
ABSTRACT

CALDERÓN JR., ADAN FAUSTINO. Forward Monte Carlo Calculation of Coincidence
Gamma-Ray Spectra. (Under the direction of Robin P. Gardner.)

The detector response functions were generated with Monte Carlo and used as the libaries
that were fit to experimental gamma-ray spectra using a least squares approach. A code named
MCNP-CP was built and used for comparison
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Chapter 1

Introduction

1.1 Objective

To develop an approach for applying the MCLLS approach to coincidence and sum pulse inverse
spectral analysis using the DRF concept.

1.2 History

Previously work at CEAR (Center for Engineering Applications of Radioisotopes) has been
done on the development of detector response functions (DRF).[3] These functions can save
a tremendous amount of time because they are pre-calculated and the exact physics of the
particle interactions happening inside the detector do not have to be simulated. It is usually
sufficient for a simulation that uses DRFs to just simulate the arrival of the particles onto a
detector. The appropriate DRFs are then applied for the given energies of the particles. The
output of this function is then tallied.

1.3 Theory

Certain radioactive sources are said to have particle emissions in coincidence.[2] In reality these
are particle emissions happening in so close a proximity of time that the detection system es-
sentially detects a single event. In the case of gamma coincidence on a single sodium iodide
detector, a sum pulse is created that represent the energy deposition of the multiple gammas
entering. With regards to response functions, they are usually representative of a single energy.

In the case of Cobalt 60, its decay produces beta particles followed by the emission of various
gammas. Some of the time these gammas are detected as a single sum pulses. If a simulation
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is to produce spectrum that is comparable with that recorded in the laboratory via the use of
detector response function, then it is believe that a single DRF created for the total summed
energy to be inadequate. The supposition is that a convolution of the two single energy (1.1732
and 1.3325 MeV) detector response functions will create a new response function that will sat-
isfactorily fit experimental data. This approach is perhaps more in line with the mathematics of
convolving multiple Gaussian curves. This procedure usually yields a wider, more pronounced
Gaussian curve even if it only involves multiple self convolutions. Because Cobalt 60 itself
sometimes emits a single gamma ray that is the exact energy of the sum of the two individual
common gammas, it is of interest to look at the differences between these two detector response
functions.

1.4 Definitions

Decay Scheme shows the transitions in which a radioactive nucleus emits radiations to become
less energetic and therefore reach stability. See Figure 1.1.
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Figure 1.1: Co-60 Decay Scheme [7]

The MCLLS Method uses least-squares fitting from data libraries generated from Monte
Carlo.[6]

Pulse Pile Up is a phenomenon in which a detector treats multiple pulses as a single
composite pulse because the arrival time of the separate radiations is very close in proximity
to each other.

G03 is specific code developed at CEAR used for the generation of Detector Response
Functions. The code simulates the response of a detector that is based on a right circular
cylinder with a source centered about the axial axis a certain distance away. G03 includes

PEAKSI is a specific code that uses CURMOD to obtain a Gaussian fit on experimental
data. The Gaussian fit model can be composed of multiple Gaussian curves plus a constant,
linear, or quadratic background. Parameters can be fixed or searched on with initial guesses.
The code is useful for determining the full width half max in experimental data and centroids.
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A web app version called WebPEAKSI of the code was developed as a proof of concept idea
based on migrating legacy console i/o software to a web platform such that it can used inside
a web browser.

CURMOD is a code developed at CEAR used to determine the parameters of a model or
function with the minimum reduced chi-square value. It is based on work from P.R. Beving-
tons book Data Reduction and Error Analysis for the Physical Sciences. It uses a Lavenberg-
Marquardt algorithm to perform the analysis but unlike the algorithm detailed in the book, it
also has the capability to search on non-linear parameters.

GShift Is a gain and zero shifting program for any channel-pulse height energy relationship
to any other relationship including non-linear relationships.

CEARPPU A General Purpose Monte carlo code for modeling pulse pile-up distortion
from high counting rates in nuclear instrumentation.

CURLLS is a code that uses library least-squares approach to determine the amounts of
components in a photon spectrum. The program does this via the use of a subroutine model
that calls on CURMOD. The outputs are calculated parameters, their standard deviations, their
linear correlation coefficients and reduced chi-square value. The code can optionally implement
a weighting scheme over ranges of the unknown spectrum.

CEARLLS is a code that used library least-square approach to determine the amounts of
components in a photon spectrum. This code does not require CURMOD.

MCNP is a general purpose Monte Carlo code. It can simulate the physics of neutron,
photons, electron transport.

True Coincidence involves multiple radiations from the same nuclear decay event. See
Figure 1.2 where the color dots represent a decay event and the arrow represent radiations
striking a detector.
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Figure 1.2: True Coincidence Scenarios

Chance Coincidence involves multiple radiations from two or more independent nuclear
events. See See Figure 1.3 where the color dots represent decay events and the arrows emanating
represent the associated radiation from such event.
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Figure 1.3: Chance Coincidence Scenarios

True Coincidence Summing involves summing of true coincidence events[4].
Detector - Detector Coincidence involves the tallying two incident radiations on sepa-

rate detectors via the use of a gate trigger.
Detector Response Function (DRF) is a function whose output is the energy pulse-

height distribution of a single energy incident radiation. The function itself is a probability
density function.

Angular Correlation is defined as a correlation in angle of successive radiations in a
cascade. Although the first radiations direction might be isotropic in the laboratory coordinates,
the successive radiations are due to a cascade and their angle of emission will be correlated to
the previous radiations angle of emission.

Sum Pulse is created by multiple radiations striking a detector around the same time. The
detection system sees more energy deposition from the events but cannot distinguish them as
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separate events and therefore produces a single summed pulse.
Gaussian Energy Broadening is a process applied to energy tally scores such that the

energy score is reshaped. The shape is from the Gaussian distribution. This is done to more
accurately simulate what a detection system ouputs.

MCNP-CP a software code created by Dr. Andrey N. Berlizov based on MCNP version
4c. It has added capabilities such as correlated particle sampling based on ENSDF (evaluated
nuclear structure data file).[1] The radioactive source definition can simply be specified by
typing its unique ZAM number. Other enhancements include the ability to form coincidence
and anti coincidence tallies which can be based on cells that can have upper and lower level
discriminators.
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Chapter 2

Experimental Setup

2.1 Determination of Co-60 Activity

To determining the activity of the CEAR Co-60 source, a Co-60 source of known activity
was used to obtain 4 MCA spectrums. These spectrums were produced by recording for 300
seconds the known source at distances of 30, 40, 50, and 60 cm. Background was recorded for
300 seconds as well. Later the same procedure was carried out for the CEAR Co-60 source of
unknown activity.
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Canberra 3102D High 
Voltage Power Supply

874 Volts

Canberra 2007 
Photomultiplier Tube 
Base (Preamplifier)

Saint-Gobain
2X4H16/3.5A-X

NaI Detector

Power

Power

Signal

Ortec 575 Amplifier
Fine Gain 12.20
Coarse Gain 100

POS/UNI

Signal

Canberra ASA-100 PC 
Based MCA

Co-60
Source

Various Distaces

Figure 2.1: Setup used in experiment to determine Activity of Co-60
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Figure 2.2: Picture of Detector used to determine Co-60 Activity

• The setting on the Canberra 3102D power supply was 870 Volts.

• The Ortec 575 Amplifier had a coarse gain setting of 100 and a fine gain setting of 12.20

• The Ortec 575 Amplifier was positioned for positive voltage and unipolar pulses.

• The known Co-60 source used has and activity of 0.9743 micro curies or 36.05 kilo Bec-
querels on the 15th of August of 2011.

These particular experiments were carried out on the 2nd and 3rd of July of the year 2013. A
more thorough discussion on how the Activity of the CEAR Co-60 Source is obtained is given
in the analysis section.
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2.2 Calibration and Characterization

The idea was to record spectrum from various sources the yield peaks at different energies.
This information is to be used to characterize how the detector behaves. Unlike the previous
setup where there was a need for an Amplifier and a Pre-Amp tube base, the signal was taken
straight out of the photomultiplier tube and onto the Pixie-500 DGF card.

Ortec 556 High 
Voltage Power 

Supply
916 Volts

Ortec 556 High 
Voltage Power 

Supply
800 Volts

XIA Pixie-500

Rexon GPS-200N 
NaI Detector

2" x 2" Detector

Rexon GPS-200N 
NaI Detector

2" x 2" Detector

Co-60
Source

Rexon
NaI 5.0PX4.0 /

5.0-IV
5" x 4" Detector

Saint-Gobin
2X4H16 NaI 

Detector
2" x 4" x 16"

Ortec 556 High 
Voltage Power 

Supply
1157 Volts

Ortec 456 High 
Voltage Power 

Supply
1300 Volts

Figure 2.3: Setup used in experiment to collect data from 4 detectors
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Figure 2.4: Picture showing collection of data from 4 detectors

The detectors are placed at 0, 90, 180 and 270 degrees from each other. The first detector
was a Rexon 2 inch by 2 inch Sodium Iodide placed 5 cm away from a string that holds the
source and connected to channel 0 on the XIA Pixie-500. A second 2 inch by 2 inch NaI detector
was placed 10 centimeters away from the string. The third detector, a 5 inch by 4 inch Sodium
Iodide, was placed 20 centimeters away from the sting. Finally a 2 by 4 by 16 inch rectangular
box detector was placed 30 centimeters away.

The sources listed on Table 2.1 were used. A background measurement was taken without
the source present before and after each source was placed on the string.
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Table 2.1: Various sources whose spectrum was collected [7]
Isotop Half-Life Energy [MeV] First Gamma Energy [MeV] Second Gamma
Co-60 5.27 years 1.1732 1.3325
Na-24 14.9 hours 1.3679 2.7535
Cs-137 30 Years 0.66162
Au-198 2.70 days 0.41176
Ba-133 10.51 years 0.356 Has various convolved peaks
S-37 5.05 min. 3.103

2.3 List Mode and MCA data from the Pixie-500

Both of the Ortec 556 Power Supplies were set at around 1190 Volts in the positive bias position.
The power cable was custom made having an MHV connector for the detector end and an SHV
connector for the power supply end. The signal cables were made to be the exact same length
using standard BNC connectors on both ends. On the end that attaches to the XIA Pixie-500,
a silver coupler was uses to attach to the small cables that come with XIA Pixie-500. This is
because the input connector to the XIA Pixie-500 is an SMA connector and not the traditional
BNC found in nuclear instrumentation.
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Rexon GPS-200N NaI 
Detector

Power
Power

Co-60
Source

Signal
Channel 1

Signal
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Figure 2.5: Setup used in experiments with 2 detectors

Hardware Settings on the Pixie-500 DGF PXI Card are as follows:

Channel 0:
JP101 - (”ATTN”) this jumper block is set to short 1 and the middle position.
JP102 - this jumper block is shorted to select 50 ohm input impedance.

Channel 1:
JP201 - (”ATTN”) this jumper block is set to short 1 and the middle position.
JP202 - this jumper block is shorted to select 50 ohm input impedance.

These jumpers were set this way because it significantly reduced the noise in the third floor lab.
These settings made the tau values associated with the detectors significantly shorter as well.
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Chapter 3

Simulations

3.1 Geomerty and Material Modeling

The specifications were figured out from e-mail correspondence with Rexon staff and the Data
Sheet for the GPS-2000N Detector, also provided by Rexon. The aluminum thicknesses around
the detector as well as the aluminum thickness on the face of the detector are both 0.0508 cm.
The density of the aluminum modeled was 2.7 grams per cubic centimeter. The aluminum oxide
powder reflector around the sodium iodine crystal is 0.254 cm thick. The aluminum oxide on
the front face of the detector is 0.1016 cm think. The density assigned to the aluminum oxide
powder was 3.97 grams per cubic centimeter. The BF-1000 rubber padding on the face of the
detector is 0.1524 cm thick with a density of 0.1922 grams per cubic centimeter. The sodium
iodide crystal itself is a cylinder with a radius of 2.54 cm, a length of 5.08 cm and a density of
3.667 grams per cubic centimeter.
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Figure 3.1: Inside view of geometry modeled in simulations

3.2 DRF Generation

3.2.1 G03

G03 was used to produce the detector response function for the model of a bare sodium iodide
crystal. However the parameters belonged to a 3 by 3 inch detector. Hence this was only done
for comparison purposes.

3.2.2 MCNP

MCNP 5 Version 1.60 was used to create the Detector Repose functions. These were created
using the CEAR cluster and an MPI version of the MCNP executable. Direction forceing was
implemented from a point source 5 centimeters away from the face of the detector. The distri-
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bution was conical and onto the face of the detector.

3.3 Modeling Cross Talk between Detectors in Simulation

Looking at cross talk between detectors is of interest to some researchers. Various angles were
looked at that included 67.5, 90, 112.5, 135, 157.5, and 180 degrees.

Figure 3.2: Illustration showing a horizontal fixed detector and a movable detector at 67.5
Degrees
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To do this the particles were force exclusively to the face of a fixed horizontal detector
from a point source 5 centimeters away. See Figure 3.2. A second detector was placed in the
simulation that was also equidistant to the point source but would form an angle of 67.5, 90,
112.5, 135, or 180 degrees with the fixed detector. Therefore any particles depositing energy on
the second detector was a result of scatter from the first detector.

3.4 MCNP-CP Angular Correlation between gammas

To perform an investigation on how good the angular correlation between gammas was, a ring of
detectors was created for a simulation. See Figure 3.3. In this case, MCNP-CP was tested using
features it has to tally coincidence between cell volumes. A total of 64 tallys were produced for
each simulation run. A Total of 124 simulations of these types were performed using different
initial random seeds. Each of the 124 output files had 8 tallies for 8 different angles, see Table
3.1.
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Table 3.1: Various Angles that were tallied

CELLS 204 304 404 504 604 704 804 904 114 214 314 414 514 614 714

104 22.5° 45° 67.5° 90° 112.5° 135° 157.5° 180°

204 22.5° 45° 67.5° 90° 112.5° 135° 157.5° 180°

304 22.5° 45° 67.5° 90° 112.5° 135° 157.5° 180°

404 22.5° 45° 67.5° 90° 112.5° 135° 157.5° 180°

504 22.5° 45° 67.5° 90° 112.5° 135° 157.5° 180°

604 22.5° 45° 67.5° 90° 112.5° 135° 157.5° 180°

704 22.5° 45° 67.5° 90° 112.5° 135° 157.5° 180°

804 22.5° 45° 67.5° 90° 112.5° 135° 157.5° 180°

104

204

304

404

504 604

704

804

904

114

214

314

414514

614

714

Figure 3.3: A Ring of Detectors around a point source modeled in simulation
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Chapter 4

Analysis and Methods

4.1 Determination of Co-60 Activity

A spectrum that corresponds to 30, 40, 50, and 60 cm was adjusted by subtracting background
for both the known and unknown activity sources. A region of interest that encompasses the
two Cobalt 60 peaks was selected, in this case the region started at channel 353 and ended in
channel 471. The total number of counts for these regions was obtained by simply summing
over the number of channels with their counts. The ratio between the unknown and known was
then used to solve for the activity of the CEAR Co-60 Source See equation 4.1.

ACEAR (Co60) =
TotalCountsROI(Unknown)
TotalCountsROI(Known)

AKnown(Co60) (4.1)

The activity of the known Co-60 source was corrected using equation 4.2.

A (t) = Ao · e(−λ·t) (4.2)

Where lambda was taken to be the natural log of 2 divided by 1925.20 days and the time t
was taken as 688 days. This was the difference between August 15th 2011 (the day the activity
of the known source was recorded) and July 3rd 2013 (the day this particular calculation was
done). The average of the calculation was then taken between the 30, 40, 50 and 60 cm cases.

4.2 FWHM model and the A B C’s

To create parameters for the following equation, FWHM= a + b
√

E + cE2.[8]
The data from the experiment was used in the following manner. First a net count for the
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particular isotope was determined by subtracting a corresponding back ground. Next, the net
spectrum was energy calibrated to the peaks of the known energies for the particular isotope.
This was done by performing a Gaussian fit on the curves and taking the centroids as the place
where the full energy deposition occurs. For example in the case of Cobalt 60, the energies
looked at were 1173 keV and 1332 keV. This was done for Sodium 24, Cesium 137, Sulfur
37, and Barium 133. Thirdly the full width at half maximum was recorded for each distinct
energy. With Multiple data points, a best fit to the model equation was performed. This was
done multiple times with different software to arrive at better initial guesses until finally the
resulting parameters were able to fit the data well.

4.3 Simulation

Comparison between the simulation data and experimental data must be done on an energy
scale. Rebinning of experimental data was done. The experimental data was chosen to rebin
rather than the simulation data because because the experimental data posses higher fidelity
than the simulated data. Going the other way around did not make sense. The experimental data
was made to fit 1024 channels ranging from 0 to 3 MeV for the case of Co-60. The parameters
obtained for the FWHM model in the experimental analysis were used in the simulation via the
GEB card. Output of the simulation contained both Gaussian energy broaded data and non
broaded data. The approach to broaded data in post processing was not employed although a
comparison between the two techniques might prove interesting if discrepancies arise.

4.3.1 MC Simulation Generated DRFs

The detector response functions that were finally employed were the ones generated with MCNP
5 Version 1.60. These were generated for the model that included the aluminum can, the re-
flector, rubber padding and Sodium Iodide Crystal. Neither photomultiplier tube nor its casing
were modeled. To reduce the time it took to produce these DRFs, the simulated source for the
corresponding single energy was forced onto a conical distribution arriving at the face of the
detector. Also these simulations were carried out using MPI on 155 processors on the CEAR
Cluster. Ten billion source particles were generated for each of the single gamma-ray energies
associated with Cobalt 60.

To form the DRF that corresponds to the sum pulse in Cobalt 60, the two DRFs corresponding
to the energies of 1173 keV and 1332 keV were combined. Several methods were thought out,
amongst using the rejection method to sample from the two, adding upward sloping diagonals
on a matrix formed from a type of matrix multiplication operation, and using wave analysis
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software to convolve. However the final convolution used to generate the DRF corresponding to
a summed energy of 2505 keV was done rather easily with a nested loop. See appendix under
custom code for convo.c. The reasoning behind using this method was that all the data points
were positive and the DRFs for the 1173 and 1332 keV gamma-rays were themselves tabular
data. The detector itself sees the incoming gamma-rays as a manifestation from independent
events. Because of this they were treated as probability mass functions that could be convolved
using the following formula:

P (n) =
n∑

k=0

px (k) · py (n− k) (4.3)

where px and py are the probabilty mass functions to be convolved and P is the result.

Chapter 7 of reference [5] has a very thorough discussion on convolving probabilty mass func-
tions.

4.3.2 Running MCNP-CP

In order to run MCNP-CP efficiently the CEAR cluster was used in a pseudo parallel manner.
A BASH script was used to run multiple instances of a particular simulation starting with a
different set of random numbers on multiple computers. A second script was then used to collect
the data. Finally custom written program developed in C were used to average the results and
propagate the error. This type of procedure was carried out twice. Once for the simulation of
a ring of 16 detectors around a point source, and a second time to produce the data for decay
of Cobalt 60 at 5 centimeters away from the detector. The later of these simulation yield a
spectrum with a sum pulse corresponding to the addition of the two prominent gamma-ray
energies from Cobalt 60. The scripts and programs used are provided in the appendix.
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Chapter 5

Results

5.1 CEAR Co-60 Activity

The activity of the source was determined to be 130 kBq with a sigma of 1.8 kBq or about 3.51
micro curies on July 3rd 2013. The deviation is probably not very meaningful without having
known the known source’s error to carry out error propagation properly. However this estimate
was good enough.
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5.2 MCNP vs. MCNP-CP
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Figure 5.1: MCNP vs MCNP-CP with and without GEB

Figure 5.1 shows a comparison of MCNP and MCNP-CP. The MCNP simulation shows the
other energies listed in the decay scheme, Figure 1.1. Notice that these energies above 1.3 MeV
are the low emission yield. The output from MCNP-CP does not appear to show these energies
but does show a sum pulse corresponding to 2.5 MeV. This is closer to what is observed in the
laboratory with experimental data.

5.3 Cross Talk Simulation at Various Angles

The plot in Figure 5.2 compares spectrum for the case where all particles are forced onto one
detector at zero degrees and 5 centimeters away from the source. This was done via a conical
distribution on the face of the detector. A second detector is rotated at various angles and the
energy deposited on this detector is purely from scatter off of the first detector.

24



10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

C
ou

nt
s 

p
er

 E
ne

rg
y 

an
d

 C
o-

60
 S

tr
en

g
th

3.02.52.01.51.00.50.0

Energy (MeV)

Detector whose face recieves initial Gamma's from Co-60

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

C
ou

nt
s 

p
er

 E
ne

rg
y 

an
d

 C
o-

60
 s

tr
en

g
th

1.00.80.60.40.20.0

Energy (MeV)

   67.5º
   90.0º
 112.5º
 135.0º
 157.5º
 180.0º

Figure 5.2: Cross Talk introduced into detector from scatter off of first detector

5.4 Angular Correlation from MCNP-CP Simulation

In Figure 5.3 the theoretical Model is the blue line. The red dots represent total count ratio
between the angle of interest and the 90 degree case for various angles. See Figure 5.3. This
calculation is not possible within reasonable time using a single instance of MCNP-CP on a
single computer. The entire CEAR Cluster was used with the help of BASH scripts and a
separate C code to run multiple instances of MCNP-CP. This data produced 124 output files
with 64 tallies each. This amounted to around 75 Gigabytes of data. Transferring the data itself
after the simulations were ran took around an hour and a half. The entire run took 3 days using
31 nodes on the cluster.
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Figure 5.3: Angular Correlation Plot of Theoretical Model and Simulation Data

26



5.5 DRFs

5.5.1 G03 Generated DRFs
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Figure 5.4: DRFs Generated with G03
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5.5.2 MCNP Generated DRFs
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Figure 5.5: DRFs Generated with MCNP
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5.6 Final Result
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Figure 5.6: DRFs fitted to experimental spectra with MCNP-CP spectra super imposed on
top

The final result Figure 5.6 shows various fits to the experimental data (black solid line). The
individual DRFs as well as the least-squares fit to the experimental data is shown. The output
of MCNP-CP was the final layer to be added to the graph. The interesting point is that the
least squares fit was only done to experimental data and the MCNP-CP data seems to match
this fit.
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Chapter 6

Discussion

A useful application of DRFs might arise when subtracting from experimental spectrum. If
what appears to be a sum pulse is present it might be possible to determine if it is cause by
a summation effect from single energies due to the difference in the full width at hald maximum.

Pulse extraction code for the binary output file from XIA Pixie-500 was written in C and
included in the appendix. MCNP-CP also has a list mode feature but a comparison was not
done.
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Appendix A

About the CEAR Cluster

A.1 History

This is the third cluster CEAR has had. It is based off of some improvements on the second
cluster which was donated to CEAR. The previous cluster was more than double the size
and considerably loader. One often had to wear ear protection when entering the room where
it was housed. This new cluster was rebuilt in the fall of 2009 but has since gone through
several upgrades. When building the new cluster care was taken to distribute the load onto
multiple electrical circuit breakers. The previous cluster had significant power issues because
of the size, power consumption, and electrical power distribution. The new cluster sports a
shared file system that is available to all the nodes as well as gigabit Ethernet interfaces. Its
primary purpose has been to run and develop Monte Carlo codes which are usually inherently
parallelizable.

A.2 Hardware

The CEAR cluster consists of 41 nodes (node100 through node140). Each node is essentially
the same having an AMD Phenom 9950 Quad Core 2.6 GHz CPU and 4 Gigabytes of RAM.
The decision was made to use consumer level hardware and inexpensive motherboards which
featured onboard gigabit LAN Ethernet interfaces as well as onboard video display ports. Each
node also has its own hard drive which is partitioned in 3. The first partition is swap space and
is around 4 gigabytes in size. The second partition houses the primary local file system for the
node. This partition also has the nuclear cross sections installed for faster read access to the
system. The third partition is mounted as /local and is space reserved for users and applications
that require local disk access. The directory /home is a mount point for the shared network file
system housed on a separate machine whose hostname is nfsserver. The NFSSERVER houses
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the users file system on multiple hard drives which have partitions in various RAID setups. See
the Section How the File System Works on the CEAR Cluster under the Appendix Paralleling
Code Manually on the CEAR Cluster for a better explanation.

Teletraan1 is the most recent computing host developed with the idea of a possible migra-
tion path towards new hardware. It features two CPUs each with 16 Cores for a total of 32
Cores. Its memory is at 256 Gigabytes of RAM as of now. The host also has a high speed solid
state drive. The home folder is again mounted from the NFSSERVER.

Logger is a simple machine with one purpose, to log information from all the other nodes
and computers. This is done via the SNMP service that runs on all the hosts. When problems
arise on the network, the log files kept here are a good starting point. Things of interests that
are recorded here are CPU and memory Usage as well as any hardware failures reported by any
other host. Logger has the ability to send SMS and e-mail messages to report issues.

Ethernet Switch 
(Public IPs)

Ethernet Switch 
(Private IPs)

Figure A.1: Diagram showing Layout of CEAR Cluster

Both the Gateway and VPN servers provided internet connectivity to the cluster. This is
useful as this cluster is on a private network not accessible publicly. Users of the cluster are
provided with certificates to access the CEAR cluster network. These certificates are either
installed on a router that has a VPN client or the users computer along with a VPN client.
Connectivity amongst all the hosts is handled by a gigabit managed switch that has both a
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terminal interface via a serial port and a web interface. The switch itself also runs an SNMP
service and reports to LOGGER.

A.3 Software

With the exception of the VPN Server and Gateway, all the machines run some version of
Slackware Linux. There have been several upgrades performed and most hosts run on Slackware
14. Most of the machines use a 32-Bit version of the OS with the exception of Teletraan1 which
itself runs a 64-Bit version of the operating system. This decision is due in part because some
work has to be done on custom codes for them to run on 64-Bit versions of the OS. Teletraan1
has to run on a 64-Bit OS because of the amount of memory it has. Teletraan1 is also a
good place to test migration of the code to work on 64-Bit systems. The VPN Server and the
Gateway run pfSense, a distribution of FreeBSD used for routing purposes. Manual DHCP
(Static DHCP) is enabled so the nodes can get the same IP address based off of their MAC
address. However the machines are also usually set with a static IP address. These machine also
allow for network booting. They send out information to allow PXE booting from a folder shared
on the NFSSERVER. This is done for repairs and diagnostics on the nodes. Both VPN Server
and Gateway also run an NTP Server used to keep the time on all the computers on the CEAR
Cluster network synchronized. The MPI libraries used for distributed computing come from
MPICH version 2. They were built from source code using the GNU C compiler and the Intel
Fortran compiler. A Host named REPO is used as a repository with software version control
systems for the management of custom written code. It features all the standard packages
such as git, cvs, and subversion. The Web Server is used to host the site www.cearonline.com.
This is done with the Apache web server, php, and MySQL. Drupal is used as both a content
management system and code frame work for custom written php modules. Every released sub-
version of MCNP5 is compiled for use on the cluster in either single or distributed mode which
includes both OpenMP and MPI. The latest version of MCNP 5 and 6, MCNPX and MCNP4C
are also installed.

A.4 Management

Management is made easier via the use of custom written BASH scripts and CRON jobs used
to do administrative things such as adding users, backing up files, and synchronize between
various nodes. Some of these scripts are used to setup SSH keys for newly added users as well
as creating their locally addressable space on each node. The administrative versions are kept
in /usr/local/sbin while utitilies that can be ran by normal users are kept in /usr/local/bin
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A.5 Maintenance

There has been a lot of maintenance work performed over the last couple of years on the CEAR
Cluster. The biggest culprit of headaches has been inflated capacitors. These has usually been
replaced by desoldering and resoldering new ones on motherboards. Lately because of time con-
straints is has been easier to replace entire motherboards which have been running around forty
dollars or so. Because of the constant use at near 100 percent of CPU usage, the capacitors seem
to last about a year and half to two years before needing replacing. Recently better cooling has
helped decrease some failures.

Only one CPU on a node has ever needed replacing and it was under warranty via AMD.
A total of six power supplies have failed over the years. Opening up the power supplies revealed
that problems were more than likely also caused by faulty capacitors. The decision to just re-
place the entire power supply unit is usually taken. Hard drives have also experience failure. No
data has been lost thus fare and down time has been minimum due partly in fact to the used
of RAID 5. Failed hard drives are tested via the use of low level diagnostics software. When
possible they are secure erased and/or zero wiped. If not possible they are opened and made
unusable and their magnets are removed.

When PXE booting from the network on a NODE it is possible to run various diagnostics
utilities. These utilities can test RAM and provide one with the SMART tables from the hard
drives. Careful attention is paid to look at the grown defects list and SMART tables for possible
pending sector relocations. If any are found the drive is secure erased and then zero wiped and
removed from the system. When a machine is experiencing faults its usually taken off of the
rack and inspected visually also for capacitor problems and full diagnostics are done. When
removing a system from the cluster, its entry is usually removed from the hydrahosts file so
that it does not get used by MPI enabled software. Once repaired or replaced the system is
network booted once more. From here it also possible to restore a generic system onto the hard
drive of the computer. When rebooted system particularities such as unique IDs and keys are
restored for the host before reintegration onto the cluster. The utility fsarchiver is used as it
can format and restore a file system simultaneously.

A.6 Future Improvements

The use of uninterruptible power supplies has been considered; however when pricing them out
it seems more lucrative to invest in more computing hard ware. Perhaps it is time to perform an
analysis and reconsider purchasing some. Surge protectors have served well but few people know
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how to restart cluster jobs from run tapes. When all the codes are tested and shown to work
well in 64-Bit computing systems, it will be wise to try to migrate to a pure 64-Bit architecture.
Other MPI enhancements are possible but require thorough testing. Adding OpenMP and MPI
capabilities to custom codes would also benefit all who continue to use the cluster.
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Appendix B

Custom Codes

B.1 reduce.c

1 #inc lude <s t d l i b . h>

2 #inc lude <s t d i o . h>

3

4 i n t main ( i n t argc , char * argv [ ] )

5 {
6 i n t i , n , x , y , z , u , v ,w;

7 i n t * array=NULL;

8 FILE * in , * out ;

9

10

11 i f ( argc !=3 )

12 {
13 f p r i n t f ( s tde r r , ”Correct ussage i s :\n” ) ;

14 f p r i n t f ( s tde r r , ”%s i n p u t f i l e o u t p u t f i l e \n” , argv [ 0 ] ) ;

15 e x i t (1 ) ;

16 }
17

18 i f ( ( in=fopen ( argv [ 1 ] , ” r ” ) ) == NULL)

19 {
20 f p r i n t f ( s tde r r , ”Can ’ t read %s .\n” , argv [ 1 ] ) ;

21 e x i t (1 ) ;

22 }
23

24 i f ( ( out = fopen ( argv [ 2 ] , ”w” ) ) == NULL )

25 {
26 f p r i n t f ( s tde r r , ”Can ’ t wr i t e %s .\n” , argv [ 2 ] ) ;

27 e x i t (1 ) ;

28 }
29

30 i =0;

31 whi l e ( ! f e o f ( in ) )

32 {
33 i f ( f s c a n f ( in , ” %d %d %d\n” , &x , &y , &z ) != 3) break ;
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34 i f ( f s c a n f ( in , ” %d %d %d\n” , &u , &v , &w) != 3) break ;

35 i++;

36 f p r i n t f ( out , ”%d %d %d\n” , i , y+v , z+w) ;

37 }
38 p r i n t f ( ” F i l e has been crea ted .\n” ) ;

39

40 e x i t (0 ) ;

41

42 }

B.2 derfapp.c

1 /*
2 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
3 Module : DeRFAPP

4 For : Adan Calderon

5

6 Desc r ip t i on :

7 This program takes 3 command l i n e arguments .

8

9 Author : Adan Calder ón

10 Mod i f i ca t i on His tory :

11 Date Who Modif ied Desc r ip t i on

12 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
13 Dec 04 , 2013

14 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
15 * /

16 #inc lude <s t d l i b . h>

17 #inc lude <s t d i o . h>

18 #inc lude <s t d l i b . h>

19 #inc lude <s t d i o . h>

20

21 #de f i n e MAX CHANNELS 1024

22

23

24 typede f s t r u c t

25 {
26 double v1 ;

27 double v2 ;

28 } g0 l i n e ;

29

30 typede f s t r u c t

31 {
32 double v1 ;

33 double v2 ;

34 double v3 ;

35 } g0 l i n e 2 ;

36

37 i n t main ( i n t argc , char * argv [ ] )

38 {

39



39 i n t i , j , k ;

40 double v1 , v2 , v3 ;

41

42 FILE * in , * in2 , * out ;

43

44 g 0 l i n e ** t ;

45 g 0 l i n e * pool ;

46 g 0 l i n e * curPtr ;

47

48 g0 l i n e 2 * t2 ;

49

50 double * p3 ;

51

52 t = ( g0 l i n e ** ) c a l l o c (MAX CHANNELS, s i z e o f ( g 0 l i n e * ) ) ;

53 pool = ( g 0 l i n e * ) c a l l o c (MAX CHANNELS*MAX CHANNELS, s i z e o f ( g 0 l i n e ) ) ;

54 // Now point the po i n t e r s in the r i g h t p lace

55 curPtr = pool ;

56 f o r ( i = 0 ; i < MAX CHANNELS; i++)

57 {
58 * ( t + i ) = curPtr ;

59 curPtr += MAX CHANNELS;

60 }
61

62

63 t2 = ( g0 l i n e 2 * ) c a l l o c (MAX CHANNELS, s i z e o f ( g 0 l i n e 2 ) ) ;

64 p3 = ( double * ) c a l l o c (MAX CHANNELS, s i z e o f ( double ) ) ;

65

66 i f ( argc !=4 )

67 {
68 f p r i n t f ( s tde r r , ”No arguments g iven . \n” ) ;

69 e x i t (1 ) ;

70 }
71

72 i f ( ( in=fopen ( argv [ 1 ] , ” r ” ) ) == NULL)

73 {
74 f p r i n t f ( s tde r r , ”Can ’ t read %s .\n” , argv [ 1 ] ) ;

75 e x i t (1 ) ;

76 }
77

78 i f ( ( in2 = fopen ( argv [ 2 ] , ” r ” ) ) == NULL )

79 {
80 f p r i n t f ( s tde r r , ”Can ’ t read %s .\n” , argv [ 2 ] ) ;

81 e x i t (1 ) ;

82 }
83

84 i f ( ( out = fopen ( argv [ 3 ] , ”w” ) ) == NULL )

85 {
86 f p r i n t f ( s tde r r , ”Can ’ t wr i t e %s .\n” , argv [ 3 ] ) ;

87 e x i t (1 ) ;

88 }
89

90 whi l e ( ! f e o f ( in ) )
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91 {
92 i f ( f s c a n f ( in , ”%i %i %l f %l f ” , &i , &j , &v1 , &v2 ) != 4) break ;

93 t [ i −1] [ j −1] . v1=v1 ;

94 t [ i −1] [ j −1] . v2=v2 ;

95 }
96

97 i =0;

98 whi l e ( ! f e o f ( in2 ) )

99 {
100 i f ( f s c a n f ( in2 , ”%l f %l f %l f ” , &v1 , &v2 , &v3 ) != 3) break ;

101 t2 [ i ] . v1=v1 ;

102 t2 [ i ] . v2=v2 ;

103 t2 [ i ] . v3=v3 ;

104 i++;

105 }
106

107

108 f o r ( i =0; i<MAX CHANNELS; i++)

109 {
110 f o r ( j =0; j<MAX CHANNELS; j++)

111 {
112 p3 [ j ]=p3 [ j ]+ t2 [ i ] . v2* t [ i ] [ j ] . v2 ;

113 }
114 }
115

116

117 f o r ( j =0; j<MAX CHANNELS; j++)

118 {
119 f p r i n t f ( out , ”%i %e\n” , j +1, p3 [ j ] ) ;

120 }
121

122 f r e e (* t ) ;

123 f r e e ( t ) ;

124 f r e e ( t2 ) ;

125 f r e e ( p3 ) ;

126 e x i t (0 ) ;

127 }

B.3 SpecAdder.c

1 /*
2 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
3 Module : SpecAdder

4 For : Adan Calder ón

5

6 Desc r ip t i on :

7

8 Author : Adan Calder ón

9 Mod i f i ca t i on His tory :

10 Date Who Modif ied Desc r ip t i on
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11 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
12 Feb 27 , 2014

13 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
14 * /

15 #inc lude <s t d l i b . h>

16 #inc lude <s t d i o . h>

17 #inc lude <s t d l i b . h>

18 #inc lude <s t d i o . h>

19 #inc lude <math . h>

20

21 #de f i n e MAX LINES 1025

22 #de f i n e DETECTORNUMBER 0

23 #de f i n e NUMBER FILES 156

24

25 typede f s t r u c t

26 {
27 double v1 ;

28 double v2 ;

29 double v3 ;

30 } l i n e ;

31

32 i n t main ( i n t argc , char * argv [ ] )

33 {
34 i n t i , j ;

35 double v1 , v2 , v3 ;

36

37 char input f i l ename [ s i z e o f ” 999 . out . 9 ” ] ;

38

39 FILE * in , * out ;

40

41 l i n e f i l e l i n e s [MAX LINES ] ;

42

43 i f ( ( out = fopen ( ”a . txt ” , ”w” ) ) == NULL )

44 {
45 f p r i n t f ( s tde r r , ”Can ’ t wr i t e %s .\n” , ”a . txt ” ) ;

46 e x i t (1 ) ;

47 }
48 /* Zero out everyth ing * /

49 f o r ( j =0; j<MAX LINES; j++)

50 {
51 f i l e l i n e s [ j ] . v1 =0.0 ;

52 f i l e l i n e s [ j ] . v2 =0.0 ;

53 f i l e l i n e s [ j ] . v3 =0.0 ;

54 }
55

56 f o r ( j =1; j<=NUMBER FILES; j++)

57 {
58

59 s p r i n t f ( input f i l ename , ”%d . out .%d” , j ,DETECTORNUMBER) ;

60

61 i f ( ( in = fopen ( input f i l ename , ” r ” ) ) == NULL )

62 {
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63 f p r i n t f ( s tde r r , ”Can ’ t read %s .\n” , ” 1 . txt ” ) ;

64 e x i t (1 ) ;

65 }
66

67 i =0;

68 whi l e ( ! f e o f ( in ) )

69 {
70 i f ( f s c a n f ( in , ”%l f %l f %l f ” , &v1 , &v2 , &v3 ) != 3)

break ;

71 f i l e l i n e s [ i ] . v1=v1 ;

72 f i l e l i n e s [ i ] . v2=f i l e l i n e s [ i ] . v2+v2 ;

73 f i l e l i n e s [ i ] . v3+=(v2* v3 ) * ( v2* v3 ) ;

74 i ++;;

75 }
76 f c l o s e ( in ) ;

77 }
78

79 f o r ( j =0; j<MAX LINES; j++)

80 {
81 f p r i n t f ( out , ”%e %e %e\n” , f i l e l i n e s [ j ] . v1 , f i l e l i n e s [ j ] . v2/

NUMBER FILES, sq r t ( f i l e l i n e s [ j ] . v3 ) /NUMBER FILES) ;

82 }
83

84 e x i t (0 ) ;

85 }

B.4 gtotal.c

1 /*
2 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
3 Module : Grand Total

4 For : Adan Calder ón

5

6 Desc r ip t i on :

7

8 Author : Adan Calder ón

9 Mod i f i ca t i on His tory :

10 Date Who Modif ied Desc r ip t i on

11 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
12 Feb 27 , 2014

13 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
14 * /

15

16 /*
17 St ruc ture o f the F i l e Being READ

18 Total Counts f o l l owed by Re la t i v e Error f o r 22 .5 Degrees

19 Total Counts f o l l owed by Re la t i v e Error f o r 45 .0 Degrees

20 Total Counts f o l l owed by Re la t i v e Error f o r 67 .5 Degrees

21 Total Counts f o l l owed by Re la t i v e Error f o r 90 .0 Degrees

22 Total Counts f o l l owed by Re la t i v e Error f o r 112 .5 Degrees
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23 Total Counts f o l l owed by Re la t i v e Error f o r 135 .0 Degrees

24 Total Counts f o l l owed by Re la t i v e Error f o r 157 .5 Degrees

25 Total Counts f o l l owed by Re la t i v e Error f o r 180 .5 Degrees

26

27 The s t r u c tu r e r epea t s i t s e l f 8 t imes f o r a t o t a l o f 64 Lines

28

29 Output i s a s i n g l e f i l e with 64 Lines

30 * /

31 #inc lude <s t d l i b . h>

32 #inc lude <s t d i o . h>

33 #inc lude <s t d l i b . h>

34 #inc lude <s t d i o . h>

35 #inc lude <math . h>

36

37 #de f i n e MAX LINES 64

38 #de f i n e NUMBER FILES 124

39

40 typede f s t r u c t

41 {
42 double v1 ;

43 double v2 ;

44 double v3 ;

45 } l i n e ;

46

47 i n t main ( i n t argc , char * argv [ ] )

48 {
49 i n t i , j ;

50 double v1 , v2 , v3 ;

51

52 char input f i l ename [ s i z e o f ” 999 .TOTALS” ] ;

53

54 FILE * in , * out ;

55

56 l i n e f i l e l i n e s [MAX LINES ] ;

57

58 i f ( ( out = fopen ( ”GRAND TOTAL. txt ” , ”w” ) ) == NULL )

59 {
60 f p r i n t f ( s tde r r , ”Can ’ t wr i t e %s .\n” , ”GRAND TOTAL” ) ;

61 e x i t (1 ) ;

62 }
63 /* Zero out everyth ing * /

64 f o r ( j =0; j<MAX LINES; j++)

65 {
66 f i l e l i n e s [ j ] . v2 =0.0 ;

67 f i l e l i n e s [ j ] . v3 =0.0 ;

68 }
69

70 f o r ( j =1; j<=NUMBER FILES; j++)

71 {
72

73 s p r i n t f ( input f i l ename , ”%d .TOTALS” , j ) ;

74
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75 i f ( ( in = fopen ( input f i l ename , ” r ” ) ) == NULL )

76 {
77 f p r i n t f ( s tde r r , ”Can ’ t read %s .\n” , ”%d .TOTALS” ) ;

78 e x i t (1 ) ;

79 }
80

81 i =0;

82 whi l e ( ! f e o f ( in ) )

83 {
84 i f ( f s c a n f ( in , ”%l f %l f ” , &v2 , &v3 ) != 2) break ;

85 f i l e l i n e s [ i ] . v2=f i l e l i n e s [ i ] . v2+v2 ;

86 f i l e l i n e s [ i ] . v3+=(v2* v3 ) * ( v2* v3 ) ;

87 i++;

88 }
89 f c l o s e ( in ) ;

90 }
91

92 f o r ( j =0; j<MAX LINES; j++)

93 {
94 f p r i n t f ( out , ”%e %e\n” , f i l e l i n e s [ j ] . v2/NUMBER FILES, sq r t (

f i l e l i n e s [ j ] . v3 ) /NUMBER FILES) ;

95 }
96 e x i t (0 ) ;

97 }

B.5 pixiedust.c

1 /*
2 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
3 Module : PixieDust

4 For : Adan Calder ón

5

6 Desc r ip t i on :

7 This program takes two command l i n e arguments . The f i r s t i s the binary output

8 f i l e from the XIA p i x i e . The second i s a d e s t i n a t i on f i l e .

9

10 Usage : p i x i edu s t f i l ename . bin output . txt

11

12 Author : Adan Calder ón

13 Mod i f i ca t i on His tory :

14 Date Who Modif ied Desc r ip t i on

15 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
16 Apr i l 29 2012

17 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
18 * /

19 #inc lude <s t d l i b . h>

20 #inc lude <s t d i o . h>

21

22 #de f i n e BYTETOBINARYPATTERN ”%d %d %d %d %d %d %d %d %d %d %d %d %d %d %d %d”

23 #de f i n e BYTETOBINARY( byte ) \
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24 ( byte & 0x8000 ? 1 : 0) , \
25 ( byte & 0x4000 ? 1 : 0) , \
26 ( byte & 0x2000 ? 1 : 0) , \
27 ( byte & 0x1000 ? 1 : 0) , \
28 ( byte & 0x0800 ? 1 : 0) , \
29 ( byte & 0x0400 ? 1 : 0) , \
30 ( byte & 0x0200 ? 1 : 0) , \
31 ( byte & 0x0100 ? 1 : 0) , \
32 ( byte & 0x0080 ? 1 : 0) , \
33 ( byte & 0x0040 ? 1 : 0) , \
34 ( byte & 0x0020 ? 1 : 0) , \
35 ( byte & 0x0010 ? 1 : 0) , \
36 ( byte & 0x0008 ? 1 : 0) , \
37 ( byte & 0x0004 ? 1 : 0) , \
38 ( byte & 0x0002 ? 1 : 0) , \
39 ( byte & 0x0001 ? 1 : 0)

40

41 i n t main ( i n t argc , char * argv [ ] )

42 {
43 s t r u c t BufferHeader

44 {
45 unsigned shor t i n t BUF NDATA;

46 unsigned shor t i n t BUFMODNUM;

47 unsigned shor t i n t BUF FORMAT;

48 unsigned shor t i n t BUF TIMEHI ;

49 unsigned shor t i n t BUF TIMEMI;

50 unsigned shor t i n t BUF TIMELO;

51 } ;

52

53 s t r u c t EventHeader

54 {
55 unsigned shor t i n t EVT PATTERN;

56 unsigned shor t i n t EVT TIMEHI ;

57 unsigned shor t i n t EVT TIMELO;

58 } ;

59

60 s t r u c t ChannelHeader9

61 {
62 unsigned shor t i n t CHAN NDATA;

63 unsigned shor t i n t CHAN TRIGTIME;

64 unsigned shor t i n t CHAN ENERGY;

65 unsigned shor t i n t CHAN XIAPSA;

66 unsigned shor t i n t CHAN USERPSA;

67 unsigned shor t i n t Unused0 ;

68 unsigned shor t i n t Unused1 ;

69 unsigned shor t i n t Unused2 ;

70 unsigned shor t i n t CHAN REALTIMEHI;

71 } ;

72

73 s t r u c t ChannelHeader4

74 {
75 unsigned shor t i n t CHAN TRIGTIME;
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76 unsigned shor t i n t CHAN ENERGY;

77 unsigned shor t i n t CHAN XIAPSA;

78 unsigned shor t i n t CHAN USERPSA;

79 } ;

80

81 s t r u c t ChannelHeader2

82 {
83 unsigned shor t i n t CHAN TRIGTIME;

84 unsigned shor t i n t CHAN ENERGY;

85 } ;

86

87

88 unsigned shor t i n t CHANHEADLEN;

89 unsigned shor t i n t RUNTASK;

90 unsigned shor t i n t N WAVE DATA;

91 unsigned shor t i n t temp ;

92 unsigned shor t i n t BUFFERBYTES;

93 unsigned shor t i n t BUFFERNUMBER;

94 unsigned i n t EVENTNUMBER;

95

96 s t r u c t BufferHeader CurrentBufferHeader ;

97 s t r u c t EventHeader eventHeader ;

98 s t r u c t ChannelHeader9 channelHeader9 ;

99 s t r u c t ChannelHeader4 channelHeader4 ;

100 s t r u c t ChannelHeader2 channelHeader2 ;

101

102 FILE * in , * out ;

103

104 i f ( argc !=3 )

105 {
106 f p r i n t f ( s tde r r , ”No arguments g iven . \n” ) ;

107 e x i t (1 ) ;

108 }
109

110 i f ( ( in=fopen ( argv [ 1 ] , ” rb” ) ) == NULL)

111 {
112 f p r i n t f ( s tde r r , ”Can ’ t read %s .\n” , argv [ 1 ] ) ;

113 e x i t (1 ) ;

114 }
115

116 i f ( ( out = fopen ( argv [ 2 ] , ”w” ) ) == NULL )

117 {
118 f p r i n t f ( s tde r r , ”Can ’ t wr i t e %s .\n” , argv [ 2 ] ) ;

119 e x i t (1 ) ;

120 }
121

122 EVENTNUMBER=0;

123 BUFFERNUMBER=0;

124

125 /*
126 While not end o f f i l e keep read ing from i t

127 * /
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128 whi l e ( f r ead (&CurrentBufferHeader , 1 2 , 1 , in ) !=0)

129 {
130

131 /*
132 Begin by read ing the f i r s t 12 bytes o f the f i l e

133 This in fo rmat ion w i l l be used to determin the RUNTASK

134 * /

135

136 /*
137 p r i n t f (”The Current Buf f e r i s %hu \n” , BUFFERNUMBER) ;

138 p r i n t f (”Number o f words in t h i s Buf f e r %hu \n” , CurrentBufferHeader .BUF NDATA)

;

139 p r i n t f (”Run s t a r t time , high word %hu \n” , CurrentBufferHeader .BUF TIMEHI) ;

140 p r i n t f (”Run s t a r t time , middle word %hu \n” , CurrentBufferHeader .BUF TIMEMI) ;

141 p r i n t f (”Run s t a r t time , low word %hu \n” , CurrentBufferHeader .BUF TIMELO) ;

142 * /

143

144 /*
145 Ca lcu la te how many bytes remain in the cur rent bu f f e r .

146 S ince the BUF NDATA i s the amount o f 16−Bit words in the

147 e n t i r e bu f f e r , we subt rac t the header s i z e o f 6 words .

148 We then mult ip ly t h i s by 2 to get the t o t a l remaining bytes .

149 * /

150 BUFFERBYTES=(CurrentBufferHeader .BUF NDATA−6) * 2 ;

151

152 /*
153 RUNTASK=FORMAT DESCRIPTOR − AN OFFSET

154 The Pixie −500 500Mhz Vers ion has OFFSET 0x4000

155 with TimeStamps in un i t s o f 2 ns and increments o f 8ns

156

157 The Pixie −500 400Mhz Vers ion has OFFSET 0x5000

158 with TimeStamps in un i t e s o f 2 . 5 ns and increments o f 13 .33 ns

159

160 The Pixie−4 has OFFSET 0x2000

161

162 * /

163 RUNTASK=CurrentBufferHeader .BUF FORMAT−0x4000 ;

164 /*
165 p r i n t f (”The RUNTASK IS %hu \n” , RUNTASK) ;

166 * /

167 {
168 /*
169 Determine Channel Header Type from RUNTASK

170 * /

171 i f (RUNTASK==256)

172 {
173 CHANHEADLEN=9;

174 }
175

176 i f (RUNTASK==257)

177 {
178 CHANHEADLEN=9;
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179 }
180

181 i f (RUNTASK==258)

182 {
183 CHANHEADLEN=4;

184 }
185

186 i f (RUNTASK==259)

187 {
188 CHANHEADLEN=2;

189 }
190 }
191

192 //EVENTNUMBER=0;

193

194 /*
195 While the re are s t i l l bytes in the bu f f e r keep read ing

196 * /

197 whi l e (BUFFERBYTES>=1)

198 {
199 f r ead (&eventHeader , 6 , 1 , in ) ;

200 BUFFERBYTES=BUFFERBYTES−6;

201 f p r i n t f ( out , ” The cur rent event number i s %u \n” , EVENTNUMBER) ;

202 f p r i n t f ( out , ”EVENT PATTERN ”BYTETOBINARYPATTERN”\n” , BYTETOBINARY(

eventHeader .EVT PATTERN) ) ;

203

204 /*
205 Setup f o r channe l s that a c t ua l l y got used

206 * /

207 f p r i n t f ( out , ”Event time , high word %hu \n” , eventHeader .EVT TIMEHI) ;

208 f p r i n t f ( out , ”Event time , low word %hu \n” , eventHeader .EVT TIMELO) ;

209

210 i f (CHANHEADLEN==9)

211 {
212 /*
213 Did Channel 0 ( Detector 1) get DATA?

214 * /

215

216 i f ( ( eventHeader .EVT PATTERN & 1) == 1)

217 {
218 f r ead (&channelHeader9 ,CHANHEADLEN* 2 ,1 , in ) ;

219 BUFFERBYTES=BUFFERBYTES−(CHANHEADLEN* 2) ;

220 N WAVE DATA=channelHeader9 .CHAN NDATA−CHANHEADLEN;

221 f p r i n t f ( out , ”Channel 0\n” ) ;

222 f p r i n t f ( out , ”Fast t r i g g e r time %hu\n” , channelHeader9 .CHAN TRIGTIME) ;

223 f p r i n t f ( out , ”Energy %hu\n” , channelHeader9 .CHAN ENERGY) ;

224 f p r i n t f ( out , ”High word o f the r e a l time %hu\n” , channelHeader9 .

CHAN REALTIMEHI) ;

225 whi l e (N WAVE DATA>=1)

226 {
227 f r ead (&temp , 2 , 1 , in ) ;

228 f p r i n t f ( out , ”%hu\n” , temp) ;
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229 BUFFERBYTES=BUFFERBYTES−2;

230 N WAVE DATA−−;

231 }
232 }
233

234 /*
235 Did Channel 1 ( Detector 2) get DATA?

236 * /

237 i f ( ( eventHeader .EVT PATTERN & 2) == 2)

238 {
239 f r ead (&channelHeader9 ,CHANHEADLEN* 2 ,1 , in ) ;

240 BUFFERBYTES=BUFFERBYTES−(CHANHEADLEN* 2) ;

241 N WAVE DATA=channelHeader9 .CHAN NDATA−CHANHEADLEN;

242 f p r i n t f ( out , ”Channel 1\n” ) ;

243 f p r i n t f ( out , ”Fast t r i g g e r time %hu\n” , channelHeader9 .CHAN TRIGTIME) ;

244 f p r i n t f ( out , ”Energy %hu\n” , channelHeader9 .CHAN ENERGY) ;

245 f p r i n t f ( out , ”High word o f the r e a l time %hu\n” , channelHeader9 .

CHAN REALTIMEHI) ;

246 whi l e (N WAVE DATA>=1)

247 {
248 f r ead (&temp , 2 , 1 , in ) ;

249 f p r i n t f ( out , ”%hu\n” , temp) ;

250 BUFFERBYTES=BUFFERBYTES−2;

251 N WAVE DATA−−;

252 }
253 }
254

255 /*
256 Did Channel 2 ( Detector 3) get DATA?

257 * /

258 i f ( ( eventHeader .EVT PATTERN & 4) == 4)

259 {
260 f r ead (&channelHeader9 ,CHANHEADLEN* 2 ,1 , in ) ;

261 BUFFERBYTES=BUFFERBYTES−(CHANHEADLEN* 2) ;

262 N WAVE DATA=channelHeader9 .CHAN NDATA−CHANHEADLEN;

263 f p r i n t f ( out , ”Channel 2\n” ) ;

264 f p r i n t f ( out , ”Fast t r i g g e r time %hu\n” , channelHeader9 .CHAN TRIGTIME) ;

265 f p r i n t f ( out , ”Energy %hu\n” , channelHeader9 .CHAN ENERGY) ;

266 f p r i n t f ( out , ”High word o f the r e a l time %hu\n” , channelHeader9 .

CHAN REALTIMEHI) ;

267 whi l e (N WAVE DATA>=1)

268 {
269 f r ead (&temp , 2 , 1 , in ) ;

270 f p r i n t f ( out , ”%hu\n” , temp) ;

271 BUFFERBYTES=BUFFERBYTES−2;

272 N WAVE DATA−−;

273 }
274 }
275

276 /*
277 Did Channel 3 ( Detector 4) get DATA?

278 * /
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279 i f ( ( eventHeader .EVT PATTERN & 8) == 8)

280 {
281 f r ead (&channelHeader9 ,CHANHEADLEN* 2 ,1 , in ) ;

282 BUFFERBYTES=BUFFERBYTES−(CHANHEADLEN* 2) ;

283 N WAVE DATA=channelHeader9 .CHAN NDATA−CHANHEADLEN;

284 f p r i n t f ( out , ”Channel 3\n” ) ;

285 f p r i n t f ( out , ”Fast t r i g g e r time %hu\n” , channelHeader9 .CHAN TRIGTIME) ;

286 f p r i n t f ( out , ”Energy %hu\n” , channelHeader9 .CHAN ENERGY) ;

287 f p r i n t f ( out , ”High word o f the r e a l time %hu\n” , channelHeader9 .

CHAN REALTIMEHI) ;

288 whi l e (N WAVE DATA>=1)

289 {
290 f r ead (&temp , 2 , 1 , in ) ;

291 f p r i n t f ( out , ”%hu\n” , temp) ;

292 BUFFERBYTES=BUFFERBYTES−2;

293 N WAVE DATA−−;

294 }
295 }
296 }
297

298 i f (CHANHEADLEN==4)

299 {
300 f r ead (&channelHeader4 ,CHANHEADLEN* 2 ,1 , in ) ;

301 }
302

303 i f (CHANHEADLEN==2)

304 {
305 f r ead (&channelHeader2 ,CHANHEADLEN* 2 ,1 , in ) ;

306 }
307 EVENTNUMBER++;

308 }
309 BUFFERNUMBER++;

310 }
311 p r i n t f ( ”\n” ) ;

312 // p r i n t f (” F i l e has been crea ted .\n”) ;

313 e x i t (0 ) ;

314 }

B.6 convo.c

1 /*
2 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
3 Module : Comvo Adder f o r PMFs

4 For : Adan Calder ón

5

6 Desc r ip t i on :

7

8 Author : Adan Calder ón

9 Mod i f i ca t i on His tory :

10 Date Who Modif ied Desc r ip t i on
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11 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
12 Feb 27 , 2014

13 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
14 * /

15 #inc lude <s t d l i b . h>

16 #inc lude <s t d i o . h>

17 #inc lude <s t d l i b . h>

18 #inc lude <s t d i o . h>

19 #inc lude <math . h>

20

21 #de f i n e MAX LINES 1025

22

23 typede f s t r u c t

24 {
25 double v1 ;

26 double v2 ;

27 double v3 ;

28 } l i n e ;

29

30 i n t main ( i n t argc , char * argv [ ] )

31 {
32 i n t i , j ;

33 double v1 , v2 , v3 ;

34 FILE * in , * in2 , * out ;

35 l i n e pmf in [MAX LINES ] ;

36 l i n e pmf in2 [MAX LINES ] ;

37 l i n e pmf out [MAX LINES ] ;

38

39 i f ( argc !=4 )

40 {
41 f p r i n t f ( s tde r r , ”Correct ussage i s :\n” ) ;

42 f p r i n t f ( s tde r r , ”%s i n p u t f i l e 1 i n p u t f i l e 2 o u t p u t f i l e n \n” , argv [ 0 ] ) ;

43 f p r i n t f ( s tde r r , ” \n” ) ;

44 e x i t (1 ) ;

45 }
46

47 i f ( ( in=fopen ( argv [ 1 ] , ” r ” ) ) == NULL)

48 {
49 f p r i n t f ( s tde r r , ”Can ’ t read %s .\n” , argv [ 1 ] ) ;

50 e x i t (1 ) ;

51 }
52

53 i f ( ( in2=fopen ( argv [ 2 ] , ” r ” ) ) == NULL)

54 {
55 f p r i n t f ( s tde r r , ”Can ’ t read %s .\n” , argv [ 1 ] ) ;

56 e x i t (1 ) ;

57 }
58

59 i f ( ( out = fopen ( argv [ 3 ] , ”w” ) ) == NULL )

60 {
61 f p r i n t f ( s tde r r , ”Can ’ t wr i t e %s .\n” , argv [ 2 ] ) ;

62 e x i t (1 ) ;
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63 }
64

65 /* Zero out everyth ing * /

66 f o r ( j =0; j<MAX LINES; j++)

67 {
68 pmf in [ j ] . v1 =0.0 ;

69 pmf in [ j ] . v2 =0.0 ;

70 pmf in [ j ] . v3 =0.0 ;

71

72 pmf in2 [ j ] . v1 =0.0 ;

73 pmf in2 [ j ] . v2 =0.0 ;

74 pmf in2 [ j ] . v3 =0.0 ;

75

76 pmf out [ j ] . v1 =0.0 ;

77 pmf out [ j ] . v2 =0.0 ;

78 pmf out [ j ] . v3 =0.0 ;

79 }
80 i =0;

81 whi l e ( ! f e o f ( in ) )

82 {
83 i f ( f s c a n f ( in , ”%l f %l f %l f ” , &v1 , &v2 , &v3 ) != 3) break ;

84 pmf in [ i ] . v1=v1 ;

85 pmf in [ i ] . v2=v2 ;

86 pmf in [ i ] . v3=v3 ;

87 i++;

88 }
89 f c l o s e ( in ) ;

90

91 i =0;

92 whi l e ( ! f e o f ( in2 ) )

93 {
94 i f ( f s c a n f ( in2 , ”%l f %l f %l f ” , &v1 , &v2 , &v3 ) != 3) break ;

95 pmf in2 [ i ] . v1=v1 ;

96 pmf in2 [ i ] . v2=v2 ;

97 pmf in2 [ i ] . v3=v3 ;

98 i++;

99 }
100 f c l o s e ( in2 ) ;

101

102 f o r ( j =0; j<=MAX LINES; j++)

103 {
104 pmf out [ j ] . v1=pmf in [ j ] . v1 ;

105 f o r ( i =0; i<=j ; i++)

106 {
107 pmf out [ j ] . v2=pmf out [ j ] . v2 + pmf in [ i ] . v2 * pmf in2 [ j−i ] . v2 ;

108 }
109 }
110

111 f o r ( j =0; j<MAX LINES; j++)

112 {
113 f p r i n t f ( out , ”%e %e\n” , pmf out [ j ] . v1 , pmf out [ j ] . v2 ) ;

114 }
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115

116 f c l o s e ( out ) ;

117 e x i t (0 ) ;

118 }

B.7 chnconvert.f90

1 ! ****************************************************************************
2 !

3 ! PROGRAM: CHNCONVERT

4 !

5 ! PURPOSE: To conver t s ORTEC .CHN f i l e format to an ASCII format .

6 !

7 !

8 ! Record o f r e v i s on s :

9 ! Date Programmer Desc r ip t i on o f change

10 ! ==== ========== =====================

11 ! Feb . 19 2011 A. F . Calder ón I n i t i a l wr i t e o f program

12 ! ****************************************************************************
13 program CHNCONVERT

14

15 imp l i c i t none

16

17 INTEGER, PARAMETER : : I1B=SELECTED INT KIND(2)

18 INTEGER, PARAMETER : : I2B=SELECTED INT KIND(4)

19 INTEGER, PARAMETER : : I4B=SELECTED INT KIND(9)

20 INTEGER, PARAMETER : : I8B=SELECTED INT KIND(18)

21 INTEGER, PARAMETER : : R1B=SELECTED REAL KIND( r=2)

22 INTEGER, PARAMETER : : R2B=SELECTED REAL KIND( r=4)

23 INTEGER, PARAMETER : : R4B=SELECTED REAL KIND( r=9)

24 INTEGER, PARAMETER : : R8B=SELECTED REAL KIND( r=18)

25 INTEGER, PARAMETER : : ONEBYTEOFFSET=256 ! USED TO CONVERT TO UNSIGNED

26 INTEGER, PARAMETER : : TWOBYTEOFFSET=65536 ! USED TO CONVERT TO UNSIGNED

27 INTEGER, PARAMETER : : FOURBYTEOFFSET=4294967296 ! USED TO CONVERT TO UNSIGNED

28

29 ! Var i ab l e s

30 CHARACTER,ALLOCATABLE,DIMENSION( : ) : : a ! Data array

31 INTEGER (KIND=I8B ) ,ALLOCATABLE,DIMENSION( : ) : : CHANNEL

32 CHARACTER ( l en =20) : : f i l e name I ! Input data f i l e name

33 CHARACTER ( l en =20) : : f i lenameO ! Output data f i l e name

34 INTEGER (KIND=I4B ) : : FOURBYTES

35 INTEGER (KIND=I1B ) : : ONEBYTE

36 INTEGER (KIND=I1B ) : : FOURBYTEARRAY(4)

37 INTEGER (KIND=I1B ) : : TWOBYTEARRAY(2)

38 INTEGER (KIND=I1B ) : : THREEBYTE ARRAY(3)

39 INTEGER (KIND=I1B ) : : TEMP DESC ARRAY(63)

40 INTEGER (KIND=I2B ) : : HEADER CHECK

41 INTEGER (KIND=I2B ) : : MCA DET NUMBER

42 INTEGER (KIND=I2B ) : : SEGMENTNUMBER

43 CHARACTER (LEN=2) : : SECONDS
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44 INTEGER (KIND=I4B ) : : REAL TIME

45 INTEGER (KIND=I4B ) : : LIVE TIME

46 CHARACTER (LEN=2) : : DAY

47 CHARACTER (LEN=3) : : MONTH

48 CHARACTER (LEN=2) : : YEAR

49 CHARACTER : : Y2K CHECK

50 CHARACTER (LEN=2) : : START HOUR

51 CHARACTER (LEN=2) : : START MINS

52 INTEGER (KIND=I2B ) : : CHANNEL OFFSET

53 INTEGER (KIND=I2B ) : : TEMP NUM CHAN

54 INTEGER (KIND=I2B ) : : TEST NEG 102 TEMP

55 INTEGER (KIND=I4B ) : : TEST NEG 102

56 INTEGER (KIND=I4B ) : : NUMBER OF CHANNELS

57 INTEGER (KIND=I4B ) : : PRESENT CHANNEL

58 INTEGER (KIND=I4B ) : : TEMP CHANNEL

59 INTEGER : : YEAR 4DIGITS

60 INTEGER : : s t a tu s ! Status : 0 f o r su c e s s

61 INTEGER : : nva l s = 0 ! Number o f va lue s to p roce s s

62 INTEGER : : mypos , i , j

63 CHARACTER : : temp

64

65 REAL (KIND=R4B) : : ENERGY CAL INT !ENERGY CALIBRATION INTERCEPT 0.0 f o r

unca l i b ra t ed spectrum

66 REAL (KIND=R4B) : : ENERGY CAL SLP !ENERGY CALIBRATION SLOPE 1 .0 f o r

unca l i b ra t ed spectrum

67 REAL (KIND=R4B) : : ENERGY CAL QUD !ENERGY CALIBRATION QUADRATIC TERM 0.0 f o r

unca l i b ra t ed spectrum

68 REAL (KIND=R4B) : : PEAK CAL INT !PEAK SHAPE CALIBRATION INTERCEPT 1.0 f o r

unca l i b ra t ed spectrum

69 REAL (KIND=R4B) : : PEAK CAL SLP !PEAK SHAPE CALIBRATION SLOPE 0 .0 f o r

unca l i b ra t ed spectrum

70 REAL (KIND=R4B) : : PEAK CAL QUD

71 INTEGER (KIND=I1B ) : : DET DESC LEN !DETECTOR DESCRIPTION LENGTH

72 CHARACTER (LEN=63) : : DET DESCRIPTION

73 INTEGER (KIND=I1B ) : : SAMP DESC LEN !SAMPLE DESCRIPTION LENGTH

74 CHARACTER (LEN=63) : : SAMP DESCRIPTION

75

76 ! Body o f CHNCONVERT

77 WRITE ( * , 1000)

78 1000 FORMAT (1X, ’ Enter the f i l e name to be read : ’ )

79 READ ( * , ’ (A20) ’ ) f i l e name I

80

81 ! Open input data f i l e . Status i s OLD because the input data must

82 ! a l r eady e x i s t .

83 OPEN ( UNIT=9, FILE=f i l enameI , STATUS=’OLD’ , ACCESS=’STREAM’ , ACTION=’READ’ ,

FORM=’UNFORMATTED’ , convert=’LITTLE ENDIAN’ , IOSTAT=sta tu s )

84

85 ! Was the OPEN su c c e s s f u l ?

86 f i l e o p e n : IF ( s t a tu s == 0 ) THEN ! Open s u c c e s s f u l

87 ! The f i l e was opened s u c c e s s f u l l y , so read the data to f i nd

88 ! out how many va lue s are in the f i l e and a l l o c a t e the

89 ! r equ i r ed space .
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90 mypos=1

91 DO

92 READ (9 , POS=mypos , IOSTAT=sta tu s ) temp ! Get value

93 IF ( s t a tu s /= 0 ) EXIT ! Exit on end o f data

94 nva l s = nva l s + 1 ! Bump count

95 mypos = mypos + 1

96 ENDDO

97

98 ! A l l o ca t e memory

99 WRITE ( * , * ) ’ A l l o ca t i ng a : s i z e = ’ , nva l s

100 ALLOCATE ( a ( nva l s ) , STAT=sta tu s ) ! A l l o ca t e memory

101 a l l o c a t e o k : IF ( s t a tu s == 0 ) THEN

102

103 ! Was a l l o c a t i o n s u c c e s s f u l ? I f so , rewind f i l e , read in

104 ! data , and proce s s i t .

105 ! Now read in the data . We know that the re are enough

106 ! va lue s to f i l l the array .

107 DO mypos=1, nva l s

108 READ (9 , POS=mypos , IOSTAT=sta tu s ) a (mypos ) ! Get va lue

109 IF ( s t a tu s /= 0 ) EXIT ! Exit on end o f data

110 ENDDO

111 ENDIF a l l o c a t e o k

112

113 CLOSE(9)

114

115 TWOBYTEARRAY(1)=TRANSFER(a (3 ) ,ONEBYTE)

116 TWOBYTEARRAY(2)=TRANSFER(a (4 ) ,ONEBYTE)

117 MCA DET NUMBER=TRANSFER(TWOBYTEARRAY,MCA DET NUMBER)

118

119 TWOBYTEARRAY(1)=TRANSFER(a (5 ) ,ONEBYTE)

120 TWOBYTEARRAY(2)=TRANSFER(a (6 ) ,ONEBYTE)

121 SEGMENTNUMBER=TRANSFER(TWOBYTEARRAY,SEGMENTNUMBER)

122

123 TWOBYTEARRAY(1)=TRANSFER(a (7 ) ,ONEBYTE)

124 TWOBYTEARRAY(2)=TRANSFER(a (8 ) ,ONEBYTE)

125 SECONDS=TRANSFER(TWOBYTEARRAY,SECONDS)

126

127 FOURBYTEARRAY(1)=TRANSFER(a (9 ) ,ONEBYTE)

128 FOURBYTEARRAY(2)=TRANSFER(a (10) ,ONEBYTE)

129 FOURBYTEARRAY(3)=TRANSFER(a (11) ,ONEBYTE)

130 FOURBYTEARRAY(4)=TRANSFER(a (12) ,ONEBYTE)

131 REAL TIME=TRANSFER(FOURBYTE ARRAY,REAL TIME)

132

133 FOURBYTEARRAY(1)=TRANSFER(a (13) ,ONEBYTE)

134 FOURBYTEARRAY(2)=TRANSFER(a (14) ,ONEBYTE)

135 FOURBYTEARRAY(3)=TRANSFER(a (15) ,ONEBYTE)

136 FOURBYTEARRAY(4)=TRANSFER(a (16) ,ONEBYTE)

137 LIVE TIME=TRANSFER(FOURBYTE ARRAY,LIVE TIME)

138

139 TWOBYTEARRAY(1)=TRANSFER(a (17) ,ONEBYTE)

140 TWOBYTEARRAY(2)=TRANSFER(a (18) ,ONEBYTE)

141 DAY=TRANSFER(TWOBYTEARRAY,DAY)
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142

143 THREEBYTE ARRAY(1)=TRANSFER(a (19) ,ONEBYTE)

144 THREEBYTE ARRAY(2)=TRANSFER(a (20) ,ONEBYTE)

145 THREEBYTE ARRAY(3)=TRANSFER(a (21) ,ONEBYTE)

146 MONTH=TRANSFER(THREEBYTE ARRAY,MONTH)

147

148 TWOBYTEARRAY(1)=TRANSFER(a (22) ,ONEBYTE)

149 TWOBYTEARRAY(2)=TRANSFER(a (23) ,ONEBYTE)

150 YEAR=TRANSFER(TWOBYTEARRAY,YEAR)

151

152 Y2K CHECK=TRANSFER(a (24) ,Y2K CHECK)

153

154 TWOBYTEARRAY(1)=TRANSFER(a (25) ,ONEBYTE)

155 TWOBYTEARRAY(2)=TRANSFER(a (26) ,ONEBYTE)

156 START HOUR=TRANSFER(TWOBYTEARRAY,START HOUR)

157

158 TWOBYTEARRAY(1)=TRANSFER(a (27) ,ONEBYTE)

159 TWOBYTEARRAY(2)=TRANSFER(a (28) ,ONEBYTE)

160 START MINS=TRANSFER(TWOBYTEARRAY,START MINS)

161

162 TWOBYTEARRAY(1)=TRANSFER(a (29) ,ONEBYTE)

163 TWOBYTEARRAY(2)=TRANSFER(a (30) ,ONEBYTE)

164 CHANNEL OFFSET=TRANSFER(TWOBYTEARRAY,CHANNEL OFFSET)

165

166 TWOBYTEARRAY(1)=TRANSFER(a (31) ,ONEBYTE)

167 TWOBYTEARRAY(2)=TRANSFER(a (32) ,ONEBYTE)

168 TEMP NUM CHAN=TRANSFER(TWOBYTEARRAY,TEMP NUM CHAN)

169 NUMBER OF CHANNELS=TEMP NUM CHAN+TWOBYTEOFFSET

170

171 WRITE ( * , * ) ’ A l l o ca t i ng Channel ( s ) : s i z e = ’ , NUMBER OF CHANNELS

172 ALLOCATE ( CHANNEL(NUMBER OF CHANNELS) , STAT=sta tu s ) ! A l l o ca t e memory

173 a l l o c a t e 2 o k : IF ( s t a tu s == 0 ) THEN

174

175 ! Was a l l o c a t i o n s u c c e s s f u l ? I f so , rewind f i l e , read in

176 ! data , and proce s s i t .

177 ! Now read in the data . We know that the re are enough

178 ! va lue s to f i l l the array .

179

180 PRESENT CHANNEL=1

181 DO mypos=1,NUMBER OF CHANNELS* 4 ,4

182 FOURBYTEARRAY(1)=TRANSFER(a (mypos+32) ,ONEBYTE)

183 FOURBYTEARRAY(2)=TRANSFER(a (mypos+33) ,ONEBYTE)

184 FOURBYTEARRAY(3)=TRANSFER(a (mypos+34) ,ONEBYTE)

185 FOURBYTEARRAY(4)=TRANSFER(a (mypos+35) ,ONEBYTE)

186 TEMP CHANNEL=TRANSFER(FOURBYTE ARRAY,TEMP CHANNEL)

187 !WRITE( * , * ) TEMP CHANNEL

188 CHANNEL(PRESENT CHANNEL)=TEMP CHANNEL+FOURBYTEOFFSET

189 PRESENT CHANNEL=PRESENT CHANNEL+1

190 ENDDO

191

192 ENDIF a l l o c a t e 2 o k

193
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194

195

196 mypos=32+NUMBER OF CHANNELS* 4+1

197

198 TWOBYTEARRAY(1)=TRANSFER(a (mypos ) ,ONEBYTE)

199 TWOBYTEARRAY(2)=TRANSFER(a (mypos+1) ,ONEBYTE)

200 TEST NEG 102 TEMP=TRANSFER(TWOBYTEARRAY,TEST NEG 102 TEMP)

201 TEST NEG 102=TEST NEG 102 TEMP

202 WRITE( * , * ) ’NEGATIVE 102 TEST : ’ , TEST NEG 102

203

204 FOURBYTEARRAY(1)=TRANSFER(a (mypos+4) ,ONEBYTE)

205 FOURBYTEARRAY(2)=TRANSFER(a (mypos+5) ,ONEBYTE)

206 FOURBYTEARRAY(3)=TRANSFER(a (mypos+6) ,ONEBYTE)

207 FOURBYTEARRAY(4)=TRANSFER(a (mypos+7) ,ONEBYTE)

208 ENERGY CAL INT=TRANSFER(FOURBYTE ARRAY,ENERGY CAL INT)

209

210 FOURBYTEARRAY(1)=TRANSFER(a (mypos+8) ,ONEBYTE)

211 FOURBYTEARRAY(2)=TRANSFER(a (mypos+9) ,ONEBYTE)

212 FOURBYTEARRAY(3)=TRANSFER(a (mypos+10) ,ONEBYTE)

213 FOURBYTEARRAY(4)=TRANSFER(a (mypos+11) ,ONEBYTE)

214 ENERGY CAL SLP=TRANSFER(FOURBYTE ARRAY,ENERGY CAL SLP)

215

216 FOURBYTEARRAY(1)=TRANSFER(a (mypos+12) ,ONEBYTE)

217 FOURBYTEARRAY(2)=TRANSFER(a (mypos+13) ,ONEBYTE)

218 FOURBYTEARRAY(3)=TRANSFER(a (mypos+14) ,ONEBYTE)

219 FOURBYTEARRAY(4)=TRANSFER(a (mypos+15) ,ONEBYTE)

220 ENERGY CAL QUD=TRANSFER(FOURBYTE ARRAY,ENERGY CAL QUD)

221

222 FOURBYTEARRAY(1)=TRANSFER(a (mypos+16) ,ONEBYTE)

223 FOURBYTEARRAY(2)=TRANSFER(a (mypos+17) ,ONEBYTE)

224 FOURBYTEARRAY(3)=TRANSFER(a (mypos+18) ,ONEBYTE)

225 FOURBYTEARRAY(4)=TRANSFER(a (mypos+19) ,ONEBYTE)

226 PEAK CAL INT=TRANSFER(FOURBYTE ARRAY,PEAK CAL INT)

227

228 FOURBYTEARRAY(1)=TRANSFER(a (mypos+20) ,ONEBYTE)

229 FOURBYTEARRAY(2)=TRANSFER(a (mypos+21) ,ONEBYTE)

230 FOURBYTEARRAY(3)=TRANSFER(a (mypos+22) ,ONEBYTE)

231 FOURBYTEARRAY(4)=TRANSFER(a (mypos+23) ,ONEBYTE)

232 PEAK CAL SLP=TRANSFER(FOURBYTE ARRAY,PEAK CAL SLP)

233

234 FOURBYTEARRAY(1)=TRANSFER(a (mypos+24) ,ONEBYTE)

235 FOURBYTEARRAY(2)=TRANSFER(a (mypos+25) ,ONEBYTE)

236 FOURBYTEARRAY(3)=TRANSFER(a (mypos+26) ,ONEBYTE)

237 FOURBYTEARRAY(4)=TRANSFER(a (mypos+27) ,ONEBYTE)

238 PEAK CAL QUD=TRANSFER(FOURBYTE ARRAY,PEAK CAL QUD)

239

240 DET DESC LEN=TRANSFER(a (mypos+256) ,ONEBYTE)

241

242 j=1

243 DO i=mypos+257 ,mypos+257+62

244 TEMP DESC ARRAY( j )=TRANSFER(a ( i ) ,ONEBYTE)

245 j=j+1
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246 ENDDO

247 DET DESCRIPTION=TRANSFER(TEMP DESC ARRAY,DET DESCRIPTION)

248

249 SAMP DESC LEN=TRANSFER(a (mypos+320) ,ONEBYTE)

250

251 j=1

252 DO i=mypos+321 ,mypos+321+62

253 TEMP DESC ARRAY( j )=TRANSFER(a ( i ) ,ONEBYTE)

254 j=j+1

255 ENDDO

256 SAMP DESCRIPTION=TRANSFER(TEMP DESC ARRAY,SAMP DESCRIPTION)

257

258

259

260

261 ELSE f i l e o p e n

262 ! El se f i l e open f a i l e d . Te l l use r .

263 WRITE ( * , 1050) s t a tu s

264 1050 FORMAT (1X, ’ F i l e open f a i l e d −−s t a tu s = ’ , I6 )

265 ENDIF f i l e o p e n

266 wr i t e ( * , * ) ’DEBUG TEST’

267

268 IF (Y2K CHECK==’1 ’) THEN

269 read (YEAR, ’ ( I4 ) ’ ) YEAR 4DIGITS

270 YEAR 4DIGITS=2000+YEAR 4DIGITS

271 ELSE

272 read (YEAR, ’ ( I4 ) ’ ) YEAR 4DIGITS

273 YEAR 4DIGITS=1900+YEAR 4DIGITS

274 ENDIF

275

276 OPEN (UNIT = 7 , FILE=”OUTPUT.TXT” ,STATUS=”UNKNOWN”)

277 WRITE(7 , * ) ’ Date : ’ ,MONTH, ’ ’ ,DAY, ’ ’ ,YEAR 4DIGITS

278 WRITE(7 , * ) ’ S ta r t Time : ’ ,START HOUR, ’ : ’ , START MINS

279 WRITE(7 , * ) ’ Dectector /MCA Number : ’ ,MCA DET NUMBER

280 WRITE(7 , * ) ’ Segment number : ’ ,SEGMENTNUMBER

281 WRITE(7 , * ) ’Number o f Channels : ’ ,NUMBER OF CHANNELS

282 WRITE(7 , * ) ’ Channel DATA Of f s e t : ’ ,CHANNEL OFFSET

283 WRITE(7 , * ) ’ Detector Desc r ip t i on : ’ ,DET DESCRIPTION

284 WRITE(7 , * ) ’ Sample Desc r ip t i on : ’ ,SAMP DESCRIPTION

285 WRITE(7 , * ) ’ Live Time : ’ ,LIVE TIME

286 WRITE(7 , * ) ’ Real Time : ’ ,REAL TIME

287 WRITE(7 , * ) ’ Energy Cal I n t e r c ep t : ’ ,ENERGY CAL INT

288 WRITE(7 , * ) ’ Energy Cal Slope : ’ ,ENERGY CAL SLP

289 WRITE(7 , * ) ’ Energy Cal Quadratic : ’ ,ENERGY CAL QUD

290 WRITE(7 , * ) ’ Peak Cal I n t e r c ep t : ’ ,PEAK CAL INT

291 WRITE(7 , * ) ’ Peak Cal Slope : ’ ,PEAK CAL SLP

292 WRITE(7 , * ) ’ Peak Cal Quadratic : ’ ,PEAK CAL QUD

293 WRITE(7 , * )

294

295

296 DO PRESENT CHANNEL=1,NUMBER OF CHANNELS

297 WRITE(7 , * ) PRESENT CHANNEL,CHANNEL(PRESENT CHANNEL)
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298 ENDDO

299 ! Dea l l o ca t e the array now that we are done .

300 DEALLOCATE ( a , STAT=sta tu s )

301 DEALLOCATE ( CHANNEL, STAT=sta tu s )

302 end program CHNCONVERT

B.8 BASH Script to extract tallys from MCNP

1 #!/ bin / sh

2 s t a r t l i n e s =( ‘ grep −n ” c e l l [0−9] ” $1 | cut −d ’ : ’ −f1 ‘ )

3 end l i n e s =( ‘ grep −n ” t o t a l [0 −9 ]\ . [ 0 −9 ] ” $1 | cut −d ’ : ’ −f1 ‘ )

4 f o r i in ”$ { ! s t a r t l i n e s [@]} ”

5 do

6 s t a r t l i n e =‘ expr ${ s t a r t l i n e s [ i ]} + 2 ‘

7 end l i n e =‘expr ${ end l i n e s [ i ]} − 1 ‘

8 ‘ sed −e ” $ s t a r t l i n e , $end l ine ! d” $1 > out . $i ‘

9 done

B.9 BASH Script to run MCNP-CP in Parallel on CEAR Clus-

ter

1 #!/ bin / sh

2 # #############################################################################

3

4 NAME=${0##*/} ## Get the name o f the s c r i p t without i t s path

5 HTML=”Runs MCNP−CP on the CEAR CLUSTER in Di s t r ibu t ed manner”

6 PURPOSE =”To d i s t r i b u t e MCNP−CP jobs on CEAR Clus te r ”

7 SYNOPSIS =”$NAME −t tmplt . in [− s Seed sF i l e ] [−n NumberOfNodes ] −o <output d i r>

”

8 REQUIRES =” standard GNU commands and a template input f i l e ”

9 VERSION =” 1 .0 ”

10 DATE =”2013−09−12; l a s t update : 2014−02−26”

11 AUTHOR=”Adan F . Calderon Jr . <adancalderon@gmail . com>”

12 URL =”www. c e a r on l i n e . com”

13 CATEGORY=” f i l e ”

14 PLATFORM=”Linux”

15 SHELL =”bash”

16 DISTRIBUTE =”yes ”

17

18 # #############################################################################

19 # This program i s d i s t r i b u t e d under the terms o f the GNU General Publ ic L i cense

20 # Vers ion 2

21 # HISTORY:

22 # 2013−09−12 v1 . 0 − I n i t i a l Vers ion

23 #

24 usage ( ) {
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25 p r i n t f >&2 ”\n$NAME $VERSION − $PURPOSE

26

27 Trad i t i o na l l y one would run the s e r i a l v e r s i on o f MCNP−CP by execut ing the

28 f o l l ow i n g :

29

30 mcnp−cp inp=i n f i l e out=o u t f i l e dumn1=l o g f i l e

31

32 After a s u c c e s s f u l run , the f i l e s o u t f i l e and l o g f i l e would be c rea ted .

33

34 This s c r i p t w i l l he lp run mul t ip l e i n s t an c e s o f such a command l i n e on mul t ip l e

35 computing nodes . $NAME w i l l c r e a t e a d i r e c t o r y s t r u c tu r e in the s p e c i f i e d

36 output d i r e c t o r y . This s t r u c tu r e c o n s i s t s o f mu l t ip l e s u bd i r e c t o r i e s with a

37 unique numerica l va lue . There w i l l be as many s ubd i r e c t o r i e s as the re are t o t a l

38 jobs submitted . For Ins tance i f you s p e c i f y −n 36 , the re w i l l be a t o t a l o f 144

39 s u bd i r e c t o r i e s c r ea ted because 36 t imes 4 i s 144 . The 4 comes from the number o f

40 p r o c e s s o r s per node .

41

42 With 36 nodes s p e c i f i e d , you w i l l have

43

44 node100 :

45 /home/$USER/ l o c a l /1

46 /home/$USER/ l o c a l /2

47 /home/$USER/ l o c a l /3

48 /home/$USER/ l o c a l /4

49 node102 :

50 /home/$USER/ l o c a l /5

51 /home/$USER/ l o c a l /6

52 /home/$USER/ l o c a l /7

53 /home/$USER/ l o c a l /8

54 and so f o r t h un t i l

55 .

56 .

57 .

58 node140 :

59 /home/$USER/ l o c a l /141

60 /home/$USER/ l o c a l /142

61 /home/$USER/ l o c a l /143

62 /home/$USER/ l o c a l /144

63

64 In each o f the se numerica l s u bd i r e c t o r i e s one w i l l f i nd output and log f i l e s .

65 The input f i l e that i s used f o r each o f the se runs w i l l have a d i f f e r e n t random

66 seed . P lease make c e r t a i n that your input f i l e template has

67 the f o l l ow i n g l i n e at the end :

68

69 c rand seed RNSEED

70

71 \nUsage : $SYNOPSIS

72

73 Requires : $REQUIRES

74

75 Options :

76
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77 −t , <TemplateInputFile >, A template input f i l e f o r MCNP−CP

78 t h i s f i l enmae should be 8 cha ra c t e r s or l e s s

79 −n , <NumberOfNodes>, Number o f computing nodes to use . Only needed i f l e s s

80 then the maximum number o f a v a i l a b l e nodes i s needed . At pre sent time

81 the maximum number i s 40 . There are 40 32−Bit nodes .

82 −s , <SeedsFi l e >, Optional t ex t f i l e with a seed per l i n e to use on each run .

83 The f i l e must conta in at l e a s t as many seeds as jobs that w i l l be

submitted .

84 For example i f you are us ing 36 nodes with 4 p r o c e s s o r s per node , then

t h i s

85 f i l e must have at l e a s t 144 seeds .

86 I f t h i s i s not s p e c i f i e d then and odd seed i s randomly crea ted f o r each

job .

87 −o , <OutputDirectory >, path to where to c r e a t e the output f o l d e r s . This w i l l

88 more then l i k e l y be /home/$USER/ l o c a l or ˜/ l o c a l

89 −h , usage and opt ions ( t h i s he lp )

90 −l , s e e t h i s s c r i p t

91

92 Examples :

93 $NAME −t template . inp −o ˜/ l o c a l

94 $NAME −t sampledeck . inp −s MySeeds . txt −n 36 /home/$USER/ l o c a l

95 \n”

96 e x i t 1

97 }
98

99 # args check

100 [ $# −eq 0 ] && { echo >&2 miss ing argument , type $NAME −h f o r he lp ; e x i t 1 ; }
101

102 trap ” e x i t 1” 1 2 3 15

103

104 # var i n i t

105 TemplateInputFi le=

106 NumberOfNodes=

107 SeedsF i l e=

108 OutputDirectory=

109

110 whi l e ge topt s h lns : t : o : opt i ons ; do

111

112 case ” $opt ions ” in

113 t ) TemplateInputFi le=”$OPTARG” ; ;

114 n) NumberOfNodes=”$OPTARG” ; ;

115 s ) Seed sF i l e=”$OPTARG” ; ;

116 o ) OutputDirectory=”$OPTARG” ; ;

117 h) usage ; ;

118 l ) more $0 ; e x i t 1 ; ;

119 \?) echo i n v a l i d argument , type $NAME −h f o r he lp ; e x i t 1 ; ;

120 esac

121

122 done

123 s h i f t $ ( ( $OPTIND − 1 ) )

124

125 # args check
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126 [ [ $TemplateInputFi le ] ] | | { echo >&2 No template input was s p e c i f i e d ; e x i t 1 ; }
127 [ [ $SeedsF i l e ] ] | | { echo >&2 No SeedsF i l e s p e c i f i e d . Creat ing Random Seeds ;

CreateSeeds =1;}
128 [ [ −d ” $OutputDirectory ” ] ] | | { echo >&2 output d i r ” $output d i r ” does not e x i s t ;

e x i t 1 ; }
129

130 de c l a r e −a nodes

131 de c l a r e − i CPUS PER NODE

132 de c l a r e − i MAX CPUS

133 de c l a r e −a SeedsOfLi f e

134

135 GLOBAL COUNTER=1

136 CPUS PER NODE=4

137 index=1

138 nodes=( ‘ grep −v ˆ# /home/adan/ hydrahosts | cut −c 1−7 ‘)

139

140 l e t MAX CPUS=${#nodes [ * ]} * 4

141 echo ”Max Number o f CPUS i s ”$MAX CPUS

142 #Seeds o f L i f e

143 #dec l a r e −a SeedsOfLi f e

144 #################################Seeds Of L i f e#################################

145 ####IF SeedsF i l e was not s p e c i f i e d , then an array o f s eeds w i l l be c r ea ted

146 i f [ [ $CreateSeeds ] ]

147 then

148 f o r ( ( element=1; element<=$MAX CPUS; element++))

149 do

150 l e t va lue=2*$RANDOM$RANDOM+1

151 #echo $value

152 SeedsOfLi f e [ $element ]= $value

153 done

154 e l s e

155 SeedsOfLi f e=( $ ( < $SeedsF i l e ) )

156 #Put a Check here to see that i t ’ s at l e a s t as b ig as MAX CPUS

157 NumberOfSeeds=( ‘ cat $SeedsF i l e |wc −l ‘ )

158 i f [ ”$NumberOfSeeds” − l t ”$MAX CPUS” ]

159 then

160 echo ”You Do not have enough seeds in $SeedsF i l e ” ;

161 echo ”You have $NumberOfSeeds seeds and you need $MAX CPUS seeds ”

162 e x i t 1 ;

163 f i

164 f i

165 #################################Seeds Of L i f e#################################

166 f o r node in ${nodes [ * ] }
167 do

168 echo ”Running on $node”

169 #echo $index

170 index2=1

171 whi l e ( ( ” $index2 ” <= ”$CPUS PER NODE” ) )

172 do

173 ssh $USER@$node ” i f [ ! −d $OutputDirectory /$GLOBAL COUNTER ] ;

174 then mkdir $OutputDirectory /$GLOBAL COUNTER;

175 f i ; ”
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176 ssh $USER@$node cp $TemplateInputFi le $OutputDirectory /$GLOBAL COUNTER/ input

177 echo Using seed = ${ SeedsOfLi f e [$GLOBAL COUNTER]} f o r $GLOBAL COUNTER

178 ssh $USER@$node ” sed − i ’ s /c rand seed RNSEED/dbcn 7 j ${ SeedsOfLi f e [

$GLOBAL COUNTER]}/ g ’ \
179 $OutputDirectory /$GLOBAL COUNTER/ input ”

180 ssh −n −f $USER@$node ”

181 export DATAPATH=/usr / l o c a l /udata/mcnpxs ;

182 export TMPDIR=/tmp

183 export INPUT FILE=input ;

184 export OUTPUT FILE=output ;

185 export RUN TAPE=runtp ;

186 export LOG FILE=log . txt ;

187 export STD OUTERR=$HOME/ l o c a l /$GLOBAL COUNTER/ s tdou t e r r . txt ;

188 cd / $OutputDirectory /$GLOBAL COUNTER;

189 nohup mcnp−cp inp=\$INPUT FILE out=\$OUTPUT FILE runtpe=\
$RUN TAPE \

190 dumn1=\$LOG FILE 2>&1>\$STD OUTERR;

191 ”

192 l e t ”GLOBAL COUNTER++”

193 l e t ” index2++”

194 done

195 l e t ” index++”

196 done

B.10 BASH Script used to collect data output from various

MCNP-CP Jobs

1 #!/ bin / sh

2 de c l a r e −a nodes

3 de c l a r e − i CPUS PER NODE

4 dec l a r e − i MAX CPUS

5 de c l a r e −a SeedsOfLi f e

6

7 GLOBAL COUNTER=1

8 CPUS PER NODE=4

9 index=1

10 nodes=( ‘ grep −v ˆ# / etc / hydrahosts | cut −c 1−7 ‘)

11

12 l e t MAX CPUS=${#nodes [ * ]} * 4

13

14 i f [ ! −d c o l l e c t e d ]

15 then mkdir c o l l e c t e d

16 f i

17

18 f o r node in ${nodes [ * ] }
19 do

20 echo ” Co l l e c t i n g from $node”

21 index2=1

22 whi l e ( ( ” $index2 ” <= ”$CPUS PER NODE” ) )
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23 do

24 i f [ ! −d c o l l e c t e d /$GLOBAL COUNTER ]

25 then mkdir c o l l e c t e d /$GLOBAL COUNTER

26 f i

27 scp $node : / l o c a l /$USER/$GLOBAL COUNTER/* c o l l e c t e d /$GLOBAL COUNTER/

28

29

30 s t a r t l i n e s =( ‘ grep −n ” c e l l ( ” c o l l e c t e d /$GLOBAL COUNTER/output | cut −d ’ : ’ −f1

‘ )

31 end l i n e s =( ‘ grep −n ” t o t a l [0−9] ” c o l l e c t e d /$GLOBAL COUNTER/output |
cut −d ’ : ’ −f1 ‘ )

32 f o r i in ”$ { ! s t a r t l i n e s [@]} ”

33 do

34 s t a r t l i n e =‘expr ${ s t a r t l i n e s [ i ]} + 2 ‘

35 end l i n e =‘expr ${ end l i n e s [ i ]} − 1 ‘

36 sed −e ” $ s t a r t l i n e , $end l ine ! d” c o l l e c t e d /$GLOBAL COUNTER/output >

$GLOBAL COUNTER. out . $ i

37 cat c o l l e c t e d /$GLOBAL COUNTER/output | grep ” t o t a l [0−9] ” | cut −c

−17 −−complement >$GLOBAL COUNTER.TOTALS

38 done

39

40

41

42 #echo $GLOBAL COUNTER

43 l e t ”GLOBAL COUNTER++”

44 l e t ” index2++”

45 done

46 l e t ” index++”

47 done
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Appendix C

Paralleling Code Manually on

CEAR Cluster

C.1 How the File System Works on the CEAR Cluster

On the CEAR cluster each individual computing node has its own fixed disk. This is important
because software that uses intensive disk I/O does not work well on a network file system that
is on a centralized server. However each node also uses a shared file system that is distributed
from a central host called NFSSERVER. A centralized file system that is distributed to all the
computing nodes is convenient because all the user files for all the computing nodes will be
synchronized. A second advantage inherited from this type of infrastructure is redundancy and
smaller down time. The computing host NFSSERVER which houses the all of the user files is
on RAID5 with six two terabyte hard drives. The six hard drives each have four partitions 1,
2, 3, and 4 of sizes 300MB, 1.8TB, 198 GB and 2GB respectively. One hundred megabytes was
left unused at the end of the disk as slack space. This is because whenever a drive is exchanged
the new drive will probably not have the exact same size as the old drive. The first partition on
all six hard drives is configured as ID FD. These first partitions on all six drives are then used
to make a device of type RAID1 (Mirror) called /dev/md0. This device /dev/md0 serves as the
boot device for the NFSSERVER host. Because all the data is mirrored exactly across all six
start partitions of each of the six hard drives, the total size is still 300 MB. The second partition
on all of the six drives is combined in RAID 5 to form a device called /dev/md1. This is the
device that is mounted as /home and is exported via nfs across all of the computing nodes. The
size of this device is approximately 8.1 Terabytes as it is the result of the size of the partitions
times the number of partitions grouped minus one. The third device created is /dev/md2. This
is the result of combining the third partition (200GB) across all size hard drives in RAID5.
This serves as the root of the local file system for the NFSSERVER. Its total size is about nine
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hundred gigabytes. Finally the last partition on the first 3 and last 3 drives are setup in RAID5
to create two devices, /dev/md3 and /dev/md4 which serve as virtual memory swap files for
the NFSSERVER.

C.2 File System Layout of the Computing Nodes

Each computing node contains a 160 gigabyte hard drive that is partitioned in three. The first
partition is the virtual memory swap file and is about 4 GB. The second partition is the root
(/) of the local file system for the individual computing node. Its size is about 64 GB. Finally
the third partition is allocated the remainder of the drive which ends up being about 90 GB
once it has been formatted. On each individual node on the root (/) file system there exists
two directories name local and home. The local directory is really a mount point for the third
partition of the hard drive on that node. It represents local storage that is only available on
that computing node. Finally home is mount point for the remote file system /home which is
hosted on the NFSSERVER. In this way when a user logs onto any computing node, this user
will be presented with the same files. Additionally each user has a directory inside their home
directory called local. This directory called local is a symbolic link to a directory with the same
name as the users login name within the directory /local. To clarify things further, say a user
with login id batman connects and logs on to the host node100. This user at the same time
logs onto the host node140. The files in the directory /home/batman will be almost identical
on the two hosts except for the folder /home/batman/local. On node100 /home/batman/local
is a pointer to /local/batman of node100. Similarly on node140, /home/batman/local points to
/local/batman of node140. With this setup as one can imagine, it is possible to take advantage
of a distributed file system and a local file system. The obvious advantage of the local file
system is putting less stress on the network connectivity of the cluster. Also access times for
reading and writing of files are faster. One of the reasons MCNP runs very fast is because all of
the cross section data is actually loaded from the computing node’s local hard drive. Normally
MCNP is ran via MPI on the CEAR cluster from the users home directory and there for there
is a single output file in the users home directory. This illustrates effective use of both local and
distributed file systems working together. There are however some codes that have not had any
type of parallelizing done to them, neither OpenMP nor MPI.

C.3 Parallelizing stand alone Codes on the CEAR Cluster

Because most of the codes used on the CEAR cluster are Monte Carlo codes, parallelizing them
makes sense. The following example of parallelizing the MCNP-CP code should serve a recipe
for other code, CEARCPG comes to mind. Running a single instance of a code is a pretty
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easy task, however running it multiple times on multiple computers is really tedious if done
manually. Further if the user whishes to then analyze the data from 41 computers which ran
4 cases each, there will be 164 files in different places to collect and then try to merge back
together.

C.4 Step 1 - use of command line arguments

Like MCNP, MCNP-CP uses command line arguments. It is this property that facilitates the
use of the program from a batch process. In the case of MCNP-CP, a BASH shell script called
runmcnp-cp was created. The script is self documenting, if called from the command line with-
out arguments, it will display usage information. The basic idea is this, because of the way the
CEAR cluster is configured; any one user can execute programs on any computing node from
any other computing node. By simply executing ssh node103 ps aux from say node100, the user
will get a process status of all running programs on node103. Using ssh without the need to
login is possible because each users home/.ssh directory is exactly the same on each host. The
files authorized keys, id rsa, id rsa.pub, and known hosts have all been created for the user.
This step was actually necessary to implement the Hydra Process Manager for running MPI
jobs on the CEAR cluster. The shell script runmcnp-cp then uses this ability to run jobs on
other computing nodes. The program itself also uses command line arguments as follows: A -t
parameter specifies an MCNP-CP template file. This file is basically an input deck for MCNP-
CP with a comment on the last line c rand seed RNSEED. A -n parameter specifies the number
of computing nodes the user would like to use. This parameter is optional and may be omitted
so that the maximum number of operational nodes gets used. Another optional parameter -s
specifies a seeds files. These might be useful in case the same work needs to be replicated. If
the -s parameter is omitted the BASH script simply generates random odd numbers to be used
as initial seeds for each instance of MCNP-CP that is ran. A -o parameter specifies the output.
Usually to take advantage of each computing node’s hard drive, the user will specify -o ˜/local.
Of course the tilde on BASH is interpreted as the user’s home directory.

When the cases for this research were ran a command such as the following was executed:
“runmcnp-cp -t 5cmcp2 -o ˜/local” What happened next is that on each node, inside each of
the present user’s local folder, four subfolders with a numeric name were created, (1 per pro-
cessor core).

A total of 156 folder were created because 2 of the 41 computing nodes were down for repairs
but the script was robust enough to figure this out and compensate appropriately. In each one
of these directories the template file was copied as the name “input” and the line inside the
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Table C.1: Nodes and their directories used for local disk I/O
Computing Node node100 node102 node103 ... node140
Node Directory /local/adan/1 /local/adan/5 /local/adan/9 . /local/adan/153
Node Directory /local/adan/2 /local/adan/6 /local/adan/10 . /local/adan/154
Node Directory /local/adan/3 /local/adan/7 /local/adan/11 . /local/adan/155
Node Directory /local/adan/4 /local/adan/8 /local/adan/12 /local/adan/156

input text file that read “c rand seed RNSEED” was replaced with something much like the
following “dbcn 7j 462157163”. Of course the last number was a different random number for
each of the input files. The program script then sets up all the appropriate ENVIROMENT
variables and executes “nohup mcnp-cp inp=input out=output runtpe=runtp dumn1=logfile
2>&1>stdouterr.txt inside each one of the four folders created. This ran MCNP-CP 4 times
on each active node in the background. When each jobs finished an output file was created in
each numeric sub directory.

C.5 Step 2 (Collecting the Data)

In order to collect the data into a single unified folder for processing, a separate shell script
was written called getmycpdata. The program creates a folder called collected and copies all
of the numeric sub folders in each of the nodes to this folder. Additionally all of the output
files are parsed and their f8 tallies extracted and written to the disk as separate files with
just numeric data. These files are named using the convention number.out.tallynumber, where
number represents the numeric folder from which it was created and tallynumber is an integer
value representing the first, second, or third, etc. tally number to appear in the output file.

C.6 Step 3 Unifying the Data

In the case for this work, most of the output files contained two f8 tallies. In one run for
example 312 separate numeric tallies files were created with the following names: 1.out.0,
1.out.1,2.out.0,2.out.1,,156.out.0,156.out.1. A C code was created called SpecAdder which would
open all of the tallies and average the contributions and then save the result in another file. The
relative error is also converted to standard error and then propagation of this error is carried
through.

69



C.7 Utilities Created

Some tools were created because of how frequent a set number of operations are performed.
The extraction of the f8 tally from an MCNP output is a prime example of this. Typically
users opens up the output in a text editor, finds the appropriate region, selects and copies it
out into a data analysis program. The program textract.sh available on each node as /usr/lo-
cal/bin/f8extractor. It will create one text file per tally occurrence for a given MCNP output file.

Another shell script written was cleanmylocal which deletes all of the user files inside the users
/home/<username>/local folder for each of the active nodes. For Sysadmin work the programs
”makelocal <username>” and ”makesshkey <username>” were created. The first one sets up
the local folder for the giver username on all active nodes. The second program generates the
unique ssh keys for the given username and sets up the appropriate structure inside the users
.ssh folder. This allows the user to ssh amongst all of the nodes without need of a password
once the user has logged onto at least one node with the proper credentials.
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Appendix D

Compiling MCNP-CP

D.1 Building MCNP-CP on Linux

MCNP-CP was received as an executable and later as two patch files for the MCNP 4c source
code sometime in early 2012. After all the appropriate paper work was taken care of the files
were uploaded onto an ftp server that was setup for this purpose.

MCNP-CP was only ever meant for a Microsoft Windows environment. This specific version
provided by Dr. Berlizov also had a feature which could write out list mode data. The executable
version was tested using Microsoft Windows XP. Later an attempt was made to rebuild the
code from the patches provided. The attempt proved successful using Microsoft Visual Studio 6
and Compaq Visual Fortran. In order to simulate more histories it made sense to build a Linux
version for use with the CEAR cluster. Additionally the intention was send back the result of
this work to Dr. Berlizov. Seeing how it was possible to compile the original MCNP 4c, the task
on a single node was begun to compile the source code for MCNP-CP.

D.2 Compiling MCNP 4c on Slackware Linux

The MCNP 4c source code is distributed as two files, a C and a Fortran source code file. A
separate utility prpr is included that pre processes and patches the source code from the patch
files. Finally fsplit (a file splitting program) will split a patched file into multiple files. The files
can then be compiled using a Fortran compiler and a C compiler. The first challenge was finding
an fsplit program that worked. The OpenBSD version of fsplit.c version 1.15 was found to work
when combined with a version of strlcpy also borrowed from OpenBSD. The C compiler used
was GCC. The Fortran compiler used was Intel Fortran. Recently the code was recompiled and
the exact versions of the compilers used were GCC version 4.7.1 and Intel Fortran 12.1.6 on a
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Slackware 14.0 Linux environment.

D.3 Compiliing MCNP-CP on Slackware Linux

There were a lot of difficulties in trying to compile a Linux version of MCNP-CP. There were
modifications made to the C and the Fortran patches. Usually when building MCNP the bulk
of the code is in Fortran. It seems that the only use for C is to provide display capabilities via
the use of X11. MCNP-CP is different in that there are more functions in C that are called
from within the Fortran source. The C patch file to create MCNP-CP had a lot of modifications
made to it. Every attempt in modifying the patch files were made such that the product could
still be built on MS Windows and a Linux environment.

The C patch was changed as follows. There is an introduction of a struct called gamma. Every
appearance of this name was changed to AGamma. This is because GCC has a definition al-
ready in place for a gamma function that uses the previous name. C’s pound define directives
were added such that if UNIX was defined then certain functions introduced would be called
upon their lowercase name with an underscore appended (because of symbolic name mangling
across languages). Additionally if UNIX is defined then pound if directives change the code such
that the directory separator character is forward slash instead of a back slash and the refrence
to the conio.h file is removed.

The Fortran patch was not modified directly. Instead a build BASH script was made to com-
pile the source code. This script uses sed (the unix stream editor) to make modifications to the
patches during compile time. For the both the Fortran and C patches the compilation definitions
are changed slightly. These changes define things for the building environment. Additionally on
the C patch file “#include <stdlib.h>” is appended after the definitions. The source code was
also compiled using Microsoft Visual Studio 2010 and the Intel(R) Visual Fortran Composer
XE 2011 Update 12 for Microsoft Visual Studio just to test code portability.
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Appendix E

Input Decks

E.1 MCNP-CP Input Deck for ring of Detectors

1 Rexon GPS−200N 2x2 NaI ( Tl ) Detector s 15cm f o r MCNP−CP

2 c Ce l l Cards

3 1 0 (−1 +2 −5 +8):(−1 −4 +5) IMP:P=1 U=9

$Detector Can

4 2 0 −2 −5 +6 IMP:P=1 U=9 $Rubber

Pad

5 3 0 (−2 +3 −7 +8):(−2 −6 +7) IMP:P=1 U=9 $Outside

Re f l e c t o r

6 4 0 −3 −7 +8 IMP:P=1 U=9

$Detector Crysta l

7 101 LIKE 1 BUT MAT=1 RHO=−2.7 TRCL=51 IMP:P=1 U=0

$Alumiium Detector Can

8 102 LIKE 2 BUT MAT=2 RHO=−0.1922 TRCL=51 IMP:P=1 U=0 $BF−1000

S i l i c o n Rubber Pad

9 103 LIKE 3 BUT MAT=3 RHO=−3.9700 TRCL=51 IMP:P=1 U=0

$Aluminium Oxide Outside Re f l e c t o r

10 104 LIKE 4 BUT MAT=4 RHO=−3.667 TRCL=51 IMP:P=1 U=0 LLD=1.15 ULD=1.45 $NaI

Detector Crysta l

11 201 LIKE 1 BUT MAT=1 RHO=−2.7 TRCL=52 IMP:P=1 U=0

$Aluminium Detector Can

12 202 LIKE 2 BUT MAT=2 RHO=−0.1922 TRCL=52 IMP:P=1 U=0 $BF−1000

S i l i c o n Rubber Pad

13 203 LIKE 3 BUT MAT=3 RHO=−3.9700 TRCL=52 IMP:P=1 U=0

$Aluminium Oxide Outside Re f l e c t o r

14 204 LIKE 4 BUT MAT=4 RHO=−3.667 TRCL=52 IMP:P=1 U=0 LLD=1.15 ULD=1.45 $NaI

Detector Crysta l

15 301 LIKE 1 BUT MAT=1 RHO=−2.7 TRCL=53 IMP:P=1 U=0

$Aluminium Detector Can

16 302 LIKE 2 BUT MAT=2 RHO=−0.1922 TRCL=53 IMP:P=1 U=0 $BF−1000

S i l i c o n Rubber Pad

17 303 LIKE 3 BUT MAT=3 RHO=−3.9700 TRCL=53 IMP:P=1 U=0

$Aluminium Oxide Outside Re f l e c t o r
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18 304 LIKE 4 BUT MAT=4 RHO=−3.667 TRCL=53 IMP:P=1 U=0 LLD=1.15 ULD=1.45 $NaI

Detector Crysta l

19 401 LIKE 1 BUT MAT=1 RHO=−2.7 TRCL=54 IMP:P=1 U=0

$Aluminium Detector Can

20 402 LIKE 2 BUT MAT=2 RHO=−0.1922 TRCL=54 IMP:P=1 U=0 $BF−1000

S i l i c o n Rubber Pad

21 403 LIKE 3 BUT MAT=3 RHO=−3.9700 TRCL=54 IMP:P=1 U=0

$Aluminium Oxide Outside Re f l e c t o r

22 404 LIKE 4 BUT MAT=4 RHO=−3.667 TRCL=54 IMP:P=1 U=0 LLD=1.15 ULD=1.45 $NaI

Detector Crysta l

23 501 LIKE 1 BUT MAT=1 RHO=−2.7 TRCL=55 IMP:P=1 U=0

$Aluminium Detector Can

24 502 LIKE 2 BUT MAT=2 RHO=−0.1922 TRCL=55 IMP:P=1 U=0 $BF−1000

S i l i c o n Rubber Pad

25 503 LIKE 3 BUT MAT=3 RHO=−3.9700 TRCL=55 IMP:P=1 U=0

$Aluminium Oxide Outside Re f l e c t o r

26 504 LIKE 4 BUT MAT=4 RHO=−3.667 TRCL=55 IMP:P=1 U=0 LLD=1.15 ULD=1.45 $NaI

Detector Crysta l

27 601 LIKE 1 BUT MAT=1 RHO=−2.7 TRCL=56 IMP:P=1 U=0

$Aluminium Detector Can

28 602 LIKE 2 BUT MAT=2 RHO=−0.1922 TRCL=56 IMP:P=1 U=0 $BF−1000

S i l i c o n Rubber Pad

29 603 LIKE 3 BUT MAT=3 RHO=−3.9700 TRCL=56 IMP:P=1 U=0

$Aluminium Oxide Outside Re f l e c t o r

30 604 LIKE 4 BUT MAT=4 RHO=−3.667 TRCL=56 IMP:P=1 U=0 LLD=1.15 ULD=1.45 $NaI

Detector Crysta l

31 701 LIKE 1 BUT MAT=1 RHO=−2.7 TRCL=57 IMP:P=1 U=0

$Aluminium Detector Can

32 702 LIKE 2 BUT MAT=2 RHO=−0.1922 TRCL=57 IMP:P=1 U=0 $BF−1000

S i l i c o n Rubber Pad

33 703 LIKE 3 BUT MAT=3 RHO=−3.9700 TRCL=57 IMP:P=1 U=0

$Aluminium Oxide Outside Re f l e c t o r

34 704 LIKE 4 BUT MAT=4 RHO=−3.667 TRCL=57 IMP:P=1 U=0 LLD=1.15 ULD=1.45 $NaI

Detector Crysta l

35 801 LIKE 1 BUT MAT=1 RHO=−2.7 TRCL=58 IMP:P=1 U=0

$Aluminium Detector Can

36 802 LIKE 2 BUT MAT=2 RHO=−0.1922 TRCL=58 IMP:P=1 U=0 $BF−1000

S i l i c o n Rubber Pad

37 803 LIKE 3 BUT MAT=3 RHO=−3.9700 TRCL=58 IMP:P=1 U=0

$Aluminium Oxide Outside Re f l e c t o r

38 804 LIKE 4 BUT MAT=4 RHO=−3.667 TRCL=58 IMP:P=1 U=0 LLD=1.15 ULD=1.45 $NaI

Detector Crysta l

39 901 LIKE 1 BUT MAT=1 RHO=−2.7 TRCL=59 IMP:P=1 U=0

$Aluminium Detector Can

40 902 LIKE 2 BUT MAT=2 RHO=−0.1922 TRCL=59 IMP:P=1 U=0 $BF−1000

S i l i c o n Rubber Pad

41 903 LIKE 3 BUT MAT=3 RHO=−3.9700 TRCL=59 IMP:P=1 U=0

$Aluminium Oxide Outside Re f l e c t o r

42 904 LIKE 4 BUT MAT=4 RHO=−3.667 TRCL=59 IMP:P=1 U=0 LLD=1.15 ULD=1.45 $NaI

Detector Crysta l

43 111 LIKE 1 BUT MAT=1 RHO=−2.7 TRCL=71 IMP:P=1 U=0

$Alumiium Detector Can
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44 112 LIKE 2 BUT MAT=2 RHO=−0.1922 TRCL=71 IMP:P=1 U=0 $BF−1000

S i l i c o n Rubber Pad

45 113 LIKE 3 BUT MAT=3 RHO=−3.9700 TRCL=71 IMP:P=1 U=0

$Aluminium Oxide Outside Re f l e c t o r

46 114 LIKE 4 BUT MAT=4 RHO=−3.667 TRCL=71 IMP:P=1 U=0 LLD=1.15 ULD=1.45 $NaI

Detector Crysta l

47 211 LIKE 1 BUT MAT=1 RHO=−2.7 TRCL=72 IMP:P=1 U=0

$Aluminium Detector Can

48 212 LIKE 2 BUT MAT=2 RHO=−0.1922 TRCL=72 IMP:P=1 U=0 $BF−1000

S i l i c o n Rubber Pad

49 213 LIKE 3 BUT MAT=3 RHO=−3.9700 TRCL=72 IMP:P=1 U=0

$Aluminium Oxide Outside Re f l e c t o r

50 214 LIKE 4 BUT MAT=4 RHO=−3.667 TRCL=72 IMP:P=1 U=0 LLD=1.15 ULD=1.45 $NaI

Detector Crysta l

51 311 LIKE 1 BUT MAT=1 RHO=−2.7 TRCL=73 IMP:P=1 U=0

$Aluminium Detector Can

52 312 LIKE 2 BUT MAT=2 RHO=−0.1922 TRCL=73 IMP:P=1 U=0 $BF−1000

S i l i c o n Rubber Pad

53 313 LIKE 3 BUT MAT=3 RHO=−3.9700 TRCL=73 IMP:P=1 U=0

$Aluminium Oxide Outside Re f l e c t o r

54 314 LIKE 4 BUT MAT=4 RHO=−3.667 TRCL=73 IMP:P=1 U=0 LLD=1.15 ULD=1.45 $NaI

Detector Crysta l

55 411 LIKE 1 BUT MAT=1 RHO=−2.7 TRCL=74 IMP:P=1 U=0

$Aluminium Detector Can

56 412 LIKE 2 BUT MAT=2 RHO=−0.1922 TRCL=74 IMP:P=1 U=0 $BF−1000

S i l i c o n Rubber Pad

57 413 LIKE 3 BUT MAT=3 RHO=−3.9700 TRCL=74 IMP:P=1 U=0

$Aluminium Oxide Outside Re f l e c t o r

58 414 LIKE 4 BUT MAT=4 RHO=−3.667 TRCL=74 IMP:P=1 U=0 LLD=1.15 ULD=1.45 $NaI

Detector Crysta l

59 511 LIKE 1 BUT MAT=1 RHO=−2.7 TRCL=75 IMP:P=1 U=0

$Aluminium Detector Can

60 512 LIKE 2 BUT MAT=2 RHO=−0.1922 TRCL=75 IMP:P=1 U=0 $BF−1000

S i l i c o n Rubber Pad

61 513 LIKE 3 BUT MAT=3 RHO=−3.9700 TRCL=75 IMP:P=1 U=0

$Aluminium Oxide Outside Re f l e c t o r

62 514 LIKE 4 BUT MAT=4 RHO=−3.667 TRCL=75 IMP:P=1 U=0 LLD=1.15 ULD=1.45 $NaI

Detector Crysta l

63 611 LIKE 1 BUT MAT=1 RHO=−2.7 TRCL=76 IMP:P=1 U=0

$Aluminium Detector Can

64 612 LIKE 2 BUT MAT=2 RHO=−0.1922 TRCL=76 IMP:P=1 U=0 $BF−1000

S i l i c o n Rubber Pad

65 613 LIKE 3 BUT MAT=3 RHO=−3.9700 TRCL=76 IMP:P=1 U=0

$Aluminium Oxide Outside Re f l e c t o r

66 614 LIKE 4 BUT MAT=4 RHO=−3.667 TRCL=76 IMP:P=1 U=0 LLD=1.15 ULD=1.45 $NaI

Detector Crysta l

67 711 LIKE 1 BUT MAT=1 RHO=−2.7 TRCL=77 IMP:P=1 U=0

$Aluminium Detector Can

68 712 LIKE 2 BUT MAT=2 RHO=−0.1922 TRCL=77 IMP:P=1 U=0 $BF−1000

S i l i c o n Rubber Pad

69 713 LIKE 3 BUT MAT=3 RHO=−3.9700 TRCL=77 IMP:P=1 U=0

$Aluminium Oxide Outside Re f l e c t o r
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70 714 LIKE 4 BUT MAT=4 RHO=−3.667 TRCL=77 IMP:P=1 U=0 LLD=1.15 ULD=1.45 $NaI

Detector Crysta l

71 1000 0 −1000 #101 #102 #103 #104 &

72 #201 #202 #203 #204 &

73 #301 #302 #303 #304 &

74 #401 #402 #403 #404 &

75 #501 #502 #503 #504 &

76 #601 #602 #603 #604 &

77 #701 #702 #703 #704 &

78 #801 #802 #803 #804 &

79 #901 #902 #903 #904 &

80 #111 #112 #113 #114 &

81 #211 #212 #213 #214 &

82 #311 #312 #313 #314 &

83 #411 #412 #413 #414 &

84 #511 #512 #513 #514 &

85 #611 #612 #613 #614 &

86 #711 #712 #713 #714 IMP:P=1 U=0 $ I n s i d e Universe

87 1001 0 +1000 IMP:P=0 U=0 $Outside Universe

88

89 c SURFACE CARDS

90 1 CY +2.8448

91 2 CY +2.7940

92 3 CY +2.5400

93 4 PY 0.0000

94 5 PY −0.0508

95 6 PY −0.2032

96 7 PY −0.3048

97 8 PY −5.3848

98 1000 so 1000

99

100 c DATA CARDS

101 * TR51 0 −15 0 0 90 90 90 0 90 90 90 0

102 * TR52 0 −13.85819299 5.740251485 0 90 90 90 22 .5 112 .5 90 −67.5 22 .5

103 * TR53 0 −10.60660172 10.60660172 0 90 90 90 45 135 90 −45 45

104 * TR54 0 −5.740251485 13.85819299 0 90 90 90 67 .5 157 .5 90 −22.5 67 .5

105 * TR55 0 0 15 0 90 90 90 90 180 90 0 90

106 * TR56 0 5.740251485 13.85819299 0 90 90 90 112 .5 202 .5 90 22 .5 112 .5

107 * TR57 0 10.60660172 10.60660172 0 90 90 90 135 225 90 45 135

108 * TR58 0 13.85819299 5.740251485 0 90 90 90 157 .5 247 .5 90 67 .5 157 .5

109 * TR59 0 15 0 0 90 90 90 180 90 90 90 180

110 * TR71 0 13.85819299 −5.740251485 0 90 90 90 202 .5 292 .5 90 112 .5 202 .5

111 * TR72 0 10.60660172 −10.60660172 0 90 90 90 225 315 90 135 225

112 * TR73 0 5.740251485 −13.85819299 0 90 90 90 247 .5 337 .5 90 157 .5 247 .5

113 * TR74 0 2.75658E−15 −15 0 90 90 90 270 360 90 180 270

114 * TR75 0 −5.740251485 −13.85819299 0 90 90 90 292 .5 22 .5 90 202 .5 292 .5

115 * TR76 0 −10.60660172 −10.60660172 0 90 90 90 315 45 90 225 315

116 * TR77 0 −13.85819299 −5.740251485 0 90 90 90 337 .5 67 .5 90 247 .5 337 .5

117 m1 13027 1 $Aluminum

118 m2 6000 . 2 1000 . 6 8000 . 1 14000 . 1 $BF−1000 Po lyd imethy l s i l oxane

119 m3 8000 . 4 13000 . 6 $Aluminum Oxide

120 m4 11000 . 5 53000 . 5 $NaI
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121 Mode P

122 c Source

123 SDEF POS=0 0 0 ZAM=0270600

124 CPS 50 1 1 0 0 0 0 0 0 1 1

125 c Energy b ins f o r re sponse c a l c u l a t i o n

126 c S ta r t i ng from 104

127 F108 :P ( (104 ) +{+(104) +(204) }) $22 . 5

128 F118 :P ( (104 ) +{+(104) +(304) }) $45

129 F128 :P ( (104 ) +{+(104) +(404) }) $67 . 5

130 F138 :P ( (104 ) +{+(104) +(504) }) $90

131 F148 :P ( (104 ) +{+(104) +(404) }) $112 . 5

132 F158 :P ( (104 ) +{+(104) +(604) }) $135

133 F168 :P ( (104 ) +{+(104) +(704) }) $157 . 5

134 F178 :P ( (104 ) +{+(104) +(804) }) $180

135 c S ta r t i ng from 204

136 F208 :P ( (204 ) +{+(204) +(304) }) $22 . 5

137 F218 :P ( (204 ) +{+(204) +(404) }) $45

138 F228 :P ( (204 ) +{+(204) +(504) }) $67 . 5

139 F238 :P ( (204 ) +{+(204) +(604) }) $90

140 F248 :P ( (204 ) +{+(204) +(704) }) $112 . 5

141 F258 :P ( (204 ) +{+(204) +(804) }) $135

142 F268 :P ( (204 ) +{+(204) +(904) }) $157 . 5

143 F278 :P ( (204 ) +{+(204) +(114) }) $180

144 c S ta r t i ng from 304

145 F308 :P ( (304 ) +{+(304) +(404) }) $22 . 5

146 F318 :P ( (304 ) +{+(304) +(504) }) $45

147 F328 :P ( (304 ) +{+(304) +(604) }) $67 . 5

148 F338 :P ( (304 ) +{+(304) +(704) }) $90

149 F348 :P ( (304 ) +{+(304) +(804) }) $112 . 5

150 F358 :P ( (304 ) +{+(304) +(904) }) $135

151 F368 :P ( (304 ) +{+(304) +(114) }) $157 . 5

152 F378 :P ( (304 ) +{+(304) +(214) }) $180

153 c S ta r t i ng from 404

154 F408 :P ( (404 ) +{+(404) +(504) }) $22 . 5

155 F418 :P ( (404 ) +{+(404) +(604) }) $45

156 F428 :P ( (404 ) +{+(404) +(704) }) $67 . 5

157 F438 :P ( (404 ) +{+(404) +(804) }) $90

158 F448 :P ( (404 ) +{+(404) +(904) }) $112 . 5

159 F458 :P ( (404 ) +{+(404) +(114) }) $135

160 F468 :P ( (404 ) +{+(404) +(214) }) $157 . 5

161 F478 :P ( (404 ) +{+(404) +(314) }) $180

162 c S ta r t i ng from 504

163 F508 :P ( (504 ) +{+(504) +(604) }) $22 . 5

164 F518 :P ( (504 ) +{+(504) +(704) }) $45

165 F528 :P ( (504 ) +{+(504) +(804) }) $67 . 5

166 F538 :P ( (504 ) +{+(504) +(904) }) $90

167 F548 :P ( (504 ) +{+(504) +(114) }) $112 . 5

168 F558 :P ( (504 ) +{+(504) +(214) }) $135

169 F568 :P ( (504 ) +{+(504) +(314) }) $157 . 5

170 F578 :P ( (504 ) +{+(504) +(414) }) $180

171 c S ta r t i ng from 604

172 F608 :P ( (604 ) +{+(504) +(704) }) $22 . 5
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173 F618 :P ( (604 ) +{+(504) +(804) }) $45

174 F628 :P ( (604 ) +{+(504) +(904) }) $67 . 5

175 F638 :P ( (604 ) +{+(504) +(114) }) $90

176 F648 :P ( (604 ) +{+(504) +(214) }) $112 . 5

177 F658 :P ( (604 ) +{+(504) +(314) }) $135

178 F668 :P ( (604 ) +{+(504) +(414) }) $157 . 5

179 F678 :P ( (604 ) +{+(504) +(514) }) $180

180 c S ta r t i ng from 704

181 F708 :P ( (704 ) +{+(704) +(804) }) $22 . 5

182 F718 :P ( (704 ) +{+(704) +(904) }) $45

183 F728 :P ( (704 ) +{+(704) +(114) }) $67 . 5

184 F738 :P ( (704 ) +{+(704) +(214) }) $90

185 F748 :P ( (704 ) +{+(704) +(314) }) $112 . 5

186 F758 :P ( (704 ) +{+(704) +(414) }) $135

187 F768 :P ( (704 ) +{+(704) +(514) }) $157 . 5

188 F778 :P ( (704 ) +{+(704) +(614) }) $180

189 c S ta r t i ng from 804

190 F808 :P ( (804 ) +{+(804) +(904) }) $22 . 5

191 F818 :P ( (804 ) +{+(804) +(114) }) $45

192 F828 :P ( (804 ) +{+(804) +(214) }) $67 . 5

193 F838 :P ( (804 ) +{+(804) +(314) }) $90

194 F848 :P ( (804 ) +{+(804) +(414) }) $112 . 5

195 F858 :P ( (804 ) +{+(804) +(514) }) $135

196 F868 :P ( (804 ) +{+(804) +(614) }) $157 . 5

197 F878 :P ( (804 ) +{+(804) +(714) }) $180

198 E0 0 1023 I 3 . 0

199 NPS 100000000

200 c rand seed RNSEED

E.2 MCNP Input Deck used for cross talk of various angles

1 Rexon GPS−200N 2x2 NaI ( Tl ) Detector s 5cm f o r MCNP

2 c Ce l l Cards

3 1 0 (−1 +2 −5 +8):(−1 −4 +5) IMP:P=1 U=9 $Detector Can

4 2 0 −2 −5 +6 IMP:P=1 U=9 $Rubber Pad

5 3 0 (−2 +3 −7 +8):(−2 −6 +7) IMP:P=1 U=9 $Outside Re f l e c t o r

6 4 0 −3 −7 +8 IMP:P=1 U=9 $Detector Crysta l

7 101 LIKE 1 BUT MAT=1 RHO=−2.7 TRCL=51 IMP:P=1 U=0 $Aluminium Detector Can

8 102 LIKE 2 BUT MAT=2 RHO=−0.1922 TRCL=51 IMP:P=1 U=0 $BF−1000 S i l i c o n Rubber

Pad

9 103 LIKE 3 BUT MAT=3 RHO=−3.9700 TRCL=51 IMP:P=1 U=0 $Aluminium Oxide Outside

Re f l e c t o r

10 104 LIKE 4 BUT MAT=4 RHO=−3.667 TRCL=51 IMP:P=1 U=0 $NaI Detector Crysta l

11 201 LIKE 1 BUT MAT=1 RHO=−2.7 TRCL=58 IMP:P=1 U=0 $Aluminium Detector Can

12 202 LIKE 2 BUT MAT=2 RHO=−0.1922 TRCL=58 IMP:P=1 U=0 $BF−1000 S i l i c o n Rubber

Pad

13 203 LIKE 3 BUT MAT=3 RHO=−3.9700 TRCL=58 IMP:P=1 U=0 $Aluminium Oxide Outside

Re f l e c t o r

14 204 LIKE 4 BUT MAT=4 RHO=−3.667 TRCL=58 IMP:P=1 U=0 $NaI Detector Crysta l

15 1000 0 −1000 #101 #102 #103 #104 &
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16 #201 #202 #203 #204 IMP:P=1 U=0 $ I n s i d e Universe

17 1001 0 +1000 IMP:P=0 U=0 $Outside Universe

18

19 c SURFACE CARDS

20 1 CY +2.8448

21 2 CY +2.7940

22 3 CY +2.5400

23 4 PY 0.0000

24 5 PY −0.0508

25 6 PY −0.2032

26 7 PY −0.3048

27 8 PY −5.3848

28 1000 so 1000

29

30 c DATA CARDS

31 * TR51 0 −5 0 0 90 90 90 0 90 90 90 0 $ I n i t i a l Detector on the Le f t

32 * TR54 0 −1.913417162 4.619397663 0 90 90 90 67 .5 157 .5 90 −22.5 67 .5 $67 . 5

33 * TR55 0 0 5 0 90 90 90 90 180 90 0 90 $90

34 * TR56 0 1.913417162 4.619397663 0 90 90 90 112 .5 202 .5 90 22 .5 112 .5 $112 . 5

35 * TR57 0 3.535533906 3.535533906 0 90 90 90 135 225 90 45 135 $135

36 * TR58 0 4.619397663 1.913417162 0 90 90 90 157 .5 247 .5 90 67 .5 157 .5 $157 . 5

37 * TR59 0 5 0 0 90 90 90 180 270 90 90 180 $180

38 m1 13027 1 $Aluminum

39 m2 6000 . 2 1000 . 6 8000 . 1 14000 . 1 $BF−1000 Po lyd imethy l s i l oxane

40 m3 8000 . 4 13000 . 6 $Aluminum Oxide

41 m4 11000 . 5 53000 . 5 $NaI

42 Mode P

43 c Source

44 sde f par=2 pos=0 0 0 erg=D1 vec=0 −1 0 d i r=D2

45 s i 1 L 1.1732 1 .3325 0 .3471 0 .8261 2 .1586 2 .5057

46 sp1 D 0.499635189 0.500289156 3.77295E−05 3 .2838E−05 5.07463E−06 1.25089E−08

47 s i 2 −1 0.869166 1

48 sp2 0 0.934583 0.065417

49 SB2 0 . 0 . 1 .

50 c Energy b ins f o r re sponse c a l c u l a t i o n

51 F8 :P 104 204

52 F18 :P 104 204

53 FT8 GEB 0.011131 0.036071 1 .4056

54 F1 :P 201004

55 c E18 0 1023 I 3 . 0

56 E0 0 1023 I 3 . 0

57 E1 0 1023 I 3 . 0

58 NPS 1000000000
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