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Abstract

In this thesis the technique of total internal reflection (TIR) Raman spectroscopy was ap-

plied to study the properties and interactions of supported lipid bilayers (SLBs) at the silica-water

interface, both kinetically and at equilibrium.

First, the formation kinetics of SLB systems from lipid aggregate suspensions was investi-

gated. The lipid systems comprised POPC, POPE, egg-SM and a 1:1:1 mixture of POPE, egg-SM

and cholesterol, all in tris buffer with and without added NaCl and CaCl2. Vesicle/aggregate

suspensions were prepared by bath sonication and their size distributions were quantified with

nanoparticle tracking analysis (NTA). The additional group I and group II salts altered the size

distribution of the lipid vesicle/aggregate suspensions produced and played large role in the kinet-

ics observed. For POPC, by changing the buffer conditions the adsorption of extraneous vesicles

on the SLB could be tuned. For POPE, a previously unknown formation pathway was observed,

whereby larger aggregates spread following adsorption to the interface. For the mixed system, the

final ratio of components was found to be the same as that in the initial suspension.

Second, the physical transformations of SLBs composed of DMPC, egg-SM and POPE were

examined and the role of NaCl and CaCl2 upon these phase transitions was investigated. Raman

spectra were obtained as a function of temperature and quantified using order parameter analysis.

The resulting data were interpreted using the Zimm and Bragg model, which yielded the cooper-

ativity of each phase transition. Cooperativity was controlled by the interfacial energy between

regions of Lβ/Pβ and Lα phase. The presence or absence of the above salts altered the number of

molecules within the cooperative unit for each of the species listed and controlled the interfacial

energy. The most striking result was that of the POPE main phase transition with added CaCl2,

for which cooperativity was massively reduced yielding a structural transition over a broad temper-

ature range; AFM images confirmed the nature of this transition, showing domain like structures

over a matching broad temperature range.

Third, the interaction of SDS with SLBs composed of POPE, POPC, egg-SM and the 1:1:1

mixture of POPE, egg-SM and cholesterol was explored. Partitioning isotherms were constructed

from equilibrium data and interpreted with a non-ideal partitioning model previously applied to

vesicular systems. Accounting for the theoretical build-up of surface charge was found to be un-

necessary probably owing to counterion binding. Kinetic data of the partitioning process for the

different SLBs were obtained and qualitatively interpreted. For POPC at low dSDS concentrations

dSDS translocation or flip-flop from the distal to proximal bilayer leaflets did not occur. At higher

concentrations a period of rapid uptake lasting for approximately 100 s was followed by a slower

increase lasting on the order of 10 minutes thus indicating that translocation was occurring. Upon

subsequent rinsing, there was an initial rapid decrease in dSDS followed by a slower protracted

decrease indicating that reverse flip-flop was occurring. The most intriguing result was that of the

overall lipid signal upon rinsing, often it was observed to recover to levels equal to those prior to

dSDS addition. These data suggest the formation of blebs or tubules as a result of dSDS induced

spontaneous curvature; kinetic data from the CH region provided further evidence. Comparable

data was obtained for POPE and egg-SM which showed very similar dSDS partitioning and rinsing

kinetics, although the equilibrium behaviour differed in the strength of the dSDS lipid interaction.

Less dSDS partitioned into the 1:1:1 mixture of POPE, egg-SM and cholesterol than any of the

other species studied indicating its detergent resistance. Partial removal of this SLB from the

interface left the contour of the CH region unchanged.
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Glossary of Abbreviations

Chemical Species

5-DSA - 5-hydroxy stearic acid

β-DDM - β-D-dodecyl maltoside

APTES - 3-aminopropyltriethoxy-silane

C14BET - N -tetradecyl-N, N -dimethylbetaine

Chol - cholesterol

CAPB - cocamidopropyl betaine

Cer - ceramide

CF - carboxyfluorescein

CHAPS - 3-[(3-Cholamidopropyl)dimethylammonio]-1-propanesulfonate

CTAB - cetyltrimethylammonium bromide

CTB5 - cholera toxin subunit B5

D291 - 4-(4-(didecylamino)styryl)-N -methylpyridinium iodide

DHPE - 1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine

DMPC - 1,2-dimyristoyl-sn-glycero-3-phosphocholine

DMPG - 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol

DMPTE - 1,2-dimyristoyl-sn-glycero-3-phosphothioethanol

DNA - deoxyribonucleic acid

DLPC - 1,2-dilauroyl-sn-glycero-3-phosphocholine

DOPC - 1,2-dioleoyl-sn-glycero-3-phosphocholine

DOTAB - dodecyltrimethylammonium bromide

DOTAP - 1,2-dioleoyl-3-trimethylammonium-propane

DPH - 1,6-diphenylhexatriene

DPPC - 1,2-dipalmitoyl-sn-glycero-3-phosphocholine

DPPG - 1,2-dipalmitoyl-sn-glycero-3-phosphoglycerol

DSPC - 1,2-distearoyl-sn-glycero-3-phosphocholine

DSPE - 1,2-dioctadecanoyl-sn-glycero-3-phosphoethanolamine

DTPC - 1,2-ditridecanoyl-sn-glycero-3-phosphocholine

EDTA - ethylenediaminetetraacetic acid

egg-SM - egg-sphingomyelin

GalCer - galactosylceramide

GM1 - monsialganglioside

HEPES - 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid

NBD-cholesterol - 2,2-(N -(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-23,24-bisnor-5-cholen-3β-ol

NP(EO)30 - nonylphenol ethoxylate

OG - octyl glucoside

PA - phosphatidic acid

PC - phosphocholine

PE - phosphoethanolamine

PG - phosphoglycerol

PIPES - piperazine-N,N’-bis(2-ethanesulfonic acid)

PL - phosphatidyllinosytol

POPC - 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine
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POPE - 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine

PS - phosphoserine

PTFE - polytetrafluoroethylene

SDS/dSDS - sodium dodecyl sulfate / deuterated sodium dodecyl sulfate

SPM - bovine brain sphingomyelin

TEMPO - (2,2,6,6-tetramethylpiperidin-1-yl)oxidanyl

TNS - 2-(p-toluidinyl)naphthalene-6-sodium sulphonate

TR - Texas Red

tris - tris(hydroxymethyl)aminomethane

Aggregates and Lipid Phases

CAC - critical aggregation concentration

CMC - critical micelle concentration

DRM - detergent resistant membrane

EUV - extruded unilamellar vesicle

GUV - giant unilamellar vesicle

H‖ - hexagonal phase

Lα - fluid phase

Lβ - gel phase

Lo - liquid ordered phase

LUV - large unilamellar vesicle

Pβ - ripple phase

SAM - self-assembled monolayer

SLB - supported lipid bilayer

SUV - small unilamellar vesicle

SVL - supported vesicular layer

Techniques and Equipment

AFM - atomic force microscope

CCD - charge coupled device

CMOS - complementary metal-oxide semiconductor

DLS - dynamic light scattering

DSC - differential scanning calorimetry

ESR - electron spin resonance

FCS - fluorescence correlation spectroscopy

FRAP - fluorescence recovery after photo bleaching

FS - fluorescence spectroscopy

FTIR - Fourier transform infrared

ITC - isothermal titration calorimetry

LB - Langmuir-Blodgett

LS - Langmuir-Schaefer
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MAC-AFM - magnetic alternating current AFM

MC - Monte Carlo

MD - molecular dynamics

MF - mean field

NMR - nuclear magnetic resonance

NR - neutron reflection

NTA - nanoparticle tracking analysis

PFG-NMR - pulsed field gradient NMR

QCM-D - quartz crystal microbalance with dissipation monitoring

SAXS - small angle X-ray scattering

SFA - surface forces apparatus

SFG - sum frequency generation

SP - streaming potential

SPR - surface plasmon resonance

TIR-Raman - total internal reflection Raman

ZP - zeta potential

Other

IR - infrared

NA - numerical aperture

PCA - principal component analysis

ppb - parts per billion

RG - renormalisation group

SC - stratum corneum

SNR - signal-to-noise ratio

TFA - target factor analysis

TOC - total organic carbon

UV - ultraviolet
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Chapter 1

Introduction

1.1 Background, aims and motivation

Since the first models of the cell membrane were introduced lipid bilayers have been the

subject of intense research activity. Their practical relevance extends from their use as boundary

lubricants and electrooptical biosensors to the design of drug delivery vehicles and the formulation

of personal care products. In the mid 1980’s Tamm and McConnell were the first to produce surface

supported lipid bilayers (SLBs) as model systems for membrane research;1 prior to this scientists

had utilised black lipid membranes (BLM)s and liposomal suspensions of various kinds. Tamm

and McConnell’s work has enabled researchers to apply a myriad of surface sensitive techniques

to study SLBs and their interactions with peptides, proteins and many other species of practical

importance.

Despite intense work and interest, confusion remains in many areas of bilayer research; in this

thesis I will explore a number of these areas. The dynamics of SLB formation from lipid aggregate

suspensions is still unclear for many lipid species and mixed systems. The interaction of cations

with SLBs and their influence on SLB phase transitions also remains unclear. Previous research

by Lee and Bain using TIR-Raman showed a broadening of the main phase transition of DMPC

distinct from earlier work on SUVs. A survey of the literature hinted that this could be due to

the presence of cations in the buffer solution used. Understanding the effects of cations on SLBs

is of great importance in more complex biomimetic SLB systems particularly those pertinent to

the theory of lipid rafts. Surfactant lipid interactions have been studied in bulk lipid systems but

there has been as yet no systematic investigation into their interaction with SLBs; this is of pivotal

importance in the design of biosensors and boundary lubricants.

1.2 Overview

My thesis is divided into five chapters and two appendices. In Chapter 1, my introduction, I

discuss the physical thermodynamic principles underpinning lipid suspensions and supported lipid

bilayers. I describe why bilayers form, and the physics used to model some of their dynamics;

lateral and transmembrane diffusion. I also discuss the optics and scattering theory relevant to

TIR-Raman spectroscopy. In Chapter 2, materials and methods, I describe my experimental
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methodologies and data analysis procedures. Chapters 3–5 correspond to the major aims listed

below; they begin with a comprehensive review of the relevant literature. These reviews are followed

with my results and related discussion. I will end each of these chapters with summary conclusions

and ideas for future work. Appendix A contains subtracted TIR-Raman spectra used in Chapter

4 but too bulky to include in the primary text. Appendix B contains much of the Matlab code

used to analyse my data.

1.3 Aims

1. To establish TIR-Raman as a technique for probing the dynamics of SLB formation from

lipid aggregates in suspension; focussing on little explored or unstudied lipid systems.

2. To investigate the role of cations in SLB main phase transitions; particularly their effects on

transition cooperativity.

3. To investigate the equilibrium and dynamic behaviour associated with SLB surfactant inter-

actions.

1.4 Interfaces and surfaces

By definition, the term interface means a boundary between any two immiscible or partially

miscible phases. The term surface is reserved for a specific interface where one of the two phases

is a gas. Energy is required to create an interface and the layers of molecules at an interface have

higher energy than their counterparts in the bulk. This increase leads naturally to a surface tension

at the interface as a force has to be applied to maintain the surface, which is the force acting per

unit length of interface.

γ =
F

l
(1.1)

this tension is equivalent to surface energy or the energy per unit area and has units of J m−2.

1.5 Surfactants and adsorption

1.5.1 Surfactants

The word surfactant is a contraction of the phrase surface-active-agent. By this we mean a

chemical compound that shows an affinity for interfaces and has a great influence on their proper-

ties. This affinity exists because of the structure and charge distribution within these molecules.

Surfactants have a hydrophobic or lyophilic organic tail and a charged or polar hydrophilic head-

group. Surfactants can generally be grouped into four categories, the anionics with a negatively

charged headgroup, the cationics with a positively charged headgroup, the non-ionics with no

headgroup charge and the zwitterionics with both anionic and cationic regions. Some example

surfactants and their uses are shown in figure 1.1.
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(a) (b)

(c) (d)

Figure 1.1: Structures of commonly used surfactants: (a) cetyl trimethylammonium bromide (CTAB)

- used as (i) an antimicrobial in topical antiseptics, (ii) a surfactant hair conditioning products (iii), in

DNA extraction buffers, (iv) synthesis of gold nanoparticles. (b) sodium dodecyl sulphate (SDS) - used

in (i) personal care products, (ii) to aid in the lysing of cells, (iii) to aid in the unravelling of proteins for

SDS-Page Gels, (iv) for dispersing nanotubes. (c) Triton X-100 - used for (i) the lysing of cells, (ii) the

solubilisation of membrane proteins in their native state along with CHAPS, (iii) DNA extraction buffers.

(d) cocamidopropyl betaine (CAPB) used as a surfactant in personal care products.

1.5.2 Lipids

Lipids are a special class of surfactants. It is useful to contrast and compare them with “com-

mon” surfactants to explain why their behaviour is different. Unlike typical surfactants, such as

the fatty acids in soap or sodium dodecyl sulphate, lipids are relatively large and usually have more

than one hydrocarbon tail. This structural difference results in a far reduced critical aggregation

constant (CAC), on the order of 10−10 M, and different aggregate geometries – vesicles rather than

micelles. The plasma membranes of cells are primarily comprised of lipids, which not only act as a

support for proteins, but as a semi-permeable barrier, allowing the cell to maintain concentration

gradients of the ions necessary for life and protecting the internal cell from the outside world. Many

types of lipid exist, but those found predominantly in cell membranes are the glycerophospholipids

and sphingolipids. Figure 1.2 shows a selection of lipid species, some used in this study and others

commonly found in cell membranes.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 1.2: (a) phosphatidic acid, (b) POPC, (c) POPE, (d) POPS, (e) phosphatidyllinosytol, (f) DMPG,

(g) sphingomyelin, (h) cholesterol.

Glycerophospholipids, as the name suggests, all have phosphate containing headgroups. They

are all derived from glycerol-3-phosphate and can be considered modular; one can change the

headgroup R-3 and the alkyl chains R-1 and R-2 giving rise to a myriad of compounds that

reflects the complexity of natural membranes. The simplest glycerophospholipid, phosphatidic

acid (PA), has a single tail and is found only sparingly in natural membranes. Five categories

of glycerophospholipds, each with a different addition to the phosphate moiety, constitute the

glycerophospholipids found in cell membranes. These are the phosphatidylcholines (PCs), phos-

phatidylethanolamines (PEs), phosphatidylserines (PSs), phosphatidyllinositols (PLs) and the

phosphatidylglycerols (PGs).

The sphingolipids constitute the other major fraction of amphiphilic species found in cell

membranes. In contrast to the glycerol backbone of the glycerophospholipids, sphingolipids con-

tain a sphingosine core. Whereas in glycerophospholipids the hydrocarbon chains are attached to

the glycerol backbone by ester linkages, the tail in the R-1 position is directly connected to the

sphingosine core, and the tail in the R-2 position is connected via an amide bond. Sphingolmyelines

all have PC headgroups.

The sphingolipids and glycerophospholipids along with sterols such as cholesterol are the

primary building blocks of biological cell membranes.

1.5.3 Adsorption thermodynamics

At the water-air surface charged surfactants will orient their headgroups into the water, whilst

their tails protrude into the air. The adsorption of surfactants reduces the surface tension and free

energy. Driving adsorption are the hydrophilic and hydrophobic preferences of the headgroup and
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tail respectively.

For surfactant adsorption at the solid-liquid interface the principles are similar; adsorption

is a result of the more energetically favourable interactions between the surfactant and solid sup-

port or the hydrophobic effect. The interactions can either be chemical or physical in origin and

the processes by which they occur are called chemisorption and physisorption respectively. The

interactions that lead to chemisorption are varied and depend upon the chemical structure of the

surfactant and support. In contrast the interactions that lead to physisorption are the van der

Waals and hydrophobic forces. Below is a list of possible sources of the reduction in free energy

(i.e. adsorption mechanisms):2

1. Ion exchange - This involves the replacement of pre-existing counterions at the interface from

solution by similarly charged surfactant headgroups.

2. Ion pairing - This is the adsorption of surfactant ions from solution directly to oppositely

charged sites on the solid substrate.

3. Acid-base interaction - This occurs when the surfactant adsorbs to the solid substrate by

hydrogen bonding or a lewis acid/lewis base reaction.

4. Adsorption by polarisation of π electrons - This occurs when the adsorbate contains aromatic

centres and the substrate has strongly positive sites.

5. Adsorption by dispersion forces - Occurs when van der Waals forces act between the surfactant

and the substrate. The strength of these forces increases with increasing surfactant molecular

weight; it can operate independently, but also operates along with all the other mechanisms

listed.

6. Hydrophobic adsorption - This occurs when the combination of mutual attraction between

hydrophobic groups of the surfactant molecules and their entropically driven tendency to

escape from the aqueous environment becomes strong enough to allow them to adsorb on the

substrate by aggregating their alkyl chains. Adsorption of additional surfactant molecules

onto or into a preexisting surfactant film may also occur by this mechanism.

Following the arguments of Somasundaran et al.3 we can relate the reduction in free energy as-

sociated with the transfer of surfactant to the interface to the concentration of surfactant at the

interface by:

ci = cb exp
−∆G◦bi
RT

(1.2)

where ci and cb are the concentration of the surfactant at the interface and in the bulk, ∆G◦bi is

the standard Gibbs free energy of surfactant transfer from the bulk, R is the molar gas constant

and T is the temperature. This expression when multiplied through by the average thickness of

the adsorbed layer τ gives the surface excess Γi:

Γi = τ cb exp
−∆G◦bi
RT

(1.3)

∆G◦bi contains the contributions due to all participating interactions. For example, hydrophobic

and van der Waals forces could both be acting on the surfactant species to promote adsorption in

which case ∆G◦bi is actually a sum of the contributions from the different effects. This principle

could also lead to the association of free energy changes with specific structural groupings on the

surfactant and support.
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Several isotherms have been posited over the last century to model adsorption. For the solid-

liquid interface the most notable are those due to Langmuir and Frumkin. The Langmuir is the

simpler of the two:4

Γi
Γ∞

=
αc

1 + αc
(1.4)

where Γi/Γ∞ is the fractional coverage, c is the concentration of solute and α is the Langmuir

constant. The second is a modification due to Frumkin that takes account of interactions between

neighbouring adsorption sites on the solid support.5

Γi
Γ∞

=
α eωΓi/Γ∞c

1 + αeωΓ/Γ∞c
(1.5)

1.6 Surface charge and the electrical double layer

It is clear when we look at the mechanisms of adsorption given above, that surface charge

plays a large role within them. It is therefore important to describe how charged surfaces associated

with the solution-solid interface behave when immersed and what effect they have on the adjoining

solution. Firstly I will describe why ions dissociate in water and less so in air and non polar organic

solvents. I will then derive expressions for the electrical double layer.

Coulomb’s law describes the attractive force between two point charges of opposite charge.

F = − q1q2

4πεε0r2
(1.6)

where q1 and q2 are the charges in coulombs, ε is the dielectric constant of the medium they occupy

and is given by the ratio of the static permitivities of the medium and the vacuum ε0 lastly r is this

distance between the charges. Integrating this expression with respect to r allows us to calculate

the energy or work required to separate two point charges that are a distance r apart in a known

medium.

W = − q1q2

4πεε0

∞∫
r

1

r2
dr (1.7)

W =
q1q2

4πεε0r
(1.8)

As an example we can calculate the energy required to separate two point charges of positive

and negative elementary charge to infinity when they are initially separated by 2 Å. The work

required is approximately 1.4× 10−20 J in water and 1.15× 10−18 J in air at 20◦C comparing half

of these values (N.B. the work required per ion) to kT ( 8.08 × 10−21 J) we see that in air the

value is approximately 71 kT and in water is 0.86 kT. Despite the value obtained in water being

positive, the gain in entropy associated with dissociation is enough to drive dissociation in this

solvent.

Although these values indicate why ions dissociate in high dielectric constant media like water,

the real situation is complicated. Near a charged flat interface the electric field is independent of

distance from that interface, therefore infinite energy would be required to fully separate the

charge ions from the interface. As a result upon dissociation there is a larger quantity of ions in

the proximity of the surface and a resulting repulsive contribution to the overall interaction energy;

although the attraction to the surface is still stronger. The electric field generated at the surface

by the dissociation keeps ions from leaving completely and these ions along with any others in
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solution from a bulk electrolyte will form the so called ‘diffuse electrical double layer’. To derive

equations which describe the concentration or counterions with distance from the interface we must

start with the differential form of Gauss’s Law, which is one of Maxwell’s equations.6

∇ • ~E(~r) =
ρ(~r)

ε0ε
(1.9)

where ~E(~r) is the local electric field at position vector r and ρ(~r) is the net local charge density.

Equation 1.9 tells us that the flux at a point described by the position vector ~r is directly propor-

tional to the charge density at that point. It is often more useful to use the electrostatic potential

ψ(r), which is a scalar and is the free energy gained by moving a charge q from infinity to the

position r. The electrostatic potential energy of a charge Ziq is therefore given by Ziqψ(~r) where

q is the charge and Zi is the valency. As ψ(~r) is the electrostatic free energy, the derivative of this

function must give us the force acting per unit charge which is the electric field above.

~E(~r) = −∇ψ(~r) (1.10)

For the simple case of a flat surface we can reduce the Maxwell equation to one dimension and

replace the vector r with the independent variable x that describes the distance from the interface.

d2ψ(x)

dx2
= −ρ(x)

ε0ε
(1.11)

To solve this equation we find the relationship between ψ(x) and ρ(x). If we consider that the

interfacial concentration of a given ion depends on its electrostatic potential energy, and that at this

equilibrium the electrochemical potential must be the same for the ion in the bulk as in proximity

to the interface we have

µbi = µxi = µ0
i + kT lnCi(b) = µ0

i + Ziqψ(x) + kT lnCi(x) (1.12)

where Ci(b) and Ci(x) are the concentrations of ions in the bulk and at a distance x from the

interface respectively. We also assume that this is a dilute solution and therefore the term for

the electrochemical potential in the bulk is equal to zero. This expression can be rewritten as the

well-known Boltzmann distribution

Ci(x) = Ci(b) exp

[
−Ziqψ(x)

kT

]
(1.13)

which is useful as it allows one to calculate the concentration of any ion at a distance x from the

interface. We can use this result to find the net charge density at a distance x from the interface,

as

ρ(x) =
∑
i

ZiqCi(x) (1.14)

=
∑
i

ZiqCi(b) exp

[
−qψ(x)Zi

kT

]
(1.15)

substituting this expression into (1.11) yields the Poisson Boltzmann equation.

d2ψ(x)

dx2
= − q

ε0ε

∑
i

ZiCi(b) exp

[
−qψ(x)Zi

kT

]
(1.16)
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This equation is used to solve all electrical double layer problems for flat interfaces. We can

now investigate the electrical double layer for specific solutions. For example if we choose the

symmetrical electrolyte NaCl we have from equation (1.15)

ρ(x) = ZqC(b)

{
exp

[
−Zqψ(x)

kt

]
− exp

[
Zqψ(x)

kT

]}
(1.17)

= −2ZqC(B) sinh

[
Zqψ(x)

kT

]
(1.18)

combining this with the Poisson Boltzmann equation (1.16) gives

d2ψ(x)

dx2
=

2Z2q2C(b)

ε0εkT
sinh

[
Zqψ(x)

kT

]
. (1.19)

This differential equation can be scaled by a parameter

κ−1 =

[
ε0εkT

q2
∑
i Ci(b)Z

2
i

] 1
2

, (1.20)

such that by dimensional analysis

X = κ−1x (1.21)

where κ−1 is known as the Debye length and takes into account the dielectric properties of the

solution, the concentration of electrolyte ions and their valency. The Debye length has units of

length and corresponds to the characteristic decay length (meters) of the diffuse double layer at

the interface. This scaling procedure allows us to simplify the 2nd order differential equation above

to
d2ψ(x)

dX2
= sinh

[
Zqψ(X)

kT

]
. (1.22)

Integration of this expression gives the potential distribution next to a charged interface immersed

by a symmetrical electrolyte,7

Zqψ(X)

kT
= 2 ln

[
1 + γ exp(−X)

1− γ exp(−X)

]
(1.23)

where

γ =

[
exp (Y0/2)− 1

exp(Y0/2) + 1

]
(1.24)

Y0 is the scaled electrostatic potential at the surface of the charged plane and is given by

Y = Zqψ(X)/kT (1.25)

at X=0.

1.7 Self-assembly and the thermodynamics of aggregation

1.7.1 Aggregates

A property shared by most surfactants is the formation of aggregates above a certain con-

centration in solution. The most common example is the micelle, but many other structures exist,

including rods, disks, vesicles and bilayer sheets. Aggregates form when the chemical potential
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of the monomer in solution becomes equal to that of a monomer in an aggregate. When a given

mole fraction of surfactant monomer is reached, aggregates begin to form and as one attempts to

increase the concentration of monomers in solution one merely increases the number of aggregates.

If we plot the chemical potential of a monomer against aggregate size we can find out what size

aggregates are the most likely and stable. The driving force behind the self-assembly of aggregates

is the hydrophobic effect and is outlined below.

1.7.2 The hydrophobic effect

When a surfactant or lipid molecule is placed into water, the strong hydrogen bonds between

the water molecules are not destroyed but are forced to order around the surfactant or lipid

molecule forming a clathrate type structure. This ordering creates an unfavourable situation

where the configurational entropy associated with the water is relatively low. As a result of this,

above a certain bulk concentration, aggregates begin to form, as they minimise the quantity of

water ordering around monomers. Enthalpic contributions are relatively unimportant because,

the ordering effects described do not break hydrogen bonds, they only modify them, dispersion

(London) forces between lipid-lipid, water-water and water lipid are all very similar and therefore

the van der Waals interaction plays only a very small role in the hydrophobic effect. In essence

the hydrophobic effect’s origin lies in entropy changes associated with water forming an ordered

structure and this leads to aggregation; the structure of the resulting aggregates depends upon the

interactions between the constituent molecules.

1.7.3 Fundamental equations of self-assembly

Formally, in a dispersion of lipid monomers and aggregates in water there exists an equilibrium

between the monomers, L and the aggregates of size m:8

mL1 ⇀↽ Lm (1.26)

As mentioned earlier the driving force for this process is the hydrophobic effect. However, opposing

this driving force is the positive entropy of monomers mixing with water molecules in the bulk so-

lution and any repulsive interactions between the molecules comprising the aggregate; for example

hydration repulsion or steric repulsion. In equilibrium thermodynamics the chemical potential of

all identical molecules in aggregates of different size must be equal, therefore:

µ0
1 + kT logX1 = µ0

2 +
1

2
kT log

1

2
X2 = µ0

3 +
1

3
kT log

1

3
X3 = ... (1.27)

or

µ = µN = µ0
N +

kT

N
log

(
Xn

N

)
= constant, N = 1, 2, 3, ..., (1.28)

where, µN is the mean chemical potential of a molecule in an aggregate of aggregation number N,

µ0
N is the standard component of the chemical potential in aggregates of number N, and XN is

the mole fraction of molecules in aggregates of number N, k is Boltzmann’s constant and T is the

temperature. Equation 1.28 can be re-written as

XN = N

(
X1e

µ01−µ
0
N

kT

)N
. (1.29)
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These equations along with the conservation relation for total solute concentration C completely

defines the surfactant or lipid system:

C = X1 +X2 +X3 + ... =

∞∑
N=1

XN (1.30)

1.7.4 Variation of aggregate energy with aggregation number and ge-

ometry

We must now consider how the value of µ0
N varies with N to understand why aggregates of

size N will form.8 Aggregates will only form if the free energy associated with their cohesion is

different to that of aggregates of other size and monomers of size 1. i.e µ0
N must be different for

aggregates of different size. If µ0
N were constant for all values of N most of the molecules would

exist as monomers, this is easily understood if one considers the situation where µ0
N is constant,

when this happens 1.29 becomes:

XN = NXN
1 (1.31)

and if X1 is less than 1, then for all other values of N , XN must be much smaller, and increasingly

smaller with increasing N . For a proportion of aggregates of size N to form the value of µ0
N must

be less than that for monomers µ0
1. To understand why a distribution of aggregates forms from a

given solution we must consider how the relationship between the free energy per aggregate changes

with N . For three dimentional aggregates such as spherical micelles, the number of monomers per

aggregate N is proportional to the volume 4/3πR3; in fact, generally, the dependence of µ0
N

is governed by the geometry of the aggregates being formed. It can be shown that for simple

aggregate structures, which include vesicles, sheets, rods and spheres, the interaction energy free

energy of the molecules is

µ0
N = µ0

∞ +
αkT

NP
(1.32)

where α is a constant characteristic of the intermolecular interactions within the aggregate, and

P is a number that depends on the shape or dimensionality of the aggregates. If we substitute

1.32 into the aforementioned fundamental equations we find an important result, that a critical

aggregation constant (CAC) exists and is finite and unique for amphiphilic molecules of a given

type. For example:

XN = N
(
X1e

α(1− 1

NP
)
)N
≈ N (X1e

α)
N

(1.33)

For X1 � 1, we have X1 > X2 > X3 > ...XN for every value of α. However, since X1 cannot

exceed 1 there is a maximum value for X1 ≈ e−α for all values of P . This is the CAC, and adding

monomers to solution above this value only results in the creation of more aggregates.

1.7.5 Size distributions of aggregates

Micelles, vesicles and other self-assembled aggregates in solution usually show a size distri-

bution about some mean value, sometimes narrow and sometimes polydisperse. Setting P to 1 in

1.33 we have:

XN = N [X1e
α]Ne−α (1.34)

above the CMC where X1e
α ≤ 1, XN must be proportional to N for small N, so the concentration

of the aggregates in solution grows in accordance with their size. Only when N becomes very large
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does the [X1e
α]N take over, with the result that the fraction of aggregates of size N tends to zero

in the limit of infinite aggregation number. Where P is less than one, as occurs for disks or spheres

(see above) then a hypothetical infinitely sized aggregate is created above the CMC, in other words

the aggregate can be thought of as existing in an entirely separate phase to the monomers still in

solution. In this situation the idea of a size distribution no longer applies. Where P is greater

than 1 no finite or infinite aggregates form at any concentration so the idea of a size distribution

no longer applies here too. The case where P = 1 is a special case.

The values of α and P are constant only for simple surfactants and they vary when the

surfactant molecule becomes large, flexible or has a complicated charge distribution/polarity. In

these situations such surface active species form aggregates of more complex structure, for example

lipids forming elastic vesicles (N.B.flexibility). When this occurs µ0
N usually reaches a minimum

at a certain value of N or reaches a low value that remains almost constant for ever larger N, the

first situation results in a Gaussian distribution of aggregate sizes about a mean value, such that:

XN = N

[
XM

M
e(−MΛ(∆N)2/kT)

]N/M
(1.35)

in which the variation of µ0
N about µ0

M can expressed in parabolic form

µ0
N − µ0

M = Λ(∆N)2 (1.36)

1.7.6 Inter-aggregate interactions

At higher concentrations inter aggregate interactions become significant in determining the

structure of the aggregate distribution. Where the surfactant concentration becomes significant,

the structure of the aggregates may change to minimise their free energy. Also, if the interaggregate

forces are net attractive, larger aggregates may separate out from and possibly coexist with the

smaller aggregates and monomers in the solution.8 This kind of transition can occur in solutions

of zwitterionic species with limited repulsion or in solutions where there is a high electrolyte

concentration or the presence of divalent cations such as Ca2+. If M is the vesicle aggregation

number and M is the superaggregate aggregation number where M �M , on the basis of 1.27 we

can write:

µ0
1 + kT logX1 = µ0

M +

(
kT

M

)
log

(
XM

M

)
= µ0

M +

(
kT

M

)
log

(
XM

M

)
(1.37)

or, (
XM

M

)
=

((
XM

M

)
eM

(µ0M−µ0M)
kT

)M
M

(1.38)

we can therefore write in analogy to the CAC arguments above a second critical concentration at

which the super aggregates begin to form, where:

(XM )crit ≈Me−M
(µ0M−µ0M)

kT (1.39)

the free energy difference (µ0
M − µ0

M) will depend upon the inter-aggregate and intra-aggregate

interactions. The critical value for super aggregate formation will depend on M and the free energy

difference. It is possible for super-aggregates to form both at the CMC and above it, whilst the basic

concentration of first order aggregates, such as vesicles, and of monomers remain unchanged. In
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this way we can have multiple CACs of which the traditional CMC or critical micellar concentration

is just one example. This process can lead to multiple peaks in the size distribution of aggregates.

1.7.7 Factors affecting aggregate structure

1.7.7.1 Intermolecular forces

As described earlier, the driving force behind aggregation is the hydrophobic effect, this

positive attractive interaction can be represented by the typical value of the water/hydrocarbon

interfacial energy of γ ≈ 50 mJ m−2.8 However, various repulsive interactions operating within

the polar headgroup region work against this, typically lowering the net surface energy to γ ≈ 20

mJ m−2. The forces contributing to this repulsion are the electrostatic repulsion, steric repulsion

and hydration repulsion. Despite the complexity of deriving explicit expressions for the individual

repulsive contributions, it is possible to formulate a simple expression for the interfacial free energy

per molecule. The first term in the expression should be for the attractive hydrophobic contribution

and that the second term for the combined repulsion. We assume that the repulsive contribution

should be inversely proportional to the area per headgroup.

µ0
N = γa+

K

a
(1.40)

where K is a constant. By finding the minimum of dµ0
N/da = 0 we can find the optimal surface

area per headgroup.

µ0
N = 2γa0 (1.41)

where

a0 =
√
K/γ (1.42)

we can now write an expression for µ0
N in terms of measurable or known values

µ0
N = 2γa0 +

γ

a
(a− a0)2 (1.43)

which is the minimum interfacial free energy per molecule i.e. for a purely hydrophobic interaction

plus the adjusted hydrophobic energy and the associated repulsion energy of the now non-minimal

interaction. The combined interaction resulting from the opposing hydrophobic and aforemen-

tioned repulsive forces leads to the concept that there is a optimal equilibrium headgroup area per

molecule. As a result of this it is possible to consider the structure of aggregates only in terms of

their geometry, of which the optimal headgroup as seen above is the basis.

1.7.7.2 Geometry

The geometry of an amphiphile forming part of an aggregate can be defined by three param-

eters, the optimal headgroup area a0, the volume of the chains V and their effective chain length

lc. The effective chain length is less than the maximum possible chain length lmax assumed by the

equivalent crystalline saturated hydrocarbon. They are related by:

lc ≤ lmax ≈ (0.154 + 0.1265n) nm (1.44)
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where n is the number of carbon atoms in the chain. Another semi-empirical relation gives the

volume for the same chains:

v ≈ (27.4 + 26.9n) × 10−3 nm3 (1.45)

Once we have all three parameters we can calculate a dimensionless critical packing parameter:

Zp =
v

a0lc
(1.46)

The value of Zp determines the aggregate structures that can form from the amphiphile in question;

for example, amphiphiles that have a packing parameter of 1/3 form spherical micellar structures

and those with a value of 1 form bilayer sheets. It must be noted that these are limiting cases, it is

possible for the chain length to vary below lc thereby adjusting the value of the parameter. Ulti-

mately for bilayers to form the constituent amphiphile(s) must have sufficiently small headgroups

and adequately bulky hydrocarbon tails to lead to a Zp of 1.

1.8 Dynamic properties of lipid bilayers

Bilayers are dynamic, their molecules jostle amongst each other, bob up and down, diffuse

laterally and flip from one leaflet and flop to the other. Bilayer dynamics are thus important

in understanding the physical behaviour of lipid bilayers and their interactions. The most rele-

vant properties for my work are the lateral diffusion and flip-flop behaviours as they are key to

understanding the behaviour of SLBs when interacting with soluble surfactants.

1.8.1 Lateral diffusion

1.8.1.1 Diffusion of large components

The lateral diffusion of biological macromolecules such as proteins and complexes in supported

lipid bilayers is treated differently to that of individual small molecules such as lipids and surfactant

monomers; it is dominated by the frictional force between the macromolecule and the media

adjacent to the SLB. As my research has not included integral membrane proteins not much will

be described here. The theories generally take a two dimensional continuum approach, where

the discrete, molecular nature of the bilayer is not considered; this is deemed acceptable as the

cross-sectional area of the integral proteins are significantly larger that that of the individual lipid

monomers. The lipid bilayer is treated as a very thin viscous sheet held between two media of

different viscocities. In the case of SLBs, the support and solution sub-phase. The diffusing

macromolecule is treated as a moving cylinder of height h and radius R, the diffusion relation is

then given by the Einstein relation D = kT/f the key point is the determination of f , the frictional

coefficient whose form varies depending on the nature of the adjoining media.

Saffman and Delbruck derived an expression of f for the relatively simple case of a cylinder

(protein) embedded in a two dimensional sheet adjoined by two identical solution phases comprised

of water or dilute electrolyte where η1 = η2:9,10

f = 4πηh

(
ln

ηh

η1R
− γ
)−1

(1.47)
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where η is the viscosity of the viscous sheet (bilayer) and Euler’s constant γ = 0.5772. However

the key expression for bilayers adjacent to a solid support is found in the work of Evans and

Sackman.11

f = 4πηh

(
(ε′)2

4
+
ε′K1(ε′)

K0(ε′)

)−1

(1.48)

where K0 and K1 are Bessel functions of the second kind. The parameter ε′ = R(bs/ηh)1/2, where

bs is the coefficient of friction between the membrane and support. If a thin layer of buffer or

other sub-phase is present between the bilayer and solid support of thickness δ << ηh/η1 then

bs = η1/δ. When δ ≈ ηh/2η1, then ε′ = (R/h)[(η1 + η2)/η].

1.8.1.2 Diffusion of small molecular components

In contrast, the diffusion of small molecules, owing to their much smaller size, is governed

by the probability of free volume/area being available for the molecule to move in; as well as the

activation energy required for overcoming interactions with nearest neighbours. When considering

the diffusion of small molecules such as lipids and surfactants in homogeneous fluid like lipid phases,

for example the Lα or Lo phases, the diffusion coefficient can be derived from free-volume theory

or free-area theory in two dimensional situations. Free volume theory was originally developed by

Cohen and Turnbull,12–15 and developed by Macedo and Litovitz for the two-dimensional case.16

This was used by Thompson, Hallmann and Sackmann to explain lateral diffusion in lipid bilayer

phases.17–20

In free volume theory, the diffusion of a particle with a similar size to its neighbours can only

take place when a free volume greater than a certain critical size exists next to the particle. Free

volumes of smaller size do not contribute to diffusion as they cannot be filled. The two dimensional

diffusion coefficient is thus an integral over the distribution of free area above the critical size.

D =

∫ ∞
a∗

D(a)ρ(a) da (1.49)

where D(a) is the diffusion coefficient within a free area a, ρ(a) is the probability of finding a free

area of a given size and a∗ is the critical free area. The probability density ρ(a) is given by:

ρ(a) =
γ

af
exp

[
−γa
af

]
(1.50)

here af is the average free area and af = at − a∗ where at is the average area per molecule in the

system. N.B. because at is a function of the system temperature af must be also. γ is a geometric

correction factor employed to account for the overlap of free volumes, it usually takes on a value

between 0.5 and 1.0. As D(a) is a constant we can write,

D = D(a∗) exp

[
−γa∗

af

]
(1.51)

This limiting expression has been derived taking only geometric considerations into account and

more sophisticated treatment expounded in16 and20 includes an energy probability density in 1.49.

This results in the following expression:

D = D′ exp

[
−γa

∗

af
− Ea
kT

]
(1.52)
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where D′ is the unhindered diffusion coefficient and is identical to D(a∗), and Ea is the energy of

activation associated with diffusion, i.e. the energy required to overcome the interactions of the

diffusing molecule with its neighbours.

Experimentally, techniques including fluorescence correlation spectroscopy (FCS) and pulsed

field gradient nuclear magnetic resonance spectroscopy (PFG-NMR) have been used to measure

D in different bilayer systems. Diffusion coefficients measured in POPC and DOPC GUV’s by

FCS were found to be in the range of 5-8 µm2 s−1 at room temperature.21,22 However, it has

also been shown that values obtained for supported lipid systems are considerably lower than

their free vesicular counterparts; Przybylo and coworkers having measured a value of 3.1 µm2

s−1 for DOPC bilayers on mica.23 In addition, cushioning the SLBs with polymer does little to

mitigate this effect. At high temperatures the value of D increases substantially despite the bilayer

remaining in the fluid phase. For instance Filippov and cowokers have obtained a value of ≈ 26 µm2

s−1 for POPC at 60◦C.24 In general bilayers comprised of sphingomyelins display lower diffusion

coefficient values at room temperature, < 0.5 µm2 s−1, this is expected as bilayers comprised

of sphingomyelins are in the more ordered gel (Lβ) or ripple (Pβ) phase at this temperature.

However, at higher temperatures above their Tm values they remain considerably slower than for

their glycerophospholipid counterparts.

1.8.2 Transmembrane diffusion (molecular flip-flop)

Whereas lateral diffusion in lipid membranes is fairly well understood and a variety of physical

theories exist to explain it, transmembrane diffusion, inversion or flip-flop is notable for the lack of

a simple underlying theory. Part of this stems from the fact that several types of flip-flop have been

postulated in real membranes, those catalysed by membrane proteins called flipases and flopases

respectively and native un-catalysed translocation. Most biological cells show asymmetry in their

membrane lipid composition, for instance the human erythrocyte membrane has an exterior leaflet

or monolayer primarily composed of PC and sphingomyelin, whereas the inner leaflet is mostly

comprised of PS and PE species.25 Understanding how asymmetries such as this are controlled

quantitatively and with physical insight is a key question for modern biophysics.

Molecular flipping in surface multilayers was first considered by Langmuir in barium stearate

films.26 But the first measurements on lipid bilayers were carried out by Kornberg and McConnell

in 1971 by electron spin resonance.27 In this work the authors used a paramagnetic spin-labelled

phophatidylcholine to measure the decay of paramagnetic asymmetry in egg-PC vesicles. The

asymmetry was created by using sodium ascorbate to remove the paramagnetism of the posterior

leaflet prior to acquiring spectra. The authors were able to kinetically model the loss of asymmetry

(they are the first to refer to transmembrane diffusion as flip-flop, previously it had been referred

to as inversion) as a single-step process. By using measurements at multiple temperatures on the

same day they were able to acquire flip-flop activation energies by an Arrhenius analysis. They

measured half times (t1/2) of between 0.7-3 hours and activation energies in the range of 65-116

kJ mol−1. Since then many measurements have been carried out to measure the rates of flip-flop

in multifarious lipid bilayer systems, a large number with fluorescence based techniques. It is not

my intention to present a thorough review of these here, but I will describe and discuss some key

issues in this area. A major problem is the frequent use of bulky labels to differentiate lipids in

the outer and inner monolayers of both vesicles and SLBs; in particular those used in fluorescence

based investigations. In these works the native flip-flop rate of the labelled species alone is being

monitored and, owing the the relative bulkiness of these modified lipids, the rates obtained are
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likely significantly longer than those of the real lipids of interest. Vibrational spectroscopies and or

neutron scattering in all likelihood offer the best method of acquiring accurate data as they only

require deuteration, a far less intrusive form of labelling. In this vein Conboy and coworkers have

recently conducted a number of studies with sum frequency generation (SFG) on SLB systems.28–32

In these studies it was found that the rate of flip-flop was dramatically increased as the main phase

transition was approached, although this increase occurred at temperatures below the main phase

transition temperature. Another important observation was noted when the surface pressure of

deposition by the LS technique was varied. The translocation rate was significantly reduced at high

surface pressures. Conboy and coworkers were able to compare different phosphatidycholines and

found that reducing the chain length of the lipids increased the rate of flip-flop – they measured

t1/2 times as low a minute for DMPC at higher temperatures. They also state that above the

main phase transition temperature flip-flop rates were too fast to measure. This observation could

imply that native-uncatalysed flip-flop rates are fast in real membranes which exist in the fluid

Lα phase. Noteworthy are their measurements on TEMPO-DPPC which showed rates an order of

magnitude slower than those of DPPC at similar temperatures – these data clearly highlight the

problem of using any technique that relies on a bulky labelling regime, indeed I am extremely wary

of any data acquired with techniques that require significant changes to molecular structure – so

much so that I have not included any but the pioneering study given above in this short review.

More recently Conboy and coworkers have investigated flip-flop rates in a binary mixture of DSPC

and DSPE, they state that the native flip-flop rate in the DSPE system was considerably slower

than that of the DSPC system prepared under the same conditions and at the same temperature.

Also, the lipids displayed a common rate of flip-flop when comprising a binary mixture, this rate

varied non-uniformly with fractional composition, but was correlated with changes in molecular

packing as a function of DSPE content. The authors go on to justify their observations in terms

of headgroup hydrophobicity and headgroup hydration and lipid packing constraints.

1.9 SLB preparation methods

Generally the best supports for SLBs are hydrophilic and include mica, fused silica and TiO2

amongst others. Several methods exist for the fabrication of supported lipid bilayers on solid

substrates: (i) Langmuir-Blodgett/Schaefer deposition, (ii) lipid spin coating (iii) vesicle fusion

and (iv) surfactant depletion. Each has its advantages and disadvantages. During my research I

used the vesicle fusion method. Below is a description of each of the methods. Specific details for

my procedures are found within my methods chapter.

1.9.1 Langmuir-Blodgett/Schaefer deposition

Langmuir-Blodgett or Langmuir-Schaefer (LB/LS) deposition involves the transfer of multiple

lipid monolayers onto a solid support of interest using a Langmuir trough. In Langmuir-Blodgett

deposition a surface monolayer of lipid is created at the air-water surface by carefully dropping lipid

solutions prepared in chloroform or other volatile solvent onto the surface. As the solvent evaporates

the monolayer forms with hydrophilic headgroups oriented into the water and the hydrophobic

tails projecting up into the air. The lipid monolayer is then compressed with a motorised arm

to a constant pressure (the surface pressure required for the SLB being prepared e.g. ≈25 mN

m−1) generally the pressure must correspond to a condensed phase of the lipid monolayer at the
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temperature of the system. The substrate is initially immersed then raised slowly through the

surface, as this happens the lipid molecules are transferred onto the support interface with the

hydrophilic headgroups oriented toward the interface and the tails pointing outward. Throughout

this procedure the trough is operated at as close to constant surface pressure as possible – as the

lipid molecules are transferred from the surface the troughs arm continues to compress the surface.

When the first layer is complete, a subsequent layer is applied by lowering the substrate through

the surface. The result is a interface comprised of two layers with the last or axial monolayer leaflet

oriented so the charged headgroups are pointing into the bulk solution. It is worth noting that it

is possible for the first layer to be removed during the second immersion. Figure 1.3 shows the

two steps of Langmuir-Schaefer deposition. In LS deposition the substrate is initially immersed

in the trough prior to the application of the lipid to the air-water surface, the substrate is then

pulled through the surface after the formation of the surface monolayer. The substrate is then

rotated parallel to the liquid surface and pressed down towards it to transfer to the second lipid

layer. Interestingly, the two-step LS procedure allows for the formation of asymmetric lipid layers

that closely resemble biological membranes. Unfortunately neither the LB or the LS techniques

allow the incorporation of membrane proteins; if that is the subject of study the method of vesicle

fusion outlined below is more appropriate. It is also not possible to use LB/LS deposition for layers

comprised of unsaturated lipids, as the technique requires the surface monolayer to be compressed

to an ordered condensed layer which cannot be done for unsaturated lipids. SLBs prepared by

LB or LS deposition can be unstable and the procedure requires a large investment in time and

care, for this reason it cannot be scaled easily and would be of limited interest in any commercial

setting.

(a)

(b)

Figure 1.3: A Scheme of the two steps of Langmuir-Schaefer deposition of lipid bilayers on hydrophilic

supports. (a) the upstroke and (b) the downstroke.
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1.9.2 Lipid spin coating

Spin coating involves the dissolution of the lipid species of interest in a mixture of appropriate

solvents (hexane (40%), 2-propanol (20%), acetone (20%) and decane(20%)), and the subsequent

dropwise addition of these onto a spinning substrate (300 rpm).33 Following the dropping procedure

the sample substrate is spun at a fast rate, e.g. 3000 rpm for a short time (40 s), the resulting

layers are fairly thin 10-20 nm, but nevertheless have an average thickness of greater than one

bilayer (4-5 nm). For this reason this technique is not widely used. Its greatest value is the

speed of deposition, a complete layer can be prepared in only a few minutes, without the technical

difficulties associated with LB-LS deposition, or the lengthy initial preparation times for vesicle

fusion (discussed below).

1.9.3 Vesicle fusion

In the technique of vesicle fusion, small unilamellar lipid vesicles are formed by either son-

ication or extrusion. These vesicles are then brought into contact with the support and, if pos-

sible, rupture to form an SLB. The mechanisms by which lipid suspensions form SLBs are not

fully understood, nor have they been investigated for all lipid species, particularly the phospho-

tidylethanolamines and sphingomyelins. The investigation of SLB formation mechanisms forms

part of my research (see Chapter 3).

In general vesicles form spontaneously for many lipid species, although for other species this

is not the case; the factors which determine aggregate shape and flocculation and thus whether or

not vesicle formation is possible were discussed earlier in this introduction. Where there are weak

repulsive inter-aggregate interactions, lipid vesicles will flocculate in solution.

The first step in the formation of lipid vesicles by any of the known methods is the prepara-

tion of a thin film of the lipid species in some suitable container, generally a round-bottomed flask.

The required mass(s) of the lipid species(s) are dissolved in appropriate solvents that are subse-

quently evaporated whilst rotating the flask. This procedure prepares a thin film of lipid around

the flask’s interior. The rate of this process is increased by holding the sample under vacuum or

by applying a constant stream of dry nitrogen over the solvent surface. The film is then hydrated

with the requisite buffer solution or water. In the case of extrusion the newly hydrated lipid sus-

pension is iteratively passed through a polycarbonate membrane carefully sandwiched between two

syringes (figures 1.4 and 1.5). During this process the whole system is heated to a temperature

above the main phase transition temperature of the lipid/lipid mixture. The greater the number

of passes through the filter the more mono-disperse the resulting vesicle suspension. In the case

of sonication two procedures are widely used, either bath sonication or probe sonication. For bath

sonication a powerful bath sonicator is filled with water warmed to a temperature above the main

phase transition of the lipid species or mixture being employed. The hydrated lipid is then clamped

into this sonicator and is sonicated constantly for 1.5 hours. In probe sonication an ultra-sonic

probe is used after the hydrated sample is transferred to a suitable composite container. Probe

sonication results in a more homogenous and smaller size distribution of vesicles, but the increased

intensity can lead to intense localised heating within the sample solution; this may result in the

break up of lipid molecules thereby reducing the purity of the sample. Also, the titanium probe

tips used shed small fragments of titanium metal when in use, it is necessary to remove these by

centrifugation after the sonication procedure. Bath sonication results in a more polydisperse size

distribution of vesicles but with less chance of degradation. For lipid species that do not form

18



Figure 1.4: A photo showing the Avanti mini-extruder commonly used for preparing lipid vesicles. Copy-

right Avanti Polar Lipids Incorporated.

Figure 1.5: A schematic showing the internals of Avanti’s Mini extruder. Copyright Avanti Polar Lipids

Incorporated.

small unilamellar vesicles the centrifugation step required for removing the titanium particles will

also remove the vesicle aggregates.

1.9.4 Surfactant depletion

Surfactant depletion was pioneered by Tiberg and coworkers34 and investigated further by

Lee et al.35 In this relatively new technique, SLBs are constructed by preparing mixed micellar

solution solutions of a non-ionic surfactant such as β-D-dodecyl maltoside (β-DDM) with the lipid

of interest in a ratio of 9:1. Typically solutions are prepared over a concentration range of two orders

of magnitude, at each stage the mixtures are brought into contact with the substrate and then

subsequently rinsed with water or buffer solution. As the absolute concentration of the surfactant

and lipid are reduced, a greater and greater proportion of the surfactant exists in monomeric

form, it is far more soluble than the virtually insoluble lipid component, in fact to begin with

more lipid is contained within the micelles than surfactant. At each stage of the process the lipid

bilayer becomes more and more complete. As adsorption of non-ionic surfactants on silica is largely

reversible, the final SLB is comprised of only the lipid species of interest. As well as phospholipids

other system components typically found in membranes can be included, for example, cholesterol.

The main advantage of this technique is that of lipid economy, an order of magnitude less lipid

is required in comparison to other techniques, which would be extremely advantageous in any
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commercial application. The procedure is also conducive to high throughput processing. However,

the technique is less useful in fundamental physiochemical studies as the possibility of remnant

surfactant or surfactant based impurity could adversely affect results; particularly for my work

(Chapter 5) where I examine the interaction of SDS with SLBs.

1.10 Light and optics

1.10.1 Electrodynamic derivation of Snell’s Law

Snell’s Law was first discovered empirically by Willebrod Van Roijen Snell in 1621. One can

derive Snell’s Law in a variety of ways, for example from Huygen’s principle or Fermat’s principle,

but the most useful for my purposes is the electromagnetic derivation. Following this approach light

is considered as a monochromatic plane wave, a solution of the differential wave equation. From

this we are able to derive Fresnel’s equations, which are used to calculate the relative amplitudes

of the incident, reflective and transmitted rays. These take on added importance when considering

the case of total internal reflection and the magnitudes of the three electric field components at the

interface. They are pivotal to understanding the relative scattered intensity generated by different

polarisation configurations in a TIR-Raman setup. Considering an interface shown in figure 1.6,

Figure 1.6: A schematic diagram showing a plane wave incident on an interface.

the incident light wave can be described by,36

Ei = E0,i exp[i(ki · r− ωit+ εi)] (1.53)

where E0,i is the initial electric field vector which describes the initial field orientation and dictates

the amplitude of the wave, kr is the wave vector given by 2π/λ which states the direction of the

incident light and turns the spatial dependence of the incident wave into a dimensionless parameter,

r is the position vector which describes the location of a point in space, ωi is the angular frequency
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give by 2π/τ where τ is the time period given by λ/v, v being the velocity. The reflected and

transmitted waves are given by similar expressions with an added phase, ε, which is present owing

to the fact that the position of the origin is not unique.

Er = E0,r exp[i(kr · r− ωrt+ εr)] (1.54)

and

Et = E0,t exp[i(kt · t− ωtt+ εt)] (1.55)

The laws of electromagnetism dictate several boundary conditions relevant to light at interfaces,

the most important of which are the continuities of the tangential components of both the electric

and magnetic fields across an interface. We can therefore state that

û×Ei + û×Er = û×Et (1.56)

where û is the unit vector normal to the interface, and therefore

û×E0,i exp i[ki · r− ωit+ εi]

+ û×E0,r exp i[kr · r− ωrt+ εr]

= û×E0,t exp i[kt · r + ωtt+ εt]

(1.57)

as this relationship has to be true at any instant in time the electric fields Ei, Er and Et must

have the same dependence on t. Thus for the temporal variation to be identical

ωi = ωr = ωt (1.58)

for the total variation to be constant the spatial variation must also be constant for all points on

the interface, so

(ki · r + εi) = (kr · r + εr) = (kt · r + εt) (1.59)

rearranging and factorising yields two expressions giving the relative phases of the reflected and

transmitted waves

[(ki − kr) · r] = εr − εi (1.60)

and

[(ki − kt) · r] = εt − εi (1.61)

These two equations define a plane perpendicular to both ki−kr and ki−kt which is the interface.

Also since, the incident and reflected plane waves are in the same medium we can state that the

magnitude of the incident and reflected wave vectors are the same ki = kr. As ki − kr has no

component tangential to the defined interfacial plane i.e. û× (ki − kr) = 0 we see that:

ki sin θi = kr sin θr (1.62)

and so

θi = θr (1.63)

which is the law of reflection! The same can be written for ki − kt which again has no component

parallel to the interface and is normal to the interface:

ki sin θi = kt sin θt (1.64)
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However, the media are now different and ki 6= kt and therefore θi 6= θt but since ωi = ωt we can

multiply both sides of equation 1.64 by c/ωi to obtain Snell’s Law.

ni sin θi = nt sin θt (1.65)

1.10.2 Derivation of Fresnel’s equations

Through the derivation of Snell’s Law from electromagnetic theory, I showed the relationship

between the phases of the incident, reflected and transmitted waves. I will now derive expressions

that relate the relative amplitudes of their respective electric fields with varying refractive index

and incident angle. The resulting expressions are due to Augustin-Jean Fresnel (1788-1827). To

this end we need to consider the same scheme as in the prior section – the plane wave incident

on the interface between two isotropic media – to do this we must separate its E and B fields

into components parallel and perpendicular to the plane of incidence and derive the equations

separately for each of the two components. I will start with the components perpendicular to the

plane of incidence.

1.10.2.1 Reflection and transmission coefficients when the electric field is perpendic-

ular to the plane of incidence

Figure 1.7: A diagram showing the relationship between the electric and magnetic field vectors for a plane

wave incident on the interface between two media where the electric field is polarised perpendicular to the

plane of incidence.
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Figure 1.8: A diagram showing the relationship between the electric and magnetic field vectors for a plane

wave incident on the interface between two media where the electric field is polarised parallel to the plane

of incidence.

We assume that E is perpendicular to the plane of incidence and B is parallel to it. As

E = vB, so

k̂×E = vB, (1.66)

where k̂ is the unit wave vector in the direction of propagation. As k is perpendicular to E

k̂ ·E = 0 (1.67)

i.e. the three vectors E, B and k̂ form a right handed system, these are shown in figure 1.7.

Recalling the boundary condition of tangential electric field continuity, we have

E0,i + E0,r = E0,t (1.68)

Although, the tangential component of the electric field must be continuous across the interface

between the two media, the normal component does not; the fields associated with the waves

polarise the media, which in turn affect the properties of the wave. However, the normal component

of εE is continuous. Whereas the tangential component of the electric field is continuous, the normal

component of the associated magnetic field is continuous, similarly the tangential component of

µ−1B (or H the induction) is continuous across the interface, where µ is the magnetic permeability.

We can use this last boundary condition to construct an expression analogous to that for the electric
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fields in the prior discourse on Snell’s Law:

− Bi

µi
cos θi +

Br

µi
cos θr = −Bt

µt
cos θt (1.69)

n.b. the negative signs come about because of the orientation of the E field vectors. If I had chosen

to arrange the system such that the electric fields pointed towards the page, the signs would flip as

the magnetic field vectors would be aligned in the direction of their mirror images in the zy plane.

Since from 1.66 we can write

Bi = Ei/vi (1.70)

Br = Er/vr (1.71)

Bt = Et/vt (1.72)

As the incident and reflected waves are in the same media, νi = νr and θi = θr, substituting the

above three expressions into equation 1.69 we obtain

1

µivi
(Ei − Er) cos θi =

1

µtvt
Et cos θt (1.73)

this can be simplified with our knowledge that for plane waves Ei,Er and Et are all constant in

time
ni
µi

(E0,i − E0,r) cos θi =
nt
µt
E0,t cos θt (1.74)

combining this with equation 1.69 yields the Fresnel equations for the reflected and transmitted

light respectively, where E is perpendicular to the incident plane(
E0,r

E0,i

)
⊥

=

ni
µi

cos θi − nt
µt

cos θt
ni
µi

cos θi
nt
µt

cos θt
(1.75)

(
E0,t

E0,i

)
⊥

=
2niµi cos θi

ni
µi

cos θi + nt
µt

cos θi
(1.76)

equations 1.75 and 1.76 can be simplified with the knowledge that we are using dielectrics and

µi ≈ µr ≈ µ0, yielding the commonly seen amplitude reflection and transmission coefficients

respectively

r⊥ =

(
E0,r

E0,i

)
=
ni cos θi − nt cos θt
ni cos θi + nt cos θt

(1.77)

t⊥ =

(
E0,t

E0,i

)
=

2ni cos θi
ni cos θi + nt cos θt

(1.78)

1.10.2.2 Reflection and transmission coefficients when the electric field is parallel to

the plane of incidence

Very similar equations can be derived for light polarised parallel to the plane of incidence.

The boundary condition for the continuity of the electric field parallel to the interface gives

E0,i cos θi − E0,r cos θr = E0,t cos θt (1.79)
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As before we can write an expression from the fact that the tangential component of µ−1B must

be equal on either side of the interface

1

µivi
E0,i +

1

µrvr
E0,r =

1

µtvt
E0,t (1.80)

As µi = µr and θi = θr we can obtain two more Fresnel equations(
E0,r

E0,i

)
‖

=

nt
µt

cos θi − ni
µi

cos θt
ni
µi

cos θt + nt
µt

cos θi
(1.81)

and (
E0,t

E0,i

)
‖

=
2niµi cos θi

ni
µi

cos θt + nt
µt

cos θi
(1.82)

which both can be simplified as before for dielectrics

r‖ =
nt cos θi − ni cos θt
ni cos θt + nt cos θi

(1.83)

and

t‖ =
2ni cos θi

ni cos θt + nt cos θi
(1.84)

1.10.3 Total internal reflection

Fresnel’s equations tell us for light incident upon an interface where the incident medium has

a greater refractive index i.e. ni > nt the proportion of light and thus energy in the reflected beam

steadily increases, whilst that in the transmitted beam decreases. At the same time, by Snell’s

Law, the angle of the transmitted beam gets closer and closer to 90◦ to the surface normal û until

a certain critical angle defined by

θc = sin−1 nti (1.85)

where

nti =

(
nt
ni

)
(1.86)

above this angle light is totally internally reflected. But despite this seeming restriction, owing the

boundary conditions used above, the tangential components of the electric fields must remain equal

either side of the interface. As such there is still a transmitted wave, which propagates along the

surface in such a way that there is no net transfer of energy to the less optically dense medium.37

If we treat the surface wave as a plane wave we can write the wave function

Et = E0,t exp i[kr · r− ωt] (1.87)

separating the wave vector into its components (there is no y-component for P-polarised light)

kt · r = ktxx+ ktzz (1.88)

where ktx = kt sin θt and ktz = kt cos θt. From Snell’s Law we find that

kt cos θt = ±kt
(

1− sin2 θi
n2
ti

)1/2

(1.89)
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Figure 1.9: A Graph showing the change in characteristic decay length or penetration depth of the

evanescent wave at the silica-water interface. ni,silica = 1.46 and nt,water = 1.33.

as we are concerned with the case when sin θi > nti we see that,

ktz = ±ikt
(

sin2 θi
n2
ti

− 1

)1/2

≡ ±iβ (1.90)

and

ktx =
kt
nti

sin θi (1.91)

Hence, we can write the “transmitted” or surface wave as

Et = E0,te
±βzei(ktx sin θi/nti−ωt) (1.92)

which decays exponentially from the surface. In the first exponential factor only the negative sign

is physically permissible as the positive sign would indicate an ever increasing field away from the

interface. It is this wave that we use in TIR-Raman spectroscopy to stimulate Raman scattering.

This exponentially decaying or evanescent wave has a characteristic decay length of β−1 which is

the point where the electric field reaches 1/e of its initial magnitude. In Raman spectroscopy we

are interested in the square of the electric field, so in terms of my experiments we consider the

decay length or penetration depth to be β−1/2; figure 1.9 shows a plot of the changing penetration

depth with incident angle and figure 1.10 shows the normalised decaying electric field squared at

73◦(the angle of incidence for all my TIR-Raman experiments) for the silica-water interface. It is

possible to reformulate the Fresnel equations for the reflection coefficient above the critical angle

for both perpendicular and parallel electric fields, given by

r⊥ =
cos θi − (n2

ti − sin2 θi)
1/2

cos θi + (n2
ti − sin2 θi)1/2

(1.93)

26



Figure 1.10: A graph showing the decay in z of the normalised evanescent electric field squared, for the

silica-water interface. 73◦ incidence, ni,silica = 1.46 and nt,water = 1.33.

and

r‖ =
n2
ti cos θi − (n2

ti − sin2 θi)
1/2

n2
ti cos θi + (n2

ti − sin2 θi)1/2
(1.94)

It is useful for us to express the Fresnel transmission coefficients in a form which relates the three

dimensional components of the electric field at the interface to the electric fields of the parallel or

perpendicularly polarised incident plane wave, rather than in terms of the two transmission coeffi-

cients, parallel and perpendicular hitherto described. The reason for this is that when conducting

spectroscopy, we would like to know which planes relative to the interface will generate the greatest

signal for each of the two polarisation configurations of incident light and whether or not light of

one of the two incident polarisation configurations is likely to stimulate emission from a certain

vibrational mode we expect to be oriented in a particular fashion relative to the interface. Above

the critical angle these expressions are,38

t‖,x =
2 cos θi(sin

2 θi − n2
ti) + i[2n2

ti cos2 θi(sin
2 θi − n2

ti)
1/2]

n4
ti cos2 θi + sin2 θi − n2

ti

(1.95)

t⊥,y =
2 cos2 θi − i[2 cos θi(sin

2 θi − n2
ti)

1/2]

1− n2
ti

(1.96)

t⊥,z =
2n2

ti cos2 θi sin θi − i[2 cos θi sin θi(sin
2 θi − n2

ti)
1/2]

n4
ti cos2 θi + sin2 θi − n2

ti

. (1.97)

and their absolute values are plotted in figure 1.11. All of my TIR-Raman measurements were

carried out at 73◦; this angle of incidence was chosen as a compromise between maximising the

interfacial electric field and minimising the penetration depth of the field. It would have been

preferable to work nearer the critical angle in order to minimise t‖,x as this simplifies spectral

analysis. However, for work at the silica-water interface this is not feasible because the penetration
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depth becomes infinite and any spectra will be swamped with water signal. In addition, the finite

numerical aperture of the pump laser implies that half of the incident light will be transmitted as

it will be below the critical angle.
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Figure 1.11: A graph showing the variation of the Fresnel transmission coefficients for the silica-
water interface (nsilica=1.46, nwater=1.33) as a function of incident angle. t‖,x black line, t‖,z red
line, t⊥,z blue line.

1.11 The Raman effect

1.11.1 Background

When a monochromatic source of light is incident on a transparent medium most of the light

is transmitted but some is scattered.39 Of this scattered light, the vast majority is of the same

wavelength as the incident light source; we say this light has been scattered elastically and the

effect is called Rayleigh scattering (Lord Rayleigh, John Strutt, explained this effect with classical

wave theory in 1871). Alongside this elastically scattered light is a small component of inelastically

scattered light that has a different wavelength to the incident source, sometimes higher sometimes

lower, stokes and anti-stokes respectively. This light of shifted wavelength is the result of what

is now called Raman scattering after the eponymous Chandrasekhara Venkata Raman who was

the first to observe it experimentally in 1928. The Raman effect was first predicted theoretically

by Smekal in 1923 and by 1934 Plazek had predicted almost all of the related phenomena now

observed. In some German literature it is still known as the Smekal-Raman effect.

The Raman effect can be treated in different ways. It can be given a purely classical descrip-

tion, a mixed classical and quantum description or a purely quantum description. The method

appropriate largely depends on the exact nature of the Raman experiments being carried out. For

example, when conducting resonance enhanced Raman experiments, the purely quantum or mixed
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description is needed as it is not possible to explain the transition from one electronic state to

another in classical terms.40 For this work, although the energy of the incident radiation is much

greater than that of the largest vibrational transition, it does not necessitate a quantum mechani-

cal description as only vibrational transitions are involved.

In a Raman setup, the sample is irradiated with an intense monochromatic light source,

typically in the visible region of the electromagnetic spectrum. The photons emitted from this

light source have inelastic collisions with sample molecules, where the vibrational energy of the

molecules is changed by an amount ∆Em. For energy to be conserved, the energy of the scattered

photon, hνs, must be different from the energy of the incident photon hνi by the same amount

∆Em:

hνi − hνs = ∆Em (1.98)

If a sample molecule gains energy, ∆Em is positive and so νs must be smaller than νi; it is this

increase in energy during the scattering which gives rise to the Stokes lines. If the molecule loses

energy as a result of the scattering event, ∆Em must be negative and so νs must be larger than

νi; the results the anti-Stokes lines in a Raman spectrum. The Stokes/anti-Stokes nomenclature

seems to have drifted into the Raman field from the Stoke’s Law in fluorescence which states that

the emitted light should always be of lower frequency than the exciting radiation.

As shown in figure 1.12, in absorption/emission processes such as those in IR-spectroscopy,

the difference ∆Em between the energies of the two vibrational states has to equal the energy of

the incident photon for the transition to take place. For Raman scattering this is not the case;

Raman scattering is not a normal absorption/emission process, an incident photon has an energy

very much greater than hνm, where νm is the fundamental vibrational frequency. When the photon

interacts with a molecule in the ground vibrational state, the molecule is raised momentarily to

some higher level of energy that does not correspond to a normal vibrational level of the molecule,

we call this a virtual energy level – it is not an eigenfunction of the Hamiltonian in the absence of

the external electromagnetic field. Scattering, unlike absorption/emission, cannot be distinguished

into two processes even though it is often drawn like that in Jablonski energy level diagrams.

In Raman spectra, the anti-Stokes lines are much smaller than the Stokes, an experimental

fact that can quite easily be explained by the Boltzmann distribution:

n1

n0
= ehνm/kT (1.99)

where n0 and n1 are the populations of the ground and higher levels respectively, h is Planck’s

constant, hνm is the energy of n1, k is Boltzmann’s constant and T is the temperature. There are

exponentially fewer occupied ν1 levels compared with ν0 levels at 298 K.

1.11.2 Classical description

The Raman effect results from a change in a molecule’s polarisability with respect to a partic-

ular vibrational mode’s normal coordinate. This is the fundamental requirement for a vibrational

mode to be Raman active.

If a molecule is placed in the electric field of intense electromagnetic radiation then the elec-

trons and protons within the molecule experience a force that acts upon them in different directions.

Because of this force the electrons are displaced relative to the protons within the molecule; we
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Figure 1.12: A diagram of adsorption/emission, Rayleigh scattering, Stokes-Raman scattering and
anti-Stokes Raman scattering.

say that a dipole moment µ has been induced in the now-polarised molecule,

µ = αE. (1.100)

Where E is the electric field strength of the radiation inducing the dipole and α is the polarisability

of the molecule. The electric field of the incident electromagnetic radiation is given by,

E = E0 cos 2πνit, (1.101)

where E0 is the maximum electric field strength of the oscillating electric field, νi is the frequency

of the oscillation and t is the time. The oscillating electric field induces an oscillating dipole within

the molecule at the same frequency:

µ = αE0 cos 2πνit. (1.102)

This oscillating dipole moment emits radiation of the same frequency in all directions, and the in-

tensity of the radiation is proportional to the square of the maximum value for the dipole moment

– α2E2
0 . This mechanism is the source of the Rayleigh scattering which would be the only type of

molecular scattering if the molecule did not posses its own internal vibrations.

Generally, in the course of a vibration, a sample molecule changes its size and shape, and

subsequently its polarisability. In other words the value of α is not constant with the normal coor-

dinate of a given vibrational mode of a sample molecule. For small displacements the polarisability

can be expanded as a Taylor series,

α = α0 +
∂α

∂Q
Q, (1.103)

where α0 is the equilibrium polarisability, Q is the normal coordinate and ∂α/∂Q is the rate of

change of polarisability with respect to Q measured at the equilibrium configuration. Higher-order
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terms are neglected in the harmonic approximation. The normal coordinate varies periodically:

Q = Q0cos2πνvt (1.104)

where νv is the vibrational frequency. Combining 1.103 and 1.104 yields:

α = α0 +
∂α

∂Q
Q0 cos 2πνvt (1.105)

the substitution of 1.105 into 1.102 gives

µ = α0E0 cos 2πνit+
∂α

∂Q
E0(cos 2πνvt)(cos 2πνit) (1.106)

by making use of the trigonometric identity cosα cosβ = 1
2cos(α− β) + 1

2 cos(α+ β) we have:

µ = α0E0 cos 2πνit+
∂α

∂Q

Q0E0

2
[cos 2π(νi − νv)t+ cos 2π(νi + νv)t] (1.107)

Equation 1.107 shows that the induced dipole moment µ varies with three component frequencies;

νi (Rayleigh frequency), νi−νv (Stokes frequency) and νi+νv (anti-Stokes frequency). The classical

description described above corresponds to the quantum mechanical result for Raman transitions

when ∆ν = ±1. An important shortcoming of the classical description of Raman scattering is that

it incorrectly predicts the relative intensities of the Stokes and anti-Stokes bands.

1.11.3 Polarisability

The polarisability α is described by a tensor; for perfectly symmetrical molecule the polaris-

ability is the same in all directions, as a result the induced dipole moment discussed above must

be parallel to the vector components of the electric field in each axis:

µx = αEx , µ = αEy , µz = αEz (1.108)

For all molecules of lower symmetry the polarisability is not identical along each axis (i.e. in all

directions) and may be substantially different. Due to this asymmetry the induced dipole moment

µ will not be parallel to the incident field components in each axis. We need to write a series of

equations that take this into account:

µx = αxxEx + αxyEy + αxzEz (1.109)

µy = αyxEx + αyyEy + αyzEz (1.110)

µz = αzxEx + αzyEy + αzzEz (1.111)

The polarisability which we refer to in the classical description above comprises the whole system

of α constants. This system of coefficients which relates the vectors µ and E is called a tensor.

α =

αxx αxy αxz

αyx αyy αyz

αzx αzy αzz

 (1.112)
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The polarisability tensor is symmetrical, i.e. αij = αji. In any coordinate system there are two

values that are independent of the coordinate system chosen. These are the mean polarisability:

ᾱ =
1

3
(αxx + αyy + αzz) (1.113)

and the anisotropy γ given by

γ2 =
1

2
[(αxx − αyy)2 + (αyy − αzz)2 + (αzz − αxx)2 + 6(α2

xy + α2
xz + α2

yz)] (1.114)

the value of γ tells us how much a molecules polarisability ellipsoid is different from the polaris-

ability of a perfectly symmetric molecule. All these arguments hold for polarisability derivatives

α′ij =
dαij
dQ that govern Raman scattering.
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Chapter 2

Materials and methods

2.1 Materials

The lipids 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphotidylethanolamine (POPE) (99%), 1-palmitoyl-

2-oleoyl-sn-glycero-3-phosphotidylcholine (POPC) (99%), d31-POPE and d7-cholesterol were pur-

chased from Avanti Polar Lipids Inc. (Alabaster AL). Cholesterol, egg-sphingomyelin (99%)

(egg-SM) and tris(hydroxymethyl)aminomethane (Ultra-grade) (tris) were purchased from Sigma-

Aldrich. All chemicals were used as received, and phospholipids were used fresh from unopened

ampules for each experiment. All water was obtained from a Millipore gradient A-10 water filtra-

tion unit (18.2 MΩ cm, TOC >4ppb). Deuterated surfactant dSDS and dCTAB were purchased

from CDN isotopes both 98% D with overall purity of 98%.

2.2 Cleaning procedures

For all experiments lab glassware, spatulas, tweezers, PTFE tubing, o-rings and associated

valves were cleaned overnight in ≈4% Borer PF15 or Decon-90 solution. The AFM fluid cell was

cleaned in the same solution but at a much reduced concentration (1-2%). AFM cantilevers were

cleaned in a plasma cleaner (BIO-RAD Plasma Asher E2000), air plasma, for a few minutes prior

to use. The optical hemispheres used with the TIR-Raman flow cell were cleaned in chromic acid

for at least 4 hours. All of the above were rinsed in 20 eqv vols of MilliQ water before use. Often

glassware was examined for cleanliness by visual inspection of wetting by water prior to use.

2.3 Vesicle preparation

Vesicles were prepared solely by the sonication method. For SLB formation kinetics (Chapter

3) all suspensions had a final concentration of 0.5 mg ml−1. Final concentrations varied between

0.3 and 0.5 mg ml−1 for other work. The required masses of phospholipid, sphingomyelin and

cholesterol were placed in round bottomed-flasks and dissolved in either chloroform for the samples

of pure phospholipid or chloroform and methanol (9:1) when sphingomyelin was present. The

solvent was evaporated under vacuum and mild heating using a rotary evaporator. Following thin
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film formation within each flask, the samples were left under vacuum (< 1 mbar) for one hour to

remove any remaining solvent. The films were then hydrated in the required volume of 20 mM tris

buffer pH 7.4 with added 2 mM CaCl2 or 100 mM NaCl if required. Finally the suspensions were

sonicated for 1.5 hrs in a bath sonicator (Langford sonomatic 475H) at a typical temperature of

40◦C ± 2◦C to form final lipid suspensions.

2.4 Raman spectroscopy

2.4.1 Overview

The TIR-Raman spectrometer used throughout my studies was based upon a commercial

system (Renishaw Ramascope 1000, Wooton-under-edge,UK); originally a confocal system, our

group has adapted it for TIR-Raman by the addition of custom delivery optics. The laser used

was a frequency-doubled solid-state-laser (Opus 532, Laser Quantum, Manchester, UK), that emits

horizontally polarised light of 532 nm wavelength. For most measurements this laser was operated

at 800 mW, which corresponded to a power of ≈ 530 mW at the sample. A schematic of the

delivery optics is shown in figure 2.1. After leaving the laser head the horizontally polarised

incident beam was passed through a polarising beamsplitter to ensure the accuracy of the incident

light’s polarisation. Subsequently, the beam was directed though a half-wave plate to select the

correct polarisation for the measurement being taken, either S or P polarised. After the polariser

the beam was passed to a telescope consisting of a -25 and a 125 mm lens, the first to expand

the beam and the second to collimate it. The reason for the telescope was to increase the beam’s

cross-section thereby facilitating a tighter focus on the sample after the final lens. At this stage the

beam diameter was approximately 10 mm. Following the telescope the beam was reflected from

a mirror at 90 degrees and then directed to a periscope where the beam was delivered vertically

to the final mirror. After the final mirror the beam was delivered to a gradient index lens (f=120

mm), to focus the beam down to an ellipse of ≈ 30 µm × 10 µm onto the sample with the minimal

optical aberrations.

Generally the sample consisted of an IR or UV grade fused silica hemisphere (Global Optics,

Bournemouth, UK) mounted to the top of a closed glass flow cell and temperature control jacket.

The translational position of the sample cell could be adjusted by way of micro-motion stages

(Newport) to which the cell was attached. Occasionally spectra were acquired from solid samples

deposited on silicon wafers by evaporation from solvent solutions. Figure 2.2 shows the collection

and spectrometer optics. Light scattered from the interfacial region of the flat bottom of the

hemisphere and the solution held within the flow cell was collected by an ultra long working

distance 50 X microscope objective NA 0.55 (Olympus) and delivered through a Leica DM-SM

microscope to the spectrometer. The microscope was equipped with a white light source and video

camera for aligning the sample within the beam. Whether the scattered light was diverted to

the spectrometer, or the white light source was shone to the sample and reflected back into the

camera depended on the configuration of a half-mirror and a mirror in the filter magazines of the

microscope. Within the spectrometer an edge filter removed the 532 nm Rayleigh line and any stray

incident reflected light. The Raman light was then passed through a half-wave plate and polariser

if polarisation control over the scattered light was considered necessary. N.B. These elements could

be removed from the optical path when unnecessary. Subsequently, the beam was focussed through

a ≈200 µm slit, collimated, then reflected from a prism onto a motorised diffraction grating finally
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being focussed onto the CCD with a lens.

Figure 2.1: A schematic showing the delivery optics for the TIR-Raman spectrometer, shown from above,

not to scale.

Figure 2.2: A schematic showing the collection optics and the internal optics of the TIR-Raman spec-

trometer, not to scale.
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Figure 2.3: A schematic showing a representative section of the flow cell.

2.4.2 Sample environment

The sample environment used for TIR-Raman experiments consisted of a temperature-controlled

fluid cell with wall-jet geometry (Figure 2.3). A polished (40:20 scratch-dig ratio) optical UV- or

IR-grade, fused-silica hemisphere (Global Optics, Bournemouth, UK) was mounted on the top of

the flow cell, into which the external laser beam was delivered at the desired angle of incidence

(73◦). The hemisphere was used to reduce optical aberrations and increase the collection efficiency;

it was sealed to the glass flow cell with a Viton O-ring and a Teflon bracket. The whole assembly

was supported in an adjustable mirror holder. Solutions were introduced into the flow cell through

PTFE tubing and valves (Omnifit™). The inlet tubing was arranged such that any trapped air bub-

bles could be removed before entering the flow cell. During kinetic measurements (discussed later)

solutions were injected into the flow cell with a motorised syringe pump (Harvard Apparatus) at

a constant flow rate of 0.300 ml min−1 from a gas tight syringe (Hamilton). For equilibrium mea-

surements the cell was often pre-filled with the required solutions. Temperature was maintained

by a circulating temperature control bath connected to the temperature control jacket of the fluid

cell. The internal temperature of the flow cell was monitored with a thermocouple and adjusted

to the required value by altering the set-point on the control unit of the bath. The central volume
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of the flow cell where all experimental solutions passed had a volume of 6 ml and the inlet was

positioned 1.8 mm from the flat surface of the optical hemisphere. The inlet tube had an internal

diameter of 2 mm. The hydrodynamics of the wall-jet are well defined. This geometry leads to a

stagnation point below the centre of the hemisphere where the laser is focussed. This stagnation

region makes any mass transport from the bulk to the silica-water interfacial region being studied

diffusion limited, if the adsorption kinetics are sufficiently fast.

2.4.3 Alignment

Careful laser alignment was conducted before any series of experiments to ensure that the

beam was incident at the correct angle of incidence, 73◦, in the correct plane and was of the correct

polarisation. Usually the first step in this procedure was to check that the telescope elements were

positioned correctly ensuring that back reflections were overlapped on the axis of the original beam

and that following the telescope the beam was effectively collimated. Generally alignment before

the telescope was unnecessary as these elements were fixed and never adjusted except under unusual

circumstances; being within a safety housing surrounding the laser unit itself. The mirror following

the telescope was set to deliver the beam to the periscope mirrors at 90◦. Between this mirror and

the periscope was an iris, used to aid in the alignment procedure of the broad collimated incident

beam by reducing the spot size to small point. The centering of this iris about the incident beam

was carefully checked. The last mirrors were then adjusted to deliver the beam at the correct

angle of incidence. The incident angle was set by checking the height of the beam at two distances

measured from the centre of the sample along the beam axis using a section of graph paper fixed to

the base support of the microscope marked with these distances. The heights were measured using

a brushed metal ruler attached to a brass block acting as a support; at all times during alignment

very low laser powers were used by way of neutral density filters positioned at the laser head. The

heights required for a 73◦ angle of incidence are shown in figure 2.4, before the sample was put

into position, the heights at -150 mm and +160 mm were used. After the sample was positioned

both heights were measured at 150 mm. When the incident angle of the beam was set correctly

the gradient index lens could be brought into place, at this stage the back reflection was checked

to indicate that the lens was normal to the beam and the centering of the beam within the lens

was checked by ensuring that the final height measurement at 160 mm from the sample remained

156 mm. The focal point of the microscope and the beam were then adjusted to coincide in space

by subtle adjustments in the position of the final mirrors.

Following the alignment of the delivery optics, the sample flow cell was pre-filled with water

and brought into position, attached to the micro-motion stage and the centre of the bottom surface

of the hemisphere was located. The focus of the laser spot was optimised and the height and lateral

position of the reflected spot were examined on the ruler. If the sample hemisphere was found not

to be flat, the reflected spot would not be centred at 251 mm on the ruler but at some other height

and possibly displaced laterally from the original beam axis. Thumb screws that were part of the

mirror holder were used to correct the positioning of the hemisphere relative to the incident beam,

several iterations of this procedure were usually required. At this stage the spectrometers optics

were aligned and optimised. A readout of the full CCD area was obtained with the grating centred

at 3000 cm−1 using the spectrometers software. This wavenumber position corresponds to the the

O-H stretching region. This was done firstly to give a strong indication that light was reaching

the CCD as the O-H band is generally the largest feature in our spectra and secondly to see what

the overall signal levels were like. The translational position of the image on the CCD was then
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Figure 2.4: A schematic showing the vertical position of the beam at different distances from the sample

along the beam axis. Drawn to scale.

optimised by adjusting the translational position of the first focussing lens in the spectrometer

(before the slit) and its focus. After this a 1 second acquisition of the water region was acquired in

an infinite loop, whilst the same adjustments as before were made to further optimise the overall

signal levels. Finally another full scan of the CCD was obtained and the section over which the

spectrum was to appear was binned to throw away the noise generated by the unused sections of

the CCD. If these actions failed to generate any signal the turret of the microscope needed to be

realigned to deliver the scattered light into the the spectrometer correctly; following this the prior

procedures for optimising the signal within the spectrometer were carried out again. The final step

in the alignment procedure was to calibrate the wavenumber scale of the spectrometer by setting

the Si band to 520 cm−1. A good signal level at around 3200 cm−1 was ≈2000 counts per second

at 73◦ incidence, S-polarised and unpolarised detection with 800 mW incident laser power.

2.4.4 Measurements

The TIR-Raman spectrometer is controlled by a PC with the WiRE v2 (service pack 9)

software from Renishaw. It is in this software that the aforementioned optimisations were carried

out. The software allows for customisation of measurements. However, at a basic level two types

of measurement can be carried out. The first is a fixed scan, where the diffraction grating is

stationary. With the diffraction grating available this corresponded to a total spectral bandwidth

of ≈ 660 cm−1. In this mode of operation measurements as short as 0.5 s could be acquired with

a CCD readout time of 1 s. In the other fundamental mode of operation the motorised diffraction
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grating could be scanned across a wider spectral bandwidth but with a much longer acquisition

time, for the spectral region which we were interested in (1200-3200 cm−1) this was 10 s.

2.4.4.1 Extended scans

Extended scans were used to acquire high quality spectra of systems at equilibrium, these

were done to gain spectra of pure component systems or to look at the results of interactions

after any dynamic processes had taken place. Examples of where I use this type of scan include

Chapter 3 where I calculate the composition of a mixed SLB by selective deuteration and also in

Chapter 5 where I discuss the interaction of SLBs with surfactants. Typically 10 s spectra were

acquired, with 10-20 cumulative acquisitions in order to improve the SNR. These extended scans

were mostly acquired between 1200 cm−1 and 3200 cm−1. The reasons why we chose the lower

and upper bounds for the wavenumber positions was simple; below 1200 cm−1 the silica bands

from the substrate obfuscate any bands of interest and there were no features of interest above

3200 cm−1. A benefit of extended scans is that the intensity contribution to each data point comes

from every pixel and therefore the variations in individual pixel sensitivities that lead to variance

in fixed scans are averaged out.

2.4.4.2 Fixed scans

Fixed scans were used where only a small section of the spectrum was required, for example

in my phase transition work in Chapter 4; or where the overriding requirement was temporal

resolution i.e. where kinetic spectra were required for a specific dynamic process, for example the

dynamics of surfactant incorporation into an SLB. As with the extended scans, for systems at

equilibrium multiple acquisitions were acquired to improve the SNR. For kinetic measurements the

software could be set to take repeat measurements over a fixed period of time. Generally some

idea of the length of a process was acquired by conducting a first measurement over an arbitrarily

long time period, when it was clear from the raw data that the system was no longer changing,

the measurement could be aborted in such a way as to preserve the data acquired. Subsequent

measurements of the same process were then acquired for the known fixed time period.

2.4.5 Analysis

TIR-Raman data were analysed in three different ways depending on what kind of experiments

were begin carried out and what information was desired. The first which I term “order analysis”

involved the direct extraction of information from the spectra using order parameters after the

subtraction of a background previously acquired of the silica substrate. The second was target

factor analysis (TFA), a form of Eigen analysis, which involves the reconstruction of the spectra

acquired for a large set where each individual spectrum contains a relative contribution of certain

target pure spectra representative of the components composing the system under study. The last

which I call composition analysis was conducted where we wished to learn the composition at the

interface but either too few spectra were acquired or there was limited change so TFA was not

applicable.
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2.4.5.1 Order analysis

When TIR-Raman spectra are acquired from interfacial systems such as SLBs, it is necessary

to subtract the combined subphase and substrate background (figure 2.5). Generally a multiplica-

tive factor must be employed as the intensity of the features in the background will be reduced

in the spectrum of the system because solvent molecules are displaced from the region closest to

the interface. Also, subtle changes between measurements altered the overall signal levels. These

changes needed to be accounted for to conduct quantitative analysis. In addition, as features of

the background change with temperature, background spectra need to be acquired at or as close

as possible to the temperatures used to study the system of interest. For example, the intensity

and shape of the O-H stretch change as the temperature is increased. One must also consider

the effect of pH changes, as the nature of the functional groups on the silica support will change

at different pH. The factor used in subtraction was selected by finding the intensity ratio of the

reference background to the background in the spectrum of interest, a suitable data point in the

spectrum was chosen for this purpose; commonly this was the peak of the water band.

Figure 2.5: TIR-Raman spectra acquired of the silica-buffer interface and an SLB subsequently adsorbed

to that interface.

After the appropriate background was subtracted the data were then analysed by using a

selection of semi-empirical order parameters developed to understand the structural changes tak-

ing place. The primary conformational marker is the ratio of the antisymmetric (≈2890 cm−1) to

symmetric (≈2850 cm−1) CH stretch peak intensities, I(d−)/I(d+).41 This marker is sensitive to

rotations, kinks, twists and bends of the alkyl chains present in the sample molecules. A higher

ratio indicates relatively ordered chain structure, a lower ratio indicates a more disordered chain
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structure; for liquid-like alkanes the parameter ranges from 0.6-0.9, likewise for crystalline alkanes

1.6-2.0. N.B. these ranges will change depending on how an experiment is carried out and the

average orientation of the sample molecules within the probed volume; i.e. the polarisation of the

incident and scattered light will affect the absolute values of the ratio. For these reasons I calcu-

lated the ratio for spectra acquired using S-polarised incident light and unpolarised detection, as

the overall signal levels were highest and both stretches had strong signals. In fact, the diffraction

grating has different sensitivities to S- and P-polarised light relative to its own surface and this

also affects the ratio.

The peak positions of both the anti-symmetric and symmetric CH stretches are also con-

formational markers; a shift to higher frequency is indicative of increased chain disorder as it

corresponds to a reduction of the oscillatory damping between adjacent Raman vibrational cen-

tres. i.e. as disorder increases, coupling between adjacent vibrational modes is reduced, the volume

available to these modes increases and the effect is an increase in vibrational frequency.

The degree of chain tilting can be calculated by integrating the CH region of the spectrum

for both S and P polarised incident light. As the S-polarised incident light primarily samples

vibrational models aligned parallel to the the interface and the P-polarised light primarily samples

modes perpendicular to it, the ratio of these gives a relative degree of chain tilt. If the chains are

mainly all crystalline and upright simple geometric considerations tell us that most of the CH2

groups will be aligned parallel to the surface and the signal generated in the S-polarised spectrum

will be greatest.

For experiments with few spectra the I(d−)/I(d+) and peak position order parameters can

be calculated most easily using commercially available software. In these instances I used Origin

Pro 8.1. However, for experiments with large numbers of spectra, as an example a series of ki-

netic measurements taken every second for a few hours, this methodology becomes cumbersome.

As result I wrote some programs in Matlab to conduct this analysis with the minimum of user

intervention. The user can choose to average spectra if required, for example if signal levels are

low, and then can select the ranges within the spectra for the above parameters to be calculated

and graphed. Peak positions and their intensities are extracted by fitting 4th order polynomials

to the peaks of interest and then finding their maxima. These programs are found in Appendix B

2.4.5.2 Target factor analysis

Kinetic TIR-Raman spectra acquired throughout my studies were analysed using the tech-

nique of target factor analysis (TFA).42 TFA is a multivariate statistical technique that reduces

a matrix of data to its simplest dimensionality. TFA uses the concept of factor space and trans-

formations of the coordinate axes within that space. The aim is to locate physically recognisable

fundamental factors which combine to make up the original data set held within the matrix. TFA

and the related principal component analysis (PCA) originate in work carried out by behavioural

scientists in the early 20th century. However, it was not until the advent of relatively powerful

computers towards the end of the same century that TFA gained the interest of chemists. Today

TFA is frequently employed to solve chemical problems, particularly those in spectroscopy.

TFA can be used wherever you have a matrix of experimental data D with elements dik,

where each measurement can be expressed as a linear sum of product terms.

dik =

n∑
j=1

rijcjk (2.1)
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where rij is the jth factor associated with row i, and cjk is the jth factor associated with column k.

For instance, factor j could be a spectral contribution to a total spectrum comprised of j spectra,

where i gives the intensity at the experimentally measured wave numbers k. The number of terms

in the summation n is the number of factors necessary to represent the data; at this stage they are

purely abstract and are void of physical meaning – but the aim is to transform them into physically

realistic factors. The actual number of factors is determined by the smaller of the two dimensions

of the n x m matrix D. The first goal of target factor analysis is to decompose D into two abstract

matrices such that

D = RC (2.2)

where R is an abstract row matrix and C is an abstract column matrix. There will be n columns

in R and n rows in C. i.e. there will be the same number of columns and rows in each respectively

as there are factors (eigenvectors) necessary to adequately model the dataset D. There are several

ways in which the decomposition can be done but the most frequently used, and the method chosen

here, is singular value decomposition (SVD). In SVD the decomposition into eigenvectors is written

as

D = USV′ (2.3)

where US = R and V′ = C. S is a diagonal matrix with values equal to the square roots of the

eigenvalues of the eigenvectors or abstract factors. Experimentally, there are more factors than are

necessary to accurately represent the data set with an abstract model; most of the factors pertain

to noise or small spectral changes and are often unnecessary depending on what information one

wishes to extract. The next step of PCA/TFA is the selection of the actual number of factors

that are necessary for the model s; i.e. where we drop the irrelevant factors, leaving only a

few factors suggestive of the chemical components of the physical system being studied – thus

reducing the dimensionality of the factor space. This action is called factor compression and the

results are the reduced matrices R̄ and C̄. One can gain an appreciation of the number of factors

needed through a consideration of the chemical system under study, e.g. how many chemical

components are expected? It is at this point that PCA and TFA differ; in PCA after the number

of important factors has been identified, the abstract model is essentially complete. It may be that

the user wishes to simplify the abstract solution by finding simpler abstract factors, in this case

the coordinate axes can be transformed through orthogonal or oblique rotation. In TFA however,

the most rewarding step takes place at this stage; like PCA a coordinate transformation can take

place, but the resulting changes to the factors can be tested against user supplied target vectors,

xil; in spectroscopy these will often be spectra of the pure component species. Mathematically we

have,

X̂ = R̄T (2.4)

likewise

Ŷ = T−1C̄ (2.5)

where X̂ and Ŷ are the transformed matrices - the abstract factors now transformed into physically

realistic refined spectra representing the target spectra. T is a transformation matrix of size

n× n. The power of this particular method stems from the fact that each target can be looked at

individually despite the intrinsic multivariate nature of the overall analysis. Examining 2.4 we can

see that the lth row of X̂, x̂l, is generated by multiplying R̄ by the lth column vector of T.

x̂l = R̄tl (2.6)
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When seeking tl for R̄ of a given compressed data set a least squares procedure is used. The

transformation vector tl has vector components t1l, t2l, ..., tnl. Considering each row of the matrix

R̄ is a row vector with vector components ril, ri2, ..., rin. To obtain the projection of the ith row

vector of R̄ on the new coordinate axis the dot product of the row vector with the hypothetical

transformation vector tl is taken

x̂il = r′i · tl = ri1t1l + ri2t2l + ...+ rintnl (2.7)

the sum indicated in 2.7 is taken over the s principal factors that were selected. Multiplying each

row of R̄ by tl gives each element of the newly transformed row vector x̂l i.e. x̂1l, x̂2l,..., x̂rl. In

the least squares procedure used here each element of the predicted row vector is compared to that

of the test vector; our target. We first calculate the difference between each element of the test

vector xl and the equivalent element of x̂l,

∆xil = x̂il − xil = rilt1l + ri2t2l + ...+ rintnl − xil. (2.8)

In our search for the best transformation vector tl we sought to minimise each 2.8 by setting

the sum of the derivatives of the squares of all of the differences equal to zero. For example the

derivative with respect to t1l

d(∆xil)
2

dt1l
= 2r2

i1t1l + 2ri1ri2t2l + ...+ 2ri1rintnl − 2ri1xil (2.9)

taking the sum over each row of R̄ we get,

r∑
i=1

d(∆xil)
2

dt1l
= 0 = ttl

∑
i

r2
il + t2l

∑
i

ri1ri2 + ...+ tnl
∑
i

ri1rin −
∑
i

ri1xil (2.10)

repeating this procedure for each of tnl and rearranging yields a system of rn simultaneous equa-

tions, ∑
ri1xil = t1l

∑
r2
i1 + t2l

∑
ri1ri2 + · · ·+ tnl

∑
ri1rin (2.11)∑

ri2xil = t1l
∑

ri1ri2 + t2l
∑

r2
i2 + · · ·+ tnl

∑
ri2rin (2.12)

... (2.13)∑
rinxil = t1l

∑
ri1rin + t2l

∑
ri2rin + · · ·+ tnl

∑
r2
in (2.14)

which we can express in matrix form as,

al = Btl (2.15)
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where

al =


∑
ri1xil∑
ri2xil
...∑
rinxil

 (2.16)

B =


∑
r2
il

∑
rilri2 · · ·

∑
rilrin∑

rilri2
∑
r2
i2 · · ·

∑
ri2rin

...
...

...∑
rilrin

∑
ri2rin · · ·

∑
r2
in

 (2.17)

tl =


t1l

t2l
...

tnl

 (2.18)

multiplying both sides of 2.15 by the inverse of B gives,

tl = B−1al (2.19)

inspection of B shows that

B = R̄′R (2.20)

and similarly for al

al = R̄xl (2.21)

leaving us with the most important equation of target factor analysis,

tl = (R̄′R̄)−1R̄′xl (2.22)

this expression allows us to calculate the lth column of the transformation matrix for the lth target

factor, we then use this to generate the predicted vector in 2.6 and compare this to the original

target to see if it is a realistic physically representative factor.

After transformation the end result of TFA is a component weight for each physically mean-

ingful factor or chemical component contributing to the spectra in a series. For pure lipid species

in a TIR-Raman experiment these will be for water, the lipid and, depending on the spectral region

under study, possibly the substrate. The component weights are purely relative and the absolute

values in general have no meaning. If absolute information is required the component weights must

be calibrated to gain surface excess values. In general this can be done (granted several assump-

tions) in TIR-Raman with soluble amphiphiles that form disordered surface layers that become

saturated at a bulk concentration.43 Lipids are in generally virtually insoluble, to form a SLB

requires a concentration far greater than the CAC or critical aggregation constant. Given that

the calibration curve requires data points of increasing concentration over an order of magnitude

above the concentration required for SLB formation, and the fact that this leads to a build-up of

extraneous aggregates or vesicles (see Chapter 3), means that the method used for calibration is

both prohibitively expensive and technically impossible. In my work I have used the fact that the

spectra are very similar for lipid in different buffer solutions to use the same refined spectra for

subsequent analyses of formations of the same lipid, this means that component weights acquired

in different buffers are comparable.
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2.4.5.3 Composition analysis

For composition analysis the component species require either distinct vibrational modes that

are un-occluded by other Raman bands or, for overlapping bands, sufficiently distinct contour.

Where these criteria are not met, selective isotopic labelling to give a marker for the species of

interest is necessary. After obtaining Raman spectra of the pure components of interest, we can

relate the size of the isolated band in the mixture to the relative contribution of the species to a

region where the system components have bands overlapping. If one normalises the contribution

in this region to the number of active modes in the species of interest and then finds the total

contribution to that region from the species of interest using the un-occluded band, it is possible to

extract the mole fraction of that species. In my studies the shared region is the CH region between

2650-3100 cm−1. TFA can be used to the same ends if spectra of several different compositional

ratios are available and the differences between the spectra of the pure components are large

enough. For the two component case,

ImCH = IACH + IBCH . (2.23)

Where ImCH is the CH region integrated intensity of the mixture, IACH is the CH region integrated

intensity for component A and IBCH is the CH integrated intensity for component B. For each pure

component we can integrate an isolated band and the CH region intensities, we then take the ratio

of the two,

RBp =
IB,pCH

IB,pisol

. (2.24)

Where the subscript and superscript p indicate that these values are for the pure component.

Multiplying RBp by Imisol, the intensity of the isolated band in the mixture, yields the contribution

of B to the CH stretching region. i.e.

IB,misol R
B
p = IB,mCH (2.25)

the remaining CH signal is due to species A,

IA,mCH = ImCH − I
B,m
CH (2.26)

To estimate mole fractions we divide these CH contributions by the number of CH bonds in the

respective species, and then divide each by the resulting total normalised CH intensity

XA =
IACH,n

IACH,n + IBCH,n
(2.27)

and

XB =
IBCH,n

IACH,n + IBCH,n
(2.28)

This ratio method can be applied to mixtures of N species provided there are N − 1 independent

bands available to conduct the analysis. If isotopic labelling is necessary to meet this requirement,

the relative Raman cross-section per bond must be found by preparing 50:50 mixtures of the labelled

and unlabelled species and calculating the relative intensities in the CH and CD regions of the two.

If only partial deuteration is available this must be taken account of at this stage too. This method

ignores any changes in the band ratios for the species in the mixture owing to interactions between
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the components and associated local environment effects. For instance, it ignores alterations in

band ratios resulting from phase transitions associated with mixing and temperature changes –

measurements of the calibrating band ratios must be acquired in the same/similar phase to that

expected for the mixture under study.

2.5 Atomic force microscopy

AFM measurements were conducted on a Digital Instruments Multimode Nano-scope IV (re-

cently merged with Bruker Corporation) equipped with the J-scanner and temperature control

unit. The J-scanner gives a lateral imaging area of 125 µm by 125 µm and was the wider viewing

of the two scanners at my disposal – it offers a maximum lateral viewing area larger than the

area probed by the TIR-Raman spectrometer (10 x 30 µm) and therefore offered the ability to

image interesting phenomena highlighted by TIR-Raman. The AFM was controlled through its

proprietary Nanoscope software, which along with Gwyddion was also used for image analysis and

correction. As my SLB systems needed to be immersed in buffer solution I used the MTFML fluid

cell (figure 2.7) with fluoropolymer sealing O-ring. I chose the Veeco NP-S probe for my studies,

using the 0.06 N m−1 cantilever. This probe was chosen due to its softness – which is a benefit in

fluid tapping mode – and its high reflectivity gold coating, which increased the signal generated at

the quad cell in the microscope. Before aligning the AFM, the MTFML cell was positioned with

the cantilever onto the substrate (a cleaned silicon wafer or fused silica disk) and the cell was pre

filled with buffer solution. Then the optical path within the scanner head was aligned. Within the

scanner head, a small diode laser was reflected from a mirror onto the back of the cantilever near

the probe. The position of the laser spot was then adjusted using the relevant thumb screws on

the scanner head (figure 2.6) and an optical microscope connected to a video camera coupled to a

small television screen. After the beam spot position was set, a small tilt mirror on the opposite

side of the scanner head was adjusted to reflect the beam onto a small quad photodiode cell; this

spot was then centered on the quad cell by adjusting the cells position relative to the spot using

further thumbscrews.

In AFM tapping mode one seeks a resonant frequency of the cantilever and a suitable RMS

amplitude for the cantilever’s oscillation, this is sought manually in fluid experiments but auto-

matically in air. When a suitable resonance is located, the drive frequency is offset very slightly to

the side of the resonant peak and the relative phase of the drive and cantilever oscillation is zeroed.

The cantilever is then brought down towards to the sample. In fluid work, false surfaces are often

detected and you have to ask the software to find the surface multiple times. Once the real surface

is found the amplitude of the oscillation is reduced until the cantilever is no longer in contact with

the surface, it is then slowly increased until the amplitude of the cantilever’s oscillation is just

sufficient that the cantilever is touching the sample surface. Following this the microscope was set

to scan one line of the sample repeatedly and the integral and proportional gains on the instrument

were set to optimise the overlap of the trace and retraces as far as possible. Usually scan rates of

1 Hz were used in fluid as poor image quality is obtained if the instrument is set to run any faster.

When the operating parameters had been set satisfactorily, the slow scan axis was enabled and

images of the surface were acquired. Each image took 512 s to complete.
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Figure 2.6: A schematic of the AFM scanner head. Courtesy of Bruker Corporation.

Figure 2.7: A Photograph of the MTFML flow cell. Courtesy of Bruker Corporation.
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2.5.1 Image analysis

Images acquired by AFM often have artefacts. Some artefacts stem from technical problems

associated with a given experiment, for example those associated with damaged probe tips or

unwanted vibrations of some kind. Other artefacts are unavoidable and stem from the design of

the AFM being used; an example is the bow commonly seen in large area AFM images, which

occurs because the piezoelectric scanner moves the probe in a curved motion over the surface – the

piezos in the scanner are unable to move the probe with (x, y) components only and so the resulting

images appear curved; the larger the image the more the greater the apparent curvature (see figure

2.8). Most manufacturers’ software and third party software include options to fit surfaces through

an image. This surface is then subtracted from the raw image thereby flattening it. Another

frequently occurring artefact is the line defect, this occurs when the tip loses contact/interaction

with the surface temporarily and leaves a fixed line or partial line of constant topography. These

can be removed by adjacent averaging of corresponding data points from adjacent lines along the

slow-scan axis. If an AFM instrument is calibrated with a reference sample of known topography,

cross-sections can be drawn across an image giving height information about features of interest.

Figure 2.8: A Schematic of the AFM Scanner. Courtesy of Bruker Corporation.
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2.6 Nano-particle tracking analysis

2.6.1 Overview

Vesicle size distributions for each lipid suspension for my formation kinetics experiments were

measured by nano particle tracking analysis (NTA) utilising a Nanosight LM10-HS (Salisbury, UK).

NTA functions by scattering light from nano particles of interest and recording the movement of

these particles using a microscope and CMOS camera. At the heart of the system lies a fluid cell

comprised of an inlet and outlet with 0.3 ml volume, at the bottom of this cell is a metalled glass

prism though which an 488 nm blue solid state laser beam is incident, it is this light that scatters

from the particles of interest. The scattering of light from colloidal particles in the 10-1000 nm

regime depends on the fourth power of the frequency of the light. For this reason the blue laser

was used; the light scattered will be far greater than for a lower frequency laser and thus smaller

particles can be tracked (lasers of different wavelength are available for different applications – for

instance fluorescence experiments). Owing to the coating on the glass prism, the background is

almost completely black. If the frame rate of the camera is known, and the distance moved by the

particle owing to Brownian motion can be measured, then the Stokes-Einstein relationship can be

invoked to find the hydrodynamic radius of each particle,

(x, y)2

4
=

2kT

3πdη
. (2.29)

where (x, y)2 is the mean displacement squared, T is the temperature, d is the particle’s hydro-

dynamic diameter, η is the solution viscosity. Following many particles over a period of time

builds up a statistically relevant particle size distribution. The longer a particle is tracked the

smaller the error associated with the diameter evaluation, thus short tracks are dropped from the

determination. The instrument can typically detect particles in the range of 10-2000 nm.

Figure 2.9: A Schematic Representation of the NTA setup. Reprinted with permission of Nanosight Ltd.
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2.6.2 Measurements

For each measurement the lipid suspensions were diluted with the relevant buffer solution

to a concentration suitable for analysis (107 - 109 particles per ml). Prior to use the Nanosight

chamber was filled with the required buffer solution to check for contaminant particles and to allow

the chamber to reach the required temperature; all solutions were measured with the temperature

set for the associated TIR-Raman formation kinetics measurements. After the suspensions had

been injected into the chamber, the microscope was focused and the video was recorded for 215

s (the longest user selectable value in the software). The video was analysed with Nanosight’s

proprietary NTA software.

2.7 Neutron reflection

Neutron reflectometry was carried out at at the Institut Laue-Langevin (ILL) in France

using the D17 and FIGARO (Fluid Interfaces Grazing Angles Reflectometer) instruments. D17

is a vertically oriented time of flight neutron reflectometer and FIGARO is a newer horizontally

oriented instrument with wider q range.

By studying the specular reflection of neutrons as a function of the incident angle and neutron

wavelength, the scattering length density profile normal to the interface can be obtained. From a

set of density profiles obtained from chemically identical SLBs but with selective isotopic labelling,

this affords us the ability to directly measure the distribution of chemical components relative to

the interface in an unambiguous way. As the angle of incidence for moderated neutrons required

for total external reflection are very small, the incident neutron beams are generally oriented at

grazing angles of less than 2◦, as a result the beams have to be highly collimated.
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Chapter 3

The formation of supported lipid

bilayers (SLBs) from lipid

suspensions

3.1 Review

Supported lipid bilayers were first studied by Tamm and McConnell in 1985.1 Their interest

stemmed from a desire to study and understand biological membrane-membrane interactions, and

they saw supported lipid bilayers as a way to incorporate membrane proteins into a model system.

Until the time of their work researchers had used systems composed of a lipid monolayer supported

by a previously alkylated substrate. The totally lipid-based system provided the authors with a

more accurate mimetic system. Tamm and McConnell used an epifluorescence microscope to in-

vestigate many of the physical properties of lipid bilayers – such as phase transitions and diffusion

rates. Fluorescence recovery after photo bleaching (FRAP) was used to measure the diffusion

rates of DOPC and DPPC. The authors discovered several intriguing behaviours, most notably

the formation of microtubules in the DPPC systems when the system was heated into the liquid

crystalline phase and the formation of voids when the DOPC system was cooled into the gel phase.

They also noted subtle interactions between the silicon oxide substrate and the supported bilayer,

particularly within the transition temperature region. Although McConnell et al. chiefly used

the Langmuir-Blodgett/Schaefer technique for preparing their SLBs they also used the method of

vesicle fusion.

As far as I am aware the first direct investigation into the dynamics of SLB formation from

lipid suspensions was that of Nollert et al.44 who used fluorescence measurements to understand

the adsorption behaviour of vesicles composed of POPC and lipids extracted from E. coli. Their

motivation stemmed from previous work aimed at developing a biosensor,45 where they found that

a permeation barrier sometimes existed of thickness greater than the expected 0.2 nm thick water

layer between support and SLB; these results indicated the presence of un-ruptured vesicles on the

support. The authors observed that in sodium phosphate buffer (40 mM pH 7.4) POPC formed

SLBs, whereas the E. coli lipid system did not, instead forming supported vesicular layers (SVLs).

They also found that the total quantity of POPC adsorbed was independent of salt concentration
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whereas for the E. coli system the amount adsorbed increased with increasing salt concentration

and that the E. coli lipid vesicles fused somewhat when the concentration of Na+ in solution was

increased from 40 mM to 100 mM (29% of vesicles fusing) and even more so when 20 mM Ca2+

was added after initial incubation in HEPES buffer (100% of vesicles fusing). These results showed

that the additional salts had not only a screening effect, but also an ion specific interaction that

facilitated vesicle rupture. This last fact is particularly relevant to my work on POPE systems as

E. coli membranes contain 65% PE.

Nollert et al. used impedance spectroscopy to scrutinise a selection of SLB preparation

techniques.44 As part of this work they looked at 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine

(DMPC)/ 1,2-dimyristoyl-sn-glycero-3-phosphothioethanol (DMPTE) vesicle fusion on gold ([1

mg/ml]), they found that SLB formation took 6 hours in 10 mM Bis-Tris buffer at pH 5.5 at 50◦C

and that the layer was stable for 2-4 days.

Keller and Kasemo were the first to apply quartz crystal microbalance microscopy with dis-

sipation monitoring (QCM-D) to the study of SLB formation kinetics in 1998.46 QCM-D utilises

a coated quartz crystal oscillating at a specific resonant frequency. When lipid vesicles adsorb

onto the crystal the resonant frequency changes. The dissipation factor D is defined as the loss of

energy per oscillation period divided by the total energy in the system; it is primarily a measure

of the viscous properties of the system. These two parameters can be used to investigate the ad-

sorption kinetics of lipid vesicles in considerable detail offering mechanistic insight. The frequency

shift tells one about the total mass of material at the interface including trapped water and the

dissipation factor tells one about changes in the viscoelastic properties of the layer; in this context

the rupture of the vesicles. The authors examined the formation kinetics for small unilamellar

vesicles (≈ 25 nm diameter) of egg-PC in 10 mM tris buffer pH 8 + 100 mM Na+ onto alkanethiol

SAM-coated crystals, SiO2 crystals and gold coated crystals (figure 3.1). They prepared their

vesicles by probe sonication and centrifugation, a small quantity of Texas Red dye was included

to measure the concentration of the resulting vesicles suspensions. The authors found a marked

difference of the behaviour on the SAM, gold and silica: on the SAM the vesicles adsorbed and

ruptured concomitantly, on the gold they adsorbed and did not rupture, and on silicon oxide they

adsorbed and stayed intact until a certain coverage had been reached and then began to rupture,

eventually forming a complete SLB.

Cremer and Boxer, using fluorescence microscopy, investigated the role of ionic strength

and pH in determining the ability of SUV suspensions to adsorb and rupture on glass sur-

faces (coverslips).47 SUVs of different net charge were prepared by the probe sonication method

in sodium phosphate buffer between 0 and 80 mM and pH 2.5 and 12.3. To obtain the net

charge on the lipids the bulk lipid was egg-PC but small fractions of appropriately charged

fluorescently modified lipids were used (anionic N-(Texas Red sulfonyl)-1,2-dihexadeconoyl-sn-

glycero-3-phosphoethanolamine, triethylammonium salt [Texas Red DHPE], neutral 2,2-(N -(7-

nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-23,24-bisnor-5-cholen-3β-ol [NBD cholesterol] and cationic

4-(4-(didecylamino)styryl)-N -methylpyridinium iodide [D291]. They found that for anionic lipid

vesicles, fusion was favourable at high ionic strength and low pH. In addition they ascertained that

zwitterionic and cationic lipids would fuse under any of the conditions explored. The authors state

that this is likely as van der Waals and electrostatic interactions determine the outcome of the

interaction with the support. The authors specifically avoided the use of tris buffers explaining

that they did so to avoid the influence of trace Mg2+ and Ca2+ impurities. They stated that 1

ppm of Ca2+ severely shifted the fusion regime of anionic vesicles, moving it to higher pH and

lower ionic strength. For this reason in my work, ultra-pure tris was used.

52



Figure 3.1: QCM-D frequency and dissipation shifts for POPC vesicle adsorption onto (a) gold with

alkane thiol SAM, (b) SiO2 (c) oxidised gold. 10 mM tris + 100 mM NaCl, 21.8◦C. Reprinted from Keller

et al.46 with permission from Elsevier.

Figure 3.2: Phase diagrams for SLB formation from Egg-PC vesicles in sodium phosphate buffer of varying

ionic strength and pH. (A) 1 mol % of anionic Texas Red DHPE. (B) 1% of the cationic D291. Shaded areas

represent regions of phase instability. Vertical shaded regions indicate regions where buffer preparation is

impossible. Reprinted with permission from Cremer et al.47 Copyright 1999 American Chemical Society.

Egawa and Furusawa investigated the formation of lipid bilayers from bovine-PE and egg-PC

on mica supports using atomic force microscopy.48 Part of their work focussed on measuring the

ζ-potentials of the vesicles prepared in various group I and II salt solutions; this area of their

work will be discussed later in a review section on cation binding to lipid aggregates. For now I

will stick to a description of their methodology, AFM data and conclusions. All lipid suspensions

were prepared in purified distilled/deionized water containing the salts of interest. The authors

prepared their PC vesicles by extrusion through 200 nm polycarbonate membranes. PE vesicles

were prepared by sonication, but they found that the resulting suspensions were non-uniform and

decided to use filtration to remove the larger aggregates and dialysis to remove the smallest. Using

DLS they found their PC vesicles to have an average size of 200 nm with a monodispersity of 1.05
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(their definition of this parameter is unclear from the text as they do not define variables, giving

[Dw/Dn]). They found their PE vesicles to have a size of 100 nm with a monodispersity index

of 1.30 (N.B. the authors are unclear as to whether this is a diameter or radius, although one

assumes it is a diameter owing to the 200-nm pore size of their filter). For egg-PC vesicles in 20

mM Mg2+ on mica, after a 60 minute incubation period, even at low lipid concentrations (0.0003

mg/ml) the vesicles ruptured spontaneously to form bilayer patches. AFM images acquired over 240

minutes showed the full SLB formation process. In the first 30 minutes, vesicles and intermediate

structures were present on the surface and during the remaining time a complete SLB was formed.

The authors found that increasing the Mg2+ concentration or the concentration of POPC vesicles

led to an increase in the rate of formation and a higher SLB coverage. These resulting from the

reduced electrostatic repulsion between the net anionic PC vesicles and the negatively charged

mica surface and also the increased collision rate of vesicles resulting from the increased bulk

concentration. The authors found that PE vesicles aggregated readily, and suggest that this stems

from the reduced hydration repulsion between PE aggregates in comparison to that between PC

vesicles. When PE vesicles adsorbed on mica, the authors found that the PE vesicles formed

hierarchical structures; some PE vesicles adhered to a preexisting patches of SLB whereas others

were trapped within SLB patches. Secondary rupture events of the SLB supported vesicles appears

to have taken some time, suggesting a reduced interaction between the PE SLB and the second

layer vesicles than between the initial PE vesicles and the mica surface. The authors examined

the formation of SLBs with PE+PC mixtures and found that the greater the proportion of PE

the more negative the ζ-potential. They observed that increasing the PE content led to a greater

degree of double bilayer formation, i.e. as more PE was added the coverage of a second bilayer

upon the surface increased.

Reviakine and Brisson have also used AFM to study the formation of lipid bilayers on mica

and SiO2 substrates.49 They looked at how solution conditions affected the formation of bilayers

and specifically at the effect of the Ca2+ cation. They also critically examined the effect of vesicle

preparation procedure, either probe sonication or extrusion. Utilising cholera toxin sub unit CTB5

as a contrast enhancer and system perturbing probe, they were able to distinguish adsorbed vesicles

of different sizes from bilayer disks formed from the rupture of vesicles on the surface; CTB5 adsorbs

to bare mica but not into lipid bilayers unless they contain GM1, it also displaces adsorbed vesicles

but not bilayer patches. Owing to the vast number of systems studied I have summarised their

results in table 3.1. The buffer solutions used for the formation and rinsing are given below. (1)

2 mM EDTA, 10 mM HEPES, pH 7.4; (2) 40 mM NaCL, 2 mM EDTA, 10 mM HEPES, pH 7.4;

(3) 20 mM NaCL; (4) 2 mM CaCl2, 150 mM NaCl, 10 mM HEPES, 3 mM NaN2, pH 7.4; (5) 2

mM EDTA, 150 mM NaCl, 10 mM HEPES, 3 mM NaN2, pH 7.4; (6) 2 mM CaCl2, 40 mM NaCl,

10 mM HEPES, pH 7.4.
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substrate vesicles lipid species soln rinse structure

mica SUVs Egg-PC or DOPC 1,2 or 3 1, 2, 3 no fusion, SVL

Egg-PC or DOPC 1, 2, 4 4 or 6 fusion, SLB

Egg-PC or DOPC 4 all fusion, SLB

1 mg/ml Egg-PC 5 5 defective SLB

DOPC + GM1 4 all fusion, SLB

DOPC + DOPS 4 all fusion, SLB

EUVs ( 30/50 nm) < 3 mg/ml Egg-PC 4 4 vesicles, no SLB

0.001-0.1 mg/ml Egg-PC 4 4 vesicles, disks, defective SLB

EUVs (100 nm) 0.006 mg/ml Egg-PC 4 4 disks, vesicles

0.06 mg/ml Egg-PC 5 5 vesicles, disks

EUVs (200 nm) 1.5 mg/ml Egg-PC 4 4 SLB

SiO2 SUVs Egg-PC 1 1 fusion, SLB

Table 3.1: A table showing a summary of the experimental results of Reviakine and Brisson.49 Lipid

suspensions prepared at 0.5 mg/ml unless otherwise stated. EUVs are extruded unilamellar vesicles.

The authors explained their results in terms of theory developed by Seifert and Lipowsky.50,51

Seifert and Lipowsky have stated that the adsorption of a vesicle to an attractive flat substrate is

determined by the balance between the interaction potential with the wall and the bending energy

gained by the vesicle owing to its deformation after it has adsorbed. The former can be expressed

as

Fa = −WA∗ (3.1)

where Fa is the binding energy, A∗ is the contact area and W is the contact potential. The bending

energy is given by

Fb =
1

2
kc

∫
(c1 + c2)2 dA (3.2)

where kc is the bending rigidity of the bilayer, where c1 and c2 are the principal curvatures and A

is the surface area of the vesicle. Fb depends on kc but not vesicle size, Fa depends on vesicle size.

This implies that there is a critical vesicle size Ra where Fa ≥ Fb, given by

Ra =

(
2kc
W

)1/2

(3.3)

above which vesicle adsorption will occur. An adsorbed vesicle may rupture if the free energy of

the vesicle is greater than that of the associated bilayer disk after rupture. We can express the

free energy of the adsorbed and flattened vesicle as

Fbv = −2πWR2 + 2πg(2kcW )1/2R (3.4)

where g is a numerical constant and R is the radius of the vesicle. The free energy of the associated

ruptured disk is given by

Fbd = −4πWR2 + 4πΣR (3.5)

where Σ is the line tension of the bilayer disk. As Fbd ≤ Fbv for a vesicle to rupture we can define

a critical radius for vesicle rupture as

Rrup =
2Σ− g(2kcW )1/2

W
(3.6)
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Evidently for vesicles of size greater than Ra but smaller than Rrup will remain stable unless there

is some mechanism by which they can fuse on the surface to form a vesicle of size greater than

Rrup. Seifert and Lipowsky gave the following expression for the change in free energy associated

with the fusion of two vesicles on the surface

∆Fbv = constant× (kcW )1/2R+ 4πk̄c (3.7)

where k̄c is the bending energy associated with the Gaussian curvature of the bilayer.

In their work Reviakine and Brisson found that vesicles of all sizes adsorb onto the mica

substrates contrary to the theory of Seifert and Lipowsky which states that only vesicles above

a critical size adsorb. They also observed that vesicles ruptured above Rrup in accordance with

the theory. They found that extruded vesicles (EUVs 30-50nm diameter) remained intact upon

the mica surface and did not fuse unless Ca2+ was present; they found that sonicated vesicles

always adsorbed and ruptured to form SLBs regardless of the presence of Ca2+, but that a higher

concentration of lipid vesicles was required in the absence of Ca2+; they assert that their obser-

vations compare favourably with those of Keller and Kasemo.46 However, the authors attribute

the differences in EUV and SUV behaviour to differing bending modulii of vesicles prepared by

the two procedures. The preparation method should not affect the fundamental bending modulus

of unilamellar vesicles of a given size – bending modulus is independent of vesicle size. It is more

likely that there was a difference in size or lamellarity of the vesicles prepared in the two methods

which was not accurately measured by the authors; their paper does not contain extensive control

data on the size distributions of the vesicles used. Understanding the composition of lipid suspen-

sions is critical to a detailed understanding of SLB formation kinetics by vesicle fusion. Generic

terms like SUV and EUV are simply too vague and uninformative; in fact few authors in any of

the studies on SLB formation from vesicles include detailed vesicle size distributions – not even

in their supplementary data. Lastly the authors state that the variance in behaviour after the

addition of Ca2+ is due to its effect on fundamental bilayer properties.

Leonenko et al. used magnetic alternating current mode atomic force microscopy (MAC-

AFM) to study the formation of DOPC SLBs on mica and on mica modified with 3-aminopropyl-

triethoxy-silane (APTES).52 They prepared their vesicles in 100 mM acetate buffer at pH 6.5 and

at a lipid concentration of 2.0 mg/ml by bath sonication diluting them prior to measurement (0.1

or 02. mg/ml). They provided DLS and AFM data for the size distributions of the vesicles ob-

tained: the pure DOPC vesicles were found to have a mean diameter of 22 nm by AFM and 30 nm

by DLS. The authors observed three stages of bilayer development: in the first, the images showed

disc-like features which they associated with semi-fused vesicle patches; second, they observed a

partially covered surface and third a complete SLB. They found that for the relatively short time

periods left for adsorption to take place (no more than 5 minutes) the pure DOPC systems on

the unmodified mica rarely showed signs of fusing. They saw fusion on the modified surface most

of the time. These last two observations could be a result of the slightly negative ζ-potential of

zwitterionic lipids in solutions containing no added salt or the short exposure times. I will discuss

the effects of salt binding on vesicles in the following section. The authors estimated that only a

small fraction of the vesicles reaching the surface were adhering. They also note differences in their

observations in comparison to those in the aforementioned work by Reviakine and Brisson. Those

authors noted the presence of vesicles as well as discs in the fusion process, whereas the current

authors did not; they assert that the difference is due to Reviakine and Brisson using buffer to

rinse the system in order to arrest it mid formation and their use of pure water for the same purpose.
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Figure 3.3: A schematic showing the steps in vesicle rupture leading to intermediary disk formation as

suggested by Leonenoko et al.52 with permission from Elsevier.

It is worth digressing from my discourse on the formation studies to examine the work done

on cations and specifically Ca2+ interacting with lipid bilayers. Most of the older work (30 years

plus) investigating the interaction of cations with SLBs concerned anionic lipids such as the phos-

photidylserines, partly due to their biological significance in cell signalling and membrane protein

activation but primarily due to the fact that the interactions of cations with lipid bilayers com-

prised of zwitterionic lipids are comparatively weak and thus harder to measure. In the older work

on anionic lipids it was found that the binding constants for alkali cations followed the Hofmeister

series originally proposed in 1888 and thus binding depended on the size of the cations studied.

More recently, enhanced computational power and also more modern experimental methodologies

have enabled workers to investigate the weaker interactions with zwitterionic lipids in detail. As

most SLBs prepared for biomimetic studies contain primarily zwitterionic lipid, these studies are

particularly relevant – the substrates used for SLB formation are mostly anionic and therefore

preclude pure anionic lipid as a primary model constituent. My main interest in lipid-cation inter-
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actions stems from the fact that monovalent cations have been shown to affect the bending rigidity

of lipid bilayers,53 which is a pivotal parameter in the theory developed by Seifert and Lipowsky

hitherto described. A brief review of the relevant literature ensues.

Cunningham et al. investigated the influence of monovalent cationic species on PC bilayer

structure and packing using X-ray diffraction and differential scanning calorimetry (DSC).54 They

found that the X-ray data did not provide any evidence that monovalent cations affected the pack-

ing of the lipid bilayers investigated. However, their DSC data highlighted the fact that cations in

general and Li+ in particular bind to DPPC lipid bilayers.

As I discussed earlier, Egawa and Furusawa investigated PE and PC SLB formation on mica

with AFM.48 As part of their study they conducted ζ-potential measurements on the egg-PC and

bovine-PE containing vesicles they prepared in various salt solutions. They found that both the

PC and PE vesicles prepared had negative zeta potentials in pure water, and that upon the addi-

tion of salt the potential became less negative or slightly positive in Mg2+ and Na+ and took on

a significant positive charge in La3+.

Böckmann et al. investigated the influence of NaCl on POPC bilayers by fluorescence cor-

relation spectroscopy (FCS) and molecular dynamics (MD) simulations using the Gromacs force-

field.55 Atomic-scale MD simulations of ion bilayer interactions have been challenging owing to

the long time-scales involved with the binding process, therefore only recently have such simula-

tions been carried out. The authors found that increasing the concentration of NaCl reduced the

diffusion coefficient of POPC lipids within the lipid bilayer. The diffusion coefficient the authors

calculated in their simulations over 100 ns agree with those measured experimentally on a 1 ms

timesecale indicating that the length scales of their simulations where adequate to model the be-

haviour of the POPC bilayer system. Their simulations showed that the Na+ ions bound tightly

to the lipid carbonyl oxygens. They also found that the bilayer thickness increased by ≈2 Å upon

binding and that the order parameter of the lipid acyl chains increased too.

Garcia-Manyes et al. studied the interaction of NaCl with a variety of SLBs comprised of

different lipids (DMPC, DLPC, DPPC, POPE and E coli lipid extract) with AFM and associated

force “spectroscopy”.56 They authors found that increasing the concentration of NaCl for the sys-

tems studied increased the yield threshold force for punching the probe tip through the SLB. They

found that the elastic deformation region of their force plots was extended with increasing NaCl

concentration and speculated that this may be the result of the increased packing density of the

phospholipid network. They examined the kinetics of ion binding and unbinding by replacing the

solution in contact with the layer with the opposite respectively whilst constantly acquiring force

plots. They found that the time taken for the force plot to become constant in each case was ≈10

min.

Cordomı́ et al conducted a molecular dynamics study of the interaction of several cation

chlorides, including Ca2+, with simulated DPPC bilayers.57 They found that the cations preferen-

tially bind to the phosphate and carbonyl headgroup oxygens whereas the Cl− anions are located

further out in the aqueous phase. They also found that ion binding affected the lipid order, the

area per molecule, the exact orientation of the headgroup dipole and the overall charge distribution

of the system and thus the electrostatic potential across the headgroup region. The changes in the

structure of the simulated bilayer are at odds with the earlier work by Cunningham et al. The

effects observed were specific to the cation chosen and thus must depend on the radius and charge

of each cation as well as their coordination properties. Interestingly, they found that K+ did not

bind to the DPPC layers simulated; this, if real, would offer a way to increase the ionic strength

of a solution surrounding an SLB whilst having a minimal effect on its physical properties. The

calculated ion distributions show that the maxima of the chloride and cation distributions are
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separated by between 0.7 and 1.2 nm for the disparate cation systems, this distribution effectively

generates a dipole moment that opposes that intrinsic to the DPPC headgroup. The authors end

with a proviso about the effects of using different force fields and how these can affect the results of

their simulations (they used the Gromacs force-field). They stated that experimental work needs

to be carried out in order to critically evaluate the exact choice of force field for simulations of this

type.

In earlier MD simulations, Gurtovenko and Vattulainen examined the interaction of the mono-

valent salts NaCl and KCl with both POPE and POPC membranes with multiple force-fields.58

In accordance with the later work of Cordomı́ et al.57 the authors found that the cations primarily

occupy the region close to the carbonyl oxygens and that the interaction of the monovalent cations

with PC was far greater than with PE; this they explained by the fact that PE unlike PC can form

inter- and intramolecular hydrogen bonds and thus it nominally forms a closer packed lipid bilayer.

They found that Na+ showed a greater affinity to the bilayers than K+, which they rationalised on

the basis of the size of the cations. Interestingly, they examined the effects of different force fields

on the simulation results to extract information on the force-field sensitivity. They critically exam-

ined the results for both the Gromacs and Charmm force-fields. They found that using Gromacs

K+ did not bind to the lipids at all and suggested that this is due to the overestimated size of K+

when using the Gromacs force field (diameter 0.64541 nm as opposed to 0.31426 nm in Charmm).

They discussed how their results would be applicable in vivo by postulating that POPE bilayers

are analogous to inner membrane leaflets and POPC to outer leaflets.

To the best of my knowledge the first experimental study comparing the binding strengths

of alkali metal chlorides (LiCl, NaCl, KCl RbCl, CsCl) to POPC membranes was by Klasczyk et

al.59 They used highly sensitive isothermal titration calorimetry (ITC) along with zeta potential

(ZP), differential scanning calorimetry (DSC) and dynamic light scattering (DLS) to investigate

the binding properties. ITC provided the authors with thermodynamic information on the strength

and stoicheometry of the ion binding, the zeta potential measurements provided information about

the ion concentration close to the membranes. They prepared their vesicles by extrusion in 15 mM

HEPES at pH 7.0, adjusting the pH of their buffer with KOH. They state that the final concen-

tration of K+ from this source was ≈ 2 mM in the final vesicle suspensions. They give the average

radius of their vesicles as 56.1 nm ± 2.4 nm. They varied the salt concentration from 10 mM to

500 mM but in its absence they found that the POPC vesicles had a slightly negative zeta po-

tential, even though the PC headgroup is zwitterionic at neutral pH. This negative zeta-potential

has been interpreted by several other groups in terms of hydration ordering, the orientation of the

headgroups in the hydrated bilayers, water polarisation effects and impurities in the lipid sample.

As the electrolyte concentration was increased for all the cation systems, the net charge on the

vesicles increased, becoming more positive. The vesicles became saturated between 50 and 150 mM

salt concentration with the saturation concentration depending on the ion used – lithium bound to

the bilayers with the greatest affinity. The degree of binding affinity followed the Hofmeister series,

ζ(Li)> ζ(Na)> ζ(K)≈ ζ(Rb)≈ ζ(Cs). The thermodynamic data acquired by ITC are summarised

in table 3.2; they show that the binding process is endothermic and hence is driven entropically.

The authors assumed that the increase in entropy was a result of the expulsion of water molecules

from the headgroup region during ion binding. Using this assumption and the equipartition theo-

rem they were able to estimate the number of water molecules being removed to be between 2 and

4 molecules with the specific number increasing with cation size and thus with the Hofmeister series.
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cation apparent

binding con-

stant, K

l/mol

molar en-

thalpy, ∆H

kcal/mol

Gibbs free

energy ∆G

kcal/mol

entropic contribution,

T∆S kcal/mol

Li+ 1.37±0.06 2.39±0.09 -2.58±0.03 4.97±0.09

Na+ 1.25±0.05 2.33±0.09 -2.53±0.02 4.86±0.09

K+ 1.17±0.13 2.13±0.23 -2.49±0.07 4.62±0.24

Rb+ 1.14±0.28 1.75±0.40 -2.47±0.15 4.22±0.43

Cs+ 1.10±0.14 1.67±0.19 -2.45±0.08 4.12±0.20

Table 3.2: A table summarising the thermodynamic data acquired in Klasczyk et al.59

I shall now return to my discussion of the work on SLB formation by vesicle fusion. Zhadanov

et al. simulated SLB formation by vesicle fusion in an attempt to explain their QCM-D and SPR

observations.60 They modelled the kinetic process using a hybrid monte-carlo (MC) method where

the diffusion of vesicles to the surface in their flow cell was treated by mean field theory (MF),

but the actual surface bound kinetics were given an explicit MC analysis. Their simulations take

into account the interactions between neighbouring vesicles and bilayer patches as well as allowing

patches to coalesce and vesicles to diffuse on the surface. They attained qualitative agreement

with their experimental data if their simulation included the possibility of vesicle rupture being

induced by existing bilayer patches and incoming additional vesicles. They found experimentally

that the rate of vesicle rupture and bilayer formation increased with time until SLB completion. If

the interplay between existing vesicles, new vesicles and existing patches was not included in the

model, this feature of the experimental data sets could not be realised in their simulations.

In a letter Zhadanov and Kasemo described a theory developed to predict the rate constant

of vesicle decomposition from fracture theory as applied to vesicle rupture mechanics.61 They state

that although the thermodynamic criteria (see the work of Seifert and Lipowsky above) for vesicle

rupture may be met, it may not actually occur owing to kinetic constraints. They go on to describe

that on an abstract level the kinetic problem is related to that of materials under external tensile

stress and that, although rupture may be thermodynamically favourable, it will only take place

if the stress on the vesicle is large as the Griffith condition for “crack” growth. In the vein of

Griffith, the authors argued that the formation of a small rupture void in the vesicle goes alongside

a decrease in energy due to the relaxation of the external stress and also a concomitant increase

in the energy due to the increase in SLB footprint on the support.

Reimhult et al. have investigated egg-PC and POPC adsorption onto a variety of substrates

using QCM-D in an effort to understand the mechanism of SLB formation from vesicles in so-

lution.62 They examined effects of substrate, temperature, vesicle size and osmotic stress. The

smallest vesicles were prepared by probe sonication and ultra-centrifugation with only the smallest

fraction of vesicles reserved. Larger vesicles were prepared by extrusion using membranes of the

required sizes. For all measurements except those investigating the effects of osmotic stress, 10

mM tris buffer pH 7.4 with 100 mM NaCL was used. On silica (SiO2) and silicon nitride (SiN3)

vesicles adsorbed intact until a certain critical coverage, whereupon they began to rupture, even-

tually leading to complete SLBs. However, on oxidised platinum and titania (TiO2) surfaces, the

vesicles adsorbed intact, never rupturing. Increasing the temperature reduced the apparent critical

coverage of vesicles required for bilayer formation. They also observed that SLB formation from

adsorbed vesicles can be arrested by reducing the temperature. Increasing the osmotic stress on
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the vesicles facilitated faster formation kinetics on the silicon nitride and silica, but did not change

the fact of intact vesicle adsorption on the platinum and titania surfaces. The overall features of

bilayer formation appear to be unrelated to vesicle size. Complete bilayer formation was never ob-

served; there were always some residual trapped vesicles in the range of 1-2% of surface coverage.

Most studies hitherto carried out on SLB formation by vesicle fusion have been average

in nature; the data acquired are of an ensemble. In an effort to gain specific local mechanistic

information about the kinetic processes taking place Chu, Boxer and coworkers have used wide-

field fluorescence microscopy with total internal reflection excitation.63 In their study, the vesicle

bilayers were labelled with a small quantity of Texas Red dye, and internally contained carboxyflu-

orescein dye. A small number of these labelled vesicles were then allowed to settle onto a quartz

substrate. Subsequently unlabelled vesicles were flowed into the system. Their idea was to use the

change in the Texas Red signal to ascertain when the vesicles had either fused with other vesicles

on the surface or with an existing SLB patch, and to use the CF signal to discover when the

vesicles actually ruptured not simply fused with their nearest neighbours. The authors found that

they could distinguish all of the features of the adsorption, rupture and fusion processes. They

did ample control experiments to ensure at the concentrations used the dyes were not altering

the essential behaviour of the system. For example, in one such control they increased the con-

centration of texas red from 0.5% to 6% and found that at the higher concentration the vesicles

spontaneously ruptured on the surface whereas at the lower concentration a great number were

stable to spontaneous rupture until either they encountered a number of other nearby vesicles and

fused or encountered a bilayer patch. All their studies were carried out with egg-PC as the primary

lipid constituent. They prepared their vesicles in 10 mM tris buffer pH 8.0 with 100 mM NaCl by

extrusion, using polycarbonate membranes of 30, 50 and 100 nm diameter. The proportion of la-

belled vesicles undergoing the different kinds of processes was distinguished from their fluorescence

traces. A summary of their data is shown in table 3.3. Notable, and not included in the table,

were the 50 % of vesicles that leaked CF dye prior to observation. From complementary AFM

they deduced that this was largely a result of partial pre-rupture (pore formation), rather than

isolated pre-rupture, although some isolated rupture does occur as evidenced by data acquired

during observation. Finally they were able to estimate gross formation rates for complete SLB

formation and found that the rate of formation was proportional to vesicle concentration.

30-nm vesicles 50 nm vesicles 100 nm vesicles

No of vesicles in sample 17 37 40

Primary fusion 41% 32% 37.5%

Simultaneous fusion and rupture 53% 49% 55%

Isolated rupture 6 % 19 % 7.5%

Table 3.3: Percentages of the different SLB formation processes taking place at the interface in the work

of Johnson et al.63 Data do not include vesicles that ruptured prior to the initiation of observation.

Brisson and coworkers have conducted further experiments on SLB formation kinetics with

AFM and QCM-D.64 They aimed to combine the specific local information provided by AFM with

the averaged high temporal-resolution-information offered by QCM-D. They looked at the effects

of lipid composition, overall charge and Ca2+ on the formation behaviour. The lipids chosen were

DOPC, DOPS and DOTAB. They found that the charge and composition of the vesicles had a

significant effect on the formation behaviour, for example mixed lipid vesicles containing a 1:1 ratio
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of DOPC and DOPS formed an SVL in buffer without Ca2+ but formed an SLB when 2 mM Ca2+

was included in the buffer. Their results somewhat support the theory and prior experimental

work carried out. They observed the same general behaviour as Kasemo and coworkers with

regard to the critical coverage of vesicles and the initial build-up of vesicles followed by rupture for

systems comprised predominantly of PC. However, they also found that DOTAB vesicles ruptured

spontaneously on the SiO2 substrates used and neighbouring vesicles were not required to induce

rupture – thereby finding another pathway for SLB formation on SiO2 substrates. They observed

small trapped particles within DOTAB SLBs at the end of the formation and found them to be

of the same dimensions of vesicles. They claim that these are contaminant particles as they were

unable to use the AFM tip to induce rupture. However, this conclusion could be incorrect: in

their simulations, Zhadanov et al. found that there were always some trapped vesicles at the end

of the formation as a result of steric barriers to rupture, “where would the lipid material go?”. I

think that the “contaminants” observed by Brisson and coworkers were in fact vesicles and they

underestimated the barrier to rupture by mistakenly believing that their tip could rupture any

trapped vesicle regardless of steric considerations. In fact they often used their tip to induce the

rupture of vesicles on the surface in order to probe the system and explore its resulting behaviour.

They state that accidental rupture by the tip is a rare phenomenon but they provide no evidence for

this claim. During the course of their studies on the DOPC and the primarily DOPC systems, they

found no evidence of vesicle/vesicle fusion on the surface, as predicted by Seifert and Lipowsky, for

vesicles below a certain size. Despite discussing the effects of surface charge, they never reference

the fact that the zwitterionic lipids have a slightly negative zeta potential even at neutral pH in the

absence of electrolyte, only briefly mentioning that the ions probably bridge the oxygens between

neighbouring lipids (see for example the MD simulation work described earlier). Figure 3.4 shows

the different pathways observed by the authors.

Figure 3.4: A figure showing the possible paths of SLB formation suggested by Brisson and coworkers.

Reprinted from Richter et al.64 with permission from Elsevier.

Lastly the authors found that for the systems containing 50% or more POPS the layer restructured

in the presence of calcium after the formation of the SLB; this process was evidenced by the slow

decrease in frequency and concomitant increase in dissipation. The latter observation suggests

that the lipid present at the interface was becoming more flexible during the change in structure.

Interestingly the same phenomenon was observed even if the excess lipid was washed away with

copious buffer after the initial completion of the SLB.
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Reimhult et al. have used SPR and QCM-D simultaneously to measure bilayer formation

kinetics.65 In this study they used POPC in 10 mM tris with 100 mM NaCl at pH 8.0. Vesicles

were prepared by extrusion through polycarbonate membranes and had a mean diameter of 60 nm.

Their experimental system was based around a home-built combined flow cell, with the QCM-D

crystal on one side and the SPR surface on the other. They were able to accurately deduce the

ratio of SLB to residual vesicles during the formation process by coupling the two datasets in their

analysis. There results also highlighted the different water structures associated with the vesicles.

It was reasonably expected that water contained within the vesicles contributed to the total ad-

sorbed mass in QCM-D datasets. However, they also found out that water from the hydration

shells surrounding the adsorbed vesicles/SLB contributed, as well as that trapped in-between the

adsorbed vesicles.

Richter and Brisson have conducted further work on the DOPC, DOTAP and DOPC systems

studied earlier.64 They investigated the adsorption behaviour of the vesicles on mica in contrast

to the silica studied earlier.66 They observed some marked differences in comparison to the earlier

work. Firstly for the DOPC:DOPS (4:1) system they found that the vesicles continued to rupture

and form bilayer patches regardless of the stage of adsorption evidenced in the QCM-D data. i.e.

SLB forms regardless of any critical vesicular coverage. Secondly, they found that the resulting

patches of bilayer could move freely on the mica surface and adopted circular shapes to minimise

the energetic cost of their edges. On silica, irregular shapes were seen to be stable. However,

the authors also observed at a late stage, when rinsing, the bilayer patches took on an irregular

shape, and did not form the spherical patches as described above. They also saw QCM-D evidence

of structural changes taking place within the layer after the removal of vesicles from the bulk by

rinsing: there was a slow increase in the frequency and a decrease in the dissipation. Whilst inves-

tigating the effects of charge on the formation behaviour they found that a significantly lower mole

fraction of DOPS in a DOPC:DOPS mixture prevented vesicle adsorption to the mica surface,

20% instead of 50% on silica. They also found that in the absence of Ca2+, DOPC adsorbed as

vesicles but these did not rupture to form an SLB. These observations suggest that the repulsive

electrostatic interaction with the surface is somewhat stronger with mica than silica – mica has a

higher surface charge. In addition, in the absence of Ca2+, vesicles containing DOPS never rup-

tured on the surface; in contrast, SLB formation on silica for adsorbed vesicles containing DOPS

was only inhibited above 33%. For the cationic DOTAP, the dissipation values from the QCM-D

work were always lower on mica than on silica suggesting more rapid vesicle rupture. Interestingly,

they found that after forming a DOPC SVL and rinsing the system with buffer, adding buffer with

Ca2+ led to the formation of an SLB. The measured dissipation values of DOPC on silica were

far lower than on mica suggesting that the vesicles become less flattened on mica. When Ca2+

was added SLBs were formed over the entire range of lipid mixtures studies albeit slowly for the

most anionic. They discuss the possibility of multiple pathways on the surface as an explanation

of the earlier rupture events seen on the underpopulated mica surface for the DOPC:DOPS (4:1)

system; some vesicles are strained enough and large enough to rupture spontaneously, whilst others

required the build-up of neighbouring vesicles or a bilayer edge to lead to stress capable of inducing

rupture. In comparing the adsorption on the two substrates (mica and silica), they argue that the

electrostatic forces must dominate despite the difference in non-retarded Hamaker constants for

the substrate-vesicle van der Waals interactions (H = 2 × 10−20 J and 0.8 × 10−20 respectively),

and that this explains the salient features of Ca2+ for SLB formation even for vesicles with a

high anionic lipid component. N.B. by this point the authors had come across the paper on the

small negative ζ-potential of zwitterionic lipids, vide Egawa and Furusawa, although they do not

recognise its effect of increasing the bending modulus of the lipid bilayers. Instead they spend time
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suggesting how negative charge may lead to mica-PS complexes or alter the expected asymmetric

distribution of lipids within the adsorbed mixed lipid vesicles in a time-dependent fashion (slow flip

flop kinetics) and thus could potentially lead to slow rupture. They briefly mention the possibility

of “other” forces moderating the behaviour in a reference to the poorly understood “hydration

forces”.

Tawa and Morigaki have employed SPR and surface plasmon fluorescence microscopy to

study SLB formation on both gold-SAM substrates and silica substrates.67 They used egg-PC and

prepared their vesicles by extrusion through 50 nm pore size membranes. Vesicles were prepared

in 10 mM phosphate buffer at pH 6.6 with 150 mM NaCl added. SPR was used to calculate the

thickness of the SLBs and the fluorescence intensity to distinguish between adsorbed vesicles and

SLB, (the vesicles show a much greater fluorescence intensity). Their values compared well with

bilayer thicknesses measured by AFM and NR in other studies for the vesicles prepared on silica,

(≈ 4 nm). They used their apparatus to conduct FRAP measurements to find the lateral diffusion

coefficient of lipid molecules in the systems studied. They compared their technique extremely

favourably with others such as AFM and QCM-D to justify its use.

Seantier and coworkers have investigated the formation kinetics of DMPC and DPPC vesicles

and mixtures thereof on silica as a function of pH, temperature, lipid composition, lipid concen-

tration and buffer composition.68 They found that the choice of buffer, either 20mM HEPES or

10 mM tris, seemed to alter the quantative kinetics of the SLB formation process although not

changing the overall qualitative nature of the adsorption. The authors observed that pH had a

marked influence on SLB formation kinetics: increasing the pH to 12 precluded SLB formation,

while lowering the pH < 6 changed the kinetics to a path of spontaneous rupture rather than one

where a critical coverage of vesicles was necessary. In all systems studied, increasing the concentra-

tion of vesicles increased the rate of SLB formation and increasing the temperature increased the

rate of bilayer formation. This was the first study of high transition temperature lipids (Tm above

room temperature) in the literature in terms of SLB formation kinetics, reducing the temperature

had a slowing effect on the rate of SLB formation.

Musser and coworkers have investigated the effect of the average phospholipid geometry

within vesicles on the formation of SLBs on glass. In this study they prepared vesicles of ≈90-180

nm diameter by extrusion through polycarbonate membranes. The vesicles were comprised of var-

ious ratios of DOPC, DOPE, DOPE-Me, DOPE-Me2 and DOPE-TR and were suspended in 50

mM HEPES, 200 mM KCl at pH 8.0. DOPE-TR was added as a fluorescent dye allowing them to

image the vesicles on the substrate. The idea was to change to composition of the vesicles with the

above lipids in order to set values of the average intrinsic curvature and then to observe the effect

on their SLB formation behaviour. As the number of methyl groups on the PE headgroup was

reduced from PC to PE, the average intrinsic negative curvature of the lipid mixtures decreased.

As the value decreased from DOPC to DOPE, less and less SLB was formed – leaving in the case

of pure DOPE an SVL. The authors assert that the only deciding parameter in forming an SLB

or SVL is the average intrinsic curvature of the lipid molecules making up the vesicle. This clearly

ignores all of the kinetic effects required for vesicle rupture, although it does provide a good indi-

cator of the likelihood of SLB formation.

Israelachvili and coworkers have investigated the formation of DMPC SLBs on silica sub-

strates by vesicle fusion.69 They used a wide variety of techniques namely surface forces apparatus

(SFA), QCM-D, fluorescence recovery after photobleaching (FRAP), fluorescence spectroscopy (FS)

and streaming potential measurements (SP). Unlike most of the previous work, which is largely

experimental, relying on fact gathering and subsequent discussion in an effort to understand SLB

formation by vesicle fusion (with the exception of Seifert and Lipowsky and Zhadanov), Israelachvili
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takes a more rigorous approach combining theoretical models of the interactions at the interface

with measured quantities, such as the forces between silica and the DMPC bilayer on mica in the

SFA. At the same time the authors utilise the QCM-D measurements and fluorescence microscopy

images to get a conceptual idea of the processes taking place during the formation process. In

his theoretical introduction Israelchvili describes the forces acting at the silica-neutral SLB inter-

face at constant potential, these are the van der Waals interaction and the electrical double layer

interaction. For these lipid bilayer systems the van der Waals interaction is approximated by,

FV DW (d) = −H123

6π

(
1

d3
− 2

(d+ a)3
+

1

(d+ 2a)3

)
(3.8)

where the Hamaker constant H123 is typically (3–4) × 1021 J in concentrated salt solutions, for

symmetrical systems this force is always attractive but between different interfaces it can be re-

pulsive too. At small separations where d<<a, it becomes,

FV DW (d) = −H123

6πd3
N m−2, (3.9)

and the associated energy per unit area is given by,

WV DW (d) = − H123

12πd2
N m−1. (3.10)

The double-layer interaction is given by the Hogg-Healy-Fuerstenau (HHF) equation,

WDL(d) =
ε0εκ

[
2ψ1ψ2 − (ψ2

1 + ψ2
2)e−κd

]
(eκd − e−κd)

J m−2. (3.11)

In the the case of a neutral bilayer interacting with a charged substrate where ψ2 (the bilayer

potential)=0 and ψ1 becomes ψ0 this simplifies to,

W (d) =
−ε0εκψ2

0e
−κd

(eκd − e−κd)
. (3.12)

Therefore the interaction is attractive for all separations where ψ2 = 0; for ψ 6= 0 the interaction

can be attractive or repulsive at larger distances. He contrasts the double layer interaction at

constant potential with that at constant charge where,

P (d) = ρ∞kT
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(3.13)

and states that for different interfaces the constant charge interaction is always repulsive.

In his theoretical estimations Israelachvili finds that the contribution due to the double layer

interaction at constant potential will far outweigh any of the contributions from the other inter-

actions at the interface and so there is a strong electrostatic interaction between the anionic silica

interface and the (assumed) neutral SLB.

Moving on the practical results in the paper, we start start with the SP measurements, these

showed a net increase in the negative (silica) potential as the SLB formed at the interface, inter-

estingly, they showed a marked jump after a significant quantity of lipid had been injected into the

instrument, suggesting that a critical coverage of vesicles was required for formation. Intriguingly

the final surface did not have zero potential as expected for a complete SLB composed of neutral
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lipid. I think this is either due to an incomplete layer forming, or that the DMPC lipids have a

small negative ζ-potential as measured for other zwitterionic species in earlier work. Surface force

measurements, showed that the SLBs prepared by Langmuir Blodgett deposition present differ-

ent interactions than those prepared by vesicle fusion. This is attributed to the possibility that

LB-deposited SLBs are under tension post formation, and that this suppresses undulation forces

that would reduce the effective attractive component of the silica-bilayer interaction potential.

From the QCM-D measurements the authors observed that increasing the bulk concentration of

DMPC vesicles increased the rate of bilayer formation, and that reducing the ionic strength i.e.

using distilled water instead of buffer prevents SLB formation; n.b. see earlier comments about

the electrostatic interaction and constant potential vs constant charge. According to the authors

the reason why the system should interact at constant potential at high ionic strength and con-

stant charge in low (or no) salt are non-trivial. They refer to the cause of constant potential as

“charge-regulation” which involves the exchange of surface ions with the bulk ionic reservoir as

the silica and DMPC surfaces approach one another; this situation is prevented when there are no

or a limited supply of ions available in solution. Unfortunately the theory given by Israelachvili

applies only to symmetrical electrolytes such as NaCl, not asymmetrical ones such as the CaCl2

utilised by many groups to enhance the SLB formation of zwitterionic lipids.

Fygenson and coworkers have investigated the effect of bilayer edges on SLB formation ki-

netics with video fluorescence microscopy.69 They prepared DMPC vesicles in 10 mM phosphate

buffer at pH 7.5 with 140 mM NaCl. Figure 3.5 is a reprint from their paper which shows several

stages of the SLB formation process over time. The vesicles are more fluorescent than the SLB

patches, they see a marked increase in fluorescence that accelerates as time goes on reaching a

peak value, it then decreases and settles at a constant value indicating the formation of the SLB.

The last stage is a FRAP measurement to certify that the layer adsorbed is an SLB. The final

plateau value of fluorescence was slightly lower after photobleaching owing to trapped vesicles.

The authors claim that the increase in fluorescent build-up nearing the peak shown in the figure,

comes about as result of an enhanced vesicle affinity for the surface which is a result of favourable

vesicle SLB edge interactions after the SLB starts to form. In explanation, there has to be some

surface at the interface that is more attractive to vesicles than glass or the majority SLB surface,

otherwise they would observe a slowing in the rate of fluorescence increase owing to saturation

kinetics. Although the idea that SLB edges catalysing vesicle rupture is not new, previous studies

have stated it has a strong impact on the rate of vesicle rupture by increasing strain in vesicular

bilayers, it is interesting to see how it can impact the rate of vesicle uptake. The authors state

that they observe an excess of vesicles at the interface prior to SLB completion, and that these

excess vesicles leave the interface en masse as the SLB reaches completion. Controversially the

authors re-examine the QCM-D data acquired on silica and on other anionic surfaces previously

by other workers. In these data, there is a peak in the frequency shift and dissipation which had

been attributed to a critical vesicular coverage necessary for bilayer formation, although this did

not appear to be the case on mica. The authors of this paper assert that these changes are actually

the build-up and subsequent departure of the excess vesicles.

Ahmed et al. have investigated the effect of hydration repulsion on the formation of SLBs

by vesicle fusion.71 Their fundamental premise stems from the idea of ordered water surrounding

lipid headgroups in vesicles and substrate surfaces. In order for the bilayer to form, energy must be

supplied to remove this ordered water and this leads to a repulsive force that affects the rate of SLB

formation. The authors prepared DMPC SUV’s by extrusion in 100 mM phosphate buffer at pH

with 150 mM NaCl. SLBs were prepared by allowing these SUVs to fuse onto silica nano particles

that had been pre-treated (heating and piranha treatment) to control their surface chemistry (the
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Figure 3.5: Fluorescence images of different stages during DMPC SLB formation on borosilicate glass

coverslips. Experiment conducted in 10 mM phosphate buffer at pH 7.5 with 140 mM NaCl. Fluorescent

probe molecule was 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine-N -(7-nitro-21,3-benzoxadiazol-4-

yl) (DMPE-NBD). At first the surface is dark indicating the absence of any lipid. As vesicles adsorb

the surface brightens. As SLB begins to form dark patches appear, which continue to grow with time until

the surface is completely covered with SLB. Reprinted from Weirich et al.70 with permission from Elsevier.
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number of surface silanol groups). Thermogravimetric analysis, FTIR spectroscopy, DLS and ζ-

potential measurements were all used to characterise the effects of treatment on the silica particles

and DLS and ζ-potential measurements were used to characterise the size and surface potential

of the extruded SUV’s. The actual fusion process was monitored by examining the intensities of

the gel-to-liquid-crystal phase transition temperatures on the cooling cycle for SUVs and SLBs by

nano-differential scanning calorimetry. These temperatures differed by 2◦C and so their relative

intensities would show the extent of binding to the nanoparticles. The authors found that reducing

the surface silanol density increased the rate of SLB formation, thereby indicating that the surface

hydration is an important factor in determining the rate of SLB formation. They made sure to

examine the effect of treatment on the silica nano particles ζ-potentials to prove the validity of

their results.

Zhu et al. have investigated the effect of Ca2+ on the formation of DPPC SLBs by vesicle

fusion above and below the main phase transition of the lipids. They prepared their vesicles by

extrusion in 100 mM tris pH 7.3 with and without added 2 mM Ca2+. They prepared two sizes

of vesicles, 105 nm ± 5 nm and 180 nm ± 20 nm. They studied the adsorption behaviour using

QCM-D and fluorescence microscopy using 1 mol % of Texas red DHPE as a dye. The authors

found that above the main phase transition temperature the qualitative behaviour was similar to

that observed earlier on silica – a minimum in the frequency and a maximum in the frequency and

dissipation were observed. They interpreted these observations, as in the older studies, in terms of

a critical vesicular coverage despite the more recent report by Fygenson and coworkers; in fact they

seem to ignore some of the important recent work. Below the main phase transition the authors

noted that a complete SLB was never formed although the amount of SLB was enhanced by Ca2+.

Unwin and coworkers have developed evanescent wave cavity ring down spectroscopy as a

platform for studying the kinetics of SLB formation.72 They examined the formation of DOTAP

SLB on a quartz surface and found that the optical loss of their cavity changed with time, as

vesicles adsorbed and ruptured on the surface forming an SLB. From the combined extinction

coefficient they were able to measure the quantity of lipid at the interface giving an area/molecule

in agreement with previous work on DOTAP by QCM-D.

Hernandez et al. have recently used attenuated total reflection Fourier transform infrared

spectroscopy (ATR-FTIR) to probe the formation kinetics of DPPC SLBs on a variety of substrates

(Au, Ge and a 1-octadecanethiol SAM).73 The gold layers were prepared via an oxidation-reduction

reaction between the Ge crystal and 1 mM HAuCl4 in a flow cell environment. The gold layers

generated were 30 nm thick and had a roughness of 20%. The authors found that their IR spectra

were different for the layers formed on the different substrates depending on the amount of lipid

at the interface. For instance they could observe the difference between the lipid monolayer that

formed on the SAM and the SLB formed on the gold substrate. They were able to follow the SLB

formation process by plotting the integrated intensity in the CH region vs time. The different

behaviours in these plots for vesicle interaction with the different substrates was clear. In the case

of germanium where an SVL formed, there was a monotonic increase in the amount of material

at the interface that reached a plateau. However, for the gold and SAM substrates, vesicle fusion

was evidenced by a subsequent dip in the integrated intensity following mass vesicle rupture. They

also tracked the physical transformation in these systems by utilising order parameters, such as the

full width at half maximum and the peak positions of the symmetric and any symmetric stretches.

They found that these were essentially constant for Germanium where intact vesicles formed but

decreased in the SAM and gold cases where the vesicles ruptured to form a monolayer on the SAM

or a bilayer on the gold substrate.

In summary, it is clear that several parameters affect the formation of SLBs on solid supports.
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For instance, substrates such as gold lead to the formation of supported vesicle layers, whereas

SLBs form on anionic glasses such as silica, mica, borosilicate glass and quartz. Zhadanov and

Lipowsky’s theoretical work shows that this is due to the degree of stress on the vesicle brought

about by its interaction with the substrate, which is moderated in some fashion by the ionic con-

ditions of the buffer the vesicle is suspended in. It is known that cations in solution bind to vesicle

bilayers thereby altering their structure but principally their bending modulii. A change in the

bending modulus changes the critical radius necessary for rupture on support surfaces and may

alter the path of vesicle rupture. For instance, a change in the minimum rupture radius may mean

more vesicle fusion events are necessary so that the resulting large vesicle (but not too large) can

rupture on the surface. Interactions with neighbouring vesicles and bilayer edges seem to increase

the rate of SLB formation from the rupture of adsorbed vesicles, but these are not necessary in

all cases; more isolated rupture is observed on mica than silica. The actual adsorption of the

vesicles seems to depend on the balance of forces at the interface in the solution conditions chosen.

But primarily depends on whether the vesicle and substrate surfaces are interacting at constant

potential or constant charge. Hydration repulsion has an effect on the overall rate of formation

but is not controlling as the nature of the electrical double layer interaction. Fygenson70 has

questioned the interpretation of previous QCM-D data with regards to the concept of a critical

vesicular coverage, at least on borosilicate glass. Also a large majority of lipid species such as the

phosphoethanolamines, spingomyelins, and mixtures relevant to the study of functional domains in

real membranes (lipid rafts) have been given scant attention in these studies. The first and the last

are the most concerning: bacterial membranes are primarily comprised of PE and lipid rafts are

the subject of much research. It is important to elucidate the formation of SLBs from suspensions

of these lipids and to find out under what conditions formation is well defined and reproducible.

The lack of work on the PE family of lipids is probably due to their general preference for hexag-

onal phases rather than vesicular ones. TIR-Raman would be an excellent technique to study the

mechanism of SLB formation on optical glass. It offers several advantages over ATR-IR for the

study of thin films, including a reduced penetration depth and much weaker water background.

Order parameters, in theory, provide a way to distinguish different states of lipid aggregation at

the interface that does not rely on mechanical perturbation i.e. AFM.
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3.2 Results

3.2.1 A framework for interpretation

In this section I will describe how I have interpreted my TIR-Raman spectra of SLB forma-

tion and associated NTA data. Kinetic TIR-Raman data were analysed using the chemometric

technique of target factor analysis (TFA), (see section 2.4.5.2). TFA has allowed me to quan-

tify the amount of material at the interface in terms of uncalibrated but normalised component

weights. Although component weights alone do not afford the surface excess, as long as the same

refined spectrum is used for comparable systems, the relative surface coverage can be obtained.

In order to gain a greater understanding of the processes taking place during vesicle adsorption

and rupture, I also endeavoured to extract information from the subtracted TIR-Raman spectra

by order analysis (see section 2.4.5.1). The order parameters provide evidence for any structural

changes taking place during the adsorption process and therefore allow me to infer whether or not

vesicle rupture was taking place and in what way. With this in mind, I wrote a function in Matlab

to locally fit 4th order polynomials to the symmetric and antisymmetric CH stretches; from these

fits information about the peak intensity ratio of the anti-symmetric to symmetric CH stretches

was obtained and their respective positions were extracted. These values were then plotted against

time and inferences made. Often adjacent spectra within the time series were averaged in order

to reduce the noise in the parameters; unfortunately, this was done at the loss of data points per-

taining to transient events such as rapid initial adsorption. Information regarding the number of

spectra in each average and the associated time period over which they were calculated is included

in the captions of the relevant figures. In summary, the component weights quantified how much

lipid was that the surface and the order parameters provided information about the structure of

this material and its environment.

Despite the large amount of detailed information which I have been able to extract from

TIR-Raman data, several artefacts were encountered during my measurements that could not be

avoided. The artefacts do not bring into doubt my interpretations so long as they are recognised.

The primary cause of the artefacts was the defocussing of the microscope from the interfacial region.

This occurred because of slow but steady drift in the micro-motion stages used to control the flow

cells position. In general for equilibrium spectra defocussing is not an issue. However, for the long

duration measurements made of SLB formation sometimes defocussing did occur and this could

alter the spectra obtained in two key ways. When focus of the interface is lost, it may coincide

with the displacement of the laser spot, which moves the image of the laser spot on the detector,

this can lead to an offset in the peak positions i.e. there is effectively a loss of calibration until

refocussing. This artefact brings into question the interpretation of changes in the peak positions

with time wherever it occurs, and I have only included this order parameter for two of the three

systems investigated for illustrative purposes. If there is a large drop in signal the I(d−)/I(d+) will

also be affected. In the CH region there is also some residual background that does not pertain to

water. If the signal becomes sufficiently low the non-water background contribution to the peak

intensities of the symmetric and anti-symmetric stretches will become large enough to lower the

ratio. However, this effect is much smaller than that leading to variation in the peak positions.

Important to any investigation of SLB formation by in-situ vesicle fusion is an accurate un-

derstanding of the lipid suspensions prepared. In my work I have used bath sonication to prepare

lipid vesicles. Probe sonication requires centrifugation to remove contaminant metal particles from

the probe tip which break off during each cycle, and may cause damage to the lipids in the sample,
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resulting in lower purity. However, the vesicles prepared by bath sonication are expected to be

larger and of significantly wider size distribution than those prepared by probe sonication. By

measuring the sizes of the vesicles/aggregates I have yet more information to help me understand

my TIR-Raman data as I have information about what aggregates could present themselves at the

interface.

In the coming sections on different lipid systems, we shall see that SLB formation takes place

in several distinct stages. In stage I there was a dead time which depended on the length of inlet

tubing and was equal to the time required for the vesicle suspension to reach the silica substrate.

In stage II there was a period of rapid increase in component weight that corresponded to the

adsorption of lipid; the exact nature of the rapid adsorption depended on the lipid system under

study and the bulk buffer conditions employed. In stage III, the component weights gradually

increased or maintained a stable value. In stage IV, whilst the flow cell was rinsed using pure

buffer, either the material adsorbed through stage III was removed or the constant component

weight was maintained. I have been able to associate stage II, the period of rapid uptake, as the

primary SLB formation stage. I have shown stage III build-up to be the weak adsorption of extra

lipid material. Stage IV was the removal of this material if it had adsorbed.

3.2.1.1 Assignments

Figure 3.6 (a) shows a TIR-Raman spectrum of the CH region for a POPC SLB at the

silica–water interface. Figure 3.6 (b) shows TIR-Raman spectra of the fingerprint region of POPE

and egg-SM SLBs at the silica water interface. The relevant spectral assignments are shown. The

main features are the anti-symmetric methylene stretch (d−) at ≈2890 cm−1 and the symmetric

methylene stretch (d+) at ≈2852 cm−1; using these I monitor changes in the primary order pa-

rameter (I(d−)/I(d+)) and peak positions to understand the state of the lipid alkyl chains at the

interface. Unfortunately we are unable to resolve the symmetric terminal methyl stretch (r+) at

≈2870 cm−1 as is it occluded by the (d−) mode. I have been able to resolve the other CH bands:

the CH2 scissoring mode at ≈1470 cm−1, the CH2 twisting/wagging mode at ≈1300 cm−1, the

overtone of the CH2 scissoring mode with its Fermi resonance at ≈2927 cm−1, the antisymmetric

terminal methyl stretch (r−) at ≈2960 cm−1, the symmetric headgroup methyl stretch (r+
HG) at

≈2985 cm−1, the vinylic CH stretch at 3010 cm−1 from the cis-double bond of the oleoyl chain

in POPC, and the anti-symmetric headgroup methyl stretch at ≈3041 cm−1. The small band at

≈2725 cm−1 is tentatively assigned to an overtone of the CH2 bending modes. The ester carbonyl

stretch is found at ≈1740 cm−1.
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Figure 3.6: (a) An S-polarised TIR-Raman spectrum (unpolarised detection), SiO2/H2O background sub-

tracted, showing the CH region of a complete Lα phase POPC SLB with spectral assignments highlighted:

(d+) - symmetric CH stretch, (d−) - anti-symmetric CH stretch, (d+
FR) - overtone of the CH scissoring

mode with its Fermi resonance, (r−) - antisymmetric terminal methyl stretch, (r+HG) - symmetric head-

group methyl stretch, (r−) - antisymmetric stretch choline headgroups, (=CH) - vinylic CH vibrations,

(δCH2) - overtone of the CH2 bending mode. (b) S-polarised TIR-Raman spectra (unpolarised detection),

SiO2/H2O background subtracted, showing the finger print region of complete POPE (red) and egg-SM

(black) SLBs in the Lα phase, relevant spectral assignments shown. Notice the un-occluded ester carbonyl

stretch of POPE, which I have used to calculate the composition of the mixed SLB.
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3.2.2 POPC

I decided to study the formation kinetics of POPC SLB on silica by TIR-Raman spectroscopy

in an effort to validate TIR-Raman as a technique for studying SLB formation by vesicle fusion;

POPC has been used for work on SLB formation kinetics frequently by others and so comparisons

can be made.

3.2.2.1 Vesicle size distributions

I acquired size distributions for POPC vesicles in (i) 20 mM tris pH 7.4, (ii) 20 mM tris + 100

mM NaCl and (iii) 20 mM tris pH 7.4 + 2 mM CaCl2. The size distributions were acquired at 32◦C,

the same temperature as used in the formation kinetics shown later. These vesicle size distributions

are shown in figure 3.7. Interestingly, Na+ and Ca2+ resulted in larger vesicles, probably a result

of the higher bending modulus of vesicles with bound cations. A higher bending modulus would

imply a greater energy required to break a vesicle up in the ultra-sonic field. Consequently, a

smaller proportion of vesicles would undergo rupture in the ultra-sonic field at any one time. After

a finite sonication time the number of smaller vesicles would therefore be lower in the salt solutions

where lipid bilayers have higher bending modulus. The mean diameters of the vesicles were i) 110

nm, ii) 166 nm and iii) 149 nm, roughly in order of ionic strengths, I, where i) I ≈0 (ii) I =100 mol

dm−3 and (iii) I = 6 mol dm−3. The fact that the vesicles are larger when prepared in Ca2+ than

when those prepared in the Na+ containing buffer is indirect evidence of a stronger interaction

between the POPC headgroups and Ca2+ than with Na+. The small artefacts at the bottom of

the size distributions are most likely due to noise on the CMOS detector of the NTA apparatus

operating at high gain. The lower detection limit for the vesicles I prepared was in the range of

30-50 nm.
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Figure 3.7: Vesicle size distributions obtained for POPC in (i) 20 mM tris pH 7.4 (black) (ii) 20 mM tris

pH 7.4 + 100 mM NaCl (red), (iii) 20 mM tris pH 7.4 + 2 mM CaCl2 (blue). All at 32◦C.
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3.2.2.2 POPC adsorption
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Figure 3.8: Subtracted TIR-Raman spectra showing stage II, the period of rapid uptake for POPC
SLB formation in (ii) 20 mM tris pH 7.4 + 100 mM NaCl at 32◦C. S-polarised (un-polarised
detection), 73◦ incidence, 800 mW, 5 s acquisition per spectrum, 63 s total.

Figure 3.8 shows example background subtracted TIR-Raman spectra of POPC vesicle ad-

sorption at the silica-water interface in buffer (ii) containing 100 mM NaCl. The spectra shown

are from stage II, the period of rapid uptake described in my framework above. It is from spectra

like these that the rest of my analyses are carried out. Figure 3.9 (a) shows the component weights

of POPC, normalised by the component weight of water, with time for the adsorption of POPC

vesicles to the silica substrate. In all traces there was a short initial dead time which depended

upon the length on inlet tubing and the flow rate used. During the dead time the lipid suspension

was still passing through the tubing. After the dead time there was a rapid increase in component

weight for all three buffers. A close-up of this region is shown in 3.9 (b). Examination of this

time period showed an acceleration of uptake on the surface with time lasting for (i) 31 s, (ii)

54 s and (iii) 51 s. Following this rapid uptake, in all conditions there was a slow increase of

component weight with time. This build-up was lowest in buffer (i), and increased to a far higher

level in buffers (ii) and (iii) where Na+ and Ca2+ were present. The final levels of the build-up as

measured in (ii) and (iii) were approximately the same. However, during this stage the degree of

build-up appeared more rapid and higher in (iii) than in (ii); it also appeared to be more irregular.

After approximately 6000 s the syringe was replaced with one containing pure buffer. The laser was

shuttered for safety during the exchange of syringes so there is a break in the data. Following the

syringe exchange, the laser was refocussed on the hemisphere surface to correct for any defocussing.

After the flow and data collection were recommenced there was a short period during which the

last remaining vesicle-containing buffer flows into the cell of the same approximate duration of the

initial dead time. When the pure buffer reached the surface, the component weights decreased

rapidly until they reached a stable value which did not change over the remaining experimental

duration. We associated this plateau with a complete SLB. The total quantity of material at the

interface after rinsing with buffer varied by approximately 13% when compared to final component
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weight level obtained for buffer solution (ii). In repeat measurements the final component weights

were similar indicating consistent final surface coverages.
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Figure 3.9: Two graphs showing the normalised component weights of POPC at the silica-buffer interface

with time in solutions (i) 20 mM tris pH 7.4 (black circles), (ii) 20 mM tris pH 7.4 + 100 mM NaCl (red

diamonds) and (iii) 20 mM tris pH 7.4 + 2 mM CaCl2 (blue squares) (a) full duration (b) blow up of initial

rapid increase. Acquisition times per spectrum, (i) 3.5 s, (ii) 5 s, (iii) 3.5 s. All at 32◦C.
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3.2.2.3 Rupture and build-up

Figure 3.10 (a) shows no significant change in peak positions in the absence of added ions.

Figure 3.10 (b) shows the peak positions with time in tris buffer with 100 mM Na+. We observe

little change in the antisymmetric stretch but a pronounced decrease and subsequent increase in

the wavenumber of the symmetric stretch, corresponding to the build-up of component weight and

loss thereof upon rinsing with pure buffer. Figure 3.10 (c) shows the peak positions vs time in

tris buffer with added 2 mM Ca2+. As in the Na+ experiment, there is little variation in the

antisymmetric stretch with time, however, there is a significant decrease in the peak position of

the symmetric stretch corresponding to the build-up period in the component weight data. Upon

rinsing the symmetric stretch shifts to higher frequency.

The corresponding plots of the peak intensity ratio, I(d−)/I(d+) are shown in figure 3.11 (a)

through (c). Figure 3.11 (a) shows the intensity ratio data for buffer solution (i) 20 mM tris pH

7.4. Here we see very little change in the parameter as time passes; there is a slight decrease during

component weight build-up followed by a similarly small increase upon rinsing. However, figure

3.11 (b) and (c) are more interesting, they show changes that closely follow the behaviour shown

in 3.9 for the same buffer solutions (ii) and (iii). In (b) there is a slow decrease corresponding to

the increase shown in the component weight data. During rinsing I(d−)/I(d+) recovers, ultimately

leading to values identical for those acquired in figure 3.11 (a). These data suggest that lipid

in a form other than an SLB is adhering to the surface after the initial rapid adsorption. It is

highly likely that the additional signal corresponds to vesicle build-up; we know that vesicles are

present in solution and the intensity ratio values are distinct from SLB, the additional signal is also

removed readily upon rinsing. As the final values of the order parameter are slightly higher than

those at the early peak, which corresponds to the period of rapid accelerating uptake in figure 3.9,

I believe that the bilayer was incomplete at the early stage, only reaching completion at some point

during the build-up phase. Figure 3.11 (c), shows the intensity ratio data for the Ca2+ containing

solution. The behaviour is similar to (b) however, the initial data points correspond more closely

to the final ones implying that the POPC at the interface at this stage is in the same state as that

after rinsing. SLB formation takes place more rapidly in the calcium-containing buffer than the

sodium-containing buffer – vesicle rupture required to create an SLB has taken place before the

onset of build-up. In general for molecules aligned in the same direction relative to the interface

I(d−)/I(d+) is a quantitative measure of lipid order. However, in this case where one contributing

component is SLB and the other is spherical vesicles, it is not possible to compare the quantitative

values directly, but it is possible to say there are clearly different contributions to the spectra,

one corresponding to vesicles and the other to SLB. At each time step the actual spectrum is a

weighted average of the two contributions. These differences are however, very small, in this sense

they do not affect the TFA analysis, and thus the TFA analysis did not require an additional factor

corresponding to the second state as they are so similar. The overall differences in the intensity

ratio are also quite small (0.06), compared to the change of 0.3 in the I(d−)/I(d+) ratio at the main

(Lα →Lβ) phase transition (see Chapter 4). The final average I(d−)/I(d+) values after rinsing for

the three buffer solutions were: (i) 1.065±0.006, (ii) 1.069±0.007 and (iii) 1.057±0.011.
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Figure 3.10: Graphs (a), (b) and (c) showing the change in the symmetric and anti-symmetric CH stretch

positions during POPC SLB formation with time for (i) 20 mM tris pH 7.4 (black triangles and crosses),

(ii) 20 mM tris pH 7.4 + 100 mM NaCl (red triangles and crosses) and (iii) 20 mM tris pH 7.4 + 2 mM

CaCl2 (blue triangles and crosses) respectively. All at 32◦C. Data were compiled from averaged background

subtracted TIR-Raman spectra: (i) 10 spectra over 53 s, (ii) 4 spectra over 33 s and (iii) 5 spectra over 25

s.
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Figure 3.11: Graphs (a), (b) and (c) showing the change in the peak intensity ratio [I(d−)/I(d+)] for

POPC SLB formation with time for (i) 20 mM tris pH 7.4 (black triangles and crosses), (ii) 20 mM tris

pH 7.4 + 100 mM NaCl (red triangles and crosses) and (iii) 20 mM tris pH 7.4 + 2 mM CaCl2 (blue

triangles and crosses) respectively. All at 32◦C. Data were compiled from averaged background subtracted

TIR-Raman spectra: (i) 10 spectra over 53 s, (ii) 4 spectra over 33 s and (iii) 5 spectra over 25 s.
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3.2.2.4 Critical vesicular coverage

The minima in figure 3.11 (b) and (c) give an idea of the value of the order parameter for pure

vesicles, it must be lower than the minimum values measured as SLB is contributing to the spectra

at these points. We can ascertain that even in the initial data points shown, bilayer formation

is almost complete for all three systems. Lower vesicle concentrations would be needed to find

out categorically whether or not a critical vesicular coverage was required for SLB formation for

POPC in the buffers used here. It is unclear why a POPC SLB would form faster from a tris only

solution than one containing 100 mM Na+. Previously authors have shown that vesicles composed

of zwitterionic lipids have a slightly negative zeta potential; the sodium cations could be screening

the expected repulsive electrostatic interaction between the silica support and incoming vesicles.

In addition, larger vesicles are likely to diffuse more slowly than smaller ones; my data show that

vesicles prepared in the tris only buffer are the smallest. Also why do we observe a build-up at all?

Other workers have recently stated that vesicles show a poor affinity for the SLB buffer interface

and have observed the active loss of remnant vesicles upon bilayer completion.70 I have observed

vesicle build-up after the formation of the lipid bilayer. The duration of my experiments was longer

than those observed by other workers and the concentration of vesicles was greater. If vesicles were

to desorb upon SLB completion, we would expect to observe desorbtion sooner than Fygenson and

coworkers,70 as the SLB forms faster with higher vesicle concentrations. The acceleration observed

during the phase of rapid vesicle adsorption is in agreement with other work; this shows that the

surface has a stronger interaction with bulk phase vesicles as the lipid coverage increases.

3.2.3 Egg-SM

Sphingolipids make up ≈33% of lipid raft fractions,74 and form a total of 10-20% of the

lipid found in human plasma membranes.25 They are important in a wide variety of cellular

processes such signal transduction and extracellular recognition. To my knowledge there has been

no systematic investigation into the formation of SLBs comprising lipids from this group. The

sphingolipids are similar to the phosphatidylcholines in that they have a choline headgroup, but

the backbone of the lipid is sphingosine not glycerol. The acyl chains are attached by amide

bonds not ester linkages. The position of the amide and hydroxyl groups on these lipids allows

for intra-bilayer hydrogen bonding leading to the formation of more ordered bilayer structures.

It is for this reason that they also possess higher main phase transition temperatures than many

glycerophospholipids with hydrocarbon chains of similar length.75

3.2.3.1 Vesicle size distributions

Vesicle size distributions were acquired in the same three buffer conditions as before (i) 20

mM tris pH 7.4, (ii) 20 mM tris pH 7.4 + 100 mM NaCl and (iii) 20 mM tris pH 7.4 + 2 mM

CaCl2. These are shown in figure 3.12. Figure 3.13 shows a screenshot of the raw NTA output

of egg-SM vesicles for illustrative purposes. The mean vesicle diameters were (i) 110 nm, (ii) 177

nm and (iii) 131 nm respectively. These diameters were for the most part very similar to those

acquired for POPC however, the measurements for solution (iii) containing the 2 mM Ca2+ were

significantly smaller. Interestingly for the two suspensions with added electrolyte, the distribution

extends out as a tail to much higher sizes showing the screening of the electrostatic double layer

repulsion between neighbouring vesicles resulting in some degree of flocculation.
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Figure 3.12: Vesicle size distributions acquired for egg-SM in (i) 20 mM tris pH 7.4 (black), (ii) 20 mM

tris pH 7.4 + 100 mM NaCl (red) and (iii) 20 mM tris pH 7.4 + 2 mM CaCl2 (blue). All at 44◦C.

Figure 3.13: A screenshot from the NTA raw video output of egg-SM vesicles. Image approximately
120 µm x 90 µm.
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3.2.3.2 Egg-SM adsorption
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Figure 3.14: Graphs showing the normalised component weights of egg-SM at the silica-buffer interface

with time in solutions (i) 20 mM tris pH 7.4 (black triangles), (ii) 20 mM tris pH 7.4 + 100 mM NaCl (red

circles) and (iii) 20 mM tris pH 7.4 + 2 mM CaCl2 (blue left point triangles), 44◦C, 800 mW, 73◦ incidence,

S-polarised, unpolarised detection: (a) full duration, (b) closeup of initial rapid increase. Acquisition times:

(i) 2.5 s, (ii) 2.5 s, (iii) 3.5 s.
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The egg-SM used in this section of my work is in fact a natural mixture of lipids, the predom-

inant species is shown in my introduction and makes up 86% of the total content. Nevertheless I

was able to represent the mixture by a single component or representative spectrum in the TFA

analysis; the individual spectra will all be very similar and using independent factors for each of

them is not necessary to measure the amount of lipid at the interface. The component weights are

shown plotted against time in figure 3.14 (a) and (b). As before there was an initial dead time

followed by a rapid increase in the component weight for all of the solution conditions investigated.

However, for egg-SM, although the data for all buffer conditions show a rapid increase with an

accelerating increase in signal, the sodium and pure tris data slow as they approach the end of

this stage. The total times for this period of initial uptake were (i) 127 s, (ii) 97 s and (iii) 46

s. Interestingly for buffer (iii) with Ca2+ there was a slight over-shoot; the signal level dropped

by a small amount to reach the plateau value, which remained virtually constant until rinsing at

≈5500 s (the small bump at ≈3200 s most likely corresponds to a larger aggregate that passed

through the evanescent field. For buffer solutions (i) and (ii) the stage of rapid increase is followed

by a subsequent build-up similar to what was observed for the POPC systems with buffers (ii) and

(iii). As rinsing began, the signal levels dropped with buffers (i) and (ii) reaching a stable plateau

value. However, there was a discrepancy in the time taken to remove the extra material from the

interface; in the sodium containing buffer it takes approximately 121 s to remove, but in the tris

only system it takes 815 s. For buffer (iii) no extraneous material had adsorbed to the surface and

so with rinsing the component weight remained constant. Between all buffer conditions the final

SLB coverage varied by approximately 6%.

3.2.3.3 Rupture and build-up

Figure 3.15 shows the peak positions with time for the respective SLB formation processes

shown in figure 3.14. When comparing figures 3.15 (a) and (b) with the data for buffers (i) and

(ii) in figure 3.14 there are changes in the CH stretch positions that correspond to the build-up

of vesicles. However, when comparing figure 3.15 (c) with the data in figure 3.14 for buffer (iii)

we notice that there is a decrease in the peak position but no corresponding build-up of material

in the component weight data. Either some restructuring process is taking place within the layer

that belies the constant normalised component weights, or the change is an artefact of defocussing.

However, questions about the state of lipid material at the interface can still be answered by looking

at figure 3.16 (a) to (c) showing the change in the primary order parameter with time. As we shall

see in the next paragraph, the data presented follow the changes in the component weights well,

thus implying that the peak shifts for buffer (iii) are artefacts and that the peak positions are the

least reliable of the two order parameters used.

For figure 3.16 (a) showing the change in the intensity ratio for the tris-only system we

observe similar behaviour to POPC SLB formation. However, there are more data points for the

initial rapid stage of vesicle adsorption; and these provide an indication of un-ruptured vesicles at

the silica-buffer interface. The data points that correspond to the peak of the initial rapid increase

in the component weight data are lower than the final values after rinsing, suggesting that for the

pure tris system, as for POPC, formation is not complete until some time after the onset of the

additional build-up. Again, this build-up is only removed upon rinsing.

Figure 3.16 (b) shows the I(d−)/I(d+) data with time for the sodium containing buffer. The

initial change, between 0 and 1000 seconds, in the I(d−)/I(d+) values is very clear as we have

more data points for this system than any other examined so far. The very first intensity ratio
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values correspond well with those obtained at maximum vesicle build-up at ≈6000 s; indicating

that at the earliest times the surface was mostly occupied with vesicles and not SLB. As the total

amount of material as shown by figures 3.14 (a) and (b) increased in the rapid uptake stage, so

did the I(d−)/I(d+) values, therefore a constant transformation into SLB took place; there was

no CVC in this case – I observed spontaneous rupture. In the other systems described above, the

final values of I(d−)/I(d+) after rinsing were higher than those after the initial rapid uptake before

build-up therefore the SLB was not complete until after the build-up period had commenced. The

I(d−)/I(d+) data for buffer (iii) show absolutely no change; the SLB formed very quickly at the

start of the procedure. Similar to POPC, different buffer conditions promote the adsorption of

extraneous vesicles. For POPC not adding electrolyte limited the degree of vesicle build-up, but

for egg-SM the inclusion of 2 mM Ca2+ in tris buffer prevented it completely. The origin of this

effect is not bulk electrostatic screening as the inclusion of 100 mM Na+ also led to vesicle build-

up for egg-SM. The effect must be related to specific cation chosen, specific binding and thus its

specific physical properties. For this system the mean order parameter values after rinsing in the

three buffers were: (i) 1.08±0.01, (ii) 1.10±0.01 and (iii) 1.11±0.01. These values show virtually

no difference in the order of the egg-SM SLB in the presence of the cations in comparison to the

tris-only buffer.
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Figure 3.15: Graphs (a), (b) and (c) showing the change in the peak positions of the symmetric and

anti-symmetric CH stretches during egg-SM SLB formation with time for (i) 20 mM tris pH 7.4, (ii) 20

mM tris pH 7.4 + 100 mM NaCl and (iii) 20 mM tris pH 7.4 + 2 mM CaCl2 respectively. All at 44◦C.

Data were compiled from averaged background subtracted TIR-Raman spectra: (i) and (ii) 5 spectra over

20 s, (iii) 5 spectra over 25 s.
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Figure 3.16: Graphs (a), (b) and (c) showing the change in the peak intensity ratio [I(d−)/I(d+)] during

egg-SM SLB formation with time for (i) 20 mM tris pH 7.4, (ii) 20 mM tris pH 7.4 + 100 mM NaCl and

(iii) 20 mM tris pH 7.4 + 2 mM CaCl2 respectively. All at 44◦C.
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3.2.4 POPE

The phosphatidylethanolamines make up approximately 25% of all phospholipids and are

the primary class of lipids in bacteria; for instance Escherichia coli cytoplasmic membranes are

composed of 70-80% PE.76 In addition, it replaces PC as the primary phospholipid component

in mammalian inner membranes. Despite its relevance in biological processes and its ubiquity in

bacterial membranes, little work has been done on the preparation of SLBs from this class of lipids.

Several authors have, however, used it as a model system.77 It is well known that PE prefers to

form hexagonal phases and, where vesicles do form, it tends to flocculate in solution owing to its

dehydrated headgroups. Owing to the obvious practical difficulties that arise from these properties,

no work that I am aware of has been carried out to study the kinetics of POPE SLB formation

by ‘vesicle fusion’. However, other authors have stated that they have prepared POPE SLBs by

vesicle fusion when conducting experiments on SLBs.78

3.2.4.1 Aggregate size distributions

It has been reported that PE does not form vesicle suspensions at physiological pH.79 To

understand the structure of the POPE aggregates formed in: (i) 20 mM tris pH 7.4, (ii) 20 mM

tris pH 7.4 + 100 mM NaCl and (iii) 20 mM tris pH 7.4 + 2 mM CaCl2 I have conducted NTA

measurements. The resulting size distributions are shown in figure 3.17. POPE does not form a

suspension with a single peak and narrow size distribution in any of the conditions studied. These

results are to be expected as all measurements were conducted at pH 7.4. What we observe is

a distribution of sizes with irregular structure, with particles in the range of 30 to <1000 nm.

Adding sodium and calcium reduces the number of large particles and decreases the mean size.

Video sequences from the NTA apparatus, show a few small particles, but also a greater number of

much larger aggregates, that appear to comprise a number of smaller particles (not shown). The

NTA recognises particles as small spherical light sources. Larger aggregates are often interpreted

as a number of coalesced particles, which leads to errors in the size distributions. It’s measurement

of the moderately sized aggregates is probably correct. Clearly in the buffer conditions used POPE

does not form vesicle suspensions like the other lipids used in this study, it forms a more diverse

suspension of aggregates.
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Figure 3.17: Aggregate size distributions acquired for POPE in (i) 20 mM tris pH 7.4 (black), (ii) 20 mM

tris pH 7.4 + 100 mM NaCl (red) and (iii) 20 mM tris pH 7.4 + 2 mM CaCl2 (blue). All at 32◦C.

3.2.4.2 POPE adsorption

Figure 3.18 (a) and (b) show the component weights with time for the formation of POPE

SLBs on silica in: (i) 20 mM tris pH 7.4 + 100 mM NaCl and (ii) 20 mM tris pH 7.4 + 2 mM

CaCl2. POPE did not adsorb on silica in pure 20 mM tris at pH 7.4. However, it always adsorbed

when Ca2+ was included in the buffer and inconsistently when Na+ was present. For the buffer

containing Na+ (i), between 400 and 700 seconds, we observe a stepwise increase in the component

weight. At 700 seconds, this stepwise behaviour ceases and a plateau is reached which is unchanged

when we rinse the system (marked by the arrows). The break in the data data at approximately

6000 seconds was due to the refocusing of the microscope. With Ca2+ (ii), we observe a similar

stepwise increase but it is much faster. During the plateau phase we observed the adsorption

of additional material to the SLB, this material is removed from the interface after a very large

aggregate rolled across the surface (see the two data points at very high component weight). There

was very little change in the component weight upon rinsing – the plateau continued. The overall

signal levels acquired for POPE compare well with those of POPC. I acquired neutron reflectivity

data, which, confirm the presence of an SLB (20 mM tris pH 7.4, 32◦C, ILL, FIGARO). These

data are shown in figure 3.19 and the corresponding parameters used to model the lipid layer are

shown in table 3.4. The model parameters indicate that I have successfully created a complete

SLB in the presence of Ca2+. For measurements in Na+ (i) we found that bilayer formation was

irreproducible – many SLB formations failed. But, POPE SLBs could always be prepared in Ca2+

(ii). The stepwise increase in Raman signal could arise from the adsorption and spreading of larger

flocs in the suspensions, such as those visible in the NTA measurements.
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Figure 3.18: Graphs showing the normalised component weights of POPE at the silica-buffer interface

with time in solutions, (i) 20 mM tris pH 7.4 + 100 mM NaCl (red) and (ii) 20 mM tris pH 7.4 + 2

mM CaCl2 (blue), 32◦C, 800 mW, 73◦ incidence. (a) full duration, (b) closeup of the initial step-wise

adsorption. Acquisition times 5 s.
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Figure 3.19: Neutron reflectivity as a function of momentum transfer for POPE adsorbed on an SiO2 layer

on a single crystal silicon block in 20 mM tris buffer at pH 7.4, 32◦C; acquired at the ILL on FIGARO.

Points are the reduced raw data. Lines are the model fits; the parameters used for modelling are shown

in table 3.4. Green line and points H2O contrast, red line and points D2O contrast. The inset shows the

scattering length density profile normal to the interface as a function of distance as determined from the

model.

Region Thickness / Å SLD / x 10−6 Å−2 Solvent / % Roughness

SiO2 12.85 3.47 19 2

POPE HG 5 3.7221 (2.51) 15.43 2

POPE Chains 15 -0.53 0 2

POPE Chains 15 -0.53 0 2

POPE HG 5 3.7221 (2.51) 15.43 2

Table 3.4: Model parameters used to fit the data shown in figure 3.19. The numbers in brackets correspond

to the scattering length density of the headgroups in H2O. As the protons on the ammonium headgroup

are labile, they are exchanged when the bulk sub-phase reservoir is changed from D2O or H2O and vice

versa. When fitting the data for the different contrasts, the different SLDs for the headgroup region must

be used to account for this exchange.
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3.2.4.3 Order parameters

Since I have shown that interpretation of the peak positions is compromised when focus is

degraded, I have omitted these data here. The I(d−)/I(d+) data are shown as a function of time

in figure 3.20 (a) and (b). Subfigure (a) shows data for the Na+ containing system. Between 0 and

6000 seconds, there was a steady decrease in I(d−)/I(d+) with time and a concomitant increase in

scatter. Upon refocussing, at 6000 seconds, the decrease was lost and the parameter recovered to

its initial values. After rinsing at ≈11000 seconds, the I(d−)/I(d+) values increased slightly. These

data are difficult to interpret as a result of the very high degree of defocussing for this run. In my

introductory framework of this chapter I described how an artificial reduction in I(d−)/I(d+) can

occur when signal levels drop by a large factor. Figure 3.18 (a) shows a clear increase of variance

in component weight with time; in fact the total signal dropped to 10% of its original value. I

think that the decrease in the I(d−)/I(d+) data between 0 and 6000 seconds was a result of the

high signal loss for this experiment and was not indicative of any structural change. However, I

have included these data here as they are the only kinetic data I have of formation for this system

despite having successfully prepared POPE SLBs in this buffer several times.

The data for POPE in Ca2+ are shown in figure 3.20 (b). These data show an increase in

I(d−)/I(d+) between 1000 and 4000 seconds. This increase coincides with an increase in component

weight above the initial stepwise increase shown in figure 3.18 (a). These two data-sets show that

extraneous POPE adsorbed to the surface during this period. For POPC and egg-SM the build-up

of loosely bound vesicles to the SLB was characterised by a decrease in I(d−)/I(d+). For POPE

in Ca2+ as the value of I(d−)/I(d+) increased, the aggregates comprising the build-up cannot be

vesicles. It is not possible to interpret the actual I(d−)/I(d+) values in this case as we have no

knowledge of the aggregates internal structure. In general, given similar molecular orientation to

the evanescent electric field, the greater the I(d−)/I(d+) value the more ordered the alkyl chains of

the probed structure. The final order parameter values after rinsing were again very similar being

1.102±0.005 for the Na+ containing buffer and 1.097±0.006 for the Ca2+ containing buffer.
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Figure 3.20: Graphs (a) and (b) showing the change in the peak intensity ratio [I(d−)/I(d+)] with time

for (i) 20 mM tris pH 7.4 + 100 mM NaCl and (ii) 20 mM tris pH 7.4 + 2 mM CaCl2 respectively. 32◦C,

800 mW, 73◦ incidence. Data were compiled from averaged background subtracted TIR-Raman spectra:

(i) 10 spectra over 70 s and (ii) 5 spectra over 35 s.
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3.2.5 POPE:egg-SM:Cholesterol

SLBs composed of lipid mixtures have become relevant in recent years due to the growing

interest in lipid rafts. Rafts are regions within real cell membranes enriched in cholesterol and

sphingomyelin relative to the surrounding membrane, which act as domains for specific membrane

proteins.80,81 To model the cellular processes associated with lipid rafts, SLBs are required that

approximate their behaviour. Accurate biomimetic models will therefore contain multiple lipid

species. Owing to the increase in SM and cholesterol these regions are more ordered than the

surrounding bilayer and form a distinct phase the Lo or liquid ordered phase. One current problem

is that these “rafts” would need to exist on both sides of the cell membrane but the distribution

of lipids on either side of real membranes are quite different; they would have to be coupled in

some way.74 For example, for human erythrocyte membranes, PC and sphingomyelin dominate

the phospholipid component on the external side, whilst PE and PS dominate the inner leaflet.25

Interestingly these ordered regions have been found to be resistant to solubilisation by surfactants

and have hence been called detergent resistant membranes (DRMs).82

An advantage of TIR-Raman spectroscopy is that if offers chemical information which few

other techniques commonly used for studying the formation of SLBs can offer. Chemical infor-

mation can be extracted from neutron reflectometry data, but this technique is signal limited

and is used infrequently to study kinetic processes at the time scale necessary for SLB forma-

tion. ATR-FTIR spectroscopy, which has been used recently to study SLB formation, has several

disadvantages in comparison to TIR-Raman when studying very thin films at interfaces; it also

has practical difficulties which are unimportant in TIR-Raman.83 For example a very large water

background that overwhelms the CH absorptions and a much greater penetration depth. In this

section I describe the use of TIR-Raman to study the formation of SLBs from a 1:1:1 molar mixture

of POPE, egg-SM and cholesterol and show how TIR-Raman can be used to find the composition

of the final SLB.

3.2.5.1 Vesicle size distributions

Figure 3.21 shows the vesicle/aggregate size distributions for the lipid mixture in (i) 20 mM

tris pH 7.4, (ii) 20 mM tris pH 7.4 + 100 mM NaCl and (iii) 20 mM tris pH 7.4 + 2 mM CaCl2.

In the pure tris buffer (i), the lipid mixture has a broad size distribution similar to POPE. When

sodium and calcium are added there is a well defined narrow peak with a smaller number of large

aggregates; inspection of the video sequences used to generate these size distributions show similar

images to those obtained for POPC and egg-SM. I have therefore interpreted these primary peaks

as vesicles. The peak in the vesicle distribution is 161 nm with Na+ and 158 nm with Ca2+.
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Figure 3.21: Vesicle size distributions acquired for 1:1:1 POPE:egg-SM:Cholesterol aggregates/vesicles in:

(i) 20 mM tris pH 7.4 (black), (ii) 20 mM tris pH 7.4 + 100 mM NaCl (red) and (iii) 20 mM tris pH 7.4

+ 2 mM CaCl2 (blue). All at 32◦C.

3.2.5.2 POPE:egg-SM:Chol adsorption

As the CH-region was virtually identical for all measurements of the mixture, a single repre-

sentative spectrum could be used as the target for TFA analysis. In addition, by using the same

refined spectrum for all systems the component weight data were directly comparable. Using tar-

gets for the three individual components was not possible as the differences between them in the

CH-region were too small for TFA to recognise them as different factors in the abstract reproduc-

tion. In theory it is possible to determine the composition of this mixture by making use of the

finger print region, but the signal levels attainable at the laser powers suitable for studying SLBs

are too low to allow kinetic measurements. Selective deuteration of one species in the mixture

could be used, but this would only allow one of the three components to be measured indepen-

dently. It was unfortunate that the composition of the mixed SLB could not be observed during

my kinetic measurements as studying the change in composition of the SLB as it formed would

have been interesting. These considerations do not preclude one from calculating the composition

from extended equilibrium scans following the formation of the mixed lipid SLB.

In 20 mM tris at pH 7.4 I did not observe SLB formation. However, I was able to form SLBs

in tris with added sodium and calcium. Figure 3.22 (a) and (b) show the component weights with

time for (i) 20 mM tris pH 7.4 + 100 mM NaCl and (ii) 20 mM tris pH 7.4 + 2 mM CaCl2. Both

show a rapid increase in the mixture component weight after the initial dead time. The uptake

of mixture was quicker for the calcium containing buffer (ii) than the sodium containing buffer (i)

taking 36 s and 69 s respectively. In figure 3.22 (b) a closeup of the region of rapid increase, we see

that for both the sodium and calcium containing systems, the rate of adsorption accelerates with

time. After this period of rapid increase, I observed a small degree of build-up for buffer (i) and

a larger build-up for buffer (ii). Note the passing of a larger aggregate across the interface in the

buffer (ii) data at approximately 2000 s. Rinsing was commenced at approximately 6000 seconds
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and the build-up was removed for both systems.
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Figure 3.22: Graphs showing the normalised component weights of the POPE:egg-SM:cholesterol mixture

at the silica-buffer interface with time in solutions (i) 20 mM tris pH 7.4 + 100 mM NaCl (red) and (ii)

20 mM tris pH 7.4 + 2 mM CaCl2 (blue), 32◦C, 800 mW, 73◦ incidence. (a) full duration, (b) closeup of

rapid adsorption stage. Acquisition times: (i) 3 s, (ii) 3.5 s.
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3.2.5.3 Order parameters

The I(d−)/I(d+) data as function of time are shown in figure 3.23 (a) and (b) for sodium

and calcium containing tris buffers respectively. For the Na+ containing buffer the first few data

data points show a significantly lower order parameter compared to the final SLB. These values

indicate the presence of vesicles at the interface; the fact that only two of these points exist

suggests that SLB formation took place in under 1 minute. Also, as these values increase with

component weight they lead to the conclusion that there was no, or an extremely low, critical

vesicular coverage for this system. As the vesicle build-up was low, the decrease in the I(d−)/I(d+)

ratio between 500 and 5500 seconds is lower than the equivalent period for egg-SM and POPC.

Upon rinsing intensity ratio recovers to values very similar to those acquired just prior to the onset

of build-up. In buffer containing 2 mM Ca2+, the intensity ratio follows a similar trend to the

Na+ containing system, but as the formation of the SLB occurred too quickly we were unable to

observe intermediate data points corresponding to the early stages of bilayer formation. Between

500 and 5500 seconds we observe a decrease in the I(d−)/I(d+) ratio corresponding to the build-up

observed in the component weight data. Interestingly, the final order parameter values measured

for this system are higher than those measured for any of the other pure lipid systems in the Lα

phase; being 1.167±0.007 for the Na+ containing system and 1.163±0.008 for the Ca2+ containing

system. These values indicating that the finished fluid phase SLB after rinsing is more ordered

than the SLBs composed purely of POPC, egg-SM and POPE.
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Figure 3.23: Graphs (a) and (b) showing the change in the peak intensity ratio [I(d−)/I(d+)] with time

for the 1:1:1 POPE:egg-SM:cholesterol mixture in: (i) 20 mM tris pH 7.4 + 100 mM NaCl and (ii) 20 mM

tris pH 7.4 + 2 mM CaCl2 respectively. Both at 32◦C. Data were compiled from averaged background

subtracted TIR-Raman spectra: (i) 4 spectra over 20 s and (ii) 4 spectra over 25 s.

3.2.5.4 Compositional analysis

For the 1:1:1 POPE:egg-sm:cholesterol mixed system it was important to confirm that the

finished SLB contained the expected mole fractions of the intended components. This is especially

true considering a recent article that found compositional differences between mixed component

vesicles suspensions and SLBs formed from them.84 By preparing a series of mixed SLBs by vesicle

fusion, where one component of the mixture was deuterated, I found the mole fraction of the

deuterated species by quantitative analysis (see section 2.4.5.3). By collating the results of two
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formations, the composition of the mixed SLB at equilibrium was deduced – this was done twice

for certainty. In addition, a similar procedure was carried out with deuterated cholesterol only,

where the ester C=O stretch of POPE, an isolated band, was used as a quantitative marker for

that species. By only deuterating cholesterol the mole fractions of all three species could be found

in a single preparation. The former method relied on the assumption that the ratio of components

was the same for the two vesicle suspensions used for any pair of experiments. However, the C=O

ester stretch is very weak, thus slight changes in the background can lead to large errors in the

composition. For this reason I used both methods. From these experiments I found that within

a few percent the composition was 1:1:1 in general agreement with the relative quantities used in

the preparation of the mixed vesicles.

3.3 Conclusions

In this chapter I have examined the formation of SLBs of POPC, egg-SM, POPE and a 1:1:1

mixture of POPE, egg-SM and cholesterol in: (i) 20 mM tris pH 7.4, (ii) 20 mM tris pH 7.4 +

100 mM NaCl and (iii) 20 mM tris pH 7.4 + 2 mM CaCl2. I found that POPC formed SLBs in

all buffer conditions used, but that the degree of extraneous vesicle adsorption varied depending

on the solution conditions. For egg-SM, SLBs could be prepared in all buffer conditions, but the

degree of build-up was the same for tris only and sodium containing buffers and build-up did not

occur for the calcium containing buffer. For POPE it was not possible to prepare an SLB in pure

tris buffer at pH 7.4, however it was possible to prepare SLBs in the calcium and sodium containing

buffers although less reproducibly in the latter. It was not possible to prepare an SLB composed

of the mixed system in pure tris. However, it was possible in the sodium and calcium containing

buffers. I have been able to compare my observations with those made before. In most of my data,

formation occurred quickly and so I was unable to gain a detailed view on the formation of SLBs

at that early stage. However, in some of the systems studied I was able to glimpse this stage and

in those systems I saw no evidence for the CVC espoused by Kasemo and coworkers; this is in line

with Fygenson’s recent work on DMPC. I did however observe the acceleration of the formation

process with time in most systems, although it was moderated in some, slowing near to completion;

this particular feature has not been observed in the literature before. These data suggest a highly

cooperative formation mechanism where the more vesicles and SLB existing at the interface the

faster additional vesicles adsorb and rupture to form SLB. But this synergy is hindered in the latter

stages of formation of egg-SM SLBs in tris only and sodium containing buffers. Interestingly, the

build-up of additional aggregates at the SLB interface that are only removed with pure buffer

rinsing directly contrasts with the observations of Fygenson and coworkers who suggest that lipid

leaves en masse upon SLB completion. In my work on the POPE system, I observed a stepwise

SLB formation pathway not previously known; it appears that the larger aggregates attach to

the surface and subsequently spread to form SLB. In further work I would study the formation

behaviour for lipid systems with much reduced vesicle concentrations, this would reduce the rate of

formation drastically and give much more insight into the early stages of formation, which occurred

too quickly to be observed in any detail in this work. Further work searching for ways to estimate

mixed species SLB composition kinetically could also be very rewarding.
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Chapter 4

Phase transitions in supported

lipid bilayers

4.1 Introduction

In this chapter I will investigate the phase transitions of a selection of SLB systems hydrated

in tris buffer on SiO2 with additional NaCl or CaCl2. The physical state of lipid bilayers plays

an important role in many biological processes. The desire to understand the phase behaviour

of lipid bilayers thus stems from a desire to understand the properties of real cell membranes.

Without a thorough understanding of how single component lipid bilayers and mixed lipid systems

behave with regard to their environment and temperature we cannot understand real membrane

behaviour. This prime concern is important because the state of lipid molecules within bilayers

has influence on the interaction of the lamellar part of the bilayer with its embedded proteins

and hence protein function.85 In addition one cannot ignore the roles of other species prevalent in

biological systems when studying model membranes. For instance, as I previously discussed in the

review of the last chapter, cations have been shown to bind and alter the structure of supported

lipid bilayers. Studying the effect of cation binding on the phase behaviour of lipid bilayers will

provide greater insight into real membranes. A practical reason to study these systems is that

lipid biophysics has great relevance in nanotechnology and pharmaceutical design. Specifically if

vesicles/liposomes are to reach target cells, specific requirements have to be met so they survive

the journey – generally having the liposome bilayer in the gel phase under physiological conditions

is preferred.86

4.2 Background Theory

Phase transitions occur as temperature, pressure and composition change because the chemi-

cal potential of the components in one phase is lower than any other. At the temperature, pressure

and composition where multiple phases exist and the chemical potential of each component is equal

to all others, the system is said to be in equilibrium.
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4.2.1 Phase transitions in lipid bilayers

Lipid bilayers as found in biological membranes and related model systems are two dimen-

sional lyotropic liquid crystals and can exist in a number of phases. For illustration, DPPC, like

most other hydrated medium chain phosphatidylcholines and phosphatidylglycerols, displays four

lamellar phases. In order of increasing temperature these are: (1) the crystal phase (Lc), (2) the

gel phase (Lβ), (3) the ripple phase Pβ and (4) the fluid or “liquid crystalline” Lα phase.87 The

most well known phase transition and that with the highest transition enthalpy commonly referred

to as the “main phase transition” lies between the ripple (Pβ) and fluid (Lα) phases in many

phosphatidylcholines. Using DPPC as an example, the main transition enthalpy change is ∆H =

-33 kJ mol−1. The transition from the Lβ to Pβ phase is commonly referred to as the pretran-

sition, and during cooling a long incubation is often required to enter the Lc phase owing to the

metastability of the Lβ phase – the pretransition often displays a marked hysteresis. It is worth

noting that in PCs the hydrocarbon chains are tilted with respect to the bilayer normal. Many

classes of glycerophospholipids, such as the phosphatidylethanolamines, do not display a Pβ phase

and show a non-tilted Lβ phase. Also, short chain PEs show a metastable Lβ phase undergoing a

phase transition to the Lα phase at a temperature (Tt) above Tm. Some lipids, of which POPE

is member, display non-bilayer phases. For instance at a relatively high temperature (74.8◦C),

POPE displays a lamellar to inverse hexagonal phase (Lα→H||) transition.88 Referring to my in-

troductory chapter about preferred geometry and the critical packing parameter, it is easy to see

why this might be the case; POPE’s headgroup occupies a far smaller cross-sectional area than its

hydrocarbon tails – its Zp value is greater than one above this transition temperature. What de-

fines the different lamellar phases are the intramolecular order of their constituent molecules, their

chain packing geometry, internal fluidity in terms of lateral and vertical translocation, the degree

of thermal protrusion and lastly the number of thermal fluctuation modes. Several good sources

of thermodynamic data on different lipid bilayers and their phase transitions are available.75,89,90

4.2.2 Gibbs phase rule

Josiah Willard Gibbs developed his “phase rule” after coming to a mathematical realisation

about the number of intensive system variables that can be changed whilst still retaining the same

number of phases. His expression is given by,

F = C − P + 2 (4.1)

where F is the variance or the number of degrees of freedom, C is the number of chemically

independent components and P is the number of phases. The total number of intensive variables

is given by,

X = P (C − 1) + 2. (4.2)

Here ‘2’ corresponds to the temperature and pressure, (C − 1) corresponds to the compositional

knowledge required to define the composition of any one phase. Lastly the multiplication by factor

P scales the number of intensive variables according to the total number of distinct phases.

We can write equalities between the chemical potentials of a given component in the different

phases as functions of the intensive variables to define equilibrium.

µ(α, p, T ) = µ(β, p, T ) = · · · (4.3)
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where α and β label the different phases. This forms a system of linear simultaneous equations.

To solve this system we need to satisfy P − 1 equations for each chemical component. As there

are C components the number of equations required is, C(P − 1). Each of the equations in the

system reduces our freedom to vary one of the intensive variables concomitantly with the others,

this implies that,

F = P (C − 1) + 2− C(P − 1) = C − P + 2, (4.4)

which is the Gibbs phase rule. This expression essentially defines the internal geometry of phase

diagrams. For instance, for a one component system such as water, if we imagine a situation where

solid, liquid and gas exist as three phases in equilibrium we find that we have no degrees of freedom,

or F = 0. In other words this equilibrium can only exist as a point on the phase diagram and

this point is commonly known as the triple point. This also tells us that the maximum number of

phases that can exist in equilibrium for a single component system is three, imagining any higher

number would lead to a variance of less than 0 which is meaningless. This simple rule elegantly

defines what is possible in terms of the physical state of matter for any system under consideration.

4.2.3 Ehrenfest classification

Many types of phase transition exist in many different contexts; from the commonplace –

such as the vaporisation of water – to the exotic – smectic to nematic transitions in liquid crystals,

but how do we classify them logically? Ehrenfest suggested a rigorous method devised in terms of

the derivatives of the free energy for a given system. Many phase transitions are accompanied by

enthalpy and volume changes, so for a transition from a phase α to a phase β one finds,(
∂µ(β)

∂p

)
T

−
(
∂µ(α)

∂p

)
T

= Vm(β)− Vm(α) = ∆trsV (4.5)

or (
∂µ(β)

∂T

)
p

−
(
∂µ(α)

∂T

)
p

= −Sm(β) + Sm(α) = −∆trsS = −∆trsH

Ttrs
(4.6)

these changes in system properties at the transition temperature are discontinuous. Ehrenfest

defined first order transitions as those with discontinuities in the first derivative of the chemical

potential with respect to temperature or pressure. A common property of systems which have a

discontinuous change in enthalpy at the phase transition temperature is that their constant pressure

heat capacities become infinite during the transition. Second order transitions are those where the

changes in the first derivatives are continuous but those in the second derivative are discontinuous,

examples include the conducting-superconducting transition in metals at low temperatures.

4.2.4 Basic thermodynamics of lipid bilayer main phase transitions

For first order phase transitions, the Gibbs free energy is continuous but there are discontin-

uous changes in the enthalpy and entropy of transition.91 We can therefore write,

∆Gt = ∆Ht − T∆St = 0 (4.7)
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where the subscript ‘t’ indicates at the transition temperature Tt. The transition temperature is

thus defined by,

Tt =
∆Ht

∆St
. (4.8)

Hydrocarbon chain melting is the primary contributor to the main phase transition enthalpy. When

considering lipids with constant chain asymmetry or no asymmetry, the transition enthalpy and

entropy depend linearly on chain length, n,

∆Ht(n) = ∆Hinc(n− nH) (4.9)

and

∆St(n) = ∆Sinc(n− ns), (4.10)

where ∆Hinc and ∆Sinc are the incremental transition enthalpy and transition entropy per CH2

group. nH and nS are the chain lengths for which the transition enthalpy and entropy extrapolate

to zero – these are included to account for “end” effects which include contributions to the transition

enthalpy and entropy from a number of sources. These sources include contributions from lipid

headgroups, the hydrocarbon chain linkages, chain terminal methyl groups, chain asymmetry effects

and are given by,

∆Hend = nH∆Hinc (4.11)

∆Send = ns∆Sinc (4.12)

The temperature of transition can be defined by,

Tt(n) = T∞t

(
1− nH − ns

n− ns

)
(4.13)

where T∞t is the transition temperature extrapolated to infinite chain length (T∞t = ∆Hinc
∆Sinc

).

The chain melting transition temperatures of diacyl phospholipids with symmetrical cis-monoenoic

chains, or with a saturated sn-1 chain and a cis-monoenoic sn-2 chain, show a biphasic dependence

on the position of the double bond within the chain, nu. At some position within the chain, the

transition temperature shows a minimum about which the melting transition temperature increases

linearly. The minimum is usually close to the center of the chain but not exactly at it and we can

define it position as nc. The variation of the transition enthalpy and entropy as a function of the

double bond position are given by,

∆Hm(n, nu) = ∆Hc
m(n) + ∆hc|nu − nc(n)| (4.14)

∆Sm(n, nu) = ∆Scm(n) + ∆sc|nu − nc(n)|, (4.15)

where ∆Hc
m(n) and ∆Scm(n) are the extreme values of ∆Hm(n, nu) and ∆Sm(n, nu) which are the

values obtained when the double bond is at the critical position on the chain.

4.2.5 Cooperativity and the statistical mechanics of bilayer thermotropic

phase transitions

A little discussed topic of relevance for the phase transitions of lipid bilayers is the degree

of cooperativity of the phase transition. Main phase transitions are dependent on the size of the
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Figure 4.1: A diagram showing the three states assumed by the Zimm and Bragg model; s, f and i show

the gel, fluid and interfacial regions respectively.

cooperative unit of the phase transition, or the size of the lateral domain in which lipid molecules

undergo the phase transition as a collective group. This cooperativity determines the ‘sharpness’

of the transition or the temperature range over which phase separation of the gel/ripple and fluid

phases exists.

The Zimm and Bragg model,92 originally conceived as a statistical mechanical model for

the transition of random coils to alpha helices in peptide chains, can be applied to describe phase

transitions in lipid bilayers.93 In this model it is assumed that there are three lipid states during

the transition: the gel state, s, the fluid state, f, and an intermediate state that corresponds

to the interface between domains of gel and fluid phase, a diagram is shown in figure 4.1. The

free energies of the lipid molecules that comprise the three hypothetical states are principally

determined by the internal energy associated with the structure of their hydrocarbon tails as well

as from the intermolecular interactions between the lipid molecules themselves, such as the van

der Waals interaction, the electrostatic interactions between the charged lipid headgroups and the

hydration interaction between adjacent lipid headgroups. Taking the free energy of an Lβ phase

all trans configured lipid molecule to be Gs = 0 and the free energy of a fluid state lipid fully

embedded within a fluid domain to be Gf . We can define the free energy of a lipid molecule at the

interface of the two phases to be Gi + Gf where Gi is the additional free energy associated with

the structural mismatch between the two phases. N.B this additional free energy is assigned to a

fluid molecule out of convention, it corresponds to the molecules on either side of the interface but

can only be counted once. Gi is unfavourable because disruption to the interactions between the

molecules on each side of the phase boundary are greater than the gain in configurational entropy.

Entropy provides a smaller contribution in this situation owing to the rapid fall of the van der

Waals interaction with distance between the adjacent lipid chains and the other interactions in the

headgroup region. The cooperativity that exists between lipid molecules stems from the fact that

it is energetically favourable for a molecule to be embedded amongst other lipid molecules in the

same physical state as itself. This cooperativity can be represented by a statistical weight matrix,

the elements of which, uζη, are the statistical weights of molecules in a state ζ with surrounding
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molecules in state η

U = [uζη] =

( s f

s 1 σs

f 1 s

)
. (4.16)

Where s is the statistical weight of a fluid state molecule, and is given by,

s = exp(−Gf/RT ), (4.17)

where the fluid state free energy is,

Gf = ∆Ht − T∆St (4.18)

here ∆Ht and ∆St are the transition enthalpy and entropy respectively. The second parameter,

σ is the cooperativity parameter, which is related to the size of the domains that change phase as

units,

σ = exp(−Gi/RT ). (4.19)

The molecular partition function is then,

Q =
∑

ns,nf ,ni

znss z
nf
f znii . (4.20)

In this expression ns and nf are the number of lipid molecules in the gel and fluid liquid crystalline

phases respectively; ni is the number of fluid phase molecules at the interface between the two

phases. Incidentally, the total number of molecules is given by n = ns + nf . zs and zf are the

molecular partition functions of molecules in the ordered gel and fluid liquid crystalline phases. zi

is the partition function pertaining to the excess energy of molecules at the interface. Substituting

for the partition functions in equation 4.20,

Q =

n∑
nf=0

snfσni (4.21)

This partition function can be evaluated by sequential multiplication of the statistical weight matrix

taking into account the lipid molecules present at the interfacial region. This multiplication is aided

by diagonalising the statistical weight matrix. The roots of equation 4.16 are,

λ1,2 = 1/2[(1 + s)±
√

(1− s)2 + 4sσ]. (4.22)

Since the number of molecules in the ensemble is large, an approximation for the partition function

can be employed,

Q = λn1 (4.23)

where λ1 is the larger of the two roots gained from equation 4.22. From equations 4.20 and 4.21,

we can deduce the mean fraction of lipid molecules in the fluid or liquid crystalline state or the

degree of transition, θ,

θ =
〈nf 〉
n

=
1

n

∂ lnQ

∂ ln s
=
∂ lnλ1

∂ ln s
. (4.24)
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Substitution of equation 4.22 into this expression yields theta as a function of σ and s,

θ =
1

2

[
1 +

s− 1√
(s− 1)2 + 4σs

]
. (4.25)

A similar procedure can be carried out to determine the average number of molecules in the

interfacial region during the transition,

η =
〈ni〉
n

=
1

n

∂ lnQ

∂ lnσ
=
∂ lnλ1

∂ lnσ
, (4.26)

Again we can follow this with substitution of equation 4.22 to yield η as a function of s and σ,

η =
2σs

(1 + s)
√

(1− s)2 + 4σs+ (1− s)2 + 4σs
. (4.27)

Knowledge of the mean size of gel and fluid regions during a phase transition are of interest as

they aid in understanding the structure of an SLB during a transition. These mean sizes can be

expressed as the number of gel or fluid molecules per interfacial molecule for each value of θ. For

the fluid phase,

〈νLα〉 =
θ

η
=

1 + s+
√

(1 + 2)2 + 4sσ

1− s+
√

(1− s)2 + 4sσ
, (4.28)

and for the solid phase,

〈νLβ 〉 =
(1− θ)
η

=
1 + s+

√
(1− 2)2 + 4sσ

−1 + s+
√

(1− s)2 + 4sσ
. (4.29)

At the center of the transition where s, by definition, must equal 1, the mean sizes given by the

expressions above must be equal, and we can therefore say,

〈νLβ 〉Tm = 〈νLα〉Tm =
1√
σ

+ 1. (4.30)

To compare the model with calorimetric experiments, equation 4.17 can be made linear by a Taylor

expansion about the transition temperature,

s ' 1 +
∆Ht

RT 2
t

(T − Tt), (4.31)

By differentiating equation 4.25 after substituting for s by equation 4.31 we obtain,

dθ

dT

∣∣∣∣
Tt

=
1

4
√
σ
.
∆Ht

RT 2
t

. (4.32)

By considering a broadened or cooperative phase transition as a pseudo unimolecular reaction

with an equilibrium established between the gel and fluid phases, Lβ −−⇀↽−− Lα, with an equilibrium

constant given as a function of θ, Kt = θ/(1− θ), equation 4.32 can be expressed in the van’t Hoff

form where ∆HvH = (1/
√
σ)∆Ht:

dθ

dT

∣∣∣∣
Tt

=
∆HvH

4RT 2
t

(4.33)

These expressions show that in the vicinity of T = Tm, θ has a linear dependence on 1/T . Equation

4.33 implies the plot will have a gradient of −∆HvH/4R. Experimentally, if some parameter is

available that is sensitive to the fractional coverage of the Lα phase during a phase transition, the
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van’t Hoff transition enthalpy can be found. Comparison of equations 4.32 and 4.33 shows that,

∆HvH =
1√
σ

∆Ht, (4.34)

which implies,
1√
σ

=
∆HvH

∆Ht
. (4.35)

The reciprocal square root of the cooperativity parameter yields the number of molecules within

each cooperative unit, the individual contributors to the ‘reaction’ van’t Hoff enthalpy. With

knowledge of σ at Tt it is possible to quantitatively fit experimental θ values with equation 4.25 by

varying s using a least squares procedure. Some example plots of predictions made by the Zimm

and Bragg model are shown in figure 4.2: subfigure (a) shows how s has been scaled with T for the

plots in subfigures (b) and (c), in general s will not be linear in T (see equation 4.17). Subfigure

(b) shows the variation in θ for two values of the cooperativity parameter, σ, the smaller σ, the

sharper the transition or the narrower the temperature range over which it occurs. Subfigure (c)

shows the variation of the free energy of a fluid state molecule embedded within a fluid phase

domain as a function of temperature, notice how Gf = 0 at θ = 0.5. As Gs is defined as zero at

the phase transition temperature, the phase transition is still first order even though the structural

transition occurs over a range of temperatures.

4.2.6 The effect of electrolyte on the main phase transition and ion

binding

No significant changes in the calorimetric transition enthalpy of phosphatidylcholines have

been observed until very high salt concentrations.90 In general smaller electrolytes increase the

temperature of the main phase transition of lipid bilayers. For charged lipids the initial increase

in transition temperature is a result of the screening of their headgroup charge as this otherwise

acts to reduce to the transition temperature.94 However, for zwitterionic lipids and effectively

screened charged species, higher concentrations of electrolyte reduce the hydration of the lipid

headgroups by specific binding. By dehydrating the headgroup region bilayers become more like

their anhydrous analogues which have higher transition temperatures. To date there has been little

or no discussion of the role of salts on the cooperativity of bilayer main phase transitions. Some

work has been carried out on the modulation of the support-SLB interaction potential; this will

be discussed in the following review sections.

4.3 Review

A large quantity of experimental and computational work has been carried out with the aim

to understand various lipid phase transitions for pure species and mixtures in the bulk as well as

at the interface. Owing to the large quantity of literature in this field, I will mostly stick to articles

which provide the specific context for my experimental work. Many techniques have been used to

study bilayer phase transitions each with their benefits and limitations. I will structure this review

according to whether a study was conducted on a bulk lipid phase or on an interfacial system. I

will also have a smaller section for computational studies.
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Figure 4.2: Some theoretical predictions of the Zimm and Bragg model. Subfigure (a) shows how s has

been scaled with T . Subfigure (b) shows the variation in θ calculated from equation 4.25, for the values of s

shown in (a) and fixed values of σ. Subfigure (c) shows the variation in the free energy of a fully embedded

fluid phase lipid molecule relative to an embedded solid state molecule at the transition temperature.
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4.3.1 Studies on bulk lipid phases

31P and 13C NMR have been used by Martin and coworkers to study phase transitions in

unsonicated hydrated suspensions of bovine brain sphingomyelin (SPM).95 31P NMR is particu-

larly useful in finding evidence of non-bilayer phases – such as the hexagonal phase – as a result

of the motional averaging commonly found in these phases. They found evidence of four phases:

Lβ , Lα a lamellar phase and a non-bilayer phase. However, they found that the heating measure-

ments did not produce the same spectra as the cooling scans – indicating some metastability of

the non-bilayer phase at high temperature. It is worth noting that this study is quite old (1976)

and the authors themselves indicate a lack of reducibility between SPM consignments. Regardless

the authors found that the presence or absence of 100 mM NaCl had no measurable effect on

the transition. The authors found evidence for phase transitions at 28◦C and between 37-48◦C

although these values should be considered approximate owing to the reproducibility issues stated

before.

Differential scanning calorimetry (DSC) has been used to quantify the phase transitions of

a variety of lipids and lipid mixtures under a variety of conditions over the years. This ensemble

includes one study where POPE SUV’s were investigated with and without the presence of 10 mM

Ca2+ in solution.96 However, the solution to which the Ca2+ was added was already fairly complex

comprising; 20 mM Pipes, 150 mM NaCl, 0.02 mM ml−1 NaN3 pH 7.40 with 1 mM EDTA in the

absence of Ca2+. In this work it was shown that the Tm of the POPE bilayer was approximately

25◦C in accordance with the generally accepted figure and that 10 mM Ca2+ had a negligible

effect on the main phase transition enthalpy but did result in a slightly lower transition temper-

ature (they do not provide a tabulated value). Unfortunately DSC cannot give morphological or

conformational information about the state of the lipid bilayer but only average thermodynamic

data. For this reason the authors of the previous paper used 31P NMR to study these aspects,

but sadly they only did so for the hexagonal to lamellar phase transition. This is unfortunate as

previously mentioned in the review of the last chapter, Ca2+ is expected to bind to the phosphate

diester oxygens in POPE which could result in morphological changes.

Ogino et al. using ATR-IR (zinc selenide cell) and DSC have investigated the effect of group

II cations (Ba2+, Ca2+ and Mg2+) on the thermotropic phase transitions of bulk vesicles composed

of DPPC and DPPG.97 The behaviour in H2O and D2O was compared. The authors note that

DPPG is more ordered in the presence of Ca2+ and that an isothermal crystallisation can take

place at a high Ca2+ concentration; however, the same effect was not observed for Ba2+ and Mg2+.

Crystallisation was not observed for the DPPC system. Examination of the carbonyl stretches al-

lowed the authors to determine the state of headgroup hydration in D2O and H2O respectively as

well as in the presence of the different cations; the presence of salt affects the hydrogen bonding

network between the lipids and thus changed the overall order within the lipid bilayers – it is thus

likely to have an influence over the phase transitions of the lipid bilayers.

When looking specifically at the interaction of Ca2+ with lipid bilayers one encounters a

number of studies. Experimental studies investigating the interaction of Ca2+ with anionic lipids

are understandably fairly profuse, this resulting from the fact that cationic binding to anionic

lipids induces so many biological phenomena – for instance protein kinase C activation by Ca2+

binding to adjacent PS lipids.96 In contrast to this, the number of studies with zwitterionic lipids

are very limited, and, when one tries to include studies relating to the thermotropic behaviour the

list becomes short. I will give a brief overview of studies with zwitterionic and anionic lipids as

they are not necessarily mutually exclusive. An interesting study relating to phosphatidylserine

bilayers investigates the effect of unsaturation on the interaction of the lipid species with Ca2+
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and other cations.98 The authors used a variety of techniques including surface monolayer com-

pression, DSC, 31P NMR and spin labelled ESR. They discovered that Na+ and NH+
4 interacted

only weakly with PS bilayers, that there were no significant changes in conformation within the

bilayer and that structural and dynamic properties were little affected. Unsaturation appeared

to affect the Li+ interaction and this was likely due to the changing headgroup areas for the PS

species with differing degrees of unsaturation. Lastly Ca2+ was shown to have a strong interaction

with all PS species investigated and for this class of lipids, unsaturation and headgroup area only

had a very small effect on this interaction. Earlier works by the same authors show that Ca2+

forms dehydrated crystalline PS complexes, these having a greater degree of order than their lipid

only counterparts.99–102 Fairly recently, aqueous dispersions of DMPG vesicles were investigated,

again with ATR-IR spectroscopy; the authors reported observing an induced crystalline-like gel

phase in the presence of 1 M solutions of cations including Ca2+, with both the acyl chains being

in the all-trans configuration.103 What was interesting about this study was that the ordering was

observed after incubation at low temperature for a 24 hour period – the crystalline gel phase was

metastable. When these complexed lipids were heated, different transition temperatures were ob-

served compared with each other and with the nominal Tm of DMPG. When subsequently cooled

the disordered fluid phase was also metastable and thus resistant to reversion to a gel Lβ phase –

the binding was increasing the kinetic energy barrier of the phase transition.

Harris and coworkers have used confocal Raman spectroscopy combined with optical trapping

(using the incident pump confocal beam) to monitor the phase transitions in DPPC vesicles.104

The Raman spectra acquired were analysed using self-modelling curve resolution (SMCR) a form

of factor analysis. This form of factor analysis does not use spectral targets – such as those used

in the previous chapter – but instead rotates the abstract solutions to match “pure spectra” in

the original data. As with most forms of factor analysis this method has trouble dealing with

more than two or three factors. For this reason the authors were forced to break their data up

into several temperature ranges in order to get the analysis to work. As DPPC has four phases,

three temperature ranges had to be used where the internal spectra (representing the gel phase

(Lβ) and the ripple phase (Pβ)) had to be averaged; this implies the internal factors were not

exactly the same and could imply a problem with the analysis although the authors point out

that subtraction prior to averaging results in an almost flat “baseline”. The authors found that

the data they acquired compared favourably with calorimetric data acquired by DSC and they

found evidence for all four phases from their factor analysis strategy. They also applied the suite

of “order” parameters available with Raman spectroscopy to glean evidence of chain disordering,

chain decoupling, rotational disorder and gauche defects.

Nagarajan et al. have explored the dynamics of the Lβ to Lα phase transition in unilamellar

DPPC vesicles. They used time-resolved infrared spectroscopy with laser induced temperature

jump initiation. They found that the spectral changes which characterised the phase transition

were complex and occurred over several timescales. At first there was a rapid partial melting of the

hydrocarbon chains (sub-microsecond) initiated at preexisting defects. Soon after, the concomi-

tant lateral expansion increased the pressure within the bilayer essentially raising the transition

temperature. Subsequent melting follows stretched exponential kinetics, which resulted from the

relaxation of the induced lateral pressure on different timescales by an increase in certain bilayer

fluctuation amplitudes. The slowest kinetic step was the transfer of water through the vesicle

bilayer to allow it to expand to accommodate the larger equilibrium molecular area.

Recently Law and coworkers have investigated the pressure and temperature phase behaviour

of natural sphingomyelin extracts, these included bovine brain sphingomyelin, egg yolk sphin-

gomyelin and milk sphingomyelin.105 These natural sources have different compositions, which are
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shown in figure 4.3. The authors used small and wide angle X-ray scattering along with solid state

NMR to follow the phase behaviour of these samples, the samples were not sonicated or extruded

prior to use. The authors found the main phase transition temperature of egg-SM to lie between

37 and 40◦C. They also found compelling evidence of a low temperature ripple phase and that the

gel phase does form unless the system is under high pressure. They note significant differences in

the phase diagrams of the three sources, but I have limited my discussion to the data pertaining

to egg-SM as it is most relevant for my studies. Figure 4.4 shows the temperature pressure phase

diagram of egg-SM taken from reference.105

4.3.2 Studies on SLBs and interfacial systems

Tamm and McConnell carried out the earliest work on phase transitions in SLBs using flu-

orescence recovery after photobleaching (FRAP) to measure lateral diffusion coefficients.1 The

SLBs studied comprised of DPPC, DOPC and DMPC and were prepared by Langmuir-Schaefer

deposition. The authors found that for DPPC in the Lβ phase the diffusion coefficient increased

linearly with temperature. This period of linear increase ended at 32◦C and was followed by a

plateau from 32 to 39◦C. The authors believed that this plateau corresponded to the ripple phase

(Pβ). Between 39◦C until 42◦C there was a rapid increase in the diffusion coefficient which then

levelled off between 42 and 48◦C; this region corresponded to the Lα phase. An interesting feature

of the DPPC system was the formation of tubules when the SLBs were heated through their main

phase transition temperature; this indicated a lateral expansion and thus an increase in area per

lipid upon heating into the Lα phase – a fact that has relevance to my later work on dSDS lipid

interactions in Chapter 5. Conversely DOPC showed the formation of hole defects upon cooling.

Both DMPC and DOPC showed large increases in their diffusion coefficients when heated above

Tm.

Bayerl and coworkers have used DSC, 31P NMR, 2H NMR and FTIR to study a hybrid SLB

system composed of DPPC bilayers supported on silica beads.106 They found that the Tm of this

system was 2◦C lower than for a DPPC MLV suspension and that the transition enthalpy was

25% less than for DPPC multilayers. Their spectroscopic measurements show no loss of coupling

between the bilayer leaflets. As shall been seen later, other workers have found that the support

can have a strong influence of the phase transition, especially in the proximal bilayer leaflet. The

authors also observe a suppression of the ripple phase in this supported system in comparison to

multilayers where it is observed. They relate this last observation to the higher “stress” in the

SLB system. Lastly, the authors used DSC to follow the kinetics of lipid transfer between the two

bilayer leaflets comprised of DMPC and chain perdeuterated DMPC. They find that the translo-

cation process is symmetric and takes on the order of 3-4 times longer than for small sonicated

vesicles of the same constitution.

Lee and Bain used TIR-Raman spectroscopy to observe phase behaviour in SLBs on silica

that were composed of DMPC or DPPC. POPC was also investigated but owing to the low Tm no

phase transition behaviour was observed.107 TIR-Raman provided insight into the conformational

order, fluidity and tilt of the phospholipid molecules within the bilayer, and, because changes of

these parameters occur at the main phase transition temperature (Tm), they allowed the authors

to determine this transition. A curious feature of this data was the broadening of the DMPC phase

transition in comparison to data acquired by DSC (≈10◦C). In my experiments, I have considered

the effects of different salts as a possible cause for this broadening. Nevertheless, the data obtained

match the calorimetric phase transition temperature in terms of the temperature of onset. The
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Figure 4.3: Compositions of the different natural sphingomyelin sources available from Avanti Polar Lipids

Inc. Notice egg-SM has the “purest” composition in the sense of having the greatest contribution from

a single component. Reproduced from Law and coworkers,105 with permission of The Royal Society of

Chemistry.
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Figure 4.4: A figure showing a temperature/pressure phase diagram of egg-SM from Avanti Polar Lipids

Inc. Reproduced from Law and coworkers,105 with permission of The Royal Society of Chemistry.
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phase transition of the DMPC SLB was compared to that of DMPC vesicles in bulk suspension

and found to be almost identical. Little evidence was found for a ripple phase in DPPC despite

is detection in earlier work on SLBs, see for instance the plateau in Tamm and McConnell’s data,

however a small plateau in the frequencies of the symmetric and antisymmetric stretches was ob-

served which could be interpreted as an indication of a separate phase and, as mentioned above,

Bayerl and coworkers have observed its suppression. Clearly the suppression of the Pβ phase is

ambiguous and may depend on the specific system being studied or the experimental procedure

employed.

Bonn and coworkers have used vibrational sum-frequency generation in conjunction with sur-

face pressure measurements and fluorescence measurements to observe the effects of Na+ and Ca2+

on DPPC and DMPS monolayers at different surface pressures.108 At low surface pressures (5 mN

m−1) the Ca2+ cation induces the formation of ordered domains within the lipid monolayers at the

air-water interface. However, as the surface pressure was increased to moderate surface pressures

(5-25 mN m−1) Ca2+ increases disorder. At high pressures (>25 mN m−1) they show how Ca2+

expands the monolayers investigated. They observe identical behaviour for both zwitterionic and

anionic lipids, highlighting that the ions are most likely binding to the phosphodiester oxygens and

lastly they show how the stoichiometry of the cation lipid complex changes from 2:1 to 1:1 at high

surface pressures.

Enders and coworkers have investigated the phase behaviour of DMPC SLBs on ruby mus-

covite mica with AFM.109 Specifically they observed the ripple phase in order to resolve the

structure of this phase in detail. Enders used “structural calorimetry” to estimate the transition

enthalpy. This was done by capturing AFM images at a number of stages during the phase transi-

tion and then calculating the fraction of surface that was covered with the phase of interest. Their

experiments were complicated by the fact that their vesicles were prepared in one buffer (5 mM

K-HEPES pH 7.3, adsorbed and ruptured in another (1 mM EDTA, 5 mM K-Tris, pH 9) and

finally imaged in yet another (50 mM KCl, 5mM MgCl2, 5mM K-HEPES, pH 7.3) which were

exchanged in order by dilution. This use of different buffers in this way could lead to residual

constituents in the final imaging buffer which might lead to structural features that would not be

present in the pure imaging buffer.

Seeger et al. have used AFM to study the main phase transition of POPE and POPE:POPG

(3:1) SLBs.78 Generally, their SLBs were formed by vesicle fusion on muscovite mica in 450 mM

KCl, 25 mM HEPES buffer pH 7 at 23◦C, but this solution was exchanged after formation for oth-

ers during imaging. The imaging buffer was either pure water, 10 mM KCl or 150 mM KCl all at

pH 5.6. Sometimes higher formation temperatures were used. The study was primarily conducted

from the point of view of elucidating the role of the support on the main phase transitions. The

authors found that for both the mixture and pure POPE the main phase transition on mica was

decoupled – the two leaflets changed phase at different temperatures. Variation of the imaging

buffer ionic strength and formation temperature allowed them to moderate this behaviour. For

instance, for the mixed system they state that the proximal bilayer leaflet converts from the fluid

phase to the gel phase followed by the distal leaflet as the temperature is reduced – they observe

the formation of domains and subsequent homogenising of the topography twice during the tem-

perature decrease. Increasing the KCl concentration from 10 mM to 150 mM had the effect of

narrowing the difference in temperature between the respective transitions of the two leaflets in

this mixed system. However, for the pure POPE system changing the ionic strength from pure

water to 150 mM KCl had no effect on the decoupling of the phase transitions in the two leaflets.

The authors found that by forming the mixed SLB at a higher temperature (27◦C) they observed

a coupled phase transition. However, with formation at 35◦C for both the mixed and pure system
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this was not the case. They reasoned that by changing the ionic strength they were able to weaken

the electrostatic interaction between support and SLB. By changing the formation temperature,

they argued that a different lateral profile and a moderated interaction between the tails in the

two opposite leaflets would result. They claim their results have implications for real biological

membranes as physically the cytoskeleton is analogous to the mica support.

In a more recent work, Seeger et al. have investigated the role of support structure on

the main phase transition of POPE:POPG (3:1) SLBs.110 They examined how the thermotropic

phase transition changed when mica was replaced with silica (SiO2) as the support. Measure-

ments showed that the mica support used had an rms roughness of 0.05 nm whereas after cleaning

procedures the silica had an rms roughness of 0.20 nm. In the previous study the authors had

found a decoupled phase transition for POPE regardless of ionic strength or formation temperature

and a decoupled transition for the mixture depending on the formation and solution conditions.

However, on silica the authors found a completely coupled transition for the mixture regardless

of the formation temperature or solution conditions. They attributed this difference in behaviour

to the enhanced roughness of the silica support and stated that this could only be the result of

a moderated interaction owing to the pockets of water between the substrate and the SLB. It is

worth noting that they stated the differences in surface charge between the mica and SiO2 were

negligible under the conditions used and so could not be used as an explanation for different be-

haviour on the two supports. However, in general whilst the buffer they used for the formation of

their SLBs was the same as in their prior work, the imaging buffer was different; in this study 150

mM KCl, 10 mM potassium dihydrogen citrate was used – the pH was either 7, 5.6 or 3. They

suggested that silica is a more appropriate substrate for biophysical studies on membrane-bound

proteins owing to this weaker support-bilayer interaction. They also observed how pH affects the

main phase transition. They found that by reducing the pH from 7 to 3 they were able to shift

the phase transition temperature of the mixture from 22◦C to 27◦C owing to the modification in

surface charge.

Yarrow and Kuipers have used temperature-controlled contact mode AFM to study the ther-

motropic phase behaviour of DPPC SLBs.111 The authors found that melting from the Lβ to the

Lα phase starts from pre-existing line defects (grain boundaries). They also observed that the

cantilever force exerted on the SLB can affect the phase transition observed. They noted that

whatever force was used the phase transition was higher than that observed in vesicles owing to

support-SLB interactions. When undergoing the inverse cooling transition, the SLB showed the

formation of line defects at the edges of gel phase regions and that these defects originated from

distinct nucleation points. The number of these defects depended on the rate of cooling. Both

heating and cooling transitions took place over approximately 5◦C. All of their measurements were

carried out on muscovite mica in 20 mM NaCl. The authors do not describe any decoupling of the

phase transition in the two bilayer leaflets. A series of their heating images is shown in figure 4.5.

Szmodis et al. have investigated the phase transition dynamics in binary supported phos-

pholipid bilayers using imaging ellipsometry.112 The authors prepared SLBs comprised of DLPC

(1,2-dilauroyl-sn-glycero-3-phosphocholine) and GalCer (Galactosylceramide) on SiO2/Si. These

lipids where chosen for two reasons: first the wide difference in main phase transition temperature

(DLPC, -2◦C and GalCer, 50-70◦) allowed for access to both the homogeneous phase and the

miscibility gap, and second the gel phase forming GalCer preferentially forms part of the outer

bilayer leaflet and so minimises the direct interaction with the support. The authors found the

modulation of two topographic features during the phase transition. First, the formation of defect

chains due to a reduction in molecular area during cooling and, second, the formation of fractal-like

domains suggestive of low line tension owing to their irregular shape. By following a time-lapse
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Figure 4.5: A series of heating contact mode AFM images of A DPPC SLB, (a) 25◦C, (b) 39.4◦C, (c)

40.9◦C, (d) 41.9◦C, (e) 43.9◦C and (f) 44.3◦C. Reprinted from Yarrow et al.111 with permission from

Elsevier.

of images they were able to infer the formation of domains containing 4-20 molecules during the

phase transition, indicating weak transition cooperativity for this bilayer. The authors note that

they were only able to observe the outer leaflet, but owing to the depth of the gaps during the

defect formation period they were able to infer a dynamically coupled phase transition between

the proximal and distal bilayer leaflets despite the intrinsic asymmetry.

Kasemo and coworkers have used QCM-D to monitor structural changes taking place in 1,2-

ditridecanoyl-sn-glycero-3-phosphocholine (DTPC) vesicles adsorbed onto TiO2 surfaces during

the main phase transition.113 The authors fitted their frequency and energy dissipation data with

a Voigt model. The temperature induced changes changes in the vesicle viscosity and thickness

were used to define the temperature of the phase transition. They found that modifying the pH

and temperature to increase the interaction with the substrate resulted in a phase transition at

higher temperature – this result compares favourably with the work of Seeger et al. described

above,110 but this increase in Tm could have been the result of headgroup dehydration alone.

4.3.3 Computational work

There is a notable molecular dynamics study (MD) by Pedersen et al., in which the asso-

ciation of Ca2+ with various anionic lipid species was investigated.114 They found that, even in

bilayers of lipids with anionic headgroups, the calcium ions were located preferentially within a 0.1

nm band around the phosphate moieties within the layer but were also associated with the ester

carbonyls. By comparison, Na+ had a much lower specific site preference associating with other

groups and had a wider distribution within the bilayer. The equilibration time for the association

of Na+ with DMPS was found to be 25 ns. In comparison the equilibration time for various cations

with zwitterionic lipids was found to be 100-200 ns.115 One can rationalise this last point on the

basis of the Gouy-Chapman theory; it has been shown that the rate of association is proportional
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to the surface electrostatic potential and not the strength of ion binding for Ca2+ and retinal lipid

membranes.116 This last fact has also been observed in a much older experimental study where

the degree of Ca2+ binding was quantified by taking radioactivity measurements using the 45Ca2+

isotope.117 A recent MD study by Perez et al. has shown the lipid-cation interaction of a wider

range of ions (K+, Li+, Na+, Ca2+, Mg2+, Sr2+, Ba2+, and Ac3+) than Pedersen et al. but only

with DPPC.57 Perez’s simulations showed that K+ did not bind to lipid headgroups but that the

other ions did. The authors give a very similar ion distribution profile in comparison to the earlier

work on anionic lipids. Perhaps the most general conclusion was that the degree of binding was

related to the ionic radius and formal charge of the cation in question.

4.4 Results

4.4.1 Overview

In this section, I will describe and discuss my results from investigations into the thermotropic

main phase transitions of SLBs on SiO2 comprising 1) DMPC, 2) POPE and 3) egg-SM. The SLBs

were hydrated in 20 mM tris buffer at pH 7.4. The primary aim of this chapter is to explore the

role of NaCl and CaCl2 on these transitions, thus these salts were included in the buffer when

necessary. In general the raw subtracted spectra are discussed followed by the extracted order

parameters. Subsequently the Zimm and Bragg model was applied, thermodynamic parameters

were calculated and then discussed. In the interests of saving space, I have collated the extracted

order parameters for the different buffer solutions into the same figures; I have also included the

subtracted TIR-Raman spectra from the most interesting of the three buffer conditions for each

system – the other spectra are available in Appendix A. I end with my concluding remarks.

4.4.2 DMPC

Previously, Lee and Bain followed the main phase transition of DMPC in 10 mM tris buffer

with 100 mM NaCl at pH 8.0.118 They found that the main phase transition was broadened in

contrast to that measured by DSC; it is worth pointing out that a broader transition was also

observed in SUV’s studied by Raman spectroscopy so the substrate was not solely responsible for

the difference. One question I have been interested in was whether or not the presence of the

additional sodium chloride could have led to the broadening. I decided a topic worth pursuing was

the influence of group I and II chlorides on the main phase transition of SLB systems. To this end

I have observed the phase transition of DMPC in pure tris buffer pH 7.4 with additional 100 mM

sodium chloride or 2 mM calcium chloride. I chose these concentrations or two reasons, first I used

the same concentration of NaCl as Lee and Bain so direct comparisons to the earlier work could be

made. Second the low concentration of calcium chloride was chosen as similar low concentrations

had been used by other workers for various reasons and I wanted to enable comparison with their

work – generally Ca2+ has been shown to have much stronger interactions with SLBs than Na+.

Figure 4.6 (a) shows S-polarised TIR-Raman spectra of a DMPC SLB as a function of

temperature with added CaCl2 and (b) shows a close-up of the same data. As the temperature

was raised the intensity of the CH region decreased. Figure 4.7 (a) and (b) show the equivalent

P-polarised data, in which we see very few changes in intensity. In this group’s previous study,
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Figure 4.6: S-polarised TIR-Raman spectra of DMPC as a function of temperature in 20 mM tris pH 7.4

with 2 mM CaCl2, 800 mW laser output power, 73◦ incidence, unpolarised detection. Arrows indicate the

direction of increasing temperature.
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Figure 4.7: P-polarised TIR-Raman spectra of DMPC as a function of temperature in 20 mM tris pH 7.4

with 2 mM CaCl2, 800 mW laser output power, 73◦ incidence, unpolarised detection.
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Figure 4.8: A graph showing the change in the peak I(d+)/I(d−) ratio as a function of temperature for

three DMPC SLBs prepared in different buffers. 20 mM tris pH 7.4 (black triangles), 20 mM tris pH 7.4

+ 100 mM NaCl (red squares) and 20 mM tris pH 7.4 + 2 mM CaCl (blue circles). The intensities were

extracted from S-polarised spectra by polynomial fitting.
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Figure 4.9: A figure showing the variation in the peak positions of the symmetric and antisymmetric CH

stretches as a function of temperature. 20 mM tris pH 7.4 (Black triangles and diamonds), 20 mM tris pH

7.4 + 100 mM NaCl (red triangles and squares), 20 mM tris pH + 2 mM CaCl (blue triangles and circles).

The positions were extracted from maxima in the polynomial fits.
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Figure 4.10: A graph showing the variation of the integrated intensity ratio of the P-polarised and S-

polarised CH stretching regions, which is correlated with chain tilt. 20 mM tris pH 7.4, 20 mM tris pH 7.4

+ 100 mM NaCl and 20 mM tris pH 7.4 + 2 mM CaCl2.

a significant change in intensity was observed for the P-polarised temperature dependent-spectra,

however, in that study the angle of incidence was quite close to the critical angle 68.6◦ whereas in

my work the angle of incidence was 73◦. This difference in incident angle explains the difference in

behaviour; at the lower angle of incidence there is a greater sensitivity to Raman modes oscillating

close to the surface normal. In any case, if the P-polarised intensities do not decrease in proportion

to a change in the equivalent S-polarised spectra then a change in molecular tilt is occurring. In

both S- and P-polarised data sets we notice an upward shift in the peak positions of the symmetric

and antisymmetric CH stretches as the temperature increases. There is also a concomitant decrease

in the ratio of the antisymmetric to symmetric CH stretch peak intensities. These changes are

indicative of a decrease in chain order in terms of packing and the number of gauche defects.

Quantitative analyses of these spectral changes are shown in figures 4.8 and 4.9. These

data were extracted by fitting 4th-order polynomials locally to the symmetric and antisymmetric

stretches and taking the respective maxima and associated peak positions from these. Inspecting

figure 4.8 we note the similarity in the shape of the transition for all three buffer conditions and the

equality of the values at high and low temperatures in all solutions; the added salt does not appear

to affect the phase transition in terms of internal molecular order. However, note the increase

in the phase transition temperature of the CaCl2 containing system: the low concentration of

Ca2+ increases the temperature of the main phase transition by approximately 1.5 K. The peak

positions shown in figure 4.9 are more complicated to interpret. Although at high temperature

the peak positions all appear to converge, during the main phase transition and leading up to

it there are small but noticeable differences; these could be indicative of real differences between

the systems, or a product error, as such a description will be given but the conclusions should be

taken cautiously. For the tris-only system, there appears to be a step during the transition possibly

indicating the presence of some intermediate chain packing state. For the sodium containing

solution, there is a downward shift in the peak positions just prior to the phase transition, again

possibly indicating the presence of some intermediate packing state. Of all the buffers used, that
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containing Ca2+ shows the “smoothest” transition with no evidence of intermediate structures;

this is interesting considering the increase in phase transition temperature as evidenced by the

primary order parameter data (I(d−)/I(d+)).

Figure 4.10 shows the variation in the ratio of the integrated intensities in the CH region

for the temperature dependent P-polarised and S-polarised TIR-Raman spectra. This parameter

is strongly correlated with average lipid chain tilt relative to the surface normal: an increase

implies an increase in tilt from the surface normal. The data shown can be divided in to several

characteristic regions: there is relatively constant plateau at low temperatures, followed by a period

of rapid increase, after this there is another plateau, and then another at the highest recorded

temperatures. On average the lipid molecules are becoming more tilted as the transition proceeds.

None of the order parameter data examined indicate a decoupled phase transition as observed

by Seeger et al. If this were the case one would expect to see double sigmoidal behaviour in the plots

of the order parameters, especially that of the primary order parameter. An important question

can be raised about where the phase transition starts and ends, and how we decide on a rigorous

procedure to specify the transition temperature of the main phase transition. The different order

parameters often show differences that could lead to different interpretations of the transition,

particularly at low and high temperatures. For instance, the primary order parameter shows

gradual changes at the extremities with a sharp change at middle temperatures in the transition

‘region’, whereas other order parameters, such as the peak positions, show more irregular changes.

As the primary order parameter is generally considered to be the most sensitive, I will use it as the

parameter to define the transition temperature. Where small changes are occurring, or perhaps

only a few domains have changed phase, the other order parameters are less likely to show a

measurable change.

The degree of the phase transition (θ) can be extracted from the primary order parameter

data by rescaling the measured values on a scale of 0 to 1. By plotting these data against 1/T ,

σ and the van’t Hoff enthalpy can be extracted and the Zimm and Bragg model can be applied.

This procedure has been carried out for the three DMPC systems and is shown in figure 4.11,

the resulting plots have been fitted with the bi-dose-response sigmoidal model in Origin Pro. The

fitting function was chosen only to facilitate a good fit, no physical basis has been considered in

its application. From the gradient at θ=0.5, obtained numerically in Origin Pro, equation 4.33

can be used to estimate the van’t Hoff enthalpy of the phase transition. The van’t Hoff enthalpy

is related to the calorimetric enthalpy by a factor which corresponds to the cooperative unit or

domain size of the transition (the number of molecules that change phase as a unit). Using

literature values for the transition enthalpy collected under similar conditions, an estimate for the

cooperative unit can be obtained. However, it must be pointed out that although several good

sources of calorimetric data on lipid phase transitions are available,75,89,90 there is scant data

specific to SLB systems. It was also not possible to find calorimetric data corresponding to the

precise solution conditions used here, and the ∆Ht values chosen were the closest matches available.

The alternative to this strategy is to find the cooperative unit size by direct experimental means

such as by AFM or imaging ellipsometry, as was done by Enders et al., but the analysis of AFM

images is unlikely to provide as accurate calorimetric data as that obtained by direct calorimetric

means. Perhaps a solution is to prepare bulk supported systems, where SLBs are fused on large

silica beads with small radii of curvature – as in the work of Bayerl and coworkers. Regardless,

rescaling the order parameter data also provides a way to define the phase transition temperature

from the spectroscopic data. It is clear from all the order parameters, that the changes in structure

take place over a broad temperature range. By fitting the rescaled order parameter data I have

been able to determine at what temperature the structural changes are half completed and have
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defined this as the transition temperature. This more rigorous method removes the ambiguity

of giving a rough estimate based on the raw spectra and extracted order parameter values. The

thermodynamic data acquired by applying the Zimm and Bragg model are shown in table 4.1. The

values of the fluid phase statistical weight s required to fit the experimental degree of transition,

θ, are shown in figure 4.12 as a function of temperature. The associated fluid molecule free energy

change as a function of temperature is shown in figure 4.13. In both these plots we observe slight

variations in the quantitative values, but the qualitative features are all similar. Returning to

table 4.1 we notice slight differences in the transition temperatures, but larger changes in the

transition van’t Hoff enthalpy. The literature values for the calorimetric transition enthalpy only

differ slightly with added salt, thus these data imply that the primary effect of the added NaCl

or CaCl2 and associated binding of Na+ and Ca2+ is to alter the cooperativity parameter σ; this

in turn implies a change in the interfacial free energy (Gi) between regions of Lα and Lβ/Pβ

phase. Indeed for DMPC this additional energy is significantly lower for the CaCl2 containing

system especially. Having a lower interfacial free energy means there is a lower cost associated

with additional interface and so the cooperative unit is smaller – hence the broadening of the

transition. It is unclear what structural change in the interfacial region leads to the reduction in

the interfacial free energy, one possibility is that bound Ca2+ ions bridging adjacent phosphate

groups are not broken between lipids on either side of the interface, this would reduce the overall

significance of the loss in van der Waals contribution between chains across the interface after it

has formed. Previously researchers from my group had suggested that the broadening of the main

phase transition of DMPC was a result of the decoupling of the calorimetric phase transition from

structural changes. My data show that although the presence of NaCl and CaCl2 can influence

the transition temperature itself (added salt increases Tm) and the van’t Hoff enthalpy, they only

appear to have a limited effect on the general qualitative nature of the transition—it remains broad

regardless of the presence of these additional salts. Indeed it appears that cooperativity during the

main phase transition is intrinsically suppressed for SLB systems. The influence of the additional

salts appears to be specific to the SLB itself, rather than between the support and substrate in

terms of electrostatic screening of SLB and SiO2 substrate as the same broad transition is observed

in SUV’s.93,107 The shifting of the main phase transition temperature in the presence of salts has

previously been attributed to the dehydration of the lipid headgroups, although I have no data

that explicitly confirms that the headgroup region is being dehydrated (for instance I am unable to

observe the phosphate P-O bands owing to overlap with SiO2 modes), I still observe the expected

increase in phase transition temperature. The absolute values of the van’t Hoff enthalpy that I

have obtained are significantly lower than the values obtained by Enders et al. on mica by AFM;

this could be a result of the different method for calculating the enthalpy, the different buffer

conditions, the different substrate, or just a problem with one of the techniques.

4.4.3 POPE

Figure 4.14 shows S-polarised TIR-Raman spectra of a POPE SLB in 20 mM tris pH 7.4 with

2 mM Ca2+ added. The spectra have a similar appearance to those of DMPC, however we notice

the loss of the choline band at 3040 cm−1 and the addition of the vinylic CH stretch at 3020 cm−1.

The raw spectra for all the POPE data show the same overall trends as those for DMPC, a decrease

in intensity in the S-polarised data with increasing temperature, little change in the P-polarised

data, upward shifts in the peak positions and a decrease in the I(d−)/I(d+) ratio. Interestingly,

when considering the Ca2+ system, there is additional increase in the vinylic CH stretch and a
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Figure 4.11: A figure showing the degree of transition θ as a function of 1/T for DMPC SLBs in: 20

mM tris buffer pH 7.4 (black squares and line), 20 mM tris pH 7.4 + 100 mM NaCl (red circles and line),

20 mM tris pH 7.4 + 2 mM CaCl2 20 mM tris pH (blue triangles and line). The gradient of these plots

at θ = 0.5 yields the van’t Hoff enthalpy and comparison of this value with the appropriate calorimetric

enthalpies affords the cooperativity parameter σ.
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Figure 4.12: A graph showing the scaling of s the statistical weight of a fluid state molecules as a function

of temperature for DMPC SLBs in: 20 mM tris pH 7.4 (black squares), 20 mM tris pH 7.4 + 100 mM

NaCl (red circles), 20 mM tris pH 7.4 + 2 mM CaCl2. The values were obtained numerically by a least

squares procedure following the determination of σ at θ = 0.5.
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Figure 4.13: A figure showing the variation of Gf the free energy of a non-interfacial fluid phase lipid

molecule, relative to the free energy of a solid state molecule, as a function of temperature for a DMPC

SLBs on silica in: 20 mM tris buffer pH7.4 (black squares), 20 mM tris buffer pH 7.4 + 100 mM NaCl (red

circles), 20 mM tris buffer pH 7.4 + 2 mM CaCl2 (blue triangles).

Solution Tm/ ∆HvH/ [∆Ht]/ 1/
√
σ Gi/

( ◦C) (kJ mol−1) (kJ mol−1) (kJ mol−1)

20 mM tris pH 7.4 + 2 mM CaCl2 23.7 -504 -26.4 19 14.6
(2.74x10−3)

20 mM tris pH 7.4 + 100 mM NaCl 22.5 -651 -26.4 25 15.8
(1.65x10−3)

20 mM tris pH 7.4 22.2 -801 -24.8±2.2 32 17.1
(9.6x10−4)

Table 4.1: A table showing the transition temperatures, van’t Hoff enthalpies, cooperative unit sizes, and

interfacial free energies calculated for DMPC SLBs in tris buffer with added CaCl2 or NaCl - pH 7.4. The

cooperative unit sizes are given as the nearest whole integer values and the extracted σ values used in

their calculation are given below in brackets. The literature calorimetric transition enthalpies are given

for reference; the value for the pure tris buffer was an average of the values in reference75 for pure water –

pp 308-310. Whereas the value used for the salt containing buffers pertained to a single value in 0.1 mM

NaCl, 10 mM tris-HCL, 1 mM EDTA, 1 mM NaN3 pH 7.4. Where multiple calorimetric enthalpies are

available in the literature the standard deviations is fairly high - suggesting very weak effect of the added

salt (see above).
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concomitant decrease of the same band the in P-polarised spectra. These changes do not occur in

the sodium containing system or the tris only system. This variation suggests a further structural

modification of the chains below 15◦C for the Ca2+ containing system. An increase in this band

at low temperature in the S-polarised spectra along with the P-polarisation decrease indicates a

tilting of the lipid chains so the vinylic CH bonds are oriented closer to the interfacial plane.

Figure 4.16 shows the variation in the primary order parameter as function of temperature

for POPE SLBs in the three buffer solutions. Similar to DMPC I observe a step in the order

parameter for the pure tris and NaCl containing systems as they pass from the Lβ to the Lα phase.

However, the CaCl2 containing system shows a much broader transition with no rapid drop; we

also note several outliers; given the reproducibility of my other phase transition data, and taking

account of the repeat data points added for the pure tris and NaCl containing systems, it is unclear

if these outliers are the result of experimental error, or some manifestation of the transition itself

– repeat data for the Ca2+ system are available, but the experiment was conducted at another

angle of incidence and so the absolute order parameter values are different, but outliers were not

observed. It is clear that the pure tris system displays greater ordering of the hydrocarbon chains

at the lowest temperatures; all systems display similar ordering in the fluid phase. Perhaps the

binding of Na+ and Ca2+ leads to a disordering of the chains in the Lβ phase as the binding of

these cations deforms their preferred structure. In general these data show a much more ‘irregular’

transition in comparison to that acquired for DMPC.

The wave numbers of the anti-symmetric and symmetric CH stretches are shown as functions

of temperature in figure 4.17. At all temperatures the CaCl2 containing system shows the greatest

degree of chain packing disorder, and, as with the primary order parameter, the peak positions

for both stretches increase gradually with temperature; this compares well with the primary order

parameter data. Nevertheless, the pure tris and NaCl containing systems show very similar be-

haviour in terms of peak position changes; both of these systems have very similar absolute values,

but they also show abrupt stepwise increases in the peak positions at the transition temperature.

At higher temperatures both of these systems display further increases in their peak positions

suggesting a subsequent decrease in interchain packing density and an increase in disorder.

Figure 4.18 shows the change in the ratio of the integrated intensities in the CH region for the

temperature dependent P-polarised and S-polarised TIR-Raman spectra of POPE. I have linked

the data points with connecting lines to make following the overall trends easier. Interestingly, in

terms of average lipid chain tilt, the tris only system displays the most gradual behaviour whereas

the sodium and calcium containing systems show changes over a narrower temperature range in

terms of average chain tilt. These trends are in stark contrast to the other order parameters where

the CaCl2 containing system displayed more gradual behaviour. Although for the tris only system

the average chain tilt appears to increase at high temperature (see the last two data points), for

the NaCl and CaCl2 containing systems it reaches a plateau after the SLB enters the Lα phase. It

is unclear if this is the result of error/variability or is a real consequence of the absence of bound

cations.

Figure 4.19 shows the rescaled primary order parameter data for POPE in the three buffer

solutions. As mentioned above, unlike the DMPC systems which all displayed broadly similar

behaviour with changes in their interfacial free energies, the data for POPE show markedly differ-

ent behaviour; the CaCl2 system shows a very broad transition, with no observable step, whereas

both the pure tris and NaCl containing systems show distinct sharp steps, n.b. I have removed

the outliers from the Ca2+ dataset for the analysis. Fitting these data with the bi-dose-response

model in Origin Pro was less successful in this instance owing to the irregular shape of the exper-

imental datasets. This is particularly noticeable at low temperature where the model fits the tris
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Figure 4.14: Temperature dependent S-polarised TIR-Raman spectra of a POPE SLB on SiO2 in 20 mM

tris pH 7.4 + 2 mM CaCl2. 800 mW laser output power, 73◦ incidence, unpolarised detection. Arrow

indicates the direction of increasing temperature.
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Figure 4.15: Close-up view of the vinylic CH stretching band from 4.14 (a). High temperature
spectra removed for clarity.
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Figure 4.16: Graph showing the variation in the peak I(d−)/I(d+) ratio as a function of temperature for

three POPE SLBs in three different buffers: 20 mM tris pH 7.4 (black crosses), 20 mM tris pH 7.4 + 100

mM NaCl (red squares), 20 mM tris pH 7.4 + 2 mM CaCl2 (blue circles).
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Figure 4.17: Graph showing the variation in the peak positions of the symmetric and antisymmtric CH

stretches as a function of temperature for POPE SLBs in three different buffers: 20 mM tris pH 7.4 (black

up pointing and down pointing triangles), 20 mM tris pH 7.4 + 100 mM NaCl (red circles and squares)

and 20 mM tris pH 7.4 + 2 mM CaCl2 (blue pentagons and side pointing triangles).
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Figure 4.18: Graph showing the variation in the ratio of P-polarised to S-polarised CH region integrated

intensity as a function of temperature for three POPE SLBs: 20 mM tris pH 7.4, 20 mM tris pH 7.4 +

100 mM NaCl, 20 mM tris pH 7.4 + 2 mM CaCl2.
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Figure 4.19: A graph showing θ, the rescaled primary order parameter plotted against 1/T for POPE

SLBs in: 20 mM tris buffer pH 7.4 (black squares and line), 20 mM tris pH 7.4 + 100 mM NaCl (red

circles and line), 20 mM tris pH 7.4 + 2 mM CaCl2 (blue triangles and line). N.B extreme outliers were

removed from the CaCl2 data to facilitate fitting.
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Figure 4.20: A graph showing the scaling of s the statistical weight of a fluid state molecules as a function

of temperature for POPE SLBs in: 20 mM tris pH 7.4 (black squares), 20 mM tris pH 7.4 + 100 mM NaCl

(red circles), 20 mM tris pH 7.4 + 2 mM CaCl2. The values were obtained numerically by a least squares

procedure following the determination of σ at θ = 0.5.

126



2 8 0 2 8 5 2 9 0 2 9 5 3 0 0 3 0 5 3 1 0 3 1 5 3 2 0
- 3 0 0 0

- 2 0 0 0

- 1 0 0 0

0

1 0 0 0

2 0 0 0

3 0 0 0

 

 

G f/ (J
 m

ol-1 )

t e m p e r a t u r e  /  ( K )

Figure 4.21: A figure showing the variation of Gf the free energy of a non-interfacial fluid phase lipid

molecule, relative to the free energy of a solid state molecule, as a function of temperature for a POPE

SLBs on silica in: 20 mM tris buffer pH7.4 (black squares), 20 mM tris buffer pH 7.4 + 100 mM NaCl (red

circles), 20 mM tris buffer pH 7.4 + 2 mM CaCl2 (blue triangles).

Solution Tm ∆HvH [∆Ht] 1/
√
σ Gi

(◦C) (kJ mol−1) (kJ mol−1) (kJ mol−1)

20 mM tris pH 7.4 + 2 mM CaCl2 27.2 -134 -18.4 4 9.93
(1.88x10−2)

20 mM tris pH 7.4 + 100 mM NaCl 24.6 -2778 -18.4 91 24.9
(4x10−5)

20 mM tris pH 7.4 25.3 -1128 -20.5 33 19.9
(3.3x10−4)

Table 4.2: A table showing the transition temperatures, van’t Hoff enthalpies, cooperative unit sizes,

and interfacial free energies calculated for POPE SLBs in tris buffer with added CaCl2 or NaCl. The

cooperative unit sizes are given as the nearest whole integer values and the extracted σ values used in their

calculation are given below in brackets. The literature calorimetric transition enthalpies were taken from

reference;75 the value used for the pure tris buffer was measured in pure water, the value used for the salt

containing solutions were measured in 0.1 mM NaCl. No calorimetric data was found for CaCl2 containing

solutions in the literature.
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only and NaCl containing systems poorly, however as I am primarily interested in acquiring the

gradient at θ = 0.5 this issue was not a restriction. Another important point was for the pure tris

data the rapid step did not occur until the degree of transition was greater 0.5, for this reason

I used the gradient at ≈ 0.52 for this system. In fact it is hard to justify the use of the Zimm

and Bragg model for this system owing to these issues in its behaviour. Figure 4.20 shows the s

values required to accurately fit the experimental θ values for this system, we notice the gradual

almost linear variation in s for the NaCl and CaCl2 containing systems; although the gradient is

significantly higher for the CaCl2 data. Generally, as θ → 0 and θ → 1 s becomes increasingly

small and large respectively, owing to the form of equation 4.25. However, unlike the other two

systems, the pure tris dataset shows a significant change in gradient at θ ≈ 0.52. The fluid phase

free energy shown in figure 4.21 is perhaps more instructive, unlike the DMPC data, the NaCl

containing and pure tris systems show rapid fall offs in free energy at the mid point of the tran-

sition. This rapid change in free energy suggests a fundamental change in the structure of these

SLBs at θ ≈ 0.5. The CaCl2 system does not exhibit this behaviour; the binding of Ca2+ not only

reduces the cooperativity of the transition, but also prevents whatever structural change is taking

place in the NaCl and pure tris systems. Table 4.2 shows the thermodynamic data acquired using

the Zimm and Bragg analysis. The van’t Hoff enthalpies vary broadly for POPE, from very large

when NaCl is added (-2778 kJ mol−1), to very low when CaCl2 was used (-134 kJ mol−1). As

expected owing to the small differences in the calorimetric enthalpies, these variations can only be

brought about by large differences in the size of the cooperative unit. Indeed, when we calculate

the interfacial free energy we see that Ca2+ binding reduces this free energy relative to the pure

tris system, whereas the inclusion of Na+ increases it. These data highlight the large effect of the

added salts can have upon the cooperativity of SLB phase transitions.

Owing to the large difference between the CaCl2 system and any of the others discussed so

far, I thought it prudent to examine the main phase transition of POPE in the CaCl2 containing

tris buffer with fluid tapping-mode AFM. Some of the AFM images acquired are shown in figure

4.22, I have chosen to primarily present phase images as it is far easier to see the structure of the

interface in these images than in their topographic equivalents. These data clearly show the nature

of the POPE phase transition in 20 mM tris buffer pH 7.4 with added 2 mM CaCl2. In (a) at 35◦C

there is a homogenous surface, as indicated by the same characteristic energy dissipation on the

surface. Subfigure (b) shows the sample after it was cooled to 27◦C, notice the many domain like

structures; at this temperature we were approximately halfway through the transition as indicated

by figure 4.19. Closeup phase and topographic images of these domains are shown in subfigures

(c) and (d) respectively. The darker domains in the phase image are approximately 0.5 nm taller

than the surrounding areas and are Lβ regions. Notice the irregular shape of the interfacial regions

between Lα and Lβ phases; this is highly suggestive of low interfacial energy; interfaces with a high

energetic penalty would lead to the formation of spherical domains. In addition I also observe Lβ

domains of many different sizes; the domains in the image are clearly far larger than the cooper-

ative unit of nine POPE molecules for this system. The fact that regions of Lβ phase larger than

the cooperative unit exist means that there is some larger scale cooperativity, stemming from a

minimisation of interface. Subfigure (e) shows another closeup image of the same surface as (c)

and (d), rotated by 90◦ and shifted slightly (see for instance the scratch in the silica surface) after

a number of heating and cooling cycles. For this image, during acquisition, the sample was cooled

from 35◦C to 27◦C, observe the increase in dark areas as one moves from the upper section (higher

temperature) to the lower section (lower temperature) in the image. Subfigure (f) shows the same

surface at 24◦C, the lowest temperature recorded, in this image just over half of the surface has

changed to the Lβ phase. It is worth noting that none of the AFM images acquired show any evi-
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dence of tubule formation as observed by Tamm and McConnell, but this is expected as they were

prepared above the main phase transition temperature from suspension. What is more interesting

is the absence of any defects during cooling; even for a complete SLB cooling from the Lα phase

to the Lβ is expected to coincide with a reduction in the area per molecule.

Bonn and coworkers observed a disordering of POPE monolayers at high surface pressures at

the air-water interface with bound Ca2+. The analogous scenario in my work is the value of the

primary order parameter at low temperature. For both sodium and calcium containing systems

I observed a decrease of ≈0.05 in the low temperature order compared to the tris only system –

this is in agreement with Bonn and coworkers. AFM measurements of my clean SiO2 substrates

showed an RMS roughness of 0.20 nm the same as the values Seeger et al. obtained for their sub-

strates. My TIR-Raman data provide no evidence for a strong interaction with the support as we

observe no decoupled transition; if this were the case one would expect to observe double sigmoidal

behaviour in the primary order parameter and peak position data. In addition, close inspection of

my AFM data shows that with repeated heating and cooling of the same interfacial region I did

not observe the same domains forming at the same temperature for different cycles; this means

that the surface was not acting as a template for the main phase transition. Templating would

be expected if there were regions of the support that had a higher interaction potential with the

SLB. Overall these observations imply a limited interaction with the silica support. The changes

observed in the data with respect to the presence of the chlorides are most likely specific to the

interaction of their ions with the SLB itself, largely independent of the support.

4.4.4 Egg-SM

Figure 4.23 (a) shows S-polarised TIR-Raman spectra of an egg-SM SLB in 20 mM tris

pH 7.4 with 2 mM CaCl2 as a function of temperature and (b) a close-up of the symmetric

and antisymmetric stretches. As for the the other two lipid species investigated we observe a

decrease in the S-polarised data and a small increase in the P-polarised data (shown in Appendix

A). Broadly we see the same increase in the peak positions with temperature and a decrease

in the I(d−)/I(d+) ratio in both S and P-polarised TIR-Raman spectra. Figure 4.24 shows the

change in the primary order parameter as a function of temperature for the three buffer conditions.

The data here show large changes in the primary order parameter that are comparable to those

seen for DMPC. In my review section I discussed a paper in which Law and coworkers examined

the phase behaviour of sphingomyelins from three natural sources.105 They observed that no Lβ

phase was present at low temperature for egg-SM at atmospheric pressure concluding that the low

temperature phase was a ripple phase. In my work the phase transition measured is so similar to

the main phase transition of DMPC and POPE that I cannot discern whether or not a Pβ phase

is present. In this study egg-SM was obtained from Fluka, whereas Law and coworkers obtained

egg-SM from Avanti Polar Lipids Inc. so the actual source of the natural product could be the

cause of potential differences. The data for the NaCl containing buffer clearly show the highest

phase transition temperature for this lipid system. For the other lipid species investigated this

was not the case and the CaCl2 containing system was the most shifted. Interestingly, in the fluid

phase for all three buffers, the degree of ordering was the same. However, at low temperatures,

there are clear differences in order – the CaCl2 containing system was the most ordered having

the fewest number of gauche defects. Figure 4.25 shows the variation in the peak positions of the

symmetric and antisymmetric CH stretches for egg-SM in the three buffer solutions as a function

of temperature. The NaCl containing system shows significantly different packing compared with
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(a) (b)

(c) (d)

(e) (f)

Figure 4.22: AFM tapping mode phase images of a POPE SLB on SiO2 in 20 mM tris pH 7.4, with added

2 mM CaCl2 acquired at different temperatures and different scales.(a) 35◦C 15µm, (b) 27◦C 80 µm, (c)

27◦C 15 µm, (d) topographic image of (c), (e) 35 → 27◦C ‘cooling’ scan 15 µm, (f) 24◦C 15 µm.
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Figure 4.23: Temperature dependent S-polarised TIR-Raman spectra of an egg-SM SLB on SiO2 in 20

mM tris pH 7.4 + 2 mM CaCl2. 800 mW laser output power, 73◦ incidence, unpolarised detection. Arrow

indicates the direction of increasing temperature.
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Figure 4.24: Graph showing the variation in the peak I(d−)/I(d+) ratio as a function of temperature for

three egg-SM SLBs in three different buffers. 20 mM tris pH 7.4 (black squares), 20 mM tris pH 7.4 + 100

mM NaCl (red circles), 20 mM tris pH 7.4 + 2 mM CaCl2 (blue triangles).

the calcium and tris only buffers. The data also show a higher transition temperature for sodium

containing system in comparison to the calcium or tris only buffers. These data combined with the

primary order parameter data discussed above show that sodium has a stronger interaction with

egg-SM (irrespective of concentration), whereas the for DMPC and POPE the Ca2+ containing data

showed the higher transition temperature or greatest change in transition behaviour highlighting

a stronger interaction in those systems. Figure 4.26 shows the change in average lipid chain tilt

for egg-SM in the three buffer conditions. All three systems show qualitatively similar behaviour,

with an increase in the integrated intensity ratio with temperature, although we see no changes at

low temperatures. This point is noteworthy because we observe a decrease in the primary order

parameter at low temperatures with increasing temperature – chain tilt is not necessarily coupled

to internal chain order. The main difference between egg-SM in the three different buffers here

is the degree of chain tilt at the highest temperature. For the sodium containing buffer, which

I have already shown to have the greatest effect on the phase transition for egg-SM, shows the

lowest degree of chain tilt at the highest temperature; perhaps suggesting the resistance to chain

tilting owing to sodium binding. The next highest is the calcium containing system, which is

understandable in terms of a certain degree of cation binding. The tris only buffer shows the

highest intensity ratio and thus the greatest degree of chain tilting at the highest temperatures.

These data highlight the effect of the cations on the egg-SM system at higher temperatures, the

binding of these cations prevents the egg-SM from tilting as much as it would in their absence.

Figure 4.27 shows the rescaled primary order parameter as a function of 1/T for egg-SM

SLBs in the three different buffer solutions. These data show very similar transitions for the

pure tris and CaCl2 containing systems. However, egg-SM in the NaCl containing buffer shows

quite different behaviour, whereas the the former systems show smooth sigmoidal transitions, the

sodium containing system shows a sharp jump at θ ≈ 0.4. Table 4.3 shows the thermodynamic

data extracted from figure 4.27. When we define the transition temperatures, we find that the

sodium containing system has a higher transition temperature than the other two, 41.7◦C. For
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Figure 4.25: Graph showing the variation in the peak positions of the symmetric and antisymmetric CH

stretches as a function of temperature for egg-SM SLBs in three different buffers. 20 mM tris pH 7.4 (black

up pointing and down pointing triangles), 20 mM tris pH 7.4 + 100 mM NaCl (red circles and squares)

and 20 mM tris pH 7.4 + 2 mM CaCl2 (blue pentagons and side pointing triangles).
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Figure 4.26: Graph showing the variation in the ratio of P-polarised to S-polarised CH region integrated

intensity as a function of temperature for three egg-SM SLBs: 20 mM tris pH 7.4, 20 mM tris pH 7.4 +

100 mM NaCl, 20 mM tris pH 7.4 + 2 mM CaCl2.
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Figure 4.27: A graph showing θ, the rescaled primary order parameter, as a function of temperature for

three egg-SM SLBs in 20 mM tris buffer pH 7.4 (black squares), with added NaCl (red circles) or CaCl2
(blue triangles).

POPE we found that CaCl2 had the greatest effect on the transition, broadening it significantly;

for egg-SM clearly NaCl has the greater effect. Taken together the data for these two lipids show

how ions have specific effects for different lipid systems, which is probably a result of their different

ionic radii and the structure of the different lipid bilayers. The van’t Hoff enthalpies and 1/
√
σ

values shown in table 4.3 suggest very similar cooperative unit sizes for the calcium containing

and tris only systems, but a much larger unit size for the NaCl containing system, at least at the

mid point of the transition. These in turn mean that the NaCl containing system has a higher

interfacial tension between regions of Lβ and Lα phase, the values for the interfacial free energy

are given in table 4.3.
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Figure 4.28: A graph showing the scaling of s the statistical weight of a fluid state molecules as a function

of temperature for egg-SM SLBs in: 20 mM tris pH 7.4 (black squares), 20 mM tris pH 7.4 + 100 mM

NaCl (red circles), 20 mM tris pH 7.4 + 2 mM CaCl2. The values were obtained numerically by a least

squares procedure following the determination of σ at θ = 0.5.
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Figure 4.29: A figure showing the variation of Gf the free energy of a non-interfacial fluid phase lipid

molecule, relative to the free energy of a solid state molecule, as a function of temperature for a egg-SM

SLBs on silica in: 20 mM tris buffer pH 7.4 (black squares), 20 mM tris buffer pH 7.4 + 100 mM NaCl

(red circles), 20 mM tris buffer pH 7.4 + 2 mM CaCl2 (blue triangles).
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Solution Tm ∆HvH [∆Ht] 1/
√
σ Gi

(◦C) (kJ mol−1) (kJ mol−1) (kJ mol−1)

20 mM tris pH 7.4 + 2 mM CaCl2 39.4 -477 -34.7 14 14.4
(5.3x10−3)

20 mM tris pH 7.4 + 100 mM NaCl 41.7 -797 -34.7 23 17.2
(1.9x10−3)

20 mM tris pH 7.4 38.9 -430 -31 14 13.8
(5.2x10−3)

Table 4.3: A table showing the transition temperatures, van’t Hoff enthalpies, cooperative unit sizes,

and interfacial free energies calculated for egg-SM SLBs in tris buffer with added CaCl2 or NaCl. The

cooperative unit sizes are given as the nearest whole integer values and the extracted σ values used in their

calculation are given underneath in brackets. The literature calorimetric transition enthalpies are taken

from reference.75 No specific calorimetric values for egg-SM were available so the transition enthalpy of

the predominate species was used throughout. The enthalpy for the pure tris buffer was measured in pure

water, the value used for the salt containing solutions was measured in 0.1 mM tris-acetate pH 7.0.

4.5 Conclusions

It is well known that the addition of salts at low and moderate concentrations has a limited

effect on the calorimetric transition enthalpy (∆Ht) of hydrated lipid bilayers, and only a limited

effect on the transition temperature. However, I have been able to show by the application of the

Zimm and Bragg model to my TIR-Raman data that low concentrations of NaCl and CaCl2 can

lead to changes in the cooperativity of the phase transitions of supported lipid bilayers. These

changes are brought about by alterations in the interfacial energy between regions of Lα and Lβ

phase within the temperature range of phase coexistence; often only by a few kJ mol−1. I have

observed these effects to be specific and unrelated to concentration, for instance POPE shows a

massive collapse in transition cooperativity in CaCl2-containing tris buffer at neutral pH owing to

a decrease in the interfacial energy, whereas the opposite effect was observed for egg-SM in NaCl

containing tris buffer where the cooperativity increased; the binding of Na+ to the lipid headgroup

region in this system increased the inter-phase interfacial energy. On the other hand DMPC seems

to show the smallest changes in cooperativity upon the inclusion of NaCl or CaCl2, but of the salts

added the CaCl2 had the greatest effect – reducing the cooperativity.

The use of specific group I and II salts often had effects on the structural nature of the

transition in terms of chain tilt, chain packing and internal chain order. In my review section

I summarised some older work by various authors. My measurements of SLB phase transitions

show no or very limited evidence of a ripple phase – the order parameter changes observed for

egg-SM and DMPC in all three buffer solutions are commensurate with the values obtained for

POPE which does not have a Pβ phase. Therefore either TIR-Raman is insensitive to the ripple

phase relative to the Lβ , or the ripple phase is being suppressed at the silica-water interface. In all

my measurements I never once observed double sigmoidal behaviour in the order parameters used.

This implies that in all of the systems I observed completely coupled phase transitions; this when

considering the absence of ‘templating’ in my AFM measurements indicated a weak interaction

between the silica supports and the respective SLBs.

Perhaps further measurements with techniques such as AFM would permit a direct determi-

nation of the cooperative unit size at different temperatures. These measurements would provide

an avenue to explore the parity between my spectroscopic measurements and other workers calori-

metric data as well a potential justification of the Zimm and Bragg model being used to understand

these transitions. This further work is particularly important owing to the size of the domains ob-
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served in my POPE AFM studies; in those images the domains, whilst appearing significantly

smaller than the typical laser spot size used for my Raman measurements, were significantly larger

than the cooperative unit size suggested by the Zimm and Bragg model. The gel phase domains

were forming in sites adjacent to one another; thus a larger scale cooperativity was at work that

enhanced the likelihood of neighbouring units changing phase at similar temperatures – this could

potentially explain the strange form of my θ vs 1/T data for POPE. One problem in this field

is the wide range of solution conditions used by different workers (see for instance Marsh75) this

means that specific calorimetric data are rare. This becomes a significant problem when studying

bilayers at interfaces, where the bilayer/support interaction can have a strong effect on the nature

of any phase transitions particularly on mica. Calorimetric measurements in the vein of Bayerl and

coworkers are required to resolve this issue for supported lipid systems. An idea for future work

could be the replacement of the silica supports used in this study for ones comprised of glasses

which do not occlude the lipid phosphate bands. Changes in this spectral region could indicate

the strength of binding of cations such as Na+ and Ca2+ thus potentially providing further insight

into how these cations affect the interfacial energies I have calculated.
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Chapter 5

The Interaction of Surfactants

with SLBs

5.1 Introduction

In this chapter I will examine the interaction of SDS with a selection of SLB systems on

silica. Surfactant lipid interactions play an important role in numerous situations: the regulation

of cellular processes, the delivery of drugs, the extraction and purification of proteins, in the theory

of lipid rafts, in the use of personal care products and cleaning detergents. Much of the work carried

out to date has been conducted on vesicular systems, but very little fundamental work has be done

on SLBs. TIR-Raman is a technique well suited to study these interfacial systems. The aim

of this chapter is to follow the kinetics of SDS partitioning and rinsing from SLBs on silica, to

investigate the structural changes that accompany these processes and to compare the equilibrium

data acquired to established partitioning models.

5.2 Theory

In a key 1975 review, Helenius and Simons divided the interaction of surfactants and mem-

branes into three stages. In stage I which they called “detergent binding” they describe a process

where surfactant monomers partition into the bilayer phase. In stage II, there is a lamellar to mi-

cellar phase transition after the lamellar phase becomes saturated with surfactant; mixed micelles

form at the expense of the mixed lamellar phase. In stage III only mixed micelles remain and as

the concentration of surfactant increases, the size of the mixed micelles decreases. The ‘three stage

model’ only includes three aggregate structures and says nothing of the dynamic processes that

occur upon partitioning and solubilisation; it is these aspects which I have studied.

Heerklotz has reviewed several thermodynamic treatments of surfactant lipid bilayer parti-

tioning, and several groups have used the models described below.82

At very low mole fractions, non-ionic surfactant partitioning can be given an ideal mixing

treatment. At higher mole fractions, the case of non-ideal mixing must be considered. Lastly for

charged surfactant species such as SDS, electrostatic effects must be considered and appropriate

corrections to surface concentration made.
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5.2.1 Ideal mixing

For ideal mixing, as in the thermodynamics of ideal dilute solutions, the chemical potential

of a surfactant, µbs, in a lipid bilayer can be written as

µbs = µ0,b
s +RT lnXb

s , (5.1)

where Xb
s is the mole fraction of surfactant partitioned into the bilayer, given by

Xb
s =

nbs
nbs + nbL

, (5.2)

where nbs and nbL are the number of moles of surfactant and lipid in the bilayer. R is the molar

gas constant and T is the temperature. Equation 5.1 only holds where a bilayer is free to change

its area, otherwise,
∂µbs
∂nbs

→∞ as Xs → 1 (5.3)

since there is nowhere for the surfactant molecules to partition if the bilayer has no room to expand.

The standard state µ0,aq
s is defined as

µ0,aq
s = lim

Xaqs →1
(µ−RT lnXaq

s ) (5.4)

For ideal mixing where there is no enthalpic contribution to the molar Gibbs energy, the RT lnXb
s

term corresponds to the entropic contribution. When one considers the aqueous surfactant solution

and the insoluble lipid bilayer as two distinct phases, equilibrium partitioning is attained when

the chemical potential of surfactant monomers in solution is equal to that of those in the bilayer

phase. Therefore

µ0,b
s +RT lnXb

s = µ0,aq
s +RT lnXaq

s (5.5)

where Xaq
s is the mole fraction of surfactant in solution and µ0,aq

s is the standard chemical potential

of the surfactant in aqueous solution. We can thus write

∆µ0,aq→b
s = µ0,b

s − µ0,aq
s = −RT ln

Xb
s

Xaq
s
. (5.6)

This expression shows that the difference between the entropies associated with the chemical

potentials of the two standard states leads to an intrinsic surfactant preference for partitioning,

defined by the mole fractions of surfactant within each phase at equilibrium. At equilibrium, as

the standard states are constant so too must be the ratio of the mole fractions and we can refer to

this constant ratio as the partition coefficient,

KX =
Xb
s

Xaq
s

=
nbs(n

aq
s + nw)

(nbs + nbL)naqs
≈ Xb

s · Cw
Caqs

; (5.7)

where nbL is the number of moles of lipid in the bilayer, Caqs is the bulk concentration of surfactant,

Cw is the bulk concentration of water (≈ 55 M in dilute solution) n.b. the concentration of lipid

in water is ignored as lipids have extremely low solubility. Whether partitioning is spontaneous

depends on whether KX has been reached for a given bulk surfactant concentration.
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5.2.2 Non-ideal mixing

In general surfactant mixing with water and lipids exhibits non-ideal behaviour owing the

the multifarious interactions that occur between the chemical species present in the bilayer and

water phases. As a result expressions for the free energy of surfactant in bilayer and water must

contain a factor pertaining to the activity of the medium in question. These modified expressions

for the chemical potential have the form;

µ = µ0 +RT ln[X · f(X)], (5.8)

where f(X) is the activity coefficient and µ0 is the relevant standard chemical potential. In an

ideal dilute solution, f(X) ≈ 1 for surfactant concentrations below the CMC (provided that, for

ionic surfactants, the ionic strength is constant). Thus the standard free energy change may be

written as,

∆µ0,aq→b
s = −RT ln[KX(Xb

s) · f(Xb
s)] = −RT ln[KX(0)]. (5.9)

The latter equality highlights that in the limit of Xb
s → 0, f(Xb

s)→ 1. There are two ways in which

expressions for f(Xb
s) have been derived, one semi-empirical the other statistical; I will describe the

former as it is the most relevant when describing the effects of surfactant charge on partitioning.

This model is based on the empirical observation that in non-ideal situations the mole ratio of

surfactant to lipid in the bilayer phase, Rb is proportional to the free surfactant concentration. i.e.

KR =
nbsCw
nbLC

aq
s

=
RbCw
Caqs

(5.10)

is a constant. Therefore if

[KX(Xb
s) · f(Xb

s)] = KR, (5.11)

then f(Xb
s) must equal (Xb

L)−1, for KX · (Xb
L)−1 ≈ KR. As Xb

L approaches unity i.e. limXbs→0

KR approaches KX . In order to keep KR constant, the change in the variable KX(Xb
s) must be

compensated by a change in f(Xb
s). As Xb

L decreases with increasing Xb
S , f(Xb

s) must increase,

therefore for constant KR the variable KX(Xb
s) must decrease by the same factor. This implies that

as the bulk concentration of surfactant increases, Xb
s increases by a smaller and smaller amount,

in direct proportion to the increase in f(Xb
s) brought about by the decrease in Xb

L.

5.2.3 Influence of charge on partitioning

The semi-empirical model described above for non-ideal mixing is adequate for a description

of non-ionic or uncharged surfactants partitioning into lipid bilayers at higher concentrations.

However, when studying the interaction of charged surfactants with lipid membranes, the effect of

surface charge upon incorporation of surfactant into the bilayer must be considered as KR is no

longer constant. When the bilayer contains charged surfactants, its surface charge density is given

by:

σ0 =
q
∑
iX

b
i zi∑

iX
b
iAi

, (5.12)

where q is the elementary charge, Xb
i is the mole fraction of the ithe charged component within the

bilayer, zi is the charge of the ith charged component and Ai is the lateral area of this component.

This surface charge density gives rise to a surface potential, ψ0, which results in an electrical
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double layer as described in my introductory chapter and the concomitant depletion of surfactant

molecules close to the bilayer surface. ψ0 is retrieved from the Gouy-Chapman theory. Where an

estimate of σ0 is available, ψ0 is most easily obtained numerically from the equality of equations

5.12 and 5.13.

σ0 = sgn(ψ0)

√
2000ε0εrRT

∑
i

Cbulki

(
exp

{
−ziqNAψ0

RT

}
− 1

)
(5.13)

This depletion, in the immediate vicinity of the surface, can be described by Boltzmann’s distri-

bution,

Caq,surfs = Caq,bulkS · exp

{
−ZsqNAψ0

RT

}
(5.14)

As described before KR = RbCw/C
aq,bulk
s , however, in the case of charged surfactants the intrinsic

K0
R = RbCw/C

aq,surf
s . We can therefore write:

K0
R =

[
RbCw

Caq,bulks

]
· exp

{
+
ZsqNAψ0

RT

}
. (5.15)

When the surfactants are uncharged or the charge is neutralised by counterion binding, the expo-

nential term becomes equal to unity and Caq,surfs becomes Caq,bulks .

This method for finding the intrinsic partition coefficient has one key limitation in that it

does not account for counterion binding. In salty conditions, counterions will bind to the charged

surface and neutralise some of the surface charge density, effectively lowering it. This neutralisa-

tion then acts to reduce the surfactant depletion/increase at the interface and so raise or lower

the partitioned mole fraction of charged surfactant depending on the relative charges of the lipid

and surfactant. The model also assumes that the area per molecule does not change for either the

surfactant or lipid as a function of Rb, but the local environment has a strong effect on the volume

of charged species.

The issue of counterion binding can be addressed by modifying equation 5.12 using the Lang-

muir isotherm.119 As an illustration I will consider the case of SDS partitioning into a neutral

bilayer immersed in a solution containing Na+ cations. Here θ gives the fractional coverage of

bilayer partitioned DS− monomers with Na+ counterions

θ =
KDS−

Na+ c
i
Na+

1 +KDS−

Na+ c
i
Na+

, (5.16)

where KDS−

Na+ is the binding constant of Na+ to the charged surfactant and ciNa+ is the aqueous

phase concentration of Na+ ions. By multiplying 5.12 when written for a binary mixture of SDS

and a single lipid species by (1− θ) we have,

σ0 =
Xsdsqzsds

(XsdsAsds +XlipAlip)(1 +KNaCNa)
(5.17)

which is the surface charge density corrected for the Langmuir type adsorption of a single coun-

terion. Unfortunately without explicit knowledge of KDS−

Na+ it is not possible to use this extension

without considering KDS−

Na+ as another fitting parameter.
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5.2.4 Membrane curvature

As described in my introductory chapter, amphiphiles have a preferred curvature or critical

packing parameter, Zp, and so form aggregates of a specific geometry. The preferred curvature

can vary, for instance the optimal headgroup area of SDS can change depending on its ionic

environment as this acts to moderate the electrostatic interactions which govern the geometry of

charged species.

Membrane curvature is analogous to the bending of a two-dimensional sheet embedded in

three-dimensional Euclidian space. To define the curvature of such an embedded surface one

requires the principal curvatures of two curves running along two planes, normal to, and passing

through the surface. The principal curvatures are found by considering the radii of curvature of

the arcs within each plane; in essence we treat the arcs as sections of two circles and the radii of

curvature are the radii of the these two osculating circles.

c1 =
1

R1
(5.18)

c2 =
1

R2
(5.19)

The first surface curvature, called the mean curvature, is an extrinsic property of the surface and

is defined as the sum of the two principal curvatures.

c̄ = c1 + c2. (5.20)

The second curvature is the Gaussian curvature, which is intrinsic. The Gaussian curvature is

defined as the product of the two principal curvatures,

c̄2G = c1c2. (5.21)

curvature is considered positive for convex surfaces and negative for concave ones. Helfrich has

given the total bending free energy as,120

∆Gc(c̄, c̄G) =
1

2
kcA(c̄− c0)2 + k̄cAc̄

2
G. (5.22)

where kc is the mean curvature modulus, k̄c is the Gaussian modulus, A is the area of bilayer

under consideration and c0 is the spontaneous curvature. For a flat non curved reference surface

the elastic free energy is,

∆G(0, 0) =
1

2
kcAc

2
0, (5.23)

which is the curvature frustration of the lipids as they are forced into a planar configuration.

Symmetrical bilayers have zero spontaneous curvature, but the individual monolayer leaflets still

experience spontaneous curvature stress where Zp 6= 1.

When surfactant molecules with Zp ≈ 1/3 partition into a lipid lamellar phase, where the

lipid has Zp = 1, they create curvature strain within the bilayer. If the bilayer is not free to

alter its geometry, this strain will build leading to a disordering of the lipid molecules, their cross-

sectional area must adapt to fit the geometry being imposed upon them. If the surfactant only

partitions into one leaflet, the disordering will be more pronounced on the opposite bilayer leaflet,

the result being a thinner and more flexible mixed bilayer. However, if the bilayer is free to move,

spontaneous curvature will be created, blebs and protrusions will form at the interface, the caps
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(a)

(b)

Figure 5.1: Two sketches depicting (a) spontaneous bilayer curvature and (b) bilayer curvature strain.

of which will be enriched in surfactant; this reduces the stress and lowers the bending free energy.

These alternative situations are depicted in figure 5.1.

5.2.5 Unbinding transitions

Another hypothetical outcome of surfactant SLB interactions is an unbinding transition.50,121

In general the interactions between two lipid bilayers or an SLB and a support are: i) The van der

Waals interaction, ii) the hydration repulsion and iii) electrostatic double layer (electrostatic) re-

pulsion. Here these are called the “direct interactions”. These direct interactions are renormalised

by bilayer fluctuation repulsion. The effect of this renormalisation is that upon reaching certain

critical temperatures, or if there is a change in a bilayer’s elastic properties, the bilayer can move

from a bound state to an unbound state. By unbound state I mean a greater mean separation or

complete separation of two bilayers or a bilayer and support. I will give an overview of the direct

interactions now. I will then move on to describe the effect of renormalisation using a superposition

based approach.
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5.2.5.1 Hydration repulsion

It has been observed that a strong repulsion exists between lipid bilayers that approach to

within 1 nm of each other. It was originally suggested that this force stemmed from ordered water

layers existing close to bilayer surfaces. More recently it has been posited that the force could

originate from the jostling and associated thermally induced protrusions of lipid molecules within

bilayers. It is most likely that these two contributions are operating in concert. For example, if

ordered water layers were to exist at bilayer interfaces, one would expect that these would lead to

an oscillating interaction potential with regard to the density profile of water molecules in these

ordered layers. Experimentally an exponential potential is observed suggesting that the protrusions

and the intrinsic headgroup surface profile act to normalise the oscillatory behaviour “smearing it

out”. The hydration repulsion is modelled by the following empirical relation,

Ghy(d) = Vhy exp[−d/lhy], (5.24)

where the hydration length lhy is a phenomenological parameter.

5.2.5.2 Van der Waals interactions

Many molecules have permanent and induced dipole moments. The interactions between

these are collectively known as van der Waals interactions. The expressions used for the van der

Waals interaction in solution vary depending on the exact circumstances. For instance, two thin

layers of thickness a separated by a distance d � a can be treated as two half-spaces,

Gvdw(d) =
H

12π

1

d2
(5.25)

where H is the Hamaker constant for the media in question. In fact, the Hamaker constant possesses

two contributions, one static, from the static (zero frequency) polarisabilities of molecules, and the

other from their frequency-dependent polarisabilities:

H = H0(T, κ−1) +Hf . (5.26)

In “salty” solution conditions where the Debye length, κ−1 is short and electrostatic interactions

screened, the static contribution to the Hamaker constant is reduced. Experimentally it been found

that the above approximation for the VdW potential is accurate up to ≈ 5 nm for pure water and

≈ 4 nm in a solution of 200 mM NaCl (κ−1 = 0.7 nm).

For layers separated by distances large compared to the layer thickness a in salty conditions

the half space approximation is a poor model and the interaction is better described by:

Gvdw(d) ≈ Hf

12π

[
1

d2
− 2

(d+ a)2
+

1

(d+ 2a)2

]
(5.27)

5.2.5.3 Electrostatic interactions

Earlier, in my introductory chapter, I derived expressions for the electrostatic potential near

a flat surface and the distribution of charges in the proximity of that surface. In this section, I

will extend these concepts to account for the interaction between two charged flat surfaces.6 When

the double layers of two charged flat surfaces begin to overlap, the ions around each surface are
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displaced from their equilibrium positions leading to an increase in their potential energy. The

increase in energy leads to a pressure between the two surfaces, which acts to push the surfaces

apart. Figure 5.2 shows the situation before and after the overlap of the surfaces’ double layers.

In (a), the electrostatic potential is zero, i.e. the bulk value, but as shown in (b) when the double

layers begin to overlap the potential is increased to ψm. Despite the increase in potential, there is

no net electric field or force acting per unit charge at d/2 as dψ/dx = 0. However, as the potential

is greater than zero there must be a surfeit of ions and co-ions between the surfaces relative to

the bulk despite the deficit in co-ions, and this local increase creates an osmotic pressure at the

mid-plane between the two surfaces. This osmotic pressure can be calculated with knowledge of

the ionic concentration at the mid-plane.

(a)

(b)

Figure 5.2: Schema showing the interaction of two charge flat surfaces and associated diffuse electrical

double layers, (a) shows the situation before the overlap, d >> κ−1. (b) shows the situation after overlap

d < κ−1.

The concentration of an ion at the mid-plane is given by,

CTm =
∑
i

Ci(B) exp

[
−Ziqψm

kT

]
, (5.28)
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and for symmetrical electrolytes,

CTm = C(B)

{
exp

[
−Zqψm

kT

]
+ exp

[
Zqψm
kT

]}
(5.29)

CTm = 2C(B) cosh

[
Zqψm
kT

]
. (5.30)

The osmotic pressure is,

P = CkT. (5.31)

The difference between the osmotic pressure in the bulk and that between the two planes is given

by

∆P = kT [CTm − 2C(B)], (5.32)

which is equal to the repulsive pressure between the two surfaces, and

PR = 2C(B)kT

[
cosh

(
Zqψm
kT

)
− 1

]
. (5.33)

To calculate this we need to determine ψm as a function of x between the two interacting surfaces.

Whilst it is possible to do this analytically for a single double layer, this is not the case for two

interacting surfaces and must necessarily be determined by numerical integration of the Poisson-

Boltzman equation. Despite this limitation, several approximate equations do exist. One such

equation is obtained by using the Debye-Huckel approximation and the superposition principle.

The Debye-Huckel approximation is essentially an expansion of the exponentials and a truncation

after the first term. For low potentials (ψ0 < 25 mV),

ψ(x) ∼= ψ0 exp(−κx), (5.34)

where ψ0 is the electrostatic potential at the surface and κ is the reciprocal Debye length. For the

case of two overlapping double layers,

ψm ≈ 2ψd/2 ≈ 2ψ0 exp(−κd/2). (5.35)

When we expand and truncate equation 5.33 we have

PR ≈ C(B)kT

(
Zqψm
kT

)2

, (5.36)

which in combination with equation 5.35 yields,

PR ≈
C(B)Z2q2

kT
4ψ2

0 exp(−κd) (5.37)

PR ≈ 2ε0εκ
2ψ2

0 exp(−κd) (5.38)

Finally the interaction potential at a separation d can be found by integrating equation 5.38 from

d to infinity,

Ge = −
∫ ∞
d

pRdd. (5.39)

Therefore,

Ge ≈ 2ε0εκψ
2
0 exp(−κd) (5.40)
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5.2.5.4 Fluctuation interactions

Supported and unsupported lipid bilayers are dynamic structures, particularly in the fluid

phase. Bilayer structures undergo several types of fluctuations that include molecular protrusions,

stretches and undulations. Both protrusions and undulations have a marked effect on the overall

interaction of lipid bilayers with each other and supports. The effects of protrusion are included

within a treatment of hydration repulsion (see above). Undulations however, are not included in

any of the other interaction treatments and act to renormalise the direct interactions.122 It is this

renormalisation that leads to unbinding transitions. Fluctuations of a membrane confined by two

hard-walls and with no lateral tension give rise to a roughness described by,

ξ⊥ ∼ (kBT/kc)
1/2ξ‖. (5.41)

Where T is the temperature, kc is the bending rigidity and ξ‖ is the limiting wavelength above which

the undulations are suppressed due to the confinement. Each limiting segment of the membrane

has an associated volume given by

V ' ξ2
‖ξ⊥, (5.42)

and when using the ideal gas law (pV = kBT ) we have,

p ∼ k2
BT

2/kcξ
3
⊥. (5.43)

The unsuppressed undulations of a confined membrane create a disjoining pressure, which decays

with the roughness ξ⊥. It is worth noting that ξ‖ is proportional to the separation d between

membranes or membrane and support. Therefore the disjoining pressure, p ∝ d−3, which is the

same decay as van der Waals interactions (see for instance equation 5.25). The expressions derived

thus far are for a membrane with no lateral tension. The roughness of a membrane under lateral

tension will be reduced. The membranes roughness becomes the same as that of an interface

governed by surface tension. The roughness of a membrane under tension is given by,

ξ⊥ ≈ (kBT/2πγ)1/2
√

ln(ξ‖/a‖), (5.44)

where γ is the lateral tension and a‖ is a small-scale cutoff given by the headgroup area. It is clear

the roughness dependence on ξ‖ becomes very weak for membranes under lateral tension and is

thus primarily determined by the tension itself. The fluctuation induced interaction potential is

then given by

Gfl(ξ⊥) ∼ exp[−2(ξ⊥/lγ)2], (5.45)

where

lγ ≡ (kBT/2πγ)1/2 (5.46)

5.2.6 Renormalised interactions

In this sub-section I will describe the the interplay of bilayer fluctuations with the direct in-

teraction arising between two bilayer segments or the limiting case of a bilayer and a solid support.

The fluctuation interaction is not strictly additive to the other direct interactions, and for a thor-

ough treatment the superposition principle does not apply. Lipowsky states that the separation of
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two bilayers or a bilayer and its solid support is governed by the effective Hamiltonian,122

H{l} =

∫
d2x

{
Pl −G(l) +

1

2
kc(∇2l)2

}
(5.47)

where kc is the effective bending rigidity

kc =
kc,1kc,2

(kc,1 + kc,2)
(5.48)

and kc,1 and kc,2 are the bending ridgities of the two membranes. In the limiting case of a supported

lipid bilayer, where kc,2 =∞, kc reduces to kc = kc,1. The probability of a given configuration of

d is given by its Boltzmann weight,

exp

{
H{d}
kBT

}
. (5.49)

In principle, to obtain the partition coefficient and other statistical quantities, one should sum

over all possible configurations, but in practice one of several approximate methods must be used.

The most systematic being that of functional renormalisation (RG), and the most “realistic” being

simulations – I shall not enter into a description of these in this thesis. However, the simplest

method is that of superposition of all the interactions. In this method the free energy per unit

area is estimated by

G(d) = Ghy(d) +Ge(d) +Gvdw(d) +Gfl(d) (5.50)

where

Gfl(d) ≈ cflT 2/kcd
2 (5.51)

and cfl is a dimensionless constant. The equilibrium mean separation can then be acquired from,

∂G

∂d
= 0 (5.52)

The superposition method fails if any of the non-fluctuation interactions have an attractive com-

ponent that decays faster than 1/d2, for instance in the presence of attractive short ranged forces.

For “bound states” equation 5.52 will show a global attractive minimum at some distance d. How-

ever, if the physical parameters are changed such as the temperature, the bending rigidity or the

charge on the membrane for an SLB, the total potential may pass a critical point where there is no

longer an attractive minimum and the membranes or membrane on support separate or “unbind”

from the surface. One failure of the superposition approach is the nature of the transition itself.

By the superposition approach, upon reaching the critical temperature, i.e. the temperature at

which the bound and unbound states exist together, and then passing it, the transition is expected

to be first order and discontinuous. However, more sophisticated methods for understanding the

unbinding transition, such as the RG, result in a continuous transition where the attractive mini-

mum moves to greater d until the bilayer unbinds. This difference in behaviour is shown in figure

5.3, the upper row of graphs illustrate the unbinding transition using the superposition approach.

The lower graphs depict the unbinding transition calculated by renormalisation group. Despite

this distinction, the critical points at which the transition takes place are accurate provided the

supposition method is applied within the limits described above.
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Figure 5.3: A figure showing the change in the total interaction potential with temperature calculated by

(top) superposition (bottom) renormalisation group. Reprinted from Lipowsky,122 with permission from

Elsevier.

5.3 Experimental review

The experimental work done on the interaction of multifarious surfactants with vesicular

systems is vast, and for this reason only a selection of that work will be discussed here. One moti-

vation for my research is the limited work carried out on SLB systems, despite the large quantity

of work carried out on bilayer vesicles. Schurtenberger and coworkers investigated the interaction

of bile salts with lecithin systems using quasi-elastic light scattering and equilibrium dialysis.123

They found that upon dilution changes in the polydispersity showed the formation of mixed bile

salt/lecithin vesicles below a bulk bile salt concentration, thereby confirming the overall features

of the three stage model. They were able to apply their own phenomenological model to the data

acquired which allowed the authors to relate the mole fraction ratio of the two species to a given

vesicle size. Indeed they found that the size of the mixed vesicles formed varied from 130-500 Å.

Lichtenberg published a paper in which he reviewed the data of others. He was able to relate

the onset of vesicle saturation and solubilisation to a critical ratio Rb.
124 He found that Rb was

related to the CMC of the surfactant being used and thus linked the bulk CMC to the onset of

mixed micelle formation. His contributions implied that so long as the aqueous surfactant concen-

tration was below the CMC of the pure surfactant solution bilayer solubilisation would not take

place. Lichtenburg also related the ratio Rb to the the size of the mixed vesicles or micelles after

the onset of solubilisation in a similar way to Schurtenberger. Lichtenberg continued in this vein

and carried out experiments on systems containing the non-ionic surfactant octyl glucoside (OG)

and egg-PC.125 They showed in accordance with Lichtenberg’s earlier analysis that the structural

result of mixing depended on the value of Rb; below the critical value of Rb, where mixed micelles

begin to form, as the concentration of OG increased so to did the diameter of the vesicles in sus-

pension.

The group of de la Maza have conducted a large number of studies on the interaction of

surfactants/mixed surfactant systems with lipid vesicles. In an early study they investigated the

interaction of SDS with PC vesicles using photocorrelation spectroscopy and fluorescence tech-
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niques,126 the former quantifying vesicle size distributions and polydispersity index (PI) the latter

showing how the permeability of the PC vesicles changed upon surfactant addition. They observed

a linear relationship between dye release, Rb and vesicle growth. This relationship implied that

lipid membrane permeability to surfactant increased with surfactant incorporation. In the same

study it was shown that above the critical effective lipid surfactant ratio (i.e. at bulk surfactant

concentrations above the solubilisation threshold), a linear dependence was established between

the decrease in mixed vesicle size (from the static light scattering) and the effective surfactant/lipid

ratio. The last trend stopped at very high surfactant concentration indicating that the great ma-

jority of aggregates were of the mixed micellar variety.

A few years later, another study published by the same authors investigated a more complex

system that included both SDS and nonylphenol ethoxylate (NP(EO)30) with phosphatidylcholine

vesicles.127 Similar trends were observed as in the prior SDS-only study, for example the onset

of solubilisation did not occur until the free surfactant concentrations were equal to the mixed

surfactant CMC. However, what was interesting for this mixed system was the synergy between

the non-ionic and ionic components. At low overall surfactant concentrations, the maximum total

surfactant partitioning took place at high dSDS mole fraction. As a result the influence of SDS at

lower surfactant concentrations was greater whereas the influence of NP(EO)30 was higher in the

solubilisation regime and in the presence of mixed micelles.

More recently de la Maza investigated the role of ceramides (Cer) on the interaction of sur-

factant mixtures with complex stratum corneum (SC) lipid vesicles using the same techniques as

his prior studies.128 In this study it was shown that the activity of the SDS/C14-BET mixture

upon the SC liposomes was greater when there was less Cer present in the bilayer. Thus the ability

of the surfactant mixture to alter the permeability of the lipid bilayer was lower when the bilayer

approximated the real SC more closely.

de la Maza has also investigated some of the dynamic properties of the SDS interaction with

PC lipid vesicles, specifically the trans-bilayer movement of the SDS monomers.129 The authors

carried out this investigation with fluorescence spectroscopy using the anionic fluorescent probe

2-(p-toluidinyl)napthalene-6-sodium sulphonate (TNS). The authors state that it was only possible

to measure probe molecules in the outer bilayer leaflet as they assumed the probe did not cross

into the inner leaflet; this was justified by control experiments on the pure fluorescently labelled

vesicles showing no intensity changes over six hours and some prior work by other authors in a

related field. However, the authors did not prove that transfer was not occurring once SDS was

partitioned. TNS is sensitive to the presence of SDS because it interacts with the sulphate head-

group leading to changes in the TNS fluorescence intensity. The authors studied the change in

fluorescent intensity with incubation time in the presence of SDS. These fluorescence data were

then quantified as the variation in surface potential (ψ0) of the liposomes. When the concentration

of SDS was increased an initial increase in ψ0 was seen, as SDS was incorporated into the bilayer.

However, after a period of incubation a decrease was observed in ψ0, which was associated with

the movement of SDS into the inner vesicle leaflet by the “flip-flop” mechanism. The maximum

decrease was observed from very low surfactant concentrations. Whilst the initial uptake of SDS

into the outer bilayer leaflet was rapid, the flip-flop process of SDS within the bilayer was seen to

be slow, on the order of 10-90 minutes after SDS addition. If one compares this figure to the rate

of lipid only flip-flop in vesicles (0.7-3.0 hrs),130 one sees that it is faster; one would suspect this

is due to the increased size and hydrophobicity of lipids compared to the SDS. N.B it is worth

repeating that the large variation in the reported lipid flip-flop rates depends on the geometry of

the aggregate, the lipid species and headgroup, whether or not the bilayer is surface supported and

if the SLB is tethered to the support.
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Jørgensen and coworkers have investigated the partitioning of lysolipids and fatty acids in

PC liposomes using isothermal titration calorimetry (ITC), again using the standard partitioning

model.131 They discovered that the partitioning of lyso-PC within the lipid membrane was strongly

dependent on the phase of the vesicle bilayer. In the Lα phase where the lipid molecules are more

disordered K was large and lyso-PC was heavily incorporated in the vesicle bilayer. However, in

the Lβ phase lyso-PC incorporation was much lower and the partitioning coefficient was relatively

small. For fatty acid incorporation, partitioning was independent of bilayer phase. Lastly the au-

thors observed a order-of-magnitude increase in partitioning upon increasing surfactant tail length

by two carbons for both lyso-PC and FA between 10 to 16 carbon atom chain length.

Somasunduran and Deo have studied the complete interaction mechanism of pure and mixed

liposomes with SDS using optical density measurements and composition analysis.132 They show

that phosphatidic acid (PA) vesicles are solubilised much more easily in the presence of SDS than

are PC vesicles. They relate these results to the simpler structure of PA and the more complicated

structure of the zwitterionic PC. They also show that the solubilisation of vesicles comprising a

1:1 mixture of PA/PC occurred at lower concentration than similar pure lipid vesicles, they relate

this to the resulting instability in the liposome generated when the PA is removed preferentially at

lower SDS concentrations where PC is not. These results show that the ideal partitioning model is

not adequate to describe common surfactant partitioning into lipid bilayers and subsequent solubil-

isation. The three stage model does not take the specifics of the surfactant and lipid into account

or their interactions with each other.

Menger and coworkers have investigated some dynamic properties of a variety of both con-

ventional and gemini surfactants embedded within vesicle bilayers.133 They used laser microelec-

trophoresis coupled with conductance, fluorescence and dynamic light scattering (DLS) to show

that cationic conventional surfactants would only flip-flop from the outer leaflet to the inner leaflet

of anionic lipid vesicles if the bilayer was in the fluid state. Lastly they showed that surfactants

can only hop from one vesicle to another when the initial vesicle was in the fluid state. Despite

these seemingly conclusive results one must always be aware that the fluorescent tag may have a

large effect on dynamic behaviour such as flip-flop.

In a more recent study, Somasundaran and Deo have investigated the structural changes in-

duced by SDS on mixed PA/PC liposomes by way of the lipid probe molecule 5-hydroxy stearic acid

(5-DSA).134 Their results show that upon the initial uptake of SDS the liposome is not disrupted

but SDS adsorbs to the surface of the liposome. During their experiment, after a concentration

of 2 mM SDS was reached a sharp change in the mobility of 5-DSA takes place, indicating the

rapid onset of bilayer disruption and the onset of solubilisation. These data conflict with almost

all of the other studies which suggest surfactant partitioning into the bilayer at all concentration

regimes.

Surface plasmon resonance (SPR) has been used by Stroeve and coworkers to study the “cor-

rosive” effects of various substances on hybrid supported POPC bilayers, amongst these substances

were CTAB and SDS.135 The bilayers were fused on top of a layer of alkyl thiols previously adsorbed

to gold coated silica. The article was written from the point of view of preserving biosensors which

include systems comprised of lipid bilayers. The results from this hybrid layer are fairly consis-

tent with bulk vesicular studies, complete bilayer solubilisation required surfactant concentrations

nearing the CMC, however, the onset of solubilisation began to take place at concentrations an

order of magnitude lower than the CMC of the bulk surfactant. This was not observed in the other

vesicle based studies hitherto described, and is in contradiction to the analysis of Lichetenberg,

who related the start of mixed micelle formation to the CMC of the bulk surfactant. Again this

discrepancy is likely to be related to the simplicity of the three stage model, however in this case
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it could be a result of the fact that the authors are now working with surface supported layers and

particularly a hybrid lipid system.

Somasundaran and Deo have produced another work investigating the solubilisation of PC/PA

bilayers by SDS.136 In this study they used turbidity, surface tension and monomer concentration

techniques. Their results have nothing to show that has not already been shown before with regard

to the three-stage interaction model, but their results do corroborate with those of Stroeve and

coworkers, at least over a long period of incubation.

Small angle X-Ray scattering (SAXS) has been used to investigate the effects of the non ionic

N-alkyl-N,N-dimethylamin-N-oxides on egg-PC bilayers in the Lα phase.137 Balgavý and coworkers

show an increase in surface area per lipid at the water/lamellar interface across the entire homol-

ogous series of surfactants by ≈0.3 nm2 which varied slightly with the exact surfactant chosen.

They attributed this expansion to surfactant incorporation and the concomitant lateral expansion

of the vesicle bilayer. They also report a decrease of up to 0.85 nm in bilayer thickness with sur-

factant incorporation, this depending on the surfactant/lipid ratio and the specific member of the

homologous series; some members did not decrease bilayer thickness at all.

Keller et al. have used isothermal titration calorimetry to monitor the translocation of dSDS

across the bilayer of large unilamellar POPC vesicles.138 By using a series of uptake and release

titrations they have been able to discriminate between the two extreme cases of half side binding

and a balanced transbilayer distribution of SDS. They applied a selection of the thermodynamic

models described above including the one used to correct for charged species partitioning. Specifi-

cally they found that utilising the electrostatic corrections, they could evaluate the partitioning of

dSDS with an ideal partitioning model. They note that SDS does not equilibrate across the POPC

bilayer at 25◦C, but that this translocation rate is markedly increased when the temperature was

increased to 65◦C. However, this temperature rise also decreased the partition coefficient by a

factor of three. It is also worth noting that this work did not go so far as to following the kinetics

in real time, they were simply able to discern whether of not flip-flop was occurring and what time

was required for complete equilibration; in this was the authors found that at 65◦C the required

equilibration time was 20 minutes which establishes an approximate limit for the time required for

flip-flop.

Cheng and coworkers have used SPR and FRAP to investigate Triton X-100 and SDS in-

teracting with SLBs prepared on calcinated silicate layers on gold. The most relevant SLBs were

comprised of PC and a 50:50 mixture of PC and PE but other species including some synthetic

lipids were used.139 Their study was mainly aimed at establishing which of the lipid systems stud-

ied were the most stable with respect to SDS and Triton X-100 treatment. They correlated a

change in SPR angle with a percentage loss of the SLB under study. Their work provides some

useful empirical information about the resistance of a selection of different SLB systems to air

exposure and surfactant exposure.

Moreno et al. have investigated the interaction of dSDS with phospholipid vesicles comprised

of POPC using isothermal titration calorimetry. They also used the electrostatic corrections de-

scribed earlier in my theoretical review. They found that even when using these corrections the

“intrinsic” non-ideal partition coefficient obtained varied with surface surfactant concentration;

thus indicating that further interactions or structural changes must be mediating SDS partitioning

into the POPC bilayer.

Riske and coworkers have studied the interaction of POPC giant unilamellar vesicles (GUVs)

with SDS and Triton X-100 using phase contrast and fluorescence microscopy.140 They note several

distinctions between the behaviour of the vesicles interacting with the two surfactants. Firstly, in

the presence of Triton X-100, the vesicles showed an increase in surface area indicating the parti-
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tioning of the surfactant into the POPC bilayer; above the saturation concentration holes began

to appear in the vesicles and they took on a perforated appearance, eventually they disappeared

completely. In the presence of SDS the GUVs behaved differently, whereas the Triton X-100 was

able to partition into both bilayer leaflets, SDS was only able to partition into the outer leaflet;

this lead to spontaneous curvature and the authors observed large shape fluctuations and budding

transitions, seen as excrescenses in the microscope images; the authors justified their comments

about flip-flop in terms of presence of spontaneous curvature – if flip-flop was taking place, spon-

taneous curvature would not have been evident. Above the bulk CMC of SDS in the media used,

all the vesicles eventually burst, the small fragments of which were below the resolution of the

microscope used.

Heerklotz and coworkers have used the time-resolved fluorescence anisotropy of 1,6-diphenylhexatriene

(DPH) to understand the disordering effect of a selection of surfactants on POPC lipid vesicles and

how this correlates with solubilisation.141 They found that the disordering effect correlates well

with the point of bilayer solubilisation for many of the common surfactants such as SDS, C12EO8

or lauryl maltoside, but for many fungicidal lipopeptides, CHAPS and digitonin this was not the

case and solubilisation seemed to take place without substantial measured disordering.

5.4 Results

5.4.1 Overview

In this section I will explore the kinetic, thermodynamic and structural changes that take

place when dSDS partitions into SLBs composed of i) POPC, ii) POPE iii) egg-SM and iv) a

1:1:1 mixture of POPE, egg-SM and Cholesterol. In preliminary work I studied the interaction of

both dSDS and dCTAB with an SLB comprised of POPE. I found that whilst the dSDS could be

removed from the SLB phase completely in was unclear if dCTAB had done the same. dCTAB may

adsorb to clean silica surfaces irreversibly whereas dSDS does not; if defects were present in the

SLB it was unclear whether or not the dCTAB was simply adsorbing to the bare silica, remaining

as part of the SLB, or a combination of the two. For this reason I chose to focus purely on SDS.

5.4.2 POPC

5.4.2.1 Equilibrium measurements

Initially the POPC SLBs were prepared by vesicle fusion under the constant flow regime

utilised throughout Chapter 3. Once this procedure had been completed any remaining loosely

adhered vesicles were removed by copious and lengthy rinsing with 20 mM tris buffer at pH 7.4.

Subsequently, dSDS solution was flowed into the cell at a rate of 0.300 ml min−1. During this

time, kinetic measurements of the partitioning process were acquired by monitoring changes in

the CD stretching region of the Raman spectrum. Longer extended spectra were then acquired at

equilibrium for both S- and P-polarised incident light; these were required to obtain a partitioning

isotherm. In general this method (kinetic followed by equilibrium measurements under constant

flow) was utilised multiple times for the same SLB with increasing dSDS concentration. It was

expected that the partitioning kinetics for each successive dSDS addition would change as the SLB

coverage was altered; as a result the first addition(s) offer the best insight into the partitioning
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kinetics of a complete SLB. For a number of dSDS additions, particularly the first and last, the cell

was rinsed with copious buffer. Concurrently, the CD region was monitored to observe the removal

of dSDS from the SLB and also extended scans were acquired to gather equilibrium information

after rinsing. Occasionally kinetic behaviour was monitored in the CH stretching region to observe

real time changes of the lipid component as the dSDS partitioned and was subsequently rinsed.

It was not possible to monitor both regions simultaneously during kinetic measurements – the

diffraction grating did not cover the required frequency range.

Deuterated SDS was used to remove spectral overlap arising from both lipid and surfactant

contributions to the CH stretching region. By using dSDS I was able to analyse the Raman signals

from both species separately. Figure 5.4 shows the equilibrium S- and P-polarised spectra for 0.2

mM dSDS addition and subsequent rinsing. In figure 5.4 (a), the S-polarised data, I show a repeat

measurement of the pure SLB to highlight the stability of the system, the two spectra are virtually

identical.

Looking at the CD region in figure 5.4, between 2050 and 2250 cm−1. The bands that reside

within this region have been assigned previously for crystalline nonadecane-d40 by Pemberton and

coworkers:142 symmetric νs(CD3) mode at 2073 cm−1, symmetric νs(CD2) mode at 2104 cm−1,

Fermi resonance of the symmetric νs(CD3) stretching mode at 2137 cm−1 (not usually present in

liquid samples), two antisymmetric νa(CD2) modes at 2173 and 2196 cm−1 (these modes contain

both Raman and IR active components), antisymmetric νa(CD3) stretching mode at 2216 cm−1.

In my spectra the whole CD region is shifted to higher frequency by approximately 10 cm−1 as a

consequence of the liquid like nature of the dSDS within the POPC SLB.

The behaviour shown in figure 5.4 is typical of many of the SLB systems investigated. We

observe a decrease in the CH region upon dSDS partitioning and a concomitant increase in the

CD region indicating the presence of dSDS within the SLB. However, the most interesting feature

of the data, and what originally captured my interest, was the recovery in the CH region upon

rinsing. In this system when the surfactant was removed, the lipid signal recovered to slightly lower

levels that were observed before dSDS addition. Further, rinsing appears incomplete, a small dSDS

remnant remained within the lipid bilayer and this explains the difference in the original and after

rinsing CH intensities. The key question is why the lipid signal returns? In a flow-cell environment

one expects any loss of signal from the exit of material from probed volume to be permanent; on

the other hand several other mechanisms exist for the loss of signal that do not depend on the

permanent removal of material. For instance, one possibility is that the existing SLB expands into

free surface volume (located outside the laser spot) to accommodate the partitioning dSDS, this

would result in a reduction in the surface density of lipid and hence a reduction in signal. However,

this mechanism acting alone would suggest a heterogeneous surface coverage with a length scale

greater that the size of the laser spot. Provided there was no bias towards lipid vesicles rupturing

at the laser spot’s location, if there was an optical trapping effect, we would expect a certain

degree of irreproducibility in the lipid signal between experiments; for instance, if there was a

large block of free volume within the laser spot one would expect the lipid signal to increase upon

dSDS partitioning – I have almost always observed a decrease. Another option is some form of

restructuring, such as an unbinding transition or the onset of spontaneous bilayer curvature; the

latter including such structures as tubules and blebs, see for instance Staykova and Stone.143 The

final possibility is that a number of these mechanisms could be operating in concert to produce

an overall change. The original premise for the following section was to apply all the qualities of

TIR-Raman to find out which signal loss mechanisms are occurring and to what extent and to

explain why.
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Figure 5.4: TIR-Raman spectra showing the interaction of 0.2 mM dSDS with an SLB comprised of

POPC in 20 mM tris pH 7.4. 73◦ incidence, 800 mW, with equilibration at 32◦C. 10 second spectra with

20 accumulations. Both S-polarised (a) and P-polarised (b).

Figure 5.5 shows partitioning data for dSDS incorporation into two POPC SLBs. These data

characterise the changing mole fraction of dSDS within each SLB as a function of bulk dSDS con-

centration. Figure 5.5 also shows the effect of dSDS partitioning on the total adjusted normalised
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signal level, which is an empirical measure of the overall coverage at the interface. As the bulk

dSDS concentration is increased we observe an increase in the mole fraction of partitioned dSDS.

However, this increase decreases as the bulk concentration is raised highlighting a lack of ideality.

Moreover, as the mole fraction of partitioned dSDS reaches a value of approximately 0.5, both

POPC SLBs become saturated and further increases in bulk surfactant concentration no longer

increase the dSDS mole fraction. In the saturation concentration regime, we observe the solubil-

sation of the SLB as indicated by the sudden drop in normalised signal.

The effect of the partitioning on the normalised signal levels are interesting, these levels are

calculated by summing the integral CH region intensity with the adjusted CD region intensity; the

CD region intensity normalised by the appropriate Raman cross-section ratio. The normalised sig-

nal is a measure of the total number of CH and CD bonds within the bilayer (N.B. See for instance

my introductory section on composition analysis). In experiment (1) the cell was flushed after each

new surfactant addition, whereas in experiment (2), the flow cell was flushed only after the first

two measurements, this difference in protocol could explain the divergence in overall signal after

0.5 mM dSDS. But there is a second possibility; it is expected that not every SLB formation for a

given lipid/lipid mixture will lead to the same surface coverage, another plausible explanation is

that in experiment (2), the surface has a lower coverage to start with and so more space is available

at the interface to incorporate dSDS. It is instructive to look at the raw spectra of the two pure

SLB’s in order to determine which of these alternatives is the cause of the difference in behaviour.

Figure 5.6 shows these raw spectra, the intensity ratio of the lipid bands in the CH region to the

water band gives an indication of coverage, the data shown indicate a difference in surface coverage

of ≈7 % with SLB POPC (2) having greater coverage. As the data in figure 5.5 show a difference

in the maximum normalised signal of 40 %, it is far more probable that the difference in coverage is

a result of the extra rinses conducted during the POPC (1) experiment and not the initial surface

coverage. These data also imply that material exists some distance from the interface after the

addition of surfactant. Owing to the no-shear condition at the stagnation point, no shear should

be acting on a “flat” SLB at the centre of the hemisphere where the probe beam is incident. If

blebs or tubules are forming as a result of spontaneous curvature, shear could be acting on them as

they would protrude into the bulk solution; it is expected that some material would be irrevocably

removed from the interface. For both SLBs the normalised signal levels increased at the lowest

bulk dSDS concentrations, implying that additional material was adsorbing to the interface and

there was no loss in normalised signal even with copious rinsing; perhaps the tubules/blebs are

more stable if subjected to shear forces when they are shorter.

I have analysed my partitioning data using both the non-ideal and charged surfactant ex-

tended models described earlier in the introduction to this chapter. Figure 5.7 shows the change

in the mole ratio of surfactant to lipid (Rb) in POPC SLB (1), the fact that these data are linear

in [dSDS] concentration implies that the surface charge developed by dSDS partitioning is being

neutralised by either or both of Na+ and tris+ binding to the DS− within the SLB. Without addi-

tional measurements – streaming potentials – it is not possible to acquire the counterion binding

constant although estimates could be acquired by Na+ binding to SDS micelles or from simulation

studies. The slope of a plot of Rb vs. [dSDS]bulk yields KR, which was acquired by linear fitting. I

calculated this value to be KR = 990 M−1 ± 50 M−1 which gives standard partitioning free energy

of ∆µ0aq→B
dSDS = –27.7 kJ mol−1 ± 0.1 kJ mol−1; a very similar value was obtained for POPC SLB

(2). These values are in good agreement with Bloom and coworkers who obtained a value of –29

kJ mol−1 with ITC. However, whereas I have found that the non-ideal model provides an adequate

description for the POPC SLBs, Bloom and coworkers required a model that took into account

surface DS− depletion and associated counterion binding for vesicle systems. For this reason I used
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Figure 5.5: Figure showing two partitioning isotherms for dSDS incorporating into POPC SLBs (1) and

(2), 32◦C, 73◦ incidence, 20 mM tris pH 7.4. Calculated from combined S- and P-polarised spectra.

the model that accounts for surface charge for means of comparison. Figures 5.8 (a) and (b) show

the theoretical build-up of surface potential – calculated from knowledge of areas per lipid and

surfactant molecule and the measured mole-fractions of surfactant and lipid mole fraction respec-

tively – and a plot of Rb as a function of depleted surface DS− concentration as calculated from the

Gouy-Chapman theory. It is immediately apparent from (b) that there is no linear relationship

between these quantities – the negative slope is not physically meaningful. This indicates that

K0
R the intrinsic mole ratio partition coefficient is not constant when taking into account expected

surface anionic surfactant depletion assuming no counterion binding is taking place. The fact that

the value for KR is constant implies that the surface charge is being effectively neutralised by

counterion binding as soon as it is acquired on the SLB. It is not obvious as to why this behaviour

should be so different from that observed by Bloom and coworkers. Their studies were conducted

in 10 mM phosphate buffer with 154 mM NaCl at pH 7.4 with a similar SDS concentration regime.

In theory surface charge should be further neutralised in their conditions owing to the far higher

ionic strength. Given that they were working with LUVs geometric considerations should be of

limited importance; the disparity could result from the fact that we are investigating SDS binding

thermodynamics at the silica-water interface whereas they are examining the same behaviour in

bulk vesicular systems. Lastly it is worth noting that my standard states differ from theirs by

definition – the buffer conditions were quite different, caution must be taken when comparing the

calculated standard free energy differences.

The two thermodynamic models represent extremes between a non-ideal mixing with no elec-

trostatic effects and one in which the electrostatic surfactant depletion is at its maximum, allowing

for counterion binding in a quantitative way permits the merging of the extremes to account for

something in between the two behaviours, although I have found this to be unnecessary here.
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Figure 5.6: A figure showing raw S-polarised TIR-Raman spectra of SLBs POPC (1) and POPC (2) in

order to demonstrate the difference in surface coverage. Acquired at 32◦C, 73◦ incidence, 800mW, 20

acquisitions, 10 second spectra, 20 mM tris pH 7.4.
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Figure 5.7: A figure showing the change in the mole ratio of dSDS to POPC within SLB (1) as a function

of dSDS concentration, 32◦C, 73◦ incidence, 20 mM tris, pH 7.4
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Figure 5.8: (a) A figure showing the theoretical development of SLB surface potential as a function of

dSDS mole fraction within a POPC SLB. (b) A graph showing the variation in the surfactant to POPC

mole ratio as a function of theoretical dSDS surface concentration for POPC SLB (1), 73◦ incidence, 32◦C,

20 mM tris pH 7.4.
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5.4.2.2 Structure

Figure 5.9 demonstrates the effect of dSDS partitioning on the overall order within the POPC

SLB; as the dSDS mole fraction increases, there is a moderate increase in the degree of order in the

lipid chains. If the mixed POPC/dSDS system is more ordered than the pure POPC SLB system

at the same temperature it is likely that no thermal unbinding transition is taking place; enhanced

order implies an increased bending modulus relative to kT or an enhanced lateral tension, either

implying that thermal membrane fluctuations will be further suppressed. In addition the success

of the non-ideal mixing model in fitting the isotherm data informs us that any negative surface

charge is being neutralised, it is unlikely for there to be an increase in the electrostatic repulsion

between the dSDS/POPC SLB and the silica substrate. It is not clear why there is a disparity in

the primary order parameter values between the two systems. A slight difference in the alignment

of the spectrometer could be considered a reason for the difference, but the similarity in the raw

spectra shown in figure 5.6 eliminate this as a possibility. Regardless, a difference of ≈ 0.01 at

similar dSDS concentration is very small.

Figure 5.10 shows the change in the symmetric and antisymmetric stretch peak positions as

a function of dSDS mole fraction. I have found this order parameter to be generally less sensitive

than the peak intensity ratio described above and we observe very small changes. However, it is

interesting that the peak positions increase; one expects to see a decrease when the primary order

parameter increases – generally the peak positions increase with disorder as the vibrational modes

can oscillate more freely in these situations.

Figure 5.11 shows the variation in the ratio of the integrated intensities in the CH region for

the P-polarised and S-polarised TIR-Raman spectra of POPC SLBs (1) and (2) as a function of

dSDS mole fraction – this parameter correlates with average lipid chain tilt. As the dSDS mole

fraction increases so does the average chain tilt. Combining these data with the those shown in

figure 5.9 a picture emerges in which the partitioning of dSDS results in a structure which is more

ordered, but also more tilted.

5.4.2.3 Kinetics

Figure 5.12 and 5.14 show sequential kinetic data for 0.1 mM and 0.2 mM dSDS partitioning

(a) and rinsing (b) from POPC SLB (1). These data were extracted from time series of S-Polarised

spectra using target factor analysis. The data were fitted using the same refined spectra so the

component weights are directly comparable. For both additions we see a rise in the component

weight of dSDS indicating the partitioning of the surfactant into the SLB. The component weight

reaches a greater value in the 0.2 mM addition as the ratio Rb is higher at this concentration.

Looking carefully at figure 5.14 (a) we note the slight positive gradient during the addition step

after the first rapid uptake of dSDS. One possible interpretation of this slow secondary increase

is that it is evidence of lipid flip-flop taking place. Further, when we examine figure 5.12 (a) we

see that the same is not true and after the initial uptake the values are stationary; flip-flop was

not taking place if the interpretation is correct – or only to a very limited extent. For both runs,

the time taken for the initial rapid uptake was approximately 100 seconds and upon rinsing the

component weights drop by 0.2 cw. Whereas in the 0.1 mM run, the final value was approach-

ing 0 cw, in the 0.2 mM addition it was 0.3 cw. Taken with the flip-flop interpretation, these

observations imply that during the 0.1 mM measurement the dSDS had only partitioned into the

outer leaflet, but during the 0.2 mM run it had also partitioned into the inner SLB leaflet and
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Figure 5.9: A figure showing the variation in the primary order parameter for a POPC SLBs (1) and (2)

with increasing dSDS mole fraction. Based on two seperate experiments. 73◦ incidence, 32◦C, 20 mM tris

pH 7.4. Error bars indicate the standard deviation.
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Figure 5.10: Figure showing the variation in both the POPC symmetric and antisymmetric CH stretches

with increasing dSDS mole fraction for POPC SLBs (1) and (2). 32◦, 73◦ incidence, 20 mM tris pH 7.4.

Error bars indicate the standard deviation.
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Figure 5.11: Figure showing the variation in average lipid chain tilt with increasing dSDS mole fraction

for POPC SLBs (1) and (2). 32◦C, 73◦ incidence, 20 mM tris pH 7.4.

this component was not removed upon rinsing. In the work of other groups on vesicular systems,

SDS does not partition into the inner bilayer leaflet unless the temperature is raised significantly

(25→65◦C).138,144 In the 0.1 mM addition I believe we are seeing a similar effect. However, other

workers have shown that at a higher fixed concentration typical surfactants lead to an increase in

the rate of flip-flop within vesicle bilayers above which further increases exponentially enhance flip-

flop;145 this enables surfactant penetration into the inner leaflet as when the dSDS mole fraction

in the outer leaflet is raised, transfer to the inner monolayer is enhanced. Upon rinsing the sudden

loss of surfactant from the outer monolayer could possibly explain the reduced rate of flip-flop

from the inner leaflet to the outer that I have observed but we would also expect to see evidence

of spontaneous bilayer curvature and the formation of blebs and tubules (or an extension of) due

to the resulting asymmetry. This onset of sudden membrane curvature should be confirmed by

some transient variation in the lipid signal. For this reason I monitored the CH region at 0.3 mM

dSDS as a function of time. Figure 5.16 (a) and (b) show these data, we see an initial decrease

in the POPC component weight in (a) as further dSDS partitions into the SLB, upon rinsing in

(b) after the last surfactant has passed through the flow cells internal tubing, we observe a re-

markable fluctuation which I believe corresponds to the onset of transient membrane curvature,

and subsequent rupture and annealing; it is probable that membrane rupture is taking place as

the final POPC component weight values are the lowest for the run – during rupture some POPC

is irretrievably lost into solution. By following the CH region kinetics I was able to follow the

change in I(d+)/I(d−) with time in the same way as for my formation kinetics work (Chapter 3).

Recall that spherical vesicles had a lower order parameter value than the planar SLB. I interpreted

the changing value of the order parameter as an average over different structures present at the

interface. Figure 5.17 shows the relevant order parameter data for the addition and rinsing of 0.3

mM dSDS to and from POPC SLB (1). I have combined the partitioning and rinsing data from

5.16 (a) and (b) onto one time base to visually aid direct comparison. There is no measurable
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Figure 5.12: Figures showing the (a) addition and (b) rinsing of 0.1 mM dSDS to and from POPC SLB

(1). 73◦ incidence, 32◦C, 20 mM tris pH 7.4.
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Figure 5.13: Figure showing example target spectra and the refined spectra calculated from them by

target factor analysis. Note the large reduction in noise in the refined spectra. The refined spectra shown

are those used in linear combinations to generate the component weights for the POPC kinetic partitioning

data sets presented.

change in the order parameter, any structural changes that are taking place cannot lead to a state

that is significantly distinct from an SLB.

In both the 0.1 mM and 0.2 mM additions there are slight drops in the baseline compo-

nent weight as dSDS partitions into the SLB, this occurs at the same time as the increase in the

component weight of dSDS. Upon rinsing these slight decreases in the baseline component weight

recover. It is tempting to attribute these changes to some physical change, such as the expansion

of the SLB into uncovered areas of substrate. However, examination of the refined spectra in figure

5.13 and comparison of the results obtained with refined spectra calculated from alternate runs

explain the true origin of the changes. When looking at the refined spectra we see that their actual

shapes are fairly similar in form, as a result there is a slight mixing of the components that varies

according to the targets chosen. For instance if I chose target spectra from the 0.4 mM addition

and calculated the refined spectra, and then did the same for the 0.2 mM addition, at the linear

combinations stage the baseline component weight decrease would vary, in fact in some instances

it actually increases. The behaviour can only result from a mixing of the components at the linear

combination stage of the analysis. As my analysis of these data is essentially qualitative, these

artefacts do not present a problem. However, if one was planning on modelling surfactant parti-

tioning into SLBs these artefacts would present a real problem. In this situation a strong Raman

scattering internal marker that is inert to the rest of the system should be used, this would afford

the ability to normalise the data without relying on the baseline component weight.

Despite the above interpretation of the baseline component weight changes, it is not fun-

damentally clear what should happen to the water component weight in the CH region upon

surfactant partitioning or rinsing in terms of surface coverage changes. In general the refractive

index of SLB is comparable to that of silica; exactly where the evanescent field begins decaying
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Figure 5.14: Figures showing the (a) addition and (b) rinsing of 0.2 mM dSDS to and from POPC SLB

(1). 73◦ incidence, 32◦C 20 mM tris pH 7.4.
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Figure 5.15: Figures showing the (a) addition and (b) rinsing of 0.4 mM dSDS to and from POPC SLB

(2). 73◦ incidence, 32◦C, 20 mM tris pH 7.4.
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is therefore ambiguous in the presence of the SLB – it could be that it begins from the SLB

water-interface. In this case incomplete coverage leads to a weighted average of signals from the

interfacial regions with SLB and those without. If the evanescent field after SLB formation begins

to decay after the SLB, one would expect to see limited change in the component weight of water

as the SLB expands provided the electric field at the SLB-water interface is similar to that at the

silica-water interface. However, if the field begins decaying at the silica-SLB interface, an increase

in coverage would lead to a decrease in water component weight of water. One must also consider

what is happening to the electric field within the SLB in the former case, if it is higher than for a

bare silica-water interface one could expect the component weight of water to actually increase with

increasing surface coverage. For rigour, this problem would require detailed quantitative modelling

of the electric fields for the different scenarios with very accurate refractive indices for the media

concerned – this is beyond the scope of this thesis.

Figure 5.15 (a) and (b) show CD region kinetic data for POPC SLB (2) at 0.4 mM dSDS;

I am discussing this dataset separately from the data acquired for POPC SLB (1) as the rinsing

behaviour is quite different. In figure 5.15 we observe that the dSDS can largely be removed upon

rinsing, whereas the relevant data in 5.14 (b) show limited flip-flop upon rinsing. It is not clear

from the TIR-Raman data why two almost identical SLBs should show such different rinsing be-

haviour. Perhaps the history of the system in terms of the number of surfactant additions and

subsequent rinses plays a role. Another possibility is that the initial SLB coverage could lead to

differences in the rate of flip-flop, particularly if there were a large number of defects as these

would create a diffusion pathway for surfactant molecules to move into the distal monolayer. In

my measurements, SLB (2) has greater initial coverage, it also displays SDS removal in the second

stage of rinsing. It is therefore unlikely that coverage is a contributing factor to the measured

differences between the two SLBs. Unfortunately it is not possible to explain this disparity with

TIR-Raman alone.

Step changes in water signal have significant consequences for normalising. As described in

my methods, there was always some drift in the focus of the microscope during the course of a mea-

surement. Whilst it was possible to reduce this drift by trying to limit the lash in the micro-motion

stage motors and ensuring thermal equilibrium it was not possible to remove it completely and for

this reason each successive Raman measurement where TFA was not being used was normalised

to a reference water or buffer background spectrum; this served two purposes, to remove spectral

contributions from the buffer solution, but also to make the data from each successive spectrum

quantitatively comparable. For the TFA data most recently described, when comparing dSDS nor-

malised component weights before and after a step in the baseline component weight, there would

be an exaggeration of the dSDS component weight. For this reason I have not normalised any of

my CD region TFA kinetic data to the baseline where this issue occurs, and, as stated before, this

does not affect my interpretations as they are essentially qualitative in terms of the component

weight – I have not estimated surface excess. However, if the surface excess was required, as stated

before an inert maker would be required for absolute normalisation.

In summary, the time taken for dSDS to partition into POPC SLBs is essentially constant for

the concentration regime considered here. The rate of flip-flop from the outer leaflet to the inner

leaflet depends on the bulk concentration of the dSDS. During rinsing the rate of flip-flop from the

inner leaflet appears to depend on the prior history of the SLB under investigation. The ability

of dSDS to irretrievably remove POPC before the onset of the solubilisation regime depends on

whether or not the system is rinsed after addition. Lastly the rapid loss of dSDS from the outer

leaflet during rinsing leads to fluctuation in the component weight of lipid, this was interpreted

as a transient change in structure as the original average component weight value was recovered.
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As the transient signal was fast, it was not possible to acquire AFM images and so no further

information of the actual transient structure formed was available.
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Figure 5.16: Figures showing the effect of 0.3 mM dSDS partitioning on POPC component weight during

(a) addition and (b) rinsing. 73◦ incidence, 32◦C, 20 mM tris pH 7.4.
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Figure 5.17: A graph showing the intensity ratio I(d−)/I(d+) as a function of time for the 0.3 mM dSDS

addition and subsequent rinse.

5.4.3 POPE

POPE is a homologue of the lipid POPC; the difference in structure being the replacement of

the methyl headgroup substituents with hydrogens. This makes studying the interaction of POPE

with dSDS potentially very rewarding; any changes in the behaviour can only be the result of that

one difference in structure. All my measurements were conducted at pH 7.4, as the PE headgroup

has a pKa of 11.25 and the phosphate group has a pKa of 1.7, throughout my measurements POPE

was zwitterionic. As seen in Chapter 3, one problem with POPE is the difficulty in reproducibly

forming SLBs, as a result the quantity of data that I was able to acquire was limited in comparison

to POPC.

5.4.3.1 Equilibrium measurements

Figure 5.18 show subtracted TIR-Raman data for the addition of 0.1 and 0.4 mM dSDS to

a POPE SLB in the Lα phase. The assignments for these spectra are identical as those for POPC

except for the absence of the choline methyl CH stretch at 3041 cm−1. dSDS addition to a POPE

SLB is very similar to POPC SLBs in terms of the raw spectra; we note the increase in CD signal

and decreases in the CH signal. Upon rinsing, the CH signal recovers following exposure to 0.1

mM dSDS but not after exposure to 0.4 mM SDS. The extent of the recovery seen after 0.1 mM

dSDS is rinsed out is less than was observed with POPC. At both concentrations, rinsing com-

pletely removed the dSDS. For other surfactant concentrations (omitted for graphical clarity) the

degree of loss of CH signal upon dSDS addition and rinsing increases as a function of total dSDS

concentration. Figure 5.19 shows raw spectra of POPC SLBs (1) and (2) prior to any surfactant
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Figure 5.18: TIR-Raman spectra showing the interaction of 0.1 and 0.4 mM dSDS with an SLB comprised

of POPE in 20 mM tris pH 7.4. 73◦ incidence with equilibration at 32◦C. 10 second spectra with 18

accumulations. Both S-polarised (a) and P-polarised (b).
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Figure 5.19: A figure showing raw S-polarised TIR-Raman spectra of SLBs POPE (1) and POPE (2). 20

mM tris pH 7.4, 32◦C, 73◦ incidence, 800 mW, 10 s spectra, 18 acquisitions.

addition. As done with POPC, I have estimated the difference in coverage by calculating the ratio

of the CH region to water band peak intensities. For these systems the difference was found to ≈
8% with SLB POPE (1) having greater coverage.

Figure 5.20 shows the partitioning data for dSDS and two different POPE SLBs. In com-

parison to the data acquired for POPC I have noted two key differences. Firstly, unlike POPC there

does not appear to be a saturation limit; the mole fraction of dSDS continues to rise at all con-

centrations investigated. Secondly, the normalised total signal levels drop almost continuously for

both SLBs; this is in marked contrast to the POPC data which show a clear increase in normalised

total signal as a function of dSDS concentration; at least at low dSDS concentrations. For POPE

(2) the system was rinsed after each addition up until 1.0 mM; this explains the greater loss of

total signal for this system when compared with POPE (1) at lower concentrations. Overall, these

data highlight a stronger interaction between POPE and dSDS than POPC and dSDS; without

the bulky choline headgroup, the dSDS can interact more strongly with the cationic ammonium

sub-group. In addition, as the headgroup of POPE has such a small cross-sectional area, it is likely

that there is some monolayer curvature strain in both bilayer leaflets to begin with. Additional

dSDS would negate this preference for a spontaneously curved monolayer geometry. It is therefore

strange to observe the continual loss of lipid from the interface. However, if the charge on dSDS

were being neutralised by Na+ and tris+ counterions, any monolayer curvature strain would be

reduced and the whole SLB structure would still prefer a more curved geometry.

As for the POPC system, I have analysed the partitioning behaviour with both the non-ideal

and charged surfactant models described in the introduction to this chapter. Figure 5.21 (a) shows

the variation in Rb for the POPE dSDS system as a function of dSDS bulk concentration. The

relationship is linear, again indicating that the majority of surface charge was being neutralised by

counterion binding. The value of KR obtained was 1400 ± 130 M−1 which yields a standard free

energy change ∆µ0,aq→B
dSDS = -28.6 kJ mol−1 ± 0.2 kJ mol−1. This value is significantly higher than
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Figure 5.20: A graph showing two partitioning isotherms for dSDS incorporating into POPE SLBs (1)

and (2), 32◦C, 73◦ incidence. Calculated from combined S- and P-polarised spectra.

that obtained for POPC and can be attributed to the closer proximity of the charged SDS and

POPE headgroups. When attempting to use the charged surfactant model, similar to the POPC

system we find that there is a non-linear relationship between surface dSDS concentration and Rb,

this model is therefore inapplicable; counterion binding precludes its use without knowledge of the

relevant binding constants.

5.4.3.2 Structure

Figure 5.22 shows the change in the primary order parameter as a function of dSDS mole

fraction. Overall there isn’t a large variation across the full range of dSDS concentrations used

and the pure POPE SLBs but we do see a slight increase. For both SLBs the difference between

the first at last data points is ≈0.03 this corresponds reasonably well with the POPC data where

we observed a similar but larger increase of ≈0.07. Again, note the slight difference between the

absolute values obtained for the two SLBs.

Figure 5.23 shows the change in the wavenumber of the symmetric and antisymmetric CH

stretches as a function of dSDS mole fraction. Both SLBs have slightly different absolute peak

position values as the calibration of the spectrometer was slightly out for POPC SLB (2). The

changes in the peak positions are broadly similar with the antisymmetric stretch showing a clear

increase with mole fraction. This is counter intuitive as one would expect an increase in peak

position to be accompanied by a decrease in the more sensitive primary order parameter, I observed

similar behaviour with both POPC SLBs.

Figure 5.24 shows the change in the average lipid chain tilt as a function of dSDS mole

fraction. The data follow the trends in the primary order parameter closely, for both there appears
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Figure 5.21: Graphs showing the variation in dSDS to POPE mole ratio within POPE SLB (2) as a

function of (a) bulk dSDS concentration and (b) surface concentration considering accumulated surface

charge. 73◦ incidence, 32◦C, 20 mM tris pH 7.4.
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Figure 5.22: A graph showing the variation in both the POPE symmetric and antisymmetric CH stretches

with increasing dSDS mole fraction for POPE SLBs (1) and (2). 32◦C, 73◦ incidence, 20 mM tris pH 7.4.
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Figure 5.23: Figure showing the variation in both the POPE symmetric and antisymmetric CH stretches

with increasing dSDS mole fraction for POPE SLBs (1) and (2). 32◦C, 73◦ incidence, 20 mM tris pH 7.4.
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Figure 5.24: Figure showing the variation in average lipid chain tilt with increasing dSDS mole fraction

for a POPE SLB system. 32◦C, 73◦ incidence, 20 mM tris pH 7.4.

to be an initial decrease and then subsequent increase in the average lipid chain tilt.

5.4.3.3 Kinetic measurements

Figure 5.25 and 5.26 show (a) the partitioning and (b), the rinsing kinetics of 0.4 mM dSDS

for two POPE SLBs. In subfigure (a) there was an initial rapid uptake of surfactant, followed by

a slower region of uptake. Similar to the POPC system, one plausible explanation of these data is

that the first fast stage could indicate the partitioning dSDS into the outer bilayer leaflet, which

takes approximately 100 seconds, the second slow stage may indicate the penetration of dSDS into

the inner SLB leaflet by flip-flop. In the second stage a plateau was reached after approximately

10 minutes. During rinsing the component weights drop suddenly and this is followed by a slower

protracted decrease in dSDS component weight. Based on the same ideas invoked for the addition,

the two decrease stages could indicate a first rapid loss of dSDS from the outer SLB leaflet followed

by a slower stage involving the transfer of dSDS from the inner leaflet. In figure 5.26 (b) I spent

longer rinsing the system than in figure 5.25 (b) to establish if any other changes were taking place

during dSDS removal. During this measurement I observed a continuation of the same slow loss

of dSDS signal. In comparison with my measurements of the POPC dSDS interaction, I have not

observed any step changes in the background component weight. I have recorded only more subtle

changes characteristic of signal loss due to degrading alignment. This implies that the TFA analysis

is not having the same problems with this system as in the POPC case. As such I have normalised

the POPE component weight by the baseline component weight. As POPE was removed from the

interface at all concentrations of dSDS for both SLBs regardless of initial surface coverage, the

rate of removal has nothing to do with the degree of surface coverage, but is instead dependent

purely on the interaction of dSDS with the POPE monomers and their mutual preferred geometry
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as well as rinsing history. The variation that does exist in the baseline component weight for the

measurements in figure 5.26 is the result of the alignment drifting.
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Figure 5.25: Figures showing the (a) addition and (b) rinsing of 0.4 mM dSDS to and from a POPE SLB.

32◦C 20 mM tris pH 7.4.
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Figure 5.26: Figures showing the (a) addition and (b) rinsing of 0.4 mM dSDS to and from a POPE SLB.

32◦C 20 mM tris pH 7.4.
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5.4.4 Egg-SM

5.4.4.1 Equilibrium measurements

Sphingolipids differ from glycero-phospholipids in that they have a sphingosine rather than

glycerol backbone, although they have the choline headgroup as in POPC. They generally form

more ordered bilayers than glycero-phospholipids, and as shown earlier in Chapter 4 generally

have a higher melting transition temperature than glycero-phospholipids. Sphingolipids also form

hydrogen bond networks between their phosphate oxygens and hydroxyl hydrogens.146 I chose to

study the interaction of egg-SM with dSDS partly for its own sake, but also because sphingomyelin

purportedly makes up 30% of so called lipid raft/DRM mixtures;74 it is therefore necessary to

evaluate the interaction of dSDS with egg-SM as a pure species before trying to understand the

role of egg-SM in a DRM mixture. Sphingomyelins make up 20-35% of all plasma membrane

lipids,81 and are found to be most prevalent in nerve axon sheaths and red blood cells.147

Figure 5.27 (a) and (b) show S- and P-polarised subtracted TIR-Raman spectra of 0.29 mM

dSDS interacting with an SLB. The assignments for egg-SM in the CH stretching region are the

same as those for POPC. The peak at approximately 2440 cm−1 has the same intensity in both

the S- and P-polarised spectra, is the result of a small light leak during the measurements. It

is unfortunate that this error occurred but it had no adverse effect on the experiment and the

results obtained. The addition data follow the same trend as that observed for other species, as

the surfactant partitions into the original SLB, the bands corresponding to dSDS appear and the

CH region intensity decreases. However, the rinsing behaviour is different; as the surfactant signal

is lost there is no recovery in the CH region indicating the permanent removal of egg-SM from the

interface.
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Figure 5.27: A figure showing subtracted TIR-Raman spectra of an egg-SM SLB and its interaction with

dSDS, both (a) S-polarised and (b) P-polarised data are shown. Angle of incidence 73◦, 800 mW, 32◦C,

10 s spectra, 5 acquisitions, 20 mM tris pH 7.4.
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Figure 5.28: Figure showing a partitioning isotherm for dSDS incorporating into an egg-SM SLB, 32◦C,

73◦ incidence, calculated from combined S- and P-polarised spectra.
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Figure 5.29: Graphs showing the variation in the mole ratio of dSDS to egg-SM, Rb, as a function of (a)

bulk dSDS concentration and (b) theoretical dSDS surface concentration. 73◦ incidence, 32◦C, 20 mM tris

pH 7.4.

Figure 5.28 shows the partitioning isotherm for the dSDS interaction with an SLB comprised

of egg-SM. The egg-SM SLB appears to have a more favourable interaction with dSDS than does

POPC. The mole fraction continues to rise with dSDS concentration until the SLB reaches a sat-
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urating dSDS mole fraction of ≈ 0.8. This is substantially higher than POPC which saturated at

approximately ≈0.5. In essence the sphingomyelin stabilises a layer primarily comprised of dSDS.

Interestingly, despite the stronger interaction, the coverage does not drop linearly as with POPE.

In fact we see a situation analogous with POPC where the surface coverage increases as dSDS

partitions into the SLB – the total normalised signal increases with bulk dSDS concentration and

thus dSDS mole fraction. However, we notice the sudden drop of signal at 0.7 mM dSDS indicat-

ing the onset of SLB solubilisation. This is an interesting system because at neutral pH in the

absence of background electrolyte one would expect the double layer repulsion between the anionic

silica and an SLB with negative charge to dominate and force the SLB from the surface, or at

least renormalise the interactions leading to a total potential with a minimum far further from the

surface. The fact that we see few structural changes is indirect evidence of counterion binding.

The total signal reaches a plateau at ≈1.2 times the value for pure egg-SM, which corresponds to

a bulk dSDS concentration of 0.4 mM, this implies that the surface is essentially covered at this

concentration.

Figure 5.29 (a) and (b) show the variation in the mole ratio of dSDS to egg-SM as a function

of bulk and hypothetical surface dSDS concentration respectively. As for the other systems previ-

ously analysed with the non-ideal and charged surfactant models, I have found that the non-ideal

model exhibits the most linear relationship with concentration, and thus fits the data best. A

linear fit shown in figure 5.29 yields a KR of 6300 ± 790 M−1 which corresponds to a ∆µ0,aq→B
dSDS

= -32 kJ mol−1 ± 0.3 kJ mol−1. This is higher than the values obtained from my experiments on

POPC and POPE. However, inspection of figure 5.29 reveals that Rb is not linear in [dSDS]bulk

suggesting that the non-ideal model does not provide a realistic description of this system’s be-

haviour – the larger error in the standard free energy change indicating this. Again, I was unable

to fit my experimental data with the charged surfactant model – this model also provides a poor

description. It is not clear what is causing both of these models to fail but it is likely that surface

charge is not the source of non-ideality and other factors must be contributing.

5.4.4.2 Structure

Figure 5.30 shows the change in the primary order parameter as a function of dSDS mole

fraction. Previously we have seen a slight increase in ordering within POPC and POPE SLBs as

dSDS partitions into the Lα phase. For egg-SM however, we observe an initial increase in order up

to a dSDS mole fraction of 0.3. Subsequently the order parameter decreases until SLB saturation,

indicating increasing disorder. Intriguingly, the increase in order seems to occur as the surface

coverage is still increasing whilst the decrease in order appears to correspond to the dSDS con-

centrations where the surface is already completely covered and is likely a result of the disruption

of the hydrogen bond network at moderate and high dSDS concentrations. The final data point

corresponds to an interface in which ≈55 % of the original SLB was removed and of the remaining

material 18% was egg-sm.

Figure 5.31 shows the change in the antisymmetric and symmetric CH stretches for the egg-

SM SLB. These data show changes that correspond well with the variation of the primary order

parameter and indicate that changes in chain packing must be occurring along with changes in

intramolecular order. The fact that the changes in the order match up so well, and that they

happened throughout the partitioning isotherm is evidence of a much more intricate partitioning

behaviour – several changes in structure are occurring as the mole fraction of dSDS within the
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Figure 5.30: Figure showing the change in the primary order parameter as a function of dSDS molefraction,

73◦ incidence, 32◦C, 20 mM tris, pH 7.4.

SLB increases. It is not unexpected that egg-SM would display different behaviour to POPC and

POPE as it is far more ordered as a pure SLB system.

Figure 5.32 shows the change in average lipid chain tilt as a function of dSDS mole frac-

tion. The data show that initially as dSDS partitions into the SLB, the chains de-tilt, however, as

the mole fraction of dSDS increases, the chain tilt increases proportionately. As this subsequent

increase is small and coincides with the decrease in order shown in figure 5.30 the increase prob-

ably indicates the onset of average tilting brought about by an increase in gauche defects in the

hydrocarbon chains of the egg-SM.

5.4.4.3 Kinetic measurements

Figures 5.33 (a) and (b) show the kinetics of partitioning and rinsing for a solution of 0.4

mM dSDS with an egg-SM SLB. In most ways the data are qualitatively similar to those obtained

for POPC; there is a period of rapid initial dSDS uptake followed by a more gradual partitioning,

upon rinsing this is followed by a rapid initial loss and then a more gradual loss. The time required

for the initial uptake is, like the other systems studied approximately, 100 seconds. The dSDS

component weight after the rapid initial uptake is the same as that after rinsing, but the time

required for the slower step, where flip-flop may be occurring, is longer during rinsing. This could

be a result of structural changes taking place in the outer leaflet of the SLB during rinsing, for

instance if it was more ordered, flip-flop would be slower. In subfigure (a) when looking at the

component weight of water one observes a stepwise change. This is similar to the stepwise changes

in the component weight of water for the POPC SLBs and is likely an artefact of the TFA linear

combination step, where the program is getting confused between the baseline and dSDS refined

spectra.
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Figure 5.31: A figure showing the change in the anti-symmetric and symmetric CH stretches as a function

of dSDS mole fraction, 73◦ incidence, 32◦C 20 mM tris pH 7.4.
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Figure 5.32: A figure showing the change in average lipid chain tilt as a function of dSDS molefraction,

73◦ incidence, 32◦C, 20 mM tris pH 7.4.
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Figure 5.33: Figures showing the kinetics of (a) partitioning and (b) rinsing of 0.4 mM dSDS with an

egg-SM SLB, calculated using TFA from S-polarised spectra. 73◦ incidence, 32◦C, 20 mM tris, pH 7.4.
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5.4.5 1:1:1 POPE:egg-SM:chol

There has been much interest in the role and origin of the hypothetical lipid rafts – function-

alised lateral heterogeneities in real biological membranes. Part of the suggested evidence for these

functional domains stems from the observation that certain fractions of real membranes appear

to be insoluble in a selection of cold surfactant solutions. One problem with this concept is the

assumption that these fractions correspond to specific laterally ordered domains within the cell

membranes of the cell lines being investigated; it is equally plausible that the insoluble phase is

generated as a result of the surfactants intrinsic preferences and the binding preferences of different

species present in the plasma membrane under study. For this reason investigating the partitioning

behaviour of dSDS into an SLB comprising multiple species and cholesterol should be rewarding.

I have already followed the interaction of dSDS with POPE and egg-SM; also, it has been shown

that monounsaturatedturated PE does not phase separate from detergent resistance fractions.148

In this section I will follow the partitioning behaviour of dSDS with a 1:1:1 mixture of POPE,

egg-SM and cholesterol, whilst examining any structural changes indicated by TIR-Raman and

the interaction kinetics. It is important to use egg-SM rather than bovine SM as egg-SM contains

long chain fatty acids which are present in DRM fractions extracted from biological membranes.149

5.4.5.1 Equilibrium measurements

Figure 5.34 (a) and (b) show subtracted S- and P-polarised spectra for dSDS interacting with

the mixed SLB at a number of dSDS concentrations and with rinsing after the 0.1 mM addition.

As before, we note the general increase in the dSDS region and decrease in the CH region. Upon

rinsing during the 0.1 mM addition we observe the removal of dSDS whilst the amount of lipid at

the interface decreases slightly; whereas the S-polarised intensity remains effectively constant, the

P-Polarised intensity decreases somewhat – there is slightly less lipid but there is also a decrease

in average chain tilt.

Figure 5.35 shows the partitioning data and normalised signal for the dSDS mixed SLB

interaction. The degree of binding for a given bulk dSDS concentration was far lower for the

mixture than any other SLB system investigated in my study. The saturating mole fraction of

dSDS was 0.3, the nearest other system was pure POPC where the value was 0.5. As a result

far more lipid remained in the sampled region for any given dSDS concentration used. Having

studied both the egg-SM and POPE systems in isolation already, where the dSDS binds strongly

in both cases, one possible explanation for the mixed systems behaviour is the strong interaction

between the cholesterol and the two lipid species; indeed the interaction of the lipids would have

to be stronger for us to observe the reduced dSDS partitioning behaviour. From figure 5.35 it

is clear that the surface coverage was effectively constant, this implies that the original mixture,

or possibly some ratio of the original species were removed from the interface. Any hypothetical

and significant change in the composition of the mixed SLB would be evidenced by changes in the

CH region. Examining the spectra in figure 5.34 we see that this is unequivocally not the case;

the shape of the spectra are identical – no compositional changes were taking place. The material

being removed was of the original composition. This result in many ways could be more interesting

than the opposite where one or two of the original components were removed preferentially – the

three components have a stronger affinity for each other, than any one component has for dSDS.

Figure 5.36 shows the variation in Rb as a function of total bulk dSDS concentration. For

the mixed system we find a linear relationship between Rb and the bulk dSDS concentration. The
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Figure 5.34: S- and P-polarised TIR-Raman spectra of dSDS interacting with an SLB comprised of 1:1:1

POPE:egg-SM:chol, 73◦ incidence, 32◦C, 20 mM tris pH 7.4.
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Figure 5.35: A figure showing the partitioning isotherm and total signal variation for dSDS interacting

with an SLB comprised of 1:1:1 POPE:egg-SM:chol, 73◦ incidence, 32◦C, 20 mM tris pH 7.4.

value of KR obtained is 750 M−1 ± 100 M−1. Corresponding to a free energy of ∆µ0,aq→B
dSDS =

-27.0 kJ mol−1 ± 0.3 kJ mol−1. I have not attempted to calculate a theoretical surface charge

density for this system as the area per molecule is ambiguous. As a result it is not possible to

investigate using the charged surfactant model without more accurate information on the spatial

distribution of molecules within the SLB. However, as the relationship between Rb and the bulk

dSDS concentration is linear we can determine that as with the other systems investigated, the

surface charge is being neutralised.

5.4.5.2 Structure

Figure 5.37 shows the variation in the primary order parameter as a function of dSDS mole

fraction. At first, the ratio of the anti-symmetric to symmetric CH stretches decreases as the mole

fraction increases. However, at high mole fractions the order parameter increases slightly. This

trend is the one I would expect to occur upon partitioning and is in fact the opposite of the trend

observed for POPC where the lipid molecules within the SLB become more ordered or the egg-SM

system where the trends change depending on the exact point in the partitioning isotherm. The

error bars indicate the standard deviation and were calculated from the time series of spectra

acquired during the formation of this SLB. The fact that the errors are so small indicate that these

changes are significant.

Figure 5.38 shows the change in the symmetric and antisymmetric CH stretch positions as a

function of dSDS mole fraction, the values increase as the primary order parameter increases. Here

the errors are also very small, the strong correlation between the changes in the order parameter

values and the precise peak positions leads me to believe the changes are real.

Figure 5.39 shows the change in average lipid chain tilt as a function of dSDS mole fraction,
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Figure 5.36: A figure showing the mole ratio of dSDS to the SLB mixture as a function of total dSDS

concentration.

the data indicate that chain tilt increases with mole fraction. This tilting behaviour was also

observed with POPC, however, in that system, the increase went alongside an increase in order.

Here it happens with a decrease in order; this implies that the tilting for the mixture is a result of

twists and kinks in the tails of the two lipid species.

5.4.5.3 Kinetic measurements

Figure 5.40 (a) and (b) show kinetic partitioning and rinsing data for 0.4 mM dSDS inter-

acting with the mixed SLB. As with the other systems used we observe an initial rapid uptake

followed by slower partitioning behaviour that results in saturation. However, the initial rapid

uptake for this system appears to end at 0.3 cw which, as a relative proportion of the total, is

significantly lower than the other systems – the second slower stage seems to make up the ma-

jority of the dSDS component weight increase. Assuming my previous interpretation of the two

stage kinetics representing an initial partitioning/rinsing followed by a flip-flop mechanism. The

data here indicate that less dSDS was initially partitioning into the outer leaflet for this system in

comparison to the other systems investigated. When examining the rinsing behaviour in (b) this

system shows a very sharp drop followed by a limited protracted rinsing stage. This indicates that

the majority of the dSDS that partitioned was located in the outer leaflet, or was in some way

immediately accessible to the water sub-phase. As in the POPC and egg-SM systems we observe

another step change in the baseline component weight in this system, except in this system the

baseline component weight increases as dSDS partitions. This step increase is again most likely

an artefact of the TFA linear combination step owing to the similarities of the baseline and dSDS

refined spectra – as we are mostly interested in the qualitative aspects of the data, particularly

in terms of the component weight, this does not amount to a problem. As stated previously this
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Figure 5.37: A graph showing the primary order parameter as a function of dSDS mole fraction for a

1:1:1 ratio of POPE:egg-SM:chol. 73◦ incidence, 32◦C, 20 mM tris, pH 7.4.
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Figure 5.38: A graph showing the positions of the symmetric and antisymmetric CH stretches for an SLB

comprised of 1:1:1 POPE:egg-SM:chol, as a function of dSDS mole fraction, 73◦ incidence, 20 mM tris, pH

7.4.
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Figure 5.39: A figure showing the variation in average lipid chain tilt as a function of dSDS mole fraction

within an SLB comprised of 1:1:1 POPE:egg-SM:chol, 73◦ incidence, 32◦C, 20 mM tris pH 7.4.

problem could be dealt with by including an inert strong Raman marker such as acetonitrile.

5.4.5.4 AFM images

Figures 5.41, 5.42 and 5.43 show three topographic AFM images of the lipid mixture at

different experimental stages. In the first, 5.41 (a) we see the SLB prior to dSDS addition, we

notice a large number of small bright blobs. Figure 5.41 (b) shows a cross-section of one such

blob. My interpretation of these features is that they are trapped, flattened vesicles held within an

otherwise complete SLB. Other workers have observed this vesicle trapping behaviour previously.64

It occurs when the vesicles are unable to rupture owing to limited free volume as an SLB approaches

full surface coverage. Figure 5.42 shows the same SLB after the addition of 0.8 mM dSDS. The

SLB surface appears to be very similar to that of the pure DRM, there are fewer trapped vesicles,

however, we notice the presence of several small pore like defects. This result is in agreement with

the isotherm data shown in figure 5.35, which shows very little change in total normalised signal

even at the highest measured dSDS concentrations. Figure 5.42 (b) shows two cross-sections of

different defects. The defects appear to be on the order of 5 nm deep, this is expected for a single

bilayer thickness. Why such defects appear after the addition of the dSDS solution is unclear.

Figure 5.43 shows the same system after rinsing, we notice the formation of gaps within the SLB

that account for around 30 % of the surface. Other images show regions where there is less coverage

and others more; this implies that any recovery behaviour in the Raman data depends on the exact

location on the surface. Experiments where we observe high recovery will either be those where

the dSDS concentration is low and thus mole fraction is low, or those were we happen to sample a

region of high coverage after rinsing. The AFM images presented are at equilibrium and they show

no evidence of spontaneous curvature or an unbinding transition. However, as these measurements
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Figure 5.40: Figures showing the kinetics of (a) partitioning and (b) rinsing of 0.4 mM dSDS with an

SLB comprised of a 1:1:1 mixture of POPE:egg-SM:chol, calculated using TFA from S-polarised spectra.
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(a)

(b)

Figure 5.41: Two sub-figures showing (a) A topographic AFM image showing the 1:1:1 POPE:egg-

SM:cholesterol SLB after formation, 32◦ C, 20 mM tris, pH 7.4. (b) A cross-section of a trapped vesicle.

193



(a)

(b)

Figure 5.42: Two sub-figures showing (a) A topographic AFM image showing the 1:1:1 POPE:egg-

SM:cholesterol SLB after the addition of 0.8 mM dSDS, 32◦ C, 20 mM tris, pH 7.4. (b) Two cross-sections

of pore-like defects.
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(a)

(b)

Figure 5.43: Two sub-figures showing (a) A topographic AFM image showing the 1:1:1 POPE:egg-

SM:cholesterol SLB after rinsing following treatment with 0.8 mM dSDS, 32◦ C, 20 mM tris, pH 7.4.

(b) A cross-section of residual patches.
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were acquired at equilibrium any spontaneous curvature induced by changes in the distribution of

dSDS about the bilayer normal would have been missed. It is worth stating that I observed no

lateral phase separation within the SLB in any of the images obtained which compares favourably

with the fact that only the intensity in the relevant TIR-Raman spectra fell and the shape of the

CH region remained constant after dSDS addition.

5.5 Conclusions

For POPC, the system which I studied most extensively, the greater the number of dSDS

additions and subsequent rinses the more dSDS was removed from the substrate. Structural data

showed that as the mole fraction of dSDS within the SLB increased, so did the overall lipid order

within the bilayer, and the POPC monomers were forced to adopt a tilted configuration. Thermo-

dynamically I found that the best model to fit the data obtained was the simpler non-ideal model

that ignores electrostatic effects. This implied that any charge associated with the partitioned

dSDS was being effectively neutralised by counterion binding. I found the standard free energy of

transfer to be -27.7 kJ mol−1 ± 0.3 kJ mol−1 which is similar to that measured by other workers

who used ITC. However, some confusion remained as to how the similar value was acquired by

using the simpler partitioning model (they took account of surface charge and counterion bind-

ing), and why I found it unnecessary for SLB systems to consider surface charge. Also, they were

using a different buffer with far greater sodium chloride content, and so there was a difference in

standard states. It is likely that the origin of these differences lies in the choice of system (their

study was on bulk vesicles). Kinetically, I was able to determine that the the time taken for dSDS

to initially partition into the outer SLB leaflet was constant across the concentration regime used.

This implied that the rate of partitioning increased with concentration. The second slow-step was

interpreted in terms of flip-flop. Using this interpretation, the rate of initial flip-flop depended on

the bulk concentration of dSDS and thus the mole fraction of dSDS within the outer leaflet dur-

ing the process of partitioning; at the lowest concentrations flip-flop seemed not to be occurring.

The rinsing behaviour depended on the previous rinsing history, translocation from the proximal

monolayer was far slower if the SLB had been rinsed after a previous addition.

In my investigation of the POPE SLB’s interaction with dSDS I measured several differences

in comparison with POPC. These were interesting owing to the subtle difference in their head-

groups. Whereas for POPC removal was based largely on the number of intermediate rinses and

whether or not the SLB was saturated, for POPE I observed consistent removal at all surface

coverages with added removal with intermediate rinses. I also observed that there was no satu-

ration limit for POPE SLBs within the concentration regime explored – the dSDS mole fraction

continued to increase irrespective of the dSDS mole fraction prior to an increase in dSDS concen-

tration. Thermodynamically, the standard free energy of transfer was calculated to be -28.6 kJ

mol−1 ± 0.2 kJ mol−1 which characterises the difference in dSDS’s interaction with PE and PC

headgroups. Although less kinetic data is available for the POPE system, I observed very similar

behaviour to POPC, a period of rapid dSDS uptake followed by a possible slower flip-flop regime.

During rinsing we also see almost identical behaviour to POPC – a fast initial decrease in dSDS

component weight, followed by a more gradual decrease, which again was interpreted in terms of

a translocation mechanism.

Egg-SM showed equilibrium behaviour more akin to POPC than POPE, although the SLB

saturates at a higher dSDS mole fraction. Also, I calculated the standard free energy of partition-
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ing to be -32.4 kJ mol−1 ± 0.3 kJ mol−1 significantly higher than POPC and POPE. Kinetically,

again I observed behaviour very similar to that of POPC, two step partitioning and removal, with

the slower steps very likely corresponding to flip-flop to and from the inner SLB leaflet.

For the POPE:egg-SM:Cholesterol mixture, I have found that despite the previously mea-

sured preferences of both egg-SM and POPE for dSDS the mixed SLB shows are very weak affinity

for dSDS. This SLB reaches saturation at a dSDS mole fraction of approximately 0.3. This can

only come about as a result of the stronger interactions of these components with each other than

with dSDS. I found that the standard free energy of transfer of this system to be -27.0 kJ mol−1

± 0.3 kJ mol−1 which is the smallest of the systems investigated. Kinetically this system showed

similar behaviour to the other systems, but the extent of initial partitioning was lower. AFM

images allowed me to confirm that there were very limited mesocopic structural changes taking

place after dSDS had been incorporated, but on rinsing large areas of bare silica were opened up.

Overall the data for this system clarifies the idea that certain mixtures of lipids and cholesterol

show a reduced saturation Rb value where the individual components show much higher values.

These data support the idea that membrane regions comprised of these mixtures could be sepa-

rated independently from the bulk lipid matrix. Lastly the fact that the mole ratio of the original

mixture’s components remained constant despite the partitioning of dSDS supports the idea that

dSDS does not dynamically alter the mixed SLBs composition during the interaction.

Throughout this chapter some problems were described. I will briefly summarise the most

important here in the context of future work. Probably the most important problem is that

concerning the normalisation of the kinetic data acquired from the CD stretching region of the

spectrum. Here the baseline component was found to mix with that of dSDS during the linear

combination step of the TFA analysis. It was stated in the text that some inert marker would need

to be included in future measurements to enable normalisation and allow quantitative analysis of

the kinetic data where this mixing occurs. Another possible extension of this project could be a

detailed look at the binary mixture of egg-SM and cholesterol in order to gain a greater understand-

ing of the interesting PE:egg-SM:chol system investigated here. In some of my last experiments

I found it impossible to prepare quality SLBs of POPE and cholesterol in a 2:1 mixture by the

vesicle fusion method. The interface was found to support large aggregates that clearly did not

resemble an SLB. However, perhaps an alternative method to prepare and SLB of this mixture

could be found.
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Appendix A

TIR-Raman spectra of phase

transitions

This appendix includes the subtracted temperature dependant TIR-Raman spectra of SLB

phase transitions not included in Chapter 4 but necessary for completeness. The data are ordered

systematically according to lipid system and buffer solution composition.
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A.1 DMPC

A.1.1 20 mM tris pH 7.4
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Figure A.1: Temperature dependent S-polarised TIR-Raman spectra of a DMPC SLB on SiO2 in 20 mM

tris pH 7.4. 800 mW laser output power, 73◦ incidence, unpolarised detection (a) full CH stretching region

(b) closeup of symmetric and anti-symmetric stretches.
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Figure A.2: Temperature dependent P-polarised TIR-Raman spectra of a DMPC SLB on SiO2 in 20 mM

tris pH 7.4. 800 mW laser output power, 73◦ incidence, unpolarised detection (a) full CH stretching region

(b) closeup of symmetric and anti-symmetric stretches.
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A.1.2 20 mM tris pH 7.4 + 100 mM NaCl
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(b)

Figure A.3: Temperature dependent S-polarised TIR-Raman spectra of a DMPC SLB on SiO2 in 20 mM

tris pH 7.4 + 100 mM NaCl. 800 mW laser output power, 73◦ incidence, unpolarised detection (a) full

CH stretching region (b) closeup of symmetric and anti-symmetric stretches.
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Figure A.4: Temperature dependent P-polarised TIR-Raman spectra of a DMPC SLB on SiO2 in 20 mM

tris pH 7.4 + 100 mM NaCl. 800 mW laser output power, 73◦ incidence, unpolarised detection (a) full

CH stretching region (b) closeup of symmetric and anti-symmetric stretches.
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A.2 POPE

A.2.1 20 mM tris pH 7.4
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Figure A.5: Temperature dependent S-polarised TIR-Raman spectra of a POPE SLB on SiO2 in 20 mM

tris pH 7.4. 800 mW laser output power, 73◦ incidence, unpolarised detection (a) full CH stretching region

(b) closeup of symmetric and anti-symmetric stretches.
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Figure A.6: Temperature dependent P-polarised TIR-Raman spectra of a POPE SLB on SiO2 in 20 mM

tris pH 7.4. 800 mW laser output power, 73◦ incidence, unpolarised detection (a) full CH stretching region

(b) closeup of symmetric and anti-symmetric stretches.
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A.2.2 20 mM tris pH 7.4 + 100 mM NaCl
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Figure A.7: Temperature dependent S-polarised TIR-Raman spectra of a POPE SLB on SiO2 in 20 mM

tris pH 7.4 + 100 mM NaCl. 800 mW laser output power, 73◦ incidence, unpolarised detection (a) full

CH stretching region (b) closeup of symmetric and anti-symmetric stretches.
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(b)

Figure A.8: Temperature dependent P-polarised TIR-Raman spectra of a POPE SLB on SiO2 in 20 mM

tris pH 7.4 + 100 mM NaCl. 800 mW laser output power, 73◦ incidence, unpolarised detection (a) full

CH stretching region (b) closeup of symmetric and anti-symmetric stretches.
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A.3 Egg-SM

A.3.1 20 mM tris pH 7.4
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Figure A.9: Temperature dependent S-polarised TIR-Raman spectra of an egg-SM SLB on SiO2 in 20

mM tris pH 7.4. 800 mW laser output power, 73◦ incidence, unpolarised detection (a) full CH stretching

region (b) closeup of symmetric and anti-symmetric stretches.
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(b)

Figure A.10: Temperature dependent P-polarised TIR-Raman spectra of a POPE SLB on SiO2 in 20

mM tris pH 7.4. 800 mW laser output power, 73◦ incidence, unpolarised detection (a) full CH stretching

region (b) closeup of symmetric and anti-symmetric stretches.
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A.3.2 20 mM tris pH 7.4 + 100 mM NaCl
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Figure A.11: Temperature dependent S-polarised TIR-Raman spectra of a POPE SLB on SiO2 in 20 mM

tris pH 7.4 + 100 mM NaCl. 800 mW laser output power, 73◦ incidence, unpolarised detection (a) full

CH stretching region (b) closeup of symmetric and anti-symmetric stretches.
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Figure A.12: Temperature dependent P-polarised TIR-Raman spectra of a POPE SLB on SiO2 in 20 mM

tris pH 7.4 + 100 mM NaCl. 800 mW laser output power, 73◦ incidence, unpolarised detection (a) full

CH stretching region (b) closeup of symmetric and anti-symmetric stretches.
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Appendix B

Matlab Code

B.1 SLB formation - vesicle fusion

B.1.1 Target factor analysis

The TFA programs used throughout my studies were modifications of programs originally

developed by Malinowski.42 These modifications were carried out by Woods to enhance speed.150

B.1.2 Background subtraction

%Function bcksub removes a weighted background from an array of n spectra

%Due to the slow degradation of sample alignment signal levels are lost

%Background subtraction has to take this into account.

function [dsub] = bcksub(data)

d=data(2:end,2:end).';

bck=d(:,1);

f=bck(1,1)./d(1,:);

fy=f./f;

bcks=bck*fy;

dg=diag(f);

ds=d*dg;

dsub=ds−bcks;
end

B.1.3 Order parameter extraction

%MULTIPOLY : A Program to analyse time series TIR−Raman data; it returns

%the primary order parameter, the ratio of the antisymmetric CH stretch to the

%symmetric stretch and the positions of both these peaks. Also integrates each

%spectrum, provided they are of the CH region only; this contains the raw and

%averaged data if used. Averaging can be avoided by entering 1 at the relevant

%prompt.
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%First prompt asks for the number of spectra to average over (useful for

%noisy short time step data).

%Second prompt is a graph and crosshair to select the spectral ranges to

%fit the two peaks with polynomials, click from right to left, higher index

%to lower (smaller wave number to higher) otherwise program won't function

%correctly.

%Was built in... and with the following toolpacks.

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%MATLAB Version: 7.14.0.739 (R2012a) MATLAB License Number: STUDENT

%Operating System: Mac OS X Version: 10.8.1 Build: 12B19 Java Version:

%Java 1.6.0 35−b10−428−11M3811 with Apple Inc. Java HotSpot(TM) 64−Bit
%Server VM mixed mode

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%(R2012a) MATLAB Version 7.14

%(R2012a) Simulink Version 7.9

%(R2012a) Control System Toolbox Version 9.3

%(R2012a) Curve Fitting Toolbox Version 3.2.1

%(R2012a) DSP System Toolbox Version 8.2

%(R2012a) Image Processing Toolbox Version 8.0

%(R2012a) Optimization Toolbox Version 6.2

%(R2012a) Signal Processing Toolbox Version 6.17

%(R2012a) Simulink Control Design Version 3.5

%(R2012a) Statistics Toolbox Version 8.0

%(R2012a) Symbolic Math Toolbox Version 5.8

function [idmidp,posa,posb,intb,trav,trar]=multipoly(data,dsub)

sizedsubinit=size(dsub,2);

inta=trapz(dsub);

figure(2)

plot(inta);

[xdt,ydt]=ginput(1);

xdtr=round(xdt);

dsub=dsub(:,xdtr:end);

dsub=sgolayfilt(dsub,3,11);

xdtro=xdtr−1;
%xdtrt=xdtr+1;

display(xdtro)

diff=sizedsubinit−xdtro;
display(diff)

%figure(3)

%plot(inta)

%[x3]=ginput(1);

%x3r=round(x3);

%dsub=dsub(:,x3r:end);

spcremar=inputdlg('Number of spectra to remove');

spcrem=str2double(spcremar);

szdsub=size(dsub,2);

display(szdsub)

dsubred=szdsub−spcrem;
display(dsubred)

dsubredpo=(dsubred+1+xdtro);
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display(dsubredpo)

dsub=dsub(:,1:dsubred);

szdsub2=size(dsub,2);

display(szdsub2)

avnar=inputdlg('Number of spectra to average?');

avn=str2double(avnar);

dsubar=mat2cell(dsub,size(dsub,1),avn*ones(1,(size(dsub,2)./avn)));

om=2*ones(1,(size(dsub,2)./avn));

omar=mat2cell(om,size(om,1),ones(1,size(om,2)));

dsubavar=cellfun(@mean,dsubar,omar,'UniformOutput',false);

d=cell2mat(dsubavar);

figure(3)

plot(d);

xdtrpo=xdtr+1;

display(xdtrpo);

tr=data(xdtrpo:dsubredpo,1).';

sztr=size(tr,2);

display(sztr)

trar=mat2cell(tr,size(tr,1),avn*ones(1,size(tr,2)./avn));

trarav=cellfun(@mean,trar,omar,'UniformOutput',false);

trav=cell2mat(trarav);

intb=trapz(d);

figure(4);

hold on

scatter(trav,intb,35,'filled');

%dsubar=mat2cell(dsub,size(dsub,1),5*ones(1,(size(dsub,2)./5)));

%dsubavar=cellfun(@mean,dsubavar);

%dsubav=cell2mat(dsubavar);

%multipoly is a MATLAB function designed to facilitate the analysis

%of CH stretching region vibrational spectra. It calcualtes the various

%order parameters over large datasets.

WN=data(1,2:end).';

o=ones(1,size(d,2));

WNex=WN*o;

%Prepares a suitably sized array of integers representing the polynomial

%order for polyfit.

ord=4*ones(1,size(d,2));

orda=mat2cell(ord,size(ord,1),ones(1,size(ord,2)));

%generates a figure showing a sample spectrum from the series, change the

%column index in the line plot... to change the sample spectrum to the

%"right" one for a given data set.

figure(5)

plot(d(:,50));

[x1]=ginput(2);
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x1r=round(x1);

%assigns index references to variables.

f=x1r(2,1);

g=x1r(1,1);

n=f:g;

%generates the data cellarray for fitting of peak 1, i.e. a cell array,

%each cell containing a column representing a section of a spectrum in the

%data series.

da=d(n,:);

DA1=mat2cell(da,size(da,1),ones(1,size(da,2)));

WNA1=WNex(n,:);

%some more index reference variable assinments.

a=WNA1(end,1);

b=WNA1(1,1);

%generation of interpolated wavenumber data for the function polyval, and

%conversion into a cell array, for use with cellfun.

WNINTA1=(a:0.001:b).';

WNINTA1ex=WNINTA1*o;

WNINTA1exa=mat2cell(WNINTA1ex,size(WNINTA1ex,1),ones(1,size(WNINTA1ex,2)));

%generates the cell array of actual wavenumbers for polyfit.

WNA1a=mat2cell(WNA1,size(WNA1,1),ones(1,size(WNA1,2)));

%polynomial fitting of peak 1 for each spectrum in series.

[A1,S1,mu1]=cellfun(@polyfit,WNA1a,DA1,orda,'UniformOutput',false);

%generation of interpolated value pairs for each polynomial fit, plus the

%associated delta error values.

[A1Va]=cellfun(@polyval,A1,WNINTA1exa,S1,mu1,'UniformOutput',false);

%conversion of polynomial value data from cell array to matrix.

A1Vm=cell2mat(A1Va);

%plot of fit data for peak 1.

figure(6)

plot(WNINTA1,A1Vm)

%finding the peak position and intensities from fits.

[pksdp,locs1]=cellfun(@findpeaks,A1Va,'UniformOutput',false);

pksdpm=cellfun(@mean,pksdp);

locs1m=cellfun(@nanmean,locs1);

locs1m(isnan(locs1m))=1;

locs1mr=round(locs1m);

%display(locs1mr)

%locs1mr=abs(locs1mr);

posa=WNINTA1(locs1mr,1);
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%idp=cell2mat(pksdpm);

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% following section is a repeat of section 1 for peak 2.

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

figure(5)

plot(d(:,50));

[x2]=ginput(2);

x2r=round(x2);

u=x2r(2,1);

k=x2r(1,1);

m=u:k;

db=d(m,:);

DA2=mat2cell(db,size(db,1),ones(1,size(db,2)));

WNA2=WNex(m,:);

c=WNA2(end,1);

u=WNA2(1,1);

WNINTA2=(c:0.001:u).';

WNINTA2ex=WNINTA2*o;

WNINTA2exa=mat2cell(WNINTA2ex,size(WNINTA2ex,1),ones(1,size(WNINTA2ex,2)));

WNA2a=mat2cell(WNA2,size(WNA2,1),ones(1,size(WNA2,2)));

[A2,S2,mu2]=cellfun(@polyfit,WNA2a,DA2,orda,'UniformOutput',false);

[A2Va]=cellfun(@polyval,A2,WNINTA2exa,S2,mu2,'UniformOutput',false);

A2Vm=cell2mat(A2Va);

figure(7)

plot(WNINTA2,A2Vm);

[pksdm,locs2]=cellfun(@findpeaks,A2Va,'UniformOutput',false);

pksdmm=cellfun(@mean,pksdm);

locs2m=cellfun(@nanmean,locs2);

locs2m(isnan(locs2m))=1;

locs2mr=round(locs2m);

%locs2mr=abs(locs2mr);

posb=WNINTA2(locs2mr,1);

%idm=cell2mat(pksdmm);

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

%calculation of I(dm)/I(dp) for the two peaks of interest!

idmidp=pksdmm./pksdpm;

%idmidpsm=smooth(idmidp,5,'moving');

%locs1msm=smooth(locs1m,5,'moving');

%locs2msm=smooth(locs2m,5,'moving');
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%scatter plot of I(dm)/I(dp) data.

figure(8)

scatter(trav,idmidp);

figure(9)

scatter(trav,posa);

hold on

scatter(trav,posb);

end

B.2 Phase transitions

B.2.1 Background subtraction

%A simple function to subtract backgrounds from TIR−Raman spectra arranged

%as column vectors. Requires no input of wavenumber data, assumes the

%wavenumber range is identical for all spectra; such as that

%obtained from a single experiment after calibration. Uses the first data

%point in each spectrum and relavant background to determine the subtraction factor.

function [dsub1,dsub2]=bcksubpt(data1,bcks1,data2,bcks2)

f1=bcks1(1,:)./data1(1,:);

f1=diag(f1);

d1=data1*f1;

dsub1=d1−bcks1;

f2=bcks2(1,:)./data2(1,:);

f2=diag(f2);

d2=data2*f2;

dsub2=d2−bcks2;

figure(11)

plot(dsub1)

figure(12)

plot(dsub2);

end

B.2.2 Order parameter extraction

%A program to take subtracted spectra (SPOL and PPOL) of a

%phase transition and acquire order parameter data for this.

function [idmidp,posa,posb,ct]=ptorder(dsubS,dsubP,WN)

intspol=trapz(dsubS);

intppol=trapz(dsubP);

ct=intppol./intspol

figure(1)

plot(ct);
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ord=4*ones(1,size(dsubS,2));

orda=mat2cell(ord,size(ord,1),ones(1,size(ord,2)));

figure(2)

plot(dsubS(:,1));

[x1]=ginput(2);

x1r=round(x1);

f=x1r(2,1);

g=x1r(1,1);

n=f:g;

o=ones(1,size(dsubS,2));

WN=WN*o;

dred1=dsubS(n,:);

DRED1A=mat2cell(dred1,size(dred1,1),ones(1,size(dred1,2)));

WNA1=WN(n,:);

a=WNA1(end,1);

b=WNA1(1,1);

WNINTA1=(a:0.001:b).';

WNINTAex=WNINTA1*o;

WNINTA1exa=mat2cell(WNINTAex,size(WNINTAex,1),ones(1,size(WNINTAex,2)));

WNA1a=mat2cell(WNA1,size(WNA1,1),ones(1,size(WNA1,2)));

[A1,S1,mu1]=cellfun(@polyfit,WNA1a,DRED1A,orda,'UniformOutput',false);

[A1Va]=cellfun(@polyval,A1,WNINTA1exa,S1,mu1,'UniformOutput',false);

A1Vm=cell2mat(A1Va);

figure(3)

plot(WNINTA1,A1Vm)

[pksdp,locs1]=cellfun(@findpeaks,A1Va,'UniformOutput',false);

pksdpm=cellfun(@mean,pksdp);

locs1m=cellfun(@nanmean,locs1);

locs1m(isnan(locs1m))=1;

locs1mr=round(locs1m);

posa=WNINTA1(locs1mr,1);

%second half for second peak

figure(4)

plot(dsubS(:,1));

[x2]=ginput(2);

x2r=round(x2);

x2r=round(x2);

u=x2r(2,1);

k=x2r(1,1);
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m=u:k;

dred2=dsubS(m,:);

DRED2A=mat2cell(dred2,size(dred2,1),ones(1,size(dred2,2)));

WNA2=WN(m,:);

c=WNA2(end,1);

d=WNA2(1,1);

WNINTA2=(c:0.001:d).';

WNINTA2ex=WNINTA2*o;

WNINTA2exa=mat2cell(WNINTA2ex,size(WNINTA2ex,1),ones(1,size(WNINTA2ex,2)));

WNA2a=mat2cell(WNA2,size(WNA2,1),ones(1,size(WNA2,2)));

[A2,S2,mu2]=cellfun(@polyfit,WNA2a,DRED2A,orda,'UniformOutput',false);

[A2Va]=cellfun(@polyval,A2,WNINTA2exa,S2,mu2,'UniformOutput',false);

A2Vm=cell2mat(A2Va);

figure(5)

plot(WNINTA2,A2Vm);

[pksdm,locs2]=cellfun(@findpeaks,A2Va,'UniformOutput',false);

pksdmm=cellfun(@mean,pksdm);

locs2m=cellfun(@nanmean,locs2);

locs2m(isnan(locs2m))=1;

locs2mr=round(locs2m);

posb=WNINTA2(locs2mr,1);

idmidp=pksdmm./pksdpm;

end
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[62] Reimhult, E.; Höök, F.; Kasemo, B. Langmuir 2002, 19, 1681–1691.

[63] Johnson, J. M.; Ha, T.; Chu, S.; Boxer, S. G. Biophysical Journal 2002, 83, 3371–3379.

[64] Richter, R.; Mukhopadhyay, A.; Brisson, A. Biophysical Journal 2003, 85, 3035–3047.
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