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Abstract 
 

The behaviour of surfactant at an oil-water interface is of fundamental importance across a 

range of application, one of which is detergency.  For the characterisation of various anionic 

and non-ionic surfactants, which make up commercial detergent solution, at the aqueous-

organic interface, electrochemical methods combined with conductivity, electrocapillary 

curves and optical microscopy were employed. The findings have revealed that the adsorption 

and partitioning of the anionic surface active ions at the interface between two immiscible 

electrolyte solutions can cause reproducible chaotic effects at the region of transfer potentials 

of the surfactant ions. Factors such as the Marangoni effect and spontaneous emulsification 

at the phase boundary, as well as the presence of micelles, micellar emulsification and 

transfer of emulsion droplets across the interface have been found to contribute to these 

chaotic currents at the organic-water interface.  By applying cyclic voltammetry and 

chronoamperometry techniques, it was established that the irregular oscillations became 

more pronounced as the concentration of sodium dodecylbenzene sulphonate (SDBS) was 

increased from 1.5 mM -13.4 mM and the current spikes dissipated as the concentration of 

triton- x- 114 was increased from 8.6 mM - 114 mM in the aqueous phase consisting of 13.4 

mM of SDBS. Similar results were obtained using P&G’s Y and N surfactants.  The rise in 

current instability due to enhanced concentration of the SDBS, which was used as the 

standard surfactant, was confirmed using chronoamperometry, conductivity measurements 

and electrocapillary curves.  The interfacial instability was prominent in the presence of 

electrolytes at the aqueous-1,2-DCE/oil phase boundaries which was visually evident in the 

optical microscopic images obtained. Furthermore, needle-like crystals were identified at the 

aqueous-1,2-DCE interface with electrolytes, with and without the addition of anionic/non-

ionic surfactants.  This suggests that a crystallisation process was initiated by the presence of 

dehydrated salt ions at the phase boundary, which is likely to be promoted by the surfactant 

ions.                                                                                                                                 

      Lard has been used as the fat ‘model’ for washing experiments since it is composed of 

more problematic high melting point components compared to other sources of fat.  Lard was 

deposited onto fabrics and left to age over a period of 4 hours at 20 oC and also, at the 

temperatures of -10 oC, 10 oC, 20 oC and 30 oC for 5 days. These samples, when analysed using 

the small angle X-ray scattering (SAXS) technique, revealed peaks at 2  values of 2o and 2.6 o 

with d-spacing values of 43.2 Å - 44.3 Å, indicating the existence of the most 

thermodynamically stable β’ and β polymorphs.  This was confirmed using the wide angle X-
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ray scattering (WAXS) technique, which showed presence of β’ crystals on soiled fabrics left to 

age overnight and also, for 30 days with and without the application of detergent at 20 oC.  

Soiled fabrics washed with a low concentration (0.7 mg/mL), a high concentration (50 mg/mL) 

and no C24E3S surfactant when analysed using SAXS displayed formation of only the β’ and β 

polymorphs.  It was observed that the most effective method for lard removal was via 

emulsification and roll-up mechanisms along with agitation generated by the propeller, in the 

presence of a low C24E3S surfactant concentration.   Polyester swatches were found to 

exhibit greater lard removal at low and no surfactant concentration while cotton fabric 

showed better lard removal comparing to other types of fabrics used, when a high surfactant 

concentration was applied.   

      The effectiveness of enzymes such as NAD+-dependent diaphorase (DP) and glycerol 

dehydrogenase (GDH), which are required for the breakdown of glycerol (a product generated 

by lipolysis of triglycerides in the presence of lipase enzymes), were investigated using 

immobilised sol-gel/FcAuNP/enzymatic carbon macro- and screen printed electrodes.  The sol-

gel/FcAuNP/enzymatic biosensors have demonstrated low Km values of 4.9 + 0.01 mM and 5.4 

+ 0.01 mM, respectively, compared to the literature value of 9.9 mM. This indicates enhanced 

electron mediation between the re-dox centre of the GDH enzyme and the electrode surface 

and, the attainment of higher affinity for the glycerol substrate. The immobilised sol-

gel/FcAuNP/ NAD+ - dependent DP and GDH enzymatic SPE is capable of detecting a wide 

range of glycerol concentrations from 0.2 mM to 24.8 mM, exhibit a fast response time and a 

correlation coefficient of 0.9988 was also attained.  The inexpensive, simple to use and easily 

disposable miniature biosensor has displayed other desirable characteristics such as 

reusability, reproducibility, real-time monitoring, high sensitivity and selectivity for glycerol. 
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INTRODUCTION – the history on the 
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water interface using electrochemical and 

crystallisation techniques is illustrated. 

Chapter 2 

GENERAL THEORY – detailed theory on the 

application of interface between two 
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BIOSENSOR FOR GLYCEROL DETECTION - sol-

gel/ferrocenated gold nanoparticle 
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Chapter 6 
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and polyester fabrics have been exposed to a 
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CHAPTER 1 

Introduction 
 

1.1 Introduction to laundry detergent 

 

Over the years, the detergent industry has contributed immensely towards improving the 

health of the human race via averting the spread of diseases and infections.  By continuous 

improvement of hygiene conditions, the quality of life of the consumers has also enhanced 

with time.   Archaeological evidence shows that soap was first invented and used around 2800 

BC1. In Europe, by the seventh century manufacturing soaps was well-established.  The first 

ever synthetic detergent was developed in 1916 by the Germans as result of fat shortage 

during World War I2.  However, it was only in the early 1940s when the revolution in 

detergency-making was initially acknowledged due to the discovery of built detergents which 

were then made available in the markets, in the United States3. Following this, a variety of 

other detergent-based products appeared on the market, which was designed for cleaning 

floors, dishes and laundry. The demand for these types of new products in the market even to 

this date is extremely high and the detergency industry is still expanding especially in the 

developing world as more people are able to afford these “luxurious” products.  In the 

developed world such as in the North America and Europe on the other hand, the market for 

the household/personal care products is still growing, however at a much slower pace 4.          

      The household/personal care products can be categorised according to: (1) the type of 

product i.e. powders, liquids, gels or tablets, (2) the cleaning functionality such as 

fine/coloured/non-coloured fabrics, woollens or kitchen cleaners, (3) product-added values 

for instance, cleans and softens or disinfects and (4) aesthetics like colours and fragrances 

which enhances the desirability of the substance 5,6,7,8.  The compositions of these products 

have become more complex over time as technology is continuously developing and much 

improved/automatic appliances like washing machines, dishwashers, self-cleaning ovens and 

microwaves are manufactured.  Other essential points which need to be considered when 

developing the household/personal care goods include the requirement of minimum effort 

and shortest time for application and also, to ensure that the products are environmentally 

friendly/safe to use as well as biodegradable9.  At the same time, the detergent must be able 

to display better performance in terms of removing a wider range of soils and substrates from 
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various types of fabrics (like cotton, polycotton polyester or wool) under different cleaning 

conditions (i.e. different wash temperature and varying level of water hardness depending on 

the amount of calcium or magnesium present in the water) 10.  The wash conditions and the 

method for cleaning clothes vary from country to country and at each home 11.  Additional 

aspects for example, fibre content, colour, dye-fastness, type of fabric, sturdiness and fragility 

as well as the economical factor at different countries, availability of raw materials and skilled 

formulator can also have an impact on the way the products are formulated 6.                 

      A laundry detergent is usually composed of a mixture of raw materials which includes 

surfactants, builders, bleaching agent, softeners, enzymes, brighteners and fragrances which 

are required for example, to improve detergency and prevent soil redisposition12.  Detergency 

can be described as the process of removal of unwanted substances like soils from solid 

surfaces of textiles when brought into contact with a liquid. The removal of soils depends on a 

number of factors and these include mechanical action of the washing machine, the type of 

detergent and substrate involved13. Detergency testing is important for developing detergent 

formulation, improving the design of washing machines and textile fibres and finishes. The 

effectiveness of detergency is therefore determined by chemical analysis, physical 

measurements, toxicological and ecological examination and functional ability of the 

detergent.  The functionality of a detergent is based on how efficiently it can remove soil and 

lead to soil degradation in the presence of enzymes or bleach.  Factors like the level of water 

consumption and energy input are also considered when developing personal care products 

such as laundry detergents 14.  

 

1.2 PhD objectives 

 

The objective of this work is to understand the physical chemistry behind the swelling of solid 

fatty soil to enable the development of new detergent technologies for cold water cleaning 

(sustainability). Removal of solid fatty soils remains extremely challenging despite decades of 

research in industry as the environmental drive for lower washing temperatures means that 

the fat deposits often exist in solid form at these low temperatures.  This is further 

exacerbated by the fact that fats crystallise into different polymorphs and their influence on 

fat removal remains not fully understood. This PhD work mainly focuses on how the fats/oils 

behave at low temperature and also investigates the effect of two widely used ingredients in 

the detergent formulation which are the surfactants and the lipase enzymes, at the oil/water 

phase boundary.  The key mechanisms via which surfactants function at the oil/water 
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interface are emulsification, roll-up or solubilisation15.  Emulsification involves reduction of the 

interfacial tension at the oil-water interface16 while the fabric surface-water interfacial tension 

is lowered by the deposition of surfactant molecules at the interface as a result of roll-up 

mechanism16.  Another effective mechanism via which soils are removed from fabrics is 

solubilisation.  This involves micelles breaking down the soils into smaller fragments held 

within the micellar core when there are excess amounts of surfactant relative to oil present 17.  

The lipase enzymes on the other hand mainly act by catalysing the cleavage of carboxyl ester 

bonds in tri-, di- and monoacylglycerols which are major constituents of animal, plant and 

microbial fats and oils.  Consequently, hydrolysis of the triglycerides leads to generation of 

products such as carboxylic acids, glycerols and alcohols 18.                     

      In recent years, various techniques such as the dynamic interfacial tension 19,20,sum 

frequency scattering21, neutron reflectometry22, phase contrast microscopy23,24,25, 

fluorescence microscopy25 and Brewster angle microscopy26 have been used to characterise 

surfactants at the oil/water phase boundary.  Whereas, the lipase activity has been 

investigated using a range of methods which include volumetry27, colorimetry and 

spectrophotometric measurements 27,28,29, cryogenic transmission electron microscopy30, 

Infrared spectroscopy 31,32, fluorometry 33, and chromatography 34,35,36. However, all of the 

above methods/techniques reported require extensive sample preparation and were found to 

be much more time-consuming compared to methods at the liquid-liquid interface which have 

been used in this study to obtain in depth information on surfactant mechanisms (i.e. 

surfactant adsorption, Marangoni effect and micellar emulsification) that occur at the oil and 

water interface.  Furthermore, quick and non-destructive X-ray diffraction (i.e. small-angle X-

ray scattering (SAXS) and wide-angle X-ray scattering (WAXS)) techniques were used to 

investigate the change in the polymorphic state of fats whilst varying the temperature and to 

examine the effectiveness of the surfactants on removing different kinds of fat polymorphs 

from various types of fabrics, under cold water wash conditions where the wash temperature 

was kept constant at 20, 30 and 40 oC.  On the other hand, for the rapid detection of lipase 

enzyme activity, sol-gel/ FcAuNP (ferrocenated gold nanoparticles)/NAD+ (Nicotinamide 

adenine dinucleotide) - dependent DP (diaphorase) and GDH (glycerol dehydrogenase) based 

macro- and screen printed electrodes (SPEs) has been developed.  The modified enzymatic 

SPEs are simple yet cost-effective and easily disposable after use while simultaneously the 

biosensors were found to display additional desirable characteristics such as higher sensitivity, 

selectivity and specificity when compared to other methods available.  
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CHAPTER 2 
 

Fundamental of electrochemistry 
 

2.1 Review of liquid-liquid interface between two immiscible electrolyte solutions 

The application of electrochemistry at the liquid-liquid interface between two immiscible 

electrolyte solutions (ITIES) have advanced significantly over the last three decades although it 

has been established since the end of 19th century. Ion partition equilibria at the interface 

were first studied by Walther Nernst in 1892. Nernst derived the fundamental relationship 

relating potential difference of the inner potentials to the ratio of ion concentrations in the 

aqueous and organic phases1. Following this, the first ITIES experiment was performed by 

Nernst and Riesenfeld in 1902, which involved investigating the current change due to transfer 

of iodide ion at a water-phenol interface2.  Other  interfacial characteristics such as the 

theoretical model of the diffuse double layer at the liquid-liquid interface was then proposed 

by Verwey and Niessen in 1953 3.                      

      The initial electrochemistry experiments were initiated by Claude Gavach using the 4-

electrode system methodology in order to examine the transfer of  tetraalkylammonium 

cations across the ITIES, in 19684.  The next major development in the field of electrochemistry 

was proposed by Koryta et al. in 1977, who suggested that the ITIES had similarities to that of 

a biological membrane surface and also, it can behave as a polarised electrode under specific 

conditions.  Kortya’s research led to the realisation that the transfer of ions across the ITIES 

resembles the redox reactions at the electrode surface5.  These remarkable findings and the 

theoretical concepts developed led to in depth understanding about the structure of the 

interface and charge transfer mechanisms between the two immiscible solutions. 

Furthermore, based on the theory and the experimental work performed on the liquid -liquid 

interface, Osakai et al. and Sanchez et al. produced an ITIES model for determining the Gibbs 

free energy transfer of hydrated ions across the interface formed between the water and 

organic phases6.                                       

      Another major breakthrough in the field of electrochemistry was made by Samec et al., 

using a 4-electrode potentiostat viable results was obtained for the Cesium (Cs+) ion transfer 

from water to the nitrobenzene phase without ohmic potential drop interference at the 

interface7.  The potentiostat system involved use of two counter electrodes and two reference 

electrodes, one for each phase and, a feedback correction to eliminate the potential drop8.  
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Further to this, Baruzzi and Uhlken successfully developed a method involving use of a 4-

electrode potentiostat with current interruption technique for the eradication of ohmic 

potential drop and to allow sampling of real interfacial voltage9.  In 1986, Taylor, Girault and 

Senda et al. eliminated the potential drop from the electrochemical system by introducing 

liquid-liquid micro-ITIES, which is either supported at the tip of a pulled glass micro-pipette or 

within a micropore array10.  The asymmetry in ion transfer, as a result of the ions being 

transported from the micro-pipette to the surface and from the outside of the pipette to the 

surface was used to study charge transfer at the micro-ITIES.  An alternative approach was 

developed by Albery et al. using a rotating diffusion cell which was later modified by 

Mazanares et al. to study the rate constant of ion transfer kinetics across the liquid-liquid 

ITIES11. Further to this, Wilke et al. derived a method for the determination of ion transfer 

mechanism across the liquid-liquid interface, which involved stirring the aqueous  and organic 

phase during the potential sweep 12.                           

      The wide variety of applications has made the use of ITIES one of the most popular 

methods for studying numerous electrochemical reactions at the interface.  For example, ITIES 

can be used as chemical sensors13, for ion-selective electrodes14,15, for electrochemical 

extraction procedures such as selective ion separation from a mixture depending on the 

potential applied16, for controlling mass transport in a system, for catalysis processes and 

biological reactions, to monitor ion transfer across the liquid-liquid interface and also, to 

quantify metals ions in the contaminated water17.  

 

2.2 Electrochemistry at the liquid-liquid interface between two immiscible electrolyte 

solutions 

In an ITIES system, an interface is referred to as the formation of a phase boundary between 

two immiscible and ion conductive solutions with different physiochemical properties18.  A 

polarisable interface is formed by two immiscible solutions at equilibrium; a large potential 

change is produced at the interface upon the passage of extremely small amount of current.  

For such system, the potential range is also known as the potential window which is in turn 

controlled with an external circuit/potential source such as a potentiostat and there are no 

transferrable ions present between the aqueous and the organic phases19.  For ion exchange 

to take place at a maximum rate, the interface has to be non-polarisable.  This means that a 

fixed or a small potential difference can be established across the interface upon the passage 

of high current.  As a result, at least one common ion is shared between the aqueous and the 

organic solutions20.  A non-polarisable phase boundary is achieved by applying an external 
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potential between two reference electrodes placed in the vicinity of the interface21. The 

desired potential between the tips of the reference electrodes is maintained using a 4-

electrode potentiostat whereas the current is measured between the two counter electrodes.  

This ensures that the reference electrodes remain unaffected by the current and a constant 

potential is achieved at all time (figure 2.1)22.   

 

Figure 2.1: Electrochemical cell setup showing water|1, 2 -DCE interface. 

The 4-electrode system consists of two platinum counter electrodes which are fully immersed 

into each of the two liquid/liquid phases. The reference silver/silver chloride (Ag/AgCl ) 

electrodes on the other hand are connected to the two immiscible liquid-liquid layers using 

Luggin capillaries.  One of the reference electrodes is placed in the organic solution via which it 

is linked to the organic phase within a Luggin capillary.  The function of the capillaries is to 

minimise the voltage drop between the two reference electrodes and there is usually a 

distance of about 1 mm between the tips and the interface23.  When a current flows through 

the ITIES, a potential difference develops between the tips of the Luggin capillaries and the 

interface due to solution resistance and ohmic potential drop. The ohmic potential is 

compensated by the positive feedback mechanism of the potentiostat used24.                   

      The immiscible electrolyte solutions are composed of an aqueous phase consisting of water 

and hydrophilic salt (i.e. Lithium chloride (LiCl)) and, an organic phase consisting of an apolar 

solvent (such as 1, 2-dichloroethane (1,2-DCE)) and hydrophobic salt (i.e. tetrabutylammonium 

tetraphenylborate (TBATPB)).  The degree of miscibility between the two phases and the 

width of the potential window domain is vastly influenced by the hydrophobicity of the salt in 

the organic phase25.   The organic solvent used in the liquid-liquid ITIES system has a high 

 Ag/AgCl wire 

Platinum flag 
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dielectric constant which means it can weaken the forces of attraction between the electrolyte 

ions and allow maximum dissociation of the electrolytes to form ions. The analyte solution 

usually contains the ion species of interest in addition to the water soluble electrolyte.  The 

electrolyte salts ensure that a balanced ionic strength is established, which is required for 

minimising the junction potential26.    

      When strongly soluble hydrophilic and hydrophobic electrolyte salts are dissolved in the 

specific phases and an external potential is applied, the interface becomes polarisable. A 

potential window is then established, which is limited by the electrolytes.  The outsides of the 

potential window are affected by the background ions. When a positive transfer potential is 

applied, a hydrophilic cation and a hydrophobic anion moves across the interface into the 

adjacent phases. Following this, when a negative potential is applied a lipophilic cation and a 

hydrophilic anion is transferred across the interface into the adjoining phases. The transfer of 

the ions across the interface is indicative by the two sharp extremes produced on the 

voltammogram (figure 2.2)27. There are no common species between the two phases in an 

ideally polarised system and the polarisability of the ITIES is dependent on the Gibbs energy of 

transfer of the electrolytes.   

 

 

Figure 2.2: A typical voltammogram of polarised ITIES27 . 

When an ion is added with a formal potential in-between that of the electrolytes added to one 

of the liquid-liquid phases, a potential difference is attained and consequently, the transfer of 

ion leads to flux of charges across the aqueous/organic interface.  This is measured as current 

against the function of applied potential (see chapter 4 results and discussion for exemplary 

CV of tetraethylammonium chloride (TEACl)).   



11 
 

 

2.3 Factors affecting the liquid-liquid interface 

Factors such as the macro interface (figure 2.3), low concentrations of electrolyte ions, less 

conductive electrolyte solutions i.e. oily immiscible layer and the current can lead to an 

increase in the resistance and the ohmic potential drop28. 

 

Figure 2.3: Electrochemical cell with large turbid interface, after a potential of 50 mV/s was 

applied. 

Additional drawbacks which could lead to distortion in the voltammogram include a rise in 

interfacial tension, an increase in the interface capacitance, a small polarisability of the 

organic phase and an increase in the surface charge density29.  Such flaws in the ITIES system 

can be eliminated for example, by creating micro interfaces, reducing the distance between 

the tip and the organic solution or by converting one of the two phases into a polymer gel. The 

organic phase can be jellified by the addition of poly (vinyl chloride) and the aqueous phase 

can be solidified by inserting an agar30,31.              

      Other methods include the use of a 4-electrode potentiostat for reducing the electric 

resistance and preventing the polarisation of the reference electrodes.  Polar solvents with a 

larger polarisiability phase for ion transfer and higher dissociating strength can reduce the 

potential drop32. Alternatively, a mechanically stable liquid-liquid interface can be established 

by placing an unreactive and thin porous membrane between two immiscible electrolyte 

solutions33. 

 

 

Large interface 

leading to turbidity 

and shorter 

interface life time 
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2.4 Charge transfer reactions at the liquid-liquid/the electrolyte solution-electrode 

interfaces 

There are 3 types of charge transfer reactions that could occur at an interface when a 

potential difference is applied.  These are ion, facilitated ion and electron transfer processes34.   

2.4.1 Ion transfer reaction at the liquid-liquid interface 

When two immiscible solutions are brought in contact with one another and a potential is 

achieved from the molecules situated close to the interface and in the presence of excess free 

charges.  The transfer of an ion between the aqueous and the organic phase can be defined by 

equation 2.135. 

 

                                                   
          

                                                     (eq. 2.1) 

 

Where,        
  is the ion transfer from the aqueous to the organic phase and the        

  is the ion 

transfer from organic to the aqueous phase.  The Galvani potential difference between the 

two conductive media at equilibrium can be related to the aqueous and the organic phases 

sharing a common ion.   The ion transfer process can be therefore expressed in the form of 

Nernst equation (equation 2.2), which administrates the ion distribution at equilibrium 

between the two electrified liquid solutions36. 

 

                 
     

    
   

  

   
    

  
 

  
                                   (eq. 2.2) 

Where,    
   is the phase-boundary potential or the difference in the inner potentials of the 

organic and the water phases,    
    

  is the standard ion-transfer potential of ion i, which can 

be replaced by the formal potential of transfer   
    

   , R is the gas constant (J mol K-1), T is 

the absolute temperature (K),    is the charge of the ions, F is the Faraday constant (C mol-1) 

and c is the concentration of ion i in the organic and water phase(mol cm-3).  The Nernst 

equation above is also applicable for the ion transfer process at the electrolyte-electrode 

solution interface. 

2.4.2 Assisted or facilitated ion transfer reaction at the liquid-liquid interface 

An ion with higher Gibbs energy of transfer are usually observed to move across the interface 

just outside or close to the positive/negative ends of the potential window in the presence of 
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electrolytes.  The Gibbs energy of ion transfer however can be reduced enough for the 

transfer process to occur within the potential window by combining the charged species with 

a ligand. The complexation process at the interface is outlined below (equation 2.3)37.  

                                                                                                              (eq. 2.3) 

Where,    is the ion species and L is the ligand that forms a complex with the ion.   In 1991, 

Girault et al. proposed possible reaction mechanisms for the facilitated ion transfer process 

which in turn depends on the solubility of the ligands in the aqueous or the organic phases. 

These are transfer by interfacial complexation (TIC), transfer by interfacial dissociation (TID), 

transfer followed by organic phase complexation (TOC) and aqueous complexation followed 

by the transfer of the complex (ACT)38. During the same time, theoretical equations (equations 

2.4 and 2.5) for current-potential relationship demonstrating TIC for 1:1 complexation was 

developed by Matsuda et al., given that the bulk concentration of the ions is greater than the 

bulk concentration of ligands39: 

                                                          
       

       
  

  
     

 

    
                            (eq. 2.4) 

                               
     =  

   -
  

  
      

  

  
   

           
   

 

        
   

                (eq. 2.5) 

Where,    
      is the half-wave potential,   is the diffusion limited current,    is equal 

to         
    where,    and    are the diffusion coefficients for all of the transferred 

species in the aqueous and organic phases respectively,   
    

  are the concentrations of the 

ions in the aqueous/organic phases ,      and   
 /  

  are the distribution coefficients of the 

ligand and the complexion constants in both the water and the organic phases.  The facilitated 

ion transfer reaction leads to a reduction in the solvation energy which in turn allows the ion 

to be transported without any complications.  

2.4.3 Electron transfer reaction at liquid-liquid interface 

At the liquid-liquid interface when a potential is applied, the electrons are transferred 

between the redox species present in the aqueous and the organic phases.  This can be 

represented by equations 2.6 (for the oxidation reaction), 2.7 (for the reduction reaction) and 

2.8 (for the redox reaction) below40.  

 

                                                         
                         

                                     (eq. 2.6) 
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                                             (eq. 2.7) 

 

                                 
                    

                   
                  

                           (eq. 2.8) 

 

Where,         
    and            

     are the reactants,            
     and          

     are the products of the 

reaction and   is the number of electrons involved in the reaction.  The electron transfer 

reaction can be defined in terms of the concentrations of the redox species using the Nernst 

equation (equation 2.9) as stated below41. 

 

                               
     

    
   

  

     
       

     
 

    
    

 
  

    
 

    
 

 

   
 
)                   (eq. 2.9) 

 

Where,      

 and      

  are the concentrations of the reduced species in the liquid phase 1 and 

the liquid phase 2, respectively. The     
  and     

  terms on the other hand are the 

concentrations of the oxidised species in the liquid phase 1 and the liquid phase 2, 

respectively.  The liquid-liquid interface can be used to determine the kinetic properties such 

as the rate of ion or electron transfer, the standard Gibbs energy and the standard potentials 

of the ions/electrons as well as the diffusion coefficient and the rate constant values of the 

charged particles can be also evaluated. 

 

2.4.3.1 The rate of electron transfer at liquid-liquid interface 

 

From a kinetic prospect, a single electron transfer process across the liquid-liquid interface can 

be defined by the second order rate law (equation 2.10) below42. 

 

               
 

 
          

          
             

           

             (eq. 2.10) 

 

Where,   is the electron flux density for the electron transfer reaction in the direction of water 

to organic phase, j is the electric current density,    and    are the forward and reverse 

reaction rate constants,   and   are the concentrations of the reactant at the aqueous and 

the organic side of the ITIES, respectively.  The heterogeneous rate constants for the forward 

and the backward electron transfer process can be related to one another by the principle of 

microscopic reversibility as expressed in the form of equation 2.1142. 
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                                  (eq. 2.11) 

 

For an equilibrium distribution of the reactant or the products to positions (x) denoted by 

letters a and b close to the interface in the aqueous and organic phases respectively, the    

rate constant can be given by equation 2.1242. 

 

                                 
    

          
                        (eq. 2.12) 

 

Where,     is the true rate constant,        is the probability of the redox species reaching 

the positions a and b which are close to the interface. Beyond these points, the electrons are 

driven by the local potential gradients across the phase boundary. Given that the interface 

between the aqueous and the organic phase is plane and sharp, the     term can be 

represented by the expression stated below (equation 2.13)42,43. 

 

                                                                                    
   

  
                                     (eq. 2.13) 

 

                                                           Where,      = (λ+                                       (eq. 2.14) 

 

Where,    is a pre-exponential term,    is the Gibbs activation energy,   is the standard 

electrochemical Gibbs energy of electron transfer from x = a to x = b and    is the total 

reorganisation energy (gained from the solvent and reactant/product conformational changes) 

of the electron transfer process.  

 

2.4.4 Electron transfer reaction at the electrolyte-electrode interface 

 

There are two types of electron transfer reactions that can occur at the electrolyte-electrode 

interface and these are faradaic and non-faradaic processes44.  The Faradaic reaction involves 

transfer of electrons or charges across an interface in a potential region which is 

thermodynamically and kinetically favourable for the process to occur.  If the transfer process 

occurs in solution than the reaction is classed as homogeneous and if the process takes place 

at the electrode surface then the reaction is referred to as heterogeneous45. The Faradaic 

current in turn leads to a change in the highest level of electronic energy necessary for an 
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oxidation or reduction reaction to occur at the charge-transfer electrode.  This can be signified 

by the expression below (equation 2.15)46: 

 

                                                                                                                  (eq. 2.15) 

 

Where, O and R are the oxidised (loses electrons) and reduced (gains electrons) species.  In 

this process, when a potential is applied to the working electrode, the electrons are 

transferred between the metal-solution phase boundary.  At equilibrium, the potential applied 

at the electrode ( ) depends on the concentration of the electroactive species and can be 

described by the Nernst equation (equation 2.16)47. 

 

                                                                      
  

  
 In 

      

       
                                       (eq. 2.16) 

 

Where,       and        are the concentrations of the oxidised and reduced species in the 

solution,   is the formal potential,   is the universal gas constant (8.314 JK-1mol-1), T is the 

temperature, n is the number of electrons transferred during the reaction and   is the Faraday 

constant (96,485 A/mol). The Faradaic current can be used to determine the kinetic properties 

such as the rate of ion or electron transfer, the standard Gibbs energy, the standard potentials 

of the ion or electron transfer, the diffusion coefficient and the rate constant values of the 

charged ions.        

      The Faradaic reaction can be defined in terms of Fermi level,   
 , which represents the 

available average energy of electrons in phase   and it is the level up to which the highest 

energy electrons can occupy a partially filled band48. For an inert metal electrode in contact 

with a solution under equilibrium condition, it can be assumed that the Fermi levels of both 

phases are equal,   
     

  , and it can be therefore assumed that the average energies of the 

electrons are equivalent in both phases as the electrons are transferred from higher Fermi 

level to the lower level. This can be represented by the model below49 (figure 2.4). 
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Figure 2.4: A model showing the change in   
  upon applying a potential leading to (a) 

reduction (     
       (b) oxidation     

   reaction. 

 

A simple reaction involves mass transport of the electroactive species to the electrode surface 

followed by electron transfer to the interface and finally, mass transport of the redox species 

into the bulk solution.  This is illustrated in the schematic diagram below (figure 2.5) 50.  

 

Figure 2.5: Schematic representation of a general electrode process. 

 

Non-faradaic reaction on the other hand is where the adsorption and the desorption 

processes take place at the electrode-solution interface and no charge-transfer reaction 

occurs as it is thermodynamically or kinetically unfavourable51.   This can lead to change in the 

electrode structure, the electrode area or the solution constituent with the varying potential 

applied.  The non-faradaic current can influence the electrochemical data obtained for the 

faradaic processes occurring at the metal-electrode and the solution interface.  Such processes 

therefore should be considered when evaluating the faradaic reaction results52.  In non-

Faradaic process, the electrode-solution interface mimics a capacitor as the potential applied 

causes the charging current to flow while the currents build up on the electrode surface53.  For 
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an ideal capacitor, the charge     stored is directly proportional to the potential difference 

and can be defined by equation 2.1754. 

 

                                                                                                                                  (eq. 2.17) 

 

Where   is capacitance (in Farads, F) and   is the potential of the capacitor (in Volts, V). 

 

2.4.4.1 The rate of electron transfer reaction at the electrolyte- electrode interface 

The rate of forward (    and backward (    electron transfer processes can be expressed in 

terms of the first order reaction (equations 2.18 and 2.19)55 : 

                                                                                                                                   (eq. 2.18) 

                                                            And,                                                                    (eq. 2.19) 

Where,   and    are the concentrations of the electroactive species in the forward and 

reverse processes and    and    are the forward and reverse reaction rate constants, 

respectively.  The overall reaction rate (          can be represented in the form of following 

expression (equation 2.20)55: 

                                                                                                      (eq. 2.20) 

The rate constants (   and   ) are in turn dependent on the potential applied and therefore, 

can be defined in terms of equations 2.21 and 2.22. 

                                                                                 
    

  
                                   (eq. 2.21) 

                                                 And,                
    

  
                                      (eq. 2.22) 

Where,    is the standard heterogeneous rate constant that represents the reaction occurring 

between the reactant and the electrode,   is the electron transfer coefficient that mirrors the 

change in free energy with respect to the reactants and the products in the reaction.  Since, 

the forward (    and reverse (    currents are proportional to the rate of reactions in both 

ways (   and     , the overall current can be expressed by the difference in the currents of the 

forward and reverse reactions (equation 2.23)55. 

                                                                                                (eq. 2.23) 
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By substituting the    and    expressions (equations 21 and 22) into the above equation 

generates the Butler-Volmer equation (equation 2.24), which in turn shows that the current-

potential relationship for the reactions are dependent on the rate of electron transfer55.   

 

                                
          

  
               

              

  
          (eq. 2.24) 

Where,    is the potential at which both the forward and reverse rate constants have the 

same value. When the interface is at equilibrium with a solution where    is equal to   , 

     and the      is equal to     .  Consequently,    =   .  The movement of the charges 

is therefore constant in both forward and reverse directions and with equal anodic and 

cathodic currents.  This can be expressed in terms of the exchange current,     at    which in 

turn is directly proportional to   (equation 2.25)56. 

                                                                                                                           (eq. 2.25) 

Therefore, the Butler-Volmer equation can be defined by     at equilibrium using equation 

2.26 below56.  

                                                            
     

  
        

        

  
                               (eq. 2.26) 

Where,   is the overvoltage, which is the extra potential outside the equilibration potential 

leading to current,    and also, equal to   (potential applied) -      (potential at equilibrium). 

2.5 Double layer at the liquid-liquid interface 

The electric double layer formed at the ITIES was first proposed by Verwey and Niessen in 

1939 as mentioned earlier.  The layer is composed of two adjoining space-charge regions with 

surplus of cations on one side whilst excess of anions is distributed on the other side.   

However, a mixture of positively and negatively charged ions can exist on both sides.  This in 

turn causes the interface between the two phases to be electrically neutral57.  The space 

charge distribution was referred to as two back-to back layers by Gouy-Chapman58.  Following 

which,  Gavach et al. in 1977 proposed a new modified Verwey-Niessen (MVN) model by 

taking into account of the assumption that the electrical regions are separated by an ion free 

layer of solvent molecules which is also referred to as an inner layer (figure 2.6)59.     
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Figure 2.6:  Model of ITIES with an inner layer separating the two-space charge regions59. 

In the MVN model, the Galvani potential difference,    
    between the two immiscible phases 

can be defined by equation 2.2738. 

                                   
            

      
    

                                     (eq. 2.27) 

Where, the   
    term is the potential difference across the inner layer,   

  and   
  represent 

the potential differences across the diffuse layers in the organic and the water phases, 

respectively.    

      The excess charge densities of the aqueous (  
   and the organic    

    phases in the part 

of the electrically neutral double layer can be defined by equation 2.2860. 

 

                                                                          
     

                                                    (eq. 2.28) 
 

Given that the space charge regions are separated by a layer of solvent molecules, it can be 

related to the Galvani potential difference,    
  , between the aqueous and the organic 

phases by equation 2.29. 

                                                        
       

       
     

                                         (eq. 2.29) 

Where,    
   ,    

 and    
  are the potential differences across the inner layer and the space 

charge regions in the organic and the aqueous phases.   The double layer at the liquid-liquid 

interface is composed of a Helmhotz plane similar to that of the Gouy-Chapman-stern 
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electrical double layer model. The inner Helmholtz plane (IHP) is considered to pass through 

the centre of the specifically adsorbed ions whereas the distance of closest approach to the 

interface for the non-specifically adsorbed ions is referred to as the outer Helmholtz plane 

(OHP) 61.  The OHP plane is considered as the approximate site for ion transfer.  The inner layer 

leads to separation of the OHP for the aqueous and the organic phases at the ITIES62. 

      Following the development of the MVN model, Girault and Schiffrin introduced the mixed 

solvent layer for illustrating the ITIES which proposed that a constant variation in the 

constituent of one phase to the other was a suitable representation comparing to the 

modified Verwey-niessen model suggested by Gavach et al63.  This was due to the interfacial 

tension measurements of the non-polarisable ITIES, which revealed that there is a surface 

excess of water at the phase boundary between the organic solvent and the aqueous 

electrolyte, causing the ions to infiltrate the interfacial region and form a mixed solvent layer. 

The Galvani potential difference was found to spread within the aqueous and the organic 

diffusion layers with a reduced potential drop and the mixed solvent layer.  The diffusion of 

the ions at the interface is highly dependent on the hydrophilicity of the ions63.   

 

2.6 Electrical double layer at the electrode-solution interface              

When an electrode is placed in an electrolyte solution, a potential is produced at the 

electrode-electrolyte interface which permits the electronic charge on the electrode to attract 

ions with opposite charge and also, adjust the solvent dipoles.  If the electrode is positively 

charged it will attract negative ions from the solution while a negatively charged electrode will 

pull positive ions towards it64. The separation of charge at the electrode-electrolyte solution 

interface can be described in terms of an electrical double layer which in turn consists of two 

layers of charge. One of these layers is located at the electrode surface and the other in the 

aqueous electrolyte solution64.         

      The concept of the electrical double layer was first defined by Helmholtz in 187965.  

However, the potential applied and the electrolyte concentration used has been found to alter 

the double layer capacity.  Following this, both Gouy and Chapman have developed a double 

layer model separately, taking into account of the fact that the double layer thickness varies 

with the movement of ions via diffusion66.  The model was then further expanded by Stern in 

1924 who integrated both Helmholtz and Gouy- Chapman’s models into a simple double layer 

model, demonstrating that it is made up of a Stern/compact layer, which is composed of ions 

close to the electrode surface, and a diffusion layer next to it, situated in the bulk solution67.  
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The complexity of the double layer can be illustrated by the model representation below 

(figure 2.7) 68. 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2.7: Schematic representation of the double layer model. 

Where,     is the maximum potential,    is the potential at which specific ion adsorption 

occurs,     is the potential at which non-specific adsorption takes place and      is the 

minimum potential,   is the distance from the electrode,      is the distance from the 

electrode at which specific ion adsorption occurs,    is the distance from the electrode at 

which solvated ions are non-specifically adsorbed, IHP is the inner Helmholtz Plane and OHP is 

the outer Helmholtz plane.  Based on the above double layer model, it can be deduced that 

the interface is neutral due to the total charge density of the bulk solution (    side of the 

double layer being equal to that of both the stern (    and diffuse (    layers. This  can be 

expressed by equation 2.30 below69.       

                                                                                                                                 (eq. 2.30)           

The IHP of the double layer was first pioneered by Grahame in 1947. It is the inner layer 

adjoining the electrode, consisting of solvent molecules and the specifically adsorbed ions.  

The OHP on the other hand is composed of the solvated and the non-specifically adsorbed 

ions that are bound to the electrode via long-range electrostatic forces70.  Both of these planes 

make up the Stern layer.  Beyond this, there is a diffuse layer which expands from the OHP 

layer to the bulk solution and it can be defined as a three-dimensional region of scattered 
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ions71.  The thickness of the diffuse layer is dependent on the total ionic concentration of the 

solution and it can be expressed by the Boltzmann equation stated below (equation 2.31)72. 

 
                                                                                                                  (eq. 2.31) 

 
Where,      is the concentration of the ionic species from a fixed distance     away from the 

surface which exponentially decays with the ratio between the     (electrostatic energy) and 

   (thermal energy) terms.  Variation in the double layer structure, double layer capacitance 

and the charging current can affect the rate of electrode reaction.     

      In 1963, a new double layer model was proposed by Bockris, Devanathan and Muller which 

took into consideration the predominant role and re-orientation of the solvent molecules at 

the interface.  However, the distribution of the electronic charges at the electrode is not 

completely elucidated in this model73.  

 

2.7 Factors affecting the rate of reaction  

Electrochemical methods can be used to measure the ion and the electron transfer. The 

behaviour of an electrochemical reaction can be controlled by changing certain variables 

whilst keeping the other factors constant (figure 2.8)74.                                                                                                       

 

Figure 2.8: Variables affecting the rate of reaction74. 
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The rate of reaction at an electrode-solution interface is influenced by the parameters shown 

in figure 2.8. The solid-liquid interface can be affected by variables such as the bulk 

concentration of the electroactive species, the concentration of the electrolytes, the solvents 

used and the pH of the solution.  These factors can also have an influence on the liquid-liquid 

interface75. 

2.8 Mass transfer reactions at the solid-liquid and the liquid-liquid interfaces 

The ion transfer process across the ITIES is restricted by the mass transfer of ions at the 

interface similar to that occurring for the transfer of electroactive species at the electrolyte-

electrode interface. There are three types of mass transfer processes that can take place in an 

electrochemical reaction at the interface between the electrode and the solution and it is also 

applicable to the ITIES.  These are diffusion, convection and migration76.  The rate of mass 

transport of the electroactive species/ions at a fixed point is referred to as the flux,       , 

which in turn is defined as the number of molecules flowing through a unit area of an 

imaginary place in a unit of time77.  This can be represented by the Nernst-Planck equation 

(equation 2.32) below38. 

                                                             
       

  
  

    

  
 
       

  
                             (eq. 2.32)                                                               

                                                

Where,   is the diffusion coefficient (m2s-1), 
       

  
 is the concentration gradient at distance x 

and time t, 
       

  
 is the potential gradient,              is the hydrodynamic velocity (ms-1) in the 

x direction,    and   are the charge and the concentration of the electroactive species (molm-

3), respectively.  For a diffusion process, when the current flows through the electrolyte 

solution, the concentration of the reactant decreases at the interface in relative to the bulk 

concentration as the electrochemical reaction takes place.  This leads to a diffusion flux due to 

the formation of a concentration gradient.  Consequently, the ion species in the solution 

linearly diffuse across from a high to a low concentration region.  Since both, the migration 

and the convection processes are negligible in most ITIES/electrolyte-electrode investigations; 

the movement of the charged species is limited to the diffusion process. The diffusion 

phenomenon across a macro-interface can be defined by Fick’s first law (equation 2.33), which 

shows that the rate of the diffusion flux is directly proportional to the slope of the 

concentration gradient, given that the system is at a steady state78.  The change in the 

concentration of the electroactive/ionic species at the electrolyte-electrode interface and in 

Migration Diffusion Convection 
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the aqueous and organic phases respectively, can be expressed as a function of time and 

therefore, defined by Fick’s second law (equation 2.34) 79. 

                                                                           
       

  
                                              (eq. 2.33) 

                                                                           
  

  
    

   

                                                       eq. 2.34) 

Where,   is the flux (molm-2s-1),  the minus sign in equation 2.33 indicates that the substances 

are moving down the concentration gradient,   is the diffusion coefficient (m2s-1),   is the 

concentration of the ionic/electroactive species (molm-3),   is the length (meters) and   is the 

time (seconds).   Furthermore, the current,  , is directly proportional to the flux and the 

surface area    , which can be defined by equation 2.35 below80. 

                                                                                                                                (eq. 2.35) 

By substituting equation 2.33 into equation 2.35 generates equation 2.36, which 

demonstrates that the current at a particular time is directly proportional to the concentration 

of the electroactive/the ionic species.  

                                                                       
       

  
                                               (eq. 2.36) 

Migration on the other involves movement of the charged particles due to a potential 

gradient81.  During this process, the charge is carried by an ionic particle in the solution.  

Contrary to this, convection can be defined as the movement of the electroactive species/the 

ions within a volume upon application of an external mechanical energy force produced via 

stirring, pumping or sonicating.  Natural convection can also take place as a result of vibration 

or formation of a density/thermal gradient in the bulk solution82.     

      The simultaneous occurrence of all three modes of mass transport however can lead to 

difficulties in the analysis of the results obtained.  Consequently, the electrochemical systems 

are modified to eliminate one or more of these mass transport factors. For instance, the 

migration process is minimised by restraining electromigration via adding higher 

concentration of the supporting electrolyte than the concentration of the electroactive species 

present, which in turn enhances the conductivity of the solution and allows a constant ionic 

strength to be established83.  As a result, the term 
    

  
 
       

  
 in equation 2.32 becomes 

insignificant and it is neglected.  Furthermore, at the liquid-liquid and the electrode-electrolyte 

interfaces, the solutions generally remain unstirred and the electrodes are inert.  This 
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therefore implies that there are no vibrations or convection in the electrochemical cells. 

Hence, in this case the term              in equation 2.32 can be ignored84.    

 

2.9 Macro-ITIES 

A macro-ITIES can be considered as a plane interface between two semi-infinite liquid phases.  

A macro-ITIES can be used for the study of charge transfer processes and various chemical 

reactions, in the form of current flow.  This type of ITIES also allows precise monitor and 

control of both, the potential between two liquid-liquid phases as well as the structure and 

the properties of the interface85. The diffusion process across the macro-ITIES is linear.  The 

change in the rate of the diffusion flux across the macro interface and the change in the 

concentrations of the charged species in the different phases can be expressed by Fick’s first 

law (equation 2.33) and Fick’s second law (equation 2.34) respectively, as mentioned in 

section 2.8.  Furthermore, for a macro-interface the current is directly proportional to the flux 

and this can be defined by equation 2.36. Based on the Nernst equation (equation 2.2), the 

boundary conditions for a macro interface and the equality of the flux in both phases 

generates equation 2.3786. 

                                             
   

  
 
   

     
   

  
 
   

                                        (eq. 2.37) 

Where,    and    are the diffusion coefficient values of the charged species in the aqueous 

and the organic phases and   and    are the concentrations of the charged species in the 

aqueous and the organic solutions.  

2.10 Micro-ITIES 

Micro-ITIES is useful for the study of ion transfer processes because the diffusion fields can be 

controlled by the geometry of the system and also, the ohmic potential drop can be minimised 

using this method.  Additionally, a low charging current and a high mass transfer rate can be 

attained using a micro ITIES which makes it ideal for fast kinetic measurements. Micro-ITIES 

supported on a micro-pipette tip, with a diameter less than a micrometer, is used to provide 

spherical diffusion effect similar to that of a solid microelectrode as the charged species enters 

the pipette which in turn increases mass transport and generates a steady – state current87.  

However, when the ions transfer from the micro-pipette to the phase boundary, it follows a 

linear diffusion regime due to limitation arising from the walls of the micro-pipette.  In the 

case of micro-holes in supporting polymer films, the transport of ions is controlled by a 



27 
 

 

spherical diffusion field.   Based on this, if the micro-interface is considered to be spherical it 

can be defined by Fick’s first law (equation 2.38) and for the distribution of the charged 

species near the micro interface for a reversible charge transfer reaction, Fick’s second law 

(equation 2.39) can be applied in spherical coordinates54.        

                                                                                     
  

  
                                          (eq. 2.38) 

                                                    
  

  
     

   

   
   

  

 
 
  

  
                                    (eq. 2.39) 

Where,   is the flux (molm-2s-1), r is the radial distance of the interface from the centre of the 

sphere (meters),   is the diffusion coefficient (m2s-1),   is the concentration of the ionic 

species (molm-3) and   is the time (seconds).  The asymmetrical diffusion pattern produced 

using a micro-pipette can be used for example, to study the charge transfer processes 

occurring at the micro-ITIES88 and to determine the charged species which are responsible for 

limiting the potential window89. 
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CHAPTER 3 
 

Experimental methodology 
 

3.1 4-electrode set-up for the study of surfactant behaviour at the ITIES 

 

The electrochemical measurements for the study of surfactant ion transfer, adsorption and 

micellar formation was conducted at a macro liquid-liquid interface which in turn mimicked 

the oil and water phase boundary using a 4-electrode system.  A 4 –electrode configuration 

with a positive feedback (figure 3.1) was employed because it: (1) allows Ohmic 

compensation, (2) minimises the resistance in the organic and aqueous solutions, (3) 

reduces the current capacitance and (4) maintains the desired potential between the tips of 

the reference electrodes throughout the experiments1.   

 

Figure 3.1: (a) set-up for the 4-electrode electrochemical cell system and (b) schematic 

representation of the 4-electrode system.  The analyte of interest was added to the aqueous 

electrolyte solution and the silver-silver chloride (Ag/AgCl) wires were used as the reference 

electrodes whilst the platinum (Pt) flags acted as the working electrodes. 

 

The 4-electrode system consists of two Pt flags that serve as working electrodes in each of 

the two immiscible electrolyte solutions and two reference electrodes (3M potassium 

chloride (KCl), E= 0.208 V vs. standard hydrogen electrode) which are made up of two high-
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purity silver wires with a diameter of 0.25 mm and coated with silver chloride (via the 

potentiostatic oxidation process - more information on the method for preparing Ag/AgCl 

electrodes can be found under the reference electrode section 3.1.4).  In this study, one of 

the Ag/AgCl electrodes was placed into a luggin capillary containing the organic reference 

solution which in turn is in contact with the organic solvent whilst the other one was 

inserted into another luggin capillary consisting of the aqueous electrolyte solution.  The 

reference electrodes were positioned as close as possible to the tip of the luggin capillaries 

and nearer to the interface in order to reduce the potential drop2.  The current flow was 

measured between the two Pt electrodes and this ensured that the reference electrodes 

remained unaffected by the current and a constant potential was achieved at all time.  The 

potential applied between the two reference Ag/AgCl electrodes was controlled using a 

Potentiostat-Galvanostat Model PGSTAT12 Autolab (Metrohm Applikon B.V, Netherlands).   

      The area of the polarised interface was measured to be 3.64 cm2 for the larger 

electrochemical cell and 2.2 cm2 for the smaller cell used for the electrochemical 

measurements.  All of the experiments were undertaken at room temperature of 22 + 2oC 

and inside a Faraday cage to reduce the interference from the external electromagnetic 

field/ background noise.  

 

3.1.1 3-electrode set-up for the study of surfactant behaviour at the ITIES 

 

In a 3-electrode set-up the potential difference (    between the working electrode and the 

reference electrode is controlled using the potentiostat. The current drawn through the 

reference electrode with well-defined potential at the same time via the potentiostat is 

negligible.  This process can be represented by the equation stated (eq. 3.1) below3.   

 

                                                                                                 (eq. 3.1) 

 

Where    is the potential at the metal electrode and    is the potential of the solution.  In 

a 3-electrode system, the potential drop                 on the working electrode – 

solution interface leads a current to flow.  This in turn causes the counter electrode to be 

driven via the potentiostat to the appropriate voltage required to pass the same current as 

induced through the working electrode, as a function of a controlled applied potential4.  The 

set-up for 3-electrode system (figure 3.2) can be seen below. 
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Figure 3.2: (a) set-up for 3-electrode electrochemical cell system and (b) schematic 

representation of the 3-electrode system. Where, the Ag/AgCl electrode was used as the 

reference electrode (RE), the platinum (Pt) flag acted as the counter electrode (CE) and the 

glassy carbon electrode served as the working electrode (WE).  The electrochemical leads for 

the working electrode (WE) /the sensor electrode (SE) were coupled together. 

 

3.1.2 2-electrode set-up for the study of surfactant behaviour at the ITIES 

 

The 2-electrode system is composed of a reference electrode and a working electrode 

(figure 3.3).  A potential is applied to the electrochemical cell and the current is then 

measured as a function of the potential.  

 

 

 

 

 

Figure 3.3: Schematic representation of the 2-electrode system. Where, the electrochemical 

connections for Ag/AgCl electrodes/platinum (Pt) flags were connected together and the 

Ag/AgCl electrodes acted as a reference electrode (CE/RE).   The working (WE) /sensor (SE) 

electrode connections on the other hand were attached together and the glassy carbon 

electrode served as the working electrode (WE).              
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For this system, the current generated flows through the working electrode which in turn 

passes through the reference electrode5.  The 2-electrode system usually involves use of a 

reference electrode which does not alter its electrode potential throughout the detection 

process6. 

 

3.1.3 The working electrode  

 

The working electrode in an electrochemical system is where the reaction processes occur.  

The types of electrodes usually used are gold (Au), platinum (Pt) and carbon (C, in the form 

of graphite or glassy carbon).  Depending on the available potential window a suitable 

electrode is chosen for each investigation undertaken.  A solid electrode normally requires a 

careful pre-treatment where the electrode surface is cleaned and polished using alumina 

suspensions of various particle sizes before drying and using it.  The use of Au, Pt or C 

electrodes are preferable for identifying analytes in the range of positive potentials and in 

aprotic solvents in both negative and positive ranges of potential.  On the other hand, in the 

negative range of potential and in protic solvents, the use of mercury electrodes is desirable 

because of high overpotential of the reduction of hydrogen.  Noble metal i.e. Iridium and 

silver based electrodes have been reported although less commonly used as working 

electrodes7.   

 

3.1.4 Reference electrodes 

 

The SHE is the prime reference electrode and its potential is found to be zero at all 

temperatures.  The saturated calomel electrode (SCE) and the Ag/AgCl electrodes are more 

commonly employed as the reference electrodes for practical measurements8. However, the 

Ag/AgCl electrode is most frequently manipulated because it is simple to use, can be easily 

constructed and requires only KCl electrolyte for preparation.  The reference electrode can 

be defined as an electrode for which the Galvani potential difference between the metal 

electrode and the solution is consistent and to ensure that it remains stable at equilibrium 

only an insignificant amount of current can pass through the reference electrode.   The 

redox process for the Ag/AgCl electrode is expressed by equation 3.2 and the potential of 

the reference electrode can be determined by the Nernst equation (equation 3.3) stated 

below 9,10. 
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                                                                        –                                              (eq. 3.2) 

 

                                                        
          

  

 
 In                                               (eq. 3.3)     

 

Where,    is the standard potential, R is universal the gas constant, T in the absolute 

temperature, F is the Faraday constant and   is the chemical activity for the relevant 

species.   

 

The Ag/AgCl reference electrodes were prepared by placing two pieces of silver wires in a 

solution of 3 M KCl and applying a potential of 2 V for 20 minutes using a potentiostat.  The 

potentiostatic oxidation process in turn led to formation of an insoluble brown layer on the 

wires.  The Ag/AgCl wires were then rinsed with deionised water before use or was fixed 

inside glass tubing consisting of 3M KCl and sealed with a porous frit for macro liquid-liquid 

interface investigations.  The glass tube based Ag/AgCl reference electrodes were washed 

with deionised water and then immersed in the aqueous solution containing KCl to maintain 

the potential of the electrodes and to enhance the conductivity when not in use 11.      

 

3.1.5  Counter electrode 

 

The current flows between the working electrode and the counter electrode12.  A Pt 

foil/wire or titanium wire is usually manipulated as the counter or auxiliary electrode and 

these electrodes are only used in a 3-electrode system.  The area of the counter electrode is 

significantly larger than the working electrode and this is to ensure that the current 

measurement is not affected by passivation, deactivation or blocking13.  

 

3.1.6  Pseudo reference electrode 

 

Pseudo reference electrodes are usually used as part of three electrode arrangements and 

are manipulated when using techniques such as polarography and in cyclic voltammetry.  

The electrodes consist of platinum14 or silver wires submerged in the sample solution or 

even in the form of activated carbon dipped into the electrolyte.  Pseudo electrodes have 

low impedance and are capable of exhibiting constant potential when the reference 

potential is not known.  The electrodes functionality is dependent on the sample solution 
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composition15.  These types of electrodes are calibrated using a reference redox system such 

as ferrocene or cobaltocane by introducing it as an internal reference into the electrolyte 

during an experiment or by measuring the potential after the experiment using the 

reference redox system or a conventional reference electrode16. 

 

3.2 Electrochemical cell used for the characterisation of surfactants 

 

The electrochemical cells referred to as scheme 1 (for the background) and scheme 2 (for 

the addition of surfactants) below were used for the electrochemical, conductivity and 

electrocapillary curve measurements. The schemes show that 1,2-dichloroethane (DCE) was 

used as the organic solvent whilst lithium chloride (LiCl) and tetrabutylammonium 

tetraphenylborate (TBATPB) were used as the supporting electrolytes in the aqueous and 

organic phases, respectively. Both, tetrabutylammonium chloride (TBACl) and magnesium 

chloride (MgCl2) were used to prepare the organic reference solution which was in contact 

with the organic phase.  In this study, the reference solution consisted of a common ion 

which is the TBA+ cation that can be also found in the organic phase.  Once the 

concentration of the TBA+ ion reaches equilibrium between the two phases, it generates an 

interfacial potential.  Thus, the overall potential applied by the potentiostat represents the 

sum of interfacial potential, the potential of the two reference electrodes and the potential 

of the reference interface.  

 

    Ag|AgCl |10mM LiCl(w)| | 20mM TBATPB(o) |10mM TBACl +10mM MgCl2 (w)   | AgCl|Ag 

            RE1           water                      1,2-DCE                          organic reference                         RE2 
                                                                                                                Solution 
 

Scheme 3.1 Electrochemical cell used to obtain background data for the ion transfer 

analysis. 

 

 Ag|AgCl | 10mM LiCl + x (w)|| 20mM TBATPB (o)| 10mM TBACl +10mM MgCl (w) |AgCl|Ag 

      RE1               water                          1,2-DCE                                organic reference                 RE2 
                                                                                                                      solution  
 

Scheme 3.2 Electrochemical cell used for ion transfer analysis.   

 

Where, x is the analyte/surfactants added to the aqueous phase. For conductivity and 

electrocapilary curve measurements, the 1, 2-DCE phase was replaced with glycerol trioleate 

as the organic phase. 
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3.3 Sol-gel modified carbon electrode used as the biosensor for determination of the 

enzymatic activity  

 

The glucose oxidase (GOx) and glycerol dehydrogenase (GDH) enzymes along with the 

ferrocenated gold nanoparticles (FcAuNPs) were immobilised to the surface of glassy carbon 

electrodes for the analysis of enzyme activity using the sol-gel method.                  

     Sol and gels have naturally existed in various types of materials such as ink, clay, blood, 

serum and milk17.  Sols are stable dispersion of colloidal particles in a solution which were 

first discovered with gold by Faraday, in 1853.  The insight into colloidal science was first 

initiated by Graham in 1861 and since then the concept of ceramic colloidal sols has been 

explored to understand the nature and behaviours of the particle dispersions 18.  Gels on the 

other hand are cross-linked polymeric chains with length greater than micrometer and 

submicrometer pores.   The gel-like substances was first synthesised by Ebelmen in the form 

of silica gels in 1846 where hydrolysis of tetraethyl orthosilicate under acidic conditions led 

to formation of glass-like material known as silicon dioxide19.  Further to this, it was Roy and 

co-workers who discovered that extensive chemical homogeneity can be accomplished in 

colloidal gels.  This idea of sol-gel method was then applied in the 1950s-1960s to produce a 

range of ceramic oxide components involving aluminium, silicon and titanium which could 

not be made via the conventional ceramic powder technique. Glass and polycrystalline 

ceramic fibers to coatings and films for improving insulation characteristics are just a few 

examples of the products which have been developed via this sol-gel technique20.  Sol-gel 

can be prepared via three different ways which include gelation of colloidal particles in 

solution, hydrolysis and polycondensation of alkoxide or nitrate based precursors followed 

by drying under over critical temperature/aging and drying at room temperature (figure 

3.4)21 .  
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Figure 3.4:  Simplified schematic presentation of sol-gel processes 21. 

 

The sol-gel for the biosensor work was initially prepared by mixing tetramethyl orthosilicate 

(1.5 Ml, TMOS), 1-butyl-3-methylimidozolium octyl sulphate (2.0 mL), 6M hydrochloric acid 

(0.02 mL, HCl) and deionised water (4.5 mL) using a vortex mixer for 2 minutes.  The mixture 

was then sonicated further for 15 minutes to allow hydrolysis of the TMOS precursor before 

heating it up to 70 oC for 30 minutes to ensure all the alcohol was removed.  Following this, 

the solution was cooled and neutralised to pH7 using HCl (0.1 M). A 0.5 mL of sol-gel 

solution was then mixed with the and 10% GOx/a mixture of DP and GDH (0.15 mL, 

prepared in 0.1 M phosphate buffer solution (PBS)) and, left for several hours to gel.  The GC 

electrode was thoroughly cleaned using the alumina powder solution for approximately two 
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minutes before ringing it with deionised water and drying it with a lens tissue. The sol-gel 

mix (0.4 µL) was then mixed with FcAuNPs (0.3 µL) and drop-casted on to the surface of the 

working electrode.  The sol-gel immobilised bioelectrode was left to gel on the electrode 

surface overnight before a thin layer of dialysis membrane was used to cover and hold the 

sol-gel mixture firmly in a fixed position, making it suitable for analysis in the PBS solution.                                            

      A background for just the sol-gel and FcAuNP based biosensor without enzyme(s) in pH7 

PBS (used for GOx) and pH8 PBS (used for GDH and liapse) was obtained using the 3-

electrode configuration. Where, the GC electrode (with a surface area of 0.07 cm2) was used 

as the working electrode, a platinum wire was utilised as the pseudo reference electrode 

and a platinum flag acted as the counter electrode. Electrochemical measurements were 

performed at room temperature using a computer controlled Autolab Potentiostat 

(Metrohm Autolab B.V. Netherlands) with iR compensation which acted as the power supply 

(figure 3.5). 

 

 

 

 

 

 

 

 

Figure 3.5: Schematic representation of a three electrode electrochemical cell set up used 

for sol-gel based bioelectrode analysis.  

 

The immobilised sol-gel/FcAuNP/ enzymatic biosensors were examined using the cyclic 

voltammetry (CV, with a potential window of -1 V to 1 V) and chronoamperometry (CA, 

constant potentials of 0.01V (for GOx), -0.3 V (for GDH) and 0.04 V (for lipase) was applied) 

techniques. All the sol-gel based biosensors with/without enzymes when not in use were 

kept in pH7/ pH8 PBS (depending on the type of enzyme (s) used at one time) at 4 oC in the 

fridge.  After checking the activation of the modified glassy carbon electrode using the 

standard GOx enzyme, the activity of GDH was investigated with and without the lipase 

enzyme in solution by following the same procedure.  The whole process for inspecting 

enzymatic activities was repeated using the sol-gel based screen printed electrodes.  A series 
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of Lineweaver-Burk graphs were then plotted for both the sol-gel/FcAuNP/enzymatic macro- 

and SPE-based biosensors.  From the graphs, the km value for each of the enzymes was 

determined and compared to the literature in order to establish whether the macro- or SPE 

based biosensor was most sensitive in demonstrating enzyme effectiveness.   

 

3.4 Preparation of FcAuNPs 

 

The FcAuNPs were prepared by mixing equal volumes of gold nanoparticles (AuNP) which 

was purchased from Sigma Aldrich as citrate-stabilised colloids in water and 5 mM of 6- 

(ferrocenyl)-hexanethiol (FHT) as received from Sigma in hexane, using a vortex stirrer 

overnight.  The resultant red aqueous layer consisting of the modified gold nanoparticles 

was then rinsed with hexane 3 times to remove any impurities that might be present. The 

top solvent layer was then disposed of using a pipette.  After the final rinse, the aqueous 

phase composed of the FcAuNPs were extracted by evaporating the small amount of hexane 

solvent layer left over using a rotary evaporator.  Following this, the FcAuNPs were 

characterised using the ultraviolet spectroscopy which revealed a small shift in wavelength 

from 519 (for unmodified AuNPs) to 520 nm (for modified AuNPs) and also, by using the 

transmission electron microscopy (TEM) the exact average core diameter of the FcAuNPs 

stabilised in the citrate buffer (figure 3.6) were determined to be 5.74 nM (more 

information on TEM can be found in this chapter in section 3.17 below). 

 

  

Figure 3.6: TEM image of the FcAuNPs. 
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3.5 Screen printed electrodes 

 

Screen printed electrodes (SPEs) are electrochemical substrates which have various 

applications ranging from detecting pollutants22, textiles23, advertising to acting as 

enzymatic biosensors for biomedical applications24.  These electrodes have been produced 

and used worldwide since over a thousand years ago and within the last few decades, new 

developed format and printing material properties such as enhanced response, ease of 

handling and disposing of after use has made the SPEs ideal i.e. for analysis of 

environmental pollutants25.  SPEs are also the most desired electrochemical sensors for in 

situ analysis due to other advantageous properties like high sensitivity, linear output and 

low power requirement 25.  The real breakthrough for the use of SPEs was accomplished in 

1987 when MediSense introduced these electrodes as glucose biosensors for medical 

applications.  Such electrodes can be easily modified using substrates such as metals, 

inorganic nanomaterials, enzymes or DNA sequences to serve multiple purposes26.  Below is 

a schematic diagram of a SPE (figure 3.7). 

 

 

 

 

 

 

                 Figure 3.7:  Schematic diagram of a SPE. 

 

The preparation of SPEs involves use of a woven mesh to support an ink-blocking stencil 27.  

A roller is then moved across the stencil to force the ink/printable substrates such as silver 

or carbon ink pastes mixed with mineral binders or insulating polymers, which are used to 

increase the adhesion of the inks onto the electrodes, through the woven mesh into open 

spaces on the electrochemical substrates 28.  A series of woven meshes have been 

developed and used to print different sections of the electrode in the similar manner as 

stated above.   

    The disadvantage associated with using polymers is that it enhances the electron transfer 

resistance and slows down the kinetics of processes such as heterogeneous, irreversible and 
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quasi-reversible redox reactions occurring at the surfaces of SPEs. In order to overcome this 

barrier and to increase the electrocatalytic performance, noble metals were added to the 

ink/polymer paste. The only impediment is that the noble metals are highly expensive29. 

However, in recent years inexpensive materials such as manganese oxide and Bismuth 

oxide/nanoparticles have been used and proven to be an effective replacement for metals.  

Pretreatment of SPEs by removing contaminants such as organic ink components has also 

been found to be a useful method for intensifying the electrochemical characteristics of 

SPEs and enhancing the electrodes surface roughness and functionalities 30.   

      The ink, once it passes the meshes, is then dried and solidified via a thermal process 

between two ink layers on the electrochemical substrate.  An ink coating is then used to 

protect the silver ink printed conductive tracks from the remaining parts of the electrode.  

The working electrodes on the other hand are mainly composed of carbon or gold ink.  

However, carbon ink paste is generally the most preferable printable material compared to 

gold as it is relatively cheap, chemically inert and can be easily modified for use in different 

systems 31.  SPEs in different forms such as a disc, ring or band can be easily generated in 

small batches using screen printed machines or mass produced as arrays.  These electrodes 

can be used to easily achieve reproducibility, stability, rapidity and high standard chemical 

performance32.  SPE arrays can be also manipulated to calibrate and analyse a range of 

unknown samples simultaneously. These types of electrodes behave as microelectrodes for 

example, by enhancing the signal to noise ratios, allowing a low ohmic drop to be achieved 

and increasing the mass transport rate33.   Other benefits associated with this technique are 

it is portable and therefore can be transported and used in the laboratory or hospitals.  It is 

also an inexpensive method compared to other analytical methods available for the 

applications stated above.  

 

3.6 Chemicals 

 

All of the chemicals used were of analytical grade and used without further purification and 

as purchased from Sigma Aldrich Corporation, Dorset or provided by P&G, Newcastle.  The 

material safety data sheet (MSDS) for each of the compounds was read before use and 

appropriate steps were followed accordingly.   All of the aqueous based solutions were 

prepared using deionised water (with resistivity of > 18 MΩ cm) from Sartorius Arium 611 

ultrapure water system/Millie-Q system (Watford, UK).  
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3.6.1 Aqueous and organic supporting electrolytes  

 

The electrolyte that has been used for the aqueous phase was lithium chloride (10 mM, 99% 

LiCl, Sigma-Aldrich, UK) and for the organic phase the electrolyte manipulated was 

tetrabutylammonium tetraphenylborate (20 mM, 99% TBATPB, Fluka, UK). The organic 

reference solution was composed of tetrabutylammonium chloride (5 mM, 97% TBACl, 

Sigma-Aldrich, UK) and magnesium chloride (10 mM, 99% MgCl2, Sigma-Aldrich, UK) 

(scheme 3).  For the enzymatic biosensor work, 1-butyl-3-methylimidozolium octyl sulphate 

(95%, Sigma-Aldrich, UK) was incorporated in the sol-gel and used as the electrolyte.  The 

function of the electrolytes used is to enhance the conductivity of the solution, prevent the 

transport of electroactive species by ion migration, establish a potential window by setting 

limits for the polarisable range and to maintain constant ionic strength and pH. The increase 

in the potential window is dependent on the increase in hydrophobicity of the organic 

electrolyte.       

 

3.6.2 Other chemicals and solvents used 

 

Sodium dodecylbenzene sulphonate (SDBS, Sigma-Aldrich, UK), triton-X-114 (Sigma-Aldrich, 

UK), 1,2-DCE (99%, Sigma-Aldrich, UK), GOx enzyme (Sigma-Aldrich, UK), GDH enzyme 

(Sigma-Aldrich, UK), diaphorase (DP, Sigma-Aldrich, UK), lipase (Sigma-Aldrich, UK),  6- 

(ferrocenyl)-hexanethiol (6-FHT, Sigma-Aldrich, UK), 5 nanometer unmodified gold 

nanoparticles in citrate stabilised colloid form (AuNP, Sigma-Aldrich, UK), glycerol trioleate 

(GTO, P&G, UK), surfactants Y (anionic) and N (non-ionic) (P&G, UK), lard (ASDA and Tesco, 

UK), tetramethyl orthosilicate (TMOS) (1.5 mL, Sigma- Aldrich, UK), HCl (6 M, Sigma-Aldrich, 

UK), potassium phosphate monobasic (99% Sigma-Aldrich, UK), potassium  phosphate 

dibasic (99%, Sigma-Aldrich, UK), nicotinamide adenine dinucleotide (NAD, 99%, Sigma-

Aldrich, UK), glucose oxidase (GOx, Sigma-Aldrich, UK), glycerol dehydrogenase (GDH, 

Sigma-Aldrich, UK), monobasic potassium phosphate (Sigma, UK) and dibasic potassium 

phosphate (Sigma, UK).  For my surfactant study of the ITIES, the solvent chosen was 1,2-

DCE.  This is because 1,2-DCE is: 

 Immiscible with water. 

 A polar solvent which allows disassociation of the supporting electrolytes 

and hence, enhances conductivity. 
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 A solvent with different density to water which in turn allows a stable 

liquid-liquid phase boundary to be achieved for interfacial study. 

 

Although 1,2-DCE is an ideal solvent and capable of producing the suitable potential window 

range required for investigating the surfactant ion transfer, adsorption and emulsification 

process, there are also some disadvantages such as it is toxic and carcinogenic. However, 

necessary precautions have been undertaken when handling 1,2-DCE in order to minimise 

exposure and prevent inhalation or skin contact.  The glycerol trioleate (GTO) has been 

chosen as the alternative organic phase to 1,2-DCE because it is one of the main 

triglycerides found in the vegetable and olive oil which are often used for cooking. As an 

electrolyte sufficiently soluble in GTO was not found, electrochemical studies were not 

conducted using the aqueous-GTO system. However, conductivity and surface tension 

measurements were undertaken and compared for both the aqueous (with LiCl) -1,2-DCE 

(with TBATPB) and aqueous (with LiCl)-GTO systems.  

 

3.7 Electrochemical techniques established using potentiostat 

 

All electrochemical data were obtained using a computer-controlled potentiostat. For the 

cyclic voltammetry, the initial potential range used was from 0 to 600 mV.  A positive 

current was generated due to anionic ions transferring across the interface from the 

aqueous to the organic phase as the potential was scanned forward and lower 

concentrations of each of the anionic surfactants was added to the aqueous phase of the 

water/1,2-DCE system.  Vice versa, as the potential was reversed the cationic head groups of 

the surfactants were transported from the organic to the aqueous phase. This was 

represented in the form of a negative current.   

      Electrochemical techniques function on the basis of that either a constant current 

between two electrodes needs to be applied and the potential as a function of time is 

measured or alternatively, a potential is applied and the current response as a function of 

time is determined.  Coulometry is an example of a technique which requires the current to 

flow to the electrodes at a fixed pace and it is controlled by a galvanostat device.   For other 

methods such as chronopotentiometry, cyclic voltammetry and differential pulse 

voltammerty  the  current  is  measured  as  a  function  of  electrode  potential,  using  a 

potentiostat11. 
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3.7.1 Cyclic Voltammetry  

 

Cyclic voltammetry (CV) is one of the most widely used voltammetric techniques for 

quantitative analysis.  It has various applications for example, it can be used to determine 

the reversible and non-reversible characteristics of a redox species and also, to identify the 

mechanisms of adsorption and transfer of ion or electron processes. Kinetic and 

thermodynamic data such as the formal potential, the rate constant values, the diffusion 

coefficients and the number of electrons transferred in a redox reaction can be determined 

using this method34.  CV is an example of a potential-sweep technique, where the applied 

electrode potential is varied as a function of time and the resultant current is measured35.  

This technique involves application of an increasing voltage (forward scan) followed by a 

decreasing linear voltage (reverse scan) to a working electrode via a potentiostat, over a 

period of time.  During this, the reaction of interest takes place which is dependent on the 

electroactive species in solution.  The response can be identified on the voltammogram by 

the  change  in  current  within  the  potential  window,  as  voltage  is  applied.    A second 

potential sweep is usually carried out for detailed study of the electrochemical reactivity of 

the charged species.  The variation in the potential applied can be represented as a 

triangular potential waveform (figure 3.8) 3,36. 

 

 

 

 

 

 

 

 

 

 

Figure 3.8: Triangular potential waveform measured as a function of time3. 

 

The current flow at the working electrode is measured using CV and plotted as a current- 

potential voltammogram.  There are two types of voltamograms that can be obtained as a 

result of charge transfer which are reversible and irreversible37.  The characterisation of 
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surfactants using cyclic voltammetry has shown a reversible reaction.  For a reversible 

process, when a potential applied reaches the formal transfer potential of the ionic species 

it leads to an increase in ion transfer and a maximum rate of mass transfer of species is also 

attained across the electrode-electrolyte or liquid-liquid interface.  This is turn causes the 

current to enhance as observed using the CV (figure 3.9).  

 
Figure 3.9:  Cyclic voltammogram for a reversible reaction showing the transfer of charged 

ion/redox species across a liquid-liquid macro interface.  Where, Epa is the anodic peak 

potential, Epc is the cathodic peak potential, ipa is the anodic peak current and ipc is the 

cathodic peak current.   

 

However, as the potential was continuously increased above the formal potential, the 

concentration of the ionic species decreased due to the depletion effect.  This was evident 

by the reduction in current.  As the scan was reversed, the direction of the ion transfer was 

also observed to change.  A rise in the negative current was identified in the reverse scan as 

the potential applied approached the formal potential.  The peak current ratio (ip
a/ip

c) as 

well as the formal potential (Eo) and the voltage separation between the current peaks (∆E) 

can be determined from the voltammogram obtained for a reversible process and expressed 

by the equations below (equations 3.4 and 3.5)38.  

 
  

                                                                         
  
     

   

 
                                                   (eq. 3.4) 
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                                               (eq. 3.5) 
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The change in the peak current for the ion transfer reactions with change in scan rate (figure 

3.10) can be expressed using the Randles-Sevcik equation (equation 3.6).   

 
 

 
 
Figure 3.10: (a) Change in scan rate as a function of applied potential and, (b) peak current 

versus scan rate
1/2

 . Where, D is the diffusion coefficient value of the electroactive species 

(cm2/sec). 

 

According to Randles -Sevcik equation, it can be stated that ip is linearly proportional to 

    and the concentration of the active species (equation 3.6)39. 

 

 

                                                                                                                  (eq. 3.6) 

 

Where, ip is the peak height (amp), n is the number of electrons, A is the electrode active 

surface area (cm2),   is the scan rate (V/sec) and cb is the bulk concentration of solution.  By 

applying the above equation to the plot of ip versus      (figure 3.10b) and ensuring all the 

other parameters are kept constant, kinetic data such as the diffusion coefficient (D) of the 

transferring ion/electroactive species can be determined40.  Prior to investigating the 

surfactant mechanisms, tetraethylammonium chloride was used as an internal reference to 

determine the standard ion transfer potential and reversible half-wave potential from the 

cyclic voltammograms.   

 

(a) (b) 
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3.7.2 Chronoamperometry  
 
 
Chronoamperometry (CA) is one of the most widely used step techniques for studying 

various electrode mechanisms. During the initial potential step no faradaic current occurs 

however, as the potential is stepped to a potential at which the reaction of interest takes 

place a change in current can be observed41.  This technique involves stepping the potential 

of the working electrode and measuring the faradaic current, as a function of time. CA also 

produces high capacitive current however it decays exponentially and faster than the 

current of interest. Therefore, the faradaic current can be evaluated after the charging 

current has dropped to zero (figure 3.11)42. 

 

 

 

 

 
 
 

 

 

 

 

 

Figure 3 . 11: (a) Single-potential (b) Double-potential step & (c) current versus time plot 

obtained using Chronoamperometry technique 42.  

 

Where, Ei is the initial potential, Es is the step potential, Ef is the final potential and  t is the 

period of time before final potential is applied.  The dashed line in figure 3.11c shows an 

excitation signal produced only in the presence of background electrolytes and the solid line 

represents current due to electrolysis of the charged species.  It  can  be  evaluated  from  

figure  3.11c   that  the  current  decreases  over  time  as  the concentration of the analyte 

reduces at the electrode surface.  The current eventually reaches zero as a steady state 

for the concentration of electroactive species is established. The current can be defined as 

the rate of charge flow (Q) across the interface at time, t, and it can be expressed in the 

form of equation 3.7 42. 
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                                          (eq. 3.7)       

 

Where, n is the number of electrons (eq/mol), F is the Faraday’s constant (96,500 C mol-1) 

(C/eq) and N is the number of moles of the species. The rate of conversion of the 

electroactive species (dN/dt) is directly related to the area of the electrode and the flow 

of material to the electrode.   Since, the analyte transports across to the electrode by 

diffusion the rate of conversion can be defined by the modified Fick’s first law, equation 3.8 

43. 

 

                                                                 
   

  
 
     

                                        (eq. 3.8) 

 

Where, i is the current (A) at time, t, A is the electrode area (cm2), c is the concentration 

(mol cm-3) and D is the diffusion coefficient of the electroactive species, t is the time (s) 

and, x (cm) is the distance from the electrode.  By applying the Cottrell equation (equation 

3.9), kinetic data such as number of electrons transferred and diffusion coefficient values as 

well as reaction mechanisms can be determined from the current, i, as a function of inverse 

t 
½ 44.                                                               

                                                                                                              (eq. 3.9) 

 
3.7.3 Differential Pulse Voltammetry  
 
There are various types of step and pulse techniques which can be used to determine the 

concentration of the active species. These methods involve application of a potential pulse 

in the form of linear or pulse waveforms or a combination of both.  The pulse voltammetric 

techniques involve measurement of the current after a potential pulse is applied.  Such 

techniques lower the detection limits of the voltammetric measurements by 

significantly enhancing the ratio between the faradaic and the non-faradaic currents45.  

Examples of pulse techniques are normal pulse voltammetry (NPV), square wave 

voltammetry (SWV), stripping voltammetry (SV) and differential pulse voltammetry (DPV) 46.  

DPV is one of the numerous potential step voltammetric techniques that have been 

developed to improve sensitivity of the Faradaic current response relative to the capacitive 

current.   Due to its high sensitivity and resolving power it is widely used for quantitative 

analysis such as for t he  determination of t h e  standard ion transfer potential of the 
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system 47.  This specific technique involves applying a series of small voltage pulses with 

constant amplitude to the electrochemical system and superimposing it on the staircase 

wave form (figure 3.12a). The current is measured before the application of a pulse (τ1) and 

again at the end of the pulse (τ2).  The difference between the individual currents,     

measured at these two points (τ1 and τ2) is then plotted against the function of applied 

voltage.  This results in the formation a peak-shaped signal (figure 3.12b)
 
48.  

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3.12: (a) Waveform of pulses applied superimposed on a staircase for a typical DPV 

experiment and (b) Peak shaped profile of difference in current against the potential 

applied from a DPV scan.  

 
The pulse is measured twice to ensure that the capacitive current due to double layer 

charging (IC) decays and does not interfere with the faradaic current (If).  Since If follows 

diffusion controlled conditions, in terms of the Cottrell equation it can be expressed in the 

form of If ∝      (figure 3.13) and the charge  ∝      
3
. 
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Figure 3.13: Exponential decrease of capacitive current and decay of Faradaic current as a 

function of            after application of a potential step. 

 
The peak current, ip, for a reversible faradaic reaction can be determined according to 

equation 3.10 49. 

                                                                 
 

   
 
 

  
    

   
                                        (eq. 3.10) 

 

                                                   Where,          
     

   
                                        (eq. 3.11) 

 
 
Where, n is the number of electrons, F is the Faraday’s constant, A is the area of the 

electrode (cm-1), c is the concentration of the analyte (mol cm-3), D is the diffusion 

coefficient value (cm s-1), tp is the pulse width,     is the pulse amplitude, R is the gas 

constant (J mol-1 K-1) and T is the temperature (K). The DPV peaks are usually symmetrical for 

a reversible process and asymmetrical for irreversible reactions 49.   

 
3.8 Conductivity measurements of the liquid-liquid interface 

 

Conductivity is a physical quantity which can be measured with good reproducibility and 

high sensitivity.  It is an inexpensive technique frequently used for determining the critical 

micellar concentration (CMC) of an ionic surfactant however the slope of the differential 

conductivity below and above the CMC point can be used to evaluate the degree of counter-

ion dissociation of micelles and their aggregation number 50.  In this study, a series of 

conductivity experiments on the water and organic phase with and without electrolytes 

were undertaken at room temperature using a 4310 conductivity meter (Jenway, UK) (figure 

3.14).   
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Figure 3.14: Image of 4310 conductivity meter. 

 

The conductivity probe was placed in the aqueous phase and was brought as close as 

possible to the aqueous (with/without 10 mM LiCl)– 1,2-DCE (with/without 20 mM 

TBATPB)/GTO interface using an optical microscope before measurements were taken, as 

different volumes of the 33 mM stock solution of SDBS surfactant were added to the 

aqueous phase in order to achieve overall concentrations of 1.5 mM, 8 mM and 13.4 mM.  

The differential conductivity (µS)/ differential concentration (mM) against concentration 

(mM) of surfactant with and without electrolytes were plotted to determine the points at 

which the critical micellar concentration is attained and the surfactant 

adsorption/emulsification processes occur.  The graph was also manipulated to identify if 

the electrolytes had an effect on the CMC or the adsorption/emulsification processes of the 

SDBS surfactant. 

 

3.9 Fourier Transform infrared Spectroscopy  

 

Fourier Transform infrared Spectroscopy (FTIR) is one of the simplest, most rapid and highly 

sensitive analytical methods and is also non-destructive. It uses vibrational characteristics at 

resonance frequencies to fingerprint different types of functional groups.  The chemical 

bonds of a specific structure vibrate at a characteristic frequency corresponding to the 

discrete energy levels.  When the sample is irradiated with light, resonant frequencies are 
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absorbed which in turn increases the amplitude of vibration.  This gives information about 

the chemical components of the sample examined in the form of infrared transmission or an 

absorption spectrum.  It is dependent on factors such as molecular shape, potential energy, 

bond angle and length of the molecules.  Other advantages associated with such a technique 

include use of only a small quantity (< 1 mg) of the sample for analysis 51,52.                                             

       The FTIR data for the crystal samples were obtained using a single-bounce Thunderdome 

(Spectra- Tech) ATR accessory, which was situated in the sample chamber of a Nicolet Nexus 

spectrometer attached to a liquid nitrogen cooled HgCdTe detector. A golden-gate diamond 

internal reflection accesory with a fixed incident angle of 45o and a contact area of around 1 

mm was used for sample analysis (figure 3.15). 

 

 

 

Figure 3.15: Image of Nicolet Nexus ATR-FTIR spectrometer. 

 

All the spectra (for the background and the crystal samples) were scanned 128 times at 4 

cm-1 spectral resolution.  Each spectrum was run between 4000 to 650 cm-1.  The spectra for 

all of the crystal samples were then ratioed against the background spectrum which was 

aquired prior to sample analysis.  The spectra obtained can be plotted in absorbance (A) or 

percent transmission (% T) against wavenumbers measured in cm-1.   

 

3.10 Optical microscopy 
 

An inverted microscope is composed of a light source and condenser positioned above the 

stage and pointing down whilst four to six objective lens of different magnifications fitted to 

a revolving nosepiece are situated below the stage pointing upwards.  The stage of the 
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inverted microscope is usually fixed in one position and the focus is adjusted by moving the 

objective lens across the vertical axis.  The focus mechanism consists of a dual concentric 

knob for coarse and fine adjustment (figure 3.16).  

 

 

 

Figure 3.16: image of Olympus CKX31 inverted optical microscope. 

 

This type of microscope is advantageous for observing living cells or organisms and also, it is 

used for micromanipulation applications53. The optical microscopic images of the interface 

between the aqueous phase with and without electrolytes containing SDBS and the organic 

phase containing 1,2-DCE with and without electrolytes / pure GTO were obtained using an 

Olympus CKX31 inverted optical microscope (GT Vision, UK)  with a GXCAM-5 camera 

attached to it and a 4x objective lens was also manipulated.  All the images captured were 

then analysed using the GX Capture software.  For each concentration of SDBS, a volume of 

200 µL of the surfactant solution and 200 µL of the 1,2-DCE/GTO were deposited on a glass 

slide before examining the aqueous-1,2-DCE/GTO interfaces using the optical microscope.   

      Furthermore, emulsion droplets were produced by adding 0.1 µL of the 1,2-DCE with and 

without electrolytes /GTO to 2 mL of deionised water containing 1.5 mM – 13.4 mM of the 
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SDBS surfactant. The images of the droplets were then obtained using the Olympus CKX31 

inverted optical microscope in a similar manner as mentioned above for the examination of 

the interfaces.  For each surfactant concentration, the images were analysed using Image J 

software to determine the average size of the emulsion droplets. 

 
3.11 Differential Scanning Calorimeter  
 
   
The thermal transitions of the crystal samples were determined using the Differential 

Scanning Caorimeter (DSC, Perkin Elmer Pyris1 DSC Q1000, TA instruments) (figure 3.17).  

DSC is a thermoanalytical technique which measures the difference in heat flow between 

the sample and a reference used whilst the material is heated or cooled.   There are two 

types of DSC instruments and these are the heat flux and the power compensation DSCs.  

The DSCs can transform the temperature difference into a measurement of energy per unit 

mass related to the phase change which initially led to the difference in temperature.  

Therefore, any change in the material which causes the heat capacity of the material to alter 

is detected using the DSC 54.   

 

 

 

Figure 3.17: image of the Perkin Elmer Pyris1 DSC Q1000. 

 

The DSC used was initially calibrated with indium (the standard calibration reference 

material) before analysing the crystalline samples 55. In each case, the crystal samples were 

weighed into a 40 µL aluminium pan and then heated up from room temperature (RT) to 

250 °C followed by cooling from 250 °C to RT, at a rate of 5°C/min.  A 500 amu mass 

spectrometer (MS, Hiden Analytical Limited, UK) was also employed to identify the 

components of the interfacial crystals while heating up the samples from RT to 250 °C and 
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then cooling them down from 250 °C to RT.  In MS, the crystallite samples in vaporised form 

were initially ionised in the ionisation chamber under vacuum.  The resultant positive ions 

were then accelerated into a finely focused beam.  Following this, depending on the mass-

to-charge ratio (m/z) of the ions, the charged particles were separated and deflected on to 

the detector by adjusting the magnetic field from the mass analyser.  Finally, the streams of 

ions pass from the analyser to the detector and are detected as an electric current from 

which the relative abundance of each ion type with their respective m/z is recorded56.  

 
3.12 Electrocapillary curve and interfacial tension measurements 
  
 
For electrocapillary curves and the interfacial tension measurements, a Wilhelmy plate 

ST9000 surface tensiometer (NIMA, UK) at 22 + 0.5 oC was calibrated and used (figure 3.18).  

 

 

 

Figure 3.18: image of a Wilhelmy plate ST9000 surface tensiometer. 

 

The 2-electrode electrochemical cell arrangement was applied to investigate the effect of 

voltage and concentration on the chaotic behaviour at the liquid-liquid interfaces.  The 

interfacial tension measurements were performed simultaneously with voltage changes on a 

polarised flat surface.  The potential was increased from 0 V – 0.8 V at an interval of 0.2 V.  

For each SDBS concentration, in both, the aqueous (with LiCl)- 1,2-DCE (with TBATPB) and 

aqueous (with LiCl)- GTO systems, the potential was kept constant for 100 seconds before 

measuring the surface tension at equilibrium. All measurements were performed at ambient 

temperature.  
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A series of electrocapillary curves showing the difference in the interfacial tension,      

against the potential change expressed in the form of  
 

  
          were plotted for 

both the aqueous with and without electrolytes - 1,2-DCE with and without electrolytes 

/GTO systems, as the SDBS concentration was varied between 0 mM – 13.4 mM.    

 

3.13 Laser diffraction particle sizing analyser 

 

The laser diffraction technique is used to measure particle size distribution for a wide range 

of materials with submicron to millimetre size range.  The advantages of using this method 

are attainment of rapid measurements, reliability, repeatability and a high sample 

throughput with great precision 57.  The technique is composed of a beam of polarised light 

with known fixed wavelength of 0.63 µm which, when it impinges on the particles dispersed 

in the carrier solution or gas, causes the light to scatter.  The angle and the intensity of the 

diffracted light are measured using an array of photosensitive detectors (figure 3.19) 58.   

 

 
 

Figure 3.19: image of laser diffraction particle sizing analyser. 

 

Following this, by applying mathematical algorithms, the signals detected are then 

converted into particle size distributions. The basic scattering equation (equation 3.12) of 

light by a single particle given that the scattering object is spherical and the refractive index 

of the material (both the real and imaginary components) is known, is stated below 59.  
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                                       (eq. 3.12) 

 

Where,       is the intensity of the scattered light as a function of angle,       is the intensity 

of the incident light beam;   is the wave number;   is the distance from the scattering 

particle to the detector;        and       are the complex scattering functions which 

defines the scattering of light in a 360o surface.  The type of light source and the position of 

the detectors are governed by the size of particles investigated.  In modern light diffraction 

instruments however there are several light sources and detectors available which in turn 

allow a dynamic range of particles to be detected using this method.  The laser diffraction is 

usually calibrated to align the instrument using standard garnet powder particles with an 

average size of 35 µm.  After calibrating it just once, the laser diffraction technique can be 

used multiple times without further requirement for calibration.  This means that an 

accurate size distribution can be derived as the particle size is inversely proportional to the 

diffraction angle, given that the light passes through the suspension 59.   

 

3.14 X-ray diffraction techniques 

 
X-ray diffraction methods are non-destructive analytical techniques used to identify the 

structures of crystalline materials and are also employed for quantitative determination of 

crystal substances by analysing the diffraction pattern.  The structures of the crystals can be 

related to the diffraction configuration using Bragg’s Law (equation 3.13)60.    

 

                                                                    nλ = 2d sin                                                         (eq. 3.13) 

In Bragg’s Law, n is an integer, λ is the wavelength of X-rays, d is the spacing between the 

planes of the atomic lattice and     is the angle between the incident ray  and the surface of 

the planes.  The Bragg’s Law can be illustrated using the diagram below (figure 3.20).   

 

 

 

 

 

 

                 Figure 3.20: Diagram illustrating Bragg’s Law 60. 

d 
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There are two different diffraction techniques which have been used in this study and these 

are wide angle X-ray scattering (WAXS) and small angle X-ray scattering (SAXS).  The 

distinguishable characteristics which separate the two techniques are the scattering angles.  

WAXS is used to investigate samples with 2   > 5o whereas, SAXS can be manipulated to 

examine samples with lower 2  ranging between 0.1 to 10o. 

 

3.14.1 Small Angle X-ray Scattering 
 

A Bruker Nanostar Small Angle X-ray Scattering (SAXS) instrument along with cross-coupled 

Göebel mirrors and pin-hole collimation was used for SAXS measurements. CuKα radiation 

of 1.54 Å was produced using an X-ray tube with a voltage of 40 kV and a current of 35 mA, 

which scatters upon contact with the sample in the capillary.  The SAXS camera was fitted 

with a Hi-star 2D detector (pixel size 100 µm) which displays direct electronic imaging of the 

X-ray pattern.  A vacuum pump was used to reduce air scattering in the sample chamber. 

      The background was subtracted from the scattering files which were then integrated to 

give one-dimensional scattering function I(q), where q is the length of the scattering vector 

and can be defined by the equation 3.14. 

 

                                                                                                                           (eq. 3.14) 

 

Where, λ = is the wavelength and 2  is the scattering angle.  The sample distance used was 

650 mm which gave a q range from 0.2 to 30.6 nm-1. 

 

3.14.1.1 Solid fat analysis using SAXS 

 

A small quantity of lard was carefully deposited on to the aluminium foil and tightly sealed in 

a cuvette before SAXS analysis was conducted in order to determine any polymorphic 

changes occurring with change in temperature. Since lard is the most complex fat it was 

used as the model for problematic fat removal.  An equal amount of lard was then smeared 

across each swatches of fabric and examined using SAXS in a similar manner as stated 

above.  The temperature range applied to the soiled samples varied between 5 oC to 60 oC 

using an XYZ temperature controller which was connected to the SAXS. 
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3.14.1.2 Liquid surfactant analysis 

 

SAXS analysis was conducted on soiled solutions (before/after washing).  Approximately 

0.05 mL of the solutions was injected into a capillary tube before sealing both ends of the 

cuvette firmly for SAXS measurements. This method was used to identify the presence of 

micelles with increase in concentration of the surfactants/detergents. 

 

3.14.2 Wide Angle X-ray Scattering 

 

A Bruker GADDS D8 Wide Angle X-ray Scattering (WAXS) instrument with cross-coupled 

Göebel mirrors and pin-hole collimation was used to obtain information on the packing of 

the surfactant nolecules, 1,2-DCE - TBATPB/surfactant based crystal samples and 

polymorphic crystal structures of soils (with and without the deposition of it on different 

types of fabrics).  A tube X-ray source was used with a voltage of 40 kV and a current of 40 

mA, which produced a CuKα radiation of 1.54 Å. The WAXS camera was fitted with a Hi-star 

2D detector (pixel size 100 µm) (figure 3.21).   

 

 
 

Figure 3.21: Image of Bruker D8 diffractometer. 

 

The scattering files collected were integrated to give the one-dimensional scattering 

function I(q).  The sample detector distance used was 150 mm which gave a 2  range of 10o 

to 45o. The WAXS data was processed using the GADDS software from which the 2 , d-
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spacings and peak intensities of  all the samples investigated were determined. The samples 

were placed on a silica wafer before WAXS analysis was commenced, in order to minimise 

the background scattering.  

 

3.15 Environmental scanning electron microscope  

 

In Environmental scanning electron microscope (ESEM), with its specialised electron 

detectors and pumping systems, the electron beam is emitted from an electron gun under 

high vacuum to a sample chamber, where either the pressure or temperature can be altered 

to adjust the humidity level, which in turn allows imaging of the specimens in it natural 

form61.   

 

 

 

Figure 3.22: Image of the Philips XL30 ESEM used. 

 

The Philips XL30 ESEM (figure 3.22) was used to characterise the sol-gel/FcAuNP mixture 

used to make the enzymatic biosensors.  A 0.3 µL of the sol-gel/FcAuNP mixture was gently 

sonicated for 30 minutes before depositing the solution onto a silica wafer for ESEM 

analysis. The accelerated voltage applied was 24 kV and the electron beam spot size was 4.3 

nm.   The magnification in the ESEM was an order of magnitude of 8000x.  The gaseous 
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secondary electron detector (GSED) was applied which used gas to amplify the electron 

signal. 

 

3.16 Atomic Force Microscopy (AFM) 

 

AFM has been proven to be a useful technique for measuring the physical and surface 

properties of a material at the nanometer scale.  This method involves use of a probe or tip 

which is situated at the apex of a silicon cantilever.  The cantilever or the sample surface is 

mounted on the piezocrystal which allows the sharp probe to be positioned in relation to 

the surface so that it can scan across the surface of interest.  This in turn causes deflection 

of the cantilever arm which is monitored by the change in the path of a laser light. The beam 

of the laser light is reflected from the upper side of the cantilever on to a position-sensitive 

photodetector. The forces of interaction between the probe and the surface due to 

deflection are then measured, as a function of distance62.  A Veeco Multimode Atomic Force 

Microscope along with Nanoscope IV controller was used for analysis of lard samples (figure 

3.23). 

 

 

 

Figure 3.23: Image of a Veeco Multimode Atomic Force Microscope.  

 

The lard specimen in solid form was deposited on to a silicon wafer which was then placed 

into the AFM.  For the AFM, the imaging mode of operation used was the contact mode.  
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From this, the deflection signal was recorded and displayed in the form of a topograph. The 

temperature was increased from 10 oC- 60 oC using a temperature controller which is 

connected to the AFM. 

 

3.17 Transmission Electron Microscopy  

 

Transmission Electron Microscopy (TEM) is a microscopy technique, which is capable of 

generating high resolution images of a material up to an atomic level compared to other 

microscopic methods such as the light microscope.  In TEM, a beam of electrons is 

transmitted through the sample where it interacts with the specimen. An image is then 

produced, magnified and focused before detecting it using an imaging device such as 

fluorescent screen, photographic film or CCD camera63.  The high resolution generated due 

to the small de Broglie wavelength of the electrons (equation 3.15) allows fine details such 

as the shape, size and structure of small materials that are thousands of times smaller than 

the objects detected using a light microscope to be identified64.    

                                                                    
 

     
                                                        (eq. 3.15) 

 

Where,   is the wavelength,   is the Planck’s constant and equals to 6.6 x 10-34 Js,    is the 

mass of an electron which is 9.11 x 10-31 kg and   is the velocity of the beam.  The electron 

wavelength is typically around 0.02 Å compared to a few Å for X-rays.  The overall resolution 

is affected by the diffraction limit (δ1) and the spherical aberration (δ2).  By taking into 

account of all the above factors and that the semi-angle of collection of magnifying lens is 

0.1 radians/ 5o, the theoretical resolution limit can be determined using equation 3.16 

below65,66.  

 

                                                                 
   

 
  

     

     
                                               (eq. 3.16) 

 

Where,     is the diffraction limited spot size,   is the refractive index of the viewing 

medium,   is the semi-angle of collection of magnifying lens and   is equal to 1 for air, at 

small angles. The       value also known as numerical aperture can be approximated to 

unity assuming that the resolution is equal to half the wavelength of light.  The theoretical 
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value however is not attainable due to lens deviation. To reduce this effect, a small aperture 

can be employed to ensure that the electrons can pass through the centre of the lens65.   

       The JEOL 2100F Schottky field emission gun TEM used in this study has a point resolution 

of 2.3 Å and 1.0 Å information limit (figure 3.24), operating at 200 kV.  The sample was 

prepared by depositing a drop of the sol-gel/FcAuNP solution onto a special glass grid before 

analysing it using the TEM. 

 

 

 

Figure 3.24: Image of JEOL 2100F field emission gun TEM. 

 

The phase contrast, high resolution electron microscopy and diffraction patterns were 

processed by a Gatan Orius Camera.  The sample images captured were analysed via Digital 

Micrograph platform software. The chemical composition of the sol-gel/FcAuNP sample 

investigated was determined using the Energy-dispersive X-ray Spectroscopy (EDX) and an 

Oxford INCAx-Sight Si(Li) detector.  

 

3.18 The soiling and ageing process 

 

5 cm x 5 cm pieces of fabrics i.e. polyester, polycotton and cotton were initially cut out for 

the soiling, washing and ageing process.  Each fabric swatch was then weighed before 

depositing and spreading the melted (at 55 oC for 10 minutes) lard across the surface evenly.  

Lard was used as the fat model as it consists of a mixture of fatty acids therefore making its 

removal more problematic compared to other fats.  The soiled fabrics were then weighed 
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and stored at -10 oC (on dry ice), 10 oC (in a water bath), 20 oC and 30 oC (in ovens) before 

washing.  After washing the soiled swatches of fabrics, the samples were dried at the 

appropriate temperatures for one day, three days and five days before SAXS and WAXS 

analyses were conducted to determine the polymorphic state of the fat crystals.  Overall, 24 

pieces of fabrics were required to conduct the experiments.  Each experiment was repeated 

twice for accuracy.  Alongside the above experiments, two sets of soiled fabric swatches 

were also exposed to 10 oC by placing the pieces of fabrics on ice and another two sets of 

fabrics were kept on dry ice at a temperature of -10 oC for 1 day. Throughout the day the 

soiled fabric samples were analysed after 1 hour, 4 hours and 16 hours using SAXS (table 

3.1).   Any significant differences in the results obtained from the experiments with and 

without ice/dry ice were then evaluated.  Each experiment was conducted twice for 

accuracy. 

 

Table 3.1: the number of fabrics required for the ageing process for day 1 (per technique). 
 
                Fabrics polyester polycotton cotton 

                 -10 
o
C 2 2 2 

10 
o
C 2 2 2 

20 
o
C 2 2 2 

30 
o
C 2 2 2 

-10 
o
C 

(dry ice) 
6 (analysed 
after 1 hour, 4 
hours and 8 
hours) 

6 (analysed after 1 
hour, 4 hours and 8 
hours) 

6 (analysed after 
1 hour, 4 hours 
and 8 hours) 

10 
o
C 

(ice) 
6 (analysed 
after 1 hour, 4 
hours and 8 
hours) 

6 (analysed after 1 
hour, 4 hours and 8 
hours) 

6 (analysed after 
1 hour, 4 hours 
and 8 hours) 

 

In total, 60 swatches of fabrics were required for the one day ageing experiments (table 3.1).  

For analysis of the washed soiled fabrics by either one of the specific techniques such as 

SAXS or WAXS after 3 days (24 swatches of fabrics) and 5 days (24 swatches of fabrics) of 

ageing at different temperatures required a total of 48 pieces of fabrics. 

 

3.19 The Washing Process 
 
 
The above procedure as used for the ageing process (days 1 -5) was repeated for preparing 

samples for the washing cycle.  As before, the fabric swatches were exposed to a range of 

temperature (i.e. -10 oC, 10 oC, 20 oC and 30 oC) and stored overnight (on dry ice, in water 

bath and ovens) before washing was carried out in Newcastle Innovation Centre, Newcastle.  
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The wash process was undertaken without the use of surfactant as a control experiment. A 

low concentration of 0.7 mg/ml, a high concentration of 50 mg/ml of C24E3S surfactant and 

no surfactant was applied for the washing process. The C24E3S surfactant was used because 

it showed micellar formation at a range of concentrations and was easily detectable using 

SAXS.  The surfactant concentrations were scaled up to make up a volume of 800 mL which 

is the maximum a tergotometer wash pot can hold (figure 3.25).   

  

Figure 3.25:  Schematic diagram of the tergotometer setup used for the washing process. 

The temperatures used for cold water wash were set at 20 oC, 30 oC and 40 oC.  Overall, for 

each wash water temperature a total of 24 soiled fabric swatches were used. Due to time 

limitation, repeats for only the soiled fabrics exposed and dried after wash at temperatures 

of 10 oC and 20 oC were undertaken (experiments 2, 3 and 5 as stated in table 3.2). 

 

Table 3.2:  the number of soiled fabrics required for one specific wash temperature/ per 

technique (such as SAXS, WAXS or NMR) used. 

 
Experiment No. Soiled fabrics polyester polycotton cotton 

1 Exposed to -10 
o
C (for 

drying overnight at -10 
o
C) 

1 1 1 

2 Exposed to 10 
o
C (for 

drying overnight at 10 
o
C) 

2 2 2 

3 Exposed to 20 
o
C (for 

drying overnight at 20 
o
C) 

2 2 2 

4 Exposed to 30 
o
C 

( for drying overnight at 
30 

o
C) 

1 1 1 

5 Exposed to 10 
o
C (for 

drying overnight at 20 
o
C) 

 

2 2 2 

Total number of fabrics 8 8 8 

Wash pots 

Time and 
temperature 

controller 
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For all of the wash temperatures (20 oC, 30 oC and 40 oC ) and analysis of the washed soiled 

fabrics by one specific technique i.e. SAXS or WAXS, a total of 72 pieces of fabrics were 

needed (table 3.3). 

 

Table 3.3: shows the number of fabric swatches required for the different wash 

temperatures and for analysis of the washed fabrics by one specific technique. 

 

   Fabric type          polyester           polycotton            cotton 

Wash temperature
 
/

o
C 

20 8 8 8 

30 8 8 8 

40 8 8 8 

Total number of fabric 
swatches 

24 24 24 

 

The soiled fabric swatches in the absence and presence of C24E3S surfactant were washed 

using a tergotometer and by applying mechanical agitation at a constant speed of 200 rpm 

for 20 minutes.  All the samples were then further rinsed with clean water for 8 minutes to 

remove excess surfactant from the fabrics.  After washing and rinsing was carried out, the 

fabric swatches were exposed to and dried at appropriate temperatures of 10 oC, 20 oC and 

30 oC before cutting out 1 cm x 1 cm sized pieces of fabrics for SAXS and WAXS analysis.  

Each sample analysis was undertaken for a period of 1 hour using SAXS/ WAXS.  The data 

obtained was then integrated and intensity versus 2  plots was produced. The amount of 

lard removed from the washed soiled fabrics was also evaluated (see section 3.20).               

      In this washing process, factors such as fabrics, washing and thermal exposure 

temperature were the variables. The type of fat, fabric and surfactant used as well as the 

speed of the tergotometer were kept constant throughout the experiments outlined above.   

 

3.20 Quantification of lard removed after washing 

The level of lard removed after washing at wash temperatures of 20, 30 and 40 oC was 

determined quantitatively using equation 3.17 below. 

                           
                      –                        

                     
                      (eq. 

3.17) 
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CHAPTER 4 

Surfactant characterisation at the liquid-liquid interface 

4.1 Surfactant behavior at the liquid-liquid interface 

The behaviour of surfactant at an oil/water interphase is of fundamental importance across a 

range of application, which includes detergency1, oil processing2,3, agrochemicals4, medicine5, 

water treatment6 and food production7,8.  The first study on ion transfer across the liquid-liquid 

interface was undertaken in the 1970s by the pioneer Claude Gavach in the field of 

electrochemistry at the interface between two immiscible electrolyte solutions (ITIES), using 

various electrochemical methods such as chronoamperometry and impedance spectroscopy9. 

The methods were used to determine parameters related to the ionic transfer kinetics i.e. the 

transfer coefficients, rate constants and interfacial double layer capacitance10,11.  The work on 

the ion transfer across the ITIES was further explored by professor Koryta and co-workers in 

Heyrovsky institute, Prague between the late 70s and the late 80s using various systems 

including the water-nitrobenzene and metal-electrolyte solutions 12,13,14,15.  At the same time, the 

concept of ideally polarised ITIES based on the standard Gibbs energy of ion transfer was also 

introduced by Koryta et al16.  The fundamental studies carried out on ion transfer across the ITIES 

has permitted deeper understanding of : (1)  the influence that charge transfer kinetics have on 

the interfacial structure and (2) how the ion exchange process at the phase boundary can be 

used for electrochemical sensing of ionic analytes which are difficult to detect by redox 

electrochemistry17.  The advances in the electrochemistry of charge transfer in liquid-liquid 

systems have allowed determination of various essential properties of ion transfer such as the 

standard Gibbs energy of transfer of different types of simple ionic species which can be easily 

established using voltammetric techniques18,19.  The interactions between ions or redox species 

on charged interface have been found to play a fundamental role in interfacial instability20.  

Current experimental work performed by Kakiuchi et al, on transfer of anionic surfactants, 

alkanesulphonate sodium salts and alkyl sulphate ions, across the water (with 10 mM LiCl) -1,2 

DCE (with 20 mM TPnATPB) interface has shown evidence for the presence of instability region in 

the polarised potential range of the phase-boundary potential, using cyclic voltammetry21.  

Kakiuchi’s research showed as the half-wave potential for interfacial transfer of the surface 

active ions was approached, irregular oscillations and chaotic behaviour of the current were 

identified as a result of electrochemical instability within the potential region around the mid-
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point potential22. These findings were then further confirmed by using potential-step 

chronoamperometry (CA) which also demonstrated the existence of instability range due to 

potential dependent adsorption and partitioning of the surface active ions on the phase-

boundary potential.  The irregular current was found to be more pronounced with increase in 

surfactant concentration, decrease in the scan rate using CV and increase in potential when 

applying the CA23. The chaotic currents occur as a result of Marongoni-type movements and the 

spontaneous emulsification occurring at the interface due to the driving forces produced by the 

difference in the chemical potentials of the reactant species present in both the aqueous and 

organic phases.  The spontaneous emulsification results in formation of emulsion particles to 

reinstate the system to its stable state however the avalanche-type transfer of these particles 

across the liquid-liquid phase boundary has also  been found to give rise to chaotic currents as 

detected electrochemically24.  All of these attributes indicate that the electrochemical instability 

is both time- and concentration-dependent phenomenon. It has also been established by 

Kakiuchi and co-workers that cations such as Na+ and Li+ from surfactants/electrolytes in solution 

can be entrapped in the process of emulsion particle formation.  This was evident from the 

consecutive current spikes observed using the CV technique25.     

      Similar instability results as obtained for the anionic surfactants was also reported by Kakiuchi 

et al. for the transfer of cationic surfactants i.e. the decylammonium ions (DA+, 0.5 - 1 mmol dm-

3) and, the nonyl- and octyl-ammonium ions (2 mmol dm-3) across the 1,2-DCE (100 mM 

TPnATPB)/water (with 0.1 M LiCl and 10 mM HCl) interface26.  The current augmentations 

observed however was seen to disappear after a 10 mmol dm-3 of sorbitan monooleate (non-

ionic surfactant) was added to the doedecylsulphonate (anionic) surfactant based system and 

also, when a 3 mmol dm-3 of sorbitan monooleate was mixed with the 1,2-DCE phase of the 

decylammonium (cationic) surfactant based liquid-liquid system.  This is due to the sorbitan 

monooleate acting as a stabiliser and strongly adsorbing at the interface, repressing the 

convection motion of the solutions which was reflected in the shape of the voltammogram 

resembling an electrochemically reversible reaction. Thus, reducing the surface tension (   in the 

entire potential region and also, decreasing the dependency of the   on the potential 

applied21,26,27.                

      Further studies on surfactant at the ITIES showed that the maximum adsorption of the ions 

take place when the interfacial potential reaches the standard ion transfer potential of the 

surface active molecules.  As a result, the double layer capacitance becomes negative and the 

interfacial tension with respect to phase boundary potential becomes positive28.  The interface 

overcomes the unstable state by bringing the phase boundary potential outside of the instability 
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potential range and also, via releasing energy through processes such as spontaneous 

emulsification and movement of the interface due to Marangoni effect (which is caused by the 

mass transfer along the interface as a result of surface tension gradient)29.  By understanding the 

electrochemical instability caused by the transfer and adsorption of the surfactant ions, various 

instability related problems such as fluctuations at the water and organic phase systems can be 

solved and also, mechanisms involved in spontaneous emulsification and digestion of fat can be 

determined. 

 

4.2 Stability and instability of the electrified liquid-liquid interface 

The adsorption of surfactant at the liquid-liquid interface system has been known to cause 

electrochemical instability.  In electrochemistry, the oscillation of phase-boundary potential 

   
    at the oil-water interface has been described in terms of forming and breaking the 

surfactant layers and, the adsorption and desorption of ion-pair at the interface30,31.  The early 

work conducted by Arai et al. in 1995 demonstrated presence of interfacial oscillations and 

instability caused by the adsorption of sodium dodecylsulphate at the water-octanol phase 

boundary, using potentiometry30. Following this, Maeda et al. showed self-sustained oscillations 

for a system consisting of water phase with cetrylmethylammonium and nitrobenzene phase 

with picric acid31.  In most recent years, the process of surface active ion transfer and the 

instability due to adsorption of surfactant at the liquid-liquid interface has been extensively 

studied by Kakiuchi using techniques such as cyclic voltammetry and chronoamperometry32.  

Kakiuchi’s research revealed that the width and location of the instability range is influenced by a 

number of factors which include change in surface tension (Δ   due to adsorption of ion, 

absorbability and concentration of the ion, curvature of electrocapillary curve, the potential 

difference between the two immiscible phases at the interface, the amount of electrolyte salt 

used, the relative location of   
      (potential difference at point of zero charge i.e. the highest 

point of the capillary curve)33 and   
   

   (standard ion transfer potential) as well as factors such 

  
      (the adsorption coefficient) and        

   standard adsorption Gibbs energy at   
   

    34, 

35, 36.                   

      Kakiuchi initially established that the criterion for attaining a stable electrified liquid-liquid 

interface require the   with respect to the phase-boundary potential    
    to be negative.  This 

can be defined in terms of         
          

   and the first derivative of the Lippmann 

equation (equation 4.1) 37,38. 
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                        (eq. 4.1) 

Where, qw is the excess surface charge density in water, ∆Gσ  is the surface excess Gibbs energy, 

   is the inner potential difference or Galvani potential between the water and 1,2-DCE phase, A 

is the area of the interface (cm2), T is the temperature,    is the chemical potential of a chemical 

species, i, and p is the pressure.  According to the lippmann equation (equation 4.1), the slope of 

an electrocapillary curve (see section 4.3) represents the excess surface charge density on the 

water phase side of the interface.  Differentiation of the above expression for stable phase 

boundary condition relates the   to the potential difference and the capacitance.  This can be 

represented in the form of second derivative of Lippmann equation (equation 4.2) below 39,40. 

 

                
   

   
 
      

    
   

     
      

   
 

 
  

     

     
      

                        (eq 4.2) 

 

Where,     is the double layer capacitance.  For fixed condition at a constant temperature and 

pressure, the high level of entropy is converted to minimum Gibbs energy of the system and this 

in turn leads to a decrease in the   and a positive double layer capacitance is achieved41.  

However, when a surfactant is introduced into the above equilibrium system, the polarised 

interface becomes unstable due to phase boundary potential-dependent partitioning and 

adsorption of the surface active molecules in the two electrolyte solutions, organic and water42.  

The criterion for an unstable system can be expressed as         
          

   .  The term is 

violated due to an instability potential range within the   
   values and this in turn generates a 

positive finite value of   as a result of spontaneous emulsification in the liquid-liquid two phase 

system which is evident by the clouding effect at the vicinity of the interface43,44,45.   The 

emulsification process is initiated by the hydrodynamic movement of the interface which is 

Marangoni-driven and caused by the formation of surface tension gradients46,47,48.  The energy 

required for such reaction to take place is obtained from just simple rearrangement of the 

components within the system49.  The Marangoni instability in a liquid-liquid system caused by 

the transfer of solute ions was first discovered by Sternling and Scriven50 and the emulsification 

phenomenon was initially observed by Johannes Gad in 1878, who discovered that a solution of 

lauric acid in oil instantly emulsified when coming into contact with an aqueous alkali solution, in 

a surfactant based system51. Brϋcke in 1879 later confirmed Gad’s findings and also, 

demonstrated that high concentrations of alkali prevent the emulsification process52. Following 
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this, various self-emulsification processes occurring in oil-water-alcohol, fatty acid-warm 

aqueous alkali solution and a range of oil-water two phase systems in the presence of non-

surface active salts53, anionic25,54, non-ionic55,56 and cationic57 surfactants, due to uneven 

lowering of surface tension in the interface have been reported56,57,58.  The emulsification process 

have been proven useful for a variety of surface chemistry and related applications such as 

dispersion of chemicals in industrial and agricultural processes59,60, formulating drug delivery 

systems60,61  and digestion of food62.         

      It can be therefore suggested from the term         
          

  , that the adsorption 

and partition processes for surfactant ions in two immiscible media i.e. the water and organic 

phase, is mainly affected by the phase potential difference,   
    at the interface which can be 

defined by equation 4.3 63. 

 

                                                              
                                                     (eq. 4.3) 

 

Where,     and    are the inner potentials of water and organic phase.  As the partitioning 

effect of the surface active ions is dependent on the   
  , it can be expressed by the Nernst 

equation (equation 4.4)64: 

 

                                                   
      

   
   

  

   
    

   
 

  
                                      (eq. 4.4) 

 

Where, R is the gas constant, T is the absolute temperature,   is the valency of the surfactant 

ions,   is the Faraday constant,    
  and     

  are the concentrations of the surfactant ions in the 

water and organic phases.   The ∆γ due to surfactant adsorption as well as the adsorption Gibbs 

energy are both also dependent on the potential difference between the two phases. This can be 

expressed in terms of equations 4.5-4.765.    

 

                         
   

  
                

  

   
                      

           (eq. 4.5) 
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                          (eq. 4.7) 
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Where, R is the gas constant, T is the absolute temperature,   is the product of permittivity  and 

the concentration of electrolytes in both 1,2-DCE and water,    is the maximum adsorption of 

the surface active ions  (the value is assumed to be the same in both phases),   is the valency of 

the surfactant ions,   is the Faraday constant,        
    is the standard Gibbs energy of adsorption 

from the organic phase,        
    is the standard Gibbs energy of adsorption from water phase, 

  
   is the potential difference between the 2 phases,        

  is the standard Gibbs energy at 

  
    

 , which in turn is the reference point of the potential dependent        
    and  Δ      

    

(Standard Gibbs energy of adsorption from O and W phases) and βi is a constant independent of 

  
  .  When an anionic surfactant is adsorbed from the water to the organic phase and the bulk 

concentration of the surface active ions in the water solution decreases,        
    becomes more 

positive with negative   
  , between the two immiscible phases66.  The difference in the 

adsorption Gibbs energy represents the relative affinity of the adsorbed molecules to the 

adjacent phases and this in turn is dependent on the hydrophilic-lipophilic balance of the 

surfactant67.            

 

4.3 Electrocapillary curve for surfactants at the liquid-liquid interface 

The adsorption of the surface active ions reaches the highest when the potential is close to the 

  
   

    of the ions and decreases with the potential away from the   
   

    , giving rise to a bell-

shaped peak.  This leads to instability which can be observed within the potential range 

established for a series of the phase-boundary potentials applied68. When plotting 

electrocapillary curves showing the presence of instability range for a system where the 

concentration of the surfactant is small and  adequate amount of supporting electrolytes are 

present in both (water and organic) phases, it is assumed that the Δ  because of specific ion 

adsorption and the diffuse part of the double layer are additive.  The total variation in   is then 

plotted as a function of     
 

  
  Δ 

    Δ 
      , representing an electrocapillary curve 

(figures 4.1a and 4.1b).   The Δ 
       is normally located in the middle of the potential range for 

a polarised interface between the two immiscible electrolyte solutions and the   
   

  of the 

surfactant is usually close to the Δ 
       for an unstable system69.  A dip in the middle of the 

electrocapillary curve can be identified due to surfactant adsorption (figures 4.1a and 4.1b) 

indicating a decrease in the interfacial tension which however remains positive despite the 

instability. Thus, a positive curvature in the electrocapillary curve and a negative capacitance is 

attained in the range of   
   where the system in unstable70.   
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Figure 4.1: Electrocapillary curves for different concentrations of surfactant (labeled 1 (high)-4 

(low)) added to the aqueous phase with electrolyte concentration of (a) 0.8 and (b) 80 mol dm-3 

23. 

From figures 4.1a and 4.1b, it can be also deduced that the instability potential range increases 

with an increase in surfactant concentration and it decreases with an increase in the electrolyte 

concentration indicated by the narrowing of the electrocapillary curve.  Enhancing the electrolyte 

concentration therefore stabilises the electrochemical system 71,72. 

4.4 The adsorption process of surfactant molecules defined in terms of adsorption isotherm 

models 

The amount of surfactant adsorbed at the interface is usually determined using the simplest 

method of interfacial tension measurements. For solutions, below the critical micelle 

concentration (CMC) point a decline in the equilibrium surface tension (     is normally achieved 

with an increase in the concentration of the surfactant.  As the surfactant concentration is 

continuously increased, a sudden change in the     signifying the attainment of the CMC point is 

observed.  Enhancing the surfactant concentration just above the CMC level, causes the     to 

remain constant, indicating formation of micelles73.       

      The Gibbs adsorption isotherm (equation 4.10) is another method for quantitative 

determination of the surfactant level adsorbed at the interface.  This particular isotherm  is 

fundamental to all the adsorption reactions and  used to develop models such as the Van der 

Waals and Volmer isotherms corresponding to non-localised adsorption as well as Langmuir and 

  

                  

  

                  

(a) (b) 
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Frumkin isotherms which illustrate the localised adsorption process of the surfactant 

molecules74,75. The Gibbs adsorption equation (equation 4.10) below is for a system consisting of 

only one surface active constituent, species  .  The adsorbed amount of surfactant at the 

interface is expressed in terms of the surface excess,     which is defined as the excess of solute 

per unit area of the interface comparing to the bulk concentration.  For dilute solutions, the 

surface excess and concentration is likely to be equivalent as the bulk concentration is small76.  

 

                                                                     
 

   
 

  

      
                                                   (eq. 4.10) 

Where, n is a constant depending on the number of species which makes up the surfactant and 

adsorb at the interface, R is the gas constant, T is the absolute temperature, c is the 

concentration of the surfactant and   is the surface tension.   

      The isotherm models (Langmuir and Frumkin adsorption isotherms) relevant to localised 

adsorption and appropriate for the liquid-liquid system investigated are explained further.  The 

Langmuir adsorption isotherm (equation 4.11.1) derived by Langmuir in 1918 is the simplest 

adsorption isotherm.  The model defines surfactant adsorption by taking into account of the 

salinity, surfactant concentration and permeability.  The adsorption is irretrievable with 

surfactant concentration and reversible with level of salt77.  The isotherm is based on the 

assumption that there are finite numbers of adsorption sites and that each site is occupied by a 

single adsrobate molecule.  During adsorption, a point of saturation is achieved when all of the 

available sites are taken up by the adsorbate molecules and complete monolayer coverage is 

attained.  The Langmuir model presumes that intermolecular interaction does not exist between 

the surfactant molecules in either the bulk solution or at the interface78.  Hence, the activation 

energies of the molecules are independent of the surface concentration of the surface active 

molecules.  However, according to the Langmuir Isotherm (equation 4.11.1), the    is related to 

the surfactant concentration in the bulk solution or at the phase boundary 79,80: 

 

                                                                           
    

    
                                                                    (eq. 4.11.1) 

Where,    is the adsorption capacity,   is the surfactant concentration and   is the surfactant 

activity.  The Frumkin isotherm on the other hand was developed by Frumkin in 1925 and in 

contrast to the Langmuir isotherm it takes into account of all the forces which exists between the 

adsorbed surfactant molecules i.e. the intermolecular and repulsive interactions81.  It also 

assumes that there is a strong relationship between the activation energies and the surface 
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concentration. The adsorption of the surfactant can be therefore accurately defined by the 

Frumkin adsorption isotherm equation 4.11.282. 

                                                         
   

   
  

     
                                               (eq. 4.11.2) 

Where   
  is the adsorption coefficient,    

  is the concentration of the ions ( ) in the water or 

1,2-DCE phase and    is the surface coverage of    and   is the interaction parameter.  The first 

part of the equation 4.8 represents the diffuse component of the double layer for an unstable 

interface and, the second term signifies specific adsorption of   and potential-dependent 

through   . 

4.5 The mechanism of surfactant adsorption process at the interface 

As the surfactant molecules are introduced into the liquid-liquid ITIES system, the surface active 

ions are extensively adsorbed at the water and organic interface.  The adsorption process 

involves interface-seeking surface active molecules to arrange in a specific manner so that it 

allows the surfactant molecules to diffuse from the bulk of a solution to the interface and replace 

the solvent molecules which in turn leads to formation of a monolayer at the phase boundary83. 

During adsorption, the hydrophilic moieties of the surfactant molecules face the water phase 

whilst the hydrophobic part immerses in the organic phase.  As the concentration of the 

surfactant is continuously increased, the interface eventually becomes saturated due to 

accumulation of surfactant molecules.  This leads to an increase in the unfavourable interaction 

between the hydrophobic tail of the surface active molecules and the polar water molecules.  

The phenomenon causes surfactant molecules to polymerise and form micelles, which are held 

together by the Van der Waals interaction, as the critical micelle concentration (CMC) is reached 

with enhanced concentration of the surface active molecules.  Consequently, hydrophobic 

substances like fats are emulsified inside these micelles and this in turn allows the system to 

overcome instability via loss of energy84.   

      Simultaneously, due to weak adsorption, the surfactant ions can diffuse across from the 

phase boundary to the bulk via weak diffusion and convection flow (figure 4.2)85.   In the bulk 

phase, both micelles and monomers of the surfactant molecules exist in equilibrium.  Micelles 

are however unstable species which means that they can release monomers and decompose in 

order to balance the number of monomers adsorbed at the interface.  The whole cycle of 

surfactant adsorption and desorption as well as micellar assembly and demicellisation ensures 
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that the surfactant concentration remains constant at the phase boundary as well as in the 

subsurface layer and bulk solution (figure 4.2)86.     

 

Figure 4.2: Role of the micelles and monomers in the kinetics of surfactant adsorption52. 

Where,    is the rate constant of assembly of micelles and    is the rate constant of micellar 

disassembly.   The first models of micellar kinetics for homogeneous solutions were developed 

by Kresheck et al88 and Aniansson and wall89.  The models are based on fast and slow reactions of 

the micellar dynamics.  The fast process involves exchange of monomers between the micelles 

and the surrounding solutions whereas the slow process encompass complete decomposition of 

the micelles to monomers90.  From figure 4.2, it can be observed that the monomer 

concentration of the surfactant molecules in the bulk follows convective diffusion and therefore 

can be represented by  equation 4.1291.   

                                
   

   
      

   

  
     

   

                  
                   (eq. 4.12) 

Where,    is the concentration of the monomer,   represent the solution surface,    is the X 

component of the mean mass velocity, cm is the concentration of micelles, m is the aggregation 

number.  On the other hand, micellar diffusion can be defined in term of the diffusion equation 

stated below (equation 4.13)91. 

                            
   

  
      

   

  
      

    

          
                              (eq. 4.13) 

Where,    is the diffusion coefficient of the micelles.  During desorption, it is the charged 

hydrated part of the molecules which transfers across the interface from the aqueous to the 
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organic phase.  This means that the Gibbs energy for the transfer of the hydrated moiety from 

water to the organic phase (      
 ) mainly influences the standard potential of desorption, 

     
  .  The difference in the standard potential of adsorption       

   and     
  is equivalent 

with the Gibbs energy for the adsorption of surfactant molecules from water to the interface 

(         
  .  The Gibbs energy for the processes of surfactant transfer, adsorption and 

desorption can be expressed in terms of equation 4.1492. 

 

                                                  
            

             
                              (eq. 4.14) 



Where,             
  is the Gibbs energy for desorption of the surface active ions from the 

interface to the organic phase. The            
 term defines the Gibbs energy for the transfer of a 

hydrophilic head group which include a spacer chain and a segment of the long side chains from 

the water to the organic phase.  The          
  term corresponds to the Gibbs energy for the 

transfer of the remaining side chains from the water to the organic phase of the phase 

boundary92. 

4.6 The effect of electrolytes on the surfactant/water and organic phase interface 

The precipitation of ionic surfactants caused by the presence of salts such as the use of builders 

has been found to reduce the effectiveness of the detergent solution.  This can be problematic 

for a wide range of applications including enhanced oil recovery process from high salinity 

reservoirs.  In order to overcome this problem and to improve the salinity tolerance, mixtures of 

both non-ionic and anionic surfactants have been used in detergent formulations93.  Kolev et al. 

however have shown that the addition of sodium chloride (NaCl) electrolyte to the solutions 

consisting of ionic surfactants such as sodium dodecyl sulphate (SDS) led to binding of the 

counterions to the oppositely charged head groups of the surfactant molecules. The counterions 

therefore act as a second surface active constituent which results in a significant decrease in the 

total surface electric charge94.   Similar findings were also reported by Stellner and Scamehorn95, 

both of whom observed crystal formation as a result of NaCl electrolyte cations and SDS ions 

(used above its CMC level) interacting and precipitating out in salt form in an equilibrated 

surfactant system.  Although, a non-ionic surfactant, [NP(EO)10] surfactant was also added above 

its CMC level to the solution consisting of the electrolyte and the anionic surfactant, the non-

ionic surfactant was not integrated in the crystal structures95.  Furthermore, the electrolyte and 
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the anionic surfactant was found to exist either as a monomer, in mixed micelles (for 

surfactant)/attached to the micelle surface (for electrolytes) or as a precipitate. The precipitation 

of the anionic surfactant-electrolyte counterion complex can be expressed by the following 

concentration based solubility product equation (equation 4.15):95 

                                                                     
                                              (eq. 4.15) 

Where,     is the concentration-based solubility product,         is the concentration of 

anionic surfactant monomer and       is the concentration of the free electrolyte counterion.  

The above expression can be used to determine the amount of electrolyte required for the 

precipitation of a fixed concentration of surfactant.  The equilibrium state of a system where the 

anionic surfactant molecules adsorb at the interface and subsequently, the electrolyte 

counterions interact with the anionic head-groups regardless of non-ionic surfactant 

adsorbing/not adsorbing at the phase boundary can be presented by the Stern isotherm 

(equation 4.17)96. 

 

                                                           
  

  
 

      

         
                                               (eq. 4.17) 

                                                     and,      
 

   
                                                   (eq. 4.18) 

 

Where,    is the total surface concentration of both anionic and non-ionic surfactants,    is the 

surface concentration of the bound counterions,     is the subsurface concentration of the 

counterions,     is the Stern constant and     is the equilibrium constant of the reaction, 

demonstrating the association-dissociation equilibrium of the surfactant and the counterion in 

the bulk solution. as stated in equation 4.1997. 

 

                                                                                                                                       (eq. 4.19) 

 

In the above equation,    and    are the concentrations of the surfactant ions and counterions, 

respectively.  Following the work of Kolev et al. and Stellner et al, Mortada and co-workers 

reported that when a range of salts including NaCl, NaNO3 (Sodium Nitrate) and Na2SO4 (Sodium 

Sulphate) at concentrations between 0.05-1 mol L-1 were added to the aqueous phase consisting 

of 0.05% (w/v) triton-x-114, it led to a decrease in the in the solubility and reduction in the cloud 
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point of the non-ionic surfactant due to competition for water between the poly(oxyethylene) 

chain and the hydrated salt ions.  This in turn was found to cause precipitation of the dehydrated 

surface active and salt ions at the phase boundary as well as promote interaction between the 

precipitated interfacial electrolyte and surfactant ions, forming insoluble complexes98.  This 

phenomenon is referred to as the ‘salting-out effect’ which can also occur as a result of 

desorption of ions from the hydrophilic segments of the micelles that consecutively enhances the 

interaction between micelles and thus, leads to precipitation of the surfactant molecules at the 

interface 98,99.  Nascentes et al. have further shown that the addition of > 9% m/v of NaCl to the 

Triton-X-100/SDS system significantly decreases the cloud point, even in the presence of an 

anionic surfactant.  The triton-x-114/SDS surfactant system with NaCl salt was also found to 

endorse the secondary ‘salting- out’ effect of the electrolytes which was evident by the 

formation of precipitated electrolyte-surfactant complex at the interface100.  The findings were 

reflected in the results obtained by Gu et al. for various surfactant systems including the triton-x-

100/SDS system in the presence of salts such as NaCl and NaSCN (sodium thiocyanate) as well as 

the SDS/triton-x114 and CTAB (cetrimonium bromide)/triton-x114 systems with lanthanum (III) 

chloride (LaCl3), magnesium chloride (MgCl2), NaCl, potassium ferricyanide (K3Fe(CN)6), 

potassium sulphate (K2SO4) or potassium nitrate (KNO3) electrolytes 101,102.       

      For two liquid phase system with electrolytes, where the organic solvent such as 1,2-DCE is 

partially miscible in water, solvent diffusion between the aqueous phase and the organic solution 

is likely to occur103. Consequently, this phenomenon can trigger the formation of a concentration 

gradient of water at the vicinity of the interface and lead to a decrease in the water coordination 

of the solute ions and, dehydrate the hydrate ions over a prolonged period of time.  The 

electrostatic interaction between the dehydrated ions in turn can produce ion 

clusters/aggregates near the phase boundary which can promote the initiation of interfacial 

heterogeneous nucleation process and crystal growth104,105.  This type of liquid-liquid 

crystallisation reaction was observed by Kitayama et al. using water/1-butanol system in the 

presence of salts such as NaCl and potassium chloride (KCl) and, by applying non-equilibrium 

molecular dynamics simulations106.  It was also established that the crystallisation process 

initiated as a result of mutual diffusion between the water phase and the 1-butanol solution in 

turn provides the liquid-liquid system with the necessary motive force required for transforming 

the non-equilibrium system into its equilibrium state107.  Furthermore, Hundhammer et al. 

demonstrated that the organic electrolyte tetraphenylborate (TPB-) ions can react with silver ions 

(Ag+) and form ion-pairs while both the metals ions and the hydrophobic electrolyte ions are 

electrochemically transferred across the water/nitrobenzene interface.  The electrolyte-metal 
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ion complexes generated were then found to precipitate out and trigger interfacial nucleation 

process and film growth108.  Cacote et al. also obtained similar findings when examining the 

transfer of Ag+ by complex formation with tetrakis(4-chlorophenylborate (TPBCl-) across the 

water/1,2-DCE interface using voltammetry technique at the micro-ITIES.   Precipitation of 

Ag+/TPBCl- complexes were detected in the form of a new peak using CV at a scan rate of 50 

mV/s and within a potential range of -200 mV to 400 mV109.   Kontturi et al, further established 

that the insoluble ion-pair formation and salting out effect of the hydrophobic ions at the ITIES 

can lead to a reduction in the polarisable potential range and thus, lower the formal potential of 

a variety of monovalent cations110,111.  Moreover, ion pair association between the hydrophilic 

electrolyte cations i.e. K+/Na+ and the hydrophobic anions i.e. TPB- ions at the interface, leading 

to rapid heterogeneous nucleation and crystallisation processes was initially observed by Barry in 

2013 for various liquid-liquid systems, including the aqueous (0.1 M KCl)-1,2-DCE (20 mM 

TBATPB) and aqueous (3%  NaCl (w/v))-1,2-DCE (10 mM TBATPB) systems with and without the 

addition of 10% (v/v) NH4OH and  10% (v/v) NH4OH with 15 mM Hydrazine112.  The nucleation 

and the crystallisation reactions was reported to only occur in the presence of nuclei/precipitate 

at the interface and when high potentials of +0.6 V and +1 V were applied constantly to the 

above systems, respectively.  It was also established that the whisker-like K+TPB- crystals were 

formed after applying potential for just 25 seconds whereas the N+TPB- crystallites were visible 

within 15 minutes after the potential was implemented.  The whisker-like morphology of the 

crystals was seen to vary according to the type of cation present in the aqueous phase, which 

indicates that the crystallite form generated at the phase boundary may follow a cation-

dependent growth mechanism.  Moreover, using the H-NMR and SEM-EDX analysis it was 

identified that the crystals were mainly composed of TBATPB electrolyte as a result of interaction 

between excess the TBA+ and TPB- ions. Contrary to this, the CV and the potentiostatic 

measurements revealed that the crystallites are produced because of K+/Na+ and TPB- ion 

interaction at the interface.  The results therefore suggest that possibly a mixture of both K+TPB-

/Na+TPB- crystal aggregates and TBA+TPB- complexes at the phase boundary are likely to trigger 

the heterogeneous nucleation and crystallisation processes112.  

     

4.7 Sodium dodecylbenzene sulphonate  

Surfactant adsorption at the oil/water interface and the lowering of the interfacial tension plays 

an important role in controlling the desired interfacial properties in many practical applications.  

These range from large-scale industrial operations to small-scale household uses, such as 
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enhanced oil recovery, detergency and stabilisation of emulsions in food and cosmetic products.  

Sodium dodecylbenzene sulphonate (SDBS) can be represented generally by the following 

formula: RC6H4SO3H, where, R is a long branched or straight chain fatty acid radical mainly 

dodecyl (figure 4.3)113.   

 

 

Figure 4.3: Chemical structure of SDBS114. 

It is the principal active ingredient in most household laundry detergents.  The advantage of 

using this particular alkyl aryl sulphonate is that the ions are less subjected to hydrolysis and 

precipitation in the presence of multivalent ions in hard water.  It acts as an excellent foaming 

agent and has a low order of toxicity115,116. 

4.8 Triton-x-114 

Triton-x-114 is a non-ionic octylphenol ethoxylated surfactant with excellent wetting and 

detergency characteristics (figure 4.4)117.  It is also less toxic, cost effective and commercially 

available at highly purified form.  At low detergent concentrations, the non-ionic surfactant 

exists as monomers whereas at high concentrations both monomers and micelles are present in 

equilibrium.  It has a cloud point of 23-26 oC118. 

 

Figure 4.4: Chemical structure of Triton-x-114118. 
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Triton-x-114 is homogeneous at cold temperatures however above a critical/cloud temperature 

it can undergo temperature induced phase separation and form an aqueous based two phase 

system with a surfactant depleted top phase and a surfactant enriched bottom phase119. 

4.9 Glycerol trioleate  

Glycerol trioleate (GTO) has been chosen as the preferred oil in this study because it is one of the 

main triglycerides found in the vegetable and olive oil which are often used for cooking. GTO is a 

triester consisting of a trihydric alcohol, glycerol and three long chain fatty acids.  The fatty acid 

in the oil is primarily oleic acid which is an 18-carbon unsaturated compound.   The double bond 

in oleic acid has a cis configuration which makes the molecule bent in the center and therefore, it 

is unable to pack well into a crystal lattice (figure 4.5).  Hence, oils such as GTO are a liquid at 

room temperature120. 

 Figure 4.5: conversion of glycerol trioleate to glycerol tristearate via hydrogenation process121. 

This specific type of oil can exist in 3 types of polymorphic forms: α (melting point of -32 oC), β’ 

(melting point of -12 oC) and β (melting point of -4.9 oC)122.  GTO can be hydrogenated to a solid 

fat such as glycerol tristearate which is composed of trans double bonds and it tends to melt 

around the temperature of 70 – 75 oC123.                       

Since a suitable electrolyte was not found to be soluble in GTO, 1,2-DCE was used as the 

alternative organic phase for electrochemical analysis.  More information on 1,2-DCE can be 

found in the experimental methodology chapter.  

 

4.10 Method/Techniques used 

Below are a list of techniques and methods used for investigating the surfactant behaviour at the 

liquid-liquid interface. 

 

 

10% Pd/C 

 

Glycerol trioleate 

MW 885.47 

Glycerol tristearate 

MW 891.52 
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4.10.1 Cyclic voltammery CV) 

The CV in this study has been used to investigate the transfer and adsorption behaviour of the 

surface active ions at the interface.  Scan rates from 10-100 mV/s was applied and a potential 

range from 0 – 0.5 V was used to detect the analyte. More information on this technique can be 

found in the experimental methodology chapter.  

4.10.2 Chronoamperometry  

The Chronoamperometry (CA) method was applied to confirm the transfer and adsorption 

behaviour of the surface active ions at the interface as detected using the CV technique.  The 

potential was stepped up from 0 mV to 200 mV, 300 mV and 400 mV. More information on CA is 

included in the experimental methodology chapter.  

4.10.3 Electrocapillary curve 

The effect of voltage and surfactant concentration on the liquid-liquid interfaces as observed 

with CV and CA was also investigated using interfacial tension measurements, which was 

performed while simultaneously increasing the voltage from 0 V – 0.8 V at an interval of 0.2 V.  

The potential was kept constant for 100 seconds before the interfacial tension was obtained at 

equilibrium for each voltage applied.  All measurements were performed at ambient 

temperature.  More information on the electrocapillary curve measurements can be found in the 

experimental methodology chapter. 

4.10.4 Conductivity 

Conductivity measurements were obtained for the water-1,2-DCE/oil phase with and without 

electrolyte and with the addition of different concentrations of SDBS surfactant, to determine 

the mechanisms occurring at the interface.  More information on conductivity is comprised in 

the experimental methodology chapter. 

4.10.5 Optical microscopy 

The optical microscopy technique has been applied to visually observe the increase in instability 

with increase in surfactant concentration at the oil/1,2-DCE-water interphase, with and without 

the addition of electrolyte.  More information on optical microscopy can be located in the 

experimental methodology chapter. 
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4.11. Results and Discussion 

4.11.1 Background electrolyte and reference ion transfer studies 

Initial experiment was aimed to establish a potential range between 0 V-0.6 V. This was limited 

by the background electrolytes which are lithium chloride (LiCl) and tetrabutylammonium 

tetraphenylborate (TBATPB), transferring across from one phase to the other at the two 

extremes of the potentials (figure 4.6).  

 

 

 

 

 

 

Figure 4.6: current versus potential graphs produced using CV for aqueous/LiCl – 1,2-

DCE/TBATPB (blue coloured CV) and aqueous/LiCl/TEACl (tetraethylammonium chloride) – 1,2-

DCE/TBATPB (red coloured CV) systems.124 

From figure 4.6 – blue coloured  CV (the LiCl and TBATPB system), it can be observed that when a 

forward potential was applied, a positive peak was formed within the potential range between 

0.15 – 0.2 V indicating that the Cl-  ions were transferred to the aqueous phase while the TBA+ 

ions were transported across the interface into the organic phase.  As the potential was 

increased further to 0.6 V, the TPB- ions were transferred from the 1, 2 – DCE phase to the 

aqueous phase and the Li+ ions moved across from the aqueous to the organic solution.  

Following this, as the scan was reversed, TPB-  anions returned to the organic phase and Li+ 

cations crossed back to the water phase which was specified by a negative peak at 0.45 V.  In 

order to restore the charge balance, Cl- ions were transferred from the aqueous phase to the 

organic phase and TBA+ ions crossed over to the water phase as the potential was brought back 

to 0 V.  The degree of interface polarisation is dependent on the potential differences of the ions 

in both the aqueous and organic phases124.  The ion exchange between the two immiscible 

phases can only take place if the external potential applied provides the ions with the necessary 

Gibbs energy of transfer which is required for the charged species to move from one phase to 
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another.  This transfer potential which leads to ion transfer across the interface is dependent on 

the charge, lipophilicity and diffusion coefficient values of the ions.                   

      Furthermore, when a 2 mM of the TEACl was introduced into the aqueous phase of the 

water/LiCl – 1,2-DCE/TBATPB system, a current offset around 0.3-0.35 V was observed on the 

forward scan (figure 4.6 – red coloured CV).  From the CV data, the standard transfer potential 

 Δ 
       

   for the TEA+ ions transferring across from the water to the 1,2-DCE phase was 

determined to be 0.35 V.  The Gibbs energy of transfer,    
            for this system was 

estimated to be 2.7 KJ mol-1 using equation 4.20 stated below which is slightly higher than the 

literature value of 1.8 KJ mol-1  125.   

 

                                                          Δ 
    

               Δ 
    

                                          (eq. 4.20) 

Where,    is the charge number, F is the Faraday constant (96,500 c / mol) and   
    

  is the 

standard ion-transfer potential of ion,  .   The standard ion transfer potential was determined to 

be 0.35 V from the voltammogram above (figure 4.6 - red coloured CV).  The Gibbs energy of 

transfer is calculated based on the TATB and TPTB assumption which means that the standard 

potential for the transfer of one ion is related to another and all the ions involved have equal 

values, given that the ions have similar sizes126.  

4.11.2 Characterisation of anionic and non-ionic surfactants at the liquid-liquid interface 

4.11.2.1 Cyclic voltammetry 

The cyclic voltammograms (CVs) for the transfer of 0.5 mM – 17.97 mM of SDBS, 8.6 mM - 114 

mM of triton-x-114 surfactant, 4.2 mM – 9.7 mM of P&G’s Y (anionic) surfactant and 17 mM – 51 

mM of P&G’s N (non-ionic) surfactant across the 1,2-DCE-water interface with electrolytes were 

recorded using a potentiostat, at varying scan rates.  For SDBS, an increase in current was 

observed with an increase in concentration below 1.5 mM.  However, significant changes 

indicated by the presence of more prominent current spikes were observed when the SDBS 

concentration was increased to 1.5 mM (CMC point for SDBS), 8 mM (surfactant adsorption) and 

13.4 mM (micellar emulsification).  The changes in current at these concentrations were 

therefore discussed in this chapter.   The current oscillations as observed with an increase in 

concentration of SDBS were found to completely disappear as the concentration of Triton-X-114 

was enhanced to and above 8.6 mM.  The current dissipation was clearly identified in the CVs for 

Triton-X-114 at concentrations of 48.1 mM, 83 mM and 114 mM, which have been included in 
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this chapter.  Similar results as SDBS was also obtained using P&G’s Y surfactant at 

concentrations of 4.2 mM (CMC point), 5.8 mM (surfactant adsorption), 6.2 mM (surfactant 

adsorption) and 9.7 mM (micellar emulsification).  The current fluctuations disappeared when 

concentration of P&G’s N surfactant was increased to and above 17 mM.  A clear indication of 

the current augmentations disappearing was observed at 17 mM, 35 mM and 51 mM of P&G’s N 

surfactant, which are discussed in this chapter. 

4.11.2.2 SDBS 

The CVs for the transfer of 0.5 mM – 17.97 mM of SDBS across the 1,2-DCE-water interface with 

electrolytes were recorded, at varying scan rates.  It was observed that there was an increase in 

the current around 0.32 V with an increase in SDBS concentration from 0.5 mM – 0.8 mM when a 

scan rate of 50 mVs-1 was applied, indicating the transfer of SDBS ions across the 1,2-DCE-water 

phase boundary (figure 4.7).  

 

Figure 4.7: Cyclic voltammograms for 0.5 - 0.8 mM of SDBS added to the aqueous phase of the 

water-1,2-dce system with electrolytes, at a scan rate of 50 mVs-1.  

In this study, it was observed that as the concentration of SDBS was increased to and above the 

CMC level of 1.5 mM, an increase in current instability was identified using CV.   From figure 4.8a, 

it can be seen that there is a dip around the 0.2 V region, in the positive scan, as 1.5 mM of SDBS 

was added to the aqueous phase and the potential applied approached the half wave potential 

of 150 mV for the transferring surfactant ions which is comparable to the E1/2 value of 150 mV for  

sodium dodecylsulphonate (a similar surfactant)21,22.  This suggests that the surfactant molecules 

are being adsorbed and accumulated at the interface leading to commencement of micellar 

formation.  At 1.5 mM, the CMC point for SDBS is achieved so the onset of micellisation is very 
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feasible.  Since the current instability was more pronounced at 1.5 mM, 8 mM and 13.4 mM of 

SDBS, the CVs for these specific concentrations are discussed in terms of the possible detergency 

mechanisms that might be occurring at the interface, in this chapter. 

 

 

 

Figure 4.8: CVs showing the transfer and adsorption of 1.5 mM- 13.4 mM of SDBS surfactant, at 

the aqueous (with LiCl) and 1,2-DCE (with TBATPB) interface at a scan rate of (a) 10 mVs-1 , (b) 20 

mVs-1, (c) 50 mVs-1, (d) 70 mVs-1 and (e) 100 mVs-1.  

Furthermore, a split peak was observed approximately at a potential of 0.18 – 0.19 V in the 

reverse scan for SDBS concentration of 8 mM, which possibly indicates aggregation of micellar 

droplets and onset of micellar emulsification at the phase boundary. On increasing the 

concentration of SDBS above 8 mM to 13.4 mM, it was observed that the split peaks were 

converted to chaotic oscillations. This signifies that further emulsification at the interface has 
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taken place.   From the CVs, it can be observed that with an increase in concentration of the 

anionic surfactants, there is a potential and concentration - dependent adsorption and 

partitioning of the surface active ions at the liquid-liquid interface.  Similar results were also 

observed for other scan rates ranging between 20 -100 mVs-1 (figures 4.8b-4.8e). The results 

obtained using CV were also found to be dependent on the scan rate. The oscillatory behaviour 

was more pronounced at lower scan rates (10 and 20 mVs-1) whereas at higher scan rates (70 

and 100 mVs-1) the current spikes shifted towards the more negative potentials (less than 300 

mV).  A narrowing of the potential range from around 100 mV (at 10 mVs-1) to 37 mV (at 100 

mVs-1) within which the irregular current occurred was also observed with increase in scan rate 

(figures 4.8a-4.8e). This scan rate dependency is clearly indicative of a time dependent surfactant 

adsorption and emulsification process at the interface.  Furthermore, apart from the transfer, 

adsorption and partitioning behavior of the surfactant, other factors such as electrochemical 

instability and convective movement of the solution due to the Marangoni effect have been 

found to contribute to the current augmentations identified127.  It can be also stated from the 

CVs that the unstable system overcomes the state as the phase boundary potential is brought 

outside the instability potential range.  

4.11.2.3 P&G’s Y Surfactant 

 An increase in interfacial instability with an increase in concentration was also identified when 

investigating the behaviour of P&G’s Y surfactant at the aqueous (with LiCl) - 1,2-DCE (with 

TBATPB) interface.  From figure 4.9, an increase in the current instability indicated by a large dip 

in the current at the forward scan and at a potential of 0.2 V was seen as the concentration of 

the surfactant was enhanced to 9.7 mM (above the CMC level). Two small irregular current 

oscillations were spotted at the potentials of 0.16 V and 0.21 V as the scan was reversed.  The 

difference in the CV results obtained for SDBS and P&G’s anionic surfactant is probably due to 

the Y surfactant consisting of a mixture of carbon chain lengths (ranging between C12-C14) as 

opposed to SDBS which is composed of a carbon chain length of C12.  
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Figure 4.9: CVs obtained at a scan rate of 10 mV/s show the transfer and adsorption of 4.2 mM, 

5.8 mM, 6.2 mM and 9.7 mM of P&G’s Y (anionic) surfactant across the aqueous (with LiCl) and 

1,2-DCE (with TBATPB) interface. 

All of the data collected for the anionic surfactants using CV are similar to the results which were 

previously reported by Kakiuchi, who ascribed the chaotic behaviour to electrochemical 

instability, spontaneous emulsification and Marangoni effect, when a concentration of 0.5 mmol 

dm-3 of sodium dodecylsulphonate (similar surfactant to SDBS) was added to the aqueous phase 

of the water-1,2-DCE system with electrolytes21. However, in this study the anionic surfactants 

were added above the CMC point which demonstrated that micellar emulsification can also lead 

to irregular oscillations.  The instability as identified in the results obtained is overcome when the 

potential excursion is scanned outside the instability range. Thus, confirming that the instability 

exists within a potential range (of approximately 100 mV width for the SDBS system and 25 mV 

for the Y surfactant system), in the region of the electrocapillary maximum and the standard ion 

transfer potential    
     of the surface active ions128.  The mechanism of micellar emulsification 

occurring at the oil-water interface in the presence of anionic surfactants, which has not been 

reported to this date, is explored more in depth using other techniques such as conductivity, 

interfacial tension measurements and optical microscopy and the findings are discussed below. 

4.11.2.4 Triton – X - 114 

The addition of the non-ionic surfactant, triton-x-114, was found to suppress the chaotic 

behaviour observed with the SDBS anionic surfactant.  It was seen that by gradually increasing 

the concentration of triton-x-114 from 8.6 mM to 114 mM in the water phase containing 13.4 

mM of SDBS led to disappearance of the irregular current spikes (figure 4.10).    
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Figure 4.10: CVs for 8.6 mM- 114 mM of triton -x-114 obtained at a scan rate of 10 mVs-1. 

The shape of the CVs resembling that of expected for a reversible ion transfer reaction was 

clearly evident at the concentrations of 48.1 mM, 83 mM and 114 mM of triton-x-114 , at the 

scan rates ranging between 10-100 mVs-1 (figure 4.11a – 4.11e)29.  

 

    

   

-100 

-50 

0 

50 

100 

150 

0.1 0.2 0.3 0.4 0.5 

I/
μ

A
 

E/V (vs. Ag|AgCl) 

 8.6 mM 48.1 mM 

83 mM 114 mM 

-100 

-50 

0 

50 

100 

150 

0.1 0.2 0.3 0.4 0.5 

I/
μ

A
 

E/V (vs. Ag|AgCl) 

48.1 mM 83 mM 114 mM 

-100 

-50 

0 

50 

100 

150 

0.1 0.2 0.3 0.4 0.5 

I/
μ

A
 

E/V (vs. Ag|AgCl) 

48.1 mM 83 mM 114 mM 

-150 

-100 

-50 

0 

50 

100 

150 

200 

0.1 0.2 0.3 0.4 0.5 

I/
μ

A
 

E/V (vs. Ag|AgCl) 

48.1 mM 83 mM 114 mM 

-150 

-100 

-50 

0 

50 

100 

150 

200 

0.1 0.2 0.3 0.4 0.5 

I/
μ

A
 

E/V (vs. Ag|AgCl) 

48.1 mM 83 mM 114 mM 
(c) (d) 

(a) (b) 



98 
 

 

Figure 4.11: CVs for 48.1 mM, 83 mM and 114 mM of triton-x-114 obtained at a scan rate of (a) 

10 mVs-1, (b) 20 mVs-1, (c) 50 mVs-1, (d) 70 mVs-1 and (e) 100 mVs-1. 

4.11.2.5 P&G’s N surfactant 

 A P&G branded non-ionic surfactant referred to as N surfactant, with carbon chain lengths 

ranging from C12-C14 was also investigated in a similar manner as the triton-x-114, by adding it 

to P&G’s Y anionic surfactant (figure 4.12).   As before, the instability completely disappeared 

when increasing concentrations of the N surfactant from 17 mM – 51 mM was used. 

 

Figure 4.12: CVs for 17 mM – 51 mM of P&G’s N (non-ionic) surfactant, at a scan rate of 10 mVs-

1.   

The stabilisation of the interface observed is due to both, triton-x-114 and P&G’s N surfactant 

adsorbing strongly at the phase boundary and forming a monolayer. Thus, preventing the 

hydrodynamic movement of the interface and halting the avalanche type transfer of the 

emulsion droplets.  The findings coincided well with Samec and co-workers work on the effect of 

10 mmol dm-3 of the non-ionic surfactant, sorbitan monooleate, on the suppression of chaotic 

currents129,130. 
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4.11.3 Chronoamperometry (CA) 

The presence of interfacial turbulences, indicating adsorption and the onset of emulsification 

when SDBS concentrations of 1.5 mM, 8 mM and 13.4 mM were added to the aqueous phase 

was confirmed using the potential –step chronoamperomtry (CA).  As the SDBS concentration 

was increased from 1.5 mM - 13.4 mM, the instability enhanced at the aqueous/surfactant -1,2-

DCE interfaces with electrolytes (figure 4.13).  The CA potential was stepped from 0 mV to 300 

mV and then, it was held at that potential continually for a period of time for each of the 

surfactant concentrations investigated (figure 4.13).   

 

Figure 4.13: Current versus time transient obtained for 1.5 mM, 8 mM and 13.4 mM of SDBS 

added to the aqueous phase of the water (with LiCl)-1,2-DCE (with TBATPB) system, using CA. 

The CA transient obtained as the potential was stepped to 300 mV, clearly showed emulsification 

effects dominating at a SDBS concentration of 13.4 mM.  The results obtained using CA 

corroborates that the existence of unstable interface is over a limited range of potential 

difference as identified using the CV.   

4.11.4 Conductivity measurements and presence of emulsion droplets 

The conductivity measurements obtained for the aqueous/SDBS-1,2-DCE system with 

electrolytes (red line in figure 4.14) and SDBS surfactant were found to correspond well with the 

data obtained using CV and CA.  It showed that there was a sharp increase in differential 

conductivity (dκ/dC) from 40 µS/mM to 200 µS/mM as the concentration of SDBS was enhanced 

to 1.5 mM (red line in figure 4.14 below). This is likely to be due to an increased number of 

anionic surface active ions being adsorbed at the interface and forming aggregates into micelles 

as the CMC point has been reached.   
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Figure 4.14: Conductivity measurements obtained for the aqueous (with LiCl)-1,2-DCE (with 

TBATPB) interface (red line) and GTO-water (with LiCl) interface (figure 4.14 inset – blue line).  

Where, the aqueous phase consists of SDBS. 

Above 2.5 mM, the differential conductivity remained constant around 100 µS/mM.  This is due 

to the presence of micelles.  Micelles are larger than a monomer and therefore, diffuse slowly 

through the solution and acts as a less efficient charge carrier/weak electrolyte.  Hence, the 

dκ/dC is significantly small 131.  However, as the concentration of SDBS was further enhanced to 6 

- 7 mM, a peak was identified.  Following this, a sharp rise in differential conductivity was also 

observed around 8.5 mM.  The initial dκ/dC results obtained agreed with the data presented by 

Tyowua et al.132, who have shown that in the presence of 5 mM KCl electrolyte and with an 

increase in the concentration of SDBS surfactant, the differential conductivity is highest at 

around 1 mM indicating that the CMC for SDBS has been reached.  This was then followed by a 

steep decrease before leveling out due to presence of an increased number of micelles at 

concentrations of 1 mM – 5 mM.  Furthermore, Smet et al.133 has shown using the dynamic light 

scattering and the computer simulation techniques that the oil solubilisation and Ostwald 

ripening rate in emulsions of undecane (a liquid alkane hydrocarbon) is enhanced significantly as 

a result of increased number of micelles and with an increase in the concentration of the SDBS. 

Based on this finding, it can be suggested that above the CMC level and in the presence of 

micelles, the mass transport processes such as oil solubilisation and Ostwald ripening is 

enhanced at the phase boundary for both the water-1,2-DCE/oil systems examined.  The 

conductivity findings therefore reflect that by increasing the concentration of SDBS generates an 

increased number of micelles which in turn causes faster emulsification and an increase in the 

size of the emulsion droplets via Ostwald ripening.  This was also evident from the images of the 

emulsion droplets (figure 4.15) captured using the optical microscope, for both the 

1.5 mM 

8 mM 
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aqueous/SDBS-1,2-DCE and aqueous/SDBS-GTO systems with and without electrolytes. These 

phenomena occurring at the phase boundary are also likely to be contributing factors to the 

interfacial instability as observed using CV and CA. 

                           

                            

                   

                     

Figure 4.15: Optical microscope images of the emulsion droplets formed when SDBS 

concentrations of 1.5 mM (left), 8 mM (middle) and 13.4 mM (right) were added to the water 

phase of the aqueous-1,2-DCE system without electrolyte (a-c), aqueous-GTO system without 

electrolyte (d-f), aqueous-1,2-DCE system with electrolyte (g-i) and aqueous-GTO system with 

electrolyte (j-l). Scale bar 105.9 µm. 

Furthermore, the addition of increasing concentrations of the SDBS surfactant to the aqueous 

phase of the GTO-water/electrolyte system (figure 4.14 – blue coloured inset) showed a similar 

trend as observed for the salt based aqueous/SDBS-1,2-DCE system. A small rise in the dκ from 

0.5 mM – 2.2 mM (the CMC point) and between 7 mM - 8.5 mM due to the presence of micellar 

aggregates and emulsification was observed (figure 4.14 inset). The positions of the peaks for the 

aqueous with LiCl/SDBS-GTO system however were slightly shifted with increase in concentration 

of the surfactant compared to the aqueous/SDBS-1,2-DCE system with salts. For the aqueous 

 (d)  (e)  (f) 

 (g)  (h)  (i) 

 (j)  (k)  (l) 

 (a)  (b)  (c) 
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(with LiCl) - GTO system, the first peak appeared from 0.5 mM – 2.2 mM and the second peak 

was identified between 7 mM – 8.5 mM as opposed to 1 mM -2.5 mM and two additional peaks 

at 6 mM – 7.3 mM and 8 mM observed for the aqueous and 1,2-DCE system with electrolytes, 

respectively.  This is probably due to the shift in the CMC point which in turn is dependent on the 

type of organic phase used. 

4.11.5 Electrocapillary measurements  

To further investigate the effect of voltage and surfactant concentration on the chaotic 

behaviour at the liquid-liquid interfaces, interfacial tension measurements were performed 

simultaneously with voltage changes on a polarised flat surface.  An increasing concentration of 

the SDBS surfactant was added to the water phase of the aqueous (with LiCl) - 1,2-DCE (with 

TBATPB) and aqueous (with LiCl) - GTO systems while simultaneously for each concentration, the 

potential was increased from 0 V – 0.8 V at an interval of 0.2 V using a potentiostat.  Each 

potential applied was kept constant for 100 seconds before the interfacial tension was measured 

at equilibrium. All measurements were performed at ambient temperature.  A series of 

electrocapillary curves were then plotted for both the aqueous - 1,2-DCE and aqueous - GTO 

systems with electrolytes, as the SDBS concentration was varied between 0 mM – 13.4 mM.   The 

electrocappilary curves for SDBS concentrations of 1.5 mM, 8 mM and 13.4 mM are included 

below (figures 4.16a and 4.16b) and compared with the data obtained using CV and conductivity 

measurements for the aqueous - 1,2-DCE and aqueous - GTO systems with electrolytes. In the 

electrocapillary plots (figure 4.16), 
0     , where

0  is the interfacial tension of the 

interface without SDBS and applied potential (black dashed background curve) and  
is the 

interfacial tension following the application of potential and when the stabilisation is reached 

after 1 minute of adding different concentrations of the surfactant (blue and red coloured 

lines/curves). 
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Figure 4.16: Electrocapillary curves showing a change in the interfacial tension against the 

potential applied for (a) aqueous (with LiCl) -1,2-DCE (with TBATPB) system and (b) GTO -water 

(with LiCl) system.  Where, the aqueous phase consists of 1.5 mM (blue line) and 8 mM (red line) 

of SDBS. A background curve (dashed black line) representing the aqueous phase of the water- 

1,2-DCE/ GTO systems with electrolytes and no surfactant added was obtained for comparison. 

A symmetric parabolic curve with a negative curvature (dashed black line, figure 4.16) and ∆ max 

of 0.1 and 0.2 mN m-1 at the point of zero charge, EPZC, were observed in the absence of SDBS 

surfactant, for the aqueous (with LiCl) -1,2-DCE (with TBATPB) and aqueous (with LiCl) – GTO 

systems, respectively.  The point of zero charge and the potential of electrocapillary maximum 

was established when a potential of 0.3 V was applied, for both the aqueous-1,2-DCE/GTO 

systems with electrolytes.  At this point, the total amount of free charge in the bulk of adjoining 

phases i.e. water (w) and organic (o) is equal to zero, for the polarised aqueous (with LiCl)- 1,2-

DCE (with TBATPB) and aqueous (with LiCl)- GTO interfaces and, therefore can be defined by the 

following:           
   =           

   134.  The
0 obtained for the aqueous-LiCl/1,2-DCE-TBATPB system 

was 28.2±0.1 mN m-1 which is close to the literature value of 28.43±0.13 mN m-1135. For the 

aqueous phase with LiCl/GTO system the 
0 value measured was 17.3±0.1 mN m-1 compared to 

31.08 mN m-1 for a GTO-saline water (Tris-hydrochloride, 150 mM Sodium chloride) 

interface136,137.  For the latter system, the large variation in the interfacial tension is probably due 

to the type and the concentration of the electrolyte used.  Lima et al. 138 has shown that when 

the concentration of NaCl was enhanced from 0-1.5 mol/L in the aqueous phase of the water-

hydrocarbon oil system, the interfacial tension of the aqueous electrolyte solution also increased 

linearly.               

Figure 4.16a shows the change in the interfacial tension with potential for the aqueous (with 

LiCl)/ 1,2-DCE (with TBATPB) system, on addition of the SDBS surfactant to the aqueous phase at 

concentrations of 1.5 mM (the CMC point) and 8 mM.  At 1.5 mM of SDBS, a drastic change is 

observed with a flattening of the electrocapillary curve. Following this, a positive curve was seen 

to emerge with a dip shifted negatively to the EPZC point for 8 mM of SDBS, showing the region of 

instability as the potential was increased between 0.2-0.4 V.  At equilibrium, the polarised 

interface becomes unstable when 8 mM of the SDBS is introduced into the aqueous (with LiCl) -

1,2-DCE (with TBATPB) system due to phase boundary potential-dependent partitioning and 

adsorption of the surface active molecules at the interface.   The criterion for such unstable 

system can be therefore expressed as         
          

    which indicate attainment of a 

positive   value as a result of spontaneous emulsification and Marangoni effect.   
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The interfacial tension dip observed also indicates specific adsorption of the anionic surfactant at 

the interface alongside micellar emulsification.  The instability at the phase boundary caused by 

the adsorption and partitioning effect of the surface active ions and the presence of micelles in 

turn is overcome by dissipating energy via emulsification and the avalanche type transfer of the 

emulsion droplets across the phase boundary. These phenomena are also possible causative 

factors for instability, generating a positive curvature as observed when 8 mM of SDBS was 

added to the aqueous (with LiCl)/ 1,2-DCE (with TBATPB) system and for producing negative 

values of the differential capacitance of the double layer in accordance with the Lippmann 

equation 64. Beyond the SDBS concentration of 8 mM, the electrocapillary curve was found to be 

inconsistent and independent of the concentration of the surfactant due to interfacial 

emulsification.        

      It is interesting to note the differences between the aqueous (with LiCl)-1,2-DCE (with 

TBATPB) and aqueous (with LiCl)-GTO systems, where GTO is fully inert oil and there is no 

(concentration dependent or surface) potential against which the adsorption of electrolytes 

occur.  Furthermore, from figure 4.16b it can be identified that on the addition of 8 mM of the 

SDBS no positive curvature could be seen as was observed for the aqueous-LiCl/1,2-DCE-TBATPB 

system (figure 4.16a).  For the aqueous-LiCl/GTO system (figure 4.16b), the slope of the 

electrocapillary curve was seen to gradually increase in the negative potential region of the EPZC 

until a potential of 0.3 V (EPZC) was applied. At this point, a small dip in the interfacial tension was 

identified which was then followed by a steep rise in the interfacial tension, for both SDBS 

concentrations of 1.5 mM and 8mM, respectively.  These observations probably indicate the 

onset of emulsification due to the adsorption of the surfactant molecules from the aqueous 

phase. The results obtained are reproducible and supported by the optical microscope images in 

section 4.11.6. 

 

4.11.6 Optical Microscopy 

Further qualitative studies were conducted using an optical microscope on the aqueous/SDBS- 

1,2-DCE and aqueous/SDBS- pure GTO systems with and without salts. An increase in the 

interfacial instability and emulsification was observed with an increase in the concentration of 

SDBS surfactant above the CMC level, for all systems (figures 4.17a-4.17d). However, the 

interfacial fluctuations were found to be more conspicuous in the presence of electrolytes 

(figures 4.17a and 4.17c). This indicates that the salts probably enhance the adsorption of the 
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SDBS surfactant and increases the rate of emulsification at the phase boundary, for both the 

aqueous-SDBS-1,2-DCE/GTO systems with electrolytes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.17:  Microscope images obtained for the interface between (a) aqueous-1,2-DCE with 

electrolyte (b) aqueous-1,2-DCE without electrolyte (c) aqueous with electrolyte -GTO and (d) 

aqueous-GTO without electrolyte systems, after adding SDBS concentrations of 1.5 mM (left), 8 

mM (centre) and 13.4 mM (right) to the aqueous phase.  Scale bar: 43.4 µm. The microscope 

images presented are taken after 2  minutes since the addition of different concentrations of 

SDBS surfactant. The red arrow shows the location of the unstable expanded interface. 

From further analysis of the microscopic images (figure 4.17), it can be suggested that the 

Marangoni effect resulting from the mass transfer and adsorption of solute ions at the phase 

boundary as well as the change in the interfacial tension induced by the concentration 

gradient139 and the emulsification process seems to be more prominent in the presence of 

electrolytes  and at the GTO/aqueous interface (Figures 4.17a and 4.17c).  This is not unexpected 

as (1) the presence of electrolytes results in enhanced transfer of ions across the interface which 
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results in interfacial turbulence, (2) there is a larger difference in kinematic viscosity between the 

GTO/aqueous interface compared to the 1,2-DCE/aqueous interface, (3) the interfacial instability 

is more rapid in systems with lower interfacial tensions such as the aqueous-LiCl/GTO interface 

where the interfacial tension was measured to be 17.3 mN m-1 compared to 28.2  mN m-1 for the 

aqueous-LiCl/1,2-DCE-TBATPB system and (4) the presence of anionic surfactant leads to 

concentration dependent effect which is observed with increasing concentration of SDBS in the 

aqueous phase (figure 4.17),, especially at 8 mM and 13.4 mM139,50.  Additionally, a time 

dependent effect is also evident at longer time scales (i.e. after 10 minutes) irrelevant of the type 

of organic phase used (figures 4.18 and 4.19).  

 

 

 

 

 

 

 

 

 

Figure 4.18:  Optical microscope images captured after 2 minutes (left) and 10 minutes (right) at 

SDBS concentrations of (a/a’) 1.5 mM, (b/b’) 8 mM and (c/c’) 13.4 mM for the aqueous (with 

LiCl)/ 1,2-DCE (with TBATPB) system (left hand side images) and the aqueous / 1,2-DCE system 

without electrolytes (right hand side images), respectively. The red arrow shows the location of 

the unstable expanded interface. 
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Figure 4.19:  Optical microscope images captured after 2 minutes (left) and 10 minutes (right) at 

SDBS concentrations of (a/a’) 1.5 mM, (b/b’) 8 mM  and (c/c’) 13.4 mM for the aqueous (with 

LiCl)/ GTO system (left hand side images) and the aqueous (without LiCl)/ GTO system (right hand 

side images), respectively. The red arrow shows the location and the width of the unstable 

expanded interface. 

Overall, it can be suggested that the optical microscopic findings obtained for the SDBS at 

concentrations of 1.5 mM, 8 mM and 13.4 mM correlated well with the instability results 

collected using the electrochemical methods, conductivity and electrocapillary measurements. It 

would be interesting to extend this study to investigate the effect of other factors such as the 

temperature, ionic strength and pH gradients. 

4.11.7 Identification of interfacial crystal formation using optical microscopy  

Further investigation of just the aqueous (with 10 mM LiCl) and 1,2-DCE (with 20 mM TBATPB) 

system using optical microscopy have shown rapid crystallisation at the interface without the 

need of external potential (figure 4.20a).  It was also found that when the SDBS surfactant was 

added to the water phase of the aqueous (with LiCl) and 1,2-DCE (with TBATPB) system, it did not 

show any crystal formation however an increase in instability at the interface with an increase in 

anionic surfactant concentration was observed (figure 4.18).  
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Figure 4.20: (a) powdery/needle-like crystals generated at the aqueous (with LiCl) and 1,2-DCE 

(with TBATPB) interface and (b) single needle crystals produced at the aqueous (with LiCl)/ 

triton-x-114/with and without SDBS and 1,2-DCE (with TBATPB) interfaces. 

Contrary to figure 4.18, the addition of non-ionic surfactant, triton-x-114, to the aqueous phase 

of the aqueous (with LiCl and with/without the addition of SDBS) – 1,2-DCE (with TBATPB) 

system (figures 4.20b and 21) demonstrated that the phase boundary became more unstable 

and single needle-like crystals were formed at the interface.  The crystals are probably produced 

due to interaction between the excess dehydrated Li+/Cl-/TBA+/TPB- ions and in the presence of 

surfactants, fusion of anionic/non-ionic surfactant ions with the salt ions deposited at the phase 

boundary as a result of competition for water 140.   

                  

 

                
            
Figure 4.21: Optical microscope images captured for the aqueous (with LiCl)-1,2-DCE (with 

TBATPB) interface after 2 minutes (left) and after 10 minutes (right) of adding triton-x-114 at 

concentrations of (a) 48 mM, (b) 83 mM, (c) 114 mM and (d) 48 mM combined with 1.5 mM of 

SDBS.  The orange coloured arrows show the location of the interface. 

Moreover, the optical microscope images obtained for the aqueous/SDBS and/or triton-x-114 

with electrolytes - GTO systems did not show presence of any crystallites. However, an increase 
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in the interfacial instability with an increase in the concentration of the surfactants was observed 

(figure 4.22).  The phenomenon was found to be both concentration and time dependent.  

         

          

Figure 4.22: Optical microscope images captured for the aqueous (with LiCl)-GTO system after 2 

minutes (left) and after 10 minutes (right) at triton-x-114 concentrations of (a) 48 mM, (b) 83 

mM, (c) 114 mM and (d) 48 mM combined with 1.5 mM of SDBS.  The orange coloured arrows 

show the location of the interface. 

Similar results as SDBS/triton-x-114 was also obtained when P&G’s Y and N surfactants were 

added to the aqueous -1,2-DCE/GTO systems with and without electrolytes. Interfacial instability 

was observed at the aqueous (with/without LiCl) -1,2-DCE (with/without TBATPB)/GTO interfaces 

as P&G’s Y surfactant was added to the aqueous phase (figures 4.23 , 4.24 and 4.25).   

 

 

 

 

 

 

Figure 4.23: Optical microscope images captured after 2 minutes (left) and 10 minutes (right) of 

adding P&G’s Y surfactant at a concentration of 4.2 mM for (a) the aqueous (with LiCl)/ 1,2-DCE 

(with TBATPB) system, (a’) the aqueous / 1,2-DCE system without electrolytes, (b) the aqueous 

(with LiCl)/ GTO system and (b’) the aqueous / GTO system without electrolytes, respectively. . 

The red arrow shows the location and the width of the unstable expanded interface. 
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The presence of crystals due to salting-out effect was however observed for only the aqueous 

(with LiCl)/P&G’s N surfactant -1,2-DCE (with TBATPB) systems with and without the addition of 

P&G’s Y surfactant (figures 4.24a and 4.25a).  

 

 

 

 

 

   

 

 

 

 

 

 

Figure 4.24: Optical microscope images captured after 2 minutes (left) and 10 minutes (right) at 

P&G’s N surfactant concentration of 17 mM for (a) the aqueous (with LiCl)/ 1,2-DCE (with 

TBATPB) system, (a’) the aqueous / 1,2-DCE system without electrolytes, (b) the aqueous (with 

LiCl)/ GTO system and (b’) the aqueous / GTO system without electrolytes, respectively. The 

orange coloured arrows show the location of the interface. 

The aqueous/P&G’s N surfactant -1,2-DCE and the aqueous/P&G’s Y and N surfactants -1,2-DCE 

systems without electrolyte did not show any interfacial crystal formation (figures 4.24b and 

4.25b).  Therefore, confirming that the crystallisation process is triggered by the precipitated salt 

ions and the reaction is promoted in the presence of surfactants because of ionic association 

between the precipitated non-ionic/ a mixture of anionic and non-ionic surfactant ions and salt 

ions at the phase boundary. 
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Figure 4.25: Optical microscope images captured after 2 minutes (left) and 10 minutes (right) at 

P&G’s N surfactant concentration of 17 mM and P&G’s Y surfactant concentration of 4.2 mM for 

(a) the aqueous (with LiCl)/ 1,2-DCE (with TBATPB) system, (a’) the aqueous / 1,2-DCE system 

without electrolytes, (b) the aqueous (with LiCl)/ GTO system and (b’) the aqueous / GTO system 

without electrolytes, respectively. The orange coloured arrows show the location of the 

interface. 

4.11.8 Differential Scanning Calorimetry  

In depth analysis of the interfacial crystal structures conducted using the Differential Scanning 

Calorimetry (DSC, appendix figure A1.1) have shown presence of a peak within the temperature 

range of 226.98 – 238.02 0C representing the TBATPB electrolyte 141.  Another unknown peak 

between 177.92- 184.56 0C was also identified for all of the crystal samples examined labeled as 

samples S1-S5 (see table 4.1 below and appendix figure A1.1), indicating formation of a new 

crystalline product which is composed of a mixture of ion-pairs (formed between the excess 

Li+/Cl- ions and the TBA+/ TPB- ions) and dehydrated surfactant chains. There is also a possibility 

that the surfactants added may promote faster crystallisation reaction at the phase boundary.   

The DSC analysis of SDBS (labelled as sample S6) have shown presence of three different peaks at 

188.04, 233.40 and 244.76 0C (see table 4.1 below and appendix figure A1.1), out of which one of 

the peaks was found to overlap with the peaks that were identified for the crystal samples 

extracted from the aqueous/LiCl/triton-x-114 and 1,2-DCE/TBATPB system (sample S1), the 

aqueous/LiCl/SDBS/ triton-x-114 and 1,2-DCE/TBATPB system (sample S2), the 

aqueous/LiCl/P&G’s N surfactant and 1,2-DCE/TBATPB system (sample S3), the aqueous 

LiCl/P&G’s Y/ P&G’s N surfactants and 1,2-DCE/TBATPB system (sample S4) and the 

aqueous/LiCl-1,2-DCE/TBATPB mixture (sample S5).  However, since all of the samples consisted 

of TBATPB and are not composed of SDBS, it demonstrates that the peak within the range of 

226.98 – 238.02 0C is likely to be due to the presence of hydrophobic salt.  

 

Table 4.1: Showing the DSC peak positions and the melting points for the crystals formed at the 

aqueous (with LiCl) -1,2-DCE (with TBATPB) interface for samples S1-S5. 
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By analysing the DSC data (see table 4.1 below and appendix figure A1.1) for samples S1-S5 

further, it can be evaluated that the melting points of the crystals for samples S1-S4 are 

enhanced by a factor of 2-5 0C compared to the melting temperature of sample S5 crystallites.  

The difference in the temperature is probably due to the variation in the composition of the 

crystals. The crystallites for samples S1-S4 probably consist of a mixture of surfactant ions and 

solute ions as opposed to the crystals extracted from sample S5, which are composed of just a 

combination of hydrophilic and hydrophobic salt ions.   

4.11.9 Mass Spectroscopy  

Examination of the crystal samples S1-S4 using the mass spectroscopy (MS) have shown 

presence of peaks at of mass of 251 atomic mass unit (amu) which was not detected for sample 

S5 (figure 4.26).  This confirms the results obtained using the DSC that the non-ionic/a mixture of 

anionic and non-ionic surfactants may have been incorporated within the crystal structures.  

Hence, a different type of crystallite is produced comparing to the crystals extracted from sample 

S5. 

 

 

 

 

 Peak 1 

Samples Onset  

temperature/ 
o
C 

Max Peak  

temperature/
o
C 

End  

temperature/
 o

C 

Change in  
 
temperature/

 o
C 

S1 (aqueous/LiCl/triton-x-114  
and 1,2-DCE/TBATPB) 

179.78 181.61 183.72 3.94 

S2 (aqueous/LiCl/SDBS/ triton 
-x-114 and 1,2-DCE/TBATPB) 

182.27 182.93 184.56 2.41 

S3 (aqueous/LiCl/P&G’s N 
 surfactant and 1,2-DCE/ 
TBATPB system) 

180.58 181.95 182.82 2.24 

S4 (aqueous LiCl/P&G’s Y/  
P&G’s N surfactants and  
1,2-DCE/TBATPB system) 

182.77 183.58 184.28 1.51 

S5 (aqueous/LiCl-1,2-DCE/ 
TBATPB mixture) 

177.92 179.55 184.24 6.32 

 Peak 2 

S1 231.35 234.11 235.57 4.22 

S2 227.13 232.03 233.93 6.8 

S3 226.98 230.14 232.11 5.13 

S4 228.86 231.26 233.45 4.59 

S5 235.14 236.16 236.72 1.58 
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Figure 4.26:  Mass spectra obtained for samples S1-S5, at a mass of 251 amu. The black arrows 

indicate where the peaks are formed.  The inset shows close up view of the peaks detected for 

samples S2 and S4. 

From evaluating the results obtained so far using the optical microscope, DSC and mass 

spectroscopy, it can be suggested that the interfacial crystals are likely to be one of the main 

factors which prevents the Marangoni-type movement of the phase boundary caused by the 

adsorption and emulsification processes in the presence of anionic surfactants21 and therefore, 

this makes the interface stable.    

4.11.10 Fourier transform infrared spectroscopy     

The Fourier transform infrared spectroscopy (FTIR) technique was employed to identify the exact 

composition of the crystal structures.  From analysing the FTIR data, it can be observed that both 

samples S1 (aqueous/LiCl/triton-x-114 and 1,2-DCE/TBATPB) and S3 (aqueous/LiCl/P&G’s N 

surfactant and 1,2-DCE/TBATPB) displayed peaks specific to the non-ionic surfactants as 

observed for P&G’s N surfactant (sample S8) and triton-x-114 when examined on its own 

(Sample S9) (figure 4.27).  The peaks were displayed at the wavenumbers of 1232 cm-1, 1624 cm-

1, 1740 cm-1 and 2915 cm-1 which were not present for sample S5 (aqueous/LiCl-TBATPB/1,2-DCE 

mixture). This demonstrates that the crystallites extracted from samples S1 and S3 are mainly 

composed of a fusion of non-ionic surfactant and solute ions.   
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Figure 4.27: FTIR data for samples S1, S3, S5, S8, S9 and S10. The black arrows shows the 

similarities between sample S1 (aqueous/LiCl/triton-x-114 and 1,2-DCE/TBATPB) and sample S3 

(aqueous/LiCl/P&G’s N surfactant and 1,2-DCE/TBATPB). 

FTIR Analysis of sample S2 (aqueous/LiCl/SDBS/ triton-x-114 and 1,2-DCE/TBATPB) also exhibited 

one of the  peaks at 1624 cm-1 (figure 4.28) which represents the non-ionic surfactant, Triton-x-

114 (sample S9).  It is however unclear from the FTIR data whether or not the SDBS is 

incorporated within the crystal structures of sample S2, as the peaks representing SDBS (sample 

S6) were found to overlap with the peaks for the aqueous/LiCl-TBATPB/1,2-DCE mixture (sample 

S5).  

 

 

Figure 4.28: FTIR data for samples S1, S2, S5, S6, S9 and S10. The black arrow shows the peak 

observed for sample S1 (aqueous/LiCl/triton-x-114 and 1,2-DCE/TBATPB) and sample S2 

(aqueous/LiCl/SDBS/Triton-x-114 and 1,2-DCE/TBATPB). 
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The FTIR work was extended to the aqueous/P&G’s Y/ P&G’s N surfactants and 1,2-DCE system 

with electrolytes (sample S4) (figure 4.29).  However, the data showed that the peaks for P&G’s Y 

(sample S7) and P&G’s N surfactants (sample S8) overlapped with the peaks for TBATPB (sample 

S10) and the aqueous/LiCl-TBATPB/1,2-DCE mixture (sample S5). Thus, it is difficult to determine 

whether any or both of the surfactants are intertwined within the crystal structures of sample S4 

(LiCl/P&G’s Y/ P&G’s N surfactants and 1,2-DCE/TBATPB system).  

 

Figure 4.29: FTIR data for samples S3, S4, S5, S7, S8 and S10.   

In order to attest the presence of surfactants within the crystallite structures, WAXS was used to 

undertake further examination on the crystal samples.  The WAXS data (figure 4.30) showed that 

both samples S2 (aqueous/LiCl/SDBS/triton-x-114 and 1,2-DCE/TBATPB) and S4 

(aqueous/LiCl/P&G’s Y/N surfactants and 1,2-DCE/TBATPB) displayed an additional peak at 2  

value of 31.5/31.6 degree, which is specific to the non-ionic surfactants.  However, new peaks at 

2  values of 46.5 and 51.3 degrees for sample S2 and, at 37 and 45.3 degrees for sample S4 were 

identified when compared to the other samples analysed (figure 4.30).  
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Figure 4.30: WAXS data for all of the crystal samples.  The red arrows represent sample S2 

(aqueous/LiCl/SDBS/triton-x-114 and 1,2-DCE/TBATPB) and the green arrows represent sample 

S4 (aqueous/LiCl/P&G’s Y surfactant/ P&G’s N surfactant and 1,2-DCE/TBATPB).  

The new peaks identified for samples S2 and S4 could be because of a mixture of electrolyte and 

surfactant ions. The differences in the peak positions for both samples are likely to be due to the 

variation in the molecular structures of P&G’s Y/N surfactants and the SDBS/triton-x-114 

surfactants. It can be therefore concluded that the WAXS peaks detected coincide well with the 

results obtained using other techniques such as the DSC, MS and FTIR.  By evaluating all the 

findings it can be concluded that the interfacial crystals are likely to be composed of precipitated 

electrolyte ions and dehydrated mixture of anionic and non-ionic surfactants. 

4.12 Conclusions 

The present work undertaken on the SDBS/water – 1,2-DCE/GTO systems using electrochemical 

techniques and optical microscopy has shown a concentration, time and potential dependent 

surfactant adsorption and emulsification instability phenomena. Electrochemical studies 

demonstrated that when the SDBS concentrations of 1.5 mM (CMC point), 8 mM and 13.4 mM 

were added to the aqueous phase of the water-1,2-DCE system with electrolytes, the 

reproducible interfacial turbulences were restricted to a limited potential region around the 

standard ion transfer potential of the surface active ions.  The chaotic oscillations however were 

negated when increasing concentrations (from 8.6 mM – 114 mM) of triton-x-114 were added to 

the aqueous phase consisting of 13.4 mM of the SDBS surfactant.  This was indicative by the 

reversible ion transfer CVs obtained upon addition of the non-ionic surfactant.  Similar interfacial 

instability as observed with SDBS was also seen when increasing concentration of P&G’s Y 
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(anionic) surfactant  (from 4.2 mM – 9.7 mM) were added to the aqueous phase of the water 

(with LiCl) – 1,2-DCE (with TBATPB) system.  The irregular oscillations disappeared when 17 mM 

– 51 mM of P&G’s N (non-ionic) surfactant was added to the aqueous phase composed of P&G’s 

Y surfactant. The electrochemical results obtained for the anionic and non-ionic surfactants 

above the CMC level, coincided well with the findings reported by Kakiuchi using similar 

surfactants.  Kakiuchi has stated in several papers that the chaotic oscillations caused by the 

addition of anionic surfactants to the water phase of the aqueous-1,2-DCE interface with 

electrolytes, as observed using electrochemical techniques were due to surfactant adsorption, 

spontaneous emulsification and transfer of emulsion particles.  However, the electrochemical 

work undertaken using SDBS and P&G’s Y surfactant have demonstrated that above the CMC 

level micellar emulsification is also a major contributing factor which leads to interfacial 

instability.  In order to confirm the finding other methods and techniques such as conductivity, 

interfacial tension measurements and optical microscopy were employed.    

      The simple conductivity measurements and electrocapillary curves have revealed that above 

the concentration of 8 mM, due to an increased number of micelles and enhanced rate of 

micellar emulsification, the instability becomes independent of the SDBS concentration and 

indicates that this phenomenon is closely associated with micellisation and emulsification at the 

non-polarised interface.  Contrary to this, a correlation is observed between the increase in the 

current with no irregular oscillations and the SDBS surfactant concentration below the CMC point 

of 1.5 mM.  Similar findings to the latter result were reported by Kakiuchi and the co-workers 

and that the current instability increases with an increase in the concentration of the anionic 

surfactants such as the alkanesulphonate sodium salts21. The increase in the interfacial instability 

and the presence of emulsion droplets as a result of micellar emulsification at SDBS 

concentrations of 1.5 mM, 8 mM and 13.4 mM, was visually evident from the optical microscopic 

images obtained for both the water-1,2-DCE/oil systems with and without electrolytes.  

However, the interfacial instability was observed to be more pronounced in the presence of 

electrolytes which indicate salts promote a faster rate of surfactant adsorption and 

emulsification at the phase boundary comparing to the aqueous-1,2-DCE/GTO systems without 

salts.                      

    Furthermore, analysis of the aqueous (with 10 mM LiCl) -1,2-DCE (with 20 mM TBATPB) system 

with and without surfactants using an optical microscope, DSC, MS, FTIR and WAXS have 

demonstrated presence of crystals at the phase boundary, which are mainly composed of 

dehydrated salt ions along with surfactant ions (when surfactants are added to the system).   

Barry et al. 112 for aqueous (0.1 M KCl)-1,2-DCE (20 mM TBATPB) system and aqueous (3%  NaCl 
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(w/v))-1,2-DCE (10 mM TBATPB)) system have found that ion pair formation between excess 

precipitated K+/Na+ and TPB- ions or TBA+ and TPB- ions at the interface is probably the cause for 

crystal formation. However, the major difference between the two systems is that Barry and the 

co-workers observed presence of crystals at the phase boundary only when a high potential was 

applied as opposed to the crystals detected at the aqueous (with 10 mM LiCl) -1,2-DCE (with 20 

mM TBATPB) interface with/without surfactants in the absence of external potential.   

     In this study, it was also observed that in the presence of anionic surfactants at the aqueous 

(with/without LiCl) -1,2-DCE (with/without TBATPB)/oil interfaces, the instability increased with 

an increase in concentration of the SDBS/P&G’s Y surfactants however no crystals were detected 

at the phase boundary. Contrary to this, both crystal formation and an increase in the interfacial 

instability with increase in concentration of the non-ionic surfactants were seen for the 

aqueous/LiCl -1,2-DCE/TBATPB system with triton-x-114 and P&G’s N surfactant with and 

without the addition of SDBS/P&G’s Y surfactants.  The initiation of the crystallisation reaction at 

the phase boundary is likely to be due to competition for water between the salt ions and the 

dehydrated poly(oxyethylene) chains of the non-ionic surfactants, as the electrolytes lead to a 

reduction in the solubility and cloud point of the surfactants 99.  The formation of clusters at the 

interface as a result of ionic association between the precipitated surfactant/micelles and 

electrolyte ions can cause a sufficient decrease in the interfacial Gibbs energy which in turn 

promotes the occurrence of heterogeneous nucleation and crystallisation processes at the phase 

boundary142.  The microscopic images and the data obtained using the MS, DSC and WAXS for 

samples S2 (aqueous with LiCl/ SDBS/triton-x-114– 1,2-DCE with TBATPB) and S4 (aqueous with 

LiCl/ P&G’s Y/P&G’s N surfactants – 1,2-DCE with TBATPB) have overall shown that the 

crystallites are composed of a mixture of surfactants and salts. This was probably due to the 

addition of non-ionic (triton-x-114/P&G’s N) surfactants to the aqueous phase consisting of 

anionic (SDBS/P&G’s Y) surfactants increasing the competition for water between the anionic 

surfactant head groups, the non-ionic surfactant chains and the salt ions.  Thus, the interaction 

between the dehydrated surfactant ions and the electrolyte ions initiated the nucleation and 

crystalline growth process at the phase boundary.        

 It can be therefore concluded that this phenomenon was only observed with the use of 1,2-

DCE solvent as the organic phase and not with the oil phase, which indicate that both the anionic 

and non-ionic surfactants investigated can be used for detergency application and the 

effectiveness of the surfactants in removing soil remains unaffected in the presence of other salt 

based ingredients such as builders which are used in detergent.     
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CHAPTER 5 

 

Sol-gel/ferrocenated gold nanoparticle based enzymatic 

biosensor for glycerol detection 

5.1 Biosensors 

 
Biosensors can be defined as self-contained analytical devices which incorporate a biological 

recognition element in close contact with an appropriate transduction element for the 

detection of the concentration of activity of the chemical species/analyte (s) in the sample.  A 

typical biosensor includes two steps which are a recognition step and transducing step1.  In 

the recognition step the biological recognition element with high selectivity and fast response 

(such as enzymes, antibodies, antigens, proteins or cell organelles) are responsible for 

transforming the analyte into chemical or physical signal2. The biological element is usually 

immobilised and it is in direct contact with the transducer that detects the physicochemical 

changes (for instance, variation in the pH, electron and mass transfer or recognises the 

analyte in the solution/the atmosphere) and, converts it into electrical signals (figure 5.1)3. 

The measurable physical signal in turn is proportional to the concentration of the analyte4. 

 

 

Figure 5.1: schematic diagram of the components and setup of a biosensor5.   

 

Biosensors research is a fast growing field and it has been predicted that the value of the 

industry is set to be worth around 17 billion dollars for 20186.  These sensors have been found 

to be useful tool for various applications including the food and 

beverages7,8,biotechnological9,10,11, environmental12,13, and pharmaceutical market14,15,16.  The 

biosensors can be used to attain rapid and continuous measurements in real time for both on-

site and remote monitoring for example, of bimolecular interactions.  There are numerous 
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other advantages associated with the application of such inexpensive biosensors and these 

include high selectivity, sensitivity, specificity and reliability17. 

 

5.2 Types of sensing element 

 

The method of transduction depends on the type of physiochemical change that results from 

the sensing element.  The biosensing components of the biosensor can be divided into two 

categories which are catalytic type where the signal is produced after binding of analytes i.e. 

enzymes, microbes, organelles, cells or tissues without altering the sensor and affinity type 

which include antibodies, receptors and nucleic acids.   In this study, enzymes such as glucose 

oxidase (GOx) and glycerol dehydrogenase (GDH) were used as the sensing element for the 

detection of glucose and glycerol substrates below18.   

 

5.2.1 Enzymes 

 

Enzymes are proteins which has high catalytic activity and selectivity for specific substrates.  

These biocatalysts have been applied for decades in assays to determine the concentration of 

a range of analytes from the initial reaction rates. The initial concept of enzymes forming 

complexes with substrates was first founded in the 19th century and it was Emil Fischer who 

initially proposed the ‘lock and key’ model for describing the stereochemical relationship 

between enzymes and the substrates19.  Following this, the velocity of the enzyme catalysed 

reactions and saturation kinetics were explored by Adrian Brown in 190220, soon after which 

in 1903 Victor Henri developed his first mathematical model for defining the enzyme 

kinetics21.  Based on the Henri model, in 1913 Leonor Michaelis and Maud Menten derived the 

enzyme rate equation, that relates the velocity at which the enzymatic process occurs with 

the substrate concentration, known as the Henri-Michaelis-Menten or Michaelis-Menten 

equation which is still to this day have been applied extensively in the analysis of enzyme 

reaction mechanisms21,22.  In depth analysis of the enzymatic rate of reaction was 

accomplished by Linus Pauling in 1948 who established that upon molecules tightly binding to 

the enzyme active site led to the stabilisation of the transition state of the catalysed 

reaction23. Subsequently, in  1958 the ‘induced fit model’ was introduced by Daniel Koshland 

to further describe the relationship between the enzyme’s affinity for substrate binding and 

the increase in reaction rate24.  The possibility of small molecules other than substrates 
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binding to the enzymatic active site led to the development of the theory of allosteric 

transitions by Monod, Wyman and Changeux in 196525.  

      It was in the early twentieth century when the enzymatic structure was extensively studied 

using methods such as the X-ray crystallography.  In 1926, James Sumner was the first to 

publish the crystal structure of a purified and crystallized urease enzyme26 .Based on Kendrew 

and Perutz’s work on myoglobin protein using the X-ray scattering27, crystal structures of 

many enzymes were solved.  In most recent years, X-ray diffraction and NMR techniques has 

been to be useful for various purposes such as to identify the mechanisms of enzyme catalysis 

and for designing new molecules which can bind to specific sites within the enzymes.   

      Enzymes have many applications for example, in the medical, pharmaceutical and the food 

and beverage industries29.  They can be also applied in stereospecific chemical synthesis and it 

is widely used as a key ingredient in various consumer products like laundry detergents30.   The 

availability of the biomolecules at high purity grade and its re-usability has made the proteins 

highly ideal for mass production of enzymatic sensors31.  However, the activities of the 

enzymes can be affected by factors such as the pH, ionic strength, chemical inhibitors and 

temperature32.  Most enzymes denature and lose their activity at temperatures higher than 60 

oC.  Enzymes such as oxidases are commonly used for immobilisation on the electrode for the 

determination of electrochemical properties of the proteins and they are normally coupled to 

either the electrochemical or fiber optic transducer. 

 

5.3 Types of transducers 

 

Biosensors are classified based on the transducer type which includes optical, acoustic, 

colorimetric, electrochemical and piezoelectric crystals. The choice of indicator transducer is 

dependent on the species involved in the particular reaction
21

.  In this study the 

electrochemical biosensor was applied for the detection of specific analytes i.e. glucose and 

glycerol using GOx and GDH enzymes. 

 

5.3.1 Electrochemical biosensors  

 

Electrochemical biosensors can be used for coloured or opaque samples which cannot be 

attained using the optical sensors and the response of the substrate binding to the receptors 

are recorded as an electrical signal.  These types of biosensors can be categorised into 

amperometric, voltammetric, potentiometric, conductivity, capacitance and impedance 
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biosensors.  The amperometric sensors measure the current when an electroactive species is 

oxidised or reduced at the electrode whilst the potential between the two electrodes are set.  

If the current however is measured under controlled variation of potential, it is referred to as 

voltammetry.  The peak current generated over a potential range using the voltammetric 

biosensor is directly proportional to the bulk analyte/electroactive species concentration. The 

potentiometric sensors on the other hand operate on the principle of charge accumulation of 

the substrate at the working electrode, in the form of potential and the current remains very 

low or there is no net current flow34.  For potentiometric measurements, the concentration 

and the potential relationship can be expressed by the Nernst equation (equation 5.1)35.   

 

                                                                           
   

  

  
                                     (eq. 5.1) 

                            

where,       is a constant potential to the cell,   is the charge number and   is the ratio of 

charged ions at the anode and the cathode.  Furthermore, the conductance biosensors 

measure the changes in electrical conductivity of the solution/medium between electrodes 

that could occur for example, due to an enzymatic reaction or it can be used to monitor the 

variation in conductance of an electrode caused by immobilisation of i.e. enzymes on to the 

electrode surface. The capacitance/impedance biosensors are normally used to determine the 

capacity modification/impedimetric response due to presence of an immobilised layer in the 

electrode surface36. 

         

5.4 Enzyme biosensors 

 

An enzyme biosensor is analytical device which links the enzyme to a transducer and produces 

a signal that is proportional the substrate concentration.  The transducer then converts the 

signal into a measureable response and this could be in the form of for example, current, 

potential or temperature change37. The first biosensor which is an enzyme based sensor for 

measuring glucose level was first developed in 1962 by Clark and Lyons38. The biosensor 

consisted of an external dialysis membrane which trapped the thin layer of GOx enzyme 

deposited on an oxygen probe.  The glucose was determined in proportion to the depletion of 

oxygen concentration.  The stability of the GOx was further improved by Updike and Hicks in 

1967 via protein immobilisation in a polyacrylamide gel onto a surface of an oxygen electrode 

for rapid and quantitative measurement of glucose concentration in biological fluids39. 

Following this, the first commercially available glucose biosensor was made in 1975 based on 
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Clark and Lyons work and it was known as ‘the Yellow Springs Instrument Company analyser’ 

that allowed amperometric detection of hydrogen peroxide resulting from the breakdown of 

glucose by GOx40. However, the analysers can be only used in the clinical laboratories because 

of its requirement for the usage of expensive platinum electrode. Other problems associated 

with these oxygen based biosensors include interference from other substrates in the solution 

such as ascorbic acid or uric acid and variation in the oxygen level present in the solution.  

Despite the drawbacks, the potential for mass producing biosensors for rapid testing meant 

that the biosensor market was still emerging41.                                      

      It was in 1984 when the first glucose biosensor using soluble ferrocene carboxylate 

mediator for glucose monitoring was produced by Cass, where the red-ox mediator acted as 

an electron acceptor and transferred electrons between the redox centre of the enzyme 

glucose oxidase in solution and  the surface of the working electrode42. An amperometric 

signal was generated as the reduced mediator was formed before it was re-oxidised again at 

the electrode when a potential was applied43.  It was observed that the mediators such 

ferrocene (Fc) and ferrocyanide did not react with the oxygen (O2) and consequently, no 

hydrogen peroxide (H2O2) was generated.  In the 1980s, alongside the mediated biosensors, 

screen printed electrodes and modified electrodes with membranes were also established, all 

of which displayed an enhanced sensor performance.  The first pen-sized miniature 

electrochemical biosensor which used glucose dehydrogenase enzyme and 

pyrroquinolinequinone and ferrocene derivative as a mediator was developed as ExacTech by 

Medisense Inc. in 1987 for diabetic patients44. The amperometric based glucose biosensors 

were portable and inexpensive which made them ideal for the patient’s to self-monitor the 

blood glucose level at home45.  In order to increase the rate of electron transfer further 

between the red-ox centre of the GOx enzyme and the electrode surface, other methods for 

example, enzyme wiring of GOx by electron conducting red-ox hydrogels, chemical alteration 

of the GOx enzyme structure with electro-relay groups and the use of nanostructures as 

electrical connectors were applied.  Since the late 90s and early 2000, other forms of glucose 

sensors such as in –vivo and non-invasive techniques have been constructed and applied.  

Although, initially 90% of the biosensor work was undertaken on developing glucose sensor, 

there has been application of this technique in a wide range of niche markets46. For instance, 

Guilbault and Montalvo in 1969 used glass electrodes coupled with urease enzyme to quantify 

the urea concentration by potentiometry47.  An amygdaline sensor was also invented which 

involved coupling of ion selective electrode and betaglucosidase enzyme by Professor G. 

Rechnitz48.  Subsequently, due to the numerous advantages of biosensors such as rapid and 
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real time measurement, reproducibility and reliability as well as its miniature size, low cost, 

ease of manufacture and replacement of the biological element or the type of transducer 

which in turn allow selective detection of specific analytes have led to a large-scale 

commercial success.  The biosensors were applicable to a variety of fields which include rapid 

detection of pathogens in food/drinks to ensure food safety, monitoring crop diseases or level 

of plant nutrients in agriculture, recognition of pollutants/toxic chemicals in water 

supply/air/landmass or the level of pesticides/fertilizers for environmental monitoring and for 

drug discovery or diagnosis of diseases in medicine49.  Other fields of relevance comprise of 

biotechnology, science and industrial sectors which involves use of a range of substrates and 

enzymes for catalyzing a variety of red-ox reactions50.   The enzyme-substrate catalytic 

reactions are investigated by measuring the rate of detectable products formed or 

disappearance of reactants, which in turn is proportional to the analyte concentration.  Apart 

from enzymes other factors such as activators, prosthetic groups and inhibitors can also alter 

the rate of reaction.  Changes in optimal environmental conditions can affect the thermal and 

chemical stability of the enzymes and this in turn can limit enzyme applicability51,52.               

      The glucose sensors for the effective management of diabetes are the largest driving force 

in the biosensor market while the medical analysis biosensors are the second biggest 

contributors for the development of the sensor technologies53.  Research undertaken by 

Newsguide US in 2009 have revealed that the biosensors market value was set to reach $ 6.1 

billion by 2012 and it will continue to expand over the upcoming years as there are increasing 

applications for biosensors due to growing population leading to a rise in chronic diseases 

such as diabetes and it is also required for environmental monitoring.  The market for the 

environmental biosensors is also rapidly mounting as evident by the growth in Germany alone, 

contributing $ 32.7 million to this biosensor industrial sector54,55.  

 

5.5 Types of enzyme electrodes 

 

An enzyme electrode is usually composed of a dialyser, enzyme reactor and a detector56.  

There are different types of enzyme electrodes which have been established over the years.  

The oxygen electrode was initially developed as a glucose biosensor which was later modified 

for the detection of H2O2 and it is the most widely applied transducer in biosensors. The 

electrode potential for this specific electrode is kept at low as possible and a redox substrate 

or electron mediator is manipulated to prevent electrochemical interferences, allow the 

electrodes to be used in oxygen free solution and enhance the electrode’s selectivity57.  The 
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covalent binding/adsorption or the addition of the enzymes and mediator into carbon paste 

electrodes on the other hand has been reported to produce alternative effective glucose 

sensors58.   By wiring specific parts of enzymes such as the FADH2/FAD centers of the GOx or 

glucose dehydrogenase with an osmium complex to the carbon electrode, sensors for glucose 

have been initially pioneered by Heller which was then applied for the detection of other 

substrates like H2O2 and NAD(P)H59,60.                                                                  

      Other electrodes such as the ion selective electrode have been used to determine the rate 

of enzymatic activity by potentiometric measurement of the product generated.   The most 

common ion selective electrode is the glass electrode which has been used for pH 

measurement and also, for monitoring enzymatic reactions61.  On the contrary, the metal 

oxide transducers i.e. the antimony oxide, palladium oxide or iridium oxide electrodes coupled 

with immobilised enzymes have been manipulated for enzymatic reactions due to its 

enhanced mechanical stability comparing to the ion selective probes62.  In this study, 

amperometric based carbon electrodes have been used as enzymatic biosensors as they are 

simple to use and the sensors can be applied to attain a much wider detection limit comparing 

to potentiometric electrodes.   

 

5.5.1 Amperometric enzyme electrodes  

 

Electrodes are commonly used in either a potentiostatic mode or an amperometric mode.  

Amperometric electrodes measure the electrochemical activity by relating it with a quantity of 

current which in turn can be directly associated with the concentration of the species of 

interest.  The electrodes used are usually composed of platinum, gold, silver, stainless steel or 

carbon materials which are inert at the potentials where electrochemical reaction occurs. 

These kind of electrodes can be made more selective by electrochemical or non-

electrochemical modification63.  There are 2 types of amperometric enzyme electrodes: 

unmediated and mediated64.  The unmediated reactions typically involve enzymes such as 

oxireductases which can produce electroactive species.  These small molecules can then be 

monitored using electrode sensors amperometrically without the need of a mediator.  The 

unmediated amperometric enzyme electrodes have a range of desirable applications which 

include detection of millimolar to micromolar concentration of analyte where the sample 

matrix is complicated65.  

    The mediated reactions on the other hand involve use of enzymes such as oxidases and 

electron acceptors/mediators to shuttle electrons between the redox centre of the enzyme 
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(where the cofactor is situated) and the working electrode.  In this study, the mediation 

process constituted of an initial oxidation step where interaction of the glucose/glycerol 

substrate with the oxidised form of GOx/glycerol dehydrogenase (GDH) enzyme leads to 

formation of the gluconolactone/ dihydroxyacetone product and reduced form of the 

enzyme(s).  Following this, the active form of the enzyme(s) is then regenerated by the 

transfer of an electron to the oxidised form of the ferrocenated gold nanoparticle (FcAuNP) 

mediator which in turn produces the reduced form of the FcAuNP mediator.  Finally, the 

diffusion of the electron from the reduced FcAuNP to the electrode surface generates an 

electrolytic current which is then detected using electrochemical techniques such as cyclic 

voltammetry (figure 5.2)66.  

 

 

 

 

 

 

 

 

 

 

Figure 5.2: mediated enzymatic electrode based reaction67,68.  

 

There are a range of other compounds apart from FcAuNP that can be used as mediators for 

example, organic dyes, cytochromes, ferrocene and ferricyanide.  The reaction involving a 

mediator based enzymatic biosensor generally follows the EC’ mechanism. The mechanism 

includes a reversible electron transfer (E) step followed by a catalytic process (C’).  This can be 

represented by the following kinetic scheme (scheme 5.1)69. 

R + e-             O; 

                         Z + O          R + Y 
 

Scheme 5.1:  kinetic of the EC’ mechanism69.   
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Where, R, is the reduced mediator regenerated from O; O, is the oxidised mediator; Z, is the 

component which regenerates R and it is in the process converted to final product Y; and Kcat, 

is the catalytic rate constant69.  The type of mediator required should react rapidly with 

enzyme, exhibit heterogeneous kinetics or possess a low overpotential for regeneration.  

Overpotential can be defined as the potential which is required for driving a reaction beyond 

the equilibrium potential66. The mediator also needs to be stable at different pH, temperature 

and redox state.   The electrode used for construction of an enzymatic biosensor is usually 

made of platinum, gold or carbon70.   

 

5.6 The methods of enzyme immobilisation 

 

For repeat use of enzymes in analytical devices and to attain advantages such as enzyme 

sensitivity, functional stability and high activity, the biocatalysts can be attached to the 

electrode via a variety of techniques comprised of both physical and chemical methods71.  

Physical immobilisation involves enzyme adsorption to water insoluble carriers or surfaces and 

entrapment of enzyme in water insoluble polymeric gels or by using selective membranes.  

The chemical immobilisation on other hand includes covalent coupling and intermolecular 

cross-linking of the biomolecules72.  The details of the different methods which have been 

applied in the enzymatic study are outlined below.  

 

5.6.1 Adsorption 

 

Adsorption of the enzymes at the electrode surface is more preferable as it is the easiest to 

perform, less expensive and the detrimental effect on activity and selectivity is minimal73,74.  

This process does not require any specific condition or chemicals that can cause the enzyme to 

denature.  The adsorption process usually involves an aqueous solution containing the 

biocatalysts to be kept in constant contact with the active surface of the electrode for a 

defined period of time. The biomolecules which are not adsorbed are then removed via 

washing.  The only disadvantage associated with this method is that the protein adsorption 

process is reversible which means that the enzymes can detach for instance, if exposed to 

change in pH, ionic strength, substrate concentration or temperature75. 
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5.6.2 Gel entrapment  

 

Gel entrapment is a widely preferred method of immobilisation and it prevents the enzymes 

from diffusing into the reaction mixture by trapping it in a polymeric gel. Simultaneously, it 

allows small substrate, products or effector molecules to penetrate through the gel network 

whilst retaining the enzyme.  The advantage associated with this method is that the 

biomolecules are not covalently attached to the matrix which in turn averts enzyme 

denaturation 76.  The most common matrices used for this process are hydrogels which 

includes alginate, carageenan, collagen, cellulose triacetate, polyacrylamide, gelatin, agar, 

silicone rubber and poly (vinyl alcohol)77. This was the chosen method for enzyme 

immobilisation in this study. Sol-gel mixture was used to entrap the enzyme(s) before drop-

casting it on to the electrode surface for use. A dialysis membrane was also manipulated to 

hold firmly the sol-gel/enzyme mixture in a fixed position on the active area of the 

macroelectrode.     

 

5.6.3 Membrane 

 

An external membrane permeable to a specific analyte can be used to: (1) enhance the 

selectivity of the physicochemical detector, (2) protect the biological sensing element against 

mechanical stresses and (3) provide support for the biological element and diffusion control of 

the analyte.  Its thickness, pore size and charge can be manipulated to allow particular analyte 

(s) to reach the surface of the transducer, to control the rate of the reagents and exclude 

interfering molecules from reaching the reaction layer78.  After permeation through the 

membrane into the enzyme layer, the analyte (s) are converted into detectable species.  The 

enzyme membrane is characterised by enzyme loading which encompasses the enzymatic 

kinetics and mass transport. The loading process is vital for the response characteristics and 

the stability of the sensor.  The choice of enzyme on the other hand is important for the 

selectivity of the measurement79. 

     The amperometric enzyme kinetics where the enzyme is entrapped in a membrane can be 

defined by Albery and Barlett equation (equation 5.2) below80: 

 

                                             
  

 
  

 

  
     

  

  
    

 

    
                                        (eq.5.2) 
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where,    is the bulk substrate concentration,   is the flux,    is the heterogeneous rate 

constant and    is the Michaelis-Menten constant for homogeneous enzyme kinetics. 

 

5.7.1 Kinetic model for interfacial lipolysis 

 

The interfacial lipolysis reaction at the oil-water interface involves complex equilibrium 

between the adsorption and desorption processes, conformational changes and catalytic 

mechanisms.  This can be represented in terms of the Michaelis-Menten kinetic model95.  The 

first step involves fixation of the water-soluble enzyme to the oil – water interface via a 

reversible adsorption-desorption mechanism.  Initially, the physical adsorption process leads 

to generation of a favorable energetic state of the enzyme (E*) and it also causes the lid at the 

active site to open.  The activated enzyme then binds a substrate (S) such as triglycerides at 

the interface and forms an enzyme-substrate complex (E*S) which is then hydrolysed to 

release products (P).  At the same time, adsorbed enzyme (E*) is regenerated via the pseudo 

Michaelis-Menten catalytic step (figure 5.3)96.   

 

 
Figure 5.3: General model of Michaelis – Menten Kinetics model describing interfacial 

lipolysis96. 

 
In the above kinetics model (figure 5.3),  E* is the energetically favorable enzyme; S is the 

substrate; E*S is the enzyme-substrate complex; P* is the reaction product; P** is the soluble 

product; CD is an example of the lipolytic product acceptor used to solubalise the insoluble 

products at the interface via complex formation CD-P, k1 is the kinetic constant associated 

with binding of substrate to enzyme; k-1 is the kinetic constant associated with dissociation of 

substrate from the complex, kp is the kinetic constant associated with the adsorption of 

enzyme onto the interface, kd is the kinetic constant associated with desorption of enzyme 

from the interface, kT is the kinetic constant for reaction product formation, ks is the rate 
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constant for insoluble product complex formation and K2 also known as kcat is the kinetic 

constant associated with catalysis.  This particular constant (K2  or kcat) is the turnover number 

which estimates the rate of product formation 97. 

      The above model can be adapted to various interfacial structures such as monolayers at 

the oil-water interface, micelles and oil-in-water emulsions.  By assuming that the surface 

concentration of the substrate remains constant during hydrolysis of short and medium-chain 

lipids, a simplified model of the enzymatic reaction can be derived (figure 5.4).   

 

 
Figure 5.4: Hydrolysis of short- and medium- chain lipids with soluble reaction products96. 

 

The rate of an enzyme catalysed reaction,v, for a fixed enzyme concentration can be defined 

by the Michaelis-Menten formula (equation 5.12)98. The step by step derivation of the 

Michaelis-Menten equation can be found below99.  

 

It can be stated from the Michaelis-Menten model that: 

 

                                                                          (eq. 5.3) 

                                           

                                                                  (eq. 5.4) 

          

Under the steady-state conditions, it can be assumed that the rate of formation is equal to the 

rate of breakdown of the E*S complex, which can be represented by equation 5.5 below: 

 

                                                                                           (eq. 5.5) 

 

By rearranging equation 5.5, we obtain: 

 

                                                                                          (eq. 5.6) 
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The equation 5.6 can be simplified by defining a new constant,    

 

                                                                                                     (eq. 5.7) 

 

The rate constant,     ≈    /     if    <<      (which indicates that the formation of product is 

the rate limiting step). If                                      can be referred to as        

        /   ratio can be used to assess the tendency of the enzyme-substrate complex to 

dissociate or form product100.  By substituting equation 5.6 with equation 5.7 gives equation 

5.8 below. 

 

                                                                                                                            (eq. 5.8) 

 

Furthermore, given that the concentration of the enzyme present is lower than that of the 

substrate, it can be assumed that the concentration of unoccupied enzymes [E]  is equal to the 

total enzyme concentration [E]T minus the concentration of the E*S complex [E*S]. 

      

                                                          (eq. 5.9) 

By substituting the above equation 5.9 in equation 5.8 produces equation 5.10: 

                                                                    

                                                                                               (eq. 5.10)        

 

By solving the equation 5.10 for [E*S], it gives: 

 

                                                                                                                (eq. 5.11) 

The initial catalytic rate of the substrate-enzyme reaction, v, can be expressed as equal to the 

product of [E*S] and the kinetic constant associated with catalysis process (  ). Whereas, the 

maximum rate,      , is attained when all the enzyme catalytic sites are saturated with the 

substrate and therefore, [E*S] =      and it can be expressed as:        =         102.  By 

substituting this expression into the above equation 5.11, generates the Michaelis-Menten 

equation (equation 5.12): 
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                                 (eq. 5.12) 

 

The    value is also referred to as the true dissociation constant for the enzyme-substrate 

binary complex and it can be used to determine the stability of the complex.  This parameter 

can be defined as the concentration of the substrate [S] at which the initial rate, v, is half of 

the maximum velocity (    ) of an enzyme catalysed reaction, at equilibrium (figure 5.5).  The 

     corresponds to the rate at which all the enzymes are fully occupied by the substrate in 

the catalysis process, given that there is a presence of high concentration of the substrate 

used.  The attainment of a low    and a high      value is ideal for an effective enzymatic 

biosensor101.    

 

 

 

 

               

 

 

                      

 

Figure 5.5: The Michaelis-Menten saturation plot for an enzyme catalytic reaction102. 

 

The Michaelis-Menten plot (figure 5.5) and the Michaelis-Menten formula (equation 5.12) 

primarily demonstrate that a first order process and the initial reaction rate enhances with the 

substrate concentration given that [S] is low and [S] <   .  Following this, as the rate becomes 

constant and independent of the substrate concentration when [S] is high and [S] >   , a 

second-order reaction takes place and at this point, v =     .  When [S] =  , then v =      
½ 

102.    

    Apart from the Michaelis-Menten model for substrate-enzyme catalytic reaction, a Verger 

et al. model can be adapted to illustrate the scooting and hopping mode of enzyme action.  

The scooting mode can be defined as the kinetic situation whereby the enzyme molecules are 

restrained to the interface over many catalytic cycles and the characteristic time of enzyme 

partitioning is larger than the time required for catalysis step to complete.  As a result, better 

catalytic efficacy and enzymatic rate can be achieved.  In contrast, hopping mode occurs when 

the enzyme molecules desorbs from the interface.  This leads to lower catalytic efficiency and 
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a reduction in the enzymatic rate.103  However, since the enzyme activity and the partitioning 

of the enzyme between the aqueous and lipid interface are difficult to measure 

simultaneously using both the Verger et al. and the Michaelis-Menten models, kinetic 

information such as the kcat (kinetic constant associated with catalysis), Km (Michaelis-Menten 

constant) and Ki (inhibition constant) values therefore cannot be obtained via these systems.  

Thus, the kinetic parameters can be alternatively determined by rearranging the Michaelis-

Menten equation in the form of straight line (y = mx +c) models i.e. using the Lineweaver –

Burk and Hanes-Woolf plots104. 

 

5.8 Glycerol dehydrogenase  

 

Glycerol dehydrogenase (GDH) can be extracted from a number of different organisms such as 

bacteria105, yeast106 and mammals107.  These enzymes are classified into groups depending 

upon the site of oxidation of the glycerol and the nature of coenzyme required.  In anaerobic 

environment, many microorganisms use the glycerol as a carbon source via the coupled 

oxidative and reductive pathways.  The utilisation of glycerol in such way is catalysed by GDH 

which in turn leads to formation of dihydroxyacetone with concomitant reduction of the 

coenzyme NAD+ to NADH (scheme 5.2) 108.  The dihydroxyacetone is then phosphorylated by 

dihydroxyacetone kinase before entering the glycolytic pathway for further degradation109. 

 

 

Scheme 5.2: Glycerol oxidation pathway108. 

 

The enzymes consist of a Zn2+ dependent polypeptide chain as the proteins require a divalent 

metal ion for catalysis110. The single polypeptide chain is made up of 370 residues and exists as 

a homooctamer in the solution111.  The GDH subunit is composed of components such as 9 β 

strands, 14 α helices as well as a number of loops all of which together fold into 2 domains 

that are separated by a deep cleft. The active site of the enzymes lies in the cleft with the 

catalytic zinc ion playing a role in stabilizing an alkoxide intermediate (figure 5.6) 112.   

 

Glycerol 
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Figure 5.6: Stereo representation of α helices and β strands for GDH subunit along with the 

presence of Zn2+ ion (grey sphere) in the middle (Ruzheinikov et al, 2001) 108. 

 

Both, the NAD and glycerol binding sites are found to be in the vicinity of the catalytic Zn2+ ion 

present in the GDH complex.  The metallo-enzyme displays maximum activity between pH 6.0- 

8.5113.  In the presence of the GDH enzyme, glycerol is oxidised by NAD+.  The NADH produced 

as a result is then oxidised by the mediator which in turn is reduced in the process.   

 

5.9 NAD+/NADH dependent dehydrogenases 

 

In the amperometric enzyme electrode, the NAD+/NADH coenzymes usually shuttles between 

the enzyme and the electrode and therefore, plays a vital part in a range of redox reactions 

involving various types of enzymes such as dehydrogenases and flavin bound diaphorase114. 

The NADH dependent enzymatic reactions occur by an ordered bisubstrate mechanism.  The 

initial step involves the oxidised form of the coenzyme (NAD+) to bind to the apoenzyme 

(enzyme without bound cofactor) which leads to formation of holoenzyme.  The holoenzyme 

then binds to the substrate and reaction takes place between the bound coenzyme and 

substrate.  This in turn is followed by the dissociation of the product and reduced coenzyme 

(NADH) to complete the catalytic cycle115.  The NADH produced is then reoxidised to form 

NAD+ at the working electrode.  This can be represented by the following scheme 5.3. 

 

Zn2+ 
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Scheme 5.3: Step for oxidation of the reduced NADH coenzyme116. 

 

The oxidation and reduction processes of the cofactor are controlled by the presence of redox 

species.  The current flowing at the working electrode is then related to the concentration of 

the substrate present.  For NADH –dependent dehydrogenases based reactions both the 

enzyme and coenzyme need to be present at the electrode.  In order to ensure this both the 

enzyme and the coenzyme are for example, entrapped using a membrane117.  

 

5.10 Diaphorase  

 

Diaphorase (DP) enzymes are ubiquitous class of flavoprotein (consists of iron-sulphur 

centres) and they can be obtained from various bacteria118, plants119 and mammalian 

organs120.  These enzymes are involved in catalysing the reduction of various redox species via 

electron transfer from NADH.  As a result, the mediator acts as a hydrogen acceptor (from the 

reduced form of di- and tri-phophopyridine nucleotides such as NADH) and leads to 

production of enzymatically active NAD+ 121. This can be represented in the form of scheme 

5.4. 

 

                                                                               

 

Scheme 5.4: Step for oxidation of the reduced NADH coenzyme121. 

 

The catalytic function of the enzyme as stated above makes the DP based electrodes useful for 

detecting substrates of various NADH/NAD+ coupled enzymes122. 

 

5.11 Lineweaver –Burk plot 

 

The Lineweaver –Burk plot or the double reciprocal plot are usually used to obtain important 

enzymatic kinetic data such as the    and      values.  It was developed in 1934 and it is 

generated by taking the reciprocal of both parts of the Michaelis-Menten equation (equation 

- 2 e- - H+  
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5.12) that can be represented in the form of a straight line with the equation y = mx + c 

(equation 5.13)123.   

 

                                                         
  

 
  

  

    

 

   
  

 

    
                                             (eq. 5.13) 

 

When the linear equation is plotted in the form of Lineweaver –Burk plot, the y – intercept is 

equivalent to 1/     and the x-intercept represents -1/   while the slope is equal to 

  /     as can be observed in the graph below (figure 5.7)124. 

 

 

 

 

                  

       

 

Figure 5.7: Lineweaver-Burk plot124.  

 

The Lineweaver-Burk plot is the simplest method of attaining enzymatic kinetic information.  

However, the disadvantage associated with this plot is that since it is a double reciprocal 

graph, the errors can be significant as the experimental values taken into account for 

calculating the    value are likely to be overemphasised when a low substrate concentration 

is analysed125.  

 

5.12 Mediators 

 

Over the years, mediators have been used to overcome drawbacks associated with biosensors 

such as slow electron exchange and electrode fouling.  The effect of oxygen      as a 

mediator was initially investigated using GOx enzyme by Clark et al. in 1962, a 

metalloflavoenzyme consisting of two flavin adenine dinucleotide (FAD) and two iron 

components, which is the most commercially used enzyme for construction of glucose sensors 

for self-monitoring diabetics.  The findings have revealed that due to inconsistency in the level 

of ambient oxygen concentration at the enzyme sensing site, the amount of H2O2 produced 

and detected as it is reduced at the electrode was ambiguous.  The glucose oxidation reaction 
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occurring at the electrode in the presence of GOx enzyme and where oxygen was used as the 

mediator is illustrated in scheme 5.5 below128. 

 

                                        gluconolactone + GOx(FADH2) 

                                                    

                                                 (at electrode surface) 

 

Scheme 5.5: showing enzymatic oxidation of glucose in the presence of GOx and   
128. 

 

In order to overcome the limitation of varying    concentration as observed with the first-

generation amperometric  glucose biosensors, ‘second-generation’ electrodes were 

developed by Cass et al. in 1984 which involved the use of Fc derivatives such as ferrocene 

carboxylic acid as the mediator in the place of    129.  The reaction involving enzymatic 

oxidation of glucose in the presence of GOx and    can be represented by scheme 5.6 

below130:  

 

                                        gluconolactone + GOx(FADH2) 

                                                        

                                     (at electrode surface) 

 

Scheme 5.6: showing enzymatic oxidation of glucose in the presence of GOx and   130. 

 

Another type of second-generation biosensor involving wired enzyme electrodes for glucose 

measurements was made by Heller et al. in 1987.  The GOx enzyme was wired on to the 

electrode surface with an elongated and flexible hydrophilic redox polymer which can easily 

bind with the enzyme.  Thus, it drastically decreased the distance between the redox center of 

the polymer and the FAD part of the enzyme.  As a result, the electrons were transferred via 

the polymer film between the GOx enzyme and electrodes and, a fast response and a high 

current output was obtained without the loss of mediators in the process131.   

 

5.13 Gold nanoparticles as mediators 

 

Metal based nanoparticles have been found to be often used in both non-enzymatic and 

enzymatic reactions and they are an integral part of biosensor design because of its ability act 

as an efficient re-dox mediator. Different types of nanoparticles for example, gold and gold-



  148 
 

platinum alloy, nanoparticles are widely used in the design of electrochemical biosensors and 

in biofuels132. The nanostructures in recent years were found to have various applications in 

different fields such as the biomedical sciences, optics, electronics, energy storage, magnetism 

and electrochemistry133.  Current publications have demonstrated that the nanoparticles can 

be successfully combined with enzymes to modify electrodes which have been of interest in 

the biotechnology and bioanalytical chemistry industries.   Gold nanoparticles (AuNPs) are 

now used as the most common model for various interfacial studies since the surface 

chemistry of these nanostructures in interfacial processes is well known134. The AuNPs  also 

have been found to improve the performance of biosensors significantly due to its beneficial 

characteristics such as large surface area, exceptional biocompatibility and the ability to act as 

an excellent red-ox mediator135.   The AuNP based biosensors for evaluating glucose oxidase 

activity has been explored extensively over the years which revealed that these nanoparticles 

are capable of minimising the insulating effect of the protein shell and therefore, allowing 

direct electron transfer without any interference136.  The AuNPs were modified using Fc to 

generate an even more effective re-dox mediator which enhances electron mediation 

between the electrode and the enzyme re-dox center, leading to an increase in the rate of 

enzyme reaction and a faster time response for detecting specific substrates is also achieved.  

 

5.14 Immobilisation of AuNPs and enzymes on electrode surface 

 

 Li et al.137 and Bharathi et al.138 have stated that the immobilisation of the AuNPs and the GOx 

enzyme on the surfaces of gold and indium tin oxide based electrodes displayed a fast 

electron transfer between the enzyme redox centre and the sol-gel/AuNP based electrode and 

it also demonstrated an enhanced stability.  Chang et al.139 on the other hand have reported 

that the AuNP modified glassy carbon macroelectrodes showed a glucose detection limit 

ranging from 0.1 mM to 25 mM and an increase in sensitivity and stability was also observed 

using the cyclic and linear voltammetry techniques, whilst the free form of GOx enzyme was 

added to the 0.5 M of sulfuric acid aqueous solution.  In contrary, it was established that the 

immobilisation of the AuNPs along with the GOx enzyme on the carbon electrode led to 

instability and a decrease in the selectivity of the enzyme for the glucose substrate.  In order 

to overcome this problem, a sol-gel matrix composed of FcAuNPs and GOx/GDH enzymes 

were drop-casted on to the surfaces of the glassy carbon macroelectrodes and SPEs to 

examine the activities of the GOx and GDH enzymes.  The sol-gel silicate matrix was used to 
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attain chemical inertness, physical rigidity, permeability and thermal stability which are 

required to fabricate a well-functioned enzymatic biosensor140.  

 

5.15 Methods/Techniques used 

 

5.15.1 Cyclic voltammetry  

 

In this chapter, cyclic voltammetry has been used to qualitatively determine the change in 

current with increase in concentration of the analyte and also, to calculate Km values for GOx 

and GDH enzymes (more information on CV can be found in the experimental methodology 

chapter).  

 

5.15.2 Chronoamperometry  

 

Chronoamperometry (CA) has been used in this chapter to confirm the data obtained using CV 

for the GOx, GDH and lipase enzymes.  More information on CA can be found in the method 

chapter. 

 

5.15.3 Wide angle-X-ray scattering 

 

Wide angle-X-ray scattering (WAXS) has been used to determine the crystalline structure of 

the sol-gel/FcAuNP mixture and to characterise the nanoparticles by analysing the Bragg peaks 

scattered at wide angles due to coherent scattering from the crystalline lattice planes (more 

information on WAXS can be obtained from the experimental methodology chapter).   

5.15.4 Environmental scanning electron microscope  

Environmental scanning electron microscope (ESEM) in this study was used to evaluate the 

size range of the sol-gel/FcAuNP mixture particles.  A 0.3 µL of the sol-gel/FcAuNP mixture was 

gently sonicated for 30 minutes to ensure the particles were separated before drop-casting 

the solution onto a silica wafer and analysing it using ESEM.  More information on ESEM can 

be found in the experimental methodology chapter.    

5.15.5 Transmission electron microscopy  

Transmission electron microscopy (TEM) has been applied to identify the FcAuNPs dispersed 

within the sol-gel matrix which in turn is used to immobilise the enzyme(s) and the mediator 
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to the working carbon electrode.  More information on TEM can be found in the in the 

experimental methodology chapter. 

5.15.6 Screen printed electrodes  

Screen printed electrodes (SPEs) have been modified using sol-gel and FcAuNPs to investigate 

the GOx, GDH and lipase enzyme activity.  More information about the sol-gel process and the 

method followed for preparing the sol-gel/FcAuNP based SPEs as biosensors can be found in 

the experimental methodology chapter). 

5.16 Characterisation of sol-gel/ FcAuNP mixture for the biosensor 

The sol-gel/FcAuNP mixture was characterised using ESEM and WAXS techniques (figure 5.8).  

The sizes of the sol-gel particles mixed with FcAuNPs were determined to be within the range 

of 239 – 842 nm, using ESEM (figure 5.8a).  The average sol-gel/FcAuNP particle size was 

determined to be 440 nm.  
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Figure 5.8: (a) ESEM images of the different sizes of the sol-gel/FcAuNP, (b) WAXS data for the 

sol -gel particles ,  (c) WAXS data for sol –gel/FcAuNP, (d) TEM image of the sol-gel/FcAuNP 

matrix and (e) EDX analysis of the of the sol-gel/FcAuNP matrix .  The red arrows in figures 

5.8b and 5.8c indicate WAXS peaks which belong to the sol-gel mixture and the orange arrows 

represent peaks and images specific to FcAuNPs in figures 5.8c-5.8e. 

Furthermore, the WAXS analysis of the dried sol-gel/FcAuNP mixture has shown presence of 

peaks specific to the sol-gel mixture at 2θ values of 20o, 32 o and 45 o (figures 5.8a and 5.8b).  

Additional peaks corresponding to FcAuNPs, which are added and mixed with the sol-gel 

solution, were identified at 2θ of 56 o and 74 o (figure 5.8c).  The peak at 45 o as observed for 

the sol-gel particles could be also due to the presence of the modified gold nanoparticles144.  

TEM analysis of the sol-gel/FcAuNP matrix also displayed presence of spherical shaped 

FcAuNPs with average diameter of 5.74 nm dispersed within and around the sol-gel clusters 

(figure 5.8d), which in turn was confirmed using the EDX coupled to the TEM.  Elemental 

analysis of the sol-gel/FcAuNP matrix has demonstrated the presence of ferrocene (Fc) and 

gold (Au) particles corresponding to FcAuNPs (figure 5.8e). 
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5.17 Results and Discussion 

5.17.1 Sol-gel/ FcAuNP/GOx based enzymatic macroelectrode 

 

The sol-gel and FcAuNP based macroelectrode biosensor was used to initially investigate the 

activity of the standard GOx enzyme in pH7 buffer solution using cyclic voltammetry and 

choronoamperometry techniques. GOx was chosen as the standard because it is one of the 

most well studied enzymes and its kinetic data such as the Km value for a similar system to 

which is investigated in this chapter can be easily found and compared.     

 Li et al.137 and Bharathi et al.
138

 have stated that the immobilisation of the AuNPs and the 

GOx enzyme on the surfaces of gold and indium tin oxide based electrodes displayed a fast 

electron transfer between the enzyme redox centre and the sol-gel/AuNP based electrode and 

it also demonstrated an enhanced stability.  Chang et al.
139

 on the other hand have reported 

that the AuNP modified glassy carbon macroelectrodes showed a glucose detection limit 

ranging from 0.1 mM to 25 mM and an increase in sensitivity and stability was also observed 

using the cyclic and linear voltammetry techniques, whilst the free form of GOx enzyme was 

added to the 0.5 M of sulfuric acid aqueous solution.  In contrary, it was established that the 

immobilisation of the AuNPs along with the GOx enzyme on the carbon electrode led to 

instability and a decrease in the selectivity of the enzyme for the glucose substrate.  In order 

to overcome this problem, a sol-gel matrix composed of FcAuNPs and enzymes were drop-

casted on to the surfaces of the glassy carbon macroelectrodes and SPEs to examine the 

activities of the GOx and GDH enzymes.  The sol-gel silicate matrix was used to attain chemical 

inertness, physical rigidity, permeability,  mechanical and thermal stability which are required 

to fabricate a well-functioned enzymatic biosensor140,145,146.  FcAuNPs were manipulated to 

enhance the conductivity and the electron transfer kinetics at the electrode/solution 

interface.                      

      The cyclic voltammograms (CVs) obtained for the immobilised sol-gel/FcAuNP biosensor 

while the GOx enzyme and glucose were added to the pH7 buffer solution showed a decrease 

in the current with increase in the concentration of the glucose (figures 5.9a and 5.9c) 

contrary to the CVs collected for the immobilised sol-gel/FcAuNPs/GOx enzymatic biosensor 

(figures 5.9b and 5.9d) which demonstrated a rise in current with increase in glucose 

concentration. The solution and immobilised enzymes were compared to identify the most 

effective method for the attainment of enzyme stability and maximum efficiency.  The glucose 

concentration for both systems involving GOx was increased by adding successive aliquots of 

the substrate in the buffer solution.  After the addition of each aliquot of glucose, the solution 
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was gently swirled and left for a short period of time to reach equilibrium before a 

measurement was taken using CV.    

    The background CVs for both the solution and immobilised enzymes without the addition of 

glucose have shown presence of an oxidation peak which is generated due to the mediator 

(figures 5.9a and 5.9b).  As the glucose concentration was enhanced for the system with GOx 

enzyme in solution, no correlation was observed between current and the substrate.  

However, for the immobilised GOx enzyme system, a rise in current of the oxidation peak with 

increase in glucose concentration was detected using CV, when compared to the background.  

This indicates that the GOx enzyme is more stable and it is capable of catalysing glucose 

oxidation reaction for longer without being deactivated by other compounds such as products 

of reaction in the buffer solution.          

 For both systems, the CV data was plotted in the form of current versus glucose 

concentration graphs (figure 5.9c).  The current data was obtained from the oxidation peaks at 

-1.3 V for GOx in solution and at 0 V for the immobilised GOx enzyme.  From the figure 5.9c 

(orange squares), a steep rise in the current was observed as the concentration of glucose was 

increased up to 3 mM.  Beyond this point, as the glucose concentration was enhanced from 3-

5 mM a steady state current was observed using the immobilised sol-gel/FcAuNP/GOx 

enzymatic biosensor, indicating the attainment of enzyme saturation.  It is also a characteristic 

of an enzyme catalytic reaction (figure 5.9c).   
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Figure 5.9: (a) CVs for GOx in solution, (b) CVs for immobilised sol-gel/FcAuNP/GOx enzymatic 

carbon macroelectrode and (c) shows the change in current against glucose concentration plot 

for GOx in solution (blue circles) and for immobilised sol-gel/FcAuNP/GOx enzymatic 

macroelectrode (orange square).   

The current against time transient (figure 5.10) reflect the same findings as obtained using the 

CV for the drop-casted sol-gel/FcAuNP/GOx based biosensor. The results demonstrate that 

the enzyme efficiency and electron mediation increases when the GOx enzyme is immobilised 

on the surface of the carbon electrode.   
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Figure 5.10: showing CA for immobilised sol-gel/FcAuNP/GOx enzymatic carbon 

macroelectrode. 

The efficacy of the immobilised GOx enzyme in converting glucose into gluconic acid was 

expressed in the form of Michaelis constant (km) value which in turn was determined using 

the Lineweaver-Burk plot (figure 5.11) below. The km  value was calculated to be 1.5 + 0.01 

mM for the immobilised solgel/FcAuNP/GOx enzymatic carbon macroelectrode (see appendix 

table A2.1) which is much lower than the literature value of 7.4 mM as stated for an 

immobilised AuNP/GOx/graphite based biosensor in sodium phosphate buffer solution147.  

 

Figure 5.11: Lineweaver-Burk plot showing the reciprocal of change in current against the 

reciprocal of glucose concentration. The graph was plotted using the CV data obtained for the 

immobilised sol-gel/FcAuNP/GOx carbon macroelectrode. 

 

Furthermore, GOx enzyme immobilised in platinum nanoparticles (PtNP) and mesoporous 

carbon matrix followed by fixation on the surface of the carbon electrode using gelatin and 

also, by cross-linking it with glutaraldehyde have been reported to exhibit a much higher km 

value of 10.8 mM, with a linear response to glucose concentration within the range of 0.04-
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12.2 mM.  Further modification of the PtNP/mesoporous carbon matrix/GOx based 

bioelectrode with a Nafion film displayed interference from the electroactive compounds to 

the glucose response as the glucose concentration was enhanced to 5.6 mM148.   

 

5.17.2 Sol-gel/ FcAuNP/NAD+- dependent DP and GDH multi- enzymatic macroelectrode and 

- SPE 

 

The procedure for developing the immobilised sol-gel/FcAuNP/GOx enzyme based biosensor 

was repeated by replacing the GOx enzyme with NAD+ - dependent DP and GDH enzymes.  The 

current measured using the immobilised sol-gel/FcAuNP/ NAD+ - dependent DP and GDH 

enzymatic bioelectrode was plotted against the glycerol concentration, which showed a 

similar trend as identified with the immobilised sol-gel/FcAuNP/GOx based biosensor (figure 

5.12a).   It was established that the current response increased with a rise in the glycerol 

concentration upto 2 mM (figures 5.12a, 5.12b and 5.12c – green circles).  The 

chronoamperometry technique was found to be much more sensitive than the CV and it 

revealed that the modified enzymatic biosensor can detect glycerol concentration upto 7 mM 

and an anodic current response is attained within 11.4 seconds (figure 5.12b). 
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Figure 5.12: (a) CVs obtained at a scan rate of 50 mVs-1 for the immobilised sol-

gel/FcAuNP/NAD+- dependent DP and GDH enzymatic macroelectrode, (b) CA obtained for the 

immobilised sol-gel/FcAuNP/NAD+- dependent DP and GDH enzymatic macroelectrode and (c) 

change in current against glycerol concentration graph for the GDH in solution (orange circles) 

and the immobilised sol-gel/FcAuNP/NAD+ - dependent DP and GDH enzymatic 

macroelectrode (green circles) plotted using CV data from figure 5.12a and 5.13. 

 

The narrow concentration range detected using the sol-gel/FcAuNP/ NAD+- dependent DP and 

GDH multi-enzymatic macroelectrode indicate that the GDH has slightly lower stability 

comparing to the GOx enzyme leading to prompt denaturation.  The reaction mecahnism that 

is likely to occur at the electrode surface after the application of a forward potential is 

outlined below in scheme 5.6149. 
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Scheme 5.6: shows the reaction mechanism occurring at the surface of the immobilised sol-

gel/FcAuNP/ NAD+ - dependent DP and GDH multi-enzymatic working electrode.  

 

It was also observed that when the GDH enzyme and glycerol were present in solution, the 

effectiveness of the GDH enzyme in biotransformation of the glycerol into dihydroxyacetone 

product was reduced (figure 5.13 b (orange circles) and figure 5.14).    

 

Figure 5.13: CVs obtained using the sol-gel/FcAuNP based macroelectrode while glycerol, 

NAD+ - dependent DP and GDH enzymes were added to the buffer solution. 

 
The results obtained using the immobilised sol-gel/FcAuNP/ NAD+- dependent DP and GDH 

multi-enzymatic macroelectrode was found to coincide well with the CVs collected using the 

immobilised sol-gel/FcAuNP/ NAD+ - dependent-DP and GDH based SPE (figure 5.14a). A 

similar trend in the linear response range was obtained as observed with the modified GDH 

macroelectode and an increase in current with an increase in the concentration of glycerol 

was identified with the modified SPEs (figures 5.14a and 5.14b). 
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Figure 5.14: (a) CVs for glycerol concentration ranging from 0.7 mM – 12.7 mM (with inset 

showing CVs for 0.2 mM to 24.8 mM of glycerol concentration) and (b) current versus glycerol 

concentration graph plotted using CV data, for the immobilised sol-gel/FcAuNP/NAD+ - 

dependent DP and GDH enzymatic SPE. 

The current response of the modified NAD+ - dependent DP and GDH enzymatic SPE (figure 

5.14b) was found to increase 100 fold compared to the results obtained using the immobilised 

sol-gel/FcAuNP/NAD+ - dependent DP and GDH enzymatic macroelectrode (figure 5.13c– 

green circles).  This demonstrates that the modified SPE can exhibit enhanced sensitivity and 

improved signal to noise ratio in comparison to the modified macroelectrode.   As a result, the 
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incorporation of FcAuNPs, NAD+ cofactor and the enzymes in the sol-gel matrix enable 

efficient electron transfer and easy access of the substrate to the enzymes immobilised on the 

surface of the carbon SPE.  From figure 5.14a inset and 5.14 b , it can be established that the 

immobilised sol-gel/FcAuNP/ NAD+ - dependent DP and GDH enzymatic SPE is capable of 

detecting a wide range of glycerol concentration from 0.2 mM to 24.8 mM and a correlation 

coefficient of 0.9988 was also attained (figure 5.15b).  Furthermore, a Km value of 4.9 + 0.01 

mM was established for the immobilised sol-gel/FcAuNP/ NAD+ - dependent DP and GDH 

enzymatic-carbon macroelectrode in comparison to 5.4 + 0.01 mM for the immobilised sol-

gel/FcAuNP/ NAD+ - dependent DP and GDH enzymatic SPE. The values were determined from 

the Lineweaver –Burk graphs (figures 5.15a-5.15b and see appendix table A2.2) shown below 

and were found to be lower than the literature value of 9.9 mM, which in turn was obtained 

using an immobilised GDH enzyme cross-linked with gluteraldehyde on the surface of a 

graphite electrode150.  A lower    indicates that the immobilised sol-gel/FcAuNP/ NAD+ - 

dependent DP and GDH enzyme based biosensors has a higher affinity for glycerol and 

requires a lower concentration of the substrate to attain the maximum rate of reaction. 

 

 

Figure 5.15: Lineweaver-Burk plots showing the reciprocal of change in the current against the 

reciprocal of glycerol concentration for (a) immobilised sol-gel/FcAuNP/ NAD+ - dependent DP 

and GDH multi-enzymatic -carbon macroelectrode and (b) immobilised sol-gel/FcAuNP/ NAD+ 

- dependent DP and GDH enzymes based SPE. The graphs were plotted from the CV data 

obtained using an immobilised sol-gel/FcAuNP/NAD+ - dependent DP and GHD enzymatic -

carbon macroelectrode and –SPE.       

 From further literature review, it was found that the biosensors constructed using GDH 

enzyme combined with phenazine methosulphate mediator, with and without cross-linking 

the protein with gluteraldehyde before immobilising the mixture on the surface of the carbon 
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electrode showed high km values of 12.1 mM and 33.5 mM respectively, in 0.05 M of 

potassium buffer solution at pH 7.3151.  In another report, co-immobilisation of the lipase and 

the GDH enzymes using cerium oxide nanoparticles and multi-wall carbon nanotubes on a 

glassy carbon electrode combined with the fast Fourier transformation continuous cyclic 

voltammetry (FFTCCV) technique in a flow injection analysis system, demonstrated a response 

time of less than 25 seconds, a detection limit of 5.4 mM for the glycerol substrate and an 

initial sensitivity of 95.2% was also achieved which however gradually decreased over time 

due to a loss in the catalytic activity152. Thus, this confirms that the sol-gel based biosensors 

exhibit improved performance, higher enzymatic activity and selectivity for a specific analyte 

depending on the particular enzyme examined compared to other biosensors available to this 

date.                                         

          The Lineweaver-Burk plots obtained for the immobilised sol-gel/FcAuNP/ NAD+ - 

dependent DP and GDH enzymatic-SPE using the CV data (figure 5.15a and 5.15b) showed 

linearity with high R2 values of greater than 0.99.  This signifies that the immobilised GHD 

enzymes follow the Michaelis-Menten model and it is also a characteristic expected of an 

enzyme catalysis-controlled amperometric biosensor102.  Similar results were also obtained 

using the immobilised sol-gel/FcAuNP/GOx enzyme which displayed a linear line with R2 value 

greater than 0.99.    

         

5.17.3 Sol-gel/ FcAuNP/NAD+- dependent DP and GDH multi- enzymatic – SPE in the 

presence of lipase and GTO in solution 

Furthermore, from the CVs (figure 5.16a) collected using the sol-gel/FcAuNP/NAD+ - 

dependent DP and GDH based enzymatic- SPE in the presence of lipase and GTO in solution, a 

linear increase in the current with an increase in the concentration of GTO was observed, up 

to 1.5 mM.  Beyond this point, the current response declined as the concentration of GTO was 

enhanced above 1.5 mM, which was clearly reflected using CA and in the current versus GTO 

concentration graphs plotted using CV and CA data (figures 5.16a and 5.16b).  This indicates 

that the detection limit for glycerol product generated from lipolysis of GTO was probably 

restricted due to competitive inhibition caused by the binding of increased amount of 

insoluble lipolytic products at the enzyme active sites and therefore, leading to deactivation of 

the lipase enzymes153. 
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Figure 5.16: shows the change in current against GTO concentration using the data from (a) 

CVs and (b) CA, for the immobilised sol-gel/FcAuNP/ NAD+ - dependent DP and GDH enzymatic 

SPE biosensor, in the presence of lipase and GTO in solution. 

 

The lipase enzyme inhibition can be minimised for example, by immobilising the enzyme using 

sol-gel/FcAuNP matrix which should enhance the stability of the enzyme as observed with 

GOx and GDH enzymes by only allowing the triacylglyceride substrate molecules to reach and 

access the active site of the lipase and therefore, prevent chemical deactivation154.    

 All of the above experiments were repeated twice and the results from the replicates 

reflected a similar trend as observed initially, that immobilisation leads to enhanced stability 

of the enzymes as opposed to the proteins in its free form in solution. This is because 

immobilising the enzymes in a sol-gel matrix only allows specific substrates to access the 

binding site and prevents other by-products/products from deactivating the proteins.  A 

standard error for the km values was calculated by taking into account of the km values from 

the repeats and by applying the following equation 5.16: 

 

                                                                  
 

  
                                           ( eq. 5.16) 

 

Where, SE is the standard error of the mean, s is the standard deviation of the mean and n is 

the number of repeats. 

 

5.18 Conclusions 

 

The study involving immobilised sol-gel/FcAuNP/enzymatic-biosensors have demonstrated a 

fast time response and an enhanced sensitivity and selectivity for specific substrates.  These 
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characteristics make these bioelectrodes ideal devices for a range of biocatalyst and 

biotechnological applications compared to other feasible enzymatic biosensors available.            

      It was established that when the GOx and GDH enzymes were in solution and not 

immobilised with the sol-gel and FcAuNPs on to the electrodes, the current reduced with an 

increase in the concentration of glucose and glycerol substrates, respectively. This indicates a 

decrease in the enzyme activity. However, when both the GOx and the GDH enzymes were 

immobilised along with the sol-gel/ FcAuNP (and NAD+ - dependent DP for the GDH 

biosensors) on to the surfaces of carbon electrodes, it was observed that the current 

increased with an increase in glucose/glycerol concentration, respectively.  This demonstrates 

that the immobilised enzymatic biosensors enhance electron mediation between the re-dox 

center of the enzymes and the electrodes, leading to increased rate of enzymatic reaction.  

Furthermore, it was deduced that the enzymatic-biosensors have exhibited low Km values of 

1.5 + 0.01 mM (for the immobilised sol-gel/ FcAuNPs/GOx enzymatic- carbon macroelectrode 

biosensor), 4.9 + 0.01 mM (for the immobilised sol-gel/ FcAuNPs/ /NAD+ - dependent DP and 

GDH enzymatic - carbon macroelectrode based biosensor) and 5.4 + 0.01 mM (for the 

immobilised sol-gel/ FcAuNPs/ /NAD+ - dependent DP and GDH enzymatic SPE based 

biosensor) compared to the literature values of 7.4 mM (for an immobilised AuNPs/GOx 

enzymatic-biosensor)147 and 9.9 mM (for an immobilised GDH enzymatic biosensor)150, 

respectively.  The sol-gel/ FcAuNPs/ NAD+ - dependent DP and GDH based enzymatic- SPE was 

found to detect glycerol concentration ranging between 0.2 mM to 24.8 mM and exhibit a fast 

response time as well as a high correlation coefficient of 0.9903 was also attained. The simple 

yet cost effective and easily disposable miniature bioelectrodes displayed other desirable 

characteristics such as reusability, reproducibility, real time monitoring and higher specificity 

for the substrates.    Overall, it can be suggested that the wiring of the FcAuNPs, which are 

used as mediators, along with the enzymes in a sol-gel matrix on the electrode surface led to 

an enhanced electron transfer and increased enzyme activity comparing to the other 

mediators used.  This is probably because of the surface curvature of the AuNPs (1) modified 

with self-assembled monolayers (SAMS) of ferrocene headgroups which allows a favourable 

shift in redox potentials and (2) has a dramatic effect on the interaction between the 

headgroups of the SAMS.  For example, the ferrocene headgroups of the SAMS for small NPs 

are further apart which leads to less electrostatic repulsion and an amplification in electron 

transfer141.   

       In the presence of lipase and GTO in solution, it was observed that the sol-gel/ 

FcAuNP/NAD+ - dependent DP and GDH based enzymatic- SPEs demonstrated an increase in 
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current with an increase in the GTO concentration upto 1.5 mM as a result of lipolysis. Beyond 

this point, the current was seen to decrease with a rise in GTO concentration. This suggests 

that the glycerol detection limit is probably restricted as a result of competitive inhibition by 

the insoluble lipolytic products present in the buffer solution 154.   

 By comparing the results obtained for the lipase enzyme in solution with the data 

collected for both the immobilised GOx and GDH enzymatic electrodes, it can be identified 

that there is an increase in current with an increase in substrate concentration, until a specific 

concentration is attained at which the current reaches a plateau due to enzyme saturation, for 

the immobilised GOx and GDH sensors.  On the other hand, the current was observed to 

decrease drastically as the GTO concentration was enhanced above 1.5 mM in the presence of 

lipase enzyme in buffer.  This indicates that the lipase enzyme in its free form in solution is 

likely to be deactivated via the by-products/products present and therefore, leading to a 

decrease in the lipase enzyme activity and efficacy.        

 Based on the findings observed using immobilised GOx/GDH enzymatic biosensors, it can 

be suggested that the drawbacks associated with the lipase enzyme in solution can be 

overcome by trapping the protein in a sol-gel/FcAuNP mediator based matrix.  This should 

allow the lipase enzyme to remain stable without premature deactivation and increase 

enzyme efficiency.  The method can be therefore applied for example, to determine the 

effectiveness of different types of lipase enzymes, which are widely used in detergent 

formulation for removing soils.          
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CHAPTER 6 

Soiled fabrics washed using P&G’s C24E3S surfactant 

 

6.1 Review of Polymorphism 

Polymorphism in molecular crystals has attracted the attention of many researchers from 

different scientific discipline over the years.  Polymorphism is when a substance can exist in 

two or more crystalline phases and exhibit different physical and chemical properties as the 

compound adopts different conformations or packing arrangements in a crystal lattice1.  

Scientists have been aware of the existence of polymorphism since the 1820s.  It was the 

pioneering work of Malkin et al. on the different melting behaviour of triacylglycerides due to 

polymorphism, which was  investigated using powder X-ray diffraction, that led to the 

understanding of the structure and physical properties of fat crystals2.  Further to this, the 

nomenclature proposed by Lutton et al. in 1950, based on the short spacing structural 

information obtained for triacylglycerides using powder X-ray diffraction has been extensively 

used worldwide to characterise the different types of polymorphs.  Factors such as the 

packing arrangement of hydrocarbon chains of the triacylglycerides and the layered structure 

composed of the same series of acyl chains were taken into account for derivation of the 

nomenclature3.  The subcell and layered structures of fat polymorphs corresponds to short 

and long Bragg spacings when analysed using the X-ray diffraction method. The long spacings 

are affected by the chain length of the fatty acids which makes up the triacylglyceride 

molecules, and importantly, the angle of tilt. The long spacing values can be therefore used to 

identify different types of polymorphs for the same fatty acid. The short spacings, on the other 

hand, are independent of the chain length of the fatty acids and can be used to characterise 

the polymorphs 4.  Since the late 19th Century, as well as X-ray diffraction, other methods such 

as NMR have been used to study molecular mobility within the polymorphic structure.  

Vibrational Spectroscopy (VS) has also been used to determine fat polymorphism and Atomic 

force spectroscopy (AFM) has been applied to investigate the structure of triacylglerides 5.    

      A substance can also exist in various other forms for instance, as a pseudo polymorph, 

hydrate or amorphous solid6.  In 1965, Walter McCrone introduced the term pseudo 

polymorphism to describe crystalline solvates consisting of stoichiometric or non-

stoichiometric quantity of a solvent7.  If the bound solvent is water then the crystalline 

molecules are referred to as hydrates8.  Amorphous solids on the other hand are formed as a 
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result of disordered arrangement of molecules without an obvious lattice structure 9.  

Polymorphs of the same compound can arise due to two main factors and these are (1) 

different packing arrangement whilst retaining the same conformation (which is referred to as 

packing polymorphism) and (2) packing into different structures due to different molecular 

conformations (which is termed as conformational polymorphism)10.  As a result, molecules 

have different arrangements in the unit cell of its crystals and such compounds can display 

various chemical, physical, mechanical, thermodynamic and kinetic properties11.  Examples 

include chemical reactivity, solubility, dissolution rate, melting behaviour, hardness and 

stability which are all dependent on the structure of the polymorphic crystals 12.  The 

formation of polymorphic phases during crystallisation often follows Ostwald’s rule of stages.  

This emperical rule states that the least thermodynamically stable polymorph with highest 

free energy is formed first on crystallisation of solution or melt. The polymorphic forms than 

undergo successive transformation until the most stable polymorph is formed 13. External 

factors such as seeding, pressure and temperature change can be used to override Ostwald’s 

law to select a specific fat polymorph 14.  In this project, the different types and structures of 

fat polymorphs formed at room temperature and at 20oC, with and without fabrics, are 

investigated using techniques such as small-angle X-ray scattering(SAXS), wide-angle X-ray 

scattering(WAXS) and atomic force spectroscopy (AFM). 

 

6.2 Structure of Fats 

 

Most naturally produced fats are widely used in food products such as chocolate and 

margarine.  These fats are composed of a combination of various triacylglycerols, which are in 

turn is made up of triesters of fatty acids with glycerol15. The melting, crystallisation 

characteristics and packing arrangement of the triacylglycerols (TAG) are affected by the type 

of fatty acids, the degree of saturation as well as the position and chain length of the fatty 

acids.  The acyl group of the TAG can pack in 2 possible structures: tuning fork (the fatty acid 

chains in position 1 and 3 are located alongside each other whilst the one in position 2 

remains unpaired) shown in figure 6.1a and chair (the acyl chain in position 2 aligns with the 

one in either position 1 or 3) shown in figure 6.1b  16.  
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Figure 6.1: (a) tuning fork and (b) chair conformation.17  

 

Where, R1, R2 and R3 are fatty acid chains. These configurations are packed in either double or 

triple chain length manner in the crystal planes which can be observed using techniques such 

as powder X-ray diffraction (figure 6.2).   The quarto- and hexa-chain length structures can be 

also observed in asymmetrical saturated triacylglycerides 18. 

 

 

 

 

               

 

Figure 6.2: The double and triple chain length of the chair (a and b) and tuning fork (c and d) 

structure of fat19. 

 

These chain length arrangements can be identified by long spacings between the crystal 

planes and also, the details about the structures of different polymorphs i.e. the interchain 

distances can be determined from short spacings within the planes, using the X-ray diffraction 

technique 20.                

       Fatty acids are a form of carboxylic acids which are obtained from either animals or 

vegetable fats or oils 21.  These fatty acids are produced by alkaline hydrolysis of fats and are 

composed of a hydrocarbon chain which is linked to a carboxylic acid group.  The chain length 

can vary between 4 to 30 carbons and it can be either linear or kinked.  Unsaturated fat 

(a) (b) 

(a) (b) 

(c) (d) 
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consists of triglycerides with unsaturated fatty acids.  The unsaturated fatty acids contain 

carbon and hydrogen atoms which are linked together by double bonds and can exist in cis or 

trans form.  As the unsaturated fatty acids disturb the close packing of the triglycerides it 

leads to formation of kinks in the chain (figure 6.3c).  Consequently, unsaturated fats such as 

oils exist as liquid at lower temperature 22.  Saturated fat on the other hand consists of 

triglycerides with a high content of saturated fatty acids that do not contain any double 

bonds.  Such fats have linear chain with even number of carbons, appear as a solid at room 

temperature and have higher melting points (figure 6.3b) 23.   

           

 

Figure 6.3: molecular structure of (a) a triacylglyceride (R1, R2 & R3 are fatty acids) (b) a 

saturated fatty acid - Stearic acid & (c) an unsaturated fatty acid – Linolenic acid 23. 

 

Lard is an example of fat which consists of both saturated fatty acids such as palmitic, stearic 

and myristic acid, as well as unsaturated fatty acids for example, oleic, linoleic and palmitoleic 

acid 24. 

 

6.3 Lard 

 

Lard is a fat obtained by rendering fatty tissue of the hog/domestic pig. Natural lard has a 

waxy texture type of characteristic and exhibits unsatisfying bakery qualities.  These 

undesirable features are overcome by fat blending or interesterification in making 

commercial shortenings.  The composition of lard varies with the hog’s food. However, it 

mainly consists of a few long-chain major fatty acids such as saturated fatty acids like palmitic 

(24%) and stearic (14%) acids as well as unsaturated fatty acids for example, oleic (41%) and 

linoleic (10%) acids. The oleic acid is mostly found in the 1-and 3- position of glycerol while 

(a) 

(b) 

(c) 
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the palmitic acid is esterified in the 2-position of glycerol.  Other fatty acids include myristic 

acid, myristoleic acid, palmitoleic acid, α-linolenic acid, arachidic acid, eicosenoic acid and 

eicosadienoic acid 25.  Lard exhibits different polymorphic crystals after melting, cooling and 

slowly increasing the temperature (table 6.1).  

 

Table 6.1: SAXS and WAXS characteristics of the various types of polymorphs for lard26,27. 

 

                   
 

The 2-palmitooleostearin (13%) and 2-palmitodiolein (19%) are the two major triacylglycerols 

of lard.  The major trisaturated triacylglycerol is 2- palmitodistearin which varies between 2-

10%.  Lard consists of fewer triacylglycerols compared to many other fats yet it still exhibits 

complex thermal properties 27. 

 

6.4 Triglycerides 

 

Triglycerides (TAGS) display a complex monotropic polymorphism. This means it can lead to 

formation of various polymorphic crystals depending on the following factors: the type of 

fatty acid chains esterified to the glycerol, the crystallisation procedure such as the melt, 

cooling or solvent mediation and sample purity28.  The crystals are composed of triglyceride 

layers and the thickness of these layers depends on the length and insaturation of the fatty 

acids, as well as the angle of tilt with respect to the basal planes produced as a result of the 

methyl end groups.  The layer thicknesses, also referred to as long spacings, can be 
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determined using the Small Angle X-ray Scattering (SAXS) method at 0 < q < 0.9 Å-1 , where q = 

4sin/,  is half the scattering angle and  is the X-ray wavelength, whereas the packing of 

the aliphatic chains is characterised by short spacings at 0.9 < q < 1.8 Å-1 using the Wide Angle 

X-ray Scattering (WAXS) technique29.  The crystalline transformation to a more stable 

polymorph is an irreversible process.  The various types of polymorphs are obtained by 

melting the fat followed by crystallisation (via the processes of nucleation and growth) 

leading to generation of the more stable polymorphic species (figure 6.4) 30.  

 

 

Figure 6.4: Schematic representation of the chain packings of long chain triglycerides (a) 

Hexagonal packing (least thermodynamically stable) (b) Orthorhombic packing and (c) Triclinic 

packing (most thermodynamically stable) 31.  

 

The most stable polymorphic crystal is the β form which exhibits a triclinic packing and has 

the lowest Gibbs energy at a higher temperature above 35 oC - 45 oC.  At temperatures lower 

than 35 oC the β’ polymorphs can be identified with an intermediate Gibbs energy and 

orthorhombic packing arrangement. Whereas, fast cooling after melt leads to formation of α 

crystals displaying hexagonal packing and has the highest Gibbs energy. The three metastable 

crystallines melt successively and the liquid recrystallises instantly into the next metastable 

form32. 

 

 

 

 

 

 

α 

β' β 
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6.5 Polymorphism of fats 

 

The fat crystal forms can be categorised into 3 main types of polymorphs which are α, β’ and 

β (figure 6.5) 33.   

 

 

Figure 6.5: Structures of the 3 main types of fat polymorphs 33. 

 

The different types of polymorphs are obtained from melting the fat followed by 

crystallisation.  The α-form is formed upon moderate to high cooling rate after melting. The β’ 

polymorphs on the other hand are produced via slow cooling and when the temperature is 

raised slightly higher than the melting point of α form.  At a much slower cooling rate and just 

above the melting temperature of β’ polymorph, β crystals are found to crystallise as these 

high melting components of fat solidify at an earlier stage34.  Alongside the rate of cooling, 

other factors such as variation in the chain length of the fatty acids and the thermal history 

can also influence the polymorphic behaviour35.  The different melting points and 

characteristics of the polymorphs can be identified by techniques such as XRD. 

 

6.6 Types of polymorphism 

 

There are 2 types of polymorphism which exist in lipids and these are enantiotropic and 

monotropic polymorphism. Enantiotropic polymorphism occurs when each of the fat 

polymorphs is thermodynamically stable over a particular range of temperature and pressure. 

Monotropic polymorphism on the other hand results in when there is only one 

thermodynamically stable polymorph at all temperatures and pressures.  Change in 

conditions, i.e. altering the temperature over a period of time, leads to transformation of less 

stable polymorphs to more stable ones with the lowest Gibbs energy (figure 6.6)28. 

 

 

α β β' 
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Figure 6.6: Gibbs free energy against temperature relationship for the 3 different types of 

polymorphic forms of TAGs. Where,    is the melting temperature 28. 

 

The ability of triacylglycerol molecules to pack in various crystalline arrangements allows the 

various fat polymorphs to exhibit different melting temperatures. Due to their monotropic 

nature and according to Ostwald’s rule, the less stable polymorph, which in this case is α, 

with the least dense crystal packing, low melting point and largest Gibbs energy value is 

formed first.  Followed by the β’-form, which has an intermediate Gibbs energy being 

thermodynamically more unstable than β. The transition from vertical structured α 

polymorph to tilted β’ form occurs as a result of the hydrocarbon chains subsiding or possibly 

due to conformational change of the glycerol molecule.  This transformation route takes 

place at a much higher rate during melting process than supercooling. As the phase change 

process continues, the most stable polymorph which is the β-form with the most dense 

crystal packing, highest melting point and lowest Gibbs energy is produced.  Interpolymorphic 

conversion of β polymorph to β’-form and β’-form to α polymorph is not possible as it is 

thermodynamically unfavorable.  At equilibrium, when the change in Gibbs energy      is 

zero, the melting temperature,     can be defined in terms of the ratio of enthalpy,       

and entropy,        of melting (equation 6.1) 36.  

 

                                                                  
    

   
                                                          (eq. 6.1) 

 

The     and     are influenced by factors such as hydrogen bonding, crystal packing and 

intermolecular interactions 37. 
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6.7 The crystallisation process 

 

Crystallisation can be defined as the first order transition of molecular aggregates from the 

liquid to the solid phase, which results in the formation of a crystal lattice. This phenomenon 

is a multi-step process which involves nucleation and then crystal growth including Ostwald 

ripening of the crystals.  Nucleation determines the initial formation of crystals from 

molecules or ions and crystal growth establishes the crystal size.  Following this, other 

processes such as secondary nucleation can occur.                         

      All of the processes above are dependent on the degree of supersaturation and the 

change in free energy. Supersaturation can be referred to as a solution containing more of a 

component than can be within it when it is at equilibrium with a bulk crystal at that 

temperature.  Supersaturation is the ratio of the fraction of solute in the supersaturated 

solution to the amount of solute in a saturated solution at the same temperature.  The 

relationship between supersaturation and spontaneous crystallisation process can be 

represented in the form of concentration against temperature diagram/solubility curve 

(figure 6.7)38. 

 

  

Figure 6.7: showing change in solubility of a compound with concentration and 

temperature38. 

 

Solutions with concentration lower than the red solubility curve at a specific temperature are 

considered as undersaturated. This means in such solutions any crystals present will 

redissolve.  The metastable region in the diagram arises due to crystal growth being possible 

on pre-existing crystals, e.g. crystal seeds, or on surfaces at which small aggregates can 

absorb and grow to become crystal nuclei; however nucleation within the bulk phase does 

not occur. In the supersaturated region, the concentration of the solution is well above the 
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solubility curve.  Consequently spontaneous nucleation as well as crystal growth processes 

can occur39.  

 

6.7.1 Kinetics and thermodynamics of crystallisation of fat 

 

The thermodynamic driving force for the crystallisation process of a component, i, is the 

chemical potential difference (   ) between the liquid (   
 ) and solid (   

 ) phase (equation 

6.2) 40.  

 

                                    =    
  -    

  =              
  

   
 

  
   

                                     (eq. 6.2)          

 

Where,    is the activity coefficient for i,    is the mole faction of i and       is the chemical 

potential difference of the pure component i in the respective phases.  For the crystallisation 

of one or more components from a melt, supercooling is required.  Supercooling refers to the 

degree by which the sample has been cooled with respect to the melting temperature of the 

crystallised sample. This produces a thermodynamic driving force and a chemical potential for 

formation of a nuclei.  It can be expressed in the form of equation 6.3 40,41. 

 

                                                                                                                (eq. 6.3) 

 

Where,       is the enthalpy of melting of pure component i, T is the sample temperature 

and      is the melting temperature of component i.  Equation 6.3 assumes that       is 

independent of temperature. The crystallisation driving force for a fat system consisting of 

multi component TAGS in the liquid phase which has similar size and structure, can be 

defined by equation 6.4 where,   
    

 is the saturation composition and it is assumed that 

  
    

≈  
  ≈1 42. 

 

                                                                       
  

 

  
                                                           (eq. 6.4)                    

 

6.8 Nucleation of crystals 

 

During fat crystallisation from the melt, the triacylglycerol molecules form into ordered 

lamella-like structures which then act as a precursor to the formation of different 
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polymorphic crystals; this is nucleation.  In order for this to occur, the fat system has to 

overcome the nucleation energy barrier, G* (figure 6.8) 43. 

 

 

 

Figure 6.8: (a) ordering of TAGS & (b) energy barrier of the 3 main types of polymorphs as a 

transition from liquid to solid phase occurs.  

 

In Figure 6.8,     is the Gibbs energy barrier for nucleation from the liquid phase and     is 

the Gibbs energy difference between the supercooled liquid phase and the macroscopic solid 

phase for each of the     and    polymorphs43. Factors such as diffusion rates and interaction 

of fat molecules with one another can affect the kinetic properties of the ordering process in 

the liquid and solid phases as well as influence the type of polymorph crystal that will form as 

a result of crystallisation (see types of polymorphism section 6.6). Specific crystals can be also 

selectively grown by altering the conditions for example, by controlling the shear stress and 

tempering during the processes43.       

       The process of nucleation initiates as a result of clustering and aggregation of molecules 

or ions to a stable size in a supersaturated melt, solution or vapour.  The critical nucleus is 

defined as the nucleus size at which there is equal probability of the nucleus growing or 

dissolving (figure 6.9) 45. 

 

(a) (b) 
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Figure 6.9: Schematic representation of nucleation process. Where,      is the Gibbs energy 

of nucleation. 

 

The different arrangements of the stable aggregates during nucleation lead to formation of 

polymorphs. Production of specific type of polymorph is dependent on factors such as 

intermolecular bonding, molecular conformation and lattice energy 46.  Primary nucleation 

can be defined as the process of initial crystal formation in a system that does not contain any 

crystalline matter of that chemical species.  The nucleus of a crystal is formed due to 

molecules interacting with one another via forces such as hydrogen bonding, dispersion 

forces and van der waals interaction. As a result, clusters of particles formed in the system 

gain attractive lattice interactions and this in turn leads to a decrease in Gibbs free energy. 

However this decrease in free energy due to bulk crystal interactions is more than offset 

initially by the increase in free energy due to the need to create a crystal-liquid interface of 

free energy A, where A is the interfacial area and  is the interfacial tension. Once a critical 

radius (r*) is achieved, however, a critical nucleus is formed where the energy increase of 

creating extra interface is balanced by the energy decrease in forming more of the new 

crystal phase 47.  When the critical radius is exceeded, particles become stable and tend to 

undergo spontaneous crystal growth leading to formation of crystal polymorphs (figure 6.10). 

The critical radius is dependent on the pressure, temperature, solvent and supersaturation 48.   
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Figure 6.10: Changes in nucleation energy (∆G) with the radius of nucleus (r). Where,     is 

the energy increase due to creating the surface,     is the energy decrease coagulating 

atoms to form clusters and    is the critical free energy 48.  

 

6.8.1 Nucleation process of fat and the kinetics and thermodynamics of nucleation 

 

Volmer’s nucleation mode49 suggests that the possibility of cluster formation during 

nucleation is dependent on the attainment of critical cluster size with mean radius, r*.  The 

total free energy of a cluster (       ) is equal to volume free energy and surface free energy 

(equation 6.5).  The activation energy barrier for nucleation,      from solution can be 

expressed in the form of equation 6.6 for a spherical nucleus50. 

 

                                            + 
          

  
                                       (eq. 6.5) 

                                                
     

         
                                                                    (eq. 6.6) 

 

Where,      is the energy increase in creating the surface,     is the energy decrease 

coagulating atoms/molecules to form clusters, r is the mean radius of the cluster, k is 

Boltzmann’s constant, T is the absolute temperature,   is the interfacial free energy between 

the nucleus and the supersaturated solution,   is the supersaturation ratio (which is the ratio 

of solute concentration to saturated solution for an ideal solution) and   is the molecular 

volume. Primary nucleation can be subdivided into two categories: homogeneous and 

heterogeneous nucleation.  Homogeneous nucleation occur as a result of spontaneous 

formation of a nuclei from a clear bulk solution whereas heterogeneous nucleation takes 
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place at the interfaces or surfaces due to foreign particles which increases the rate of 

nucleation 51.  Secondary nucleation on the other hand is formation of nuclei induced by the 

collision between existing particles, such as crystals from the primary nucleation in a 

supersaturated solution or crystal seeds which can be added deliberately.  Increasing shear 

rate can also lead to faster formation of the most stable polymorph from a less stable one 52.       

       The formation of nuclei is the initial process of solid phase formation.  Nucleation can 

take place from a solution or from a melt for a fat system.  The Gibbs energy of the system 

alters as a result of decrease of free energy per unit volume arising from enthalpy of fusion 

and increase of the surface energy due to surface tension.  For formation of spherical nuclei 

via homogeneous nucleation from the melt the Gibbs free energy (       can be expressed 

in the form of equation 6.7 53. 

 

                                  
 

 
                                                (eq. 6.7) 

 

Where,     is the energy increase due to surface tension,     is the free energy of 

condensation per unit volume, r is the mean radius of cluster,   is surface energy (which is 

the ratio of solute concentration to saturated solution),   and A are the volume and surface 

area of the cluster.  The Gibbs energy of the system (       increases with radius until the 

nucleation energy barrier        
   is reached at the critical radius size (   . Any clusters with 

radius larger than the critical radius       
  

   
  , decrease in free energy and becomes 

stable. The critical free energy or the activation energy barrier of nucleation from melts can 

be expressed in terms of equation 6.8 54. 

 

                                                   = 
       

   
 

          
                                                         (eq. 6.8) 

 

Where,    is the molar volume of clusters,          is the supercooling,     is  he 

enthalpy of melting and    is the melting temperature.  There are also various other barriers 

due to diffusion of molecules with the appropriate conformation to the interface between 

the bulk and the growing nucleus.  The conformation and diffusion barriers, 

(           which the molecules need to overcome in order to interact with the growing 

surface of the nucleus and these can be related to the frequency of nuclei formation,       by 

equation 6.9 55. 
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                                (eq. 6.9) 

 

Where, k is Boltzmann’s constant, h is Planck’s constant, N is the number of molecules and T 

is the absolute temperature.  The rate of diffusion of the molecules decreases as the 

temperature is reduced and the viscosity of the solution is increased.  As the molecules 

overcome the conformation barrier and comes in contact with the nuclei, it results in loss of 

entropy from the system.                                                                                              

       Heterogeneous nucleation in the fat crystallisation process, on the other hand, is initiated 

due to factors such as walls of a container, impellers, the presence of lipids like mono or 

diglycerides or dust molecules acting as nucleation sites.  The decrease in the interfacial 

energy required to form the critical nucleus in heterogeneous nucleation causes the 

activation energy barrier for this process to be lower than that of homogeneous nucleation.  

Heterogeneous nucleation can be defined as the product of homogeneous nucleation and a 

function of the contact angle ( ) between the nucleus, foreign substrate and the liquid phase.  

If the surface of the foreign particle is flat and the nucleus is cap-shaped, then the activation 

free energy for heterogeneous nucleation can be expressed as a function of the activation 

free energy for homogeneous nucleation (equation 10) 56. 

 

                                                                                                           (eq. 6.10) 

                                      Where,      = 
 

 
                                       (eq. 6.11) 

 

Secondary nucleation in a fat system can occur as a result of the components from growing 

crystals acting as seeds for further crystallisation.  Triaclyglycerol seeds consisting of 

unsaturated fatty acids with higher melting points can be used at this stage to control the 

polymorphic crystallisation of fats 57.  

 
 

6.9 The morphology of fats 

                                     

The term morphology or habit can be defined as the overall shape of a crystal.  The 

competitive growth of crystal surfaces can affect the morphology or habit of the solid phase.  

The variation of surface roughness affects the growth rate of the different planes of crystals, 

with the flattest crystal faces growing the slowest. These slowest growing crystal faces 

dominate the morphology and can have large surface areas.  Crystals can be classified into 3 
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types of habits: prismatic (elongated crystals thicker than needles), acicular (long and needle 

like thinner than prismatic crystals) and tabular (flat-plate like crystals) (figure 6.11) 58. 

 

 

 

Figure 6.11: Examples of crystal habits 58. 

 

In fat polymorphism, α crystals are likely to be thin and have small crystalline structure, β’ 

crystals on the other hand has a needle-like morphology (less than 5 μm) and β polymorphs  

are much larger and have a plate-like shape59. 

 

6.10 Types and Structures of surfactants in colloidal system 

 

Surfactants can be defined as amphiphilic or amphipathic compounds.  This means that such 

substances consist of a hydrophilic head that has affinity for a polar solution and a 

hydrophobic chain with affinity for non-polar solutions (figure 6.12).  The polar or ionic head 

groups in the aqueous environment interact with one another via dipole-dipole and ion-

dipole interactions 60.  

  

 

Figure 6.12: Surfactant molecules with a hydrophilic moiety and a hydrophobic chain forming 

a micelle 61. 

(a) 

(b) 

(c) 
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There are 4 main types of surfactants which are classified according to the charge of the 

hydrophilic head group.  These are anionic (negatively charged polar head group), non-ionic, 

amphoteric or zwitterionic (the hydrophilic moiety can be positively or negatively charged 

depending on the condition) and cationic (positively charged polar head group) surfactants 62.   

      In liquid-liquid systems, the surfactant molecules are concentrated at the interface 

between the two immiscible phases which decreases the interfacial tension of the phase 

boundary.  There are 3 main types of detergency mechanisms; one of which involves the 

surface active agents functioning by forming micellar aggregates, when a critical micelle 

concentration (CMC) is reached with increase in concentration of the surfactant.  The micelles 

surround the stain particles and break them down into smaller fragments. This in turn allows 

removal of dirt and grease from the surfaces i.e. fabrics (detergency mechanisms are 

discussed in depth in section 6.13).  The CMC of a surfactant can be affected by variables such 

as temperature, pressure and increasing hydrocarbon chain length of apolar groups.  For 

instance, the CMC for ionic surfactants has been found to decrease in the presence of 

electrolytes (which reduces the strength of electrostatic repulsions between the surfactants’ 

charged headgroups) and increase with decrease in charge of the counterions present in 

solution, since this decreases the screening ability of the counterions 63.  Micelles can exist in 

two forms which are oil-in-water micelles and water-in-oil micelles.  In aqueous solution, the 

hydrophilic heads are in contact with the surrounding polar environment whilst sequestering 

the hydrophobic tail regions in the micellar core to form oil-in-water micelles. In non-polar 

solvents however, exposing the hydrophilic head group moieties to the solvent is 

energetically unfavourable so this causes the hydrophilic head groups to be in the micellar 

core and the hydrophobic chains to point away from the centre and into the solvent.  Droplet 

microemulsions are swollen micelles in which the micellar core contains a liquid immiscible 

with the continuous liquid phase. The size of microemulsion droplets can be altered by 

varying the oil to surfactant and water to surfactant ratios for inverse and reverse micellar 

systems 64.   

 

6.11 Thermodynamics and kinetics of surfactants 

 

The solubility of ionic surfactants increases with temperature until it reaches the CMC, at a 

specific temperature.  At this point the CMC and the surfactant solubility are equal which is 

referred to as the Krafft or critical micelle temperature.  The solid hydrated surfactant, 
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micelles and monomers exist in equilibrium at this Krafft point.  Beyond the Krafft 

temperature, surfactants form micelles at concentrations above its CMC 65.    Surfactants with 

ionic or highly polar head groups and long straight alkyl chains have high Krafft temperatures.  

Non-ionic surfactants on the other hand do not exhibit a Krafft point as the solubility 

decreases with temperature.  Instead, after reaching a transition temperature known as the 

cloud point the non-ionic surfactants lose its surface active properties due to the formation of 

micellar aggregates which separate and cause the dispersion to become turbid 66,67.                 

      The overall Gibbs energy for micelle formation in a surfactant based system is mainly 

affected by the electrostatic and hydrophobic effects.  The hydrophobic Gibbs energy (or 

transfer Gibbs energy),    
   can be defined as the Gibbs energy for the process of 

transferring the hydrocarbon solute from the hydrocarbon solvent to an aqueous phase 

(equation 6.12) 67. 

 

                                                     
                                                          (eq. 6.12) 

 

 

Where,   and   are constants for a specific hydrocarbon chain and    is the number of 

carbon atoms in the chain.  The transfer Gibbs energy can also be defined in terms of entropy 

and enthalpy (equation 6.13) 67.  

 

 

                                                      
     

       
                                              (eq. 6.13) 

 

 

Where,    
  is the enthalpy of transfer and    

  is the entropy of transfer.  The transfer of the 

hydrocarbon solute into the aqueous medium causes the hydrogen bonds between the water 

molecules to break and form differently structured water molecules known as icebergs 

around the hydrophobic chain. This leads to an increase in the Gibbs energy and a decrease in 

the entropy 68. 

 

6.12 Surfactants used in detergency 

 

Surfactants are most widely used as cleaning agents in laundry and cleaning products. These 

active agents have different properties depending on the ratio of hydrophilic and 

hydrophobic groups.  For instance, as the hydrophobicity of the surfactant increases, the 

solubility of it in the aqueous phase decreases whilst the solubility in oil increases 69.  Since 
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1954, the degree of hydrophilicity and hydrophobicity of a surfactant has been characterised 

using the Griffin method known as the hydrophilic- hydrophobic balance or HLB.  This 

involves use of a scale ranging from 0 (extremely lipophilic) to 20 (extremely hydrophilic 

surfactant).  The HLB system is a good indicator for identifying the emulsification behaviour of 

surfactants and for selecting appropriate types of surfactant for particular applications i.e. as 

emulsifiers, detergents and wetting agents.  The surface active compounds with good oil 

solubility tend to produce water-in-oil emulsions whereas, surfactants which are more 

hydrophilic form oil-in-water emulsions 70.                                                                                                                                                                                 

      The main types of surface active agents which are used for commercial cleaning purposes 

are alcohol ethoxylates, alkyl ethoxylated sulphates and linear alkylbenzene sulphonates.  The 

detergent analysed in this project is composed of 4 different types of surfactants.  These are 

linear alkylbenzene sulphonate (anionic), alkyl ethoxylates (non-ionic), ethoxylated alkyl 

sulphate (anionic) and alkyl carboxylate (anionic). 

 
 

6.12.1 Linear Alkylbenzene Sulphonates  

 

Linear Alkylbenzene Sulphonates (LAS) are highly water soluble surface active agents.  Such 

surfactants are mostly used in detergent formulation and household cleaning products.  

These compounds are synthesised by Friedel-Craft alkyation of benzene followed by 

sulphonation of the aromatic ring (figure 6.13) at the para-position of the hydrocarbon chain 

71.   

 

 

Figure 6.13: Structure of LAS 72. 

 

The carbon chain length of LAS can vary between C10 to C14 and the position of the benzene 

group can also be altered.  This results in formation of 26 isomers of LAS.  Such surfactants 

exist in the form of anionic surfactants in solution 72.  

 



  194 
 

 

 

 

6.12.2 Alkyl Ethoxylates  

 

Alkyl ethoxylates (AEs) are a type of non-ionic surfactant which is widely used in various 

household cleaning applications. These surface active agents are composed of an aliphatic 

hydrocarbon chain connected to one or more ethoxylate groups. The alkyl chain length of AE 

consists of 12-15 carbons (figure 6.14) 73. 

 

 

                  

 

Figure 6.14: Structure of an AE. Where, R is the alkyl chain length consisting of 12-15 carbons 

and n is the ethoxylated chain length of 1 – 20 73. 

 

AEs are usually removed from the environment by aerobic and anaerobic biodegradation 

once it enters the wastewater treatment system. 

 
 

6.12.3 Ethoxylated Alkyl Sulphates  

 

Ethoxylated Alkyl Sulphates (AESs) are a type of anionic surfactant which consists of a long 

alkyl chain length of 12 to 18 carbons bound to a variable length ethoxylated chain which in 

turn is connected to a sulphate group (figure 6.15) 74. 

 

 

                    
  

 

Figure 6.15: Structure of an AES 74. 

 

The properties of these surfactants are affected by the alcohol chain length and the polar 

head moiety.  These compounds are more hydrophilic than the sulphonates as it consists of 

an addition oxygen atom74.   

 

6.12.4 Alkyl Carboxylate  

 

Most carboxylates including Alkyl Carboxylate (AC) are widely used as soaps.  These 

surfactants are alkali metal salts of fatty acids which are obtained from oils using 
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saponification.  This process involves neutralisation of alkali or addition of salt to the glycerol 

by-product.  ACs consists of a mixture of fatty-acid hydrocarbon chain lengths with high levels 

of even numbered carbon atoms (figure 6.16) 76. 

 

 

               

 
 

Figure 6.16: Structure of AC 76.  

 

Where, x = 16-36. Pure long chain soaps exist as anhydrous crystals or crystal hydrates at 

room temperature and also, as viscous semisolids in the presence of water.  Such compounds 

can exhibit higher solubility in polar and aqueous based solvents76. 

 

6.13 The mechanisms of detergency on soiled fabrics 

 

Fabric detergency can be defined as a process involving interaction between aqueous 

detergent solutions, soils and fabric surfaces. Due to the surfactants’ ability to adsorb at both 

fabric-water and soil-water interfaces it acts as an effective soil remover.  The efficiency of 

the surface active agents is affected by several factors and these include the weave of the 

fabrics, types and quantity of soils on the materials as well as fabric pretreatments i.e. the 

presence of a dye can complicate removal of contaminants from the surface.  The 

composition of the fabrics is also one of the main aspects that determine the mechanism via 

which soils can be removed using surfactant.  For example, oily soils are removed by the 

means of a roll-up mechanism from the cotton fabrics, since these fabrics consist of rough 

and inconsistent structured hydrophilic fibers. In contrast, emulsification is the prevalent 

method of oily soil elimination from polyester, which is composed of identical cylindrical-

shaped hydrophobic fibers 77.                              

      Over the past 20 years, detergent solutions consisting of various components including 

enzymes, surfactants and builders have been developed for eliminating soils effectively from 

fabrics.  Each of the components when combined together has been proven to significantly 

increase the rate of soil removal from fabrics. For example, builders function by precipitating 

the divalent ions from water which are in turn also responsible for formation of complexes 

and increasing interactions between the fabrics and the soil 78. Lipases, on the other hand, 

hydrolyse triglycerides into three fatty acids and glycerol, which are more easily removed. 

Hence, lipase enzymes aid surfactants in removing soils from the fabrics 79.  
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Surfactants are the key ingredient for detergent formulations.  These surface active agents 

function via three main mechanisms of oily soil removal: roll-up, emulsification or necking 

and solubilisation 80.  The roll-up process involves lowering of the fabric surface-water 

interfacial tension by the deposition of surfactant molecules at this interface which then 

increases the contact angle between the soil molecules and the fabric interface.  This 

relationship can be expressed in terms of equation 6.14 81. 

 

                                                       
        

   
                                                         (eq. 6.14) 

 

Where,     is the interfacial tension between the surfactant solution and solid substrate (the 

fabric)     is the interfacial tension between the oil (the soil) and solid substrate and     is 

the interfacial tension between the surfactant solution and oil.  For instance, anionic 

surfactants adsorb on the fabric with their negatively charged head groups facing the 

detergent solution and it acts by reducing the interfacial tension between the surface active 

agent molecules and the solid substrate.  This method is effective for removal of soil from 

more hydrophilic fabrics such as cotton which swells when the material comes in contact with 

water and as a result, releases the oily particles from the fibres (figure 6.17) 82. 

 

 

 

Figure 6.17: Roll up mechanism due to fabric wetting 82. 

 

On the other hand, emulsification involves reduction of the interfacial tension at the oil-water 

interface.  During this process the contact angle between the soil and the surface remains 

constant and the outer segments of soils are incorporated in small emulsion droplets (figure 

6.18).  In the presence of high levels of polar soil components, liquid crystals form due to 

interaction between the soil constituents and the oil-water surface.  The intermediate phase 

is then agitated to produce fragments which are emulsified in the detergent solution. Factors 

Oil  
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such as the ratio of polar and non-polar components of the oil substrate, electrolyte 

concentration and temperature can affect this mechanism 83.  

 

 

 

                   Figure 6.18: Emulsification mechanism as a result of soil-water interfacial tension reduction 83. 

 

Another effective mechanism via which soils are removed from fabrics is solubilisation.  This 

involves micelles breaking down the soils into smaller fragments when there is an excess 

surfactant relative to oil present (figure 6.19). The rate of such a mechanism is affected by the 

isotropic or liquid crystalline form of the surfactant-rich phases.  Such phases solubilise soils 

either directly or by interacting with soils to form a microemulsion which in turn is emulsified 

under specific conditions.  This process can be identified when non-ionic surfactants are 

above their cloud point 27. The key issue with lard, however, is that it is not liquid at the lower 

wash temperatures, which may seriously hinder the 3 detergency mechanisms of roll-up, 

emulsification and solubilisation. 

 

 

 

Figure 6.19: Solubilisation mechanism of an oil droplet in the presence of surfactants. 

 

 

Oil  

Oil  
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6.14 Techniques for fat analysis 

 

The techniques which have been used to analyse fats such as the lard and glycerol trioleate as 

well as the soiled fabrics before and after wash using P&G’s C24E3S surfactants, are described 

below.  

 

6.14.1 Wide angle X-ray scattering  

 

WAXS was used to analyse the crystal structures of lard with change in temperature, fabrics 

and detergent surfactant. More information on WAXS can be found in the Experimental 

Methodology chapter.   

 

6.14.2 Small angle X-ray scattering  

 

The small angle X-ray scattering (SAXS) technique was used to analyse the crystal structures 

of lard with change in temperature, fabrics and detergent/surfactant.  More information on 

SAXS can be found in the Experimental Methodology chapter.   

 

6.14.3 Atomic force microscopy 

 

Atomic force microscopy (AFM) has been was used to investigate how the structure of the 

lard changes with variation in temperature.  More information on AFM can be found in the 

Experimental Methodology chapter.   

 

6.14.4 Laser diffraction particle sizing technique 

 

The laser diffraction particle sizing technique has been employed to determine the size 

distribution of the lard globules produced after wash and when left in wash solution.  More 

information on this technique can be found in the Experimental Methodology chapter. 

 

6.15 Results and Discussion 

 

6.15.1 SAXS and AFM data for lard - exposed to uncontrolled (room temperature) and 

controlled (20 oC) condition 
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Lard was initially used as the fat model instead of other fat substrates such as the glycerol 

trioleate or glycerol tristearate because it’s composed of a range of triglycerides, making it 

more problematic and difficult to remove from the fabrics.  An as-received lard sample 

provided by P&G was initially melted at a temperature of 55 oC and this was verified by the 

SAXS intensity versus 2, dark blue line in figure 6.20 not showing any peaks. Following this, 

the melted lard was super-cooled and then slowly heated up to 40 oC.  This showed the 

presence of α, β’ and β polymorphs with d-spacing values of 49.0 Å (2= 1.8o), 34.2-35.4 Å 

(2= 2.5 to 2.6) and 43.4 Å (2= 2o), respectively (calculations are included in appendix table 

A3.1), at the temperatures of -10 oC, -20 oC and 10 oC.  The results suggest that upon super-

cooling after initially melting  the lard, the least densely packed α crystals with the largest 

Gibbs energy were formed, along with the more stable β’ and β crystals, and so all three 

forms were detected by SAXS until the temperature was raised above the melting point of the 

α polymorph, which was 15 oC.  Following this, the SAXS peaks for only the β’ and β 

polymorphic crystals with lower Gibbs energy and greater thermodynamic stability were 

visible with increase in temperature up to 30 oC.  As the temperature was further enhanced 

to 40 oC, just the presence of the most stable β polymorph was identified, indicating that the 

lard follows monotropic behaviour with change in temperature 27.  

              

Figure 6.20: SAXS results for lard with change in temperature.   

 

The gradual polymorphic transformation with increase in temperature was also evident using 

the AFM.  By using this technique a clear change in shape of the lard sample with change in 
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temperature was observed (Figure 6.21).  It was seen that at the lower range of temperatures 

(< 15 oC), a globular fat structure was identified whilst at higher temperature (>  15 oC) a clear 

phase transition indicated by the formation of vertical pleated sheet like structures 

representing the β polymorphs was detected. 

 

              
 

 

 

Figure 6.21: Change in the shape of lard with increase in temperature after complete melt, 

analysed using the AFM. 

 

6.15.2 SAXS analysis of unsoiled and soiled cotton, polyester and polycotton fabrics 

 

SAXS analysis of the fabrics (cotton, polycotton and polyester) on their own, and with lard 

melted and kept at 55 oC did not show the presence of any peaks (figure 6.22). 
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                      (b) 

 

                      (c) 

 

 

Figure 6.22: SAXS results for soiled (a) cotton (b) polycotton and (c) polyester, with change in 

temperature. 

 

As the temperature was decreased rapidly down to -10 oC after melting, the presence of all 

the polymorphs were detected using SAXS with d-spacing values of 49.0 Å (α), 35-36.3 Å (β'1) 

and 43.4-45.5 Å (β’2/β) on all the fabrics.  For the different types of soiled fabrics analysed it 

was observed that with a continuous increase in temperature to 20 oC and 30 oC, only the 

Bragg peaks for β'1 and β’2/β polymorphs were identified. A decreased  peak with d-spacing 

value of 49.0 Å was observed for the soiled polycotton fabric swatch exposed to 10 oC, 

showing that some -crystals have not yet melted whereas for the soiled cotton and 

polyester, the -crystals appear to have all melted at this temperature.  The persistence of 

some -crystals at 10 oC on the soiled polycotton sample is most likely to be due to these 

crystals having a larger size.  

 

 

 

1 

3 

5 

7 

9 

11 

1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9 3.1 

In
te

n
s

it
y
/A

.U
 

2θ/ degrees 

pc fabric only 

lard melted at 55 deg c 

-10 deg C 

10 deg C 

20 deg C 

30 deg C 

40 deg C 

0.8 

2.8 

4.8 

6.8 

8.8 

10.8 

12.8 

1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9 3.1 

In
te

n
s

it
y
/A

.U
 

2θ/degrees 

PE fabric only 

melt at 55 deg C 

minus 10 deg C 

10 deg C 

20 deg C 

30 deg C 

β’ 

β’ 

β 

β 

α 



  202 
 

 

6.15.3 SAXS data for unsoiled and soiled fabrics after exposure to room temperature and at 

a constant temperature of 20 oC 

Analysis of the different types of unsoiled fabrics did not show any SAXS diffraction peaks 

(figure 6.23a). After applying a high concentration (78 mg/L) of Jupiler detergent solution to 

the fabrics and partial drying at 20 oC overnight, diffraction peaks with d-spacing values 

ranging from 32.5-34.6 Å were observed for all the fabric swatches (figure 6.23b).  This clearly 

signifies that the scattering peaks detected are due to the partially dried detergent alone.   

 

 

 

 

 

 

(a) 

(b) 
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Figure 6.23: Intensity against 2θ values for fabrics (a) without lard (b) with 78 mg/L of 

detergent and without lard & (c) with detergent and lard, measured using SAXS. 

Furthermore, similar results as obtained for fabrics with 78 mg/L of detergent were also 

gathered from examining the unsoiled fabrics with a range of detergent concentrations using 

SAXS (table 6.2).  After lard was deposited on fabrics containing the detergent solution and 

left to dry overnight, SAXS analysis of the fabric swatches showed additional diffraction peaks 

with a d-spacing value between 44.0 Å -44.2 Å (table 6.2), demonstrating existence of the β’2 

or β polymorphs.  

Table 6.2: d-spacing values for the unsoiled and the soiled fabrics after various 

concentrations of the detergent solution have been applied and dried at 20 oC. 

 

 

 

 

 

 

 

By analysing the results from table 6.2, it can be evaluated that the lard was present on the 

knitted cotton fabric for all the detergent concentration range applied. It was also detected 

Fabric type Polyester Polycotton Knitted Cotton Elastine & 

Cotton 
d-spacing value for fabrics 

with 78 mg/L of detergent after drying and without lard/ Å 34.6 34.5 32.5 32.5 

with 40 mg/L of detergent after drying and  without lard/ Å 33.2 31.9 32.6 32.5 

with 20 mg/L of detergent after drying and  without lard/ Å 32.8 32.1 32.2 32.6 

with 78 mg/L of detergent after drying and with lard/ Å 32.7 36.1 32.6, 32.0,44.0 32.7, 44.0 

with 40 mg/L of detergent after drying and with lard/ Å 44.2 44.2 32.8, 44.2 32.7, 44.0 

with 20 mg/L of detergent after drying and with lard/ Å 31.9 32.2 32.4,44.0 31.9 

(c) 
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on all the other types of fabrics when 40 mg/L of the detergent was used.  For the 20 mg/L 

and 78 mg/L detergent concentrations used, the presence of lard polymorphs was not always 

evident. The results obtained indicate that although the lard was spread as evenly as possible 

on the fabrics, some areas of the fabrics were still likely to have more lard than other areas.  

It is also possible that initial exposure of the lard on the soiled fabrics to the detergent 

solution during the drying process at 20 oC have removed the small amount of lard present 

via one or more combinations of detergency functionalities.  These include roll up mechanism 

for soil removal from cotton based fabrics, emulsification for eliminating fat from the 

polyester fabric and solubilisation for soil eradication from fabrics when exposed to high 

detergent concentration.  In the presence of excess surfactant and when a CMC has been 

reached, micelles can form, which in turn can break down the fat substrates into smaller 

molecules.   

6.15.4 WAXS data obtained for fat exposed to a constant temperature of 20oC 

The results obtained using WAXS on lard in its solid form showed the presence of 

orthorhombic and pseudo orthorhombic β’-polymorphs with d-spacing values of 3.8 Å and 4.2 

Å respectively, when the Bragg peaks were analysed.  The peak detected at 4.2 Å could be 

also possibly due to formation of α crystals.  However, this is highly unlikely as the 

temperature used was above the melting point of α polymorph.  Furthermore, a peak at 4.5 Å 

representing the β polymorph was also detected (figure 6.24).  

 

 

 

 

 

 

 

                   

                  Figure 6.24: Intensity against 2θ values for lard, measured using WAXS. 

lard 
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The results obtained for lard using WAXS and SAXS coincides with the data reported by Kalnin 

et al. 27, which shows that at a temperature of 20 oC both β’ and β polymorphs are present. 

This is because β’/ β crystals have a higher melting point than 20 oC, which is required to 

break down the ordered and stable lamella structure.   

 

6.15.5 WAXS data for unsoiled and soiled fabrics after constant heating at a temperature of 

20 oC 

WAXS analysis of the different types of fabrics showed overlap between the d-spacing values 

obtained for the fabrics (table 6.3 and figure 6.1a) and the lard on its own (figure 6.24).  

Table 6.3: WAXS characteristics of the different types of fabrics used. 

 

 

 

 

 

 

From figure A3.1 in the appendix, the high intensity WAXS peaks at 3.8-3.9 Å and 4.3 Å for the 

different types of fabrics with lard (appendix figure A3.1b) compared to the fabrics on its own 

(appendix figure A3.1a) suggests that the β’ polymorphs are formed and present at the 

temperature of 20oC.  Further to this, the soiled fabrics exposed to uncontrolled room 

temperature of 20 oC + 2 oC overnight also displayed high intensity peaks at the 2θ regions of 

20o and 23o in contrast with the intensities for clean swatches of fabrics.  This confirms the 

existence of the β’ polymorphs at the temperature of 20 (+ 2) oC (table 6.4).  

 

 

 

 

 

Fabric type WAXS Characteristics/ d-spacing 

Literature values/Å27 

WAXS Characteristics Experimental  

values/Å 

Polyester 3.4,3.8, 5.1 3.4, 3.8, 4.9 

Knitted Cotton 2.6, 3.9, , 4.3, 5.4, 6.0 2.6, 3.8, 4.3 

Polycotton 3.4 , 3.8 3.4,3.8 

Elastine & Cotton 3.8,  4.3 3.8 
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Table 6.4: d-spacing values for soiled fabrics (under controlled and uncontrolled conditions), 

areas of fabrics without direct lard deposition/with detergent and soiled fabric samples 

without detergent solution. 

 

 

 

 

 

 

In a separate experiment, by exposing the soiled samples at room temperature of 20 + 2 oC 

for 30 days, showed presence of thermodynamically stable β’ polymorphs indicated by the 

high intensity scattering peaks with d-spacing values of 3.8 Å and 4.2 Å.  This demonstrates 

that the lard polymorphs follow monotropic behaviour.   This was also reflected in the WAXS 

analysis of the areas of the aged fabrics consisting of detergent solution only and  where the 

lard was not deposited directly  (table 6.4).  The fat was found to spread as a result of initial 

melting of the lard at 60 oC and cooling at 20 oC.   Thus, it can be suggested that the fat 

components have liquefied at high temperature and diffused across the fibers of the fabrics 

before crystallising.   

6.15.6 WAXS analysis of the detergent solution 

The WAXS analysis of the dried detergent solution has shown formation of a broad 

amorphous peak within the 2θ range of 18 to 37 degrees (figure 6.25). 

Fabric type Polyester Polycotton Knitted Cotton Elastine & 
Cotton 

d-spacing value for fabrics with lard  at 20 C/ Å 3.5, 3.8, 
4.25 

3.9, 4.24 2.6, 3.9, 4.15, 5.3 2.6, 3.9, 5.9 

d-spacing value for fabrics with  lard at room 
 temperature/ Å 

3.5, 3.8 4.0, 4.26 2.6, 3.9, 5.8 2.6, 3.9, 4.2, 
5.2 

d-spacing value for fabrics with  lard and without  
detergent after  ageing  for 30 days at room 
temperature/ / Å 

3.8, 3.5, 4.2 3.8, 4.2 2.6, 3.8 3.8, 4.2 

d-spacing value for fabrics areas without lard and with  
detergent after 30 days at room temperature / Å 

3.5, 3.8, 5.0 4.3, 4.5, 6.1 2.5, 4.1,4.3, 6.1 2.6, 3.9, 4.3, 
5.4, 6.1 
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Figure 6.25: Showing a broad amorphous peak for the detergent solution. 

By applying a range of detergent concentration to all the different types of fabrics and then, 

allowing the swatches to dry overnight (table 6.5 and appendix A3.2a, A3.2c, A3.2e, A3.2g 

and A3.2i) before WAXS analysis was carried out, have shown presence of WAXS scattering 

peaks corresponding to d-spacing values around 3.8 Å - 3.9 Å and 4.2 Å – 4.3 Å. The peaks are 

probably due to the structure of the fabrics used, confirmed by the WAXS values obtained 

earlier for unsoiled fabric swatches in table 6.5. 

Table 6.5: d-spacing values for unsoiled fabrics consisting of various concentrations of the 

detergent solution. 

 

 

 

 

 

 

 

 

 

Fabric type Polyester Polycotton Knitted Cotton Elastine & Cotton 

d-spacing value 

with 78 mg/L of detergent after drying and  

without lard/ Å 

3.5, 3.8, 

4.7 

2.6, 3.9 3.5, 3.8, 4.9 2.6, 3.9, 4.2, 5.2 

with 40 mg/L of detergent after drying and  

without lard/ Å 

3.4, 3.8, 

4.8 

2.6, 3.9, 4.3 3.5, 3.9 2.6, 3.9, 4.2 

with 20 mg/L of detergent after drying and  

without lard/ Å 

3.4,3.8,4.8 2.6, 3.9, 4.3 2.6, 3.5, 3.9, 5.0 2.6, 3.9, 4.3 

with 10 mg/L of detergent after drying and 

without lard/ Å 

3.5,3.8,4.8 2.6,3.9,4.2,5.3 2.6,3.5,3.8,5.0 2.2,2.6,3.9,4.4,5.2,5.6 

with 5 mg/L of detergent after drying and  

without lard/ Å 

3.5,3.9,5.0 3.5,3.8,4.7 2.6,3.5,3.8,5.0 2.6,3.0,3.9,4.3,5.2,5.3 

with 1 mg/L of detergent after drying and  

without lard/ Å 

3.5,3.8,4.9 2.6,3.9,4.2,5.3 3.4,3.8 2.6,3.8,4.2,5.2 
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Furthermore, the results obtained for fabrics containing detergent and lard showed intensity 

peaks with d-spacing values between 3.8 Å-3.9 Å and 4.1 Å-4.3 Å (table 6.6 and appendix 

figures A3.2b, A3.2d, A3.2f, A3.2h and A3.2j).  However, due to overlap between the fabric 

and the lard WAXS intensity peaks, it is difficult to determine whether the β’ polymorphs 

were eradicated from the fabrics via one or a combination of detergency mechanisms.  

Table 6.6: d-spacing values for soiled fabrics consisting of various concentrations of the 

detergent solution. 

 

 

 

 

 

 

 

 

 

6.15.7 Ageing experiment 

The ageing experiments carried out on the soiled cotton, polycotton and polyester fabrics 

showed presence of only the β and β’ polymorphs at the temperatures of -10 oC, 10 oC, 20 oC 

and 30 oC (appendix figures A3.3, A3.4 and A3.5).  The SAXS intensities from the analysis of 

the different types of soiled fabrics was found to differ when the data collected for day 1, day 

3 and day 5 of ageing samples were compared.  This could be due to limitations associated 

with the experiments such as the fabric pieces (1 cm x 1 cm) were cut out from different 

fabric swatches for day 1, day 3 and day 5 of SAXS analysis rather than using the same swatch 

for SAXS investigation over the period of 5 days.  Other factors such as instrumental error can 

also affect the results. In a separate experiment, after melting the lard on a number of soiled 

cotton, polycotton and polyester fabric swatches and cooling the samples down to 10 oC, the 

soiled fabric pieces were left to age for 1 hour and 4 hours before analysis was undertaken 

using the SAXS technique.  From the data obtained, it was observed that the intensities of the 

Bragg peaks for β'1 and β’2/β polymorphs were almost two to three times higher after 4 hours 

Fabric type Polyester Polycotton Knitted Cotton Elastine & Cotton 

d-spacing value 

with 78 mg/L of detergent after drying and 

lard/ Å 

2.4, 3.8 2.6, 3.9,5.2 3.4, 3.8, 4.9 2.6, 3.9, 4.1 

with 40 mg/L of detergent after drying and 

lard/ Å 

3.8 2.6, 3.8 3.4, 3.8 2.6, 3.8, 4.2 

with 20 mg/L of detergent after drying and 

lard/ Å 

3.5,4.1,5.0 3.9, 4.1 3.4, 3.9, 4.9 2.6, 3.8 

with 10 mg/L of detergent after drying and 

lard/ Å 

3.8,4.2,4.7 3.5, 3.9, 4.2,4.5 2.6,3.9,4.2 2.6,3.8,4.2 

with 5 mg/L of detergent after drying and 

lard/ Å 

3.5,3.8,5.0 3.9,4.1 2.6, 3.9,5.4 3.8,4.2,5.2 

with 1 mg/L of detergent after drying and 

lard/ Å 

3.4,3.9,4.9 3.4,3.8 2.6, 3.9,4.2,5.1 3.8,4.3,5.2 
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of ageing compared to the intensities after just 1 hour for the soiled, polycotton polyester 

fabrics (figure 6.26).   

 

 

 

 

Figure 6.26: SAXS data obtained for (a) polycotton/pc (b) polyester/PE and (c) cotton/C 

fabrics after 1 hour and 4 hours of ageing, at a temperature of 10 oC. 

Overall, from evaluating the SAXS results it can be suggested that even after a small period of 

time, the most thermodynamically stable β'1 and β’2/β polymorphs are present on the variety 

of soiled fabrics even at a lower temperature of 10 C. 
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6.15.8 Wash experiments 

For the wash experiments, C24E3S surfactant which is one of the main anionic surfactants 

used in P&G’s Jupiler detergent formulation was applied.  A range of different types of soiled 

fabric swatches (i.e. cotton, polycotton, polyester and elastine/cotton) were washed with a 

high concentration C24E3S surfactant (50 mg/ mL), above its CMC level at which micellar 

formation can be clearly detected using SAXS (figure 6.27). This procedure was repeated 

using a lower C24E3S surfactant concentration (0.7 mg/mL – below the CMC). In all cases 

after washing the soiled fabrics at 20 oC, 30 oC and 40 oC, the presence of thermodynamically 

stable β'1 and β’2/β polymorphs were detected using SAXS (appendix figures A3.6 and A3.7).   

 

Figure 6.27: I (q) versus q graph showing formation of a peak due to the presence of micelle 

at C24E3S surfactant concentration of 50 mg/ mL. 

The initial experiments using a high concentration of the C24E3S surfactant were undertaken 

only with the cotton and the polycotton fabrics. The range of fabric types used was then 

extended to polyester and elastine/cotton for the next two set of experiments involving the 

application of a low surfactant concentration and then no surfactant.  An extensive variation 

in the SAXS intensities was observed for all of the washed soiled fabrics from the low 

surfactant wash experiment when compared to the high surfactant wash results.  This could 

be due to limitations as mentioned above such as different fabric swatches were used for 

each wash experiment and for the SAXS analysis.  Other factors like the position of the SAXS 

beam not focused on the same area of all the washed fabrics can also affect the results.   The 

wash experiments where no surfactant was applied could not be analysed due to the SAXS 

equipment not working and it needed to be repaired.  Consequently, the SAXS intensity 

results could not be obtained.  However, the % lard removal was determined from the wash 
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without surfactant and compared with the data collected from the high and low surfactant 

experiments in section 6.15.9. 

6.15.9 Quantification of lard removal 

The average quantity of lard removed after washing the different types of soiled fabrics under 

varied wash conditions using 50 mg/mL of the C24E3S surfactant, ranged between 6% - 35% 

for polycotton and 21% - 36 % cotton (table 6.7 below) across the different wash 

temperatures.  This indicates that a larger amount of lard was removed from cotton fabric 

compared to the polycotton fabric. It is probably due to the polar lard components trapped in 

the cotton fibers being removed by the aqueous based (polar) detergent solution during the 

washing process.                                                                                                           

       It was also observed that when one specific fabric type was exposed to different drying 

temperatures and washed at temperatures of either 20 oC, 30 oC or 40 oC, in average more 

lard was removed from both the cotton and polycotton fabrics at a higher wash temperature 

of 40 oC than at 20 oC and 30 oC (table 6.7).  This was expected as 40 oC is close to the melting 

point of the most stable β polymorphs (see table 6.1 in section 6.3) and therefore, the fats 

are likely to softer at this temperature, making it easier to wash the soils from the fabrics.  

The average % lard removal value for each fabric type (cotton (C), polycotton (PC) and 

polyester (PE)) washed at a specific temperature (20 oC, 30 oC or 40 oC) was calculated using 

formula 6.1 and by taking into account of the % of lard removed from fabric swatches 

exposed to/ dried at temperatures of 10 oC /10 oC, 10 oC /20 oC, 20 oC /20 oC and 30 oC /30 oC, 

respectively.  By applying the formula 6.1 below, the average % of lard removed for 

polycotton swatches washed at 40 oC (PC W40) which is used as an example here, was 

determined. 

 

                                 

 

                                                               

                                                                

 
 

 

Formula 6.1: The average % lard removal for different types of washed soiled fabrics under 

different wash conditions has been determined using this formula. 
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For the wash experiments, a higher concentration of the C24E3S surfactant was deliberately 

used to ensure formation of micelles and to compare the level of lard removal to that of 

obtained using a low surfactant concentration (below the CMC level) and no surfactant at all. 

 

Table 6.7: showing the average % lard removal from the different types of washed fabric 

swatches when C24E3S surfactant concentrations of 50 mg/mL, 0.7 mg/mL and none were 

added. 

   

Fabric type 

Average % lard removal 

High surfactant (50 mg/mL) Low surfactant (0.7 mg/mL) No surfactant 

Average PC W40 35+ 1.2 63 +  1.5 60 + 2.1 

Average C W40 36 + 1.4 65 +  1.3 62 + 1.4 

Average PE W40 - 71 +  0.7 64 + 0.5 

Average PC W30 10 +  2.4 54 + 1.9 46 + 1.7 

Average C W30 21 + 1.4 56 +  1.3 53 + 2.2 

Average PE W30 - 61 + 2.1 54 +  1.5 

Average PC W20 6 + 2.1 52 + 0.8 40 + 2.0 

Average C W20 22 + 2.2 57 +  1.1 46 +  1.3 

Average PE W20 - 55 + 2.1 48 + 2.4 

                    

It can be evaluated from the results in table 6.7 that the polyester fabric swatches 

demonstrated greater efficiency in removing soil both in the presence (0.7 mg/mL of C24E3S) 

and absence of the detergent compared to the cotton and polycotton fabrics.  This could be 

because polyester fabrics consist of hydrophobic uniform cylindrical fibers which can cause 

the soils to attach to the fabric surfaces in thinner layers 84,85.  Therefore, making it easier to 

remove fats via agitation and also, the fats are readily accessible for the surfactant to act 

upon via emulsification as a result of localized micellar formation when 0.7 mg/mL of the 

C24E3S surfactant is added.  It can be also deduced that even when no surfactant was added, 

the polyester fabric swatches exhibited the maximum % lard removal after washing due to 

the hydrophobic nature of the polyester fabric making the lard available on the surface which 

can be removed via agitation created by the rotation of the propellers during the wash.   

Furthermore, it can be stated that the cotton fabrics demonstrated higher % soil removal 

than the polycotton under all wash conditions.  Polycotton is made up of a blend of cotton 

and polyester fibers which are intertwined in a hybrid fashion.  The more efficient cleaning of 

the cotton compared to polycotton could be due to the cotton fabric being composed solely 
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of hydrophilic fibers which when in contact with the detergent solution leads to swelling of 

the fibers and an increase in the hydrophilicity 86.   This in turn aids in the exclusion of soils 

from the cotton fabrics via the roll-up mechanism because the lard will have a higher contact 

angle, , with the fabric when in aqueous solution.  This specific detergency mechanism, 

along with the agitation produced by the tergotometer propellers, is found to be more 

effective in soil elimination from cotton than from the polycotton fabrics.   It can be therefore 

concluded that the pure hydrophobic polyester and the hydrophilic cotton are proven to be 

most efficient in eradicating soil than the polycotton under different wash conditions, with 

and without surfactant. 

       The results obtained from the wash experiments with different concentrations of the 

C24E3S surfactant and no surfactant at all have shown that a high concentration of the 

surfactant remove a reduced amount of lard from all the fabrics under different wash 

conditions when compared to the low concentration of the surfactant and no surfactant 

added (table 6.7).  The high surfactant concentration solution, which is above the CMC and so 

contains micelles, can remove lard by a solubilisation mechanism, which lower surfactant 

concentrations below the CMC cannot.  Consequently, the reduced amount of lard removal 

when using the high surfactant concentration solution is likely to be due to initial 

solubilisation of only the triglycerides with low melting point, which can be easily removed 

from the surfaces of the fabrics, whilst a more resistant fat layer consisting of triglycerides 

with high melting point has probably remained behind on the fabrics and is then harder to 

eradicate.  Furthermore, when the % lard removal data for all the washed fabrics exposed to 

a low C24E3S surfactant concentration was compared with the results obtained for the 

washed fabrics with soils only and no surfactant, it was observed that a higher amount of lard 

was removed when a low concentration of the surfactant was used.  This indicates that 

agitation produced by the propeller combined with surfactant mechanisms such as 

emulsification and roll-up for removing lard from polyester and cotton fabrics, respectively, 

are the most effective mechanisms for lard removal.  Hence, low surfactant concentration are 

probably more effective in eliminating solid soils, such as lard, from all the fabrics compared 

to the high surfactant concentrations (where the additional solubilisation mechanism leaves 

behind a more detergent-resistant solid film) or agitation on its own when no surfactants is 

added and so the roll-up and emulsification mechanisms cannot operate. All the results from 

the wash experiments show that, as expected, there is enhanced fat eradication from the 

fabrics at a higher wash temperature of 40 oC than at 20 oC (table 6.7).       
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Analysis of the wash water collected from the wash cycle involving soiled fabrics exposed to 

different wash conditions and application of a high concentration (50 mg/mL) of the C24E3S 

was undertaken using the laser diffraction particle sizing technique, in order to determine the 

% volume range of the fat globules which were removed from the fabrics during wash (table 

6.8 and appendix figure A3.8). 

 

Table 6.8: showing the soiled fabric conditions from which the wash water was extracted and 

the diameter range of the fat globules obtained.  

 

 

 

 

 

 

 

 

Further analysis of the fat globules using WAXS have shown that the fat globules exist as β' 

and β polymorphs (figure 6.28).  This coincides well with the data collected for the washed 

soiled fabrics using SAXS which clearly demonstrated the presence of lard in the form of β' 

and β polymorphs. 

 

 
 

Figure 6.28: WAXS data for the fat globules obtained from the wash water when a high 

concentration (50 mg/mL) of the C24E3S surfactant was applied. 
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6.16 Conclusions  

 

Initial investigations carried out using the SAXS technique on lard after melting it at 55 oC and 

then supercooling before gradually increasing the temperature have shown the presence of 

α, β’ and β polymorphs with d-spacing values of 49.0 Å, 35.4 Å and 43.4 Å respectively, at the 

temperatures of -10 oC, -10 oC and 20 oC.   As the temperature was raised to 30 oC, the β’ and 

β polymorphs with lower Gibbs energy than α crystals were detected.   Following this, only 

the most stable β polymorph with higher melting point than the β’ polymorph was identified 

at the temperature of 40 oC.   The transformation from the least stable polymorph to highest 

stable polymorphic crystal was also confirmed by the change in shape of the lard from 

globular (α polymorph) to pleated sheet like structure (β’/β polymorphs), with increase in 

temperature using AFM.                              

      Furthermore, SAXS analysis of the dried detergent solution (ranging between 20 mg/L – 78 

mg/L) on unsoiled fabrics revealed a diffraction peak ranging between the d-spacing values of 

32.5-34.6 Å.  Lard was applied to the fabrics with different concentrations of the detergent 

solution which were dried overnight at 20 oC before SAXS analysis was carried out.  The 

results demonstrated presence of the β’2/β polymorphs on some of the swatches of fabrics, 

indicated by the d-spacing value between 44.0 Å -44.2 Å.   Some of the soiled fabric swatches 

with detergent and added lard however did not show SAXS evidence of any lard crystals.  This 

could be due to the areas of the fabrics analysed probably composed of a minute amount of 

lard which when initially coming in contact with the surfactant solution during the drying 

process has been instantaneously broken down into smaller particles via one or more 

combination of surfactant mechanisms. The lard structure was also investigated using the 

WAXS technique, which revealed that the lard at a temperature of 20 oC can be detected in its 

stable β’ and β polymorphic forms with d-spacing values of 3.8 Å, 4.2 Å and 4.5 Å, 

respectively.  This is because both β’ and β crystals have a low Gibbs energy and a higher 

melting point than 20 oC.  Additionally, WAXS analysis of the different types of fabrics showed 

overlap between the d-spacing values for the fabrics (table 6.3 and appendix figure A3.1a) 

and the lard on its own (figure 6.26).   In a separate experiment, soiled fabric samples were 

left at room temperature of 20 + 2 oC for 30 days before WAXS analysis was carried out, 

which showed scattering peaks with d-spacing values of 3.8 Å and 4.2 Å even in areas of the 

fabrics where lard was not deposited directly demonstrating the presence of β’ polymorphs 

(table 6.4).  This could be due to the initial melting of the lard at 60 oC allowing the fat 
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components to liquefy and diffuse across the fibers of the fabrics before crystallising as a 

result of supercooling to 20 oC.    

       The WAXS technique was further used to investigate the structure of the dried out 

detergent solution.  The results showed formation of a broad amorphous peak within the 2θ 

range of 18 O to 37O . Following this, a range of detergent concentrations were applied to all of 

the unsoiled fabrics and then the swatches were left to dry overnight.  The WAXS analysis of 

the fabrics stained with the detergent showed presence of scattering peaks corresponding to 

d-spacing values around 3.8 Å - 3.9 Å and 4.2 Å – 4.3 Å (appendix figures A3.2a, A3.2c, A3.2e, 

A3.2g and A3.2i). The peaks identified are probably due to the structure of the fabrics used 

(table 6.4 and appendix figure A3.1a).  In addition, the results obtained for the fabrics 

containing different concentrations of the detergent solution and lard (appendix figures 

A3.2b, A3.2d, A3.2f, A3.2h and A3.2j) showed presence of peaks with d-spacing value 

between 3.8 Å-3.9 Å and 4.1 Å-4.3 Å. However, since there was an overlap between the d-

spacing value for the fabrics and the lard, SAXS was used to undertake further investigation 

on the soiled fabrics, with and without exposure to the detergent solution.    

      The SAXS analysis of the soiled cotton, polycotton and polyester fabrics showed presence 

of only the β’ and β polymorphs at the temperatures of -10 oC, 10 oC, 20 oC and 30 oC after 1 

day, 3 days and 5 days of ageing (appendix figures A3.3, A3.4 and A3.5).  The SAXS intensities 

of the soiled fabrics subjected to ageing however was found to vary randomly.  This could be 

due to limitations such as the fabric pieces (1 cm x 1 cm) were cut out from different 

swatches rather than the same swatch for SAXS analysis on day 1, day 3 and day 5.  In a 

separate experiment, the lard was melted and then applied on cotton, polycotton and 

polyester fabric swatches before cooling the samples down to 10 oC.  The soiled swatches 

were then left to age for 1 hour and 4 hours before SAXS analysis was undertaken which in 

turn revealed that the intensities of the Bragg peaks for β'1 and β’2/β polymorphs at 2θ values 

of 2o and 2.6 o respectively were almost two/three times higher after 4 hours of ageing 

compared to just 1 hour for the soiled cotton, polycotton and polyester fabrics (figure 6.26), 

indicating transformation of amorphous lard into β and β’ polymorphs.    

      Following the ageing experiment, soiled cotton, polycotton, polyester and elastine/cotton 

fabrics were washed with a high concentration of C24E3S surfactant (50 mg/mL - above the 

CMC level), a low C24E3S surfactant concentration (0.7 mg/mL – below the CMC) and no 

surfactant at all. The presence of thermodynamically stable β'1 and β’2/β polymorphs were 

detected on the different types of soiled fabrics after wash with a low and a high level of 

C24E3S surfactant (appendix figures A3.6 and A3.7), using SAXS.  The initial wash experiment 
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using a high concentration of the C24E3S surfactant was undertaken with just the soiled 

cotton and polycotton fabrics for comparison. Other types of fabrics i.e. cotton/elastine and 

polyester were then used alongside cotton and polycotton for the next two set of 

experiments (involving the application of a low surfactant concentration and no surfactant at 

all).  However, due to limitations such as the use of different fabric swatches for each wash 

experiments and the SAXS beam was not focused at a fixed area on all the fabric swatches 

which have resulted in random variation in the SAXS intensities as observed for the low and 

high surfactant wash experiments.  Hence, the intensity data collected for each fabric type 

could not be compared reliably.  The washed soiled fabrics collected after wash without 

surfactant could not be analysed using SAXS because of the SAXS equipment not working.   

      Nonetheless, from all the wash experiments (with low and high surfactant and without 

surfactant) the quantity of lard removed and the fabric types which are most efficient in 

removing soils with and without the addition of low and high concentrations of C24E3S 

surfactant solution were determined.  For the highest surfactant concentration of 50 mg/mL, 

it was identified that more lard was removed from the cotton fabric than the polycotton after 

washing. This was probably due to the attraction between the polar lard components and the 

hydrophilic cotton fibers, making the low melting point triglycerides available for the aqueous 

based (polar) detergent solution to eliminate via solubilisation.  Additionally, the % of lard 

removed was found to be lower when a high C24E3S surfactant concentration was used 

comparing to low concentration or no surfactant added.   This is likely to be because of the 

presence of a more resistant fat layer composed of unsaturated triglycerides with high 

melting point which is polymerised on to the fabric surfaces and therefore, harder to remove 

by solubilisation, roll-up, emulsification and agitation.  It was also observed that on average 

more lard was eradicated from both the cotton and polycotton fabrics at a higher wash 

temperature of 40 oC than at 20 oC and 30 oC.   This was predicted as 40 oC is closer to the 

melting point of the β polymorph and therefore, it is likely that at this temperature the fats 

are softer.  Thus, the soils are more easily washed away from the fabrics at 40 oC when in 

contact with detergent solution and exposed to agitation generated by the tergotometer 

propellers.    

      Furthermore, from the results obtained for wash experiments with low concentration of 

the C24E3S surfactant and no surfactant added, it was identified that the polyester fabric 

swatches were more effective in removing soil under both conditions compared to the cotton 

and polycotton fabrics.  This could be due to the polyester fabrics being composed of 

hydrophobic fibers which allow the lard to bind on to the fabric surface and produce thinner 
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layers  spread over more of the fabric and therefore, the fats are more easily removed via 

agitation and at low surfactant concentration, by the emulsification mechanism.  The % of 

lard removed using the low surfactant concentration was found to be higher compared to the 

other wash conditions, which indicate that a combination of detergency mechanisms such as 

emulsification and roll-up combined with agitation may be the most efficient method for 

eradicating solid soils from fabrics; in contrast, the solubilsation mechanism that can operate 

at high surfactant concentrations was detrimental to lard removal.  Thus, it can be evaluated 

that agitation generated by the rotation of the propellers has a vital role in increasing the rate 

of soil removal from the cotton (under high surfactant concentration wash conditions) and 

the polyester (under low surfactant concentration or no surfactant wash conditions).             

      The results from the low surfactant and no surfactant wash experiments reflected the 

findings from high surfactant concentration wash experiments, that most of the soil from the 

different types of fabrics was eliminated when a high wash temperature of 40 oC was used 

compared to 20 oC and 30 oC. This is because at 40 oC more of the most stable and difficult to 

remove β polymorphs are likely to be softer as this specific wash temperature is close to the 

melting point of the β crystals.  The softer fats are less likely to bind to the fabrics firmly and 

therefore, are more easily eradicated when exposed to the detergent solution and agitation 

during the wash experiments.                                                                                                  

       Additionally, using the laser diffraction particle sizing technique the particle diameter 

range was determined to be within 1.66 – 40 µm, for the β’ and β polymorphic fat globules 

extracted from the wash water collected for soiled fabrics exposed, dried and washed at 

temperatures of 20 oC and 30 oC while a high concentration (50 mg/mL) of the C24E3S 

surfactant was applied (table 6.8 and appendix figure A3.8). 
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CHAPTER 7 

Conclusions & Further work 

 

7.1 Conclusions 

 

The main conclusion which can be derived from the systematic studies of emulsification at an 

ITIES is that it can give realistic insights into a wide range of applications for surfactant 

adsorption and emulsification. For the SDBS/water – 1,2-DCE/GTO systems, use of 

electrochemical techniques and optical microscopy has demonstrated occurrence of a 

concentration, time and potential dependent surfactant adsorption and emulsification 

instability at the interfaces. It was observed that there was an increase in current without any 

irregular oscillations as the SDBS surfactant concentration was gradually increased in the 

aqueous phase of the water (with LiCl) – 1,2-DCE (with TBATPB) system, below the CMC point 

of 1.5 mM. On the other hand, the electrochemical studies on SDBS concentrations of 1.5 mM 

(CMC point), 8 mM and 13.4 mM added to the aqueous phase of the water-1,2-DCE system 

with electrolytes have shown presence of reproducible interfacial instability within a limited 

potential region around the standard ion transfer potential of the surface active ions.  The 

chaotic fluctuations however were negated when increasing concentrations of triton-x-114 

were added to the aqueous phase consisting of 13.4 mM of the SDBS surfactant.  Similar 

irregular oscillations to those observed for SDBS were also identified with P&G’s Y (anionic) 

surfactant which again disappeared when P&G’s N (non-ionic) surfactant was added to the 

aqueous phase composed of P&G’s Y (anionic) surfactant. Furthermore, conductivity and 

electrocapillary measurements of the aqueous (with LiCl) – 1,2-DCE (with TBATPB)/GTO 

systems, have shown that above 8 mM of SDBS the instability became independent of the 

SDBS concentration due to presence of increased number of micelles and enhanced rate of 

micellar emulsification at the non-polarised interfaces.  By further investigating the aqueous-

1,2-DCE/oil systems, with and without electrolytes, using an optical microscope has revealed 

an increase in the interfacial instability and presence of emulsion droplets due to micellar 

emulsification at SDBS concentrations of 1.5 mM, 8 mM and 13.4 mM. The findings were 

confirmed using CV, conductivity and electrocapillary methods. The interfacial instability was 

also found to be more prominent in the presence of electrolytes, which suggests that the 

electrolytes promote a faster rate of surfactant adsorption and emulsification at the aqueous 

(with LiCl)-1,2-DCE (with TBATPB)/GTO interfaces compared to the aqueous-1,2-DCE/GTO 
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systems without salts. By further exploring the transfer and adsorption behaviour of the 

anionic surface active ions electrochemically and optically, a deeper understanding of the 

ubiquitous phenomena associated with the unstable interfaces, such as the occurrence of 

spontaneous emulsification with the change in phase boundary potential at the oil-water 

interface will emerge 1.      

      Further analysis of the aqueous (with 10 mM LiCl) -1,2-DCE (with 20 mM TBATPB) 

interface using optical microscopy, DSC, MS, FTIR and WAXS techniques has demonstrated 

the presence of crystals at the phase boundary, which are mainly composed of electrolyte 

ions mixed with anionic/non-ionic surfactant (in the presence of surfactant in the system).  

Analysis of the aqueous (with/without LiCl) -1,2-DCE (with/without TBATPB)/oil phase 

boundaries using an optical microscope has revealed an increase in the interfacial instability 

with an increase in concentration of the SDBS/P&G’s Y surfactants, although no crystals were 

detected. Contrary to this, for the aqueous/LiCl -1,2-DCE/TBATPB system with triton-x-114 

and P&G’s N surfactant with and without the addition of SDBS/P&G’s Y surfactants has shown 

formation of crystals at the interfaces.  This is probably due to competition for water between 

the salt ions and the dehydrated poly(oxyethylene) chains of the non-ionic surfactants, as the 

electrolytes cause a decrease in the solubility and cloud point of the surfactants2.  The 

findings as obtained using an optical microscope were confirmed using DSC, MS and FTIR 

methods.  WAXS on the other hand, has shown that the crystals are probably composed of a 

mixture of electrolyte ions and both anionic and non-ionic surfactants, indicated by the 

presence of new peaks at 2  values of 46.5o and 51.3o for the aqueous/LiCl/SDBS/triton-x-114 

and 1,2-DCE/TBATPB system and at 37o and 45.3o for the aqueous/LiCl/P&G’s Y/N surfactants 

and 1,2-DCE/TBATPB system.  This crystallisation study gives an insight into how non-ionic/a 

mixture of anionic and non-ionic surfactants behaves in different organic phases, in the 

presence of salts.  The crucial findings on the mode of interaction between the surfactants 

and the electrolytes can be advantageous for improving various industrial processes such as 

crude oil recovery3 and for retrieval of surfactants from surfactant based separation 

reactions4.                                        

      Following the characterisation of different types of anionic and non-ionic surfactants at 

the oil/1,2-DCE-aqueous interfaces, initial investigations were undertaken on lard using the 

SAXS technique, which showed that after melting the lard at a temperature of 55 oC, followed 

by supercooling and then steadily increasing the temperature again, led to formation of α, β’ 

and β polymorphs with d-spacing values of 49.0 Å, 35.4 Å and 43.4 Å, respectively, at the 

temperatures of -10 oC, -20 oC and 10 oC.   On a further increase in temperature to 30 oC, lard 
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exhibited the presence of both β’ and β polymorphs, however, as the temperature was 

continually raised to 40 oC, only the most stable β polymorph with higher melting point than 

the β’ polymorphs was identified.   The transformation from the least stable polymorph (α 

polymorph) to highest stable polymorphic crystals (β’/β polymorphs) was confirmed using 

AFM.       

      SAXS analysis of the lard applied on fabrics with different concentrations of the detergent 

solution and then left to dry overnight at 20 oC has shown the presence of β’2/β polymorphs 

with d-spacing values between 44.0 Å -44.2 Å on some of the swatches of fabrics.  However, 

the rest of the soiled fabric swatches with detergent investigated did not show any 

discernible polymorphic crystals.  This could be because the areas of the soiled fabrics 

analysed probably consisted of small amount of lard which when coming in contact with the 

detergent solution probably has broken down to form smaller particles via surfactant 

adsorption and emulsification processes, in the presence of excess surfactant and micelles 

during the drying process.  Lard on its own was also analysed using WAXS which showed that 

at a temperature of 20 oC, it exists in β’ and β polymorphic forms (with high melting points) 

which was indicated by the presence of WAXS peaks with d-spacing values of 3.8 Å, 4.2 Å and 

4.5 Å, respectively.  WAXS analysis of the different types of fabrics on the other hand has 

revealed an overlap between the d-spacing values for the fabrics and the lard.   In a separate 

experiment, by exposing partly soiled fabric samples on which melted lard has been applied, 

at a room temperature of 20 + 2 oC for 30 days, the presence of β’ polymorphs was evident by 

the high intensity WAXS peaks with d-spacing values of 3.8 Å and 4.2 Å, in areas of the fabrics 

where lard was not deposited directly.  This was probably due to melting of the lard at 60 oC 

causing the fat components with low melting point to liquefy and diffuse across the fibers of 

the fabrics before crystallising at the temperature of 20 oC.  WAXS analysis of soiled fabric 

swatches exposed to 20 oC for a period of 30 days also demonstrated presence of β’ crystals 

indicating this is indeed the most stable polymorph at this temperature.                    

      The WAXS technique was further used to investigate the structure of the partly dried 

detergent which showed formation of a broad amorphous peak within the 2  range of 18o to 

37o.  Following this, analysis of the fabrics stained with the detergent solution showed 

presence of scattering peaks corresponding to d-spacing values of 3.8 Å - 3.9 Å and 4.2 Å – 4.3 

Å, which are likely to be due to the structures of the fabrics.  In addition, the results obtained 

for the fabrics containing different concentrations of the detergent solution and lard showed 

an overlap between the d-spacing values for the fabrics and the lard.  SAXS was therefore 

used to undertake further investigation on the soiled fabrics, with and without the addition of 
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the detergent solution as it did not exhibit any overlap between the peaks for the fabrics and 

the lard.  SAXS analysis of soiled fabric samples after 1 day, 3 days and 5 days of ageing at the 

temperatures of -10 oC, 10 oC, 20 oC and 30 oC showed presence of β’ and β polymorphs 

however the SAXS intensities were found to fluctuate as a result of limitations such as the 

fabric pieces (1 cm x 1 cm) were cut out from different swatches of fabrics for the SAXS study.    

      Additionally, the lard was melted and then applied to cotton, polycotton and polyester 

fabric swatches before exposing the samples to a temperature of 10 oC and leaving them to 

age for 1 hour and 4 hours. The SAXS intensities of the Bragg peaks for β'1 and β’2/β 

polymorphs at 2θ values of 2o and 2.6o respectively were found to be almost two/three times 

higher after 4 hours of ageing than just 1 hour, which signified the occurrence of polymorphic 

transitions into most stable forms over time. Following this, soiled cotton, polycotton, 

polyester and elastine/cotton fabrics were washed with 50 mg/mL (above the CMC level) of 

C24E3S, 0.7 mg/mL (below the CMC) of C24E3S and no surfactant at all. The wash experiment 

with 50 mg/mL of C24E3S surfactant was undertaken with just the soiled cotton and 

polycotton fabrics whereas other types of fabrics i.e. cotton/elastine and polyester were used 

alongside cotton and polycotton for the wash experiments involving application of 0.7 mg/mL 

of C24E3S and no surfactant at all.  The SAXS results for all the wash experiments showed the 

presence of β'1 and β’2/β polymorphs on all the different types of washed soiled fabrics.  

However, inconsistency in the SAXS intensities was also observed for all the washed soiled 

fabrics due to limitations such as use of different fabric swatches for each wash experiment. 

The washed soiled fabrics from the wash experiment without the addition of surfactant could 

not be analysed using SAXS because the equipment was not working at that time and needed 

to be repaired.                    

      Furthermore, from the quantity of lard removed under all wash conditions, it can be 

deduced that the application of 0.7 mg/mL of C24E3S was most effective in removing soils as 

a result of a mixture of detergency mechanisms such as emulsification and roll-up combined 

with agitation.  At a higher surfactant concentration of 50 mg/mL,  it is likely that the 

triglycerides with low melting points were removed by solubilisation, leaving behind a 

resistant fat layer on the fabric surface which was then only partially removed over time via 

emulsification process, roll-up mechanism and agitation as evidenced by the low % of lard 

removal.  It was also identified that more lard was removed from the cotton fabric swatches 

than the polycotton when 50 mg/mL of C24E3S was applied.  This was probably due to the 

attachment of more polar lard components to the hydrophilic cotton fibers, allowing easy 

access of the aqueous based (polar) surfactant solution to the soils which were then removed 
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via solubilisation and roll-up mechanisms along with agitation.  Furthermore, from the wash 

experiments for low concentration of the C24E3S surfactant, and no surfactant at all, it was 

established that the polyester fabric swatches were more effective in removing soil compared 

to the other types of fabrics.  This was because polyester fabrics consist of hydrophobic fibers 

to which the hydrophobic lard can bind onto and form a thin fat layer on the fabric surface.  

Thus, when the soiled polyester fabrics came in contact with the surfactant solution, the lard 

was easily accessed and eliminated via micellar emulsification and roll-up processes in 

combination with agitation.                                

       For all the wash experiments, it was also observed that, on average more lard was 

removed from all the soiled fabrics at a higher wash temperature of 40 oC than at 20 oC and 

30 oC.   This was expected as 40 oC is closer to the melting point of the β polymorph and 

therefore, the fats are likely to be softer at this temperature.  Consequently, the soils were 

more easily washed away from the fabrics in the presence of the surfactant solution and also, 

due to agitation generated by the tergotometer propellers.  By using laser diffraction particle 

sizing technique, analysis of the β’ and β polymorphic fat globules collected from the wash 

water samples for soiled fabrics exposed, dried and washed at temperatures of 20 oC and 30 

oC while a high concentration (50 mg/mL) of the C24E3S surfactant was applied, have shown 

that the diameter range for the fat droplets varied between 1.66 – 40 µm.   

      The activity of enzymes such as GDH and lipase, which is another component of the 

detergent, was investigated using enzymatic biosensors and electrochemical methods in 

order to determine the quantity of glycerol produced. The immobilised sol-

gel/FcAuNP/enzymatic-biosensors constructed have shown enhanced sensitivity and 

selectivity as well as a fast time response compared to other feasible enzymatic biosensors 

available to date.  Both, the GOx and GDH enzymes when immobilised with sol-gel and 

FcAuNPs on the surfaces of the carbon electrodes have exhibited Km values of 1.5 + 0.01 mM 

(for the immobilised sol-gel/ FcAuNP/GOx enzymatic- carbon macroelectrode), 4.9 + 0.01 mM 

(for the immobilised sol-gel/ FcAuNP/ /NAD+ - dependent DP and GDH enzymatic - carbon 

macroelectrode) and 5.4 + 0.01 mM (for the immobilised sol-gel/ FcAuNP/ /NAD+ - dependent 

DP and GDH enzymatic - SPE) compared to the literature values of 7.4 mM (for an 

immobilised AuNP/GOx enzymatic-biosensor)5 and 9.9 mM (for an immobilised GDH 

enzymatic biosensor)6, respectively.  The sol-gel/ FcAuNP/ NAD+ - dependent DP and GDH 

based enzymatic- SPE also demonstrated a wide glycerol concentration detection limit, 

ranging between 0.2 mM to 24.8 mM; with a fast response time of 11.4 seconds and a high 

correlation coefficient of 0.9903 was also achieved.                      
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It was observed that in the presence of lipase and GTO in solution, the sol-gel/ FcAuNP/NAD+ 

- dependent DP and GDH based enzymatic- SPEs displayed an increase in current with an 

increase in the GTO concentration up to 1.5 mM.  Beyond this point, the current rapidly 

decreased with increase in GTO concentration as a result of competitive inhibition caused by 

the presence of lipolytic products in the buffer solution7.  The lipase enzyme inhibition can be 

minimised for example, by immobilising the enzyme onto the surface of the carbon electrode 

and therefore, enhancing its stability against chemical deactivation.  Overall, the immobilised 

sol-gel/ FcAuNP/NAD+ dependent DP and GDH enzymatic – SPEs have displayed many 

desirable characteristics which include higher sensitivity and selectivity. The modified 

biosensors are inexpensive and simple to use which makes these biosensors ideal for glycerol 

quantification in industries such as the medical8, food 9 and biofuel10 sectors. 

 

7.2 Further work 

The liquid-liquid interface combined with electrochemical methods can be used to extend the 

investigation of the effect of other types of surfactants which make up the detergent 

solution; these methods can be also applied to explore in depth the possible mechanisms that 

might occur at the water-organic interface in the presence of all the surfactants that 

constitute the detergent solution. The impedance technique can be employed to establish 

the thickness of the monolayer formed in the presence of non-ionic surfactant at the liquid-

liquid phase boundary.                                                                                            

      Furthermore, the enzymatic biosensor study can be repeated by immobilising the lipase 

enzyme on to the surface of the working electrode using sol-gel/FcAuNP matrix along with 

the NAD+ - dependent DP and GDH enzymes.   The results can be then compared with the CVs 

and CAs obtained for the lipase enzyme in solution and the findings can used to determine 

how effectively the immobilised lipase enzyme works in the presence of triglycerides. By 

calculating the Km value for the immobilised sol-gel/FcAuNP/ NAD+ - dependent DP and 

GDH/lipase enzymatic biosensor and comparing it to the literature, it can be also evaluated 

whether the immobilised lipase enzyme has a lower or higher affinity for the triglyceride 

substrate.                                                                           

     The wash experiments undertaken using C24E3S surfactant needs to be repeated and  the 

SAXS intensities of the fabric swatches after wash can be then measured and compared by 

focusing the beam spot on the same area of the all the swatches.  The priority for further 

work on the wash study would be to repeat the wash experiments using other surfactant 

components of P&G’s Jupiler detergent solution and compare the results with the data 
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obtained for the C24E3S surfactant in order to determine which of the surfactants is most 

effective for removing soils from the soiled fabrics under different wash conditions.  The 

effect of all the surfactants combined together, with and without the addition of lipase 

enzyme, can be also investigated using the SAXS and WAXS techniques to evaluate whether 

the surfactants, the lipase enzyme or/and agitation is most efficient for removing soils from 

the different types of fabrics.  However, determining the most effective method for removing 

the resistant fat layer composed of triglycerides with high melting point, from the fabrics 

would be the most important but challenging aspect of this work.  

   

7.3 References  

 

1. Kitazumi, Y. & Kakiuchi, T. Electrochemical Instability in Liquid–Liquid Two-Phase Systems. 

Bull. Chem. Soc. Jpn. 84, 1312–1320 (2011). 

2. Komaromy-Hiller, G., Calkins, N. & von Wandruszka, R. Changes in Polarity and 

Aggregation Number upon Clouding of a Nonionic Detergent: Effect of Ionic Surfactants 

and Sodium Chloride. Langmuir 12, 916–920 (1996). 

3. Okandan, E. Heavy Crude Oil Recovery. (Springer Science & Business Media, 2012). 

4. Scamehorn. Surfactant - Based Separation Processes. (CRC Press, 1989). 

5. Tang, W., Li, L., Wu, L., Gong, J. & Zeng, X. Glucose Biosensor Based on a Glassy Carbon 

Electrode Modified with Polythionine and Multiwalled Carbon Nanotubes. PLoS ONE 9, 

(2014). 

6. Joshi, R. Biosensors. (Gyan Publishing House, 2006). 

7. Kosugi, Y. & Suzuki, H. Functional immobilization of lipase eliminating lipolysis product 

inhibition. Biotechnol. Bioeng. 40, 369–374 (1992). 

8. Castillo, J. et al. Biosensors for life quality: Design, development and applications. Sens. 

Actuators B Chem. 102, 179–194 (2004). 

9. Eftekhari, A. Glycerol biosensor based on glycerol dehydrogenase incorporated into 

polyaniline modified aluminum electrode using hexacyanoferrate as mediator. Sens. 

Actuators B Chem. 80, 283–289 (2001). 

10. Hájek, M., Skopal, F. & Machek, J. Determination of free glycerol in biodiesel. Eur. J. Lipid 

Sci. Technol. 108, 666–669 (2006). 

 



 231  
 

Appendix 

A1 - Surfactant characterisation at the liquid-liquid 

interface 

      

    

Figure A1.1:  DSC data for all the crystal samples S1-S8. Where, sample S1 is the 

aqueous/LiCl/Triton-x-114 and 1,2-DCE/TBATPB system, sample S2 is the aqueous/LiCl/SDBS/ 

Triton-X-114 and 1,2-DCE/TBATPB system, sample S3 is the aqueous/LiCl/P&G’s N surfactant 

and 1,2-DCE/TBATPB system, sample S4 is the aqueous LiCl/P&G’s Y/ P&G’s N surfactants and 
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1,2-DCE/TBATPB system, sample S5 is the aqueous/LiCl-1,2-DCE/TBATPB mixture and sample 

S6 is the  SDBS . The green arrows show the melting points for sample S6 and the black arrows 

displays the melting points for samples S1-S5. 

 

A2 - Sol-gel/ferrocenated gold nanoparticle based 

enzymatic biosensor for glycerol detection 

 

Table A2.1: shows the calculations for the Km value of the immobilised sol-gel/ FcAuNP/ GOx 

enzymatic carbon macroelectrode. 

 

 

 

 

 

Table A2.2: shows the calculations for the Km values of the immobilised sol-gel/ FcAuNP/DP 

and GDH enzymatic-carbon macroelectrode and -SPE. 

                          Calculation 

Parameters 
Immobilised sol-gel/ FcAuNP/DP and 
 GDH enzymatic-carbon macroelectrode 

Immobilised sol-gel/ FcAuNP/DP 
 and GDH enzymatic-SPE 

intercept 2 0.0125 

 
imax = 1/intercept 

 
0.5      80 

Slope = gradient of the graph 
 
7. 96 0.0683 

Km = imax *slope 3.9 (mM) 5.5 (mM) 

 

 

 

 

 

 

 

Parameters Calculation Values 
intercept - 2 

imax = 1/intercept 1/2.00 0.5 μAmps 

Slope = gradient of the graph - 3 

Km = imax *slope 0.5 * 3 1.5 mM 
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A3 - Soiled fabrics washed using C24E3S surfactant 

 

Table A3.1: showing d-spacing values for α, β’ and β polymorphs after melting the lard at 55 

oC, super-cooling it – 20 oC and re-heating it up to 40 oC. 

 

 

 

 

 

 

 

  

    Figure A3.1: WAXS data for (a) different types of fabrics and (b) fabrics with lard.  
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Figure A3.2: WAXS analysis of fabrics with (a) 78 mg/L detergent, (b) 78 mg/L detergent and 

lard, (c) 40 mg/L detergent, (d) 40 mg/L detergent and lard, (e) 10 mg/L detergent, (f) 10 mg/L 

detergent and lard (g) 5 mg/L detergent (h) 5 mg/L detergent and lard, (i) 1 mg/L of detergent 

and (j) 1 mg/L of detergent and lard. 
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Figure A3.3: SAXS data for soiled polycotton (PC) fabrics obtained at temperatures of (a) -10 

oC (b) 10 oC (c) 20 oC and (d) 30 oC over a period of 5 days. 

 

 

                       

1 

3 

5 

7 

9 

11 

1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9 

In
te

n
s
It

y
/A

.U
. 

2θ/degrees 

20 deg C PC 
1 day  

20 deg C PC 
3 days 

20 deg C PC 
5 days 

1 

2 

3 

4 

5 

6 

1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9 

In
te

n
s
it

y
/A

.U
. 

2θ/degrees 

30 deg C PC 1 
day 

3 days 

5 days 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9 

In
te

n
s
it

y
/A

.U
. 

2θ/degrees 

-10 deg c PE day 1 

3 days 

5 days 

β’ 

β 

(c) 

(d) 

(a) 

β’ 

β 

β’ 

β 



 237  
 

 

 

 

Figure A3.4: SAXS data for soiled polyester (PE) fabrics obtained at temperatures of (a) -10 oC 

(b) 10 oC (c) 20 oC and (d) 30 oC over a period of 5 days.  

 

 

 

 

 

1 

3 

5 

7 

9 

11 

1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9 
In

te
n

s
it

y
/A

.U
 

2θ/degrees 

10 deg C PE day 1 

10 deg C PE 3 days 

10 deg C PE 5 days 

1 

3 

5 

7 

9 

11 

1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9 

In
te

n
s
it

y
/A

.U
 

2θ/degrees 

20 deg C PE 1 day 

20 deg C PE 3 days 

20 deg C PE 5 days 

1 

1.5 

2 

2.5 

3 

3.5 

4 

4.5 

1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9 

In
te

n
s
it

y
/A

.U
 

2θ/degrees 

30 deg c PE day 1 

3 days 

5 days 

β’ 

β’ 

β’ 

β 

β 

β 

(b) 

(c) 

(d) 



 238  
 

 

 

 

 

 

Figure A3.5: SAXS data for soiled cotton (C) fabrics obtained at temperatures of (a) -10 oC (b) 

10 oC (c) 20 oC and (d) 30 oC over a period of 5 days. 
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 Figure A3.6: SAXS data obtained for soiled cotton (a), (c), (e), (g) and (i) and, for soiled 

polycotton (b), (d), (f), (g) and (h) swatches exposed, dried and washed at different 

temperatures, while a high concentration (50 mg/mL) of C24E3S surfactant was applied. 
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Figure A3.7: SAXS data obtained for cotton (a), (d), (g), (j) and (m), for polycotton (b), (e), (h), 

(k) and (n) and, for polyester (c), (f), (i), (l) and (o) exposed, dried and washed at different 

temperatures, while a low concentration (0.7 mg/mL) of C24E3S surfactant was applied. 
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Figure A3.8: % volume data for fat globules collected from wash water extracted from wash 

conditions where the soiled fabric swatches are exposed, dried and washed at temperatures 

of (a) 20 oC and (b) 30 oC, when a concentration of 50 mg/mL of the C24E3S surfactant was 

applied. 
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