
ABSTRACT 

 

EL SAGHIR, AHMED. Improvements to EEDF Analysis from Langmuir Probes Using 

Integral Methods. (Under the direction of Associate Professor Steven Shannon). 

 

 

  Low density, low temperature plasmas are a vital area of interest in a broad range of 

applications ranging from nano-scale device fabrication to high efficiency lighting. Langmuir 

probes are considered a simple and cost efficient technique to diagnose plasmas, specifically, 

low temperature plasmas. By measuring the voltage/current relationship of the combined 

probe/plasma circuit, various plasma parameters can be determined. The most important 

plasma parameter measured by a Langmuir probe can be the Electron Energy Distribution 

Function (EEDF). Through the EEDF one can determine some characteristics of the plasma 

such as temperature and density.  

In the 1940s Druyvesteyn published results stating that the EEDF can be obtained 

through the second derivative of the probe I–V characteristic through the electron transition 

portion of the probe trace. This method has been the most widely used for obtaining EEDFs. 

Since that time other techniques appeared later on in the 1970s taking advantage of 

Druyvesteyn’s relation between the I–V characteristic and the EEDF is a Fredholm integral 

of the first kind, thus leading to the possibility of solving for the EEDF by Tikhonov 

regularization methods. These regularization techniques were rarely because there were 

challenges regarding the reconstruction of the EEDF. 

     In this work we are taking a closer look at both Druyvesteyn’s relation and the 

Tikhonov method. For Tikhonov’s method, we were able to overcome its challenges of over 

and under regularization, as well as the shift that occurs at the beginning of the distribution. 



This was carried out by the implementation of our proposed Hybrid method which acted 

directly on the singular eigenvalues of the kernel matrix, thus removing components that are 

highly corrupted by noise. The Druyvesteyn relation for EEDF’s from Langmuir probes is 

derived based on a model that assumes spherical probe geometry. Most applications extend 

this formulation to arbitrary geometries including the more commonly used planar and 

cylindrical probes.  In this work, we present a formulation of the relationship between 

electron current, probe potential, and EEDF for a cylindrical geometry that also accounts for 

conservation of angular momentum of the system and provides an identical integral 

relationship to that posed by Mott-Smith and Langmuir in 1926.  This formulation shows a 

systematic defect in using the Druyvesteyn relation for cylindrical probes that becomes more 

pronounced for highly non-Maxwellian distributions.  In order to minimize this geometry-

induced distortion, solution of the integral relation between EEDF and probe current may be 

needed in place of the more commonly used derivative formulation of Druyvesteyn. Errors of 

the order 5-15% are common. 
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CHAPTER 1 

Introduction 

1.1. Historical Background 

 In order to understand the improvements made in this thesis to the Langmuir probe 

which is used as a diagnostic technique for plasmas, we need to shed some light on the 

definition of plasma as well as a Langmuir probe. Apart from the solid, liquid, and gas states 

plasma can be considered the fourth state of matter. Plasma is a result of matter being heated 

beyond its gaseous state causing the atoms to be ionized. To have a more formal definition, 

Plasma is a quasi-neutral gas made up of charged and neutral particles which act in a 

collective behavior.[1]    

 Let us define the concept of collective behavior of the plasma. Under normal 

conditions the molecules of any gas are neutral so they won’t be affected by any 

electromagnetic or gravity force. The motion of the molecules will be controlled by the 

collisions among themselves. Such motion is known as the random Brownian motion. This 

isn’t the case for plasma since there are charged particles. These charged particles move 

around producing concentrations of positive and negative charges which give rise to electric 

fields. These electric fields affect the motion of charged particles which are far away from 

these fields. Therefore elements of the plasma affect each other even at large separation 

distances, thus giving the plasma its collective behavior.  
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As for the plasma being a quasi-neutral gas, this arises from the fact that the plasma 

consists of small elements or volumes of charged particles either positive (ions) or negative 

(electrons). Outside these elements and looking at the plasma as a whole the density of ions 

is approximately equal to the density of electrons causing the plasma to be electrically neutral 

and thus considered a quasi-neutral gas.  

One of the earliest and fundamental techniques for measuring the properties of 

plasmas is the use of electrostatic probes. This technique was developed by Langmuir as 

early as 1924 and consequently is sometimes called the method of Langmuir probes. 

Langmuir confined himself to the case of low pressure, where collisions between charged 

particles with background neutral gases are neglected. In this case he was able to develop a 

relatively simple and self consistent theory.[2]  An electrostatic probe is a small metallic 

electrode, usually a wire, inserted into a plasma. The probe is attached to a power supply 

capable of biasing it at various voltages positive and negative relative to the plasma, and the 

current collected by the probe then provides information from which plasma parameters such 

as density and temperature can be inferred. 

However, compared to many other diagnostic tools the probe is distinguished by the 

possibility of direct local measurement of plasma parameters. Since due to the fortunate 

property of plasmas that under a wide range of conditions the disturbance caused by the 

presence of the probe is localized. The probe can act truly as a probe in the sense that its very 

presence has no effect on the quantities it is measuring, making it one of the most valuable 

tools in experimental plasma science.  
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The number of possibilities for a meaningful use of probes is subject to many 

restrictions. There is scarcely another procedure of plasma diagnostics involving so many 

dangers of incorrect measurement and erroneous interpretation of its results than the probe 

method as well as the possibility that under certain circumstances, particularly in the 

presence of a strong magnetic field, the disturbance isn’t localized, and the probe current then 

depends not only on the plasma parameters, but also on the way in which the plasma is 

created and maintained. 

Almost all other techniques, such as spectroscopy or microwave propagation, give 

information averaged over a large volume of plasma. This advantage of probes, however, is 

closely connected to their main shortcomings. The local measurement requires the probe to 

be inserted into the plasma being investigated by means of a probe holder whose surface area 

in most cases is many times larger than the probe itself. The theory of probes is extremely 

complicated. The difficulty arises from the fact that probes are considered to be boundaries to 

a plasma, and near the boundary the equations governing the motion of the plasma alter their 

character. In particular, the condition of quasi-neutrality, which exists in the body of the 

plasma is not valid near a boundary; and a layer, called a “sheath” can form in which ion and 

electron densities can differ and hence large electric fields can be sustained.[2-4]  

 

1.2. Probe-Current Voltage Characteristics 

In an isotropic, homogenous plasma, elementary gas-kinetic theory shows that the 

number of particles of a given species crossing unit area per unit time (from one side only) is 
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1

4
nv            (1.1)       

where v  is the mean particle speed, n is particle density and Γ is the particle flux density. 

Suppose that a probe is present in a thermal plasma of comparable electron and ion 

temperatures and densities. The mean ion speed will then be much smaller than the mean 

electron speed so that the total electric current from a probe of area A if the plasma were 

unperturbed would be dominated by the electrons: 

1 1 1
( ) 0
4 4 4

i i e e e e
I eA n v n v eAn v            (1.2) 

where I is the total electric current. The probe would thus emit a net positive current. If, for 

example, the probe were electrically insulated from other parts of the plasma device (a 

“floating” probe), then it would rapidly charge up negatively until the electrons were repelled 

and the net electrical current brought to zero. The potential arising from such a floating probe 

is called the floating potential, which is denoted Vf.  Clearly it is different from the electric 

potential in the plasma in the absence of any probe. This latter potential is called the plasma 

potential and will be denoted Vp. As a simple explanation on the relation between the floating 

potential and the plasma potential, it should be noted that for an argon ICP (Inductively 

Coupled Plasma) the plasma potential is around 8 to 12 eV greater than the floating potential, 

and both of them are always positive.[5]  

Figure 1.1 shows the variation of the total electric current I versus the potential of the 

probe V in a typical Langmuir probe experiment. If the probe is at plasma potential then the 

perturbations to the free ion and electron currents eq. 1.2 will be small. Thus, the space 

potential is approximately the point at which I ≈ Probe area x eJe , the electron current. If the 
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voltage is increased above this level, V > Vp , in principle the electron current can not 

increase any further. This is because the electron current is maximized since all electrons 

arriving are collected. Due to conservation of flux, the current of electrons can no longer 

increase since there are no additional mechanisms to add to the initial flux at the plasma 

sheath interface.  Under these same conditions, the ion current Ji decreases because of 

repulsion of the ions so I is approximately constant. This region (A) is known as electron 

saturation and I here is equal to the electron-saturation current.[5] 

Decreasing the probe potential, V < Vp , the probe is now negative with respect to the 

surrounding plasma and an increasing fraction of impinging electrons is reflected from the 

negative potential (region B). Eventually the potential is sufficient to reduce Je to a small 

fraction of its saturation value. At some point, the electron current decreases to the level of 

the ion current, and the total current is zero when Je = Ji at the floating potential Vf . 

Decreasing the potential further, entering region C, eventually only ions are collected at 

approximately the constant rate given by eq. 1.1 since almost all of the electrons do not have 

the energy needed to overcome the probe’s space charge potential.  

This is the ion saturation current I = Isi .[5] Although the thesis is mainly dealing with the 

distribution of electrons collected by the probe but the theory behind the ion collection and 

subtraction from the I-V curve will be discussed thoroughly in the following chapter. 
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Figure 1.1. Electric probe characteristic showing how the probe current varies with probe 

potential.[5]    

 

1.3. Research Motivation 

One application of probe methods is in the area of low temperature low-density 

plasma discharges where strongly nonequilibrium plasmas are typically encountered.[6,7] 

These discharges are utilized for their novel chemistries for various industrial applications 

C 
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from integrated-circuit fabrication to glass coatings. This has placed a significant value on 

the measurement of parameters such as EEDFs (Electron Energy Distribution Functions) that 

can impact plasma chemistry and provide experimental validation for modeling efforts that 

are working to better understand these discharges for enhanced capability and control. The 

importance of the field of low-temperature plasmas, as well as the specific need for 

chemistry study and enhanced diagnostics for modeling validation, was cited by the National 

Research Council in its decadal report on plasma science and in a recent report released by 

the Department of Energy’s Office of Fusion Energy Sciences.[8,9] 

One key point that is mentioned in the decadal report, which is of relevance to our 

present work, is the unifying scientific principles behind the societal benefit of low-

temperature plasmas as a result of the study of plasma heating, stability, and control. The 

bulk heating of low-temperature plasmas (sans the sheath region) goes predominantly to the 

heating of free electrons. However, for most systems, this does not result in a thermal 

equilibrium, and unique non-Maxwellian distributions can arise in these systems [10-12]. 

The analysis of these EEDFs has proven to be a powerful tool for the discovery of new 

heating mechanisms.  

Several recently introduced models suggest an even stronger correlation between 

EEDF and various heating mechanisms than previously reported [13]. The improvements in 

the measurement of the energy distribution of these electrons will provide greater insight into 

different heating methods (VHF, multifrequency RF, pulsed RF, superimposed dc, etc.) and 

provide valuable inputs for predictive modeling, new source development, and modeling 

validation. The only method to obtain EEDFs is through the application of Langmuir probes. 
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As discussed earlier by varying the bias on the probe the amount of electrons and ions 

collected vary giving us the I-V characteristic curve. By subtracting the ion current from the 

I-V curve we are left with the electron current. Now that the electron current is known the 

energy of the electrons reaching the probe can be determined. It should be noted that 

electrons with very little energy are repelled with the slightest drop below the plasma 

potential, while highly energetic electrons are repelled with only the largest drop from 

plasma potential. So the probe can be considered acting as a simple electron repelling grid. 

As a result the electron energy distribution is proportional to the second derivative of the 

electron current to the probe as shown in eq. 1.3. 

 

2

2 2

4
( )

2

e probe e
E eV

probe
p probe

m V d I
f E

A e e dV
           (1.3) 

 

where Ie is the electron contribution to the current collected by the Langmuir probe, Ap is the 

area of the probe, e is electron charge, me is electron mass, Vprobe is the potential of the probe 

(referenced to the plasma potential), and f(E) is the EEDF, or the number of electrons per cm
3
  

with total energy between E and E+dE. The aforementioned equation is known as the 

Druyvesteyn’s relation 

In practice, one usually neglects non-Maxwellian effects in inferring plasma 

parameters from the probe characteristics, assuming that the actual deviation of an EEDF 

from Maxwellian has minor affects on a small number of electrons with energies that are 

higher than the energy of the inelastic threshold E* . Unfortunately, in many cases, the EEDF 
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in low-pressure discharges is not Maxwellian, even in the low-energy range where E < E* 

and application of conventional procedures such as the Druyvesteyn relation, or basic 

Tikhonov Regularization for processing probe characteristics in non-Maxwellian plasmas 

may lead to significant errors in the determination of basic plasma parameters. 

This thesis is focused on enhancing the extraction of EEDFs from Langmuir probe data by 

employing methods that properly address the ill-posed nature of EEDF extraction, as well as 

taking the geometry of the probe into consideration which is largely neglected by the 

conventional methods by assuming that cylindrical and spherical probes collect the same 

number of electrons which will be proved later in the thesis to be absolutely wrong. 

 

1.4. Thesis Outline 

This research has both theoretical and experimental aspects. The theoretical aspect 

will be covered in chapters 2 through 4.  Chapter 2 will cover in detail the response of  

electrons to the insertion of a biased probe in the plasma, taking into consideration the 

kinetics of the electrons, as well as the geometry of the probe since the probe can be planar, 

cylindrical, and spherical. It also covers the integral relation governing the extraction of the 

Electron Energy Distribution Function (EEDF) from the probe current. This relation will be 

shown to be of an ill-posed nature causing difficulties regarding the extraction process. Other 

topics will be covered such as secondary electrons which are emitted through the collision of 

high energetic electrons with the probe and then reabsorbed, and the effect of the length of 

the probe regarding both species (ions and electrons). Chapter 3 will cover the procedure that 

was carried out to obtain an EEDF from the probe current, the initial results obtained by the 
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application of Tikhonov’s regularization to the ill-posed problem, the challenges arising from 

Tikhonov’s technique and the numerical techniques devised to overcome such challenges. At 

the end of the chapter it will be shown that such techniques are limited when dealing with 

velocity distributions. Chapter 4 will cover the systematic error arising from the geometry of 

the probe which was mentioned in Langmuir’s paper and neglected by Druyvesteyn’s 

relation. Chapter 5 will deal with the numerical results and the comparison to the 

experimental results. Finally, chapter 6 will be the conclusion of the research and a talk about 

the future work.     
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CHAPTER 2 

Current Collection by a Langmuir Probe 

2.1. Introduction 

A plasma probe which is charged to a potential differing from that of a surrounding 

plasma, will lead to the creation of an electric field that attracts particles of opposite charge 

and repels those of like charge. If the probe potential is large enough, very few of the 

repelled particles will have sufficient kinetic energy to reach the probe surface, and the 

region adjacent to the probe will contain only attracted particles. The net space charge 

density in the region surrounding the probe will be of opposite sign to the charge on the 

probe, and will tend to prevent electric fields from penetrating into the plasma as shown in 

figure 2.1. This region of charge imbalance is known as a sheath. Beyond the sheath, the 

densities of both repelled and attracted charged particles are very nearly equal, and the 

electric field is relatively weak, though still significant.  

 

Figure 2.1. Since the probe is positively biased the sheath formed around it is negatively charged. 
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Any charge imbalance in an ionized plasma sets up electric fields that tend to limit its 

extent and neutralize it. It has been shown that the sheath thickness is always related to a 

plasma parameter known as the Debye shielding distance λD,  

1

2

2
( )o e

D

KT

ne


             (2.1) 

where KTe  is the electron temperature in eV, n is the number density of electrons, εo is the 

permittivity of free space, and e is the electron charge. The ratio of probe radius to Debye 

distance is one of the factors that govern whether the sheath that surrounds the probe is thin 

or thick. As an example take the case where the probe radius is smaller than Debye length, in 

this case the sheath is called a thick sheath and will lead to the fact that a cylindrical probe tip 

will have characteristics closer to a spherical probe. Since the flux of attracted particles 

reaching the probe can be strongly affected by the shape and extent of this potential, the ratio 

of probe radius to Debye length has a strong influence on the collected current. 

Measurements of collected current will therefore contain information about the Debye 

lengths of the various species as shown in figure 2.2. 

 A charged particle that comes within the influence of the probe is affected in general 

not only by the macroscopic electric field surrounding the probe, but also by the scattering 

effect of encounters with other particles, particularly neutral gas species that have a volume 

density on the order of 100 to 1000 times that of the charged species in a low temperature 

plasma. The surface of a plasma probe is always at a much lower temperature than the 

plasma. As a result, nearly all electrons that strike it are absorbed, and nearly all ions that  
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strike it combine with electrons from the surface and move off as neutral atoms. 

 

 

Figure 2.2. Ion or electron current vs probe potential for various ratios of probe radius to ion or electron debye 

length; cylindrical probe; dotted curve shows trapped orbit boundary.[1]  

 

These neutrals do not interact with electric fields and, in the collision less 

approximation, are in effect removed from the problem. It should be noted that secondary 

electrons (electrons emitted by the probe due to bombardment of ions on it) do contribute in 

some cases by being recollected and this will be discussed later in this chapter.  

I_ or I+  

(A) 

eφp/kT-  (eV) 
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The plasma probes come in a variety of shapes. Some are planar, cylindrical or 

spherical, with the cylindrical being the most common due to its simplicity in construction. 

Since the usefulness of such a probe to the experimenter is considerably enhanced with the 

availability of good theoretical models that depict its characteristics. The most useful shapes 

are usually those possessing sufficiently high symmetry such as the spherical or cylindrical 

probe, that the dynamics of particle motion in the electric fields near the probe are of 

simplified form. In particular, the cases considered here are those of a sphere or long cylinder 

in stationary plasma. In these cases, all particles move in central force fields[2]. 

 

2.2. Electron Acceleration: The Orbital Motion Limited Theory 

 2.2.1. Cylindrical Probe Generalized Velocity Distribution 

Mathematically, we start by applying the conservation laws of energy and momentum 

to the electrons crossing the sheath region. The derivation below was carried out by Swift 

and Schwar. Thus, in general, we have 

2 2 21
( ) ( )

2
e

E m u v w eV r             (2.2) 

e
J m vr            (2.3) 

where u,v,w are the velocity components in arbitrary three dimensional space, E is the total 

energy, e is the charge, me is the electron mass, J is the momentum and V( r ) is the potential 

relative to the sheath edge.  We assume for this study that the potential is purely radial, and 

ignore axial fields generated by the finite length or asymmetries of the probe construction. It 

is noted, however, that these effects can have a significant impact on near probe charged  
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particle dynamics, particularly when the debye length approaches the characteristic scale 

length of the probe.[3]  Instead of carrying out the analysis in terms of total energy, 

momentum, and effective potential energy, it is simpler to consider u , the radial velocity 

component, and v the tangential velocity component. Before proceeding with the analysis it 

is convenient at this stage to mention the assumptions made by Langmuir in developing his 

theory and summarized by Swift and Schwar [2,4]. They are: 

1. Carrier densities are known at the sheath edge. 

2. Carrier velocity distributions are known at the sheath edge. 

3. The entire probe potential is developed across the sheath. 

4. Gas pressures are sufficiently low for no collisions to occur in the sheath region. 

5. The probe is sufficiently small for it not to disturb the plasma. 

6. Carriers are neutralized on reaching the probe surface. 

7. Carriers are not emitted or reflected from the probe surface. 

8. The effect of space charge sheaths surrounding the supports and lead wires to the 

probe are ignored. 

If f(us,vs,ws)dus dvs dws is the number of electrons per unit volume at the sheath edge having 

velocity components in the range us to us+dus, vs to vs +dvs, and ws to ws + dws and if rs is the 

sheath radius the flux of electrons in this velocity range crossing the sheath edge is 

2 ( , , )
s s s s s s s s

dJ r Lf u v w u du dv dw         (2.4) 

It is assumed that the length L of the cylindrical probe is sufficiently large compared with rs 

for the velocity component parallel to the axis of the cylinder to make no contribution to the 
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electron flux crossing the sheath edge. In order to calculate the flux of the electrons that 

reach the probe it is necessary to examine their orbital motion within the sheath region.  

 

Figure 2.3. Velocity components of an electron crossing the space charge sheath surrounding a cylindrical probe  

 

Let us,vs,and ws be the velocity components at the sheath edge and up,vp, and wp be the 

corresponding components at the probe‟s surface. From eqs 2.2 and 2.3 we have  

2 2 2 2 2 21 1
( ) ( )

2 2
e s s s e p p p p

m u v w m u v w eV            (2.5) 

e s s e p p
m v r m v r            (2.6) 

Eqs 2.5 and 2.6 may be solved simultaneously for the tangential and the radial velocity 

components at the probe surface, to give 

( )s

p s

p

r
v v

r
            (2.7) 

2 2 2 2
2

[( ) 1]
ps

p s s

p e

eVr
u u v

r m
             (2.8) 
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An electron contributes to the electron current if its radial velocity component at the 

probe surface is greater than zero. In order that an electron, having a radial velocity at the 

sheath edge of us, should reach the probe it must also have a tangential velocity in the range  

2

2 2

2 2

2
0 [ ][ ]

p p

s s

s p e

r eV
v u

r r m
  


         (2.9) 

The smallest value of us that an electron can have and still be able to reach the probe 

surface is zero for positive values of Vp. For negative values of Vp it can be seen from eq 2.9, 

by putting vs equal to zero, to be (-2eVp/me)
1/2

. The upper limit of us is +∞ and the limits of 

ws are ∞. Integrating eq 2.4 between these limits gives the flux of electrons reaching an 

electron accelerating probe as  

1

10

2 ( , , )
v

e s s s s s s s s

v

J r L u f u v w du dv dw
 

 

        (2.10) 

where  

2

1/ 2 2 1/ 2

1 2 2

2
[ ] [ ]

p p

s

s p e

r eV
v u

r r m
 


    (2.11)  

 

2.2.2. Cylindrical Probe Maxwellian Velocity Distribution 

Assuming that the electrons at the sheath edge possess a Maxwellian velocity distribution 

f(us,vs,ws)dus dvs dws maybe replaced by  

3 / 2 2 2 2( ) exp{ ( )}
2 2

e e

s s s s s s

e e

m m
N u v w du dv dw

kT kT


       (2.12) 

Inserting this into eq 2.10 and integrating gives  
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e p s p
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    (2.13) 

 

2.2.3. Spherical Probe Maxwellian Velocity Distribution 

The corresponding equation for a spherical probe is 

2 2

2 1/ 2

2 2 2

/
4 ( ) {1 [1 ]exp( )}

2

p p p ee

e s

e s s p

r r eV kTkT
J r N

m r r r





   


      (2.14) 

 

2.2.4. Limiting Cases 

Eqs 2.13 and 2.14 show that the electron fluxes to cylindrical and spherical probes in 

the case of a Maxwellian distribution are complicated functions of probe potential and sheath 

and probe radii. In order to use these expressions to determine, say, electron concentrations 

assuming Te to be known, it is also necessary to know the value of rs and also how it depends 

on Vp.  

 The determination of rs , i.e. the radius that represents the region within which only 

electrons are present, is extremely difficult. This is partly due to the fact that a gradual 

transition takes place between the sheath and the neutral plasma and the separation point 

between these two regions must be arbitrary. Therefore an adequate position is to operate the 

probe under the condition where the electron flux is independent of rs or where rs  can be 

determined theoretically. These two conditions will be shown to be satisfied when the ratio 

rs/ rp either tends to infinity or is very close to unity.[2,5,6] 
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 2.2.4.1. Cylindrical Case 

 Rewriting eq 2.13 when rs/ rp  tends to infinity and η is substituted for eVp/kTe gives 

1/ 2 1/ 2 1/ 22 ( ) { [1 ( )] exp( ) ( )}
2

pe s

e p

e p s

rkT r
J r LN erfc erfc

m r r
   




        (2.15) 
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
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In the limit as (rp/rs)η
1/2

 tends to zero, eq 2.16 reduces to 

1/ 2 1/ 2 1/ 22
2 ( ) [ exp( ) ( )]

2

e

e p

e

kT
J r LN erfc

m
   

 


         (2.17) 

Figure 2.4 shows a plot of 1/ 2 1/ 22
[ exp( ) ( )]erfc  


 against η as well as a plot of 

1/ 22
[1 ]


 against η. Note that for values of η greater than 2 the two curves asymptotically 

coincide. Eq 2.17 therefore simplifies to 

1/ 2 1/ 2 22
2 ( ) (1 )    

2

pe e

e p p

e e

eVkT kT
J r LN for V

m kT e


 


         (2.18) 

 Although it is shown in both eqs 2.17 and 2.18 that when rs/ rp tends to infinity, the 

electron flux is independent of the sheath radius, another problem exists which is the absence 

of a value or estimate of rs in order to determine whether or not the condition rs/ rp  tends to 

infinity is satisfied. Unfortunately there is no way of determining the sheath radius in the case 

when the electrons move with orbital motion but the condition may reasonably be assumed to 

be satisfied when λD/rp tends to infinity. In the limit of rs/ rp  tending to unity the two 
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complementary error functions in eq 2.13 become zero and so the expression for the electron 

flux to a cylindrical probe is now 

 

1/ 22 ( )
2

e

e p

e

kT
J r LN

m





           (2.19) 

Eq. 2.19 shows that all the electrons that enter the sheath hit the probe. This will lead to the 

assumption that the electrons pass through the sheath region with their velocity vector normal 

to the probe‟s surface.  

   

 

Figure 2.4. A plot of the functions appearing in eqs 2.16 and 2.17 showing how f(η) depends on the normalized 

probe to plasma potential η.[11] 
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2.2.4.2. Spherical Case 

 Eq. 2.14 can be rewritten in the limit when rs/ rp  tends to infinity as 

2

2 1/ 2
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/
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e s
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       (2.20) 
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This equation maybe applied when λD/rp tends to infinity. In the limit of rs/ rp  tending to 

unity the exponential term in eq. 2.14 becomes unity and the electron flux to a spherical 

probe reduces to  

2 1/ 24 ( )
2

e

e s

e

kT
J r N
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


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           (2.22) 

 

2.2.5. Limitations of the Orbital Motion Limited Theory 

           The theory described in the above sections contains an implicit assumption. The 

assumption is that for an attractive probe any particle that hits or at least grazes the probe is 

absorbed. This assumption may not be totally accurate, since there exists a radius (greater 

than the probe radius) surrounding the probe called an absorption radius. It is assumed that 

any particle that passes through the absorption radius will eventually get absorbed by the 

probe. 

Let us consider the case of ion collection, and focus our attention on ions within a 

narrow energy range. If all imaginary cylindrical (or spherical) surfaces outside the probe are 

„grazed„ by ions then the corresponding impact parameters must all be greater than hp, i.e.   
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where the initial energy of the electron is eV0. Rearranging, the condition for no absorption 

radius to exist can be written 
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   (2.24) 

If this condition is to hold for all of the ions, including those with small initial energies then 

2( )
p

p

rV

V r
    (2.25) 

It appears that in dense plasmas this condition seizes to hold and we need an absorption 

radius to replace the probe radius. Whether or not the inequality holds in a particular case is 

difficult to say, leading us to taking a look at Poisson‟s equation and probably solving it. 

 

Figure 2.5. Diagram illustrating the impact parameter h and the distance of closest approach p.  

 

 

 

 

 



 

25 

2.2.6. ABR Theory 

 In order to properly account for the sheath theory, one has to solve Poisson‟s equation 

for the potential V(r) from the probe surface to r = ∞. Allen, Boyd, and Reynolds (ABR) 

simplified the problem by assuming ab initio that Ti = 0, thus neglecting any orbital motion, 

leading to the fact that the ions are attracted radially into the probe.[6,7] Although the ABR 

theory was only for spherical probes, Chen extended it to cylindrical probes.[8] The 

derivation below was carried out by Chen.[6] Assume that the probe is centered at r = 0 and  

that the ions start at rest from r = ∞, where V = 0. Poisson‟s equation in cylindrical 

coordinates is 

/

0

0

1
( ) ( ),   eeV kT

e i e

V e
r n n n n e

r r r 

 
  

 
        (2.26) 

where electrons are assumed to be Maxwellian. To find ni, let I be the total ion flux per unit 

length collected by the probe. By current continuity, the flux per unit length at any radius r is 

1/ 2/2   where  ( 2 / )
i i i

nv I r v eV M           (2.27) 

Thus, 

1/ 22
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2
i

i

I eV
n

v r M

 
            (2.28) 

Poisson‟s equation can then be written 

/1/ 2

0
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1 2
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2
eeV kTV e I eV

r n e
r r r r M 
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       (2.29) 

Defining 

1/ 2/ ,    ( )e

e s

kT
eV kT c

M
             (2.30) 

rewriting write eq. 2.29 as 
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the debye length appears on the left-hand side as the natural length for this equation. We 

therefore normalize r to λD by defining a new variable ξ 

1/ 20

2

0

,    ( )e

D

D

kTr

n e


 


            (2.33) 

rewriting eq. 2.32 
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Defining 
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we arrive at the ABR equation for cylindrical probes: 

1/ 2( ) J e 
  

 

  
 
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         (2.36) 

Of course, both J and ξp (the probe radius)depend on the unknown density no , which 

is to be determined from the measured current Ii.  
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2.2.7. BRL Theory 

Bernstein and Rabinowitz are considered to be the first who published a probe theory 

taking into account both sheath formation and orbital motions was published by assuming an 

isotropic distribution of ions of a single energy Ei.[9] This was further refined by 

Laframboise, who extended the calculations to a Maxwellian ion distribution at temperature 

Ti.[1] The BRL treatment is considerably more complicated than the ABR theory. According 

to ABR, all ions strike the probe, so the flux at any radius depends only on the conditions at  

infinity, and not on the probe radius. In BRL theory, it is assumed that there are two groups 

of ions. One group that will hit the probe thus contributing only once to the ion density, while 

the other group which orbits the probe and thus will contribute twice at any given radius r. 

The ion density must be known before Poisson„s equation can be solved, and clearly this 

depends on the presence of the probe. There is an absorption radius as shown in figure 2.6, 

depending on J, inside of which all ions are collected. Bernstein approached the problem in a 

different technique by expressing the ion distribution in terms of energy E and angular 

momentum J instead of vr and v⊥. Ions with a given J see an effective potential barrier 

between them and the probe. They must have enough energy to overcome this barrier before 

they can be collected. In figure 2.7, the lowest curve is for ions with J = 0; these simply fall 

into the probe. Ions with finite J see a potential hill and with sufficient energy, they can 

climb the hill and be collected by the probe. The dashed line through the maxima shows the 

absorption radius for various values of J. It turns out that KTi  makes little difference if Ti/Te 

< 0.1 or so, as it usually is. One sees that for large probes (Rp/λD >>1) the ion current 
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saturates well, since the sheath is thin. For small Rp/λD, Ii grows with increasing Vp as the 

sheath radius increases.[1,5,6,7]  

 

Figure 2.6. Definition of absorption radius 

 

If Ti = 0 or Ei = 0 one would expect that BRL computations will converge on to the 

ABR results. However, this happens only for spherical probes. For cylindrical probes, there 

is a problem of nonuniform convergence. Since the angular momentum is Mvr, for r→ ∞ 

ions with zero thermal velocity have J = (M)(0)(∞), an indeterminate form. To overcome that 

is to calculate the probe current for Ti > 0 and then take the limit Ti → 0, as BRL have done. 

It should be noted that Chen pointed out the fact that the BRL predictions have been borne 

out in experiments in fully ionized plasmas, but not in partially ionized ones. 
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Figure 2.7. Effective potential seen by ions with angular momentum J[1] 

 

2.2.8. Comparison Among Theories 

A comparison between the plasma densities obtained by using a Langmuir probe and 

measurements made with microwave interferometry. Regarding the Langmuir probe the 

plasma densities will be computed using both ABR and BRL methods. Such a comparison is 

shown in fig. 2.8. By comparing between the ABR and BRL theories, it appears that the ABR  
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theory under-predicts the density because orbiting is neglected, and therefore the predicted 

current is too high and the measured current is identified with a lower density. On the other 

hand, BRL theory over predicts the density because it assumes more orbiting than what 

actually occurs, so that the measured current is identified with a high density.  

 

Figure 2.8. Comparison of n measured with microwaves with probes using two different probe theories[6] 

 

This effect occurs in partially ionized plasmas because the ions suffer collisions far 

from the probe, thus losing their angular momentum. The BRL theory assumes that there is 

no change in the angular momentum of the ions all the way in from infinity. One might 

expect the real density to lie in between, and indeed, it agrees quite well with the geometric 

mean of the BRL and ABR densities[6]. 
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2.3. Electron Retardation 

2.3.1. Electron Current  

It was first presented by Langmuir that a measurement of d
2
I/dVp

2
 as a function of Vp 

enables the electron velocity distribution to be found. Druyvesteyn further carried on the 

work and analyzed the cases of cylindrical and planar probes and suggested that this 

expression should also apply to non-concave probe. Kagan presented the following 

simplified analysis confirming Druyvesteyn‟s conclusion.[2,10] 

The following derivation was carried out by Swift and Schwar. If f(1/2mev
2
)4πv

2
dv 

represents the number of electrons in unit volume of the plasma having speeds in the range v 

to v+dv the number of such electrons that travel in the θ to θ+dθ and φ to φ+dφ direction is  

2 21
( ) sin
2

e
f m v v d d dv            (2.37) 

The flux of these electrons crossing an area δAp of the probe‟s surface per second is then  
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where fp(1/2mev
2
) is the electron velocity distribution function at the probe‟s surface. The net 

electron current reaching the whole probe surface from all possible directions and over the 

complete speed range is 

/ 2 2

2 3

0 0 0

1
( ) cos sin
2

e p p e
I A e f m v v d d dv

 

   


            (2.39) 

 

 

  



 

32 

 

Figure 2.9. Co-ordinate system showing fraction of electrons moving in directions θ to θ+dθ and φ to φ+dφ and 

reaching an area δAp in unit time[1]  

 

In order for us to assume an isotropic case ( the electrons can reach the point in question from 

any direction), the dimensions of the probe must be very much smaller than the electron 

mean free path. The limits of θ of 0 and π/2 are intended to make the analysis tractable and 

simply mean that the probe contains no re-entrant areas. The electron speed v in eq. 2.39 

refers to the value at the probe‟s surface. On carrying out the integration over θ and φ eq. 

2.39 reduces to 

2 3

0

1
( )
2

e p p e
I A e f m v v dv



            (2.40) 

 Providing the distribution function is isotropic and homogeneous it is a function only 

of the electron‟s energy. If no collisions occur the total energy of an electron remains 

unchanged. Hence, if the potential drop between the probe and plasma occurs over a distance 

much less than a mean free path, it follows that over this last mean free path next to the probe 

there must be not only conservation of the total electron energy E but also a constant electron 

distribution function. Now  
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21

2
e

E m v eV            (2.41) 

Thus v must decrease as the electron approaches the probe since V is becoming progressively 

more negative. Also  

21
( ) ( )

2
p e

f E f m v           (2.42) 

2 21 1
( ) ( )
2 2

p e e p
f m v f m v eV           (2.43) 

where v again refers to the electron speed at the probe‟s surface. Rewriting eq. 2.40 then 

gives 

2 3

0

1
( )
2

e p e p
I A e f m v eV v dv



            (2.44) 

From eq. 2.41 we obtain v
2
=2(E+eVp)/me and v dv=dE/me. Hence eq. 2.44 becomes 

2
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eVe

e
I A f E E eV dE

m

 



           (2.45) 

This becomes on differentiating once with respect to Vp  
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Differentiating again gives 
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i.e. 
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Thus a plot of d
2
Ie/dVp

2
 versus Vp shows how f(E) varies with E. f(E) is the velocity 

distribution function. To convert to an energy distribution function f1(E) we use the relation 

2

1
( ) 4 ( )f E dE v f E dv           (2.49) 

where f1(E)dE is the number of electrons per unit volume in the energy range E to E + dE 

and E=1/2mev
2
. Hence: 

2

1/ 2

1 2 2

4
[ ( )] ( )

2p

e p e

E eV

p p

m V d I
f E

A e e dV



          (2.50) 

 It is worth mentioning that Kagan is simply stating that the probe does not perturb the 

distribution function prior to measurement. His method of analysis which takes into account 

the spherical coordinates supports the conclusion reached by Druyvesteyn. At this point there 

is a big distinction between our work and Kagan‟s work since the conclusion we are trying to 

reach is that it is the efficiency of collection as a function of energy that needs to be 

considered. This is done by taking the geometry of the probe into consideration. This point 

will be discussed further in the next following chapters.   

 

2.3.2. Methods of Determining the Second Derivative 

 There are a number of ways of finding the second derivative of the electron current 

flowing to a negative probe. In this section we shall discuss the principle of these different 

methods. In the electron retarding region, due to the difference in mass between electrons and 

ions with electrons being lighter, the change in electron current due to varying the bias on the 
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probe is very much greater than the corresponding changes in positive ion current even for 

moderately large electron retarding potentials. Usually, therefore, electron energy  

distributions can be measured up to large energies by assuming that  

2 2

2 2

e

p p

d I d I

dV dV

            (2.51) 

i.e. the second derivative of the circuit current is essentially the same as the second derivative 

of the electron current.[2] 

 When the probe to plasma potential is zero, all electrons, regardless of their energy, 

can reach the probe while when the probe potential is strongly negative only the highly 

energetic electrons that can overcome the retarding potential will be able to reach the probe. 

In practice it is difficult to determine when Vp is zero as the probe potential is always 

measured relative to a reference electrode, therefore in order to set an origin point one must 

first determine the plasma potential Vo. If Vo remains constant it has no effect on the actual 

shape of the second derivative curve. Fig. 2.10 shows the zero, first and second derivatives 

for planar, cylindrical and spherical probes when the electrons possess a Maxwellian velocity 

distribution and the flow of electrons and the ions is governed by orbital motion. These 

graphs were deduced from the differentiation of eqs. 2.16 and 2.21. In the next section we 

will discuss two methods of determining d
2
Ie/dVp

2
.       
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2.3.2.1. Graphical Differentiation 

The simplest method of determining the derivative of a probe characteristics is to 

differentiate it graphically. As might be expected, the main source of error in this type of 

analysis lies in the accuracies involved in the two successful graphical differentiations of an  

experimentally determined probe characteristic. The reason for such error might rise from the 

fact that any wrong differentiation of the first graph would be carried out to the second and 

thus causing the error to propagate. A rather elaborate procedure for doing this has been 

proposed by Medicus.[16] 

 

2.3.2.2. Differentiating Circuits 

 Unlike the method mentioned above which is carried manually, this method 

overcomes the rather tedious procedure mentioned above by arranging for the differentiation 

to be carried out electrically. The method is based on measuring the probe current while the 

probe potential varies linearly with time. Thus, if Vp can be written as 

p
V xt             (2.52) 

1
e e

p

dI dI

dV x dt
            (2.53) 

The output from the first differentiating circuit which is dIe/dt may again be differentiated by 

feeding into another differentiating circuit. The output from the second differentiation circuit 

will give a signal proportional to d
2
Ie/dVp

2
 as shown in figure 2.11.  

 A major assumption has been made that Ie varies instantaneously with Vp, i.e. the 

electrons are always in equilibrium with the applied field. In practice this is not the case, 
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where if an instantaneous potential is applied between the probe and plasma there will be 

some finite time before the electrons can rearrange to their new equilibrium state.  

 

Figure 2.10. Zero, first, and second derivatives of (a) planar (b) cylindrical (c) spherical probe current 

characteristics assuming orbital motion and a Maxwellian velocity distribution[2] 
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Figure 2.11. Circuit for obtaining second derivative of a probe current versus potential characteristic using a 

small amplitude sine-wave modulated potential difference.[2] 
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2.4. Probe Contamination 

 Consider the case where a layer of impurities is covering the probe. This layer of 

impurity has a resistance R. If the probe is biased to a voltage VB, the actual bias that is 

applied to the surface in contact with the plasma will be reduced to VB-IR, where I is the net 

current. In the case where the probe is biased at low potentials, i.e. near the floating potential, 

the net current will be small and the applied bias will be close to the actual bias. On the other 

hand, when the probe is biased at Vp, the actual potential will be Vp-Ie R. And due to the fact 

that the current will be greater than in the case of low potentials, the actual bias will not equal 

Vp until the applied bias is greater than Vp+Ie R. It is apparent that in this case the plasma 

potential determined from the knee of the measured I-V characteristic will be overestimated 

causing the overestimation of the electron temperature as well. The error in this case will 

depend on the value of R, of the resistive layer.  

 Impurities can also cause another source of error in the determination of the plasma 

potential from the knee. This error appears as variations in the surface work function. 

Variations in the surface work function can be as large as 1 V. Probe contamination is often 

apparent in hysteresis in I-V characteristics as shown in figure 2.12. 

 One of the best techniques to get rid of impurities is to heat the probes red to white 

hot by biasing probes more positive than Vp. However, for very low pressures ~10
-6

 torr, 

monolayers of contaminants can form in several minutes and cleaning must be carried out 

often.[12]    
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Figure 2.12. I-V characteristic of a dirty probe showing hysteresis[12] 

 

2.5. Secondary Electron Effects 

 Secondary electron emission plays a key role in plasma production in many plasma 

processing devices. Since secondary electrons can result from either electron or ion 

bombardment they will have an important effect in determining the probe characteristics. 

Before talking about secondary electron effects we need to identify an important factor which 

is the secondary electron emission coefficients ζ(E). The secondary electron emission 

coefficients are defined as the ratio of emitted to incident current and depend on the incident 

particle energy. For clean surfaces, they can be greater than 1.0 for ion energies greater than 

1 keV or for incident electron energies of several hundred eV. It should be noted that dirty 

surfaces as well as insulators tend to have higher secondary electron emission coefficients 

than conductors. Another source of secondary electron emission is photoemission.  
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Figure 2.13. Schematic description of the variation of the electron secondary electron emission coefficient 

versus incident electron energy[12] 

  

 Consider secondary electron emission caused by monoenergetic primary electrons. 

The secondary electron emission coefficient ζ of most metals increases with incident electron 

energy in the order of several hundred eV  to a maximum value and then starts to decrease 

with increasing incident energy as shown in figure 2.13. 

 The effect on Langmuir probe I-V characteristics can be estimated by representing the 

curve in fig. by ζ ≈ δε/E0, where E0≈200eV for tantalum. This is a reasonable approximation 

for ε<150eV. The derivation below was carried out by Hershkowitz. The secondary electron 

current density can be written  

2

1 ( )2
( ) ( )[ ] ( )

p B

s B w

e

e V Ve
j V f d

m


    



 
         (2.55) 

where ζ is evaluated at εw, the kinetic energy that the incident primary electrons have at the 

probe. Conservation of energy gives 
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w p p B

E e V V              (2.56) 

The ratio of secondary current to primary current can be written 

0

[1 ( ) / ]
ps

p B p

p

Ej
e V V E

j E
            (2.57) 

If  jp is comparable to the bulk electron background current density, the condition for 

significant secondary electron emission is that Ep is the order of E0.[12] It can be shown that 

a similar result holds for Maxwellian electrons.[13] 

 Figure 2.14 represents data for a tantalum probe immersed in plasma with 

monoenergetic electrons. The secondary electron emission current resembles an additional 

ion collection current. As the probe bias voltage is swept, the curve falls below 0A, 

indicating significant electron emission. It should be noted that secondary electron emission 

gives rise to a greater slope below the knee. When energetic electrons are present, the 

contribution of secondary electrons should be taken into consideration.[12,14,15]       

 

Figure 2.14. I-V characteristics of a tantalum probe with 300 eV primary electrons and 5 eV plasma electrons at 

an argon neutral pressure of 2x10
-5

 torr. The net current equals 0 at A, B, and C.[12] 
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2.6. Summary 

 Although the thesis is mainly about improving the EEDF calculated from the electron 

current extracted from plasma ( I-V curve), but one important aspect of the I-V curve is that 

it represents both ion and electron currents. In some cases the ion current is small and can be 

neglected but in most cases the ion current contributes significantly and needs to be dealt 

with. In this chapter the focus was divided into two parts. The first part dealt with the ions‟ 

contribution to the Langmuir probe, and the previous work carried out by reputable scientists 

in the field in trying to identify a number of theories to subtract the ion contribution from the 

I-V curve. Although the discussion was brief, we mainly focused on the important theories 

out in the field. The second part dealt with the most common technique in extracting EEDF 

from the I-V curve, which is the second derivative. Also we introduced a number of concepts 

such as secondary emission as well as probe contamination. The reason for the second 

portion of this chapter is to act as an introduction to chapter 3 which will deal with our work 

regarding EEDFs and the improvements we added compared to what is being used in the 

field today. 
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CHAPTER 3 

The Electron Energy Distribution Function as an Integral 

Problem  

3.1.   Introduction 

 The derivative formulation of Druyvesteyn combined with an assumption of 

geometry invariance posed by both Druyvesteyn and Kagen and the relative ease of data 

smoothing and analog differentiation have made the derivative solution for EEDF analysis 

the preferred method for experimentalists. Druyvesteyn built his theory on the fact that the 

second derivative works well for both spherical and cylindrical probes and can be extended 

to planar probes. This geometry invariance assumes that both the spherical and cylindrical 

coordinates will behave the same if applied on a Langmuir probe in plasma. Adding to 

geometry invariance the use of smoothing methods such as Savitzky-Golay filter which in 

part removes data from the I-V curve based on the noise level suggested by the user. The 

combination of both methods lead to major errors in the EEDF.  

 Recently, electron energy distribution function (EEDF) extraction techniques have 

been evaluated using regularized solutions to the integral problem. These techniques do not 

assume any mathematical representation of the EEDF and solve the integral problem for any 

function that best represents the EEDF. Also, unlike the more widely used point-by-point 

extraction of the second-derivative relationship, the integrated relationship between electron 

current and the EEDF is used, instead of a relatively small fraction of the integrated data in  
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the point-by-point method. In 1930, Druyvesteyn derived the relationship between the 

electron energy distribution in a plasma and the electron current measured by a biased 

Langmuir probe [1]: 

 

2

2 2

4
( )

2

e probe e
E eV

probe
p probe

m V d I
f E

A e e dV
         (3.1) 

       

where Ie is the electron contribution to the current collected by the Langmuir probe, Ap is the 

area of the probe, e is electron charge, me is electron mass, Vprobe is the potential of the probe 

(referenced to the plasma potential), and f(E) is the EEDF, or the number of electrons per cm
3
 

with total energy between E and E+dE.  

 The well-known relationship dating to Druyvesteyn between the I-V characteristic 

and the EEDF is a Fredholm integral of the first kind, and can be rewritten in a similar 

integral form: 
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e

e eV
probe

f E E eVA e
I dE

m E

 
        (3.2) 

 

Where eqs. 3.1 and 3.2 are identical representations of electron current to a probe for 

spherical geometries from which the Druyvesteyn relation is derived.  Eq. 3.2 has the form 

f(x) = ∫K(x,y)g(y)dy [2].  This family of integral problems are often cited as a classic example  
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of a linear inverse problem [2] in which one attempts to construct modeled theory (here, the 

EEDF) from data (here, collected current and applied voltage). By descretizing the electron 

current and EEDF (something that is typically done in the age of digital data acquisition 

anyhow), this integral can be reduced into a system of algebraic linear equations of the form  

 

eI Kf          (3.3) 

  

where Ie is the electron current data in vector of length M, K is an M x N matrix with a large 

condition number M ≥ N, and f  is the EEDF in vector length N[3]. Algebraic problems in the 

form shown above are considered discrete ill-posed problems based on the fact that the 

matrix K is ill-conditioned[2,4]. In the upcoming sections ill-posed problems will be 

discussed in detail. 

 

3.2.  Ill-Posed Problems 

 The concept of well-posed and ill-posed problems was first introduced by Hadamard 

at the beginning of the 19th century.[41] Hadamard defined a  problem as ill posed if the 

solution is not unique or if it is not a continuous function of the data—i.e., if any small 

perturbation of the data can cause a large perturbation of the solution. Hadamard did not 

believe that ill-posed problems would describe physical systems. Since then this class of 

problems has been shown to give a better insight into physical systems, and today ill-posed  
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problems take the form of inverse problems in many areas of science and engineering. 

Inverse problems appear in determining the internal structure of a physical system from the 

system's measured behavior, or in determining the unknown input that gives rise to a 

measured output signal (in contrast to direct case where the system's behavior is sought out 

given the input or internal structure). Some examples are acoustics, astrometry, computerized 

tomography, continuation problems, early vision, electromagnetic scattering, geophysics, 

inverse geo- and helioseismology, mathematical biology, optics and image restoration, 

remote sensing, inverse scattering theory, signal processing, and statistics.[2,5 → 14] 

             The main discussion of this general introduction will be on linear inverse problems 

that can be formulated in the following very general form: 

*  input system d output


    (3.4) 

In this formulation, having the input and the mathematical description of the system, the 

direct problem is to compute the output. The goal of the inverse problem is not to determine 

the output as is the case with the direct problem but to determine either the input or the 

system. For example, in astronomical image deblurring the "input" is the night sky, the 

blurring "system" consists of the telescope and the atmosphere, and the "output" is the 

recorded blurred image. The goal is to reconstruct the "input" which is in this case the 

unblurred image of the night sky, given a mathematical description of the blurring effects 

caused by the telescope and the atmosphere. Another example is computerized tomography, 

where the "input" is in this case the true image, the "system" is the geometry, and the 
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"output" is the projection image. The goal here to reconstruct the "system", from information 

about the locations of the X-ray sources and measurements of their damping.[2]  

 The classical example of a linear ill-posed problem is a Fredholm integral equation of 

the first kind[1] with a square integrable kernel [15], which can always be written in the 

generic form   

1

0

( , ) ( ) ( ),         0 1K x y f y dy g x x      (3.5) 

where g(x) the output, and the kernel K(x,y) are known functions, at least in principle, while f  

is the unknown input, sought solution. In many practical applications, the kernel K is given 

exactly by the underlying mathematical model, while the right-hand side g typically consists 

of measured quantities; i.e., g is only known with a certain accuracy and only in a finite set of 

points x1,..., xm.[2] 

 

3.2.1 The Singular Value Expansion 

 One of the best analytical tools for analysis of first-kind Fredholm integral equations  

with square integrable kernels is the singular value expansion (SVE) of the kernel. A kernel 

K is square integrable if the norm 

1 1
2 2

0 0

( , )K K x y dxdy      (3.6)  

is bounded. By applying the SVE, any square integrable kernel K can be written in the form 

of an infinite sum: 

1

( , ) ( ) ( )i i i

i

K x y u x v y




    (3.7)  
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Note that for degenerate kernels, the ∞ should be replaced by the rank of the kernel. The 

functions ui and vi are termed the singular functions of K.[2] They are orthonormal with 

respect to the usual inner product, i.e., 

1      
( , ) ( , )

0      
i j i j

if i j
u u v v

if i j


  



   (3.8) 

where (ui ,uj) and (vi , vj) is defined by 

1

0

( , ) ( ) ( )t t dt        (3.9) 

The numbers μi are the singular values of K: they are always positive and they can always be 

ordered in a decreasing order such that 

1 2 3 ..... 0         (3.10) 

The singular values satisfy the relation 22

1

i

i

K




 .[2] The triplets { μi, ui, vi } are related to 

the following two eigenvalue problems associated with the kernel K: { μi 
2
, μi } are the 

eigensolutions of the symmetric kernel 
1

0

( , ) ( , )K x z K y z dz , while { μi 
2
,vi } are the 

eigensolutions of  
1

0

( , ) ( , )K z x K z y dz . These eigensolutions establish the condition that the 

triplets { μi, ui, vi } are characteristic and essentially unique for the given kernel K.[2]  

 The following relation helps illustrate how singular values and functions relate to 

each other: 

1

0

( , ) ( ) ( ),      1,2,...i i iK x y v y dy u x i     (3.11) 



 

53 

Eq. 3.11 represents the fact that any singular function vi is mapped onto the corresponding ui, 

and that the singular value μi acts as an amplification of this particular mapping. If this 

relation, together with eq. 3.7, is inserted into the integral equation 3.5, then we obtain the 

equation 

1 1

( , ) ( ) ( , ) ( )i i i i i

i i

v f u x u g u x
 

 

     (3.12) 

which, in turn, leads to the following expression for the solution to eq. 3.5: 

1

( , )
( ) ( )i

i

i i

u g
f y v y







    (3.13) 

The only requirements for the existence of  f is that the right-hand side of eq. 3.13 indeed 

converges, which is equivalent to requiring that g belong to Ʀ(K), the range of K. From eq. 

3.13 we see that f is broken down to its singular functions vi and the corresponding expansion 

coefficients μi
-1

 (ui,g). Therefore the solution f can be characterized by an analysis of the 

coefficients μi
-1

 (ui,g) and the functions vi.[2,16]  

 

3.2.2 The Smoothing Property of the Kernel 

 The overall behavior of the singular values μi and the singular functions ui and vi is by 

no means "arbitrary"; their behavior is strongly connected with the properties of the kernel K. 

The following holds as described by P.C. Hansen.[2]  

 The "smoother" the kernel K, the faster the singular values μi decay to zero (where 

"smoothness" is measured by the number of continuous partial derivatives of K).  
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 The smaller the μi, the more oscillations (or zero-crossings) there will be in the 

singular functions ui and vi. This property is perhaps impossible to prove in general, 

but it is often observed in practice.  

 The practical application of the above properties of the triplets { μi, ui, vi } is that eq. 

3.13 for f can be considered as a spectral expansion. This spectral expansion can better 

describe the spectral properties of the solution f through the coefficients μi
-1

 (ui,g). It can be 

concluded from eq. 3.12 that the integration with K has a smoothing effect: the higher the 

spectral components in f, the multiplication of g with μi causes the spectral components to be 

more damped. Eq. 3.13 shows that the inverse problem of computing f from g, has the 

opposite effect on the oscillations in g, which is an amplification of the spectral components 

(ui,g) with a factor μi
-1

 .[2] 

 The decay rate of the singular values μi can be used to diagnose the degree of ill-

posedness of the problem. If there exists a positive real number λ such that the singular 

values satisfy μi = O(i
-λ

 ), then λ is called the degree of ill-posedness, and the problem is 

characterized as mildly or moderately ill posed if λ <= 1 or λ > 1, respectively.[2,17] 

 

3.2.3 The Picard Condition and the Instability of the Solution 

 It should be stated that not every right-hand side g will lead to a "smooth" solution f 

due to the amplification factors μi
-1

. The only case were the right-hand side in eq. 3.13 

actually converges to f  is when g is even more ―smooth‖  than the input function f. The 

following Picard condition is essential to measure the smoothness of g.[2] 
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 The Picard Condition states that there exists a square integrable solution f to the 

integral eq. 3.5, the right-hand side g must satisfy 

2

1

( , )
( )i

i i

u g







     (3.14) 

The Picard condition concludes that in order for a square integrable solution to exist, that 

from some point in the summation in eq. 3.13, the absolute value of the coefficients (ui,g) 

must have a higher rate of decay than the corresponding singular values μi. Aready we 

showed that for g to be square integrable the coefficients (ui,g) must decay faster than i
-1/2

, 

but the Picard condition adds a more strict requirement on g, in that the coefficients (ui,g) 

must decay faster than μii
-1/2

. Since the Picard condition is important when talking about 

Fredholm integral equations of the first kind, it should be checked before one attempts to 

solve the integral equation.[2] 

 The requirement (eq. 3.14) in the Picard condition is identical to the requirement that 

the right-hand side g belong to Ʀ(K), the range of K. If there is a case where g has any small 

component outside Ʀ(K), then there is no square integrable solution. Consider a g   Ʀ(K), 

and let gk denote the approximation to g obtained from truncating its SVE expansion after k 

terms, 

1

( ) ( , ) ( )
k

k i i

i

g x u g u x


    (3.15) 

This gk clearly satisfies the Picard condition for all k = 1, 2,..., and the corresponding 

approximate solution fk is given by 
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1

( , )
( ) ( )

k
i

k i

i i

u g
f t v t



    (3.16) 

We conclude that as k —> ∞ we have gk —> g, but 

1/ 2

2
( , )     k k kf f f as k      (3.17) 

It is exactly this lack of stability of f that makes the integral eq. 3.5 ill-posed.[2] 

 Unfortunately, in practical situations right-hand side g will be at best an approximate 

due to the fact that it is contaminated with unavoidable errors: 

2 2
,    ( ),    exact exact exactg g g K g        (3.18) 

Here, g
exact

 denotes the unknown, exact right-hand side and η denotes the perturbation 

(noise). In an ideal case, we want to compute 1

1

( , )exact exact

i i i

i

f u g v






  . We cannot expect the 

errors η to satisfy the Picard condition, and hence g   Ʀ(K). Any attempt to compute f
 exact

 

via the infinite sum 1

1

( , )i i i

i

u g v






  will either diverge or return a useless result with extremely 

large norm, no matter how small the perturbation η is. Instead, it is necessary to use a 

regularization method that replaces the original problem (eq. 3.5) by a regularized problem 

which approximates the desired f
 exact

. If the perturbation turns out to be too big, compared to 

g
 exact

 , then it is useless to compute an approximation to f
 exact

; hence, the assumption 

2 2
 exactg  .[2,18] 
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3.3.  Prelude to Regularization 

           As discussed in the previous section, the primary difficulty with ill-posed problems is 

that they are practically underdetermined due to the cluster of small singular values of K.  

Hence, it is important to incorporate further information about the desired solution in order to 

make the problem more stabilized and to single out a useful solution. This is the purpose of 

regularization.[2] Ideally there is an abundance of additional information in many types 

about the solution f to eq. 3.5 that the dominating approach to regularization is to allow a 

certain residual associated with the regularized solution, with residual norm 

1

0 2

( ) ( , ) ( ) ( )f K s t f t dt g s     
 (3.19) 

and then use one of the following four schemes as mentioned by P.C.Hansen.[2] 

1. Minimize ρ(f) subject to the constraint that f  belongs to a specified subset, f   Sf.  

2. Minimize ρ(f) subject to the constraint that a measure ω(f) of the "size" of f is less 

than some specified upper bound δ, i.e., ω(f) < δ.  

3. Minimize ω(f) subject to the constraint ρ(f) < β.   

4. Minimize a linear combination of ρ(f)
2
 and ω(f)

2
:  

2 2min{ ( ) ( ) },f f     (3.20) 

where α is a specified weighting factor. Here, α,δ, and β are known as regularization 

parameters, and the function ω is sometimes referred to as the "smoothing norm." The fourth 

scheme is the well-known Tikhonov regularization scheme. The idea behind all four schemes 

is that a regularized solution satisfying all constraints as well as having a small residual norm  
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will be not too far from the desired, unknown solution to the unperturbed problem.[2] 

 From a statistical point of view, the introduction of regularization decreases the size 

of the solution's covariance matrix at the cost of adding bias to the solution. In practice, the 

regularization problem should be discretized for it to be solved numerically. There are 

numerous methods to discretize integral equations, the two main classes of methods, namely, 

quadrature methods and Galerkin methods.[2] Both methods compute an approximation f  to 

f. In the quadrature, method, a quadrature rule with abscissas y1,...,yn and corresponding 

weights w1,...,wn is used to approximate an integral as 

1

10

( ) ( )
n

j j

j

y dy w y 


    (3.21) 

and when this rule is applied to the integral eq. 3.5 for m distinct values x1,..., xm, then we 

obtain an m x n matrix A and a right-hand side b with elements given by 

( , ),     ( )ij j i j ia w K x y b g x     (3.22) 

The solution vector is 
1( ( ),..., ( ))T

nf t f t , i.e., samples of f . In the Galerkin method, one 

chooses two sets of basis function φi and ψj, and then the matrix and right-hand side elements 

are given by 

1 1

0 0

( , ) ( ) ( ) ,    ( ) ( )ij i j i ia K x y x y dxdy b g x x dx       (3.23) 

Solving the linear system of equations Aζ = b for the vector ζ, we obtain 

1

( ) ( )
n

i i

i

f y y 


    (3.24) 
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Some collocation methods are special cases of the Galerkin method with delta functions as 

the φi basis functions, φi (x) = δ(x — xi). If K is symmetric and φi = ψi,, then A is symmetric 

and Galerkin's method is called the Rayleigh-Ritz method. [2] 

            When a rank-deficient or ill-posed problem is discretized, then the inherent 

difficulties are carried over to the discrete problem in the sense that the coefficient matrix 

will also have either a cluster of small singular values or singular values that decay gradually 

to zero. Hence, the discrete problem will also be effectively underdetermined. This is true for 

any discretization method. Therefore regularization is also required to solve the discretized 

problem. [2] 

          The most useful approach to adding regularization to the discrete problem is by 

discretizing the regularized problem. And as P.C. Hansen said "first regularize, then 

discretize".[2] this will lead in determining which information will actually be enforced on 

the regularized solution. Thus, if the discretization leads to a square system, 

,      nxnAx b A     (3.25) 

or an overdetermined system, 

2
min ,      ,    mxnAx b A m n      (3.26) 

where the vector x represents the function f. For example, the discrete Tikhonov 

regularization scheme becomes 

2 2 2

2
min{ ( ) }Ax b x      (3.27) 

           The function Ω is termed the discrete smoothing norm, and it is often—but not 

always—of the form 
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2
( )x Lx     (3.28) 

where the matrix L is typically either the identity matrix, a diagonal weighting matrix, or a  

p x n discrete approximation of a derivative operator (e.g., 
''

2
( ) ( )x f f   ), in which 

case L is a banded matrix with full row rank. For example, for certain discretizations, the 

matrices[2] 

( 1)

1

1 1

. .

. .

1 1

n xnL 

 
 
  
 
 

 

   (3.29) 

and 

( 2)

2

1 2 1

. . .

. . .

. . .

1 2 1

n xnL 

 
 
 
  
 
 
  

   (3.30) 

are scaled approximations to the first and second derivative operators. When p < n then 

2
 .L  is said to be a seminorm; i.e., there exist vectors x  0 (in the null space of L) such that 

2
0Lx  . We stress that even when 

2
( )f f  the matrix L will depend on the 

discretization scheme used.[2]  

       If an a priori estimate x* of the desired regularized solution is available, then this can be 

taken into account by including x* in the discrete smoothing norm Ω(x), which then takes the 

form 
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*

2
( ) ( )x L x x      (3.31) 

In this way, the regularized solution will be biased towards the a priori estimate x*, and the 

simple version of Ω(x) in eq. 3.28 is when x* = 0.[2,19] 

 

3.4.  EEDF Extraction by Regularization 

 In order to obtain the EEDF from Langmuir probe data, either an a priori assumption 

of the functional characteristics of the EEDF need to be assumed (Maxwellian, Druyvesteyn, 

etc.) or the differentiation of experimental data, complete with noise, needs to be carried out. 

A regularized solution makes global assumptions about the final solution. This methodology 

also uses the collective data obtained from the Langmuir probe over the range of applied 

voltages to extract the EEDF at a specific energy, as opposed to local perturbation-type 

analysis about a single point to obtain second-derivative information, as highlighted in 

eq.3.2. 

 

3.4.1 Methodology 

 The first step is the formulation of the kernel K in eq. 3.5 for the EEDF integral 

problem. The methodology starts with the derivation of the electron current collected by a 

probe as a function of applied potential referenced to the plasma potential using eq. 3.2 and a 

step function distribution given by 
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 

0

0

L

e
L H

H L

H

if E E

n
f E if E E E

E E

if E E

 



  


 

        (3.32) 

 

where ne is the density of electrons (assumed to be constant) between a low energy limit EL 

and a high energy limit EH.  If this distribution function is inserted into the Druyvesteyn 

derivation of electron current for an arbitrary EEDF (eq. 3.33), the relationship between the 

electron current Ie and the term ne that defines the density of electrons in this energy band is 

derived below:[37] 

 

2

2 2

4
( )

2

e probe e
E eV

probe
p probe

m V d I
f E

A e e dV
          (3.33) 

 

Assuming that Vprobe = Vplasma – V= -E/e, and reducing the distribution function to  

 

2

2 2

4
( )

2

e e

p

m E d I
f E

A e dE
          (3.34) 

 

Isolating the derivative of the current gives 

 

2

2

2
( )

4

pe

e

A ed I
f E

dE m E
         (3.35) 
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From (3.35) for E<EL , f (E)=0 therefore 

2

2
0

d I

dE
           (3.36) 

1

dI
C

dE
           (3.37) 

1 2( )I E C E C            (3.38) 

for 
L HE E E  , f (E)=ne /EH –EL , therefore 

 

2

2

2

4

pe

H L e

A end I

dE E E m E
 


       (3.39) 

3

2

2

pe

H L e

A endI E
C

dE E E m
  


       (3.40) 

3

3 4

2
( )

3

pe

H L e

A en E
I E C E C

E E m
    


      (3.41) 

For E>EH , f (E)=0 , therefore 

2

2
0

d I

dE
           (3.42) 

5

dI
C

dE
           (3.43) 

5 6( )I E C E C            (3.44) 

So the current can be written in the following form 
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 

1 2

3

3 4

5 6

  

 

  

2
.  

3

L

pe

e L H

H L e

H

C if E E

I E if E E E

C if E E

E C

A en E
C E C

E E m

E C



 



 

   


 









    (3.45) 

 

Applying the following boundary conditions 

1) The continuity of the zeroth derivative of the current at the boundaries. 

2) The continuity of the first derivative of the current at the boundaries. 

3) The assumption that the current for E>EH tends to zero. 

Solving for the constants we obtain the following equation 

 

 

 
 

 
 

3 3

3 3

-2
-   

2 - 3

2
2 - 3  

6 -

0   

 

e p H L

L H L

H L e

e p

e H H L H

H L e

H

n A e E E
E E E if E E

E E m

n A e
I E E E E E if E E E

E E m

if E E

 

  



  
  
   










  (3.46) 

 

Which is referred to as (3.32) in the methodology.  
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Figure 3.1 shows a comparison between the methodology outlined above and the analytical 

solution of (3.46) for a Maxwell-Boltzmann distribution with electron density N = 10
10

cm
-3

 

and Te = 3eV.  Note that the resulting electron currents for both cases are identical and also 

that a simple step function histogram representation of the EEDF is sufficient.  
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E E m
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E E m

if E E

 

  



  
  
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







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   (3.47) 
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These step functions can now be overlaid with arbitrary magnitudes of each step to 

form arbitrary electron energy distribution functions.  A collective electron energy 

distribution function is now represented by: 

 

 

Figure 3.1. Comparison of electron current calculated using proposed 

methodology and analytical solution (dashed curve) for a 3eV 

Maxwellian distribution. Note that the analytical solution and the step 

function model give identical results. 
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 
1
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       (3.48) 

 

where nei, EHi, and ELi represent the magnitude, high energy limit, and low energy limit of 

each individual step function used to approximate the final distribution.  Similarly, the total 

electron current can be represented by a similar summation over all step functions: 

 

 
 

 
 

3 3

   

   

  

 3 3
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E E m
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

 
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

  
  
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









 (3.49) 

 

Now that the integral kernel K has been obtained for a step function, eq. 3.49 can be 

compared to the known electron current function produced by a known electron energy 

distribution function.  In this case, a comparison of the electron current obtained using this 

methodology can be made to the expected electron current obtained analytically for a 

Maxwell-Boltzmann distribution,  

 



 

68 

 
2

eV
probe

kT
ee

e probe p

e

kT
I V eA N e

m

 
 
 
           (3.50) 

 

where k is the Boltzmann constant and Te is the average temperature of the electrons defined 

by the Maxwell-Boltzmann distribution[20,21]. A step by step derivation of the methodology 

and comparison between the methodology outlined above and the analytical solution of eq. 

3.50 can be found in the Appendix with the result that the electron currents for both cases are 

identical and that a simple step function histogram representation of the EEDF is sufficient.  

The formulation of the set of eqs. 3.48, and 3.49 provide a mechanism to reduce this 

problem to a system of linear equations from which the EEDF can be solved.  Equation 3.36 

can be represented by a column matrix f, and the electron current obtained from the 

Langmuir probe as a function of probe voltage can be represented by another column matrix 

Ie: 

1

1 0

2

2 1

1

:

e

e

eN

N N

n

E E

n

E E

n

E E

f



 
 
 
 
 

  
 
 
 
  

          (3.51) 

 

and 
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1

2

:

e

e

e

eM

I

I
I

I

 
 
 
 
 
 

           (3.52) 

 

where ne1, ne2 … neN are the previously defined densities of N individual step function that 

makes up the total EEDF and where Ie1, Ie2, … IeM are the M measurements of electron 

current made at M probe voltages.  In this case, the elements of f make up the N unknowns 

that we would like to solve for in order to obtain an EEDF from measured electron current 

data. These column matrices can be brought together to form a linear system of equations by 

setting up a system matrix that relates these two column matrices together as shown in eq. 

3.3, where K is an M x N matrix with a large condition number M ≥ N, whose elements are 

defined by eq. 3.32, and serves as the integral kernel of eq. 3.5: 

     
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


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



 

 
 
 
 
 
 
 
 
 
  

     (3.53) 

 

A linear least squares solution of eq. 3.52 is a solution to the problem 

2
min  

m e
f C

Kf I


           (3.54) 
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where the Euclidian vector norm in C
m
 is used. Using the notation introduced in other papers 

we say that the algebraic problems presented by eqs. 3.52 and 3.54 are discrete ill-posed 

problems [2]. There are many numerical methods for solving ill-posed problems in function 

spaces, as well as for solving discrete ill-posed problems. These methods are based on so-

called regularization methods. The most well known is the Tikhonov approach, which 

consists of replacing the least squares problem of eq. 3.54 by the problem of a suitably 

chosen Tikhonov functional. The simplest version of this method has the form 

2 22min  
m e

f C
Kf I f


           (3.55) 

where α є R is called the regularization parameter. An important and still current problem is 

a proper choice of the regularization parameter. There are several possible strategies that 

depend on additional information concerning the considered problem and its solution. To 

determine α, Reginska suggests then minimizing the product of the residual and the norm of 

the regularizer, 

2 2
( ) ( )  ( )eG I Kf x Df            (3.56) 

with respect to α [22]. Reginska actually considers only the case D=I, the identity operator. 

A similar approach to that taken by Holloway et. al. will produce some similar results for the 

more general case D ≠ I, but in a somewhat more direct way that does not rely on the singular 

value decomposition of K[23]. 

This system of equations can now be solved using a pseudo-inverse matrix solution for f.  

Additionally, the incorporation of a-priori assumptions of the final solution of f (smoothly  
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rolling, derivative magnitude and polarity constraints, etc.) can also be employed by 

implementing a regularized solution to the problem: 

1
T T T

ef K K D D K I


             (3.57) 

where D is an a-priori conditioning matrix.   

 

3.4.2 Preliminary Results 

In this section the ability of the regularized algorithm described above to address the 

ill-posedness of the EEDF extraction problem is studied and compared to an unregularized 

algorithm (a Savitzky Golay filter to smooth electron current data). A kernel space of 

M=N=600 where the energy ranges from 0 to 60 eV is used. The regularized solution can be 

validated by taking a known distribution function ftest, calculating model electron current Ietest 

by the operation Ietest = Kftest, adding statistical random noise of various levels to Ietest, and 

reconstructing the distribution function for comparison to the known input ftest.   

Several distributions that are typically observed in low temperature plasmas are 

studied using this methodology.  Figure 3.2 highlights this analysis for a Maxwell-Boltzmann 

distribution with ne = 10
14

cm
-3

 and Te = 5eV with a signal-to-noise ratio (SNR) of SNR=100 

and SNR=20 added to the calculated current Ietest.  The noise applied in these cases is White 

Gaussian Noise. The analysis also is carried out on Druyvesteyn and Bi-Maxwellian 

distributions as shown in figures 3.3 and 3.4. Figure 3.3 highlights the analysis for a 

Druyvesteyn for ne = 10
14

cm
-3

 and Te = 5eV with both SNR=100 and SNR=20 added to the 

calculated current Ietest. Figure 3.4 is the analysis for a Bi-Maxwellian for ne1 = 10
14

cm
-3 

and 

ne2 = 4*10
13

 cm
-3

 Te1 = 5eV and Te2= 15 eV with both SNR=100 and SNR=20. 
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Figures 3.2 a-c.  Noise added to calculated electron current and the resulting deviation of EEDF solution from 

the test structure using optimized regularized solution. 

 
Figure 3.2 a. The straight curve represents original current, while the dashed curve is the current with noise 

added to it. 

 

Figure 3.2 b. The straight curve represents the original Maxwellian distribution, while the dashed curve 

represents the Reconstructed Maxwellian with SNR=100. 

 

Figure 3.2 c. The straight curve represents the original Maxwellian distribution, while the dotted curve  

represents the Reconstructed Maxwellian with SNR=20 
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Figures 3.3 a-b.  The resulting deviation of EEDF solution from the test structure using optimized regularized 

solution. 

 
Figure 3.3 a. The straight curve represents the original Druyvesteyn distribution, while the dotted curve  

represents the Reconstructed Druyvesteyn with SNR=100. 

 

Figure 3.3 b. The straight curve represents the original Druyvesteyn distribution, while the dashed curve 

represents the Reconstructed Druyvesteyn  with SNR=20. 
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Figures 3.4 a-b.  The resulting deviation of EEDF solution from the test structure using optimized regularized 

solution. 

 
Figure 3.4 a. The straight curve represents the original Bi Maxwellian distribution, while the dotted curve  

represents the Reconstructed Bi Maxwellian with SNR=100. 

 

Figure 3.4 b. The straight curve represents the original Bi Maxwellian distribution, while the  dashed curve  

represents the Reconstructed  Bi Maxwellian with SNR=20 
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Figure 3.5 offers a comparison of this optimized regularization algorithm to a 

traditional minimum norm least squares solution of the matrix problem (effectively eq. 3.55 

with   0) namely f(0)=(K
T
K)

-1
K

T
Ie, as well as a comparison to curve fitting techniques as 

a function of noise level which is unique in all of the cases considered in this paper. We see 

in this figure that the error in the reconstruction increases rapidly in an unregularized 

reconstruction, while the regularized reconstruction is much less sensitive to error.  

 

 
 

 

 

 

 

 

Figure 3.5. The error in reconstruction vs different  noise amplitudes for Regularised 

Least Squares compared to MLSS, and Curve Fitting. 
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The large amount of noise present in the unregularized solution is the result of the ill-

posed nature of the problem - small errors in the input data Ie result in large errors in the 

reconstruction f, and renders this unregularized solution essentially useless. In contrast, the 

regularized reconstruction is free of noise and much more accurate as presented in Table 3.1.  

From this analysis, several observations can be made with regard to the capability of 

Tikhonov regularization to reconstruct EEDF’s from Langmuir probes given a reasonable 

amount of noise in the collection of electron current.  Firstly, at higher noise levels, the first 

derivative regularizing constraint fails to capture the steep positive slope on the low energy 

side of the distribution maximum for all three distributions.  The need for a smoothing 

constraint to capture the higher energy distribution characteristics compete with the steeper 

slope typically observed at lower energies, resulting in distortion of the reconstructed EEDF 

in that region.  Secondly, at moderately high electron energies, even with modest SNR, the 

algorithm is capable of reproducing the EEDF with a high level of accuracy.  As previously 

alluded to in the introduction, it is these higher energies where inelastic events begin to  

TABLE 3.1 

ERROR IN RECONSTRUCTION 

Distrbution SNR Error(%) 

Maxwellian 100 0.0486 

Maxwellian 20 0.35 

Druyvesteyn 100 0.04514 

Druyvesteyn 20 0.64 

Bi Maxwellian 100 0.0272 

Bi Maxwellian 20 0.14 
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influence the EEDF that is of particular interest for several low temperature plasma 

applications.  These competing distribution characteristics pose a challenge for single 

parameter regularization techniques, and more exotic implementation of Tikonov 

regularization may need to be employed to accurately capture both of these distribution 

characteristics simultaneously. 

 

3.4.3 Reconstruction Challenges 

 Low temperature plasmas exhibit an array of EEDF shapes, ranging from 

Maxwellian distributions, bi-Maxwellian’s, Druyvestians, bump-in-tail, and others.  Most of 

these distributions exhibit similar characteristics: they fall to zero at E = 0, they can typically 

be broken up into a ―bulk electron region‖ and a ―high energy tail‖ region that both present 

different insight into the plasma itself (as well as different challenges in reconstruction of the 

distribution in that region), and they tend to have a relatively smooth shape absent of 

discontinuities in magnitude or slope.   

 

3/ 2

2
( ) exp( )

( )
e

E
f E E

kT kT




        (3.58) 

When applying a Tikhonov regularization in order to reconstruct the EEDF a challenge 

appears where the reconstructed distribution does not start at zero.  

 

1

( ) T T T

e ef K K D D K I 


   
      (3.59) 
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The reconstructed distribution starts at some value causing a disruption in the peak of the 

distribution by shifting it a few eV, thus giving inaccurate information about the low energy 

portion and forcing the disruption to propagate to the high energy tail as well. This result 

could be attributed to the fact that the singular values of the kernel K are small (in the range 

of e-15). Assuming that the singular value decomposition of K is 

 

 
1

n
T T

i i i

i

K U V u v


          (3.60)  

  

where U is an M-by-M unitary matrix over K, and V
T
 denotes the conjugate transpose of V, an 

N-by-N unitary matrix over K, and vi are the column vectors of V, which are called right 

singular vectors, and ui are the column vectors of U, which are called the left singular vectors 

(it should be noted that there are other conflicting notational conventions)[24,25]. By 

applying these singular values to eq. 3.59 and assuming for simplicity that D=I, we obtain the 

following  

2

( )
( )

T

i i e
e i

i

u I
f v




 



       (3.61) 

 

At the beginning where the distribution should start from zero the regularization parameter is 

small compared to the singular values (α<<σ) causing eq. 3.61 to become 

 

 

http://en.wikipedia.org/wiki/Unitary_matrix
http://en.wikipedia.org/wiki/Conjugate_transpose


 

86 

( )
( )

T

i e
e i

i

u I
f v


         (3.62) 

 

Thus the current is divided by a small value causing it to never start at zero but some higher 

value as shown in figure 3.6. 

 

 

 

 Optimization of the regularization parameter  also presents a significant challenge 

in accurate reconstruction of EEDF’s.  Over regularization allows the regularizing constraint  

Figure 3.6. The resulting deviation of reconstructed EEDF by 

beginning at a high value not at zero. 
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D to over-condition the solution, and tends to capture the high energy portion of the 

distribution at the expense of the low energy portion.  Under regularization does not fully 

address the noise amplification generated by the ill-posed nature of the integral problem.  

This tends to produce solutions where the low energy portion is captured at the expense of 

the high energy portion, where the noise effects present as strong oscillations in the final 

solution. In order to solve the problem of over and under regularization a technique for 

optimizing the regularization parameter is required. One of the most famous optimizing 

methods is the L-Curve method [26]. The L-Curve is simply the plot of the semi norm ||freg||2 

– of the regularized solution versus ||K freg – Ie ||2 which is the residual norm. From eq. 3.1 

writing the left hand side as 

 

 exact

e eI I e          (3.63) 

 

where e represents the perturbation added to the original current. Rewriting eq. 3.3 to include 

eq. 3.63 we obtain 

  ( )   exact

e reg ef K I K e         (3.64) 

 

In a general case the error is given by (assuming D ≠ I ) 

 

( ) (  )  eexact exact exact

e e reg e ef f f K I K         (3.65) 
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     (3.66) 

where fi represents the filter factor[26]. The error is made up of two parts. The first part is the 

perturbation error K e that is mainly due to the error e. The second part is the regularization 

error fe
exact

 – K Ie
exact

 that is mainly due to the regularization of  Ie
exact

 that is free of error.  

 In the case of under-regularization, the filter factors fi are 1 and the error is 

dominated by the perturbation error K e. This case corresponds to a point on the L-Curve on 

top of the middle corner (See Figure 3.6 and3.7). In the case of over regularization a large 

amount of regularization is introduced so the filter factors are so small fi <<1, that the error is 

dominated by the regularization error fe
exact

 – K Ie
exact

. This case corresponds to a point on the 

right most part of the L-Curve to the right of the corner as shown in figure 3.8. As discussed 

above, the challenges in reconstruction have a serious impact on EEDF reconstruction. In 

order to address these challenges a number of alternate solutions are evaluated. 
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Figure 3.7. A comparison between both under regularization (dotted curve) 

and over regularization (dashed curve). 
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Figure 3.8. The seminorm of the regularized solutions versus the 

residual norms. 
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3.4.4 Advanced Algorithms 

Modification of the D matrix 

1. The first of these solutions is to force the first column in the kernel K to zero, thus 

forcing fe(0)=0. Although the first column was forced to zero but due to the fact that 

the kernel is being added to a regularization parameter we ended up with the situation 

where the distribution starts at some value not zero.  

2. The second solution that was evaluated was to look at the apriori conditioning matrix 

D, and evaluate alternative conditioning matrices. Reginska actually considers only 

the case D=I, the identity operator[22]. A similar approach to that taken by Holloway 

et. al. produces some similar results for the more general case D ≠ I [27]. Normally 

the first derivative constraint was considered for D and the results obtained included 

both the challenges discussed above. Taking higher derivative constraints such as the 

second or even the third made no difference in the results except the fact that the 

regularization parameter α was increasing in value(due simply to the fact that the at 

higher derivative constraints the product D
T
D becomes smaller causing the 

regularization parameter to increase so that the term αD
T
D could have an effect on the 

K
T
K term). This observed invariance to higher order derivative constraints is due to 

the fact that most of the distributions being reconstructed have ‖near exponential‖ 

characteristics.  Because of this, increasing the derivative constraints to higher values 

will have no apparent effect (particularly in the high energy tail where the exponential 

portion of distributions tend to dominate.  
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Truncated Singular Value Decomposition 

 Another method for solving discrete ill-posed problems is to improve the 

conditioning number of the system matrix through modifications such as truncated singular 

value decomposition of the K matrix. To apply a truncated SVD solution is to assign a 

numerical rank k to K. Setting to zero all singular values σi , i > k, the corresponding solution 

can be expanded in the form  

 

1

,    
k

Ti
i e

i i

c
x v c U I



         (3.67) 

 

The TSVD solution solves the related least squares problem  

2
1

min ,      
k

T

x k e e k i i i

i

K f I K u v


        (3.68) 

where Kk is the best rank k approximation of K[2]. This numerical method gives a better 

approximation than ordinary least square solution.  

 

Sharp Filter Regularization 

 Another technique considered was modifying Tikhonov’s method to achieve a 

sharper filter factor [26,28]. This method results in solving the following system of equations 

 

2 2 2 1 1( ) ( ( ) )T T T

e ef K K I K K I K I             (3.69) 
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Where the corresponding filter factors are 

2
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2 2

i
i

i

i

f



 

 
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       (3.70)       (7) 

 

Where fi represents the filter of the modified Tikhonov, σi is the singular values of the K, I is 

identity matrix, and α is the regularization parameter. We have the values 
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
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     (3.72)      

 

As seen in the case where α ≤ σi ≤ α
1/2

, a sharper cut-off for singular values is achieved [26].  

 

Hybrid Tikhonov Filter / SVD Method 

 Finally a hybrid method is proposed in which the filter of the Tikhonov is extracted 

and is implemented to the singular value decomposition (SVD), where the SVD of K is  
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  ( ) T

iK U diag V        (3.73) 

where U is an M-by-M unitary matrix over K, and V
T
 denotes the conjugate transpose of V, an 

N-by-N unitary matrix over K.    

By extracting Tikhonov filter and adding it to the SVD of the K matrix we obtain the 

following result, 

 

2
 ( ) Ti

i

K U diag V


 



        (3.74) 

       

 By taking this modified K matrix and returning to eq. 3.1 f can be obtained using an 

ordinary least square solution with better accuracy. As for over and under regularization, this 

challenge is solved by using an L-Curve plot where the optimum position where accurate 

results are obtained is the regularization parameter that corresponds to the corner on the L-

Curve. This corner analysis is typically acknowledged as the optimal compromise between 

the unregularized LLS solution and a-priori assumptions invoked by  and D. [24,26] 

 

Tikhonov Regularization EEPF  

The first step is the formulation of the kernel K in eq. 3.3 for the EEDF integral 

problem. The methodology starts with the derivation of the electron current collected by a 

probe as a function of applied potential referenced to the plasma potential using eq. 3.2 and a 

step function distribution given by: 

 

http://en.wikipedia.org/wiki/Unitary_matrix
http://en.wikipedia.org/wiki/Conjugate_transpose


 

95 

 

0

1

0

L

e
L H

H L H

H

if E E

n
f E if E E E

E E E

if E E

 



  


 

     (3.75)   

 

where ne is the density of electrons (assumed to be constant) between a low energy limit EL 

and a high energy limit EH.  By applying the same derivation in [3] we obtain the following 

collective electron energy distribution function represented by 
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where nei, EHi, and ELi represent the magnitude, high energy limit, and low energy limit of 

each individual step function used to approximate the final distribution, and the total electron 

current can be represented by a similar summation over all step functions: 

 

 

 

 

3

    

 

  

 

  
1

  

 

-2  
- 1

2 - 3
 

 3
2  

-

-
 

0

/

2 63*

e i p H i L i H i

L i

H i L i e

N
e i p

e L i H i
i

H i L i e

H i

n A e E E EL i
E if E E

E E m
H i

n A e
H i

I E if E E E

E E m
H i

if E E

E

E

EE E

E

 

   



   
   

    


 
  

 






  (3.77) 



 

96 

 

Now that the integral kernel K has been obtained for a step function, by applying the values 

of Kernel K and current Ie to eq. 3.57 we obtain the electron energy probability function 

through Tikhonov regularization.  

 

3.4.5 Comparison Between Advanced Algorithm Methods 

In this section the ability of the hybrid TSVD regularized algorithm described above 

to address the challenges of the EEDF extraction problem by Tikhonov method is studied. A 

kernel space of M=N=600 where the energy ranges from 0 to 60 eV is used. The regularized 

solution can be validated by taking a known distribution function ftest, calculating model 

electron current Ietest by the operation Ietest = Kftest, adding White Gaussian Noise of various 

levels to Ietest, and reconstructing the distribution function for comparison to the known input 

ftest.   

The figures below highlight this analysis for a Maxwell-Boltzmann distribution with 

ne = 10
14

cm
-3

 and Te = 5eV with a signal-to-noise ratio (SNR) of SNR=100 added to the 

calculated current Ietest. As appears in figure 3.9 when TSVD was applied to the problem it 

was observed that we are able to overcome one of the debilitating challenges which is now it 

is possible to start at zero but at the expense of the high energy tail and a shifted peak.  

 In figure 3.10 the modified Tikhonov method with sharper filter is applied. The 

distribution starts at zero and a portion of the high energy tail but on the expense of a shifted 

peak energy of approximately 20%. 
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Figure 3.9. The application of TSVD. The straight curve represents the 

original Maxwellian distribution, while the dashed curve represents the 

Reconstructed Maxwellian with SNR=100. 
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As shown in figure 3.11 it can be seen that by applying the hybrid method where the 

Tikhonov filter is extracted and being added to the SVD good results are achieved. Finally in 

figure 3.12 by comparing the results obtained by the hybrid method and the EEPF by 

Tikhonov method, it is concluded that at SNR values ranging from 100 to 50 both methods 

are successful in extracting the EEDF while as the SNR values extend from 50 to 10, EEPF 

by Tikhonov method has shown an advantage over the hybrid method.   

Figure 3.10. The application of a modified sharpening filter.The straight curve 

represents the original Maxwellian distribution, while the dashed curve represents the 

Reconstructed Maxwellian with SNR=100. 
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Figures 3.11 a-b.  The application of the Hybrid method. 

 
Figure 3.11 a. The straight curve represents the original Maxwellian distribution, while the dashed curve 

represents the Reconstructed Maxwellian with SNR=100.(normal plot). 

 

Figure 3.11 b. The straight curve represents the original Maxwellian distribution, while the dashed curve 

represents the Reconstructed Maxwellian with SNR=100.(semilog plot). 
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Figures 3.12 a-d.  Comparison between Hybrid method and EEPF Tikhonov method for different SNR values. 

 
Figure 3.12 a. SNR=100. 

 

Figure 3.12 b. SNR=50. 

 

Figure 3.12 c. SNR=20. 

 

Figure 3.12 d. SNR=10. 
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3.5.  Limitations of Regularization Methods 

Other methods of representing the distribution of energies for electrons are typically 

used.  These include Electron Energy Probability Functions (EEPF) and Electron Velocity 

Probability Functions (EVPF).  EEPF’s normalize the EEDF to E in order to provide a 

straight forward linear analysis for Maxwellian distributions.   

EVPF’s provide the velocity distribution for the electrons, and have been evaluated as 

an alternate means of obtaining distribution functions by other groups.[29]  Although these 

representations serve as different means to represent the same collective distribution of 

electrons, each has it’s own unique integral relationship between electron current and 

distribution function as well as it’s own unique challenges in accurate extraction of the 

distribution function in the variable of interest.  Assuming an isotropic distribution of 

electrons in proximity to the biased probe, the integral relation for the EVPF has a similar 

integral relationship to electron current as the EEDF: 

2
2

2
( ) 2 ( ) 1

p

e

p

eVe p p

m

eV
I V A e f v vdv

mv



         (3.78) 

albeit with a different integral kernel k.  This change in k presents a very different integral 

problem than the EEDF problem, and presents challenges that cannot be solved using similar 

reconstruction methodologies. When talking about electron velocity distribution function the 

numerical methods mentioned above as well as Tikhonov regularization cease to be useful in 

the sense that the ill conditioned matrix k can not be transformed into a well conditioned 

matrix without sacrificing the majority of singular eigen values through elimination. This 
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results in a well conditioned matrix which lacks enough singular eigen values to produce 

reliable results, particularly in the sensitive tail portion of the distribution. This is due to the 

fact that the modified kernel k that the EVDF integral in eq. 3.78 presents results in a rank-

deficient system matrix when the problem is discretized.  Rank-deficient problems are 

characterized by the matrix k having a cluster of small singular values, and there is a well-

determined gap between large and smaller singular values.  Figure 3.13 compares the 

singular value matrix for both ill posed (EEDF formulation) and rank deficient (EVDF) 

kernels[30].  Note the rapid drop in the EVDF singular values as a function of index 

compared to the EEDF formulation.  These characteristics present significant challenges in 

reconstruction that cannot be accounted for in Regularized solutions.[31] To illustrate the 

impact of this modified kernel, a side by side comparison of EEDF and EVDF 

reconstructions using the integral formulations of eq. 3.1 and 3.78 for a typical electron 

distribution can be made, highlighting the challenges of introducing rank-deficient matrices 

into this integral problem.[31,32]   
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To illustrate the discussion above, the EEDF and EVPF of comparable distributions 

are compared using identical Ie matrices.  The details of the EEDF reconstruction are 

provided in previous works [3,30].  The descretization of the EVPF integral follows a similar 

methodology outlined here.  Assuming a planar probe geometry, the number density of 

electrons with velocity between v and v+dv in the x direction (assuming the planar probe is 

oriented perpendicular to the x-axis) is 

( )dn f v dv           (3.79) 

 

Figure 3.13. The distribution of singular values sigma 

i(σi) of K for both the EEDF and the EVDF.   
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Where the number density is related to the electron current through eq. 3.79  

pdI evA dn           (3.80) 

By applying a step function distribution given by:  
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     (3.81) 

 

where ne is the density of electrons (assumed to be constant) between a low velocity limit vL 

and a high velocity limit vH.  By applying the same derivation in [3] we obtain the following 

collective electron energy distribution function represented by 
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where nei, EHi, and ELi represent the magnitude, high energy limit, and low energy limit of 

each individual step function used to approximate the final distribution. By applying eq. 3.82 
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into 3.80 the total electron current can be represented by a similar summation over all step 

functions: 
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Now that the integral kernel K has been obtained for a step function by plotting the singular 

eigen values with respect to velocity distribution a well identified gap appears as shown in 

figure 3.13. Next let us consider the collection of electrons by a retarding probe of cylindrical 

geometry, then the number density of electrons with velocity between v and v+dv is 

  

2 ( )dn vf v dv          (3.84)  

 

The contribution to the current due to electrons will be given by[33→40] 

 

1/2(1 ) ( )
p

p

o

V
dI A e f v vdn

V
          (3.85) 
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 where Vp is the probe voltage and Vo is the initial energy of electron. Applying the same step 

function and repeating the same procedure as mentioned for the planar probe then the total 

electron current is : 
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 (3.86) 

 

Using the formulation for EEDF reconstruction detailed in [30] and the formulation 

for EVDF detailed in the previous section, the reconstruction of an identical distribution 

either in velocity space or energy space is carried out with identical electron currents 

obtained by applying eqs. 3.1 and 3.88 to a known distribution, adding noise, and then  

reconstructing the distribution to study variation produced by the introduction of noise into 

the integral problem.  Both reconstructions are performed using Tikhonov regularization of 

the respective matrix problems.  The regularizing parameter is optimized so as to minimize 

the difference between the reconstructed solution and the starting distribution in order to 

provide a ―best fit‖ comparison for both problems.  A Maxwellian EEDF representing an 

electron density of 10
10

 and temperature of  5 eV is used to construct electron current using 

eq. 3.1.  An EVPF representing an electron density of 10
10

 cm
-3

 and average velocity of 
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2
e e

T m  presents identical electron current as a function of probe voltage.  A kernel space of 

M=N=900 where the energy ranges from 0 to 9 m/s is used. The regularized solution can be 

validated by taking a known distribution function ftest, calculating model electron current Ietest 

by the operation Ietest = Kftest, adding statistical random noise of various levels to Ietest, and 

reconstructing the distribution function for comparison to the known input ftest.  The figure 

below highlights this analysis for a Maxwell-Boltzmann distribution with ne = 10
10

cm
-3

 and 

Te = 5eV with a signal-to-noise ratio (SNR) of SNR=100 added to the calculated current Ietest. 

As appears in figure 3.14 when Tikhonov regularization was applied to the problem it was 

observed that the reconstruction is identical to the original distribution up to a point which is 

around 1.2 m/s which is the point as seen in figure 3.13 where the well determined gap 

appears. After applying TSVD to the kernel matrix K the result is only a distribution which 

extends to 1.2 m/s since all the other singular eigen values are eliminated. By applying 

reconstruction mechanisms and numerical techniques to both planar and cylindrical kernel  

the results start to deteriorate at certain identified points, these points represent the beginning 

of the singular eigen values gap thus rendering the solution inaccurate at best. 
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Figures 3.14 a-b.  Comparison The application of Tikhonov regularization to a maxwellian distribution with 

SNR 100. 

 
Figure 3.14 a. EVDF. 

 

Figure 3.14 b. EEDF. 
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CHAPTER 4 

The Impact of Langmuir Probe Geometries on Electron Current 

Collection and the Integral Relation for Obtaining Electron 

Energy Distribution Functions 

 
4.1. Introduction  

In Chapter 3, methods for addressing the influence of experimental noise in electron 

energy distribution function analysis from Langmuir probe data were presented.  A method 

new to Langmuir probe analysis that combined Tihkonov regularization with truncated 

singular value decomposition was introduced that provided highly accurate EEDF 

reconstructions with minimal EEDF shape distortion was presented.   In this Chapter, the 

derivation of the actual integral relationship that defines the integral kernel K introduced in 

Chapter 3 is revisited.  Specifically, the long standing assumption that the integral 

relationship in the electron retardation regime (from which the EEDF is extracted) is 

invariant with respect to probe geometry is revisited.  This assumption was originally put in 

place to simplify the integral relationship to a derivative formuation that enabled simplier 

analysis.  In this Chapter, the geometry invariant formulation introduced by Druyvesteyn is 

compared to the integral formulation originally posed by Mott-Smith and Langmuir in 1926 

to determine the extent to which the geometry invariance assumption impacts cylindrical 

Langmuir probe analysis of EEDF’s. 

Langmuir probes come in many shapes and sizes.  The main criteria in their design 

are ease of manufacture and minimal perturbation of the plasma discharge being studied.  

The geometry that is typically employed that meets these two criteria is a cylindrical probe 
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where the probe is a finite cylinder of length L and radius rp.  This probe configuration 

currently dominates the commercial Langmuir probe marketplace, with vendors such as 

Plasmart, Scientific Systems, Plasma Sensors, and Hiden Analytical offering turnkey systems 

with this probe geometry.  Spherical probes are also employed, but are more difficult to 

manufacture and not as commonly used as the cylindrical option.  Planar probes are a third 

common option, typically used under conditions where plasma isotropy around the probe 

cannot be assumed, but are also useful in isotropic conditions.[1] All of these systems 

provide a relatively straight forward means for scientists and engineers to measure plasma 

parameters such as electron density, ion density, electron temperature, and plasma potential. 

One of the unique measurement capabilities of these Langmuir probe systems is the 

ability to obtain Electron Energy Distribution functions (EEDF’s) from the probe’s voltage 

vs. current response.  By subtracting the ion contribution of the probe current, the shape of 

the electron current for probe potentials lower than the plasma potential is used to reconstruct 

the EEDF.  In this voltage regime, the probe effectively acts as a retarding probe for the 

surrounding electrons, and the current response with respect to this retarding potential 

provides a relationship between electron energy and probe current.  An integral relationship 

for both spherical and cylindrical geometries was originally presented by Mott-Smith and 

Langmuir in 1926.[2]  The spherical formulation was further advanced by Druyvesteyn in 

1930, providing an analytical means to obtain the EEDF from a probes electrical 

characteristic.[3]  In its original form, it states that 
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2

2 2
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( )
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e p e

E eV

p probe

m V d I
f E
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

          (4.1) 

 

where f(E) is the electron energy distribution function, Ap is the surface area of the probe 

(typically approximated for a spherical probe by 4rp
2
 and for a cylindrical probe by 2rpL), 

e is electron charge, me is electron mass, Vprobe is probe voltage, and Ie is the electron current 

through the probe circuit.  This formulation where the integral formulation is replaced by a 

differentiation of probe data enabled straight forward analysis of electron energy distribution 

functions through analog differentiation of measured data (such as the Boyd-Twiddy method 

detailed in Chapter 2) or curve fitting of discrete data sets; both of these methodologies 

provided a practical means to address the ill-posed nature of the original integral 

problem.[4,5]  Because of its practical application, the Druyvesteyn relation of eq. 4.1 is the 

means by which all EEDF’s are currently obtained from probe characteristics.   

In general, the assumption of distribution isotropy and spherical probe geometry are 

employed to obtain the differential relationship of eq. 4.1, integrating over the full range of 

variables in whatever preferred coordinate system is employed.  Since the range of 

integration spans the full range for each coordinate (ie. the geometry is not presented as a 

range limitation) this formulation is typically used for all probe geometries, and is valid  

under the assumption that the limits of integration are not defined by the probe condition.  

Most efforts to date have instead focused primarily on the collection of ions in this regime, as 

the probe’s attractive potential to positive ions in combination with the spatial extent of this 

potential generated by the sheath surrounding the probe has presented an analytical challenge 



 

127 

in the subtraction of the ion current from the total probe current to obtain the electron current, 

particularly under conditions where the sheath thickness is on the same scale length as the 

probe dimension.[6,7] 

In Chapter 2, the integral relationship between EEDF and electron current was 

reviewed, with a focus on the geometry dependence of this integral formulation.  Since 

Druyvesteyn’s original assumption that the spherical derivation applies to the cylindrical 

case, it has been stated by several groups that the probe geometry does not influence electron 

collection efficiency since the distribution function must remain constant in phase space 

(Liouville Theorem), and thus is coordinate system invariant.[8] However, a review of this 

original work by Kagen and Perel that is frequently sited refers to EEDF distortion due to 

probe insertion, and not the efficiency of probe collection due to geometric considerations.  

The principal caveat to date is that the probe geometry be purely convex so-as not to provide 

a mechanism for electron shading.[9] 

Probe geometries may, however, present an additional mechanism for electron 

retardation that is not accounted for in the Druyvesteyn formulation.  In the original works of 

Mott-Smith and Langmuir, a geometry dependence with respect to current density ratios 

infinitely far from the probe and the probe surface was reported.[2]   

Several years after the work of Kagan and Perel, Emeleus cautioned that this geometry 

invariance may not be valid for “sharp” distribution functions, noting that Kagan and Perel 

assumed a Boltzmann energy distribution in their assertion.[10]  In 2006, Knappmiller and 

Robertson demonstrated matching distributions functions using both cylindrical and planar 

probes using a geometry modified differential relation between electron current and electron 
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velocity distribution.[11] This collection of works and observations suggest that, at least 

within the context of measuring non-Maxwellian distribution functions, that the concept of 

geometry invariance in the electron retarding regime of a Langmuir probe characteristic 

needs to be revisited, and that an additional geometry dependent mechanism does exist that is 

not currently accounted for in EEDF analysis that employs the original formulation of 

Druyvesteyn. 

This geometry dependent mechanism impacting electron collection originates from 

the centrifugal retarding potential whose strength is determined by the initial angular 

momentum of the system when the electrons are sufficiently far away from the probe so as 

not to be influenced by the probe’s surrounding space charge potential.  This additional term 

can influence the collection of electrons of a particular energy beyond that predicted by the 

Druyvesteyn relation; several works have previously highlighted it’s importance in charge 

collection in both the ion saturation regime and electron saturation regime.[7,12]  This 

influence is a function of both electron energy and probe potential and can therefore distort 

the EEDF integral relationship with respect to probe geometry and probe potential if not 

properly accounted for.   

Although this mechanism has been thoroughly studied for ion interaction with biased 

probes, a similar study has yet to be carried out for the electron retarding region of the probe 

characteristic, in large part due to the long standing assumption that there is no geometry 

dependence in this regime as well as the substantially less subtle collection efficiency 

dependences in attractive potential regimes where the effective collection area varies with 

applied potential.   
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This chapter presents a formulation of the relationship between electron current, 

probe potential, and EEDF that accounts for this geometric term, essentially revisiting the 

original integral relationship posed by Mott-Smith and Langmuir for both spherical and 

cylindrical geometries to elucidate the impact of probe geometry on electron current 

collection and EEDF extraction.  Specifically, we quantify the distortion of EEDF’s due to 

probe geometry and the different integral relationships that they present and assumed to have 

minimal impact in the derivative formulation of Druyvesteyn.  Using the techniques to solve 

the integral form of the problem that are detailed in Chapter 3, the distortion of the EEDF 

when extracted using the Druyvesteyn formulation is determined, and a methodology for the 

extraction of EEDF data taking into account cylindrical geometry is presented. 

 

4.2.  Formulation of The Integral Relation Between Electron Current 

and EEDF  

The integral relation between electron current and EEDF centers on a probe with 

some defined finite geometry defined by a parameter rp that provides a retarding potential for  

surrounding electrons.  The probe surface is surrounded by a space charge sheath with some 

characteristic dimension s that is also a function of the retarding potential magnitude Vp.  This 

sheath region separates the probe surface from an assumed isotropic uniform plasma 

characterized by electron density ne and electron energy distribution function f(E).  This 

dependence between s and Vp is determined by the plasma conditions, particularly the 

magnitude of the potential and the collisionality between the electrons and the background 

gas.  For purposes of this geometry comparison, this sheath dimension is assumed to be much 
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smaller than the probe geometry.  Previous work has suggested a similar dependence with 

respect to electron repulsion around the probe, to the extent of having no impact on electron 

current collection.[8]  These geometry parameters are detailed in Figure 4.1.   

r pr p

s(Vprobe)

ne, Vp, f(E)

 

Figure 4.1. The cylindrical probe problem.  The axis of the probe points out of the page.  The field produced in 

the region defined by s(Vprobe) is assumed to be purely radial. 

 

To determine the flux of electrons incident on the probe surface as a function of 

applied probe potential (referenced to the plasma potential), the surrounding electrons need 

to be characterized with respect to their velocity relative to the probe surface.  Both the 

magnitude of the velocity and the translational distance b between the velocity vector and the 

probe centerpoint will determine whether the electron reaches the probe surface, similar to 

any two body central potential problem.  This translated distance can be related to the angles 
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of incidence θ and φ of an electron (and the more typical integral variables for calculating 

flux) using the cutaway illustrated in Figure 4.2. 

 

r pr p

s(Vprobe)

e-e-

b

e
v



 

Figure 4.2. Geometry relating angle of incidence θ to probe geometry parameters rp and s(Vprobe) and the impact 

parameter b 

 

 

To obtain the general integral solution for electron current, the EEDF is defined as an 

arbitrary function f(E).  The probe is assumed to present a space charge field that is purely  

perpendicular to the probe surface (ie. the finite characteristics of cylindrical probe length 

and subsequent complexity in field calculation [13] are not accounted for in this analysis; 

probe length is only used to establish a probe surface area and the probe is assumed to 

behave as an infinitely long cylinder with respect to field formation.  Likewise, the spherical 

case is assumed to be a perfect sphere with no perturbation).  The probe is surrounded by a 

space charge region defined by some Vprobe dependent thickness s.  As mentioned earlier, this 

sheath thickness does not significantly influence the efficiency of electron collection, and for 
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the purpose of illustration, the thin sheath approximation (s << rp) is used for this integral 

formulation.[8]  

To start, the number of electrons per unit volume with energy from E to E+dE and 

angles of incidence from θ to θ+dθ  is defined by: 

 

1
( )

2
f E d dE


          (4.2) 

 

where the angle of incidence θ is between the trajectory of the electron and the normal vector 

that defines the surface of the plasma / sheath interface surrounding the probe.  Integrating 

over all angles for energies from the probe voltage to infinity defines the electron current 

collected by the probe as a function of applied voltage.  For the cylindrical case, this integral 

is: 
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When the relationship between the incident velocity vector normal to the probe center and 

the translational distance between the trajectory of the electron and the centerline of the 

probe’s circular cross section are considered, Eq. 4.3 can be rewritten in terms of this 

translational distance b (typically referred to as the impact parameter in binary collisions).  

The geometric relationship between angle of incidence θ, probe geometry (defined by rp and 
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s), and impact parameter b is shown in Figure 2.  Assuming that rp >> s (thin sheath 

approximation), and noting the following geometric relationships: 
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   (4.4a-4.4d) 

 

additionally noting that the upper limit of b is restricted by the conservation of the two body 

system’s angular momentum that defines the distance of closest approach for a two body 

system in a central potential by the relation 

 

  2

2
0 1

m

m

V r b

E r
            (4.5) 

 

where rm is the distance of closest approach, an upper limit for the distance of closest 

approach between the electron and the probe center is established.  Setting this maximum 

distance of closest approach to rp, Eq. 4.3 is rewritten in terms of b that now includes an 

energy and probe voltage component and establishes a convenient criteria for whether an 

electron is collected at the probe surface.  For the cylindrical case: 
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The integration about b yields the final integral relation accounting for cylindrical probe 

geometry: 
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This is identical to the integral formulation presented originally by Mott-Smith and 

Langmuir; the commonly used Druyvesteyn formulation is derived for the spherical 

formulation only, and presents a very different integral relation between f(E) and Ie(Vprobe) 

from which eq. 4.1 is derived,  
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Druyvesteyn states in his original work that the differential form of this equation (eq. 

4.1) can be extended to any geometry that does not have concave surfaces that would cause 

shading of the probe including the cylindrical integral problem of eq. 4.7; this geometric 

invariance was later formulated by Kagen and Purel for Maxwellian distributions, and this 

geometric invariance has been widely sited to extend the Druyvesteyn formulation to 

arbitrary probe geometries including cylindrical and planar probes. 
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4.3.  Impact of The Cylindrical Integral Relation on EEDF Extraction 

Using The Druyvestyen Equation 

In order to illustrate the derivation of collected electron current to the probe surface as 

simply as possible, the step function histogram representation of an arbitrary EEDF 

introduced in Chapter 3 is used to solve Equations 4.7 and 4.8 analytically for any arbitrary 

user defined distribution function.  In this method, a simple step function of height ne/(EH – 

EL) and width EH – EL located between E = EL and E = EH is used to represent the arbitrary 

EEDF f(E), where ne is the total electron density formed by the step function and EL and EH 

define the limits of the step function.  This simplified model of the EEDF can be used to 

form more complex EEDF’s such as Druyvesteyn functions and bi-Maxwellians, as well as 

to calculate Ie(Vprobe) through summation of multiple step function with different values of ne.   

This method has been previously used to calculate electron current to a spherical 

probe for arbitrary EEDF’s, and will be extended to cylindrical geometries in this present 

work.[14]  It is important to note that unlike the work detailed in Chapter 3, the constructed 

probe current as a function of EEDF is noise free; in this chapter the systematic error 

generated by the integral formulation is evaluated, not the impact of experimental noise. 

In order to quantify the impact of this modified integral relationship on EEDF 

extraction, known EEDF’s are inserted into eq. 4.7 to obtain electron currents for cylindrical 

probes.  To simplify this analysis and provide an analytical solution to eq. 4.7, the thin sheath 

condition is assumed, and s(Vp) << rp for all Vp.  Arbitrary EEDF’s are generated using a 

histogram representation of the distribution function, where a collection of step functions 

defined by 



 

136 

 

0                     

( )         < 

0                     

L

e

L H

H L

H

E E

n
f E E E E

E E

E E

 



 


 

       (4.9) 

 

are used to form distribution functions of arbitrary shape.  15]  For the cylindrical case, to 

account for the energy component parallel to the probe axis, the step function is modified to 

account for the energy component on the plane perpendicular to the probe axis only (defined 

here as E), assuming a uniform distribution of electron energies with respect to the incident 

angle θ that effectively extends the step function to E = 0 on the low energy side while  

 

maintaining the same integrated area under the curve: 
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Inserting this distribution function into eq. 4.7 then yields the electron current for a step 

function distribution,  
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By further restricting the upper limit of b in eq. 4.6 from rp to rp(1-Vprobe/E)
1/2

, a correction 

factor is applied to the total current to account for the discretized nature of the stepwise 

distribution function representation of f(E),  
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       (4.12) 

 

where n denotes the number of discretized step functions in energy space used to represent 

the continuous function f(E). The thin sheath simplification of eq. 4.7 allows for a direct 

comparison to the classical Druyvesteyn relation for a simplified step function electron 

energy distribution function to the integral relationship of eq. 4.8 that defines the electron 

current collected by a cylindrical probe.  Consider a step function distribution of height 

ne/(EH – EL) and width EH – EL located between E = EL and E = EH and equal to zero 

elsewhere, where ne = 10
10

cm
-3

, EL = 3eV, and EH = 4eV.  The spherical (Druyvesteyn) 

geometry electron current is calculated using the formulation of Reference 14, while the 
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cylindrical probe electron current is calculated using eqs. 4.4 and 4.7.  A comparison of 

calculated results for this example is shown in Figure 4.3.   

This formulation can be extended to any arbitrary distribution function by 

incorporating a histogram approach using overlapping step functions.  The electron current 

for a 5eV Maxwellian distribution with an integrated electron density of 10
10

cm
-3

 is shown 

for both the spherical Druyvesteyn case and cylindrical cases in Figure 4.4. 
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Figure 4.3.  Electron current vs. probe voltage for a step function EEDF characterized by an integrated density 

of 10
10

cm
-3

 uniformly distributed between 3eV and 4eV using the integral formulations of eq. 4.7 (cylindrical) 

and eq. 4.8 (spherical). 
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Figure 4.4.  Comparison of the electron current calculated from both Druyvesteyn’s relation and the cylindrical 

approach for a Maxwell-Boltzmann distribution where Te = 5eV and ne = 10
10

cm
-3

. 

 

 

 

4.4.  Numerical Results 
 

In this section a comparison is carried out between the EEDF reconstructed by the 

spherical geometry from which Druyvesteyn’s relation is derived and the cylindrical 

approach described above. This comparison is designed to illustrate the deviation from the 

actual EEDF when the Druyvesteyn relation that is derived from spherical geometry is used 

to analyze data from a cylindrical probe.  To this end, a numerical study is carried out 

following the flow chart of Figure 4.5.   
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Generate an 

arbitrary EEDF ftest

Generate an 
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Calculate Ie(Vp) from

cylindrical integral

(Equation 7)

Extract EEDF fcalc from 
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relation (Eqs. 1 and 8)
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Compare

ftest and fcalc

Compare

ftest and fcalc

 

Figure 4.5.  Flowchart for process used to compare cylindrical electron current to EEDF reconstruction using 

the Druyvesteyn formulation. 

 

To illustrate the impact of geometry on EEDF reconstruction, this methodology was 

carried out for representative distribution functions of interest in low temperature plasmas.   

Specifically, distributions that exhibit either Maxwell-Boltzmann distributions or high 

electron energy tail suppressed Druyvesteyn distributions have been observed in low 

temperature plasmas.[16-18]  A generalized distribution function that enables intermediate 

forms between these two limits has been used to characterize distribution functions as a 

function of the energy variable power in the exponential term of the distribution 

function:[19] 
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(4.13) 

 

where 

 

(4.14) 

 

and 

 

(4.15) 

 

where () is the Gamma function of .   

Note that when x = 1, eqs. 4.13-4.15 give the Maxwell-Bolzmann distribution function.  

When x = 2, eqs. 4.13-4.15 give a Druyvesteyn distribution function.  As x varies between 1 

and 2, a smooth transition between these two distributions can be produced.  This distribution 

provides a means for characterizing an electron energy distribution function in terms of the 

variable x, and has recently been used to provide a means for elucidating EEDF functionality 

from optical emission spectroscopy data.[20]  

For the purpose of understanding the impact of the integral formulation on the 

reconstructed EEDF, this x parameter is used to evaluate the sensitivity of the analysis to the 
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shape of the final solution.  As will be shown in the next section, as x increases and the 

distribution function becomes “less Maxwellian” the level of distortion in the reconstruction 

becomes more pronounced. 

To illustrate the impact of the integral formulation on common representations of the 

electron energy distribution, two distributions (Maxwell-Boltzmann and Druyvesteyn) with 

similar characteristics (ne = 10
10

cm
-3

 and Tx = 5eV) were compared.  Figures 4.6 and 4.7 

illustrate the results of this numerical exercise, with the actual EEDF and reconstructed 

EEDF for each distribution overlaid for comparison.  Additionally, the error in the 

reconstructed distribution’s average energy (effective electron temperature) and total electron 

density are illustrated in Figure 4.8. 
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Figures 4.6 a-c.  Numerical comparison between Druyvesteyn’s relation and the cylindrical approach using the 

methodology outlined in Section 3 for a Maxwell-Boltzmann distribution with Te = 5eV and ne = 10
10

cm
-3

.  

Three graphical representations of the results are provided for comparison. 

 
Figure 4.6 a. EEDF log plot. 

 

Figure 4.6 b. EEDF log-log plot. 

 

Figure 4.6 c. EEPF (f(E)/E
1/2

 vs. E) log plot. 
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Figures 4.7 a-c.  Numerical comparison between Druyvesteyn’s relation and the cylindrical approach using the 

methodology outlined in Section 3 for a Druyvesteyn distribution with Te = 5eV and ne = 10
10

cm
-3

.  Three 

graphical representations of the results are provided for comparison. 

 
Figure 4.7 a. EEDF log plot. 

 

Figure 4.7 b. EEDF log-log plot. 

 

Figure 4.7 c. EEPF (f(E)/E
1/2

 vs. E) log plot. 
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Figure 4.8.  Reconstructed error in integrated density (solid line) and average energy (dashed line) as a function 

of x. 

 

4.5.  Discussion 

A comparison of the test distributions are summarized in Figures 4.6-4.8.  Figure 4.6 

shows a comparison of a test Maxwell Boltzman distribution plotted against a calculated 

distribution obtained using the flowchart in Figure 4.5. Figure 4.7 shows a similar 

comparison for a Druyvesteyn distribution.  Both Figure 4.6 and Figure 4.7 show lin/log (a), 

log/log (b), and electron energy probability function lin/log graphical representations of the 

distributions.  These are selected for comparison due to their ability to highlight key 

difference in the curves and present a comparison in a format that is commonly employed in 

Langmuir probe analysis.  Figure 4.8 highlights the trend in distribution function error with 
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respect to average electron temperature and total electron density as a function of the x 

parameter defined by eqs. 4.13-4.15. 

The reconstruction of the Maxwell-Boltzmann distribution shown in Figure 4.6 

matches up very well for temperatures out to 2Te.  For energies greater than 2Te, the overall 

shape of the distribution is maintained, but with a slightly elevated tail temperature (as noted 

by the slightly shallower tail slope on the log).  Compared to the typical uncertainty of 

experimental Langmuir probe measurements, these distortions are minimal, accounting for a 

temperature error on the order of less than 2%, and the analysis appears to be consistent with 

the original assumption of Druyvesteyn as well findings of Kagen et. al. with respect to the 

impact of probe geometry on electron energy distribution function measurement. 

The reconstruction of the Druyvesteyn distribution shown in Figure 4.7 demonstrates 

how this geometric invariance does begin to impact non-Maxwellian EEDF extraction.  At 

low temperatures (less than Te), the calculated distribution presents a significantly 

underestimated density profile.  At higher temperatures (~2Te), the shape of the distribution 

recovers and the tail trend with energy is maintained, albeit at a slightly elevated density 

level.  Interestingly, the integrated distribution yields minimal error in total electron density; 

the geometric effect appears to only substantially impact distribution shape and therefore 

temperature measurement. 

As the distribution function is transitioned from Maxwellian to Druyvesteyn by 

performing the same analysis as a function of x using eqs. 4.13-4.15, a clear trend with 

respect to deviation in average electron temperature obtained by the first moment of the 
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distribution can be seen.  As x increases (and the distribution function becomes “less 

Maxwellian”) there is a gradual increase in the difference between the test distributions first  

moment and the calculated distribution’s first moment.  The error in the zero moment 

(integrated density) remains relatively constant, and is at a level that would be 

inconsequential in most probe experiments.  This trend is consistent with the prediction of 

Emeleus that the assumption of probe geometry invariance in EEDF reconstruction may have 

to be reconsidered for non-Maxwellian distribution functions. 

 

4.6.  Conclusions 

In conclusion, using the Druyvesteyn relation for EEDF analysis of data obtained 

using a cylindrical Langmuir probe may generate marked distortion of the distribution 

function shape, particularly for highly non-Maxwellian distribution functions.  This distortion 

is due to the geometry dependent integral relationship between electron current and EEDF 

originally presented by Mott-Smith and Langmuir and later generalized by Druyvesteyn in 

his formulation of the more commonly used derivate relationship used for EEDF extraction.  

The derivative formulation does provide an adequate reconstruction of “near-Maxwellian” 

distributions.  However, for non-Maxwellian profiles, particularly those transitioning to a 

more Druyvesteyn-like distribution shape, an integral solution that incorporates the original 

cylindrical formulation presented by Mott-Smith and Langmuir in 1926 may be needed. 

 It should be noted that although the derivation in this chapter is different from what 

Druyvesteyn suggested or what was carried out in chapter 3but the end result is still the 
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same, in which in both cases the problem is discretely ill-posed. By carrying out a 

comparison between their singular eigen values it can be observed that both of them are close  

regarding the degree of ill-posedness, which suggests that the techniques discussed 

previously (ch. 3) to solve such problems are applicable to the case described in this chapter.  
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CHAPTER 5 

Experimental Setup and Results 

 

In Chapter 3 and Chapter 4, methods for obtaining more accurate electron energy 

distribution functions with less distortion over a large range of energies were presented.  In 

this chapter this expanded capability of EEDF analysis is demonstrated in two cases. The 

first case is a comparison between our hybrid method and Savitzky-Golay filtering used by a 

research group in University of Kansas. The second case is an experiment conducted in an 

inductively coupled low pressure argon plasma with dilute hydrogen addition.  The 

conditions where dilute hydrogen added to argon plasma produce subtle changes in the high 

energy tail of the EEDF that have been theoretically demonstrated but not experimentally 

shown, [1], and therefore present a compelling test bed for these analysis methods.   In 

Chapter 5, the experimental setup including the plasma chamber and the Langmuir circuit 

will be described.  EEDF reconstruction for a range of hydrogen additions will be presented. 

 

5.1. Experimental Validation of the Hybrid Model 

In this experiment, an RF compensated Langmuir probe was used to acquire current as 

a function of probe voltage at the center of an inductively coupled reactor for plasma etching 

of GaAs. Pressure, feedgas (SF6, BCl3, and N2) and source power were varied; probe traces 

were then acquired across this process space in order to study trends in plasma condition with 

respect to these process conditions. EEDFs were extracted from these traces using both the 
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Hybrid method and data smoothing and compared. Across the entire process space, the 

Hybrid method demonstrated improvement in both EEDF shape and energy range compared 

to S-G filtering techniques.  Figure 5.1 illustrates this comparison. Figure 5.1a compares both 

techniques for data obtained as a function of pressure for N2 at 50W power. In general, the 

hybrid filter and the S-G filter have similar global trends with respect to EEDF.  However, 

the overall shape of the hybrid filter does not have the high level of distortion seen in the S-G 

reconstruction.  At high pressures the S-G filter fails to capture the low energy portion of the 

distribution compared to the Hybrid which shows a smooth curve. Figure 5.1b compares both 

reconstruction techniques as a function of source power for SF6 at 50mtorr pressure. Again, 

both techniques demonstrate similar trends with respect to process condition, with the hybrid 

method showing improved levels of distortion in the final reconstruction.  The S-G filter 

captures the distribution up to 11 eV and beyond that the distribution begins to deteriorate 

due to the high level of noise, while the Hybrid method can extend to 20 eV. 

 

5.2. Argon-Hydrogen plasmas in an ICP Experimental Cell 

Dilute amounts of hydrogen gas added to argon plasmas have demonstrated the 

ability to modify the overall shape of the electron energy distribution function.  Bogaerts 

et.al. demonstrated computationally the influence of as little as 1% hydrogen dilution in the 

EEDF of a capacitively driven argon plasma.[1]  Based on these original computational 

results, the impact of dilute hydrogen addition to argon plasmas was studied to demonstrate 

the capabilities of the hybrid reconstruction method to capture these trends. 
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The experiment was performed in a modified Gaseous Electronics Conference (GEC) 

RF (13.56 MHz) Reference cell. The GEC cell was first developed in 1988-1989 to allow 

researchers to compare between experimental data and simulated or modeled data.[2,3] The 

main chamber, ports, and manifolds are constructed from ultrahigh vacuum stainless-steel 

components. The original GEC cell had two four inch diameter electrodes spaced one inch 

apart.  Later, a standard design for an inductively coupled “pancake” source that could 

replace the top electrode was introduced.[4,5]   

This modification provided a reference cell capable of operating in higher electron density 

modes than the original reference cell.  In the modified system where the experiments 

detailed in this chapter were conducted, the upper electrode was replaced with this inductive 

source and lower electrode of the GEC cell was removed.  A photograph of an 

argon/hydrogen plasma in this system (including the position of the Langmuir probe in this 

study) is shown in figure 5.2.  

 This modification provided a reference cell capable of operating in higher electron 

density modes than the original reference cell.  In the modified system where the experiments 

detailed in this chapter were conducted, the upper electrode was replaced with this inductive 

source and lower electrode of the GEC cell was removed. The upper electrode inductively 

coupled plasma source (ICP) assembly is shown in figure 5.3. The ICP source is an antenna 

which consists of five turn spiral coil (water cooled copper) through which RF power is 

coupled into the plasma. The coil is placed above a quartz disk outside the cell. The RF 

generator (EGR 4800-B) can provide power up to 600 watts of power at a frequency of 

13.56MHz. 
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Figures 5.1 a-b.  Comparison between the Hybrid method and Savitzky-Golay filter, the dotted line represents 

the S-G filter and solid ine represents the Hybrid method. 

 
Figure 5.1 a. Pressure sweep. 

 

Figure 5.1 b. Power sweep. 

 

 

 

 

 

 

 

 

 

 

 

 



 

161 

 

 

 

 

0 2 4 6 8 10 12 14 16 18 20
10

9

10
10

10
11

10
12

10
13

10
14

Energy (eV)

f(
E

) 
(1

/m
3
 e

V
)

Pressure Sweep

 

 

50mtorr

100mtorr

50mtorr (S-G)

100mtorr (S-G)

 

(a) 

 

 

 

 

 



 

162 

 

 

 

0 2 4 6 8 10 12 14 16 18 20
10

11

10
12

10
13

10
14

10
15

Energy (eV)

f(
E

) 
(1

/m
3
 e

V
)

Power Sweep

 

 

50W

100W

50W (S-G)

100W (S-G)

 

(b) 

 

 

 

 

 

 



 

163 

 

Figure 5.2. Modified GEC reference cell with top inductive electrode.  The Langmuir probe (also pictured) is 

centered in the discharge approximately two inches from the quartz window on the top electrode. 

 

An L-type matching network with two variable vacuum capacitors provide impedance 

matching for the power delivery system, thereby minimizing reflected power back to the RF 

generator.  Forward and reflected power was measured using a Bird Technology Tru-Line 

power meter.  The matching network’s variable capacitors were manually tuned for each 

individual run to provide less than 2% reflected power to the generator.  The power settings 

of the generator were controlled externally through 8116A Pulse/Function Generator.  This 

expanded operation of the generator, enabling pulsed RF operation as well as waveform 

synchronized operation with additional sources.  Neither of these modes of operation was 

used in these experiments.  Instead, the ICP source was driven by a constant waveform, 

constant sinusoidal waveform drive similar to a standard radiofrequency generator.         
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Argon and hydrogen gas flow was controlled through an MKS Model 247D Four 

Channel Power Supply and Readout. Gas pressure was controlled by an MKS Baratron 

Model 629D connected to an MKS Model 250E Pressure Controller. The pressure was 

manually tuned in the conductance of the vacuum system by setting the position of a sliding 

gate valve. Vacuum pumping was provided through a standard turbo pump / mechanical 

roughing pump setup. 

 

5.3. Langmuir Probe 

In this work the Langmuir probe used was constructed in the lab. The Langmuir 

probe consisted of a hollow copper tube soldered to a BNC connector. At the top of the 

copper tube a long thin tungsten wire was inserted which acted as the probe tip. A ceramic 

tube surrounded the tungsten wire. This ceramic tube was used to control the length of the 

tungsten exposed to the plasma (in this experiment the length was 1 cm and the diameter of 

the probe was 0.01 inch) as shown in figure 5.4. It should be noted that the portion of the 

probe where the copper is soldered to the BNC is surrounded with a stainless steel tube 

which is glued to the BNC using an ultra high vacuum glue. The purpose of the stainless steel 

tube is to absorb any shock or pressure exerted on the probe while being inserted into the cell 

to prevent the ceramic from breaking. The probe was constructed so it can move from the 

chamber wall to the center of the discharge.    
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Figure 5.3. Experimental Setup 

 

 

Figure 5.4. Cross section of the Langmuir probe setup 
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5.4. Langmuir Probe System 

 The technique used for driving the probe over a specified range of potentials is the 

pulse method. The pulse method involves biasing the probe with a steady potential and then 

superimposing a voltage pulse of known amplitude. At the instant of superimposing the pulse 

a measurement of the corresponding change in the probe current is carried out. For this 

experiment, an SRS DG 535 delay generator is connected in series to a DEI PVX 4140 Pulse 

generator. Two SRS PS 325 Voltage supplies are connected to the Pulse generator where one 

of the supplies is positively biased while the other is negatively biased. The output from the 

Pulse generator is connected to a filter circuit. The purpose of the filter is to suppress the RF 

frequency. The current collected by the probe after passing through the filter, passes through 

a Tektronix P5200 Differential Probe which is connected to a Lecroy 6100 Wave Runner 

oscilloscope. A Matlab code downloads the information from the oscilloscope to spread 

sheets on the lab computer. A schematic drawing of the probe setup is shown in figure 5.5.     
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Figure 5.5. Langmuir circuit. 

 

5.5. Results 

The experiment consists of measuring the I-V curves for different argon/hydrogen 

mixtures as shown in figure 5.6 and through our methodology obtain the EEDFs. The results 

represented in figures 5.7 and 5.8 are for a 140W, 50 mtorr, and 120W 40 mtorr plasma, with 

300 sccm total gas flow rate. In figure 5.8a. the three argon/hydrogen mixtures that were used 

are 98%Ar/2%H2, 95%Ar/5%H2, and 90%Ar/10%H2 as for figure 5.8b. the compositions 

were 100% Ar, 97%Ar/3%H2, 91%Ar/9%H2, and 90%Ar/10%H2. Gas composition was 

controlled by scaling the corrected flows of each gas through independent gas delivery 

systems consisting of one mass flow controller for each gas and an up-stream mixing 

manifold that combined the gases prior to entering the GEC reference cell.  
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As for the probe, it was placed in the center of the chamber at a distance of 

approximately 13 cm from the window, and the voltage sweep across the probe ranged from  

-10V to +20V, , providing adequate data range to capture the ion saturation regime, electron 

saturation regime, and transition regime.  

  

 

Figure 5.6. I-V curves for different argon/hydrogen mixtures at 140W and 50mtorr. 

 

In this section we demonstrate the impact of probe geometry on EEDF extraction 

discussed in chapter 4 with experimental data, as well as measure EEDFs for different argon 

and hydrogen mixtures, utilizing the enhanced reconstruction capabilities of the hybrid 

method, and studying the behavior of the EEDF with respect to increasing hydrogen content.  

The influence of probe geometry in EEDF reconstruction was accomplished by 

comparing EEDF’s computed by both Druyvesteyn’s relation and our Cylindrical method for 

the same data set.  This comparison is shown in figure 5.7 for a 2% and 10% diluted 
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argon/hydrogen plasma at 50mTorr and 140W ICP power. For the EEDF’s obtained under 

these conditions,there exists a small shift in the peak while the shift in the high energy tail is 

significant which is mainly apparent for the case of 90%Ar/10%H2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

170 

 

 

 

 

 

 

 

 

 

Figures 5.7 a-b.  Comparison between Druyvesteyn’s method and our Cylindrical method. 

 
Figure 5.7 a. 50mtorr/140W( 98%Ar/2%H2) EEDFs. 

 

Figure 5.7 b. 50mtorr/140W( 90%Ar/10%H2) EEDFs. 

 

 

 

 

 

 

 

 

 

 

 



 

171 

 

 

 

 

 

 

0 5 10 15
10

12

10
13

10
14

10
15

10
16

Energy (eV)

E
le

c
tr

o
n
 D

e
n
s
it
y
  

(1
/m

3
 e

V
)

 

 

Druyvesteyn approach

Cylindrical approach

 

(a) 

 

 

 

 



 

172 

 

 

 

 

 

 

0 5 10 15 20 25
10

11

10
12

10
13

10
14

10
15

Energy (eV)

E
le

c
tr

o
n
 D

e
n
s
it
y
  

(1
/m

3
 e

V
)

 

 

Druyvesteyn approach

Cylindrical approach

 

(b) 

 

 

 

 



 

173 

The examination of the EEDF shape as a function of hydrogen incorporation yield 

two key observations.   The first is as increasing the hydrogen content the overall number 

density decreases.  This is plausible since hydrogen is electronegative and also provides an 

energy loss mechanism to the electrons via molecular dissociation (compared to the purely 

electropositive argon case). This provides a loss mechanism for electrons higher than the 

ionization threshold for argon, thereby reducing the rate of ionization.  

The second observation is that as the hydrogen content increase the high energy tail 

tends to increase. This observation appears to support the reduction in electron density due to 

hydrogen electronegativity as opposed to dissociative energy losses in the electron 

population that would result in a reduction in electron tail temperature.   
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Figures 5.8 a-b.  Comparison EEDFs for different argon/hydrogen mixtures. 

 
Figure 5.8 a. 50mtorr/140W. 

 

Figure 5.8 b. 40mtorr/120W. 
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CHAPTER 6 

Conclusions and Recommendations for Future Research 

 

In conclusion, this thesis was able to improve regularization methods for the 

extraction of EEDFs. There have been two methods widely applied; Druyvesteyn’s method 

and Tikhonov’s regularization method. Regarding Tikhonov’s regularization, we were able to 

show that, due to its challenges of optimizing the regularization parameter and the high error 

at the low energy end of the reconstructed distribution (which mainly caused it rarely to be 

used) our advanced algorithm which is the Hybrid method overcomes such challenges 

making reconstructed EEDFs more accurate and can be carried out over a wide energy range   

than Tikhonov’s method.  

As for Druyvesteyn’s method, it neglected the shape of the probe whether it was 

cylindrical or spherical. Such negligence results in errors in reconstructed distributions to be 

around 5% and even higher in cases of nonmaxwellian distributions. In this thesis we dealt 

with the geometry of the probe and the effect on the current collected from the plasma and 

thus the EEDF. Langmuir’s paper, first stated a different equation for the case of cylindrical 

probe and another for the spherical probe. Combining that with the new hybrid method we 

were able to prove that geometry has a substantial effect on EEDFs and the mere assumption 

that cylindrical and spherical probes can be treated the same is absolutely not correct. 
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In the end the technique specified in this thesis is capable of measuring subtle 

changes in EEDF as a function of plasma condition over a wide energy range with higher 

accuracy than any other technique. This was all possible under the fact that integral methods 

were used to boost the accuracy of EEDF analysis.   

 The following are recommendations for future research: 

 The construction of a spherical probe and comparing the I-V curve for both spherical and 

cylindrical probes to verify our theory. 

 Taking the mathematical model a step further by trying to quantify the error in the EEDF 

and thus being able to add error bars to be able to point out where the error is minimal 

and where it maximizes and under what conditions. 

 To verify our algorithm in extreme plasmas such as pulsed plasma and as well as flowing 

plasmas. 

 


