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SUMMARY 

The current air traffic concept of operations relies on a centralized process in which 

ground controllers are responsible for determining conflict-free trajectories. However, with 

new technologies such as ADS-B and GPS aircraft could directly interact together to 

resolve their own conflicts in a decentralized manner. The challenge is to guarantee aircraft 

separation while converging to reasonably fair resolutions for all aircraft. The difficulty is 

that aircraft have only limited information about how other aircraft evaluate the cost of 

conflict resolutions. 

Thus, this thesis proposes to frame decentralized conflict resolution using game 

theory. A collaborative decentralized conflict resolution is developed as a sequential 

bargaining process between the different aircraft. At each step, aircraft propose personal 

trajectories to the other aircraft, corresponding to trajectories they would be ready to fly. 

Then they compute response trajectories, corresponding to trajectories they would have to 

fly to avoid the conflict if the other aircraft flew its personal trajectories. If any response 

trajectories are cheaper than the offered personal trajectories, an agreement is reached; 

otherwise, the aircraft need to compromise by offering more expensive personal 

trajectories at the next step. 

Several pairwise conflict experiments, corresponding to different conflict 

geometries, were conducted to explore different ways of handling performance constraints 

and different ways of searching trajectories in the resolution space. Then, the bargaining 

process was demonstrated in a large scale simulation with more than a thousand aircraft 

flying over the Indianapolis Center, incurring more than five hundred conflicts. The traffic 
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sets were taken from real ETMS data over five hours, to represent ‘real’ conditions. 93% 

of the conflicts were successfully solved by the bargaining process. 
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CHAPTER 1:  INTRODUCTION 

 

1.1 Problem Statement 

The current air traffic concept of operations relies on a centralized process in which 

ground controllers are responsible for determining conflict-free trajectories. However, the 

emergence of new technologies such as ADS-B and GPS affords more autonomous air 

traffic systems, where aircraft could directly interact together to resolve their own conflicts 

in a decentralized manner. 

The real challenge here is to guarantee separation between aircraft while 

distributing the cost of resolutions fairly between the aircraft. However, the difficulty with 

decentralized conflict resolution is that aircraft have only limited information about their 

surrounding traffic, particularly with respect to how the other aircraft evaluate the cost of 

conflict resolutions. Several researchers have proposed decentralized conflict resolution 

algorithms using different approaches, such as prioritizing the conflicting agents [1], 

formulating and solving the conflicts as an optimal control problem [2], using AI 

techniques such as genetic algorithms [3], or a capacitance model representing aircraft as 

charged particles that repel each other [4]. 

This thesis proposes to frame decentralized conflict detection and resolution using 

game theory. A collaborative decentralized conflict resolution is developed as a sequential 

bargaining process between the different aircraft, i.e., the players. The goal of each aircraft 

is to minimize the cost associated with the trajectories that resolve the conflict. However, 

each aircraft doesn’t exactly know the payoff, i.e., the cost function of the other involved 
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aircraft. This is actually the way it is in the real world: airlines prefer not to disclose their 

cost indices, by which they weigh the costs of delay and fuel burn. 

The bargaining problem [5] is a game theory concept that aims at finding an 

equilibrium within a cooperative game. It represents situations in which there is a conflict 

of interest, since players want to follow their own objectives, but could still conclude with 

a mutually beneficial agreement. It is used when cooperation is required for a Pareto-

efficient solution, i.e., one in which it is impossible to make anyone individual better off 

without making at least one other worse off. 

Complicating the problem, performance constraints of the aircraft can limit the set 

of feasible conflict resolutions, and resolutions may be found in multiple dimensions. 

These two issues are framed in this thesis by building a bargaining process with two main 

design variables that explore methods of handling performance constraints and the multiple 

dimensions of the resolution space. 

 

1.2 Objectives 

 Develop a sequential bargaining process for a collaborative decentralized conflict 

resolution where both aircraft simultaneously propose resolutions until an 

agreement is reached, while each aircraft is able to protect its private information 

and account for performance constraints. 

 Run a large scale experiment to assess the efficacy of this process using the multi-

agent simulation engine WMC. 
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1.3 Overview of the Thesis 

CHAPTER 2 presents the background of the problem of conflict resolution 

addressed in this thesis. The main notions involved in solving conflicts are detailed and the 

different inherent issues that come with it are presented. CHAPTER 3 describes the 

proposed approach and theoretical results used to build the collaborative decentralized 

conflict resolution algorithm. CHAPTER 4 gives an overview of the different 

computational tools and models used to build the simulation engine. CHAPTER 5 presents 

the results provided by the pairwise conflict experiments. CHAPTER 6 shows the output 

and conclusions drawn from the large scale experiment. CHAPTER 7 summarizes the 

contributions of this thesis work and gives some insights into what could be achieved next. 
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CHAPTER 2:  BACKGROUND 

This chapter defines the notion of conflict in an air traffic concept of operations. It 

characterizes decentralized conflict resolution processes and makes a clear distinction 

between decentralized processes and distributed algorithms. It also presents the main 

categories of decentralized processes and identifies relevant concepts in game theory. 

2.1 Conflict Detection and Resolution 

A conflict between two aircraft occurs when aircraft are closer than a given set of 

horizontal and vertical distances. Current en-route air traffic control rules often consider 

these distances to be five nautical miles horizontally and one thousand feet vertically [6] 

for aircraft operating in en-route airspace above 18,000 feet altitude. 

Conflict detection consists in detecting aircraft trajectories in a given time frame 

that will lead to conflicts. Conflict resolution consists in performing changes to the flight 

plans of the aircraft so that conflict-free trajectories are ensured for a given period of time. 

For the conflict resolution to be effective, this period of time, the look-ahead time, must be 

greater than the time frame in which conflicts are detected. This guarantees that the conflict 

resolutions will clear the list of detected conflicts at a given point in time. 
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2.2 Resolution and Cost 

Conflict resolution provides, in real-time, modified trajectories that maintain safety 

while minimizing cost as calculated for each aircraft according to its cost index. However 

aircraft don’t generally share all the required information to optimize trajectories. Cost 

indices, for example, are kept secret by the airlines as part of their commercial strategies, 

even though they are central in the computation of the cost of a conflict resolution. 

Further difficulties are inherently encountered in the conflict resolution problem 

due to the nonlinearities of the space of potential avoidance trajectories due to the 

performance limits of the aircraft. The common performance limits of aircraft are the range 

of speeds and altitudes in which they could operate, which are defined by the flight 

envelope of each aircraft. For example, the aircraft’s maximum level cruise speed generally 

varies with aircraft weight, which decreases significantly through time as fuel is burnt. Of 

note, the performance limits of one aircraft at any point in time are also not known by 

neighboring aircraft. 

Conflict solutions can lead to new downstream conflicts imposing their own control 

cost. Forecasting and controlling this future control cost, which could be represented by 

the number of maneuvers of future conflicts resolution trajectories and their magnitude, 

represents another challenge posed by the conflict resolution problem. 
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2.3 Centralized versus Decentralized Air Traffic Management Systems 

In a centralized air traffic system, one agent, usually a ground controller, has the 

authority to determine the conflict resolution trajectories. This is the strategy adopted in 

the current air traffic system in which communications between aircraft are limited and not 

used actively by aircraft to adapt their trajectories. Ground controllers guarantee separation 

of the aircraft and establish smooth operations within the air traffic system by issuing 

clearances. Figure 1 shows the central role they play: when a conflict situation is detected 

between aircraft A & B, two distinct communication processes are triggered between each 

aircraft and the ground controller. Usually, aircraft just comply with the clearances given 

by the ground controllers and their role in the communication process is simply to read 

them back. The main weakness of such a system is that it relies on a decision maker who 

may have limited information about how each aircraft evaluates cost. 

 
 

FIGURE 1: CENTRALIZED AIR TRAFFIC SYSTEM 

 

In a decentralized air traffic system, aircraft have more autonomy and take part in 

the decision making process to, for example, decide their own strategies and resolutions 
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trajectories in case of conflict. These systems are difficult to implement but have the 

advantage of allowing the main stakeholders to actually be part of the decisions that 

concern themselves. Figure 2 shows a decentralized conflict resolution: aircraft A and B 

are here responsible for coming up with resolution trajectories, and deal with their own 

problem together. 

 
 

FIGURE 2: DECENTRALIZED AIR TRAFFIC SYSTEM 

However, one difficulty to overcome when designing a decentralized system is the 

fact that each aircraft wants to follow its own objectives, which can be antagonistic to those 

of the other aircraft. Aircraft have therefore to make compromises to reach an agreement 

amongst themselves in the decision making process. 

 

 

2.4 Distinction between Decentralized and Distributed 

The difference between centralized and distributed is not important when one 

centralized agent with perfect knowledge of the whole system can get the same outcome 
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as distributed agents who share the same information and value cost the same way. On the 

other hand, truly decentralized systems are characterized by the fact that their outcomes 

are functions of information and cost functions known only by each individual agent, which 

means that centralized agents should not a priori be able to get the same outcome as 

decentralized agents. 

It is interesting to note the potential value of decentralized operations in air traffic 

management. As mentioned above, cost indices are, for example, considered as strategic 

values by the airlines and are kept proprietary. Performance limits are also not known 

centrally. The interest of a decentralized conflict resolution system is then to take 

advantage of the private information that airlines are not willing to share to compute 

avoidance trajectories that are individually considered to be closer to optimal than 

trajectories computed by a centralized agent. 

 

2.5 Main Categories of Decentralized Conflict Resolution Approaches 

Different approaches of decentralized conflict resolution have already been 

discussed in the literature. Two main categories are those based on optimal control, and 

those based on capacitance and particles analogies. 

Approaches based on optimal control formalize the conflict resolution problem as 

trying to minimize a global cost function [2]. The agent responsible for the actual 

computation of the avoidance trajectories would usually be an external agent, such as a 

ground controller, which means that this kind of systems is not truly decentralized. 
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The categories of decentralized conflict resolution algorithms based on capacitance 

and particles analogies consider the aircraft as charged particles with the same sign 

evolving towards their destinations, which are locations represented by fixed particles of 

the opposite sign [4]. Thus, aircraft are repelled by other aircraft and attracted by their 

destinations. This approach allows the use of well-established static charges and 

capacitance theory but has several issues. The first is the difficulty of ensuring that aircraft 

won’t get pushed into the protected airspace of other aircraft. The second is preventing 

resolution trajectories outside of the flight envelopes of the aircraft. 

In [7], Sislak & al. describe an iterative peer-to-peer collision avoidance algorithm, 

called IPPCA, very similar to what is developed in this thesis. It is based on high-level 

flight plan variations using evasion maneuvers. Its default behavior is to minimize the sum 

of the costs of the aircraft, therefore maximizing their social welfare, but it can also be 

configured to provide solutions for self-interested airplanes where airplanes optimize their 

own cost instead of the overall cost. Personal trajectories are successively offered by the 

aircraft without considering the other aircraft proposed personal trajectories, and the 

algorithm stops as soon as a pair of trajectories is found to be conflict-free. However, there 

is no guarantee that, for a fixed personal trajectory in the final conflict-free pair, the other 

trajectory is the cheapest that could have been computed by the other aircraft. 

In [8], Wollkind & al. present an application to air traffic conflict resolution of the 

Monotonic Concession Protocol (MCP) developed by Zlotkin and Rosenschein [9]. This 

approach is also very similar to the one developed in this thesis. The MCP captures the 

incremental bargaining process that takes place between the two aircraft that 

simultaneously make proposals and counter proposals of progressively less value to 
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themselves. In their process, aircraft also pick the trajectories of the other aircraft in their 

successive proposals. These trajectories cannot therefore be guaranteed to minimize the 

other aircraft cost function, since it is not known. 

 

2.6 Game Theory and Bargaining 

Game theory examines strategic decision making in situations involving different 

agents. The objective of game theory is to model these situations to determine the optimal 

strategies for each agent, to predict equilibria of their collective games, and to examine 

whether decisions converge. 

In this work, we are focusing on the development of a collaborative conflict 

resolution algorithm in a pairwise conflict. This is framed as a two-player game where both 

aircraft are trying to find optimal strategies to clear a conflict. The logical strategy that each 

aircraft would prefer would be to not maneuver, leaving the other aircraft to maneuver 

alone. This shows that the problem to solve is essentially a bargaining problem in which 

both aircraft have to compromise to reach an agreement on a conflict’s resolution [5] [10] 

[11] [12]. 

The utility function of a player represents his preference among a set of different 

anticipations. An anticipation of an individual is considered here as a state of expectation 

which may involve the certainty of deterministic contingencies and various probabilities 

of stochastic contingencies [5]. Nash developed a few assumptions to develop the utility 

theory of an individual [5]: 
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- An individual offered two possible anticipations can decide which is preferable or 

that they are equally desirable. 

- The ordering thus produced is transitive; i.e., if 𝐼 is better than 𝐽 and 𝐽 is better than 

𝐾 then 𝐼 is better than 𝐾. 

- Any probability combination of equally desirable states is just as desirable as either. 

- If 𝐼 is better than 𝐽 and 𝐽 is better than 𝐾, then there is a probability combination of 

𝐼 and 𝐾 which is just as desirable as 𝐽. This corresponds to an assumption of 

continuity. 

- If 0 ≤ 𝑝 ≤ 1 and 𝐼 and 𝐽 are equally desirable, then 𝑝𝐼 + (1 − 𝑝)𝐾 and 𝑝𝐽 +

(1 − 𝑝)𝐾 are equally desirable, and 𝐼 may be substituted for 𝐽 in any desirability 

ordering relationship satisfied by 𝐽. 

These assumptions are sufficient to show the existence of a satisfactory utility 

function that assigns a real number to each anticipation of an individual. This function is 

not unique: if 𝑢 is such a function then so also is 𝑘𝑢 + 𝑐, where 𝑘 > 0. Letting capital 

letters represent anticipations, such a utility function will verify the following properties: 

- 𝑢(𝐴) > 𝑢(𝐵) is equivalent to 𝐴 is more desirable than 𝐵. 

- If 0 ≤ 𝑝 ≤ 1 then 𝑢(𝑝𝐴 + (1 − 𝑝)𝐵) = 𝑝𝑢(𝐴) + (1 − 𝑝)𝑢(𝐵). 

This corresponds to the important linearity property of a utility function. 

 

The negative of a cost function 𝑓 can be seen as a utility function 𝑢. For two aircraft 

denoted A and B, we can define 𝑢𝐴(𝑡𝐴) =  −𝑓𝐴(𝑡𝐴) and 𝑢𝐵(𝑡𝐵) =  −𝑓𝐵(𝑡𝐵). Hence it is 
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equivalent to reason with costs or utilities. The cost viewpoint is used in conflict 

resolutions. 

Formally, a two-person bargaining problem consists of the set of all possible 

anticipations Σ, the feasible set of all attainable costs 𝐹 ⊂ ℝ2, and a disagreement point 

𝑑 ∈ 𝐹 which corresponds to the pair of costs when no agreement is reached. Solving a 

bargaining problem means finding an agreement 𝑠 ∈ 𝐹 viewed as better than 𝑑 for both 

players according to their personal preference, and considered as optimal with respect to 

certain criteria. In the case of conflict resolution, optimal is defined as lowest cost. 

Assuming that players A and B have different preferences, represented by cost 

functions 𝑓𝑎 and 𝑓𝑏, the set of all attainable costs could be written as: 

 𝐹 = {(𝑣𝑎, 𝑣𝑏) ∈ ℝ2|𝑣𝑎 = 𝑓𝑎(𝑋), 𝑣𝑏 = 𝑓𝑏(𝑋), 𝑋

∈ Σ} 

(1) 

 

The pair (𝐹, 𝑑) represents a bargaining problem. Designing the set of all bargaining 

problems by ℬ, a bargaining solution is a function: 

 
𝜑: {

ℬ → 𝐹
(𝐹, 𝑑) ⟼ 𝜑(𝐹, 𝑑) = (𝜑𝑎(𝐹, 𝑑), 𝜑𝑏(𝐹, 𝑑)) = 𝑠 (2) 

 

Two different but complementary approaches have been developed so far to 

construct such bargaining functions. The first approach is strategic: the bargaining process 

is designed first and the properties of its outcome are studied, i.e., the bargaining solution 

is inherently defined by the chosen bargaining process. The second approach is axiomatic: 
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bargaining solutions are characterized by several axioms supposed to be reasonable and 

every function that satisfies these axioms is a bargaining function candidate. 

This second approach led to a major result proved by Nash in 1950 [5]. He showed 

that, in the case where the set of all possible costs is convex and compact, there exists a 

unique bargaining solution that satisfies the following axioms: 

1. Pareto Optimality 

As illustrated in Figure 3, a bargaining solution 𝜑(𝐹, 𝑑) is Pareto optimal 

if, within a set of feasible solutions Σ, there is no other solution 𝑥 that 

simultaneously provides lower costs than 𝜑(𝐹, 𝑑) to both players A and B, i.e. for 

any 𝑥 ∈ Σ, if 𝑓𝑎(𝑥) ≤ 𝜑𝑎(𝐹, 𝑑) then 𝑓𝑏(𝑥) ≥ 𝜑𝑏(𝐹, 𝑑), or if 𝑓𝑏(𝑥) ≤ 𝜑𝑏(𝐹, 𝑑) then 

𝑓𝑎(𝑥) ≥ 𝜑𝑎(𝐹, 𝑑). 

This property simply exposes the fact that with a Pareto non-optimal 

outcome better solutions exist for either or both players. This axiom reduces the 

space of potential bargaining solutions, which should all be located on the Pareto 

frontier. However, it does not provide insights on how to order them. 
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FIGURE 3: PARETO FRONTIER ILLUSTRATION 

 

2. Symmetry 

Let the function 𝑇: ℝ2 → ℝ2 be defined by 𝑇((𝑥, 𝑦)) = (𝑦, 𝑥). A 

bargaining solution 𝜑(𝐹, 𝑑) is symmetrical if, for every bargaining 

problem (𝐹, 𝑑) ∈ ℬ, 𝜑(𝑇(𝐹), 𝑇(𝑑)) = 𝑇(𝜑(𝐹, 𝑑)). This basically means that the 

solution 𝜑(𝐹, 𝑑) should not give preference to either player, as represented on 

Figure 4. 
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FIGURE 4: ILLUSTRATION OF THE AXIOM OF SYMMETRY 

3. Invariance of Cost with Respect to Affine Transformations 

This property states that an affine transformation of the cost functions 

maintaining the order over the preferences should not modify the bargaining 

solution. This is due to the non-uniqueness of cost functions, as explained earlier. 

If we consider an affine transformation of cost 𝐺 = (𝐺1, 𝐺2): ℝ2 → ℝ2 such 

that 𝐺((𝑥, 𝑦)) = (𝐺1(𝑥), 𝐺2(𝑦)), with 𝐺𝑖(𝑥) = 𝑐𝑖𝑥 + 𝑑𝑖, 𝑐𝑖 > 0, then for every 

bargaining problem (𝐹, 𝑑) ∈ ℬ, 𝜑(𝐺(𝐹), 𝐺(𝑑)) = 𝐺(𝜑(𝐹, 𝑑)). 

 

4. Independence of Irrelevant Alternatives 

A bargaining solution 𝜑(𝐹, 𝑑) verifies this property if, for 

every (𝐹, 𝑑) and (𝐹′, 𝑑) such that 𝐹′ ⊂ 𝐹, with 𝜑(𝐹, 𝑑) ∈ 𝐹′, i.e. 𝐹′ contains the 

solution of (𝐹, 𝑑), then 𝜑(𝐹′, 𝑑) = 𝜑(𝐹, 𝑑), i.e. the solution of (𝐹’, 𝑑) is the same 

as the solution of (𝐹, 𝑑). The corollary is that removing a subset of 𝐹 not containing 
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the bargaining solution of (𝐹, 𝑑) and therefore considered as irrelevant should leave 

the bargaining solution unchanged. 

 

Nash showed that the unique bargaining solution satisfying the 4 properties 

presented above is defined by: 

 𝜑(𝐹, 𝑑) = max

{
(𝑣𝑎,𝑣𝑏)∈𝐹

𝑣𝑎≤𝑑𝑎
𝑣𝑏≤𝑑𝑏

(𝑑𝑎 − 𝑣𝑎)(𝑑𝑏 − 𝑣𝑏) 

 

(3) 

Geometrically, the Nash bargaining solution corresponds to the point of the Pareto 

frontier that maximizes the area of the rectangle whose sides are parallel to the axes of the 

costs and opposite vertices are the considered solution and the disagreement point. This is 

depicted in Figure 5. 

 
 

FIGURE 5: NASH BARGAINING SOLUTION 

If the three first axioms have been well received by the scientific community, the 

fourth one has been discussed by several researchers such as Ehud Kalai and Meir 

Smorodinsky [13] who replaced it with another axiom, the axiom of monotonicity, which 

http://en.wikipedia.org/wiki/Ehud_Kalai
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states that, if  (𝐹, 𝑑) and (𝐹′, 𝑑) are two bargaining problems such that 𝐹′ ⊂ 𝐹, and the 

minimum costs for both players are the same in both problems, then 𝜑(𝐹′, 𝑑) ≥ 𝜑(𝐹, 𝑑). 

This new axiom, associated with the three previous ones, leads to another unique solution 

different from the Nash solution: the Kalai-Smorodinsky solution [13]. Geometrically, this 

solution corresponds to the point of the Pareto frontier located on the diagonal of the 

rectangle with opposite corners that are the disagreement point and the point whose x and 

y coordinates are respectively the minimum costs of each of players B and A. This solution 

is depicted in Figure 6. 

 
 

FIGURE 6: KALAI-SMORODINSKY BARGAINING SOLUTION 

The difficulty is to provide a bargaining process that actually converges to the ideal 

solution through alternative offers. This shows the inherent link between the axiomatic and 

strategic approaches of bargaining. Some works have been developed in this discipline 

such as the Rubinstein bargaining model. Ariel Rubinstein provided a solution to a class of 

bargaining games that feature alternating offers through an infinite time horizon. One 

fundamental idea behind his solution is the fact that delays can themselves incur costs such 
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that payoffs converge to 0 with time and it is always better for the two players to reach an 

agreement in finite time [14].  
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CHAPTER 3:  FORMAL DEFINITION OF A BARGAINING 

PROCESS FOR CONFLICT RESOLUTION 

Consider a pairwise conflict of two aircraft A & B. If these aircraft remain on their 

initial respective trajectories, they will conflict. The goal is to define a process by which 

aircraft will find new trajectories that resolve the conflict and minimize cost. The aircraft 

also want these trajectories to be fair and they want to keep their confidential information 

private. As discussed in the previous chapter, being “fair” is hard to define. Here, the 

fairness of a conflict resolution is provided by the mutual agreement reached at the end of 

the bargaining process. The aircraft are never forced to accept a resolution, but act 

rationally to minimize their personal cost. This corresponds to a solution to bargaining 

given by a strategic approach, as opposed to an axiomatic approach. However, the fairness 

of the bargaining process can be assessed by examining whether the axioms linked to 

fairness listed in 2.6 are satisfied. In particular, an interesting metrics of fairness is given 

by the axiom of symmetry: the costs of the negotiated trajectories for the two aircraft should 

be relatively close when the conflict situation is symmetrical. 

To interact properly, both aircraft in a conflict must apply the same form of a cost 

function to assess resolution trajectories. Their individual objectives are defined as the 

specific values of the parameters within the function, which can be held private. This 

allows for different evaluations of proposed conflict resolutions by each aircraft and 

represents a truly decentralized process whose outcomes couldn’t have been produced by 

a centralized agent.  
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Formally denoting the space of private information by 𝑋, the space of public 

information by 𝑌, and the space of feasible trajectories by 𝑇 that actually clear the conflict 

situation and respect performance constraints, the evaluation function is: 

 𝑓: 𝑋 × 𝑌 × 𝑇 → ℝ (4) 

 

Assuming aircraft A & B are characterized by knowledge of their local sets of 

information (𝑥𝐴, 𝑦𝐴) ∈ 𝑋 × 𝑌 and (𝑥𝐵, 𝑦𝐵) ∈ 𝑋 × 𝑌, personal evaluation functions could 

be defined by 𝑓𝐴: 𝑇 → ℝ and 𝑓𝐵: 𝑇 → ℝ such that: 

 𝑓𝐴(∙) = 𝑓(𝑥𝐴, 𝑦𝐴,∙) (5) 

 𝑓𝐵(∙) = 𝑓(𝑥𝐵, 𝑦𝐵,∙) (6) 

 

These functions represent the cost of personal resolution trajectories viewed by 

each aircraft, i.e., each aircraft measures its own trajectory cost. Since A does not know 

𝑥𝐵 and B does not know 𝑥𝐴, A has no way to actually compute the cost of trajectories as 

viewed by B and vice versa. 

Starting from a pair of conflicting trajectories (𝑐𝐴, 𝑐𝐵), a reasonable bargaining 

process must find a pair of resolution trajectories (𝑡𝐴, 𝑡𝐵) mutually agreed upon by aircraft 

A and B. The bargaining solution will then be represented in the cost plan by the point of 

coordinates (𝑓𝐴(𝑡𝐴), 𝑓𝐵(𝑡𝐵)). 

The disagreement point 𝑑 of this bargaining problem will correspond to the 

situation in which both aircraft are maneuvering as if the other one was not wanting to 
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make any maneuvers, i.e., it would correspond to a safe but suboptimal situation. The 

feasibility set 𝐹 corresponds in this problem to the set of all pairs of finite costs 

corresponding to pairs of trajectories that the aircraft can actually fly within their 

performance limits, that clear the conflict, and that are Pareto optimal. 

This chapter defines a bargaining process in which both aircraft will agree upon a 

conflict resolution belonging to the feasibility set 𝐹. In this sequential bargaining process, 

players will be forced at each iteration to always offer alternative solutions they personally 

consider to be worse for themselves than their previous ones. Doing this will force the 

players to reach an agreement after enough negotiations. Delays may be costly but the 

bargaining process is assumed to happen so fast that delays won’t be of any significant 

duration. 

This process is designed so that aircraft can minimize their personal cost functions 

without getting information on the other aircraft’s cost function. In addition, different 

methods for accounting for the performance limits of the aircraft and the multi-

dimensionality of the resolution space are created by introducing two design variables. 

 

3.1 Structure of the Bargaining Process 

The goal is to reach a resolution mutually agreed by both aircraft. The difficulty is 

that both players have a priori no interest in deviating from the simple zero cost solution 

in which they don’t maneuver and their opponent assumes all the cost. To avoid this, the 

proposed bargaining process will force the aircraft to deviate from these trivial but not-fair 
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solutions. A good-faith compliance with this process is assumed, enforced by regulation 

and perhaps built into the on-board automation negotiating for each aircraft. 

The structure of this bargaining process is sequential, as represented in the 

flowchart in  

Figure 7. Hence, each step of the bargaining process is divided into 3 sub-steps: 

1. Each aircraft computes a set of “personal trajectories” in each dimension that it 

would agree to fly with a given cost requirement. These cost requirements are 

initially set to 0 and are increased with each iteration of the process to require 

compromises. 

2. Each aircraft communicates the trajectories computed in 1 to the other aircraft. 

3. Each aircraft computes “response trajectories” as the minimum cost resolution to 

the conflict if the other aircraft flew its personal trajectories. 

4. Each aircraft compares the cost of the set of response trajectories it determined with 

the cost of its own personal trajectories computed in 1. If any of the response 

trajectories are cheaper than the personal trajectories, then an agreement can be 

reached; else no agreement is reached and both aircraft go one step further in the 

bargaining process and loop back to the first sub-step. Both aircraft have to make 

compromises: by increasing their cost requirements, they now have to offer 

personal trajectories that are slightly more expensive. 
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FIGURE 7: FLOWCHART OF THE SEQUENTIAL BARGAINING PROCESS 

 

 

The trajectories computed at the sub-step 3 correspond to optimization problems 

subjected to constraints. Each aircraft tries to minimize its personal cost by providing 

trajectories that do not conflict with the trajectories offered by its opponent at the sub-step 

1. Hence, the constraints on this optimization problem are the personal trajectories offered 

by the opponent at the sub-step 1 and the aircraft’s performance constraints. 

With this general architecture of the bargaining process, two important questions 

are raised: how to handle aircraft performance, and how to handle the multidimensionality 

of the resolution space. These questions each can be addressed by different approaches in 

the bargaining process, defined by the design variables described in the next two sections. 
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A third design variable is introduced to understand the impact of the maximum number 

number of iterations of the bargaining process on its convergence. 

3.2 Design Variable 1: Representing Performance Constraints 

The performance limits of the aircraft have a direct impact on the shape of the 

feasibility set. Consider, for example, the feasibility set of the bargaining problem with the 

following shape without performance limits, shown in Figure 8. The disagreement point 

here corresponds to the situation in which both aircraft maneuver as if the other one does 

not. 

 
 

FIGURE 8: COST PLAN WITHOUT PERFORMANCE LIMITS 

In this figure, two areas can be distinguished. The first one, in green, corresponds 

to feasible but irrelevant trajectories because they are Pareto suboptimal with respect to the 

disagreement point. The second area, in blue, corresponds to feasible trajectories which are 

at least better than the disagreement point. 

In contrast, when aircraft are bounded by their performance limits, the feasible set 

will be reduced, as shown in Figure 9. In the worst case, the solutions that are Pareto-
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optimal compared to the disagreement point can be completely cut out, as shown in Figure 

10. Thus, aircraft performance and regulatory constraints can lead to situations in which 

the bargaining process might not converge because aircraft have little flexibility in their 

trajectories. 

 
 

FIGURE 9: COST PLAN WITH RESTRICTIVE PERFORMANCE CONSTRAINTS 

REDUCING THE FEASIBLE SET 

 

 
 

FIGURE 10: COST PLAN WITH MORE RESTRICTIVE PERFORMANCE CONSTRAINTS 

ELIMINATING THE FEASIBLE SET 
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The cost functions and definition of the feasible set can represent performance 

constraints in different ways addressed by the first design variable in this bargaining 

process, as shown in Figure 11. Specifically, the “clipped” method handles performance 

constraints by clipping the feasible set on allowable intervals in each dimension to directly 

constrain the resolution space. The advantage of this method is that it can represent 

precisely the real costs of the allowable trajectories. The cost functions can be computed 

at first, and then the feasible set clipped at the minimum and maximum possible 

resolutions. The potential problem with this approach is that there is no guarantee that 

solutions converge when the feasible set does not meet the axioms assumed in game theory. 

The second “infinite cost” method assigns infinite cost to trajectories that exceed 

performance constraints. The advantage of this method is that good properties of the shape 

of the cost functions can be enforced, such as convexity. However, this method gives 

unrealistically-high costs for resolution trajectories close to the boundaries of the allowable 

part of the resolution space. 

The third “finite cost” method builds a nonlinear mapping that provides real costs 

within the constraints then switches to very high costs when approaching the constraints. 

In this design, the performance constraints are accounted for with finite cost penalties 

instead of infinite cost barriers. 
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FIGURE 11: REPRESENTING PERFORMANCE CONSTRAINTS RELATIVE TO COST 

 

3.3 Design Variable 2: Dimensionality of the Resolution Space 

The space of resolutions represents the space of potential avoidance trajectories to 

clear the conflict. Aircraft have basically six levers of action: 

1. Slow down 

2. Speed up 

3. Turn left 

4. Turn right 

5. Climb 
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6. Descend 

These levers of action define a multi-dimensional space of resolutions constrained 

by the aircraft performance limits such as the maximum speed they can maintain at any 

given altitude and cruise ceiling. These different degrees of freedom yield a huge resolution 

space that cannot be entirely explored. The design choice made in this thesis is to define 

specific waypoints that correspond to a resolution in each of the different dimensions. 

The second design variable within this bargaining process addresses how to handle 

this multidimensionality of the resolution space. For example, a parallel bargaining process 

might only examine personal and response trajectories that are within the same plane, or 

that are not. In this thesis, each personal or response trajectory will be only in one of the 

six possible dimensions, such that, for example, any aircraft won’t climb and speed up in 

the same trajectory. However, this still provides a large number of possible maneuvers and 

allows for different aircraft in a conflict situation to maneuver in distinct dimensions. The 

number of trajectories computed has a direct impact on the computational effort and on the 

depth of the search of the resolution space. 

The first way to incorporate multiple dimensions of the resolution space is, for each 

aircraft, to compute at the first sub-step six personal trajectories, one per dimension, and to 

communicate them to the other aircraft. Then, in the third sub-step, each aircraft computes 

six response trajectories, each in the same plane as the trajectory it is responding to. Hence, 

during the third sub-step, the costs of six response trajectories are compared with the costs 

of the personal trajectories offered by each aircraft. This corresponds to the situation in 

which every dimension is examined separately with potential pair of resolution trajectories 

each only in the same plane. 
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The second way to incorporate the multiple dimensions of the resolution space is 

for each aircraft to compute at the first sub-step six personal trajectories, one per 

dimension, and to communicate all of them to the other aircraft. Then, in the third sub-step, 

each aircraft computes six response trajectories for each trajectory received. Hence, during 

the third sub-step, thirty-six response trajectories are considered by each aircraft. The 

advantage of this method is that more potential solutions are explored than in 1, such that 

pair of resolution trajectories can be found in different dimensions. However, this requires 

more computational effort. 

 

3.4 Design Variable 3: Convergence 

The convergence mechanism ensures that the bargaining process converges in a 

finite number of steps. This mechanism must enforce compromises by forcing the aircraft 

to always propose personal trajectories that are more expensive than the previous ones. 

After a finite given number of steps, the pair of aircraft should simultaneously be in the 

situation in which they are offering personal trajectories that allows the other aircraft not 

to maneuver at all, if the problem is symmetric. 

This is achieved using constants 𝜆𝑎 > 0 and 𝜆𝑏 > 0 such that, if a personal 

trajectory 𝑡𝐾𝑖
 has been proposed at step 𝑖 by aircraft K, with a cost 𝑓𝐾(𝑡𝐾𝑖

), then aircraft K 

has to propose a personal trajectory 𝑡𝐾𝑖+1
 at step 𝑖 + 1 such that 𝑓𝐾(𝑡𝐾𝑖+1

) ≥  𝑓𝐾(𝑡𝐾𝑖
) +

𝜆𝐾. Intuitively, aircraft will progressively have to deviate from their initial zero-cost 

proposed personal trajectories to yield to each other. 
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Define the response trajectory for aircraft A to the zero-cost personal trajectory 

initially offered by B as having a cost 𝑐𝑚𝑎𝑥
𝐴 , corresponding to the situation in which A is 

the only aircraft to maneuver, and similarly, the response trajectory for aircraft B to the 

zero-cost personal trajectory initially offered by A as having a cost 𝑐𝑚𝑎𝑥
𝐵 , corresponding to 

the situation in which B is the only aircraft to maneuver. 

With 𝜆𝐴 =
𝑐𝑚𝑎𝑥

𝐴

𝑛
 and 𝜆𝐵 =

𝑐𝑚𝑎𝑥
𝐵

𝑛
, after 𝑛 steps, aircraft A would have to propose a 

personal trajectory with a cost of at least 𝑛𝜆𝐴=𝑐𝑚𝑎𝑥
𝐴  and aircraft B would have to propose 

a personal trajectory with a cost of at least 𝑛𝜆𝐵 = 𝑐𝑚𝑎𝑥
𝐵 . Doing so, an agreement should be 

reached no later than after 𝑛 steps, because each aircraft has to offer personal trajectories 

whose costs are more expensive than the cost of the optimal trajectory it should perform if 

the other aircraft was not maneuvering. 𝑛 corresponds here to the maximum number of 

iterations of the bargaining process and constitutes a third design variable. 

The convergence might break down in the situation in which performance 

constraints are hit in every dimension before the end of the bargaining process. The aircraft 

would be unable to make any further compromises because they could not provide 

trajectories with higher personal costs. In this situation, the aircraft would be stuck at a 

given step and could not proceed to the next one in the bargaining process. 

3.5 Example 

To illustrate this bargaining process, consider a very simplified symmetrical 

situation in which two aircraft A and B are heading towards each other at 400 knots; the 

cost function is the same for both aircraft and corresponds to the extra length flown in the 

resolution trajectories in nautical miles. In this simple example the aircraft are only looking 
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for resolution trajectories in the horizontal plane, and performance constraints are not 

applied. Figure 12 depicts the initial situation. 

 
 

FIGURE 12: INITIAL CONFLICTING TRAJECTORIES IN A SIMPLIFIED EXAMPLE THAT 

ILLUSTRATES THE BARGAINING PROCESS 

 

Step 0.1: 

Each aircraft first proposes to not perform any maneuver, letting the other aircraft 

incur all the cost. This means that they propose personal trajectories (PT) of cost 0 to 

themselves. 

Step 0.2: 

Aircraft communicate the personal trajectories they computed in 0.1. 

Step 0.3: 

B receives the PT proposed by A, with its cost, and B’s response trajectory (RT) 

solves the corresponding optimization problem of computing the trajectory with the lowest 
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possible cost that resolve the conflict with the trajectory proposed by A. The resulting RT 

has a cost of 0.7583 nmi. Likewise, A receives the PT proposed by B, with its cost, and 

computes its own RT as well. The resulting RT has a cost of 0.7574 nmi. (These two values 

should be equal due to the symmetry of the problem; the difference comes from numerical 

errors). 

The two potential resolutions correspond to the following points on the cost plan, 

as shown in Figure 13. 

 
{

(0.7574,0)
(0,0.7583)  

 
Unconditionally accepted by B 

Unconditionally accepted by A 

 

 (8) 

 

 
 

FIGURE 13: RESOLUTIONS EXPLORED AFTER STEP 0 
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Since 0.7574 > 0, A does not accept (0.7574,0), and since 0.7583 > 0, B does 

not accept (0,0.7583). No agreement is reached. At this point, it is known that 𝑐𝑚𝑎𝑥
𝐴 =

0.7574 nmi and that 𝑐𝑚𝑎𝑥
𝐵 = 0.7583 nmi. If we want the process to converge in less than 

𝑛 = 12 steps, we can compute the increased cost requirement for the next PT: 𝜆𝐴 =

 0.0631nmi and 𝜆𝐵 =  0.0632 nmi. 

Step 1: 

B receives the PT proposed by A with cost to A of 0.0631, and computes its own 

RT, which has a cost of 0.3808. A receives the PT proposed by B, with cost to B of 0.0632, 

and computes its own RT, which has a cost of 0.3806. Hence the two potential resolutions 

correspond to the following points on the cost plan, as shown in Figure 14. 

 
{

(0.3806,0.0632)

(0.0631,0.3808)  
 

Unconditionally accepted by B 

Unconditionally accepted by A 

 

 (9) 
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FIGURE 14: RESOLUTIONS EXPLORED AFTER STEP 1 

Step 2: 

Proceeding the same way as in the previous steps, B receives the PT proposed by 

A with cost to A of 0.1262, and computes its own RT, which has a cost of 0.2628. A 

receives the PT proposed by B with cost to B of 0.1264, and computes its own RT, which 

has a cost of 0.2626. Hence the two potential resolutions correspond to the following points 

on the cost plan, as shown in Figure 15: 

 
{

(0.2626,0.1264)
(0.1262,0.2628)  

 
Unconditionally accepted by B 

Unconditionally accepted by A 

 

 (10) 
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FIGURE 15: RESOLUTIONS EXPLORED AFTER STEP 2 

 

Again, no agreement is reached here. The bargaining process finally stops at the 3rd 

step and gives two almost identical resolutions. The pair of aircraft can choose randomly 

between the two resolutions shown in Figure 16. 



36 

 

 
 

FIGURE 16: RESOLUTIONS EXPLORED AFTER STEP 3 
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FIGURE 17: COST PLAN WITH N=12 

 

In the end, all the points of the cost plan explored by the bargaining process in this 

simple situation are depicted in Figure 17. The curve created by these points corresponds 

to the Pareto frontier. The solution found by the bargaining process is fair in that it almost 

lies on the first bisector, i.e., both aircraft incur, in this symmetric case, the same cost. 



38 

 

 
 

FIGURE 18: COST PLAN WITH N = 100 

With 𝑛 = 100 instead of 𝑛 = 12, more points of the cost plan are explored, 

resulting in a higher precision, as depicted in Figure 18. This shows the impact of the choice 

of 𝑛. If it is too low, the final solution found by the bargaining process could cross further 

over the first bisector, impacting the fairness of the process. If it is too high, too many steps 

will be achieved before converging to the solution, which represents a higher 

computational effort. 
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3.6 Summary: Formal Definition 

Using the constants 𝜆𝐴 and 𝜆𝐵 as described in 3.4, the 𝑖-th step has the following 

sub-steps: 

1. A (resp. B) chooses personal trajectories {𝑡𝐴𝑖
𝑘}𝑘=1..6  (resp. {𝑡𝐵𝑖

𝑘}𝑘=1..6 ) in each of 

the six dimensions with their associated costs {𝑓𝐴(𝑡𝐴𝑖
𝑘)}𝑘=1..6 (resp. 

{𝑓𝐵(𝑡𝐵𝑖
𝑘)}𝑘=1..6) such that 𝑓𝐴(𝑡𝐴𝑖

𝑘) ≥ 𝑖𝜆𝐴 (resp. 𝑓𝐵(𝑡𝐵𝑖
𝑘) ≥ 𝑖𝜆𝐵). 

2. A and B exchange their personal trajectories. 

3. A (resp. B) responds to B’s offered personal trajectories (resp. A’s personal 

trajectories) by computing response trajectories {𝑡𝐴𝑟𝑖
𝑘} (resp. {𝑡𝐵𝑟𝑖

𝑘}) and their 

associated cost 𝑓𝐴(𝑡𝐴𝑟𝑖
𝑘) (resp. 𝑓𝐵(𝑡𝐵𝑟𝑖

𝑘)).  

At the end of these three steps, we have the potential resolutions: 

 
{

(𝑡𝐴𝑖
𝑘, 𝑡𝐵𝑟𝑖

𝑘)

(𝑡𝐴𝑟𝑖
𝑘, 𝑡𝐵𝑖

𝑘)
 

Unconditionally accepted by A 

Unconditionally accepted by B 

 

 (7) 

 

If 𝑓𝐴(𝑡𝐴𝑟𝑖
𝑘) ≤  𝑓𝐴(𝑡𝐴𝑖

𝑘), A has no reason not to agree with B on selecting (𝑡𝐴𝑟𝑖
𝑘, 𝑡𝐵𝑖

𝑘). 

Similarly, if 𝑓𝐵(𝑡𝐵𝑟𝑖
𝑘) ≤  𝑓𝐵(𝑡𝐵𝑖

𝑘), B has no reason not to agree with A on selecting 

(𝑡𝐴𝑖
𝑘, 𝑡𝐵𝑟𝑖

𝑘). When both inequalities 𝑓𝐴(𝑡𝐴𝑟𝑖
𝑘) ≤  𝑓𝐴(𝑡𝐴𝑖

𝑘)  and 𝑓𝐵(𝑡𝐵𝑟𝑖
𝑘) ≤  𝑓𝐵(𝑡𝐵𝑖

𝑘) are 

verified at the same step 𝑖, the aircraft can arbitrarily select one of the two potential 

resolutions as an agreement. Otherwise, the process moves to the (𝑖 + 1) step. 

Unless prevented by performance constraints bounding the feasible set, {𝑓𝐴(𝑡𝐴𝑖
𝑘)}𝑖 

is an increasing sequence such that 𝑓𝐴(𝑡𝐴0
𝑘) = 0 and 𝑓𝐴(𝑡𝐴𝑛

𝑘) ≥ 𝑛 𝜆𝐴 = 𝑐𝑚𝑎𝑥
𝐴 , and 
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assuming {𝑓𝐴(𝑡𝐴𝑟𝑖
𝑘)}𝑖 is a sequence such that 𝑓𝐴(𝑡𝐴𝑟0

𝑘) = 𝑐𝑚𝑎𝑥
𝐴  and 𝑓𝐴(𝑡𝐴𝑟𝑛

𝑘) = 0, there will 

automatically exist 𝑖 ∈ ⟦0, 𝑛⟧ such that 𝑓𝐴(𝑡𝐴𝑟𝑖
𝑘) ≤  𝑓𝐴(𝑡𝐴𝑖

𝑘). We can reason in the same 

way with B and replace A by B in the previous sentence. This proves the convergence of 

the defined bargaining process as long as the performance constraints do not excessively 

constrain the feasible set or make the cost functions too nonlinear. 

 

 

 

  



41 

 

CHAPTER 4:  SIMULATION FRAMEWORK 

WMC, “Work Model that Computes”, is a simulation engine developed at the 

Cognitive Engineering Center at Georgia Tech. This engine permits the analysis of 

complex systems both at a local scale and at a larger system-wide scale.  

The bargaining process described in the previous chapter was implemented by 

developing four core models within WMC. The first one is the outer loop aircraft dynamics 

given by DCRAircraft. The second one is the flight plan cost calculation, responsible for 

assessing the goodness of flight plan for a given aircraft. Then, the third core element is 

the Conflict Detector, essential to detect potential conflicts that need to be solved. Finally, 

the last core element developed is the Conflict Solver, which implements the bargaining 

process.  

4.1 Outer Loop Aircraft Dynamics Model with Flight Plan Following 

An outer loop aircraft model is a simple point-mass dynamics model that uses first-

orders controllers to directly regulate eight states to follow a given trajectory: latitude, 

longitude, altitude, true airspeed, thrust, roll, heading, and flight path angle [15]. It was 

chosen for its relative dynamic simplicity to reduce simulation runtime. A fourth order 

Runge-Kutta adaptive step size integration algorithm (Cash-Karp method) is used to 

integrate the differential equations. Thus it reports its next update time to WMC as the 

current simulation time plus an additional adaptive time step, which is constructed using a 

10−7 fractional error bound. 

Aircraft performance limits are calculated using Eurocontrol’s BADA (Base of 

Aircraft Data) performance models. BADA is a database of aircraft performance values 
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that can be used to model aircraft performance profiles throughout all flight regimes [16]. 

The performance values given for each available aircraft type include thrust, drag, and fuel 

coefficients as well as speeds and maximum altitudes. These values can be used with the 

Total Energy Model (TEM), a reduced point-mass model relating thrust, drag, acceleration, 

velocity, and vertical speed of an aircraft, to create performance profiles. This experiment 

uses the TEM to calculate all performance values from basic principles so as to 

parameterize the outer loop aircraft dynamics models, each according to its aircraft type. 

These values are also used in the flight plan cost calculation: they are used to compute the 

performance constraints of a given aircraft and the rate at which it burns fuel while cruising 

at a given altitude and speed. 

The optimizer sets the initial trajectory of the aircraft to optimality by solving for 

the speed and altitude that minimize the cost of the trajectory. By noticing that optimal 

costs are always reached at maximum speeds, this problem was reduced to a one 

dimensional optimal problem that employs a golden ratio search. 

 

4.2 Flight Plan Cost Calculation 

The flight plan cost calculation examines the fuel burnt and time spent on each leg 

of the trajectory. These values are weighted according to the aircraft’s cost index. The cost 

index is a parameter defined between 0 and 1 that is directly linked to the aircraft preference 

between minimizing fuel burn or delay. 

To evaluate a given flight plan, the fuel burnt and time spent are computed between 

consecutive waypoints, and their weighted sum given by the cost index is stored. A cost 
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index close to 1 corresponds to weighting more delay, whereas a cost index close to 0 

corresponds to weighting more fuel burn. If 𝑑 corresponds to the delay between two 

consecutive waypoints, and 𝑓 corresponds to the fuel burn between these two same 

consecutive waypoints, the flight plan cost 𝑐 established between these two consecutive 

waypoints will be given by: 

𝑐 =  𝑐𝑜𝑠𝑡_𝑖𝑛𝑑𝑒𝑥 ∗  𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛_𝑓𝑎𝑐𝑡𝑜𝑟 ∗  𝑑 +  (1 − 𝑐𝑜𝑠𝑡_𝑖𝑛𝑑𝑒𝑥) ∗  𝑓 

The normalization factor is taken from [15] and is here as a bridge allowing the comparison 

between fuel burn and delay. 

To implement the “finite” and “infinite” cost functions described in 3.2, linear and 

hyperbolic terms, i.e., penalty costs, are added when the aircraft is in a range of 30 knots 

of its maximum or minimum speed and in a range of 100 feet of its maximum or minimum 

altitude (arbitrarily set to 17000 feet). These ranges accounts for the situations in which the 

aircraft is flying close to the performance limits. When adding linear terms, flying at the 

performance limits of the aircraft yields an additional finite cost corresponding to the 

“finite” cost function; when adding hyperbolic terms, flying at the performance limits 

yields an additional infinite cost corresponding to the “infinite” cost function. 

The cost index is set arbitrarily and not revealed to the other aircraft. Thus the cost 

functions defined for a given aircraft are personal, and allow only to assess the cost of a 

trajectory for this specific aircraft. Figure 19 shows the cost sensitivities to speed for an 

Airbus A320 flying at 25000 feet with a cost index of 0.5; the three different cost functions 

are shown. 
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FIGURE 19: COST VERSUS SPEED AT 25000 FEET WITH A COST INDEX OF 50% FOR 

THE A320 

 

4.3 Conflict Detector 

The conflict detector first projects flight plans as lists of four dimensions waypoints 

into a Cartesian space. The distance between aircraft is evaluated every five seconds along 

their planned trajectories. If the horizontal or vertical separation is not respected, then the 

pair of aircraft is marked as conflicting and the conflict solver is scheduled three hundred 

seconds before the conflict is predicted to happen.  

 

4.4 Conflict Solver 

The conflict solver directly implements the bargaining via sequential notification 

described in CHAPTER 3. If no solution is found, the corresponding conflict is recorded 

as unresolved. When a solution has been found, conflict metrics are saved and the conflict 
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detector is run immediately to check for potential downstream conflicts. The time of closest 

distance between the aircraft is marked down and passed to the conflict solver to create 

additional waypoints for the two conflicting trajectories at that specific time. The resolution 

space is directly explored by shifting these new waypoints in the different dimensions. 

Solutions are then implemented as flight plans with added waypoints. 

 

4.5 Summary 

Four core models were developed in WMC to implement the bargaining process. 

The aircraft dynamics were simulated using an outer loop aircraft model given by 

DCRAircraft. Multiple instances of DCRAircraft can be run together, each of them able to 

follow their personal flight plan. Decentralized conflict detection is simulated by allowing 

aircraft to solve their conflicts with a local detection range corresponding to a look ahead 

time of three hundred seconds. The Conflict Solver directly implements the negotiating 

process detailed in the previous chapter.  
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CHAPTER 5:  PAIRWISE CONFLICT RESOLUTION 

EXPERIMENTS 

This experiment created a set of simulations of only two aircraft (i.e., pairwise 

simulations) that allowed for a full factorial design examining the three design variables in 

a range of conflicts. The following sections detail the experiment design, the metrics used 

to assess the bargaining process, and the results of the experiment. 

5.1 Experiment Design 

This experiment examines the overall performance of the bargaining process, and 

the impact of the three design variables described in 3.2, 3.3 and 3.4. The first design 

variable has three different methods for representing performance constraints in the 

feasible set and cost function. The second design variable corresponds to two different 

ways the multidimensional resolution space is searched, with a full or partial “within plane” 

exploration. The third design variable corresponds to the maximum number of iterations 

of the bargaining process: (𝑛 = 100, 200 or 500). 

A full-factorial experiment design explored the eighteen combinations of these 

design variables in several different conflict conditions. Specifically, these conditions 

included the following. 

Three different geometrical situations: 

In [17], Andrews identified three main classes (or Rules) of horizontal conflict 

geometries that are each best resolved by different types of avoidance maneuvers. One 

conflict geometry per rule was selected to maximize the chances to see the aircraft using 

all the resolution space:  



47 

 

1. Rule A: 30 degrees with 0 miss distance. In this situation, aircraft are converging, 

almost following the same route. Andrews identified that the best horizontal 

resolution to this geometry eliminates closure rate. 

2. Rule B: 150 degrees with 0 miss distance: aircraft are crossing. This corresponds 

to the rule B in [17]. Andrews identified here that the best horizontal maneuver to 

this geometry increases the existing miss distance [17]. 

3. 90 degrees with a miss distance of about 4 nautical miles. This corresponds to the 

rule C in [17]. Here, Andrew identified that the best horizontal maneuver to this 

geometry reinforces path crossing [17]. 

 

Three different pairs of cost indices: 

1. 10% and 90%. In this situation, the first aircraft values more the fuel burn than the 

delay, while the second aircraft does the opposite. 

2. 90% and 90%. Here, both aircraft use the same weight between fuel burn and delay, 

and give priority to minimizing the delay. 

3. 10% and 10%. In this final situation, both aircraft use the same weight between fuel 

burn and delay again, but now give priority to minimizing the fuel burn. 

 

Aircraft types: 

1. Both aircraft are of the type Airbus A320 and have the same performance 

constraints. 

2. Aircraft are of different types (A320 and A319) and therefore have different 

performance envelopes.  
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In the end, 18 different conflict conditions were making a total of 18x18 = 324 runs 

as shown in Table 1. 

TABLE 1: PAIRWISE CONFLICT RESOLUTION EXPERIMENT DESIGN CONDITIONS 

Independent 

Variable 

 Number of 

Conditions 

1 Design variable for performance constraints 3  

         1.1      Clipped  1 

         1.2      Infinite  1 

         1.3      Finite  1 

2 Design variable for multidimensions 2  

         2.1      In-plane  1 

         2.2      Full space  1 

         3 Design variable for convergence 3  

         3.1      100 iterations  1 

         3.2      200 iterations  1 

         3.3      300 iterations  1 

4 Conflict geometry 3  

         4.1      Rule A  1 

         4.2      Rule B  1 

         4.3      Rule C  1 

5 Cost indices 3  

         5.1      10% and 90%  1 

         5.2      90% and 90%  1 

         5.3      10% and 10%  1 

         6 Aircraft type 2  

         6.2      Same (A320)  1 

         6.3      Different (A320 & A319)  1 

  Total: 324  

   

5.2 Metrics 

For each run, the following metrics were saved: 

 Whether a resolution is found or not. 

 The number of iterations. 
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 The dimensions of the negotiated conflict resolution trajectories. 

 The costs of the negotiated conflict resolution trajectories, using an unmodified cost 

function and if used, any modified cost function accounting for performance 

constraints.  

 The cost difference between the negotiated conflict resolution trajectories of the two 

aircraft. 

 The margins of the final resolution trajectories from the maximum and minimum 

speeds and altitudes. 

 The actual trajectories of the aircraft to examine the significant differences between the 

flight plans of the aircraft and the trajectories they actually flew, and to verify that the 

negotiated trajectories were effectively solving the conflict situation. 

 The total cost of the final agreement point, summed across both aircraft computed using 

the clipped feasible set. 

5.3 Results 

5.3.1 Overall 

5.3.1.1 Convergence 

A first point to note is that the bargaining process was always successful in the 

sense that it converged in all 324 runs. This also means that the third design variable 

studied, corresponding to the maximum number of iterations, didn’t impact the 

convergence of the bargaining process. 
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5.3.1.2 Impact of the Geometry of the Conflict 

Figure 20 displays the different dimensions of the resolutions selected with the 

different conflict geometries (Rule A, B or C). It is interesting to note that the conflicts 

were usually resolved with maneuvers in the horizontal plane for the conflict geometries 

corresponding to rule B and C, whereas rule A was mostly solved with speed maneuvers, 

and some vertical maneuvers. 

 
FIGURE 20: DIMENSIONS OF RESOLUTION USED FOR THE DIFFERENT CONFLICT 

GEOMETRIES 

 

Rule A corresponds to a conflict angle of 30°, which means that aircraft are roughly 

going in the same direction and that the potential conflict period lasts longer because of a 

small relative velocity between aircraft. Thus, the choice to perform speed maneuvers in 

that situation can be interpreted qualitatively in the sense that this type of maneuvers will 

solve the conflict by progressively reducing the time span of the conflict to zero. The sort 
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of solutions used are different from the ones identified by Andrews for this Rule, as they 

belong to another dimension. In his study, Andrews only looked for horizontal maneuvers 

[17], which means that these maneuvers might be more efficient than the ones he identified. 

Rule B corresponds to a conflict angle of 150°, which is the opposite situation of 

Rule A where aircraft are flying in opposite directions, have a high relative speed, and 

therefore a short period in which they are conflicting. In this situation, horizontal 

maneuvers seem to be costing less to the aircraft than speed maneuvers. The high relative 

speed between aircraft increase the efficiency of horizontal maneuvers as a change of 

direction will have a higher impact on the relative distance between aircraft across time. 

The horizontal maneuvers performed by the aircraft therefore increase the existing miss 

distance as identified by Andrews in [17]. 

Rule C corresponds to a conflict angle of 90° with a miss distance of 4 nautical 

miles. This means that Rule C is close to a no conflict situation because only one nautical 

mile of separation is missing. As for Rule B, horizontal maneuvers seem to be the cheapest 

choice for the aircraft. However, aircraft are not choosing to reinforce the path crossing 

predicted by Andrews [17]. It would have been the case if the aircraft had chosen opposite 

directions to maneuver, i.e., one aircraft going left, towards the other aircraft, while the 

other is going right, towards the first one. Instead, the aircraft systematically chose to 

maneuver in the same direction, both turning left, or both turning right. 

5.3.1.3 Resolution of Symmetric Conflicts 

In cases where aircraft had the same ability to maneuver (i.e., same aircraft type) 

and used the same cost index, and where performance constraints did not impact the 

resolution negotiated by the bargaining process, the global characteristics of the cost plan 
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seen earlier in the example in section 3.5 were observed again: the Pareto frontier defined 

by the feasible set explored during the bargaining appeared to be convex and symmetrical. 

Figure 21 and Figure 22 show a cost plan and a visualization steps graph corresponding to 

a situation where performance limits were not hit. 

 
 

FIGURE 21: COST PLAN FOR A HORIZONTAL RESOLUTION NOT IMPACTED BY 

PERFORMANCE CONSTRAINTS: RULE C, COST INDICES 10% AND 10%, TYPES A320 & A320, 

CLIPPED FEASIBLE SET, FULL SPACE, N = 500 
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FIGURE 22: STEPS VISUALIZATION GRAPH FOR A HORIZONTAL RESOLUTION NOT 

IMPACTED BY PERFORMANCE CONSTRAINTS: RULE C, COST INDICES 10% AND 10%, TYPES 

A320 & A320, CLIPPED FEASIBLE SET, FULL SPACE, N = 500 

 

Figure 22 shows the response trajectory costs as a function of the personal trajectory 

costs, where costs are normalized by the initial response costs. The evolution of the 

response trajectory costs can be seen by reading from left to right as personal trajectory 

costs increase at each step of the bargain. The curves of the response costs of the two 

aircraft are almost confounded, showing the symmetry of the resolution, and are constantly 

decreasing until the agreement is reached when the response trajectory costs get below the 

personal trajectory costs. Geometrically, it corresponds to the point where the curves cross 
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the first bisector of the plane. The assumption that the initial response trajectories costs are 

the maximum costs that could be incurred to the aircraft is verified here. 

 

5.3.1.4 Impact of Asymmetry in the Cost Indices  

Of the three different pairs of cost indices that were tested in the pairwise 

experiments, two pairs were the same (both at 0.1 or both at 0.9); the third created an 

asymmetry in which one aircraft prefers to reduce fuel burn (cost index of 0.1) while the 

other prefers to reduce the delay (cost index of 0.9). Figure 23 shows the cost difference 

between the negotiated resolutions as a function of the different pairs of cost indices. It can 

be observed that the asymmetric cost indices configuration has a significantly higher cost 

in the resolutions it negotiates. 

Figure 24 compares the three costs plans resulting with the three different pairings 

of cost indices. It can be seen that, when identical cost indices are attributed to the aircraft, 

the solutions explored by the bargaining process define symmetrical Pareto frontiers. 

However, when different cost indices are given to the aircraft, the corresponding Pareto 

frontier is dissymmetrical and is located between the two symmetrical Pareto frontiers. 

Cutting the dissymmetrical Pareto frontier at the first bisector shows that it is formed by 

two legs that join the two symmetrical Pareto frontiers. The stars correspond to the costs 

of the negotiated trajectories finally obtained through the bargaining process. It can be seen 

that the resolution point associated with the asymmetrical pairing of cost indices is further 

away from the first bisector, which shows that the difference in cost between aircraft is 

higher. 
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FIGURE 23: COST DIFFERENCES BETWEEN NEGOTIATED TRAJECTORIES FOR EACH 

PAIRING OF COST INDICES  

 

 
FIGURE 24: COST PLANS OVERLAID FOR EACH PAIRING OF COST INDICES. RULE C, 

TYPES A320 & A320, INFINITE COST FUNCTION, FULL SPACE, N = 500. THE STARS INDICATE 

THE AGREEMENT POINTS 
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5.3.2 Design Variable: Maximum Number of Iterations 

The ‘maximum number of iterations’ design variable had no impact on the 

convergence of the bargaining process, since all of the 324 runs converged. However, as 

expected, Figure 25 shows that the average number of iterations required to solve the 

different pairwise conflicts increases linearly with the maximum number of iterations. 

 
FIGURE 25: AVERAGE ACTUAL NUMBER OF ITERATIONS VERSUS MAXIMUM 

NUMBER OF ITERATIONS 

 

The smaller the cost increment is, and the most precise the solution can be. 

However, no substantial gains were achieved by increasing the maximum number of 

iterations, and thus reducing the size of the cost increments of the personal trajectories. 

Figure 26 shows that the costs of the agreement trajectories were approximatively identical 

for the different maximum number of iterations tested. This shows that a value of 100 for 
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the maximum number of iterations yields small enough cost increments and therefore can 

be used for the large scale simulation presented in CHAPTER 6. 

 
FIGURE 26: AVERAGE COSTS OF THE NEGOTIATED TRAJECTORIES FOR BOTH 

AIRCRAFT VERSUS THE MAXIMUM NUMBER OF ITERATIONS 

 

5.3.3 Design Variable: Resolution Dimensionality 

An important result is that the final trajectories given by the bargaining process 

were identical whether it was exploring solutions separately within the 3 dimensions (speed 

changes, horizontal maneuvers, vertical maneuvers), or across all directions, allowing pair 

of negotiated trajectories in different dimensions. 

Thus, the full and partial ‘within-plane’ exploration of the feasible space gave the 

exact same outputs. An immediate consequence is that the computational efficiency of the 

bargaining process can be increased with no loss by only looking for pair of trajectories 

within the same dimension only. 
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5.3.4 Design Variable: Representing Performance Constraints 

This section presents the overall impact of the performance constraints on the 

bargaining process. Performance constraints only impacted runs where the bargaining 

process explored solutions close enough to the performance limits that penalty costs were 

added when using the finite or infinite cost functions, or that the feasible set was clipped 

such that an aircraft couldn’t offer higher cost personal trajectories. Two different 

situations are presented: where the performance constraints are hit but don’t impact the 

final solution and where they are hit and actually impact the final solution. 

5.3.4.1 Overall Impact 

The performance constraints were handled by either clipping the feasible set, or by 

adding penalty costs with the ‘finite’ and ‘infinite’ cost functions. An intuitive result is that 

the negotiated trajectories calculated using the finite and infinite cost functions have higher 

margins with respect to the performance limits of the aircraft, as shown by Figure 27. 

Another result is the fact that the total cost of the negotiated trajectories (assessed 

using the real, unmodified cost function), was on average lower for the resolutions 

negotiated when performance constraints were represented by clipping the feasible set than 

the ones representing performance constraints with the finite and infinite cost functions, as 

shown by Figure 28. Hence clipping the feasible set yields negotiated trajectories that are 

more efficient on a global perspective, but that have lower margins with the performance 

constraints. 
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FIGURE 27: AVERAGE SPEED MARGIN WITH THE PERFORMANCE LIMITS VERSUS 

THE REPRESENTATION OF PERFORMANCE CONSTRAINTS 

 
FIGURE 28: AVERAGE TOTAL COST VERSUS THE REPRESENTATION OF 

PERFORMANCE COSNTRAINTS 
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5.3.4.2 Performance Constraints Hit at the Beginning of the Bargaining 

A first case is presented in which performance constraints are hit through the 

bargaining process but the final agreement point is far from the performance limits. 

Initially, the bargaining process started by selecting vertical maneuvers. However, these 

trajectories were close to the aircraft’s maximum altitude and, after enough iterations in 

the bargaining process, the aircraft couldn’t offer to go up anymore without hitting the 

constraint. At that point, they switched to feasible trajectories in the horizontal plane far 

from the constraints. 

 
 

FIGURE 29: PERFORMANCE CONSTRAINTS HIT AT THE BEGINNING OF THE 

BARGAINING. RULE B, COST INDICES 10% AND 10%, TYPES A320 & A320, INFINITE COST 

FUNCTION. FULL SPACE, N = 100 
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This situation is shown on Figure 29, in a case using the ‘infinite’ cost functions to 

represent performance constraints. With the initial up/down resolutions, additional costs 

were introduced to penalize the proximity to altitude constraints, such that a small change 

in altitude incurred a high cost increment. Therefore, each aircraft could offer a trajectory 

with almost no significant changes that will meet the requirement for increased cost. This 

explains why the sequence of up/down proposed resolutions form nearly vertical and 

horizontal lines in the figure. Once the proposed vertical trajectories grew in cost to have 

the same costs as horizontal trajectories, the negotiation switched to the horizontal 

dimension and the subsequent bargaining follows. 

 
 

FIGURE 30: STEPS VISUALIZATION GRAPH. RULE B, COST INDICES 10% AND 10%, 

TYPES A320 & A320, INFINITE COST FUNCTION. FULL SPACE, N = 100 
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Figure 30 shows the response trajectories costs in function of the personal 

trajectories costs in that particular situation where constraints are hit at the beginning of 

the bargaining. Response trajectories costs remain high, at the same level as the initial 

response costs, until aircraft switch to horizontal maneuvers. The assumption that the initial 

response trajectories costs are the maximum costs that could be incurred to the aircraft is 

still verified here even though response costs are not anymore strictly decreasing as 

personal costs increase. 

 

 
FIGURE 31: PERFORMANCE CONSTRAINTS HIT AT THE BEGINNING OF THE 

BARGAINING. RULE B, COST INDICES 10% AND 10%, TYPES A320 & A320, CLIPPED FEASIBLE 

SET. FULL SPACE, N = 100 
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Figure 31 depicts the same situation than before but this time using the ‘clipped’ 

feasible set. The only difference with Figure 29 corresponds to the points located close 

enough to the constraints that their costs differ when using the finite or infinite cost 

functions. The ‘staircase pattern’ that can be observed can be explained by the fact that 

response trajectories are computed by moving along the dimensions by slight geometrical 

increments of finite size. When successive offered trajectories don’t provide large enough 

geometrical shifts, the other aircraft are forced to keep the same response trajectories, until 

there is enough space to gain one geometrical increment. Graphically, this corresponds to 

the gap between successive horizontal lines and vertical lines. 

 

5.3.4.3 Agreement Point on the Boundaries of the Flight Envelope 

A second case is presented here in which the final solution found by the bargaining 

process is located close to the performance limits of the aircraft. In this situation, the cost 

plans graphs are highly dependent on the representation of the performance constraints 

chosen. 
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FIGURE 32: FINAL AGREEMENT POINT CLOSE TO THE PERFORMANCE 

CONSTRAINTS. RULE A, COST INDICES 90% AND 90%, TYPES A320 & A320, CLIPPED 

FEASIBLE SET. FULL SPACE, N = 200 
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FIGURE 33: STEPS VISUALIZATION GRAPH. RULE A, COST INDICES 90% AND 90%, 

TYPES A320 & A320, CLIPPED FEASIBLE SET. FULL SPACE, N = 200 

 

In Figure 32, depicting the use of the clipped feasible set, aircraft first propose 

speed changes where one accelerates and the other decelerates. However before negotiating 

a solution, one or both aircraft reach their maximum speed and cannot propose to increase 

speed anymore. This means that aircraft can then only offer trajectories in five directions 

instead of six, forcing them to switch to other dimensions with higher costs. It is interesting 

to note that the assumption that the initial response costs are the highest ones is broken 

here: response costs keep increasing through the bargaining process goes, as shown on 

Figure 33. After each iteration, aircraft offer to descend more and more, and since they 

can’t respond by climbing because they are already flying at maximum altitude, they are 
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forced to descend even more: they are ‘pushed down’. Even if the response costs incurred 

are increasing, they appear to be still lower than the response trajectories they could get by 

looking in other directions and that is why they are selected by the bargaining process. The 

cost requirements keep increasing until they finally offer personal trajectories where they 

slow down enough that they could respond by accelerating and exactly solve the conflict 

by flying at maximum speed: they switch back to the speed dimension, but this time, 

offered trajectories correspond to decelerations and response trajectories to accelerations. 

The agreement is reached at that point because at least one aircraft get a response trajectory 

cost lower than its offered trajectories costs but the symmetry of the solution is broken 

here. The cost of aircraft 2 is twice the one received by aircraft 1, even though the conflict 

situation considered here was symmetrical with identical aircraft and identical cost indices. 
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FIGURE 34: FINAL AGREEMENT POINT CLOSE TO THE PERFORMANCE 

CONSTRAINTS. RULE A, COST INDICES 90% AND 90%, TYPES A320 & A320, INFINITE COST 

FUNCTION. FULL SPACE EXPLORATION, N = 200 
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FIGURE 35: FINAL AGREEMENT POINT CLOSE TO THE PERFORMANCE 

CONSTRAINTS. RULE A, COST INDICES 90% AND 90%, TYPES A320 & A320, FINITE COST 

FUNCTION. FULL SPACE, N = 200 

 

On Figure 34 and Figure 35, the bargaining process uses respectively ‘infinite’ and 

‘finite’ cost functions to solve the same conflict situation as before. Therefore, proximity 

to performance constraints is now penalized. The resulting cost plans of the bargaining are 

very similar. Aircraft only explore solutions in the speed dimension because they can keep 

offering trajectories by accelerating without reaching their maximum speed. Indeed, 

smaller and smaller velocities increases will keep satisfying the increasing cost 

requirement, and yield almost the same response trajectories as the geometry of the offered 

trajectories remain almost unchanged. An agreement is finally reached when the vertical 

and horizontal lines on the cost plan cross each other. The observed solution costs are close 
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for the two aircraft when using the modified cost function, but not at all when the negotiated 

trajectories are assessed using the real cost function. Indeed, one of the aircraft is almost 

not modifying its trajectory and the other aircraft has to do all the work by decelerating. 

As shown in Figure 36, the speed margin of the solution obtained with the clipped 

feasible set is very low (2.52 knots). The margins obtained with the infinite and finite cost 

functions are much higher, meaning that aircraft stay further away from the performance 

limits, which was expected since constraints are penalized. In terms of performance, 

however, the solution obtained with the clipped feasible set is more efficient than the 

solutions obtained with the finite and infinite cost functions and has a lower total cost, as 

shown in Figure 37. 

 
FIGURE 36: SPEED MARGIN WITH MAXIMUM SPEED VERSUS THE REPRESENTATION 

OF PERFORMANCE CONSTRAINTS. RULE A, COST INDICES 90% AND 90%, TYPES A320 & 

A320, FULL SPACE EXPLORATION, N = 100 
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FIGURE 37: TOTAL COST VERSUS THE REPRESENTATION OF PERFORMANCE 

CONSTRAINTS. RULE A, COST INDICES 90% AND 90%, TYPES A320 & A320, FULL SPACE 

EXPLORATION, N = 100 

 

5.3.5 Dependent Variable: Total Cost Analysis 
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aircraft is maneuvering, as shown in Figure 38. Solving a conflict situation with the 

bargaining process is, for a global point of view, more efficient than a one aircraft 

maneuvering solution if the total cost of the negotiated trajectories is found to be lower. 

 
FIGURE 38: THE SQUARE INDICATES THE FICTIVE SOLUTION POINT ACHIEVED BY 

THE GROUND CONTROLLER, MEAN OF THE FEASIBLE POINTS EXPLORED AT STEP 0 

DURING THE BARGAININNG PROCESS, WHILE THE STAR INDICATES THE SOLUTION 

ACHIEVED BY THE BARGAINING PROCESS 

As shown in Figure 38, a geometrical sufficient condition for the solution provided 

by the bargaining process to be more efficient than the one aircraft maneuvering solution 

is to obtain a convex Pareto frontier on the cost plan. If the bargaining solution is ‘above’ 

the dashed line that links the initial explored feasible points, then the one aircraft 

maneuvering solution will be more efficient, limiting the interest of the bargaining process. 
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FIGURE 39: TOTAL COST COMPARISON ACROSS CONFLICT SCENARIOS USING THE 

CLIPPED FEASIBLE SET 

 

Figure 39 shows that, for about 80% of the runs, the bargaining process was more 

efficient than the random choice of one aircraft doing all the maneuvers. Half of the conflict 

situations where the single aircraft maneuvering solution is more efficient than the 

bargaining solution don’t display any significant difference in total cost. However the 

remaining cases show a strong difference where the one-aircraft-maneuvering solutions 

seem to be much more efficient in terms of total cost. These cases are those where 

performance constraints impact the bargaining process, such as the example case shown in 

Figure 40 in which the bargaining solution converged on a resolution requiring roughly 

twice the cost of either aircraft maneuvering alone. Across all the conflict scenarios, the 

bargaining solution is on average about 16% more efficient than the single aircraft 

maneuvering solution in terms of total cost. 
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FIGURE 40: EXAMPLE OF CASE FOR WHICH THE SINGLE MANEUVERING AICRAFT 

SOLUTION HAS A LOWER TOTAL COST THAN THE BARGAINING SOLUTION. RULE A, COST 

INDICES 10% AND 10%, TYPES A320 & A320, CLIPPED FEASIBLE SET. FULL SPACE, N = 100 

 

5.4 Summarized Results and Observations 

No resolution was selected in multiple dimensions across all of the 324 runs. This 

is likely to be interpreted as the fact that, when a personal trajectory is offered in a given 

dimension, the space freed in the opposite direction in that same plane allows the other 

aircraft to find lower cost response trajectories in that particular direction. Therefore it is 

sufficient to only look for response trajectories in the same dimension as the personal 

trajectory considered. This means that a partial search of the resolution space leads to the 

same results as the full search where response trajectories are computed in all the 

dimensions. Instead of computing six response trajectories per offered trajectory, only two 
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are considered, increasing the computational efficiency by a factor of three for the exact 

same outcome. 

The representation of performance constraints has a real impact on the bargaining 

solution only when a trajectory lies close enough to the performance limits, meaning that 

the different representations of performance constraints will yield different agreement 

points. In this case, penalizing the constraints by using the finite or infinite cost functions 

for the bargaining process will lead to solutions further away from the performance limits. 

This has one benefit and one drawback: it will yield increased safety margins but will 

provide negotiated trajectories that have, in general, higher total costs than the ones 

obtained using the clipped feasible set. Therefore it could be interesting for the operational 

community to assess the cost of flying too close to the performance limits to define a finely 

tuned penalty cost for the performance constraints. This could be done, for example, by 

trying to quantify the additional costs incurred by ‘flying not safely’. 

Looking at total cost, on average, the bargaining process led to more efficient 

trajectories than single aircraft maneuvering conflict resolutions. However, the conflict 

situations in which the single aircraft maneuvering solutions are more efficient than the 

bargaining solution could be more frequent in real operations. Thus it would be interesting 

to confront this bargaining process with a more realistic situation and make the same 

efficiency analysis. This is the purpose of CHAPTER 6 where a large scale simulation is 

performed. This also allows for the study of additional problems such as downstream 

conflicts that can only arise when more than two aircraft are considered.  
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CHAPTER 6:  LARGE SCALE SIMULATION 

This chapter describes the demonstration of the bargaining process in a large scale 

simulation that represents more ‘realistic’ conditions. Based on the conclusions drawn in 

5.4, the resolution trajectories were only computed in the same dimension as the given 

personal trajectories, drastically improving the computational efficiency of the bargaining 

process. In addition, the performance constraints were represented by clipping the feasible 

set without modifying the cost function. 

 
FIGURE 41: ALL THE TRAJECTORIES COMPUTED DURING THE SIMULATION 

VISUALIZED ON GOOGLE EARTH. THE BOUNDARIES OF THE INDIANAPOLIS CENTER WERE 

NOT DRAWN BUT ARE NATURALLY DELIMITED. 
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This large scale experiment simulated about 1200 aircraft as they fly through the 

Indianapolis Area Control Center. The Indianapolis Center, whose boundaries are depicted 

on Figure 41, is a facility responsible for controlling aircraft en route in the Indianapolis 

Flight Information Region (FIR) at high altitudes. The flight plans and aircraft types have 

been taken from real Enhanced Traffic Management System (ETMS) data over five hours. 

The initial traffic sets were filtered to only keep aircraft whose start and end waypoints 

were above 17000 feet, so that the aircraft could be considered as en route. In addition, 

initial trajectories were optimized to minimize their cost using of the golden ratio 

optimizer, so that any trajectory modification would increase cost. For some unusual types 

of aircraft, this process failed, leading to trajectories that the aircraft were not able to. About 

300 aircraft were filtered out. Finally, 1184 aircraft and associated optimal flight plans 

were defined. 

The conflict detector was used to maintain the list of all the future conflicts that 

would have occurred if nothing was done to solve them. Each conflict resolution was then 

triggered 300 seconds before the conflict and was guaranteeing conflict-free trajectories 

with a look ahead time of 600 seconds. By comparing the list of all the future conflicts 

before and after each resolution, the potential downstream conflicts that could be generated 

were identified and counted. 

The goal of this large scale simulation was not to conduct once more the analysis 

of the different metrics presented in CHAPTER 5 but to gather a little information on 

concerns that arise when more than two aircraft are involved. Specifically, the risk of 

generating downstream conflicts is analyzed, as well as the possibility of getting 

unresolved conflicts. A total cost analysis is also once more conducted. 
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6.1 Overall Performance of the Bargaining Process 

During the simulation, 538 conflicts were detected and a total of 532 were 

successfully solved using the bargaining process designed in this thesis. Examining the 

dimension of the resolution, 43% of the conflicts were solved in the horizontal plane, 47% 

were solved with vertical maneuvers, and about 10 % only were solved using accelerations 

and decelerations. 

Compared to the results of the pairwise conflicts experiments, the fraction of 

conflicts solved with shifts of the cruising altitudes is substantially higher. The pairwise 

conflicts were designed so that the aircraft initial trajectories were always at the same 

altitude. In the large scale experiment however, each aircraft is flying at its optimal altitude 

according to its own performance model. This increases the likelihood that a conflict occurs 

where the two involved aircraft are not flying at the same altitude. Therefore, a smaller 

change of altitudes was often sufficient to resolve the conflict. 

Another interesting fact is that most of the negotiated trajectories were found quite 

far from the performance constraints. About only 4% of the negotiated trajectories were 

found with less than a 50 knots margin from maximum and minimum speeds. On the other 

hand, about 2% only of the negotiated trajectories were found with less than a 100 feet 

margin from the minimum and maximum altitudes. This gives more credit to the 

representation of performance constraints by clipping the feasible set rather than 

consistently needing to apply the finite or infinite cost modifications to drive the 

trajectories away from the performance constraints. 
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6.2 Downstream Conflicts 

The bargaining problem that was designed in this thesis only focuses on solving 

pairwise conflicts. An immediate issue with such an approach is that solving a conflict 

between two aircraft may create subsequent “downstream” conflicts with other aircraft. 

The worst case would be a chain reaction where for example each conflict resolution 

generates 2 or more additional conflicts that will themselves generate even more and more 

conflicts. 

To detect downstream conflicts, the total number of conflicts detected after a given 

conflict resolution was compared to the total number of conflicts that occurred before the 

conflict resolution of the 538 conflicts during the simulation, 11.6% generated downstream 

conflicts. Then, 1.5% generated more than one downstream conflict. 

 

6.3 Unresolved Conflicts 

Examining the six unresolved conflicts, all of them were due to ill conditioning in 

how their trajectories were defined. In some cases, the aircraft trajectories started with the 

aircraft in conflict, and in other cases the aircraft trajectories were required to end as they 

exited the airspace at fixed locations which were so close to the conflict that they limited 

the resolution. General concerns with both of these issues relate to conflicts occurring near 

airspace boundaries or near fixed waypoints. 
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6.4 Total Cost Analysis 

As previously done in 5.3.4, a total cost analysis compared the total cost of the 

bargaining solution to the total cost if one aircraft was maneuvering alone, as shown in 

Figure 42. The square marks, corresponding to the bargaining solutions are clearly lower 

than the circle marks, showing that bargaining process is more efficient in most cases. On 

average, using the bargaining process induces a 29% total cost reduction. The bargaining 

process appeared to be more efficient about 80% of the time, and only 3% of the conflicts 

were significantly better handled using single aircraft maneuvering, with more than a 10% 

total cost reduction. 

 
FIGURE 42: TOTAL COST COMPARISON ACROSS ALL OCCURING CONFLICTS IN THE 

LARGE SCALE EXPERIMENT 
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6.5 Summary and Observations 

This large scale experiment assessed the performance of the bargaining process in 

a more realistic scenario. It was shown that the negotiating process was able to solve all 

the conflicts that occurred, apart from only six ill-conditioned conflicts, and the resolutions 

were significantly more efficient than single aircraft maneuvering conflict resolutions. 

Since the resolutions only addressed an immediate pairwise conflict, the problem 

of downstream conflicts was analyzed. In this airspace, 10.1% of the resolutions generated 

a single downstream conflict, and a further 1.5% generated two or more downstream 

conflicts. Thus, this method of conflict resolution was – in this scenario – stable in terms 

of reducing the number of conflicts. Of course, other airspace configurations and different 

traffic densities may respond differently and would warrant examination.  
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CHAPTER 7:  CONCLUSION 

7.1 Summary 

Starting from the observation that new technologies such as ADS-B and GPS can 

enable decentralized air traffic of operations designs, this thesis aimed at constructing a 

decentralized conflict resolution as a bargaining process building on game theory. 

The first challenge addressed by this bargaining process is the fact that aircraft are 

not willing to share crucial information required to evaluate the costs of the trajectories. 

For example, aircraft don’t communicate their cost index, which is however central in the 

cost calculation of a resolution trajectory. Thus, this pairwise sequential bargaining process 

was designed so that aircraft negotiate the final trajectories they will fly to avoid the 

conflict. Iteratively, they are required to compromise by offering trajectories of 

progressively greater cost to themselves until they find an agreement. The complexity of 

this design develops from the high dimensionality of the resolution space and the 

performance constraints of the aircraft limiting the feasible set of feasible resolutions. 

The problems of performance constraints and multidimensionality of the resolution 

space were explored by two design variables in the bargaining process. The first design 

variable examined different methods of representing the performance constraints through 

the use of different cost functions or by clipping the feasible set of resolutions. The second 

design variable evaluated two different ways of exploring the dimensionality of the 

resolutions. 
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The pairwise conflicts experiment assessed the impacts of the two design variables 

on the outcome of the bargaining process. The main conclusions were: 

 The negotiated trajectories were always in the same dimensions. Hence a 

partial search of the resolution space for only trajectories that are in the same 

dimensions is enough. This increases the computational efficiency of the 

bargaining process without losing performance. 

 Representing performance constraints by modified cost functions that add 

costs with proximity to the flight envelopes of the aircraft created 

resolutions that are further from these constraints. However the total cost of 

these solutions increased. 

This study was followed by a proof-of-concept experiment: a large scale 

experiment in which more than a thousand aircraft were simulated as they flew over the 

Indianapolis Center. The traffic sets were taken from real data and the performance of the 

aircraft was modelled as realistically as possible. 

The overall performance of the bargaining process in this large scale experiment 

was given along with the analysis of more operational issues including downstream 

conflicts and unresolved conflicts. The main conclusions and observations drawn by this 

demonstration were the following: 

 The bargaining process was quite effective in the sense that all the conflicts 

were resolved except for six ill-conditioned cases. 

 Downstream conflicts were generated, but “chain reactions” were not 

generated. 
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 All the dimensions were used for the resolutions, but horizontal and vertical 

maneuvers were in general preferred to speed maneuvers. 

 The comparison with single maneuvering aircraft solutions showed that the 

bargaining was significantly more efficient. 

7.2 Contributions 

This thesis laid down the foundations of a sequential bargaining process to solve 

pairwise conflicts in a decentralized air traffic concept of operations. Different specific 

issues related to conflict resolutions such as the representation of performance constraints 

of the aircraft or the high dimensionality of the resolution space were addressed and studied 

through a series of pairwise conflicts experiments. 

This sequential bargaining process was demonstrated on a fairly realistic simulation 

given its large scale, where data came as much as possible from the real world. This study 

explored operational issues such as downstream conflicts. A comparison with single 

maneuvering aircraft resolutions was performed using total cost metrics, and showed that 

the bargaining process led to a substantial increase of efficiency. 

7.3 Future Work 

Several further aspects of the bargaining process warrant further research. First, the 

representation of performance constraints had significant impacts on the negotiation and 

resulting total cost of the resolution. It could be therefore interesting to refine as much as 

possible these representations. For example, cost barriers could be added only for specific 

performance limits considered to be critical, or tailored to reflect the severity of the 

constraint. Further, the constraints could be expanded to reflect not just the aircraft 
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performance, but also operational factors such as no-fly zones or limits imposed to mitigate 

downstream conflicts. 

Another aspect worth investigating is the game theory optimization of private 

parameters such as cost indices. Let’s consider, for example, two airlines with different 

private parameters settings. Airlines could potentially choose their private information to 

create asymmetries in the negotiations to their benefit. Airlines could therefore try to infuse 

the asymmetry of the conflict situations to get cheaper resolution trajectories. 

The bargaining process was tested in this thesis in a large scale experiment that was 

meant to be closer to reality than simple pairwise conflicts. However, it should also be 

tested in other sorts of airspace and different traffic densities. Such a study could identify 

conditions that might lead to instability in terms of downstream conflicts. 

The bargaining process could also be further optimized to be more computational 

efficient. A smaller number of cost increments, i.e., 𝑛, could for example be assumed at 

the first place, and augmented in case of an overshoot in the solution. A simple checker 

could examine for this overshoot. 

A last interesting point would be to try to bridge the gap between the strategic 

approach that we used to build the bargaining process and the existing axiomatic bargaining 

solutions developed in the literature. Starting from the bargaining process designed in this 

thesis, this would require formal proof that the several axioms listed in 2.6 are verified, at 

least for an identified reduced set of conflicts, and then demonstration that the bargaining 

process defined does converge towards one of the defined axiomatic bargaining solutions.  
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