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Abstract 

This thesis describes the asymmetric synthesis of γ-amino alcohols through the 

asymmetric copper-catalysed β-boration of α,β-unsaturated imines (see graphical 

abstract).  

 

An introduction is given into the area of β-boration/borylation (or boron 

conjugate addition, BCA) of electron-deficient alkenes, which forms the basis of the 

literature review within this thesis.        

 The β-boration of α,β-unsaturated imines (formed in situ to circumvent problems 

with isolation) has been studied and the intermediate β-boryl imines have been 
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transformed to γ-amino alcohols in one-pot (‘one-pot methodology’). An interesting 

side reaction was observed when methanol was present during the final oxidation step 

of the methodology. Indeed, evidence suggests that slight methanol oxidation gives rise 

to the formation of 1,3-oxazines (which can be made readily from γ-amino alcohols and 

aqueous formaldehyde) during this late stage oxidative step.   

 Additional in situ IR spectroscopy (ReactIR), 
1
H NMR and DFT studies were 

performed to understand the factors which govern direct addition-elimination vs. 

conjugate addition of primary amines to enones and enals, with the aim of using this 

information to prepare α,β-unsaturated imines in situ. It was found that most enones and 

enals have a kinetic preference towards the direct addition of primary amines, but 

enones such as methyl vinyl ketone show that the kinetic preference is towards 

conjugate addition. DFT calculations support this observation by showing that there is a 

conformational effect which favours direct- over conjugate-addition, i.e. enones and 

enals that adopt the s-trans conformation show a lower energy barrier of addition 

(kinetic preference) via the direct addition pathway with primary amines. Conversely, 

enones and enals that adopt the s-cis conformation show a lower energy barrier of 

addition (kinetic preference) via the conjugate addition pathway with primary amines 

(i.e. methyl vinyl ketone predominately adopts an s-cis conformation).   

 A base-free (alkoxide) β-boration methodology was developed, which allows 

enones to be transformed to γ-amino alcohol by the addition of a primary amine, Cu2O, 

BINAP ligand, B2pin2 and MeOH to the starting enone, with subsequent reductive and 

oxidative transformations. Evidence suggests that the reaction proceeds via the α,β-

unsaturated imine (formed in situ) and, in addition, the absence of the alkoxide base 

reduces the possibility of any alternative β-boration pathways (e.g. organocatalytic), 

leading to the highly enantioselective protocol (up to 99% e.e.).   
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 Enals are prone to direct borylation under the standard β-boration-type 

methodology and low e.e. values. It is shown herein that the use of a sterically bulky N-

benzyl imine auxiliary can be used (formed from the reaction between an enal and 

benzhydrylamine) to favour selective β-boration and, indeed, high e.e. can be obtained 

using a relatively cheap and stable DM-BINAP ligand-copper catalyst system (up to 

97% e.e.).          

 The optimised one-pot methodology was applied towards the total synthesis of 

(R)-Fluoxetine in 45% yield (96% e.e.) and (S)-Duloxetine in 47% yield (94% e.e.), 

whereby the intermediate β-boryl N-benzhydryl imine can be readily exchanged by 

methylamine to form the appropriate precursor. 
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1. Introduction 

The chemistry of boron and, in particular, organoboron chemistry, is extremely diverse 

and ubiquitous in modern day chemistry.
1,2

 During the 20th century, chemists unveiled 

a vast array of reactions involving boron reagents which demonstrated their utility in 

organic synthesis. Most notable was the 1979 Nobel Prize for Chemistry, awarded to H. 

C. Brown and Georg Wittig for their development of the use of boron- and phosphorus-

containing compounds, respectively, into important reagents in organic synthesis.
3
 To 

this day, H. C Brown is best known for his work on hydroboration and organoboron 

chemistry.
4
         

 Hydroboration methodology became of particular interest to synthetic chemists 

as it allowed the regioselective addition of a boron containing species to the least 

substituted carbon in olefinic species (anti-Markovnikov addition). Therefore, the 

functionalisation of the boron-bearing substituent led to anti-Markovnikov-type 

products, which were previously challenging to obtain. The subsequent transformation 

of carbon-boron bonds into C-C,
5,6

 C-N,
7,8

 C-O, C-X bonds and homologations.
9
 Other 

transformations
10

 have been widely explored in the literature
11 - 13

and, subsequently, 

organoboron reagents have become key reagents in synthesis.
14-16

 Indeed, Akira Suzuki 

was awarded, along with Richard F. Heck and Ei-ichi Negishi, the 2010 Nobel prize in 

chemistry for his part in developing palladium-catalysed cross-coupling methodology 

(Suzuki-Miyaura cross-coupling), in particular using organoboron compounds. 

1.1 β-Boration  

 As part of the endeavour to prepare novel organoboron species, chemists 

developed a process which is now commonly known as β-boration (or boron conjugate 
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addition, BCA).
17

 This is a process by which diboron species [e.g. B2pin2 (pin = 

OCMe2CMe2O) 1, B2cat2 (cat = 1,2-O2C6H4) 2, B2neop2 (neop = OCH2CMe2CH2O) 3, 

see Figure 1]
18

 undergo a Michael-type conjugate addition to an electron-deficient 

alkene 4, leading to a 1,4-addition adduct 5 (boron enolate) which, after work-up, yields 

the β-boration product 6 (see Scheme 1).  

 

Figure 1 Diboron species B2pin2 1, B2cat2 2 and B2neop2 3. 

The first example of this process was reported in 1997 by Marder et al.
19

 At the time, 

metal-catalysed diboration of simple alkenes were becoming well-explored and, in this 

context, the diboration of conjugated electron-deficient alkenes seemed an attractive 

prospect.
20

 It had been previously shown through the use of metal catalysis dramatic 

modifications to the chemoselectivity of boron reagents, in the presence of substrates 

with several functional groups (e.g. C=O and C=C), could be achieved. Indeed, Nöth et 

al. had demonstrated the hydroboration of simple alkenes using Wilkinson’s catalyst 7 

(RhCl(PPh3)3) in the presence of other functional groups (Scheme 2).
21

 Later, Evans et 

al. revealed an elegant conjugate reduction methodology using Wilkinson’s catalyst 7 in 

conjunction with catecholborane (H-Bcat) (Scheme 2).
22

  

 

Scheme 1 Metal-catalysed β-boration (via diboration). 
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Scheme 2 Evans’ conjugate reduction and the Nöth hydroboration methodology. 

Studies involving the metal-catalysed diboration of unsaturated species were 

becoming increasingly explored
23,24

 due to the products of such reactions finding utility 

in cross-coupling reactions.
25

 In response to the need for novel routes to organoboron 

reagents, Marder’s team demonstrated the diboration of two α,β-unsaturated ketones (4a 

and 4b) with B2pin2 1 and B2cat2 2 in  the presence of a platinum catalysts, 

[Pt(C2H4)(PPh3)2] 8 (see Scheme 3). Diboration of α,β-unsaturated ketones 4 yielded the 

1,4-diboration product 5. The addition of water resulted in the β-boration products 6 in 

stoichiometric conversions. It is interesting to note that there are only two examples in 

the literature where 1,4-diboration products of electron-deficient alkenes have been 

isolated and characterised, likely due to their moisture sensitivity. However, isolation of 

the 1,4-diboron species 5a, 5b and 5c, provided valuable mechanistic insights.
19,26
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Scheme 3 Diboration followed by aqueous work-up yields β-products 6a-c. 

These reports in 1997
19 

and 2004
26

 also provided a new pathway to β-hydroxy ketones 

(aldol-products) via the oxidation of boron functionalities. Marder et al. also noted that 

reactions between α,β-unsaturated ketones and chiral diboron reagents were possible 

developments, hinting at the potential of β-boration to be enantioselective. However, it 

took several years for this to be realised (2007/2008).   

 

Scheme 4 Hosomi’s Cu-catalysed β-boration protocol for α,β-unsaturated species. 

 In 2000, Hosomi et al. unveiled the first example of a copper-catalysed 

β-boration on a series of α,β-unsaturated ketones,
27

 closely followed by Miyaura et 

al.
28,29

 The former report was analogous to their previous work involving the use of 

disilane reagents, using copper catalysis as a means of introducing silyl substituents into 

the β-position of electron-deficient alkenes.
30

 Hosomi’s group probed the utility of the 

copper-catalysed system (as developed for use in the disilane case
30

) in the β-boration of 
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chalcone 5b with B2pin2 1. Their initial trials failed; however, further attempts showed 

that the addition of P(nBu)3 followed by hydrolysis gave the desired β-boration product 

6b (see Scheme 4). Hosomi et al. then probed the optimised reaction of this β-boration 

methodology using a series of enones, both cyclic and acyclic, resulting in conversions 

ranging from 67-96%. The reaction proceeded with just the addition of a phosphine 

ligand alone, albeit in low yield (7%). The role of phosphines in β-boration will be 

discussed later.  

 Miyaura et al. further demonstrated the utility of a copper catalysed system 

(stoichiometric CuCl, LiCl, KOAc in DMF)
28,29

 with the β-boration of a series 

α,β-unsaturated esters, ketones and nitriles. Interestingly, Miyaura was the first to 

suggest, and provide evidence for, a boryl copper species as providing the nucleophilic 

source of boron in the β-boration reaction.
28

 They provided evidence for this by 

introducing allyl chloride into their copper-boryl system; the result of which gave an 

allyl boronate species (Scheme 5). This result is consistent with the assumed presence 

of a copper-boron species, acting as a nucleophilic source of boron.
31

  

 The systems reported by both Hosomi and Miyaura
27,28,29 

had their drawbacks 

due to relatively high catalyst loadings, especially in the case of Miyaura, who 

employed stoichiometric amounts of copper (see Scheme 5). Drawbacks aside, both 

reports were highly influential in the field and spawned great interest in finding other 

metal catalysts and more efficient reaction conditions for the β-boration process.  

 

Scheme 5 Evidence for a nucleophilic boron species presented by Miyaura et al.
29
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In addition to the work of Hosomi and Miyaura, Kabalka et al. demonstrated the use of 

Wilkinson’s catalyst in the β-boration of electron-deficient alkenes (α,β-unsaturated 

esters, ketones and nitriles, see Equation 1)
32

 as an approach to boronic acids for 

application in boron neutron capture therapy.
33

 They probed the use of Wilkinson’s 

catalyst 7 as a potential means of facilitating the β-boration reaction shown in Eqn 1. 

This work addressed some of the problems associated with the high catalyst loadings 

reported by Miyaura.
28,29

 Typically only 10 mol% of Wilkinson’s catalyst 7 was 

required compared to the stoichiometric copper catalyst loadings in the Miyaura 

β-boration protocol.
28,29

 

 

Equation 1 

 Yun et al. revolutionised the area by unveiling a novel methodology which 

enabled the β-boraton of α,β-unsaturated esters, ketones and nitriles. This methodology 

was achieved using a copper-based reaction system, modified with simple alcohol 

additives.
34

 Yun et al. had previously developed an efficient protocol for the conjugate 

reduction of α,β-unsaturated nitriles
35

 using copper catalysis and xanthene-type 

biphosphine ligands, which were key to improved activity and lower catalyst loadings. 

When applied to the β-boration reaction, Yun et al. showed that xanthene-type 

biphosphine ligands improved the nucleophilicity of the active copper species 

(copper-hydride), which resulted in an improved methodology for the chemoselective 

conjugate reduction of α,β-unsaturated nitriles.
35

 Previous evidence
28

 suggested that the 
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active copper species in β-boration was a nucleophilic copper-boryl species and, hence, 

Yun et al. examined whether the observed increase in nucleophilicity (as observed in 

the active copper-hydride case) could be applied to the active copper-boryl species in 

the β-boration of α,β-unsaturated species (2006).
34

 They first probed the β-boration of 

(E)-ethyl crotonate 9 using a copper(I) salt, ligand and  slight excess of B2pin2 1 

(Equation 2) at room temperature for over 14 hours. Their initial attempt used a 

copper(I) acetate salt and DPEphos L1 (for all ligands, L see Figure 2) in the absence of 

base. GC analysis showed a conversion of 26% to 10, which when compared to 

previous literature examples was poor.
27,28,32

 However, by changing to copper(I) 

chloride with the addition of sodium tert-butoxide (9 mol%) the reaction improved and 

the yield of the β-boration product doubled to 48%. Changing the ligand from DPEphos 

to Xantphos (L1 to L2, respectively) resulted in poor conversion to the β-boration 

product. Yun et al. had noted in their previous work on the conjugate reduction of 

α,β-unsaturated nitriles
35

 that the addition of alcohol to their reaction improved yields 

dramatically.          

 Buchwald et al. had shown elsewhere that the addition of ethanol could 

protonate an organocopper intermediate and, hence, improve reactions yields due to 

improved catalytic turnover, where the suggested mechanistic pathway proceeded via a 

carbon-bound copper intermediate.
36

 

 

Equation 2 

Yun et al. used an alcohol additive in their reaction as a means of protonation of the 

assumed carbon-bound copper intermediate. Indeed, they found that the addition of 



26 

 

tert-butanol or methanol dramatically improved yields in their reactions.  The use of 

copper(I) chloride (3 mol%), Joiphos L3 (3 mol%), sodium tert-butoxide (9 mol%) and 

methanol (2 equiv.) gave the β-boration products in up to 98% yield.  

When methanol was not employed, only 48% product 10 was obtained (see Eqn 2), 

highlighting the importance of the alcohol additive. Next, they examined the scope of 

the β-boration of a series of α,β-unsaturated by probing a series of varied substrates 

(Table 2). It is clear from Table 2 that the system developed by Yun et al. was highly 

effective and efficient. The dramatic influence of the addition of the alcohol was clear 

(Table 1, Entry 3) giving  higher yields compared to that obtained by Hosomi et al. and 

using a lower catalyst loading (only 3 mol%). Not only was the addition of an alcohol in 

the copper catalysed β-boration of electron-deficient alkenes shown to be an important 

step forward, but Yun et al. also demonstrated that this protocol had the potential to be 

enantioselective.
34
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Table 1 Influence of methanol on the β-boration of electron-deficient alkenes. 

 
Entry Species Time (h) Yield

a,b 

 

1 

 

 

 

11 

 

91 

2 

 

14.5 95 

3 

 

1.5 98 

4 

 

16 93 

5 

 

14 95 

6 

 

6.5 95 

a 
Reaction conditions: CuCl (3 mol%), L1 (3 mol%), NaOtBu (9 mol%), B2pin2 1 (1.1 equiv.), MeOH 

(2.2 equiv.), THF. 
b 
Isolated yield. 

1.2 Asymmetric metal-catalysed β-boration 

During the early development of β-boration methodology, it was suggested that 

this process had the potential to be enantioselective, perhaps by employing chiral 

diborane reagents, as suggested by Marder et al.
19

 Interestingly, Yun et al. developed an 

enantioselective β-boration protocol, not based upon chiral diborane reagents, but on a 

catalytic system that employed chiral phosphine ligands.
34,37

 Having shown that the 

copper catalysed β-boration of cinnamonitrile 11 gave the borated product 12 in high 

yield (95%), Yun et al. applied the chiral Josiphos ligand L3 to their optimised 

methodology.  



28 

 

This was followed by C-B oxidation to yield the chiral β-hydroxy nitrile 13 with the 

expected complete retention of stereochemistry. This gave the product 13 84% yield, 

with an observed 82% ee (Scheme 6).  

 

Scheme 6 Enantioselective β-boration of cinnamonitrile 11. 

Once it had been shown that enantioselective β-boration could be achieved using chiral 

phosphine ligands, Yun et al. probed the scope of this protocol and the influence of 

other chiral phosphine ligands with a series of α,β-unsaturated esters and nitriles (Table 

2).
38

 All the ligands that were screened induced enantioselectivity; however, it is clear 

from looking at Table 2, that Josiphos and Mandyphos (L3 and L4 respectively) 

showed the most promise with respect to asymmetric induction.   

 Hence, L3 and L4 were employed in the enantioselective β-boration-oxidation 

sequence of a series of α,β-unsaturated esters and nitriles (Table 3). This protocol also 

resulted in high yields and high levels of enantioselectivity across a wide range of 

substrates (see Table 3, Entries 1-13), with L3 providing a higher level of 

enantioselectivity than L4 (see Table 3, Entries 4 vs. 5 and 8 vs. 9). Yun et al. also made 

interesting observations regarding β-substituent effects, electron withdrawing group 

influence and ester moiety effects on the asymmetric induction of the screened 

reactions. 
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Table 2 Enantioselective β-boration of α,β-unsaturated esters and nitriles. 

 
Entry Ligand Yield (%)

a 
e.e. (%) 

                                                      

1 

                                                   

                            
L3 

                                                   

97 

                                                                                                   

94 

2
b
 

 
L4 

96 94 

3 

L7 

92 80 

4 

 
L6 

92 3 

5 

 
L5 

93 55 

a
 Isolated Yield. 

b 
NaOtBu (3 mol%). 

    

Potential β-substituent effects on enantioselectivity can be examined by comparing 

entries 1-6 and 11-13 (see Table 3), where the substrates differ only by their 

β-substituents. The β-substituents differ in terms of both steric and electronic effects in 

each case and the observed e.e. values were remarkably similar, which suggested that 

the β-substituent did not have a dominant effect on the enantioselectivity of the reaction. 
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The nature of the electron withdrawing group (ester or nitrile in this case) was found to 

have an influence on the enantioselectivity (Table 2, entry 2 and Table 3, Entry 5). 

When the electron withdrawing group was the α,β-unsaturated nitrile, this resulted in 

higher enantioselectivity (94% e.e.) compared to the analogous ester (87% e.e.). Having 

established that the nature of the electron withdrawing group plays an important role in 

stereoselectivity, Yun et al. examined this further in the case of esters by varying the 

alkoxy substituent on the ester. They found that changing the alkoxy substituent (e.g. 

14, 15 and 16) from a simple methoxy group to a more sterically demanding substituent 

(OtBu) gave no observable effect on the enantioselectivity. Interestingly, Fernández et 

al. explored the nickel and palladium catalysed enantioselective β-boration of 

α,β-unsaturated esters,
39

 having previously explored the asymmetric β-boration of 

α,β-unsaturated esters using a copper catalyst, furnished with chiral N-heterocyclic 

carbenes (NHC). However, they did not examine the effect of the ester moiety on the 

degree of asymmetric induction (see McQuade et al. for other work in this area).
40,41 

 
In light of the work by Yun et al.,

38
 Fernández et al. used a nickel catalyst 

system to examine whether the enantioselectivity of the catalytic β-boration was indeed 

independent of ester variation (see Equation 3) and found that the ester moiety was 

influencing the enantioselectivity of the reaction. Indeed, this was observed across a 

range of different chiral ligand systems and the trends were similar in each case, i.e. 

from OMe to OiBu, the asymmetric induction increased with greater steric bulk on the 

ester moiety. It is important to note that the same trend was also observed in the 

palladium-catalysed system, also developed by Fernández et al.
40
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Table 3 Enantioselective β-boration/oxidation of α,β-unsaturated species. 

 
Entry Substrate Yield 

(%)
a 

e.e.  

(%)
b 

Entry Substrate Yield 

(%)
a 

e.e. 

(%)
b 

 

1 

 

 

 

94
c
 

 

90 (R) 

 

 

8 

 

 

 

95
c 

 

87 

9 89
d 

84 

2 

 

92
c
 91 (S)  

 
 10 

 

 93
c 

82 

3 

 
 

97
c
 89  

 

4 

5 
 

93
c
 

94
d
 

90 (S) 

87 (S) 

 

11 

 

 

 

94
c
 

 

90 (S) 

 

6 

 

      

      90
c 
           91 (S) 

 

12 

 

 

 

90
c 

 

92 

 

7  

 

87
c 

 

88 

 

13 
 

 

94
d 

 

91 

a 
Isolated yield of β-boration product. 

b 
e.e. of the oxidised product. 

c 
CuCl (2 mol%), NaOtBu (3 mol%), 

L3 (4 mol%).
 d 

CuCl (3 mol%), NaOtBu (3 mol%), L4 (3 mol%).
    

 

The work by Yun et al. was highly influential as it established for the first time a 

protocol for enantioselective β-boration that could be applied to a broad range of 

substrates. It also suggested that a varied range of β-substituent can be tolerated, as 

judged by the observed enantioselectivity in these reactions. That being the case, Yun et 

al. explored the β-boration of α,β-unsaturated amides as this was another way of 
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gauging the influence of the electron withdrawing group, and to expand the substrate 

scope of this protocol (see Equation 5).
42

 

 

 

Equation 3 

Nishiyama et al. examined the effect of the ester on enantioselectivity and found 

an inverse trend to that reported by Fernández
 
 et al.

43
 The rhodium-catalysed β-boration 

had been reported previously;
32

 however, an asymmetric protocol for β-boration had yet 

to be established. Nishiyama developed a rhodium catalyst that employed a chiral 

bisoxazolinylphenyl ligand to induce enantioselectivity in the β-boration (see Equation 

4). Indeed, Nishiyama et al. found that by increasing the steric bulk of the ester moiety, 

a decrease in enantioselectivity was observed. Moreover, with different 

rhodium-bisoxazolinylphenyl systems, the same trend of decreased enantioselectivity 

with more sterically demanding esters was observed. 
43

  

 

Equation 4 
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Oshima et al. had previously developed an efficient nickel catalysed protocol for 

the β-boration of α,β-unsaturated esters and amides.
44

 Yun et al. extended their 

previously established enantioselective boration protocol from α,β-unsaturated esters 

and nitriles to the analogous α,β-unsaturated amides. The previous protocol could not be 

directly applied due to the α,β-unsaturated amides being poorer Michael acceptors 

compared to the analogous α,β-unsaturated esters and nitriles which resulted in 

conversions as low as 23%. Unlike their previous examples involving the 

enantioselective β-boration of α,β-unsaturated esters and nitriles, the system for the 

α,β-unsaturated amides is limited to a few substrate variants.   

 Nishiyama et al. also reported a route to α,β-unsaturated amides via a chiral 

rhodium-bisoxazolinylphenyl system,
43

 giving the borated amide in good yield and 

excellent e.e. (see Equation 6). This was only limited to selected substrates. Indeed, this 

has recently been expanded to encompass more substrates, such as α,β-unsaturated 

amides, ketones and esters.
45

 Interestingly, Molander et al. also reported a method of 

β-borating α,β-unsaturated amides using tetrahydroxydiborane.
46

 Indeed, they managed 

to develop the asymmetric system several years later.
47

  

 

 

Equation 5 
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Equation 6 

 Exploration into the metal-catalysed enantioselective β-boration of 

α,β-unsaturated esters, nitriles and amides is both fascinating and complex. It offers 

great insight into the mechanistic pathways that underpin these reactions. However, 

points of disagreement regarding what influences enantioselectivity have arisen. It is 

clear that the electron withdrawing group (ester, nitrile or amide) does play a dominant 

role in asymmetric induction; however, the β-substituent and ester moiety effects also 

play a subtle role in asymmetric induction, a role that is not fully understood and a point 

upon which different groups disagree.
38,40,43

 It is, therefore, important to examine in 

depth both the metal-catalysed β-boration and enantioselective β-boration of 

α,β-unsaturated ketones and imines. 

 

Scheme 7 Yun’s enantioselective β-boration/oxidation sequence of α,β-unsaturated 

amides. 
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 The inherent low reactivity of the copper catalysed protocols of Hosomi and 

Miyaura et al.
24,25,27

 meant that asymmetric induction was a challenge, even with the use 

of chiral phosphine ligands. This allowed the exploitation of potential enantioselective 

pathways in the β-boration of α,β-unsaturated ketones.
34

 This was explored by Yun et 

al. on the enantioselective β-boration of acyclic α,β-unsaturated ketones.
48

 The crucial 

role of methanol was demonstrated in the β-boration of two analogous α,β-unsaturated 

species (4a and 15, see Equation 7). They combined two α,β-unsaturated carbonyl 

species and reacted them in parallel, as a means of examining the reactivity of the 

α,β-unsaturated ketone 4a relative to the previously explored α,β-unsaturated ester 15.  
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Figure 2 Ligands L employed in catalytic β-boration of electron-deficient alkene.
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Equation 7 

Interestingly, they found that under these conditions, the β-boryl ketone 6a was formed 

in near quantitative conversion, whereas the analogous ester 18 was formed in very low 

yields (<1%). The above reaction (Equation 7) was achieved without the presence of a 

ligand and, hence, Yun examined whether asymmetry could be induced using chiral 

phosphine ligands. The use of these chiral ligands (L3 and L4) in the presence of 

alcohol additives (methanol, isopropanol or tert-butanol) in varying amounts (1-2 

equiv.) resulted in excellent conversions (92-100%) and moderate to good levels of 

asymmetric induction (37-80% e.e.). Interestingly, even without the addition of 

alcohol additives, high levels of asymmetric induction were achieved (56-77% e.e.). 

However, the alcohol free reactions did not proceed to completion and poorer yields 

were typically observed (18-54%).        

 Having established and gained an understanding of the parameters which 

influence both enantioselectivity and conversion, Yun et al. expanded this methodology 

further by probing various substrates using both L3 or L4 and different alcohol 

additives (see Table 4). In light of the experimental evidence outlined in Table 4, Yun et 

al. observed that methanol was the more effective alcohol additive, typically leading to 

greater levels of conversion and improved enantioselective control. Again, as in the case 

of α,β-unsaturated esters and nitriles,
38

 the β-substituent induced subtle changes on the 

degree of conversion and enantioselectivity of the reaction. Even though it is worth 

noting that β-substituents do indeed influence these parameters, it is difficult to deduce 

with any high degree of certainty if there is any trend between β-substituents and 
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enantioselectivity. This is due to the limited number of substituents (differing in subtle 

steric and mesomeric properties) probed by Yun et al. It is clear that L3 is certainly 

more influential in enantioselective induction when compared to L4. 

Table 4 Enantioselective β-boration with various substrates, ligands and alcohol 

additives. 

 
Entry Substrate Ligand Alcohol Yield (%)

a 
e.e. (%)

b 

 

1 

 

 

 

L3 

 

iPrOH 

 

94 

 

95 

2 L3 MeOH 97 89 

3 L4 MeOH 93 93 

                             

4 

 

 

L3 

 

MeOH 

 

89 

 

81 

5 L4 MeOH 91 88 

 

6 

 

 

 

L3 

 

MeOH 

 

93 

 

90 

7 L4 MeOH 86 30 

 

8 

 

 

 

L3 

 

MeOH 

 

95 

 

90 

9 L3 iPrOH 90 88 

10 L4 MeOH 96 30 

 

11 

 

 

L3 

 

MeOH 

 

97 

 

97 

 

12 

 

 

L3 

 

MeOH 

 

94 

 

97 

 

13                                     

 

 

L3 

 

MeOH 

 

72 

 

91 

14 L3 iPrOH 72 9 

 

15 

 

L3 MeOH 93 96 

16 L3 iPrOH 70 95 

a
Isolated yield. 

b 
Deduced from the corresponding β-hydroxy ketone. 
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 β,β-Disubstituted electron-deficient alkenes are particularly challenging in terms 

of asymmetric synthesis. This is due to the increased difficulty in enantio-differentiation 

between β,β-disubstituents on conjugate addition, when compared to regular 

mono-β-substituted species (large steric difference between β-substituent and 

hydrogen). To address this, Shibasaki et al. presented a communication in 2009 which 

reported a highly efficient and enantioselective methodology for the β-boration of 

β,β--disubstituted enones (see Scheme 8).
49

 

  

Scheme 8 β-Boration to cyclic β,β-disubstituted α,β-unsaturated species. 

 

Scheme 9 Aldol product formed via intermediate enolate. 

Interestingly, their optimised protocol did not require alcohol additives and made use of 

an unexplored (in boron conjugate addition) chiral diphosphine ligand L10. The 

substrate scope of their system was probed on cyclic α,β-unsaturated ketones (Scheme 

8). All substrates were obtained in excellent e.e. and high yield, 70-98% and 80-99%, 
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respectively. Shibasaki et al. demonstrated the potential for a stereoselective aldol-type 

reaction between the diboron intermediate 28 and benzaldehyde 30. This was possibly 

due to the lack of protic additives quenching the intermediate boron enolate (Scheme 9). 

The lack of alcohol additives (e.g. MeOH)
34

 provided a greater scope of application of 

the reaction. Not only was it possible to introduce one boron substituent 

enantioselectively, but also this showed that multiple stereocentres could be controlled 

in one-pot. This work overcame some limitations associated with the conjugate addition 

of boron to β,β-disubstituted α,β-unsaturated species.
50

 Both Hoveyda et al. and 

Shibasaki et al. demonstrated that the intermediate enolate can serve as a suitable 

nucleophile which carbonyl-containing electrophiles can be reacted with and, thus, 

functionalising the Cα-position stereoselectively (intermolecular reaction). The 

analogous intramolecular reaction was exploited by Lam et al., which resulted in the 

formation of highly cyclic products, with high stereocontrol and functionality.
51

   

 Not content with a protocol limited to the boration of cyclic β,β-disubstitueted 

α,β-unsaturated species, Shibasaki et al. developed a protocol for the corresponding 

acyclic β,β-disubstituted α,β-variants (also shown by Yun et al.
50

) using an adaptation 

of their protocol for cyclic species.
52

 This produced some excellent results, with 

reaction conversions ranging from 71-95%, with equally high levels of stereocontrol 

(90-99% e.e.). A representative example of this is shown in Equation 8.  

 

Equation 8 

Most of the literature regarding β-boration is based on the conjugate addition of 

boron to activated alkenes, typically activated by a carbonyl electron-withdrawing 
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moiety, namely amides, ketones and esters.
53

 Alkenes activated by nitriles are present in 

the literature, but α,β-unsaturated imines are under-explored. α,β-Unsaturated imines are 

can be challenging to prepare and purify.
54-56

 However, they offer scope for boron 

conjugate addition  (functionalisation at the β-carbon), and via exploitation of the imine 

functionality leading to 1,3-difunctionalisation.
57

  

Table 5 Enantioselective β-boration of α,β-unsaturated imines. 

 
Entry R Ligand Conversion (%)

a 
e.e. (%) 

 

1 

 

Ph 

 

 
L3 

 

61 

 

63 

2 Ph 

 
L14 

66 30 

3 Ph 

 
L12 

>99 95 

4 Bn L3 >99 91 

5 Bn L14 >99 77 

6 Bn L12 >99 75 

a
 Deduced using 

1
H NMR analysis. 

 

In addition, the previous examples of enantioselective β-boration, and the elegant 

methods for substrate controlled asymmetric reduction,
58

 offered considerable potential 

for controlling multiple stereocentres in simple organic species. To this end, Fernández 
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and Whiting et al. examined whether α,β-unsaturated imines (e.g. 31) could serve as a 

suitable platform for a novel asymmetric route to γ-amino alcohols.
59 , 60

 Other 

asymmetric routes to γ-amino alcohols exist;
61

 however, Fernández and Whiting et al. 

explored the previously established methods of boron conjugate addition, more 

specifically the asymmetric variant, as a means of enantioselectively introducing a boryl 

substituent at the β-position of the α,β-unsaturated imine substrate (see Table 5).   

 Drawing on the expertise of Whiting et al.,
63

 the resulting β-boryl imine (e.g. 32) 

species would be ideally placed for remote asymmetric reduction.
62,63

 This potential, 

coupled with established methods for the stereospecific oxidation of boron-containing 

substituents was an intriguing concept that needed to be explored. Hence, Fernández 

and Whiting et al. examined
 
this concept by the asymmetric copper-catalysed β-boration 

of α,β-unsaturated imines  31 to give 32 (see Table 5 and Scheme 10).
59

 This involved 

the screening of multiple chiral phosphine ligands as a means of devising an efficient 

protocol for the preparation of chiral β-boryl imines.  

 

Scheme 10 Tuneable diastereocontrol by solvent modification. 

All the ligands that were screened did indeed induce asymmetry, and moreover, 

some of the ligands gave the β-boryl imines in excellent conversion and e.e. (Table 5). 

Next, they turned their attention to the asymmetric reduction of the imine functionality. 

They observed an intramolecular Lewis acid-base interaction  (B-N) indirectly by 
11

B 

NMR spectroscopy (Scheme 11) which offered potential for the exploitation of 
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previously established reduction methodologies.
62,63

 Indeed, on screening various 

reducing agents and proton sources, they discovered a means of asymmetrically 

reducing the imino functionality, and by solvent modification, could tune the selectivity 

between syn- and anti-diastereoisomer formation (Scheme 10). This protocol was 

achieved in a one-pot synthesis, by which the β-boration, imine reduction and boronate 

oxidation could be carried out consecutively. This methodology brought together 

asymmetric conjugate boration and remote asymmetric induction, and fashioned a 

protocol to access γ-amino alcohols with high levels of stereocontrol across multiple 

stereocentres. Shortly after this, the protocol was extended to the preparation of 

γ-hydroxy alcohols and a wider substrate base for the previously established γ-amino 

alcohols.
64

  

 

Scheme 11 
11

B NMR evidence for intramolecular Lewis acid-base interaction.
60 

1.3 Asymmetric organocatalytic β-boration 

Enantioselective transition metal-catalysed β-boration has received a wealth of 

attention in the literature due to the efficiency, in both conversion and high levels of 

asymmetric induction, especially in copper-catalysed systems. However, 

organocatalysis
65

 has had a renaissance in recent years, in part due to the work of 

Barbas and List et al.
66

 and MacMillan et al.
67

 Such methods have proved highly 
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creative, moreover, they not only offer improvements on existing metal-catalysed 

systems, but also novel modes of activation and catalysis can be achieved from such 

systems (see the work of Jørgensen et al.).
68

 It is perhaps no surprise that such 

organocatalytic protocols have been developed and applied to the β-boration of 

electron-deficient alkenes.        

 The first efficient example of an organocatalytic β-boration methodology was 

reported by Hoveyda et al. in 2009.
69

 Hoveyda developed the first procedure for the 

β-boration of both cyclic and acyclic α,β-unsaturated ketones. This breakthrough made 

use of an organic system consisting of N-heterocyclic carbenes (NHCs) in 

substoichiometric loadings. It should be noted that Sadighi et al. had previously isolated 

a NHC-copper-Bpin species,
70

 and had demonstrated its use in the formation of 

β-boryl-alkyl complexes (via alkene insertion to the NHC-copper-Bpin adduct).
71

  

 To explain the observed organocatalytic behaviour of the NHCs,
69

 Hoveyda et 

al. postulated the in situ interaction between the Lewis acidic diboron (e.g. 1) species 

and the nucleophilic (Lewis base) NHC (see Scheme 13). Furthermore, it was suggested 

that this resulted in a nucleophilic boron species (see Scheme 13) that could undergo 

conjugate addition to the α,β-unsaturated ketones (Equation 9, mechanistic 

considerations will be discussed in section 1.5).  
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Scheme 12 The examined catalytic species in the β-boration of cyclic enones. 

Hoveyda et al. examined this by taking cyclic α,β-unsaturated ketones and 

probing the β-boration of this species with various NHC and phosphine salts. 

Surprisingly, addition of the catalytic species to a solution of the α,β-unsaturated 

ketones and diboron reagent resulted in moderate to excellent yields of the β-boration 

products (45-98%, see Scheme 12). Moreover, this protocol was applied to both 

endo- and exo-cyclic α,β-unsaturated ketones, giving excellent yield (88-98%). This 

protocol could even be extended to cyclic α,β-unsaturated esters showing equally 

excellent yields (95%).  Interestingly, the catalytic activity of phosphine oxide gave the 

corresponding β-boryl ketone in moderate yield (50%) without the presence of a 

transition metal or NHC to facilitate boration. This had been observed before by 

Hosomi, but the overall conversion was considerably poorer (7%).
27

 The importance of 

this protocol, and the implications for a metal-free variant for a symmetric and 

asymmetric protocol were clear. 
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Equation 9 

 

Scheme 13 Hoveyda’s proposed nucleophilic adduct in the β-boration of 

electron-deficient alkenes.
69

 

 

 The introduction of a non-metal-catalysed protocol for the β-boration of 

α,β-unsaturated species was a useful contribution to the area. It raised questions 

regarding the mechanistic understanding of these types of processes, especially the role 

the phosphine ligands (see Scheme 12).  This research was probed further by Fernández 

and Gulyás et al. who, in 2010, introduced the first organocatalytic enantioselective 

β-boration of α,β-unsaturated species.
72

  This has subsequently been explored by 

Hoveyda et al. using chiral NHCs.
73

 Fernández et al. knew from the early work of 

Hosomi et al. that phosphines in the absence of transition metal salts had the ability to 

facilitate boron conjugate addition to α,β-unsaturated species. Moreover, chiral 

phosphine ligands had been shown in numerous examples to induce enantioselectivity 

with respect to the β-boration of prochiral activated alkenes in the presence of transition 

metal salts.
74,

 First, they probed the ability of various achiral phosphines, bases and 
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alcohols, with the aim of facilitating β-boration of ethyl crotonate 36 (some are 

highlighted in Table 6). 

Table 6 Probing the catalytic potential of phosphines. 

 
Entry Phosphorus 

compound 

Base Alcohol Conversion (%)
a 

 

1 

 

PPh3 

 

- 

 

MeOH 

 

0 

2 PPh3 Cs2CO3  12 

3 PPh3 Cs2CO3 iPrOH 49 

4 PPh3 Cs2CO3 MeOH 99 

5 OPPh3 Cs2CO3 MeOH 21 

6 DPPF Cs2CO3 MeOH 39 

 
a 
Deduced using GC analysis, confirmed using 

1
H NMR spectroscopy.

 

 

 

Equation 10 

Surprisingly, a variety of phosphorus compounds facilitated β-boration of ethyl 

crotonate in reasonable to excellent yields (Table 6, Entries 3 & 4). The addition of base 

was found to be crucial for the β-boration, and of the bases that were explored (CsF, 

NaOtBu, K2CO3 and Cs2CO3) Cs2CO3 was the most successful. Perhaps more 

surprisingly is the relatively poor performance of OPPh3 in the β-boration. Previously, 

Hoveyda et al. had been unsuccessful in demonstrating the catalytic potential of PPh3 in 
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β-boration, but had succeeded in demonstrating the potential of OPPh3 (Scheme 12).
69

 

The addition of OPPh3 to their system resulted in the 50% conversion to the β-boration 

product. It is surprising, therefore, that OPPh3 performed significantly poorer than the 

corresponding phosphine, PPh3, in the Fernández et al. system.
72

 Now that the 

non-metal-catalysed protocol had been optimised for ethyl crotonate, Fernández et al. 

aimed to explore the asymmetric potential of this reaction through the use of chiral 

phosphine ligands.
72

 This was done by probing a series of chiral ligands in the 

β-boration ethyl crotonate 36 (Table 7).  
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Table 7 Probing chiral phosphine ligands in the development of an asymmetric 

organocatalytic β-boration protocol. 

 
Entry Phosphine Base Conversion (%)

a 
ee (%) 

 

1 

 

 

L3 

 

Cs2CO3 

 

99 

 

75 (S) 

2 

 

L4 

Cs2CO3 58 < 5 

3 

 

L9 

Cs2CO3 64 72 (S) 

4 

 

L11 

Cs2CO3 74 < 5 

5 

 

L12 

Cs2CO3 53 7 (R) 

6 

 

L13 

Cs2CO3 54 35 (S) 

7 

L14 

Cs2CO3 94 88 (S) 

8 L14 NaOtBu 59 55 (S) 

9 L14 CsF 72 89 (S) 

a
 Deduced using GC analysis, confirmed using 

1
H NMR. 
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 Initially, L11 was examined as a potential ligands for inducing enantioselectivity 

in the reaction. High conversions were observed with this phosphine, but it only 

provided minimal enantioselectivity (< 5%, Table 7, Entry 4). The phosphoramidites 

(L12-13) on the other hand gave poorer conversions, but did indeed induce 

enantioselectivity in the process. However, the more effective phosphines at inducing 

enantioselectivity proved to be the Taniaphos (L9) and the Josiphos (L3-14) type 

species (see Table 7, Entries 1, 3 and 7).  

 

Figure 3 Products of Fernández et al.’s organocatalytic β-boration protocol.
72

 

This demonstrated for the first time that asymmetric β-boration need not be carried out 

using a metal catalyst with chiral ligands; on the contrary, chiral phosphine ligands, 

base and a suitable alcohol additive alone, proved sufficient to provide 

enantioselectivity in the conjugate addition of boron to α,β-unsaturated species. 

However, this protocol was limited to ethyl crotonate 36 and, hence, Fernández et al. 

needed to demonstrate that this procedure could also be applied to a various other 

substrates.
72 

This was explored using the same substrates as explored in the racemic 

case. This protocol was found to be applicable to a wide rangeof substrates and proved 

highly effective in terms of both conversion and enantioselectivity. The Josiphos ligand 

L14 proved to be the most successful phosphine species, some of these results are 

highlighted in Figure 3. Both cyclic and acyclic α,β-unsaturated ketones and esters were 

explored, the β-boration products of which showed reasonable to high levels of 

enantiopurity (36-83%). The utility of the process was clearly demonstrated by the 
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encouraging results. However, more importantly it raised questions regarding the 

underlying mechanistic principles of the reaction. It is not clear whether the phosphine 

acts either as a ligand or a catalytically active species in the β-boration of 

α,β-unsaturated species. Building on their previous work, Fernández and Gulyás et al. 

explored their newly devised non-metal-catalysed route to the β-boration of 

α,β-unsaturated species, and examined the role of iron as an additive as a means of 

assisting this process.
75

 This case will be discussed later (section 1.5), as it provides 

mechanistic insight to the process of boron conjugate addition.   

 As previously mentioned, organocatalysis has had a renaissance in recent years. 

A tremendous amount of work has been published on the use of secondary amines and 

their roles in the catalytic activation of α,β-unsaturated aldehydes and ketones (iminium 

activation) towards conjugate addition.
68 

To this end, Córdova et al. presented their 

work in 2012 on the organocatalytic β-boration of enals, catalysed by a combination of 

Lewis base (to activation the diboron reagent) and secondary amines (to activate the 

substrate), see Figure 4.
76

  

 

Figure 4 Organocatalytic modes of activation in the β-boration reaction.
76 

The initial products were trapped in situ by phosphorous ylides to generate homoallyl 

boronates (this will be discussed later). They had previously reported a copper-catalysed 

enantioselective protocol, whereby enantioselectivity was achieved through the use of a 

chiral secondary amine additive.
77
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1.4 β-Boration in aqueous media 

 Transition metal catalysis often requires anhydrous, oxygen-free conditions to 

prevent catalytic degradation. But in recent years, water has become an attractive 

medium in which to do chemistry, not just because of its huge abundance and 

environmentally benign properties, but also because of its influence on chemical 

reactions.
78

  

Table 8 Influence on solvent selection in Kobayashi’s aqueous methodology.
79

 

 
Entry M Solvent Additive L Yield (%) e.e. (%) 

       

1 Cu H2O - DBA 88 0 

2 Zn H2O - DBA 64 0 

3 Cu H2O - L15 83 81 

4 Zn H2O - L15 17 46 

5 Cu H2O - L15 79 36 

6 Cu H2O - L15 80 37 

7 Cu THF - L15 0 0 

8 Cu Toluene - L15 0 0 

9 Cu DCM - L15 0 0 

10 Cu DMF - L15 Trace 0 

11 Cu DMSO - L15 0 0 

12 Cu MeOH - L15 17 29 

13 Cu EtOH - L15 1 0 

14 Cu H2O - L15 84 80 

15 Cu H2O Pyridine L15 72 70 

16 Cu H2O AcOH L15 93 89 

17 Cu H2O TFA L15 93 86 

18 Cu H2O PhCO2H L15 86 81 

19 Cu H2O B(OH)3 L15 94 87 

20 Cu H2O AcOK L15 90 81 

21 Cu H2O AcOH L15 95 99 

Entries: 1-13, M(OH)2 = 10 mol%; 14-21 M(OH)2 = 10 mol% = 5 mol%. Optimised conditions for Entry 

21 uses L15 (6 mol%) at 5 ºC for 12 h. 
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It is, therefore, interesting to report the findings of Kobayashi et al. who reported the 

first copper-catalysed enantioselective protocol for the β-boration of α,β-unsaturated 

carbonyls in aqueous media.
79

 It is important to note that in the same year Santos et al. 

reported the first copper-catalysed β-borylation under aqueous conditions.
80

 

 This procedure offered great potential due to the ready availability of the copper 

(II) salt precursor, chiral bipyridine L15 and water (with some additives, see Table 8). 

Indeed, they demonstrated that this could be applied to α,β-unsaturated amides, esters 

and ketones. Moreover, the more challenging β,β-disubstituted enones could be 

β-borylated in high e.e. (93-97%) and conversion.  In addition, they examined the 

regioselectivity of this protocol by examining a α,β,γ,δ-unsaturated ketone in with their 

methodology. To their delight, they found that this resulted in high regioselectivity, 

producing mainly the 1,4-addition product 6b (96%) with excellent enantioselectivity 

(e.e. 89%).         

 Subsequent studies by Kobayashi et al. into the 1,4- vs 1,6-addition regiocontrol 

in α,β,γ,δ-unsaturated species was carried out.
81,82

 It should be noted that work has been 

carried out in this area by Breistein, Córdova and Ibrahem et al.
77 

Initially, they found 

that acyclic α,β,γ,δ-unsaturated ketones proceed to give predominately the 1,4-addition 

product. However, the behaviour of cyclic α,β,γ,δ-unsaturated ketones (e.g. 40) was 

different, depending on the counter ion of the Cu(II) salt (see Scheme 14). 

 

Scheme 14 1,4- vs  1,6-addition to cyclic α,β,γ,δ-unsaturated ketones. 
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Indeed, modification of the counter ion, from hydroxide to acetate, allowed for the 

selective β-boration (1,4-addition) to γ-boration (1,6-addition), respectively. Kobayashi 

et al. rationalised this by a simple observation of the reaction. Specifically, a switch 

from homogeneous in, the case of Cu(OAc)2, and  heterogeneous with Cu(OH)2. Further 

research was carried out in this area to elucidate the nature and mechanism of this 

reaction.
82

 However, this will not be discussed here. 

1.5 Mechanistic considerations 

 Marder et al. introduced the first example of 1,4-diboration to activated 

alkenes
19,83

 which after hydrolysis, gave the corresponding β-boration product. Indirect 

evidence for 1,4-diboron species has been shown by other groups. Indeed, they utilised 

the presumed 1,4-addition intermediate for the formation of aldol products. However, 

the formation of such species (e.g. 5, Scheme 3) was thought to rely upon the presence 

of a nucleophilic boryl species, either if the reaction proceeds through an SN2 or SN2’ 

type mechanism.
84

 Indeed, this idea was put forward by Miyaura et al., and 

substantiated with experimental evidence (Scheme 5).
28

 It is interesting to note that 

nucleophilic boron species have since been reported and isolated.
31

   

 The initial copper-catalysed examples of conjugate boration were plagued by 

high catalyst loadings. The methodology of Yun et al. involved the use of protic 

additives, i.e. alcohols (see Table 2 and Scheme 15),
34

 led them to speculate upon a 

plausible mechanism and suggested that a diphosphine-ligated copper-boronate 

species,
70 

similar to the copper-boronate species suggested by Miyaura,
28

 was key to the 

conjugate addition of the α,β-unsaturated carbonyl compounds. Furthermore, this results 

in either a C-bound copper intermediate or an O-bound copper enolate. Yun et al. 

suggested that the equilibrium between the C-bound and the O-bound copper 

intermediates was favoured towards the C-bound system and, accordingly, it would be 
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this species that the alcohol additive would protonate. This suggested that this copper 

alkoxide was the active species involved in regenerating the active copper-boronate 

species. Yun et al. also provided evidence, in the form of isotopic labelling, for the 

protonation of the enolate intermediate, as shown in Equation 11.  

 

Equation 11 

Moreover, such enolates can be trapped out by the addition of halogen electrophiles to 

form α-halo ketones during the β-boration process.
85

    

 The groups of Marder and Lin et al. jointly carried out extensive DFT studies to 

try and elucidate some aspects of the underlying mechanistic workings of such 

reactions.
86

 As part of this endeavour, studies involving olefinic insertion to 

copper-boron bonds have been made
87

 and, hence, led to the DFT study of the 

copper-catalysed boron conjugate addition of activated alkenes (namely α,β-unsaturated 

carbonyl containing species).
88

 Their findings support a mechanism similar to that 

outlined in Scheme 16 by which boration results in the formation of a C-bound copper 

intermediate which could be protonated by the alcohol forming a ligated copper 

alkoxide. Such a process provides a barrier-less (as calculated by DFT methods) 

metathesis between such species and the diboron regent. This work substantiated the 

suggested mechanistic pathway proposed by Yun.
34

 



56 

 

 

Scheme 15 Mechanism of the copper-catalysed β-boration of α,β-unsaturated species. 

 

Scheme 16 Mechanism for the copper-catalysed β-boration of α,β-unsaturated species 

as supported by Marder et al.’s DFT calculations.
88
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Marder and Lin et al. have, in addition to their work on the copper-catalysed 

β-boration, performed DFT calculations on the platinum-catalysed system.
89

 Their 

initial calculations suggest that, unlike the copper-boron bond, in which electron density 

is located on boron (thus explaining the nucleophilicity), the platinum atom polarizes 

the platinum-boron bond towards itself, thus generating an electropositive boryl moiety. 

Subsequently, one cannot invoke a nucleophilic mechanism involving a catalytic 

platinum-boron species in the β-boration reaction. They have indeed shown, by DFT 

calculations and experimental observations, that the probable mechanism for the 

platinum catalysed protocol occurs in three distinct steps (see Scheme 17). The initial 

step in the reaction involves the oxidative addition of the diboron compound to the 

platinum(0) species 43. This intermediate is calculated to exhibit 

pseudo-trigonal-bipyramidal geometry 44. Secondly, the conjugate addition of the 

electron rich platinum onto the β-carbon of the α,β-unsaturated carbonyl, acrolein, and 

the σ-bond formation between the carbonyl oxygen and the axial boryl moiety, leading 

to the formation of a square planar platinum species 45. After this, re-coordination of 

the carbon-carbon double bond (in acrolein) to the platinum, this results in the 

regeneration of a pseudo-trigonal-bipyramidal complex 46. Finally, reductive 

elimination results in the 1,4-addition adduct, with the boryl units on the oxygen (of the 

enolate) and the β-carbon 47. In addition, interesting computational work by Carbó and 

Fernández et al. (in the same year) supported this idea of an electrophilic mechanism.
90
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Scheme 17 Mechanism of the platinum-catalysed β-boration of α,β-unsaturated species. 

 

This is, therefore, consistent with the electrophilicity of the boryl ligands under 

platinum catalysis. Furthermore, it is consistent with the observed experimental 

phenomena by Marder et al.
19 

 In light of this,
89

 the mechanistic explanation appears complete; however, the 

organocatalytic variants of metal-catalysed boron conjugate addition cannot be 

understood in this mechanistic framework and brings into question the role of the 

reagents in such reactions. Hoveyda put forward a plausible concept by which the NHC 

species can generate a nucleophilic diboron adduct by the polarisation of the 

boron-boron bond to form an sp
2
-sp

3
 type species (Scheme 13). Such species have since 

been isolated by Marder and Lin et al.
91

 Hoveyda suggested that this adduct can react 

with the electrophilic β-carbon of the activated alkenes. However, Marder and Lin et al. 

also note that from their spectroscopic observations (
11

B NMR), the association between 

the NHC and B2pin2 1 was weak in solution, which casts doubt on this adduct being 

involved in the boron conjugate addition process. An interesting side note in Hoveyda’s 
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methodology
69

 is the trapping of enolate intermediates with aldehydes to form aldol like 

products (analogous to the work of Shibasaki et al., see Scheme 11).
57 

Unlike the 

copper-catalysed protocol, as reported by Shibasaki, the aldol products were equally 

formed with high levels of enantio- and diastero-control. However, under Hoveyda’s 

organocatalysis the syn-diastereoisomer was the dominant isomer, unlike the 

copper-catalysed systems which have been reported to give the 

anti-diastereoisomer.
49,85

 

 Perhaps more interesting (as highlighted in Scheme 12) is that a phosphine oxide 

alone in the presence of B2pin2 1 can facilitate boron conjugate addition (activation by 

the nucleophilic oxide coordinating to the diborane species). The ability of phosphines 

to be active in the metal free conjugate addition was noted by Hosomi et al.,
27

 but like 

Hoveyda et al., Hosomi did not explore this, despite the 50% conversion to the 

borylated species (in the case of Hoveyda).      

 The organocatalytic β-boration, facilitated by phosphines, was probed by 

Fernández et al. to explore the underlying mechanism of such reactions.
72

 They 

suggested that the acid-base interaction between the nucleophilic phosphine forms a 

nucleophilic adduct which, similarly to that reported by Hoveyda et al.,
73

 can undergo 

conjugate addition. This mechanism was deemed consistent with the observed NMR 

evidence (see Scheme 18), and in particular the loss of the two 
11

B signals (this suggests 

the presence of a sp
2
-sp

3
 diboron adduct, e.g. see Scheme 13) on addition of the 

activated alkene. Assuming the organocatalytic variant proceeded through this sort of 

mechanism, Fernández et al. examined the influence of Lewis acidic iron salt additives 

as a means of activating
92

the Michael acceptor towards conjugate addition.  

Interestingly, in all the examples they examined, carbonyl containing species (esters and 

ketones) underwent increased conversions when the additive was employed. 
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Intriguingly, the analogous α,β-unsaturated imines only accommodated conjugate 

boration in the presence of the iron additives (see Scheme 19 for a representative 

example).  

 

Scheme 18 Spectroscopic evidence for the proposed organocatalytic route as described 

by Fernández et al. 

 

Scheme 19 Comparison between the influence of iron additives on the β-boration of 

α,β-unsaturated esters and imines. 
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This is perhaps unexpected given that α,β-unsaturated imines have been shown 

previously to be more reactive to nucleophilic diboron adducts than the analogous 

α,β-unsaturated carbonyl containing species.
59,60

 In light of this, it would be interesting 

to examine the effect of introducing metal salts on other organocatalytic systems, such 

as that developed by Hoveyda et al., because this suggests that activation of the 

carbonyl should aid conjugate boration when conversions are particularly low. 

 Still, alternative theories have been put forward to suggest the roll of the 

phosphines in the organocatalytic β-boration. Indeed, Fernández et al. reported other 

computational and experimental data
93

 which shows that the phosphines can undergo a 

1,4-addition to the α,β-unsaturated carbonyl compound (analogous to the 

Baylis-Hillman reaction
94

) which leads to the formation of an ion-pair intermediate 

(when in the presence of MeOH and the diboron compound 1) which  to explain the 

catalytic behaviour of such systems. 

1.6 Summary 

 The area of boron conjugate addition (β-boration) is not only fascinating, but 

serves as a valuable synthetic utility for the preparation of simple organic building 

blocks that represent key structural moieties in many biologically active species and 

materials. Since the first examples appeared, transition metals have played a crucial role 

in facilitating this process. Platinum,
19

 rhodium,
95

 palladium and nickel
40

 have all been 

shown to facilitate boron conjugate addition, but perhaps due to the work of Yun et al., 

and use of alcohol additives, copper is now the most used catalytic system in the area.
53

 

Recently, some groups have developed alternative methods by which β-boration can be 

achieved by organocatalytic means and they have obtained some excellent results. Such 

methodologies have not yet displayed results to rival their metal-catalysed equivalents; 
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however, it is likely that these organocatalytic routes will develop with the use of 

additives, resulting in more sustainable chemical processes.
96

   

 A number of mechanistic theories
88

 have been put forward that aim to explain 

the metal-catalysed methodologies. In addition, mechanistic theories have been 

putforward to explain the the organocatalytic reaction. Further developments are likely 

to be made in order to satisfactorily explain all the observed results.
91

 To this end, 

further research is likely to be focused not only on developing new borylation systems, 

especially organocatalytic protocols and new asymmetric methods, but also on further 

mechanistic interpretations. 
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2.0  Project aims 

The ability to control multiple stereocentres in the design and preparation of 

simple molecular architectures is still a major challenge to organic chemists.
97

 Indeed, 

this problem becomes more apparent when considering the necessity of simple chiral 

molecules and, more specifically, their role as precursors in the preparation of 

pharmaceuticals.
98

 

 

Figure 5 Molecules of interest throughout this thesis. 

β-Amino acids 48,
99

 β-hydroxy acids 49,
100

 γ-amino alcohols 50
101

 and γ-hydroxy 

alcohols 51
102

 (Figure 5) have received attention in the literature
103,104,105

 due to their 

utility in catalysis, as top-selling pharmaceuticals and precursors to complex natural 

products. However, a low-cost, sustainable, asymmetric route to such species is still a 

challenge due to the potential obstacle of controlling up to three contiguous 

stereocentres.           

 The aim of this project was to develop a simple, sustainable, synthetic 

methodology for the preparation of chiral β-amino acids 48, β-hydroxy acids 49, 

γ-amino alcohols 50 and γ-hydroxy alcohols 51 (i.e. 1,2,3-trifunctional materials). The 

initial aim involved the utilisation of asymmetric β-boration technology on prochiral 

activated alkenes, α,β-unsaturated imines. Subsequent transformations would thus yield 

the desired targets. 
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2.1 γ-Amino alcohols 

γ-Amino alcohols 50 and their derivatives are found in some of the world’s 

top-selling pharmaceuticals (Figure 6), for example: Fluoxetine and Duloxetine (also 

known as Prozac and Cymbalta, respectively). These γ-amino alcohol derivatives are 

utilised medically as antidepressants,
106

 with Fluoxetine belonging to the selective 

serotonin reuptake inhibitor (SSRI)
107

 class of antidepressants, and Duloxetine 

belonging to the serotonin-norepinephrine reuptake inhibitor (SNRI)
108

 class (see 

Venlafaxine
109

).  It is interesting to note that the total sales of Fluoxetine peaked at 2.2 

billion US Dollars in 1998
110

 and, according to IMS Health, sales of Duloxetine reached 

5.8 billion US Dollars in 2012, making it one of the top-ten selling drugs worldwide.
111

 

Tramadol,
112

 used to treat moderate to severe pain (also see Ciramadol
113

), is another 

example of γ-amino alcohols being utilised for medical applications. 

 

Figure 6 γ-Amino alcohol-based pharmaceuticals. 
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Various approaches towards the synthesis of γ-amino alcohols exist in the 

literature.
114

 Indeed, Scheme 20 shows several named reactions which can potentially 

serve as routes towards the synthesis of γ-amino alcohols. 

 

Scheme 20 Retrosynthetic analysis of γ-amino alcohols 40. 
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In the context of metallo-emamine chemistry, Ellman et al.
58

 employed chiral N-sulfinyl 

imines 54 for the preparation of β-hydroxy N-sulfinyl imines 55, which allowed for the 

selective preparation of either the anti- or syn-diastereoisomers (see Scheme 21). 

 

Scheme 21 Ellman’s N-sulfinyl imine chiral auxiliary approach to the synthesis of 

γ-amino alcohols. 

 

Other examples in the literature include the selective ring-opening of N-tosylazetidines 

with alcohols in the presence of Lewis acids.
115

      

 One of the most common methods for the synthesis of γ-amino alcohols are 

based on asymmetric hydrogenation.
116

 Indeed, Zhang et al. reported the asymmetric 

synthesis of γ-amino alcohols through the asymmetric hydrogenation of β-amino 

ketones (see Equation 12).
61 

This was later expanded to encompass the control of 

multiple stereocentres, in a highly enantio- and diastereoselective synthesis of γ-amino 

alcohols from β-ketoenamides. 

 

Equation 12 
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In addition to asymmetric hydrogenation, the Mannich reaction serves as a useful tool 

for the synthesis of β-amino ketones (Scheme 20).
117

 Such species are complimentary 

intermediates, in the context of asymmetric hydrogenation, for the synthesis of γ-amino 

alchols (see Equation 12 and Scheme 21). 

 It should be mentioned that Davies et al. have produced a plethora of work on 

asymmetric conjugate addition of chiral lithium amides
118

 to α,β-unsaturated esters and 

amides.
119

 Indeed, such studies have resulted in this methodology being employed in the 

total synthesis of natural products.
120

 It is clear from looking at the intermediates
121

 of 

such reactions that this methodology could be applied to the synthesis of γ-amino 

alcohols through the derivatisation of the product β-amino esters.
122

 

2.1.1 Developing a one-pot route towards γ-amino alcohols 

In 2009, Fernández et al. introduced a protocol for the preparation of β-hydroxyl 

imines.
59

 This was later expanded to the enantio- and diastereoselective synthesis of 

γ-amino alcohols
60

 and γ-hydroxy alcohols
64

 in collaboration with Whiting et al. An 

asymmetric route to these difunctional species required the technology to control 

multiple stereocentres. This was achieved by three key steps in the methodology (see 

Table 5 and Scheme 10): 

 Enantioselective copper-catalysed β-boration of α,β-unsaturated imines; 

 Substrate controlled asymmetric reduction of the imine functionality; 

 C-B oxidation with retention of stereochemistry. 

This protocol is highly useful for the preparation of γ-amino alcohols and γ-hydroxy 

alcohols where 
4
R = Ph, Ar, etc. (see Figure 5). This is due to the relative ease in 

preparing α,β-unsaturated imines from the analogous enals or enones due to the 

β-carbon being less susceptible to Michael addition. In turn, this results in the direct 
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1,2-addition-elimination of a primary amine to the carbonyl, which gives the resulting 

imine (see Scheme 22). 

 

Scheme 22 Preparation of α,β-unsaturated imines via 1,2-addition to the analogous 

carbonyl compound. 

 

However, the purification of such species is problematic due to the susceptibility of the 

imino-group (C=N) to being readily hydrolysed to the parent carbonyl compound. In 

addition, if these species are to be utilised synthetically, bulky substituents throughout 

the structure may not be desired. Also, bulky substituents on the β-carbon of these 

β-unsaturated imines would render this methodology useless in the preparation of the 

analogous β-amino acids and β-hydroxy acids, due to the inability of secondary or 

tertiary alcohols to be oxidised to the carboxylic acid level. It was, therefore, clear that 

the first challenge to overcome was the preparation of a versatile array of 

α,β-unsaturated imines (species where 
1
R = H, Me, see Scheme 22) and, in this process, 
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the development of a simple method for the purification for such species.  

 α,β-Unsaturated imines are becoming increasingly explored in recent years.
123,124

 

Indeed, they have even found a place in the preparation of pharmaceuticals.
125 , 126 

However, routes towards the preparation of α,β-unsaturated imines are limited. The 

conventional method of 1,2-addition-elimination to the parent carbonyl compound 

(using an appropriately nucleophilic amine) is a common method.   

 Interestingly, Schomaker et al. demonstrated a method by which α,β-unsaturated 

imines can be prepared from the coupling of allylic alcohols and an amine under 

Rh-catalysis.
127

 Other groups have demonstrated the synthesis of such species via the 

aza-Wittig reaction (see Scheme 23).
128,129       

 
Having examined the literature for suitable methodologies for the preparation of 

α,β-unsaturated imines, it seemed logical to prepare such desired α,β-unsaturated imines 

via the aza-Wittig reaction (see Scheme 23).
130

 However, this would have involved 

handling potentially explosive azides, in addition to the additional two steps (alkyl azide 

synthesis followed the in situ preparation of the desired iminophosphorane) to the 

reaction protocol. Assuming that this methodology would proceed as planned, problems 

associated with the purification of such species were anticipated and other pathways had 

to be considered. Fortunately, alternative routes to α,β-unsaturated imines are present in 

the literature. Indeed, such species are employed in the preparation of dihydropyridines 

and pyridines, as shown by Ellman et al. (see Scheme 24).
131

 The α,β-unsaturated 

imines employed in the named example were specifically the species with non-bulky R-

substituents at the Cβ position (56-58). 
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Scheme 23 Planned route to α,β-unsaturated imines via the aza-Wittig reaction. 

 

Scheme 24 Preparation of dihydropyridines, as demonstrated by Ellman et al.  

This  paper
131

 described the preparation of the desired α,β-unsaturated imines via a 

simple 1,2-addition to the analogous α,β-unsaturated carbonyl species (see Scheme 

25).
132
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Scheme 25 Method for preparing α,β-unsaturated imines. 

Hence, the preparation of such species was examined with minor changes to the 

reaction conditions (toluene was employed instead of benzene); the results of which are 

shown in Scheme 26. 

 

Scheme 26 Results from the preparation and isolation of α,β-unsaturated imines. 

Disappointingly, the desired species were difficult to purify due to apparent 

decomposition and polymerisation, even by using Kugelröhr distillation. It was 

therefore considered whether it was necessary to purify these species. Moreover, could 

these species be prepared in situ and be utilised effectively in their crude form?
133

 

 Reductive amination is a common functional group transformation by which the 

addition of an amine to a carbonyl containing species (aldehydes or ketones) results in 

the formation of an imine. The resulting imine can subsequently be reduced (typically in 

a one-pot procedure) to yield the analogous amine. The reductive amination of 

α,β-unsaturated species has also been explored.
134

 As previously stated, the addition of 
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amines to α,β-unsaturated carbonyls can result in either 1,4- or 1,2-addition depending 

on the given nucleophile/electrophile. If α,β-unsaturated imines are to be utilised, an 

effective way of gauging which species undergoes 1,2- and not 1,4-addition needed to 

be acquired. Allylic amines are typically more stable due to their reduced ability to 

undergo hydrolysis when compared to their analogous α,β-unsaturated imines. Indeed, 

reductive amination was considered to be a good way of gauging which substrate 

proceeded through 1,2-addition (and thus indirect evidence of α,β-unsaturated imine 

formation). The reductive amination of crotonaldehyde 59 and tiglic aldehyde 61 (low 

isolated yield of the parent imine) led to the formation of the analogous allylic amines in 

moderate to high yields (47 and 88%, respectively, see Scheme 27). Unsurprisingly, the 

reductive amination of cinnamaldehyde proceeded likewise (74%, see Scheme 27). 

Both of these results were consistent with the presence of the intermediate 

α,β-unsaturated imine species, as prepared by both Ellman et al.
131,132

 and Fernández et 

al.
60,64  

 

Scheme 27 Reductive amination of α,β-unsaturated imines
 

 
It was disappointing to discover that methyl vinyl ketone proceeded through 

1,4-addition, as the α,β-unsaturated imines of such species were ideal substrates for the 

devised methodology. This proved to be an effective way of gauging which species 

proceeded through the α,β-unsaturated imine intermediate. Information regarding the 

kinetics of the formation of α,β-unsaturated imines is limited. Therefore, investigation 
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by in situ IR Spectroscopy (ReactIR
135

) of the reaction between benzylamine and a 

series of α,β-unsaturated aldehydes (enals) and ketones (enones) was carried out as a 

means of: 

 Understanding 1,2- vs. 1,4-addition of amines to enals or enones; 

 Following the kinetics of imine formation (reaction times); 

 Determining which substrates were applicable to this methodology. 

The results obtained from the ReactIR experimentation will not be discussed here in 

detail (see section 2.2 for a full discussion). However, in summary, 

1,2-addition-elimination of benzylamine to the examined α,β-unsaturated aldehydes and 

ketones proceeds to completion in the order of a few hours. This is significantly quicker 

when compared to the results reported in the literature (overnight/24 hours).
131

 

Moreover, these results suggested that it might not be necessary to isolate such species 

at all. These results suggested that it could be possible to develop a four-step, one-pot 

reaction protocol whereby the desired α,β-unsaturated imines are generated in situ, and 

can subsequently undergo the previously established three-steps towards γ-amino 

alcohol 26 synthesis (see Scheme 10). The first experiment that established this as a 

possibility was the copper-catalysed β-boration, reduction sequence of the 

α,β-unsaturated  imine 58 (formed in situ from benzylamine and methacrolein 60, see 

Scheme 28). 
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Scheme 28 Probing the four-step, one-pot reaction on methacrolein 60. 

This reaction was conducted in the presence of 3 Å-molecular sieves to aid imine 

formation and prevent any possible imine hydrolysis due to water generation. It is 

important to note that the use of 4 Å-molecular sieves was examined; however, 4 Å-

molecular sieves exhibit methanol scavenger properties
136

 Hence due to this, 4 Å 

molecular sieves could inhibit the β-boration step due to methanol absorption and as 

noted in the introduction, methanol is essential for catalysis. The reaction was stopped 

before the final oxidation step (see Scheme 28). The ability to oxidise C-B bonds is well 

documented and,
2
 therefore, the synthesis of γ-amino boron esters 63 would have been 

an appropriate probe in assessing the reaction. Interestingly, the reaction proceeded as 

predicted (as observed by 
1
H & 

11
B NMR, see Scheme 28); however, the products 

proved difficult to purify by chromatographic means and, therefore, it was difficult to 

optimise this protocol on this particular substrate.      

 Next, attention was turned to enone 4a as a suitable substrate on which to 

optimise this potential four-step, one-pot protocol. The results of this optimisation are 

summarised in Table 9.        

 Perhaps as expected, an increase in the conversion of 4a to 64 with increased 

catalyst loading was observed (Entries 1-5, Table 9). Conversely, a decrease in the 
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conversion of 4a to 64 is observed when catalyst loadings are increased beyond 5% 

(Entry 7). This at first may seem counterintuitive; however, this can be rationalised by 

assuming that higher catalyst loadings favour Pathway A, as shown in Scheme 29. 

Indeed, it has been shown in the literature that the β-boration of α,β-unsaturated imines 

is faster, under the copper-catalysed system, when compared to that of the analogous 

carbonyl compound.
59

 

 

Scheme 29 Competing pathways in one-pot reaction; Michael vs. direct addition of 

benzylamine. 
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Table 9 Optimisation of the one-pot methodology. 

 
     Conv.

e
 (%) Yield (%) 

Entry CuCl (%) L  

(%) 

Base  

(%) 

t
d
  

(h) 

64 65
k 

64 65 

 

1 

 

1 

 

PPh3 (2) 

 

KOtBu (20) 

 

24 

 

37 

 

30 

 

17 

 

32 

2 3 PPh3 (6) KOtBu (9) 24 42 29 40 - 

3 5 PPh3 (10) KOtBu (18) 24 63 27 62 - 

4 5 PPh3 (10) KOtBu (18) 48 62 36 56 - 

5 5 P(nBu)3 (10) KOtBu (18) 18 63 34 63 - 

6
g 

5 P(nBu)3 (10) NaOtBu (18) 18 >95 0 90 - 

7 10
j 

PPh3 (20) KOtBu (36) 24 40 27 25 - 

8
h 

5 PPh3 (10) NaOtBu (15) 18 52 34 - 30 

9
i 

5 PPh3 (10) NaOtBu (15) 18 44 54 - 51 

a 
Reactions carried out on a 1-1.5 mmol scale. 

b 
NaBH4 (3 equiv.), MeOH (excess). 

c 
1 : 1, NaOH : H2O2 

(THF), 1 h reflux. 
d 

Reaction time for 1h, benzylamine and Cu–B cat. in one-pot. 
e 

Determined by 
1
H 

NMR. 
f 
Imines were formed in situ (1 : 1 amine : α,β-unsaturated carbonyl, 3 Å M.S., THF, 6 h) and 

transferred to Cu–B cat (18 h). 
g 
MeOH removed prior to oxidation (via vacuum). 

h
[O] NaOH, H2O2 (1 : 

1, 20 equiv.), MeOH (10 ml), 4 h reflux. 
i
[O] NaOH, H2O2 (1 : 1, 40 equiv.), MeOH (15 ml), 4 h reflux. 

j 

High catalyst loadings favour β-boration of the a,b-unsaturated carbonyl without formation of imine. 
k
65 

was confirmed by the reaction of 64 with CH2O (1.1 equiv.) in THF, rt, 4.5 h (74% yield). 
l 

anti-Diastereoisomer had previously been confirmed.
60

 
 

Furthermore, increasing reaction times to from 24 to 48 hours resulted in no significant 

change in the overall conversion to γ-amino alcohol 64 (Entries 3 and 4, Table 9). This 

was repeated several times and still the reaction appeared to plateau at 62-63% 

conversion to 64. After extensive chromatographic purifications, small amounts of 

allylic amine (<5%) were isolated, indicating no β-boration of the α,β-unsaturated imine 

(imine is reduced to the allylic amine on addition of NaBH4).  
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More importantly, perhaps, was the isolation of a significant side product. This would 

ultimately lead to the optimisation of the one-pot methodology.    

 The side product was identified and found to be the cyclic 1,3-oxazine 65. It was 

considered that methanol, under the oxidising conditions of the one-pot methodology, 

could perhaps form formaldehyde, which could be trapped by the γ-amino alcohol 64 to 

complete the cyclic 1,3-oxazine 65. This was probed by simple changes to the 

experimental procedure in which methanol was removed from the system (via rotary 

evaporation) prior to the oxidation. Then, THF, NaOH and H2O2 was added to the 

resulting crude mixture and subsequently heated to reflux for one hour. This resulted in 

the high conversion of 4a to the γ-amino alcohol 64 (>95%), but more importantly, no 

formation of the 1,3-oxazine 65 (Entry 6, Table 9). The formation of the 1,3-oxazine 65 

can be forced by increasing the quantity of methanol, NaOH and H2O2 during the 

oxidation step, leading to 54% conversion to 65 (see Entry 9, Table 9). 

2.1.2 1,3-Oxazine formation 

 The formation of the 1,3-oxazine 65 was highly unexpected. Indeed, there is 

limited literature regarding the transformation of methanol to formaldehyde, or 

equivalents thereof, under these conditions. Although, it should be noted that boric 

acid-catalysed oxidations are known (hydrogen peroxide used as an oxidant)
137, 138

 and 

have been used to oxidise organic sulfides.
139

 In addition, Punniyamurthy et al. have 

examined the copper(II)-catalysed C-H bond oxidation of saturated hydrocarbons using 

hydrogen peroxide.
140

 This methodology was applied to the oxidation of primary 

alcohols which, upon the addition of (2,2,6,6-tetramethyl-piperidin-1-yl)oxyl (TEMPO) 

and oxygen (O2), gave the corresponding aldehydes in good yield.
141
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    With regards to the methanol oxidation (to formaldehyde), it is important to 

comment on some of the early reports of the preparation of formaldehyde
142

 from 

methanol via the process of catalytic
143

 or thermal dehydrogenation.
144

 Hoffmann was 

able to prepare formaldehyde by passing methanol vapour over platinum wire, thus 

providing the first unambiguous preparation of formaldehyde.
145

 Crucially, early reports 

on the thermodynamics of such processes discussed the thermal dehydration of 

methanol to formaldehyde at temperatures ranging from 200 to 450 ºC, noting that they 

consider this to be an equilibrium process (see Equation 13).
146

  

 

Equation 13 

Moreover, they found that the equilibrium could be favoured towards formaldehyde 

under high temperature (450 ºC). Nevertheless, appreciable proportions of 

formaldehyde were formed via this method at lower temperatures (2.4% at 200 ºC).

 In the case of the one-pot methodology, formation of 1,3-oxazine 65 occurs 

during the oxidation step (due to the presumed presence of formaldehyde), still in the 

presence of methanol, hydrogen peroxide, copper salts and various boronate-type 

species, all of which are being heated together at reflux (not dissimilar to previous 

reports).
139,141

 Despite methanol being identified as the formaldehyde precursor, the 

species responsible for dehydration/oxidation of methanol is still not resolved, but it is 

perhaps not implausible that such conditions can generate formaldehyde in small 

concentrations, thus leading to the iminium intermediate (Scheme 30) being trapped 

(equilibrium process) to form the resulting 1,3-oxazine 65. See appendix for an 

investigation into the copper, peroxide and boric acid-catalysed oxidation of primary 

alcohols to aldehydes. 
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 When 1,3-oxazine 65 was first isolated, it is important to note that this species 

did not display the typical characteristics of γ-amino alcohols. More specifically, when 

γ-amino alcohols are subjected to purification by column chromatography, due to the 

basicity of the amine functionality and the acidity of the silica gel (stationary phase), 

these compounds, like other amine containing species, tend to streak during purification 

(also observed via TLC), leading to poor resolution and longer elution times, which was 

not the case with the 1,3-oxazine 65.                

 

Scheme 30 1,3-Oxazine  65 formation from the parent γ-amino alcohol 64. 

      When one compares the 
1
H NMR spectra of the 1,3-oxazine 65 and γ-amino 

alcohol 65, it is clear that they are extremely similar, leading to the suspicion that the 

1,3-oxazine 65 could, at first glance, be a diastereoisomer of γ-amino alcohol 64. 

However, the 
1
H NMR of the 1,3-oxazine 65 contains an additional AB-splitting pattern 

(compare Figure 7 and Figure 8). In addition, 
13

C NMR and DEPT-135 (See Figure 9) 

experimentation revealed the presence of an additional CH2-carbon (δ 83.7 ppm). This, 

in tandem with IR spectroscopy (no visible OH and NH stretches), CHN-analysis and 

mass spectrometry suggested, beyond reasonable doubt, that the 1,3-oxazine 65 had 

indeed formed in the reaction mixture.  

 The presence of 65 was further confirmed experimentally by the addition of 

aqueous formaldehyde solution to γ-amino alcohol 64 which, after 4.5 hours, resulted in 
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the formation of 1,3-oxazine 65 (74% isolated yield, Scheme 30) despite the lack of 

drying agents or additives (to promote the loss of water in the cyclisation step).
147

 See 

Appendix 1 for additional COSY, HMBC, HSQC and NOESY NMR experiments that 

aided the elucidation of structure 65. 
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Figure 7 
1
H NMR Spectrum of the 1,3-oxaxine 65, showing similar splitting to that of 

compound 64. Characteristic AB-splitting pattern for the N-CH2-O is observed between 

4.50-4.20 ppm, with unresolved  
4
J-coupling in the peak at 4.23 ppm. 

 

 

Figure 8 
1
H NMR Spectrum of the γ-amino alcohol 64, isolated as a single 

anti-diastereoisomer. 
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Figure 9 
13

C NMR DEPT-135 Analysis on compound 65: CH2 appear negative; CH3 

and CH appear positive (quaternary carbons are not visible). 

 

Figure 10 
1
H NMR spectrum of the crude reaction mixture of Entry 3 (bottom) and 

Entry 6 (top), Table 9 (multiplet of the C-H highlighted in the above structures). 



85 

 

After the structure of the 1,3-oxazine 65 had been confirmed, retrospective examination 

of the 
1
H NMR spectrum of the crude reaction mixtures (shown in Table 9) allowed for 

the ratios of the 1,3-oxazine 65 and the γ-amino alcohol 64 to be determined. This was 

achieved by integration of the signal of the hydrogen atom α-to the amino group (in 

each respective species), as shown in Figure 10. Clearly, when methanol was present 

during the oxidation step, a mixture of the 1,3-oxazine 65 and γ-amino alcohol 65 was 

observed. But more importantly, when methanol was removed prior to the final 

oxidation, no 1,3-oxazine 65 was formed, leading to the clean formation of the γ-amino 

alcohol 64. 

2.1.3 Substrate scope  

Once it had been identified that 1,3-oxazines 65 were forming as side products 

in the one-pot methodology, steps were taken to minimise this reaction which, to great 

success, resulted in the formation of the γ-amino alcohol 64 in high yield (90%, see 

Table 9, Entry 6 – see section 2.11).        

 The next challenge was to probe the substrate scope of this reaction 

methodology. This was achieved by screening several enals and enones under these 

optimised conditions (see Entry 6, Table 9); the results are outlined in Table 10. This 

screening proved successful, showing that a broad range of substrates could be 

β-borylated in good conversion and, for some γ-amino alcohols that were difficult to 

isolate via flash column chromatography, derivatisation to the 1,3-oxazine was 

advantageous due to their increased water solubility and ease of purification. The 

γ-amino alcohol 74 obtained from α-methyl cinnamaldehyde 73 was isolated as a solid, 

and the crystal structure of this structure was obtained (see Figure 11).  
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However, some enals suffered from poor conversion (e.g. α-methyl cinnamaldehyde 73) 

to the respective γ-amino alcohol (Entry 6). Retrospectively, it was concluded that this 

is due to competitive 1,2- vs 1,4-borylation (see sections 2.3 and 2.4). 

 

 

Figure 11 Olex2
13

 thermal ellipsoid plot (50% probability) of 74. 
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Table 10 Substrate screening of the one-pot methodology. 

 
  Conversion

b 
(isolated yield) (%) d.e.

b
 (%) 

Entry Substrate Amino alcohol Oxazine Amino alcohol Oxazine 

 

1
h 

66 
 

67 63 (58) 

 

- 

 

- 

 

- 

 

2 
 

59 

 

- 
 

79 (50) 

 

- 

 

- 

 

3
h
 

 
60 

 
69 82 (64)

g 

 

- 

 

- 

 

- 

 

4
d
 

 
60 

 

- 

 
70 (75) 

 

- 

 

- 

 

5 

 
61 

 
71 79 (71) 

 
72 63 (28) 

 

rac-anti 

>99 

 

rac-anti 

>99 

 

6 

 
73 

 
74 37 (20) 

 

- 

 

rac-anti 

>99 

 

- 

 

7
e
 

 
4a 

 
64 95 (90) 

 
65 (74) 

 

rac-anti 

>99 

 

rac-anti 

>99 

 

8 

 
75 

 
76 63 (58) 

 

- 

 

40 

 

- 

 

9 

 
77 

 

- 

 
78 (42) 

 

 

 

95 

1 mmol scale: 
a 
See Entry 6, Table 9 for standard conditions. 

b 
Determined by 

1
H NMR of isolated amino 

alcohol/oxazine. 
c 

See experimental. 
g 

64%-inseparable impurity. 
d 

Standard conditions, except PPh3 (10 

mol%) used as ligand. 
e
Standard conditions except NaOtBu (18 mol%) is used as base. 
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2.1.4 Stereochemical analysis 

Now that the potential of this one-pot methodology had been demonstrated, the 

next logical step was to investigate the enantio- and diastereoselective potential of this 

reaction. Curiously, in the examples shown in Table 10, high levels of 

diastereoselectivity were observed in the transformation of prochiral enals and enones 

into the chiral γ-amino alcohols and 1,3-oxazines. This is not surprising for substrates 

showing 1,3-difuctionalisation, as this had been previously observed. However, when 

enals are α,β-disubstituted, one major diastereoisomer is observed (>99% d.e. on 

isolation).          

 Analysis of the 1,3-oxazine 72, derived from tiglic aldehyde 61, allowed for the 

determination of the relative stereochemistry. By fusing the γ-amino alcohol in the form 

of a 1,3-oxazine ring, it was assumed that the oxazine formed the thermodynamically 

favoured chair conformation with the nitrogen lone pair in the equatorial position,
148

 as 

observed in previous solution-state 
1
H NMR studies.

149
 Furthermore, this had also been 

observed in the solid state by other groups,
150

 and from research within this thesis (see 

Figure 38), even when a bulky benzhydryl (-CHPh2) substituent was attached to 

nitrogen. The observed 
3
J coupling between two neighbouring hydrogen atoms 

(adjacent to the methyl substituents) suggested that the two hydrogen atoms exhibited a 

synclinal relationship, as determined by the relatively weak 
3
J coupling value of 3.1 Hz 

(see Figure 12 and Figure 13). This suggested that the major diastereoisomer displays 

one axial and one equatorial methyl substituent and, therefore, the presence of the 

anti-diastereoisomer can be assumed (in >99% d.e.). Furthermore, the X-ray crystal 

structure of 74 confirms the presence of the anti-diastereoisomer.  



89 

 

 

Figure 12 3D-representation of 72 showing coupling between H-atoms. 

 

Figure 13 
1
H NMR spectrum shows >99% anti-diastereoisomer of 72. 
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2.1.5 Summary of one-pot methodology 

 In summary, the formation of α,β-unsaturated imines in situ from enals and 

enones allowed for the development of a one-pot methodology to γ-amino alcohols. 

Novel side reactions were observed, leading to 1,3-oxazine formation, which could be 

promoted or inhibited through the respective addition or removal of methanol in the 

final C-B bond oxidation step of this methodology. This was then applied to a broad 

range of cyclic and linear enones and enals, and the stereochemistry of the major 

diastereoisomers were deduced where possible. ReactIR studies were crucial because 

they gave information regarding the formation of the α,β-unsaturated imines (this is 

discussed in section 2.2). 
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2.2 In Situ IR spectroscopy - making α,β-unsaturated imines  

The DFT Calculations in section 2.2 were carried out by Jordi Carbó and Jessica Cid, at 

the University of Rovira i Virgili, Tarragona, Spain (2013 to 2014). 

2.2.1 Background  

 The addition of nucleophiles to conjugated electron-deficient alkenes (e.g. 

α,β-unsaturated aldehydes, amides, esters and ketones) is one of the most important C-C 

and C-heteroatom bond forming reactions in organic synthesis.
151-153 

However, due to 

the possibility of conjugate (1,4-) vs. direct (1,2-) addition products, a thorough 

understanding of the factors that govern these competing pathways is required.   

 

Scheme 31 α,β-Unsaturated imines formed in situ are a useful platform for one-pot, 

sequential functionalisation. 

 

  Previously (see section 2.1), routes to γ-amino alcohols
60

 were developed 

through the utilisation of α,β-unsaturated imines. Such species offer large scope for 

synthesis, due to α,β-unsaturated imines being prochiral with regards to both conjugate 

(1,4-addition to C=C) and direct (1,2-addition to C=N) addition. In the endeavour to 

prepare α,β-unsaturated imines, a lack of kinetic and mechanistic data in the literature 
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regarding the relative 1,2- vs 1,4-addition of primary amines to α,β-unsaturated 

aldehydes and ketones  (enals and enones, respectively) was observed. This was 

surprising given the pre-existing data regarding the kinetic and mechanistic studies on 

the aza-Michael reaction
154-156

 and studies on imine formation (from aldehydes and 

ketones).
157-163           

  
Other groups

164,165 
have utilised α,β-unsaturated imines in synthesis

128,166,167 
and, 

indeed, have reported their preparation via aza-Wittig chemistry,
168

 simple condensation 

and catalytic methods.
56 

In this context, it seemed rational to use a combination of in 

situ IR spectroscopy (ReactIR), NMR and DFT calculations as tools to understand the 

addition of primary amines to α,β-unsaturated aldehydes and ketones  (1,2- vs 1,4-

addition), and the relative rates of reactions thereof.  In particular, ReactIR is a highly 

useful and relatively non-invasive method of analysis which makes it an ideal tool for 

this task. Indeed, groups have monitored air-sensitive catalytic processes
169

 and even 

low-temperature lithiations
170

 using such technology.
171

 

2.2.2 1,2- vs 1,4-Addition of amines to enones and enals 

  Initially it was suspected that the addition of a primary amine (see Scheme 31 - 

R
4
-NH2, where R

4
 = alkyl, aryl) to enals or enones would result in a mixture of 1,2- and 

1,4-addition products. Indeed, it is typically considered that the 1,2-addition product is 

the kinetic product and the 1,4-addition product is the thermodynamic product due to 

the reversibility of the 1,2-addition step via hydrolysis.
172

 This was investigated by the 

addition of benzylamine 80 to crotonaldehyde 59, methacrolein 60 and methyl vinyl 

ketone 81 (whereby the position of the methyl substituent is varied across the 

conjugated C=C-C=O system) with and without 3Å-molecular sieve (3 Å M.S.) beads, 

at 25 ºC as shown in Table 11. Surprisingly, exclusive 1,2- (Entries 1 to 4, Table 11) or 



93 

 

1,4-addition (Entries 4 and 5, Table 13), irrespective of whether 3 Å M.S. were present 

in the reaction mixture, was observed. However, it should be noted that in the case of 

methacrolein 60 the reaction time was significantly longer when compared to the 

reaction where 3 Å M.S. were employed, leading to the 1,2-addition product (see Figure 

14-16 for typical ReactIR data), but more importantly, no 1,4 addition products were 

observed. 1,2-Addition-elimination can be clearly deduced as shown by Figure 14. This 

highlights the reaction profile showing the loss of methacrolein 60 (C=O, 1703 cm
-1

) 

and the concomitant gain of the α,β-unsaturated imine 58 (C=N, 1622 cm
-1

). In 

conjunction, Figure 15 gives the IR spectrum between 1820-1580 cm
-1

, overlaying three 

spectra at separate time intervals, t = 0, 10 and 80 min; therefore, showing that the total 

loss of the starting C=O stretch and the rise of the C=N asymmetric and symmetric 

stretches, with no observable 1,4-addition products at higher wavenumber. Finally, 

Figure 17 shows the ReactIR graphical output, showing the intensity of the stretch 

(arbitrary units, AU) vs wavenumber (cm
-1

), over time. 

 

 

 

 

 

 

 

 

 



94 

 

Table 11 1,2- or 1,4-Addition of BnNH2 80 to crotonaldehyde 59, methacrolein 60 and 

methyl vinyl ketone 81? 

 
Entry Substrate 1- Additive Primary product Time, t (min) IC=O 1/2 (min) 

 

1 

 

2
a
 

 

 

 

3 Å M.S. 

 

- 

 
 

 

135 

 

76 

 

5 

 

5 

3 

 

3 Å M.S. 

 

 

80 11 

4
a - 444 85 

5 

 

3 Å M.S. 

 

85 6 

6
a - 82 14 

 

Conditions: Enone/enal (2 mmol) was added to a stirring solution of toluene (8 mL) and 3 Å molecular 

sieve beads (oven-dried at 250 ºC for >48 h prior to use). BnNH2 (2 mmol) was added and the reaction  

monitored by ReactIR. Reaction vessel was submerged in an oil bath and the temperature was maintained 

at 25 ºC.  
a
 No 3 Å M.S. 

                                                                                                                                             

 

Figure 14 Data from Entry 3, Table 11: Reaction profile showing the loss of 60 (1703 

cm
-1

) and the concomitant formation of 58 (1622 cm
-1

). 
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Figure 15 Data from Entry 3, Table 11: Superimposed IR spectra at t = 0, t= 10 and t = 

80 min, showing the loss of C=O 60 (1703 cm
-1

) and gain of the C=Nasym+sym 58 (1640 

and 1622 cm
-1

, respectively). 

 

 

 

Figure 16 Data from Entry 3, Table 11: ReactIR graphical output showing the reaction 

profile over time (1 sample min
-1

). 
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Furthermore, even when 3 Å molecular sieves were employed, such as in the case of 

methyl vinyl ketone 81, no 1,2-addition product was observed (Table 11, Entries 5 and 

6), just 1,4-addition. This suggested that, in this case, the 1,4-addition product was the 

kinetic product of the reaction. One possible explanation around this is to assume the 

facile and rapid hydrolysis of the imine species (by the water generated from 

condensation), thus providing the free benzylamine 80 to proceed via 1,4-addition. This 

is unlikely given that this was not observed in the case of crotonaldehyde 59 and 

methacrolein 60 when no 3 Å molecular sieves were added to the reaction mixture. 

Again, this can be easily deduced using ReactIR. Figure 17 shows the reaction profile 

whereby the rapid loss of methyl vinyl ketone 81 (at 1686 cm
-1

) and the concomitant 

gain of the β-amino ketone (secondary amine) 82 at higher wavelength (observed at 

1719 cm
-1

). β-Amino ketone 82 was consumed again, presumably due to addition of β-

amino ketone (secondary amine) to methyl vinyl ketone 81, due to increased 

nucleophilicity of the secondary amine when compared to the starting amine 80 and, 

therefore, was observed by the loss of the C=O stretch at 1719 cm
-1

. Indeed, when 

studied in parallel with the ReactIR graphical output (Figure 18), 1,4-addition is clearly 

observed.        
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Figure 17 Data from Entry 5, Table 11: Reaction profile showing the rapid loss of 81 

(1686 cm
-1

) and the concomitant gain of 82 (1719 cm
-1

), followed by the loss of 82 

(1719 cm
-1

), consistent with 1,4-addition, with further self-addition of species 82. 

 

 

 

Figure 18 Data from Entry 5, Table 11: Reaction profile showing the rapid loss of 81 

(1686 cm
-1

) and the concomitant gain of 82 (1719 cm
-1

), followed by the loss of 82 

(1719 cm
-1

), consistent with 1,4-addition, with further self-addition of species 82. 
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2.2.3 1
H NMR Validation of ReactIR

 

In order to validate the ReactIR results shown in Table 12, additional parallel in 

situ NMR experiments in d8-toluene were conducted for the reactions between 

crotonaldehyde 59, methacrolein 60 and methyl vinyl ketone 81 with benzylamine, both 

with and without 3 Å M.S. These results are shown in Table 12 and Figure 19, 20 and 

21, which is complimentary to Table 11 (ReactIR vs. NMR investigation). 

Table 12 
1
H NMR study into the validation of Table 11. 

 

 

 

Entry Substrate Additive Time (min) Conversion (%)
 

    1,2-product 1,4-product 

 

1 

  

3 Å M.S. 

 

310 

 

(90) 

 

0 

2 

 

- 360 (90) 0 

3  

 

 

3 Å M.S. 1320 (86) 0 

4 - 1320 (67) 0 

5  

 

 

3 Å M.S. 140 0 (>99) 

6 - 140 0 (>99) 

Enal or enone (0.18 mmol) was added to an NMR tube (Norell
®
 Standard Series

™
 5 mm x 178 mm NMR 

tubes) containing d8-toluene (0.7 mL) with/without 3 Å M.S. beads (filled 0.7-0.8 mm up the tube, M.S. 

beads oven-dried at 250 ºC for >48 h prior to use), and flushed with Argon and sealed. On the acquisition 

of the first spectrum, benzylamine (0.18 mmol) was added and the next spectrum was acquired in <5 min. 

Subsequent 
1
H NMR spectra were recorded over time with intermittent shaking of the NMR tube to aid 

mixing. 
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The results shown in Table 12 broadly corroborate the findings by ReactIR. Methyl 

vinyl ketone 81, underwent exclusive 1,4-addition with primary amines, indicating that, 

for this substrate, the 1,4-addition pathway is the kinetic pathway. In addition, 

methacrolein 60 and crotonaldehyde 59 appeared to undergo exclusive 1,2-addition, 

suggesting that in these cases the kinetic pathway is the 1,2-additon route. Moreover, 

the presence of 3 Å-molecular sieves did not change the overall reaction outcome, but in 

some cases, the presence of 3 Å molecular sieves appeared to drive the reaction to near 

completion (presumably due to the removal of water), as shown in the case of 

methacrolein 60 (see Entries 3 and 4, Table 12). This was achieved by running in situ 

NMR tube experiments in deuterated solvent (toluene-d8), and monitoring the reaction 

progress over time. 
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Figure 19 NMR-Tube experiment: In situ monitoring by 
1
H NMR spectroscopy of the 

reaction between crotonaldehyde 59 and BnNH2 in toluene-d8, with 3 Å M.S. * Initial 

measurement (0 min) is artificial, due to time lapse from submitting NMR experiment 

and data acquisition (+/-3 min). All subsequent measurements are relative to the 0 min 

spectrum. 

                                                                                                                                           

This method has major advantages over taking aliquots and concentrating in vacuo, 

because this limits the probability of degradation of products (especially the hydrolysis 

of the imine and subsequent 1,4-addition, leading to conjugate addition products).  
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 It should be noted that the reactions appear to take slightly longer in the 
1
H 

NMR experiments. This can be exemplified by comparing the reaction of 

crotonaldehyde 59 and benzylamine in the presence of 3 Å M.S. Indeed, when 

monitored by ReactIR the reaction takes approximately 2.3 hours (Entry 1, Table 11), 

whereas in the NMR tube the reaction takes 5.2 hours (Entry 1, Table 12) to proceed to 

near completion.   

 

 

 

Figure 20 NMR-Tube experiment: In situ monitoring by 
1
H NMR spectroscopy of the 

reaction between methacrolein 60 and BnNH2 in toluene-d8, with 3 Å M.S. 
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Figure 21 NMR tube experiment: In situ monitoring by 
1
H NMR spectroscopy of the 

reaction between methyl vinyl ketone and BnNH2 in toluene-d8, with 3 Å M.S. 

Moreover, this was found to be consistent with direct experience of using such imines in 

synthesis, whereby the longer reaction times in the NMR tube can probably attributed to 

relatively poor mixing, when compared to the experiments using ReactIR. ReactIR 

experiments were conducted in a two-necked round-bottom flask where stirring was 

efficiently achieved. Indeed, this is an additional advantage of ReactIR experiments in 

general, i.e. they can be carried out in the same reaction vessel, scale, stirrer bar, etc., as 

one would carry out any typical experiment. This method can, therefore, be considered 

more representative and reliable compared with the experiments conducte din the 

NMR-tube. 
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2.2.4 Using different solvents and amines  

  The role of the amine and solvent selection (polar or non-polar) on the 

selectivity and rate of reaction with the three previously investigated substrate 

(methacrolein 60, crotonaldehyde 59 and methyl vinyl ketone 81), was investigated; i.e.  

using amines benzylamine 80, aniline 83 and n-butylamine 84 in a non-polar solvent 

(toluene) and a polar solvent (acetonitrile). 

 

Scheme 32 Two rate-determining steps (pH dependent) of imine formation: a) addition 

of the amine to the C=O; b) collapse of the hemiaminal intermediate to give the product 

imine via the loss of water. 

  When comparing Table 13 and Table 14, the first thing to note is that all the 

reactions proceed to completion in <24 h when the reactions are carried out in toluene, 

whereas the reactions in acetonitrile, in some cases, took >24 h (when aniline 83 was 

used). However, irrespective of whether the solvent was non-polar (toluene) or polar 

(acetonitrile), according to Table 11, the reactions proceeded with the same selectivity 

as one would expect, that is crotonaldehyde 59 and methacrolein 60 underwent 

1,2-addition irrespective of the amine and methyl vinyl ketone 81 reacted exclusively in 

a 1,4-fashion with all the amines. In particular, the reaction between aniline 83 and 

crotonaldehyde 59 is interesting due to the rapid consumption of crotonaldehyde 59 and 

the formation of imine 85, where the C=O stretch t1/2 = 9 min (Entry 1, Table 13). 

However, the reaction did not proceed to completion until 6 h later (Figure 22). 
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Table 13 Probing the effects of amine nucleophilicity in toluene. 

 

Entry Substrate  Amine  Major product Time, t 

(min) 

IC=O 1/2 (min) 

1,2- 1,4- 

                   

1 

                        

 

 

PhNH2 

83 

 

85 

                   

365 

 

9 

2  BnNH2 

80 

56  135 5 

3  nBuNH2  

84 

86  96 5 

4  PhNH2 

83 

87  632 16 

5  BnNH2 

80 

58  80 11 

6  nBuNH2 

 84 

88  87 10 

7  PhNH2 

83 

 89 601 50 

8  BnNH2 

80 

 82 85 6 

9  nBuNH2  

84 

 90 55 3 

Standard conditions (see Table 11).   
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Figure 22 Graphical output of Entry 1, Table 13 showing the rapid loss of the C=O 

stretch for 49 and the rise of the C=N stretch of 85 on addition of 83. Processing - 2
nd

 

derivative base-line function was applied. 
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Table 14 Probing the effects of amine nucleophilicity in acetonitrile. 

 

Entry Substrate  Amine  Primary product Entry IC=O 1/2 

(min) 1,2- 1,4- 

                  

1 

                       

  

 

 

 

PhNH2 

83 

 

85 

                    

>1440 

 

57 

2  

 

 

BnNH2 

80 

56  178 5 

3  

 

 

nBuNH2  

84 

86  296 4 

4  

 

 

PhNH2 

83 

87  >1440 42 

5  

 

 

BnNH2 

80 

58  174 14 

6  

 

 

nBuNH2 

 84 

88  145 12 

 

7 

 

 

 

 

PhNH2 

83 

  

89 

 

>1440 

 

474 

 

8 

 

 

 

 

BnNH2 

80 

  

82 

 

84 

 

9 

 

9 

 

 

 

nBuNH2  

84 

  

90 

 

46 

 

3 

Standard conditions, except acetonitrile is used as solvent (See Table 11). 
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Figure 23 Graphical output of Entry 2, Table 15. Addition of 80 to 91 results in the 

slow formation of 94, but no 1,4-addition products were observed. Processing - 2
nd

 

derivative base-line function was applied. 

 

Furthermore, it was generally found that imine formation appears to mirror the loss of 

the enal/enone, thus suggesting that the rate determining step is the addition of the 

amine, and not the collapse of the hemiaminal intermediate (Scheme 32). This is 

consistent with previous kinetic studies on imine formation in neutral media.
173 

  Next, three cyclic enones cyclopentenone 91, cyclohexenone 75 and 3-methyl-2-

cyclohexeonone 92 with benzylamine 80 and aniline 83 were investigated, utilising 

toluene as solvent (see Table 15). It was assumed, given the exclusive 1,4-addition 

observed in the case of methyl vinyl ketone 81, and the increased ring strain of the 

α,β-unsaturated conjugated system would result in the same 1,4-addition pathway as 

observed with the previous methyl vinyl ketone 81. Surprisingly, 1,2-addition was 

observed in all cases. 
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Table 15 Cyclic enones: 1,2- or 1,4- addition with primary amines? 

 

Entry Substrate Amine  Primary product Time, t (h) IC=O 1/2 (h) 

1,2- 1,4- 

 

1 

 

 

 

PhNH2 

83 

 

93 

  

>24 

 

17.4 

2 BnNH2 

80 

94  >24 4.0 

3 

 

PhNH2 

83 

95  >>24 7.4 

4 BnNH2 

80 

96  >24 3.5 

5 

 

 

PhNH2 

83 

97  >>24 -
a 

6 BnNH2 

80 

98  >24 18.8 

Conditions: Enone (2 mmol) was added to a stirring solution of toluene (8 mL) and 3 Å molecular sieve 

beads (oven-dried at 250 ºC for >48 h prior to use). Amine (2 mmol) was added and the reaction was 

monitored by ReactIR. Reaction vessel was submerged in an oil bath and the temperature was maintained 

at 25 ºC. 
a
 Peak intensity = 35% after 24 h. 

 

However, reactions required >24 h for completion, but the time taken for the C=O to 

reach 50% for cyclopentenone 91 and cyclohexenone 75 was surprisingly low, given the 

relatively long reaction time, especially in the cases with benzylamine 80 (See Figure 

23). In particular, 3-methyl-2-cyclohexeonone 92 is significantly less reactive, with the 

reaction only reaching 35% conversion to the α,β-unsaturated imine 98 after 24 h. 
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  This study was continued by examining other linear enones and enals. In 

particular, the role and influence of substituents on the alkene, namely α,β-disubstituted 

enals vs. β-substituted enals, was examined. This was achieved by comparing 

cinnamaldehyde 66 and α-methylcinnamaldehyde 73, and the methyl analogues 

crotonaldehyde 59 and tiglic aldehyde 61. In both cases the β-substituted enals reacted 

significantly faster with benzylamine 80 and aniline 83. Remarkably, the reaction 

between cinnamaldehyde 66 and benzylamine 80 was complete in <10 min, with the t1/2 

being approximately 1 min, as shown in the three superimposed IR spectra at t = 0, 1 

and 9 min, respectively (see Figure 24). 

 

 

 

Figure 24 Superimposed IR spectra at t = 0, t = 1, t = 9 min, showing the loss of 66 

(C=O, 1685 cm
-1

) and the shift of the C=C in 66 (from 1630 to 1644 cm
-1

) on the 

addition of 80.  The concomitant formation of the product C=N 101 stretch (1641 cm
-1

) 

can be observed (Entry 2, Table 16). Processing - 2
nd

 derivative base-line function was 

applied. 
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Figure 25 Graphical output of Entry 11, Table 16. Addition of 83 to 4b results in the 

slow formation of 105, but no 1,4-addition products are observed. Processing - 2
nd

 

derivative base-line function was applied. 

 

To conclude the series of enones, pentenone 101, chalcones 4b and 4a were 

reacted with the amines, benzylamine 80 and aniline 83 in toluene with oven-dried 3 Å 

M.S. sieve beads (at 25 ºC), as shown in Table 5. It is important to note, that enones 

underwent predominantly 1,2-addition with the benzylamine 80 and aniline 83. Indeed, 

the relatively poor nucleophile aniline 83 reacted with chalcone 1l to give the 1,2-

addition product, imine 107, as shown in Fig. 6 (with no trace of 1,4-addition). 

Pentenone 99 was particularly unreactive in comparison with the other chalcones 4a and 

4b; however, no 1,4-addition product was observed under these conditions.  
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Table 16 Probing substituent effects of enals and enones. 

 
Entry Substrate  Amine  Primary product 

 

Time, t 

(min) 

IC=O 1/2 (min) 

1,2- 1,4 

 

1 

 

 
 

 
 

 
 

 

 

 

 
 

 

 

PhNH2 

83 

 

100 

  

78 

 

7 

2 BnNH2 

80 

101  9 1 

3 PhNH2 

83 

102  220 25 

4 BnNH2 

80 

103  202 24 

5 PhNH2 

83 

104  545 28 

6 BnNH2 

80 

57  233 29 

7 PhNH2 

83 

105  >1440 -
a 

8 BnNH2 

80 

106  >1440 165 

9 PhNH2 

83 

107  >1440 139 

10 BnNH2 

80 

108  >1440 115 

11 PhNH2 

83 

109  >1440 517 

12 BnNH2 

80 

110  >1440 108 

Conditions: Enone/enal  (2 mmol) was added to a stirring solution of toluene (8 mL) and 3 Å 

molecular sieve beads (oven-dried at 250 ºC for >48 h prior to use). Amine (2 mmol) was added 

and the reaction was monitored by ReactIR. Reaction vessel was submerged in an oil bath and the 

temperature was maintained at 25 ºC. 
a
 Peak intensity = 55% after 24 h.  
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2.2.5 DFT Study (by Jordi Carbó and Jessica Cid). 

In order to understand the origin of the observed selectivity in the addition of 

amines to the enals and enones, DFT calculations (B3LYP functional) were carried out 

on representative substrates (i.e. crotonaldehyde 59, methyl vinyl ketone 81, 

cyclopentenone 91 and pentenone 99) using MeNH2 as a model of a simple primary 

alkyl amine. These calculations indicated that the kinetic preference for the 1,2- vs. 1,4-

addition pathway depends on the conformational effects operating upon the α,β-

unsaturated aldehydes and ketones. When the C=C and C=O bonds are s-trans to each 

other, the 1,2-addition pathway shows lower energy barriers and in contrast, when they 

are s-cis, the 1,4-addition pathway is preferred (see Figure 26 and Table 17). Indeed, 

one should note literature examples which suggest that the stereochemistry involved in 

the addition of crotyl magnesium chloride to enones is also notably dependent upon the 

enone conformation.
174 

 

Figure 26 The effects of conformational change on the barrier to addition of alkyl 

amines on enones and enals.
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Table 17 NBO orbital energies of π*C=O and π*C=C (in eV); and energy barriers (∆E
≠
 in 

kcal.mol
-1

)
 
for the 1,2- and 1,4-addition of MeNH2 to α,β-unsaturated aldehydes and 

ketones; and NBO second-order perturbative donor-acceptor interaction between the 

Clone pair and the π*C=O orbital at the transition state for 1,4-addition (kcal.mol
-1

). 

 

 C=O E
≠
(1,2) C=C E

≠
(1,4) E

≠
 Comment

               
s-trans 

 

 

0.42  

 

 

33.0 

 

 

0.82 

 

 

38.8 

 

 

+5.8 

 

 

Large E
≠ 

between 1,2- & 

1,4-pathways which show a 

preference for 1,2-addition.  

                  
s-cis 

 

0.41  

 

30.3 

 

1.10 

 

29.0 

 

-1.2 

 

Small E
≠ 

between 1,2- & 

1,4-pathways, but shows a 

small preference for 1,4-

addition. 

                    
s-trans 

 

0.57 

 

35.5 

 

0.86 

 

37.4 

 

+1.8 

 

Small E
≠ 

between 1,2- & 

1,4-pathways, but show 

small preference for 1,2-

addition. 

                     
s-cis 

 

0.63 

 

33.6 

 

0.98 

 

27.1 

 

-6.5 

 

Large E
≠ 

between 1,2- & 

1,4-pathways which show a 

large preference for 1,4-

addition. 

                
s-trans 

 

0.74  

 

36.7 

 

1.18  

 

41.4 

 

+4.7 

 

Both s-cis & s-trans show 

the same trend in 

conformational preference 

for  1,2- vs. 1,4-addition, but 

E
≠ 

for each conformation 

is very large, indicating a 

potential driving force for 

each pathway, that is 

presumably dependent on 

solution state conformation. 

                  
s-cis 

 

0.78  

 

34.7 

 

1.30  

 

30.4 

 

-4.3 

               
s-trans 

 

 

0.80 

 

38.2 

 

1.02 

 

38.9 

 

+0.7 

 

Fixed s-trans conformation 

shows a kinetic preference 

to 1,2-addition. 

Calculations were performed with Gaussian09 (B3LYP functional) and the basis set was 

the 6-31g(d,p).  
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The predominance for 1,2- over 1,4-addition in the s-trans conformation can be 

explained from the relative energy of the acceptor π*-orbitals.
175 

The origin of this 

effect is due to the fact that the energies of the π*C=O orbitals are lower than those of the 

π*C=C orbitals, suggesting that the electrophilic carbon of the carbonyl group is more 

reactive than that of the C=C double bond in the s-trans conformation. Indeed, for 

s-trans conformers, a linear correlation between the computed energy barriers and the 

energies of the π*C=O and π*C=C orbitals was observed (see Figure 27). In contrast, when 

s-cis conformers are considered, no correlation between the activation barriers and the 

energies of the -antibonding orbitals was observed.  

 

Figure 27 Correlation between the computed energy barriers and the energies of the 

C=C and C=O * orbitals in the s-trans isomers.  

 

 In the s-cis conformation, the energy barriers for 1,4-addition pathway 

(E
≠
(1,4)) are lowered significantly (~10 kcal.mol

-1
), with respect to those of the s-trans 

forms (see Table 17).  
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Analogously, calculations have shown that the s-cis conformation of ,-unsaturated 

aldehydes is more reactive towards the addition of dienes.
176

 Houk et at. attributed the 

larger reactivity to the greater electrophilicity of the s-cis conformer and also suggested 

that secondary orbital interactions between the carbonyl and the diene play a key role in 

controlling stereoselectivity.
177

       

 Herein, the NBO analysis shows that the reactivity is not consistent with the 

lower energy of the *C=C orbitals. Instead, we find a clear correlation with a greater 

intramolecular n(C) → *C=O interaction in the transition state (see Table 17). The 

developing negative charge at the -carbon is better delocalized through the *C=O 

orbitals when the C=O and (reacting) C=C bonds are s-cis. For example, in the 

1,4-addition TS of methyl vinyl ketone 81, the NBO n(C) → *C=O interaction energies 

(68 and 75 kcal.mol
-1

) correlate with energy barriers of 37.4 and 27.1 kcal.mol
-1

 for s-

trans and s-cis, respectively. Indeed, the HOMO of the transition states have a strong 

contribution via this interaction, that is, a bonding combination of the p-orbitals of the 

-C-atom and the * orbitals of C=O moiety (see Figure 30). It is important to note that 

in this TS, the axis of the forming C-H bond is bent towards the C=O moiety in an s-cis 

form, whereas, it is bent towards the C(O)-Me in the s-trans form, generating two 

different stereo-configurations (see Figure 30). In summary, electronic effects play a 

major role in determining the kinetic pathway of amine additions to enones and enals. 

That is, conformational change from the s-trans to the s-cis conformers results in 

reversing the relative reactivity of the C=C and C=O functional groups. 
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Figure 28 Representation of the pCα-π*C=O interaction in the HOMO orbital for the 

transition state of the 1,4-addition in the s-cis isomer of 81. 

 

For crotonaldehyde 59, the s-trans conformation is thermodynamically favoured 

over the s-cis conformation by 1.3 kcal.mol
-1

, thereby selectively leading to the 

kinetically preferred 1,2-addition imine product (see Figure 29 for the main geometric 

parameters involved in the computed TS).       

 The computed relative stabilities agree with the results of the high-level 

calculation
178

 and experiments,
179

 in which the s-trans conformers are favoured by 2.1 

and 1.7 kcal mol
-1

, respectively. In addition, vibrational spectroscopic studies showed 

that only the s-cis conformation exists in solution (in small quantities),
179

 indicting that 

only the s-trans reaction pathway is operative. For the aliphatic ketones, such as methyl 

vinyl ketone 81 and pentenone 99, the additional alkyl group most likely induces steric 

repulsion with the double bond, destabilizing the s-trans conformer which results in 

shifting the equilibrium towards the s-cis conformer. In turn, this is more stable by 0.3 

and 0.7 kcal mol
-1

, respectively for 81 and 99. In the case of 81, spectroscopic studies 

revealed that both the s-cis and s-trans conformations existed.
180,181

 Indeed, the energy 

difference between them is reduced to less than 1 kcal mol
-1

.
182
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 Thus, the reaction is likely to proceed through the lowest energy transition states 

available and that means the s-cis pathway. These systems of course, contrast with the 

cyclic enones. Since they can only adopt the s-trans conformation, the kineticically 

preferred reaction pathway becomes the 1,2-addition process. Although the energy 

difference for cyclopentenone 91 is quite small, it follows the same trend as the other s-

trans conformer substrates (see Table 18).  

Table 18 Energy analysis
 
for the 1,2- and 1,4-addtion of MeNH2 to enones and enals 

[energy barrier (∆E
≠
) and reaction energy (∆E) in kcal.mol

-1
]. 

 
 E

≠ 

(1,2a) 

E 

(1,2a) 

E
≠ 

(1,2b) 

E 

(1,2b) 

E
≠ 

(1,4a) 

E 

(1,4a) 

E
≠ 

(1,4b) 

E 

(1,4b) 

 

 

33.0 

 

-4.3 

 

33.8 

 

-2.8 

 

38.8 

 

-9.4 

 

37.4 

 

-10.7 

 

30.3 -4.9 31.2 -4.3 29.0 -14.3 30.3 -12.2 

 

35.5 -1.3 35.5 -0.8 37.4 -16.9 37.5 -15.5 

 

33.6 -1.0 33.4 -0.6 27.1 -16.0 30.2 -18.3 

 

36.7 0.0 36.6 0.6 41.4 -11.1 40.1 -12.4 

 

34.7 0.6 34.6 -0.4 30.4 -14.6 32.1 -11.6 

 

38.2 2.2 38.9 2.5 38.9 -12.3 40.1 -12.4 

   



118 

 

  Comparing the different substrates, it was observed that the computed overall 

energy barriers for the preferred reaction pathways follow the order: aliphatic ketone < 

aldehydes < cyclic ketones. This is in line with experimental results and supports the 

idea that the nucleophilic amine addition is the rate-determining step under these non-

acidic conditions. As expected, and in all cases, the 1,4-products are thermodynamically 

favoured over the hemi-aminal intermediates resulting from the 1,2-addition mode. 

 
Figure 29 Molecular structures and geometric parameters of the transition states for the 

1,2- and 1,4-addition of MeNH2 to crotonaldehyde 59. Distances in Å. 

N 

N 

N 

N 

O O 

O O 

TS1a (1,2) s-cis TS1a (1,4) s-cis 

TS1a (1,2) s-trans TS1a (1,4) s-trans  

1.19 

1.39 

1.62

 

 1.39 

 1.39 

1.52

 

 1.39 

 1.39 

1.28

 

 1.39 

 1.39 

1.53

 

 1.39 

 1.39 

1.39

 

 1.39 

 1.39 

1.63

 

 1.39 

 1.39 

1.19

 

 1.39 

 1.39 

1.59

 

 1.39 

 1.39 
1.22

 

 1.39 

 1.39 1.58

 

 1.39 

 1.39 
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Figure 30 Molecular structures and geometric parameters of the transition states for the 

1,2- and 1,4-addition of MeNH2 to methyl vinyl ketone 81. Distances in Å. 

 

Thus, not only is the 1,2-addition product kinetically controlled, but also, the 

1,4-addition product is observed for methyl vinyl ketone 81, which is kinetically 

preferred as a direct consequence of the conformation change that occurs.    

  Upon expanding the scope of the substrates examined by the DFT calculations, 

we were surprised to find that the other linear enones prefer to give the 1,2-addition 

products. This supports the results obtained from the ReactIR and in situ 
1
H NMR 

studies. Following on from methyl vinyl ketone 81 to pentenone 99, the calculated 

barriers showed the same pattern as previously identified; however, for the 1,4-addition 

to C=C, they were found to be somewhat higher for pentenone 99 (i.e. by around 3 

kcal.mol
-1

) than methyl vinyl ketone 81, as expected for a substrate with an electron-

donating substituent on the C=C (1j).  

  

N 

N 

N 

N 

O 

O 

O 
O 

TS1c (1,2) s-cis TS1c (1,4) s-cis 

TS1c (1,4) s-trans TS1c (1,2) s-trans 

1.37

 

 1.39 

 1.39 

1.66

 

 1.39 

 1.39 

1.20

 

 1.39 

 1.39 

1.54

 

 1.39 

 1.39 

1.27

 

 1.39 

 1.39 

1.51

 

 1.39 

 1.39 

1.37

 

 1.39 

 1.39 

1.20

 

 1.39 

 1.39 1.66

 

 1.39 

 1.39 

1.62

 

 1.39 

 1.39 
1.21

2

 

 1.39 

 1.39 

1.56

 

 1.39 

 1.39 
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  To understand the origin of selectivity on the addition of amines to enals and 

enones, DFT calculations were performed (B3LYP functional) on representative 

substrates (crotonaldehyde 59, methyl vinyl ketone 81, cyclopentenone 91 and 

pentenone 99) using methylamine as a model of primary alkyl amines.  Calculations 

indicated that the kinetic preference for 1,2- or 1,4-addition pathway depends on the 

conformation of the α,β-unsaturated aldehydes and ketones(s-cis or s-trans). When the 

C=C and C=O bonds are s-trans to each other the 1,2-addition pathway shows lower 

energy barriers, while when they exhibit a s-cis relationship the 1,4-addition pathway is 

favoured (see Table 17). The energy of the π*C=O orbitals is lower than that of the π*C=C 

orbitals suggesting that the electrophilic carbon of the carbonyl group is more reactive 

than the one of the C-C double bond. Indeed, for s-trans isomers, a linear correlation 

between the computed energy barriers and the energy of the π*C=O and π*C=C orbitals 

(see Figure 27) was identified. On the other hand, for the s-cis conformation the 

conjugative effects seem to increase the electrophilicity of the olefinic (C=C) group 

significantly, inverting the relative reactivity of the two functional groups (see Table 

17). In fact when s-cis isomers are considered, there is no observed correlation between 

the activation barriers and the energies of the π
*
-orbitals. This supports the idea that the 

inversion of the selectivity in s-cis isomers involves additional electronic effects related 

to conjugation. 

2.2.6 Imine study conclusions 

The relative reactivity of enones and enals with primary amines have been 

examined by looking into the competitive 1,2- vs. 1,4-addition pathway using a 

combination of in situ IR spectroscopy (ReactIR), NMR and DFT calculations.  

 In situ IR spectroscopy (ReactIR) revealed that enones and enals undergo either 
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1,2- (to C=O) or 1,4-addition (to C=C) with primary amines (with or without the 

addition of 3 Å M.S.). This, therefore, suggested that the formation of α,β-unsaturated 

imines (formed through 1,2-addition to C=O) is under kinetic control for all enals and 

most enones. However, compounds such as methyl vinyl ketone showed exclusive 1,4-

addition, suggesting that 1,4-addition products, i.e. β-amino ketones, are kinetically 

favoured in this case.          

 A ReactIR investigation, conducted in parallel with a series of 
1
H NMR 

experiments, allowed for confirmation of the results, with regards to the validity of the 

observations made by ReactIR. Indeed, in situ NMR appeared to validate such methods 

with great success.  

In collaboration Jordi Carbó and Jessica Cid, attention was turned to a 

theoretical explanation for the observations made by ReactIR and 
1
H NMR. Indeed, 

DFT calculations clearly indicate that the selectivity in these addition reactions is 

governed entirely by conformational and stereoelectonic effects: s-trans conformations 

kinetically favour 1,4-additions; s-cis conformations kinetically favour 1,2–additions, 

and substitution effects can cause conformational swap over due to steric effects. 

 The rationalisation of the interplaying effects involved in preparing 

α,β-unsaturated imines from enals and enones makes the preparation and utilisation of 

the resulting α,β-unsaturated imines in situ more predictable. The clean and selective 

formation of such imines in situ has already proven highly valuable for reacting with 

boryl nucleophiles,
183

 and it is expected that these results offer the potential for wider 

applications in synthesis. 
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2.3 Base-free β-boration 

This section (2.3) was carried out with Dr Cristina Solé at the Universitat Rovira i 

Virgili for three months in 2012 (September-December), under the supervision of Prof 

M. Elena Fernández. 

2.3.1 Discovering 1,2-boration of α,β-unsaturated imines. 

It was previously shown that the preparation of α,β-unsaturated imines in situ 

could be utilised as suitable platforms for β-boration and other sequential 

transformations (see section 2.1). In addition, it had been previously observed that the 

combination of a chiral ligand (usually a phosphine), copper-salt and base, with the 

appropriate additive (alcohol), allows for the asymmetric β-boration of α,β-unsaturated 

carbonyls and their analogues (see section 1 for a complete review of this area).  
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Table 19 Asymmetric β-boration of α,β-unsaturated aldimines. 

 
Entry L (%) Conv. 66 (%)

a 
Conv. 111 (%)

a 
e.e. 67 (%)

b 

 

1 

 

PPh3 (6) 

 

83 

 

17 

- 

2 

 
L16 (3) 

26 74 0 

3 

 
L6 (3) 

14 86 11 

4 

 
L19 (3) 

31 69 0 

5 

 
L18 (3) 

14 86 7 

6 

 
L12 (6) 

12 88 0 

7 

L22 (3) 

22 78 5 

0.25 mmol Scale: 66: CuCl (3%), L (3-6%), NaOtBu (20%), 3 Å M.S. (250 mg) and THF (1.3 mL) were 

stirred for 15 min under argon.  B2pin2 (1.1 equiv.) is added under argon.  After 10 min, enal and amine 

(0.25 mmol) are simultaneously added to the prepared catalyst mixture, followed by the addition of 

MeOH (2.5 equiv.). The resulting mixture is stirred under argon for 16 h. After 16 h, NaBH4 (3 equiv.) 

and MeOH (0.5 mL) was added, and allowed to stir for 3 h. All the solvent was removed under vacuum 

and replacd with THF (2 mL). Oxidation was achieved by the addition of H2O2 (3 equiv.) and NaOH (3 

equiv.) solutions to give the resulting γ-amino alcohol.
a
 Determined by 

1
H NMR analysis. 

b
Determined by 

chiral HPLC-UV. 
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The investigation of the potential asymmetric β-boration of α,β-unsaturated imines was 

initially probed on the in situ-formed α,β-unsaturated imine 101, derived from the 

reaction between cinnamaldehyde 66 and benzylamine 80. This was achieved by 

probing different ligands, as shown in Table 19. 

Curiously, ligands that usually perform well in such asymmetric β-borations, 

performed particularly poorly (see Entries 2-6, Table 19) in this case, in both 

enantioselectivity and conversion of the starting enal to the target β-boryl imine. It is 

important to note that these results were repeated several times and, indeed, the reaction 

outcome was the same. 

 

 

Scheme 33 Two extreme scenarios of the one-pot methodology: a) No β-boration, with 

sequential reduction and oxidation gives the allylic amine product 111; b) Total 1,2-

boration of the C=N, with sequential reduction and oxidation gives the allylic amine 

product. 

 

To investigate the observed inefficiency of the reaction shown in Table 19,
 1

H 

NMR spectra were acquired after the β-boration step in each example (Entries 1-7, 

Table 19). Surprisingly the presence of allylic species, identified by the characteristic 

olefinic H-peaks; however, no (H)C=N-peak, observed in crude reaction mixture was 

unexpected, because this had not been previously observed in such imine systems. 

However, due to late-stage 
1
H NMR analysis, after the subsequent transformations in 
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this one-pot methodology, such as the reduction of the imine (C=N) functionality and 

the oxidation of the C-B to the analogous secondary alcohol, these transformations 

prevented such allylic species being identified. Indeed, it is not possible to distinguish 

between poor conversion (β-boration, with subsequent reduction to give the allylic 

amine) and competitive 1,2-boration, because they yield the same allylic amine product 

(see Scheme 33). 

 Due to the observed 1,2-boron addition in α,β-unsaturated aldimines, it was 

decided that it would be more appropriate to examine the asymmetric β-boration of α,β-

unsaturated imines derived from enones (not susceptible to 1,2-addition).  

2.3.2 In situ or preformed imines? 

When it was first observed that α,β-unsaturated imines, formed in situ (see 

section 2.1), allowed for the formation of the corresponding β-boryl imine, it was 

uncertain whether this had implications on the asymmetric β-boration process, when 

compared to that of the asymmetric β-boration of preformed α,β-unsaturated imines.

 With the aim of increasing our understanding the asymmetric β-boration of in 

situ (enone and amine added directly to pre-catalyst solution) vs. preformed α,β-

unsaturated imines was compared and the results are compiled in Table 20. 

Interestingly, it was found that α,β-unsaturated imines, formed in situ, gave comparable 

conversion to the β-boryl imine. However, significant differences were observed in the 

enantioselectivity of the reaction. In particular, when the phosphoramidite L12 was 

employed, a significant difference in enantioselectivity was observed between in situ 

(e.e. 89%) and preformed (e.e. 13%) α,β-unsaturated imines (Entries 2 and 8, Table 20, 

respectively).  
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Table 20 Investigating In situ vs. preformed imine methodology. 

 

Entry L (%) R
1
 Pathway A / B

a 
Conversion (%)

c 
e.e. (%)

d 

    112 113 113 

 

1 
 

 
L3 

 

Bn 

 

A 

 

0 

 

>99 

 

33 

2 

 
L12 

Bn A 0 >99 89 

3 

 
L21 

Bn A 35 65 69 

4 

L18 

Bn A 24 76 76 

5 

 
L16 

Bn A 0 >99 56 

6 

L20 

Bn A 0 >99 37 

7 L3 Bn B 12 88 52 

8 L12 Bn B 0 >99 13 

9 L21 Bn B 10 90 31 

10 L18 Bn B 0 >99 31 

11 L16 Bn B 0 >99 23 

12 L20 Bn B 0 >99 <5 
a
Pathway A: Enone and amine (0.25 mmol, 1:1) were added to catalyst. Pathway B: α,β-Unsaturated 

imine was formed from the corresponding enone and amine (0.25 mmol, 1:1) over night in the presence 

of 3 Å M.S., THF, and a was transferred to catalyst without further purification. 
b
 Assuming 0.25 mmol of 

substrate. CuOTf (2%), L (2%, bidentate or 4% monodenate), NaOt-Bu (9%), B2pin2 (1.1 equiv.), MeOH 

(2.5 equiv.), 3 Å M.S. (250 mg), THF (1.5 mL). 
c
 Determined by 

1
H NMR spectroscopy. 

d 
Determined by 

chiral-HPLC. 

This result was hard to explain at this point, but this inspired further studies into the role 

of copper, and the presence of free amine in the β-boration catalytic process.  
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2.3.3 Why use copper(I) chloride? 

Ma et al. recently (2012) reported an interesting and highly enantioselective 

protocol for the β-boration of α,β-unsaturated N-acyloxazolidinones, in which the 

enantioselectivity was achieved using a chiral bicyclic 1,2,4-triazolium salt.
184

 This was 

later expanded to a full manuscript, highlighting that this protocol is applicable to scale-

up.
185

 Unlike most β-boration methodologies, they utilised Cu2O instead of CuCl. With 

this in mind, various copper-salt and amine combinations were undertaken in the in situ-

imine formation/β-boration sequence (see Table 21).     

 In the context of developing cheaper and more sustainable chemical process, 

attention was turned to streamlining this process by removing the alkoxide base 

(normally required in copper-catalysed β-boration, see Scheme 16) and using the readily 

available BINAP L16 ligand.   
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Table 21 Probing the influence of amine concentration on e.e. and conversion. 

 
  Conv. (%)

a 
e.e. (%)

b, f 

Entry Cu(I) RNH2 (%) 6a (%) 113 (%) 6a (%) 113 (%) 

       

1 CuCl - - - - - 

2 CuCl BnNH2 (10) 21 3 21 (S) nd 

3 CuCl BnNH2 (25) 32 3 22 (S) nd 

4 CuCl BnNH2 (50) - 36 - 89 (S) 

5 CuCl BnNH2 (100) - 71 - 85 (S) 

6 Cu2O - - - - - 

7 Cu2O BnNH2 (10) 37 6 16 (S) 99 (S) 

8 Cu2O BnNH2 (25) 32 21 22 (S) 99 (S) 

9 Cu2O BnNH2 (50) 11 46 nd 95 (S) 

10 Cu2O BnNH2 (100) - 99 - 95 (S) 

11
c 

Cu2O BnNH2 (100) - 99 - 93 (S) 

12
d 

Cu2O BnNH2 (100) - 99 - 95 (S) 

13
e 

CuO BnNH2 (100) - 71 - 73 (S) 

14 Cu2O nBuNH2 (100) - 99 - 27 (S) 

Reaction conditions: substrate (0.25 mmol), CuCl (3 mol%) or Cu2O (1.5 mol%), L16 (3 mol%), B2pin2 

(1.1 equiv.), MeOH (2.5 equiv.), THF (1 mL), 25 
o
C, 16 h. 

a
 Conversion and selectivity calculated from 

consumed substrate determined by 
1
H NMR spectroscopy. 

b 
e.e. Calculated by using HPLC–UV 

spectroscopy as an average of two results. 
c 
Cu2O (1.5 mol%), L16 (6 mol%). 

d
 Cu2O (3 mol%), L16 (6 

mol%). 
e
 CuO (3 mol%), L16 (6 mol%). 

f 
e.e. Calculated based on the hydrolysed imine (parent ketone) 

as determined by HPLC–MS. 

 

Firstly, it was observed that no reaction occurs in the absence of amine, regardless of 

the fact that enone 4a is a common Michael acceptor in such β-boration reactions 

(Entries 1 and 6, Table 21), but when the amine loading is increased (0-100%), β-

boration is achieved.  

The combined conversion to either the β-boryl ketone 6a or the β-boryl imine 

113 is greater than that of the added amine. Indeed, when benzylamine (10%) is 

employed, the combined conversion to 6a and 113 is greater than 24%, when a 10% 
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loading of amine was added (10%). This suggests that the free amine plays a role in the 

catalytic process. It is important to note the recent advances in amine catalysis, and their 

role in activating enals and enones towards potential nucleophiles.
186

   

When Cu2O was utilised as the copper source in the β-boration reaction (Table 

21), the reaction efficiency was notably better than CuCl. Indeed, when stoichiometric 

benzylamine was added, the reaction gave complete conversion to the β-boryl imine 113 

(>99%, see Entry 10, Table 21). This is in contrast to that of CuCl which gave a poorer 

conversion to the β-boryl imine 113 (71%, see Entry 5, Table 21). Furthermore, Cu2O 

performed better than CuCl in not just efficiency, but also allowed for the 

enantioselective synthesis of 113 in 95% e.e. (%, see Entry 10, Table 21). It was also 

noted that on increased amine loading, the enantioselectivity of the catalytic process 

decreased from 99% e.e. to 95% (on increasing amine loadings from 10-100%). It 

should be noted that CuO showed comparable activity to that of CuCl, but with 

diminished enantioselectivity (see Entry 13, Table 21).    

 Once it had been established that the presence of free amine in the in situ imine 

formation/β-boration reaction does indeed play an important role in both the catalytic 

efficiency (judged by conversion to the product β-boryl imine) and enantioselectivity, 

the β-boration of the preformed α,β-unsaturated imine was probed. This was carried out 

using various copper salt and base combinations (see Table 22). Cu2O proved highly 

efficient in the catalytic β-boration. However, it should be noted that the 

enantioselectivity was slightly less than (87%, see Entry 1, Table 22) previously 

observed when free amine was present (95%, see Entry 10, Table 21). Interestingly, 

when (MeCN)4CuPF6 was employed both the conversion and enantioselectivity was 

comparable to when Cu2O was employed (see Entry 6, Table 22). 
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Table 22 Choosing the right copper-source. 

 
Entry Imine 

110/114 

Cu (3%) Base (%) Conv. 115/116  

(%)
a 

e.e.  

115/116 (%)
b,c 

 

1 

 

110 

 

Cu2O 

 

- 

 

>99 

 

87 

2 110 CuCl - - - 

3 110 CuCl BnNH2 (10) - - 

4 110 CuCl CsCO3 (10) 99 0 

5 110 CuCl NaOtBu (10) 99 0 

6 110 (MeCN)4CuPF6 - 99 85 

7 110 CuO - 15 69 

8 114 Cu2O - 99 7 

9 114 (MeCN)4CuPF6 - 99 8 

10 114 CuCl - - - 

Reaction conditions: a,b-unsaturated imine (0.25 mmol), CuCl (3 mol%)/L16 (6 mol%), (CH3CN)4CuPF6 

(3 mol%)/L16 (6 mol%) or Cu2O (1.5 mol%)/L16 (3 mol%), B2pin2 (1.1 equiv.), MeOH (2.5 equiv.), 

THF (1 mL), 25 
o
C, 16 h. 

a
 Conversion calculated from consumed substrate determined by 

1
H NMR 

spectroscopy. 
b
 e.e. Calculated by using HPLC-UV spectroscopy as an average of two results. 

c
 e.e. 

Calculated based on the hydrolysed imine (the parent ketone) by using HPLC–MS. 
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 On screening various copper-ligand-base combinations, some interesting 

observations were made, particularly in the utilisation of Cu2O instead of CuCl, and the 

presence of free-amine when carrying out a tandem imine-formation/β-boration. In this 

context, alternative metal-salts were investigated to examine their catalytic activity in 

the β-boration reaction. Disappointingly, Ag2O and FeO were found to be inactive (see 

Entry 1-2, Table 23). It is important to note that the control reaction, in which no metal 

salt was utilised, is shown in Entry 3, Table 23. Furthermore, no activity was observed 

under these conditions, therefore excluding any potential organocatalytic (see Scheme 

13 for organocatalytic activation of diboron regents towards conjugate addition) routes 

as being responsible for the observed β-boration. 

Table 23 Probing other metals in the β-boration reaction. 

 
Entry Metal Salt (%) Conv. 115 (%)

a 
e.e. 115 (%)

b 

 

1 

 

Ag2O 

 

0 

 

0 

2 FeO 0 0 

3 No Metal 0 0 

Assuming 0.25 mmol of substrate: Metal salt(0-3%), L (3%), 3 Å M.S. (250 mg) and THF (1.300 mL) 

were stirred for 15 min under argon.  B2pin2 (1.1 equiv.) is added under argon.  After 10 min, enone and 

benzylamine (0.25 mmol, 1:1) are simultaneously added to the prepared catalyst mixture, followed by the 

addition of MeOH (2.5 equiv.). The resulting mixture is stirred under argon for 16 h. 
a 
Determined by 

1
H 

NMR analysis. 
b
Determined by chiral HPLC-UV. 
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2.3.4 Scope of base-free methodology 

Previous investigations on the base-free β-boration were conducted on chalcone 

derivatives (e.g. 4a and 4b, see previous section 2.3.3). Indeed, it was desirable to 

understand whether this process was general and, therefore, could be applied to a broad 

range of substrates. This was investigated (see Table 24) on a series of linear enones 

(Entries 1-12, Table 24), chalcone derivatives (Entries 13-20, Table 24) and a cyclic 

enone (Entries 21- 24, Table 24) with a selection of chiral ligands (Figure 31). Indeed, 

this methodology was highly successful, resulting in the β-boration of linear and cyclic 

enones (see Table 24) to the β-boryl imine.  It should be noted that key intermediates 

towards the synthesis of enantio- and diastereomerically enriched γ-amino alcohol 

within the Whiting and Fernández groups.
64

 

 

Figure 31 Chiral ligands L. 



133 

 

Table 24 Investigating the substrate scope of the base-free methodology. 

 
Entry Substrate L (%) Conv. (%)

a 
e.e. (%)

b,c 

 

1 

2 

3 

4 

 

 

 

 

 

L16 

L17 

L6 

L19 

 

55 

63 

68 

54 

 

66 

61 

50 

80 

5 

6 

7 

8 

 

 

 

L16 

L17 

L6 

L19 

70 

93 

90 

52 

62 

60 

64 

73 

9 

10 

11 

12 

 

 

 

L16 

L17 

L6 

L19 

71 

77 

58 

64 

70 

66 

64 

92 

13 

14 

15 

16 

 

 

 

L16 

L17 

L6 

L4 

 

99 

99 

99 

99 

48 

47 

58 

35 

17 

18 

19 

20 

 

 

 

L16 

L17 

L6 

L4 

 

67 

71 

85 

99 

86 

82 

49 

35 

21 

22 

23 

24 

 

 

L16 

L17 

L6 

L18 

99 

99 

97 

20 

39
d 

65
d
 

30
d
 

92
d
 

Conditions: a,b-unsaturated imine (0.25 mmol), Cu2O (3 mol%), L (6 mol%), B2pin2 (1.1 equiv.), 

MeOH (2.5 equiv.), THF (1.3 mL), 25 
o
C, 16 h. 

a
 Conversion calculated from consumed substrate 

determined by 
1
H NMR spectroscopy; isolated yield in parentheses. 

b
 e.e. Calculated by using 

HPLC–UV spectroscopy as an average of two results. 
c
 e.e. Calculated based on the hydrolysed β-

borated ketone by using HPLC–MS. 
d
 CuCl (3 mol%), NaOtBu (3 mol%), L (3 mol%). 
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2.3.5 Mechanism of base-free β-boration 

The mechanism of copper-catalysed β-boration has been discussed previously 

(Scheme 16). Generally, the presence of a base (usually an alkoxide) is required to form 

a copper alkoxide species which, on addition of a suitable diboron reagent (e.g. B2pin2) 

and ligand, readily undergoes σ-bond metathesis with the diboron compound to form 

the active ligated-copper-boryl nucleophilic species. 

 

Scheme 34 Base free β-boration (with and without amine additives). 

Initial observations showed that enone 4a was unreactive in the Cu2O base-free 

system. The addition of an amine resulted in quantitative transformation of enone 4a to 

the β-boryl imine 115 (see Scheme 34). Furthermore, the preformed imine is reactive 

under these conditions; however, the enantioselectivity is slightly lower under these 

conditions (87% e.e., see Entry 1, Table 22), thus suggesting a beneficial effect as a 

result of free amine in the catalytic system. 
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Scheme 35 Proposed mechanism of the base-free β-boration methodology. 

Mechanistic elucidation is challenging in such complex catalytic system and, indeed, 

can be often difficult to elucidate.
187, 188 

Nevertheless, it is clear that: 

 Enone 4a is unreactive under these conditions; 

 α,β-unsaturated imine 110 is reactive under these conditions; 

 forming imine 110 in situ, thus providing a large surplus of free amine, results in 

higher enantioselectivity (to 115) than that of the preformed imine. 

Therefore a mechanism or catalytic cycle must accommodate these observations. 

Indeed, it is suggested in Scheme 35 that Cu2O can undergo σ-bond metathesis to form 

the copper methoxide (or hydroxide) species. Moreover, this process might be 

facilitated by free-amine, available through dynamic equilibria, coordinating to copper 

and therefore aiding σ-bond metathesis and improving catalytic activity. Such copper 
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alkoxides or hydroxides are accepted catalytically active species in the copper-catalysed 

β-boration reaction (see Scheme 16). 

 

Figure 32 Monitoring the base-free β-boration by ReactIR. 

 Further mechanistic studies were conducted using in situ IR spectroscopy (see 

Figure 32). It was clear from this analysis that the reaction appears to proceed through 

one primary pathway. Indeed, the loss of enone 4a (C=O stretch) appeared to mirror the 

concurrent rise in the product imine 115 (following C=N). This was deemed consistent 

with the formation of imine 110 followed by β-boration, and not β-boration of enone 4a 

(with subsequent imine formation of 6a).  
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2.3.6 Summarising the base-free methodology 

Through aiming to develop the analogous asymmetric one-pot methodology, as 

introduced in Section 2.1, it was identified that α,β-unsaturated imines, derived from 

enals, are susceptible to 1,2-addition of the nucleophilic copper-boryl nucleophile. This 

was only a minor problem when such species are ligated with PPh3 and, therefore, was 

not identified earlier. However, on the application of chiral phosphine ligands, 1,2-

addition became the predominant reaction pathway, presumably through increased 

nucleophilicity of the copper-boryl adduct. This forced a change in project direction. 

This change in direction allowed for the exploration and development of a base-free 

β-boration methodology. Moreover, this allowed for a direct comparison between 

forming imines in situ and preforming them, with their subsequent transformation in 

situ. This allowed for a more streamlined, efficient and highly enantioselective process 

to be developed, which gives access to chiral γ-amino alcohols, based on previous 

derivatisation methods within the group(s).
60,64

 It became apparent that a methodology, 

limited in application to enones, would be a major disadvantage. Controlling and, 

indeed, stopping 1,2-addition was investigated. This will be discussed in the following 

section (2.4). 
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2.4 Selective transformation of enals into γ-amino alcohols 

The addition of copper-boryl nucleophiles to α,β-unsaturated aldimines, when 

modified with chiral phosphines,  proceed via a 1,2-addition pathway (see section 2.3). 

This section deals with: 1) the 1,2-addition pathway; 2) the nature of the R-group (C=N-

R) attached to the nitrogen of the imine functionality and; 3) overcoming such 1,2-

addition via the use of N-benzhydryl derived aldimines. 

2.4.1 The problem with 1,2-addition     

           The addition of boron nucleophiles to prochiral electron-deficient alkenes has 

been described previously (section 1).  However, it has been noted in the literature that 

α,β-unsaturated aldehydes suffer from competitive 1,2-boron addition
73

 and, therefore, 

the synthesis of β-boryl aldehydes is a challenge (see Figure 33a). Indeed, it should be 

noted that Sadighi et al. unambiguously demonstrated the insertion of an aldehyde into 

a copper-boron bond, ultimately leading to the 1,2-diboron product (C- and O-bound 

boryl units).
189

 Moreover, evidence for such species was obtained in solution and the 

solid state (X-ray crystallography of NHC-Cu-Bpin species).
70

   

 Previously, preformed copper-alkoxide catalysts have proved to efficiently 

interact with B2pin2 1 via σ-bond metathesis, which demonstrated an improved 

selectivity (1,2- vs 1,4-addition) in the β-boration of α,β-unsaturated aldehydes.
190

 

However, the asymmetric induction of the Cβ-B bond formation was originally afforded 

in modest e.e. when chiral N-heterocyclic carbene (NHCs) modified copper-salts were 

used. The direct activation of B2pin2 with chiral NHCs favoured the formation of 

enantioenriched mixtures of β-boryl aldehydes with e.e. values up to 90%, despite large 

amounts of base and MeOH (30 mol% and 60 equiv. respectively) being required.
73 
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Moreover, this methodology was limited to β-aryl substituted α,β-unsaturated 

aldehydes. Alternative approaches to promote the selective 1,4-boryl addition to enals 

were postulated on the basis of iminium intermediates, both in copper-mediated-

reactions
77

 and organocatalytic reactions.
76      

 
Alternative approaches to promote the 1,4-addition pathway (β-boration) in 

enals were proposed on the basis of using iminium intermediates, both in 

copper-mediated
77

 and organocatalytic reactions.
76

 However, only when CuOTf/PPh3 

catalysed the reaction in the presence of a chiral proline-derived co-catalyst could the 

resulting β-borated product be formed with moderate to high e.e. (up to 95%), as proved 

by conversion of the β-boryl aldehyde intermediates into enantioenriched mixtures of 

homoallylboronates (through Wittig chemistry).
76 

The use of an organic acid as an 

additive (2-fluorobenzoic acid) was required in order to accelerate the catalytic cycle of 

the iminium ion formation, hence providing the selective 1,4-addition product in this 

process.          

2.4.2 Stopping 1,2-boration of α,β-unsaturated aldimines 

To access γ-amino alcohols using one-pot protocols, through organoboron 

intermediates,
8
 a highly selective copper-catalysed β-boration of in situ formed enone 

and enal-derived α,β-unsaturated imines, with subsequent C=N reduction and C-B 

oxidation was developed (see this section, 2.4).
9
 Furthermore, the four steps were 

efficiently carried out without isolation of intermediates, allowing for the overall high 

mass recovery. In addition, the substrate scope was open to β-alkyl and β-aryl 

substituted α,β-unsaturated aldehydes (see upcoming sections).  

Focus was turned to the enantioselective version of this straightforward 

methodology to establish a new protocol to induce enantioselectivity in the β-borylation 
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step through the use of chiral phosphine ligands, i.e. to modify the copper-catalytic 

system (see Figure 33c).   

 

Figure 33 Competitive 1,2- vs 1,4-addition in different electron-deficient alkenes. 

 

 The advantage of using α,β-unsaturated aldimines as borylation substrates is 

based on the complete selectivity on the 1,4-addition as a result of steric hindrance of 

C=NR bond versus C=O (Table 25). Indeed, a comparative study of the selective 

β-boration of 2-hexenal 116 and the β-boration of the corresponding imines formed in 

situ by condensation with benzhydrylamine (Ph2CHNH2), benzylamine, 

pMeO-benzylamine and n-butylamine. Subsequent hydrolysis of the β-borated imines 

(Scheme 36) thus provided the β-borated aldehyde with higher selectivity than the direct 

β-boration of 2-hexenal 116. In the β-boration of the α,β-unsaturated imine formed from 

n-butylamine, the selectivity dropped significantly, which is consistent with the reduced 

steric hindrance around the C=N bond (Table 25, Entry 5). 
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Table 25 Controlling 1,2- vs 1,4-boration with the use of sterically bulky amines. 

 
Entry Amine Conv. 118 (%)

b 

                                                    

1 

                                                -                                            

63 

2  pMeO-Ph-NH2 99 

3  BnNH2 99 

4  Ph2CHNH2 99 

5  nBuNH2 75 

a
 0.25 mmol scale reaction: 2.00 mmol (1:1, amine: enal) was stirred in THF (8 mL) and 3 Å M.S. (2.0 g) 

for 16 h, after which a 1 mL aliquot was transferred to a Schlenk-tube (under Ar) containing Cu(I) salt (3 

mol%), PPh3 (6 mol%), NaOtBu (9 mol%) and B2pin2 (1.1 equiv.). After 5 min, MeOH (2.5 equiv.) was 

added to the solution and the reaction was stirred 6 h. 
b 
Determined by 

1
H NMR. 

 

It was found that benzhydrylamine provided sufficient steric hindrance to 

guarantee the complete selective β-boration of 2-hexenal 116. For that reason, attention 

was turned to β-aryl and β-alkyl substituted enals to explore the viability of this 

methodology. Furthermore, the in situ formation of imine 119, derived from 

cinnamaldehyde 66 and benzhydrylamine, could be monitored using ReactIR (see 

Figure 34 and Table 26). Indeed, it should be noted that if this reaction is conducted in 

IPA, a white precipitate (imine 119) forms throughout the reaction [see work of Alba 

Pujol, Whiting & Fernández group(s), from 2013]. Taking an aliquot of the suspension 

and adding several drops of toluene results in the formation of a clear, colourless 

suspension which, upon slow and gradual evaporation yielded a pale yellow, crystalline 

solid. This crystal was of sufficient purity to allow for the crystal structure (see Figure 

35) to be acquired.  
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Figure 34 ReactIR graphical output showing the reaction between 66 and 

benzhydrylamine to give the α,β-unsaturated imine 119. 

 

 
Figure 35 X-ray crystal structure of α,β-unsaturated imine 119. 
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Table 26 ReactIR studies on imine formation. 

 

Entry Substrate Product  t / min (h) t1/2/ min 

 

1 

 

                    

66                       

119 

  

270 (4.5) 

 

22 

 

2 

 

120  
121 

  

300 (5) 

 

54 

 

3 

 

122 

 

123 

  

480 (8) 

 

55 

 

4 

 

 

116 
 

124 

  

420 (7) 

 

28 

 

5 

 

 

125 
 

126 

  

480 (8) 

 

30 

 

6 

 

 
59  

127 

  

300 (5) 

 

29 

Conditions: Enal (1 mmol) was added to a stirring solution of THF (4 mL) and 3 Å-molecular sieve 

pellets. Amine (1 mmol) was added to the stirring solution and the reaction was monitored by ReactIR 

until the complete loss of the C=O stretch had been observed.
a
 Time for total loss of C=O and the 

emergence of the new species. 
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2.4.3 Highly enantioselective β-boration 

The next challenge of this methodology was to examine a series of chiral ligands 

(see Figure 36) in the β-borylation of imine 119 (formed in situ).  

 

Figure 36 Chiral Ligands, L. 
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Table 27 Screening chiral ligands in the enantioselective preparation of 128. 

 
Entry L (%) Cu(I) (%) Base (%) Conv.                  

128 (%)
a
 

I.Y.                     

128 (%)
b
 

e.e.               

128 (%)
c
 

      

1 PPh3 (6) CuCl (3) NaOtBu (9) 82 62 - 

2 L16 (3) CuCl (3) NaOtBu (9) 85 53 72 

3 L16 (3) Cu2O (1.5) - 0 - - 

4 L17 (3) CuCl (3) NaOtBu (9) >95 64 71 

5 L17 (3) Cu2O (1.5) - 0 - - 

6 L24 (3) CuCl (3) NaOtBu (9) 62 32 5 

7 L25 (6) CuCl (3) NaOtBu (9) 60 28 17 

8 L28 (3) CuCl (3) NaOtBu (9) >95 50 97 

9 L29 (3) CuCl (3) NaOtBu (9) >95 45 80 

10 L8 (3) CuCl (3) NaOtBu (9) 54 52 14* 

11 L30 (3) CuCl (3) NaOtBu (9) >95% 86 58 

12 L31 (3) CuCl (3) NaOtBu (9) 27 -
d
 97 

0.50 mmol Scale reaction: 2.00 mmol (1:1, benzhydrylamine: cinnamaldehyde) was stirred in THF (8 

mL) and 3 Å M.S. (2.0 g) for 6 h, after which a 2 mL aliquot of in situ-formed imine 119 was transferred 

to a Schlenk-tube (under argon) containing Cu(I) salt, L, base and B2pin2 (1.1 equiv.). After 5 min MeOH 

(2.5 equiv.) was added to the solution and the reaction was stirred overnight. NaBH4 (1.50 mmol) was 

added, followed by the drop-wise addition of MeOH (1 mL). The mixture was stirred for 3h, followed by 

the removal of solvent under reduced pressure. THF (3 mL) was added to the resulting residue, followed 

by NaOH (0.30 mL, w/v 20%) and H2O2 (0.13 mL, w/v 35%), and the solution was heated to reflux for 1 

h. After standard work-up procedures and column chromatography, a white solid was obtained. 
a 

Determined by 
1
H NMR analysis. 

b
 Isolated yield. 

c
 Determined by Chiral HPLC on the resulting 

O/N-diacetate. 
d
 Converted to the O/N-diacetate and isolated before HPLC. 

 

It was observed that under these conditions, conversions up to >95% to the γ-amino 

alcohol 128) could be achieved and, moreover, up to 97% e.e. in the case of the BNAP 

derivative, DM-BINAP L28 (see Table 27, Entry 8).  
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 It should be noted that compound 128 is initially formed as a viscous, colourless 

oil. However, this compound, upon standing, yields a white amorphous solid. The 

addition of this amorphous solid to anhydrous hexanes resulted in a white cloudy 

suspension. The addition of several drops of anhydrous diethyl ether, in tandem with 

heating, resulted in the formation of a colourless clear solution. This was allowed to 

cool and slowly evaporate (through a capillary tube) overnight at room temperature, 

which resulted in the formation of several spots of crystalline 128 (see Figure 37). 

 Evidence of intramolecular hydrogen bonding was observed in the solid state. It 

was previously mentioned (Section 2.1) that no N-H or O-H signals are typically 

observed in the 
1
H NMR spectrum (e.g. see Figure 8) of such γ-amino alcohols. It was 

suspected that these signals are present, but highly diffuse, and therefore not visible, due 

to intramolecular hydrogen bonding.        

 The derivatisation of 128 into the analogous 1,3-oxazine 129 (by the addition of 

formaldehyde solution) resulted in the formation of a solid compound which allowed 

for the absolute stereochemistry to be determined by copper-source X-ray 

crystallography (see Figure 38).
191

 

It is important to note at this stage that ligands L3, L9, and L23 (e.g. Josiphos 

and Taniaphos class of ligands) were examined due to their previous success in the 

asymmetric catalytic β-boration (see section 1.2). However, on inspection of the crude 

NMR after the β-borylation step, catalytic β-borylation was found to be <5%, <5% and 

16% respectively, for the ligands L3, L9 and L23 (in the system shown in Table 27). It 

is not clear why this is, but these results were repeated and the outcome was consistent 

with the previous observation. No competitive 1,2-addition was observed, just small 

amounts of β-borylated product and the starting imine 119.  
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Figure 37 X-Ray structure γ-amino alcohol 128 – solid state evidence for 

intramolecular hydrogen bonding. 

 

Figure 38  X-Ray structure of 1,3-Oxazine 129 – used to determine the absolute 

stereochemistry of 128. 
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2.4.4 Analysis of e.e. and absolute stereochemistry results 

Section 2.4.3 showed that the major enantiomer in all cases of copper-catalysed 

β-borylation was that of the (R)-128 (see Table 27), when using (R)-enantiomers of 

BINAP L16 (including analogues thereof). This was confirmed by copper-source X-ray 

analysis of an enantiopure sample of the 1,3-oxazine 129, as shown in Figure 38. It 

should also be noted that this absolute stereochemical outcome was consistent with 

previous experiments conducted on other analogous systems.
64   

 
It is clear from looking at Table 27 that the BINAP-type ligands perform the 

best in terms of catalytic turnover (judged by conversion to the desired product 128) and 

enantioselectivity. Indeed, ligands with axial chirality (through restricted bond rotation 

about the biphenyl C-C bond axis) seem to perform the best.   

 Of the ligands that were examined, (R)-DM-BINAP L28, (R)-DM-SEGPHOS 

L29 and the DuPhos L31 ligands performed the best. If one examines the BINAP 

ligands (R)-BINAP L16, (R)-tol-BINAP L17 and (R)-DM-BINAP L28, the only 

difference is the substitution on the phenyl ring attached to the phosphorous atom. 

Furthermore, in the case of L17 a para-methyl substituent appears to have no 

significant effect on enantioselectivity, but the conversion to the product 128 was 

slightly higher when compared to L16 (>95 when using L17 and 85% when using L16). 

However and perhaps unpredictably, two meta-methyl substituents on the phenyl ring 

gave equally high conversions, but significantly greater enantioselectivity (97%, Entry 

8, Table 27). Again, (R)-SEGPHOS L29 has two meta-methyl substituents present on 

the phenyl ring, which results in 80% e.e. of the product 128 (see Entry 9, Table 27). 
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Figure 39 Proposed model to explain absolute stereochemical outcome. 

 Trying to explain the absolute stereochemical outcome is particularly difficult 

because sophisticated models of the copper-phosphine ligated boryl-nucleophile do not 

exist and, indeed, no crystal structures have been obtained to date (the acquisition of 

such crystal structures may shed light on this). This is perhaps additionally problematic 

due to the ability of copper to exist in trigonal, tetrahedral and more exotic geometries 

in solution.
192,193 

Therefore, the active catalytic species in this section is just speculative 

and needs further investigation.
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One might initially suspect that P-chiral ligands,
194

 such as the DIPAMP ligand L24, 

might perform the best due to the chiral motif being in close contact to that of the 

copper-boryl moiety. However, experimentally this was found to perform particularly 

poorly in terms of asymmetric induction (5% e.e., Entry 6, Table 27).   

 By considering previous models of BINAP-metal complexes (Pt, Rh, Cu 

etc),
195 , 196

 models were considered to explain the absolute stereochemical outcome 

observed in these transformations (see Figure 39). The first thing to note is the relative 

distance of the phosphine ligand to the site of nucleophilic attack (Cβ). Therefore, if 

high levels of enantio-differentiation (between β-substituents) are to be achieved, the 

chiral information, derived from the axial chirality on BINAP, has to be transferred 

through space to influence selectivity upon β-borylation. Indeed, Figure 39 shows how 

the phenyl substituents on phosphorous impose through space, transferring this chiral 

information from the axial binapthyl motif. More specifically, the phenyl substituents 

on phosphorous exhibit axial and equatorial arrangements and could, under this model, 

allow for levels of enantioselectivity on β-borylation. This is explained by assuming that 

the β-aryl substituent faces away from the imposing axial phenyl during the suggested 

transition state on β-boration. This could explain why the observed enantioselectivities 

with ligands (R)-BINAP L16 and (R)-tol-BINAP L17 are similar, possibly due to the 

para-methyl in L17 not imposing significant conformational change on such copper-

ligand complexation. However, it can be imagined that the addition of two meta-methyl 

substituents on the phenyl rings may impose rigid axial and equatorial arrangements due 

to the increased steric influence about the phenyl rings. Therefore, one can deduce that 

L28 is more effective due to its ability to communicate the chiral information through 

space due to the greater steric effects of the two meta-methyl substituted phenyl rings. 
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 Pregosin et al. have examined the influence of meta-substituents on the phenyl 

rings of BINAP analogues.
197

 Indeed, they named the higher enantioselectivity 

associated with such ligands, in comparison to the non-meta-substituted ligands, ‘the 

3,5-dialkyl meta-effect’. They attribute this to the increased conformational rigidity of 

the axial and equatorial phenyl rings (on the ligand), imposed by the meta-substituents, 

due to steric repulsion. This is consistent with the high levels of e.e. observed in the 

case of (R)-DM-BINAP L28. It should be noted that higher levels of e.e. when using 

(R)-DM-BINAP L28, in comparison to (R)-BINAP L16 and (R)-tol-BINAP L17, have 

been observed in the literature, especially when performing asymmetric 

hydrogenations.
198

    

2.4.5 Probing the substrate scope 

Due to the low cost and ready availability of (R)-DM-BINAP L28, this 

methodology was applied to the optimised one-pot reaction, probing a variety of enals 

with varying β-substituents (alkyl and aryl), as shown in Table 28. Indeed, as part of 

this investigation a series of β-alkyl and β-aryl enals were transformed into the 

analogous γ-amino alcohols in excellent conversion and e.e., which were all readily 

determined by derivatisation to the analogous O/N-diacetates (see Table 29 and Figure 

40 for a representative chromatogram showing the resolution of enantiomers by chiral 

HPLC). The levels of enantioselectivity were found to be greater for β-aryl enals, when 

compared to that of β-alkyl enals. This is could be due to greater enantiodifferentiation 

between aryl- vs. H- β-substituents, when compared to alkyl- vs. H- β-substituents. This 

is additionally consistent with the speculated model in Figure 39. 
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Table 28 Substrate scope of the selective transformation of enals into chiral amino 

γ-alcohols.  

 

Entry Substrate L γ-Amino alcohol product Conv.  

(%)
a
 

I.Y. 

(%)
b
 

e.e. 

(%)
c,d

 

 

 

1 

 

 

 

66 

 

 

PPh3 

 

 
128 

 

 

>82 

 

 

62 

 

- 

2 L28 >95 50 97 

3 

120 

PPh3 

130 

>95 61 - 

4 L28 >95 90 90 

5 

 
122 

PPh3 

 
131 

>95 71 - 

6 L28 >95 59 90 

7 

 

116 

PPh3 

 
132 

>95 50 - 

8 L28 >95 59 87 

9 

 

123 

PPh3 

 
133 

79 42 - 

10 L28 >95 65 76 

11 

 
59 

PPh3 

 
134 

>95 78 - 

12 L28 >95 88 80 

0.50 mmol Scale reaction: 2.00 mmol (1:1, benzhydrylamine: enal) was stirred in THF (8 mL) and 3 Å 

M.S. (2.0 g) for 6 h, after which a 2 mL aliquot of in situ-formed imine was transferred to a Schlenk-tube 

(under argon) containing Cu(I) salt, L, base and B2pin2 (1.1 equiv.). After 5 min MeOH (2.5 equiv.) was 

added to the solution and the reaction was stirred overnight. NaBH4 (1.50 mmol) was added, followed by 

the drop-wise addition of MeOH (1 mL). The mixture was stirred for 3 h, followed by the removal of 

solvent under reduced pressure. THF (3 mL) was added to the resulting residue, followed by NaOH (0.30 

mL, w/v 20%) and H2O2 (0.13 mL, w/v 35%), and the solution was heated to reflux for 1 h. After 

standard work-up procedures and column chromatography, a white solid was obtained. 
a 

Determined by 
1
H NMR analysis. 

b
 Isolated yield. 

c
 Determined by Chiral HPLC on the resulting O/N-diacetate. 

d
 

Converted to the O/N-diacetate and isolated before HPLC. 
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Table 29 Making O/N-diacetate for e.e. determination. 

 
Entry γ-Amino alcohol R O/N-diacetate yield (%) e.e. (%)

a 

 

1 

 

 

128 

   

Ph 

 

135 

 

88 

 

97 

2 

 

130 

 pMeO-Ph 136 31 90 

3 

 

131 

 pCl-Ph 137 45 90 

4 

 

132 

 nPr 138 70 87 

5 

 

133 

Et 139 84 76 

6 

 

134 

 Me 140 51 80 

 

Assuming the reaction was carried out on a 0.2 mmol Scale: γ-Amino alcohol  (0.2 mmol), DCM (3 mL), 

acetic anhydride (0.5 mL) and pyridine (0.5 mL) were combined under argon and stirred overnight. After 

an acid-base wash the resulting O/N-diacetate was purified by column chromatography. 
a 

Determined 

using Chiral-HPLC by comparison with the racemic standard of each O/N-diacetate compound. 
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Figure 40 Chromatogram showing: (a) racemic diacetate 135 of compound 128 (Table 

27, Entry 1); (b) enantioenriched diacetate 135 of compound 128 (Table 27, Entry 8). 

2.4.6 Access to β-boryl aldehydes 

In addition to accessing γ-amino alcohols, β-boryl aldehydes (e.g. 142) can be 

obtained in good yield by simple hydrolysis of the intermediate β-boryl imine 141 (see 

Scheme 36). In this context, the N-benzhydryl groups acts as an appropriate auxiliary to 

favour 1,4-addition (through steric effects), which can then undergo facile deprotection 

by hydrolysis. 

 

Scheme 36 Hydrolysis of imine 141 to give β-boyl aldehyde 142. 

(R)      (b) (S) (R)  (a) (S) 
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2.4.7 Implications for future synthesis  

This methodology proved highly effective for the preparation of novel γ-amino 

alcohol compounds. The implication for future applications were clear. Section 2.5 

demonstrates the potential application of such methodologies by the synthesis of some 

top-selling pharmaceuticals. 

2.5 Preparation of some pharmaceuticals 

With the novel one-pot methodology in hand (see section 2.4), attention was 

turned towards the real-world application of this methodology in the synthesis of some 

pharmaceuticals. It was first introduced in section 2.1 that γ-amino alcohols are found in 

some of the World’s top-selling pharmaceuticals and, therefore, Fluoxetine and 

Duloxetine were deemed as suitable targets for the one-pot methodology.  

 

2.5.1 Origin and medical applications of Fluoxetine 

Fluoxetine (also known as Prozac), developed by Eli Lilly, first appeared in the 

literature in 1974.
199

 In the late 1980s, it was approved for medical use and it became 

one of the world’s most widely prescribed antidepressant, used to treat major depressive 

disorder (MDD), obsessive-compulsive disorder and other conditions.
200,201

 Fluoxetine 

belongs to the selective serotonin reuptake inhibitor (SSRI) class of anti-depressants. 

Despite Fluoxetine been sold as the racemate, each individual enantiomer has differing 

potency with regards to serotonin reuptake inhibition, but are relatively similar 

[(S)-Fluoxetine > (R)-Fluoxetine]. However, (S)-norfluoxetine (primary metabolite via 

N-demethylation) shows significantly greater activity when compared to the 

(R)-enantiomer.
202 



156 

 

2.5.2 Total synthesis of Fluoxetine 

 Over the years, many groups have been interested in the total synthesis of 

Fluoxetine. Indeed, groups have reported the synthesis of Fluoxetine using classical 

chemistry, exemplifying traditional (now) methods of asymmetric synthesis. For 

example, Brown et al. reported the synthesis of Fluoxetine by the asymmetric reduction 

of ketones using stoichiometric chiral diisopinocamphenylchloroborane.
203

 In addition, 

Sharpless et al. installed the chiral centre by asymmetric epoxidation of allylic alcohols 

with subsequent transformations (e.g. epoxide ring-opening).
204

 Corey et al. attempted 

the synthesis of Fluoxetine though asymmetric hydrogenation chemistry. Indeed, this 

was achieved using chiral oxazaborolidine (CBS reduction) in combination with borane 

to reduce prochiral ketones, which served as a chiral precursor to the synthesis of 

Fluoxetine.
205

Furthermore, asymmetric aldol chemistry has been demonstrated by 

Shibasaki et al. towards this end.
206

  Due to the highly significant work of Noyori et al. 

on asymmetric hydrogenation,
207,208

 such adapted protocols have found applications in 

the synthesis of Fluoxetine by Noyori et al.
209

 and others.
210

 It should be mentioned at 

this stage that Yun et al. have demonstrated a formal synthesis of Fluoxetine by 

borylation chemistry on α,β-unsaturated amides (see Scheme 37).
42 

   

 

Scheme 37 Yun’s formal synthesis of fluoxetine.
42
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 Looking at the γ-amino alcohol 128, one can clearly see through retrosynthetic 

analysis that 128 is a suitable precursor to Fluoxetine (see Scheme 38). Indeed, by 

disconnecting the aryl the (C-O bond cleavage to give 143) and the N-methyl 

substituent (C-N bond cleavage, to give 144), one arrives at precursor 144 to 

Fluoxetine. Furthermore, 144 can be obtained N-benzhydryl deprotection of the γ-amino 

alcohol 128. 

 

Scheme 38 Retrosynthetic analysis of Fluoxetine 
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2.5.3 Benzhydryl reductive deprotection approach 

Initially, N-benzhydryl deprotection was attempted using previously established 

and well documented methods for N-benzyl deprotection (Pathway A, Scheme 39).
211

 

 

Scheme 39 Examined methods of N-benzhydryl deprotection. 

 

Unsurprisingly, subsequent N-benzhydryl deprotection (via C-N bond cleavage) was 

achieved under palladium-catalysed hydrogenation. However, on inspection of the 

crude 
1
H NMR spectrum, it was observed that the resulting products of C-N bond 

cleavage, diphenylmethane and the primary amine 144, were present in a ratio that was 

not 1:1. Furthermore, additional inspection revealed that under these conditions, C-O 

bond hydrogenolysis of the benzylic hydroxyl-group was a significant competing side 

reaction, thus explaining to lack of 1:1 stoichiometry of the primary amine 144 and 

diphenylmethane.
212

 On repeating this reaction multiple times, a range of conversions 

(20-50%) were observed to compound 144, due to the relative difficulty controlling the 
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quantity of gaseous hydrogen delivery. It should be noted that C-O bond hydrogenolysis 

is documented in the literature.
213, 214 

 Transfer hydrogenation was examined (Pathway B, Scheme 39),
215

 due to the 

benefit and relative ease in delivering a stoichiometric quantity of hydrogen in the form 

of ammonium formate (easy to weigh, and decomposes to give hydrogen on heating). 

However, despite limiting the quantity of hydrogen, C-O bond hydrogenolysis of the 

benzylic hydroxyl group was still observed (this was attempted at longer and shorter 

reaction times).        

 Alternative methods (not based on metal-catalysed hydrogenation) of 

benzhydryl deprotection were attempted (Pathway C, Scheme 39).
216

 In particular, 

stirring in trifluoroacetic acid (at room and elevated temperature) was attempted, but 

such attempts resulted in a lack of C-N bond cleavage and, indeed, quantitative recovery 

of the γ-amino alcohol 128 was achieved. Final attempts were made at N-benzhydryl 

deprotection using Wilkinson’s catalyst (Pathway C, Scheme 39), but this method 

proved futile, resulting in the quantitative recovery of the γ-amino alcohol 128. This 

final attempt led to a change in approach to cleave the benzhydryl substituent. 

 Attention was turned  away from hydrogenolysis as several variants on this 

methodology. On examining the literature, novel oxidative methods for benzyl 

deprotection (through C-N bond cleavage) were found.
217

 Indeed, such methods are 

based on employing O2, DMSO and KOtBu as suitable reagents for deprotection.  



160 

 

 

Scheme 40 Novel methods towards Fluoxetine through oxidative benzhydryl 

deprotection. 

 Derivatisation of 128, first to the aryl ether 146 and then towards the carbamate 

147 was achieved in 76% isolated yield (Scheme 40). By forming the carbamate 147, 

the pKa of the C-H (on the benzhydryl substituent) is presumably lowered and can be 

deprotonated, under equilibrium-type conditions, by tert-butoxide. The resulting anion 

(which can be delocalised across the N-C=O system) can be trapped by molecular 

oxygen. The resulting peroxide intermediate can react with dimethyl sulfoxide 

(DMSO), which results in the cleavage of the benzhydryl substituent (see Scheme 41). 

Clear and quantitative cleavage of the benzhydryl substituent (lost as benzophenone, 

Ph2CO) was achieved.
218,219

 However, such conditions appeared to be too forcing, as 

observed by significant side-products in the reaction (see previous literature).
220
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Scheme 41 Mechanism of the oxidative O2, KOtBu, DMSO deprotection methodology. 

 

2.5.4 Transimination approach 

 It was previously mentioned (in section 2.4.5) that a β-boryl N-benzhydryl imine 

could be hydrolysed to form the resulting β-boryl aldehyde. Indeed, it was considered if 

benzhydryl deprotection, in the form of facile imine hydrolysis on the addition of water, 

would be an advantageous alternative to the late stage benzhydryl deprotection. In the 

context of the one-pot methodology, this was examined by hydrolysis of the β-boryl 

imine 145 to the aldehyde 149 (see Scheme 42). It should be noted that attempts were 

made to purify 149, but they failed due to compound instability on silica gel column 

chromatography. Furthermore, cinnamaldehyde was recovered, presumably via an 

elimination-type mechanism.  
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It should be noted that Córdova et al. also found that this aldehyde 149 degraded on 

purification to give the starting cinnamaldehyde 66 (see Scheme 42).
77

 

 

Scheme 42 Hydrolysis and reductive amination approach to Fluoxetine. 

 

This can be partially circumvented by hydrolysis of the imine 145 to aldehyde 149, with 

subsequent transformations by reductive amination. Finally, oxidation of the C-B bond 

to give the Fluoxetine precursor 143 was achieved in 20% isolated yield. Next, the 

addition of NaH to 143 resulted in the in situ generation of the analogous Na-alkoxide 

of 143 which, on addition of 4-chlorobenzotrifluoride at elevated temperature (100 
o
C, 3 

h), gave Fluoxetine in 74% isolated yield (see Scheme 42).    

 Despite success in preparing the known pharmaceutical Fluoxetine, the overall 

yield was relatively low (15%). This was attributed to the known and documented 

instability of the β-boryl aldehyde intermediate 149.
77

 Intrigued by recent reports on 

transimination (also known as imine-metathesis
221

), it was considered whether treating 

the β-boryl imine 145 with an excess of methylamine would result in the formation of 

N-methyl imine 150, thus by-passing the unstable intermediate aldehyde. More 

specifically, would the equilibrium between N-benzhydryl imine 145 and N-methyl 



163 

 

imine 150 (on addition of methylamine) lie towards 150, as a result of the difference in 

the nucleophilicity of methylamine and benzhydrylamine (kinetic) or a difference in the 

stability (thermodynamic) of each respective imine product (see Scheme 43)? Hence, 

transimination was considered and subsequently examined as a suitable method towards 

Fluoxetine.
222

 

 

Scheme 43 Transimination - a suitable method to form N-methyl imine 150? 

 

Continuing with the established one-pot methodology, imine 145 was treated with 

excess methylamine (4 equiv.), with subsequent in situ reduction using NaBH4/MeOH. 

Subsequently, all the solvent was removed (this was to prevent MeOH oxidation to 

formaldehyde) and replaced with THF, H2O2 and NaOH, which on heating to reflux, 

gave the known precursor to Fluoxetine, γ-amino alcohol 143 [54% yield when using 

PPh3 and 61% when using (R)-DM-BINAP L28, see Scheme 44]. This was achieved in 

five steps, all of which were in conducted in one pot. 
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Scheme 44 Transimination approach to the synthesis of Fluoxetine; (R)-Fluoxetine is 

prepared in 96% e.e., with an overall yield of 45%. 

 

Finally, nucleophilic aromatic substitution gave Fluoxetine in 74% yield, with an 

overall yield of 45% (derivatisation was required to measure the e.e.). It had been noted 

previously that the ligand L28 could achieve high enantioselectivity on this system 66 

(97% e.e.). It was, therefore, important to confirm that this high enantioselectivity was 

maintained after these transformations.       

 In order to measure the e.e. of Fluoxetine, it was first acetylated under standard 

conditions to give the N-acetate 152 in high yield (96%). This allowed for the baseline 

resolution of each constituent enantiomer, as shown in Figure 41. The enantioenriched 

sample was measured under these conditions and the e.e. of 152 was found to be 96%. 

This is within experimental error (+/- 1%) of 97%, as previously measured by 

derivatisation of 128 to 135. In addition, to confirm the absolute stereochemistry 

(independently confirmed in section 2.4), the optical rotation of Fluoxetine was 
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measured and found to be [𝛼]D
22  = +3.5 (1.0, HCCl3). This is consistent with the 

literature value of (R)-Fluoxetine in 96% e.e., which was found to be [𝛼]𝐷
20 = +3.8 (0.9, 

HCCl3).
223

 

 

Figure 41 Chiral HPLC of (rac)-152 showing base-line resolution of each enantiomer. 

 

Figure 42 Chiral HPLC chromatogram of (R)-152 showing a 98:2 ratio of the major 

and minor (respectively) enantiomers, thus giving 96% e.e. overall. 

 

 

 

 

 

(R) = 23.6 min                     
                                                      (S) = 31.9 min 
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2.5.5 Summary of the total synthesis of Fluoxetine 

The total asymmetric synthesis of Fluoxetine was achieved in 96% e.e., with an 

overall yield of 45%. This was achieved by an in situ imine formation/asymmetric 

borylation/transimination approach. Novel conditions for the chiral separation of the 

N-acetate 152 (of Fluoxetine) were achieved, showing good baseline resolution 

(approximately 2 min) under chiral HPLC. With these results optimised for the 

cinnamaldehyde 66 system, attention was turned towards to asymmetric synthesis of 

(S)-Duloxetine (marketed as a single enantiomer).  

2.5.6 Duloxetine 

Duloxetine (also known as Cymbalta) is top-selling pharmaceutical, marketed by 

Eli Lilly. Sales figures acquired by IMS Health show peak sales of Duloxetine at 5.8 

billion US Dollars in 2012.
111

 Duloxetine belongs to the serotonin-norepinephrine 

reuptake inhibitor (SNRI) class of drugs and, indeed, is used to treat major depressive 

disorder (MDD) and general anxiety disorder (GAD) and other conditions.
224

 Unlike 

Fluoxetine, Duloxetine is marketed as a single (S)-enantiomer. Therefore, the synthesis 

of Duloxetine required the successful transformation of prochiral material to the (S)-

enantioenriched Duloxetine drug. This was attempted using the optimised methodology 

from the synthesis of Fluoxetine. 
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2.5.7 Synthesis of the starting β-thiophenyl enal 

The first step towards the synthesis of Duloxetine was the preparation of the 

starting β-thiphenyl enal 156 (with respect to the one-pot methodology). This was 

attempted by forming the acid chloride 154 of the commercially available carboxylic 

acid 153, which was achieved by heating 153 to reflux with oxalyl chloride in DCM 

(Scheme 45). Without isolating the intermediate acid chloride 154, N,O-

dimethylhydroxylamine and TEA was added and allowed to react overnight, which 

resulted in the formation of the Weinreb amide 155 in good yield (85%) over two 

steps.
225

          

 Weinreb amides (e.g. 155) can be selectively reduced to the analogous aldehyde, 

due to the stable tetrahedral intermediate species, which prevents total reduction to the 

allylic alcohol. 
226 , 227

 Indeed, this methodology has been applied in total synthesis 

before, highlighting the diversity and applicability of this methodology.
228

   

 

Scheme 45 Synthesis of the Weinreb amide 155 from the carboxylic acid 153. 

The selective reduction  (-10 °C) of the Weinreb amide 155 to the aldehyde 156 

using DIBAL-H
229

 was attempted (Scheme 46), but yielded only 11% of the desired 

aldehyde. Analysis of the crude NMR showed significant proportions of allylic 

aldehyde 157.  It should be noted, that literature examples exist which report the 

synthesis of enal 156 by the reduction of carboxylic acid 153 to the allylic alcohol 157 

using DIBAL-H which, in turn, was oxidised under Dess-Martin
230

 conditions. 
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Scheme 46 Selective reduction of the Weinreb amide 155 to enal 156. 

An analogous methodology was attempted, whereby the carboxylic acid 153 was 

over-reduced (using three equiv. of DIBAL-H) to the allylic alcohol 157. Indeed, 

inspection of the crude NMR spectrum showed that this was highly successful and the 

allylic alcohol 157 was oxidised without further purification under Swern oxidation 

conditions (see Scheme 47).
231

 This yielded the enal 156 in 37% yield over two steps 

(156 obtained by column chromatography). Despite the relatively low yield, this 

methodology was practically simple, due to the relative simplicity of work-up, washing 

and final purification. 

 

Scheme 47 Swern oxidation of the allylic alcohol 157 to enal 156. 

2.5.8 Transimination approach to the synthesis of Duloxetine 

Once enal 156 had been prepared, 156 was subjected to the optimised 

methodology (in situ α,β-unsaturated imine formation, β-boration, transimination, 

reduction, oxidation and O-arylation; shown in Scheme 44 for optimisation work on 

Fluoxetine) which is shown in Scheme 48. Imine 158 was formed in < 9 h (in THF), and 

was directly transferred to copper-L-NaOtBu and B2pin2 pre-catalyst, under argon.  

After the addition of methanol, the borylation was allowed to proceed overnight to give 
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159. On completion, four equiv. of methylamine was added (2 M THF solution) to 

afford 160, which was subsequently reduced to amine 161. All traces of methanol were 

removed in vacuo and, after oxidation, work-up and purification, yielded the γ-amino 

alcohol 162 in 47% (L = PPh3) and 57% (L32).      

 Compound 162 is particularly difficult to isolate by column chromatography, 

eluting over many fractions, even when high proportions of methanol and TEA are 

added to the DCM eluent. Furthermore, during TLC analysis of 162, it was difficult to 

visualise and distinguish from residual Et3N. This can be overcome using 

p-anisaldehyde staining, which shows 162 as a distinctive dark blue spot on the TLC 

plate, just above the baseline (RF <0.1 in 9:1, DCM : MeOH). 

 

Scheme 48 Total synthesis of  Duloxetine in 47% yield (over six steps), 94% e.e.. 
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Finally, nucleophilic aromatic substitution on 162 was achieved by 

deprotonation of the 162–OH (using NaH), and addition of 1-fluoronaphthalene under 

elevated temperature (70 °C) to yield Duloxetine in high yield (83%).  

Derivatisation to the N-acetate 164 (79% yield) was required to measure e.e. 

and, indeed, this showed that the Duloxetine was formed in 94% e.e. In addition, to 

confirm the absolute stereochemistry (independently confirmed in section 2.4), the 

optical rotation of Fluoxetine was measured and found to be [𝛼]𝐷
24  = +105.4 (1.0, 

MeOH). This is consistent with the literature value of (S)-Duloxetine in >99% e.e., 

which was found to be [α]D
20 = +117 (1.0, MeOH).

232
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2.5.9  Summary 

In summary (see Scheme 49), the total synthesis of two pharmaceuticals has been 

achieved through application of the in situ imine formation/borylation methodology. 

This gave Fluoxetine in 45% yield (96% e.e.) and Duloxetine in 47% yield (94% e.e.).  

 

Scheme 49 Ligand controlled asymmetric induction: L28 [(R)-DM-BINAP] gives 

(R)-Fluoxetine, whereas L32 [(S)-DM-BINAP] gives (S)-Duloxetine. 
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2.6  Concluding remarks 

The initial aim of this project was to develop a cheap and synthetically simple 

route to α,β-unsaturated imines. Indeed, this was achieved through classical 

condensation, which was monitored by in situ IR spectroscopy (ReactIR). This not only 

provided a simple route to such compounds, but this work, in collaboration with other 

groups, turned into a deeper and more theoretical piece of work which will, hopefully, 

provide the scientific community with greater insight into the fundamental direct vs. 

conjugate addition pathways of primary amines with enones and enals.  

 In parallel to this imine study, the one-pot methodology (in situ imine formation, 

borylation, reduction and oxidation) was being developed. Initial hurdles were met; 

however, after close inspection and analysis, a novel side-reaction was discovered, that 

is the formation of 1,3-oxazines through the in situ oxidation of methanol to 

formaldehyde/formaldehyde equivalents. Once this had been established, attention was 

turned to the optimisation of this methodology, which was achieved with great success. 

 On completion of the optimisation of the one-pot methodology, a research 

placement was undertaken in Tarragona, Spain (in the research lab of Prof. Elena 

Fernández). The aim of this placement was, through the use of chiral phosphine ligands, 

to develop the analogous asymmetric one-pot procedure. However, failure in this 

endeavour ensued, until the discovery of the competitive 1,2-addition of the of copper-

boron nucleophile to aldimines. This later led to a study which would overcome this 

problem through the use of sterically-bulky N-benzhydryl imines. During the remainder 

of the project, attention was turned towards the enone-based systems. This resulted in a 

novel base-free borylation protocol whereby the simultaneous addition of both amine 

and enone to the base-free pre-catalyst resulted, after overnight stirring, to the near 

quantitative formation of β-boryl imines in high e.e. These β-boryl imines have 
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previously been derivatised within the group(s) to chiral γ-amino alcohols.   

 Next, the β-boration of N-benzhydryl α,β-unsaturated imines was examined 

which resulted in a highly novel and efficient route to enantioenriched β-boryl imines 

which, under hydrolysis, yields to β-boryl aldehydes (challenging to obtain from the 

parent enal, due to competitive direct addition).     

 Due to such γ-amino alcohols being precursors to drugs, attention was made 

towards the application of this methodology towards the total synthesis of Duloxetine 

and Fluoxetine, which proved highly successful.     

 Although the initial aims of this project was to prepare additional compounds, 

such as β-amino acids, β-hydroxy acids and γ-hydroxy alcohols, other avenues arose 

which seemed attractive and, therefore, were explored (as discussed throughout).  

2.7  Future work 

Several problems have been overcome as part of this research, but many still 

remain.  Indeed, Figure 41 highlights two substrate classes that pose challenges. 

Substrates of the general structure 167 present an increased challenge with regards to 

asymmetric induction due to the difficulty in achieving enantio-differentiation between 

the β,β-disubstituents and, in addition, catalytic activity towards selective β-boration. 

Moreover, when one introduces an addition α-substituent, diastereocontrol becomes an 

additional factor. To date, varying degrees of control are reported, which predominantly 

leads to the anti-diastereoisomer in this regard. Therefore, that challenge of tuning 

between syn- and anti-diastereoselectivity (on protonation) needs to be overcome and 

that factors which govern this process needs to be studied.    

 Substrates with the general structure 168 (Figure 41) are challenging targets for 

asymmetric β-boration. Despite many examples of diastereoselective protonation under 

this methodology being reported, the author knows of no examples of enantioselective 
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protonation (where the α-carbon is prochiral and the β-carbon is not), leading to 

exclusive α-stereocontrol under the β-boration methodology. 

 

Figure 41 Challenging targets for future work. 

 Additional work needs to be undertaken to understand the in situ trapping of 

trace quantities of formaldehyde by presumed methanol oxidation (by γ-amino 

alcohols), as identified in the late stage oxidation in the one-pot methodology. Indeed, 

this could lead to novel oxidative procedures.  
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3.  Experimental section 

3.1 General experimental 

All reagents were used as received from the supplier without further purification, 

unless stated. All solvents were used as received from the supplier, except THF (freshly 

distilled from sodium and benzophenone) and methanol (stored over molecular sieves). 

Molecular sieves, 3 Å 1-2mm beads, were supplied from Alfa Aesar, and stored at 220 

◦
C. Reactions were monitored by TLC analysis using POLTFRAM

®
 SIL G/UV254 (40 x 

80 mm) TLC plates. Flash column chromatography was carried out using Silica gel as 

supplied from Sigma-Aldrich (230-400 mesh, 40-63 μm, 60 Å) and monitored using 

TLC analysis.          

 
1
H NMR spectra were recorded on a Varian Mercury 500 MHz spectrometer, 

operating at ambient probe temperature unless specified elsewhere. 
13

C NMR spectra 

were recorded on a Varian Mercury 500 MHz instrument, operating at 101 MHz, unless 

otherwise specified. 
11

B NMR was recorded on a Varian Mercurry 400 MHz 

spectrometer, operating at 128 MHz. Deuterated chloroform CDCl3 was used as solvent 

for all NMR spectra, unless otherwise specified. NMR peaks are reported as singlet (s), 

doublet (d), triplet (t), quartet (q), broad (br), combinations thereof, or as a multiplet 

(m). All chemical shifts (δ) are reported in parts per million (ppm).   

 Mass spectra for liquid chromatography mass spectrometry (LCMS) were 

obtained using a Waters (UK) TQD mass spectrometer (low resolution ESI+, 

electrospray in positive ion mode, ES+), Waters (UK) Xevo QTOF mass spectrometer 

(low and high resolution ASAP+) and a Waters (UK) LCT premier XE (high resolution 

ESI+, electrospray in positive ion mode, ES+)  unless stated elsewhere.    



178 

 

HPLC analysis was carried out on an Agilent 1100 series instrument, fitted with 

a Perkin Elmer series 200 degasser. AS-H-CHIRALCEL column (250 x 4.6 mm) fitted 

with guard cartridge (50 x 4.6 mm), AD-CHIRALCEL column (250 x 4.6 mm) fitted 

with guard cartridge (50 x 4.6 mm), or OD-CHIRALCEL column (250 x 4.6 mm) fitted 

with guard cartridge (50 x 4.6 mm) was used to achieve chiral resolution, unless stated 

elsewhere.          

 All in situ IR spectroscopy experiments (ReactIR) were carried out on the 

following instrument: ReactIR 15 with MCT detector; ConcIRT window = 1900-900 

cm
-1

. Apodization = Happ General. Probe: Prob A DiComp (Diamond) connected via 

KAgX 9.5 mm x 2m Fiber (Silver Halide); Sampling 2500-650 at 8 cm
-1 

resolution; 

Scan option: auto select, gain 1X.       

 Melting points were measured using a Gallenkamp Variable Heater (melting 

point apparatus). Optical rotations were measured using a JASCO P-1020 polarimeter 

with [α]D values given in deg cm
2
g

-1
.  
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3.2 General reaction procedures 

General methodology for the preparation of α,β-unsaturated imines, monitored by 

ReactIR (as described in section 2.1-2.4). 

 

To an oven-dried two-necked flask, fitted with the IR probe (placed at a 45° angle), 

enone or enal (2.0 mmol) was added to a stirring solution of solvent (8.0 mL) and 3 Å-

molecular sieve beads (2.0 g, oven-dried at 250 ºC for >48 h prior to use), under argon 

at 25 ºC. Once the C=O peak had plateaued (observed through PC-interface), showing 

maximum intensity, amine (2.0 mmol) was added and the reaction was carried out for 

0.5 to 24 h. The in situ-formed imine was then utilised without purification by either 

cannula transfer or using a needle-syringe combination.     

General methodology for in situ 
1
H NMR experiments (as described in section 2.2). 

 

Enal or enone (0.18 mmol) was added to an NMR tube (Norell
®
 Standard Series

™
 5 mm 

x 178 mm NMR tubes) containing Deuterated-solvent (0.7 mL) with/without 3 Å 

molecular sieve beads (filled 0.7-0.8 mm up the tube, 3 Å molecular sieve beads oven-

dried at 250 ºC for >48 h prior to use), and flushed with Argon and sealed. One the 

acquisition of the first spectrum, amine (0.18 mmol) was added and the next spectrum 

was acquired in <5 min. Subsequent 
1
H NMR spectra were recorded over time with 

intermittent shaking of the NMR tube to aid mixing.  
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General methodology for the Cβ-selective β-borylation of N-benzhydryl α,β-unsaturated 

imines (as described in section 2.4). 

 

 

α,β-Unsaturated imine was formed in situ from the reaction between benzhydrylamine 

(2.00 mmol) and enal (2.00 mmol), stirred in THF (8 mL) and oven-dried 3 Å molecular 

sieve beads (2.0 g) for 6 h. After 6 h, an aliquot of the solution containing the in situ-

formed imine  (2.00 mL, 0.50 mmol) was transferred to a Schlenk-tube (under argon) 

containing CuCl (1.8 mg, 15 μmol), ligand (30 μmol for monodentate, and 15 μmol for 

bidentate ligands), NaOtBu (4.3 mg, 45 μmol) and B2pin2 (0.14 g, 0.55 mmol). After 5 

min, MeOH (50 μL, 1.25 mmol) was added to the solution and the reaction was stirred 

overnight. NaBH4 (57.0 mg, 1.50 mmol) was added, followed by the drop-wise addition 

of MeOH (1.0 mL). The mixture was stirred for 3 h, followed by the removal of solvent 

under reduced pressure. THF (5.0 mL) was added to the resulting residue, followed by 

NaOH (0.30 mL, w/v 20%) and H2O2 (0.13 mL, w/v 35%), and the solution was heated 

to reflux for 1 h. After cooling, the resulting solution was partitioned between EtOAc 

and brine. The aqueous layer was extracted further with EtOAc (3 x EtOAc). The 

organic phase was separated and dried over MgSO4. After filtration the organic phase 

was removed under reduced pressure to yield a crude product. Purification by silica gel 

chromatography (hexane : EtOAc, eluent and silica, 2:1 eluent) allowed for purification 

of the desired product. 
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General methodology for the base-free, copper-BINAP catalyzed β-boration of 

α,β-unsaturated imines with bis(pinacolato)diboron (as described in section 2.3).  

 

Reaction carried out on a 0.25 mmol scale: Copper(I) salts (1.5-3 mol%), BINAP ligand 

(3-6 mol%) and 3 Å molecular sieve beads (100 mg) was transferred to a Schlenck tube 

and dissolved in THF (1 mL) under Argon. After 15 min, bis(pinacolato)diboron (1.1 

equiv.) was added to the solution and stirred during 10 min. Then amine (1 equiv.) and 

enone (1 equiv.) was added simultaneously, followed by MeOH (2.5 equiv.). The 

reaction mixture was stirred overnight at RT. The reaction products and conversion to 

the desired β–boryl imine was determined by 
1
H NMR and the enantiomeric excess was 

determined directly for HPLC-UV.
233

   

General methodology γ-amino alcohol synthesis (as described in section 2.1). 

 

THF (7 mL), 3 Å molecular sieve pellets (2.5 g) were stirred under argon. Benzylamine 

(1.4 mmol) and α,β-unsaturated aldehyde/ketone (1.4 mmol) were added and stirred for 

0-7 h. In a separate vessel, THF (4 mL), CuCl (0.07 mmol), PPh3 (0.14 mmol) and 
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NaOt-Bu (0.21 mmol) were stirred for 30 min. After 30 min, B2pin2 (1.54 mmol) was 

added and stirred in the CuCl solution for 10 min. Both solutions were combined and 

stirred for a further 30 min, after which methanol was added (2.80 mmol) and stirred for 

18 h. NaBH4 (4.20 mmol was added and the solution stirred. Methanol (3 mL) was 

added drop-wise over 10 min. After 3 h, all solvent was removed under reduced 

pressure. THF (10 mL), NaOH (0.60 mL, 20% w/v solution, 4 mmol), H2O2 (0.25 mL, 

35% w/v solution, ca. 4 mmol) was added to the resulting mass and refluxed for 1 h. 

The resulting solution was cooled and filtered through Celite, further EtOAc was passed 

through the Celite pad. The resulting solution was partitioned between EtOAc and 

brine. The aqueous layer was extracted further with EtOAc (3 x EtOAc).  The organic 

phase was separated and dried over MgSO4. After filtration the organic phase was 

removed under reduced pressure to yield a crude yellow oil. Purification was achieved 

by silica gel chromatography (hexane:EtOAc, 1:1 and 1% v/v Et3N). 

General methodology (Route A-C) for 1,3-oxazine synthesis (as described in section 

2.1). 

Route A – From the pure γ-amino alcohol. 

 

γ-Amino alcohol (0.86 mmol) and formaldehyde solution (75 μL, 37% w/v solution, 

1.00 mmol) was stirred in THF (6 mL) for 4.5 h. After 4.5 h, MgSO4 was added, and the 

organic phase was filtered and removed under reduced pressure to leave a crude oil. 

Purification was achieved by silica gel chromatography (hexane : EtOAc, 2:1 as eluent). 
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Route B – MeOH present during oxidation step. 

 

THF (7 mL), 3 Å molecular sieve pellets (2.5 g) were stirred under argon. Benzylamine 

(1.4 mmol) and α,β-unsaturated aldehyde/ketone (1.4 mmol) were added and stirred for 

3 h. In a separate vessel, THF (4 mL), CuCl (0.07 mmol), PPh3 (0.14 mmol) and NaOt-

Bu (0.21 mmol) were stirred for 30 min. After 30 min, B2pin2 (1.54 mmol) was added 

and stirred in the CuCl solution for 10 min. Both solutions were combined and stirred 

for a further 30 min, after which methanol was added (2.80 mmol) and stirred for 18 h. 

NaBH4 (4.20 mmol was added and the solution stirred. Methanol (15 mL) was added 

drop-wise over 10 min. After 3 h, NaOH (4.8 mL, 20% w/v solution, 4 mmol), H2O2 

(2.0 mL, 35% w/v solution, ca. 4 mmol) was added drop-wise to the resulting mass and 

refluxed for 4 h. The resulting solution was cooled and filtered through Celite, further 

EtOAc was passed through the Celite pad. The resulting solution was partitioned 

between EtOAc and brine. The aqueous layer was extracted further with EtOAc (3 x 

EtOAc). The organic phase was separated and dried over MgSO4. After filtration the 

organic phase was removed under reduced pressure. Purification was achieved by silica 

gel chromatography (hexane : EtOAc, 5:1 as eluent).  
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Route C – MeOH removed before oxidation step. 

 

THF (7 mL), 3 Å molecular sieve pellets (2.5 g) were stirred under argon. Benzylamine 

(1.4 mmol) and α,β-unsaturated aldehyde/ketone (1.4 mmol) were added and stirred for 

3 h. In a separate vessel, THF (4 mL), CuCl (0.07 mmol), PPh3 (0.14 mmol) and NaOt-

Bu (0.21 mmol) were stirred for 30 min. After 30 min, B2pin2 (1.54 mmol) was added 

and stirred in the CuCl solution for 10 min. Both solutions were combined and stirred 

for a further 30 min, after which methanol was added (2.80 mmol) and stirred for 18 h. 

NaBH4 (4.20 mmol was added and the solution stirred. Methanol (3 mL) was added 

drop-wise over 10 min. After 3 h, all solvent was removed under reduced pressure. THF 

(10 mL), NaOH (0.60 mL, 20% w/v solution, 4 mmol), H2O2 (0.25 mL, 35% w/v 

solution, ca. 4 x 10
-3

 mol) was added to the resulting mass and refluxed for 1 h. The 

resulting solution was cooled and filtered through Celite, further EtOAc was passed 

through the Celite pad. The resulting solution was partitioned between EtOAc and 

brine. The aqueous layer was extracted further with EtOAc (3 x EtOAc).  The organic 

phase was separated and dried over MgSO4. After filtration the organic phase was 

removed under reduced pressure to yield the crude sample. Toluene (2 x 20 mL) was 

added to the crude sample and removed under pressure (this was repeated twice). After 

the toluene had been removed, THF (10 mL) and formaldehyde solution (0.12 mL, 37% 
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w/v solution, 1.00 mmol) were sequentially added to the sample and the solution was 

stirred under argon overnight (15 h). MgSO4 was added to the reaction, and the solution 

was filtered. The organics were removed under vacuum to yield a crude sample. 

Purification was achieved by silica gel chromatography (hexane : EtOAc, 5:1 as eluent). 

General methodology for the Screening of Chiral Ligands for the base-free asymmetric 

Cu2O/Ligand catalyzed β–boration of α,β–unsaturated imines, formed in situ (as 

described in section 2.3). 

 

Reactions were carried out in paralle on a 0.25 mmol scale: Cu2O (3 mol%), chiral 

diphosphine (6 mol%) and dry THF (1 mL) under argon. The mixtures were stirred for 

15 min at room temperature. Bis(pinacolato)diboron (1.1 equiv.) was added and the 

solution was stirred for 10 min. Then amine (1 equiv.) and the enone (1 equiv.) were 

added simultaneously to the reaction followed by the addition of MeOH (2.5 equiv.). 

The reaction mixture was stirred overnight at RT. The products obtained were analyzed 

by 
1
H NMR spectroscopy to determine the conversion to the desired β–boryl imine 

products. The enantiomeric HPLC-UV, otherwise, the enantiomeric excess of the other 

β–borylimines was determined from the corresponding β–boryl carbonyl derivative 

obtained by hydrolysis. Purification was carried out by silica gel column 

chromatography. 
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General methodology for the formation of O/N-Diacetate (as described in section 2.4). 

 

γ-Amino alcohol (0.19 mmol), pyridine (0.5 mL, 6.2 mmol) and acetic anhydride (0.5 

mL, 5.3 mmol) were combined in DCM (3.0 mL) and stirred overnight. The resulting 

solution was diluted in DCM (10.0 mL) and was washed with HCl (3 x 10 mL, w/v 

20%) and water (3 x). The organic layer was separated and dried over MgSO4. Filtration 

followed by the removal of solvent under vacuum yielded a crude off-colourless solid, 

which was further purified by silica gel chromatography (hexane:EtOAc, eluent and 

silica, 2:1 eluent) to give the product pure product.  

General methodology for the preparation of pharmaceuticals through the in situ imine 

formation, borylation, transimination and reduction approached (as described in 

section 2.5). 

 

Benzhydrylamine (2.00 mmol) and enal  (5.00 mmol) were added to a stirring solution 

of THF (20 mL) and oven-dried 3 Å molecular sieve pellets (5.0 g) for 6 h, to form the 

α,β-unsaturated imine in situ. After 6 h, an aliquot of the solution containing the in situ-
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formed imine (16.0 mL, 4.00 mmol) was transferred to a Schlenk-tube (under argon) 

containing CuCl (12.0 mg, 0.12 mmol), PPh3 (62.9 mg, 0.24 mmol) or (R/S)-DM-

BINAP (88.2 mg, 0.12 mmol), NaOt-Bu (34.6 mg, 0.36 mmol) and B2pin2 (1.12 g, 4.4 

mmol). After 5 min, MeOH (400 μL, 10.0 mmol) was added to the solution and the 

reaction was stirred overnight. Methylamine (8 mL, 16.0 mmol, 2 M THF solution) was 

added under argon and the resulting solution was stirred for 1.5 h. NaBH4 (0.46 g, 12.0 

mmol) was added, followed by the drop-wise addition of MeOH (8.0 mL). The mixture 

was stirred for 3 h, followed by the removal of solvent under reduced pressure. THF (20 

mL) was added to the resulting residue, followed by NaOH (2.4 mL, w/v 20%) and 

H2O2 (1.1 mL, w/v 35%), and the solution was heated to reflux for 1 h. After cooling, 

the resulting solution was partitioned between EtOAc and brine. The aqueous layer was 

extracted further with EtOAc (3 x EtOAc). The organic phase was separated and dried 

over MgSO4. After filtration the organic phase was removed under reduced pressure to 

yield a crude product. Purification by silica gel chromatography (DCM → DCM : 

MeOH : NEt3, 5 : 1 : 1%) gave the pure product. The pure γ-amino alcohol (2.00 mmol) 

was dissolved in dry dimethylacetamide (2.8 mL) and transferred to an oven-dried 

Schlenk-tube and purged with Argon. NaH (100 mg, 2.2 mmol, 60% in mineral oil) was 

transferred directly to the solution and heated (70 
o
C) under Argon for 30-40 min, or 

until hydrogen evolution had ceased. 4-Chlorobenzotrifluoride (354 µL, 2.4 mmol) was 

added under argon, and the resulting solution was heated (100
 o

C) for 3 h. On cooling, 

the solution was partitioned between toluene and H2O and washed (3 x H2O). The 

organic phase was separated and dried over MgSO4. After filtration the organic phase 

was removed under reduced pressure to yield a crude product. Purification by silica gel 

chromatography (DCM → DCM:MeOH:NEt3, 5:1:1%) gave the pure product. 
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3.3 Specific procedures and characterisation   

3.3.1  γ-Amino alcohols 

(R)-(+)-3-[(Diphenylmethyl)amino]-1-phenylpropan-1-ol. 128 

 

Optimised methodology for synthesis of 128 in 97% enantiomeric excess. 

α,β-Unsaturated imine 119 was formed in situ from the reaction between 

benzhydrylamine (345 µL, 2.00 mmol) and trans-cinnamaldehyde 66 (252 µL, 2.00 

mmol), stirred in THF (8 mL) with oven-dried 3 Å molecular sieve beads (2.0 g) for 6 

h. After 6 h, an aliquot of the solution containing the in situ-formed imine 119 (2.00 

mL, 0.50 mmol) was transferred to a Schlenk-tube (under argon) containing CuCl (1.8 

mg, 15 μmol), (R)-DM-BINAP (11.0 mg, 15 μmol), NaOtBu (4.3 mg, 45 μmol) and 

B2pin2 (0.14 g, 0.55 mmol). After 5 min, MeOH (50 μL, 1.25 mmol) was added to the 

solution and the reaction was stirred overnight. NaBH4 (57.0 mg, 1.50 mmol) was 

added, followed by the drop-wise addition of MeOH (1.0 mL). The mixture was stirred 

for 3 h, followed by the removal of solvent under reduced pressure. THF (5.0 mL) was 

added to the resulting residue, followed by NaOH (0.30 mL, w/v 20%) and H2O2 (0.13 

mL, w/v 35%), and the solution was heated at reflux for 1 h. After cooling, the resulting 

solution was partitioned between EtOAc and brine. The aqueous layer was extracted 

further with EtOAc (3 x EtOAc). The organic phase was separated and dried over 

MgSO4. After filtration the organic phase was removed under reduced pressure to yield 

a crude product. Purification by silica gel chromatography (hexane:EtOAc, eluent and 

silica, 2:1 eluent) gave the pure product as a cloudy oil which, on standing overnight, 
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resulted in the formation of a white solid (79.3 mg, 50%; 97% e.e.). m.p. 85-87 °C. IR 

(neat) νmax: 3280, 3026, 2848, 1599, 1492, 1451, 742, 696 cm
-1

. 
1
H NMR (400 MHz, 

CDCl3): δ 7.33- 7.11 (m, 15H, Ph), 4.84 (dd, J = 8.7, 3.1 Hz, 1H, CH-2), 4.71 (s, 1H, 

CH2-7), 2.85- 2.69 (m, 2H, CH2-4), 1.86 – 1.67 (m, 2H, CH2-3). 
13

C NMR (101 MHz, 

CDCl3): δ 144.8 (C-5), 143.1 (C-9), 142.8 (C-8), 128.7, 128.7, 128.2, 127.4, 127.3, 

127.3, 127.3, 127.0, 125.6, 75.4 (C-2), 67.9 (C-7), 46.8 (C-4), 38.2 (C-3). LRMS (ESI+) 

318.2 (100%) [M+H]
+
, 164.7 (63%). HRMS (ESI+) calculated [C22H23NO+H]

+ 

318.1858, found 318.1863. [𝛼]𝐷
24 = +36.7 (1.3, HCCl3) for the (R)-γ-amino alcohol 128 

in 97% e.e. Anal. Calc. for C22H23NO C, 83.24; H, 7.30; N, 4.41; found C, 80.17; H, 

6.95; N, 3.97. X-Ray crystallography was used to confirm this structure. Enantiomeric 

excess was determined by derivatisation to the analogous O/N-diacetate 135. 

 

(R)-3-[(Diphenylmethyl)amino]-1-(4-methoxyphenyl)propan-1-ol. 130 

 

Optimised methodology for synthesis of 130 in 90% enantiomeric excess. 

α,β-Unsaturated imine 120 was formed in situ from the reaction between 

benzhydrylamine (345 µL, 2.00 mmol) and trans-4-methoxycinnamaldehyde 121 (324 

mg, 2.00 mmol), stirred in THF (8 mL) and oven-dried 3 Å molecular sieve beads (2.0 

g) for 6 h. After 6 h, an aliquot of the solution containing the in situ-formed imine 120 

(2.00 mL, 0.50 mmol) was transferred to a Schlenk-tube (under argon) containing CuCl 

(1.8 mg, 15 μmol), (R)-DM-BINAP (11.0 mg, 15 μmol), NaOtBu (4.3 mg, 45 μmol) 

and B2pin2 (0.14 g, 0.55 mmol). After 5 min, MeOH (50 μL, 1.25 mmol) was added to 
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the solution and the reaction was stirred overnight. NaBH4 (57.0 mg, 1.50 mmol) was 

added, followed by the drop-wise addition of MeOH (1.0 mL). The mixture was stirred 

for 3 h, followed by the removal of solvent under reduced pressure. THF (5.0 mL) was 

added to the resulting residue, followed by NaOH (0.30 mL, w/v 20%) and H2O2 (0.13 

mL, w/v 35%), and the solution was heated at reflux for 1 h. After cooling, the resulting 

solution was partitioned between EtOAc and brine. The aqueous layer was extracted 

further with EtOAc (3 x EtOAc). The organic phase was separated and dried over 

MgSO4. After filtration the organic phase was removed under reduced pressure EtOAc, 

eluent and silica, 2:1 eluent) gave the pure product as a cloudy colourless oil (156.2 mg, 

90%; 90% e.e.). IR (neat) νmax: 3250, 3026, 2836, 1611, 1512, 1452, 1244, 1031, 729 

cm
-1

. 
1
H NMR (400 MHz, CDCl3): δ 7.36-7.11 (m, 12H, Ph), 6.76 (d, J = 8.8 Hz, 2H, 

Ph-3 and 6), 4.79 (dd, J = 8.5, 3.2 Hz, 1H, CH-8), 4.71 (s, 1H, CH-13), 3.70 (s, 3H, 

CH3-1), 2.86-2.66 (m, 2H, CH2-11), 1.83-1.66 (m, 2H, CH2-10).
 13

C NMR (101 MHz, 

CDCl3): δ 158.7 (C-2), 143.3 (C-7), 142.9 (C-14), 137.1, 129.1, 128.7, 128.5, 128.5, 

128.3, 127.4, 127.3, 127.0, 126.9, 113.6 (C-1), 75.0 (C-8), 67.9 (C-13), 59.7 (C-11), 

46.9 (C-10). LRMS (ESI+) 348.2 (100%) [M+H]
+
, 167.0 (18%). HRMS (ESI+) 

calculated [C23H25NO2+H]
+ 

348.1964, found 348.1972. Enantiomeric excess was 

determined by derivatisation to the analogous O/N-diaceteate 136.  

 

(R)-1-(4-Chlorophenyl)-3-[(diphenylmethyl)amino]propan-1-ol. 131 
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Optimised methodology for synthesis of 131 in 90% enantiomeric excess. 

α,β-Unsaturated imine 123 was formed in situ from the reaction between 

benzhydrylamine (345 µL, 2.00 mmol) and trans-4-chlorocinnamaldehyde 122 (333 

mg,  2.00 mmol), stirred in THF (8 mL) and oven-dried 3 Å molecular sieve beads (2.0 

g) for 9 h. After 9 h, an aliquot of the solution containing the in situ-formed imine 123 

(2.00 mL, 0.50 mmol) was transferred to a Schlenk-tube (under argon) containing CuCl 

(1.8 mg, 15 μmol), (R)-DM-BINAP (11.0 mg, 15 μmol), NaOtBu (4.3 mg, 45 μmol) 

and B2pin2 (0.14 g, 0.55 mmol). After 5 min, MeOH (50 μL, 1.25 mmol) was added to 

the solution and the reaction was stirred overnight. NaBH4 (57.0 mg, 1.50 mmol) was 

added, followed by the drop-wise addition of MeOH (1.0 mL). The mixture was stirred 

for 3 h, followed by the removal of solvent under reduced pressure. THF (5.0 mL) was 

added to the resulting residue, followed by NaOH (0.30 mL, w/v 20%) and H2O2 (0.13 

mL, w/v 35%), and the solution was heated to reflux for 1 h. After cooling, the resulting 

solution was partitioned between EtOAc and brine. The aqueous layer was extracted 

further with EtOAc (3 x EtOAc). The organic phase was separated and dried over 

MgSO4. After filtration the organic phase was removed under reduced pressure to yield 

a crude product. Purification by silica gel chromatography (hexane:EtOAc, eluent and 

silica, 2:1 eluent) gave the pure product as a colourless oil (103.6 mg, 59%; 90% e.e.). 

IR (neat) νmax: 3250, 3026, 2836, 1611, 1512, 1244, 1031, 729 cm
-1

. 
1
H NMR (400 

MHz, CDCl3): δ 7.36-7.08 (m, 14H, Ph), 4.83 (dd, J = 8.7, 3.0 Hz, 1H, CH-7), 4.71 (s, 

1H, CH-12), 2.90-2.69 (m, 2H, CH2-10), 1.86-1.59 (m, 2H, CH2-8). 
13

C NMR (101 

MHz, CDCl3): 142.3 (C-1), 141.9 (C-5), 141.5 (C-13), 131.5, 128.7, 127.7, 127.5, 

127.4, 127.3, 126.6, 126.4, 73.8 (C-7), 66.8 (C-12), 45.7 (C-10), 37.0 (C-8). LRMS 

(ESI+) 352.2 (100%) [M+H]
+
, 168.0 (23%). HRMS (ESI+) calculated 
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[C22H22NOCl+H]
+ 

352.14669, found 352.14627. Enantiomeric excess was determined 

by derivatisation to the analogous O/N-diaceteate 137. 

 

 (S)-1-[(Diphenylmethyl)amino]hexan-3-ol. 132 

 

Optimised methodology for synthesis of 132 in 87% enantiomeric excess. 

α,β-Unsaturated imine 124 was formed in situ from the reaction between 

benzhydrylamine (345 µL, 2.00 mmol) and trans-2-hexenal 116 (232 µL, 2.00 mmol), 

stirred in THF (8 mL) and oven-dried 3 Å molecular sieve beads (2.0 g) for 6 h. After 6 

h, an aliquot of the solution containing the in situ-formed imine 124 (2.00 mL, 0.50 

mmol) was transferred to a Schlenk-tube (under argon) containing CuCl (1.8 mg, 15 

μmol), (R)-DM-BINAP (11.0 mg, 15 μmol), NaOtBu (4.3 mg, 45 μmol) and B2pin2 

(0.14 g, 0.55 mmol). After 5 min, MeOH (50 μL, 1.25 mmol) was added to the solution 

and the reaction was stirred overnight. NaBH4 (57.0 mg, 1.50 mmol) was added, 

followed by the drop-wise addition of MeOH (1.0 mL). The mixture was stirred for 3 h, 

followed by the removal of solvent under reduced pressure. THF (5.0 mL) was added to 

the resulting residue, followed by NaOH (0.30 mL, w/v 20%) and H2O2 (0.13 mL, w/v 

35%), and the solution was heated to reflux for 1 h. After cooling, the resulting solution 

was partitioned between EtOAc and brine. The aqueous layer was extracted further with 

EtOAc (3 x EtOAc). The organic phase was separated and dried over MgSO4. After 

filtration the organic phase was removed under reduced pressure to yield a crude 

product. Purification by silica gel chromatography (hexane:EtOAc, eluent and silica, 2:1 

eluent) gave the pure product as colourless oil (83.8 mg, 59%; 87% e.e.). IR (neat) νmax: 
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3290, 3025, 2954, 2928, 2870, 1599, 1492, 1452, 1028, 743, 696 cm
-1

. 
1
H NMR (400 

MHz, CDCl3): δ 7.37- 7.08 (m, 10H, Ph), 4.70 (s, 1H, CH-9), 3.78-3.68 (m, 1H, CH-4), 

2.88-2.85 (m, 1H, CH2-7), 2.63 (t, J = 10.6 Hz, 1H, CH2-7), 1.61-1.45 (m, 2H, CH2-6), 

1.47-1.35 (m, 2H, CH2-3), 1.36-1.23 (m, 2H, CH2-2) 0.85 (t, J = 6.8 Hz, CH3-1). 
13

C 

NMR (101 MHz, CDCl3): δ 143.4 (C-10), 142.9 (C-11), 128.7, 128.5, 127.6, 127.3, 

127.2, 127.2, 73.2 (C-4), 67.9 (C-9), 47.3 (C-7), 39.9 (C-6), 35.9 (C-3), 18.8 (C-2), 14.2 

(C-1). LRMS (ESI+) 284.6 (100%) [M+H]
+
, 167.3 (86%). HRMS (ESI+) calculated 

[C19H25NO+H]
+ 

284.2014, found 284.2012. Enantiomeric excess was determined by 

derivatisation to the analogous O/N-diacetate 138. 

 

(S)-1-[(Diphenylmethyl)amino]pentan-3-ol. 133 

 

Optimised methodology for synthesis of 133 in 76% enantiomeric excess. 

α,β-Unsaturated imine 126 was formed in situ from the reaction between 

benzhydrylamine (345 µL, 2.00 mmol) and trans-2-pentenal 125 (196 µL, 2.00 mmol), 

stirred in THF (8 mL) and oven-dried 3 Å molecular sieve beads (2.0 g) for 6 h. After 6 

h, an aliquot of the solution containing the in situ-formed imine 126 (2.00 mL, 0.50 

mmol) was transferred to a Schlenk-tube (under argon) containing CuCl (1.8 mg, 15 

μmol), (R)-DM-BINAP (11.0 mg, 15 μmol), NaOtBu (4.3 mg, 45 μmol) and B2pin2 

(0.14 g, 0.55 mmol). After 5 min, MeOH (50 μL, 1.25 mmol) was added to the solution 

and the reaction was stirred overnight. NaBH4 (57.0 mg, 1.50 mmol) was added, 

followed by the drop-wise addition of MeOH (1.0 mL). The mixture was stirred for 3 h, 
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followed by the removal of solvent under reduced pressure. THF (5.0 mL) was added to 

the resulting residue, followed by NaOH (0.30 mL, w/v 20%) and H2O2 (0.13 mL, w/v 

35%), and the solution was heated to reflux for 1 h. After cooling, the resulting solution 

was partitioned between EtOAc and brine. The aqueous layer was extracted further with 

EtOAc (3 x EtOAc). The organic phase was separated and dried over MgSO4. After 

filtration the organic phase was removed under reduced pressure to yield a crude 

product. Purification by silica gel chromatography (hexane:EtOAc, eluent and silica, 2:1 

eluent) gave the pure product as a colourless oil (87.8 mg, 65%; 76% e.e.). IR (neat) 

νmax: 3276, 3025, 2926, 1492, 1452, 1028, 744, 696 cm
-1

. 
1
H NMR (400 MHz, CDCl3): 

δ 7.38-7.03 (m, 10H, Ph), 4.70 (s, 1H, CH-6), 3.67-3.59 (m, 1H, CH-3), 2.87 (ddd, J = 

11.8, 3.6, 1.4 Hz, 1H, CH2-5), 2.63 (dt, J = 10.7, 3.3 Hz, 1H, CH2-5), 1.62-1.55  (m, 1H, 

CH2-4), 1.47-1.41  (m, 1H, CH2-4),  1.45-1.29 (m, 2H, CH2-2), 0.86 (t, J = 7.4 Hz, CH3-

1). 
13

C NMR (101 MHz, CDCl3): δ 143.4 (C-8), 142.9 (C-7), 129.1, 128.7, 128.4, 127.6, 

127.3, 127.1, 67.9 (C-6), 47.2 (C-3), 35.3 (C-5), 30.4 (C-4), 24.9 (C-2), 10.0 (C-1). 

LRMS (ESI+) 270.2 (93%) [M+H]
+
, 167.4 (100%). HRMS (ESI+) calculated 

[C18H22NO+H]
+ 

270.18524, 270.18558. Enantiomeric excess was determined by 

derivatisation to the analogous O/N-diacetate 139. 

 

(S)-(+)-1-[(Diphenylmethyl)amino]butan-2-ol. 134 

 

Optimised methodology for synthesis of 134 in 80% enantiomeric excess. 

α,β-Unsaturated imine 127 was formed in situ from the reaction between 
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benzhydrylamine (345 µL, 2.00 mmol) and crotonaldehyde 59 (166 µL, 2.00 mmol), 

stirred in THF (8 mL) and oven-dried 3 Å molecular sieve beads (2.0 g) for 6 h. After 6 

h, an aliquot of the solution containing the in situ-formed imine 127 (2.00 mL, 0.50 

mmol) was transferred to a Schlenk-tube (under argon) containing CuCl (1.8 mg, 15 

μmol), (R)-DM-BINAP (11.0 mg, 15 μmol), NaOtBu (4.3 mg, 45 μmol) and B2pin2 

(0.14 g, 0.55 mmol). After 5 min, MeOH (50 μL, 1.25 mmol) was added to the solution 

and the reaction was stirred overnight. NaBH4 (57.0 mg, 1.50 mmol) was added, 

followed by the drop-wise addition of MeOH (1.0 mL). The mixture was stirred for 3 h, 

followed by the removal of solvent under reduced pressure. THF (5.0 mL) was added to 

the resulting residue, followed by NaOH (0.30 mL, w/v 20%) and H2O2 (0.13 mL, w/v 

35%), and the solution was heated to reflux for 1 h. After cooling, the resulting solution 

was partitioned between EtOAc and brine. The aqueous layer was extracted further with 

EtOAc (3 x EtOAc). The organic phase was separated and dried over MgSO4. After 

filtration the organic phase was removed under reduced pressure to yield a crude 

product. Subsequent purification by silica gel chromatography (hexane:                                                                                                                                                                                                                                                                                      

EtOAc, eluent and silica, 2:1 eluent) gave the pure product a colourless oil (112.6 mg, 

88%; 80% e.e.). IR (neat) νmax: 3290, 3026, 2966, 2926, 1492, 1452, 1099, 732, 696 cm
-

1
. 

1
H NMR (400 MHz, CDCl3): δ 7.42-7.17 (m, 10H, Ph) 4.78 (s, 1H, CH-7), 4.02-3.94 

(m, 1H, CH-2), 2.95 (ddd, J = 11.9, 3.6, 1.4 Hz, 1H, CH2-4), 2.71 (dt, J = 10.6, 3.4 Hz, 

1H, CH2-4), 1.69-1.47 (m, 2H, CH2-4), 1.17 (d, J = 6.2 Hz, 1H, CH3-1). 
13

C NMR (101 

MHz, CDCl3): δ 143.3 (C-8), 142.8 (C-9), 128.6, 128.6, 128.4, 127.2, 127.1, 126.9, 69.5 

(C-2), 67.9 (C-7), 47.1 (C-4), 37.5 (C-3), 23.4 (C-1). LRMS (ESI+) 256.2 (100%) 

[M+H]
+
, 167.3 (68%). HRMS (ESI+) calculated [C17H21NO+H]

+ 
256.1701, found 

256.1697. [𝛼]𝐷
24  = +3.6 (1.5, HCCl3) for the (R)-γ-amino alcohol 134 in 80% e.e.  
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Enantiomeric excess was determined by derivatisation to the analogous O/N-diacetate 

140. 

 

 (anti)-3-(Benzylamine)-1-phenylbutan-1-ol. 64 

 

THF (10 mL) and 3 Å molecular sieve pellets (2.5 g) were stirred under argon. 

Benzylamine (0.15 mL, 1.4 mmol) and (3E)-4-phenylbut-3-en-2-one (0.20 g, 1.4 mmol) 

were added and stirred for 6 h. In a separate vessel, THF (5 mL), CuCl (6.93 mg, 0.07 

mmol), PnBu3 (34.5 μL, 0.14 mmol) and NaOt-Bu (24.0 mg, 0.25 mmol) were stirred 

for 30 min. After 30 min, B2pin2 (0.39 g, 1.54 mmol) was added and stirred in the CuCl 

solution for 10 min. Both solutions were combined and stirred for a further 30 min, after 

which methanol was added (0.16 mL, 2.80 mmol) and stirred for 18 h. NaBH4 (0.16 g, 

4.20 mmol) was added and the solution stirred. Methanol (3 mL) was added drop-wise 

over 10 min. After 3 h, all solvent was removed under reduced pressure. THF (10 mL), 

NaOH (0.60 mL, 20% w/v solution, 4 mmol), H2O2 (0.25 mL, 35% w/v solution, ca. 4 x 

10
-3

 mol) was added to the resulting mass and refluxed for 1 h. The resulting solution 

was cooled and filtered through Celite, further EtOAc was passed through the Celite 

pad. The resulting solution was partitioned between EtOAc and brine. The aqueous 

layer was extracted further with EtOAc (3 x EtOAc). The organic phase was separated 

and dried over MgSO4. After filtration the organic phase was removed under reduced 

pressure to yield a crude dark yellow oil. Purification by silica gel chromatography 

(hexane:EtOAc, 1% v/v Et3N in eluent and silica, 4:1 eluent) gave the product as a 

cloudy colourless oil (0.32 g, 90%). IR (neat) νmax: 3336, 3027, 2971, 2925, 1494, 1448, 
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1367, 1300, 1142, 1059, 966, 942, 825, 747, 692 cm
-1

. 
1
H NMR (400 MHz, CDCl3): δ 

7.33- 7.13 (m, 10H, Ph), 4.84 (dd, J = 10.6, 2.0 Hz, 1H, CH-1), 3.92 (d, J = 12.5 Hz, 

1H, CH-5), 3.71 (d, J = 12.5, 1H, CH-5), 3.09 - 2.95 (m, 1H, CH-3), 1.68 (dt, J = 14.4, 

2.3 Hz, 1H, CH-2 ) 1.52 (dt, J = 14.4, 10.8 Hz, 1H, CH-2) 1.14 (d, J = 6.3, 3H, CH-4). 

13
C NMR (101 MHz, CDCl3): δ 145.3 (C-9), 139.3 (C-8), 128.6, 128.4, 128.2, 1271.3, 

127.0, 125.6, 75.4 (C-1), 54.3 (C-5), 50.9 (C-3), 46.1 (C-2), 21.1 (C-4). LRMS 

(ASAP+) 256.2 (28%) [M+H
+
], 134.1.0 (100%). HRMS (TOF ASAP+) calculated 

[C17H21NO+H
+
] 256.1701, found 256.1684. All spectroscopic and analytical properties 

are identical with those reported in the literature.
64

 

 

3-(Benzylamine)-2-methylpropan-1-ol. 69 

 

THF (7 mL), 3 Å molecular sieve pellets (2.5 g) were stirred under argon. Benzylamine 

(0.15 mL, 1.4 mmol) and methacrolein (0.12 mL, 1.4 mmol) were added and stirred for 

3 h. In a separate vessel, THF (4 mL), CuCl (6.93 mg, 0.07 mmol), PPh3 (36.72 mg, 

0.14 mmol) and NaOt-Bu (20.2 mg, 0.21 mmol) were stirred for 30 min. After 30 min, 

B2pin2 (0.39g, 1.54 mmol) was added and stirred in the CuCl solution for 10 min. Both 

solutions were combined and stirred for a further 30 min, after which methanol was 

added (0.11 mL, 2.80 mmol) and stirred for 18 h. NaBH4 (0.16 g, 4.20 mmol was added 

and the solution stirred. Methanol (3 mL) was added drop-wise over 10 min. After 3 h, 

all solvent was removed under reduced pressure. THF (10 mL), NaOH (0.60 mL, 20% 

w/v solution, 4 mmol), H2O2 (0.25 mL, 35% w/v solution, ca. 4 x 10
-3

 mol) was added 
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to the resulting mass and refluxed for 1 h. The resulting solution was cooled and filtered 

through Celite, further EtOAc was passed through the Celite pad. The resulting solution 

was partitioned between EtOAc and brine. The aqueous layer was extracted further with 

EtOAc (3 x EtOAc).  The organic phase was separated and dried over MgSO4. After 

filtration the organic phase was removed under reduced pressure to yield a crude yellow 

oil. Purification by silica gel chromatography (EtOAc, 1% v/v Et3N in eluent and silica) 

gave the product as a cloudy colourless oil (0.19 g, 64%, >90% purity). IR (neat) νmax: 

3302, 2871, 2163, 1495, 1453, 1384, 1104, 1028, 953, 734, 697 cm
-1

. 
1
H NMR (400 

MHz, CDCl3): δ 7.35 - 7.15 (m, 5H, Ph), 3.80 (bs, 1H, NH-6), 3.75 (d, J = 13.1 Hz, 1H, 

CH2-7), 3.65 (d, J = 13.2 Hz, 1H, CH2-7), 3.63 (ddd, J  = 11.8, 3.3, 2.1 Hz, 1H, CH2-2), 

3.48 (dd, 11.8, 10.2 Hz, 1H, CH2-2), 3.00 - 2.60 (bs, 1H), 2.83 (ddd, J  = 11.8, 3.3, 2.1 

Hz, 1H, CH2-5), 2.50 (dd, 11.8, 10.2 Hz, 1H, CH2-5), 1.95 – 1.83 (m, 1H, CH-4), 0.73 

(d, J = 6.9 Hz, 3H, CH3-3).
 13

C NMR (101 MHz, CDCl3): δ 138.3 (C-8), 127.6, 127.5, 

127.2, 69.9 (C-2), 55.9 (C-7), 53.1 (C-5), 33.3 (C-4), 14.0 (C-3). LRMS (ASAP+) 180.1 

(54%) [M+H
+
], 162.1 (40%), 120.1 (9%). HRMS (TOF ASAP+) calculated 

[C11H18NO+H
+
] 180.1388, found 180.1358. 

 

(anti)-4-(Benzylamine)-3-methylbutan-2-ol. 71 

 

THF (7 mL), 3 Å molecular sieve pellets (2.5 g) were stirred under argon. Benzylamine 

(0.15 mL, 1.4 mmol) and tiglic aldehyde, (0.14 mL, 1.4 mmol) were added and stirred 

for 3 h. In a separate vessel, THF (4 mL), CuCl (6.93 mg, 0.07 mmol), PnBu3 (34.5 μL, 

0.14 mmol) and NaOt-Bu (20.2 mg, 0.21 mmol) were stirred for 30 min. After 30 min, 
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B2pin2 (0.39g, 1.54 mmol) was added and stirred in the CuCl solution for 10 min. Both 

solutions were combined and stirred for a further 30 min, after which methanol was 

added (0.11 mL, 2.80 mmol) and stirred for 18 h. NaBH4 (0.16 g, 4.20 mmol was added 

and the solution stirred. Methanol (3 mL) was added drop-wise over 10 min. After 3 h, 

all solvent was removed under reduced pressure. THF (10 mL), NaOH (0.60 mL, 20% 

w/v solution, 4 mmol), H2O2 (0.25 mL, 35% w/v solution, ca. 4 x 10
-3

 mol) was added 

to the resulting mass and refluxed for 1 h. The resulting solution was cooled and filtered 

through Celite, further EtOAc was passed through the Celite pad. The resulting solution 

was partitioned between EtOAc and brine. The aqueous layer was extracted further with 

EtOAc (3 x EtOAc). The organic phase was separated and dried over MgSO4. After 

filtration the organic phase was removed under reduced pressure to yield a crude yellow 

oil. Purification by silica gel chromatography (hexane:EtOAc, 1% v/v Et3N in eluent 

and silica, 1:1 eluent) gave the product as a colourless oil (0.32 g, 70%). IR (neat) νmax: 

3444, 2966, 2971, 1452, 1377, 1111, 733 cm
-1

. 
1
H NMR (400 MHz, CDCl3): δ 7.34- 

7.07 (m, 5H, Ph), 3.88 (dq, J = 10.0, 2.8 Hz, 1H, CH2-2), 3.72 (ABq, J = 13.0, 12.7 Hz, 

2H, CH2-8), 2.79 – 2.64 (m, 2H, CH2-4), 1.87 – 1.77 (m, 1H, CH-3), 1.03 (d, J = 6.5Hz, 

3H, CH3-6) 0.80 (d, J = 7.16 Hz, 3H, CH3-5). 
13

C NMR (101 MHz, CDCl3): δ 139.4 (C-

9), 129.0 (C-10), 128.5 (C-11), 127.2 (C-12), 72.0 (C-2), 54.3 (C-8), 53.4 (C-4), 37.5 

(C-3), 18.8 (C-6), 12.7 (C-5). LRMS (ESI+) 194.3 (80%) [M+H
+
], 194.8 (100%). 

HRMS (ESI+) calculated [C12H19NO+H
+
] 194.1545 found, 194.1534. 

 

3-(Benzylamine)-1-propan-1-ol. 67 
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THF (7 mL), 3 Å molecular sieve pellets (2.5 g) were stirred under argon. Benzylamine 

(0.15 mL, 1.4 mmol) and trans-cinnamaldehyde (0.18 mL, 1.4 mmol) were added and 

stirred for 3 h. In a separate vessel, THF (4 mL), CuCl (6.93 mg, 0.07 mmol), PPh3 

(36.72 mg, 0.14 mmol) and NaOt-Bu (20.2 mg, 0.21 mmol) were stirred for 30 min. 

After 30 min, B2pin2 (0.39 g, 1.54 mmol) was added and stirred in the CuCl solution for 

10 min. Both solutions were combined and stirred for a further 30 min, after which 

methanol was added (0.11 mL, 2.80 mmol) and stirred for 18 h. NaBH4 (0.16 g, 4.20 

mmol was added and the solution stirred. Methanol (3 mL) was added drop-wise over 

10 min. After 3 h, all solvent was removed under reduced pressure. THF (10 mL), 

NaOH (0.60 mL, 20% w/v solution, 4 mmol), H2O2 (0.25 mL, 35% w/v solution, ca. 4 x 

10
-3

 mol) was added to the resulting mass and refluxed for 1 h. The resulting solution 

was cooled and filtered through Celite, further EtOAc was passed through the Celite 

pad. The resulting solution was partitioned between EtOAc and brine. The aqueous 

layer was extracted further with EtOAc (3 x EtOAc).  The organic phase was separated 

and dried over MgSO4. After filtration the organic phase was removed under reduced 

pressure to yield a crude oil, which formed a white solid on standing. Purification by 

silica gel chromatography (hexane:EtOAc, 1% v/v Et3N in eluent and silica, 2:1 eluent) 

gave the product as a cloudy colourless oil (0.20 g, 58%). IR (neat) νmax: 3250, 3026, 

2836, 1603, 1493, 1451, 1438, 1180, 733, 696 cm
-1

. 
1
H NMR (400 MHz, CDCl3): δ 

7.41- 7.09 (m, 10H, Ph), 4.88 (dd, J = 8.6, 3.0 Hz, 1H, CH-1), 3.74 (ABq, J = 13.0, 5.2 

Hz, 2H, CH2-4), 2.94 - 2.80 (m, 2H, CH2-3), 1.88 – 1.67 (m, 2H, CH2-2). 
13

C NMR 

(101 MHz, CDCl3): δ 145.0 (C-11), 139.2 (C-7), 132.2, 132.1, 131.9, 128.6, 128.4, 

128.3, 75.6 (C-1), 53.9 (C-3), 47.8 (C-4), 37.4 (C-2). LRMS (ESI+) 242.6 (100%) 

[M+H
+
], 120.4 (65%). HRMS (ESI+) calculated [C16H19NO+H

+
] 242.1545, found 
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242.1550. All spectroscopic and analytical properties are identical with those reported 

in the literature.
61

 

 

 (anti)-3-(benzylamino)-2-methyl-1-phenylpropan-1-ol. 74 

 

THF (6 mL), 3 Å molecular sieve pellets (2.5 g) were stirred under argon. Benzylamine 

(101 μL, 1.0 mmol) and α-methylcinnamaldehyde (140 μL, 1.0 mmol) were added and 

stirred for  7 h. In a separate vessel, THF (3 mL), CuCl (4.95 mg, 0.05 mmol), PnBu3 

(24.7 μL, 0.10 mmol) and NaOt-Bu (14.4 mg, 0.15 mmol) were stirred for 30 min. After 

30 min, B2pin2 (0.28 g, 1.1 mmol) was added and stirred in the CuCl solution for 10 

min. Both solutions were combined and stirred for a further 30 min, after which 

methanol was added (81.0 μL, 2.0 mmol) and stirred for 18 h. NaBH4 (0.11 g, 3.0 mmol 

was added and the solution stirred. Methanol (2 mL) was added drop-wise over 10 min. 

After 3 h, all solvent was removed under reduced pressure. THF (10 mL), NaOH (0.43 

mL, 20% w/v solution, 2.86 mmol), H2O2 (0.18 mL, 35% w/v solution, ca. 2.86 mmol) 

was added to the resulting mass and refluxed for 1 h. The resulting solution was cooled 

and filtered through Celite, further EtOAc was passed through the Celite pad. The 

resulting solution was partitioned between EtOAc and brine. The aqueous layer was 

extracted further with EtOAc (3 x EtOAc).  The organic phase was separated and dried 

over MgSO4.  After filtration the organic phase was removed under reduced pressure to 

yield a yellow oil. Purification by silica gel chromatography (hexane:EtOAc, 1% v/v 

Et3N in eluent and silica, 2:1 eluent) gave the product as a white solid (50 mg, 20%). IR 
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(neat) νmax: 3320, 3062, 2912, 2841, 1602, 1493, 1453, 1040 cm
-1

. 
1
H NMR (400 MHz, 

CDCl3): δ 7.32-7.06 (m, 10H, Ph), 4.85 (d, J = 3.2 Hz, 1H, CH-2), 3.74 (ABq, J = 13.0, 

10.9 Hz, 2H, CH2-8), 2.76-2.64 (m, 2H, CH2-4), 2.12-2.04 (m, 1H, CH-3), 0.67 (d, J = 

7.2 Hz, 3H, CH3-5).
 
 
13

C NMR (101 MHz, CDCl3): δ 141.7 (C-6), 138.2 (C-9), 127.8, 

127.4, 127.0, 126.9, 126.4, 126.1, 79.7 (C-2), 53.3 (C-8), 52.3 (C-4), 37.5 (C-3), 11.68 

(C-5). LRMS (ESI+) 256.3 (100%) [M+H
+
], 161.4 (27%). HRMS (ESI+) calculated 

[C17H21NO+H
+
] 256.1701, found 256.1704. 

 

3-(benzylamino)cyclohexan-1-ol  (syn/anti mixture). 76 

 

THF (12 mL), 3 Å molecular sieve pellets (3.6 g), CuCl (9.9 mg, 0.1 mmol), PnBu3 

(49.3 μL, 0.2 mmol) and NaOt-Bu (28.8 mg, 0.3 mmol) were stirred for 30 min under 

argon. After 30 min, B2pin2 (0.56 g, 1.1 mmol) was added and stirred for 10 min. 

Benzylamine (0.22 mL, 2.0 mmol) and cyclohexenone (0.19, 2.0 mmol) was added and 

stirred for 30 min, after which, methanol was added (0.16 mL, 4.0 mmol) and the 

resulting solution was stirred for 18 h. NaBH4 (0.23 g, 6.0 mmol was added and the 

solution stirred. Methanol (4 mL) was added drop-wise over 10 min. After 3 h, all 

solvent was removed under reduced pressure. THF (15 mL), NaOH (0.86 mL, 20% w/v 

solution, 5.72 mmol), H2O2 (0.36 mL, 35% w/v solution, ca. 5.72 mmol) was added to 

the resulting mass and refluxed for 1 h. The resulting solution was cooled and filtered 

through Celite, further EtOAc was passed through the Celite pad. The resulting solution 

was partitioned between EtOAc and brine. The aqueous layer was extracted further with 
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EtOAc (3 x EtOAc).  The organic phase was separated and dried over MgSO4. After 

filtration the organic phase was removed under reduced pressure to yield a dark yellow 

oil. Toluene (2 x 20 mL) was added to the crude oil and removed under pressure (this 

was repeated twice). After the toluene had been removed, purification by silica gel 

chromatography (EtOAc:MeOH, 1% v/v Et3N in eluent and silica, 9:1 eluent) gave the 

product as a yellow oil (0.21 g, 51% - mixture diastereoisomers 7:3 d.r.).
234

 IR (neat) 

νmax: 3274, 2929, 2854, 1495, 1451, 1125, 1059 cm
-1

. Major diastereoisomer reported: 

1
H NMR (400 MHz, CDCl3): δ 7.74-7.09 (m, 5H, Ph), 3.83-3.69 (m, 1H, CH-4), 3.81-

3.69 (ABq, J = 32.2, 12.8 Hz, 2H, CH2-9), 2.86-2.77 (m, 1H, CH-6), 1.91-1.79 (m, 1H), 

1.82-1.67 (m, 2H), 1.69-1.46 (m, 4H), 1.47-1.33 (m, 2H), 1.34-1.16 (m, 1H).
 13

C NMR 

(101 MHz, CDCl3): δ 140.7 (C-10), 128.6 (C-11), 127.9 (C-12), 126.8 (C-13), 68.4 (C-

4), 53.6, 51.2 (C-9), 34.3 (C-6), 33.7, 32.0, 31.6, 19.1. LRMS (ESI+) 206.2 (47%) 

[M+H
+
], 108.5 (15%). HRMS (ESI+) calculated [C13H19NO+H

+
] 206.1545, found 

206.1533. 

 

(R)-3-(Methylamino)-1-phenylpropan-1-ol. 143 

 

Benzhydrylamine (0.86 mL, 5.00 mmol) and trans-cinnamaldehyde 66 (0.63 mL, 5.00 

mmol) was added to a stirring solution of THF (20 mL) and oven-dried 3 Å molecular 

sieve beads (5.0 g) for 6 h, to form the α,β-unsaturated imine 119 in situ. After 6 h, an 

aliquot of the solution containing the in situ-formed imine 119 (16.0 mL, 4.00 mmol) 

was transferred to a Schlenk-tube (under argon) containing CuCl (12.0 mg, 0.12 mmol), 

PPh3 (62.9 mg, 0.24 mmol) or (R)-DM-BINAP (88.2 mg, 0.12 mmol), NaOt-Bu (34.6 

mg, 0.36 mmol) and B2pin2 (1.12 g, 4.4 mmol). After 5 min, MeOH (400 μL, 10.0 
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mmol) was added to the solution and the reaction was stirred overnight. Methylamine (8 

mL, 16.0 mmol, 2 M THF solution) was added under argon and the resulting solution 

was stirred for 1.5 h. NaBH4 (0.46 g, 12.0 mmol) was added, followed by the drop-wise 

addition of MeOH (8.0 mL). The mixture was stirred for 3 h, followed by the removal 

of solvent under reduced pressure. THF (20 mL) was added to the resulting residue, 

followed by NaOH (2.4 mL, w/v 20%) and H2O2 (1.1 mL, w/v 35%), and the solution 

was heated to reflux for 1 h. After cooling, the resulting solution was partitioned 

between EtOAc and brine. The aqueous layer was extracted further with EtOAc (3 x 

EtOAc). The organic phase was separated and dried over MgSO4. After filtration the 

organic phase was removed under reduced pressure to yield a crude product. 

Purification by silica gel chromatography (DCM → DCM:MeOH:NEt3, 5:1:1%) gave 

the pure product as an off colourless oil, which formed an off colourless solid on 

standing [356 mg, 54% when using PPh3 and 402 mg, 61% when using (R)-DM-

BINAP; 96% e.e.]. 
1
H NMR (400 MHz, CDCl3): δ 7.40-7.24 (m, 5H), 4.95 (dd, J = 8.7, 

3.1 Hz, 1H, CH-1), 3.65-3.4 (bs, 1H, NH-5), 2.97-2.83 (m, 2H, CH2-4), 2.46, (s, 3H, 

CH3-6), 1.93-1.72 (m, 2H, CH2-3); 
13

C NMR (101 MHz, CDCl3): δ 145.0 (C-7), 128.2, 

127.0, 125.6, 75.4 (C-1), 50.3 (C-4), 36.7 (C-6), 35.9 (C-3); LRMS (ESI+) 166.5 

[M+H]
+
; HRMS (ESI+) Calculated [C10H15NO+H] 166.1232, found 166.1228. All 

spectroscopic and analytical properties are identical with those reported in the 

literature.
223

 

 

 (S)-3-(Methylamino)-1-(thiophen-2-yl)propan-1-ol. 162 
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Benzhydrylamine (0.86 mL, 5.00 mmol) and (2E)-3-(thiophen-2-yl)prop-2-enal 156 

(0.63 mL, 5.00 mmol) was added to a stirring solution of THF (20 mL) and oven-dried 

3 Å molecular sieve beads (5.0 g) for 6 h, to form the α,β-unsaturated imine 158 in situ. 

After 6 h, an aliquot of the solution containing the in situ-formed imine 158 (12.0 mL, 

3.0 mmol) was transferred to a Schlenk-tube (under argon) containing CuCl (9.0 mg, 

0.09 mmol), PPh3 (48.0 mg, 0.18 mmol) or (S)-DM-BINAP (66.1 mg, 0.09 mmol), 

NaOt-Bu (27.0 mg, 0.27 mmol) and B2pin2 (0.84 g, 3.3 mmol). After 5 min, MeOH 

(300 μL, 7.5 mmol) was added to the solution and the reaction was stirred overnight. 

Methylamine (6 mL, 12.0 mmol, 2 M THF solution) was added under argon and the 

resulting solution was stirred for 1.5 h. NaBH4 (0.34 g, 9.0 mmol) was added, followed 

by the drop-wise addition of MeOH (6.0 mL). The mixture was stirred for 3 h, followed 

by the removal of solvent under reduced pressure. THF (15 mL) was added to the 

resulting residue, followed by NaOH (1.8 mL, w/v 20%) and H2O2 (0.84 mL, w/v 35%), 

and the solution was heated to reflux for 1 h. After cooling, the resulting solution was 

partitioned between EtOAc and brine. The aqueous layer was extracted further with 

EtOAc (3 x EtOAc). The organic phase was separated and dried over MgSO4. After 

filtration the organic phase was removed under reduced pressure to yield a crude 

product. Purification by silica gel chromatography (DCM → DCM:MeOH:NEt3, 

5:1:1%) gave the pure product as an off colourless oil, which formed a pale yellow oil 

on standing 9b [241 mg, 47% when using PPh3 and 292 mg, 57% when using (S)-DM-

BINAP; 94% e.e.]. 
1
H NMR (400 MHz, CDCl3): δ 7.20 (dd, J = 5.0, 1.2 Hz, 1H, CH-8), 

7.06 (dd , J = 5.0, 3.4, 1H, CH-10), 6.93-6.91 (m, 1H, CH-9), 5.19 (dd, J = 8.4, 3.2 Hz, 

1H, CH-1), 4.68-4.32 (bs, 1H, NH-5), 3.02-2.83 (m, 2H, CH2-4), 2.45 (s, 3H, CH3-6), 

2.05-1.86 (m, 2H, CH2-3).
 13

C NMR (101 MHz, CDCl3): δ 149.7 (C-7), 126.6 (C-10), 

123.7 (C-9), 122.3 (C-8), 71.9 (C-1), 50.1 (C-4), 36.8 (C-6), 35.9 (C-3). LRMS (ESI+) 



206 

 

[M+H]
+
, 171.9. HRMS (ESI+) calculated [C8H13NOS+H]

+ 
172.0796, found 172.0829. 

All spectroscopic and analytical properties are identical with those reported in the 

literature.
232

 

3.3.2 1,3-Oxazines 

(R)-3-(Diphenylmethyl)-6-phenyl-1,3-oxazinane. 129  

 

α,β-Unsaturated imine 119 was formed in situ from the reaction between 

benzhydrylamine (0.34 mL, 2.00 mmol) and cinnamaldehyde 66 (252 µL, 2.00 mmol), 

stirred in THF (8 mL) and oven-dried 3 Å molecular sieve beads (2.0 g) for 6-24 h. 

After 6-24 h, an aliquot of the solution containing the in situ-formed imine 2 (2.00 mL, 

0.50 mmol) was transferred to a Schlenk-tube (under argon) containing CuCl (1.8 mg, 

15 μmol), (R)-DM-BINAP (11.0 mg, 15 μmol), NaOtBu (4.3 mg, 45 μmol) and B2pin2 

(0.14 g, 0.55 mmol). After 5 min, MeOH (50 μL, 1.25 mmol) was added to the solution 

and the reaction was stirred overnight. NaBH4 (57.0 mg, 1.50 mmol) was added, 

followed by the drop-wise addition of MeOH (1.0 mL). The mixture was stirred for 3h, 

with the addition THF (3.0 mL), NaOH (0.30 mL, w/v 20%) and H2O2 (0.13 mL, w/v 

35%). The resulting solution was heated to reflux for 1 h. After cooling, formaldehyde 

solution (6.0 mmol, w/v 37%) was added, and the solution was stirred for 3h. The 

resulting solution was partitioned between EtOAc and brine. The aqueous layer was 

extracted with EtOAc (3 x EtOAc). The organic phase was separated and dried over 
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MgSO4. After filtration the organic phase was removed under reduced pressure to yield 

a crude product. Purification by silica gel chromatography (hexane:EtOAc, eluent and 

silica, 5:1 eluent) gave the pure product as a white, highly insoluable solid (158 mg, 

48%; 97% e.e.). m.p. 90-91 °C. IR (neat) νmax: 2921, 2858, 1492, 1179, 996, 698 cm
-1

. 

1
H NMR (400 MHz, CDCl3): δ 7.50-7.07 (m, 15H, Ph), 5.08 (s, 1H, CH-5), 4.53 (d, J =  

10.2 Hz, 1H, CH2-4), 4.48 (d, J = 11.3 Hz, 1H, CH-1), 4.32 (d, J = 10.2 Hz, 1H, CH2-4), 

3.10-2.88 (m, 2H, CH2-3), 2.05-1.95 (q, 1H, CH2-3), 1.43-1.39 (d, J = 13.6 Hz, CH2-3). 

13
C NMR (101 MHz, CDCl3): δ 142.7 (C-8), 142.6 (C-6), 142.5 (C-7), 128.7, 128.7, 

128.4, 128.2, 127.8, 127.5, 127.2, 125.7, 83.0 (C-5), 79.5 (C-1), 68.1(C-4), 48.2 (C-3), 

29.3 (C-2). LRMS (ESI+) 330.1 (100%) [M+H]
+
, 167.3 (66%). HRMS (ESI+) 

calculated [C23H23NO+H]
+ 

330.1858, found 330.1886. Anal. Calc. for C23H23NO C, 

83.85; H, 7.04; N, 4.25; found C, 84.02; H, 7.02; N, 4.08. Enantiomeric excess was 

determined by derivatisation to the analogous O/N-diacetate 135. Absolute 

stereochemistry was confirmed by X-ray crystallography.  

 

 (anti)-3-Benzyl-4-methyl-6-phenyl-1, 3-oxazinane. 65 

 

Route A 

3-(Benzylamine)-1-phenylbutan-1-ol  (0.22 g, 0.86 mmol) and formaldehyde solution 

(75 μL, 37% w/v solution, 1.00 mmol) was stirred in THF (6 mL) for 4.5 h. After 4.5 h, 

MgSO4 was added, and the organic phase was filtered and removed under reduced 
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pressure to leave a crude oil. Purification by silica gel chromatography (hexane:EtOAc, 

2:1 eluent) gave a colourless oil (0.17 g, 74%).  

Route B 

THF (7 mL), 3 Å molecular sieve pellets (2.5 g) were stirred under argon. Benzylamine 

(0.15 mL, 1.4 mmol) and (3E)-4-phenylbut-3-en-2-one (0.20 g, 1.4 mmol) were added 

and stirred for 3 h. In a separate vessel, THF (4 mL), CuCl (6.93 mg, 0.07 mmol), PPh3 

(36.72 mg, 0.14 mmol) and NaOt-Bu (20.2 mg, 0.21 mmol) were stirred for 30 min. 

After 30 min, B2pin2 (0.39 g, 1.54 mmol) was added and stirred in the CuCl solution for 

10 min. Both solutions were combined and stirred for a further 30 min, after which 

methanol was added (0.11 mL, 2.80 mmol) and stirred for 18 h. NaBH4 (0.16 g, 4.20 

mmol was added and the solution stirred. Methanol (15 mL) was added drop-wise over 

10 min. After 3 h, NaOH (4.8 mL, 20% w/v solution, 4 mmol), H2O2 (2.0 mL, 35% w/v 

solution, ca. 4 x 10
-3

 mol) was added drop-wise to the resulting mass and refluxed for 4 

h. The resulting solution was cooled and filtered through Celite, further EtOAc was 

passed through the Celite pad. The resulting solution was partitioned between EtOAc 

and brine. The aqueous layer was extracted further with EtOAc (3 x EtOAc). The 

organic phase was separated and dried over MgSO4. After filtration the organic phase 

was removed under reduced pressure to yield a crude yellow oil. Purification by silica 

gel chromatography (hexane:EtOAc, 3:1 eluent) gave the product as a colourless oil 

(0.18 g, 51%). IR (neat) νmax: 3027, 2996, 2859, 1602, 1494, 1452, 1363, 1207 (C-O), 

988, 696 cm
-1

. 
1
H NMR (400 MHz, CDCl3): δ 7.40 - 7.10 (m, 10H, Ph), 4.48 (d, J = 

10.0 Hz, 1H, CH2-7), 4.48  (dd, J = 11.3, 2.8 Hz, 1H, CH-2), 4.23 (d, J = 10 Hz, 1H, 

CH2-7), 3.93 (d, J = 13.6, 1H, CH2-6), 3.61 (d, J = 13.6 Hz, 1H, CH2-6), 3.21 (m, 1H, 

CH-4), 1.72 (dt, J = 13.4, 11.5 Hz, 1H, CH2-3), 1.57 (dt, J = 13.4, 2.8 Hz, 1H, CH2-3), 

1.18 (d, J = 6.6 Hz, 3H, CH3-5). 
13

C NMR (101 MHz, CDCl3): δ 141.5 (C-1), 138.3 (C-
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8), 128.0, 127.6, 127.4, 127.3, 126.5, 125.9, 124.8, 82.7 (C-7), 78.5 (C-2), 54.3 (C-6), 

47.5 (C-4), 36.4 (C-3), 19.3 (C-5). LRMS (ASAP+) 268.2 (14%) [M+H
+
], 148.1 

(100%), 134.1 (38%). HRMS (TOF ASAP+) calculated [C18H21NO+H
+
] 268.1701, 

found 268.1708. Anal. Calc. for C18H21NO C, 80.86; H, 7.92; N, 5.24; found C, 79.29; 

H, 7.84; N, 4.56.  

3-Benzyl-5-methyl-1,3-oxazinane. 70 

 

THF (7 mL), 3 Å molecular sieve pellets (2.5 g) were stirred under argon. Benzylamine 

(0.15 mL, 1.4 mmol) and methacrolein (0.12 mL, 1.4 mmol) were added and stirred for 

3 h. In a separate vessel, THF (4 mL), CuCl (7.0 mg, 0.07 mmol), PPh3 (37.0 mg, 0.14 

mmol) and NaOt-Bu (20.2 mg, 0.21 mmol) were stirred for 30 min. After 30 min, 

B2pin2 (0.39g, 1.54 mmol) was added and stirred in the CuCl solution for 10 min. Both 

solutions were combined and stirred for a further 30 min, after which methanol was 

added (0.11 mL, 2.80 mmol) and stirred for 18 h. NaBH4 (0.16 g, 4.20 mmol was added 

and the solution stirred. Methanol (3 mL) was added drop-wise over 10 min. After 3 h, 

all solvent was removed under reduced pressure. THF (10 mL), NaOH (0.60 mL, 20% 

w/v solution, 4 mmol), H2O2 (0.25 mL, 35% w/v solution, ca. 4 x 10
-3

 mol) was added 

to the resulting mass and refluxed for 1 h. The resulting solution was cooled and filtered 

through Celite, further EtOAc was passed through the Celite pad. The resulting solution 

was partitioned between EtOAc and brine. The aqueous layer was extracted further with 

EtOAc (3 x EtOAc).  The organic phase was separated and dried over MgSO4.  After 

filtration the organic phase was removed under reduced pressure to yield a yellow oil. 

Toluene (2 x 20 mL) was added to the crude oil and removed under pressure (this was 
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repeated twice). After the toluene had been removed, THF (10 mL) and formaldehyde 

solution (0.12 mL, 37% w/v solution, 1.54 mmol) were sequentially added to the sample 

and the solution was stirred under argon overnight (15 h). MgSO4 was added to the 

reaction, and the solution was filtered. The organics were removed under vacuum to 

yield a yellow oil. Purification by silica gel chromatography (hexane:EtOAc, 5:1 eluent) 

gave the product as a colourless oil (0.20g, 75%). IR (neat) νmax: 2953, 2850, 1453, 

1017, 883, 698 cm
-1

. 
1
H NMR (400 MHz, CDCl3): δ 7.34-7.13 (m, 5H, Ph), 4.35 (d, J = 

9.6 Hz, 1H, CH2-5), 4.03 (d, J = 9.6 Hz, 1H, CH2-5), 3.92 (ddd, J = 10.9, 4.3, 1.7 Hz, 

1H, CH2-1) 3.75 (ABq, J = 13.4, 5.7 Hz, 2H, CH2-6), 3.09 (t, J = 10.8 Hz, 1H, CH2-1) 

2.89-2.80 (m, 1H, CH2-4), 2.29 (dd, J = 12.8, 11.2 Hz, 1H, CH2-4), 2.18-2.04 (m, 1H, 

CH2-2), 0.63 (d, J = 6.6 Hz, 3H, CH2-2). 
13

C NMR (101 MHz, CDCl3): δ 138.6 (C-7), 

128.9 (C-8), 128.3 (C-9), 127.1 (C-10), 84.2 (C-5), 74.3 (C-1), 57.2 (C-6), 56.2 (C-4), 

25.9 (C-2), 14.7 (C-3). LRMS (ESI+) 192.5 (100%) [M+H
+
], 180.5 (16%). HRMS 

(ESI+) calculated [C12H17NO+H
+
] 192.1388, found 192.1368. 

 

3-Benzyl-6-methyl-1,3-oxazinane. 79 

 

THF (6 mL), 3 Å molecular sieve pellets (1.8 g) were stirred under argon. Benzylamine 

(0.11 mL, 1.0 mmol) and crotonaldehyde (83 μL, 1.0 mmol) were added and stirred for 

3 h. In a separate vessel, THF (3 mL), CuCl (4.95 mg, 0.05 mmol), PnBu3 (24.7 μL, 

0.10 mmol) and NaOt-Bu (14.0 mg, 0.15 mmol) were stirred for 30 min. After 30 min, 

B2pin2 (0.28 g, 1.1 mmol) was added and stirred in the CuCl solution for 10 min. Both 

solutions were combined and stirred for a further 30 min, after which methanol was 
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added (81.0 μL, 2.0 mmol) and stirred for 18 h. NaBH4 (0.11 g, 3.0 mmol was added 

and the solution stirred. Methanol (2 mL) was added drop-wise over 10 min. After 3 h, 

all solvent was removed under reduced pressure. THF (10 mL), NaOH (0.43 mL, 20% 

w/v solution, 2.86 mmol), H2O2 (0.18 mL, 35% w/v solution, ca. 2.86 mmol) was added 

to the resulting mass and refluxed for 1 h. The resulting solution was cooled and filtered 

through Celite, further EtOAc was passed through the Celite pad. The resulting solution 

was partitioned between EtOAc and brine. The aqueous layer was extracted further with 

EtOAc (3 x EtOAc).  The organic phase was separated and dried over MgSO4.  After 

filtration the organic phase was removed under reduced pressure to yield a yellow oil. 

Toluene (2 x 20 mL) was added to the crude oil and removed under pressure (this was 

repeated twice). After the toluene had been removed, THF (8 mL) and formaldehyde 

solution (84 μL, 37% w/v solution, 1.1 mmol) were sequentially added to the sample 

and the solution was stirred under argon overnight (15 h). MgSO4 was added to the 

reaction, and the solution was filtered. The organics were removed under vacuum to 

yield a yellow oil. Purification by silica gel chromatography (hexane:EtOAc, 5:1 eluent) 

gave the product as a colourless oil (0.10 g, 50%). IR (neat) νmax: 2967, 2931, 2853, 

1495, 1453, 1082, 993, 735, 698 cm
-1

. 
1
H NMR (400 MHz, CDCl3): δ 7.35-7.10 (m, 5H, 

Ph), 4.40 (dd, J = 9.7, 2.1 Hz, 1H, CH2-5axial) 4.15 (d, J = 9.6 Hz, 1H, CH2-5equatorial) 

3.71 (s, 2H, CH-6), 3.58-3.47 (m, 1H, CH-2), 2.93-2.85 (m, 1H, CH2-4), 2.70 (dd, J = 

12.8, 3.2 Hz, 1H, CH2-4), 1.73-1.62 (m, 1H, CH2-3), 1.29-1.22 (m, 1H, CH2-3), 1.16 (d, 

J = 6.2 Hz, 3H, CH3-1). 
13

C NMR (101 MHz, CDCl3): δ 138.6 (C-7), 129.0 (C-8), 128.3 

(C-9), 127.1 (C-10), 84.5 (C-5), 73.6 (C-2), 55.8 (C-6), 49.5 (C-4), 29.5 (C-3), 21.9 

(C-1). LRMS (ESI+) 192.5 (100%) [M+H
+
], 134.4 (13%). HRMS (ESI+) calculated 

[C12H17NO+H
+
] 192.1388, found 192.1400. 
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3-Benzyl-4-methyl-octahydro-2H-1,3-benzoxazine. 78 

 

THF (12 mL), 3 Å molecular sieve pellets (3.6 g), CuCl (9.9 mg, 0.1 mmol), PnBu3 

(49.3 μL, 0.2 mmol) and NaOt-Bu (28.8 mg, 0.3 mmol) were stirred for 30 min under 

argon. After 30 min, B2pin2 (0.56 g, 1.1 mmol) was added and stirred for 10 min. 

Benzylamine (0.22 mL, 2.0 mmol) and 1-Acetyl-1-cyclohexene (0.26, 2.0 mmol) was 

added and stirred for 30 min, after which, methanol was added (0.16 mL, 4.0 mmol) and 

the resulting solution was stirred for 18 h. NaBH4 (0.23 g, 6.0 mmol was added and the 

solution stirred. Methanol (4 mL) was added drop-wise over 10 min. After 3 h, all 

solvent was removed under reduced pressure. THF (15 mL), NaOH (0.86 mL, 20% w/v 

solution, 5.72 mmol), H2O2 (0.36 mL, 35% w/v solution, ca. 5.72 mmol) was added to 

the resulting mass and refluxed for 1 h. The resulting solution was cooled and filtered 

through Celite, further EtOAc was passed through the Celite pad. The resulting solution 

was partitioned between EtOAc and brine. The aqueous layer was extracted further with 

EtOAc (3 x EtOAc). The organic phase was separated and dried over MgSO4.  After 

filtration the organic phase was removed under reduced pressure to yield a dark yellow 

oil. Toluene (2 x 20 mL) was added to the crude oil and removed under pressure (this 

was repeated twice). After the toluene had been removed, THF (15 mL) and 

formaldehyde solution (0.16 mL, 37% w/v solution, 2.1 mmol) were sequentially added 

to the sample and the solution was stirred under argon overnight (15 h). MgSO4 was 

added to the reaction, and the solution was filtered. The organics were removed under 

vacuum to yield a yellow oil. Purification by silica gel chromatography (hexane:EtOAc, 

12:1 eluent) gave the product as a colourless oil (0.21 g, 42%). IR (neat) νmax: 2932, 
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2850, 1494, 1445, 1215, 1099 cm
-1

. 
1
H NMR (400 MHz, CDCl3): δ 7.32-7.11 (m, 5H, 

Ph), 4.33 (d, J = 8.4 Hz, 1H, CH2-9), 3.84 (d, J = 14.3, 1H, CH2-10), 3.72 (d, J = 8.4, 

1H, CH2-9), 3.52 (m, J = 2.5, 1H, CH-4), 3.17 (d, J = 14.3, 1H, CH2-10), 2.63 (dq, J = 

6.6, 4.0 Hz, 1H, CH3-8), 1.86-1.78 (m, 1H), 1.77-1.68 (m, 2H), 1.57-1.44 (m, 2H), 1.42-

1.35 (m, 2H), 1.27-1.20 (m, 1H). 1.15 (d, J = 6.6 Hz, CH3-7).  
13

C NMR (101 MHz, 

CDCl3): δ 139.9 (C-11), 128.4 (C-12), 128.2 (C-13), 126.7 (C-14), 84.6 (C-9), 59.2 (C-

4), 52.3 (C-8), 41.7 (C-5), 31.8, 25.8, 20.9, 20.8, 17.6 LRMS (ESI+) 247.6 (100%) 

[M+H
+
], 102.4 (80%). HRMS (ESI+) calculated [C16H23NO+H

+
] 246.1858, found 

246.1852. 

 

(anti)-3-Benzyl-5,6-dimethyl-1,3-oxazine. 72 

 

THF (7 mL), 3 Å molecular sieve pellets (2.5 g) were stirred under argon. Benzylamine 

(0.15 mL, 1.4 mmol) and tiglic aldehyde (0.14 mL, 1.4 mmol) were added and stirred 

for 3 h. In a separate vessel, THF (4 mL), CuCl (6.93 mg, 0.07 mmol), PnBu3 (34.5 μL, 

0.14 mmol) and NaOt-Bu (20.2 mg, 0.21 mmol) were stirred for 30 min. After 30 min, 

B2pin2 (0.39g, 1.54 mmol) was added and stirred in the CuCl solution for 10 min. Both 

solutions were combined and stirred for a further 30 min, after which methanol was 

added (0.11 mL, 2.80 mmol) and stirred for 18 h. NaBH4 (0.16 g, 4.20 mmol was added 

and the solution stirred. Methanol (3 mL) was added drop-wise over 10 min. After 3 h, 

all solvent was removed under reduced pressure. THF (10 mL), NaOH (0.60 mL, 20% 

w/v solution, 4 mmol), H2O2 (0.25 mL, 35% w/v solution, ca. 4 x 10
-3

 mol) was added 

to the resulting mass and refluxed for 1 h. The resulting solution was cooled and filtered 
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through Celite, further EtOAc was passed through the Celite pad. The resulting solution 

was partitioned between EtOAc and brine. The aqueous layer was extracted further with 

EtOAc (3 x EtOAc).  The organic phase was separated and dried over MgSO4.  After 

filtration the organic phase was removed under reduced pressure to yield a yellow oil. 

Toluene (2 x 20 mL) was added to the crude oil and removed under pressure (this was 

repeated twice). After the toluene had been removed, THF (10 mL) and formaldehyde 

solution (0.12 mL, 37% w/v solution, 1.54 mmol) were sequentially added to the sample 

and the solution was stirred under argon overnight (15 h). MgSO4 was added to the 

reaction, and the solution was filtered. The organics were removed under vacuum to 

yield a yellow oil. Purification by silica gel chromatography (hexane:EtOAc, 6:1 eluent) 

gave the product as a colourless oil (0.80g, 28%). IR (neat) νmax: 2976, 1496, 1244, 

1107, 742 cm
-1

. 
1
H NMR (400 MHz, CDCl3): δ 7.34-7.13 (m, 5H, Ph), 4.39 (dd, J = 8.3, 

1.7 Hz, 1H, CH2-6axial), 3.77 (d, J = 8.3 Hz, 1H, CH2-6equatorial), 3.65 (dq, J = 6.6, 3.1 Hz, 

1H, CH-3), 3.56 (d, J = 13.5 Hz, 1H, CH2-7), 3.39 (d, J = 13.5 Hz, 1H, CH2-7), 2.71 

(ddd, J = 11.8, 3.8, 1.7 Hz, 1H, CH2-5equatorial) 2.39 (dd, J = 11.8, 3.5 Hz, 1H CH2-5axial), 

1.66-1.56 (m, 1H, CH-4), 1.1 (d, J = 6.6 Hz, 3H, CH3-1), 0.99 (d, J = 7.0 Hz, 3H, CH3-

2). 
13

C NMR (101 MHz, CDCl3): δ 138.4 (C-8), 128.6 (C-9), 128.3 (C-10), 127.0 (C-

11), 84.6 (C-6), 75.3 (C-3), 57.3 (C-5), 57.2 (C-7), 32.5 (C-5), 17.3 (C-1), 12.8 (C-2. 

LRMS (ESI+) 206.5 (73%) [M+H
+
], 194.1 (47%). HRMS (ESI+) calculated 

[C13H19NO+H
+
] 206.1545, found 206.1549. 
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3.3.3 O/N-Diacetates  

(R)-3-[N-(Diphenylmethyl)acetamido]-1-phenylpropyl acetate. 135 

 

3-[(Diphenylmethyl)amino]-1-phenylpropan-1-ol 128 (79 mg, 0.25 mmol), pyridine 

(0.5 mL, 6.2 mmol) and acetic anhydride (0.5 mL, 5.3 mmol),  were combined in DCM 

(3.0 mL) and stirred overnight. The resulting solution was diluted in DCM (10.0 mL) 

and was washed with HCl (3 x 10 mL, w/v 20%) and water (3 x). The organic layer was 

separated and dried over MgSO4. Filtration followed by the removal of solvent under 

vacuum yielded a crude off-colourless solid, which was further purified by silica gel 

chromatography (hexane:EtOAc, eluent and silica, 2:1 eluent) to give the product pure 

product as a colourless viscous oil (88.3 mg, 88%). IR (neat) νmax: 3030, 2958, 1732, 

1644, 1410, 1231, 1028, 697 cm
-1

. 
1
H NMR (400 MHz, CDCl3) observed as a mixture 

of rotamers, major rotamer: δ 7.40-6.85 (m, 15H, Ph), 6.13 (s, 1H, CH-4), 5.38-5.18 (m, 

1H, CH-1), 3.40-3.09 (m, 2H, CH2-3), 2.09 (s, 3H, CH3-6), 1.89 (s, 3H, CH3-8), 1.51-

1.27 (m, 2H, CH2-2). 
13

C NMR (101 MHz, CDCl3): δ170.0 (C-5), 169.6 (C-7), 138.9 

(C-9), 138.3 (C-10), 138.0, 128.1, 127.6, 127.5, 127.5, 127.5, 127.2, 127.1, 126.6, 

126.4, 125.1, 73.0 (C-1), 64.9 (C-4), 59.6 (C-3), 40.5 (C-6), 33.1 (C-8), 21.3 (C-2). 

LRMS (ESI+) 402.2 (74%) [M+H]
+
, 342.2 (100%), 167.1 (56%). HRMS (ESI+) 

calculated [C26H26NO3+H]
+ 

402.2069, found 402.2077. Enantiomeric excess was 

determined by HPLC using an OD-CHIRALCEL column (250 x 4.6 mm) fitted with 

guard cartridge (50 x 4.6 mm), 25 
o
C, 1.0 mL/min, 210 nm, hexane : IPA (90 : 10). tR 
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(R) = 15.1 min; tR (S) = 18.1 min. Absolute stereochemistry determined by preparation 

of the analogous oxazine 129 and X-ray crystallography of that compound. 

 

(R)-3-[N-(Diphenylmethyl)acetamido]-1-(4-methoxyphenyl)propyl acetate. 136 

 

3-[(Diphenylmethyl)amino]-1-(4-methoxyphenyl)propan-1-ol 130 (157 mg, 0.45 

mmol), pyridine (0.5 mL, 6.2 mmol) and acetic anhydride (0.5 mL, 5.3 mmol),  were 

combined in DCM (3.0 mL) and stirred overnight. The resulting solution was diluted in 

DCM (10.0 mL) and was washed with HCl (3 x 10 mL, w/v 20%) and water (3 x 

water). The organic layer was separated and dried over MgSO4. Filtration followed by 

the removal of solvent under vacuum yielded a crude off-colourless solid, which was 

further purified by silica gel chromatography (hexane:EtOAc, eluent and silica, 2:1 

eluent) to give the product pure product as a colourless viscous oil (60.2 mg, 31%). IR 

(neat) νmax: 3027, 1732, 1641, 1541, 1233, 1176, 1030, 730 cm
-1

. 
1
H NMR (400 MHz, 

CDCl3) observed as a mixture of rotamers, major rotamer: δ 7.37-7.33 (m, 10H, Ph), 

6.88 (d, J = 8 Hz, 2H, CH-12), 6.68 (d, J = 8 Hz, 2H, CH-11), 6.13 (s, 1H, CH-4), 5.32-

5.18 (m, 1H, CH-1), 3.68 (s, 3H, CH3-5), 3.35-3.08 (m, 2H, CH2-3), 2.08 (s, 3H, CH3-

7), 1.85 (s, 3H, CH3-9), 1.60-1.28 (m, 2H, CH2-2).
 13

C NMR (101 MHz, CDCl3): δ 

171.1 (C-6), 170.1 (C-8), 159.1 (C-13), 141.6 (C-10), 139.5, 139.3, 132.0, 128.8, 128.7, 

128.6, 128.6, 128.0, 127.7, 127.5, 127.4, 113.9, 73.8 (C-1), 66.0 (C-4), 57.0 (C-3), 41.6 

(C-7), 35.9 (C-9), 23.4 (C-2). LRMS (ESI+) 432.2 (40%) [M+H]
+
, 328.9 (54%). HRMS 

(ESI+) calculated [C27H29NO4+H]
+ 

432.2175, found 432.2154. Enantiomeric excess was 
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determined by HPLC using an AD-CHIRALCEL column (250 x 4.6 mm) fitted with 

guard cartridge (50 x 4.6 mm), 25 
o
C, 1.0 mL/min, 210 nm, hexane : IPA (75 : 25). tR 

(R) = 8.7 min; tR (S) = 12.9 min. 

 

 (R)-1-(4-Chlorophenyl)-3-[N-diphenylmethyl)acetamido]propyl acetate. 137 

 

1-(4-Chlorophenyl)-3-[(diphenylmethyl)amino]propan-1-ol 131 (126 mg, 0.36 mmol), 

pyridine (0.5 mL, 6.2 mmol) and acetic anhydride (0.5 mL, 5.3 mmol),  were combined 

in DCM (3.0 mL) and stirred overnight. The resulting solution was diluted in DCM 

(10.0 mL) and was washed with HCl (3 x 10 mL, w/v 20%) and water (3 x water). The 

organic layer was separated and dried over MgSO4. Filtration followed by the removal 

of solvent under vacuum yielded a crude off-colourless solid, which was further purified 

by silica gel chromatography (hexane:EtOAc, eluent and silica, 2:1 eluent) to give the 

product pure product as a colourless viscous oil (70.6 mg, 45%). IR (neat) νmax: 3028, 

1735, 1644, 1411, 1230, 1014, 733 cm
-1

. 
1
H NMR (400 MHz, CDCl3) observed as a 

mixture of rotamers, major rotamer: δ 7.31-6.81 (m, 14H, Ph), 6.13 (s, 1H, CH-4), 5.30-

5.19 (m, 1H, CH-1), 3.35-3.14 (m, 2H, CH2-3), 2.09 (s, 3H, CH3-5), 1.89 (s, 3H, CH3-

8), 1.54-1.23 (m, 2H, CH2-2).
 13

C NMR (101 MHz, CDCl3): δ 171.1 (C-6), 170.0 (C-7), 

139.0 (C-9), 138.9, 133.4, 129.2, 128.8, 128.7, 128.7, 128.6, 128.5, 128.5, 128.0, 127.5, 

73.4 (C-1), 65.9 (C-4), 60.7 (C-3), 41.3 (C-5), 34.0 (C-8), 22.3 (C-2). LRMS (ESI+) 

436.0 (40%) [M+H]
+
, 376.1 (100%). HRMS (ESI+) calculated [C26H26NO3Cl+H]

+ 

436.16740, found 436.16806. e.e. was determined by HPLC using an AD-CHIRALCEL 
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column (250 x 4.6 mm) fitted with guard cartridge (50 x 4.6 mm), 25 
o
C, 1.0 mL/min, 

210 nm, hexane : IPA (85 : 15). tR (R) = 11.2 min; tR (S) = 15.1 min. 

 

(S)-1-[N-(Diphenylmethyl)acetamido]hexan-3-yl acetate. 138 

 

1-[(Diphenylmethyl)amino]hexan-3-ol 132 (85 mg, 0.30 mmol), pyridine (0.5 mL, 6.2 

mmol) and acetic anhydride (0.5 mL, 5.3 mmol),  were combined in DCM (3.0 mL) and 

stirred overnight. The resulting solution was diluted in DCM (10.0 mL) and was washed 

with HCl (3 x 10 mL, w/v 20%) and water (3 x water). The organic layer was separated 

and dried over MgSO4. Filtration followed by the removal of solvent under vacuum 

yielded a crude off-colourless solid, which was purified by silica gel chromatography 

(hexane:EtOAc, eluent and silica, 2:1 eluent) to give the product pure product as a 

colourless viscous oil (59.5 mg, 70%). IR (neat) νmax: 2958, 2873, 1731, 1644, 1238, 

1022, 732, 698 cm
-1

. 
1
H NMR (400 MHz, CDCl3) observed as a mixture of rotamers, 

major rotamer: δ 7.32-7.00 (m, 10H, Ph), 6.14 (s, 1H, CH-7), 4.51-4.35 (m, 1H, CH-4), 

3.33-3.14 (m, 2H, CH2-6), 2.10 (s, 3H, CH3-15), 1.84 (s, 3H, CH3-13), 1.31-1.15 (m, 

2H, CH2-5), 1.15-1.06 (m, 2H, CH2-3),1.06-0.80 (m, 2H, CH2-2), 0.71(t, J = 7.2 Hz, 

3H, CH3-1). 
13

C NMR (101 MHz, CDCl3): δ 171.1, 170.6, 139.7, 139.1, 129.3, 128.7, 

128.6, 128.5, 128.0, 127.9, 72.3, 72.0, 66.0, 41.4, 35.8, 32.0, 22.3, 21.7, 18.3. LRMS 

(ESI+) 368.1 (17%) [M+H]
+
, 167.0 (19%). HRMS (ESI+) calculated [C23H29NO3+H]

+ 

368.2226, found 368.2202. Enantiomeric excess was determined by HPLC using an AS-

H-CHIRALCEL column (250 x 4.6 mm) fitted with guard cartridge (50 x 4.6 mm), 25 
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o
C, 1.0 mL/min, 210 nm, hexane : IPA (90 : 10). tR (S) = 12.3 min; tR (R) = 14.7 min. 

    

(S)-1-[N-(Diphenylmethyl)acetamido]pentan-3-yl acetate. 139 

 

1-[(Diphenylmethyl)amino]pentan-3-ol 133 (56.5 mg, 0.21 mmol), pyridine (0.5 mL, 

6.2 mmol) and acetic anhydride (0.5 mL, 5.3 mmol),  were combined in DCM (3.0 mL) 

and stirred overnight. The resulting solution was diluted in DCM (10.0 mL) and was 

washed with HCl (3 x 10 mL, w/v 20%) and water (3 x). The organic layer was 

separated and dried over MgSO4. Filtration followed by the removal of solvent under 

vacuum yielded a crude off-colourless solid, which was further purified by silica gel 

chromatography (hexane:EtOAc, eluent and silica, 2:1 eluent) to give the product pure 

product as a colourless viscous oil (63.6 mg, 84%). IR (neat) νmax: 2967, 1734, 1636, 

1411, 1239, 1030, 730, 698 cm
-1

. 
1
H NMR (400 MHz, CDCl3) observed as a mixture of 

rotamers, major rotamer: δ 7.34-7.03 (m, 10H, Ph), 6.14 (s, 1H, CH-6), 4.42-4.30 (m, 

1H, CH2-5), 3.36-3.15 (m, 2H, CH2-5), 2.10 (s, 3H, CH3-11), 1.85 (s, 3H, CH3-13), 

1.28-1.17 (m, 2H, CH-4), 1.16-1.03 (m, 2H, CH2-2), 0.57 (t, J = 7.4 Hz, 3H, CH3-1). 

13
C NMR (101 MHz, CDCl3): δ 170.7 (C-12), 170.7 (C-13), 139.1 (C-7), 139.0, 128.8, 

128.7, 128.6, 128.5, 128.5, 128.0, 73.7 (C-3), 66.0 (C-6), 60.6, (C-11) 41.4 (C-13), 31.5 

(C-4), 26.6 (C-2), 21.7 (C-1). LRMS (ESI+) 354.2 (72%) [M+H]
+
, 167. (88%). HRMS 

(ESI+) calculated [C22H27NO3+H]
+ 

354.20637, found 354.20677. Enantiomeric excess 

was determined by HPLC using an AS-H-CHIRALCEL column (250 x 4.6 mm) fitted 
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with guard cartridge (50 x 4.6 mm), 25 
o
C, 1.0 mL/min, 210 nm, hexane : IPA (90 : 10). 

tR (S) = 13.2 min; tR (R) = 17.2 min. 

 

(S)-4-[N-(Diphenylmethyl)acetamido]butan-2-yl acetate. 140 

 

1-[(Diphenylmethyl)amino]butan-2-ol 134 (103 mg, 0.40 mmol), pyridine (0.5 mL, 6.2 

mmol) and acetic anhydride (0.5 mL, 5.3 mmol),  were combined in DCM (3.0 mL) and 

stirred overnight. The resulting solution was diluted in DCM (10.0 mL) and was washed 

with HCl (3 x 10 mL, w/v 20%) and water (3 x). The organic layer was separated and 

dried over MgSO4. Filtration followed by the removal of solvent under vacuum yielded 

a crude off-colourless solid, which was further purified by silica gel chromatography 

(hexane:EtOAc, eluent and silica, 2:1 eluent) to give the product pure product as a 

colourless viscous oil (67.9 mg, 51%). IR (neat) νmax: 2979, 1731, 1640, 1412, 1241, 

733, 698 cm
-1

. 
1
H NMR (400 MHz, CDCl3) observed as a mixture of rotamers, major 

rotamer: δ 7.32-7.04 (m, 10H, Ph), 6.15 (s, 1H, CH-6), 4.53-4.41 (m, 1H, CH-2), 3.36-

3.15 (m, 2H, CH2-4), 2.10 (s, 3H, CH3-14), 1.83 (s, 3H, CH3-11), 1.21-1.10 (m, 2H, 

CH2-3), 0.85 (t, J = 6.4 Hz, 3H, CH3-1).
 13

C NMR (101 MHz, CDCl3): δ 170.7 (C-13), 

170.4 (C-12), 139.6, 139.1, 129.2, 129.1, 128.7, 128.7, 128.5, 128.0, 69.2 (C-2), 66.0 

(C-6), 56.97 (C-14), 41.4 (C-11), 33.9 (C-3), 21.7 (C-1). LRMS (ESI+) 362.1 (41%) 

[M+Na]
+
 HRMS (ESI+) calculated [C21H25NO+H]

+ 
340.1913, found 340.1905. 

Enantiomeric excess was determined by HPLC using an AS-H-CHIRALCEL column 
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(250 x 4.6 mm) fitted with guard cartridge (50 x 4.6 mm), 25 
o
C, 1.0 mL/min, 210 nm, 

hexane : IPA (90 : 10). tR (S) = 20.9 min; tR (R) = 27.7 min. 

3.3.4 Other 

(S)-3-(Tetramethyl-1,3,2-dioxaborolan-2-yl)hexenal. 142 

 

Optimised methodology for synthesis of 142 in 87% enantiomeric excess. 

α,β-Unsaturated imine 124 was formed in situ from the reaction between 

benzhydrylamine (345 µL, 2.00 mmol) and trans-2-hexenal 116 (232 µL, 2.00 mmol), 

stirred in THF (8 mL) and oven-dried 3 Å molecular sieve beads (2.0 g) for 6 h. After 6 

h, an aliquot of the solution containing the in situ-formed imine 124 (2.00 mL, 0.50 

mmol) was transferred to a Schlenk-tube (under argon) containing CuCl (1.8 mg, 15 

μmol), (R)-DM-BINAP (11.0 mg, 15 μmol), NaOtBu (4.3 mg, 45 μmol) and B2pin2 

(0.14 g, 0.55 mmol). After 5 min, MeOH (50 μL, 1.25 mmol) was added to the solution 

and the reaction was stirred overnight. Afterwards, H2O (4 mL) was added to the 

solution and stirred for 1 h. The resulting solution was partitioned between EtOAc and 

brine. The aqueous layer was extracted further with EtOAc (3 x EtOAc). The organic 

phase was separated and dried over MgSO4. After filtration the organic phase was 

removed under reduced pressure to yield a crude product. Purification by silica gel 

chromatography (hexane:EtOAc, eluent and silica, 8:1 eluent) gave the pure product as 

colourless oil (104.0 mg, 92%; 87% e.e.). IR (neat) νmax: 2976, 2927, 1722, 1466, 1379, 

1315, 1143, 967 cm
-1

. 
1
H NMR (400 MHz, CDCl3): δ 9.69 (s, 1H, CH-6), 2.57-2.39 (m, 

2H, CH2-5), 1.43-1.33 (m, 1H, CH-4) 1.31-1.20 (m, 4H, CH-2/3), 1.18 (s. 6H, CH3-
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9/11), 1.16 (s, 6H, CH3-8/12), 0.82 (t, J = 6.8 Hz, 3H, CH2-1).
 13

C NMR (101 MHz, 

CDCl3): δ 203.0 (C-6), 83.2 (C-10/7), 45.8 (C-5), 32.7 (C-6), 24.7 (C-4), 24.6 (C-3), 

21.9 (C-2), 14.2 (C-1). 
11

B NMR (128 MHz, CDCl3): δ 34.1. LRMS (ESI+) 249.1 

(74%) [M+Na]
+
. HRMS (ESI+) calculated [C12H23BO3+H]

+ 
249.1639, found 249.1639. 

All spectroscopic and analytical properties are identical with those reported in the 

literature.
235

 

 

(E)-Benzyl(2-methylprop-2-en-1-ylidene)amine. 58 

 

Methacrolein (1.00 mL, 12.15 mmol) and benzylamine (1.43 mL, 13.37 mmol) 

were weighed out under inert atmosphere and injected into a flask containing 3 Å 

molecular sieves (beads, 5 g) and dry THF (50 mL). The solution was stirred under 

argon for 16 h and the resulting solution was filtered over celite. The solvent removed 

under reduced pressure, after which purification was achieved using Kügelrohr 

distillation (15 mbar, 117-127 
o
C). This yielded a colourless oil (0.65 g, 34%). IR (neat) 

νmax: 3027, 2838, 1640 (C=Nasym), 1618 (C=Nsym), 1496 (C=C), 1452, 1356, 1156, 1029, 

908, 854, 732, 696, 616 cm
-1

. 
1
H NMR (400 MHz, CDCl3): δ 7.95 (s, 1H, CHN-4), 

7.36-7.08 (m, 5H, Ph), 5.55 (s, 1H, CH2-1(E)), 5.34 (s, 1H, CH2-1(Z)), 4.64 (s, 2H,CH2-

5), 1.90 (s, 3H, CH3-3). 
13

C NMR (101 MHz, CDCl3): δ 165.01, 143.87, 139.44, 128.42, 

127.86, 126.89, 124.30, 64.64, 17.14.  LRMS (GC EI) 159.1 (18 %) [M
+
], 91.0 (100 %), 

82.1 (4 %), 65.1 (24 %), 51.1 (7%), 39.1 (22 %). HRMS (TOF ASAP+) calculated 

[C11H13N+H
+
] 160.1126, found 160.1139. All spectroscopic observations were as 

reported in the literature.
131
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 (E)-Benzyl[(2E)-but-2-en-1-ylidene]amine. 56 

 

 Benzylamine (3.37 mL, 30.95 mmol) and potassium carbonate (1.50 g, 22.00 

mmol) was added to flask of dry THF (10 mL) under argon. The reaction mixture was 

cooled to -10 
o
C and stirred for 15 min. Crotonaldehyde (2.57 mL, 30.95 mmol) was 

added and the solution and stirred for a further 1 h at 263 
o
C, and then allowed to warm 

to ambient temperature for a further 3 h. The mixture was filtered and the solvent 

removed under reduced pressure. Kugelrohr distillation (10 mbar, 70 - 80 
o
C) gave off 

the first fraction, followed by a pale yellow oil (0.35 g, 7%). 
1
H NMR (400 MHz, 

CDCl3): δ 7.89 (d, J = 8 Hz, 1H, CH-6), 7.43 – 7.00 (m, 5H, Ph), 6.27-6.10 (m, 2H, 

CHCH-2/3), 4.54 (s, 2H, CH2-5), 1.82 (d, J = 6 Hz, 3H, CH3-1). All spectroscopic and 

analytical properties are identical with those reported in the literature.
131

 

 

(E)-Benzyl[(2E)-2-methylbut-2-en-1-ylidene]amine. 57 

 

 Tiglic aldehyde (0.29 mL, 2.97 mmol) and benzylamine (0.33 mL, 2.97 mmol) 

were added to a flask containing 3 Å molecular sieve beads (15 g) and dry THF (20 

mL). The solution was stirred under argon for 16 h and the resulting solution was 

filtered over celite. The solvent removed under reduced pressure, after which 

purification was achieved using Kügelrohr distillation (10 mbar, over a temperature 

range of 143 to 150 
o
C) to yield a colourless oil (0.11 g, 21%). 

1
H NMR (400 MHz, 
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CDCl3): δ 7.88 (s, 1H, CHN-5), 7.31-7.18 (m, 5H, Ph), 6.07 (q, J = 7 Hz, 1H, CH-2), 

4.64 (s, 2H, CH2-7), 1.88 (s, 3H, CH3-6), 1.81 (d, J = 7 Hz, 3H, CH3-1). 
13

C NMR (101 

MHz, CDCl3): δ 166.7 (C-4), 139.9 (C-2), 136.9 (C-8), 136.7 (C-3), 128.4 (C-9), 127.8 

(C-10), 126.8 (C-11), 64.6 (C-7), 14.2 (C-6), 11.32 (C-1). All spectroscopic and 

analytical properties are identical with those reported in the literature.
131

 

 

(E)-Benzyl[(3E)-4-phenylbut-3-en-2-ylidene]amine. 62 

 

(E)-4-Phenyl-3-buten-2-one (1.50 g, 10.27 mmol) and benzylamine (1.25 mL, 11.30 

mmol) were added to a flask containing 3 Å molecular sieve beads (5 g) and dry THF 

(15 mL). The solution was stirred under argon for 16 h and the resulting solution was 

filtered over Celite. The solvent removed under reduced pressure, after which 

purification was achieved using Kügelrohr distillation (10 mbar, over a temperature 

range of 143 - 150 
o
C) to yield a yellow oil (0.53 g, 22%). 

1
H NMR (400 MHz, CDCl3): 

δ 7.50 – 7.17 (m, 10H, Ph), 7.45 (d, J = 16 Hz, 1H, CH-1), 6.65 (d, J = 16 Hz, 1H, CH-

2), 3.80 (s, 2H, CH2-5), 2.30 (s, 3H, CH3-4).  All spectroscopic and analytical properties 

are identical with those reported in the literature.
64
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(E)-(Diphenylmethyl)[(2E)-3-phenylprop-2-en-1-ylidene]amine 119 

 

Crystallisation of 119 was achieved by dissolving 119 in IPA:toluene (20:1) and 

allowing for slow evaporation through a capillary tube (fitted in the top of a sealed vial). 

This resulted in the formation of pale yellow, crystalline needles with the following 

properties: 
1
H NMR (400 MHz, CDCl3): δ 8.22 (d, J = 8.4 Hz, 1H, CH-4), 7.53-7.21 

(m, 15H, Ph), 7.10 (unsymmet. dd, J = 16.0, 8.4 Hz, 1H, CH-2), 7.00 (unsymmet. d, J  

= 16.0 Hz, 1H, CH-1), 5.52 (s, 1H, CH-6). 
13

C NMR (101 MHz, CDCl3): δ 162.9 (C-3), 

143.6, 142.4, 135.7 (C-1), 129.2, 128.8, 128.5, 128.4, 127.7, 127.3, 127.0, 78.2 (C-6). 

LRMS (ESI+) 298.2 (99%) [M]
+
; HRMS (ESI+) Calculated [C22H19N+H]

+
 298.1596, 

found 298.1583. X-ray crystallography was used to confirm this structure. All 

spectroscopic and analytical properties are identical with those reported in the 

literature.
236

 

 

(R)-(+)-N-Methyl-3-phenyl-3-[4-(trifluoromethyl)phenoxy]propan-1-amine 

(Fluoxetine). 

 

3-(Methylamino)-1-phenylpropan-1-ol 143 (330 mg, 2.00 mmol) was dissolved in dry 

dimethylacetamide (2.8 mL) and transferred to an oven-dried Schlenk-tube and purged 

with Argon. NaH (100 mg, 2.2 mmol, 60% in mineral oil) was transferred directly to the 
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solution and heated (70 
o
C) under Argon for 30-40 min, or until hydrogen evolution had 

ceased. 4-Chlorobenzotrifluoride (354 µL, 2.4 mmol) was added under argon, and the 

resulting solution was heated (100
 o

C) for 3 h. On cooling, the solution was partitioned 

between toluene and H2O and washed (3x H2O). The organic phase was separated and 

dried over MgSO4. After filtration the organic phase was removed under reduced 

pressure to yield a crude product. Purification by silica gel chromatography (DCM → 

DCM:MeOH:NEt3, 5:1:1%) gave the pure product as a yellow oil 154, (458 mg, 74%; 

96% e.e.). 
1
H NMR (400 MHz, CDCl3): δ 7.43 (d, J = 8.6 Hz, 2H, CH-8), 7.39-7.24 (m, 

5H, Ph), 6.90 (d, J = 8.6 Hz, 2H, CH-7), 5.31 (dd, J = 8.2, 4.7 Hz, 1H, CH-1), 2.79-2.69 

(m, 2H, CH2-3), 2.43, (s, 3H, CH3-4), 2.26-1.95 (m, 2H, CH2-2). 
13

C NMR (101 MHz, 

CDCl3): δ 160.5 (C-10), 141.0 (C-6), 128.8 (C-9), 127.9, 126.8, 126.7, 125.8, 115.8, 

78.6 (C-1), 48.2 (C-3), 38.6 (C-4), 29.7 (C-2). LRMS (ESI+) 309.3 (57%) [M]
+
; HRMS 

(ESI+) Calculated [C17H18NOF3+H]
+
 310.1419, found 310.1411. [𝛼]𝐷

22  = +3.5 (1.0, 

HCCl3) for the (R)-Fluoxetine in 96% e.e. Enantiomeric excess was determined by 

derivatisation to the analogous acetate 152. All spectroscopic and analytical properties 

are identical with those reported in the literature.
223 

 

(S)-(+)-Methyl[3-(naphthalene-1-yloxy)-3-(thiophen-2-yl)propyl]amine (Duloxetine). 

 

3-(Methylamino)-1-(thiophen-2-yl)propan-1-ol 162 (150 mg, 0.87 mmol) was dissolved 

in dry DMSO (3.0 mL) and transferred to an oven-dried Schlenk-tube and purged with 

Argon. NaH (43.5 mg, 0.96 mmol, 60% in mineral oil) was transferred directly to the 
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solution and heated (60 
o
C) under Argon for 1.5 h, or until hydrogen evolution had 

ceased. 1-Fluoronaphthalene (154 µL, 1.2 mmol) was added under argon, and the 

resulting solution was heated (70
 o
C) for 1.5 h. On cooling, the solution was partitioned 

between toluene and H2O and washed (3x H2O). The organic phase was separated and 

dried over MgSO4. After filtration the organic phase was removed under reduced 

pressure to yield a crude product. Purification by silica gel chromatography (DCM → 

DCM:MeOH:NEt3, 5:1:1%) gave the pure product (Duloxetine) as a yellow oil  (214 

mg, 83%; 94% e.e.). 
1
H NMR (400 MHz, CDCl3): δ 8.38-8.33 (m, 1H, Aryl), 7.80-7.76 

(m, 1H, Aryl), 7.51-7.46 (m, 2H, Aryl), 7.39 (d, J = 8.3 Hz, 1H), 7.29 (d, J = 7.9 Hz, 

1H), 7.21 (dd, J = 5.0, 1.2 Hz, 1H, CH-9), 7.06 (d, J = 3.5 Hz, 1H, CH-7), 6.94 (dd, J = 

5.0, 3.5 Hz, 1H, CH-8), 6.86 (d, J = 7.2 Hz, 1H), 5.79 (dd, J = 7.7, 5.3 Hz, 1H, CH-1), 

2.88-2.79 (m, 2H, CH2-3), 2.51-2.40 (m, 2H, CH2-2), 2.44 (s, 3H, CH3-4). 
13

C NMR 

(101 MHz, CDCl3): δ 153.4 (C-6), 145.3 (C-10), 134.6 (C-9), 127.5, 126.6, 126.3, 

126.2, 125.7, 125.2, 124.7, 124.5, 122.1, 122.1, 120.6, 107.0, 74.8 (C-1), 48.4 (C-3), 

39.1 (C-4), 36.6 (C-2). LRMS (ESI+) [M+H]
+
, 298.0. HRMS (ESI+) calculated 

[C18H19NOS+H]
+ 

298.1266, found 298.1263. [𝛼]𝐷
22  = +105.4 (1.0, MeOH) (S)-

Duloxetine in 94% e.e. Enantiomeric excess was determined by derivatisation to the 

analogous acetylated compound 164. All spectroscopic and analytical properties are 

identical with those reported in the literature.
232 
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Methyl N-(diphenylmethyl)-N-{3-phenyl-3-[4-(trifluoromethyl)phenoxy]propyl} 

carbamate. 147 

 

3-[(Diphenylmethyl)amino]-1-phenylpropan-1-ol 128 (0.65 g, 2.05 mmol) was 

dissolved in dry DMA (2.8 mL) and transferred to an oven-dried Schlenk-tube and 

purged with Argon. NaH (100 mg, 2.26 mmol, 60% in mineral oil) was transferred 

directly to the solution and heated (70 
o
C) under Argon for 30 min, or until hydrogen 

evolution had ceased. 4-Chlorobenzotrifluoride (354 µL, 2.46  mmol) was added under 

argon, and the resulting solution was heated (110
 o

C) for 3 h. On cooling, the solution 

was partitioned between toluene and H2O and washed (3x H2O). The organic phase was 

separated and dried over MgSO4. After filtration the organic phase was removed under 

reduced pressure to yield a crude product yellow product. To the crude oil, DCM (4 

mL) was added and the reaction was stirred under argon. K2CO3 (1.4 g, 10.2 mmol) was 

dissolved in H2O (4 mL) and added to the stirring solution, followed by the addition of 

methyl chloroformate (205 µL, 2.67 mmol). After 1.5 h, the solution was partitioned 

between EtAcO and H2O and washed (3x H2O). The organic phase was separated and 

dried over MgSO4. After filtration the organic phase was removed under reduced 

pressure to yield a crude product yellow product. Purification by silica gel 

chromatography (Hexane:EtAcO → EtAcO, 5:1 → 1) gave the pure product as a yellow 

oil (0.809 g, 76%). Mixture of rotamers observed, major reported as: 
1
H NMR (400 

MHz, CDCl3): δ 7.46-7.21 (m, 17H, Ph), 6.75 (d, J = 8.6 Hz, 2H, CH-16), 6.68-6.59 

(bs, 1H, CH-13), 5.53 (dd, J = 8.6, 4.4 Hz, 1H, CH-5), 3.70 (s, 3H, CH3-9), 3.60-3.48 
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(m, 2H, CH2-7), 1.75-1.47 (m, 2H, CH2-6). LRMS (ESI+) [M+H]
+
, 520.5 (5%), HRMS 

(ESI+) calculated [C31H28NO3+H]
+ 

520.2100, found 520.2125. 

 

 (2E)-N-Methoxy-N-methyl-3-(thiophen-2-yl)prop-2-enamide. 155 

 

(2E)-3-(Thiophen-2-yl)prop-2-enoic acid 153 (4.0 g, 26.0 mmol) and 

dimethylformamide (200 µL, 2.6 mmol)  was dissolved in DCM (70 mL) and stirred 

under argon. Oxalyl chloride (2.5 mL, 26.0 mmol) was added and the solution was 

refluxed for 4 h and allowed to cool to room temperature. All the solvent was removed 

in vacuo to yield a brown solid. THF (50 mL) was added to the resulting solid and 

stirred under argon. N,O-Dimethylhydroxylamine (2.54 g, 26.0 mmol)  and 

triethylamine  (3.6 mL, 26.0 mmol) were added and the solution was allowed to stir 

overnight. After, the reaction was quenched by the addition of H2O (50 mL). the 

resulting solution was partitioned between EtAcO (250 mL) and the organic layer was 

washed with H2O (3 x 30 mL). The organic layer was separated and dried over MgSO4. 

After filtration the organic phase was removed under reduced pressure to yield pure 

yellow oil (4.36 g, 85%). 
1
H NMR (400 MHz, CDCl3) observed as a mixture of 

rotamers, major rotamer: δ 7.83 (d, J = 15.5 Hz, 1H, CH-5), 7.34 (d, J = 5.1H, 1H, CH-

1), 7.04 (dd, J = 5.1, 3.6 Hz, 1H, CH-2), 7.25 (d, J – 3.6 Hz, 1H, CH-3), 6.02 (d, J = 

15.5 Hz, 1H, CH-6), 3.76 (s, 3H, CH3-8), 3.30 (s, 3H, CH3-9). 
13

C NMR (101 MHz, 

CDCl3): δ 166.8 (C-7), 142.8 (C-1), 140.4 (C-4), 136.0 (C-3), 130.6 (C-2), 127.6 (C-6), 

61.9 (C-8), 32.6 (C-9). LRMS (ESI+) 197.3 (53%) [M+]
+
, HRMS (ESI+) calculated 

[C9H11NO2+H]
+ 

198.0589, found 198.0611. 
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Benzyl[(2E)-but-2-en-1-yl]amine. 59a 

 

Crotonaldehyde (41.4 μL, 0.50 mmol) and benzylamine (54.6 μL, 0.50 mmol) were 

added to a stirring solution of THF (3.5 mL) and 3 Å molecular sieve pellets (1.0 g). 

The resulting mix was stirred under argon overnight (15 h). To the stirring solution, 

NaBH4 (38 mg, 1.0 mmol) was added, followed by the drop-wise addition of methanol 

(2 mL). This solution was stirred for a further 2 h, after which, the solution was filtered 

through Celite. The resulting solution was partitioned between EtOAc and brine. The 

aqueous layer was extracted further with EtOAc (3 x EtOAc). The organic phase was 

separated and dried over MgSO4. Purification by silica gel chromatography 

(hexane:EtOAc, 3:1 eluent) gave a yellow oil (37.8 mg, 47%).
1
H NMR (400 MHz, 

CDCl3): δ 7.31- 7.10 (m, 5H, Ph), 5.60-5.43 (m, 2H, CH=CH-2/3), 3.70 (s, 2H, CH2-6), 

3.13 (d, J = 6.0 Hz, 2H, CH2-4), 1.62 (d, J = 4.4 Hz, 3H, CH3-1). 13C NMR (101 MHz, 

CDCl3): δ 140.4, 129.6, 128.4, 128.1, 127.4, 126.7, 53.4, 51.3, 17.7 All spectroscopic 

and analytical properties are identical with those reported in the literature.
237

 

 

Benzyl[(2E)-2-methylbut-2-en-1-yl]amine. 61a  

 

Tiglic aldehyde (48.3 μL, 0.50 mmol) and benzylamine (54.6 μL, 0.5o mmol) were 

added to a stirring solution of THF (3.5 mL) and 3 Å molecular sieve pellets (1.0 g). 

The resulting mix was stirred under argon overnight (15 h). To the stirring solution, 

NaBH4 (38 mg, 1.0 mmol) was added, followed by the drop-wise addition of methanol 
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(2 mL). This solution was stirred for a further 2 h, after which, the solution was filtered 

through Celite. The resulting solution was partitioned between EtOAc and brine. The 

aqueous layer was extracted further with EtOAc (3 x EtOAc). The organic phase was 

separated and dried over MgSO4. Purification by silica gel chromatography (EtOAc, 1% 

v/v Et3N in eluent and silica) gave a colourless oil (77.4 mg, 88%). IR (neat) νmax: 2915 

(N-H), 1495, 1452 (C=CAr), 1116, 1028, 733, 696 cm
-1

. 
1
H NMR (400 MHz, CDCl3): δ 

7.38- 7.03 (m, 5H, Ph), 5.38-5.29 (m, 1H, CH-2), 3.66 (s, 2H, CH2-5), 3.09 (s, 2H, CH2-

4), 1.59 (s, 3H, CH3-3), 1.55 (dq, J = 6.7, 1.0 Hz, 3H, CH3-1).  13C NMR (101 MHz, 

CDCl3): δ 140.7, 134.2, 128.3, 128.2, 126.8, 120.4, 57.1, 53.0, 46.6, 14.5, 13.2 LRMS 

(ESI+) 176.2 (100%) [M+H
+
], 115.2 (17%). HRMS (ESI+) calculated [C12H17N+H

+
] 

176.1439, found 176.1460. All spectroscopic and analytical properties are identical with 

those reported in the literature.
238

  

 

Benzyl[(2E)-3-phenylprop-2-en-1-yl]amine. 66a 

 

Cinnamaldehyde (0.18 mL, 1.4 mmol) and benzylamine (0.15, 1.4 mmol) were added to 

a stirring solution of THF (8 mL) and 3 Å molecular sieve pellets (2.5 g). The resulting 

mix was stirred under argon overnight (15 h). To the stirring solution, NaBH4 (0.16 g, 

4.2 mmol) was added, followed by the drop-wise addition of methanol (5 mL). This 

solution was stirred for a further 2 h, after which, the solution was filtered through 

Celite. The resulting solution was partitioned between EtOAc and brine. The aqueous 

layer was extracted further with EtOAc (3 x EtOAc). The organic phase was separated 

and dried over MgSO4. This resulted in the formation of a colourless oil (0.23 g, 74%). 

The resulting oil was sufficiently pure to characterise without further purification. IR 
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(neat) νmax: 3026 (N-H), 2818,1599 (C=C), 1494, 1456 (C=CAr), 966, 732, 692 cm
-1

. 
1
H 

NMR (400 MHz, CDCl3): δ 7.33- 7.13 (m, 10H, Ph), 6.47 (d, J = 15.9 Hz, 1H, CH-1), 

6.25 (dt, J = 15.9, 6.23 Hz, 1H, CH-2), 3.77 (s, 2H, CH2-5), 3.38 (dd, J = 6.28, 1.4 Hz, 

CH2-3). 
13

C NMR (101 MHz, CDCl3): δ 188.6, 140.2, 137.2, 131.5, 129.4, 128.7, 128.6, 

128.5, 128.4, 53.3, 51.2. LRMS (ESI+) 224.3 (100%) [M+H
+
], 116.9 (38%). HRMS 

(ESI+) calculated [C14H17N+H
+
] 224.1439, found 224.1473. All spectroscopic and 

analytical properties are identical with those reported in the literature.
239

 

 

(2E)-3-(Thiophen-2-yl)prop-2-enal. 156 

 

(2E)-3-(Thiophen-2-yl)prop-2-enoic acid (3.0 g, 19.5 mmol) was dissolved in THF (80 

mL) and cooled to -78 °C under argon. DIBAL-H (58.5 mL, 1 M THF) was added 

slowly over 1 hour, and the resulting solution was allowed to react overnight, warming 

to room temperature. The resulting solution was quenched with saturated potassium 

sodium tartrate solution (aqueous) and allowed to stir for 1 h. After, the resulting 

solution was partitioned between EtOAc and the aqueous layer was extracted with 

EtOAc (3 x EtOAc). The organic phase was separated and dried over MgSO4. After 

filtration the organic phase was removed under reduced pressure to yield a crude allylic 

product [(2E)-3(thiophen-2-yl)prop-2-en-1-ol)]. In a separate vessel, DMSO (42.9 

mmol, 3.0 mL) and DCM (40 mL) were combined under argon and cooled (to -78°C). 

Oxalyl chloride (21.5 mmol, 1.8 mL) was added and the reaction mixture was stirred for 

10 min. The crude allylic alcohol [(2E)-3(thiophen-2-yl)prop-2-en-1-ol)] was added (in 

DCM, 12 mL) to the -78 °C solution, and allowed to stir for 10 min. Triethylamine 
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(97.5 mmol, 13.6 mL) was subsequently added, and the solution allowed to warm to 

room temperature over 1.5 h. After, the resulting solution was partitioned quenched 

with water and partitioned between EtOAc and the aqueous layer was extracted with 

EtOAc (3 x EtOAc). The organic phase was separated and dried over MgSO4. After 

filtration the organic phase was removed under reduced pressure to yield a crude brown 

oil. Purification by silica gel chromatography (hexane:EtAcO, 9:1) gave 156 as a yellow 

oil (996 mg, 37%).
1
H NMR (400 MHz, CDCl3): δ 9.63 (d, J = 7.7 Hz, 1H, CH-1), 7.58 

(d, J = 15.6 Hz, 1H, CH-4), 7.51 (d, J = 5.0 Hz, 1H, CH-6), 7.37 (d, J = 3.7 Hz, 1H, 

CH-8), 7.11 (dd, J = 5.1, 3.6 Hz, 1H, CH-7), 6.52 (dd, J = 15.6, 7.7 Hz, 1H, CH-3). 
13

C 

NMR (101 MHz, CDCl3): δ 192.9 (C-2), 144.4 (C-4), 139.3 (C-5), 132.0 (C-8), 130.4 

(C-6), 128.5 (C-7), 127.4 (C-3). LRMS (ESI+) [M+H]
+
, 138.8. HRMS (ESI+) 

calculated [C7H6OS+H]
+ 

139.0218, found 139.0246. All spectroscopic and analytical 

properties are identical with those reported in the literature.
240

 

 

(R)-N-Methyl-N-{3-phenyl-3-[4-trifluoromethyl] phenoxyl}propyl}acetamido. 152 

 

Fluoxetine (200 mg, 0.65 mmol), DCM (4 mL), acetic anhydride (1 mL) and pyridine (1 

mL) were combined and allowed to stir over night. The resulting solution was diluted in 

DCM (30 mL) and washed with HCl (3 x 10 mL, w/v 20%) and H2O (3 x). The organic 

layer was separated and dried over MgSO4. Filtration followed by the removal of 

solvent under vacuum yielded a yellow oil. Purification by silica gel chromatography 

(hexane : DCM, 1:1 → DCM : MeOH, 9 : 1) gave 13b as a yellow oil (220 mg, 96%). 
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IR (neat) νmax: 3052, 2928, 1636, 1578, 1396, 1093, 771 cm
-1

. NMR spectra shows 152 

as a mixture of rotamers, major peaks given as the following: 
1
H NMR (400 MHz, 

CDCl3): δ 7.42 (d, J = 8.5 Hz, 2H, CH-9), 7.38-7.27(m, 5H, Ph), 6.89 (d, J = 8.4 Hz, 

2H, CH-8), 5.21 (dd, J = 8.6, 4.3 Hz, 1H, CH-1) 3.63-3.51 (m, 2H, CH2-3), 2.97 (s, 3H, 

CH3-4), 2.25-2.09 (m, 2H, CH2-2), 2.04 (s, 3H, CH3-6). 
13

C NMR (101 MHz, CDCl3): δ 

170.6 (C-5), 160.3 (C-11), 140.7 (C-7), 129.1, 128.3, 126.9, 126.8, 125.7, 125.5, 115.6, 

78.4 (C-1), 47.1 (C-4), 37.4 (C-3), 36.6 (C-6), 21.1 (C-2). LRMS (ESI+) [M+H]
+
, 

351.9. HRMS (ESI+) calculated [C19H2ONO2F3+H]
+ 

352.1524 found 352.1515. 

Enantiomeric excess was determined by HPLC using an AS-H CHIRALCEL column 

(250 x 4.6 mm) fitted with guard cartridge (50 x 4.6 mm), 25 
o
C, 1.0 mL/min, 210 nm, 

hexane : IPA (9 : 1). tR (R) = 23.6 min; tR (S) = 31.9 min.  

 

(S)-N-Methyl-N-[3-(naphthalene-1-yloxy)-3-(thiophen-2-yl)propyl]acetamido. 164 

 

Duloxetine 2 (166 mg, 0.56 mmol), DCM (3 mL), acetic anhydride (1 mL) and pyridine 

(1 L) were combined and allowed to stir over night. The resulting solution was diluted 

in DCM (30 mL) and washed with HCl (3 x 10 mL, w/v 20%) and H2O (3 x). The 

organic layer was separated and dried over MgSO4. Filtration followed by the removal 

of solvent under vacuum yielded a crude yellow oil. Purification by silica gel 

chromatography (Hexane : DCM, 1 : 1 → DCM : MeOH, 9 : 1) gave 164 as a yellow oil 

(150 mg, 79%). IR (neat) νmax: 2931, 1636, 1516, 1323, 1245, 1108, 835 cm
-1

.  NMR 
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spectra shows 164 as a mixture of rotamers, major peaks given as the following: 
1
H 

NMR (400 MHz, CDCl3): δ 8.40-8.30 (m, 1H, Aryl), 7.84-7.81 (m, 1H, Aryl), 7.56-7.51 

(m, 2H, Aryl), 7.44 (d, J = 8.6 Hz, 1H, Aryl), 7.30 (d, J = 8.0 Hz, 1H), 7.21 (dd, J = 5.0, 

1.2 Hz, 1H, CH-10), 7.11 (d, J = 3.8 Hz, 1H, CH-8), 6.97 (dd, J = 5.0, 3.5 Hz, 1H, CH-

9), 6.87 (d, J = 8.5 Hz, 1H), 5.74 (dd, J = 8.0, 4.9 Hz, 1H, CH-2), 3.82-3.61 (m, 2H, 

CH2-4), 3.00 (s, 3H, CH3-5) 2.57-2.45 (m, 2H, CH2-3), 2.06 (s, 3H, CH3-7). 
13

C NMR 

(101 MHz, CDCl3): δ 170.7 (C-6), 153.1 (C-1), 144.8 (C-11), 134.6, 127.7, 126.8, 

126.5, 126.1, 125.7, 127.5, 124.9, 124.8, 122.0, 121.1, 106.9, 74.5 (C-2), 45.1 (C-4), 

36.7 (C-5), 33.3 (C-7), 21.9 (C-3). LRMS (ESI+) [M+Na]
+
, 361.3. HRMS (ESI+) 

calculated [C20H21NO2S+H]
+ 

340.1371, found 340.1377. Enantiomeric excess 

determined by HPLC using an AS-H CHIRALCEL column (250 x 4.6 mm) fitted with 

guard cartridge (50 x 4.6 mm), 25 
o
C, 1.0 mL/min, 210 nm, hexane : IPA (85 : 15). tR 

(S) = 29.2 min; tR (R) = 38.2 min. 
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Appendix 1 

 

COSY Spectrum of 65. 
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HSQC Spectrum of 65.  
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HMBC Spectrum of 65. 
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NOESY Spectrum of 65. 
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Appendix 2 

All X-ray crystallographic structures were acquired by Dr Andrei S. Batsanov, Durham 

University (2012-2014). 

 

Table 30 Crystal data and structure refinement for 74. 

Identification code 12srv128 (74) 

Empirical formula C17H21NO 

Formula weight 255.35 

Temperature/K 120 

Crystal system monoclinic 

Space group P21/c 

a/Å 13.1529(9) 

b/Å 13.0660(7) 

c/Å 9.0291(6) 

α/° 90.00 

β/° 108.679(8) 

γ/° 90.00 

Volume/Å
3
 1469.97(16) 

Z 4 

ρcalcmg/mm
3
 1.154 

m/mm
-1

 0.071 

F(000) 552.0 

Crystal size/mm
3
 0.56 × 0.18 × 0.03 

2Θ range for data collection 5.7 to 49.98° 

Index ranges -15 ≤ h ≤ 15, -15 ≤ k ≤ 15, -8 ≤ l ≤ 10 

Reflections collected 9045 

Independent reflections 2586[R(int) = 0.0564] 

Data/restraints/parameters 2586/0/181 

Goodness-of-fit on F
2
 1.107 

Final R indexes [I>=2σ (I)] R1 = 0.0652, wR2 = 0.1485 
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Final R indexes [all data] R1 = 0.0837, wR2 = 0.1569 

Largest diff. peak/hole / e Å
-3

 0.26/-0.20 

 

Table 31 Fractional Atomic Coordinates (×10
4
) and Equivalent Isotropic Displacement 

Parameters (Å
2
×10

3
) for 74. Ueq is defined as 1/3 of of the trace of the orthogonalised 

UIJ tensor. 

Atom x y z U(eq) 

O 343.3(14) 1516.2(14) 4050(2) 25.1(5) 

N 1160.6(18) 4648.2(16) 1735(2) 22.8(5) 

C1 2155(2) 1717.5(18) 3952(3) 20.4(6) 

C2 2031(2) 991(2) 2778(3) 26.3(6) 

C3 2902(2) 492(2) 2584(3) 35.2(7) 

C4 3922(3) 706(2) 3569(4) 40.1(8) 

C5 4060(2) 1427(2) 4747(4) 36.9(7) 

C6 3180(2) 1927(2) 4933(3) 27.2(6) 

C7 1179.6(19) 2247.4(19) 4161(3) 20.6(6) 

C8 708(2) 3088.0(19) 2961(3) 20.7(6) 

C9 1574(2) 3857.1(18) 2932(3) 21.3(6) 

C10 1994(2) 5346(2) 1578(3) 26.6(6) 

C11 2637(2) 5895.6(19) 3055(3) 23.7(6) 

C12 3741(2) 5821(2) 3618(4) 35.0(7) 

C13 4330(2) 6336(2) 4958(4) 44.4(8) 

C14 3816(3) 6937(2) 5759(4) 39.8(8) 

C15 2711(2) 7009(2) 5220(3) 32.5(7) 

C16 2128(2) 6498(2) 3885(3) 26.9(6) 

C17 -230(2) 3615(2) 3301(3) 28.1(6) 

 

Table 32 Anisotropic Displacement Parameters (Å
2
×10

3
) for 74. The Anisotropic 

displacement factor exponent takes the form: -2π
2
[h

2
a*

2
U11+...+2hka×b×U12] 

Atom U11 U22 U33 U23 U13 U12 

O 28.3(10) 19.7(10) 26.5(10) 3.2(8) 7.5(8) -6.6(8) 

N 30.8(13) 12.6(11) 25.3(12) 2.0(9) 9.5(10) 1.6(10) 

C1 27.3(14) 12.7(13) 21.3(13) 5.5(10) 8.1(11) -1.3(10) 

C2 34.5(15) 18.9(14) 24.5(14) 5.1(11) 7.8(12) 3.2(12) 

C3 54(2) 21.4(15) 32.1(16) 4.2(12) 15.9(15) 12.8(14) 

C4 45.7(19) 33.6(18) 46.5(19) 13.8(15) 22.5(16) 17.6(15) 

C5 26.7(15) 32.1(17) 48.2(19) 10.1(15) 6.5(14) 2.2(13) 

C6 30.6(15) 17.2(13) 32.5(15) 2.3(12) 8.1(12) -1.8(11) 

C7 23.5(13) 17.9(13) 19.7(13) -1(1) 5.7(11) -3.3(11) 

C8 25.5(14) 16.4(13) 20.3(13) 0.4(10) 7.5(11) 0.3(11) 

C9 28.6(14) 11.5(12) 22.7(13) 0.3(10) 6.4(11) 0.6(10) 

C10 40.6(16) 16.0(13) 27.8(15) 0.6(11) 17.2(13) -1.7(12) 

C11 32.9(15) 10.9(12) 29.2(14) 3.4(11) 12.8(12) -2.4(11) 
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C12 33.5(16) 23.3(15) 51.8(19) -1.0(14) 18.7(14) 0.6(13) 

C13 27.0(16) 34.2(18) 62(2) 5.2(16) 0.7(15) -2.4(14) 

C14 50(2) 24.2(16) 36.0(17) -1.3(13) 1.5(15) -11.8(14) 

C15 46.7(18) 19.7(14) 32.8(16) -3.4(12) 15.0(14) -2.2(13) 

C16 31.7(15) 16.6(13) 31.8(15) 0.1(12) 9.4(12) 0.9(12) 

C17 30.5(15) 21.8(14) 34.1(15) 1.3(12) 13.5(12) 3.1(12) 

 

Table 33 Bond Lengths for 74. 

Atom Atom Length/Å  Atom Atom Length/Å 

       

O C7 1.436(3)  C7 C8 1.528(3) 

N C9 1.468(3)  C8 C9 1.525(3) 

N C10 1.468(3)  C8 C17 1.529(3) 

C1 C2 1.393(4)  C10 C11 1.512(4) 

C1 C6 1.383(4)  C11 C12 1.381(4) 

C1 C7 1.522(3)  C11 C16 1.397(4) 

C2 C3 1.377(4)  C12 C13 1.384(4) 

C3 C4 1.380(4)  C13 C14 1.382(5) 

C4 C5 1.388(4)  C14 C15 1.380(4) 

C5 C6 1.386(4)  C15 C16 1.377(4) 

 

Table 34 Bond Angles for 74. 

Atom Atom Atom Angle/˚  Atom Atom Atom Angle/˚ 

C10 N C9 113.4(2)  C9 C8 C7 110.50(19) 

C2 C1 C7 120.4(2)  C9 C8 C17 111.2(2) 

C6 C1 C2 118.3(2)  N C9 C8 112.0(2) 

C6 C1 C7 121.2(2)  N C10 C11 115.7(2) 

C3 C2 C1 121.3(3)  C12 C11 C10 121.1(2) 

C2 C3 C4 119.9(3)  C12 C11 C16 118.1(2) 

C3 C4 C5 119.5(3)  C16 C11 C10 120.8(2) 

C6 C5 C4 120.2(3)  C11 C12 C13 121.1(3) 

C1 C6 C5 120.7(3)  C14 C13 C12 120.2(3) 

O C7 C1 110.2(2)  C15 C14 C13 119.4(3) 

O C7 C8 107.52(19)  C16 C15 C14 120.3(3) 

C1 C7 C8 113.9(2)  C15 C16 C11 121.0(3) 

C7 C8 C17 110.6(2)      

 

Table 35 Hydrogen Bonds for 74. 

D H A d(D-H)/Å d(H-A)/Å d(D-A)/Å D-H-A/° 

O H0 N
1
 0.92(4) 1.86(4) 2.771(3) 168(4) 

N H1 O
2
 0.88(3) 2.38(3) 3.078(3) 137(3) 

1
+X,

1/2
-Y,

1/2
+Z; 

2
-X,

1/2
+Y,

1/2
-Z 
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Table 36 Hydrogen Atom Coordinates (Å×10
4
) and Isotropic Displacement Parameters 

(Å
2
×10

3
) for 74. 

Atom x y z U(eq) 

     

H0 570(30) 1190(30) 5010(50) 80(13) 

H1 650(20) 5000(20) 1930(30) 38(9) 

H2 1346 840 2111 32 

H3 2803 11 1792 42 

H4 4513 370 3445 48 

H5 4746 1575 5413 44 

H6 3279 2409 5725 33 

H7 1391 2553 5207 25 

H8 436 2769 1926 25 

H9A 1853 4181 3949 26 

H9B 2161 3499 2728 26 

H10A 1656 5855 793 32 

H10B 2487 4959 1193 32 

H12 4095 5419 3088 42 

H13 5074 6277 5321 53 

H14 4211 7289 6653 48 

H15 2359 7405 5761 39 

H16 1384 6555 3530 32 

H17A -744 3098 3403 42 

H17B -587 4082 2442 42 

H17C 38 4004 4278 42 

Experimental 

Single crystals of C17H21NO 74. A suitable crystal was selected and on a Gemini 

diffractometer. The crystal was kept at 120 K during data collection. Using Olex2 [1], 

the structure was solved with the XS [2] structure solution program using Direct 

Methods and refined with the XL [3] refinement package using Least Squares 

minimisation. 

1. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. 

Puschmann, OLEX2: a complete structure solution, refinement and analysis 

program. J. Appl. Cryst. (2009). 42, 339-341. 

2. XS, G.M. Sheldrick, Acta Cryst. (2008). A64, 112-122. 

3. XL, G.M. Sheldrick, Acta Cryst. (2008). A64, 112-122. 

Crystal structure determination of 74. 

Crystal Data. C17H21NO, M =255.35, monoclinic, a = 13.1529(9) Å, b = 13.0660(7) Å, 

c = 9.0291(6) Å, β = 108.679(8)°, V = 1469.97(16) Å
3
, T = 120, space group P21/c (no. 

14), Z = 4, μ(Mo Kα) = 0.071, 9045 reflections measured, 2586 unique (Rint = 0.0564) 
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which were used in all calculations. The final wR2 was 0.1569 (all data) and R1 was 

0.0652 (I>2\s(I)). 

This report has been created with Olex2, compiled on 2012.07.17 svn.r2416.  

 
Table 37 Crystal data and structure refinement for 129. 

Identification code 13srv136 (129) 

Empirical formula C23H23NO 

Formula weight 329.42 

Temperature/K 120 

Crystal system triclinic 

Space group P1 

a/Å 6.0216(3) 

b/Å 9.2574(4) 

c/Å 16.7185(8) 

α/° 79.272(8) 

β/° 80.758(10) 

γ/° 89.418(10) 

Volume/Å
3
 903.60(8) 

Z 2 

ρcalcmg/mm
3
 1.211 

m/mm
-1

 0.567 

F(000) 352.0 

Crystal size/mm
3
 0.3 × 0.2 × 0.2 

2Θ range for data collection 5.452 to 134.674° 

Index ranges -6 ≤ h ≤ 6, -10 ≤ k ≤ 11, -19 ≤ l ≤ 19 

Reflections collected 19622 

Independent reflections 5382[R(int) = 0.0272] 

Data/restraints/parameters 5382/3/452 
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Goodness-of-fit on F
2
 1.035 

Final R indexes [I>=2σ (I)] R1 = 0.0242, wR2 = 0.0650 

Final R indexes [all data] R1 = 0.0242, wR2 = 0.0651 

Largest diff. peak/hole / e Å
-3

 0.12/-0.12 

Flack parameter 0.090(36) 

 

Table 38 Fractional Atomic Coordinates (×10
4
) and Equivalent Isotropic Displacement 

Parameters (Å
2
×10

3
) for 129. Ueq is defined as 1/3 of of the trace of the orthogonalised 

UIJ tensor. 

Atom x y z U(eq) 

O1A 6348(2) 7176.0(13) 3534.1(8) 26.6(3) 

N3A 4983(3) 9272.0(17) 2661.6(10) 26.9(4) 

C2A 5088(4) 7693(2) 2883.7(12) 27.3(5) 

C4A 4004(4) 9846(2) 3407.0(13) 31.1(5) 

C5A 5190(4) 9290(2) 4139.4(13) 30.9(5) 

C6A 5311(4) 7618(2) 4281.4(12) 26.9(4) 

C7A 6576(3) 6980.8(19) 4971.0(12) 25.9(4) 

C8A 5681(4) 7098(2) 5778.1(12) 31.8(5) 

C9A 6813(4) 6534(2) 6423.3(13) 34.1(5) 

C10A 8842(4) 5843(2) 6272.4(12) 34.3(5) 

C11A 9738(4) 5720(2) 5473.8(13) 34.5(5) 

C12A 8616(3) 6291(2) 4822.4(12) 30.2(4) 

C13A 7147(3) 10015(2) 2257.0(12) 24.6(4) 

C14A 6766(3) 11629(2) 1924.7(12) 25.2(4) 

C15A 4852(4) 12103(2) 1591.0(13) 28.8(5) 

C16A 4605(4) 13572(2) 1264.1(13) 32.2(5) 

C17A 6265(4) 14597(2) 1267.2(14) 35.2(5) 

C18A 8162(4) 14143(2) 1603.7(14) 34.3(5) 

C19A 8418(4) 12668(2) 1928.0(13) 29.9(5) 

C20A 8275(3) 9250.7(19) 1572.3(12) 25.0(4) 

C21A 10352(4) 8613(2) 1619.5(14) 31.5(5) 

C22A 11382(4) 7890(2) 1003.6(15) 37.6(5) 

C23A 10350(4) 7800(2) 336.5(14) 38.7(6) 

C24A 8286(4) 8441(2) 281.1(13) 34.4(5) 

C25A 7254(4) 9171(2) 890.8(13) 29.0(5) 

O1B 4956(2) 804.5(14) 5984.9(8) 29.4(3) 

N3B 5053(3) 992.4(17) 7401.6(10) 25.5(4) 

C2B 6124(4) 467(2) 6678.3(12) 28.7(5) 

C4B 4891(4) 2605(2) 7179.4(13) 28.0(5) 

C5B 3719(4) 3075(2) 6431.1(12) 27.6(4) 
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C6B 4832(3) 2368(2) 5715.1(12) 26.8(4) 

C7B 3569(3) 2634(2) 4995.9(12) 26.8(4) 

C8B 4354(4) 3652(2) 4290.3(12) 31.0(5) 

C9B 3117(5) 3966(2) 3652.6(14) 39.4(6) 

C10B 1067(4) 3268(2) 3717.2(14) 43.0(6) 

C11B 285(4) 2221(3) 4407.0(14) 41.4(5) 

C12B 1538(3) 1901(2) 5043.6(13) 32.9(4) 

C13B 2875(3) 224(2) 7762.7(12) 25.0(4) 

C14B 1671(3) 951.4(19) 8450.4(12) 25.1(4) 

C15B 2637(4) 1044(2) 9142.0(12) 27.9(5) 

C16B 1562(4) 1767(2) 9742.5(13) 34.0(5) 

C17B -499(4) 2405(2) 9669.1(14) 36.2(5) 

C18B -1489(4) 2301(2) 8990.4(15) 36.5(5) 

C19B -416(4) 1576(2) 8388.3(13) 30.5(5) 

C20B 3228(3) -1400(2) 8076.3(11) 25.6(4) 

C21B 1633(4) -2431(2) 8016.3(13) 30.8(5) 

C22B 1827(4) -3908(2) 8342.8(14) 36.0(5) 

C23B 3632(4) -4380(2) 8735.0(13) 34.6(5) 

C24B 5254(4) -3369(2) 8785.2(13) 31.4(5) 

C25B 5062(4) -1889(2) 8455.2(12) 27.9(5) 

 

Table 39 Anisotropic Displacement Parameters (Å
2
×10

3
) for 129. The Anisotropic 

displacement factor exponent takes the form: -2π
2
[h

2
a*

2
U11+...+2hka×b×U12] 

Atom U11 U22 U33 U23 U13 U12 

O1A 31.6(8) 23.8(6) 24.6(7) -5.7(5) -4.1(6) 3.8(6) 

N3A 27.3(10) 25.2(8) 27.1(9) -2.8(7) -3.9(7) 1.2(7) 

C2A 30.4(12) 26.6(10) 25(1) -4.7(8) -4.7(9) -1.5(8) 

C4A 32.1(12) 28.4(10) 31.0(11) -4.7(8) -0.8(9) 6.4(9) 

C5A 37.8(13) 27.7(10) 26.4(10) -6.3(8) -1.7(9) 5.1(9) 

C6A 29.1(12) 24.9(9) 25.4(10) -4.2(8) -1.2(8) 1.0(8) 

C7A 29.1(11) 20.7(9) 27.8(9) -4.7(7) -3.8(8) -1.7(8) 

C8A 37.3(13) 27.8(10) 30(1) -7.2(8) -2.3(9) 4.2(9) 

C9A 46.9(14) 29.5(10) 26(1) -6.1(8) -5.5(9) 0.7(9) 

C10A 41.7(13) 30.2(10) 32.1(11) -2.5(8) -13.0(9) -1.8(9) 

C11A 32.1(12) 32.2(10) 39.0(11) -3.7(8) -8.4(9) 4.0(9) 

C12A 32.1(12) 30.4(10) 27.3(10) -4.9(8) -3.0(8) 0.0(8) 

C13A 24.2(12) 25.1(10) 25.3(10) -4.4(8) -6.7(8) 0.9(8) 

C14A 25.9(11) 25.9(10) 23.8(10) -5.8(8) -2.5(8) 0.6(8) 

C15A 27.8(12) 26.3(10) 31.2(11) -3.2(8) -4.1(9) -0.6(9) 

C16A 29.0(13) 30.4(10) 35.3(11) -2.2(9) -4.2(9) 6.3(9) 

 



260 

 

 

C17A 39.4(14) 24.4(10) 37.9(12) -4.7(9) 3.9(10) 2.8(9) 

C18A 33.3(13) 27.9(10) 41.5(12) -10.5(9) -0.3(10) -6.5(9) 

C19A 27.9(12) 31.1(10) 32.5(11) -10.8(9) -4.7(9) 0.2(9) 

C20A 25.0(12) 21.4(9) 27.5(10) -2.2(8) -3.6(9) -1.4(8) 

C21A 27.6(12) 28.8(10) 38.9(12) -5.9(9) -7.8(9) 0.7(9) 

C22A 27.7(13) 30.3(11) 52.4(14) -8.4(10) 1.7(10) 3.6(9) 

C23A 46.1(15) 27.6(11) 38.3(12) -8.9(9) 9.1(11) -4.9(10) 

C24A 48.2(15) 27.6(10) 26.8(11) -3.9(8) -5.5(10) -5(1) 

C25A 30.8(12) 26.3(10) 29.7(11) -3.3(8) -6.5(9) -0.1(8) 

O1B 37.7(9) 23.8(7) 25.9(7) -3.8(5) -4.2(6) 4.4(6) 

N3B 26.3(10) 23.3(8) 25.6(8) -1.5(6) -3.6(7) -0.6(7) 

C2B 30.9(12) 27.6(10) 25.7(10) -0.1(8) -5.0(9) 5.1(9) 

C4B 31.3(12) 23.7(10) 28.7(10) -2.3(8) -6.6(9) -1.3(8) 

C5B 32.5(12) 22.5(9) 27.7(10) -3.1(8) -6.6(9) -0.1(8) 

C6B 27.3(12) 25.3(9) 26.4(10) -1.4(8) -3.9(8) 0.1(8) 

C7B 29.0(11) 24.4(9) 27.3(9) -7.8(7) -2.5(8) 4.7(8) 

C8B 38.5(12) 24.8(10) 30.9(10) -7.4(8) -6.6(9) 3.5(8) 

C9B 62.9(17) 27.5(11) 30.6(11) -7.4(8) -14.1(11) 10(1) 

C10B 54.9(15) 44.2(13) 41.3(12) -23.3(10) -24.8(10) 22.5(11) 

C11B 31.6(12) 51.1(13) 50.8(13) -29.3(11) -11.4(10) 8.9(10) 

C12B 29.9(11) 35.6(10) 33.7(10) -12.4(8) 0.0(8) 1.4(8) 

C13B 24.4(12) 26.2(10) 25.3(10) -4.1(8) -7.3(8) 0.2(8) 

C14B 26.0(11) 20.2(9) 28.2(10) -2.2(7) -4.3(9) -2.7(8) 

C15B 29.8(12) 25.2(9) 28.0(11) -1.6(8) -6.6(9) -1.3(8) 

C16B 45.1(15) 28.2(11) 28.4(11) -4.4(9) -5.1(10) -6.8(10) 

C17B 42.3(14) 26.9(10) 36.0(12) -9.3(9) 8.1(10) -3(1) 

C18B 28.0(12) 31.2(11) 48.3(13) -8.1(10) 1.1(10) 1.0(9) 

C19B 27.7(13) 28.2(10) 35.7(12) -4.6(9) -7.1(9) 1.1(9) 

C20B 28.0(12) 25.9(10) 22.0(9) -5.4(7) -0.9(8) 0.8(8) 

C21B 28.0(12) 31.2(10) 33.7(11) -7.9(9) -4.5(9) 1.1(9) 

C22B 37.7(14) 27.7(10) 41.5(12) -10.0(9) 1.2(10) -5.5(10) 

C23B 43.9(14) 21.9(10) 34.1(12) -2.7(8) 2.1(10) 3.1(9) 

C24B 33.7(13) 30.6(10) 28.3(11) -3.5(8) -3.1(9) 5.8(9) 

C25B 28.5(13) 28.7(10) 26.6(10) -5.5(8) -4.5(9) -0.8(9) 

 

Table 40 Bond Lengths for 129. 

Atom Atom Length/Å  Atom Atom Length/Å 

O1A C2A 1.432(2)  O1B C2B 1.435(2) 

O1A C6A 1.433(2)  O1B C6B 1.439(2) 
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N3A C2A 1.443(2)  N3B C2B 1.441(3) 

N3A C4A 1.479(3)  N3B C4B 1.476(2) 

N3A C13A 1.480(3)  N3B C13B 1.481(3) 

C4A C5A 1.521(3)  C4B C5B 1.526(3) 

C5A C6A 1.525(3)  C5B C6B 1.528(3) 

C6A C7A 1.509(3)  C6B C7B 1.505(3) 

C7A C8A 1.394(3)  C7B C8B 1.385(3) 

C7A C12A 1.387(3)  C7B C12B 1.389(3) 

C8A C9A 1.386(3)  C8B C9B 1.382(3) 

C9A C10A 1.382(3)  C9B C10B 1.379(4) 

C10A C11A 1.382(3)  C10B C11B 1.382(3) 

C11A C12A 1.392(3)  C11B C12B 1.388(3) 

C13A C14A 1.523(3)  C13B C14B 1.520(3) 

C13A C20A 1.521(3)  C13B C20B 1.522(3) 

C14A C15A 1.392(3)  C14B C15B 1.391(3) 

C14A C19A 1.392(3)  C14B C19B 1.389(3) 

C15A C16A 1.384(3)  C15B C16B 1.381(3) 

C16A C17A 1.386(3)  C16B C17B 1.383(3) 

C17A C18A 1.381(3)  C17B C18B 1.382(3) 

C18A C19A 1.389(3)  C18B C19B 1.384(3) 

C20A C21A 1.385(3)  C20B C21B 1.389(3) 

C20A C25A 1.392(3)  C20B C25B 1.391(3) 

C21A C22A 1.391(3)  C21B C22B 1.386(3) 

C22A C23A 1.377(3)  C22B C23B 1.384(3) 

C23A C24A 1.381(3)  C23B C24B 1.382(3) 

C24A C25A 1.388(3)  C24B C25B 1.390(3) 

 

Table 41 Bond Angles for 129. 

Atom Atom Atom Angle/˚  Atom Atom Atom Angle/˚ 

C2A O1A C6A 110.26(14)  C2B O1B C6B 111.12(14) 

C2A N3A C4A 108.20(15)  C2B N3B C4B 107.85(15) 

C2A N3A C13A 114.63(16)  C2B N3B C13B 112.15(15) 

C4A N3A C13A 112.15(15)  C4B N3B C13B 114.06(16) 

O1A C2A N3A 114.80(15)  O1B C2B N3B 114.36(17) 

N3A C4A C5A 112.70(17)  N3B C4B C5B 112.33(16) 

C4A C5A C6A 110.01(16)  C4B C5B C6B 110.16(17) 

O1A C6A C5A 109.32(15)  O1B C6B C5B 109.91(15) 

O1A C6A C7A 109.42(15)  O1B C6B C7B 108.01(15) 

C7A C6A C5A 113.39(16)  C7B C6B C5B 112.57(17) 
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C8A C7A C6A 119.18(18)  C8B C7B C6B 120.98(18) 

C12A C7A C6A 121.73(16)  C8B C7B C12B 118.77(18) 

C12A C7A C8A 119.09(18)  C12B C7B C6B 120.20(17) 

C9A C8A C7A 120.48(19)  C9B C8B C7B 120.9(2) 

C10A C9A C8A 120.22(19)  C10B C9B C8B 119.9(2) 

C11A C10A C9A 119.60(19)  C9B C10B C11B 120.0(2) 

C10A C11A C12A 120.5(2)  C10B C11B C12B 119.9(2) 

C7A C12A C11A 120.12(17)  C11B C12B C7B 120.43(19) 

N3A C13A C14A 110.02(16)  N3B C13B C14B 110.10(15) 

N3A C13A C20A 110.74(15)  N3B C13B C20B 110.70(16) 

C20A C13A C14A 110.97(15)  C14B C13B C20B 110.98(15) 

C15A C14A C13A 122.35(17)  C15B C14B C13B 121.47(18) 

C15A C14A C19A 118.49(19)  C19B C14B C13B 120.11(18) 

C19A C14A C13A 119.13(19)  C19B C14B C15B 118.39(19) 

C16A C15A C14A 120.73(19)  C16B C15B C14B 120.6(2) 

C15A C16A C17A 120.3(2)  C15B C16B C17B 120.6(2) 

C18A C17A C16A 119.5(2)  C18B C17B C16B 119.3(2) 

C17A C18A C19A 120.24(19)  C17B C18B C19B 120.3(2) 

C18A C19A C14A 120.7(2)  C18B C19B C14B 120.9(2) 

C21A C20A C13A 120.13(18)  C21B C20B C13B 119.54(19) 

C21A C20A C25A 118.66(19)  C21B C20B C25B 118.34(19) 

C25A C20A C13A 121.21(18)  C25B C20B C13B 122.06(17) 

C20A C21A C22A 120.6(2)  C22B C21B C20B 121.1(2) 

C23A C22A C21A 120.4(2)  C23B C22B C21B 120.1(2) 

C22A C23A C24A 119.4(2)  C24B C23B C22B 119.4(2) 

C23A C24A C25A 120.5(2)  C23B C24B C25B 120.4(2) 

C24A C25A C20A 120.4(2)  C24B C25B C20B 120.62(19) 

 

Table 42 Hydrogen Atom Coordinates (Å×10
4
) and Isotropic Displacement Parameters 

(Å
2
×10

3
) for 129. 

Atom x y z U(eq) 

H2A1 3534 7285 3053 33 

H2A2 5766 7304 2389 33 

H41A 2393 9551 3556 37 

H42A 4098 10934 3281 37 

H51A 4360 9597 4639 37 

H52A 6730 9723 4033 37 

H6A 3740 7204 4425 32 

H8A 4285 7569 5887 38 

H9A 6193 6622 6971 41 
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H10A 9617 5454 6715 41 

H11A 11129 5243 5369 41 

H12A 9248 6208 4275 36 

H13A 8163 9959 2679 30 

H15A 3702 11410 1587 35 

H16A 3292 13880 1037 39 

H17A 6098 15604 1039 42 

H18A 9297 14843 1613 41 

H19A 9734 12366 2154 36 

H21A 11081 8670 2077 38 

H22A 12806 7456 1044 45 

H23A 11051 7301 -82 46 

H24A 7567 8383 -178 41 

H25A 5842 9618 843 35 

H2B1 7664 899 6515 34 

H2B2 6263 -614 6821 34 

H41B 6424 3051 7060 34 

H42B 4049 2980 7655 34 

H51B 3808 4159 6263 33 

H52B 2110 2773 6577 33 

H6B 6394 2785 5526 32 

H8B 5761 4141 4244 37 

H9B 3679 4662 3170 47 

H10B 192 3507 3288 52 

H11B -1109 1721 4445 50 

H12B 1003 1175 5515 39 

H13B 1915 309 7321 30 

H15B 4048 605 9202 33 

H16B 2245 1827 10210 41 

H17B -1228 2910 10081 43 

H18B -2911 2729 8937 44 

H19B -1116 1505 7926 37 

H21B 389 -2119 7747 37 

H22B 718 -4598 8297 43 

H23B 3755 -5389 8968 42 

H24B 6508 -3689 9047 38 

H25B 6194 -1206 8489 33 
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Experimental  

Single crystals of C23H23NO [129]. A suitable crystal was selected and on a 

Bruker APEX2 microsource diffractometer. The crystal was kept at 120 K during data 

collection. Using Olex2 [1], the structure was solved with the XS [2] structure solution 

program using Direct Methods and refined with the ShelXL-2012 [3] refinement 

package using Least Squares minimisation. 

1. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. 

Puschmann, OLEX2: a complete structure solution, refinement and analysis 

program. J. Appl. Cryst. (2009). 42, 339-341. 

2. XS, G.M. Sheldrick, Acta Cryst. (2008). A64, 112-122. 

3. SHELXL-2012, G.M. Sheldrick, Acta Cryst. (2008). A64, 112-122. 

Crystal structure determination of 129. 

Crystal Data for C23H23NO (M =329.42): triclinic, space group P1 (no. 1), a = 

6.0216(3) Å, b = 9.2574(4) Å, c = 16.7185(8) Å, α = 79.272(8)°, β = 80.758(10)°, γ = 

89.418(10)°, V = 903.60(8) Å
3
, Z = 2, T = 120 K, μ(Cu Kα) = 0.567 mm

-1
, Dcalc = 

1.211 g/mm
3
, 19622 reflections measured (5.452 ≤ 2Θ ≤ 134.674), 5382 unique (Rint = 

0.0272) which were used in all calculations. The final R1 was 0.0242 (I > 2σ(I)) and wR2 

was 0.0651 (all data).  

This report has been created with Olex2, compiled on Apr 23 2013 17:54:37.  
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Table 43 Crystal data and structure refinement for 119.  

Identification code 119 

Empirical formula C22H19N 

Formula weight 297.38 

Temperature/K 120 

Crystal system monoclinic 

Space group P21/c 

a/Å 5.4941(2) 

b/Å 24.8448(10) 

c/Å 12.4135(5) 

α/° 90 

β/° 102.044(4) 

γ/° 90 

Volume/Å
3
 1657.15(12) 

Z 4 

ρcalcg/cm
3
 1.192 

μ/mm
-1

 0.069 

F(000) 632.0 

Crystal size/mm
3
 0.4 × 0.1 × 0.08 

Radiation MoKα (λ = 0.71073) 

2Θ range for data collection/° 3.734 to 55.728 

Index ranges -6 ≤ h ≤ 6, -30 ≤ k ≤ 32, -15 ≤ l ≤ 15 

Reflections collected 11019 

Independent reflections 3426 [Rint = 0.0288, Rsigma = 0.0269] 

Data/restraints/parameters 3426/0/208 

Goodness-of-fit on F
2
 1.059 

Final R indexes [I>=2σ (I)] R1 = 0.0397, wR2 = 0.0903 

Final R indexes [all data] R1 = 0.0495, wR2 = 0.0961 

Largest diff. peak/hole / e Å
-3

 0.22/-0.20 

 

Table 44 Fractional Atomic Coordinates (×10
4
) and Equivalent Isotropic Displacement 

Parameters (Å
2
×10

3
) for 119. Ueq is defined as 1/3 of of the trace of the orthogonalised 

UIJ tensor. 

Atom x y z U(eq) 

N 2825.9(19) 3983.4(4) 1787.8(8) 22.0(2) 

C11 3333(2) 4028.4(5) 3766.2(9) 19.9(3) 

C4 6747(2) 3525.8(5) -12.4(10) 23.8(3) 

C2 4719(2) 3928.4(5) 1355.0(9) 21.5(3) 

C5 7106(2) 3155.8(5) -888.6(10) 21.2(3) 

C3 4803(2) 3547.0(5) 475.2(9) 22.2(3) 

C1 3117(2) 4361.3(5) 2723.2(9) 20.6(3) 

C16 5476(2) 4054.0(5) 4586.7(10) 24.1(3) 

C13 1704(2) 3354.9(5) 4828.9(11) 26.0(3) 

C21 -1509(3) 5411.6(5) 3300.0(11) 28.9(3) 
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C14 3857(2) 3383.4(5) 5641.4(10) 27.4(3) 

C12 1442(2) 3676.7(5) 3897.9(10) 23.0(3) 

C17 993(2) 4767.1(5) 2550.4(10) 20.8(3) 

C6 5732(2) 2682.1(5) -1135.2(10) 25.7(3) 

C7 6158(3) 2340.3(5) -1952.9(11) 30.5(3) 

C19 -2129(3) 5297.6(5) 1348.1(11) 30.7(3) 

C9 9351(2) 2926.9(6) -2308.1(11) 28.9(3) 

C10 8925(2) 3272.3(5) -1491(1) 25.5(3) 

C8 7981(3) 2460.5(6) -2540.6(11) 30.2(3) 

C22 344(2) 5024.5(5) 3447.4(10) 24.9(3) 

C15 5741(2) 3734.0(6) 5523.6(10) 27.8(3) 

C18 -264(2) 4912.3(5) 1498.7(10) 26.2(3) 

C20 -2764(3) 5548.8(5) 2247.4(11) 29.5(3) 

 

Table 45 Anisotropic Displacement Parameters (Å
2
×10

3
) for 119. The Anisotropic 

displacement factor exponent takes the form: -2π
2
[h

2
a*

2
U11+2hka*b*U12+…]. 

Atom U11 U22 U33 U23 U13 U12 

N 24.3(5) 22.9(5) 18.6(5) -1.5(4) 4.2(4) -0.7(4) 

C11 21.4(6) 19.5(6) 19.7(6) -2.5(5) 6.4(5) 2.3(5) 

C4 25.9(7) 22.4(6) 23.0(6) 0.8(5) 4.6(5) -1.1(5) 

C2 23.3(6) 22.5(6) 18.1(6) 3.1(5) 2.5(5) -1.1(5) 

C5 21.0(6) 22.5(6) 19.5(6) 3.3(5) 3.0(5) 3.8(5) 

C3 23.9(6) 23.6(6) 17.8(6) 1.9(5) 1.7(5) 1.1(5) 

C1 21.9(6) 21.4(6) 18.8(6) -2.5(5) 4.5(5) -4.2(5) 

C16 20.6(6) 28.0(7) 24.1(6) -0.1(5) 5.7(5) -0.5(5) 

C13 25.5(7) 23.9(6) 31.8(7) 1.9(5) 12.9(5) 0.9(5) 

C21 35.4(8) 24.8(7) 27.9(7) -1.8(5) 10.2(6) 1.4(6) 

C14 30.7(7) 29.1(7) 24.7(6) 6.8(5) 11.2(5) 11.1(6) 

C12 20.7(6) 24.5(6) 23.8(6) -1.1(5) 4.8(5) 0.3(5) 

C17 22.8(6) 18.3(6) 21.9(6) 0.2(5) 5.8(5) -5.7(5) 

C6 27.2(7) 22.7(6) 28.7(7) 3.7(5) 9.2(5) 1.5(5) 

C7 35.7(8) 22.0(6) 33.2(7) -1.7(5) 5.6(6) 1.5(6) 

C19 39.0(8) 26.6(7) 24.0(7) 7.5(5) 1.3(6) 1.9(6) 

C9 23.8(7) 41.9(8) 22.1(6) 3.5(6) 7.3(5) 6.1(6) 

C10 22.4(6) 29.5(7) 24.5(6) 1.5(5) 4.6(5) -1.5(5) 

C8 33.7(7) 33.7(7) 22.2(7) -3.1(5) 3.9(5) 10.1(6) 

C22 29.8(7) 24.7(6) 19.3(6) 0.1(5) 2.9(5) -0.2(5) 

C15 21.8(6) 36.8(7) 24.3(6) 2.8(5) 3.5(5) 6.2(6) 

C18 35.9(7) 23.2(6) 20.0(6) 1.9(5) 7.1(5) -1.6(5) 

C20 31.4(7) 20.5(6) 36.6(8) 6.1(5) 7.1(6) 2.9(5) 

Table 46 Bond Lengths for 119. 

Atom Atom Length/Å  Atom Atom Length/Å 

N C2 1.2737(15)  C13 C12 1.3878(17) 
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N C1 1.4757(15)  C21 C22 1.3847(18) 

C11 C1 1.5200(16)  C21 C20 1.3866(19) 

C11 C16 1.3882(17)  C14 C15 1.3838(19) 

C11 C12 1.3932(17)  C17 C22 1.3936(17) 

C4 C5 1.4684(17)  C17 C18 1.3911(17) 

C4 C3 1.3343(17)  C6 C7 1.3803(18) 

C2 C3 1.4538(16)  C7 C8 1.3893(19) 

C5 C6 1.3969(18)  C19 C18 1.3861(19) 

C5 C10 1.3981(17)  C19 C20 1.3856(19) 

C1 C17 1.5231(17)  C9 C10 1.3851(18) 

C16 C15 1.3912(17)  C9 C8 1.379(2) 

C13 C14 1.3867(19)     

 

Table 47 Bond Angles for 119. 

Atom Atom Atom Angle/˚  Atom Atom Atom Angle/˚ 

C2 N C1 115.86(10)  C15 C14 C13 119.90(12) 

C16 C11 C1 120.23(11)  C13 C12 C11 120.57(12) 

C16 C11 C12 118.80(11)  C22 C17 C1 120.51(11) 

C12 C11 C1 120.91(11)  C18 C17 C1 121.31(11) 

C3 C4 C5 127.19(12)  C18 C17 C22 118.10(12) 

N C2 C3 122.92(11)  C7 C6 C5 120.86(12) 

C6 C5 C4 122.68(11)  C6 C7 C8 120.34(13) 

C6 C5 C10 118.10(11)  C20 C19 C18 120.38(12) 

C10 C5 C4 119.20(11)  C8 C9 C10 120.38(12) 

C4 C3 C2 121.35(12)  C9 C10 C5 120.81(12) 

N C1 C11 107.49(9)  C9 C8 C7 119.50(12) 

N C1 C17 110.87(9)  C21 C22 C17 121.13(12) 

C11 C1 C17 113.67(9)  C14 C15 C16 119.87(12) 

C11 C16 C15 120.79(12)  C19 C18 C17 120.93(12) 

C14 C13 C12 120.06(12)  C19 C20 C21 119.29(12) 

C22 C21 C20 120.17(12)      

 

Table 48 Torsion Angles for 119. 

A B C D Angle/˚   A B C D Angle/˚ 

N C2 C3 C4 175.25(12)   C16 C11 C1 C17 -118.56(12) 

N C1 C17 C22 156.10(11)   C16 C11 C12 C13 -0.48(18) 

N C1 C17 C18 -27.26(15)   C13 C14 C15 C16 -0.44(19) 

C11 C1 C17 C22 34.87(15)   C14 C13 C12 C11 0.33(18) 

C11 C1 C17 C18 -148.48(11)   C12 C11 C1 N -58.94(14) 

C11 C16 C15 C14 0.29(19)   C12 C11 C1 C17 64.15(14) 

C4 C5 C6 C7 -178.85(12)   C12 C11 C16 C15 0.17(18) 

C4 C5 C10 C9 178.67(11)   C12 C13 C14 C15 0.14(19) 

C2 N C1 C11 -106.54(12)   C6 C5 C10 C9 -0.03(18) 
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C2 N C1 C17 128.66(11)   C6 C7 C8 C9 -0.6(2) 

C5 C4 C3 C2 178.55(11)   C10 C5 C6 C7 -0.20(18) 

C5 C6 C7 C8 0.5(2)   C10 C9 C8 C7 0.4(2) 

C3 C4 C5 C6 -17.1(2)   C8 C9 C10 C5 -0.1(2) 

C3 C4 C5 C10 164.24(12)   C22 C21 C20 C19 -0.5(2) 

C1 N C2 C3 175.88(10)   C22 C17 C18 C19 -0.73(18) 

C1 C11 C16 C15 -177.18(11)   C18 C17 C22 C21 0.37(18) 

C1 C11 C12 C13 176.85(11)   C18 C19 C20 C21 0.1(2) 

C1 C17 C22 C21 177.12(11)   C20 C21 C22 C17 0.23(19) 

C1 C17 C18 C19 -177.45(11)   C20 C19 C18 C17 0.5(2) 

C16 C11 C1 N 118.35(12)             

 

Table 49 Hydrogen Atom Coordinates (Å×10
4
) and Isotropic Displacement Parameters 

(Å
2
×10

3
) for 119. 

Atom x y z U(eq) 

H4 8016 3773 229 29 

H2 6109 4142 1613 26 

H3 3474 3313 248 27 

H1 4679 4559 2768 25 

H16 6750 4288 4509 29 

H13 436 3120 4908 31 

H21 -1913 5580 3908 35 

H14 4034 3167 6264 33 

H12 -9 3657 3357 28 

H6 4516 2596 -743 31 

H7 5219 2028 -2111 37 

H19 -2959 5388 639 37 

H9 10567 3010 -2702 35 

H10 9862 3585 -1341 31 

H8 8276 2228 -3087 36 

H22 1169 4935 4157 30 

H15 7181 3756 6070 33 

H18 153 4749 888 31 

H20 -4018 5807 2146 35 

 

Crystal structure determination of 119 

Crystal Data for C22H19N (M =297.38 g/mol): monoclinic, space group P21/c (no. 

14), a = 5.4941(2) Å, b = 24.8448(10) Å, c = 12.4135(5) Å, β = 102.044(4)°, V = 

1657.15(12) Å
3
, Z = 4, T = 120 K, μ(MoKα) = 0.069 mm

-1
, Dcalc = 1.192 g/cm

3
, 11019 

reflections measured (3.734° ≤ 2Θ ≤ 55.728°), 3426 unique (Rint = 0.0288, Rsigma = 

0.0269) which were used in all calculations. The final R1 was 0.0397 (I > 2σ(I)) and wR2 

was 0.0961 (all data).  

Refinement model description  
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Number of restraints - 0, number of constraints - unknown.  

Details: 

1. Fixed Uiso 

 At 1.2 times of: 

  All C(H) groups 

2.a Ternary CH refined with riding coordinates: 

 C1(H1) 

2.b Aromatic/amide H refined with riding coordinates: 

 C4(H4), C2(H2), C3(H3), C16(H16), C13(H13), C21(H21), C14(H14), C12(H12), 

 C6(H6), C7(H7), C19(H19), C9(H9), C10(H10), C8(H8), C22(H22), C15(H15), 

 C18(H18), C20(H20) 

This report has been created with Olex2, compiled on 2014.09.19 svn.r3010 for 

OlexSys. Please let us know if there are any errors or if you would like to have 

additional features.  

 
 

Table 50 Crystal data and structure refinement for 128.  

Identification code 128 

Empirical formula C22H23NO 

Formula weight 317.41 

Temperature/K 120.0 

Crystal system monoclinic 

Space group P21 

a/Å 10.1649(6) 

b/Å 5.9781(2) 

c/Å 14.3522(9) 

α/° 90 

β/° 102.548(6) 

γ/° 90 
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Volume/Å
3
 851.31(9) 

Z 2 

ρcalcg/cm
3
 1.238 

μ/mm
-1

 0.075 

F(000) 340.0 

Crystal size/mm
3
 0.567 × 0.1335 × 0.0932 

Radiation MoKα (λ = 0.71073) 

2Θ range for data collection/° 4.106 to 54.99 

Index ranges -13 ≤ h ≤ 13, -7 ≤ k ≤ 7, -18 ≤ l ≤ 18 

Reflections collected 13064 

Independent reflections 3905 [Rint = 0.0715, Rsigma = 0.0688] 

Data/restraints/parameters 3905/3/234 

Goodness-of-fit on F
2
 1.074 

Final R indexes [I>=2σ (I)] R1 = 0.0631, wR2 = 0.1483 

Final R indexes [all data] R1 = 0.0716, wR2 = 0.1553 

Largest diff. peak/hole / e Å
-3

 0.32/-0.26 

Flack parameter 0.4(10) 

 

Table 51 Fractional Atomic Coordinates (×10
4
) and Equivalent Isotropic Displacement 

Parameters (Å
2
×10

3
) for 128. Ueq is defined as 1/3 of of the trace of the orthogonalised 

UIJ tensor. 

Atom x y z U(eq) 

N -126(3) -4629(5) -1561.0(19) 30.0(6) 

C1 -742(3) -5113(5) -2564(2) 26.9(6) 

C2 883(3) -6334(6) -1144(2) 32.2(7) 

C5 3643(3) -2966(5) 582(2) 29.6(7) 

C6 3711(3) -968(5) 1095(2) 30.9(7) 

C7 4800(3) -524(5) 1838(2) 34.6(7) 

C8 5843(3) -2029(6) 2088(3) 36.8(8) 

C9 5784(3) -4045(6) 1579(2) 36.8(8) 

C10 4701(3) -4493(6) 844(2) 31.4(7) 

C11 285(3) -4860(5) -3187(2) 27.9(6) 

C12 1079(3) -2935(6) -3147(2) 33.3(7) 

C13 1975(4) -2705(7) -3737(3) 42.7(9) 

C14 2089(4) -4380(8) -4388(3) 47.5(10) 

C15 1307(4) -6297(8) -4436(2) 43.5(9) 

C16 421(3) -6529(6) -3832(2) 35.7(8) 

C17 -1956(3) -3622(5) -2932(2) 26.5(6) 

C18 -2097(3) -1523(5) -2528(2) 29.4(7) 

C19 -3227(3) -215(6) -2875(2) 32.2(7) 

C20 -4212(3) -939(6) -3624(2) 34.5(7) 

C21 -4073(3) -2993(7) -4047(2) 35.0(7) 

C22 -2956(3) -4321(6) -3698(2) 32.1(7) 
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O 1631(3) -1564(4) -445(2) 38.6(7) 

C3 1757(3) -5584(6) -194(3) 31.1(8) 

C4 2538(4) -3432(6) -281(3) 29.6(7) 

O' 1280(40) -1940(60) -100(30) 38.6(7) 

C3' 2240(40) -5430(70) -730(30) 31.1(8) 

C4' 2300(40) -3400(40) 190(30) 29.6(7) 

  

Table 52 Anisotropic Displacement Parameters (Å
2
×10

3
) for 128. The Anisotropic 

displacement factor exponent takes the form: -2π
2
[h

2
a*

2
U11+2hka*b*U12+…]. 

Atom U11 U22 U33 U23 U13 U12 

N 33.3(14) 20.0(14) 37.0(14) 4.1(11) 8.5(11) 7.3(11) 

C1 30.7(15) 11.6(13) 37.8(16) 1.0(12) 5.8(12) 1.8(12) 

C2 37.1(16) 14.3(14) 43.5(18) 5.1(13) 4.9(13) 4.1(13) 

C5 39.8(17) 13.7(14) 37.8(17) 2.4(12) 13.6(13) 2.0(13) 

C6 41.7(17) 13.2(15) 41.4(18) 2.0(12) 16.7(14) 1.9(13) 

C7 46.6(18) 15.8(16) 45.4(19) -3.6(13) 18.3(15) -5.0(14) 

C8 34.9(17) 27.0(18) 48(2) -5.1(15) 8.1(14) -6.8(14) 

C9 35.5(16) 22.7(17) 52(2) 0.5(15) 8.8(14) 3.7(14) 

C10 37.4(16) 15.7(15) 42.0(17) -1.3(13) 10.4(13) 2.5(13) 

C11 28.4(14) 20.4(15) 32.6(15) 0.5(13) 1.8(11) 4.4(12) 

C12 37.7(17) 20.4(15) 41.4(18) 2.3(13) 7.7(14) 0.9(13) 

C13 39.8(18) 31(2) 58(2) 12.6(17) 11.9(16) 0.9(16) 

C14 39.1(18) 63(3) 42.6(19) 16(2) 12.8(15) 16(2) 

C15 45.1(19) 47(2) 36.9(19) -7.4(17) 5.3(14) 14.8(18) 

C16 37.7(17) 25.1(17) 42.0(18) -6.0(15) 3.6(13) 4.6(14) 

C17 30.8(15) 15.6(14) 34.6(16) 1.5(12) 10.3(12) -0.7(12) 

C18 31.4(15) 17.6(15) 38.5(17) -1.6(13) 6.0(12) -0.5(12) 

C19 37.8(16) 18.9(15) 42.1(18) 1.6(14) 13.6(13) 1.8(14) 

C20 34.3(16) 31.8(19) 38.1(17) 9.7(14) 9.5(13) 9.5(14) 

C21 34.1(17) 35.1(18) 33.5(17) -2.1(14) 2.4(13) -1.6(14) 

C22 37.7(16) 24.3(16) 34.9(16) -3.3(13) 9.1(13) -2.4(14) 

O 43.8(17) 12.7(13) 54(2) 3.7(13) -1.0(13) 9.1(12) 

C3 37.1(17) 15.9(17) 39(2) 6.3(13) 6.5(14) 2.1(13) 

C4 38.3(18) 14.9(16) 37(2) 2.9(14) 11.3(15) 6.6(14) 

O' 43.8(17) 12.7(13) 54(2) 3.7(13) -1.0(13) 9.1(12) 

C3' 37.1(17) 15.9(17) 39(2) 6.3(13) 6.5(14) 2.1(13) 

C4' 38.3(18) 14.9(16) 37(2) 2.9(14) 11.3(15) 6.6(14) 

 

Table 53 Bond Lengths for 128. 

Atom Atom Length/Å  Atom Atom Length/Å 

N C1 1.469(4)  C11 C16 1.388(5) 

N C2 1.478(4)  C12 C13 1.378(5) 

 



272 

 

 

C1 C11 1.522(4)  C13 C14 1.392(6) 

C1 C17 1.521(4)  C14 C15 1.388(6) 

C2 C3 1.524(5)  C15 C16 1.386(5) 

C2 C3' 1.48(4)  C17 C18 1.402(4) 

C5 C6 1.397(4)  C17 C22 1.390(4) 

C5 C10 1.398(4)  C18 C19 1.390(4) 

C5 C4 1.506(5)  C19 C20 1.370(5) 

C5 C4' 1.39(3)  C20 C21 1.390(5) 

C6 C7 1.386(5)  C21 C22 1.387(5) 

C7 C8 1.378(5)  O C4 1.435(4) 

C8 C9 1.404(5)  C3 C4 1.531(5) 

C9 C10 1.375(5)  O' C4' 1.34(4) 

C11 C12 1.400(5)  C3' C4' 1.78(5) 

  

Table 54 Bond Angles for 128. 

Atom Atom Atom Angle/˚  Atom Atom Atom Angle/˚ 

C1 N C2 111.8(2)  C12 C13 C14 120.2(4) 

N C1 C11 110.8(2)  C15 C14 C13 119.8(3) 

N C1 C17 111.4(2)  C16 C15 C14 119.7(4) 

C17 C1 C11 110.2(2)  C15 C16 C11 121.2(4) 

N C2 C3 112.2(3)  C18 C17 C1 122.0(3) 

N C2 C3' 114.5(15)  C22 C17 C1 119.8(3) 

C6 C5 C10 118.0(3)  C22 C17 C18 118.2(3) 

C6 C5 C4 122.3(3)  C19 C18 C17 120.4(3) 

C10 C5 C4 119.5(3)  C20 C19 C18 120.6(3) 

C4' C5 C6 107.8(14)  C19 C20 C21 119.7(3) 

C4' C5 C10 128.4(10)  C22 C21 C20 120.1(3) 

C7 C6 C5 120.6(3)  C21 C22 C17 120.9(3) 

C8 C7 C6 121.1(3)  C2 C3 C4 112.7(3) 

C7 C8 C9 118.8(3)  C5 C4 C3 113.3(3) 

C10 C9 C8 120.2(3)  O C4 C5 109.2(3) 

C9 C10 C5 121.3(3)  O C4 C3 110.0(3) 

C12 C11 C1 121.4(3)  C2 C3' C4' 115(3) 

C16 C11 C1 120.0(3)  C5 C4' C3' 107(3) 

C16 C11 C12 118.6(3)  O' C4' C5 129(2) 

C13 C12 C11 120.6(3)  O' C4' C3' 109(3) 

  

Table 55 Hydrogen Bonds for 128. 

D H A d(D-H)/Å d(H-A)/Å d(D-A)/Å D-H-A/° 

O H0 N 0.86(4) 2.12(5) 2.805(4) 136(4) 

O' H0' N 0.82 2.04 2.78(4) 149.6 
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Table 56 Hydrogen Atom Coordinates (Å×10
4
) and Isotropic Displacement Parameters 

(Å
2
×10

3
) for 128. 

Atom x y z U(eq) 

H1N -760(30) -4790(70) -1260(20) 33(9) 

H1 -1058 -6702 -2607 32 

H2AA 1467 -6651 -1597 39 

H2AB 414 -7738 -1046 39 

H2BC 962 -7428 -1647 39 

H2BD 553 -7149 -639 39 

H6 3004 96 933 37 

H7 4827 841 2180 42 

H8 6589 -1709 2596 44 

H9 6495 -5103 1742 44 

H10 4671 -5867 507 38 

H12 999 -1776 -2710 40 

H13 2516 -1399 -3699 51 

H14 2700 -4211 -4799 57 

H15 1378 -7445 -4880 52 

H16 -103 -7854 -3860 43 

H18 -1416 -993 -2014 35 

H19 -3318 1196 -2591 39 

H20 -4986 -43 -3853 41 

H21 -4743 -3487 -4575 42 

H22 -2873 -5729 -3987 39 

H0 960(40) -1790(90) -920(30) 44(12) 

H3A 2405 -6789 59 37 

H3B 1177 -5342 268 37 

H4 2959 -3585 -846 35 

H0' 847 -2269 -630 58 

H3'A 2603 -4748 -1248 37 

H3'B 2835 -6688 -465 37 

H4' 1998 -4262 700 35 

  

Table 57 Atomic Occupancy for 128. 

Atom Occupancy  Atom Occupancy  Atom Occupancy 

H2AA 0.93  H2AB 0.93  H2BC 0.07 

H2BD 0.07  O 0.92  H0 0.92 

C3 0.92  H3A 0.92  H3B 0.92 

C4 0.92  H4 0.92  O' 0.08 

H0' 0.08  C3' 0.08  H3'A 0.08 

H3'B 0.08  C4' 0.08  H4' 0.08 

Crystal structure determination of 128. 
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Crystal Data for C22H23NO (M =317.41 g/mol): monoclinic, space group P21 (no. 4), 

a = 10.1649(6) Å, b = 5.9781(2) Å, c = 14.3522(9) Å, β = 102.548(6)°, V = 

851.31(9) Å
3
, Z = 2, T = 120.0 K, μ(MoKα) = 0.075 mm

-1
, Dcalc = 1.238 g/cm

3
, 13064 

reflections measured (4.106° ≤ 2Θ ≤ 54.99°), 3905 unique (Rint = 0.0715, Rsigma = 

0.0688) which were used in all calculations. The final R1 was 0.0631 (I > 2σ(I)) and wR2 

was 0.1553 (all data).  

Refinement model description  

Number of restraints - 3, number of constraints - unknown.  

Details: 

1. Others 

 Fixed Sof: H2AA(0.93) H2AB(0.93) H2BC(0.07) H2BD(0.07) O(0.92) H0(0.92) 

 C3(0.92) H3A(0.92) H3B(0.92) C4(0.92) H4(0.92) O'(0.08) H0'(0.08) C3'(0.08) 

 H3'A(0.08) H3'B(0.08) C4'(0.08) H4'(0.08) 

 Fixed Uiso: H1(0.032) H2AA(0.039) H2AB(0.039) H2BC(0.039) H2BD(0.039) 

 H6(0.037) H7(0.042) H8(0.044) H9(0.044) H10(0.038) H12(0.04) H13(0.051) 

 H14(0.057) H15(0.052) H16(0.043) H18(0.035) H19(0.039) H20(0.041) H21(0.042) 

 H22(0.039) H3A(0.037) H3B(0.037) H4(0.035) H0'(0.058) H3'A(0.037) H3'B(0.037) 

 H4'(0.035)Fixed X: H1(-0.1058) H2AA(0.1467) H2AB(0.0414) H2BC(0.0962) 

H2BD(0.0553) H6(0.3004) H7(0.4827) H8(0.6589) H9(0.6495) H10(0.4671) 

H12(0.0999)H13(0.2516) H14(0.27) H15(0.1378) H16(-0.0103) H18(-0.1416) H19(-

0.3318) H20(- 0.4986) H21(-0.4743) H22(-0.2873) H3A(0.2405) H3B(0.1177) 

H4(0.2959) H0'(0.0847) H3'A(0.2603) H3'B(0.2835) H4'(0.1998)Fixed Y: H1(-0.6702) 

H2AA(-0.6651) H2AB(-0.7738) H2BC(-0.7428) H2BD(-0.7149) 

 H6(0.0096) H7(0.0841) H8(-0.1709) H9(-0.5103) H10(-0.5867) H12(-0.1776) H13(- 

 0.1399) H14(-0.4211) H15(-0.7445) H16(-0.7854) H18(-0.0993) H19(0.1196) H20(- 

 0.0043) H21(-0.3487) H22(-0.5729) H3A(-0.6789) H3B(-0.5342) H4(-0.3585) H0'(- 

 0.2269) H3'A(-0.4748) H3'B(-0.6688) H4'(-0.4262) 

 Fixed Z: H1(-0.2607) H2AA(-0.1597) H2AB(-0.1046) H2BC(-0.1647) H2BD(-0.0639) 

 H6(0.0933) H7(0.218) H8(0.2596) H9(0.1742) H10(0.0507) H12(-0.271) H13(- 

 0.3699) H14(-0.4799) H15(-0.488) H16(-0.386) H18(-0.2014) H19(-0.2591) H20(- 

 0.3853) H21(-0.4575) H22(-0.3987) H3A(0.0059) H3B(0.0268) H4(-0.0846) H0'(- 

 0.063) H3'A(-0.1248) H3'B(-0.0465) H4'(0.07) 

This report has been created with Olex2, compiled on 2014.09.19 svn.r3010 for 

OlexSys. Please let us know if there are any errors or if you would like to have 

additional features.  
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Appendix 3 

Table 58 Examining the potential oxidation of 2-phenylethanol using boric acid, 

hydrogen peroxide and copper chloride. 

 

Entry
 

B(OH)3 (eq.) H2O2 (eq.) CuCl (%) 
 (%)

a
 

1 1 3 10 4 

2 1 3 - <1 

3 1 - 10 0 

4 - 3 10 3 

5 - 3 - 0 

6 1 - - 0 

7 - - 10 0 

1 mmol scale, typical conditions: 2-Phenylethanol was added to a stirring solution of B(OH)3 and CuCl in 

THF (2 mL). Hydrogen peroxide solution (35% w/v) was added, and the solution was allowed to stir for 4 

h (open to air). 
a
 Conversion to phenylacetaldehyde was determined by removing the solvent in vacuo and 

running 
1
H NMR analysis on the crude sample. 

 

Table 59 Examining the potential oxidation of 2-phenylethanol using boric acid, 

hydrogen peroxide and copper chloride – addition of base. 

 

Entry NaOtBu (eq.) H2O2 (eq.)
 

CuCl (%) 
 (%)

a
 

     

<<1% 1 1 3 10 

2 1 3 100 <<1% 

3
b
 1 3 10 <<1% 

1 mmol scale, typical conditions: 2-Phenylethanol was added to a stirring solution of NaOtBu and CuCl 

in THF (2 mL). Hydrogen peroxide solution (35% w/v) was added, and the solution was allowed to stir 

for 1.5 h (open to air). 
a
Conversion to phenylacetaldehyde was determined by removing the solvent in 

vacuo and running 
1
H NMR analysis on the crude sample. 

b 
Entry 3 was run under reflux in THF (6 mL). 
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Appendix 4 

 

Durham lectures and seminars – attended. 

 

 ‘Green Chemistry and biorefinery - from waste to wealth’ - Prof James Clark, 

The University of York (19
th

 October 2011). 

 ‘Getting a chemical handle on protein modification’ Dr Ed Tate, Imperial 

College London, (26
th

 October 2011). 

 ‘Hetero(arenes) as activating groups in asymmetric catalysis’ - Dr Hon Wai 

Lam, The University of Edinburgh (8
th

 November 2011). 

 ‘Developing tools for molecular imaging of copper in biology’ - Dr Elizabeth 

New, The University of Sydney (22
nd

 November 2011). 

 ‘New copper catalysed reactions’ - Dr Matthew Gaunt, University of Cambridge 

(1
st
 February 2012). 

 ‘Chemistry of biohydrogen’ - Prof Fraser Armstrong, University of Oxford (8
th

 

February 2012). 

 ‘Chiral Metal compounds in catalysis and medicine’ - Dr Peter Scott, University 

of Warwick (28
th

 February 2012). 

 ‘Chemistry and business a rollercoaster’ - Dr Tony Flinn, Industry (13
th

 March 

2012). 

 ‘Tech at Shasun; ABP an overview’ - Dr Paul Quigley, Industry (13
th

 March 

2012). 

 ‘An odyssey in simple chemistry’ - Prof Steve Davies, University of Oxford 

(25
th

 of April 2012). 

 ‘Probe, excite, measure, redox’ - Prof David Parker, Durham University (1
st
 

May 2012).  

 ‘Functionalising hydrocarbons using Fe Catalysts’ - Dr Peter Rutledge, The 

University of Sydney (8
th

 May 2012). 

 ‘Catalysts by Design. A Case Study of Arylamine Synthesis’ - Prof John 

Hartwig, University of California, Berkley (14
th

 May 2012).  
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 ‘Selective Functionalization of Aryl and Alkyl C-H Bonds’ - Prof John Hartwig, 

University of California, Berkley (15
th

 May 2012).  

 ‘Making Sense of Copper-Catalyzed Coupling Reactions’ - Prof John Hartwig, 

University of California, Berkley (16
th

 May 2012).  

 ‘Diamines are forever: Asymmetric synthesis of nitrogen heterocycles’ – Prof 

Peter O’Brien, The University of York (22
nd

 May 2012). 

  ‘Phosphate trimester hydrolysis’ – Prof Tony Kirby, The University of 

Cambridge (10
th

 of September 2012. 

 ‘Enzymatic dynamic kinetic resolution and directed evolution techniques for the 

synthesis of chiral intermediates’ – Prof Jan E. Bäckvall, Stockholm University 

(U.RiV-October 2012) 

 ‘A stereochemical model for additions to aldehydes next to a quaternary centre, 

with applications in the total synthesis of (-)-Luminactin D’ – Prof Bruno 

Lindau, The University of Southampton (20
th

 of February 2013). 

 ‘Making peptides’ – Dr Rachael Slater, Almac (12
th

 of march 2013) 

 ‘Fluoropyridine as a building block in peptide chemistry’ Dr Chris Coxon, 

Durham University (12
th

 of March 2013). 

 ‘A trio of challenges in the reactivity, stereocontrol and regiocontrol in 

asymmetric catalysis’ – Dr Matt Clarke, The University of St. Andrews (25
th

 of 

March 2013). 

 ‘MS-from membrane protein complexes to drug discovery’ – Prof Carol 

Robinson, The University of Oxford (8
th

 of May 2013). 

 ‘Preventing and curing infectious disease: carbohydrates and continuous flow 

synthesis’ – Prof Peter M. Seeberger, Max-Planck Institute (14
th

 of May 2013). 

 ‘Automated oligosaccharide synthesis as a basis for chemical glycomics’ – Prof 

Peter M. Seeberger, Max-Planck Institute (15
th

 of May 2013). 

 ‘Carbohydrate-based nanotechnology’ – Prof Peter M. Seeberger, Max-Planck 

Institute (16
th

 of May 2013). 

 ‘Atom-efficient entry to complex chemical space’ – Prof Joe Sweeney, The 

University of Huddersfield (16
th

 October 2013) 

 ‘Trifluoroethanol, the magic solvent in the search for new cancer therapies’ – 

Prof Bernard T. Golding, Newcastle University (23
th

 October 2013). 
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 ‘Borenium cations: versatile reagents for the borylation of π-nucleophiles’ – Dr 

Mike J. Inglenson, The University of Manchester (29
th

 October 2013). 

 ‘Cats and dogma’, Prof Guy. C. Lloyd-Jones, The University of Edinburgh  (12
th

 

February 2014). 

 ‘Photochemical synthesis, reactivity and kinetics of tricyclic azidines’, Dr 

Jonathan Knowles, The University of Bristol (11
th

 March 2014). 

 ‘Switchable solvents’, Prof P. G. Jessop, Queen’s University (12
th

 March 2014). 

 ‘Assembly line synthesis’, Prof Vrinda Aggarwal, The University of Bristol (7
th

 

May 2014). 

 ‘Liquid crystals: nature’s delicate and prosperous state of matter’, Prof John W. 

Goodby, The University of York (14
th

 May 2014). 

 ‘Designing friendly catalysts for controlled radical polymerizations’, Dr P. M. 

Shaver, The University of Edinburgh (16
th

 May 2014). 

 ‘Glycopolymers and glyconanoparticles’, Prof Neil Cameron, Durham 

University (16
th

 May 2014). 

 ‘Controlled polymer synthesis with olefin metathesis reaction’, Prof Robert 

Grubbs (Nobel Prize 2005), The California Institute of Technology (16
th

 May 

2014). 

 ‘Design and synthesis of smart polymer materials for applications in 

bionanotechnology and biomedicine’, Prof Brigitte Voit, Leibniz Institute of 

Polymer Research Dresden, TU Dresden, Germany (29
th

 May 2014). 

 ‘Organo-Lanthanide molecular nanomagnets’, Dr Richard A. Layfield, The 

University of Manchester (2
nd

 of September 2014). 

 ‘Medicinal Inorganic Chemistry of Biomedical Imaging Probes’, Prof Peter 

Caravan, Harvard Medical School and Massachusetts General Hospital (11
th

 of 

September). 

 ‘Boronate complexes: old dogs with new tricks’, Dr Amadeu Bonet, The 

University of Bristol (23
rd

 of September 2014). 

 

Courses attended 

 

 GD188 - ‘Getting published in science’ (14
th

 February 2012). 
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 GD229 - ‘Thesis writing in Science and English’ (9
th

 March 2012). 

 ‘Practical NMR spectroscopy’ AMK (Year 1). 

 ‘Problems in organic synthesis’ EJG (Year 1). 

 ‘Liquid crystals’ LOP (Year 1).  

 ‘Problems in organic chemistry’ EJG (Year 2). 

 ‘pKa and kinetics in organic chemistry - a practical guide’ AMOD (Year 2). 

 Problems in organic chemistry’ EJG (Year 3). 

 

Conferences presentations 

 Organic Division Poster Symposium 2014 The Royal Society of Chemistry, 

London, 12/14. Gave a poster presentation with the title An asymmetric route to 

γ-amino alcohols, with application towards the synthesis of top-selling 

pharmaceuticals. 

 Challenges in Catalysis Symposium The Royal Society of Chemistry, London, 

11/14. Gave a poster presentation with the title In situ imine formation-

borylation: a protocol for the synthesis of γ-amino alcohols. 

 Northern Sustainable Chemistry Meeting (NORSC) The University of 

Huddersfield, 10/14. Gave an oral presentation with the title In situ imine 

formation-borylation and the catalytic asymmetric synthesis of γ-amino 

alcohols. 

 Durham Gala Postgraduate Symposium Durham University, 06/14. Gave an 

oral presentation with the title Asymmetric borylation of α,β-unsaturated imines: 

a route to γ-amino alcohols. 

 Northern Sustainable Chemistry Meeting (NORSC) The University of Hull, 

04/14. Gave a poster presentation with the title An in situ imine formation/β-

borylation approach to the synthesis of γ-amino alcohols. 

 EuroBoron6 Poland, 09/13. Gave an oral presentation with the title A One-Pot, 

Multistep, Borylation Protocol For the Synthesis of γ-amino alcohols. 

 RSC Organic Section North East Regional Meeting The University of 

Huddersfield, 03/13. Gave a poster presentation with the title Novel 

transformation of α,β-unsaturated aldehydes and ketones into γ-amino alcohols 

or 1,3-oxazines via a four or five step, one-pot sequence. 
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Conferences attended (where I did not present) 

 

 NORSC Network Seminar Day (25
th

 October 2011, York). 

 Stereochemistry at Sheffield ‘Modern Aspects of Stereochemistry’ (10
th

 January 

2012, Sheffield). 

 RSC Organic Section North East Regional Meeting (28
th

 March 2012, York). 

 NEPIC - NORSC (24
th

 April 2012, Durham). 

 NEPIC-NORSC Sustainable Chemistry for Industry Event Durham Postgraduate 

Symposium (24
th

 April, 2012, Ramside Hall, Durham). 

 Durham Postgraduate Symposium (13
th

 June, 2012, Durham University). 

 North West Organic Chemistry (3
rd

 July, 2012, Liverpool). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


