
ABSTRACT 

YESSAYAN, RAFFI ALEXANDER. Improvements to the THOR Neutral Particle Transport 

Code on High-Performance Computing Systems via Acceleration, Parallelization, and 

Performance Analysis. (Under the direction of Dr. Yousry Y. Azmy). 

 

As the availability and capability of high-performance computing (HPC) resources has 

grown, so has the demand for high-fidelity simulations. Unfortunately, for methods like the 

three-dimensional discrete ordinates approximation to the neutron transport equation, the cost 

of high-fidelity simulations climbs rapidly because of the high dimensionality of the phase 

space. Simulations can reach into the billions of degrees of freedom and require weeks to run 

on unaccelerated, serial implementations of the method. For many applications, this run time 

is intractable. To address this, modern codes must implement more advanced algorithms, such 

as iterative acceleration and parallelism to reduce run times and better capitalize on computing 

resources. When implemented efficiently and given sufficient resources, these methods can 

reduce a two-week simulation to hours or minutes. However, these advanced methods may 

also introduce complications. Depending on the implemented iterative method, acceleration 

techniques, such as diffusion synthetic acceleration, can be resource heavy, while others, such 

as Chebychev acceleration, can be unstable for certain problems. Parallelism introduces the 

requirement for inter-process communication and, for certain methods, asynchronicity.  

Modifications and analysis have been performed on the THOR neutral particle 

transport code to implement the above improvements. THOR is intended to enable simulation 

of complex geometries in a variety of scenarios, ranging from reactor simulation to non-

proliferation and, as such, must provide capabilities for a variety of applications. This work 

describes four major efforts to improve THOR’s capabilities and bring it closer to production 

level. First is the implementation of Chebychev power iteration acceleration, a low resource 

cost method that reduces iteration count ~2x versus the existing fission source extrapolation 

and roughly comparable to some implementations of the high-memory usage JFNK solver. 

This implementation also includes control logic designed to improve the stability of the method 

for challenging problems. Second is the implementation of angular domain decomposition 

parallelism. This synchronous parallelism allows THOR to better utilize the resources of mid-

scale computing systems with 10s to 1000s of processors and can fully replace the serial 

inner/outer iteration solver of THOR. For typical THOR simulations, this results in speedups 



of ~10x to ~100x depending on available resources and problem parameters. The third item, 

in pursuit of optimizing parallel performance, is the development of a modular parallel 

performance model. This model captures the run time of THOR’s mono-energetic, zeroth 

spatial order, unaccelerated inner/outer iteration solver to within ~5% for reasonably large 

problems. The model is designed such that future modifications to the THOR code or to the 

parameters of interest (e.g. adding group or spatial order dependence), can be easily added. 

This makes the performance model a powerful tool not just for evaluating the efficiency of 

existing code, but also for performing comparative studies and localizing inefficiencies in later 

additions to THOR. A long-term goal of the THOR project is to enable massively parallel 

spatial domain parallelism on 105+ processors. The implementation of the spatial domain 

decomposition (SDD) algorithms on unstructured meshes is a massive undertaking beyond the 

scope of this work. However, Task four lays the groundwork for this capability by analyzing 

the communication inefficiencies present in PIDOTS, a three-dimensional Cartesian mesh 

code which implements a parallel Gauss-Seidel SDD algorithm. This analysis demonstrates 

that the high count, small-message communication paradigm used by PIDOTS leads to 

communication slowdowns on the order of 10x for 105 processors and identifies steps that can 

be taken to mitigate this effect before implementing a similar parallelism in THOR.  

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Copyright 2018 Raffi Alexander Yessayan 

All Rights Reserved



Improvements to the THOR Neutral Particle Transport Code on High-Performance 

Computing Systems via Acceleration, Parallelization, and  

Performance Analysis 

 

 

by 

Raffi Alexander Yessayan 

 

 

A thesis submitted to the Graduate Faculty of 

North Carolina State University 

in partial fulfillment of the 

requirements for the degree of 

Master of Science 

 

Nuclear Engineering 

 

Raleigh, North Carolina 

2018 

 

APPROVED BY: 

 

_______________________________      _______________________________ 

Dr. Yousry Azmy                          Dr. Dmitriy Anistratov 

Committee Chair 

 

 

 

_______________________________      _______________________________ 

Dr. Edward Gehringer                                          Dr. Sebastian Schunert 



 

ii 

DEDICATION 

To my Mom and Dad, Lynn and Arthur Yessayan, for a lifetime of unconditional love, 

guidance, support, and encouragement. 

 



 

iii 

BIOGRAPHY 

Raffi Alexander Yessayan was born in Charlotte, North Carolina on July 21st, 1993 to 

Lynn and Arthur Yessayan. He lived in Charlotte until being accepted at North Carolina State 

University in Raleigh, North Carolina. During his undergraduate career, he pursued significant 

coursework in both nuclear engineering and computer science. Additionally, for two years, he 

worked as a teaching assistant in both introductory computing and Fortran programming 

courses. In 2015, he graduated Summa Cum Laude with a Bachelor of Science in nuclear 

engineering, minors from both the French and Computer Science departments, and having 

completed the University Honors Program. 

For his graduate coursework, he remained in North Carolina State University’s 

Department of Nuclear Engineering and began studying optimization and parallelization 

techniques for unstructured mesh neutron transport codes under the direction of Dr. Yousry Y. 

Azmy. He is a recipient of the Consortium for Nonproliferation Enabling Capabilities Graduate 

Fellowship. 



 

iv 

ACKNOWLEDGMENTS 

I would like to thank my advisor, Dr. Yousry Y. Azmy, for his support and guidance 

throughout my graduate career. I would also like to thank Dr. Sebastian Schunert for 

contributing his insight and experience to my project, especially with regards to the inner 

workings of THOR. Finally, I would like to thank my parents for always providing support 

and encouragement throughout my academic career. 

The work of the author is based upon work supported by the Department of Energy 

National Nuclear Security Administration under Award Number(s) DE-NA0002576. 

This report was prepared as an account of work sponsored by an agency of the United 

States Government. Neither the United States Government nor any agency thereof, nor any of 

their employees, makes any warranty, express or implied, or assumes any legal liability or 

responsibility for the accuracy, completeness, or usefulness of any information, apparatus, 

product, or process disclosed, or represents that its use would not infringe privately owned 

rights. Reference herein to any specific commercial product, process, or service by trade name, 

trademark, manufacturer, or otherwise does not necessarily constitute or imply its 

endorsement, recommendation, or favoring by the United States Government or any agency 

thereof. The views and opinions of authors expressed herein do not necessarily state or reflect 

those of the United States Government or any agency thereof. 

 



 

v 

TABLE OF CONTENTS 

LIST OF TABLES ................................................................................................................. viii 

LIST OF FIGURES ................................................................................................................. ix 

1 Introduction ....................................................................................................................... 1 

1.1 The Neutron Transport Equation................................................................................ 1 

1.2 Iterative Neutron Transport Solvers ........................................................................... 4 

1.3 The THOR Neutral Particle Transport Code .............................................................. 6 

1.4 Desired Improvements ............................................................................................... 7 

1.5 Selected Improvements .............................................................................................. 8 

1.6 Thesis Outline ............................................................................................................ 9 

2 Iterative Acceleration Methods ....................................................................................... 10 

2.1 Introduction .............................................................................................................. 10 

2.2 Literature Review ..................................................................................................... 10 

2.2.1 Fission Source Extrapolation ............................................................................ 10 

2.2.2 Coarse Mesh Rebalance .................................................................................... 11 

2.2.3 Diffusion Synthetic Acceleration ...................................................................... 14 

2.2.4 Chebychev Acceleration ................................................................................... 15 

2.3 Implementation......................................................................................................... 16 

2.4 Results ...................................................................................................................... 18 

2.5 Future Work ............................................................................................................. 22 

3 Parallel Domain Decomposition ..................................................................................... 23 

3.1 Introduction .............................................................................................................. 23 

3.2 Literature Review ..................................................................................................... 23 

3.2.1 Energy Domain Decomposition ........................................................................ 23 

3.2.2 Spatial Domain Decomposition ........................................................................ 24 

3.2.3 Angular Domain Decomposition ...................................................................... 26 

3.3 Implementation......................................................................................................... 27 

3.3.1 Work Splitting Routine ..................................................................................... 28 

3.3.2 Parallel Execution ............................................................................................. 29 

3.3.3 Communication ................................................................................................. 30 

3.4 Results ...................................................................................................................... 31 



 

vi 

3.4.1 Scaling Studies .................................................................................................. 32 

3.4.2 Synthetic Communication Modeling ................................................................ 36 

3.5 Future Work ............................................................................................................. 38 

4 Parallel Performance Modeling ....................................................................................... 39 

4.1 Introduction .............................................................................................................. 39 

4.2 Literature Review ..................................................................................................... 39 

4.2.1 Amdahl’s Law ................................................................................................... 39 

4.2.2 PPMs for Transport Codes ................................................................................ 41 

4.3 An Overview of the Falcon HPC System................................................................. 42 

4.3.1 Physical Layout of Falcon ................................................................................ 43 

4.3.2 Network Topology of Falcon ............................................................................ 44 

4.3.3 Other Falcon Notes ........................................................................................... 44 

4.4 Complications Stemming from the THOR Cell Solver ........................................... 45 

4.5 Methodology ............................................................................................................ 46 

4.6 Results and Model Validation .................................................................................. 50 

4.6.1 Evaluating the Influence of Canonical Tetrahedron Subdivision ..................... 50 

4.6.2 The Communication Model .............................................................................. 53 

4.6.3 The Parallel Sweep Model ................................................................................ 56 

4.6.4 Evaluating the Model ........................................................................................ 58 

4.6.5 The Unified THOR Parallel Performance Model ............................................. 62 

4.6.6 Future Work ...................................................................................................... 63 

5 Parallel Communication Effects ...................................................................................... 65 

5.1 Introduction .............................................................................................................. 65 

5.2 Literature Review ..................................................................................................... 65 

5.2.1 The PIDOTS Code ............................................................................................ 65 

5.2.2 HPC Topology & Communication ................................................................... 67 

5.3 Results ...................................................................................................................... 69 

5.3.1 Recreating the PIDOTS Scaling Problem ......................................................... 69 

5.3.2 Justification of Crossover in the Weak Scaling Trends .................................... 74 

5.3.3 Exploring Communication Cost Growth on Falcon ......................................... 75 

5.3.4 Modeling the Impact of the Latency Distribution............................................. 78 

5.4 Future Work ............................................................................................................. 82 



 

vii 

6 Software Management Improvements ............................................................................. 84 

6.1 Version Control ........................................................................................................ 84 

6.2 Modular Code Restructuring .................................................................................... 85 

6.3 Formal Testing ......................................................................................................... 86 

6.4 Documentation and Testing Coverage Metrics ........................................................ 87 

6.5 Automated Build System ......................................................................................... 87 

6.6 Summary .................................................................................................................. 88 

7 Conclusions ..................................................................................................................... 89 

7.1 Summary .................................................................................................................. 89 

7.2 Final Comments ....................................................................................................... 90 

REFERENCES ....................................................................................................................... 91 

APPENDICES ........................................................................................................................ 95 

APPENDIX A – FALCON TOPOLOGY .......................................................................... 96 

APPENDIX B – FISSION HPC DATA ........................................................................... 100 

 



 

viii 

LIST OF TABLES 

Table 1: Comparison of THOR solver methods [4] ............................................................ 20 

Table 2: Summary of Falcon Hardware Layout .................................................................. 43 

Table 3: Simple Cube Test - Canonical Tet Variation [33] ................................................ 51 

Table 4: Godiva - Canonical Tet Variation [33] ................................................................. 52 

Table 5: C5G7 - Canonical Tet Variation [33] ................................................................... 52 

Table 6: Percent Error for Interpolation Cases, from [33] .................................................. 58 

Table 7: Actual vs. Model Results for Takeda-IV & Godiva Cases ................................... 61 

Table 8: Discrete Event Simulation Results........................................................................ 80 



 

ix 

LIST OF FIGURES 

Figure 1: Flow diagram of iterative transport solution ........................................................... 5 

Figure 2: Example of level-of-detail based structured/unstructured mesh, from [16] ......... 13 

Figure 3: Behavior of Chebychev Acceleration Factors ...................................................... 21 

Figure 4: Example PGS-SDD Domain ................................................................................. 25 

Figure 5: ADD Parallel Inner Iteration Scheme ................................................................... 30 

Figure 6: Comparison of Measured and Optimal Times for THOR ADD – Strong 

Scaling................................................................................................................... 33 

Figure 7: Strong Scaling for Angular Decomposition Problem plotting efficiency 

(%) versus the number of CPUs for S12 level-symmetric quadrature. [4] ............ 34 

Figure 8: Weak Scaling Results for 10k Tet Mesh with THOR ADD ................................. 35 

Figure 9: Measured communication time for minimally loaded nodes performing 

AllReduce on Falcon. Data sets are labeled as [# of active processors per 

node] x [# of Nodes], from [4] .............................................................................. 37 

Figure 10: Measured communication time for partially loaded nodes performing 

AllReduce on Falcon. Data sets are labeled as [# of active processors per 

node] x [# of Nodes], from [4] .............................................................................. 37 

Figure 11: Possible Configurations for Canonical Tet Decomposition, from [32] ................ 46 

Figure 12: Hierarchical Timing Model Design, adapted from [33] ....................................... 48 

Figure 13: Updated representation of AllReduce Behavior on Falcon, adapted from 

[33] ........................................................................................................................ 50 

Figure 14: Differing communication trends for p=288 and p=n(n+2) for S8, adapted 

from [33] ............................................................................................................... 54 

Figure 15: Differing communication trends for p=288 and p=n(n+2) for S12, adapted 

from [33] ............................................................................................................... 55 

Figure 16: THOR/HPC communication time fit, adapted from [33] ..................................... 56 

Figure 17: 1/p relationship between processor count and parallel sweep time, adapted 

from [33] ............................................................................................................... 57 



 

x 

Figure 18: Linear relation between time and number of angles for a fixed value of p, 

adapted from [33] .................................................................................................. 57 

Figure 19: 400k tetrahedrons mesh model predictions vs measured, adapted from [33] ....... 59 

Figure 20: Evaluation of processor count dependence in grind time, adapted from 

[33] ........................................................................................................................ 60 

Figure 21: Amended Model Cases, adapted from [33] .......................................................... 60 

Figure 22: Final Model Predictions for Simple Cube, adapted from [33].............................. 63 

Figure 23: Original PIDOTS Iteration Count as a Function of Processor Count; 

adapted from [22] .................................................................................................. 70 

Figure 24: Original PIDOTS Weak Scaling Results adapted from [22] ................................ 71 

Figure 25: PIDOTS Iteration Trends from FALCON ............................................................ 72 

Figure 26: PIDOTS / Falcon Weak Scaling ........................................................................... 72 

Figure 27: Falcon PIDOTS Time Per Iteration ...................................................................... 73 

Figure 28: Histogram of 2-Hop Latency ................................................................................ 77 

Figure 29: Histogram of 3-Hop Latency ................................................................................ 78 

Figure 30: Sketch of Approximate PDF overlaid on Measured 2-Hop Data ......................... 79 

Figure 31: Comparing Latency Models for p=64 ................................................................... 81 

Figure 32: Comparing Latency Models for p=32,768 ............................................................ 81 

Figure 33: Falcon IRU Structure and 1D Topology ............................................................... 96 

Figure 34: Falcon 3D Topology ............................................................................................. 97 

Figure 35: Falcon 4D Topology ............................................................................................. 97 

Figure 36: Falcon 5D Topology ............................................................................................. 98 

Figure 37: Falcon 6D Topology ............................................................................................. 98 

Figure 38: Falcon Partial 7D Topology .................................................................................. 99 

Figure 39: PIDOTS / Fission Iteration Behavior .................................................................. 100 

Figure 40: PIDOTS / Fission Total Execution Time ............................................................ 101 

Figure 41: PIDOTS / Fission time per iteration ................................................................... 101 



 

1 

1 Introduction 
 

1.1 The Neutron Transport Equation 
 

The neutron transport equation describes the evolution of the neutron distribution over 

a six-dimensional phase space formed by position, direction of motion, and energy. This 

distribution is referred to as angular flux and, in this thesis, will be denoted as 𝜓(𝑟, Ω̂, 𝐸, 𝑡), 

where 𝑟 is the position of the particle in cartesian (x,y,z) space within a volume 𝑑𝑟, Ω̂ is the 

angular description of the particle’s direction of travel within a cone 𝑑Ω̂, E is the particle’s 

energy within a band 𝑑𝐸, and t is the time of evaluation. A standard representation of this 

equation is given below [1]: 
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𝑣

𝜕

𝜕𝑡
𝜓(𝑟, Ω̂, 𝐸, 𝑡) +  Ω̂ ∙ ∇⃗⃗⃗ 𝜓(𝑟, Ω̂, 𝐸, 𝑡) + 𝜎𝑡(𝑟, 𝐸)𝜓(𝑟, Ω̂, 𝐸, 𝑡) 

=  ∫ 𝑑𝐸′
∞

0

∫ 𝑑Ω̂′
4𝜋

 𝜎𝑠(𝑟, Ω̂
′ → Ω̂, 𝐸′ → 𝐸)𝜓(𝑟, Ω̂, 𝐸, 𝑡) 

+
𝜒(𝐸)

4𝜋𝑘
∫ 𝑑𝐸′
∞

0

∫ 𝑑Ω̂′
4𝜋

 𝜈𝜎𝑓(𝑟, 𝐸)𝜓(𝑟, Ω̂, 𝐸, 𝑡) 

+𝑞𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙(𝑟, Ω̂, 𝐸, 𝑡) 

(1) 

 

 

In Eq. (1), 𝑣 represents the neutron speed, while 𝜎𝑡, 𝜎𝑠, 𝑎𝑛𝑑 𝜎𝑓 represent, respectively, 

the neutron cross sections for total interaction, scattering, and fission. The average number of 

neutrons per fission event is given by 𝜈 and the resulting fission spectrum is given by 𝜒.   

 In this form, the first line of the equation represents the neutron sinks, in order: the 

change in population with time, the out-streaming of particles, and interaction of particles. The 

second line represents the scattering source, or the influx of particles into a volume of phase 

space resulting from scattering interactions in other regions (𝑟′, Ω′̂, 𝐸′, 𝑡) that deposit a particle 

into (𝑟, Ω̂, 𝐸, 𝑡). The third line represents the contributions of fission events that result in a 

neutron in (𝑟, Ω̂, 𝐸, 𝑡). Note that here, the fission distribution, 𝜒(𝐸), is taken to be independent 
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of the original energy, 𝐸′ and that fission is assumed to be isotropic, i.e., it emits particles 

evenly amongst the 4𝜋 directions of the unit sphere. The fourth line provides an arbitrary 

external source of neutrons. The form given in (1) represents a combination of the two forms 

represented in the THOR transport code, k-eigenvalue and fixed source. In THOR, for the 

former, k is part of the solution and can be any positive real value, while 𝑞𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 is taken to 

be zero. For the latter, k must be less than 1 for a solution to exist and 𝑞𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 is a problem 

parameter. 

While (1) provides a clean expression for the neutron transport equation, it is several 

steps removed from a form convenient to implement into a numerical code. First, for the 

purposes of this work, all problems will be taken to be steady state. As such, the time derivative 

of the flux is zero and the corresponding term can be removed. Second, the continuous 

variables in space, angle, and energy must be discretized, along with the integrals in angle and 

energy. Multiple methods exist by which to perform this discretization. One method, which is 

implemented by THOR, is the method of Discrete Ordinates [1], or the 𝑆𝑛 method, which 

divides the spatial volume into elements, the angles into a set of discrete ordinates, 𝑛 ∈ 1. . 𝑁, 

and the energy range into a set of energy groups, 𝑔 ∈ 1. . 𝐺. The name 𝑆𝑛 stems from the 

subscript 𝑛 denoting the level of the angular quadrature used to approximate the angular 

integrals.  

Rewriting Eq. (1) in this form will require several stages. First, is the treatment of the 

angular variable, Ω, via the method of Discrete Ordinates. In this method, the continuous 

variable Ω is replaced with the finite set of directions, Ω𝑛, where 𝑛 = 1. . 𝑁. Via numerical 

quadrature, this set of angles, paired with appropriate weights (𝑤𝑛), can be used to replace 

integrals over Ω with sums over 𝑤𝑛Ω𝑛. Finally, the scattering cross section, 𝜎𝑠, which is a 

function of both the incoming and outgoing angle, must be represented using an expansion in 

spherical harmonics. Eq. (2) shows the Discrete Ordinates form of the transport equation with 

continuous space and energy [1].  
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Ω̂∇ψn(𝑟, 𝐸) + 𝜎𝑡ψn(𝑟, 𝐸) =  ∑ ∑ Υ𝑙,𝑚( Ω̂𝑛)∫ 𝜎𝑠(𝑟, 𝐸
′ → 𝐸)𝜙𝑙

𝑚(𝑟, 𝐸)𝑑𝐸
∞

0

 

𝑙

𝑚=−𝑙

𝐿

𝑙=0

 

+
𝜒(𝐸)

4𝜋𝑘
∫ 𝜈𝜎𝑓𝜙(𝑟, 𝐸)
∞

0

𝑑𝐸 +
𝑆𝑛(𝑟, 𝐸)

4𝜋
 

(2) 

 

 

Here, 𝜓𝑛 is the angular flux of the specific angle Ω𝑛 and Υ𝑙,𝑚 is the spherical harmonic 

of degree 𝑙 and order 𝑚. All other variables subscripted with n are the same quantities as before, 

except now they only represent the component along direction n.  

Next is the discretization of the energy domain. This will be done via the multigroup 

method, which subdivides the energy range into a finite number of groups, G, and defines a set 

of G transport equations. This replaces integrals over energy with sums over each group. For 

quantities which are energy dependent, such as cross sections, the group average value is 

defined as the flux weighted average over the energy range of the group. An example of the 

multigroup discrete ordinates equations for continuous space is shown below [2]. 

 

 

Ω̂∇ψn,g(𝑟) + 𝜎𝑡,𝑔ψn,g(𝑟) =  ∑ ∑ ∑ Υ𝑙,𝑚( Ω̂𝑛)𝜎𝑠
𝑔′→𝑔(𝑟)𝜙𝑙,𝑔′

𝑚 (𝑟)

𝐺

𝑔′=1

 

𝑙

𝑚=−𝑙

𝐿

𝑙=0

 

+
𝜒𝑔

4𝜋𝑘
∑ 𝜈𝜎𝑓,𝑔′𝜙𝑔′(𝑟)

𝐺

𝑔′=1

+
𝑆𝑛,𝑔(𝑟)

4𝜋
 

(3) 

 

 

Here, 𝜓𝑔,𝑛 is the angular flux of the specific group-angle combination. In this form, the 

solution is only obtained along one ordinate, Ω̂𝑛, and one group, 𝑔, at a time.  

The final phase dimension to discretize is space. There a variety of methods by which 

to do this. However, in general, this step is performed by dividing the spatial domain into a set 

of mesh cells. Each cell in the mesh has constant material properties and, as a result, constant 

cross section. Next, a set of relations are defined to relate the cell center and outbound fluxes 

to the flux incident on the incoming face(s) of the mesh cell volume. As discussed in [1] and 

[2], these relations can take many forms depending on the needs of the application.  



 

4 

As a result of this discretization, for a given angle, the flux in a cell is only dependent 

on values local to that cell, sources and cross sections, and the flux incident on the cell from 

its upstream neighbors. This allows for the use of a mesh sweep to evaluate the flux in all cells, 

given a starting boundary with a known incident flux. 

The known boundary, combined with the cell material information, can be used to solve 

for the flux along a given ordinate in the cell and then propagate a cell-edge flux to the 

downstream mesh neighbor. When this process is repeated across the entire mesh, it is referred 

to as a sweep. After every angle has been swept, a new iterate of the flux profile in the domain 

can be generated. As the next section will describe, this iteration process continues until a 

sufficiently converged value of the flux solution is produced. 

 

1.2 Iterative Neutron Transport Solvers 
 

Moving from the mathematical expression of the numerical neutron transport equation 

to a workable algorithm is relatively straightforward. Solution of the transport equation 

typically uses a set of two nested iterations: outer and inner. A flow diagram of these processes 

is given in Figure 1. As it shows, the inner iteration is used to converge the in-scatter source, 

while the outer iteration is used to converge the up-scatter source. By sweeping energy groups 

from highest to lowest energy, the down-scatter source for group g is known at the start of the 

group g solve. In problems with fission, the outer iteration is augmented with an update to the 

fission source. This augmentation forms a power iteration and 𝑘𝑒𝑓𝑓 update.  
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Figure 1: Flow diagram of iterative transport solution. 

 

Also of note is the lowest level of the iteration hierarchy, the mesh sweep. In this 

operation, the current source and flux values are used to calculate a new flux iterate by moving 

along each cell of the mesh, starting from a boundary with known in-flux. In this way, each 

cell is solved using the known solution from its upstream neighbor. This sweep is performed 

along the entire mesh for each discrete ordinate in the angular approximation. However, 

individual sweeps are independent of one another until they are all completed. Once all sweeps 

have completed, an updated value for the angular flux moments can be generated.  
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1.3 The THOR Neutral Particle Transport Code 
 

The THOR neutral particle transport code is maintained at NCSU in collaboration with 

Idaho National Laboratory (INL). It is a Fortran 95 application designed to solve the three-

dimensional discrete ordinates approximation discretized by unstructured tetrahedral meshes. 

As a spatial approximation, it implements the arbitrarily high order transport method of the 

characteristic type (AHOTC). The specifics of this implementation are beyond the scope of 

this work and are detailed in [3].  

To the best of author’s knowledge, THOR is unique in its implementation of this 

arbitrarily high-order method on unstructured, tetrahedral meshes. As such, it provides a useful 

testbed for the implementation and evaluation of modifications to the AHOTC method in 

unstructured geometries. At the beginning of the author’s graduate program, THOR maintained 

the following features: 

• Serial solvers for both k-eigenvalue and external source problems using a traditional 

outer/inner iteration scheme 

• Support for arbitrary energy groups, angular quadrature refinements, and spatial 

expansion order 

• A Jacobian-Free Newton-Krylov Solver for k-eigenvalue problems 

• Fission source extrapolation for acceleration of the outer iteration 

Using these features, the THOR code could be used to evaluate a variety of scenarios 

relevant to the modern nuclear engineering field. These include reactor core modeling [4], 

source localization, and the evaluation of sub-critical weapons-grade material.  However, the 

neutron transport equation can be an extremely expensive problem to solve since it is 

discretized in 6 variables – 3 directional, 2 angular, and 1 energy. Refinements to a given 

problem can lead to massively increased computational costs. For small problems, this scaling 

can yield several thousand degrees of freedom (DOF) and solving times on the order of 

seconds. Even for many iterations of parameter studies, these costs are quite minor.  However, 

for larger problems, these costs can rapidly become intractable. For the largest problem run in 

THOR to date, a high-resolution model of the Advanced Test Reactor (ATR) at Idaho National 
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Lab (INL) [5], this scaling yielded approximately four billion DOF. This problem had a 

solution time of ~2 weeks and was simply too time-intensive to run repeatedly. Unfortunately, 

as evaluating a high-resolution reactor model, such as the ATR problem, forms a cornerstone 

of the verification and validation plan for the THOR code, this posed an obvious challenge. 

Based on the need to repeatedly and rapidly run problems on scales up to that of the ATR case, 

it was determined that several modifications would need to be made to THOR. 

 

1.4 Desired Improvements 
 

As the ATR problem had demonstrated, the then-current implementation of THOR was 

insufficient to tackle the massive problem sizes resulting from the desire for high-fidelity 

results. Fortunately, there were a variety of possible modifications that could be made to THOR 

to significantly speed up the solver.  

However, there were also several limiting factors that restricted this field of choices. 

Most important was the fact that previously completed work from another researcher had 

verified the existing code via the method of manufactured solutions [6]. This meant that it was 

desirable to introduce changes that encapsulated, rather than modified, existing pieces of code. 

Maintaining this separation of functionality would allow for improvements to be made to the 

code’s speed without risk of impacting verified code. The second constraint was related to the 

future plans for THOR. Since many planned projects related to the capabilities of the non-

JFNK solvers, it would be ideal if the power iteration solver saw the greatest benefit from the 

implemented changes.  

From these needs and constraints, a goal could be developed – reduce the runtime of 

the outer/inner iterative solvers as much as possible without significantly modifying existing 

routines and without imposing undue increases in resource utilization.  
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1.5 Selected Improvements 
 

Based on the goal defined in section 1.4, there were two obvious paths for improving 

the performance of THOR. First, implementation of a new acceleration scheme better than 

fission source extrapolation and, second, the parallelization of one of the phase space 

dimensions of the neutron transport equation.  

For the first, a new acceleration method, there were again two options. In an outer/inner 

solver schema, acceleration schemes can be applied to either (or both) the outer or inner 

iterations. Several powerful inner iteration schemes exist which sharply decrease the required 

number of inner iterations. Unfortunately, these are also typically more resource intensive, 

requiring much more memory, and would require implementing significant modifications to 

already-verified code. Additionally, k-eigenvalue problems in THOR are dominated by outer 

iterations. Some outer accelerations, such as the already implemented Fission Source 

Extrapolation, are comparatively cheap and require only a short calculation at the end of an 

outer iteration cycle. This small implementation and runtime overhead is balanced out by the 

comparatively small acceleration they produce. 

In the end, since eigenvalue problems are common for THOR, the lightweight, non-

intrusive nature of outer acceleration was found to be a better fit for the current needs. But, 

given the expected performance of outer accelerations, it was also decided that simply 

implementing a new outer acceleration would not provide a sufficient increase in performance.  

To complement the outer acceleration some aspect of the code would also need to be 

parallelized. From the variables involved in the transport equation, this left three options, 

parallelism in space, angle, or energy.  

Parallelism in energy is not ideal as the resulting algorithm is asynchronous due to 

energy group coupling and, since the number of groups is typically small, limited in scalability.  

While also asynchronous, spatial parallelism is a tempting option. The sheer number of 

mesh cells in most problems allows for massive parallelization. Unfortunately, implementing 

this parallel structure on unstructured meshes is a major undertaking and well beyond the scope 

of this work.  
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Finally, there is angular parallelism. Like spatial decomposition, the angular domain 

grows in cost at an above-linear rate. However, unlike in the other options, angular 

decomposition is synchronous. Angles are evaluated independently for most of the inner 

iteration process. During the sweep, each angle is evaluated separately; and, at the end, 

aggregate measures are generated form the completed result vector. Because of this, it would 

be a relatively non-invasive task to implement an angular decomposition into a functioning 

transport solver. 

Based on this brief sampling of the available options for acceleration and 

parallelization, an outer acceleration paired with angular parallelization best suits the needs of 

the THOR project. The implementation and evaluation of the former will be detailed in Chapter 

2, while the latter will be described in Chapter 3. Additionally, further evidence from literature 

will be provided to justify each choice. 

 

1.6 Thesis Outline 
 

Each of the following chapters in this thesis will present work from single thrust area 

of the THOR improvement project. For each thrust area, an overview of the existing literature 

will be provided, followed by a discussion of the methodology, results, and conclusions related 

to the work 

Chapter 2 will discuss the development of the outer acceleration scheme decided on in 

the previous sections. Chapter 3 will address the implementation of angular parallelization. 

Next, Chapter 4 will present a compartmentalized method for parallel performance evaluation 

of the THOR code. Chapter 5 will present an analysis of the performance of parallel codes on 

a high-contention HPC system. Chapter 6 will highlight a variety of software management 

improvements to the THOR project and explain their importance in the role of a production-

level neutronics code. Finally, Chapter 7 will provide conclusions and an overview of the net 

contribution of this project. 
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2 Iterative Acceleration Methods   
 

2.1 Introduction  
 

As determined in sections 1.4 and 1.5, the optimal acceleration technique for this 

project was not the one which demonstrated the largest increase in computational speed, but 

rather the one which provided a reasonable amount of speedup for a relatively low cost in 

implementation complexity and invasiveness. This section will review several common inner 

and outer acceleration schemes. However, eigenvalue calculations are dominated by outer 

iterations and several light-weight outer acceleration algorithms are readily available. In the 

end, inner accelerations were deemed sub-optimal for our needs and work shifted focus to outer 

acceleration methods. From this pool, Chebychev acceleration was selected. While there was 

literature, [7], and anecdotal experience, [8], indicating that Chebychev was not an optimal 

method, it was clearly documented in [9] and similar in implementation to the fission source 

extrapolation already implemented in THOR. These benefits were deemed sufficient to 

outweigh the negatives. In the end, with some modification to the standard algorithm, 

Chebychev acceleration proved surprisingly effective and yielded speedups significantly better 

than fission source extrapolation and roughly equal to some versions of the THOR JFNK 

solver.  

 

2.2 Literature Review 
 

2.2.1 Fission Source Extrapolation 

 

As described in [10], error-mode based fission source extrapolation (FSE) is one of the 

most simplistic outer iteration acceleration schemes. However, this does not prevent it from 

providing a useful degree of speedup in most problems. FSE is based on the fact that, as an 

unaccelerated problem converges, the relative change in the fission density of the problem 

approaches a constant. By identifying this relative change constant, an acceleration term can 
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be generated. Mathematically, this is achieved through the following steps. First, define the 

iteration 𝑞 fission density error as the sum over all spatial cells: 

 

 𝑒𝑞 =∑|𝐷𝑞 − 𝐷𝑞−1| (4) 

 

where Dq is the fission density in iteration q. The fission density is calculated simply as the 

sum of all fissions in all groups. Next, this error term is used to evaluate an estimate of the 

eigenvalue and of the acceleration term as: 

  

 
𝜆𝑞 =

𝑒𝑞

𝑒𝑞−1
  (5) 

 
Θ𝑞 =

𝜆𝑞

1 − 𝜆𝑞
 (6) 

 

This extrapolation term is then applied to both the scalar flux and the fission density: 

 

 𝐷𝑞′ = 𝐷𝑞 + Θ𝑞(𝐷𝑞 − 𝐷𝑞−1)  (7) 

 𝜙𝑞′ = 𝜙𝑞 + Θ𝑞(𝜙𝑞 − 𝜙𝑞−1)  (8) 

 

The authors of [10] mention that this approach is highly effective in converging k-

eigenvalue problems and problems with significant up-scatter. However, under some cases, a 

stable value of Θ will not be found and the acceleration scheme will not prove effective. 

 

2.2.2 Coarse Mesh Rebalance 

 

Coarse Mesh Rebalance (CMR), discussed in [11, 12, 13], is an inner acceleration 

scheme that can be applied to the neutron transport equation. As the name implies, the method 

involves superimposing a coarse mesh atop the existing fine mesh used by the transport solver. 

The current cell-average flux iterate is then accelerated by generating a multiplicative term 

called the rebalancing factor. In essence, this method uses a lower fidelity, faster solve to 

provide an improved guess to the higher-order solver.  
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Overall the methodology is rather simple. As described by [13] for the slab geometry 

case, a set of balances are generated such that the flux in the coarse mesh satisfies: 
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 (9) 

 

where the values for flux at the cell edges, 𝜓
𝑛,𝑗±

1

2

∗ , are calculated using the balance relationship 

implemented in the given code and the values of 𝐹𝑗
𝑙 are the acceleration coefficients. When 

applied to all cells in the fine slab mesh, this forms a tridiagonal matrix which can be solved 

to yield the 𝐹𝑗
𝑙 terms.  Having determined a value for the acceleration term in each cell, an 

accelerated iterate of the cell-center flux can be generated as: 

 

 
𝜓𝑛,𝑗
𝑙 = 𝜓

𝑛,𝑗

𝑙−
1
2 ∗ 𝐹𝑗

𝑙 (10) 

 

As the condition of two edges per cell in 1D yields a tri-diagonal matrix, it can be 

inferred that higher dimensional problems will yield an increasingly wide block-diagonal 

structure representing the edge coupling between cells.  

While the CMR method has been a mainstay of simple, effective acceleration methods, 

it presents several problems that make it unfit for our objectives described previously.   

First, the presence of the matrix-solve means that CMR will have a significantly higher 

per-iteration cost than non-matrix methods, both in memory and time utilization. While this is 

not problematic for small problems, it will become a critical concern for extremely large 

problems, which are both time and memory limited.  

Further complicating the use of CMR concerns its application to unstructured meshes. 

In the simple example described above, a fine slab mesh was coarsened into a less fine slab 

mesh. This same-geometry coarsening allows for an easy implementation and a simple 
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mapping of the flux variables at cell edges. Applying this same routine to THOR would prove 

challenging since an arbitrary group of tetrahedrons cannot be coarsened into another 

tetrahedron. This difficulty could be avoided by using the same mesh for both the fine and 

coarse meshes. Unfortunately, this approach makes the method inflexible as it would only 

allow for that single configuration.  

Several sources detail the process of overcoming the difficulties of unstructured-mesh 

CMR [14, 15]. However, in both, the solution was to implement a degree of regularity to the 

mesh. In doing so, the mesh was unstructured below some level of detail and structured above. 

An example of this is provided from openMOC, [15], in Figure 2. Note that the implemented 

acceleration is coarse-mesh finite difference, not CMR. Regardless, the system for handling 

unstructured meshes is the same.  

 

 

Figure 2: Example of level-of-detail based structured/unstructured mesh, from [16]. 

 

As can be seen on the left of Figure 2, even though the mesh is unstructured, it does 

possess a degree of regularity stemming from the repetitive nature of the unit cell lattice. This 

regularity is capitalized on to provide matching boundaries for CMR. Similarly, in [14], the 

fuel structure is coarsened into the repetitive hexagonal assembly shape.  
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Unfortunately, due to the desired arbitrary-geometry nature of THOR, it would be 

impossible to guarantee mesh repetitions of this sort in every problem without artificially 

inserting them. As such, CMR is not a viable method for this application given its current 

needs. 

 

2.2.3 Diffusion Synthetic Acceleration 

 

Alcouffe [7], describes a trio of Diffusion Synthetic Acceleration (DSA) methods for 

use in multi-group, discrete-ordinates problems. The three treatments are designed to provide 

a stable, highly-effective acceleration method. These stability improvements make DSA more 

efficient than unaccelerated transport iterations under essentially all conditions except extreme 

cases, such as unbounded heterogeneity [13]. This degree of improvement would provide a 

massive boon to THOR.  

DSA is characterized by the utilization of a neutron diffusion operator to accelerate the 

inner iterations of the neutron transport solution. From a high-level viewpoint, the results of 

an inner transport solve are used as the inputs to a diffusion-like solve. The diffusion solve 

provides a greatly increased rate of convergence of the flux iterates. A significant benefit of 

this method is that it is effective under most conditions, including those where true diffusion 

would not be [7]. 

However, like CMR, the solution of DSA acceleration requires the creation of an 

additional matrix system of equations in the iterative correction terms, consuming both 

additional memory and execution time per iteration. However, given the results demonstrated 

in [7], this increase in per-iteration cost would be easily outweighed by gains in iteration count 

reduction. The comparison in [7] shows DSA consuming anywhere from ~3 to ~10 times fewer 

iterations than unaccelerated transport. Additionally, the method proves similarly effective 

when compared to Chebychev and CMR. 

These substantial speedups, coupled with the evidence of guaranteed convergence 

provided by [7] would seem to indicate that DSA is the optimal acceleration to implement into 

THOR. However, as shown by Azmy [17], the guarantee of stability can be lost in multi-
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dimensional problems as material heterogeneity becomes unbounded. Furthermore, as [7] and 

[18] discuss, DSA is most easily applied to fixed source problems. Applying it to general 

eigenvalue problems can prove challenging. Since THOR primarily evaluates eigenvalue 

problems, this weakness, coupled with the desire to modify verified code structures as little as 

possible, rendered DSA suboptimal to implement for this project. There is still a significant 

desire to implement it in the future as project needs and constraints evolve. But, for now, it is 

not the optimal choice.  

 

2.2.4 Chebychev Acceleration 

 

From a review of the literature, Chebychev acceleration seems to be often used, but 

rarely described. It is mentioned as an option or used for efficiency comparisons by [7], [9], 

and [11], but the implementation is only fully described in Hébert’s work, [9]. Like fission 

source acceleration, Chebychev acceleration does not require a matrix evaluation [11]. Instead, 

it uses an estimate of the dominance ratio to modify the next flux iterate using a superposition 

of old iterates. This makes it extremely cheap to implement in terms of run time costs since it 

only involves a set of uncoupled expressions.  

In the method described in [9], Chebychev acceleration is implemented as a cyclical 

process. First, a series of unaccelerated iterations are used to loosely converge the dominance 

ratio. Then, some fixed number of accelerated iterations are performed, with each one using 

the dominance ratio estimate as an acceleration parameter. After the fixed number of 

accelerations is complete, relations based on the Chebyshev polynomials are used to extract 

the equivalent un-accelerated dominance ratio. This new dominance ratio is used to drive a 

new cycle of accelerated iterations. At each step in the process, the Chebychev relationships 

are used to generate two terms, 𝛼 and 𝛽, which are combined with the old iterative flux 

estimates to provide an improved new flux estimate. 

In the same publication, Hébert compares the Chebychev method to a proposed 

variational technique based on Rayleigh Ratios. This technique proves slightly more involved 
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than Chebychev acceleration to implement but yields only marginally better results in terms of 

iteration count. 

Similarly, in [7], Chebychev is used as one of a variety of acceleration methods for 

benchmarking. Of note from these other methods are the unaccelerated, Coarse Mesh 

Rebalance, and Diffusion Synthetic Acceleration results. As would be expected from the 

earlier discussion, the DSA inner acceleration scheme requires far fewer iterations and is more 

stable than any other method. However, it has the most complicated implementation and 

highest per-iteration computational cost. Of the remaining methods, Chebychev is generally 

able to converge faster than both CMR and unaccelerated inner iterations. However, there is 

one case each [7] where Chebychev fails to outperform the other methods. These failures are 

attributed to insufficient convergence in the initial guess value for the dominance ratio. Both 

[11] and [9] emphasize that the method may become unstable if the initial dominance ratio 

guess is poor. 

 

2.3 Implementation 
 

The Chebychev acceleration method implemented in THOR follows closely the form 

developed in [9]. A summary of this method, along with the modifications made to it in our 

implementation is presented here. 

First, a set of unaccelerated iterations is performed while estimating the dominance 

ratio as the 2-norm of the flux difference in iteration 𝑘 and 𝑘 − 1: 

 

 𝜎𝑘+1 = |𝜙𝑘 − 𝜙𝑘−1|2 (11) 

 

When the dominance ratio estimate k+1 exceeds 0.5, a Chebychev acceleration cycle 

is triggered and the current iteration, 𝑘, is designated 𝑛∗. In this cycle, m Chebychev 

acceleration steps are executed. During each of these steps denoted with an iterative index p, a 

pair of acceleration parameters,  and , are generated and applied to the flux prediction. 
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 𝜙𝑛
∗+𝑝+1 = 𝜙𝑛

∗+𝑝 + 𝛼(𝜙𝑛
∗+𝑝 − 𝜙𝑛

∗+𝑝−1) + 𝛽 ∗ (𝜙𝑛
∗+𝑝−1 − 𝜙𝑛
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 𝑝 = 1, . . , 𝑚 

(12) 
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𝛾 = cosh−1 (

2

𝜎𝑛
∗+1

− 1) (15) 

 

The acceleration defined above can be applied for m iterations. After this, the 

acceleration cycle ends and an update to the dominance ratio must be performed to allow for 

the re-initiation of the Chebychev scheme. The process of reconstructing the unaccelerated 

dominance ratio at the conclusion of a Chebychev cycle is as follows: 
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(16) 

 
𝐸∗ = [𝐶𝑚−1 ∙

(2 − 𝜎𝑛
∗+1)

𝜎𝑛
∗+1

]

−1

  (17) 

 𝐶𝑚−1(𝑥) = cosh [(𝑚 − 1) ∗ cosh−1(𝑥)]    

 

The two factors, 𝐸 and 𝐸∗, represent the achieved and theoretical error reduction for a 

Chebychev cycle of m steps. Next, they are combined to provide an estimate of the 

unaccelerated dominance ratio via: 

 

 

𝜎𝑛
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𝜎𝑛
∗+1

2
∙ [cosh(

𝑐𝑜𝑠ℎ−1 (
𝐸
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𝑚 − 1
) − 1]  (18) 
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Assuming the accelerated iteration has remained stable, the new dominance ratio can 

be used immediately as the 𝜎𝑛
∗+1 value of a new Chebychev cycle of length m.  

Unfortunately, this method was found to be frequently unstable for a variety of test 

cases. As a result, several modifications were made to the algorithm proposed by [9] outlined 

above and the modified version was implemented in THOR.  

The most significant of these modifications was to recalculate the theoretical error 

reduction, 𝐸∗, during every iteration, replacing the value of m with the current value of p. Using 

this continuous update of the 𝐸∗,(𝑝−1), the effectiveness of the Chebychev cycle can be 

determined.  

If, after a user-determined number of cycles, the achieved error reduction is less than 

the 𝑝 − 1 theoretical error reduction, the cycle is deemed ineffective and aborted. From 

evaluation of the code performance, ineffective cycles seemed to occur when initial dominance 

ratio estimate was poorly converged. As such, when a cycle is aborted a configurable number 

of power iterations are queued up prior to the start of the next Chebychev cycle. By doing this, 

the acceleration benefits of Chebychev can be maintained while at the same time actively 

monitoring for poor convergence.  

In addition to this algorithmic change, general stability was improved by tightening the 

criteria under which Chebychev iterations start. This was accomplished by requiring a small 

number of power iterations to be performed after the initial 𝜎 > 0.5 condition is reached. This 

delays the onset of the Chebychev system, but also tends to decrease the number of aborted 

cycles.  

 

2.4 Results  
 

The original results from the implementation of this acceleration scheme were 

presented in [4]. For that evaluation, the performance of the newly implemented Chebychev 

method was compared to the existing unaccelerated, fission-source accelerated, and JFNK 

solvers. To evaluate the effectiveness of the methods, a high-dominance ratio benchmark 

problem, 𝜎 ≈ 0.995, was selected from the literature. This benchmark took the form of a 
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homogenous cube with a side-length of 200cm and material properties: 𝜎𝑡 = 1, 𝜎𝑠 =

0.7, 𝜈𝜎𝑓 = 0.39 𝑐𝑚−1. A one-dimensional version on this configuration is described in [19]. 

On this test domain, a monoenergetic flux was converged to 10−7 in scalar flux and 10−8 in 

eigenvalue.  

For comparison purposes, the default implementations of the THOR unaccelerated and 

fission source accelerated solvers, see [6], were used. These simply implement the 

methodologies described previously with no special modifications.  

Additionally, 3 varieties of the THOR JFNK solver routine were exercised. These three 

methods were JFNK-1 (2), JFNK-1 (4), and JFNK-2. The first two evaluate the nonlinear 

function using a single outer and either 2 or 4 inner iterations. These limitations on the number 

of iterations are designed to minimize the memory footprint of JFNK so that it can be applied 

to larger problems without becoming memory constrained.  

JFNK-2 abandons this memory constraint and allows for the construction of up to a 30-

dimension Krylov subspace. Unfortunately, this method is extremely memory intensive, with 

each dimension of the subspace requiring an additional copy of the angular flux moments for 

the entire domain to be stored. This is obviously an intractable method for large problems, but 

it can be used to provide significant speedup on otherwise challenging problems with small 

domains.  

As shown in Table 1, the implemented Chebychev acceleration performed quite well 

compared to the non-JFNK transport solvers and performed reasonably well when compared 

to the JFNK solvers with limited memory footprints. Note that, as is typical for THOR, two 

inner iterations were performed per outer iteration for each of the three power iteration based 

solvers. 
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Table 1: Comparison of THOR solver methods [4]. 

Method 
Power/Newton Iteration count 

(Krylov It. Count) 

Transport Sweep 

Count 
Speedup 

Power Iteration 2714 5428 1 

Fission source 

extrapolation 
1109 2218 2.5 

Chebychev 

acceleration 
667 1334 4.1 

JFNK-1 (2) 8 (679) 1376 3.9 

JFNK-1 (4) 7 (522) 2120 2.6 

JFNK-2 7 (649) 657 8.3 

 

From these promising speedup results, Chebychev acceleration fulfills the objectives 

set forth for acceleration of THOR’s outer iterations. It provides a significant speedup in 

general problems and does not incur significant calculation or storage overhead. The method 

provides significant improvement over fission source extrapolation while maintaining a 

comparable per-iteration computational cost and only requires the storage of an additional 

scalar flux vector (as well as assorted scalars). Additionally, the method provides a roughly 

equivalent speedup, lower-memory alternative to the JFNK-1 (2/4) methods. This serves a dual 

benefit. First, it allows for larger problems to be solved, and second, it allows for transport 

iterations to be observed directly by developers for debugging. By its nature, the JFNK solver 

is comparatively minimalist in terms of in-process output compared to the more fully-featured 

iterative solver output. 

Unfortunately, Chebychev acceleration does not provide a perfect approach. As has 

been noted several times in this chapter, the method is more prone to instability than the 

unaccelerated and fission source solvers. 

This instability stems from the inability of the Chebychev relations to provide 

diminishing flux iterates. This is shown in the plot of 𝛼 and 𝛽 as a function of dominance ratio 

in Figure 3. Since there is no point in the region where Chebychev acceleration is allowed that 

provides negative acceleration factors, the method will always increase the flux. This will 

eventually lead to instability in the solution if a value higher than that in the limit solution is 

generated. 
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Figure 3: Behavior of Chebychev Acceleration Factors. 

 

This acceleration behavior was the motivating factor behind the addition of the logic to 

detect “ineffective” cycles. When the system begins to overshoot, the error climbs rapidly. As 

such, when an increase in error is detected, the code stops the Chebychev iterations and uses 

power iterations in an attempt to correct the divergence. While not completely effective, this 

modification allowed the Chebychev routine to remain stable in several test cases where the 

original algorithm [9] otherwise failed. The tradeoff in iteration count is unfortunate, but 

worthwhile to increase the odds of convergence. 

This instability precludes Chebychev acceleration from being used as a general first-

choice algorithm. However, it does allow it to be used to accelerate problems with known 

solutions for scenarios such as benchmarks or to perform parameter studies on a problem for 

which it is determined to be stable. This ability to rapidly re-run test cases is critical to 

maintaining the ability to implement and debug new THOR features related to the evaluation 

of high-fidelity models.  
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2.5 Future Work 
 

It is likely that the Chebychev routines will remain unchanged for the near-term. The 

currently implemented version fulfills the needs of ongoing research and performs sufficiently 

well. But, as time allows, or as needs change, there are several improvements that could be 

made to the algorithm. From discussions with [8], it appears that the stability and performance 

of the Chebychev acceleration method can be dramatically improved through the addition of 

further pre- and in-acceleration metrics. These metrics can be used to evaluate the readiness of 

the problem for (further) acceleration and drive modified unaccelerated iterations to better 

prepare the problem for Chebychev acceleration cycles. 

Additionally, based on the discussion presented in the literature review, it would be a 

significant improvement to THOR’s performance if DSA were implemented. This is a desired 

feature for THOR and is under consideration for implementation in the coming years.  
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3 Parallel Domain Decomposition 
 

3.1 Introduction 
 

At the beginning of this project, THOR was a serial code. Given the availability of 

computing systems from moderate (10s to 100s of processors) to massive (105+ processors) in 

the contemporary scientific computing environment, it seemed obvious that THOR could 

benefit greatly from at least some degree of parallelism. As discussed in Chapter 1, the desired 

features of the acceleration precluded energy and spatial domain decomposition. As such, 

Angular Domain Decomposition (ADD) was pursued. Given that THOR’s typical problems 

utilize angular quadratures of order S2 through S16, ADD is useful on the medium granularity 

parallel scale. This is ideal for its current stage of development as it keeps the code flexible 

enough to run on personal workstations as well as on mid-scale HPC systems.  

 

3.2 Literature Review 
 

3.2.1 Energy Domain Decomposition 

 

As described by [20], energy domain decomposition (EDD) faces two distinct 

problems. The first is one of scaling and the second one of synchronicity.  

Firstly, of the three parallelizable variables in a neutron transport problem, the number 

of energy groups tends to be one of, if not the, smallest. This severely limits the degree of 

parallelism that can be achieved. For a typical THOR problem, EDD would be limited to ~10 

processors or, in the extreme case a few tens of groups. This lack of distributable work means 

that the maximum speed-up from the method is inherently limited simply due to the low 

number of processors which could be used. 

While the first issue could be overcome if a given problem demanded many energy 

groups, the issue of asynchronicity is more difficult to overlook. As discussed by [20] and  

[21], the EDD method is inherently asynchronous. In other words, the more processors that are 
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involved in the operation, the more iterations that are needed. This creates a situation in which 

the per-iteration gains are penalized by losses in total iteration count.  

EDD works by decomposing the loop over all energy groups, i.e., assigning each group 

to different processors, just above the inner iteration level in Figure 1. This allows the 

calculation for each energy group to proceed in parallel with each processor calculating an in-

scatter source and performing a one-group, all-angles sweep. Unfortunately, as the in-scatter 

source is typically composed of both up-scatter and down-scatter components, this means that 

no energy group will be operating with fully updated scattering source values. Thus, further 

iterations will need to be performed to converge the in-scatter sources between the various 

groups.  

While this method would be possible to implement into THOR within the constraints 

laid out in Chapter 1, EDD was deemed sub-optimal for implementation. Given the desire to 

preserve the existing solver characteristics, a synchronous method is preferred. Additionally, 

while EDD could offer a moderate speedup, concerns were raised about the limited scalability 

of the method since THOR is typically used on few-group problems. 

 

3.2.2 Spatial Domain Decomposition 

 

Moving to the other end of the spectrum in scalability is spatial domain decomposition 

(SDD). In this decomposition, the spatial mesh is decomposed and spread between several 

processors. Now, rather than being responsible for a portion of the transport iteration, each 

processor is responsible for an entire transport sweep/solve on a reduced domain. The solutions 

from the partial domains are communicated and iterated over to produce a converged solution 

for the entire domain.  

A variety of SDD methods exist. However, since this topic will be revisited in Chapter 

5, focus will be given to the parallel Gauss-Seidel method in [22]. In this method, the problem 

domain is subdivided into a set of processor domains, where each processor domain contains 

some number of red-black striped sub regions. An example of this is shown in Figure 4. 

Following the decomposition, the solution proceeds in an iterated three step process. Solutions 
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are converged by repeatedly sweeping over the red sub-domains, updating the boundary fluxes, 

sweeping over the black cells, updating the boundary fluxes, and then performing a global 

domain convergence check using the most current values for all cells.  

 

 

Figure 4: Example PGS-SDD Domain. 

 

Unfortunately, due to the need to propagate data between subdomains, this method is 

also asynchronous. However, as the size of the spatial mesh is typically very large, thousands 

to millions of cells, this decomposition provides significant opportunity for parallelization. The 

results shown in [22] indicate scaling well into the tens of thousands of processors.  

As mentioned, alternatives to the above PGS method exist. One class of these focuses 

on parallelizing the sweep operation by identifying data dependencies between cells and then 

parallelizing operations over cells with no unresolved dependencies. One of the earliest 

examples of this is the Koch-Baker Alcouffe (KBA) algorithm, which identifies a number of 

parallel task pipelines for a sweep and then assigns a processor to one of each of the resulting 

sets of mesh cells [23]. Significant work has been conducted to further improve this style of 

spatial parallelism, with research focusing on identifying optimal scheduling algorithms [24], 

[25], [26]. These algorithms attempt to identify the most parallel configuration of mesh-angle 

pair sweeping orders. By allowing multiple starting points and mesh-angle pairs 

simultaneously, efficiency far greater than that of KBA can be achieved. Unfortunately, much 

of this work is developed for Cartesian meshes, which have inherently known and 

straightforward dependency graphs. For unstructured grids, dependency graphs can become 
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far more complicated and even include cycles. This makes the development of an optimal 

scheduler for unstructured meshes a daunting task. 

Much like DSA was suited for acceleration, SDD seems ideal for parallelization. 

Unfortunately, there are several drawbacks that rendered it unsuitable for our purposes. 

Foremost amongst these is the sheer man-hour cost of implementation. SDD has been 

repeatedly demonstrated for structured meshes. However, it remains a relatively novel 

approach on fully unstructured meshes. Implementation of SDD in THOR would form the 

basis of a major project, likely larger in scope than the one detailed in this thesis. 

 

3.2.3 Angular Domain Decomposition 

 

Having eliminated EDD and SDD, the remaining variable-domain to decompose is 

angle. In angular domain decomposition (ADD), the mesh sweep is decomposed such that N 

mesh sweeps occur simultaneously, where N is the number of discrete ordinates in the 

quadrature set that correspond to explicit boundary conditions.  

As [20] discusses, ADD provides a medium level of granularity. It is neither as coarse 

as EDD nor as fine as SDD, but instead provides for several 10s to 100s of discrete workflows. 

As shown from results in the GONT code, even an optimally implemented version of ADD is 

capped at providing significant speedup in the range of 100s of processors [20]. Beyond this 

point, the serial costs of the iteration begin to dominate and significantly decreasing speedups 

are observed. Based on this fact, it is not reasonable to expect any implementation of ADD to 

demonstrate the same scalability as SDD. However, since it is synchronous and more scalable 

than EDD, it should generally perform better than that method.  

ADD’s synchronicity stems from the fact that, during the sweep process, each angle of 

the angular flux matrix is independent from all others. This is true only in Cartesian geometry 

(no redistribution term) and when at least one boundary condition per dimension is explicit. It 

is not until the generation of the spatial distribution of the angular moments of the flux that 

data from multiple angles is needed by a given processor.  
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Once all angular sweeps have been completed, the ADD algorithm can use an all-

reduce operation to combine and redistribute the partial results from each ordinate [20]. This 

provides a much simpler, and typically maximally compact, method for distributing the data. 

Compared to SDD, where a processor only needs data from its adjacent neighbors, the 

communication structure required by ADD is direct and typically requires no further logic than 

that present in standard communication libraries.  

Methods do exist to further optimize the communication behavior of the ADD method 

[27]; however, as that work showed, the cost of communication typically is low enough that 

effort is better spent improving non-communication performance. Additionally, given the 

variety of HPC architectures and network interconnects that exist, it is unlikely that any 

specific modification will provide a general improvement on all systems.  

Regardless of these concerns, ADD provides a perfect match to the needs outlined in 

Chapter 1. It provides a minimally invasive method for significant speedup on the scale of the 

HPC computer available to the author. Furthermore, since the decomposition is synchronous, 

it can be considered independently of the existing, verified, code. If the serial and parallel 

versions return the same result, then the code is unaffected.  

 

3.3 Implementation 
 

Implementation of angular domain decomposition into THOR was a relatively 

straightforward process, requiring none of the special handling that was seen with Chebychev 

acceleration.  The implementation consists of three parts: the work splitting routine, the parallel 

section, and the communication phase.  

Since the intended system for testing THOR is the Falcon HPC at INL, it was important 

that the ADD algorithm be designed for message passing systems, not shared memory 

architectures. Based on this need, the most straightforward path towards implementation was 

to utilize the Open MPI [28], library. In doing so, each execution of the program now allows 

for a specific number of processors to be assigned to it. The processors all perform the serial 



 

28 

components of the code. However, when a parallel section is reached, the work is divided 

amongst processors as described in the next section. 

 

3.3.1 Work Splitting Routine 

 

In THOR, due to its use of the level-symmetric quadrature set, the number of angles in 

a problem is given by 

 

 𝑁 = 𝑛(𝑛 + 2) (19) 

 

Where the 𝑛 is the same quadrature order as given by the 𝑆𝑛 in the definition of the discrete 

ordinates method. This means that in an order-𝑛 problem, there are 𝑁 parallel tasks. Again, 

this is only true for 3D problems with explicit boundary conditions. To enable fair division of 

this workload, the optimal number of tasks per processor is calculated at startup based on the 

number of provided processors via: 

 

 
𝑁𝑂𝑝𝑡𝑖𝑚𝑎𝑙 = ⌈

𝑁

𝑝
⌉ (20) 

 

For executions where the number of processors, 𝑝, is a factor of the number of angles, 

it is a straightforward matter to assign  𝑁𝑂𝑝𝑡𝑖𝑚𝑎𝑙 tasks to each processor. This provides an even 

distribution of work and leads to the minimum amount of wasted CPU time during the parallel 

portion. However, when the number of angles is not an integer multiple of the number of 

processors, work must be assigned such that there is only a one task difference between the 

most loaded and least loaded processor.  

These needs are met by explicitly mapping a set of 𝑁𝑂𝑝𝑡𝑖𝑚𝑎𝑙 angles to each processor. 

A more flexible approach to this mapping would be to simply allow each processor to pull an 

ordinate from a queue as it completed its previous one. However, it was judged that this method 

was too prone to race conditions, would require additional communication, and would require 
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burdensome additional control logic. Because of this explicit mapping, a consistently slow 

processor will continue to negatively impact the solve speed throughout the entire sweep rather 

than allowing other processors to pick up its slack. However, since the expected use of this 

capability is the 𝑁 = 𝑝 scenario, this effect is negligible. 

 

3.3.2 Parallel Execution 

 

The implementation of a parallel code on a message-passing architecture can be 

considered as a set of 𝑝 independent programs that only interact via communication. As such, 

technically, all aspects of the THOR code now exist in parallel. This means that for each of the 

𝑝 instances, a full copy of all program data is available in local memory. However, the 𝑝 

independent programs may have different values for their variables.  

Using the index assigned to each processor and the work splitting routine defined 

previously, the ADD implementation of THOR can algorithmically select the set of angles to 

be swept by a given processor. Returning to the flow diagram given in Figure 1, the modified 

ADD flow diagram is shown in Figure 5. For compactness, the outer iteration portion has been 

omitted as it remains unchanged.  

Given the use of a message-passing paradigm, there exist 𝑝 processes executing at all 

stages of the routine, including the serial portions. However, except for the three-way split 

after the “Split Angular Sweep” stage, all 𝑝 processors are performing identical calculations. 

Once the code reaches the split, the work is divided amongst the available processors (a 3-

processor solve is shown in Figure 5). Based on this explanation, the work in the serial section 

is performed 𝑝 times, but by 𝑝 processors. This means that execution time of the serial portion 

remains invariant to changes in 𝑝. Contrasting this is the parallel section, where a total of 𝑁 

tasks are split amongst 𝑝 actors. This means that the expected execution time of the parallel 

section should decrease as 
1

𝑝
.  The control flow also reflects the fact that this method is 

synchronous. From the point where work is assigned, to the point where flux is accumulated, 

there is no interdependency between the tasks. This means that a problem which converges in 

𝑖 iterations should do so for any value of 𝑝. 
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Figure 5: ADD Parallel Inner Iteration Scheme. 

 

3.3.3 Communication  

 

The remaining aspect of the parallel scheme is the recombination of the partial-sum of 

the angular fluxes. For the discrete ordinates method implemented in THOR, only the flux 

angular moments need to be retained between iterations. This allows for significant memory 

savings and provides a unique benefit during ADD communication. During the angular 

sweeps, rather than maintaining a large vector of angular fluxes, the data can be compacted 

into the typically much smaller number of angular moments necessary to compute the 

scattering source in the inner iterations. This is done on the fly by accumulating contributions 

from each computed angular flux in each cell as it is calculated into the angular moments for 

that cell. As such the accumulated flux angular moments for group 𝑔 in cell 𝑖 can be given as 

 

 𝜙𝑔,𝑖
𝑙𝑚  =

1

8
∑𝑤𝑛𝑌𝑙𝑚

𝑒 (Ω̂𝑛) ∗ 𝜓𝑔,𝑖(Ω̂𝑛)

𝑁

𝑛=1

 (21) 
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where 𝑤𝑛 is the weight of the 𝑛𝑡ℎ ordinate and 𝑌𝑙𝑚
𝑒 (Ω̂𝑛) is the even part of the lmth spherical 

harmonic evaluated at the nth discrete ordinate. 

Since, at the end of each processor’s set of sweeps, that processor holds partial angular 

flux data for all cells in a single energy group, it is possible to directly recombine the partial 

angular fluxes into a complete scalar flux using a summing MPI_AllReduce operation. This 

operation can be visualized as a parallel sum in which each entry of every flux partial angular 

moment vector is added to its corresponding entry in all other matrices.  

At the end of this operation, each of the 𝑝 independent processes has a fully updated 

iterate of the flux angular moments matrix and the calculation proceeds to the next energy 

group or outer iteration as it would normally do in the serial program.  

 

3.4 Results 
 

As was originally presented in [4], the THOR ADD scheme proved a powerful tool for 

decreasing the run time of a variety of test cases. Chief amongst these was the ATR case 

previously mentioned in Chapter 1. The ATR benchmark utilized an 𝑆4 quadrature, meaning 

that a theoretical maximum speedup of up to 24x was available to capitalize on using ADD. 

Testing showed an actual speedup of ~11x, reducing the total solve time from 14 days to 30 

hours. Given the fact that a sizeable portion of the ATR problem’s execution time was 

dedicated to I/O and serial data-manipulation activities, this is an acceptable speedup. Further 

speedup could likely be gained by capitalizing on the physical distribution of processors and 

I/O devices on Falcon and minimizing resource contention. However, this type of optimization 

would only prove useful on problems the size of the ATR benchmark, which are atypical cases.  

The first step in assuring that the ADD algorithm had been implemented correctly was 

to compare the results from a variety of simple THOR test cases for both serial and parallel 

operation. These tests agreed, to iterative convergence precision, indicating that the ADD 

method had been implemented correctly and was not having an undue effect on the accuracy 

of the previously implemented serial solver.    



 

32 

Having demonstrated that the ADD parallelization was working, the next step was to 

evaluate the quality of its implementation by performing strong and weak scaling tests with 

increasing p. In strong scaling, the size of the problem is held constant while the number of 

processors increases. Given the way ADD divides the work comprising the parallel section, 

the optimal strong scaling curve would follow a 
1

𝑝
 trend. In weak scaling, the work per 

processor is held constant, but the number of processors increases. Here, optimal behavior 

would be a constant solution time. This would indicate that there is no contention between 

processors for shared resources, e.g., communication. 

 

3.4.1 Scaling Studies 

 

To evaluate these properties, a trio of homogenous cube problems were created with 

approximately 10K, 150K, and 400K tetrahedrons. At the time of testing, there did not appear 

to be significant variation between the per-cell execution times of each problem. As such, 

scaling plots were only created for the 10k tetrahedrons case. Later work, which will be 

detailed in Chapter 4, would return to these results and further analyze the per-cell 

computational costs. 

Figure 6 through Figure 8 show the strong and weak scaling of the THOR ADD 

implementation for the 10k tetrahedrons sample problem at 𝑆12.  
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Figure 6: Comparison of Measured and Optimal Times for THOR ADD – Strong Scaling. 

 

Figure 6 provides a strong scaling plot of THOR for the given problem configuration. 

The orange curve shows the optimal 
1

𝑝
 curve for ADD scaling, while the blue curve shows the 

average measured time over 3 executions of the same case. The stairstep behavior is an artifact 

of the work-distribution algorithm. Since, when 𝑝 is not a factor of 𝑁, some processors are left 

idle, the number of processors increases while the amount of parallel action remains constant. 

This produces a stairstep pattern. As such, the point of closest approach to the optimal curve 

for any given plateau is the most relevant since it is unlikely that the code would be executed 

with a sub-optimal number of processors under normal conditions.  
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Figure 7: Strong Scaling for Angular Decomposition Problem plotting efficiency (%) versus the number of 

CPUs for S12 level-symmetric quadrature [4]. 

 

Figure 7 addresses the stair-stepping by simplifying the analysis to include only the 

optimal processor counts for each quadrature refinement. From here, it is more obvious that 

the code efficiency decays smoothly in the range 𝑝 > 24 to an efficiency of ~55% at 𝑁 = 168. 

While this final efficiency is lower than desired, it does reflect the fact that THOR was 

originally implemented as a serial code and that many data management operations that require 

system resources are repeated amongst all processors. Furthermore, this is in line with 

Amdahl’s law, which states that the maximum speedup of a parallel code is bounded by the 

amount of serial work it must perform. This will be discussed in more detail in Chapter 4.  

In the region 𝑝 < 24, there appear to be several inflection points in the scaling 

behavior. This stems from the physical layout of the Falcon system, which will be addressed 

in more detail in section 4.3. For now, it is sufficient to note that for this test, there are 3 distinct 

communication regimes: 

1. 𝑝 ≤ 12: An operation on this scale will reside on a single CPU of Falcon and not 

require access to the processor interconnect 

2. 12 < 𝑝 ≤ 24: At this scale, the code will use both processors on a single Falcon server, 

but not require the network interconnect. 
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3. 𝑝 > 24: Here, the code resides on multiple servers and will require access to the 

network interconnect.  

The MPI communication costs under these three regimes differ dramatically because 

of the amount of time it takes to propagate a message across the various interconnect media. 

Next, weak scaling results were obtained for the same problem. 

 

 

Figure 8: Weak Scaling Results for 10k Tet Mesh with THOR ADD. 

 

Figure 8 provides weak scaling results for 1, 2, 4, and 8 angles per processor for 𝑆2 

through 𝑆16. Again, the results present significant noise for lower values of 𝑝 and smoothen 

out for 𝑝 ≫ 1. In the smooth region, the weak scaling traces are nearly flat, indicating a good 

weak scaling. However, the results are significantly better in the 𝑝 < 80 region. This can again 

be attributed to changing execution costs as a function of network communication layer used. 

However, the fact that the issue becomes more severe as the work per processor increases may 

also indicate that this problem is incurring unexpected serial costs that scale with angle per 

processor.  
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3.4.2 Synthetic Communication Modeling  

 

To complement the runtime analysis of THOR ADD, a synthetic model of its 

communication behavior was also created to provide preliminary confirmation that 

communication was behaving as expected. This synthetic model implemented the same 

communication structure as THOR but transmitted a matrix of randomized data. By doing so, 

this proxy model of the THOR ADD communication could be used to evaluate just the 

communication performance of the code. This step is designed to confirm that the 

communication behavior conformed with expected behavior given the Falcon network 

architecture.  

The script, first introduced in [4], which implemented the proxy communication model 

generates a series of random datasets containing, in order of magnitude steps, between 10 and 

109 floating point numbers. Then, for varying numbers of processors, the data would be sent 

using the same MPI_AllReduce command employed in THOR and the operation would be 

timed.  

For cases where there was only 1 processor active per server, repetitions were 

performed simply to generate an average communication time. However, for cases where there 

were more than 1, but less than 24, active processors per server, these repetitions also served 

to homogenize the distribution of processors amongst the two CPUs per server.  

Figure 9 and Figure 10 show the communication behavior measured from this synthetic 

benchmark. In both the single processor per server and multiple processors per server cases, 

the communication behavior can be defined via a two-regime model. First, in the region below 

105 entries, the communication time is relatively constant. Above that point, the 

communication time grows linearly with data size.  Furthermore, the spacing between the 

different traces steps up evenly, indicating that costs increase as a function of the depth of the 

communication tree. This behavior will be explored in much more detail in Chapter 5. For 

now, it is sufficient to confirm that the synthetic model yields some function for the 

communication time as 
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 𝑇𝑐𝑜𝑚𝑚(𝑁𝐵𝑦𝑡𝑒𝑠, 𝑝) = log2(𝑝) ∗ (𝑇𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 + 𝑇𝑙𝑖𝑛𝑒𝑎𝑟(𝑁𝐵𝑦𝑡𝑒𝑠)) (22) 

 

 

Figure 9: Measured communication time for minimally loaded nodes performing AllReduce on Falcon. Data 

sets are labeled as [# of active processors per node] x [# of Nodes], from [4]. 

 

 
Figure 10: Measured communication time for partially loaded nodes performing AllReduce on Falcon. Data 

sets are labeled as [# of active processors per node] x [# of Nodes], from [4]. 
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3.5 Future Work 
 

Significant work will be presented in the following chapters that continue the analysis 

of the THOR ADD implementation as well as of the Falcon communication network. However, 

at this point, it is important to highlight a few details related to future work on the THOR 

angular domain decomposition implementation.   

As has been discussed so far, the ADD algorithm implemented in THOR is functionally 

complete. However, since it was retrofitted into an existing serial code, some compromises 

had to be made. Chief amongst these were modifications made to preserve the behavior of the 

restart capability and debug I/O writing. As of now, both systems only operate in a serial mode. 

After all data is recommunicated, all the processors stop and idle while the root node performs 

the necessary I/O operations. This fix preserves the capability, but it introduces a significant 

serial overhead into a parallel code. It would be interesting to see future development work 

targeted at implementing parallel write versions of these routines that could mitigate some of 

the overhead cost. Note that, for the results presented in this section, these features were 

disabled entirely. 

Looking further ahead, it would be an extremely powerful addition to THOR to see 

spatial domain decomposition implemented. This capability would give THOR a variety of 

scaling methods and allow it to be used optimally in the serial, parallel, and massively parallel 

regimes. However, as discussed, implementing any SDD algorithm in the fully unstructured 

mesh domain of THOR would prove to be a major undertaking and no doubt require almost a 

complete rewrite of the existing code.  
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4 Parallel Performance Modeling 
 

4.1 Introduction 
 

As discussed in the previous chapter, the THOR angular domain decomposition 

parallelization scheme allowed for the possibility for significant speedups if hardware 

resources were available. This ability to more fully utilize the computational resources 

available to the author proved extremely useful in reducing the time required to conduct further 

analysis.  

Yet, while the availability of these speedups was appreciated, questions remained about 

the effectiveness of the implementation and whether the efficiency curve shown in Figure 7 

could be improved. With these questions in mind, it was decided that a parallel performance 

model (PPM) would be a necessary and powerful tool for conducting any further analysis of 

the code’s multiprocessing capabilities. This model would allow us to predict the runtime for 

THOR on the Falcon HPC given basic information about the problem parameters, e.g., mesh 

size, quadrature order, etc. 

If designed and implemented correctly, this tool can be used as a sanity check to ensure 

the code behavior was in line with expectations. Additionally, once the PPM is available as a 

tool, it can be used to benchmark the benefit of modifications to the code as compared to 

previous versions. This capability will prove critical if THOR undergoes major overhaul or has 

further parallel functionality implemented in the future.  

 

4.2 Literature Review 
 

4.2.1 Amdahl’s Law 

 

While parallel performance models by their nature are specific to a program and 

machine combination, a language has developed to help express concepts that are shared 

between all parallel codes and platforms. High-level references to some of these quantities, 

such as efficiency, appeared in the previous chapter in self-explanatory ways. Now, before 
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delving deeper into parallel performance analysis, some time will be taken to formalize these 

definitions.  

The easiest of these concepts is that of serial and parallel operations. The former of 

those is a set of operations whose completion time is invariant to the number of processors 

assigned. The second is a set of operations whose total completion time decreases as some 

function of the number of assigned processors. 

The speedup factor of a code is the measure of this decrease in parallel time and is 

defined as 

 

 
𝑆(𝑝) =

𝑇(𝑝 = 1)

𝑇(𝑝)
 (23) 

 

From this naïve definition, given a sufficient number of processors, the speedup factor 

of the code will approach infinity if we assume that T(p) is monotonically decreasing with p. 

This would imply that a sufficiently parallel program runs instantaneously. Under realistic 

conditions, this simple speedup model will always fail. This stems from the fact that no code 

is truly fully parallel. They all contain some serial section(s) and other parallel section(s). For 

example, under the THOR ADD scheme, all operations except for the mesh sweep are serial, 

while the sweep is parallel.  

Using this more real-world description, a better definition of speedup can be obtained. 

This form is known as Amdahl’s law and provides the basis for understanding the scalability 

of parallel codes. 

 

 
𝑆(𝑝) =

𝑇𝑠𝑒𝑟𝑖𝑎𝑙 + 𝑇𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙

𝑇𝑠𝑒𝑟𝑖𝑎𝑙 +
𝑇𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙

𝑝

 (24) 
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As can be seen here, the asymptotic behavior of this expression is quite different from 

that of Eq. (23). As the number of processors grows to infinity, the speedup becomes limited 

by the serial portion of the code, with a maximum value of  
𝑇𝑠𝑒𝑟𝑖𝑎𝑙+𝑇𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙

𝑇𝑠𝑒𝑟𝑖𝑎𝑙
. 

Based on this, it is clear that no realistic code will obtain perfect scaling for an 

arbitrarily large number of processors. It is therefore important to be able to quantify the region 

in which a code is most effective and to understand the marginal cost and benefit of dedicating 

additional resources to a specific computation. 

 

4.2.2 PPMs for Transport Codes 

 

The development of parallel performance model as evaluative tools for neutron 

transport codes is not new. Significant amounts of effort have been expended to characterize 

the performance of existing codes on their primary target machines.  

In [29], Azmy constructed a PPM for the P-NT code on the intel iPSC/2 hypercube. 

The development of this model involves both the implementation of new parallel sweeping 

functionality as well as a large parameter space search evaluating the performance of the code 

over a variety of parameter combinations in mesh size, quadrature level, and processor count. 

The data from this parameter search is used to construct an analytical model of the code 

performance and a matching quantitative expression. 

This model is validated by comparing its predictions to a variety of new code 

executions and then used to forward predict the capabilities of the code. From this analysis, 

Azmy concludes that the implemented parallel scheme possesses adequately efficient scaling 

to be used with 100s of processors.  

The developmental technique described in [29] proves quite similar to the one 

described in this thesis as it is a highly effective method for evaluating the performance of a 

parallel code of this complexity. As Ref. [29] states, this type of modeling would likely be 

impossible for a more complex system. The number of uncertainties introduced would be 

beyond the scope of evaluation via parameter study and would undoubtedly require a degree 

of statistical modeling. Analysis of this type will be addressed in detail in chapter 5.  
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Whereas [29] constructs a PPM as a tool to evaluate the predicted performance of a 

single method on a specific machine and determine its optimal degree of parallelization, [30] 

uses its parallel performance model as a tool by which to select the optimal communication 

scheme for a set of given parameters. This PPM is intended to be machine agnostic and instead 

is designed to highlight the advantages and disadvantages of the presented parallelization and 

communication schemes.  

While the authors reach a similar conclusion regarding angular domain decomposition 

and spatial domain decomposition as those detailed in the previous chapter, they do so via a 

quantitative approach that provides an explicit tool by which to evaluate each method. In doing 

so, this work removes much of the guesswork that goes into evaluating the performance of 

different parallel schemes before implementation. 

In addition to this, [30] evaluates the advantages and disadvantages related to using a 

global spanning tree communication vs a more customized approach via the bucket algorithm. 

In this analysis, the authors conclude that, while the global tree communication is easily 

implemented, it suffers from significant loss of parallel efficiency due to the number of idle 

processors at each step of the communication. The bucket algorithm attempts to rectify this by 

more evenly distributing work amongst the processors so as to have as few idle as possible. 

While it does require more work to implement, it also allows for more parallelism in the 

communication phase of the solve. 

 

4.3  An Overview of the Falcon HPC System 
 

While some details of the Falcon High Performance Computer at Idaho National Lab 

have been presented so far, the following analysis will require a far more complete 

understanding of its architecture and capabilities. As such, this section aims to provide details 

that will be relevant in the coming pages. Specific details regarding Falcon’s physical and 

network architecture were gathered via communication with [31]. 

When this research was conducted, Falcon was a SGI built, ~25,000 processor general 

computing system. While the system is not entirely homogenous, it does contain a homogenous 



 

43 

subset of ~20,000 processors. It utilizes an InfiniBand interconnect with a stated bandwidth of 

56Gbit/s. Rather confusingly, these ~25k cores are embedded into what SGI refers to as an 

“Enhanced 7D Hyper-Cube” by abstracting the nodes of the hypercube such that each node 

represents a cluster of system hardware. As it is a 7D hypercube, no node is more than seven 

communication hops away from any other node in the system. However, due to the sub-node 

arrangement of the system, the actual number of hops to any given processor is the number of 

node hops, plus an additional node-to-server hop. 

For the purposes of the results detailed in this chapter and the next, all code was 

executed on the 20K processor homogenous subset. However, as a result of the topology of 

Falcon, this means that communication effects are influenced by the full 25k processor, 7D 

system.   

 

4.3.1 Physical Layout of Falcon 

 

This section will provide a brief overview of the physical layout of the Falcon HPC. 

This will also serve to introduce key terminology for the system.   

Starting from the processor level and moving up, the 19,872-processor homogenous 

portion of Falcon is arranged as detailed in Table 2. Each server contains 128GB of RAM to 

be shared by all processors in the server. 

 

Table 2: Summary of Falcon Hardware Layout. 

 Region 1 Region 2 

Processors 19,872 5,184 

Processors per CPU 12 16 

CPUs per Server 2 2 

Servers per Chassis 9 9 

Chassis 92 18 
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4.3.2 Network Topology of Falcon 

 

From a topology perspective, Falcon technically implements a heterogeneous, partially 

filled 7D hypercube.  

The system is heterogeneous since, because of its “enhanced” nature, the bandwidth 

between various dimensions of the hypercube is not constant. This modification by SGI is 

intended to provide additional bandwidth to codes which fully exercise Falcons computational 

resources. 

As there are not 128 accessible nodes, the system does not provide a complete 7D 

hypercube. This stems from the fact that, without special permission, one node is reserved for 

the management and scheduling unit and the two hardware regions (12 and 16 processors/core) 

are kept distinct.  

Each pair of nodes of the Falcon hypercube is defined to be a hardware module referred 

to as an “IRU”, or individual rack unit. These hardware clusters consist of a chassis / router 

pair with a 4x link to each of its neighbors. Each IRU is connected to 7 others to form a 3D 

unit with homogenous interconnect bandwidth. These 3D units are then interconnected with 

heterogeneous links to form the 4th through 7th dimensions of the hypercube. A pictographic 

representation is available in Appendix A. 

Ignoring the higher dimensions, it is important to note that, even within the 

homogenous 3D space, a single IRU consists of 18 servers sharing a 4x link, where each server 

is then distributing its access to the link amongst 24 processors. 

 

4.3.3 Other Falcon Notes 

 

Having discussed the hardware and network specifics of Falcon, the last remaining item 

is the job management software. Like most HPC systems, Falcon implements a queue manager. 

Under optimal conditions, this manager attempts to allocate jobs to the most compact, in terms 

of network distance, set of processors that are available at the time of execution. This is 

intended to minimize resource contention caused by other codes operating simultaneously on 

the machine.  
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However, under realistic conditions, the HPC system utilization level is too high to 

guarantee locality, i.e., a diameter of log2 p. When this occurs, the servers assigned to a user 

can extend beyond the minimal hypercube of dimension log2 p. From a code execution 

perspective, this makes little difference. However, from a performance modeling perspective, 

this implies that the cost of any given communication between two participating processors is, 

to some degree, random and can experience dramatically varying levels of network latency and 

contention. The effects of this behavior will be explored in Chapter 5. 

 

4.4 Complications Stemming from the THOR Cell Solver 
 

As most of this thesis has addressed modifications to THOR designed to encapsulate, 

but not modify, the existing solver routines, there has not yet been a discussion of one unique 

feature of the code’s cell solving kernel. This kernel forms the lowest layer of the iterative 

solver operation and is designed to operate on a single cell and along a single discrete ordinate 

at a time. This kernel uses inbound angular fluxes to the cell-angle combination, the cell’s 

dimensions and nuclear data corresponding to the material occupying its volume, to compute 

that cell’s flux angular moments and outbound angular fluxes.  

In a structured mesh, there is a degree of regularity to the orientation of cells and thus, 

the sweeping pattern along these cells is mapped to its Cartesian indices depending on the 

octant of the corresponding discrete ordinate. This leads to a unique (or near unique) set of 

cells solving algorithms that need to be implemented. For example, in a cubic mesh, the 

orientation of the cell faces and the number of up/downstream neighbors is always known.  

In an unstructured mesh, these benefits can be lost. Looking at the tetrahedral meshes 

used by THOR, it is easy to observe that tetrahedrons may have any orientation with respect 

to a given discrete ordinate in 3D space. This significantly complicates the process of 

identifying the upstream and downstream values which are inherently known in the structured 

domain. 

Rather than designing a dynamic system to address this problem, [3] details the 

implementation of a set of six cases that the cell solver selects from. This allows for the random 
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orientation of mesh cells to be reduced into a set of six solver configurations. Once a 

configuration is identified, the mesh cell, for the purposes of the solve calculation, is split into 

several sub-tetrahedrons, known as canonical tetrahedrons. These six decompositions are 

shown in Figure 11.  

 

 
Figure 11: Possible Configurations for Canonical Tet Decomposition, from [32]. 

 

Since these decompositions lie along known axes, the cost of the cell solve is greatly 

reduced compared to the dynamic version. However, since the cell solver routine is opaque to 

the rest of the code, a degree of uncertainty is introduced. In each of the six decompositions, a 

different number of canonical tetrahedrons can be generated. This leads to each cell having a 

variable solution cost based on its orientation with respect to the discrete ordinate. This cost 

can range from 2x to 4x the cost of a canonical cell solve and cannot be determined during 

normal operation of the code. Since these decompositions are related to both the mesh 

configuration and quadrature set, they will have to be considered in the development of the 

PPM. 

 

4.5  Methodology 
 

As discussed in previous chapters, THOR implements a variety of options, ranging 

from different acceleration techniques to entirely different solvers.  Producing a single 

performance model that covers all possible configurations is an overwhelming task. As such, 

the model was designed to evaluate a limited subset of THOR’s capabilities.  
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The PPM, as developed, is intended to provide assessment of the cost of a single 

unaccelerated, power iteration. This choice reflects the fact that the power iteration solver is 

the most frequently used and, consequently, is the most mature. The implemented accelerations 

were disregarded since, as outer accelerations with minimal computational costs, they would 

have little influence on the single iteration cost. Additionally, while THOR is capable of multi-

group and arbitrary order spatial evaluations, the model is designed to capture mono-energetic 

problems with zeroth order local spatial expansion of flux variables. The limitation on energy 

group count was intended to shrink the parameter space for analysis and stems from the 

reasonable assumption that, for a reasonable number of groups, the cost of a 𝐺 group problem 

scales approximately linearly with 𝐺. However, note that as 𝐺 grows very large, the rate of 

increase will become super-linear.   The decision to limit spatial expansion order reflects the 

fact that the zeroth order is a commonly used expansion order for current THOR exercises. If 

this changes in the future, it would be a relatively simple matter to retrofit the performance 

model to include higher spatial orders. The final simplification that was made was to disregard 

the cost of setup and wrap-up times. For small problems, these times are entirely negligible. 

For larger problems, such as the 4 ∙ 109 degrees of freedom ATR problem described 

previously, these times can be significant when compared to the single iteration time. In this 

case, the total cost of setup and wrap-up was nearly equal to the cost of a single outer iteration. 

However, when the full problem is run, even in parallel, the cost of these operations in 

insignificant compared to the total runtime.  

To help mitigate the long-term penalties of excluding THOR features and capabilities, 

the model is designed as a modular construct. In this fashion, each major component of the 

code is composed of the time it takes to perform its tasks plus the time taken by its child tasks. 

By constructing it this way, future modification to the code can be added or substituted into 

the model without disrupting the evaluation of the other functional components. This nesting 

is shown schematically in Figure 12. 



 

48 

 

Figure 12: Hierarchical Timing Model Design, adapted from [33]. 

 

The second benefit of this design is that the most hardware-dependent portion of the 

timing model, communication, is isolated from the rest. This allows the timing model to be 

converted to different communication techniques rather easily and, more interestingly, allows 

it to be transferred to new hardware with little effort. This process of moving to new hardware 

would involve modifying the communication model and updating the hardware timing 

constants for the other levels via a new, possibly less thorough, set of test cases. 

Based on this model design, the solver algorithm, and the description of Falcon 

provided previously, a preliminary model, originally given in [33], was developed for 

validation against measured execution times: 

 

 𝑇𝑠𝑜𝑙𝑣𝑒 = τconst + 𝑁𝑚𝑒𝑠ℎ ∗ (𝜌 ∗ [𝜏𝑜𝑢𝑡𝑒𝑟 + 𝜏𝑖𝑛𝑛𝑒𝑟] + 𝜏𝑠𝑤𝑒𝑒𝑝 +

 ⌈
𝑛∗(𝑛+2)

𝑝
⌉ ∗ 𝜏𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙) + 𝑓(𝜏𝑐𝑜𝑚𝑚𝑠, 𝑝), 

(25) 

 

 

where, as before, 𝑛 is the quadrature order, 𝑝 is the processor count, 𝜌 is the number of angular 

moments, and 𝑁𝑚𝑒𝑠ℎis the mesh size in number of cells. The various 𝜏 coefficients represent 

the system specific time constants for each routine. 

As expected, this preliminary model shows the parallelism implemented via ADD. 

Here, all operations, including some portion of the sweep routine work, are serial except for 

the parallel section of the sweep and the communication instructions. It is also important to 
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note that the scaling for the parallel portion does not perfectly reflect the work distribution 

function given in Chapter 4 in that it assumes a number of processors that divides the number 

of discrete ordinates with fixed global boundary conditions. Formally the scaling is given by 

⌈
𝑛(𝑛+2)

𝑝
⌉ to account for sub-optimal choices of the number of processors, where we assumed 

all fixed global boundary conditions. However, as discussed previously, it was considered 

unlikely that a user would assign non-optimal numbers of processors to a given problem.  

Finally, there is the communication function provided in Eq. (25). Based on the use of 

MPI’s AllReduce spanning tree function and an understanding of the data transmitted, a 

preliminary system communication model can be expressed.  

 

 
𝑓(𝜏𝑐𝑜𝑚𝑚𝑠, 𝑝) = 2 ∗ log2(𝑝) ∗ (𝜏𝑐𝑜𝑚𝑚𝑠  +

𝑁𝑚𝑒𝑠ℎ ∗ 𝜌

𝛽
), 

(26) 

 

 

where 𝛽 is the system bandwidth. The 2x multiplier is used to indicate that the communication 

operation is two-way. There is both a send and receive action that must occur for the operation 

to complete. The log2(𝑝) term represents the time taken to establish a spanning tree between 

p processors, while the 
𝑁𝑚𝑒𝑠ℎ∗𝜌

𝛽
 term represents the time taken to transmit the data over a 

network connection whose bandwidth is 𝛽. This communication model is partially confirmed 

by the results from the synthetic model presented in section 3.4.2. By taking the measured time 

plots generated there and combining them with the concepts expressed in the communication 

function, Eq. (26), one can easily identify the two regimes, tree building dominated and data 

transfer dominated.  
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Figure 13: Updated representation of AllReduce Behavior on Falcon, adapted from [33]. 

 

4.6 Results and Model Validation 
 

4.6.1 Evaluating the Influence of Canonical Tetrahedron Subdivision 

 

In order to model the influence of the canonical tetrahedron subdivision on the 

computation’s cost described earlier in this chapter, it was necessary to evaluate the average 

number of canonical tetrahedrons per cell over a wide range of problem configurations. To this 

end, five model problems were selected to quantify this uncertainty. The first three were the 

homogenous cube problems used in the testing of the ADD algorithm. This presents simple 

geometry cases with ~10K, ~150K, and ~400K tetrahedrons. The fourth model, designed to 

test very small problems, was a coarse mesh model of the Godiva benchmark [34] comprised 

of 274 cells. Finally, moving to the other end of the spectrum an unfolded version (i.e. full 

geometry with vacuum boundaries) of the C5G7 benchmark [35] was selected to test larger 

problems with more complex configurations. This problem has ~20 million mesh cells.  

For each case, problems were run with a sequence of quadrature refinements, keeping 

track of the number of canonical splits of each tetrahedron-angle pair during the sweep, then 

calculating the average number of canonical tetrahedrons per cell. These results are presented 

in the following tables. 
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For the simple cube geometry, cases were run at 𝑆2, 𝑆4, 𝑆8, 𝑆12, and 𝑆16. Table 3 

summarizes the smallest, middle, and largest of these sets. As is evident from the data, there is 

essentially no variation in the number of tetrahedrons, which remains steadily at ~3.66 

canonical tetrahedrons per mesh tetrahedron. This result stems from the fact that the 

decompositions which produce 3 and 4 sub-cells are the most likely as they have the least 

restrictive orientation constraints on the parent cell.  

While the average number of canonical tetrahedrons remains essentially constant, there 

also appears to be a miniscule upward drift as the quadrature order increases. However, as long 

as the standard deviation of this change remains at such a small level, it can be safely 

disregarded for all relevant problem sizes. This means that the parallel performance model can 

disregard the variable cost of canonical cell splitting without significantly impacting its 

predictive capability.  

 

Table 3: Simple Cube Test - Canonical Tet Variation [33]. 

# Angles # Cells Avg. Subcells Std. Dev 

8 8,859 3.66836  

80 8,859 3.66836 0 

288 8,859 3.66836  

8 151,562 3.66812  

80 151,562 3.66814 1.53E-05 

288 151,562 3.66815  

8 194,332 3.66802  

80 194,332 3.66804 1.15E-05 

288 194,332 3.66804  

8 426,885 3.66813  

80 426,885 3.66820 4.73E-05 

288 426,885 3.66822  

 

Next, the Godiva benchmark was used to provide yet another independent mesh, but 

this time on the smaller side of the spectrum. Much like the results for the smallest simple cube 

test, Godiva shows no significant variation in the number of sub-tetrahedrons and yields the 

same average number (Table 4). Based on the upward trend in the C5G7 results (Table 5) it is 
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possible that the average number of sub-tetrahedrons for that problem will also asymptote to 

~3.66. This question is left for later investigation. 

 

Table 4: Godiva - Canonical Tet Variation [33]. 

# Angles Mesh Size Avg. Subcells 𝚫𝑨𝒗𝒈 

8 274 3.66836  

80 274 3.66836 0 

288 274 3.66836  
 

While the results of the simple cube and Godiva tests were promising, they did raise 

several concerns regarding generality of the conclusion. First was the lack of material 

boundaries. It is possible that, in a sufficiently large volume, the cell orientations average out. 

However, if material boundaries are introduced, these will force cell orientation to conform to 

some constraints. The second concern was that, by performing uniform refinements of the 

subcubes, the results from different refinement levels were not independent of one another.  

The C5G7 model addresses both concerns by introducing material boundaries and a 

new mesh. Unfortunately, due to its size, only 𝑆2 and 𝑆4 quadratures could be evaluated. As 

Table 5 shows, change in the average number of canonical tetrahedrons is much more 

significant for this problem. However, it is still relatively small in terms of the other 

uncertainties present in the PPM, especially those related to communication. As such, it can 

still be disregarded. But, it may be necessary to revisit this effect in the future if a specific 

problem configuration is found which exhibits the same properties in a more pronounced 

fashion.  

 

Table 5: C5G7 - Canonical Tet Variation [33]. 

# Angles Mesh Size Avg. Subcells 𝚫𝑨𝒗𝒈 

8 20,617,414 3.618  

24 20,617,414 3.640 0.022 

 



 

53 

Based on the data collected from these 5 cases, it was determined that the number of 

sub-tetrahedrons created in each THOR problem was stable enough that it could be assumed 

constant in the model. 

 

4.6.2 The Communication Model  

 

The next major piece of the timing model to evaluate was the communication section. 

As discussed previously, Falcon’s architecture introduces a considerable number of runtime 

effects on this component of execution time, namely processor locality, contention, and 

bandwidth. Unfortunately, for a general user, the effective value of these parameters is 

completely opaque. As such, to at least represent some portion of the possible combinations, 

all timing measurements for the communication component were conducted by repeating the 

exact same case multiple times then averaging the measured times.  

First, to confirm that the behavior of THOR conformed to that of the synthetic 

communication model presented in section 3.4.2, the simple cube problem was run repeatedly 

on Falcon with allocations of size 20 through 26 processors. The communication times were 

tabulated and, for the repetitions within each case, standard deviations were generated. The 

resulting data aligned quite well with the synthetic model results for a similar communication 

data size, with communication times in the range of 10−2 to 10−3s for the smallest case. The 

standard deviations within these cases were typically on the order of 10−4 or smaller. However, 

it was observed that, infrequently, a specific case would consume far more time than expected, 

leading to deviations on the order 5 to 10% of the elapsed time. As these effects would 

disappear under repeated runs at different times, the spikes are attributed to system level effects 

beyond the scope of this model and will be disregarded. This does indicate that the general 

load level of the HPC system can have some effect on the performance of a specific code 

running on it. While relatively minor for this case, the next chapter will explore a far more 

elaborate case where the impact is more significant. 

Next, it is important to address the degree of variation between runs of the same 

problem on different allocations. This behavior is not reflected in the model, but instead 
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represents an irreducible amount of error that will be present and can be demonstrated in the 

following plots. Noting that the data at each point was collected on a different randomly 

allocated sub-system, Figure 14 shows the magnitude of the communication time and how its 

behavior can vary as a function of allocation size. In this plot, the simple cube problem was 

run using an 𝑆8 quadrature for a variety of processor counts. In the 𝑝 = 288 case, a system 

allocation of 288 processors was requested, regardless of the number used by THOR. In the 

other case, the allocation size was matched to the number of utilized processors. While the 

relative cost of each communication is likely a result of other system effects, the difference in 

trend can be explained as a function of the processor distribution in the allocation. For the 

orange trend, the processors will always form the same spanning tree on the hypercube since 

the number of available processors is the same as the number of tasked processors. However, 

in the 𝑝 = 288 case, there are far more configurations for the processors to fall into since many 

different spanning trees of size 𝑝 < 288 can be constructed from a set of 288 processors. As a 

result, between various executions of the code, the locality of the processors can change much 

more dramatically as the nodes in the spanning tree change positions in network-space. 

 

 
Figure 14: Differing communication trends for p=288 and p=n(n+2) for S8, adapted from [33]. 

 

To emphasize this point, Figure 15 shows the same experiment for a 𝑆12 problem. Here, 

the optimal configuration and the 𝑝 = 288 configuration form spanning trees with only a 
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single-level difference. As such, there are significantly fewer substantively different 

configurations for the processors to fall into when an oversized allocation is requested. These 

results further emphasize the point expressed in the discussion of efficiency – parallel codes 

should be utilized with a logical number of assigned processors, both in the execution stage 

and during the resource provisioning. 

 

 

Figure 15: Differing communication trends for p=288 and p=n(n+2) for S12, adapted from [33]. 

 

Using only data collected on appropriate processor allocations, a fit for the measured 

communication data was performed. As expected, this fit demonstrates a clear log2(𝑝) profile 

and, as such, conforms to the preliminary model. However as shown in Figure 16, significant 

outliers still exist. But, these outliers are most significant at very low values of 𝑝, where the 

total time contribution from communication is at its least.  
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Figure 16: THOR/HPC communication time fit, adapted from [33]. 

 

4.6.3 The Parallel Sweep Model 

 

The last remaining item to complete the model is the parallel sweep section. As 

discussed previously, this is the only parallel section of the code and should demonstrate a 

clear 
1

𝑝
 time trend for 𝑝 ≤ 𝑛(𝑛 + 2). Above that point, the additional processors will contribute 

no speedup and measured times will flatten out.  To confirm that this trend was present, the 

smallest refinement of the simple cube test was again used with 𝑛 = 2, 4, 6 and 𝑝 =

1, 2, 4, 6, 64.  As shown in Figure 17, these assumptions are confirmed. Results from all three 

quadrature refinements clearly follow the expected trend. The dashed regions indicate those 

points where the constraint of 𝑝 ≤ 𝑛(𝑛 + 2) was met. Note that the more this constraint is 

violated, the farther the times drift from their expected trend. Additionally, since, in the sweep, 

the total time scales linearly with the number of angles (𝑁, not 𝑛) one should expect the slope 

of the three lines to be equal. This trend is confirmed by the fitting functions presented in the 

figure.  
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Figure 17: 1/p relationship between processor count and parallel sweep time, adapted from [33]. 

 

By manipulating the data presented in Figure 17, another confirmatory plot can be 

produced. Figure 18 shows the measured time as a function of total number of angles for 𝑝 =

1, 4. Here, the ideal result would be one in which the slope of the 𝑝 = 4 curve was exactly 
1

4
 

of the slope of the 𝑝 = 1 curve. As the fitting functions show, this is indeed the case. From 

these two metrics, it is reasonable to assume that the ADD algorithm has been implemented 

properly and will exhibit the correct behavior, at least within this section of the code. 

 

 
Figure 18: Linear relation between time and number of angles for a fixed value of p, adapted from [33]. 
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Working with this collected data, it should now be possible to measure a quantity 

known as the grind time, which for this model, represents the execution time per cell, per angle: 

 

 

 

A grind time of ~2.30 ∙ 10−6 was found for 𝑝 = 1 and one of ~2.33 ∙ 10−6 was 

evaluated for the 𝑝 = 4 cases. This difference of ~1% is greater than the runtime variance of 

~0.5% and will be accounted for in the next section.   

 

4.6.4 Evaluating the Model 

 

With the major components of the sweep evaluated, it is now possible to produce a 

unified model for the parallel sweep time and evaluate it.  

First, the model was used as a self-prediction tool. Predictions of the sweep times for 

the cases described above were generated using the average of the two grind times and 

compared against measured run times. These results are tabulated below and show an 

acceptable level of agreement between the predicted and actual measures.  

 

Table 6: Percent Error for Interpolation Cases, from [33]. 

Case 

p=4 

Meas. 

Time 

(s) 

Model 

Time 

(s) 

Difference 

(%) 

S2, 500k tet 1.53 1.50 1.9% 

S4, 500k tet 4.61 4.51 2.3% 

S6, 500k tet 9.20 9.02 2.1% 

 

Now that the model had been determined to be self-consistent, a second, larger set of 

test cases was selected. These cases, by design, were selected to require the timing model to 

extrapolate well beyond the scope of its design cases. In order to yield extrapolation in both 

quadrature order and cell size, 𝑆2 through 𝑆16 were evaluated for the largest (~400K 

 
𝑇𝑔𝑟𝑖𝑛𝑑 =

𝑡𝑖𝑚𝑒(𝑁,𝑁𝑚𝑒𝑠ℎ)

𝑁 ∗ 𝑁𝑚𝑒𝑠ℎ
 

(27) 
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tetrahedrons) mesh of the simple cube geometry. These results are shown below with measured 

data as points and model trends as lines.  

 

 
Figure 19: 400k tetrahedrons mesh model predictions vs measured, adapted from [33]. 

 

 In Figure 19, the model produces increasingly poor results as the number of processors 

increases. This effect appears to be independent of the number of angles as the error at every 

discrete value of p is approximately the same. Regardless, even by 𝑝 = 288, the results were 

far too poor to use in any effective fashion. Error by that point had climbed to ~25%.  

This increase in error stems from the same root cause as the ~1% error measured in the 

grind times in the previous section. There exists a processor-count dependent factor which has 

not yet been accounted for that has a minute, but cumulative effect on system performance. 

This effect is captured and fitted in Figure 20, which shows that the effect increases 

monotonically with 𝑝. Based on this result, it is likely that this growth effect comes not from 

THOR, but from some lower-level aspect of the parallelization scheme, such as increased 

memory contention. While not explored in this work, it is possible that this increase stems from 

that same source as the slowdowns discussed in the next chapter. This would further indicate 

that latency-based efficiency losses are present even at the low 100s of processors. 
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Figure 20: Evaluation of processor count dependence in grind time, adapted from [33]. 

 

Recreating Figure 19 with this correction factor added to the grind time calculation 

yielded a much more accurate sequence of predictions, with errors of only ~2-3%. This is an 

acceptably low error range and indicates that the model is successful in extrapolating out the 

performance of THOR.  

 

 
Figure 21: Amended Model Cases, adapted from [33]. 
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However, so far, the model has only been used to predict the results of the simple cube 

test. Much like in the evaluation of canonical tetrahedrons division, only using a single mesh 

increases the chance that mesh dependent effects are not properly accounted for.  

To correct this, two further meshes were analyzed. The first was a ~15K cell version 

of the Takeda-IV [36] benchmark and the second was a ~2K cell Godiva benchmark. As 

expected, results for these cases were not as good as those for the simple cube test. However, 

they were still relatively accurate. These results are tabulated below.  For the Takeda-IV 

problem, the average error is ~5%, which is only slightly higher than the simple cube error and 

still quite applicable for typical use. However, the results for the Godiva model are 

considerably worse. While not as bad as the uncorrected sweep model, these errors are on the 

order of 10%. But, as this is the smallest mesh evaluated and all of the errors are in the form 

of overprediction, this may be explained by hardware effects, such as caching, that benefit 

from the decreased data volume.  

 

Table 7: Actual vs. Model Results for Takeda-IV & Godiva Cases. 

Case 

 

Time 

(s) 

Model Time 

(s) 

Difference 

(%) 

Godiva, 3k tet    

S8 p=40 1.17E-02 1.36E-02 16% 

 p=80 5.88E-03 6.78E-03 15% 

S12 p=84 1.24E-02 1.36E-02 10% 

 p=168 6.28E-03 6.78E-03 8% 

S16 p=144 1.24E-02 1.36E-02 10% 

 p=288 6.40E-03 6.79E-03 6% 

Takeda, 15k tet    

S8 p=40 6.71E-02 7.28E-02 9% 

 p=80 3.44E-02 3.65E-02 6% 

S12 p=84 6.80E-02 7.29E-02 7% 

 p=168 3.55E-02 3.65E-02 3% 

S16 p=144 7.04E-02 7.30E-02 4% 

 p=288 3.70E-02 3.65E-02 1% 
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4.6.5 The Unified THOR Parallel Performance Model 

 

The last step was to combine the various model components. An observant reader will 

notice that no discussion has been dedicated to evaluating the inner and outer sweep timing 

constants. This is not an oversight. For all of the cases described in this chapter, the 

computational time of these routines was negligible. The non-computational time in those 

routines is dedicated to updating the screen to keep the user apprised of execution status. Still, 

both of these were negligibly small, so the decision was made to neglect them. It is likely that 

this will remain true for nearly all THOR-relevant problem configurations as the accumulated 

cost of sweeping and communicating per iteration should grow far faster than that of the 

iteration control logic. 

Figure 22 presents a final evaluation of the model on the 500K tetrahedrons simple 

cube problem using the form described in equation (28). As the number of processors 

increases, one can observe a slight leveling off of the trends. This begins to occur as the sweep 

cost and the communication cost become increasingly comparable. This asymptote represents 

the speedup ceiling for the problem. 

 

 
𝑇𝑠𝑜𝑙𝑣𝑒 ≈ 

𝑛 ∗ (𝑛 + 2)

𝑝
∗ 𝑁𝑐𝑒𝑙𝑙𝑠 ∗ 𝑇𝑔𝑟𝑖𝑛𝑑(𝑝) + 𝑓(𝑐𝑜𝑚𝑚) 

(28) 
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Figure 22: Final Model Predictions for Simple Cube, adapted from [33]. 

 

4.6.6 Future Work  

 

As established, the THOR PPM provides an accurate tool for the evaluation of code 

run time. This allows it to be used as both a predictive and evaluation tool. In the first case, it 

may be used to estimate the total time an iteration will take based on the problem parameters. 

With that estimate, and knowledge of the dominance ratio and convergence limits, the total 

runtime may also be estimated. As an evaluation tool, the PPM can be used to detect if 

modifications to the code have introduced unexpected inefficiencies or to determine the 

relative performance of different problem cases. 

In its current state, the PPM is limited to the power iteration solver and zeroth spatial 

expansion order. As mentioned before, while it does not explicitly handle multi-group 

problems, the scaling should be linear in 𝑔. An obvious source of future improvements would 

be to implement these missing parameters. That would allow the model to fully predict the 

behavior of the unaccelerated power iteration solver. This idea could be further extended by 

creating modular additions for the fission source and Chebychev acceleration routines. Longer 

term improvements could include modeling the behavior of THOR’s JFNK solver or the 

behavior of yet unimplemented functionality.  
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The more fully the PPM can characterize THOR, the more application it will have as a 

decision-making tool in the software engineering process. Much like in the work described by 

[30], a PPM for each of the major THOR components could help a user to determine the 

optimal solver for a given problem configuration on hardware with known performance 

parameters. 
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5 Parallel Communication Effects 
 

5.1 Introduction 
 

In this part of our work we move away from analyzing the behavior of the THOR code 

and will, instead, provide an in-depth study of the behavior of communication cost on a multi-

user multiprocessor approaching the massively parallel regime like the Falcon HPC. As we 

describe in later sections in more detail, this analysis was motivated by a combination of factors 

stemming from questions about the scaling performance of the Cartesian mesh, SN code, 

PIDOTS, written by Zerr [22]. In that code, unexpectedly substantial decrease in parallel 

efficiency was observed as the number of processors increased. Our interest in these questions 

arises from their general nature and the likelihood that analogous effects will afflict THOR’s 

communication procedures in future extensions. 

In this chapter we will present four primary findings. The first is that the irregularities 

first noticed by Zerr in [22], namely the varying refinement-dependent trends in weak scaling 

and the unexpected loss of efficiency at high 𝑝, can be recreated on the Falcon HPC. The 

second is that some of these effects follow logically from the structure of the communication 

scheme. Third, that the communication behavior of a code running on the Falcon HPC changes 

dramatically depending on the machine’s utilization at run time. And, fourth, that these 

changes in loading can have a significant impact on the execution of codes which rely on large 

numbers of point-to-point communications. 

 

5.2 Literature Review 
 

5.2.1 The PIDOTS Code 

 

PIDOTS, the Parallel Integral Discrete Ordinates Transport Solver, is a Fortran 90 

based code that implements the Integral Transport Matrix Method (ITMM) for solving the 

steady state, one-speed neutron transport equation with isotropic scattering on a spatially 

decomposed Cartesian meshes. This combination of solver and spatial domain parallelism was 
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intended to provide a novel approach to massively scalable, structured mesh transport 

problems. 

As this section focuses on communication behavior, the full details of the ITMM are 

beyond the scope of this review. A more detailed derivation is given in [22]. At a high level, 

this method replaces the inner iteration scheme with a new operator called the integral discrete 

ordinates transport matrix that allows for explicit, i.e. non-iterative, evaluation of the solution. 

Conceptually this is achieved by constructing the dense, discrete-variable transport matrix 

acting on the vector of cell-averaged scalar fluxes with the right-hand side comprised of the 

vector of cell-averaged, isotropic fixed source. To begin, one can define a single scalar flux 

iterate update as: 

 

 𝜙𝜈 = 𝐽𝜙(𝜙
𝑝 + Σ𝑠

−1𝑞) (29) 

 

Here, 𝜙𝜈 is the updated scalar flux iterate, 𝜙𝑝 is the previous iterate, and Σ𝑠
−1𝑞 is the 

material scattering source.  The Jacobian of the iteration, 𝐽𝜙, is defined as:  

 

 𝐽𝜙 =
𝜕𝜙𝜈

𝜕𝜙𝑝
    (30) 

 

However, as the number of iterates trends to infinity, the solution converges to a 

solution of the form shown in equation (31), where 𝐼 is the identity matrix.  

 

 𝜙∞ = ( 𝐼 − 𝐽𝜙)
−1
𝐽𝜙(Σ𝑠

−1𝑞)  (31) 

 

This implies that, if 𝐽𝜙 can be constructed, the converged solution can be directly 

computed. The construction is accomplished using a single mesh sweep in all discrete 

directions in which a given cell’s cell-averaged scalar flux is coupled to the cell-averaged 

angular fluxes of its upstream neighbors. When this is done for all angles, the net effect is to 
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couple the scalar fluxes of every mesh cell to the scalar flux in all mesh cells yielding a full 

matrix operator.  

In addition to implementing the ITMM method, PIDOTS also implements a spatial 

domain decomposition using a red-black Gauss-Seidel iteration scheme (a Parallel-Block 

Jacobi variation also exists, but it will not be analyzed here). This method was briefly described 

in section 3.2.2. As a brief recap, this method subdivides the problem domain amongst 

participating processors. On each processor, the domain is further divided into a set of sub-

domains, colored red and black in a checkerboard pattern, each of which is composed of some 

number of mesh cells. Since this is a structured mesh, each division in the exercised tests is 

designed to be of the same size so the computational load is balanced across subdomains and 

processes.  

The selection of the number of processor domains is a function of available resources, 

while the selection of sub-domain size stems from the desire to optimize the solving time. 

Larger subdomains will require fewer iterations to converge, while finer subdomains will have 

smaller (and faster to solve) ITMM operators. Note, since the ITMM solver removes the need 

to perform source iterations, these iterations are instead related to converging the sub-domain 

boundary angular fluxes. 

While executing, PIDOTS simultaneously solves the ITMM matrix equation for a 

single color within each subdomain using incoming angular fluxes from neighbors with the 

other color. Then, it packages up the resulting, i.e., updated, angular flux information on the 

subdomain boundaries and propagates them to neighboring subdomains of the opposite color. 

For subdomains on different processors, this requires the use of MPI send and receive 

functions. This solve/communicate process repeats until the problem is converged and a full 

solution, namely cell-averaged scalar flux distribution is achieved. 

 

5.2.2 HPC Topology & Communication 

 

Due to the sheer number of different HPC hardware configurations, network 

topologies, and intended use cases, it is difficult to produce a singular analysis of HPC 
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communication behavior. Instead, this section will focus on the class of systems which includes 

Falcon, our primary development HPC. To this end, discussion will be presented regarding 

distributed-memory systems with hypercube topologies. 

As discussed in [37], distributed-memory systems are ones in which each node is a 

complete computer with its own processor, memory, and input/output devices. When multiple 

nodes of this type are joined via a network interconnect, a distributed-memory system, or 

cluster, is the result. Since the individual nodes are discrete computers, they must communicate 

via messages. This contrasts with shared-memory systems in which all the processors share 

hardware-level access to one another’s memory. While shared-memory systems have 

inherently lower latency as a result of having this hardware access, distributed systems are far 

more scalable. This scalability results from the ability to simply add another node to the cluster 

with only changes to the network hardware. As a result, modern HPC clusters can have 

processor counts in excess of 10K-100K cores.  

Given a distributed memory system of arbitrary size, there a variety of ways in which 

to interconnect the nodes. This is referred to as the network topology. Ref. [37] explores a 

variety of these topologies, while [38] examines the hypercube topology in more detail. A 

hypercube topology is represented as an n-dimensional cube where each vertex of the cube is 

a node in the compute system. Note here that, as discussed earlier, Falcon is not a true 

hypercube. First, each vertex of the hypercube represents a sub-cluster of compute nodes and, 

second, Falcon also has missing vertices in its 7th dimension. These differences cause Falcon 

to behave sub-optimally compared to a true hypercube and, as will be shown in the following 

sections, exacerbate issues stemming from communication. 

As discussed in [38], the hypercube topology is intended to provide a scalable system 

with a good balance between maximum communication distance and interconnect number. 

The first of these metrics, maximum communication distance, is defined as the diameter of the 

topology. For a hypercube, it is log2 𝑛, where 𝑛 is the number of nodes. The number of 

connections is referred to as the degree. Ideally, a fully interconnect set of nodes would have 

a minimum diameter and a maximum degree. However, it is important to realize that the degree 

also represents the number of physical interconnects between each node. As such, topologies 
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with too high of a degree are unsuitable due to physical constraints. For a hypercube, the degree 

is the same as the diameter, log2 𝑛. 

With the hardware and topology defined, the next key component of HPC operations 

is the communication method. As mentioned earlier, for distributed systems, this 

communication takes the form of discrete messages over a network interconnect. The most 

common system for these messages in production code is the MPI standard and its resulting 

libraries, such as Open MPI [28]. These libraries provide black-box solutions to the process of 

establishing a communication network and exchanging messages. Instead of dealing with the 

network communication systems directly, developers use the libraries to perform high-level 

operations such as point-point send and receive operations or collective communications such 

as all_gather or all_reduce. A send operation can be used to communicate a single piece of 

data from one node to another, while the more powerful operations allow for data collection 

and manipulation across entire subsets of the cluster. 

 

5.3 Results 
 

5.3.1 Recreating the PIDOTS Scaling Problem 

 

When the parallel Gauss-Seidel (PGS) implementation of PIDOTS was evaluated, an 

unusual trend was noticed in the weak scaling behavior. As the spatial decomposition is 

asynchronous, an increase in iterations with both processor count and subdomain fineness is 

expected. This behavior was indeed observed. An example of these results, from a ℎ =

1.0 𝑐𝑚, 𝑐 = 0.99 case is presented for four levels of subdomain refinement and processor 

counts ranging from 1 to ~105 adapted from [22] is presented below.  
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Figure 23: Original PIDOTS Iteration Count as a Function of Processor Count; adapted from [22]. 

 

In Figure 23, The notation R/B-# refers to the number of red/black subdomains per 

dimension of the processor domain. As such, R/B-02 has the coarsest subdomain sub-division 

and RB-16 has the finest. While this figure’s behavior aligned well with the expected behavior, 

the resulting weak scaling behavior differed quite significantly. As can be seen in Figure 24, 

adapted from [22], the curves are no longer clearly separated. Instead, there are several 

crossover points and differing trends present.   
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Figure 24: Original PIDOTS Weak Scaling Results adapted from [22]. 

 

To confirm that this behavior was not an artifact of the specific HPC that PIDOTS was 

run on, we recreated the performance tests on the Falcon system, albeit on fewer processors.  

These results, shown in Figure 25 and Figure 26, present the same information. Due to the 

availability of resources on Falcon, we only ran cases up to 103 processors. As can be seen, 

the iteration counts line up perfectly, indicating that the same problem was solved. While not 

identical, the weak scaling execution times show the same trends. The ordering of lines at 𝑝 =

1 is identical and the same lines as in Zerr’s results cross over. The major difference appears 

in the number of processors where these crossovers occur. For the Falcon results, the crossover 

points occur at higher values of 𝑝 than they did in the original tests [22]. This can likely be 

attributed to different system parameters, such as processor speed and bandwidth. Regardless, 

from these plots, it is clear that this observed, and unexpected, behavior of the weak scaling is 

a persistent feature of the algorithm as implemented and not restricted to a specific platform.  
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Figure 25: PIDOTS Iteration Trends from FALCON. 

 

 
Figure 26: PIDOTS / Falcon Weak Scaling. 
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To supplement this analysis and provide a starting point for further investigation, the 

Falcon results were also used to create the curves shown in Figure 27, which depicts the 

execution time per iteration as a function of the number of processors. As the computational 

work per processor remains constant in a weak scaling test, the increase in the per-iteration 

cost should stem from communication. However, these costs grow far faster than expected, 

especially as the cases begin to approach 𝑝 = 103. However, since the cost per iteration curves 

do not show the same crossovers, it is likely that the total effect is the result of two factors. In 

the following sections, each of these factors will be addressed. 

This analysis was also performed on Fission, another INL HPC machine. As the results 

are essentially the same, these plots have been placed in Appendix B. 

 

 

Figure 27: Falcon PIDOTS Time Per Iteration. 
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5.3.2 Justification of Crossover in the Weak Scaling Trends 

 

As the weak scaling trends can be recreated on dissimilar computers, there must exist 

some feature of the PIDOTS algorithm which produces the crossovers. Additionally, as the 

processor count at which the crossovers occur varies from system to system, it is also necessary 

that this behavior be a function of some set of system parameters. The following model 

provides a high-level parameterization of the execution time of a single PIDOTS iteration as a 

function of the number of processors and the number of per-processor subdomains. In doing 

so, it should become clear, based on the tradeoff between computation and communication 

costs, how crossovers can occur.  

A PIDOTs iteration can be subdivided into two distinct phases, solve and 

communication.  

 

 𝑇𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑇𝑠𝑜𝑙𝑣𝑒 + 𝑇𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛 (32) 

 

By defining 𝑤𝐿, the number of mesh cells per dimension of a processor domain, and 

𝑠𝐿, the number of sub-domains per dimension of the processor domain, Eq. (32) can be 

expressed as a function of system and program parameters. Below, (
𝑤𝐿
3

𝑠𝐿
3 )

3

 represents the amount 

of work required to invert the ITMM operator in each processor sub-domain. This is simply an 

order n3 matrix inversion operation applied to a matrix of dimension 
𝑤𝐿
3

𝑠𝐿
3 . Then, for 

communication, each processor sub-domain must engage in three sends – one to each 

downstream neighbor – where each send has a data size corresponding to the number of cells 

on the sub-domain face, (
𝑤𝐿

𝑠𝐿
)
2

. 

 

 

𝑇𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑐1 (
𝑤𝐿
3

𝑠𝐿
3)

3

∗ 𝑠𝐿
3 + 3𝑠𝐿

2 ∗ (𝐿𝑎𝑡𝑒𝑛𝑐𝑦 +
(
𝑤𝐿
𝑠𝐿
)
2

𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ
) (33) 
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This evaluation can be further rearranged to produce a two-term expression in which, 

for a given computer system, the first term is purely a function of 𝑤𝐿 and the second is a 

function of both 𝑤𝐿 and 𝑠𝐿. 

 

 
𝑇𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛(𝑠𝐿) = (3 ∗

𝑤𝐿
2

𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ
) + (

3 ∗ 𝐿𝑎𝑡𝑒𝑛𝑐𝑦 ∗ 𝑠𝐿
8 + 𝑐1𝑤𝐿

9

𝑠𝐿
6 ) (34) 

 

When the data size of each send is large, this model will be dominated by the bandwidth 

term. However, as 𝑠𝐿 increases, the number of messages increases and their size decreases. 

Consequently, the latency term will become increasingly significant. This behavior is seen in 

the second derivative of (34), where a minimum exists in the cost curve for a given mesh size. 

As such, the costs do not increase monotonically, and it is possible to experience crossover. 

This indicates that, for any given number of mesh elements, there exists a different processor 

sub-domain partition which optimizes computation time.  

 

5.3.3 Exploring Communication Cost Growth on Falcon 

 

To begin, it is important to understand some of the assumptions implicit in how most 

practitioners view communication in parallel codes. In general, communication is perceived to 

be purely a function of the machine hardware and of the user’s code. No other external factors 

are considered. This essentially treats every piece of code as if it is running on a dedicated 

machine. For the most part, this is a completely sufficient description of communication. 

Delays that occur on this scale, like system interrupts or packet loss, are either rare or incur a 

small enough penalty relative to the execution time that they can be ignored. However, for this 

description to hold, three conditions must remain true. First, in systems where processors are 

not guaranteed maximum locality (i.e., they are scattered around the network depending on 

availability at the time of assignment), there must not be a significant amount of 

communication occurring as a result of other programs. If there is, the time to deliver a message 

becomes a function of the amount of traffic at the switch, including other executing programs. 



 

76 

Second, the contention for network resources from within the user’s program must be low. In 

Falcon, since the processors are two layers below the network nodes, this can occur if multiple 

servers on the same node all make network requests near-simultaneously. Finally, the 

assumption that typically incurred network slowdowns are negligible can be broken if the 

message size becomes sufficiently small. In this regime, the routing time, which is susceptible 

to influence form factors external to the code, dominates the communication cost.  

In running large cases on PIDOTS on Falcon, all three of these assumptions are broken. 

Since Falcon runs near 100% utilization at all times, there is no guarantee of locality of the 

requested processors, especially for larger allocations, such as 𝑝 = 1000. Since the majority 

of engineering codes executed on Falcon are, to some degree, parallel it can be expected that, 

without guaranteed locality, there is a high degree of inter-program contention for network 

resources at all times. Additionally, since a single switch services multiple servers, each of 

which contains 24 processors, it is reasonable to assume that self-contention for network 

resources will also be high. This can be confirmed by counting the number of sends in a single 

problem execution. For the 𝑝 = 64, with 4,096 subdomains per processor case, the number of 

sends is ~93 million messages. Finally, the fine spatial decomposition achieved in the PIDOTS 

system, coupled with the fact that each sub-domain sends its own message, nearly guarantees 

that message sizes will be extremely small.  

With these concerns in mind, the author contacted the HPC administrative staff at INL 

to gather information about Falcon’s communication cost curve [31].  No such curve was 

available. In fact, the only data that had been collected regarding communication costs was 

measured during an outage on a completely unloaded system. The measurements were used to 

test the point-to-point latency of pairs of servers or nodes at a time. At no point would more 

than 18 processors be communicating at once. From this aggregate data, the Falcon system 

was characterized to have a latency of 2.83 ± 1.5 𝜇𝑠. This metric was collected using an 

InfiniBand diagnostic tool, so it represents a communication layer below that of the MPI 

library. As such, it is expected that measured costs will only represent a fraction of the final 

cost. Determining the magnitude of the cost increase from the InfiniBand layer to the MPI 

layer is beyond the scope of this work. 



 

77 

To capture the latency behavior of Falcon during periods of high utilization, we wrote 

a script to execute various calls to InfiniBand diagnostic tools and collect latency time 

distributions. For each execution of the script, a user defined number of processor pairs would 

execute the script and time the latency portion of 5 million repetitions of the send/receive 

operation. 

To further augment these results, a network interconnect map, provided through [31], 

was used as a lookup table to determine the distance, in number of network hops, between the 

communicating processors.  

As can be seen in the figures below, on the loaded Falcon system, there are multiple 

outliers whose final time cost is many orders of magnitude higher than those of the typical 

cost. This effect is evident for both the two and three hop cases presented. In the three-hop 

case, the density of these outliers appears to increase rather significantly. Two and three hop 

cases are presented as these are, as expected from the system diameter, the most common 

network distances when selecting two nodes at random from Falcon.  

 In both cases, the measured data is divided by 1.5 𝜇𝑠 as this is the apparent floor for 

communication. As such, all results are given as multiples of this floor. 

 

 

Figure 28: Histogram of 2-Hop Latency. 
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Figure 29: Histogram of 3-Hop Latency. 

 

In Figure 28 and Figure 29, there are several common features. The first peak, occurring 

near 0.5, represents the standard latency time, i.e. the latency time resulting from a message 

neither incurring abnormal nor avoiding normal routing delays. Moving rightward, the second 

peak is associated with a frequent delay. This is likely self-contention as it is the only effect 

that should occur with a frequency approaching that of non-delayed communications. The 

region from this peak onward represents the slowdowns due to interactions among 

simultaneously executing programs at the node level. These effects stem from saturation of the 

switch links because of either high traffic or low traffic with much larger message sizes. As 

expected, when moving from the 2-hop case to 3-hop case, these network effects will grow 

more pronounced since there is an increased chance to encounter a node-level slowdown. 

  

5.3.4 Modeling the Impact of the Latency Distribution 

 

Having established that the network latency behavior of Falcon during periods of high 

utilization exhibits large outliers, it is now necessary to demonstrate that these outliers can 

have a significant impact on the execution time of a code. Doing this using PIDOTS would be 
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difficult due to inability to control the conditions under which the code executes on Falcon. 

Instead, SimPy [39] was used to develop a discrete simulation model of PIDOTS 

communication behavior. This model is not intended to be a PPM for PIDOTS, but rather to 

serve as a case study for the accumulation of message latency delays. The PIDOTS 

communication style was used simply because an implementation of it was readily available 

for reference.  

To create the simulation, a probability distribution function (PDF) of the Latency 

distribution is required. An average latency distribution was generated from the 2-hop and 3-

hop measured data. To simplify the numerical representation of this PDF, the distribution was 

divided into 3 parts. The first section, designed to capture the first two peaks is a simple 

uniform distribution. The second region is defined as an exponential decay until a latency value 

of 20,000 𝜇𝑠 (~𝜏 = 4.1). From there on, the PDF is zero.  

 

 

Figure 30: Sketch of Approximate PDF overlaid on Measured 2-Hop Data. 

 

When the event simulation is run, a rejection scheme is used to sample an appropriate 

latency time for each communication that occurs in a single iteration of a problem of the 

specified size. This simulation was run for a variety of cases and a subset of the results are 
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tabulated below. For all cases each test was repeated 100 times, except for 𝑝 = 32,768, the 

first two refinements were run 20 times and latter two 5 times. The subdomains per processor 

linear column specifies the cubic root of the total number of subdomains per processor. The 

deterministic column represents the results if latency were fixed at the stated average value of 

2.83 𝜇𝑠. The uniform column restricts the sampled latency values to the uniform region, 

roughly 1.5 𝜇𝑠 to 5 𝜇𝑠. The full model column allowed for sampling of the entire distribution.  

 

Table 8: Discrete Event Simulation Results. 

Processors 

Subdomains per 

Processor per 

Dimension 

Deterministic 

Latency (𝜇𝑠) 

Uniform 

Latency (𝜇𝑠) 

Full Model 

(𝜇𝑠) 

64 

2 936 891 941 

4 1,147 1,136 1,194 

8 2,239 2,147 2,408 

16 5,629 6,649 7,851 

512 

2 907 929 1001 

4 1,108 1,132 2,189 

8 2,222 2,149 4,631 

16 5,636 6,686 11,503 

4096 

2 924 957 2,404 

4 1,102 1,142 4,839 

8 2,214 2,156 10,785 

16 5,650 6,712 19,909 

32768 

2 924 988 7,209 

4 1,103 1,156 13,896 

8 2,153 2,164 20,002 

16 5,712 6,727 28,146 

 

As can be seen by looking across any row in the table, there is only a minor impact on 

the final iteration time when no outliers are allowed. However, when outliers are permitted, 

there is a sharp jump in the average predicted time. Since the PIDOTS communication scheme 

is, to an extent, ordered, a single slow process will introduce a slowdown in the measured time 

of all its dependent processes. This effect is cumulative over messages and across iterations. 

So, with the introduction of even a small number of large delays, significant deviation from 
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the expected time profile can be observed. As this effect is observable even for low processor 

counts and will only be further magnified by the MPI overhead, it is reasonable to state that 

the effect is present, in a non-negligible fashion, in the operation of PIDOTS. The behavior of 

the 𝑝 = 64 and 𝑝 = 32,768 cases are plotted below as a visualization of the data in Table 8. 

 

 

Figure 31: Comparing Latency Models for p=64. 

 

 

Figure 32: Comparing Latency Models for p=32,768. 
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5.4 Future Work 
 

In this chapter, three distinct claims are made about the behavior of PIDOTS on 

general-use HPC systems. First, as demonstrated by Eq. (34), there exists a problem-dependent 

optimal value for processor sub-domain refinement, 𝑠𝐿. This allows for the weak scaling 

crossovers observed in both Zerr’s work [22] and the results presented in this chapter. Second, 

under typical user conditions on the Falcon HPC, the distribution of communication latency 

times contains large, infrequent outliers. Since, as PIDOTS cases are increasingly refined, the 

data volume per message decreases, these outliers can lead to individual communication times 

several orders of magnitude longer than expected. Third, using the SimPy discrete event 

simulation and a conservative latency distribution, it can be shown that PIDOTS-like 

communication schemes send enough messages that encountering these high-latency delays is 

almost guaranteed. Furthermore, the degree of serialism inherent to a PIDOTS-like 

communication phase, coupled with the repeated occurrence of these latency spikes, can lead 

to large increases in the run time of the overall code.   

Unfortunately, this discrete event simulation is not capable of simulating all the 

components which effect the true latency time. Nor is it capable of isolating the contributions 

of self-contention and external contention from the general model. It would be an interesting 

endeavor to continue the analysis of this model and to parameterize it in terms of system 

utilization, processor locality, and local network link structure. However, since these items 

could only further degrade the performance of the communication latency, this would likely 

only serve to further support the same conclusions reached so far.  

Having established that the high-utilization latency behavior of Falcon can have a 

detrimental effect on the run time of massively parallel codes, it is now also necessary to 

modify the PIDOTS code to reflect a new communication style that helps to mitigate the 

latency effects. Based on the latency models presented in this chapter, that modification would 

likely involve sending fewer, larger messages. This would help to decrease the relative latency 

cost as well as lower the number of opportunities during which to encounter delays, somewhat 
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analogously to the R/B08 and R/B16 cases. The implementation of such a system will be 

pursued in the near future.  

Finally, it would be of great benefit to repeat this work on yet another HPC system, 

potentially one with a drastically different architecture, to see if the same trends can be 

observed. This would increase the generality and impact of the conclusions. 
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6 Software Management Improvements 
 

Whereas previous chapters have presented research conducted in pursuit of improving 

and analyzing the capabilities of the THOR code and the Falcon HPC, this chapter will instead 

discuss the various improvements that have been made to the THOR project in terms of 

software management. These improvements are designed to help enforce code standards, 

maintain developer accountability, and rigorously test modifications to the code as required by 

modern standards of code development and maintenance. 

 

6.1 Version Control 
 

Version control is typically considered to be one of the primary requirements of a 

professionally maintained software project. Prior to the author’s work with THOR, the code 

had been maintained via backups and archives kept by the various developers of the code. This 

did not stem from negligence on the part of previous developers, but rather from a variety of 

concerns. Since THOR has typically had a single primary developer at any given time, these 

concerns, coupled with the lack of need for a multi-author platform, effectively squelched any 

desire to implement version control.  

The two primary concerns related to using a public-facing version control software both 

stemmed from issues related to code ownership and accountability. Since the source code is 

based at NC State University (NCSU), it was thought best to keep the code only available to 

NCSU affiliates and those specifically authorized by them. Compounding these concerns were 

long-term goals related to registering the finished code with the Radiation Safety Information 

Computational Center (RSICC) based at Oak Ridge National Laboratory. The desire to 

maintain a limited list of authorized users again forestalled thoughts of public version control.  

However, NCSU maintains a Github Enterprise instance which resides behind the 

university’s access control system and allows for projects to be made completely private save 

for whitelisted users. This functionality resolves concerns related to both the NCSU ownership 

interest and access accountability. As such, all code development is now directed through the 
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NCSU Github system. This provides version control as well as centralized issue management 

to all the current active THOR developers.  

 

6.2 Modular Code Restructuring 
 

In previous years, THOR has been a monolithic code. There was a single executable 

that controlled all the functions the code was capable of performing. As such, emphasis was 

placed on maintaining capabilities and avoiding regressions over implementing edge case 

features. This led to a variety of projects that needed to be implemented but could not be due 

to their impact on the existing code. Adding to this were the myriad unofficial scripts which 

were written to supplement the features or tool-chain of the core code.  

While only nascent, the THOR project has undergone a paradigm shift recently. Now, 

rather than a single centralized program, developers are encouraged to contribute well-defined 

pre- and post-processors which can augment the abilities of the central THOR transport solver. 

This shift will hopefully drive a rapid increase in the number of supported data handling and 

solution post-processing capabilities. Furthermore, this should actively reduce the need for 

unofficial scripts and help to consolidate the capabilities maintained by each developer.  

So far, implementation of these pre- and post-processors has been limited. Most of this 

work has gone into developing a mesh handling pre-processor to expand the types of meshes 

that can be converted into the THOR mesh format. Formalizing this process has both reduced 

the frequency of direct user input in the mesh generation process and has made THOR 

compatible with a variety of widely supported mesh formats, including Exodus II.  

Near term plans involve further expanding the fixed source definition capabilities via 

a first-collision source interpreter as well as the abstraction of all solution analysis to a post-

processor to allow for greatly increased flexibility in output generation.  
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6.3 Formal Testing 
 

THOR has always maintained a small set of tests designed to ensure that the core 

functionality of the code does not regress due to new features. However, these tests were not 

explicitly designed to exercise the code, but rather were a simple assortment of conveniently 

small and varied benchmark and debugging scenarios. The goal of this initiative was to 

formalize the testing by establishing not only a set of test cases, but also a clear understanding 

of what each case was designed to test for.  

Unfortunately, Fortran does not easily provide the capability to perform unit tests (i.e. 

tests which exercise small portions of the code exclusive of the rest of the project). Even where 

this is possible, the complexity of some of the required inputs would make unit tests infeasible. 

Instead, it was optimal to establish a small set of tests, each with a specific execution case in 

mind to exercise as broad a swathe of the code as possible. 

These standardized tests were implemented, as well as a python testing harness. Now, 

performing the full test suite is a simple matter of executing a single command rather than 

manually checking over a series of benchmarks. Better still, since the cases are parameterized, 

it is possible to use a test suite to narrow down which aspect of the code is failing rather than 

simply reporting a test failure.  

In terms of implementation, this standard has been strictly enforced for the new pre- 

and post-processor systems. The mesh pre-processor is chief among these, with a robust test 

suite which tests essentially all captured error states as well as the entirety of the execution 

logic. 

Admittedly, for a more complex system, like the core transport solver, obtaining 

complete coverage is unlikely. However, effort is being invested to ensure all new functionality 

includes a sufficient degree of testing and that refactored functionality is amended with new 

tests. 
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6.4 Documentation and Testing Coverage Metrics 
 

Promises of improved testing and code documentation are always appreciated. But, it 

is also easy to become distracted by an interesting problem and neglect proper code 

maintenance work. To assist with maintaining code standards across the entirety of the project, 

THOR also implements project-level automation for generating test coverage metrics and code 

documentation. These tools, coupled with the test harness can be used to generate project level 

reports with specific sections for each pre/post processor and the core solver. The code 

coverage reports are using the Unix Lcov routine [40] and the automated documentation is 

built using doxygen [41]. Together, these scripts help developers to identify portions of the 

project which do not conform to standards regarding test coverage or documentation.  

Like with the testing program, it will be a major undertaking to bring all of THOR into 

compliance with these new standards. However, significant effort is being made to ensure all 

new code conforms to these standards and that existing code is brought into compliance as it 

is reviewed and modified. Hopefully, this will cement a new developer standard for the 

package and encourage future developers to maintain a similar, if not better, level of code 

maintenance. 

 

6.5  Automated Build System 
 

To cap off the process of automating the project testing, documentation, and coverage 

components, a Jenkins [42] based continuous integration server has been established with the 

ability to execute these scripts and interpret the resulting reports. While likely an overkill for 

a project of this size, it is the author’s hope that, by automating tracking of code compliance, 

it will become standard for future developers to strive to achieve the required metrics instead 

of just ignoring the availability of these tools to the ultimate detriment of the fruits of their 

labor. 
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6.6 Summary 
 

In brief, recent modifications to the THOR project at a software management and 

maintainability level have been designed to enable a variety of powerful features that are 

critically important to a professional software project. These include formal code revision and 

versioning, along with issue tracking, using the NCSU Enterprise Github instance as well as 

the addition of a Jenkins based build, test, and document integration server. This server 

maintains the capability to exercise all tests maintained under the new THOR test harness 

format as well as to perform code coverage and report on the status of each test. Additionally, 

the server is capable of building doxygen based documentation to support code coverage in 

terms of both testing and documenting. Augmenting these new code maintainability 

requirements is a change in the structure of the THOR project. Now, with official support for 

pre/post-processors, the capabilities of the primary project should be able to more rapidly grow 

to meet the needs of various research projects within the group. 

From a user perspective, these automated tools will help to streamline the installation 

process by establishing a single point installation script which can compile, test, and report to 

the new user. This should lower the entry barrier for new users and developers.  

These new code maintenance standards do introduce greater upfront costs to the 

developers by requiring time investment in non-production aspects of the code. However, this 

upfront cost should be massively less than the accumulated lost time resulting from insufficient 

documentation or uncaught regressions as the THOR project continues to grow and evolve. 
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7 Conclusions  
 

In this section a brief overview of each of the major works presented in this thesis will 

be provided and, as each chapter has already presented chapter-specific conclusions, brief final 

comments regarding the totality of the project will be made. 

 

7.1 Summary 
 

 This work presented four primary chapters all centered about the concept of 

implementing, evaluating, and improving routines designed to increase the run time efficiency 

of the THOR neutron transport code.  

In Chapter 2, discussion centered on the implementation of the Chebychev outer 

acceleration scheme into the THOR code. This outer acceleration provided a significant 

speedup compared to the unaccelerated solver, ~4x, while neither significantly modifying the 

existing code structure nor introducing significant resource utilization overhead. This method 

surpassed the existing fission source extrapolation scheme and proved roughly equal to some 

version of the THOR JFNK solver.  

Chapter 3 highlighted the implementation of angular domain decomposition into the 

THOR project. Again, this addition provides the opportunity to obtain significant speedups by 

utilizing 10s to 100s of processors. The ADD implementation of THOR is now the standard 

working version of the code and will be the centerpiece of future development. Hopefully, 

future work will provide a massively parallel SDD scheme to supplement this effective, but 

only moderately parallel, algorithm.  

The next chapter dove deep into the analysis of the THOR angular domain 

decomposition algorithm by developing a parallel performance model for the parallelized, 

unaccelerated power iteration scheme. This PPM was able to effectively predict the run time 

of the THOR code across all tested combination of mesh, mesh refinement, and quadrature 

order. Due to its modular construction, the PPM is easily modifiable and can be used as a 

diagnostic tool to identify code modules with inefficient or unexpected behavior.  
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In Chapter 5, focus shifted away from the THOR code and instead focused on the 

behavior of the PIDOTS massively parallel code on high-utilization HPC systems. This 

analysis, using both measurements and models, demonstrated that unaccounted for, rare, large 

delays in communication could have a cumulative effect on a running code and cause 

significant slowdowns at the macro level. While this work is not directly applicable to THOR 

in its current state, it provides information that will be critical to future development, especially 

as focus shifts to massively parallel schemes and larger processor counts. 

Finally, Chapter 6 detailed improvements made to THOR intended to make the project 

more robust and professional from a software engineering point of view. While these 

improvements do not directly improve the results of the code, they should greatly improve its 

maintainability and usability in the long term. 

 

7.2 Final Comments 
 

The research conducted in this thesis, in addition to the software management 

improvements described in Chapter 6, have made great strides in moving THOR towards its 

ultimate goal of being a production level code.  

The speedups made available through acceleration and parallelization have greatly 

broadened the scope of viable problems and have made THOR a more effective tool for 

research investigations into not only reactor analysis problems, but soon, also for evaluation 

of multiplicity in sub-critical weapons grade material and other non-proliferation scenarios. 

The analysis performed through the PPM and the latency model have helped to improve 

the efficiency of the code and the THOR developers’ understanding of network 

communications on modern HPCs. These tools will continue to provide benefit to THOR as 

further modification and upgrades are implemented. 

The author looks forward to his continued work with the THOR project and its future 

development goals. 
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APPENDIX A – FALCON TOPOLOGY 

The basic building block of Falcon’s network topology is the IRU, as discussed in 

Section 4.3. This appendix will provide a brief graphical description of the way in which these 

blocks are assembled into the full topology. 

 

All figures adapted from [31] and modified with explanations where necessary. 

 

A basic IRU is composed of 18 nodes and 2 switches as shown below, with nodes as 

rectangles and switches as polygons. This forms the 1D structure of the topology. 

 

 

Figure 33: Falcon IRU Structure and 1D Topology. 

 

 From here, the 2D structure can be assembled by connecting multiple IRUs. Each 

switch is populated with four links to its neighboring switches. Stepping to 3D, multiple IRUs 

can be connected into grids, as shown below. Note here that each rectangle now represents an 

entire IRU and each line four links. This also corresponds to one physical rack of Falcon 
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Figure 34: Falcon 3D Topology. 

 

Joining two 3D assemblies results in a 4D assembly as shown below. Again, each arrow 

represents four links. 

 

 
Figure 35: Falcon 4D Topology. 
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A 5D assembly is created by combining two 4D units and using eight links per 

interconnect. This introduces a layer of network heterogeneity. 

 

 

 
 

Figure 36: Falcon 5D Topology. 

 

Again, 6D is simply the combination of two 5D units. However, there is again a 

network interconnect heterogeneity as shown below. 

 

 
Figure 37: Falcon 6D Topology. 
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Finally, this 7D structure is created from two 6D units. However, there are insufficient 

nodes to do so. As such, the 7D structure is incomplete and heterogenous in hardware and link 

type as shown in the figure below. This makes the 7D structure only partially complete and, as 

such, degrades some of the functionality of a hypercube. 

 

 
Figure 38: Falcon Partial 7D Topology. 
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APPENDIX B – FISSION HPC DATA 

The Fission HPC at INL is the predecessor to Falcon. It is a 12,512-processor system with a 

Fat-Tree topology. The plots presented below are analogous to those in Section 5.3.1 with the 

exception that they were produced on Fission rather than Falcon.  

 

 

Figure 39: PIDOTS / Fission Iteration Behavior. 
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Figure 40: PIDOTS / Fission Total Execution Time. 

 

 

Figure 41: PIDOTS / Fission time per iteration. 
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