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Narasimha Boddeti (Mechanical Engineering) 

Adhesion Mechanics of Graphene 

Thesis directed by Professor Martin L. Dunn 

Abstract 

 Graphene, being an atomically thin two dimensional crystalline material with a very low 

mass and high elastic strength, has great potential in next generation nano-mechanical devices. 

Additionally, it has attractive electronic, thermal and optical properties. In spite of possessing a 

high Young’s modulus, graphene is highly bendable and ultra-floppy due to its atomic thickness. 

At the nano-scale the surface forces are very strong and being very flexible makes graphene 

membranes interact and adhere strongly to materials and structures in its vicinity. The effect of 

these interactions needs to be understood at different length scales – micro, nano and atomistic 

level to be able to design efficient and reliable graphene based nano-devices like electromechanical 

switches and resonators. Through this work, in the first step, we measure the strength of the 

adhesion of graphene membranes to a substrate using modified blister tests with the help of a 

detailed model accounting for the non-linear mechanics of graphene and the thermodynamics of 

the blister test. We also demonstrate, along the way, graphene nano-mechanical devices that can 

switch shapes depending on the applied pressure, adhesion strength, geometry etc. In the second 

step, an attempt is made to characterize the surface forces through a novel experimental setup 

involving pull-in of graphene membranes. The experimental observations are satisfactorily 

explained with the help of an analytical model. Finally, we investigate the atomistic mechanisms 

of adhesion and de-adhesion of graphene membranes. We used molecular mechanics simulations 

to investigate the effect of topography on graphene adhesion energy. The analytical model we 

developed captures the basic physics involved in these simulations quite well. We also study, using 
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the same methodology, the peeling of graphene membranes on 1D sinusoidal corrugated 

substrates.  The results reveal that the peel mechanics involves periodic instabilities due to the 

corrugated nature of the substrate and sliding of the graphene atoms on the substrate. 
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1. Introduction 

1.1  Graphene 

1.1.1 Graphene: Characteristics and Properties 

 

Figure 1.1 Single layer graphene (from http://en.wikipedia.org/wiki/Graphene) 

Graphene is a single atomic layer of sp2-bonded carbon atoms arranged in a hexagonal 

lattice. When graphene sheets are stacked on each other, they form graphite – an allotrope of 

carbon just like diamond.  Graphene sometimes also refers to its multi-layered counterparts (bi-

layer, tri-layer etc.). It was first isolated by mechanical exfoliation of graphite1 with a scotch tape. 

Ever since, several other methods of graphene synthesis focusing on mono-layer production have 

been proposed and realized. They include physical methods like exfoliation by graphite sonication 

in a suitable solvent2 and electro-static exfoliation3 and chemical methods of epitaxial growth or 

chemical vapor deposition (CVD) on a variety of substrates including SiC,4,5 Ir,6 Ru,7 Ni,8,9 Cu,10 

Pt,11 and Pd.12 Growth by CVD on polycrystalline copper foils using methane gas has become 

widely used due to the ability to grow large mono-layer flakes, low cost and ease of transfer to 
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other substrates. This method, however, produces polycrystalline graphene which possesses 

degraded material properties.13 This problem is overcome in a recent development by wafer scale 

growth of single crystal graphene on Si wafers with a hydrogen terminated Ge buffer layer.14 The 

single crystal Ge aligns the seed growth at multiple nucleation sites which then coalesce to form a 

larger single crystal. 

   

Figure 1.2 (a) Optical image of exfoliated graphene flake on 90 nm SiO2 (from 

grapheneindustries.com) (b) Scanning electron microscopy (SEM) images of single crystal 

CVD graphene of various shapes grown on liquid Cu under different conditions15 (all scale 

bars – 5 μm) (c) Scanning transmission electron microscopy (STEM) image of a 

polycrystalline CVD graphene flake with grains and grain boundaries identified16 (false 

colors, scale bar – 1 μm) 

The CVD or epitaxially grown graphene usually needs to be transferred to a desired 

substrate. This transfer step usually results in wrinkling, tearing or cracking of graphene.10,17 Thus, 

mechanical exfoliation has still remained one of the most used methods in spite of its inefficiency. 

It is favored for graphene device research due to its straightforward nature coupled with the ability 

to produce relatively large defect free graphene flakes compared to other methods. The most 

commonly used substrate for fabrication of graphene devices is a Si wafer with thermally grown 

oxide layer of specific thickness (90 or 280 nm). These specific thicknesses enable experimenters 

to easily identify graphene flakes with various thicknesses optically.18 
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Graphene is found to have remarkable mechanical strength with a Young’s modulus of 

about 1 TPa.19 It also has remarkable electronic, thermal, chemical and optical properties.20 The 

electrons in graphene can travel long distances without being scattered.20,21 It is also found to be 

impermeable to all gases.22 All this along with small mass makes it an attractive choice for future 

electronic devices and nano-electromechanical systems. 

1.1.2 Graphene: Potential Applications 

 A great volume of graphene based nano-device research focuses on electronic switches that 

can potentially replace Si CMOS transistors, due to its unique electronic properties.23 It has also 

found use in batteries and as electrode material that can potentially replace ITO (Indium Tin Oxide) 

in displays and photovoltaic applications.24,25 Beyond electronics, graphene based gas and bio-

sensors have been proposed.26 Graphene based mechanical switches27,28 and resonators29,30 have 

been realized. It has also found potential use as a membrane for gas separation31,32 and for water 

desalination.33 The list goes on and graphene has undoubtedly captured the imagination of the 

current research community as the material of the future. 

1.2  Interfacial Forces and Adhesion 

1.2.1 Interfacial forces: Origin and Characteristics 

The atoms on the surface behave differently compared to those in the bulk, due to the 

surface atoms having fewer bonds than the bulk counterparts. This is the reason why surfaces play 

an important role in catalytic chemistry. When two surfaces come together, they start interacting 

via a variety of forces which are all manifestations of electromagnetic interactions like hydrogen 

bonds, electrostatic interactions, dispersion forces etc. These forces especially play an important 

role in determining the properties of membranes (structures with dimension along the thickness 
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much smaller compared to lateral dimensions) considering that they have fewer bulk atoms and 

typically flexible. This is especially true in the case of graphene which does not have any bulk 

atoms being just one atomic layer thick. 

Let us discuss some of the surface force phenomena which are long range (> few nm’s) 

namely electrostatic forces, van der Waals interactions and Casimir forces.  

 Electrostatic forces arise due to the presence of charged particles on surfaces which are 

either defects or adsorbed particles. They can be either repulsive or attractive and 

generally obey the inverse square law. 

 Van der Waals (vdW) forces are interactions between dipoles or induced dipoles or 

instantaneous dipoles and are present even between neutral atoms. The force is usually 

attractive except below a critical sub-nanometer separation. The cumulative effect of 

these atomic and molecular level forces can be seen even at macro-scale. They play a 

crucial role in many biological systems as well as in micro-/nano-electromechanical 

systems. These forces are known to cause “stiction” in micro/nano-devices. These same 

forces give organisms like geckos the ability to adhere and balance their entire weight 

through setae on their feet.34 

 Casimir forces can be termed as vdW interactions where a concept known as 

“retardation” comes into play. It is stated that vdW interactions arise due to interacting 

dipoles. When a pair of dipoles are close enough and when one dipole changes its 

orientation or strength, the other can react almost instantaneously. But when they are 

moved apart, the other dipole can only respond in a “retarded manner”. Hence Casimir 

forces act at a longer range than vdW forces. 
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A lot of research went into understanding how these surface interactions are affected by geometry 

and medium. These surface forces, as noted already, play an important role in adhesion of materials 

spanning a wide range of scales. 

1.2.2 Macro/Meso-scale Adhesion 

 At macro/meso-scales adhesion due to aforementioned surface forces is usually dominated 

by other forces (like gravity, capillary forces etc.). Hence adhesion is achieved either mechanically 

(joints, Velcro etc.) or chemically (glue). A lot of engineering applications involve adhesives and 

adhesion, which led to development of methods to characterize adhesion/adhesive and measure 

the strength of adhesion like the peel and blister tests for thin films and membranes. These tests 

involve creation of a “crack” or “fracture” in the interface of the two adhered bodies or the adhesive 

itself, if present. Some of the commonly used peel tests include 90o peel test, 180o peel test, V-

peel test etc. Similarly, some commonly used blister tests are standard blister test, island blister 

test, peninsula blister test etc. Adhesion can also be measured using contact mechanics tests like 

JKR, DMT etc. in some cases. In addition, buckling of stressed thin films also provides a way to 

measure adhesion energy. 

1.2.3 Micro/Nano-scale Adhesion 

 The surface forces like vdW interactions become more important at micro and nano-scales 

due to smaller separations involved. The surface forces have become the biggest obstacle to 

realizing efficient and reliable mechanical devices at this scale. A lot of effort has been made to 

minimize the effect of these forces on the operation of micro/nano devices. Some of the solutions 

developed are optimizing the geometry, using surface coatings to reduce the strength of these 

interactions and changing the surface topography to make them rougher to reduce the area of 

contact.35 Adhesion or adhesive forces can be measured even at this scale by many of the methods 
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mentioned in the previous sub-section. In addition, methods and apparatus like cantilever beam 

array technique, nano-indentation, surface forces apparatus (SFA), atomic force microscopy 

(AFM) etc. are also commonly used at these length scales.  

 Even though the surface interactions at micro/nano scale are undesirable for M/NEMS 

devices, they are the operant forces in scanning probe microscopy techniques like AFM which 

have not only found use in measuring nano-scale topography but also in measuring friction and 

mechanical properties on micro/nano-scale surfaces. Adhesion at this scale also finds use in self-

assembly of nano-particles and bio-membranes. It is also important in effective development of 

new generation electronic and magnetic storage devices based on hetero-structures of thin films. 

1.3  Motivation for this Research  

     

Figure 1.3 (a) AFM image of graphene conformed to a corrugated PDMS substrate36 (b) Graphene 

over a substrate step, the deformation is dictated by substrate interactions37 

 Graphene with all its unique features and versatile properties, some of which are discussed 

already, is poised to be the material of the future. It is a membrane with no bulk – very thin and 

flexible. This means graphene is highly susceptible to the influence of surface forces and adhesion 

should play a critical role in the functioning of graphene based devices especially nano-mechanical 

devices like switches and resonators. It is found that graphene can conform to a patterned substrate 

very well due to the operant surface forces.36 It is also found that the thermal38 and electrical 

(b) 
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properties37 can be affected by how graphene adheres to a substrate. Furthermore, electronic 

properties can be tailored by strain engineering39 and this can be achieved through deliberate 

deformation of graphene via surface interactions on a patterned substrate. Hence it is important to 

develop a good understanding of graphene adhesion and the mechanics behind graphene adhesion 

to enable better design and development of graphene based nano devices. This work should not 

only help with regards to graphene but also other two dimensional materials like BN, MoS2 etc. 

Also, with the increasing use of epitaxially/CVD grown graphene and other thin films, 

understanding adhesion becomes more important for effective transfer of these films/membranes 

to other desired substrates.  

1.4  Research Objectives and Scope 

1.4.1 Mechanics of Graphene Membrane Configurations 

The first step to understanding the adhesion mechanics is to understand how graphene 

membranes behave under the application of a variety of loads and boundary conditions. In this 

work, we concentrate on axi-symmetrically loaded graphene membrane problems. We try to 

understand graphene mechanics in a continuum elasticity framework and perform experiments to 

validate the theory. 

1.4.2 Surface forces and Adhesion 

 We model modified blister tests based on the standard blister test and island blister test 

with graphene and use these models to measure adhesion energy of graphene on a given substrate. 

We also discuss how the graphene mechanical structures used in the modified blister tests can have 

potential applications in nano-electromechanical systems. The blister tests, however, do not reveal 
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the characteristics of the nano-scale surface forces leading to the adhesion. To do just that, we 

devise an experiment and model it analytically.  

1.4.3 Mechanics of Graphene Adhesion 

 The blister tests provide a global averaged measure of the adhesion energy, but do not 

reveal any details of the local delamination mechanics. Hence, we take the simulation approach to 

understand the atomistic details of delamination and the effect of substrate corrugations on the 

adhesion. We develop an analytical framework to fit the simulation results in a continuum elastic 

framework.  

1.5  Thesis Organization 

 The thesis is organized into six subsequent chapters. Chapter 2 is a brief literature survey 

on mechanical properties, adhesion and mechanics of graphene, and a general review of work on 

membrane mechanics and adhesion. Chapter 3 deals with a modified standard blister test of 

graphene where we create pressurized graphene blisters, while Chapter 4 deals with a modified 

island blister test of graphene where we create pressurized annular blisters. A detailed analysis of 

the thermodynamics is discussed and experimental results are presented in these chapters. Chapter 

5 extends the work of Chapters 3 and 4 in understanding and characterizing the surface forces with 

the help of a novel experimental setup. 

 In Chapter 6, we propose and discuss the theory behind graphene island blister based nano-

electromechanical systems where we used the knowledge gained in the previous chapters to design 

novel nano-devices. In Chapter 7, we discuss the details of the atomistic simulations we performed 

and the key insights they present into the adhesion mechanics of graphene membranes on 



 

 

9 

 

corrugated as well as flat substrates. We also discuss companion theoretical analyses that describe 

and aid in understanding the results of the simulations. 

  



 

 

10 

 

2. Background and Literature Review 

2.1  Mechanical Properties of Graphene 

 

Figure 2.1 (a) Scanning electron micrograph of a graphene suspended over micro-cavities, (b) 

AFM image of suspended graphene, (c) Schematic of nano-indentation of suspended 

graphene, (d) AFM image of a fractured membrane19 

 The mechanical properties of graphene were well known theoretically even before it was 

isolated. This is because graphene is known to form the basis for graphite and carbon nanotubes 

which are structurally similar to graphene. As a result, a number of numerical analyses focused on 

carbon nanotubes also studied graphene. Some such efforts like Lier et al40 have found the Young’s 

modulus (𝐸) of graphene to be 1.11 TPa using ab initio calculations, whereas Kudin et al41 found 

it to be 1.02 TPa, again using ab initio calculations. The latter have reported a Poisson’s ratio (𝜈) 

of 0.149 for graphene. Some of the experimental efforts include atomic force microscopy (AFM) 

measurement of effective spring constants of suspended multi-layered graphene sheets by Frank 

et al42 and AFM nano-indentation of suspended single layered graphene sheets by Lee et al.19 Both 
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the experiments involve adherence of graphene sheets to the substrate through van der Waals and 

other interactions. They have obtained values of 0.5 TPa for multi-layered graphene and 1 TPa for 

single layered graphene respectively. Frank et al used suspended doubly clamped multi-layered 

graphene beams and measured their stiffness with an AFM to deduce the value of 𝐸 and tension 

in the membranes. Lee et al, on the other hand, use an AFM to indent suspended clamped circular 

graphene membranes as shown in Fig. 2.1 to obtain 𝐸.  

 The thickness values for mono-layer graphene (𝑡) found in the literature are scattered. 

Yakobson et al43 reported a value of 0.066 nm and Lu44 used a value of 0.34 nm, same as the inter-

layer distance in graphite. Lee et al19 assume a value of 0.335 nm for their calculations. Huang et 

al,45 starting from arbitrary multi-body interatomic potentials for carbon, obtained an analytical 

expression for thickness of graphene which depends on the type of loading applied. They have 

obtained values of 0.0574 nm for thickness, 4.23 TPa for Young’s modulus and 0.397 for Poisson’s 

ratio for the case of uniaxial tension using second generation Brenner potential. 

 The bending rigidity for monolayer graphene is found to be between 1.4-1.46 eV according 

to Kudin et al41. Arroyo and Belytschko46 put it at 0.83 eV based on calculations using an empirical 

potential. Koskinen and Kit,47 using density functional tight binding (DFTB) simulations and 

revised periodic boundary conditions (RPBC), give a value of 1.61 eV, 180 eV and 690 eV for 

monolayer, bilayer and trilayer graphene respectively. They also give an analytical expression to 

calculate the bending rigidity, 𝜅𝑛 of a 𝑛 layer graphene membrane: 

𝜅𝑛 = 𝑛𝜅1 +
𝐸𝑡3(𝑛3 − 𝑛)

12
 

 

(2.1) 

The bending rigidity, D of plates and membranes in continuum mechanics is given by  𝐷 =

𝐸𝑡3/12(1 − 𝜈2). This gives a value of about 𝐷= 20 eV for monolayer graphene, which is an order 
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of magnitude higher than the value obtained using atomistic calculations. Using density functional 

techniques (DFT), Wei et al48 obtained a value of 1.44 eV for monolayer graphene. Experimental 

efforts using lattice dynamics of graphite obtained a value of 1.4 eV49 while experiments involving 

buckling of suspended bilayer graphene membranes by Lindahl et al gave a value of 35.5 −15
+20 eV.50 

2.2  Graphene Membrane Mechanics 

2.2.1 Mechanics of Plates and Membranes 

 The mechanics of plates can be comprehensively described by the von Karman plate 

equation, provided the rotations are small compared to unity.51,52 The von Karman plate equation 

does not have an analytical solution and has attracted the attention of applied mathematicians over 

the years. With the arrival of numerical techniques like finite element analysis, engineers were 

able to solve the equation in a variety of situations very easily. The mechanics of plates involves 

two distinct regimes – bending dominated and stretching dominated. In the bending dominated 

regime, the plate deformation is linear with respect to the load while in the stretching dominate 

regime, it hardens and has a cubic relation with the load. Timoshenko and several others developed 

approximate solutions to describe mechanics of circular plates for a pressure load (𝑝): 

𝑝𝑎4 = 𝐴1𝐷𝑤0 + 𝐴2𝐸𝑡𝑤0
3 

 

(2.2) 

Here, 𝐴1  and 𝐴2  are constants dependent on Poisson’s ratio and boundary conditions, 𝑎 is the 

radius of the plate and 𝑤0 is the maximum deflection of the plate which occurs at the center. It can 

be clearly seen that when the deflection is small (~ 𝑡), then the pressure is linearly proportional 

to 𝑤0. When deflection is large (> 𝑡), then the pressure is proportional to cube of 𝑤0. 
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A membrane, by definition, is a thin structure with zero or negligible bending rigidity. 

Examples include cloth and many biological films. Plate mechanics can be effectively used to 

describe membrane mechanics by considering 𝐷 to be negligibly small which is true for extremely 

thin films. Hencky53 provided an accurate description of the mechanics of uniformly pressurized 

circular membranes pinned at the boundary. Campbell54 extended this to initially tensioned 

membranes. Fichter55 noted that Hencky’s solution neglects the radial component of the applied 

pressure and solved the reformulated problem with this radial component included. The problem 

of uniformly pressurized axisymmetric annular membranes is very interesting due to the possibility 

of symmetry breaking and wrinkle formation and has again garnered attention from applied 

mathematicians.56 Approximate solutions have been developed by Williams57 and Saif et al.58 

2.2.2 Mechanics of Graphene 

 This sub-section describes some early work done on mechanics of graphene. Xu and Liao59 

have obtained molecular dynamics and non-linear finite element solutions for single layer as well 

as multi-layer circular graphene sheets subjected to a transverse central load. They have reported 

an error of 8-9% for central maximum deflection for single layer graphene sheets between 

molecular dynamics calculations and the continuum based calculations. Kitipornchai et al60 have 

done vibration analysis of multilayer graphene sheets based on a continuum plate model. They 

have obtained an explicit formula to predict vdW force between any two layers of graphene using 

Lennard-Jones potential. Starting from an atomistic approach, Atalaya et al61 obtained simplified 

continuum elasticity descriptions for modeling the mechanics of graphene sheets. They have 

finally arrived at von Karman equations for thin plates, without assuming the graphene sheet to be 

a plate a priori. Duan and Wang62 have used molecular simulations to determine the static response 

of clamped circular graphene sheets.  
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 Bao et al explained formation of periodic ripples on suspended few layer graphene using 

continuum theory.63 In addition, the experiments on measurement of elastic properties of graphene 

all used continuum models. Hence it is well established in the literature that the mechanics of 

graphene membrane can be effectively described by continuum elasticity. 

2.3  Adhesion of graphene based systems 

2.3.1 Membrane Adhesion 

 Membranes, being flexible, can adhere very well to substrates. As mentioned in the earlier 

chapter, adhesion measurement techniques include peel tests and blister tests. Williams provides 

a nice review of all the commonly used peel and blister tests57 for different geometries. 

Considerable amount of research has been done and is still carried out on adhesion of biological 

membranes.64 Attempts have been made to establish a generalized theory to understand adhesion 

of membranes on patterned substrates.65,66  

(a)  (b)  

Figure 2.2 Cantilever beam array35 (a) Optical image (b) Schematic 

 At micro and nano scales, blister and peel tests may not be carried out as easily when 

compared to macro-scale. Hence, novel techniques like cantilever beam array technique (see Fig. 

2.2) and surface forces apparatus (see Fig. 2.3)  have been developed to measure adhesion energy 
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as well as adhesive forces at these scales. Cantilever beam array technique takes advantage of the 

phenomenon of pull-in of cantilever beams due to the surface forces at micro/nano length scales. 

It involves use of an array of cantilever beams with varying lengths suspended over a substrate. 

The more compliant beams are pulled into contact with the underlying substrate under the 

influence of the strong surface forces while the stiffer ones stay suspended. The adhesion energy 

is calculated from the maximum length of the cantilever that is required to stay suspended.  

 

Figure 2.3 Schematic of the surface forces appartus67 

 The surface forces apparatus (SFA) developed by Tabor, Winterton and Israelachvili has 

been used to measure the vdW, Casimir and electrostatic forces at very small separations (~ 1 nm) 

between surfaces.67,68 The SFA uses either the ‘jump method’ or the ‘resonance method’ to 

measure the forces while the distance between the surfaces is measured using optical 

interferometry. In the ‘jump method’, one surface is fixed while the other is attached to a cantilever 

spring and the distance between the surfaces is gradually decreased until they jump into contact at 

a critical distance. The magnitude of the operant forces can be calculated using this distance. In 
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the ‘resonance method’, one surface is vibrated at a known frequency in a low pressure 

environment which induced vibrations in the other surface due to modulation of the surface forces. 

The induced vibrations are measured to obtain the strength of the operant surface force. It has to 

be noted that the SFA, though can measure adhesive forces at very small separations, cannot 

measure adhesive forces either on thin films or nano-scale materials like graphene. 

 An atomic force microscope (AFM) can also be used to measure the effect of adhesive 

forces on a variety of surfaces and different operating conditions. But this method is limited by the 

fact that one surface is the AFM probe tip which has a small area resulting in a small contact area 

unlike in the SFA. Also with the AFM, the distance between the tip and the sample are not directly 

measurable in contrast to the SFA. However, AFM’s are capable of measuring adhesion strength 

of thin films via indentation and scratch tests. 

2.3.2 Graphene Adhesion 

Graphene, like other membranes is affected by surface forces and adheres to any given 

substrate strongly. The adhesion strength is strong enough to keep the graphene membranes 

clamped onto a substrate in experiments on suspended graphene devices. Lu and Dunn69 have done 

some of the early work on adhesion using atomistic simulations. They looked at the problem of 

peeling of graphene suspended over a trench and partially adhered to the side walls. They conclude 

that the atomistic simulations results can satisfactorily be explained with continuum mechanics. 

Computational studies of graphene on Ni(111)70 and Ru(0001)71 give adhesion energies of 0.12 

J/m2 and 0.17 J/m2. Rudenko et al72 used computational studies to determine the adhesion energy 

of graphene on mica and found it to be dependent on the nature of the surface of mica. They 

obtained a value of about 0.17 J/m2 for electro-neutral mica, 0.43 J/m2 for electro-positive mica 

and 0.66 J/m2 for electro-negative mica. Zong et al73 used intercalated nano-particles between 
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graphene and SiO2 substrate to determine the adhesion energy. The adhesion energy, which is 

found to be about 0.15 J/m2, determines the radius of the blister formed by graphene membrane 

due to the presence of the nano-particle.  
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3. Pressurized Graphene Blisters 

3.1  Introduction 

 The bulge test has been traditionally used to determine mechanical properties of thin films 

and membranes like elastic modulus, yield strength, fracture strength and residual stress.74 It 

involves application of a pressure load on a thin suspended film/membrane clamped along its 

edges, the region over which the pressure is applied usually being circular. The resultant 

deformation, which appears like a “bulge”, is measured and analyzed with the help of a model to 

obtain the film’s mechanical properties. The blister test on the other hand can be viewed upon as 

an extension of bulge test which is used for measuring adhesion energy between thin 

films/membranes and substrates75,76 (hereafter the words thin film and membrane are used 

interchangeably). Here, the edges of the membrane are ‘clamped’ by an adhesive or by adhesive 

interactions with the substrate. The applied pressure load initially deforms the membrane which is 

being clamped (through the adhesive or adhesive interactions) just as in the bulge test, but at a 

critical pressure the adhesive bond breaks and the membrane forms what is known as a “blister”. 

The measurement of the blister area and the deformation gives the adhesion energy, again with the 

help of a suitable model for the membrane mechanics and material behavior as well as the adhesive 

or adhesive interactions. 

 Conventionally, the blister test is carried out at a prescribed pressure. The deformation 

caused by this prescribed pressure gradually increases with increasing magnitude of the pressure 

and at a critical pressure the membrane is blown off due to unstable delamination.76 A stable 

alternative was achieved by Wan and Mai by using constant number of molecules of gas to 

pressurize the film.77 In this constant N (number of gas atoms/molecules) blister test, a fixed mass 
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of gas is trapped in a cavity sealed by the membrane, the adhesion energy of which is to be 

measured. The pressure outside the cavity is decreased gradually which leads to a pressure 

differential across the membrane. This pressure differential deforms the membrane and the trapped 

gas expands isothermally. A stable delamination (or crack) is observed when the external pressure 

is decreased below a critical value. This stability is possible because the system equilibrates 

quickly to a stable configuration due to the limited number of gas atoms/molecules as opposed to 

the case in constant pressure blister tests. 

 In this chapter, the mechanics and thermodynamics of a constant N blister test on graphene 

membranes supported on silicon oxide (SiOx) is described. The blister test set up used here has 

been independently devised by Steven Koenig and Prof. Scott Bunch of the University of Colorado 

at Boulder. It differs from Wan and Mai’s setup77 slightly in how the pressure load is applied to 

the graphene membrane. The adhesion energy between graphene and SiOx substrate is determined 

along with stretching rigidity 𝐸𝑡 (𝐸 = Young’s modulus, 𝑡 = graphene membrane thickness) in this 

experiment. 

3.2  Experiment 

 The experiment, performed by Steven Koenig, involves exfoliated graphene membranes of 

varying number of layers on a silicon chip with a thermally grown oxide layer. Micro-cavities of 

fixed dimensions, cylindrical in shape are lithographically patterned onto the chip before 

exfoliation. These micro-cavities form traps for gas molecules (N2 in this case) when covered with 

graphene membranes. They are “charged” inside a pressure chamber where the micro-cavities are 

filled with gas molecules at a prescribed input or charging pressure, 𝑝0 (which is higher than the 

atmospheric pressure, 𝑝𝑎). This charging process takes advantage of the diffusion of gas molecules 

through the thermal oxide layer between graphene and silicon.22 Once equilibrium is reached, the 
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pressure of the trapped gas in the micro-cavities should increase from the atmospheric pressure, 

𝑝𝑎  at the time of exfoliation to the charging pressure, 𝑝0 (Fig. 3.1b). It takes about a week to 

achieve equilibration after which the pressure outside the micro-cavities is brought down to 𝑝𝑎. 

This leads to expansion of the trapped gas presumably in an isothermal manner until the trapped 

gas reaches an equilibrium pressure, 𝑝𝑖. If the input pressure, 𝑝0 is below a critical value 𝑝0,𝑐, the 

graphene membrane deforms to form a bulge as shown in Fig. 3.1c; else when 𝑝0 is above 𝑝0,𝑐, 

blister formation is seen where the membrane is not only deformed but it also delaminates from 

the substrate (Fig. 3.1d). The resultant deformation is measured using an atomic force microscope 

(AFM). The process is repeated several times at different values of 𝑝0, for several devices with the 

number of layers in the graphene membranes ranging from 1 to 5 as shown in the optical image 

(Fig. 3.1a).  

 

Figure 3.1 (a) Optical image of the devices covered with different layers of graphene, (b) 

Schematic of the cross section of a device charged to a pressure 𝑝0 in a pressure chamber 

– the blue color indicates gas, the red curve is the graphene membrane, (c) Schematic 

illustrating the deformation of the graphene membrane due to the expanding gas molecules 

to form a bulge without delamination, (d) Formation of a blister is seen if the charging 

pressure is greater than the critical charging pressure, 𝑝0,𝑐  (Change of the blue color from 

darker to lighter shade indicates decreasing pressure) 
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 The time during which each measurement is done is small compared to the time taken for 

the diffusion processes associated with charging and discharging of the micro-cavities,22 so we can 

assume that the number of molecules inside the cavity remains the same throughout. Hence this 

can be viewed upon as a constant N blister test. The graphene membranes adhere to the substrate 

(SiOx) via a variety of possible surface interactions like van der Waals forces, electrostatic forces, 

capillary forces, chemical bonds etc. The aim of the experiment is to determine statistically the 

strength of this adhesion. 

3.3  Theory 

 Here, we develop an analytical model to describe the aforementioned experiment. The 

analytical model involves description of the mechanics of the graphene membrane coupled with 

the thermodynamics of the trapped gas and the membrane-substrate interfacial interactions. We 

consider the graphene membrane, the trapped gas and interfacial interactions as a thermodynamic 

system. Our approach is to then develop a thermodynamic free energy for the system while 

modeling the gas as ideal, the substrate-graphene adhesion energy to be uniform and adopting a 

nonlinear membrane model to describe graphene mechanics. We then minimize this free energy 

with respect to the unknown system parameters revealing the underlying relationship tying various 

system parameters which include the mechanical properties of graphene, adhesion energy, 

geometry of the micro-cavities and the charging pressure. We also contrast this analysis with that 

of a constant P blister test to note the differences between constant P and constant N blister tests. 

3.3.1 Mechanics of Pressurized Graphene 

 The pressurized graphene sheets in this experiment can be looked at as an axisymmetric 

circular membrane clamped along its circumference by the adhesive forces. The mechanics of the 

such pressurized membranes (of radius 𝑎) are well described by the membrane equations, which 
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can be obtained from the more general Foppl-Von Karman (FvK) plate equations by neglecting 

the terms with bending rigidity, 𝐷.51 The equations give a relationship between the membrane 

stresses and the applied pressure load:  

𝑁𝑟
𝑑𝑤

𝑑𝑟
 =

𝑝𝑟

2
 

𝑁𝑡 =
𝑑(𝑟𝑁𝑟)

𝑑𝑟
 

 

(3.1) 

 

Here, 𝑟  is the radial coordinate, 𝑝 is the pressure load acting on the membrane, and 𝑤  is the 

deflection. 𝑁𝑟 and 𝑁𝑡 are radial and tangential components of the membrane stress respectively. 

The membrane stresses are related to their respective membrane strains 𝜖𝑟 and 𝜖𝑡 through (𝑢 is the 

radial displacement): 

𝜖𝑟 =
1

𝐸𝑡
(𝑁𝑟 − 𝜈𝑁𝑡) =

𝑑𝑢
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𝑑𝑟
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1

𝐸𝑡
(𝑁𝑡 − 𝜈𝑁𝑟) =

𝑢

𝑟
 

 

(3.2) 

 

Equations (3.1) and (3.2) can be reduced to one single equation in 𝑁𝑟 given by:  

𝑁𝑟
2
𝑑

𝑑𝑟
(𝑟3

𝑑𝑁𝑟
𝑑𝑟

) = −
𝐸𝑡𝑝2

8
𝑟3 

 

(3.3) 

A series solution to this equation is given by Hencky53,57 for clamped circular membranes. He 

assumed that the solution to this equation is given by: 

𝑁𝑟 = (
𝐸𝑡𝑝2𝑎2

64
)

1
3

∑𝐴2𝑛 (
𝑟

𝑎
)
2𝑛

∞

𝑛=0

 

 

 
(3.4) 

 

(𝑎 = radius of the circular region of the membrane being pressurized, 𝐴2𝑛 = nth coefficient) 



 

 

23 

 

Putting this in eq. (3.3) and equating terms on the left hand side with those on the right hand side 

in the resultant algebraic equation, he got 𝐴2 = −𝐴0
−2, 𝐴4 = −

2

3
𝐴0
−5, 𝐴6 = −

13

18
𝐴0
−8  etc. The 

clamped boundary condition of 𝑢 = 0 at 𝑟 =  𝑎 gives 𝐴0. Hencky truncated the series to 7 terms 

to obtain an approximation for 𝐴0. We used 13 terms (𝑛 = 12) and obtained a value of 𝐴0 = 1.668 

with Poisson’s ratio, 𝜈 = 0.16. Once an approximate description of the radial stress is obtained, it 

is easy to obtain the deflection profile and the maximum deflection:  

𝑤(𝑟) = ∫
𝑝𝜌

2𝑁𝑟(𝜌)
𝑑𝜌

𝑎

𝑟

 

𝛿 = 𝑤(𝑟 = 0) = 𝐶2 (
𝑝𝑎4

𝐸𝑡
)

1
3

 

 

(3.5) 

Here, 𝛿 is the maximum deflection and 𝐶2(𝜈 = 0.16) = 0.6863 is a pre-factor dependent on 𝜈. 

Similarly we can also get the volume of the bulge, 𝑉𝑏: 

𝑉𝑏 = ∫ 2𝜋𝑟𝑤(𝑟)𝑑𝑟
𝑎

0

= 𝐶1𝜋𝑎
2𝛿 

 

(3.6) 

 

𝐶1(𝜈 = 0.16) = 0.5245 is also a pre-factor similar to 𝐶2. This solution is applicable to membranes 

whether they are delaminating or not as in each case the membrane is assumed to be clamped to 

the substrate through adhesive interactions. 

 We note here that Hencky’s solution is for a uniform lateral loading which is not exactly 

the same as that of a uniformly pressurized membrane. Fichter treated the latter case and noted 

that the difference is only appreciable for very large loads. In view of this, we neglected the small 

difference between these two cases and adopted Hencky’s solution for our purposes. Furthermore, 

Hencky’s analysis does not include any pre-stress in the membrane. Campbell54 extended 

Hencky’s solution to include pre-tension (𝑁0) and noted that when the non-dimensional parameter 
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𝑃 = (𝑝𝑎/𝐸𝑡)(𝐸𝑡/𝑁0)
3

2 > 100, the maximum deflection given by Hencky’s solution is within 5% 

of the value given by Campbell’s solution. Mechanically exfoliated graphene membranes are 

known to have pre-stresses in the range of 0.03 and 0.15 N/m with the average value being 0.07 

N/m.22,78,79 With values of 𝑎 = 2 μm, 𝐸𝑡 = 340 N/m and 𝑁0 = 0.07 N/m, that are typical to our 

experiment we can show that Campbell’s parameter is about 100 when 𝑝 = 500 kPa. Later, it will 

be seen that the majority of our measurements are well above this pressure and hence we neglect 

any effects of pre-stress in our analysis. 

3.3.2 Thermodynamics of the Blister test 

We now formulate the thermodynamic free energy, ℱ  of the system comprising of 

pressurized membrane, trapped gas and the membrane-substrate interface. This free energy 

captures the change in the energy of the system between the initial equilibrium state to the final 

equilibrium state. In the initial equilibrium state the membrane is flat and the pressure inside and 

outside the cavity is equal to 𝑝0. In the final equilibrium state, the gas has isothermally expanded 

to deform the membrane into a near spherical cap shape with or without delamination as the 

pressure outside the cavity is brought down to the ambient pressure, 𝑝𝑎 for the constant N blister 

test; while for the constant P case, the membrane is deformed in a similar manner except the 

pressure stays the same. The free energy, ℱ can be written as:  

ℱ = ℱ𝑚𝑒𝑚 + ℱ𝑔𝑎𝑠 + ℱ𝑒𝑥𝑡 + ℱ𝑎𝑑ℎ 

 

(3.7) 

 

Here ℱ𝑚𝑒𝑚 is the strain energy stored in the deformed membrane, ℱ𝑔𝑎𝑠 is the work done by the 

pressurized gas on the membrane, ℱ𝑒𝑥𝑡 is the work done in displacing the ambient which is held 

at a constant pressure, 𝑝𝑎  and ℱ𝑎𝑑ℎ  is the work done in delaminating the membrane from the 

substrate.  
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 The membrane strain energy can be obtained by calculating the work done by the pressure 

load, 𝑝 = 𝑝𝑖 − 𝑝𝑎 at a fixed blister radius, 𝑎. Hence:  

ℱ𝑚𝑒𝑚 = ∬𝑁𝑖𝑑𝜖𝑖𝑑𝐴 = ∫ 𝑝𝑑𝑉𝑏│𝑎 =
𝑝𝑉𝑏
4
= { 

(𝑝0 − 𝑝𝑎)𝑉𝑏
4

𝑐𝑜𝑛𝑠𝑡 𝑃

(𝑝𝑖 − 𝑝𝑎)𝑉𝑏
4

𝑐𝑜𝑛𝑠𝑡 𝑁

 

 

(3.8) 

 

The free energy contribution of the work done by the gas going from the initial state (𝑝0, 𝑉0) to the 

final state ((𝑝𝑖, 𝑉0 + 𝑉𝑏) – constant N, (𝑝0, 𝑉0 + 𝑉𝑏) – constant P) is given by:  

ℱ𝑔𝑎𝑠 = −∫ 𝑝𝑖𝑑𝑉 = {

−𝑝0𝑉𝑏 𝑐𝑜𝑛𝑠𝑡 𝑃

−𝑝0𝑉0 ln [
𝑉0 + 𝑉𝑏
𝑉0

] 𝑐𝑜𝑛𝑠𝑡 𝑁
 

 

(3.9) 

 

Here 𝑉0 = 𝜋ℎ𝑎0
2 is the volume of the micro-cavity, ℎ being the depth of the cavity. In the constant 

P case, the work done is simply the applied pressure times the change in volume. While in the 

constant N case, ℱ𝑔𝑎𝑠 is the isothermal work done by the trapped gas initially at a pressure 𝑝0 and 

volume 𝑉0 expanding to pressure 𝑝𝑖  and volume 𝑉0  + 𝑉𝑏. The work done on displacing a volume 

of the ambient gas equal to the blister/bulge volume should also be accounted for and is equal to:  

ℱ𝑒𝑥𝑡 = ∫ 𝑝𝑎𝑑𝑉 = 𝑝𝑎𝑉𝑏 
 

(3.10) 

 

And the adhesion energy is given by:  

ℱ𝑎𝑑ℎ = Γπ(𝑎2 − 𝑎0
2) 

 

(3.11) 

 

Here Γ is the adhesion energy per unit area, a property of the interface.  

In the constant P case, among the parameters in the overall free energy expression, 𝑝0, 𝑉0, 

𝑝𝑎 and 𝑎0 are known; while 𝑎 and 𝛿 are unknown. When we use Hencky’s relation as obtained in 

eq. (3.5) which relates 𝑎 and 𝛿 at a given pressure 𝑝0, the free energy then depends only on 𝑎. 
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While in the constant N case, 𝑝𝑖  is an additional unknown. Since the trapped gas expands 

isothermally we have from the ideal gas law: 

𝑝𝑖(𝑉0 + 𝑉𝑏) = 𝑝0𝑉0 
 

(3.12) 

 

Hence, again as in the constant P case, the overall free energy ℱ can be expressed solely as a 

function of 𝑎. Finally, the total free energy is given by:  

 ℱ(𝑎) =    

{
 

 
𝑝𝑉𝑏
4
− 𝑝0𝑉𝑏 + 𝑝𝑎𝑉𝑏 + Γ𝜋(𝑎

2 − 𝑎0
2) 𝑐𝑜𝑛𝑠𝑡 𝑃

𝑝𝑉𝑏
4
− 𝑝0𝑉0 ln [

𝑉0 + 𝑉𝑏
𝑉0

] + 𝑝𝑎𝑉𝑏 + Γ𝜋(𝑎
2 − 𝑎0

2) 𝑐𝑜𝑛𝑠𝑡 𝑁
 

 

(3.13) 

 

3.3.3 Equilibrium Conditions 

 The system equilibrium configurations can be found by looking at the extrema of the free 

energy, ℱ(𝑎). Hence we solve the equation:  

𝑑ℱ(𝑎)

𝑑𝑎
= 0 

 

(3.14) 

 

In the constant P case, this means:  

𝑑ℱ(𝑎)

𝑑𝑎
= −

3𝑝

4

𝑑𝑉𝑏
𝑑𝑎

+ 2𝜋Γ𝑎 = 0 

 

(3.15) 

 

Γ =
5𝐶1
4
𝑝𝛿 =

5𝐶1𝐶2
4

(
𝑝4𝑎4

𝐸𝑡
)

1
3

 

 

(3.16) 

 

The eq. (3.16) tells us that for a given value of Γ and 𝑎 =  𝑎0, there is a critical pressure load, 𝑝𝑐 

given by:  

𝑝𝑐 =
1

𝑎0
((

4Γ

5𝐶1𝐶2
)
3

𝐸𝑡)

1
4

 

(3.17) 
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Below this pressure eq. (3.14) has no solutions, hence there will be no delamination and the 

membrane mechanics is entirely described by Hencky’s solution. At or above this pressure, there 

will be delamination. A more detailed explanation with an example follows later in the next 

section. The stability of this equilibrium configuration can be determined by the second derivative 

of ℱ at this extremum:  

𝑑2ℱ(𝑎)

𝑑𝑎2
│𝑝=𝑝𝑐 = −

8𝜋Γ

3
< 0 

 

(3.18) 

 

This suggests that the equilibrium is unstable and leads to a catastrophic crack growth. This limits 

the ability to repeat the experiment on a membrane sample above 𝑝𝑐. However in the constant N 

case: 

𝑑ℱ(𝑎)

𝑑𝑎
= −

3𝑝

4

𝑑𝑉𝑏
𝑑𝑎

+
𝑉𝑏
4

𝑑𝑝

𝑑𝑎
+ 2𝜋Γ𝑎 = 0 

 

(3.19) 

 

and 𝑝 (= 𝑝𝑖  − 𝑝𝑎) depends on 𝑎 through the relation:  

𝑎 = (
𝑝0
𝑝𝑖
− 1)

3
10
(
𝑉0

𝜋𝐶1𝐶2
)

3
10
(
𝐸𝑡

𝑝
)

1
10

 

 

(3.20) 

 

Using eqs. (3.5) and (3.6), we can write that:  

𝑑𝑉𝑏
𝑑𝑎

=
𝜕𝑉𝑏
𝜕𝑝

│𝑎
𝜕𝑝

𝜕𝑎
+
𝜕𝑉𝑏
𝜕𝑎

│𝑝 =
1

3

𝑉𝑏
𝑝

𝜕𝑝

𝜕𝑎
+
𝜕𝑉𝑏
𝜕𝑎

│𝑝 

 

(3.21) 

 

Putting this in eq. (3.19) gives: 

𝑑ℱ(𝑎)

𝑑𝑎
= −

3𝑝

4

𝜕𝑉𝑏
𝜕𝑎

│𝑝 + 2𝜋Γ𝑎 = 0 

 

(3.22) 
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This is similar to the result obtained from the constant P case except that 𝑝 now is not a constant. 

Hence combining the result in eq. (3.22) with the ideal gas eq. (3.12) we get:  

Γ =
5𝐶1
4
(

𝑝0𝑉0
𝑉0 + 𝑉𝑏(𝑎)

− 𝑝𝑎) 𝛿(𝑎) 

 

(3.23) 

 

Putting 𝑎 = 𝑎0 in the above equation and solving for 𝑝0 gives the critical input pressure, 𝑝0,𝑐 at 

which the membrane starts delamination. The second derivative at the equilibrium configuration 

is given by: 

𝑑2ℱ

𝑑𝑎2
│𝑝=𝑝0,𝑐 =

10𝑝𝑉𝑏
𝑎2

(
2𝑝0𝑝𝑖 − 3𝑝𝑖

2 + 𝑝0𝑝𝑎
3𝑝0𝑝 + 𝑝𝑖(𝑝0 − 𝑝𝑖)

) 

 

(3.24) 

 

The above expression is positive only if 𝑝𝑖 < 2𝑝0/3 (assuming 𝑝𝑎 ≪ 𝑝𝑖, 𝑝0). This inequality is 

same as saying 𝑉0 < 2𝑉𝑏 which can be satisfied easily by tailoring the geometry of the micro-

cavity or sufficiently large 𝑝0. Hence stable delamination is possible as opposed to the constant P 

case. This whole analysis in the constant N case can also be done regarding 𝑝 or 𝛿 instead of 𝑎 as 

the independent variable with the same results. But one noticeable difference when 𝑝 is considered 

the independent variable, is that we can define a free energy before delamination begins:  

ℱ𝑏𝑑(𝑝) =
𝑝𝑉𝑏(𝑝)

4
− 𝑝0𝑉0𝐿𝑜𝑔 [

𝑉0 + 𝑉𝑏(𝑝)

𝑉0
] + 𝑝𝑎𝑉𝑏(𝑝) 

 

(3.25) 

 

The extrema of this newly defined free energy gives a trivial solution which is the same as the eq. 

(3.5). Rather, the usefulness of this free energy is in helping visualize graphically the system 

behavior which will be discussed later in the next section. 

 The analysis gives us a relation through eq. (3.23), for the constant N case, between the 

known quantities (𝑝0, 𝑉0), the measured quantities from the deformation (𝑎, 𝛿) and the unknown 
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quantity that the experiment is supposed to determine (Γ). Putting 𝑎 = 𝑎0 and rewriting the eq. 

(3.23), we get the critical charging pressure, 𝑝0,𝑐 as: 

𝑝0,𝑐 = ((
4𝛤

5𝐶1𝛿(𝑎0)
)+ 𝑝𝑎)

𝑉0 +𝑉𝑏(𝑎0)

𝑉0
 

 

(3.26) 

 

We note that as 𝑉0 → ∞ , 𝑝𝑖 = 𝑝0𝑉0/(𝑉0 + 𝑉𝑏) → 𝑝0  and 𝑝0,𝑐 → 𝑝𝑐 + 𝑝𝑎  implying that the 

constant P blister test is a limiting case of the constant N blister test achieved by a large reservoir 

of trapped gas or equivalently a very large microcavity. 

3.3.4 System Behavior with Examples 

 Before analyzing the experimental data, an effort is made to understand the effect of the 

system parameters 𝑎0, ℎ and Γ on the critical delamination pressure and the stability of the system 

through illustrative examples with 𝐸𝑡 = 340 N/m, 𝜈 = 0.16,  𝑎0 = 2 μm and Γ = 0.2 J/m2. These 

are the four different scenarios we look at: 

1. Constant P blister test 

2. Constant N blister test with ℎ = 0.25 μm 

3. Constant N blister test with increased cavity radius (𝑎 = 3 μm) keeping ℎ = 0.25 μm 

4. Constant N blister test with increased cavity depth (ℎ = 1.25 μm) keeping 𝑎0 = 2 μm 

 Let us look at the first example - constant P blister test on monolayer graphene. According 

to the theory with the given parameters, the critical pressure load 𝑝𝑐 = 1.17 MPa from eq. (3.17). 

The plots in Fig. 3.2 show the free energy, ℱ as defined in the eq. (3.13) for constant P case at 

three different pressures – one below 𝑝𝑐, one exactly equal to 𝑝𝑐  and one above it covering all the 

three possible scenarios. When 𝑝 < 𝑝𝑐, from eq. (3.15) there is an equilibrium configuration at a 

value of 𝑎 > 𝑎0 and there is an energy barrier which keeps the system at 𝑎 = 𝑎0 implying no 
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blister formation. When 𝑝 ≥ 𝑝𝑐, the equilibrium shifts to a value of 𝑎 ≤ 𝑎0 and the energy barrier 

vanishes. The system now has a favorable gradient as the blister radius increases, encouraging the 

membrane to completely delaminate. With finite sized membranes, this usually results in what 

experimentalists call “blow-off”.76 As shown in Fig. 3.2 the energy barrier is exactly equal to zero 

when 𝑝 = 𝑝𝑐 and ℱ has a maximum at 𝑎 = 𝑎0 along the black curve, consistent with the definition 

of 𝑝𝑐. 

 

Figure 3.2 Plots showing the variation of free energy, ℱ  with blister radius, “𝑎” at a fixed 

pressure load “𝑝” 

 Now the second case - the constant N blister test with the same geometry, material and 

interfacial properties viz. 𝑎0 = 2 μm, 𝐸𝑡 = 340 N/m, Γ = 0.2 J/m2 and 𝑉0 ≈ 3.14 μm3 (ℎ = 0.25 

μm). This geometry is very similar to that of the experimental devices used and the critical 

charging pressure 𝑝0,𝑐 is calculated to be 1.94 MPa from eq. (3.26) with 𝑝𝑎 = 83 kPa. As before, 

the free energy is plotted as a function of the blister radius at three different input/charging 

pressures as shown in Fig. 3.3. The green and magenta colored points on the curves signify the 

initial configuration of the system and the final equilibrium configuration where 𝑑ℱ/𝑑𝑎 = 0 is 

▬ 𝑝 = 0.67 MPa 

▬ 𝑝 = 𝑝𝑐  = 1.17 MPa 

▬ 𝑝 = 1.67 MPa 
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satisfied respectively. The dashed part of each curve corresponds to 𝑎 < 𝑎0 which is physically 

not realizable as opposed to the solid part. When 𝑝0 < 𝑝0,𝑐  (blue curve), there is no equilibrium 

configuration to be found on the curve implying there will be no delamination and 𝑎 remains equal 

to 𝑎0. When 𝑝0 = 𝑝0,𝑐   (black curve), the system finds an equilibrium configuration exactly at 𝑎 =

𝑎0 , an inflection point. If 𝑝0  is increased to a value beyond 𝑝0,𝑐  this unique equilibrium 

configuration splits into two equilibrium configurations – one local maximum to the left (not 

shown and unrealizable) and a local minimum to the right which is evident from the red curve in 

the Fig. 3.3. Thus when 𝑝0 > 𝑝0,𝑐  (red curve), the system starts from the initial configuration 

denoted by green dot and moves to the minimum configuration denoted by the magenta dot. The 

presence of this minimum is what makes stable delamination possible in the constant N blister test. 

 

Figure 3.3 Plots showing the variation of free energy, ℱ   with blister radius, “𝑎” at a fixed 

pressure “𝑝” with a0 = 2 𝜇𝑚 and ℎ = 0.25 𝜇𝑚 

  

▬ 𝑝0 = 1.7 MPa 

▬ 𝑝0  = 𝑝0,𝑐 = 1.94 MPa 

▬ 𝑝0  = 2.2 MPa 
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Figure 3.4 ℱ  vs 𝑝𝑖/𝛿  and ℱ𝑏𝑑  vs 𝑝𝑖/𝛿  plots at different values of 𝑝0  - the plots show initial 

configurations (green points) and possible equilibrium configuration (magenta dots) with 

𝑎0 = 2 𝜇𝑚 and ℎ = 0.25 𝜇𝑚 

 The same exact conclusions can be drawn through plots of ℱ(𝑝𝑖) and ℱ𝑏𝑑(𝑝𝑖) as shown in 

Fig. 3.4a-c. But this approach gives us a different perspective to the delamination phenomenon 

through the free energy defined for configurations before delamination, ℱ𝑏𝑑(𝑝𝑖). The green and 

magenta points denote initial and equilibrium configurations as before. Since initially 𝑎 = 𝑎0 and 

there is no delamination yet, the initial configuration always lies on the ℱ𝑏𝑑 curve. The dashed 

part of the ℱ(𝑝𝑖) curve is the equivalent of the 𝑎 < 𝑎0 part of ℱ(𝑎) and hence unrealizable. When 

𝑝0 < 𝑝0,𝑐  (Fig. 3.4a), ℱ𝑏𝑑(𝑝𝑖) has a minimum as shown whereas there is none on ℱ(𝑝𝑖). Thus the 

system equilibrates to the point shown which is incidentally the point where the curves ℱ𝑏𝑑(𝑝𝑖) 

and ℱ(𝑝𝑖) intersect and also the point where 𝑎 = 𝑎0 on ℱ(𝑝𝑖). When 𝑝0 = 𝑝0,𝑐  (Fig. 3.4b), there 

is now an equilibrium configuration also on ℱ(𝑝𝑖) which is an inflection point and it coincides 

with that on ℱ𝑏𝑑(𝑝𝑖). Increasing 𝑝0 further such that 𝑝0 > 𝑝0,𝑐  (Fig. 3.4c), the equilibrium point 

which was an inflection point splits into a maximum and a minimum. The maximum (not shown) 

as mentioned before is unrealizable and the system chooses the minimum of the minima on the 

𝑝0= 𝑝0,𝑐  = 1.94 MPa 

 

𝑝0 = 2.2 MPa 

a b c 

d e f 

𝑝0 = 1.7 MPa 

 

▬ ℱ(𝛿) 
▬ ℱ𝑏𝑑(𝛿) 

𝑝0 = 2.2 MPa 

 

▬ ℱ(𝑝𝑖) 
▬ ℱ𝑏𝑑(𝑝𝑖) 

𝑝0 = 1.7 MPa 

𝑝0= 𝑝0,𝑐  = 1.94 MPa 
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curves ℱ(𝑝𝑖) and ℱ𝑏𝑑(𝑝𝑖). As shown in Fig. 3.4c, the minimum of the minima occurs on ℱ(𝑝𝑖) 

and hence we see delamination. The preceding discussion is also valid for ℱ(𝛿) and ℱ𝑏𝑑(𝛿) as 

well and the corresponding plots are as shown in Figs. 3.4d-f. 

   

Figure 3.5 (a) Final Equilibrium pressure, pi (b) Maximum Deflection and (c) Blister radius 

plotted as functions of the input pressure, 𝑝0 with 𝑎0 = 2 𝜇𝑚 and ℎ = 0.25 𝜇𝑚 with the 

black and blue curves denoting the behavior pre and post-delamination respectively 

From the equilibrium configurations thus obtained at each given charging pressure (𝑝0), 

we can then obtain the final equilibrium pressure (𝑝𝑖), maximum deflection of the membrane (𝛿) 

and blister radius (𝑎) as functions of input or charging pressures (𝑝0). They are shown in Fig. 3.5, 

with the behavior before and after delamination separated. Before delamination, 𝑝𝑖 almost linearly 

increases with 𝑝0 but after delamination it decreases exponentially with increasing 𝑝0 (Fig. 3.5a). 

This can be attributed to the fact that after delamination the volume increases at a higher rate than 

before delamination, thereby decreasing the equilibrium pressure. Formally as the charging 

pressure becomes very large (𝑝0 → ∞), the final equilibrium pressure reaches a limiting value of 

𝑝𝑎 (𝑝𝑖 → 𝑝𝑎).  

The deflection, 𝛿  increases initially and the membrane stiffens continuously; as 

delamination starts we see abrupt softening and stiffening continues again. The blister radius, while 

remaining constant until the critical charging pressure is reached, increases in an exponential 

manner. 

a b c 
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Figure 3.6 Plots showing the variation of free energy, ℱ   with blister radius, “𝑎” at a fixed 

pressure “𝑝” with 𝑎0 = 3 𝜇𝑚 and ℎ = 0.25 𝜇𝑚0 

   

Figure 3.7 (a) Final Equilibrium pressure, 𝑝𝑖  (b) Maximum Deflection and (c) Blister radius 

plotted as functions of the input pressure, 𝑝0 with 𝑎0 = 3 𝜇𝑚 and ℎ = 0.25 𝜇𝑚 with the 

black and blue curves denoting the behavior pre and post-delamination respectively 

In the third case we increase 𝑎0 from 2 to 3 μm and see how this affects the system behavior. The 

critical input pressure is decreased from 1.94 MPa to 1.57 MPa as the membrane becomes more 

compliant. From the ℱ(𝑎) plots in Fig. 3.6, at the critical charging pressure the equilibrium now 

occurs at a minimum rather than at an inflection point. However, this does not affect the system 

behavior physically as observed in Fig. 3.7 and the system response looks similar to what we have 

when 𝑎 = 2 μm. 

 

▬ 𝑝0 = 1.4 MPa 

▬ 𝑝0 = 𝑝0,𝑐  = 1.57 MPa 

▬ 𝑝0 = 1.7 MPa 

a b c 
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Figure 3.8 Plots showing the variation of free energy, ℱ   with blister radius, “𝑎” at a fixed 

pressure “𝑝” with 𝑎0 = 2 𝜇𝑚 and ℎ = 1.25 𝜇𝑚 

   

Figure 3.9 (a) Final Equilibrium pressure, 𝑝𝑖 (b) Maximum Deflection, 𝛿 and (c) Blister radius, 𝑎 

plotted as functions of the input pressure, 𝑝0 with 𝑎0 = 2 𝜇𝑚 and ℎ = 1.25 𝜇𝑚 with the 

black and blue curves denoting the behavior pre and post-delamination respectively 

We have a different scenario in changing ℎ from 0.25 to 1.25 μm and reverting back to 𝑎0 

= 2 μm. The critical charging pressure is again decreased from the original 1.94 MPa to 1.39 MPa. 

The plot of ℱ(𝑎) in Fig. 3.8 shows that now when 𝑝0 < 𝑝0,𝑐  (blue curve), the curve has two 

possible extrema instead of none as in the previous two cases. But there is an energy barrier and 

so there is no delamination; but when 𝑝0 = 𝑝0,𝑐  (black curve), the barrier is no longer there and 

the initial configuration coincides with a local maximum. This means we have an unstable 

equilibrium and with a small perturbation we can move the system from the maximum to the 

minimum available to the right of it accompanied by an abrupt delamination. This behavior is in 

▬ 𝑝0 = 1.25 MPa 

▬ 𝑝0 = 𝑝0,𝑐  = 1.39 MPa 

▬ 𝑝0 = 1.45 MPa 

a b c 



 

 

36 

 

contrast to the previous two cases and Figs. 3.9a-c illustrate this. Close to the critical charging 

pressure as 𝑝0 is increased, we have a discontinuity or “jump” in the system behavior. 

 In summary, we looked at constant N blister test with three different geometries. In each 

case, the equilibrium configuration at the critical charging pressure is located on an inflection 

point, a local minimum or a local maximum on ℱ(𝑎) respectively. What this suggests for the 

experiment is that in the first two cases we will see a steady, continuous change in the blister radius 

from 𝑎0 as the membrane starts delaminating and likewise with 𝑝𝑖 and 𝛿. But in the third case due 

to the unstable maximum, there will be no continuous change but rather a “jump” in the 

observable/measured quantities of 𝑎, 𝑝𝑖 and 𝛿.  

   

Figure 3.10 Variation of the degree of discontinuity or “jump”, 𝑎 − 𝑎0 with respect to (a) Cavity 

Radius, 𝑎0, (b) Cavity Depth, ℎ and (c) Adhesion Energy, 𝛤 with values of 𝑎0 = 2 𝜇𝑚, 

ℎ = 0.4 𝜇𝑚 and 𝛤 = 0.2 J/m2 when not being varied 

 The degree of discontinuity or “jump” depends on the cavity geometry as well as the 

adhesion strength as shown in Figs. 3.10a-c. Values of 𝐸𝑡 = 340 N/m, 𝑎0 = 2 μm, ℎ = 0.4 μm and 

Γ = 0.2 J/m2 are used when they are not being varied in these plots. It is interesting to see that in 

Fig. 3.10b, the jump monotonically increases with the cavity depth. This implies that with a finite 

sized membrane there will be complete delamination of the membrane when the cavity depth is 

very large. This is to be expected in light of our discussion at the end of the previous section where 

we concluded that as the cavity volume becomes very large we reach the limiting case of constant 

N blister test i.e. constant P blister test.  

a b c 
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 The “jump” is not seen at higher values of 𝑎0 and Γ as shown in Figs 3.10a and 3.10c. It is 

to be noticed from Figs. 3.10a and 3.10b that increasing the radius and the depth of the cavity 

independently, both of which result in increasing the cavity volume, has a different effect on the 

system behavior. The same can be seen from Figs. 3.11a and 3.11b where the critical delamination 

pressure for constant P and constant N blister tests are plotted in black and red respectively. In Fig. 

3.11a, we see that the critical delamination pressure for constant N blister test decreases with 

increasing cavity depth and reaches a limiting value which equals the delamination pressure for a 

constant P blister test. While in Fig. 3.11b, we see that the delamination pressure decreases 

monotonically for constant P case whereas the same for constant N case exhibits a curious 

behavior. The delamination pressure decreases initially with increasing cavity radius, reaches a 

minimum and then increases with increasing cavity radius for the constant N case. With increasing 

adhesion energy, the delamination pressure increases monotonically in both cases as shown in Fig. 

3.11c. 

   

Figure 3.11 Variation of the critical delamination pressure (𝑝𝑐/𝑝0,𝑐) as a function of (a) Cavity 

Depth (b) Cavity Radius and (c) Adhesion Energy. When not being varied, ℎ = 400 nm, 

𝑎0 = 2 𝜇𝑚 and 𝛤 = 0.2 J/m2  

 

 

 

a b c ▬ Constant P 

▬ Constant N 
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3.4  Experimental Results 

  

Figure 3.12 (a) Three dimensional rendering of the measured AFM Height data of a device at 

𝑝0 = 2.4 MPa on Chip C. The maximum height is about 520 nm. (b) AFM image cross 

sections of a device at different input pressures – 0.48 MPa (red), 1.32 MPa (green), 1.83 

MPa (cyan) and 2.4 MPa (magenta). The black dashed curves are the deflection profiles 

from Hencky’s solution with the maximum deflection fit to the measured value.  

 With the help of the theory developed in the previous section, we analyzed the experimental 

data in a systematic manner to arrive at the membrane modulus and adhesion energy. We obtained 

data from three different chips all made using the same fabrication processes. Let us label them as 

chips – A, B and C. Chip A contained a large piece of graphene flake with the number of layers 

ranging from 2-5 exfoliated over cavities with radius, 𝑎0 = 2 μm and depth, ℎ = 250 nm. Chip B 

contained a graphene flake with both mono and tri-layer graphene with device dimensions 𝑎0 = 

2.32 μm and ℎ = 293 nm (see Appendix A.1 for optical images), while chip C had monolayer 

graphene with device dimensions 𝑎0 =  2.55 μm  and ℎ =  290 nm. Using the atomic force 

microscope (AFM) to measure the deformation, we get a full three dimensional height map as 

shown in Fig. 3.12a. As the deformation is axisymmetric, we just need the maximum deflection 

(𝛿) and the radius (𝑎) to characterize the deformation and we just look at a cross section (see Fig. 

3.12b) of the full 3D AFM image to get these values. The AFM cross sections (Fig. 3.12b) at 

different input pressures 𝑝0 compare very well with the profile obtained from Hencky’s solution 

b a 



 

 

39 

 

(black dashed curves), thus validating our choice of employing Hencky’s solution to describe the 

graphene bulge/blister mechanics. 

 

Figure 3.13 (a) K(υ)δ3/a4 vs p for monolayered graphene sheet before delamination (black 

symbols) and after delamination (magenta), (b)–(e) Same plots as (a) for two (red 

symbols, b), three (green, c), four (blue, d) or five (cyan, e) sheets of graphene before and 

after delamination (magenta symbols in all plots). The solid lines are linear fits to all the 

data with Et = 347 (black), 694 (red), 1,041 (green), 1,388 (blue) and 1,735 N m−1 (cyan). 

Dashed lines show linear fits to the data for 𝑝 < 0.50 MPa and have slopes corresponding 

to Et = 661 (red; two layers), 950 (green; three layers), 1,330 (red; four layers) and 1,690 

N/m (cyan; five layers). (f) Et versus number of layers. Solid symbols are fitted values; 

open symbols indicate number of layers times 347. 

Combining eqs. (3.5) and (3.12), we get: 

𝐸𝑡 = 𝐾(𝜈)
𝛿3

𝑎4
𝑝 = 𝐾(𝜈)

𝛿3

𝑎4
 (

𝑝0𝑉0
𝑉0 + 𝐶1(𝜈)𝜋𝑎2𝛿

− 𝑝𝑎)
−1

  

 

(3.27) 

 

Here 𝐾(𝜈) = 𝐶2(𝜈)
−3 and 𝜈=0.16. Having known the ambient pressure (𝑝𝑎), charging pressure 

(𝑝0) and cavity volume (𝑉0) and measured 𝛿 and 𝑎, we plotted 𝐾(𝜈)𝛿3/𝑎4 against 𝑝 and obtained 

the best linear fit to determine 𝐸𝑡 in each case for the devices on Chips A and B. The results are 

shown in Fig. 3.13a-e for 1-5 layered devices respectively. We got a value of 𝐸𝑡 = 347 N/m for 1 

layered graphene which is in very good agreement with the established value 340 N/m. It is 
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expected that the value of 𝐸𝑡 for a 𝑛-layered graphene membrane varies as 𝑛 times the value of 

the monolayered membrane. We found that our measurements confirm this behavior and the fitted 

values obtained for multi-layered graphene compare well with the expected linear scaling of 𝐸𝑡 

with number of layers as shown in Fig. 3.13f. For the subsequent part of the experimental data 

analysis we used the values of 𝐸𝑡 thus obtained. 

      

Figure 3.14 Measured adhesion energies Γ for membranes containing one layer of graphene 

(black circles & black squares), two layers (red triangles), three layers (blue inverted 

triangles), four layers (green diamonds) and five layers (magenta rectangles). The upper 

solid line corresponds to Γ = 0.45 J m−2, the lower dashed line corresponds 

to Γ = 0.31 J m−2 and the long dashed line corresponds to 𝛤 = 0.24 J m-2. 

We now proceed to finding the adhesion energy of the membranes using eqs. (3.6) and 

(3.23). The results are plotted in Fig. 3.14 for all the different layered membranes on the three 

chips. For 2-5 layered membranes, we got a mean value of 0.31 J/m2 for the adhesion energy of 

multi-layered membranes on chips A and B whereas for the monolayered membranes we got 

values of 0.45 J/m2 and 0.24 J/m2 on chips B and C respectively. We plotted 𝛿, 𝑎 and 𝑝𝑖 against 𝑝0 

as in Fig. 3.5 and compared with the theory in Figs. 3.15a, 3.15b and 3.15c respectively for two 

layered devices on chip A (we get similar results for other devices too, see Appendix A.1 for plots). 



 

 

41 

 

For the curves after delamination, we used three different values for Γ, 0.31 and 0.31±0.6 J/m2. 

The experimental observations agree well with the Γ = 0.31 J/m2 curve. It is to be noticed that not 

only the experimental data is self-consistent but also agrees very well with the theoretical 

predictions. 

    

Figure 3.15 Plots showing maximum deflection 𝛿 (a), blister radius 𝑎 (b) and final equilibrium 

pressure 𝑝𝑖 (c) versus input pressure 𝑝0 for all two-layer membranes studied. The magenta 

colored curve is the theoretical curve assuming no delamination of the membrane 

for 𝑛𝐸𝑡 = 661 N m−1, 𝑛 = 2. Red, Blue and green curves are the theoretical curves for 

three different values of the graphene/SiO2 adhesion energy 𝛤  – 0.25, 0.31, 0.37 J/m2 

respectively. 

 As we discussed earlier, the theory predicts that when the cavity depth ℎ is large, the blister 

test system may exhibit an unstable delamination with a jump in the system parameters, including 

the blister radius. We observed such behavior in tests with a geometry for the microcavities similar 

to the fourth case discussed in the previous section. Specifically, the geometry we used is a cavity 

of radius 𝑎0 = 2.2 m and depth ℎ = 5 m. We found that with increasing charging pressure 𝑝0, 

graphene membranes bulge as previously described; but at about 𝑝0 = 2.8 MPa, the membrane 

appears to undergo severe delamination resulting in an irregularly shaped blister that is very large 

and covers multiple microcavities (see Fig. 3.16). We think that this large blister is a consequence 

of the unstable delamination as predicted by theory as shown in Fig. 3.9c. Conceivably, the 

membrane delaminated over a large region, neighboring blisters coalesced, and formed a large 

irregularly shaped blister. Assuming the adhesion energy is between 0.2-0.4 J/m2 and graphene is 

a b c 
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8 layered, the predicted critical input pressure for delamination is between 1.90-3.15 MPa. This is 

in reasonable agreement with the experimental observation where delamination was observed at 

𝑝0 = 2.8 MPa, but not at a lower pressure of 𝑝0 = 2.2 MPa. We did not do tests at pressures 

between these two values.  

 

Figure 3.16 AFM amplitude image (40×40 𝜇𝑚) of a graphene membrane that has undergone 

large-scale delamination at 𝑝0 = 2.8 MPa with 𝑎0 ≈ 2.2 𝜇𝑚 and ℎ ≈ 5 𝜇𝑚.  

3.5  Summary 

 We developed a theoretical model that couples mechanics and thermodynamics of a 

constant N blister test system comprising an elastic membrane adhered to a substrate while sealing 

away a micro-cavity filled with pressurized trapped gas under isothermal conditions. This system 

can be used to measure elastic modulus and adhesion energy between the membrane and the 

substrate by repeating the experiment with varying pressures i.e. changing the number of 

molecules N. The effect of various parameters in the system such as elastic modulus, micro-cavity 

geometry and adhesion energy are thoroughly explored and understood with the help of examples 

using experimentally accessible representative system parameters. 
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 The theory is validated with experimental data obtained by Bunch group at University of 

Colorado, Boulder. The experiments use atomically thin graphene membranes on silicon oxide 

substrates. We used three different exfoliated graphene flakes on three different chips fabricated 

in the same manner with the number of graphene layers varying from 1-5. The experimental 

observations agree well with the theory and give an averaged value of 0.31 J/m2 for adhesion 

energy for 2-5 layered graphene membranes. For monolayer graphene, on two different chips, we 

obtained adhesion energies of 0.44 J/m2 and 0.24 J/m2. The variation in the adhesion energies 

might be due to the variations in the properties of the substrate from chip to chip like surface 

morphology, reactivity, trapped charges etc. These variations in turn might be resulting from 

variations in the fabrication processes. We also illustrated, both analytically and experimentally, 

how deep cavities can lead to unstable growth of blisters ultimately leading to “blow-off”. 

 Later we will study the effect of surface morphology on the adhesion energy of graphene 

membranes using simulations; while the effect on adhesion energy due to substrate chemical 

activity, trapped charges etc is beyond our scope.  



 

 

44 

 

4. Pressurized Graphene Island Blisters 

4.1  Introduction 

In this chapter, we describe a new type of pressurized graphene blister with switchable 

shapes controlled by pressure and adhesion. A similar geometry, but with a constant pressure 

loading, has been previously used in the island blister test (IBT) to measure the mechanical and 

adhesive properties of soft films80,81 a few microns thick by Allen and Senturia. Here we adopt this 

geometry and modify it by using trapped gas with constant number of molecules instead of a 

constant pressure load, along the lines of a constant N standard blister test that was described in 

the previous chapter.  

    

Figure 4.1 Constant N Island Blister Test Geometry (a) Top View (b) Cross-section View along 

the dashed line shown in (a). 

The island blister test involves application of a pressure load across an annularly shaped 

suspended membrane, held fixed along the edges by adhesive interactions or an adhesive at the 

interface of the membrane and the substrate. The substrate in the middle of the annular region 

resembles an island and hence the name island blister test (see Fig. 4.1). As in the previous chapter, 

we extend the constant P IBT analysis to constant N IBT and validate it through experiments on 

Island 

Island 

a b 



 

 

45 

 

graphene membranes. The test was originally devised to overcome the problem of rupturing of 

low strength films with the stand blister test setup. In our case, the motivation for this study comes 

from the thought that this geometry with graphene membranes, with switchable shapes tuned and 

controlled by pressure and adhesion, might prove important for future graphene based nano-

electromechanical devices.  

4.2  Theory and Simulations 

    

    

Figure 4.2 Schematics of different configurations possible in the island blister test (a) No 

delamination, (b) Inwards delamination only, (c) Outwards delamination only and (d) 

Inwards as well as outwards delamination 

The constant N IBT experimental setup consists of cylindrical annular shaped micro-

cavities in SiOx substrate covered by graphene membranes. The graphene membranes adhere to 

the substrate via adhesive interactions possibly dominated by van der Waals interactions. The 

graphene membranes are fixed along the outer and inner boundaries of the annular suspended 

region due to these interactions. Upon pressure loading, there are four possible scenarios as shown 

in Fig. 4.2: 

(a) The membrane deforms forming an annular bulge without delaminating either inwards 

or outwards. 

a b 

c d 

Island SiOx 

Graphene 
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(b) If the pressure load is high enough, the membrane starts delaminating but only inwards. 

(c) The membrane starts delaminating only outwards. 

(d) The membrane delaminates in both inward and outward directions. 

To be able to predict which of these configurations are favored at a given pressure, we need to first 

understand the underlying mechanics of the annular bulge. 

4.2.1 Mechanics of Pressurized Annular Graphene 

 

Figure 4.3 Schematic showing a ring element (thicker part of the curve) with the relevant forces 

Let the deflection of an axisymmetric annular bulge with outer and inner radii 𝑎 and 𝑏 be 

denoted by 𝑤(𝑟), 𝑟 being the radial coordinate in a cylindrical coordinate system. Let us now look 

at an infinitesimal ring element as shown in Fig. 4.3. The forces acting on this element are the 

force due to the pressure load (𝑝), the radial membrane stresses (𝑁𝑟 and 𝑁𝑟+𝑑𝑟) along the edges of 

the ring in the tangential direction. The forces balance out in the radial direction due to symmetry 

and in the vertical direction we have: 

𝑁𝑟+𝑑𝑟 (
𝑑𝑤

𝑑𝑟
+
𝑑2𝑤

𝑑𝑟2
𝑑𝑟) 2𝜋(𝑟 + 𝑑𝑟)  − 𝑁𝑟

𝑑𝑤

𝑑𝑟
2𝜋𝑟 = −𝑝2𝜋𝑟𝑑𝑟 

𝑁𝑟+𝑑𝑟 = 𝑁𝑟 +
𝑑𝑁𝑟
𝑑𝑟

𝑑𝑟 

 

 

(4.1) 

Here we assumed small rotations implying Sin[𝜃]≈Tan[𝜃] ≈ 𝑑𝑤/𝑑𝑟. Neglecting the second order 

terms and simplifying eq. (4.1), we get: 

𝑤(𝑟) 

𝑏 
a 

𝑟 

𝑟 + 𝑑𝑟 

𝑁𝑟  

𝑁𝑟+𝑑𝑟  

𝑝 
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𝑁𝑟
𝑑𝑤

𝑑𝑟
𝑑𝑟 + 𝑟𝑁𝑟

𝑑2𝑤

𝑑𝑟2
𝑑𝑟 + 𝑟

𝑑𝑁𝑟
𝑑𝑟

𝑑𝑤

𝑑𝑟
𝑑𝑟 = 𝑝𝑟𝑑𝑟 

 

⟹ 
𝑑

𝑑𝑟
(𝑟𝑁𝑟

𝑑𝑤

𝑑𝑟
) = 𝑝𝑟 

 

 

 

 

(4.2) 

𝑁𝑟 is a function of 𝑟 and it is related to its equivalent strain through eq. (3.2). A series solution like 

the Hencky’s solution with the circular membrane is not possible in this case. Hence to obtain an 

approximate solution we assumed that the hoop strain is zero following Saif et al,58 giving us 𝑁𝑟  =

𝜈𝑁𝑡 again from eq. (3.2). We also assumed that 𝑁𝑟 is constant and denote it by 𝑆. Hence through 

simple integration of eq. (4.2) we get: 

𝑤 =
𝑝𝑟2

4𝑆
+ 𝑐1 ln[𝑟] + 𝑐2 

 

(4.3) 

The integration constants 𝑐1 and 𝑐2 can be determined using the boundary conditions 𝑤(𝑟 = 𝑎) =

𝑤(𝑟 = 𝑏) = 0. Thus the membrane deflection profile 𝑤(𝑟) is given by: 

𝑤(𝑟) =
𝑝

4𝑆
((𝑎2 − 𝑟2) + 𝑟0

2 ln [
𝑟

𝑎
]) 

𝑟0
2 =

𝑎2 − 𝑏2

ln[𝑎/𝑏]
 

(4.4) 

 

The maximum deflection 𝐻 occurs at 𝑟 = 𝑟0/√2 and is given by: 

𝐻 = 𝑤(𝑟 = 𝑟0/√2) =
𝑝

4𝑆
(𝑎2 −

𝑟0
2

2
+
𝑟0
2

2
ln [

𝑟0
2

2𝑎2
]) 

 

(4.5) 

And the volume of the annular bulge 𝑉𝑎 is: 

𝑉𝑎 = ∫ 𝑤 2𝜋𝑟𝑑𝑟
𝑎

𝑏

=
𝜋

2

𝑝

4𝑆
(𝑎2 − 𝑏2)(𝑎2 + 𝑏2 − 𝑟0

2) 

 

(4.6) 
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The radial membrane stress 𝑆 is still an unknown. To obtain 𝑆, we calculate the average radial 

strain weighted by the area: 

𝜖�̅� =
∫
1
2 (
𝑑𝑤
𝑑𝑟
)
2

2𝜋𝑟 𝑑𝑟
𝑎

𝑏

∫ 2𝜋𝑟 𝑑𝑟
𝑎

𝑏

=
𝑆(1 − 𝜈2)

𝐸𝑡
 

 

(4.7) 

Substituting eq. (4.4) in eq. (4.7) and integrating we get: 

𝑆 = (
𝐸𝑡𝑝2

16(1 − 𝜈2)
(𝑎2 + 𝑏2 − 𝑟0

2))

1
3

 

 

(4.8) 

Thus from eqs. (4.5) and (4.8), we can see that pressure is still non-linear and proportional to cube 

of the maximum deflection just as in the circular membrane case but the dependence on the 

geometrical parameters is much more involved.  

4.2.2 Finite Element Simulations of Pressurized Annular Graphene 

We assumed that the hoop strain (𝜖𝑡) is zero and used averaged radial strain (𝜖𝑟) to obtain 

an average measure for radial membrane stress (𝑆). While our analysis follows that of Saif et al 

closely, they averaged the strain along the diameter whereas we averaged it over the entire area of 

the membrane. Williams57 assumed equi-biaxial strain condition and obtained an areal average for 

the total strain – radial and tangential combined. The pressure-displacement relation obtained by 

us is: 

𝐻 = (
𝑝(1 − 𝜈2)

4𝐸𝑡
)

1
3

(𝑎2 −
𝑟0
2

2
+
𝑟0
2

2
ln [

𝑟0
2

2
]) (𝑎2 + 𝑏2 − 𝑟0

2)− 
1
3 

 

(4.9) 

The expression obtained through Saif et al’s approach is: 
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𝐻 = (
𝑝(1 − 𝜈2)

8𝐸𝑡
)

1
3

(𝑎2 −
𝑟0
2

2
+
𝑟0
2

2
ln [

𝑟0
2

2
]) (

𝑎2 + 𝑏2 + 𝑎𝑏

3
+
𝑟0
4

4𝑎𝑏
− 𝑟0

2)

−
1
3

 

 

(4.10) 

Finally the expression obtained Williams is: 

𝐻 = (
𝑝(1 − 𝜈)

2𝐸𝑡
)

1
3

(𝑎2 −
𝑟0
2

2
+
𝑟0
2

2
ln [

𝑟0
2

2
]) (𝑎2 + 𝑏2 − 𝑟0

2)−
1
3 

 

(4.11) 

To determine which of the three above mentioned approaches give the best approximation we 

carried out finite element simulations, the details of which follow.  

The finite element (FE) simulations are carried out using the software package Abaqus. 

We used an axisymmetric model with two different geometries - 𝑎 = 2 μm and 𝑏 = 0.5 or 1 μm. 

Two noded axisymmetric shell elements (SAX1) with thickness 0.34 nm are used to mesh the 

membrane to account for both bending and stretching of the membrane. Values of 𝐸 = 1 TPa and 

𝜈 = 0.16 are used for material properties which correspond to those of graphene. The “pressure 

load versus maximum displacement” as well as the deflection profiles are plotted in Figs. 4.4a-c 

and Fig. 4.5a respectively.  

   

Figure 4.4 Comparison of the FE simulation results through the load, 𝑝 v maximum deflection, 𝐻 

plots with the different analytical expressions (a) Current analysis (eq. (4.9)), (b) Saif et 

al’s result (eq. (4.10)), (c) Williams’ result (eq. (4.11)). In all the cases, the solid curves 

indicate FE results and the dashed curves the analytical expressions. Also, for the blue 

curves 𝑎 = 2 𝜇𝑚, 𝑏 = 1 𝜇𝑚 and for black curves 𝑎 = 2 𝜇𝑚, 𝑏 = 0.5 𝜇𝑚 with 𝐸𝑡 = 340 

N/m and 𝜈 = 0.16 in all the calculations. 

a b c 



 

 

50 

 

   

Figure 4.5 (a) Plots comparing the deflection profile at 𝑝 ≈ 2.51 MPa as obtained from the 

analysis (eq. (4.4)) and FE (𝑎 = 2 𝜇𝑚, Blue – 𝑏 = 1 𝜇𝑚, Black – 𝑏 = 0.5 𝜇𝑚, Solid – FE, 

Dashed – Current Analysis), (b,c) Radial and Tangential stresses in black and blue colored 

solid curves respectively at 𝑝 ≈ 2.51 MPa along the radius of the membrane with 𝑎 = 2 

𝜇𝑚 and (b) 𝑏 = 1 𝜇𝑚, (c) 𝑏 = 0.5 𝜇𝑚. The black and blue dashed curves are the averaged 

radial and tangential stresses respectively calculated using the current analysis. 

 The overall load versus deflection response matches quite closely with our analytical result 

(as shown in Fig. 4.4a), better than with the other two possibilities. Hence we used eq. (4.9) to 

describe the mechanics of the annular bulge for the rest of the analysis. The figure 4.5a shows the 

deflection profile from our analysis (dashed curves) compared with the FE results at 𝑝 = 2.51 MPa. 

We have a reasonably good description of the deflection profile from the theory, even though the 

radius at which the maximum deflection occurs is not in very good agreement with the FE results. 

The figures 4.5b and 4.5c show the stresses as obtained from the FE simulations at 𝑝 = 2.51 MPa 

for the two different geometries ((b) 𝑏 = 1 μm and (c) 𝑏 = 0.5 μm). The average radial stress 

values in each case as calculated from the analysis are 13.29 GPa and 17.54 GPa respectively and 

are also shown as dashed lines. They are in good agreement with the averaged values for radial 

stresses calculated from the simulations – 13.24 GPa and 17.04 GPa respectively. The tangential 

stresses are also in good agreement and consistent with our assumption that the tangential strain is 

negligible. Also it is to be noted that the residual stress found in graphene membranes is usually 

of the order of 0.30 GPa which is small compared to the radial stresses we have here at about 𝑝 = 

2 MPa, thereby allowing us to neglect its effect. Even at 𝑝 = 100 kPa, from eq. (4.8) the average 

radial stress is 1.55 GPa, which is still 5 times the typical values of residual stress in graphene.  

a b c 
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4.2.3 Thermodynamics of the Island Blister test 

 

Figure 4.6 Schematic showing the most general blister configuration – blue color indicates gas 

molecules applying a pressure load on the graphene membrane (shown in red); graphene 

membrane is adhered to the substrate outside the cavity and on the island. 

 Now that we understand the mechanics of the annularly deformed membranes, we proceed 

to understand how delamination occurs at any given pressure load. Just as in the previous chapter, 

we formulate a thermodynamic free energy (ℱ) for the most general system configuration shown 

in Fig. 4.6 under constant P and constant N conditions. We determine the extrema of this free 

energy in order to determine the equilibrium configuration preferred by the system. The free 

energy as before has four components – membrane elastic strain energy (ℱ𝑚𝑒𝑚), free energy due 

to the work done by gas (ℱ𝑔𝑎𝑠 ), free energy associated with displacing the ambient as the 

membrane deforms (ℱ𝑒𝑥𝑡) and finally the work of adhesion (ℱ𝑎𝑑ℎ). 

ℱ = ℱ𝑚𝑒𝑚 + ℱ𝑔𝑎𝑠 + ℱ𝑒𝑥𝑡 + ℱ𝑎𝑑ℎ 

 

(4.12) 

As shown in Fig. 4.6, 𝑎0, 𝑏0 and ℎ denote the annular cavity dimensions – outer radius, inner 

radius and depth, while the blister outer and inner radii are denoted by 𝑎 and 𝑏. The maximum 

height of the blister is 𝐻. The pressure load across the membrane is 𝑝 = 𝑝𝑖– 𝑝𝑎, where 𝑝𝑖 is the 

2𝑎0 

2𝑏0 

2𝑏 
𝑝𝑖  𝑝𝑎  

2𝑎 

𝐻 
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pressure inside the cavity and 𝑝𝑎 is the ambient pressure outside the cavity. The membrane elastic 

energy is equal to the work done by the gas at constant 𝑎 and 𝑏. Hence: 

ℱ𝑚𝑒𝑚 = ∫ 𝑝𝑑𝑉│𝑎,𝑏 =
𝑝𝑉𝑎
4

 

 

(4.13) 

where 𝑉𝑎 is given by eq. (4.6). At constant 𝑎 and 𝑏, it is easy to see from eq. (4.6) that 𝑉𝑎 depends 

only on 𝐻. Now, 𝑝 is proportional to cube of 𝐻 and hence integrating we get ¼ in the final result. 

The work done by the gas is given by: 

ℱ𝑔𝑎𝑠 = −∫ 𝑝𝑖𝑑𝑉 = {

−𝑝0𝑉𝑎 𝑐𝑜𝑛𝑠𝑡 𝑃

−𝑝0𝑉0ln [
𝑉0 + 𝑉𝑎
𝑉0

] 𝑐𝑜𝑛𝑠𝑡 𝑁
 

 

(4.14) 

Here 𝑝0 = 𝑝 + 𝑝𝑎 in the constant P case and the initial charging pressure in the constant N case. 

𝑉0 is the initial volume of the gas which is equal to the volume of the cavity, 𝜋(𝑎0
2 − 𝑏0

2)ℎ. Since 

the applied pressure is constant by definition in the constant P case, the work done is simply given 

by the product of absolute pressure and change in the volume of the gas. The work done in the 

constant N case is obtained using the ideal gas law, 𝑝0𝑉0 = 𝑝𝑖(𝑉0 + 𝑉𝑎)  under isothermal 

conditions. The work done on the ambient is simply the product of ambient pressure and the 

volume by which the ambient is displaced (= 𝑉𝑎). This is because the ambient pressure remains 

constant at 𝑝𝑎 irrespective of whether it is constant P or constant N delamination. So: 

ℱ𝑒𝑥𝑡 = 𝑝𝑎𝑉𝑎 
 

(4.15) 

The free energy contribution through delamination is simply given by: 

ℱ𝑎𝑑ℎ = Γa𝜋(𝑎
2 − 𝑎0

2) + Γb𝜋(𝑏0
2 − 𝑏2) 

 

(4.16) 
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Here we assumed different adhesion energies between the membrane and the substrate outside the 

cavity and on the island. They are denoted by Γ𝑎 and Γ𝑏 respectively. So the final form of the total 

free energy is: 

ℱ

=

{
 

 −
3𝑝𝑉𝑎
4

+ Γa𝜋(𝑎
2 − 𝑎0

2) + Γ𝑏𝜋(𝑏0
2 − 𝑏2) 𝑐𝑜𝑛𝑠𝑡 𝑃

𝑝𝑉𝑎
4
− 𝑝0𝑉0ln [

𝑉0 + 𝑉𝑎
𝑉0

] + 𝑝𝑎𝑉𝑎 + Γ𝑎𝜋(𝑎
2 − 𝑎0

2) + Γb𝜋(𝑏0
2 − 𝑏2) 𝑐𝑜𝑛𝑠𝑡 𝑁

 

 

 

(4.17) 

In the constant P case, the unknown variables are 𝐻, 𝑎 and 𝑏 while the only independent variables 

are 𝑎 and 𝑏 due to the relation between 𝐻, 𝑎 and 𝑏 given by eq. (4.9). In the constant N case at a 

given 𝑝0, the unknowns include 𝐻, 𝑎, 𝑏 and 𝑝𝑖. With eqs. (4.6), (4.9) and the ideal gas equation 𝑝𝑖 

can be expressed in terms of 𝑎 and 𝑏, giving: 

(
𝑝0 − 𝑝𝑖
𝑝𝑖

)
3

𝑉0
3 =

𝜋3(𝑎2 − 𝑏2)3(1 − 𝜈2)

32𝐸𝑡
( 𝑎2 + 𝑏2 − 𝑟0

2)
2
(𝑝𝑖 − 𝑝𝑎) 

 

(4.18) 

 Hence the unknowns 𝐻 and 𝑝𝑖 are both dependent on 𝑎 and 𝑏. This shows that the independent 

variables are again 𝑎 and 𝑏 implying ℱ = ℱ(𝑎, 𝑏) in both constant N and constant P cases. 

 The free energy expression in eq. (4.17) refers to the most general system configuration 

where we have delamination in both outward and inward directions, as in Fig. 4.2d. Putting 𝑎 =

𝑎0 and 𝑏 = 𝑏0 in ℱ(𝑎, 𝑏), the free energy contribution of the adhesion energy vanishes and the 

configuration then corresponds to Fig. 4.2a, no delamination in either outward or inward directions 

making ℱ = ℱ(𝐻). By extension, fixing either 𝑎 = 𝑎0  or 𝑏 = 𝑏0 in ℱ(𝑎, 𝑏) corresponds to the 

configuration in Figs. 4.2b and 4.2c, delamination inwards and outwards respectively making ℱ =

ℱ(𝑏) and ℱ = ℱ(𝑎). 
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4.2.4 Equilibrium Conditions 

In the case of no delamination in either outward or inward direction, the extremum of the 

free energy ℱ(𝐻) gives a trivial solution which is the same as the eq. (4.5). In other cases, the 

equilibrium configuration is obtained by looking at the extrema/extremum of the free energy 

ℱ(𝑎, 𝑏) as represented in eq. (4.17). Let us first look at the constant P case: 

𝜕ℱ(𝑎, 𝑏)

𝜕𝑎
= −

3𝑝

4

𝜕𝑉𝑎
𝜕𝑎

+ Γ𝑎2𝜋𝑎 = 0 

𝜕ℱ(𝑎, 𝑏)

𝜕𝑏
= −

3𝑝

4

𝜕𝑉𝑎
𝜕𝑏

− Γ𝑏2𝜋𝑏 = 0 

 

 

(4.19) 

Solving eq. (4.19) leads to the following equations: 

Γ𝑎 =
𝑝

8
(
𝑝(1 − 𝜈2)

4𝐸𝑡
)

1
3 5𝑎4 + 𝑎2𝑏2 − 5𝑎2𝑟0

2 + 𝑟0
4

𝑎2(𝑎2 + 𝑏2 − 𝑟0
2)
1
3

 

 

Γ𝑏 =
𝑝

8
(
𝑝(1 − 𝜈2)

4𝐸𝑡
)

1
3 5𝑏4 + 𝑎2𝑏2 − 5𝑏2𝑟0

2 + 𝑟0
4

𝑏2(𝑎2 + 𝑏2 − 𝑟0
2)
1
3

 

 

 

(4.20)  

 

 

(4.21) 

Let Γ𝑎 = Γ𝑏 for this part of the analysis. At a given pressure load 𝑝, it can be shown that the eqs. 

(4.20) and (4.21) are simultaneously satisfied only when 𝑎 = 𝑏 . The condition 𝑎 = 𝑏  is not 

feasible implying that there cannot be simultaneous outward and inward delamination.  So, the 

delamination has to begin exclusively in either outward or inward direction. Putting 𝑎 = 𝑎0 in eq. 

(4.21) gives the condition for equilibrium configuration when peeling occurs on the island i.e. 

inward direction. Likewise putting 𝑏 = 𝑏0 in eq. (4.20) gives the condition for equilibrium for 

outward delamination. In each case putting 𝑎 = 𝑎0  and 𝑏 = 𝑏0 , we get two critical pressures 

denoted by 𝑝𝑐,𝑎 and  𝑝𝑐,𝑏 corresponding to eq. (4.20) and eq. (4.21) respectively. These are the 
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pressures at which delamination begins in the outward or the inward direction and again it can be 

shown that 𝑝𝑐,𝑎 > 𝑝𝑐,𝑏 when Γ𝑎 = Γ𝑏. 

𝑝𝑐,𝑎 = (8Γ𝑎  (
4𝐸𝑡

1 − 𝜈2
)

1
3 𝑎0

2(𝑎0
2 + 𝑏0

2 − 𝑟0
2)
1
3

5𝑎0
4 + 𝑎0

2𝑏0
2 − 5𝑎0

2𝑟0
2 + 𝑟0

4)

3
4

 

 

 

(4.22) 

𝑝𝑐,𝑏 = (8Γ𝑏  (
4𝐸𝑡

1 − 𝜈2
)

1
3 𝑏0

2(𝑎0
2 + 𝑏0

2 − 𝑟0
2)
1
3

5𝑏0
4 + 𝑎0

2𝑏0
2 − 5𝑏0

2𝑟0
2 + 𝑟0

4)

3
4

 

 

 

(4.23) 

In view of the difficulty involved in determining analytically the stability of the equilibrium 

configurations from the second derivatives of the free energy, we use graphical means to 

investigate the stability for certain example geometries with graphene membranes. Consider a 

system with 𝑎0 = 2 μm, 𝑏0 = 0.5 μm, 𝐸𝑡 = 340 N/m, 𝜈 = 0.16 and Γ𝑎 = Γ𝑏 = 0.2 J/m2. The critical 

pressures are then 𝑝𝑐,𝑎 = 1.94 MPa and 𝑝𝑐,𝑏 = 0.99 MPa. Since 𝑝𝑐,𝑏 < 𝑝𝑐,𝑎, delamination should 

start in the inward direction i.e. on the island. The plots in Fig. 4.7 show the free energy as a 

function of width of the delaminated annular region, 𝑏0 − 𝑏 when the delamination is inwards. 

When 𝑝 < 𝑝𝑐,𝑏 (blue curve, Fig. 4.7), the free energy function has an energy barrier implying no 

delamination at all. It is clear that when 𝑝 = 𝑝𝑐,𝑏 (black curve, Figs. 4.7), the free energy has a 

local maximum at (𝑎0, 𝑏0). Hence, we have an unstable equilibrium along the 𝑏 direction i.e. 

delamination from the island. Finally if 𝑝 > 𝑝𝑐,𝑏 (red curve, Figs. 4.7), there is no energy barrier 

for delamination in the 𝑏  direction. So at or above the critical pressure 𝑝𝑐,𝑏 , the membrane 

delaminates from the island and hence we no longer have an annular deformation. As the 

membrane pops off from the island, it should now assume a spherical bulge shape as in a standard 

blister test that is described in the previous chapter. Accordingly, the membrane mechanics and 

the system thermodynamics are described by the analysis developed in the previous chapter. We 
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had a critical pressure, 𝑝𝑐 associated with this configuration given by eq. (3.17) (Γ is replaced with 

Γ𝑎). Assuming 𝑝𝑐 > 𝑝𝑐,𝑏, this gives rise to two different scenarios: 𝑝𝑐 > 𝑝 > 𝑝𝑐,𝑏 and 𝑝𝑐 ≤ 𝑝. In 

the former case, we will have a spherical bulge without any blister formation and in the latter case, 

the membrane starts to form a circular blister. So to summarize: 

(a)  𝑝 < 𝑝𝑐,𝑏 – annular bulge with no delamination. 

(b)  𝑝𝑐,𝑏 ≤ 𝑝 < 𝑝𝑐 – unstable delamination in the inward direction and spherical bulge. 

(c)  𝑝 ≥ 𝑝𝑐 – unstable delamination first in the inward direction and then in the outward 

direction. 

 

Figure 4.7 Plots showing the free energy variation at fixed 𝑎 = 𝑎0 as a function of the difference 

of initial inner radius and inner blister radius at different pressures - (blue) 𝑝 = 0.6 MPa, 

(black) 𝑝 = 0.99 MPa = 𝑝𝑐,𝑏 and (red) 𝑝 = 1.4 MPa. 

If 𝑝𝑐 ≤ 𝑝𝑐,𝑏, then there are only two scenarios: 𝑝 < 𝑝𝑐,𝑏 meaning no delamination and an annular 

bulge and 𝑝 ≥ 𝑝𝑐,𝑏  meaning unstable delamination from both the inward and the outward 

directions. In this case with Γ𝑎 = 0.2 J/m2 and 𝑎0 = 2 μm, 𝑝𝑐 is 1.17 MPa and hence the applied 
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pressure has to be less than this value, 𝑝𝑐  to avoid blow-off and between 𝑝𝑐,𝑏  and 𝑝𝑐  to just 

delaminate from the island.  

 

Figure 4.8 Plots of 𝑝𝑐,𝑎, 𝑝𝑐,𝑏 and 𝑝𝑐 with respect to (a) annular cavity inner radius, 𝑏0 with 𝑎0 = 

2 𝜇𝑚 , 𝛤𝑎 = 𝛤𝑏=0.2 J/m2, (b) annular cavity outer radius, 𝑎0  with 𝑏0  = 0.5 𝜇𝑚 , 𝛤𝑎 =
𝛤𝑏=0.2 J/m2 

 The variation of the three critical pressures involved 𝑝𝑐,𝑎, 𝑝𝑐,𝑏 and 𝑝𝑐 at fixed 𝑎0 and 𝑏0 

are plotted in Figs. 4.8a and 4.8b respectively. It can be seen that in either case 𝑝𝑐,𝑎 is always 

greater than 𝑝𝑐,𝑏. Also, there are special outer and inner radii where 𝑝𝑐 = 𝑝𝑐,𝑏. Let them be denoted 

by 𝑎0
∗  and 𝑏0

∗  respectively. If 𝑏0 ≥ 𝑏0
∗  and 𝑝 = 𝑝𝑐,𝑏  at fixed 𝑎0  (= 2 μm ), then there will be 

complete blow-off because from Fig. 4.8a 𝑝𝑐 ≤ 𝑝𝑐,𝑏; while if 𝑏0 < 𝑏0
∗, there will be delamination 

only from the island. Likewise, if 𝑎0 ≤ 𝑎0
∗  at fixed 𝑏0  (= 0.5 μm) there will be complete blow-off 

and if 𝑎0 > 𝑎0
∗  there will be just delamination on the island when 𝑝 = 𝑝𝑐,𝑏. 

Now let Γ𝑎 ≠ Γ𝑏. If Γ𝑎 > Γ𝑏, it has the effect of increasing only 𝑝𝑐 and 𝑝𝑐,𝑎 relative to 𝑝𝑐,𝑏. 

Hence the overall mechanics and thermodynamics is not much different from what has been 

described before. On the other hand if Γ𝑏 > Γ𝑎 , we might have a scenario where 𝑝𝑐,𝑎 < 𝑝𝑐,𝑏 

depending on the geometry. This means that we will have delamination in the outward direction 

first as shown in Fig. 4.2c. The plots in Figs. 4.9a,b show how the critical pressures vary with 

geometry with Γ𝑎 = 0.2 J/m2 and Γ𝑏 = 0.4 J/m2. We changed Γ𝑏 from 0.2 J/m2 to 0.4 J/m2 and kept 

a b 

▬ 𝑝𝑐,𝑏 

▬ 𝑝𝑐,𝑎   

▬ 𝑝𝑐 

▬ 𝑝𝑐,𝑏 

▬ 𝑝𝑐,𝑎   

▬ 𝑝𝑐 
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Γ𝑎 the same as in the calculations shown in Fig. 4.8. Hence only the 𝑝𝑐,𝑏 curve is different from 

what we have in Fig. 4.8, while the 𝑝𝑐 and 𝑝𝑐,𝑎 curves remain exactly the same. Figure 4.9a shows 

that at a fixed 𝑎0 (= 2 μm) there exists a critical inner radius 𝑏0
′  above which 𝑝𝑐,𝑎 < 𝑝𝑐,𝑏. This is 

in contrast to being 𝑝𝑐,𝑎 > 𝑝𝑐,𝑏  when Γ𝑎 = Γ𝑏. Similarly at a fixed 𝑏0 (= 0.5 μm), there exists a 

critical outer radius 𝑎0
′  such that below this value 𝑝𝑐,𝑎 < 𝑝𝑐,𝑏  and above it 𝑝𝑐,𝑎 > 𝑝𝑐,𝑏 . As 

mentioned before, 𝑝𝑐,𝑎 being smaller than 𝑝𝑐,𝑏 enables the experimenter to achieve delamination, 

still unstable, along the outward direction first. But as the membrane delaminates and the blister 

radius 𝑎 increases beyond 𝑎0
′ , 𝑝𝑐,𝑏 will no longer be greater than 𝑝𝑐,𝑎. This causes delamination 

inwards too, thus leading to blow-off. If Γ𝑏 ≫ Γ𝑎, we might avoid this by making 𝑎0
′  very large.  

 

Figure 4.9 Plots of 𝑝𝑐,𝑎, 𝑝𝑐,𝑏 and 𝑝𝑐 with respect to (a) annular cavity inner radius, 𝑏0 with 𝑎0 = 

2 𝜇𝑚, (b) annular cavity outer radius, 𝑎0 with 𝑏0 = 0.5 𝜇𝑚. In both cases, 𝛤𝑎 =0.2 J/m2 

and 𝛤𝑏=0.4 J/m2. 

 Let us now analyze the constant N island blister test. At an equilibrium configuration we 

have: 

𝜕ℱ(𝑎, 𝑏)

𝜕𝑎
= −

3𝑝

4

𝜕𝑉𝑎
𝜕𝑎

+
𝑉𝑎
4

𝜕𝑝

𝜕𝑎
+ 2𝜋𝛤𝑎𝑎 = 0 

𝜕ℱ(𝑎, 𝑏)

𝜕𝑏
= −

3𝑝

4

𝜕𝑉𝑎
𝜕𝑏

+
𝑉𝑎
4

𝜕𝑝

𝜕𝑏
− 2𝜋Γ𝑏𝑏 = 0 

 

 

(4.24) 

a b 

▬ 𝑝𝑐,𝑏 

▬ 𝑝𝑐,𝑎   

▬ 𝑝𝑐 

▬ 𝑝𝑐,𝑏 

▬ 𝑝𝑐,𝑎   

▬ 𝑝𝑐 
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Here 𝑝 (= 𝑝𝑖 − 𝑝𝑎) is now not a constant as in the constant P case. From eq. (4.6), we know that 

𝑉𝑎 is a function of 𝑎, 𝑏 and 𝑝 (𝑝 itself is a function of 𝑎 and 𝑏, eq. (4.18)). So, using the chain rule 

we get: 

𝜕𝑉𝑎
𝜕𝑎

=
𝜕𝑉𝑎
𝜕𝑎

│𝑝𝑖 +
𝜕𝑉𝑎
𝜕𝑝

│𝑎
𝜕𝑝

𝜕𝑎
=
𝜕𝑉𝑎
𝜕𝑎

│𝑝𝑖 +
1

3

𝜕𝑝

𝜕𝑎
 

𝜕𝑉𝑎
𝜕𝑏

=
𝜕𝑉𝑎
𝜕𝑏

│𝑝𝑖 +
𝜕𝑉𝑎
𝜕𝑝

│𝑏
𝜕𝑝

𝜕𝑏
=
𝜕𝑉𝑎
𝜕𝑏

│𝑝𝑖 +
1

3

𝜕𝑝

𝜕𝑏
 

 

 

(4.25) 

Putting eqs. (4.25) in eqs. (4.24) gives us: 

𝜕ℱ(𝑎, 𝑏)

𝜕𝑎
= −

3𝑝

4

𝜕𝑉𝑎
𝜕𝑎

│𝑝𝑖 + 2𝜋𝛤𝑎𝑎 = 0 

 
𝜕ℱ(𝑎, 𝑏)

𝜕𝑏
= −

3𝑝

4

𝜕𝑉𝑎
𝜕𝑏

│𝑝𝑖 − 2𝜋𝛤𝑏𝑏 = 0 

 

 

(4.26) 

Thus we get back essentially the same equations as in the constant P case (see eq. (4.19)) except 

that 𝑝 is now obtained by solving eq. (4.18) at a given input or charging pressure 𝑝0 instead of 

being a constant. As a result, the eqs. (4.22) and (4.23) which give 𝑝𝑐,𝑎 and 𝑝𝑐,𝑏 are still valid. 

Through eq. (4.18) and with the values of 𝑝𝑐,𝑎 and 𝑝𝑐,𝑏, we get two critical charging pressures 𝑝0,𝑐
𝑎  

and 𝑝0,𝑐
𝑏 . Due to the nature of the eq. (4.18), it is not easy to express the critical charging pressures 

explicitly as functions of 𝑎, 𝑏 and Γ𝑎 or Γ𝑏.  
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Figure 4.10 Plots showing the free energy variation as a function of the difference of initial inner 

radius and inner blister radius at different pressures - (blue) p0 = 1.0 MPa,(black) p0 = 

1.39 MPa = 𝑝0,𝑐
𝑏  and (red) p0 = 1.8 MPa. 

We again make use of graphical means to investigate the characteristics of the equilibrium 

configurations. With the same geometry and parameters that are used to plot Fig. 4.7 (𝑎0 = 2 μm, 

𝑏0 = 0.5 μm, Γ𝑎 = Γ𝑏 = 0.2 J/m2, 𝐸𝑡 = 340 N/m, 𝜈 = 0.16) and the depth of the cavity ℎ = 0.2 μm, 

we plot the free energy ℱ at fixed 𝑎 (= 𝑎0) and at different charging pressures 𝑝0 in Fig. 4.10. The 

values of  𝑝0,𝑐
𝑎  and 𝑝0,𝑐

𝑏  in this case are 2.77 MPa and 1.39 MPa respectively. As before with the 

constant P IBT case, the critical pressure needed to delaminate inwards is smaller than that needed 

to delaminate outwards. And it is clear from the similarity of the Figs. 4.10 and 4.7 that the situation 

in this case is not much different. And as in the constant P IBT, we have three scenarios: 

(a) 𝑝0 < 𝑝0,𝑐
𝑏  – energy barrier exists (blue curve, Fig. 4.10) preventing delamination. 

Hence we just have an annular deformation. 

(b) 𝑝0 ≥ 𝑝0,𝑐
𝑏  – energy barrier vanishes when 𝑝0 = 𝑝0,𝑐

𝑏  and we have an unstable 

equilibrium at 𝑏 = 𝑏0 (black curve, Fig. 4.10). This means complete delamination from 

the island with formation of a circular bulge as in the standard blister test. Two different 
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scenarios are possible depending on the value of 𝑝0,𝑐, the critical input pressure in the 

case of constant N standard blister test (obtained from eq. (3.26) with Γ = Γ𝑎):  

(1) 𝑝0 ≤ 𝑝0,𝑐 – no delamination along the outer boundary i.e. 𝑎 = 𝑎0. 

(2) 𝑝0 > 𝑝0,𝑐 – there will be stable delamination along the outer boundary too and 

𝑎 > 𝑎0. This behavior here is in contrast to the constant P island blister case 

where there will be complete unstable delamination with blow-off. 

  

Figure 4.11 Plots of the critical input pressures associated with constant N IBT with respect to (a) 

annular cavity inner radius, 𝑏0 with 𝑎0 = 2 𝜇𝑚, (b) annular cavity outer radius, 𝑎0 with 

𝑏0 = 0.5 𝜇𝑚. In both cases, 𝛤𝑎 =0.2 J/m2, 𝛤𝑏=0.2 J/m2 and 𝑑 = 0.2 𝜇𝑚. 

   

Figure 4.12 Plots showing the free energy variation at fixed (a) 𝑎(= 𝑎0) and (b) 𝑏(= 𝑏0) as a 

function of the difference of (a) initial inner radius and inner blister radius and (b) initial 

outer radius and outer blister radius respectively at (blue) 𝑝0 = 2.6 MPa, (black) 𝑝0 = 2.77 

MPa = 𝑝0,𝑐
𝑎 , (red) 𝑝0 = 3.0 MPa, and (green) 𝑝0 = 3.4 MPa. 
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 Figures 4.11a and 4.11b show the variation of the critical pressures 𝑝0,𝑐
𝑎 , 𝑝0,𝑐

𝑏  and 𝑝0,𝑐 with 

respect to 𝑎0 and 𝑏0 when 𝑏0 and 𝑎0 are held fixed respectively. This again looks similar to the 

constant P IBT counterpart Fig. 4.8. Here too, we have a special inner radius 𝑏0
∗ (outer radius 𝑎0

∗) 

where 𝑝0,𝑐 = 𝑝0,𝑐
𝑏   at a given outer radius 𝑎0  (inner radius  𝑏0). 

 What happens when 𝑝0,𝑐
𝑎 < 𝑝0,𝑐

𝑏 ? Let us look at this case by slightly changing the 

parameters used in the above example scenario. We change Γ𝑏 to 0.6 J/m2 from 0.2 J/m2. This 

results in no change for 𝑝0,𝑐
𝑎  (= 2.77 MPa) but 𝑝0,𝑐

𝑏  increases to 3.25 MPa. This indicates that the 

delamination will start at the outer boundary while the inner boundary stays attached to the island. 

The plots of the free energy at input pressures below, equal to and above 𝑝0,𝑐
𝑎  are shown in Figs. 

4.12a and 4.12b. In the case of the free energy plots along the 𝑏 direction, we have an energy 

barrier in all the first three cases (blue, black and red curves with 𝑝0 = 2.6 MPa, 2.77 MPa and 3.0 

MPa respectively in Fig. 4.12a). Hence the membrane stays attached to the island in each of those 

cases. While along the 𝑎 direction we see from Fig. 4.12b  if: 

(a) 𝑝0 < 𝑝0,𝑐
𝑎  – the free energy has no equilibrium configurations (blue curve with 𝑝0 = 2.6 

MPa, Fig. 4.12b) and has a local minimum at 𝑎 = 𝑎0. Hence there will be no delamination 

and we have an annular bulge. 

(b) 𝑝0 ≥ 𝑝0,𝑐
𝑎  – the free energy has an equilibrium configuration which is a minimum implying 

a stable equilibrium and no energy barriers. The equilibrium configuration is at 𝑎 = 𝑎0 

when 𝑝0 = 𝑝0,𝑐
𝑎  (black curve with 𝑝0 =  2.77 MPa, Fig. 4.12b). Again we have two 

scenarios branching from this situation which are, if: 

(1) 𝑝0,𝑐
𝑎 < 𝑝0 < 𝑝0,𝑐

𝑏  – leads to annular bulge with delamination along the 𝑎 

direction until it reaches the equilibrium on the free energy curve as shown in 
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Fig. 4.12b (red curve with 𝑝0 = 3.0 MPa). The membrane stays attached to the 

island as we still have an energy barrier (as seen in the red curve, Fig. 4.12a) 

along the 𝑏 direction in this input pressure range that discourages delamination 

from the island. 

(2) 𝑝0 ≥ 𝑝0,𝑐
𝑏  – leads to delamination from the island completely as the energy 

barrier is no longer there (green curve with 𝑝0 = 3.4 MPa, Fig. 4.12a) and hence 

leads to a circular bulge or blister depending on the values of 𝑝0,𝑐. In this case 

a blister as 𝑝0 exceeds 𝑝0,𝑐 = 2.17 MPa. 

  

Figure 4.13 Variation of critical charging pressures with cavity depth ℎ and island adhesion 

energy 𝛤. When not varied, the values of the other parameters are 𝐸𝑡 = 340 𝑁/𝑚, 𝜈 =
0.16, 𝑎0 = 2 𝜇𝑚, 𝑏0 = 1.5 𝜇𝑚, 𝑑 = 0.2 𝜇𝑚 and 𝛤 = 0.2 𝐽/𝑚2. 

 In Fig. 4.13a, we show similar results to those in Fig. 4.11 but we vary the depth of the 

cavity and the adhesion strength on the island here. The system parameters used in these plots are 

the same as in Fig. 4.11 except 𝑏0 = 1.5 μm here. The variation in the depth of the cavity gives a 

result which looks similar to the results in Fig. 4.11a. When the adhesion strength on the island 

(Fig. 4.13b) is varied assuming the adhesion strength on the outer boundary is still 0.2 J/m2, there 

is a critical adhesion strength at which delamination from the outer boundary is favored over island 

delamination. In other words, as we increase the adhesion strength on the island there is a critical 
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value above which the energy release rate for island delamination goes below that for delamination 

from outer boundary. 

 

Figure 4.14 Plots showing ℱ(𝑎0, 𝑏) as a function of the difference of initial inner radius and inner 

blister radius at (blue) 𝑝0 = 16 MPa, (black) 𝑝0 = 17.74 MPa = 𝑝0,𝑐
𝑏  and (red) 𝑝0 = 18 

MPa. 

With the help of the two examples described until now, we notice that the delamination 

from the island is not stable even though we are using limited number of gas atoms. It can be made 

stable by carefully choosing the system parameters. As the inward delamination sets in, the 

stiffness of the system decreases at a faster pace than the critical pressure leading to unstable 

delamination. However it is possible to arrest this unstable inwards delamination process, one way 

is to make the inner radius large enough. Hence if we let 𝑎0 = 2 μm, 𝑏0 = 1.8 μm, ℎ = 0.02 μm, 

Et  = 340 N/m and Γ𝑎 = Γ𝑏 = 0.2 J/m2, we get 𝑝0,𝑐
𝑎  = 13.32 MPa and 𝑝0,𝑐

𝑏  = 17.74 MPa. The free 

energy at fixed 𝑎(= 𝑎0) is plotted in Fig. 4.14 as before. From the three curves in Fig. 4.14, we 

can say that if: 
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(a) 𝑝0 < 𝑝0,𝑐
𝑏  – (as in the blue curve with 𝑝0 = 16 MPa, Fig. 4.14) the free energy has an 

equilibrium configuration at𝑏 < 𝑏0 , but there is an energy barrier and hence no 

delamination. We will see just an annular bulge. 

(b) 𝑝0 ≥ 𝑝0,𝑐
𝑏  – (as in the black and red curve with 𝑝0 = 𝑝0,𝑐

𝑏 = 17.74 MPa and 𝑝0 = 18 

MPa respectively, Fig. 4.14) the energy barrier vanishes and now we have a local 

minimum at 0 < 𝑏 ≤ 𝑏0 on the free energy curve implying a stable equilibrium without 

complete delamination. In addition, we also have an inaccessible equilibrium 

configuration which is a maximum. When 𝑝0 = 𝑝0,𝑐
𝑏 , there is an equilibrium 

configuration which is a maximum at exactly 𝑏 = 𝑏0. 

Hence with this geometry, we have what is initially an unstable delamination from the island 

leading to a stable equilibrium configuration. It is to be noted that as the charging pressure is 

increased, the minimum and the maximum to the right move closer and coalesce. When this 

happens we will have a complete delamination from the island. 

 Now if in the previous case the depth of the cavity is changed to 0.01 μm  keeping 

everything else the same, we see a different behavior from the system as shown in Fig. 4.15. The 

free energy in this case has a minimum at the critical charging pressure (𝑝0,𝑐
𝑏 = 23.32 MPa) at 𝑏 =

𝑏0  meaning the delamination from the island will be stable. But as in the previous case, the 

minimum vanishes at a specific charging pressure again resulting in unstable delamination. 
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Figure 4.15 Plots showing ℱ(𝑎0, 𝑏) as a function of the difference of initial inner radius and inner 

blister radius at (blue) 𝑝0 = 20 MPa, (black) 𝑝0 = 23.32 MPa = 𝑝0,𝑐
𝑏  and (red) 𝑝0 = 27 

MPa.  

 In summary, the constant N island blister delamination is unstable for most geometries but 

can be made stable for a given outer diameter by decreasing the depth of the cavity and increasing 

the radius of the island. This in effect decreases the initial volume occupied by the pressurized gas. 

Mathematically speaking, the delamination is unstable because the stiffness of the membrane as it 

delaminates decreases at a larger rate than the pressure of the expanding gas. But having a large 

inner radius 𝑏 and small initial volume can reverse this trend, albeit only for a specific range of 

pressures. In each scenario, the common feature is that the membrane goes from being flat to being 

annularly deformed under a pressure load and at a sufficiently higher pressure, the membrane 

delaminates from the island to form a spherical bulge or blister. 
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4.3  Experiment 

     

Figure 4.16 Optical images of the devices covered with (a) monolayered graphene flake, (b) five 

layered graphene flake. 

The goal is to observe the annular deformations of the graphene membrane and find the 

critical delamination pressure for the island (𝑝0,𝑐
𝑏 ) at lower pressures. In conjunction, we also 

perform the standard blister test by extending the input pressure beyond 𝑝0,𝑐
𝑏  and above 𝑝0,𝑐. This 

allows us to evaluate the accuracy of the island blister test in measuring adhesion energy and 

simultaneously enables us to showcase the variety of mechanical deformations possible with this 

geometry under a pressure load. The ability for a membrane to assume different configurations 

under a pressure load might have applications in micro/nano scale devices.  

The experimental setup is almost exactly the same as described in section 3.2. For the sake 

of completeness, it is described again in brief. Annular cavities are lithographically patterned onto 

a silicon chip with a thermally grown silicon oxide of thickness 90 nm. Graphene flakes are 

mechanically exfoliated onto the chip and the number of layers in each graphene flake is 

determined using Raman spectroscopy (see Appendix, A.2.1). We fabricated eight mono-layered 

devices, the optical image of which is shown in Fig. 4.16a, with outer radius 𝑎0 = 1.50 μm, inner 

radius 𝑏0 =0.35 μm and depth ℎ =112 nm and eight five-layered devices with dimensions 𝑎0 = 

1.70 μm, 𝑏0 = 0.25 μm and ℎ = 106.5 nm. The devices are charged with nitrogen molecules at a 

given input pressure in a pressure chamber. After giving sufficient time for the pressures inside 

a b 
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and outside the cavity to equilibrate, we take them out and measure the deformation of each device 

that is a result of the change in the pressure outside the cavity using an atomic force microscope 

(AFM). The input pressures applied range between approximately 290 kPa to 4.10 MPa with the 

experiment proceeding from lower to higher values. 

4.4  Experimental Results 

     
 

Figure 4.17 Cross-sections of AFM height images for mono-layered graphene blisters: green 

(annular), blue (spherical with no delamination), and red (spherical with delamination). 

The pressures at which they are obtained in increasing order are p0 = 289.8 kPa, 512.6 

kPa, 733.0 kPa, 929.0 kPa, 1223.0 kPa, 1659.0 kPa, 2051.0 kPa, 2557.0 kPa, 3010.0 kPa, 

3431.0 kPa, 3755.0 kPa, and 4165.0 kPa. (b, c) Three dimensional rendering of annular 

and spherical blisters obtained by AFM respectively. 

Full-field measurements of deformed blisters show that the deformations are axisymmetric 

(see Appendix, A.2.2 for full AFM images), allowing us to describe the deformed configurations 

using just the deflection along a diametrical chord. Measured deflection profiles at different 

charging pressures for a representative device are plotted in Fig. 4.17a. At charging pressures 

below 750 kPa for this particular device (green curves), the membrane is adhered to the island, 

and as we gradually increase the charging pressure it delaminates from the island (at 929 kPa). At 

even higher pressures (about 2 MPa, red curves), the membrane then starts delaminating in the 

a b 
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outward direction.  Also shown in Figs. 4.17b,c are full-field 3D AFM height scans of an annular 

and a spherical blister, demonstrating the axisymmetric deformation. 

Charging Pressure,  𝑝0 

(kPa) 
289.8 512.6 733.0 929.0 

Mono-layered 

Island radius, 𝑏 (nm) 

(𝑏0 = 350.0 nm) 

335.0 335.0 295.0 
270.0 

(2 devices) 

Multi-layered Island 

radius , b (nm) 

(𝑏0 = 250.0 nm) 

185.0 195.0 
150.0 

(3 devices) 
- 

Table 4.1   Averaged radii of the region of the membrane still attached to the island at different 

charging pressures. 

 Mono-layered Devices 

(𝑎0 = 1.5 μm) 

Multi-layered Devices 

(𝑎0 = 1.7 μm) 

Charging 

Pressure,  

𝑝0 (MPa) 

Averaged 

Blister 

Radius, 𝑎 

(μm) 

Adhesion 

Energy, Γ 

(mJ/m2) 

Averaged 

Blister 

Radius, 𝑎 

(μm) 

Adhesion 

Energy, Γ 

(mJ/m2) 

2.05 1.61 112.13 - - 

2.56 1.86 126.97 1.80 128.78 

3.01 1.99 141.28 1.88 153.66 

3.43 2.20 142.40 2.07 161.13 

3.76 2.37 139.51 2.24 161.05 

4.16 2.52 141.58 2.41 162.36 

Table 4.2 Calculated adhesion energies along with the blister radii at different charging pressures 

From these measurements, we first find the critical island delamination pressure, 𝑝0,𝑐
𝑏  and 

using eqs. (4.18) and (4.21), we find the adhesion energy on the island. We found that mono-

layered membranes delaminated completely from the island at a charging pressure between 733 

kPa and 1223 kPa (see Table 4.1 above). Based on the observation that two of the eight mono-
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layered devices remain attached to the island at 929 kPa, we took this value to be our best estimate 

of the critical charging pressure for island delamination, 𝑝0,𝑐
𝑏 . This is because from Table 4.1 it is 

evident that the membranes are slowly delaminating from the island and at 929.0 kPa all but two 

of them delaminate completely. Other devices conceivably could have been still attached to the 

island at slightly lower charging pressures. Employing a similar argument, we assume that 𝑝0,𝑐
𝑏  is 

733.0 kPa for multi-layered devices. With 𝑝0,𝑐
𝑏 = 929.0 kPa and 𝑏 = 270.0 nm, the adhesion 

energy on the island is estimated to be 102.6 mJ/m2 for mono-layered membranes. It is 123.8 

mJ/m2 for multi-layered membranes with 𝑝0,𝑐
𝑏 = 733.0 kPa and 𝑏 = 150.0 nm. 

Now, we look at the measurements made after delamination begins to take place along the 

outward direction to obtain both the adhesion energy and critical delamination pressure, 𝑝0,𝑐. In 

Table 4.2, we tabulated the averaged blister radii at different charging pressures and calculated the 

adhesion energy using eq. (3.23). For mono-layered devices, it can be seen that the calculated 

adhesion energy increases from 112.13 mJ/m2 at 2.05 MPa to about 140 mJ/m2 at 3.01 MPa and 

then remains at about this value at higher pressures. Likewise for multi-layered devices, the 

apparent adhesion energy is 128.78 mJ/m2 at 2.56 MPa and reaches a stable value of about 160 

mJ/m2 at and above 3.43 MPa. Thus the apparent adhesion energy near the edge of the cavity is 

lower than that in the regions sufficiently away from the edge. Also, note that the adhesion energy 

close to the edge is about the same as that found on the islands. This suggests that perhaps the 

apparent adhesion energy varies along the radial direction due to topographic variations near the 

perimeter of the cavity (as well as near the island boundary), including a non-ideal circular 

boundary, a boundary that is not sharp (as assumed in our model), and roughness variations near 

the perimeter of the cavity.  In order to estimate the critical charging pressure, 𝑝0,𝑐 with our theory, 

we used the lowest apparent adhesion energy with 𝑎 = 𝑎0 and plugged in these values into eq. 
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(3.26). This results in 𝑝0,𝑐 = 2.0 MPa for mono-layered membranes and 2.14 MPa for multi-

layered ones. 

 
 

 

Figure 4.18 (a, d) Maximum deflection (𝛿 = spherical, 𝐻 = annular); (b, e) equilibrium pressure 

in the microcavity (𝑝𝑖); and (c, f) outer radius of the circular bulge (𝑎) versus the charging 

pressure (𝑝0).  Figures (a,b,c) are for graphene monolayers and (d,e,f) are for multilayers.  

In each case the symbols are measurements and the curves are theory.  The green curve is 

for the annular deformation, the blue curve for the spherical deformation without 

delamination, and the red curves are for spherical deformation with delamination for 

different values of adhesion energies: dashed – 100 (120) mJ/m2, solid – 140 (160) mJ/m2 

and long dashed – 180 (200) mJ/m2 for monolayer (multilayer) membranes.  

Figures 4.18a,b,c show the experimentally-determined maximum deflection (𝐻 or 𝛿), the 

final equilibrium internal cavity pressure (𝑝𝑖) and the blister outer radius (𝑎) for the monolayer 

devices as a function of charging pressure (𝑝𝑜). Theoretical estimates are also shown in each figure. 

Both experiments and theory show three configurations: i) annular blisters (green lines), ii) 

spherical blister before delamination (blue lines), and iii) spherical blisters after delamination from 

the outer boundary (red lines). The solid, dashed and long-dashed red curves in the figures are 

calculated with different values of adhesion energy which are 140±40 mJ/m2 where 140 mJ/m2 is 

the average adhesion energy for monolayer membranes obtained using the last four data points 

a b c 

d e f 
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(see Table 4.2) where significant outward delamination occurs and thus our model is expected to 

be most accurate. It can be seen that our measurements for mono-layered devices are self-

consistent among 𝐻 or 𝛿, 𝑝𝑖, and 𝑎 and show good agreement with the theory.  

Corresponding results for the five-layer devices shown in Figs. 4.18d,e,f are similar 

qualitatively, but differ from the monolayers in two ways.  First the best-fit value of adhesion 

energy is 160 mJ/m2, we think the difference in adhesion energies for mono-layer and fiver-layers 

may result from the complicated dependence of adhesion energy on the number of layers, surface 

topography and interfacial forces82–84. Second, the behavior is not as self-consistent among 𝐻 or 

𝛿, 𝑝𝑖, and 𝑎; while the agreement between experiment and theory is reasonable, it is not as good 

as for the monolayer. We attribute this to wrinkling that appears to occur during deformation of 

the multilayer devices (see Appendix, A.2.3). While the broad nature of the axisymmetric 

deformation exists, the wrinkling indicates that our analytical model is not likely to work as well. 

Physically we think the wrinkling is facilitated by sliding of the membrane near the perimeter of 

the blister. We can approximate the effect of sliding by relaxing our assumption that the 

membranes are clamped by the adhesive interactions at the boundaries. Instead if we assume that 

the membranes are constrained from vertical movement, but allowed to slide on the substrate, then 

the membrane behaves softer than an equivalent clamped membrane with no sliding85. 

Incorporating the sliding boundary condition into our analysis results in good agreement between 

theory and experiment that is also self-consistent among 𝐻 or 𝛿, 𝑝𝑖, and 𝑎. 

It is noteworthy that these adhesion energies are lower than the ones that we obtained in 

the experiment described in the previous chapter, 310-450 mJ/m2 with the same substrate material. 

We do not fully understand the reasons for these differences but note that the fabrication process 
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details were different here, and it would not be surprising that this lead to different surface 

conditions and thus adhesion energy.  

4.5  Summary 

In conclusion, we performed the island blister test as well as standard blister test on 

monolayered and five-layered graphene membranes. At the same time, we demonstrated graphene 

blisters that can be switched and tuned by the combination of pressure and adhesion. Our 

measurements showed that graphene membranes can be switched from an annular to a spherical 

shape with varying lateral size using the pressure exerted by a fixed mass of trapped gas. We 

modeled the experimental system using a new nonlinear membrane model (for the annular blister) 

and ideal gas behavior in a thermodynamic framework to determine the deformation characteristics 

and the critical charging pressures at which the blisters switch shapes as a function of system 

parameters (geometry, elastic properties, pressure, and adhesion energy). This ability of graphene 

blisters to switch configurations can be potentially used to create surfaces with tunable topography 

when covered with a patterned array of these devices. The devices can potentially be made 

individually addressable, thereby making the tuning process dynamic. Such devices with 

dynamically tunable topography can be used to make smart surfaces that can change their 

surface/interfacial properties, for instance wettability. This device geometry can be extended to 

making electromechanical devices where electrostatic force between the graphene membrane and 

the substrate can be used to control the switching while keeping the pressure inside the cavity fixed 

for improved control and faster operation.  
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5. Effect of Interfacial Forces on Graphene Mechanics 

5.1  Introduction 

We know that at atomic scales, atoms are held together via very strong ionic or covalent 

bonds to form solids. The atoms which form the bulk of such solids are very stable and do not 

interact otherwise. However, the atomic species that form the surfaces of such solids behave 

differently than their bulk counterparts. They have higher energy due to the fact that these atoms 

bond with fewer atoms compared to the bulk atoms. Hence surfaces have special properties due to 

their active nature and interact with other surfaces to form interfaces. These interactions are usually 

mediated by either capillary, electrostatic, van der Waals, Casimir forces etc or a combination of 

these forces.  

The van der Waals (vdW) force is the attractive force that arises between any two species 

of atoms, due to the interaction of electric dipoles, induced or instantaneous (quantum mechanical 

fluctuations), at very small separations (few Å). Casimir force is the macroscopic equivalent of the 

vdW forces at larger separations (tens of nanometers to several microns). A complete treatment of 

the vdW and Casimir forces is given by Lifshitz’s theory. These forces have an electromagnetic 

origin and hence are inversely proportional to the separation between interacting bodies. At micro 

and nano-scales, vdW and Casimir forces dominate interfacial interactions between two mostly 

neutral surfaces in the absence of liquid layers. Futhermore, it is known that at separations smaller 

than a few nm’s the dominant forces are the vdW forces. 

A simple and effective way of describing vdW forces is the familiar Lennard-Jones 12-6 

pair potential, given by: 
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𝑈𝐿𝐽(𝑟) =
𝐶1
𝑟12

−
𝐶2
𝑟6

 

 

(5.1) 

Here 𝐶1 and 𝐶2 are constants dependent on the species of the pair of atoms interacting and 𝑟 is the 

separation between them. The force due to this potential is attractive above an equilibrium 

separation and repulsive below it.  

  

Figure 5.1 Lennard-Jones 12-6 potential (black Curve) and force (blue Curve) for C-C vdW 

interactions. The vertical red line intersects the two curves at the equilibrium separation, 

re=3.82 Å. 

 The LJ potential is shown in Fig. 5.1 (black curve) with 𝐶1 ≈ 4.35 × 10
−135 and 𝐶2 ≈

2.82 × 10−78 in MKS units corresponding to Carbon-Carbon interactions. Also the force due to 

this potential, 𝐹𝐿𝐽 = 𝑑𝑈𝐿𝐽/𝑑𝑟 is plotted in blue (positive force is attractive). The equilibrium 

separation in this case is 𝑟𝑒 = 3.82 Å where 𝐹𝐿𝐽 = 0. Ignoring any multi-body effects, we can sum 

these pair interactions for a large number of atoms constituting two macroscopic bodies to give 

the interfacial force between them due to vdW interactions. Hence for two plane parallel sheets of 

atoms as in graphene and other 2D materials separated by a distance 𝑑, the cumulative potential 

per unit area would be: 
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𝑈𝐿𝐿(𝑑) = 𝜌𝐿
2∫ 𝑈𝐿𝐽(𝑟)𝑑𝐴 = 2𝜋𝜌𝐿

2 (
𝐶1

10𝑑10
−
𝐶2
4𝑑4

) 

 

(5.2) 

The subscript ‘L’ is to signify layer and 𝜌𝐿 is the density of atoms in a layer. This potential results 

in a traction equivalent to about 1.5 GPa at a separation of 4 Å and decreases to 250 Pa at about 

10 nm separation for two parallel monolayer graphene layers. Likewise, the potential for a layered 

material with a bulk semi-infinite solid (denoted by subscript ‘B’) is given by: 

𝑈𝐿𝐵(𝑑) =
𝜋𝜌𝐿𝜌𝐵
90

(
2𝐶1
𝑑9

−
15𝐶2
𝑑3

) 

 

(5.3) 

With the advent of graphene and other 2D materials, numerous nano-devices have been 

proposed and realized where it is very common to have graphene suspended over a substrate with 

the separations being as small as few nanometers to hundreds of nanometers. It becomes very 

important to factor in the vdW and other similar interactions to account for the overall mechanics 

and electro-mechanics of these devices. Also, it is very essential to understand and characterize 

the dominant interfacial forces at a given length scale for fundamental physics metrology to be 

able to differentiate the dominant interaction from other interactions. To this end an experiment is 

devised to measure the operant interfacial forces acting on a graphene membrane due to a substrate. 

The experiment and the theory behind it are described in the rest of this chapter. 

5.2  Experiment 

Earlier attempts at measuring vdW or Casimir forces usually included aligned parallel 

plates, one fixed and the other connected to a spring through which the magnitude of the attractive 

force is measured. Since alignment at micro and nano-scales is inaccurate, one or both of the 

parallel plates is replaced by a spherical or cylindrical surface. This enabled experimentalists to 

measure the vdW or Casimir forces within a range of 100 nm to above 10 micron separations.67,86 
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In the case of 2D materials like graphene, it is very difficult to use this approach. However, using 

the experimental setup described in the previous chapter, we were able to measure the operant 

interfacial force between graphene membranes and SiOx substrate at a separation of about 10 

nanometers. The experiment has been performed entirely by Xinghui Liu under the guidance of 

Scott Bunch. 

 

Figure 5.2 A device is charged to an initial pressure p0 such that 𝑝0 > 𝑝0,𝑐
𝑏  and taken out of the 

pressure chamber. Each schematic shows the dynamics of the experimental process. (a) 

Initially the graphene membrane stays flat, (b) Deforms to form an annular bulge, (c) 

Delaminates off of the island and (d) Annular bulge following pull-in as the gas leaks out 

of the cavity. The color of the gas indicates decreasing pressure. 

 The experimental setup is shown in Fig. 5.2 and the device geometry is exactly the same 

as that used in the island blister test. The devices are charged to a pressure higher than the critical 

input pressure for delamination from the island, 𝑝0,𝑐
𝑏  in a pressure chamber. Once the gas inside 

the cavity reaches equilibrium, the devices are taken out of the pressure chamber. The trapped gas 

expands due to the pressure difference forming an annular bulge deformation in the membrane 

followed by delamination to form a circular bulge during the transient response (Fig. 5.2b,c). The 

gas inside the cavity is now allowed to leak out through the oxide and this leaking process is 
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continuously monitored using an atomic force microscope (AFM). In this configuration, the 

graphene membrane directly above the island experiences not only the pressure load but also the 

forces due to the attractive interfacial interactions between the graphene membrane and the island 

made of SiOx/Si. The operant interfacial forces, we assume, are either electrostatic forces, vdW or 

Casimir forces and try to pull down the membrane towards the island while the gas pressure 

opposes it. Initially, the separation between the membrane and the island is large enough that the 

effect of the interfacial forces is negligible. But as more and more atoms of the gas leak out, the 

deflection decreases due to lowering gas pressure implying a decreasing separation between the 

membrane and the island. This results in a continuous increase in magnitude of the interfacial 

forces owing to their inverse power law relationship with separation. The combined effect of 

decreasing gas pressure and gain in the strength of the surface interactions results in a pull-in 

instability at a critical separation. If the initial input pressure is carefully chosen and smaller gas 

atoms employed for charging, the entire process takes a few hours. The experiment is repeated 

with graphene membranes with varying number of layers (𝑛) ranging from 1 to 5 and each time 

the pull-in distance recorded through the continuous AFM height scans. The experiments are also 

done with a layer of gold on the island on top of SiOx. 

5.3  Theory and Simulations 

5.3.1 Effect of Interfacial forces on Pressurized Graphene - Theory 

We assume that the interactions between the graphene membrane and the island are 

dominated by either the electrostatic or vdW or Casimir forces. Here, we develop our analysis in 

such a way such that we can account for any of these interactions interchangeably. We refer to the 

pressure due to the attractive interfacial forces between the membrane and the island by 𝑝𝑎𝑡𝑡. We 

neglect the effect of the bending rigidity of graphene membranes and develop a simple analytical 
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model based on membrane mechanics to describe the interrelationship of the system parameters in 

the experiment and we use it inversely with the measurements to infer the operant surface force. 

 

Figure 5.3 Schematics showing the forces acting on the membrane – 𝑝𝑎𝑡𝑡  acts only on the 

membrane region where 𝑟 < 𝑏  and the whole of the membrane experiences the gas 

pressure (p). The difference of 𝑝 and 𝑝𝑎𝑡𝑡  is balanced by the force exerted by the membrane 

tension 𝑆. 

Owing to the axial symmetry of the geometry, we can look at the mechanics in a cylindrical 

coordinate system with 𝑟 being the radial coordinate and 𝑤(𝑟) denoting the vertical deflection of 

the membrane. We look at two regions on the membrane separately – the region directly above the 

island and the rest of the membrane. We assume that only the region above the membrane 

experiences the attractive forces, although the interactions in reality diffuse over to a region 

slightly larger than this region. The different forces acting on each of these regions are shown in 

Fig. 5.3. The whole membrane is being pressurized uniformly by the trapped gas atoms which 

continuously decreases over the course of the experiment; let this pressure load be denoted by 𝑝. 

Then there is the pressure due to the attractive forces 𝑝𝑎𝑡𝑡 acting over the region 𝑟 < 𝑏. These 

forces are balanced by the force due to the membrane tension 𝑆. This membrane tension 𝑆 has two 

components – the initial or residual tension (𝑆0) and the incremental tension in the membrane in 

the radial direction due to the deformation caused by the pressure loads (𝑆𝑟 ). Hence force 

equilibrium in the vertical direction assuming small rotations gives:  
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(𝑝 − 𝑝𝑎𝑡𝑡)𝑟
2 = −2 𝑆(𝑟) 𝑟

𝑑𝑤(𝑟)

𝑑𝑟
        𝑟 < 𝑏 

 

𝑝𝑟2 − 𝑝𝑎𝑡𝑡𝑏
2 = −2 𝑆(𝑟) 𝑟

𝑑𝑤(𝑟)

𝑑𝑟
      𝑟 ≥ 𝑏 

 

 

(5.4) 

The key assumptions of our treatment are: 

(1) The incremental membrane tension 𝑆𝑟 , the initial tension 𝑆0  and hence 𝑆  are all 

uniform. 

(2) The pressure due to the interactions acting between the island and the membrane, 𝑝𝑎𝑡𝑡 , 

is uniform.  This is reasonable if the membrane curvature is small. 

In order to understand the validity and impact of these assumptions, we also carry out high-fidelity 

finite element simulations where these assumptions are not made; these are described in the next 

sub-section. The negative sign on the right hand side is due to 𝑑𝑤/𝑑𝑟 being negative. Integrating 

eqs. (5.4) with respect to 𝑟 with appropriate limits while using the continuity condition for 𝑤(𝑟) 

at 𝑟 = 𝑏, yields: 

𝑤(𝑟) = ℎ −
𝑝 − 𝑝𝑎𝑡𝑡
4𝑆

𝑟2      𝑟 < 𝑏 

 

𝑤(𝑟) = ℎ +
1

4𝑆
(𝑝𝑎𝑡𝑡𝑏

2 Log(
𝑟2

𝑏2
) + 𝑝𝑎𝑡𝑡𝑏

2 − 𝑝𝑟2)       𝑟 ≥ 𝑏 

 

 

(5.5) 

Here ℎ = 𝑤(𝑟 = 0). Applying the boundary condition 𝑤(𝑟 = 𝑎) = 0, we get 

ℎ =
1

4𝑆
(𝑝𝑎2 − 𝑝𝑎𝑡𝑡𝑏

2 (1 + Log (
𝑎2

𝑏2
))) 

 

(5.6) 

Substituting eq. (5.6) in eq. (5.5) gives finally: 
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𝑤(𝑟) =
1

4𝑆
(𝑝(𝑎2 − 𝑟2) − 𝑝𝑎𝑡𝑡(𝑏

2 − 𝑟2) − 𝑝𝑎𝑡𝑡𝑏
2Log (

𝑎2

𝑏2
))          𝑟 < 𝑏 

 

𝑤(𝑟) =
1

4𝑆
(𝑝(𝑎2 − 𝑟2) + 𝑝𝑎𝑡𝑡𝑏

2Log (
𝑟2

𝑎2
))         𝑟 ≥ 𝑏 

 

 

(5.7) 

To determine 𝑆, we assume that the membrane is in an equi-biaxial state. This means that the 

incremental radial (𝜖𝑟) and tangential strains (𝜖𝑡) are given by 𝜖𝑟 = 𝜖𝑡 =
𝑆𝑟

𝐸𝑡/(1−𝜈)
 and recalling eqs. 

(3.2): 

𝜖𝑟 + 𝜖𝑡 =
𝑑𝑢

𝑑𝑟
+
𝑢

𝑟
+
1

2
(
𝑑𝑤

𝑑𝑟
)

2

=
2 𝑆𝑟

𝐸𝑡/(1 − 𝑣)
 

 

 

(5.8) 

Integrating eq. (5.8) with respect to an area element 2𝜋𝑟𝑑𝑟 over the interval (0, 𝑎), leads us to an 

average measure of 𝑆𝑟. 

∫ 𝑑(𝑢𝑟)
𝑎

0
+∫

𝑟

2
 (
𝑑𝑤

𝑑𝑟
)

2

𝑑𝑟
𝑎

0
=

2 𝑆𝑟
𝐸𝑡/(1 − 𝜈)

∫ 𝑟𝑑𝑟
𝑎

0
 

The first integral on the LHS is zero due to the boundary conditions and evaluating the rest gives 

us:  

𝑆𝑟 𝑆
2 =

𝐸𝑡

32 𝑎2(1 − 𝑣)
((𝑝 − 𝑝𝑎𝑡𝑡)

2
𝑏4 + 𝑝2 (𝑎4 − 𝑏4)+ 𝑝𝑎𝑡𝑡

2 𝑏4Log(
𝑎4

𝑏4
)

− 4 𝑝 𝑝𝑎𝑡𝑡𝑏
2
(𝑎2 − 𝑏2))  

 

 

(5.9) 

We know that by definition 𝑆𝑟 = 𝑆 − 𝑆0. Hence for a given 𝑎, 𝑏, 𝐸𝑡 and 𝑣, by eliminating 𝑆 from 

eqs. (5.6) and (5.9), we get an equation relating ℎ with 𝑆0, 𝑝𝑎𝑡𝑡 and 𝑝. When we specify 𝑆0 and 

𝑝𝑎𝑡𝑡, this yields an expression for the load-deflection behavior i.e., 𝑝 as a function of ℎ or vice-

versa. 



 

 

82 

 

𝐸𝑡

32 𝑎2(1 − 𝑣)
((𝑝 − 𝑝𝑎𝑡𝑡)

2
𝑏4 + 𝑝2 (𝑎4 − 𝑏4)+ 𝑝𝑎𝑡𝑡

2 𝑏4Log(
𝑎4

𝑏4
)

− 4 𝑝 𝑝𝑎𝑡𝑡𝑏
2
(𝑎2 − 𝑏2))

+ (𝑆0(
1

4ℎ
(𝑝𝑎2 − 𝑝𝑎𝑡𝑡𝑏

2
(1 + Log(

𝑎2

𝑏2
))))

2

)

= (
1

4ℎ
(𝑝𝑎2 − 𝑝𝑎𝑡𝑡𝑏

2
(1 + Log(

𝑎2

𝑏2
))))

3

 

 

 

 

 

(5.10) 

The pull-in instability, by definition, occurs when: 

𝑑𝑝

𝑑ℎ
= 0 

 

(5.11) 

When eqs. (5.10) and (5.11) are solved simultaneously at given 𝑝𝑎𝑡𝑡 and 𝑆0, the solution gives us 

𝑝𝑐 and ℎ𝑐 – the critical pressure and the critical separation at which the pull-in instability occurs. 

In the experiment, ℎ𝑐 is measured while 𝑝𝑎𝑡𝑡, 𝑆0 and 𝑝𝑐 are unknown. Consistent with the vdW 

potential for a layer of atoms with a semi-infinite substrate given by eq. (5.3) and neglecting the 

repulsive term, we assume 𝑝𝑎𝑡𝑡 is given by (𝛽 is a constant): 

𝑝𝑎𝑡𝑡 =
𝛽

ℎ4
 

 

(5.12) 

On the other hand if the attractive forces are assumed to be caused by purely electrostatic 

interactions, then we use (𝛼 is a constant): 

𝑝𝑎𝑡𝑡 =
𝛼

ℎ2
 

 

(5.13) 

Using either eq. (5.12) or (5.13) we can replace the unknown 𝑝𝑎𝑡𝑡 in eqs. (5.10) and (5.11) with 

an unknown constant 𝛽 or 𝛼. Thus by specifying 𝑆0 and having measured ℎ𝑐, we can determine 

𝑝𝑐 and 𝛽 (or 𝛼).  



 

 

83 

 

5.3.2 Effect of Interfacial forces on Pressurized Graphene - Simulations 

 

Figure 5.4 Schematic showing the axisymmetric finite element model consisting of a rigid fixed 

island and the graphene membrane pinned on the outer boundary 

To validate the analytical model, we carried out finite element simulations of the 

experimental configuration using the finite element software Abaqus where we remove the 

assumptions used to develop the analytical model. The model used in the simulations is as shown 

in Fig. 5.4. It consists of a graphene membrane pinned at the outer boundary and a substrate (island) 

with which the membrane interacts. Axisymmetric shell elements (that permit both bending and 

membrane behavior) are used and the Young’s modulus (𝐸), thickness (𝑡) and Poisson’s ratio (𝜈) 

are set to 1 TPa, 0.34 nm and 0.16 respectively. The outer edge of the membrane is pinned and the 

substrate/island is modeled as a fixed analytical rigid body. A prescribed initial tension (𝑆0) is 

applied and the attractive interactions between the island and the membrane are modeled as 

surface-to-surface contact/adhesive interactions with the island being the master surface. The 

contact interaction properties are supplied through the user subroutine “UINTER” of Abaqus.  The 

slave nodes experience a stress (𝜎𝑧) in the vertical direction given by, 

𝜎𝑧 = −
𝛽

𝑤4
 

Symmetry 

Axis 

Island, b 

Graphene, a Pinned 
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Here, 𝛽 is the interaction parameter and 𝜎𝑧 plays the same role as that of 𝑝𝑎𝑡𝑡 for vdW interactions; 

while 𝑤 is the deflection of the node measured from the substrate. Both 𝜎𝑧 and 𝑤 are functions of 

the radial position, in contrast to the analytical model where they are assumed to be independent 

of position. 

The simulation is split into two steps – both static steps with nonlinear geometric effects 

included.  In the first step, the contact/adhesive interactions are suppressed and the membrane is 

allowed to deform upwards under the influence of a uniform pressure load acting on the entire area 

of the suspended membrane. The magnitude of this load is set such that the deflection is just high 

enough to neglect the interaction pressure if the interactions were not suppressed. This simulates 

the state of affairs at the beginning of the experiment before the gas begins to leak from the cavity.  

In the second step, which is a Static-Riks step, a second uniform pressure load is added the 

maximum magnitude of which is the same as the previous pressure load but in the opposite 

direction and the surface interactions between the substrate and the membrane are switched on. 

Hence, apart from the force due to the contact interactions, the membrane has the uniform pressure 

load from the previous step and a uniform pressure in the opposite direction whose magnitude is 

given by the load proportionality factor (calculated by the Riks procedure). The superposition of 

these two uniform pressure loads mimics the leaking of the gas in the experiment. As the 

simulation progresses, the load across the membrane decreases and it comes closer to the substrate. 

This increases the interaction between the island and the membrane. The results of this step are 

plotted in Fig. 5.5a,c (solid curves) along with the analytically calculated results (dashed curves) 

with two different geometries. In both the geometries, the outer diameter is taken to be 3 μm while 

the diameter of the island is set to 0.5 μm and 1.5 μm respectively. Other parameters are set to 𝑆0 

= 0.07 N/m and 𝛽 = 0.02 nN-nm2. It can be seen that in the simulations the pressure load across 
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the membrane initially decreases until a limit point is reached and then it starts increasing. In 

reality, if the pressure is reduced below the pressure at the limit point, the interaction forces 

takeover and the membrane is pulled in. In other words, the membrane jumps into contact with the 

island deforming into an annular bulge.  

     

     

Figure 5.5 (a) Plots comparing 𝑝 vs ℎ behavior as obtained from the FE simulations (solid curve) 

and the analytical calculations (dashed curve) with 𝑎 = 1.5 𝜇𝑚, 𝑏 = 0.25 𝜇𝑚, 𝐸𝑡 = 340 

N/m, 𝜈 = 0.16, 𝑆0 = 0.07 N/m and 𝛽 = 0.02 nN-nm2, (b) The deflection profiles at different 

pressures (solid – FE, dashed – Analytical) (Red – 10.38 kPa, Blue – 6.12 kPa, Green – 

1.72 kPa and Magenta – 2.61 kPa). For convenience, the corresponding points on 𝑝 vs ℎ 

plot are also shown. (c) and (d) The same as (a) and (b) except 𝑏 = 0.75 𝜇𝑚. The different 

pressures used in this case are: Red – 10.39 kPa, Blue – 6.14 kPa, Green – 2.63 kPa and 

Magenta – 3.70 kPa. 

When 𝑎 = 1.5 μm and 𝑏 = 0.25 μm, the pull-in pressure (𝑝𝑐) and central deflection (ℎ𝑐) are 1.63 

kPa and 8.06 nm respectively, as obtained from the FE simulation. While the analysis gives values 

of 𝑝𝑐 = 1.67 kPa and ℎ𝑐  = 9.21 nm for the same geometry. Similarly with 𝑎 = 1.5 μm and 𝑏 = 

0.75 μm, from simulation 𝑝𝑐 = 2.63 kPa and ℎ𝑐 = 11.94 nm whereas from theory 𝑝𝑐 = 2.39 kPa 

a b 

  c d 
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and ℎ𝑐 = 12.10 nm. This shows that the analytical result gives a fairly accurate description of the 

physical phenomena.  

We also compared the deflection profiles at different pressures as obtained from the FE 

simulations (solid curves) and as predicted by the theory (dashed curves) in Figs. 5.5b and 5.5d. 

Away from the limit point and when the central deflection is high (red and blue curves), the 

membrane essentially behaves like a uniformly pressurized membrane with a nearly spherical 

bulge. As the membrane comes closer to the island (as the system approaches the limit point), the 

increasing strength of interactions between the membrane and the island deform the membrane 

locally over the region above the island. This local deformation manifests as flattening of the 

membrane just above the island as shown in Figs. 5.5b,d (green curves). The magenta colored 

curves shown in Figs. 5.5b,d are the deflection profiles of experimentally inaccessible 

configurations. These can only be realized through very careful control of displacement or 

pressure. In these configurations, the localized membrane deformation above the island is more 

accentuated and no longer parallel to the island. The theory does predict qualitatively this 

phenomenon beyond the limit point but due to the assumption of uniform 𝑝𝑎𝑡𝑡 , the predicted 

behavior diverges away from the FE simulation results as is clearly evident in the 𝑝 versus ℎ plots.  

In conclusion, the assumptions used in developing the theory do not really limit its ability 

in describing the pull-in phenomenon accurately. Since the underlying assumptions in the theory 

are not about the nature of the interactions, the simulations done similarly with any other inverse 

power law instead of the vdW type of interactions should in principle agree with the theory. 
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5.4  Experimental Results 

   

Figure 5.6 (a) Optical image showing one of the graphene flakes with devices on which 

measurements were done. The colored circles denote the number of layers confirmed using 

Raman spectroscopy (red-1 layer, green-2 layers, blue-3 layers, and cyan-4 layers, 

magenta-5 layers). (b) Optical image of few layer graphene flake on Au substrate. (c) A 

series of AFM line cuts through the center of a pressurized graphene membrane during 

pull in. The outer radius, 2𝑎 = 3.0 µm, and inner radius, 2𝑏 = 0.50 µm. 

Some of the devices used in this experiment are as shown in the optical images in Figs. 

5.6a and 5.6b on SiOx and Au substrates respectively. We measured the pull-in distance (ℎ𝑐) using 

the process described in section 5.2 using an AFM in real time, initially for 34 devices with varying 

number of layers of graphene on SiOx (1 layer -13, 2 layer – 8, 3 layer – 5, 4 layer – 5 and 5 layer 

– 3) but with the same geometry 2𝑎 = 3.0 μm and 2𝑏 = 0.50 μm . A series of AFM cross sections 

are shown in Fig. 5.6c. As the gas leaks out, the membrane deformation goes from the cyan to 

green through the blue colored curve. The red curve is the deflection profile right before the 

membrane pulls-in towards the island. Immediately after the pull-in, the membrane assumes the 

annular bulge deflection profile shown in black. The difference in the central deflection for the red 

and black colored curves i.e., the central deflections right before and after the pull-in is taken to 

be the pull-in distance, ℎ𝑐. We assumed 𝑝𝑎𝑡𝑡 to be exclusively due to either vdW forces given by 

eq. (5.12) or electrostatic forces described by eq. (5.13). We cannot directly measure 𝑆0 so we 

assume values in the range of 𝑆0 = 0.03 - 0.15 N/m with an average values of 𝑆0 = 0.07 N/m, 
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consistent with numerous experimental measurements for exfoliated suspended graphene 

membranes with a similar geometry.22,78,79  

So in each case, using an estimate of 𝑆0 = 0.07 N/m, describing 𝑝𝑎𝑡𝑡 with either eq. (5.12) 

or eq. (5.13) and measured ℎ𝑐, we solve eqs. (5.10) and (5.11) to get 𝑝 and 𝛽 or 𝑝 and 𝛼. The usual 

values of 𝐸𝑡 = n×340 N/m and 𝜈 =0.16 are used for the elastic properties for 𝑛 layered graphene. 

The results are plotted in Fig. 5.7. Figure 5.7a shows the experimental observations, while Figs. 

5.7b and 5.7c show the average of calculated values of 𝛽  and 𝛼  for each n layered graphene 

membrane device along with standard deviation. In the case of vdW forces, the interaction 

parameter 𝛽  varies almost linearly with 𝑛. It has an average value of about 0.02 nN-nm2 for 

monolayer and about 0.09 nN-nm2 for graphene with 5 layers. The best linear fit with a slope of 

0.017 nN-nm2/layer is also plotted in Fig. 5.7b. On the other hand, we also see that the magnitude 

of electrostatic interaction parameter 𝛼 scales almost linearly with 𝑛 from 0.48 pN to 1.71 pN. 

This kind of scaling can be justified in the case of the vdW interactions but not for electrostatic 

interactions. The reasons for this assertion follow later on in this section.  

 

Figure 5.7 (a) Pull in distance, hc, vs. number of layers for devices with 2a = 3.0 µm and 2b = 

0.50 µm. (b) The calculated values of β vs. number of layers using the data in (a) assuming 

patt = β/h4 and S0 = 0.07 N/m. A best fit line through the data is also shown which has a 

slope of 0.017 nN-nm2/layer. (c) The calculated values of 𝛼 vs. number of layers using the 

data in (a) assuming patt = 𝛼/h2 and S0 = 0.07 N/m. 

c b a 
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Figure 5.8 Pull in distance, hc, vs. inner diameter, 2b, for (a) 1 layer (b) 2 layer graphene 

membranes with identical/similar outer diameter but different inner diameters. The blue 

and green shaded lines are the calculated results for two different power law dependences 

patt = β/h4 (black) and patt = α/h2 (blue) with S0 = 0.03 – 0.09 N/m. The inset shows two 

devices with different inner island diameters. 

To further give strength to our assertion that the attraction is due to vdW interactions, we 

performed pull-in experiments with different geometries where we fixed the outer diameter and 

varied the inner diameter. The pull-in distance for five such bi-layer devices with the same outer 

diameters (2𝑎 = 5.2 μm) and different inner diameters ranging from 170 nm to 680 nm are plotted  

in Fig. 5.8b against the inner diameter 2𝑏. Also plotted are the analytical predictions with vdW 

and electrostatic interactions in blue and green shaded regions respectively. These regions 

encompass all possible solutions with 𝑆0 values between 0.03-0.09 N/m. The calculated average 

𝛼 and 𝛽 values as shown in Figs. 5.7b,c are used in the analytical calculations. The pull-in distance 

increases with increasing inner diameter. This is because at a fixed 𝑎, the stiffness of the system 

remains the same; while the total force exerted by the vdW interactions increases with the island 

diameter resulting in pull-in at a higher deflection. It can be seen that the experimental observations 

are explained better by vdW interactions than the electrostatic interactions.  

 Similar comparison is done with mono-layer graphene devices too in Fig. 5.8a. However 

here the outer diameter is not exactly the same, it varies from 4.7-5.3 μm. Even so, the region 

encompassed by the theoretical predictions for the pull-in distance on ℎ𝑐 -2𝑏  plane is narrow 

b a 
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enough as shown in Fig. 5.8a (green – electrostatic, blue – vdW). The range of values for 𝑆0 is also 

accounted for in the theoretical calculations. Again, the experimental observations are better 

explained by the vdW interactions. 

The electrostatic interactions are believed to originate from patch potentials due to puddles 

of charged particles on the substrate. The charged particles can come from vacancies, charged 

absorbed/adsorbed particles etc. and their distribution is random. We believe that this induces 

image charges in graphene and a rough estimate for the resultant pressure due to electrostatic forces 

can be expressed as:  

𝑝𝑎𝑡𝑡
𝑒 =

1

4𝜋𝜖0

𝑞𝑒
2

4ℎ2
𝜌 

 

(5.14) 

Here, 𝜖0  is the vacuum permittivity, 𝑞𝑒  is the electron charge, ℎ is the separation and 𝜌 is the 

average charge density. Comparing eq. (5.14) with eq. (5.13) tells us that 𝛼 should be proportional 

to 𝜌. This implies that the from the experimental observations, if the forces between the graphene 

membranes and the island are due to electrostatic interactions, the charge density should scale with 

the number of layers and vary with the island diameter. This is highly unlikely. Hence the attractive 

interactions should not have been caused by an electrostatic potential. 

 On the other hand, the vdW forces can be approximated to be additive interactions. Hence 

for an 𝑛 layered membrane, we may write that the total interaction pressure as: 

𝑝𝑎𝑡𝑡 =∑
𝛽𝑚

(ℎ + 𝑖𝑡)4

𝑛

𝑖=1

 

Here 𝑡 = 0.34 nm, is the thickness or the separation between graphene membranes and 𝛽𝑚 the 

interaction parameter for monolayer graphene. As the separation ℎ is of the order of 10 nm, it 
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means that for two layered graphene 𝑝𝑎𝑡𝑡 is approximately twice that of mono-layered graphene. 

This is consistent with the experimental observations. Hence justifies our assertion that the 

interactions between the graphene membranes and the island are dominated by the vdW 

interactions. Of course, this kind of scaling has to stop when the graphene is very thick (𝑛 > 10 in 

this case).  

To test the material dependence of the vdW interactions with graphene, we carried out 

experiments where we measured the pull-in distance between graphene and a gold coated annular 

ring structure made of SiOx/Si. 2-5 layers graphene membranes (18 devices in 6 similar geometries 

from 4 chips) are measured. The pull in distance varies between 9 nm and 18 nm for devices with 

𝑎 = 1.0-1.75 µm and 𝑏 = 0.15-0.6 µm, slightly larger than the measured pull-in distances for 

uncoated SiOx posts of a similar geometry. Using the same theoretical analysis as with the 

graphene/SiOx data, we determine the average value of 𝛽  between the Au coated island and 

graphene to be 0.104 ± 0.031 nN-nm2/layer; this is about an order of magnitude higher than that 

for graphene interacting with SiOx (0.0179±0.0037 nN-nm2/layer). The graphene/Au value agree 

reasonably well with the theoretical predictions based on a Lifshitz formula of monolayered 

graphene interacting with gold at 15 nm separation, β = 0.08 nN-nm2.87 Similarly the average value 

of 𝛽  obtained for graphene/SiOx agrees closely with recent theoretical calculations for 

monolayered graphene and SiO2 at 10 nm separations, β = 0.0115 nN-nm2 for an intrinsic graphene 

doping density of 1016 m-2 at T = 300 K.88 

The values of 𝛽/𝑛 for each device are plotted in Fig. 5.9 for both Au and SiOx substrates. 

A comparison is made with the magnitude of the ideal Casimir force per unit area between two 

perfectly conducting plates through 𝛽0, the ideal interaction parameter.89 
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𝑝 =
𝜋2ℏ𝑐

240

1

ℎ4
=
𝛽0
ℎ4

 

 

(5.15) 

Here, ℏ is the reduced Planck’s constant, 𝑐 is the speed of the light and ℎ is the separation. 

Hence, 𝛽0 = 𝜋
2ℏ𝑐/240 = 1.3 nN-nm2. Although in our case we have a plate interacting with a 

semi-infinite space as opposed to two parallel plates, since the distance dependence is exactly the 

same as the one we used in our calculations we directly compare 𝛽 with 𝛽0. The graphene/Au 

value for averaged 𝛽 is about 8% of the ideal value while graphene/SiOx value is about 1.4% of it. 

 

Figure 5.9 Measured β / Number of graphene layers between SiOx and 1 layer graphene (solid red 

squares), 2 layer graphene (solid green circles), 3 layer graphene (solid blue up triangles), 

4 layer graphene (solid cyan down triangles), 5 layer graphene (solid magenta diamond), 

and β / number of graphene layers between Au and 2 layer graphene (hollow green circles), 

3 layer graphene (hollow blue up triangles), 4 layer graphene (hollow cyan down 

triangles), and 5 layer graphene (hollow magenta diamond). The violet dash dot line 

indicates the value of β0, where β0 is the theoretical value for 2 perfectly conducting plates, 

β0=π2ћc/240=1.3 nN-nm2. The right axis corresponds to the percentage of the measured β 

/ Number of graphene layers relative to β0. The average and standard deviation of β / 

Number of graphene layers between SiOx and graphene are 0.0179 ± 0.0037 nN-nm2 / 

layer, 1.38 ± 0.28 % of β0. The average and standard deviation of β / Number of graphene 

layers between Au and graphene are 0.104 ± 0.031 nN-nm2 / layer, 8.0 ± 2.38 % of β0.  
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5.5  Summary 

In conclusion, we measured long range surface forces between graphene and SiOx and 

graphene and gold i.e. a dielectric and a metal. We found our measurements to agree with a form 

𝑝𝑎𝑡𝑡  =  𝛽/ℎ4, consistent with recently calculated values of vdW forces. We assumed that the 

attractive interactions are solely due to vdW forces, but in reality it might be a combination of 

vdW forces and electrostatic interactions. Due to our limited scope, we could not independently 

measure the electrostatic contribution. That said, the experimental setup used here uniquely allows 

for self-alignment of the membrane parallel to the substrate without the use of any sophisticated 

methods. Furthermore, we observed that the strength of the deduced surface force scales linearly 

with layer number as it should, suggesting a very limited influence of electrostatic interactions if 

any. This experimental configuration can also be used to measure the vdW force acting on other 

atomically thin, two-dimensional materials with a variety of substrates. These experiments can 

guide the development of nano-mechanical devices based on thin films, membranes and two-

dimensional materials where these longer range forces are critical to their effective operation. 

The theory developed to analyze the experimental results relies on a membrane model for 

the graphene sheets. It compares well with the finite element simulations where the assumptions 

in the analytical model are not included. The theory does a good job in describing the experimental 

results and trends and it suggests that it is possible to achieve pull-in through a fairly good range 

of values of ℎ𝑐  by varying a and b. We achieved a range of ℎ𝑐=10-15 nm in this experiment. 

According to the theory, with increasing 𝑎, 𝑏 and 𝑛 (or 𝐸𝑡), the pull-in distance increases; while 

with increasing 𝑆0, the pull-in distance decreases. This can be explained thus - increasing 𝑎 or 

decreasing 𝑆0, makes the membrane more compliant leading to increased ℎ𝑐. On the other hand, 

increasing 𝑏  increases the force exerted by the interaction forces leading to increased ℎ𝑐 . 
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Increasing 𝑛, has a dual effect – it increases stiffness and the magnitude of the interaction forces 

(although this depends on 𝑛 as well as geometry). The theory indicates that for similar geometries 

used in the experiments and small enough 𝑛, the pull-in distance increases linearly as is observed 

in the experiments. 
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6. Graphene Island Blister Nano-mechanical devices 

6.1 Introduction 

 

Figure 6.1 Graphene liquid cell – schematic showing two graphene sheets encapsulating a Pt 

growth solution (credit: KAIST)90 

 In the previous three chapters, we performed and modeled experiments using graphene 

nano-mechanical structures. Specifically, we used pressurized graphene blisters to measure elastic 

and adhesive properties of graphene membranes. These graphene nano-mechanical structures also 

find potential in nano-electro-mechanical systems (NEMS). Graphene, as mentioned before, with 

its ultimate thickness and low mass among other useful properties is an ideal candidate for NEMS 

applications. Graphene blisters of various shapes have found potential use in strain engineering91 

and sensors.92 The most significant use of graphene blisters to date is a graphene liquid cell where 

graphene blisters provide a real-time window in transmission electron microscopy (TEM) to 

monitor chemical reactions in liquid phase.93 A similar device is a hydrothermal graphene anvil 

cell to spectroscopically probe the dynamics of a supercritical fluids.94 Here in this chapter, we 

propose a novel graphene NEMS device based on the island blister architecture that is described 

and used in the previous two chapters. This is really an extension of the device used in the previous 
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experiment where we overwhelm the van der Waals (vdW) interactions between graphene and the 

substrate by introducing electrostatic interactions to achieve pull-in instability. We then study the 

resulting interplay between adhesion, pneumatic pressure and electrostatic interactions while 

varying the strength of the electrostatic interactions to bring about changes in the graphene blister 

configuration. This is in contrast to what we described in Chapter 4 where we used the pneumatic 

pressure to control the shape. 

6.2 Pressure Assisted Graphene NEMS Switch 

 

Figure 6.2 Schematics of the design and working principle of the pressure assisted graphene 

NEMS switch - (a) The device is charged with gas beyond the critical delamination 

pressure, 𝑝0,𝑐
𝑏  (b) Graphene delaminates and the electrostatic load, 𝑉 is switched on (c) If 

the voltage, 𝑉  between graphene and the Si electrodes is beyond a critical value, 𝑉𝑃𝐼 
graphene comes into contact with the Si electrode while compressing the gas and when the 

voltage is reduced to zero, the gas expands delaminating graphene to come back to 

configuration in (b). 

 We demonstrated in Chapter 4 island blisters which can be switched between different 

configurations at different pressure loads with the switching loads being determined by the 
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graphene-substrate adhesion energy. Pressure loads due to compressed gas, however, react slowly 

and high switching speeds with precise control cannot be achieved when compared to electrical 

signals. Furthermore, from a technological point of view addressing individual devices with a 

pressure load is difficult. Electrical loads, on the other hand, are much more responsive and all the 

graphene NEMS switches27,28 in the literature to date have used electrical loads. These switches 

however suffer from stiction problems after only a few switching cycles. Here, we propose 

graphene NEMS switches with combined pressure and electrical loads that have the potential to 

overcome stiction. 

6.2.1 Design and Working Principle 

 Figure 6.2 shows schematically the design and the basic working principle of our proposed 

device. As described in the previous chapters, we will start with graphene sealed axi-symmetric 

annular cylindrical micro-cavities of volume 𝑉0. A key difference here is that there will be no 

thermal oxide on the surface of the micro-cavities. This allows the island to be electrically 

connected to the Si substrate. The Si substrate will act as the fixed electrode to which the control 

voltage, 𝑉 will be applied. Graphene, on the other hand, will be grounded and will act as the 

flexible electrode. As before, the devices will be charged initially in a pressure chamber to a 

prescribed input or charging pressure, 𝑝0. It is made sure that this charging pressure is greater than 

the critical delamination charging pressure from the island i.e. 𝑝0 > 𝑝0,𝑐
𝑏 . This will allow the two 

electrodes to be separated from each other as shown in Fig. 6.2b when the devices are taken out of 

the charging pressure chamber. In this configuration, the switch is off as there is no electrical 

connection between the two electrodes. Let the pressure and volume of the gas molecules be 

denoted by (𝑝1, 𝑉1) in this configuration. Introducing an electric field will create an attractive 

electric pressure load on the graphene membrane in a manner very similar to the vdW attractive 
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pressure described in the previous chapter except the magnitude here will be much larger. As the 

voltage is increased, the membrane will be pulled down towards the substrate while compressing 

the trapped gas molecules at the same time. When the voltage will reach a critical value, the 

membrane should pull-in and come into contact with the island (see Fig. 6.2c). Let us call this 

voltage the pull-in voltage denoted by 𝑉𝑃𝐼 . After pull-in, the graphene membrane should be 

adhering to the island forming an annular blister. Let the pressure and volume in this configuration 

be (𝑝2, 𝑉2). In this state, the device is switched on due to the mechanical contact established 

between the two electrodes.  

 Reducing the voltage back to zero should let the compressed gas to expand and delaminate 

the membrane from the island assuming no loss of gas molecules throughout this entire process. 

When contact occurs due to pull-in, the electrostatic interactions inflate the adhesion energy 

between graphene and the substrate and when voltage is reduced to zero, the normal adhesion 

energy is restored and pressure, 𝑝2 should be high enough to trigger delamination. After the pull-

in, the membrane presumably takes an annular blister shape similar to the one described in Chapter 

4. In this case however, we have an additional load in the form of electrostatic interactions which 

act against the pressure load exerted by the gas molecules. The volume under this blister then 

should be smaller than the annular blister discussed in Chapter 4. Assuming isothermal conditions 

and calculating 𝑉2 using eq. (4.6), 𝑝2 ≥ 𝑝0𝑉0/𝑉2 since 𝑉2 is overestimated. Now, 𝑝𝑐,𝑏 = 𝑝0𝑉0/𝑉2 

(𝑉2 calculated using eq. (4.6)) is the equilibrium pressure inside the annular blister when 𝑝0 = 𝑝0,𝑐
𝑏 . 

Hence 𝑝2  is higher than the pressure required to trigger delamination given 𝑝0 > 𝑝0,𝑐
𝑏 . After 

delamination we should get back to the configuration (𝑝1, 𝑉1) assuming isothermal conditions 

persist. This process can be repeated as many times by changing the voltage, 𝑉 between 𝑉𝑃𝐼 and 

zero thereby switching the devices between on and off states. In short, the device will be in:  
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(i) On-state – when 𝑉 ≥ 𝑉𝑃𝐼, the membrane is pulled-in while compressing the trapped 

gas and contact is established between the graphene and the underlying Si electrode. 

(ii) Off-state – when 𝑉 = 0, the compressed trapped gas expands isothermally while 

delaminating the graphene and breaking the contact. 

It is to be noted that it is implicitly assumed that during this whole process the gas molecules will 

not diffuse out of the micro-cavity. But in reality, there will be diffusion and hence the devices 

should stop switching back to off-state when the pressure is reduced considerably inside the micro-

cavity. This can be overcome by recharging the devices in a pressure chamber back to 𝑝0. We are 

aware that for technological applications a more comprehensive engineering solution needs to be 

worked out.  

6.2.2 Finite Element Simulations – Model & Setup 

           

Figure 6.3 (a) Schematic of the initial condition of the FE model which mimics the initial 

configuration of the devices in the charging pressure chamber, (b) Schematic of the 

configuration achieved at the end of first step in FE simulations 
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 The mechanics of the graphene membrane can in principal be described by the theory we 

developed in the previous chapter (Section 5.3). But the assumptions that we made there, namely 

that the membrane stress and the attractive pressure load are uniform, do not hold good in general 

in this case. So we took the route of finite element (FE) method to simulate the behavior and study 

the effect of the parameters in the problem (like geometry, adhesion energy and material 

properties) on the overall mechanics. Abaqus is our FE simulation tool of choice. We use a non-

linear 1D model as shown in Fig. 6.3 in the FE simulations taking advantage of the axi-symmetric 

nature of the problem. The model consists of a rigid surface that mimics the surface of the micro-

cavity (shown in black) and a linear elastic deformable surface which is the graphene membrane 

(shown in red). The graphene and the micro-cavity surfaces enclose a fluid cavity95 which is a 

feature in Abaqus that simulates a fluid filled structure. Through this feature, Abaqus provides the 

ability to couple the deformation of the structure (membrane and the rigid micro-cavity in our case) 

to the thermodynamics of the fluid cavity (trapped gas in our case). The pressure and temperature 

of the fluid are the degrees of freedom for the fluid cavity. Hence, changing the pressure or 

temperature of the fluid cavity results in a deformation of the membrane and vice versa.   

 The membrane is pinned at the edge of the micro-cavity because in the device graphene 

will be adhering to the substrate and assumed to be constrained by the adhesive interactions. Values 

of 1 TPa, 0.16 and 0.34 nm are used for Young’s modulus (𝐸), Poisson ration (𝜈) and thickness 

(𝑡) of graphene respectively which are all well accepted in the literature. Axi-symmetric shell 

elements with two nodes (SAX1) are used to mesh the membrane which account for both bending 

and stretching of graphene. The geometry of the micro-cavity (i.e. 𝑎, 𝑏, ℎ) is allowed to vary in 

these simulations and the exact values used will be mentioned later. 
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 The simulation is divided into two Abaqus static steps with non-linear geometric effects 

included. In the first step, the initial condition mimics the equilibrium configuration of the devices 

inside the charging pressure chamber when the membrane is flat and the pressure inside and 

outside the cavity is equal to 𝑝0 (see Fig. 6.2a). We fixed the fluid-cavity temperature at 300 K 

throughout the simulation thus making the fluid cavity simulate ideal gas behavior under 

isothermal conditions. The pressure value of the fluid cavity is set at an initial value 20% higher 

than the critical island delamination pressure, 𝑝0,𝑐
𝑏  for the given cavity geometry and an adhesion 

energy of 0.15 J/m2. It is to be noted that the adhesive interactions between the membrane and the 

substrate are not simulated in this model. In this first step, the pressure outside the fluid cavity is 

gradually decreased from its initial value of 𝑝0 to ambient pressure 𝑝𝑎 (set at 100 kPa in these 

simulations). This sets up a pressure load on the membrane and it deforms to a spherical blister as 

illustrated in Fig. 6.3b. The pressure of the gas at the end (and along each point) of this step, 𝑝1 is 

given by the pressure associated by Abaqus with the fluid cavity. 

 In the second step, we now introduce electrostatic interactions between the graphene and 

the substrate through DLOAD sub-routine of Abaqus. We assume that the electrostatic pressure 

load at a node that is deflected by 𝑤(𝑟) can be approximated by the equivalent pressure exerted 

between two parallel plate capacitors:  

𝑝𝑒(𝑟) =

{
 
 

 
 −

1

2

𝜖0𝑉
2

𝑤(𝑟)2
𝑟 ≤ 𝑏

−
1

2

𝜖0𝑉
2

(𝑤(𝑟) + ℎ)2
𝑏 < 𝑟 ≤ 𝑎

 

 

 

(6.1) 

Here, 𝑎, 𝑏, ℎ are the cavity outer radius, inner radius and depth respectively, 𝜖0 is the vacuum 

permittivity and 𝑉 is the voltage between the two electrodes. The value of 𝑉 is gradually increased 
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linearly with the step time from zero to a prescribed value. As the voltage is increased, the 

membrane gets pulled towards the micro-cavity surface and at a critical value of 𝑉 we see pull-in. 

6.2.3 Finite Element Simulations - Results 

 As mentioned before, we carried out a series of simulations each time varying the geometry 

of the micro-cavity. We varied the outer radius from 1 μm to 3 μm in steps of 1 μm. The inner 

radius is varied from 0.1 μm to 𝑎-0.5 μm i.e. for 𝑎 = 2 μm, we varied the inner radius from 0.1 

μm to 1.5 μm in steps of 0.1 μm. Similarly, we varied the depth of cavity from 50 nm to 500 nm 

in steps of 50 nm. The resultant set of geometries are similar to the ones we have used in the 

previous experiments and most of them can be readily fabricated. We eliminated the geometries 

that would result in delamination from the island as well as the outer boundary at our prescribed 

input pressure 1.2𝑝0,𝑐
𝑏 . This left us with 224 different geometries that were all simulated.  

   

Figure 6.4 Plots showing (a) Central deflection, 𝐻 and (b) Cavity pressure, 𝑝 against the applied 

voltage, 𝑉 for the geometry with 𝑎 = 2 𝜇𝑚, 𝑏 = 0.5 𝜇𝑚 and ℎ = 500 nm. The plots in (c) 

are the deflection profile of the membrane at 0 V (black), 85 V (blue) and at pull-in voltage, 

𝑉𝑃𝐼 = 95.9 V (magenta). These points are highlighted in plots (a) and (b) with the same 

colors. 

 Let us look at an example where 𝑎 = 2 μm, 𝑏 = 0.5 μm and ℎ = 500 nm. Figure 6.4 shows 

the results obtained from the FE simulations. It can be seen from Figs. 6.4a and 6.4b how the 

central deflection, 𝐻 (=𝑤(0)) of the membrane and the pressure inside the micro-cavity, 𝑝 varies 

respectively. The pull-in voltage can be identified from Fig. 6.4a as the voltage at which the slope 

a b c 
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of the 𝐻 𝑣 𝑉 curve approaches a large value i.e. a limit point where 𝑑𝑉/𝑑𝐻 = 0. Beyond this 

voltage, the simulations diverge and the pull-in voltage in this case is found to be 95.9 V. As the 

magnitude of the electrostatic pressure is the maximum on the island, the region of the membrane 

above the island is deformed the most as can be seen in Fig. 6.4c where the deflection profiles at 

different voltages are plotted. The membrane goes from a near spherical cap shape at 0 V (black 

curve) to being flat at the center at 85 V (blue curve) to having a “dip” at the center at the pull-in 

voltage (magenta curve). As the membrane comes closer to the island, the electrostatic pressure 

which is the strongest on the region of the membrane above the island deforms it in a very localized 

manner over the island causing the “dipping” behavior. 

   

Figure 6.5 Plots showing (a) Central deflection, 𝐻 and (b) Cavity pressure, 𝑝 against the applied 

voltage, 𝑉 for the geometry with 𝑎 = 2 𝜇𝑚, 𝑏 = 0.5 𝜇𝑚 and ℎ = 100 nm. The plots in (c) 

are the deflection profile of the membrane at 0 V (black), 55 V (blue) and at pull-in voltage, 

𝑉𝑃𝐼 = 64.1 V (magenta). These points are highlighted in plots (a) and (b) with the same 

colors. 

 At the same 𝑎 and 𝑏 but with a different ℎ = 100 nm, we see a slightly different pull-in 

behavior. The pull-in voltage in this case is lowered to about 64.1 V. As the depth of the cavity is 

decreased, the region of the membrane that is suspended over the cavity experiences a higher 

electrostatic pressure even as the region above the island experiences about the same electrostatic 

pressure. This causes localized deformation not just above the island but also close to the outer 

boundary of the micro-cavity as seen in Fig. 6.5c. As before, we plotted in Fig. 6.5c the deflection 

profiles at three different voltages. At 0V, the membrane has a near spherical cap shaped deflection 

a b c 
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(black curve) which is still largely not perturbed at 55 V (blue curve). This is similar to what we 

have seen in the previous case in Fig. 6.4c. However at 𝑉𝑃𝐼 = 64.1 V, the membrane is deformed 

at the center as well along the outer boundary due to the electrostatic pressure in contrast to just at 

the center in the previous case. We noticed that this behavior is common to those devices where 

the depth of the cavity (≤ 100 nm) and the size of the island (compared to the outer radius) is 

small.  

     

Figure 6.6 Contour plots showing the pull-in voltage variation in Volts with different inner radii, 

𝑏 and cavity depths, ℎ at a fixed outer radius (a) 𝑎 = 1 𝜇𝑚, (b) 𝑎 = 2 𝜇𝑚, (c) 𝑎 = 3 𝜇𝑚 

 The contour plots in Fig. 6.6 show the variation of pull-in voltage at different inner radii, 

𝑏  and cavity depths, ℎ  for a given outer radius, 𝑎 . The white regions in each plot are the 

configurations that are not simulated for aforementioned reasons. It has to be noted that to the 

lower right part of the plots, there are artifacts from interpolation of the data which need to be 

ignored. From these plots, in general, we can conclude that increasing the outer radius, decreasing 

the inner radius or the depth of the cavity has the same effect of decreased pull-in voltage, 𝑉𝑃𝐼. The 

decrease in 𝑉𝑃𝐼  with decrease in ℎ  can be explained by the increased electrostatic pressure 

(remember 𝑝𝑒 ∝ 1/𝑤(𝑟)
2). Decrease in ℎ brings the membrane closer to the surface of the fixed 

Si electrode and thus increased electrostatic pressure. 
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 Increasing the outer radius or decreasing the inner radius decreases the overall stiffness of 

the membrane/gas system thus decreasing the magnitude of the electrostatic pressure thereby the 

applied voltage needed to induce pull-in. Thus the devices can be scaled down so as to operate 

these switches at lower actuation voltages and increased device densities. But it has to be noted 

that with shallow cavities (ℎ~10 nm), van der Waals forces will have an important role in the 

overall working of these devices which is not considered in these simulations. Additionally, the 

membranes might adhere to the bottom of the micro-cavity with shallow cavities which is not 

addressed here in these models. 

 The pressure assisted switch that we described here could be transformed to a pneumatic 

check valve. A check valve is a fluidic device that allows flow in one direction only. The 

transformation from a switch to check valve can be brought about just by etching a small hole 

(smaller than the island) on the graphene membrane that is on top of the island. When the device 

is switched off, the hole on the graphene membrane will be exposed and gas can flow freely. The 

flow rate, of course, will be determined by the pressure difference and the size of the hole. When 

the device is switched on i.e. when the membrane is attached to the island, the hole will now be 

closed due to the contact with the island and there will be no gas flow.  

6.3 Summary 

 Taking advantage of the knowledge we gained in our experiments using graphene nano-

mechanical structures, we proposed and analyzed (through finite element simulations) a pressure-

assisted graphene NEMS switch. The switch makes use of trapped pressurized gas to overcome 

stiction that mars the development of reliable NEMS switches. We did a parametric study to 

determine the dependence of the switching voltage on the geometry of the devices. We found that 

the switching voltage can be reduced by scaling down the device dimensions.  
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7. Mechanisms of Graphene Adhesion 

7.1 Introduction and Objective 

Through chapters three and four, we understood adhesion of graphene at the micro-scale 

with the help of experiments. And we speculated at the end of chapter three that the adhesion 

energy might be effected by nano-scale topography of the substrate amongst other possible 

reasons. In this chapter, we focus on this roughness aspect and investigate the mechanics of 

adhesion at the atomistic scale.  

Experiments like Lui et al’s96 have shown that graphene conforms to its substrates well 

(see Fig. 7.1) and other studies have realized that graphene’s electronic properties can be altered 

in an interesting manner using mechanical strain.39,91,97,98 Understanding what makes a graphene 

membrane conform well or otherwise will help in designing novel electronic devices that will take 

advantage of the strains that are developed as a result of adhesion.  

 

Figure 7.1 Three dimensional 200nm×200nm AFM height scan of graphene on (a) SiO2 and (b) 

mica96 

In the literature, the effect of substrate morphology on membrane (especially 

biological/soft membranes) adhesion has been extensively studied in the continuum setting.65,66,99 

The general strategy is to construct a free energy functional, 𝐹 which includes the elastic bending 
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and stretching strain energies of the membrane (𝐹𝑏𝑒𝑛 and 𝐹𝑠𝑡𝑟) along with the adhesion energy due 

to the membrane’s interactions with the substrate (𝐹𝑎𝑑ℎ). If the substrate topography is described 

by a function  𝑧𝑠(𝑥, 𝑦) , then mathematically the goal is to obtain the shape attained by the 

membrane, 𝑧𝑚(𝑥, 𝑦) so as to minimize the free energy functional, 𝐹.  

𝐹(𝑧𝑚(𝑥, 𝑦)) = 𝐹𝑏𝑒𝑛 + 𝐹𝑠𝑡𝑟 + 𝐹𝑎𝑑ℎ 

 

(7.1) 

𝐹𝑏𝑒𝑛 = ∫ 𝑑𝐴 
1

2
𝐷 ((𝜅𝑥 + 𝜅𝑦)

2
− 2(1 − 𝜈)(𝜅𝑥𝜅𝑦 − 𝜅𝑥𝑦

2 ))

𝐹𝑠𝑡𝑟 = ∫ 𝑑𝐴 
1

2
𝐶 ((𝜖𝑥 + 𝜖𝑦)

2
− 2(1 − 𝜈)(𝜖𝑥𝜖𝑦 − 𝜖𝑥𝑦

2 ))

𝐹𝑎𝑑ℎ = ∫ 𝑑𝐴𝑚∫ 𝑑𝐴𝑠𝑉𝑝𝑜𝑡(𝑧𝑠, 𝑧𝑚)

 

 

 

 

(7.2) 

Here, 𝑑𝐴 is the area element on undeformed membrane, 𝑑𝐴𝑚 and 𝑑𝐴𝑠 are area elements on the 

membrane and substrate respectively, 𝐷 and 𝐶 are bending and stretching rigidities respectively, 

𝜅𝛼 and 𝜖𝛼 are the membrane curvature and strain along 𝛼 (𝛼 = 𝑥, 𝑦 or 𝑥𝑦) and 𝑉𝑝𝑜𝑡 is the inter-

atomic interaction potential between the atoms of the substrate and the membrane. With any 

realistic potential functions, this is a complicated problem to solve even numerically. Hence the 

problem is usually reduced, with companion simplifications, to one dimension with a periodic 

pattern for the substrate like a sine function.  

With the advent of 2D crystals like graphene and the ability to examine their morphology 

accurately using scanning probe techniques like AFM, this problem has been revisited recently in 

the literature82–84,100 with essentially the same continuum approach as described. Each work made 

the necessary simplifications to arrive at their primary conclusion that the conformity of graphene 

on a given substrate depends on the substrate morphology, adhesion strength and the number of 

layers. It has been found that on 1D sinusoidally corrugated substrates, there is a snap through 

phenomenon where a graphene membrane goes from being non-conformal to conformal as the 
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amplitude or wavelength of the corrugation is changed. Here in this case, conformal is the 

configuration where the ratio of corrugation amplitudes of graphene membrane and the substrate 

is close to 1; while non-conformal is the configuration where it is close to zero. This phenomenon 

has also been observed experimentally.101 Here in this chapter, we solve this same problem and 

others to obtain a general understanding of roughness effects on adhesion both analytically as well 

as numerically. The analytical approach we take here will differ from the existing ones in literature 

in how the adhesion energy is calculated and we compare our approach with other analytical 

approaches. The numerical approach will depart from the continuum setup altogether by using 

‘molecular mechanics/statics’ simulations. This also allows us to look at the atomistic details of 

the mechanisms of adhesion of the graphene membranes while validating the continuum model.  

7.1.1 Background – Molecular Mechanics 

At length scales where continuum assumptions are not quite valid, we have grown to rely 

on numerical simulations involving modeling of systems from bottom up with atoms, molecules 

or particles forming the basic modeling units. In these simulations, the atoms (or the basic units) 

are allowed to interact through inter-atomic potentials (or force fields) which determine the elastic 

and thermal properties as well as the adhesive properties among others. The atoms with their 

potentials and the prescribed conditions are treated as a statistical thermodynamic system. There 

are two different approaches to these simulations – molecular dynamics and molecular mechanics 

(or statics). In molecular dynamics, the trajectories of atoms under the influence of inter-atomic 

potentials and any external stimuli are calculated over a period of time with the help of Newton’s 

laws of motions. On the other hand in molecular mechanics, the total potential energy of the system 

(a function of the atom coordinates) is minimized using minimizing schemes like conjugate 

gradient or steepest descent to obtain a local minimum for the system under consideration with no 
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regards to its time evolution. The minimization procedure stops when the change in energy or the 

total force go below specified tolerances. Alternatively, it is terminated when there is only nominal 

change in the atoms coordinates even if the forces are non-zero. 

The most commonly used inter-atomic potential for carbon based systems in the 

literature102–104 is AIREBO105 (Adaptive Intermolecular Reactive Empirical Bond Order). It 

includes a combination of potentials that describe short range covalent bonding (~ 2 Å) as well as 

longer range van der Waals bonding (> 3 Å) between carbon atoms. The van der Waals interactions 

between the atoms which leads to adhesion between surfaces is described by the Lennard-Jones 6-

12 potential which takes the form: 

𝑉𝑝𝑜𝑡(𝑟) = 4𝜖 ((
𝜎

𝑟
)
12

− (
𝜎

𝑟
)
6

) 

 

(7.3) 

Here, 𝑟 is the separation between two atoms, 𝜖  is the depth of the potential well and 𝜎 is the 

interatomic separation at which the potential equals zero. The default values for 𝜖 and 𝜎 are 2.84 

meV and 3.4 Å respectively. The value 𝜖 can be varied to vary the depth of the potential well 

thereby the adhesion energy. Additionally, an independent LJ 6-12 potential can be added to the 

existing AIREBO potential to mimic increased adhesion energy. We used the software package 

LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator) for all our 

simulations.106 
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7.2 Morphology of Graphene on Corrugated Substrates 

7.2.1 Theory 

 

Figure 7.2 Illustration showing the morphology of a graphene membrane (blue) on a corrugated 

substrate (black) 

 To briefly describe the problem setup, we have a graphene membrane adhered to a rigid 

substrate as illustrated in Fig. 7.2. Given the functional form of the substrate surface 𝑠(𝜌), the goal 

is to find the functional form of the graphene membrane 𝑔(𝜌) (𝜌 being the position vector) with a 

given operant adhesive potential, 𝑉𝑝𝑜𝑡 between the substrate and graphene at the interface. This 

potential is assumed to be van der Waals interactions between atoms. Starting with Lennard-Jones 

6-12 potential in eq. (7.3), one can then arrive at a continuum expression via direct integration for 

the potential, 𝑉𝑓 that acts between two flat atomic surfaces separated by a distance ℎ (the subscript 

𝑓 is to signify that this is the potential for two flat surfaces): 

𝑉𝑓(ℎ) = 𝜌𝐴
2∫ 4𝜖 ((

𝜎

(𝑟2 + ℎ2)
1
2

)

12

− (
𝜎

(𝑟2 + ℎ2)
1
2

)

6

)
∞

0

2𝜋𝑟𝑑𝑟

= −𝛾 (
5

3
(
ℎ0
ℎ
)
4

−
2

3
(
ℎ0
ℎ
)
10

)

 

 

 

(7.4) 

Here, the integration is done in cylindrical coordinates with the radial coordinate being denoted by 

𝑟  and 𝜌𝐴  is the areal density of the atoms. It can be easily verified that here ℎ0 = 𝜎  is the 

equilibrium separation where the potential has a minimum and the force between the two flat 

surfaces is zero. The adhesion energy per unit area, 𝛾 is related to other terms via 𝛾 = 6𝜋𝜌𝐴
2𝜎2𝜖/5. 

𝑠(𝜌) 

𝑔(𝜌) 
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 For two arbitrarily shaped surfaces such as the ones shown in Fig. 7.2, the vdW potential 

is fully nonlocal i.e. it depends on the functional forms of the interacting surfaces (𝑉𝑝𝑜𝑡 =

𝑉𝑝𝑜𝑡(𝑔(𝜌), 𝑠(𝜌)) and as mentioned before, is very difficult to calculate even numerically. Hence, 

we borrowed and extended the approach used by Swain and Andelman65 where they used 

Derjaguin approximation to simplify the problem. Derjaguin approximation expresses the energy 

between two surfaces or bodies due to an adhesive interaction like vdW attraction, 𝑉𝑝𝑜𝑡  as a 

function of the local separation only. In mathematical terms: 

𝑉𝑝𝑜𝑡(𝑔(𝜌), 𝑠(𝜌)) ≈ 𝑉𝑓(𝑔(𝜌) − 𝑠(𝜌)) 

 

(7.5) 

Now, we can write the free energy of the system, 𝐹(𝑔(𝜌)) as: 

𝐹(𝑔(𝜌)) = 𝐹𝑏𝑒𝑛 + 𝐹𝑎𝑑ℎ

= ∫𝑑𝐴
𝐷

2
((𝜅𝑥 + 𝜅𝑦)

2
− 2(1 − 𝜈)(𝜅𝑥𝜅𝑦 − 𝜅𝑥𝑦

2 )) + ∫𝑑𝐴 𝑉𝑓(𝑔(𝜌) − 𝑠(𝜌))
 

 

(7.6) 

Here the contribution due to stretching is neglected completely as it is assumed that the interfacial 

friction is very small and the graphene membrane should be able to slide on the substrate quite 

freely. The Derjaguin approximation in effect replaces the surfaces with a series of parallel flat 

plates and calculates the total adhesion energy by adding the interaction potentials between these 

sets of parallel plates. Even with these simplifications the potential is still not tractable to solve for 

𝑔(𝜌). Swain and Andelman expanded the integrand in the second integral about the equilibrium 

separation ℎ0 to the second order:  

𝑉𝑓(𝑔(𝜌) − 𝑠(𝜌)) = 𝑉𝑓(ℎ0) +
𝑑2𝑉𝑓(ℎ)

𝑑ℎ2
│ℎ=ℎ0

(𝑔 − ℎ0 − 𝑠)
2

2
  

 

 

(7.7) 



 

 

112 

 

Here they assumed that the mean height of the substrate is zero and that of the membrane is ℎ0 

and that 𝑔 − ℎ0 − 𝑠 ≪ 1. We extend this further by expanding the potential about yet to be 

determined equilibrium separation ℎ to an arbitrary number of terms, 𝑛 (𝑧(𝜌) = 𝑔(𝜌) − ℎ):  

𝑉𝑓(ℎ + 𝑧(𝜌) − 𝑠(𝜌)) = 𝑉𝑓(ℎ) +∑
𝑑𝑖𝑉𝑓(ℎ)

𝑑ℎ𝑖
(𝑧 − 𝑠)𝑖

𝑖!

𝑛

𝑖=1

  

 

 

(7.8) 

Swain and Andelman using eq. (7.7) showed that sinusoidal substrates allow for sinusoidal 

membrane profiles and a one-to-one correspondence does not hold good for arbitrary functions. 

We assumed that this still holds good here. Sinusoidal surfaces, though a poor representation of 

randomly rough surfaces, enable us to simplify the analysis while capturing most of the physics 

qualitatively. Let us first deal with one dimensional sinusoidal surfaces i.e. 𝑠(𝑥) = 𝑐 Sin[𝑞 𝑥] 

where 𝑐 and 𝑞 are the amplitude and wave numbers of the sinusoid respectively. Hence assuming 

𝑧(𝑥) = 𝑎 Sin[𝑞 𝑥], the free energy per unit area is: 

𝐹(𝑎, ℎ) = ∫
𝑑𝑥

𝜆

𝐷

2
 (
𝑑2𝑔

𝑑𝑥2
)

2𝜆

0

+∫
𝑑𝑥

𝜆
 𝑉𝑓(ℎ + 𝑧 − 𝑠)

𝜆

0

=
𝐷

4
𝑎2𝑞4 + 𝑉𝑓(ℎ) +∑

𝑑𝑖𝑉𝑓(ℎ)

𝑑ℎ𝑖
(𝑎 − 𝑐)𝑖

𝑖!
 ∫ Sin[𝑥]𝑖

𝑑𝑥

2𝜋

2𝜋

0

𝑛

𝑖=1

 

  

 

 

(7.9) 

Here 𝜆 = 2𝜋/𝑞 is the wavelength and it is fairly straightforward to formulate the free energy as 

shown here using a computer algebra system (CAS) and then numerically optimizing gives us the 

equilibrium configuration of the membrane for any arbitrary one dimensional sinusoidal 

corrugation. The form of 𝑉𝑓 allows us to calculate the integrals directly for this particular case (see 

Appendix A.3.1), thus allowing us to verify the accuracy of this series approach of ours where we 

use a series expansion of the adhesion energy contribution to the free energy.  
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Figure 7.3 Plots comparing our calculations with those of Aitken and Huang: non-dimensional (a) 

Amplitude, (b) Mean separation and (c) Adhesion energy are plotted against the non-

dimensional wavelength. The red curves (from optimization of eq. (7.9)) and the 

circle/square symbols (from direct integration) are our results while the black curves are 

the results of Aitken and Huang. Here the solid curves and circular symbols are 

calculations done with 𝑐/ℎ0 = 0.1; the dashed curves and square symbols are calculations 

done with 𝑐/ℎ0 = 0.4. 

 We compared the results from our calculations with those of Aitken and Huang100 where 

they do not use the Derjaguin approximation but approximately calculate the adhesion energy from 

the non-local 𝑉𝑝𝑜𝑡 for sinusoidal surfaces. We used the same potential and parameters that were 

used in their paper for the purpose of this comparison. The potential they used is different from 𝑉𝑓 

in eq. (7.4); it accounts for interaction between a surface of atoms with a semi-infinite body. It is 

straightforward to replace 𝑉𝑓 with the potential they used. The parameters used are 
𝐷

𝛾ℎ0
2 = 6.94 and 

𝑐

ℎ0
= 0.1 or 0.4. 

 The results are shown in Fig. 7.3. The plots from left to right show the non-dimensional 

amplitude, mean separation and the adhesion energy as a function of the wavelength of the 

substrate. The membrane conforms to the substrate very closely at higher wavelengths while it is 

relatively flat at lower wavelengths. The transition from being conformal to flat occurs sharply and 

if the wavelength of the substrate corrugation can be changed continuously, the membrane should 

snap-in to or snap-out of close conformation with the substrate. This is due to the competition 

a b c 
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between the adhesion and the bending strain. While the adhesive interactions pull the membrane 

towards to substrate, the bending strain prevents the membrane from completely conforming to 

the corrugated substrate. The final equilibrium configuration is attained as a balance between these 

two opposing tendencies is reached. At smaller wavelengths, the bending strain is too high leading 

to poor conformity and at higher wavelengths, bending strain is small enough for the membrane 

to achieve high conformity. 

 It can be seen that there is a good agreement in general between the three methods shown 

here – Aitken and Huang’s (black curves), our method with 𝐹𝑎𝑑ℎ calculated by direct integration 

(circle and square symbols) and our method where we use the expression in eq. (7.8) with 40 terms 

to calculate 𝐹𝑎𝑑ℎ. For the lower amplitude (𝑐/ℎ0 = 0.1, solid curves and circular symbols), the 

three methods give the exact same result; while for the higher amplitude (𝑐/ℎ0 = 0.4, dashed 

curves and square symbols) though our two approaches still agree quite well, our results differ 

considerably from Aitken and Huang’s results. At the higher amplitude, Aitken and Huang’s 

calculations underestimate (overestimate) the mean separation (adhesion energy) compared to our 

calculations even as the amplitude predicted is quite similar. This might be attributed to the 

approximations used by Aitken and Huang (𝑐 ≪ ℎ0) which limits the use of their method at high 

amplitudes (𝑐 < 0.5ℎ0) or to the Derjaguin approximation we used. 

 This method can easily be extended to 2D sinusoidal substrates as well, 𝑠(𝑥, 𝑦) =

𝑐 Sin[𝑞𝑥𝑥] Sin[𝑞𝑦𝑦] where 𝑞𝑥 and 𝑞𝑦 are the wave numbers in x and y directions respectively. The 

free energy in this case, assuming the membrane will follow 𝑔(𝑥, 𝑦) = ℎ + 𝑎 Sin[𝑞𝑥𝑥] Sin[𝑞𝑦𝑦], 

will then be: 
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𝐹(𝑎, ℎ) =
𝐷

8
(𝑞𝑥

2 + 𝑞𝑦
2)
2
𝑎2 + 𝑉𝑓(ℎ) +∑

𝑑𝑖𝑉𝑓(ℎ)

𝑑ℎ𝑖
(𝑎 − 𝑐)𝑖

𝑖!
 (∫ Sin[𝑥]𝑖

𝑑𝑥

2𝜋

2𝜋

0

)

2𝑛

𝑖=1

 

  

 

(7.10) 

This looks very similar to the free energy expression in eq. (7.9) for 1D sinusoidal corrugations. 

Hence again by optimizing the free energy numerically to find 𝑎 and ℎ, we should be able to arrive 

at the equilibrium configuration of graphene membranes.  

 This approach can be generalized to work with a full or truncated Fourier series that 

involves multiple sine or cosine waves of different amplitudes and wavelengths in superposition. 

If the substrate is represented by the function 𝑠(𝑥) = ∑
𝑖=1

𝑚

𝑐𝑖Sin[𝑞𝑖𝑥] + 𝑑𝑖Cos[𝑞𝑖𝑥] and assuming 

the graphene membrane takes the form 𝑔(𝑥) = ℎ + ∑
𝑖=1

𝑚

𝑎𝑖Sin[𝑞𝑖𝑥] + 𝑏𝑖Cos[𝑞𝑖𝑥], then the free 

energy per unit area  in this case will be: 

𝐹(𝑎𝑖, 𝑏𝑖, ℎ) =
𝐷

2
∑(

𝑞𝑖
4𝑎𝑖

2

2
+
𝑞𝑖
4𝑏𝑖

2

2
)

𝑚

𝑖=1

+ 𝑉𝑓(ℎ)

 +∑
𝑑𝑗𝑉𝑓(ℎ)

𝑑ℎ𝑗
1

𝑗!

𝑛

𝑗=1

∫
𝑑𝑥

𝐿
(∑(𝑎𝑖 − 𝑐𝑖)Sin[𝑞𝑖𝑥] + (𝑏𝑖 − 𝑑𝑖)Cos[𝑞𝑖𝑥]

𝑚

𝑖=1

)

𝑗
𝐿

0

 

 

 

(7.11) 

Here, 𝑐𝑖  and 𝑑𝑖  are the Fourier coefficients in the truncated Fourier series that represents the 

substrate while 𝑎𝑖, 𝑏𝑖 and ℎ are the same with regards to 𝑔(𝑥). The last term in the free energy 

expression can be calculated by expanding the integrand using multinomial theorem which results 

in an algebraic expression involving products of sine and cosines that can be easily integrated. 

However, the number of such terms and the complexity increases with 𝑚 and 𝑛. An alternate 

expression can be found using complex Fourier series which is presented in the Appendix (see 

A.3.2). Also following this approach, similar expression for the free energy can be arrived at for 

two dimensional substrates represented by a full or truncated 2D Fourier series. With 𝑚 terms in 
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the truncated Fourier series, the free energy has 2𝑚+1 unknowns which can be found as before by 

optimizing the free energy. Later we will use these free energies to numerically calculate the 

equilibrium membrane profiles for different corrugated substrates and compare the results with 

molecular mechanics simulations. 

7.2.2 Simulations – 1D Sinusoidal Corrugations 

We carried out molecular mechanics simulations initially with 1D sinusoidally corrugated 

rigid substrates where we varied the amplitude (𝑐) and wavelength (𝜆) of the substrates in a 

systematic manner to determine the effect on the graphene membrane conformity. The simulation 

setup consists of a fictitious graphene-like substrate with just a single layer of atoms. The substrate 

atoms are pre-arranged in a sinusoidal manner with the desired amplitude and wavelength. The 

atoms in the graphene membrane interact via AIREBO potential which accounts for covalent 

bonding at short distances (~2 Å) and van der Waals (vdW) interactions at larger distances (> 3 Å) 

through a prescribed Lennard-Jones (LJ) 12-6 potential with a cut-off distance of 10.2 Å (the cut-

off distance is the distance beyond which the interaction is zeroed). The whole initial setup is as 

shown in Fig. 7.4 with black colored dots denoting the substrate atoms and blue colored dots 

denoting the graphene atoms. Initially, the graphene atoms in a flat configuration are vertically set 

apart by 20.4 Å from the substrate well beyond the LJ cutoff distance so that there are no vdW 

interactions. Periodic boundary condition is applied along the width direction while the graphene 

atoms are free to move in the length direction. The substrate is made slightly longer than the 

graphene membrane to accommodate vdW interactions near the graphene membrane edges. The 

reason for choosing to represent the substrate with just one layer of atoms is primarily that it saves 

computational effort. It is also easier to setup in comparison to a substrate with bulk atoms and 

should be able to capture the essential physics even without any bulk atoms. 
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Figure 7.4 The initial configuration of the atoms (blue - graphene, black - substrate): (a) Top view 

(b) Side view with 𝑐 = 3 Å and 𝜆 = 24 Å. 

 
 

 

Figure 7.5 The final equilibrium configurations for (a) 𝑐 = 2 Å and (b) 𝑐 = 4 Å with 𝑙 = 194 Å, 

𝑤 = 50 Å, 𝜆 = 24 Å and 𝛾 = 0.3 J/m2. The blue and black dots are atoms in graphene and 

the substrate respectively while the red curve is the fitted sine curve. 

𝑤 (Å) 
𝑐 = 2 Å 𝑐 = 4 Å 

𝑎 (Å) ℎ (Å) 𝛾 (J/m2) 𝑎 (Å) ℎ (Å) 𝛾 (J/m2) 

49.59 1.8249 3.6360 0.2656 3.0464 4.4910 0.1888 

62.15 1.8249 3.6360 0.2641 3.0462 4.4911 0.1878 

74.71 1.8262 3.6356 0.2633 3.0446 4.4918 0.1875 

Table 7.1 The results of the simulations with varying widths for the graphene membrane with the 

length fixed at about 𝑙 = 194 Å, 𝜆 = 24 Å and 𝛾 = 0.3 J/m2 

𝑤 

𝑙 

x 

y 

x 

z 20.4 Å 

a 

b 

a 

b 
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 After setting up the atoms, the interaction potentials and the boundary conditions, the 

graphene atoms are allowed to relax while fixing the substrate atoms. At the end of this 

minimization step, the graphene atoms in their relaxed configuration are moved closer to the 

substrate atoms by about 13 Å from the initial mean separation of 20.4 Å. The graphene atoms, 

now within LJ potential cut-off, start to interact with the substrate atoms while the substrate atoms 

are still rigidly fixed. Under the influence of these interactions, in what will be the second energy 

minimization step, the graphene membrane moves closer to the substrate until an equilibrium 

configuration is reached. The difference between the total energies at the end of the second and 

the first minimization steps gives the apparent adhesion energy; dividing it by the area of the 

graphene sheet gives apparent adhesion energy per unit area, 𝛾. This is because at the end of the 

first minimization step, the graphene atoms are in a relaxed flat configuration and are not 

interacting with the substrate atoms; while at the end of the second minimization step the atoms 

are deformed and adhere to the substrate. Hence, the difference of energies of these two 

configurations gives us the apparent adhesion energy which in turn is the energy gained by the 

system due to adhesive interactions between the substrate and graphene atoms and the energy lost 

due to bending of the graphene atomic bonds. 

 All the simulations are performed at a temperature of 0 K, any effects of finite temperature 

are not considered here. We used conjugate gradient method for all the minimization steps. The 

initial set of simulations are performed with  𝜆 = 24 Å, 𝑐 = 2 and 4 Å and for monolayer graphene 

while varying the length (𝑙) and the width (𝑤) of the graphene membrane. This exercise is done to 

make sure that the results are not sensitive to the size of the system. First, the width of the graphene 

sheet is varied from about 50 Å to 62 Å to 75 Å while keeping the length fixed at about 194 Å. 

For each simulation, assuming the graphene membrane takes the form 𝑔(𝑥) = ℎ + 𝑎 Sin[
2𝜋

𝜆
𝑥], 
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the amplitude (𝑎) and mean separation (ℎ) for the graphene membrane are extracted (details in 

Appendix A.3.3) from the final equilibrium configuration along with the effective adhesion energy 

per unit area (𝛾). The results of these simulations are shown partially in Fig. 7.5 and tabulated 

completely in Table 7.1. The figure shows that the graphene atoms (blue dots) follows a sine curve 

(in red) very closely. From the table, it is clear that we get about the same result in each case even 

with fewer atoms when the width is about 50 Å. 

𝑙 (Å) 
𝑐 = 2 Å 𝑐 = 4 Å 

𝑎 (Å) ℎ (Å) 𝛾 (J/m2) 𝑎 (Å) ℎ (Å) 𝛾 (J/m2) 

193.7 1.8249 3.6360 0.2656 3.0464 4.4910 0.1888 

290.4 1.8021 3.6398 0.2641 2.2880 4.9947 0.1643 

387.1 1.8085 3.6367 0.2597 1.9052 5.2855 0.1497 

Table 7.2 The results of the simulations with varying lengths for the graphene membrane with the 

width fixed at about 𝑤 = 50 Å, 𝜆 = 24 Å and 𝛾 = 0.3 J/m2 

  

 

Figure 7.6 The final equilibrium configurations for a graphene membrane of  𝑙 ≈ 290 Å with 𝑐 = 

4 Å, 𝑤 = 50 Å, 𝜆 = 24 Å and 𝛾 = 0.3 J/m2 – (a) with flat initial configuration, (b) with 

sinusoidal initial configuration. The blue and black dots are atoms in graphene and the 

substrate respectively while the red curves are the fitted sine curves.  

a 

b 
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 Similar study is done with varying lengths for the graphene membrane while keeping the 

width fixed at about 50 Å. The results are shown partially in Fig. 7.6 and tabulated completely in 

Table 7.2. We can see that with 𝑐 = 2 Å, the results are practically the same with different lengths; 

however with 𝑐 = 4 Å, the results differ with the shorter graphene membranes conforming better 

than the longer ones. This is probably due to the inability of the energy minimization step to reach 

the absolute minimum. The graphene membrane reaches what might be an intermediate 

equilibrium configuration where the conformity is not quite uniform as seen in Fig. 7.6a for 𝑙 = 

290 Å case. The figure also shows the sine curve fitting done to the two different regions of the 

membrane in red and the solid curve is closer to the result obtained with shorter graphene 

membrane. To ascertain which of these two fitted sine curves with (𝑎, ℎ) = (2.86, 4.59) Å and 

(1.38, 5.69) Å corresponds to the actual minimum, we repeated the simulation with the graphene 

atoms initially along one of the aforementioned fitted sinusoidal curves instead of a flat shape. The 

simulations in each case produced results of (3.23, 4.39) Å and (3.11, 4.45) Å for the initial 

configurations of (2.86, 4.59) Å and (1.38, 5.69) Å respectively. These results are in turn are close 

to the one obtained for the shorter membrane i.e. (3.05, 4.49) Å.  

 In view of the above discussion and results shown in Tables 7.1 and 7.2, we concluded that 

we get about the same results with different lengths and widths for graphene. So we used 𝑙 ≈ 194 

Å and w ≈ 50 Å for the rest of our simulations knowing that we lose very little in terms of 

accuracy. Now, we varied the wavelength, 𝜆 of the substrate from 12 Å to 36 Å in steps of 6 Å 

while keeping the amplitude, 𝑐  fixed at either 1 or 2 Å. We also solve for the equilibrium 

configuration in each case using our theory where we used 1 eV for monolayer graphene 

membranes bending rigidity in line with the values found in the literature48. We arrived at this 

value using molecular mechanics simulations, the details of which are presented in the Appendix 
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(see A.3.4). The results of these simulations (red dots) are shown in Fig. 7.7 along with the 

theoretical calculations (black curves). We see good agreement between the simulations and the 

theory in general. As discussed before, we see here that with increasing wavelength the conformity 

of the graphene membrane to the substrate changes from poor to good leading to increase in the 

membrane amplitude, decrease in the equilibrium separation and increase in the adhesion energy. 

   

   

Figure 7.7 Plots showing the variation of equilibrium (a,d) amplitude, 𝑎, (b,e) separation, ℎ and 

(c,f) adhesion energy, 𝛾 with the substrate wavelength, 𝜆. The black curve is from our 

theory and the red dots are from the simulations. The top (a,b,c) and the bottom rows (d,e,f) 

show results for substrate amplitude 𝑐 = 1 Å and 2 Å respectively. 

  

a b c 

d e f 
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Figure 7.8 Plots showing the variation of equilibrium (a) amplitude, 𝑎 (normalized with respect 

to substrate amplitude, 𝑐), (b) separation, ℎ and (c,f) adhesion energy, 𝛾 with the substrate 

amplitude, 𝑐. The black curve is from our theory and the red dots are from the simulations. 

For these simulations, the substrate wavelength is fixed at 𝜆 = 24 Å. 

 We also carried out simulations where we varied the substrate amplitude, 𝑐 while fixing 

the wavelength, 𝜆 and using the same values for 𝑙, 𝑤 and 𝛾 as before. The results are shown in Fig. 

7.8. Again it can be seen that the theory performs reasonably well at predicting the equilibrium 

configurations of the graphene membrane as well as the transition from good to poor conformity. 

In essence, as we increase the curvature of the substrate, either by increasing 𝑐 or decreasing 𝜆, 

the conformity of the graphene membrane decreases. This is due to the tradeoff between bending 

strain and the adhesive forces as discussed before.  

   

Figure 7.9 Plots showing the variation of equilibrium (a) amplitude, 𝑎, (b) separation, ℎ and (c,f) 

adhesion energy, 𝛾 with the number of layers, 𝑛. The black curves are from our theoretical 

calculations with different bending rigidities and the red dots are from the simulations. For 

these simulations, the substrate amplitude and wavelength are fixed at 𝑐 = 2 Å and 𝜆 = 24 

Å while 𝛾 = 0.3 J/m2.  

a b c 

a b c 
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Next, we varied the number of layers from 1 to 5 in the graphene membranes. For these set 

of simulations we fixed the amplitude and wavelength of the substrate at 2 Å and 24 Å respectively 

while the same parameters are used for LJ potential. The results are shown in Fig. 7.9. As before, 

the red dots are from the simulations and each of the two black curves are from our theory with 

the bending rigidities calculated in two different ways. The dashed curve is obtained using the 

formula 𝜅𝑛 = 𝑛𝑘1 + 𝐸𝑠
3(𝑛3 − 𝑛)/12 where 𝑛 is the number of layers, 𝜅𝑛 is the bending rigidity 

of 𝑛 layer graphene, 𝐸 is the Young’s modulus and 𝑠 is the inter-layer separation in multi-layered 

graphene. This relation is obtained from numerical calculations of spherical graphene using 

“revised periodic boundary conditions” in density functional tight binding method based 

simulations.47 We used a value of 1 eV for 𝜅1 as before. The solid curve in contrast is obtained by 

simply assuming 𝜅𝑛 = 𝑛𝜅1, which meant that each layer in multi-layered membranes behaved 

independently. As can be seen, we get a better agreement with the simulations with the case where 

the bending rigidity is assumed to vary linearly. The first approach to calculating the bending 

rigidity is closer to the straightforward continuum mechanics approach where bending rigidity is 

simply given by 𝜅 = 𝐸𝑡3/12/(1 − 𝜈2) (𝑡 is the thickness); while the second approach suggests 

frictionless sliding between layers which seems to be the case in the simulations. 

It is also to be noticed that we assumed here implicitly that all the layers will have the same 

amplitude but this is not the case in the simulations. It is observed in the simulations that the 

amplitude of each layer decreases progressively from the bottom to the top layers, bottom being 

the closest to the substrate. To illustrate this point, the equilibrium configurations for two and five 

layered membranes are shown in Fig. 7.10. For the bilayered membrane the amplitudes of the 

bottom and top layers are 1.62 Å and 1.48 Å respectively; while the same for five layered 

membrane are 0.65 Å and 0.38 Å. This behavior can easily be explained by the nature of the LJ 
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potential. The LJ potential energy decreases rapidly as separation is increased from the equilibrium 

value, hence the bottom most layer interacts in the strongest manner with the substrate. In fact, due 

to the cutoff distance for LJ interactions in the simulations there is zero interaction between the 

substrate and any layer or atoms beyond 10.2 Å. Hence the top layers interact appreciably only 

with their neighboring layers. In addition to this, the low shear modulus of graphene allows the 

graphene layers to slide and accommodates varying degrees of bending strain. The net effect of 

these conditions is that the top layers only react to the corrugations of the layer below and so on 

leading to progressively decreasing amplitudes from the bottom to the top layers or vice versa. 

This in turn leads to smoother topographies and decreased adhesion energies for multi-layered 

graphene membranes when compared to monolayer graphene as evidenced in our simulation 

results. 

  
 

 

Figure 7.10 Plots showing the equilibrium configuration of (a) bilayer and (b) five layered 

graphene. The black and blue dots denote substrate and graphene atoms while the red 

curves denote the best fit sine curves for each layer. 

 

a 

b 



 

 

125 

 

7.2.3 Simulations – 2D Sinusoidal Corrugations 

Having performed simulations with corrugations in one direction alone, we directed our 

attention to corrugations in both 𝑥 and 𝑦 directions. The first step of these simulations involved 

preparation of substrate. This is achieved by moving atoms on a flat surface out of plane according 

to the equation 𝑠(𝑥, 𝑦) = 𝑐 Sin [
2𝜋𝑥

𝜆𝑥
] Sin [

2𝜋𝑦

𝜆𝑦
] so that it forms a structure that looks like an egg 

crate. This structure is allowed to relax as much as possible by constraining the atoms to move 

only along the surface given by 𝑠(𝑥, 𝑦). The graphene membrane, which is initially placed 20.4 Å 

away from the substrate, is then brought closer and allowed to move to an equilibrium 

configuration through energy minimization while the substrate atoms are rigidly fixed. The initial 

and the final equilibrium configurations are as shown in Fig. 7.11. The equilibrium configuration 

of the membrane follows the sinusoidal shape of the substrate and hence can be fit to a sinusoidal 

surface with the same wavelengths but different amplitude. The same post-processing steps as 

described before are done to obtain the γ, 𝑎 and ℎ. For convenience, we chose 𝜆𝑥 = 𝜆𝑦. As before, 

we varied the amplitude, 𝑐 and the wavelength 𝜆 of the substrate to see the resultant effect on the 

graphene membrane conformity. When varying the wavelength, the amplitude is fixed at 1 Å and 

while varying the amplitude, the wavelength is fixed at 24 Å. All the simulations are carried out 

at 0 K and with monolayer graphene of size 190×190 Å while the substrate is slightly larger to 

accommodate vdW interactions of the atoms along the edges of the graphene membrane.  
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Figure 7.11 Side views of (a) the initial system configuration at the beginning of the simulation, 

and (b) the equilibrium configuration for graphene obtained at the end of the simulation 

with a substrate amplitude of 1 Å and wavelength 30 Å. General view of the system 

equilibrium configuration is seen in (c). The black and blue dots denote the atoms in 

substrate and graphene respectively. 

a 

b 
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Figure 7.12 Plots showing the variation of (a) Amplitude, 𝑎, (b) Mean separation, ℎ, and (c) 

Adhesion energy, 𝛾 with wavelength 𝜆 of the corrugated substrate with amplitude fixed at 

𝑐 = 1 Å. The bottom row plots show the variation of (d) normalized amplitude, 𝑎/𝑐, (e) ℎ 

and (f) 𝛾 with respect to substrate amplitude variation with 𝜆 = 24 Å. The graphene sheet 

size is set at about 190×190 Å. 

 The results of the simulations with varying wavelength are shown in Figs. 7.12a, b, and c 

and those with varying amplitude are shown in Figs. 7.12d, e and f. The red dots in each plot are 

the results of the simulations while the black curves are obtained from the theory i.e. optimizing 

the free energy in eq. (7.10). It can be seen that, just as in the case of one dimensional sinusoidal 

corrugations, the conformity of the graphene membrane transitions from good to poor with 

increasing substrate amplitude or decreasing wavelength. However, this transition is more gradual 

compared to the one dimensional case. Also to be noticed is the good agreement between the theory 

and the simulation results. 

 

a b c 

d e f 



 

 

128 

 

7.2.3 Simulations – 1D Multi-component Sinusoidal Corrugations 

  
 

  

Figure 7.13 Plots in the top row show the variation of the amplitudes of each frequency 

components in the membrane with respect to the amplitude of the higher frequency 

component in the substrate: (a) 𝑎1 vs 𝑐2 and (b) 𝑎2 vs 𝑐2. The plots in bottom row show the 

variation of the equilibrium separation, ℎ and adhesion energy, 𝛾  with 𝑐2  respectively. 

The results from the simulations are plotted as red dots and those from simulations are 

plotted as black curves. 

 In the theory sub-section, we discussed a generalized free energy for a substrate described 

by a full or truncated Fourier series. To retain simplicity, we limited our studies to just two 

frequency components. We performed simulations with substrates taking the form, 𝑠(𝑥) =

𝑐1Sin[𝑞𝑥] + 𝑐2Cos[2𝑞𝑥] (𝑞 = 2𝜋/𝜆) where we fixed both 𝑐1 and 𝜆 at 1 Å and 24 Å respectively. 

The simulations setup is exactly same as the one described before with 1D sinusoidal corrugation 

simulations. The value of 𝑐2 is varied from -1 to 1 Å in steps of 0.2 Å and the results are compared 

with the theory. The free energy for this particular case is given by: 

a b 

c d 
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𝐹(𝑎1, 𝑎2, ℎ) =
𝐷

2
(
𝑞4𝑎1

2

2
+
(2𝑞)4𝑎2

2

2
) + 𝑉𝑓(ℎ)

+∑
𝑑𝑗𝑉𝑓(ℎ)

𝑑ℎ𝑗

𝑛

𝑗=1

∑
1

𝑘! (𝑗 − 𝑘)!
(𝑎1 − 𝑐1)

k(𝑎2 − 𝑐2)
j−k∫ Sin[𝑥]𝑘 Cos[2𝑥]𝑗−𝑘

𝑑𝑥

2𝜋
 

2𝜋

0

𝑗

𝑘=0

 

 

 

(7.12) 

This expression is derived from (7.11) where the integrand in the last term is expanded with the 

help of the binomial theorem. The integrals in the last term here can be evaluated analytically for 

any arbitrary positive integers 𝑗 and 𝑘. The free energy in this case has only three unknowns – the 

amplitude of the lower frequency sine component, 𝑎1, the amplitude of the higher frequency cosine 

component, 𝑎2 and the equilibrium separation, ℎ. These values are obtained via optimization of 𝐹 

as before (here we used 𝑛 = 80). Also these values along with the adhesion energy, 𝛾 are obtained 

from the simulations using the same post-processing steps as before. Figure 7.13 shows the 

simulation results along with those from the analysis. We plot the variation of 𝑎1, 𝑎2, ℎ and 𝛾 with 

respect to 𝑐2. It can be seen that the analysis captures the general trend quite well and predicts the 

amplitude of the higher frequency quite well. As the magnitude of 𝑐2 is increased, the overall 

amplitude of the corrugation is also increased thus decreasing the ability of graphene to conform 

well. This is reflected quite well in the decrease of adhesion energy and increase of mean 

separation with increasing magnitude of 𝑐2 . However, the amplitude of the lower frequency 

component, 𝑎1 shows a curious asymmetric trend. It decreases continuously with increasing 𝑐2 

and also the analysis does poorly in predicting 𝑎1. 

 Thus we demonstrated here how our analysis can be extended to multi-component 

corrugations with a dual component 1D substrate profile. The analysis does well, qualitatively at 

the least, in predicting the conformity and adhesion energy. We surmise that this method might be 

used to study adhesion qualitatively on simple substrate profiles like square waves and triangle 
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waves since such simple substrate profiles can easily be represented using the few dominant 

Fourier components in their Fourier series expansions. Such surface profiles can also be readily 

fabricated to carefully understand and engineer adhesion. 

7.3 Peel Test with Graphene Ribbons on Flat and Corrugated Substrates 

 

Figure 7.14 Schematic of a V-peel test107 

 We performed V-peel test57,107 on graphene ribbons adhered to a flat and sinusoidally 

corrugated substrates (just like the ones described in previous section). The term V-peel test is 

used by Wan107 et al in their paper owing to the inverted V-shape assumed by the plate or 

membrane being peeled as shown in Fig. 7.14. It is a simple experiment used to determine the 

adhesion energy wherein a line load or a displacement boundary condition is applied at the middle 

of a membrane and peeled from the substrate while the edges are fixed. The adhesion energy is 

obtained from the applied force, measured crack length and peel angle. The goal here is to 

understand the mechanics of peeling of the graphene membranes at the atomistic scale. 

 The simulation setup is similar to the one shown in Fig. 7.4 except here the periodic 

boundary condition in the width direction is no longer used. We took advantage of the symmetry 

of the peel test setup and simulated only half the membrane. Also, in these simulations the adhesion 

energy is set at about 0.4 J/m2 by adding an LJ potential with 𝜖 ≈ 1 meV and 𝜎 =3.4 Å to the 

interactions between the substrate and graphene atoms in addition to the LJ potential from the 

AIREBO potential. We will first describe the simulations with flat substrates along with a simple 
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analysis to explain the simulation results. Then, we move on to the more complicated peeling 

simulations with corrugated substrates and use the theoretical approach developed in the previous 

section to develop a theory to describe the results. 

7.3.1 Flat Substrates – Theory and Simulations 

 
 

 
 

 

 

 

Figure 7.15 (a) Top view of the initial configuration with substrate and graphene atoms in black 

and blue colors respectively. (b,c) The self-similar equilibrium configurations at two 

different specified ‘d’.  

Peel tests at the macro-scale are conventionally performed with flat substrates with 

different kinds of boundary conditions and linear or non-linear continuum mechanics analyses 

exist for each case.57 Non-linearities usually arise from either from large deformations or material 

models. Here we use one such variant where we apply a displacement boundary condition on one 

edge, while the other edge is kept fixed. The edge on which the displacement boundary condition 

is applied is displaced only in the 𝑧 direction and is held fixed in the 𝑥 direction. At a given specific 
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displacement 𝑑, the system is allowed to relax to a minimum energy state as shown in Figs. 

7.15b,c. This is repeated several times, with an increasing 𝑑  each instance. As 𝑑  is increased 

gradually, the membrane peels away from the substrate forming a “crack” and simultaneously it is 

stretched. The resultant force on the displaced edge, 𝑓  and its components, 𝑓𝑥 , 𝑓𝑦  and 𝑓𝑧  are 

recorded. Also the crack length (𝑠) and peel angle (𝜃) are extracted from the simulation results. 

The length of the membrane used is about 500 Å and the width is about 50 Å. The free edge is 

displaced by 175 Å in steps of 0.1 Å. 

   

Figure 7.16 (a) Total force per unit width, 𝑓/𝑤 vs Displacement, 𝑑. (b) Angle, Tan(𝜃) vs 𝑑. (c) 

Crack length, 𝑠 vs 𝑑. 

 The results of the simulation are plotted in Figs. 7.16a,b,c. The resultant force, 𝑓 is plotted 

in Fig. 7.16a. The force increases gradually, as more length of the membrane is peeled from the 

substrate (as shown in Fig. 7.16c). At about 𝑑 = 137 Å, the results look different due to the fact 

that the crack has reached the fixed end as evident from the plot of the crack length (Fig. 7.16c). 

Here the membrane is only uniaxially stretched and as there is no peeling involved, we are not 

interested in this part of the results. From continuum theory of the V-peel test,57 it is known that at 

equilibrium when the crack is propagating in a self-similar fashion: 

G = γ =
𝑓𝑧(1 − Cos[𝜃] +

𝜖
2)

𝑤 Sin[𝜃]
 

 

(7.13) 

a b c 
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Here G is the energy release rate, 𝛾 is the adhesion energy, 𝑤 is the width of the membrane and 𝜖 

is the strain in the delaminated membrane. However when we look at the strain field in the 

membrane as a function of the x coordinate as obtained from the simulation at 𝑑 = 80 Å (see Fig. 

7.17), we notice that the strain in the membrane is almost uniform. This is due to transmission of 

the membrane stress through the adhered region of the membrane too, in contrast to the normal 

peel test at macro-scale. This is possible due to the ability of the atoms in the adhered region to 

slide over the substrate atoms, which is not the case at macro-scale. As a result of this, the strain 

energy does not contribute to the energy release rate. Putting 𝜖 = 0, we calculated the energy 

release rate using the values of 𝑓𝑧 and 𝜃 and the plot is shown in Fig. 7.18. We can see that the 

value reaches 0.4 J/m2 (indicated by red dashed line in Fig. 7.18) at about 𝑑 = 10 Å, before which 

the eq. (7.13) is not valid as self-similarity is not established yet. It is to be noted that with 𝜖 = 0, 

the expression in eq. (7.13) is now equivalent to the energy release rate in peeling of an inextensible 

membrane. 

 

Figure 7.17 Strain field along the x coordinate in the membrane when 𝑑 = 80 Å. 
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Figure 7.18 Energy release rate calculated using eq. (7.13) putting 𝜖 = 0. 

 Hence, in conclusion, we performed peel test simulation with a graphene ribbon on a flat 

substrate. The simulation results are found to agree well with the peel test analysis of an 

inextensible membrane. The reason for this is that graphene ribbon as it is peeled from the substrate 

slides on the substrate which in turn distributes strain energy uniformly across the delaminated and 

adhered portions of the membrane. This means that as the membrane is peeled, the strain energy 

does not contribute to the energy released. In spite of the simulation involving atomistic sliding, 

the continuum mechanics description holds up quite well. 

7.3.2 Corrugated Substrates – Theory and Simulations 

 We now move onto simulations of V-peel tests of graphene ribbons on sinusoidally 

corrugated substrates. The initial set-up is as shown in Fig. 7.19a: a graphene ribbon on a 

sinusoidally corrugated substrate with amplitude, 𝑐  and wavelength, 𝜆 . As we learned in the 

previous sections, graphene will follow the substrate surface profile as closely as possible by 

achieving a balance between the adhesion energy and bending strain energy. Let the undeformed 

length of the graphene ribbon be denoted by 𝑙  and the projected length of the ribbon in its 

equilibrium configuration be 𝑥0 as shown in Fig. 7.19a. As in the flat substrate case, one edge is 
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fixed and the free edge is displaced vertically (Fig. 7.19b). At any given displacement, the 

equilibrium configuration is obtained by energy minimization. As shown in Fig. 7.19b, we found 

that in the equilibrium configuration a portion of the membrane is delaminated while the rest of 

the membrane still adheres to the substrate. As before, the delamination length, 𝑠 (or the adhered 

length, 𝑥 = 𝑥0 − 𝑠), the delamination angle, 𝜃,  and the peeling force, 𝑓 are recorded during the 

simulations. During the course of the simulations, we observed that the graphene atoms slid on the 

substrate just as in the flat substrate case. This caused the conformity of the graphene membrane 

in the adhered region change as the free edge is displaced. So, we also recorded how the amplitude 

of the adhered region, 𝑎 changes as the displacement is increased. 

 

 

 

Figure 7.19 V-peel test on corrugated substrates. (a) Initial configuration, (b) Equilibrium 

configuration at a specific ‘𝑑’. 

 Before presenting the details of the simulation results, let us look at how we can analytically 

model this problem. The displacement applied at the free edge induces stretching in the whole of 

the membrane which we assumed to be uniform. We will later verify this assumption using the 

simulation results. This strain, 𝜖 can then be calculated from the constraint: 

a 

x 

z 

𝑎 

𝑑 

b 

Fixed 𝑠 

𝑥 = 𝑥0 



 

 

136 

 

(𝑙(1 + 𝜖) − 𝑙𝑎(𝑎, 𝑥))
2 = (𝑑 − 𝑎 Sin[𝑞𝑥])2 + 𝑠2 

 

(7.14) 

Here, 𝑙 is the initial undeformed length of the graphene membrane and 𝑙𝑎(𝑎, 𝑥) is the arc length of 

the membrane attached to the substrate which can be easily obtained given the sinusoidal shape 

assumption. This constraint comes from the fact that the free end of membrane is simply displaced 

vertically upwards. The resultant force needed to displace the free end can be determined from the 

strain as, 𝑓 = 𝐸𝑡𝑤𝜖.  

 Given the known variables substrate amplitude and wavelength (𝑐 and 𝜆), displacement 

(𝑑), the unknowns in this problem are force (𝑓), strain (𝜖), angle (𝜃), adhered length (𝑥), adhered 

region amplitude and equilibrium separation ( 𝑎  and ℎ ). Assuming ℎ = ℎ0  i.e. fixing the 

equilibrium separation (ℎ) to be the same as that of a flat substrate (ℎ0), the only independent 

variables here are 𝑎 and 𝑥. The rest can be obtained from these two variables: 𝜖 and hence 𝑓 from 

eq. (7.14), 𝜃 simply from 𝑑 and 𝑠. Hence, the free energy of the system (graphene ribbon, substrate 

and the adhesive interface) per unit width can then be written as a function of 𝑎 and 𝑥: 

𝐹(𝑎, 𝑥) = 𝐹𝑎𝑑ℎ + 𝐹𝑏𝑒𝑛 + 𝐹𝑠𝑡𝑟 

  

(7.15) 

Here, 𝐹𝑎𝑑ℎ is the contribution of the adhesive interactions. Using the approach as shown in eq.  

(7.8): 

𝐹𝑎𝑑ℎ(𝑎, 𝑥) = 𝑉𝑓(ℎ0)𝑥 +∑
𝑑𝑖𝑉𝑓(ℎ)

𝑑ℎ𝑖
│ℎ=ℎ0  

(𝑎 − 𝑐)𝑖

𝑖!
 ∫ Sin[𝑞𝑥]𝑖 𝑑𝑥

𝑙

0

𝑛

𝑖=1

= −𝛾 (𝑥 −
10

ℎ0
2
(𝑎 − 𝑐)2 (𝑥 −

Sin(2𝑞𝑥)

2𝑞
) + 𝒪((𝑎 − 𝑐)3))

 

 

 

(7.16) 
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Unlike in eq. (7.7), as mentioned already, here we fixed the equilibrium separation, ℎ at ℎ0 to 

simplify the calculations. Also, the interaction of the atoms near the interface of the adhered and 

detached regions is ignored here. The bending strain energy contribution, 𝐹𝑏𝑒𝑛 is given by: 

𝐹𝑏𝑒𝑛(𝑎, 𝑥) =
𝐷

2
∫  (

𝑑2𝑔(𝑥)

𝑑𝑥2
)

2

𝑑𝑥
𝑙

0

=
𝐷

4
𝑞4𝑎2 (𝑥 −

Sin(2𝑞𝑥)

2𝑞
)

 

 

 

(7.17) 

Here 𝑔(𝑥) = ℎ0 + 𝑎 Sin[𝑞𝑥] and any bending strain energy contribution from the region where 

the membrane goes from adhered to detached is ignored. The strain energy contribution due to 

stretching induced by the displacement of the free edge, 𝐹𝑠𝑡𝑟 is then: 

𝐹𝑠𝑡𝑟(𝑎, 𝑥) =
𝐸𝑡

2
∫  (𝜖 +

1

2
(
𝑑𝑔(𝑥)

𝑑𝑥
)

2

)

2
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𝑙

0
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𝐸𝑡

2

(
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1

2
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Sin(2𝑞𝑥)
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+
1

16
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+
Sin(2𝑞𝑥)
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+
Sin(4𝑞𝑥)

8𝑞
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)

 
 

 

 

 

 

 

(7.18) 

The equilibrium configuration is then given by minimizing the free energy with respect to the 

unknowns 𝑎 and 𝑥: 

𝜕𝐹

𝜕𝑎
=
𝜕𝐹

𝜕𝑥
= 0 

 

(7.19) 

Due to the algebraic complexity of the free energy expression, we solved these equations 

numerically for a given set of parameters. It is to be noticed if the substrate amplitude, 𝑐 is made 

zero, then 𝑎 also goes to zero. This simplifies the free energy to that of membrane adhered to a flat 

substrate and it can be shown that one can recover the result in eq. (7.13) (see Appendix A.3.5). 
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Figure 7.20 (a,d) Force per unit length, (𝑓/𝑤) vs Displacement, 𝑑, (b,e) Amplitude, 𝑎 vs d and 

(c,f) Crack length, 𝑠 vs 𝑑 for 𝜆 = 15 Å and 30 Å respectively. The data in black and red are 

from the simulations and theory respectively. 

 We now compare the results of the simulations with those from our analysis. Because we 

assumed that the equilibrium separation does not change from the flat substrate case, we limited 

our simulations to substrate amplitude of 𝑐 = 1 Å where ℎ ≈ ℎ0. The results from the simulations 

along with results of our analysis are plotted in Fig. 7.20 with 𝜆 = 15 Å and 𝜆 = 30 Å. It can be 

noticed that the overall mechanics is discontinuous due to ‘instabilities’. We learned from the 

simulations that these ‘instabilities’ are formed due to combined sliding and delamination of the 

graphene ribbon from the substrate. As the free edge displacement, 𝑑 is increased initially the 

membrane just slides resulting in a decrease of the amplitude of the adhered region, 𝑎 without any 

change in 𝑥, the length of the adhered region. Also, we noticed that while sliding, the membrane 

is pinned to a peak on the substrate. As 𝑑 is increased further, the membrane ‘snaps’ by getting 

d e f 

a b c 
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detached by a magnitude equal to about half the wavelength, 𝜆. This snap seems to create slack 

which gets redistributed into the adhered region increasing the amplitude, 𝑎 though not back to the 

initial value. After this snap-off, we noticed that the membrane is pinned at the next available peak 

on the substrate and now starts to slide again upon increasing 𝑑. This behavior continues on until 

the fixed end is reached. The pinning of the membrane at a peak is evident from the nearly discrete 

increment of the delaminated length as shown in Fig. 7.20c,f. 

 If not for the undulating behavior in the overall mechanics as shown in Fig. 7.20, it is 

similar to that of peeling from the flat substrate shown in Fig. 7.16. The force required to 

delaminate and displace the free end, 𝑓 increases with increasing displacement, 𝑑 (Figs. 7.20a,d). 

The delaminated length, 𝑠 (or equivalently adhered length, 𝑥) also increases with 𝑑 (Figs. 7.20c,f). 

On the other hand, the amplitude of the graphene ribbon in the adhered region, 𝑎  decreases 

gradually with increasing 𝑑 (Figs. 7.20b,e). The results from our analysis do poorly with 𝜆 = 15 

Å case and better with 𝜆 = 30 Å when compared to simulation results. The reason might be the 

assumption ℎ = ℎ0. Also, it is known graphene exhibits non-linear material properties beyond 1% 

strain103 which we definitely surpass in these simulations. In contrast, in our analysis we assumed 

a constant value 𝐸𝑡. In spite of its inaccuracy, our analysis captures the nature of the mechanics 

involved in this problem quite well. 

 We asserted earlier that the strain in the membrane is uniform while developing our 

theoretical analysis. The strain fields at a displacement of 𝑑 = 75 Å are plotted in Figs. 7.21a and 

7.21b for 𝜆 = 15 Å and 30 Å cases respectively. We can clearly see that the strains are quite 

uniform, hence validating our assertion. 
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Figure 7.21 Strain field for (a) 𝜆= 15 Å case, (b) 𝜆 = 30 Å case with 𝑑 = 75 Å   

    

Figure 7.22 (a) The total force per unit width, 𝑓/𝑤 and (b) the energy release rate, 𝐺 according 

to eq. (7.13) plotted against the crack length, 𝑠 for 𝜆 = 15 Å (blue), 𝜆 = 20 Å (red), 𝜆 = 

25 Å (green), 𝜆 = 30 Å (black) and flat substrate (magenta). 

 In an actual experiment, the force-displacement curve is the information that one can obtain 

in the easiest manner. We plotted a comparison of the magnitude of the force per unit width with 

respect to the crack length in Fig. 7.22a with different wavelengths along with the limiting case of 

a flat substrate. Expectedly we see that larger the wavelength, the closer the force-displacement to 

a 

b 

a b 
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the flat substrate case. Notice that from the periodic nature of these plots, we can easily infer the 

number of peaks on the substrate and the wavelength. In Fig. 7.22b, we plotted the energy release 

rate using the expression that we used for a flat substrate in eq. (7.13). The energy release rates for 

corrugated substrate give undulating values not revealing any direct information about the true 

adhesion energy as in the flat substrate case. These results are similar to the case of a flat substrate 

with periodically varying adhesion energy.108 However, in our case the amplitude of the periodic 

variation is coupled to the amplitude of the graphene membrane (see eq. (7.16)) which in turn 

depends on the strain in the system in a non-linear manner (see eq. (7.14)). Thus even as the energy 

release rate shows a periodic pattern, the amplitude varies in a non-linear intractable manner 

making it very difficult to extract the adhesion energy from the energy release rate plots.  

7.4 Summary 

 This chapter is divided into two main sections. In the first section, we described molecular 

mechanics simulations and a companion theoretical analysis where the equilibrium configurations 

of graphene membranes on sinusoidally corrugated substrates. We learnt through these simulations 

that the adhesion energy depends on the amplitude and wavelength of the substrate corrugations 

with larger amplitudes and smaller wavelengths leading to poor conformity. We confirmed a snap-

through phenomenon associated with the conformity of graphene that has been observed by several 

others in the literature. We showed that our analysis compares quite well with the simulation results 

with both one and two dimensional sinusoidal corrugations.  

 In the second section, the peel mechanics of graphene ribbons on flat as well as sinusoidally 

corrugated substrates is studied. We found that the mechanics of peeling of the ribbon on a flat 

substrate is similar to that of an inextensible membrane owing to the sliding of the graphene sheet 

on the substrate. The mechanics of peeling on corrugated substrates differs significantly from that 
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on the flat substrate and reveals interesting mechanics. In the latter case, we observed instabilities 

in the way the graphene membrane delaminates from the substrate. We attempted to explain the 

observed results with the help of a free energy based analysis. This analysis, if not very accurate, 

captures the essential nature of the mechanics involved.   



 

 

143 

 

Bibliography 

1. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 

666–9 (2004). 

2. Hernandez, Y. et al. High-yield production of graphene by liquid-phase exfoliation of 

graphite. Nature nanotechnology 3, 563–8 (2008). 

3. Liang, X. et al. Electrostatic force assisted exfoliation of prepatterned few-layer graphenes 

into device sites. Nano letters 9, 467–72 (2009). 

4. Berger, C. et al. Ultrathin Epitaxial Graphite:  2D Electron Gas Properties and a Route 

toward Graphene-based Nanoelectronics. The Journal of Physical Chemistry B 108, 

19912–19916 (2004). 

5. Berger, C. et al. Electronic confinement and coherence in patterned epitaxial graphene. 

Science 312, 1191–6 (2006). 

6. Coraux, J., N’Diaye, A. T., Busse, C. & Michely, T. Structural coherency of graphene on 

Ir(111). Nano letters 8, 565–70 (2008). 

7. Sutter, P. W., Flege, J.-I. & Sutter, E. A. Epitaxial graphene on ruthenium. Nature 

materials 7, 406–11 (2008). 

8. Kim, K. S. K. S. et al. Large-scale pattern growth of graphene films for stretchable 

transparent electrodes. Nature 457, 706–10 (2009). 

9. Reina, A. et al. Large area, few-layer graphene films on arbitrary substrates by chemical 

vapor deposition. Nano letters 9, 30–5 (2009). 

10. Li, X. et al. Large-area synthesis of high-quality and uniform graphene films on copper 

foils. Science 324, 1312–4 (2009). 

11. Sutter, P., Sadowski, J. T. & Sutter, E. Graphene on Pt(111): Growth and substrate 

interaction. Physical Review B 80, 245411 (2009). 

12. Kwon, S.-Y. et al. Growth of semiconducting graphene on palladium. Nano letters 9, 

3985–90 (2009). 

13. Yan, Z., Peng, Z. & Tour, J. M. Chemical vapor deposition of graphene single crystals. 

Accounts of chemical research 47, 1327–37 (2014). 

14. Lee, J.-H. et al. Wafer-Scale Growth of Single-Crystal Monolayer Graphene on Reusable 

Hydrogen-Terminated Germanium. Science 344, 286–289 (2014). 



 

 

144 

 

15. Wu, B. et al. Self-organized graphene crystal patterns. NPG Asia Materials 5, e36 (2013). 

16. Kim, K. et al. Grain boundary mapping in polycrystalline graphene. ACS nano 5, 2142–6 

(2011). 

17. Suk, J. W. et al. Transfer of CVD-grown monolayer graphene onto arbitrary substrates. 

ACS nano 5, 6916–24 (2011). 

18. Blake, P. et al. Making graphene visible. Applied Physics Letters 91, 063124 (2007). 

19. Lee, C., Wei, X., Kysar, J. W. & Hone, J. Measurement of the elastic properties and 

intrinsic strength of monolayer graphene. Science 321, 385–8 (2008). 

20. Geim, A. K. Graphene: status and prospects. Science 324, 1530–4 (2009). 

21. Lau, C. N., Bao, W. & Velasco, J. Properties of suspended graphene membranes. 

Materials Today 15, 238–245 (2012). 

22. Bunch, J. S. et al. Impermeable atomic membranes from graphene sheets. Nano letters 8, 

2458–62 (2008). 

23. Weiss, N. O. et al. Graphene: an emerging electronic material. Advanced materials 

(Deerfield Beach, Fla.) 24, 5782–825 (2012). 

24. Choi, W., Lahiri, I., Seelaboyina, R. & Kang, Y. S. Synthesis of Graphene and Its 

Applications: A Review. Critical Reviews in Solid State and Materials Sciences 35, 52–71 

(2010). 

25. Wassei, J. K. & Kaner, R. B. Graphene, a promising transparent conductor. Materials 

Today 13, 52–59 (2010). 

26. Schedin, F. et al. Detection of individual gas molecules adsorbed on graphene. Nature 

materials 6, 652–5 (2007). 

27. Milaninia, K. M., Baldo, M. a., Reina, A. & Kong, J. All graphene electromechanical 

switch fabricated by chemical vapor deposition. Applied Physics Letters 95, 183105 

(2009). 

28. Liu, X. et al. Large arrays and properties of 3-terminal graphene nanoelectromechanical 

switches. Advanced materials (Deerfield Beach, Fla.) 26, 1571–6 (2014). 

29. Bunch, J. S. et al. Electromechanical resonators from graphene sheets. Science 315, 490–3 

(2007). 

30. Chen, C. et al. Performance of monolayer graphene nanomechanical resonators with 

electrical readout. Nature nanotechnology 4, 861–7 (2009). 



 

 

145 

 

31. Jiang, D., Cooper, V. R. & Dai, S. Porous graphene as the ultimate membrane for gas 

separation. Nano letters 9, 4019–4024 (2009). 

32. Koenig, S. P., Wang, L., Pellegrino, J. & Bunch, J. S. Selective molecular sieving through 

porous graphene. Nature nanotechnology 7, 728–32 (2012). 

33. Cohen-Tanugi, D. & Grossman, J. C. Water desalination across nanoporous graphene. 

Nano letters 12, 3602–8 (2012). 

34. Autumn, K. et al. Evidence for van der Waals adhesion in gecko setae. Proceedings of the 

National Academy of Sciences of the United States of America 99, 12252–6 (2002). 

35. Maboudian, R. Critical Review: Adhesion in surface micromechanical structures. Journal 

of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 15, 1 

(1997). 

36. Scharfenberg, S. et al. Probing the mechanical properties of graphene using a corrugated 

elastic substrate. Applied Physics Letters 98, 091908 (2011). 

37. Low, T., Perebeinos, V., Tersoff, J. & Avouris, P. Deformation and Scattering in 

Graphene over Substrate Steps. Physical Review Letters 108, 096601 (2012). 

38. Seol, J. H. et al. Two-dimensional phonon transport in supported graphene. Science 328, 

213–6 (2010). 

39. Pereira, V. & Castro Neto, A. Strain Engineering of Graphene’s Electronic Structure. 

Physical Review Letters 103, 046801 (2009). 

40. Van Lier, G., Van Alsenoy, C., Van Doren, V. & Geerlings, P. Ab initio study of the 

elastic properties of single-walled carbon nanotubes and graphene. Chemical Physics 

Letters 326, 181–185 (2000). 

41. Kudin, K., Scuseria, G. & Yakobson, B. C2F, BN, and C nanoshell elasticity from ab 

initio computations. Physical Review B 64, 235406 (2001). 

42. Frank, I. W., Tanenbaum, D. M., van der Zande, A. M. & McEuen, P. L. Mechanical 

properties of suspended graphene sheets. Journal of Vacuum Science & Technology B: 

Microelectronics and Nanometer Structures 25, 2558 (2007). 

43. Yakobson, B., Brabec, C., Bernholc, J. & Berhnolc, J. Nanomechanics of Carbon Tubes: 

Instabilities beyond Linear Response. Physical Review Letters 76, 2511–2514 (1996). 

44. Lu, J. Elastic Properties of Carbon Nanotubes and Nanoropes. Physical Review Letters 79, 

1297–1300 (1997). 



 

 

146 

 

45. Huang, Y., Wu, J. & Hwang, K. Thickness of graphene and single-wall carbon nanotubes. 

Physical Review B 74, 245413 (2006). 

46. Arroyo, M. & Belytschko, T. Finite crystal elasticity of carbon nanotubes based on the 

exponential Cauchy-Born rule. Physical Review B 69, 115415 (2004). 

47. Koskinen, P. & Kit, O. Approximate modeling of spherical membranes. Physical Review 

B 82, (2010). 

48. Wei, Y., Wang, B., Wu, J., Yang, R. & Dunn, M. L. Bending rigidity and Gaussian 

bending stiffness of single-layered graphene. Nano letters 13, 26–30 (2013). 

49. Nicklow, R., Wakabayashi, N. & Smith, H. Lattice Dynamics of Pyrolytic Graphite. 

Physical Review B 5, 4951–4962 (1972). 

50. Lindahl, N. et al. Determination of the bending rigidity of graphene via electrostatic 

actuation of buckled membranes. Nano letters 12, 3526–31 (2012). 

51. Timoshenko, S. & Woinowsky-Krieger, S. Theory of Plates and Shells. (McGraw-Hill, 

1959). 

52. Plaut, R. H. Linearly elastic annular and circular membranes under radial, transverse, and 

torsional loading. Part I: large unwrinkled axisymmetric deformations. Acta Mechanica 

202, 79–99 (2008). 

53. Hencky, H. Über den spannungszustand in kreisrunden platten mit verschwindender 

biegungssteiflgkeit. Zeitschrift für Mathematik und Physik 63, 311–317 (1915). 

54. Campbell, J. D. On the theory of initially tensioned circular membranes subjected to 

uniform pressure. The Quarterly Journal of Mechanics and Applied Mathematics 9, 84–93 

(1956). 

55. Fichter, W. B. Some Solutions for the Large Deflections of Uniformly Loaded Circular 

Membranes. NASA Technical Paper 3658, (1997). 

56. Grabmüller, H. & Weinitschke, H. J. Finite displacements of annular elastic membranes. 

Journal of Elasticity 16, 135–147 (1986). 

57. Williams, J. G. Energy Release Rates for the Peeling of Flexible Membranes and the 

Analysis of Blister Tests. International Journal of Fracture 87, 265–288 (1997). 

58. Saif, M. T. A., Alaca, B. E. & Sehitoglu, H. Analytical modeling of electrostatic 

membrane actuator for micro pumps. Journal of Microelectromechanical Systems 8, 335–

345 (1999). 



 

 

147 

 

59. Xu, X. & Liao, K. Molecular and continuum mechanics modeling of graphene 

deformation. Materials Physics and Mechanics 4, 148–151 (2001). 

60. Kitipornchai, S., He, X. & Liew, K. Continuum model for the vibration of multilayered 

graphene sheets. Physical Review B 72, 1–6 (2005). 

61. Atalaya, J., Isacsson, A. & Kinaret, J. M. Continuum elastic modeling of graphene 

resonators. Nano letters 8, 4196–200 (2008). 

62. Duan, W. H. & Wang, C. M. Nonlinear bending and stretching of a circular graphene 

sheet under a central point load. Nanotechnology 20, 075702 (2009). 

63. Bao, W. et al. Controlled ripple texturing of suspended graphene and ultrathin graphite 

membranes. Nature nanotechnology 4, 562–6 (2009). 

64. Lipowsky, R. The conformation of membranes. Nature 349, 475–81 (1991). 

65. Swain, P. S. & Andelman, D. The Influence of Substrate Structure on Membrane 

Adhesion. Langmuir 15, 8902–8914 (1999). 

66. Pierre-Louis, O. Adhesion of membranes and filaments on rippled surfaces. Physical 

Review E 78, 021603 (2008). 

67. Israelachvili, J. N. & Tabor, D. The Measurement of Van Der Waals Dispersion Forces in 

the Range 1.5 to 130 nm. Proceedings of the Royal Society A: Mathematical, Physical and 

Engineering Sciences 331, 19–38 (1972). 

68. Israelachvili, J. et al. Recent advances in the surface forces apparatus (SFA) technique. 

Reports on Progress in Physics 73, 036601 (2010). 

69. Lu, Z. & Dunn, M. L. van der Waals adhesion of graphene membranes. Journal of 

Applied Physics 107, 044301 (2010). 

70. Bertoni, G., Calmels, L., Altibelli, A. & Serin, V. First-principles calculation of the 

electronic structure and EELS spectra at the graphene/Ni(111) interface. Physical Review 

B 71, 075402 (2005). 

71. Jiang, D., Du, M.-H. & Dai, S. First principles study of the graphene/Ru(0001) interface. 

The Journal of chemical physics 130, 074705 (2009). 

72. Rudenko, A. N., Keil, F. J., Katsnelson, M. I. & Lichtenstein, A. I. Graphene adhesion on 

mica: Role of surface morphology. Physical Review B 83, 045409 (2011). 

73. Zong, Z., Chen, C.-L., Dokmeci, M. R. & Wan, K. Direct measurement of graphene 

adhesion on silicon surface by intercalation of nanoparticles. Journal of Applied Physics 

107, 026104 (2010). 



 

 

148 

 

74. Small, M. K. & Nix, W. D. Analysis of the accuracy of the bulge test in determining the 

mechanical properties of thin films. Journal of Materials Research 7, 1553–1563 (2011). 

75. Dannenberg, H. Measurement of adhesion by a blister method. Journal of Applied 

Polymer Science 5, 125–134 (1961). 

76. Gent, A. N. & Lewandowski, L. H. Blow-off pressures for adhering layers. Journal of 

Applied Polymer Science 33, 1567–1577 (1987). 

77. Wan, K.-T. & Mai, Y.-W. Fracture mechanics of a new blister test with stable crack 

growth. Acta Metallurgica et Materialia 43, 4109–4115 (1995). 

78. Wang, L. et al. Ultrathin oxide films by atomic layer deposition on graphene. Nano letters 

12, 3706–10 (2012). 

79. Barton, R. A. et al. High, size-dependent quality factor in an array of graphene mechanical 

resonators. Nano letters 11, 1232–6 (2011). 

80. Allen, M. G. & Senturia, S. D. Analysis of Critical Debonding Pressures of Stressed Thin 

Films in the Blister Test. The Journal of Adhesion 25, 303–315 (1988). 

81. Allen, M. G. & Senturia, S. D. Application of the Island Blister Test for Thin Film 

Adhesion Measurement. The Journal of Adhesion 29, 219–231 (1989). 

82. Zhang, Z. & Li, T. Determining graphene adhesion via substrate-regulated morphology of 

graphene. Journal of Physics D: Applied Physics 43, 075303 (2010). 

83. Gao, W. & Huang, R. Effect of surface roughness on adhesion of graphene membranes. 

Journal of Physics D: Applied Physics 44, 452001 (2011). 

84. Viola Kusminskiy, S., Campbell, D. K., Castro Neto, A. H. & Guinea, F. Pinning of a 

two-dimensional membrane on top of a patterned substrate: The case of graphene. 

Physical Review B 83, 165405 (2011). 

85. Kitt, A. L. et al. How graphene slides: measurement and theory of strain-dependent 

frictional forces between graphene and SiO2. Nano letters 13, 2605–10 (2013). 

86. Mohideen, U. & Roy, A. Precision Measurement of the Casimir Force from 0.1 to 0.9 μm. 

Physical Review Letters 81, 4549–4552 (1998). 

87. Bordag, M., Geyer, B., Klimchitskaya, G. L. & Mostepanenko, V. M. Lifshitz-type 

formulas for graphene and single-wall carbon nanotubes: van der Waals and Casimir 

interactions. Physical Review B 74, 205431 (2006). 



 

 

149 

 

88. Sarabadani, J., Naji, A., Asgari, R. & Podgornik, R. Many-body effects in the van der 

Waals–Casimir interaction between graphene layers. Physical Review B 84, 155407 

(2011). 

89. Casimir, H. B. G. On the attraction between two perfectly conducting plates. Proc. K. 

Ned. Akad. Wet. 51, 150 (1948). 

90. Hlyoon. High-resolution Atomic Imaging of Specimens in Liquid Observed by 

Transmission Electron Microscopes Using Graphene Liquid Cells. KAIST (2012). at 

<http://www.kaist.edu/_prog/_board/?mode=V&no=10304&code=ed_news&site_dvs_cd

=en&menu_dvs_cd=0601&list_typ=B&skey=&sval=&smonth=&site_dvs=&GotoPage=1

8> 

91. Levy, N. et al. Strain-induced pseudo-magnetic fields greater than 300 tesla in graphene 

nanobubbles. Science 329, 544–7 (2010). 

92. Georgiou, T. et al. Graphene bubbles with controllable curvature. Applied Physics Letters 

99, 093103 (2011). 

93. Yuk, J. M. et al. High-resolution EM of colloidal nanocrystal growth using graphene 

liquid cells. Science 336, 61–4 (2012). 

94. Lim, C. H. Y. X. et al. A hydrothermal anvil made of graphene nanobubbles on diamond. 

Nature communications 4, 1556 (2013). 

95. Simulia, D. ABAQUS 6.11 Analysis User’s Manual. Abaqus 6.11 Documentation (2011). 

96. Lui, C. H., Liu, L., Mak, K. F., Flynn, G. W. & Heinz, T. F. Ultraflat graphene. Nature 

462, 339–41 (2009). 

97. Guinea, F., Horovitz, B. & Le Doussal, P. Gauge field induced by ripples in graphene. 

Physical Review B 77, 205421 (2008). 

98. Guinea, F., Katsnelson, M. I. & Geim, A. K. Energy gaps and a zero-field quantum Hall 

effect in graphene by strain engineering. Nature Physics 6, 30–33 (2009). 

99. Lipowsky, R. & Seifert, U. Adhesion of membranes: a theoretical perspective. Langmuir 

7, 1867–1873 (1991). 

100. Aitken, Z. H. & Huang, R. Effects of mismatch strain and substrate surface corrugation on 

morphology of supported monolayer graphene. Journal of Applied Physics 107, 123531 

(2010). 

101. Scharfenberg, S., Mansukhani, N., Chialvo, C., Weaver, R. L. & Mason, N. Observation 

of a snap-through instability in graphene. Applied Physics Letters 100, 021910 (2012). 



 

 

150 

 

102. Shenoy, V., Reddy, C., Ramasubramaniam, A. & Zhang, Y. Edge-Stress-Induced Warping 

of Graphene Sheets and Nanoribbons. Physical Review Letters 101, 245501 (2008). 

103. Zhao, H., Min, K. & Aluru, N. R. Size and chirality dependent elastic properties of 

graphene nanoribbons under uniaxial tension. Nano letters 9, 3012–5 (2009). 

104. Xu, Z. & Buehler, M. J. Geometry controls conformation of graphene sheets: membranes, 

ribbons, and scrolls. ACS nano 4, 3869–76 (2010). 

105. Stuart, S. J., Tutein, A. B. & Harrison, J. A. A reactive potential for hydrocarbons with 

intermolecular interactions. The Journal of Chemical Physics 112, 6472 (2000). 

106. Plimpton, S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. Journal of 

Computational Physics 117, 1–19 (1995). 

107. Wan, K.-T. Fracture Mechanics of a V-peel Adhesion Test – Transition from a Bending 

Plate to a Stretching Membrane. The Journal of Adhesion 70, 197–207 (1999). 

108. Chen, B., Shi, X. & Gao, H. Apparent fracture/adhesion energy of interfaces with periodic 

cohesive interactions. Proceedings of the Royal Society A: Mathematical, Physical and 

Engineering Sciences 464, 657–671 (2008). 

109. Koh, Y. K., Bae, M.-H., Cahill, D. G. & Pop, E. Reliably counting atomic planes of few-

layer graphene (n > 4). ACS nano 5, 269–74 (2011). 

110. Cheo, L. S. & Reiss, E. L. Unsymmetric Wrinkling of Circular Plates. Quarterly of 

Applied Mathematics 31, 75–91 (1973).  

 

  



 

 

151 

 

Appendix A 

A.1 Appendix for Chapter 3 

 

Figure A.1 Optical images of graphene flakes on Chips A & B with the number of layers identified.  

   

   

Figure A.2 Plots showing maximum deflection 𝛿 (a,d), blister radius 𝑎 (b,e) and final equilibrium 

pressure 𝑝𝑖 (c,f) versus input pressure 𝑝0 for all monolayer membranes on chips B (a-c) 

and C (d-f) respectively. The magenta colored curve is a theoretical curve assuming no 

delamination of the membrane for 𝐸𝑡 =  347 N/m. Red, Blue and green curves are 

theoretical curves for three different values of the graphene/SiO2 adhesion energy 𝛤  – 

0.38, 0.45, 0.52 J/m2 and 0.20, 0.24, 0.28 J/m2 for chips B and C respectively. 
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Figure A.3 Plots showing maximum deflection 𝛿 (a,d), blister radius 𝑎 (b,e) and final equilibrium 

pressure 𝑝𝑖 (c, f) versus input pressure 𝑝0 for three-layer membranes on chips A and B 

respectively. The magenta colored curve is a theoretical curve assuming no delamination 

of the membrane for 𝐸𝑡 = 950 N/m. Red, Blue and green curves are theoretical curves for 

three different values of the graphene/SiO2 adhesion energy 𝛤 – 0.24, 0.30, 0.36 J/m2 and 

0.26, 0.32, 0.38 J/m2 for chips A and B respectively.  

   

Figure A.4 Plots showing maximum deflection 𝛿 (a), blister radius 𝑎 (b) and final equilibrium 

pressure 𝑝𝑖  (c) versus input pressure 𝑝0  for all four-layer membranes on Chip A. The 

magenta colored curve is a theoretical curve assuming no delamination of the membrane 

for 𝐸𝑡 = 1330 N/m. Red, Blue and green curves are theoretical curves for three different 

values of the graphene/SiO2 adhesion energy 𝛤 – 0.24, 0.30, 0.36 J/m2 respectively. 
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Figure A.5 Plots showing maximum deflection 𝛿 (a), blister radius 𝑎 (b) and final equilibrium 

pressure 𝑝𝑖  (c) versus input pressure 𝑝0  for all five-layer membranes on Chip A. The 

magenta colored curve is a theoretical curve assuming no delamination of the membrane 

for 𝐸𝑡 = 1690 N m−1, 𝑛 = 5. Red, Blue and green curves are theoretical curves for three 

different values of the graphene/SiO2 adhesion energy 𝛤  – 0.24, 0.30, 0.36 J/m2 

respectively. 

 

A.2 Appendix for Chapter 4 

A.2.1 Determination of Graphene Thickness 

 

Figure A.6  Raman spectroscope of the graphene flakes (optical images on the left) used in the 

experiment - monolayer (black) and multilayer (green) graphene. The top image on the left 

is that of monolayer and the bottom one is that of multi-layered graphene. The location 

where the Raman spectroscopy is done is denoted by black and green dots respectively. 

We used a combination of Raman spectroscopy and optical contrast to determine the 

number of graphene layers. Raman spectroscopy uses Raman (inelastic) scattering of 

monochromatic light to investigate rotation and vibrational modes in a system. We used the 
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relative integrated intensity of the graphene G peak and the Silicon optical phonon peak, I(G)/I(Si) 

as described in Koh et al109 to count the number of layers. Figure A.6 shows the locations where 

the Raman spectrum is measured on the monolayer and multi-layered flakes used in the experiment 

using black and green dots respectively. The plot on the right shows the recorded Raman spectrum 

with the Si, G and 2D peaks identified. For reference, the Raman spectrum is also measured on a 

graphene flake with 1-5 layers of graphene identified optically. The recorded spectrum and the 

flake with the spots, where the spectrum is measured identified, is as shown in Fig. A.7. The 

relative integrated intensity I(G)/I(Si) is plotted in Fig. A.8 and as expected it varies linearly with 

the number of layers. The blue circular dots are from the reference flake and the red triangular dots 

are from the experimental flakes. 

 

Figure A.7 Raman spectroscope of a graphene flake with 1 to 5 layers (n=1 – black, n=2 – green, 

n=3 – red, n=4 – blue, n=5 – cyan with the solid plot for this flake and the dashed plot for 

the experimental flake) used to confirm the number of layers in the multilayer graphene 

flake. 
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Figure A.8 Integrated intensities, I(G)/I(Si) for differently thick graphene sheets. The blue dots are 

for the graphene in the reference flake and the red triangles are for the sheets that make 

up the experimental flakes. 

A.2.2 AFM Height Scans of a Monolayer Graphene Membrane 

 

Figure A.9 Full AFM Height Scans of a monolayer device arranged in increasing order of 

charging pressures left to right and top to bottom. Darker regions indicate deflected 

membrane, while the white region is the graphene adhered to the substrate which is also 

the reference plane. 
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A.2.3 Sliding of Graphene Membranes 

 Hencky’s series solution for clamped/fixed circular membranes describes the mechanics 

with two constants 𝐶1 and 𝐶2. Since the interfacial shear strength of graphene-SiOx is finite and if 

it is small enough, the graphene membrane can slide on the substrate while still being adhered to 

the substrate85. This condition will lead to a larger membrane deflection than that predicted by 

Hencky’s solution. We modified Hencky’s solution to reflect the sliding boundary condition, and 

it turns out that the functional form of the solution remains the same except 𝐶1 and 𝐶2 are now 

different. We can show that even if 𝐶1 is increased by 10% from the value obtained from Hencky’s 

solution (0.525), the resulting increase in the calculated averaged adhesion energy is only about 

3.4%. Hence, for simplicity we kept 𝐶1 = 0.525 and used the resulting value of adhesion energy, 

0.160 J/m2. We then use 𝐶2 as the lone fitting parameter to make the experimental observations 

(𝛿, 𝑎 and 𝑝𝑖) self-consistent. We obtain a value of 0.755 that fits the theory with the experimental 

observations. This value is 10% higher than the value from Hencky’s solution. Figure A.10 below 

shows the results of the fit. 

 

Figure A.10 (a) Maximum deflection, (b) Equilibrium pressure and (c) Outer radius of the circular 

bulge versus the charging pressure for multi-layered graphene membranes. In each case, 

the green curve corresponds to the annular deformation, blue curve is for the circular 

deformation without delamination, and red curves are for circular deformation with 

delamination for different adhesion energies (dashed - 𝐶2 =0.755, solid - 𝐶2 =0.686). 
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Sliding boundary conditions can also result in symmetry breaking deformation and hence 

wrinkling110. Apparent wrinkling in varying degrees is observed in all of the multi-layered devices 

at higher pressures (≥ 2.56 MPa) as shown in Fig. A.11. 

 

Figure A.11 AFM height scans 

(top row) and respective 

derivatives (bottom row) 

showing wrinkling of a multi-

layered device at higher 

pressures. 

 

 

 

A.3 Appendix for Chapter 7 

A.3.1 Free Energy – Direct Integration 

 The free energy contribution of adhesion energy in eq. (7.9) can also be obtained directly 

by integration for sinusoidal surfaces. The result of this integration for potential between two 

surfaces, 𝑉𝑓 (eq. (7.3)) is given by (𝛿 = (𝑎 − 𝑐)/ℎ): 

𝐹𝑎𝑑ℎ = ∫
𝑑𝑥

𝜆
 𝑉𝑓(ℎ + (𝑎 − 𝑐) Sin[𝑞𝑥])

𝜆

0

=
𝛾

6
(
ℎ0
ℎ
)
4

((
ℎ0
ℎ
)
6 2(128 + 2304𝛿2 + 6048𝛿4 + 3360𝛿6 + 315𝛿8)

64(1 − 𝛿2)19 2⁄
− 5(

(2 + 3𝛿2)

(1 − 𝛿2)7 2⁄
))

 

  

 

 

(1) 
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A.3.2 Generalized Free Energy using Complex Fourier Series 

 Let the substrate be described by the complex Fourier series, 𝑠(𝑥) = ∑
𝑚
𝑐𝑚𝑒

𝑖𝑞𝑚𝑥 and let us 

assume that the graphene membrane follows the curve, 𝑔(𝑥) = ℎ + 𝑧(𝑥) = ℎ + ∑
𝑚
𝑎𝑚𝑒

𝑖𝑞𝑚𝑥 . In 

this case, the free energy per unit volume following our approach will be: 

𝐹(𝑎𝑚,  ℎ) =
𝐷

2
∑│𝑎𝑚│

2𝑞𝑚
4

 

𝑚

+ 𝑉𝑓(ℎ)

+∑
𝑑𝑗𝑉𝑓(ℎ)

𝑑ℎ𝑗
1

𝑗!

𝑛

𝑗=1

∑
𝑗!

∏
𝑚
𝑙𝑚!

∏
𝑚
(𝑎𝑚 − 𝑐𝑚)

𝑙𝑚

∑
𝑚
𝑚𝑙𝑚=0

∑
𝑚
𝑙𝑚=𝑗

 

 

 

 

(2) 

  

Here, 𝑐𝑚 and 𝑎𝑚 are the Fourier coefficients and are complex numbers; ℎ (equilibrium separation) 

and 𝑎𝑚 being the unknowns. The internal summation in the nested summation of the last term is a 

result of a multinomial expansion where 𝑙𝑚 are the exponents which have to obey the constraints 

∑
𝑚
𝑙𝑚 = 𝑗 and ∑

𝑚
𝑚𝑙𝑚 = 0 (note that 𝑚 can take either positive or negative integer values). The 

second of the constraints comes from the non-zero terms after integration of each term in the 

multinomial expansion. 

A.3.3 Post-processing of Simulation Results 

 The LAMMPS simulation package allows the user to output, at any given step, 

thermodynamic quantities such as the temperature, total energy, constraint forces, size of the 

system etc. It also enables users to output atomic coordinates for the whole system at any desired 

step. We used this capability to obtain the energies in the initial and final configurations, the 

projected area to calculate the adhesion energy per unit area. To obtain the amplitude, 𝑎 and the 

mean height, ℎ, we used the atomic coordinates obtained from the final equilibrium configuration. 
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This is done programmatically using Mathematica scripting. In the script, we discarded the atoms 

at the edge of the graphene membrane and used the rest of the atoms to fit them to a function, ℎ +

𝑎 𝑆𝑖𝑛[
2𝜋𝑥

𝜆
] with 𝑎 and ℎ as the fitting parameters. It is clear that here we implicitly assume that the 

graphene membrane has uniform amplitude. 

 For the peeling simulations, the post-processing is more involved and we used a different 

Mathematica script for post-processing. As we displace the free end and perform energy 

minimization, the atomic coordinates of a strip of atoms in the middle of the membrane parallel to 

y-axis are saved. From these coordinates and for each value of 𝑑, we obtain the delaminated length, 

𝑠 which is defined to be the length of the membrane measured from the free end to the point where 

the z-coordinate of the atoms is below a threshold value (~6 Å for 𝑐 = 1 Å). The peeling angle, 𝜃 

is obtained by simply calculating the slope of the delaminated part of the membrane. Alternatively, 

it can be directly determined from the magnitude of the force components. The strain is calculated 

as the average of the strain along the length of the membrane with respect to the undeformed 

configuration. Finally, the amplitude (𝑎) of the adhered region is simply obtained by looking at 

the maximum and minimum values of the z-coordinates of the atoms that are below the threshold 

z-coordinate and sufficiently far away from the “crack tip”. 

A.3.4 Bending Rigidity 

 We determined the bending rigidity of monolayer graphene by performing simulations 

wherein the atoms are arranged in a cylindrical fashion (as shown in Fig. A.12a) with a particular 

radius of curvature, 𝑅. We then constrained the atoms to move only on the cylindrical surface and 

let the system relax for 10 ps using a Noose-Hoover styled NVT ensemble at about 0 K. At the 

end of the simulation, the total energy of the system is expected to reach a stable value. The 
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difference of the final system energy from this simulation and the final energy for a flat sheet of 

graphene with the same number of atoms then gives the bending energy. For a cylindrical 

deformation, the bending energy per unit area is given by 𝑈𝑏 =
1

2
𝐷𝜅2, where 𝐷 is the bending 

rigidity and 𝜅 is the curvature. Using this equation and for different radii of curvatures starting 

from 40 Å to 400 Å in steps of 20 Å, we determined the bending rigidity. The results are plotted 

in Fig. A.12b. The value of 𝐷, as can be seen varies between 0.91-1.85 eV and the average value 

is 0.99 eV. 

    

Figure A.12 (a) The atomic configurations used to determine the bending rigidity, blue – R=40 Å, 

red – 80 Å, green – 120 Å and black – flat, (b) Bending rigidity, 𝐷 vs Radius of curvature, 

𝑅.  

A.3.5 Peeling from Corrugated Substrates – Limiting Case 

 The limiting case for peeling from corrugated substrates would be a flat substrate where 

𝑐 = 0. In the absence of corrugations, the membrane should also be flat i.e. 𝑎 = 0. Hence, the free 

energy as described in 7.3.2 (see (7.15)-(7.18)) can now be written as: 

𝐹(𝑥) = −𝛾𝑥 +
𝐸𝑡

2
𝑙𝜖(𝑥)2 

  

(3) 

a b 
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Here, 𝜖 =
(𝑑2+𝑠2)

1
2−𝑠

𝑙
 and 𝑠 = 𝑙 − 𝑥 with all the symbols retaining their original meanings in 7.3.2. 

Hence minimizing the free energy with respect to 𝑥 leads us to: 

𝑑𝐹(𝑥)

𝑑𝑥
= −𝛾 + 𝐸𝑡𝜖(𝑥)

𝑑𝜖(𝑥)

𝑑𝑥
= 0

⇒ γ = 𝐸𝑡𝜖 (1 −
𝑠

(𝑑2 + 𝑠2)
1
2

)
 

  

 

 

(4) 

Notice that 𝑓 = 𝐸𝑡𝜖 and Cos[𝜃] =
𝑠

(𝑑2+𝑠2)
1
2

, hence 𝛾 = 𝑓(1 − Cos[𝜃]) which is equivalent to the 

inextensible membrane version of the eq. (7.13). Thus we recover the energy release rate for the 

flat substrate as the limiting case for peeling from a corrugated substrate. 
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