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7.6 Estimate differences ‖Âij(t)‖F and ‖B̂ij(t)‖F versus time for the pro-
posed distributed adaptive observers given by (7.42)–(7.44). . . . . . 132

7.7 State error ‖e(t)‖2 versus time for the centralized adaptive observer
given by (7.2)–(7.5). . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

x



Summary

Discontinuous dynamical systems and multiagent systems are encountered in nu-

merous engineering applications. This dissertation develops stability and dissipativ-

ity of nonlinear dynamical systems with discontinuous right-hand sides, optimality of

discontinuous feedback controllers for Filippov dynamical systems, almost consensus

protocols for multiagent systems with innaccurate sensor measurements, and adaptive

estimation algorithms using multiagent network identifiers.

In particular, we present stability results for discontinuous dynamical systems

using nonsmooth Lyapunov theory. Then, we develop a constructive feedback con-

trol law for discontinuous dynamical systems based on the existence of a nonsmooth

control Lyapunov function defined in the sense of generalized Clarke gradients and set-

valued Lie derivatives. Furthermore, we develop dissipativity notions and extended

Kalman-Yakubovich-Popov conditions and apply these results to develop feedback

interconnection stability results for discontinuous systems. In addition, we derive

guaranteed gain, sector, and disk margins for nonlinear optimal and inverse opti-

mal discontinuous feedback regulators that minimize a nonlinear-nonquadratic per-

formance functional for Filippov dynamical systems. Then, we provide connections

between dissipativity and optimality of nonlinear discontinuous controllers for Filip-

pov dynamical systems.

Furthermore, we address the consensus problem for a group of agent robots with

uncertain interagent measurement data, and show that the agents reach an almost

xi



consensus state and converge to a set centered at the centroid of agents’ initial loca-

tions. Finally, we develop an adaptive estimation framework predicated on multiagent

network identifiers with undirected and directed graph topologies that identifies the

system state and plant parameters online.

The consideration of nonsmooth Lyapunov functions for proving stability of feed-

back discontinuous systems is an important extension to classical stability theory

since there exist nonsmooth dynamical systems whose equilibria cannot be proved to

be stable using standard continuously differentiable Lyapunov function theory. For

dynamical systems with continuously differentiable flows, the concept of smooth con-

trol Lyapunov functions was developed by Artstein to show the existence of a feedback

stabilizing controller. A constructive feedback control law based on a universal con-

struction of smooth control Lyapunov functions was given by Sontag. Even though a

stabilizing continuous feedback controller guarantees the existence of a smooth control

Lyapunov function, many systems that possess smooth control Lyapunov functions

do not necessarily admit a continuous stabilizing feedback controller. However, the

existence of a control Lyapunov function allows for the design of a stabilizing feed-

back controller that admits Filippov and Krasovskii closed-loop system solutions. In

this dissertation, we develop a constructive feedback control law for discontinuous

dynamical systems based on the existence of a nonsmooth control Lyapunov function

defined in the sense of generalized Clarke gradients and set-valued Lie derivatives.

Furthermore, we develop dissipativity notions for dynamical systems with dis-

continuous vector fields. Specifically, we consider dynamical systems with Lebesgue

measurable and locally essentially bounded vector fields characterized by differential

inclusions involving Filippov set-valued maps specifying a set of directions for the

system velocity and admitting Filippov solutions with absolutely continuous curves.

Moreover, extended Kalman-Yakubovich-Popov conditions, in terms of the discontin-
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uous system dynamics, characterizing dissipativity via generalized Clarke gradients

and locally Lipschitz continuous storage functions are derived. Finally, these results

are then used to develop feedback interconnection stability results for discontinuous

systems thereby providing a generalization of the small gain and positivity theorems

to systems with discontinuous vector fields.

Then, we derive guaranteed gain, sector, and disk margins for nonlinear optimal

and inverse optimal discontinuous feedback regulators that minimize a nonlinear-

nonquadratic performance functional for Filippov dynamical systems. Furthermore,

using the newly developed dissipativity notions we develop a return difference inequal-

ity to provide connections between dissipativity and optimality of nonlinear discon-

tinuous controllers for Filippov dynamical systems. Specifically, using the extended

Kalman–Yakubovich–Popov conditions we show that our discontinuous feedback con-

trol law satisfies a return difference inequality if and only if the controller is dissipative

with respect to a quadratic supply rate.

One of the main challenges in robotics applications is dealing with inaccurate

sensor data. Specifically, for a group of mobile robots the measurement of the ex-

act location of the other robots relative to a particular robot is often inaccurate due

to sensor measurement uncertainty or detrimental environmental conditions. In this

dissertation, we address the consensus problem for a group of agent robots with un-

certain interagent measurement data. Using agent location uncertainty characterized

by norm bounds centered at the neighboring agent’s exact locations, we show that the

agents reach an almost consensus state and converge to a set centered at the centroid

of agents’ initial locations. The diameter of the set is shown to be dependant on the

graph Laplacian and the magnitude of the uncertainty norm bound. Furthermore,

we show that if the network is all-to-all connected and the measurement uncertainty

is characterized by ball of radius r, then the diameter of the set to which the agents

xiii



converge is 2r. Finally, we also formulate our problem using set-valued analysis and

use a set-valued invariance principle to obtain set-valued consensus protocols.

Finally, we present an adaptive estimation framework predicated on multiagent

network identifiers with undirected and directed graph topologies. Specifically, the

system state and plant parameters are identified online using N agents implement-

ing adaptive observers with an interagent communication architecture. The adaptive

observer architecture includes an additive term which involves a penalty on the mis-

match between the state and parameter estimates. The proposed architecture is

shown to guarantee state and parameter estimate consensus. Furthermore, the pro-

posed adaptive identifier architecture provides a measure of agreement of the state

and parameter estimates that is independent of the network topology and guarantees

that the deviation from the mean estimate for both the state and parameter estimates

converge to zero.
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Chapter 1

Introduction

Numerous engineering applications give rise to discontinuous dynamical systems.

Specifically, in impact mechanics the motion of a dynamical system is subject to ve-

locity jumps and force discontinuities leading to nonsmooth dynamical systems [9,58].

In mechanical systems subject to unilateral constraints on system positions [57], dis-

continuities occur naturally through system-environment interactions. Alternatively,

control of networks and control over networks with dynamic topologies also give rise to

discontinuous systems [42]. Specifically, link failures or creations in network systems

result in switchings of the communication topology leading to dynamical systems with

discontinuous right-hand sides. In addition, open-loop and feedback controllers also

give rise to discontinuous dynamical systems. In particular, bang-bang controllers dis-

continuously switch between maximum and minimum control input values to generate

minimum-time system trajectories [1], whereas sliding mode controllers [22, 73] use

discontinuous feedback control for system stabilization. In switched systems [8, 39],

switching algorithms are used to select an appropriate plant (or controller) from a

given finite parameterized family of plants (or controllers) giving rise to discontinuous

systems.

In the case where the vector field defining the dynamical system is a discontinuous

function of the state, system stability can be analyzed using nonsmooth Lyapunov
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theory involving concepts such as weak and strong stability notions, differential inclu-

sions, and generalized gradients of locally Lipschitz continuous functions and prox-

imal subdifferentials of lower semicontinuous functions [15]. The consideration of

nonsmooth Lyapunov functions for proving stability of discontinuous systems is an

important extension to classical stability theory since, as shown in [67], there exist

nonsmooth dynamical systems whose equilibria cannot be proved to be stable using

standard continuously differentiable Lyapunov function theory.

Many physical and engineering systems are open systems, that is, the system

behaviour is described by an evolution law that involves the system state and the

system input with, possibly, an output equation wherein past trajectories together

with the knowledge of any inputs define future trajectories (uniquely or nonuniquely)

and the system output depends on the instantaneous (present) values of the system

state. Dissipativity theory is a system-theoretic concept that provides a powerful

framework for the analysis and control design of open dynamical systems based on

generalized system energy considerations. In particular, dissipativity theory exploits

the notion that numerous physical dynamical systems have certain input-output and

state properties related to conservation, dissipation, and transport of mass and energy.

Such conservation laws are prevalent in dynamical systems, in general, and feedback

control systems, in particular. The dissipation hypothesis on dynamical systems

results in a fundamental constraint on the system dynamical behavior, wherein the

stored energy of a dissipative dynamical system is at most equal to sum of the initial

energy stored in the system and the total externally supplied energy to the system.

Thus, the energy that can be extracted from the system through its input-output

ports is less than or equal to the initial energy stored in the system, and hence, there

can be no internal creation of energy; only conservation or dissipation of energy is

possible.
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The key foundation in developing dissipativity theory for nonlinear dynamical

systems with continuously differentiable flows was presented by Willems [74,75] in his

seminal two-part paper on dissipative dynamical systems. In particular, Willems [74]

introduced the definition of dissipativity for general nonlinear dynamical systems

in terms of a dissipation inequality involving a generalized system power input, or

supply rate, and a generalized energy function, or storage function. The dissipation

inequality implies that the increase in generalized system energy over a given time

interval cannot exceed the generalized energy supply delivered to the system during

this time interval. The set of all possible system storage functions is convex and every

system storage function is bounded from below by the available system storage and

bounded from above by the required energy supply.

In light of the fact that energy notions involving conservation, dissipation, and

transport also arise naturally for discontinuous systems, it seems natural that dissi-

pativity theory can play a key role in the analysis and control design of discontinuous

dynamical systems. Specifically, as in the analysis of continuous dynamical systems

with continuously differentiable flows, dissipativity theory for discontinuous dynami-

cal systems can involve conditions on system parameters that render an input, state,

and output system dissipative. In addition, robust stability for discontinuous dy-

namical systems can be analyzed by viewing a discontinuous dynamical system as

an interconnection of discontinuous dissipative dynamical subsystems. Alternatively,

discontinuous dissipativity theory can be used to design discontinuous feedback con-

trollers that add dissipation and guarantee stability robustness allowing discontinuous

stabilization to be understood in physical terms. As for dynamical systems with con-

tinuously differentiable flows [31], dissipativity theory can play a fundamental role in

addressing robustness, disturbance rejection, stability of feedback interconnections,

and optimality for discontinuous dynamical systems.
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Even though passivity notions for the specific problem of the control of mechanical

systems with discontinuous friction-type nonlinearities are considered in [20, 44, 77]

using input-to-state stability notions and set-valued nonlinearity extensions of the

circle and Popov criterion, the general problem of dissipativity theory in the sense of

Willems [74,75] for discontinuous dynamical systems and its connections to nonlinear

discontinuous feedback regulator theory and inverse optimal control have not been

addressed in the literature. It is important to note, however, that the problem of

stabilization for discontinuous systems with nonsmooth control Lyapunov functions

has been extensively addressed in the literature; see [3, 5, 13,45,47,69] and the refer-

ences therein. However, with the exception of [7,63] that address the specific problem

of L2-gain stabilizability, these results do not explore the underlying connections be-

tween steady-state viscosity supersolutions of the Hamilton-Jacobi-Bellman equation

and nonsmooth closed-loop Lyapunov functions for guaranteeing both stability and

optimality for discontinuous dynamical systems. In addition, gain, sector, and disk

margin guarantees are not provided in the aforementioned references by exploiting

connections between dissipativity theory, discontinuous nonlinear regulator theory,

and an inverse optimal control problem.

In this dissertation, we present several results from the literature on Lyapunov-

based tests for Lyapunov and asymptotic stability for nonlinear dynamical systems

with discontinuous right-hand sides. Moreover, using an extended notion of control

Lyapunov functions [3] we develop a universal feedback controller for discontinuous

dynamical systems based on the existance of a nonsmooth control Lyapunov function

defined in the sense of generalized Clarke gradients and set-valued Lie derivatives.

Next, we extend the results of [36] to develop dissipativity notions for dynamical

systems with discontinuous vector fields. Specifically, we consider dynamical systems

with Lebesgue measurable and locally essentially bounded vector fields character-
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ized by differential inclusions involving Filippov set-valued maps specifying a set of

directions for the system velocity and admitting Filippov solutions with absolutely

continuous curves. Moreover, we develop extended Kalman-Yakubovich-Popov con-

ditions in terms of the discontinuous system dynamics for characterizing dissipativity

via generalized Clarke gradients of locally Lipschitz continuous storage functions. In

addition, using the concepts of dissipativity for discontinuous dynamical systems with

appropriate storage functions and supply rates, we construct nonsmooth Lyapunov

functions for discontinuous feedback systems by appropriately combining the storage

functions for the forward and feedback subsystems. General stability criteria are given

for Lyapunov, asymptotic and exponential stability for feedback interconnections of

discontinuous dynamical systems. In the case where the supply rate involves the net

system power or weighted input-output energy, these results provide extensions of the

positivity and small gain theorems to discontinuous dynamical systems.

Furthermore, we consider a notion of optimality that is directly related to a given

nonsmooth Lyapunov function. Specifically, an optimal control problem is stated

and sufficient Hamilton-Jacobi-Bellman conditions are used to characterize an opti-

mal discontinuous feedback controller. In addition, we develop sufficient conditions

for gain, sector, and disk margin guarantees for Filippov nonlinear dynamical systems

controlled by optimal and inverse optimal discontinuous regulators. Furthermore, we

develop a counterpart to the classical return difference inequality for continuous-time

systems with continuously differentiable flows [11,52] for Filippov dynamical systems

and provide connections between dissipativity and optimality for discontinuous non-

linear controllers. In particular, we show an equivalence between dissipativity and

optimality of discontinuous controllers holds for Filippov dynamical systems. Specifi-

cally, we show that an optimal nonlinear controller φ(x) satisfying a return difference

condition is equivalent to the fact that the Filippov dynamical system with input
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u and output y = −φ(x) is dissipative with respect to a supply rate of the form

[u+ y]T[u+ y]− uTu.

Next, we consider a multiagent consensus problem in which agents possess sen-

sors with limited accuracy. Modern military and national command and control

infrastructure capabilities involve large-scale multilayered network systems placing

stringent demands on controller design and implementation of increasing complexity.

In numerous large-scale network system applications, agents can detect the location

of the neighboring agents only approximately. This problem can arise in network

defense systems involving low sensor quality, sensor failure, or detrimental environ-

mental conditions resulting from a weapons of mass destruction (WMD) attack. This

problem also arises in many robotics applications with inaccurate sensor data as well

as low-cost, small-sized unmanned vehicles with relatively cheap sensors. In such a

setting, it is desirable that the agents reach consensus approximately.

In this dissertation, we develop consensus control protocols for continuous- and

discrete-time network systems that guarantee that the agents reach an almost consen-

sus state and converge to a set centered at the centroid of the agents’ initial locations.

For discrete-time network systems, we also use difference inclusions and set-valued

analysis to describe the inaccurate sensor measurement problem formulation.

Finally, we consider the problem of adaptive estimation of a linear system with

unknown plant and input matrices. In particular, we propose a novel distributed

observer architecture that adaptively identifies the dynamic system matrices using a

group of N agents. Each agent generates its own adaptive identifier which is based

on the identifier architecture presented in [53]. The adaptive estimation architecture

builds on the work of [71] on adaptive consensus control of multiagent systems with

the key difference being that the mismatch between the state and parameter estimates

is also penalized, and thus, accounting for interagent communication constraints.
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1.1. Brief Outline of the Dissertation

In this dissertation, we develop dissipativity theory and analyze optimality of dis-

continuous feedback controllers for nonlinear differential equations with discontinuous

right-hand sides. Furthermore, we develop almost consensus protocols for multiagent

systems with innaccurate sensor measurements and design a distributed adaptive

estimation framework using multiagent network identifiers. The contents of the dis-

sertation are as follows. In Chapter 2, we provide mathematical preliminaries and

present a summary of the recent results on the stability of discontinuous dynamical

systems as well as an overview of consensus problem over static networks.

In Chapter 3, we design a constructive feedback control law for discontinuous

dynamical systems based on the existence of a nonsmooth control Lyapunov function

defined in the sense of generalized Clarke gradients and set-valued Lie derivatives.

In Chapter 4, we develop dissipativity notions and extended Kalman-Yakubovich-

Popov conditions and apply these results to develop feedback interconnection stability

results for discontinuous systems. In Chapter 5, we present guaranteed gain, sector,

and disk margins for nonlinear optimal and inverse optimal discontinuous feedback

regulators and provide connections between dissipativity and optimality of nonlinear

discontinuous controllers for Filippov dynamical systems.

In Chapter 6, we develop consensus control protocols for continuous- and discrete-

time network systems in which agents possess sensors with limited accuracy that

guarantee that the agents reach an almost consensus state and converge to a set cen-

tered at the centroid of the agents’ initial locations. In Chapter 7, we design a novel

distributed observer architecture using a group of N agents that adaptively identi-

fies the dynamic system matrices of a linear system with unknown plant and input

matrices. Finally, in Chapter 8, we discuss ongoing research and future extensions of

7



the research.
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Chapter 2

Mathematical Preliminaries, Stability of

Discontinuous Dynamical Systems, and

Consensus Over Networks

2.1. Notation and Mathematical Preliminaries

The notation used in this dissertation is fairly standard. Specifically, R denotes

the set of real numbers, Rn denotes the set of n×1 column vectors, Rn×m denotes the

set of real n×m matrices, Z+ denotes the set of nonnegative integers, and (·)T denotes

transpose, (·)−1 denotes inverse, ⊗ denotes Kronecker product, ⊕ denotes Kronecker

sum, and In or I denotes the n × n identity matrix. Furthermore, L2 denotes the

space of all real square-integrable Lebesgue measurable (vector or matrix) functions

on [0,∞) and L∞ denotes the space of all real bounded Lebesgue measurable (vector

or matrix) functions on [0,∞).

We write λmin(M) (resp., λmax(M)) for the minimum (resp., maximum) eigenvalue

of the Hermitian matrix M , σmax(M) for the maximum singular value of the matrix

M , ρ(M) for the spectral radius of the matrix M , spec(M) for the spectrum of the

square matrixM including multiplicity, ‖·‖ for the Euclidean vector norm, ‖·‖F for the

Frobenius matrix norm, tr(·) for the trace operator, V ′(x) for the Fréchet derivative of

V at x, Bε(α), α ∈ Rn, ε > 0, for the open ball centered at α with radius ε, dist(p,M)

for the distance from a point p to the set M, that is, dist(p,M) , infx∈M ‖p − x‖,
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and x(t) → M as t → ∞ (resp., x(k) → M as k → ∞, k ∈ Z+) to denote that

the trajectory x(t) (resp., x(k)) approaches the set M, that is, for every ε > 0 there

exists T > t0 (resp., N0 > 0) such that dist(x(t),M) < ε for all t > T (resp., k > N0).

Furthermore, we write ∂S and S to denote the boundary and the closure of the subset

S ⊂ Rn, respectively.

Moreover, in this dissertation, we distinguish between the set inclusions ⊂ and

⊆; namely, ⊂ denotes a strict inclusion, whereas ⊆ denotes a nonstrict inclusion.

In addition, we use the Minkowski sum for summation of sets with an analogous

definition for set subtraction. Namely, for the sets X ,Y ⊂ Rn, X + Y and X − Y

denote, respectively, the set of all vectors z ∈ Rn such that z = x+ y and z = x− y,

where x ∈ X and y ∈ Y . Finally, the notions of openness, convergence, continuity, and

compactness that we use throughout the dissertation refer to the topology generated

on Rn by the norm ‖ · ‖.

In this dissertation, we consider nonlinear dynamical systems G of the form

ẋ(t) = f(x(t)), x(t0) = x0, a.e. t ≥ t0, (2.1)

where, for every t ≥ t0, x(t) ∈ D ⊆ Rn, f : D → Rn is Lebesgue measurable

and locally essentially bounded [24] with respect to x, that is, f is bounded on a

bounded neighborhood of every point x, excluding sets of measure zero, and admits

an equilibrium point at xe ∈ D; that is, f(xe) = 0.

An absolutely continuous function x : [t0, τ ]→ Rn is said to be a Filippov solution

[24] of (2.1) on the interval [t0, τ ] with initial condition x(t0) = x0, if x(t) satisfies

ẋ(t) ∈ K[f ](x(t)), a.e. t ∈ [t0, τ ], (2.2)

where the Filippov set-valued map K[f ] : Rn → 2Rn is defined by

K[f ](x) ,
⋂
δ>0

⋂
µ(S)=0

co{f(Bδ(x)\S}, x ∈ Rn, (2.3)
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2Rn denotes the collection of all subsets of Rn, µ(·) denotes the Lebesgue measure

in Rn, “co” denotes convex closure, and
⋂
µ(S)=0 denotes the intersection over all

sets S of Lebesgue measure zero.1 Note that since f is locally essentially bounded,

K[f ](·) is upper semicontinuous and has nonempty, compact, and convex values.

Thus, Filippov solutions are limits of solutions to G with f averaged over progressively

smaller neighborhoods around the solution point, and hence, allow solutions to be

defined at points where f itself is not defined. Hence, the tangent vector to a Filippov

solution, when it exists, lies in the convex closure of the limiting values of the system

vector field f(·) in progressively smaller neighborhoods around the solution point.

Dynamical systems of the form given by (2.1) are called differential inclusions in the

literature [4] and, for every state x ∈ Rn, they specify a set of possible evolutions of

G rather than a single one.

Since the Filippov set-valued map given by (2.3) is upper semicontinuous with

nonempty, convex, and compact values, and K[f ](·) is also locally bounded [24, p.

85], it follows that Filippov solutions to (2.1) exist [24, Thm. 1, p. 77]. Recall that

the Filippov solution t 7→ x(t) to (2.1) is a right maximal solution if it cannot be

extended (either uniquely or nonuniquely) forward in time. We assume that all right

maximal Filippov solutions to (2.1) exist on [t0,∞), and hence, we assume that (2.1)

is forward complete. Recall that (2.1) is forward complete if and only if the Filippov

solutions to (2.1) are uniformly globally sliding time stable [72, Lem 1, p. 182]. An

equilibrium point of (2.1) is a point xe ∈ Rn such that 0 ∈ K[f ](xe). It is easy to see

that xe is an equilibrium point of (2.1) if and only if the constant function x(·) = xe

is a Filippov solution of (2.1). We denote the set of equilibrium points of (2.1) by E .

Since the set-valued map K[f ](·) is upper semicontinuous, it follows that E is closed.

1Alternatively, we can consider Krasovskii solutions of (2.1) wherein the possible misbehavior
of the derivative of the state on null measure sets is not ignored; that is, K[f ](x) is replaced with
K[f ](x) =

⋂
δ>0 co{f(Bδ(x))} and where f is assumed to be locally bounded.
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To develop stability properties for discontinuous dynamical systems given by (2.1),

we need to introduce the notion of generalized derivatives and gradients. Here we

focus on Clarke generalized derivatives and gradients [13].

Definition 2.1.1. ([13], [5]) Let V : Rn → R be a locally Lipschitz continuous

function. The Clarke upper generalized derivative of V (·) at x in the direction of

v ∈ Rn is defined by

V o(x, v) , lim sup
y→x,h→0+

V (y + hv)− V (y)

h
. (2.4)

The Clarke generalized gradient ∂V : Rn → 2R1×n
of V (·) at x is the set

∂V (x) , co
{

lim
i→∞
∇V (xi) : xi → x, xi 6∈ N ∪ S

}
, (2.5)

where co denotes the convex hull, ∇ denotes the nabla operator, N is the set of

measure zero of points where ∇V does not exist, S is any subset of Rn of measure

zero, and the increasing unbounded sequence {xi}i∈Z+
⊂ Rn converges to x ∈ Rn.

Note that (2.4) always exists. Furthermore, note that it follows from Definition

2.1.1 that the generalized gradient of V at x consists of all convex combinations of all

the possible limits of the gradient at neighboring points where V is differentiable. In

addition, note that since V (·) is Lipschitz continuous, it follows from Rademacher’s

theorem [23, Thm 6, p. 281] that the gradient∇V (·) of V (·) exists almost everywhere,

and hence, ∇V (·) is bounded. Specifically, for every x ∈ Rn, every ε > 0, and every

Lipschitz constant L for V on Bε(x), ∂V (x) ⊆ BL(0). Thus, since for every x ∈ Rn,

∂V (x) is convex, closed, and bounded, it follows that ∂V (x) is compact.

In order to state the main results of this dissertation, we need some additional

notation and definitions. Given a locally Lipschitz continuous function V : Rn → R,

the set-valued Lie derivative LfV : Rn → 2R of V with respect to f at x [5, 16] is
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defined as

LfV (x) ,
{
a ∈ R : there exists v ∈ K[f ](x) such that pTv = a for all pT ∈ ∂V (x)

}
⊆

⋂
pT∈∂V (x)

pTK[f ](x). (2.6)

If K[f ](x) is convex with compact values, then LfV (x), x ∈ Rn, is a closed and

bounded, possibly empty, interval in R. If V (·) is continuously differentiable at x,

then LfV (x) = {∇V (x) · v : v ∈ K[f ](x)}. In the case where LfV (x) is nonempty,

we use the notation maxLfV (x) (resp., minLfV (x)) to denote the largest (resp.,

smallest) element of LfV (x). Furthermore, we adopt the convention max∅ = −∞.

Finally, recall that a function V : Rn → R is regular at x ∈ Rn [13, Def. 2.3.4] if, for

all v ∈ Rn, the right directional derivative V ′+(x, v) , limh→0+
1
h
[V (x + hv) − V (x)]

exists and V ′+(x, v) = V o(x, v). V is called regular on Rn if it is regular at every

x ∈ Rn.

For stating the main stability theorems we assume that all right maximal Filippov

solutions to (2.1) exist on [0,∞). We say that a set M is weakly positively invariant

(resp., strongly positively invariant) with respect to (2.1) if, for every x0 ∈ M, M

contains a right maximal solution (resp., all right maximal solutions) of (2.1) [5, 64].

The set M ⊆ Rq is weakly negatively invariant if, for every x ∈ N and t ≥ 0, there

exist z ∈ N and a Filippov solution ψ(·) to (2.1) with ψ(0) = z such that ψ(t) = x

and ψ(τ) ∈ N for all τ ∈ [0, t]. Finally, the set M ⊆ Rq is weakly invariant if M is

weakly positively invariant as well as weakly negatively invariant.

The next definition introduces the notion of Lyapunov stability, semistability, and

asymptotic stability for discontinuous dynamical systems. The adjective “weak” is

used in reference to a stability property when the stability property is satisfied by at

least one Filippov solution starting from every initial condition in D, whereas “strong”

is used when the stability property is satisfied by all Filippov solutions starting from
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every initial condition in D. In this section, however, we provide strong stability

theorems for (2.1) and, hence, we omit the adjective “strong” in the statement of our

results.

Definition 2.1.2. Let D ⊆ Rn be an open strongly positively invariant set with

respect to (2.1). An equilibrium point xe ∈ D of (2.1) is Lyapunov stable if, for every

ε > 0, there exists δ = δ(ε) > 0 such that, for every initial condition x0 ∈ Bδ(xe) and

every Filippov solution x(t) with the initial condition x(0) = x0, x(t) ∈ Bε(xe) for all

t ≥ 0. An equilibrium point xe ∈ D of (2.1) is semistable if xe is Lyapunov stable and

there exists an open subset D0 of D containing xe such that, for all initial conditions

in D0, the Filippov solutions of (2.1) converge to a Lyapunov stable equilibrium point.

An equilibrium point xe ∈ D of (2.1) is asymptotically stable if xe is Lyapunvov stable

and there exists δ = δ(ε) > 0 such that if x0 ∈ Bδ(xe), then the Filippov solutions

of (2.1) converge to xe. An equilibrium point xe ∈ D of (2.1) is exponentially stable

if there exits positive constants α, β, and δ such that if x0 ∈ Bδ(xe), then every

Filipov solution to (2.1) satisfies ‖x(t)‖ ≤ ‖x0‖e−β, t ≥ 0. The system (2.1) is

semistable (resp., asymptotically stable) with respect to D if every Filippov solution

with initial condition in D converges to a Lyapunov stable equilibrium (resp., the

Lyapunov stable equilibrium xe). Finally, (2.1) is said to be globally semistable (resp.,

globally asymptotically stable, globally exponentially stable) if (2.1) is semistable (resp.,

asymptotically stable, exponentially stable) with respect to Rn.

Given an absolutely continuous curve γ : [0,∞)→ Rn, the positive limit set of γ is

the set Ω(γ) of points y ∈ Rn for which there exists an increasing divergent sequence

{ti}∞i=1 satisfying limi→∞ γ(ti) = y. We denote the positive limit set of a Filippov

solution ψ(·) of (2.1) by Ω(ψ). The positive limit set of a bounded Filippov solution

of (2.1) is nonempty and weakly invariant with respect to (2.1) [24, Lem. 4, p. 130].
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2.2. Stability of Discontinuous Dynamical Systems

In this section, we state sufficient conditions for stability of discontinuous dynam-

ical systems. Here, we state the stability theorems for only the local case; the global

stability theorems are similar except for the additional assumption of properness on

the Lyapunov function and nonrestricting the domain of analysis.

Theorem 2.2.1. ([5,41]) Consider the discontinuous nonlinear dynamical system

G given by (2.1). Let xe be an equilibrium point of G and let D ⊆ Rn be an open

and connected set with xe ∈ D. If V : D → R is a positive definite, locally Lipschitz

continuous, and regular function such that maxLfV (x) ≤ 0 (resp., maxLfV (x) < 0,

x 6= xe) for almost all x ∈ D such that LfV (x) 6= ∅, then xe is Lyapunov (resp.,

asymptotically) stable. Finally, if there exists scalars α, β, γ > 0, and p ≥ 1 such that

V : D → R satisfies α‖x− xe‖p ≤ V (x) ≤ ‖x− xe‖p and maxLfV (x) ≤ −γ‖x− xe‖p

for almost all x ∈ D, x 6= xe, such that LfV (x) 6= ∅, then xe is exponentially stable.

The next result presents an extenson of the Krasovskii-LaSalle invariant set the-

orem to discontinuous dynamical systems.

Theorem 2.2.2. ([5,41]) Consider the discontinuous nonlinear dynamical system

G given by (2.1). Let xe be an equilibrium point of G, let D ⊆ Rn be an open strongly

positively invariant set with respect to (2.1) such that xe ∈ D, and let V : D → R

be locally Lipschitz continuous and regular on D. Assume that, for every x ∈ D and

every Filippov solution ψ(·) satisfying ψ(t0) = x, there exists a compact subset Dc of

D containing ψ(t) for all t ≥ 0. Furthermore, assume that maxLfV (x) ≤ 0 for almost

all x ∈ D such that LfV (x) 6= ∅. Finally, define R , {x ∈ D : 0 ∈ LfV (x)} and

letM be the largest weakly positively invariant subset of R∩D. If x(t0) ∈ Dc, then
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x(t) →M as t → ∞. If, alternatively, R contains no invariant set other than {xe},

then the Filippov solution x(t) ≡ xe of G is asymptotically stable for all x0 ∈ Dc.

Example 2.2.1. Consider a nonsmooth harmonic oscillator with nonsmooth fric-

tion given by ([5])

ẋ1(t) = − sign(x2(t))− 1

2
sign(x1(t)), x1(0) = x10, a.e. t ≥ 0, (2.7)

ẋ2(t) = sign(x1(t)), x2(0) = x20, (2.8)

where sign(σ) , σ
|σ| , σ 6= 0, and sign(0) , 0. Next, consider the locally Lipschitz

continuous function V (x) = |x1|+ |x2| and note that

∂V (x) =


{sign(x1)} × {sign(x2)}, (x1, x2) ∈ R2 : x1 6= 0, x2 6= 0,
{sign(x1)} × [−1, 1], (x1, x2) ∈ R2 : x1 6= 0, x2 = 0,
[−1, 1]× {sign(x2)}, (x1, x2) ∈ R2 : x2 6= 0, x1 = 0,
co{(1, 1), (−1, 1), (−1,−1), (1,−1)}, (x1, x2) = (0, 0).

Hence, with f(x) = [− sign(x2)− 1
2

sign(x1), sign(x1)]T,

LfV (x) =


{−1

2
}, (x1, x2) ∈ R2 : x1 6= 0, x2 6= 0,

∅, (x1, x2) ∈ R2 : x1 6= 0, x2 = 0,
∅, (x1, x2) ∈ R2 : x2 6= 0, x1 = 0,
{0}, (x1, x2) = (0, 0).

Now, since maxLfV (x) ≤ 0 for almost all x ∈ R2 such that LfV (x) 6= ∅, it follows

from Theorem 2.2.1 that (x1(t), x2(t)) ≡ (0, 0) is Lyapunov stable. 4

Example 2.2.2. Consider the harmonic oscillator with Coulomb friction given

by ([67])

mẍ(t) + b sign(ẋ(t)) + kx(t) = 0, x(0) = x0, ẋ(0) = ẋ0, a.e. t ≥ 0, (2.9)

or, equivalently,

f(x1, x2) =

[
ẋ1(t)
ẋ2(t)

]
=

[
x2(t)

− k
m
x1(t)− b

m
sign(x2(t))

]
,

[
x1(0)
x2(0)

]
=

[
x10

x20

]
,

a.e. t ≥ 0,
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where m, b, k > 0. Next, consider the continuously differentiable Lyapunov function

V (x) = 1
2
kx2

1 + 1
2
mx2

2 and note that, for almost all x ∈ R2, LfV (x) = {−b|x2|}, which

implies that every Filippov solution of (2.9) approaches the largest weakly positively

invariant set in R, where R , {x ∈ R2 : 0 ∈ LfV (x)}. Now, since

K[f ](x) =

[
0

− k
m
x1 − b

m
[−1, 1]

]
,

for x2 = 0, it follows that the largest weakly positively invariant subset of R isM =

[[− b
k
, b
k
], 0]T. Hence, it follows from Theorem 2.2.2 that x(t)→M as t→∞. 4

2.3. Static Networks and the Consensus Problem

The consensus problem appears frequently in coordination of multiagent network

systems and involves finding a dynamic algorithm that enables a group of agents in

a network to agree upon certain quantities of interest with undirected and directed

information flow [40,48,59]. In this dissertation, we use undirected and directed graphs

to represent a static network.

The graph-theoretic notation and terminology we use in this dissertation is stan-

dard [27]. Specifically, G = (V , E ,A) denotes a weighted directed graph (or digraph)

denoting the static network (or static graph) with the set of nodes (or vertices)

V = {1, . . . , N} involving a finite nonempty set denoting the agents, the set of

edges E ⊆ V × V involving a set of ordered pairs denoting the direction of infor-

mation flow between agents, and a weighted adjacency matrix A ∈ RN×N such that

A(i,j) = aij > 0, i, j = 1, . . . , N , if (j, i) ∈ E , and aij = 0, otherwise. The edge

(j, i) ∈ E denotes that agent i can obtain information from agent j, but not neces-

sarily vice versa. Moreover, we assume that aii = 0 for all i ∈ V . Note that if the

weights aij, i, j = 1, . . . , N , are not relevant, then aij is set to 1 for all (j, i) ∈ E . In
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this case, A is called a normalized adjacency matrix.

Every edge ` ∈ E corresponds to an ordered pair of vertices (i, j) ∈ V ×V , where i

and j are the initial and terminal vertices of the edge `. In this case, ` is incident into

j and incident out of i. Finally, we say that G is strongly (resp., weakly) connected if

for every ordered pair of vertices (i, j), i 6= j, there exists a directed (resp., undirected)

path, that is, a directed (resp., undirected) sequence of arcs, leading from i to j.

The in-neighbors and out-neighbors of node i are, respectively, defined as Nin(i) ,

{j ∈ V : (j, i) ∈ E} and Nout(i) , {j ∈ V : (i, j) ∈ E}. The in-degree degin(i) of

node i is the number of edges incident into i and the out-degree degout(i) of node i

is the number of edges incident out of i, that is, degin(i) ,
∑N

j=1 aji and degout(i) ,∑N
j=1 aij. We say that the node i of a digraph G is balanced if degin(i) = degout(i),

and a graph G is called balanced if all of its nodes are balanced, that is,
∑N

j=1 aij =∑N
j=1 aji, i = 1, . . . , N . Furthermore, we define the graph Laplacian and Perron

matrix of G as L , ∆ − A and P , I − εL, respectively, where ε > 0 and ∆ ,

diag[degin(1), . . . , degin(N)].

A graph or undirected graph G associated with the adjacency matrix A ∈ RN×N

is a directed graph for which the arc set is symmetric, that is, A = AT. In this

case, Nin(i) = Nout(i) , N (i) and degin(i) = degout(i) , deg(i), i = 1, . . . , N .

Furthermore, in this case we say that G is connected if for every ordered pair of

vertices (i, j), i 6= j, there exists a path, that is, a sequence of arcs, leading from i to

j. A graph is all-to-all connected if every node of G is connected to every other node

of G. Finally, we denote the value of the node i ∈ {1, . . . , N} at time t (resp., time

step k) by xi(t) ∈ Rn (resp., xi(k) ∈ Rn).

In light of the above definitions, the consensus problem involves the design of

a dynamic algorithm that guarantees system state equipartition [48, 59], that is,
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limt→∞ xi(t) = q ∈ Rn for i = 1, . . . , N . This problem can be characterized as a

network involving trajectories of a multiagent dynamical system G given by

ẋi(t) = ui(t), xi(0) = xi0, t ≥ 0, i = 1, . . . , N, (2.10)

ui(t) =
∑

j∈Nin(i)

φij(xi(t), xj(t)), i = 1, . . . , N, (2.11)

where φij(·, ·), i, j = 1, . . . , N , are locally Lipschitz continuous. Here, xi(t), t ≥ 0,

represents an information state and ui(t), t ≥ 0, repsresents an information control

input with a distributed consensus algorithm involving neighbor-to-neighbor inter-

action between agents. In this dissertation, we consider continuous-time distributed

consensus algorithms resulting in closed-loop systems of the form ([59])

ẋi(t) =
∑

j∈Nin(i)

(xj(t)− xi(t)), xi(0) = xi0, t ≥ 0, i = 1, . . . , N, (2.12)

as well as discrete-time distributed consensus algorithms resulting in closed-loop sys-

tems of the form ([48])

xi(k + 1) = xi(k) + ε
∑

j∈Nin(i)

(xj(k)− xi(k)), xi(0) = xi0, k ∈ Z+,

i = 1, . . . , N, (2.13)

where ε > 0.
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Chapter 3

Universal Feedback Controllers for

Discontinuous Systems

3.1. Introduction

The consideration of nonsmooth Lyapunov functions for proving stability of feed-

back discontinuous systems is an important extension to classical stability theory

since, as shown in [67], there exist nonsmooth dynamical systems whose equilibria

cannot be proved to be stable using standard continuously differentiable Lyapunov

function theory. For dynamical systems with continuously differentiable flows, the

concept of smooth control Lyapunov functions was developed by Artstein [3] to show

the existence of a feedback stabilizing controller. A constructive feedback control law

based on smooth control Lyapunov functions was given in [68]. Even though a sta-

bilizing continuous feedback controller guarantees the existence of a smooth control

Lyapunov function, many systems that possess smooth control Lyapunov functions

do not necessarily admit a continuous stabilizing feedback controller [3,61]. However,

as shown in [61], the existence of a control Lyapunov function allows for the design

of a stabilizing feedback controller that admits Filippov and Krasovskii closed-loop

system solutions. In this chapter, we use the results of [60, 61] to develop a con-

structive universal feedback control law for discontinuous dynamical systems based

on the existence of a nonsmooth control Lyapunov function defined in the sense of
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generalized Clarke gradients [13] and set-valued Lie derivatives [5].

Consider the controlled nonlinear dynamical system G given by

ẋ(t) = F (x(t), u(t)), x(t0) = x0, a.e. t ≥ t0, (3.1)

where, for every t ≥ t0, x(t) ∈ D ⊆ Rn, u(t) ∈ U ⊆ Rm, F : D×U → Rn is Lebesgue

measurable and locally essentially bounded [24] with respect to x, continuous with

respect to u, and admits an equilibrium point at xe ∈ D for some ue ∈ U ; that is,

F (xe, ue) = 0. The control u(·) in (3.1) is restricted to the class of admissible controls

consisting of measurable and locally essentially bounded functions u(·) such that

u(t) ∈ U , t ≥ 0. For each value u ∈ U , we define the function Fu by Fu(x) = F (x, u).

A measurable function φ : D → U satisfying φ(xe) = ue is called a control law.

If u(t) = φ(x(t)), where φ is a control law and x(t) satisfies (3.1), then we call u(·)

a feedback control law. Note that the feedback control law is an admissible control

since φ(·) has values in U . Given a control law φ(·) and a feedback control law

u(t) = φ(x(t)), the closed-loop system is given by

ẋ(t) = F (x(t), φ(x(t))), x(0) = x0, a.e. t ≥ 0. (3.2)

Analogous to the open-loop case, we define the function Fφ by Fφ(x) = F (x, φ(x)).

Note that an arc x(·) (i.e., an absolutely continuous function from [t0, t] to D) satisfies

(3.1) for an admissible control u(t) ∈ U if and only if [24, p. 152]

ẋ(t) ∈ F(x(t)), x(t0) = x0, a.e. t ≥ t0, (3.3)

where F(x) , F (x, U), that is, F(x) , {F (x, u) : u ∈ U}.

Here F : D → 2Rn is a set-valued map that assigns sets to points. The set

F(x) captures all of the directions in Rn that can be generated at x with inputs

u = u(t) ∈ U . The inputs u(·) can be selected as either u : [t0,∞)→ U or u : D → U .
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We assume that F(x) is an upper semicontinuous, nonempty, convex, and compact

set for all x ∈ Rn. That is, for every x ∈ D and every ε > 0, there exists δ > 0 such

that, for all z ∈ Rn satisfying ‖z − x‖ ≤ δ, F(z) ⊆ F(x) +Bε(0). This assumption is

mainly used to guarantee the existence of Filippov solutions to (3.2) [24].

An absolutely continuous function x : [t0, τ ]→ Rn is said to be a Filippov solution

[24] of (3.2) on the interval [t0, τ ] with initial condition x(t0) = x0, if x(t) satisfies

ẋ(t) ∈ K[Fφ](x(t)), a.e. t ∈ [t0, τ ], (3.4)

where the Filippov set-valued map K[Fφ] : Rn → 2Rn is defined by

K[Fφ](x) ,
⋂
δ>0

⋂
µ(S)=0

co{Fφ(Bδ(x)\S)}, x ∈ D, (3.5)

µ(·) denotes the Lebesgue measure in Rn, “co” denotes convex closure, and
⋂
µ(S)=0

denotes the intersection over all sets S of Lebesgue measure zero.2 Note that since F

is locally essentially bounded, K[Fφ](·) is upper semicontinuous and has nonempty,

compact, and convex values.

3.2. Nonsmooth Control Lyapunov Functions

In this section, we consider a feedback control problem and introduce the notion

of control Lyapunov functions for discontinuous dynamical systems. Furthermore,

using the concept of control Lyapunov functions we provide necessary and sufficient

conditions for stabilization of discontinuous nonlinear dynamical systems. To address

the problem of control Lyapunov functions for discontinuous dynamical systems, let

D ⊆ Rn be an open set and let U ⊆ Rm, where 0 ∈ D and 0 ∈ U . Next, consider the

controlled nonlinear discontinuous dynamical system (3.1), where u(·) is restricted

2Alternatively, we can consider Krasovskii solutions of (3.2) wherein the possible misbehavior of
the derivative of the state on null measure sets is not ignored; that is, K[Fφ](x) is replaced with
K[Fφ](x) =

⋂
δ>0 co{Fφ(Bδ(x))} and where Fφ is assumed to be locally bounded.
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to the class of admissible controls consisting of measurable functions u(·) such that

u(t) ∈ U for almost all t ≥ 0 and the constraint set U is given. Given a control law

φ(·) and a feedback control u(t) = φ(x(t)), the closed-loop dynamical system is given

by (3.2).

The following definitions are required for stating the main result of this section.

Definition 3.2.1. Let φ : D → U be a measurable mapping on D\{0} with

φ(0) = 0. Then (3.1) is feedback asymptotically stabilizable if the zero Filippov so-

lution x(t) ≡ 0 of the closed-loop discontinuous nonlinear dynamical system (3.2) is

asymptotically stable.

Definition 3.2.2. Consider the controlled discontinuous nonlinear dynamical sys-

tem given by (3.1). A locally Lipschitz continuous, regular, and positive-definite

function V : D → R satisfying

inf
u∈U

[maxLFuV (x)] < 0, a.e. x ∈ D \ {0}, (3.6)

is called a control Lyapunov function.

Note that if (3.6) holds, then there exists a feedback control law φ : D → U

such that maxLFφV (x) < 0, x ∈ D, x 6= 0, and hence, Theorem 2.2.1 with f(x) =

Fφ(x) = F (x, φ(x)) implies that if there exists a control Lyapunov function for the

discontinuous nonlinear dynamical system (3.1), then there exists a feedback control

law φ(x) such that the zero Filippov solution x(t) ≡ 0 of the closed-loop system (3.2)

is strongly asymptotically stable. Conversely, if there exists a feedback control law

u = φ(x) such that the zero Filippov solution x(t) ≡ 0 of the discontinuous nonlinear

dynamical system (3.1) is strongly asymptotically stable, then, since LFφV (x) ⊆

{pTv : pT ∈ ∂V (x) and v ∈ K[Fφ](x)}, it follows from Theorem 2.7 of [61] that
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there exists a locally Lipschitz continuous, regular, and positive-definite function

V : D → R such that maxLFφV (x) < 0 for all nonzero x ∈ D or, equivalently, there

exists a control Lyapunov function for the discontinous nonlinear dynamical system

(3.1). Hence, a given discontinuous dynamical system of the form (3.1) is strongly

feedback asymptotically stabilizable if and only if there exists a control Lyapunov

function satisfying (3.6). Finally, in the case where D = Rn and U = Rm the zero

Filippov solution x(t) ≡ 0 to (3.1) is globally strongly asymptotically stabilizable if

and only if V (x)→∞ as ||x|| → ∞.

Next, we consider the special case of discontinuous nonlinear systems affine in

the control, and we construct state feedback controllers that globally asymptotically

stabilize the zero Filippov solution of the discontinuous nonlinear dynamical system

under the assumption that the system has a radially unbounded control Lyapunov

function. Specifically, we consider discontinuous nonlinear affine dynamical systems

of the form

ẋ(t) = f(x(t)) +G(x(t))u(t), x(0) = x0, a.e. t ≥ 0, (3.7)

where f : Rn → Rn, G : Rn → Rn×m, D = Rn, and U = Rm. We assume that f(·)

and G(·) are Lebesgue measurable and locally essentially bounded. Note that (3.7)

is a special case of (3.1) with F (x, u) = f(x) + G(x)u. We use the notation f + Gu

to denote the function Fu(x) = f(x) +G(x)u for each u ∈ Rm.

Note that (3.7) includes piecewise continuous dynamical systems as well as switched

dynamical systems as special cases. For example, if f(·) and G(·) are piecewise con-

tinuous, then (3.7) can be represented as a differential inclusion involving Filippov set-

valued maps of piecewise-continuous vector fields given byK[f ](x) = co{limi→∞ f(xi) :

xi → x, xi 6∈ Sf}, where Sf has measure zero and denotes the set of points where f is

discontinuous [56], and similarly for G(·). Here, we assume that K[f ](·) has at least

24



one equilibrium point so that, without loss of generality, 0 ∈ K[f ](0).

Next, define

LGV (x) , {q ∈ R1×m : there exists v ∈ G(x)

such that pTv = q for all pT ∈ ∂V (x)},

where G(x) ,
⋂
δ>0

⋂
µ(S)=0 co{G(Bδ(x)\S)}, x ∈ Rn, and

⋂
µ(S)=0 denotes the in-

tersection over all sets S of Lebesgue measure zero. Finally, we assume that the set

LGV (x) is single-valued3 for almost all x ∈ Rn, and that LGV (x) 6= ∅ at all other

points x.

Theorem 3.2.1. Consider the controlled discontinuous nonlinear dynamical sys-

tem given by (3.7). Then a locally Lipschitz continuous, regular, positive-definite,

and radially unbounded function V : Rn → R is a control Lyapunov function for

(3.7) if and only if

maxLfV (x) < 0, a.e. x ∈ R, (3.8)

where R 4
= {x ∈ Rn \ {0} : LGV (x) = 0}.

Proof. Sufficiency is a direct consequence of the definition of a control Lyapunov

function and the sum rule for computing the generalized gradient of locally Lips-

chitz continuous functions [56]. Specifically, for systems of the form (3.7), note that

Lf+GuV (x) ⊆ LfV (x) + LGV (x)u for almost all x and all u, and hence,

inf
u∈U

[maxLfV (x) + LGV (x)u] = −∞

3The assumption that LGV (x) is single-valued is necessary. Specifically, as will be seen later,
the requirement that there exists z ∈ LGV (x) such that, for all u ∈ Rm, max[LGV (x)u] = zu holds
if and only if LGV (x) is a singleton. To see this, let q, r ∈ LGV (x), with q 6= r, and assume, ad
absurdum, that the required z exists. Then, either q− z 6= 0 or r− z 6= 0. Assume q− z 6= 0 and let
uT = q − z. Then, qu − zu = (q − z)u = (q − z)(q − z)T = ‖q − z‖22 > 0. Hence, qu > zu, which
leads to a contradiction.
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when x 6∈ R and x 6= 0, whereas infu∈U [maxLfV (x) + LGV (x)u] < 0 for almost all

x ∈ R. Hence, (3.8) implies (3.6) with Fu(x) = f(x) +G(x)u.

To prove necessity suppose, ad absurdum, that V (·) is a control Lyapunov function

and (3.8) does not hold. In this case, there exists a set M ⊆ R of positive measure

such that maxLfV (x) ≥ 0 for all x ∈ M. Let x ∈ M and let α ∈ LfV (x) ∩ [0,∞).

From the definition of a control Lyapunov function, x is such that there exists u such

that maxLf+GuV (x) < 0 and, by the sum rule for generalized gradients, the inclusion

LfV (x) ⊆ Lf+GuV (x) + L−GuV (x) is satisfied (since the sum rule holds for almost

all x). Now, since x ∈ M, we have L−GuV (x) = −LGuV (x) ⊆ −LGV (x)u ⊆ {0}.

Hence, there exists a nonnegative α ∈ Lf+GuV (x), which is a contradiction. This

proves the theorem.

It follows from Theorem 3.2.1 that the zero Filippov solution x(t) ≡ 0 of a dis-

continuous nonlinear affine system of the form (3.7) is globally strongly feedback

asymptotically stabilizable if and only if there exists a locally Lipschitz continuous,

regular, positive-definite, and radially unbounded function V : Rn → R satisfying

(3.8). Hence, Theorem 3.2.1 provides necessary and sufficient conditions for discon-

tinuous nonlinear system stabilization.

Next, using Theorem 3.2.1 we construct an explicit feedback control law that is

a function of the control Lyapunov function V (·). Specifically, consider the feedback

control law given by

φ(x) =

 −
(
c0 +

α(x)+
√
α2(x)+(βT(x)β(x))2

βT(x)β(x)

)
β(x), β(x) 6= 0,

0, β(x) = 0,
(3.9)

where α(x)
4
= maxLfV (x), β(x)

4
= (LGV (x))T, and c0 ≥ 0 is a constant. In this case,

the control Lyapunov function V (·) of (3.7) is a Lyapunov function for the closed-loop

system (3.7) with u = φ(x), where φ(x) is given by (3.9). To see this, recall that using

the sum rule for computing the generalized gradient of locally Lipschitz continuous
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functions [56] it follows that Lf+GuV (x) ⊆ LfV (x) +LGuV (x) for almost all x ∈ Rn.

Now, Theorem 3.2.1 gives

maxLFφV (x) = maxLf+Gφ

≤ max [LfV (x) + LGV (x)φ(x)]

= maxLfV (x) + LGV (x)φ(x)

= α(x) + βT (x)φ(x)

=

{
−c0β

T(x)β(x)−
√
α2(x) + (βT(x)β(x))2, β(x) 6= 0,

α(x), β(x) = 0,

< 0, x ∈ Rn, a.e. x 6= 0, (3.10)

which implies that V (·) is a Lyapunov function for the closed-loop system (3.7),

and hence, by Theorem 2.2.1, guaranteeing global strong asymptotic stability with

u = φ(x) given by (3.9).

3.3. Illustrative Numerical Examples

In this section, we present several numerical examples to illustrate the utility of

the proposed feedback control law.

Example 3.3.1. Consider a controlled nonsmooth harmonic oscillator with non-

smooth friction given by ([5])

ẋ1(t) = − sign(x2(t))− 1

2
sign(x1(t)), x1(0) = x10, a.e. t ≥ 0, (3.11)

ẋ2(t) = sign(x1(t)) + u(t), x2(0) = x20, (3.12)

where sign(σ) , σ
|σ| , σ 6= 0, and sign(0) , 0. Next, consider the locally Lipschitz

continuous function V (x) = |x1|+ |x2| and note that

∂V (x) =


{sign(x1)} × {sign(x2)}, (x1, x2) ∈ R2 : x1 6= 0, x2 6= 0,
{sign(x1)} × [−1, 1], (x1, x2) ∈ R2 : x1 6= 0, x2 = 0,
[−1, 1]× {sign(x2)}, (x1, x2) ∈ R2 : x2 6= 0, x1 = 0,
co{(1, 1), (−1, 1), (−1,−1), (1,−1)}, (x1, x2) = (0, 0).
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Hence, with f(x) = [− sign(x2)− 1
2

sign(x1), sign(x1)]T and G = [0, 1]T,

LfV (x) =


{−1

2
}, (x1, x2) ∈ R2 : x1 6= 0, x2 6= 0,

∅, (x1, x2) ∈ R2 : x1 6= 0, x2 = 0,
∅, (x1, x2) ∈ R2 : x2 6= 0, x1 = 0,
{0}, (x1, x2) = (0, 0),

and

LGV (x) =


{sign(x2)}, (x1, x2) ∈ R2 : x1 6= 0, x2 6= 0,
∅, (x1, x2) ∈ R2 : x1 6= 0, x2 = 0,
{sign(x2)}, (x1, x2) ∈ R2 : x2 6= 0, x1 = 0,
{0}, (x1, x2) = (0, 0).

Now, since maxLfV (x) < 0 for all x ∈ R, where R = {x ∈ R2 \ {0} : LGV (x) = 0},

it follows from Theorem 3.2.1 that V (x) = |x1|+ |x2| is a control Lyapunov function

for (3.11) and (3.12).

Next, note that it follows from (3.9) that

φ(x) =

 −
c0 +

−1
2

+
√

1
4

+ sign4(x2)

sign2(x2)

 sign(x2), sign(x2) 6= 0,

0, sign(x2) = 0,

=

 −
(
c0 +

√
5− 1

2

)
sign(x2), sign(x2) 6= 0,

0, sign(x2) = 0,

(3.13)

where c0 ≥ 0, and hence, since Lf+GφV (x) ⊆ LfV (x) +LGV (x)φ(x) for almost all x,

maxLf+GφV (x) ≤ −
(
c0 +

√
5

2

)
< 0, sign(x2) 6= 0.

Now, it follows from Theorem 2.2.1 that (3.13) is a globally strongly stabilizing

feedback controller. Figures 3.1 and 3.2 show the phase portraits of the open-loop

(u(t) ≡ 0) and closed-loop nonsmooth harmonic oscillator with c = 0, respectively.

Finally, Figures 3.3 and 3.4 show the state trajectories and the control trajectories of

the closed-loop system versus time for x(0) = [2,−2]T and c = 0. 4
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Figure 3.1. Phase portrait of the open-loop nonsmooth harmonic oscillator.
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Figure 3.2. Phase portrait of the closed-loop nonsmooth harmonic oscillator.
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Figure 3.3. State trajectories of the closed-loop system versus time.
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Figure 3.4. Control trajectories of the closed-loop system versus time.
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Example 3.3.2. Consider the controlled dynamical system G given by (3.7),

where x = [x1, x2]T, u = [u1, u2]T,

f(x) =

[
|x1|(−x1 + |x2|)
x2(−x1 − |x2|)

]
, G(x) =

[
|x1| 0
0 x2

]
.

Next, consider the locally Lipschitz continuous function V (x) = 2|x1|+2|x2| and note

that

∂V (x) =


{2 sign(x1)} × {2 sign(x2)}, (x1, x2) ∈ R2 : x1 6= 0, x2 6= 0,
{2 sign(x1)} × [−2, 2], (x1, x2) ∈ R2 : x1 6= 0, x2 = 0,
[−2, 2]× {2 sign(x2)}, (x1, x2) ∈ R2 : x2 6= 0, x1 = 0,
co{(2, 2), (−2, 2), (−2,−2), (2,−2)}, (x1, x2) = (0, 0).

Hence,

LfV (x) =


{−2x2

1 − 2x2
2}, (x1, x2) ∈ R2 : x1 6= 0, x2 6= 0,

{−2x2
1}, (x1, x2) ∈ R2 : x1 6= 0, x2 = 0,

{−2x2
2}, (x1, x2) ∈ R2 : x2 6= 0, x1 = 0,

{0}, (x1, x2) = (0, 0),

and

LGV (x) =


{(2x1, 2|x2|)}, (x1, x2) ∈ R2 : x1 6= 0, x2 6= 0,
{(2x1, 0)}, (x1, x2) ∈ R2 : x1 6= 0, x2 = 0,
{(0, 2|x2|)}, (x1, x2) ∈ R2 : x2 6= 0, x1 = 0,
{(0, 0)}, (x1, x2) = (0, 0).

Now, since maxLfV (x) < 0 for all x ∈ R, where R = {x ∈ R2 \ {0} : LGV (x) = 0},

it follows from Theorem 3.2.1 that V (x) = 2|x1|+2|x2| is a control Lyapunov function.

Setting α(x) = maxLfV (x) and β(x) = (LGV (x))T, it follows that β(x)βT (x) =

4(x2
1 + x2

2) and α2(x) + (βT (x)β(x))2 = 4(x2
1 + x2

2)2 + 16(x4
1 + x4

2 + 2x2
1x

2
2) = 20(x4

1 +

x4
2) + 40x2

1x
2
2 = 20(x2

1 + x2
2)2, and hence, (3.9) gives

φ(x) =

−
(
c0 + (

√
5− 1)

) [ x1

|x2|

]
, (x1, x2) 6= (0, 0),

0, (x1, x2) = (0, 0),
(3.14)

where c0 ≥ 0. Thus, maxLf+GφV (x) ≤ −|x|2 for all x 6= 0. Now, it follows from The-

orem 2.2.1 that (3.14) is a globally strongly stabilizing feedback controller. Figures

3.5 and 3.6 show the phase portraits of the open-loop (u(t) ≡ 0) and closed-loop sys-

tem with c = 50, respectively. Finally, Figures 3.7 and 3.8 show the state trajectories

31



 
 

 
 

 
 

−4 −3 −2 −1 0 1 2 3 4

−4

−3

−2

−1

0

1

2

3

4

x1

x 2

Figure 3.5. Phase portrait of the open-loop system.

and the control trajectories of the closed-loop system versus time for x(0) = [2,−2]T

and c = 50. 4
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Figure 3.6. Phase portrait of the closed-loop system.
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Figure 3.7. State trajectories of the closed-loop system versus time.
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Figure 3.8. Control trajectories of the closed-loop system versus time.
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Chapter 4

Dissipativity Theory for Discontinuous Systems

4.1. Introduction

Dissipativity theory is a system-theoretic concept that provides a powerful frame-

work for the analysis and control design of dynamical systems based on generalized

system energy considerations. The key foundation in developing dissipativity theory

for nonlinear dynamical systems with continuously differentiable flows was presented

by Willems [74, 75] in his seminal two-part paper on dissipative dynamical systems.

Dissipativity theory along with Lyapunov stability theory for feedback interconnec-

tions of dissipative systems has been extensively developed for continuous dynamical

systems possessing continuously differentiable flows [31]. In light of the fact that en-

ergy notions involving conservation, dissipation, and transport also arise naturally for

discontinuous systems, it seems natural that dissipativity theory can play a key role

in the analysis and control design of discontinuous dynamical systems. Specifically,

dissipativity theory can be used to analyze robust stability of discontinuous dynami-

cal systems. Moreover, it can be applied to design discontinuous feedback controllers

that add dissipation and guarantee stability robustness allowing discontinuous stabi-

lization to be understood in physical terms.

In [35], the authors extend the notion of dissipativity theory to impulsive and

35



hybrid dynamical systems possessing left-continuous flows using generalized storage

functions and hybrid supply rates. The overall approach provides an interpretation

of a generalized energy balance for impulsive and hybrid dynamical systems in terms

of the stored or accumulated system generalized energy, the dissipated energy over

the continuous-time dynamics, and the dissipated energy at the resetting instants.

Extensions of dissipativity theory to vector dissipativity notions using vector storage

functions and vector supply rates for analyzing large-scale interconnected systems

are considered in [37]. More recently passivity theory for switched dynamical systems

described by a family of subsystems parameterized by a finite index set are discussed

in [36,78–80].

In this chapter, we extend the results of [36] to develop dissipativity notions for

dynamical systems with discontinuous vector fields. Specifically, we consider dynam-

ical systems with Lebesgue measurable and locally essentially bounded vector fields

characterized by differential inclusions involving Filippov set-valued maps specify-

ing a set of directions for the system velocity and admitting Filippov solutions with

absolutely continuous curves.

Finally, using generalized Clarke gradients of locally Lipschitz continuous storage

functions, we develop extended Kalman-Yakubovich-Popov conditions for discontinu-

ous systems. In addition, using the concepts of dissipativity, we construct nonsmooth

Lyapunov functions for discontinuous feedback systems as well as provide general

stability criteria for feedback interconnections of discontinuous dynamical systems.

The consideration of nonsmooth Lyapunov functions for proving stability of feed-

back interconnections of discontinuous systems is an important extension to classical

stability theory of dissipative feedback systems since, as shown in [67], there exist

nonsmooth dynamical systems whose equilibria cannot be proved to be stable using

standard continuously differentiable Lyapunov function theory.
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4.2. Dissipative Discontinuous Dynamical Systems

In this section, we extend the notion of classical dissipativity [74,75] of dynamical

systems with continuously differentiable flows to discontinuous systems. Specifically,

we consider nonlinear dynamical systems G of the form

ẋ(t) = F (x(t), u(t)), x(t0) = x0, a.e. t ≥ t0, (4.1)

y(t) = H(x(t), u(t)), (4.2)

where, for every t ≥ t0, x(t) ∈ D ⊆ Rn, u(t) ∈ U ⊆ Rm, y(t) ∈ Y ⊆ Rl, F : D× U →

Rn is Lebesgue measurable and locally essentially bounded [24] with respect to x,

continuous with respect to u, admits an equilibrium point at xe ∈ D for some ue ∈ U ;

that is, F (xe, ue) = 0, and H : D × U → Rl. The following definition is needed for

the main results of this section.

Definition 4.2.1. i) The discontinuous dynamical system G given by (4.1) and

(4.2) is weakly (resp., strongly) dissipative with respect to the (locally Lebesgue in-

tegrable) supply rate s : U × Y → R if there exists a locally Lipschitz continuous,

regular, and nonnegative definite storage function Vs : D → R, such that Vs(0) = 0

and the dissipation inequality

Vs(x(t)) ≤ Vs(x(t0)) +

∫ t

t0

s(u(σ), y(σ))dσ, t ≥ t0, (4.3)

is satisfied for at least one (resp., every) Filippov solution x(t), t ≥ t0, of G with

u(t) ∈ U .

ii) The discontinuous dynamical system G given by (4.1) and (4.2) is weakly (resp.,

strongly) exponentially dissipative with respect to the (locally Lebesgue integrable)

sypply rate s : U × Y → R if there exist a locally Lipschitz continuous, regular, and

nonnegative storage function Vs : D → R and a scalar ε > 0 such that Vs(0) = 0 and
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the dissipation inequality

eεtVs(x(t)) ≤ eεt0Vs(x(t0)) +

∫ t

t0

eεσs(u(σ), y(σ))dσ, t ≥ t0, (4.4)

is satisfied for one (resp., every) Filippov solution x(t), t ≥ 0, of G with u(t) ∈ U .

iii) The discontinuous dynamical system G given by (4.1) and (4.2) is strictly

weakly (resp., strongly) dissipative with respect to the (locally Lebesgue integrable)

supply rate s : U × Y → R if there exist a locally Lipschitz continuous, regular, and

nonnegative storage function Vs : D → R and a scalar ε > 0 such that Vs(0) = 0 and

the dissipation inequality

Vs(x(t)) ≤ Vs(x(t0)) +

∫ t

t0

[s(u(σ), y(σ))− ε]dσ, t ≥ t0, (4.5)

is satisfied for at least one (resp., every) Filippov solution x(t), t ≥ t0, of G with

u(t) ∈ U .

Since Vs(·) is assumed to be locally Lipschitz continuous and regular, an equivalent

statement for the dissipativeness of G involving supply rates s(u, y) is

V̇s(x(t)) ≤ s(u(t), y(t)), a.e. t ≥ 0, (4.6)

or, equivalently, V̇s(x) ≤ s(u, y), where

V̇s(x) =
d

dt
Vs(ψ(t, x, u))

∣∣∣∣
t=0

, lim sup
h→0+

Vs(ψ(h, x, u))− Vs(x)

h
, (4.7)

for every x ∈ Rn, denotes the upper right directional Dini derivative of Vs(x) along

the Filippov state trajectories ψ(t, x, u) of (4.1) through x ∈ D with u(t) ∈ U at

t = 0. Alternatively, an equivalent statement for exponentional dissipativeness and

strict dissipativeness of G involving the supply rate s(u, y) is, respectively,

V̇s(x(t)) + εVs(x(t)) ≤ s(u(t), y(t)), a.e. t ≥ 0, (4.8)
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and

V̇s(x(t)) ≤ s(u(t), y(t))− ε, a.e. t ≥ 0. (4.9)

The following lemma is necessary for the next proposition. For the statement of

this lemma we require some additional notation. Specifically, given a locally Lipschitz

continuous function V : Rn → R, define the set-valued Lie derivative LF (x,u)V :

Rn × U → 2R of V with respect to F at x and u by

LF (·,u)V (x) ,
{
a ∈ R : there exists v ∈ K[F (·, u)](x)

such that pTv = a for all pT ∈ ∂V (x)
}
,

where K[F (·, u)](x) denotes the Filippov set-valued map of F (x, u) over x for each

admissible input u(t) ∈ U . That is, F (·, u) is averaged over progressively smaller

neighborhoods around x ∈ Rn with u ∈ U . Analogously, for fixed t > 0, x ∈ Rn, and

a measurable and locally essentially bounded u : R → U , define the set-valued Lie

derivative LF (x,u(·))V : Rn × U → 2R by

LF (·,u(·))V (x) ,
{
a ∈ R : there exists v ∈ K[F (·, u(t))](x)

such that pTv = a for all pT ∈ ∂V (x)
}
,

that is, we fix u(·) ∈ L∞(R, U) and apply the Filippov construction over x. Note

that if ψ(·) is a Filippov solution to (4.1) with u(·) = u(·), then LF (·,u(·))V (ψ(t)) ⊆

LF (·,u)V (ψ(t)). In addition, note that LF (·,u)V (x) is a closed and bounded, possibly

empty, interval in R.

Lemma 4.2.1. Let x : [t0, t]→ Rn be a Filippov solution of (4.1) corresponding

to the input u(·) and let V : Rn → R be locally Lipschitz continuous and regular.

Then d
dσ
V (x(σ)) exists for almost all σ ∈ [t0, t] and d

dσ
V (x(σ)) ∈ LF (·,u(·))V (x(σ)) for

almost all σ ∈ [t0, t].
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Proof. The proof is similar to the proof of Lemma 1 of [5] and, hence, is omitted.

Proposition 4.2.1. Consider the discontinuous dynamical system G given by

(4.1) and (4.2), and let V : D → R be a locally Lipschitz continuous and regular

function such that V (x) ≥ 0 for all x ∈ Rn and V (0) = 0. Assume there exist a

Lebesgue measurable function s : U × Y → R and a scalar ε > 0 (resp., ε = 0) such

that

maxLF (·,u)V (x) ≤ −εV (x) + s(u, y), a.e. u ∈ U. (4.10)

Then G is strongly exponentially dissipative (resp., strongly dissipative) with respect

to the supply rate s(u, y).

Proof. It suffices to show that if (4.10) holds, then (4.3) holds on the interval

[t0, t]. To see this, let x : [t0, t] → Rn be a Filippov solution of (3.3) with initial

condition x(0) = x0. Now, since by Lemma 4.2.1 V̇ (x(σ)) ≤ maxLF(·,u(·))V (x(σ)) for

almost all σ ∈ [t0, t], it follows from (4.10) that V̇ (x(σ)) ≤ −εV (x(σ)) + s(u(σ), y(σ))

for almost all σ ∈ [t0, t], and hence,

eεσ
[
V̇ (x(σ)) + εV (x(σ))

]
≤ eεσs(u(σ), y(σ)), a.e. σ ∈ [t0, t]. (4.11)

Now, integrating (4.11), where the integral is a Lebesgue integral, it follows that (4.3)

holds with ε > 0 (resp., ε = 0).

Example 4.2.1. Consider the controlled discontinuous dynamical system G rep-

resenting a mass sliding on a horizontal surface subject to a Coulomb frictional force.

During sliding, the Coulomb frictional model states that the magnitude of the fric-

tion force is independent of the magnitude of the system velocity and is equal to the
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normal contact force times the coefficient of kinetic friction. The application of this

model to a sliding mass on a horizontal frictional surface gives

ẋ(t) = −sign(x(t)) + u(t), x(0) = x0, a.e. t ≥ 0, (4.12)

y(t) = x(t). (4.13)

Equation (4.12) can be rewritten in the form of a differential inclusion

ẋ(t) ∈ K[f ](x(t)) + u(t), x(0) = x0, a.e. t ≥ 0, (4.14)

where the Filippov set-valued map K[f ] : R→ 2R is given by

K[f ](x) =


−1, x > 0,

[−1, 1] , x = 0,
1, x < 0.

(4.15)

Let Vs1(x) = x2. Since

V̇s1(x) ∈ LF (·,u)Vs1(x)

= ∂Vs1(x)(K[f ](x) + u)

= 2xK[f ](x) + 2xu

= −|x|+ 2uy

≤ 2uy, (4.16)

it follows that maxLF (·,u)Vs1(x) ≤ 2uy for all Filippov solutions, which, by Propo-

sition 4.2.1, implies that G is strongly dissipative with respect to the supply rate

2uy.

Next, let Vs2(x) = |x|. Since

V̇s2(x) ∈ LF (·,u)Vs2(x) =

{
−1 + sign(x)u, x 6= 0,

0, x = 0,

= −1 + u sign(y), x 6= 0, (4.17)

it follows that maxLF (·,u)Vs2(x) ≤ u sign(y) for almost all x ∈ R and all Filippov

solutions, which, by Proposition 4.2.1, implies that G is strongly dissipative with

respect to the supply rate u sign(y). 4
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4.3. Extended Kalman–Yakubovich–Popov conditions

Next, we show that dissipativeness of discontinuous nonlinear affine dynamical

systems G of the form

ẋ(t) = f(x(t)) +G(x(t))u(t), x(t0) = x0, a.e. t ≥ t0, (4.18)

y(t) = h(x(t)) + J(x(t))u(t), (4.19)

where x(t) ∈ D ⊆ Rn, D is an open set with 0 ∈ D, u(t) ∈ U ⊆ Rm, y(t) ∈ Y ⊆ Rl,

f : D → Rn, G : D → Rn×m, h : D → Y , and J : D → Rl×m, can be characterized in

terms of the system functions f(·), G(·), h(·), and J(·). Here, we assume that f(·),

G(·), h(·), and J(·) are Lebesgue measurable and locally essentially bounded.

For the remainder of this section, we consider the special case of dissipative systems

with quadratic supply rates [75], [31]. Specifically, set D = Rn, U = Rm, Y = Rl, let

Q ∈ Sl, R ∈ Sm, and S ∈ Rl×m be given, and assume s(u, y) = yTQy+2yTSu+uTRu,

where Sq denotes the set of q × q symmetric matrices. Furthermore, we assume that

there exists a function κ : Rl → Rm such that κ(0) = 0 and s(κ(y), y) < 0, y 6= 0, so

that, as shown by Theorem 3.2 of [38], all storage functions for G are positive definite.

Next, define

LGVs(x) , {q ∈ R1×m : there exists v ∈ G(x)

such that pTv = q for all pT ∈ ∂Vs(x)},

where G(x) ,
⋂
δ>0

⋂
µ(S)=0 co{G(Bδ(x))\S}, x ∈ Rn, and

⋂
µ(S)=0 denotes the in-

tersection over all sets S of Lebesgue measure zero. Finally, we assume that the set

LGVs(x) is single-valued4 for almost all x ∈ Rn modulo LGVs(x) 6= ∅. The following

definition is necessary for the statement of the next result.

4The assumption that LGVs(x) is single-valued is necessary for obtaining Kalman-Yakubovich-
Popov conditions for (4.18) and (4.19) with Lebesgue measurable and locally essentially bounded
system functions f(·), G(·), h(·), and J(·), and with locally Lipschitz continuous storage functions
Vs(·). Specifically, as will be seen in the proof of Theorem 4.3.1, the requirement that there ex-
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Definition 4.3.1. ([38]) The nonlinear dynamical system G given by (4.1) and

(4.2) is weakly (resp., strongly) completely reachable if for every x0 ∈ D ⊆ Rn there

exists a finite time ti < t0 and an admissible input u(t) defined on [ti, t0] such that at

least one (resp., every) Filippov solution x(t), t ≥ ti, of G can be driven from x(ti) = 0

to x(t0) = x0. The nonlinear dynamical system G given by (2.1) and (2.2) is weakly

(resp., strongly) zero-state observable if u(t) ≡ 0 and y(t) ≡ 0 implies x(t) ≡ 0 for at

least one (resp., every) Filippov solution of G.

The following theorem gives necessary and sufficient Kalman–Yakubovich–Popov

conditions for dynamical systems with Lebesgue measurable and locally essentially

bounded system functions.

Theorem 4.3.1. Let Q ∈ Sl, S ∈ Rl×m, R ∈ Sm, and let G be weakly zero-state

observable and weakly completely reachable. If there exist functions Vs : Rn → R,

` : Rn → Rp, and W : Rn → Rp×m and a scalar ε > 0 (resp., ε = 0) such that Vs(·) is

locally Lipschitz continuous, regular, and positive definite, Vs(0) = 0, and, for almost

all x ∈ Rn,

0 = minLfVs(x) + εVs(x)− hT(x)Qh(x) + `T(x)`(x), (4.20)

0 =
1

2
LGVs(x)− hT(x)(QJ(x) + S) + `T(x)W(x), (4.21)

0 = R + STJ(x) + JT(x)S + JT(x)QJ(x)−WT(x)W(x), (4.22)

[`(x) +W(x)u]T[`(x) +W(x)u] ≥ maxLfVs(x)−minLfVs(x), u ∈ Rm, (4.23)

then G is weakly exponentially dissipative (resp., weakly dissipative) with respect

to the supply rate s(u, y) = yTQy + 2yTSu + uTRu. Conversely, if G is weakly

exponentially dissipative (resp., weakly dissipative) with respect to the supply rate

ists z ∈ LGVs(x) (resp., z ∈ LGVs(x)) such that, for all u ∈ Rm, max[LGVs(x)u] = zu (resp.,
min[LGVs(x)u] = zu) used in the proof of Theorem 4.3.1 holds if and only if LGVs(x) is a single-
ton. This fact is shown in Footnote 3 for z ∈ LGVs(x). A similar construction shows the result for
z ∈ LGVs(x).
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s(u, y), then there exist functions Vs : Rn → R, ` : Rn → Rp, andW : Rn → Rp×m and

a scalar ε > 0 (resp., ε = 0) such that Vs(·) is locally Lipschitz continuous, regular,

and positive definite, Vs(0) = 0, and, for almost all x ∈ Rn, (4.20)–(4.22) hold.

Proof. First, suppose that there exist functions Vs : Rn → R, ` : Rn → Rp,

and W : Rn → Rp×m and a scalar ε > 0 such that Vs(·) is locally Lipschitz contin-

uous, regular, and positive definite, and (4.20)–(4.23) are satisfied. Then, for every

admissible input u(t) ∈ Rm, t ≥ 0, it follows from (4.20)–(4.23) that∫ t2

t1

eεts(u(t), y(t))dt

=

∫ t2

t1

eεt
[
yT(t)Qy(t) + 2yT(t)Su(t) + uT(t)Ru(t)

]
dt

=

∫ t2

t1

eεt
[
hT(x(t))Qh(x(t)) + 2hT(x(t))(S +QJ(x(t)))u(t)

+uT(t)(JT(x(t))QJ(x(t)) + STJ(x(t)) + JT(x(t))S +R)u(t)
]
dt

=

∫ t2

t1

eεt
[
minLfVs(x(t)) + εVs(x(t)) + LGVs(x(t))u(t) + `T(x(t))`(x(t))

+2`T(x(t))W(x(t))u(t) + uT(t)WT(x(t))W(x(t))u(t)
]
dt

=

∫ t2

t1

eεt[minLfVs(x(t)) + LGVs(x(t))u(t) + εVs(x(t))

+[`(x(t)) +W(x(t))u(t)]T[`(x(t)) +W(x(t))u(t)]
]
dt

≥
∫ t2

t1

eεt[maxLfVs(x(t)) + LGVs(x(t))u(t) + εVs(x(t))]dt, (4.24)

where x(t), t ≥ 0, satisfies (4.18).

Next, using the sum rule for computing the generalized gradient of a locally Lip-

schitz continuous function [56] it follows that

Lf+GuVs(x) ⊆ LfVs(x) + LGuVs(x)

for almost all x ∈ Rn. Now, it follows from Lemma 4.2.1 that

d

dt
Vs(x(t)) ∈ Lf+GuVs(x(t)) ⊆ LfVs(x(t)) + LGuVs(x(t))
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for almost all t ≥ 0. Hence,

d

dt
Vs(x(t)) ≤ maxLf+GuVs(x(t))

≤ max [LfVs(x(t)) + LGVs(x(t))u(t)]

= maxLfVs(x(t)) + LGVs(x(t))u(t), a.e. t ≥ 0, u(t) ∈ U. (4.25)

Next, note that

eεtVs(x(t)) = eεt0Vs(x(t0)) +

∫ t

t0

d

dσ
(eεσVs(x(σ)))dσ, (4.26)

where the integral in (4.26) is the Lebesgue integral.

Using (4.25) and (4.26), it follows from (4.24) that∫ t2

t1

eεts(u(t), y(t))dt ≥
∫ t2

t1

eεt
[

d

dt
Vs(x(t)) + εVs(x(t))

]
dt

=

∫ t2

t1

d

dt
(eεtVs(x(t)))dt

= eεt2Vs(x(t2))− eεt1Vs(x(t1)), a.e. t ≥ 0, u(t) ∈ U.

The assertion now follows from Definition 4.2.1.

Conversely, suppose that G is weakly exponentially dissipative with respect to the

supply rate s(u, y). Now, it follows from Theorem 3.1 of [38] that the available storage

Vas(x) of G is finite for all x ∈ Rn, Vas(0) = 0, and

eεt2Vas(x(t2)) ≤ eεt1Vas(x(t1)) +

∫ t2

t1

eεts(u(t), y(t))dt (4.27)

for almost all t2 ≥ t1 and u(·) ∈ U . Dividing (4.27) by t2 − t1 and letting t2 → t1 it

follows that

d

dt
Vas(x(t)) + εVas(x(t)) ≤ s(u(t), y(t)), a.e. t ≥ 0, (4.28)

where x(t), t ≥ 0, is a solution satisfying (4.18) and

d

dt
Vas(x(t)) = lim sup

h→0+
[Vas(x(t+ h))− Vas(x(t))]/h.
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Now, with t = 0, it follows from (4.28) that

d

dt
Vas(x0) + εVas(x0) ≤ s(u, y(0)), u ∈ Rm.

Next, let d : Rn × Rm → R be such that

d(x, u) , − d

dt
Vas(x)− εVas(x) + s(u, y). (4.29)

Now, it follows from (4.28) that d(x, u) ≥ 0, x ∈ Rn, u ∈ Rm. Since d
dt
Vas(x) ∈

LfVas(x) + LGuVas(x) for almost all x ∈ Rn, it follows that

d

dt
Vas(x) ≥ minLfVas(x) + LGVas(x)u, a.e. x ∈ Rn, u ∈ Rm, (4.30)

and hence, it follows from (4.29) and (4.30) that

−[minLfVas(x) + LGVas(x)u+ εVas(x)] + s(u, h(x) + J(x)u) ≥ d(x, u) ≥ 0,

a.e. x ∈ Rn, u ∈ Rm. (4.31)

Since the left-hand side of (4.31) is quadratic in u, there exist functions ` : Rn →

Rp and W : Rn → Rp×m such that

`(x) +W(x)u]T[`(x) +W(x)u]

=−[minLfVas(x) + LGVas(x)u+ εVas(x)] + s(u, h(x) + J(x)u)

=−[minLfVas(x) + LGVas(x)u+ εVas(x)] + [h(x) + J(x)u]T

·Q[h(x) + J(x)u] + 2[h(x) + J(x)u]TSu+ uTRu.

Now, equating coefficients of equal powers yields (4.20)–(4.22) with Vs(x) = Vas(x)

and with the positive definiteness of Vs(x), x ∈ Rn, following from Theorem 3.2 of [38].

Finally, the proof for the weakly dissipative case follows by using an identical

construction with ε = 0.
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Remark 4.3.1. Note that if WT(x)W(x) is invertible for all x ∈ Rn, then in-

equality (4.23) can be equivalently written as

[`(x)−W(x)(WT(x)W(x))−1WT(x)`(x)]T[`(x)−W(x)(WT(x)W(x))−1WT(x)`(x)]

≥ maxLfVs(x)−minLfVs(x), x ∈ Rn, (4.32)

which is free of u ∈ Rm. This follows from the fact that (4.23) holds if and only if

min
u

[`(x) +W(x)u]T[`(x) +W(x)u] ≥ maxLfVs(x)−minLfVs(x), x ∈ Rn, (4.33)

holds. A similar expression to (4.32) involving generalized inverses also holds in the

case where WT(x)W(x) is singular for some x ∈ Rn.

The following result gives sufficient conditions for weak dissipativity and weak

exponential dissipativity of G based on maxLfVs(·).

Theorem 4.3.2. Let Q ∈ Sl, S ∈ Rl×m, R ∈ Sm, and let G be weakly zero-state

observable and weakly completely reachable. If there exist functions Vs : Rn → R,

` : Rn → Rp, and W : Rn → Rp×m and a scalar ε > 0 (resp., ε = 0) such that Vs(·) is

locally Lipschitz continuous, regular, and positive definite, Vs(0) = 0, and, for almost

all x ∈ Rn,

0 = maxLfVs(x) + εVs(x)− hT(x)Qh(x) + `T(x)`(x), (4.34)

0 =
1

2
LGVs(x)− hT(x)(QJ(x) + S) + `T(x)W(x), (4.35)

0 = R + STJ(x) + JT(x)S + JT(x)QJ(x)−WT(x)W(x), (4.36)

then G is weakly exponentially dissipative (resp., weakly dissipative) with respect to

the supply rate s(u, y) = yTQy + 2yTSu+ uTRu.

Proof. Suppose that there exist functions Vs : Rn → R, ` : Rn → Rp, and W :

Rn → Rp×m and a scalar ε > 0 such that Vs(·) is locally Lipschitz continuous, regular,
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and positive definite, and (4.34)–(4.36) are satisfied. Then, for every admissible input

u(t) ∈ Rm, it follows from (4.34)–(4.36) and (4.25) that∫ t2

t1

eεts(u(t), y(t))dt

=

∫ t2

t1

eεt
[
yT(t)Qy(t) + 2yT(t)Su(t) + uT(t)Ru(t)

]
dt

=

∫ t2

t1

eεt
[
hT(x(t))Qh(x(t)) + 2hT(x(t))(S +QJ(x(t)))u(t)

+uT(t)(JT(x(t))QJ(x(t)) + STJ(x(t)) + JT(x(t))S +R)u(t)
]
dt

=

∫ t2

t1

eεt[maxLfVs(x(t)) + LGVs(x(t))u(t) + εVs(x(t))

+[`(x(t)) +W(x(t))u(t)]T[`(x(t)) +W(x(t))u(t)]
]
dt

≥
∫ t2

t1

eεt[maxLfVs(x(t)) + LGVs(x(t))u(t) + εVs(x(t))]dt

≥
∫ t2

t1

eεt
[

d

dt
Vs(x(t)) + εVs(x(t))

]
dt

=eεt2Vs(x(t2))− eεt1Vs(x(t1)), a.e. t ≥ 0,

where x(t), t ≥ t0, is a solution satisfying (4.18). The result is now immediate

from Definition 4.2.1. The proof for the weak dissipative case follows an identical

construction by setting ε = 0.

Next, we provide several definitions of nonlinear discontinuous dynamical systems

which are dissipative or exponentially dissipative with respect to supply rates of a

specific form.

Definition 4.3.2. A discontinuous dynamical system G of the form (4.1) and

(4.2) with m = l is weakly (resp., strongly) passive if G is weakly (resp., strongly)

dissipative with respect to the supply rate s(u, y) = 2uTy.

Definition 4.3.3. A discontinuous dynamical system G of the form (4.1) and

(4.2) is weakly (resp., strongly) nonexpansive if G is weakly (resp., strongly) dissipative

with respect to the supply rate s(u, y) = γ2uTu− yTy, where γ > 0 is given.
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Definition 4.3.4. A discontinuous dynamical system G of the form (4.1) and

(4.2) with m = l is weakly (resp., strongly) exponentially passive if G is weakly (resp.,

strongly) exponentially dissipative with respect to the supply rate s(u, y) = 2uTy.

Definition 4.3.5. A discontinuous dynamical system G of the form (4.1) and

(4.2) is weakly (resp., strongly) exponentially nonexpansive if G is weakly (resp.,

strongly) exponentially dissipative with respect to the supply rate s(u, y) = γ2uTu−

yTy, where γ > 0 is given.

The following results present the nonlinear versions of the Kalman-Yakubovich-

Popov strict positive real lemma (resp., positive real lemma) and strict bounded real

lemma (resp., bounded real lemma) for weakly exponentially passive (resp., weakly

passive) and weakly exponentially nonexpansive (resp., weakly nonexpansive) discon-

tinuous systems, respectively.

Corollary 4.3.1. Let G be weakly zero-state observable and weakly completely

reachable. If there exist functions Vs : Rn → R, ` : Rn → Rp, and W : Rn → Rp×m

and a scalar ε > 0 (resp., ε = 0) such that Vs(·) is locally Lipschitz continuous,

regular, and positive definite, Vs(0) = 0, and, for almost all x ∈ Rn,

0 = minLfVs(x) + εVs(x) + `T(x)`(x), (4.37)

0 =
1

2
LGVs(x)− hT(x) + `T(x)W(x), (4.38)

0 = J(x) + JT(x)−WT(x)W(x), (4.39)

[`(x) +W(x)u]T[`(x) +W(x)u] ≥ maxLfVs(x)−minLfVs(x), u ∈ Rm, (4.40)

then G is weakly exponentially passive (resp., weakly passive). Conversely, if G is

weakly exponentially passive (resp., weakly passive), then there exist functions Vs :

Rn → R, ` : Rn → Rp, and W : Rn → Rp×m and a scalar ε > 0 (resp., ε = 0) such
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that Vs(·) is locally Lipschitz continuous, regular, and positive definite, Vs(0) = 0,

and, for almost all x ∈ Rn, (4.37)–(4.39) hold.

Proof. The result is a direct consequence of Theorem 4.3.1 with l = m, Q = 0,

S = Im, and R = 0. Specifically, with κ(y) = −y it follows that s(κ(y), y) = −2yTy <

0, y 6= 0, so that all the assumptions of Theorem 4.3.1 are satisfied.

Example 4.3.1. Consider the harmonic oscillator G with Coulomb friction given

by ([67])

mẍ(t) + b sign(ẋ(t)) + kx(t) = u(t), x(0) = x0, ẋ(0) = ẋ0, a.e. t ≥ 0, (4.41)

y(t) =
1

2
ẋ(t), (4.42)

or, equivalently,[
ẋ1(t)
ẋ2(t)

]
=

[
x2(t)

− k
m
x1(t)− b

m
sign(x2(t))

]
+

[
0
1
m

]
u(t),

[
x1(0)
x2(0)

]
=

[
x10

x20

]
,

a.e. t ≥ 0, (4.43)

y(t) =
1

2
x2(t), (4.44)

where m, b, k > 0. Next, consider the continuously differentiable storage function

Vs(x) = 1
2
kx2

1 + 1
2
mx2

2 and note that, for almost all x ∈ R2, LfVs(x) = {−b|x2|} and

LGVs(x) = {x2}, which implies that minLfVs(x) = maxLfVs(x) = −b|x2|. Now,

with `(x) = ±
√
b|x2| and W(x) = 0, (4.37)–(4.40) are satisfied. Hence, it follows

from Corollary 4.3.1 that G is weakly passive. 4

Example 4.3.2. Consider a controlled smooth oscillator with nonsmooth friction

and uncertain coefficients given in [5] represented by the differential inclusion G given

by

ẋ(t) ∈ K[f ](x(t)) +Gu(t), x(0) = x0, a.e. t ≥ 0, (4.45)
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y(t) =
1

2
x2(t), (4.46)

where G = [0, 1]T and K[f ] : R2 → 2R2
is given by

K[f ](x) ,



[−2x2 − 1,−x2 − 1]× {x1}, (x1, x2) ∈ R2 : x1 > 0, x2 > 0,
{−x2 − sign(x1)} × {x1}, (x1, x2) ∈ R2\ ({(0, x2) : x2 ∈ R}

∪{(x1, x2) : x1 > 0, x2 > 0}) ,
[−2x2 − 1,−x2 + 1]× {0}, (x1, x2) ∈ R2 : x2 > 0, x1 = 0,
[−x2 − 1,−x2 + 1]× {0}, (x1, x2) ∈ R2 : x2 < 0, x1 = 0,
[−1, 1]× {0}, (x1, x2) = (0, 0).

Next, consider the continuously differentiable storage function Vs(x) = 1
2
(x2

1 +x2
2) and

note that for almost all x ∈ R2,

LfVs(x) =


{[−1, 0]x1x2 − x1}, (x1, x2) ∈ R2 : x1 > 0, x2 > 0,
{−|x1|}, (x1, x2) ∈ R2\ ({(0, x2) : x2 ∈ R}

∪{(x1, x2) : x1 > 0, x2 > 0}) ,
{0}, (x1, x2) ∈ R2 : x2 6= 0, x1 = 0,
{0}, (x1, x2) = (0, 0),

LGVs(x) = {x2},

which implies that maxLfVs(x) = 0 and minLfVs(x) = −|x1| for almost all x ∈ R2.

Now, it follows from (4.37)–(4.40) that

0 = −|x1|+ `2(x), (4.47)

0 =
1

2
x2 −

1

2
x2 + `(x)W(x), (4.48)

0 = W2(x), (4.49)

|x1| ≤ [`(x) +W(x)u]2 , u ∈ R. (4.50)

Hence, with `(x) = ±
√
|x1| and W(x) = 0, it follows from Corollary 4.3.1 that G is

weakly passive. 4

Example 4.3.3. Consider a controlled nonsmooth harmonic oscillator with non-

smooth friction and nonsmooth output given by ([5])

ẋ(t) = f(x(t)) +Gu(t), x(0) = x0, a.e. t ≥ 0, (4.51)
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y(t) =
1

2
sign(x2(t)), (4.52)

where f(x) = [− sign(x2)− 1
2

sign(x1), sign(x1)]T and G = [0, 1]T. Next, consider the

locally Lipschitz continuous storage function Vs(x) = |x1|+ |x2| and note that

∂Vs(x1, x2) =


{sign(x1)} × {sign(x2)}, (x1, x2) ∈ R2 : x1 6= 0, x2 6= 0,
{sign(x1)} × [−1, 1], (x1, x2) ∈ R2 : x1 6= 0, x2 = 0,
[−1, 1]× {sign(x2)}, (x1, x2) ∈ R2 : x2 6= 0, x1 = 0,
co{(1, 1), (−1, 1), (−1,−1), (1,−1)}, (x1, x2) = (0, 0).

Hence,

LfVs(x1, x2) =


{−1

2
}, (x1, x2) ∈ R2 : x1 6= 0, x2 6= 0,

∅, (x1, x2) ∈ R2 : x1 6= 0, x2 = 0,
∅, (x1, x2) ∈ R2 : x2 6= 0, x1 = 0,
{0}, (x1, x2) = (0, 0),

LGVs(x1, x2) =


{sign(x2)}, (x1, x2) ∈ R2 : x1 6= 0, x2 6= 0,
∅, (x1, x2) ∈ R2 : x1 6= 0, x2 = 0,
{sign(x2)}, (x1, x2) ∈ R2 : x2 6= 0, x1 = 0,
{0}, (x1, x2) = (0, 0),

which implies that maxLfVs(x) = 0, minLfVs(x) = −1
2
, and LGVs(x) = {sign(x2)}

for almost all x ∈ R2. Now, it follows from (4.37)–(4.40) that

0 = −1

2
+ `2(x), (4.53)

0 =
1

2
sign(x2)− 1

2
sign(x2) + `(x)W(x), (4.54)

0 = W2(x), (4.55)

1

2
≤ [`(x) +W(x)u]2 , u ∈ R. (4.56)

Hence, with `(x) = ±
√

1
2

and W(x) = 0, it follows from Corollary 4.3.1 that G is

weakly passive. 4

Corollary 4.3.2. Let Q ∈ Sl, S ∈ Rl×m, R ∈ Sm, and let G be weakly zero-state

observable and weakly completely reachable. If there exist functions Vs : Rn → R,
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` : Rn → Rp, and W : Rn → Rp×m and a scalar ε > 0 (resp., ε = 0) such that Vs(·) is

locally Lipschitz continuous, regular, and positive definite, Vs(0) = 0, and, for almost

all x ∈ Rn,

0 = minLfVs(x) + εVs(x) + hT(x)h(x) + `T(x)`(x), (4.57)

0 =
1

2
LGVs(x) + hT(x)J(x) + `T(x)W(x), (4.58)

0 = γ2Im − JT(x)J(x)−WT(x)W(x), (4.59)

[`(x) +W(x)u]T[`(x) +W(x)u] ≥ maxLfVs(x)−minLfVs(x), u ∈ Rm, (4.60)

where γ > 0, then G is weakly exponentially nonexpansive (resp., weakly nonexpan-

sive). Conversely, if G is weakly exponentially nonexpansive (resp., weakly nonexpan-

sive), then there exist functions Vs : Rn → R, ` : Rn → Rp, and W : Rn → Rp×m and

a scalar ε > 0 (resp., ε = 0) such that Vs(·) is locally Lipschitz continuous, regular,

and positive definite, Vs(0) = 0, and, for almost all x ∈ Rn, (4.57)–(4.59) hold.

Proof. The result is a direct consequence of Theorem 4.3.1 with Q = −Il, S = 0,

and R = γ2Im. Specifically, with κ(y) = − 1
2γ
y it follows that s(κ(y), y) = −3

4
yTy < 0,

y 6= 0, so that all the assumptions of Theorem 4.3.1 are satisfied.

Example 4.3.4. Consider the controlled dynamical system G given by

ẋ(t) = f(x(t)) +G(x(t))u(t), x(0) = x0, a.e. t ≥ 0, (4.61)

y(t) = x(t), (4.62)

where x(t) = [x1(t), x2(t)]T, u(t) = [u1(t), u2(t)]T,

f(x) =

[
|x1|(−x1 + |x2|)
x2(−x1 − |x2|)

]
, G(x) =

[
|x1| 0
0 x2

]
.

Next, consider the locally Lipschitz continuous storage function Vs(x) = 2|x1|+ 2|x2|
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and note that

∂Vs(x1, x2) =


{2 sign(x1)} × {2 sign(x2)}, (x1, x2) ∈ R2 : x1 6= 0, x2 6= 0,
{2 sign(x1)} × [−2, 2], (x1, x2) ∈ R2 : x1 6= 0, x2 = 0,
[−2, 2]× {2 sign(x2)}, (x1, x2) ∈ R2 : x2 6= 0, x1 = 0,
co{(2, 2), (−2, 2), (−2,−2), (2,−2)}, (x1, x2) = (0, 0).

Hence,

LfVs(x1, x2) =


{−2x2

1 − 2x2
2}, (x1, x2) ∈ R2 : x1 6= 0, x2 6= 0,

{−2x2
1}, (x1, x2) ∈ R2 : x1 6= 0, x2 = 0,

{−2x2
2}, (x1, x2) ∈ R2 : x2 6= 0, x1 = 0,

{0}, (x1, x2) = (0, 0),

LGVs(x1, x2) =


{[2x1, 2|x2|]}, (x1, x2) ∈ R2 : x1 6= 0, x2 6= 0,
{[2x1, 0]}, (x1, x2) ∈ R2 : x1 6= 0, x2 = 0,
{[0, 2|x2|]}, (x1, x2) ∈ R2 : x2 6= 0, x1 = 0,
{[0, 0]}, (x1, x2) = (0, 0),

which implies that

minLfVs(x) = maxLfVs(x) = −2x2
1 − 2x2

2 and LGVs(x) = {[2x1, 2|x2|]}

for almost all x ∈ R2. Now, it follows from (4.57)–(4.60) that

0 = −2x2
1 − 2x2

2 + x2
1 + x2

2 + `T(x)`(x), (4.63)

0 =
1

2
[2x1, 2|x2|] + `T(x)W(x), (4.64)

0 = γ2I2 −WT(x)W(x), (4.65)

0 ≤ [`(x) +W(x)u]T [`(x) +W(x)u] , u ∈ R2. (4.66)

Hence, with γ = 1, `(x) = −[x1, |x2|]T, andW(x) = I2, it follows from Corollary 4.3.2

that G is weakly nonexpansive. 4

In light of Definition 4.3.2 the following result is immediate.

Proposition 4.3.1. Consider the discontinuous dynamical system G given by

(4.1) and (4.2). Then the following statements hold:
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i) If G is strongly passive with a locally Lipschitz continuous, regular, and positive

definite storage function Vs(·), then the zero solution x(t) ≡ 0 of the undisturbed

(u(t) ≡ 0) system G is strongly Lyapunov stable.

ii) If G is strongly exponentially passive with a locally Lipschitz continuous, reg-

ular, and positive definite storage function Vs(·), then the zero solution x(t) ≡ 0 of

the undisturbed (u(t) ≡ 0) system G is strongly asymptotically stable.

iii) If G is strongly zero-state observable and strongly nonexpansive with locally

Lipschitz continuous, regular, and positive definite storage function Vs(·), then the

zero solution x(t) ≡ 0 of the undisturbed (u(t) ≡ 0) system G is strongly asymptoti-

cally stable.

iv) If G is strongly exponentially nonexpansive with a locally Lipschitz continuous,

regular, and positive definite storage function Vs(·), then the zero solution x(t) ≡ 0

of the undisturbed (u(t) ≡ 0) system G is strongly asymptotically stable.

Proof. Statements i)–iv) are immediate and follow from (4.6)–(4.8) using Lya-

punov and invariant set stability arguments given by Theorems 2.2.1 and 2.2.2, re-

spectively.

4.4. Stability of Feedback Interconnections of Dissipative
Discontinuous Dynamical Systems

In this section, we consider feedback interconnections of dissipative discontinuous

dynamical systems. Specifically, using the notions of dissipativity and exponential

dissipativity for discontinuous dynamical systems, with appropriate storage functions

and supply rates, we construct (not necessarily smooth) Lyapunov functions for inter-

connected discontinuous dynamical systems by appropriately combining the storage

functions for each subsystem.
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We begin by considering the nonlinear discontinuous dynamical system G given

by

ẋ(t) = f(x(t)) +G(x(t))u(t), x(0) = x0, a.e. t ≥ 0, (4.67)

y(t) = h(x(t)) + J(x(t))u(t), (4.68)

where x ∈ Rn, u ∈ Rm, y ∈ Rl, f : Rn → Rn, G : Rn → Rn×m, h : Rn → Rl, and

J : Rn → Rl×m, with the nonlinear feedback discontinuous system Gc given by

ẋc(t) = fc(xc(t)) +Gc(uc(t), xc(t))uc(t), xc(0) = xc0, a.e. t ≥ 0, (4.69)

yc(t) = hc(uc(t), xc(t)) + Jc(uc(t), xc(t))uc(t), (4.70)

where xc ∈ Rnc , uc ∈ Rl, yc ∈ Rm, fc : Rnc → Rnc , Gc : Rl × Rnc → Rnc×l, hc :

Rl×Rnc → Rm, and Jc : Rl×Rnc → Rm×l. We assume that f(·), G(·), h(·), J(·), fc(·),

Gc(·), hc(·, ·), and Jc(·, ·) are Lebesgue measurable and locally essentially bounded,

(4.69) and (4.70) has at least one equilibrium point, and the required properties for

the existence of solutions of the feedback interconnection of G and Gc are satisfied.

Note that with the negative feedback interconnection given by Figure 4.1, uc = y and

yc = −u. We assume that the negative feedback interconnection of G and Gc is well

posed, that is, det[Im + Jc(y, xc)J(x)] 6= 0 for all y, x, and xc.

The following results give sufficient conditions for Lyapunov, asymptotic, and

exponential stability of the feedback interconnection given by Figure 4.1. In this

section, we assume that the forward path G and the feedback path Gc in Figure 4.1

are strongly dissipative systems. This assumption holds when the closed-loop system

(4.67)–(4.70) admits a unique solution and is only made for notational convenience.

Finally, we also note that the obtained stability results also hold for the case where

G and Gc are weakly dissipative. In this case, however, the set-valued Lie derivative

operator should be replaced with the upper right Dini directional derivative in the

proofs of the stability theorems.
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Figure 4.1. Feedback interconnection of G and Gc.

The following lemma is necessary for the next theorem.

Lemma 4.4.1 [5]. Let x : [t0, t]→ Rq be a Filippov solution of the discontinuous

dynamical system (3.2) and let V : Rq → R be locally Lipschitz continuous and

regular. Then d
dσ
V (x(σ)) exists for almost all σ ∈ [t0, t] and d

dσ
V (x(σ)) ∈ LfV (x(σ))

for almost all σ ∈ [t0, t].

Theorem 4.4.1. Consider the closed-loop system consisting of the nonlinear dis-

continuous dynamical systems G given by (4.67) and (4.68), and Gc given by (4.69)

and (4.70) with input-output pairs (u, y) and (uc, yc), respectively, and with uc = y

and yc = −u. Assume G and Gc are strongly zero-state observable, strongly com-

pletely reachable, and strongly dissipative with respect to the supply rates s(u, y)

and sc(uc, yc) and with locally Lipschitz continuous, regular, and radially unbounded

storage functions Vs(·) and Vsc(·), respectively, such that Vs(0) = 0 and Vsc(0) = 0.

Furthermore, assume there exists a scalar σ > 0 such that s(u, y) + σsc(uc, yc) ≤ 0,
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for all u ∈ Rm, y ∈ Rl, uc ∈ Rl, yc ∈ Rm such that uc = y and yc = −u. Then the

following statements hold:

i) The negative feedback interconnection of G and Gc is strongly Lyapunov stable.

ii) If Gc is strongly exponentially dissipative with respect to supply rate sc(uc, yc)

and rank [Gc(uc, 0)] = m, uc ∈ Rl, then the negative feedback interconnection of G

and Gc is globally strongly asymptotically stable.

iii) If G and Gc are strongly exponentially dissipative with respect to supply

rates s(u, y) and sc(uc, yc), respectively, and Vs(·) and Vsc(·) are such that there exist

constants α, αc, β, and βc > 0 such that

α‖x‖2 ≤ Vs(x) ≤ β‖x‖2, x ∈ Rn, (4.71)

αc‖xc‖2 ≤ Vsc(xc) ≤ βc‖xc‖2, xc ∈ Rnc , (4.72)

then the negative feedback interconnection of G and Gc is globally strongly exponen-

tially stable.

Proof. i) Note that the closed-loop dynamics of the feedback interconnection of

G and Gc has a form given by[
ẋ(t)
ẋc(t)

]
=

[
f1(x(t), xc(t))
f2(x(t), xc(t))

]
, f̃(x(t), xc(t)),

[
x(t0)
xc(t0)

]
=

[
x0

xc0

]
,

a.e. t ≥ t0. (4.73)

Now, consider the Lyapunov function candidate V (x, xc) = Vs(x) + σVsc(xc). Since

Lf̃V (x, xc) ⊆ Lf̃Vs(x) + σLf̃Vsc(xc) for almost all (x, xc) ∈ Rn × Rnc , it follows that

maxLf̃V (x, xc) ≤ max{Lf1Vs(x) + σLf2Vsc(xc)}

≤ maxLf1Vs(x) + σmaxLf2Vsc(xc).

Next, since s(u, y) + σsc(uc, yc) ≤ 0, for all u ∈ Rm, y ∈ Rl, uc ∈ Rl, yc ∈ Rm,

d
dt
Vs(x(t)) ∈ Lf1Vs(x(t)), a.e. t ≥ 0, and d

dt
Vsc(xc(t)) ∈ Lf2Vsc(xc(t)), a.e. t ≥ 0, there
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exist u′, y′, u′c and y′c such that

maxLf̃V (x, xc) ≤ maxLf1Vs(x) + σmaxLf2Vsc(xc) ≤ s(u′, y′) + σsc(u
′
c, y
′
c) ≤ 0

for almost all x ∈ Rn and xc ∈ Rnc . Now, it follows from Theorem 2.2.1 that the

negative feedback interconnection of G and Gc is strongly Lyapunov stable.

ii) If Gc is strongly exponentially dissipative it follows that there exist u′, y′, u′c

and y′c and a scalar εc > 0 such that

d

dt
V (x, xc) ≤ maxLf̃V (x, xc)

≤ maxLf1Vs(x) + σmaxLf2Vsc(xc)

≤ −σεcVsc(xc) + s(u′, y′) + σsc(u
′
c, y
′
c)

≤ −σεcVsc(xc), a.e. (x, xc) ∈ Rn × Rnc .

Now, let R , {(x, xc) ∈ Rn × Rnc : d
dt
V (x, xc) = 0 ∈ Lf̃V (x, xc)} and, since

Vsc(xc) is positive definite, note that d
dt
V (x, xc) = 0 if and only if xc = 0. Now, since

rank[Gc(uc, 0)] = m, uc ∈ Rl, it follows that on every invariant set M contained in

R, uc(t) = y(t) ≡ 0, and hence, by (4.70), u(t) ≡ 0 so that ẋ(t) = f(x(t)). Now,

since G is strongly zero-state observable it follows that M = {(0, 0)} is the largest

strongly positively invariant set contained in R. Hence, it follows from Theorem 2.2.2

that dist(ψ(t),M) → 0 as t → ∞ for all Filippov solutions ψ(·) of (4.73). Now,

global strong asymptotic stability of the negative feedback interconnection of G and

Gc follows from the fact that Vs(·) and Vsc(·) are, by assumption, radially unbounded.

iii) Finally, if G and Gc are strongly exponentially dissipative it follows that there

exist u′, y′, u′c and y′c, and scalars ε > 0 and εc > 0 such that

maxLf̃V (x, xc) ≤ maxLf1Vs(x) + σmaxLf2Vsc(xc)

≤ −εVs(x)− σεcVsc(xc) + s(u′, y′) + σsc(u
′
c, y
′
c)

≤ −min{ε, εc}V (x, xc), (x, xc) ∈ Rn × Rnc .
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Hence, it follows from Theorem 2.2.1 that the negative feedback interconnection of G

and Gc is globally strongly exponentially stable.

The next result presents Lyapunov, asymptotic, and exponential stability of dis-

sipative discontinuous feedback systems with supply rates consisting of quadratic

supply rates.

Theorem 4.4.2. Let Q ∈ Sl, S ∈ Rl×m, R ∈ Sm, Qc ∈ Sm, Sc ∈ Rm×l, and

Sc ∈ Sl. Consider the closed-loop system consisting of the nonlinear discontinuous

dynamical systems G given by (4.67) and (4.68) and Gc given by (4.69) and (4.70),

and assume G and Gc are strongly zero-state observable. Furthermore, assume G is

strongly dissipative with respect to the supply rate s(u, y) = yTQy + 2yTSu+ uTRu

and has a locally Lipschitz continuous, regular, and radially unbounded storage func-

tion Vs(·), and Gc is strongly dissipative with respect to the supply rate sc(uc, yc) =

yT
c Qcyc + 2yT

c Scuc + uT
c Rcuc and has a locally Lipschitz continuous, regular, and ra-

dially unbounded storage function Vsc(·). Finally, assume there exists σ > 0 such

that

Q̂ ,

[
Q+ σRc −S + σST

c

−ST + σSc R + σQc

]
≤ 0. (4.74)

Then the following statements hold:

i) The negative feedback interconnection of G and Gc is strongly Lyapunov stable.

ii) If Gc is strongly exponentially dissipative with respect to supply rate sc(uc, yc)

and

rank[Gc(uc, 0)] = m, uc ∈ Rl, then the negative feedback interconnection of G and Gc

is globally strongly asymptotically stable.

iii) If G and Gc are strongly exponentially dissipative with respect to supply rates

s(u, y) and sc(uc, yc) and there exist constants α, β, αc, and βc > 0 such that (4.71)

and (4.72) hold, then the negative feedback interconnection of G and Gc is globally
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strongly exponentially stable.

iv) If Q̂ < 0, then the negative feedback interconnection of G and Gc is globally

strongly asymptotically stable.

Proof. Statements i)–iii) are a direct consequence of Theorem 4.4.1 by noting

that

s(u, y) + σsc(uc, yc) =

[
y
yc

]T

Q̂

[
y
yc

]
,

and hence, s(u, y) + σsc(uc, yc) ≤ 0.

To show iv) consider the Lyapunov function candidate V (x, xc) = Vs(x)+σVsc(xc).

Now, since G and Gc are strongly dissipative it follows that there exist u′, y′, u′c and

y′c with u′c = y′ and y′c = −u′ such that

d

dt
V (x, xc) ≤ maxLf̃V (x, xc)

≤ maxLf1Vs(x) + σmaxLf2Vsc(xc)

≤ s(u, y) + σsc(uc, yc)

= yTQy + 2yTSu+ uTRu+ σ(yT
c Qcyc + 2yT

c Scuc + uT
c Rcuc)

=

[
y
yc

]T

Q̂

[
y
yc

]
≤ 0, a.e. (x, xc) ∈ Rn × Rnc ,

which implies that the negative feedback interconnection of G and Gc is strongly Lya-

punov stable. Next, let R , {(x, xc) ∈ Rn × Rnc : d
dt
V (x, xc) = 0 ∈ Lf̃V (x, xc)}

and note that d
dt
V (x, xc) = 0 if and only if (y, yc) = (0, 0). Now, since G and Gc

are strongly zero-state observable it follows thatM = {(0, 0)} is the largest strongly

positively invariant set contained in R. Hence, it follows from Theorem 2.2.2 that

dist(ψ(t),M) → 0 as t → ∞ for all Filippov solutions ψ(·) of (4.73). Finally, global

strong asymptotic stability follows from the fact that Vs(·) and Vsc(·) are, by assump-

tion, radially unbounded, and hence, V (x, xc)→∞ as ||(x, xc)|| → ∞.
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The following corollary to Theorem 4.4.2 is necessary for the results in Section

5.4.

Corollary 4.4.1. Consider the closed-loop system consisting of the discontinuous

nonlinear dynamical systems G given by (4.67) and (4.68), and Gc given by (4.69) and

(4.70). Let α, β, αc, βc, δ ∈ R be such that β > 0, 0 < α+β, 0 < 2δ < β−α, αc = α+δ,

and βc = β− δ, let M ∈ Rm×m be positive definite, and assume G and Gc are strongly

zero-state observable. If G is strongly dissipative with respect to the supply rate

s(u, y) = uTMy + αβ
α+β

yTMy + 1
α+β

uTMu and has a locally Lipschitz continuous,

regular, and radially unbounded storage function Vs(·), and Gc is strongly dissipative

with respect to the supply rate sc(uc, yc) = uT
c Myc− 1

αc+βc
yT

c Myc− αcβc
αc+βc

uT
c Muc and

has a locally Lipschitz continuous, regular, and radially unbounded storage function

Vsc(·), then the negative feedback interconnection of G and Gc is globally strongly

asymptotically stable.

Proof. The proof is a direct consequence of Theorem 4.4.2 with Q = αβ
α+β

M ,

S = 1
2
M , R = 1

α+β
M , Qc = − 1

αc+βc
M , Sc = 1

2
M , and Rc = − αcβc

αc+βc
M . Specifically,

let σ > 0 be such that

σ

(
δ2

(α + β)2
− 1

4

)
+

1

4
> 0.

In this case, Q̂ given by (4.74) satisfies

Q̂ =

[
( αβ
α+β
− σαcβc

αc+βc
)M σ−1

2
M

σ−1
2
M ( 1

α+β
− σ

αc+βc
)M

]
< 0,

so that all the conditions of Theorem 4.4.2 are satisfied.

The following corollary is a direct consequence of Theorem 4.4.2. Note that if a

nonlinear discontinuous dynamical system G is strongly dissipative with respect to a

supply rate s(u, y) = uTy− εuTu− ε̂yTy, where ε, ε̂ ≥ 0, then with κ(y) = ky, where

k ∈ R is such that k(1− εk) < ε̂, s(u, y) = [k(1− εk)− ε̂]yTy < 0, y 6= 0. Hence, if G
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is strongly zero-state observable it follows from Theorem 3.2 of [38] that all storage

functions of G are positive definite.

Corollary 4.4.2. Consider the closed-loop system consisting of the nonlinear dis-

continuous dynamical systems G given by (4.67) and (4.68) and Gc given by (4.69) and

(4.70), and assume G and Gc are strongly zero-state observable. Then the following

statements hold:

i) If G is strongly passive, Gc is strongly exponentially passive, and rank[Gc(uc, 0)] =

m, uc ∈ Rl, then the negative feedback interconnection of G and Gc is strongly asymp-

totically stable.

ii) If G and Gc are strongly exponentially passive with storage functions Vs(·)

and Vsc(·), respectively, such that (4.71) and (4.72) hold, then the negative feedback

interconnection of G and Gc is strongly exponentially stable.

iii) If G is strongly nonexpansive with gain γ > 0, Gc is strongly exponentially

nonexpansive with gain γc > 0, rank[Gc(uc, 0)] = m, uc ∈ Rl, and γγc ≤ 1, then the

negative feedback interconnection of G and Gc is strongly asymptotically stable.

iv) If G and Gc are strongly exponentially nonexpansive with storage functions Vs(·)

and Vsc(·), respectively, such that (4.71) and (4.72) hold, and with gains γ > 0 and

γc > 0, respectively, such that γγc ≤ 1, then the negative feedback interconnection of

G and Gc is strongly exponentially stable.

Proof. The proof is a direct consequence of Theorem 4.4.2. Specifically, i) and

ii) follow from Theorem 4.4.2 with Q = Qc = 0, S = Sc = Im, and R = Rc = 0,

whereas iii) and iv) follow from Theorem 4.4.2 with Q = −Il, S = 0, R = γ2Im,

Qc = −Ilc , Sc = 0, and Rc = γ2
c Imc .
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Example 4.4.1. Consider the nonlinear mechanical system G with a discontinu-

ous spring force given by

ẍ(t) + sign(x(t)) = u(t), x(0) = x0, ẋ(0) = ẋ0, a.e. t ≥ 0, (4.75)

y(t) =
1

2
ẋ(t), (4.76)

or, equivalently,

ẋ1(t) = x2(t), x1(0) = x10, a.e. t ≥ 0, (4.77)

ẋ2(t) = − sign(x1(t)) + u(t), x2(0) = x20, (4.78)

y(t) =
1

2
x2(t), (4.79)

and the continuous nonlinear second-order dynamic controller Gc given by

ẋc1(t) = −1

2
xc1(t)− xc2(t), xc1(0) = xc10, t ≥ 0, (4.80)

ẋc2(t) = −10x3
c1(t)− 10xc2(t) + 5uc(t), xc2(0) = xc20, (4.81)

yc(t) = 10xc2(t). (4.82)

Furthermore, consider the feedback interconnection of (4.77)–(4.82) given by u = −yc

and uc = y. Next, let Vs(x) = |x1|+ 1
2
x2

2 and note that, for almost all x ∈ R2,

∂Vs(x1, x2) =

{
{sign(x1)} × {x2}, (x1, x2) ∈ R2 : x1 6= 0,
[−1, 1]× {x2}, (x1, x2) ∈ R2 : x1 = 0.

Hence, LfVs(x1, x2) = {0} and LGVs(x1, x2) = {x2}, which implies that minLfVs(x) =

maxLfVs(x) = 0 for almost all x ∈ R2. Now, with ε = 0, `(x) = 0, and W(x) = 0,

(4.37)–(4.40) are satisfied. Hence, it follows from Corollary 4.3.1 that G is weakly

passive.

Next, note that with W(xc) ≡ 0, `(xc) = ±
√

10x4
c1(2− ε) + 2x2

c2(20− ε), Vsc(xc)

= 10x4
c1 + 2x2

c2, and ε ∈ (0, 2], it follows from Corollary 4.3.1 that Gc is exponen-

tially passive. Furthermore, rank[Gc(uc, 0)] = 1, uc ∈ R. Now, it follows from ii)

64



0 2 4 6 8 10 12 14 16 18
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Time

S
ta

te
s

 

 

x
1

x
2

x
c1

x
c2

Figure 4.2. State trajectories of the closed-loop system versus time for the full-order
controller.

of Theorem 4.4.2 that the negative feedback interconnection of G and Gc is glob-

ally asymptotically stable. Figure 4.2 shows the state trajectories of the closed-loop

system versus time for x(0) = [2,−2]T and xc(0) = 0.

Alternatively, we consider the reduced-order dynamic controller Gc given by

ẋc(t) = −10xc(t) + 20uc(t), xc(0) = xc0, t ≥ 0, (4.83)

yc(t) = 12xc(t). (4.84)

Note that with Vsc(xc) = 3
5
x2

c, ε = 20, `(xc) ≡ 0, andW(xc) ≡ 0, it follows from Corol-

lary 4.3.1 that Gc is exponentially passive. Moreover, rank[Gc(uc, 0)] = 1, uc ∈ R.

Hence, it follows from ii) of Theorem 4.4.2 that the negative feedback interconnection

of G and Gc is globally asymptotically stable. Figure 4.3 shows the state trajectories

of the closed-loop system versus time for x(0) = [2,−2]T and xc(0) = 0. 4
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Figure 4.3. State trajectories of the closed-loop system versus time for the reduced-order
controller.
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Chapter 5

On the Equivalence Between Dissipativity and

Optimality of Discontinuous Nonlinear

Regulators for Filippov Systems

5.1. Introduction

For continuous-time nonlinear dynamical systems with continuously differentiable

flows, the problem of guaranteed stability margins for optimal and inverse optimal

regulators is well known [26,51,52]. Specifically, nonlinear inverse optimal controllers

that minimize a (in the terminology of [26]) meaningful nonlinear-nonquadratic per-

formance criterion involving a nonlinear-nonquadratic, nonnegative-definite function

of the state and a quadratic positive definite function of the control are known to

possess sector margin guarantees to component decoupled memoryless input non-

linearities lying in the conic sector (1
2
,∞). These results also hold for disk margin

guarantees where asymptotic stability of the closed-loop system is guaranteed in the

face of a dissipative dynamic input operator. In addition, using a certain return dif-

ference condition, closely related to loop gain concepts in linear systems theory, an

equivalence between dissipativity with respect to a quadratic supply rate and opti-

mality of a nonlinear feedback regulator also holds [52].

In a two-part paper [32,33], the authors extend the results of [26,51,52] to develop a

general framework for hybrid feedback systems by addressing stability, dissipativity,
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optimality, and inverse optimality of impulsive dynamical systems. In particular,

[33] considers a hybrid feedback optimal control problem over an infinite horizon

involving a hybrid nonlinear-nonquadratic performance functional. In [34], sufficient

conditions for hybrid gain, sector, and disk margins guarantees for nonlinear hybrid

dynamical systems were developed. In [7], the authors provide a sufficient condition

for discontinuous L2-gain stabilizability of a nonlinear affine system with respect to

Filippov solutions. Their sufficient condition requires the existence of a viscosity

supersolution of a Hamiton–Jacobi–Bellman equation.

In this chapter, we develop sufficient conditions for gain, sector, and disk margins

guarantees for Filippov nonlinear dynamical systems controlled by optimal and in-

verse optimal discontinuous regulators. Furthermore, we develop a counterpart to the

classical return difference inequality for continuous-time systems with continuously

differentiable flows [11, 52] for Filippov dynamical systems and provide connections

between dissipativity and optimality for discontinuous nonlinear controllers. In par-

ticular, we show an equivalence between dissipativity and optimality of discontinuous

controllers holds for Filippov dynamical systems. Specifically, we show that an opti-

mal nonlinear controller φ(x) satisfying a return difference condition is equivalent to

the fact that the Filippov dynamical system with input u and output y = −φ(x) is

dissipative with respect to a supply rate of the form [u+ y]T[u+ y]− uTu.

5.2. Stability Margins for Discontinuous Feedback
Regulators

To develop relative stability margins for discontinuous nonlinear regulators con-

sider the discontinuous nonlinear dynamical system G given by

ẋ(t) = f(x(t)) +G(x(t))u(t), x(0) = x0, a.e. t ≥ 0, (5.1)
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y(t) = −φ(x(t)), (5.2)

where f(·) and G(·) are Lebesgue measurable and locally essentially bounded, and

φ : Rn → Rm is a discontinuous feedback controller such that G is weakly (resp.,

strongly) asymptotically stable with u = −y. Furthermore, assume that the system G

is weakly (resp., strongly) zero-state observable. Next, we define the relative stability

margins for G given by (5.1) and (5.2). Specifically, let uc , −y, yc , u, and consider

the negative feedback interconnection u = ∆(−y) of G and ∆(·) given in Figure

5.1, where ∆(·) is either a linear operator ∆(uc) = ∆uc, a nonlinear static operator

∆(uc) = σ(uc), or a dynamic nonlinear operator ∆(·) with input uc and output yc.

Furthermore, we assume that in the nominal case ∆(·) = I(·) so that the nominal

closed-loop system is weakly (resp., strongly) asymptotically stable.

∆(·) G- -

−

Figure 5.1. Multiplicative input uncertainty of G and input operator ∆(·).

Definition 5.2.1. Let α, β ∈ R be such that 0 < α ≤ 1 ≤ β < ∞. Then the

discontinuous nonlinear dynamical system G given by (5.1) and (5.2) is said to have

a weak (resp., strong) gain margin (α, β) if the negative feedback interconnection of

G and ∆(uc) = ∆uc is globally weakly (resp., strongly) asymptotically stable for all

∆ = diag[k1, . . . , km], where ki ∈ (α, β), i = 1, . . . ,m.

Definition 5.2.2. Let α, β ∈ R be such that 0 < α ≤ 1 ≤ β < ∞. Then the

discontinuous nonlinear dynamical system G given by (5.1) and (5.2) is said to have
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a weak (resp., strong) sector margin (α, β) if the negative feedback interconnection of

G and ∆(uc) = σ(uc) is globally weakly (resp., strongly) asymptotically stable for all

nonlinearities σ : Rm → Rm such that σ(0) = 0, σ(uc) = [σ1(uc1), . . . , σm(ucm)]T, and

αu2
ci < σi(uci)uci < βu2

ci, for all uci 6= 0, i = 1, . . . ,m.

Definition 5.2.3. Let α, β ∈ R be such that 0 < α ≤ 1 ≤ β < ∞. Then the

discontinuous nonlinear dynamical system G given by (5.1) and (5.2) is said to have

a weak (resp., strong) disk margin (α, β) if the negative feedback interconnection of

G and ∆(·) is globally weakly (resp., strongly) asymptotically stable for all dynamic

operators ∆(·) such that ∆(·) is weakly (resp., strongly) zero-state observable and

weakly (resp., strongly) dissipative with respect to the supply rate s(uc, yc) = uT
c yc−

1

α̂+β̂
yT

c yc− α̂β̂

α̂+β̂
uT

c uc, where α̂ = α+δ, β̂ = β−δ, and δ ∈ R such that 0 < 2δ < β−α.

Definition 5.2.4. Let α, β ∈ R be such that 0 < α ≤ 1 ≤ β < ∞. Then

the discontinuous nonlinear dynamical system G given by (5.1) and (5.2) is said

to have a weak (resp., strong) structured disk margin (α, β) if the negative feedback

interconnection of G and ∆(·) is globally weakly (resp., strongly) asymptotically stable

for all dynamic operators ∆(·) such that ∆(·) is weakly (resp., strongly) zero-state

observable, ∆(uc) = diag[δ1(uc1), . . . , δm(ucm)], and δi(·), i = 1, . . . ,m, is weakly

(resp., strongly) dissipative with respect to the supply rate s(uci, yci) = uciyci −
1

α̂+β̂
y2

ci − α̂β̂

α̂+β̂
u2

ci, where α̂ = α + δ, β̂ = β − δ, and δ ∈ R such that 0 < 2δ < β − α.

Remark 5.2.1. Note that if G has a weak (resp., strong) disk margin (α, β), then

G has weak (resp., strong) gain and sector margins (α, β).
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5.3. Nonlinear-Nonquadratic Optimal Regulators for Discon-
tinuous Dynamical Systems

In this section, we consider a control problem involving a notion of optimality with

respect to a nonlinear-nonquadratic cost functional. To address the optimal control

problem let D ⊆ Rn be an open set and let U ⊆ Rm, where 0 ∈ D and 0 ∈ U . Next,

consider the controlled nonlinear discontinuous dynamical system (3.1), where u(·) is

restricted to the class of admissible controls consisting of measurable functions u(·)

such that u(t) ∈ U for almost all t ≥ 0 and the constraint set U is given. Given

a control law φ(·) and a feedback control u(t) = φ(x(t)), the closed-loop dynamical

system shown in the Figure 5.2 is given by (3.2).

G

φ(x)
�

-

Figure 5.2. Nonlinear closed-loop feedback system.

Next, we present a main theorem for characterizing feedback controllers that guar-

antee stability of the controlled discontinuous dynamical system G and minimize a

nonlinear-nonquadratic performance functional. For the statement of this result let

L : D × U → R be Lipschitz continuous and define the set of regulation controllers
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by

S(x0)
4
= {u(·) ∈ U : u(·) is measurable and locally essentially bounded,

and x(·) driven by (2.1) satisfies x(t)→ 0 as t→∞}.

Note that restricting our minimization problem to u(·) ∈ S(x0), that is, inputs corre-

sponding to null convergent solutions, can be interpreted as incorporating a system

detectability condition through the cost.

Theorem 5.3.1. Consider the controlled discontinuous nonlinear dynamical sys-

tem (3.1) with performance functional5

J(x0, u(·)) 4=
∫ ∞

0

L(x(t), u(t))dt, (5.3)

where (5.3) is defined with respect to absolutely continuous state arcs x(·) and mea-

surable control functions u : [0,∞)→ U . Assume that there exists a locally Lipschitz

continuous and regular function V : D → R and a control law φ : D → U such that

V (0) = 0, (5.4)

V (x) > 0, x ∈ D, x 6= 0, (5.5)

φ(0) = 0, (5.6)

maxLF (·,φ(·))V (x) < 0, a.e. x ∈ D, x 6= 0, (5.7)

H(x, φ(x)) = 0, a.e. x ∈ D, (5.8)

H(x, u) ≥ 0, a.e. x ∈ D, u ∈ U, (5.9)

where

H(x, u)
4
= L(x, u) + minLF (·,u)V (x). (5.10)

5Since solutions to (3.1) are not necessarily unique, J(x0, u(·)) given by (5.3) depends on the
particular state trajectory x(·) along which we integrate. Alternatively, if we assume that f(·, u) is
essentially one-sided Lipschitz on Bδ(x) for some δ > 0, then there exists a unique Filippov solution
to (3.1) with initial condition x(t0) = x0 and u(t) ∈ U [24].
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Then, with the feedback control u(·) = φ(x(·)), the zero Filippov solution x(t) ≡ 0 of

the closed-loop system (3.2) is locally strongly asymptotically stable and there exists

a neighborhood of the origin D0 ⊆ D such that

J(x0, φ(x(·))) = V (x0), x0 ∈ D0. (5.11)

In addition, if x0 ∈ D0, then the feedback control u(·) = φ(x(·)) minimizes J(x0, u(·))

in the sense that

J(x0, φ(x(·))) = min
u(·)∈S(x0)

J(x0, u(·)). (5.12)

Finally, if D = Rn, U = Rm, and

V (x)→∞ as ||x|| → ∞, (5.13)

then the zero Filippov solution x(t) ≡ 0 of the closed-loop system (3.2) is globally

strongly asymptotically stable.

Proof. Local and global strong asymptotic stability follow from (5.4)–(5.7) by

applying Theorem 2.2.1 to the closed-loop system (3.2). Next, with u(t) ≡ ū(t), where

ū(·) is measurable and locally essentially bounded, let ψ̄(t), t ≥ 0, be any Filippov

solution of (3.1). Then, it follows that LF (·,ū(·))V (ψ̄(t)) ⊆ LF (·,u)V (ψ̄(t)) for almost

every t ≥ 0. Moreover, it follows from Lemma 4.2.1 that d
dt
V (ψ̄(t)) ∈ LF (·,ū(·))V (ψ̄(t))

for almost every t ≥ 0. Now, since ū(t) and ψ̄(t) are arbitrary, it follows that

minLF (·,u)V (x(σ)) ≤ d

dσ
V (x(σ)) ≤ maxLF (·,u)V (x(σ)),

a.e. σ ∈ [0, t], u ∈ U. (5.14)

Next, let x0 ∈ D0, let u(·) ∈ S(x0), and let x(t) for almost all t ≥ 0 be the Filippov

solution of (2.1). Then, it follows from (5.14) that

L(x(t), u(t)) ≥ −V̇ (x(t)) + L(x(t), u(t)) + minLF (·,u)V (x(t))
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= −V̇ (x(t)) +H(x(t), u(t)), a.e. t ≥ 0. (5.15)

Furthermore, note that

V (x(t)) = V (x(t0)) +

∫ t

t0

d

dσ
V (x(σ))dσ, (5.16)

where the integral in (5.16) is the Lebesgue integral. Now, using (5.9), (5.15), (5.16),

and the fact that u(.) ∈ S(x0), it follows that

J(x0, u(·)) ≥
∫ ∞

0

[−V̇ (x(t)) +H(x(t), u(t))]dt

= − lim
t→∞

V (x(t)) + V (x0) +

∫ ∞
0

H(x(t), u(t))dt

= V (x0) +

∫ ∞
0

H(x(t), u(t))dt

≥ V (x0)

= J(x0, φ(x(·)),

which yields (5.12).

Note that (5.8) is the steady-state Hamilton-Jacobi-Bellman equation for the dis-

continuous dynamical system (3.1) with the cost J(x0, u(·)). Since we are not impos-

ing that solutions to (5.8) be smooth, the Hamilton–Jacobi–Bellman equation (5.8)

should be interpreted in the viscosity sense (i.e., a viscosity supersolution) [25, 30]

or, equivalently, as in the proximal analysis formalism of [14]. Specifically, since

∂V (x) ⊆ ∂V (x), where

∂V (x) ,

{
p ∈ Rn : lim inf

‖h‖→0

V (x+ h)− V (x)− pTh

‖h‖ ≥ 0

}
,

denotes the subdifferential of V (·) at x [13,14], it follows from (5.9) that V (x) is a vis-

cosity supersolution of (5.8). However, in general, V (x) is not a viscosity subsolution

of (5.8), which shows that the equivalence between optimal regulation, solvability of

the Hamilton-Jacobi-Bellman equation, and feedback stabilizability breaks down for

nonsmooth value functions V (·). It is important to note that Theorem 5.3.1 provides
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constructive sufficient conditions for optimality of a feedback controller. Further-

more, this controller is stabilizing and its optimality is independent of the system

initial condition x0. Finally, necessary conditions for optimality of nonsmooth regu-

lation and existence of viscosity solutions of the resulting Hamilton-Jacobi-Bellman

equation are discussed in [6, 18].

Next, we specialize Theorem 5.3.1 to discontinuous affine dynamical systems.

Specifically, we construct discontinuous nonlinear feedback controllers using an op-

timal control framework that minimizes a nonlinear-nonquadratic performance cri-

terion. This is accomplished by choosing the controller such that the total gener-

alized derivative of the Lyapunov function is negative along the closed-loop system

trajectories while providing sufficient conditions for the existence of asymptotically

stabilizing viscosity supersolutions to the Hamilton-Jacobi-Bellman equation. Thus,

these results provide a family of globally stabilizing controllers parameterized by the

cost functional that is minimized.

The controllers obtained in this section are predicated on an inverse optimal con-

trol problem [26,31]. In particular, to avoid the complexity in solving the steady-state

Hamilton-Jacobi-Bellman equation we do not attempt to minimize a given cost func-

tional, but rather, we parameterize a family of stabilizing controllers that minimize

some derived cost functional that provides flexibility in specifying the control law.

Consider the discontinuous nonlinear affine dynamical system given by

ẋ(t) = f(x(t)) +G(x(t))u(t), x(0) = x0, a.e. t ≥ 0, (5.17)

where f : Rn → Rn, G : Rn → Rn×m, D = Rn, and U = Rm. We assume that f(·)

and G(·) are Lebesgue measurable and locally essentially bounded. Furthermore, we

consider performance integrands L(x, u) of the form

L(x, u) = L1(x) + L2(x)u+ uTR2(x)u, (5.18)
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where L1 : Rn → R, L2 : Rn → R1×m, and R2 : Rn → Pm with Pm denoting the set of

m×m positive definite matrices, so that (5.3) becomes

J(x0, u(·)) =

∫ ∞
0

[L1(x(t)) + L2(x(t))u(t) + uT(t)R2(x(t))u(t)]dt. (5.19)

Theorem 5.3.2. Consider the discontinuous nonlinear controlled affine dynam-

ical system (5.17) with performance functional (5.19). Assume that there exists a

locally Lipschitz continuous and regular function V : Rn → R such that

V (0) = 0, (5.20)

L2(0) = 0, (5.21)

V (x) > 0, x ∈ Rn, x 6= 0, (5.22)

maxL
[f(x)−1

2
G(x)R−1

2 (x)LT
2 (x)−1

2
G(x)R−1

2 (x)LGV T(x)]
V (x) < 0, a.e. x ∈ Rn, x 6= 0, (5.23)

and

V (x)→∞ as ||x|| → ∞. (5.24)

Then the zero Filippov solution x(t) ≡ 0 of the closed-loop discontinuous dynamical

system

ẋ(t) = f(x(t)) +G(x(t))φ(x(t)), x(0) = x0, a.e. t ≥ 0, (5.25)

is globally strongly asymptotically stable with the feedback control law

φ(x) = −1
2
R−1

2 (x)[LGV (x) + L2(x)]T, (5.26)

and the performance functional (5.19), with

L1(x) = φT(x)R2(x)φ(x)−minLfV (x), (5.27)

is minimized in the sense that

J(x0, φ(x(·))) = min
u(·)∈S(x0)

J(x0, u(·)), x0 ∈ Rn. (5.28)
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Finally,

J(x0, φ(x(·))) = V (x0), x0 ∈ Rn. (5.29)

Proof. The result is a direct consequence of Theorem 5.3.1 withD = Rn, U = Rm,

L(x, u) = L1(x) +L2(x)u+uTR2(x)u, and f(x, u) = f(x) +G(x)u. Specifically, with

(5.18) the Hamiltonian has the form

H(x, u) = L1(x) + L2(x)u+ uTR2(x)u+ minLfV (x) + LGV (x)u.

Now, the feedback control law (5.26) is obtained by setting ∂H
∂u

= 0. With (5.26),

it follows that (5.20), (5.22), (5.23), and (5.24) imply (5.4), (5.5), (5.7), and (5.13),

respectively. Next, since V (·) is locally Lipschitz continuous and regular, and x = 0 is

a local minimum of V (·), it follows that LGV (0) = 0, and hence, since by assumption

L2(0) = 0, it follows that φ(0) = 0, which implies (5.6). Next, with L1(x) given

by (5.27) and φ(x) given by (5.26), (5.8) holds. Finally, since H(x, u) = H(x, u) −

H(x, φ(x)) = [u− φ(x)]TR2(x)[u− φ(x)] and R2(x) is positive definite for almost all

x ∈ Rn, condition (5.9) holds. The result now follows as a direct consequence of

Theorem 5.3.1.

Example 5.3.1. To illustrate the utility of Theorem 5.3.2 we consider a con-

trolled nonsmooth harmonic oscillator with nonsmooth friction given by ([5])

ẋ1(t) = − sign(x2(t))− 1

2
sign(x1(t)), x1(0) = x10, a.e. t ≥ 0, (5.30)

ẋ2(t) = sign(x1(t)) + u(t), x2(0) = x20, (5.31)

where sign(σ) , σ
|σ| , σ 6= 0, and sign(0) , 0. To construct an inverse optimal globally

stabilizing control law for (5.30) and (4.52) let V (x) = |x1|+ |x2| and note that

∂V (x1, x2) =


{sign(x1)} × {sign(x2)}, (x1, x2) ∈ R2 : x1 6= 0, x2 6= 0,
{sign(x1)} × [−1, 1], (x1, x2) ∈ R2 : x1 6= 0, x2 = 0,
[−1, 1]× {sign(x2)}, (x1, x2) ∈ R2 : x2 6= 0, x1 = 0,
co{(1, 1), (−1, 1), (−1,−1), (1,−1)}, (x1, x2) = (0, 0).
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Hence,

LfV (x1, x2) =


{−1

2
}, (x1, x2) ∈ R2 : x1 6= 0, x2 6= 0,

∅, (x1, x2) ∈ R2 : x1 6= 0, x2 = 0,
∅, (x1, x2) ∈ R2 : x2 6= 0, x1 = 0,
{0}, (x1, x2) = (0, 0),

LGV (x1, x2) =


{sign(x2)}, (x1, x2) ∈ R2 : x1 6= 0, x2 6= 0,
∅, (x1, x2) ∈ R2 : x1 6= 0, x2 = 0,
{sign(x2)}, (x1, x2) ∈ R2 : x2 6= 0, x1 = 0,
{0}, (x1, x2) = (0, 0),

which implies that maxLfV (x) = 0, minLfV (x) = −1
2
, and LGV (x) = {sign(x2)}

for almost all x ∈ R2.

Next, it follows that

Lf̃V (x1, x2) =


{−1− 1

2
L2(x1, x2) sign(x2)}, (x1, x2) ∈ R2 : x1 6= 0, x2 6= 0,

∅, (x1, x2) ∈ R2 : x1 6= 0, x2 = 0,
{−1− 1

2
L2(x1, x2) sign(x2)}, (x1, x2) ∈ R2 : x2 6= 0, x1 = 0,

{0}, (x1, x2) = (0, 0),

where f̃ , f(x)− 1
2
G(x)R−1

2 (x)LT
2 (x)− 1

2
G(x)R−1

2 (x)LGV T(x) with R2(x) ≡ 1. Let

L(x, u) = L1(x) + L2(x)u + u2. Now, L2(x) = x2 satisfies (5.23) so that the inverse

optimal control law (5.26) is given by

φ(x) = −1

2
[sign(x2) + x2], a.e. x ∈ R2. (5.32)

In this case, the performance functional (5.19), with

L1(x) =
1

4
[sign(x2) + x2]2 +

1

2
, a.e. x ∈ R2, (5.33)

is minimized in the sense of (5.28). Furthermore, using the feedback control law

(5.32) it follows that

Lf̃V (x1, x2) =


{−1− 1

2
|x2|}, (x1, x2) ∈ R2 : x1 6= 0, x2 6= 0,

∅, (x1, x2) ∈ R2 : x1 6= 0, x2 = 0,
{−1− 1

2
|x2|}, (x1, x2) ∈ R2 : x2 6= 0, x1 = 0,

{0}, (x1, x2) = (0, 0).

Note that maxLf̃V (x) ≤ 0. Now, let R , {x ∈ R2 : d
dt
V (x) = 0 ∈ Lf̃V (x)} and

note that d
dt
V (x) = 0 if and only if x = 0. Hence, since M = {(0, 0)} is the largest
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strongly positively invariant set contained in R, it follows from Theorem 2.2.2 that

dist(ψ(t),M)→ 0 as t→∞ for all Filippov solutions ψ(·) of (5.30) and (4.52). Now,

since V (x) is radially unbounded, the feedback control law (5.32) is globally strongly

stabilizing. 4

5.4. Gain, Sector, and Disk Margins of Nonlinear-
Nonquadratic Optimal Regulators
for Discontinuous Systems

In this section, we derive guaranteed gain, sector, and disk margins for nonlin-

ear optimal and inverse optimal regulators that minimize a nonlinear-nonquadratic

performance criterion for discontinuous dynamical systems. Specifically, sufficient

conditions that guarantee gain, sector, and disk margins are given in terms of the

state, control, and cross-weighting nonlinear-nonquadratic weighting functions. In

particular, we consider the discontinuous nonlinear dynamical system given by

ẋ(t) = f(x(t)) +G(x(t))u(t), x(0) = x0, a.e. t ≥ 0, (5.34)

y(t) = −φ(x(t)), (5.35)

where f : Rn → Rn, G : Rn → Rn×m, D = Rn, U = Rm, and φ : Rn → Rm, with a

nonquadratic performance criterion

J(x0, u(·)) =

∫ ∞
0

[L1(x(t)) + L2(x(t))u(t) + uT(t)R2(x(t))u(t)]dt, (5.36)

where L1 : Rn → R, L2 : Rn → R1×m, and R2 : Rn → Rm×m are given such that

R2(x) > 0, x ∈ Rn, and L2(0) = 0. Once again, we assume that f(·) and G(·)

are Lebesgue measurable and locally essentially bounded. In this case, the optimal

nonlinear feedback controller u = φ(x) that minimizes the nonlinear-nonquadratic

performance criterion (5.36) is given by the following result.
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Theorem 5.4.1. Consider the discontinuous nonlinear dynamical system given

by (5.34) and (5.35) with performance functional (5.36). Assume that there exists a

locally Lipschitz continuous and regular function V : Rn → R such that

V (0) = 0, (5.37)

V (x) > 0, x ∈ Rn, x 6= 0, (5.38)

L2(0) = 0, (5.39)

maxL
[f(x)−1

2
G(x)R−1

2 (x)LT
2 (x)−1

2
G(x)R−1

2 (x)LGV T(x)]
V (x) < 0,

a.e. x ∈ Rn, x 6= 0, (5.40)

L1(x) + minLfV (x)− 1
4
[LGV (x) + L2(x)]R−1

2 (x)[LGV (x) + L2(x)]T = 0,

a.e. x ∈ Rn, (5.41)

and

V (x)→∞ as ‖x‖ → ∞. (5.42)

Then the zero Filippov solution x(t) ≡ 0 of the closed-loop discontinuous dynamical

system

ẋ(t) = f(x(t)) +G(x(t))φ(x(t)), x(0) = x0, a.e. t ≥ 0, (5.43)

is globally strongly asymptotically stable with the feedback control law

φ(x) = −1
2
R−1

2 (x)[LGV (x) + L2(x)]T, (5.44)

and the performance functional (5.36) is minimized in the sense that

J(x0, φ(x(·))) = min
u(·)∈S(x0)

J(x0, u(·)), x0 ∈ Rn. (5.45)

Finally,

J(x0, φ(x(·))) = V (x0), x0 ∈ Rn. (5.46)

Proof. The proof is a direct consequence of Theorem 5.3.1.

The following key lemma is needed.
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Lemma 5.4.1. Consider the discontinuous nonlinear dynamical system G given

by (5.34) and (5.35) where φ(x) is a strongly stabilizing feedback control law given

by (5.44). Suppose V (x), x ∈ Rn, satisfies

0 = minLfV (x) + L1(x)− 1
4
[LGV (x) + L2(x)]R−1

2 (x)[LGV (x) + L2(x)]T, (5.47)

[maxLfV (x)−minLfV (x)] ≤ L1(x)− 1
4(1−θ2)

L2(x)R−1
2 (x)LT

2 (x),

a.e. x ∈ Rn, (5.48)

with θ ∈ R such that 0 < θ < 1. Then, for almost all u(t) ∈ U and t1, t2 ≥ 0, t1 < t2,

the solution x(t), t ≥ 0, to (5.34) satisfies

V (x(t2))≤
∫ t2

t1

{
[u(t) + y(t)]TR2(x(t))[u(t) + y(t)]

−θ2uT(t)R2(x(t))u(t)
}

dt+ V (x(t1)). (5.49)

Proof. Note that it follows from (5.44), (5.47), and (5.48) that for almost all

x ∈ Rn and u ∈ Rm,

θ2uTR2(x)u ≤ θ2uTR2(x)u+

[
1

2
√

1− θ2
L2(x)R−1

2 (x) +
√

1− θ2uT

]
×R2(x)

[
1

2
√

1− θ2
L2(x)R−1

2 (x) +
√

1− θ2uT

]T

= uTR2(x)u+
1

4(1− θ2)
L2(x)R−1

2 (x)LT
2 (x) + L2(x)u

≤ uTR2(x)u+ L2(x)u+ L1(x)− [maxLfV (x)−minLfV (x)]

= uTR2(x)u+ [L2(x) + LGV (x)]u+ minLfV (x)−minLfV (x)

+φT(x)R2(x)φ(x)−maxLfV (x)− LGV (x)u

= [u+ y]TR2(x)[u+ y]−maxLfV (x)− LGV (x)u. (5.50)

Next, using the sum rule for the generalized gradient of locally Lipschitz con-

tinuous functions [56] it follows that Lf+GuV (x) ⊆ LfV (x) + LGuV (x) for almost

all x ∈ Rn. Now, it follows from Lemma 4.2.1 that d
dt
V (x(t)) ∈ Lf+GuV (x(t)) ⊆
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LfV (x(t)) + LGuV (x(t)) for almost all t ≥ 0. Hence,

d

dt
V (x(t)) ≤ maxLf+GuV (x(t))

≤ max [LfV (x(t)) + LGV (x(t))u(t)]

= maxLfV (x(t)) + LGV (x(t))u(t), a.e. t ≥ 0, u(t) ∈ U. (5.51)

It follows from (5.50) and (5.51) that, for all u(t) ∈ U and almost all t ≥ 0,

θ2uT(t)R2(x(t))u(t) ≤ [u(t) + y(t)]TR2(x(t))[u(t) + y(t)]− d

dt
V (x(t)).

Now, integrating over [t1, t2] and using (5.16) yields (5.49).

Note that with R2(x) ≡ Im condition (5.49) is the counterpart, for discontinu-

ous dynamical systems, of the return difference condition for continuous-time and

discrete-time systems [11, 12, 52]. Next, using the extended nonlinear Kalman –

Yakubovich–Popov conditions for discontinuous dynamical systems given by The-

orem 4.3.1, we show that for a given nonlinear dynamical system G given by (5.34)

and (5.35), there exists an equivalence between optimality and dissipativity. For the

following result we assume that for the given discontinuous nonlinear system (5.34),

if there exists a feedback control law φ(x) that minimizes the performance functional

(5.36) with R2(x) ≡ Im, L2(x) ≡ 0, and L1(x) ≥ 0, x ∈ Rn, then there exists a lo-

cally Lipschitz continuous, regular, and positive-definite function V (x), x ∈ Rn, such

that (5.47) and (5.48) are satisfied. Necessary and sufficient conditions such that the

aforementioned statement holds, modulo (5.48) holding, are given in Theorem 3.7.6

of [13].

Theorem 5.4.2. Consider the discontinuous nonlinear dynamical system G given

by (5.34) and (5.35). The feedback control law u = φ(x) is optimal with respect to a

performance functional (5.36) with R2(x) ≡ Im, L2(x) ≡ 0, and L1(x) ≥ 0, x ∈ Rn, if

and only if the nonlinear system G is strongly dissipative with respect to the supply
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rate s(u, y) = yTy + 2uTy and has a locally Lipschitz continuous, regular, positive-

definite, and radially unbounded storage function V (x), x ∈ Rn.

Proof. If the control law φ(x) is optimal with respect to a performance functional

(5.36) with R2(x) ≡ Im, L2(x) ≡ 0, and L1(x) ≥ 0, x ∈ Rn, then, by assumption,

there exists a locally Lipschitz continuous, regular, and positive-definite function V (x)

such that (5.47) and (5.48) are satisfied. Hence, it follows from Lemma 5.4.1 that the

solution x(t), t ≥ 0, to (5.34) satisfies

V (x(t2)) ≤
∫ t2

t1

{
[u(t) + y(t)]T[u(t) + y(t)]− uT(t)u(t)

}
dt+ V (x(t1)), 0 ≤ t1 ≤ t2,

which implies that G is strongly dissipative with respect to the supply rate s(u, y) =

yTy + 2uTy.

Conversely, if G is strongly dissipative with respect to the supply rate s(u, y) =

yTy + 2uTy and has a locally Lipschitz continuous, regular, and positive-definite

storage function, then, with h(x) = −φ(x), J(x) ≡ 0, Q = Im, R = 0, and S = Im,

it follows from Theorem 4.3.1 that there exists a function ` : Rn → Rp such that

φ(x) = −1
2
LGV T(x) and, for almost all x ∈ Rn,

0 = minLfV (x)− 1
4
LGV (x)LGV T(x) + `T(x)`(x).

Now, the result follows from Theorem 5.4.1 with L1(x) = `T(x)`(x).

Example 5.4.1. Consider the controlled discontinuous dynamical system G rep-

resenting a mass sliding on a horizontal surface subject to a Coulomb frictional

force given in Example 4.2.1. Let V (x) = x2 and note that LfV (x) = {−|x|} and

LGV (x) = {2x} for almost all x ∈ R. Next, it follows that

Lf̃V (x) = −|x| − L2(x)x− 2x2,
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where f̃ , f(x)− 1
2
G(x)R−1

2 (x)LT
2 (x)− 1

2
G(x)R−1

2 (x)LGV T(x) with R2(x) ≡ 1. Let

L(x, u) = L1(x) +L2(x)u+u2. Now, L2(x) = 2x satisfies maxLf̃V (x) < 0 for almost

all x ∈ R, x 6= 0, so that the inverse optimal control law is given by

φ(x) = −1

2
[2x+ 2x] = −2x, a.e. x ∈ R. (5.52)

In this case, the performance functional J(x0, u(·)) =
∫∞

0
L(x, u)dt, with

L1(x) = 4x2 + |x|, a.e. x ∈ R, (5.53)

is minimized in the sense that

J(x0, φ(x(·))) = min
u(·)∈S(x0)

J(x0, u(·)), x0 ∈ R.

Furthermore, using the feedback control law (5.52) it follows that

Lf̃V (x) = −|x| − 4x2, a.e x ∈ R.

Note that maxLf̃V (x) ≤ 0. Now, let R , {x ∈ R : d
dt
V (x) = 0 ∈ Lf̃V (x)} and

note that d
dt
V (x) = 0 if and only if x = 0. Hence, since M = {0} is the largest

strongly positively invariant set contained in R, it follows from Theorem 2.2.2 that

dist(ψ(t),M)→ 0 as t→∞ for all Filippov solutions ψ(·) of (4.12). Now, since V (x)

is radially unbounded, the feedback control law (5.52) is globally strongly stabilizing.

Next, note that with L2(x) ≡ 0 it follows from the above analysis that the optimal

control law φ(x) = −x minimizes the cost functional

J(x0, u(·)) =

∫ ∞
0

[x2(t) + |x(t)|+ u2(t)]dt. (5.54)

Now, it follows from Theorem 6.2 that the discontinuous nonlinear dynamical system

G is strongly dissipative with respect to the supply rate s(u, y) = y2 + 2uy, where

y = −φ(x) = x. To show this, consider the storage function Vs(x) = V (x) = x2.
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Next, with J(x) ≡ 0, Q = 1, R = 0, S = 1, and ε = 0, the extended Kalman–

Yakubovich–Popov conditions given in Theorem 4.3.1 become

0 = minLfVs(x)− h2(x) + `T(x)`(x), (5.55)

0 =
1

2
LGVs(x)− h(x) + `T(x)W(x), (5.56)

0 = −WT(x)W(x), (5.57)

`T(x)`(x) ≥ [maxLfVs(x)−minLfVs(x)] . (5.58)

Now, with h(x) = −φ(x) = x, W(x) = 0, and L1(x) = `T(x)`(x), conditions

(5.55)–(5.57) are satisfied. Furthermore, (5.58) is equivalent to (5.48) which is sat-

isfied since φ(x) = −x is optimal. Hence, it follows from Theorem 4.3.1 that G is

strongly dissipative with respect to the supply rate s(u, y) = y2 + 2uy. 4

Example 5.4.2. Consider the discontinuous nonlinear dynamical system G given

in Example 5.3.1. Note that with R2(x) ≡ 1 and L2(x) ≡ 0 it follows from the analysis

given in Example 5.3.1 that the optimal control law φ(x) = −1
2

sign(x2) minimizes

the cost functional

J(x0, u(·)) =

∫ ∞
0

[
1

2
+

1

4
sign2(x2(t)) + u2(t)]dt.

Now, it follows from Theorem 5.4.2 that the discontinuous nonlinear dynamical sys-

tem G is strongly dissipative with respect to the supply rate s(u, y) = y2 + 2uy,

where y = −φ(x) = 1
2

sign(x2). To show this, consider the storage function Vs(x) =

V (x) = |x1| + |x2|. Next, with J(x) ≡ 0, Q = 1, R = 0, and S = 1, the extended

Kalman–Yakubovich–Popov conditions given in Theorem 4.3.1 become

0 = minLfVs(x)− hT(x)h(x) + `T(x)`(x), (5.59)

0 =
1

2
LGVs(x)− hT(x) + `T(x)W(x), (5.60)

0 = −WT(x)W(x), (5.61)
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`T(x)`(x) ≥ [maxLfVs(x)−minLfVs(x)] , a.e. x ∈ R2. (5.62)

Next, it was shown in Example 5.3.1 that maxLfVs(x) = 0, minLfVs(x) = −1
2
,

and LGVs(x) = {sign(x2)}. Now, with h(x) = −φ(x) = 1
2

sign(x2), W(x) = 0,

and L1(x) = `T(x)`(x), conditions (5.59)–(5.61) are satisfied. Furthermore, (5.62) is

equivalent to (5.48) which is satisfied since φ(x) = −1
2

sign(x2) is optimal. Hence, it

follows from Theorem 4.3.1 that G is strongly dissipative with respect to the supply

rate s(u, y) = y2 + 2uy. 4

Next, we present disk margins for the nonlinear-nonquadratic optimal regulator

given by Theorem 5.4.1. First, we consider the case in which R2(x), x ∈ Rn, is a

constant diagonal matrix.

Theorem 5.4.3. Consider the discontinuous nonlinear dynamical system G given

by (5.34) and (5.35) where φ(x) is a strongly stabilizing feedback control law given

by (5.44) and where V (x), x ∈ Rn, satisfies (5.47) and (5.48) with θ ∈ R such

that 0 < θ < 1. If R2(x) ≡ diag[r1, . . . , rm], where ri > 0, i = 1, . . . ,m, then the

discontinuous nonlinear system G has a strong structured disk margin ( 1
1+θ

, 1
1−θ ). If,

in addition, R2(x) ≡ Im, then the discontinuous nonlinear system G has a strong disk

margin ( 1
1+θ

, 1
1−θ ).

Proof. Note that for all u(t) ∈ U and almost all t1, t2 ≥ 0, t1 < t2, it follows from

Lemma 5.4.1 that the solution x(t), t ≥ 0, to (5.34) satisfies

V (x(t2))− V (x(t1))≤
∫ t2

t1

{
[u(t) + y(t)]TR2[u(t) + y(t)]− θ2uT(t)R2u(t)

}
dt.

Hence, with the storage function Vs(x) = 1
2
V (x), G is strongly dissipative with respect

to the supply rate s(u, y) = uTR2y+ 1−θ2
2
uTR2u+ 1

2
yTR2y. Now, the result is a direct
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consequence of Corollary 4.4.1 and Definitions 5.2.4 and 5.2.3 with α = 1
1+θ

and

β = 1
1−θ .

Next, we consider the case in which R2(x), x ∈ Rn, is not a diagonal constant

matrix. For the following result define

γ̄
4
= ess sup

x∈Rn
σmax(R2(x)), γ

4
= ess inf

x∈Rn
σmin(R2(x)), (5.63)

where R2(x) is such that γ̄ <∞ and γ > 0.

Theorem 5.4.4. Consider the discontinuous nonlinear dynamical system G given

by (5.34) and (5.35) where φ(x) is a strongly stabilizing feedback control law given

by (5.44) and suppose V (x), x ∈ Rn, satisfies (5.47) and (5.48) with θ ∈ R such that

0 < θ < 1. Then the discontinuous nonlinear system G has a strong disk margin

( 1
1+ηθ

, 1
1−ηθ ), where η

4
=
√
γ/γ̄.

Proof. Note that for almost all u(t) ∈ U and t1, t2 ≥ 0, t1 < t2, it follows from

Lemma 5.4.1 that the solution x(t), t ≥ 0, to (5.34) satisfies

V (x(t2))− V (x(t1)) ≤
∫ t2

t1

{
[u(t) + y(t)]TR2(x(t))[u(t) + y(t)]

−θ2uT(t)R2(x(t))u(t)
}
dt,

which implies that

V (x(t2))− V (x(t1)) ≤
∫ t2

t1

{
γ̄[u(t) + y(t)]T[u(t) + y(t)]

−γθ2uT(t)u(t)
}
dt.

Hence, with the storage function Vs(x) = 1
2γ
V (x), G is strongly dissipative with

respect to the supply rate s(u, y) = uTy + 1−η2θ2
2

uTu + 1
2
yTy. Now, the result is a

direct consequence of Corollary 4.4.1 and Definition 5.2.3 with α = 1
1+ηθ

and β = 1
1−ηθ .
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Next, using Theorem 2.2.2 we provide an alternative result that guarantees sector

and gain margins for the case in which R2(x), x ∈ Rn, is diagonal.

Theorem 5.4.5. Consider the discontinuous nonlinear dynamical system G given

by (5.34) and (5.35) where φ(x) is a strongly stabilizing feedback control law given

by (5.44) and suppose V (x), x ∈ Rn, satisfies (5.47) and (5.48) with θ ∈ R such that

0 < θ < 1. Furthermore, let R2(x) = diag [r1(x), . . . , rm(x)], where ri : Rn → R,

ri(x) > 0, i = 1, . . . ,m. If G is strongly zero-state observable, then the discontinuous

nonlinear system G has a strong sector (and, hence, gain) margin ( 1
1+θ

, 1
1−θ ).

Proof. Let ∆(−y) = σ(−y), where σ : Rm → Rm is a static nonlinearity such that

σ(0) = 0, σ(v) = [σ1(v1), . . . , σm(vm)]T, and αv2
i < σi(vi)vi < βv2

i , for all vi 6= 0, i =

1, . . . ,m, where α = 1
1+θ

and β = 1
1−θ ; or, equivalently, (σi(vi)−αvi)(σi(vi)−βvi) < 0,

for all vi 6= 0, i = 1, . . . ,m. In this case, the closed-loop discontinuous system (5.34)

and (5.35) with u = σ(−y) is given by

ẋ(t) = f(x(t)) +G(x(t))σ(φ(x(t))), x(0) = x0, a.e. t ≥ 0. (5.64)

Next, consider the locally Lipschitz continuous and regular Lyapunov function can-

didate V (x), x ∈ Rn. Now, it follows from (5.47), (5.48), and (5.51) that

d

dt
V (x) ≤ maxLf+GσV (x)

≤ max [LfV (x) + LGσV (x)]

= maxLfV (x) + LGV (x)σ(φ(x))

≤ minLfV (x) + LGV (x)σ(φ(x)) + L1(x)− 1
4(1−θ2)

L2(x)R−1
2 (x)LT

2 (x)

+(1− θ2)
[
σ(φ(x)) + 1

2(1−θ2)
R−1

2 (x)LT
2 (x)

]T

R2(x)

×
[
σ(φ(x)) + 1

2(1−θ2)
R−1

2 (x)LT
2 (x)

]
= minLfV (x) + L1(x) + LGV (x)σ(φ(x)) + (1− θ2)σT(φ(x))R2(x)σ(φ(x))
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+L2(x)σ(φ(x))

= φT(x)R2(x)φ(x)− 2φT(x)R2(x)σ(φ(x)) + (1− θ2)σT(φ(x))R2(x)σ(φ(x))

=
m∑
i=1

ri(x)( 1
β
σi(−yi) + yi)(

1
α
σi(−yi) + yi)

= 1
αβ

m∑
i=1

ri(x) (σi(−yi) + αyi) (σi(−yi) + βyi)

≤ 0, a.e. x ∈ Rn,

which implies that the closed-loop discontinuous system (5.64) is strongly Lyapunov

stable.

Next, let R 4
= {x ∈ Rn : d

dt
V (x) = 0 ∈ Lf+GσV (x)} and note that d

dt
V (x) = 0

if and only if y = 0. Now, since G is strongly zero-state observable it follows that

M 4
= {x ∈ Rn : x = 0} is the largest weakly positively invariant set contained in R.

Hence, it follows from Theorem 2.2.2 that x(t) → M = {0} as t → ∞. Thus, the

closed-loop discontinuous system (5.64) is globally strongly asymptotically stable for

all σ(·) such that αv2
i < σi(vi)vi < βv2

i , vi 6= 0, i = 1, . . . ,m, which implies that the

discontinuous nonlinear system G given by (5.34) and (5.35) has strong sector (and,

hence, gain) margin (α, β).

Note that in the case where R2(x), x ∈ Rn, is diagonal, Theorem 5.4.5 guarantees

larger strong gain and sector margins to the strong gain and sector margin guarantees

provided by Theorem 5.4.4. However, Theorem 5.4.5 does not provide strong disk

margin guarantees.
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Chapter 6

On Almost Consensus of Multiagent Systems

with Inaccurate Sensor Measurements

6.1. Introduction

In this chapter, we consider a multiagent consensus problem in which agents pos-

sess sensors with limited accuracy. Specifically, we develop consensus control proto-

cols for continuous- and discrete-time network systems that guarantee that the agents

reach an almost consensus state and converge to a set centered at the centroid of the

agents’ initial locations. This set is shown to be time-varying, in the sense that only

the differences between agent positions are, in the limit, small.

For discrete-time network systems, we also use difference inclusions and set-valued

analysis to describe the inaccurate sensor measurement problem formulation. Set-

valued analysis has been previously used for consensus control. In [49], the author uses

set-valued Lyapunov functions to study convergence of multiagent dynamical systems.

The approach involves constructing set-valued Lyapunov functions from convex sets

that depend on the agent states. In [2, 46, 49], the authors address stability of each

equilibrium point in the sense that the system solutions approach an equilibrium

from a neighborhood of equilibria. Reference [46] considers barycentric coordinate

maps, whereas [49] and [2] consider difference equations and difference inclusions,
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respectively.

Necessary and sufficient conditions for semistability for multiagent consensus prob-

lems using set-valued Lyapunov analysis are presented in [28]. More recently, the

authors in [76] consider an asynchronous rendezvous problem using set-valued con-

sensus theory. Specifically, a design strategy for multiagent consensus is developed by

requiring two consecutive way-points to be included within a minimum convex region

covering the two associated anticipated-way-point sets.

The proposed set-valued consensus protocol builds on the framework of [49], [28],

and [29] to develop almost consensus protocols for multiagent systems with uncertain

interagent measurements. Specifically, the proposed protocol algorithm modifies the

set-valued consensus update maps of the agents by assuming that the locations of

all agents, including the agents calculating the update map, are within a ball of

radius r. However, since the update sets of our design protocol do not satisfy a

strict convexity assumption, our results go beyond the results of [49] by employing a

set-valued invariance principle.

6.2. Consensus Control Problem with Uncertain Interagent
Location Measurements

In this chapter, we consider a multiagent network in which N agents reach an

almost consensus state and we use the terminology agent state and agent location

interchangeably. Each agent i ∈ {1, . . . , N} has a sensor with accuracy r, that is,

each agent i can detect the location of the other agents with an accuracy of up to a

ball of radius r centered at the actual location of the other agents. Specifically, the

approximate location of agent i as measured by agent j is given by the set

Xi = {p ∈ Rn : ‖p− xi‖2 ≤ r}, i = 1, . . . , N.
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The network consensus problem considered in this chapter involves the design of

a dynamic protocol that guarantees almost system state equipartition, that is, the

difference between any two agent states decreases to below a certain threshold that is

dependent on the sensor accuracy r. Specifically, each agent i uses an update proto-

col resulting in a closed loop system similar to (2.12) or (2.13). However, since only

approximate information of the location of the other agents is available at any given

instant of time, the update protocol is constructed using approximate location infor-

mation only. In particular, for a discrete-time network system the update protocol

for a connected graph has the form

xi(k + 1) ∈ Fi(x(k)) , xi(k) + ε
∑

j∈Nin(i)

(Xj(k)− xi(k)), xi(0) = xi0, k ∈ Z+, (6.1)

where, i = 1, . . . , N , x , [xT
1 , . . . , x

T
N ]T, and Xj − xi denotes the set of all vectors

z ∈ Rn such that z = y − xi with y ∈ Xj. Note that for the protocol given by (2.13)

every agent has information of the exact location of the other agents, whereas for the

protocol given by (6.1) only approximate location information of the other agents is

available.

To further elucidate the protocol architecture given by (6.1), consider a connected

network consisting of three agents. In this case, the update protocol for Agent 1 is

given by

x1(k + 1) ∈ F1(x(k)) = x1(k) + ε(X1(k)− x1(k) + X2(k)− x1(k) + X3(k)− x1(k)),

x1(0) = x10, k ∈ Z+,

where the sets X2 − x1 and X3 − x1 are depicted in Figure 6.1.
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Agent 1

Agent 2

Agent 3

Figure 6.1. Visualization of sets X2 − x1 and X3 − x1 used in agent’s 1 update map.

6.3. Continuous-Time Consensus with a Connected Graph
Topology

In this section, we consider the continuous-time consensus problem over an undi-

rected network with a connected graph topology. We assume that only approximate

information of the location of neighboring agents is available at any given instant of

time with ith agent uncertainty satisfying ‖di(t)‖2 ≤ r, t ≥ 0, for i = 1, . . . , N . In

particular, we consider the update protocol for agent i given by

ẋi(t) =
∑
j∈N (i)

(zj(t)− zi(t)), xi(0) = xi0, t ≥ 0, i = 1, . . . , N, (6.2)

where

zj(t)− zi(t) , (xj(t)− dj(t))− (xi(t)− di(t)).

In this case, it follows from (6.2) that

ẋi(t) =
∑
j∈N (i)

(xj(t)− xi(t)) +
∑
j∈N (i)

(di(t)− dj(t)), xi(0) = xi0, t ≥ 0,

i = 1, . . . , N,
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or, equivalently, in compact form

ẋ(t) = −L̃x(t) + L̃d(t), x(0) = x0, t ≥ 0, (6.3)

where L̃ , In⊗L ∈ RnN×nN , L ∈ RN×N denotes the graph Laplacian, ⊗ denotes Kro-

necker product, x , [x1
1, . . . , x

1
N , . . . , x

n
1 , . . . , x

n
N ]T, d , [d1

1, . . . , d
1
N , . . . , d

n
1 , . . . , d

n
N ]T,

and xji and dji denote the jth component of xi and di, respectively.

Although our results can be directly extended to the case of (6.3), for simplicity

of exposition, we will focus on individual agent states evolving in R (i.e., n = 1). In

this case, (6.3) becomes

ẋ(t) = −Lx(t) + Ld(t), x(0) = x0, t ≥ 0. (6.4)

For the statement of the next result let eN , [1, . . . , 1]T denote the ones vector

of order N and x , 1
N

eT
Nx. Furthermore, recall that the Laplacian of an undi-

rected connected graph is a symmetric positive semidefinite matrix with a single

zero eigenvalue [48]; specifically, the eigenvalues of the graph Laplacian are given by

0 = λmin(L) , λ1(L) < λ2(L) ≤ λ3(L) ≤ · · · ≤ λN(L) , λmax(L). Hence, the Schur

decomposition of −L is given by −L = PΣΣPT
Σ , where PΣ , [p1, . . . , pN−1,

1√
N

eN ],

with pi ∈ RN , i = 1, . . . , N − 1,

Σ ,

[
Σ0 0(N−1)×1

01×(N−1) 0

]
,

and Σ0 ∈ R(N−1)×(N−1) is Hurwitz.

Theorem 6.3.1. Consider an undirected network of N agents with a connected

graph topology given by (6.4). Then, lim supt→∞ ‖x(t)− eNx(t)‖2 ≤ λN (L)
√
Nr

λ2(L)
.

Proof. First, define δ(t) , x(t)− eNx(t) and note that

d

dt

(
1

N
eT
Nx(t)

)
=

1

N
eT
N(−Lx(t) + Ld(t)) = 0N ,
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where we used the fact that LeN = 0N and L = LT. Hence, x(t) = 1
N

eT
Nx(t) =

1
N

eT
Nx(0), t ≥ 0, which shows that the centroid of the network does not change over

time in the presence of time-varying interagent measurement uncertainties. Next,

differentiating δ(t) with respect to time yields

δ̇(t) = ẋ(t)− eN ẋ(t)

= −Lx(t) + Ld(t)

= −L [δ(t) + eNx(t)] + Ld(t)

= −Lδ(t) + Ld(t), δ(0) = δ0, t ≥ 0. (6.5)

Introducing the transformation q(t) , PT
Σ δ(t), it follows from (6.5) that

q̇(t) = PT
Σ δ̇(t)

= −PT
ΣLPΣP

T
Σ δ(t) + PT

ΣLPΣP
T
Σ d(t)

= −PT
ΣLPΣq(t) + PT

ΣLPΣd(t), q(0) = q0, t ≥ 0,

where d(t) , PT
Σ d(t), and hence,

q̇(t) =

[
Σ0 0(N−1)×1

01×(N−1) 0

] [
q(t)− d(t)

]
, q(0) = q0, t ≥ 0. (6.6)

Now, it follows from (6.6) that

q̇1(t) = Σ0q1(t)− Σ0d1(t), q1(0) = q10, t ≥ 0, (6.7)

q̇2(t) = 0, q2(0) = q20, (6.8)

where

q1(t) ,
[
I(N−1)×(N−1) 0(N−1)×1

]
q(t), d1(t) ,

[
I(N−1)×(N−1) 0(N−1)×1

]
d(t),

and q2 ∈ R. Furthermore, note that q20 = 0 since eT
Nδ(t) = eT

Nx(t)− 1
N

eT
NeNeT

Nx(t)

= 0.
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Next, consider the Lyapunov function candidate V : R(N−1) → R given by V (q1) =

qT
1 Sq1, where S = ST > 0, S ∈ R(N−1)×(N−1), satisfies

0 = ΣT
0 S + SΣ0 +Q, (6.9)

with Q = QT > 0 and Q ∈ R(N−1)×(N−1). Now, note that the derivative of V (q1)

along the trajectories of (6.7) is given by

V̇ (q1(t)) = −qT
1 (t)Qq1(t)− 2qT

1 (t)SΣ0d1(t)

≤ −λmin(Q)‖q1(t)‖2
2 + 2σmax(SΣ0)σmax

([
I(N−1)×(N−1) 0(N−1)×1

])
×σmax(PT

Σ )‖d(t)‖2‖q1(t)‖2

≤ −λmin(Q)‖q1(t)‖2
2 + 2σmax(SΣ0)

√
Nr‖q1(t)‖2

= −‖q1(t)‖2

[
λmin(Q)‖q1(t)‖2 − 2σmax(SΣ0)

√
Nr
]
, t ≥ 0, (6.10)

where we used the fact that σmax

([
I(N−1)×(N−1) 0(N−1)×1

])
= 1, σmax(PT

Σ ) = 1,

and ‖d(t)‖2 ≤
√
Nr, t ≥ 0.

Next, it follows from (6.10) that V̇ (q1(t)) ≤ 0 for ‖q1(t)‖2 ≥ 2σmax(SΣ0)
√
Nr

λmin(Q)
, β

and t ≥ 0, and hence, q1(t), t ≥ 0, is decreasing for ‖q1(t)‖2 > β. Moreover, since

q̇2(t) = 0, t ≥ 0, and q2(0) = 0, q2(t) = 0 for all t ≥ 0. Hence, it follows from the

definition of q(t) and (6.10) that

‖δ(t)‖2 =

∥∥∥∥[ q1(t)
q2(t)

]∥∥∥∥
2

= ‖q1(t)‖2 ≤ β

as t→∞. Now, setting Q = −Σ0 it follows from (6.9) that S = 1
2
I(N−1), and hence,

‖q1(t)‖2 = ‖x(t)− eNx‖2 ≤ β, t ≥ 0, where

β =
2σmax(1

2
Σ0)
√
Nr

λmin(−Σ0)
=
λN(L)

√
Nr

λ2(L)
, (6.11)

which completes the proof.

Next, we apply Theorem 6.3.1 to an all-to-all connected graph network. Note that

in this case, L = NIN − EN , where EN , eNeT
N denotes the ones matrix of order
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N × N . Since rankEN = 1, EN has only one nonzero eigenvalue equal to N with

corresponding eigenvector eN . Next, note that

det[λIN − L] = det[λIN − (NIN − EN)] = det[(λ−N)IN + EN ].

Hence, the eigenvalues of L are the eigenvalues of −EN shifted by N , that is,

spec(−EN) = {0, N, . . . , N}. Now, with λ2(L) = · · · = λN(L) = N , it follows

from Theorem 6.3.1 that lim supt→∞ ‖x(t)− eNx‖2 ≤
√
Nr.

Alternatively, we can arrive at the same result directly by considering the update

protocol for the ith agent given by

ẋi(t) =
1

N

N∑
j=1

[(xj(t)− dj(t))− (xi(t)− di(t))] = x(t)− xi(t)− d(t) + di(t),

xi(0) = xi0, t ≥ 0, i = 1, . . . , N, (6.12)

where x(t) , 1
N

∑N
j=1 xj(t) ≡ x and d(t) , 1

N

∑N
j=1 dj(t). First, note that it can be

shown that lim supt→∞ ‖xi(t) − xj(t)‖2 ≤ 2r for every i, j = 1, . . . , N . To see this,

for i, j = 1, . . . , N , it follows from (6.12) that

d

dt

(
1

2
‖xi(t)− xj(t)‖2

2

)
= (xi(t)− xj(t))T d

dt
(xi(t)− xj(t))

= (xi(t)− xj(t))T[x− xi(t)− d(t) + di(t)− (x− xj(t)− d(t) + dj(t))]

= −‖xi(t)− xj(t)‖2
2 + (xi(t)− xj(t))T(di(t)− dj(t))

≤ −‖xi(t)− xj(t)‖2
2 + 2r‖xi(t)− xj(t)‖2,

xi(0)− xj(0) = xi0 − xj0, t ≥ 0,

where the last inequality follows from the fact that

‖di(t)− dj(t)‖2 ≤ ‖di(t)‖2 + ‖dj(t)‖2 ≤ 2r, t ≥ 0.

Hence, ‖xi(t)−xj(t)‖2 is a decreasing function of time as long as ‖xi(t)−xj(t)‖2 > 2r,

t ≥ 0. Now, it follows that ‖xi(t)− xj(t)‖2 ≤ 2r as t→∞ for all i, j = 1, . . . , N .
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Next, since x(t) ≡ x, it follows that ‖xi(t)−x‖2 ≤ r as t→∞ for all i = 1, . . . , N .

Furthermore, since

‖x(t)− eNx‖2
2 =

N∑
i=1

‖xi(t)− x‖2
2 ≤ Nr2

as t→∞, it follows that lim supt→∞ ‖x(t)− eNx‖2 ≤
√
Nr, which is identical to the

result obtained by applying Theorem 6.3.1.

6.4. Discrete-Time Consensus with a Connected
Graph Topology

In this section, we consider the discrete-time consensus problem over an undi-

rected network with a connected graph topology. Once again, we assume that only

approximate information of the location of neighboring agents is available at any

given instant of time with ith agent uncertainty satisfying ‖di(k)‖2 ≤ r, k ∈ Z+, for

i = 1, . . . , N . In particular, we consider the update protocol for agent i given by

xi(k + 1) = xi(k) + ε
∑
j∈N (i)

(zj(k)− zi(k)), xi(0) = xi0, k ∈ Z+, i = 1, . . . , N,(6.13)

where

zj(k)− zi(k) , (xj(k)− dj(k))− (xi(k)− di(k))

and ε > 0. In this case, it follows from (6.13) that

xi(k + 1) = xi(k) + ε
∑
j∈N (i)

(xj(k)− xi(k)) + ε
∑
j∈N (i)

(di(k)− dj(k)), xi(0) = xi0,

k ∈ Z+, i = 1, . . . , N,

or, equivalently, in compact form

x(k + 1) = P̃x(k) + εL̃d(k), x(0) = x0, k ∈ Z+, (6.14)

where L̃ , In ⊗ L ∈ RnN×nN , P̃ , In ⊗ P ∈ RnN×nN , L ∈ RN×N denotes

the graph Laplacian, P , IN − εL ∈ RN×N denotes the Perron matrix, x ,
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[x1
1, . . . , x

1
N , . . . , x

n
1 , . . . , x

n
N ]T, d , [d1

1, . . . , d
1
N , . . . , d

n
1 , . . . , d

n
N ]T, and xji and dji denote

the jth component of xi and di, respectively.

Although our results can be directly extended to the case of (6.14), for simplicity

of exposition, we will focus on individual agent states evolving in R (i.e., n = 1). In

this case, (6.14) becomes

x(k + 1) = Px(k) + εLd(k), x(0) = x0, k ∈ Z+. (6.15)

For the statement of the next result define ∆max , maxi∈{1,...,N} deg(i).

Theorem 6.4.1. Consider an undirected network of N agents with a connected

graph topology given by (6.15) and let ε ∈
(

0, 1
∆max

)
. Then,

lim sup
k→∞

‖x(k)− eNx(k)‖2 ≤
ελmax(L)

√
Nr

1− ρ
(
P − 1

N
eNeT

N

) .
Proof. First, define δ(k) , x(k)−eNx(k) and note that x(k+1) = 1

N
eT
Nx(k+1) =

1
N

eT
N(x(k) + ε(−Lx(k) + Ld(k)) = x(k), where we used the fact that LeN = 0N and

L = LT. Hence, x(k) = 1
N

eT
Nx(k) = 1

N
eT
Nx(0), k ∈ Z+, which shows that the centroid

of the network does not change over time in the presence of time-varying interagent

measurement uncertainties. Next, evaluating δ(k + 1), k ∈ Z+, yields

δ(k + 1) = x(k + 1)− eNx(k + 1)

= Px(k) + εLd(k)− 1

N
eNeT

N [Px(k) + εLd(k)]

= P
[
x(k)− 1

N
eNeT

Nx(k)

]
+

[
I − 1

N
eNeT

N

]
εLd(k)

=

[
P − 1

N
eNeT

N

]
δ(k) + εLd(k), δ(0) = δ0, k ∈ Z+. (6.16)

Now, considering a Lyapunov function candidate V : R(N−1) → R given by V (δ) =

‖δ‖2 and recalling that ρ(M) = ‖M‖2 for an arbitrary symmetric matrix M , it follows
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from (6.16) that

V (δ(k + 1)) = ‖δ(k + 1)‖2

≤
∥∥∥∥(P − 1

N
eNeT

N)δ(k)

∥∥∥∥
2

+ ‖εLd(k)‖2

≤ ρ

(
P − 1

N
eNeT

N

)
‖δ(k)‖2 + ελmax(L)

√
Nr

=

(
ρ(P − 1

N
eNeT

N) +
ελmax(L)

√
Nr

‖δ(k)‖2

)
V (δ(k)), k ∈ Z+. (6.17)

Hence, it follows from (6.17) that V (δ(k + 1)) < V (δ(k)) for ρ(P − 1
N

eNeT
N) +

ελmax(L)
√
Nr

‖δ(k)‖2 < 1 and k ∈ Z+. Now, recalling that all the eigenvalues of the Per-

ron matrix of an undirected connected graph with ε ∈
(

0, 1
∆max

)
are located in the

unit circle and only one eigenvalue has an absolute value of 1 [55], it follows that

ρ(P − 1
N

eNeT
N) < 1. Hence, it follows from (6.17) that

‖δ(k)‖2 ≤
ελmax(L)

√
Nr

1− ρ
(
P − 1

N
eNeT

N

)
as k →∞, which completes the proof.

Remark 6.4.1. Note that

det

[
λIN −

(
P − 1

N
EN

)]
= det

[
λIN −

(
IN − εL −

1

N
EN

)]
= det

[
(λ− 1) IN −

(
−εL − 1

N
EN

)]
. (6.18)

Now, since EN has only one nonzero eigenvalue equal to N with the corresponding

eigenvector eN and L has only one zero eigenvalue with the corresponding eigenvector

eN , it follows that spec(−εL− 1
N
EN) = {−1,−ελ2(L), . . . ,−ελN(L)}. Thus, it follows

from (6.18) that spec(P − 1
N
EN) = {0, (1 − ελ2(L)), . . . , (1 − ελN(L))}. Hence,

ρ
(
P − 1

N
eNeT

N

)
= max{|(1− ελ2(L))|, |(1− ελN(L))|}.

Next, we apply Theorem 6.4.1 to an all-to-all connected graph network. Note that

in this case, L = NIN −EN . Next, recall that λ2(L) = · · · = λN(L) = N , and hence,
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for ε ∈ (0, 1
N

), it follows from Theorem 6.4.1 and Remark 6.4.1 that

lim sup
k→∞

‖x(k)− eNx(k)‖2 ≤
ελmax(L)

√
Nr

1− ρ
(
P − 1

N
eNeT

N

) =
εN
√
Nr

1− (1− εN)
=
√
Nr.

Alternatively, we can arrive at the same result directly by considering the update

protocol for the ith agent given by

xi(k + 1) ∈ α 1

N

N∑
j=1

Xj(k) + (1− α)xi(k) = Bαr(αx(k)) + (1− α)xi(k),

xi(0) = xi0, k ∈ Z+, i = 1, . . . , N, (6.19)

where α ∈ (0, 1] and x(k) , 1
N

∑N
i=1 xi(k) ≡ x. First, note that it can be shown that

lim supk→∞

‖xi(k) − xj(k)‖2 ≤ 2r for every i, j = 1, . . . , N . To see this, for i, j = 1, . . . , N , it

follows from (6.19) that

xi(k + 1)− xj(k + 1) ∈ Bαr(αxave(k))− Bαr(αxave(k)) + (1− α)(xi(k)− xj(k)),

k ∈ Z+, (6.20)

which implies

‖xi(k + 1)− xj(k + 1)‖2 ≤ (1− α)‖xi(k)− xj(k)‖2 + 2rα. (6.21)

Hence, since ‖xi(k + 1) − xj(k + 1)‖2 ≤ ‖xi(k) − xj(k)‖2 for ‖xi(k) − xj(k)‖2 ≥ 2r,

it follows that ‖xi(k) − xj(k)‖2 ≤ 2r as k → ∞ for all i, j = 1, . . . , N . Now, using

identical arguments as in Section 6.3, it follows that lim supk→∞ ‖x(k)− eNx(k)‖2 ≤
√
Nr, which is identical to the result obtained by using Theorem 6.4.1.

6.5. A Set-Valued Analysis Approach to Discrete-Time
Consensus

In this section, we present a set-valued approach for the discrete-time consensus

protocol considered in Section 6.4. However, before presenting the main results of
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this section we require some additional notation and definitions. Specifically, consider

the difference inclusion

x(k + 1) ∈ F(x(k)), x(0) = x0, k ∈ Z+, (6.22)

where, for every k ∈ Z+, x(k) ∈ Rn, F : Rn → 2Rn is a set-valued map that assigns sets

to points, and 2Rn denotes the collection of all subsets of Rn. The set-valued map F

has a nonempty value at x if F(x) 6= ∅. It is assumed that F has nonempty values for

ever x ∈ Rn. Hence, maximal solutions to (6.22) are complete, and consequently, by

a solution of (6.22) with initial condition x(0) = x0 we mean a function x : Z+ → Rn

that satisfies (6.22).

The set-valued map F : Rn → 2Rn is outer semicontinuous at x if, for every

sequence {xi}∞i=0 such that limi→∞ xi = x, every convergent sequence {yi}∞i=0 with yi ∈

F(xi) satisfies limi→∞ yi ∈ F(x). F is continuous at x if F is outer semicontinuous

at x and, for every y ∈ F(x) and every convergent sequence {xi}∞i=0, there exists

yi ∈ F(xi) such that limi→∞ yi = y. F(x) is locally bounded at x if there exists a

neighborhood N of x such that F(N ) = ∪z∈NF(z) is bounded. If F has compact

values and is locally bounded at x, then F is upper semicontinuous at x, that is, for

every ε > 0, there exists δ > 0 such that, for all z ∈ Rn satisfying ‖z − x‖ < δ,

F(z) ⊆ F(x) + Bε(0), where Bε(0) denotes the closure of Bε(0).

Given the function γ : Z+ → Rn, the positive limit set of γ is the set Ω(γ)

of points y ∈ Rn for which there exists an increasing divergent sequence {kn}∞n=0

satisfying limn→∞ γ(kn) = y. We denote the positive limit set of a solution ψ(·) of

(6.22) by Ω(ψ). The positive limit set of a bounded solution of (6.22) is nonempty,

compact, and weakly forward invariant with respect to (6.22) [62].

The following theorem gives a general set-valued invariance principle using the

set-valued analysis tools developed in [28].
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Theorem 6.5.1. Consider the difference inclusion given by (6.22). Assume that

F : Rn → 2Rn is outer semicontinuous and locally bounded with nonempty values for

all x ∈ Rn. Let V : Rn → 2Rn be a continuous set-valued map and let M⊂ Rn be a

closed set such that the following statements hold.

i) V (F(x)) ⊆ V (x) for every x ∈ Rn.

ii) If V (y) = V (x) for some y ∈ F(x), then x ∈M.

Then every bounded solution x : Z+ → Rn of (6.22) converges to M, that is,

limk→∞ dist(x(k),M) = 0.

Proof. It follows from i) that V (ψ(k + 1)) ⊆ V (ψ(k)) for every solution ψ(k),

k ∈ Z+, of (6.22). Thus, the sequence of closed sets {V (ψ(k)}∞k=0 is nonincreasing,

and hence, limk→∞ V (ψ(k)) = ∩∞k=0V (ψ(k)) , V [62]. Next, note that since ψ(k),

k ∈ Z+, is bounded, Ω(ψ) is nonempty. Now, for all x ∈ Ω(ψ), it follows from

the definition of Ω(ψ) and the continuity of V that V (x) = V . Moreover, the outer

semicontinuity of F ensures that Ω(ψ) is weakly positively (and negatively) invariant.

Specifically, for every x ∈ Ω(ψ), there exists y ∈ F(x) such that y ∈ Ω(ψ). Thus,

for every x ∈ Ω(ψ), there exists y ∈ F(x) such that V (x) = V (y) = V , and hence,

Ω(ψ) ⊆M. Finally, since dist(ψ(k), ω(ψ))→ 0 as k → 0, it follows that ψ(k)→M

as k →∞.

Next, we illustrate Theorem 6.5.1 by applying it to the network system given by

(6.19). The conclusions of the proposition below are weaker than the results obtained

directly in Section 6.4. However, the approach can prove beneficial for nonlinear

network architectures where direct computation relying on a linear structure is not

possible as well as for partial graph connectivity structures with directed information

flow.
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Proposition 6.5.1. Consider a network of N agents with an all-to-all graph

connectivity given by (6.19) and let x(·) be a bounded solution of (6.19). Then,

lim supk→∞ ‖xi(k)− xj(k)‖2 ≤ 4r for every i, j = 1, . . . , N .

Proof. Let the set-valued map V : Rn → 2Rn be given by

V (x) = Bδ1(x)(xave)× · · · × BδN (x)(xave),

where, for i ∈ {1, . . . , N},

δi(x) =

{
‖xi − xave‖2, ‖xi − xave‖2 ≥ 2r,

2r, ‖xi − xave‖2 ≤ 2r,

and “×” denotes Cartesian product. Note that V is continuous and has closed and

bounded values. Next, it can be shown using a similar argument as in Section 6.4

that

xi(k + 1)− xave(k + 1) ∈ Bαr(αxave(k))− Bαr(xave(k)) + (1− α)xi(k), k ∈ Z+,

which implies

‖xi(k + 1)− xave(k + 1)‖2 ≤ (1− α)‖xi(k)− xave(k)‖2 + 2rα.

Hence, the function δi(·) decreases for ‖xi − xave‖2 > 2r and remains constant for

‖xi − xave‖2 ≤ 2r, i ∈ {1, . . . , N}, and hence, Conditions i) and ii) of Theorem 6.5.1

are satisfied. Now, it follows from Theorem 6.5.1 that every bounded solution xi(·),

i ∈ {1, . . . , N}, converges to B2r(xave). Hence, ‖xi(k) − xj(k)‖2 ≤ 4r as k → ∞ for

all i, j = 1, . . . , N .

6.6. Illustrative Numerical Examples

In this section, we present several numerical examples to demonstrate the efficacy

of the proposed framework. Specifically, we consider a random network of 10 agents
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Figure 6.2. Initial network configuration of 10 agents with sensor accuracy of radius r = 1.

with different network topologies and agent dynamics given by (6.4). Furthermore, we

assume that the ith agent uncertainty is modeled as a standard white noise process.

Figures 6.2, 6.3, 6.4, and 6.5 show the initial, intermediate, and final network

configurations, as well as ‖x(t) − eNx‖2 versus time, of the network of agents when

agents have sensor accuracy of radius 1, λ2(L) = 1.5568, and λN(L) = 7.5704. The

circle indicates the location of the initial centroid of the agents. Note that

lim sup
t→∞

‖x(t)− eNx‖2 ≤
λN(L)

√
Nr

λ2(L)
= 15.3775.

Alternatively, Figures 6.6, 6.7, 6.8, and 6.9 show the initial, intermediate, and final

network configurations, as well as ‖x(t)−eNx‖2 versus time, of the network of agents

when agents have sensor accuracy of radius 1, λ2(L) = 0.1172, and λN(L) = 4.3721.

Once again, the circle indicates the location of the initial centroid of the agents. Note
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Figure 6.3. Network configuration of 10 agents with sensor accuracy of radius r = 1 at
t = 3.5 sec.

that

lim sup
t→∞

‖x(t)− eNx‖2 ≤
λN(L)

√
Nr

λ2(L)
= 117.9675.

Finally, Figures 6.10, 6.11, and 6.12 show the initial, intermediate, and final con-

figurations, respectively, of the network of 10 agents when agents have sensor accuracy

of radius 0.5 and the network is all-to-all connected. The simulation shows that the

agents reach a consensus set with diameter less than 2r = 1. The circle indicates a

set with diameter 1 centered at the initial centroid of the agents.
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Figure 6.4. Network configuration of 10 agents with sensor accuracy of radius r = 1 at
t = 7.5 sec.
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Figure 6.5. Plot of ‖x(t)− eNx‖2 versus time.
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Figure 6.6. Initial network configuration of 10 agents with sensor accuracy of radius r = 1.
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Figure 6.7. Network configuration of 10 agents with sensor accuracy of radius r = 1 at
t = 3.5 sec.
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Figure 6.8. Network configuration of 10 agents with sensor accuracy of radius r = 1 at
t = 7.5 sec.
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Figure 6.9. Plot of ‖x(t)− eNx‖2 versus time.
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Figure 6.10. Initial network configuration of 10 agents with sensor accuracy of radius
r = 0.5.
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Figure 6.11. Network configuration of 10 agents with sensor accuracy of radius r = 0.5
at t = 3.5 sec.
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Figure 6.12. Network configuration of 10 agents with sensor accuracy of radius r = 0.5
at t = 7.5 sec.
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Chapter 7

Adaptive Estimation using Multiagent Network

Identifiers with Undirected and Directed

Graph Topologies

7.1. Introduction

In this chapter, we consider the problem of adaptive estimation of a linear system

with unknown plant and input matrices. In particular, we propose a novel distributed

observer architecture that adaptively identifies the dynamic system matrices using a

group of N agents. Each agent generates its own adaptive identifier which is based

on the identifier architecture presented in [53]. Furthermore, it is shown that if the

adaptive identifiers have the same structure, but do not share information (i.e., are not

connected), then there is no guarantee that the N adaptive identifiers will have their

estimates converge to the same value without a persistency of excitation condition

being imposed. Alternatively, when the update laws for the parameter identifiers

are modified to include interagent information exchange, then consensus of both the

state and parameter estimates are guaranteed, and thus, emulating a persistency of

excitation condition.

The proposed adaptive identifier architecture includes additional terms in both the

state and parameter equations, which effectively penalize the mismatch between all

estimates and take the form of nonnegative damping terms that serve to enhance the
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convergence properties of the state and parameter errors. The adaptive estimation

architecture builds on the work of [71] on adaptive consensus control of multiagent

systems with the key difference being that the mismatch between the state and param-

eter estimates is also penalized, and thus, accounting for interagent communication

constraints.

For nonadaptive estimators, a linear estimator scheme that considers a penalized

mismatch of the parameter estimates was proposed in [19, 70]. Alternatively, within

the context of distributed Kalman filtering for sensor networks, agreement of the state

and parameter estimates, as a measure that is independent of the network topology

and wherein the deviations of the parameter estimates are measured from their mean,

was considered in [54]. Distributed adaptive control for convergence using consensus

learning of sensory information for networked robots is addressed in [65,66].

The added benefit of the proposed network architecture of the adaptive identi-

fiers, which penalize the mismatch between both state and parameter estimates, is

the abstract form that the collective error dynamics take. In particular, the proposed

framework allows one to decouple the graph connectivity (i.e., the graph Laplacian)

from the stability analysis of the parameter errors by simply replacing a nonnega-

tive damping-like matrix representing the connectivity of the graph topology with

another matrix representing a more general interagent connectivity. Finally, we note

that the proposed adaptive estimation multiagent network identifier framework was

first explored in [21] for the very restrictive case of all-to-all graph connectivity. In

this chapter, we extend the results of [21] to develop adaptive multiagent network

identifiers with undirected and directed graph topologies.
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7.2. Adaptive Estimation Problem

In this section, we present a brief exposition of the standard centralized adaptive

estimation for plant parameter estimation in dynamical systems involving full state

information. Specifically, we consider dynamical systems of the form

ẋ(t) = Ax(t) +Bu(t), x(0) = x0, t ≥ 0, (7.1)

where x(t) ∈ Rn, t ≥ 0, is the state vector and u(t) ∈ Rm, t ≥ 0, is the control input.

Here, we assume that the plant and input matrices A and B are unknown, and the

state x(t) and control input signal u(t) are bounded for all t ≥ 0. To identify the

matrices A and B online, we consider the adaptive observer given by ([43])

˙̂x(t) = Â(t)x(t) + B̂(t)u(t) + Am(x̂(t)− x(t))

= Amx̂(t) + (Â(t)− Am)x(t) + B̂(t)u(t), x̂(0) = x̂0 6= x0, t ≥ 0, (7.2)

where x̂(t) ∈ Rn, t ≥ 0, is the observer state, Â(t) ∈ Rn×n, t ≥ 0, is the adaptive

estimate of A, and B̂(t) ∈ Rn×m, t ≥ 0, is the adaptive estimate of B. The matrix

Am ∈ Rn×n is a design matrix that is Hurwitz and defines the observer poles.

To establish online estimates for the system matrices A and B, define the state

and parameter errors, respectively, by e(t) , x̂(t) − x(t), t ≥ 0, Ã(t) , Â(t) − A,

t ≥ 0, and B̃(t) , B̂(t)− B, t ≥ 0. Then, the system error dynamics and parameter

update dynamics are given by

ė(t) = Ame(t) + Ã(t)x(t) + B̃(t)u(t), e(0) = e0, t ≥ 0, (7.3)

˙̂
A(t) = −ΓaPe(t)x

T(t), Â(0) = Â0 6= A, (7.4)

˙̂
B(t) = −ΓbPe(t)u

T(t), B̂(0) = B̂0 6= B, (7.5)

where Γa ∈ Rn×n and Γb ∈ Rm×m are positive-definite gain matrices and P ∈ Rn×n

is a positive-definite solution of the Lyapunov equation
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0 = AT
mP + PAm +R, (7.6)

where R ∈ Rn×n is a given positive-definite matrix. Since Am is Hurwitz, it follows

from converse Lyapunov theory [31] that there exists a unique positive-definite matrix

P ∈ Rn×n satisfying (7.6) for a given positive definite matrix R ∈ Rn×n. The adaptive

update laws for Â(t), t ≥ 0, and B̂(t), t ≥ 0, given by (7.4) and (7.5), respectively, can

be derived using standard Lyapunov analysis by considering the Lyapunov function

candidate

V (e, Ã, B̃) = eTPe+ tr ÃTΓ−1
a Ã+ tr B̃TΓ−1

b B̃. (7.7)

Note that V (0, 0, 0) = 0 and V (e, Ã, B̃) > 0 for all (e, Ã, B̃) 6= (0, 0, 0). Now,

differentiating (7.7) along the trajectories of (7.3)–(7.5) yields

V̇ (e(t), Ã(t), B̃(t))

= ėT(t)Pe(t) + eT(t)P ė(t) + 2 tr ÃT(t)Γ−1
a

˙̃A(t) + 2 tr B̃T(t)Γ−1
b

˙̃B(t)

= eT(t)(AT
mP + PAm)e(t) + 2 tr ÃT(t)Pe(t)xT(t)

+2 tr B̃T(t)Pe(t)uT(t) + 2 tr ÃT(t)Γ−1
a

˙̂
A(t) + 2 tr B̃T(t)Γ−1

b
˙̂
B(t). (7.8)

Using the update laws (7.4) and (7.5) in (7.8), it follows that

V̇ (e(t), Ã(t), B̃(t)) = −eT(t)Re(t) ≤ 0, t ≥ 0, (7.9)

which guarantees that the error signal e(t), t ≥ 0, and parameter errors Ã(t), t ≥ 0,

and B̃(t), t ≥ 0, are Lyapunov stable, and hence, are bounded for all t ≥ 0. Since

e(t), t ≥ 0, Â(t), t ≥ 0, B̂(t), t ≥ 0, x(t), t ≥ 0, and u(t), t ≥ 0, are bounded

for all t ≥ 0, it follows that ė(t), t ≥ 0, is bounded, and hence, V̈ (e(t), Ã(t), B̃(t))

is bounded for all t ≥ 0. Now, it follows from Barbalat’s lemma [31, p. 221] that

V̇ (e(t), Ã(t), B̃(t)) → 0 as t → ∞, and hence, e(t) converges to zero asymptotically.

Convergence of the adaptive estimates to their true values can be shown when a

persistency of excitation condition is imposed [43,53].
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The system error dynamics (7.3) and parameter dynamics (7.4) and (7.5) can be

written in operator form as
ė(t)

˙̃A(t)

˙̃B(t)

 = A(x(t), u(t))

 e(t)

Ã(t)

B̃(t)

 ,
 e(0)

Ã(0)

B̃(0)

 =

 e0

Ã0

B̃0

 , t ≥ 0, (7.10)

where

A(x(t), u(t)) ,

 Am (·)x(t) (·)u(t)
−ΓaP (·)xT(t) 0 0
−ΓbP (·)uT(t) 0 0

 .
The structure given in (7.10) involving the skew-adjoint, state-dependent operator

A(·, ·) is characteristic of adaptive systems [50]. The same structure is observed in

the case of distributed adaptive consensus identifiers presented in Section 7.3, in which

the operator form involves the same structure as above with additional terms arising

due to consensus enforcement. As we see in Section 7.3, this form can be related to

the Laplacian of the graph topology of the network.

7.3. Adaptive Distributed Observers

In this section, we consider a distributed adaptive observer problem for (7.1).

Specifically, we consider N noninteracting agents given by

˙̂xi(t) = Amx̂i(t) + (Âi(t)− Am)x(t) + B̂i(t)u(t), x̂i(0) = x̂i0 6= x(0),

t ≥ 0, (7.11)

˙̂
Ai(t) = −ΓaiPei(t)x

T(t), Âi(0) = Âi0, (7.12)

˙̂
Bi(t) = −ΓbiPei(t)u

T(t), B̂i(0) = B̂i0, (7.13)

where, for i = 1, . . . , N , x̂i(t) ∈ Rn, t ≥ 0, Âi(t) ∈ Rn×n, t ≥ 0, B̂i(t) ∈ Rn×m, t ≥ 0,

ei(t) , x̂i(t)− x(t), t ≥ 0, and Γai ∈ Rn×n and Γbi ∈ Rm×m are positive-definite gain

matrices. Here, we can easily replace Am in (7.11) with Ami, where Ami, i = 1, . . . , N ,
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are Hurwitz design matrices. In this case, the results in the remainder of the chapter

hold with minor extensions.

To quantify a measure of disagreement between the state estimates and parameter

estimates that is independent of the network topology, we use the deviation of these

estimates from the mean defined by

δie(t) , x̂i(t)−
1

N

N∑
j=1

x̂j(t) = ei(t)−
1

N

N∑
j=1

ej(t), (7.14)

δia(t) , Âi(t)−
1

N

N∑
j=1

Âj(t) = Ãi(t)−
1

N

N∑
j=1

Ãj(t), (7.15)

δib(t) , B̂i(t)−
1

N

N∑
j=1

B̂j(t) = B̃i(t)−
1

N

N∑
j=1

B̃j(t), (7.16)

for i = 1, . . . , N . In this case, the pairwise disagreement is defined as

x̂ij(t) , x̂i(t)− x̂j(t) = eij(t) = ei(t)− ej(t), (7.17)

Âij(t) , Âi(t)− Âj(t) = Ãij(t) = Ãi(t)− Ãj(t), (7.18)

B̂ij(t) , B̂i(t)− B̂j(t) = B̃ij(t) = B̃i(t)− B̃j(t), (7.19)

for i, j = 1, . . . , N , i 6= j.

Note that the distributed adaptive observers (7.11)–(7.13) can be placed in the

form of (7.10). To see this, define

E(t) ,


e1(t)

e2(t)
...

eN(t)

 ∈ RnN , Â(t) ,


Â1(t)

Â2(t)
...

ÂN(t)

 ∈ RnN×n, B̂(t) ,


B̂1(t)

B̂2(t)
...

B̂N(t)

 ∈ RnN×m,

with Ã(t) and B̃(t) defined analogously, and define Am , IN ⊗ Am, P , IN ⊗ P,

Γa ,

 Γa1 0n×n . . .
...

. . .
...

0n×n . . . ΓaN

 , Γb ,

 Γb1 0n×n . . .
...

. . .
...

0n×n . . . ΓbN

 .
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Then,

Ė(t) = AmE(t) + Ã(t)x(t) + B̃(t)u(t), E(0) = E0, t ≥ 0, (7.20)

˙̃A(t) = −ΓaPE(t)xT(t), Ã(0) = Ã0, (7.21)

˙̃B(t) = −ΓbPE(t)uT(t), B̃(0) = B̃0, (7.22)

or, equivalently, Ė(t)
˙̃A(t)
˙̃B(t)

 = Ã(x(t), u(t))

 E(t)

Ã(t)

B̃(t)

 ,
 E(0)

Ã(0)

B̃(0)

 =

 E0

Ã0

B̃0

 , t ≥ 0, (7.23)

where

Ã(x(t), u(t)) ,

 Am (·)x(t) (·)u(t)
−ΓaP(·)xT(t) 0 0
−ΓbP(·)uT(t) 0 0

 .
Equation (7.23) is the multiagent identifier version of (7.10) and shows that the

distributed adaptive observers (7.11)–(7.13) have identical stability and convergence

properties as (7.2), (7.4), and (7.5).

In particular, consider the distributed Lyapunov function candidates for each

agent given by

Vi(ei, Ãi, B̃i) = eT
i Pei + tr ÃT

i Γ−1
ai Ãi + tr B̃T

i Γ−1
bi B̃i, i = 1, . . . , N. (7.24)

Now, the stability of the collective dynamics of (7.11)–(7.13) can be established using

the Lyapunov function candidate

V (E, Ã, B̃) =
N∑
i=1

Vi(ei, Ãi, B̃i). (7.25)

Specifically, differentiating (7.25) along the trajectories of (7.11)–(7.13) yields

V̇i(ei(t), Ãi(t), B̃i(t)) = −eT
i (t)Rei(t), t ≥ 0, i = 1, . . . , N,

and hence,
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V̇ (E(t), Ã(t), B̃(t)) = −
N∑
i=1

eT
i (t)Rei(t) = −ET(t)RE(t) ≤ 0, t ≥ 0,

where R , IN ⊗ R. Now, similar arguments as in Section 7.2 can be used to show

that E(t) converges to zero asymptotically.

7.4. Adaptive Consensus of Distributed Observers over
Networks with Undirected Graph Topologies

In this section, we consider a multiagent system in which N agents are utilized

to adaptively estimate the plant parameters A and B over a connected undirected

network. Each agent provides its own estimate Âi(t), t ≥ 0, and B̂i(t), t ≥ 0,

i = 1, . . . , N , and strives to arrive at common estimates, that is, reach consensus

on the parameter adaptive estimates. The update laws for the parameter identifiers

given by (7.11) are modified to include interagent communication with a penalty on

the mismatch between the parameter estimates Âi(t), t ≥ 0, and B̂i(t), t ≥ 0. Even

though the individual adaptive estimates require a condition of persistency of excita-

tion to ensure parameter convergence, the proposed adaptive consensus modification

guarantees that all the parameter estimates agree with each other, which emulates a

persistency of excitation condition.

Theorem 7.4.1. Consider the dynamical system (7.1) with A and B unknown.

Assume that G defines a connected undirected graph of N agents implementing the

distributed adaptive observers given by

˙̂xi(t) = Amx̂i(t) + (Âi(t)− Am)x(t) + B̂i(t)u(t)− P−1
∑
j∈N (i)

(x̂i(t)− x̂j(t)),

x̂i(0) = x̂i0, t ≥ 0, (7.26)

˙̂
Ai(t) = −ΓaiPei(t)x

T(t)− Γai

∑
j∈N (i)

(Âi(t)− Âj(t)), Âi(0) = Âi0, (7.27)
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˙̂
Bi(t) = −ΓbiPei(t)u

T(t)− Γbi

∑
j∈N (i)

(B̂i(t)− B̂j(t)), B̂i(0) = B̂i0, (7.28)

where i = 1, . . . , N and P satisfies (7.6). Then, the solution (E(t), Ã(t), B̃(t)) of the

parameter error system is Lyapunov stable for all (E0, Ã0, B̃0) ∈ RnN×RnN×n×RnN×m

and t ≥ 0, and limt→∞ x̂ij(t) = 0, limt→∞ Âij(t) = 0, limt→∞ B̂ij(t) = 0, i, j =

1, . . . , N, and limt→∞ ei(t) = 0, i = 1, . . . , N .

Proof. Given (7.26)–(7.28) the state and parameter error dynamics are given by

ėi(t) = Amei(t) + Ãi(t)x(t) + B̃i(t)u(t)− P−1
∑
j∈N (i)

eij(t), ei(0) = ei0,

t ≥ 0, (7.29)

˙̃Ai(t) = −ΓaiPei(t)x
T(t)− Γai

∑
j∈N (i)

Ãij(t), Ãi(0) = Ãi0, (7.30)

˙̃Bi(t) = −ΓbiPei(t)u
T(t)− Γbi

∑
j∈N (i)

B̃ij(t), B̃i(0) = B̃i0, (7.31)

for i = 1, . . . , N . Next, consider the distributed Lyapunov function candidates given

by (7.24) and note that the derivatives of Vi(ei, Ãi, B̃i), i = 1, . . . , N , along the

trajectories of (7.29)–(7.31) are given by

V̇i(ei(t), Ãi(t), B̃i(t))

= eT
i (t)

[
AT

mP + PAm

]
ei(t)− 2eT

i (t)
∑
j∈N (i)

eij(t) + 2eT
i (t)PÃi(t)x(t)

+2eT
i (t)PB̃i(t)u(t) + 2 tr

[
˙̃AT
i (t)Γ−1

ai Ãi(t)
]

+ 2 tr
[

˙̃BT
i (t)Γ−1

bi B̃i(t)
]

= −eT
i (t)Rei(t)− 2eT

i (t)
∑
j∈N (i)

eij(t) + 2 tr
[
ÃT
i (t)[Pei(t)x

T(t) + Γ−1
ai

˙̃Ai(t)]
]

+2 tr
[
B̃T
i (t)[Pei(t)u

T(t) + Γ−1
bi

˙̃Bi(t)]
]

= −eT
i (t)Rei(t)− 2eT

i (t)
∑
j∈N (i)

eij(t)− 2 tr

ÃT
i (t)

∑
j∈N (i)

Ãij(t)


−2 tr

B̃T
i (t)

∑
j∈N (i)

B̃ij(t)

 . (7.32)
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Now, using (7.32), it follows from (7.25) that the derivative of V (E, Ã, B̃) along

error trajectories of (7.29)–(7.31) is given by

V̇ (E(t), Ã(t), B̃(t))

=
N∑
i=1

V̇i(ei(t), Ãi(t), B̃i(t))

= −
N∑
i=1

eT
i (t)Rei(t)− 2

N∑
i=1

eT
i (t)

∑
j∈N (i)

(ei(t)− ej(t))

−2 tr

 N∑
i=1

ÃT
i (t)

∑
j∈N (i)

(Ãi(t)− Ãj(t))

− 2 tr

 N∑
i=1

B̃T
i (t)

∑
j∈N (i)

(B̃i(t)− B̃j(t))


= −

N∑
i=1

eT
i (t)Rei(t)−

N∑
i=1

∑
j∈N (i)

‖eij(t)‖2
2 −

N∑
i=1

∑
j∈N (i)

‖Ãij(t)‖2
F

−
N∑
i=1

∑
j∈N (i)

‖B̃ij(t)‖2
F

≤ 0, t ≥ 0, (7.33)

where in (7.33) we used the identities

2
N∑
i=1

eT
i (t)

∑
j∈N (i)

(ei(t)− ej(t)) =
N∑
i=1

∑
j∈N (i)

‖ei(t)− ej(t)‖2
2, (7.34)

2 tr
N∑
i=1

ÃT
i (t)

∑
j∈N (i)

(Ãi(t)− Ãj(t)) =
N∑
i=1

∑
j∈N (i)

tr[Ãi(t)− Ãj(t)][Ãi(t)− Ãj(t)]T,

(7.35)

2 tr
N∑
i=1

B̃T
i (t)

∑
j∈N (i)

(B̃i(t)− B̃j(t)) =
N∑
i=1

∑
j∈N (i)

tr[B̃i(t)− B̃j(t)][B̃i(t)− B̃j(t)]
T.

(7.36)

(Note that (7.34)–(7.36) hold due to the fact that G is an undirected graph, and

hence, j ∈ N (i) if and only if i ∈ N (j).) Hence, (7.33) implies that the so-

lution (E(t), Ã(t), B̃(t)) of the parameter error system is Lyapunov stable for all

(E0, Ã0, B̃0) ∈ RnN × RnN×n × RnN×m and t ≥ 0.
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Next, note that (7.33) implies

V (E(0), Ã(0), B̃(0)) ≥ V (E(t), Ã(t), B̃(t)) + λmin(R)

∫ t

0

N∑
i=1

‖ei(τ)‖2
2dτ

+

∫ t

0

N∑
i=1

∑
j∈N (i)

‖eij(τ)‖2
2dτ +

∫ t

0

N∑
i=1

∑
j∈N (i)

‖Ãij(τ)‖2
Fdτ

+

∫ t

0

N∑
i=1

∑
j∈N (i)

‖B̃ij(τ)‖2
Fdτ,

and hence, E(·) ∈ L2 ∩ L∞ or, equivalently, ei(·) ∈ L2 ∩ L∞, i = 1, . . . , N , with

Âi(·) ∈ L∞, B̂i(·) ∈ L∞, eij(·) ∈ L2, Âij(·) ∈ L2, and B̂ij(·) ∈ L2, i, j = 1, . . . , N .

Furthermore, since Âi(·) and B̂i(·) are bounded, it follows that Âij(·) ∈ L∞ and

B̂ij(·) ∈ L∞, i, j = 1, . . . , N . Now, since x(t), t ≥ 0, and u(t) ≥ 0, are bounded, it

follows from (7.29) that ėi(·) ∈ L∞, and hence, by Barbalat’s lemma [31, p. 221] (since

ei(·) ∈ L2 ∩ L∞ and ėi(·) ∈ L∞) it follows that limt→∞ ‖ei(t)‖2 = 0, i = 1, . . . , N.

Next, since ei(·) ∈ L2 ∩ L∞ and ėi(·) ∈ L∞, it follows that eij(·) ∈ L2 ∩ L∞ and

ėij(·) ∈ L∞, and hence, limt→∞ ‖eij(t)‖2 = limt→∞ ‖x̂ij(t)‖2 = 0, i, j = 1, . . . , N .

Finally, it follows that
˙̂
Aij(·) and

˙̂
Bij(·) are bounded, since x(t), t ≥ 0, and u(t),

t ≥ 0, are bounded, and thus, by Barbalat’s lemma [31, p. 221], limt→∞ ‖Âij(t)‖F = 0

and limt→∞ ‖B̂ij(t)‖F = 0.

The proposed adaptive consensus distributed observers given in Theorem 7.4.1

guarantee state and parameter estimate consensus as well as convergence of the pair-

wise difference of the adaptive estimates. This follows as a direct consequence of the

L2 boundnedness of the pairwise disagreement of the parameter estimates.

Next, to examine the dynamic agreement of the parameter and state estimates,

we consider the error system (7.29)–(7.31) in a compact form. Specifically, define

J , L ⊗ In so that (7.20)–(7.22) become

Ė(t) = AmE(t) + Ã(t)x(t) + B̃(t)u(t)− P−1JE(t), E(0) = E0, t ≥ 0, (7.37)
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˙̃A(t) = −ΓaPE(t)xT(t)− ΓaJÃ(t), Ã(0) = Ã0, (7.38)

˙̃B(t) = −ΓbPE(t)uT(t)− ΓbJB̃(t), B̃(0) = B̃0. (7.39)

Equivalently, (7.37)–(7.39) can be rewritten in operator form as
Ė(t)

˙̃A(t)

˙̃B(t)

 =
(
Ã(x(t), u(t))− G̃J̃

) E(t)

Ã(t)

B̃(t)

 ,
 E(0)

Ã(0)

B̃(0)

 =

 E0

Ã0

B̃0

 , t ≥ 0, (7.40)

where

G̃ ,

 P−1 0 0

0 Γa 0

0 0 Γb

 , J̃ ,

 J 0 0

0 J 0

0 0 J

 .
Note that (7.40) has a similar structure to (7.23), differing only in the additional term

J̃ which enforces consensus.

To assess the convergence properties of the deviation of (7.14)–(7.16) from the

mean, let

δie(t) = ei(t)−
1

N

N∑
j=1

ej(t) =
1

N

N∑
j 6=i

eij(t),

with analogous expressions for δia(t) and δib(t). The convergence of the deviation

from the mean of ei(t), Ãi(t), and B̃i(t), t ≥ 0, i = 1, . . . , N , can now be established

using the fact that the pairwise disagreement of the state and parameter errors con-

verge to zero, and hence, limt→∞ δie(t) = 0, limt→∞ δia(t) = 0, and limt→∞ δib(t) = 0,

i = 1, . . . , N . This implies that the individual deviations of the adaptive state and

parameter estimates from their mean (static average) converge to zero. This is sum-

marized in the following proposition.

Proposition 7.4.1. Consider the dynamical system (7.1) with A and B un-

known. Assume that G defines a connected undirected graph of N agents implement-

ing the distributed adaptive consensus observers (7.26)–(7.28), and let the deviations

of the state and parameter estimates of the observers from their mean (static average)
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be given by

δie(t) = x̂i(t)−
1

N

N∑
j=1

x̂j(t) = ei(t)−
1

N

N∑
j=1

ej(t) =
1

N

N∑
j 6=i

x̂ij(t) =
1

N

N∑
j 6=i

eij(t),

δia(t) = Âi(t)−
1

N

N∑
j=1

Âj(t) = Ãi(t)−
1

N

N∑
j=1

Ãj(t) =
1

N

N∑
j 6=i

Âij(t) =
1

N

N∑
j 6=i

Ãij(t),

δib(t) = B̂i(t)−
1

N

N∑
j=1

B̂j(t) = B̃i(t)−
1

N

N∑
j=1

B̃j(t) =
1

N

N∑
j 6=i

B̂ij(t) =
1

N

N∑
j 6=i

B̃ij(t).

Then, limt→∞ ‖δie(t)‖2 = 0, limt→∞ ‖δia(t)‖2 = 0, and limt→∞ ‖δib(t)‖2 = 0, for

i = 1, . . . , N .

Proof. The proof is a direct consequence of Theorem 7.4.1 by noting the pairwise

convergence limt→∞ x̂ij(t) = 0, limt→∞ Âij(t) = 0, and limt→∞ B̂ij(t) = 0, and the

fact that N <∞.

Alternatively, one can also consider the deviations from the mean of the estimates

of the neighboring agents. Specifically, defining

γie(t) ,
1

deg(i)

∑
j∈N (i)

eij(t), γia(t) ,
1

deg(i)

∑
j∈N (i)

Ãij(t),

γib(t) ,
1

deg(i)

∑
j∈N (i)

B̃ij(t), (7.41)

we can relate these expressions to the graph Laplacian of G. In particular, let

γe(t) =


γ1e(t)

γ2e(t)
...

γNe(t)

 , γa(t) =


γ1a(t)

γ2a(t)
...

γNa(t)

 , γb(t) =


γ1b(t)

γ2b(t)
...

γNb(t)

 ,
and note that, since

∑
j∈N (i) Eij(t),

∑
j∈N (i) Ãij(t), and

∑
j∈N (i) B̃ij(t) correspond to

the ith block-row of JE(t), JÃ(t), and JB̃(t), respectively, it follows that γe(t) =

(∆−1 ⊗ In) JE(t), γa(t) = (∆−1 ⊗ In) JÃ(t), and γb(t) = (∆−1 ⊗ In) JB̃(t). Now, it

follows from Proposition 7.4.1 that

lim
t→∞
‖JE(t)‖F = lim

t→∞
‖JÃ(t)‖F = lim

t→∞
‖JB̃(t)‖F = 0.
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It is important to note, however, that limt→∞ ‖Ã(t)‖F = 0 and limt→∞ ‖B̃(t)‖F = 0

cannot be established unless one imposes the additional condition of persistency of

excitation. This demonstrates the benefit of information sharing (i.e., graph connec-

tivity), wherein the absence of J removes the convergence results on consensus unless

a persistency of excitation condition is imposed.

7.5. Extensions to Networks with Directed Graph Topologies

In this section, we extend the results of Section 7.4 to adaptive consensus of

distributed observers over networks with directed graph topologies.

Theorem 7.5.1. Consider the dynamical system (7.1) with A and B unknown.

Assume that G defines a weakly connected and balanced directed graph of N agents

implementing the distributed adaptive observers given by

˙̂xi(t) = Amx̂i(t) + (Âi(t)− Am)x(t) + B̂i(t)u(t)− P−1
∑

j∈Nin(i)

(x̂i(t)− x̂j(t)),

x̂i(0) = x̂i0, t ≥ 0, (7.42)

˙̂
Ai(t) = −ΓaiPei(t)x

T(t)− Γai

∑
j∈Nin(i)

(Âi(t)− Âj(t)), Âi(0) = Âi0, (7.43)

˙̂
Bi(t) = −ΓbiPei(t)u

T(t)− Γbi

∑
j∈Nin(i)

(B̂i(t)− B̂j(t)), B̂i(0) = B̂i0, (7.44)

where i = 1, . . . , N and P satisfies (7.6). Then, the solution (E(t), Ã(t), B̃(t)) of the

parameter error system is Lyapunov stable for all (E0, Ã0, B̃0) ∈ RnN×RnN×n×RnN×m

and t ≥ 0, and limt→∞ x̂ij(t) = 0, limt→∞ Âij(t) = 0, limt→∞ B̂ij(t) = 0, i, j =

1, . . . , N , and limt→∞ ei(t) = 0, i = 1, . . . , N .

Proof. Given (7.42)–(7.44) the state and parameter error dynamics satisfy

ėi(t) = Amei(t) + Ãi(t)x(t) + B̃i(t)u(t)− P−1
∑

j∈Nin(i)

eij(t), ei(0) = ei0,
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t ≥ 0, (7.45)

˙̃Ai(t) = −ΓaiPei(t)x
T(t)− Γai

∑
j∈Nin(i)

Ãij(t), Ãi(0) = Ãi0, (7.46)

˙̃Bi(t) = −ΓbiPei(t)u
T(t)− Γbi

∑
j∈Nin(i)

B̃ij(t), B̃i(0) = B̃i0, (7.47)

for i = 1, . . . , N . Next, consider the distributed Lyapunov function candidates given

by (7.24) and note that the derivatives of Vi(ei, Ãi, B̃i), i = 1, . . . , N , along the

trajectories of (7.45)–(7.47) are given by

V̇i(ei(t), Ãi(t), B̃i(t)) = −eT
i (t)Rei(t)− 2eT

i (t)
∑

j∈Nin(i)

eij(t)

−2 tr

ÃT
i (t)

∑
j∈Nin(i)

Ãij(t)

− 2 tr

B̃T
i (t)

∑
j∈Nin(i)

B̃ij(t)

 .(7.48)

Since G is balanced, degin(i) = degout(i), i = 1, . . . , N , and hence, it follows that

N∑
i=1

∑
j∈Nin(i)

‖ei(t)− ej(t)‖2
2 =

N∑
i=1

∑
j∈Nin(i)

(eT
i (t)ei(t)− 2eT

i (t)ej(t) + eT
j (t)ej(t))

=
N∑
i=1

(degin(i) + degout(i))e
T
i (t)ei(t)

−2
N∑
i=1

∑
j∈Nin(i)

eT
i (t)ej(t)

= 2
N∑
i=1

degin(i)eT
i (t)ei(t)− 2

N∑
i=1

∑
j∈Nin(i)

eT
i (t)ej(t)

= 2
N∑
i=1

eT
i (t)

∑
j∈Nin(i)

ei(t)− 2
N∑
i=1

∑
j∈Nin(i)

eT
i (t)ej(t)

= 2
N∑
i=1

eT
i (t)

∑
j∈Nin(i)

(ei(t)− ej(t)). (7.49)

Next, note that since G is balanced, the following identities hold

2 tr
N∑
i=1

ÃT
i (t)

∑
j∈Nin(i)

(Ãi(t)− Ãj(t))
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=
N∑
i=1

∑
j∈Nin(i)

tr[Ãi(t)− Ãj(t)][Ãi(t)− Ãj(t)]T, (7.50)

2 tr
N∑
i=1

B̃T
i (t)

∑
j∈Nin(i)

(B̃i(t)− B̃j(t))

=
N∑
i=1

∑
j∈Nin(i)

tr[B̃i(t)− B̃j(t)][B̃i(t)− B̃j(t)]
T. (7.51)

Now, using (7.48)–(7.51) it follows that

V̇ (E(t), Ã(t), B̃(t))

=
N∑
i=1

V̇i(ei(t), Ãi(t), B̃i(t))

= −
N∑
i=1

eT
i (t)Rei(t)− 2

N∑
i=1

eT
i (t)

∑
j∈Nin(i)

(ei(t)− ej(t))

−2 tr

 N∑
i=1

ÃT
i (t)

∑
j∈Nin(i)

(Ãi(t)− Ãj(t))


−2 tr

 N∑
i=1

B̃T
i (t)

∑
j∈Nin(i)

(B̃i(t)− B̃j(t))


= −

N∑
i=1

eT
i (t)Rei(t)−

N∑
i=1

∑
j∈N (i)

‖eij(t)‖2
2 −

N∑
i=1

∑
j∈Nin(i)

‖Ãij(t)‖2
F

−
N∑
i=1

∑
j∈Nin(i)

‖B̃ij(t)‖2
F

≤ 0, t ≥ 0, (7.52)

which shows that the solution (E(t), Ã(t), B̃(t)) of the parameter error system is Lya-

punov stable for all (E0, Ã0, B̃0) ∈ RnN ×RnN×n ×RnN×m and t ≥ 0. The remainder

of the proof now follows using identical arguments as in the proof of Theorem 7.4.1

and, hence, is omitted.

It is important to note that an identical result to Proposition 7.4.1 also holds for

the distributed adaptive observers given by (7.42)–(7.44) with a weakly connected and
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balanced directed graph communication topology. This is immediate from Theorem

7.5.1 using the fact that the pairwise disagreement of the state and parameter errors

converge to zero.

7.6. Illustrative Numerical Example

In this section, we present a numerical example to demonstrate the utility and effi-

cacy of the proposed adaptive estimation algorithm using multiagent identifiers with

interagent communication. Specifically, we consider an aircraft dynamical system

representing the controlled longitudinal motion of a Boeing 747 airplane linearized at

an altitude of 40 kft and a velocity of 774 ft/sec given by ([10])

ẋ(t)=


−0.003 0.039 0 −0.332
−0.065 −0.319 7.74 0

0.02 −0.101 −0.429 0
0 0 1 0

x(t) +


0.01
−0.18
−1.16

0

u(t), x(0) = 0,

t ≥ 0, (7.53)

where x(t) = [x1(t), x2(t), x3(t), x4(t)]T, t ≥ 0, is the system state vector with x1(t),

t ≥ 0, representing the x-body-axis component of the velocity of the aircraft center

of mass with respect to the reference axes (in ft/sec), x2(t), t ≥ 0, representing the

z-body-axis component of the velocity of the aircraft center of mass with respect to

the reference axes (in ft/sec), x3(t), t ≥ 0, representing the y-body-axis component of

the angular velocity of the aircraft (pitch rate) with respect to the reference axes (in

crad/sec), x4(t), t ≥ 0, representing the pitch Euler angle of the aircraft body axes

with respect to the reference axes (in crad), and u(t), t ≥ 0, representing the elevator

input (in crad). Figure 7.1 shows the system response to a doublet input.

For our first simulation, we assume that the system matrices A and B character-

izing (7.53) are unknown and consider the system (7.53) with four agent identifiers

defined by a connected undirected graph topology implementing the distributed adap-
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Figure 7.1. System response and doublet input for Boeing 747.

tive observers given by (7.26)–(7.28). Furthermore, we set Am = −10I4, Γa1 = Γb1 =

I4, Γa2 = Γb2 = 2I4, Γa3 = Γb3 = 4I4, and Γa4 = Γb4 = 8I4. Figures 7.2 and 7.3

show the system response for ei(t), t ≥ 0, x̂ij(t), t ≥ 0, Âij(t), t ≥ 0, and B̂ij(t),

t ≥ 0, i = 1, . . . , 4, which, by Theorem 7.4.1, guarantees that limt→∞ ei(t) = 0,

limt→∞ x̂ij(t) = 0, limt→∞ Âij(t) = 0, and limt→∞ B̂ij(t) = 0, i, j = 1, . . . , 4, without

imposing a persistency of excitation condition on the input u(t), t ≥ 0.

Next, we consider a network of agent identifiers with a strongly connected and

balanced directed graph topology shown in Figure 7.4. The parameters used for our

simulation are identical to the ones used for the undirected graph topology case.

Figures 7.5 and 7.6 show the system response for ei(t), t ≥ 0, x̂ij(t), t ≥ 0, Âij(t),

t ≥ 0, and B̂ij(t), t ≥ 0, i = 1, . . . , 4, which, by Theorem 7.5.1, guarantees that

limt→∞ ei(t) = 0, limt→∞ x̂ij(t) = 0, limt→∞ Âij(t) = 0, and limt→∞ B̂ij(t) = 0.

Finally, to assess the efficacy of the proposed approach we compare our adaptive
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Figure 7.2. State error ‖ei(t)‖2 and ‖x̂ij(t)‖2 versus time for the proposed distributed
adaptive observers given by (7.26)–(7.28).
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Figure 7.3. Estimate differences ‖Âij(t)‖F and ‖B̂ij(t)‖F versus time for the proposed
distributed adaptive observers given by (7.26)–(7.28).
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Figure 7.5. State error ‖ei(t)‖2 and ‖x̂ij(t)‖2 versus time for the proposed distributed
adaptive observers given by (7.42)–(7.44).
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Figure 7.6. Estimate differences ‖Âij(t)‖F and ‖B̂ij(t)‖F versus time for the proposed
distributed adaptive observers given by (7.42)–(7.44).

estimation multiagent network framework with the standard centralized estimator

(7.2)–(7.5). Here, we set Γa = Γb = 1. Figure 7.7 shows the system response for e(t),

t ≥ 0. It can be seen from this figure that the distributed adaptive estimator (Figures

7.2 and 7.5) significantly outperforms the centralized adaptive estimator.
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Chapter 8

Conclusion and Ongoing Research

8.1. Conclusion

In this dissertation, we extended the notion of dissipativity theory for continuous

dynamical systems with continuously differentiable flows to discontinuous dynamical

systems whose solutions are characterized by Filippov set-valued maps. Furthermore,

extended Kalman–Yakubovich–Popov conditions in terms of the discontinuous system

dynamics for characterizing dissipativity via generalized Clarke gradients of locally

Lipschitz continuous storage functions were developed. These results are then used to

develop feedback interconnection stability results for discontinuous systems thereby

providing a generalization of the small gain and positivity theorems to systems with

discontinuous vector fields.

In addition, sufficient conditions for gain, sector, and disk margin guarantees for

discontinuous nonlinear systems controlled by nonlinear optimal and inverse opti-

mal regulators that minimize a nonlinear-nonquadratic performance criterion were

derived. Using these results, connections between dissipativity and optimality of dis-

continuous nonlinear systems were established. These results provide a generalization

of the meaningful inverse optimal nonlinear regulator stability margins as well as the

classical linear-quadratic optimal regulator gain and phase margins to discontinuous
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nonlinear regulators.

Many systems that possess smooth control Lyapunov functions do not necessarily

admit a continuous stabilizing feedback controller, even though a stabilizing con-

tinuous feedback controller guarantees the existence of a smooth control Lyapunov

function. However, the existence of a control Lyapunov function allows for the design

of a stabilizing feedback controller that admits Filippov and Krasovskii closed-loop

system solutions. In this dissertation, we developed a constructive universal feedback

control law for discontinuous dynamical systems based on the existence of a nons-

mooth control Lyapunov function defined in the sense of generalized Clarke gradients

and set-valued Lie derivatives thereby addressing the problem of discontinuous sta-

bilization for dynamical systems with Lebesgue measurable and locally essentially

bounded vector fields characterized by differential inclusions involving Filippov set-

valued maps and admitting Filippov solutions. In the case where the system vector

field is locally Lipschitz continuous and our control Lyapunov function is assumed

to be continuously differentiable, our results specialize to the control Lyapunov func-

tion of Artstein [3] and our constructive universal controller specializes to Sontag’s

universal feedback control law [68].

By extending the classical results on dissipativity, optimality and control of sys-

tems with continuously differentiable flows to systems with discontinuous vector fields,

the results developed in this dissertation provide the tools that can be used to address

difficult problems in switched and non-smooth systems such as dynamical networks

with switching topologies and spacecraft docking applications.

Furthermore, in this dissertation, we considered a multiagent consensus problem in

which agents possess sensors with limited accuracy. In numerous large-scale network

system as well as robotics applications, agents can detect the location of the neighbor-

ing agents only approximately due to low sensor quality or detrimental environmental
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conditions. In such settings, it is desirable that the agents reach consensus approxi-

mately. We developed consensus control protocols for continuous- and discrete-time

network systems that guarantee that the agents reach an almost consensus state and

converge to a set centered at the centroid of the agents’ initial locations thereby ad-

dressing the problem of consensus when agents have limited sensor accuracy. This

set is shown to be time-varying, in the sense that only the differences between agent

positions are, in the limit, small. In addition, we presented a formulation of the prob-

lem using set-valued maps and a set-valued invariance principle. This approach can

be used to study different problems in multiagent systems such as area coverage and

pursuit evasion under limited sensor accuracy.

Finally, we considered an adaptive estimation problem using a class of multiagent

systems serving as adaptive identifiers using an undirected and directed communi-

cation graph topology. Specifically, the proposed adaptive architecture includes a

modification to the standard adaptive law for distributed adaptive observers which

penalizes the pairwise disagreement of the parameter adaptive estimates. This ar-

chitecture ensures that both the state and parameter estimates reach consensus. We

showed that there is no guarantee that the N adaptive identifiers which have the

same structure but do not share information will have their estimates converge to the

same value without a persistency of excitation condition being imposed. However, the

update laws for the parameter identifiers developed in this dissertation by including

interagent information exchange guarantee consensus of both the state and parameter

estimates, and thus, emulate a persistency of excitation condition.

8.2. Recommendations for Future Research

One of the challenges encountered in numerous engineering applications, e.g., non-

smooth impact systems, systems with shocks, switched and networked systems, is the
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discontinuous nature of the underlying dynamics. In future research, we propose to

use the framework for stability, dissipativity, and optimal control of discontinuous

dynamical systems developed in this dissertation to develop control design protocols

for dynamical networks with switching topologies involving state-dependent commu-

nication links for addressing information link failures and communication dropouts,

which can be modeled as discontinuous dynamics. Specifically, we propose to analyze

general consensus protocols for multiagent systems of the form given by

ẋi(t) = ui(t), xi(0) = xi0, t ≥ 0, i = 1, . . . , N,

ui(t) =
∑

j∈Nin(i)

φij(xi(t), xj(t)),

where φij(·, ·), i, j = 1, . . . , N , are Lebesgue measurable and locally essentially bounded;

e.g., φij(xi, xj) = sign(xj − xi), i, j = 1, . . . , N .

Furthermore, we propose to investigate the application of the newly developed

theory to asteroid landing problems since the low-gravity environment exhibited by

asteroids poses several challenges due to the discontinuous nature of the impact dy-

namics during landing. In addition, spacecraft docking applications can also be stud-

ied using the newly developed framework due to the discontinuous nature of the

underlying dynamics.

Another challenge in robotics applications is dealing with inaccurate sensor data.

Specifically, for a group of mobile robots the measurement of the exact location of

the other robots relative to a particular robot is often inaccurate due to sensor un-

certainty or detrimental environmental conditions. In future research, we propose to

use the set-valued framework developed in this dissertation to develop control design

protocols for static and dynamic networks with partial directed uncertain interagent

communication. Furthermore, we propose to study pursuit evasion problems when

agent locations are uncertain using a set-valued analysis framework.
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Finally, we propose to investigate border patrolling and area coverage under sensor

uncertainties using the techniques developed in this dissertation. To elucidate this

problem, let N agents belong to a bounded, convex environment Q ⊂ Rn [17]. The

position of ith agent is denoted xi ∈ Q. Furthermore, let {V1, . . . , VN} be the Voronoi

partition of Q [17], for which the agent positions are the generator points. Specifically,

for i, j = 1, . . . , N ,

Vi , {p ∈ Q : ‖p− xi‖2 ≤ ‖p− xj‖2, ∀j 6= i}.

Then, for each agent i ∈ {1, . . . , N}, the coverage problem under uncertain sensor

measurements consists of calculating its own Voronoi partition in a distributed sense

using only local information. This takes into account sensory function which can be

thought of as a weighting of importance over Q, and knowing the location of agent j

up to an accuracy of a ball of radius r centered at the actual location of agent j.
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