
ABSTRACT

CORNEJO, LUKE R. Multilevel Methods with Multiple Grids in Energy For Multigroup
Eigenvalue Transport Problems. (Under the direction of Dmitriy Y. Anistratov).

In this work we present new nonlinear multilevel methods with multiple grids in energy for

solving the multigroup k-eigenvalue problems. We develop multigrid-in-energy algorithms based

on a nonlinear projection operator and several advanced prolongation operators. The evaluation

of the eigenvalue is performed in the space with smallest dimensionality by solving the effective

one-group problem. This methodology is based on the Nonlinear Diffusion Acceleration (NDA)

and Quasidiffusion (QD) methods. The multilevel method can also be used to solve diffusion

problems. The homogenization in energy is based on a spatially consistent discretization of

the group diffusion equations on coarse grids in energy. Prolongation is done using constant in

energy or linear in energy correction factors. Various multigrid algorithms are used to iterate

through the energy levels. We present numerical results of model reactor-physics problems with

a very large number of groups. The results demonstrate that the multilevel method is effective

for solving eigenvalue problems. Multiple energy grids are shown to be effective in reducing the

total work needed to solve the problem.
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Chapter 1

Introduction

Particles transport processes play important role in various physical phenomena. For a wide

class of problems, the basis for mathematical modeling of particle interactions with matter in

a physical system is the linear Boltzmann equation [76]. Its solution is the particle distribution

function in the phase space and time which enables to determine various characteristics of

particle population and predict behavior of the physical system. The physics of nuclear reactors

is dominated by the neutron transport and neutron-nuclide interactions. To design and analyze

a nuclear reactor it is necessary to model dynamics of neutron population. A particular question

about performance of the nuclear system is to determine physical conditions under which there

is balance between neutron production and loss. These conditions can be found by solving a

certain type of eigenvalue problem for the steady-state Boltzmann equation.

1.1 Transport Problems

To perform nuclear reactor design calculations the multigroup eigenvalue neutron transport

problem must be solved. Solving this problem is important for finding the distribution of neu-

trons in the reactor and the critical parameter of the system. Current nuclear engineering

calculations require the solution of these problems on fine grids in space, angle, and energy. De-

sign processes, like coupled multi-physics problems, require the transport problem to be solved

many times so it is important to be able to solve these problems quickly.

In order to solve the transport equations they are discretized in to a large system of linear

equations. Let us consider the energy grid ΛE with G intervals

Emin = EG < . . . < Eg+1 < Eg < Eg−1 < . . . < E0 = Emax . (1.1)

Here Emin and Emax are some minimum and maximum energies. The energy group g is defined

1



by the interval of energy [Eg, Eg−1]. The transport equations with isotropic scattering are

Ω ·∇ψg(r,Ω) + Σt,g(r)ψg(r,Ω) =
1

4π

G∑
g′=1

Σs,g′→g(r)

∫
4π
ψg′(r,Ω)dΩ

+
χg(r)

4πk

G∑
g′=1

νf,g′(r)Σf,g′(r)

∫
4π
ψg′(r,Ω)dΩ , r ∈ G , (1.2a)

ψg(r,Ω)|r∈∂Dvac = 0 and

ψg(r,Ω)|r∈∂Dref = ψg(r,Ω
∗)|r∈∂Dref for n ·Ω < 0 , (1.2b)

Ω∗ · n = −Ω · n, n ·Ω×Ω∗ = 0 , (1.2c)

g = 1, . . . , G ,

Here

ψg(r,Ω) =

∫ Eg−1

Eg

ψ(r,Ω, E)dE (1.3)

is the group angular flux; ψ(r,Ω, E) is the neutron angular flux; k is the multiplication factor;

Σt,g is the group total cross section; Σf,g is the group fission cross section; νf,g is the number

of neutrons per fission in the group g; χf,g is the fission spectrum; Σs,g′→g is the scattering

cross section from the group g′ to the group g; Ω is the unit vector in the direction of neutron

flight; n is the outward normal at the boundary ∂D, ∂Dref is the reflective part of the domain

boundary; ∂Dvac is the vacuum boundary; ψg is the group angular flux.

Because of the integro-differential nature of the transport problem it must be solved itera-

tively. A classical method of power iterations [52] can converge very slowly for problems with

upscattering. This is not suitable for most modern large-scale problems so faster converging

methods are needed. There exist several approaches for solving the multigroup transport equa-

tion with rapidly converging iterations. One family of methods is based on the synthetic acceler-

ation approach [52]. An example of such a method is the two-grid acceleration scheme developed

to speed up iterations in fixed-source transport problems with upscattering [7]. This method

uses a one-group diffusion problem for the iterative error. The one-group diffusion coefficient

and cross sections are defined by means of a special spectral shape function that approximates

the Fourier harmonic of the solution converging at the slowest rate. Another way to solve the

k-eigenvalue transport problem is to treat it as a generalized eigenvalue problem and apply

Nonlinear Krylov acceleration and Jacobian-Free Newton-Krylov methods [9, 26, 53, 31]. The

iterative methods developed on such basis demonstrated efficiency of this approach. Multigrid

in energy have also been used as a preconditioner for Krylov solvers [58].

A different group of iterative schemes applies the nonlinear-projective iterative (NPI) method-
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ology and effectively reduces the dimensionality of the transport problem [52, 15]. These meth-

ods solve a system of equations that consist of the transport equation and a set of lower dimen-

sion equations. The low-order equations reduce the dimensionality of the problem and can form

rapidly converging iterative methods. The set of equations is closed by defining linear-fractional

factors. These factors are weakly dependent on the high-order which results in accelerated con-

vergence. Over the years the NPI methods have seen wide spread used to solve multigroup

neutron transport problems.

The detailed formulation of real neutron transport problems involves a very large number of

energy groups. For example, the reactor-physics software SCALE for lattice physics calculations

uses the 44-group and 238-group ENDF/B-V neutron cross section libraries [66]. The lattice-

physics code CASMO-5 for modeling light-water reactors has the 586-group neutron library

based on ENDF/B-VII nuclear data [41]. This motivates the development of iteration methods

with multiple grids in energy to achieve even better efficiency for full-scale reactor-physics

problems.

1.1.1 QD Method

An early NPI method is the Quasidiffusion (QD) method [52, 69, 18, 19]. The set of equations

for the QD method consists of the high-order transport equations

Ω ·∇ψg(r,Ω) + Σt,g(r)ψg(r,Ω) =
1

4π

G∑
g′=1

Σs,g′→g(r)φg′(r)

+
χg(r)

4πk

G∑
g′=1

νf,g′(r)Σf,g′(r)φg′(r) , r ∈ G , (1.4)

and the low-order QD (LOQD) equations [69, 70, 18]. The low-order QD (LOQD) equations for

this method are the zeroth and first moments of the transport equation. The set of equations are

closed by a set of functionals that are calculated from the high-order solution. If the functionals

are exact the LOQD equations can generate the transport solution exactly. The multigroup

LOQD equations in continuous form [69, 18, 19] are

∇ · Jg + Σt,gφg =

G∑
g′=1

Σs,g′→gφg′ +
χg
k

G∑
g′=1

νf,g′Σf,g′φg′ , (1.5a)

∇ ·
(
Egφg

)
+ Σt,gJg = 0 , (1.5b)

3



where

Eαβ,g =

∫
4π ΩαΩβψgdΩ∫

4π ψgdΩ
, α, β = x, y (1.6)

are the components of the QD (aka Eddington) tensor Eg that is defined to close the system of

high-order transport (1.4) and LOQD equations (1.5). The boundary conditions for the LOQD

equations are the following:

n · Jg|r∈∂Gref = 0, n · Jg|r∈∂Gvac = Cn,gφg|r∈∂Gvac , (1.7)

where the boundary factor is defined as

Cn,g =

∫
Ω·n≥0 n ·ΩψgdΩ∫

Ω·n≥0 ψgdΩ

∣∣∣
r∈∂Gvac

. (1.8)

Reducing the dimensionality of the low-order problem can also be done by using coarser

energy grids [69]. Methods with two energy grids, namely involving one-group (grey) low-order

problems, were developed based on the Quasi-diffusion method [18, 19, 70, 71, 20, 72, 13, 24].

In the multilevel iteration scheme, the eigenvalue is determined as the solution of the problem

with the smallest dimensionality, namely, of the effective one-group low-order equations. This

multilevel method can be interpreted as a nonlinear multigrid method and described in terms

of projection and prolongation operators. These methods demonstrated that the one-group low-

order equation could accelerate the solution of the multigroup low-order equation reducing the

total amount of work done in the low-order problem.

1.1.2 NDA Method

The Nonlinear Diffusion Acceleration (NDA) method is a very popular NPI method [38]. The

low-order equations consist of the zeroth moment of the transport equation and the first moment

in the form of a modified Fick’s law equation. The NDA method is similar to the Coarse Mesh

Finite Difference (CMFD) [36]. The low-order NDA equations are discretized on the same spatial

mesh as the transport equations [36]. The NDA method was originally derived in descrete form

[38], but the can also be written continuously [17]. The system of low-order NDA (LONDA)

equations in continuous form for the multigroup transport problem (1.2) consists of the neutron

balance equation

∇ · Jg + Σt,gφg =
G∑

g′=1

Σs,g′→gφg′ +
χg
k

G∑
g′=1

νf,g′Σf,g′φg′ (1.9a)
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and the first-moment equation in the form of the generalized Fick’s law

Jg = −Dg∇φg + D̃gφg , (1.9b)

where

Dg =
1

3Σt,g
, (1.9c)

Jg =

∫
4π

ΩψgdΩ, (1.9d)

is the neutron current and factor D̃g is defined to yield exact closure and given by

D̃α,g =

∫
4π eα ·ΩψgdΩ +Dgeα ·∇

∫
4π ψgdΩ∫

4π ψgdΩ
, α = x, y . (1.9e)

The boundary conditions for the low-order equations are

n·Jg|r∈∂Gvac = Fn,gφg|r∈∂Gvac , Fn =

∫
Ω·n≥0

n ·ΩψgdΩ∫
Ω·n≥0

ψgdΩ

∣∣∣∣∣∣∣
r∈∂Gvac

, (1.10a)

n·Jg|r∈∂Gref = 0 . (1.10b)

This methodology has been used to accelerate transport methods like the method of character-

istics (MOC) [73] and finite element methods [63, 62] and recent work has been done to apply

these methods to more types of problems like hexagonal geometries [57].

Reducing the dimensionality of the low-order problem was also done using NDA type equa-

tions. Methods were developed that reduced the dimensionality in energy and angle, using a

collapsed one-group diffusion equation to calculate a spatial correction term [7, 1]. A different

version of this method was developed that used a one-group transport equation instead of a

diffusion equation [68]. A multilevel NDA method for multigroup eigenvalue problems have

been developed and applied to 1D problems [17]. Multigroup and two-group grids were used

to implement a two-level CMFD method for 2D arbitrary geometry [77]. In an application of

MOC a two-group CMFD formulation was used to improve the efficiency of the multi-group

CMFD accelerator [33]. A multilevel solver has been used for multigroup diffusion eigenvalue

problems [2] using multigrid in space and two levels in energy. The method can be described as

a power iteration method with the addition of a one-group diffusion equation, space-dependent

Wielandt shift and a multigrid-in-space linear solver. This method was presented for diffusion

and applied for the low-order CMFD problem in Michigan Parallel Characteristics Transport

(MPACT) code. A multilevel CMFD method with two and more energy grids in the low-order
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equations was implemented in the MPACT code [6]. The coarsest energy grid was defined as the

two-group problem and the eigen problem was solved on this grid using shifted power iterations.

Both pre- and post-sweeps are performed on each multigrid cycle.

1.1.3 pCMFD Method

The classical CMFD method has a zone of instability for certain problems with optically thick

meshes in the case the system of the high-order transport equation and low-order CMFD

equations is solved using a fixed-point iteration method [25, 34]. A version of CMFD, known

as the partial current-based CMFD (p-CMFD) method, has been developed that formulates

the low-order problem to preserve the high-order partial currents [55, 35, 54, 64]. It was shown

that fixed-point iteration scheme for pCMFD system of equations has better stability properties

compared to classical CMFD [55, 61]. The pCMFD equations are usually derived in discrete

form. In this section we present a formulation of the pCMFD equations in continuous form.

The low-order system of pCMFD equations consists of the zeroth-moment equation

∇ · Jg + Σt,gφg =

G∑
g′=1

Σs,g′→gφg′ +
χg
k

G∑
g′=1

νf,g′Σf,g′φg′ (1.11)

and first-moment equations in the form of a generalized Fick’s law. To derive the pCMFD

first-moment equations, we apply the P1 approximation of the angular flux

ψg =
1

4π
(φg − 3DgΩ ·∇φg) . (1.12)

Integrating Eq. (1.12) with the weight eα ·Ω over 2π± relative to the direction of eα we get the

P1-approximation for the projection of the partial currents on the direction eα

J±α =
1

4
φg ∓

1

2
Dgeα ·∇φg . (1.13)

We now generalize Eq. (1.13) in the following form:

J±α = ±D̃±α,gφg ∓
1

2
Dgeα ·∇φg . (1.14)

Here we introduced factors D̃±α,g that enable one to formulate the exact closure relations for the

low-order pCMFD equations. D̃±α,g are defined such that∫
2π±

eα ·ΩψgdΩ = ±D̃±α,g
∫

4π
ψgdΩ∓

1

2
Dgeα ·∇

∫
4π
ψgdΩ . (1.15)
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This leads to the factors defined as

D̃±α,g =
±
∫

2π± eα ·ΩψgdΩ∓ 1
2Dgeα ·∇

∫
4π ψgdΩ∫

4π ψgdΩ
. (1.16)

We now take into account that α-component of the current eα · Jg is given by

Jα,g = J+
α,g − J−α,g (1.17)

to obtain the pCMFD form of the generalized Fick’s law

Jα,g = −Dgeα ·∇φg + (D̃−g + D̃+
g )φg . (1.18)

Thus the low-order pCMFD equations are given by Eqs. (1.11) and (1.18). The boundary

conditions for the low-order equations are defined in (1.10). Fourier analysis of pCMFD method

with Step Characteristics for 1-dimensional eigenvalue problems is unconditionally stable [61].

The pCMFD method has been applied to accelerate the step characteristics method in NEWT

[35]. It has also be used as an accelerator in whole-core transport solutions [64, 5].

1.2 Diffusion Problems

The phase space of neutron transport problems has high dimensionality. It includes the spatial

position of the particle, its energy and the direction of particle motion. In general case, it is a

6-dimensional space. To reduce the dimensionality of the problem and complexity of neutron

transport simulations, various approximate methods have been developed. One group of neutron

transport models is based on the P1 equations that belong to the family of the method of

spherical harmonics also know as the PN method [16]. The P1 equations are defined for the

first two moments of the neutron angular flux and hence of the distribution function. The

moment equations are closed assuming that the angular flux linearly depends on the direction

of particle motion. The P1 equations can be reduced to the neutron diffusion equation for the

zeroth angular moment of the angular flux.

For problems with isotropic scattering the P1 equations can be reduced to the diffusion

equations. The k-eigenvalue problem for the multigroup diffusion equations on the given grid
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ΛE is defined by [16]

−∇ ·Dg(r)∇φg(r) + Σt,g(r)φg(r) =
G∑

g′=1

Σs,g′→g,(r)φg′(r)

+
χg(r)

k

G∑
g′=1

νf,g′(r)Σf,g′(r)φg′(r) , (1.19)

r ∈ D , g = 1, . . . , G ,

with the following conditions

n(rb) ·∇φg(rb) = 0 , rb ∈ ∂Dref (1.20)

at the reflective boundary and

φg(rb) + 2Dg(rb)n(rb) ·∇φg(rb) = 0 , rb ∈ ∂Dvac (1.21)

at the vacuum boundary. Dg = 1
3Σt,g

is the group diffusion coefficient; n(rb) is the outward

normal at the boundary. The P1 equations are given by the neutron balance equation

∇ · Jg(r) + Σt,g(r)φg(r) =
G∑

g′=1

Σs,g′→g,(r)φg′(r) +
χg(r)

k

G∑
g′=1

νf,g′(r)Σf,g′(r)φg′(r) (1.22)

and the Fick’s law

Dg(r)∇φg(r) + Jg(r) = 0 . (1.23)

The solution of the P1 equations has limited accuracy. However, it works well for neutron

transport problems in which the angular flux weakly depends on angular and spatial variables.

The diffusion solution is a good approximation for problems that involve spatial homogenization

[47, 65]. A lot of research has been carried out to study properties and applicability of the P1

method and diffusion approximation [46, 23, 22, 48, 28]. The P1 method is a reliable tool for

modeling and analysis of various of physical systems [37, 11].

Basic methods for solving the multigroup diffusion equations, such as, the power and Gauss-

Seidel iterations are simple algorithms, but they can converge slowly in a large class of reactor-

physics problems. Advanced iteration schemes for energy-dependent particle diffusion problems

has been developed [29, 30, 9, 8, 3]. There exist a group of methods for solving multigroup

neutron transport and radiative transfer problems that use two grids in energy [21, 7, 13,

24, 19, 17, 2]. The two-grid approach has demonstrated that it can significantly reduce the

number of times the group transport equations are solved [19]. This approach has been also
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applied to develop a nonlinear two-grid (NTG) method for multigroup diffusion problems [14].

The stability properties of the NTG method for k-eigenvalue multigroup diffusion problems

has been studied by means of the Fourier analysis. This analysis predicted well the rates of

convergence of the eigenvalue and associated eigenfunction.

1.3 Multigrid Methods

Multigrid methods were originally developed for solving boundary value problems found in may

physical systems[59, 60, 75]. A linear system of equations is formed from the elliptic partial

differential equations by finite element or finite difference discretization. For this type of system

of equations local relaxations, such as Gauss-Seidel and Jacobi iterations, converge very fast

on the high frequency part of the solution. The low frequency component of the solution can

converge much slower. The convergence of the iterative method can be improved by introducing

a coarser grid and projecting the error onto it. The first effect of this is to reduce the size of

the problem. The second is that the slow to converge low frequency error effectively becomes a

higher frequency error on the coarser grid and can be efficiently corrected by local relaxations

on that grid. Repeating this recursively yields a multigrid iterative method. The set of nested

coarse grids are found by successive refinement. These types of methods are known as geometric

multigrid as they are dependent on a hierarchy of geometric grids.

Algebraic multigrid is a generalization of geometric multigrid [39, 32]. It was originally

developed for sets of equations similar to discretized PDEs approximated on an unstructured

grid. This methodology has been extended to other types of problems and general matrices.

Multigrid method can be applied to solve neutron transport problems. Spatial multigrid

methods have been developed to accelerate transport problems and be well suited for parallel

computation [4]. A multilevel in space and energy method for diffusion problems has been

developed that uses geometric multigrid in space linear solver [2, 3]. This method also uses two

levels in energy. Multigrid has also been used as a preconditioner for solving transport problems

[58].

1.4 Significance and Novelty of the Main Results

New iteration methods for solving eigenvalue problems for multigroup neutron transport and

diffusion equations have been developed. They are based on multigrid-in-energy approach. For

eigenvalue neutron transport problems, the nonlinear projection operator is formulated by av-

eraging the group low-order transport equations over energy on the hierarchy of energy grids.

For eigenvalue neutron diffusion problems, a similar nonlinear projection operator is defined by

averaging the group diffusion equations over energy grids. Several new multilevel acceleration
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transport methods for reactor-physics application are proposed based on low-order equations

of the QD, NDA, CMFD, and pCMFD methods.

We defined several variants of prolongation operators based on multiplication correction of

the grid solutions. The prolongation operators use constant and linear interpolation in energy

between neighboring grids. We apply the partial V-cycles, partial W-cycles, and hybrid cycles

to move through the hierarchy of energy grids. The estimation of the eigenvalue is performed on

the coarsest grid with just one energy group. Thus, the eigenvalue problem is solved in the space

with the smallest dimensionality. The proposed methods with multigrid in energy are derived

for the second-order finite volume spatial discretization of the low-order transport (and diffu-

sion) equation. They can be applied to other spatial discretizations as well, for example, finite

element methods. The obtained numerical results on realistic model reactor-physics problems

with 44 and 258 groups demonstrated efficiency of the developed algorithms with multigrid in

energy. They enable to reduce significantly total number of low-order solves as well as accelerate

transport iterations. Involving additional coarse energy grids accelerate iterations and decrease

computational costs.

The proposed multilevel methods enable one to solve important class reactor physics prob-

lem. They are effective in solving the large-scale transport problems and can be used, for

instance, for full-core like calculations. These methods can be applied to different transport

methods to improve performance of existing reactor-physics software. The proposed multilevel

algorithms can be used to develop advanced iterative methods for solving large-scale multi-

physics problems with very large number of groups.

This research was presented by the candidate to members of the research community at the

following venues:

� Joint International Conference on Math and Computation (M&C), Supercomputers in

Nuclear Applications (SNA) and the Monte Carlo (MC) Method in Nashville, TN, April

19-23, 2015

� The Physics of Reactors (PHYSOR) Conference in Sun Valley, ID, May 1-5, 2016

� Scientific Seminar to Laboratory, Reactor and Nuclear Systems Division at Oak Ridge

National in Oak Ridge, TN, July 30, 2018, and

� Scientific Seminar to Radiation Transport Group at Los Alamos National Laboratory in

Los Alamos, NM, August 22, 2018,

This research has been published in peer reviewed journals Nuclear Science and Engineering

[44] and Progress in Nuclear Engineering [45] (invited) and in the conference proceedings of

M&C 2015 [42] and PHYSOR 2016 [43]. A paper has been also submitted for publication in

Nuclear Science and Engineering [40].
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The remainder of this dissertation is organized as follows. In chapter 2, we present multilevel

diffusion method with multiple energy grids. In chapter 3, we describe a multilevel transport

method with multiple grids in energy where the low-order equations are formulated on the

same spatial mesh as the hight-order problem. In chapter 4, we describe a multilevel transport

method with multiple grids in space and energy where the low-order equations are on a coarser

spatial mesh than the transport problem.
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Chapter 2

Multilevel Diffusion Method

In this chapter we present a nonlinear method with multiple grids in energy for solving the k-

eigenvalue problem for multigroup neutron diffusion equations. We develop multigrid-in-energy

algorithms based on a nonlinear projection operator and several prolongation operators. The

evaluation of the eigenvalue is performed in the space with smallest dimensionality by solving the

effective one-group diffusion problem. The multilevel methods are formulated in discrete form

for the second-order finite volume discretization of the diffusion equation. The homogenization

in energy is based on a spatially consistent discretization of the group diffusion equations on

coarse grids in energy. The results of this chapter has been submitted for publication [40].

In Sec. 2.1 the hierarchy of equations is defined. Sec. 2.2 describes the multigrid cycles and

Sec. 2.3 defines the prolongation operators. Numerical results are presented in Sec. 2.4.

2.1 Hierarchy of Diffusion Equations

To formulate the multilevel method for solving Eq. (1.19) we define a hierarchy of grids in

energy [44, 45]

{ΛγE , γ = 1, . . . ,Γ : ΛΓ
E ⊂ . . . ⊂ ΛγE ⊂ Λγ−1

E ⊂ . . . ⊂ Λ1
E = ΛE} , (2.1)

where γ is the grid index. The grid ΛγE consists of groups with energy intervals δEγg = [Eγg , E
γ
g−1]

(g = 1, . . . , Gγ) formed by coarsening the previous grid Λγ−1
E . Gγ is the number of groups in

the grid ΛγE . Thus, the group scalar flux on the grid ΛγE is given by

φγp =

∫
δEγg

φ(r, E)dE =
∑
g′∈ωγp

φγ−1
g′ , (2.2)

12



where ωγp is the set of group indices of the grid Λγ−1
E included in the group g of the grid ΛγE .

The grid Λ1
E is the given fine energy grid. Thus G1 = G and

φg(r) ≡ φ1
g(r) . (2.3)

The coarsest grid ΛΓ
E has only one group and GΓ = 1. The total scalar flux is given by

φ(r) =

∫ Emax

Emin

φ(r, E)dE = φΓ
1 (r) . (2.4)

The methods with multigrid in energy are formulated by means of projection and prolon-

gation operators. The nonlinear projection operator is defined by integration of the diffusion

equations over energy groups and their homogenization with respect to energy. The homoge-

nization procedure transfers information from a grid to a coarser one and defines a coarse-grid

correction step. The hierarchy of group diffusion equations on multiple grids in energy has the

following general form:

−∇2
(
D̄γp(r)φγp(r)

)
+ Σ̄γ

t,g(r)φγp(r) =

Gγ∑
g′=1

Σ̄γ
s,g′→g(r)φγg′(r) +

χ̄γg (r)

k

Gγ∑
g′=1

νΣ
γ
f,g′(r)φγg′(r) , (2.5)

r ∈ D , g = 1, . . . , Gγ , γ = 1, . . . ,Γ− 1 ,

−∇2
(
D̄Γ

1φ
Γ
1 (r)

)
+ Σ̄Γ

a,1φ
Γ
1 (r) =

1

k
νΣ

Γ
f,1φ

Γ
1 , r ∈ D , γ = Γ . (2.6)

The cross sections and diffusion tensor D̄γp are averaged by the solution φγ−1
g on the grid Λγ−1

E .

The averaged cross sections are given by

Σ̄γ
t,g =

∑
g′∈ωγg Σ̄γ−1

t,g′ φ
γ−1
g′∑

g′∈ωγg φ
γ−1
g′

, Σ̄γ
a,g =

∑
g′∈ωγg Σ̄γ−1

a,g′ φ
γ−1
g′∑

g′∈ωγg φ
γ−1
g′

, (2.7a)

νΣ
γ
f,g =

∑
g′∈ωγg νΣ

γ−1
f,g′ φ

γ−1
g′∑

g′∈ωγg φ
γ−1
g′

, χ̄γg =
∑
g′∈ωγg

χ̄γ−1
g′ , (2.7b)

Σ̄γ
s,g′→g =

∑
g′∈ωγ

g′

(∑
g∈ωγp Σ̄γ−1

s,g′→g

)
φγ−1
g′∑

g′∈ωγ
g′
φγ−1
g′

, (2.7c)

where Σ̄1
t,g = Σt,g, νΣ

1
f,g = νf,gΣf,g, Σ̄1

s,g′→g = Σs,g′→g, D̄1
p = diag(Dp, . . . , Dp). We note

that the final form of the proposed multigrid-in-energy methods is derived for the discretized
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diffusion equations. The continuous equations (2.5) and (2.6) lack some essential details. The

diffusion tensor D̄γp and the form of the discretized differential term are defined by averaging of

the discrete leakage rate density (LRD) term and depend on the spatial discretization scheme.

This part of the methodology is described below.

To solve the group diffusion equations (2.5) on ΛγE with γ < Γ, we evaluate the fission and

upscattering terms by means of the solution obtained on the grid Λγ−1
E and use the estimation

of the eigenvalue from the previous multigrid cycle. The equation (2.5) gives rise to

−∇2
(
D̄γgφγg

)
+ Σ̄γ

t,gφ
γ
g −

g∑
g′=1

Σ̄γ
s,g′→gφ

γ
g′ =

Gγ∑
g′=g+1

Σ̄γ
s,g′→g

∑
g′∈ωγ

g′

φγ−1
g′ +

χ̄γg
k

Gγ∑
g′=1

νΣ
γ
f,g′

∑
g′∈ωγ

g′

φγ−1
g′ , (2.8)

g = 1, . . . , Gγ

for γ = 1, . . . ,Γ − 1. Thus, the equations for φγ = (φγ1 , . . . , φ
γ
G)T have the following general

form:

Aγφγ = Bγφγ−1 +
1

k
Cγφγ−1 , (2.9)

where Aγ is operator of the left-hand side of Eq. (2.8) given by

Aγφγ ≡ −∇2
(
D̄γgφγg

)
+ Σ̄γ

t,gφ
γ
g −

g∑
g′=1

Σ̄γ
s,g′→gφ

γ
g′ , (2.10)

Bγ and Cγ are the upscattering and fission production operators, respectively, defined as

Bγφγ−1 ≡
Gγ∑

g′=g+1

Σ̄γ
s,g′→g

∑
g′∈ωγ

g′

φγ−1
g′ , Cγφγ−1 ≡ χ̄γg

Gγ∑
g′=1

νΣ
γ
f,g′

∑
g′∈ωγ

g′

φγ−1
g′ . (2.11)

The matrix-operator Aγ is lower triangular. The system of group diffusion equation (2.8) on

the grid ΛγE can be solved by sweeping through groups. This is equivalent to performing one

Gauss-Seidel iteration over energy groups on this grid.

The eigenvalue and associated one-group eigenfunction are determined by solving the effec-

tive one-group problem (2.6). The eigenvalue problem on the coarsest grid ΛΓ
E has the following

general form:

AΓφ
Γ =

1

k
CΓφ

Γ , (2.12)
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where

AΓφ
Γ ≡ −∇2

(
D̄Γ

1φ
Γ
1

)
+ Σ̄Γ

a,1φ
Γ
1 , CΓφ

Γ = νΣ
Γ
f,1φ

Γ
1 . (2.13)

We consider problems in 2D Cartesian geometry with the rectangular spatial domain D =

{0 ≤ x ≤ X, 0 ≤ y ≤ Y }. The spatial grids are orthogonal and defined by the cells Cij =

{xi−1/2 ≤ x ≤ xi+1/2, yj−1/2 ≤ y ≤ yj+1/2}, where i = 1, . . . , Nx, j = 1, . . . , Ny. The cross

sections are assumed to be piece-wise constant functions on the set of grid cells. The group

diffusion equations (1.19) on ΛE are approximated by means of a second-order finite volume

(FV) method which is derived by discretizing the P1 equations (1.22) and (1.23). We integrate

the balance equation (1.22) over the cell Cij to get

(
Jg,i+1/2,j − Jg,i−1/2,j

)
hyj +

(
Jg,i,j+1/2 − Jg,i,j−1/2

)
hxi + Σt,g,i,jφg,i,jAi,j =

Ai,j

G∑
g′=1

Σs,g′→g,i,jφg′,i,j +
1

k
Ai,jχg,i,j

G∑
g′=1

νf,g′,i,jΣf,g′,i,jφg′,i,j , (2.14)

hxi = xi+1/2 − xi−1/2 , hyj = yj+1/2 − yj−1/2 , Ai,j = hxi h
y
j , (2.15)

where φg,i,j is the cell-average group scalar flux, Jg,i+1/2,j and Jg,i,j+1/2 are the face-average

group currents, Σt,g,i,j , Σf,g,i,j , νf,g,i,j , Σs,g′→g,i,j , and χg,i,j are the material parameters of the

cell Cij . The Fick’ law (1.23) is integrated over right, left, bottom, and top halves of Cij . This

yields

Dg,i,j

(
φg,i+1/2,j − φg,i,j

)
+

1

2
Jg,i+1/2,jh

x
i = 0 , (2.16)

Dg,i,j

(
φg,i,j − φg,i−1/2,j

)
+

1

2
Jg,i−1/2,jh

x
i = 0 , (2.17)

Dg,i,j

(
φg,i,j − φg,i,j−1/2

)
+

1

2
Jg,i,j−1/2h

y
j = 0 , (2.18)

Dg,i,j

(
φg,i,j+1/2 − φg,i,j

)
+

1

2
Jg,i,j+1/2h

y
j = 0 , (2.19)

where φg,i+1/2,j and φg,i,j+1/2 are the face-average group scalar fluxes, and Dg,i,j = 1
3Σt,g,i,j

.

Eliminating the face-average scalar fluxes in Eqs. (2.16)-(2.19), we get the following relations

between the face-average currents and cell-average scalar fluxes

Jg,i+1/2,j = −
Dg,i+1/2,j

hxi+1/2

(
φg,i+1,j − φg,i,j

)
, (2.20)

Jg,i,j+1/2 = −
Dg,i,j+1/2

hyj+1/2

(
φg,i,j+1 − φg,i,j

)
, (2.21)
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hxi+1/2 =
1

2
(hxi + hxi+1) , hyj+1/2 =

1

2
(hyj + hyj+1) , (2.22)

where the cell-face diffusion coefficients are given by

Dg,i+1/2,j =
2Dg,i,jDg,i+1,jh

x
i+1/2

Dg,i,jhxi+1 +Dg,i+1,jhxi
, Dg,i,j+1/2 =

2Dg,i,jDg,i,j+1h
y
j+1/2

Dg,i,jh
y
j+1 +Dg,i,j+1h

y
j

. (2.23)

Substituting Eqs. (2.20) and (2.21) into the cell-balance equation (2.14), we obtain the dis-

cretized group diffusion equations for the cell-average group scalar fluxes φg,i,j on the given fine

grid ΛE of the following form:

−
[
Dg,i+1/2,j

hxi+1/2

(
φg,i+1,j − φg,i,j

)
−
Dg,i−1/2,j

hxi−1/2

(
φg,i,j − φg,i−1,j

)]
hyj

−
[
Dg,i,j+1/2

hyj+1/2

(
φg,i,j+1 − φg,i,j

)
−
Dg,i,j−1/2

hyj−1/2

(
φg,i,j − φg,i,j−1

)]
hxi + Σt,g,i,jφg,i,jAi,j =

Ai,j

G∑
g′=1

Σs,g′→g,i,jφg′,i,j +
1

k
Ai,jχg,i,j

G∑
g′=1

νf,g′,i,jΣf,g′,i,jφg′,i,j . (2.24)

The first two terms on the left-hand side of Eq. (2.24) define the discrete LRD term of the

applied FV scheme.

The discrete group diffusion equations on the grid ΛγE are formulated to be algebraically

consistent with the equations on the grid Λγ−1
E . The homogenization of the equations over

energy intervals is performed without any approximation. To derive the diffusion equations on

the hierarchy of grids, we start by formulating discrete equations on Λ2
E and sum the equations

(2.24) on Λ1
E over g-th interval of the grid Λ2

E . The LRD term in Eq. (2.24) is summed over ω2
g

and cast in terms of φ2
g,i,j in the following way:

−
hyj

hxi+1/2

∑
g∈ω2

p

Dg,i+1/2,j

(
φg,i+1,j − φg,i,j

)
+

hyj
hxi−1/2

∑
g∈ω2

p

Dg,i−1/2,j

(
φg,i,j − φg,i−1,j

)
− hxi
hyj+1/2

∑
g∈ω2

p

Dg,i,j+1/2

(
φg,i,j+1 − φg,i,j

)
+

hxi
hyj−1/2

∑
g∈ω2

p

Dg,i,j−1/2

(
φg,i,j − φg,i,j−1

)
=

−
hyj

hxi+1/2

(
D̄+,2
g,i+1/2,jφ

2
g,i+1,j − D̄−,2g,i+1/2,jφ

2
g,i,j

)
+

hyj
hxi−1/2

(
D̄+,2
g,i−1/2,jφ

2
g,i,j − D̄−,2g,i−1/2,jφ

2
g,i−1,j

)
− hxi
hyj+1/2

(
D̄+,2
g,i,j+1/2φ

2
g,i,j+1 − D̄−,2g,i,j+1/2φ

2
g,i,j

)
+

hxi
hyj−1/2

(
D̄+,2
g,i,j−1/2φg,i,j − D̄

−,2
g,i,j−1/2φg,i,j−1

)
(2.25)

16



where we defined the cell-face diffusion coefficients on the grid Λ2
E

D̄+,2
g,i+1/2,j =

∑
g∈ω2

g
Dg,i+1/2,jφg,i+1,j∑
g∈ω2

g
φg,i+1,j

, D̄−,2g,i+1/2,j =

∑
g∈ω2

g
Dg,i+1/2,jφg,i,j∑
g∈ω2

g
φg,i,j

, (2.26)

D̄+,2
g,i,j+1/2 =

∑
g∈ω2

g
Dg,i,j+1/2φg,i,j+1∑
g∈ω2

g
φg,i,j+1

, D̄−,2g,i,j+1/2 =

∑
g∈ω2

g
Dg,i,j+1/2φg,i,j∑
g∈ω2

g
φg,i,j

. (2.27)

It can be shown by mathematical induction that the general form of the discrete LRD term on

any coarse grid ΛγE (γ > 1) has the form of the discretized LRD term on Λ2
E . It is given by

Lγg,i,jφγg ≡ −
hyj

hxi+1/2

(
D̄+,γ
g,i+1/2,jφ

γ
g,i+1,j − D̄

−,γ
g,i+1/2,jφ

γ
g,i,j

)
+

hyj
hxi−1/2

(
D̄+,γ
g,i−1/2,jφ

γ
g,i,j − D̄

−,γ
g,i−1/2,jφ

γ
g,i−1,j

)
− hxi
hyj+1/2

(
D̄+,γ
g,i,j+1/2φ

γ
g,i,j+1 − D̄

−,γ
g,i,j+1/2φ

γ
g,i,j

)
+

hxi
hyj−1/2

(
D̄+,γ
g,i,j−1/2φg,i,j − D̄

−,γ
g,i,j−1/2φg,i,j−1

)
, (2.28)

where cell-face diffusion coefficients on ΛγE are calculated by the solution of the previous grid

as follows:

D̄+,γ
g,i+1/2,j =

∑
g′∈ωγg D̄

+,γ−1
g′,i+1/2,jφ

γ−1
g′,i+1,j∑

g′∈ωγg φ
γ−1
g′,i+1,j

, D̄−,γg,i+1/2,j =

∑
g′∈ωγg D̄

−,γ−1
g′,i+1/2,jφ

γ−1
g′,i,j∑

g′∈ωγg φ
γ−1
g′,i,j

, (2.29a)

D̄+,γ
g,i,j+1/2 =

∑
g′∈ωγg D̄

+,γ−1
g′,i,j+1/2φ

γ−1
g′,i,j+1∑

g′∈ωγg φ
γ−1
g′,i,j+1

, D̄−,γg,i,j+1/2 =

∑
g′∈ωγg D̄

−,γ−1
g′,i,j+1/2φ

γ−1
g′,i,j∑

g′∈ωγg φ
γ−1
g′,i,j

, (2.29b)

where

D̄+,1
g,i+1/2,j = D̄−,1g,i+1/2,j = Dg,i+1/2,j D̄+,1

g,i,j+1/2 = D̄−,1g,i,j+1/2 = Dg,i,j+1/2 . (2.29c)

We note that this homogenization in energy on a coarse energy grid yields two diffusion coeffi-

cients at each face.

The final discrete form of the group diffusion equations (2.5) and (2.6) on the hierarchy of

grids is the following:

Lγg,i,jφγg + Σ̄γ
t,g,i,jφ

γ
g,i,jAi,j =

Ai,j

G∑
g′=1

Σ̄γ
s,g′→g,i,jφ

γ
g′,i,j +

1

k
χ̄γg,i,jAi,j

G∑
g′=1

νΣ
γ
f,g′,i,jφ

γ
g′,i,j , (2.30)
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g = 1, . . . , Gγ , γ = 1, . . . ,Γ− 1 ,

LΓ
1,i,jφ

Γ
1 + Σ̄Γ

a,1,i,jφ
Γ
1,i,jAi,j =

1

k
Ai,jνΣ

Γ
f,1,i,jφ

Γ
1,i,j . (2.31)

The cross sections and other material properties are defined according to Eqs. (2.7a)-(2.7c) by

their cell-average values, for example,

Σ̄γ
t,g,i,j =

∑
g′∈ωγg Σ̄γ−1

t,g′,i,jφ
γ−1
g′,i,j∑

g′∈ωγg φ
γ−1
g′,i,j

. (2.32)

2.2 Multigrid Cycles

To solve the multilevel system of group diffusion equations (2.30) and (2.31) on the hierarchy of

grids in energy, we apply multigrid algorithms with different types of cycles. We use partial V-

cycles pV -Γ which are described in Algorithm 1 and shown in Figure 2.1. The pV -Γ algorithm

φ0 ≡ φ1

for γ ← 1 to Γ− 1 do

Solve φγ = A−1
γ Bγφγ−1 +

1

k
A−1
γ Cγφγ−1

Perform homogenization in energy to form Aγ+1, Bγ+1, Cγ+1

end

Solve the eigenvalue problem C−1
Γ AΓφ

Γ = kφΓ to update k and φΓ

for γ ← Γ− 1 to 1 do

Perform prolongation φγ ← Iγ←γ+1
α φγ+1

end
Algorithm 1: pV -Γ. The multigrid algorithm with the partial V-cycle.

starts from the given fine energy grid Λ1
E and moves through the hierarchy of grids. On each

grid we solve a fixed-source multigroup problem using the eigenvalue estimated by the solution

on the coarsest grid ΛΓ
E on the previous multigrid cycle. The group diffusion equations on ΛΓ

E

for γ < Γ are solved by means of just one Gauss-Seidel iteration over energy groups. Thus,

there is only one relaxation step in energy. To solve the diffusion equation in the spatial domain

in each group we use BiCGSTAB with the LU preconditioner. The eigenvalue and associated

eigenfunction are updated on the grid ΛΓ
E . The obtained estimation of k is then used on all

grids ΛγE for γ < Γ on the next multigrid cycle. The effective one-group eigenvalue problem on

ΛΓ
E is solved with one Newton iteration that treats it as a generalized eigenvalue problem. On

the first multigrid cycle we perform two Newton iterations on ΛΓ
E to get better estimation of

the k-eigenvalue at the initial phase of iterations.
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The pV -Γ algorithm moves from the coarsest grid ΛΓ
E towards the finest grid Λ1

E without

solving group diffusion equations on any grid. This is shown on the cycle graphs by open circles.

The prolongation procedure between grids uses one of versions of the interpolation operator

Iγ←γ+1
α described in Sec. 2.3. The subscript α indicates the type of interpolation

� α = ce: the correction factor based on constant approximation in energy,

� α = le: the correction factor based on linear approximation in energy,

� α = lef : the correction factor based on linear approximation in energy with factorization.

Figure 2.1 shows various multigrid cycles. The partial V-cycle can be viewed as \-cycle. Another

kind of multigrid algorithm uses nested iterations involving coarse grids. It can be interpreted as

a partial W-cycle. Algorithm 2 presents the pW -Γ(γ∗, µ) algorithm, where the nested multigrid

cycles start from the grid Λγ
∗

E and are executed µ times. Figure 2.1c illustrates the pW -3(2,1)

φ0 ≡ φ1

for γ ← 1 to Γ− 1 do

Solve φγ = A−1
γ Bγφγ−1 +

1

k
A−1
γ Cγφγ−1

Perform homogenization in energy to form Aγ+1, Bγ+1, Cγ+1

end

Solve the eigenvalue problem C−1
Γ AΓφ

Γ = kφΓ to update k and φΓ

for m← 1 to µ do
for γ ← Γ− 1 to γ∗ do

Perform prolongation φγ ← Iγ←γ+1
α φγ+1

end
for γ ← γ∗ to Γ− 1 do

Solve φγ = A−1
γ Bγφγ−1 +

1

k
A−1
γ Cγφγ−1

Perform homogenization in energy to form Aγ+1, Bγ+1, Cγ+1

end

Solve the eigenvalue problem C−1
Γ AΓφ

Γ = kφΓ to update k and φΓ

end
for γ ← Γ− 1 to 1 do

Perform prolongation φγ ← Iγ←γ+1
α φγ+1

end
Algorithm 2: pW -Γ(γ∗, µ). The multigrid algorithm with the partial W-cycle.

algorithm.

An important characteristic of a multigrid algorithm is the number of cycles (Nc) that it

needs to achieve convergence. It is related to the ability of the algorithm to reduce the error over
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Figure 2.1: Multigrid cycles for the hierarchies of grids with Γ=2,...,4. GS - Gauss-Seidel itera-
tion over groups on ΛγE , H - homogenization over energy, N - Newton iteration, P - prolongation

a cycle. However, the cost of each cycle affects the algorithm efficiency. It varies for different

algorithms. The optimum algorithm for a test is the one which requires the minimum total

number of diffusion solves (Nds). For the given numbers of cycles and groups in each grids, the

total number of diffusion solves can be calculated as

Nds = Nc

Γ∑
γ=1

Gγ + 1 (2.33)

for the pV -Γ algorithm and

Nds = Nc

( Γ∑
γ=1

Gγ + µ

Γ∑
γ=γ∗

Gγ
)

+ 1 (2.34)

for the pW -Γ(γ∗, µ) algorithm.

2.3 Prolongation Operators

2.3.1 Prolongation with Recursive Correction

We formulate prolongation operators as an interpolation procedure based on a multiplicative

correction of the solution. The corrected group scalar flux φ̂γg on the grid ΛγE is defined as

the product of the solution on this grid from the current multigrid iteration cycle φγg and the
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correction factor fγ+1
g′ computed using solutions on two neighbouring energy grids ΛγE and Λγ+1

E

φ̂γg (~r) = φγg (~r)fγ+1
α,g′ (~r) , g ∈ ωγ+1

g′ . (2.35)

The interpolation procedure performs recursive calculation of factors and solution correction

on each grid according to Algorithm 3, where γ∗ = 1 for the pV -Γ cycle. In this algorithm, the

correction factor generally depends on the corrected solutions on coarser grids

fγ+1
α,g′ = fγ+1

α,g′
[
φγ , φ̂γ+1, . . . , φ̂Γ−1, φΓ

]
, (2.36)

and hence on the corresponding factors. Hereafter we refer to this type of operator as the

prolongation operator with recursive correction factors (RCF).

for γ ← Γ− 1 to γ∗ do

Compute correction factors fγ+1
α,g′ , g

′ = 1, . . . , Gγ+1

Perform interpolation on the grid ΛγE : φ̂γg = φγg f
γ+1
α,g′ , g ∈ ω

γ+1
g′ , g = 1, . . . , Gγ

end

Algorithm 3: Prolongation operator Iγ←γ+1
α with recursive correction factors

2.3.2 Prolongation Operator with Constant Approximation in Energy

The prolongation operators use different definitions of correction factors. The first variant of the

prolongation operator is based on a group-local factor associated with the coarse grid Λγ+1
E that

involves only one energy interval on this grid. It uses constant approximation of the solution

over the energy interval δEγ+1
g and is formulated as follows:

fγ+1
ce,g (r) =

φ̂γ+1
g (r)∑

g′∈ωγg φ
γ
g′(r)

, g = 1, . . . , Gγ+1 . (2.37)

This defines the operator Iγ←γ+1
ce that is referred to as the prolongation operator with constant

approximation in energy. It can be shown that application of the factor (3.28) recursively ac-

cording to Algorithm 3 is equivalent to the following factorization form of the operator Iγ←γ+1
ce :

φ̂γg = φγg f̃
γ+1
ce,g′ f̃

γ+2
ce,g′′ · · · f̃Γce,1 for g ∈ ωγ+1

g′ , g′ ∈ ωγ+2
g′′ etc , (2.38)
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where

f̃γ+1
ce,g (r) =

φγ+1
g (r)∑

g′∈ωγg φ
γ
g′(r)

, g = 1, . . . , Gγ+1 . (2.39)

Thus, the group scalar flux on the grid ΛγE is corrected by the product of the factors (3.30)

computed by the solutions on coarser grids from the current multigrid cycle.

2.3.3 Prolongation Operator with Linear Approximation in Energy

We now formulate the correction factor based on the linear approximation in energy using the

solution over two energy intervals of Λγ+1
E . The scalar flux on the grid ΛγE over intervals g and

g + 1 of the grid Λγ+1
E approximated by its group-average values can be cast as follows:

Φγ
g,γ+1(r, E) =

∑
g′∈ωγ+1

g ∪ωγ+1
g+1

φγg′(r)

∆Eγg′

(
H(E − Eγg′)−H(E − Eγg′−1)

)
,

E ∈ δEγ+1
g+1 ∪ δEγ+1

g , (2.40)

∆Eγg′ = Eγg′−1 − E
γ
g′ , (2.41)

where H is the Heaviside step function

H(x) =


0 x < 0
1
2 x = 0

1 x > 0

. (2.42)

The updated scalar flux on the grid ΛγE is defined by the following interpolation function:

Φ̂γ←γ+1
g (r, E) = Φγ

g,γ+1(r, E)F γ+1
g (r, E) for E ∈ δEγ+1

g+1 ∪ δEγ+1
g , (2.43)

where the factor F γ+1
p is the linear function in energy given by

F γ+1
g (E) = F̄ γ+1

E,g +
2

∆Eγ+1
g + ∆Eγ+1

g+1

(
E − Ēγ+1

g

)
F̃ γ+1
E,g , (2.44)

∆Eγ+1
g = Eγ+1

g−1 − Eγ+1
g , Ēγ+1

g =
1

2

(
Eγ+1
g−1 + Eγ+1

g+1

)
. (2.45)

The coefficients F̄ γ+1
E,g and F̃ γ+1

E,g are determined by means of the solution on the grid Λγ+1
E from

the following conditions: ∫
δEγ+1
g

Φ̂γ←γ+1
g (r, E)dE = φ̂γ+1

g (r) , (2.46)
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∫
δEγ+1
g+1

Φ̂γ←γ+1
g (r, E)dE = φ̂γ+1

g+1(r) . (2.47)

The corrected scalar flux Φ̂γ←γ+1
g (E) is used to update the group scalar fluxes on the grid ΛγE

over just one interval of the grid Λγ+1
E . We apply it to correct the solution over the interval

δEγ+1
g+1 as follows:

φ̂γg′(r) =

∫
δEγ
g′

Φ̂γ←γ+1
g (r, E)dE for g′ ∈ ωγ+1

g+1 . (2.48)

This leads to the multiplicative correction of the solution on the grid ΛγE by the solution on the

coarser grid Λγ+1
E given by

φ̂γg′(r) = φγg′(r)fγ+1
le,g′←g(r) , g′ ∈ ωγ+1

g+1 , g′ = 1, . . . , Gγ , (2.49)

where the correction factor fγ+1
le,g′←g is defined as

fγ+1
le,g′←g(r) =

1

∆Eγg′

∫
δEγ
g′

F γ+1
g (r, E)dE . (2.50)

The interpolation procedure (2.49) is applied recursively according to Algorithm 4. This defines

the prolongation operator Iγ←γ+1
le . Hereafter we referred to it as the prolongation operator with

linear approximation in energy.

for γ ← Γ− 1 to γ∗ do

Compute correction factors fγ+1
α,g′←g, g

′ = 1, . . . , Gγ , g = 1, . . . , Gγ+1

Perform interpolation on the grid ΛγE : φ̂γg′(r) = φγg′(r)fγ+1
α,g′←g(r) , g′ ∈ ωγ+1

g+1

end

Algorithm 4: Prolongation operator Iγ←γ+1
le with RCF.

The interpolation function (2.43) can also be applied to update group scalar fluxes on the

grid ΛγE over the interval δEγ+1
g

φ̂γg′(r) =

∫
δEγ
g′

Φ̂γ←γ+1
g (r, E)dE for g′ ∈ ωγ+1

g . (2.51)

This mapping is used for g = 1. We note that the coarsest grid ΛΓ
E has only one interval. To

update the solution on ΛΓ−1
E we use the group-local factors with constant approximation in

energy and hence set

fΓle,g′←g(r) = fΓce,g(r) , g′ ∈ ωΓ
g , (2.52)
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where g = 1. If the slope of the correction is large, the interpolated solution Φ̂γ←γ+1
g (E) can

be negative for E ∈ δEγ+1
g+1 ∪ δEγ+1

g . If this is the case, then we use the correction factor with

constant approximation in energy and set

fγ+1
le,g′←g(r) = fγ+1

ce,g (r) . (2.53)

Other slope-limiting techniques can also be applied to the interpolation factor (2.44) to adjust

the slope F̃ γ+1
E,g .

2.3.4 Prolongation Operator with Linear Approximation and Factorization

To formulate prolongation operators with non-recursive factors we generalize the factorization

form of the operator Iγ←γ+1
ce and define interpolation with linear approximation as a product

of factors

φ̂γg = φγg f̃
γ+1
lef,g←g′ f̃

γ+2
lef,g′←g′′ · · · f̃Γce,1 (2.54)

where g ∈ ωγ+1
g′+1, g′ ∈ ωγ+2

g′′+1 etc. Here the factors f̃γ+1
lef,g←g′ are computed according to the

methods described above in Sections 2.3.3 using the grid solutions φγ from the current multigrid

cycle. In the case of the linear approximation in energy, the coefficients of F γ+1
g′ (E) (Eq. (2.44))

are determined from the following conditions:∫
δEγ+1

g′

Φ̂γ←γ+1
g′ (r, E)dE = φγ+1

g′ (r) , (2.55)

∫
δEγ+1

g′+1

Φ̂γ←γ+1
g′ (r, E)dE = φγ+1

g′+1(r) . (2.56)

We refer to these operators as prolongation operators with factorization. They are described in

Algorithm 5

for γ ← Γ to γ∗ + 1 do

Compute correction factors f̃γlef,g←g′ , g = 1, . . . , Gγ , g′ = 1, . . . , Gγ+1

end
for γ ← Γ− 1 to γ∗ do

Perform interpolation on the grid ΛγE : φ̂γg = φγg f̃
γ+1
lef,g←g′ f̃

γ+2
lef,g′←g′′ · · · f̃Γce,1,

g ∈ ωγ+1
g′+1, g′ ∈ ωγ+2

g′′+1 . . .

end

Algorithm 5: Prolongation operator Iγ←γ+1
lef with factorization.
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2.4 Numerical Results

2.4.1 Definition of Tests

To demonstrate performance of the proposed methods we present results of two reactor-physics

problems.

� Test A is defined by the checker-board configuration formed by quarters of fuel assemblies.

It is shown in Figure 2.2. There are assemblies with two kinds of fuels: (i) UO2 and (ii)

mixed-oxide (MOX). The isotope compositions of model fuels and number densities of

nuclides are presented in Tables 2.1 and 2.2. Each type of fuel pins has the same material

properties. The fuel lattice pitch is 1.26 cm and the fuel pins have a radius of 1.08 cm. The

space between fuel pins is filled with water. All boundaries are reflective. This problem is

equivalent to the infinite spatial domain of two full assemblies next to each other.

� Test B (Figure 2.3) consists of the full-size MOX and UO2 assemblies from Test A with

large area of water that models a reflector region. The configuration of this test is shown

in Figure 3.3. It is similar to C5G7 benchmark [49]. The left and bottom boundaries are

reflective. The top and right boundaries are vacuum.

Both tests are defined using 44-group cross sections from SCALE 6.1 data library [66]. Figure

2.5 demonstrates Σt,g, νf,gΣf,g, and χg for three different materials used in the tests. The group

data values are plotted versus midpoints of group energy intervals. The scattering matrices

Σs,g→g′ are shown in Figure 2.6. The matrix elements are plotted versus the group indices.

Table 2.1: Isotope composition of UO2 fuel and number densities [1024 cm−3].

Nuclide 234U 235U 236U 238U 16O

Density 5.93×10−6 7.04×10−4 3.22×10−6 2.44×10−2 4.62×10−2

Table 2.2: Isotope composition of MOX fuel and number densities [1024 cm−3].

Nuclide 234U 235U 238U 238Pu 239Pu

Density 2.60×10−7 5.43×10−5 2.14×10−2 4.66×10−5 1.02×10−3

Nuclide 240Pu 241Pu 242Pu 16O

Density 4.83×10−4 1.75×10−4 1.32×10−4 4.66×10−2

The spatial meshes for both problems are uniform. The cells are 0.09cm×0.09cm. The ge-

ometry and mesh of a pin cell are displayed in Figure 2.4. The convergence criteria for the
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eigenvalue and associated eigenfunction on the given fine energy grid are

||φ(s) − φ(s−1)||∞ ≤ εφ||φ(s)||∞ , (2.57)∣∣∣k(s) − k(s−1)
∣∣∣ ≤ εkk(s) , (2.58)

where

||f ||∞ = max
i,j,g
|fg,i,j | , (2.59)

i and j span the spatial mesh, g = 1, . . . , G, s is the index of the multigrid iteration cycle. The

parameters of convergence criteria are εk=10−6 and εφ=10−6. The calculated multiplication

factors are (i) keff = 1.0761 in Test A and (ii) keff = 1.0455 in Test B.
R

efl
ec

ti
ve

B
.C

.

R
efl

ec
ti

ve
B

.C
.

Reflective B.C.

Reflective B.C.

21.42 cm

21
.4

2
cm

MOX Fuel
UO2 Fuel

Moderator

Figure 2: Test 1 geometry and configuration.

R
efl

ec
ti

ve
B

.C
.

V
a
cu

u
m

B
.C

.

Reflective B.C.

Vacuum B.C.

64.26 cm

64
.2

6
cm

MOX Fuel
UO2 Fuel

Moderator

Figure 3: Test 2 geometry and configuration.

MLD-3 [44,22,1]. The second grid has twenty groups with eleven fast and eleven thermal. The second
grid is defined as pairs of the original groups.

MLD-4 [44,8,2,1]. The four gird method uses both the eight-group and two-group grids defined above.

MLD-5 [44,8,4,2,1]. The five gird method uses both the eight-, four-, and two-group grids defined
above.

With these multigrid methods we are trying to reduce the work in the low-order equations. The
”best” cycle is one that gives the minimum number of total groupwise solves.

The results from these two test problems with various cycles on the specified energy grids are sumarized
in Tables 2 and ??. The first column specifies the cycle algorithm and the second column lists the number
of cycles until convergence. Columns 3-8 list the number of times the groupwise NDA equations were
solved on each energy grid. The total number of groupwise solves is the sum of the NDA solves on all
energy grids and the number of LO solves per group is the total divided by the 44 energy groups.

These two tables show that adding energy grids can reduce both the number of cycles and the total
number of LO solves. This shows that the work is being shifted from the high dimensional grids to the
lower dimensional grids. Going from two grids to any of the three grid sequences results is a significant
reduction in the number of LO solves. Of the three grid methods for Test 1 the [44,8,1] sequence takes
the least work with the MLD-3(2,1) cycle being the most efficient and for Test 2 the [44,4,1] with the
MLD-3(1,1) cycle has the fewest LO solves. This set of three grid results show that few groups do not
add much work, but they do not give as much improvement in the cycle. More groups can reduce the
total number of cycles, but too many groups will increase the total number of LO solves. The four grid
method with the (\)-cycle takes less work than any of the three grid methods. Performing nested cycles
for this grid sequence only increases the cost of each cycle without reducing the total number of cycles.
The five grid method has the same number of cycles as the four grid method, but the additional grid
makes each cycle more expensive so it does takes a little more LO

Figures ?? show the convergence of the solution for select methods for both tests. These errors were
calculated by comparing a running original grid solution to a reference solution. The running solution is
updated using correction factors and the new solution after the solve on each energy grid. The error is

7

Figure 2.2: Geometry and configuration of test problem A.

Coarsening of energy grids is evaluated by the coupling of the equations between energy

groups. This is done by analyzing the cross section data. There are two factors in the coupling,

scattering and fission production. The group low-order equations (1.19) are coupled though the

right-hand side that has the following form:

Rφ1 = B1φ
1 +

1

k
C1φ

1 , (2.60)

where B1 and C1 are defined by Eq. (2.11). The operator R accounts for scattering and fission

neutron-nuclide reactions. At a spatial position, the operator R is defined by the matrix

Rg,g′ = Σs,g′→g +
1

k
χgνf,g′Σf,g′ . (2.61)
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MLD-3 [44,22,1]. The second grid has twenty groups with eleven fast and eleven thermal. The second
grid is defined as pairs of the original groups.

MLD-4 [44,8,2,1]. The four gird method uses both the eight-group and two-group grids defined above.

MLD-5 [44,8,4,2,1]. The five gird method uses both the eight-, four-, and two-group grids defined
above.

With these multigrid methods we are trying to reduce the work in the low-order equations. The
”best” cycle is one that gives the minimum number of total groupwise solves.

The results from these two test problems with various cycles on the specified energy grids are sumarized
in Tables 2 and ??. The first column specifies the cycle algorithm and the second column lists the number
of cycles until convergence. Columns 3-8 list the number of times the groupwise NDA equations were
solved on each energy grid. The total number of groupwise solves is the sum of the NDA solves on all
energy grids and the number of LO solves per group is the total divided by the 44 energy groups.

These two tables show that adding energy grids can reduce both the number of cycles and the total
number of LO solves. This shows that the work is being shifted from the high dimensional grids to the
lower dimensional grids. Going from two grids to any of the three grid sequences results is a significant
reduction in the number of LO solves. Of the three grid methods for Test 1 the [44,8,1] sequence takes
the least work with the MLD-3(2,1) cycle being the most efficient and for Test 2 the [44,4,1] with the
MLD-3(1,1) cycle has the fewest LO solves. This set of three grid results show that few groups do not
add much work, but they do not give as much improvement in the cycle. More groups can reduce the
total number of cycles, but too many groups will increase the total number of LO solves. The four grid
method with the (\)-cycle takes less work than any of the three grid methods. Performing nested cycles
for this grid sequence only increases the cost of each cycle without reducing the total number of cycles.
The five grid method has the same number of cycles as the four grid method, but the additional grid
makes each cycle more expensive so it does takes a little more LO

Figures ?? show the convergence of the solution for select methods for both tests. These errors were
calculated by comparing a running original grid solution to a reference solution. The running solution is
updated using correction factors and the new solution after the solve on each energy grid. The error is
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Figure 2.3: Geometry and configuration of test problem B.
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is plotted over the multigrid cost which is the running sum of the total number of group-wise solves.
Figures ?? show the convergence for different numbers of grids. It can be seen that adding more grids
can significantly in crease the convergence rate of the solution. The five grid method has very similar
convergence behavior to the four grid method, but each cycle costs a little bit more. For some of the
methods the error increases in some parts of the cycle, however, the error decreases over each cycle and
there is a pretty consistent general convergence behavior. Figures ?? show the convergence for different
three grid sequences. For Test 1 the grid sequences with too many or two few groups on the second grid
the solution converge slower. The [44,4,1] and [44,8,1] grid sequences converge at similar rates, but the
latter converges more smoothly. For Test 2 the sequences with fewer groups on the second grid converge
faster. The [44,4,1] sequence converges a little faster than the [44,2,1] sequence.

Tables 3 and 4 show the results of the version of the method with an eigenvalue solve on each grid.
These results show that the eigenvalue solves on each grid can reduce the number of LO solves for some

8

Figure 2.4: Pin-cell grid.

The strength of group connection can be measured by

R̃g,g′ =
Rg,g′

max
m6=g
{Rg,m}

(2.62)
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Figure 2.5: The 44-group neutron cross section data generated with SCALE 6.1 data library
[66].
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Figure 2.6: log(Σs,g→g′) .

where R̃g,g = 0 [67, 74]. The larger R̃g,g′ the stronger solution in the group g is connected to

the solution in the group g′. This characterizes the influence of φg′ on φg. If R̃g,g′ is small then

φg is weakly coupled with φg′ . The measures of group connections for UO2, MOX, and water

are shown in Figure 2.7. They are calculated for k = 1.

2.4.2 Analysis of Results on Hierarchies of Nested Grids in Energy

Different types of hierarchies of grids in energy are applied to solve the tests. First, we use the

hierarchies of nested grids which resolve both fast and thermal energies. They are formed by

successive coarsening of grids and combining two or three neighboring energy intervals. These
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Figure 2.7: Measure of strength of group connection, R̃g,g′ .

sets of grids are built of the following nested coarse energy grids:

� ΛE,22: 22 groups consisting of 11 fast and 11 thermal,

� ΛE,8: 8 groups with 4 fast and 4 thermal,

� ΛE,4: 4 groups with 2 fast and 2 thermal,

� ΛE,2: 2 groups corresponding to fast and thermal energies.

The boundaries of energy intervals for the original 44-group data library of SCALE 6.1 and

nested coarse grids are shown in Tables 2.3-2.5. Each interval of the 22-group grid ΛE,22 com-

bines two intervals of the 44-group grid. The ΛE,8 grid is nested in the ΛE,22 grid etc. Figure 2.8

illustrates the structure of these nested grids in energy. We use the following hierarchies of these

grids: {44,2,1}, {44,4,1}, {44,8,1}, {44,22,1}, {44,8,2,1}, {44,22,4,1}, {44,8,4,2,1}, {44,22,8,2,1},
and

{44,22,8,4,2,1}.

Table 2.6 presents the results from Test A solved by means of multigrid algorithms with

different prolongation operators using RCF on hierarchies of grids with Γ = 3, . . . , 6. We also

provide the data for the two-grid algorithm. This table shows the numbers of cycles Nc and

diffusion solves Nds (Eqs. (3.33) and (3.34)). A similar collection of results for Test B is presented

in Tables 2.7.
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Table 2.3: Boundaries of energy intervals Eg in eV of the 44-group data library of SCALE
6.1.

i\j∗ 0 1 2 3 4 5 6 7 8 9

0 2.×107 8.1873×106 6.434×106 4.8×106 3.×106 2.479×106 2.354×106 1.85×106 1.4×106 9.×105

10 4.×105 1.×105 2.5×104 1.7×104 3.×103 5.5×102 1.×102 3.×101 1.×101 8.1

20 6. 4.75 3. 1.77 1. 6.25×10−1 4.×10−1 3.75×10−1 3.5×10−1 3.25×10−1

30 2.75×10−1 2.5×10−1 2.25×10−1 2.×10−1 1.5×10−1 1.×10−1 7.×10−2 5.×10−2 4.×10−2 3.×10−2

40 2.53×10−2 1.×10−2 7.5×10−3 3.×10−3 1.×10−5

∗g = i+ j

Table 2.4: Boundaries of energy intervals Eg in eV of the 22-group energy grid ΛE,22.

i\j∗ 0 1 2 3 4 5 6 7 8 9

0 2.×107 6.434×106 3.×106 2.354×106 1.4×106 4.×105 2.5×104 3.×103 1.×102 1.×101

10 6. 3. 1. 4.×10−1 3.5×10−1 2.75×10−1 2.25×10−1 1.5×10−1 7.×10−2 4.×10−2

20 2.53×10−2 7.5×10−3 1.×10−5

∗g = i+ j

Table 2.5: Boundaries of energy intervals Eg in eV of the nested energy grids ΛE,8, ΛE,4, and
ΛE,2.

g 0 1 2 3 4 5 6 7 8

ΛE,8 2.×107 2.354×106 2.5×104 1.×101 3. 4.×10−1 2.25×10−1 4.×10−2 1.×10−5

ΛE,4 2.×107 2.5×104 3. 2.25×10−1 1.×10−5

ΛE,2 2.×107 3. 1.×10−5

Figures 2.9-2.12 show the ∞-norm of the error of the solution φg(r) on the given 44-group

grid for the pV -Γ algorithms with Iγ←γ+1
ce and RCF during iteration cycles. Each of these figures

demonstrates the results for both tests. The∞-norm of the error is plotted versus computational

costs measured in numbers of diffusion solves. To compute these errors (a) the correction factors

of the multigrid algorithm are calculated after obtaining the solution on each energy grid ΛγE ,

(b) then the updated factors are applied to correct the solution on the fine grid Λ1
E , (c) this

updated solution φ1 is compared in the ∞-norm with the converged numerical solution of the

problem. Figure 2.9 demonstrates the effect of adding extra energy grids in case of the pV -Γ

algorithms with the correction factor based on constant approximation in energy (Iγ←γ+1
ce ).

Figure 2.10 shows performance of the pV -3 algorithm with Iγ←γ+1
ce on different sets of grids.

The plots of errors of the pV -Γ algorithms with Iγ←γ+1
ce on larger number of grids (Γ = 4, 5) are

presented in Figures 2.11-2.12. Figures 2.13-2.15 show comparison of convergence of the pV -Γ

algorithms with different prolongation operators on the hierarchies with four, five and six grids.
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Table 2.6: Test A results on nested grids.

Prolongation Operator

Multigrid Hierarchy of Iγ←γ+1
ce Iγ←γ+1

le Iγ←γ+1
lef

Algorithm Grids Nc Nds Nds/G Nc Nds Nds/G Nc Nds Nds/G

pV -2 {44,1} 25 1126 25.6 N/A N/A

pV -3 {44,2,1} 15 706 16.0 17 800 18.2 N/A

pV -3 {44,4,1} 11 540 12.3 11 540 12.3 N/A

pW -3(2,1) {44,4,1} 11 595 13.5 11 595 13.5 N/A

pV -3 {44,8,1} 9 478 10.9 8 425 9.7 N/A

pV -3 {44,22,1} 13 872 19.8 13 872 19.8 N/A

pW -3(2,1) {44,22,1} 8 721 16.4 8 721 16.4 N/A

pW -3(2,2) {44,22,1} 6 679 15.4 7 792 18.0 N/A

pV -4 {44,8,2,1} 8 441 10.0 9 496 11.3 9 496 11.3

pV -4 {44,22,4,1} 5 356 8.1 7 498 11.3 7 498 11.3

pV -5 {44,8,4,2,1} 8 473 10.8 9 532 12.1 9 532 12.1

pV -5 {44,22,8,2,1} 6 463 10.5 7 540 12.3 6 463 10.5

pV -6 {44,22,8,4,2,1} 6 487 11.0 7 568 12.9 6 487 11.1

N/A - Not applicable on this grid sequence.

Table 2.7: Test B results on nested grids.

Prolongation Operator

Multigrid Hierarchy of Iγ←γ+1
ce Iγ←γ+1

le Iγ←γ+1
lef

Algorithm Grids Nc Nds Nds/G Nc Nds Nds/G Nc Nds Nds/G

pV -2 {44,1} 30 1351 30.7 N/A N/A

pV -3 {44,2,1} 15 706 16.0 17 800 18.2 N/A

pV -3 {44,4,1} 12 589 13.4 12 589 13.4 N/A

pV -3 {44,8,1} 18 955 21.7 17 902 20.5 N/A

pW -3(2,1) {44,8,1} 10 621 14.1 10 621 14.1 N/A

pV -3 {44,22,1} 23 1542 35.0 23 1542 35.0 N/A

pW -3(2,1) {44,22,1} 13 1171 26.6 13 1171 26.6 N/A

pW -3(2,2) {44,22,1} 10 1131 25.7 10 1131 25.7 N/A

pV -4 {44,8,2,1} 8 441 10.0 10 551 12.5 10 551 12.5

pV -4 {44,22,4,1} 10 711 16.2 10 711 16.2 10 711 16.2

pV -5 {44,8,4,2,1} 8 473 10.8 10 591 13.4 10 591 13.4

pV -5 {44,22,8,2,1} 7 540 12.3 9 694 15.8 8 617 14.0

pV -6 {44,22,8,4,2,1} 6 487 11.0 9 730 16.6 8 649 14.8

N/A - Not applicable on this grid sequence.

31



1 0 - 5 1 0 - 4 1 0 - 3 1 0 - 2 1 0 - 1 1 0 0 1 0 1 1 0 2 1 0 3 1 0 4 1 0 5 1 0 6 1 0 7
0
5

1 0
1 5
2 0
2 5
3 0
3 5
4 0
4 5  4 4  g r o u p s

 2 2  g r o u p s
 8  g r o u p s
 4  g r o u p s
 2  g r o u p s

Gr
ou

p N
um

be
r

E  [ e V ]

Figure 2.8: The structure of nested energy grids based on the 44-group data library.

The results indicate that involving extra energy grids can reduce both the number of cycles

and the total number of diffusion solves. Going from two grids to any of the three grid sequences

leads to a significant reduction in the number of diffusion solves. Of the three-grid methods for

Test A the {44,8,1} hierarchy takes the least work. The pV -3 algorithm with Iγ←γ+1
le is the most

efficient in this case. For Test B the pV -3 algorithms with Iγ←γ+1
ce and Iγ←γ+1

le on the {44,4,1}
set have the fewest number of diffusion solves. These results on three-grid hierarchies also show

that using the second grid with large number of groups doesn’t lead to better efficiency. The pV -

4 algorithms have even better performance than pV -3 algorithms. The pW -4 algorithms don’t

reduce the total number of cycles, but executing nested iterations for the four-grid sequences

only increases the cost of each cycle. In Test A the pV -4 algorithm with Iγ←γ+1
ce on the hierarchy

{44,22,4,1} shows the best performance with Nds = 356. In Test B this method also is the most

efficient with Nds = 441. It works better on the hierarchy {44,8,2,1}.
In both tests, the pV -4 algorithm with Iγ←γ+1

ce is the most efficient. Some algorithms with

five and six grids require small number of cycles, but relatively higher cost of each cycle makes

them less efficient than the four-grid algorithms. On most grids the pV -Γ algorithms with

Iγ←γ+1
ce have the best performance. The algorithms with Iγ←γ+1

le work rather similarly and

require the numbers of cycles that are close to the numbers of the method with Iγ←γ+1
ce . We

notice that the pV -Γ algorithm with Iγ←γ+1
le and factorization converges more rapidly for Γ = 6

compared to this algorithm with RCF. These results are indicative of certain advantage of
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Figure 2.9: Evolution of the∞-norm of the error for pV -Γ with Iγ←γ+1
ce on hierarchies of grids

with different number of levels.
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Figure 2.10: Evolution of the∞-norm of the error for pV -3 with Iγ←γ+1
ce on different hierarchies

of grids.
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Figure 2.11: Evolution of the∞-norm of the error for pV -4 with Iγ←γ+1
ce on different hierarchies

of grids.
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Figure 2.12: Evolution of the∞-norm of the error for pV -5 with Iγ←γ+1
ce on different hierarchies

of grids.
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Figure 2.13: Evolution of the ∞-norm of the error for pV -4 with Iγ←γ+1
ce and Iγ←γ+1

le on the
hierarchy of grids {44,8,2,1}.
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Figure 2.14: Evolution of the ∞-norm of the error for pV -5 with Iγ←γ+1
ce and Iγ←γ+1

le on the
hierarchy of grids {44,8,4,2,1}.
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Figure 2.15: Evolution of the ∞-norm of the error for pV -6 with Iγ←γ+1
ce and Iγ←γ+1

le on the
hierarchy of grids {44,22,8,4,2,1}.

prolongation operators with factorization.

The multigrid algorithms have different patterns of convergence during a multigrid cycle.

The methods with large number of grids exhibit rather steady convergence during cycles. An

example is performance of the pV -6 algorithms with Iγ←γ+1
ce and Iγ←γ+1

le with RCF (see Fig.

2.15). The error in the solution of the pV -3 algorithms on various hierarchies of grids is reduced

significantly on the coarsest grid where the effective one-group eigenvalue problem is solved (see

Fig. 2.10). In fast pV -4 algorithms, the error in the solution is decreased efficiently after the

solve on the fine grid Λ1
E . The examples are the pV -4 algorithms on the {44,8,2,1} set in both

tests (see Fig. 2.13). Some multigrid algorithms on a certain set of grids have increase in the

error in φg on one of stages of the iteration cycle. We see this, for example, in the error histories

of the pV -4 algorithms on the {44,8,2,1} set with Iγ←γ+1
le in Test A (see Fig. 2.13). In most

cases, such behavior doesn’t cause a problem for convergence.

2.4.3 Analysis of Results on Hierarchies of Grids with Agglomeration

The multigrid algorithms are also analyzed on grids with agglomeration in which fast groups

are combined to form a macroelement in energy. As a result these grids don’t resolve the fast

energy range. This type of grids are defined as follows:

� ΛE,13: 13 groups consisting of 2 fast and 11 thermal,
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� ΛE,12: 12 groups consisting of 1 fast and 11 thermal,

� ΛE,5: 5 groups with 1 fast and 4 thermal,

� ΛE,3: 3 groups with 1 fast and 2 thermal.

These energy grids are shown in Figure 2.16. We consider several hierarchies of such grids:

{44,3,1}, {44,5,1}, {44,12,1}, {44,12,3,1}, {44,13,5,2,1}, and

{44,13,5,3,2,1}. Each of these sets has a corresponding sequence of nested grids with the resolved

fast range. They are presented in Table 2.8.
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Figure 2.16: The structure of energy grids with agglomeration based on 44-group library.

Table 2.9 shows the results of Test A on hierarchies of grids with agglomeration obtained by

the multigrid algorithms using prolongation operators with RCF and factorization. The results

for Test B are summarized in Table 2.10. In most cases, the pV -Γ and pW -Γ algorithms on

these hierarchies of grids have the same number of circles as in the case of corresponding nested

grids. Some algorithms have even less cycles. Note that this is in spite of the fact that the fast

range isn’t resolved. All these hierarchies of grids have fewer number of groups. This leads to

high efficiency of the multigrid algorithms. Such kind of grids also enable us to use advantages

of five- and six-grid algorithms to achieve even better performance. The most efficient algorithm

in Test B is pV -5 with Iγ←γ+1
ce and RCF on the {44,13,5,2,1} set. It requires 391 diffusion solves.
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Table 2.8: Hierarchies of grids with agglomeration and corresponding sets of nested grids.

Γ
Hierarchy of Grids

with Agglomeration
Hierarchy of Grids

with Resolved Fast Range

{44,3,1} {44,4,1}
3 {44,5,1} {44,8,1}
{44,12,1} {44,22,1}

4 {44,5,3,1} {44,8,4,1}
5 {44,13,5,2,1} {44,22,8,2,1}
6 {44,13,5,3,2,1} {44,22,8,4,2,1}

Table 2.9: Test A results on grids with agglomeration.

Prolongation Operator

Multigrid Hierarchy of Iγ←γ+1
ce Iγ←γ+1

le Iγ←γ+1
lef

Algorithm Grids Nc Nds Nds/G Nc Nds Nds/G Nc Nds Nds/G

pV -3 {44,3,1} 11 529 12.0 11 529 12.0 N/A

pV -3 {44,5,1} 9 451 10.3 10 501 11.4 N/A

pV -3 {44,12,1} 12 685 15.6 13 742 16.9 N/A

pW -3(2,1) {44,12,1} 8 561 12.8 8 561 12.8 N/A

pW -3(2,2) {44,12,1} 6 499 11.3 6 501 11.4 N/A

pV -4 {44,12,3,1} 6 361 8.2 8 481 10.9 7 421 9.6

pV -5 {44,13,5,2,1} 6 391 8.9 7 456 10.4 7 456 10.4

pV -6 {44,13,5,3,2,1} 6 409 9.3 7 477 10.8 7 477 10.8

N/A - Not applicable on this grid sequence.

Table 2.10: Test B results on grids with agglomeration.

Prolongation Operator

Multigrid Hierarchy of Iγ←γ+1
ce Iγ←γ+1

le Iγ←γ+1
lef

Algorithm Grids Nc Nds Nds/G Nc Nds Nds/G Nc Nds Nds/G

pV -3 {44,3,1} 12 577 13.1 14 673 15.3 N/A

pV -3 {44,5,1} 18 901 20.5 17 851 19.3 N/A

pV -3 {44,12,1} 22 1255 28.5 22 1255 28.5 N/A

pW -3(2,1) {44,12,1} 12 841 19.1 13 898 20.4 N/A

pW -3(2,2) {44,12,1} 9 748 17.0 9 748 17.0 N/A

pV -4 {44,5,3,1} 8 417 9.5 10 521 11.8 10 521 11.8

pV -5 {44,13,5,2,1} 6 391 8.9 9 586 13.3 8 521 11.8

pV -6 {44,13,5,3,2,1} 6 409 9.3 10 681 15.5 8 545 12.4

N/A - Not applicable on this grid sequence.

2.5 Summary

New iteration methods for solving eigenvalue problems for multigroup diffusion equations have

been developed. They are based on multigrid-in-energy approach. The nonlinear projection
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operator is formulated by means of averaging the group diffusion equations over energy on

the hierarchy of energy grids. We defined several variants of prolongation operators based

on multiplication correction of the grid solutions. One prolongation uses correction factors

with a constant approximation in energy and the other uses correction factors with linear

approximation in energy. The linear in energy prolongation operators use linear interpolation

in energy between neighboring grids. We apply the partial V- and W-cycles to move through

the hierarchy of energy grids. The estimation of the eigenvalue is performed on the coarsest grid

with just one energy group. Thus, the eigenvalue problem is solved in the space with the smallest

dimensionality. The proposed methods with multigrid in energy were derived for the second-

order finite volume spatial approximation of the diffusion equation. They can be applied to other

spatial discretizations as well, for example, finite element methods. The obtained numerical

results on realistic model reactor-physics problems with 44 groups demonstrated efficiency of

the developed algorithms with multigrid in energy. They enable to reduce significantly total

number of diffusion solves. Involving additional coarse energy grids can accelerate iterations

and decrease computational costs. The algorithms with new prolongation operators can be

applied to develop advanced iterative methods for solving the multigroup transport problems

with very large number of groups and large-scale multiphysics problems. The NDA and QD

methods are both discrete ordinate transport methods, but the low-order equations used to

accelerate them are diffusion like. This multilevel with multigrid in energy methodology can be

used to reduce the work in the work in the low-order problems of NDA and QD.
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Chapter 3

Multilevel Transport Method with

Multigrid in Energy

This chapter presents a transport method that solves the multigroup k-eigenvalue equations. It

uses a set of low-order equations to accelerate the transport solution. We consider multigroup

k-eigenvalue transport problems with isotropic scattering in 2D Cartesian geometry (1.2a).

The high-order transport equations are discretized on rectangular mesh using the conservative

method of short characteristics with sub-cell balance [51, 10, 56], however the methodology

can be applied to other existing transport discretization schemes. The hyperbolic system of

transport equations is solved as a fixed source problem by sweeping through space along each

angle. The total source terms for these sweeps is calculated by means of the solution from the

low-order problem. The low-order equations have been formulated using both Quasidiffusion and

Nonlinear Diffusion Acceleration. The low-order problem is defined on a sequence of coarsening

grids in energy. These problems on multiple energy grids are used to accelerate the solution of

the transport eigenvalue problem on the original grid. On each iteration cycle, the eigenvalue is

estimated from the solution of the low-order problem with the lowest dimensionality which is

the one-group problem. Various multigrid algorithms are used to move through these different

grids and solve the set of low-order equations. A consistent discretization of the low-order

Quasidiffusion equations is derived that is based on a second-order finite volume scheme and

uses special compensation (consistency) terms. Thus both of the proposed multilevel methods

are pure acceleration methods. The iterative method with multigrid in energy based on the QD

method can use independent discretization of high-order and low-order equations and provide

certain advantages from the viewpoint of stability of iterations. The results of this chapter has

been published in [42, 43, 44, 45].

The following sections describe two variants of the proposed methodology by formulating

the multigroup low-order NDA and QD equations. The discretized NDA equations are presented
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in Sec. 3.1 and the discretized Quasidiffusion equations are described in Sec. 3.2. A hierarchy

of low-order equations is defined in 3.3 and the multigrid algorithms are described 3.4. Some

results are presented in Sec. 3.5. Sec. 3.6 presents a modified grid sequence where the low-order

problem is formulated on a coarser energy grid than the original transport problem.

3.1 Formulation of the Multigroup Low-Order NDA Equations

The low-order NDA equations were presented earlier in continuous form, however they were

originally defined in discretized form. The idea behind formulating the LONDA equations in

discrete form is to take some discretization of the P1 equations as a basis then (i) modify it by

introducing compensation terms in the discretized first-moment equations and (ii) define exact

closure relations [36, 38].

Let us consider transport problems in two-dimensional Cartesian geometry for G = {0 ≤
x ≤ X, 0 ≤ y ≤ Y } with rectangular spatial grids {xi−1/2, i = 1, . . . , Nx, yj−1/2, j = 1, . . . , Ny}.
The high-order transport and LONDA equations are approximated on the same spatial grids. To

derive the LONDA equations we apply classical formulation by means of a finite-volume scheme

for the P1 equations. For the cell (i, j) the system of LONDA equations for the multigroup

transport problem (1.2) consists of the balance equation

(Jx,g,i+1/2,j − Jx,g,i−1/2,j)∆yj + (Jy,g,i,j+1/2 − Jy,g,i,j−1/2)∆xi + Σt,g,i,jAi,jφg,i,j =

Ai,j

G∑
g′=1

Σs,g′→g,i,jφg′,i,j +
1

k
Ai,jχg,i,j

G∑
g′=1

νΣf,g′,i,jφg′,i,j (3.1a)

and the first-moment equations of the following form:

Jx,g,i+1/2,j = −
Dg,i+1/2,j(φg,i+1,j − φg,i,j)

∆xi+1/2
+

1

2
D̃g,i+1/2,j(φg,i+1,j + φg,i,j) , (3.1b)

Jy,g,i,j+1/2 = −
Dg,i,j+1/2(φg,i,j+1 − φg,i,j)

∆yj+1/2
+

1

2
D̃g,i,j+1/2(φg,i,j+1 + φg,i,j) , (3.1c)

where
∆xi = xi+1/2 − xi−1/2 , ∆yj = yj+1/2 − yj−1/2 , Ai,j = ∆xi∆yj , (3.2)

∆xi+1/2 =
1

2
(∆xi+1 + ∆xi) , ∆yj+1/2 =

1

2
(∆yj+1 + ∆yj) , (3.3)

Jx,g,i+1/2,j and Jy,g,i,j+1/2 are cell-face group currents, φg,i,j (i = 1, . . . , Nx, j = 1, . . . , Ny) are

cell-average group scalar fluxes, φg,i,j , φg,Nx+1,j , φg,i,0, φg,i,Ny+1 are cell-face group scalar fluxes
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in boundary spatial cells. The boundary conditions are

Jx,g,1/2,j = FLx,g,jφg,0,j , Jx,g,Nx+1/2,j = FRx,g,jφg,Nx+1,j , (3.4)

Jy,g,i,1/2 = FBy,g,iφg,i,0 , Jy,g,i,Ny+1/2 = F Ty,g,iφg,i,Ny+1 . (3.5)

The cell-face diffusion coefficients are defined by means of cell-average coefficients

Dg,i+1/2,j =
2Dg,i,jDg,i+1,j∆xi+1/2

Dg,i,j∆xi+1 +Dg,i+1,j∆xi
, (3.6a)

Dg,i,j+1/2 =
2Dg,i,jDg,i,j+1∆yj+1/2

Dg,i,j∆yj+1 +Dg,i,j+1∆yj
. (3.6b)

The compensation factors are formulated to make the high-order and low-order equations con-

sistent. They are given by

D̃g,i+1/2,j =
J̃x,g,i+1/2,j + 1

∆xi+1/2
Dg,i+1/2,j(φ̃g,i+1,j − φ̃g,i,j)

0.5(φ̃g,i+1,j + φ̃g,i,j)
, (3.7a)

D̃g,i,j+1/2 =
J̃x,g,i,j+1/2 + 1

∆yj+1/2
Dg,i,j+1/2(φ̃g,i,j+1 − φ̃g,i,j)

0.5(φ̃g,i,j+1 + φ̃g,i,j)
, (3.7b)

where φ̃g and J̃α,g are defined by the solution of the high-order transport problem and hence

φ̃g,i,j =
∑
m

ψg,m,i,jwm , (3.8a)

J̃x,g,i+1/2,j =
∑
m

Ωx,mψg,m,i+1/2,jwm , (3.8b)

J̃y,g,i+1/2,j =
∑
m

Ωy,mψg,m,i+1/2,jwm . (3.8c)

Here ψg,m is the angular flux for the discrete direction Ωm and wm is the quadrature weight.

The first-moment equations (3.1b) and (3.1b) can be cast as

Jx,g,i+1/2,j = − 1

∆xi+1/2

(
D+
g,i+1/2,jφg,i+1,j −D−g,i+1/2,jφg,i,j

)
, (3.9a)

Jy,g,i,j+1/2 = − 1

∆yj+1/2

(
D+
g,i,j+1/2φg,i,j+1 −D−g,i,j+1/2φg,i,j

)
, (3.9b)

where the factors

D±g,i+1/2,j = Dg,i+1/2,j ∓
1

2
D̃x,g,i+1/2,j∆xi+1/2 , (3.10a)
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D±g,i,j+1/2 = Dg,i,j+1/2 ∓
1

2
D̃y,g,i,j+1/2∆yj+1/2 (3.10b)

are modified diffusion coefficients of the generalized Fick’s law. Substituting equation (3.9) into

the balance equation (3.1a) yields the diffusion-like equation

Lg[D±g ]φg,i,j + Σt,g,i,jAi,jφg,i,j =

Ai,j

G∑
g′=1

Σs,g′→g,i,jφg′,i,j +
1

k
Ai,jχg,i,j

G∑
g′=1

νΣf,g′,i,jφg′,i,j , (3.11a)

Lg[D±g ]φg,i,j = −
[

(D+
g,i+1/2,jφg,i+1,j −D−g,i+1/2,jφg,i,j)

∆xi+1/2

−
(D+

g,i−1/2,jφg,i,j −D
−
g,i−1/2,jφg,i−1,j)

∆xi−1/2

]
∆yj −

[
(D+

g,i,j+1/2φg,i,j+1 −D−g,i,j+1/2φg,i,j)

∆yj+1/2

−
(D+

g,i,j−1/2φg,i,j −D
−
g,i,j−1/2φg,i,j−1)

∆yj−1/2

]
∆xi . (3.11b)

where the leakage operator Lg is defined by a five-point stencil.

3.2 Formulation of the Multigroup Low-Order Quasidiffusion

Equations

The low-order QD equations (1.5a)-(1.5b) can be discretized on a rectangular spatial mesh by

means of a second-order finite volume method. The balance equation (1.5a) is integrated over

each cell (i, j) to obtain

(Jx,g,i+1/2,j − Jx,g,i−1/2,j)∆yj + (Jy,g,i,j+1/2 − Jy,g,i,j−1/2)∆xi + Σt,g,i,jAi,jφg,i,j =

Ai,j

G∑
g′=1

Σs,g′→g,i,jφg′,i,j +Ai,j
χg,i,j
k

G∑
g′=1

νf,g′,i,jΣf,g′,i,jφg′,i,j . (3.12)

The x-component of the first moment equation (1.5b) is integrated over the left and right

halves of the cell (i, j) and compensation terms are added to enable the solution of the low-

order equations to reproduce angular moments of the discrete high-order transport solution on
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any spatial grid [12]. The corresponding discretized first moment equations are given by

((
Exx,g,i,j + ξL−x,g,i,j

)
φg,i,j −

(
Exx,g,i−1/2,j + ξL+

x,g,i,j

)
φg,i−1/2,j

)
∆yj +

1

2

(
Exy,g,i,j+1/2φg,i,j+1/2

− Exy,g,i,j−1/2φg,i,j−1/2

)
∆xi +

1

2
Σt,g,i,jAi,jJx,g,i−1/2,j = 0 , (3.13a)

((
Exx,g,i+1/2,j + ξR−x,g,i,j

)
φg,i+1/2,j −

(
Exx,g,i,j + ξR+

x,g,i,j

)
φg,i,j

)
∆yj +

1

2

(
Exy,g,i,j+1/2φg,i,j+1/2

− Exy,g,i,j−1/2φg,i,j−1/2

)
∆xi +

1

2
Σt,g,i,jAi,jJx,g,i+1/2,j = 0 , (3.13b)

Eαβ,g,k,l =

∑M
m=1 Ωα,mΩβ,mψm,g,k,lwm∑M

m=1 ψm,g,k,lwm
, (3.14)

where (k, l) = {(i, j), (i+ 1/2, j), (i, j + 1/2)} are indices corresponding to cell-average or face-

average grid functions, Ωm and wm (m = 1, . . . ,M) are discrete directions and quadrature

weights, respectively. The compensation terms are defined as follows:

ξL−x,g,i,j =

−
γLx,g,i,j
φ̃g,i,j∆yj

, if γLx,g,i,j ≤ 0,

0, if γLx,g,i,j > 0,
ξL+
x,g,i,j =

0, if γLx,g,i,j ≤ 0,
γLx,g,i,j

φ̃g,i−1/2,j∆yj
, if γLx,g,i,j > 0,

(3.15a)

ξR−x,g,i,j =

−
γRx,g,i,j

φ̃g,i+1/2,j∆yj
, if γRx,g,i,j ≤ 0,

0, if γRx,g,i,j > 0,
ξR+
x,g,i,j =

0, if γRx,g,i,j ≤ 0,
γRx,g,i,j
φ̃g,i,j∆yj

, if γRx,g,i,j > 0,
(3.15b)

γLx,g,i,j =
(
Exx,g,i,jφ̃g,i,j − Exx,g,i−1/2,jφ̃g,i−1/2,j

)
∆yj

+
(
Exy,g,i,j+1/2φ̃g,i,j+1/2 − Exy,g,i,j−1/2φ̃g,i,j−1/2

)∆xi
2

+
1

2
Σt,g,i,jAi,j J̃x,g,i−1/2,j , (3.15c)

γRx,g,i,j =
(
Exx,g,i+1/2,jφ̃g,i+1/2,j − Exx,g,i,jφ̃g,i,j

)
∆yj

+
(
Exy,g,i,j+1/2φ̃g,i,j+1/2 − Exy,g,i,j−1/2φ̃g,i,j−1/2

)∆xi
2

+
1

2
Σt,g,i,jAi,j J̃x,g,i−1/2,j , (3.15d)

where

φ̃g,k,l =
∑
m

ψm,g,k,lwm , J̃α,g,k,l =
∑
m

Ωα,mψm,g,k,lwm (3.16)

are the angular moments of the high-order transport solution. To discretize the y-component

of the first moment equation (1.5b) we integrate it over the top and bottom halves of the cell
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(i, j) and introduce corresponding compensation terms. This yields the following discretization

of Eq. (1.5b):

1

2

(
Exy,g,i+1/2,jφg,i+1/2,j − Exy,g,i−1/2,jφg,i−1/2,j

)
∆yj +

(
(Eyy,g,i,j + ξB−g,i,j)φg,i,j

− (Eyy,g,i,j−1/2 + ξB+
g,i,j)φg,i,j−1/2

)
∆xi +

1

2
Σt,g,i,jJy,g,i,j−1/2Ai,j = 0 , (3.17a)

1

2

(
Exy,g,i+1/2,jφg,i+1/2,j − Exy,g,i−1/2,jφg,i−1/2,j

)
∆yj +

(
(Eyy,g,i,j+1/2 + ξT−g,i,j)φg,i,j+1/2

− (Eyy,g,i,j + ξT+
g,i,j)φg,i,j

)
∆xi +

1

2
Σt,g,i,jJy,g,i,j+1/2Ai,j = 0 , (3.17b)

where

ξB−g,i,j =

−
γBg,i,j

φ̃g,i,j∆xi
for γBg,i,j ≤ 0 ,

0 for γBg,i,j > 0 ,
ξB+
g,i,j =

0 for γBg,i,j ≤ 0 ,
γBg,i,j

φ̃g,i,j−1/2∆xi
for γBg,i,j > 0 ,

(3.18a)

ξT−g,i,j =

−
γTg,i,j

φ̃g,i,j+1/2∆xi
for γTg,i,j ≤ 0 ,

0 for γTg,i,j > 0 ,
ξT+
g,i,j =

0 for γTg,i,j ≤ 0 ,
γTg,i,j

φ̃g,i,j∆xi
for γTg,i,j > 0 ,

(3.18b)

γBg,i,j =
1

2

(
Exy,g,i+1/2,jφ̃g,i+1/2,j − Exy,g,i−1/2,jφ̃g,i−1/2,j

)
∆yj

+
(
Eyy,g,i,jφ̃g,i,j − Eyy,g,i,j−1/2φ̃g,i,j−1/2

)
∆xi +

1

2
Σt,g,i,j J̃y,g,i,j−1/2Ai,j , (3.19a)

γTg,i,j =
1

2

(
Exy,g,i+1/2,jφ̃g,i+1/2,j − Exy,g,i−1/2,jφ̃g,i−1/2,j

)
∆yj

+
(
Eyy,g,i,j+1/2φ̃g,i,j+1/2 − Eyy,g,i,jφ̃g,i,j

)
∆xi +

1

2
Σt,g,i,j J̃y,g,i,j+1/2Ai,j . (3.19b)

The first moment equations can be substituted into the balance equation to eliminate the

currents yielding the equations in the form

Lg[G∗g]φg,i,j + Σt,g,i,jφg,i,j =

G∑
g′=1

Σs,g′→g,i,jφg′,i,j +
χg,i,j
k

G∑
g′=1

νf,g′,i,jΣf,g′,i,jφg′,i,j , (3.20a)

where the leakage operator is

Lg[G∗g]φg,i,j = − 2

∆x2
i

(
GRxx,g,i,jφg,i+1/2,j − (GCRxx,g,i,j +GCLxx,g,i,j)φg,i,j +GLxx,g,i,jφg,i−1/2,j

)
− 2

∆y2
j

(
GTyy,g,i,jφg,i,j+1/2 − (GCTyy,g,i,j +GCByy,g,i,j)φg,i,j +GByy,g,i,jφg,i,j−1/2

)
, (3.20b)
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and the modified coefficients are defined in terms of the Eddington factors and consistency

terms as

GCLxx,g,i,j =
Exx,g,i,j + ξL−g,i,j

Σt,g,i,j
, GCRxx,g,i,j =

Exx,g,i,j + ξR+
g,i,j

Σt,g,i,j
, (3.21a)

GCByy,g,i,j =
Eyy,g,i,j + ξB−g,i,j

Σt,g,i,j
, GCTyy,g,i,j =

Eyy,g,i,j + ξT+
g,i,j

Σt,g,i,j
, (3.21b)

GLxx,g,i,j =
Exx,g,i−1/2,j + ξL+

g,i,j

Σt,g,i,j
, GRxx,g,i,j =

Exx,g,i+1/2,j + ξR−g,i,j
Σt,g,i,j

, (3.21c)

GByy,g,i,j =
Eyy,g,i,j−1/2 + ξB+

g,i,j

Σt,g,i,j
, GTyy,g,i,j =

Eyy,g,i,j+1/2 + ξT−g,i,j
Σt,g,i,j

. (3.21d)

3.3 The Hierarchy of Low-Order Equations on Multiple Grids

in Energy

A hierarchy of grids is defined as described in Sec. 2.1. The first energy grid in the low-order

problem Λ1
E is defined to be identical to the original energy grid of the transport problem. The

low-order equations are successively averaged over groups on the set of grids in energy to derive

a hierarchy of group low-order problems. The averaged cross sections and factors are defined for

each grid to close exactly the multigrid system of group low-order equations. This procedure is

applied directly to the spatially discretized low-order equations.

As a result we obtain a system of nonlinearly coupled multigrid low-order equations in

which cross sections depend on solution on the previous grid. The multigrid system of low-

order equations in the spatial (i, j) cell are defined by

Lγpφ
γ
g,i,j + Σ̄γ

t,g,i,jφ
γ
g,i,j =

Gγ∑
g′=1

Σ̄γ
s,g′→g,i,jφ

γ
g′,i,j +

χ̄γg,i,j
k

Gγ∑
g′=1

νΣ
γ
f,g′,i,jφ

γ
g′,i,j , (3.22a)

g = 1, . . . , Gγ , γ = 1, . . . ,Γ− 1,

LΓ
1φ

Γ
1,i,j +

(
Σ̄Γ
a,1,i,j −

1

k
νΣ

Γ
f,1,i,j

)
φΓ

1,i,j = 0 , γ = Γ , (3.22b)

where φγg,i,j is the cell-average group scalar flux, Jγx,g,i+1/2,j and Jγy,g,i,j+1/2 are the face-average

group currents on grid γ. The cross sections on the coarse energy grid ΛγE are defined by

the cross sections and solution on the grid Λγ−1
E as follows as in Equations (2.7). For the NDA

method the leakage operator Lγp = Lγp [D±,γp ] and the modified diffusion coefficients are averaged

as described by Equations (2.29). The coarse-group leakage operator Lγp = Lγp [G∗,γp ] and factors
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for the QD method are defined by means of the solution on the previous energy grid as

ḠCL,γxx,g,i,j =

∑
m∈ωγg Ḡ

CL,γ−1
xx,m,i,jφ

γ−1
m,i,j∑

m∈ωγg φ
γ−1
m,i,j

, ḠCR,γxx,g,i,j =

∑
m∈ωγg Ḡ

CR,γ−1
xx,m,i,jφ

γ−1
m,i,j∑

m∈ωγg φ
γ−1
m,i,j

, (3.23a)

ḠCB,γyy,g,i,j =

∑
m∈ωγg Ḡ

CB,γ−1
yy,m,i,j φ

γ−1
m,i,j∑

m∈ωγg φ
γ−1
m,i,j

, ḠCT,γyy,g,i,j =

∑
m∈ωγg Ḡ

CT,γ−1
yy,m,i,jφ

γ−1
m,i,j∑

m∈ωγg φ
γ−1
m,i,j

, (3.23b)

ḠL,γxx,g,i,j =

∑
m∈ωγg Ḡ

L,γ−1
xx,m,i,jφ

γ−1
m,i−1/2,j∑

m∈ωγg φ
γ−1
m,i−1/2,j

, ḠR,γxx,g,i,j =

∑
m∈ωγg Ḡ

R,γ−1
xx,m,i,jφ

γ−1
m,i+1/2,j∑

m∈ωγg φ
γ−1
m,i+1/2,j

, (3.23c)

ḠB,γyy,g,i,j =

∑
m∈ωγg Ḡ

B,γ−1
yy,m,i,jφ

γ−1
m,i,j−1/2∑

m∈ωγg φ
γ−1
m,i,j−1/2

, ḠT,γyy,g,i,j =

∑
m∈ωγg Ḡ

T,γ−1
yy,m,i,jφ

γ−1
m,i,j−1/2∑

m∈ωγg φ
γ−1
m,i,j−1/2

. (3.23d)

3.4 Multigrid Algorithm

The hierarchy of multigrid equations (3.22a)-(3.22b) is solved sequentially employing some

nested cycles between different grids that are similar to iterative cycles used in multigrid meth-

ods [50]. Each transport iteration begins with a single sweep over all energy groups and angles

in the high-order problem.

Ωm ·∇ψg,i,j,m + Σt,g,i,jψg,i,j,m =
1

4π

G∑
g′=1

Σs,g′→g,i,jφ̂
1
g,i,j +

χg,i,j
4πk

G∑
g′=1

νΣf,g′,i,jφ̂
1
g,i,j (3.24)

The right hand side of the equation is calculated from the most updated multigroup scalar

flux φ̂1
g,i,j and k-eigenvalue from the one-group low-order problem. There are no within-group

scattering iterations.

The algorithms starts from the given fine energy grid Λ1
E and moves through the hierarchy

of grids. On each grid ΛγE were γ < Γ the low-order equations are solved as a fixed-source

multigroup problem

Lγpφ
γ
g,i,j + (Σ̄γ

t,g,i,j − Σ̄γ
s,g→g,i,j)φ

γ
g,i,j +

g−1∑
g′=1

Σ̄γ
s,g′→g,i,jφ

γ
g′,i,j =

Gγ∑
g′=g+1

Σ̄γ
s,g′→g,i,jφ̂

γ
g′,i,j +

χ̄γg,i,j
k

Gγ∑
g′=1

νΣ
γ
f,g′,i,jφ̂

γ
g′,i,j (3.25)

where the fission and up-scattering terms being calculated from the updated scalar flux φ̂γg′,i,j
and eigenvalue estimated on the previous multigrid cycle. The down scatter term is calcu-

lated from the new solution of the scalar flux by solving the group equations in sequence from
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highest-energy to lowest-energy groups. This is essentially a single bock Gauss-Seidel iteration

on the scattering matrix. Thus, there is only one relaxation step on each energy grid. To solve

the diffusion equation in the spatial domain in each group we use BiCGSTAB with the LU

preconditioner.

On the coarsest grid ΛΓ
E the one-group low-order problem is solved for the eigenvalue and

associated eigenfunction. The equations are formulated as a generalized eigenvalue problem and

solved using a single Newton iteration. It can be cast as

F(u) = 0, u = (φΓ
1 , k), (3.26)

F(u) =

 Lu− 1
kPfu
Bu

Nu− C

 , (3.27)

where L, Pf , and B are the loss, fission production, and boundary condition operators respec-

tively. N is a operator that normalizes the solution to a constant C. The obtained estimation

of k is then used on all grids ΛγE for γ < Γ on the next multigrid cycle. On the first multigrid

cycle we perform a Weilandt-Shift iteration on ΛΓ
E as an initial guess in order to ensure the

Newton iterations converge to the correct local minimum. A BiCGSTAB solver is also used to

solve the Newton problem.

A prolongation operation is defined by factors based on solutions on two neighboring energy

grids. The prolongation operator is based on a group-local factor associated with the coarse

grid Λγ+1
E that involves only one energy interval on this grid. It uses constant approximation of

the solution over the energy interval δEγ+1
g and is formulated as follows:

fγ+1
ce,g (r) =

φ̂γ+1
g (r)∑

g′∈ωγg φ
γ
g′(r)

, g = 1, . . . , Gγ+1 . (3.28)

This defines the operator Iγ←γ+1
ce that is referred to as the prolongation operator with constant

approximation in energy. It can be shown that application of the factor (3.28) recursively ac-

cording to Algorithm 3 is equivalent to the following factorization form of the operator Iγ←γ+1
ce :

φ̂γg = φγg f̃
γ+1
ce,g′ f̃

γ+2
ce,g′′ · · · f̃Γce,1 for g ∈ ωγ+1

g′ , g′ ∈ ωγ+2
g′′ etc , (3.29)

where

f̃γ+1
ce,g (r) =

φγ+1
g (r)∑

g′∈ωγg φ
γ
g′(r)

, g = 1, . . . , Gγ+1 . (3.30)

Thus, the group scalar flux on the grid ΛγE is corrected by the product of the factors (3.30)

computed by the solutions on coarser grids from the current multigrid cycle. The prolongation
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operators with different definitions of correction factors are discussed in Sec. 2.3.

For cases with opposing reflective boundary conditions the low-order solution is used to

update the incoming angular flux on the boundary in the following way:

ψg,m(r) =
φ1
g(r)

2φ̃outg (r)
ψg,m∗(r), for Ωm · n < 0 and r ∈ ∂Dref , (3.31)

where φ̃outg =
∑

Ωm∗·n̂>0wm∗ψg,m∗ is the high-order partial scalar flux, and Ωm∗ is the reflected

angle of Ωm.

The procedures for solving the system of equations is described in Algorithm 6 and 7 and

illistrated in Figures 3.1 and 3.2. Here T is the transport sweep operator and S and P are the

Solve ψ = T −1Sφ̂1 +
1

k
T −1Pφ̂1

Calculate QD/NDA factors and average the high-order equations over angle to form A1,
B1, C1

for γ ← 1 to Γ− 1 do

Solve φγ = A−1
γ Bγφ̂γ +

1

k
A−1
γ Cγφ̂γ

Perform homogenization in energy to form Aγ+1, Bγ+1, Cγ+1

end

Solve the eigenvalue problem C−1
Γ AΓφ

Γ = kφΓ to update k and φΓ

for γ ← Γ− 1 to 1 do

Perform prolongation φ̂γ = Iγ←γ+1
α φγ+1

end
Algorithm 6: pV -Γ. The multigrid algorithm with the partial V-cycle.

scattering and fission source operators. The operators Aγ , Bγ , and Cγ are the leakage, scattering,

and fission terms respectively on each grid γ in the low-order problem.

In Section 2.2 the diffusion algorithm is described where the right hand side of the fixed

source problems is calculated using the most recent solution from the previous grid. This can

be implemented for the transport multigrid algorithms for coarser energy grids. On any grid

γ > 1 the flux for the right hand side is calculated using the averaged flux from most recent

solution the previous energy grid.

φγg =
∑

g′∈ωγ−1
g

φγ−1
g′ , for γ > 1 (3.32)

This uses the most updated calculation of the flux on each grid. This version of the algorithm
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Solve ψ = T −1Sφ̂1 +
1

k
T −1Pφ̂1

Calculate QD/NDA factors and average the high-order equations over angle to form A1,
B1, C1

for γ ← 1 to Γ− 1 do

Solve φγ = A−1
γ Bγφ̂γ +

1

k
A−1
γ Cγφ̂γ

Perform homogenization in energy to form Aγ+1, Bγ+1, Cγ+1

end

Solve the eigenvalue problem C−1
Γ AΓφ

Γ = kφΓ to update k and φΓ

for m← 1 to µ do
for γ ← Γ− 1 to γ∗ do

Perform prolongation φ̂γ = Iγ←γ+1
α φγ+1

end
for γ ← γ∗ to Γ− 1 do

Solve φγ = A−1
γ Bγφ̂γ−1 +

1

k
A−1
γ Cγφ̂γ−1

Perform homogenization in energy to form Aγ+1, Bγ+1, Cγ+1

end

Solve the eigenvalue problem C−1
Γ AΓφ

Γ = kφΓ to update k and φΓ

end
for γ ← Γ− 1 to 1 do

Perform prolongation φ̂γ = Iγ←γ+1
α φγ+1

end
Algorithm 7: pW -Γ(γ∗, µ). The multigrid algorithm with the partial W-cycle.

is shown in 8. Note that in this algorithm the initial guess for the Newton’s iterations to solve

the eigen problem is also calculated using the solution from the previous grid.

Another way to calculate the right hand side of the low-order equations of the first grid Λ1
E

is to use the high-order transport solution from the transport sweep. Thus, in this case φ1
g = φ̃g.

On the coarser grids the right hand side is calculated using the corrected flux from the previous

cycle. This version of the cycle is described in Algorithm 9.

The Figure 3.1 illustrates the partial V-cycles, pV-Γ, for methods with Γ = 2− 4 algorithm

that solves the LO equations on each grid a single time without nested loops. The pV cycle can

also be viewed as the multilevel method with \-cycle (backslash cycle) [50]. Figure 3.2 shows the

partial W-cycles, pW-Γ(µ,γ) for Γ = 3 with nested loops on each grid. The symbol γ indicates

upon which grid nested cycles are performed and µ indicates the number of loops on that grid.

The algorithms move from the coarsest grid ΛΓ
E towards the finest grid Λ1

E without solving

group diffusion equations on any grid. This is shown on the cycle graphs by open circles. The

prolongation procedure between grids uses one of versions of the interpolation operator Iγ←γ+1
α

described in Sec. 2.3. The subscript α indicates the type of interpolation
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Solve ψ = T −1Sφ1 +
1

k
T −1Pφ1

Calculate QD/NDA factors and average the high-order equations over angle to form A1,
B1, C1

for γ ← 1 to Γ− 1 do
if γ = 1 then

Solve φγ = A−1
γ Bγφ̂γ +

1

k
A−1
γ Cγφ̂γ

else

Solve φγ = A−1
γ Bγφγ−1 +

1

k
A−1
γ Cγφγ−1

end
Perform homogenization in energy to form Aγ+1, Bγ+1, Cγ+1

end

Solve the eigenvalue problem C−1
Γ AΓφ

Γ = kφΓ to update k and φΓ

for γ ← Γ− 1 to 1 do

Perform prolongation φ̂γ = Iγ←γ+1
α φγ+1

end
Algorithm 8: pV -Γ. The multigrid algorithm with the partial V-cycle with the RHS of the
low-order equations on ΛγE for γ > 1 calculated using most recent solution from the previous
grid (φγ−1 for γ > 1).

� α = ce: the correction factor based on constant approximation in energy,

� α = le: the correction factor based on linear approximation in energy,

� α = lef : the correction factor based on linear approximation in energy with factorization.

An important characteristic of a multigrid algorithm is the total number of low-order solves

(Nlo) which is the number per transport iterations multiplied by the number of transport

iterations Nt. For the given numbers of cycles and groups in each grids, the total number of

group-wise low-order solves can be calculated as

Nlo = Nt

Γ∑
γ=1

Gγ + 1 (3.33)

for the pV -Γ algorithm and

Nlo = Nt

( Γ∑
γ=1

Gγ + µ
Γ∑

γ=γ∗

Gγ
)

+ 1 (3.34)

for the pW -Γ(γ∗, µ) algorithm.
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Solve ψ = T −1Sφ1 +
1

k
T −1Pφ1

Calculate QD/NDA factors and average the high-order equations over angle to form A1,
B1, C1

for γ ← 1 to Γ− 1 do
if γ = 1 then

Solve φγ = A−1
γ Bγψ +

1

k
A−1
γ Cγψ

else

Solve φγ = A−1
γ Bγφ̂γ +

1

k
A−1
γ Cγφ̂γ

end
Perform homogenization in energy to form Aγ+1, Bγ+1, Cγ+1

end

Solve the eigenvalue problem C−1
Γ AΓφ

Γ = kφΓ to update k and φΓ

for γ ← Γ− 1 to 1 do

Perform prolongation φ̂γ = Iγ←γ+1
α φγ+1

end
Algorithm 9: pV -Γ. The multigrid algorithm with the partial V-cycle with the RHS of the
low-order equations on Λ1

E is calculated from the high-order transport solution (φ̃g for γ = 1).
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Figure 3.1: Multigrid pV cycles for grids with Γ = 2 − 4. GS - Gauss-Seidel iteration over
groups on ΛγE , R - projection over angle, H - homogenization over energy, N - Newton iteration,
P - prolongation

3.5 Numerical Results

We now demonstrate performance of the developed methods in two test problems. Test A is a

color-set problem defined by a checkerboard configuration of quarters of MOX and UO2 diffined

in Chapter 2. The geometry and dimensions are given in Figure 2.2. Test C consists of quarters
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Figure 3.2: Multigrid pW cycles for grids with Γ = 3. GS - Gauss-Seidel iteration over groups
on ΛγE , R - projection over angle, H - homogenization over energy, N - Newton iteration, P -
prolongation

of MOX and UO2 assemblies next to each other surrounded by water, demonstrated in Figure

3.3, with a 224×448 cell spatial mesh. The left boundary is reflective. The rest of boundaries

are vacuum. The assembly design is the same as in Test A and the pin cell and discretization

are illustrated in Figure 2.4. Test C has different physics with much more coupling between

space and energy than Test A because of the large moderator regions.

We use quadruple-range angular quadrature set with 36 angles per octant (q461214) [27].

The transport stopping criteria of 10-6 is used. The transport equation is solved by the method

short of characteristics with subcell balances [10]. The multigroup low-order equations and the

transport equation are discretized on the same spatial mesh.

The performance of the method is evaluated by ability of the multigrid algorithm to acceler-

ates transport iterations and to reduce computational work in solving the low-order equations.

The fewest number of transport iterations expected to solve a test can be estimated by solv-

ing the original multigroup low-order equations until convergence on each transport iteration.

Note that the iteration sequence begins with a diffusion initial guess which is found by solving

low-order problems on a sequence of energy grids according to the given algorithm using the

low-order factors calculated with isotropic angular flux.

In order to evaluate the performance of the methodology we look at two main indicators, the

number of transport iterations and the number of low-order solves. The number of transport

iterations Nt simply indicates the number of high-order sweeps performed. The number of low-

order solves Nlo indicates the number of times the group-wise linear problems are solved on

all the grids. The exact clock time to solve either the high- or low-order problem depends on

the particular solvers and implementation in the code. Assuming the average clock time is Tt

for the transport sweep and Tlo linear low-order solver than the total clock time approximately

Ttotal = TtNt + TloNlo. Tt changes with increase in number of angular directions involved
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in solving the high-order transport equations. This part of the problem can be arbitrarily

expensive. On the other hand Nt, and Nlo do not depend on the number of angular direction.

They are mainly influenced by the physics of the problem. Minimizing the number of transport

iterations should be one of highest priority. Minimizing the number of low-order solves can

further improve the efficiency of the method. For implementations where the cost of the high-

order and low-order solves are similar the importance of minimizing each of these numbers may

change. Note that this analysis of the clock time does not include the overhead introduced by

additional energy grids, however this overhead is not very significant compared to the high- and

low-order solves and is easily parallelizable.

Within the system of low-order equations the dimensionality of the problem at each level is

reduced by projection in energy. In contrast to traditional multi-grid methods, this homogeniza-

tion is done by a nonlinear projection equations between levels. The results show that adding

additional energy grids can make the transport iterations converge faster and reduce the work

in the low order problem on each transport iteration. Once the number of grids is sufficient to

get the fewest transport iterations with pV-cycle in the low-order problem, adding additional

54



grids will only increase the low-order work in each transport iteration without decreasing the

number of transport iterations. The optimal number of grids depends on the choice of groups

on each grid and the specific problem. Using more grids than this still accelerates the transport

iterations very well, but it does not yield any futher reduction it the high-order work to jus-

tify the additional work in the low-order problem. The refinement on each energy grid effects

behavior of the iterative methods. Performing multiple nested cycles on grids with few groups

does not accelerate the convergence of the solution very much compared to multiple cycle on

grids with many groups. A combination of grids behaves differently than separate sub sets of

grids.

3.5.1 Analysis of Results with Multilevel QD Algorithms with Multigrid in

Energy

The cross sections for these problems are obtained from the ENDF/B-V neutron group library

[66]. This cross section library has 44 energy groups (G = 44) with 22 fast and 22 thermal groups.

We present numerical results for several of the MLQD algorithms with different hierarchies of

energy grids on which the LOQD equations are solved. The coarse energy grids used in these

hierarchies are:

� ΛE,22: 22 groups consisting of 11 fast and 11 thermal,

� ΛE,8: 8 groups with 4 fast and 4 thermal,

� ΛE,4: 4 groups with 2 fast and 2 thermal,

� ΛE,2: 2 groups corresponding to fast and thermal energies.

The energy grids sequences are defined below. The energy bounds of these grids are discribed in

Tables 2.3-2.5. The coarse groups are chosen to have approximately equal numbers of subgroups

in each coarse group.

The results of the MLQD methods using different multigrid cycles are listed in Tables 3.1

and 3.2. These tables provide (i) the number of transport iterations (Nt), (ii) the total number

low-order solves(Nlo), i.e. the number of times the groupwise LOQD equations were solved in

each case. These results were found using the algorithm with the right hand side calculated using

the corrected scalar flux. Note that one cycle of LO solves is performed before the transport

iterations begin to generate an initial guess. The expected number of transport iterations to

solve a problem can be determined, for example, by converging the solution of the multigroup

LOQD equations on each transport iteration. The resulting number of transport iterations

obtained this way for Test A is 11 and for Test C equals 9.
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Table 3.1: Test A with 44 Group Cross Sections using MLQD with various prolongations.

Prolongation Operator

Multigrid Iγ←γ+1
ce Iγ←γ+1

le Iγ←γ+1
lef

Algorithm Nt Nlo Nlo/G Nt Nlo Nlo/G Nt Nlo Nlo/G

Energy Grid Sequence {44,1}
pV-2 21 991 22.5 N/A N/A
pW-2(1,2) 21 1013 23.0 N/A N/A
pW-2(2,1) 12 1171 26.6 N/A N/A
pW-2(3,1) 11 1486 33.8 N/A N/A

Energy Grid Sequence {44,2,1}
pV-3 13 659 15.0 14 706 16.0 N/A
pW-3(2,2) 13 701 15.9 14 751 17.1 N/A
pW-3(2,1) 12 1176 26.7 13 1270 28.9 N/A
pW-3(3,1) 11 1599 36.3 15 2069 47.0 N/A

Energy Grid Sequence {44,8,1}
pV-3 12 690 15.7 13 743 16.9 N/A
pW-3(2,2) 12 869 19.8 13 869 19.8 N/A
pW-3(2,1) 11 1273 28.9 11 1273 28.9 N/A

Energy Grid Sequence {44,8,2,1}
pV-4 12 716 16.3 14 826 18.8 15 881 20.0
pW-4(2,2) 12 859 19.5 13 925 21.0 13 925 21.0
pW-4(2,1) 11 1321 30.0 12 1431 32.5 13 1541 35.0

N/A - Not applicable on this grid sequence.

The advantage of the proposed multilevel methods is that computational work can be moved

from the given fine energy grid to coarser ones minimizing the amount of calculations in solving

multigroup low-order problems on a sequence of energy grids. The best MLQD method is one

where the convergence is reached target number of transport iterations while also having the

minimum number of LO solves per iteration. The presented numerical results for both tests

show a significant reduction in low-order solves achieved by using multigrid algorithms.

The first two columns show results for methods with constant energy prolongations Iγ←γ+1
ce .

In order to get the target number of transport iterations for Test A with the two-grid method

one needs the partial W-cycle pW-2(3,1) with three loops on the original energy grid on each

transport iteration. This results in solving groupwise LOQD equations 1485 times, this however

is an average of only 2.90 solves of the group LOQD problem per group per transport iteration.

The pV-3 on the {44,2,1} energy grid sequence requires fewer transport iterations than the

two-grid pV-2 which demonstrates that additional energy grids can accelerate the transport

iterations. The {44,2,1} energy grid sequence still requires the algorithm pW-3(3,1) with 3 loops

on the original energy grid on each transport iteration to get minimum number of transport
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Table 3.2: Test C with 44 Group Cross Sections using MLQD with various prolongations.

Prolongation Operator

Multigrid Iγ←γ+1
ce Iγ←γ+1

le Iγ←γ+1
lef

Algorithm Nt Nlo Nlo/G Nt Nlo Nlo/G Nt Nlo Nlo/G

Energy Grid Sequence {44,1}
pV-2 32 1486 33.8 N/A N/A
pW-2(2,2) 32 1519 34.5 N/A N/A
pW-2(2,1) 17 1621 36.8 N/A N/A
pW-2(3,1) 12 1666 37.9 N/A N/A
pW-2(4,1) 10 1711 38.9 N/A N/A
pW-2(5,1) 9 1936 44.0 N/A N/A

Energy Grid Sequence {44,2,1}
pV-3 13 659 15.0 14 706 16.0 N/A
pW-3(2,2) 13 701 15.9 14 751 17.0 N/A
pW-3(2,1) 8 847 19.3 9 941 21.4 N/A

Energy Grid Sequence {44,8,1}
pV-3 20 1114 25.3 20 1114 25.3 N/A
pW-3(2,2) 11 745 16.9 11 745 16.9 N/A
pW-3(2,1) 11 1273 28.9 11 1273 28.9 N/A
pW-3(3,1) 9 1485 33.8 9 1591 36.2 N/A

Energy Grid Sequence {44,8,2,1}
pV-4 9 551 12.5 10 606 13.8 10 606 13.8

N/A - Not applicable on this grid sequence.

iterations. This slightly increases the total number of low-order solves compared to the best

two-grid method because of the additional grid with two groups. The three-grid method with

grids {44,8,1} only requires 2 loops on the original energy grid on each transport iteration, i.e.

pW-3(2,1). This results in a 17% reduction on low-order solves compared to the best two-grid

method. The four-grid method pW-4(2,1) decreases the number of groupwise LO solves by only

14 % compared to the best two-grid method and does not improve over the best three-grid

cycle. As a result pW-3(2,1) on the {44,8,1} has the minimum number of transport iterations

and the fewest number LO solves.

In Test C the two-grid method needs the partial W-cycle pW-2(5,1) with 5 loops on the

original groups on each transport iteration to achieve the target number of transport iter-

ations solving groupwise LOQD equations 1936 times. The three-grid method pW-3(2,1) on

the {44,2,1} energy grid sequence reduces this amount of LO solves by 51 %. The {44,8,1}
three-grid methods require more low-order solves and showed no advantage over the {44,2,1}
three-grid methods. The four-grid method decreases further the computational work in low-

order equations and only requires a simple pV-4 cycle. The cycle pV-4 yields the target number
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Figure 3.4: Convergence histories of transport iterations of the MLQD method with pV-cycles
on hierarchies of grids with different number of levels and constant energy prolongation.

of transport iterations with a 42 % reduction of low-order solves compared to the best {44,2,1}
energy grid cycle and 72 % reduction compared to the best two-grid method. We also notice

that in this test pW-3(2,1) on grids {44,2,1} converged in 8 transport iterations rather than the

9 achieved if the multigroup LOQD equations are converged on each transport iterations. This

is an illustration of a case in which the multilevel algorithms are capable in further reduction

of transport iterations.

For the three-grid methods in Test A is can be seen that the sequence with more groups in

the second grid ({44,8,1}) yielded fewer low-order solves. However for the three-grid methods

in Test C the results show that fewer groups in the second grid ({44,2,1}) required less work in

the low-order problem. This demonstrates that for different types of problems various sets of

grids can behave differently.

The last four columns show results for methods with linear in energy prolongations Iγ←γ+1
le

and linear in energy prolongations with factorization Iγ←γ+1
lef . The results with these prolonga-

tion operators do not show any reduction in number of transport iterations or low-order solves

compared to the constant energy prolongations.

Figures 3.4a and 3.4b show the convergence of the scalar flux for various energy grids with pV

cycles with constant energy prolongations. These plots show that more energy grids can increase

the rate of convergence. For Test A the methods with three or four grids all converge similarly.

For Test C there is a significant difference in the convergence rate for each set of grids. Figures

58



0 2 4 6 8 10 12

10−5

10−4

10−3

10−2

10−1

100

101

Iteration s

|φ
s g
−
φ
s−

1
g
| ∞

pW-2(3,1) {44,1}
pW-3(3,1) {44,2,1}
pW-3(2,1) {44,8,1}

pW-4(2,1) {44,8,2,1}

(a) Test A

2 4 6 8
10−6

10−5

10−4

10−3

10−2

10−1

100

101

Iteration s

|φ
s g
−
φ
s−

1
g
| ∞

pW-2(5,1) {44,1}
pW-3(2,1) {44,2,1}
pW-3(3,1) {44,8,1}

pV-4 {44,8,2,1}

(b) Test C

Figure 3.5: Convergence histories of transport iterations of the MLQD method with pW-cycles
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Figure 3.6: Convergence histories of transport iterations of the MLQD method with pV-4
cycle on {44,8,2,1} with different prolongation operators.
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3.5a and 3.5b show the convergence of the scalar flux for various energy grids with the cycle

that results in the fewest transport iterations and with constant energy prolongations. These

figures both show that the fastest converging cycle on each set of grids behave very similarly.

Figures 3.6a and 3.6b demonstrate the convergence of the pV cycle on 4 grids with different

prolongation operators. These results show that the linear in energy prolongation operators do

not have a significant advantage over the constant energy prolongations.

3.5.2 Analysis of Results with Multilevel NDA Algorithms with Multigrid

in Energy

The multilevel NDA (MLNDA) method is evaluated using the same test problems described

previously and shown in Figure 2.2 and Figure 3.3.

Tests with 44 Energy Groups

The first set of problems use the same 44-group ENDF/B-V cross-sections. These tests are

solved with algorithms based on three different energy-grid sequences.

The obtained results with different prolongation operators are summarized in Tables 3.3 and

3.4. These results were found using the algorithm with the right hand side calculated using the

corrected scalar flux. The least number of transport iterations for these problems is 11 for Test

A and 9 for Test C. The presented results demonstrate that algorithms with a pV cycle improve

the rate of convergence of transport iterations if we add extra coarse grids (see the results for

pV-2, pV-3, and pV-4). However none of these algorithms has the target number of transport

iterations. The performance of multigrid algorithms can be improved by using different cycles.

Table 3.3 shows that for Test A the algorithms with the minimum number of transport iterations

are pW-2(3,1), pW-3(3,1), pW-3(2,1), and pW-4(2,1) for the grid structures {44,1}, {44,2,1},
{44,8,1}, and {44,8,2,1}, respectively. Of these the most efficient algorithm is pW-3(2,1) on the

grid structure {44,8,1} which requires 17% fewer LO solves than pW-2(3,1), 20% fewer that

pW-3(3,1) on grids {44,2,1} and 4% fewer than pW-4(2,1). The four-grid algorithm pW-4(2,1)

is better than the two-grid algorithm pW-2(3,1) and the three grid algorithm pW-3(3,1) on grid

structure {44,2,1}. However the additional grid does not give pW-4(2,1) any advantage over the

best three-grid method and instead increases the total number of LO solves slightly. For Test C

pW-2(4,1), pW-3(2,1), pW-3(3,2), and pW-4(2,4) demonstrate fastest convergence of transport

iterations for grids {44,1}, {44,2,1}, {44,8,1}, and {44,8,2,1} respectively. The four-grid cycle,

pW-4(2,4), is the most efficient requiring 65% fewer LO solves than pW-2(5,1) and 20% fewer

than the second best cycle pW-3(3,2) on grids {44,8,1}.
Results for different ways of calculating the right hand side (RHS) are summarized in Tables

3.5 and 3.6. The first three columns of data show results with the RHS calculated from the
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Table 3.3: Test A with 44 Group Cross Sections using MLNDA with various prolongations.

Prolongation Operator

Multigrid Iγ←γ+1
ce Iγ←γ+1

le Iγ←γ+1
lef

Algorithm Nt Nlo Nlo/G Nt Nlo Nlo/G Nt Nlo Nlo/G

2 Energy Grid Sequence {44,1}
pV-2 21 991 22.5 N/A N/A
pW-2(2,2) 21 1013 23.0 N/A N/A
pW-2(2,1) 12 1171 26.6 N/A N/A
pW-2(3,1) 11 1531 34.8 N/A N/A

3 Energy Grid Sequence {44,2,1}
pV-3 13 659 15.0 14 706 16.0 N/A
pW-3(2,2) 13 701 15.9 14 751 17.0 N/A
pW-3(2,1) 12 1176 26.7 13 1270 28.9 N/A
pW-3(3,1) 11 1599 36.3 15 2069 47.0 N/A

3 Energy Grid Sequence {44,8,1}
pV-3 12 690 15.7 13 743 16.9 N/A
pW-3(2,2) 13 869 19.8 13 869 19.8 N/A
pW-3(2,1) 11 1273 28.9 11 1273 28.9 N/A

4 Energy Grid Sequence {44,8,2,1}
pV-4 12 716 16.3 14 826 18.8 15 881 20.0
pW-4(2,2) 13 925 21.0 13 925 21.0 13 925 21.0
pW-4(2,1) 11 1321 30.0 12 1431 32.5 13 1541 35.0

N/A - Not applicable on this grid sequence.
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Table 3.4: Test C with 44 Group Cross Sections using MLNDA with various prolongations.

Prolongation Operator

Multigrid Iγ←γ+1
ce Iγ←γ+1

le Iγ←γ+1
lef

Algorithm Nt Nlo Nlo/G Nt Nlo Nlo/G Nt Nlo Nlo/G

2 Energy Grid Sequence {44,1}
pV-2 31 1441 32.8 N/A N/A
pW-2(2,2) 31 1473 33.5 N/A N/A
pW-2(2,1) 16 1531 34.8 N/A N/A
pW-2(3,1) 11 1576 35.8 N/A N/A
pW-2(4,1) 9 1621 36.8 N/A N/A

3 Energy Grid Sequence {44,2,1}
pV-3 13 659 15.0 14 706 16.0 N/A
pW-3(2,2) 13 701 15.9 14 751 17.1 N/A
pW-3(2,1) 9 894 20.3 9 1317 29.9 N/A

3 Energy Grid Sequence {44,8,1}
pV-3 19 1061 24.1 19 1061 24.1 N/A
pW-3(2,2) 10 683 15.5 11 745 16.9 N/A
pW-3(3,2) 9 702 16.0 11 835 19.0 N/A

4 Energy Grid Sequence {44,8,2,1}
pV-4 10 606 13.8 12 716 16.3 12 716 16.3
pW-4(2,4) 9 561 12.8 11 673 15.3 11 673 15.3

N/A - Not applicable on this grid sequence.

corrected flux on the previous cycle (φ̂γ). The second set of results in the next three columns

show the variant where the RHS on the first grid is calculated using the corrected flux (φ̃ for

γ = 1) and for the coarser grids the RHS is calculated from the most recent solution on the

previous grid (φγ−1 for γ > 1). The last set of results show results where the RHS is calculated

using the high-order flux on the first grid (φ̃ for γ = 1) and the corrected flux used for the

coarser grids (φ̂γ for γ > 1).

In Test A the different methods for calculating the RHS behave the same for most of the

sets of cycles and grids with only a few exceptions. The RHS calculated from φγ−1 behaved

the same as the corrected RHS except for the grids {44,2,1} where the pV-3 cycle took one

less transport iteration and the pW-3(3,1) cycle took three more transport iterations. The RHS

calculated from φ̃ took four fewer iterations for cycle pV-2 on {44,1} and two more iterations for

cycle pW-3(2,1) on {44,8,1}. In Test C the RHS calculated from φγ−1 consistently took more

transport iterations than the corrected RHS. For some of the grids this is a very significant

number of iterations. The transport RHS took fewer iterations than the corrected RHS for

cycles pV-2 and pW-2(2,1) on {44,1} and cycle pV-3 on {44,2,1}. These results demonstrate

that neither the RHS calculated from φγ−1 nor the RHS calculated from φ̃ reduce the work
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Table 3.5: Test A with 44 Group Cross Sections using MLNDA with various RHS calculations.

Right Hand Side Source

Multigrid φ̂γ φγ−1 for γ > 1 φ̃ for γ = 1
Algorithm Nt Nlo Nlo/G Nt Nlo Nlo/G Nt Nlo Nlo/G

2 Energy Grid Sequence {44,1}
pV-2 21 991 22.5 21 991 22.5 17 811 18.4
pW-2(2,1) 12 1171 26.6 12 1171 26.6 12 1171 26.6
pW-2(3,1) 11 1531 34.8 11 1621 36.8 11 1621 36.8

3 Energy Grid Sequence {44,2,1}
pV-3 13 659 15.0 12 612 13.9 13 659 15.0
pW-3(2,1) 12 1176 26.7 12 1223 27.8 12 1223 27.8
pW-3(3,1) 11 1599 36.3 14 1975 44.9 11 1693 38.5

3 Energy Grid Sequence {44,8,1}
pV-3 12 690 15.7 12 690 15.7 12 690 15.7
pW-3(2,1) 11 1273 28.9 11 1273 28.9 13 1379 31.3

4 Energy Grid Sequence {44,8,2,1}
pV-4 12 716 16.3 12 716 16.3 12 716 16.3
pW-4(2,1) 11 1321 30.0 11 1321 30.0 11 1321 30.0

Table 3.6: Test C with 44 Group Cross Sections using MLNDA with various RHS calculations.

Right Hand Side Source

Multigrid φ̂γ φγ−1 for γ > 1 φ̃ for γ = 1
Algorithm Nt Nlo Nlo/G Nt Nlo Nlo/G Nt Nlo Nlo/G

2 Energy Grid Sequence {44,1}
pV-2 31 1441 32.8 31 1441 32.8 27 1261 28.7
pW-2(2,1) 16 1531 34.8 18 1711 38.9 15 1396 31.7
pW-2(3,1) 11 1576 35.8 12 1711 38.9 11 1486 33.8
pW-2(4,1) 9 1621 36.8 11 2161 49.1 9 1621 36.8

3 Energy Grid Sequence {44,2,1}
pV-3 13 659 15.0 52 2492 56.6 11 565 12.8
pW-3(2,1) 9 894 20.3 40 3855 87.6 9 894 20.3

3 Energy Grid Sequence {44,8,1}
pV-3 19 1061 24.1 30 1644 37.4 19 1061 24.1
pW-3(2,2) 10 683 15.5 20 1303 29.6 10 683 15.5
pW-3(3,2) 9 702 16.0 11 853 19.4 9 702 16.0

4 Energy Grid Sequence {44,8,2,1}
pV-4 10 606 13.8 49 2751 62.5 10 606 13.8
pW-4(2,4) 9 561 12.8 9 571 13.0 9 561 12.8
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Figure 3.7: Convergence histories of transport iterations of the MLNDA method with pV-2
cycle on {44,1} with different right hand sides.
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in the high-order or low-order problem for the fastest converging algorithms. Additionally the

RHS calculated from φγ−1 can significantly slow the convergence of some test problems.

The convergence of the transport solution for the three variants of calculating the RHS

are illustrated in Figures 3.7 and 3.8. Figure 3.7 shows the convergence for the pV-2 cycle on

grids {44,1} for Test A and C. These figures show that the RHS calculated from φ̃ converges

faster than the corrected RHS. The RHS calculated from φγ−1 converges very similarity to the

corrected RHS. Figure 3.8 shows the convergence for the pV-4 cycle on grids {44,8,2,1} for Test

A and C. For Test A all three versions converge with the same behavior. In Test C the RHS

calculated from φγ−1 converges much slower than the other methods and the convergence of

the corrected RHS and RHS calculated from φ̃ is almost indistinguishable.

Tests with 238 Energy Groups

The same test problems were defined using the 238-group cross sections from the ENDF/B-VII

cross section libraries with 148 fast and 90 thermal groups. The tests with 238 groups are solved

with algorithms that use from 2 to 5 energy grids. The coarse energy grids used in the multilevel

hierarchies are:

� ΛE,44: 44 groups consisting of 22 fast and 22 thermal, corresponding to the ENDF/B

44-group cross section library

� ΛE,22: 22 groups consisting of 11 fast and 11 thermal,

� ΛE,8: 8 groups with 4 fast and 4 thermal,

� ΛE,4: 4 groups with 2 fast and 2 thermal,

� ΛE,2: 2 groups corresponding to fast and thermal energies.

These results were found using the algorithm with the right hand side calculated using the

corrected scalar flux.

Test A can be solved with a minimum of 12 transport iterations while Test C requires at least

9 transport iterations. The results for various multigrid algorithms are shown in Tables 3.7a and

3.7b. The most efficient algorithm in Test A is pV-4 on the energy grid structure {238,8,2,1}.
This algorithm requires 3% fewer LO solves than the next best algorithm pW-3(2,2) on grids

{238,8,1}, 15% fewer than the five-grid method pV-5, and 71% fewer than the best two-grid

method pW-2(4,1). In Test C the best algorithm is pW-5(2,5) on grids {238,44,8,2,1}. It requires

67% fewer LO solves than MA-2(4,1), 35% fewer than pW-3(2,1) on grids {238,2,1}, 11% fewer

than pW-4(2,2) on grids {238,44,2,1}.
Tables 3.8 and 3.9 summarize the results for the methods applied to solve the test problems

defined with different numbers of original energy groups and hence different levels of resolution of
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Table 3.7: Results with 238 Group Cross Sections using MLNDA.

(a) Test A

Prolongation Operator

Multigrid Iγ←γ+1
ce

Algorithm Nt Nlo Nlo/G

2 Energy Grid Sequence {238,1}
pV-2 25 6215 26.1
pW-2(2,2) 25 6241 26.2
pW-2(2,1) 14 7171 30.1
pW-2(3,1) 13 9083 38.2
pW-2(4,1) 12 11234 47.2

3 Energy Grid Sequence {238,2,1}
pV-3 15 3857 16.2
pW-3(2,2) 15 3905 16.4
pW-3(2,1) 12 6267 26.3

3 Energy Grid Sequence {238,8,1}
pV-3 13 3459 14.5
pW-3(2,3) 13 3473 14.6
pW-3(2,2) 12 3329 14.0

4 Energy Grid Sequence {238,8,2,1}
pV-4 12 3238 13.6

4 Energy Grid Sequence {238,44,2,1}
pV-4 13 3991 16.8
pW-4(2,3) 13 4033 16.9
pW-4(2,2) 12 4317 18.1

5 Energy Grid Sequence {238,44,8,2,1}
pV-5 12 3810 16.0

(b) Test C

Prolongation Operator

Multigrid Iγ←γ+1
ce

Algorithm Nt Nlo Nlo/G

2 Energy Grid Sequence {238,1}
pV-2 33 8127 34.1
pW-2(2,2) 33 8161 34.1
pW-2(2,1) 18 8844 37.2
pW-2(3,1) 12 8605 36.2
pW-2(4,1) 9 8844 37.2

3 Energy Grid Sequence {238,2,1}
pV-3 15 3857 16.2
pW-3(2,2) 15 3905 16.4
pW-3(2,1) 9 4580 19.2

3 Energy Grid Sequence {238,8,1}
pV-3 20 5188 21.8
pW-3(2,2) 11 3073 12.9
pW-3(3,2) 10 2907 12.2
pW-3(2,1) 11 5682 23.9
pW-3(3,1) 9 6917 29.0

4 Energy Grid Sequence {238,8,2,1}
pV-4 10 2740 11.5
pW-4(2,2) 10 2861 12.0
pW-4(2,1) 9 4732 19.9

4 Energy Grid Sequence {238,44,2,1}
pV-4 13 3991 16.8
pW-4(2,3) 13 4033 16.9
pW-4(2,2) 9 3321 14.0

5 Energy Grid Sequence {238,44,8,2,1}
pV-5 10 3224 13.5
pW-5(2,5) 9 2941 12.4
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Table 3.8: Comparison of Test A using MLNDA based algorithms

Multigrid Test with 44 Groups Test with 238 Groups
Algorithm Nt Nlo/G Nt Nlo/G

Energy Grid Sequence {44,1} Energy Grid Sequence {238,1}
pV-2 21 22.5 25 26.1
pW-2(2,1) 12 26.6 14 30.1
pW-2(3,1) 11 34.8 13 38.2

Energy Grid Sequence {44,2,1} Energy Grid Sequence {238,2,1}
pV-3 13 15.0 15 16.2
pW-3(2,2) 13 15.9 15 16.4
pW-3(2,1) 12 26.7 12 26.3

Energy Grid Sequence {44,8,1} Energy Grid Sequence {238,8,1}
pV-3 12 15.7 13 14.5
pW-3(2,2) 13 19.8 12 14.0

Energy Grid Sequence {44,8,2,1} Energy Grid Sequence {238,8,2,1}
pV-4 12 16.3 12 16.0

Table 3.9: Comparison of Test C using MLNDA based algorithms

Multigrid Test with 44 Groups Test with 238 Groups
Algorithm Nt Nlo/G Nt Nlo/G

Energy Grid Sequence {44,1} Energy Grid Sequence {238,1}
pV-2 31 32.8 33 34.1
pW-2(2,1) 16 34.8 18 37.2
pW-2(3,1) 11 35.8 12 36.2
pW-2(4,1) 9 36.8 9 37.2

Energy Grid Sequence {44,2,1} Energy Grid Sequence {238,2,1}
pV-3 13 15.0 15 16.2
pW-3(2,1) 9 20.3 9 19.2

Energy Grid Sequence {44,8,1} Energy Grid Sequence {238,8,1}
pV-3 19 24.1 15 16.2
pW-3(2,2) 10 15.5 11 12.9
pW-3(3,2) 9 16.0 10 12.2

Energy Grid Sequence {44,8,2,1} Energy Grid Sequence {238,8,2,1}
pV-4 10 13.8 10 11.5

67



Table 3.10: Hybrid Cycles with 44 Group Cross Sections using MLQD based algorithms.

(a) Test A

Multigrid
Algorithm Nt Nlo Nlo/G

Energy Grid Sequence {44,1}
pW-2(3,1) x12 11 1531 34.80
pW-2(3,1) x6 - pV-2 x6 11 1081 24.57

Energy Grid Sequence {44,2,1}
pW-3(3,1) x12 11 1599 36.34
pW-3(3,1) x2 - pV-3 x10 11 753 17.11

Energy Grid Sequence {44,8,1}
pW-3(2,1) x12 11 1273 28.93
pW-3(2,1) x2 - pV-3 x10 11 743 16.89

Energy Grid Sequence {44,8,2,1}
pW-4(2,1) x12 11 1321 30.02
pW-4(2,1) x2 - pV-4 x10 11 771 17.52

(b) Test C

Multigrid
Algorithm Nt Nlo Nlo/G

Energy Grid Sequence {44,1}
pW-2(5,1) x10 9 1936 44.00
pW-2(5,1) x6 - pV-2 x4 9 1531 34.80

Energy Grid Sequence {44,2,1}
pW-3(2,1) x9 8 847 19.25
pW-3(2,1) x4 - pV-3 x5 9 659 14.98

Energy Grid Sequence {44,8,1}
pW-3(3,1) x10 9 1485 33.75
pW-3(3,1) x6 - pV-3 x3 9 1167 26.52

neutron transport physics. These data allow comparing performance of individual algorithms in

the same reactor-physics problem with significantly different number of groups. The results show

that each algorithm has almost the same numbers of transport iterations in both cases and close

values of such average performance parameters as the number of LO solves per group (Nlo/G).

This demonstrates that the effectiveness of this multigrid methodology is almost independent

of numbers of energy groups.

3.5.3 Analysis of Results with Hybrid Cycle with MLQD

Analysis of convergence histories of the proposed methods showed that in some cases different

multigrid algorithms have close convergence rates during second half of transport iterations.

The main differences in convergence occur on the first couple transport iterations. This sug-

gests that it is possible to further improve efficiency of the methods by taking advantage of

algorithms with hybrid multigrid cycles. For thee first few transport iterations the hybrid mul-

tilevel methods use however many nested cycles are necessary to ensure the fastest convergence

of those iterations. For the rest of the transport transport iterations the cheapest cycle, a pV

cycle, is used.

Table 3.10 shows the results for some hybrid cycles compared to the best method for each

particular energy grid sequence. They show that using certain hybrid cycles improved further

performance of these multilevel methods. We notice that in Test A the hybrid algorithm on

grids {44,2,1} requires the smallest numbers of transport iterations and of total LO solves that

is equal to 743. This is a 41% reduction in the total number of LO solves compared to pW-3(2,1)
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Figure 3.9: Convergence histories of transport iterations of the MLQD method on hierarchies
of grids with different number of levels.

algorithm on the same grids. The hybrid cycles also demonstrate reduction in LO solves for

each of the other sequences of energy grids. In Test C the best cycle is the four-grid cycle pV-4

which is already the cheapest cycle so there is no need to use hybrid cycles.

Figures 3.9a and 3.9b show the convergence of the scalar flux for hybrid cycles with different

sets of energy grids. These hybrid cycles converge very similar to the pW cycles in Figures 3.5a

and 3.5b even for the iterations were a pV cycle is used.

3.6 Coarse Grid Multilevel NDA and QD

In the presented above NDA and QD methods, the first energy grid (Λ1
E) on which the low-

order equations are formulated is the original energy grid ΛE of the given transport problem.

We now present a version of the proposed multilevel methodology such that the first energy

grid has multiple groups and is coarser than the original transport energy grid G1 < G. The

first low-order energy grid is defined by sets of groups from the original transport grid ω1
p. This

yields a set of low-order equations which have reduced dimensionality on every grid.

This set of equations is solved using the multigrid algorithm described in Section 3.4. Figure

3.10 demonstrates a pV-3 cycle for the coarse grid method. It also shows that the dimensionality

of the energy grid is different between the grids γ = 0 and γ = 1. The distinguishing feature of

the algorithm shown in Figure 3.10 is that the projection step R is a projection in angle and
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homogenization over energy.
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Figure 3.10: Multigrid pV-3 cycle with coarse energy grids. GS - Gauss-Seidel iteration over
groups on Ωγ

E , R - projection over angle, H - homogenization over energy, N - Newton iteration,
P - prolongation

The set of NDA equations in this coarser energy space are identical to the equations (3.11)

except the cross sections and coefficients on the first level γ = 1 are derived by averaging with

high-order transport scalar flux φ̃g. The cross sections have the following form:

χ̄1
g,i,j =

∑
g∈ω1

p

χg,i,j , Σ̄1
s,g′→g,i,j =

∑
g′∈ω1

g′

(∑
g∈ω1

p
Σs,g′→g,i,j

)
φ̃g′,i,j∑

g′∈ω1
g′
φ̃g′,i,j

, (3.35a)

Σ̄1
t,g,i,j =

∑
g∈ω1

p
Σt,g,i,jφ̃g,i,j∑

g∈ω1
p
φ̃g,i,j

, νΣ
1
f,g,i,j =

∑
g∈ω1

p
νΣf,g,i,jφ̃g,i,j∑
g∈ω1

p
φ̃g,i,j

. (3.35b)

The leakage operator L1
p = L1

p[D
±,1
p ] and the modified diffusion coefficients are

D̄+,1
g,i+1/2,j =

∑
g∈ω1

p
D+
g,i+1/2,jφ̃g,i+1,j∑

g∈ω1
p
φ̃g,i+1,j

, D̄−,1g,i+1/2,j =

∑
g∈ω1

p
D−g,i+1/2,jφ̃g,i,j∑
g∈ω1

p
φ̃g,i,j

, (3.36a)

D̄+,1
g,i,j+1/2 =

∑
g∈ω1

p
D+
g,i,j+1/2φ̃g,i,j+1∑

g∈ω1
p
φ̃g,i,j+1

, D̄−,1g,i,j+1/2 =

∑
g∈ω1

p
D−g,i,j+1/2φ̃g,i,j∑
g∈ω1

p
φg,i,j

. (3.36b)

Correction factors similar to those used bewtween energy grids in the low-order problem are
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calculated

f1g(r) =
φ̂1
g(r)∑

g∈ω1
g
φ̃g(r)

, g = 1, . . . , G1 (3.37)

and are used to update the solution on the same grid as the transport problem

φ̂g = φ̃g f
1
g for g ∈ ω1

g . (3.38)

The multilevel QD equations in a coarse energy space are the same as (4.8) except the cross

sections and coefficients on the first energy grid for the low-order equations. The coarse-group

leakage operator L1
p = Lγp [G∗,1p ] and factors for the QD method are defined by means of the

high-order transport solution as

ḠCL,1xx,g,i,j =

∑
g∈ω1

g
GCLxx,g,i,jφ̃g,i,j∑
g∈ω1

g
φg,i,j

, ḠCR,1xx,g,i,j =

∑
g∈ω1

g
GCRxx,g,i,jφ̃g,i,j∑
g∈ω1

g
φ̃g,i,j

, (3.39a)

ḠCB,1yy,g,i,j =

∑
g∈ω1

g
GCByy,g,i,jφ̃g,i,j∑
g∈ω1

g
φ̃g,i,j

, ḠCT,1yy,g,i,j =

∑
g∈ω1

g
GCTyy,g,i,jφ̃g,i,j∑
g∈ω1

g
φ̃g,i,j

, (3.39b)

ḠL,1xx,g,i,j =

∑
g∈ω1

g
GLxx,g,i,jφ̃g,i−1/2,j∑
g∈ω1

g
φ̃g,i−1/2,j

, ḠR,1xx,g,i,j =

∑
g∈ω1

g
GRxx,g,i,jφ̃g,i+1/2,j∑
g∈ω1

g
φ̃g,i+1/2,j

, (3.39c)

ḠB,1yy,g,i,j =

∑
g∈ω1

g
GByy,g,i,jφ̃g,i,j−1/2∑
g∈ω1

g
φ̃g,i,j−1/2

, ḠT,1yy,g,i,j =

∑
g∈ω1

g
GTyy,g,i,jφ̃g,i,j−1/2∑
g∈ω1

g
φ̃g,i,j−1/2

. (3.39d)

The factors (3.37) are used to update the high-order solution (3.38).

3.6.1 Analysis of Results with Coarse Grid MLNDA

Tables 3.11a and 3.11b show the results of the coarse energy MLNDA methods for Tests A

and B. The grid sets {G1,...,GΓ} show the number of groups and energy grids for the low-

order equations. The boundaries in each of these coarse energy groups are defined in Tables

2.3, 2.4, and 2.5. These results demonstrate that a coarsening by a factor of two in the low-

order problem space increases the number of transport iterations compared to forming the

low-order problem on the same energy space. Further coarsening the first low-order energy

grid increases the number of transport iterations. Some combinations of coarser energy grids

can reduce the number of transport iterations slightly. However these coarse grids all result in

more transport iterations than the target number of iterations with the low-order problem on

the original groups. This increase in the number of transport iterations makes this selection of

coarse low-order problems inefficient for accelerating the transport iterations.
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Table 3.11: Results with 44 Group Cross Sections using MLNDA

(a) Test A

Multigrid
Algorithm Grids Nt Nlo Nlo/G

pV-2 {22,1} 27 645 14.7
pW-2(2,1) {22,1} 27 1289 29.3

pV-2 {8,1} 41 379 8.6

pV-2 {4,1} 60 306 7.0

pV-2 {2,1} 111 337 7.7

pV-3 {22,2,1} 23 601 13.7

pV-5 {22,8,4,2,1} 27 1037 23.6

(b) Test B

Multigrid
Algorithm Grids Nt Nlo Nlo/G

pV-2 {22,1} 25 599 13.6
pW-2(2,1) {22,1} 23 1105 25.1

pV-2 {8,1} 38 352 8.0

pV-2 {4,1} 57 291 6.6

pV-2 {2,1} 104 106 2.4

pV-3 {22,2,1} 23 601 13.7

pV-5 {22,8,4,2,1} 23 889 20.2

Tables 3.17a and 3.17b show results for the coarse energy MLNDA with agglomeration for

Tests A and B. These grids use a fine energy structure, identical to the original energy structure,

for the fast groups and a coarse grid structure in the thermal groups. The grids are

� ΛE,33: 33 groups consisting of 22 fast and 11 thermal,

� ΛE,26: 26 groups consisting of 22 fast and 4 thermal,

� ΛE,24: 24 groups with 22 fast and 2 thermal,

� ΛE,23: 23 groups with 22 fast and 1 thermal,

� ΛE,5: 5 groups corresponding to 1 fast and 4 thermal groups,

� ΛE,3: 3 groups corresponding to 1 fast and 2 thermal groups.

The energy group boundaries are listed in Tables 3.12, 3.13, 3.14, 3.15, and 3.16.

These results show that preserving the energy groups in the fast region reduces the number

of transport iterations compared to coarsening over all groups. Performing additional cycles on

the finest low-order grid or adding energy grids also reduces the number of transport iterations.

With the 33 group first energy grid in the low-order problem, consisting in 22 fast and 11 thermal

groups, it is possible to get within 1 transport iteration of the target number of iterations for

the multilevel method on the 44 group first low-order grid. Coarsening the thermal groups more

than by a factor of two increases the number of transport iterations. In the sequence {33,5,1} the

first grid Λ1
E = ΛE,33 has fewer groups in the thermal energies and the second grid Λ2

E = ΛE,5

and fewer groups in the fast region. This sequence performed similarly to the sequence {33,8,1}.
These results indicate that preserving the detail in the fast groups is important, but that it is

possible to reduce the work in the low-order problem by coarsening the first low-order grid with
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Table 3.12: Boundaries of energy intervals Eg in eV of the 33-group grid.

i\j∗ 0 1 2 3 4 5 6 7 8 9

0 2.×107 8.1873×106 6.434×106 4.8×106 3.×106 2.479×106 2.354×106 1.85×106 1.4×106 9.×105

10 4.×105 1.×105 2.5×104 1.7×104 3.×103 5.5×102 1.×102 3.×101 1.×101 8.1

20 6. 4.75 3. 1. 4.×10−1 3.5×10−1 2.75×10−1 2.25×10−1 1.5×10−1 7.×10−2

30 4.×10−2 2.53×10−2 7.5×10−3 1.×10−5

∗g = i+ j

Table 3.13: Boundaries of energy intervals Eg in eV of the 26-group energy grid ΛE,26.

i\j∗ 0 1 2 3 4 5 6 7 8 9

0 2.×107 8.1873×106 6.434×106 4.8×106 3.×106 2.479×106 2.354×106 1.85×106 1.4×106 9.×105

10 4.×105 1.×105 2.5×104 1.7×104 3.×103 5.5×102 1.×102 3.×101 1.×101 8.1

20 6. 4.75 3. 4.×10−1 2.25×10−1 4.×10−2 1.×10−5

∗g = i+ j

Table 3.14: Boundaries of energy intervals Eg in eV of the 24-group energy grid ΛE,24.

i\j∗ 0 1 2 3 4 5 6 7 8 9

0 2.×107 8.1873×106 6.434×106 4.8×106 3.×106 2.479×106 2.354×106 1.85×106 1.4×106 9.×105

10 4.×105 1.×105 2.5×104 1.7×104 3.×103 5.5×102 1.×102 3.×101 1.×101 8.1

20 6. 4.75 3. 2.25×10−1 1.×10−5

∗g = i+ j

Table 3.15: Boundaries of energy intervals Eg in eV of the 23-group energy grid ΛE,23.

i\j∗ 0 1 2 3 4 5 6 7 8 9

0 2.×107 8.1873×106 6.434×106 4.8×106 3.×106 2.479×106 2.354×106 1.85×106 1.4×106 9.×105

10 4.×105 1.×105 2.5×104 1.7×104 3.×103 5.5×102 1.×102 3.×101 1.×101 8.1

20 6. 4.75 3. 1.×10−5

∗g = i+ j

Table 3.16: Boundaries of energy intervals Eg in eV of the nested energy grid ΛE,5.

g 0 1 2 3 4 5

ΛE,5 2.×107 3. 4.×10−1 2.25×10−1 4.×10−2 1.×10−5

ΛE,3 2.×107 3. 2.25×10−1 1.×10−5

agglomeration in thermal groups. This can be combined in a sequence with coarser grids with

agglomeration in the fast groups.

3.6.2 Analysis of Results with Coarse Grid MLQD

Tables 3.18a and 3.18b demonstrate the results of the coarse energy MLQD methods for Tests

A and B. These results again demonstrate that a coarsening energy space increases the number

of transport iterations compared to forming the low-order problem on the same energy space.

Tables 3.19a and 3.19b demonstrate results for the coarse energy MLQD with agglomeration

for Tests A and B. These grids use a fine energy structure, identical to the original energy
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Table 3.17: Results with 44 Groups using MLNDA with agglomeration.

(a) Test A

Multigrid
Algorithm Grids Nt Nlo Nlo/G

pV-2 {33,1} 18 647 14.7
pW-2(2,1) {33,1} 12 885 20.1

pV-2 {26,1} 19 541 12.3
pW-2(2,1) {26,1} 19 1081 24.6

pV-2 {24,1} 26 676 15.4

pV-2 {23,1} 33 817 18.6

pV-3 {33,2,1} 13 505 11.5

pV-3 {33,5,1} 13 547 12.4
pW-3(2,1) {33,5,1} 12 1015 23.1

pV-3 {33,8,1} 12 547 12.4

pV-5 {33,8,4,2,1} 13 673 15.3
pW-5(2,1) {33,8,4,2,1} 12 1249 28.4

pV-5 {33,5,3,2,1} 13 617 14.0
pW-5(2,1) {33,5,3,2,1} 12 1145 26.0

(b) Test B

Multigrid
Algorithm Grids Nt Nlo Nlo/G

pV-2 {33,1} 25 885 20.1
pW-2(2,1) {33,1} 14 987 22.4
pW-2(3,1) {33,1} 10 1297 29.5

pV-2 {26,1} 18 514 11.7
pW-2(2,1) {26,1} 15 865 19.7

pV-2 {24,1} 23 601 13.7

pV-2 {23,1} 29 721 16.4

pV-3 {33,2,1} 12 469 10.7
pW-3(2,1) {33,2,1} 10 793 18.0

pV-3 {33,5,1} 18 742 16.9
pW-3(2,1) {33,5,1} 10 859 19.5

pV-3 {33,8,1} 18 799 18.2
pW-3(2,1) {33,8,1} 10 925 21.0

pV-5 {33,8,4,2,1} 10 529 12.0

pV-5 {33,5,3,2,1} 10 485 11.0

Table 3.18: Results with 44 Group Cross Sections using MLQD

(a) Test A

Multigrid
Algorithm Grids Nt Nlo Nlo/G

pV-2 {22,1} 27 645 14.7
pW-2(2,1) {22,1} 27 1289 29.3

pV-3 {22,2,1} 27 701 15.9

pV-5 {22,8,4,2,1} 27 1037 23.6

(b) Test B

Multigrid
Algorithm Grids Nt Nlo Nlo/G

pV-2 {22,1} 25 599 13.6
pW-2(2,1) {22,1} 23 1105 25.1

pV-3 {22,2,1} 23 601 13.7

pV-5 {22,8,4,2,1} 23 889 20.2

Table 3.19: Test A with 44 Group Cross Sections using MLQD

(a) Test A

Multigrid
Algorithm Grids Nt Nlo Nlo/G

pV-2 {33,1} 18 647 14.7
pW-2(2,1) {33,1} 12 885 20.1

pV-3 {33,2,1} 13 505 11.5

pV-3 {33,5,1} 13 547 12.4
pW-3(2,1) {33,5,1} 12 1015 23.1

pV-5 {33,8,4,2,1} 12 625 14.2

(b) Test B

Multigrid
Algorithm Grids Nt Nlo Nlo/G

pV-2 {33,1} 26 919 20.9
pW-2(2,1) {33,1} 14 987 22.4
pW-2(3,1) {33,1} 10 1123 25.5

pV-3 {33,2,1} 12 469 10.7

pV-3 {33,5,1} 19 781 17.8

pV-5 {33,8,4,2,1} 10 529 12.0
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structure, for the fast groups and a coarse grid structure in the thermal groups. These results

also demonstrate the coarsening the thermal groups in the low-order problem can be used

to reduce the work in the low-order problem without a significant increase in the number of

transport iterations.

3.7 Summary

This chapter describes a new set of multilevel methods with multigrid in energy for multigroup

k-eigenvalue transport problems in 2-D geometry. The proposed methodology is based on the

NDA and QD equations. These methods formulate the low-order problem on a set of successively

coarsened energy grids that form a hierarchy of low-order problems in energy. The low-order

equations on coarser energy grids are used to accelerate transport iteration and reduce work in

the low-order problem. The eigenvalue problem is solved on the grid with one group where the

dimensionality is the smallest. These multilevel methods can be viewed as nonlinear multigrid

algorithms for solving multigroup transport problems. The system of nonlinear multigrid low-

order equations is solved using partial V-cycles and partial W-cycles.

The numerical results presented show the efficiency of the formulated multigrid schemes.

They demonstrate that proposed algorithms on a set of coarse energy grids accelerate transport

iterations and reduce computational costs of solving the multigroup low-order equations. In-

volving additional coarse energy grids can decrease the number of cycles on the original energy

grid shifting the computational work to coarser energy grids. The advantage of the presented

methodology is that the computational costs associated with solving a set of low-order problems

on coarse energy grids do not scale when one increases the number of angular directions for

solving the high-order transport equations. Results with linear in energy recursive correction

factors and linear in energy with factorization were demonstrated. These prolongations did not

show any improvement over the best cases with the constant energy correction factors. Us-

ing hybrid cycles can further improve the efficiency of the method by reducing the amount of

unnecessary work when approaching the solution.

Coarse energy MLNDA and MLQD methods were presented that form the low-order prob-

lem on the first energy grid with a coarser structure compared to the energy grid of the given

transport problem. This can reduce the dimensionality of the low-order problem, but can also

increase the number of transport solution. Coarsening in the thermal groups with agglomeration

and maintaining the fine groups structure in the fast region was found to be effective in accel-

erating the transport iterations and reducing the number of low-order solves. Agglomeration in

the fast groups can be done on subsequent grids to further reduce the work in the low-order

problem.
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Chapter 4

Multilevel Transport Method with

Multigrid in Space and Energy

Some NPI methods, notably CMFD [38], formulate the low-order equations on a coarser spatial

mesh than the transport problem. This can further reduce the dimensionality of the problem

and provide acceleration of transport iterations. In this chapter multilevel methods are pre-

sented where the low-order equations are formulated on a coarse spatial mesh and sequence of

coarsening energy grids. These methods are based on both the NDA/CMFD equations and the

QD equations. A similar multilevel method is also developed using the partial current based

NDA/CMFD (pNDA/pCMFD) equations which have certain advantages for coarser spatial

meshes.

The CMFD equations are described in Sec. 4.1. The coarse mesh QD (CMQD) equations are

defined in Sec. 4.2. Sec. 4.3 presents the pCMFD equations. The multilevel hierarchy of these

equations and the muligrid algorithms for solving them are demonstrated in Sec. 4.4. Sec. 4.5

contains results of the performance of the multilevel methods based on the CMFD, CMQD,

and pCMFD equaitons.

4.1 Formulation of the Low-order CMFD Equations

The Coarse Mesh Finite Difference (CMFD) method is defined by Eqs. (1.4)-(1.9) as well as

the NDA method. The difference from the NDA method is that the low-order equations (1.9)

are approximated on a coarser spatial mesh compared to the given spatial mesh of the trans-

port problem. Forming the low-order problem on a coarser can effect the number of transport

iterations, however, it can also significantly reduce the work in the low-order problem.

For these methods a projection in space is performed from the mesh on which the high-

order transport problem is defined. We can define the mesh for the high-order problem as
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M = {(i′hx, j′hy) : i′, j′ ∈ I} where hx and hy are the size of the cells in the x and y directions

respectively. The coarse mesh for each level is defined as a sub set of the points on the original

mesh Mγ = {(inγxhx, jnγyhy) : i, j ∈ I} where nγx and nγx is the magnitude of coarsening in each

direction. For this method the same spatial mesh is used on each level of the low-order problem

soM1 = ... = Mγ = ... = MΓ. The sets of indices of fine cells in each coarse cell is defined in each

direction as ηi = {i′ : xi < (xi′ + xi′+1)/2 < xi+1} and ηj = {j′ : yj < (yj′ + yj′+1)/2 < yj+1}.
The coarse mesh versions of the low-order equations is same as before, except the low-order

factors are calculated using numerical integrals of the high-order transport solution in the sub

integrals and cross sections are averaged using the transport solution.

The low-order equations are discretized on this coarse mesh just like the NDA equations in

Section 3.1 except integrated transport solution and averaged cross section are used. These are

found as

φ̄g,i,j =
∑
i′∈ηi

∑
j′∈ηj

∆xi′∆yj′ φ̃g,i′,j′ , (4.1a)

J̄x,g,i+1/2,j =
∑
j′∈ηj

∆yj′ J̃x,g,nx(i−1)+1/2,j′ , (4.1b)

J̄y,g,i,j+1/2 =
∑
i′∈ηi

∆xi′ J̃y,g,i′,ny(j−1)+1/2, (4.1c)

and

χ̄g,i,j =
∑
i′∈ηi

∑
j′∈ηj

∆xi′∆yj′χg,i′,j′ , (4.2a)

Σ̄s,g′→g,i,j =

∑
i′∈ηi

∑
j′∈ηj ∆xi′∆yj′Σs,g′→g,i′,j′ φ̃g′,i,j

φ̄g,i,j
, (4.2b)

Σ̄t,g,i,j =

∑
i′∈ηi

∑
j′∈ηj ∆xi′∆yj′Σt,g,i′,j′ φ̃g,i′,j′

φ̄g,i,j
, (4.2c)

νΣf,g,i,j =

∑
i′∈ηi

∑
j′∈ηj ∆xi′∆yj′νΣf,g,i′,j′ φ̃g,i′,j′

φ̄g,i,j
. (4.2d)

The lwo-order equations then become

Lg[D̄±g ]φg,i,j + Σ̄t,g,i,jAi,jφg,i,j =

Ai,j

G∑
g′=1

Σ̄s,g′→g,i,jφg′,i,j +
1

k
Ai,jχ̄g,i,j

G∑
g′=1

νΣf,g′,i,jφg′,i,j (4.3a)
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Lg[D±g ]φg,i,j =

−
[

(D+
g,i+1/2,jφg,i+1,j −D−g,i+1/2,jφg,i,j)

∆xi+1/2
−

(D+
g,i−1/2,jφg,i,j −D

−
g,i−1/2,jφg,i−1,j)

∆xi−1/2

]
∆yj

−
[

(D+
g,i,j+1/2φg,i,j+1−D−g,i,j+1/2φg,i,j)

∆yj+1/2
−

(D+
g,i,j−1/2φg,i,j−D

−
g,i,j−1/2φg,i,j−1)

∆yj−1/2

]
∆xi . (4.3b)

Here the modified diffusion coefficients are

D±g,i+1/2,j = Dg,i+1/2,j ∓
1

2
D̄x,g,i+1/2,j∆xi+1/2 , (4.4a)

D±g,i,j+1/2 = Dg,i,j+1/2 ∓
1

2
D̄y,g,i,j+1/2∆yj+1/2 (4.4b)

and

D̄g,i+1/2,j =
J̄x,g,i+1/2,j + 1

∆xi+1/2
Dg,i+1/2,j(φ̄g,i+1,j − φ̄g,i,j)

0.5(φ̄g,i+1,j + φ̄g,i,j)
, (4.5a)

D̄g,i,j+1/2 =
J̄x,g,i,j+1/2 + 1

∆yj+1/2
Dg,i,j+1/2(φ̄g,i,j+1 − φ̄g,i,j)

0.5(φ̄g,i,j+1 + φ̄g,i,j)
, (4.5b)

where φ̄g and J̄α,g are the integrated solution of the high-order transport problem defined above.

4.2 Formulation of the Low-order CMQD Equations

The QD discretization presented in the previous chapter can be applied to formulate the low-

order equations on a coarser spatial mesh. Hereafter it is referred to as coarse mesh QD (CMQD).

In this section we formulate the low-order CMQD equations.

The coarse mesh for each level of the low-order CMQD equations can be described as before.

The transport solution is integrated over each coarse cell as (4.1) for the cell average flux and

face average current, and

φ̄g,i+1/2,j =
∑
j′∈ηj

∆yj′ φ̃g,nx(i−1)+1/2,j′ , φ̄g,i,j+1/2 =
∑
i′∈ηi

∆xi′ φ̃g,i′,ny(j−1)+1/2, (4.6)

for the face average scalar flux. The CMQD factors are defined by averaging the factors on the

fine mesh over the scalar flux as

Ēαα,g,i,j =

∑
i′∈ηi

∑
j′∈ηj ∆xi′∆yj′ φ̃g,i′,j′Eαβ,g,i′,j′

φ̄g,i,j
, (4.7a)
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Ēαβ,g,i+1/2,j =

∑
j′∈ηj ∆yj′ φ̃g,nx(i−1)+1/2,j′Eαβ,g,nx(i−1)+1/2,j′

φ̄g,i+1/2,j

, (4.7b)

Ēαβ,g,i,j+1/2 =

∑
i′∈ηi ∆xi′ φ̃g,i′,ny(j−1)+1/2Eαβ,g,i′,ny(j−1)+1/2

φ̄g,i,j+1/2

, (4.7c)

for α, β = x, y.

The low-order CMQD equations are discretized the same as the QD equations and can be

written as

Lg[G∗g]φg,i,j + Σt,g,i,jφg,i,j =

G∑
g′=1

Σs,g′→g,i,jφg′,i,j +
χg,i,j
k

G∑
g′=1

νf,g′,i,jΣf,g′,i,jφg′,i,j , (4.8a)

where the leakage operator is

Lg[G∗g]φg,i,j = − 2

∆x2
i

(
GRxx,g,i,jφg,i+1/2,j − (GCRxx,g,i,j +GCLxx,g,i,j)φg,i,j +GLxx,g,i,jφg,i−1/2,j

)
− 2

∆y2
j

(
GTyy,g,i,jφg,i,j+1/2 − (GCTyy,g,i,j +GCByy,g,i,j)φg,i,j +GByy,g,i,jφg,i,j−1/2

)
, (4.8b)

and the modified coefficients are defined in terms of the QD factors and consistency terms as

GCLxx,g,i,j =
Ēxx,g,i,j + ξL−g,i,j

Σ̄t,g,i,j
, GCRxx,g,i,j =

Ēxx,g,i,j + ξR+
g,i,j

Σ̄t,g,i,j
, (4.9a)

GCByy,g,i,j =
Ēyy,g,i,j + ξ̄B−g,i,j

Σ̄t,g,i,j
, GCTyy,g,i,j =

Eyy,g,i,j + ξ̄T+
g,i,j

Σ̄t,g,i,j
, (4.9b)

GLxx,g,i,j =
Ēxx,g,i−1/2,j + ξ̄L+

g,i,j

Σ̄t,g,i,j
, GRxx,g,i,j =

Ēxx,g,i+1/2,j + ξ̄R−g,i,j
Σ̄t,g,i,j

, (4.9c)

GByy,g,i,j =
Ēyy,g,i,j−1/2 + ξ̄B+

g,i,j

Σ̄t,g,i,j
, GTyy,g,i,j =

Ēyy,g,i,j+1/2 + ξ̄T−g,i,j
Σ̄t,g,i,j

. (4.9d)

and

ξ̄L−x,g,i,j =

−
γ̄Lx,g,i,j
φ̄g,i,j∆yj

, if γ̄Lx,g,i,j ≤ 0,

0, if γ̄Lx,g,i,j > 0,
ξ̄L+
x,g,i,j =

0, if γ̄Lx,g,i,j ≤ 0,
γ̄Lx,g,i,j

φ̄g,i−1/2,j∆yj
, if γ̄Lx,g,i,j > 0,

(4.9e)

ξ̄R−x,g,i,j =

−
γ̄Rx,g,i,j

φ̄g,i+1/2,j∆yj
, if γ̄Rx,g,i,j ≤ 0,

0, if γ̄Rx,g,i,j > 0,
ξ̄R+
x,g,i,j =

0, if γ̄Rx,g,i,j ≤ 0,
γ̄Rx,g,i,j
φ̄g,i,j∆yj

, if γ̄Rx,g,i,j > 0,
(4.9f)
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γ̄Lx,g,i,j =
(
Ēxx,g,i,jφ̄g,i,j − Exx,g,i−1/2,jφ̄g,i−1/2,j

)
∆yj +

(
Ēxy,g,i,j+1/2φ̄g,i,j+1/2

− Ēxy,g,i,j−1/2φ̄g,i,j−1/2

)∆xi
2

+
1

2
Σ̄t,g,i,jAi,j J̄x,g,i−1/2,j , (4.9g)

γ̄Rx,g,i,j =
(
Ēxx,g,i+1/2,jφ̄g,i+1/2,j − Ēxx,g,i,jφ̄g,i,j

)
∆yj +

(
Ēxy,g,i,j+1/2φ̄g,i,j+1/2

− Ēxy,g,i,j−1/2φ̄g,i,j−1/2

)∆xi
2

+
1

2
Σ̄t,g,i,jAi,j J̄x,g,i−1/2,j . (4.9h)

The hierarchy of low-order CMQD equations are formulated and solved as described in Chapter

3.

4.3 Formulation of the Low-order Partial Current Based CMFD

Equations

The low-order pCMFD equations (1.11)-(1.18) can be derived for a rectangular spatial mesh

G = {0 ≤ x ≤ X, 0 ≤ y ≤ Y } with rectangular spatial grids {xi−1/2, i = 1, . . . , Nx, yj−1/2, j =

1, . . . , Ny}. To derive the low-order pCMFD equations we apply classical formulation by means

of a finite-volume scheme for the P1 equations. For the cell (i, j) the system of low-order pCMFD

equations consists of the balance equation

(Jx,g,i+1/2,j − Jx,g,i−1/2,j)∆yj + (Jy,g,i,j+1/2 − Jy,g,i,j−1/2)∆xi + Σt,g,i,jAi,jφg,i,j =

Ai,j

G∑
g′=1

Σs,g′→g,i,jφg′,i,j +
1

k
Ai,jχg,i,j

G∑
g′=1

νΣf,g′,i,jφg′,i,j (4.10a)

and the first-moment equations of the following form:

Jx,g,i+1/2,j =−
Dg,i+1/2,j(φg,i+1,j − φg,i,j)

∆xi+1/2
−D̃−g,i+1/2,jφg,i+1,j+D̃

+
g,i+1/2,jφg,i,j , (4.10b)

Jy,g,i,j+1/2 =−
Dg,i,j+1/2(φg,i,j+1 − φg,i,j)

∆yj+1/2
− D̃−g,i,j+1/2φg,i,j+1 + D̃+

g,i,j+1/2φg,i,j . (4.10c)

The compensation factors are formulated to make the high-order and low-order equations con-

sistent. They are given by

D̄−g,i+1/2,j =
−J̄−x,g,i+1/2,j − 1

2∆xi+1/2
Dg,i+1/2,j(φ̄g,i+1,j − φ̄g,i,j)

φ̄g,i+1,j
, (4.11a)
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D̄+
g,i+1/2,j =

J̄+
x,g,i+1/2,j + 1

2∆xi+1/2
Dg,i+1/2,j(φ̄g,i+1,j − φ̄g,i,j)
φ̄g,i,j

, (4.11b)

D̄−g,i,j+1/2 =
−J̄−x,g,i,j+1/2 − 1

2∆yj+1/2
Dg,i,j+1/2(φ̄g,i,j+1 − φ̄g,i,j)

φ̄g,i,j+1
, (4.11c)

D̄+
g,i,j+1/2 =

J̄+
x,g,i,j+1/2 + 1

2∆yj+1/2
Dg,i,j+1/2(φ̄g,i,j+1 − φ̄g,i,j)
φ̄g,i,j

, (4.11d)

where the partial currents J̄±α,g are defined by the solution of the high-order transport problem

and hence

J̄±x,g,i+1/2,j =
∑
j′∈ηj

∆yj′ J̃
±
x,g,nx(i−1)+1/2,j′ , (4.12a)

J̄±y,g,i,j+1/2 =
∑
i′∈ηi

∆xi′ J̃
±
y,g,i′,ny(j−1)+1/2, (4.12b)

are integrals of the current on the fine mesh

J̃+
x,g,i+1/2,j =

∑
m:Ωx,m≥0

Ωx,mψg,m,i+1/2,jwm , (4.13a)

J̃−x,g,i+1/2,j =
∑

m:Ωx,m≤0

Ωx,mψg,m,i+1/2,jwm , (4.13b)

J̃+
y,g,i+1/2,j =

∑
m:Ωy,m≥0

Ωy,mψg,m,i+1/2,jwm , (4.13c)

J̃−y,g,i+1/2,j =
∑

m:Ωy,m≤0

Ωy,mψg,m,i+1/2,jwm , (4.13d)

J̃x,g,i+1/2,j = J̃+
x,g,i+1/2,j + J̃−x,g,i+1/2,j , J̃y,g,i+1/2,j = J̃+

y,g,i+1/2,j + J̃−y,g,i+1/2,j . (4.13e)

Here ψg,m is the angular flux for the discrete direction Λm and wm is the quadrature weight.

The first-moment equations can be cast as

Jx,g,i+1/2,j = − 1

∆xi+1/2

(
D+
g,i+1/2,jφg,i+1,j −D−g,i+1/2,jφg,i,j

)
, (4.14a)

Jy,g,i,j+1/2 = − 1

∆yj+1/2

(
D+
g,i,j+1/2φg,i,j+1 −D−g,i,j+1/2φg,i,j

)
, (4.14b)

where the factors
D±g,i+1/2,j = Dg,i+1/2,j + D̃∓x,g,i+1/2,j∆xi+1/2 , (4.15a)

D±g,i,j+1/2 = Dg,i,j+1/2 + D̃∓y,g,i,j+1/2∆yj+1/2 (4.15b)

are modified diffusion coefficients of the generalized Fick’s law. Substituting equation (4.14)
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into the balance equation (4.10a) yields the diffusion-like equation

Lg[D±g ]φg,i,j + Σt,g,i,jAi,jφg,i,j =

Ai,j

G∑
g′=1

Σs,g′→g,i,jφg′,i,j +
1

k
Ai,jχg,i,j

G∑
g′=1

νΣf,g′,i,jφg′,i,j , (4.16a)

Lg[D±g ]φg,i,j =

−
[

(D+
g,i+1/2,jφg,i+1,j −D−g,i+1/2,jφg,i,j)

∆xi+1/2
−

(D+
g,i−1/2,jφg,i,j −D

−
g,i−1/2,jφg,i−1,j)

∆xi−1/2

]
∆yj

−
[
(D+

g,i,j+1/2φg,i,j+1−D−g,i,j+1/2φg,i,j)

∆yj+1/2
−

(D+
g,i,j−1/2φg,i,j−D

−
g,i,j−1/2φg,i,j−1)

∆yj−1/2

]
∆xi . (4.16b)

where the leakage operator Lg is defined by the five point stencil as the NDA equations.

4.4 Hierarchy of Equations and Multigrid Algorithms

A hierarchy of these coarse mesh equation are formulated for the low-order problem as described

in Section 3.3. The set of low-order equations is solved using the multigrid cycles similar to

those described in Sec. 3.4. The pV-Γ cycle for the multilevel coarse mesh methods is defined

in Algorithm 10. Figure 4.1 shows an example of the pV-3 cycle with a coarse mesh and

demonstrates that grids γ = 0 and γ = 1 have the same energy grid, but different spatial

meshes. All of the low-order grids (γ = 1, 2, 3) have the same spatial mesh. Forming the low-

order problem is done using a projection over both angle and space. The low-order problem

is then solved as described in Sec. 3.4. Once the low-order flux is updated on grid γ = 1, an

additional prolongation in space step is done between the low-order and high order meshes.

The low-order solution is used to update the high-order solution on the fine mesh using shape

functions. The shape function F̄ is defined as a correction factor, similar to the constant energy

correction factors in Sec. 2.3.

f̄g,i,j =
∆xi∆yjφ̂g,i,j∑

i′∈ηi
∑

j′∈ηj ∆xi′∆yj′ φ̃g,i′,j′
. (4.17)

This spatial correction factor is used to update the transport solution

φ̃g,i′,j′ ← f̄g,i,jφ̃g,i′,j′ , for i′ ∈ ηi and j′ ∈ ηj . (4.18)

Similar algorithms are defined for the pW-Γ(γ∗,µ) cycles.
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Figure 4.1: Multigrid pV-3 cycle with coarse mesh. GS - Gauss-Seidel iteration over groups on
Ωγ
E , R - projection over angle, M - projection over space, H - homogenization over energy, N -

Newton iteration, P - prolongation in energy, S - prolongation in space

Solve ψ = T −1Sψ +
1

k
T −1Pψ

Calculate CMQD/CMFD/pCMFD factors and average the high-order equations over
angle and space to form A1, B1, C1

for γ ← 1 to Γ− 1 do

Solve φγ = A−1
γ Bγφ̂γ +

1

k
A−1
γ Cγφ̂γ

Perform homogenization in energy to form Aγ+1, Bγ+1, Cγ+1

end

Solve the eigenvalue problem C−1
Γ AΓφ

Γ = kφΓ to update k and φΓ

for γ ← Γ− 1 to 1 do

Perform prolongation φ̂γ = Iγ←γ+1
α φγ+1

end
Calculate shape function F̄ and update the high-order flux ψ ← F̄ψ

Algorithm 10: pV -Γ. The multigrid algorithm with the partial V-cycle.

4.5 Numerical Results

4.5.1 Analysis of Multilevel CMFD

Numerical results are presented for test problems A (2.2) and B (2.3) with 44 groups in energy.

These problems both have a square mesh with the high order mesh size of h = hx = hy =

0.09cm. Tables 4.1 and 4.2 show the results for Test A and B respectively. Coarsening was done

equally in each x and y direction for each grid so nx = ny. The first two columns show the
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Table 4.1: Test A with 44 Group Cross Sections using multilevel CMFD.

Algorithm Nt Nlo Nt Nlo Nt Nlo Nt Nlo

h 2h 7h 14h

2 Grid Sequence {44,1}
pV-2 21 991 22 1036 U/C U/C
pW-2(2,1) 12 1171 13 1261 U/C U/C
pW-2(3,1) 11 1531 11 1621 U/C U/C

3 Grid Sequence {44,2,1}
pV-3 13 659 13 659 U/C U/C
pW-3(2,1) 12 1176 13 1317 U/C U/C
pW-3(3,1) 11 1599 11 1693 U/C U/C

3 Grid Sequence {44,8,1}
pV-3 13 743 13 743 U/C U/C
pW-3(2,1) 11 1273 11 1273 U/C U/C

3 Grid Sequence {44,22,1}
pV-3 18 1274 18 1274 U/C U/C
pW-3(2,2) 12 1171 14 1351 U/C U/C
pW-3(2,1) 11 1609 11 1609 U/C U/C

4 Grid Sequence {44,22,4,1}
pV-4 12 924 14 1066 U/C U/C
pW-4(2,1) 11 1705 11 1705 U/C U/C

5 Grid Sequence {44,22,8,2,1}
pV-5 12 1002 14 1156 U/C U/C
pW-5(2,1) 11 1849 11 1849 U/C U/C

6 Grid Sequence {44,22,8,4,2,1}
pV-6 13 1135 14 1216 U/C U/C
pW-6(2,1) 11 1945 11 1945 U/C U/C

U/C - Unconverged

number of transport iterations and low-order group-wise solves when the low order mesh is the

same as the high order mesh (h). The next set of columns show the results for a coarsening

by a factor of two (2h). Coarsening by a factor of seven (7h four spatial cells for each pin cell)

resulted in the problem not converging for Test A. This also occurred with the factor of fourteen

(14h corresponds to one spatial cell for each pin cell) for both Test A and B. The size of the

low-order problem decreases as a square of the coarsening factor. So a coarsening of 7h is a 14

fold reduction in the dimensionality of the low-order problem.

For Test A the 2h mesh reduces the size of the low-order problem by a factor of 4. The most

efficient algorithm is pV-3(2,1) on grids {44,8,1}. For Test B the 7h mesh is the smallest and

has a factor of 14 reduction in the dimensionality of the low-order problem. The best algorithm

on this grid is pW-5(2,4) on grids {44,22,8,2,1}.
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Table 4.2: Test B with 44 Group Cross Sections using multilevel CMFD.

Algorithm Nt Nlo Nt Nlo Nt Nlo Nt Nlo

h 2h 7h 14h

2 Grid Sequence {44,1}
pV-2 27 1261 25 1171 28 1306 U/C
pW-2(2,1) 15 1396 14 1351 15 1441 U/C
pW-2(3,1) 10 1441 10 1486 10 1486 U/C
pW-2(4,1) 8 1531 8 1621 8 1621 U/C

3 Grid Sequence {44,2,1}
pV-3 13 659 14 706 15 753 U/C
pV-3 8 847 8 847 8 847 U/C

3 Grid Sequence {44,8,1}
pV-3 18 1008 17 955 14 796 U/C
pW-3(2,1) 10 1114 10 1167 8 955 U/C
pW-3(3,1) 9 1485 9 1591 8 1432 U/C
pW-3(4,1) 8 1803 8 1909 8 1803 U/C

3 Grid Sequence {44,22,1}
pV-3 25 1743 23 1609 23 1609 U/C
pW-3(2,1) 13 1810 12 1743 12 1743 U/C
pW-3(3,1) 9 1944 9 2011 9 2011 U/C
pW-3(4,1) 8 2279 8 2413 8 2413 U/C

4 Grid Sequence {44,8,2,1}
pV-4 9 551 9 551 9 551 U/C
pW-4(2,2) 8 595 8 595 8 595 U/C

5 Grid Sequence {44,22,8,2,1}
pV-5 8 694 8 694 9 771 U/C
pW-5(2,4) 8 721 8 721 8 721 U/C

6 Grid Sequence {44,22,8,4,2,1}
pV-6 8 730 8 730 9 811 U/C
pW-6(2,4) 8 793 8 793 8 793 U/C

U/C - Unconverged

These results demonstrate that coarsening in space can lead to cases where there are insta-

bilities with the CMFD method. For most cases the behavior of various sets of energy grids is

not significantly effected by coarsening in space. However, it can be noted for some cases (specif-

ically sets of grids with many groups like {44,22,1}) that coarsening in space can decrease the

number of transport iterations for a given multigrid algorithm. In other cases the number of

transport iterations can increase with spatial coarsening. For every set of grids tested it was

possible to get the same target number of transport iterations with some additional cycles in

the low-order problem.
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4.5.2 Analysis of Multilevel CMQD

The results of the coarse mesh QD methods for tests A and B are shown in Tables 4.3 and 4.3

for different coarse meshes. These results are with a constant in energy prolongation operator.

These results are similar to those with multilevel CMFD. The the multilevel CMQD method

Table 4.3: Test A with 44 Group Cross Sections using multilevel CMQD.

Algorithm Nt Nlo Nt Nlo Nt Nlo Nt Nlo

h 2h 7h 14h

2 Grid Sequence {44,1}
pV-2 21 991 22 1036 U/C U/C
pW-2(2,1) 12 1171 13 1261 U/C U/C
pW-2(3,1) 11 1486 12 1756 U/C U/C
pW-2(4,1) 11 2161 11 2161 U/C U/C

3 Grid Sequence {44,2,1}
pV-3 13 659 14 706 U/C U/C
pW-3(2,1) 12 1176 13 1317 U/C U/C
pW-3(3,1) 11 1599 11 1693 U/C U/C

3 Grid Sequence {44,8,1}
pV-3 12 690 14 796 U/C U/C
pW-3(2,1) 11 1273 12 1379 U/C U/C
pW-3(3,1) 11 1909 11 1909 U/C U/C

4 Grid Sequence {44,8,2,1}
pV-4 12 716 13 771 U/C U/C
pW-4(2,1) 11 1321 12 1431 U/C U/C
pW-4(3,1) 11 1981 11 1981 U/C U/C

5 Grid Sequence {44,22,8,2,1}
pV-5 12 1002 14 1156 U/C U/C
pW-5(2,1) 11 1849 11 1849 U/C U/C

6 Grid Sequence {44,22,8,4,2,1}
pV-6 12 1054 14 1216 U/C U/C
pW-6(2,1) 11 1945 11 1945 U/C U/C

U/C - Unconverged

does not converge in Test A with a coarse grids 7h and 14h or in Test B with a coarse grid 14h.

These are the same cases where the multilevel CMFD method does not converge.

In Test A as the mesh is coarsened the number of transport iterations increases for the pV

on each grid set. If pW cycles are used it is possible to converged in 11 iterations for both spatial

meshes. For the grids {44,1}, {44,8,1}, and {44,8,2,1} additional pW cycles are needed to get

to the target 11 iterations. For the case where the low-order mesh uncoarsened the algorithm
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Table 4.4: Test B with 44 Group Cross Sections using multilevel CMQD.

Algorithm Nt Nlo Nt Nlo Nt Nlo Nt Nlo

h 2h 7h 14h

2 Grid Sequence {44,1}
pV-2 28 1306 26 1216 32 1486 U/C
pW-2(2,1) 15 1396 15 1441 18 1711 U/C
pW-2(3,1) 11 1486 11 1621 16 2296 U/C
pW-2(4,1) 12 1756 9 1801 15 2881 U/C
pW-2(5,1) 8 1936 9 2251 15 3601 U/C

3 Grid Sequence {44,2,1}
pV-3 13 659 14 706 15 753 U/C
pW-3(2,1) 8 847 9 941 14 1411 U/C

3 Grid Sequence {44,8,1}
pV-3 19 1061 18 1008 19 1061 U/C
pW-3(2,1) 10 1114 10 1167 16 1803 U/C
pW-3(3,1) 9 1485 9 1591 15 2545 U/C
pW-3(4,1) 8 1803 9 2121 15 3393 U/C

4 Grid Sequence {44,8,2,1}
pV-4 9 551 10 606 14 826 U/C
pW-4(2,2) 8 595 9 661 14 991 U/C

5 Grid Sequence {44,22,8,2,1}
pV-5 9 771 10 848 14 1156 U/C
pW-5(2,3) 8 793 9 881 14 1321 U/C

6 Grid Sequence {44,22,8,4,2,1}
pV-6 8 730 10 892 15 1297 U/C
pW-6(2,4) 8 793 10 969 14 1321 U/C
pW-6(2,3) 8 865 9 961 14 1441 U/C

U/C - Unconverged

with the fewest transport iterations and low-order solves is pW-3(2,1) on grids {44,8,1}. For

the grid coarsened by 2h the algorithm pW-3(3,1) on grids {44,2,1} has the fewest low-order

solves for the target number of iterations.

For Test B the target number of transport iterations increases as the spatial mesh is coars-

ened. The fewest transport iterations is 8, 9, and 14 for the low-order meshes of h, 2h, and 7h

respectively. The pV cycle on grids {44,1} and {44,2,1} the 2h mesh takes fewer transport itera-

tions than the h mesh. For all other combination of grids and cycles, coarser grids have equal or

greater number of transport iteration. For each spatial mesh the grid sequence {44,8,2,1} gives

the fewest transport iterations with the least low-order solves. On this grid the pW-4(2,2) cycle

for meshes h and 2h the pW-4(2,2) cycle and for mesh 7h give the target transport iterations.
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4.5.3 Analysis of Multilevel pCMFD

Numerical results for the multilevel pCMFD methods are presented for Tests A and B with 44

groups. The same mesh coarsening of h, 2h, 7h, and 14h are used. Tables 4.5 and 4.6 summarize

the results.

Table 4.5: Test A with 44 Group Cross Sections using multilevel pCMFD.

Algorithm Nt Nlo Nt Nlo Nt Nlo Nt Nlo

h 2h 7h 14h

2 Grid Sequence {44,1}
pV-2 21 991 22 1036 31 1441 30 1396
pW-2(2,1) 12 1171 13 1261 17 1621 21 1981
pW-2(3,1) 12 1666 11 1621 14 2026 19 2701
pW-2(4,1) 11 2071 11 2071 14 2701 19 3601

3 Grid Sequence {44,2,1}
pV-3 13 659 13 659 17 847 23 1129
pW-3(2,1) 11 1129 12 1223 15 1505 19 1881
pW-3(3,1) 11 1693 12 1834 13 1975 19 2821

3 Grid Sequence {44,8,1}
pV-3 12 690 13 743 21 1167 32 1750
pW-3(2,1) 11 1273 12 1379 21 2333 32 3499

4 Grid Sequence {44,22,4,1}
pV-4 12 924 13 995 15 1137 25 1847
pW-4(2,1) 11 1705 12 1847 21 3125 19 2841

5 Grid Sequence {44,22,8,2,1}
pV-5 12 1002 12 1002 15 1233 25 2003
pW-5(2,1) 11 1849 12 2003 20 3234 19 3081

6 Grid Sequence {44,22,8,4,2,1}
pV-6 12 1054 12 1054 15 1297 23 1945
pW-6(2,1) 11 1945 12 2107 13 2269 19 3241

For the case where the low-order mesh is the same as the high-order mesh the multilevel

pCMFD method behaves similarly to the NDA method. The target number or iterations for

Test A is 11 and for Test B is 9. Whereas the multilevel CMFD methods stopped converging

for mesh 7h and 14h for Test A and for mesh 14h for Test B, the multilevel pCMFD converges

for all of the coarse meshes. However, for some of the coarser meshes the target number of

transport iterations increases. In Test A on mesh 7h and 14h the target number of iterations

is 13 and 19 respectively. In Test B the target number of transport iterations on mesh 14h is

10. These meshes are also the meshes where the multilevel CMFD does not converge. For Test
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Table 4.6: Test B with 44 Group Cross Sections using multilevel pCMFD.

Algorithm Nt Nlo Nt Nlo Nt Nlo Nt Nlo

h 2h 7h 14h

2 Grid Sequence {44,1}
pV-2 28 1306 26 1216 29 1351 27 1261
pW-2(2,1) 15 1396 15 1441 16 1531 16 1531
pW-2(3,1) 11 1486 11 1621 12 1756 13 1891
pW-2(4,1) 9 1666 9 1801 10 1981 11 2161
pW-2(5,1) 9 2251 9 2251 10 2476 10 2476
pW-2(6,1) 9 2701 9 2701 9 2701 10 2971

3 Grid Sequence {44,2,1}
pV-3 14 706 14 706 16 800 16 800
pW-3(2,1) 10 988 9 941 10 1035 11 1129
pW-3(3,1) 9 1317 9 1317 9 1411 10 1552

3 Grid Sequence {44,8,1}
pV-3 18 1008 18 1008 17 955 15 849
pW-3(2,1) 10 1114 11 1273 11 1273 11 1273
pW-3(3,1) 10 1591 10 1750 10 1750 12 2068
pW-3(4,1) 9 1909 9 2121 9 2121 11 2545
pW-3(7,1) 9 3711 9 3711 9 3711 10 4082

3 Grid Sequence {44,22,1}
pV-3 25 1743 24 1676 24 1676 24 1676
pW-3(2,1) 14 1944 13 1877 14 2011 14 2011
pW-3(3,1) 11 2212 10 2212 10 2212 11 2413
pW-3(4,1) 9 2480 9 2681 10 2949 11 3217
pW-3(5,1) 9 3351 9 3351 9 3351 11 4021

4 Grid Sequence {44,8,2,1}
pV-4 9 551 9 551 10 606 11 661
pW-4(2,2) 9 661 9 661 9 661 10 727

5 Grid Sequence {44,22,8,2,1}
pV-5 9 771 9 771 10 848 11 925
pW-5(2,3) 9 881 9 881 9 881 10 969

6 Grid Sequence {44,22,8,4,2,1}
pV-6 9 811 9 811 10 892 10 892
pW-6(2,5) 9 841 9 841 9 841 10 925

A the 14h mesh is the smallest low-order problem, but the increase in the number of transport

iterations is likely too significant for this mesh to be the most efficient.
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4.6 Summary

This chapter presented the multilevel method with multigrid in both energy and space. This is

done by formulating the low-order equations on a coarser mesh in space. For the NDA simply

becomes the CMFD method when formulated on a coarser spatial mesh. Numerical results

showed that coarsening in space can significantly reduce the work in the low-order problem.

However this coarsening can also lead to problems that make the CMFD method unstable. A

consistent discretization of the QD equations was also formulated on a coarse spatial mesh.

The multilevel method was also formulated using the pCMFD equations which address the

instability issues with the CMFD method. The numerical results showed that the multilevel

method works well on coarser energy grids. Various energy grid sequences behave differently

on different spatial meshes. Multiple energy grids can be particularly helpful on coarse spatial

meshes.

90



Chapter 5

Conclusions

This dissertation presents new methods for solving eigenvalue neutron transport problems using

multilevel in energy methodology. New iteration methods for solving eigenvalue problems for

multigroup diffusion equations have been developed. They are based on multigrid-in-energy

approach. The nonlinear projection operator is formulated by means of averaging the group

diffusion equations over energy on the hierarchy of energy grids. We defined several variants

of prolongation operators based on multiplication correction of the grid solutions. The new

prolongation operators use linear interpolation in energy between neighboring grids. We apply

the partial V- and W-cycles to move through the hierarchy of energy grids. The estimation of

the eigenvalue is performed on the coarsest grid with just one energy group. Thus, the eigenvalue

problem is solved in the space with the smallest dimensionality. The proposed methods with

multigrid in energy were derived for the second-order finite volume spatial approximation of the

diffusion equation. They can be applied to other spatial discretizations as well, for example, finite

element methods. The obtained numerical results on realistic model reactor-physics problems

with 44 groups demonstrated efficiency of the developed algorithms with multigrid in energy.

They enable to reduce significantly total number of diffusion solves. Involving additional coarse

energy grids can accelerate iterations and decrease computational costs. The proposed multilevel

methods can be applied to solve multigroup transport problems with very large number of

groups.

In the transport problem the multilevel methodology was applied by formulating the low-

order equations of the NDA and QD methods on multiple grids in energy. The results presented

here showed that different sets of grids behaved differently depending on numbers of groups on

each grid. Even the same set of grids behaved differently for different problems. The optimal

set of grids is problem dependent, however some insight was gained on how to select grids. The

use of a two group grid was beneficial for almost sets of grids. For more complex problems, with

more coupling between space and energy, an advantage was seen in using sets with many grids.
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For these problems using a finer grid along with coarser grids, like two-groups, was seen to

work well. For coarser energy grids it was seen that the behavior of the convergence depended

primarily on the group structure of the thermal groups. This means that fewer groups could be

used in the fast groups without effecting the convergence. Hybrid cycles effectively accelerate

the transport iterations with reduced work in the low-order problem compared to the standard

cycles.

The multilevel method with coarsening in energy and space was also presented. This method

used the multigrid in energy methodology on a low-order problem on a coarser spatial mesh,

namely, CMFD and coarse mesh QD. The multilevel in energy and space method was also

presented using the pCMFD equations which have some advantaged over standard CMFD.

Coarsening in space for the low-order problem can significantly reduce the work in that problem,

but it can also reduce the rate of convergence. Multiple grids in energy was found to be useful

in solving the low-order problem on coarse meshes.

5.1 Continuing Lines of Investigation

This methodology was found to be effective and has some promising results. Further research is

can be done to improve its efficiency and apply it to other types of problems. Future work will

include a more detailed analysis of this family of algorithms, and the development of advanced

prolongation operators and coarsening strategies based on formal algorithms for analysis of

group cross sections. Fourier analysis would give a better understanding of the behavior of

the method and identify the slowest converging error modes. This could also help define a

better way of choosing each coarse energy grid. To develop fast solvers for the algebraic system

of low-order equations, it is necessary to improve the efficiency of preconditioners for Krylov

iterative methods. A multilevel method with simultaneous coarsening in space and energy can

be developed.

The methodology could be used with the method of long characteristics and other transport

schemes. Although this method is formulated for equations discretized on a rectangular spatial

mesh, it can be extended to unstructured meshes and curved surfaces. Finite elements have

been used to discretize both the NDA and QD equations. This multilevel hierarchy can also be

applied to those equations with finite elements. Problems with anisotropic scattering can also

be treated using this methodology. The low-order equations also solve for the current which

can be used to accelerate the first moment term of the scattering source. We note that the

proposed method can be used to solve other kinds of eigenvalue problems, such as α-eigenvalue

or critical parameter problems. It can also be applied to solve fixed source problems for shielding

applications and adjoint multigroup transport problems.
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