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Abstract 
This project involves the development of several novel heterofunctional initiators 

with a calix[4]arene centre that can facilitate a “core” first method for the synthesis 

of miktoarm star polymers.  

Chapter 1 introduces main concepts on calixarenes, single electron transfer living 

radical polymerisation and the ring opening polymerisation of ε-caprolactone. 

Chapter 2 describes the synthetic strategy employed for the synthesis of a novel 

A2B2 heterofunctional initiator that incorporated an alkyl halogen moiety and a 

primary hydroxyl. p-tert-butylcalix[4]arene was modified via a six step process to 

introduce the required functionality and was fully characterised at each stage using 

1D and 2D NMR spectroscopy, ASAP MS and IR spectroscopy. 

Chapter 3 describes how the A2B2 heterofunctional initiator was used to synthesise a 

novel 2-armed PCL polymer centred on a calixarene core. This was further used for 

copper(0) mediated polymerisation of 2-hydroxyethylacrylate due to the alkyl halide 

moieties remaining in the calixarene core, leading to the formation of several 

amphiphilic A2B2 miktoarm star polymers. Both polymers were fully characterised 

using 1D and 2D NMR spectroscopy, SEC, DSC, TGA and IR spectroscopy. 

Chapter 4 describes the synthetic strategy employed for the synthesis of a novel 

A4B4 heterofunctional initiator that incorporated an alkyl halogen moiety and a 

primary hydroxyl. p-tert-butylcalix[4]arene was modified via a seven step process to 

introduce the required functionality and was fully characterised at each stage using 

1D and 2D NMR spectroscopy, ASAP MS and IR spectroscopy. 

Chapter 5 describes how the A4B4 heterofunctional initiator was used to synthesise a 

novel 4-armed star PCL polymer centred on a calixarene core. This was further used 

for copper(0) mediated polymerisation of 2-hydroxyethylacrylate due to the alkyl 

halide moieties remaining in the calixarene core, leading to the formation of several 

amphiphilic A4B4 miktoarm star polymers. Both polymers were fully characterised 

using 1D and 2D NMR spectroscopy, SEC, DSC, TGA and IR spectroscopy. 

Chapter 6 described the self-assembly of A2B2 and A4B4 amphiphilic miktoarm star 

polymers calixarene-A2B2starPCL100PHEAm, 8-10, where m = 75, 100 and 270, 
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respectively and calixarene-A4B4starPCL20PHEAm, 18, 19 and 20 where m = 10, 

25 and 48, respectively). The TEM analysis on polymer systems 8 - 10 and 18 - 20, 

revealed spherical micelles, with the size of the micelle decreasing as the proportion 

of hydrophilic PHEA increased. The CMC determinations for polymers 8 – 10 

revealed that the length of the hydrophilic chain does not appear to have a significant 

effect on the CMC. For polymers 18 – 20, the CMC increases as the length of the 

hydrophilic polymer chain increases. For both polymeric systems 8 - 10 and 18 - 20, 

low CMC values were calculated. This work showed the system has a potential in 

medical applications, with their ability to form micelles in the range of 5 to 110 nm 

and have the ability to encapsulate highly hydrophobic material, such as the 

fluorescent probe pyrene.  

In chapter 7 general conclusions and future perspectives for the work are discussed. 
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1.1.    Calixarenes 
Calixarenes are phenolic containing macrocycles that typically have high melting 

points and low solubility in common organic solvents. Calixarenes are derived from 

the condensation of aldehydes and phenols under various conditions. In Greek the 

word calix means vase; calixarene was derived from this word due to its resemblance 

to the Greek calix crater. Arene refers to the presence of aromatic groups.1 

 

In 1872, Adolf von Baeyer reacted phenol and formaldehyde in the presence of an 

acid catalyst that resulted in a resinous material, which was the beginning of phenol-

formaldehyde chemistry.2 He was unable to elucidate the structures within the crude 

product due to its cement like properties and therefore abandoned this research to 

pursue work on synthetic dyes for which he won the 1905 Noble prize. 

 

In 1944, Zinke et al. took the challenge of deciphering the structure of the Baeyers’s 

resinous material. Due to phenols ability to react through the ortho or para position, 

the para position was blocked off to reduce the complexity of the reacting system. 

This allowed for less crosslinking and a compound that was easier to work with. 

Through this, the cyclic tetramer structure of calix[4]arene was proposed.3 It was 

determined that there was no ether linkages present and found a molecular weight 

corresponding to a cyclic tetramer and concluded that para functionalised phenol 

condensation reactions only lead to a cyclic tetrameric structure.4 However, they had 

ignored a high molecular weight compound as it was thought to be a complication 

resulting from a coupling of tetramers. In 1955, Conforth et al. repeated the 

synthesis and found that there were two compounds present with different melting 

points. It was concluded that the two compounds present were diastereoisomers that 

arose from hindered rotation resulting in different conformers.5 In 1978, Gutche et 

al. were studying compounds that could potentially mimic enzymes. The work 

reported by Zinke et al. was studied and it was proved through more advanced 

analytical techniques that the material produced was actually a mixture of cyclic 

tetramer and octamers and they further coined the term calixarene.6,7 
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1.2. Synthesis of Calixarenes 
There have been two fundamentally different syntheses for the production of 

calixarenes, with one being a lengthy multistep procedure, developed by Hayes and 

Hunter and the second being a one pot base catalysed condensation of tert-butyl 

phenol with formaldehyde.8,3,5,9 The Hayes and Hunter synthesis consisted of 10-

steps. The first step was protection of one of the ortho positions of para-cresol. The 

newly protected para-cresol was reacted with formaldehyde in the presence of 

sodium hydroxide leading to a hydroxymethylation product. The hydroxymethylated 

product was then further reacted with para-cresol in the presence of acid leading to 

the formation of a methylene bridge. These steps were further repeated to obtain a 

linear tetra aromatic product. The bromine was removed via catalytic hydrogenation. 

The product was treated under high dilution conditions to affect cyclization. The 

multiple steps represent a tedious synthesis for the formation of p-

methylcalix[4]arene (Scheme 1.1).8 

 

Scheme 1.1. Hayes and Hunter non-convergent stepwise synthesis 

The capricious event of preparing calixarenes using phenol-formaldehyde chemistry 

remained for many years, with puzzling variability in yields, even when carried out 

under identical conditions. A breakthrough in calixarene chemistry was brought 
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about when Gutsche et al. carried out a careful investigation into a one pot synthesis 

first developed by  Zinke and Cornforth.3,5,9 The one pot synthesis consisted of the 

careful addition of sodium hydroxide, with the amount being dependent upon the 

size of calixarene desired, to a mixture of formaldehyde and p-tert-butylphenol and 

led to a robust procedure that consistently gave yields of ~50%.9 The amount of 

sodium hydroxide relative to the phenol analogue had a profound effect on the 

cyclooligomerisation process, with the addition of 0.045 equiv. leading to the 

production of only the calix[4]arene, whilst the addition of 0.300 equiv. led to the 

sole production of calix[6]arene. The pathway of the base induced reaction has been 

subject to many years of investigation. The first step is the deprotonation of the 

phenol analogue leading to the formation of the phenoxide ion, which 

nucleophilically attacks the highly reactive formaldehyde carbonyl. The reaction can 

be terminated and characterised at this stage with the formation of hydroxymethyl 

phenols.10 If the reaction is allowed to continue, the deprotonation followed by 

nucleophilic attack continues until a linear oligomer is obtained (Scheme 1.2.). 
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Scheme 1.2. Mechanistic pathway to linear oligomer. 

To this day the manner in which the linear oligomers are converted into the cyclic 

analogue remains a mystery. 
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1.3. Conformations of calixarenes 
Cornforth was first to recognise that calix[4]arenes were capable of assuming 

various conformations, where the aromatic groups are projecting downward or 

upward relative to a defined plane around the methylene bridges.5 Gutsche later 

named the four distinct conformations as “cone”, “partial cone”, “1,3-alternate” and 

“1,2-alternare” (Fig. 1.1).11 

 

Figure 1.1. Four distinct conformations of a calix[4]arene molecule 

For the series of calix[n]arenes, as n becomes larger the number of conformations in 

turn increases. Calix[6]arene exhibits eight conformations, whilst calix[8]arene 

exhibits 16 different conformations and so on. Additionally, as the macrocycles 

increase in size there can be a departure from the distinct “up” or “down” 

conformation, with the aryl groups laying in a planar fashion relative to the 

surrounding aryls. 

 

In the solid state, calix[4]arenes containing four endo-hydroxyl units exist in the 

cone conformation. In 1979, Andreetti et al. reported the first X-Ray structure to 

show the cone conformation and since then many other examples have been 

reported.12,13,14,15 When one or more of the endo-hydroxyl units is converted to a 

alkoxy moiety the conformation of calix[4]arene commonly remains in the cone 

conformation, as observed by the crystal structures of the mono-methyl, distal di-

methyl , tri-ethyl and tetra-methyl ether analogues of p-tert-butylcalix[4]arene.16,17  

There are fewer reports of X-Ray structures of calix[4]arenes in the partial cone 

conformation. The majority of molecules that exhibit the conformation are tetra-

alkyl ethers such as tetraethyl and tetrapyridymethyl ethers of p-tert-

butylcalix[4]arene anologues.18,19 The 1,3-alternate conformation is the second most 

encountered conformation. Among the first reported was an aluminium complex of 

p-tert-butylcalix[4]arene and 5-allyl-25-methoxy-26,27,28-
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tribenzylcalix[4]arene.20,21 The first reported example of 1,2-alternate conformation 

was a complex of AlMe3 with a tetra-methyl ether analogue of p-tert-

butylcalix[4]arene, but it is noted that the 1,2-alternative conformation is the least 

encountered.20 

 

In solution at ambient temperature all n hydroxy-calix[n]arenes (Fig. 1.1) are 

conformationally mobile, with the degree of mobility dependent upon the individual 

calixarene macrocycle. Calix[4]arenes exhibit all four conformations as shown 

above (Fig. 1.1) via the aryl groups rotating around the axis of the carbon atom 

bound to the methylene carbon. The barrier to this rotation is highly dependent upon 

the macrocyclic system. NMR spectroscopy is the most valued tool in determining 

the conformations of calixarene compounds. It was shown by Gutsche et al. that for 

p-tert-butylcalix[4]arene the cone is the most stable conformation, but as the 

temperature of the system is raised, inter-conversion occurs on the NMR timescale. 

This is observed in the 1H NMR spectrum via a change in splitting pattern of the 

methylene protons. At lower temperatures a set of doublets is observed due to the 

non-equivalence of the protons, with one pointing down to the oxy environment and 

one pointing up to the aromatic region, as the temperature is raised the doublets 

coalesce to form a singlet.22 Jaime et al. reported a single rule that could be used to 

determine the conformation of calix[4]arenes utilising 13C NMR spectroscopy. The 

chemical shift of the carbon of the bridging methylene group explicitly gave 

information as to the conformation. An inspection of 24 different calix[4]arene 

compounds revealed that when the phenolic rings next to each methylene carbon is 

in the syn position (cone) the signal would appear at 31 ppm, whereas when an anti-

position was present (1,3-alternative) a signal was observed at 37 ppm (Fig. 1.2). 

The discrepancy in chemical shift is thought to be brought about by steric 

interactions.23  

 

Figure 1. 2. Syn- (a) and anti- (b) conformation of aromatics with respect to each other 
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The preference for p-tert-butylcalix[4]arene to exist in the cone formation is a 

consequence of the strong hydrogen bonding between the hydroxyl moiety. This 

strong hydrogen bonding is observed in the 1H NMR spectroscopy by a sharp singlet 

at ~10.5 ppm and additionally in the infrared spectrum via an unusually low 

stretching frequency at ~3150 cm-1.22 

 

1.4. pKa Values for Calix[4]arenes 
The acidity of Calix[4]arenes are considerably higher than that of their monomeric 

analogues, which has been calculated to be 10.9. The most conclusive analysis was 

reported by Shinkai et. al., who used a tetra ipso nitrated calix[4]arene (Scheme 1.5) 

for the investigation due to the nitro moiety allowing the macrocycle to be water 

soluble.24 A potentiometric titration was carried out on the functionalised 

calix[4]arene. It was measured that calix[4]arenes have a super acidic proton, with 

pKa1, pKa2, pKa3 and pKa4 to be <1, ~10, ~12 and >14, respectively. The high 

acidity of pKa1 is a consequence of strong hydrogen bonding between the phenolic 

moieties of the macrocycle as observed in the IR spectra and 1H NMR spectra, an 

illustration of the hydrogen bonding is shown in Figure 1.3.  

 

Figure 1.3. Schematic of the intramolecular hydrogen bonding within a calix[4]arene in a cone conformation. 

pKa determination of mono- di, and tri-methylated calix[4]arenes was later carried 

out by Apaki et. al. whom calculated the values to be ~4, 12 and 12 respectively.25 

These results revealed that the mono-alkylation has a small effect on the pKa1, thus 

indicates a minimal disruption to the hydrogen bonding of the system relative to the 

tetra hydroxyl parent compound (Fig. 1.4). 



 

8 

 

Figure 1.4. Hydrogen bonding in a mono-alkylated calix[4]arene. 

 The di- and tri-methylated compounds exhibit pKa’s comparable to their monomeric 

counterpart indicating weak hydrogen bonding within the macrocycle. The findings 

were further quantified by IR and 1H NMR spectroscopy, where the acidic proton of 

monoalkylated calix[4]arene (Fig. 1.4) exhibits a vibration at 3150 cm-1 and an NMR 

signal at 9.54 ppm, whereas the di- and tri-alkylated calix[4]arenes exhibited IR 

vibration at 3450 and 3470 cm-1 and NMR OH signals at 7.19 ppm and 6.20 ppm 

respectively.25  

 

1.5. Reactions of Calix[4]arenes 
There are various routes to the functionalisation of calix[4]arenes. Modifications can 

be made to the lower and upper rims, and as discussed previously, the distinct pKa’s 

can allow for selective functionalisation (Fig. 1.5). 

 

Figure 1.5. Potential functional areas of calix[4]arenes. 

The earliest prepared derivatives of calix[4]arenes were esters. Most notably a study 

by Shu et al. into the esterification of calix[4]arene with benzoyl chloride showed 

that the Lewis acid used controlled the selective nature of the reaction and the 

residing conformation.26 When calix[4]arene was in the presence of excess benzoyl 
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chloride in THF, using NaH as the base, a 1,3-alternate diametric diester was 

produced, whereas, when the solvent is changed to toluene a partial cone diametric 

diester was produced. When the reaction was run in pyridine a tribenzoate calixarene 

was produced, and when the reaction was run in chloroform in the presence of 

aluminium chloride a tetrabenzoate was formed in two different conformations: 1,3-

alternate and partial cone.26 

 

Alkylation reactions of the lower rim have been the most widely studied class of 

functionalisation of calixarenes. Strategies for the preparation of mono-, di- (various 

regiochemistries, 1-2 or 1-3), tri- or tetra-ethers have been developed. The synthesis 

of monoethers has been reported to be quite a challenge. Inhibiting polyalkylation is 

a major challenge due to the similar pKa’s of the parent calixarene and the 

monoalkylated analogue.27 Calix[4]arenes can be alkylated selectively in a distal or 

proximal fashion depending on the alkylating conditions used (Scheme 1.3).  

 

Scheme 1.3. Distal (a) and proximal (b) alkylation of calix[4]arene. 

To induce a distil dialkylation a weak base, such as one equiv. of K2CO3, can be 

used in the presence of excess alkyl halide. Such reactions can often be achieved in 

very good yields.28,29 Proximal di-alkylation can be achieved  by treating 

calix[4]arene with a stoichiometric amount of strong base (e.g. NaH) and alkylating 

agent.30 Two hypotheses have been used to rationalise the proximal selectivity. The 

first is a statistical argument, where there is a 2:1 chance of the proximal anions 

opposed to the distal anion. Secondly, the proximal anions are less stabilised due to 

the reduced hydrogen bonding, therefore have a more nucleophilic characteristic.31 

 

Various strategies to functionalise the upper rim of calixarenes have been developed. 

Often it is paramount to remove any functionality in the para position i.e. tert-butyl 

moiety of p-tert-butylcalix[4]arene. A de-tert-butylation can be readily achieved via 
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treating calix[4]arene with aluminium chloride in toluene.32 The reaction results 

from the aluminium complex coordinating to the hydroxyl moieties with the 

simultaneous formation of HCl. The Lewis acidic aluminium chloride will draw 

electron density away from the tert-butyl moiety facilitating the loss of the tertiary 

carbocation, which will react with the HCl, forming an alkyl chloride and the anionic 

aromatic ring will pick up the proton. The newly formed alkyl chloride reacts with a 

toluene solvent molecule via a reverse Friedel-Craft reaction. The proposed 

mechanism is shown, scheme 1.4.33 

 

Scheme 1.4. Proposed mechanism for the de-tert-butylation of p-tert-butylcalix[4]arene. 

With the para positon free several para functionalisation’s can be explored, such as 

electrophilic substitution, para-Claisen rearrangement and the para-quinonethide 

route (Scheme 1.5).1  
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Scheme 1.5. Various routes to the para functionalisation of calixarenes. 

An important form of electrophilic substitution is that of the bromination of the 

calixarene upper rim. First the lower rim must be alkylated, then the tetra-ethyl 

calixarene can be treated with N-bromosuccinimide leading to a para tetra 

brominated calixarene (Scheme. 1.5).34,35 

 

1.6. Application of Calixarenes 
Due to calixarenes unique three dimensional surface, availability and ease of 

functionalisation at both the upper and lower rim, they have become important 

building blocks as receptors, sensing and self-assembly, nanotechnology, ligands and 

drug discovery.36 In polymer chemistry the three main applications are as ligands of 

metal complexes, which are used as catalysts for polymerisations, secondly as 

functionalised monomers, and thirdly as multifunctional cores for the synthesis of 
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star polymers.37,38,39 For the relevance to this thesis the ability of calixarenes to act as 

cores for the synthesis of star polymers will be focused on. 

 

1.7. Calixarene-core Initiators for the Synthesis of Star Polymers 
In 1996, Jacob et al. reported the first well defined star polymer based on a 

calix[8]arene core with polyisobutylene (PIB) arms.40 The living polymerisation of 

isobutylene (IB) was achieved via the octafunctional calix[8]arene in conjunction 

with BCl3/TiCl4. Molecular weights up to 3.1 x 104 g mol-1 and dispersities of 1.12 

were observed. This study showed the potential of using calixarenes as cores for star 

polymers.40 

 

In 1998, Sawamoto et al. reported on the construction of tetra-, hexa-, and octa-

functional initiators with calix[n]arene cores (n = 4, 6 and 8), containing 

dichloroacetate.41 The initiators facilitated the controlled atom transfer radical 

polymerisation (ATRP) of methyl methacrylate (MMA) in combination with a 

ruthenium or aluminium complex (Scheme 1.6).  

 

Scheme 1.6. Synthesis of star MMA centred around a calix[n]arene (n = 4, 6 or 8) core 

It was reported that the attachment of the dichloroacetate moiety to the calix[6 and 

8]arene was smooth, and was achieved under the relatively mild conditions of 

pyridine/DMF at ambient temperature in the presence of dichloroacetyl chloride. For 

calix[4]arene, the direct attachment of the acid chloride was not possible and the 

more aggressive conditions of tert-BuLi in toluene were required. The difficulty in 
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the attachment of the group was attributed to the strong hydrogen bonding between 

phenolic hydroxyl moieties. For the calix[4]arene the 1H NMR data presented does 

not itself prove that the acetyl chloride was attached or if it was attached then to how 

many hydroxyls. Polymers with molecular weights of up to 1.0 x 104 g mol-1 and 

with dispersities of ~1.2 were achieved.41  

 

In 2000, Angot et el. reported on the synthesis of tetra-, hexa-, and octo-functional 

initiators with calix[n]arene cores (n = 4, 6 and 8), with 2-bromopropionyl units 

attached, to facilitate ATRP.42 It was reported that the 2-bromopropionyl bromide 

moieties were directly attached to the hydroxyls of the calix[6 and 8]arene in THF 

with the addition of trimethylamine. It was also reported that p-tert-

butylcalix[4]arene was insoluble in THF, therefore 2-bromopropionyl bromide could 

not directly be attached. The proposed attachment of 2-bromopropionyl bromide to 

the calix[4]arene was carried out in acetone in the presence of potassium carbonate. 

From the NMR data, it was reported that four 2-bromopropionyl moieties were 

attached, but it is likely that this is an incorrect characterisation. Two broad singlet 

resonances were observed in the region of 0.9 ppm to 1.5 ppm, corresponding to the 

tert-butyl moieties and two further multiplets were observed between 6.7 ppm and 

7.2 ppm, corresponding to the aromatic protons. This would suggest that two 2-

bromopropionyl moieties were attached in a diametric fashion, as it appears two sets 

of aromatic and tert-butyl species are present, i.e. phenolic and aryl ester. The 

initiators were used to carry out ATRP of styrene and MMA in bulk using CuBr/Cl 

2,2’bipyridyl catalyst. It was noted that for larger molecular weight polymers, star-

star coupling was observed due to bi-molecular termination.42 

 

In 2003, Taton et al. reported on the polymerisation of ethylene oxide emanating 

from a calix[8]arene core.43 A core-first strategy was employed. The secondary 

phenolic hydroxyls were converted to primary hydroxyls via treating the 

calix[8]arene with chloroethyl vinyl ether in the presence of Cs2CO3. The vinyl 

groups were removed via the presence of acid in an ether/dichloromethane mixture, 

leading to the desired primary hydroxyl. The polymerisation of ethylene oxide was 

carried out in THF at 40 oC in the presence of the initiator diphenylmethyl potassium 
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(DPMK) (Scheme 1.7). Molecular weights of up 1.7 x 105 g mol-1 were achieved 

with dispersities of ~1.2.43 

 

Scheme 1.7. Synthesis of eight arm star poly(ethylene oxide) centred around a calix[8]arene core. 

In 2006, Zhu et al. reported the synthesis of a amphiphilic star shaped polymer 

centred around a calix[6]arene core. The amphiphilic nature came from the co-

polymer grown from the secondary phenolic hydroxyls (Scheme 1.8). 44 

HClaq. 
Ether/dichloromethane 
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Scheme 1.8. Synthesis of six arm amphiphilic PPO-PDTC co-polymer centred around a calix[6]arene core. 

The calixarene was treated with sodium isopropoxide and used as an initiator to ring 

open polymerise propylene oxide (PO).  The hydroxyl chain end of PPO was then 

used to ROP dimethyltrimethylene carbonate (DTC) using a lanthanum catalyst, 

leading to a system with an amphiphilic nature. For the PPO, a molecular weight of 

1.7 x 104 g mol-1 was achieved with a dispersity of 1.12. The addition of PDTC lead 

to a molecular weight of 5.2 x 104 g mol-1 and a dispersity of 1.63.44 

 

In 2007, Lou et al. synthesised a star-shaped optically active poly(N-

phenylmaleimides) (PNPMI) centred around a p-tert-butylcalix[5]arene core.45 The 

material was designed to exhibit separation of small molecules based on chirality. 

The phenolic hydroxyls of the calixarene were first deprotonated using sodium 

hydride in THF. A solution of optically active N-phenylmeleimide derivatised 

compounds in toluene was introduced, leading to the polymerisation of the N-

phenylmeleimide derivatives (Scheme. 1.9). Little control was maintained over the 

polymerisation, with dispersities up to 2.28 and molecular weights of 1.0 x 105 g 

mol-1. Optical activity of up to +27.6 ([ɑ]D
25) was measured. High temperature (100 

oC) was required to facilitate more efficient polymerisations, but this lead to a 

decrease in stereo regularity, and hence the relatively low optical activity.45  
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Scheme 1.9. Synthesis of star-shaped optically active poly(N-phenylmaleimides) (PNPMI) centred around a p-

tert-butylcalix[5]arene core. 

In 2008, Gou et al. reported the ring opening polymerisation (ROP) of ε-

caprolactone using a functionalised p-tert-butylcalix[4 and 6]arene core as the 

initiator in the presence of a yttrium catalyst.46 The lower rims of the calixarenes 

were converted to primary alcohols, via the addition of an alkyl ester moiety through 

a Williamson ether synthesis, the ester group was then reduced to give the desired 

primary alcohol. The introduction of an ethyl ether alcohol moiety substantially 

increased the solubility of the calixarene, and thus lead to a more efficient initiation 

of the ε-caprolactone (Scheme 1.10).46  

 

Scheme 1.10. Synthesis of star-shaped PCL emanating from a calix[4 and  6]arene core. 

Molecular weights determined through 1H NMR closely matched the theoretical 

values. Molecular weights of up to 3.0 x 104 g mol-1 were calculated with dispersities 

in the range of 1.26 – 1.63 (SEC). The chromatograms of the SEC exhibited non-
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uniformed distributions, as would be expected with the dispersity values. The 

distribution was attributed to unequal length of poly(ε-caprolactone) (PCL) arms 

emanating from the core.46 

 

In 2010, Gou et al. reported the first miktoarm star polymer centred around a 

calix[4]arene core.39 As discussed previously in the introduction (Section 1.5), 

calix[4]arenes can be alkylated in a selective manner. They synthesised an A2B2 

heterofunctional initiator, which incorporated two alkyne moieties and two primary 

alcohols in diametric positions (Scheme 1.11). The alkyne moieties were introduced 

to facilitate the attachment of azide functionalised PEG via azide-alkyne “click” 

chemistry. The primary hydroxyls were introduced to facilitate the ROP of ε-

caprolactone. The presence of the hydrophilic poly ethylene glycol (PEG) chains and 

hydrophobic PCL chains lead to an amphiphilic polymeric system. 

 

Scheme 1.11. Synthesis of miktoarm star polymer centred around a calix[4]arene core. 
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Molecular weights of up to 1.3 x 104 g mol-1 were calculated with dispersities of up 

to 1.29. However, the dispersities measured appear to be inaccurate, as the 

uniformed distribution covers an elution time of ~3 mL, which would suggest a wide 

range of chain length. The amphiphilic miktoarm star polymers exhibited self-

assembly behaviour in water, forming micelles or wormlike aggregates depending on 

the length of PEG and PCL.39 

 

1.8. Controlled Radical Polymerisation 
Polymer synthesis, most profoundly for the polymerisation of vinyl monomers, has 

benefited greatly from the introduction and development of controlled radical 

polymerisations (CRP). When comparing CRP to other living techniques, such as 

living anionic polymerisation, similar control of polymeric structure is maintained 

but without the poor functional group tolerance and extremely demanding 

experimental conditions.47 CRP has been readily applied to the synthesis of a wide 

range of vinyl monomers with well-defined structures, molecular weight and 

dispersities, which are unattainable by conventional free radical polymerisations.  

 

A typical radical polymerisation includes three main processes: initiation, 

propagation and termination, with a further unwanted chain transfer step (Scheme 

1.12).48 
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Scheme 1.12. Schematic representing the three main steps of radical polymerisation and the unwanted fourth step 

of chain transfer. 

The first step corresponds to the generation of a reactive radical species that is 

capable of reacting with a monomer vinyl species. The second step corresponds to 

propagation, which is where the growth of the polymer is generated via monomer 

addition to the chain end radical. The third step is termination, which is a result of 

the coupling of two chain end radicals. A further reaction step is always present, 

known as a chain transfer reaction, which is a result of the active chain end radical 

transferring to the polymer chain via a reaction with a carbon hydrogen bond on the 

polymer backbone (Scheme 1.13). In a traditional free radical polymerization,  the 

propagating radicals are very short lived and tend to terminate readily due to the rate 

constants of termination being much greater than that of propogation.48 

 

Scheme 1.13. Schematic depicting the chain transfer process. 

In traditional free radical polymerisations, initiation is often slower than propagation, 

which leads to some chains growing significantly whilst others are just initiating, 

and in turn, with the presence of chain transfer between polymer chains, ill-defined 

polymers with uncontrolled molecular weights and large dispersity’s are produced. 

CRP was developed to minimise chain transfer, minimise bimolecular termination 
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and prolong the life time of the chain end radical. In 1982, Otsu et al. introduced the 

concept of CRP via investigations into iniferters.49,50 Iniferters refers to compounds 

that initiate, transfer and terminate a radical polymerisation.   

 

To introduce control over a radical polymerisation, a very low concentration of 

reactive radical species must be maintained, which will greatly reduce termination. A 

low radical concentration is brought about via establishment of a dynamic 

equilibrium between dormant and active chain ends. Shifting the dynamic 

equilibrium to favour the dormant species will result in a low concentration of 

radical species. A key step in CRP is to allow the chain end to be reversibly 

deactivated, which will facilitate the dormant chain to be reactivated and propagate 

before deactivation back to the dormant state. A fast initiation is required in order to 

simultaneously initiate polymer chains that are rapidly trapped in the 

activation/deactivation process, which facilitates the slow propagation step of each 

chain to proceed at the same rate until the reaction is complete. In a truly living 

process the conclusion of the reaction is achieved upon complete consumption of 

monomer, but termination of polymer chains cannot be completely avoided for a 

radical polymerisation.51  

 

The reversible deactivation equilibrium is achieved via one of two mechanisms. The 

first involves the trapping of the propagating chain in an activation-deactivation 

process, where the equilibrium constant is greatly shifted towards the dormant 

species (scheme 1.14).52  

 

Scheme 1.14. Activation-deactivation process. 

The second mechanism comprises a degenerative transfer process where the 

equilibrium reversibly moves a transfer agent between active centres, resulting in the 
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capping of one chain whilst simultaneously releasing another to propagate (scheme 

1.15).52 

 

Scheme 1.15. Degenerative transfer process. 

To date, the major techniques of CRP are nitroxide-mediated polymerisation 

(NMP),53 reversible addition-fragmentation chain transfer radical polymerisation 

(RAFT),54 atom transfer radical polymerisation (ATRP)55,56 and single-electron 

transfer living radical polymerisation (SET-LRP).57,58 For the aim of this thesis SET-

LRP will be focused on 

 

1.8.1. Single Electron Transfer-Living Radical Polymerisation (SET-

LRP)  
In 2002, Percec et al. utilised a Cu(0) catalyst for the controlled polymerisation of 

vinyl chloride (VCl).59 The controlled polymerisation of VCl had proven 

unsuccessful using traditional ATRP (Cu(I)) catalysts due to insufficient activity 

towards reactivation of dormant chains. During a screening process for suitable 

catalysts for the polymerisation of VCl using a sulfonyl halide initiator, Cu(0) 

demonstrated the required activity to reactivate the dormant (PVCl) chains.60 The 

use of Cu(0) also showed very low levels of bimolecular termination during 

polymerisation even though chain transfer remained. It was postulated that at the 

early stages of polymerisation insufficient amounts of deactivating Cu(II) were 

present.58 A distinct mechanism was proposed that revolved around an outer-sphere 

electron transfer (OSET) process between the activating Cu(0) and an alkyl halide. 

The initiation step proceeds via a radical anion intermediate prior to decomposing to 

an alkyl radical and a halide ion, which associates to a Cu(I) ion formed in situ. On 

formation of the Cu(I), instantaneous disproportionation occurs leading to the 

formation of nascent Cu(0) activator and Cu(II), which deactivates the growing 

polymer chains. The nascent Cu(0) is thought to be very active, thus contributes to 

the fast rate of SET-LRP (Scheme 1.16). 
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Scheme 1.16. Mechanism for SET-LRP. 

During early VCl polymerisations, the mechanism proposed was based around 

competing SET and degenerative transfer processes (SET-DTLRP). It was 

considered that through modification of reaction conditions a purely SET-LRP 

process could be achieved.61 The combination of active monomers, such as acrylates, 

to the SET-LRP system led to extremely fast polymerisation rates, even at ambient 

temperature, whilst still facilitating good control over the polymers molecular weight 

and dispersity with low levels of termination. 

 

For SET-LRP reactions, components are chosen to maximise the OSET and 

disproportion processes. The components that have the greatest effect are solvent 

and ligand. In order to promote disproportionation and favour OSET, via solvation 

and stabilisation of the halide anion, polar solvents are required. To date, DMSO has 

proven the most successful solvent for fast and controlled polymerisation reactions. 

The success is attributed to its ability to stabilise nascent Cu(0) in a colloidal form, 

which increases the rate of polymerisation. Water, alcohols and other polar solvents 

(protic or aprotic) have been shown to be suitable solvents, although, alcohols 

suitability decreases with increased hydrophobicity.62,63 Ionic liquids, DMF, acetone 

and ethylene glycol have additionally been employed in SET-LRP reactions.64 Non-
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polar solvents, such as toluene and acetonitrile, are unsuitable for SET-LRP as they 

do not promote disproportionation or stabilise Cu(0). However, with the addition of 

small amounts of polar additives, such as phenol, non-polar solvents can be 

effective, which further allows access to a wider range of non-polar monomers. The 

relative stabilities of Cu(I) and Cu(II) complexes are determined by the ligand 

selected. For SET-LRP, the most effective ligands are those which stabilise Cu(II), 

thus favour disproportionation. To date, the most effective ligands are those with an 

aliphatic nature such as TREN and Me6TREN, as they inhibit the formation of a 

tetrahedral/distorted tetrahedral, which is the favoured conformation of Cu(I) (Fig. 

1.6). TREN and Me6TREN favour the trigonal bipyramidal Cu(II) complex.65 

 

Figure 1.6. Structure of TREN and Me6TREN. 

The activation of alkyl halides is through a heterogeneous, surface activated process, 

which leads to an observed correlation between reaction rate and Cu(0) surface area. 

In the early reactions copper powder was used, but it was realised that any Cu(0) 

source could be suitable. Due to copper wire’s uniformed surface area relative to 

copper powder, it has been shown to allow better control over the polymerisation.61 

Various copper salts exhibit activity (Cu2Y, where Y = Se, Te, S and O). 

Importantly, Cu2O exhibits activity, at a reduced level relative to copper wire, but 

does allow for some tolerance to oxygen within the SET-LRP process. All radical 

polymerisations have a sensitivity towards oxygen, however, with Cu(0) ability to 

scavenge oxygen to form Cu2O, a polymerisation  is able to continue, albeit with an 

observed lag period.66,67 

 

SET-LRP makes use of several alkyl halides (Fig. 1.7). The OSET mechanism 

implies the alkyl halide bond is broken via a halide anion in a stepwise manner, 

resulting in the bond dissociation energy having a reduced effect over the process.68 
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Figure 1.7. Common initiators used in SET-LRP. 

Haddleton et al. showed SET-LRP exhibited remarkable tolerance to impurities, 

which allows for reaction components without extensive purification. Highly 

controlled polymerisations were carried out in a range of alcoholic drinks.69 More 

importantly, the system has been shown to be tolerant to radical inhibitors, such as 

hydroquinone. It was shown that for the controlled polymerisation of methyl 

methacrylate with and without hydroquinone; both reactions proceeded with a high 

conversion with only a small difference in rates.70 

 

1.8.2. SET-LRP vs SARA-ATRP 
With respect to Cu(0) mediated polymerisations, there are two differing models; 

SET-LRP and supplemental activator and reducing agent (SARA) ATRP. The 

models differ in several key areas: 

- Whether Cu(0) acts as the major activator or Cu(I) is the major activator and 

Cu(0) acts as a supplemental activator and reducing agent. 

- Whether disproportionation or comproportionation (reduction of Cu(II) to 

Cu(I)) dominates. 

- Whether the alkyl halide activation occurs via OSET or inner sphere electron 

transfer (ISET) process. 

The two opposing models are illustrated in Figure 1.8. 
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Figure 1.8. (Top) The mechanism of SET-LRP, (bottom) the mechanism of SARA-ATRP. Bold arrows 

indicate major reactions, solid arrows indicate supplemental or contributing reactions and dashed 

arrows indicate minor reactions that can be neglected from the mechanism.71 

Figure 1.8 shows both the SET-LRP and SARA ATRP mechanism. The broad 

arrows show that the dominant reactions in SET-LRP are Cu(0) activation to Cu(I) 

and Cu(II) deactivation to Cu(I) with the Cu(I) disproportionation to Cu(0) and 

Cu(II). Whereas, for SARA-ATRP the dominant reactions are activation by Cu(I) to 

give Cu(II) and the deactivation of the reaction by Cu(II) to give Cu(I). Additionally, 

there is a more subtle comproportionation reaction between Cu(II) and Cu(0) to give 

more Cu(I). 

 

1.8.1.1. Cu(0) or Cu(I) as the major activator 
For controlled polymerisations fast activation is required to allow for simultaneous 

initiation and growth of all polymer chains.52 Matyjaszewski et al. compared the 

relative activity of Cu(0) and Cu(I) as activators of alkyl halides. It was shown that 

the kact of CuBr/Me6TREN in pure DMSO and in the presence of monomer using 

methyl 2-bromopropioate (MBP) initiator and TEMPO (as a radical trap) was 
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extremely high.72,73,74 Through UV-Vis spectroscopy the activation rates were 

measured as a function of CuBr2 concentration in pure solvent and solvent monomer 

mix with the kact determined to be 3.2 x 104 mol-1 s-1 and 2.0 x 104 mol-1 s-1, 

respectively. Under aqueous conditions, electrochemical techniques were required 

due to the rate of production of CuBr2 being so high.75   

 

The rate of activation by Cu(0) in DMSO, using a range of ligand concentrations (1-

20 mmol), was much lower, with an average kact of 1.8 x 10-4 mol-1 s-1. In the 

presence of methyl acrylate (MA) the rate was even slower with a kact of 1.0 x 10-4 

mol-1 s-1.74 Unlike the reactions for determining the kact of Cu(I), no radical trap was 

employed as the reactions were selected to maximise termination and consume alkyl 

halide radicals. In aqueous conditions the kact for Cu(0) was much lower than that of 

Cu(I). Using Cu(0) in the presence of Me6TREN and an oligo(ethylene oxide) 2-

bromopropionate  (OEOBP) initiator with a oligo(ethylene oxide) acrylate (OEOA) 

and water mix a kact was calculated to be 1.0 x 10-5 mol-1 s-1.75 Harrison et al. further 

measured the activity of Cu(0) in a range of solvents in the presence of a TEMPO 

radical trap using ethyl-2-bromo-2-methylproppionate (EBiB) as an initiator.76 The 

reaction rates measured were high (kact(DMSO) = 6.3 x 106 mol-1 s-1), although, an 

induction period was observed. The induction period was thought to be a result of 

the time required to accumulate nascent Cu(0), but could also suggest that the 

reaction was activated by Cu(I), which was gradually generated in-situ.76 Percec et 

al. proposed that Cu(0) must be very active in order to re-activate dormant PVCl 

chains where Cu(I) catalysts could not, which contradict these observations.58 To 

prove activation was through a surface mediated process two experiments were 

carried out in which the Cu(0) was removed. In the first reaction, the polymerisation 

mixture was decanted between connected Schlenks, with one containing Cu(0) 

powder. The polymerisation proceeded on contact with catalyst, however, the 

reaction was interrupted reversibly when decanted into the catalyst free Schlenk.77 

For the second experiment, copper wire was used as the Cu(0) source. During the 

polymerisation the copper wire was removed; the reaction continued but at a vastly 

reduced rate. The continued reaction was attributed to activation via nascent Cu(0) 

produced in-situ. It was possible to completely stop the reaction if the solution was 

carefully decanted to remove the nascent Cu(0).78 From these two experiments it was 
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concluded that the soluble Cu(I) was not important in the activation of the alkyl 

halide bond. However, Matyjaszewski et al. argued that the interruption was 

expected due to the low concentration of Cu(I) in solution, which is eliminated by 

the persistent radical effect (PRE) without a copper source.71   

 

Percec additionally proposed that the nascent Cu(0) formed through 

disproportionation of Cu(I) is extremely active and contributes to the high rates of 

the SET-LRP reaction. To monitor the activity of nascent Cu(0) a source of alkyl 

halide was added to a mixture of pre-disproportionated CuBr/Me6TREN in DMSO.79 

Full disproportionation was observed through formation of CuBr2 (blue colour) and 

collection of nascent Cu(0) at the bottom of the flask. On addition of the alkyl halide 

source, all nascent Cu(0) disappeared within five minutes. The above procedure was 

further repeated using solvents that do not stabilise colloidal Cu(0) (e.g. methanol); a 

slower disappearance was observed. For systems where Cu(0) forms larger 

agglomerations with a smaller surface, slower rates are expected.80 Haddleton et al. 

carried out a pre-disproportionation polymerisation in order to prove activation via 

Cu(0).81 Immediate disproportionation was observed via the presence of CuBr2 and 

colloidal Cu(0) on the mixing of CuBr/Me6TREN in water. Addition of initiator and 

monomer lead to a polymerisation, with the nascent Cu(0) consumed in the process. 

Due to the fact that complete disproportionation was observed before the reaction, it 

was concluded that activation must be only due to nascent Cu(0). Matyjaszewski 

argued that under conditions of complete disproportionation only 

comproportionation can occur within the reaction mixture, which would generate the 

necessary Cu(I) concentration required to activate the reaction, and therefore the 

SARA ATRP model is correct.71 

 

1.8.1.2. Disproportionation or comproportionation 
In the SARA ATRP model the role of Cu(0) is to supplement Cu(I) activation and 

reduce Cu(II) to Cu(I) in a comproportionation process (Scheme 1.18). 
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Scheme 1.18. Disproportionation/comproportionation equilibrium. 

The equilibrium constant for the disproportionation in water is very large (Kdisp ~ 107 

M-1), but in the popular solvent for SET-LRP, DMSO, disproportionation is slightly 

disfavoured. With the addition of a suitable ligand, such as Me6TREN 

disproportionation becomes favoured.80 Percec et al. demonstrated the 

disproportionation of Cu(I) in a variety of solvents via following the rate of CuBr2 

production, using UV-Vis spectroscopy, after the addition of CuBr/Me6TREN. 

Within an hour disproportionation had reached equilibrium and nascent Cu(0) was 

observed in the reaction vessel within ten min.80 For each of the solvents tested, Kdisp 

favoured disproportionation, even with the addition of various monomers, including 

acrylates and methacrylates.80,82 These results contradict a similar study by 

Matyjaszewski et al.,83 who further studied the comproportionation via measuring 

the reduction in concentration of CuBr2 in MeCN, DMF and DMSO. The study 

revealed that both disproportionation and comproportionation were slow relative to 

the rate of activation by Cu(I). In both model reactions, instantaneous 

disproportionation was not observed, and the equilibrium took ~2500 min to be 

reached. It was stated that, while disproportionation was favoured 

thermodynamically due to the relative stability of Cu(II) over Cu(I), kinetically, 

comproportionation will be favoured due to the low concentration of Cu(I) in the 

reaction mixture.83 Additionally, disproportionation leads to the release of free 

ligand, which should shift the equilibrium even further to the comproportionation 

reaction. Nicolas et al. studied the comproportionation rate constant (kcomp) in a 

range of solvents and concluded that comproportionation was dominant in Cu(0) 

mediated polymerisations.76 It was also noted that using the PMDETA ligand 

opposed to Me6TREN was likely to decrease the effect of comproportionation.76  

 

In addition to the above mentioned model studies, Percec and Haddleton both 

measured the CuBr2 concentration during polymerisation reactions.84,85 A constant 

increase in concentration of CuBr2 was observed, thus concluding that CuBr2 was 

not reduced by Cu(0) when the competing activation reaction was accessible. 
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Alternatively, the steady increase in CuBr2 concentration could be generated through 

the PRE. The CuBr2 concentration was monitored during a polymerisation reaction 

that demonstrated high-chain end retention (analysed as 99.9% via NMR 

spectroscopy and MALDI-MS), proving a linear increase in CuBr2 concentration 

was possible in the absence of termination reactions. It was further observed that the 

addition of CuBr2 at the beginning of the reaction had no effect on the rate at which 

CuBr2 was produced or the final concentration of CuBr2. If the PRE was influencing 

the reaction a difference in the values may be expected.85 

 

The rate of copper mediated polymerisations has been shown to increase when using 

polar solvents, and with the addition of water. In the SET-LRP model, the increased 

rate has been attributed to the promotion of disproportionation, which provides 

active Cu(0) in solution. For the SARA ATRP model, the increased rate was brought 

about by the decreased stability of Cu(II) deactivator, which shifts the KATRP.58 A 

key difference with SET-LRP relative to SARA ATRP is that an increase in 

disproportionation should simultaneously increase the concentration of both 

deactivator and activator, thus maintaining control over the polymerisation. Evidence 

for the SET-LRP model was demonstrated through a reaction that exhibited control 

over a polymerisation reaction despite increasing the rate of propagation through the 

addition of polar additives, such as phenol.61 

 

1.8.1.3. OSET or ISET 
A distinguishing feature between SET-LRP and SARA ATRP is the electron transfer 

(ET) process during initiation or activation. It is believed that SET-LRP occurs via a 

OSET mechanism with no bridging ligand and a weak interaction between the donor 

and acceptor.86 In contrast, SARA ATRP is thought to proceed via an ISET process, 

which involves bridging of the halide followed by the atom transfer of the halide to 

the metal centre in a concerted process (Scheme 1.19).87 For SET-LRP, the proposed 

OSET process has caused much debate centring on the validity of the radical-anion 

formation and OSET and ISET process relative rates. 
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Scheme 1.19. Comparison of OSET (pink) and ISET (green) mechanisms in copper mediated polymerisations. 

Radical anions are well known for aromatic compounds, such as naphthalene, where 

the radical-anion is used to initiate living anionic radical polymerisations.47 Percec et 

al. have suggested that the formation of the radical anion is possible for activated 

alkyl halide initiators due to the presence of electron withdrawing moieties adjacent 

to the halogen. The radical that forms carries a slight positive charge, therefore is 

capable of interacting electrostatically with the released halide anion. This process is 

known as the stepwise model.86 It was further proposed that the OSET mechanism is 

the reason for the propagating PVCl chains re-activation at ambient temperatures 

when using a Cu(0) catalyst, whilst this is not possible even at higher temperatures 

when using the most powerful of Cu(I) ATRP catalysts.88 Through a computational 

study, it was demonstrated that the homolytic bond dissociation energy of an alkyl 

halide was greater than its heterolytic bond dissociation, which is attributed to the 

relative insensitivity of SET-LRP to the alkyl halide bond dissociation.68 Through a 

study of the polymerisation of styrene in DMSO using a CuBr catalyst and a 

NH2Capten ligand it was proposed that the ligand orientation would prevent halide 

bridging and therefore ISET (Fig.1.9).89 If the bridging halide was inhibited then 

activation can only occur through a OSET process. Additionally, the ability of non-

transition metal OSET donors, such as Na2S2O4 to catalyse controlled 

polymerisations is further evidence for the OSET process.90   



 

31 

 

Figure 1.9. Structure of NH2Capten. 

Matyjaszewski et al. compared the reaction kinetics of a Cu(I)/TPMA catalysed 

system and a polymerisation activated via aromatic anions (OSET donor), and it was 

concluded that the rate of OSET is much slower than that of ISET.91,92 They 

additionally proposed that OSET was a side reaction that may occur in the presence 

of a very active CuBr/Me6TREN catalyst system when in a large concentration.52 

Isse et al. claimed that the dissociative ET process proceeded via a concerted process 

not step-wise. Additionally, it was suggested that the radical anion would not form as 

an intermediate species because the introduction of a single electron into an alkyl 

halide bond would only give a weakly associated radical anion complex.93 It was 

proposed that for a reasonable rate of reaction a OSET donor would require a greatly 

negative potential, which is not the case for copper catalysts.  

 

The experiments used to clarify the correct model for SET-LRP or SARA ATRP are 

somewhat convoluted, which relays the complexity of the system. Gao et al. carried 

out a study and suggested that both SET-LRP and SARA ATRP coexisted in 

Cu(0)/Me6TREN catalysed polymerisations.94 

 

1.9. Ring Opening Polymerisation of ε-caprolactone 
Polycaprolactone (PCL) is a type of poly aliphatic ester, which is composed of 

repeating units of hexanoate. The polymer is semi-crystalline and can have a 

crystallinity of up to 69%.95 The mechanical, thermal and physical properties of PCL 

depend on its degree of crystallinity and molecular weight. At ambient temperature, 

PCL is highly soluble in a range of non-polar and polar solvents such as 

dichloromethane, chloroform, toluene and dimethylformamide (DMF). Additionally, 

the polymer itself is miscible with a variety of other polymers, such as poly(vinyl 
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chloride) and nitrocellulose.96 PCL has been reported to degrade within several 

months to years, depending on the crystallinity, molecular weight and the method of 

degradation.97 PCL has been applied to a variety of fields, such as packaging,98 

adhesives,99 microelectronics,100 tissue engineering101 and drug delivery systems.102   

 

For the synthesis of PCL there are two methods: the condensation polymerisation of 

6-hydroxycaproic acid and the ring opening polymerisation (ROP) of ε-caprolactone 

(Scheme 1.20). 

 

Scheme 1.20. Synthesis of PCL via condensation polymerisation of hydroxycaproic acid and ROP of ε-

caprolactone. 

 

1.9.1. Polycondensation  
Braud et al. performed a condensation reaction using 6-hydroxycaproic acid leading 

to the formation of PCL oligomers. The reaction was run at 150 oC and under 

vacuum to remove the water produced, and thus shifted the equilibrium towards the 

formation of polymer, with the reaction running.103 The condensation reaction leads 

to low molecular weight polymers, therefore is rarely used.103 

 

1.9.2. Ring Opening Polymerisation  
ROP is the method of choice when synthesising PCL, as high molecular weights, 

and in a more controlled fashion, can be achieved. There are four mechanisms for 

the ROP of lactones, which all require catalysts for activation: anionic, cationic, 

monomer activated and coordination-insertion ROP. 
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1.9.2.1. Anionic ROP 
In anionic ROP, an anionic species is required (organometallic species, such as butyl 

lithium or aluminium alkoxide) to attack the carbonyl of ε-caprolactone and cleave 

the ester bond. The metal will stabilise the anionic charge on the oxygen and allow 

for further nucleophilic attack on ε-caprolactone and thus propagation of polymer 

chain will occur through the alkoxide species (Scheme. 1.21).104 

 

Scheme. 1.21. Synthesis of PCL via anionic ROP. 

A major drawback of anionic ROP is the significant presence of intramolecular 

transesterification, also known as back biting, in the later stages of the reaction. This 

leads to cyclic polymers or relatively low molecular weight polymers if the reaction 

is quenched before significant  back-biting occurs.104 

 

1.9.2.2. Cationic ROP 
In cationic ROP, a cationic species coordinates to the oxygen of the carbonyl 

species, thus pulling electron density away from the carbonyl carbon making it 

susceptible to attack from the carbonyl oxygen of ε-caprolactone via a bimolecular 

nucleophilic substitution reaction (Scheme. 1.22).104 

 

Scheme. 1.22. Synthesis of PCL via cationic ROP. 
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Dittrich et al. and Kricheldorf et al. demonstrated that trifluoromethanesulfonic acid 

and trifluoromethanesulfonate were some of the few initiators that were capable of 

initiating cationic polymerisations, although poor control was observed.105,106 The 

poor control and lack of initiators makes cationic polymerisation one of the least 

favoured techniques.  

 

1.9.2.3. Monomer Activated ROP 
Monomer activated ROP is similar to that of cationic ROP. A electrophile is 

introduced into the system that activates the monomer molecule (such as a Bronsted 

acid), which makes the carbonyl carbon more susceptible to nucleophilic attack form 

a nucleophile, such as an alcohol (Scheme. 1.23).107 Little control is maintained over 

the polymerisation. 

 

Scheme 1.23. Synthesis of PCL via monomer activated ROP. 

 

1.9.2.4. Coordination-insertion ROP 
Coordination insertion is by far the most common form of ROP. It is a pseudo-

anionic polymerisation, by which the propagation is postulated to proceed via 

monomer coordination to the metallic centre followed by monomer insertion into the 

metal chain end through cleavage of the acyl-oxygen bond (Scheme. 1.24).108 

Insertion of a new lactone monomer propagates the growing chain. 
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Scheme. 1.24. Synthesis of PCL via coordination-insertion mechanism.  

There are many variants on the design of the metal based catalysts, which have an 

effect on the mechanism operating. Many studies have been carried out into the 

identity of the metal and the ligand design, which greatly influence the rate and 

control over the polymerisation.96,109 As with all ROP, the transesterification reaction 

is a problematic side reaction.  

 

By far, the most widely used catalyst is tin(II) bis(2-ethylhexanoate) (SnOct2), due to 

its commercial availability, ease of handling and solubility in common organic 

solvents and melt (Fig. 1.10). Moreover, it is approved by the Federal Drug agency 

(FDA) of the USA. 

 

Figure 1.10. Structure of tin(II) bis(2-ethylhexanoate) (SnOct2). 

SnOct2 must be used in combination with a nucleophilic source (alcohol) to initiate 

the reaction, which also facilitates relative control over the polymerisation. One issue 

with using SnOct2 is that high temperatures are required, which encourages 

intramolecular and intermolecular transesterification reaction, which in turn 

broadens the dispersity.110 
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1.10. Aims  
This project involves the development of several novel heterofunctional initiators 

with a calix[4]arene centre that can facilitate a “core” first method for the synthesis 

of miktoarm star polymers. p-tert-butylcalix[4]arene will be selected as a base 

compound due to its low toxicity, relatively low cost and its ability to facilitate 

selective functionalisation on both the upper and lower rims of the macrocycle. The 

first initiator to be developed is to consist of two types of functionality in an A2B2 

fashion diametrically opposed on the lower rim. The diametric functionalisation 

should be obtained due to calix[4]arenes ability to direct alkylation on the lower rim. 

The second initiator to be developed is to also consist of two types of 

heterofunctionality but in an A4B4 fashion, with one type of functionality occupying 

the lower rim and the second occupying the upper rim. To introduce the two 

different types of functionality on both initiators, classic organic chemistry as well as 

more cutting edge techniques are to be used.  The AnBn heterofunctionality will be to 

allow for the synthesis of two different types of polymer from a single core. One 

type of functionality to be introduced is a primary hydroxyl, which will facilitate the 

ring opening polymerisation of ε-caprolactone that will give a hydrophobic polymer 

chain. The second functionality will be an alkyl halide, which can facilitate the Cu(0) 

mediated controlled radical polymerisation of 2-hydroxylethylacrylate that leads to a 

hydrophilic polymer. The combination of hydrophobic and hydrophilic polymer 

chains attached to a single core should lead to interesting self-assembly properties. 

The self-assembly properties are to be characterised by TEM and CMC 

determination, and the effects of length of hydrophilic chain are to be quantified. 
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A2B2 Heterofunctional Initiator With 
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2.0. Introduction 
 

Heterofunctional initiator systems are of much interest for their use in the synthesis 

of Miktoarm star polymeric systems. Macrocyclic compounds, such as 

calix[n]arenes, provide a suitable scaffold for such initiator systems due to their 

propensity for selective functionalisation of the lower and upper rims, allowing for 

versatile and intricate heterofunctional initiating systems. 

In 2010, Gou et al. described the first calix[4]arene based A2B2 heterofunctional 

initiator, which employed initiating sites for both ring opening polymerisation (ROP) 

and azide-alkyne “click” chemistry (Fig. 2.1).1 

 

Figure 2.1. Heterofunctional initiator. 

The overview of this chapter is to illustrate the synthesis of several novel derivatised 

calix[4]arene compounds that led to the synthesis of a novel A2B2 heterofunctional 

initiator. The ability of calix[4]arenes to be selectively alkylated on the lower rim 

was utilised. Traditional and cutting edge organic manipulations were used in the 

modification of compounds. The final A2B2 heterofunctional initiator incorporated 

primary hydroxyl moieties to allow for ROP of ε-caprolactone and alkyl-halogen 

moieties to facilitate single electron transfer living radical polymerisation (SET-

LRP).  

In the design of the synthetic strategy for an A2B2 heterofunctional initiator it was 

proposed to selectively allylate the lower rim of calix[4]arene diametrically, which 

would allow for two phenolic hydroxyls to be esterified with the acyl bromide 

moiety required for SET-LRP, but the esterification process could not be achieved, 

even under very basic conditions (Scheme. 2.1). 
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Scheme 2.1. Attempted Synthesis. (a) K2CO3, MeCN, reflux, (b) n-BuLi, toluene, -78 oC, (c) NaH,  DMF/THF. 

(d) NEt3, DICHLOROMETHANE.  

An alternative strategy was implemented to introduce the alkyl halide moiety. The 

final synthetic strategy employed is shown in Scheme 2.2. 

 

Scheme 2.2. Synthetic strategy employed for the synthesis of initiator 1. (a) AlCl3, phenol, toluene. (b) allyl 

iodide, K2CO3, MeCN, (c) Methyl chloroacetate, K2CO3, KI, MeCN. (d) LiAlH4, THF. (e) 2-bromopropionyl 

bromide, TEA, dichloromethane. (f) 2-mercaptoethanol, dichloromethane, UV. 
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The first step was a de-tert-butylation of the p-tert-butylcalix[4]arene, 1. The second 

step was to selectively alkylate the lower rim of calix[4]arene with allyl moieties, 2. 

The third step was introduction of an ester moiety via a Williamson ether synthesis 

of methyl chloroacetate to the remaining free phenolic hydroxyls on lower rim, 3. 

The alkyl ester moiety was selected as is could be reduced to a primary hydroxyl that 

could facilitate the esterification of 2-bromopropionyl bromide. The fourth step was 

the reduction of the ester moiety, with LiAlH4 selected as the reducing agent, 4. The 

fifth step was the esterification of the primary hydroxyl with the acyl bromide of 2-

bromopropionyl bromide, 5. The sixth step was a photo initiated thiol-ene “click” 

reaction between the alkene of the allyl moiety of 5 and 2-mercaptoethanol, 6, which 

was selected as it would introduce a primary hydroxyl to facilitate ROP. The 

reaction conditions and an in depth analysis of all compounds synthesised is 

described herein. 

2.1. Experimental  

2.1.1. Materials 
p-tert-butylcalix[4]arene, allyl iodide (98%), anhydrous potassium carbonate 

(>99%), anhydrous potassium iodide (>99%), methyl chloroacetate (99%), lithium 

aluminium hydride pellets (95%), trimethylamine (>99.5%), 2-bromopropionyl 

bromide (97%), 2-mercaptoethanol (>99%) and magnesium sulfate were purchased 

from Sigma Aldrich and used without further purification. Chloroform, 

dichloromethane, hexane, ethyl acetate, methanol analytical grade solvents and 

hydrochloric acid (c.HCl, 37%) were purchased from Fisher Scientific and used 

without further purification. Dry acetonitrile (MeCN), Tetrahydrofuran (THF) and 

dichloromethane were obtained from the Durham University Chemistry Department 

Solvent Purification Service (SPS). Deuterated chloroform (CDCl3) for NMR 

analysis was purchased from Apollo Scientific. 

 

2.1.2. Instrumentation 
1H and 13C NMR spectra were recorded using a Varian VNMRS 700 spectrometer 

operating at 700 MHz and 176 MHz respectively, with J values given in Hz. CDCl3 

was used as deuterated solvent for 1H and 13C NMR analysis and the spectra were 
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referenced to the solvent traces at 7.26 ppm and 77.0 ppm respectively. The 

following abbreviations are used in describing NMR spectra: s = singlet, d = doublet, 

t = triplet, q = quartet, quin = quintet, m = multiplet, b = broad, o = overlapped, dd = 

doublet of doublets, dq = doublet of quartets. Pure shift 1H NMR spectroscopy was 

used when simplification and increased resolution of spectra was required, which is 

brought about from 1H-1H decoupling. 2D NMR experiments were also used to fully 

assign the proton and carbon environments in the products. 1H-1H Correlation 

Spectroscopy (COSY) demonstrated proton-proton correlations over two or three 

bonds. 1H-13C Heteronuclear Shift Correlation Spectroscopy (HSQC) demonstrated 

correlation between directly bonded proton and carbons atoms. 1H-13C Heteronuclear 

Multiple-Bond Correlation (HMBC) demonstrated the correlation between proton 

and carbon environments through several bonds.  

 

Atmospheric Solids Analysis Probe Mass Spectrometry (ASAP MS) was carried out 

using a LCT Premier XE mass spectrometer and an Acquity UPLC (Waters Ltd, 

UK). A melting point tube was dipped into the sample solution (1 mg mL-1). 

Samples were run isothermally at 350 °C. The sample was vaporised from the 

melting point tube enabling atmospheric pressure chemical ionisation (APCI) to 

occur. 

 

Fourier transform-infra-red (FT-IR) spectroscopy was conducted using a Perkin 

Elmer 1600 series spectrometer.  

 

Elemental analyses of small molecules were obtained using an Exeter CE-440 

elemental analyser at the University of Durham. 

 

Thiol-ene reactions were conducted using a Fusion UV LC6B Benchtop Conveyor. 

The samples were placed in glass vials and dissolved in chloroform. The samples 

were passed under the UV source on a conveyer belt, with a UV exposure time of 15 

seconds. The UV lamp was operating at 200 watt cm-2. 
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2.1.3. Synthesis of calix[4]arene, 1 
The synthesis of compound 1 was carried out following a known procedure.2 To a 

500 mL 3-necked round bottomed flask fitted with a septum, stopper and nitrogen 

inlet, p-tert-butylcalix[4]arene (40.001 g, 94.34 mmol) was added. The system was 

heated to 100 oC and placed under reduced pressure for 3 h. The system was allowed 

to cool and then flushed with dry nitrogen. Dry toluene (200 mL) was cannulated 

into the flask leading to an opaque cream solution, which was stirred vigorously. 

Phenol (5.64 mL, 64.14 mmol) was injected into the reaction mixture, which was 

followed by the addition of aluminium(III) chloride (40.000 g, 303.28 mmol). The 

solution turned yellow with simultaneous formation of a red residue that stuck onto 

the sides of the flask. The reaction was stirred for 3 h with the solution turning 

opaque yellow to orange as the red residue dissolved. The reaction mixture was 

poured over ice (600 g) turning white. The reaction mixture was transferred to a 

separating funnel with the addition of dichloromethane (800 mL). The pale yellow 

organic layer was collected and washed with HCl 10% (3 x 150 mL) and brine (400 

mL) then dried over MgSO4 and filtered. The translucent pale yellow solution was 

reduced in vacuo leading to a viscous cream coloured solution. Diethyl ether (50 

mL) was added leading to the formation of a pale yellow solution and white solid, 

the mixture was allowed to stand for 2 h at -24 oC.  The white solid was collected 

and washed with diethyl ether. Mass = 21.43 g, yield = 84%. νmax (Perkin Elmer FT-

IR, Diamond, cm-1). 3152 (m, OH). 1H NMR (700 MHz, CDCl3) δ: 3.55 (s, 4 Ha), 

4.25 (s, 4Hb), 6.73 (t, 4Hc, J = 7.6), 7.06 (d, 4Hd, J = 7.6), 10.20 (s, 2He). 13C NMR 

(176 MHz, CDCl3) δ: 31.8 (a’), 122.4 (b’), 128.4 (c’), 129.1 (d’), 148.9 (e’). Mass 

spectrum (ASAP MS); m/z = 425.2, (100%) [M + H]+. 

 

 

 

Figure 2.2. Labelling of the chemical environments in compound 1 (a) proton (b) carbon 
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2.1.4. Synthesis of 25,27-bis(prop-2-en-1-yloxy)calix[4]arene, 2 
The synthesis of compound 2 was performed using a modified known procedure.2 To 

a 150 mL 2-necked round bottomed flask fitted with a septum, reflux condenser and 

stopper, 1 (3.253 g, 7.67 mmol) and potassium carbonate (1.063 g, 7.69 mmol) were 

added. The flask was evacuated (0.5 h) then purged with dry nitrogen. Under 

nitrogen dry MeCN (60 mL) was transferred in via cannula. Allyl iodide (1.40 mL, 

15.30 mmol) was syringed into the reaction mixture leading to a cream/yellow 

coloured solution. The reaction mixture was refluxed for 48 h. A blue/green coloured 

solution resulted. The MeCN was reduced in vacuo resulting in a blue/green 

coloured residue. The residue was taken up in HCl 10% (50 mL) and 

dichloromethane (150 mL) and added to a separating funnel. The translucent pale 

red/orange organic phase was collected and further washed with brine (2 x 50 mL), 

then dried over magnesium sulphate and filtered. The volume of dichloromethane 

was reduced in vacuo to ~5 mL. Methanol (30 mL) was added and the remaining 

dichloromethane was removed in vacuo leading to the precipitation of a pale red 

solid. The pale red solid was collected under reduced pressure. The product was 

purified via column chromatography using hexane:ethyl acetate in a 20:1 on silica. 

Mass = 2.784 g, yield = 72%. M.p. = 255-56 ºC.1 νmax (Perkin Elmer FT-IR, 

Diamond, cm-1). 3290 (m, OH), 1638 (m, C=C). 1H NMR (700 MHz, CDCl3) δ: 3.39 

(d, 4 Ha, J = 13.2), 4.33 (d, 4Hb, J = 13.2), 4.55 (d, 4Hc, J = 4.8 Hz), 5.42 (dd. 4Hd, 

J1 =10.8 Hz, J2 = 1.6 Hz) 5.78 (dd, 2He, J1 = 16.8 Hz, J2 = 1.6 Hz) 6.27 (m, 2Hf), 

6.66 (t, 2Hg, J = 7.2 Hz), 6.75 (t, 2Hh, J = 7.2 Hz), 6.91 (d, 4Hi, J = 7.2 Hz), 7.06 (d, 

4Hj, J = 7.02 Hz), 7.97 (s, 2Hk) . 13C NMR (176 MHz, CDCl3) δ: 31.6 (a’), 76.8 (b’), 

118.1 (c’), 119.2 (d’), 125.6 (e’), 128.3 (f’), 128.6 (g’), 129.1 (h’), 132.9 (i’), 133.5 

(j’), 151.9 (k’), 153.4 (l’). Mass spectrum (ASAP MS); m/z = 505.230, (100%) 

[M][H]+. CHN expected = %C = 80.93, %H = 6.39, %N 0.00; measured %C = 

81.01, %H = 6.45, %N 0.00. 
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Figure 2.3. Labelling of the chemical environments in compound 2 (a) proton (b) carbon 

 

2.1.5. Synthesis of 25,27-bis(prop-2-en-1-yloxy)-26,28-

bis(ethyleneacetate)-calix[4]arene, 3 

To a 150 mL 2-necked round bottomed flask fitted with a septum, reflux condenser 

and stopper,  2 (1.650 g, 3.27 mmol), potassium carbonate (1.112 g, 8.05 mmol) and 

potassium iodide (0.201 g, 1.21 mmol) were added. The flask was evacuated (0.5 h) 

then purged with dry nitrogen. Under nitrogen dry MeCN (40 mL) was transferred in 

via cannula. Methyl chloroacetate (0.70 mL, 7.99 mmol) was syringed into the 

reaction mixture leading to a cream/yellow opaque solution. The reaction mixture 

was refluxed for 48 h. A cream coloured opaque solution resulted. The MeCN was 

reduced in vacuo resulting in a cream coloured residue. The residue was taken up in 

HCl 10% (40 mL) and dichloromethane (100 mL) and added to a separating funnel. 

The translucent pale yellow organic phase was collected and further washed with 

brine (2 x 40 mL), then dried over magnesium sulphate and filtered. The volume of 

dichloromethane was reduced in vacuo leading to a brown sticky residue. The 

residue was purified via column chromatography using hexane:ethyl acetate in a 

20:1 on silica, a white tacky residue was obtained. Mass = 1.102 g, yield = 52%. νmax 

(Perkin Elmer FT-IR, Diamond, cm-1). 1760. 1H NMR (700 MHz, CDCl3) δ: 3.16 (d, 

1.1Ha1, J = 14.0 Hz), 3.20 (d, 4Ha1, J = 13.6 Hz), 3.60 (s, 1.5Hb2), 3.69 (d, 1.1Hc2, J 

= 13.3 Hz), 3.80 (s, 6Hb1), 3.81 (om, 1Hd2), 3.84 (s, 1.5He2), 4.00 (s, 1Hf2), 4.23 (dd, 

1.1Hg2, J1 = 12.7 Hz, j2 = 5.0 Hz), 4.31 (dd, 1.1Hh2, J1 = 12.7 Hz, J2 = 5.0 Hz), 4.55 

(d, 4Hc1, J = 13.6 Hz), 4.57 (s, 4Hd1), 4.61 (d, 4He1, J = 6.5 Hz), 5.16 (d, 2Hf1, J = 

9.5 Hz), 5.21 (d, 2Hg1, J = 17.2 Hz), 5.27 (d, 1Hk2, J = 10.7 Hz), 5.42 (d, 1Hl2, J = 

16.9 Hz), 6.13 (m, 1.1Hm2), 6.31 (d, 1Hn2, J = 7.6 Hz), 6.42 (m, Hh1), 6.51 (m, 6Hi1), 

6.52 (om, 2Ho2), 6.71 (t, 2Hj1, J = 7.5 Hz), 6.79 (d, 4Hk1, J = 7.5 Hz), 6.89 (t, 0.6Hp2, 
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J = 7.5 Hz), 6.97 (t, 0.6Hq2, J = 7.5 Hz), 7.07 (d, 1Hr2, J = 7.5 Hz), 7.09 (d, 1Hs2, J = 

7.4 Hz), 7.30 (d, 1Ht2, J = 7.5 Hz). 13C NMR (176 MHz, CDCl3) δ:31.5 (a1’), 31.8 

(a2’), 35.4 (b2’), 51.2 (c2’), 51.8 (b1’), 52.0 (d2’), 67.3 (e2’), 70.2 (f2’), 71.4 (c1’), 

75.1 (g2’), 76.0 (d1’), 116.5 (h2’), 117.1 (e1’), 122.4 (i2’), 122.5 (j2’), 122.6 (f1’), 

122.7 (k2’), 122.9 (g1’), 128.4 (h1’), 128.6 (i1’), 128.7 (l2’), 129.1 (m2’), 129.4 (n2’), 

131.1 (o2’), 132.2 (p2’), 133.6 (q2’), 133.9 (r2’), 134.2 (j1’), 134.7 (s2’), 135.9 (k1’), 

136.4 (t2’), 155.1 (u2’), 155.3 (v2’), 155.5 (l1’), 156.3 (m1’), 156.7 (w2’), 170.0 (x2’), 

170.2 (n1’), 171.1 (y2’). Mass spectrum (ASAP MS); m/z = 649.272, (100%) 

[M+H]+. CHN expected = %C = 74.06, %H = 6.22, %N 0.00; measured %C = 74.45, 

%H = 6.48, %N 0.00. 

 

 

 

 

 

 

 

 

 

Figure 2.4. Labelling of the chemical environments in compound 3 (a) proton (b) carbon 

 

2.1.6. Synthesis of 25,27-bis(prop-2-en-1-yloxy)-26,28-

bis(ethanolxy)calix[4]arene, 4 
To a 50 mL 2-necked round bottomed flask fitted with a septum and reflux 

condenser, 3 (0.855 g, 1.01 mmol), was added. The flask was evacuated (0.5 h) then 

purged with dry nitrogen. Under nitrogen, dry THF (20 mL) was transferred in via 

cannula forming a translucent colourless solution. LiAlH4 (1M in diethyl ether, 3.96 
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mL, 3.96 mmol) was injected in drop wise. The solution first turned opaque then 

translucent and was left to stir at 23 oC for 0.5 h and then a further 1.5 h at 50 oC. 

The reaction mixture was carefully quenched by the drop wise addition of water. The 

solvent was removed under reduced pressure leading to a white residue, which was 

collected in dichloromethane (50 mL) and HCl 10% (30 mL) and added to a 

separating funnel. The translucent pale yellow organic phase was collected and 

further washed with brine (2 x 25 mL), then dried over magnesium sulphate and 

filtered. The volume of dichloromethane was reduced in vacuo leading to a white 

amorphous solid. The residue was purified via column chromatography using 

dichloromethane on silica; a white amorphous solid was obtained. Mass = 0.695 g, 

yield = 89%. νmax (Perkin Elmer FT-IR, Diamond, cm-1). 3380. 1H NMR (700 MHz, 

CDCl3) δ: 3.21 (d, 4Ha, J = 13.5 Hz), 3.88 (m, 4Hb), 4.17 (m, 4Hc), 4.34 (d, 4Hd, J = 

6.4 Hz), 4.38 (d, 4He, J = 13.5 Hz), 4.79 (t, 2Hf, J = 6.2 Hz), 5.28 (m, 2Hg), 5.29 

(dm, 2Hh, J = 19.1), 6.17 (d, 4Hi, J = 7.6 Hz), 6.20 (m, 2Hj), 6.28 (t, 2Hk, J = 7.6 

Hz), 6.99 (t, 2Hl, J = 7.4 Hz), 7.17 (d, 4Hm, J = 7.5 Hz). 13C NMR (176 MHz, 

CDCl3) δ: 31.0 (a’), 61.7 (b’), 77.3 (c’), 77.4 (d’), 119.3 (e’), 123.1 (f’), 123.1 (g’), 

128.0 (h’), 129.3 (i’), 133.1 (j’), 135.5 (k’),136.9 (l’), 153.1 (m’), 157.3 (n’). Mass 

spectrum (ASAP MS); m/z = 593.290, (100%) [M+H]+. CHN expected = %C = 

77.00, %H = 6.80, %N 0.00; measured %C = 77.23, %H = 6.94, %N 0.00. 

 

 

 

 

Figure 2.5. Labelling of the chemical environments in compound 4 (a) proton (b) carbon 

 

2.1.7. Synthesis of 25,27-bis(prop-2-en-1-yloxy)-26,28-

bis(ethoxyester-2-bromo-acetate)calix[4]arene, 5 
To a 50 mL 2-necked round bottomed flask fitted with a septum and reflux 

condenser, 4 (0.345 g, 0.63 mmol) was added. The flask was evacuated (0.5 h) then 

purged with dry nitrogen. Under nitrogen, dry chloroform (15 mL) was transferred in 
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via cannula forming a translucent colourless solution. NEt3 (0.300 mL, 2.16 mmol) 

was injected in followed by the drop wise addition of 2-bromopropionyl bromide 

(0.264 mL, 2.52 mmol). The solution turned translucent brown and was left to stir at 

23 oC for 2 h, and turned yellow over this period. The reaction mixture was carefully 

quenched by the drop wise addition of water. The reaction mixture was collected in 

additional chloroform (20 mL) and washed with HCl 10% (30 mL) and with brine (2 

x 25 mL), then dried over magnesium sulphate and filtered. The volume of 

dichloromethane was reduced in vacuo leading to a brown sticky residue. The 

residue was purified via column chromatography using hexane:ethyl acetate in a 

ratio of 9:1 on silica. A colourless sticky residue was obtained. Mass = 0.421 g, yield 

= 78%. νmax (Perkin Elmer FT-IR, Diamond, cm-1). 2850-3100 (m, CH), 1739 (s, 

C=O), 1638 (m, C=C). 1H NMR (700 MHz, CDCl3) δ: 1.87 (d, 6Ha, J = 6.8 Hz), 

3.60-3.72 (m, 4Hb) 3.68 (s, 6Hc), 4.15 (m, 4Hd), 4.16 (m, 4He), 4.45 (q, 2Hf, J = 6.8 

Hz), 5.08 (dd, 2Hg, J1 = 17.2 Hz, J2 = 2 Hz), 5.14 (dd, 2Hh, J1 = 10.8 Hz, J2 = 1.6 

Hz), 5.84 (m, 2Hi), 6.69 (t, 2Hj, J = 7.6 Hz), 6.80 (t, 2Hk, J = 7.6 Hz), 6.99 (d, 4Hl, J 

= 7.6Hz), 7.09 (d, 4Hm, J = 7.6 Hz). 13C NMR (176 MHz, CDCl3) δ:.21.8 (a’), 36.9 

(b’), 40.0 (c’), 65.1 (d’), 68.6 (e’), 71.8 (f’), 116.2 (g’), 122.5 (h’), 130.0 (i’), 131.0 

(j’), 133.4 (k’), 133.9 (l’), 134.3 (m’), 155.4 (n’), 156.2 (o’), 170.4 (p’). Mass 

spectrum (ASAP MS); m/z = 862.162, (100%) [M+H]+. CHN Expected = %C = 

62.26, %H = 5.38, %N = 0.00; Measured %C = 62.11, %H = 5.36, %N = 0.00. 

 

 

 

 

 

 

Figure 2.6. Labelling of the chemical environments in compound 5 (a) proton (b) carbon 
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2.1.8. Synthesis of 25,27-bis(3-(hydroxyethyl)thioether-propan-1-

yloxy)-26,28-bis(ethoxyester-2-bromo-acetate)calix[4]arene, 6 
To a 10 mL glass vial, 25,27-bis(prop-2-en-1-yloxy)-26,28-bis(ethoxyester-2-bromo-

acetate)calix[4]arene, 5 (0.300 g, 0.35 mmol), was added and dissolved in 

chloroform (3 mL). To the vial, 2-mercaptoethanol (0.098 mL, 1.39) was added. The 

sample was irradiated with a broad wavelength UV lamp for 30 seconds, a colourless 

solution remained. The chloroform was removed in vacuo leaving a viscous 

colourless liquid. The residue was purified via column chromatography using 

hexane:ethyl acetate on silica, starting at a ratio of 10:1 slowly moving to pure ethyl 

acetate resulting in a tacky colourless residue. Mass = 0.326 g, yield = 92%. νmax 

(Perkin Elmer FT-IR, Diamond, cm-1). 3306 (s, OH), 2923 (s, CH), 1732 (s, C=O). 
1H NMR (700 MHz, CDCl3) δ: 1.62 (quin, 4Ha, J = 8.1 Hz) 1.85 (d, 6Hb, J = 8.0 

Hz), 2.36 (t, 4Hc, J = 8.4 Hz), 2.74 (t, 4Hd, J = 7.0 Hz), 3.55 (t, 4He, J = 6.5 Hz), 

3.60 (t, 4Hf, J = 7.8 Hz), 3.75 (t, 4Hg, J = 7.0 Hz), 3.79 (s, 8Hh), 3.83 (m, 4Hi), 4.38 

(q, 2Hk, J = 8.1 Hz), 6.84 (m, 8Hl), 7.05 (d, 4Hl, J = 8.9 Hz), 7.10 (m, 4Hi).13C NMR 

(176 MHz, CDCl3) δ: 21.7 (a’), 28.1 (b’), 30.0 (c’), 35.2 (d’), 37.5 (e’), 39.9 (f’), 

60.5 (g’), 64.4 (h’), 67.6 (i’), 69.4 (j’), 122.8 (k’), 129.7 (l’), 133.9 (m’), 155.6 (n’), 

156.9 (o’), 170.2 (p’). Mass spectrum (ASAP MS); m/z = 1019.182, (7.61%) 

[M+H]+. CHN Expected = %C = 57.38, %H = 4.41, %N = 0.00; Measured %C = 

57.48, %H = 4.56, %N = 0.00. 

 

 

 

 

 

 

 

Figure 2.7. Labelling of the chemical environments in compound 6 (a) proton (b) carbon 
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2.2. Results and Discussion  

2.2.1. Calix[4]arene, 1 

 

Scheme 2.3. Synthesis of 1 

The synthesis of 1 was carried out according to the classic procedure using 

aluminium(III) chloride in the presence of phenol in toluene (Scheme. 2.3).2,3 The 

tert-butyl moiety of 1 are removed via an aluminium(III) chloride catalysed 

transalkylation.4,5 The aluminium(III) chloride initially reacts with phenol forming 

an alkoxide complex in the toluene solvent. p-tert-butylcalix[4]arene is added to the 

mixture at once. The aluminium complex coordinates to the hydroxyl moieties as a 

Lewis acid with the simultaneous formation of HCl. The Lewis acidic aluminium 

chloride draws electron density away from the tert-butyl moiety facilitating the loss 

of the tertiary carbocation. This will react with the HCl formed in-situ, forming an 

alkyl chloride and the anionic aromatic ring will pick up the proton. The newly 

formed alkyl chloride reacts with a toluene solvent molecule via a reverse Friedel-

Craft reaction. The proposed mechanism is shown, Scheme 1.4 (Chapter 1).4 A 

complete thorough analysis of 1 discussed is herein to further  the previous 

characterisation.2,3 
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Figure 2.8. 1H NMR spectrum of 2 in CDCl3. 

The 1H NMR spectrum (Fig. 2.8) showed that the desired calix[4]arene, 1, had been 

synthesised. The tert-butyl moiety singlet resonance of the starting material is no 

longer observed at 1.21 ppm. Two singlet resonances with integrals of four are 

observed at 3.55 and 4.25 ppm, a and b, which correspond to the methylene protons 

Ha and Hb, respectively. The two broad singlet resonances indicate that at room 

temperature the molecule is in the cone conformation.6 A triplet resonance is 

observed at 6.73 ppm, c, corresponding to the hydrogen atoms para to the hydroxyl 

moiety of the aromatic ring, Hc. The triplet multiplicity is brought about by coupling 

to hydrogen atoms either side of Hc, Hd (Fig. 2.8). A doublet resonance is observed 

at 7.06 ppm, d, corresponding to the meta hydrogen atoms with respect to the 

hydroxyl of the phenolic ring, Hd. The doublet multiplicity is brought about by 

coupling to the single para hydrogen atom with respect to the hydroxyl of the 

phenolic ring, Hc. The coupling between Hc and Hd is confirmed by COSY NMR 

spectroscopy (Fig. 2.9).  
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Figure 2.9. COSY spectrum of 1, showing the coupling between NMR resonances c and d in CDCl3. 

A sharp 1H NMR resonance is observed at 10.20 ppm (Fig. 2.8) corresponding to the 

proton of the hydroxyl moiety, He. The sharp peak resonating at a downfield position 

is a result of strong hydrogen bonding between the four hydroxyl moieties of the 

calix[4]arene, leading to the protons being highly deshielded. Infrared spectroscopy 

was carried out and a broad absorption was observed at 3120 cm-1, indicating the 

presence of hydroxyl moieties with strong hydrogen bonding. To assign the 13C 

NMR spectrum, HSQC NMR and HMBC NMR spectroscopy were carried out. 

Using HSQC NMR spectroscopy the carbon atoms directly attached to hydrogen 

atoms could be easily assigned. 
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Figure 2.10. HSQC NMR spectrum of 1, showing the coupling between hydrogen and carbon atoms, in CDCl3. 

From the HSQC spectrum (Fig. 2.10) it is observed that the methylene proton 

resonances, a and b, couple to a 13C NMR resonance at 31.8 ppm, a’, thus a’ must 

correspond to the bridging methylene carbon atom between aromatics. The fact that 

the methylene carbon atom exhibits a resonance at 31.8 ppm is further evidence that 

the calix[4]arene exists in the cone conformation.7 The HSQC NMR spectrum (Fig. 

2.10) shows c coupling to a 13C NMR resonance at 122.4 ppm, b’, thus corresponds 

the carbon atom of the aromatic ring in the para position relative to the phenolic 

hydroxyl moiety. d couples to a 13C NMR resonance at 129.1 ppm, d’, thus 

corresponds the carbon atom of the aromatic ring in the meta position relative to the 

phenolic hydroxyl moiety. Using HMBC NMR spectroscopy the remaining 13C 

NMR resonances could be assigned accurately.   
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Figure 2.11. HMBC NMR spectrum of 1, showing the coupling between hydrogen and carbon atoms in CDCl3. 

The HMBC NMR spectrum (Fig. 2.11) shows c coupling to a 13C NMR resonance at 

128.4 ppm, c’. Additionally, c’ couples to the 1H NMR resonance e corresponding to 

the hydroxyl hydrogen atom. Due to fact that in HMBC NMR spectroscopy of 

aromatic systems, two bond coupling is often not observed or is very weak, c’ must 

correspond to the carbon atom in the ortho position with respect to the hydroxyl 

moiety of the phenolic ring (Fig. 2.12). The HMBC NMR spectrum (Fig. 2.11) 

shows d coupling to three 13C NMR resonances, a’, d’ and e’. In theory, single bond 

coupling is not expected, so a coupling between d and d’ would not be expected but 

as shown can be observed. Due to the fact that the 13C NMR resonance at 148.9 ppm, 

e’, exhibits a strong coupling to d through three bonds, no coupling to c, which 

would be a five bound coupling, and a weak coupling to e, e’ must correspond to the 

ipso carbon atom of the phenolic ring with respect to the hydroxyl moiety (Fig. 

2.12). The ipso carbon atom would be expected to be the most downfield carbon 

atom as it resides next to an oxygen. The complete assignment of the 13C NMR 

spectrum is shown in Figure 2.12. 
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Figure 2.12. 13C NMR spectrum of 1 in CDCl3.  

ASAP mass spectrometry was carried out and the molecular ion was seen at 425.161 

Da (100%, Fig. 2.13), which corresponds to the empirical formula C28H24O4
+. 

 

Figure 2.13. ASAP MS spectrum of 1. 
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2.2.2. 25,27-bis(prop-2-en-1-yloxy)calix[4]arene, 2 

 

Scheme 2.5. Synthesis of 2 

Compound 2 is a known compound and was successfully synthesised according to 

the literature with the modification of replacing methyl iodide with allyl iodide 

(Scheme 2.5).2 Previously discussed in the section 1.4 (Fig. 1.3), the lower rim can 

be alkylated diametrically due to the way in which the hydroxyl moieties are 

deprotonated in a step by step fashion resulting from their distinct pKa values. The 

distinct pKa values result from stabilising effects from the adjacent hydroxyl moiety, 

which increase as alkylation proceeds.8  After the first deprotonation, alkylation 

occurs leading to a neutral molecule, which results in the diametric proton becoming 

acidic with a pKa of ~4 due to the stabilisation from two adjacent hydroxyl moieties, 

a mechanistic route is shown (Scheme 2.6).9  

 Scheme 2.6. Proposed reaction mechanism for the selective alkylation of 2. 

In dry MeCN, calix[4]arene, 1, was treated with 1 eq. of weak base  followed by the 

addition of 2 eq. of allyl iodide and refluxed over 48 h.  
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Figure 2.14. 1H NMR of starting material, 1, and product, 2 in CDCl3. 

The stacked 1H NMR spectra (Fig. 2.14) shows the comparative resonance signals 

observed for the precursor, 1, and the product of the selective dialkylation reaction, 

2. 
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Figure 2.15. 1H NMR spectrum of compound 2 in CDCl3. 

The 1H NMR spectrum (Fig. 2.15) shows the presence of two sets of doublet 

resonance signals at 3.39 ppm and 4.33 ppm corresponding to protons Ha and Hb, 

respectively, with integral values of four per doublet. The presence of two sets of 

doublets indicates that 2 exists in the cone conformation.6 Due to the cone formation 

of the calix[4]arene with its C2v symmetry, one proton (Hb) of the methylene points 

down towards the oxo environment with the second methylene proton (Ha)  pointing 

up and away from the oxo environment corresponding to Hb and Ha, respectively.6 

The oxo environment deshields the proton, thus the doublet resonance is downfield 

at 4.33 ppm, b, relative to the less deshielded proton with the doublet resonance at 

3.39 ppm, a. The presence of the set of doublet resonances indicates that the 

calix[4]arene has been alkylated selectively  in a diametric fashion as three sets of 

doublets would be expected if the calix[4]arene had been functionalised in a 1,2 

manner opposed to the diametric 1,3. 1H NMR resonances c, d, e and f correspond to 

the presence of the allyl ether functionality. The aliphatic linking ether methylene of 

the allyl ether moiety is observed as a doublet resonance with an integral of four at 

4.55 ppm, c, corresponding to Hc. The doublet multiplicity is brought about via 

coupling to the non-terminal alkene proton of the allyl moiety. A multiplet resonance 

with an integral value of two is observed at 6.27 ppm, f, corresponding to the non-

terminal alkene proton of the allyl moiety, Hf. The multiplet resonance results from 

the proton, Hf, coupling to three non-degenerate protons, Hc, Hd and He. The proton 

of Hf is the most deshielded of the allyl ether moiety due to it residing in an alkene 

environment and additionally coupling to a proton attached to a carbon ether 

environment, Hc. Two sets of double doublet resonances are observed at 5.42 ppm 

and 5.78 ppm, d and e, with integral values of two, corresponding to the terminal 

alkene protons of the allyl moiety, Hd and He, respectively. Two sets of double 

doublet resonances are observed due to Hd and He being non-degenerate, which 

results from their cis and trans orientation with respect to Hf. Hd has a J1 coupling 

value of 10.8 Hz, whereas He has a J1 coupling value of 16.8 Hz. The larger coupling 

constant of He indicates a longer range coupling with respect to Hf, thus must 

correspond to the trans proton and Hd must correspond to the proton in the cis 

position. Hd and He both exhibit a second J2 coupling constant of 1.6 Hz due to 

coupling to one another. Two sets of triplet resonances with integrals of two are 



 

62 

observed at 6.66 ppm and 6.75 ppm, g and h respectively, resulting from the protons 

in the para position with respect to oxygen attached to the aromatic rings. Two sets 

of para aromatic protons are present due to the two types of aromatic present within 

the macrocycle, i.e. two phenolic and two aryl ether units. Additionally, two sets of 

doublet resonances with integrals of four are observed at 6.91 ppm and 7.06 ppm, i 

and j, resulting from the hydrogen atoms in the meta position with respect to oxygen 

attached to the aromatic rings. The COSY NMR spectrum (2.16) shows resonances g 

and j, and h and i, coupling, indicating resonances g and j belong to one of the two 

types of aromatics and h and i belonging to the second. To ascertain which protons 

belong to which type of aromatic unit the HMBC NMR spectrum must be referred 

to, and is discussed later. The 1H NMR spectrum (Fig. 2.15) shows a singlet 

resonance with an integral of two at 7.97 ppm, k, which corresponds to the hydroxyl 

moiety of the phenolic rings, Hk. The sharp resonance corresponding to Hk is due to 

relatively strong hydrogen bonding within the lower rim of the calixarene. The 

strong hydrogen bonding is further confirmed by IR spectroscopy where a relatively 

sharp absorption is observed at 3290 cm-1, corresponding to the hydroxyl moiety. 

 

Figure 2.16.  1H COSY NMR spectrum of 2, showing the coupling between the aromatic protons in CDCl3.  
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Using HSQC NMR spectroscopy the carbon atoms directly attached to hydrogen 

atoms could be easily assigned. 

 

Figure 2.17. HSQC NMR spectrum of compound 2, showing coupling between various hydrogen and carbon 

atoms in CDCl3. 

The HSQC NMR spectrum (Fig. 2.17) shows resonances a and b coupling to a 13C 

NMR resonance at 31.6 ppm, a’, which corresponds to the bridging methylene 

carbon atom between aromatic rings. The fact that the resonance for the methylene 

carbon atom is observed at 31.6 ppm is further indication that the calixarene exists in 

the cone conformation.7 Resonance c couples to a 13C NMR resonance at 76.8 ppm, 

b’, which corresponds to the ether linking methylene carbon atom of the allyl 

moiety. 1H NMR resonances d and e, couple to a 13C NMR resonance at 118.1 ppm, 

c’, which corresponds to the terminal alkene carbon atom of the allyl moiety. 

Resonance f couples to a 13C NMR resonance at 132.9 ppm, i’, which corresponds to 

the non-terminal alkene carbon atom of the allyl moiety. Resonances g, h, i and j 

exhibit couplings to 13C NMR resonances at: 119.2, d’; 125.6, e’; 128.6, g’; and 

129.1 ppm, h’, respectively. Using HMBC the hydrogen and carbon atoms of the 

phenolic and aryl ether rings and quaternary carbon atoms can be assigned 

accurately. 
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Figure 2.18. HMBC NMR spectrum of compound 2 in CDCl3, showing coupling between multiple bonds of 

various hydrogens.   

The HMBC spectrum (Fig. 2.18) shows resonance k coupling to two 13C NMR 

resonances at 128.3 ppm and 153.4 ppm, f’ and l’, respectively, indicating the carbon 

resonances are part of the phenolic aromatic system and not the aryl ether system. l’ 

exhibits a coupling to 1H NMR resonance j, corresponding to Hj, therefore 1H NMR 

resonances j and g correspond to the aromatic protons of the phenolic units, Hj and 

Hg respectively (Fig. 2.15). Due to fact that in HMBC spectroscopy of aromatic 

systems two bond coupling is often not observed or is very weak, resonances f’ and 

l’ can be accurately assigned to the calixarene structure. The HMBC spectrum shows 

resonance f’ exhibiting coupling to g and k but not j, therefore must correspond to 

the ortho carbon atom of the phenolic ring with respect to the hydroxyl moiety and 

orthogonal to the bridging methylene carbon atoms. l’ exhibits coupling to j and the 

methylene hydrogen atoms, a and b, and very weakly to the hydroxyl moiety 

protons, therefore corresponds to the carbon atom of the phenolic ring in the ipso 

position relative to the hydroxyl moiety. The HMBC spectrum (Fig. 2.18) shows 

resonance c coupling to a 13C NMR resonance at 153.4 ppm, k’, which corresponds 

to the ipso carbon atom of the aryl ether unit with respect to oxygen and additionally 

confirms the chemical attachment of the allyl moiety to the aromatic ring through an 
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ether linkage. Resonance k’ exhibits coupling to 1H NMR resonance i, 

corresponding to Hi, therefore 1H NMR resonances i and h correspond to the 

aromatic protons of the phenolic units, Hi and Hh, respectively (Fig. 2.15). The 

HMBC spectrum (Fig. 2.18) shows resonance j’ exhibiting coupling to 1H NMR 

resonances a, b and h, therefore corresponds to the ortho carbon atom of the aryl 

ether unit with respect to oxygen. The complete assignment of the 13C NMR 

spectrum is shown in Figure 2.19.  

 

Figure 2.19. 13C NMR spectrum of compound 3 in CDCl3. 

ASAP mass spectrometry was carried out and the molecular ion was seen at 505.230 

Da (100%, Fig. 2.20), which corresponds to the empirical formula C34H33O4
+. 
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Figure 2.20. ASAP MS spectrum of 2.  

 

2.2.3. 25,27-bis(prop-2-en-1-yloxy)-26,28-bis(ethyleneacetate)-

calix[4]arene, 3 

 

Scheme 2.7. Synthesis of 3.  

The novel compound 3, was successfully synthesised using an excess of potassium 

carbonate and methyl chloroacetate in the presence of a catalytic amount of 

potassium iodide (Scheme 2.7). The addition of potassium iodide leads to an 

exchange equilibrium between the halogen ions of Cl- and I-, known as the 

Finkelstein reaction (scheme 2.8).10 Iodide is a much better nucleofuge than that of 

chloride, therefore will lead to an increase in yield. 
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Scheme 2.8. Finkelstein reaction.  

Compound 3 was obtained in a yield of 52%. An attempt at increasing the yield 

using the stronger base NaH in DMF/THF was unsuccessful, partly due to the fact 

that a partial and full reduction of the ester moiety was observed. In the synthesis of 

3, two distinct conformations were observed, cone and partial flattened cone 

corresponding to 31 and 32, respectively (Scheme 2.7). 31 is the major conformer and 

32 is the minor conformer and contribute to ~66% and ~34% of the reaction product 

respectively, as determined via the ratio of integral values for the non-terminus 

alkene protons of the allyl moiety from the 1H NMR spectrum (Fig. 2.21). The cone 

conformation has a C2v symmetry, which leads to relatively simple NMR spectra, in 

contrast the partial flattened cone has much reduced symmetry resulting in much 

more complex spectra. A full characterisation is described below, first looking at the 

major product in the cone conformation, 31. 
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Figure 2.21. 1H NMR spectrum of 3 in CDCl3.  

The 1H NMR spectrum (Fig. 2.21) exhibits a doublet resonance with its integral set 

to four at 3.20 ppm, a1, and has a J coupling constant of 13.6 Hz. The COSY NMR 

spectrum (Fig. 2.22) shows a1 coupling to a second doublet with an integral of four 

at 4.55 ppm, c1, and has a J coupling constant of 13.6 Hz. a1 and c1 correspond to the 

bridging methylene protons between aromatics, with resonance a1 corresponding to 

the proton pointing up to the aromatic region and c1 corresponds to the proton 

pointing down to the oxo region, Ha1 and Hc1, respectively. The fact that two 

doublets are observed indicated that the compound is in the cone conformation.6 The 
1H NMR spectrum (Fig. 2.21) exhibits a singlet resonance with an integral of six at 

3.60 ppm, b1. b1 corresponds to the methyl functionality of the methyl ether acetate 

moiety, Hb1. A second singlet with an integral of four is observed at 4.57 ppm, d1, 

corresponding to the ether linking methylene group of the methyl ether acetate 

moiety. A doublet resonance with an integral of four is observed at 4.57 ppm, e1.  
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Figure 2.22. COSY NMR spectrum of 3 in CDCl3. 

The COSY NMR spectrum (Fig. 2.2.3.2) shows e1 exhibiting coupling to resonances 

f1, g1 and h1, which all correspond to the protons of the allyl moiety. e1 corresponds 

to the aliphatic methylene ether linking protons of the allyl moiety, He1. f1 and g1 

correspond to the cis and trans terminal alkene protons of the allyl moiety, 

respectively, Hf1 and Hg1, relative to the non-terminal alkene proton Hh1, 

corresponding to 1H NMR resonance h1. The 1H NMR spectrum (Fig. 2.21) exhibits 

an overlapped multiplet resonance with an integral of six at 6.51 ppm, i1. The 

overlapping of resonances is proved via a HSQC experiment and is discussed later. i1 

corresponds to the one set of aromatic protons in the meta and para positions with 

respect to the oxygen of one of the aryl ether units. To confirm which aryl ether unit 

the i1 resonance corresponds to the HMBC spectrum must be referred to as is 

discussed later. The 1H NMR spectrum (Fig. 2.21) exhibits a triplet resonance with 

an integral of two at 6.71 ppm, j1. The COSY NMR spectrum (Fig. 2.22) shows j1 

exhibiting coupling to a doublet resonance with an integral of four at 6.79 ppm, k1. 

Resonance j1 and k1 correspond to para and meta protons, respectively, of one of the 

two types of aryl ether units, i.e. either the allyl moiety attached or the methyl 

acetate moiety. As expressed above, the HMBC experiment will be referred to for 
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the determination of which aryl ether unit. Using an HSQC NMR experiment the 

carbon atoms directly bonded to hydrogen atoms can easily be assigned. 

 

Figure 2.23. HSQC NMR spectrum of 3 in CDCl3.  

The HSQC spectrum (Fig. 2.23) shows resonances a1 and c1 coupling to a 13C NMR 

resonance at 31.5 ppm, a1’, which corresponds to the methylene bridging carbon 

atom between aromatics. The fact that the a1’ resides in the ~31 ppm region indicates 

the calixarene exists in the cone conformation.7 The HSQC spectrum (Fig. 2.23) 

shows resonances b1 coupling to a 13C NMR resonance at 51.8 ppm, b1’, which 

corresponds to the methyl carbon atom of the methyl ether acetate moiety. 

Resonance d1 couples to a 13C NMR resonance at 71.4 ppm, c1’, which corresponds 

to the ether linking methylene carbon atom of the methyl ether acetate moiety. 

Resonance e1 couples to a 13C NMR resonance at 76.0 ppm, d1’, which corresponds 

to the aliphatic methylene ether linking carbon atom of the allyl moiety. Resonances 

f1 and g1 couple to a 13C NMR resonance at 117.1 ppm, e1’, which corresponds to the 

terminal alkene carbon atom of the allyl moiety. Resonance h1 couples to a 13C NMR 

resonance at 135.9 ppm, k1’, which corresponds to the non-terminal alkene carbon 

atom of the allyl moiety. Resonance i1 couples to two 13C NMR resonance at 122.9 

ppm and 128.4 ppm, g1’ and h1’, which correspond to the para and meta carbon 
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atoms, respectively, of one of the aryl ether unit pairs. Resonances j1 and k1 couple 

to 13C NMR resonances at 122.6 ppm and 128.6 ppm, f1’ and i1’, which correspond 

to the para and meta carbon atoms, respectively, of one of the aryl ether unit pairs. 

To determine which aromatic resonances belong to which of the two types of aryl 

ether the HMBC NMR experiment is referred to. 

 

Figure 2.24. HMBC NMR spectrum of 3 in CDCl3. 

The HMBC NMR spectrum (Fig. 2.24) shows, most significantly, resonance d1 

coupling to 13C NMR resonances at 155.5 ppm, l1’, which corresponds to the ipso 

carbon atom of the aryl ether unit with methyl acetate ether moiety attached. l1’ 

exhibits coupling to 1H NMR resonance i1, therefore the protons corresponding to 

the i1 resonance belong to the aryl ether units with the methyl acetate ether moiety 

attached, Hi1. 1H NMR resonance e1 couples to a 13C NMR resonance at 156.3 ppm, 

m1’, which corresponds to the ipso carbon atom of the aryl ether unit with the allyl 

moiety attached. Additionally, m1’ exhibits coupling to resonance k1, therefore 

resonance k1 correspond to the para and meta protons of the aryl ether units with the 

allyl moiety attached, Hk1. The HMBC NMR spectrum (Fig. 2.24) shows resonance 

i1 exhibiting coupling to 13C NMR resonance at 134.2 ppm, j1’, which corresponds to 

the ortho carbon atom of the aryl ether unit with the methyl acetate ether moiety 
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attached. Resonance j1 exhibits coupling to 13C NMR resonance at 135.9 ppm, k1’, 

which corresponds to the ortho carbon of the aryl ether unit with the allyl ether 

moiety attached. 13C NMR resonance k1’ is two overlapped resonances. The final 

carbon atom to assign in the 13C NMR spectrum corresponding to the cone 

conformation calixarene is at 170.2 ppm, n1’, which corresponds to the carbonyl 

carbon of the ester moiety (Fig. 2.25). 

 

Figure 2.25. 13C NMR spectrum of 3 in CDCl3. 

For the determination of the conformation of the minor product, 32, the same 

protocol was applied as described previously with the addition of using a NOESY 

NMR experiment. One of the key steps to assigning 32 with the flattened partial cone 

conformation was observing two 13C NMR resonances (Fig. 2.25) at 31.8 ppm and 

35.4 ppm, a2’ and b2’, respectively, with equal intensity. The HSQC NMR spectrum 

(Fig. 2.23) showed a2’ coupling to two sets of 1H NMR doublets at 3.16 ppm and 
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4.35 ppm, a2 and i2 respectively and b2’ coupling to two sets of 1H NMR doublets at 

3.69 ppm and 3.81 ppm, c2 and d2, respectively, which all correspond to bridging 

methylene protons, Ha2, Hi2, Hc2, and Hd2. The integrations of a2, c2, d2 and i2 are all 

equal, thus suggesting they correspond to one molecule. The fact that the a2’ 13C 

NMR resonance resides in the 31 ppm region indicates the aromatic either side are in 

the syn conformation, i.e. cone, whereas for the b2’ resonance, which resides at ~35 

ppm, suggests the aromatics either side are closer to the anti-position, i.e. at 180o to 

each other; it is noted that if the aromatic either side of the methylene carbon atom 

existed at a complete 180o to each other a 13C NMR resonance would be expected to 

be observed at ~ 38 ppm, and would couple to a singlet proton resonance in the 1H 

NMR spectrum. Thus for the carbon atom corresponding to b2’ resonances the 

aromatics either side are likely to exist at angles between 90o and 180 o to each other 

(Fig. 2.26).7  

 

Figure 2.26. Depiction of the aromatics orientation relative to the bridging methylene carbon/protons. 

Further confirmation that there was in fact just one secondary compound came from 

the 1H NMR resonances corresponding to the allyl moiety (g2, h2, k2 and i2, Fig 

2.21), where only one type of ally moiety resonance was observed, indicating that 

there was a line of symmetry through the calixarene as depicted (Fig. 2.27). 
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Figure 2.27. Depiction of calixarene macrocycle in a flattened partial cone conformation with a line of symmetry 

through the centre. 

Two types of methyl acetate ether moiety were present as indicated via the 1H NMR 

spectrum (Fig. 2.23) with two methyl ester singlets at 3.60 ppm and 3.84 ppm, b2 

and e2, respectively, and two methylene ether linking groups at 4.00 ppm and 4.37 

ppm, f2 and j2 respectively. The HMBC NMR spectrum (Fig. 2.24) showed b2 and f2 

coupled to the same 13C NMR carbonyl resonance at, 170.0 ppm, x2’, and e2 and j2 

coupled to the same 13C NMR carbonyl resonance at 171.1 ppm, y2’. Using the 

HSQC and HMBC NMR analysis as described previously for 31, the aromatic 

protons were assigned. The NOESY NMR spectrum (Fig. 2.28) shows a resonance at 

6.31 ppm, n2, corresponding to Hn2 (Fig. 2.23), interacting through space with the 

methylene ether linking protons of the methyl acetate ether unit, Hj2. The NOESY 

NMR spectrum (Fig. 2.28) also shows a resonance at 7.09 ppm, s2, corresponding to 

Hs2 (Fig. 2.23), interacting through space with the Hr2 protons, confirming the 

flattened partial cone conformation. The full assignment of both the 1H and 13C 

NMR spectrums are shown in Figures 2.23 and 2.25, respectively. 



 

75 

 

Figure 2.28. NOESY NMR spectrum of 3 in CDCl3. 

 

ASAP MS was carried out and the molecular ion was observed at 649.275 Da 

(100%), which is consistent with the empirical formula C40H41O8
+ (Fig. 2.29).  
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Figure 2.29. ASAP MS spectrum of 3. 

Further confirmation that 3 has been synthesised was observed through FT-IR 

spectroscopy where there was loss of a OH absorption at 3292 cm-1 and the presence 

of a new carbonyl absorption at 1760 cm-1. Additionally, CHN analysis was carried 

out with the results closely matching the predicted values; CHN expected = %C = 

74.06, %H = 6.22, %N 0.00; measured %C = 74.45, %H = 6.48, %N 0.00. 

 

2.2.4. 25,27-bis(prop-2-en-1-yloxy)-26,28-bis(ethanoloxy)-

calix[4]arene, 4 

 

Scheme 2.9. Synthesis of 4. 

Compound 4 was successfully synthesised, via the reduction of the ester moieties of 

3 (Scheme 2.9). 3 was added to a suspension of LiAlH4 in THF, leading to the 

complete reduction of ester functionality in a yield of 89%. A full characterisation is 

described below. 
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Figure 2.30. 1H NMR spectrum of 4 in CDCl3. 

The 1H NMR spectrum (Fig. 2.30) exhibits a doublet resonance with an integral set 

to four at 3.21 ppm, a, which has a J coupling of 13.5 Hz. The COSY NMR 

spectrum (Fig. 2.31) shows a exhibiting coupling to a doublet resonance at 4.38 

ppm, e. e has an integral of four and a J coupling of 13.5 Hz. Resonances a and e 

correspond to the methylene protons that bridge the aromatics, with a corresponding 

to the protons pointing up to the aromatic region and e corresponding to the protons 

pointing down to the oxy environment, Ha and He, respectively. The presence of two 

sets of doublets indicates that the calixarene exists in the cone conformation.6 The 1H 

NMR spectrum (Fig. 2.30) exhibits a multiplet resonance with an integral of four at 

3.88 ppm, b. The COSY NMR spectrum (Fig. 2.31) shows b exhibiting coupling to a 

multiplet resonance at 4.17 ppm, c, and a triplet resonance at 4.79 ppm, f, which 

have integrals of four and two, respectively. Additionally, the COSY spectrum 

shows that resonances c and f do not couple. Therefore, resonances b, c and f 

correspond to the ethanol ether moiety. f exhibits no HSQC NMR (Fig. 2.32) 

coupling and has an integral of two, therefore corresponds to the proton of the 

hydroxyl moiety, Hf, which was further confirmed via a D2O shake. The fact that 

resonance f couples to b and not c indicates that b corresponds to the ethylene 
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protons next to the hydroxyl oxygen, Hb and c must therefore correspond to the 

ethylene protons next to the linking aryl ether oxygen, Hc. The 1H NMR spectrum 

(Fig. 2.30) exhibits a doublet resonance with an integral of four at 4.34 ppm, d.  

 

Figure 2.31. COSY NMR spectrum of 4 in CDCl3. 

The COSY NMR spectrum (Fig. 2.31) shows d exhibiting coupling to multiplet 

resonances at 5.28 ppm, 5.29 ppm and 6.20 ppm, g, h and j, respectively. 

Resonances d, g, h and i correspond to protons of the allyl moiety. Resonance d 

corresponds to the aryl ether linking aliphatic protons of the allyl moiety, Hb. 

Resonances g and h correspond to the terminal alkene protons in the cis and trans 

positions, Hg and Hh respectively, with respect to the non-terminal alkene proton. 

Resonance j corresponds to the non-terminal alkene protons of the allyl moiety, Hj. 

The 1H NMR spectrum (Fig. 2.30) exhibits a doublet resonance with an integral of 

four at 6.17 ppm, i, which has a J coupling of 7.6 Hz. The COSY NMR spectrum 

(Fig. 2.31) shows i exhibiting coupling to a triplet resonance at 6.28 ppm, k. k has an 

integral of two and a J coupling of 7.6 Hz. Resonances i and k correspond to the 

hydrogen atoms attached to one of the two types of aryl ether in the meta and para 

position, respectively with respect to the aryl ether oxygen. To ascertain if 

resonances i and k correspond to the aryl ether unit with the allyl moiety or the 
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ethanol moiety the HMBC NMR spectrum must be referred to and discussed later. 

The 1H NMR spectrum (Fig. 2.30) exhibits a triplet resonance with an integral of 

two at 6.99 ppm, l, which has a J coupling of 7.5 Hz. The COSY NMR spectrum 

(Fig. 2.31) shows l exhibiting coupling to a doublet resonance at 7.17 ppm, m. m has 

an integral of four and a J coupling of 7.5 Hz. Resonances l and m corresponds to 

the hydrogen atoms attached to one of the two types of aryl ether in the para and 

meta position, respectively with respect to the aryl ether oxygen. To ascertain if 

resonances l and m correspond to the aryl ether unit with the allyl moiety or the 

ethanol moiety the HMBC NMR spectrum must be referred to and discussed later. 

To ascertain which aromatic proton resonances belong to which aryl ether unit and 

assign the 13C NMR spectrum HSQC and HMBC NMR spectroscopy were carried 

out. The carbon atoms directly attached to hydrogen atoms could be easily assigned 

using a HSQC NMR experiment and are discussed below. 

 

Figure 2.32. HSQC NMR spectrum of 4 in CDCl3. 

The HSQC spectrum (Fig. 2.32) shows resonances a and e coupling to a 13C NMR 

resonance at 30.9 ppm, a’, corresponding to the bridging methylene carbon atom 

between the aromatics. The fact that the bridging methylene carbon atom resonance 

resides in the 31.0 ppm region indicates that the calixarene exists in a cone 
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conformation.11 Resonance b couples to a 13C NMR resonance at 61.7 ppm, b’, 

corresponding to the carbon atom next to the hydroxyl functionality of the ethanol 

ether moiety. Resonance c couples to a 13C NMR resonance at 77.3 ppm, c’, 

corresponding to the carbon atom next to the aryl ether oxygen of the ethanol ether 

moiety. Resonance d couples to a 13C NMR resonance at 77.4 ppm, d’, 

corresponding to the aliphatic methylene carbon atom of the allyl moiety. Resonance 

f exhibits no coupling to a 13C NMR resonance, therefore further confirming that f 

corresponds to the hydroxyl proton. Resonance g and h both couple to a 13C NMR 

resonance at 119.3 ppm, e’, corresponding to the terminal alkene carbon atom of the 

allyl moiety. Resonance i couples to a 13C NMR resonance at 128.0 ppm, h’, which 

corresponds to one of the meta carbon atoms of the aryl ether units. Resonance j 

couples to a 13C NMR resonance at 133.5 ppm, k’, corresponding to the non-

terminal alkene carbon atom of the allyl moiety. Resonance k couples to a 13C NMR 

resonance at 123.1 ppm, g’, which corresponds to one of the para carbon atoms of 

the aryl ether units. Resonance l couples to a 13C NMR resonance at 123.1 ppm, f’, 

which corresponds to one of the para carbon atoms of the aryl ethers. Resonance m 

couples to a 13C NMR resonance at 129.3 ppm, i’, which corresponds to one of the 

meta carbon atoms of the aryl ethers. To ascertain which aromatic protons belong to 

which of the aryl ether units the HMBC NMR spectrum must be referred to, 

additionally, the HMBC NMR spectrum allows for identification of quaternary 

carbons.  
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Figure 2.33. HMBC NMR spectrum of 4 in CDCl3. 

The HMBC NMR spectrum (Fig. 2.33) shows a 13C NMR resonance at 153.1 ppm, 

m’, coupling to 1H NMR resonances a, d, e and i. The fact that a coupling is 

observed between m’ and d, which corresponds to the aliphatic methylene protons of 

the allyl moiety indicates m’ corresponds to the ipso carbon of the aryl ether moiety 

with the allyl moiety attached. Additionally, the coupling between m’ and i indicates 

that i corresponds to the para protons of the aryl ether unit with the allyl moiety 

attached, Hi (Fig. 2.30), and therefore 1H NMR resonance k corresponds to the meta 

protons of the aryl ether unit with the allyl moiety attached, Hk (Fig. 2.30). The 

HMBC NMR spectrum (Fig. 2.33) shows a 13C NMR resonance at 157.3 ppm, n’, 

coupling to 1H NMR resonances a, c, e and m. The fact that a coupling is observed 

between n’ and c, which corresponds to the ether linking protons of the ethanol ether 

moiety, indicates n’ corresponds to the ipso carbon atom of the aryl ether moiety 

with the ethanol ether moiety attached. Additionally, the coupling between n’ and m 

indicates that m corresponds to the para protons of the aryl ether unit with the 

ethanol ether moiety attached, Hm (Fig. 2.30), and therefore 1H NMR resonance l 

corresponds to the meta protons of the aryl ether unit with the ethanol ether moiety 

attached, Hl (Fig. 2.30). The HMBC NMR spectrum (Fig. 2.33) shows a 13C NMR 

resonance at 133.1 ppm, j’, coupling to 1H NMR resonances a, e and k, therefore 
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corresponds to the ortho carbon atom of the aryl ether unit with the ethanol ether 

moiety attached. The HMBC NMR spectrum (Fig. 2.33) shows a 13C NMR 

resonance at 136.9 ppm, l’, coupling to 1H NMR resonances a, e and l, therefore 

corresponds to the ortho carbon atom of the aryl ether unit with the allyl moiety 

attached. The complete assignment of the 13C NMR spectrum is shown in Figure 

2.34. 

 

Figure 2.34. 13C NMR spectrum of 4 in CDCl3. 

ASAP MS was carried out and the molecular ion was observed at 593.290 Da 

(100%, which is consistent with the empirical formula C38H41O6
+ (Fig. 2.35). Two 

further major fragments were observed at 549.274 Da (23.51%) and 505.243 Da 

(48.84%) corresponding to the empirical formulas C36H7O5
+ and C32H35O4

+, 

respectively (Fig. 2.35). 
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Figure 2.35. ASAP MS spectrum of 4 

CHN analysis was carried out on 4, with the result closely matching the predicted 

values; CHN expected = %C = 77.00, %H = 6.80, %N 0.00; measured %C = 77.23, 

%H = 6.94, %N 0.00. 

 

2.2.5 25,27-bis(prop-2-en-1-yloxy)-26,28-bis(ethoxyester-2-bromo-

acetate)calix[4]arene, 5 

 

Scheme 2.10. Synthesis of 5 

The novel compound 5, was successfully synthesised via performing an 

esterification of 4 with the acyl bromide, 2-bromopropionyl bromide, in the presence 

dichloromethane 
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of TEA, used as a scavenger for the HBr side product (Scheme 2.10). The reaction 

was completed within two hours obtaining a 78% yield after column 

chromatography purification.  

 

Figure 2.36. 1H NMR spectrum of compound 5 in CDCl3. 

The 1H NMR spectrum (Fig. 2.36) exhibits a doublet resonance at 1.87 ppm, a, with 

the integral set to six and a J coupling of 6.8 Hz, which corresponds to Ha. The 

COSY NMR spectrum (Fig 2.37) shows that a couples with a quartet resonance at 

4.45 ppm, f. f has an integral of two and has a J coupling value of 6.8 Hz, therefore 

must correspond to Hf (Fig. 2.36). With Ha and Hf exhibiting integrals of six and 

two, respectively, suggests that the desired addition of two acyl bromide groups was 

achieved. A singlet resonance is observed at 3.68 ppm, c (Fig. 2.36), which is 

overlapped by a multiplet resonance from 3.60-3.72 ppm, b. The presence of a 

singlet resonance, c, corresponding to the methylene protons, Hc, indicates that the 

calixarene is in a 1,3-alternate conformation opposed to the cone conformation as 

observed in the previous systems. To assign the resonance signal b accurately the 

COSY NMR spectrum must be consulted. b exhibits coupling to itself and e only, 

therefore must correspond to Hb or He. To distinguish between Hb and He, the HSQC 

and HMBC NMR spectrum must be analysed and is discussed later. The 1H NMR 
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spectrum (Fig. 2.36) exhibits two overlapped multiplet resonances at 4.15 ppm and 

4.16 ppm, d and e, respectively, and has an overall integral of eight. It can be 

observed from the COSY NMR spectrum (Fig 2.37), as discussed above, e couples 

to b and corresponds to Hb and He. The resonance signal d couples to g and i. In the 
1H NMR spectrum (Fig. 2.37) the resonances at 5.08 ppm, 5.14 ppm and 5.84 ppm, 

corresponding to g, h and I, respectively are produced from the alkene of the allyl 

moiety. i exhibits a multiplet resonance and corresponds to the hydrogen atom Hi 

(Fig 2.36), therefore couples to three non-degenerate hydrogen atoms, He, Hg and Hh  

and has an integral of two. g exists as a double doublet resonance and has a J1 

coupling of 17.2 Hz. h also exists as a double doublet resonance but has a J1 

coupling of 10.8 Hz. Both g and h correspond to the terminal hydrogen atoms of the 

allyl moiety, with g in the trans position, Hg, and h in the cis position, Hh, relative to 

the stereo chemical position of Hi. As stated above in the COSY NMR spectrum (Fig 

2.37) resonance d couples to g and i, Hg and Hi, respectively, therefore d must 

correspond to the hydrogen atom of the ether linkage of the allyl moiety, Hd (Fig 

2.36). The 1H NMR spectrum (Fig 2.36) exhibits a triplet resonance at 6.69 ppm, j; a 

multiplet resonance at 6.80 ppm, k; a doublet resonance at 6.99 ppm, l; and what 

appears to be a triplet resonance at 7.09 ppm, m, which all correspond to the 

aromatic hydrogen atoms. To ascertain which aromatic hydrogen atoms couple and 

therefore belong to the same aromatic system the COSY NMR spectrum was 

consulted (Fig. 2.37). 
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Figure 2.37. 1H COSY NMR spectrum of 5 in CDCl3, showing the coupling between protons. 

The 1H COSY NMR spectrum (Fig. 2.37) shows that j couples with l, and k couples 

with m. j has an integral of two and l has an integral of four (Fig 2.36), therefore it 

can be deduced that j corresponds to the hydrogen atoms para to oxygen of two of 

the aryl ether units corresponding to Hj, and l corresponds to the hydrogen atoms in 

the meta position of the same aryl ether system, Hl. k has an integral of two and m 

has an integral of four (Fig 2.36), therefore it can be deduced that k corresponds to 

the hydrogen atoms para to oxygen of two of the aryl ether units corresponding to 

Hk, and m corresponds to the hydrogen atoms in the meta position of the same aryl 

ether system, Hm. To ascertain which aromatic hydrogen atoms, Hj and Hk, and Hl 

and Hm, belong to which of the two types of aromatic rings, 13C NMR, HSQC NMR 

and HMBC NMR spectroscopy was carried out and were fully analysed. Firstly the 

HSQC NMR spectrum was analysed, as the majority of 13C NMR resonances could 

be assigned (Fig. 2.38). 
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Figure 2.38. HSQC NMR spectrum of compound 5 in CDCl3, showing coupling between various hydrogen and 

carbon atoms. 

The HSQC NMR spectrum (Fig. 2.38) shows resonance a, couples to a 13C NMR 

resonance at 21.8 ppm, a’, corresponding to the methyl carbon atom next to the alkyl 

bromide moiety. Additionally, the fact that the resonance phasing of the coupling 

between a’ and a is blue indicates it is either a methyl or methine carbon 

environment that further indicates the methyl carbon assignment. Resonance b 

couples to a 13C NMR resonance at 68.8 ppm, e’, with a blue phasing, corresponds to 

the carbon atom bonded to the hydrogen atoms of either Hb or Hd. The HMBC NMR 

spectrum is required to distinguish between Hb or Hd and is discussed later. The 

HSQC NMR spectrum (Fig. 2.38) shows resonance c couples to a 13C NMR 

resonance at 36.9 ppm, b’, corresponding to the bridging methylene carbon atom, 

which is further confirmed by the fact the coupling resonance phasing between c to 

b’ is blue, indicating it is a methylene environment. Confirmation of the 1,3-alternate 

conformation is brought about by the chemical shift of b’ at 36.9 ppm, as it is well 

documented that a bridging methylene of a calix[4]arene with a chemical shift 

around 37 to 38 ppm corresponds to a anti conformation between aromatics either 

side of the bridge.7 d couples to a 13C NMR resonance at 71.8 ppm, f’, corresponding 

to the ether linking ethylene carbon atom of ether ethylene ester. The resonance 
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signals of g and h couple to a single 13C NMR resonance at 116.2 ppm, g’, 

corresponding to the terminal alkene carbon atom of the allyl moiety. Resonance i 

couples to a 13C NMR resonance at 133.9 ppm, l’, which corresponds to the carbon 

atom at the non-terminal end of the allyl moiety. Resonances j and k couple to a 

single 13C NMR resonance at 122.5 ppm, h’, which corresponds to the para carbon 

atoms of the aryl ethers units. Resonance l couples to a 13C NMR resonance signal at 

131.0 ppm, j’, which corresponds to one of the meta carbon atoms of one of the aryl 

ether units. Resonance m couples to a 13C NMR resonance at 130.0 ppm, i’ which 

corresponds to one of the meta carbon atoms of one of the aryl ether units. Using 

HMBC NMR spectroscopy the hydrogen and carbon atoms of the different aryl ether 

rings could be assigned accurately and the quaternary carbon atoms could 

additionally be assigned accurately with respect to position within the aromatic rings 

and which aryl ether system they belong too.  

 

Figure 2.39. HMBC NMR spectrum of compound 5 in CDCl3, showing coupling between multiple bonds of 

various hydrogen and carbon atoms. 

The HMBC NMR spectrum (Fig. 2.39) shows b couples to d’, and e couples to e’ 

and p’. The 13C NMR resonance at 170.4 ppm, p’, corresponds to the carbon of the 

carbonyl moiety (Fig. 2.40). Therefore, resonance e corresponds to He (Fig. 2.36) 

and resonance b corresponds to Hb (Fig. 2.36). As confirmed by HSQC NMR 
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spectroscopy (Fig. 2.38), b couples to e’ and e couples to d’, therefore the 13C NMR 

resonance d’ corresponds to the ethylene carbon atom next to the ester moiety and e’ 

corresponds to the ethylene carbon atom linking the ethylene ester moiety to the 

aromatic ring. The HMBC spectrum (Fig. 2.39) shows d couples a resonance at 

156.2 ppm, o’, therefore o’ corresponds to the ipso carbon atom of the aryl ether 

allyl moiety. The correct assignment of o’ is further confirmed by the fact that a 

coupling is observed to k and m, which correspond to Hk and Hm, respectively (Fig. 

2.36). m’ exhibits no coupling in the HSQC spectrum (Fig 2.38) but exhibits strong 

coupling in the HMBC spectrum (Fig. 2.39) to k, m, and c, corresponding to Hk, Hm 

and Hc, respectively, therefore must correspond to the ortho carbon atom of the aryl 

ether allyl moiety. The final two unassigned 13C NMR resonances at 133.4 ppm and 

155.4 ppm, which correspond to k’ and n’ respectively must be the ipso and ortho 

carbon atoms of the aryl ether ethylene ester moiety. The HMBC spectrum (Fig 

2.39) shows k’ coupling to c and j, therefore corresponds to the ortho carbon atom of 

the aryl ether ethylene ester moiety. n’ exhibits no coupling in the HSQC spectrum 

but exhibits coupling in the HMBC spectrum (Fig. 2.39) to l, j and c, therefore must 

correspond to the ipso carbon atom of the ethylene ester aryl ether moiety. The 

complete 13C NMR assignment is shown in Figure 2.40. 

 

Figure 2.40. 13C NMR spectrum of compound 5 in CDCl3. 
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ASAP MS was carried out and the molecular ion was observed at 862.162 Da 

(100%, [M]+), which is consistent with the empirical formula C44H47Br2O8
+ (Fig. 

2.41).  Several other fragments were observed and are illustrated in Figure 2.41. 

  

Figure 2.41. ASAP MS sprectrum of compound 5. 

CHN analysis was carried out with the results closely matching the predicted values. 

CHN Expected = %C = 62.26, %H = 5.38, %N = 0.00; Measured %C = 62.11, %H = 

5.36, %N = 0.00. 
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2.2.6. 25,27-bis(3-(hydroxyethyl)thioether-propan-1-yloxy)-26,28-

bis(ethoxyester-2-bromo-acetate)calix[4]arene, 6 

 

Scheme 2.11. Synthesis of 6. 

The novel compound 6, was successfully synthesised via performing  photo initiated 

thiol-ene “click” chemistry on the double bonds of the allyl moiety (Scheme 2.11). 

The hydrothiolation of C=C bonds (thiol-ene reaction) has been known since 1905.12 

Thiol-ene reactions are most commonly conducted under radical conditions, which 

can be initiated thermally but more often photochemically. In 2007, Schlaad et al. 

recognised thiol-ene as a “click” reaction.13 Their identification was recognition of 

the simple, robust and highly efficient nature of the reaction. The radical reaction 

proceeds via a step growth process. The proposed mechanism involves the formation 

of a thiyl radical, which is produced on exposure to a UV source. The thiyl radical 

adds across the double bond in an anti-Markovnikov fashion, leaving a carbon 

centred radical, which then undergoes a chain transfer reaction in which a hydrogen 

radical is abstracted from a thiol moiety, thus generating a new thiyl radical (Scheme 

2.12). Termination occurs via radical coupling mechanisms.14 

 

Scheme 2.12. The radical-mediated thiol-ene reaction mechanism. 

Compound 5 was exposed to 30 seconds of a wide emission UV spectrum at an 

intensity of 200 W cm-2 in the presence of an excess of 2-mercaptoethanol. A yield 

of 92% was achieved, after carrying out flash column chromatography.  

 dichloromethane 
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Figure 2.42. 1H NMR spectrum of compound 6 in CDCl3. 

The stacked 1H NMR spectra (Fig. 2.42) showed that the resonance for the allyl 

moiety of 5 had disappeared. A full analysis of 6 is discussed below. 
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 Figure 2.43. 13C NMR spectrum of compound 6 in CDCl3. 

The 1H NMR spectrum (Fig. 2.43) was fully assigned in combination with a COSY 

NMR experiment (Fig. 2.44). The 1H NMR spectrum (Fig. 2.43) exhibits a multiplet 

resonance at 1.63 ppm, a. From the COSY NMR spectrum (Fig. 2.44), a exhibits 

coupling to resonance signals c and f, thus a must correspond to the hydrogen atoms 

on the second carbon atom along of the propylene ether and thio linker, Ha, due to 

the fact that Ha is the only hydrogen atom that should exhibit COSY coupling to two 

different hydrogen atoms. Additionally, it is the most up-field resonance due to it 

being the least de-shielded hydrogen atom of the system, which would be expected 

for a aliphatic hydrogen atom coupled to two other aliphatic hydrogen atoms. 1H 

NMR resonances c and f must therefore correspond to the other two aliphatic protons 

of the propylene ether thio linking chain. Sulfur is less electron withdrawing than 

oxygen, thus the adjacent methylene protons to the sulfur would be expected to 

exhibit a resonance at a higher chemical shift relative to the methylene protons next 

to oxygen. The 1H NMR triplet resonance at 2.36 ppm, c, with an integral of four 

must correspond to the propylene hydrogen atoms next to the linking thio moiety, 

Hc, and the triplet resonance f, at 3.60 ppm with an integral of four, must therefore 

correspond to the propylene hydrogen atoms of the ether linkage, Hf. The position of 

Hf is further confirmed by HMBC NMR spectroscopy and is discussed in detail later. 

The 1H NMR spectrum (Fig. 2.43) exhibits a doublet resonance at 1.83 ppm, b, 

which has an integral of six and a J1 coupling of 8.0 Hz. The COSY NMR spectrum 

(Fig. 2.44) shows that b exhibits a coupling to a resonance signal at 4.38 ppm, j, 

which has an integral of two and a J1 coupling constant of 8.1 Hz. b and j exhibit no 

other COSY NMR coupling, therefore correspond to the methine and methyl 

hydrogen atoms of the ester functionality, with b and j corresponding to Hb and Hj 

respectively (Fig. 2.43). The 1H NMR spectrum (Fig. 2.43) exhibits a triplet 

resonance at 2.74 ppm, d, which has an integral of four and a J1 coupling of 7.0 Hz. 

The COSY NMR spectrum (Fig. 2.44) exhibits a coupling between resonances d and 

g. g corresponds to a triplet 1H NMR resonance at 3.76 ppm and has a J1 coupling 

constant of 7.0 Hz. d and g must correspond to the ethylene hydrogen atoms of the 

hydroxyl ethylene thioether moiety. As discussed above, sulfur is less electron 

withdrawing than oxygen, therefore d must correspond to the hydrogen atoms next 
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to the sulfur group, Hd, and g must correspond to the hydrogen atoms next to the 

hydroxyl moiety, Hg.  

 Figure 2.44. COSY NMR spectrum of compound 6 in CDCl3. 

The 1H NMR spectrum (Fig. 2.43) exhibits a triplet resonance at 3.56 ppm, e, and 

has an integral of four. The COSY NMR spectrum (Fig. 2.44) shows that e exhibits a 

coupling to a multiplet resonance at 3.84 ppm, i, which has an integral of four. The 
1H NMR resonances of e and i must correspond to the ethylene ether ester linkage 

hydrogen atoms, He and Hi, respectively. To determine the exact position of the 

hydrogen atoms, i.e. next to the ester moiety or the ether linkage the HMBC NMR 

spectrum must be consulted and is discussed later. The 1H NMR spectrum (Fig. 

2.43) exhibits a multiplet resonance at 6.84 ppm, k, which has an integral of four. 

The COSY NMR spectrum (Fig. 2.44) shows that k couples to a doublet resonance 

at 7.05 ppm, l, and a multiplet resonance at 7.10 ppm, m. Resonances l and m have 

integrals of four respectively. The fact that k is a multiplet resonance, has an integral 

of four and couples to l and m indicates this is an overlapping signal corresponding 

to the para hydrogen atoms of the two different types of aryl ether system, Hk. The 

fact that the resonance signal of k corresponds to two different types of hydrogen 

atom is further confirmed by HSQC NMR spectroscopy and is discussed later. 

Resonances l and m must therefore correspond to the meta hydrogen atoms of the 
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two different aryl ether systems, Hm and Hl. To determine which hydrogen atoms 

belong to which of the aryl ether system the HSQC and HMBC NMR spectrums 

must be referred to. 

 

Figure 2.45. HSQC NMR spectrum of compound 6 in CDCl3. 

Using HSQC NMR spectroscopy the majority of 13C NMR resonances were 

assigned. The HSQC NMR spectrum (Fig. 2.45) shows that a couples to a resonance 

at 30.1 ppm, c’, which corresponds to the second carbon atom along of the propylene 

ether and thio linker unit. Resonance b couples to a 13C NMR resonance at 21.8 

ppm, a’, and corresponds to the methyl of the ester moiety. Resonance c couples to a 
13C NMR resonance at 28.2 ppm, b’, and corresponds to the third methylene carbon 

atom along of the propylene ether and thio linker unit next to the sulfur. Resonance d 

couples to a 13C NMR resonance at 35.2 ppm, d’, and corresponds to the methylene 

carbon atom of the ethylene ether and thio linker unit next to the sulfur. Resonance e 

exhibits a coupling with a 13C NMR resonance at 67.5 ppm, i’, which corresponds to 

one of the carbon atoms of the ethylene ether ester linkage with the exact position 

being assigned through HMBC NMR spectroscopy and is discussed later. f exhibits 

a coupling to a 13C NMR resonance at 69.5 ppm, j’, which corresponds to the carbon 

atom next to the phenolic oxygen of the propylene ether and thio linking chain. g 
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couples to a 13C NMR resonance at 60.6 ppm, g’, which corresponds to the carbon 

atom next to the hydroxyl moiety of the hydroxyl ethylene thioether group. h 

couples to a 13C NMR resonance at 37.6 ppm, e’, which corresponds to the 

methylene carbon atom that bridges the aromatics. The fact that the 13C resonance 

for e’ resides at 37.6 ppm further indicates the calixarene molecule is in a 1,3-

alternate conformation.7 i couples to a 13C NMR resonance 64.5 ppm, h’, which 

corresponds to one of the carbon atoms of the ethylene ether ester linkage with the 

exact position being assigned through HMBC NMR spectroscopy and is discussed 

later. j couples to a 13C NMR resonance at 40.0 ppm, f’, which corresponds to the 

methine carbon atom of the ester moiety. k couples to a 13C NMR resonance at 122.7 

ppm, k’, which corresponds to the para carbon atom with respect to the phenolic 

oxygen of the aryl ether systems. l and m both couple to a 13C NMR resonance at 

129.7 ppm, l’, and correspond to the meta carbon atoms with respect to the phenolic 

oxygen of the aryl ether systems. To complete the assignment of the 13C NMR 

spectra and accurately assign the ethylene hydrogen atoms of the ethylene ether ester 

the HMBC NMR spectrum was analysed. 

 

Figure 2.46. HMBC NMR spectrum of compound 6 in CDCl3. 
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The HMBC NMR spectrum (Fig. 2.46) shows that e couples to a 13C NMR 

resonance at 155.9 ppm, n’. n’ additionally exhibits a coupling to l and k, 

corresponding to Hl and Hk respectively (Fig. 2.43), therefore n’ must correspond to 

the ipso carbon atom of the aryl ether system with the ethylene ester moiety 

adjoined, (Fig. 2.47). With n’ being assigned it was concluded that e must 

correspond to the hydrogen atoms of the ether linkage of the ethylene ester moiety, 

He (Fig. 2.43). The HMBC NMR spectrum (Fig. 2.46) shows that f couples to a 13C 

NMR resonance at 156.8 ppm, o’. o’ additionally exhibits coupling to resonances m 

and k, corresponding to Hm and Hk respectively (Fig. 2.43), therefore o’ must 

correspond to the ipso carbon atom of the aryl ether system with the propylene ether 

and thio linking chain adjoined (Fig. 2.47). The final 13C NMR resonance to be 

assigned is that of m’, which exhibits a resonance at 134.0 ppm. The HMBC NMR 

spectrum (Fig. 2.46) shows that m’ couples to resonances h and k, thus correspond 

to the ortho carbon atoms of both types of aryl ether systems, (Fig. 2.47). 

 

 

 

Figure 2.47. 13C NMR spectrum of compound 6 in CDCl3. 
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ASAP MS was carried out and the molecular ion was observed at 1019.182 Da 

(7.61%), which is consistent with the empirical formula C48H59Br2O10S2
+ (Fig. 2.48).  

The ASAP MS spectrum (Fig. 2.48) additionally shows major peaks corresponding 

to fragments of 6 at 941.180 Da (51.72%) and 180.074 Da (100%), which are 

consistent with the empirical formulae C46H53Br2O9S1
+ and C5H8BrO2

+, respectively. 

 

Figure 2.48. ASAP MS spectrum of compound 6. 

CHN analysis was carried out and the results obtained closely matched the predicted 

values. CHN Expected = %C = 57.38, %H = 4.41, %N = 0.00; Measured %C = 

57.48, %H = 4.56, %N = 0.00. 

 

2.3. Conclusion 
This chapter described the synthetic strategy employed for the synthesis of a novel 

A2B2 heterofunctional initiator that incorporated an alkyl halogen moiety required 

for SET-LRP and a primary hydroxyl moiety required for ROP. Calix[4]arene, 1, 

and 25,27-bis(prop-2-en-1-yloxy)calix[4]arene, 2,  are known compounds and were 

synthesised according to the literature.2,3 A full characterisation was performed on 
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both 1 and 2 to further the characterisation that had been carried out previously. The 

novel compound 25,27-bis(prop-2-en-1-yloxy)-26,28-bis(ethyleneacetate)-

calix[4]arene, 3, was successfully  synthesised via a Williamson ether synthesis 

between 2 and methyl chloroacetate and was fully characterised. 3 was taken 

forward and used as the precursor for the novel compound 25,27-bis(prop-2-en-1-

yloxy)-26,28-bis(ethanolxy)calix[4]arene, 4, which was synthesised via an ester 

reduction of 3. The novel compound 25,27-bis(prop-2-en-1-yloxy)-26,28-

bis(ethoxyester-2-bromo-acetate)calix[4]arene, 5, was successfully synthesised via 

an esterification reaction with 2-bromopropionyl bromide; a full characterisation was 

carried out. The final step was to incorporate a primary hydroxyl moiety, which was 

achieved via a photo initiated thiol-ene click reaction with the allyl moieties of 5 and 

2-mercaptoethanol, resulting in the successful synthesis of the novel compound 

25,27-bis(3-(hydroxyethyl)thioether-propan-1-yloxy)-26,28-bis(ethoxyester-2-

bromo-acetate)calix[4]arene, 6; a full characterisation of 6 was carried out. 
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Chapter 3 
Amphiphilic A2B2 Miktoarm Star 

Polymer with Calix[4]arene Core 
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3.0. Introduction 
Star polymers comprise of three or more linear polymer chains attached to a central 

core. Star polymers have attracted much attention due to their smaller hydrodynamic 

volumes and their lower melt, and solution viscosities relative to their linear 

counterparts with the same molecular weight.1,2 Based on the chemical composition 

of the polymer arm, star shaped polymers can be classified into two categories;  

homoarm (regular) and heteroarm (miktoarm) star shaped polymers. Regular star 

shaped polymers comprise of arms with identical chemical composition with similar 

molecular weights (Mn) originating from a central junction point. Conversely, 

miktoarm star shaped polymers contain two or more arms with different chemical 

compositions (Fig. 3.1).3,4  

 

Figure 3.1. Diagram depicting (a) regular star and (b) miktoarm star polymer. 

The synthesis of star polymers can be accomplished via one of the two strategies; 

“core first” and “coupling onto”.5,6 The “core first” strategy employs a 

multifunctional initiating core from which polymer arms are grown. The “core first” 

strategy allows for a precise number of arms via controlling the number of initiating 

sites on the core. The “coupling-onto” strategy employs coupling between a 

multifunctional core and a pre-formed polymer arm. Efficient coupling reactions, 

such as azide-alkyne “click” chemistry, allow the “coupling onto” strategy to 

synthesise high yielding and well-defined polymeric structures.  
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This chapter describes the synthesis of a novel amphiphilic A2B2 miktoarm star 

polymer, which employs the “core first” strategy. The multifunctional core 

encompasses two primary hydroxyls, which facilitate ring opening polymerisation 

(ROP) that will lead to the formation of a linear polymer bridged by a calixarene 

core. Two alkyl bromo moieties remain within the calixarene core, which facilitate 

single electron transfer living radical polymerisation (SET-LRP). The monomer 

selected for ROP was ε-caprolactone due to its biocompatibility and hydrophobic 

nature in its polymer form (poly(ε-caprolactone), PCL). To introduce an amphiphilic 

nature to the polymer system the monomer selected for SET-LRP was 2-

hydroxylethyl acrylate (HEA) that forms poly(2-hydroxylethyl-acrylate) (PHEA), 

which is a hydrophilic polymer. The combination of hydrophilic and hydrophobic 

arms attached to a central core will lead to interesting properties, such as self-

assembly in certain solvents. 
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3.1 Experimental 

3.1.1. Materials 
25,27-bis(3-(hydroxyethyl)thioether-propan-1-yloxy)-26,28-(ethoxyester-2-bromo-

acetate)calix[4]arene, 6, was synthesised according to Chapter 2.2.6. Tin(II) 2-

ethylhexanoate (92.5 – 100%) and tris[2-(dimethylamino)ethyl]amine (Me6TREN) 

was purchased from Sigma Aldrich and used without further purification. ε-

caprolactone (97%) was purchased from Sigma Aldrich and distilled before use. 

HEA (96%) was purchased from Sigma Aldrich and purified as follows: HEA was 

added to water (20% v/v) and washed with hexane ten times to remove the unwanted 

ethylene glycol diacrylate. The HEA monomer was collected via extraction with 

diethyl ether (five times), which was dried over magnesium sulfate and filtered. 

Hydroquinone (0.05%) was further added.7 Bare copper wire (24 standard wire 

gauge, diameter = 0.559 mm) was purchased from Fisher Scientific and was 

activated prior to use via dipping in concentrated nitric acid and then washing with 

water and drying. Chloroform, methanol, anhydrous dimethylformamide (DMF) and 

diethyl ether analytical grade solvents and concentrated nitric acid (~37%) were 

purchased from Fisher Scientific and used without further purification. Dry toluene 

was obtained from the Durham University Chemistry Department Solvent 

Purification Service (SPS). Deuterated chloroform (CDCl3) and deuterated DMF 

(DMF-d7) for NMR analysis was purchased from Apollo Scientific. 

 

3.1.2. Instrumentation 
1H and 13C NMR spectra were recorded using a Varian VNMRS 700 spectrometer 

operating at 700 MHz and 176 MHz respectively, with J values given in Hz. CDCl3 

or DMF-d7 was used as deuterated solvent for 1H and 13C NMR analysis and the 

spectra were referenced to the solvent traces at 7.26 ppm, 77.0 ppm and 8.03 ppm, 

163.15 ppm respectively. The following abbreviations are used in describing NMR 

spectra: s = singlet, d = doublet, t = triplet, q = quartet, quin = quintet, s = sextet, m = 

multiplet, b = broad, o = overlapped, dd = doublet of doublets, dq = doublet of 

quartets. 2D NMR experiments were also used to fully assign the proton and carbon 

environments in the products. 1H-1H Correlation Spectroscopy (COSY) 

demonstrated proton-proton correlations over two or three bonds. 1H-13C 
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Heteronuclear Shift Correlation Spectroscopy (HSQC) demonstrated correlation 

between directly bonded proton and carbons atoms. 1H-13C Heteronuclear Multiple-

Bond Correlation (HMBC) demonstrated the correlation between proton and carbon 

environments through several bonds.  

 

Fourier transform-infra-red (FT-IR) spectroscopy was conducted using a Perkin 

Elmer 1600 series spectrometer.  

 

Measurements of molecular weight (Mn and Mw, corresponding to the number 

average and weight average molecular weight, respectively), and dispersity (Ɖ) of 

polymers synthesised were carried out via Size Exclusion Chromatography (SEC) on 

a Viscotek TDA 302 with triple detectors: refractive index, light scattering and 

viscosity. The columns used were PLgel 2 x 300 mm 5 µm mixed C, that have a 

linear range of molecular weight from 2.0 x 102 – 2.0 x 106 g mol-1. The solvent used 

was THF or DMF at flow rates and temperatures at 1.0 mL min-1, 35 oC and 1.0 mL 

min-1, 70 oC respectively. The detectors were calibrated using narrow molecular 

weight distribution linear polystyrene or polyethylene glycol standards. 

Differential scanning calorimetry (DSC) was carried out using a TA Instrument 

Q1000 DSC, ran in N2 gas, with a flow rate of 30 mL min-1 and a heating rate of 10 
oC min-1.  

Thermogravimetric analysis (TGA) was carried out using a Perkin Elmer Pyris 1 

TGA connected to a HIDEM HPR20 MS, ran in N2 gas with a heating rate of 10 oC 

min-1. 

 

3.1.3. Synthesis of Calixarene-PCL100 macro-initiator, 7 
To a Schlenk vessel charged with a magnetic stirrer, 25,27-bis(3-

(hydroxyethyl)thioehterl-propan-1-yloxy)-26,28-bis(ethoxyester-2-bromo-

acetate)calix[4]arene, 6 (0.100 g, 0.01 mmol) was added. The system was sealed, 

evacuated and then purged with argon (Ar), which was repeated three times. Under 

Ar, freshly dried and distilled ε-caprolactone (2.18 mL, 1.965 mmol) was added via 

cannula. To the colourless solution, Sn(Oct)2 (0.23 M, 0.022 mL) in dried toluene 
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was injected in; the reaction mixture was heated to 120 oC and stirred continuously 

for 24 h, forming a very viscous white/pale brown residue. The residue was 

dissolved in minimal chloroform and then precipitated into methanol; the 

precipitation process was repeated three times. The precipitated polymer was filtered 

and collected, resulting in a white fluffy material. Mass = 2.228 g, yield = 95%. νmax 

(Perkin Elmer FT-IR, Diamond, cm-1). 3441 (w, OH), 2850-2990 (s, CH), 1721 (s, 

C=O). 1H NMR (700 MHz, CDCl3) δ: .35 (quin, 391Ha, J = 7.9 Hz), 1.61 (sex, 

772Hb, J = 7.8 Hz), 1.79 (d, 6Hc, J = 7.0 Hz), 2.27 (t, 388Hd, J = 7.6 Hz), 2.71 (m, 

4He), 3.61 (t, 5Hf, J = 6.6 Hz), 4.03 (t, 380Hg, J = 6.7 Hz),  4.18 (m, 4Hh), 4.33 (q, 

2Hi, J = 7.0 Hz) 6.68 – 6.84 (m, 4Hj), 6.95 – 7.07 (m, 8Hk). 13C NMR (176 MHz, 

CDCl3) δ: 21.6 (a’), 24.6 (b’), 25.6 (c’), 28.1 (d’), 28.4 (e’), 30.2 (f’), 34.2 (g’), 40.2 

(h’), 62.5 (i’), 63.1 (j’), 64.2 (k’), 129.6 (l’), 170.3 (m’), 173.4 (n’). SEC (THF) Mn 

= 2.2 x104 g mol-1, Mw = 3.7 x 104, Ɖ = 1.7. DSC , Tm = 51.53 oC, Tc = 32.67 oC, 

%crystallinity = 31.43%. TGA, Onset X1 = 264.85 oC, Onset X2 = 336.86 oC, ΔY1 = 

94.149%, ΔY2 = 5.851%. 

 

 

 

 

 

 

Figure 3.2. Labelling of the chemical environments in 7 (a) proton (b) carbon. 
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3.1.4. Synthesis of Calixarene-starPCL100PHEAm Miktoarm Star 

Polymer, 8-10 - Typical Polymerisation Procedure 
To a Schlenk vessel charged with a magnetic stirrer, 7 (0.100 g, 0.001 mmol), 

activated copper wire (2 cm, activated using nitric acid) and CuBr2 (0.001 g, 0.005 

mmol) were added. The system was evacuated and purged with Ar. Dry DMF (0.5 

mL) was added via a syringe. HEA (appropriate amount for desired Mn) was further 

added under Ar. The pale white/colourless solution was deoxygenated with dry Ar 

for 0.5 h. To initiate the polymerisation a deoxygenated stock solution of Me6TREN 

in DMF (0.03 mL, 0.02518 M) was injected in, the solution remained colourless. 

The reaction mixture was stirred at 25 oC for 16 h, leading to a very pale blue 

translucent viscous solution. Further DMF (appropriate amount) was added to the 

reaction vessel; the free flowing solution was precipitated into diethyl ether, the 

precipitation process was carried out a further two times. The white precipitate was 

collected and further washed with diethyl ether and chloroform resulting in a tacky 

white material. Yield = 63-75%. νmax (Perkin Elmer FT-IR, Diamond, cm-1). 3441 

(w, OH), 2850-2990 (s, CH), 1721 (s, C=O). 1H NMR (700 MHz, DMF-d7) δ: 1.38 

(quin, 400Ha, J = 7.0 Hz), 1.62 (sex, 772Hb, J = 8.2 Hz), 151-179 (m, 1100Hc), 2.27 

(t, 388Hd, J = 7.2 Hz), 2.37-2.56 (m, 560He), 3.72 (s, 1140Hf), 4.03 (t, 380Hg, J = 

6.3 Hz), 4.14 (m, 1077Hh), 4.85 (s, 543Hi), 6.71-6.85 (m, 4Hj), 7.08-7.22 (m, 8Hk). 
13C NMR (176 MHz, DMF-d7) δ: 24.7 (a’), 25.5 (b’), 28.5 (c’), 33.9 (d’), 35.9 (e’), 

41.6 (f’), 59.9 (g’), 63.9 (h’), 66.3 (i’), 173.2 (j’), 174.8 (k’). MnNMR = 4.0 – 8.2 x104 

g mol-1. SEC (DMF), Mn = 4.0 – 8.2 x104 g mol-1, Ɖ = 1.8 – 2.4. 
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Figure 3.3. Labelling of the chemical environments in 8-10 (a) proton (b) carbon. 
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3.2. Results and discussion 

3.2.1. Calixarene-PCL100, 7  

 

Scheme 3.1. ROP of ε-caprolactone using heterofunctional calix[4]arene based initiator. 

The primary hydroxyls of 6 was used to ROP ε-caprolactone using Sn(Oct)2 with the 

reaction run in bulk, leading to a linear PCL with bridging calix[4]arene core 

(Scheme 3.1). A monomer to initiator to catalyst ratio of 200:1:0.05 was used to 

target a molecular weight of 2.0 x 104 g mol-1, therefore a degree of polymerisation 

(DP) of 100 per arm. The polymer has been fully analysed and the results are 

discussed below. 

6 7 
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Figure 3.4. 1H NMR spectrum of 7, in CDCl3. 

The 1H NMR spectrum (Fig. 3.4) shows the resonances of the calixarene initiator 

aromatic ring CH protons, with two multiplets observed at 6.68-6.84 and 6.95-7.07 

ppm, j and k, corresponding to Hj and Hk, respectively. The mulitplets are observed 

due to the many different conformations of the calixarene core present. j and k had 

their integral values set to four and eight, respectively, with the DP of the PCL 

determined with respect to these values. The 1H NMR spectrum (Fig. 3.4) shows the 

resonances for the PCL backbone protons a, b, d, f and g. A quintet resonance with 

an integral of 391 is observed at 1.35 ppm, a, corresponding to the hydrogen atoms 

of the PCL on the third carbon atom with respect to the carbonyl carbon atom, Ha. A 

sextet resonance with an integral of 772 is observed at 1.61 ppm, b, corresponding to 

the methylene hydrogen atoms of the PCL on the second and fourth carbon with 

respect to the carbonyl carbon, Hb.  A triplet resonance with an integral of 388 is 

observed at 2.27 ppm, d, corresponding to the methylene hydrogen atoms of the PCL 

on the first carbon atom with respect to the carbonyl carbon atom, Hd. A triplet 

resonance with an integral of 380 is observed at 4.03 ppm, g, corresponding to the 

methylene hydrogen atoms of the PCL backbone on the fifth carbon atom with 

respect to the carbonyl carbon atom, Hg. A triplet resonance with an integral of five 

is observed at 3.61 ppm, f, corresponding to the PCL methylene protons conjoint 
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with the hydroxyl moiety on the fifth carbon of the end chain, Hf. Hf has an integral 

greater than four due to it overlapping a second resonance. Due to the low 

concentration of calixarene core with respect to PCL, and the broadness of the PCL 

resonances, not all of the calixarene core proton resonances could be observed 

clearly, therefore not all protons could be accounted for.  

 

Figure 3.5. 1H COSY NMR spectrum of 7 in CDCl3. 

The 1H NMR spectrum (Fig. 3.4) shows a doublet resonance with an integral of six 

at 1.79 ppm, c, and a J1 coupling constant of 7.0 Hz, which corresponds to the 

methyl protons of the bromopropanoate moiety, Hc. The COSY NMR spectrum (Fig. 

3.5) shows resonance c exhibiting a coupling to a quartet multiplicity resonance at 

4.33 ppm, i. The 1H NMR spectrum (Fig. 3.4) shows that i has an integral of two and 

a J1 coupling constant of 7.0 Hz, therefore corresponds to the methine protons of the 

bromopropanoate moiety, Hi. To further characterise the 1H NMR spectrum, more 

in-depth analysis was required. The 13C NMR spectrum (Fig. 3.8) exhibits a 

resonance at 173.6 ppm, n’, which corresponds to the ester carbonyl carbon atom of 

the PCL. The HMBC NMR spectrum (Fig. 3.6) shows that n’ exhibits a coupling to 

a 1H NMR resonance at 4.20 ppm, h. The 1H NMR resonance h corresponds to the 

ethylene protons next to the ether oxygen linking the calixarene core to the PCL, Hh 
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(Fig. 3.4). The fact that a multiple bond coupling was observed between m’ and h 

confirms that the hydroxyl of the calixarene core was the initiation site for the ROP 

of the ε-caprolactone, and there is a covalent bond between the calixarene core 

initiator and PCL, therefore it can be concluded that the calixarene core is 

chemically bound opposed to physically bound. The COSY NMR spectrum (Fig. 

3.5) shows h exhibiting a coupling to a multiplet resonance at 2.71 ppm, e, which 

corresponds to the ethylene protons next to the thio ether sulfur linking the 

calixarene core to the PCL, He (Fig. 3.5). 

 

Figure 3.6. HMBC NMR spectrum of 7 in CDCl3. 

Using HSQC NMR spectroscopy the carbon atoms directly attached to hydrogen 

atoms could be easily assigned. The HSQC NMR spectrum (Fig. 3.7) shows a 

couples to a 13C NMR resonance at 25.6 ppm, c’, corresponding to the third carbon 

atom along of the PCL with respect to the carbonyl carbon atom. Resonance b 

exhibits coupling to two 13C NMR resonances, at 24.6 ppm, b’; and 28.4 ppm, e’; 

corresponding to the second and fourth carbon atoms along of the PCL with respect 

to the carbonyl carbon atom, respectively. Resonance c exhibits coupling to a 13C 

NMR resonance at 21.7 ppm, a’, corresponding to the methyl carbon atom of the 

bromopropanoate moiety. Resonance d exhibits coupling to a 13C NMR resonance at 
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34.2 ppm, g’, corresponding to the first carbon atom along of the PCL with respect 

to the carbonyl carbon atom. Resonance e exhibits coupling to a 13C NMR resonance 

at 62.5 ppm, f’, corresponding to the ethylene carbon atom next to the thio ether 

sulfur linking the calixarene core to the PCL. Resonance f exhibits coupling to a 13C 

NMR resonance at 30.5 ppm, i’, which corresponds to the methylene carbon atom 

next to the terminus PCL hydroxyl moiety. Resonance g exhibits coupling to a 13C 

NMR resonances at 64.2 ppm, k’, which corresponds to the non-terminus fifth 

carbon atom along of the PCL with respect to the carbonyl carbon atom. Resonance 

h exhibits coupling to a 13C NMR resonances at 63.2 ppm, j’, which corresponds to 

the ethylene carbon atom next to the ether oxygen linking the calixarene core to the 

PCL. Resonance i exhibits coupling to a 13C NMR resonance at 39.9 ppm, h’, which 

corresponds to the methine carbon atom of the bromopropanoate moiety. Resonance 

k exhibits coupling to a 13C NMR resonance at 129.7 ppm, l’, which corresponds to 

meta carbon atom of the of the calixarene core with respect to the aryl ether oxygen. 

Resonance j exhibits coupling in the HSQC spectrum but due to the low 

concentration of calixarene core a 13C NMR resonance is not observed. 

 

Figure 3.7. HSQC NMR spectrum of product of the ring opening polymerisation of ε-caprolactone using 6, in 

CDCl3. 
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By comparing the 13C NMR spectrum of 6 and 7 the 13C NMR resonances at 28.1 

ppm and 170.3 ppm could be assigned, corresponding to the propylene carbon atom 

next to the sulfur of the thio ether of the calixarene core and the carbonyl of the 

bromopropanoate moiety respectively. As expressed previously due to the low 

concentration of calixarene core relative to PCL backbone not all 1H and 13C NMR 

resonances could be fully assigned, but what could be assigned in the 13C NMR 

spectrum is shown in Figure 3.8. 

 

 

Figure 3.8. 13C NMR spectrum of 7 in CDCl3. 

As expressed previously, 1H NMR (Fig. 3.4) resonances j and k had their integral 

values set to four and eight respectively, with the DP of the PCL being determined 

with respect to these values. From the 1H NMR, comparing resonances j and k, the 

molecular weight (Mn) was calculated to be 2.2 x 104 g mol-1. Each ε-caprolactone 

unit has a molecular weight of 114.14, therefore the total number of units in the PCL 

is 193, thus if the length of each arm was the same, 193 corresponds to ~97 units per 

arm. To further characterise 7, size exclusion chromatography (SEC) was carried 

out. The chromatogram is shown in Figure 3.9. 
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Figure 3.9. SEC chromatogram of 7, using THF as the eluent at 1 mL min-1 and the molecular weights 

determined with respect to polystyrene standards. 

The SEC chromatogram (Fig. 3.9) shows a slightly broad distribution at 13.8 mL, 

with a lower molecular weight shoulder being observed at 14.5 mL. Using a 

conventional calibration method (polystyrene standards), the number average 

molecular weight (Mn) and a weight average molecular weight (Mw) were calculated 

to be 2.2 x 104 g mol-1 and 3.7 x 104 g mol-1, respectively. The dispersity, Ɖ (Ɖ = 

Mw/Mn) was calculated to be 1.68. The relatively high dispersity indicates that there 

was a lack of control over the polymerisation and that the DP of each arm is not 

likely to be equal, suggesting that the rate of initiation of the system is slower than 

the rate of propagation. The Mn calculated via SEC agrees with what was calculated 

through 1H NMR spectroscopy. Table 3.1 illustrates the theoretical and measured 

molecular weights and dispersity measured. 

Table 3.1. Characterisation of 2. 

Sample  Mn(theo) 

g mol-1 

Mn(NMR) 

g mol-1 

Mn(SEC) 

g mol-1 

Ɖ 

7  2.0 x 104  2.2 x 104  2.2 x 104  1.68 
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7 was further characterised by differential scanning calorimetry (DSC) and 

thermogravimetric analysis (TGA). The DSC (Fig. 3.10) shows on the second scan 

that 2 had an endotherm (melting transition, Tm) and exotherm (crystallisation 

transition, Tc) at 51.53 oC and 32.67 oC, respectively. The degree of crystallinity 

(%Х) was calculated according to equation 1.8 

      %Х = 100(ΔHc / ΔHco)     (1) 

Where ΔHc is the enthalpy of crystallinity and ΔHco is the standard enthalpy of 

crystallinity  for PCL, which is 139.5 J g-1.9 %Х was calculated to be 31.43%. It 

is reported that neat linear PCL has a %Х of 46.72%.8 Thus, the architecture of 

2 has reduced the crystallinity of PCL, which is likely to be a resultant of the 

packing fashion of the PCL, as not all the arms can line up in an orderly fashion 

due the presence of the calixarene cores. 

 

Figure 3.10. DSC of 7, run in N2 gas, with a flow rate of 30 mL min-1 and a heating rate of 10 oC min-1.  

The TGA thermogram (Fig. 3.11) shows 7 has two distinct thermal events 

corresponding to the decomposition of PCL. The first (X1) and second (X2) thermal 

events of the decomposition of PCL had onsets of 264.85 oC and 336.86 oC, 

respectively.  

 

Tc 

Tm 
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Figure 3.11. TGA of 7, run in N2 gas with a heating rate of 10 oC min-1. Red line = TGA trace, blue dashed line = 

first derivative. 

Two distinct thermal events are observed due to a thermal degradation that involves 

a double mechanism.10 The first degradation process implies a statistical rupture of 

the PCL chains via ester pyrolysis reaction. The produced products of the ester 

pyrolysis are H2O, CO2 and 5-hexenoic acid (Scheme 3.2). 

 

Scheme 3.2. First thermal degradation of PCL, via an ester pyrolysis reaction. 

The second degradation process is an unzipping depolymerisation, which results in 

ε-caprolactone (cyclic monomer starting material) (Scheme 3.3). 

 

Scheme 3.3. Second degradation process via unzipping depolymerisation 

A first derivative of the TGA thermogram was calculated (blue dashed line, Fig. 

3.11), which indicates the point of the greatest rate of change; two inflection points 

were observed, clearly showing the two degradation processes for PCL. The 

percentage of PCL was calculated to be 94.149% (ΔY1). A ΔY2 was calculated to be 

Onset X2 = 336.86 oC 

Onset X1  = 264.85 oC 

ΔY1 = 94.149% 

ΔY2 = 5.851% 
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5.851%, starting from 398.10 oC, which corresponds to the percentage of calixarene. 

The 1H NMR spectrum (Fig. 3.4) indicates that there are ~193 units to the PCL per 

calixarene core, therefore a Mn ratio of 22,000:1019, which corresponds to 95.57% 

PCL and 4.43% calixarene core. From TGA, looking at ΔY1 and ΔY2, the 

percentages of PCL and calixarene core were calculated to be 94% and 6%, 

respectively, which is close to the calculated value through 1H NMR spectroscopy 

but is not an exact match. 

 

3.2.2. Amphiphilic Miktoarm Star polymer, 8 - 10 

 

Scheme 3.04. SET-LRP of HEA using 7 macro-initiator leading to the formation of an A2B2 miktoarm star 

polymer, calixarene-A2B2starPCL100PHEAn, 8 - 10. 

The synthesis of an amphiphilic A2B2 Miktoarm star polymer was carried out via a 

copper(0) mediated radical polymerisation, SET-LRP, using 7, as a macro-initiator 

(Scheme 3.04). The hydrophilic monomer utilised was 2-hydroxylethyl acrylate 

(HEA) (Scheme 3.04). The reaction used activated copper wire in the presence of the 

multidentate amine ligand, Me6TREN, in the aprotic polar solvent DMF. CuBr2 (5%) 

was added to the reaction system to give control at the early stages of the reaction 

due to Cu(II) ability to act as a deactivator as discussed in the introduction. A 

monomer to initiator to CuBr2 to ligand ratio of X:1:0.05:0.18 was used to target 

various molecular weights of 1.0 x 104 g mol-1 to 4.0 x 104 g mol-1,  therefore DP’s 

of 50-200 per arm. The various polymers have been fully analysed and the results are 

discussed below.  

7 8 - 10 
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Figure 3.12. 1H NMR spectrum of 10 in DMF-d7. 

The 1H NMR spectrum (Fig. 3.12) shows the resonances of the calixarene initiator 

aromatic protons, with two multiplets being observed at 6.71-6.85 and 7.08-7.22 

ppm, j and k, corresponding to Hj and Hk, respectively. The multiplets are observed 

due to the many different conformations of the calixarene core present. 1H NMR 

(Fig. 3.12) resonances j and k had their integral values set to four and eight 

respectively, with the DP of PHEA determined with respect to these values. 

Additionally, the DP of PHEA could be determined from comparing its integral with 

respect to a, corresponding to Ha of the PCL, as the chain length is known as 

discussed in Section 3.2.1. The 1H NMR spectrum (Fig. 3.12) shows the resonances 

for the PCL backbone protons a, b, d and g. A quintet resonance with an integral of 

400 is observed at 1.39 ppm, a, corresponding to the hydrogen atoms of the PCL on 

the third carbon atom with respect to the carbonyl carbon atom, Ha. A sextet 

resonance is observed at 1.62 ppm, b, corresponding to the methylene hydrogen 

atoms of the PCL on the second and fourth carbon with respect to the carbonyl 

carbon atom, Hb.  A triplet resonance with an integral of 400 is observed at 2.34 

ppm, d, corresponding to the methylene hydrogen atoms of the PCL on the first 
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carbon atom with respect to the carbonyl carbon atom, Hd. A triplet resonance with 

an integral of 406 is observed at 4.06 ppm, g, corresponding to the methylene 

hydrogen atoms of the PCL backbone on the fifth carbon atom with respect to the 

carbonyl carbon atom, Hg. The 1H NMR spectrum (Fig. 3.12) shows a multiplet 

resonance between 1.52 – 1.80 ppm, c. The COSY NMR spectrum (Fig. 3.13) shows 

c exhibiting a coupling with a multiplet between 2.38 – 2.54 ppm, e. Resonances c 

and e correspond to the methine and methylene protons of the PHEA backbone. To 

ascertain which protons belong to which resonance the HSQC NMR spectrum must 

be referred too, and is discussed later.  

 

Figure 3.13. COSY NMR spectrum of the product of the SET-LRP of HEA on 7, in DMF-d7. 

The 1H NMR spectrum (Fig. 3.12) shows a broad singlet resonance with an integral 

of 1142 at 3.72 ppm, f. The COSY NMR spectrum (Fig. 3.13) shows f exhibiting 

coupling with a multiplet resonance at 4.14 ppm, h, and a singlet at 4.85 ppm, i. 

Resonances h and i have integrals of 1077 and 543, respectively, therefore i 

corresponds to the proton of the hydroxyl moieties of PHEA and f and h correspond 

to the ethylene protons of the ethylene ether hydroxyl moiety of the PHEA. To 

determine the exact assignment of resonances f and h the HMBC spectrum must be 

referred to.  The HMBC NMR spectrum (Fig. 3.14) shows h coupling to a 13C NMR 
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resonance at 174.6 ppm, k’, where k’ corresponds to the carbon atom of the carbonyl 

of the PHEA, therefore h corresponds to the ethylene protons of the 2-hydroxyl ethyl 

closest to the carbonyl, Hh (Fig. 3.12) and, f must therefore correspond to the 

ethylene protons closest to the hydroxyl moiety, Hf (Fig. 3.12).  The HMBC NMR 

spectrum (Fig. 3.14) shows k’ additionally exhibiting a coupling to e, therefore 

indicating e corresponds to the methine carbon atom of the PHEA backbone, He, 

which is further confirmed by the HSQC NMR spectrum. To assign the 13C NMR 

spectrum the HSQC spectrum was first referred to. 

 

Figure 3.14. HMBC NMR spectrum of 10 in DMF-d7. 

The HSQC NMR spectrum (Fig. 3.15) shows a couples to a 13C NMR resonance at 

25.5 ppm, b’, corresponding to the third carbon atom along of the PCL with respect 

to the carbonyl carbon atom. Resonance b exhibits coupling to two 13C NMR 

resonances; at 24.7 ppm, a’; and 28.5 ppm, c’, corresponding to the second and 

fourth carbon atoms along of the PCL with respect to the carbonyl carbon atom, 

respectively. Resonance c exhibits coupling to a 13C NMR resonance at 36.0 ppm, e’, 

corresponding to the methylene carbon atom of the PHEA backbone. The phasing of 

the c-e’ coupling (blue) corresponds to a methylene environment, confirming that c 

corresponds to Hc (Fig. 3.12). The HSQC NMR spectrum (Fig. 3.15) shows that 
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resonance d exhibits coupling to a 13C NMR resonance at 33.8 ppm, d’, 

corresponding to the first carbon atom along of the PCL with respect to the carbonyl 

carbon atom. Resonance e exhibits coupling to a 13C NMR resonance at 41.6 ppm, 

f’, corresponding to the methine carbon atom of the PHEA backbone. The phasing of 

the e-f’ coupling (red) corresponds to a methine environment, confirming that e 

corresponds to He (Fig. 3.2.2.1). The HSQC NMR spectrum (Fig. 3.15) shows that 

resonance f exhibits coupling to a 13C NMR resonances at 59.9 ppm, g’, which 

corresponds to the ethylene carbon atom closest to the hydroxyl of the 2-hydroxyl 

ethyl moiety. Resonance g exhibits coupling to a 13C NMR resonance at 64.0 ppm, 

h’; corresponding to the non-terminus fifth carbon atom along of the PCL with 

respect to the carbonyl carbon. Resonance h exhibits coupling to a 13C NMR 

resonance at 66.4 ppm, i’, which corresponds to the ethylene carbon atom of the 2-

hydroxyl ethyl closest to the carbonyl.   

  

Figure 3.15. HSQC NMR spectrum of 10 in DMF-d7. 

Due to the low concentration of calixarene core relative to PCL and PHEA only the 

aromatic protons could be observed via 1H NMR, moreover, only limited carbon 

resonances could be observed in the 13C NMR spectrum, shown in Figure 3.16.  
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Figure 3.16. 13C NMR spectrum of 10 in DMF-d7. 

As expressed previously, various molecular weights of PHEA were targeted, 1.0 x 

104 g mol-1, 2.0 x 104 g mol-1 and 4.0 x 104 g mol-1, corresponding to HEA DP’s of 

50, 100 and 200 per arm, respectively. 1H NMR resonances j and h (Fig. 3.12) had 

their integral values set to four and eigh, respectively, with the DP of the PHEA 

being determined with respect to these values. Figure 3.17 shows overlaid spectra 

corresponding to the three polymer systems, with the spectra being normalised with 

respect to resonance a. For the targeted molecular weight of 1.0 x 104 g mol-1, an Mn 

of the PHEA of 1.8 x 104 g mol-1 was calculated from the 1H NMR spectrum (Fig. 

3.12) that lead to a total Mn of miktoarm polymer of 4.0 x 104 g mol-1, 3. The yield 

obtained for the reaction was 64%. For the targeted molecular weight of 2.0 x 104 g 

mol-1, an Mn of the PHEA of 2.2 x 104 g mol-1 was calculated from the 1H NMR 

(Fig. 3.12) that lead to a total molecular weight of miktoarm polymer of 4.4 x 104 g 

mol-1, 4. The yield obtained for the reaction was 75%. For the targeted molecular 

weight of 4.0 x 104 g mol-1, an Mn of the PHEA was 6.1 x 104 g mol-1 was calculated 

from the 1H NMR (Fig. 3.12) that lead to a total molecular weight of miktoarm 

polymer of 8.3 x 104 g mol-1, 5. The yield obtained for the reaction was 63%. In all 
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cases but most profoundly for 8 and 10, there is a greater molecular weight and lower 

yield than expected, thus indicating a lack of control and a greater rate of 

propagation relative to that initiation.  

 

Figure 3.17. 1H NMR overlaid spectra corresponding to various degrees of polymerisation of HEA, blue = 8, red 

= 9 and black = 10, in DMF-d7. 

To further characterise the polymer systems 8 - 10 SEC was carried out. A 

chromatogram of the three miktoarm star polymers and the linear macro initiator, 7, 

are shown in Figure 3.18. 
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Figure 3.18. SEC chromatogram of green = 7, red = 8, blue = 9 and black = 10, using DMF as the eluent at 1 mL 

min-1 and the molecular weights determined with respect to PEG standards. 

The SEC chromatogram (Fig. 3.18) shows a slightly broad distribution at 12.8 mL 

(green), corresponding to 7 as discussed in section 3.2.1. A bimodal distribution is 

observed at 12.06 mL (blue), corresponding to 8, which has a small shoulder at 

12.80 mL and a high molecular weight (HMW) shoulder at 10.40 mL. The Mp of the 

main distribution and HMW shoulder are 3.7 x 104 g mol-1 and 8.6 x 104 g mol-1, 

respectively. The value for the Mp of the HMW shoulder is approximately double 

that of the main distribution, suggesting dimerization of the star polymer has 

occurred, which would lead to loss of chain end fidelity. Using a conventional 

calibration method (polystyrene standards), the Mn and Mw were calculated to be 1.4 

x 104 g mol-1 and 3.7 x 104 g mol-1, respectively. The Ɖ was calculated to be 2.64. 

The high Ɖ indicates that there was a lack of control over the polymerisation and that 

the DP of each arm is not likely to be equal, further suggesting that the rate of 

initiation of the system is slower than the rate of propagation. A bimodal distribution 

is observed at 11.98 mL (red), corresponding to 9, which has a HMW shoulder at 

10.36 mL. The Mp of the main distribution and HMW shoulder are 4.2 x 104 g mol-1 

and 8.1 x 104 g mol-1, respectively. The value for the Mp of the HMW shoulder is 

approximately double that of the main distribution, suggesting dimerization of the 

star polymer has occurred, which would lead to loss of chain end fidelity. Using a 

7 9 10 8 
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conventional calibration method (polystyrene standards), the Mn and Mw were 

calculated to be 3.1 x 104 g mol-1 and 5.6 x 104 g mol-1, respectively. The Ɖ was 

calculated to be 1.81. The relatively high dispersity indicates that there was a lack of 

control over the polymerisation and that the DP of each arm is not likely to be equal, 

further suggesting that the rate of initiation of the system is slower than the rate of 

propagation. It must be noted that the Ɖ of 7 was 1.68, so relatively; the increase in 

Ɖ of 9 is not vast. A bimodal distribution is observed at 11.67 mL (black), 

corresponding to 10, which has a HMW shoulder at 10.06 mL. The Mp of the main 

distribution and HMW shoulder are 5.9 x 104 g mol-1 and 9.5 x 104 g mol-1 

respectively. The value for the Mp of the HMW shoulder is approximately double 

that of the main distribution, suggesting dimerization of the star polymer has 

occurred, which would lead to loss of chain end fidelity. Using a conventional 

calibration method (polystyrene standards), the Mn and Mw were calculated to be 4.1 

x 104 g mol-1 and 8.3 x 104 g mol-1 respectively. The Ɖ was calculated to be 2.02. 

The high dispersity indicates that there was a lack of control over the polymerisation 

and that the DP of each arm is not likely to be equal, further suggesting that the rate 

of initiation of the system is slower than the rate of propagation. The increased Ɖ in 

all cases is likely to be a result of trapped active sites. The PCL chains are flexible, 

which could lead to the encapsulation of calixarene core active sites within the 

macroinitiator structure, away from the catalyst, thus the rate of propagation would 

be greater than initiation.11,12 For all three samples, 8 - 10, the Mn determination via 

SEC is greatly under estimated, which is common for star polymers, as the 

hydrodynamic volume does not increase greatly as branching occurs  relative to 

linear polymers. Table 3.2 illustrates the theoretical and measured molecular weights 

and dispersity measured. 

Table 3.2. Characterisation of  polymers. 

Sample  Mn(theo) 

g mol-1 

Mn(NMR) 

g mol-1 

Mn(SEC) 

g mol-1 

Ɖ 

7  2.0 x 104  2.2 x 104  2.2 x 104  1.68 

8  3.2 x 104 4.0 x 104 1.4 x 104 2.64 

9  4.2 x 104 4.4 x 104 3.1 x 104 1.81 

10  6.2 x 104 8.3 x 104 4.1 x 104 2.02 
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The miktoarm star polymers were further characterised by differential scanning 

calorimetry (DSC) and thermogravimetric analysis (TGA); the results are shown in 

Figures 3.19 and 3.20, respectively. The DSC traces (Fig. 3.19) show that as the 

percentage of PHEA increased so did the amorphous nature of the polymer system. 

Both 8 and 9 exhibited a Tm and Tc at 61.13 oC and 25.13 oC, and 57.21 oC and 25.43 
oC, corresponding to calculated %crystallinities of 5.96% and 5.94% respectively. 10 

exhibited no Tm or Tc, indicating the material is solely amorphous in nature. The 

large amount of PHEA has interrupted the packing of the PCL chain to such an 

extent that there is no order to the packing of the material. 

 

Figure 3.19. DSC of blue = 8, red = 9 and black = 10, run in N2 gas, with a flow rate of 30 mL min-1 and a 

heating rate of 10 oC min-1.  

TGA analysis was further carried out on all three samples, with the traces shown in 

Figure 3.20.  
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Figure 3.20. TGA of green = 7, blue = 8, red = 9 and black = 10, run in N2 gas with a heating rate of 10 oC min-1.  

The TGA thermogram (Fig. 3.20) shows 8 - 10 all exhibiting two distinct thermal 

events with the first thermal event (X1) occurring at 286.65 oC, 297.31 oC and 302.52 
oC and the second thermal event (X2) occurring at 399.98 oC,  403.21 oC and 401.52 
oC, respectively. The TGA thermogram (Fig. 3.2.2.9) showed that as the Mn of the 

incorporated PHEA increased the thermal stability of the system in turn increased as 

seen by the increasing X1. With respect to X2, the thermal stability increases relative 

to 7 (green), but increasing the amount of PHEA further does not appear to increase 

stability. The increased overall stability is likely to be brought about by hydrogen 

bonding between the PHEA hydroxyl moieties and the ester moieties of the PCL. It 

can be seen from the TGA (Fig. 3.20) that for 10 (black), where the Mn of PHEA is 

much greater than that of PCL, there is an abrupt mass loss at 401.52 oC.  This 

abnormal behaviour was observed on repeated runs and we have not been able to 

come up with a reasonable explanation. For all three samples with the PHEA 

incorporated into the system there is a less distinctive thermal event occurring due to 

the loss of water from 22 oC to 100 oC, with the greater the Mn of PHEA the greater 

the mass loss. 

 

3.3. Conclusion 
Initiator 6 was used to synthesise a novel 2-armed PCL polymer with a calixarene 

core, 7, which could be further used for copper(0) mediated polymerisation due to 
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the alkyl halide moieties remaining in the calixarene core. 7 was fully characterised 

via 1D and 2D NMR spectroscopy techniques, SEC chromatography, DSC and 

TGA. The Mn determined via 1H NMR spectroscopy was 2.2 x 104 g mol-1, 

indicating the DP of 193, which is equivalent to ~97 units per arm, which agreed 

with the calculated theoretical Mn. SEC calculated a Mn of 2.2 x 104 g mol-1, which 

agreed with that calculated via 1H NMR spectroscopy. The Ɖ calculated was 1.68 

suggesting a lack of control over the polymerisation and that the DP of each arm is 

not likely to be equal, suggesting that the rate of initiation of the system is slower 

than the rate of propagation. From the DSC, a Tm and Tc were calculated to be 51.53 
oC and 32.67 oC, respectively, and a %crystallinity of 31.43% was calculated. The 

TGA trace showed two distinct thermal events corresponding to the two mechanisms 

in which PCL degrades. The percentage of PCL (ΔY1) and calixarene core (ΔY2) 

was calculated to be 94.149% and 5.851%, respectively, which was in reasonable 

agreement with 1H NMR spectroscopy.  

 

Compound 7 was used as a macro-initiator for the SET-LRP of HEA leading to a 

amphiphilic A2B2 Miktoarm star polymer, 8 – 10. 8 - 10 were fully characterised via 

1D and 2D NMR spectroscopy techniques, SEC chromatography, DSC and TGA. 

The Mn, determined via 1H NMR spectroscopy, was calculated to be 1.8 x 104 g mol-

1, 2.2 x 104 g mol-1 and 6.1 x 104 g mol-1 corresponding to 75, 100 and 270 HEA 

units per arm, respectively. The SEC showed that little control was maintained over 

the polymerisation with Ɖ ranging from 1.81 to 2.64. The lack of control was 

attributed to a greater rate of propagation than initiation. A plausible explanation is 

that the flexible PCL chains could lead to the encapsulation of calixarene core active 

sites within the macroinitiator structure, away from the catalyst, thus the rate of 

propagation would be greater than initiation. The DSC showed that as more PHEA 

was incorporated crystallinity was reduced, to a point where no exotherm was 

observed and the material was completely amorphous. The TGA for all three showed 

an increase in thermal stability, which was attributed to hydrogen bonding between 

the PHEA hydroxyl moieties and the ester moieties of the PCL. 
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Chapter 4 
A4B4 Heterofunctional Initiator with 

Calix[4]arene Core 
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4.0. Introduction 
Chapter 2 described the synthesis of a novel calix[4]arene A2B2 heterofunctional 

initiator, which employed initiating sites for both ROP and single electron transfer 

living radical polymerisation (SET-LRP) (Fig. 4.1).  

 

Figure. 4.1. Heterofunctional initiator. 

The overview of this chapter is to illustrate the synthesis of several novel derivatised 

calix[4]arene compounds that led to synthesis of a novel A4B4 heterofunctional 

initiator. The lower and upper rim of the calix[4]arene were utilised. Traditional and 

cutting edge organic manipulations were used in the modification of compounds. 

The final A4B4 heterofunctional initiator incorporated primary hydroxyl moieties to 

allow for ROP of ε-caprolactone and alkyl-halogen moieties to facilitate SET-LRP.  

The design of the synthetic strategy for an A4B4 heterofunctional initiator involved 

unsuccessful direct attachment of the alkyl-halogen moieties, i.e. 2-bromopropionyl 

bromide, to the phenolic hydroxyls of the calix[4]arene aromatics. It has previously 

been reported that two similar compounds have been attached.1,2 However, in both 

cases low yields were obtained, even when using aggressive alkylating conditions, 

such as nBuLi in toluene and as discussed in Chapter 1 the nuclear magnetic 

resonance (NMR) data for both is unconvincing. The addition of 2-bromopropionyl 

bromide to calix[4]arene in this chapter was unsuccessful, even under the conditions 

reported as well as alternative synthetic conditions (Scheme 4.1).  
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Scheme 4.1. Attempted Synthesis. (a) K2CO3, 2-bromopropionyl bromide, MeCN, reflux, (b) nBuLi, 2-

bromopropionyl bromide, toluene, -78 oC, (c) NaH, 2-bromopropionyl bromide, DMF/THF. (d) NEt3, 2-

bromopropionyl bromide, dichloromethane.  

Therefore, an alternative synthetic strategy was implemented to introduce the alkyl 

halide moiety, Scheme 4.2. The first step was a de-tert-butylation of the p-tert-

butylcalix[4]arene starting material, 1, an in-depth analysis of the first step is 

discussed in Chapter 2. The second step was to saturate the lower rim of 1 with allyl 

moieties, 11. The Allyl moiety was selected as it can be re-arranged to reside in the 

para position of the calix[4]arene, which can then be further used to facilitate thiol-

ene “click” reactions.  
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Scheme 4.2. Synthetic strategy employed for the synthesis of initiator 2. (a) AlCl3, phenol, toluene. (b) allyl 

iodide, K2CO3, MeCN. (c) N,N-dimethylaniline. (d) Methyl chloroacetate, K2CO3, KI, MeCN. (e) LiAlH4, THF. 

(f) 2-bromopropionyl bromide, TEA, dichloromethane. (g) 2-mercaptoethanol, dichloromethane, UV. 

The third step was a Claisen rearrangement, which would rearrange the allyl moiety 

from the lower rim to the upper rim, 12. The fourth step was introduction of an ester 

moiety via a Williamson ether synthesis of methyl chloroacetate to the lower rim, 13. 

The alkyl ester moiety was selected as is could be reduced to a primary hydroxyl that 

11 

12 
13 

14 
15 

16 
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could facilitate the esterification of 2-bromopropionyl bromide. The fifth step was 

the reduction of 13, with LiAlH4 selected as the reducing agent to give 14. The sixth 

step was the esterification of the primary hydroxyl of 14 with the acyl bromide of 2-

bromopropionyl bromide, 15. The seventh step was a photo initiated thiol-ene 

“click” reaction between 15 and 2-mercaptoethanol, to give 16, which was selected 

as it would introduce a primary hydroxyl to facilitate ROP. The reaction conditions 

and an in depth analysis of all compounds synthesised is described herein. 

 

4.1 Experimental 

4.1.1. Materials 
1 was synthesised according to the literature and is discussed in Chapter 2.3 p-tert-

butylcalix[4]arene, allyl iodide (98%), anhydrous potassium carbonate (>99%), N,N-

dimethylaniline (99%), anhydrous potassium iodide (>99%), methyl chloroacetate 

(99%), lithium aluminium hydride pellets (95%), trimethylamine (>99.5%), 2-

bromopropionyl bromide (97%), 2-mercaptoethanol (>99%) and magnesium sulfate 

were purchased from Sigma Aldrich and used without further purification. 

Chloroform, dichloromethane, hexane, ethyl acetate, methanol analytical grade 

solvents and hydrochloric acid (c.HCl, 37%) were purchased from Fisher Scientific 

and used without further purification. Dry acetonitrile (MeCN), Tetrahydrofuran 

(THF) and dichloromethane were obtained from the Durham University Chemistry 

Department Solvent Purification Service (SPS). Deuterated chloroform (CDCl3) for 

NMR analysis was purchased from Apollo Scientific. 

 

4.1.2. Instrumentation 
1H and 13C NMR spectra were recorded using a Varian VNMRS 700 spectrometer 

operating at 700 MHz and 176 MHz respectively, with J values given in Hz. CDCl3 

was used as deuterated solvent for 1H and 13C NMR analysis and the spectra were 

referenced to the solvent traces at 7.26 ppm and 77.0 ppm respectively. The 

following abbreviations are used in describing NMR spectra: s = singlet, d = doublet, 

t = triplet, m = multiplet, , q = quartet, quin = quintet, b = broad, dd = doublet of 
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doublets, dq = doublet of quartets. Pure shift 1H NMR spectroscopy was used when 

simplification and increased resolution of spectra was required, which is brought 

about from 1H-1H decoupling. 2D NMR experiments were also used to fully assign 

the proton and carbon environments in the products. 1H-1H Correlation Spectroscopy 

(COSY) demonstrated proton-proton correlations over two or three bonds. 1H-13C 

Heteronuclear Shift Correlation Spectroscopy (HSQC) demonstrated correlation 

between directly bonded proton and carbons atoms. 1H-13C Heteronuclear Multiple-

Bond Correlation (HMBC) demonstrated the correlation between proton and carbon 

environments through several bonds.  

 

Atmospheric Solids Analysis Probe Mass Spectrometry (ASAP MS) was carried out 

using a LCT Premier XE mass spectrometer and an Acquity UPLC (Waters Ltd, 

UK). A melting point tube was dipped into the sample solution (1 mg mL-1). 

Samples were run isothermally at 350 °C. The sample was vaporised from the 

melting point tube enabling atmospheric pressure chemical ionisation (APCI) to 

occur. 

 

Fourier transform-infra-red (FT-IR) spectroscopy was conducted using a Perkin 

Elmer 1600 series spectrometer.  

 

Elemental analyses of small molecules were obtained using an Exeter CE-440 

elemental analyser. 

 

Thiol-ene reactions were conducted using a Fusion UV LC6B Benchtop Conveyor. 

The samples were placed in glass vials and dissolved in chloroform. The samples 

were passed under the UV source on a conveyer belt, with a UV exposure time of 15 

seconds. The UV lamp was operating at 200 watt cm-2. 

 

4.1.3. Synthesis of 25,26,27,28-tetrakis(prop-2-en-1-

yloxy)calix[4]arene, 11 
To a 500 mL 2-necked round bottomed flask fitted with a septum, reflux condenser 

and stopper 1 (6.005 g, 14.20 mmol) and potassium carbonate (9.786 g, 70.8 mmol) 

were added. The flask was evacuated (0.5 h) then purged with dry argon (Ar). Under 
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Ar, dry MeCN (300 mL) was transferred in via cannula. Allyl iodide (6.48 mL, 

70.80 mmol) was syringed into the reaction mixture leading to a cream/yellow 

coloured solution. The reaction mixture was refluxed for 48 h. A blue/green coloured 

solution resulted. The MeCN was reduced in vacuo resulting in a blue/green 

coloured residue. The residue was taken up in dichloromethane (250 mL) and HCl 

10% (150 mL) and added to a separating funnel. The translucent pale red/orange 

organic phase was collected and further washed with brine (2 x 100 mL), then dried 

over magnesium sulphate and filtered. The volume of dichloromethane was reduced 

in vacuo to ~10 mL. Methanol (200 mL) was added and the remaining 

dichloromethane was removed in vacuo leading to the precipitation of a pale red 

solid. The pale red solid was collected under reduced pressure. The product was 

purified via column chromatography using hexane:ethyl acetate in a ratio of 100:1 

on silica leading to a white solid. Mass = 6.289 g, yield = 76%. M.p. = 255-56 ºC.1 

νmax (Perkin Elmer FT-IR, Diamond, cm-1). 1638 (w, C=C). 1H NMR (700 MHz, 

CDCl3) δ: 3.61 (s, 8Ha), 4.18 (m, 8Hb), 5.17 (dq, 4Hc, J 1 = 29.2 Hz, J 2 = 1.9 Hz), 

5.19 (m, 4Hd), 5.92 (m, 4He), 6.69 (t, 4Hf, J = 7.8 Hz), 7.00 (d, 8Hg, J = 7.8 Hz). 13C 

NMR (176 MHz, CDCl3) δ: 36.9 (a’), 71.5 (b’), 115.9 (c’), 121.7 (d’), 131.0 (e’), 

133.7 (f’), 134.0 (g’), 155.7 (h’). Mass spectrum (ASAP MS); m/z = 585.296, 

(100%) [M]+. 

 

 

 

 

 

Figure 4.2. Labelling of the chemical environments in compound 11 (a) proton (b) carbon. 

 

4.1.4. Synthesis of 5,11,17,23-tetrakis(prop-2-en-1-yloxy)-
calix[4]arene, 12 
To a 150 mL round bottomed flask fitted with reflux condenser, 11 (5.00 g, 8.60 

mmol) was added. The flask was evacuated (0.5 h) then purged with dry Ar. Under 

(a) (b) 
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Ar, N,N-dimethylaniline (75 mL) was transferred in forming a translucent colourless 

solution. The solution was stirred at reflux (2 h) forming a dark brown solution. The 

solution was poured over ice (400 g) with the further addition of HCl 37% (150 mL) 

forming a white/pale green precipitate, which was collected by filtration. The 

precipitate was dissolved in dichloromethane (200 mL) and washed with HCl 10% 

(100 mL) in a separating funnel. The translucent pale green organic phase was 

further washed with brine (2 x 25 mL), then dried over magnesium sulphate and 

filtered. The volume of dichloromethane was reduced in vacuo leading to a 

white/pale green solid. The residue was purified via re-crystallisation from methanol 

leading to a white solid. Mass = 4.546 g, yield = 91%. νmax (Perkin Elmer FT-IR, 

Diamond, cm-1). 3158 (s, OH), 1638 (w, C=C). 1H NMR (700 MHz, CDCl3) δ: 3.22 

(d, 8Ha, J = 7.4 Hz), 3.48 (s, 4Hb), 4.25 (s, 4Hc), 5.07 (m, 4Hd), 5.90 (m, 4He), 6.87 

(s, 8Hf), 10.19 (s, 4Hg). 13C NMR (176 MHz, CDCl3) δ: 31.9 (a’), 39.5 (b’), 115.7 

(c’), 128.3 (d’), 129.1 (e’), 133.6 (f’), 137.7 (g’), 147.2 (h’). Mass spectrum (ASAP 

MS); m/z = 585.299, (100%) [M+H]+.  

 

 

 

 

 

Figure 4.3. Labelling of the chemical environments in compound 12 (a) proton (b) carbon. 

 

4.1.5. Synthesis of 5,11,17,23-tetrakis(prop-2-en-1-yloxy)-25,26,27,28-

tetrakis(methyl acetateoxy)- calix[4]arene, 13  
To a 250 mL 2-necked round bottomed flask fitted with a septum, reflux condenser 

and stopper, 12 (4.011 g, 6.90 mmol), potassium carbonate (4.776 g, 34.55 mmol) 

and potassium iodide (0.400 g, 2.41 mmol) were added. The flask was evacuated 

(0.5 h) then purged with dry Ar. Under Ar, dry MeCN (200 mL) was transferred in 

via cannula forming a pale blue suspension. Methyl chloroacetate (3.1 mL, 35.37 

(a) (b) 
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mmol) was syringed into the reaction mixture leading to a cream/pale blue opaque 

solution. The reaction mixture was refluxed for 48 h. A cream coloured opaque 

solution resulted. The MeCN was reduced in vacuo resulting in a cream coloured 

residue. The residue was taken up in dichloromethane (250 mL) and HCl 10% (100 

mL) then added to a separating funnel. The translucent pale yellow organic phase 

was collected and further washed with brine (2 x 50 mL), dried over magnesium 

sulphate and filtered. The volume of dichloromethane was reduced in vacuo leading 

to a brown sticky residue. The residue was purified via column chromatography 

using hexane:ethyl acetate in a ratio of 5:1 on silica, a pale yellow solid was 

obtained. Mass = 3.468 g, yield = 58%. R.f = 0.326 (Hexane:ethylacetate, 2:1). νmax 

(Perkin Elmer FT-IR, Diamond, cm-1). 1760 (s, C=O), 1638 (w, C=C). 1H NMR 

(700 MHz, CDCl3) δ: 3.07 (d, 8Ha, J = 6.5 Hz), 3.17 (d, 4Hb, J = 13.6 Hz), 3.75 (s, 

12Hc), 4.75 (s, 8Hd), 4.79 (d, 4He, J = 13.3 Hz), 4.89 (dq, 4Hf, J 1 = 17.0Hz, J 2 = 1.6 

Hz), 4.96 (dq, 4Hg, J 1 = 10.0 Hz, J 2 = 1.6 Hz) 5.79 (m, 4Hh), 6.50 (s, 8Hi). 13C 

NMR 176 (176 MHz, CDCl3) δ: 31.3 (a’), 39.3 (b’), 51.4 (c’), 71.1 (d’), 115.0 (e’), 

128.7 (f’), 134.0 (g’), 134.2 (h’), 137.9 (i’), 154.0 (j’), 170.7 (k’). Mass spectrum 

(ASAP MS); m/z = 873.377, (100%) [M+H]+. CHN expected = %C = 71.54, %H = 

6.47, %N 0.00; measured %C = 71.56, %H = 6.48, %N 0.00. 

 

 

 

 

 

 

Figure 4.4. Labelling of the chemical environments in compound 13 (a) proton (b) carbon. 

 

 

 

(a) (b) 
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4.1.6. Synthesis of 5,11,17,23-tetrakis(prop-2-en-1-yl)25,26,27,28-

tetrakis(ethanoloxy)-calix[4]arene, 14 
To a 150 mL 2-necked round bottomed flask fitted with a septum and argon inlet, 13 

(3.001 g, 5.13 mmol) was added. The flask was evacuated (0.5 h) then purged with 

dry Ar. Under Ar, dry THF (50 mL) was transferred in via cannula forming a 

translucent colourless solution. The translucent solution was transferred via cannula, 

drop wise, to a suspension of LiAlH4 (0.584 g, 15.39 mmol) in dry THF (100 mL) 

under Ar. The solution was stirred at 23 oC for 0.5 h and then for a further 1.5 h at 50 
oC. The reaction mixture was carefully quenched by the drop wise addition of water. 

The solvent was removed under reduced pressure leading to a white residue, which 

was collected in dichloromethane (100 mL) and HCl 10% (50 mL) and added to a 

separating funnel. The translucent pale yellow organic phase was collected and 

further washed with brine (2 x 25 mL), dried over magnesium sulphate and filtered. 

The volume of dichloromethane was reduced in vacuo leading to a pale yellow tacky 

residue. Mass = 1.876 g, yield = 92%. νmax (Perkin Elmer FT-IR, Diamond, cm-1). 

3380 (s, OH), 1638 (w, C=C). 1H NMR (700 MHz, CDCl3) δ: 3.12 (bs, 8Ha), 3.23 

(bm, 4Hb), 4.03 (bs, 16Hc), 4.41 (bs, 4Hd), 4.93 (bm, 4He), 5.01 (bm, 4Hf), 5.81 (bm, 

4Hg), 6.68 (bs, 8Hh). 13C NMR (176 MHz, CDCl3) δ: 30.2 (a’), 39.5 (b’), 61.2 (c’), 

77.9 (d’), 115.6 (e’), 129.0 (f’), 134.7 (g’), 137.5 (h’), 152.8 (i’). Mass spectrum 

(ASAP MS); m/z = 593.290, (100%) [M]+. CHN expected = %C = 75.76, %H = 

7.42, %N 0.00; measured %C = 76.03, %H = 7.56, %N 0.00. 

 

 

 

 
Figure 4.5. Labelling of the chemical environments in compound 14 (a) proton (b) carbon. 

 

 

(b) (a) 
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4.1.7. Synthesis of 5,11,17,23-tetrakis(prop-2-en-1-yl)-25,26,27,28-

tetrakis(ethoxyester-2-bromo-acetate)calix[4]arene, 15 
To a 150 mL 2-necked round bottomed flask fitted with a septum and reflux 

condenser, 5 (1.602 g, 2.70 mmol) was added. The flask was evacuated (0.5 h) then 

purged with dry Ar. Under Ar, dry dichloromethane (50 mL) was transferred in via 

cannula forming a translucent pale yellow solution followed by the addition of NEt3 

(1.88 mL, 13.50 mmol). The solution was cooled via a salt ice bath and the 

temperature was maintained at ~-8 oC. 2-bromopropionyl bromide (1.41 mL, 13.50 

mmol) was added drop wise over 0.5 h. The solution turned translucent brown and 

was allowed to warm to 23 oC, then left to stir at 23 oC for a further 3.5 h, the 

solution turned yellow over this period. The reaction mixture was collected in 

additional dichloromethane (50 mL) and washed with HCl 10% (30 mL) and with 

brine (2 x 25 mL), then dried over magnesium sulphate and filtered. The volume of 

dichloromethane was reduced in vacuo leading to a brown sticky residue. The 

residue was purified via column chromatography using hexane:ethyl acetate in a 

ratio of 10:1 on silica. A colourless sticky residue was obtained. Mass = 2.738 g, 

yield = 78%. R.f = 0.292 (heaxane:ethylacetate, 10:1). νmax (Perkin Elmer FT-IR, 

Diamond, cm-1). 2850-3100 (m, CH), 1739 (s, C=O), 1638 (m, C=C). 1H NMR (700 

MHz, CDCl3) δ: 1.78 (dd, 12Ha, J = 7.0 Hz), 1.85 (d, 4Hb, J = 8.0 Hz), 3.06 (d, 8Hc, 

J = 7.2 Hz), 3.15 (d, 4Hd, J = 15.6 Hz), 4.19 (m, 8He), 4.35 (m, 8Hf,g), 4.40 (q, 4Hh, J 

= 8 Hz), 4.64 (m, 4Hi), 4.88 (dd, 4Hj, J 1 = 19.9 Hz, J 2 = 1.4 Hz), 4.96 (dd, 4Hk, J 1 

= 11.9 Hz, J 2 = 1.4 Hz), 5.77 (m, 4Hl), 6.50 (s, 8Hm). 13C NMR (176 MHz, CDCl3) 

δ: 21.6 (a’), 21.7 (b’), 31.0 (c’), 39.4 (d’), 39.5 (e’), 40.0 (f’), 65.7 (g’), 72.2 (h’), 

115.2 (i’), 128.8 (j’), 134.1 (k’), 134.3 (l’), 138.0 (m’), 154.1 (n’), 170.4 (o’), 174.8 

(p’). Mass spectrum (ASAP MS); m/z = 1301.153, (31.96%) [M+H]+. CHN expected 

= %C = 52.05, %H = 5.06, %N 0.00; measured %C = 52.61, %H = 5.37, %N 0.00. 
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Figure 4.6. Labelling of the chemical environments in compound 15 (a) proton (b) carbon. 

 

4.1.8. Synthesis of 5,11,17,23-tetrakis(3-(hydroxyethyl)thioether-

propanyl)-25,26,27,28-tetrakis(ethoxyester-2-bromo-propanoate)-

calix[4]arene, 16 
To a 10 mL glass vial, 15 (0.350 g, 0.22 mmol) was added and dissolved in 

chloroform (3 mL) followed by the addition of 2-mercaptoethanol (0.16 mL, 2.27 

mmol). The sample was irradiated with a broad wavelength UV lamp for 30 s, a 

colourless solution remained. The chloroform was removed in vacuo leaving a 

viscous colourless liquid, which was further purified via a silica plug. On silica, the 

sample was washed with pure ethyl acetate, and then to collect 7, pure methanol was 

passed through the silica. The methanol was removed in vacuo resulting in a tacky 

white residue. Mass = 0.387 g, yield = 89%. νmax (Perkin Elmer FT-IR, Diamond, 

cm-1). 3306 (s, OH), 2923 (s, CH), 1732 (s, C=O). 1H NMR (700 MHz, CDCl3) δ: 

1.70 (quin, 8Ha, J = 8.2 Hz) 1.78 (d, 12Hb, J = 8.0 Hz), 2.40 (t, 8Hc, J = 8.0 Hz), 

2.47 (t, 8Hd, J = 8.3 Hz), 2.72 (t, 8He, J = 7.0 Hz), 3.13 (d, 4Hf, J = 15.4 Hz), 3.72 (t, 

8Hg, J = 7.0 Hz), 4.18 (m, 8Hh), 4.35 (m, 8Hi,j), 4.63 (m, 8Hk), 6.47 (s, 8Hl) .13C 

NMR (176 MHz, CDCl3) δ: 21.7 (a’), 31.0 (b’), 31.3 (c’), 31.4 (d’), 34.1 (e’), 35.4 

(f’), 40.1 (g’), 60.6 (h’), 65.6 (i’), 72.2 (j’), 128.5 (k’), 134.3 (l’), 135.6 (m’), 154.1 

(n’), 170.4 (o’). CHN Expected = %C = 50.63, %H = 5.75, %N = 0.00; Measured 

%C = 50.98, %H = 5.79, %N = 0.00. 

(a) (b) 
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Figure 4.7. Labelling of the chemical environments in compound 16 (a) proton (b) carbon. 

 

 

 

 

 

 

 

 

 

 

 

 

(a) (b) 



 

143 

4.2. Results and Discussion 

4.2.1. 25,26,27,28-tetrakis(allyloxy)-calix[4]arene, 11 

 

Scheme 4.3. Synthesis of 11. 

The known compound 11 was successfully synthesised, by treating calix[4]arene, 1, 

with an excess of allyl iodide in the presence of excess potassium carbonate (Scheme 

4.3).3 A yield of 76% was achieved after refluxing for 48 h in MeCN. The product 

was purified via column chromatography, leading to a pure white powder. A 

complete and thorough analysis is discussed herein as previous characterisation was 

limited.3 

 

Figure 4.8. 1H NMR spectrum of 11 in CDCl3. 

11 
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The 1H NMR spectrum (Fig. 4.8) shows a singlet resonance with its integral set to 

eight at 3.61 ppm, a, which corresponds to the methylene protons that bridge the 

aromatics. The presence of a singlet resonance indicates that 2 exists in a 1,3-

alternate conformation.4 A multiplet resonance with an integral of eight is observed 

at 4.18 ppm, b, corresponding to the aliphatic protons of the allyl moiety, Hb.  

  

Figure 4.9. COSY NMR spectrum of 11 in CDCl3. 

The COSY NMR spectrum (Fig. 4.9) shows b exhibiting coupling to c, d and e. The 
1H NMR spectrum (Fig. 4.8) showed a multiplet resonance with an integral of four at 

5.92 ppm, e, which corresponds to the non-terminus alkene proton of the allyl 

moiety, He. A doublet of quartets with an integral of four at 5.17 ppm, c, with a J1 

coupling of 29.2 Hz and a J 2 coupling of 1.2 Hz is observed. A multiplet with an 

integral of four is observed at 5.19 ppm, d. Both resonances c and d correspond to 

the terminus protons of the alkene of the allyl moiety, with c corresponding to the 

hydrogen atom in the trans position with respect to Hc,, and d corresponds to the 

hydrogen atom in the cis position, Hd. The doublet of quartet’s multiplicity of c is 

brought about by coupling to He that leads to the doublet splitting and the J 1 value 

and the second coupling to Hg, which leads to the smaller coupling constant of J 2. d 

exhibits a multiplet multiplicity due the same coupling as c, but because of the closer 
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proximity of He, leads to a much smaller J 1 coupling constant; the doublet of quartet 

multiplicity coalesces. Confirmation that c and d are two distinct resonances come 

from the 1H pure shift NMR experiment, where two distinct resonances are 

observed, shown in Figure 4.10. 

 

Figure 4.10. 1H Pure Shift NMR spectrum of 11 in CDCl3. 

The 1H NMR spectrum (Fig. 4.8) shows a triplet resonance with an integral of four at 

6.69 ppm, f, corresponding to the hydrogen atoms in the para position of the 

aromatic with respect to the oxygen of the aryl ether moiety, Hf. The triplet 

multiplicity is brought about by coupling to hydrogen atoms, Hg, either side of Hf. A 

doublet resonance is observed at 7.00 ppm, g, corresponding in the hydrogen atoms 

in the meta position of the aromatics with respect to the oxygen of the aryl ether 

moiety, Hg. The doublet splitting multiplicity is brought about by coupling to the 

single hydrogen atom of Hf. The coupling between Hf and Hg is confirmed by COSY 

NMR spectroscopy and is highlighted in Figure 4.9. Furthermore, all assigned 

integrals are in agreement with the proposed structure. To assign the 13C NMR 

spectrum, HSQC NMR and HMBC NMR spectroscopy were carried out. Using 

HSQC NMR spectroscopy the carbon atoms directly attached to hydrogen atoms 

could be easily assigned. The HSQC NMR spectrum (Fig. 4.11) shows a coupling to 

a 13C NMR resonance at 36.9 ppm, a’, corresponding to the bridging methylene 
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carbon atom between the aromatics. The chemical shift of a’ at 36.9 ppm indicates 

that the calixarene is in the 1,3-alternate conformation, which agrees with what is 

observed in the 1H NMR spectrum.5 b exhibits coupling to a 13C NMR resonance at 

71.5 ppm, b’, corresponding to the linking aliphatic methylene carbon atom of the 

allyl moiety. c and d both couple to a 13C NMR resonance  at 115.9 ppm, c’, 

corresponding to the terminus carbon atom of the alkene of the allyl moiety. e 

couples to a 13C NMR resonance  at 134.0 ppm, g’, corresponding to the non-

terminus carbon atom of the alkene of the allyl moiety. f exhibits coupling to a 13C 

NMR resonance  at 121.7 ppm, d’, corresponding to the carbon atom in the para 

position of the aromatic with respect to the oxygen of the aryl ether moiety. g 

exhibits coupling to a 13C NMR resonance  at 131.0 ppm, e’, corresponding to the 

carbon atom in the meta position of the aromatic with respect to the oxygen of the 

aryl ether moiety.  

 

Figure 4.11. HSQC NMR spectrum of 11 in CDCl3. 

To assign the final 13C NMR resonances that do not directly couple to any hydrogen 

atom, HMBC NMR spectroscopy was carried out and was fully analysed. The 

HMBC spectrum (Fig. 4.12) shows that a 13C NMR resonance  at 155.7 ppm, h’, 

exhibits coupling to a, b, f and g, with the most pronounced coming from the 
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coupling to b, which corresponds to Hb, therefore h’ must correspond to the ipso 

carbon atom of the aromatic with respect to the oxygen of the aryl ether moiety. The 
13C NMR resonance at 133.7 ppm, f’, exhibits coupling to a, f and g, but 

significantly not b, therefore corresponds to the ortho carbon atom of the aromatic 

with respect to the oxygen of the aryl ether moiety. The full assignment of the 13C 

NMR spectrum is shown in Figure 4.13. 

 

Figure 4.12. HMBC NMR spectrum of 11 in CDCl3. 
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Figure 4.13. 13C NMR spectrum of 11 in CDCl3. 

ASAP mass spectrometry was carried out and the molecular ion was seen at 585.296 

Da (100%) (Fig. 4.14), which is consistent with the empirical formula C40H41O4
+. 

 

Figure 4.14. ASAP MS spectrum of 11. 
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The ASAP MS spectrum (Fig. 4.14) showed fragmentation products, with the most 

abundant corresponding to the loss of one allyl moiety as depicted. Further 

confirmation that 2 had been successfully synthesised came from FT-IR 

spectroscopy, where there was complete loss of the OH stretch at 3120 cm-1. 

 

4.2.2. 5,11,17,23-tetrakis(prop-2-en-1-yl)-calix[4]arene, 12 

 

Scheme 4.4. Synthesis of 12. 

The known compound 12, was successfully synthesised according to the literature 

(Scheme 4.4), using the high boiling N,N-dimethylaniline as a solvent to facilitate a 

sigmatropic reaction, in this case the Claisen rearrangement (Scheme 4.5).3  

 

Scheme 4.5. Claisen rearrangement. 

A yield of 91% was achieved.  A complete analysis was carried out and is described 

below. 

11 12 
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Figure 4.15. 1H NMR spectrum of 12 in CDCl3. 

The 1H NMR spectrum (Fig. 4.15) shows that 12 was synthesised. A doublet 

resonance with its integral set to eight was observed at 3.22 ppm, a, corresponding to 

the aliphatic protons of the allyl moiety, Ha. The COSY NMR spectrum (Fig. 4.16) 

shows that a exhibits coupling to resonances d, e and f. The 1H NMR spectrum (Fig. 

4.15) shows a multiplet resonance with an integral of eight at 5.07 ppm, d, 

corresponding to the terminal alkene protons of the allyl moiety, Hd. d appears as a 

multiplet due to overlapping signals from the cis and trans protons with respect to 

He, as shown by the COSY NMR spectrum (Fig. 4.16), where two coupling 

resonances are observed between d and a. The 1H NMR spectrum (Fig. 4.15) shows 

a multiplet resonance with an integral of four at 5.90 ppm, e, corresponding to the 

non-terminus proton of the double bond of the allyl moiety, He. The multiplet 

multiplicity of e is brought about from coupling to the cis and trans Hd and the 

methylene Ha protons as shown by the COSY NMR (Fig 4.16).  
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Figure 4.16. COSY NMR spectrum of 12 in CDCl3. 

The 1H NMR spectrum (Fig. 4.15) shows a singlet resonance with an integral of 

eight at 6.87 ppm, f, which corresponds to the aromatic protons of the phenolic ring 

in the meta position with respect to the hydroxyl moiety, Hf. Two broad singlet 

resonances with integrals of four are observed at 3.48 ppm and 4.25 ppm, c and d, 

respectively, which correspond to the bridging methylene protons between the 

aromatic rings, Hb and Hc. The presence of two environments for the methylene 

bridging protons indicates that the calix[4]arene is in a cone conformation.4  

Resonance b corresponds to the protons pointing up with respect to the allyl 

moieties, whereas c corresponds to the protons pointing down to the oxo 

environment. A singlet resonance with an integral of four is observed at 10.19 ppm, 

g, which corresponds to the protons of the hydroxyl moiety, Hg. The sharpness and 

down field nature of resonance g is brought about by strong hydrogen bonding 

between the hydroxyl moieties. The strong hydrogen bonding is further observed via 

FT-IR spectroscopy, where a relatively sharp absorption band is observed at 3154 

cm-1. Furthermore, all assigned integrals are in agreement with the proposed 

structure. To assign the 13C NMR spectrum, HSQC NMR and HMBC NMR 

spectroscopy were carried out. Using HSQC NMR spectroscopy the carbon atoms 

directly attached to hydrogen atoms could be easily assigned. 
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 Figure 4.17. HSQC NMR spectrum of 12 in CDCl3. 

The HSQC NMR spectrum (Fig. 4.17) shows that a couples to a 13C NMR resonance 

at 39.5 ppm, b’, which therefore corresponds to the ether linking allyl carbon atom. 

The coupling resonance between a and b’ has a blue phasing indicating it is a 

methylene carbon atom. Both resonances, b and c, couple to a single 13C NMR 

resonance  at 31.9 ppm, a’, with the coupling resonance expressing blue phasing 

indicating it corresponds to a methylene moiety, therefore a’ corresponds to the 

bridging methylene carbon atoms in-between aromatics. The fact that the bridging 

methylene carbon atom 13C NMR resonance resides in the 31 ppm region is further 

indication that the calixarene exists in a cone conformation.5 d couples to a 13C NMR 

resonance at 115.7 ppm, c’, and has blue phasing indicating it is a methylene carbon 

atom environment, therefore corresponds to the terminus alkene carbon atom of the 

allyl moiety. e couples to a 13C NMR resonance at 137.7 ppm, g’, and is observed as 

a red phase, indicating it corresponds to a methine or methyl moiety, therefore g’ 

corresponds to the methine carbon atom of the non-terminus end of the alkene of the 

allyl moiety. f couples to a 13C NMR resonance  at 129.1 ppm, e’, and is observed as 

a red phase, therefore corresponds to the meta carbon atom with respect the hydroxyl 

moiety of the phenolic ring. To assign the quaternary carbon environments HMBC 

NMR spectroscopy was carried out and was fully analysed. 
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Figure 4.18. HMBC NMR spectrum of 12 in CDCl3. 

The HMBC NMR spectrum (Fig. 4.18) shows that there is a coupling between the 

hydroxyl proton, Hg, and a 13C NMR resonance  at 128.3 ppm and 147.2 ppm, d’ and 

h’ respectively. The 13C NMR resonance d’ exhibits coupling to f, Hf, whereas h’ 

exhibits coupling to f and a, corresponding to Hf and Ha respectively, therefore d’ 

must correspond to the ipso carbon atom of the phenolic ring with respect to the 

hydroxyl moiety and h’ must therefore correspond to the ortho carbon atom of the 

phenolic ring with respect to the hydroxyl moiety. A 13C NMR resonance at 133.6 

ppm, f’, exhibits a coupling to 1H NMR resonances a and d, corresponding to Ha and 

Hd, respectively, therefore corresponds to the para carbon atoms of the phenolic ring 

with respect to the hydroxyl moiety.  The complete assignment of the 13C NMR 

spectrum and structure are shown in Figure 4.19. 
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Figure 4.19. 13C NMR spectrum of 12 in CDCl3. 

ASAP mass spectrometry was carried out and the molecular ion was seen at 585.296 

Da (100%) (Fig. 4.20), which is consistent with the empirical formula C40H41O4
+. 

 
Figure 4.20. ASAP MS spectrum of 12. 
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4.2.3. 5,11,17,23- tetrakis(prop-2-en-1-yl)-25,26,27,28-tetrakis(methyl 

acetateoxy)-calix[4]arene, 13 

 

Scheme 4.6. Synthesis of 13. 

The novel compound 13, was successfully synthesised using an excess of potassium 

carbonate in acetonitrile with a catalytic amount of potassium iodide (Scheme 4.6). 

The addition of potassium iodide leads to an exchange equilibrium between the 

halogen ions of Cl- and I-, known as the Finkelstein reaction (Scheme 4.7).6 Iodide is 

a much better nucleofuge than that of chloride, therefore will lead to an increase in 

yield.  

 

Scheme 4.7. Finkelstein reaction. 

13 was obtained in a yield of 60%. An attempt at increasing the yield using the 

stronger base NaH in DMF/THF was attempted, but an increase in yield was not 

observed. A full characterisation is described below. 

12 13 
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Figure 4.21. 1H NMR spectrum of 13 in CDCl3. 

The 1H NMR spectrum (Fig. 4.21) indicated that the 13 was synthesised. A doublet 

resonance with its integral set to eight is observed at 3.07 ppm, a, corresponding to 

the aliphatic protons of the allyl moiety, Ha. The COSY NMR spectrum (Fig. 4.22) 

showed that a exhibited coupling to resonances f, g and h. The 1H NMR spectrum 

(Fig. 4.21) showed a multiplet resonance with an integral of four at 5.79 ppm, h, 

which corresponds to the non-terminus alkene proton of the allyl moiety, Hh. A 

doublet of quartets with an integral of four at 4.89 ppm, f, with J 1 and a J 2 coupling 

constants of 17.0 Hz and 1.6 Hz, respectively, is observed. A second set of doublet 

quartets with an integral of four are observed at 4.96 ppm, g, which has J1 and J2 

coupling constants of 10 Hz and 1.6 Hz, respectively. Both resonances f and g 

correspond to the terminus protons of the alkene of the allyl moiety, with f 

corresponding to the hydrogen atom in the trans position with respect to Hn, Hf,, and 

g corresponds to the hydrogen atom in the cis position, Hg. The doublet of quartets 

multiplicity of f and g are brought about by the coupling to Hh that leads to the 

doublet splitting and the J 1 value and the second coupling to one another, which 

leads to the smaller coupling constant of J2.  
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Figure 4.22. COSY NMR spectrum of 13 in CDCl3. 

The 1H NMR spectrum (Fig. 4.21) shows a doublet resonance with an integral of 

four at 3.17 ppm, b, which has a J 1 coupling of 13.3 Hz and shows a coupling in the 

COSY NMR spectrum (Fig. 4.22) to a doublet resonance at 4.79 ppm, e. e has an 

integral of four and a J 1 coupling constant of 13.3 Hz. Both resonances b and e 

correspond to the methylene protons that bridge the aromatics, thus indicating that 

the compound exists in the cone conformation.4 b is less deshileded relative to e, 

therefore corresponds to the proton pointing up to the aromatic region, Hb, and e 

corresponds to the proton pointing down to the oxo environment, He. The 1H NMR 

spectrum (Fig. 4.21) shows a singlet resonance with an integral of 12 at 3.75 ppm, c, 

which corresponds to the methyl protons of the ester moiety, Hc. A second singlet 

resonance with an integral of eight is observed at 4.75 ppm, d. The resonance 

corresponds to the methylene protons of the oxo ethyl ester moiety, Hd. A third 

singlet resonance with an integral of eight is observed at 6.51 ppm, i, which 

corresponds to the aromatic protons in the meta position with respect to the oxygen 

of the aryl ether linkage, Hi. To assign the 13C NMR spectrum, HSQC NMR and 

HMBC NMR spectroscopy were carried out. Using HSQC NMR spectroscopy the 

carbon atoms directly attached to hydrogen atoms could be easily assigned. 
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Figure 4.23. HSQC NMR spectrum of 13 in CDCl3. 

The HSQC NMR spectrum (Fig. 4.23) shows that a couples to a 13C NMR resonance 

at 39.3 ppm, b’, which corresponds to the ether linking methylene carbon atom of 

the allyl moiety. Both b and e couple to a 13C NMR resonance at 31.3 ppm, a’, 

which corresponds to the bridging methylene carbon atoms between aromatics. The 

fact that the bridging methylene carbon atoms resonance resides in the 31 ppm 

region is further indication that the calixarene exists in a cone conformation.5 c 

couples to a 13C NMR resonance at 51.4 ppm, c’, which corresponds to the methyl 

carbon atom of the ester moiety. d couples to a 13C NMR resonance  at 71.1 ppm, d’, 

which corresponds to the methylene carbon atom of the oxo ethyl ester moiety. 

Resonances f and g both couple to a 13C NMR resonance at 115.0 ppm, e’, which 

corresponds to the terminus carbon atom of the allyl moiety. h couples to a 13C NMR 

resonance  at 39.3 ppm, b’, which corresponds to the methylene carbon atom of the 

allyl moiety. i couples to a 13C NMR resonance  at 128.7 ppm, f’, which corresponds 

to the meta carbon atom of the aryl ether with respect to the oxygen of the ether 

linkage. To assign the 13C NMR resonances corresponding to quaternary carbon 

atoms HMBC NMR spectroscopy was carried out and fully analysed. 
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Figure 4.24. HMBC NMR spectrum of 13 in CDCl3. 

The HMBC NMR spectrum (Fig. 4.24) shows a 13C NMR resonance at 170.7 ppm, 

k’, which exhibits a coupling to c and d, Hc and Hd respectively (Fig. 4.24), therefore 

corresponds to the carbonyl carbon atom of the ester moiety. The HMBC NMR 

spectrum (Fig. 4.24) shows that a 13C NMR resonance at 134.0 ppm, g’, exhibits 

coupling to resonances a, b, e and h, He, Hb, He, and Hh respectively (Fig. 4.21), 

therefore as this is the only carbon resonances exhibiting a coupling to h it must 

correspond to the para carbon atom of the aromatic system with respect to the 

oxygen of the ether of the aryl ether. The HMBC NMR spectrum (Fig. 4.24) shows a 
13C NMR resonance at 154.0 ppm, j’, which exhibits coupling to the methylene 

protons corresponding to a and e, the aromatic protons corresponding to f and also 

the methylene protons of the ether ester, Hd (Fig. 4.21), therefore must correspond to 

the ipso carbon atom of the aromatic system with respect to the oxygen of the ether 

of the aryl ether. The HMBC NMR spectrum (Fig. 4.24) shows a 13C NMR 

resonance at 134.2 ppm, h’, which exhibits a coupling to the methylene protons 

corresponding to a and e, and the aromatic protons corresponding to f, therefore 

must correspond to the ortho carbon atoms of the aromatic system with respect to the 

oxygen of the ether of the aryl ether. The complete characterisation of the 13C NMR 

spectrum and structure are shown in Figure 4.25.  
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Figure 4.25. 13C NMR spectrum of 13 in CDCl3. 

 

 

Figure 4.26. ASAP MS spectrum of 13.  
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ASAP mass spectrometry was carried out and the molecular ion was seen at 873.377 

Da (100%) (Fig. 4.26), which is consistent with the empirical formula C52H57O12
+. A 

secondary fragment was observed at 813.368 Da (64.65%) (Fig. 4.2.3.6), which is 

consistent with the formula C50H53O10
+. Further confirmation that 4 had been 

synthesised was through FT-IR spectroscopy, where there was the loss of the OH 

absorption band at 3154 cm-1 and the presence of a strong carbonyl absorption band 

at 1758 cm-1 were observed. Additionally, CHN analysis was carried out with the 

results closely matching the predicted values; CHN expected = %C = 71.54, %H = 

6.47, %N 0.00; measured %C = 71.56, %H = 6.48, %N 0.00. 

 

4.2.4. 5,11,17,23- tetrakis(prop-2-en-1-yl)-25,26,27,28-

tetrakis(ethanoloxy)calix[4]arene, 14 

 

Scheme 4.8. Synthesis of 14. 

The novel compound 14, was successfully synthesised, via the reduction of the ester 

moieties of 13 (Scheme 4.8). Compound 13, was added to a suspension of excess 

LiAlH4 in THF, leading to the complete reduction of ester functionality in a 92% 

yield. A full characterisation of 14 is described below. The 1H NMR (Fig. 4.28) 

spectrum and 13C NMR (Fig. 4.31) spectrum both exhibit broad resonances, which 

suggests on the NMR timescale the aromatics are rotating with respect to each other. 

The aromatics rotations are confined to the limits of the cone conformation as 

depicted in Figure 4.27. There is a rotational energy barrier that cannot be overcome 

to rotate the aromatics 180o on the NMR timescale. The rotational freedom of the 

calixarene, on the NMR timescale, affects the resonance resolution as well as the 

coupling spin systems; leading to poor clarity of spectra within the 2D NMR 

13 14 
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experiments, which therefore lead to difficulty when fully assigning the 13C NMR 

spectra, thus is further discussed below. 

 

Figure 4.27. Conformational isomerisation of 14, confined to the limits of the cone conformation. 
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Figure 4.28. 1H NMR spectrum of 14 in CDCl3. 

The 1H NMR spectrum (Fig. 4.28) shows a broad singlet resonance at 3.12 ppm, a. 

The COSY NMR spectrum (Fig. 4.29) shows a exhibiting coupling to a resonances 

at 4.93, 5.01 and 5.81 ppm, e, f and g, respectively, therefore a, e, f and g correspond 

to the protons of the allyl moiety. a corresponds to the aliphatic protons of the allyl 

moiety, Ha (Fig. 4.28). g corresponds to the non-terminus alkene proton of the allyl 

moiety, Hg. e and f correspond to the terminus alkene protons of the allyl moiety, 

with e corresponding to the terminus proton in the trans position with respect to Hg, 

He; and f corresponds to the terminus proton in the cis position with respect to Hg,  

Hf.  
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Figure 4.29. COSY NMR spectrum of 14 in CDCl3. 

The 1H NMR spectrum (Fig. 4.28) shows two broad resonances with integrals of 

four each at 3.23 ppm and 4.41 ppm corresponding to b and d, respectively, which 

exhibit coupling in the COSY NMR spectrum (Fig. 4.29). b and d correspond to the 

bridging methylene protons between the aromatics, with b corresponding to the 

proton pointing up to the allyl moiety, Hb and d corresponding to the proton pointing 

down to the oxy environment, Hd (Fig. 4.28). The presence of two environments for 

the bridging methylene protons indicates that the calixarene exists in the cone 

conformation on the NMR timescale.4 The 1H NMR spectrum (Fig. 4.28) shows a 

broad singlet resonance with an integral of 16 at 4.03 ppm, c. c exhibits no coupling 

in the COSY NMR (Fig. 4.29), therefore, corresponds to the ethylene protons of the 

newly reduced esters, Hc. The 1H NMR spectrum (Fig. 4.28) shows a broad 

resonance with an integral of eight at 6.68 ppm, h, which corresponds to the protons 

attached to the aromatic ring in the meta position with respect to the oxygen of the 

aryl ether, Hh. Using HSQC NMR spectroscopy the carbon atoms directly attached 

to hydrogen atoms could be easily assigned. 
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 Figure 4.30. HSQC NMR spectrum of 14 in CDCl3. 

The HSQC NMR spectrum (Fig. 4.30) shows a coupling to a 13C NMR resonance at 

39.5 ppm, b’, which corresponds to the aliphatic carbon atom of the allyl moiety. b 

and d both couple to a 13C NMR resonance  at 30.2 ppm, a’, corresponding to the 

bridging methylene carbon atoms between aromatics. The fact that the bridging 

methylene carbon atom resonance resides in the ~31 ppm region is further indication 

that the calixarene exists in a cone conformation.5 c couples to two 13C NMR 

resonances, one at 61.2 ppm, c’, and a second at 77.9 ppm, d’. c’ corresponds to the 

ether linking carbon atom of the ethylene carbon attached to the lower rim and d’ 

corresponds to the ethylene carbon atom next to the hydroxyl moiety. Resonances e 

and f both couple to a 13C NMR resonance at 115.6 ppm, e’, which corresponds to 

the terminus carbon atom of the allyl moiety. g exhibits coupling to a 13C NMR 

resonance  at 137.5 ppm, h’, which corresponds to the non-terminus alkene carbon 

atom of the allyl moiety. h couples to a 13C NMR resonance  at 129.0 ppm, f’, which 

corresponds to the meta carbon atom of the aromatic ring with respect to the oxygen 

of the aryl ether. The complete assignment of the 13C NMR spectrum is shown below 

in Figure 4.31. 
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Figure 4.31. 13C  NMR spectrum of 14 in CDCl3. 

To complete the assignment of the 13C NMR spectrum for 14, resonances at 134.7 

ppm and 152.8 ppm, corresponding to g’ and i’, respectively, required identification. 

As expressed earlier, due to the rotational freedom of 5 on the NMR timescale 2D 

experiments proved challenging and no HMBC NMR spectrum was achieved, 

therefore conjecture was required to assign g’ and i’. By comparing the chemical 

shifts of 14 to the previous compounds studied (11, 12 and 13), g’ and i’ can be 

assigned with reasonable confidence, with g’ at 134.7 ppm, corresponding to the 

ortho and para carbon atoms of the aromatic rings with respect to the oxygen of the 

aryl ether and i’ at 152.8 ppm, corresponding to the ipso carbon atom of the aromatic 

rings with respect to the oxygen of the aryl ether. ASAP mass spectrometry was 

carried out and the molecular ion was seen at 760.293 Da (100%) (Fig. 4.32), which 

is consistent with the empirical formula C48H56O8
+. A secondary fragment was 

observed at 716.276 Da (98.91%), which is consistent with the empirical formula 

C46H52O8
+ (Fig. 4.32).  
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Figure 4.32. ASAP MS spectrum of 14.  

Further confirmation that 14 had been synthesised was through FT-IR spectroscopy, 

where there was the loss of the C=O absorption band at 1758 cm-1 and the presence 

of a OH absorption band at 3300 cm-1. Additionally, CHN analysis was carried out 

with the results closely matching the predicted values; CHN expected = %C = 75.76, 

%H = 7.42, %N 0.00; measured %C = 76.03, %H = 7.56, %N 0.00. 

 

A variable temperatue 1H NMR spectroscopy experiment was carried out to assertain 

whether the calixarene, 14, would become fixed into a single conformation, leading 

to a more resolved NMR spectrum. The results are shown in Figure 4.33. 
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Figure 4.33. 1H NMR variable temperature spectra of 14, (a) 22 oC, (b) -1 oC, (c) -22 oC, (d) -44 oC, in CDCl3. 

The 1H NMR spectra (Fig. 4.33) shows that from 22 oC to -1 oC two distinct 

conformational variations of the cone conformation become apparent, via resonances 

d and h (trace (a)) splitting into two (trace (b)). As the temperature is further lowered 

to -22 oC and -42 oC no further splitting is observed, but with one set of resonances 

becoming more resolved and the second set broadening, e.g. resonance h (trace (a) – 

(d)). This suggests that as the temperature is lowered one of the conformations with 

the sharp resonances resides in a potential well where there is not enough energy in 

the system to overcome rotation, whereas for the broad resonances there is enough 

energy in the system for rotational freedom. To identify the conformations and 

determine the energy of the conformations computational chemistry would be 

required, but for this body of work it was decided not to perform such a theoretical 

study. The rotational freedom observed for 14 on the NMR timescale but not for the 

previous compounds (11, 12, and 13) investigated is possibly due to the size and 

electronic nature of moiety attached to the lower rim. The precursor to 14, 13, 

exhibits no rotational conformation on the NMR timescale, and is possible due to the 

bulkiness of the ester moiety; inhibiting any rotation. The bulkiness of the ether 

ethanol lower rim moieties of 14 has been significantly reduced when compared to 

the precursor ester. Also, unlike 11, where the bulkiness of the allyl moiety is 
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comparable to that of the ethanol moiety, hydroxyls are present that will lead to 

hydrogen bonding. There is likely to be an energy competition between the hydrogen 

bonding and rotating to a 1,3-alternate conformation. 

 

4.2.5. 5,11,17,23- tetrakis(prop-2-en-1-yl)-25,26,27,28-

tetrakis(ethoxyester-2-bromo-propanoate)calix[4]arene, 15 

 Scheme 4.9. Synthesis of 15. 

The novel compound 15 was successfully synthesised via performing an 

esterification of 14 with the acyl bromide, 2-bromopropionyl bromide, in the 

presence of TEA, used as a scavenger for the HBr side product (Scheme 4.9). A 

yield of 78% was achieved after column chromatography was carried out.  

Approximately one molecule of 2-bromopropionic acid was trapped within the 

calixarene, which could not be removed. Full analysis and characterisation is 

described below. 

 

14 15 

dichloromethane 
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Figure 4.34. 1H NMR spectrum of 15 in CDCl3. 

The 1H NMR spectrum (Fig. 4.34) exhibits two overlapping sets of doublet 

resonances with an overall integral set to 12 at 1.78 ppm, a.  a exhibits a COSY 

NMR (Fig. 4.36) coupling to a multiplet resonance at 4.35 ppm, f/g. The resonance 

of a (Fig. 4.34) corresponds to the methyl protons of the 2-bromopropanoate moiety, 

Ha, and f corresponds to the methine of the 2-bromopropanoate moiety, Hf. The 

appearance of an overlapping set of doublets with the overall integral of 12 and 

relatively equal intensities suggest that there are two possible environments for the 

methyl protons. Two environments could be resultant of steric interactions from the 

crowded lower rim of the calixarene, forcing the bulky ester moieties into two 

distinct conformations, resulting in the methyl protons of 1’ and 1’’ being non-

equivalent (Fig. 4.35). 
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Figure 4.35. Possible steric interactions resulting in non-equivalent methyl protons, 1’ and 1’’.  

The 1H NMR spectrum (Fig. 4.34) shows a doublet resonance at 1.85 ppm, b, which 

has a J coupling constant of 8.0 Hz. The COSY NMR spectrum (Fig. 4.36) shows 

that b exhibits a coupling to a quartet resonance at 4.40 ppm, h, which also has a J 

coupling constant of 8 Hz. Resonances b and h exhibits no coupling to the calixarene 

core through HMBC NMR spectroscopy as discussed later, so corresponds to 

approximately one molecule of trapped 2-bromopropionic acid, with resonances b 

and h corresponding to Hb and Hh, respectively (Fig. 4.34). It has been well 

documented about calixarenes ability to act as host-guest complexes, trapping even 

large molecules such as chlorin e6.7 The 1H NMR spectrum (Fig. 4.34) shows a 

doublet resonance with an integral of eight at 3.06 ppm, c. The COSY NMR 

spectrum (Fig. 4.36) shows that c exhibits a coupling to a resonance at 4.88 ppm, 

4.96 ppm and 5.77 ppm, corresponding to j, k and l respectively, with all 

corresponding to hydrogen atoms of the allyl moiety. c corresponds to the aliphatic 

methylene protons of the allyl moiety, Hc. Resonance l (Fig. 4.34) exists as a 

multiplet and has an integral of four, which corresponds to the non-terminus alkene 

proton of the allyl moiety, Hl. Resonances j and k (Fig. 4.34), which both have 

integrals of four and exist as a doublet of quartets, correspond to terminus protons of 

the alkene of the allyl moiety. Resonance j has a J 1 coupling constant of 19.9 Hz 

whereas k has a J 1 coupling constant of 11.9 Hz, therefore resonance j corresponds 

to the trans proton with respect to Hl, Hj and k corresponds to the cis proton, Hk. 
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Figure 4.36. COSY NMR spectrum of 15 in CDCl3. 

The 1H NMR spectrum (Fig. 4.34) shows a doublet resonance with an integral of 

four at 3.15 ppm, d. The COSY NMR spectrum (Fig. 4.36) shows that d exhibits 

coupling to the overlapped multiplet resonance f/g. d and g correspond to the 

methylene protons that bridge the aromatics, with d corresponding to the protons 

pointing up to the aromatic region, Hd, and g corresponding to the protons pointing 

down to the oxo environment, Hg. The splitting of the methylene protons indicated 

that the calixarene exists in a cone conformation.4 The assignment of the multiplet 

resonance f/g is justified via a HMBC NMR experiment and is discussed later. The 
1H NMR spectrum (Fig. 4.34) shows a multiplet resonance at 4.19 ppm, e. e exhibits 

coupling to a resonance at 4.64 ppm, i, through COSY NMR spectroscopy (Fig. 

4.36). Resonances e and i correspond to the ethylene protons of the ethyl ether 2-

bromopropanoate moiety. To identify the exact position of the protons, i.e. next to 

the ester moiety or part of the ether linkage the HMBC spectrum must be referred to, 

which is discussed later. The 1H NMR spectrum (Fig. 4.34) shows a singlet 

resonance at 6.50 ppm, m, which corresponds to the aromatic protons in the meta 

position with respect to the oxygen of the aryl ether, Hm. To assign the 13C NMR 

spectrum, HSQC NMR and HMBC NMR spectroscopy were carried out. Using 
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HSQC NMR spectroscopy the carbon atoms directly attached to hydrogen atoms 

could be easily assigned. 

 

Figure 4.37. HSQC NMR spectrum of 15 in CDCl3. 

The HSQC spectrum (Fig 4.37) shows that a couples to a 13C NMR resonance at 

21.7 ppm, b’, which corresponds to the methyl carbon atom of the 2-

bromopropanoate moiety. As observed in the 1H NMR spectrum, with two 

overlapping doublets corresponding to Ha, there are two 13C NMR resonances, b’, in 

very close proximity, explicitly shown in Figure 4.39.  The two 13C NMR resonances 

corresponding to b’ are due to there being two methyl environments that are very 

similar but not identical as discussed previously, and is depicted in Figure 4.35. The 

HSQC NMR spectrum (Fig 4.37) shows that b couples to a 13C NMR resonance at 

21.6 ppm, a’, which corresponds to the methyl carbon atom of the trapped 2-

bromopropionic acid. c couples to a 13C NMR resonance  at 39.5 ppm, e’, which 

corresponds to the methylene ether linkage of the allyl moiety. Both d and f/g couple 

to a 13C NMR resonance at 31.0 ppm, c’, which corresponds to the methylene carbon 

atoms that bridge the aromatics. The fact that the bridging methylene carbon atom 

resonance resides in the 31 ppm region is further indication that the calixarene exists 

in a cone conformation.5 The f/g resonance exhibits a coupling to two 13C NMR 
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resonances, 31.0 ppm and 40.0 ppm, c’ and f’, respectively, and as described above, 

c’ corresponds to the bridging methylene carbon atom between the aromatic, 

therefore f’ corresponds to the methine carbon of the attached 2-bromopropanoate 

moiety. Further differentiation of the f and g is ascertained from the difference in 

phasing of the coupled signals, with blue referring to a methylene carbon 

environment and red to a methyl or methine environment. e couples to a 13C NMR 

resonance  at 72.2 ppm, h’, which corresponds to one of the ethylene carbon atoms 

of the ethyl ether 2-bromopropanoate moiety, with the exact assignment requiring 

the HMBC NMR experiment, and is described later. h couples to a 13C NMR 

resonance  at 39.4 ppm, d’, which corresponds to the methine carbon atom of the 

trapped 2-bromopropanoate moiety. i couples to a 13C NMR resonance  at 65.7 ppm, 

h’, and corresponds to one of the ethylene carbon atoms of the ethyl ether 2-

bromopropanoate moiety, with the exact assignment requiring the HMBC NMR 

experiment, and is described later. j and k both couple to a 13C NMR resonance  at 

115.2 ppm, i’, which corresponds to the terminus alkene carbon atom of the allyl 

moiety. l exhibits coupling to a 13C NMR resonance  at 138.0 ppm, m’, which 

corresponds to the methylene ether linkage carbon atom of the allyl moiety. m 

couples to a 13C NMR resonance  at 128.8 ppm , j’, which corresponds to the meta 

carbon of the aryl ether moieties with respect to the ether oxygen. To assign the final 
13C NMR resonances that do not directly couple to a hydrogen atom HMBC NMR 

spectroscopy was carried out and is fully analysed. 
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 Figure 4.38. HMBC NMR spectrum of 15 in CDCl3. 

The HMBC NMR spectrum (Fig. 4.38) shows that there are two resonances at 170.4 

and 174.8 ppm, o’ and p’, respectively, which correspond to carbonyl carbon atoms. 

o’ exhibits coupling to a, e and i, therefore corresponds to the carbonyl of the 

attached 2-bromopropanoate moiety. p’ only exhibits coupling to b, therefore 

corresponds to the carbonyl carbon atom of the trapped 2-bromopropionic acid. The 

HMBC NMR spectrum (Fig. 4.38) shows that k’ exhibits coupling to c and l of the 

allyl moiety, therefore must correspond to the para carbon atom of the aryl ether unit 

with respect to the ether oxygen. l’ exhibits coupling to the protons of the bridging 

methylene unit, He and Hg, therefore corresponds to the ortho carbon atom of the 

aryl ether unit with respect to the ether oxygen. n’ exhibits coupling to e and g, 

which correspond to He and Hg, respectively. e corresponds to one of the pairs of 

ethylene protons of ethylene ether 2-bromopropanoate moiety, and m, corresponds 

to the aromatic protons, Hm, therefore n’ corresponds to the ipso carbon atom of the 

aryl ether unit with respect to the ether oxygen. The fact that n’ couples to e and not 

i, indicates that e corresponds to the ether linkage protons of the ethylene ether 2-

bromopropanoate moiety, He (Fig. 4.34) and in turn h’ corresponds to the carbon 

atom of this ethylene unit (Fig. 4.39).  i must therefore correspond to the protons of 

the ethylene unit closest to the ester unit of the ethylene ether 2-bromopropanoate 
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moiety, Hi (Fig. 4.34) and in turn g’ corresponds to the carbon atom of this ethylene 

unit (Fig. 4.39). The complete assignment of the 13C NMR spectrum is shown below 

in Figure 4.39.  

 

Figure 4.39. 13C NMR spectrum of 15 in CDCl3. 

ASAP mass spectrometry was carried out and the molecular ion was seen at 

1301.153 Da (31.96%) (Fig. 4.40), which is consistent with the empirical formula 

C60H69O12
+. A secondary fragment was observed at 1122.184 Da (58.72%), which is 

consistent with the empirical formula C55H61Br3O10
+ (Fig. 4.40). The secondary 

fragment corresponded to 15 but with loss of one ethyl 2-bromopropanoate moiety; 

the ethyl 2-bromoproanoate ion is observed at 180.973 Da (100%). 
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Figure 4.40. ASAP MS spectrum of 15.  

Further confirmation that 15 was synthesised was through FT-IR spectroscopy, 

where the was the loss of the OH absorption band at 3300 cm-1 and the presence of a 

strong carbonyl  absorption band at 1739 cm-1 were observed. The trapped 2-

bromopropanoic acid exhibited a small OH stretch at 3200 cm-1. Additionally, CHN 

analysis was carried out with the results closely matching the predicted values; CHN 

expected = %C = 52.05, %H = 5.06, %N 0.00; measured %C = 52.61, %H = 5.37, 

%N 0.00. 
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4.2.6 5,11,17,23-tetrakis(3-(hydroxyethyl)thioether-propanyl)-

25,26,27,28-tetrakis(ethoxyester-2-bromo-propanoate)calix[4]arene, 

16 

 Scheme 4.10. Synthesis of 16. 

The novel compound 16 was successfully synthesised via performing photo initiated 

thiol-ene “click” chemistry on the double bonds of the allyl moiety (Scheme 4.10). 

Compound 15 was exposed to 30 seconds of a wide emission UV spectrum at an 

intensity of 200 W cm-2 in the presence of an excess of 2-mercaptoethanol. A yield 

of 89% was achieved after carrying out flash column chromatography. 16 adhered to 

the silica, therefore was washed with pure ethyl acetate to remove the excess 2-

mercaptoethanol, then was removed from the silica via flushing the column with 

methanol, which strips off the silica hydroxyls releasing the compound. Full analysis 

and characterisation is described below. 

16 15 
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Figure 4.41. 1H NMR spectra comparing 15 (a) and 16 (b), showing the loss of the alkene resonance of the allyl 

moiety in CDCl3. 

The stacked 1H NMR spectra (Fig. 4.41) showed that the resonance for the allyl 

moiety of 15 had disappeared. A full analysis of the spectra of 16 is discussed. 

 

(a) 

(b) 
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Figure 4.42. 1H NMR spectrum of 16 in CDCl3. 

The 1H NMR spectrum (Fig. 4.42) exhibits a quintet resonance with an integral set to 

eight at 1.70 ppm, a. The COSY NMR spectrum (Fig. 4.43) shows that a couples to 

two resonances, one at 2.40 ppm and a second at 2.47 ppm, c and d, respectively. 

The 1H NMR spectrum (Fig. 4.42) shows that resonance c has a triplet multiplicity 

and an integral of eight with d also having a triplet multiplicity with an integral of 

eight. Resonance a corresponds to the hydrogen atoms on the second carbon atom 

along of the propylene unit of the tetrakis(3-hydroxyethyl)thioether-propanyl moiety 

with respect to the aromatic ring, Ha. The quintet resonance corresponding to Ha is a 

result of coupling to two methylene units on either side. Resonance c corresponds to 

the hydrogen atoms on the third carbon atom along of the propylene unit of the 

tetrakis(3-hydroxyethyl)thioether-propanyl moiety with respect to the aromatic ring, 

Hc. Resonance d corresponds to the hydrogen atoms on the first carbon atom along 

of the propylene unit of the tetrakis(3-hydroxyethyl)thioether-propanyl moiety with 

respect to the aromatic ring, Hd. The 1H NMR spectrum (Fig. 4.42) exhibits an 

overlapped doublet resonance with an integral of 12 at 1.78 ppm, b. The COSY 

NMR spectrum (Fig. 4.43) shows that b couples to a resonance at 4.35 ppm, j. The 

resonance of b (Fig. 4.42) corresponds to the methyl protons of the 2-

bromoproanoate moiety, Hb, and j corresponds to the methine of the 2-
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bromoproanoate moiety, Hj. The appearance of an overlapping set of doublets with 

the overall integral of 12 with relatively equal intensities suggests that there are two 

environments for the methyl protons, which could be resultant of steric interactions 

from the crowded lower rim of the calixarene, forcing the bulky ester moieties into 

two distinct conformations, as discussed for 6 (Fig. 4.35), resulting in the methyl 

protons of 1’ and 1’’ being non-equivalent. The 1H NMR spectrum (Fig. 4.42) 

exhibits a triplet resonance with an integral of eight at 2.72 ppm, e, and also has a J1 

coupling constant of 7.0 Hz.  

  

Figure 4.43. COSY NMR spectrum of 16 in CDCl3. 

The COSY NMR spectrum (Fig. 4.43) shows that e couples to a resonance at 3.72 

ppm, g, which has an integral of eight and a J1 coupling constant of 7.0 Hz. 

Resonances e and g correspond to the ethylene protons of the thio ether ethylene 

hydroxyl moiety, with e corresponding to the hydrogen atoms closest to the sulfur 

and g corresponding to the hydrogen atoms adjacent to the hydroxyl moiety, He and 

Hg, respectively. The assignment was achieved by the fact that sulfur is less electron 

withdrawing than oxygen, so will therefore pull less electron density away from the 

adjacent carbon atom, thus the protons will be less deshielded. The 1H NMR 

spectrum (Fig. 4.42) exhibits a doublet resonance at 3.13 ppm, f. The COSY NMR 



 

182 

spectrum (Fig. 4.43) shows that f couples to a resonance at 4.35 ppm, i. f and i 

correspond to the methylene protons that bridge the aromatics, with f corresponding 

to the protons pointing up to the aromatic region, Hf, and i corresponding to the 

protons pointing down to the oxo environment, Hi, indicating that the calixarene is in 

a cone conformation.4 The 1H NMR spectrum (Fig. 4.42) exhibits a multiplet 

resonance with an integral of eight at 4.18 ppm, h. The COSY NMR spectrum (Fig. 

4.43) shows that h couples to a resonance at 4.63 ppm, k, which has an integral of 

eight. Resonances h and k correspond to the ethylene protons of the ethyl ether 2-

bromoproanoate moiety, but to accurately assign the position the hydrogen atoms the 

HMBC NMR spectrum must be referred to and is discussed later. The 1H NMR 

spectrum (Fig. 4.42) exhibits a singlet resonance with an integral of eight at 6.47 

ppm, l, which corresponds to the aromatic hydrogen atoms attached to the carbon 

atom of the aryl ether ring in the meta position with respect to the aryl ether oxygen. 

To assign the 13C NMR spectrum, HSQC NMR and HMBC NMR spectroscopy 

were carried out. Using HSQC NMR spectroscopy the carbon atoms directly 

attached to hydrogen atoms could be easily assigned. 

 

Figure 4.44. HSQC NMR spectrum of 16 in CDCl3. 
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The HSQC NMR spectrum (Fig. 4.44) shows that a couples to a 13C NMR resonance 

at 31.4 ppm, d’, which corresponds to the second carbon atom along of the 

propylene unit of the tetra(3-hydroxyethyl)thioehter-propanyl moiety with respect to 

the aromatic ring. b exhibits a coupling to a 13C NMR resonance  at 21.7 ppm, a’, 

which corresponds to the methyl carbon of the 2-bromopropanoate moiety. c couples 

to a 13C NMR resonance  at 34.1 ppm, e’, which corresponds to the third carbon 

atom along of the propylene unit of the tetrakis(3-hydroxyethyl)thioether-propanyl 

moiety with respect to the aromatic ring. d couples to a 13C NMR resonance  at 31.3 

ppm, c’, which corresponds to the first carbon atom along of the propylene unit of 

the tetrakis(3-hydroxyethyl)thioether-propanyl moiety with respect to the aromatic 

ring. e couples to a 13C NMR resonance  at 35.4 ppm, f’, which corresponds to the 

carbon atom adjacent to the sulfur of the thio ether ethylene hydroxyl moiety. f and i 

both couple to a 13C NMR resonance at 31.0 ppm, b’, which corresponds to the 

bridging methylene carbon atoms between aromatic rings. The fact that the bridging 

methylene carbon atoms resonance resides in the 31 ppm region is further indication 

that the calixarene exists in a cone conformation.5 g couples to a 13C NMR resonance 

at 60.6 ppm, h’, which corresponds to the carbon atom adjacent to the hydroxyl of 

the thio ether ethylene hydroxyl moiety. h couples to a 13C NMR resonance  at 72.2 

ppm, j’, which corresponds to one of the ethylene carbon atoms of the ethyl ether 2-

bromopropanoate moiety, with the exact characterisation requiring the HMBC NMR 

experiment, and is described later. j couples to a 13C NMR resonance  at 40.1 ppm, 

g’, which corresponds to the methine carbon atom of the 2-bromopropanoate moiety. 

k couples to a 13C NMR resonance  at 65.6 ppm, i’, which corresponds to one of the 

ethylene carbon atoms of the ethyl ether 2-bromopropanoate moiety, with the exact 

characterisation requiring the HMBC NMR experiment, and is described later. To 

assign the 13C NMR resonances that do not directly couple to a hydrogen atom 

HMBC NMR spectroscopy was carried out and was fully analysed. 
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Figure 4.45. HMBC NMR spectrum of 16 in CDCl3. 

The HMBC NMR spectrum (Fig. 4.45) shows that there is a 13C NMR resonance at 

170.4 ppm, o’, which corresponds to the carbonyl carbon atom of the 2-

bromoproanoate moiety. o’ exhibits coupling to b, i and k, with resonances b and i 

corresponding to Hb and Hi, respectively (Fig. 4.42). k corresponds to one pair of the 

ethylene protons of the ethyl ether 2-bromopranoate moiety as discussed previously. 

The coupling between o’ and k indicates that k corresponds to the ethylene protons 

closest to the carbonyl, Hk (Fig. 4.42). The HMBC NMR spectrum (Fig. 4.45) shows 

that there is a 13C NMR resonance at 154.1 ppm, n’, which exhibits coupling to the 

resonances f and j corresponding to the bridging methylene protons, Hf and Hj, 

respectively (Fig. 4.42), and h, which as discussed previously corresponds to one 

pair of the ethylene protons of the ethyl ether 2-bromopropanoate moiety. n’ 

therefore corresponds to the ipso carbon atom of the aryl ether  with respect to the 

aryl ether oxygen and h corresponds to the methylene ether linker protons of the 

ethyl ether 2-bromopropanoate moiety, Hh (Fig. 4.42). The HMBC NMR spectrum 

(Fig. 4.45) shows that there is a 13C NMR resonance at 135.6 ppm, m’, which 

exhibits coupling to a (Ha, Fig. 4.42), therefore corresponds to the para carbon atom 

of the aryl ether with respect to the aryl ether oxygen. The complete assignment of 

the 13C NMR spectrum is shown in Figure 4.46. 



 

185 

 

Figure 4.46. 13C NMR spectrum of 16 in CDCl3. 

Compound 16 was unstable to ASAP MS. CHN analysis was carried out on 16, with 

the results obtained closely matching the predicted values; CHN Expected = %C = 

50.63, %H = 5.75, %N = 0.00; Measured %C = 50.98, %H = 5.79, %N = 0.00. 

Further indication that 16 (blue trace) was synthesised was through FT-IR 

spectroscopy, where there was loss of the C=C absorption band at 1638 cm-1 and the 

presence of a strong OH  absorption band at 3307 cm-1 were observed (Fig. 4.47). 
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Figure 4.47. Stacked FT-IR spectra of, red = 15 and blue = 16. 

 

4.3. Conclusion 
This chapter described the synthetic strategy employed for the synthesis of a novel 

A4B4 heterofunctional initiator that incorporated an alkyl halogen moiety required 

for SET-LRP and a primary hydroxyl moiety required for ROP. The known 

compound of 25,26,27,28-tetrakis(allyloxy)calix[4]arene, 11, and 5,11,17,23-

tetrakis(prop-2-en-1-yl)calix[4]arene, 12, were synthesised according to the 

literature.3 A full characterisation was carried out on both 11 and 12 as little 

characterisation had been carried out previously. The novel compound 5,11,17,23-

tetrakis(prop-2-en-1-yl)-25,26,27,28-tetrakis(methylacetateoxy)calix[4]arene, 13, 

was successfully  synthesised via a Williamson ether synthesis between 12 and 

methyl chloroacetate and was fully characterised. 13 was taken forward and used as 

the precursor for the novel compound 5,11,17,23-tetrakis(prop-2-en-1-yl)-

25,26,27,28-tetrakis(ethanoloxy)calix[4]arene, 14, which was synthesised via an 

ester reduction of 13. The novel compound 5,11,17,23-tetrakis(prop-2-en-1-yl)-

25,26,27,28-tetrakis(ethoxyester-2-bromo-propanoate)calix[4]arene, 15, was 

successfully synthesised via an esterification reaction with 2-bromopropionyl 

bromide; a full characterisation was carried out. It was noted that ~1 molecule of 2-
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bromopropanoic acid was trapped within the calixarene, which could not be 

removed. The final step was to incorporate a primary hydroxyl moiety, which was 

achieved via a photo initiated thiol-ene click reaction with the allyl moieties of 15 

and 2-mercaptoethanol, resulting in the successful synthesis of the novel compound 

5,11,17,23-tetrakis((3-hydroxyethyl)thioether-propanyl)-25,26,27,28-

tetrakis(ethoxyester-2-bromo-propanoate)calix[4]arene, 16. The full characterisation 

of 16 was carried out. 
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Chapter 5 
Amphiphilic A4B4 Miktoarm Star 

Polymer with Calix[4]arene Core 
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5.0. Introduction  
This chapter describes the synthesis of a novel amphiphilic A4B4 miktoarm star 

polymer, which employs the “core first” strategy. The multifunctional core 

encompasses four primary hydroxyls, which facilitate ring opening polymerisation 

(ROP) and four alkyl bromo moieties, which facilitate single electron transfer living 

radical polymerisation (SET-LRP). The monomer selected for ROP was ε-

caprolactone due to its biocompatibility and hydrophobic nature in its polymer form 

(poly(ε-caprolactone), PCL). To introduce an amphiphilic nature to the polymer 

system the monomer selected for SET-LRP was 2-hydroxylethyl acrylate (HEA) that 

forms poly(2-hydroxylethyl-acrylate) (PHEA), which is a hydrophilic polymer. The 

combination of hydrophilic and hydrophobic arms attached to a central core will lead 

to interesting properties, such as self-assembly in certain solvents. 
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5.1. Experimental  

5.1.1. Materials 
5,11,17,23-tetrakis((3-hydroxyethyl)thioether-propanyl)-25,26,27,28-

tetrakis(ethoxyester-2-bromo-propanoate)-calix[4]arene, 16, was synthesised 

according to Chapter 4. Tin(II) 2-ethylhexanoate (92.5 – 100%) and Tris[2-

(dimethylamino)ethyl]amine (Me6TREN) were purchased from Sigma Aldrich and 

used without further purification. ε-caprolactone (97%) was purchased from Sigma 

Aldrich and distilled before use. HEA (96%) was purchased from Sigma Aldrich and 

purified as follows: HEA was added to water (20% v/v) and washed with hexane ten 

times to remove the unwanted ethylene glycol diacrylate. The HEA monomer was 

collected via extraction with diethyl ether (five times), which was dried over 

magnesium sulfate and filtered. Hydroquinone (0.05%) was further added.1 Bare 

copper wire (24 standard wire gauge, diameter = 0.559 mm) was purchased from 

Fisher Scientific and was activated prior to use via dipping in concentrated nitric 

acid and then washing with water and drying. Chloroform, methanol, anhydrous 

dimethylformamide (DMF) and diethyl ether analytical grade solvents and 

concentrated nitric acid (~37%) were purchased from Fisher Scientific and used 

without further purification. Dry toluene was obtained from the Durham University 

Chemistry Department Solvent Purification Service (SPS). Deuterated chloroform 

(CDCl3) and deuterated DMF (DMF-d7) for NMR analysis was purchased from 

Apollo Scientific. 

 

5.1.2. Instrumentation 
1H and 13C NMR spectra were recorded using a Varian VNMRS 700 spectrometer 

operating at 700 MHz and 176 MHz, respectively, with J values given in Hz. CDCl3 

or DMF-d7 was used as deuterated solvent for 1H and 13C NMR analysis and the 

spectra were referenced to the solvent traces at 7.26 ppm, 77.0 ppm and 8.03 ppm, 

163.15 ppm, respectively. The following abbreviations are used in describing NMR 

spectra: s = singlet, d = doublet, t = triplet, q = quartet, quin = quintet, s = sextet, m = 

multiplet, b = broad, o = overlapped, dd = doublet of doublets, dq = doublet of 

quartets. 2D NMR experiments were also used to fully assign the proton and carbon 

environments in the products. 1H-1H Correlation Spectroscopy (COSY) 
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demonstrated proton-proton correlations over two or three bonds. 1H-13C 

Heteronuclear Shift Correlation Spectroscopy (HSQC) demonstrated correlation 

between directly bonded proton and carbons atoms. 1H-13C Heteronuclear Multiple-

Bond Correlation (HMBC) demonstrated the correlation between proton and carbon 

environments through several bonds.  

 

Fourier transform-infra-red (FT-IR) spectroscopy was conducted using a Perkin 

Elmer 1600 series spectrometer.  

 

Measurements of molecular weight (Mn and Mw, corresponding to the number 

average and weight average molecular weight respectively), and dispersity (Ɖ) of 

polymers synthesised were carried out via Size Exclusion Chromatography (SEC) on 

a Viscotek TDA 302 with triple detectors: refractive index, light scattering and 

viscosity. The columns used were PLgel 2 x 300 mm 5 µm mixed C, which have a 

linear range of molecular weights from 2.0 x 102 – 2.0 x 106 g mol-1. The solvent 

used was THF or DMF at flow rates and temperatures at 1.0 mL min-1, 35 oC and 1.0 

mL min-1, 70 oC respectively. The detectors were calibrated using narrow molecular 

weight distribution linear polystyrene or polyethylene glycol standards. 

Differential scanning calorimetry (DSC) was carried out using a TA Instrument 

Q1000 DSC, ran in N2 gas, with a flow rate of 30 mL min-1 and a heating rate of 10 
oC min-1. 

Thermogravimetric analysis (TGA) was carried out using a Perkin Elmer Pyris 1 

TGA connected to a HIDEM HPR20 MS, ran in N2 gas with a heating rate of 10 oC 

min-1. 

 

5.1.3. Synthesis of Calixarene-starPCL20, 17  
To a Schlenk vessel, 16 (0.150 g, 0.09 mmol) was added. The flask was evacuated 

for 3 h, then purged with dry argon (Ar), this process was repeated a second time. ε-

caprolactone (0.750 mL, 6.77 mmol) was then injected, forming a colourless 

solution. A stock solution of Sn(Oct)2 in dry toluene (0.23 M, 0.063 mL) was further 

injected in. The system was heated to 120 oC and left to stir for 24 h, forming a pale 
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brown translucent viscous liquid. The viscous liquid was dissolved in a small 

volume of chloroform and precipitated into a cold solution of methanol; the 

precipitation process was repeated three times. The white precipitate was collected 

and dried under vacuum resulting in a white powdery material. Mass = 0.89 g, yield 

= 99%. νmax (Perkin Elmer FT-IR, Diamond, cm-1). 3441 (w, OH), 2850-2990 (s, 

CH), 1721 (s, C=O). 1H NMR (700 MHz, CDCl3) δ: 1.33 (quin, 153Ha, J = 7.6 Hz), 

1.60 (m, 310Hb), 1.75 (dd, 12Hc, J = 6.9 Hz), 1.88 (bm, 8Hd), 2.26 (t, 154He, J =7.6 

Hz ), 2.42 (m, 8Hf), 2.54 (m, 8Hg), 2.67 (m, 8Hh), 3.08 (d, 4Hi, J = 14.9 Hz), 3.59 (t, 

8Hj, J = 6.6 Hz), 4.01 (t, 150Hk, J = 6.7 Hz), 4.12 (m, 8Hl), 4.16 (m, 8Hm), 4.28 (m, 

4Hn), 4.32 (m, 4Ho), 4.58 (m, 8Hp), 6.00-6.87 (m, 8Hq).13C NMR (176 MHz, CDCl3) 

δ: 21.6 (a’), 24.6 (b’), 25.5 (c’), 28.3 (d’), 30.4 (e’), 31.0 (f’), 31.4 (g’), 31.6 (h’), 

32.3 (i’), 34.1 (j’), 40.0 (k’), 62.5 (l’), 63.3 (m’), 64.2 (n’), 65.7 (o’), 72.0 (p’), 128.3 

(q’), 134.8 (r’), 154.4 (s’), 170.2 (t’), 173.5 (u’). SEC (THF): Mn = 4.4 x103 g mol-1, 

Mw = 5.5 x 103, Ɖ = 1.25. DSC: Tm = 50.27 oC, Tc = 24.40 oC, %crystallinity = 

19.65%. TGA: Onset X1 = 253.47 oC, Onset X2 = 344.64 oC, ΔY1 = 84.715%, ΔY2 = 

15.262%. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1. Labelling of the chemical environments in 2 (a) proton (b) carbon. 
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5.1.4. Synthesis of Calixarene-starPCL20PHEAm using SET-LRP, 18 

- 20 
To a Schlenk vessel charged with a magnetic stirrer, 17 (0.100 g, 0.0012 mmol) and 

activated copper wire (2 cm, activated using nitric acid) were added. The system was 

evacuated and purged with dry Ar. CuBr2 in dry DMF (0.03 mL, 0.01915 M), further 

dry DMF (if required) and HEA (appropriate amount for desired Mn) was added via 

a syringe. The pale white/colourless solution was deoxygenated with dry Ar for 0.5 

h. To initiate the polymerisation a deoxygenated stock solution of Me6TREN in 

DMF (0.03 mL, 0.02518 M) was injected in, the solution remained colourless. The 

reaction mixture was stirred at 25 oC for 16 h, leading to a very pale blue translucent 

viscous solution. Further DMF (appropriate amount) was added to the reaction 

vessel; the free flowing solution was precipitated into diethyl ether, the precipitation 

process was carried out a further two times. The white precipitate was collected and 

further washed with diethyl ether and chloroform resulting in a tacky white material. 

Yields = 84-88%, conversion (HEA to PHEA) = 92-96%. νmax (Perkin Elmer FT-IR, 

Diamond, cm-1). 3441 (s, OH), 2850-2990 (s, CH), 1721 (s, C=O). 1H NMR (700 

MHz, d-DMF) δ: 1.39 (quin, 155Ha, J = 7.6 Hz), 1.49 (m, 8Hb), 1.62 (m, 340Hc), 

1.54-2.00 (m, 300Hd), 2.34 (t, 153He, J = 7.4 Hz), 2.38 – 2.55 (m, 190Hf), 2.81 (bs, 

11Hf), 3.50 (m, 10Hh), 3.56 (m, 8Hi), 3.65 (m, 8Hj), 3.73 (s, 383Hk), 4.06 (t, 154Hl, J 

= 6.6 Hz), 4.14 (m, 370Hm), 4.23 (m, 9Hn), 4.38 (t, 8Ho, J = 5.0 Hz), 4.63 (m, 4Hp), 

4.86 (bs, 190Hq), 6.46-6.92 (bm, 8Hr). 13C NMR (176 MHz, d6-DMF) δ: 24.5 (a’), 

26.3 (b’), 29.3 (c’), 30.9 (d’), 33.6 (e’), 34.6 (f’), 36.6 (g’), 42.3 (h’), 60.7 (i’), 62.0 

(j’), 62.2 (k’), 64.3 (l’), 64.8 (m’), 67.1 (n’), 73.7 (o’), 174.0 (p’), 176.0 (q’). MnNMR 

= 5.0 x103 g mol-1 – 2.2 x104 g mol-1. SEC (DMF): Mn = 1.3 – 2.0 x 104 g mol-1, Ɖ = 

1.23-1.45. DSC: Tm = 50.27 oC, Tc = 24.40 oC. TGA: Onset X1 = ~292 oC, Onset X2 

= 395-412 oC , ΔY1 = ~89%, ΔY2 = ~11%. 
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Figure 5.2. Labelling of the chemical environments in 18 - 20 (a) proton (b) carbon. 
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5.2. Results and discussion  

5.2.1. Ring opening polymerisation of ε-caprolactone using A4B4 

heterofunctional initiator, 16  

 

Scheme 5.1.  Ring opening polymerisation of ε-caprolactone using 16. 

ε-Caprolactone was ring opened off the primary hydroxyls of 16 using tin octoate, 

with the reaction run in bulk, leading to a star poly(ε-caprolactone) (PCL) with a 

16 

17 
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calix[4]arene core (Scheme 5.1). A monomer to initiator to catalyst ratio of 80:1:0.05 

was used to target a molecular weight of 9.2 x 104 g mol-1, therefore a degree of 

polymerisation (DP) of 20 per arm. The polymer has been fully analysed and the 

results are discussed below. 

 

 

Figure 5.3. 1H NMR spectrum of 17, in CDCl3. 

The 1H NMR spectrum (Fig. 5.3) shows the resonances of the calixarene core 

aromatic protons, with several broad resonances observed at 6.00-6.87 ppm, q, 

corresponding to Hq. The various broad resonances are observed due to the many 

different rotational conformations of the calixarene core present. Resonance q had its 

integral value set to eight, with the DP of the PCL being determined with respect to 

this value. The 1H NMR spectrum (Fig. 5.3) shows the resonances for the PCL 

backbone protons a, b, e, j and k. A quintet resonance with an integral of 153 is 

observed at 1.33 ppm, a, corresponding to the hydrogen atoms of the PCL on the 

third carbon atom with respect to the carbonyl carbon atom, Ha. A sextet resonance 

with an integral of 310 is observed at 1.60 ppm, b, corresponding to the methylene 

hydrogen atoms of the PCL on the second and fourth carbon atoms with respect to 

the carbonyl carbon, Hb.  A triplet resonance with an integral of 154 is observed at 



 

197 

2.26 ppm, e, corresponding to the methylene hydrogen atoms of the PCL on the first 

carbon atom with respect to the carbonyl carbon, He. A triplet resonance with an 

integral of 150 is observed at 4.01 ppm, k, corresponding to the methylene hydrogen 

atoms of the PCL backbone on the fifth carbon atom with respect to the carbonyl 

carbon, Hk. A triplet resonance with an integral of eight is observed at 3.59 ppm, j, 

corresponding to the PCL methylene protons conjoint with the hydroxyl group on 

the fifth carbon atom of the end chain, Hj. To assign the proton signals from the 

calixarene core initiator and assign the 13C NMR spectrum, COSY NMR, HSQC 

NMR and HMBC NMR spectroscopy were carried out, with the results discussed 

below. 

 

Figure 5.4. COSY NMR spectrum of 17, in CDCl3. 

The COSY NMR spectrum (Fig. 5.4) exhibits two sets of doublets with an overall 

integral of 12 at 1.75 ppm, c, which exhibits coupling to an overlapped quartet signal 

at 4.32 ppm, o. c corresponds to the methyl protons of the bromopropanoate moiety, 

Hc  and o corresponds to the methine protons of the bromopropanoate moieties, Ho 

(Fig. 5.3). Two sets of doublets are observed for Hc due to the four bromopropanoate 

moieties of the calixarene core being forced into various distinct conformations, 

which was previously observed (Section 4.5). The COSY NMR spectrum (Fig. 5.4) 
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shows a broad multiplet at 1.88 ppm, d, which exhibits coupling to resonances at 

2.42 ppm and 2.54 ppm, f and g, respectively. d corresponds to the protons on the 

second carbon atom along of the propylene unit of the tetra(3-

oxyetherethyl)thioether-propanyl moiety with respect to the aromatic ring, Hd, 

whereas f and g correspond to the protons on the first and third carbon atoms along 

of the propylene unit of the tetrakis(3-oxyetherethyl)thioether-propanyl moiety with 

respect to the aromatic ring, Hf and Hg, respectively (Fig. 5.3). The COSY NMR 

spectrum (Fig. 5.4) shows a multiplet of resonances at 2.67 ppm, h, which exhibits 

coupling to a multiplet resonance at 4.16 ppm, m. Resonances h and m correspond 

to the ethylene protons of the ethylene unit of the tetrakis(3-oxyetherethyl)thioether-

propanyl moiety, with m corresponding to the protons adjacent to the oxygen and h 

corresponding to the protons next to the sulfur, Hm and Hh respectively (Fig. 5.3). 

The assignment was confirmed via an HMBC experiment (Fig. 5.5), which shows 

the resonance of Hm exhibiting coupling to the carbonyl carbon of the PCL back 

bone, u’. This coupling additionally confirms that the ROP was initiated via the 

primary hydroxyls of the calixarene initiator, 16.  

Figure 5.5. HMBC NMR spectrum of 17, in CDCl3. 

The COSY NMR spectrum (Fig. 5.4) shows a broad doublet resonance with an 

integral of four at 3.08 ppm, i, which exhibits coupling to a broad resonance at 4.28 
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ppm, n. Resonances i and n correspond to the methylene protons that bridge the 

aromatics, Hi and Hn (Fig. 5.3), respectively. The presence of two sets of resonances 

corresponding to the bridging methylene protons indicates that the calixarene core is 

predominantly in the cone conformation.2 The COSY NMR spectrum (Fig. 5.4) 

shows a overlapped multiplet resonance at 4.12 ppm, l, which exhibits coupling to a 

broad resonance at 4.58 ppm, p. Resonances l and p correspond to the ethylene 

protons of the ethyl ether 2-bromoproanoate moiety, Hl and Hp respectively (Fig. 

5.3). Using HSQC NMR spectroscopy the carbon atoms directly attached to 

hydrogen atoms could be easily assigned.  

Figure 5.6. HSQC NMR spectrum of 17, in CDCl3. 

The HSQC NMR spectrum (Fig. 5.6) shows a couples to a 13C NMR resonance at 

25.6 ppm, c’, corresponding to the third carbon atom along of the PCL with respect 

to the carbonyl carbon atom. Resonance b exhibits coupling to two 13C NMR 

resonances at 24.6 ppm, b’; and 34.2 ppm, d’; corresponding to the second and 

fourth carbon atoms along of the PCL with respect to the carbonyl carbon atom, 

respectively. Resonance c exhibits coupling to a 13C NMR resonances at 21.6 ppm, 

a’, corresponding to the methyl carbon atom of the bromopropanoate moiety. 

Resonance d exhibits coupling to a 13C NMR resonance at 31.4 ppm, g’, 

corresponding to the second carbon atom along of the propylene unit of the tetra(3-
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oxyetherethyl)thioether-propanyl moiety with respect to the aromatic ring. 

Resonance e exhibits coupling to a 13C resonance at 34.1 ppm, j’, corresponding to 

the first carbon atom along of the PCL with respect to the carbonyl carbon. 

Resonances f and g both exhibit coupling to a broad 13C NMR resonance at 31.4 

ppm, h’, corresponding to the first and third carbon atoms along of the propylene 

unit of the tetra(3-oxyetherethyl)thioether-propanyl moiety with respect to the 

aromatic ring. Resonance h exhibits coupling to a 13C NMR resonance at 30.4 ppm, 

e’, corresponding to the carbon atom adjacent to the sulfur of the ethylene unit of the 

tetra(3-oxyetherethyl)thioether-propanyl moiety. Resonances i and n both couple to 

a 13C NMR resonance at 31.0 ppm, f’, corresponding to the methylene carbon atom 

that bridges the aromatics of the calixarene core. The fact that the bridging 

methylene carbon atom resonance resides in the 31 ppm region is further indication 

that the calixarene exists in a cone conformation.3 Resonance j exhibits coupling to a 
13C NMR resonance at 62.5 ppm, l’, corresponding to the methylene carbon atom 

next to the terminus PCL hydroxyl moiety. Resonance k exhibits coupling to a 13C 

NMR resonance at 64.2 ppm, n’, corresponding to the non-terminus methylene 

carbon atom of the PCL backbone on the fifth carbon atom along with respect to the 

carbonyl carbon. Resonance l exhibits coupling to a 13C NMR resonance at 72.0 

ppm, p’, corresponding to the ethylene carbon atom of the ethyl ether 2-

bromopropanoate moiety adjacent to the ether oxygen. Resonance m exhibits 

coupling to a 13C NMR resonance at 63.1 ppm, m’, corresponding to the carbon 

atom adjacent to the oxygen of the ethylene unit of the tetra(3-

oxyetherethyl)thioether-propanyl moiety. Resonance o exhibits coupling to a 13C 

NMR resonance at 40.0 ppm, k’, corresponding to the methine carbon atom of the 

bromopropanoate moieties. Resonance p exhibits coupling to a 13C NMR resonance 

at 65.7 ppm, o’, corresponding to the ethylene carbon atom of the ethyl ether 2-

bromopropanoate moiety adjacent to the ester oxygen. Resonance i’ corresponds to a 

satellite peak of the PCL backbone. Resonance q’, at 128.3 ppm, corresponds to the 

meta carbon atoms of the aromatic ring of the calixarene core. Resonance r’, at 

134.8 ppm corresponds to the ortho carbon atom of the aromatic and resonance s’ at 

154.4 ppm corresponds to the ipso carbon atom of the aromatics of the calixarene 

core. The complete assignment of the 13C NMR spectrum is shown in Figure 5.7. 
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Figure 5.7. 13C NMR spectrum of 17, in CDCl3. 

As expressed previously, from the 1H NMR spectrum (Fig. 5.3), resonance q had its 

integral set to eight, with the DP of the PCL being determined with respect to this 

value. From the 1H NMR (Fig. 5.3), comparing the integrals of resonance q to a, the 

Mn was calculated to be 8.7 x 103 g mol-1. Each ε-caprolactone unit has a molecular 

weight of 114.14 g mol-1, therefore the total number of units in the PCL is 76, thus if 

the length of each arm was equal, 76 total units corresponds to a DP of 19 per arm. 

To further characterise 17, size exclusion chromatography (SEC) was performed. 

The chromatogram is shown in Figure 5.8. 
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Figure 5.8. SEC chromatogram of 17, using THF as the eluent at 1 mL min-1 and the molecular weights 

determined with respect to polystyrene standards. 

The SEC chromatogram (Fig. 5.8) shows a uniform distribution at 14.42 mL. Using 

a conventional calibration method (polystyrene standards), the Mn and a Mw were 

calculated to be 4.4 x 103 g mol-1 and 5.5 x 103 g mol-1, respectively. The Mn 

calculated from the SEC is approximately half of what was calculated through 1H 

NMR spectroscopy. The large discrepancy is due to SEC’s inability to measure the 

molecular weight of star polymers using a conventional calibration accurately. The 

hydrodynamic volume of a star polymer is less than that of a linear polymer with the 

same molecular weight, thus the molecular weight of a star polymer is 

underestimated. The dispersity, Ɖ, was calculated to be 1.25. The relatively low Ɖ 

indicates that there was good control over the polymerisation and that the DP of each 

arm is likely to be equal, ~19 units per arm. Table 5.1 illustrates the theoretical and 

measured molecular weights and dispersity measured. 

Table 5.1. Characterisation of 17. 

       Sample  Mn(theo) 

g mol-1 

Mn(NMR) 

g mol-1 

Mn(SEC) 

g mol-1 

Ɖ 

17  9.2 x 103 8.7 x 104  4.4 x 103  1.25 
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17 was further characterised by differential scanning calorimetry (DSC) and 

thermogravimetric analysis (TGA); the results are shown in Figures 5.9 and 5.10 

respectively. The DSC (Fig. 5.9) shows that 2 exhibited an endotherm (melting 

transition, Tm) and an exotherm (crystallisation transition, Tc) at 50.27 oC and 24.40 
oC, respectively. The degree of crystallinity (%Х) was calculated according to 

equation 1.4  

      %Х = 100(ΔHc / ΔHco)     (1) 

Where ΔHc is the enthalpy of crystallinity and ΔHco is the standard enthalpy of 

crystallinity  for PCL, which is 139.5 J g-1.5 %Х was calculated to be 19.65%. It 

is reported that neat linear PCL has a %Х of 46.72%.4 Thus, the star 

architecture of 2 has reduced the crystallinity of PCL, which is likely to be a 

resultant of the packing fashion of the PCL, as not all the arms can line up in an 

orderly fashion, and additionally the calixarene core will have an effect on the 

packing of the material. 

 

Figure 5.9. DSC of 17, run in N2 gas, with a flow rate of 30 mL min-1 and a heating rate of 10 oC min-1.  

The TGA thermogram (Fig. 5.10) shows 17 has two distinct thermal events 

corresponding to the decomposition of PCL.  

Tc 

Tm 
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Figure 5.10. TGA of 17, run in N2 gas with a heating rate of 10 oC min-1. Red line = TGA trace, blue dashed line 

= first derivative. 

The first (X1) and second (X2) thermal events of the decomposition of PCL had 

onsets of 253.87 oC and 344.64 oC, respectively. As discussed previously in section 

3.2, two distinct thermal events are observed due to a thermal degradation that 

involves a double mechanism.6 The first degradation process implies a statistical 

rupture of the PCL chains via ester pyrolysis reaction. The produced products of the 

ester pyrolysis are H2O, CO2 and 5-hexenoic acid. A first derivative was calculated 

(blue dashed line, Fig. 5.10), which indicates the point of the greatest rate of change; 

two inflection points were observed, clearly showing the two degradation processes 

for PCL. The percentage of PCL was calculated to be 84.715% (ΔY1). A ΔY2 was 

calculated to be 15.267%, starting from 425.14 oC, which corresponds to the 

percentage of calixarene. The calixarene exhibited a gradual degradation from 

424.14 oC up to 951.70 oC. The first derivative shows there is no clear single 

inflection point for the degradation of calixarene core. The 1H NMR spectrum (Fig. 

5.3) indicates that there are 76 units to the PCL per calixarene core, therefore a Mn 

ratio of 8700:1612, which corresponds to 84.67% PCL and 15.64% calixarene core. 

From TGA, looking at ΔY1 and ΔY2, the percentages of PCL and calixarene core 

were calculated to be 84.715% and 15.267% respectively, which is in good 

agreement with what is calculated from 1H NMR. 

Onset X1  = 253.87 oC 

Onset X2 = 344.64 oC 

ΔY2 = 15.267% 

ΔY1 = 84.715% 
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5.2.2. Amphiphilic A4B4 Miktoarm Star polymer, 18 - 20

 

Scheme 5.2.  SET-LRP of HEA using 17. 

17 

18-20 
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The synthesis of an amphiphilic A4B4 Miktoarm star polymer was carried out via a 

copper(0) mediated radical polymerisation, SET-LRP, using 17 macroinitiator 

(Scheme 5.2). The hydrophilic monomer utilised was 2-hydroxylethyl acrylate 

(HEA). The reaction used activated copper wire in the presence of the multidentate 

amine ligand, Me6TREN, in the aprotic polar solvent DMF. 5% of CuBr2 was added 

to the reaction system to give control at the early stages of the reaction due to Cu(II) 

ability to act as a deactivator as discussed in the introduction (Chapter 1). A 

monomer (X) to initiator to CuBr2 to ligand ratio of X:1:0.05:0.18 was used to target 

various PHEA molecular weights of 4.2 x 103 g mol-1 to 17.6 x 104 g mol-1,  

therefore a DP of 9 - 38 HEA per arm. The various polymers have been fully 

analysed and the results are discussed below.  

 

Figure 5.11. 1H NMR spectrum of 20, in DMF-d7. 

The 1H NMR spectrum (Fig. 5.11) shows the resonances of the calixarene initiator 

aromatic CH protons, with a multiplet observed at 6.41-6.95, r, corresponding to Hr. 
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The multiplet multiplicity is observed due to the many different rotational 

conformations of the calixarene core present. r had its integral value set to eight, 

with the DP of the PHEA being determined with respect to this value. Additionally, 

the DP of the PHEA could be determined from comparing its integral with respect to 

a, corresponding to Ha of the PCL, as the chain length is known as discussed in 

5.2.1. The 1H NMR spectrum (Fig. 5.11) shows the resonances for the PCL 

backbone protons a, c, e and l. A quintet resonance with an integral of 155 is 

observed at 1.39 ppm, a, corresponding to the hydrogen atoms of the PCL on the 

third carbon atom with respect to the carbonyl carbon, Ha. A multiplet resonance is 

observed at 1.62 ppm, c, corresponding to the methylene hydrogen atoms of the PCL 

on the second and fourth carbon atoms with respect to the carbonyl carbon, Hc. A 

triplet resonance with an integral of 153 is observed at 2.34 ppm, e, corresponding to 

the methylene hydrogen atoms of the PCL on the first carbon atom with respect to 

the carbonyl carbon, He. A triplet resonance with an integral of 154 is observed at 

4.06 ppm, l, corresponding to the methylene hydrogen atoms of the PCL backbone 

on the fifth carbon atom with respect to the carbonyl carbon, Hl. The remaining 

unassigned resonances were assigned using a combination of 1D and 2D NMR 

spectroscopy techniques and are explained herein. The 1H NMR spectrum (Fig. 5.11) 

shows a multiplet resonance at 1.49 ppm, b. The COSY NMR spectrum (Fig. 5.12) 

shows b exhibiting a coupling with a multiplet resonance at 3.50 ppm, h, and in turn 

h exhibits coupling to a resonance at 4.38 ppm, o. Resonances b, h and o correspond 

to the hydrogen atoms of the tetra(3-oxyetherethyl)thioether-propanyl moiety, with 

b corresponding to the protons on the second carbon atom along of the propylene 

unit of the tetra(3-oxyetherethyl)thioether-propanyl moiety with respect to the 

aromatic ring, Hb, whereas o and h correspond to the protons on the first and third 

carbon atoms along of the propylene unit of the tetra(3-oxyetherethyl)thioether-

propanyl moiety with respect to the aromatic ring, Ho and Hh, respectively (Fig. 

5.11). The 1H NMR spectrum (Fig. 5.11) shows a multiplet resonance between 1.54 

– 2.00 ppm, d. The COSY NMR spectrum (Fig. 5.12) shows d exhibiting a coupling 

with a multiplet between 2.38 – 2.54 ppm, f. Resonances d and f correspond to the 

methine and methylene protons of the PHEA backbone. To ascertain which protons 

belong to which resonance the HSQC NMR spectrum must be referred too, and is 

discussed later. The 1H NMR spectrum (Fig. 5.11) shows a broad resonance, which 

is overlapped by a DMF satellite resonance at 2.81 ppm, g.  The COSY NMR 
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spectrum (Fig. 5.12) shows g exhibiting coupling to a resonance at 4.23 ppm, n, and 

in turn the HMBC spectrum (Fig. 5.14) shows n exhibiting coupling to the 13C NMR 

carbonyl resonance of the PCL backbone at 174.0 ppm, p’, therefore 1H NMR 

resonances g and n correspond to the ethylene protons of the ethylene unit of the 

tetra(3-oxyetherethyl)thioether-propanyl moiety, with n corresponding to the 

protons adjacent to the oxygen and g corresponding to the protons next to the sulfur, 

Hn and Hg respectively (Fig. 5.11). The 1H NMR spectrum (Fig. 5.11) shows a 

resonance at 3.56 ppm, i.   

 

Figure 5.12. COSY NMR spectrum of 20, in DMF-d7. 

The COSY NMR spectrum (Fig. 5.12) shows resonances i exhibiting a coupling with 

a resonance at 3.65 ppm, j. j additionally exhibits coupling to a resonance at 4.63 

ppm, p. j corresponds to one set of ethylene protons of the ethyl ether 2-

bromopropanoate moiety, Hj, and i and p correspond to the same set of protons of 

the ethyl ether 2-bromopropanoate moiety, Hi/p. Two different resonances are 

observed corresponding to Hi/p, which are likely to be due to various conformations 

present of the same functional group brought about by the size of the polymers and 

additionally the conformational freedom of the calixarene core. The hydrogen atoms 

corresponding to Hi/p are likely to be split due to the different conformations of the 
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calixarene core as well as the position of the polymer chain with respect to the 

calixarene core, which in turn alter the electronics of the environment as depicted in 

Figure 5.13.7 

 

Figure 5.13. Possible interactions leading to different chemical environments, therefore resonances i, 1’, and p, 

2’,are observed in the 1H NMR spectrum (Fig. 5.11). 

The 1H NMR spectrum (Fig. 5.11) shows a broad singlet resonance with an integral 

of 382 at 3.73 ppm, k. The COSY NMR spectrum (Fig. 5.12) shows k exhibiting 

coupling with a multiplet resonance at 4.14 ppm, m, and a singlet at 4.86 ppm, i. k 

has an integral of 382 and q has an integral of 190, therefore q corresponds to the 

proton of the hydroxyl moieties of the PHEA, Hq, and k and m correspond to the 

ethylene protons of the ethylene ether hydroxyl moiety of the PHEA. To determine 

the exact assignment of resonances k and m the HMBC spectrum must be referred 

to.   
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 Figure 5.14. HMBC NMR spectrum of 20, in DMF-d7. 

The HMBC NMR spectrum (Fig. 5.14) shows m coupling to a 13C NMR resonance 

at 176.0 ppm, q’, where q’ corresponds to the carbon atom of the carbonyl of the 

PHEA, therefore m corresponds to the ethylene protons of the 2-hydroxyl ethyl 

closest to the carbonyl, Hm (Fig. 5.11) and k must correspond to the ethylene protons 

closest to the hydroxyl moiety, Hk (Fig. 5.11).  Using HSQC NMR spectroscopy the 

carbon atoms directly attached to hydrogen atoms could be easily assigned, although, 

due to the low concentration of calixarene core, not all 13C NMR resonances were 

observed.  
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Figure 5.15. HSQC NMR spectrum of 20, in DMF-d7. 

The HSQC NMR spectrum (Fig. 5.15) shows a coupling to a 13C NMR resonance at 

26.3 ppm, b’, corresponding to the third carbon atom along the PCL chain with 

respect to the carbonyl carbon atom. Resonance b exhibits coupling to a 13C NMR 

resonance at 33.6 ppm, e’, corresponding to the second carbon atom along of the 

propylene unit of the tetra(3-oxyetherethyl)thioether-propanyl moiety with respect to 

the aromatic ring. Resonance c exhibits coupling to two 13C NMR resonances at 24.5 

ppm, a’; and 29.3 ppm, c’; corresponding to the second and fourth carbon atoms 

along of the PCL chain with respect to the carbonyl carbon atom, respectively. 

Resonance d exhibits coupling to a 13C NMR resonance at 36.6 ppm, g’, 

corresponding to the methylene carbon atom of the PHEA backbone. The phasing of 

the d-g’ coupling (blue) corresponds to a methylene environment, confirming that c 

corresponds to Hd (Fig. 5.11).  The HSQC NMR spectrum (Fig. 5.15) shows 

resonance e coupling to a 13C NMR resonance at 34.6 ppm, f’, corresponding to the 

methylene carbon atom of the PCL of the first carbon atom with respect to the 

carbonyl carbon. Resonance f exhibits coupling to a 13C NMR resonance at 42.3 

ppm, h’, corresponding to the methine carbon atom of the PHEA backbone. The 

phasing of the f-h’ coupling (red) corresponds to a methine environment, confirming 

that f corresponds to Hf (Fig. 5.11). The HSQC NMR spectrum (Fig. 5.15) shows 
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resonance g coupling to a 13C NMR resonance at 30.9 ppm, d’, corresponding to the 

carbon atom next to the sulfur of the tetra(3-oxyetherethyl)thioether-propanyl 

moiety. Resonance h exhibits coupling to a 13C NMR resonance at 62.2 ppm, k’, 

corresponding to the third carbon atom along of the propylene unit of the tetra(3-

oxyetherethyl)thioether-propanyl moiety with respect to the aromatic ring. 

Resonance i exhibits coupling to a 13C NMR resonance at 73.7 ppm, o’, 

corresponding to the ethylene carbon atom next to the ester of the ethyl ether 2-

bromoproanoate moiety. Resonance j exhibits coupling to a 13C resonance at 62.0 

ppm, j’, corresponding to the ethylene ether linker carbon atom of the ethyl ether 2-

bromoproanoate moiety. Resonance k exhibits coupling to a 13C NMR resonance at 

60.7 ppm, i’, corresponding to the ethylene carbon atoms of the PHEA closest to the 

hydroxyl moiety. Resonance l exhibits coupling to a 13C NMR resonance at 64.8 

ppm, m’, corresponding to the fifth methylene carbon atom along of the PCL 

backbone with respect to the carbonyl carbon. Resonance m exhibits coupling to a 
13C NMR resonance at 67.1 ppm, n’, corresponding to the ethylene carbon atom of 

the PHEA of the 2-hydroxyl ethyl moiety closest to the carbonyl. Resonance n 

exhibits coupling to a 13C NMR resonance at 64.3 ppm, l’, corresponding to the 

carbon atom adjacent to the oxygen of the ethylene unit of the tetra(3-

oxyetherethyl)thioether-propanyl moiety. Resonances o and p exhibit no coupling in 

the HSQC spectrum. As expressed earlier, due to low concentration of calixarene 

core relative to PCL and PHEA, the complete characterisation of the 13C NMR 

spectra could not be completed, but what could be assigned is shown in Figure 5.16. 
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Figure 5.16. 13C NMR spectrum 20, in DMF-d7. 

As expressed previously, various molecular weights of PHEA were targeted, 4.2 x 

103 g mol-1, 8.8 x 103 g mol-1 and 17.6 x 104 g mol-1, corresponding to DP of 9, 19 

and 38 HEA per arm respectively. Resonance r (Fig. 5.11) had its integral value set 

to eight, with the DP of the PHEA being determined with respect to this value. 

Figure 5.17 shows overlaid 1H NMR spectra corresponding to the three polymer 

systems, with the spectra being normalised with respect to resonance a (Fig. 5.17). 

For the targeted molecular weight of 4.2 x 103 g mol-1, the Mn of the PHEA of 5.0 x 

103 g mol-1 was calculated from the 1H NMR (Fig. 5.11), which corresponds to a DP 

of ~11 units per arm. The total molecular weight of miktoarm star polymer was 

calculated to be 13.7 x 104 g mol-1, 18. The conversion obtained for the reaction was 

92%. For the targeted molecular weight of 8.8 x 103 g mol-1, the Mn of the PHEA of 

1.2 x 104 g mol-1 was calculated from the 1H NMR (Fig. 5.11), which corresponds to 

a DP of ~25 units per arm. The total molecular weight of miktoarm star polymer was 

calculated to be 2.1 x 104 g mol-1, 19.  The conversion obtained for the reaction was 

95%. For the targeted molecular weight of 1.8 x 104 g mol-1, the Mn of the PHEA of 

2.2 x 104 g mol-1 was calculated from the 1H NMR (Fig. 5.11), which corresponds to 

a DP of ~48 units per arm. The total molecular weight of miktoarm star polymer was 
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calculated to be 3.1 x 104 g mol-1, 20.  The conversion obtained for the reaction was 

96%.  

 

Figure 5.17. 1H NMR overlaid spectra corresponding to various  of HEA, blue = 18, red = 19 and black = 20, in 

DMF-d7. 

To further characterise the polymer systems, 18, 19 and 20, SEC was carried out. A 

chromatogram of the three miktoarm star polymers and the linear calixarene PCL 

initiator, 17, is shown in Figure 5.18. 
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Figure 5.18. SEC chromatogram of green = 17, blue = 18, red = 19 and black = 20, using DMF as the eluent at 1 

mL min-1 and the molecular weights determined with respect to PEG standards. 

The SEC chromatogram (Fig. 5.18) shows a uniform distribution at 12.53 mL 

(green), corresponding to the 17 initiator as discussed in section 5.2. A relatively 

uniformed distribution is observed at 12.28 mL (blue), corresponding to 18, which 

has a shoulder at the lower retention volume of 11.62 mL. Using a conventional 

calibration method (polyethylene glycol), the Mn and Mw were calculated to be 1.3 x 

104 g mol-1 and 1.6 x 104 g mol-1, respectively. The Ɖ was calculated to be 1.23. The 

low dispersity indicates that there was good control over the polymerisation and that 

the DP of each arm is likely to be equal. A uniformed distribution is observed at 

11.92 mL (red), corresponding to 19. Using a conventional calibration method 

(polyethylene glycol), the Mn and Mw were calculated to be 1.6 x 104 g mol-1 and 2.1 

x 104 g mol-1 respectively. The Ɖ was calculated to be 1.32. The low dispersity 

indicates that there was good control over the polymerisation and that the DP of each 

arm is likely to be equal. A uniformed distribution is observed at 11.56 mL (black), 

corresponding to 20. Using a conventional calibration method (polyethylene glycol), 

the Mn and Mw were calculated to be 2.0 x 104 g mol-1 and 2.9 x 104 g mol-1 

respectively. The Ɖ was calculated to be 1.45. The Ɖ indicates that there was 

reasonable control over the polymerisation and that the DP of each arm is likely to 

be approximately equal. It is observed that as the DP increases so does Ɖ. The 
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increased Ɖ is likely to be a result of trapped active sites. The PCL chains are 

flexible, which could lead to the encapsulation of calixarene core active sites within 

the macroinitiator structure, away from the catalyst, thus the rate of propagation 

would be greater than initiation.8,9 In each sample, the Mn calculated via SEC is 

approximately half to two thirds of that calculated via 1H NMR spectroscopy. The 

large discrepancy is attributed to the hydrodynamic volume of the star polymer, 

which is much less than that of an analogous linear polymer, thus SEC greatly 

underestimates the size of star polymers. Table 5.2 illustrates the theoretical and 

measured molecular weights and dispersities measured.  

Table 5.2. Characterisation of  polymers. 

Sample  Mn(theo) 

g mol-1 

Mn(NMR) 

g mol-1 

Mn(SEC) 

g mol-1 

Ɖ 

17  9.2 x 103 8.7 x 104  4.4 x 103  1.25 

18  1.3 x 104 1.4 x 104 1.3 x 104 1.23 

19  1.8 x 104 2.1 x 104 1.6 x 104 1.32 

20  2.7 x 104 3.1 x 104 2.0 x 104 1.45 

 

DSC analysis was carried out with the traces shown in Figure 5.19. 
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Figure 5.19. DSC of blue = 18, red = 19 and black = 20, run in N2 gas, with a flow rate of 30 mL min-1 and a 

heating rate of 10 oC min-1.  

The DSC traces (Fig. 5.19) show that as the percentage of PHEA increased, so did 

the amorphous nature of the polymer system. Only 18 exhibited a Tm and Tc, with 

the %Х calculated to be 11.68%, which is approximately half of that calculated for 

the 17 (Fig. 5.9). 19 exhibited a Tm at 48.30 oC but no Tc. A DSC of 19 was carried 

out again to a lower temperature, but no Tc was observed. A plausible explanation is 

that there is not significant time during the cooling process (10oC min-1) for chains to 

orientate themselves in order to crystallise. 20 exhibited no exo- or endo-therm, 

indicating the material is solely amorphous in nature. The large amount of PHEA has 

interrupted the packing of the PCL chain to such an extent that there is no order to 

the packing of the material. TGA analysis was further carried out on all three 

samples, with the traces shown in Figure 5.10.  
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Figure 5.20. TGA of green = 17, blue = 18, red = 19 and black = 20, run in N2 gas with a heating rate of 10 oC 

min-1.  

The TGA thermogram (Fig. 5.20) shows 18 (blue), 19 (red) and 20 (black) all 

exhibiting two distinct thermal events with the first thermal event (X1) occurring at 

292.16 oC, 292.47 oC and 293.11 oC and the second thermal event (X2) occurring at 

396.09 oC, 405.82 oC and 412.30 oC, respectively. The TGA thermogram (Fig. 5. 20) 

showed that incorporation of PHEA significantly increased the thermal stability of 

the system, with the first onset of decomposition occurring at an increase of 35 oC 

relative to 17 (green). Once the PHEA is incorporated into the system the X1 does 

not increase, but the X2 does increase as the Mn of PHEA increases. TGA-MS was 

carried out and the ions produced matched what is reported in the literature, 

indicating the thermal stability of the PCL has increased.6 The increased stability is 

likely to be brought about by hydrogen bonding between the PHEA hydroxyl 

moieties and the ester moieties of the PCL. For all three samples with the PHEA 

incorporated into the system there is a less distinctive thermal event occurring from 

the loss of water from 22 oC to 100 oC, with the greater Mn of PHEA the greater the 

mass loss. In all three cases the ΔY1 was calculated to be ~89%, thus suggesting the 

ΔY2 was ~11%, and further to this the weight loss percentage did not go to 0% up to 

the temperature limit of 1000 oC. The 1H NMR spectrum (Fig. 5.11) indicated that 

for 18 there were 76 units of PCL and 44 units of HEA per calixarene core, therefore 

a Mn ratio of 13,700:1612, which corresponds to 89.47% polymer and 10.52% 

calixarene core. For 19 and 20 the Mn ratio from 1H NMR was calculated to be 

21,000:1612 and 31,000:1612, which corresponds to 92.87% and 95.01% polymer 
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and 7.13% and 4.94% calixarene core, respectively. What is calculated from 1H 

NMR does not agree with the percentages obtained through TGA. The TGA of the 

miktoarm system appears to be inadequate to give the exact ratio of calixarene core 

to polymer.  

 

5.3. Conclusion 
Compound 16 was used to synthesise a novel 4-armed PCL star polymer with a 

calixarene core, 17, which could be further used as a macroinitiator for copper(0) 

mediated polymerisation due to the alkyl halide moieties remaining in the calixarene 

core. 17 was fully characterised via 1D and 2D NMR spectroscopy techniques, SEC 

chromatography, DSC and TGA. The Mn determined via 1H NMR spectroscopy was 

8.7 x 103 g mol-1, indicating the DP was 76, which is equivalent to 19 units per arm, 

which agreed with the calculated theoretical Mn. SEC calculated a Mn of 4.4 x 103 g 

mol-1, which is approximately half of that calculated via 1H NMR spectroscopy. The 

large discrepancy is due to the hydrodynamic volume of star polymers being much 

less than their linear analogue, which is not taken into account when using SEC with 

a conventional calibration method. The Ɖ calculated was 1.25 suggesting there was 

good control over the polymerisation. From the DSC, a Tm and Tc were calculated to 

be 50.27 oC and 24.40 oC respectively, and a % crystallinity of 19.65% was 

calculated. The TGA trace showed two distinct thermal events corresponding to the 

two mechanisms in which PCL degrades. The percentage of PCL (ΔY1) and 

calixarene core (ΔY2) was calculated to be 84.715% and 15.267% respectively, 

which was in agreement with 1H NMR spectroscopy. 

 

Compound 17 was used as a macro-initiator for the SET-LRP of HEA leading to a 

amphiphilic A4B4 Miktoarm star polymer, 18, 19 and 20. Compounds 18, 19 and 20 

were fully characterised via 1D and 2D NMR spectroscopy techniques, SEC 

chromatography, DSC and TGA. The Mn determined via 1H NMR spectroscopy 

calculated to be 5.0 x 103 g mol-1, 1.2 x 104 g mol-1 and 2.2 x 104 g mol-1 

corresponding to 11, 25 and 48 HEA units per arm, respectively. The SEC showed 

good control was maintained over the polymerisation with Ɖ ranging from 1.23 to 
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1.45. The DSC showed that as more PHEA was incorporated crystallinity was 

reduced, to a point where no exotherm was observed and the material was 

completely amorphous. The TGA for all three samples were similar and showed an 

increase in thermal stability, which was attributed to hydrogen bonding between the 

PHEA hydroxyl moieties and the ester moieties of the PCL. 
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Chapter 6 
Self-assembly of Amphiphilic A2B2 and 

A4B4 Miktoarm Star Polymers 
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6.0. Introduction 
The self-assembly of amphiphilic block copolymers in solution has attracted a vast 

amount of attention over the past decade due to the resulting structures having a 

great potential in in a variety of fields: cosmetics, catalysis, separation and most 

profoundly, drug delivery.1,2 The self-assembly of amphiphilic polymeric systems 

can lead to a variety of aggregate morphologies including spheres, cylinders, 

lamellae and bicontinuous structures.3 Spherical self-assemblies are known as 

micelles; they are the most studied morphology due to their ability to provide a 

platform for drug delivery.4 In the formation of micelles in aqueous solutions the 

hydrophobic polymer chains aggregate, forming a core, with the hydrophilic 

polymer chains extended out to the aqueous environment. The hydrophobic core is 

shielded by the hydrophilic chains, which reduces the interfacial free energy of the 

water/polymer system. The driving force of micelle formation is minimizing the 

interfacial free energy.5 The minimum concentration of polymer at which 

micellisation occurs is known as the critical micelle concentration (CMC) (Fig. 6.1). 

 

Figure 6.1. Micellisation of amphiphilic polymeric material. 

The thermodynamic stability of a polymeric system can be characterised by the 

CMC. The CMC is related to the thermal energy and the effective interaction energy 

between the bulk solution and the polymer, with the lower the thermal energy the 

greater the stability.6 Polymeric micelles have greater stability relative to their 

surfactant counterparts due to the many more points of interaction within the chains. 
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This chapter reports on the self-assembly of A2B2 and A4B4 amphiphilic miktoarm 

star polymers calixarene-A2B2starPCL100PHEAm, 8 - 10 (a), where m = 75, 100 

and 270, respectively and calixarene-A4B4starPCL20PHEAm , 18 – 20 (b), where m 

= 10, 25 and 48, respectively (Fig. 6.2) in water.  

 

Figure 6.2. A2B2 and A4B4 amphiphilic miktoarm star polymers (a) 8 -10 and (b) 18 - 20, respectively. 

The morphologies of the polymeric systems are analysed via transmission electron 

microscopy (TEM), which will give evidence for self-assembly and the structure and 

size of structure produced. TEM is a form of microscopy that involves a thin beam 

of electrons. Depending on the density, the electrons pass through, scatter or are 

absorbed as they come into contact with the sample. The electrons that pass through 

the sample hit a fluorescent screen, which leads to a shadow image of the specimen.7 

TEM is a common technique used to image polymer nanoparticles due to the relative 

ease by which it can be performed.8,9 Additionally, the CMC is determined via 

fluorescence spectroscopy by the introduction of the fluorescent probe pyrene. 

 

6.1. Experimental 

6.1.1. Materials 
The synthesis of A2B2, 8 – 10, and A4B4, 18 – 20, amphiphilic miktoarm star 

polymers is discussed in sections 3 and 5, respectively. The pyrene probe was 

purchased from Sigma Aldrich and used without further purification. HPLC grade 

acetone was purchased from Fischer Scientific and used without further purification. 
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High-purity (R=18.2 MΩ) water was obtained from Durham University High Purity 

Water service. 

 

6.1.2. Instrumentation 
Transmission electron microscopy (TEM) was carried out using a JEOL 2100F field 

emission gun TEM (FEG TEM) operating at 200 kV.  

 

All fluorescence measurements were taken at ambient temperature using a HORIBA 

Jobin-Yvon Fluoromax 2 spectrofluorometer using a quartz cuvette supported on a 

riser. Prior to any CMC determination experiments, working solutions (1.0 mg mL-1) 

of miktoarm star polymers were checked for autofluorescence by excitation at 335 

nm and monitoring from 350-500 nm in the absence of pyrene.  

 

 

6.1.3. TEM 

Compounds 8 - 10 and 18 –  20, in high-purity (R=18.2 MΩ) water, at a 

concentration of 1 mg mL-1, was deposited on a holey carbon grid and blotched with 

filter paper to remove excess water, then examined in a JEOL 2100F field emission 

gun TEM (FEG TEM) operating at 200 kV.  

 

6.1.4. CMC spectroscopic measurements 
For CMC measurements, stock solutions (1.0 mg mL-1) of 8 - 10 and 18 – 20 were 

serially diluted across at least two orders of magnitude in high-purity (R=18.2 MΩ) 

water. Aliquots of these polymer solutions (1.7 cm3) were transferred into sample 

vials that had previously been charged with a solution of pyrene (17 µL, 10-5mol dm-

3 in acetone) that had been allowed to evaporate to give a final concentration of 

approximately 10-7 mol dm − 3 pyrene in each polymer solution. Solutions were then 

excited at 335 nm and the emission response measured from 350-500 nm (ex/em slit 

width= 2nm/2nm ). The emission maximum nearest 370 nm was assigned as band 1 

(I1) and that nearest 380 nm as band 3 (I3). The corrected emission intensity of band 

1 was divided by that of band 3 to give the I1/I3 value at each concentration.  
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6.2. Results and Discussion 

6.2.1. Calixarene-A2B2starPCL100PHEAm, 8 - 10 

6.2.1.1. TEM Studies 

 

Figure 6.3. Generic structure of 8 - 10. 

Polymer solutions (Fig. 6.3) in high purity water (R=18.2 MΩ) at a concentration of 

1 mg mL-1 were sonicated for two hours then left to stand overnight. The samples 

were deposited on a holey carbon grid and blotched with filter paper to remove 

excess water. The samples were introduced to the TEM and analysed with the results 

shown in Figure 6.4. 

 

 

 

 

 

 

 

8-10 
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Figure 6.4. TEM images of (a) 8, (b) 9 and (c) 10 in high purity water (R=18.2 MΩ)  at a concentration of 1 mg 

mL-1 deposited on a holey carbon grid. 

As can be seen in Figure 6.4, spherical aggregates (micelles) were produced. 8 

produced micelles with uniform structures in the range of 90-110 nm (Fig. 6.4, (a)). 

9 produced micelles with relatively uniform structures in the range of 82-100 nm 

(Fig. 6.4, (b)). 10 produced much smaller micelles with relatively uniformed 

structures, which were in the range of 30-40 nm (Fig. 6.4, (c)). Table 6.1 illustrates 

the size of micelles corresponding to each polymer. 

Table 6.1. Table illustrating the size of the micelles for each polymer sample as determined through TEM. 

Polymer  

sample 

PCL 

DP per arm  

PHEA  

DP per arm 

Micelle 

Size 

(nm)  
8  100  75 90-110  
9 100  100  82-100  

10  100  270  30-40  

 

It can be concluded from the TEM data that as the proportion of poly(2-

hydroxylethyl acrylate) (PHEA) is increased as the size of the micelles decreased, 

(a) (b) 

(c) 

20 nm 50 nm 

20 nm 
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which is attributed to the enhanced ability of the polymer to shield the nanoparticle 

core as the hydrophilic nature increased. A greater proportion of hydrophilic 

polymer will increase the solubility of the polymer as well as lower the polymer 

diffusion coefficients. This would be expected to increase the particle size, but the 

fact that in increasing hydrophilic polymer chain length permits each polymer to 

sterically screen a larger area of the particle surface out ways the other two 

parameters, i.e. solubility and diffusion coefficients.10  

 

6.2.1.2. CMC determination 
The CMC can be determined by measuring sharp changes in physical parameters 

that occur at the CMC. Fluorescence spectroscopy is a very sensitive technique that 

can measure CMC onsets of ~1 ppm. A fluorescent probe (pyrene, Fig. 6.5) is 

introduced into the system, which has a tendency to associate into the hydrophobic 

core of a micelle rather than in the water phase, in doing so the emission spectra 

changes indicating the encapsulation of the probe.11  

 

Figure 6.5. Pyrene. 

While other fluorescent probes and methods are described in the literature, especially 

for monomeric surfactants, determination of the molal CMC values for each polymer 

system was chosen to be through monitoring the intensity of the solvent-sensitive 

pyrene emission bands as a function of concentration of polymer.12,13,14 Figure 6.6  

illustrates how the pyrene emission bands change as the concentration of amphiphilic 

polymer increases, thus more pyrene is incorporated into a hydrophobic domain. 
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Figure 6.6. Pyrene emission bands on incorporation into a hydrophobic core. 

It can been seen from Figure 6.6 that an increase in intensity bands at 379 nm and 

383 nm are observed as the amphiphilic polymer concentration is increased 

indicating the onset of micellisation. To determine the CMC, the relationship of the 

intensity ratios at 373 nm (I1) and 383 nm (I3) are plotted as a function of polymer 

concentration. The plots of fluorescence intensity ratio I1/I3 from pyrene excitation 

spectra as a function of log concentration of A2B2 amphiphilic polymers 8 - 10 are 

plotted in Figure 6.7. 

 

 

 

 

 

 

I1 

I3 
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Figure 6.7. Plots of fluorescence intensity ratio I1/I3 from pyrene excitation spectra as a function of log 

concentration of A2B2 amphiphilic polymers (a) 8, (b) 9 and (c) 10. 

Different approaches in the literature implemented for interpreting similar plots were 

critically assessed to reduce the element of subjectivity.15,16 It was concluded that 

breaking the data down into two straight lines, one with a shallow gradient 

(a) 

(b) 

(c) 
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corresponding to concentration of polymer ([P])<CMC and the other with steeper 

gradient corresponding to [P]>CMC (Fig 6.7). Plateauing of the I1/I3 ratio at high 

concentration was ignored for the fit. Using a least squares fit, the equations of the 

lines were determined and then solved via a pair of simultaneous equations. The 

results are presented in Table 6.2. 

Table 6.2.CMC values for polymers 8 - 10 (a) corresponds to the pre-aggregated (shallow gradient) component 

and (b) corresponds to the aggregated (steep gradient) component. 

Polymer  Equation 1 

(a)  

Equation 2 

(b)  

log(CAC)c  CMC mg L 

-1  

8  y = 1.86  y =  − 0.200x + 1.31  -2.75  1.8  
9  y = 0.0055x + 1.89  y =  − 0.252x + 1.21  -2.64  2.3  

10  y = 1.07e − 15x + 1.87  y =  − 0.251x + 1.21  -2.63  2.3  
 

 

Table 6.2 shows that the CMC’s measured are low and comparable to what is 

reported in the literature for star polymers (1.35 – 6.53 mg L-1), indicating good 

thermodynamic stability of micelle produced.17,18 The three CMC’s measured are 

similar in value indicating that the length of the hydrophilic polymer chain has had 

little effect on the CMC.  
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6.2.3. Calixarene-A4B4starPCL20PHEAm, 18 - 20  

6.2.3.1. TEM Studies 

 

Figure 6.8. Generic structure of 18 - 20. 

Polymer solutions (18 – 20) in high purity water (R=18.2 MΩ) at a concentration of 

1 mg mL-1 were sonicated for two hours then left to stand overnight. The samples 

were deposited on a holey carbon grid and blotched with filter paper to remove 

excess water. The samples were introduced to the TEM and analysed with the results 

shown in Figure 6.9. 

18 - 20 
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Figure 6.9. TEM images of (a) 18, (b) 19 and (c) 20 in high purity water (R=18.2 MΩ)  at a concentration of 1 

mg mL-1 deposited on a holey carbon grid. 

As it can be seen in Figure 6.9 spherical aggregates (micelles) were produced. 18 

produced micelles with relatively uniform structures in the range of 55-68 nm (Fig. 

6.9, (a)). 19 produced micelles with relatively uniform structures in the range of 48-

55 nm (Fig. 6.9, (b)). 20 produced much smaller micelles with relatively uniform 

structures but over a greater range of 8-35 nm (Fig. 6.9, (c)). Table 6.3 illustrates the 

size of micelles corresponding to each polymer. 

Table 6.3. Table illustrating the size of the micelles for each polymer sample as determined through TEM. 

Polymer 

sample  

PCL 

DP per arm  

PHEA  

DP per arm 

Micelle 

Size 

(nm)  
18  20 10 55-68 
19 20 25  48-55  
20  20  48  8-35  

 

 

(a) (b) 

(c) 

20 nm 50 nm 

20 nm 
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As discussed previously it can be concluded from the TEM data that as the 

proportion of PHEA is increased the size of the micelles decrease, which is 

attributed to the enhanced ability of the polymer to shield the nanoparticle core as 

the hydrophilic nature in increased.10 

 

6.2.3.2. CMC determination  
To determine the CMC, the relationship of the intensity ratios at 373 nm (I1) and 383 

nm (I3) are plotted as a function of polymer concentration. The plots of fluorescence 

intensity ratio I1/I3 from pyrene excitation spectra as a function of log concentration 

of A4B4 amphiphilic polymers 18 - 20 are plotted in Figure 6.10. 
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Figure 6.10. Plots of fluorescence intensity ratio I1/I3 from pyrene excitation spectra as a function of log 

concentration of A2B2 amphiphilic polymers (a) 18, (b) 19 and (c) 20. 

 

(a) 

(b) 

(c) 
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Table 6.4. CMC values for polymers 18 – 20 (a) corresponds to the pre-aggregated (shallow gradient) component 

and (b) corresponds to the aggregated (steep gradient) component 

Polymer  Equation 1 

(a)  

Equation 2 

(b)  

log(CAC)c  CMC mg 

L 

-1  

18  y = 1.8733 y =  − 0.29299x + 

1.00021  

-2.98  1.0  

19  y = -0.28449x 

+1.01875  

y =   -0.01532x + 

1.179929 

-2.90 1.3 

20  y = -0.04142x 

+1.78043  

y =  -0.29585x + 

1.10435 

-2.66  2.2  

 

 

Table 6.4 shows that the CMC’s measured are low and comparable to what is 

produced in the literature for star polymers (1.35 – 6.53 mg L-1), indicating good 

thermodynamic stability of micelle produced.17,18 The data suggests that as the 

amount of hydrophilic polymer chain increases (PHEA) so does the CMC. It has 

previously been reported that the nature and percentage of hydrophobic polymer 

primarily determines the micalization onset. In the case of 18, 19 and 20 as the 

length of PHEA increases, the percentage of PCL decreases, thus the CMC in turn 

increases.19,20 

 

6.3. Conclusion 
From TEM, for both types of star polymer system, 8 - 10 and 18 - 20, spherical 

micelles were produced, with the size of the micelle decreasing as the proportion of 

hydrophilic PHEA increased. A greater proportion of hydrophilic polymer will 

increase the solubility of the polymer as well as lower the polymer diffusion 

coefficients, which would be expected to increase the particle size, but the fact that 

increasing the hydrophilic polymer length permits each polymer to sterically screen a 

larger area of the particle surface out weighs the other two parameters. 
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From the CMC determinations the length of the hydrophilic chain does not appear to 

have a significant effect on the CMC for 8 - 10, which contradicts what has been 

previously published.17,18 The lack of effect of hydrophilic chain length is attributed 

to the high dispersity of the polymer chains. For 18 - 20, the CMC increases as the 

length of the hydrophilic polymer increases, this is in agreement with the 

literature.19,20 For both polymeric systems 8 - 10 and 18 - 20, low CMC values were 

determined, which indicates excellent thermodynamic stability of micelle produced. 

The novel polymeric systems studied have a potential in medical applications, as 

they form micelles in the range of 5 to 110 nm and have the ability to encapsulate 

highly hydrophobic material, such as the fluorescent probe pyrene. 
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7.0. Summary and Conclusions 
This project involved the development of several novel heterofunctional initiators 

with a calix[4]arene centre that can facilitate a “core” first method for the synthesis 

of miktoarm star polymers. p-tert-butylcalix[4]arene was selected as a base 

compound due to its low toxicity, relatively low cost and its ability to facilitate 

selective functionalisation on both the upper and lower rims of the macrocycle. 

 

Chapter 1 gave an introduction to calixarenes, their synthesis, functionalisation and 

uses in polymer chemistry. An in-depth analysis of the literature into SET-LRP and 

ROP of ε-caprolactone was reported. 

 

Chapter 2 described the synthetic strategy employed for the synthesis of a novel 

A2B2 heterofunctional initiator that incorporated an alkyl halogen moiety required 

for SET-LRP and a primary hydroxyl moiety required for ROP. Calix[4]arene, 1, 

and 25,27-bis(prop-2-en-1-yloxy)calix[4]arene, 2, were synthesised according to the 

literature.1,2 A full characterisation was performed on both, as little characterisation 

had been reported previously. 25,27-bis(prop-2-en-1-yloxy)-26,28-

bis(ethyleneacetate)-calix[4]arene, 3, was successfully  synthesised via a Williamson 

ether synthesis between 2 and methyl chloroacetate and was fully characterised. 

Compound 3 was used as the precursor for synthesising 25,27-bis(prop-2-en-1-

yloxy)-26,28-bis(ethanolxy)calix[4]arene, 4, via an ester reduction. 25,27-bis(prop-

2-en-1-yloxy)-26,28-bis(ethoxyester-2-bromo-acetate)calix[4]arene, 5, was 

successfully synthesised via an esterification reaction with 2-bromopropionyl 

bromide; and fully characterised. The final step of incorporating a primary hydroxyl 

moiety was achieved via a photo initiated thiol-ene click reaction with the allyl 

moieties of 5 and 2-mercaptoethanol. This resulted in the successful synthesis of 

25,27-bis(3-(hydroxyethyl)thioether-propan-1-yloxy)-26,28-bis(ethoxyester-2-

bromo-acetate)calix[4]arene, 6; which was fully characterised. 
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Chapter 3 described how 25,27-bis(3-(hydroxyethyl)thioether-propan-1-yloxy)-

26,28-bis(ethoxyester-2-bromo-acetate)calix[4]arene, 6, was used to synthesise a 

novel 2-armed PCL polymer centred around a calixarene core, calixarene-

starPCL100, 7. This could be further used for copper(0) mediated polymerisation due 

to the alkyl halide moieties remaining at the calixarene core. Compound 7 was fully 

characterised via 1D and 2D NMR spectroscopy techniques, SEC chromatography, 

DSC and TGA. The Mn determined via 1H NMR spectroscopy was 2.2 x 104 g mol-1, 

indicating the DP was 193, which is equivalent to ~97 units per arm, which agreed 

with the calculated theoretical Mn. SEC analysis showed an Mn of 2.2 x 104 g mol-1, 

which agreed with that obtained via 1H NMR spectroscopy. The Ɖ obtained from 

SEC analysis was 1.68 suggesting the lack of good control over the polymerisation 

and the DP of each arm. This could suggest that the rate of initiation of the system is 

slower than the rate of propagation. From the DSC analysis, showed a Tm and Tc of 

51.53 oC and 32.67 oC, respectively, and a %crystallinity of 31.43%. The TGA trace 

showed two distinct thermal events corresponding to the two mechanisms in which 

PCL degrades. The percentage of PCL (ΔY1) and calixarene core (ΔY2) was 

calculated to be 94 % and 6%, respectively, which was in reasonable agreement with 
1H NMR spectroscopy. Compound 7 was used then as a macro-initiator for the SET-

LRP of HEA leading to a amphiphilic A2B2 Miktoarm star polymer, calicarene-

A2B2starPCL100PHEA75, 8, calixarene-A2B2starPCL100PHEA100, 9 and 

calixarene-A2B2StarPCL100PHEA270, 10. Polymers 8, 9 and 10 were fully 

characterised via 1D and 2D NMR spectroscopy techniques, SEC chromatography, 

DSC and TGA. Three Mn were targeted, with the Mn determined for 8 - 10 via 1H 

NMR spectroscopy calculated to be 1.8 x 104 g mol-1, 2.2 x 104 g mol-1 and 6.1 x 104 

g mol-1 corresponding to 75, 100 and 270 HEA units per arm respectively. The SEC 

gave a Ɖ ranging from 1.81 to 2.64, indicating a lack of control over the 

polymerisation, attributed to a greater rate of propagation than initiation, possibly as 

a result of trapped active sites. The PCL chains are flexible and could lead to the 

encapsulation of calixarene core active sites within the macroinitiator structure, thus 

reducing the rate of initiation. The DSC showed that as more PHEA was 

incorporated crystallinity was reduced, to a point where no exotherm was observed 

and the material was completely amorphous. The large amount of PHEA has 

interrupted the packing of the PCL chain to such an extent that there is no order to 

the packing of the material. The TGA for all three showed an increase in thermal 



 

240 

stability, which was attributed to hydrogen bonding between the PHEA hydroxyl 

moieties and the ester moieties of the PCL. 

 

Chapter 4 described the synthetic strategy employed for the synthesis of a novel 

A4B4 heterofunctional initiator that incorporated an alkyl halogen moiety required 

for SET-LRP and a primary hydroxyl moiety required for ROP. 25,26,27,28-

tetrakis(allyloxy)calix[4]arene, 11, and 5,11,17,23-tetrakis(prop-2-en-1-

yl)calix[4]arene, 12,  were synthesised according to the literature.2 A full 

characterisation was performed on both as little characterisation had been reported 

previously. 5,11,17,23-tetrakis(prop-2-en-1-yl)-25,26,27,28-

tetrakis(methylacetateoxy)calix[4]arene, 13, was successfully  synthesised via a 

Williamson ether synthesis between 12 and methyl chloroacetate and fully 

characterised. 4 was taken forward and used as the precursor for 5,11,17,23-

tetrakis(prop-2-en-1-yl)-25,26,27,28-tetrakis(ethanoloxy)calix[4]arene, 14, which 

was synthesised via an ester reduction. 5,11,17,23-tetrakis(prop-2-en-1-yl)-

25,26,27,28-tetrakis(ethoxyester-2-bromo-propanoate)calix[4]arene, 15, was 

successfully synthesised via an esterification reaction with 2-bromopropionyl 

bromide, and fully characterised. It was noted that ~1 molecule of 2-bromopropanoic 

acid was trapped within the calixarene, which could not be removed. The final step 

of incorporating a primary hydroxyl moiety was achieved via a photo initiated thiol-

ene click reaction with the allyl moieties and 2-mercaptoethanol. This resulted in the 

successful synthesis of 5,11,17,23-tetrakis((3-hydroxyethyl)thioether-propanyl)-

25,26,27,28-tetrakis(ethoxyester-2-bromo-propanoate)calix[4]arene, 16, which was 

fully characterised. 

 

Chapter 5 described how 5,11,17,23-tetrakis((3-hydroxyethyl)thioether-propanyl)-

25,26,27,28-tetrakis(ethoxyester-2-bromo-propanoate)calix[4]arene, 16,  was used to 

synthesise a novel 4-armed PCL star polymer centred around a calixarene core, 

calixarene-starPCL20, 17. Compound 17 could be further used for copper(0) 

mediated polymerisation due to the alkyl halide moieties remaining in the calixarene 

core. Compound 17 was fully characterised via 1D and 2D NMR spectroscopy 

techniques, SEC chromatography, DSC and TGA. The Mn determined via 1H NMR 
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spectroscopy was 8.7 x 103 g mol-1, indicating the DP was 76, which is equivalent to 

19 units per arm, which agreed with the calculated theoretical Mn. SEC analysis gave 

a Mn of 4.4 x 103 g mol-1, which is approximately half of that calculated via 1H NMR 

spectroscopy. The large discrepancy is due to the hydrodynamic volume of star 

polymers being much less than their linear analogue, which is not taken into account 

when using SEC with a conventional calibration method. The Ɖ obtained from SEC 

analysis was 1.25, suggesting there was good control over the polymerisation. The 

DSC analysis showed a Tm and Tc of 50.27 oC and 24.40 oC, respectively, and a 

%crystallinity of 19.65%. The TGA trace showed two distinct thermal events 

corresponding to the two mechanisms in which PCL degrades. The percentage of 

PCL (ΔY1) and calixarene core (ΔY2) was calculated to be 85% and 15%, 

respectively, which was in agreement with 1H NMR spectroscopy. 

 

Compound 17 was used as a macro-initiator for the SET-LRP of HEA leading to a 

amphiphilic A4B4 Miktoarm star polymer, calixarene-A4B4StarPCL20PHEA10, 18, 

calixarene-A4B4starPCL20PHEA25, 19, and calixarene-A4B4starPCL20PHEA48, 20. 

Polymers 18, 19 and 20 were fully characterised via 1D and 2D NMR spectroscopy 

techniques, SEC chromatography, DSC and TGA. The Mn determined via 1H NMR 

spectroscopy were 5.0 x 103 g mol-1, 1.2 x 104 g mol-1 and 2.2 x 104 g mol-1 

corresponding to 11, 25 and 48 HEA units per arm, respectively. The SEC gave Ɖ 

ranging from 1.23 to 1.45, indicating good control was maintained over the 

polymerisation. The DSC showed that as more PHEA was incorporated crystallinity 

was reduced, to a point where no exotherm was observed and the material was 

completely amorphous. The large amount of PHEA has interrupted the packing of 

the PCL chain to such an extent that there is no order to the packing of the material. 

The TGA for all three samples were similar and showed an increase in thermal 

stability, which was attributed to hydrogen bonding between the PHEA hydroxyl 

moieties and the ester moieties of the PCL. 

 

Chapter 6 describes the self-assembly of A2B2 and A4B4 amphiphilic miktoarm star 

polymers calixarene-A2B2starPCL100PHEAm, 8, 9 and 10, where m = 75, 100 and 

270, respectively and calixarene-A4B4starPCL20PHEAm, 18, 19 and 20 where m = 
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10, 25 and 48, respectively). The TEM analysis on polymer systems 8 - 10 and 18 - 

20, revealed spherical micelles, with the size of the micelle decreasing as the 

proportion of hydrophilic PHEA increased. A greater proportion of hydrophilic 

polymer will increase the solubility of the polymer as well as lower the polymer 

diffusion coefficients. This would be expected to increase the particle size, but the 

fact that in increasing hydrophilic polymer length permits each polymer to sterically 

screen a larger area of the particle surface out ways the solubility and diffusion 

coefficients. 

 

The CMC determinations for polymers 8 – 10 revealed that the length of the 

hydrophilic chain does not appear to have a significant effect on the CMC. This 

contradicts what has been previously reported. The lack of effect of hydrophilic 

chain length is attributed to the high dispersity of polymer chains. For polymers 18 – 

20, the CMC increases as the length of the hydrophilic polymer chain increases; this 

is in agreement with the literature. For both polymeric systems 8 - 10 and 18 - 20, 

low CMC values were calculated, which indicates excellent thermodynamic stability 

of micelle produced. This work showed the synthesis of novel polymeric systems 

that have a potential in medical applications, with their ability to form micelles in the 

range of 5 to 110 nm and have the ability to encapsulate highly hydrophobic 

material, such as the fluorescent probe pyrene.  

 

7.1. Future work 
With the proof of concept that the calixarene based initiators are capable of 

producing novel polymeric materials, further materials centred around the calixarebe 

heterofunctional initiators could be developed. It would be interesting to synthesise 

some well-defined linear polymers using RAFT. The trithiocarbamate moiety could 

be cleaved to leave a thiol that could potentially be thiol-ene clicked onto the allyl 

moieties of the calixarene initiator using an “arm first” strategy. A second polymer 

could be grown from the alkyl bromide unit using copper(0) mediated 

polymerisation (Fig. 7.1). 
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Figure 7.1. RAFT of NIPAM followed by cleavage of the trithiocarbamate moiety leading to thiol-ene click 

chemistry onto the calixarene based heterofunctional polymer initiator. 

Although, it must be noted that attempts at thiol-ene clicking thiol-methyl-PEG onto 

the calixarene initiators described in Chapter 2 and 4 were unsuccessful, so 

development of the thiol-ene click chemistry of large polymers onto the allyls of the 

calixarene core would be required.  

 

The synthesis of the calix[4]arene based heterofunctional initiators could be 

expanded to the calix[6]arene and calix[8]arene macrocycles, which would lead to 

A6B6 and A8B8 miktoarm star polymers, respectively. 
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