Figure 2.17 and 2.18 display their measured latency on 

different computer platforms. Considerable variations in latency as a function of processor 

numbers used is noted with computer platform. 

 

Figure 2.19:  MPI send latencies 
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Figure 2.20: MPI receive latencies 

 

Another less significant source of overhead in the MPI implementation is that the fan 

in cannot proceed until every processor is at the fan in portion of the program. This means 

that at the end of each cooling step, one must wait at most the length of time required by the 

core simulator to go through a complete planning horizon. It is possible to calculate this wait 

time on an average basis using statistical methods. If one assumes that the amount of time 

required for each processor to reach the beginning of the fan in step to be uniformly and 

randomly distributed and we are interested in the maximum amount of time then we can 

write the cumulative probability distribution as 

)),...,(max( 1 yxxP n ≤ , ]1,0[~,...,1 unifxx n  

The zero to one can be thought of as zero to one hundred percent of the time the core 

simulator requires to burn a full planning horizon. The cumulative probability function can 

further be written as 

∏
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Since it is assumed that the x values are of a uniform distribution 
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Turning a cumulative distribution density into a probability distribution density involves 

taking a derivative which results in a probability distribution density of 

1−=
∂
∂ n

n

ny
y

y
 

To find the expectation value of the probability distribution function we multiply by y and 

integrate from zero to one. 
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Since n is the number of processors and there would be no wait time if one processor was 

used, the average wait time can then be expressed as 

n

n 1−
 

Therefore, assuming an average number of cooling steps and knowing the size of the 

information that must be sent in each cooling step a model (figure 2.19) is constructed which 

estimates the progression of efficiency as the number of processors is increased. The 

experimental data presented in the below figure are based upon runs with ten random seeds 

and the indicated number of processors. Time required to traverse seven thousand histories 

was recorded and the corresponding efficiencies and standard deviations were calculated. 

Theoretical and experimental values use an average of two seconds for every cycling scheme 

depletion, and display good agreement. To generate the theoretical efficiency, the total 

number of sends and receives along with the relevant latencies were tabulated for multiple 

numbers of processors. With consideration given to this and the overhead associated with 

wait times at each fan in step, the expected decrease in run time as a function of number of 

processors used was calculated. The quality of the solutions found as a function of the 

number of processors used is presented in the results section.  
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Figure 2.21: MPI overhead 

 

 

 

3 Results 

3.1 Genetic Algorithms Results 

Parameters suggested by the literature were used to compare the genetic algorithm 

search against the single processor simulated annealing search. The tuning parameters used 

in the genetic algorithm are given in Table 3.1 

Table 3.1: Parameters used for final GA study 

Cross 100% 

Mutate 10% 

Gen Size 100 

Histories 6000 

Elitism 20% 
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Six thousand histories were run for the simulated annealing and genetic algorithm cases. The 

results are presented in the form of a histogram. Each optimization method was run 795 times 

with as many random seeds. The best feasible schemes found, using only the LRM core 

simulator, are used to generate Figure 3.1, which presented the frequency of obtaining a fuel 

cycle cost over a certain range.  
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Figure 3.1: GA and SA comparison of best solution found 

 

Table 3.2: GA and SA comparison of best solution found 

  MEAN MEDIAN STD 

SA 7.25336 7.25131 0.015688 

GA 7.25705 7.25582 0.018618 

 

The results show that the current implementation of GA and SA are very similar in both 

robustness and economy of fuel cycle cost when it comes to the best solution found. 

However, when one considers the complete set of feasible solutions found per random seed, a 

different picture emerges.  
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Figure 3.2: SA overall performance 

GA

7.16

7.21

7.26

7.31

7.36

7.41

7.46

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

History #

F
u
e
l 
C
y
c
le
 C
o
s
t

min

max

avg

 

Figure 3.3: GA overall performance 
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The above figures show the behavior of acceptable solutions in the final archive in the cases 

of simulated annealing and genetic algorithms. As shown previously, the minimum values of 

fuel cycle cost for each case are very comparable. However, due to the disruptive nature of 

genetic algorithms, a larger spread of solutions is found, resulting in a higher average FCC. 

This point is further illustrated by the convergence behavior of the two optimization methods 

as shown below. 
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Figure 3.4: GA and SA convergence behavior 

 

The above figure sheds light on the behavior of the average no violation fuel cycle cost. It is 

seen that although the GA search is able to find a no violation scheme and converge quickly, 

its disruptive nature may prevent it from finding solutions of as high quality as simulated 

annealing toward the end of the search.  
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3.2 Parallel Simulated Annealing Results 

 In the implementation of parallel simulated annealing, the primary interest is how the 

method scales with the introduction of multiple processors. This information is presented in 

Figure 3.5.  

To generate the figure, average fuel cycle costs for all feasible schemes found per 

cooling step were recorded as a function of history and number of processors utilized in the 

run. This was done for ten random seeds on each number of processors.  
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Figure 3.5: Parallel simulated annealing performance 

 Figure 3.5 shows that the number of processors associated with each run does not 

significantly decrease the quality of the solution found. In addition, convergence behavior 

among the different numbers of processors is very similar. This implies that the decrease in 

the length of each Markov chain (in the form of the cycling scheme) with an increase in the 

number of processors used does not adversely affect the quality nor the convergence of the 

solution. This result agrees with a similar implementation of parallel simulated annealing to 

the fuel cycle optimization problem performed by Kropaczek (16).  
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4 Conclusions and Future Work 

4.1 Conclusions 

The implementation of parallel simulated annealing into the OCEON-P algorithm 

resulted in a significant decrease in run times without a decrease in the quality or robustness 

of the solutions. This result generally agrees with other out-of-core optimization studies in 

the field (16). The fact that quality and robustness remain consistent up to sixteen processors 

utilized may imply that shorter Markov chains associated with the simulated annealing in 

each individual processor is not detrimental to the search progression. These favorable results 

may also be facilitated by the exchange of information which occurs at each fan in step along 

the way. One must note, however, that because of the overhead associated with the usage of 

the message passing interface, the amount of time saved with each incremental processor 

does not proceed in a linear manner. In fact, efficiency drops to just over sixty percent with 

twenty processors used. 

The implementation of genetic algorithms to the OCEON-P code resulted in less 

desirable results when compared to what simulated annealing could accomplish. Research 

was performed on the various tuning parameters and options available for the genetic 

algorithm method. These include crossover type, selection type, the presence of crowding 

functions, and appropriate values for crossover, pressure, mutation, elitism and population 

size. After this investigation however, it was concluded that although genetic algorithms 

could locate the same caliber of best solutions for a given planning horizon, simulated 

annealing could locate a better family of acceptable solutions. The highly disruptive nature of 

the genetic algorithm search along with the large amount of significant tunable parameters 

and options may contribute to the method’s non-suitability for this specific out-of-core 

nuclear fuel optimization problem.  

 

4.2 Recommendations for Future Work 

  Specifically regarding the implementation of parallel simulated annealing into the 

version of OCEON-P which uses the licensed core simulator SIMULATE-3, the success or 

failure of the optimization depends very heavily on the fuel assembly loading pattern and 
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rotation templates available. Without acceptable templates, it is impossible for the 

optimization to find the global minimum because the minimum would not exist in the search 

space. To date, the same set of templates is used for every planning horizon and no suitable 

system for generating new templates exists. Additionally, although parallel simulated 

annealing has replaced conventional serial simulated annealing as the optimization engine in 

the version of OCEON-P which uses SIMULATE-3, SIMULATE-3 and OCEON-P remain 

separate programs and must communicate with each other via input and output decks created 

in the intermittent steps of the optimization. The use of MPI may be extended to more 

effectively link OCEON-P and SIMULATE-3 so that less file input and output is required. 

Parallel simulated annealing was successful in that it was able to decrease run times 

significantly without damaging the quality or robustness of the solutions. However, the 

overhead inherent within the message passing interface is a detriment to efficiency. Work 

could be done to improve efficiency by decreasing the number of MPI calls and the amount 

of data sent between processors to a bare minimum.    
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