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Abstract

Multichannel Quantum Defect Theory (MQDT) is shown to be capa-

ble of producing quantitatively accurate results for low-energy atom-

molecule scattering calculations. With a suitable choice of reference

potential and short-range matching distance, it is possible to define a

matrix that encapsulates the short-range collision dynamics. Multi-

channel quantum defect theory can provide an efficient alternative to

full coupled-channel calculations for low-energy molecular collisions.

However, the efficiency relies on interpolation of the Y matrix that

encapsulates the short-range dynamics. It is shown how the phases of

the MQDT reference functions may be chosen so as to remove such

poles from the vicinity of a reference energy and dramatically increase

the range of interpolation. For the test cases of Mg+NH and Li+NH,

the resulting optimized Y matrix may be interpolated smoothly over

an energy range of several Kelvin and a magnetic field range of over

1000 G. Calculations at additional energies and fields can then be per-

formed at a computational cost that is proportional to the number of

channels N and not to N3. MQDT thus provides a promising method

for carrying out low-energy molecular scattering calculations on sys-

tems where full exploration of the energy and the field dependence is

currently impractical.
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Chapter 1

Introduction

Absolute zero is as intriguing as it is elusive. As temperatures approach absolute

zero, reality becomes increasingly bizarre as quantum mechanics starts to take

hold and particles become waves. In this realm, fluids defy gravity, electricity

flows without resistance and light can be slowed to a halt (1). The quest to

achieve ever lower temperatures has led to the discovery of many fascinating

phenomena such as superconductivity (2, 3) and superfluidity (4, 5, 6).

Matter waves are characterized by a de Broglie wavelength which is inversely

proportional to the square root of the absolute temperature. If these wavelengths

become comparable to or longer than the size or separation of the particles then

unique properties emerge. Exactly what happens in this regime is tied to a

fundamental property of the particles: their spin. A particle with integer spin is

a boson while one with half-integer spin is a fermion. An atom or molecule with

an even number of nucleons and electrons is a composite boson and any with

an odd number is a composite fermion. In a gas of weakly interacting bosons

confined in an external potential, a large fraction of the particles occupy the
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1.1 Applications of Cold Molecules

lowest quantum state; the wavefunctions of all the individual particles overlap

creating a macroscopic quantum state (7, 8). In the corresponding case of weakly

interacting fermions, only one particle can fill each state and they each fall to the

lowest unoccupied energy state of the trap.

The creation of the first dilute atomic Bose-Einstein condensates (BECs) in

1995 (9, 10) and the corresponding Fermi condensate in 2003 (11, 12) have led

to enormous advances in ultracold atomic physics. Trapped ultracold atoms are

a quantum system that can be controlled and manipulated with great precision

and flexibility. Ultracold atoms in optical lattices can be used as model systems

allowing the study of analogue processes such as Anderson localization (13), su-

perfluidity (14) and superconductivity (15). The understanding gained by mod-

eling these processes in the clean controllable environment afforded by cold atoms

has the potential to lead to technological advances such as high-temperature su-

perconductors.

1.1 Applications of Cold Molecules

The nascent field of cold and ultracold molecules provides an exciting doorway

to explore many varied fields of physics and chemistry.

Cold and ultracold molecules share the controllability and tunable interactions

which have made cold atom studies such a fruitful research area, while the richer

structure of molecules lend them to many new applications and research directions

(16, 17). There is thus great interest in producing samples of cold molecules

(at temperatures below 1 K) (18, 19, 20), as well as ultracold molecules (at

temperatures below 1 mK) (21, 22, 23, 24).

2



1.1 Applications of Cold Molecules

Figure 1.1: Formation of a BEC in a gas of Rb atoms (9). The left panel shows
the velocity distribution just before the onset of Bose-Einstein condensation, the
middle panel shows the appearance of the condensate, and the right hand panel
shows a nearly pure BEC. The image on the right is thus a single macroscopi-
cally occupied quantum wave function. Figure taken from the NIST image gallery
(http://bec.nist.gov/gallery.html).

Polar molecules are of particular interest since their electric dipole moment

allows them to be easily manipulated by external fields. This strong response

to a tunable parameter may lead to fully controlled chemistry (25) where every

degree of freedom of the reaction can be tuned, thus allowing fundamental insights

into chemical reaction processes. Reactions of ultracold 40K87Rb in its lowest

electronic, vibrational, rotational, and hyperfine energy state have been studied

(23) and it was seen that quantum statistics and quantum threshold laws play

an important role in determining the rates of inelastic collisions.

The purity and precision control of cold molecular samples makes them an

3



1.2 Producing Cold Molecules

ideal system for performing high-precision measurements. Cold OH radicals have

been used to test predictions of the time-variation of the fine-structure constant

(26) while cold YbF has been used to measure a bound on the value of the

electric dipole moment of the electron (27). Measurements such as these have

important consequences in fundamental physics (28, 29). The existence of an

electric dipole moment of the electron would be evidence of a breakdown of time-

reversal symmetry.

Cold molecules in a lattice provide a physical model of strongly interacting

quantum particles, in which the interactions can be controlled. The interaction

between cold polar molecules is both long-range and anisotropic and leads to fun-

damentally new condensed-matter phases unobservable in lattices of cold atomic

gases (30). Cold molecules in a regular array also provide a testbed for quan-

tum information processing and quantum computing (31). The development of a

quantum computer would allow certain problems to be solved much faster than

any classical computer (32).

1.2 Producing Cold Molecules

It was the advent of laser cooling in the 1980s that led to the production of

cold and ultracold atomic samples (33, 34, 35). Laser cooling requires a closed

absorption-emission cycle that limits its application to a selection of atomic

species, predominantly within the group of alkali metals. The complex inter-

nal structure of other atoms and almost all molecules makes laser cooling all

but impossible. Although there are exceptions such as strontium monoflouride

(SrF) (36), this approach will probably never be applicable to the wide array of

4



1.2 Producing Cold Molecules

molecules of interest.

The production of cold molecules therefore requires a new approach and

progress has taken two main routes: direct and indirect cooling methods. In-

direct methods seek to form cold molecules from an already cold atomic gas (21).

This method has seen significant success, and in 2003 several groups succeeded in

producing ultracold molecules from atomic gas samples by magneto-association

(37, 38, 39, 40). Vibrational levels embedded in a continuum are quasi-bound and

a Feshbach resonance (41) occurs when this quasi-bound molecular level crosses

an atomic threshold as a function of the magnetic field. Magneto-association

makes use of these Feshbach resonances to convert pairs of atoms in molecules.

Coupled pairs of atoms are converted into molecules by sweeping the magnetic

field adiabatically across the Feshbach resonance, as shown in figure 1.2.

While magneto-association has been the most successful method of produc-

ing cold molecules, the first successful approach actually used photoassociation

(42). Photoassociation proceeds by exciting an unbound scattering state of two

atoms to a bound excited molecular level. This unstable excited molecule then

spontaneously decays into a stable ground state molecule (43). Weakly bound

molecules formed by indirect methods require coherent laser techniques to trans-

fer the molecules to their ground state (22, 44, 45).

Indirect methods have been successful, but they can only produce molecules

comprised of atomic species that it is possible to cool to ultracold temperatures.

Currently this is mostly limited to the alkali metals and alkaline earths (although

this list is increasing all the time). It is therefore desirable to develop direct meth-

ods which take molecules of our own choosing and directly cool them. A number

of such methods have been developed, including buffer-gas cooling, which takes

5



1.2 Producing Cold Molecules

Figure 1.2: A Feshbach resonance occurs when the Zeeman energy of the atomic
scattering state becomes equal to that of a molecular bound state as a function of
magnetic field due to the difference in their magnetic moments. The threshold of
the open channel is shown in grey while the bound state of closed channel is shown
in black. Molecules can be created from the BEC by a sweep of the magnetic field
across the resonance from high field to low field. The inset shows the potential
energy, U , as a function of the interatomic distance, r, for the 2 states. Image from
(38).

advantage of elastic collisions between a molecule of interest and cryogenic helium

gas to cool a sample (46). Deceleration methods, such as Stark deceleration (47)

and Zeeman deceleration (48), use inhomogeneous electric and magnetic fields

respectively to slow molecules. These methods generally produce cold molecules

with temperatures between 10 mK and 1 K, which means a second-stage cooling

method is needed to bring the molecules into the ultracold regime.

Sympathetic cooling, in which the molecules are allowed to thermalize with a

gas of ultracold atoms, is a promising second-stage cooling method (49). While

6



1.2 Producing Cold Molecules

elastic collisions allow thermalization, inelastic collisions can cause trap loss (50).

For many systems, inelastic collision rates are predicted to be too large for sym-

pathetic cooling to succeed (51, 52, 53). Quantum-mechanical molecular collision

calculations however can be computationally extremely expensive. This thesis

investigates efficient methods of performing quantum calculations for cold molec-

ular collisions.

7



Chapter 2

Scattering Theory

Understanding atomic and molecular interactions and collisions is essential to the

study of cold and ultracold molecules. For example, methods such as buffer-gas

cooling (46) and Stark deceleration (47) can produce cold molecules with tem-

peratures between 10 mK and 1 K. However, a second-stage cooling method is

needed to bring the molecules into the ultracold regime. Sympathetic cooling,

in which the molecules are allowed to thermalize with a gas of ultracold atoms,

is a promising second-stage cooling method (49). However, while elastic colli-

sions allow thermalization, inelastic collisions can cause trap loss (50), and for

many systems the inelastic collisions are predicted to be too large for sympa-

thetic cooling to succeed (51, 52, 53). Scattering calculations are essential in

order to identify systems for which sympathetic cooling has a good prospect of

success. Once in the ultracold regime, the extent to which atomic and molecular

interactions can be controlled again depends on a detailed understanding of their

collisional properties.

Quantum molecular scattering calculations are usually carried out using the

8



coupled-channel method: the Schrödinger equation for scattering is converted into

a set of coupled differential equations, which are then propagated across a range

of values of the intermolecular distance r. The size of the problem is determined

by the number of channels N (the number of coupled equations). The usual

algorithms take a time proportional to N3, since each step of the propagation

requires an O(N3) matrix operation.

Cold molecule scattering presents problems with a large number of channels

for two reasons:

1. At very low energies, small splittings between molecular energy levels be-

come important. This makes it necessary to include fine details of molecular

energy level patterns, such as tunneling (52) and nuclear hyperfine splitting

(51, 54). The extra degrees of freedom require additional basis functions;

in particular, including nuclear spins can multiply the number of equations

by a substantial factor (sometimes 100 or more).

2. Collisions in the presence of electric and magnetic fields are very impor-

tant. In an applied field, the total angular momentum J is no longer a

good quantum number (55, 56). Because of this, the large sets of coupled

equations can no longer be factorized neatly into smaller blocks for each J

as is possible in field-free scattering (57).

In addition, in cold molecule applications it is often necessary to repeat scattering

calculations on a fine grid of energies and/or applied electric and magnetic fields,

which adds greatly to the computational expense.

Cold atomic and molecular collisions and near-threshold bound states are

conveniently described by a set of coupled equations. The Hamiltonian for an

9



interacting pair of atoms or molecules is of the form

− ~2

2µ
∇2 + Ĥint(τ) + V (r, τ), (2.1)

where µ is the reduced mass, ∇2 is the Laplacian for the intermolecular coordi-

nates, and τ denotes all coordinates except the interparticle distance r. Ĥint(τ)

represents the internal Hamiltonians of the two particles and V (r, τ) is the inter-

action potential. The total wavefunction is expanded

Ψ(r, τ) = r−1
∑
i

ϕi(τ)ψi(r), (2.2)

where the N functions ϕi(τ) form a basis set for the motion in all coordinates, τ ,

except the intermolecular distance, and ψi(r) is the radial wavefunction in chan-

nel i. Substituting this expansion into the total time-independent Schrödinger

equation and projecting onto the basis function ϕj(τ) yields the usual coupled

equations of scattering theory,

[
− ~2

2µ

d2

dr2
− E

]
ψj(r) = −

∑
i

Wji(r)ψi(r), (2.3)

where E is the energy. The coupling matrix W has elements

Wji(r) =

∫
ϕ∗j(τ)

[
Ĥint(τ) + V (r, τ)

+
~2Li(Li + 1)

2µr2

]
ϕi(τ) dτ, (2.4)

where Li is the partial-wave quantum number for channel i. Equation 2.3 can

10



conveniently be written in matrix form,

~2

2µ

d2ψ

dr2
= [W (r)− EI]ψ(r), (2.5)

where ψ(r) is a column vector made up of the solutions ψi(r) and I is the identity

matrix.

For both bound states and collision calculations, the wavefunction must be

regular at the origin. When V (r) � 0 as r → 0, the short-range boundary

condition is

ψi(r)→ 0 as r → 0. (2.6)

At any energy, there are N linearly independent solution vectors ψ(r) that satisfy

these boundary conditions, and it is convenient to combine them to form the

N ×N wavefunction matrix Ψ(r).

The coupled-channel approach propagates either the wavefunction matrix

Ψ(r) and its derivative Ψ′(r), or the log-derivative matrix L(r) = Ψ′[Ψ]−1, out-

wards from r = 0 (or a point in the deeply classically forbidden region at short

range) (58, 59). In scattering calculations, the propagation is continued to a point

rmax at large r. The wavefunction or log-derivative matrix is then transformed

into a representation where W is asymptotically diagonal (60), such that

Wji(r)
r→∞−→

[
E∞i +

~2Li(Li + 1)

2µr2

]
δij + O(r−n), (2.7)

where n is the power of the leading term in the potential expansion and E∞i is

the threshold of channel i. Each channel is either asymptotically open, E ≥ E∞i ,
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or asymptotically closed, E < E∞i . The scattering boundary conditions are

Ψ = J(r) +N (r)K. (2.8)

The matrices J and N are diagonal (59). The matrix elements of the open

channels are Riccati-Bessel functions (61)

[J(r)]ij = δijrk
1/2
j jLj(kjr) (2.9)

[N(r)]ij = δijrk
1/2
j nLj(kjr) (2.10)

and the matrix elements for the closed channels are made up of modified spherical

Bessel functions of the first and third kinds (61)

[J(r)]ij = δij(rkj)
−1/2IL

j+1
2

(kjr) (2.11)

[N(r)]ij = δij(rkj)
−1/2KL

j+1
2

(kjr) (2.12)

where ki is the asymptotic wave vector,

ki =

√
2µ

~2
(E − E∞i ). (2.13)

The Ricatti-Bessel functions and the modified spherical Bessel functions are so-

lutions of equation 2.3 with no potential but including the centrifugal barriers.

Therefore at sufficiently long-range once the potential has become negligible the

propagated wavefunction ψ can be written as a linear combination as in equation

2.8. Using Bessel functions instead of sines and cosines includes the effect of the

centrifugal terms in W (r) and allows the boundary conditions to be applied at
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much shorter range. The asymptotic forms of Ricatti-Bessel functions are

Jij(R)
r→∞−→ k

−1/2
j sin(kr − Ljπ

2
), (2.14)

Nij(R)
r→∞−→ k

−1/2
j cos(kr − Ljπ

2
). (2.15)

Instead of expressing the boundary conditions in terms of trigonometric functions

they can be expressed in terms of incoming (eikR) and outgoing waves (e−ikR),

ξij = Jij − iNij, (2.16)

ζij = Jij + iNij. (2.17)

Expressing the wavefunction in this way corresponds to the physical problem

we are interested in. An incoming wave in a single channel j, corresponding to

the incident particles, and outgoing waves in all open channels, corresponding to

scattered particles. The asymptotic wavefunction can thus be expressed as

Ψ(r, τ)
r→∞−→ r−1

[
φj(τ)k

−1/2
j e−ikjr+iLjπ/2 +

∑
i

Sjiφi(τ)k
−1/2
i e−ikjr+iLjπ/2

]
(2.18)

where the sum runs over open channels only. Equation 2.18 corresponds to a single

incoming channel, but we can combine the set of solutions for each incoming

channel into a single S matrix. Every physical property related to completed

collisions can be obtained from the S matrix. The S matrix is an No × No

complex symmetric matrix, where No is the number of open channels. It is

unitary, that is, SS† = I, where S† indicates the Hermitian conjugate and I is

a unit matrix. The scattering S matrix is related to the open-open submatrix of

13



2.1 Scattering Cross-sections

K by

S = (1 + iKoo)
−1(1− iKoo). (2.19)

The S matrix contains the coefficients of the outgoing wave. The fraction of

the initial unit incoming flux from i leaving in channels j 6= i is given by the

T -matrix,

Tij = δij − Sij. (2.20)

In cold collision studies, the scattering S matrix is often a fast function of col-

lision energy E and magnetic field B, with extensive structure due to scattering

resonances and discontinuous behavior at threshold. The entire propagation to

long range must thus be repeated over a fine grid of energies and/or applied elec-

tric and magnetic fields, and this further multiplies the computational expense.

2.1 Scattering Cross-sections

The S matrix contains all the scattering information for the system. Observables

of the collision process, e.g. state-to-state cross sections and rate constants, can

be obtained from it.

For a collision of two particles initially in internal state i, where i specifies the

states of both particles, the angle between the initial and final relative velocities v

and v′ is given by spherical polar coordinates Θ and Φ, where Θ is the deflection

angle in the center of mass frame. The differential cross-section is defined as the

ratio between the well-defined flux Ii of the incoming beam of particles in state

14



2.2 Propagation Methods

i with the flux Ij of particles in state j after the collision,

dσij
dω

=
Ij
Ii
, (2.21)

where ω is an element of solid angle at deflection angle Θ. The flux Ij is a function

of the deflection angle Θ and is different for each final state j. Integrating the

differential cross section gives the integral scattering cross-section from state i to

state j,

σij =

∫ 2π

0

∫ π

0

dσij
dω

sin ΘdΘdΦ. (2.22)

There can be many channels i, with different orbital angular momentum Li,

which correspond to the same final state α of the colliding pair. We thus define

a set of channels which all correspond to a single quantum state of the monomer

as i ∈ α. The integral cross-section for a transition from a molecule to go from

state α to state β can be obtained from the S matrix elements,

σαβ =
π

k2i

∑
i∈α,j∈β

gi|δij − Sij|2. (2.23)

The factor gi is a function of the channel quantum numbers and the particular

channel basis set in use.

2.2 Propagation Methods

There are many propagators that take account of the special properties of equa-

tion 2.3. A number of them were used to obtain the results contained within this

thesis and those are discussed here.
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2.2 Propagation Methods

2.2.1 Numerov

In the course of performing MQDT calculations single channel wavefunction so-

lutions to equation 2.3 need to be obtained. The work in this thesis has used the

Numerov method for this purpose (62, 63). Expanding ψ(r) as a Taylor series we

obtain

ψi−1 + ψi+1 =
∞∑
k=0

2h2k

2k!
ψ

[2k]
i , (2.24)

where the odd terms have canceled out and,

ψ[n] =
dnψ

drn
. (2.25)

The simplest method of propagation simply drops all terms above second order

and substituting into equation 2.3 we obtain,

ψi =
ψi−1 + ψi+1

h2(Wi − E) + 2
+ O(h4) (2.26)

which has local error of fourth order in the step size, h. The Numerov method

obtains a more accurate solution, with local error of sixth order in the step size

by defining

Xi = ψi −
h2

12
ψ[2]. (2.27)

Using equations 2.24 and 2.3 equation 2.27 can be written as,

Xi = [1− h2

12
(Wi − E)]ψi (2.28)

= [1− Ti]ψi, (2.29)
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2.2 Propagation Methods

where Ti = −h2

12
(Wi − E), we obtain the three term recurrence relation,

(1− Tn+1)ψn+1 − (2 + 10Tn)ψi + (1− Tn−1)ψn−1 = 0. (2.30)

Using equation 2.28 this can be expressed explicitly in terms of ψ,

ψi+i =
(2− 5h2

6
Wi)ψi − (2− h2

12
Wi−1)ψi−1

1 + h2

12
Wi+1

+ O(h6) (2.31)

The Numerov method is the highest order three-point method possible and has

local error of sixth order in the step size.

The derivative of the wave function at any point ri is given by

ψ
[1]
i = h−1[(1/2− Tn+1)ψn+1 − (1/2− Tn−1)ψn−1], (2.32)

with an error term of O(h5) (64).

2.2.2 Renormalized Numerov

Methods, such as the Numerov method, which explicitly propagate the wave-

function become unstable in the classically forbidden region. The renormalized

Numerov method avoids propagating the wavefunction, instead propagating the

ratio of the wavefunction at neighboring points which does not grow exponentially

in classically forbidden regions (63). Substituting 2.28 into 2.30 we obtain

Xn+1 − UnXn +Xn+1 = 0, (2.33)
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2.2 Propagation Methods

where

Un = (1− Tn)−1(2 + 10Tn). (2.34)

Defining the ratio between Xn+1 and Xn as

Rn = Xn+1/Xn, (2.35)

the three term recurrence relation can then be written as a two term recurrence

relation

Rn = Un −R−1n−1. (2.36)

By propagating the ratio the wavefunction at successive points the renormalized

Numerov method avoids propagating an exponentially growing function in clas-

sically forbidden regions. The actual wavefunction can be recovered by keeping

track of the ratio and applying the correct normalizations at each point.

2.2.3 Log-derivative

Like the renormalized Numerov method the log-derivative method avoids propa-

gating the actual wavefunction and instead propagates,

L(r) = Ψ′[Ψ]−1 (2.37)

which has the advantage of not growing exponentially in classically forbidden

regions and thus being more numerically stable (59, 65, 66). Substituting 2.37
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2.2 Propagation Methods

into 2.5 gives the first-order matrix Ricatti equation,

L′(R) = W (R)− EI −L2(R). (2.38)

The K matrix can be obtained from L asymptotically by solving the linear

series of equations,

(LJ − J ′) = (LN −N ′)K. (2.39)
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Chapter 3

Multichannel Quantum Defect

Theory

Multichannel Quantum Defect Theory (MQDT) offers an alternative to full coupled-

channel calculations. It was originally developed to provide a uniform treatment

of bound and scattering states for problems involving the interaction of an elec-

tron with an ion core (67, 68), but was subsequently generalized to handle a range

of other long-range potentials (68, 69, 70, 71, 72, 73). It has been successfully

applied to scattering problems as diverse as negative ion photodetachment (74),

near-threshold predissociation of diatomic molecules (71, 75) and predissociation

of atom-diatom Van der Waals complexes (76, 77). More recently it has been ap-

plied to ultracold collisions between pairs of neutral atoms (78, 79, 80, 81, 82), be-

tween atoms and ions (83, 84), and between highly reactive molecules (85, 86, 87).

MQDT can be viewed in two different ways. The first tries to capture the

important physics of collisions within a few analytic quantum defect parameters.

The other views it as a method for solving the coupled equations of scattering
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theory which offers substantial insights and advantages in efficiency. The common

feature of the two approaches is to take advantage of the enormous difference in

energy and length scales associated with separated collision partners and short-

range potentials.

When MQDT is viewed as a numerical method for solving the coupled dif-

ferential equations, the goal is to obtain a matrix Y (E,B) (70, 75, 80, 81) that

completely describes the short-range dynamics and is insensitive to collision en-

ergy E and magnetic field B. This matrix can be obtained once and then used for

calculations over a wide range of energies and fields, or obtained by interpolation

from a few points. MQDT achieves this by defining Y (E,B) at relatively short

range, as described below. The threshold behavior is accounted for from prop-

erties of single channels. Once the matrix Y (E,B) has been obtained, the time

required for calculations at additional energies and fields is only proportional to

N , not N3.

Understanding threshold atomic physics in quantum defect terms is well de-

veloped (78, 79, 80, 88, 89). Threshold bound-state and scattering properties are

determined mainly by the long-range potential, which can often be approximated

as −Cn/rn. For the case of the Van der Waals interaction, −C6/r
6, the linearly

independent pair of solutions for a single potential is known (90). An analytic

approach to MQDT using these solutions has been developed (91, 92) and gives

much insight into ultracold atom-atom collisions (93).

This thesis investigates the use of MQDT as a numerical method to study cold

atom-molecule collisions. MQDT also begins by propagating the wavefunction or

log-derivative matrix outwards from short range. However, instead of continuing

to rmax, matching takes place at a point rmatch, at relatively short range. The
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matching in MQDT treats the open and weakly closed channels on an equal

footing; weakly closed channels are usually defined as those that are locally open,

E > Wii(r), at some value of r, so are capable of supporting scattering resonances.

Matching at short range produces a matrix Y (E,B) that is relatively insensitive

to energy and applied field, as described below. Y also varies smoothly across

thresholds, unlike S and K. Provided the channels are uncoupled outside rmatch,

it is then possible to obtain the scattering S matrix from Y using the properties

of individual uncoupled channels.

We consider a problem with No open channels and Nc weakly closed channels

at some collision energy E and field B. For each such channel, i = 1, N , where

N = No+Nc, MQDT requires a reference potential, U ref
i (r), which asymptotically

has similar behavior to Wii(r) in equation 2.7. This reference potential defines a

linearly independent pair of reference functions fi(r) and gi(r),

[
d2

dr2
+K2

i (r)

]
fi(r) = 0, (3.1)

and similarly for gi, where the local wave vector Ki(r) is

Ki(r) =

√
2µ

~2
(E − U ref

i (r)). (3.2)

The regular solution fi has the boundary condition fi → 0 as r → 0. fi and gi

are normalized to have Wentzel-Kramers-Brillouin (WKB) form, with amplitude

Ki(r)
−1/2, at some point in the classically allowed region (70).

The N ×N matrix Y is defined by matching at rmatch,

Ψ = f(r) + g(r)Y , (3.3)
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or in terms of the log-derivative matrix L,

(Lf − f ′) = (Lg − g′)Y , (3.4)

where f and g are diagonal matrices containing the functions fi and gi and the

primes indicate radial derivatives.

In order to relate Y to the physical scattering S matrix, the asymptotic

forms of the reference functions fi and gi in each channel are required. To this

end another pair of reference functions is defined for each channel. For open

channels, these functions are asymptotically energy-normalized,

si(r)
r→∞−→ k

− 1
2

i sin

(
kir −

Liπ

2
+ ξi

)
, (3.5)

ci(r)
r→∞−→ k

− 1
2

i cos

(
kir −

Liπ

2
+ ξi

)
, (3.6)

where ξi is the phase shift associated with reference potential i and ki is the

asymptotic wave vector,

ki =

√
2µ

~2
(E − E∞i ). (3.7)

These asymptotically normalized functions are related to fi and gi through the

quantum defect parameters Ci and tanλi,

si(r) = C−1i fi(r); (3.8)

ci(r) = Ci[gi(r) + tanλifi(r)]. (3.9)

Thus Ci relates the amplitudes of the energy-normalised reference functions to

WKB-normalised ones, while tanλi describes the modification in phase due to
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threshold effects. Far from threshold, Ci ≈ 1 and tanλi ≈ 0.

For each weakly closed channel, an exponentially decaying solution is defined,

φi(r)
r→∞−→ 1

2
e−|ki|r

√
|ki|. (3.10)

This is related to the solutions fi and gi by a normalization factor Ni, and an

energy-dependent phase νi,

φi(r) = Ni [cos νifi(r)− sin νigi(r)] . (3.11)

The phase νi is an integer multiple of π at each energy that corresponds to a

bound state of the reference potential in channel i.

The Y matrix is converted into the S matrix of scattering theory using the

quantum defect parameters Ci, tanλi, tan νi and ξi. First, the effect of coupling

to closed channels is accounted for,

Y = Yoo − Yoc[tanν + Ycc]
−1Yco, (3.12)

where tanν is a diagonal matrix of dimension Nc×Nc containing elements tan νi.

The No ×No matrix Y incorporates any resonance structure caused by coupling

to closed channels through tanν. Unlike Y itself, Y can be a rapidly varying

function of energy and field. Secondly, threshold effects from asymptotically open

channels are incorporated,

R = C−1
[
Y
−1 − tanλ

]−1
C−1, (3.13)
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where C and tanλ are diagonal matrices of dimension No ×No, containing ele-

ments Ci and tanλi. Finally, the S matrix is obtained from

S = eiξ
[
1 + iR

] [
1− iR

]−1
eiξ. (3.14)

This may be compared to equation 2.18 for the full coupled-channel method. The

inclusion of the diagonal matrix eiξ accounts for the phase difference between the

reference functions fi and gi used by MQDT and the Riccati-Bessel functions

used by the full coupled-channel method.

The approach taken in this thesis is somewhat different from that in refs.

(71, 80). There MQDT was approached as an exact representation of the full

coupled-channel solution. The matrix Y was evaluated at a distance rmatch large

enough that it had become constant as a function of rmatch. When this is done,

MQDT gives the same (exact) results for any choice of reference potential U ref
i (r),

although constancy of Y may be achieved at different values of rmatch for differ-

ent choices. In our approach, rmatch is chosen to ensure that Y is only weakly

energy-dependent, and this may require matching in a region where Y is not

yet independent of rmatch. With this approach, MQDT provides an approximate

solution whose quality depends on the choice of reference potentials.
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3.1 Numerical evaluation of reference functions and quantum defect
parameters

3.1 Numerical evaluation of reference functions

and quantum defect parameters

3.1.1 Open channels

For an open channel i, the reference function si is obtained by propagating a

regular solution of 3.1 from a point inside rmatch to a point rmax at long range and

imposing the boundary condition 3.5 (or its Bessel function equivalent). This

establishes the normalization of si and also gives the phase shift ξi, which is then

used to obtain the function ci at rmax from the boundary condition 3.6. The

reference function ci is then propagated inwards to rmatch. The two remaining

quantum defect parameters are obtained by applying (71)

C−2i = (s2iKi + s′2i /Ki) (3.15)

and

cotλi =
Ki(γi − ui)
K2
i + γiui

(3.16)

in the classically allowed region, where γi = s′i/si and ui = c′i/ci. The primes

indicate radial derivatives. Equations 3.8 and 3.9 then give the reference functions

fi and gi.

3.1.2 Closed channels

For a weakly closed channel i, the reference function fi is again obtained by

propagating a regular solution of 3.1 outwards from a point inside rmatch, but in
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3.2 Sources of Error

this case fi is normalized in the classically allowed region such that

f 2
i (K2

i + γ2i ) = Ki. (3.17)

In the closed-channel case, gi cannot be obtained directly from fi at a single

point. Instead, the reference function φi is obtained by using 3.10 as a long-range

boundary condition and propagating a solution of 3.1 inwards towards r = 0.

The normalization factor Ni of equation 3.11 is obtained by matching to

N2
i = (φ2

iKi + φ′2i /Ki). (3.18)

in the classically allowed region. The quantum defect parameter tan νi is then

obtained from

tan νi =
Ki(ti − γi)
K2
i + γiti

, (3.19)

where ti = φ′i/φi. Finally, the function gi is obtained from fi and φi using equation

3.11.

3.2 Sources of Error

There are a number of sources of errors in MQDT calculations using our approach:

1. Interchannel couplings that occur outside rmatch, which are not taken into

account by equations 3.12 to 3.14;

2. Deviations between the reference potentials U ref
i (r) andWii(r) outside rmatch;

3. Differences between the actual Y matrix at a given energy and field and
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3.3 Rotating reference functions

the Y matrix obtained by interpolation.

3.3 Rotating reference functions

The absolute phases chosen for the reference functions fi and gi are arbitrary, and

different choices produce different Y matrices and different MQDT parameters.

In particular, equation 3.3 shows that a pole in Y occurs whenever the propagated

multichannel wavefunction in any channel i has no contribution from the reference

function fi. However, all phase choices produce the same physical S matrix. We

are therefore free to choose the phase in order to produce a Y matrix with

advantageous characteristics.

Rotating the reference functions fi and gi by an angle θi gives a new set of

linearly independent reference functions f̄i and ḡi,f̄i
ḡi

 =

 cos θi − sin θi

sin θi cos θi


fi
gi

 . (3.20)

These rotated reference functions define a new Y matrix and a new set of QDT

parameters (C̄, tan λ̄, ξ̄ and tan ν̄).

The rotated QDT parameters can be obtained from the unrotated QDT pa-

rameters and the rotation angle. In the open channels the reference functions are

asymptotically related to Ricatti-Bessel functions JLi(r) and NLi(r) (59),

fi
gi

 =

 Ci 0

−Ci tanλi C−1i


 cos ξi sin ξi

− sin ξi cos ξi


JLi

NLi

 . (3.21)
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3.3 Rotating reference functions

In the weakly closed channels the reference functions are asymptotically

fi
gi

 =

 cos νi sin νi

− sin νi cos νi


φi
γi

 , (3.22)

where φi is the solution of equation 3.1 that decays exponentially at large r and

γi is its linearly independent partner, which is exponentially growing. Combining

equations 3.21, 3.22 and 3.20 gives

ξ̄i = arctan

[
C2
i sin ξi(cos θi + tanλi sin θi)− cos ξi sin θi

C2
i cos ξi(cos θi + tanλi sin θi) + sin ξi sin θi

]
, (3.23)

tan λ̄i = − 2C4
i tanλi cos 2θi + [1 + C4

i (tan2 λi − 1)] sin 2θi
2 (C4

i cos2 θi + sin θi [sin θi + C4
i tanλi(2 cos θi + tanλi sin θi)])

,

(3.24)

C̄i =

(
sin ξi sin θi

Ci
+ Ci cos ξi(cos θi + tanλi sin θi)

)
×

√
1 +

(cos ξi sin θi − C2
i sin ξi(cos θi + tanλi sin θi))

2

(sin ξi sin θi + C2
i cos ξi(cos θi + tanλi sin θi))

2 , (3.25)

ν̄i = νi − θi. (3.26)

Far from threshold (E � 1 K), equations 3.23 to 3.26 simplify to ξ̄i = ξi − θi,

tanλi ≈ 0, Ci ≈ 1 and ν̄i = νi − θi. However, in the threshold region that is

of interest in cold molecule studies, equations 3.23 to 3.26 must be evaluated

explicitly. Figure 3.1 shows C−2 (upper panel) and tanλ (lower panel) as a

function of θ obtained by the application of equations 3.25 and 3.24 respectively

for representative QDT parameters at four different energies. Tuning θi by π

tunes the reference function fi through a shape resonance in channel i producing
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3.3 Rotating reference functions

a peak in the upper panel showing C−2.
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3.3 Rotating reference functions
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Figure 3.1: C−2 (upper panel) and tanλ (lower panel) as a function of θ obtained
by the application of equations 3.25 and 3.24 respectively at four different energies.
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Chapter 4

Collisions of 1S Atoms with 3Σ

Molecules

To explore the application of MQDT to cold molecular collisions, we consider the

prototype system Mg(1S)+NH(3Σ−). The internal Hamiltonian for collisions of

1S atoms with 3Σ molecules are described in this chapter. The Hamiltonian in

Jacobi coordinates (r, θ) is

Ĥ = − ~2

2µ
r−1

d2

dr2
r +

L̂2

2µr2
+ Ĥmon + ĤZ + V (r, θ), (4.1)

where L̂2 is the space-fixed operator for end-over-end rotation, Ĥmon is the Hamil-

tonian for the NH monomer, ĤZ is the Zeeman interaction and V (R, θ) is the

intermolecular potential. In all the work in this thesis the NH molecule is treated

as a rigid rotor. This simplification is valid as the low collision energies consid-

ered in this thesis are orders of magnitude smaller than the energy separation

of vibrational levels of the NH molecule. The monomer Hamiltonian for NH is

32



therefore given by

Ĥmon = ~−2bNHN̂
2 + ĤSN + ĤSS, (4.2)

where bNH = 16.343 cm−1 is the rotational constant of NH in its ground vibra-

tional level (94). The spin-rotation operator is given by

ĤSN = γN̂ · Ŝ. (4.3)

The spin-spin operator written in space-fixed coordinates is given by

ĤSS =
2

3
λSS

[
4π

5

] 1
2 √

6
∑
q

(−1)qY2−q(r̂) [S ⊗ S](2)q , (4.4)

where N̂ and Ŝ are the rotational and spin angular momenta operators. The nu-

merical values for the spin-rotation and spin-spin constants are γ = −0.0055 cm−1

and λSS = 0.920 cm−1 (95).

In this work two basis sets are used to expand the eigenfunctions of Eq. (4.1),

referred to as the coupled and uncoupled basis sets. Common to both schemes the

end-over-end rotation of the collision partners is represented by quantum numbers

|LML〉, where L is the rotational quantum number and ML is its projection onto

the space-fixed Z axis.

In the uncoupled representation, we use basis functions |nmn〉|sms〉|LML〉,

where the quantum numbers n and s describe the rotation and electron spin of

the NH molecule. The corresponding m quantum numbers are the projections

onto the space-fixed Z axis. In the coupled representation, we use basis functions

|nsjmj〉|LML〉, where j is the vector sum of n and s and mj is the projection of

j onto the space-fixed Z axis.
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4.1 Matrix elements of the Hamiltonian

The matrix elements shown in this section are given in (60). In both basis sets

the matrix elements of L̂2 and the rotational part of the monomer Hamiltonian

are diagonal, and are simply given by ~2L(L + 1) and bNHn(n + 1) respectively.

The other matrix elements of the NH monomer Hamiltonian in both the coupled

and uncoupled basis sets are as follows.

4.1.1 Spin-rotation interaction

The matrix elements for the interaction between the magnetic moments caused

by the molecular rotation and the electron spin are given by

〈sms|〈nmn|ĤSN|n′m′n〉|sm′s〉 = δnn′δmnm′
n
δmsm′

s
γmnms (4.5)

+
(
δnn′δmnm′

n±1δmsm′
s∓1
) γ

2
[n(n+ 1)−m′n(m′n ± 1)]

1
2

× [s(s+ 1)−m′s(m′s ∓ 1)]
1
2 ,

〈nsjmj|ĤSN|n′sj′m′j〉 = δnn′δjj′δmjm′
j
γ(−1)n+j+s [n(n+ 1)(2n+ 1)s(s+ 1)(2s+ 1)]

1
2

×

 s n j

n s 1

 . (4.6)
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4.1 Matrix elements of the Hamiltonian

4.1.2 Spin-spin interaction

The matrix elements for the interaction between the two unpaired electrons in a

3Σ molecule are given by

〈sms|〈nmn|ĤSS|n′m′n〉|sm′s〉 =
2
√

30

3
λSS(−1)s−ms−mn (4.7)

× [(2n+ 1)(2n′ + 1)]
1
2 [s(s+ 1)(2s+ 1)]

×

 n 2 n′

0 0 0


 1 1 2

s s s


×

∑
q

(−1)q

 n 2 n′

−mn −q m′n


 s 2 s

−ms q m′s

 ,

〈nsjmj|ĤSS|n′sj′m′j〉 = δjj′δmjm′
j

2
√

30

3
λSS(−1)j+n

′+n+s [(2n+ 1)(2n′ + 1)]
1
2

×

 n 2 n′

0 0 0


 s n′ j

n s 2

 . (4.8)

4.1.3 Zeeman splitting

The interaction between the NH molecule and the magnetic field is given by

ĤZ = geµBB̂ · Ŝ, (4.9)

where ge is the g-factor for the electron, µB the Bohr magneton and B̂ is the

magnetic field vector. Rotational and anisotropic spin terms have been neglected

(96). The matrix elements of this operator in the uncoupled representation are
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4.1 Matrix elements of the Hamiltonian

diagonal

〈sms|〈nmn|ĤZ|n′m′n〉|sm′s〉 = δnn′δmnm′
n
δmsm′

s
geµBBms, (4.10)

and off-diagonal in the coupled representation

〈nsjmj|ĤZ|n′sj′m′j〉 = δnn′δmjm′
j
geµBB(−1)n+s−mj+1 (4.11)

× [s(s+ 1)(2s+ 1)(2j + 1)(2j′ + 1)]
1
2

×

 j 1 j′

−mj 0 mj


 s j′ n

j s 1

 .

The magnetic field direction has been chosen as the Z axis and B is the field

strength.

4.1.4 Expansion of the Potential

The potential energy surface for the NH molecule and the Mg atom can be ex-

panded in terms of Legendre polynomials,

V (r, θ) =
∑
λ

Vλ(r)Pλ(cos θ). (4.12)
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4.1 Matrix elements of the Hamiltonian

This expansion is convenient since the matrix elements of the Legendre polyno-

mials in the coupled and uncoupled basis sets are given by

〈LML|〈nsjmj| Pλ(cos θ) |n′sj′m′j〉|L′M ′
L〉 (4.13)

= [(2n+ 1)(2n′ + 1)(2j + 1)(2j′ + 1)(2L+ 1)(2L′ + 1)]
1
2

×

 n λ n′

0 0 0


 L λ L′

0 0 0

∑
mλ

(−1)s+j+j
′+λ+mλ−ML−mj

×

 L λ L′

−ML −mλ M ′
L


 j λ j′

−mj mλ m′j


 j j′ λ

n′ n s


and

〈LML|〈sms|〈nmn| Pλ(cos θ) |n′m′n〉|sm′s〉|L′M ′
L〉 (4.14)

= δmsm′
s
[(2n+ 1)(2n′ + 1)(2L+ 1)(2L′ + 1)]

1
2

×

 n λ n′

0 0 0


 L λ L′

0 0 0

∑
mλ

(−1)mλ−ML−mn

×

 L λ L′

−ML −mλ M ′
L


 n λ n′

−mn mλ m′n

 .

these are off-diagonal in both representations.
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Chapter 5

Multichannel quantum defect

theory for cold molecular

collisions

To explore the application of MQDT to cold molecular collisions, we consider the

prototype system Mg+NH(3Σ−). The potential energy surface for this system is

moderately anisotropic (97) and provides substantial coupling between channels.

The system is topical because Wallis and Hutson (98) have shown that sympa-

thetic cooling of cold NH molecules by ultracold Mg atoms has a good prospect of

success. The NH radical is a polar, paramagnetic, and chemically reactive species

with two stable isotopes, fermionic 14NH and bosonic 15NH.

The energy levels of NH in a magnetic field, shown in figure 5.1, are most

conveniently described using Hund’s case (b), in which the molecular rotation n

couples to the spin s to produce a total monomer angular momentum j. In zero

field, each rotational level n is split into sublevels labeled by j. In a magnetic
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Figure 5.1: the Zeeman diagram for the triplet ground state of NH. The low-
field-seeking mj = +1 state is magnetically trappable while the states with mj =
0 or 1 cannot be confined in the trap. Figure taken from (99).

field, each sublevel splits further into 2j + 1 levels labeled by mj, the projection

of j onto the axis defined by the field. For the n = 0 levels that are of most

interest for cold molecule studies, there is only a single zero-field level with j = 1

that splits into three components with mj = +1, 0 and −1.

The coupled equations are constructed in a partly coupled basis set |nsjmj〉|LML〉,

where L is the end-over-end rotational angular momentum of the Mg atom and

the NH molecule about one another and ML is its projection on the axis defined

by the magnetic field. Hyperfine structure is neglected. The matrix elements of

the total Hamiltonian in this basis given in chapter 4. The only good quantum
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5.1 Numerical methods

numbers during the collision are the parity p = (−1)n+L+1 and the total pro-

jection quantum number M = mj + ML. The calculations in the present work

are performed for p = −1 and M = 1. This choice includes s-wave scattering

of NH molecules in initial state mj = +1, which is magnetically trappable, to

mj = 0 and −1, which are not. The basis set used included all functions up to

nmax = 1 and Lmax = 3. This unconverged basis set is sufficient for the purpose

of comparing MQDT results with full coupled-channel calculations.

5.1 Numerical methods

The coupled-channel calculations required for both MQDT and the full coupled-

channel approach were carried out using the MOLSCAT package (100), as mod-

ified to handle collisions in magnetic fields (60). The coupled equations were

solved numerically using the hybrid log-derivative propagator of Alexander and

Manolopoulos (66), which uses a fixed-step-size log-derivative propagator in the

short-range region (rmin ≤ r < rmid) and a variable-step-size Airy propagator in

long-range region (rmid ≤ r ≤ rmax). The full coupled-channel calculations used

rmin = 2.5 Å, rmid = 50 Å and rmax = 250 Å (where 1 Å = 10−10 m). MQDT

requires coupled-channel calculations only from rmin to rmatch (which is less than

rmid), so only the fixed-step-size propagator was used in this case.

The MQDT reference functions and quantum defect parameters were obtained

as described in section 3.1, using the Numerov propagator (62) to solve the 1-

dimensional Schrödinger equations. Use of the renormalized Numerov method

(63) was not found to be necessary in the present case. The MQDT Y matrix

was then obtained by matching to the log-derivative matrix extracted from the
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5.1 Numerical methods
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Figure 5.2: Zero-field reference potentials. For the V0 reference potential the first
rotational excited state is also shown (n = 1). The hard wall at r = 4.5 Å is shown
as a dashed line.

coupled-channel propagation at a distance rmatch.

The potential energy surface used in this work was calculated by Soldán et al.

using SAPT(DFT) (97).
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5.2 Comparison of full coupled-channel and MQDT results

5.2 Comparison of full coupled-channel and MQDT

results

5.2.1 Choice of rmatch and reference potential

One of the goals of MQDT is to obtain a matrix Y (E,B) in such a way that it is

only weakly dependent on energy E and magnetic field B. However, the actual

form of Y (E,B) is strongly dependent on the distance at which it is defined and

the reference potentials used. In the present work we consider three different

reference potentials, as shown in Figure 5.2. First we define a reference potential

containing a pure C6 long-range term, which has been used with great success in

cold atom-atom collisions,

U ref,C6

i (r) = −C6

r6
+

~2Li(Li + 1)

2µr2
+ E∞i , (5.1)

where C6 = 7.621×105 Å
6

cm−1 for Mg+NH (97). Secondly we define a reference

potential containing an additional C8 term,

U
ref,C6,8

i (r) = −C6

r6
− C8

r8
+

~2Li(Li + 1)

2µr2
+ E∞i , (5.2)

where C8 = 9.941× 106 Å
8

cm−1 (97). Finally we define

U ref,V0
i (r) = V0(r) +

~2Li(Li + 1)

2µr2
+ E∞i , (5.3)

where V0(r) is the isotropic part of the interaction potential. Each reference

potential contains a hard wall at r = rwalli , so that U ref
i (r) =∞ for r < rwalli . This
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5.2 Comparison of full coupled-channel and MQDT results
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Figure 5.3: The squares of diagonal T -matrix elements in the incoming channels
for mj = +1, L = 0 and 2 at B = 10 G, obtained from full coupled-channel calcu-
lations (solid, black) and MQDT with the C6 reference potential and rmatch = 20 Å
(dashed, red). T -matrix elements are labeled with quantum numbers mj , L,ML.

allows the phase ξi of the reference functions in each channel to be adjusted if

required.

It is convenient to compare MQDT and coupled-channel results at the level of

T -matrix elements, Tij = δij − Sij. In general we label elements Tα,L,ML→α′,L′,M ′
L
,

where |α〉 = |nsjmj〉. However, the collisions considered here are all among the

n = 0, j = 1 levels and so α is simply abbreviated to mj. The spin-changing cross

sections are quite small except near resonances, so we focus mostly on diagonal

elements, for which we suppress the second set of labels.

Figure 5.3 compares diagonal T -matrix elements |Tii|2 obtained from full
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5.2 Comparison of full coupled-channel and MQDT results
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Figure 5.4: Diagonal Y matrix elements as a function of collision energy at
B = 10 G for the C6 reference potential with rmatch = 20 Å. The dashed vertical
lines show the positions of quasibound states as described in the text.

coupled-channel calculations with those from the MQDT method for the pure C6

reference potential of equation 5.1, with a matching distance of rmatch = 20 Å. The

Y matrix was recalculated at every energy at which full coupled-channel calcula-

tions were performed. The MQDT results reproduce the coupled-channel results

almost exactly at collision energies E/kB > 10 mK. However, at lower energies the

results start to differ noticeably. It may be noted that |U ref,C6

i −Wii|/kB ≈ 0.6 mK

at rmatch = 20 Å.

Figure 5.4 shows the diagonal Y elements corresponding to Figure 5.3. They

vary smoothly across most of the energy range, and are continuous across the

threshold at zero energy, but exhibit occasional sharp structures as a function of
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5.2 Comparison of full coupled-channel and MQDT results

energy. These sharp features are close to the energies of quasibound states, as

shown by carrying out bound-state calculations using the BOUND package (101),

with the same basis set as the MOLSCAT calculations. The resulting bound-state

energies are shown in Figure 5.4 as dashed vertical lines. The broad feature near

E/kB = 0.5 K is due to a quasibound state (Feshbach resonance) with quantum

numbers n = 1, j = 0, mj = 0, L = 3.

For MQDT to be more efficient than full coupled-channel calculations, it needs

to produce results in agreement with full coupled-channel calculations from an

energy-insensitive Y matrix that can be assumed to be constant or can be ob-

tained by interpolation from a few energies, instead of being recalculated at every

energy. However, the Y matrix elements in Figure 5.4 do not meet this require-

ment: the resonant features prevent reliable interpolation over useful ranges of

energy.

The energy sensitivity of the Y matrix in Figure 5.4 is due to the value used

for rmatch. When rmatch is large, resonance features due to quasibound states may

be present in the log-derivative matrix from which Y is obtained. In this case the

open and closed-channel blocks of Y are uncoupled, so that Ȳ ≈ Yoo, and the

resonances appear through the Yoo term in Eq. 3.12 rather than through tanν +

Ycc (102). However, if rmatch is small enough, the resonance features are shifted to

high energies, out of the region of interest. It is usually desirable to obtain Y at a

value of rmatch that is in or near the classically allowed region for all weakly closed

channels. However it must be remembered that the MQDT method neglects

interchannel couplings that occur outside rmatch, so there is always a tradeoff

between choosing a value that minimizes the energy-dependence and one that

takes account of coupling at relatively long range. This is particularly important
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Figure 5.5: The squares of diagonal T -matrix elements in the incoming channels
for mj = +1, L = 0 and 2 at B = 10 G, obtained from full coupled-channel
calculations (solid, black) and MQDT with the C6 reference potential and rmatch =
6.8 Å (dashed, red).

in molecular scattering, where the anisotropy of the interaction potential often

provides substantial couplings at long range.

It is convenient to consider lengths and energies in ultracold scattering in

relation to the Van der Waals characteristic length and energy, defined by (103)

rVdW =
1

2

(
2µC6

~2

) 1
4

and EVdW =
~2

2µr2VdW

. (5.4)

For Mg+NH, rVdW = 12.7 Å and EVdW/kB = 11 mK. In atomic systems, it is

common to place rmatch close to rVdW. However, the quasibound state responsible
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5.2 Comparison of full coupled-channel and MQDT results

for the broad feature in Figure 5.4 is due to an n = 1 state, with an outer

turning point around 5.7 Å. The resonant feature therefore does not shift in

energy significantly until rmatch is around 7 Å. In addition, it is not enough simply

to move rmatch to short range with the same reference function. Figure 5.5 shows

diagonal T -matrix elements obtained by MQDT with the C6 reference function,

as in Figure 5.3, but with rmatch = 6.8 Å. This does indeed produce a Y matrix

without poles in the energy region of interest, but the MQDT results are no

longer in agreement with the full coupled-channel results at any of the energies

considered. This is because the difference between the reference potential and the

diagonal W matrix elements at rmatch = 6.8 Å is |U ref,C6

i −Wii|/kB ≈ 4 K, as seen

in Figure 5.2. Alternatively, in terms of the approach of Mies and Raoult (80),

6.8 Å is too short a distance for the Y matrix evaluated with the C6 reference

potential to have reached its asymptotic value.

This problem may be remedied by using a better reference potential. Figure

5.6 shows results obtained using the reference potentials of equations 5.2 and

5.3, again for rmatch = 6.8 Å. The C6 + C8 reference potential gives a marked

improvement over the pure C6 reference potential. The T matrix elements it

produces follow the form of the full coupled-channel results but become worse

at energies much below 1 K: at rmatch = 6.8 Å, |U ref,C6+C8

i −Wii|/kB ≈ 0.35 K.

However, the results obtained with the V0 reference potential are more accurate,

and can scarcely be distinguished from the full coupled-channel results in Figure

5.6.

Even the V0 reference potential does not produce exact results. Figure 5.7

shows the ratio of the MQDT T -matrix elements for this reference potential to the

full coupled-channel results. The poles in the ratio arise simply because MQDT
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Figure 5.6: The squares of diagonal T -matrix elements in the incoming channels
for mj = +1, L = 0 and 2 at B = 10 G, obtained from full coupled-channel
calculations (solid, black) and MQDT with the C6 +C8 (dot-dashed, blue) and V0
(dashed, red) reference potentials and rmatch = 6.8 Å.

places the zeroes in |T |2 (where the phase shift is an integer multiple of π) at very

slightly different collision energies. However, at very low energies (below about

1 mK) the MQDT results underestimate the squared T -matrix elements by up

to 3%. This probably arises because the “best” reference potential would be one

that takes account of adiabatic shifts due to mixing in excited rotational levels.

For the n = 0 channels, the shift due to n = 1 channels may be estimated from

2nd-order perturbation theory to be about 0.012 cm−1 (equivalent to 17 mK) at

rmatch = 6.8 Å. This will cause residual errors in the MQDT C functions that are

responsible for the small errors visible in Figure 5.7.
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Figure 5.7: Ratio of the square of the diagonal T matrix element for mj = +1,
L = 0 at B = 10 G for MQDT, with the V0 reference potential and rmatch = 6.8 Å,
to that from full coupled-channel calculations.

Figure 5.8 shows representative matrix elements of Y obtained at rmatch =

6.8 Å, with the V0 reference potential, as a function of energy. It may be seen that

they are nearly linear in energy. The other matrix elements of Y show similar

behavior. While the actual values of matrix elements vary substantially, they are

all nearly linear in energy for rmatch = 6.8 Å.

It should be noted that when the reference functions are obtained numerically,

as in the present work, there is no significant difference in computer time for

different choices of reference potential. Using the full V0 reference potential is

just as inexpensive as using a simpler one.
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Figure 5.8: Diagonal Y matrix elements as a function of energy at B = 10 G, for
the V0 reference potential with rmatch = 6.8 Å.

5.2.2 Feshbach resonances

Magnetic fields have important effects on cold molecular collisions, and in partic-

ular magnetically tunable low-energy Feshbach resonances provide mechanisms

by which the collisions may be controlled. It is therefore important to establish

whether the Y matrices obtained from MQDT are smooth functions of magnetic

field as well as energy and can be used to characterize Feshbach resonances. If

they are, it will offer substantial computational efficiencies.

Figure 5.9 shows how the diagonal Y matrix elements vary as a function

of magnetic field for Mg+NH collisions over the range from 0 to 2500 G for a

collision energy of 400 mK. It may be seen that the matrix elements are indeed
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Figure 5.9: Diagonal Y matrix elements as a function of magnetic field at E/kB =
400 mK, for the V0 reference potential with rmatch = 6.8 Å.

very nearly linear, as required for efficient interpolation.

In Mg+NH, there is a Feshbach resonance due to the n = 1, j = 0, mj = 0,

L = 3 state shown in Figure 5.4 that tunes down towards the n = 0, mj = +1

threshold with increasing field. Figure 5.10 shows the comparison between MQDT

and full coupled-channel calculations for a selection of diagonal and off-diagonal T

matrix elements as the magnetic field is tuned across this resonance at energies

of 400 mK and 1 mK. At each energy, MQDT results were obtained both by

recalculating the Y matrix at every field and by linear interpolation between two

points separated by 100 G. In both cases, the interpolated MQDT results are

indistinguishable from the full MQDT results even for this long interpolation.
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Figure 5.10: Squares of diagonal and off-diagonal T -matrix elements as the field
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(lower panel). The MQDT results are obtained with the V0 reference potential at
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However, there is also a residual error of of 0.1 to 0.2 G in the resonance position

even for the full MQDT results, which is not very different at the two collision

energies considered. This is again likely to be due to the effect as described

in Section 5.2.1: the V0 reference potential neglects couplings between channels

outside rmatch, and for the small value of rmatch used here these couplings are

sufficient to shift the resonance positions slightly. Apart from these small shifts,

however, both the elastic and the inelastic scattering around the resonances are

very well described at both energies.

The linearity of the Y matrix with both energy and applied magnetic field

is an extremely promising result, and suggests that MQDT will provide very

efficient ways of performing cold collision calculations as a function of energy and

magnetic field, without needing to repeat the expensive coupled-channel part of

the calculation on a fine grid.

5.3 Conclusions

It has been shown that Multichannel Quantum Defect Theory (MQDT) can be

applied to low-energy molecular collisions in applied magnetic fields. MQDT pro-

vides a matrix Y , defined at a distance rmatch at relatively short range, which en-

capsulates all the short-range dynamics of the system. For the prototype Mg+NH

system, we have shown that MQDT can provide numerical results that are in

quantitative agreement with full coupled-channel calculations if the MQDT ref-

erence functions are defined appropriately.

The effect of different choices of reference potential and values of rmatch has

been investigated. For cold atom-molecule collisions, unlike cold atom-atom col-
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lisions, calculations are likely to be needed over a significant range of collision

energy, perhaps 1 K or so. If rmatch is placed at too long a range, there is a signif-

icant likelihood of resonant features within the energy range that prevent simple

interpolation of Y . This may be circumvented by carrying out the matching at a

smaller distance rmatch. However, when this is done, a pure C6 reference potential

may not be sufficient. For Mg+NH, the most satisfactory procedure is to perform

matching at fairly short range (inside 7 Å) and use a reference potential that is

defined to be the same as the true diagonal potential in the incoming channel.

The major strength of MQDT for molecular applications is that, if the the

matching to obtain Y is carried out at relatively short range, the matrix is only

weakly dependent on collision energy and magnetic field. This allows very consid-

erable computational efficiencies, because the expensive calculation to obtain Y

needs to be carried out at only one or a few combinations of collision energy and

field. The remaining calculations to obtain scattering properties on a fine grid

of energies and fields are then computationally inexpensive, varying only linearly

with the number of channels N . Full coupled-channel calculations, by contrast,

scale as N3.

MQDT is a promising alternative to full coupled-channel calculations for cold

atom-molecule collisions, particularly when fine scans over collision energy and

magnetic field are required. In future work, we will investigate further the choice

of reference functions to optimize the accuracy and to minimize the dependence

of Y on collision energy and field. We will also investigate how the results for

Mg+NH transfer to more strongly anisotropic systems, with stronger long-range

anisotropy and more closed channels that are capable of producing scattering

resonances.
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Chapter 6

Optimized multichannel quantum

defect theory for cold molecular

collisions

As shown in the previous chapter and (104) Multichannel Quantum Defect Theory

(MQDT) (68, 70, 75, 80, 81, 105) provides an attractive alternative to full coupled-

channel calculations. MQDT attempts to represent the scattering properties in

terms of a matrix Y (E,B) (70, 75, 80, 81) that is a smooth function of E and

B. If this can be achieved, the matrix can be obtained once and then used for

calculations over a wide range of energies and fields, or obtained by interpolation

from a few points. Once the matrix Y (E,B) has been obtained, the time required

for calculations at additional energies and fields is only proportional to N , not

N3.

One problem with MQDT is that the Y matrix may have poles as a function

of E and B, and these limit the range over which it can be interpolated. In
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cold molecular collision studies, calculations are typically needed over an energy

range of order 1 K above threshold, and for magnetic fields up to a few thousand

gauss. This contrasts with the situation for collisions of ultracold atoms, where

the energy range of interest is commonly a few µK and the fields are typically a

few hundred gauss.

In this chapter, we show how MQDT Y matrices can be defined to allow

smooth interpolation over substantial ranges of collision energy and applied field.

This will allow the use of MQDT to provide substantial savings in computer time

(106).

The coupled-channel calculations required for both MQDT and the full coupled-

channel approach were carried out using the MOLSCAT package (107), as de-

scribed in chapter 5 section 5.1 using exactly the same input parameters.

The MQDT reference functions and quantum defect parameters were obtained

as described in section 3.1, using the renormalized Numerov method (63) to solve

the 1-dimensional Schrödinger equations for the reference potentials. The MQDT

Y matrix was then obtained by matching to the log-derivative matrix extracted

from the coupled-channel propagation at a distance rmatch. In this chapter all

MQDT calculations use the reference potential

U ref
i (r) = V0(r) +

~2Li(Li + 1)

2µr2
+ E∞i , (6.1)

where V0(r) is the isotropic part of the interaction potential. This reference

potential was shown, in the previous chapter, to produce quantitatively accu-

rate results when Y is reevaluated at each collision energy and magnetic field.

However, such reevaluation relinquishes most of the computational savings that
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Figure 6.1: The V0 reference potentials for Mg + NH. The first and second
rotational excited state are also shown (n = 1, 2). The hard wall at r = 4.0 Å is
shown as a vertical dashed line. The dot-dashed horizontal line corresponds to zero
energy.

MQDT is intended to achieve.

The reference potential contains a hard wall at r = rwalli , so that U ref
i (r) =∞

for r < rwalli . In the present chapter we take rwalli = 4.0 Å. Figure 6.1 shows

the reference potentials for the lowest three rotational states. All channels with

n ≥ 2 were treated as strongly closed and thus not included in the MQDT part

of the calculation, but were included in the log-derivative propagation.
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6.1 Results and discussion

6.1 Results and discussion

Figure 6.2 shows a single diagonal element of the Y matrix, Y−1,8+2, as a function

of the matching distance and energy, obtained with unrotated reference functions.

Y−1,8,+2 is a representative element of Y with poles at the same locations as the

other elements, chosen to give a good visual representation of the pole structure.

There are many poles visible, which prevent polynomial interpolation over ener-

gies of more that 0.5 K for any value of rmatch (and much less than this for some

choices of rmatch). The energies of the poles become independent of rmatch at long

range.

The presence of low-energy poles in Y for some values of rmatch is a serious

problem. For MQDT to be efficient, rmatch must be chosen without solving the

coupled equations at many different energies. The calculations needed to produce

contour plots such as those in Fig. 6.2 are feasible for a test case such as Mg+NH,

but would be prohibitively expensive for a very large system.

Figure 6.3 shows the same element of the Y matrix as a function of the

matching distance and energy for reference functions rotated by θi = π/2. The

poles are in quite different places, but once again there are many of them. The

combination of the top and center panels demonstrates that, for any arbitrary

choice of rotation angle, poles will appear in the Y matrix, preventing simple

interpolation for most choices of rmatch. This will be true in any MQDT problem

with a large density of resonances. The contour plots do however show that the

position of poles is strongly dependent on the rotation angle, even at large values

of rmatch. This suggests that it will be possible to optimize the rotation angle in

order to move the poles away from the energy range of interest. It is emphasized

58



6.1 Results and discussion

Figure 6.2: Contour plot of arctanYii/π for a representative diagonal Y matrix
element, Y−1,8,+2, as a function of energy and rmatch at B = 10 G. Obtained
with unrotated reference functions (θi = 0). The arctangent is show for clarity of
plotting: it maps the real numbers, R, to the domain −π/2 to π/2, thus allowing
all magnitudes of Y matrix elements to be seen on a single plot.

that the S matrices obtained from the Y matrices shown in figures 6.2, 6.3 and

6.4 are identical.

We now consider how to rotate the reference functions to maximize the pole-

free range over which Y can be interpolated. Yii as a function of θi is given

by

Yii = tan(θi + δi), (6.2)

where δi is the phase shift between the unrotated reference function fi and the
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6.1 Results and discussion

Figure 6.3: Contour plot of arctanYii/π for a representative diagonal Y matrix
element, Y−1,8,+2, as a function of energy and rmatch at B = 10 G. Obtained with
reference functions rotated by θi = π/2. The arctangent is show for clarity of
plotting: it maps the real numbers, R, to the domain −π/2 to π/2, thus allowing
all magnitudes of Y matrix elements to be seen on a single plot.

propagated multichannel wavefunction in channel i. There is a pole in Yii when

θi + δi = π/2 and a zero when θi + δi = 0. We thus set θopti = −δi at one choice

of rmatch, E and B, so that the propagated multichannel wavefunction and the

reference wavefunctions are almost in phase and the resulting Y matrix in that

region is pole-free.

Because the channels are coupled, rotating the reference functions in one chan-

nel affects the other elements of the Y matrix. In this work we loop over the

channels sequentially, setting each diagonal element to 0 in turn. By repeatedly
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6.1 Results and discussion

Figure 6.4: Contour plot of arctanYii/π for a representative diagonal Y matrix
element, Y−1,8,+2, as a function of energy and rmatch at B = 10 G. Obtained with
optimized reference functions with θi = θopti in all channels. The arctangent is
show for clarity of plotting: it maps the real numbers, R, to the domain −π/2 to
π/2, thus allowing all magnitudes of Y matrix elements to be seen on a single plot.

looping over all channels, all the diagonal Y matrix elements are set to 0. For

Mg+NH it was sufficient to loop over the channels twice. In a more strongly cou-

pled system it is expected that this would need to be repeated more times. This

approach allows a set of optimized θi to be obtained from a single multichannel

propagation.

Rotated reference functions have previously been used to transform Y matri-

ces in the study of atomic spectra (108, 109, 110, 111, 112) and atomic collisions

(113). Adjusting θi at each energy such that Yii = 0 was shown to produce
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6.1 Results and discussion

a weak energy dependence of off-diagonal Y matrix elements across thresholds

(113). However, this approach required propagating the full multichannel wave-

function many times at different energies, which is precisely what the present

work tries to avoid.

Figure 6.4 shows how the representative element Y opt
−1,8,+2 varies as a function

of the matching distance and energy. All the θi values are optimized as described

above at E = 0.5 K and B = 10 G for each value of rmatch, but are not reopti-

mised at each energy. Comparison of this with the figures 6.2 and 6.3 shows the

effectiveness of optimizing the reference functions. Without optimization, there

were no choices of rmatch for which Y was pole-free and thus suitable for inter-

polation over the energy range of interest. After optimization, Y opt is pole-free

over a substantial range, of about 1 K, for any choice of rmatch < 8 Å. For values

of rmatch < 6.5 Å, Y opt is pole-free over many Kelvin. Beyond 6.5 Å, poles start

to enter Y opt in the energy range of interest. Once the poles have settled at their

asymptotic values at rmatch > 7.5 Å, we find that positive energies up to about

2 K are pole-free. However, at larger values of rmatch the linearity of Y opt over

the pole-free region decreases. This is due to negative energy poles in the Y

matrix which our procedure cannot move significantly. There is one particularly

bad choice of rmatch at ≈ 6.8 Å, but provided this unlucky choice of rmatch is

avoided, Y opt can be interpolated smoothly over the positive energy range from

0 to > 2 K for any choice of rmatch.

Figure 6.5 compares diagonal T -matrix elements |Tii|2 (where Tij = δij −

Sij) obtained from full coupled-channel calculations with those from the MQDT

method, with a matching distance of rmatch = 6.5 Å, using reference functions

optimized at 0.5 K. MQDT results were obtained both by recalculating the Y
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6.1 Results and discussion

matrix at every energy and by interpolating Y opt linearly between two points

separated by 1 K. The MQDT results with Y recalculated at each energy can

scarcely be distinguished from the full coupled-channel results. The MQDT re-

sults obtained by interpolation are also very similar to the full coupled-channel

results except around the resonance feature at E ≈ 0.1 K. The interpolated result

could of course be improved simply by performing coupled-channel calculations

to obtain Y opt at one or two extra energies across the range, to allow for a higher-

order interpolation, or by using a linear interpolation over a smaller energy range.

In this work we use θi to rotate our short-range reference functions fi and gi.

In principle, we could rotate the reference functions by varying the asymptotic

phase shifts ξi instead of the short-range phases θi. However Figure 6.6 shows

why this is not desirable. Due to the highly nonlinear relationship between ξi and

θi, obtaining the optimum rotation angle of the short-range reference functions fi

and gi by varying the angle ξi would be laborious at very low collision energies.

6.1.1 Magnetically tunable Feshbach resonances

The effects of magnetic fields on cold molecular collisions are very important,

since collisions can be controlled by taking advantage of magnetically tunable

low-energy Feshbach resonances. We are therefore interested in how S matrix

elements behave as a function of magnetic field across Feshbach resonances. It is

thus important that the Y matrix is weakly dependent on magnetic field in such

regions.

Figure 6.7 shows the diagonal elements of the optimized Y matrix as a func-
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Figure 6.5: The squares of diagonal T -matrix elements Tmj ,L,ML
in the incoming

channels for mj = +1 and L = 0, 2 and 4 at B = 10 G, obtained from full
coupled-channel calculations (solid, black) and MQDT with optimized reference
functions for rmatch = 6.5 Å, both with (dot-dash, blue) and without (dashed, red)
interpolation.

tion of magnetic field for Mg + NH collisions over the range from 10 G to 5000 G

for a collision energy of 1 mK. This range of fields tunes across 6 Feshbach reso-

nances. The reference functions were optimized at 10 G and 1 mK. The elements

of Y opt are smoothly curved over the entire 5000 G range and could be well

represented by a low-order polynomial.

Figure 6.8 shows the comparison between optimized MQDT and full coupled-

channel calculations for a selection of diagonal and off-diagonal T -matrix elements

as the magnetic field is tuned at 1 mK. The reference functions were optimized at
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Figure 6.6: The asymptotic phase shift ξ̄i as a function of the rotation angle θ
for the incoming d-wave channel (+1, 2, 0).

10 G and 1 mK and MQDT results were obtained by linear interpolation of Y opt

between two points separated by 1000 G and by 5000 G. Interpolation over 1000 G

gives resonance features that are in very good agreement with the full coupled-

channel calculation to better than 1 G. Interpolation over 5000 G gives resonance

features of the correct shape, with positions that are still within about 10 G of the

full coupled-channel results. The difference between the interpolated result and

the full coupled-channel calculation is a result of both the choice of rmatch and the

interpolation. The quality of the interpolation could be improved by considering a

few more fields across the range to allow for higher-order polynomial interpolation

or by using linear interpolation over a smaller field range.
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Figure 6.7: Representative Y opt matrix elements as a function of field at E =
1 mK.

Full MQDT calculations recalculating the Y matrix at every magnetic field

give resonance positions accurate to 0.01 G. The remaining errors between the

full coupled-channel calculations and the MQDT results will reduce with a larger

choice of rmatch. As seen in figure 6.4 the optimized Y matrices obtained at larger

values of rmatch are still amenable to interpolation, though over a more restricted

energy range.

6.2 Conclusions

It has been shown that Multichannel Quantum Defect Theory can provide an

efficient computational method for low-energy molecular collisions as a function
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6.2 Conclusions

of both energy and magnetic field. In particular, we have shown how a disposable

parameter of MQDT, the phase of the short-range reference functions, may be

chosen to make the MQDT Y matrix smooth and pole-free over a wide range of

energy and field. This smooth variation allows the Y matrix to be evaluated from

coupled-channel calculations at a few values of the energy and field and then to

be obtained by interpolation at intermediate values. It is not necessary to repeat

the expensive coupled-channel part of the calculation on a fine grid.

The procedure developed here is to choose the phase of the reference functions

in each channel so that the diagonal Y matrix in each channel is zero at a reference

energy and field. This ensures that there are no poles in the Y matrix, which

would prevent smooth interpolation, close to the reference energy. Optimizing the

phase in this way is very inexpensive, and once it is done the cost of calculations

at additional energies and fields varies only linearly with the number of channels

N , not as N3 as for full coupled-channel calculations. MQDT with optimized Y

matrices is thus a very promising alternative to full coupled-channel calculations

for cold molecular collisions, particularly when fine scans over collision energy

and magnetic field are required.

The Y matrix is defined to encapsulate all the collision dynamics that occurs

inside a matching distance rmatch, and the choice of this distance is important.

There is a trade-off between the accuracy of the method and the size of the

pole-free region of the optimized Y matrix. For large values of rmatch, resonant

features may appear in the Y matrix and prevent simple interpolation over large

ranges of energy and field. For smaller values of rmatch, optimizing the reference

functions allows interpolation over many Kelvin, but the accuracy of MQDT is

reduced because interchannel coupling is neglected outside rmatch.
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6.2 Conclusions

For the moderately anisotropic Mg + NH system studied here, optimized

MQDT with an interpolated Y matrix can provide numerical results in quantita-

tive agreement with fully converged coupled-channel calculations. In the subse-

quent chapters, we will investigate the extension of this approach to more strongly

coupled systems, with larger anisotropy of the interaction potential and more

closed channels that produce scattering resonances.

69



Chapter 7

Collisions of 2S Atoms with 3Σ

Molecules

In order to study a strongly anisotropic system which has many closed channels

that produce scattering resonances we choose Li(2S)+NH(3Σ). The matrix el-

ements for collisions of 2S atoms with 3Σ molecules shown in this chapter are

given in (60, 114). The Hamiltonian for a 2S atom colliding with a rigid-rotor 3Σ

diatomic molecule is given by

Ĥ = − ~2

2µ
r−1

d2

dr2
r +

L̂2

2µr2
+ Ĥmon + ĤZ + Vss(r) + V (r, θ), (7.1)

which is exactly the same as equation 4.1, for the interaction of a 1S atom with a

3Σ molecule, with the addition of the anisotropic intermolecular spin-spin inter-

action, Vss(r). The presence of an unpaired spin on the atom changes the Zeeman
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7.1 Matrix elements of the Hamiltonian

operator, which is now given by

ĤZ = geµBB̂ · (ŝNH + ŝLi), (7.2)

where ŝLi and ŝNH are the spin angular momentum operators for the Li atom and

the NH molecule respectively. As in equation 4.9 ge is the g-factor for the electron,

µB the Bohr magneton and B̂ is the magnetic field vector. The anisotropic

intermolecular spin-spin interaction is given by

Vss(r) = λ(r) [ŝLi · ŝNH − 3(ŝLi · êr)(ŝNH · êr)] , (7.3)

where êr is a unit vector along r, λ(r) = −Ehα
2/(r/a0)

3 and α ≈ 1/137 is the

fine structure constant.

7.1 Matrix elements of the Hamiltonian

We construct the collision Hamiltonian in the fully uncoupled basis set

|nmn〉|sNHmsNH
〉|sLimsLi

〉|LML〉, where the quantum numbers n and sNH describe

the rotation and electron spin of the NH molecule and sLi describes the electron

spin of the Li atom. The corresponding m quantum numbers are the projec-

tions onto the space-fixed magnetic field axis. The matrix elements for the NH

monomer are the same as for scattering of NH from a closed-shell atom given in

chapter 4, with the addition of factors δmsAm′
sA

given here.
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7.1 Matrix elements of the Hamiltonian

7.1.1 Spin-spin interaction

The matrix elements for the intermolecular spin-spin interaction are given by

〈sAmsAsBmsBnBmnBLML| Vss |sAm′sAsBm′sBn′Bm′nBL′M ′L〉 (7.4)

=
√

30λ(r)δnBn
′
B
δmnBm′

nB
(−1)sA+sB−msA−msB−ML

×
[
sA(sA + 1)(2sA + 1)sB(sB + 1)(2sB + 1)(2L+ 1)(2L′ + 1)

] 1
2

×

 L 2 L′

0 0 0

∑
q1q2

 L 2 L′

−ML −q1 − q2 M ′L


×

 1 1 2

q1 q2 −q1 − q2


 sA 1 sA

−msA q1 m′sA


 sB 1 sB

−msB q2 m′sB

 .

7.1.2 Expansion of the Potential

Spin changing collisions of Li with NH involve both the doublet (S = 1
2
) and

quartet (S = 3
2
) potential energy surfaces, where S is the total spin of the system.

The interaction potential Vint(r, θ) written in terms of projection operators is given

by,

Vint(r, θ) =

sA+sB∑
S=−|sA+sB|

|S〉VS(r, θ)〈S|. (7.5)
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7.1 Matrix elements of the Hamiltonian

The matrix elements of Vint(r, θ) are then

〈sAmsAsBmsBnBmnBLML| Vint(r, θ) |sAm′sAsBm
′
sBn

′
Bm
′
nBL

′M ′L〉 (7.6)

=
∑
S

(−1)2sA+2sB−msA−msB−ML(2S + 1)

× 〈nBmnBLML|VS(r, θ)|n′Bm′nBL′M ′L〉

×

 sA sB S

msA msB −msA −msB


 sA sB S

m′sA m′sB −m′sA −m′sB

 .

In this work we are interested in collisions between atoms and molecules in spin-

stretched states, of interest for sympathetic cooling. These states have no matrix

elements, either diagonal or off-diagonal, which involve the doublet potential

energy surface. In addition both the doublet and quartet interaction potentials

become degenerate at long range when there is no overlap between the valence

shells of the Li and NH. We thus approximate the operator Vint(r, θ) by taking

VS = V3/2 for both spin states, as in the work by Wallis et al on collisions of Li

and NH (114). This approximation reduces equation 7.6 to a form diagonal both

in msA and msB.
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Chapter 8

Multichannel Quantum Defect

Theory for cold molecular

collisions with a strongly

anisotropic potential energy

surface

8.1 Introduction

The application of MQDT to cold molecular collisions for the moderately anisotropic

system Mg+NH(3Σ−) has been demonstrated in the preceding chapters and also

in (104, 106) . In order to study a more strongly anisotropic system with many

more closed channels we choose Li+NH, which has been studied previously using

full coupled-channels calculations by Wallis et al. (114). The potential energy
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8.2 Theory

surface for this system is deep and highly anisotropic, with a well depth about

1800 cm−1 at the Li-NH geometry but only 113 cm−1 at the NH-Li geometry.

8.2 Theory

The phase of the short-range reference functions fi and gi is a disposable param-

eter of MQDT and may be chosen to generate a Y matrix smooth and pole-free

over a wide range of energy and field. Equation 3.3 shows that the Y matrix has a

pole whenever the component of the propagated multichannel wavefunction ψi in

any channel i is proportional to the reference function gi and has no contribution

from fi, i.e. when gi and the full coupled-channels solution have the same phase

at rmatch. In ref. (106), we proposed rotating the reference functions fi and gi in

channel i by an angle θi, chosen so that the diagonal matrix elements Yii are 0.

This ensures that the reference function gi and the full coupled-channels solution

in channel i are perfectly out of phase at the chosen rmatch for a particular E and

B. The resulting Y matrix in that region is therefore pole-free (106).

The range of the pole-free region is dependent on where the matching oc-

curs. When matching is in the classically allowed region, the phases of both the

reference functions and the propagated coupled-channels solutions vary approxi-

mately linearly with energy and setting the diagonal Y matrix elements to zero is

effective: the relative phase of the reference potentials and the coupled-channels

solution is a slow function of energy. For a closed channel where matching is

carried out in the classically forbidden region, however, there is resonance struc-

ture in both the coupled-channels solutions and the reference functions so that

the phase of each is a fast (and nonlinear) function of energy. Fortunately, the
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8.2 Theory

energies at which the resonance structure occurs depend on the choice of θi. In

the present work we show that a more sophisticated choice of θi than that of ref.

(106) can produce a larger pole-free region, and that this is important when the

channels are strongly coupled.

8.2.1 Basis set and quantum numbers

As discussed in chapter 7 we construct the collision Hamiltonian in the fully

uncoupled basis set |nmn〉|sNHmsNH
〉|sLimsLi

〉|LML〉. Hyperfine structure is ne-

glected.

We label elements of Y and S by subscripts n,mn,msNH
,msLi

, L,ML →

n′,m′n,m
′
sNH

,m′sLi
, L′,M ′

L. For diagonal elements we suppress the second set of

labels.

8.2.2 Numerical methods

The coupled-channel calculations required for both MQDT and the full coupled-

channel approach were carried out using the MOLSCAT package (107), as de-

scribed in section 5.1. As in the work by Wallis et al. (114) the full coupled-

channels calculations use rmin = 1.8 Å, rmid = 12.5 Å and rmax = 600 Å (where

1 Å = 10−10 m).

The MQDT reference functions and quantum defect parameters are obtained

as described in section 3.1, using the renormalized Numerov method (63) to solve

the 1-dimensional Schrödinger equations for the reference potentials. The MQDT

Y matrix is then obtained by matching to the log-derivative matrix extracted

from the coupled-channels propagation at a distance rmatch. In this chapter all
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8.3 Results and discussion

MQDT calculations use the reference potential

U ref
i (r) = V0(r) +

~2Li(Li + 1)

2µr2
+ E∞i , (8.1)

where V0(r) is the isotropic part of the interaction potential and Li is the partial-

wave quantum number for channel i. Figure 8.1 shows the reference potential for

the ground and first rotational excited state. The reference potential contains a

hard wall at r = rwalli , so that U ref
i (r) =∞ for r < rwalli . In the chapter we choose

rwalli = 4.0 Å. This reference potential has been shown to produce quantitatively

accurate results for Mg+NH (104, 106). All channels with n ≥ 2 are treated as

strongly closed and thus not included in the MQDT part of the calculation, but

are included in the log-derivative propagation.

8.3 Results and discussion

In a magnetic field, the lowest Li-NH threshold (n = 0, sNH = 1, sLi = 1
2
) splits

into 6 Zeeman sublevels, as shown in figure 8.2. We consider collisions between Li

atoms and NH molecules that are both in their magnetically trappable low-field-

seeking states, ms,Li = +1/2 and ms,NH = +1. This corresponds to the highest

of the 6 thresholds.

Figure 8.3 shows the variation of the representative element Y1,−1,−1,− 1
2
,7,4 as

a function of the matching distance and energy when the θi values are chosen

to make all Yii matrix elements zero at collision energy Eref = 0.5 K. The basis

set used for this Figure included all functions up to nmax = 3 and Lmax = 8.

This unconverged basis set was used due to the substantial computational cost
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Figure 8.1: The V0 reference potentials for Li + NH. The first rotational excited
state is also shown (n = 1). The hard wall at r = 4.0 Å is shown as a vertical
dashed line.

of performing a full coupled-channels calculation at every energy in the Figure.

The outer turning point of the n = 1 reference potential is at 6.1 Å, and it may

be seen that, for values of rmatch inside this, the Y matrix is pole-free over many

K. However, MQDT with such small values of rmatch does not produce accurate

results because it neglects all channel couplings that exist outside rmatch. When

rmatch > 6.1 Å, poles start to enter the Y matrix in the energy range of interest.

As rmatch increases further, the resonant structure reduces the pole-free region

even further.

A contour plot such as Fig. 8.3 requires coupled-channels calculations at every

energy, and producing it thus sacrifices most of the computational savings that
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Figure 8.2: Li(2S)+NH(3Σ) thresholds as a function of magnetic field. The spin-
stretched state is shown in red. Image taken from (114).

MQDT is designed to achieve. In addition, we need a procedure for choosing the

phases θi that will guarantee a large pole-free region for any choice of rmatch. In

the remainder of this chapter, we perform calculations at only a single value of

rmatch = 6.5 Å, deliberately chosen to be in a region where Fig. 8.3 shows that

there are poles in Y at inconveniently low energies. In addition, the remaining

calculations use a converged basis set including all functions up to nmax = 8 and

Lmax = 8.

For a closed channel that is capable of supporting resonances, the dependence

of Yii on θi is

Yii(E) = tan(θi + δi(E)), (8.2)
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Figure 8.3: arctanYii/π for a single representative diagonal Y matrix element,
as a function of energy and rmatch at for θi set so that Yii = 0 in all channels for
B = 10 G and collision energy 0.5 K.

where the energy-dependent phase shift δi(E) is given by a Breit-Wigner form

δi(E) = δ̄i(E) + arctan

(
E − Eres

i

Γi

)
, (8.3)

where δ̄i is a slowly varying (non-resonant) background term. The resonant part

of this function is shown in the lower panel of Fig. 8.4, for values of the parameters

appropriate to one of the channels in Li+NH. It may be seen that choosing a value

of θi that makes Yii zero (shown by the dashed vertical line) does not guarantee a

large pole-free region in the case where E is close to Eres. A much better choice in
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Figure 8.4: Lower panel: arctanYii/π as a function of energy and θi for a single
channel as given by equations 8.2 and 8.3. Upper panel: arctanYii/π from coupled-
channels calculations atB = 10 G for a single diagonal element, Y1,−1,−1,− 1

2
,7,4, with

θj for all other channels set so that Yjj = 0.
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this case is to set θi to the value shown by the solid vertical line. In the following

we will show how this can be achieved.

A basic problem of MQDT in coupled-channel problems is that a pole in Y

that originates in any channel causes a pole in every channel. We refer to this

as the contamination of one channel by another. The upper panel of Figure 8.4

shows arctanYii/π for the single matrix element, Y1,−1,−1,− 1
2
,7,4, obtained from

coupled-channels calculations as a function of θi and collision energy E. The

phases θi in all other channels j are set to the values that produce Yjj = 0 at

0.5 K. The broad horizontal sweep around 0.41 K arises from a resonance in

channel i, while the narrower sweeps at −1.5 K, −1.2 K, 1.5 K and 2.1 K are

poles due to contamination from other channels. Setting Yjj to zero in all these

other channels has shifted these contamination effects to energies either above

about 2 K or below −1 K, leaving a region of about 3 K uncontaminated by

other channels. For the specific circumstances shown in Figure 8.4, it is seen that

choosing θi so that Yii = 0 results in a pole in Yii itself at 1.1 K, whereas a choice

of θi = 0.6π would produce a much larger pole-free range, limited only by poles

due to contamination effects in other channels. If an improved choice of θi can

also be obtained for these contamination poles then there is clearly the prospect

of achieving a much improved pole-free region.

The pole structure in channel i when uncontaminated by other channels is

given by equations 8.2 and 8.3. We can thus use these to obtain a better choice

of θi, but in order to do so we first need Γi, δi and Eres
i . To obtain them we first

perform an optimization as in ref. (106), rotating the reference functions until

Yii = 0 in all channels at energy Eref . This provides at least a small region where

Yii is uncontaminated by poles in other regions. We then carry out coupled-
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channels calculations at 2 additional energies near Eref , and use equations 8.2

and 8.3 to obtain the three parameters δ̄i, E
res
i and Γi numerically, neglecting the

slow variation of δ̄i with E. The optimum pole-free region for this channel is then

achieved by setting θi = δ̄i.

The pole-free region for the entire Y matrix is optimized by applying this

procedure in all channels where there is resonant structure close to the reference

energy. We first calculate the numerical second derivative of the diagonal matrix

elements Yii with respect to energy. We then select the channel with the largest

second derivative, apply the procedure described above, and use the new set of

phases to recalculate the three Y matrices. If this reduces
∑

i |d2Yii/dE2| then we

accept the new value of θi. We then loop over the closed channels in this manner

until there is no channel for which changing θi to δ̄i reduces
∑

i |d2Yii/dE2|. This

is an inexpensive procedure, as it uses the same 3 coupled-channels calculations

as before. Only the closed channels need to be included in the loop since only

these channels have resonance structure.

Figure 8.5 compares the final matrix elements Yii in all channels, obtained with

the two optimization schemes. The dashed red lines show the result of choosing

θi so that Yii is zero in every channel, while the solid black lines show the result

of optimizing θi as described above. Both calculations use rmatch = 6.5 Å and

optimize θi at 0.5 K and 10 G. It may be seen that the taking account of closed-

channel resonances in optimizing θi greatly increases the pole-free range of Y .

Furthermore, it produces Y matrix elements that are considerably more linear

between 0 and 1 K and may thus be interpolated more accurately.

Figure 8.6 compares diagonal T -matrix elements |Tii|2 (where Tij = δij −

Sij) obtained from full coupled-channels calculations with those from the MQDT
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Figure 8.5: Lower panel: Yii as a function of energy for all channels, with all
phases θi optimized as described in ref. (104) (dashed red lines) or using equations
8.2 and 8.3 (solid black lines).

method using interpolation. The MQDT results were obtained by interpolating

(and extrapolating) Y quadratically using 3 points separated by 0.1 K around

0.5 K. The MQDT results obtained by interpolation are very similar to the full

coupled-channels results except around the resonance features at E ≈ 0.7 K, and

even there they show a resonance of the correct shape with a slight shift in energy.

The interpolated result could be improved simply by performing coupled-channels

calculations to obtain Y at one or two extra energies across the range, to allow

for a higher-order interpolation, or by using a linear interpolation over a smaller

energy range.
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Figure 8.6: The squares of diagonal T -matrix elements Tmj , L,ML in the incoming
channels for mj = +1 and L = 0, 2 and 4 at B = 10 G, obtained from full
coupled-channels calculations (solid, black) and MQDT using optimized reference
functions for rmatch = 6.5 Å both with (dot-dash, blue) and without (dashed, red)
interpolation.

8.4 Conclusions

It has been shown that Multichannel Quantum Defect Theory (MQDT) can pro-

vide an efficient computational method for low-energy molecular collisions, for

the highly anisotropic Li + NH system.

The advantage of MQDT over the full coupled-channels method is predicated

on the ability to obtain a Y matrix which can be interpolated over a wide range

of fields and energies. Once such a Y matrix has been obtained the cost of

calculations at additional energies and fields varies only linearly with the number
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of channels N , not as N3 as for full coupled-channels calculations. The Y matrix

is defined to encapsulate all the collision dynamics that occurs inside a matching

distance rmatch. It is thus desirable to be able to match at as large a distance

of r as possible. However molecular collisions often necessitate matching in the

classically forbidden region for some channels where resonant features cause poles

in the Y matrix, preventing interpolation over a wide range of energies. It has

been shown how to define a Y matrix, taking resonant structure into account,

such that it is amenable to interpolation over a wide range of energies.

MQDT with Y matrices optimized to take account of resonant structure thus

provides a very promising alternative to full coupled-channels calculations for

cold molecular collisions, particularly when fine scans over collision energy and

magnetic field are required.
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Chapter 9

Conclusions and further work

9.1 Conclusions

It has been shown that Multichannel Quantum Defect Theory (MQDT) can be

applied to low-energy molecular collisions in applied magnetic fields. MQDT

provides a matrix Y , defined at a distance rmatch at relatively short range, which

encapsulates all the short-range dynamics of the system. For the two molecular

systems Mg+NH and Li+NH, we have shown that MQDT can provide numerical

results that are in quantitative agreement with full coupled-channel calculations

if the MQDT reference functions are defined appropriately.

The effect of different choices of reference potential and values of rmatch has

been investigated. For molecular collisions, the most satisfactory procedure is

to perform the matching at fairly short range (inside 7 Å) and use a reference

potential that is defined to be the same as the true diagonal potential in the

incoming channel.

Molecular collisions often necessitate matching in the classically forbidden re-
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gion for some channels, where there is a significant likelihood of resonant features

within the energy range that prevent simple interpolation of Y . We have shown

how a disposable parameter of MQDT, the phase of the short-range reference

functions, may be chosen to make the MQDT Y matrix smooth and pole-free

over a wide range of energy and field. This smooth variation allows the Y matrix

to be evaluated from coupled-channel calculations at a few values of the energy

and field and then to be obtained by interpolation at intermediate values. This

allows very considerable computational efficiencies, because the expensive calcu-

lation to obtain Y needs to be carried out at only one or a few combinations

of collision energy and field. The remaining calculations to obtain scattering

properties on a fine grid of energies and fields are then computationally inexpen-

sive, varying only linearly with the number of channels N . Full coupled-channel

calculations, by contrast, scale as N3.

MQDT is a promising alternative to full coupled-channel calculations for cold

atom-molecule collisions, particularly when fine scans over collision energy and

magnetic field are required.

9.2 Further work

In this thesis MQDT has been successfully applied to low-energy atom-molecule

collisions in magnetic fields, however the range of collisions of interest to cold

molecule studies is broad. MQDT posses an in-built flexibility which has led to

its successful application to a wide variety of scattering problems as diverse as

negative ion photodetachment (74), near-threshold predissociation of diatomic

molecules (71, 75) and predissociation of atom-diatom Van der Waals complexes
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(76, 77). More recently it has been applied to ultracold collisions between pairs of

neutral atoms (78, 79, 80, 81, 82), between atoms and ions (83, 84), and between

highly reactive molecules (85, 86, 87). This flexibility makes MQDT a promising

method to attack the diverse range of computationally challenging problems being

posed by cold molecule studies, such as molecule-molecule collisions, collisions in

electric and/or magnetic fields and collision including nuclear hyperfine effects.

In this work all calculations have been performed using a diabatic basis. How-

ever, Y matrices corresponding to calculations in different bases may be more

amenable to interpolation. The other obvious choice to investigate is the adi-

abatic basis, which is closer to the physical problem and thus could lead to a

superior Y matrix for interpolating.

The method demonstrated here speeds up calculations when repeated calcu-

lations are required over a fine grid of energy and field, but does not remove the

need to perform at least one expensive O(N3) propagation. A large number of

channels is required for collisions in an applied field because the total angular

momentum J is not a good quantum number. In field-free scattering these large

sets of coupled equations can be factorized neatly into smaller blocks for each

J . An approximate Y matrix could thus be obtained from field-free calculations

and then MQDT used for the long-range to give the correct threshold behavior.

At very low energies, small splittings between molecular energy levels become

important. This makes it necessary to include fine details of molecular energy

level patterns, such as tunneling and nuclear hyperfine splitting (51, 54). The

extra degrees of freedom require additional basis functions; in particular, includ-

ing nuclear spins can multiply the number of equations by a substantial factor

(sometimes 100 or more). This large multiplication in the number of channels
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could be avoided by obtaining a Y matrix from a calculation without nuclear

hyperfine included, then using MQDT to account correctly for the long-range

form for each hyperfine threshold.

MQDT only includes scattering dynamics within rmatch and so couplings that

persist to long range are incompletely accounted for. Such couplings could be

included using the Born approximation or the distorted wave Born approximation

as demonstrated, for the intermolecular spin-spin interaction, in collisions of NH-

NH (115).

In addition to the opportunities afforded by the flexibility of MQDT there are

also a number of methods which could be beneficially combined with MQDT. De-

spite the total angular momentum, J , not being a good quantum number in fields,

using the total angular momentum representation in the body-fixed coordinated

frame has been shown to produce accurate S matrices (116). This approach has

been successfully demonstrated for atom-molecule collisions in a magnetic field

(117), atom-molecule collisions in a electric field (118) and molecule-molecule

collisions in a magnetic field (119). Combining this approach with the MQDT

approach developed here is a very promising approach to attacking currently

intractable problems posed by ultracold molecular collision studies.

An iterative approach could be used to refine an approximate S matrix, fol-

lowing the method developed by Thomas (120). This method has the advantage

that it can be applied to a single column of the S matrix, which is often precisely

what we are interested in in cold molecule studies.

In this thesis methods have been developed to extend the range of interpo-

lation by moving poles in the Y matrix. These poles are, however, a geometric

feature rather then a necessary physical one, and are a consequence of our match-
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ing to the log-derivative matrix. In doing so we obtain the ratio of the coefficients

of the reference functions fi and gi, which is∞ when the contribution from fi is 0.

These coefficients could be obtained separately by matching to the wavefunction

and its derivative, avoiding the problems caused by poles in the Y matrix. This

approach would, however, require the explicit propagation of the wavefunction

which is less stable than the corresponding log-derivative propagation.
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[86] Z. Idziaszek, G. Quéméner, J. L. Bohn, and P. S. Julienne. Simple quantum

model of ultracold polar molecule collisions. Phys. Rev. A, 82:020703, 2010.

[87] B. Gao. Universal model for exoergic bimolecular reactions and inelastic

processes. Phys. Rev. Lett., 105(26):263203 2010.

[88] J. M. Vogels, R. S. Freeland, C. C. Tsai, B. J. Verhaar, and D. J. Heinzen.

Coupled singlet-triplet analysis of two-color cold-atom photoassociation

spectra. Phys. Rev. A, 61(4):043407, 2000.

[89] B. Gao. Angular-momentum-insensitive quantum-defect theory for di-

atomic systems. Phys. Rev. A, 64(1):010701, 2001.

[90] B. Gao. Solutions of the schrödinger equation for an attractive 1/r6 poten-

tial. Phys. Rev. A, 58(3):1728–1734, 1998.

[91] B. Gao. Quantum-defect theory of atomic collisions and molecular vibration

spectra. Phys. Rev. A, 58(5):4222–4225, 1998.

[92] B. Gao. Analytic description of atomic interaction at ultracold tempera-

tures: The case of a single channel. Phys. Rev. A, 80(1):012702, 2009.

[93] P. S. Julienne and B. Gao. Simple theoretical models for resonant cold

atom interactions. AIP Conference Proceedings, 869:261–268, 2006.

[94] C. R. Brazier, R. S. Ram, and P. F. Bernath. Fourier transform spectroscopy

of the A3Π-X3Σ− transition of NH. J. Mol. Spectrosc., 120(2):381–402 1986.

102



REFERENCES

[95] M. Mizushima. Theory of Rotating Diatomic Molecules. Wiley, New York,

1975.

[96] J. M. Brown and A. Carrington. Rotational Spectroscopy of Diatomic

Molecules, page 646. Cambridge University Press, Cambridge, 2003.
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