
ABSTRACT 

HOLMES, JESSE CURTIS.  Monte Carlo Calculation of Thermal Neutron Inelastic 
Scattering Cross Section Uncertainties by Sampling Perturbed Phonon Spectra.  (Under the 
direction of Dr. Ayman I. Hawari.) 
 
     Nuclear data libraries provide fundamental reaction information required by nuclear 

system simulation codes.  The inclusion of data covariances in these libraries allows the user 

to assess uncertainties in system response parameters as a function of uncertainties in the 

nuclear data.  Formats and procedures are currently established for representing covariances 

for various types of reaction data in ENDF libraries.  This covariance data is typically 

generated utilizing experimental measurements and empirical models, consistent with the 

method of parent data production.  However, ENDF File 7 thermal neutron scattering library 

data is, by convention, produced theoretically through fundamental scattering physics model 

calculations.  Currently, there is no published covariance data for ENDF File 7 thermal 

libraries.  Furthermore, no accepted methodology exists for quantifying or representing 

uncertainty information associated with this thermal library data.           

     The quality of thermal neutron inelastic scattering cross section data can be of high 

importance in reactor analysis and criticality safety applications.  These cross sections 

depend on the material’s structure and dynamics.  The double-differential scattering law, 

𝑆(α,𝛽), tabulated in ENDF File 7 libraries contains this information.  For crystalline solids, 

𝑆(α,𝛽) is primarily a function of the material’s phonon density of states (DOS).  Published 

ENDF File 7 libraries are commonly produced by calculation and processing codes, such as 

the LEAPR module of NJOY, which utilize the phonon DOS as the fundamental input for 

inelastic scattering calculations to directly output an 𝑆(α,𝛽) matrix.  To determine 



covariances for the 𝑆(α,𝛽) data generated by this process, information about uncertainties in 

the DOS is required. 

     The phonon DOS may be viewed as a probability density function of atomic vibrational 

energy states that exist in a material.  Probable variation in the shape of this spectrum may be 

established that depends on uncertainties in the physics models and methodology employed 

to produce the DOS.  Through Monte Carlo sampling of perturbations from the reference 

phonon spectrum, an 𝑆(α,𝛽) covariance matrix may be generated.  In this work, density 

functional theory and lattice dynamics in the harmonic approximation are used to calculate 

the phonon DOS for hexagonal crystalline graphite.  This form of graphite is used as an 

example material for the purpose of demonstrating procedures for analyzing, calculating and 

processing thermal neutron inelastic scattering uncertainty information.          

     Several sources of uncertainty in thermal neutron inelastic scattering calculations are 

examined, including sources which cannot be directly characterized through a description of 

the phonon DOS uncertainty, and their impacts are evaluated.  Covariances for hexagonal 

crystalline graphite 𝑆(α,𝛽) data are quantified by coupling the standard methodology of 

LEAPR with a Monte Carlo sampling process.  The mechanics of efficiently representing and 

processing this covariance information is also examined.   

     Finally, with appropriate sensitivity information, it is shown that an 𝑆(α,𝛽) covariance 

matrix can be propagated to generate covariance data for integrated cross sections, secondary 

energy distributions, and coupled energy-angle distributions.  This approach enables a 

complete description of thermal neutron inelastic scattering cross section uncertainties which 

may be employed to improve the simulation of nuclear systems. 
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Chapter 1   

Introduction and Historical Perspective 
 
 

1.1  The ENDF Nuclear Data Library 

     The modeling and simulation of nuclear systems requires the input of large quantities of 

nuclear data to provide information about reactions that take place between transported 

particles and the material nuclides present.  This reaction information is energy dependent 

and can include reaction cross sections, resonance parameters, fission neutron multiplicities, 

particle emission distributions in energy and angle, as well as other data.  The process of 

analyzing experimentally measured reaction data and nuclear model predictions together to 

assemble a specific set of best-known values refers to the production of an evaluated nuclear 

data set, or an evaluation.  The need to prepare formatted libraries of evaluated nuclear data 

that could be processed by modeling and simulation codes was recognized early in the 

nuclear age.  By 1963, there were many detailed libraries available in different formats 

developed by various laboratories around the world for their own use.  However, it was 

known that these libraries could produce different results in reactor calculations.  The 

Evaluated Nuclear Data File (ENDF) format was introduced at Brookhaven National 

Laboratory in 1964 in response to the need for a flexible link between processing codes and 

data libraries of different formats.  The first version, ENDF/A, served as a standard format 

repository for evaluated data libraries from different laboratories, facilitating the comparison 

of reactor calculations on a common basis [1].   
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     The United States Atomic Energy Commission formed the Cross Section Evaluation 

Working Group (CSEWG) in 1966 to address concerns about standardization in the 

production and processing of evaluated neutron cross section data sets for reactor 

calculations [2].  CSEWG would undertake development of a new ENDF/B format.  In 

contrast with the multiple (and sometimes fragmentary) evaluated data sets of ENDF/A, this 

new format would provide a single complete evaluated data library for each chemical 

element and/or isotope of interest [3].  ENDF/B contained a much more rigid structure, was 

more mathematically rigorous [1], and quickly gained widespread international use.  

Although other nuclear data library formats exist, the ENDF/B format is currently the 

predominant format used both in the United States and internationally [4].  It is the only 

format that is considered in this work.  

     The ENDF project is managed by the National Nuclear Data Center at Brookhaven 

National Laboratory.  Over time, the responsibilities of CSEWG expanded to include 

development of automated methods for processing ENDF library data and maintenance of the 

ENDF project.  In particular, CSEWG is now responsible for proposing, reviewing and 

approving new ENDF data formats and procedures [3].  Several ENDF releases have been 

published over the project’s history, and many data types beyond neutron reaction data have 

been added.  The current release, ENDF/B-VII.1, was published in December 2011.  The 

major release number, or version number for ENDF/B, is given by the Roman numeral 

“VII”.  The minor release number, also known simply as the release number, is given by the 

extension “.1”, and it follows the initial “.0” release.  It is also important to note that 
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ENDF/B-VII is in the ENDF-6 format which is defined by Ref. [1].  This is the format of 

ENDF/B that is incorporated in this work. 

     ENDF libraries are divided into data blocks, or files, given by an MF number.  Each file is 

associated with a particular data type.  For example, MF = 1 contains library documentation, 

MF = 2 contains resonance parameters, MF = 3 contains reaction cross sections, etc.  The MF 

blocks are further subdivided into MT sections which, in general, contain data for specific 

reaction types.  The major focus of this work is on thermal neutron inelastic scattering law 

data associated with MF = 7 (thermal neutron scattering data), MT = 4 (incoherent inelastic 

scattering) [1].  Details of the format for ENDF File 7, MT = 4, are provided in Appendix A.  

      

1.2  ENDF Nuclear Data Covariances 

     It has long been understood that nuclear data uncertainties can contribute significantly to 

uncertainties in most neutronics calculations.  In the early versions of ENDF/B, evaluators of 

nuclear data sets provided uncertainty information, as available, through in-file 

documentation.  However, there were inconsistencies in the reporting methodologies and 

there was no convenient way to provide data correlations (or covariances).  During the 

development process for ENDF/B-IV, it was proposed by CSEWG to incorporate a format 

providing covariance information in separate covariance files associated with the parent data 

files.  These would be numbered File 3x, where ‘x’ is the MF for the parent file.  For 

example, File 32 provides covariance information for the resonance parameter data given in 

File 2. 
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     Several factors led to the decision to add covariance data files to ENDF/B-IV [5].  

Evaluated nuclear data is commonly produced using empirical nuclear models with 

parameters that are fitted to experimental measurements.  This process, using a least-squares 

approach, generates library data with covariances that depend on both the nuclear model and 

uncertainty information for the measurements.  It is also common to generate adjusted cross 

section libraries, where the adjusted cross sections provide a best fit to the original evaluated 

cross sections and new experimental integral measurements.  When differential 

measurements are available, these often have high uncertainties compared to integral 

measurements.  In this case, uncertainty information for the differential measurements carries 

little weight in determining covariances for the integral cross sections [6].  As a result of the 

fitting procedure, the off-diagonal elements of the generated covariance matrix are often a 

dominant feature in the quantification of nuclear data uncertainties, and they must be 

considered in any forward uncertainty propagation calculations.  Additionally, it is often the 

case that the calculation of uncertainties in quantities of interest requires cross section 

uncertainty information to be processed together with differential data and, when available, 

its uncertainty information.  This could not be easily carried out without standardized library 

formats tabulating the covariance data associated with each data type. 

     Early sensitivity and uncertainty analysis work largely considered only integrated cross 

section uncertainties to be significant and deemphasized or ignored uncertainties in the 

emission spectra of secondary particles [7].  However, the great majority of tabulated data in 

published libraries is generally associated with secondary distribution information.  In such 
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cases, any uncertainty analysis which does not consider uncertainties in the secondary 

distribution data is incomplete [8].   

     Consideration of secondary particle distribution data covariances has been found to be 

particularly valuable in fusion reactor design, where it is critical that the accuracy of neutron 

transport calculations be well known.  Files 34 and 35 tabulate covariances for angular 

distributions and energy distributions of secondary particles, respectively.  A File 36 format 

is proposed to tabulate coupled energy-angle distributions of secondary particles [9].  Still, 

very little published covariance data for secondary distributions exists today, and few 

sensitivity and uncertainty analysis codes are capable of processing multi-dimensional 

covariances.  The SENSIT-2D code [10] was designed to process uncertainty information for 

both cross section and secondary distribution data for use with the TRIDENT-CTR transport 

code [11].  Both of these codes were developed specifically for fusion reactor analysis.  The 

TSUNAMI module of the SCALE transport code is one of the most widely used sensitivity 

and uncertainty analysis codes for fission reactor and criticality safety applications today, and 

it does not have the capability to treat secondary distribution data uncertainties [12].                        

     The production of large detailed sets of evaluated nuclear data is an expensive endeavor 

and should be justified by real benefits to the applications of end users.  One fundamental 

obstacle in providing detailed covariance data is that, in principle, the number of entries in 

the covariance matrix is equal to the square of the number of evaluated data points.  This can 

result in massive storage requirements.  This concern is greatly amplified when considering 

covariances for secondary distributions in energy and angle.  As a result, much of the history 

of calculating and representing covariance data has focused on the need to optimize the 
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resolution of covariances necessary for a desired quality of specific end-use calculations.  

This makes it difficult for the traditional evaluation of covariance data to be application-

independent [7].   

     One method commonly employed to reduce the quantity of covariance data is to overlay a 

coarse multigroup energy bin structure to the problem.  This principle is utilized in File 35 

and in the proposed File 36.  Up to now, almost all published ENDF covariance data focuses 

on events in the resolved and unresolved resonance energy regions.  Bin structure has the 

highest resolution in the resonance regions.  For energies below this (such as in the thermal 

energy range), a single broad energy bin is used.  Only bin-to-bin covariance data is 

provided.  All within-bin data is assumed to be perfectly correlated.  This representation 

precludes the user from re-binning the covariance information to match a finer multigroup 

structure because the required within-bin covariances are not provided.  Covariance data 

associated with each bin is already integrated over energy and angle (or over angle in the 

case of energy distribution data), and this differential information cannot be extracted [7].  As 

an example, Figure 1.1 displays the published ENDF/B-VII total cross section correlation 

matrix for natural carbon.  Figures 1.2 and 1.3 display plots of the associated total cross 

section and the relative uncertainty in the total cross section for natural carbon, respectively 

[13].   

     An alternative method of representing very large quantities of covariance data associated 

with secondary distributions is provided by ENDF File 30, which is a general format 

describing data covariances obtained from parameter covariances and sensitivities.  The use 

of File 30 is ideal for evaluated data produced entirely by nuclear model codes when 
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Figure 1.1  ENDF/B-VII total cross section correlation matrix for natural carbon [13]. 

 

 

Figure 1.2  ENDF/B-VII total cross section for natural carbon [13].
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Figure 1.3  ENDF/B-VII total cross section uncertainty for natural carbon [13]. 
 
 
covariances among the model parameters are well defined.  This is exactly the case for the 

majority of emission data in the unresolved resonance energy region where the emission 

spectra are the most complicated and experimental data may be limited.  The great advantage 

of the parameter-based File 30 format is the ability to provide emission covariance data in a 

highly compact form that allows much finer resolution.  Section 3.1.3 provides the 

mathematical basis for the File 30 format.  For further details, see Ref. [1].  

     ENDF File 7, also known as a thermal library, contains double-differential thermal 

neutron inelastic scattering data associated with the bound structure and dynamics of a 

material.  Elastic scattering data is also tabulated.  Typically, thermal scattering data in File 7 

is tabulated for incident energies ≤ 5 eV.  Since thermal elastic scattering is generally not of 

great importance in reactor analysis and criticality safety applications, this work considers 
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material specific, and do not contain any File 7 information.  Thermal neutron scattering is 

simply treated in the free-gas approximation in these situations.  For the material-based 

thermal libraries that do exist, no covariance information has yet been published, and no File 

37 format has been proposed.   

     The availability of structure-based thermal libraries in neutronics codes can be highly 

important in accurately simulating systems with a significant thermal neutron flux.  This 

importance can be especially great for heterogeneous systems and systems with significant 

temperature gradients.  Dynamic structure may impose a considerable modification to the 

free-gas scattering cross section and produces inelastically scattered neutron distributions 

coupled in energy and angle that are specific to the excitation modes present in the molecular 

structure.  These effects are also temperature dependent.  The emission spectra for secondary 

neutrons can play a significant role in the calculation of system response parameters for 

thermal systems.  As such, it is expected that uncertainty information for both integrated 

cross sections and differential cross sections in energy could have a tangible impact on the 

calculation of response parameter uncertainties in thermal systems.  Reviewing Figures 1.1 

and 1.3, it is clear that no consideration is given to thermal scattering physics in the 

traditional calculation of covariances and uncertainties.  Indeed, one of the recommendations 

given to CSEWG in the International Atomic Energy Agency Technical Meeting on Neutron 

Cross-Section Covariances in 2010 was, specifically, to develop the ability to provide 

covariances for the thermal scattering law data in ENDF File 7 [14].   

     ENDF File 7 thermal libraries are traditionally produced entirely from fundamental 

scattering physics model calculations without adjustment or fitting to experimental data.  In 
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particular, double-differential measurements often do not exist or are very limited in scope.  

In a sense, these thermal libraries are not “evaluated” libraries but are theoretical libraries, 

although the label “evaluator” is traditionally retained for the author.  This purely theoretical 

approach is considered acceptable because the theory of thermal neutron scattering is well 

understood, not dependent upon empirical modeling, and theoretical calculations have been 

demonstrated to be consistent with experimental results for many materials.  In any case, the 

character of this type of double-differential data demands a careful uncertainty analysis that 

will necessarily differ from historical methodologies.   

     The theme of this work is to investigate the sources of uncertainty present in the 

theoretical calculation of ENDF File 7 double-differential thermal neutron inelastic scattering 

data, develop a mathematical framework to describe these uncertainties, and demonstrate the 

ability to produce a representative covariance matrix for the double-differential data.  Finally, 

procedures for propagating this covariance information to produce covariance and 

uncertainty information for differential and integrated cross sections are demonstrated.  
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Chapter 2 

Thermal Neutron Inelastic Scattering Theory 
 
 

2.1  Development of Thermal Neutron Scattering Theory 

     Neutron scattering cross sections at thermal energies are a function of both nuclear cross 

sections and a material’s molecular structure.  The energy below which the cross sections 

become appreciably sensitive to molecular structure is on the order of 1 eV to 10 eV.  For 

thermal neutrons below this threshold, the de Broglie wavelengths will be on the order of the 

interatomic spacing in the material and neutrons may scatter with an aggregate of atoms 

instead of only with individual nuclei.  Thermal neutron energies will also be on the same 

order as the available excitation modes that exist in a material’s molecular structure.  These 

can include vibrational, translational and rotational (or spin) modes.  The vibrational modes, 

known as phonons, are typically of chief concern for thermal neutron scattering in solids. 

     Neutron energy transfer in the thermal energy region is distinct from the processes at 

higher energies.  When neutrons with kinetic energy less than interatomic bonding energy 

scatter, the free translation of individual nuclei does not occur.  During the neutron scattering 

process at thermal energies, nuclear excitations are not possible for most isotopes.  However, 

potential scattering will be accompanied by interactions with excitation modes in the material 

structure.  These interactions will be a function of material temperature.  For most solid 

crystals, the discrete creation or annihilation of one or more phonons is the only 

consequential mechanism for energy exchange.  The phonon density of states (DOS) is a 
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dynamic property of the material structure and is typically the fundamental input in thermal 

neutron inelastic scattering cross section calculations.  Scattering may also occur elastically, 

with effectively no energy transfer.  Both inelastic and elastic scattering can take place 

incoherently or coherently.  Consequently, secondary thermal neutron emission spectra have 

complex structure coupled in energy and angle.  This can result in significant modification to 

integrated scattering cross sections compared to a free-gas model. 

     A phonon may be conceptualized as a coordinated wave of atomic vibrations in reciprocal 

space.  Figure 2.1 gives a graphical representation of a transverse phonon wave.  The phonon 

wave vector 𝒒 is always in the direction of propagation of the wave.  Three orthogonal 

polarization vectors 𝒆𝑗, defined based on crystal symmetry, are associated with the 

components of atomic vibrations parallel to each 𝒆𝑗.  Each phonon mode 𝒒𝑚 will have a 

frequency ω and polarization 𝑗 associated with it, where the subscript 𝑚 represents a specific 

ω and 𝑗.  This relationship is defined by the dispersion relations ω(𝒒) for the crystal.   

 

 

Figure 2.1  Graphical representation of a transverse phonon wave among atoms in reciprocal 
space.  A transverse phonon wave has perpendicular propagation and polarization directions.  
Longitudinal phonon waves have parallel propagation and polarization directions. 
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     The terms “phonon frequency” and “phonon energy” will often be used interchangeably 

based on the relationship 𝐸 = ℏω.  Both terms are common in literature.  For clarity, it is 

pointed out that “frequency” in this context refers to the angular frequency of the phonon 

wave vector in reciprocal space and not the classical (or mechanical) oscillation frequency of 

an atom in real space, although they are related.  Likewise, “energy” in this context refers to 

the total energy stored in the crystal that is associated with the phonon mode and not the 

energy state of an individual atom.           

     The double-differential thermal neutron scattering cross section may be written as 

     𝑑
2𝜎(𝐸)
𝑑𝛺𝑑𝐸′

= 1
4𝜋
�𝑘

′

𝑘
� [𝜎coh𝑆(𝑸,𝜔) + 𝜎incoh𝑆𝑠(𝑸,𝜔)]                                                      (2.1) 

using the first-order Born approximation and Fermi pseudopotential [15].  The Born 

approximation in this context is the assumption that, in a neutron scattering process, the total 

scattering wave function of the system is nearly equivalent to the plane wave of the incident 

neutron, or that scattering is weak.  Since the scattering lengths of nuclei are orders of 

magnitude less than interatomic distances, this assumption is nearly always valid.  The Fermi 

pseudopotential treats the nuclear scattering potential as a δ-function about the nucleus, 

consistent with the pointlike nature of the nucleus with respect to thermal neutron 

wavelengths.  With the Born approximation, it produces the required isotropic scattering 

about a fixed nucleus [16].  In Eq. (2.1),  

     𝑸 =  𝒌 –  𝒌′                                                                                                                     (2.2) 

is the neutron scattering vector, where 𝒌 and 𝒌′ are the incident and scattered neutron wave 

vectors, respectively.  The quantity ℏ(𝒌 − 𝒌′) represents the momentum transferred by the 
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neutron to the scattering system, where ℏ is the reduced Planck constant.  The terms 𝐸 and 𝐸′ 

denote the incident and scattered neutron energy, respectively.  Therefore,  

     𝜔 = �𝐸 –𝐸′� / ℏ                                                                                            (2.3)
 
represents, in terms of the change in angular frequency of the neutron wave vector, the 

energy transferred by the neutron to the scattering system.  The coherent and incoherent 

nuclear cross sections are given by σcoh and σincoh, respectively.  The term 𝑆(𝑸,𝜔) is 

known as the dynamic structure factor.  It has units of inverse energy and consists of a self 

component and a distinct component, or 

     𝑆(𝑸,𝜔) = 𝑆s(𝑸,𝜔) + 𝑆d(𝑸,𝜔).                                                                                    (2.4)  

The dynamic structure factor contains information about correlations in the positions of the 

same nucleus (𝑆s) and distinct nuclei (𝑆d) vs. time.  Only the latter gives rise to interference 

effects.  These correlations describe atomic motions that are a function of the interatomic 

forces present in the material structure.   

     In most criticality safety and reactor applications, the scattering material has randomly 

oriented microcrystal structure.  That is, there will generally not be large oriented crystals 

present.  For these applications, the orientation-averaged dynamic structure factor        

     𝑆(𝑄,𝜔) = 𝑆s(𝑄,𝜔) + 𝑆d(𝑄,𝜔)                                                                                     (2.5)  

is of interest.  For 𝑘B𝑇 ≪ ℏωmax, where 𝑘B is Boltzmann’s constant, 𝑇 is temperature and 

ωmax is the maximum frequency of the phonon DOS, it is generally a very good 

approximation that the thermal displacements of atoms from their equilibrium positions are 

small and that interatomic forces may be considered harmonic [17].  In this case, the 𝑆s and 

𝑆d terms can be expanded in terms of phonon order as 
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     𝑆s =  0𝑆s +  1𝑆s +  2𝑆s + ⋯  and 𝑆d =  0𝑆d +  1𝑆d +  2𝑆d + ⋯ .                                  (2.6)  

The superscripts designate the number of phonons excited or deexcited.  The zero-phonon 

terms are associated with elastic scattering and all other terms account for inelastic scattering 

[18].  Henceforth, 𝑆(𝑄,𝜔) will be defined to be associated with only inelastic scattering, and 

the zero-phonon terms (which may be treated separately) will be dropped.       

     For an interaction between a neutron and more than one phonon, combinations of phonons 

can almost always be found such that their wave vectors and frequencies satisfy conservation 

of momentum and energy.  There are essentially no interference effects in this situation, and 

the distinct multiphonon terms of Eq. (2.6) can be considered to be zero [15].  The exact one-

phonon dynamic structure factor,  1𝑆(𝑄,𝜔) =  1𝑆s +  1𝑆d, can be calculated from the 

dispersion relations ω(𝒒) [19] or by other methods.  The 1𝑆d term can be conceptualized as 

the interference-induced modification to 𝑆s, where 𝑆s represents the value the dynamic 

structure factor would have if all scattering were incoherent.  The terms of 𝑆s are always 

positive or zero, while the  1𝑆d term may be positive, negative or zero.  Both  1𝑆s and  1𝑆d 

will be zero for 𝜔 greater than 𝜔max.  In cases where coherent interference from crystal 

structure prohibits one-phonon scattering for a particular 𝑄 and 𝜔 combination, then 

 1𝑆d = − 1𝑆s.  The value of  1𝑆d can vary significantly over the range of 𝑄 and 𝜔.  However, 

for most reactor analysis and criticality safety applications, the scattering distributions of 

thermal neutrons in energy are of much more concern than the distributions in angle.  In 

general, the magnitude of  1𝑆d will be small compared to ∑ (𝑛𝑆s)𝑛  when each is averaged 

over all scattering angles (or over the corresponding ranges of 𝑄).  In particular, the
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contribution of  1𝑆d to the integrated scattering cross section is generally negligible in many 

materials at temperatures of concern.  If the above generalizations apply, the impact of 

coherent interference in inelastic scattering may be neglected entirely, yielding                         

     𝑆(𝑄,𝜔)  ≈  𝑆s(𝑄,𝜔).                                                                                                      (2.7)  

Eq. (2.7) is known as the incoherent approximation, and it allows Eq. (2.1) to be rewritten as             

     𝑑
2σ(𝐸)
𝑑𝛺𝑑𝐸′

= 𝜎b
4𝜋
�𝑘

′

𝑘
� 𝑆s(𝑄,𝜔),                                                                                               (2.8) 

where the bound nuclear cross section is given by 

     σb = σcoh + σincoh.                                                                                                         (2.9)

     Incorporating the incoherent approximation is a common practice in the theoretical 

calculation of thermal neutron scattering kernels.  It is physically valid in many nuclear 

engineering applications and it allows the calculation of cross sections to proceed analytically 

with ease.  Cases where coherent interference in inelastic scattering is not negligible, such as 

for graphite, will be discussed separately in Sections 3.7.4 and 4.1. 

     Scattering in a Bravais crystal with one atom per unit cell will be considered.  Recall that, 

under the harmonic approximation, 𝑆s(𝑄,𝜔) may be expanded into terms corresponding to 

inelastic scattering with 𝑛 = 1, 2, … phonon(s) such that             

     𝑆s(𝑄,𝜔) = ∑ [𝑛𝑆s(𝑄,𝜔)]∞
𝑛=1 .                                                                                       (2.10)  

In this case, the one-phonon term may be expressed in the form 

     1𝑆s(𝑄,ω) =
𝑒−2𝑊𝑄2𝜌(ω )�coth� ℏ|ω |

2𝑘B𝑇
�± 1�

4𝑀|ω |
,                                                                         (2.11) 

where ρ(ω) is the normalized phonon DOS for the scattering nuclide and 𝑀 is the mass of 

the nuclide.  The DOS is considered to be an even function.  The ± corresponds to phonon 
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emission (+) or absorption (–).  The term 𝑒−2𝑊 is the Debye-Waller factor and is a function 

of the mean square displacement of the atom.  For phonons with frequency ω, the value 

1
2

[coth � ℏω
2𝑘B𝑇

� − 1] is the thermal average of the phonon occupation number.  The only 

potential dependence of 𝑆s(𝑸,𝜔) on the direction of 𝑸 lies in the anisotropy of the Debye-

Waller factor due to the directional distribution of atomic vibrations.  For a cubic crystal, the 

partial phonon DOS for any three orthogonal vectors is equivalent, 𝑆s(𝑸,𝜔) = 𝑆s(𝑄,𝜔) and 

2𝑊 is expressed as 

     2𝑊 = ℏ𝑄2

2𝑀 ∫
coth� ℏω

2𝑘B𝑇
�𝜌(ω )

ω
𝑑ω∞

0 .                                                                                    (2.12)  

Assuming randomly oriented microcrystal structure, the partial phonon DOS will be the same 

for any chosen vector when averaged over all crystal orientations, regardless of the crystal 

lattice.  Therefore, under this condition, the form of Eq. (2.12) can be safely applied even for 

non-cubic lattices.  Regarding Eqs. (2.11) and (2.12), the Debye-Waller factor is considered 

an isotropic function of the total phonon DOS only [15]. 

 

2.2  The 𝑺(𝜶,𝜷) Thermal Scattering Law 

     The ENDF File 7 thermal library format tabulates inelastic double-differential cross 

section information in terms of the thermal scattering law, 𝑆(α,𝛽) [1].  Although the term 

“thermal scattering law” may be generalized to include both elastic and inelastic scattering, 

the inelastic definition will be observed.  The thermal scattering law is a function of the 

dimensionless momentum and energy transfer factors 𝛼 and 𝛽, respectively.  Essentially, the 

thermal scattering law is an alternative representation of the 𝑆(𝑸,𝜔) dynamic structure factor 
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for the case of randomly oriented microcrystal structure.  See Appendix A for a detailed 

description of the ENDF File 7, MT = 4, format for tabulating the thermal scattering law.   

     Eqs. (2.11) and (2.12) can be rewritten in terms of 𝛼 and 𝛽 as 

     1𝑆s(𝑄,ω) = (𝑘B𝑇)−1𝑆1(α,𝛽),                                                                                     (2.13)

where 

     𝑆1(α,𝛽) = α 𝑒−α𝜆𝑒−𝛽/2𝜌(𝛽)
2𝛽 sinh(𝛽/2) ,                                                                                            (2.14)

and 

     2𝑊 = α × 𝜆,                                                                                                                 (2.15)

where 

     𝜆 = ∫ 𝑒−𝛽/2𝜌(𝛽)
2𝛽 sinh(𝛽/2)

∞
−∞ 𝑑𝛽.                                                                                                 (2.16)  

See Appendix B for a step-by-step derivation of this transformation.  The parameters 𝛼 and β 

are given by 

     𝛼 = 𝐸′+𝐸−2𝜇√𝐸𝐸′

𝐴𝑘B𝑇
                                                                                                            (2.17)

and 

     𝛽 = ε
𝑘B𝑇

.                                                                                                                         (2.18)  

The normalized phonon DOS is now expressed as ρ(𝛽), and 

     ε = 𝐸′ − 𝐸                                                                                                                     (2.19)  

represents energy gained by the neutron in the scattering process.  The terms 𝜇 and 𝐴 

represent the scattering angle cosine in the laboratory frame and the nuclide to neutron mass 
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ratio, respectively.  For phonons with energy ε, the value 1
2
� 𝑒−𝛽/2

sinh(𝛽/2)
� is the thermal average 

of the phonon occupation number. 

     The 𝑆(α,𝛽) thermal scattering law can be expressed as 

     𝑆(α,𝛽) = ∑ 𝑆𝑛(α,𝛽) = 𝑘B𝑇 × 𝑆s(𝑄,ω)∞
𝑛=1 .                                                                (2.20)

Similar to Eq. (2.13), the relationship 

     𝑆𝑛(𝛼,𝛽) = 𝑘B𝑇 ×  𝑛𝑆s(𝑄,ω)                                                                                        (2.21) 

holds for all 𝑛.  Continuing with the harmonic assumption, the 𝑛-phonon terms of the 

scattering law are separable in momentum and energy, or into the form 

     𝑆𝑛(α,𝛽) = 𝑓𝑛(α)𝑔𝑛(𝛽),                                                                                               (2.22) 

where 

     𝑓𝑛(α) = 𝑒−α𝜆α𝑛(𝑛!)−1                                                                                                 (2.23) 

and  

     𝑔𝑛(𝛽) = ∫ 𝑔1(𝛽′)𝑔𝑛−1(𝛽 − 𝛽′)∞
−∞ 𝑑𝛽′, for 𝑛 ≥ 2.                                                     (2.24) 

From Eq. (2.14),  

     𝑔1(𝛽) = 𝑒−𝛽/2𝜌(𝛽)
2𝛽 sinh(𝛽/2)

.                                                                                                     (2.25)  

Examining Eq. (2.20), it is clear that 𝑆(α,𝛽) itself is not separable in momentum and energy.  

Eq. (2.24) describes the progressive convolution of 𝑔𝑛(𝛽) over the phonon DOS [20].  

Physically, the sensitivity of multiphonon scattering to the structure of the DOS lessens with 

increasing phonon order.    

     As 𝐸 → 0, one-phonon scattering becomes increasingly dominant as the neutron has 

progressively less energy with which to excite phonons.  As 𝐸 increases, and the average 
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momentum transfer (or α) increases, multiphonon scattering becomes more prevalent.  As 

material temperature 𝑇 →  0, the phonon occupation number is reduced and one-phonon 

scattering becomes increasingly dominant.  As 𝑇 rises, an increase in the phonon occupation 

number induces more multiphonon scattering.    

     The effect of chemical binding on thermal neutron scattering is to discretize the 

momentum and energy transfer process based on the excitation modes available in the 

particular molecular structure.  In general, the inelastic thermal scattering cross section will 

be suppressed from the free-gas cross section.  When one-phonon scattering is dominant, the 

secondary neutron energy distribution closely resembles the structure of the phonon DOS.  

Physically, this is because 𝑆1(α,𝛽) is essentially linear with respect to the DOS.  As the 

proportion and order of multiphonon scattering increases, the effect is lessened.  In this case, 

secondary neutron energy distributions become more widely distributed, increasingly 

featureless, and approach the Maxwell-Boltzmann distribution.  The integrated inelastic 

thermal scattering cross section will then approach the free-gas cross section.  In the high-

energy limit, as the sensitivity to molecular structure vanishes, the thermal scattering cross 

section will converge with the free cross section.  The free cross section is given by 

     σfree = σb �
𝐴

𝐴+1
�
2
                                                                                                         (2.26) 

and is equivalent to the bound cross section in the zero-momentum frame.  

     The analytical form of 𝑆(α,𝛽) discussed above is based on several conditions stated thus 

far in the development of the theory.  In particular, it is based on the incoherent 

approximation given by Eq. (2.7).  The 𝑆(α,𝛽) data given in File 7 is typically generated 
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with the LEAPR module of the NJOY Nuclear Data Processing System [20] for specified 𝑇 

over α and 𝛽 grids defined by the evaluator.  The same methodology will be assumed in the 

upcoming uncertainty analysis.  The phonon DOS in the form of ρ(ε) is the fundamental 

input supplied to LEAPR for calculation of the scattering law, where  

     ρ(𝛽) = 𝑘B𝑇 × ρ(ε).                                                                                                       (2.27)

LEAPR utilizes the incoherent approximation and calculates the 𝑆(α,𝛽) matrix to a user-

specified phonon order via the phonon expansion method outlined previously.  However, the 

format of File 7, MT = 4, is independent of the definition of 𝑆(α,𝛽) and the method of data 

production.  In principle, 𝑆(α,𝛽) could be defined either to include the coherent one-phonon 

scattering term or to include only multiphonon scattering.  Experimentally measured or 

experimentally adjusted 𝑆(α,𝛽) data could also be incorporated.  These choices would have 

no impact on the manner in which the 𝑆(α,𝛽) data would be processed.   

     By noting that 

     𝑘 = √2𝑚𝐸
ℏ

 and 𝑘′ = √2𝑚𝐸′

ℏ
,                                                                                       (2.28) 

where 𝑚 is the mass of a neutron, and that scattering has no azimuthal angle dependence for 

randomly oriented microcrystal structure, Eq. (2.8) may now be rewritten in the LEAPR 

format as 

     𝑑
2σ(𝐸)
𝑑𝜇𝑑𝐸′

= 𝜎b
2𝑘B𝑇

�𝐸′

𝐸
𝑆(α,𝛽).                                                                                             (2.29)  

This may be integrated over α to arrive at differential cross sections in energy, or the 

integration may be carried out over both α and 𝛽 to arrive at the inelastic scattering cross 

section.  To facilitate integration, it is instructive to rewrite Eq. (2.29) as                       
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     𝑑
2σ(𝐸)
𝑑α 𝑑𝛽

= 𝐴𝑘B𝑇σb
4𝐸

𝑆(α,𝛽)                                                                                                 (2.30)

by multiplying by the derivatives  𝑑𝜇
𝑑α

= −𝐴𝑘B𝑇
2√𝐸𝐸′

  and  𝑑𝐸
′

𝑑𝛽
= 𝑘B𝑇.  The negative sign is dropped 

since the direction of integration is reversed after the transformation from 𝜇 →  α.  Eq. 

(2.17) may be rewritten as 

     𝛼 = 2𝐸+𝛽𝑘B𝑇−2𝜇�𝐸2+𝛽𝑘B𝑇𝐸
𝐴𝑘B𝑇

.                                                                                           (2.31)  

Therefore, any three of the four variables 𝐸, 𝜇, α, and 𝛽 (within their valid ranges) specify 

the fourth.  𝑆(α,𝛽) may be calculated, independent of 𝐸, for any positive α and for any 

positive or negative 𝛽.  However, there is a specified range of 𝐸 over which the particular 

𝑆(α,𝛽) is physically meaningful.  In other words, for any particular 𝐸, there are physical 

ranges of α and 𝛽.  The range of 𝐸 is (0,∞), although structural effects are typically 

negligible beyond an upper limit of about 5 eV.  The range of 𝜇 is [−1.0, +1.0].  The 

physical range of 𝛽 is [− 𝐸
𝑘B𝑇

,∞) and the physical range of α, as a function of 𝐸 and 𝛽, is 

�2𝐸+𝛽𝑘B𝑇−2�𝐸
2+𝛽𝑘𝐵𝑇𝐸

𝐴𝑘B𝑇
, 2𝐸+𝛽𝑘B𝑇+2�𝐸

2+𝛽𝑘B𝑇𝐸
𝐴𝑘B𝑇

�.  When integrating Eq. (2.30), these physical 

limits of integration must be adhered to.  Figure 2.2 compares the physical ranges of 𝛼 with 

respect to positive 𝛽 for natural carbon (𝐴 = 11.908) at temperatures of 293.6 K and 1000 K 

for incident neutron energies of 0.001 eV and 0.1 eV.   

     Figure 2.3 presents the phonon DOS, ρ(ε), used in the ENDF/B-VII File 7 thermal 

scattering law evaluation for graphite [20, 21].  The spectrum is taken from the work of 

Young and Koppel (YK) [22], where the lattice dynamics of hexagonal crystalline graphite is 

represented by four force constants fitted to thermodynamic data for reactor grade graphite.
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Figure 2.2  Physical limits of momentum transfer factor 𝜶 as a function of positive 𝜷 for natural 
carbon (𝑨 = 11.908).  Solid lines are associated with 𝑬 = 0.001 eV.  Dashed lines are associated 
with 𝑬 = 0.1 eV.  Red/blue lines give the upper/lower bounds for 𝑻 = 293.6 K.  Orange/green 
lines give the upper/lower bounds for 𝑻 = 1000 K. 
 
 

This ρ(ε) spectrum is supplied to LEAPR to generate the File 7 𝑆(α,𝛽) data for graphite.  

This thermal scattering law data may then be supplied to the THERMR module of NJOY 

[20] to generate integrated inelastic cross sections and coupled differential cross sections in 

energy and angle.  Figure 2.4 presents the angle-integrated secondary neutron energy 

distributions produced by THERMR at 293.6 K for incident neutron energies of 0.00016 eV 

and 0.1116 eV.  The impact of the graphite phonon DOS spectral features, such as the peak
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Figure 2.3  Total phonon DOS, ρ(ε), supplied to LEAPR to generate the ENDF/B-VII File 7 
thermal scattering law evaluation for graphite at 293.6 K.  The spectrum is taken from the 
work of Young and Koppel [22]. 
 

 

 

Figure 2.4  Secondary neutron energy distributions for graphite at 293.6 K.  Data is produced 
by THERMR using ENDF/B-VII File 7 thermal scattering law data (black) and the free-gas 
model (green) for 𝑬 = 𝟎.𝟎𝟎𝟎𝟏𝟔 eV and 𝑬 = 𝟎.𝟏𝟏𝟏𝟔 eV [20].                                         
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near 55 meV, is clear.  The results are compared to the Maxwell-Boltzmann distributions of a 

free-gas model for natural carbon [20].    

     The principle of detailed balance applies in general for scattering in materials consisting 

of only zero-spin nuclides.  The result is 𝑆(α,𝛽) = 𝑒−𝛽𝑆(α,−𝛽).  Most natural materials 

contain negligible fractions of nuclides with non-zero spin.  In this case, a symmetric 

scattering law may be defined as 

     𝑆sym(α,𝛽) = 𝑒𝛽/2𝑆(α,𝛽)                                                                                            (2.32)

such that 𝑆sym(α,𝛽) = 𝑆sym(α,−𝛽).  To reduce file size, this is the actual quantity 

conventionally tabulated (for positive 𝛽 only) in ENDF File 7 thermal neutron scattering 

libraries [20].  Eq. (2.30) may be rewritten in terms of 𝑆sym(α,𝛽) as  

     𝑑
2σ(𝐸)
𝑑α 𝑑𝛽

= 𝐴𝑘B𝑇σb
4𝐸

𝑒−𝛽/2𝑆sym(α,𝛽).                                                                                 (2.33)

     For scattering in a crystal having more than one non-equivalent basis position per unit 

cell, the phonon DOS and Debye-Waller factor may be specified separately for each basis 

position.  When a single chemical element is present, 𝑆(α,𝛽) and cross sections may then be 

calculated as an average over all basis positions.  However, in LEAPR, it is standard in this 

case to provide a single effective phonon DOS representing an average DOS over the basis 

positions.  When different chemical elements populate the basis positions, 𝑆(α,𝛽) and cross 

sections may be calculated based on the desired stoichiometry.  Natural materials often have 

multiple randomly distributed elemental isotopes.  The DOS, 𝑆(α,𝛽) and calculated cross 

sections may be defined based on the isotopically weighted averages of σb and 𝐴 in this case.  
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Chapter 3 

Thermal Neutron Inelastic Scattering Uncertainty 
 
 

3.1  Principles and Methods of Uncertainty Quantification 

     The value assigned to any physical quantity will depend on the process by which the value 

is determined.  This process may involve measurement, calculation, assessment of existing 

information regarding the value of the quantity, or some combination of these.  With the 

exception of physical quantities having simply determined integer values, the true value of a 

physical quantity is very often unknown and cannot be determined exactly.  In this case, to be 

complete, the value assigned to the quantity should be accompanied by a mathematical 

description of its uncertainty.   

     Qualitatively, the uncertainty assigned to a value is a measure of the level of confidence 

that this value corresponds to the true value, taking into consideration all available 

information [5].  Quantitatively, uncertainty is held to have a precise mathematical definition 

in terms of the second central moments of the probability distributions that govern the 

processes through which knowledge about the value of the physical quantity is derived [23]. 

 

3.1.1  Mathematical and Statistical Description of Uncertainty 

     To give a mathematical description of uncertainty, it is first necessary to introduce the 

concept of a random variable.  A random variable is any parameter (such as a physical 

quantity or an empirical fitting parameter) having a value that is subject to variation.  In
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contrast, values assigned to a non-random variable are exactly determined.  The term 

“variation” in this context is time-independent and refers in general to any description of 

some aspect of the manner in which the value for the random variable may be expected to 

fluctuate.  For a random variable representing a physical quantity (such as a cross section), 

the variation can depend on the measurement process, the calculation methodology, existing 

information (or lack of information) about the quantity, or a combination of these.   

     The variation of any random variable can be described based on the probability 

distribution, or the probability density function (PDF), of the population of all possible 

values for the random variable.  The PDF for a random variable representing a physical 

quantity is generally not known explicitly and must be assumed or estimated by an evaluator 

based on the method employed in determining the value for the physical quantity and on any 

other pertinent information available regarding its value [5].  Often, this PDF will represent 

the combined effect of multiple aspects of the process through which the value for the 

quantity is determined, each of which may have an underlying PDF associated with it.  The 

application of a least-squares fitting procedure is a common method for estimating the PDF 

when a function of a random variable can be compared to experimental data.  Another 

common method of estimating the PDF is by generating a discrete sample of values for the 

random variable through some process which is assumed to be representative of the PDF or 

some underlying component of the PDF.   

     For a given PDF governing the variation in a random variable 𝑥,                   

     𝜎(𝑥) = �∫ (𝑥 − < 𝑥 >)2𝑝(𝑥)𝑑𝑥∞
−∞                                                                                (3.1)
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defines the uncertainty in 𝑥.  The term 𝑝(𝑥) is the PDF for the random variable 𝑥, and the 

notation < 𝑥 > denotes the expectation value for the random variable 𝑥.  For a given 𝑝(𝑥), 

the expectation value is the  probability-weighted mean of possible 𝑥 values.  In general, this 

expectation value will not represent the true value for a physical quantity, 𝑥true, but it is 

defined as the best estimate for 𝑥true based on the given method of determining a value and 

any other pertinent information.  The quantity 𝜎2(𝑥) is defined as the variance of the random 

variable 𝑥 and is a measure of the dispersion of 𝑥 about < 𝑥 > as a function of 𝑝(𝑥).          

     When a single value is determined for a physical quantity through some process, this 

value is often taken to be the expectation value and is the quoted value for the physical 

quantity represented by 𝑥.  A corresponding form for 𝑝(𝑥) is then assumed or estimated by 

the evaluator to determine 𝜎(𝑥).  If the evaluator has information to suggest that the value 

determined for the physical quantity through a particular process should not be assumed to be 

representative of the expectation value for the physical quantity, a correction can be applied.  

In this case, 𝑝(𝑥) should capture any underlying probability distribution for the correction.           

     When a discrete sample of values for 𝑥 is given, the sample uncertainty is defined as         

     𝑠(𝑥) = � 1
𝑁−1

∑ (𝑥𝑖 − �̅�𝑠)2𝑁
𝑖=1 ,                                                                                         (3.2)

where �̅�s is the sample mean and 𝑁 is the number of sample data points 𝑖.  There are 𝑁 − 1 

degrees of freedom in defining the variance of 𝑁 𝑥𝑖 with respect to �̅�s.  For sufficiently large 

𝑁, if the sampling probability is representative of 𝑝(𝑥), 𝑠(𝑥) ≈ 𝜎(𝑥) and 𝑠2(𝑥) ≈ 𝜎2(𝑥).  In 

this case, the sample data can be expected to predict the uncertainty and variance in the 

random variable 𝑥 well.  For discrete sample data, < 𝑥 > is estimated by �̅�s, modified by any 
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applicable correction.  Assuming the sampling PDF is effectively time-independent over the 

sampling period, �̅�s converges to 𝑥c as 𝑁 ⟶ ∞, where 𝑥c is the expectation value for the 

sampling PDF.  For finite 𝑁, 𝑝(𝑥) can be considered to be a function of 𝑝(�̅�s) and 𝑝(𝑥true −

�̅�s).  As 𝑁 ⟶ ∞, 𝑝(�̅�s) localizes, and 𝑝(𝑥) becomes a function of 𝑥c and 𝑝(𝑥true − 𝑥c).  For 

𝑁 = 1, �̅�s = 𝑥c.       

     A set of random variables [𝑥1, 𝑥2, … , 𝑥𝑛] can be expressed as the vector 𝒙 to represent a 

set of physical quantities.  These random variables may be independent or dependent.  If the 

set is independent, then the vectors < 𝒙 > = [< 𝑥1 >, < 𝑥2 >, … , < 𝑥𝑛 >] and 𝝈(𝒙) =

[𝜎(𝑥1),𝜎(𝑥2), … ,𝜎(𝑥𝑛)] report sufficient information about the values and uncertainties for 

the physical quantities.  If the set is dependent, there will be a joint probability density 

function 𝑝(𝒙) = 𝑝(𝑥1, 𝑥2, … , 𝑥𝑛) governing the variation of the set of random variables.  In 

this case, Eqs. (3.1) and (3.2) still apply in determining the uncertainty for a particular 

random variable.  However, the covariance of any two random variables is defined as   

     COV�𝑥𝑖, 𝑥𝑗� = ∫ ∫ (𝑥𝑖 − < 𝑥𝑖 >)�𝑥𝑗 − < 𝑥𝑗 >�𝑝�𝑥𝑖, 𝑥𝑗�𝑑𝑥𝑖𝑑𝑥𝑗
𝑥𝑖=∞
𝑥𝑖=−∞

𝑥𝑗=∞
𝑥𝑗=−∞

.           (3.3)

Covariance is a measure of the coupling of the variations of two random variables.  For 𝑖 = 𝑗 

in Eq. (3.3), COV(𝑥𝑖, 𝑥𝑖) = 𝜎2(𝑥𝑖).  The joint PDF is generally not known explicitly.  A 

multi-dimensional least-squares approach is a historically common method of determining 

nuclear data covariances based on empirical models and experimental data.  Alternatively, 

similar to estimating a single-variable PDF, generating discrete samples of values for the set 

of random variables allows covariances to be estimated.     
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     When a discrete sample of 𝒙 values is given, covariances are defined as  

     COVs�𝑥𝑖 , 𝑥𝑗� = 1
𝑁−1

∑ ∑ [𝑥𝑖 − (�̅�𝑖)s]𝑁
𝑗=1

𝑁
𝑖=1 [𝑥𝑗 − (�̅�𝑗)s].                                           (3.4)

A sample consists of a number of data sets {𝑥1, 𝑥2, … , 𝑥𝑛}, and there are 𝑁 data sets.  For 

large 𝑁, if the sampling probability is representative of the joint PDF, COVs�𝑥𝑖, 𝑥𝑗� converges 

to COV�𝑥𝑖, 𝑥𝑗�.  Whether covariances are determined through Eq. (3.3), Eq. (3.4) or 

otherwise, a covariance matrix for 𝒙 of dimension 𝑛 × 𝑛 must be given, along with < 𝒙 >, to 

provide complete information regarding the quoted values for the random variable set 𝒙.  The 

notation 𝑽𝒙 will be used to designate the covariance matrix for 𝒙, with entries (𝑽𝒙)𝑖𝑗 given 

by COV�𝑥𝑖, 𝑥𝑗�.  The diagonal of the covariance matrix will give the variances for each 

random variable, and the square roots of the diagonal terms provide the uncertainties given 

by 𝝈(𝒙).           

     A correlation matrix 𝑪 is defined in terms of the covariance matrix 𝑽 by  

     𝑪𝑖𝑗 = 𝑽𝑖𝑗/(σ𝑖σ𝑗).                                                                                                            (3.5)

The use of a correlation matrix, versus a covariance matrix, eliminates the presence of units 

and restricts numerical values to [-1.0,+1.0].  Correlations are often considered more intuitive 

than covariances and more natural for plotting and visual examination.  Furthermore, when 

statistical methods are impracticable for the determination of covariances, evaluators often 

attempt to assess correlations directly.  Correlation is a measure of the linear functional 

dependence between two random variables.  A value of +1.0 or -1.0 implies that two random 

variables will always vary in linear proportion in the same direction (for +1.0) or in the 

opposite direction (for -1.0).  Two independent random variables will have a correlation of 



 

31 

zero.  However, if their covariance is calculated with discrete samples of values per Eq. (3.4), 

the resulting correlation will likely be non-zero due to the discrete data imperfectly 

representing the corresponding joint PDF.  For a sufficiently large number of samples, the 

calculated correlation for two independent random variables will be very small in magnitude.  

Conversely, it is important to note that a very small calculated correlation does not 

necessarily imply independence between two random variables but only a very limited linear 

functional dependence.  Higher-order functional dependence could still exist [23].   

 

3.1.2  Types of Uncertainty and Methods of Evaluation 

     Uncertainties can generally be separated into two broad categories based on the inherent 

nature of the source of uncertainty: 

     1.  Uncertainties arising due to a random effect. 

     2.  Uncertainties arising due to a systematic effect. 

These types of uncertainties are independent of the manner in which they are mathematically 

evaluated to arrive at 𝜎(𝑥).  Specifically, they depend on the details of the particular method 

for determining a value for 𝑥 [24].         

     A Type 1 uncertainty is defined as an uncertainty which may be minimized through 

repeated trials of a particular sampling process.  This process may involve measurement, 

calculation, or some combination of both.  Specifically, if the PDF governing the values 

determined by a particular sampling process is consistent from trial to trial, then 𝜎(�̅�s) is 

Type 1.  This definition applies whether a single trial is performed or many.  Furthermore, it 

is independent of whether or not repeated trials will result in the sample mean converging to 
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the true value or the evaluated expectation value for a physical quantity.  Type 1 uncertainties 

affect the precision to which the value of a physical quantity may be determined.   

     A Type 2 uncertainty is defined as an uncertainty which cannot be minimized through 

repeated trials of a particular sampling process.  Uncertainties independent of the PDF for a 

particular sampling process are of Type 2.  In this case, the Type 2 uncertainty is defined as 

𝜎(𝑥true − �̅�s).  If a particular sampling process has a PDF that is time-dependent over the 

sampling period, then 𝜎(�̅�s) is a Type 2 uncertainty unless specific information describing 

the time-dependence allows 𝜎(�̅�s) to be reduced to a Type 1 uncertainty.  If no Type 2 

uncertainties exist, the sample mean should be expected to converge to the true value of the 

physical quantity with repeated trials.  In practice, Type 2 uncertainties are almost always 

present, are often difficult to identify and evaluate, and will typically be responsible for the 

majority of uncertainty in any physical quantity.  Type 2 uncertainties affect the accuracy 

with which a physical quantity may be determined.  They can lead to a bias in the value 

determined by a particular process.  In general, a Type 2 uncertainty describes the uncertainty 

in a correction to a determined value necessary to arrive at < 𝑥 > for a physical quantity.     

     The classifications Type 1 and Type 2 distinguish the underlying nature of uncertainties.  

However, both types may be evaluated (or quantified) in different ways.  Evaluation 

methodologies may be divided into two general categories [24]: 

     A.  Evaluations based on strictly statistical methods. 

     B.  Evaluations  based  on  scientific  judgment  and/or  the  interpretation  of  pertinent

           information available regarding the quantity of interest.  
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Figure 3.1 gives three possible PDFs for a random variable 𝑥 which will be used to illustrate 

examples of Type 1 and 2 uncertainties and Type A and B evaluation methods.  Consider the 

PDFs to represent (either exactly or by estimate) the energy distribution registered by three 

different detectors (A, B and C) over a fixed time period for the same incident beam of 

monoenergetic gammas.  The energy units are arbitrary and the scale is exaggerated for 

illustration purposes.  The physical quantity represented by 𝑥 is the gamma energy.       

     For Detector A, if the distribution is the result of actual detections, then 𝜎(�̅�s) is a Type A 

evaluation of a Type 1 uncertainty, and no assumption is made about the presence of Type 2 

uncertainties.  If a normal distribution for 𝑥 is assumed based only on determining that the 

measured distribution is centered about 𝐸 = 100 with a full-width half-maximum (FWHM)

                                        

 

Figure 3.1  Three example PDFs for a random variable 𝒙. 
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of 25, then 𝜎(𝑥) is a Type B evaluation of a Type 1 uncertainty, and Type 2 uncertainties are 

assumed to be zero.   

     Detector B may be assumed to have a fixed calibration error (energy shift) of +40 based 

on comparison to Detector A (where Detector A is assumed to be perfectly calibrated).  Such 

an assumption is a Type B evaluation of a Type 2 uncertainty.  In other words, a correction to 

�̅�s is determined to be required to arrive at < 𝑥 >, and the uncertainty in this correction is 

estimated to be zero.  If the given distribution for Detector B is the result of actual detections, 

𝜎(�̅�s) is again a Type A evaluation of a Type 1 uncertainty.  If the distribution is assumed to 

be normal but shifted by +40, then 𝜎(𝑥) is a Type B evaluation of Type 1 and 2 uncertainties.                       

     Detector C has a random calibration fluctuation (possibly due to electrical noise).  For this 

situation, if the given distribution is the result of actual detections, 𝜎(�̅�s) is still a Type A 

evaluation of a Type 1 uncertainty.  If 𝜎(𝑥true − �̅�s) is based on a flat distribution for the 

calibration error, this is a Type B evaluation of a Type 2 uncertainty.  If 𝜎(𝑥true − �̅�s) is 

estimated by collecting data after replacing the gamma source with a test pulse subject to the 

same calibration fluctuation, this is a Type A evaluation of a Type 2 uncertainty. 

     The end goal is to provide the expectation values for the set of all quantities of interest, 

along with an associated covariance matrix from which total uncertainties and correlations 

may be calculated [23].  To achieve this, the evaluator must construct a joint probability 

density function which properly reflects all known information about the quantities [5].  

There is certainly no single “correct” answer to this task.  In particular, scientific judgment 

will often be necessary in the treatment of Type 2 uncertainties and covariances.  As a
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practical matter, if a user is to accept and apply a nuclear library produced by a particular 

method, there should be the expectation that any uncertainty information associated with it 

appropriately reflects the extent of knowledge available to the evaluator in its generation.        

 

3.1.3  Propagation of Uncertainty 

     Any function of one or more random variables can also be treated as a random variable.  

Often, the uncertainty information for underlying parameters which govern the determination 

of a physical quantity will be more accessible than for the physical quantity itself.  Any 

differentiable function of two random variables 𝑥𝑖 and 𝑥𝑗 can be Taylor-expanded about 

< 𝑥𝑖 > and < 𝑥𝑗 > to first order as  

     𝑓�𝑥𝑖, 𝑥𝑗� ≈ 𝑓�< 𝑥𝑖 >, < 𝑥𝑗 >� + 𝑥𝑖
𝜕𝑓�𝑥𝑖,𝑥𝑗�

𝜕𝑥𝑖
│𝑥𝑖,𝑥𝑗=<𝑥𝑖>,<𝑥𝑗> 

      +𝑥𝑗
𝜕𝑓�𝑥𝑖,𝑥𝑗�

𝜕𝑥𝑗
│𝑥𝑖,𝑥𝑗=<𝑥𝑖>,<𝑥𝑗>.                                                                        (3.6)

A small change Δ𝑥𝑖 in 𝑥𝑖 and a small change Δ𝑥𝑗 in 𝑥𝑗 will result in a small change Δ𝑓(𝑥𝑖, 𝑥𝑗) 

in 𝑓�𝑥𝑖, 𝑥𝑗�.  Assuming that Δ𝑥𝑖 = 𝑥𝑖−< 𝑥𝑖 > and Δ𝑥𝑗 = 𝑥𝑗−< 𝑥𝑗 > are sufficiently small 

over the probable ranges for 𝑥𝑖 and 𝑥𝑗, 𝑓(𝑥𝑖, 𝑥𝑗) can be considered linear with respect to 𝑥𝑖 

and 𝑥𝑗 in the region near 𝑓�< 𝑥𝑖 >, < 𝑥𝑗 >�.  In this case, Δ𝑓�𝑥𝑖, 𝑥𝑗� ≈ 𝑓�𝑥𝑖 , 𝑥𝑗� −

𝑓�< 𝑥𝑖 >, < 𝑥𝑗 >� and  

     𝑓�𝑥𝑖, 𝑥𝑗� − 𝑓�< 𝑥𝑖 >, < 𝑥𝑗 >� ≈ [𝑥𝑖−< 𝑥𝑖 >] 𝜕𝑓�𝑥𝑖,𝑥𝑗�
𝜕𝑥𝑖

│𝑥𝑖,𝑥𝑗=<𝑥𝑖>,<𝑥𝑗>       

     +�𝑥𝑗−< 𝑥𝑗 >� 𝜕𝑓
�𝑥𝑖,𝑥𝑗�
𝜕𝑥𝑗

│𝑥𝑖,𝑥𝑗=<𝑥𝑖>,<𝑥𝑗>.                   (3.7)

Squaring both sides of Eq. (3.7) gives 
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     �𝑓�𝑥𝑖, 𝑥𝑗� − 𝑓�< 𝑥𝑖 >, < 𝑥𝑗 >��2 ≈ [𝑥𝑖−< 𝑥𝑖 >]2 ∂
2𝑓�𝑥𝑖,𝑥𝑗�
∂𝑥𝑖

│𝑥𝑖,𝑥𝑗=<𝑥𝑖>,<𝑥𝑗>  

     +�𝑥𝑗−< 𝑥𝑗 >�2
∂2𝑓�𝑥𝑖, 𝑥𝑗�

∂𝑥𝑗
│𝑥𝑖,𝑥𝑗=<𝑥𝑖>,<𝑥𝑗> + 

     2 × [𝑥𝑖−< 𝑥𝑖 >]�𝑥𝑗−< 𝑥𝑗 >� �∂𝑓�𝑥𝑖,𝑥𝑗�
∂𝑥𝑖

∂𝑓�𝑥𝑖,𝑥𝑗�
∂𝑥𝑗

� │𝑥𝑖,𝑥𝑗=<𝑥𝑖>,<𝑥𝑗>.                                  (3.8)

Now, taking the expectation value of each side of Eq. (3.8) yields the desired relation 

     𝜎2�𝑓�𝑥𝑖, 𝑥𝑗�� ≈ 𝜎2(𝑥𝑖)
𝜕2𝑓�𝑥𝑖,𝑥𝑗�

𝜕𝑥𝑖
│𝑥𝑖,𝑥𝑗=<𝑥𝑖>,<𝑥𝑗> + 𝜎2�𝑥𝑗�

𝜕2𝑓�𝑥𝑖,𝑥𝑗�
𝜕𝑥𝑗

│𝑥𝑖,𝑥𝑗=<𝑥𝑖>,<𝑥𝑗> 

     + 2 × COV(𝑥𝑖, 𝑥𝑗) �∂𝑓�𝑥𝑖,𝑥𝑗�
∂𝑥𝑖

∂𝑓�𝑥𝑖,𝑥𝑗�
∂𝑥𝑗

� │𝑥𝑖,𝑥𝑗=<𝑥𝑖>,<𝑥𝑗>.                                               (3.9)

The result of Eq. (3.9) may be generalized to any number of random variables to produce the 

familiar algebraic propagation of uncertainty formula 

     𝜎[𝑓(𝑥1, … , 𝑥𝑛)] = �∑ �∂𝑓
∂𝑥𝑖
�
2
𝜎2(𝑥𝑖) + 2∑ ∑ ∂𝑓

∂𝑥𝑖
𝑛
𝑗=𝑖+1

𝑛−1
𝑖=1

𝑛
𝑖=1  ∂𝑓

∂𝑥𝑗
COV(𝑥𝑖 , 𝑥𝑗),      (3.10)

where the approximate equivalence is treated as exact by definition.   

     The propagation of uncertainty formula given by Eq. (3.10) may be extended to an 

arbitrary number of functions and written in a simplified matrix form as 

     𝑽𝒚 = 𝑴𝒙𝒚
T 𝑽𝒙𝑴𝒙𝒚.                                                                                                         (3.11)

𝑽𝒙 and 𝑽𝒚 are the covariance matrices for the input variable set 𝒙 and the output data set 𝒚.  

𝑴𝒙𝒚 is the sensitivity matrix for each 𝑦𝑗 with respect to each 𝑥𝑖 with entries 

     𝑀𝑖𝑗 = ∂𝑦𝑗
∂𝑥𝑖

.                                                                                                                      (3.12)

For any data set calculated as functions of an underlying set of parameters which may be 

treated as random variables, uncertainty information for the output data set may be 

expressed, to first order, by specifying the covariance matrix for the input variable set along 
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with a sensitivity matrix.  As discussed in Section 1.2, ENDF File 30 incorporates this 

methodology, utilizing Eq. (3.11), to provide a compact format for storing large quantities of 

covariance data when the parent data is calculated from mathematical models [1].     

     For example [7], direct representation of the covariances for 105 data entries requires a 

matrix with 105 × 105 = 1010 elements.  Assuming that 100 model parameters are employed, 

only a 100 × 100 parameter covariance matrix and a 105 × 100 sensitivity matrix is needed, 

reducing the required number of elements by 99.9% to about 1 × 107.  Of course, only one-

half of any covariance matrix need be stored due to symmetry.  The reduction in storage 

requirements possible using Eq. (3.11) can be particularly advantageous in expressing 

covariances for very large quantities of secondary distribution data.  The File 30 format also 

provides a clear route for calculating multigroup data covariances for a specified group 

structure since the loss of differential information could be limited by maintaining high 

covariance resolution [25].   

     There are also disadvantages to use of the File 30 format.  It implicitly assumes linearity 

in the functional relationship among the model parameters and in the calculated nuclear data 

as a function of the model parameters.  Over the global range of a parameter vector 𝒙, 

significant nonlinearities may be present.  However, the linear assumption is normally a good 

approximation if the probable range of 𝒙 is localized about < 𝒙 >, and this condition 

typically holds.  Therefore, the first-order form of Eq. (3.11) generally provides sufficiently 

accurate and physically acceptable results while greatly compacting data storage [25].  
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3.1.4  Monte Carlo Sampling and Simulation 

     The mathematical simulation of random processes is known as the Monte Carlo method.  

When the behavior of any number of random variables can be simulated mathematically, this 

allows a straightforward statistical treatment of a wide variety of problems.  First, a general 

description of a Monte Carlo trial and of Monte Carlo sampling will be given.  Next, the 

basic principles of the Monte Carlo method will be discussed.  Finally, several example 

applications for the Monte Carlo method will be described.   

     Let a process be defined which contains one or more decision steps.  These steps may be 

considered to occur in series, in parallel, or in combination.  The number and sequence of 

these steps in the process can be constant or variable.  For each decision step, a range of 

outcomes is possible according to some frequency distribution.  The outcomes for the 

decision steps may be independent or dependent.  The process may also contain any number 

of non-decision steps, where each output is fixed as a function of the input.  The information 

resulting after the execution of the entire process comprises the outcome of one Monte Carlo 

trial.  The repeated execution of the process and the collection of information resulting from 

these trials is known as Monte Carlo sampling [23].     

     The application of any Monte Carlo method depends on the ability to generate random 

numbers according to some frequency distribution.  While no algorithm can produce a truly 

random number, there are many algorithms that exist in computer applications which can 

generate numbers which are, for practical intent, sufficiently random.  The success of the 

Monte Carlo method lies in the central limit theorem.  The central limit theorem states that if 

𝑀 average values of a random variable are determined by 𝑀 repetitions of sampling the 
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probability distribution for the random variable 𝑁 times, then the distribution of average 

values will converge to a normal distribution as 𝑀 ⟶∞ and this normal distribution will 

converge to a central limit as 𝑁 ⟶ ∞.  Certain conditions apply, including the requirement 

that the probability distribution has a well-defined expectation value and variance.  However, 

the central limit theorem applies in general to any Monte Carlo process as outlined in the 

previous paragraph.  The values determined for measurands of a Monte Carlo process are by 

definition averages of outcomes for 𝑁 trials.  Therefore, the value determined for any 

particular measurand of a Monte Carlo process may be expected to converge to a central 

limit with increasing 𝑁, and the probability distribution for the measurand can be considered 

normal [23].   

     A simple application of the Monte Carlo method is the numerical evaluation of an integral 

with no closed-form solution.  For instance, consider 𝑦 = ∫ 𝑒−𝑥2𝑑𝑥𝑏
𝑎 =< 𝑒−𝑥2 >× (𝑏 − 𝑎).

The term < 𝑒−𝑥2 > can be easily determined by randomly sampling 𝑥 using a flat probability 

distribution bounded by 𝑎 and 𝑏.  This will yield a solution for 𝑦 with a corresponding 𝜎(𝑦).  

The Monte Carlo method is also useful in solving very complicated problems involving 

many integrals, in solving large sets of coupled differential equations, in performing 

complicated least-squares fits, in quantifying uncertainties and covariances, and in many 

other mathematical applications.  The Monte Carlo method allows statistical solutions to a 

wide variety of problems which may otherwise be difficult or virtually impossible to solve by 

deterministic methods. 
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     An important application of the Monte Carlo method is in the simulation of the behavior 

of very complex physical systems.  Nuclear systems are particularly amenable to Monte 

Carlo analysis because particle transport and interactions are naturally governed by random 

processes which can be described by the reaction information tabulated in nuclear data 

libraries.  The behavior of the neutron population of nuclear systems can be statistically 

simulated in time, space and energy.  The accuracy of the Monte Carlo method is limited 

only by how well formulated the system description is, the number of Monte Carlo trials 

executed, and the completeness and accuracy of the nuclear data provided.  Clearly, for 

nuclear systems in which the great majority of fission events are induced by thermal 

neutrons, it is particularly important to understand the behavior of the thermal neutron 

population well.  Whether a nuclear system is simulated by a Monte Carlo or a deterministic 

method, the ability to provide thermal neutron scattering uncertainty information in the 

applied nuclear data library is of high interest.                      

     Just as the characteristics of a physical system may be determined through Monte Carlo 

simulation, the characteristics of a mathematical function (such as a PDF) may be determined 

in the same manner.  In some cases, a required function may not be known, or it may itself 

have a probability distribution.  By using Monte Carlo simulation to model fundamental 

phenomena governing the function, a statistical description can be generated taking into 

account all available information regarding the behavior of the function and underlying 

phenomena.                                                   
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3.2  Assessing the Thermal Scattering Uncertainty Problem 
 
 

3.2.1  Covariance Data Requirements for Simulation Codes 
 
     In reactor analysis and criticality safety applications, system response parameters may be 

very sensitive to the characteristics of the thermal neutron flux distribution.  The scattered 

neutron energy spectra, which are functions of molecular structure, can play a major role in 

determining the thermal neutron energy distribution of a nuclear system.  The details of the 

thermal neutron energy distribution are essential in determining reaction rates.  

Consequently, this can affect criticality parameters and safety margins.   

     Calculating uncertainties and representing covariances for thermal neutron inelastic 

scattering data presents unique challenges.  It is insufficient to quantify a covariance matrix 

for integrated cross sections since this information alone cannot be unfolded and decoupled 

to express covariance data for energy and angle distributions.  The double-differential 

thermal scattering law data in ENDF File 7 is rarely used directly in nuclear system modeling 

and simulation codes.  Rather, it is commonly processed to produce a pointwise energy 

library that can be directly utilized in system calculations.  A pointwise energy library 

contains integrated cross section data tabulated at specific energies.  For each energy given, 

the tabulation of differential data (coupled in energy and angle) is associated with specific 

secondary energies and scattering angles.   

     In principle, to present a complete description of thermal neutron scattering uncertainties 

in such a pointwise energy library, it would be required to provide covariance data 

collectively for all integrated and differential data for all incident energies.  For most nuclear 
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engineering applications, the details of neutron scattering angle distributions are far less 

important than secondary distributions in energy.  In this work, uncertainties and covariances 

associated with differential cross sections in angle are not considered.  Because many 

simulation codes employ different types and formats of data libraries, a general method is 

needed for calculating integrated and secondary energy distribution covariances.  In most 

cases, the ENDF File 7 thermal library provides the fundamental double-differential thermal 

scattering law information upon which the thermal scattering data in code-specific libraries is 

based.  Therefore, it should form the basis for thermal scattering uncertainty quantification.           

 

3.2.2  Representing Differential and Integrated Covariances with a Thermal Scattering
           Law Covariance Matrix 
  
     It is clear, upon reviewing Eq. (2.33), that any particular integrated or differential cross 

section can be calculated by numerically integrating 𝑒−𝛽/2𝑆sym(α,𝛽) = 𝑆(α,𝛽) over 

appropriate ranges of α and/or 𝛽, and then multiplying by the constant 𝐴𝑘B𝑇σb
4𝐸

.  Let the set of 

all integrated and differential cross sections be collectively defined as the output data set 𝒚.  

Let the set of all tabulated 𝑆sym(α,𝛽) at a specified 𝑇 in ENDF File 7 be defined as the input 

data set 𝒔.  The physical limits of 𝛼 and 𝛽 are governed by the specified 𝐸 and 𝑇.  (For an 

example, see Figure 2.2).  The matrix propagation of uncertainty formula given by Eq. (3.11) 

allows 𝑽𝒚 to be expressed as a function of 𝑽𝒔 and 𝑴𝒔𝒚.  This follows the basis of ENDF File 

30 [1], as discussed in Section 3.1.3, except the tabulated 𝑆sym(α,𝛽) are now considered 

“input parameters.”  Alternatively, 𝑆(α,𝛽) could have been defined as the input parameter 
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set without loss of generality.  The choice of 𝑆sym(α,𝛽) is simply to provide consistency 

with the actual values conventionally tabulated in File 7.                 

     Since 𝑑
2σ(𝐸)
𝑑α 𝑑𝛽

 is linear with respect to all 𝑠𝑖 in Eq. (2.33), each 𝑦𝑗 is also linear with respect 

to all 𝑠𝑖.  The integrated inelastic cross section σinel(𝐸) can be expressed, for specified 𝑇, by 

the algebraic summation 

     σinel(𝐸) = 𝐴𝑘B𝑇σb
4𝐸

∑ (𝑒−𝛽𝑏/2𝑠𝑖(𝑎,𝑏)𝑑𝛼𝑎𝑑𝛽𝑏)𝑎,𝑏 ,  

                           𝑎 = 𝑎min …  𝑎max, 𝑏 = 𝑏min …  𝑏max. (3.13)

The term 𝑖(𝑎, 𝑏) defines the particular 𝑠𝑖 associated with 𝛼𝑎 and 𝛽𝑏.  The 𝛼 and 𝛽 grids may 

be arbitrarily spaced.  Therefore, 𝑑𝛼𝑎 and 𝑑𝛽𝑏 are defined by the grids selected by the 

evaluator.  The ranges of 𝑎 and 𝑏 are determined by all 𝛼𝑎 and 𝛽𝑏 that lie within the physical 

bounds �2𝐸+𝛽𝑘B𝑇−2�𝐸
2+𝛽𝑘B𝑇𝐸

𝐴𝑘B𝑇
, 2𝐸+𝛽𝑘B𝑇+2�𝐸

2+𝛽𝑘B𝑇𝐸
𝐴𝑘B𝑇

� and [− 𝐸
𝑘B𝑇

,∞) for 𝛼 and 𝛽, 

respectively.  Eq. (3.13) can be modified for differential cross sections by carrying out the 

summation over only one variable with the other variable fixed.  In this case, there will be no 

differential term (i.e., 𝑑𝛼𝑎 or 𝑑𝛽𝑏) associated with the fixed variable.   

     When applying Eq. (3.13), the physical bounds for 𝛼 and 𝛽 will generally not lie exactly 

on grid points.  Likewise, the grids desired for tabulating differential cross sections may not 

coincide with the 𝛼 and 𝛽 grids.  It is conventional to apply linear interpolation between 

tabulated 𝑆sym(α,𝛽) in both of these cases.  To convert calculated differential cross sections 

into terms with respect to 𝑑𝐸′ and/or 𝑑𝛺, the relationships 𝑑𝛽 = 𝑑𝐸′

𝑘B𝑇
 and/or 𝑑𝛼 = 4𝜋√𝐸𝐸′

𝐴𝑘B𝑇
𝑑𝛺 

are applied, respectively. 
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     As a result of the linearity of 𝒚 with respect to 𝒔, the terms 𝑀𝑖𝑗 = ∂𝑦𝑗
∂𝑠𝑖

 of the sensitivity 

matrix 𝑴𝒔𝒚 can be expressed as the constants 

     𝑐𝑖𝑗 = 𝐴𝑘B𝑇σb
4𝐸

𝑒−𝛽𝑏(𝑖,𝑗)/2 𝑑𝛼𝑎(𝑖,𝑗)𝑑𝛽𝑏(𝑖,𝑗).                                                                        (3.14)

The functions 𝑎(𝑖, 𝑗) and 𝑏(𝑖, 𝑗) each output two pieces of information.  First, the functions 

identify the particular 𝑎 and 𝑏 associated with the index 𝑖.  Second, the functions identify 

whether or not the particular 𝛼𝑎 and 𝛽𝑏 values are physically applicable for the associated 𝑦𝑗 

(which is a function of 𝐸).  If not, the value of 𝑐𝑖𝑗 is zero.  In fact, for fixed 𝑖, the 𝑐𝑖𝑗 

corresponding to 𝑗 for which they are physically applicable are all identical in value.    

     Inspecting Eq. (3.14), it is clear that the sensitivity matrix 𝑴𝒔𝒚 need not even be provided, 

as its elements can be quite trivially computed when required.  For example, any particular 

element of 𝑽𝒚 can be expressed as 

     COV(𝑦𝑘 ,𝑦𝑙) = ∑ 𝑐𝑞𝑘𝑐𝑟𝑙COV(𝑠𝑞, 𝑠𝑟)𝑞,𝑟 , 𝑞 = 𝑞min …  𝑞max, 𝑟 = 𝑟min … 𝑟max.             (3.15)
 
In Eq. (3.15), 𝑞 and 𝑟 are indices that increment the rows and columns of 𝑽𝒔 to calculate the 

covariance associated with the 𝑘th and 𝑙th elements of 𝒚.  The 𝑐𝑞𝑘 and 𝑐𝑟𝑙 terms are simply 

determined as needed from 𝑐𝑖𝑗 in Eq. (3.14).  In this case, 𝑞 and r map to 𝑖, and 𝑘 and 𝑙 map 

to 𝑗.  It is not necessary to perform the 𝑞 and 𝑟 summations in Eq. (3.15) over all 𝑖.  The 

range of 𝑞 is restricted by the physically allowable 𝑠𝑖 for the particular 𝑦𝑘.  Likewise, the 

range of 𝑟 is restricted by the physically allowable 𝑠𝑖 for the particular 𝑦𝑙.  As a result of the 

properties demonstrated, the 𝑽𝒔 covariance matrix for tabulated 𝑆sym(α,𝛽) data makes up the 

only information necessary to fully determine covariances among all integrated and 

differential thermal scattering cross sections for all incident energies. 
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3.2.3  Establishing the Phonon Density of States as the Primary Random Variable in the    
          Thermal Scattering Law 
  
     The task at hand is to develop a methodology for quantifying covariances among ENDF 

File 7 𝑆sym(α,𝛽) data.  The 𝑆sym(α,𝛽) parameters are clearly not “model parameters” in any 

traditional sense.  They are neither free “adjustable” variables nor empirically based.  The 

terminology has been borrowed rather loosely from the terminology of File 30 to emphasize 

the simplicity with which 𝑽𝒔 can be propagated to fully describe 𝑽𝒚, regardless of how s is 

defined or calculated.  ENDF File 7 thermal libraries tabulate 𝑆sym(α,𝛽) data for specified 𝑇 

over 𝛼 and 𝛽 grids defined by the evaluator.  The parameters 𝛼, 𝛽 and 𝑇 in the thermal 

scattering law are also not traditional “model parameters.”  They are better described as 

selected points at which the scattering model is evaluated in 𝛼, 𝛽 and 𝑇 space.  In other 

words, the values of 𝛼, 𝛽 and 𝑇 are arbitrary constants and affect only the resolution with 

which 𝒔 is described based on a fixed scattering model.   

     Experimentally derived 𝑆(α,𝛽) data is often scarce and may not exist for particular 

materials or at the temperatures desired.  When experimental measurements are available, a 

comparison to the theoretical scattering law model may be made for verification and 

validation.  Existing experimental 𝑆(α,𝛽) data is usually limited in scope, covering only 

select α and 𝛽 points or insufficient ranges of α and 𝛽.  As a result, the thermal scattering 

law data published in ENDF File 7 libraries is, by convention, theoretically calculated 

according to the incoherent inelastic scattering model and unadjusted.  Consequently, the 

focus of the uncertainty analysis in this work will correspond to this theoretical methodology 

of calculating 𝑆(α,𝛽).  
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     Reviewing Eqs. (2.13) – (2.33), it is evident that, within the incoherent approximation, the 

fundamental parameter describing the thermal scattering law is ρ(ε), the phonon density of 

states.  Indeed, this is the only input to LEAPR providing information about the dynamic 

behavior of atoms within a material’s molecular structure.  The phonon DOS may be viewed 

as a probability density function of the population of atomic vibrational energy modes that 

exist in a material.  It is typically defined pointwise over an evaluator-specified energy grid.  

There are many different procedures for estimating the DOS spectrum.  Uncertainties 

associated with ρ(ε) will depend on the particular methods employed to generate it and on 

any other information available about the true nature of ρ(ε).   

     The parameters 𝑇, 𝐴 and σb are required information in the calculation of 𝑆sym(α,𝛽).  

The thermal scattering law is calculated at a defined temperature which is considered to be 

exact.  The uncertainty in the accepted values for 𝐴 and σb is usually far less than the 

uncertainty in ρ(ε).  Therefore, 𝑆sym(α,𝛽) may be considered to be a function of a single 

random “parameter” – ρ(ε).  Consequently, within the incoherent inelastic scattering model 

utilized, describing uncertainties in the phonon DOS is a fundamental requirement for 

estimating 𝑽𝒔 and 𝑽𝒚.   

 

3.3  A Framework for Describing Uncertainties in the Phonon Density of
         States 
 
     To begin analyzing and describing uncertainties in the phonon DOS, it is necessary to first 

have a mathematical construct with which these can be expressed.  Since ρ(ε) is not a single-

valued variable, its uncertainty cannot be quantified in terms of a single probability 
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distribution.  The phonon DOS is itself a PDF and can be considered a function of many 

variables.  In particular, it is generally defined as a normalized piecewise function over 𝐷 

specified energy grid points, or energy bins.  In this case, ρ(ε) can be described by the 

parameters 𝑝𝑑, for 𝑑 = 1 …𝐷, or by the parameter set 𝒑.  Figure 3.2 illustrates this 

parameterization of ρ(ε) utilizing the low-energy region of the Young and Koppel phonon 

DOS spectrum for graphite [22] as an example.  See Figure 2.3 for the full spectrum.  Each 

𝑝𝑑 represents the fraction of phonon modes in the material with energies that lie within the

bounds of the 𝑑th energy bin.
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Figure 3.2  Low-energy region of the Young and Koppel total phonon density of states for 
graphite [22] illustrating the parameterization of the ρ(ε) spectrum. 
 

 𝑝𝑑=1  

 𝑝𝑑=2  

 𝑝𝑑=3  

 𝑝𝑑=6   𝑝𝑑=5  
 𝑝𝑑=4  

 𝑝𝑑=7  

To
ta

l P
ho

no
n 

DO
S 

(1
 /

 e
V)

 

       Phonon Energy (eV) 



 

48 

     In general, the energy bin widths for 𝒑 may be arbitrary.  However, it is standard practice 

to use a uniform grid.  Since this is also the input method for LEAPR, this line shall be 

followed and the 𝑑th energy grid point is considered to lie at the center of the 𝑑th energy bin 

(with the exception of 𝑑 = 0 and 𝑑 = 𝐷).  The fixed energy bin width is represented by 𝑝int.  

Furthermore, the restrictions 𝐸(𝑝1) = 0 eV, 𝐸(𝑝𝐷) = 𝐸max = ℏ𝜔max, 𝑝1 = 0 and 𝑝𝐷 = 0 

are imposed for 𝒑.   For any method of arriving at the phonon DOS, the features of the DOS 

spectrum may be distorted and shifted to some extent in energy and magnitude with respect 

to the ideal DOS.  To generalize, there are spectral shape uncertainties present in ρ(ε).  The 

vector 𝒑 can be considered to be a set of 𝐷 random variables.  In principle, there is a joint 

probability density function for 𝒑 that fully describes these shape uncertainties (within the 

context of the given bin structure).  Of course, this joint PDF will not be known explicitly.  In 

theory, uncertainties in the shape of the ρ(ε) spectrum can be described to first order by a 

covariance matrix for the parameter set 𝒑, or by 𝑽𝒑.  However, there must be a clear path for 

quantifying 𝑽𝒑.  To determine how to proceed, the particular procedures and information 

employed in generating the ρ(ε) spectrum must be investigated. 

 

3.4  Describing Uncertainties in the Phonon Density of States Through
         Monte Carlo Sampling 
 
 

3.4.1  Rationale for a Monte Carlo Approach  

     The phonon DOS for a material may be calculated using experimental methods, 

theoretical methods, or a combination of both.  There is no standard process employed for 
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generating the phonon DOS for the purpose of calculating the thermal scattering law.  

Several approaches are listed as examples.  First, the DOS may be calculated based on 

experimentally measured phonon dispersion relations, or ω(𝒒).  Alternatively, the DOS may 

be calculated based on experimentally measured double-differential scattering cross sections.  

The DOS may also be calculated through a molecular dynamics simulation of the material 

structure.  Finally, lattice dynamics in the harmonic approximation may be applied to 

calculate the DOS using some set of interatomic force constants.  In the latter example, the 

necessary force constants may be arrived at by fitting to experimental thermodynamic data, 

or they may be calculated by a first-principles approach using density functional theory [18].  

Other methods for calculating the phonon DOS exist as well. 

     For any methodology selected for determining ρ(ε), both Type 1 and Type 2 uncertainties 

will likely exist.  Type 2 uncertainties will almost invariably be of the greatest importance 

and require careful scientific judgment to model.  When experimental measurements are 

involved, Type 2 uncertainties will generally consist of approximations and assumptions 

inherent in the interpretation and processing of the experimental data.  For theoretical 

approaches to determining ρ(ε), Type 2 uncertainties arise based on how well mathematical 

models reproduce the actual physics of a system.       

     In principle, one could attempt to quantify 𝑽𝒑 through a covariance matrix and sensitivity 

matrix associated with underlying model/method parameters.  In some specific cases this 

may be possible, such as when force constants in a theoretical model are fitted to

experimental thermodynamic data.  However, even in this case, the resulting 𝑽𝒑 associated
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with these force parameters may describe only one aspect of uncertainty in the ρ(ε) 

spectrum.  Unfortunately, it will often be the case that the complex nature of the particular 

methodology used in determining the phonon DOS is not conducive to this parameter-based 

approach.  It may be unclear how to quantify a covariance matrix for the underlying 

parameters and calculating the necessary sensitivity matrix may be problematic.  

Furthermore, it may not even be possible to identify or define appropriate model/method 

parameters.   

     By examining the particular methodology employed to produce the phonon DOS and any 

relevant experimental data, specific aspects of uncertainties in the shape of ρ(ε) may be 

described by one or more functions of any number of the parameters 𝑝𝑑.  For example, 

bounds may be established for the possible variation in magnitude of the DOS in a particular 

energy region while keeping features coupled.  Alternatively, bounds may be established for 

the possible displacement of features in energy.  This displacement may be energy-dependent 

or fixed.  In any of these cases, a function may be defined which operates on 𝒑 to apply 

random magnitude changes or energy shifts based on the established bounds.  Any 

appropriate sampling scheme may be used (such as a flat or Gaussian distribution), and the 

bounds may be treated as absolute or as 1σ bounds as appropriate.  Finally, statistical 

fluctuations in individual 𝑝𝑑 may be modeled based on appropriate probability distributions.     

     In this sense, any uncertainties in ρ(ε) arising due to random effects or complicated 

systematic effects can, in theory, be reduced to geometric descriptions of the expected 

variation in the shape of the phonon spectrum.  Furthermore, any information the evaluator
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possesses regarding the expected variation of the shape of the ρ(ε) spectrum may be 

statistically modeled as a function of the random variable vector 𝒑 through Monte Carlo 

sampling. 

 

3.4.2  Formulating the Monte Carlo Problem 

     Any number of functions may be defined which operate on the parameters 𝑝𝑑 to describe 

specific aspects of uncertainty (Type 1 or Type 2) in the shape of the phonon spectrum.  

These reshaping functions, which will be called R-functions, can be thought of as specialized 

random number generators.  Individual R-functions may operate on the parameters 𝑝𝑑 in a 

dependent or independent manner, but the R-functions must not be redundant in the 

representation of uncertainties.  A few examples of possible R-functions relating to particular 

statistical and physical attributes of the phonon DOS are given.  In each case, 𝒑′ represents a 

modified, or perturbed, phonon DOS and 𝑝𝑑′  represents an individual perturbed 𝑝𝑑.  In the 

second example, 𝑑′ represents the 𝑑th energy bin for a modified energy grid, where 𝐸(𝑑′) is 

shifted with respect to 𝐸(𝑑).  Also in the second example, 𝑑high′  and  𝑑low′  represent upper 

and lower interpolation points for the purpose of remapping the shifted spectrum back onto 

the original energy grid.  In the third example, 𝜉 is a dimensionless sampling factor used to 

vary the value of 𝑝𝑑′  from (𝑝′𝑑)min to (𝑝′𝑑)max for each 𝑑 from 𝑑min to 𝑑max.                          

 

𝑅1 ∶= Pointwise-independent magnitude shift with normal sampling defined by < 𝑝𝑑 >= 𝑝𝑑

           and σ𝑑 = �𝑁 × 𝑝int × 𝑝𝑑. 

𝑅1(𝒑) = [𝑅1(𝑝𝑑),𝑑 = 1 …𝐷] = 𝒑′ 
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for 𝑑 = 1 …𝐷, 

     PDF( 𝑝𝑑′ ) =
exp�

−� 𝑝𝑑
′ −𝑝𝑑�

2

2𝑁𝑝int𝑝𝑑
�

2�2𝜋𝑁𝑝int𝑝𝑑
  

     𝑝𝑑′ = RAND[PDF( 𝑝𝑑′ )].  

 

𝑅2 ∶= Spectrum energy shift as a linear function of energy with flat sampling defined by a

           minimum and maximum shift.  

𝑅2(𝒑) = [𝑅2(𝑝𝑑),𝑑 = 1 …𝐷] = 𝒑′  

PDF(𝐸shift) = 1
𝐸max−𝐸min

, 𝐸shift = 𝐸min …𝐸max  

𝐸shift = RAND[PDF(𝐸shift)]  

for 𝑑 = 1 …𝐷, 

     𝐸(𝑑′) = 𝐸(𝑑) + 𝑑
𝐷
𝐸shift 

for 𝑑 = 1 …𝐷, 

     if 𝐸(𝑑) < 𝐸(𝐷′), then 

          𝑑low′ ,𝑑high′ ≡ [𝐸(𝑑low′ ) ≤ 𝐸(𝑑) < 𝐸�𝑑high′ �,  𝑑high′ = 𝑑low′ + 1]           

          𝑝𝑑′ = 𝐸(𝑑)−𝐸(𝑑low
′ )

�
𝐸(𝐷)+𝐸shift

𝐸(𝐷) �𝑝int
× �𝑝𝑑high′ − 𝑝𝑑low′ �+ 𝑝𝑑low′  

     else 𝑝𝑑′ = 0. 

 

𝑅3 ∶= Partial spectrum magnitude shift defined by pointwise-variable bounds with flat

            sampling. 

𝑅3(𝒑) = [𝑅3(𝑝𝑑),𝑑 = 1 …𝐷] = 𝒑′                                                                                         
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PDF(𝜉) = 1, 𝜉 = 0 … 1  

𝜉 = RAND[PDF(𝜉)] 

for 𝑑 = 𝑑low …𝑑high,  

     𝑝𝑑′ = 𝜉 × [(𝑝′𝑑)max − (𝑝′𝑑)min] + (𝑝′𝑑)min.  

 

     In 𝑅1, independent statistical variations in the magnitudes of 𝑝𝑑 are modeled in the 

outputted 𝒑′.  This may be appropriate, for example, when the phonon DOS is calculated by 

sampling theoretical dispersion relations [26, 27].  In 𝑅2, the entire spectrum is either 

compressed or stretched, with the maximum energy shift of 𝐸shift occurring for 𝑝𝐷 and a 

minimum shift occurring for 𝑝1.  The same grid structure is retained and a new phonon DOS 

is outputted as 𝒑′.  To prevent upper truncation when 𝐸shift is positive, the reference grid can 

be extended to energies beyond 𝐸max.  This R-function could be used to model the effect of 

uncertainties in the lattice constants of a crystal.  Alternatively, this R-function may be used 

to approximate phonon mode shifts in energy due to temperature-dependent anharmonic 

effects [17, 28].  In 𝑅3, 𝒑′ accounts for a specific energy region of the DOS that lies, with its 

features coupled, between lower and upper magnitude bounds described as a function of 

individual 𝑝𝑑.  This may allow modeling the uncertainty in regions of the phonon DOS based 

on other calculated spectra (either theoretical or experimental) for the same material.           

     After the sequential application of all R-functions to 𝒑 and renormalization, a perturbed 

phonon DOS spectrum, 𝒑�, is produced.  The overlay of all R-functions, along with the 

renormalization condition, collectively defines an estimated joint PDF for 𝒑.  By repeated 
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application of this process, or Monte Carlo sampling of the joint PDF for 𝑁 trials, a set of 𝑁 

𝒑� vectors is generated.  A covariance matrix 𝑽𝒑 may then be constructed from this set by 

     COV�𝑝𝑖,𝑝𝑗� = 1
𝑁−1

∑ �𝑝�𝑖𝑘 − 𝑝�̅𝑖�(𝑝�𝑗𝑘 −
𝑁
𝑘=1 𝑝�̅𝑗),                                                             (3.16) 

where the index 𝑘 tracks individual Monte Carlo trials.  Covariances will naturally arise as a 

result of the renormalization condition and the coupling of features of the DOS when 

describing shape uncertainties.  It should be noted that the mean value of 𝒑� predicted by the 

joint PDF for 𝒑 will, in general, not be equivalent to 𝒑.  Therefore, 𝑽𝒑 should properly be 

referenced to the Monte Carlo mean of the generated set of 𝒑� vectors, 𝒑��, and not to 𝒑.  In 

cases where 𝑽𝒑 may be described through underlying model/method parameters with a 

known covariance and sensitivity matrix, the generation of 𝑽𝒑 is first order, and the 

associated joint PDF can be treated as a multivariate normal distribution which may be 

sampled with respect to 𝒑.  This simply defines an R-function operating on 𝒑.  Therefore, 

there is no obstacle to combining this with other R-functions describing independent 

uncertainties based on information not captured by the model/method parameters.  In such a 

case, the final 𝑽𝒑 would again be referenced to 𝒑��. 

     To describe uncertainties in 𝒑, it is necessary to make scientific judgments about the 

sources and natures of the uncertainties and how this information translates geometrically to 

𝒑.  Clearly, this is a Type B evaluation of uncertainty.  The Monte Carlo approach of 

generating 𝑽𝒑 with a set of R-functions provides a clear mechanism for accomplishing this 

task.  The procedure is completely general and is not restricted to any particular method of 

producing the phonon DOS.  Like any uncertainty analysis method, its success will depend 
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on the quality of judgments made about underlying uncertainties.  In particular, the evaluator 

must be able to define an appropriate set of R-functions which reflect the physics and 

methodologies involved in the production of the DOS as well as any other information 

available regarding the true shape of the ρ(ε) spectrum.     

 

3.5  Calculating Uncertainties in the Thermal Scattering Law  

     Given the covariance matrix for the phonon DOS, 𝑽𝒑, it is straightforward to use the 

propagation of uncertainty formula given by Eq. (3.11) to calculate 𝑽𝒔 as 

     𝑽𝒔 = 𝑴𝒑𝒔
T 𝑽𝒑𝑴𝒑𝒔.                                                                                                          (3.17)

However, the sensitivity matrix 𝑴𝒑𝒔 would have to be numerically calculated by individually 

perturbing each 𝑝𝑑.  While this is a straightforward process, note from Eqs. (2.20) – (2.25) 

that 𝑆(𝛼,𝛽) is not linear with respect to 𝒑.  Therefore, 𝑆sym(𝛼,𝛽) is not linear with respect to 

𝒑.  Moreover, 𝑽𝒑 captures only a linear functional dependence among the 𝑝𝑑.  Although the 

use of Eq. (3.17) may well produce acceptable results, any loss of information at this stage of 

the uncertainty analysis is unnecessary.  In particular, the intention is to directly calculate 𝑽𝒚 

from the elements of 𝑽𝒔 per Eqs. (3.14) and (3.15).  The assumption will be made at this 

point that 𝑽𝒔 can be explicitly provided to the user to facilitate this.  Issues related to the 

storage of large quantities of covariance data are addressed in Section 5.3.2. 

     The theoretical calculation of the thermal scattering law in the incoherent approximation 

is not computationally expensive.  Therefore, the Monte Carlo approach can be continued to 

solve for 𝑽𝒔 by generating a large set of 𝒔� vectors from the Monte Carlo trials which generate 
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𝒑�.  For each Monte Carlo trial 𝑘, the entire thermal scattering law 𝒔�𝑘 is determined from 𝒑�𝑘 

per Eqs. (2.16), (2.20), (2.22) – (2.25), (2.27), and (2.32).  In fact, the calculation of 𝑽𝒑 may 

be bypassed altogether if desired.  Now, the elements of 𝑽𝒔 are given by 

     COV�𝑠𝑖, 𝑠𝑗� = 1
𝑁−1

∑ ��̃�𝑖𝑘 − �̅̃�𝑖�(�̃�𝑗𝑘 −
𝑁
𝑘=1 �̅̃�𝑗),                                                                (3.18)

and 𝑽𝒔 is referenced to 𝒔��.  Accordingly, it is 𝒔�� which would be provided in a final ENDF File 

7 library.  

     Note that each calculated 𝒑�𝑘 will have its own specific Debye-Waller factor 𝑒−𝛼𝜆𝑘   

associated with it, where 𝜆 is defined per Eq. (2.16).  Therefore, there will be a mean 𝜆, or �̅̃�, 

and a 𝜎(𝜆) associated with the collection of all 𝒑�.  While individual 𝜎(𝑝𝑑) will have 

somewhat localized effects on 𝜎(𝒔��) as a function of 𝛽, 𝜎(𝜆) will globally affect 𝜎(𝒔��) as a  

function of 𝛼.  For low incident energies where one-phonon scattering is dominant and the 

average 𝛼 is low, the particular 𝜎(𝑝𝑑) will be dominant in determining differential and 

integrated cross section uncertainties.  For very low 𝛼, there is very little uncertainty in the 

Debye-Waller factor even if 𝜎(𝜆) is large.  At incident energies high in the thermal energy 

range, multiphonon scattering is dominant and the average 𝛼 is high.  Therefore, 𝜎(𝜆) will be 

dominant in determining differential and integrated cross section uncertainties in this case.  

For high-order phonon scattering, the effects of individual 𝜎(𝑝𝑑) are almost completely 

smoothed out.                    

     The approach of producing the entire thermal scattering law and its covariance matrix by 

Monte Carlo sampling is similar to that used in the Total Monte Carlo (TMC) method for 

empirical nuclear model data [29].  In TMC, the nuclear model empirical parameters are 
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sampled based on their covariance matrix or joint PDF, and each trial is used to produce an 

entire perturbed nuclear data library.  The collective set of these libraries is incorporated to 

calculate uncertainties in system response parameters in a Monte Carlo transport code by 

separately solving for the response parameters for each Monte Carlo library.  While in this 

work a large set of ENDF File 7 libraries is generated only for the purpose of determining 𝑽𝒔, 

there is no obstacle, except for computing resources, to extending the Monte Carlo approach 

to a Monte Carlo transport code such as MCNP [30].  Each 𝒚�𝑘 library could be generated 

directly from 𝒔�𝑘 by Eq. (3.13).  Indeed, this might be the most practical way to carry out a 

preliminary test of the impact of thermal neutron inelastic scattering uncertainties since there 

are presently no codes capable of directly processing and incorporating this uncertainty 

information. 

     Unless the intent is to proceed with the TMC approach for use in a transport code, there is 

no need to calculate the entire set of 𝒚�𝑘 vectors.  The sensitivity constants 𝑐𝑖𝑗 given by Eq. 

(3.14) are not impacted by perturbations in 𝒑.  Therefore, instead of calculating 𝒚�� from the 

set of 𝒚�𝑘 vectors, 𝒚�� can simply be calculated directly from 𝒔�� via Eq. (3.13), except that 𝑠𝑎,𝑏 is 

replaced by �̅̃�𝑎,𝑏.  A complete method for generating 𝒚�� and 𝑽𝒚 from 𝒔�� and 𝑽𝒔 is now at hand.  

Figure 3.3 displays a flowchart illustrating the entire R-function and Monte Carlo process 

from the initially supplied phonon DOS to the calculation of covariances for integrated and 

differential thermal neutron scattering cross sections.  
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Figure 3.3  Flowchart illustrating the R-function and Monte Carlo process of generating 𝑽𝒑, 𝑽𝒔 
and 𝑽𝒚 from an input phonon DOS.  
 
  
3.5.1  A Special Case for One-Phonon Scattering   

     Since 𝑆1(α,𝛽) is essentially linear with respect to the phonon DOS, the DOS can be 

estimated by attempting to extract 𝑆1(α,𝛽) from experimentally measured 𝑆(α,𝛽).  Eq. 

(2.14) is restated to illustrate. 

Section 2.2 

Eqs. (3.14)  
and (3.15) 

Eq. (3.16) 

 Eq. (3.18) 

𝑘 = 𝑁 

Section 3.4.2 
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     𝑆1(α,𝛽) = α 𝑒−α𝜆𝑒−𝛽/2𝜌(𝛽)
2𝛽 sinh(𝛽/2) .                                                                                            (3.19)  

This extraction process may involve correcting for and/or minimizing background, multiple 

scattering, multiphonon scattering, quasi-elastic scattering, etc.  The incoherent 

approximation is also assumed in Eq. (3.19).  In other words, any coherent interference 

contribution to the true 𝑆1(α,𝛽) is not considered.     

     The Debye-Waller factor may be assumed to be unity, since this will cause the estimate of 

𝜌(𝛽) to be off by a fixed factor over all 𝛽, for fixed 𝛼, which will be negated after 

normalization.  The total phonon DOS is independent of 𝛼, so a collection of extracted 

𝑆1(α,𝛽) over an appropriate range of 𝛼 may be used to improve statistics.  If the extracted 

𝑆1(α,𝛽) are the true 𝑆1(α,𝛽), then the calculated 𝜌(𝛽) will give the correct Debye-Waller 

factor for all 𝛼 and will reproduce the measured 𝑆(α,𝛽) for all 𝛼 and 𝛽.   

     Of course, in reality, 𝜌(𝛽) can only be approximated by this method, notwithstanding the 

incoherent approximation.  In particular, due to the imperfect extraction process, the 

extracted 𝑆1(α,𝛽) will generally not be independent of the incident 𝐸, and the 𝜌(𝛽) spectrum 

calculated from extracted 𝑆1(α,𝛽) will generally not be independent of 𝛼.  However, if the 

uncertainty in the calculated phonon DOS is appropriately modeled by the R-function and 

Monte Carlo methodology outlined, the extracted values for 𝑆1(α,𝛽) should be statistically 

consistent with the calculated 𝒔��1 and 𝑽𝒔1, noting the relationship given by Eq. (2.32) for the 

symmetric thermal scattering law.  This is a way to verify the modeling of R-functions 

against experimentally derived data and to gauge the accuracy with which 𝜌(𝛽) was 

calculated from the extraction process.   
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     Conveniently, since 𝑆1(α,𝛽) is linear with respect to the DOS, 𝑴𝒑𝒔1 can be expressed 

analytically as a set of constants in the same manner that 𝑴𝒔𝒚 can be expressed analytically 

as a set of constants.  This allows an exact description of 𝑽𝒔1 as a function of 𝑽𝒑, where 

     𝑽𝒔1 = 𝑴𝒑𝒔1
T 𝑽𝒑𝑴𝒑𝒔1.                                                                                                     (3.20)  

In this application, the details of 𝑽𝒑 are not extraneous, but are fundamental in guiding the 

proper development of R-functions.  Specifically, 𝑴𝒑𝒔1 will be sparse, allowing very simple 

and easily interpretable analytical expressions for the terms of σ(𝒔1) as functions of at most 

two σ(𝑝𝑑) each.  A full analysis of this analytical one-phonon case is given in Appendix C.  

In conclusion, a practical note regarding this discussion should be mentioned.  If the 

extracted 𝑆1(α,𝛽) are very poor estimates for the true 𝑆1(α,𝛽), the calculated phonon DOS 

will have little meaning and so will any attempt to describe its uncertainty.  Fortunately, this 

situation should be readily apparent upon examination of the variation in the calculated 𝜌(𝛽) 

as a function of 𝛼.           

 

3.6  Comparison with Traditional Uncertainty Analysis 

     The great majority of currently published ENDF nuclear data covariances are associated 

with nuclear reactions (i.e., reactions involving excitations or changes in the structure of the 

nucleus itself).  Specifically, most existing covariance evaluations focus on reactions in the 

resonance energy region.  While there have been great improvements in understanding the 

nucleus and modeling nuclear phenomena, there is no comprehensive fundamental theory 

regarding nucleon-nucleon interactions or nuclear cross sections that is widely predictive [31, 
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32].  Successful empirical nuclear models have been developed to model particle interactions 

with nuclei in the resonance energy region.  The quantification of parameters for these 

models has necessarily been guided by experimental measurements.  The agreement of these 

models with new experimental data is often very good and predictive when interpolation is 

applied.  However, the nuclear models can potentially fail when extrapolated to conditions 

where the empirical parameters have not been tuned to experimental data [23].   

     Most nuclear data evaluations involve, to some extent, fitting and/or adjustment of nuclear 

model calculations to experimental measurements.  This is a formal mathematical process 

which generates a covariance matrix for the calculated data that reflects the fitting process.  

In some instances, very low uncertainties (< ~ 3%) are quoted in neutron cross section 

evaluations.  Such low uncertainties may be called into question when they do not reflect the 

spread of experimental data, implying that the evaluated data is unadjustable [33].  The 3% 

threshold is the minimum uncertainty considered acceptable by CSEWG for non-thermal 

inelastic scattering cross sections based on current QA guidelines [34].  These unusually low 

uncertainties can result from several potential issues, including the accuracy of the empirical 

model, the least-squares fitting process, and scientific judgments made in estimating 

experimental uncertainties and correlations [35].        

     There is a growing demand for nuclear data for reactions and isotopes for which 

experimental measurements may be limited or nonexistent.  In these cases, the data must be 

calculated directly from mathematical models without adjustment.  Until around 2004, 

covariances for purely theoretically calculated data, such as for emission spectra in the 

unresolved resonance region, were rarely reported.  It is now commonplace, with covariances 
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reported in terms of the underlying empirical model parameters along with corresponding 

sensitivities [35]. 

     The thermal scattering law 𝑆sym(𝛼,𝛽), or 𝒔, is typically calculated theoretically as a 

function of the underlying parameter ρ(ε), the phonon DOS, with no fitting or adjustment to 

experimental scattering law data performed.  As discussed, there is precedent for publishing 

theoretically generated covariances.  However, the theory of thermal neutron scattering is not 

empirical, and the phonon DOS can be independently calculated from fundamental principles 

or experimentally derived in numerous ways.  Should the evaluator choose, coherent inelastic 

terms may also be calculated, either from fundamental principles or experimentally, and 

added to 𝑆sym(𝛼,𝛽) [19].  Because of this situation, uncertainties in experimentally 

measured 𝑆sym(𝛼,𝛽) may not be directly related to a 𝑽𝒔 calculated as a function of 

uncertainties in the phonon DOS.  It is certainly conceivable that the theoretical calculation 

of 𝒔 may yield much smaller uncertainties than would be expected from experimental 

double-differential measurements, and that this result would be physically justifiable.  Under 

these circumstances, the principal purpose of experimental 𝑆sym(𝛼,𝛽) data would be for 

verification and validation of the physics models employed.   

     Furthermore, it is conceivable that different theoretical evaluations of 𝒔 using different 𝒑 

may lie significantly outside the 1σ range of uncertainty for a reference 𝒔 and its associated 

𝑽𝒔.  Although worth examining, this would not necessarily be problematic.  Other 

evaluations may employ completely different methods for calculating the phonon DOS, and 

the uncertainties in those methods may differ considerably.  
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     When experimental 𝑆sym(𝛼,𝛽) is available, assuming good covariance information, it is 

conceivable that a theoretically evaluated 𝒔, with an associated 𝑽𝒔, could be incorporated to 

produce a new set of 𝑆sym(𝛼,𝛽) that is adjusted to the experimental data by a least-squares 

methodology.  However, experimental data may be more limited in the ranges and resolution 

of 𝛼 and 𝛽 covered than a theoretical calculation.  Furthermore, 𝑆sym(𝛼,𝛽) represents a 

single physical scattering law tabulated at different points.  Therefore, any adjustment should 

be made globally and maintain the physics of the entire scattering law.  A global approach 

would be to modify 𝒑, consistent with 𝑽𝒑, to determine a best fit with the experimental 

𝑆sym(𝛼,𝛽) data.  Limited resolution of the experimental data would present no difficulties.  

Such a procedure would be analogous to tuning empirical nuclear model parameters to 

provide a best fit to experimental data in the resonance energy region.     

     A complication arises when one considers that experimental 𝑆sym(𝛼,𝛽) will have 

uncertainties in magnitude as well as in the quoted 𝛼 and 𝛽.  However, experimental 

𝑆sym(𝛼,𝛽) can often be considered to be of the form 

     𝑆sym(𝛼,𝛽) =
∫ ∫ 𝑆sym(𝛼,𝛽) 𝛼max

𝛼min
𝛽max
𝛽min

𝑑𝛼𝑑𝛽

(𝛽max−𝛽min)(𝛼max−𝛼min)
,                                                                      (3.21) 

where the bounds for 𝛼 and 𝛽 are reasonably well known based on detector characteristics, 

and 𝑆sym(𝛼,𝛽) is considered the center point average over these narrow intervals.  In this 

case, if 𝑆sym(𝛼,𝛽) is considered to be sampled equally within the given bounds, any 

uncertainties in 𝛼 and 𝛽 can be treated as a component of the magnitude uncertainty.  In 

situations where the bounds for 𝛼 and 𝛽 cannot be well described, the treatment of 

uncertainties and covariances may be seriously complicated. 
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3.7  Sources of Uncertainty External to the Phonon Density of States 

     Up to this point, it has been implicitly assumed that uncertainties in differential and 

integrated cross sections can be treated in the context of uncertainties in the phonon density 

of states.  This path is taken because published ENDF File 7 𝑆sym(α,𝛽) data is 

conventionally generated theoretically in the incoherent approximation with the input of a 

unique phonon DOS for each element type in the moderator material.  In the development of 

the analytical form for the thermal scattering law, each assumption and approximation made 

was stated with some justification.  At this point, it is appropriate to investigate more closely 

each source of uncertainty in the thermal scattering law (and in differential and integrated 

cross sections) which cannot be directly characterized through a description of uncertainties 

in the phonon DOS.      

 

3.7.1  The Born Approximation and Fermi Pseudopotential 

     The development of thermal neutron scattering theory began with the expression for the 

double-differential cross section in Eq. (2.1).  While its derivation is beyond the scope of this 

work, one need only assume the first-order Born approximation and Fermi pseudopotential to 

arrive at the given form.   

     Incident neutrons can be considered to be plane waves of the form 

     𝜓𝑛(𝒓) = 𝑒𝑖𝒌∙𝒓                                                                                                                (3.22) 

which then scatter with a fixed nucleus.  In Eq. (3.22), 𝒓 is a position vector with respect to 

the nucleus.  The scattering radii 𝑏 for most nuclei are experimentally known to be on the 

order of 10-4 Å.  The wavelength of a neutron in the extreme upper limit of the thermal 
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energy region is on the order of 10-1 Å.  Therefore, the scattering nucleus will be a pointlike 

particle with respect to incident thermal neutrons, and pure s-wave scattering applies. 

     Scattered neutrons can be treated as spherical waves of the form 

     𝜓𝑛′(𝑟) = 𝑓(𝜃) 𝑒
𝑖𝑘𝑟

𝑟
,                                                                                                       (3.23) 

where 𝜃 is the scattering angle in the laboratory frame and 𝑓(𝜃) is the scattering amplitude.  

For 𝑟 ≫ 𝑏, the wave amplitude of 𝜓𝑛′(𝑟) is very small compared to that of 𝜓𝑛(𝑟).  The 

distance between atoms in condensed matter is on the order of 100 Å.  Therefore, thermal 

neutron scattering can be considered to be a very weak process where the incoming plane 

waves are nearly unperturbed by the scattered spherical waves [16].   

     As a result, the system scattering wave function in the first-order Born approximation can 

be written 

     𝜓(𝒓) = 𝜓𝑛(𝒓) + 𝜓𝑛′(𝑟).                                                                                               (3.24) 

Although the true functional form of the scattering potential 𝑉(𝒓) is unknown, the only 

requirement is that it results in scattering that is isotropic with respect to a fixed nucleus.  

Because of the pointlike nature of the nucleus compared to incident neutron wavelengths, one 

can assume the potential to nearly be a δ-function about the nucleus.  Indeed, applying the 

Fermi pseudopotential, or 

     𝑉(𝒓) = 2𝜋ℏ2

𝑚
δ(𝒓),                                                                                                         (3.25) 

gives the required result and also yields the familiar definition of the bound cross section for 

potential scattering, or 
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     σb = 4𝜋|𝑏|2.                                                                                                                 (3.26)

Therefore, defining the double-differential cross section per Eq. (2.1) is well justified [15]. 

 

3.7.2  The Nuclear Bound Cross Section and Atomic Mass Ratio 

     The nuclear bound cross section, 𝜎b, and the scattering atom to neutron mass ratio, 𝐴, are 

physical quantities upon which 𝑆sym(α,𝛽) depends.  The uncertainty in 𝜎b is typically on the 

order of 1%.  For natural carbon (which consists almost entirely of C-12), the uncertainty in 

𝜎b is about 0.5% [13].  The uncertainty in 𝐴 is a function of the uncertainty in the mass of the 

scattering nuclide (or in the isotopically-averaged atomic weight) and in the mass of a 

neutron.  Masses of naturally-occurring nuclides typically have uncertainties on the order of 

10-9% – 10-5% (e.g., ~ 8×10-9% for C-13) [36].  For certain elements, isotopically-averaged 

atomic weights can have spreads on the order of 10-3% – 10-1% between material samples 

due to natural and synthetic enrichment processes (e.g., ~ 2×10-2% for carbon).  For most 

elements, these enrichment effects are insignificant and the isotopic abundance uncertainties 

are orders of magnitude lower [37].  The mass (in amu) of a neutron is known to within about 

4×10-10% [38].  Therefore, the uncertainties in 𝑆sym(α,𝛽) associated with the atomic mass 

ratio should be negligible.       

 

3.7.3  Randomly Oriented Microcrystal Structure 

     Randomly oriented microcrystal structure is assumed in the definition of the thermal 

scattering law since the momentum transfer factor 𝛼 is a scalar.  This is not an approximation 

but is an assumed condition physically present in most nuclear engineering applications.  In 
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some situations, manufacturing processes may result in materials with preferentially-oriented 

grain boundaries.  Just as if impurities or defects are present in the actual material, the effect 

of this lies outside the conventional definition of the scattering law.  If a single oriented 

crystal is the scattering medium, the use of conventional ENDF File 7 thermal libraries may 

be inappropriate. 

 

3.7.4  Coherent Interference in Inelastic Scattering 

     In the Monte Carlo method presented for determining 𝑽𝒔, the incoherent approximation 

given by Eq. (2.7) has been presupposed.  Neglecting the multiphonon 𝑆d terms of Eq. (2.6) 

is of no concern.  These will effectively be zero since the conservation of energy condition 

     ℏ
2

2𝑚
�𝑘2 − 𝑘′2� = ℏ[± ω(𝒒1) ± ω(𝒒2) ± ⋯ ]                                                                 (3.27) 

and the conservation of momentum condition 

     𝒌 − 𝒌′ = 𝝉 ± 𝒒1 ± 𝒒2 ± … ,                                                                                           (3.28) 

where 𝝉 is a discrete reciprocal lattice vector, can essentially always be met by some 

combination of phonon wave vectors 𝒒.  Therefore, no interference condition will arise [15].  

However, 1𝑆d(𝑄,ω) can be of significant magnitude and generally cannot be neglected if one 

is concerned with uncertainties in 𝑆sym(α,𝛽) for particular 𝛼 and 𝛽.  Since 𝑆1(α,𝛽) =

𝑘B𝑇[ 1𝑆s(𝑄,ω) +  1𝑆d(𝑄,ω)] is coupled in energy and angle due to coherent interference 

effects, its uncertainty cannot be treated as a function of the phonon DOS only.   

     The  1𝑆(𝑄,ω) = 1𝑆s(𝑄,ω) + 1𝑆d(𝑄,ω) term can be calculated from the dispersion 

relations ω(𝒒) for all 𝑄 and ω by analyzing spherical shells of fixed 𝑄 magnitude in the first
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Brillouin zone for fixed ω.  This calculation has been demonstrated for graphite [19] and 

other materials [39].  Next, 𝒔 and 𝑽𝒔 can be solved for excluding one-phonon scattering 

using the Monte Carlo methodology and then the 𝑆sym,1(α,𝛽) terms (which will include 

coherent one-phonon scattering) can be added to 𝒔.  As long as uncertainties and correlations 

for the 𝑆sym,1(α,𝛽) terms obtained from ω(𝒒) can be represented, there is no obstacle to 

calculating a final 𝑽𝒔 which accounts for both one-phonon and multiphonon scattering.   

     The determination of a covariance matrix for 𝑆sym,1(α,𝛽) calculated from ω(𝒒) is beyond 

the scope of this paper.  A similar Monte Carlo methodology may be well suited.  It can be 

expected that cross-correlations between the 𝑆sym,1(α,𝛽) terms containing coherent one-

phonon scattering and the multiphonon terms of 𝒔 would generally not be strong for two 

reasons.  First, if the methodologies for calculating the 𝑆sym,1(α,𝛽) terms from ω(𝒒) and for 

generating the phonon DOS are unrelated, there will be no cross-correlations.  If they are 

related, it is still the case that the multiphonon terms of 𝑆sym(α,𝛽) are generally insensitive 

to the structure of the phonon DOS which will be closely tied to the structure of ω(𝒒).  

     Even if  1𝑆d(𝑄,ω) can be accounted for in this manner, it may not be necessary to do so.  

For reactor analysis and criticality safety applications, the quantities of interest are typically 

differential cross sections in energy and integrated cross sections, not the double-differential 

cross sections specifically.  As discussed in Section 2.1, the impact of  1𝑆d(𝑄,ω) is 

significantly lessened when considering differential cross sections in energy (after averaging 

over 𝑄), and 1𝑆d(𝑄,ω) is further marginalized when considering integrated inelastic cross 

sections.  For graphite, however, the effect of  1𝑆d(𝑄,ω) on the integrated cross section is 
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unusually pronounced and, at room temperature, can be in the vicinity of +10% at incident 

energies below 0.5 meV to -5% at incident energies between 10 and 100 meV [17, 19].  For 

most applications, only the upper energy band is relevant.  At higher temperatures, the effect 

is lessened as one-phonon scattering becomes less prominent. 

 

3.7.5  Anharmonicities      

     Another assumption made in the development of thermal neutron scattering theory is that 

the vibrational displacements of atoms from their equilibrium positions are small and that, 

consequently, the interatomic forces acting on them are purely harmonic.  This is essentially 

equivalent to assuming that no phonon-phonon scattering interactions take place, and it 

allows the analytical expression of the thermal scattering law in terms of a phonon 

expansion.   

     Figure 3.4 gives a schematic of the interatomic potential as a function of separation 

distance.  At very small separation distances, there is a strong repulsive force as the electron 

clouds move into close proximity.  There is an ideal equilibrium separation distance with a 

potential well that is nearly parabolic about the equilibrium point.  As the distance from the 

equilibrium point increases, the restoring forces become less and less harmonic, and 

eventually the atomic bond is severed.  An atom oscillating with a specified amplitude in 

energy will always have a mean position slightly offset from the equilibrium position, 𝑟eq, 

due to the anharmonicity of the restoring force.  This anharmonicity is responsible for 

thermal expansion as well as for finite thermal conductivity and other physical properties 

[40].  Anharmonic forces become particularly important at high temperatures, where the 
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occupation number for higher-energy phonons becomes significant, or at temperatures near a 

phase transition for the material. 

     The potential 𝑉(𝑟) can be Taylor-expanded about 𝑟 = 𝑟eq to the form 

     𝑉(𝑟) = 𝑉�𝑟eq� + ∂𝑉
𝜕𝑟
�|𝑟=𝑟eq�𝑟 − 𝑟eq� + 1

2
∂2𝑉
∂𝑟2

�|𝑟=𝑟eq�𝑟 − 𝑟eq�
2

+ O(𝑟3).                      (3.29)

 

 
Figure 3.4  Schematic of the interatomic potential as a function of separation distance. 

 
 

The zero-order term gives the potential well depth.  The first-order term is always zero unless 

the expansion is written with respect to 𝑟 ≠ 𝑟eq.  The second-order term contains the force 

constants for a harmonic oscillator, allowing the calculation of phonon frequencies from a 

dynamical matrix [41].  Third-order and higher terms result from phonon-phonon scattering.  

Physically, in a three-phonon process, a particular phonon oscillation will induce a periodic 

strain in space and time, perturbing the interatomic forces and elastic properties of the 
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crystal.  A second phonon perceives and scatters with the periodic oscillations, generating a 

third phonon of combinatorial energy [40].   

     Phonon-phonon interactions modify the phonon frequencies such that 

     ω(𝒒) = ωharmonic(𝒒) + ∆ω(𝒒) + 𝑖Γω(𝒒).                                                                 (3.30)  

The term ∆ω(𝒒) represents a frequency shift (or energy shift) in the phonon mode that 

depends on changes in the lattice parameters as a function of temperature and on the 

sensitivity of each ω(𝒒) to changes in the unit cell volume.  In general, the phonon spectrum 

shifts downward in energy with increasing temperature, though not necessarily uniformly, 

and the highest energy phonons will generally be subject to the greatest spectral shift.  The 

term 𝑖Γω(𝒒) represents a spectral broadening of the phonon mode resulting from a finite 

lifetime of interacting modes.  As phonon-phonon (or phonon-electron) scattering takes 

place, phonons will transfer their energy away and decay.  Note that the anharmonic effects 

on the total phonon DOS are the combined result of shifting and broadening each phonon 

mode 𝒒𝑚 [28].  Therefore, the effects cannot be described in terms of frequency (or energy) 

alone.  There are theoretical methods available for calculating or estimating these effects, 

such as low-order perturbation theory, molecular dynamics or the quasiharmonic 

approximation, and the effects can also be experimentally measured.  Although this would 

allow capturing anharmonicity in the phonon DOS, the phonon expansion method itself for 

calculating the thermal scattering law is strictly valid only when phonon-phonon scattering 

does not take place.              

     The influence of anharmonicity is often negligible except at relatively high temperatures.  

This is indeed the case for graphite, the example material investigated in this work.  
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Referring to the works of Bonini et al. [42] and Giura et al. [43], the energy shift of the 

Raman-active and IR-active peak near 200 meV (near 𝐸max = ℏ𝜔max) in the phonon DOS 

for graphite (this peak is not represented well in the YK [22] spectrum in Figure 2.3) is less 

than 0.5 meV at 300 K.  This is typically less than the resolution in which ρ(ε) is given.  At 

800 K, the shift is in the neighborhood of 1.5 – 2.5 meV.  Referencing the work of Paulatto et 

al. [44], the broadening (full-width half-maximum) of the phonon spectrum for graphite is 

shown to be almost universally less than 1 meV at 300 K.  If the thermal scattering law is to 

be computed for graphite at temperatures well above 300 K, incorporating a temperature-

specific phonon DOS that accounts for anharmonic shifting and broadening would produce 

the best results within the limitations of the phonon-expansion method used.   

 

3.7.6  Directional and Momentum Dependence of the Phonon Energy Spectrum 

     The Debye-Waller factor is a function of the mean square displacement of an atom.  It is 

defined as 𝑒−2𝑊, where 𝑊 is, in general, a function of 𝑸 and of all phonon modes 𝒒𝑚.  In the 

formulation of the thermal scattering law given, it has been assumed that the Debye-Waller 

factor is isotropic, or of the form 𝑒−𝛼𝜆 given in Eqs. (2.15) and (2.16), and that a unique 

phonon DOS, the total DOS, is applicable to all 𝑆(𝛼,𝛽).  In other words, it is assumed that 

the directional distribution of atomic vibrations is unnecessary information in calculating the 

thermal scattering law, as is any information regarding the magnitudes of the phonon wave 

vectors 𝒒.   

     For an oriented non-cubic crystal, the Debye-Waller factor is clearly not isotropic, since 

the mean square displacement of atoms will vary with the lattice vector.  If randomly 
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oriented microcrystal structure is assumed, the Debye-Waller factor will always be isotropic.  

However, even in this case, the orientation-averaged phonon spectrum will still be a function 

of the magnitude of 𝑸 = 𝒒 ± 𝝉, or of 𝛼, even for cubic crystals, since 𝑄 and ω are coupled in 

 1𝑆(𝑄,ω) which directly corresponds to the phonon dispersion relations ω(𝒒).  If  1𝑆d is 

neglected, which has been argued to be valid in many cases from an application standpoint, 

then the phonon spectrum becomes independent of 𝛼.   

     Even in incoherent scattering, there is still a directional distribution of atomic vibrations, 

but this effect is eliminated when scattering with randomly oriented microcrystal structure is 

considered.  For a cubic crystal, the phonon spectrum and Debye-Waller factor are isotropic 

whether or not an orientation average is taken.  The terms 2𝑊 and 𝜆 for a cubic crystal can 

be expressed in analytical form with respect to the total phonon DOS per Eqs. (2.12) and 

(2.16), respectively, and these equations hold true regardless of whether the incoherent 

approximation is invoked.  Therefore, the use of Eq. (2.12) or Eq. (2.16) is justified to 

calculate the Debye-Waller factor for any crystal lattice as long as one assumes randomly 

oriented microcrystal structure.  Moreover, if the additional assumption is made that the 

incoherent approximation is valid, all 𝑆sym(𝛼,𝛽) can be considered to be a function of the 

total phonon density of states only.  Finally, these arguments hold regardless of the number 

of atoms per unit cell.         

 

3.7.7  Unit Cells with Multiple Basis Positions of Unique Symmetry     

     In the previous section, the use of only the total phonon density of states to calculate the 

thermal scattering law was justified (with conditions).  Care must be taken to clarify how the 
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total phonon DOS should be defined.  Thus far, scattering in a material with one atom (or 

basis position) per unit cell has been considered.  Most materials have more than one atom 

per unit cell or even more than one chemical element.  Each basis position in a unit cell that 

is unique by symmetry will have a unique interatomic potential function associated with it 

which will depend on its particular surrounding neighbors.  Therefore, there is a unique 

phonon DOS for each unique basis position.   

     In the case of a unit cell with two basis positions populated by different chemical 

elements, it is clear that the total phonon DOS must be specified for each.  Then, 𝑆sym(𝛼,𝛽) 

and cross sections can be calculated separately for each element or combined to represent a 

stoichiometric unit.  When there is more than one unique basis position for a particular 

chemical element, the conventional methodology is to specify a single total phonon DOS that 

is averaged over the basis positions for that element.  This is the methodology employed by 

LEAPR, although it is not strictly correct.  The resulting 𝑆sym(𝛼,𝛽) and cross sections will 

generally not be the same as those calculated by properly specifying a unique phonon DOS 

for each basis position, but they can be very similar in some cases.  Uncertainties in 

𝑆sym(𝛼,𝛽) arising from the use of the conventional method cannot be quantified through a 

description of uncertainty in the averaged phonon DOS.  This is because there is no single 

phonon DOS that is “correct” by itself in this situation.  Rather, two or more distinct spectra 

should be provided, each with its own unique Debye-Waller factor.  It is straightforward to 

compare the results of the two methods side-by-side and qualitatively determine whether the 

conventional method is acceptable.  If not, there is no obstacle to using the exact method. 
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3.7.8  Phonon Expansion Order 

     When incorporating the phonon expansion method given in Section 2.2 to calculate 

𝑆sym(𝛼,𝛽), a phonon expansion order must be selected.  The convention is to calculate 

𝑆sym(𝛼,𝛽) to phonon order 𝑛 = 100.  This is sufficient for determining integrated inelastic 

cross sections up to about 4 eV with extremely high accuracy.  For incident energies higher 

than this, a rapid increase in the required phonon order is required to achieve convergence 

with the free cross section.  If integrated cross sections are only required to be calculated at 

significantly lower energies, there is a substantial reduction in the necessary phonon order.  

In fact, for incident energies in the vicinity of 𝑘B𝑇, one-phonon scattering is usually 

dominant.  It is rarely of interest to calculate thermal inelastic cross sections above 5 eV.  

Furthermore, once incident energies are sufficient to cause nuclei to sever their atomic bonds, 

the phonon expansion is no longer physically meaningful.            

 

3.7.9  Material Structure Uncertainties 

     It is implicitly assumed that the phonon DOS incorporated is associated with a known 

material structure.  In other words, it is not considered that the actual material structure the 

phonon spectrum represents may be different from that which it is purported to represent.  

Although difficult to address, this situation could potentially arise.  For instance, a phonon 

DOS could be experimentally determined for a material that has significant unknown 

impurities or unknown lattice damage.  Conversely, the structure of an actual material may 

not be well understood and a phonon density of states could be theoretically generated for a 

crystal structure which is not representative of the actual material being modeled. 
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3.7.10  Resolution of the Phonon Density of States and the Thermal Scattering Law 

     Finally, the R-function and Monte Carlo method of describing uncertainties in the phonon 

density of states is only applicable within the context of the energy bin resolution with which 

𝜌(𝜀) is provided.  The information contained within a 𝑝𝑑 energy bin is already an average for 

all phonon modes with energies lying within the bin.  Any information internal to the bins 

can neither be extracted once a particular reference 𝜌(𝜀) is established nor expressed in terms 

of the given 𝑝𝑑.  To recover any of this information, the methodology involved in producing 

the reference phonon spectrum would have to be modified. 

     When differential and integrated cross sections are calculated from the thermal scattering 

law, they are determined by integrating over 𝑆sym(𝛼,𝛽) data points which lie on an 

established grid with finite resolution.  In the limit of infinitely fine 𝛼 and 𝛽 grids, the 

calculation of cross sections will converge.  In practice, the evaluator must select particular 𝛼 

and 𝛽 grids, balancing computational expense, storage requirements and accuracy.  The 

choice of these grids is by no means arbitrary.  In particular, a poor choice of a 𝛽 grid may 

miss sampling vital details of the structure of the phonon spectrum and result in significant 

problems with calculated cross sections.  In theory, this Type 2 grid uncertainty may be 

modeled using a Monte Carlo sampling of grid selections.  Alternatively, the grid resolutions 

could simply be increased until acceptable convergence of the calculated differential and 

integrated cross sections is observed. 
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Chapter 4 
 
Demonstrating the Monte Carlo Method for Calculating Thermal
Scattering Uncertainties 

 
4.1  A Material Basis for the Uncertainty Analysis:  Graphite  

     Graphite has been in continuous use in nuclear reactors since the world’s first nuclear 

reactor, Chicago Pile 1, was built in 1942 by Enrico Fermi [45].  It is attractive as a thermal 

neutron moderator, reflector and construction material for many reasons.  Graphite has a low 

neutron absorption cross section, carbon atoms have low mass (making them efficient at 

slowing down neutrons), and graphite has good thermal and mechanical properties over the 

range of temperatures expected in nuclear reactor operations.  Reactor grade graphite is 

specially manufactured to maintain dimensional stability under irradiation and over a large 

range of temperatures.  Due to the manufacturing process, reactor grade graphite can vary in 

structure and porosity.  In general, it is composed of randomly oriented crystallites 

interspersed in an amorphous-like carbon matrix, and its density can range from 1.5 – 1.8 

g/cm3 with a porosity as high as 30% [19, 46].  In addition to reactor grade graphite, the 

material graphite has numerous forms, both natural and artificial, differing greatly in 

structure.   

     The primary scope of this work is to examine and demonstrate procedures for calculating 

uncertainties in theoretically generated inelastic thermal scattering law data, or 𝑆(𝛼,𝛽), 

published in ENDF File 7 libraries as well as in the resulting differential and integrated cross 

sections.  In this context, hexagonal (ABAB-stacked) crystalline graphite (with randomly 
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oriented microcrystals) will be used as the example material.  The choice of this form of 

graphite as a demonstration material is for several reasons.  First, it is a layered material with 

highly anisotropic interatomic forces.  This will serve to illuminate key physical aspects of its 

phonon density of states that are integral in the treatment of its uncertainties.  Second, single-

crystal hexagonal graphite is a thoroughly studied material for which there is a great of 

amount of information, both experimental and theoretical.   

     Currently published ENDF File 7 𝑆(𝛼,𝛽) data is produced in the incoherent 

approximation for a specific material structure with a single total phonon DOS applied for all 

temperatures for each chemical element in the material, and the same will be assumed in 

demonstrating the Monte Carlo methodology.  Uncertainties will be examined in this context 

and a systematic approach will be demonstrated for their calculation – using the hexagonal 

graphite structure and the physics models employed in this work as an example basis.  

Uncertainties due to unknown variations in an actual graphite structure (such as impurities, 

dislocations, cracks, and other lattice irregularities) are not considered. 

     For graphite, is has been mentioned that the  1𝑆d interference term of the dynamic 

structure factor cannot be strictly neglected, even for integrated cross sections, as it can be 

for many other materials.  The ability to separately calculate  1𝑆d from dispersion relations 

has been demonstrated for graphite [17, 18, 19], and this methodology (as well as others) is 

applicable to any material.  Therefore, the exclusion of  1𝑆d in the incoherent approximation 

does not detract from the utility of treating uncertainties in the thermal scattering law as a 

function of uncertainties in the total phonon density of states.  Hence, the intent of this work 

is not to generate a final set of “evaluated” covariances that is application-ready, but to 
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propose and demonstrate a generalized Monte Carlo method for their determination that is 

consistent with the standard method for calculating 𝑆(𝛼,𝛽) from 𝜌(𝜀) in published ENDF 

File 7 libraries.  Moreover, the particular sensitivities of the thermal scattering law, 

differential cross sections and integrated cross sections to characteristic uncertainties in the 

phonon DOS will be highlighted.   

 

4.2  The Structure of Hexagonal Graphite 

     Hexagonal graphite is a layered material consisting of stacked planes of sp2-bonded 

carbon atoms on a Bravais hexagonal lattice.  The in-plane covalent bonds are very strong 

with a bond length of only 1.42 Å at 300 K.  In contrast, the spacing between planes is large 

– 3.35 Å at 300 K – and the planes are only weakly bound by Van der Waals forces.  The 

unbonded carbon atom valence π-electron is free to oscillate perpendicular to the plane.  

Hexagonal graphite is associated with an ABAB stacking sequence.  Rhombohedral graphite 

has an ABCABC stacking sequence.  This form is thermodynamically unstable and only 

occurs in small fractions mixed with ABAB-stacked graphite.  Figure 4.1(a) shows the planar 

stacking structure and a representative parallelepiped unit cell for hexagonal graphite.  Its 

density is 2.26 g/cm3 at 300 K.  There are four atoms per unit cell, and this basis set of four 

atoms is associated with one lattice site [17].  Only two of the basis positions are unique by 

symmetry.  A-type carbon atoms are defined as those with neighboring atoms directly above 

and below in adjacent planes, while B-type carbon atoms are centered in the middle of 

adjacent-plane hexagons.  Figure 4.1(a) shows the A-type and B-type basis positions and

 Figure 4.1(b) provides a vertical view.
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Figure 4.1  Left panel (a):  Hexagonal ABAB-stacked graphite planar structure.  A unit cell is 
outlined in red with dimensions 𝒂 = 𝒃 = 𝟐.𝟒𝟔 Å and 𝒄 = 𝟔.𝟕𝟏 Å at 300 K.  The four basis 
positions are shown.  Black carbon atoms are A-type and blue carbon atoms are B-type.  Right 
panel (b):  Top view of ABAB-stacking.  Atoms are A-type (black) and B-type (blue).  
 
 
     Figure 4.2(a) gives a two-dimensional view of the unit cell and the lattice vectors 𝒂 and 𝒃.  

Note that only half of the carbon atoms in a plane can lie on lattice sites, and only every other         

carbon plane contains lattice sites.  The lattice vectors 𝒂 and 𝒃 are defined to be separated by 

the angle 𝛾 = 60°, while all other angles in the parallelepiped are 90°.  The lattice vector 

magnitudes for graphite at 300 K are 𝑎 = 𝑏 = 2.46 Å and 𝑐 = 6.71 Å, where 𝑐 is twice the 

interplanar distance.  The in-plane lattice vector translations into reciprocal space, given by 

𝒂∗ and 𝒃∗, are shown in Figure 4.2(b) along with points of high symmetry in reciprocal 

space.  In Figure 4.2(b), note that reciprocal lattice sites are defined at each Γ-point.  The 𝑥, 𝑦 

and 𝑧 Cartesian directions given in Figure 4.2(a) will be considered to also apply to

 reciprocal space. 

(a) (b) 
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Figure 4.2  Left panel (a):  Two-dimensional view of the graphite hexagonal lattice with lattice 
vectors 𝒂��⃗  and 𝒃��⃗  shown.  The lower planar boundary of the unit cell is completed by dashed 
lines.  Right panel (b):  Two-dimensional view of the graphite reciprocal lattice (defined by Γ-
points) with reciprocal lattice vectors 𝒂��⃗ ∗ and 𝒃��⃗ ∗ shown.  Points of high symmetry for a 
hexagonal reciprocal lattice are labeled. 
 
 
     Figure 4.3 displays a three-dimensional view of the hexagonal first Brillouin zone in 

reciprocal space with points of high symmetry labeled.  An irreducible section is shaded.  

The magnitudes of the vectors ΓA�����⃗ , ΓM������⃗  and ΓK�����⃗  are given by 

     |ΓA�����⃗ | = π
𝑐
 ,  �ΓM������⃗ � = 2π

𝑎√3
 ,  |ΓK�����⃗ | = 4π

3𝑎
.                                                                               (4.1) 

The first Brillouin zone is a primitive cell containing one lattice site in reciprocal space at its 

center (the Γ-point).  The volume enclosed by points in reciprocal space that lie closer to a 

reference reciprocal lattice site than to any other reciprocal lattice site defines the first 

Brillouin zone.  It is the reciprocal space analog of the Wigner-Seitz primitive cell.  The

�⃗� 

𝑏�⃗  

�⃗�∗ 

𝑏�⃗ ∗ 

  

(a) (b) 
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Figure 4.3  Schematic of the hexagonal first Brillouin zone with an irreducible section shaded 
and points of high symmetry labeled. 
 
 
reciprocal lattice vectors are bisected by perpendicular planar boundaries of the first Brillouin 

zone.   

     Any wave vector 𝒌 originating from the Γ-point that terminates on a boundary of the first 

Brillouin zone will satisfy the condition for diffraction, or the Bragg condition    

     2𝒌 ∙ 𝝉 = 𝜏2.                                                                                                                     (4.2)  

For an infinite crystal, all locations in the first Brillouin zone are allowed values for 𝒌.  For a 

finite crystal, 𝒌 must satisfy periodic boundary conditions.  Without loss of generality, the 

crystal may be considered to be infinite.  The range of independent 𝒌 is bounded by the first 

Brillouin zone.  For all 𝒌 lying outside the first Brillouin zone, 𝒌 = 𝒌 − 𝝉𝒌, where 𝝉𝒌 is the 

discrete reciprocal lattice vector 𝝉 nearest to 𝒌.  Due to periodicity, information in the first 

Brillouin zone can describe all of the physics of the crystal.  Moreover, due to symmetry, the 

irreducible section of the first Brillouin zone shown in Figure 4.3 is actually sufficient [40].  

The phonon modes 𝒒𝑚 available in the crystal populate the first Brillouin zone according to
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the dispersion relations ω(𝒒), which depend on the interatomic potentials.  Therefore, for the

neutron scattering wave vector 𝑸 = 𝒌 − 𝒌′, both the conditions 𝑸 = 𝝉 ± 𝒒1 ± 𝒒2 ± … and
 
ℏ2

2𝑚
�𝑘2 − 𝑘′2� = ℏ[± ω(𝒒1) ± ω(𝒒2) ± ⋯ ] must be met [15].  As discussed in Sections 2.1

and 3.7.4, the former is only restrictive for one-phonon scattering.    
 
     Due to the anisotropy of the interatomic forces, graphite has very distinct in-plane and 

out-of-plane material properties.  Since the number of stacked planes has little influence on 

in-plane forces, the in-plane material properties of graphite are very similar to those for 

single-plane graphene.  For graphite, the phonon density of states can be separated into two 

directional partials, or 

     ρtot = ρ∥ + ρ⊥,                                                                                                              (4.3)

which are characteristic of the distinct in-plane and out-of-plane interatomic forces in its

layered structure.    

     Weak interplanar forces readily allow for planar translation and rotation.  Manufacturing 

large crystals of perfect single-crystal graphite is difficult.  Highly oriented pyrolytic graphite 

(HOPG) refers to graphite with a very low angular spread among planes about the 𝑐-axis.  It 

is generally highly pure and exhibits the highest degree of three-dimensional symmetry.  This 

is commonly the single-crystal form of graphite examined in experimental measurements.  In 

general, the numerous forms of graphite all possess very similar structure on a nano-scale 

level.  On a micro-scale to bulk level, different forms of graphite reflect varying degrees of 

interruption of the fundamental ABAB-stacked structure.  These imperfections may include 

stacking faults, plane rotations, misoriented crystallites, dislocations, impurities, local sp3-

hybridization, porosity, etc. 
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4.3  Generation of the Phonon Density of States with Density Functional
         Theory and Lattice Dynamics in the Harmonic Approximation 

     The phonon density of states for graphite is generated using the ab initio density 

functional theory code VASP [47, 48, 49] and the lattice dynamics code PHONON [26, 27].  

The selection of parameters in VASP and PHONON and the procedures followed were 

guided by the previous work of Al-Qasir [17].  In addition to the considerations of physics 

given by Al-Qasir in the VASP/PHONON process, the present work focused on issues of 

uncertainty in the VASP/PHONON process in determining a final phonon density of states 

for graphite to be used as a reference basis for the uncertainty analysis.  The “best-estimate” 

outputs of VASP/PHONON in the work of Al-Qasir and in the present work are similar but 

not identical.  In particular, the final phonon DOS presented for graphite in the two works 

differs in physically important ways from an uncertainty perspective.  Henceforth, the term 

“reference” will refer to the “best-estimate” VASP/PHONON output in the present work, to 

the final basis phonon DOS for graphite generated directly from it, and to any subsequent 

calculations directly utilizing this information without modification. 

     The uncertainty analysis for graphite in the present work will depend on the physics of the 

structure of graphite as well as on the details of the VASP/PHONON methodology.  For a 

review of the physics models and algorithms incorporated by VASP and PHONON in the 

context of the present work on graphite, see Appendix D.  For additional details, the reader is 

referred to Ref. [17].  
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4.3.1  The Reference Phonon Density of States 

     Applying the cubic approximation for randomly oriented microcrystal structure, a single 

total phonon density of states, ρ(ω), is calculated by summing the partial phonon DOS 

associated with each Cartesian vector generated by PHONON (see Appendix D).  Next, ρ(ω) 

is converted to ρ(ε) (recall that |ℏ𝜔| = |𝜀|) and renormalized.   

     Graphite has two basis positions that are unique by symmetry.  They are defined by A-

type and B-type carbon atoms as described in Section 4.2.  To be strictly correct, a separate 

phonon DOS should be provided for each unique basis position (this information is available 

in the PHONON output) and distinct Debye-Waller factors should be used in calculating the 

thermal scattering law.  However, the asymmetry between A-type and B-type carbon atoms 

is small and present only in the 𝑧-direction, where interatomic distances are large and 

interplanar forces are very weak.  There is no in-plane asymmetry.  Consequently, it is not 

surprising that the partial phonon DOS is virtually identical for all corresponding coordinate 

vectors for the A-type atoms and B-type atoms.  Therefore, the total phonon DOS of the 

system is safely applied.   

     Figure 4.4 displays the reference total phonon DOS ρ(ε) for graphite which will be used 

in the remainder of this work.  It is compared to the Al-Qasir phonon spectrum [17, 18] and 

the YK phonon spectrum [22] incorporated in the ENDF/B-VII File 7 evaluation for graphite 

[21].  The Al-Qasir phonon spectrum is very similar to the reference ρ(ε), except that Al-

Qasir imposes a parabolic fit up to 5 meV [17].  Recall that in the work of Young and 

Koppel, the crystallography and lattice dynamics of perfect crystalline ABAB-stacked 

graphite are used, except the four force constants in the YK lattice dynamics model are fitted
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Figure 4.4  Total phonon DOS comparison for graphite.  The red line is the reference spectrum 
calculated in this work with VASP/PHONON.  The black line is the ENDF/B-VII YK spectrum 
[21, 22].  The blue line is the Al-Qasir spectrum [17, 18].  
 
 
to thermodynamic data associated with high-porosity reactor grade graphite.  Therefore, the 

general features of the YK phonon spectrum match those of the reference ρ(ε) but with 

differing intensities.  Figure 4.5 provides a zoom-in of the three phonon spectra shown in 

Figure 4.4 for the low-energy region below 24 meV.        

     The calculated parallel (in-plane) and perpendicular (out-of-plane) partial phonon DOS 

are displayed in Figure 4.6, overlaid to exhibit their individual contributions.  The parallel 

DOS (which is the sum of the two in-plane polarizations) is normalized to 2/3, and the 

perpendicular DOS (which accounts for phonon modes with out-of-plane polarization) is

 

 22] 
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Figure 4.5  Zoom-in of Figure 4.4 for the low-energy region below 24 meV.    
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Figure 4.6  Reference partial phonon density of states for graphite, by direction, calculated with 
VASP/PHONON.  Parallel (blue line, in-plane), perpendicular (black line, out-of-plane). 
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normalized to 1/3.  For three degrees of freedom, there are three polarization vectors 𝒆𝑗, 

each of which is considered associated with a Cartesian vector.           

     In Figure 4.6, it is evident that the lower energies are dominated by phonon modes with 

out-of-plane polarization and the higher energies are associated only with phonon modes 

having in-plane polarizations.  While this is to be expected from the layered structure of 

graphite, it is important to note that the total energy functional utilized in VASP does not 

account for interplanar Van der Waals forces (see Appendix D).  Therefore, the 

perpendicular energies seen in Figure 4.6 are the result of interactions between the oscillating 

unbonded valence π-electrons in neighboring planes as well as planar tensions and shear 

stresses induced by motion of the basis atoms in the 𝑧-direction.   

 
4.3.2  The Reference Dispersion Relations 

     There is a total dispersion relation ω(𝒒), combining all basis atoms, which maps 

throughout the first Brillouin zone.  It is standard to plot this ω(𝒒) for 𝒒-vectors terminating 

on lines of high symmetry which bound an irreducible section of the first Brillouin zone.  For 

a hexagonal lattice, ω(𝒒) is typically plotted for 𝒒-vectors along the ΓA�����⃗ ,  ΓM������⃗ , and ΓK�����⃗  

directions, and for 𝒒-vectors terminating on KM����� (see Figure 4.3).  Figure 4.7 gives this 

reference ω(𝒒) generated by the VASP/PHONON process and shows its relationship to the 

total phonon DOS.   

     Each curve may be conceptualized as mapping the intersections of isofrequency surfaces 

in reciprocal space with a 𝒒-vector originating at the Γ-point and extending in the ΓA�����⃗ ,  ΓM������⃗ , 

and ΓK�����⃗  directions.  The intersections of isofrequency surfaces with a 𝒒-vector terminating on  
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Figure 4.7  Graphite reference dispersion relations along directions of high symmetry 
calculated with VASP/PHONON.  The corresponding total phonon DOS is shown to the right 
for comparison. 
 
 
the KM����� line are mapped by extending a 𝒒-vector in the ΓK�����⃗  direction beyond the first 

Brillouin zone to the point M′ (i.e., the next M-point by periodicity).  This is equivalent by  

reflection to terminating the 𝒒-vector on the KM����� line at the boundary of the first Brillouin 
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zone.  The different branches of the dispersion relations are labeled in Figure 4.7 where T is 

in-plane transverse polarization, Z is out-of-plane transverse polarization, L is longitudinal 

polarization, A is acoustic and O is optical.  The O′ terms distinguish optical modes    

associated with a different phase relationship among the basis atoms. 

     Transverse phonon waves have perpendicular propagation and polarization directions.  

Longitudinal phonon waves have parallel propagation and polarization directions.  For 

phonons waves propagating in any ΓK�����⃗  direction with L polarization and for phonon waves

propagating in any ΓM������⃗  direction with T polarization, the atomic vibrations can be considered  

to be in the 𝒙� direction by symmetry.  Likewise, for phonon waves propagating in any ΓK�����⃗  

direction with T polarization and for phonon waves propagating in any ΓM������⃗  direction with L 

polarization, the atomic vibrations can be considered to be in the 𝒚� direction by symmetry 

(see Figure 4.2(b)).  The two T polarizations for phonon waves propagating in the ΓA�����⃗  

direction are effectively degenerate for atomic vibrations in the 𝒙� or 𝒚� directions and will 

have the same associated frequencies.  For phonon waves propagating in any in-plane 

direction with Z polarization and for phonon waves propagating in the ΓA�����⃗  direction with L 

polarization, atomic vibrations will be in the 𝒛� direction.  Finally, for phonon waves 

propagating in any off-symmetry direction, the definitions of polarizations are fixed as 

defined above, and the propagation and polarization directions will be neither perpendicular 

nor parallel.   

     Note that peaks in the phonon DOS are associated with frequencies for which the 

magnitude of the gradient of ω with respect to 𝒒, or |𝛁𝒒ω|, is small or approaching zero.  This 
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gradient magnitude is also known as the group velocity of the phonon and determines its 

speed of propagation through the crystal.  In one dimension, it is analogous to ∂ω
∂𝑞

.  These 

frequency peaks are known as Van Hove singularities and are physically associated with 

standing wave packets of phonons.  In the context of sampling 𝒒-points in the first Brillouin 

zone, it can be conceptualized that these peaks arise because the isofrequency surfaces are 

“thick,” or because “adjacent” surfaces are widely separated, and many 𝒒-points will be 

associated with the same or nearly the same frequency. 

 

4.4  Thermal Scattering Law and Cross Section Calculations with the  
          Reference Total Phonon Density of States 
 
     Before commencing the uncertainty analysis for graphite, integrated inelastic cross 

section, differential cross section and thermal scattering law results will be presented based 

on the reference phonon density of states calculated with VASP/PHONON.  All calculations 

are with a 110-point 𝛽-grid and 70-point 𝛼-grid which provided good convergence of 

integrated cross sections.  Figure 4.8 displays the reference inelastic cross section for 

graphite calculated to phonon order 𝑛 = 100.  It is compared to the inelastic cross section 

calculated with published ENDF/B-VII File 7 𝑆sym(𝛼,𝛽) data [21], which is based on the 

YK phonon spectrum [22], and to the inelastic cross section calculated by Al-Qasir, in which 

a parabolic fit is imposed up to 5 meV in a phonon DOS generated by VASP/PHONON [17] 

that is otherwise similar to the reference phonon DOS (see Figures 4.4 and 4.5).   

     The inelastic cross sections are calculated at 293.6 K.  In the region near 𝑘B𝑇 = 0.0253 

eV (for 𝑇 = 293.6 𝐾), the curves differ by as much as 100%.  The variation in the cross
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Figure 4.8  Inelastic cross sections for graphite calculated from different information.  Using the 
reference phonon spectrum produced by VASP/PHONON in this work (red line).  Using the 
published ENDF/B-VII File 7 𝑺𝐬𝐲𝐦(𝜶,𝜷) data for graphite (black line) [21], which is based on 
the YK phonon spectrum [22].  Using the Al-Qasir 𝑺𝐬𝐲𝐦(𝜶,𝜷) data and phonon spectrum 
produced by VASP/PHONON with an imposed parabolic fit up to 5 meV (blue line) [17, 18].  
Cross sections are calculated at 293.6 K.            
 

section results serves to illustrate two points.  First, the characteristics of phonon spectra

associated with the same crystal structure can differ in important ways when the 

methodologies or assumptions incorporated in their generation differ, and the resulting cross 

sections can be affected significantly.  Second, the benefit of using a thermal cross section 

library produced with a phonon DOS associated with a particular material model may be 

questioned if the actual material in the scattering medium does not reflect this model.      

     Plots for differential cross sections in energy for graphite for 𝐸 = 0.005 eV, 0.0253 eV, 

0.1 eV and 0.5 eV are given in Figure 4.9 at 293.6 K.  The abscissa is in terms of energy

Calculated with the reference phonon DOS (this work) 
 
 
Calculated with ENDF/B-VII File 7 
𝑆sym(𝛼,𝛽) data [21, 47]   

Calculated with 𝑆sym(𝛼,𝛽) data from 
Ref. [17, 18]  

 22] 
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Figure 4.9  Differential cross sections in energy for graphite at 293.6 K for various incident 
energies.  𝑬 = 0.005 eV (black plot), 0.0253 eV (red plot), 0.1 eV (dark green plot) and 0.5 eV 
(blue plot). 
 
 
transfer, vs. secondary energy, to facilitate comparison of changes in the structure of the 

distributions as a function of incident energy.  Table 4.1 tabulates information about 

downscattering, upscattering, the total inelastic cross section, and multiphonon components 

of these.  It is notable that the distributions in Figure 4.9 are much more peaked than those 

based on the YK phonon spectrum (see Figure 2.4).  Physically, this is because hexagonal 

crystalline graphite has a nearly linear phonon DOS up to about 8 meV as a result of its 

quasi-two-dimensional layered structure.  It is only parabolic at extremely low energies 

below about 1 meV [50, 51, 52].  This phenomenon will be discussed in further detail in 

Section 4.5.3.1.  The YK spectrum given in Figure 2.3 is parabolic up to about 16 meV, 

which is characteristic of a fully three-dimensional (i.e., non-planar) crystal structure, and

this may be more appropriate for quasi-amorphous reactor grade graphite.
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Table 4.1  Inelastic scattering cross section, downscattering, upscattering and multiphonon 
information for differential cross sections in energy given in Figure 4.9.  
 
 

Incident Energy (eV) 0.005 0.0253 0.100 0.500 
            

Downscattering (barns) 0.0252 0.2547 1.143 3.183 
Upscattering (barns) 0.2364 0.4073 0.8355 0.8144 

Total (barns) 0.2616 0.6619 1.979 3.998 
            

Downscattering (%) 9.63 38.47 57.77 79.63 
Upscattering (%) 90.37 61.53 42.23 20.37 

Down/Up Scattering (ratio) 0.107 0.625 1.368 3.908 
            

Multiphonon 
Contribution to 
Downscattering  

(%) 0.83 6.51 30.16 84.03 

Multiphonon 
Contribution to 

Upscattering 
(%) 9.60 13.44 31.47 68.76 

Multiphonon 
Contribution to Total (%) 8.75 10.78 30.71 80.91 

Down/Up Scattering 
Multiphonon 
Contribution 

(ratio) 0.086 0.4 0.958 1.222 

 

     The broadening of the distributions in Figure 4.9 as a function of incident energy is 

directly attributable to an increase in multiphonon scattering.  Not only do the distributions 

broaden in an absolute sense, but the secondary spectra become progressively less sensitive 

to the structure of the phonon DOS and they are “smoothed.”  Table 4.1 gives details of the 

relationships of incident energy, downscattering, upscattering and multiphonon scattering. 

     The thermal scattering law 𝑆sym(𝛼,𝛽) for hexagonal graphite at 293.6 K calculated with 

the reference phonon DOS is plotted in Figure 4.10 as a function of 𝛽 for several fixed 𝛼. 

Likewise, Figure 4.11 plots 𝑆sym(𝛼,𝛽) as a function of 𝛼 for several fixed 𝛽.  In Figure 4.10, 
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Figure 4.10  Fixed 𝜶 curves of 𝑺𝐬𝐲𝐦(𝜶,𝜷) for graphite at 293.6 K as a function of 𝜷. 
 

 

 

Figure 4.11  Fixed 𝜷 curves of 𝑺𝐬𝐲𝐦(𝜶,𝜷) for graphite at 293.6 K as a function of 𝜶. 
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the 𝛼 = 0.001, 0.01 and 0.1 curves are associated almost entirely with one-phonon scattering, 

and the fine structure of the phonon spectrum is evident.  𝑆sym(𝛼,𝛽) is less than 0.001 for all 

𝛽 when 𝛼 < 0.001.  At 𝛼 = 1, one-phonon and multiphonon scattering are mixed and the 

features of 𝑆sym(𝛼,𝛽) begin to smooth.  At 𝛼 = 3, multiphonon scattering is dominant.  At 

𝛼 = 10 and 𝛼 = 30, essentially all structure in 𝑆sym(𝛼,𝛽) is lost.  All curves are less than 

0.001 for 𝛽 > 10.  In Figure 4.11, a selection of 𝛽 curves is given.  The 𝛽 = 0 curve gives the 

upper limit of 𝑆sym(𝛼,𝛽) as a function of 𝛼 and is associated with quasielastic multiphonon 

scattering, or multiple phonon energy exchanges combining to yield nearly zero energy 

transfer.  With the exception of very low 𝛽, the proportion and order of multiphonon 

scattering will tend to increase with 𝛽.  For 𝛽 > 8, 𝑆sym(𝛼,𝛽) is less than 0.001 for all 𝛼.   

 

4.5  Assessing and Calculating Uncertainties in the Phonon Density of
          States for Graphite  
 
     Density functional theory is a first-principles condensed matter simulation methodology 

that has been very successful in modeling the physical properties of materials.  As with 

almost all physics models, there are inherent and practical limitations to its accuracy.  

Likewise, any lattice dynamics physics model will be subject to similar limitations.  There 

will be inherent uncertainties in any phonon density of states generated through the 

VASP/PHONON process.  These uncertainties may arise due to the physics models 

employed by VASP and PHONON and due to the selection of code parameters governing the 

application of those physics models.      
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     Various sources of uncertainty in the phonon DOS for graphite generated by the 

VASP/PHONON process will now be examined and their impacts modeled using 𝑅-

functions and Monte Carlo sampling as described in Section 3.4.2.  To allow a physics-

guided approach, the expected sensitivity of cross sections and the thermal scattering law to 

particular energy regions of the phonon DOS is first examined.   

     In this work, all Monte Carlo and thermal scattering kernel calculations are performed 

with the code MCTHERM written by the author.  MCTHERM uses the same theoretical 

methodology as LEAPR for calculating 𝑆sym(α,𝛽), except that 64-bit double-precision 

allows for calculations with high phonon order and large 𝛼 to be carried out without resorting 

to the short collision-time approximation [20].  MCTHERM also allows for accurate 

intermediate phonon-order outputs (unlike LEAPR), and it allows greater flexibility in the 

selection of 𝛼 and 𝛽 grids, energy grids, and the output format.  MCTHERM was 

benchmarked to LEAPR in a variety of tests to confirm the consistency of its calculations.  

The MCTHERM code incorporates native Monte Carlo sampling of phonon spectra based on 

user-defined perturbations in a reference phonon DOS, and the code allows for introducing 

uncertainty in temperature if desired.  Finally, MCTHERM can calculate resulting 

uncertainties and/or covariance matrices for the phonon DOS, the thermal scattering law, 

differential cross sections in energy and integrated cross sections. 

 

4.5.1  Cross Section Sensitivity to the Phonon Density of States 

     The phonon density of states has been described as a probability density function of 

atomic vibrational modes that exist in a given material structure.  In this sense, it is natural to 
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treat uncertainties in the thermal scattering law in the context of this PDF.  However, the 

phonon spectrum only maps the population distribution of phonon modes as a function of 

energy.  It does not provide any information regarding the likelihood that a particular phonon 

mode will be excited.   

     If the vibrational motion of an atom is associated with an incoherent mixture of phonon 

modes and that atom is part of an ensemble of atoms at an average temperature 𝑇, then for a 

phonon mode with energy 𝜀, the thermal average of the phonon occupation number 𝑛 is  

     < 𝑛 > = �exp � 𝜀
2𝑘B𝑇

� sinh � 𝜀
2𝑘B𝑇

��
−1

                                                                            (4.4)

[15].  An estimate of the relative probability that a phonon with energy 𝜀 will participate in a 

thermal scattering event can be given by the scattering probability density function 

     𝑇(𝜀) = 𝐶 < 𝑛 > 𝜌(𝜀),                                                                                                   (4.5)

where 𝐶 is a normalization constant.  𝑇(𝜀) is plotted vs. 𝜌(𝜀) in Figure 4.12 for graphite at 

the temperatures 300 K and 1500 K.    

     Eq. (4.4) strictly applies only for upscattering (for downscattering, the quantity < 𝑛 + 1 >

 is required).  Additionally, Eq. (4.5) neglects coherent interference effects, although this is 

consistent with the incoherent approximation invoked for the thermal scattering law.  Finally, 

Eq. (4.5) gives the relative probability for a particular 𝛼 and does not account for the fact that 

the average 𝛼 is a function of 𝐸.  Even so, the general shape of 𝑇(𝜀) calculated from Eqs. 

(4.4) and (4.5) is a strong qualitative predictor of the sensitivity of cross sections to different

energy regions of the phonon DOS as a function of temperature.
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Figure 4.12  Scattering probability density function  𝑻(𝜺) = 𝒑(𝜺)ρ(ε ) at 300 K and 1500 K. 

 
     It is clear that the thermal scattering law and integrated cross sections will, in general, be 

very sensitive to the population of low-energy phonons and extremely insensitive to the 

population of higher-energy phonons.  Indeed, the large peak in the phonon DOS near 175 

meV (see Figure 4.4) is barely visible in the map of 𝑇(𝜀) at 300 K.  Thus, uncertainties in the 

thermal scattering law and integrated cross sections will heavily depend on uncertainties in 

the lower-energy region of the phonon spectrum.    

    Reviewing Figure 4.6, recall that phonons with polarizations perpendicular to the carbon 

atom planes dominate the low-energy region of the phonon spectrum.  Considering Figures 

4.6 and 4.12 together, it is clear that uncertainties in the thermal scattering law and in 

integrated cross sections will depend overwhelmingly on uncertainties in the perpendicular
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phonon DOS.  Consequently, it is essential that any uncertainty analysis carefully examine 

physical phenomena which affect the low-energy perpendicular phonon modes and how well 

those phenomena are represented in the VASP/PHONON methodology for generating 𝜌(𝜀).        

 

4.5.2  Estimating Uncertainties Internal to VASP and PHONON  
 
     To facilitate the evaluation of the total uncertainty in 𝜌(𝜀), it is beneficial to separate 

those uncertainties which can be considered internal to the VASP and PHONON codes from 

those which can be considered external to the codes.  For example, any uncertainties arising 

strictly due to the user’s particular selection of parameters when executing VASP and 

PHONON can be considered internal uncertainties.  In other words, the variation in the 

calculated 𝜌(𝜀) resulting from particular sets of code parameter choices defines internal 

uncertainty, and this can include both Type 1 and Type 2 uncertainties.  Additional variation 

in 𝜌(𝜀) can also be described by the evaluator.  This additional variation may be based on 

experimental data, corrections to the physics models employed by VASP and PHONON, etc.  

The uncertainty resulting from this additional evaluator-imposed variation defines external 

uncertainty, and this will always be of Type 2. 

     Running the VASP and PHONON codes requires the user to specify many input 

parameters which will control the computational algorithms and specific physics models 

invoked in their execution.  It is not the intent of this discussion to provide an exhaustive list 

and analysis of every input parameter in these codes.  Rather, a qualitative approach is more 

practical and is sufficient.  Unlike empirical models with fitted “tunable” parameters, most of 

the parameters of these codes cannot be treated as random variables.  In other words, 
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assignment of expectation values or covariances generally has no real meaning for 

parameters such as the exchange-correlation energy model (e.g., LDA or GGA) or supercell 

size.  Similarly, there will be parameters which, without source code modification, the user 

must accept.  An example is the particular pseudopotentials employed in the calculation of 

the 𝑉[𝑛(𝒓)] term from Eq. (D.1).     

     The VASP and PHONON input parameters can be divided into two general classes:  

“convergence” parameters and “algorithm” parameters.  The former class controls to what 

extent or the resolution with which the codes carry out calculations.  Examples include the 

plane-wave energy cutoff, and the 𝑘-mesh and supercell sizes.  Although these examples 

involve the setting of numerical criteria, they are related to Type 2 uncertainty because they 

control the accuracy of the output (and not the precision of the output).  The 𝒒-point 

sampling resolution of the first Brillouin zone is also a convergence parameter, but it is 

related to Type 1 uncertainty because it strictly controls the precision of the output.  In 

theory, given unlimited computing resources, the convergence parameters should be able to 

be set to arbitrarily high-quality limits until the output is converged to arbitrarily fine criteria.  

In practice, a balance with computational expense is usually necessary.  In the production of 

the reference phonon DOS and dispersion relations given in Figures 4.4 – 4.7, the final Type 

2 uncertainty convergence parameters chosen are optimized with computational expense and 

still provide good convergence [17] (i.e., the phonon DOS and dispersion relations outputs do 

not consequentially change for incremental improvements in any of the Type 2 convergence 

parameters).  Therefore, it will be assumed that any Type 2 uncertainty in the phonon DOS 

due to the convergence parameters is negligible.     
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4.5.2.1  Type 1 Uncertainties from Sampling the First Brillouin Zone   

     There will be purely statistical uncertainties, or counting uncertainties, arising from 

randomly sampling 𝒒-points in the first Brillouin zone to determine the phonon density of 

states (see Appendix D).  The number of 𝒒-points sampled is a convergence parameter 

controlled by the user.  Strictly, the partial phonon DOS frequency bins for each Cartesian 

vector and basis atom will be populated during the PHONON Monte Carlo sampling process 

according to a Dirichlet (or compound) multinomial distribution with covariances that are 

determined by the force constant and dynamical matrices.  In the limit of a large number of 

frequency samples collected in a large number of bins, each bin may be treated as being 

populated according to a Gaussian distribution, although the Gaussians will not necessarily 

be independent. 

     In this work, 𝑁 = 106 𝒒-points are sampled and 𝐷 = 199 bins (or grid points) with a 

uniform energy width of 𝑝int = 1.03 meV are used for each partial and for the total phonon 

DOS.  Each partial will contain one million frequency samples.  These conditions are 

sufficient to use the Gaussian approximation.  However, the total phonon DOS, which is the 

sum of all of the partials for each frequency bin, is the spectrum for which uncertainties are 

required.   

     The value of each partial frequency bin will be designated as 𝑝𝑑
𝑝𝑎𝑟, where 𝑑 = 1 …𝐷 and 

𝑝𝑎𝑟 = 1 … 12 for each of the twelve dispersion branches of graphite.  After normalizing each 

partial phonon DOS, the standard deviation for each 𝑝𝑑
𝑝𝑎𝑟 is calculated as 

     𝜎(𝑝𝑑
𝑝𝑎𝑟) = �𝑝𝑑

𝑝𝑎𝑟

𝑁𝑝int
.                                                                                                          (4.6)  
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The quantities 𝜎(𝑝𝑑) will be required for an R-function.  Since 𝑝𝑑 = ∑ (𝑝𝑑
𝑝𝑎𝑟)12

𝑝𝑎𝑟=1 , 𝜎(𝑝𝑑) can 

be calculated as  

     𝜎(𝑝𝑑) = �∑ COV(𝑝𝑑
𝑝𝑎𝑟 = 𝑔,𝑝𝑑

𝑝𝑎𝑟 = ℎ)𝑔,ℎ ,𝑔 = 1 … 12, ℎ = 1 … 12.                                   (4.7)

In this case, 𝑔 and ℎ are indices for incrementing the twelve rows and columns of the 𝑝𝑑
𝑝𝑎𝑟 

covariance matrix (for fixed 𝑑).  Note that no sensitivity coefficients (or ∂𝑝𝑑
𝑝𝑎𝑟

∂𝑝𝑑
 ) are included 

in Eq. (4.7) since they are all unity.   

     For a particular coordinate vector, each partial phonon DOS for the different basis atoms 

is almost identical.  Therefore, it can be assumed that they are perfectly correlated with a 

covariance equal to the product of their standard deviations, which are defined by Eq. (4.6).  

Physically, there are isofrequency surfaces in reciprocal space associated with each branch of 

the dispersion relations for that frequency.  The isofrequency surfaces are virtually 

degenerate for the different basis atoms.  Therefore, any random 𝒒-point located on a 

particular isofrequency surface associated with one basis atom will effectively be located on 

the same isofrequency surface for all other basis atoms.   

     The situation is different for partials of different Cartesian coordinates.  In this case, the 

isofrequency surfaces associated with different polarizations (for the same frequency) may or 

may not intersect and will have distinct geometry within the first Brillouin zone.  Therefore, 

only in rare instances will a 𝒒-point be located simultaneously on the isofrequency surfaces 

associated with different polarizations (for the same frequency).  Consequently, the partials 

for different coordinate vectors can be considered to be uncorrelated and Eq. (4.7) can be 

rewritten as 
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     𝜎(𝑝𝑑) = �∑ 𝜎2(𝑝𝑑
𝑝𝑎𝑟) + 2𝑝𝑎𝑟 ∑ 𝜎 �𝑝𝑗

𝜂 = 𝑔�𝜎 �𝑝𝑗
𝜂 = ℎ�𝑔,ℎ,𝑗 ;   

     𝑝𝑎𝑟 = 1 … 12;  𝑔 = 1 … 3, ℎ = (𝑔 + 1) … 4 ;  𝑗 = 1 … 3,                                          (4.8)

where 𝜂 represents a basis atom and 𝑗 corresponds to polarizations in terms of the Cartesian 

coordinates.  The first term under the square root in Eq. (4.8) captures uncorrelated 

uncertainties while the second term captures fully correlated uncertainties.  In the 

formulation of Eq. (4.8), terms of COV(𝑝𝑑
𝑝𝑎𝑟) with zero correlation are absent.  The indices 𝑔 

and ℎ now increment only the basis atom in the rows and columns of COV(𝑝𝑑
𝑝𝑎𝑟).  The 

correlated terms of COV(𝑝𝑑
𝑝𝑎𝑟) are given by 𝜎�𝑝𝑗

𝜂 = 𝑔�𝜎�𝑝𝑗
𝜂 = ℎ�.   The coefficient 2 accounts 

for the triangular symmetry of the covariance matrix since 𝑔 and ℎ are defined to increment 

only over the upper-right triangle (excluding the diagonal).              

     Now that a fully described set of 𝜎(𝑝𝑑) is given, it must be considered if there are any 

correlations between 𝑝𝑑 (for different 𝑑) related to sampling the first Brillouin zone.  For 

each 𝒒-point sampled, there will be twelve coupled frequencies associated with it which will 

all contribute to the total phonon DOS.  The dispersion relations define this coupling for each 

𝒒.  Consequently, there will certainly be some underlying correlation between any two given 

frequencies in the total phonon DOS.  However, the 𝒒-points are randomly sampled and an 

infinite number of 𝒒-points will be associated with any particular frequency.  Each 𝒒-point 

that is associated with a particular frequency will couple that frequency to different sets of 

other frequencies.  In summary, while correlations among 𝑝𝑑 cannot be calculated without re-

running the Brillouin zone sampling process a large number of times, it can be stated that the 

correlations are generally not expected to be strong because of this “averaging” effect.   
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     Neglecting the correlations among 𝑝𝑑 in the total phonon DOS resulting from random 

sampling of the first Brillouin zone, the 𝑅1 function given in Section 3.4.2 (which will now 

be redefined as 𝑅A) can be applied to 𝒑 using the solutions of Eq. (4.8) to provide a 

reasonable description of the statistical uncertainties in the parameters 𝑝𝑑.  Although Eq. 

(4.8) already provided this information directly, this Type 1 uncertainty will need to be 

combined with other 𝑅-functions and then a renormalization condition imposed. 

     Figure 4.13 plots the relative uncertainty in the 𝑝𝑑 parameters of the phonon DOS 

calculated from Eq. (4.8) to be incorporated in the 𝑅A function and Monte Carlo sampling 

process.  As expected, the plot is nearly the inverse of the reference phonon spectrum given 

in Figure 4.4. Higher statistical uncertainties are associated with valleys in the phonon DOS
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Figure 4.13  Statistical relative uncertainty in the graphite reference phonon DOS due to 
random sampling of 𝟏𝟎𝟔 𝒒��⃗ -points in the first Brillouin zone. 
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and low statistical uncertainties are associated with peaks.  Although the uncertainties are 

quite small, they will compound with other uncertainties in the Monte Carlo process.   

     

4.5.2.2  Type 2 Uncertainties from Selection of VASP/PHONON Algorithm Parameters  

     Algorithm parameters for VASP and PHONON control how the codes carry out 

calculations.  Examples include the exchange-correlation energy model, atomic displacement 

magnitudes, and the system relaxation choice (e.g., relax the unit cell, relax the supercell, or 

do not perform relaxation).  The choice of algorithm parameters must be guided by physics 

and the known operation of the codes.  Different selections may provide better results for 

different problems or materials.  In general, the best choice for non-numerical algorithm 

parameters was clear upon examining the output.  For example, the GGA exchange-

correlation energy model yields very inaccurate relaxed lattice constants for graphite while 

the results for LDA are quite close to experimental data.  This problem with GGA for 

graphite is common and documented throughout published literature [17].  The selection of 

an appropriate atomic displacement magnitude (for the purpose of determining the 

Hellmann-Feynman forces) required testing several cases.  An appropriate value depends on 

several factors, including the 𝑘-mesh employed and the behavior of the total energy 

functional.  In this work, the displacement range from 0.03 Å to 0.08 Å yields similar and 

physically consistent results in the dispersion relations and phonon DOS, with imaginary 

frequencies contributing 0.04% or less.  If displacements are too small or too large, the 

population of imaginary frequencies increases dramatically.  (See Appendix D for 

background information.)   
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     Within the acceptable range, small shifts in the phonon DOS are evident above about 140 

meV.  At lower energies, the results are effectively identical.  Figure 4.14 compares the total 

phonon DOS above 140 meV for three distinct trials – 0.045 Å, 0.055 Å (the reference case) 

and 0.08 Å.  To improve visualization of the energy shift, Figure 4.14 is plotted on a 

pointwise energy grid with straight connecting lines (instead of in histogram form 

representing energy binning).  All code parameters are held identical (per the reference case) 

except for the atomic displacement magnitude.  The features of the phonon DOS in the upper 

energy region vary in position by about ± 1 meV while remaining coupled.  Although this 

variation is quite small and in the most insensitive region of the phonon DOS, it can quite  

 

 
 
Figure 4.14  Total phonon DOS for graphite above 140 meV for three atomic displacement 
magnitudes in VASP.  Magnitudes are 0.045 Å (black line), 0.055 Å (red line, reference case) 
and 0.08 Å (blue line).  All other parameters are held fixed to the reference case. 
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easily be modeled using a modification of the 𝑅2 function given in Section 3.4.2 to 

demonstrate its effect.  The possible energy shift will be bounded by ± 1 meV with flat 

sampling since there is no reason to judge the reference result to be any more likely than the 

other cases tested.  The energy shift is restricted to the region above 140 meV, or to 𝑝𝑑 for 

𝑑 > 136 (𝐷 = 199 represents the maximum 𝑑 for the phonon DOS in this work).  Finally, 

separation between features is held constant (the spectrum is not stretched or compressed).  

Specifically, this R-function will be named 𝑅B and defined as follows (see Section 3.4.2 for a 

review of the variable definitions): 

 
 
𝑅B ∶= Fixed spectrum energy shift over a restricted region with flat sampling defined by a  

           minimum and maximum shift. 

𝑅B(𝒑) = [𝑅B(𝑝𝑑),𝑑 = 137 …𝐷 − 1] = 𝒑′ 

PDF(𝐸shift) = 1
2 meV

, 𝐸shift = −1 meV … + 1 meV  

𝐸shift = RAND[PDF(𝐸shift)] 

for 𝑑 = 137 …𝐷 − 1, 

     𝐸(𝑑′) = 𝐸(𝑑) + 𝐸shift 

for 𝑑 = 137 …𝐷 − 1, 

     𝑑low′ ,𝑑high′ ≡ [𝐸(𝑑low′ ) ≤ 𝐸(𝑑) < 𝐸�𝑑high′ �,  𝑑high′ = 𝑑low′ + 1]           

     𝑝𝑑′ = 𝐸(𝑑)−𝐸(𝑑low
′ )

𝑝int
× �𝑝𝑑high′ − 𝑝𝑑low′ � + 𝑝𝑑low′  
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     The atomic displacement magnitude was found to be the only algorithm parameter for 

which a range of justifiable choices was possible that consequentially influenced the total 

phonon DOS.  Thus, 𝑅B will allow a reasonable quantitative assessment of the internal Type 

2 uncertainty arising due to the selection of algorithm parameters within the 

VASP/PHONON simulation process.  Note that it does not capture the Type 2 uncertainty 

present in the native physics models employed but only in their algorithmic application.  The 

only way to truly assess the accuracy of the native physics models (i.e., the exchange-

correlation energy model, the pseudopotentials, the harmonic approximation, etc.) is to 

compare the outputs to experimental data.            

 

4.5.3  The Low-Energy Region of the Phonon Density of States 
 
     It has been stated that uncertainties in the thermal scattering law and in integrated cross 

sections will be the most sensitive to uncertainties in the low-energy region of the phonon 

density of states.  For the layered structure of graphite, strong in-plane covalent bonding 

results in a significant population of high-energy phonon modes with in-plane polarization.   

Interatomic forces in the 𝑧-direction control the population and energy distribution of phonon 

modes with Z polarization.  (See Figure 4.6.)  Interplanar forces represent the weakest 

component of 𝑧-direction forces by far.  The other component is due to planar tensions and 

shear stresses induced by out-of-plane thermal motion of the carbon atoms.  Therefore, 

interplanar forces are largely responsible for the population of low-energy phonons.  

Interplanar forces are due to Van der Waals forces as well as interactions between 𝜋-

electrons oscillating perpendicular to the planes.  The latter effect is expected to be much 
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stronger than Van der Waals forces [53].  Therefore, Van der Waals forces may be expected 

to influence the lowest-energy region of the phonon DOS (to which thermal scattering is the 

most sensitive).  Since density functional theory employed by VASP does not account for 

Van der Waals forces, the physics of how Van der Waals forces influence the phonon DOS 

will be assessed and a comparison of the output of VASP and PHONON to experimental data 

will be made.  Specifically, an examination at the level of dispersion relations is required, 

and the reader is reminded of the relationship 𝜀 = ℏω for phonons.  The resulting uncertainty 

in the reference 𝜌(𝜀) is Type 2 uncertainty external to VASP and PHONON. 

         

4.5.3.1  The Impact of Interplanar Forces on the Dispersion Relations for Graphite 

     To gain insight into how Van der Waals forces may physically contribute to the phonon 

DOS, and to address uncertainties in the low-energy region in general, a qualitative 

comparison of the dispersion relations of graphite to those of graphene can be made.  Figure 

4.15 shows the dispersion relations of graphene (solid lines) calculated by Mounet and 

Marzari [54] using DFT with experimental data for graphite using coherent inelastic neutron 

scattering from Nicklow et al. [51] overlaid.  Since graphene is single-layer, it has only two 

atoms per unit cell and six dispersion branches.  Above about 60 meV, the splitting of optical 

branches for graphite in Figure 4.15 is indiscernible (and nearly so even for theoretical 

calculations), and the dispersion relations of graphite and graphene are known to be virtually 

identical.  Physically, this is expected since higher-energy modes are associated with stronger 

interatomic forces.  The weak interplanar forces of graphite have little influence in this
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Figure 4.15  DFT calculation of graphene dispersion relations (solid line) by Mounet and
Marzari [54] with experimental data for graphite using coherent inelastic neutron scattering 
from Nicklow et al. [51].  The total phonon DOS for graphene is shown to the right. 
 
 
region [53, 54].  Indeed, the perpendicular phonon DOS is zero above about 110 meV (see 

Figure 4.6).   

     Below about 60 meV, the introduction of a layered planar structure alters the dispersion 

relations of graphene in three primary ways.  First, a ZO′ branch splits from the ZA branch 

because interplanar forces make oscillations between planes (or local regions of planes) 

possible for these energies.  Second, the first Brillouin zone becomes three-dimensional and
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𝒒-vectors may have a 𝑧-component (i.e., phonons may propagate from plane to plane).  Thus, 

isofrequency surfaces acquire a three-dimensional character, and the ΓA�����⃗  direction is added to 

the dispersion relations map giving their intersection with the 𝑧-axis in reciprocal space.  

Third, for very low phonon energies, the ZA bending mode is modified.  The ZA bending 

mode is physically represented by the flexural rippling of planes as the basis atoms vibrate in 

phase with out-of-plane polarization.   

     For three-dimensional materials, the three acoustical dispersion branches are linear at the 

Γ-point and ω(𝒒) = 𝑉s|𝒒|.  𝑉s is the speed of sound in the crystal, or |𝛁𝒒ω|.  For two-

dimensional materials, such as graphene, the ZA bending mode has the form ω(𝒒) = √𝜅|𝒒|2 

at the Γ-point, where 𝜅 is a function of the bending rigidity of the layer.  Graphite behaves as 

a quasi-two-dimensional material in this regard.  The analytical form for the ZA dispersion of 

graphite at the Γ-point is ω(𝒒) = �𝜏|𝒒|2 +  𝜅|𝒒|4, where 𝜏 is a function of the elastic shear 

constant.  Therefore, in the limit as 𝒒 → 0 (and as ω → 0), this reduces to ω(𝒒) = √𝜏|𝒒|, and 

graphite behaves as a three-dimensional material [51, 52, 54].  Physically, shear stress is 

dominant over the layer bending rigidity for very small 𝒒 (which are associated with 

“bending” over extended regions of real space).  For larger 𝒒 (and larger ω), the in-plane 

propagation of ZA bending mode phonons becomes independent of interplanar forces.   

     The interplanar forces will also modify the in-plane polarization branches, but only 

significantly at very low energies (below about 5 meV) [50].  Since the parallel phonon DOS 

is extremely small in this low-energy region, the impact on the total phonon DOS in this 

region is negligible.      
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4.5.3.2  The Impact of Van der Waals Forces on the Dispersion Relations for Graphite 

     Van der Waals forces can only contribute to the total phonon DOS through the 

mechanisms by which interplanar forces modify the dispersion relations of graphene to those 

of graphite.  It is expected that the interplanar forces will be dominated by the interaction 

between adjacent unbonded π-electrons and that Van der Waals forces will be only a minor 

component.  This expectation is borne out by noting the accuracy with which DFT predicts 

the relaxed interplanar distance.  It was previously stated that the experimental 𝑐 lattice 

constant for graphite at 4.2 K is 6.67 Å [55].  The value for 𝑐 of 6.59 Å predicted in this work 

(without geometry constraints) gives an error magnitude of 1.2%.  Wirtz and Rubio [53] 

predict, also using DFT with LDA and no constraints, a value of 6.60 Å – giving an error 

magnitude of 1.1%.  Furthermore, in the work of Savini et al. [56], the elastic shear constant 

(proportional to 𝜏) for graphite is calculated with the linear combination of atomic orbitals 

(LCAO) method with and without a Van der Waals correction.  The Van der Waals 

correction increased the calculated shear constant by only about 7%.  While interplanar 

forces become important only for energies below about 60 meV, it can be expected that Van 

der Waals forces become important only for a much lower range of energies.   

     The ZO′ optical mode splitting in graphite occurs from about 13 meV to 60 meV.  Below 

the Van Hove singularity near 13 meV, which occurs when the LO′ and ZO′ branches 

intersect at the Γ-point, dispersion relations for phonons propagating in the 𝑧-direction 

become possible for all polarizations due to the introduction of interplanar forces.  

Consequently, it is reasonable to hypothesize that the contribution of Van der Waals forces to  
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the total phonon DOS is captured to a very large extent by the properties of the dispersion 

relations at energies below the LO′/ZO′ Van Hove singularity.  In particular, since the 

dispersion branches in the ΓM������⃗  and ΓK�����⃗  directions are modified very little (because interplanar 

forces have minimal impact on the in-plane propagation of phonons), the main effect of Van 

der Waals forces will be manifested through the 𝑧-dependence of the isofrequency surfaces.  

The LO′/ZO′ Van Hove singularity is not a physical “cutoff” point delimiting where Van der 

Waals forces may play a role.  Rather, it will serve as a convenient upper threshold to the 

energies at which Van der Waals forces may significantly impact the total phonon DOS.  

According to Mounet and Marzari [54],  Van der Waals forces significantly influence the 

characteristics of the ΓA�����⃗  dispersions.  Finally, since this region of the DOS is the most 

sensitive from the standpoint of propagated uncertainty, a close examination of the accuracy 

of the reference VASP/PHONON results in this region is judicious. 

 

4.5.3.3  Geometric Calculation of the Phonon Density of States with Experimental Data  

     For a periodic crystal structure, the phonon density of states 𝜌branch(𝜔) associated with 

one dispersion branch is defined as the number of allowed phonon wave vectors 𝒒 

terminating within the volume in reciprocal space enclosed by the isofrequency surfaces 

𝑆(𝜔) and 𝑆(𝜔 + 𝑑𝜔) for that branch, per unit 𝜔.  Since an infinite perfect crystal is assumed 

with no wave vector periodic boundary conditions, the number of wave vectors 𝒒 enclosed 

by any two isofrequency surfaces is theoretically infinite.  However, the only concern is the 

relative values of the phonon density over 𝜔 such that 𝜌branch(𝜔) can be considered a 

normalizable phonon population density function.  Without loss of generality, all 𝒒 are 
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treated as originating at the Γ-point of the first Brillouin zone.  Mathematically, one can write 

     𝜌branch(𝜔) = 𝐶 ∫ 𝑑3𝑘
𝑑𝜔

 
shell ,                                                                                             (4.9) 

where 𝐶 is a normalization constant, and the integral is taken over the shell volume of 

reciprocal space enclosed by 𝑆(𝜔) and 𝑆(𝜔 + 𝑑𝜔) for the given branch.  Note that 

∫ 𝑑3𝑘
𝑑𝜔

 
shell = ∫𝑑𝑆(𝜔)𝑑𝑘⊥, where 𝑑𝑘⊥ is the distance from a surface element 𝑑𝑆(𝜔) on 𝑆(𝜔), 

along a vector normal to 𝑑𝑆(𝜔), to the surface 𝑆(𝜔 + 𝑑𝜔).  Also, 𝑑𝑘⊥ = 𝑑𝜔
|𝛁𝒒ω|

, which is 

equivalent in one dimension to stating 𝑑𝑘 = 𝑑𝜔
𝑑𝜔/𝑑𝑘

.  Now, Eq. (4.9) can be rewritten  

     𝜌branch(𝜔) = 𝐶 ∫ 𝑑𝑆(𝜔)
�𝛁𝒒ω�

 
S = 𝐶 ∫ 𝑑𝑆(𝜔)

𝑣g(𝜔,𝒌)
 
S ,                                                                        (4.10) 

where 𝑣g(𝜔,𝒌) maps the group velocity over 𝑆(𝜔) [40].  Thus, 𝜌∥(𝜔) will be given by 

summing over every T and L polarization branch, 𝜌⊥(𝜔) will be given by summing over 

every Z polarization branch, and 𝜌(𝜔) will be given by summing over all branches.   

     With experimental dispersion data for phonon energies below the LO′/ZO′ Van Hove 

singularity, Eq. (4.10) can be used to calculate the total phonon density of states 

geometrically in this low-energy region, and this result can be compared to the reference 

phonon DOS calculated by VASP/PHONON.  This allows an assessment of the systematic 

uncertainty inherent in the reference 𝜌(𝜀) as a result of the neglect of Van der Waals forces 

and as a result of any other model uncertainties in this highly sensitive low-energy region.  In 

theory, fully three-dimensional experimental dispersion data defining the isofrequency 

surfaces below the LO′/ZO′ Van Hove singularity within the first Brillouin zone is needed.  

For hexagonal lattices, it is standard for dispersion relations to be experimentally measured 
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only in the ΓA�����⃗ ,  ΓM������⃗ , and ΓK�����⃗  directions of high symmetry.  Even in VASP/PHONON, 

dispersion data is calculated only in specific requested directions.  Fortunately, the symmetry 

of graphite can be applied to describe the three-dimensional shapes of the isofrequency 

surfaces using only this high-symmetry information. 

     The isofrequency surfaces of graphene at low frequencies are circular in two dimensions 

(or cylindrical in three-dimensions).  That is, the group velocity at any particular frequency 

has in-plane isotropy [50, 57].  It is expected that the addition of interplanar forces in 

graphite should have no effect on this property.  Indeed, in the limit as 𝜔 → 0, the 

isofrequency surfaces of graphite are ellipsoidal with in-plane isotropy [58, 59].  Figure 4.16 

gives a representation of an ellipsoidal isofrequency surface in the first Brillouin zone [58].  

The LO′/ZO′ Van Hove singularity represents a change in topology of the isofrequency 

surfaces for Z polarizations, above which the surfaces become open at the top of the first 

Brillouin zone and rapidly transition to the cylindrical shape for two-dimensional graphene.

  
                                                                   

 
 
 
Figure 4.16  Hexagonal first Brillouin zone for graphite with a representative ellipsoidal 
isofrequency surface for frequencies below the LO′/ZO′ Van Hove singularity (for 𝐙 
polarizations) or below the TO′ Van Hove singularity (for in-plane polarizations) [58].  
   

𝒙� 
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The TO′ Van Hove singularity (near 5 meV) represents this same effect for in-plane 

polarizations [50, 59, 60].              

     The only information necessary to fully describe an ellipsoidal isofrequency surface of graphite 

with in-plane isotropy is its intersections with the ΓA�����⃗  and  ΓM������⃗  vectors.  Figure 4.17 presents low-

energy experimental dispersion data for graphite at 300 K from Mohr et al. [61] using 

inelastic X-ray scattering and from Nicklow et al. [51] using coherent inelastic neutron 

scattering, overlaid onto the reference dispersion relations generated by VASP/PHONON.  It 

is important to note that VASP/PHONON predicts the in-plane propagation phonon modes 

with high accuracy.  In particular, the ZA branch is a near-perfect fit to experimental data.  It 

is also clear that the ΓA�����⃗  dispersion curves are undercalculated (in energy), which is consistent  

    

 

 
 
Figure 4.17  Low-energy dispersion relations for graphite in Γ𝐀�����⃗  and Γ𝐌������⃗  directions.  Red lines 
are reference results from VASP/PHONON.  Blue dots are experimental data from Mohr et al. 
[61] using inelastic X-ray scattering.  Black dots are experimental data from Nicklow et al. [51] 
using coherent inelastic neutron scattering.                                                                   
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with a missing interplanar force component.  The goal is to compare the reference total 

phonon DOS calculated in this work in the region below about 13 meV to the total phonon 

DOS geometrically calculated from experimental dispersion data.   

     To geometrically calculate the phonon density of states for one polarization branch with 

Eq. (4.10) for ellipsoidal isofrequency surfaces, two pieces of information is required.  First, 

the 𝑘-radius of the ellipsoid in reciprocal space must be described in all directions.  The in-

plane radius is simply the 𝑘(𝜔) given by the dispersion curve for a particular polarization in 

the ΓM������⃗  direction and the 𝑧-radius is the same for the ΓA�����⃗  direction.  For experimental data, 

this is determined by interpolation.  The second piece of information required is the group 

velocity 𝑣g(𝜔,𝒌) in a direction normal to 𝑆(𝜔) for every point on 𝑆(𝜔).  This can also be 

mapped geometrically using the known values of 𝑣g(𝜔,𝒌) = � 𝒅𝝎
𝑑𝑘⊥

� in the ΓM������⃗  and ΓA�����⃗  

directions, which is simply the magnitude of the 𝑑𝜔
𝑑𝑘

 slope of a dispersion curve at a given 

(𝜔,𝑘).  For experimental data, this is also determined by interpolation.  An isofrequency 

surface 𝑆(𝜔 + Δ𝜔) will have ΓM������⃗  and ΓA�����⃗  radii of 𝑘M,A(𝜔) + Δ𝜔 �𝑑𝑘
𝑑𝜔
�
M,A

.  For a specific 

small numerical value for Δ𝜔, the radii for 𝑆(𝜔 + Δ𝜔) can be calculated in the ΓM������⃗  and ΓA�����⃗  

directions.  The outer 𝑆(𝜔 + Δ𝜔) ellipsoid can then be mapped exactly around the inner 

ellipsoid 𝑆(𝜔).  Next, the normal distance from 𝑆(𝜔) to 𝑆(𝜔 + Δ𝜔) can be computed for 

every point on 𝑆(𝜔), allowing the determination of the group velocity normal to 𝑆(𝜔) for 

every point on 𝑆(𝜔).   In the limit as Δ𝜔 ⟶ 0, the resulting group velocity map over 𝑆(𝜔)

converges to the correct map and the phonon density of states for the given polarization
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branch can be solved.  The summation over all three polarization branches (where the two in-

plane partials will be identical) yields the total phonon density of states.  Since the total 

phonon DOS is normalized, there is no need to multiply the result by four to account for each 

basis atom.        

     To verify the accuracy of the above procedure, the geometric calculation of the phonon 

density of states for graphite was carried out using numerical reference VASP/PHONON 

dispersion data in the ΓM������⃗  and ΓA�����⃗  directions below the LO′/ZO′ Van Hove singularity and 

compared to the code-generated reference total phonon density of states.  For the in-plane

polarizations above the TO′ Van Hove singularity,  a cylindrical shape was assumed for the 

isofrequency surfaces.  Figure 4.18 compares the results of the ellipsoidal calculation to the

reference VASP/PHONON direct code calculation.  The amplitude of the ellipsoidal 

calculation was fitted to the reference VASP/PHONON calculation to determine the 

appropriate normalization constant.  The fit is seen to be very strong.        

     The process is now repeated with the experimental data given in Figure 4.17.  For the in-

plane polarization branches, there is no experimental data from Mohr et al. [61] in the ΓA�����⃗  

direction (i.e., for the TA and TO′ branches in the ΓA�����⃗  direction).  Since the parallel phonon 

density of states is an extremely small component of the total phonon DOS in this low- 

energy region, the experimental data from Nicklow et al. [51] was substituted.

Independent experimental data is available from Mohr at al. for the important LA and LO′ 

branches in the ΓA�����⃗  direction.  Figure 4.19 compares both plots in Figure 4.18 to the phonon 

DOS geometrically calculated from each set of experimental data.   
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Figure 4.18  Low-energy comparison of reference phonon DOS calculated directly by 
VASP/PHONON to phonon DOS calculated using ellipsoidal geometry and VASP/PHONON 
dispersion data.  VASP/PHONON code calculation (black line), geometric calculation (red line).
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Figure 4.19  Low-energy phonon DOS for graphite calculated by various methods.  Reference 
VASP/PHONON code result (black line).  Ellipsoidal geometry with reference VASP/PHONON 
dispersion data (red line).  Ellipsoidal geometry with Nicklow et al. experimental dispersion 
data (blue line) [51].  Ellipsoidal geometry with Mohr et al. experimental data (green line) [61].  
     

Reference phonon DOS  
Geometric calculation from reference dispersion data   
Geometric calculation from Ref. [51] dispersion data 
Geometric calculation from Ref. [61] dispersion data 
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     The 𝑅3 function given in Section 3.4.2 (which will now be defined as 𝑅C), can be used to 

operate on 𝒑 to sample between the minimum and maximum, for each 𝑝𝑑, of each of the 

curves given in Figure 4.19.  However, uncertainties in the experimental data must be 

accounted for.  Mohr et al. quotes a single experimental uncertainty of 3 meV in dispersion 

data [61].  Nicklow et al. provides variable graphical uncertainties for a few select 

experimental data points [51].  Almost all are for energies above the LO′/ZO′ Van Hove

singularity, but an extrapolation of trends to the low-energy region implies uncertainties that 

are also very close to 3 meV.  Since the uncertainty information is limited in both papers, and 

no correlation information in provided in either case, a strict Type A point-by-point 

evaluation of uncertainty is not possible.   

     Physically, the dispersion curves under consideration originate at the Γ-point, are smooth 

and slowly varying, and are nearly linear or have an expected functional shape.  This allows 

the uncertainty in the dispersion curves to be reasonably treated in terms of amplitude only.  

Indeed, this interpretation is consistent with the variation seen in a wide variety of 

experimentally and theoretically calculated dispersion data for this low-energy region.                

An amplitude uncertainty can now be set that is consistent with an energy uncertainty of 

about 3 meV over the low-energy region of concern.  This is a Type B evaluation of 

uncertainty.  The result is in an uncertainty in the geometrically calculated total phonon DOS 

of about 20% over the energy region examined.  Therefore, in determining the bounds of 

each 𝑝𝑑 for 𝑅C in the Monte Carlo procedure, the two experimental geometric phonon spectra 

are scaled by ± 20%.  Figure 4.20 gives the full region which 𝑅C will sample, accounting 
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Figure 4.20  Final region in the graphite phonon DOS below 13 meV sampled by 𝑹𝐂, accounting 
for each of the curves given in Figure 4.19 as well as experimental uncertainty.      
 

for all of the curves in Figure 4.19 as well as experimental uncertainty.  This region describes 

the full scope of variation determined to be possible in the total phonon density of states for 

graphite in the region below 13 meV.     

 

4.5.4  Total Uncertainties in the Phonon Density of States 

     The uncertainties described in Sections 4.5.2.1 – 4.5.3.3 can now be combined to generate 

a perturbed total phonon DOS 𝒑� = 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒[𝑅C𝑅B𝑅A(𝒑)].  The order of application of the 

R-functions can be important.  In this case, the Type 1 uncertainty (𝑅A) must be modeled first 

since it is based directly on the reference phonon DOS.  The remaining Type 2 uncertainties
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(𝑅B and 𝑅C) can be applied in either order since the 𝑝𝑑 they modify do not overlap.  

However, in principle, 𝑅C should be applied last since it models uncertainty external to 

VASP/PHONON.  After the application of all R-functions, the resulting spectrum is 

renormalized to give 𝒑�.   

     Figure 4.21 gives the correlation matrix 𝑪𝒑 generated through 𝑁 = 500 Monte Carlo 

samples of 𝒑�.  The structure of the correlation matrix reflects that of the phonon DOS as well 

as the R-functions employed in its generation.  In the upper left-hand corner, a plateau of

 
Figure 4.21  Correlation matrix 𝑪𝒑 calculated for the graphite phonon DOS using 𝑵 = 𝟓𝟎𝟎 
Monte Carlo samples of perturbed phonon spectra 𝒑�. 
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high correlation reflects the coupling of 𝑝𝑑 when 𝑅C samples within the region defined in 

Figure 4.20.  The interior of the matrix has only random fluctuations, since only statistical 

uncertainties are modeled for intermediate energies.  The high-correlation block structure in 

the lower right-hand corner is due to the large peaks present in the region above 140 meV 

where 𝑅B is being applied. 

     The relative uncertainty in each 𝑝𝑑 resulting from the application of all R-functions and 

renormalization is plotted in Figure 4.22.  Significant uncertainties are evident in the high-

sensitivity region sampled by 𝑅C below the LO′/ZO′ Van Hove singularity.  The low flat 

uncertainties at intermediate energies are due to statistical fluctuations in 𝑝𝑑 modeled by 𝑅A.  

At the upper energy region of the DOS, the uncertainties are generally proportional to the

slope of the spectrum as the features are being shifted in energy by 𝑅B. 
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Figure 4.22  Relative uncertainty in the graphite phonon DOS calculated using 𝑵 = 𝟓𝟎𝟎 Monte 
Carlo samples of perturbed phonon spectra 𝒑�. 
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     The characteristics of 𝑪𝒑 and uncertainties in 𝑝𝑑 will be propagated and apparent in the 

Monte Carlo calculations of the thermal scattering law, differential cross sections and 

integrated inelastic cross sections.  Furthermore, an uncertainty of about 10.5% in the Debye-

Waller coefficient 𝜆 will contribute broadly to propagated uncertainties.          

 

4.6  Calculated Uncertainties in the Thermal Scattering Law 𝑺𝐬𝐲𝐦(𝜶,𝜷) 

     The thermal scattering law 𝑆sym(𝛼,𝛽), or 𝒔, is calculated at 293.6 K for graphite as 

described in Section 2.2, using a 110-point β-grid and 70-point 𝛼-grid, for each of 500 Monte 

Carlo trials.  A phonon order of 𝑛 = 22 (which provides convergence of the integrated 

inelastic cross section to within 1 millibarn for incident energies up to about 1 eV), is 

incorporated in the following Monte Carlo calculations to reduce the computational expense 

of the standard phonon order 𝑛 = 100 (which provides the same convergence up to about 4 

eV).  The resulting covariance and correlation matrices each have 702 × 1102 = 5.929 ×

107 elements and contain five-dimensional information (two 𝛼-dimensions, two 𝛽-

dimensions and one magnitude dimension).  For better visualization, three-dimensional cross 

sections of 𝑪𝒔 are plotted (instead of 𝑽𝒔), where either the 𝛼 or 𝛽 dimension is fixed.  

Covariances are set to zero when any associated 𝑆sym(𝛼,𝛽) is < 1 × 10-10.  Therefore, the 

large bands of zero correlation in the 𝑪𝒔 plots highlight where corresponding elements of 𝑽𝒔 

have extremely low importance. 

     Results for the correlation matrix are presented for a variety of fixed 𝛼 and fixed 𝛽 cases 

to exhibit the topography and qualities of 𝑪𝒔 (and implicitly 𝑽𝒔) as a function of scattering 
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probability, multiphonon scattering, and the applied R-functions for 500 Monte Carlo trials.  

Each correlation matrix cross section is followed by a plot giving a visual of the high, low 

and average Monte Carlo values calculated for 𝑆sym(𝛼,𝛽), where “high” refers to the +1𝜎 

result, “low” refers to the −1𝜎 result and “average” is the Monte Carlo mean.  Next, the 

relative uncertainty for fixed 𝛼 or 𝛽 (as appropriate) is plotted, and a short discussion of the 

three graphs follows.  All graphs with variable 𝛽 are plotted as a function of energy transfer 

(eV) to facilitate comparison with the reference phonon DOS and the R-functions employed.  

The energy axes run the full length of the associated 𝛽 in the 𝛽-grid employed, where a

maximum 𝛽 = 75 is used (corresponding to 1.8975 eV for 293.6 K).

 

Figure 4.23  𝑺𝐬𝐲𝐦(𝜶,𝜷) correlation matrix for 𝜶 = 𝟎.𝟐.  
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     For the 𝛼 = 0.2 case given in Figures 4.23 – 4.25, 𝑪𝒔 looks very similar to 𝑪𝒑 since one-

phonon scattering is highly dominant for low 𝛼.  The uncertainties in 𝑆sym(𝛼,𝛽) exceed 25% 

for low 𝛽, for which 𝑆sym(𝛼,𝛽) has the highest-valued terms.  The 𝛼 = 0.2 case has the 

highest uncertainties in 𝑆sym(𝛼,𝛽) for the three fixed 𝛼 examples given.  Although 

significant uncertainties also exist in 𝑆sym(𝛼,𝛽) at higher 𝛽 (as a result of the 𝑅B reshaping 

function), the magnitude of 𝑆sym(𝛼,𝛽) is quite low at these points, and the associated total

uncertainty propagated to integrated inelastic cross sections will be very low.

 

Figure 4.26  𝑺𝐬𝐲𝐦(𝜶,𝜷) correlation matrix for 𝜶 = 𝟏.𝟎.
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     For the 𝛼 = 1.0 case given in Figures 4.26 – 4.28, 𝑪𝒔 begins to acquire distinct block 

characteristics associated with multiphonon scattering.  Combinatorial values of energy 

transfer may have very high or very low probability depending on the phonon occupation 

number and the particular structure of the phonon spectrum.  The random background 

fluctuations due to 𝑅A begin to be averaged out.  The uncertainties in 𝑆sym(𝛼,𝛽) are slightly 

smaller than for 𝛼 = 0.2 and tend to be less localized at larger 𝛽.  However, uncertainties at 

the lowest 𝛽 remain dominant due to the high uncertainty in the low-energy region of the

phonon density of states modeled by 𝑅C.
 

 
 
                                   Figure 4.29  𝑺𝐬𝐲𝐦(𝜶,𝜷) correlation matrix for 𝜶 = 𝟓.𝟎.
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     For the 𝛼 = 5.0 case given in Figures 4.29 – 4.31, 𝑪𝒔 begins to reflect the complete 

dominance of multiphonon scattering.   The block characteristics between energy transfers of 

related magnitudes associated with multiphonon scattering are pronounced.  The small 

random uncertainties imposed by 𝑅A are no longer visible since one-phonon scattering is 

mostly absent and the convolutions of multiphonon scattering obscure fine features and fine 

perturbations of the phonon spectrum.  Accordingly, the uncertainties in 𝑆sym(𝛼,𝛽) become 

quite small and very non-localized outside the low-energy 𝑅C sampling region as the impact

of individual 𝑝𝑑 is marginalized. 
 

 

                        Figure 4.32  𝑺𝐬𝐲𝐦(𝜶,𝜷) correlation matrix for 𝜷 = 𝟎.𝟒 (10 meV).
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Figure 4.33  Monte Carlo high, average and low bands for 𝑺𝐬𝐲𝐦(𝜶,𝜷) for 𝜷 = 𝟎.𝟒 (10 meV). 

 
Figure 4.34  Relative uncertainty for 𝑺𝐬𝐲𝐦(𝜶,𝜷) for 𝜷 = 𝟎.𝟒 (10 meV).  
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     For fixed 𝛽 cases, the structure of 𝑪𝒔 reflects multiphonon scattering, the magnitude of 

𝑆sym(𝛼,𝛽) as a function of 𝛼 and the region of the phonon DOS the 𝛽 is associated with.  

Individual uncertainties in 𝑝𝑑 are not represented since perturbations in the phonon DOS are 

sampled as a function of 𝛽 (not 𝛼).  Uncertainties in the DOS are manifested through 

uncertainty in the Debye-Waller factor and through uncertainties in the particular 𝑝𝑑 

associated (either singly or in combination) with 𝐸(𝑝𝑑) = 𝛽𝑘B𝑇.  The 𝑆sym(𝛼,𝛽) for lower 𝛼 

tend to be correlated due to dominance of one-phonon scattering.  The 𝛽 = 0.4 case (Figures 

4.32 – 4.34) is associated with energy transfers of ~10 meV.  The large range of near-perfect 

correlation is because the 𝑝𝑑 associated with many multiphonon energy combinations 

yielding a 10 meV energy transfer lie within the coupled sampling region for the 𝑅C function.
  

 

                          Figure 4.35  𝑺𝐬𝐲𝐦(𝜶,𝜷) correlation matrix for 𝜷 = 𝟐.𝟐 (56 meV).
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Figure 4.36  Monte Carlo high, average and low bands for 𝑺𝐬𝐲𝐦(𝜶,𝜷) for 𝜷 = 𝟐.𝟐 (56 meV). 

 

Figure 4.37  Relative uncertainty for 𝑺𝐬𝐲𝐦(𝜶,𝜷) for 𝜷 = 𝟐.𝟐 (56 meV). 
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     The 𝛽 = 2.2 case in Figures 4.35 – 4.37 is associated with an energy transfer of ~56 meV 

that lies just before a Van Hove singularity (see Figure 4.7).  The structure of 𝑪𝒔 has a 

smaller high-correlation region than for 𝛽 = 0.4 since one-phonon scattering is less probable 

for a given 𝛼 for greater 𝛽 and because 56 meV is outside of any R-function sampling region.  

The uncertainty is also much lower in this region for the same reason.  𝑆sym(𝛼,𝛽) for lower 

𝛼 are of lower magnitude and correlated due to the contribution of one-phonon scattering to 

the energy transfer, although much less so than for the 𝛽 = 0.4 case.  For higher 𝛼, the 

relative uncertainty in 𝑆sym(𝛼,𝛽) will rise as a function of 𝛼 as the magnitude of 𝑆sym(𝛼,𝛽) 

rapidly decreases.                 

     While the uncertainties in 𝑆sym(𝛼,𝛽) described in the set of examples given provide 

insight into the expected contributions to differential and integrated cross section 

uncertainties, the details of the 𝑆sym(𝛼,𝛽) covariance matrix will be essential in the 

propagation of uncertainties.  In particular, the formulation given in Eq. (3.15) for directly 

calculating differential and integrated covariances and uncertainties depends only on the 

unique properties of 𝑽𝒔 (and not on the properties of the sensitivity coefficients – which are 

defined constants).   

 

4.7  Propagated Uncertainties in Differential Cross Sections in Energy 
(Secondary Neutron Distributions) 
 
     The characteristics of the secondary neutron energy distributions and their uncertainties 

will be similar in many respects to those for 𝑆sym(𝛼,𝛽) when mapped over fixed 𝛼.  The 

secondary distributions are integrated over angle, or over the momentum transfer factor 𝛼, 
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which is independent of the phonon energy spectrum in the incoherent approximation.  

Therefore, uncertainties in secondary neutron distributions will retain much of the structure 

seen in the thermal scattering law.  The variation in uncertainties as a function of incident 

energy will depend on the physical 𝛼 and 𝛽 limits for scattering, which do not apply for the 

general calculation of 𝑆sym(𝛼,𝛽).  Finally, uncertainties in secondary neutron energy 

distributions will impose uncertainties in the integrated inelastic cross section as well as 

result in uncertainties in the downscattering to upscattering ratio.  The latter can be an 

important consideration in predicting the equilibrium thermal neutron energy distribution of a 

nuclear system.      

     Results will be presented for the incident energies 𝐸 = 0.0253 eV, 0.1 eV and 0.5 eV.  For 

each incident energy, the Monte Carlo mean differential cross sections will be given along 

with the relative uncertainties in the differential cross sections.  All calculations are for 𝑇 = 

293.6 K.  The ranges for each graph will be selected to correspond to the highest probability 

secondary energies contributing the most to integrated cross sections.        

     The 𝐸 = 0.0253 eV = 𝑘B𝑇 case in Figures 4.38 – 4.39 is associated with a neutron with 

incident energy near the thermal energy distribution mean  in a system at a temperature of 

293.6 K.  Upscattering is slightly dominant since the equilibrium energy is 3
2
𝑘B𝑇.  One-

phonon scattering accounts for the great majority of the cross section, and uncertainties are 

almost completely restricted to the region sampled by 𝑅C.  This also corresponds to the 

majority of the area under the curve in the distribution.  Therefore, essentially all of the 

uncertainty will be translated to uncertainty in the integrated inelastic cross section.                                                                                                    
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Figure 4.38  Monte Carlo mean differential cross section in energy at 𝑬 = 0.0253 eV. 

 

          

Figure 4.39  Relative uncertainty in the differential cross section in energy at 𝑬 = 0.0253 eV. 
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     The 𝐸 = 0.1 eV case in Figures 4.40 – 4.41 is similar, except downscattering is more 

dominant and secondary energies are more widely distributed (scaling differs for each 

example).  Uncertainty is still heavily peaked in the region 𝑅C is sampling, which accounts 

for the majority of the area under the distribution curve, but a slight increase in uncertainties 

at higher energy transfers is seen due to multiphonon scattering with high-probability modes.  

In particular, small peaks near 60 meV and 80 meV are visible, although these will contribute

very little to the integrated cross section uncertainty due to the low probability of the events. 
 
     The final 𝐸 = 0.5 eV case in Figures 4.42 – 4.43 displays heavily dominant 

downscattering with a widely distributed secondary distribution.  The uncertainties in the 𝑅C 

range are still peaked, but at a smaller magnitude than the previous cases.  Furthermore, 

considerable structure is evident in the downscattering uncertainties in regions of the

secondary distribution retaining significant magnitude.  

     
Figure 4.40  Monte Carlo mean differential cross section in energy at 𝑬 = 0.1 eV. 
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Figure 4.41  Relative uncertainty differential cross section in energy at 𝑬 = 0.1 eV. 
 
 

       

Figure 4.42  Monte Carlo mean differential cross section in energy at 𝑬 = 0.5 eV.   
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Figure 4.43  Relative uncertainty in differential cross section in energy at 𝑬 = 0.1 eV. 
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cross sections in the same direction.  Clearly, any particular change in the Debye-Waller 

factor can only move all integrated cross sections in the same direction.  In this work, 

correlations among all integrated cross sections are 97% or greater.  For integrated cross 

sections theoretically calculated in the incoherent approximation with a supplied total phonon 

DOS, the details of their correlations may be relatively unimportant once their particular 

uncertainties have been described.  Yet, a description of covariances (and correlations) in the 

double-differential thermal scattering law data is essential to accurately determining these 

integrated inelastic cross section uncertainties. 

     Figure 4.44 plots the ± 1𝜎 Monte Carlo range calculated for the integrated inelastic cross 

section for graphite at 293.6 K and compares the results to the ENDF/B-VII evaluation [21, 

22].  The Monte Carlo range gives the expected variation in the integrated cross sections 

based the application of the R-functions described in Sections 4.5.2.1 – 4.5.3.3 to the 

reference phonon DOS.  Again, while the reference phonon DOS was the basis for the 

perturbations, the cross section data provided for ENDF evaluations must be the Monte Carlo 

mean for the quoted uncertainties to be statistically consistent.   

     Figure 4.45 plots the relative uncertainty in the Monte Carlo calculated integrated inelastic 

cross section.  Note that uncertainties are highest (about 14%) in the incident energy region 

about 𝑘B𝑇 = 0.0253 eV associated with the 293.6 K material temperature.  Therefore, the ± 

1𝜎 band represents a variation in the integrated cross section of about 28%.  Uncertainties at 

high incident energies are extremely low because they only take into account uncertainties in 

the phonon DOS (and scattering is almost entirely multiphonon).  In theory, any arbitrary

 



 

143 

 
 

Figure 4.44  Monte Carlo range (+/- 𝟏𝝈) for the integrated inelastic cross section for graphite at 
compared to the ENDF/B-VII evaluation [21, 22]. 

 

 

Figure 4.45  Propagated uncertainty in the graphite integrated inelastic cross section. 
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phonon DOS should yield convergence with the free cross section for a sufficiently high 

phonon-order calculation.  However, the total uncertainty can never be reduced below the 

known uncertainty in the bound nuclear cross section, which is about 0.5% for C-12 [13].       

     Uncertainties have been calculated based on the application of three separate R-functions.  

It is instructive to examine the contributions of each R-function separately.  Of the resulting 

integrated uncertainties, the 𝑅C function sampling the low-energy region of the phonon DOS 

contributes approximately 92% of the magnitude.  Statistical uncertainties modeled by 𝑅A 

contribute about 7.5% and the systematic uncertainties in the upper-energy region modeled 

by 𝑅B contribute about 0.5%.  It should be pointed out that the very small energy shift 

imposed by 𝑅B is not primarily responsible for the very small contribution to integrated 

uncertainties.  As an arbitrary example, amplifying the shift by a factor of ten only increases 

the contribution to 2%.  Any perturbations in this upper-energy region of the phonon DOS 

have almost no impact on propagated uncertainties.  Most importantly, differential and 

integrated cross sections will have high sensitivity to any kind of variation in the low-energy 

region of the phonon DOS.  Therefore, the modeling of physical phenomena that influence 

this low-energy region is one of the greatest potential sources of cross section uncertainty and 

should always be investigated carefully.   
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Chapter 5   

Conclusions and Future Work 
 
 

     It has long been recognized that the uncertainties inherent in supplied nuclear data can 

contribute significantly to uncertainties in the calculated response parameters in simulated 

nuclear systems.  The nuclear data community has been involved in data covariance 

evaluations for several decades.  The ENDF nuclear data library format is an international 

standard for which formats and procedures for covariance evaluations are well established.  

At present, no thermal scattering covariance data exists in published ENDF evaluations.  

Additionally, no standard format or procedures exist for representing covariances for ENDF 

File 7 thermal scattering law data or for differential and integrated thermal cross section data. 

     In thermal reactors and other nuclear systems where thermal neutrons represent a 

significant fraction of the neutron population, system response parameters may be very 

sensitive to the thermal neutron energy distribution.  Both integrated and differential thermal 

neutron scattering cross sections play a fundamental role in determining the characteristics of 

this distribution.  Consequently, small changes (or uncertainties) in the cross section data can 

potentially impact the accurate calculation of reaction rates, design parameters and safety 

margins. 
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5.1  The Phonon Density of States and Monte Carlo:  A Basis for Describing  
        Describing Thermal Scattering Uncertainties 
 

     By convention, published ENDF File 7 inelastic scattering law data, 𝑆(𝛼,𝛽), is calculated 

in the incoherent approximation by phonon expansion using a single total phonon density of 

states (or excitation spectrum) for each chemical element in the material and for each 

temperature requested.  Integrated and differential inelastic cross sections are determined by 

integration over 𝑆(𝛼,𝛽).  For many nuclear engineering applications, this methodology is 

physically appropriate, and the phonon spectrum is the fundamental parameter which 

determines the thermal scattering law and resulting cross sections.  Therefore, quantifying 

uncertainties in thermal scattering cross sections generated by this conventional method  

requires an understanding and description of uncertainties in the phonon DOS.   

     The phonon density of states is a dynamic property of the material structure.  Its particular 

features depend on the interatomic potentials of the structure.  There are many possible 

methods of determining the phonon density of states.  These methods may contain both 

theoretical and experimental components.  Any uncertainties in the phonon spectrum will be 

intimately tied to the particular methodology and information used in its generation.  

     It is of interest to have a generalized method for determining and expressing uncertainties 

in the phonon DOS that is independent of how it was calculated.  The phonon DOS is 

typically defined piecewise as a probability density function describing the population of 

phonon modes with energies that lie within uniformly-spaced energy bins.  Parameterizing 

the spectrum as a function of each energy bin allows uncertainties to be described in the 
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physical context of phonon population density, rather than as a function of methodology-

dependent parameters.  

    Particular aspects of uncertainty in a phonon density of states may be geometrically 

described in terms of expected variation in the spectral shape of the DOS.  This allows the 

phonon DOS to be operated on by random reshaping functions which reflect specific 

physical or statistical information regarding the probable energy distribution of the phonon 

population.  After one operation by a collection of reshaping functions followed by 

renormalization, a perturbed phonon DOS results that is representative of the variation in the 

spectrum as a function of information possessed by the evaluator.  Through Monte Carlo 

sampling, this process may be used to estimate a joint probability density function for the 

constituent energy bin parameters of the phonon spectrum.     

     Finally, either through formal propagation of uncertainty or by continued Monte Carlo 

analysis, a covariance matrix for 𝑆(𝛼,𝛽), or 𝑆sym(𝛼,𝛽), can be produced.  With this 

information, it is a straightforward mathematical exercise to calculate covariances and 

uncertainties for differential and integrated scattering cross sections.   

     Like many uncertainty and covariance evaluations, the success of this procedure rests with 

the ability of the evaluator to make sound scientific judgments in assessing and 

mathematically describing the nature of uncertainties present.  As with many experimental 

measurements, Type 2 systematic uncertainties will typically be dominant and require careful 

analysis to account for properly.  Fundamentally, it is the physics of the molecular system 

that defines the phonon density of states.  Therefore, the ability to accurately account for the 
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physics (whether through first-principles calculations or through interpreting experimental 

measurement data) will be the fundamental source of uncertainty that must be considered.     

                          

5.2  A Generalized Interpretation of the Graphite Example Results 

     In the example analysis given for graphite, a very detailed investigation of the physics of 

the structure of graphite was conducted.  In particular, the ability of the density functional 

theory and lattice dynamics methods employed to accurately model this physics was assessed 

in the context of calculating the phonon density of states.  While the particular sources of 

uncertainty in the example are specific to the graphite problem, several important 

conclusions can be drawn that apply generally to the phonon DOS of any material produced 

by any method.  

     Most importantly, there will always be a high sensitivity of the differential and integrated 

cross sections to the specific features (and uncertainties in those features) of the low-energy 

region of the phonon spectrum, even at high temperatures.  At relatively low temperatures, 

the practical impact of particular features of the phonon spectrum on cross sections is almost 

entirely restricted to the low-energy region.  In general terms, the population of low-energy 

phonons emerges as a function of relatively weak and long-range atomic interactions and the 

presence of heavier nuclei.  The ability to model the uncertainties involved in quantifying the 

low-energy region will be essential in accurately representing uncertainties in differential and 

integrated cross sections. 

     Regardless of the material or nature of uncertainties modeled, differential cross section 

uncertainties will always be larger than integrated cross section uncertainties.  Indeed, this is 
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typically the case for experimental measurements as well.  Differential cross section 

uncertainties result in uncertainties in the particular distribution of scattered neutrons, in the 

final integrated cross sections, and in the upscattering to downscattering ratio.  Uncertainties 

in the differential cross sections in energy will always be closely related to the specific 

features of the phonon density of states and their particular uncertainties.  Only uncertainties 

for the highest-probability scattering events are significant.  Generally, this corresponds to 

low energy-transfer events.  

     Uncertainties in integrated cross sections will always be peaked in the neighborhood of 

𝐸 ≈ 𝑘B𝑇.  This is also the region in which the thermal neutron energy distribution of a 

physical nuclear system will be peaked.  Therefore, this results in a natural amplifying effect 

for the propagation of nuclear data uncertainties to system response parameters.  For higher 

incident energies, multiphonon scattering is dominant.  The effect of multiphonon scattering 

is to “smooth out” any resolved uncertainty information for the phonon spectrum.  Thus, in 

the limit of high energy, the uncertainty in the integrated inelastic cross section is reduced to 

that of the associated bound nuclear cross section.  

     Although the general behavior of integrated cross section uncertainty can be predicted 

independent of the material being examined, the magnitude of the uncertainty will be closely 

tied to the details of the uncertainties modeled in the phonon density of states. 

 

5.3  Future Work      

     There are two important classes of issues which will need to be addressed to arrive at a 

fully comprehensive and standardized methodology for treating thermal scattering 
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uncertainties.  First, 𝑆(𝛼,𝛽) has historically been calculated in the incoherent approximation 

because this yields a very good estimate for cross sections in many practical situations.  

However, there are still many situations where this treatment is problematic.  Second, in 

order for users to be able to apply uncertainty and covariance information for the thermal 

scattering law and cross sections, the evaluated covariance data needs to be accessible in a 

reasonable format.  This work has focused on the theoretical generation of covariance data.  

From a user standpoint, it is necessary to consider the vast quantities of data involved and the 

need for a practical storage mechanism. 

 

5.3.1  Moving Beyond the Incoherent Approximation 

     The ENDF File 7 format for 𝑆(𝛼,𝛽) is general and not specific to any method of 

calculating 𝑆(𝛼,𝛽).  Therefore, the only limitation in how accurately cross sections can be 

calculated lies in the accuracy and resolution with which 𝑆(𝛼,𝛽), or 𝑆sym(𝛼,𝛽), is tabulated.  

For most materials and for most applications of concern, the error introduced in the 

integrated inelastic cross section due to the use of the incoherent approximation is negligible.  

There are exceptions to this general rule – graphite is one example.  In any case, the error is 

usually on the order of 10% or less.            

     As technology and computing resources have progressed, it has become more 

commonplace to perform detailed and sophisticated first-principles simulations of materials.  

As one example, the full dynamic structure factor (or the thermal scattering law) may be 

determined using molecular dynamics.  If one assumes that even new advanced methods will 
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always result in some significant uncertainty, the need to generalize the treatment of thermal 

scattering uncertainties beyond the incoherent approximation will be of interest. 

     Given the current ENDF File 7 format, there is no obstacle, in principle, to continuing to 

express thermal scattering uncertainty information in terms of an 𝑆(𝛼,𝛽) covariance matrix.  

The methodology of generating this matrix may change, but its applicability will remain.  

With this understanding, there are two paths possible.  One is to cater the generation of an 

𝑆(𝛼,𝛽) covariance matrix to whatever specific new method is employed to calculate 𝑆(𝛼,𝛽) 

(which may or may not involve the phonon density of states).  The second path is to continue 

treating uncertainties in 𝑆(𝛼,𝛽) in terms of the phonon density of states but “add in” the 

missing components of 𝑆(𝛼,𝛽) (e.g., the one-phonon coherent interference terms).   

     Uncertainties and covariances associated with the added terms may be treated explicitly 

and combined to describe a total covariance matrix for the full thermal scattering law.  

Alternatively, the added components may be treated as exact.  The latter method would have 

important practical advantages.  First, it is likely that the great majority of the uncertainty in 

integrated cross sections would still be captured through the phonon DOS.  The added 

components would simply serve to remove the bias on the thermal scattering law (and 

integrated cross sections) imposed by the incoherent approximation.  Furthermore, 

maintaining the phonon DOS as the repository for uncertainty information could greatly 

reduce storage requirements (and allow a standardized format to be retained) if its covariance 

matrix was provided to the user instead of that for 𝑆(𝛼,𝛽).            
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5.3.2  Storing and Processing 𝑺(𝜶,𝜷) Covariance Data 

     In ENDF File 7 libraries, 𝑆(𝛼,𝛽) is tabulated over evaluator-defined 𝛼 and 𝛽 grids.  A 

100 × 100 grid is of typical size, yielding 104 elements per temperature requested.  A 

covariance matrix for this information would contain 108 elements.  It has been stated that the 

𝑆(𝛼,𝛽) covariance matrix represents the only information required to calculate covariances 

and uncertainties for any differential or integrated cross section.  However, a 108 element 

matrix directly supplied to the end-user is likely to be too large for practical use.  Formats 

and procedures must be developed to allow for the compression and compact storage of this 

data while retaining sufficient information to accurately calculate differential and integrated 

cross section covariances.      

     Fortunately, the 𝑆(𝛼,𝛽) covariance matrix contains far more information than is required 

to accurately predict the uncertainties and covariances for differential and integrated cross 

sections which will be associated with it.  Much of the thermal scattering law data itself will 

be of very low magnitude, especially at the outer bounds of 𝛼 and 𝛽.  These low-magnitude 

terms are only necessary for very accurate converged calculations, and any uncertainties in 

their values are of very low importance from the standpoint of integrated cross sections (as 

well as the most probable secondary energies for differential cross sections in energy).  In 

terms of propagation of uncertainty, only uncertainties for the highest-valued terms of 

𝑆(𝛼,𝛽), which represent the highest-probability scattering events and the most sensitive 

parameters, will be of significant consequence.  One straightforward method of greatly 

reducing the 𝑆(𝛼,𝛽) covariance matrix storage requirements is to simply consider only
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covariances for 𝑆(𝛼,𝛽) above a certain threshold.  A very large amount of unnecessary data 

could be eliminated in this fashion with very little impact on the final uncertainty 

quantification for cross sections.   

     Alternatively, the 𝑆(𝛼,𝛽) matrix could be subdivided into a block structure (i.e., over 

specific 𝛼 and 𝛽 blocks) with resolution based on the magnitude and variation of the 

function.  Similar to the procedures used to collapse fine energy-group cross section data 

(and covariances) into coarse energy-group cross section data (and covariances), a group 

averaging procedure may be applied where covariances are retabulated at the level of the 

coarse block structure.  This procedure could be used in combination with a threshold cutoff 

to greatly reduce storage requirements without any significant loss of uncertainty 

information.  In particular, 𝑆(𝛼,𝛽) varies slowly and smoothly over 𝛼 (as does the associated 

correlation matrix).  Therefore, averaging over 𝛼 blocks would be quite natural.    

     Finally, incorporating the ENDF File 30 format, 𝑆(𝛼,𝛽) covariance data could be 

provided indirectly by supplying the user with the covariance matrix for the phonon density 

of states along with appropriate sensitivity matrices.  Although some loss of information 

would be inevitable, the qualitative difference in calculated cross section uncertainties would 

likely be insignificant and well justified for the massive reduction in storage requirements.  

This procedure has particular appeal because it may allow a generalized format for 

expressing and storing thermal scattering covariance information to be retained even if the 

ENDF File 7 format is changed in the future or if coherent interference terms are added in. 
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Appendix A 

The ENDF MF = 7, MT = 4 Format for the Thermal Scattering Law 

 

     The scope of this appendix is limited to a format discussion regarding the 𝑆(α,𝛽) data 

tabulated in the MT = 4 section of the ENDF File 7 library [1].  For a theory discussion of 

𝑆(α,𝛽), refer to Sections 2.1 and 2.2.  For details regarding the processing of 𝑆(α,𝛽), refer to 

Sections 2.2 and 3.2.2. 

     ENDF File 7 libraries contain thermal neutron scattering law data that depends on a 

material’s molecular structure.  There are two MT values associated with MF = 7.  MT = 2 

contains coherent and incoherent elastic scattering data.  Although this can be considered 

“thermal scattering law” data, the inelastic 𝑆(α,𝛽) definition for the thermal scattering law 

will be observed.  MT = 4 tabulates 𝑆(α,𝛽) for specific 𝑇 over 𝛼 and 𝛽 grids defined by the 

evaluator.  The terms 𝛼 and 𝛽 are unitless momentum and energy transfer factors, 

respectively.        

     The title of the MT = 4 section is Incoherent Inelastic Scattering.  The ENDF File 7 

format does not provide any explicit means for tabulating coherent inelastic scattering data.  

However, the format for MT = 4 is independent of the definition of 𝑆(α,𝛽).  Therefore, the 

tabulated 𝑆(α,𝛽) may include coherent one-phonon scattering without adverse effect on the 

storage or processing of the MT = 4 data.  The MT = 4 format does not allow tabulation of 

the scattering law as a function of the scattering angle.  The momentum transfer factor 𝛼 is a 

function only of the cosine of the scattering angle in the laboratory frame.  The MT = 4 

format is specifically designed for randomly oriented microcrystal structure. 
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     Unlike traditional ENDF libraries which contain many different data files for various 

reaction types, ENDF File 7 is a separate library entirely because it is material-specific and 

not nuclide-specific.  For example, a File 7 library may be associated with any chosen 

elemental stoichiometry of a compound and with different polymorphic phases or crystal 

structures of the same material.  A File 7 library must be used in combination with the 

traditional ENDF evaluations for the nuclides represented within.    

     There are several procedures available to address the numerical issues with handing 

extremely large and extremely small numbers in the calculation of 𝑆(α,𝛽) and the issues of 

storing extremely small numbers or large quantities of data.  These include the short 

collision-time (SCT) approximation for large 𝛼, rescaling 𝛼 and 𝛽 as a function of 

temperature, limiting 𝛼 and 𝛽 grid resolution, tabulating ln[ 𝑆(α,𝛽)], and tabulating the 

symmetric scattering law 𝑆sym(α,𝛽) = 𝑆sym(α,−𝛽) = 𝑒𝛽/2𝑆(α,𝛽) for positive 𝛽 only.  

These procedures can be very important when rounding errors on 32-bit or older machines 

can cause serious numerical problems and when storage capacity and processing power are at 

a premium.  In the widely available 64-bit double-precision, numbers with a precision up to 

16 decimal places and with an exponent greater than 300 may be stored.  Additionally, 

storage capacity and processing speed have increased by many orders of magnitude from 

decades past.  Therefore, many of these procedures are no longer strictly necessary and have 

become a matter of practical convenience.   

     For the purpose of the uncertainty analysis in this work, the SCT approximation is never 

used and all 𝑆(α,𝛽) are computed directly as described in Section 2.2.  To facilitate analysis, 
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𝛼 and 𝛽 are not scaled as a function of temperature, although scaling may be appropriate if 

temperature itself is being considered as an uncertainty variable.  The tabulation of 

ln[ 𝑆(α,𝛽)] will not be considered.  However, the symmetric scattering law, 𝑆sym(α,𝛽), is 

tabulated since this is standard for nearly all published ENDF File 7 libraries.  This quantity 

is the basis for the calculation of covariances.    

     Like traditional ENDF evaluations, the ENDF File 7 library begins with File 1, MT = 451 

administrative information.  Figure A.1 displays the first few lines of the published ENDF/B-

VII.1 File 7 thermal library for graphite as an example [21].  The locations of the MF, MAT 

and MT entries are shown.  The positions of these entries are universal for all ENDF file 

blocks.  MAT = 31 is the material number for graphite.  For thermal moderators, MAT is 

typically assigned a value between 1 and 99 depending on the material category. 

 

 

Figure A.1  First 16 lines of ENDF/B-VII.1 File 7 thermal library for graphite with arrows 
indicating the location of MF, MAT and MT entries [21].  
 

MF 

MT 

MAT 



 

164 

 

Figure A.2  Format structure for ENDF File 7, MT = 4, from the ENDF-6 Formats Manual [1]. 

 

The specific structure of the ENDF File 7, MT = 4 format is given in Figure A.2 [1].  Note 

that the actual printing of lines in the library begins after the leftmost slash marks and then 

cycles back.  Selected entries are identified.  See Ref. [1] for a full description.                       

     In traditional ENDF evaluations, ZA depends on the atomic number.  For File 7, ZA is 

arbitrary and will typically be assigned the value ZA = 100 + MAT.  The quantity AWR is 

the nuclide to neutron mass ratio for the nuclide that the calculated 𝑆sym(α,𝛽) is referenced 

to.  Note that even when 𝑆sym(α,𝛽) is calculated for an entire stoichiometric unit, the 

thermal scattering law must be normalized to one specific nuclide to allow the library to be 

used in conjunction with traditional ENDF evaluations.  The entries NP and NB indicate the
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number of points in the 𝛼 and 𝛽 grids, respectively.  For each 𝛽, 𝑆sym(α,𝛽) is tabulated for 

every specified temperature sequentially.  For the first temperature, the pair [𝛼, 𝑆sym(α,𝛽)] 

is tabulated sequentially for each 𝛼 point.  For the LT following temperatures, 𝑆sym(α,𝛽) 

alone is tabulated sequentially for each 𝛼 point.  This process is then repeated for all β.     

The first few lines of the published ENDF/B-VII.1 File 7, MT = 4 section for graphite are 

displayed in Figure A.3 as an example [21].  The locations of important entries are shown.  In 

this example, NP = 72, NB = 96 and LT = 9.  Therefore, there will be NP ×  NB ×

(LT +  1) = 69120 entries for 𝑆sym(α,𝛽) in the File 7 library.       

               

 

Figure A.3  First 12 lines of ENDF/B-VII.1 File 7, MT = 4 section for graphite with arrows 
indicating the locations of the 1st T, LT, 1st 𝜷, NB, 1st 𝜶, NP, and the 1st 𝑺(𝜶,𝜷) entries [21]. 

NB 
1st T 

NP 

1st β 
1st S(α,β) 

1st α 

LT 
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Appendix B 

The  𝟏𝑺𝐬(𝑸,ω) → 𝑺𝟏(α,𝜷) Expression Transformation 

 

     Beginning with the given expression for 1𝑆s(𝑄,ω) from Eq. (2.11),  

     1𝑆s(𝑄,ω) =
𝑒−2𝑊𝑄2𝜌(ω )�coth� ℏ|ω |

2𝑘B𝑇
�± 1�

4𝑀|ω |
,                                                                           (B.1)  

the absolute value signs may be dropped to yield the equivalent expression 

     1𝑆s(𝑄,ω) =
𝑒−2𝑊𝑄2𝜌(ω)�coth� ℏω

2𝑘B𝑇
�+1�

4𝑀ω
.                                                                            (B.2)  

The ± is eliminated since the sign of both the denominator and the coth argument can now 

change.  A dimensionless momentum transfer factor α can be defined in terms of 𝑄2.  With

     α = ℏ2𝑄2

2𝑀𝑘B𝑇
 ,                                                                                                                     (B.3) 

Eq. (B.2) is rewritten as 

     1𝑆s(α,ω) =
α 𝑘B𝑇𝑒−2𝑊𝜌(ω)�coth� ℏω

2𝑘B𝑇
�+1�

2ω ℏ2
.                                                                        (B.4)

Applying Eq. (B.3) to Eq. (2.12) yields 

     2𝑊 = α 𝑘B𝑇
ℏ ∫

coth� ℏω
2𝑘B𝑇

�𝜌(ω)

ω
𝑑ω∞

0 .                                                                                   (B.5)

For clarity, the coth expression is expanded to its exponential form to give 

     1𝑆s(α,ω) =
α 𝑘B𝑇𝑒−2𝑊𝜌(ω)�

exp� ℏω
𝑘B𝑇

�+1

exp� ℏω
𝑘B𝑇

�−1
 + 1�

2ω ℏ2
=

α 𝑘B𝑇𝑒−2𝑊𝜌(ω)�
exp� ℏω

𝑘B𝑇
�+1

exp� ℏω
𝑘B𝑇

�−1
 + 

exp� ℏω
𝑘B𝑇

�−1

exp� ℏω
𝑘B𝑇

�−1
�

2ω ℏ2
=

                            
α 𝑘B𝑇𝑒−2𝑊𝜌(ω)�

2 exp� ℏω
𝑘B𝑇

�

exp� ℏω
𝑘B𝑇

�−1
�

2ω ℏ2
                                                                              (B.6)



 

167 

and 

     2𝑊 = α 𝑘B𝑇
ℏ

∫
�
exp� ℏω

𝑘B𝑇
�+1

exp� ℏω
𝑘B𝑇

�−1
�𝜌(ω)

ω
𝑑ω∞

0 .                                                                                (B.7)

Substituting ω = −𝛽𝑘B𝑇
ℏ

 in Eqs. (B.6) and (B.7), where  

     𝛽 = 𝐸′−𝐸
𝑘B𝑇

                                                                                                                         (B.8)

is a dimensionless energy transfer factor, and defining  

     𝑆1(α,𝛽) = 𝑘B𝑇 ×  1𝑆s(𝑄,ω)                                                                                         (B.9) 

results in the expressions 

     𝑆1(α,𝛽) =
−α 𝑘B𝑇𝑒−2𝑊𝜌�−𝛽𝑘B𝑇ℏ �� 2 𝑒−𝛽

𝑒−𝛽  −1
�

2𝛽ℏ 
                                                                         (B.10)

and 

     2𝑊 = −α 𝑘B𝑇
ℏ

∫
�𝑒

−𝛽+1
𝑒−𝛽−1

�𝜌�−𝛽𝑘B𝑇ℏ �

𝛽
𝑑𝛽0

−∞ .                                                                           (B.11)

Applying 

     𝜌 �−𝛽𝑘B𝑇
ℏ

� = ℏ
𝑘B𝑇

ρ(−𝛽)                                                                                               (B.12)

and the even property of 𝜌(𝛽), plus modifying the limits of integration in Eq. (B.11), 

𝑆1(α,𝛽) and 𝜆 can be reformulated as  

     𝑆1(α,𝛽) =
−α 𝑒−α𝜆𝜌(𝛽)� 2 𝑒−𝛽

𝑒−𝛽  −1
�

2𝛽
= α 𝑒−α𝜆𝜌(𝛽)

2𝛽�1−𝑒
−𝛽 

2𝑒−𝛽
�

= α 𝑒−α𝜆𝑒−𝛽/2𝜌(𝛽)

2𝛽�1−𝑒
−𝛽

2𝑒−𝛽/2�
= α 𝑒−α𝜆𝑒−𝛽/2𝜌(𝛽)

2𝛽sinh (𝛽/2)
         (B.13) 

and 
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     𝜆 = 2𝑊
α

= ∫
�𝑒

𝛽+1
𝑒𝛽−1

�𝜌(𝛽)

𝛽
𝑑𝛽∞

0 .                                                                                         (B.14)  

From Eq. (B.14), 𝑒𝛽+1
𝛽�𝑒𝛽−1�

= 𝑒𝛽

𝛽�𝑒𝛽−1�
+ 1

𝛽�𝑒𝛽−1�
= 𝑒𝛽

𝛽�𝑒𝛽−1�
+ 𝑒−𝛽

𝛽(1−𝑒−𝛽)
= 𝑒𝛽

𝛽�𝑒𝛽−1�
+ 𝑒−𝛽

−𝛽(𝑒−𝛽−1)
.  

Therefore, it is clear that by extending the limits of integration, Eq. (B.14) can be 

equivalently written as 

     𝜆 =  ∫
� 𝑒−𝛽

𝑒−𝛽−1
�𝜌(𝛽)

−𝛽
𝑑𝛽∞

−∞ = ∫
� 2𝑒−𝛽

1−𝑒−𝛽
�𝜌(𝛽)

2𝛽
𝑑𝛽∞

−∞ =

              ∫ 𝑒−𝛽/2𝜌(𝛽)

2𝛽�1−𝑒
−𝛽

2𝑒−𝛽/2�
𝑑𝛽 =  ∫ 𝑒−𝛽/2𝜌(𝛽)

2𝛽sinh (𝛽/2)
𝑑𝛽∞

−∞
∞
−∞ .                                                               (B.15)

     The final results of Eqs. (B.13) and (B.15) give the LEAPR form of 𝑆1(α,𝛽) and 𝜆, 

respectively.  The LEAPR form of α can be derived by the following argument, where 𝜇 is 

the scattering angle cosine in the laboratory frame and 𝑚 is the mass of a neutron.  

     𝑄2 = |𝒌 − 𝒌′|2  =>                                                                                                     (B.16)

     𝑄2 = (𝑘 − 𝜇𝑘′)2 + �𝑘′�1 − 𝜇2�
2

=>                                                                        (B.17)

     𝑄2 = �√2𝑚𝐸
ℏ

− 𝜇 √2𝑚𝐸′

ℏ
�
2

+ �√2𝑚𝐸′

ℏ
�1 − 𝜇2�

2
=>                                               (B.18)

     𝑄2 = 2𝑚
ℏ2
�𝐸 + 𝐸′ − 2√𝐸𝐸′𝜇�.                                                                                    (B.19)

Now, applying Eq. (B.3) to Eq. (B.19) and defining 𝐴 as the nuclide to neutron mass ratio,     

     𝛼 = 𝐸′+𝐸−2𝜇√𝐸𝐸′

𝐴𝑘B𝑇
.                                                                                                          (B.20) 

See Refs. [15, 20] for additional details.
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Appendix C 

Analytical Solution for the Covariance Matrix of 𝑺𝐬𝐲𝐦,𝟏(α,𝜷) 

 

     First, Eq. (2.14) is restated in terms of 𝑆sym,1(α,𝛽), or 

     𝑆sym,1(α,𝛽) = α 𝑒−α𝜆𝜌(𝛽)
2𝛽 sinh(𝛽/2).                                                                                            (C.1)  

Now, 

     𝑆sym,1(α,𝛽) = 𝑓1(𝛼)𝑔sym,1(𝛽) = 𝑓1(α)ℎ(𝛽)𝜌(𝛽).                                                      (C.2)  

Here, 𝑓1(𝛼) = α 𝑒−𝛼𝜆 and 

     ℎ(𝛽) = 1
2𝛽 sinh(𝛽/2).                                                                                                        (C.3)  

The column vectors 𝒑, 𝒉 and 𝑾𝑎 are defined as 

     𝒑 = (𝑘B𝑇)−1𝜌(𝛽𝑑), for 𝑑 = 1 …𝐷,                                                                              (C.4)

     𝒉 = ℎ(𝛽𝑏), for 𝑏 = 1 …𝐵,                                                                                            (C.5)

and 

     𝑾𝑎 = 𝑆sym,1(α𝑎  ,𝛽𝑏), for 𝑏 = 1 …𝐵.                                                                          (C.6)

For 𝑑 = 1 …𝐷, 𝑑 corresponds to the energy grid points of the phonon DOS.  For 𝑎 = 1 …𝐴 

and 𝑏 = 1 …𝐵, 𝑎 and 𝑏 correspond to α and 𝛽 grid points, respectively, in 𝑆sym,1(α,𝛽).  The 

parameter 𝑏 is also considered to correspond to the energy grid point 𝛽𝑏𝑘B𝑇.  The vector 𝒑 

defines the phonon DOS.  It is in vector space 𝑅, and 𝑅 has dimension 𝐷 with standard basis 

𝑹.  The vectors 𝒉 and 𝑾𝑎 are in vector space 𝑈, and 𝑈 has dimension 𝐵 with standard basis 

𝑼.  Now, 𝑾𝑎 can be written as  
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     𝑾𝑎 = 𝒉 ∘ [𝑻(𝑎)𝒑],                                                                                                         (C.7) 

where                                                                                                                    

     𝑻(𝑎) = 𝑘B𝑇𝑓1(𝛼𝑎)𝑰, if 𝐷 = 𝐵 and 𝐸(𝑑) = 𝐸(𝑏) for all 𝑑 = 𝑏,                                  (C.8) 

or                            

     𝑻(𝑎) = 𝑘B𝑇𝑓1(α𝑎)𝑳, if 𝐷 ≠ 𝐵 and/or 𝐸(𝑑) ≠ 𝐸(𝑏) for any 𝑑 = 𝑏.                     (C.9) 

The notation ∘ represents the Hadamard product.  𝑻(𝑎) is a linear transformation matrix 

given by either Eq. (C.8) or (C.9).  Under the condition given in Eq. (C.8), 𝑰 is the 𝐷 × 𝐷 

identity matrix.  Under the condition given in Eq. (C.9), 𝑳 is a non-diagonal interpolation 

matrix of dimension 𝐵 × 𝐷.  The matrix 𝑳 will have either one or two non-zero entries in 

each row depending on the discrete distribution of 𝐸(𝑑) and 𝐸(𝑏).  The columns of 𝑻(𝑎) 

represent the linear transformation of the 𝑑th vector of 𝑹, for  𝑑 = 1 …𝐷, in terms of each of 

the 𝐵 vectors in 𝑼.  Thus, any vector in 𝑅 may be mapped by 𝑻(𝑎) to a vector in 𝑈.  The 

following is a basic example of the linear mapping process:

Example 

Given:  𝐸(𝑏) = {0.05, 0.1, 0.2, 0.4, 0.8},𝐸(𝑑) = {0.0, 0.2, 0.4, 0.6, 0.8, 1.0} 

𝑻(𝑎) = 𝑘B𝑇𝑓1(α𝑎)𝑳 = 𝑘B𝑇𝑓1(α𝑎)  

⎣
⎢
⎢
⎢
⎡
3/4 1/4 0 0 0 0
1/2 1/2 0 0 0 0

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0⎦

⎥
⎥
⎥
⎤
. 

Therefore, 𝑾𝑎 = 𝑘B𝑇𝑓1(α𝑎)𝒉 ∘

⎣
⎢
⎢
⎢
⎡
3/4 1/4 0 0 0 0
1/2 1/2 0 0 0 0

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0⎦

⎥
⎥
⎥
⎤
𝒑. 
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     Let 𝑾 and 𝑯 be the column vectors with dimension 𝐴𝐵 that are constructed by 

successively appending 𝑾𝑎 and 𝒉, respectively, for 𝑎 = 1 …𝐴.  Let 𝑻 be the matrix with 

dimension 𝐴𝐵 × 𝐷 that is constructed by successively appending the matrices 𝑻(𝑎) for 

𝑎 = 1 …𝐴.  This results in  

     𝑾 = 𝑯 ∘ [𝑻𝒑],                                                                                                                    (C.10)

and it is clear that 𝑴𝒑𝑾 = 𝑴𝒑𝒔1 will have the form   

     (𝑴𝒑𝑾)𝑖𝑗 = 𝐻𝑗𝑻𝑗𝒑𝑖 = 𝑓𝑖𝑗 , for 𝑖 = 1 …𝐷 and  𝑗 = 1 …𝐴𝐵.                                          (C.11) 

In Eq. (C.11), 𝑻𝑗  is the 𝑗𝑡ℎ row vector of 𝑻, and 𝒑𝑖 is the column vector given by substituting 

𝑝𝑑 = 0 for all 𝑑 ≠ 𝑖 in 𝒑.  The index 𝑗 is associated with a particular (𝑎, 𝑏) pair.  Hence, 

𝑴𝒑𝑾 has the same dimensions (𝐷 × 𝐴𝐵) and entry definitions as 𝑴𝒑𝒔, except 𝑴𝒑𝑾 is 

analytically solved for one-phonon scattering while 𝑴𝒑𝒔 must be numerically solved for the 

full scattering law.  The elements in 𝑽𝑾 = 𝑴𝒑𝑾
T 𝑽𝒑𝑴𝒑𝑾 = 𝑽𝒔𝟏 can now be expressed as 

     COV(𝑾𝑘 ,𝑾𝑙) = ∑ 𝑓𝑞𝑘𝑓𝑟𝑙COV(𝑝𝑞,𝑝𝑟)𝑞,𝑟 , 𝑞 = 1 …𝐷, 𝑟 = 1 …𝐷.                            (C.12)

In Eq. (C.12), 𝑞 and 𝑟 are indices that increment the rows and columns of 𝑽𝒑 to calculate the 

covariance associated with the 𝑘th and 𝑙th elements of the column vector 𝑾.  Note that the 

units are consistent, where 𝑽𝒔1 is unitless, 𝑴𝒑𝑾 and 𝑴𝒑𝑾
T  (or 𝑴𝒑𝒔1 and 𝑴𝒑𝒔1

T ) have units of 

𝑘B𝑇 and 𝑽𝒑 has units of (𝑘B𝑇)−2.              

     In the one-phonon analytical calculation it has been assumed that 𝜆 in the Debye-Waller 

factor is independent of the individual parameters 𝑝𝑑.  While this is not strictly true, 𝜆 is 

highly insensitive to any perturbation of a single 𝑝𝑑.  A straightforward approach to account 

for the dependence of 𝜆 on the individual parameters 𝑝𝑑 is to treat 𝜆 as a parameter itself, 
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along with all 𝑝𝑑.  In this case, 𝜆 may be included in the covariance matrix 𝑽𝒑 which is 

calculated by the Monte Carlo process.  To add the appropriate terms to the sensitivity matrix 

𝑴𝒑𝑾, note that  

     ∂𝑆sym,1(α𝑎,𝛽𝑏)

∂𝜆
= −α𝑎𝜆𝐻𝑗𝑻𝑗𝒑.                                                                                        (C.13)

     Linear mapping of the phonon DOS to the one-phonon scattering law allows for a simple 

analytic formulation of 𝑴𝒑𝒔1 and, consequently, for 𝑽𝒔1 in terms of 𝑴𝒑𝒔1 and a given 𝑽𝒑.  

For higher-order phonon processes, direct linear mapping is not possible.  Alternatively for 

the one-phonon case, 𝑽𝑾 = 𝑽𝒔𝟏 may be calculated through the Monte Carlo generation of a 

large set of 𝑾� vectors.  Since 𝑾 is nearly linearly proportional to the parameters 𝑝𝑑 (with 𝜆 

being a very limited source of nonlinearity), the results for 𝑽𝑾 may be quite similar using the 

two methods of calculation, although nonlinearities in the functional dependence among the 

𝑝𝑑 could have some effect.  However, the point of the above analytical procedure is to be 

able to express each term of σ(𝒔1) in the context of at most two σ(𝑝𝑑) values as an aid in 

assessing the specific uncertainties in a ρ(ε) spectrum calculated from 𝑆1(α,𝛽) extracted 

from experimental measurements. 
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Appendix D 

A Review of the VASP and PHONON Code Methodologies  
for Modeling the Graphite System 

 
 
 

D.1  Density Functional Theory 

     Density functional theory (DFT) is a quantum mechanical simulation methodology for 

describing the electronic structure of periodic crystal systems.  In particular, DFT is used to 

calculate the ground state of a many-bodied system by minimizing the total energy functional 

𝐸[𝑛(𝒓)] with respect to the electron density function 𝑛(𝒓).  The ground state is equivalent to 

relaxing the system to its 0 K state.   

     The graphite system is defined in the ab initio DFT code VASP [47, 48, 49] by supplying 

the crystal structure parameters and symmetry.  The total energy functional is defined as   

     𝐸[𝑛(𝒓)] = 𝑇[𝑛(𝒓)] + 𝑅[𝑛(𝒓)] + 𝑉[𝑛(𝒓)] + 𝑋[𝑛(𝒓)],                                                 (D.1) 

and it is calculated using an electron plane-wave basis set with a specified electron cutoff 

energy.  In this work, an energy cutoff of 800 eV in VASP is used to relax the graphite 

system.  The electronic kinetic energy is given by 𝑇[𝑛(𝒓)], which is calculated for a non-

interacting homogeneous electron gas of density 𝑛(𝒓).  The electron-electron Coulomb 

repulsion term is given by 𝑅[𝑛(𝒓)].  The external potential term is given by 𝑉[𝑛(𝒓)] and is 

calculated with native VASP pseudopotentials.  These pseudopotentials account for nuclei 

and core (non-valence) electrons in the system.  The final 𝑋[𝑛(𝒓)] term is the exchange-

correlation energy.  It is the result of non-classical interactions between identical particles 

(i.e., electrons).  The local density approximation (LDA) is used to calculate 𝑋[𝑛(𝒓)] and 
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was found to produce much more accurate results for the relaxed lattice constants of graphite 

than the generalized gradient approximation (GGA).  Since Van der Waals forces arise from 

long-range correlated polarizations of atoms, they are not included in the total energy 

functional of VASP [62].   

     The total energy functional is solved by integrating over points in reciprocal space.  A 𝑘-

mesh represents the resolution of a grid of 𝑘-points in reciprocal space with respect to 

crystallographic directions.  An 11 × 11 × 5 𝑘-mesh with automatically generated 𝑘-points 

was found to yield good convergence in minimizing the total energy per unit cell.  The 

equilibrium lattice constants calculated after relaxing the system without constraints were 

𝑎 = 2.45 Å and 𝑐 = 6.59 Å.  From Baskin and Meyer [55], the 𝑐 lattice constant for graphite 

at 4.2 K was experimentally measured to be 6.67 Å, while no statistically significant change 

in the 𝑎 lattice constant from 2.46 Å at 297 K was detectable upon cooling.  The slightly 

inaccurate calculation of the relaxed lattice constant 𝑐 by VASP may be related to the 

absence of Van der Waals forces.  Noting that the relaxed 𝑐/𝑎 ratio also differs somewhat 

from the experimental ratio, the constraint can be imposed in VASP that the unit cell 𝑐/𝑎 

ratio remains fixed to the experimental ratio.  This has been demonstrated to give better 

agreement with experimentally measured dispersion relations and elastic properties for 

graphite [17, 54].  In this case, the total energy functional is minimized with lattice constants 

of 𝑎 = 𝑏 = 2.45 Å and 𝑐 = 6.64 Å.  This represents a reduction from the 300 K lattice 

constants of about 0.6% in-plane and 1.0% out-of-plane.   
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D.2  Lattice Dynamics and the Dynamical Matrix 

     Once the lowest-energy equilibrium state of the graphite system has been determined by 

VASP, this serves as a reference structure for the determination of interatomic forces.  These 

forces are employed in a lattice dynamics model in the harmonic approximation to calculate 

the phonon density of states by solving a dynamical matrix.  Starting with a relaxed system is 

a requirement for solving the dynamical matrix in the harmonic approximation since

anharmonicities in the interatomic forces are assumed to be zero. 

     Interatomic Hellmann-Feynman forces are calculated in VASP by individually perturbing 

the basis set of atoms from their equilibrium positions with respect to each coordinate axis 

and then taking the first derivative of the ground-state potential function.  A perturbation of 

0.055 Å was determined to be appropriate.  A 6 × 6 × 1 supercell (containing 144 carbon 

atoms) with a 3 × 3 × 4 𝑘-mesh and 500 eV plane-wave cutoff energy were determined to 

provide good convergence in capturing the interatomic forces of the graphite system [17].  

Assuming the potential is harmonic for small perturbations, the harmonic force constants 

(FCs) are extracted from the Hellmann-Feynman forces by PHONON to yield a force 

constant matrix 𝜱𝑢𝜂,𝑣𝜒 associated with each pair of atoms 𝜂 and 𝜒, where 𝜂 is a particular 

basis set carbon atom and 𝜒 can be any other carbon atom in the supercell.  For the indices 𝑢 

and 𝑣, values of 1, 2 or 3 correspond to perturbations in the direction of the Cartesian vectors 

𝒙�, 𝒚� or 𝒛�.  For each 𝜂, an extended supercell is defined which relocates 𝜂 to the center of the 

supercell such that force constants are calculated with respect to all symmetric neighbors of 

each coordination shell residing in the supercell.  Therefore, for each (𝜂,𝜒) pair, there are six 

non-degenerate FCs.                                                                                  
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     In the harmonic approximation, the equations of motion for a basis atom 𝜂 in the crystal 

are described by  

     ω2(𝒒)𝒆(𝒒) = 𝑫𝜂,𝑢𝑣(𝒒)𝒆(𝒒),                                                                                         (D.2) 

where         

     𝑫𝜂,𝑢𝑣(𝒒) = ∑ 1

�𝑀𝜂𝑀𝜒
𝜱𝑢𝜂,𝑣𝜒𝑒𝑖𝒒∙[𝒓(𝜒)−𝒓(𝜼)]

𝜒                                                                    (D.3)

is known as the dynamical matrix [18, 39].  Essentially, the dynamical matrix describes the 

motion of each basis atom as if it were attached by springs to every other atom in the 

supercell.  Larger force constants allow for higher-frequency phonons and smaller force 

constants influence the population of lower-frequency phonons.  The polarization vectors 𝒆𝑗 

and the Cartesian vectors are usually held to be synonymous.  Atomic vibrations in the 𝒙� 

direction can be considered to be associated with 𝑗 = 1, atomic vibrations in the 𝒚� direction 

with 𝑗 = 2, and atomic vibrations in the 𝒛� direction with 𝑗 = 3.  Eq. (D.2) can be solved by 

diagonalizing the matrix 𝑫𝜂,𝑢𝑣(𝒒) − ω2(𝒒)𝑰, where 𝑰 is the identity matrix, since 

     det [𝑫𝜂,𝑢𝑣(𝒒) − ω2(𝒒)𝑰] = 0.                                                                                       (D.4) 

     The phonon frequencies are the square roots of the eigenvalues and there are 3𝛨 

eigenvalues associated with each 𝒒, where 𝛨 is the number of atoms in the unit cell basis.  

There will also be a corresponding eigenvector (or polarization vector) for each eigenvalue 

(or frequency) of 𝒒.  Consequently, there are 3𝛨 branches of the ω(𝒒) dispersion relations.  

Of these, three are acoustic branches where all basis atoms vibrate in phase, and the 

remainder are optical branches representing the different possible out-of-phase vibrations 
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among the basis atoms.  There are twelve dispersion branches for graphite, though many of 

these are degenerate, or nearly degenerate, due to the layered structure of graphite.  

     The dispersion relations for any single 𝒒 vector corresponding to any basis atom 𝜂 may be 

solved using the dynamical matrix.  Through Monte Carlo sampling of phonon wave vectors 

in the first Brillouin zone, PHONON produces the unnormalized partial phonon DOS ρ(ω) 

for each coordinate vector and for every basis position.  Sampling within the first Brillouin 

zone captures all of the physics of the crystal.  A user-specified number of 𝒒-points are 

randomly generated and, for each trial, the twelve associated phonon frequencies and 

polarization vectors are determined.  The results are collected, separated by coordinate vector 

and basis position, and placed in frequency bins of user-defined resolution.  This 

methodology is detailed in Ref. [17] and in Ref. [18]. 

     In some cases, the calculated phonon frequencies will include a narrow band of negative 

frequencies.  These are non-physical and can arise for several reasons.  Some examples are 

that the optimization (relaxation) process for computing the system ground state may not 

have been carried out with sufficient accuracy, localized anharmonicities may be present in 

the potential function, or atomic perturbations from the equilibrium state may be too small 

(yielding poor numerics for the 𝑘-mesh) or too large (introducing excessive anharmonicities).  

As long as these imaginary frequencies collectively make up a negligible fraction of the 

phonon DOS, they may be safely truncated.  In the reference total phonon DOS calculated in 

this work, given in Section 4.3.1, imaginary frequencies are associated with less than 0.04% 

of the phonon population.  In cases where the imaginary frequencies are significant, there 
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may be serious problems with the simulation process or the system may be 

thermodynamically unstable. 

     A flowchart summarizing the procedures used to calculate the reference total phonon 

density of states 𝜌(𝜀) in this work is given in Figure D.1. 

 

 

 

 

 

 

 

 

 

Figure D.1  Flowchart demonstrating the sequence of calculation procedures employed in 
generating the reference total phonon density of states 𝝆(𝜺).   
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