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Abstract  

Iridium-catalysed C-H borylation of fluoroarenes represents a very powerful method 

for the synthesis of fluorinated aryl boronic esters, which are a range of versatile 

synthetic building blocks. Following a brief review of the developments of Ir-catalysed 

C-H borylation reactions and synthesis of fluoroaromatics, this thesis describes the 

investigation of the influence of fluorine substituents on selectivity and effectiveness 

of iridium-catalysed C-H borylation of polyfluorinated arenes. As observed through the 

reactions of 1-fluoro-4-methylbenzene, 1-bromo-4-fluorobenzene, and other related 

substrates, simple fluoroarenes react considerably faster than their non-fluorinated 

counterparts. Polyfluoroarenes and fluorinated pyridines are even more reactive 

substrates. The fluorine atom is of low steric bulk and this coupled with a strong 

inductive electron-withdrawing effect leads to the activation of the C-H bonds ortho to 

a fluorine atom. However, with 1,3-difluoro-2-substituted arenes, as the electron-

withdrawing nature of the 2-substituent increases there is a corresponding increase in 

the formation of the 1,3-difluoro-5-Bpin product. The parent arene, 1,3-

difluorobenzene, shows variable selectivity depending on the nature of the boron source 

(B2pin2 and HBpin) and this observation challenges the accepted catalytic cycle for 

these reagents for which the key C-H activation step is supposed to be common. The 

resulting fluorinated aryl boronic esters can be used in the synthesis of fluorinated 

biaryls through Suzuki-Miyaura cross-coupling reactions using CsF as an anhydrous 

base to circumvent protodeboronation observed with more classical aqueous base 

conditions.  
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1.0 Introduction 

1.1 Introduction to this thesis  

To date, aromatic organofluorine compounds have found diverse applications ranging 

from pharmaceuticals to agrochemicals due to their unique chemical, physical, or 

physiological properties afforded by fluorine substituents. For these molecules, cross-

coupling reactions of suitable fluorinated aryl boronic precursors have been some of 

the most useful synthetic methods that can avoid the difficulties of late stage 

incorporation of fluorine atoms. Reflecting this, efficient methods for the synthesis of 

these fluorinated precursors would be valuable. In this thesis, the work directed towards 

this objective is described. This involves the preparation of fluorinated aryl boronic 

esters through Ir-catalysed C-H borylation of fluoroarenes, with the selectivity and 

effectiveness of this process being investigated. This thesis is divided into four main 

chapters. The remaining part of this chapter will provide a review focusing on areas 

most relevant to this project: C-H borylation and fluoroaromatics. Chapter 2 gives the 

results obtained in this study and the associated discussion and in the following two 

chapters, conclusions and future work, and detailed experimental procedures will be 

described respectively.  

 

1.2 C-H borylation 

1.2.1 Organoboron compounds 

Organoboron compounds are a class of borane derivatives that contain a carbon-boron 

bond. Over the past half-century, organoboron reagents have been extensively studied 



 2 

and applied in organic synthesis and catalysis because of their versatility and pivotal 

roles as synthons. The C-B bond can be easily converted to a C-C, C-N, C-O or C-X 

(X = Br, Cl) bond, as observed in numerous chemical transformations including the 

Suzuki-Miyaura cross-coupling reaction, Matteson homologation and allylboration of 

carbonyl compounds (Scheme 1).1–3 Additionally, organoboron reagents have had an 

essential role in the pharmaceutical industry, as 10B carriers for neutron capture therapy, 

in molecular imaging, and in material science and engineering.4 

 

 

Scheme 1 Common reactions of organoboron compounds.1–3 

 

MeO

Br

(HO)2B

94% yield

B

O

O
OH

Ph
PhCHO (1 equiv.)

THF, 50 ℃, 30 min

95% yield
94 : 4 dr

OCb

Li
Me

Bpin

Li
Me

(ii) EtBpin (1.5 equiv.), -78-20 ℃, 2 h

95% yield
99% ee

Cb = carbamate

MeO

(i) s-BuLi, Et2O, -78 ℃, 20 min

(a) Suzuki-Miyaura cross-coupling reaction

(c) Allylboration of carbonyl compounds

(b) Matteson homologation

Pd(OAc)2 (2 mol%)
 Cy2NH (4 mol%)
Cs2CO3, dioxane
         80 ℃
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Figure 1 Classification for organoboron compounds. 

 

Classification for organoboron compounds in the reported literature varies greatly. 

However, they can be best categorised as boranes, boron hydrides, borinic and boronic 

acids, borinic and boronic esters, boronamides and other related compounds (Figure 1). 

Among these boron reagents, boronic (boronate) esters, which have fair stability to air, 

excellent functional-group tolerance, high compatibility with many reagents, and ease 

of purification and characterisation, are an extremely attractive class of chemical 

building block used in organic synthesis.5 Moreover, due to their ultimate degradation 

into boric acid, boronic esters can be considered as environmentally friendly 

compounds of low toxicity.5 Consequently, developing practical and efficient synthetic 

routes for boronic esters is of considerable current and future interest.  

 

For the purpose of this thesis, only the synthesis of aryl boronic esters will be discussed. 

Traditionally, these compounds have been synthesised via the reaction of an 

organometallic species (Grignard or lithium reagent) with a borate ester (Scheme 2a).6 

Alternatively, routes containing palladium- or copper-catalysed borylation of aryl 

halides have been developed and widely employed (Scheme 2b and 2c).7,8 These 

BR3
boranes

BR2(OH)
borinic acids boronic acids

borinic esters
BR2(OR)

boronic (boronate) esters
RB(NR2)2

boronamides

BRnH3-n

boron hydrides

BR(OR)2

BR(OH)2
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methods, however, have the drawbacks of limited functional group tolerance or the 

requirement of multistep synthesis. Recently, a direct iridium-catalysed C-H borylation 

strategy has emerged.9–11 This provides access to aryl boronic esters under milder 

conditions in fewer steps and shows a high level of functional group tolerance. As such, 

this is the method of choice for the work described in this thesis. In this chapter, the 

developments of Ir-catalysed aromatic C-H borylation strategy will be described, along 

with the studies of mechanism and regioselectivity of these reactions. 

  

Scheme 2 Traditional synthetic routes for aryl boronic esters.6–8 

 

1.2.2 Discovery of iridium-catalysed C-H borylation 

1.2.2.1 Early developments of iridium-catalysed C-H borylation 

 

Scheme 3 First Ir-catalysed C-H borylation reaction for benzene.12 

(c)

(a)

(b)

O

MgBr

PinB OiPr(i)
(ii) 50 ℃

Bpin

O

94% yield

Br

KOAc (3 equiv.), DMSO 
         80 ℃, 2 h

98% yield

Bpin
PdCl2(dppf) (3 mol%)

B2pin2

I        B2pin2
CuI (10 mol%)
nBu3P (13 mol%)
KOtBu (1.5 equiv.)
    THF, r.t., 24 h

Bpin

92% yield

Bpin

Cp*Ir(PMe3)(H)(Bpin) 2 (17 mol%)

150 ℃, 120 h
HBpin 3 (5.0 equiv.)

53% yield
1                                                                              4
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In 1999, Smith and Iverson reported the first catalytic C-H borylation reaction for 

benzene 1 using Cp*Ir(PMe3)(H)(Bpin) 2 as catalyst and HBpin 3 (Bpin = 

pinacolborane) as boron source (Scheme 3).12 After 120 hours at 150 °C, 3 catalytic 

turnovers were obtained affording C6H5Bpin 4 in 53% yield. Whilst the exact 

mechanism and intermediates are unknown, a comparative experiment of Cp*IrH4 5 

and Cp*Ir(PMe3)(H)2 6 suggested that the active catalyst contained a PMe3 ligand.9 The 

low turnover numbers afforded by Cp*Ir complex 2 limited the ability of this system 

and, to date, no reactions of arenes involving esters, amines, amides or of heteroarenes 

borylated with Cp*Ir(PMe3)(H)(Bpin) 2 have been reported.  

 

 

Scheme 4 Arene borylation catalysed by iridium-phosphine-systems.9 

Br

Br

N

Cl

Cl

Cl

MeOOC

MeO

         Ir(Ind)(COD) (2 mol%)
dppe (2 mol%), HBpin (1.5 equiv.)

cyclohexane, 100 ℃, 17 h

92% yield

Br

Br

Bpin

MeO

MeO

MeO

Bpin

N

Cl

Cl

Cl

MeOOC

Bpin

Bpin

         Ir(Ind)(COD) (2 mol%)
dppe (2 mol%), HBpin (2.0 equiv.)

cyclohexane, 100 ℃, 4 h

69% yield

         Ir(Ind)(COD) (2 mol%)
dppe (2 mol%), HBpin (2.0 equiv.)

cyclohexane, 100 ℃, 25 h

95% yield

         Ir(Ind)(COD) (2 mol%)
dmpe (2 mol%), HBpin (3.0 equiv.)

cyclohexane, 150 ℃, 95 h

62% yield

(a)

(b)

(c)

(d)

7
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In 2002, a more efficient iridium-based catalytic system involving bisphosphine ligand 

was reported by Smith et al.9 For example, whilst the borylation of benzene with HBpin 

at 150 ℃ using PMe3 produced PhBpin in 88% yield after 18 hours, using systems 

with dmpe and dppe ligands produced 84% and 95% yields, respectively, after only 2 

hours. Moreover, it proved possible to reduce the catalyst loading from 2 mol% to 0.02 

mol% for the same substrate. This high efficiency of bidentate phosphine ligands was 

further demonstrated by reactions of a group of electron-deficient and electron-neutral 

arenes. Ester-, alkoxide- and halogen-substituted arenes and heteroaromatics were 

tolerated giving moderate to excellent yields (62% to 95%) (Scheme 4).9 

 

These iridium-phosphine-catalysed borylation systems represented a significant step 

forward from the earlier works due to their faster reaction rates and reduced catalyst 

loadings. However, the temperatures required for these reactions remained high (100-

150 ℃) and short reaction times were not available for all arenes. For example, 95 

hours were required to afford 62% borylated product from 1,2-dimethoxybenzene 7, a 

more electron-rich substrate (Scheme 4d).  

 

1.2.2.2 [Ir(COD)X]2-bipyridines-catalysed borylation 

Concurrently with the work on arene borylation catalysed by phosphine ligands-

containing iridium complexes,9 Ishiyama, Miyaura, Hartwig and colleagues10 reported 

a catalyst system using iridium precursors and bipyridine ligands. These novel catalyst 

combinations were demonstrated to be more active than that with phosphine ligands, 
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not only lowering reaction temperatures to room temperature-80 ℃ (Scheme 5a), but 

also increasing turnover numbers to 500-1000 in many cases and even achieving 8000 

in favourable cases (Scheme 5b).10,13 

 

 

Scheme 5 (a) First catalytic C-H borylation at room temperature,10 (b) Borylation 

with 8000 turnovers.13 

 

1 : 1 mixture of arenes GLC yields ratio (%) 

PhCF3 8    PhMe 9 PhCF3-Bpin 11 : PhMe-Bpin 12 = 90 : 10  

PhCF3 8    PhOMe 10 PhCF3-Bpin 11 : PhOMe-Bpin 13 = 85 : 15  

PhMe 9    PhOMe 10 PhMe-Bpin 12 : PhOMe-Bpin 13 = 40 : 60 

Table 1 Comparative studies for electron-poor and electron-rich arene substrates.10 

 

In their initial work, a variance in the reactivity of electron-poor and electron-rich 

arenes given by this catalyst system was observed.10 Electron-poor arene substrates 

were shown to have higher reactivity than the electron-rich ones in a series of 

[Ir(COE)2Cl]2 (2.5 mol%)
 dtbpy (5.0 mol%)
B2pin2 (1.0 equiv.)

room temperature, 4.5 h

Bpin

83% yield(60 equiv.)

[Ir(COE)2Cl]2 (0.01 mol%)
 dtbpy (5.0 mol%)
B2pin2 (1.0 equiv.)

100 ℃, 16 h

Bpin

80% yield(60 equiv.)

(a)

(b)
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comparative experiments where PhCF3 8 and PhMe 9, PhCF3 8 and PhOMe 10, PhMe 

9 and PhOMe 10 were mixed in an equimolar amount to yield the corresponding 

borylated products (Table 1).  

 

In order to optimize the iridium-bipyridine catalytic system, a systematic study of 

various anionic ligands (X) in the Ir(I)-COD precursor and bpy ligand was conducted 

in the presence of an excess amount of arene substrates by the same group.11 Higher 

catalytic efficiencies were observed with more basic hydroxide- or alkoxide-containing 

iridium(I) complexes (14c, 14d, and 14e) (Table 2, entries 3-5) when compared to the 

corresponding halide 14a (Table 2, entry 1), cationic 14b (Table 2, entry 2) or acetate 

complexes 14f (Table 2, entry 6). This was attributed to the easier formation of 

(boryl)iridium complexes, the key reactive intermediates in the catalytic process.  

 

 

Table 2 [Ir(COD)(X)]2 precursors with various anionic ligands.11 

 

[Ir(COD)(X)]2 (1.5 mol%)
bpy (3.0 mol%)

B2pin2 (1.0 equiv.)
room temperature

Bpin

(60 equiv.)

Entry             Ir(I)-COD precursor           Time/h    Conversion of B2pin2/%     GC yield/%

1              [IrCl(COD)]2        14a              24                       0                                    0

2              [Ir(COD)2]BF4     14b              24                       3                                    0

3              [Ir(OH)(COD)]2   14c               4                      100                                 88

4              [Ir(OPh)(COD)]2  14d              4                      100                                 84

5              [Ir(OMe)(COD)]2 14e              4                      100                                 90

6              [Ir(OAc)(COD)]2  14f              24                      19                                   1
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The influence of steric effects on the bpy ligand was probed through the introduction 

of methyl groups at various positions.11 The lower activity of complexes containing 

3,3’-dimethyl-2,2’-bipyridines 15c (Table 3, entry 3) was proposed to result from 

increasing inhibition to the forming of a coplanar arrangement of the two pyridine rings. 

Moreover, the use of 6,6’-dimethyl-2,2’-bipyridine 15d led to an inactive complex 

(Table 3, entry 4). This was attributed to the steric congestion around nitrogen atoms 

inhibiting coordination between ligands and iridium centres. 

  

 

Table 3 Iridium catalytic systems containing dimethyl-2,2′-bipyridine ligands.11 

 

N N

N N

N N

N N

Me Me

Me Me

Me Me

Me Me

Bpin[Ir(COD)(OMe)]2 (1.5 mol%)
Ligand (3.0 mol%)
B2pin2 (1.0 equiv.)
room temperature(60 equiv.)

Entry                            bpy ligand                          Time/h           Conversion of B2pin2/%      GC yield/%

1                                                                               4                              100                              89

2                                                                              2                              100                              82

3                                                                              8                              100                              60

4                                                                            24                              27                                0

15a

15b

15c

15d
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Electronic influences on bpy ligands in arene borylation were also investigated by 

Ishiyama, Miyaura, Hartwig and co-workers, who disclosed that for arene borylation at 

room temperature, the reactivity with electron-donating functionalities (e.g. NMe2, 

OMe and tBu) (Table 4, entries 1-3) was superior to that when electron-withdrawing 

groups (e.g. Cl and NO2) were present, which did not catalyse the reaction at all (Table 

4, entries 4 and 5).11 

 

Table 4 Variation of 4,4’-disubstituted-2,2′-bipyridine ligand.11 

 

Further advances in the utility of this protocol have included expanding the reaction 

scope from that conducted in neat arenes to ones that use more common organic 

solvents.11 Experimental results showed that nonpolar solvents such as hexane 

conducted the reaction at a faster rate than more polar solvents such as DME and DMF. 

As the last part of this work, arenes with a variety of functionalities were tested and 

afforded moderate to high yields, indicating the versatility of this system.11 

Entry                      Ligand                  Time/h           Conversion of B2pin2/%        GC yield/%

N N

1                             16a                          2                              100                               89

2                             16b                          4                              100                               90

3                             16c                          4                              100                               83

4                             16d                         24                              16                                 0

5                             16e                         24                              46                                 0

R R

Bpin[Ir(COD)(OMe)]2 (1.5 mol%)
Ligand (3.0 mol%)
B2pin2 (1.0 equiv.)
room temperature(60 equiv.)

16a  R = NMe2  16b  R = OMe
16c  R = tBu      16d  R = Cl
16e  R = NO2
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Since these papers, an iridium catalyst comprised of [Ir(COD)(OMe)]2 14e and 4,4′-di-

tert-butyl-2,2′-bipyridine 16c has been widely applied in aromatic C-H borylation due 

to its high reactivity and compatibility at room temperature. 

 

1.2.3 Mechanism of aromatic C-H borylation catalysed by Ir-dtbpy-system 

The mechanistic pathway of arene borylation catalysed with iridium precursors and 

dtbpy ligand have now been extensively studied.10,13–16 Key intermediates were initially 

speculated to be [Ir(dtbpy)(Bpin)3] 17 and its related Ir(III)-boryl complexes by 

Ishiyama, Miyaura and Hartwig et al.10,13 In initial experiments, 

[Ir(dtbpy)(COE)(Bpin)3] 18 was successfully isolated, with its structure determined by 

X-ray diffraction.10 The rapid formation of C6D5Bpin when 18 was dissolved in C6D6  

suggested that this Ir(III)-boryl complex was competent to be a reactive intermediate in 

the catalytic system. Subsequently, more detailed studies showed that 18 gave similar 

yields and regioselectivities as [Ir(COD)(OMe)]2 14e did in the borylation of arenes, 

indicating that iridium(III)-boryl complexes were the catalytically active species.13  

 

Following this a general mechanism for arene borylation (Scheme 6) was proposed. 

The catalytic process starts after the reaction of Ir(I) complex [Ir(dtbpy)(X)] 19 and 

B2pin2 20, in which a trisboryl Ir(III) complex 17 is generated. The resulting trisboryl 

Ir(III) intermediate 17 then reacts with the arene 23 to afford the corresponding aryl 

boronic ester 25. This latter process could occur either via an oxidative addition of 23 

to yield an Ir(V) species 24 followed by reductive elimination of 25 to give rise to the 
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Ir(III)(Bpin)2(H) complex 26, or via a concerted 𝜎-bond metathesis pathway which 

will afford the same functionalized product and Ir(III) hydride complex. The cycle is 

completed by the oxidative addition of 20 to afford [Ir(dtbpy)(H)(Bpin)4] 27, which 

later undergoes reductive elimination of HBpin 3 to regenerate the active trisboryl Ir(III) 

species 17. Alternatively, another pathway from 26 to 17 involves the oxidative addition 

of 3 and H2 29 reductive elimination from an 18-electron Ir(V) species 28. In this two-

cycle model, fast consumption of B2pin2 occurs first followed by the slower borylation 

with HBpin. 

 

 

Scheme 6 Proposed general mechanism for Ir-catalysed aromatic C-H borylation.10,13,14 

[Ir] X
B2pin2 20
-XBpin 21

[Ir] Bpin

B2pin2

Ir Bpin

Bpin
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N

N Ar-H

Ir Bpin

Bpin

Bpin
N

N
H Ar

Ar-Bpin

Ir Bpin

H

Bpin
N

N

B2pin2

Ir Bpin

Bpin

Bpin
N

N
H Bpin

HBpin

H2

Ir Bpin

Bpin

Bpin
N

N
H H

19 22

24

17

26

2728

29

3

25

20

 23
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Sakaki and collaborators14 then published further theoretical elucidation of this 

catalytic cycle, which was consistent with the results of experimental 

investigations.13,15,16 In Sakaki’s studies, the electron-donating effect to the metal centre 

from dtbpy ligand and diboron reagent as well as the small steric hindrance in the planar 

structures of dtbpy and B2pin2 facilitates the oxidative addition process and stabilizes 

the Ir(V) complex 24. Besides, less bulky arene substrates such as benzene will be more 

favourable in this catalytic reaction. 

 

1.2.4 Regiocontrol in C-H borylation 

1.2.4.1 Steric effects in C-H borylation 

The regioselectivity in the borylation of arenes catalysed by an iridium system is 

predominantly controlled by steric effects. With the exception of special cases, 

borylation occurring at the ortho-position to substituents or ring junctions is sterically 

disfavoured. This rule in monosubstituted aromatics (Scheme 7a10) leads to an 

approximate statistical distribution of 2 : 1 for meta- and para-borylated products, with 

rare, or even no ortho-functionalized product being observed. In the borylation of 

symmetrically 1,2-substituted arenes (Scheme 7b10), steric effects lead to the formation 

of 4-substituted aryl boronic ester exclusively, but for 1,2-disubstituted arenes bearing 

two different substituents (Scheme 7c17), a mixture of products is obtained in most cases. 

Both 1,3-disubstituted (Scheme 7d11) or 1,2,3-trisubstituted arenes (Scheme 7e18) give 

rise to 5-substituted borylated arenes as a single product, regardless of whether the 

substituents of the substrates are equivalent or not. The borylation of 1,3-disubstituted 
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aromatics has received the greatest attention due to the ability to generate a broad range 

of desired 1,3,5-trisubstituted products, that are difficult to produce selectively in 

traditional aromatic substitution reactions.  

 

Scheme 7 Steric effect-conducting regioselectivity for aromatic C-H borylation.10,11,17 
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Compared with 1,2 or 1,3-disubstituted arene substrates, relatively low reactivity is 

exhibited by 1,4-disubstituted compounds because all of the C-H bonds are sterically 

hindered. Borylation of unsymmetrically 1,4-substituted arenes will typically afford a 

mixture. However, distinct steric properties from two functionalities will make one of 

the possible 1,2,4-substituted arenes preferentially obtained. For instance, Smith and 

colleagues reported that the reactions of 4-substituted benzonitriles tended to occur 

ortho to the smaller substituents (Scheme 8).19 

 

 

Scheme 8 Borylation of 4-substituted benzonitriles in an iridium-catalysed system.19 
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Electronic effects have also shown an impact upon the regioselectivity of C-H 
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reflecting a preference for meta-substitution derived from the electronic influences 

associated with a methoxy group.10  

 

 

Scheme 9 Borylation of anisole catalysed by [Ir(COD)Cl]2-bpy system.10 

 

 

Scheme 10 Borylation of substrates containing five-membered heteroarenes.20 
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derivatives (33, 34, 35) were borylated exclusively at the 2-position in high yields 

(Scheme 10). This observation was consistent with computational studies which 

suggested that acidity was a significant factor influencing the regioselectivity of C-H 

activation.21 

 

 

Scheme 11 Changes of selectivity in the borylation of pyrroles and indoles.20,22  
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and 37a (Scheme 11a and 11b).20 Reactions of 2-substituted indoles 38 exclusively 

afford 7-functionalized products 38a (Scheme 11c).22 The strategy for using a bulky-

N-protecting group to change selectivity has been applied in versatile methodologies to 

prepare natural products and pharmaceutical drugs. For example, Guant et al. reported 

a total synthesis of rhazinicine 39, which involved the borylation of N-Boc protected 

pyrrole derivatives selectively at the 3-position as a key step (Scheme 12).23  

 

Scheme 12 A total synthesis of rhazinicine 39 by Guant et al.23 

 

Borylation of substrates containing 6-membered rings is controlled by electronic 

factors in a different way. Unsubstituted pyridine 40 gives an approximate statistical 

distribution of 2 : 1 for meta- and para-borylated products (Scheme 13a24), whereas 

quinoline 41 selectively affords 3-borylated products (Scheme 13b20). The poor 

reactivity of pyridine in borylation can be attributed to the coordination between the 
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Scheme 13 Borylation of pyridine 40 and quinoline 41.20,24 

 

Difficulties arising from the pyridyl coordination can be reduced by the incorporation 

of ortho-substituents. Borylation of 2,6-disubstituted pyridines gives much higher 

efficiency compared with that of unsubstituted pyridine. Steric hindrance of the 3-

position allows the functionality to be exclusively installed at the 4-position (Scheme 

14a9), analogous to the reaction of 1,3-disubstituted arenes. Pyridines bearing one 

substituent at the 2-position react to form 4- and 5-borylpyridines, with the sterically 

accessible 6-position remaining unreactive (Scheme 14b25).   

 

Scheme 14 Borylation of pyridines containing ortho-substituents.9,25 
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Scheme 15 Borylation of dtbpy 16c.25 

 

The challenge of borylation adjacent to the pyridyl nitrogen has been attributed to the 

electronic repulsion between the nitrogen lone pair and the partial negative charge on 

the C-2 during the C-H activation process.26 This electronic effect can be overcome 

when reactions at other positions are sterically inhibited, as is shown in the borylation 

of dtbpy 16c which is forced to afford 2-borylated product (Scheme 15).25 

 

 

Scheme 16 Proposed mechanism for protodeboronation of 2-borylated pyridines.27  
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resulting zwitterion 43 undergoes nucleophilic substitution of the boryl group to form 

the ylide intermediate 44, which then reproduces the parent pyridine 40 via rapid 

electron rearrangement (Scheme 16). As such, in a similar version to that described 

above, this protodeboronation process can be minimized by lowering the basicity of the 

pyridyl nitrogen with a sufficiently electronegative o-substituent. This has been 

exemplified by the borylation of methyl 2-chloroisonicotinate 45, which gives a stable 

𝛼 -pyridyl boronic ester 46 that readily undergoes subsequent functionalization 

(Scheme 17).26  

 

 

Scheme 17 Reaction sequences containing stable 𝛼-pyridyl boronic ester.26 

 

1.2.4.3 Directed ortho-borylation 

The regioselectivity controlled by steric effects in arene borylation often complements 

NCl

COOMe

NCl

COOMe

NCl

COOMe

[Ir(COD)(OMe)]2 (1.5 mol%)
dtbpy (3 mol%)
B2pin2 (1.0 equiv.)
MTBE, r.t., 24 h

Bpin

OMe

4-MeOC6H4I (2.0 equiv.)
  Pd(dppf)Cl2 (5 mol%)

CsCO3, DMF, 100 ℃, MW, 1h

NH

COOMe

OMe

HCO2NH4
Pd/C
EtOH, r.t., 2 h

73% conversion

47% yield from 45

45

46
47

48



 22 

that of electrophilic aromatic substitution or directed ortho metalation (DoM).33 

However, a mild alternative to conduct directed borylation would be valuable. Hartwig 

and Boebel reported a silyl-directed arene borylation catalysed with [Ir(COD)Cl]2-

dtbpy-system.34 In this method, the introduction of a hydrosilyl group as a directing 

group leads to benzyls and phenols facilitating exclusively ortho-borylation (Scheme 

18). Reversible addition of an Si-H bond of the hydrosilyl group to the metal centre 

was proposed to account for the mechanism of this reaction (Scheme 19). This docking 

of the arene substrate at the catalyst through the silicon atom makes borylation occur 

preferentially at the position ortho to the substituent. 

 

 

Scheme 18 ortho-Directed arene borylation developed by Hartwig and Boebel.34 
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Scheme 19 Mechanism for hydrosilyl-directed ortho-borylation of arenes.34 

 

 

Scheme 20 ortho-Directed borylation of benzoates.35 
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by which coordination of the ester functionality to the metal centre allows the 

subsequent cleavage of an ortho C-H bond. Ishiyama and Miyaura then extended the 

substrate scope of this protocol to aryl ketones.36  

 

Scheme 21 Selected examples of developments of ortho-directed C-H borylation.37–39 
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Sawamura and colleagues described the first examples of the solid-supported catalyst, 

Silica-SMAP-Ir 50, in arene borylation (Scheme 21a).37 This methodology has also 

been applied to the ortho-borylation of heteroarenes40 and phenol derivatives.41 

Fernandez and Lassaletta performed the Ir-catalysed nitrogen-directed ortho-borylation 

on 2-aryl pyridine and aromatic N,N-dimethylhyarazone substrates under mild 

conditions using a hemilabile N,N-ligand 51 (Scheme 21b and 21c).38 Recently, in 

related work, Clark and colleagues reported the ortho-borylation of benzylic amines 

using 2-picolylamine 52 as a ligand (Scheme 21d).39  

 

1.2.4.4 Directed meta-borylation 

In 2015, Kuninobu, Kanai and co-workers developed the first Ir-catalysed meta-

selective C-H borylation of 𝛼-aryl carbonyl compounds using well-designed catalytic 

system.42 In this method, the bipyridine ligand that binds to the metal centre contains a 

pendant urea moiety (Figure 2). The secondary interaction between this urea moiety 

and the carbonyl group controls the regioselectivity by placing the iridium centre in the 

vicinity of the meta-C–H bond.  

 

Figure 2 Secondary interaction between the ligand and substrate.42 
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Figure 3 Noncovalent interaction between cationic substrate and anionic ligand.43  

 

In 2016, Phipps et al. reported an alternative strategy for meta-borylation, in which an 

ion pair interaction was introduced between quaternary ammonium salts in the arene 

substrates and the anionic ligand to achieve the desired regioselectivity (Figure 3).43  

 

1.2.4.5 Directed para-borylation 

 

Figure 4 Para-selective borylation directed by bulky ligand.44 
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C-H borylation.44 By using a novel catalyst with bulky phosphine ligand 53, the 

monosubstituted benzenes can be directed to para-borylation with up to 91% yield 

(Figure 4). Higher yields can be achieved by increasing the bulkiness of the substituent, 

demonstrating the crucial role that steric repulsion between substrate and catalyst plays 

in regiocontrol of C-H borylation. 

 

1.2.5 Conclusions 

In summary, as is shown in the above examples, since the first observation of iridium-

catalysed aromatic C-H borylation in 1999, numerous improvements in this field have 

been made. Ligand screening provided the reaction system with high efficiency and 

practical protocol, successfully conducting the reaction at room temperature to give 

large turnovers and excellent yields. Substrate scope has been expanded from benzene 

to a wide range of functionalized arenes and heteroarenes. Mechanistic studies of the 

most active Ir-dtbpy-system suggests that the pathway involves the reductive 

elimination of the borylated arene, the ensuing oxidative addition of B2pin2, and the 

reductive elimination of HBpin to regenerate the active Ir(III) complex. Whilst the 

regioselectivity of C-H borylation is governed by steric factors, the inherent electronic 

effects that direct the C-H activation to the most acidic position should not be neglected. 

 

1.3 Fluoroaromatics 

1.3.1 Fluoroarenes 

The wide introduction of fluorinated substituents into organic aromatic molecules leads 
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to significant changes in their chemical reactivity, physical properties, and 

physiological activity. Fluoroarenes have been broadly employed in many fields, 

ranging from solvents and catalysts to pharmaceutical drugs and agrochemicals.45 At 

present, an estimated 30% of agrochemicals and 20-25% of pharmaceuticals contain 

fluorine atoms (Figure 5).45–47 These fluoroaromatic moieties were introduced to 

modify the lipophilicity, bioavailability, acidity and more importantly, the metabolic 

stability of the drugs.46 

 

Figure 5 Examples of pharmaceutically and agriculturally important fluoroarenes45–47 
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worthwhile to develop practicable and efficient synthetic routes to them.  

 

1.3.2 Synthesis of fluoroarenes 

To date, numerous conventional synthetic methods for fluorinated aromatics have been 

well-established, either using direct fluorination with fluorinating reagents (Scheme 

22a48 and 22b49) or by synthesising them from fluorinated building blocks (Scheme 

22c50). 

 

Scheme 22 Methods for preparation of fluoroarenes.48–50   
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introduction of fluorine atoms have been developed, which can reduce the loss of 

fluorine-containing intermediates in side reactions or purification. However, it is still 

challenging to control regio-, chemo- and stereoselectivity in the construction of C-F 

bonds. As a result, the use of fluorinated building blocks to generate target molecules 

is more practicable and wide spread in modern fluorine chemistry. 

 

1.3.3 C-H activation of fluoroarenes 

In terms of atom utilization and reaction efficiency, C-H activation/functionalization is 

the most straightforward way to prepare target fluorinated aromatic molecules. Over 

recent decades, methodologies for direct C-H arylation of fluorinated arenes mediated 

by Cu (Scheme 23a),51,52 Au (Scheme 23b),53,54 Ru (Scheme 23c),55 and Pd-based 

catalysts (Scheme 23d),56–58 have been developed. Studies of challenging 

regioselectivity issues have been reported. For example, Fagnou et al.56 disclosed that 

the preference of direct arylation ortho to the fluorine substituents using palladium 

catalysts resulted from the acidities of C-H bonds in these positions. Larrosa’s group57 

reported another breakthrough in selective C-H arylation, performing the first examples 

of Pd-catalysed meta-C-H functionalization of fluoroarenes using CO2 as a transient 

directing group.  

 

However, for these reactions, inherent challenges arising from the requirement of harsh 

reaction conditions, often associated with poor functional group tolerance and limited 

substrate scope, remain unsolved. 
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Scheme 23 Preparation of fluoroarenes using transition metal-catalysed C-H 

arylation.51,54–56 
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(Scheme 24d)62 have been reported. Of these various cross-coupling approaches the use 

of fluorinated aryl boronic esters represents a powerful synthetic method to avoid 

difficulties in the late stage incorporation of fluorine atoms. This method has the 

advantages of wide substrate scope, reduced toxicity when compared to using 

organostannane and organozinc compounds, and low cost of reagents. Therefore, access 

to readily accessible fluorinated boronic ester derivatives is currently of high interest 

for synthetic chemists. 

 

Scheme 24 Cross-coupling reactions of fluorinated arene precursors.59–62 
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1.3.5 Synthesis of fluorinated aryl boronic esters 

1.3.5.1 Electrophilic borate trapping of arylmetal intermediates  

Strategies for fluorinating aryl boronic esters remain unknown. In contrast, there are 

several methods in which boronate substituents can be installed onto fluorinated 

aromatic rings. A traditional process for the preparation of fluorinated boronic esters 

begins with the generation of an organometallic compound by either metalation of an 

arene (Scheme 25a63) or metal-halogen exchange with an aryl halide (Scheme 25b64), 

followed by trapping the arylmetal intermediate with a borate, before an acid hydrolysis 

to release the product. Despite moderate to good yields of borylated products, such 

routes are limited by the low functional group compatibility of these hard-

organometallic compounds and the requirement for low temperature conditions. 

 

 

Scheme 25 Preparation of fluorinated boronic esters from Grignard or ArLi 

reagents.63,64 
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1.3.5.2 C-X borylation of aryl halides 

Direct catalytic borylation of an aryl C-X (X = Cl, Br, I) bond using a transition metal 

can represent a milder technique to synthesise the required boronic esters (Scheme 

26a65). However, access to suitable halogenated substrates with regioselective 

installation of halogen atoms are prohibitively challenging owing to the strong electron-

withdrawing nature of the fluorine substituents, which decreases the nucleophilic 

character of the aromatic ring and interferes with the electrophilic functionalization 

process. Recently, a protocol involving nickel-catalysed C-F borylation of 

fluoroaromatic compounds has emerged (Scheme 26b).66 However, non-symmetrical 

substrates can lead to a mixture of isomeric products and the issue of regioselectivity 

remains an unsolved challenge.  

 

 

Scheme 26 Preparation of fluorinated boronic esters via C-X borylation.65,66 
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1.3.5.3 Direct C-H borylation of fluoroarenes 

 

Scheme 27 C-H borylation of 1,3-difluorobenzene using different metal catalysts.  

 

More recently, a more attractive and versatile approach to access aryl boronic esters is 

the transition metal mediated C-H activation of fluoroarenes. This obviates the need for 

cryogenic conditions, strong bases, and the prior preparation of haloaromatic precursors. 
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(Scheme 27b),68 cobalt(II) bis(silylene)-based precatalysts (Scheme 27c)69 and the 

iridium bipyridine-based catalysts that were discussed previously (Scheme 27d).19  

 

 

Scheme 28 Selected examples of Ir-catalysed borylation of fluorinated arenes.19,70,71 

 

Several research groups have explored the scope of iridium catalyst-mediated 
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borylation of trisubstituted fluoroarenes, in which functionalization occurs ortho to 

fluorine to minimize repulsion with other functional groups (Scheme 28b).70 

Oppenheimer, Smith and Maleczka et al. developed a two-step 

borylation/dehalogenation reaction sequence where bromine or chlorine atoms serve as 

blocking groups to increase the selectivity for ortho-fluorinated borylated products 

(Scheme 28c).71 While these are important progresses, to date, no general study that 

extensively explores the Ir-catalysed borylation of different polyfluorinated substrates 

has been reported. Additionally, the subtle balance between steric and electronic 

influences of fluorine substituents are incompletely known.  

 

1.3.6 Conclusions 

As discussed in the previous sections, fluorinated boronic esters are a range of versatile 

precursors for the preparation of substituted fluoroaromatics. Several synthetic routes 

have been developed for the preparation of these fluorinated reagents, including 

electrophilic borate trapping of arylmetal intermediates, C-X borylation of aryl halides, 

and direct C-H borylation of fluoroarenes. Among these methods, Ir-catalysed C-H 

borylation of suitable fluoroarenes is currently the most attractive one because it 

obviates the requirements for strong bases, low temperature conditions, and the pre-

generation of haloaromatic precursors. However, the substrate scope, particularly for 

polyfluorinated arenes substrates, has not been fully studied.  
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1.4 Aims of this project 

The high efficiency and predictable regioselectivity of iridium-catalysed C-H 

borylation reactions have made them very useful transformations in the synthesis of 

fluorinated building blocks. While the regioselectivity in Ir-catalysed aryl C-H 

borylation is recognised to be driven by steric effects which make meta- or para-

functionalization more favourable, it is possible to install the Bpin group ortho to the 

small fluorine atom when compared with other aryl functionalities. Moreover, it is well-

established through both thermodynamic72 and kinetic studies73 that the more acidic C-

H bonds ortho to fluorine atoms can be preferentially activated by transition metal 

catalysts. As such, C-H borylation reactions of fluorinated arene substrates with more 

than one sterically available C-H bond represent an unexplored area for the synthesis 

of fluorinated aryl boronic esters. The selectivity and effectiveness of this process 

remain to be determined and the aim of this project was to address this issue through 

Ir-catalysed C-H borylation of a series of polyfluorinated arenes.  
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2.0 Results and discussion 

2.1 Borylation of simple fluoroarenes 

As discussed in Chapter 1, the reported examples of borylation ortho to a C-F bond in 

early studies have demonstrated that the steric hindrance of a fluorine atom can be 

overridden when there are no other sterically available positions. However, these 

reactions were generally conducted at elevated temperatures and were not conducive to 

high selectivity. As a means of verifying this sterically controlled o-borylation at room 

temperature, gaining preliminary assessment of the applicability of this Ir-catalysed C-

H borylation methodology to fluoroarenes, and gaining experience in carrying out the 

procedure, it was decided to carry out the comparative experiments shown in Scheme 

29. 

 

 

Scheme 29 Ir-catalysed C-H borylation of fluoroarenes and parent arenes at room 

temperature/60 ℃. 
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Table 5 Fluorine-assisted ortho-borylation to a C-F bond. 

 

Previous work in the group has demonstrated the effectiveness of methyl tert-butyl 

ether (MTBE) as a C-H borylation solvent.74 Based on this and a literature procedure,10 

borylation of a group of fluorinated arenes and their corresponding parent arenes were 
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R R
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(e) performed at 60 ℃; (f) Conversion was  based on arene substrate and detected by 19F NMR spectroscopy; (g) Conversion was  based on
 arene substrate and detected by GC-MS.

[Ir(COD)(OMe)]2 (1.5 mol%)
         dtbpy (3 mol%)

  Entry    Substrate                                     Products                                Condition         Conv./%             Ratio         Yield%

1                                                                                                                  ad               88 (16 h)f             4 : 1              — 
2                                                                                                                  bd               83 (24 h)f             6 : 1         18 (61a)

Bpin

F

Bpin

Bpin

Bpin Bpin

Bpin

Bpin

F

Br

F

Br

Bpin

F

Br

Bpin

Bpin

Br Br

Bpin Bpin

BpinBr

Bpin

3                                                                                                                 ad              30 (16 h)g        63 : 31 : 6           —

4                                                                                                                 cd               82 (4 h)f               4 : 1         14 (62a)
5                                                                                                                 ae               95 (17 h)f             1 : 47        61 (62b)

6                                                                                                                 cd              65 (4 h)g         67 : 19 : 14         —

F F

Bpin

7                                                                                                                 ad        58 (18 h), 83 (44 h)f       —             —
8                                                                                                                 ae               98 (1 h)f                   —             65

Bpin

9                                                                                                                ad          36 (18 h), 54 (44 h)g      —             —
10                                                                                                              ae                 50 (1 h)g                  —             —

61                               61a                                61b

9                       9a                        9b                              9c

62                               62a                                 62b

63                     63a                        63b                             63c

64                                                      64a

65                                                      65a

Bpin

F F

66                                                 66a

F F

Bpin

11                                                                                                               ad            57 (1 h), 90 (3 h)f        —             71

Br



 41 

conducted with an excess of boron source to drive the reaction to completion. For 

example, charging a Schlenk tube with a combination of [Ir(COD)(OMe)]2 (1.5 mol%), 

dtbpy (3.0 mol%), and B2pin2 (1.2 equiv.), followed by flushing the mixture with 

nitrogen and the addition of anhydrous MTBE, gave the black active catalyst species. 

The substrate, 61 or 9, was then added. The mixture was stirred at room temperature 

before being monitored by 19F NMR or GC-MS. The resulting fluorinated aryl boronic 

esters were isolated by flash column chromatography and characterised by NMR 

analysis.  

 

For fluoroarene 61 (Table 5, entry 2), mono- and bis-borylated products were firstly 

identified based on the degree of downfield shift of the fluorine signal (approximately 

10 ppm) that is typical for an o-borylated C-F bond and GC-MS trace (M+ peaks of 236 

and 362 m/z), and were further confirmed by an NMR analysis of the isolated products 

(vide infra). Due to the possible decomposition of products during GC analysis, the 

ratio between two products and the conversion of 61 were calculated by integrations of 

the fluorine peaks in the 19F NMR spectrum of the crude mixture (Figure 6). The ratio 

of the two signals at -108.4 and -97.5 ppm indicated an approximate 6 : 1 ratio of mono- 

and bis-borylated products and comparison of the integrated areas of the substrate peak 

(-118.7 ppm) to the total integration showed an 83% conversion of 61. The crude 

mixture was then subjected to flash column chromatography to afford 18% of 61a, 

which was fully characterised by 1H, 13C, 19F, and 11B NMR techniques.  
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Figure 6 19F NMR spectrum of the crude mixture of borylation of 61. 

 

 

Figure 7 1H NMR spectrum (700 MHz, CDCl3) of 61a. 
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Assignments of 1H and 13C spectra using a combination of HSQC, HMBC, COSY and 

NOESY spectroscopic techniques unambiguously confirmed the identity of 61a. In 1H 

NMR analysis (Figure 7), the highly deshielded signal at 7.53 ppm was associated with 

6’-H, which had an approximate 0.3 ppm downfield shift compared to 4’-H at 7.21 ppm 

arising from the introduction of the withdrawing Bpin group at C-1’. The triplet at 6.91 

ppm with a larger coupling constant was assigned to the proton adjacent to the C-F 

bond (3’-H). The remaining resonances at 2.31 and 1.36 ppm, respectively, indicated 

three protons at the 5’-CH3 and 4-CH3 positions. In its 13C NMR spectrum, the strong-

coupling characteristic of a fluorine atom was shown more obviously, with JC2’-F of 250 

Hz and JC3’-F of 25 Hz. The signal of the carbon attached to boron (C-1’) was not found. 

This could be attributed to its broadened line caused by the quadrupolar boron nucleus. 

     

 

Figure 8 The calibration curve established for substrate 63. 

 

For the borylation of non-fluorine-containing substrates, conversion of the substrate 

was calculated using a calibration curve (e.g. Figure 8) plotted by a range of 



 44 

concentration and integrated areas of the substrate peaks in the GC-MS. The ratio of 

products was calculated based on GC-MS analysis (e.g. Figure 9).  

 

 

Figure 9 GC-MS analysis of borylation of 63. 

 

Having established a method, the comparative reactions were undertaken with a set of 

arenes using small variations in boron stoichiometry and reaction temperature (Table 

5). Isolation of the resulting fluorinated boronic esters was performed by flash 

chromatography to give pure boronic esters in low to good yields. The lower yields of 

61a and 62a reflected the challenges in the separation of the mono- and bis-borylated 

products. Fluorinated substrates afforded borylated products exclusively ortho to a C-

F bond, whilst for the corresponding non-fluorinated arenes, ortho-positions were 

sterically disfavoured. This suggests that it is possible to overcome the hindrance of a 

small fluorine atom when compared with other functionalities in sterically controlled 

C-H borylation, which is consistent with established observations. Moreover, reaction 

of 66 (entry 11) showed that even two ortho-fluorine substituents could be tolerated. 
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Significantly, reactions of fluorinated substrates (e.g. entry 1) occurred faster than 

reactions of non-fluorinated analogues (e.g. entry 3), indicating the activating effect of 

the fluorine substituent. This observation was reinforced by the rapid activation of 3,5-

difluorotoluene 66 (entry 11) and is consistent with the notion that C-H acidity 

correlates with reactivity.  

 

2.2 Borylation of polyfluorinated arenes 

Given the observation that a fluorine substituent is tolerated in ortho-borylation and 

preliminary demonstration of the practicability of the [Ir(COD)(OMe)]2-dtbpy-

catalysed process, it was of interest to explore the effect of polyfluorinated arenes on 

effectiveness and regioselectivity of this reaction. Consequently, a simple systematic 

survey was performed as shown in Table 6.  
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Table 6 Borylation of polyfluorinated arenes. 

 

All of the substrates were borylated using the procedure described in the previous 

section. Product identity was again primarily determined using a combination of GC-
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MS and 19F NMR analysis of the crude mixture, and NMR assignments of the purified 

isolated products. For each reaction, the conversion of the fluoroarene and the ratio 

between different isomers were calculated based on integrations of peaks in 19F NMR 

spectra. 

 

Borylation of 67 will be discussed as an example. Once completed, GC-MS analysis of 

the crude reaction showed peaks of molecular ions at 258 and 384 m/z, indicating the 

formation of 67a and 67b. 19F NMR analysis indicated an approximate 4 : 1 ratio of 

67a to 67b, with both signals of mono-borylated product 67a (-97.2 and -103.9 ppm) 

shifted downfield with respect to the signals of the bis-borylated product 67b ( -86.4 

and -93.8 ppm). This was due to the installation of an additional boronate group. The 

remaining trace at -107.4 ppm indicated an 81% conversion of substrate 67 after 2 hours. 

The crude reaction mixture was subjected to flash column chromatography resulting in  

a mixture of 67a and 67b (49 : 1 by 19F NMR) in 50% isolated yield which was then 

analysed using 1H, 13C, and 11B NMR techniques. 

 

Although 67b was clearly detected by GC-MS and 19F NMR analysis, further analysis 

of the reaction mixture proved that some of the peaks were undetectable in 1H and 13C 

NMR spectra. In the 1H NMR spectrum of the isolated mixture, the peak for the aryl 

proton at 6.64 ppm was split into a multiplet due to coupling with three fluorine atoms. 

The remaining peaks (1.37 and 1.35 ppm), which were respectively assigned to methyl 

groups in 67a and 67b, roughly presented a ratio of 24.5 : 1 and correlated with the 
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product ratio (67a/67b = 49 : 1) calculated from 19F NMR spectroscopy. 13C NMR 

analysis again did not show the signals for carbons attached to Bpin group. 

 

In summary, the polyfluorinated arenes in Table 6 all readily undergo borylation 

reactions at room temperature to afford high conversion and moderate to high isolated 

yields of the resulting products. And all of these substrates proved to be more reactive 

than the mono-fluoroarenes discussed in the previous section. This observation is 

consistent with the established report by Ishiyama, Miyaura, Hartwig et al., who stated 

that electron-deficient arene substrates are more active than the electron-rich 

substrates.10 Separation of the polyfluorinated boronic esters proved to be difficult. For 

these products (Table 6, entry 6) a sequential Suzuki-Miyaura cross-coupling process 

(Section 2.5) was carried out in the hope of facilitating separation by increasing the 

difference in the polarity of the products. 

 

With the small van der Waals radius of a fluorine atom, ortho-borylation reactions were 

easily processed and two ortho fluorines were again proved to be tolerated. Interestingly, 

reaction of 1,2,3-trifluorobenzene 71 (entry 6) provided a 1 : 3 ratio of 5- to 4-borylated 

products, suggesting that the ortho-activating effect of fluorine substituents played an 

important role in this process. Results of the borylation of 72 were complicated by the 

formation of multi-borylated products, such that the relative reactivity of di-ortho-

fluorine C-H bond remains unknown (entries 7 and 8). Although this multi-borylation 

could be controlled by reducing the stoichiometry of the boron sources that was added, 
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it was not possible to identify conditions for exclusive mono-borylation. 

 

2.3 Borylation of 1,3-difluoroarenes 

 

Table 7 Borylation of 1,3-difluoroarenes. 

 

As discussed in the last section, the considerable amount of 4-borylated product 
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 19F NMR spectroscopy; (c) Overall isolated yields (see experimental section for details).

a                             b                                     c
R R R R

FF

F

1                                        r.t.                14                       86                       1: 2 : 1                   —

71

FF

Me
74

4                                        r.t.                14                       86                      2 : 1 : 0.2                65
5                                        60                  2                       91                      2 : 1 : 0.3                61

FF

OMe
73

2                                        r.t.                16                       74                   1 : 1.2 : 0.2                — 
3                                        60                  4                       87                   1 : 1.1 : 0.2                67

FF

COOMe

6                                        r.t.                19                       92                      3 : 1 : 0.3                75

75

N FF

7                                        r.t.                  3                       89                      4 : 1 : 0.2                77

76
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afforded by 1,2,3-trifluorobenzene 71 indicated a strong activating effect of an ortho-

fluorine substituent. In order to further explore the balance between steric and 

electronic effects afforded by a fluorine atom, a group of 1,3-difluoroarene substrates 

with various 2-substitutents was then examined (Table 7). Borylation of these 1,3-

difluoroarenes and identification of the resulting boronated products were performed in 

a similar fashion to that used for polyfluorinated arenes in Table 6.  

 

Reflecting its unhindered nature, the 1,3-difluoro-2-substituted arene scaffold proved 

to be a viable substrate affording good to excellent conversions for the resulting boronic 

esters at room temperature. Good overall isolated yields were achieved, although it 

should be noted that separation of each isomer remained a challenge. Each reaction in 

Table 7 gave a similar mixture of 4-, 5-, and minor di-borylated products, with 

regioselectivity independent of the reaction temperature (entries 2 and 3, entries 4 and 

5). An overall increasing proportion of 5-borylated isomers was observed that 

correlated with the order of electron-withdrawing ability of the 2-substitutent 

(pyridine>CO2Me>Me>OMe, entries 2 to 7), indicating the presence of an inherent 

electronic effect in the borylation reactions. However, one noticeable exception was 

that 1,2,3-trifluorobenzene 71 (entry 1), which has a relatively electron-withdrawing 2-

substituent, favoured the formation of 4-isomers. This resulted contrasts with the only 

other reported borylation of this substrate (Scheme 30)69 and an explanation for this 

observation is not immediately obvious. Finally, in contrast to the reaction of the parent 

pyridine which exhibits a preference for the 3-borylated product, 76 (entry 7) reacted 
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rapidly with high selectivity for borylation at the 4-position. This unexpected 

observation will be further studied through borylation of a range of fluorinated pyridine 

substrates (Section 2.4).   

 

 

Scheme 30 Borylation of 71 reported by Cui et al.69 

 

To further investigate the ortho-directing effect afforded by fluorine substituents, 

attention was turned to the borylation of 1,3-difluorobenzene 77. With the presence of 

four unhindered positions in this substrate, an initial experiment with 77 was 

undertaken using a low stoichiometry of boron source to reduce the complications of 

polyborylation as previously reported by Smith et al.19 Although Smith’s work was 

carried out with HBpin and THF, in the expectation that this modification should not 

affect the regioselectivity, in this study it was decided to use diboron reagent B2pin2 and 

MTBE (Scheme 31). Charging a Schlenk tube with a combination of [Ir(COD)(OMe)]2 

(0.375 mol%), dtbpy (0.75 mol%), and B2pin2 (0.125 equiv.), followed by flushing the 

mixture with nitrogen and the addition of anhydrous MTBE, gave the black active 

catalyst species. Substrate 77 was then added. The reaction mixture was stirred at room 

temperature for 1 hour before being monitored using 19F NMR spectroscopy.  

F F F F

(SiNSi)CoBr2 59 (4 mol%)
     NaBHEt3 (8 mol%)
    B2pin2 (0.1 equiv.)
cyclohexene (1.0 equiv.)
   THF, 100 ℃, 24 h

Bpin

F F

Bpin

F F F
   70%
(78: 22)
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Scheme 31 Borylation of 77 using HBpin and B2pin2. 

 

Surprisingly, in contrast to the ratio reported in the literature for the reaction using 

HBpin which led to preferential activation of the least hindered 5-position (77a),19 

borylation of 77 carried out with B2pin2 appeared to favour the di-ortho-fluorine 2-

position (77c). This difference was also observed in reactions of 77 in which THF, 

MTBE, 1,4-dioxane, and mesitylene were used as solvents (Table 8, entries 1-9). In 

contrast, reactions performed in hexane gave identical results for both boron sources 

(Table 8, entries 10 and 11). Moreover, there was no difference in the ratios of products 

provided by HBpin and B2pin2 in the reactions with other 1,3-difluoroarene analogues 

(Table 9).     

F F

[Ir(COD)(OMe)]2 (0.375 mol%)
         dtbpy (0.75 mol%)

r.t., 1 h F F F F F F

Bpin

Bpin

Bpin
77                                                                                 77a                           77b                             77c

                                      
Smith’s work19         HBpin (0.25 equiv.)                  THF                         50 : 33 : 17a

This work                 B2pin2 (0.125 equiv.)                MTBE                      29 : 24 : 47b

 Boron source                       Solvent                    Ratio (a : b : c)

(a) calculated by GC-MS, (b) calculated by 19F NMR
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Table 8 Borylation of 77 with HBpin and B2pin2 in different solvents. 

 

 

Table 9 Borylation of 1,3-difluoro-2-substituent arenes using HBpin and B2pin2  

F F

[Ir(COD)(OMe)]2 (0.375 mol%)
         dtbpy (0.75 mol%)

    HBpin (0.25 equiv.) 
or B2pin2 (0.125 equiv.)
          r.t., 1 h

F F F F F F

Bpin

Bpin

Bpin
77                                                                                 77a                           77b                             77c

Entry                    Boron source                  Solvent                  Ratio (a : b : c)a

1 (Ref. 19)              HBpin                       THF                         50 : 33 : 17
2 (Repeat ref. 19)   HBpin                        THF                        46 : 28 : 26
3                             B2pin2                        THF                        32 : 25 : 43
4                             HBpin                        MTBE                     39 : 26 : 35
5                             B2pin2                        MTBE                     29 : 24 : 47
6                             HBpin                        1,4-Dioxane            43 : 30 : 27
7                             B2pin2                        1,4-Dioxane            25 : 21 : 54
8                             HBpin                        Mesitylene              39 : 25 : 36
9                             B2pin2                        Mesitylene              22 : 18 : 60
10                           HBpin                        Hexane                    29 : 23 : 48
11                           B2pin2                        Hexane                    25 : 24 : 51
(a) Ratio was calculated by 19F NMR spectroscopy.

F FX XF F

[Ir(COD)(OMe)]2 (0.375 mol%)
         dtbpy (0.75 mol%)

   HBpin (0.25 equiv.) 
or B2pin2 (0.125 equiv.)
        MTBE, r.t.

Bpin

XF F

Bpin

XF F

BpinBpin

a                             b                                     c

Entry                   X              Boron source      Time/h     Conv. of boron/%a        Rario (a : b : c)b

1                  C-F 71               B2pin2                 1                     76                         29 : 71 : 0
2                  C-F 71               HBpin                 1                     19                         31 : 69 : 0
3                  C-F 71               B2pin2                23                   100                        28 : 68 : 4
4                  C-F 71               HBpin                36                   100                        31 : 66 : 3
5                  C-OMe 73         B2pin2                 1                     48                         40 : 58 : 2
6                  C-OMe 73         HBpin                 1                     20                         40 : 60 : 0
7                  C-Me 74            B2pin2                 1                     26                         63 : 37 : 0
8                  C-Me 74            HBpin                 1                     13                         68 : 32 : 0
7                  C-Me 74            B2pin2                 4                    100                        66 : 34 : 0
8                  C-Me 74            HBpin                51                   100                        70 : 30 : 0
11                C-CO2Me 75     B2pin2                 1                    100                        72 : 27 : 1
12                C-CO2Me 75     HBpin                 1                    100                        77 : 23 : 0
13                N 76                  B2pin2                 1                     88                         79 : 21 : 0
14                N 76                  HBpin                 1                     19                         81 : 19 : 0
(a) Conversion of boron was calculated based on the amounts of products in 19F NMR spectra using 
hexafluorobenzene as an internal standard. (b) Ratio was  determined by 19F NMR spectroscopy.
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The observations discussed above indicated an unusual reactivity of the 2-position in 

77 in the reaction with B2pin2. To confirm this reactivity, a more detailed survey which 

monitored the borylation of 77 over time, was carried out (Table 10). The reaction in 

each entry was performed three times to obtain an average conversion and ratio. For 

each experiment, conversion of boron was determined from the amount of the products 

formed, which was calculated based on 19F NMR spectroscopic analysis using 

hexafluorobenzene as an internal standard.  

 

 

Table 10 Selectivities in the borylation of 77 after 1, 10 and 24 hours.  

 

Ratios provided by HBpin were consistent over time in both THF and MTBE, although 

the lower conversion after 24 hours (e.g. Table 10, entry 6) compared with that after 10 

F F F F

Bpin

F F

Bpin

F F

Bpin

F

Bpin

Bpin

[Ir(COD)(OMe)]2 (0.375 mol%)
         dtbpy (0.75 mol%)

Entry            Solvent          Time/h      Boron source  Conv. of boron/%a    Ratio (a : b : c : d)b

F

77                                                                            77a                       77b                            77c                       77d

    HBpin (0.25 equiv.) 
or B2pin2 (0.125 equiv.)
               r.t.

(a) Conversion of boron was calculated based on the amounts of products in 19F NMR spectra using 
hexafluorobenzene as an internal standard. (b) Ratio was  determined by 19F NMR spectroscopy.

1                 THF                  1                 B2pin2                 58                    35 : 23 : 38 : 4
2                 THF                  1                 HBpin                 24                    49 : 27 : 23 : 1
3                 THF                  10               B2pin2                 82                    40 : 25 : 29 : 6
4                 THF                  10               HBpin                 56                    50 : 27 : 19 : 4
5                 THF                  24               B2pin2                 60                    39 : 25 : 31 : 5
6                 THF                  24               HBpin                 21                    50 : 29 : 19 : 2
7                 MTBE              1                 B2pin2                 69                    31 : 23 : 41 : 5
8                 MTBE              1                 HBpin                 20                    41 : 27 : 31 : 1
9                 MTBE              10               B2pin2                 62                    35 : 25 : 34 : 6
10               MTBE              10               HBpin                 47                    44 : 27 : 26 : 3
11               MTBE              24               B2pin2                 63                    35 : 24 : 36 : 5
12               MTBE              24               HBpin                 42                    46 : 27 : 24 : 3
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hours (e.g. Table 10, entry 4) indicated that the partial decomposition of borylated 

products was occurring. In comparison, ratios given by B2pin2 were variable over time 

in both solvents. However, these ratios do not reflect the exact selectivities afforded by 

B2pin2 because HBpin, the byproduct in the first borylation, would continue to react in 

the second cycle (see mechanism in Scheme 6, page 12). In other words, both B2pin2 

and HBpin reacted with 77 in this system. Reflecting this, it was of interest to sequester 

HBpin in the reaction system. The inhibitory effect of LiOMe on HBpin through the 

formation of a methoxide-borane adduct was suggested by Chirik et al. in the Co-

catalysed C-H borylation of toluene (Scheme 32).75 Based on this report, 0.125 

equivalent of lithium methoxide was added to the standard reaction conditions (Scheme 

33). Disappointingly, this attempt to sequester HBpin was unsuccessful, with no 

significant effect on ratios being observed.  

 

 

Scheme 32 Inhibitive activity of LiOMe in HBpin in borylation reaction.75 

 

Me Me

Bpin

m : p (2 : 1)

Co catalyst  78 (5 mol%)
     B2pin2 (1.0 equiv.)

neat, 80 ℃, 24 h

78: (ArTpy)Co(OAc)2
(ArTpy = 4′-(4-N,N′-dimethylaminophenyl)-2,2′:6′,2′′-terpyridine)

       Additive              Yield/%
         —                          56
HBpin (10 mol%)          29
LiOMe (10 mol%)         80
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Scheme 33 An attempt to sequester HBpin with the presence of LiOMe 

 

Whilst the cause of the difference in the behaviour of HBpin and B2pin2 remains 

uncertain, the different product outcomes suggested a difference in the key 

regioselectivity inducing step. This is in contrast to the generally accepted mechanism 

(Scheme 6, page 12) in which both cycles use a common process for this step. Time 

prevented a more detailed investigation onto this issue, but this remains a significant 

future objective. 

 

2.4 Borylation of fluorinated pyridines 

Having successfully borylated polyfluoroarenes with high conversion, attention was 

turned to fluorinated pyridine substrates. As discussed in the previous section, the 

reaction of 2,6-difluoropyridine 76 favoured the formation of 4-borylated product, 

F F F F

Bpin

F F

Bpin

F F

Bpin

F

Bpin

Bpin

[Ir(COD)(OMe)]2 (0.375 mol%)
         dtbpy (0.75 mol%)

F

77                                                                            77a                       77b                            77c

B2pin2 (0.125 equiv.)
      THF, r.t., 1 h

77d                             77e                                    77f

F

Bpin

F

Bpin

F

Bpin

F

BpinBpin

Entry         Additive                 Temp./℃      Conv. of boron/%a     Rario (a : b : c : d : e : f)b

1    LiOMe (0.125 equiv.)           80                       89                     45 : 33 : 17 : 3 : 1 : 1
2                 —                             80                      100                    41 : 32 : 22 : 4 : 0 : 1
3    LiOMe (0.125 equiv.)           r.t.                       45                     32 : 23 : 42 : 3 : 0 : 0
4                 —                             r.t.                       52                     34 : 23 : 39 : 4 : 0 : 0

(a) Conversion of boron was calculated based on the amounts of products in 19F NMR spectra using
hexafluorobenzene as an internal standard. (b) Ratio was  determined by 19F NMR spectroscopy.
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whereas the unsubstituted pyridine gave a preference for the 3-isomer. Consequently, 

the behaviour of a series of 2-fluoropyridine substrates in Ir-catalysed C-H borylation 

reactions was examined (Table 11).  

 

Table 11 Borylation of fluorinated pyridines.  

N FF

1                                                                                                                                                                A                    89                     77
                                                                                                                                                                                  (4 : 1 : 0.2)

76                             76a                      76b                                 76c

F N

[Ir(COD)(OMe)]2 (1.5 mol%)
         dtbpy (3 mol%)

 B2pin2 (0.5-1.5 equiv.)
           MTBE, r.t.

R

F N

R

Bpin

Entry                   Substrate                                                    Products                                                 Conditions       Conv./%a           Yield/%b

N FF

Bpin

N FF

Bpin

N FF

BpinBpin

NF

F

N

N NH2F

NF

F

NF

F

Bpin

Bpin

80                               80a                     80b                             80c

3                                                                                                                                                                B                    91                     —
                                                                                                                                                                                  (6 : 1 : 0.5)

N N

Bpin

Bpin

F
4                                                                                                                                                                C                    90                     —
                                                                                                                                                                              (1.6 : 1 : 0.1 : 0.1)

N N

Bpin

NH2 NH2F F

5                                                                                                                                                                D                    82                     50
                                                                                                                                                                                      (2 : 1)

81                                         81a                              81b

82                                         82a                              82b

Condition A: B2pin2 (0.6 equiv.), 3 h; Condition B: B2pin2 (0.6 equiv.), 11 h; Condition C: B2pin2 (0.6 equiv.), 17 h; 
Condition D: B2pin2 (1.5 equiv.), 23 h; Condition E: B2pin2 (0.5 equiv.), 24 h; 
(a) Conversion was determined by 19F NMR spectroscopy; (b) Overall isolated yields (see experimental for details); (c) see Ref. 26.

N

F

F N

F

N

F

Bpin

Bpin

F F

2                                                                                                                                                                B                    89                     —
                                                                                                                                                                                      (6 : 1)

79                                         79a                              79b
F F F

N N

Bpin

Bpin

F

Bpin BpinF F
 81c                              81d

NF

F

Bpin

Bpin

F

F

F

F

F

F

Bpin

N N N

Bpin

Bpin

83                               83a                         83b                  83c

N

N

Bpin

BpinF

F

 83d                              83e

F F F

N

Bpin

F

Bpin

6c                                                                                                                                                               E                    89                     —
                                                                                                                                                                            (57 : 17 : 19 : 2 : 5 )

Bpin
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Borylation of 79-82 was run using the previously described method. Upon completion, 

the reaction mixture was either subjected to flash column chromatography to isolate the 

resulting boronic esters (Table 11, entries 1 and 5) or applied into a sequential Suzuki-

Miyaura reaction with 2-iodopyridine to synthesise the corresponding cross-coupled 

arenes (Table 11, entries 2-4). Product identity was based on a combination of 1H NMR, 

GC-MS analysis of the crude reaction mixture and full assignments of the purified 

isolated products. Conversion of each substrate and the ratios of different isomers were 

determined by 1H NMR spectroscopy. Borylation of 2-fluoropyridine 83 has been 

carried out in previous work within the group.26 

 

 

Figure 10 1H NMR spectrum of the crude mixture of borylation of 79.  
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For example, for the borylation of 79, analysis of the crude mixture by GC-MS showed 

two M+ peaks at m/z = 133, demonstrating the formation of two mono-borylated 

isomers. In the aromatic area of 1H NMR spectrum (Figure 10), two signals presenting 

in 7.07 and 8.00 ppm indicated an approximate 6 : 1 ratio of 79a to 79b. Integration of 

the remaining two peaks at 6.81 and 7.68ppm, which could be assigned to the two 

protons of the pyridine ring in the substrate, showed an 89% conversion of 79. The 

higher chemical shift of the pyridyl proton in the product (e.g. 7.07 ppm) compared to 

that in the substrate (e.g. 6.81 ppm) was consistent with the installation of an electron-

withdrawing boronate moiety adjacent to this position. Due to the difficulty in 

separating 79a and 79b, the reaction mixture was then subjected to a sequential Suzuki-

Miyaura cross-coupling reaction. Details for this process will be discussed in Section 

2.5. 

 

Analogous to the previous set borylations of the fluoroarenes (Tables 5, 6, and 7), 

fluorinated pyridine substrates in Table 11 afforded high conversions and moderate to 

good isolated yields at room temperature. For all substrates, reactions occurred 

preferentially at the 4-position as opposed to the 3-position, regardless of which 

position was more sterically accessible. Trace amounts of 2-borylated products could 

be observed in both 1H and 19F NMR spectra of the crude reaction (entries 3, 4, and 6). 

However, as noted in the review, these 𝛼-pyridyl boronic esters are very unstable and 

undergo facile protodeboronation. Subsequently, these products decomposed on the 

acidic silica column or during the Suzuki-Miyaura cross-coupling processes. 
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2.5 Iridium-catalysed C-H borylation/Suzuki-Miyaura cross-coupling strategies 

Throughout this work, separation and isolation of fluorinated boronic esters had proved 

challenging. To aid isomer identification, these mixtures were transformed into biaryl 

molecules through a Suzuki-Miyaura cross-coupling reaction. This transformation is of 

potential interest as these fluorinated boronic esters have been described as difficult 

substrates70 and a general solution would be of use in synthesis.  

 

 

Scheme 34 One-pot C-H borylation/Suzuki-Miyaura cross-coupling sequences. 

 

An initial attempt was to perform a one-pot C-H borylation/Suzuki-Miyaura cross-

coupling sequences on a simple fluoroarene 61 (Scheme 34) using the cross-coupling 

conditions developed in the group by Wright (unpublished work). Borylation of 1-

fluoro-4-methylbenzene 61 as before using [Ir(COD)(OMe)]2 (1.5 mol%), dtbpy (3.0 

[Ir(COD)(OMe)]2 (1.5 mol%)
         dtbpy (3 mol%)

  B2pin2 (0.6 equiv.)
  MTBE, 60 ℃, 1h

Pd(dppf)Cl2.CH2Cl2 (2.5 mol%)
           K3PO4 (2.0 equiv.)

methyl 4-iodobenzoate (1.0 equiv.)
          DMAc, 80 ℃, 18 h

61                                                                               61a                                       61b

F F

F

Bpin

COOMe

Overall 77% NMR yield (61c/61d = 10 : 1)
           37% isolated yield of 61c

F
COOMe

 61c                                                                                 61d

MeOOC

F

BpinBpin
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mol%), and B2pin2 (0.6 equiv.) at 60 ℃ for 1 hour gave a mixture of mono- and bis-

borylated products. After quenching in air, the mixture was cooled and 

Pd(dppf)Cl2∙CH2Cl2 (2.5 mol%), K3PO4, and methyl 4-iodobenzoate in DMAc were 

then added. The reaction was allowed to proceed at 80 ℃ under nitrogen for 18 hours. 

A 77% NMR yield of the cross-coupled products was obtained as a mixture of 61c and 

61d, as indicated by GC-MS analysis of the crude mixture which showed two M+ peaks 

with 244 and 378 m/z. The product identity of 61c and 61d was assigned based on the 

degree of the upfield shift of the fluorine signal (around 15 ppm) of 61a and 61b which 

resulted from replacement of a Bpin group with an aryl group. Following an aqueous 

workup, flash column chromatography afforded a 37% isolated yield of 61c, which was 

characterised by 1H, 13C, and 19F NMR techniques. Full assignments of 1H and 13C 

spectra confirmed the identity of 61c. In its 1H spectrum (Figure 11), the two doublets 

at 8.10 and 7.62 ppm, which had similar integrations and J-couplings were respectively 

assigned to 3-H and 2-H. The broad signal presenting at 7.05 ppm (J = 10.5 Hz) was in 

agreement with the proton ortho to a C-F bond. Correlation in the HMBC spectrum 

between C-1 and the signal at 7.24 ppm confirmed this proton as 6’-H. Therefore, the 

remaining peak in the aromatic area (7.14 ppm), which exhibited a weak 

complementary W-coupling with 6’-H, was assigned to the proton at the 4’ position. 

Additionally, resonances at 3.94 and 2.37 ppm, respectively, indicated the three protons 

of the methoxy and methyl groups.  
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Figure 11 1H NMR spectrum of 61c. 

 

 

Table 12 Suzuki-Miyaura cross-coupling reactions catalysed by Pd(dppf)Cl2∙CH2Cl2. 

N

64b 75% (34%)b

F

F

F

COOMe

71d 20% (15%),a,d

71e 42% (32%)a,d

71f (bis) 21% (19%)a

e

dF

F

F

F

COOMe

69b 47% (36%)a

Br

F
COOMeMeOOC

F F

F

F

F

F

F

F

F

COOMe

CF3

OMe

66b 84% (55%)b 66c 73% (48%)b

66d 69% (62%)b 66e 75% (68%)b

FF

FF F F

F F

FCOOMe COOMe

68c not founda,b 70b not founda,b

62c 10% (7%)a,c

Reported values are NMR yields and values in parentheses are isolated yields.
(a) Synthesized from one-pot borylation/cross-coupling reactions and yields are based on fluoroarenes;
(b) Synthesized from isolated boronic esters and yields are based on fluorinated arylboronic esters;
(c) 70% NMR yield of monocross-coupled product;
(d) Isolated as a mixture of two monocross-coupled products.

F

F

F COOMe

67c not founda,b

R R

Bpin

R

R’
[Ir(COD)(OMe)]2 (1.5 mol%)
         dtbpy (3 mol%)

B2pin2 (0.6-1.2 equiv.)
  MTBE, r.t. or 60 ℃

Pd(dppf)Cl2.CH2Cl2 (2.5 mol%)
     K3PO4 (1.5-2.0 equiv.)

F F F

R’X, DMAc, 80 ℃
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With this efficient procedure established to be viable for fluorinated boronic esters, a 

group of substrates was chosen to demonstrate the versatility of the cross-coupling 

reactions with aryl halides bearing electron-deficient and electron-rich substituents 

(Table 12).  

 

Transformations of simple fluoroarene substrates to fluorinated biaryls using this 

protocol were successfully performed to afford high overall NMR yields and moderate 

to good isolated yields. However, the more highly polyfluorinated substrates tended to 

result in lower NMR yields (e.g. 69b). In particular, reactions of boronate substrates 

67a, 68a, and 70a, which have di-ortho-fluorine positions were not successful, with 

only the protodeborylated arenes being detected. This rapid protodeboronation was 

attributed to the easy generation of an ipso-aryl carbanion facilitated by the o-fluorine 

atoms (Scheme 35).76     

 

 

Scheme 35 Mechanisms for base-catalysed fluorinated aryl boronic acid 

protodeboronation.76 
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Scheme 36 Suzuki-Miyaura cross-coupling reactions catalysed by Pd(dppf)Cl2. 

 

With this in mind alternative procedures for cross-coupling reactions were considered. 

In a first approach adapted from a patent reported by Janssen Pharmaceutica N.V. 

(Scheme 36),77 a mixture of boronic esters 73a, 73b, and 73c was treated with 

Pd(dppf)Cl2 (10 mol%) and tetra-n-butylammonium bromide (TBAB, 10 mol%). After 

being flushed with nitrogen, 2-iodothiophene and dry toluene were added. This mixture 

was then cooled to 0 ℃ and aq. Na2CO3 was added dropwise. Heating the reaction at 

110 ℃ under nitrogen for 23 hours afforded overall 75% NMR yield of cross-coupled 

products. The subsequent aqueous workup and flash column chromatography afforded 

Pd(pddf)Cl2 (10 mol%)
Na2CO3 (2M, 2 equiv.)

R R

Bpin

R

R’
[Ir(COD)(OMe)]2 (1.5 mol%)
         dtbpy (3 mol%)

   B2pin2 (0.6 equiv.)
  MTBE, r.t. or 60 ℃

F F F

   TBAB (10 mol%)
 R’X, toluene, 110 ℃

F F

OMe

S
d

e

73d 11% (11%),a,c

73e 30% (30%)a,c

73f (bis) 34% (22%)a

F F

Me

d

e

74d 16% (11%),a
74e 17% (9%)a

N

F F

COOMe

d

e

75d 28% (25%),a
75e 49% (36%)a

N

NF F
76d 49% (41%)a

N

NF

d

e

80d 17% (12%),b
80e 9% (7%)b

NF

N

e

f

81e 33% (27%),b,c

81f 9% (9%)b,c

NF

FN

c

d

79c, 79d not foundb

NF

FF

Reported values are NMR yields and values in parentheses are isolated yields.
(a)  Synthesized from purified boronic esters and yields are based on fluorinated arylboronic esters;
(b) Synthesized from one-pot borylation/cross-coupling reactions and yields are based on fluoroarenes;
(c) Isolated as a mixture of two monocross-coupled products.
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overall 63% isolated yield of the resulting products (73d, 73e, and 73f), which were 

then characterised by 1H, 13C, and 19F NMR techniques. This method was then extended 

to other borylated arenes. In most cases, the desired fluorinated biaryls could be 

obtained albeit sometimes as an isomer mixture. However, the yields were not great, 

indicating that the reactions of these fluorinated boronic esters remain problematic. In 

particular, the more highly fluorinated pyridylboronic esters resulted in lower NMR 

yields, with 100% protodeboronation observed for the attempted reaction of aryl 

boronic esters 79a and 79b.  

 

 

Scheme 37 An anhydrous protocol for Suzuki-Miyaura cross-coupling reaction. 

 

To circumvent these problems, an anhydrous reaction condition that was developed 

within the group by Hones (unpublished work) was attempted using CsF as a source of 

F- to activate the boronic esters (Scheme 37). Following the transformation of 

pentafluorobenzene 70, to the crude boronate ester, the cross-coupling reaction was 

achieved by the addition of Pd2(dba)3 (5 mol%), CsF (2.0 equiv.), P(tBu)3∙HBF4 (10 

mol%), CuCl, (2.0 equiv.), and iodobenzene in DMF. After heating at 100 ℃ under 

nitrogen for 13 hours, an overall 62% NMR yield of biphenyl 70c could be obtained. 
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Following an aqueous workup, flash column chromatography afforded 37% isolated 

yield of 70c, which was then characterised by 1H, 13C and 19F NMR techniques. This 

attempt proved the effectiveness of this Pd2(dba)3-catalysed system for polyfluorinated 

boronic ester substrates. Regrettably, time prevented a full study of the scope and 

limitation of this system. 
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3.0 Conclusions and future work 

 

Scheme 38 Suzuki-Miyaura cross-coupling conditions used in this work. 

 

In this work, iridium/dtbpy-catalysed C-H borylation has proved to be a practical and 

efficient method for the synthesis of fluorinated aryl and heteroaryl boronic esters. 

Although isolation and separation of the borylated products remained challenging, 

tandem C-H borylation/Suzuki-Miyaura cross-coupling sequences were developed to 

enable the purification of the desired fluorinated biaryls derived from the boronate 

precursors formed in the initial borylation step. The yields of highly fluorinated biaryl 

units using procedures containing the aqueous base (Scheme 38a and 38b) were not 

optimal due to the tendency to protodeboronation in the basic reaction conditions. 

However, this problem could be potentially addressed by an alternative anhydrous 

approach, in which fluoride is used to activate the boronic esters in the transmetalation 

step (Scheme 38c). Exploring the substrate scope of this anhydrous method in 
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fluorinated boronic esters will be an area for the further work. Other cross-coupling 

methods of fluorinated boronic acids under weakly basic conditions, for example the 

use of Pd-based catalyst 84 (Scheme 39)59 may also offer an alternative solution to this 

problem.  

 

 

Scheme 39 A Suzuki-Miyaura cross-coupling condition with no added base. 

 

Through the attempts to explore the regioselectivity and reactivity in the C-H borylation 

of polyfluoroarenes, some valuable conclusions have been made. With their more 

electron-deficient nature, fluoroarenes react faster than the equivalent non-fluorinated 

arenes. For example, whilst the borylation of toluene 9 produced PhMe-Bpin in 30% 

yield after 16 hours, borylation of 1-fluoro-4-methylbenzene 61 produced 88% yield of 

borylated product over the same period. Similarly, highly fluorinated substrates are 

more active than monofluorinated arenes and fluoropyridines are more active than 

fluoroarenes in C-H borylation reactions. C-H borylation ortho to the C-F bonds occurs 

readily, reflecting the increased C-H acidity at these positions and the low steric size of 

the fluorine substituent. 
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With the small steric hindrance of the fluorine atom, site selectivity directed by 

electronic effects can be clearly observed in the borylation of fluoroarenes. For example, 

with the increasing electronic-withdrawing ability of the 2-substituent, reactions of 1,3-

difluoro-2-substituted arene scaffolds provided more 5-isomers (Scheme 40a). This 

observation was then reinforced by the borylation of 2-fluoropyridine substrates, which 

gave a preference for 4-borylated isomers over 3-isomers, even though the 4-position 

was sometimes more sterically hindered (Scheme 40b).  

 

 

Scheme 40 Regioselectivity directed by electronic effects in the borylation of 1,3-

difluoro-2-substituted arenes. 
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Whilst a correlation between the electron-withdrawing ability of the 2-substituent and 

the borylation outcome was established among 1,3-fluoroarene substrates, an exception 

was found in the reaction of 1,2,3-trifluorobenzene 71, which exhibited high selectivity 

for the 4-position (Scheme 40c). This unexpected result was also in contrast to the 

selectivity reported in literature, in which the 5-position was preferentially activated.69 

The origin of this electronic selectivity has not been well understood, but interpretation 

of the impact of the fluorine substituent on the regioselectivity for this substrate may 

be achieved by determination of the carbon-iridium bond energy in the oxidative 

addition transition state of each borylated isomer using the computational method 

described by Eisenstein and Perutz.78  

 

 

Figure 12 Different selectivity afforded by B2pin2 and HBpin in the borylation of 77. 

 

Time prevented the full study of the regioselectivity of the borylation of 1,3-

difluorobenzene 77. However, the preliminary work in this project showed that in the 

reaction of 77 with HBpin, the formation of 5-borylated product was favoured, whereas 

in the reaction with B2pin2 the selectivity was variable such that in some cases 2-

borylated product was favoured (Figure 12). This latter experiment was challenged by 

F F

more active in the reaction with HBpin

more active in the reaction with B2pin2

77
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the fact that the borylation with B2pin2 leads to the introduction of HBpin into the 

reaction mixture. Attempts to sequester HBpin using LiOMe in this reaction were not 

successful and identifying an alternative method to capture HBpin effectively in the 

reaction to conform this contrast will be required in the future work. Although 

preliminary, these results potentially challenged the accepted understanding of the 

borylation mechanism in which the C-H activation step for both boron reagents 

proceeds via a common catalytically active species. In future investigation, it could be 

helpful to consider a radical-like intermediate in the reaction with HBpin. This builds 

on observations suggested by Eisenstein and Perutz78 that radical formation could result 

in a regioselectivity that prefers the activation of the weakest C-H bond for which the 

radical centre is meta to a fluorine atom.  
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4.0 Experimental detail 

4.1 General experimental considerations 

Handing techniques: Unless otherwise stated, all reactions were carried out under an 

atmosphere of nitrogen using standard Schlenk techniques. Glassware was dried in an 

oven before use.  

 

Solvents: MTBE was purchased from Fisher Scientific as anhydrous 99% and was 

degassed before use. All other solvents were dried using Innovative Technology Solvent 

Purification System (SPS) and stored under nitrogen before use.  

 

Reagents: All reagents were purchased from Sigma Aldrich, Fluorochem, Fisher 

Scientific, Alfa-Aesar or Apollo Scientific and were used without further purification 

unless stated.  

 

Chromatography: Thin-layer chromatography (TLC) was carried out on ‘Polygram 

Sil G/UV254’ plastic-backed silica plates which were purchased from VWR 

International. Flash column chromatography was performed using automated system 

operations by Teledyne Isco CombiFlash on prepacked silica RediSep Rf cartridges. 

 

NMR Spectroscopy: 1H NMR spectra were recorded on a Varian VNMRS-600 at 600 

MHz or on a Varian VNMRS-700 at 700 MHz. 13C NMR spectra (proton decoupled) 

were recorded on a Varian VNMRS-600 at 151 MHz or on a Varian VNMRS-700 at 
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176 MHz. 19F NMR spectra (proton decoupled) were recorded on a Bruker Avance-400 

at 376 MHz. 11B NMR spectra (proton decoupled) were recorded on a Bruker Avance-

400 at 128 MHz. All reported 1H and 13C chemical shifts are referenced to the residual 

signal of deuterated solvents (CDCl3: δH = 7.26 ppm, δc = 77.16 ppm; DMSO-d6: δH = 

2.50 ppm, δc = 39.52 ppm). 11B chemical shifts are referenced externally to BF3∙Et2O 

(δB = 0.0 ppm). 19F chemical shifts are referenced externally to CFCl3 (δF = 0.0 ppm). 

Chemical shifts are reported in parts per million (ppm) and coupling constants are 

reported in Hertz (Hz). Multiplicities are reported as follows: s (singlet), d (doublet), t 

(triplet), q (quartet), m (multiplet), br (broad signal).  

 

IR Spectroscopy: Infrared spectra were reported on a Perkin-Elmer Paragon 1000 FT-

IR Spectrometer with ATR (attenuated total reflection) attachment. Peaks are reported 

in wavenumber (cm-1).  

 

Melting point: Melting points were recorded using an Electrothermal IA9100 capillary 

melting point apparatus.    

 

Mass Spectroscopy: Gas chromatography-mass spectrometry (GC-MS) was carried 

out using a Shimadzu QP2010-Ultra GC-MS spectrometer equipped with a Rxi-5Sil 

MS column in EI mode. Liquid chromatography-mass spectrometry (LC-MS) was 

carried out using a TQD mass spectrometer equipped with an Acquity UPLC system. 

High-resolution mass spectra were obtained on a Q-ToF Premier Mass Spectrometer 
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with electrospray ionisation (ESI) or atmospheric pressure solids analysis probe (ASAP) 

on an Acquity LCT premier XE by Durham University Mass Spectrometry Service.  

 

4.2 General procedures 

General procedure A (C-H borylation of fluoroarenes) 

An oven-dried Biotage microwave vial was sealed and subjected to three N2 

evacuation/refill cycles, followed by the addition of the corresponding fluoroarene 

(1.00 mmol, 1.0 equiv.). In a separate oven-dried Schlenk tube was charged with 

[Ir(COD)(OMe)]2 (9.9 mg, 1.5 mol%), dtbpy (8.1 mg, 3.0 mol%), and 

bis(pinacolato)diboron (B2pin2) (0.6 equiv. to 1.5 equiv.). The vessel was sealed and 

subjected to three N2 evacuation/refill cycles before anhydrous MTBE (1.0 mL) was 

added. Once the solids were completely dissolved, this black active catalyst solution 

was transferred into the microwave vial using a syringe. The reaction was stirred at 

room temperature/60 ℃  before being monitored by 19F NMR or GC-MS. Upon 

completion, the volatiles were then removed in vacuo and the desired borylated product 

was isolated following purification by flash column chromatography with the 

appropriate solvent system. 

 

General procedure B (Suzuki-Miyaura cross-coupling reactions of fluorinated 

boronic esters) 

General procedure B1 

To a microwave vial which contained the substrate boronic ester (1.0 equiv.) was added 
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Pd(dppf)Cl2∙CH2Cl2 (2.5 mol%), K3PO4 (1.5-2.0 equiv.), and methyl 4-iodobenzoate 

(1.0 equiv.) in DMAc (1 mL). The reaction mixture was degassed using a nitrogen filled 

balloon and stirred at room temperature/80 ℃. Once judged complete by 19F NMR, the 

reaction was diluted with EtOAc (20 mL) and washed with water (2×10 mL) and brine 

(10 mL). The organic phase was dried over anhydrous MgSO4, filtered and 

concentrated in vacuo. The cross-coupled arene was then purified by flash column 

chromatography with the appropriate solvent system. 

 

General procedure B2 

To a microwave vial which contained the substrate boronic ester (1.0 equiv.) was added 

Pd(dppf)Cl2∙CH2Cl2 (2.5 mol%) and K3PO4 (1.5 equiv.). The vial was sealed and 

subjected to three N2 evacuation/refill cycles before the aryl halide (1.0 equiv.) and pre-

degassed solvent DMAc (1 mL) were added. The reaction mixture was stirred at room 

temperature. Once judged complete by 19F NMR, the reaction was diluted with EtOAc 

(20 mL) and washed with water (2×10 mL) and brine (10 mL). The organic phase was 

dried over anhydrous MgSO4, filtered and concentrated in vacuo. The cross-coupled 

arene was then purified by flash column chromatography with the appropriate solvent 

system. 

 

General procedure B3 

To a microwave vial which contained the substrate boronic ester (1.0 equiv.) was added 

Pd2(dba)3 (5 mol%), CsF (2.0 equiv.), P(t-Bu)3∙HBF4 (10 mol%), and CuCl (2.0 equiv.). 
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The vial was sealed and subjected to three N2 evacuation/refill cycles before the aryl 

halide (1.0 equiv.) and dry solvent DMF (1 mL) were added. The reaction mixture was 

stirred at 100 ℃. Once judged complete by 19F NMR, the reaction was diluted with 

EtOAc (20 mL) and washed with water (2×10 mL) and brine (10 mL). The organic 

phase was dried over anhydrous MgSO4, filtered and concentrated in vacuo. The cross-

coupled arene was then purified by flash column chromatography with the appropriate 

solvent system. 

 

General procedure B4 

To a microwave vial which contained the substrate boronic ester (1.0 equiv.) was added 

Pd(dppf)Cl2 (10 mol%) and tetra-n-butylammonium bromide (TBAB, 10 mol%). The 

vial was sealed and subjected to three N2 evacuation/refill cycles before the aryl halide 

(1.5 equiv.) and pre-degassed dry toluene were added. The mixture was then cooled to 

0 ℃ and 2M aq. Na2CO3 (2 equiv.) was added dropwise. The reaction mixture was 

stirred at 110 ℃. Once judged complete by 19F NMR, the resulting solution was filtered 

through celite, washed with DCM, and concentrated in vacuo. The cross-coupled arene 

was then purified by flash column chromatography with the appropriate solvent system. 

 

 

 

 

 



 77 

4.3 Experimental details  

61a: 2-(2-fluoro-5-methylphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 

  

General procedure A was applied to 1-fluoro-4-methylbenzene (0.11 mL, 1.00 mmol, 

1.0 equiv.) and B2pin2 (253.9 mg, 1.00 mmol, 1.0 equiv.) at room temperature with a 

reaction time of 24 h. Flash column chromatography (0-100% EtOAc in hexane) 

afforded the desired borylated product 61a as a colourless oil (43.0 mg, 0.18 mmol, 

18%). vmax (ATR) 2934, 1618, 1496, 1410, 1349, 1219, 1146, 1072, 967, 854, 824, 737, 

707, 661, 528 cm -1; δH (700 MHz, CDCl3) 7.53 (1H, dd, J = 5.8, 2.5 Hz, 6’-H), 7.23 ~ 

7.19 (1H, m, 4’-H), 6.91 (1H, t, J = 8.8 Hz, 3’-H), 2.31 (3H, s, 5’-CH3), 1.36 (12H, s, 

4-CH3); δC (176 MHz, CDCl3) 165.6 (d, J = 250 Hz, C-2’), 137.0 (d, J = 8 Hz, C-6’), 

133.9 (d, J = 9 Hz, C-4’), 132.9 (d, J = 3 Hz, C-5’), 115.1 (d, J = 25 Hz, C-3’), 84.0 (s, 

C-4), 24.9 (s, OCCH3), 20.5 (s, 5’-CH3); δF (376 MHz, CDCl3) -108.3 (1F, s); δB (128 

MHz, CDCl3) 30.2; HRMS (ASAP) m/z found [M+H]+ 236.1485, C13H1910BFO2 

requires M, 236.1498. Data for this compound were consistent with previous reports.79  
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61c: methyl 2'-fluoro-5'-methyl-[1,1'-biphenyl]-4-carboxylate 

 

General procedure A [1-fluoro-4-methylbenzene (0.11 mL, 1.00 mmol, 1.0 equiv.), 

B2pin2 (152.4 mg, 0.60 mmol, 0.6 equiv.), 81% conversion (61a : 61b = 4 : 1) at 60 ℃ 

after 1 h] and B1 [Pd(dppf)Cl2∙CH2Cl2 (20.4 mg, 2.5 mol%), K3PO4 (424.5 mg, 2.00 

mmol, 2.0 equiv.) and methyl 4-iodobenzoate (262.0 mg, 1.00 mmol, 1.0 equiv.) at 80 

℃ for 18 h] were applied in a one-pot protocol. Flash column chromatography (20-30% 

Et2O in hexane) afforded the desired cross-coupled arene 61c as a white solid (90.1 mg, 

0.37 mmol, 37%). M.p. 54.8-55.7 ℃; vmax (ATR) 2993, 2960, 1723, 1615,1497,1441, 

1116, 896, 736, 706 cm -1; δH (599 MHz, CDCl3) 8.10 (2H, d, J = 8.4 Hz, 3-H), 7.61 

(2H, dd, J = 8.4, 1.7 Hz, 2-H), 7.24 (1H, dd, J = 7.6, 2.3 Hz, 6’-H), 7.14 (1H, ddd, J = 

7.6, 4.8, 2.3 Hz, 4’-H), 7.05 (1H, dd, J = 10.5, 8.3 Hz, 3’-H), 3.94 (3H, s, OCH3), 2.37 

(3H, s, 5’-CH3); δC (151 MHz, CDCl3) 167.0 (s, C=O), 158.1 (d, J = 246 Hz, C-2’), 

140.7 (d, J = 1 Hz, C-1), 134.0 (d, J = 4 Hz, C-5’), 131.1 (d, J = 3 Hz, C-6’), 130.3 (d, 

J = 8 Hz, C-4’), 129.8 (s, C-3), 129.2 (s, C-4), 129.1 (d, J = 3 Hz, C-2), 127.6 (d, J = 

13 Hz, C-1’), 116.0 (d, J = 23 Hz, C-3’), 52.2 (s, OCH3), 20.8 (s, 5’-CH3); δF (376 MHz, 

CDCl3) -122.9 (1F, s); HRMS (ASAP) m/z found [M+H]+ 245.0988, C15H14FO2 

requires M, 245.0978. Data for this compound were consistent with previous reports.80 
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62a: 2-(5-bromo-2-fluorophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 

 

General procedure A was applied to 1-bromo-4-fluorobenzene (0.11 mL, 1.00 mmol, 

1.0 equiv.) and B2pin2 (152.4 mg, 0.60 mmol, 0.6 equiv.) at room temperature with a 

reaction time of 4 h. Flash column chromatography (0-100% EtOAc in toluene) 

afforded the desired borylated product 62a as a colourless oil (41.8 mg, 0.14 mmol, 

14%). vmax (ATR) 2944, 1611, 1483, 1405, 1336, 1221, 1144, 1083, 963, 868, 851, 823, 

735, 706, 678, 621 cm -1; δH (700 MHz, CDCl3) 7.83 (1H, dd, J = 5.1, 2.7 Hz, 6’-H), 

7.51 (1H, ddd, J = 8.8, 4.8, 2.7 Hz, 4’-H), 6.92 (1H, t, J = 8.8 Hz, 3’-H), 1.36 (12H, s, 

4-CH3); δC (176 MHz, CDCl3) 166.2 (d, J = 252 Hz, C-2’), 139.4 (d, J = 8 Hz, C-6’), 

136.1 (d, J = 9 Hz, C-4’), 117.5 (d, J = 26 Hz, C-3’), 116.6 (d, J = 3 Hz, C-5’), 84.4 (s, 

C-4), 25.0 (s, CH3); δF (376 MHz, CDCl3) -105.3 (1F, s); δB (128 MHz, CDCl3) 29.7; 

HRMS (ASAP) m/z found [M]+ 299.0369, C12H1510B79BrFO2 requires M, 299.0369. 

 

62b: 2,2'-(5-bromo-2-fluoro-1,3-phenylene)bis(4,4,5,5-tetramethyl-1,3,2-

dioxaborolane) 
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General procedure A was applied to 1-bromo-4-fluorobenzene (0.11 mL, 1.00 mmol, 

1.0 equiv.) and B2pin2 (304.7 mg, 1.20 mmol, 1.2 equiv.) at 60 ℃ with a reaction time 

of 17 h. Flash column chromatography (0-20% MeOH in DCM) afforded the desired 

borylated product 62b as a light-yellow oil (260.4 mg, 0.61 mmol, 61%). vmax (ATR) 

2944, 1608, 1425, 1380, 1318, 1216, 1140, 969, 898, 850, 735, 705 cm -1; δH (700 MHz, 

CDCl3) 7.89 (2H, d, J = 4.9 Hz, 4’-H), 1.32 (24H, s, 4-CH3); δC (176 MHz, CDCl3) 

170.4 (d, J = 256 Hz, C-2’), 142.4 (d, J = 9 Hz, C-4’), 117.4 (d, J = 26 Hz, C-1’), 116.6 

(d, J = 3 Hz, C-5’), 84.3 (s, C-4), 24.9 (s, CH3); δF (376 MHz, CDCl3) -94.8 (1F, s); δB 

(128 MHz, CDCl3) 29.6; HRMS (ASAP) m/z found [M]+ 424.1271, C18H2610B279BrFO4 

requires M, 424.1257. 

 

62c: dimethyl 5'-bromo-2'-fluoro-[1,1':3',1''-terphenyl]-4,4''-dicarboxylate 

 

General procedure A [1-bromo-4-fluorobenzene (0.11 mL, 1.00 mmol, 1.0 equiv.), 

B2pin2 (152.4 mg, 0.60 mmol, 0.6 equiv.), 84% conversion (62a : 62b = 4.5 : 1) at room 

temperature after 3 h] and B1 [Pd(dppf)Cl2∙CH2Cl2 (20.4 mg, 2.5 mol%), K3PO4 (424.5 

mg, 2.00 mmol, 2.0 equiv.) and methyl 4-iodobenzoate (262.0 mg, 1.00 mmol, 1.0 

equiv.) at 80 ℃  for 1h] were applied in a one-pot protocol. Flash column 

chromatography (0-20% Et2O in toluene) afforded the desired cross-coupled arene 62c 
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as a white solid (29.3 mg, 0.07 mmol, 7%). vmax (ATR) 2992, 2963, 1729, 1614, 1443, 

1114, 1017, 899, 855, 803, 733, 704 cm -1; δH (700 MHz, CDCl3) 8.13 (4H, d, J = 8.5 

Hz, 3-H), 7.62 (4H, d, J = 8.5 Hz, 2-H), 7.59 (2H, d, J = 6.2 Hz, 4’-H), 3.95 (6H, s, 

OCH3); δC (176 MHz, CDCl3) 166.8 (s, C=O), 155.7 (d, J = 252 Hz, C-2’), 139.0 (s, C-

1), 133.1 (d, J = 3 Hz, C-4’), 131.0 (d, J = 16 Hz, C-3’), 130.1 (s, C-4), 130.0 (s, C-3), 

129.3 (d, J = 3 Hz, C-2), 117.3 (d, J = 4 Hz, C-5’), 52.4 (s, OCH3); δF (376 MHz, CDCl3) 

-124.1 (1F, s); HRMS (ASAP) m/z found [M]+ 442.0237, C22H1679BrFO4 requires M, 

442.0216. 

 

64a: 2-(2-fluoro-4,5-dimethylphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 

 

General procedure A was applied to 4-fluoro-1,2-dimethylbenzene (0.12 mL, 1.00 

mmol, 1.0 equiv.) and B2pin2 (304.7 mg, 1.20 mmol, 1.2 equiv.) at 60 ℃	with a 

reaction time of 1 h. Flash column chromatography (0-20% EtOAc in toluene) afforded 

the desired borylated product 64a as a colourless oil (162.7 mg, 0.65 mmol, 65%). vmax 

(ATR) 2923, 1632, 1406, 1377, 1346, 1140, 1033, 899, 861, 735, 706 cm -1; δH (700 

MHz, CDCl3) 7.47 (1H, d, J = 6.2 Hz, 6’-H), 6.82 (1H, d, J = 10.0 Hz, 3’-H), 2.25 (3H, 

s, 4’-CH3), 2.21 (3H, s, 5’-CH3), 1.36 (12H, s, 4-CH3); δC (176 MHz, CDCl3) 165.8 (d, 

J = 249 Hz, C-2’), 142.7 (d, J = 9 Hz, C-4’), 137.4 (d, J = 8 Hz, C-6’), 131.7 (d, J = 3 
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Hz, C-5’), 116.3 (d, J = 24 Hz, C-3’), 112.6 (br s, C-1’), 83.7 (s, C-4), 24.9 (s, OCCH3), 

20.2 (d, J = 2 Hz, 4’-CH3), 18.7 (s, 5’-CH3); δF (376 MHz, CDCl3) -108.2 (1F, s); δB 

(128 MHz, CDCl3) 30.2; HRMS (ASAP) m/z found [M+H]+ 250.1647, C14H2110BFO2 

requires M, 250.1655. 

 

64b: 2-(2-fluoro-4,5-dimethylphenyl)pyridine 

 

General procedure B1 was applied to 64a (131.2 mg, 0.53 mmol, 1.00 equiv.), 

Pd(dppf)Cl2∙CH2Cl2 (10.7 mg, 2.5 mol%), K3PO4 (222.9 mg, 1.05 mmol, 2.0 equiv.) 

and 2-bromopyridine (0.05 mL, 0.53 mmol, 1.00 equiv.) at 80 ℃	with a reaction time 

of 19 h. Flash column chromatography (20-30% Et2O in hexane) afforded the desired 

cross-coupled arene 64b as an oily light yellow solid (35.7 mg, 0.18 mmol, 34%). vmax 

(ATR) 2929, 2864, 1631, 1594, 1509, 1468, 1185, 1133, 1018, 901, 857, 782, 733, 703 

cm -1; δH (599 MHz, DMSO) 8.72 (1H, ddd, J = 4.8, 1.8, 0.9 Hz, 6-H), 7.96 (1H, td, J 

= 7.8, 1.8 Hz, 4-H), 7.82 ~ 7.78 (1H, m, 3-H), 7.71 (1H, d, J = 8.2 Hz, 6’-H), 7.44 (1H, 

ddd, J = 7.8, 4.8, 1.1 Hz, 5-H), 7.14 (1H, d, J = 12.2 Hz, 3’-H), 2.28 (3H, s, 4’-CH3), 

2.26 (3H, s, 5’-CH3); δC (151 MHz, DMSO) 157.9 (d, J = 245.9 Hz, C-2’), 151.9 (d, J 

= 2.2 Hz, C-1’), 148.8 (s, C-6), 140.1 (d, J = 8.4 Hz, C-4’), 137.9 (s, C-4), 132.6 (d, J 

= 3.2 Hz, C-5’), 131.1 (d, J = 3.1 Hz, C-6’), 124.3 (d, J = 8.6 Hz, C-3), 122.9 (s, C-5), 
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122.8 (s, C-2), 116.9 (d, J = 22.4 Hz, C-3’), 19.2 (d, J = 1.2 Hz, 4’-CH3), 18.5 (s, 5’-

CH3); δF (376 MHz, DMSO) -122.3 (1F, s); HRMS (ESI) m/z found [M+H]+ 202.1021, 

C13H13FN requires M, 202.1032. 

 

66a: 2-(2,6-difluoro-4-methylphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 

 

General procedure A was applied to 1, 3-difluoro-5-methylbenzene (0.11 mL, 1.00 

mmol, 1.0 equiv.) and B2pin2 (304.7 mg, 1.20 mmol, 1.2 equiv.) at 60 ℃	with a 

reaction time of 1.5 h. Flash column chromatography (0-15% Et2O in hexane) afforded 

the desired borylated product 66a as a white solid (181.3 mg, 0.71 mmol, 71%). M.p. 

56.1-57.5 ℃; vmax (ATR) 2991, 1637, 1426, 1350, 1139, 1075, 899, 733, 706 cm-1; δH 

(700 MHz, CDCl3) 6.64 (2H, d, J = 8.1 Hz, 3’-H), 2.31 (3H, s, 4’-CH3), 1.36 (12H, s, 

4-CH3); δC (176 MHz, CDCl3) 166.8 (dd, J = 250, 14 Hz, C-2’), 144.8 (t, J = 11 Hz, C-

4’), 111.8 (dd, J = 23, 4 Hz, C-3’), 84.1 (s, C-4), 24.8 (s, OCCH3), 21.6 (s, 4’-CH3); δF 

(376 MHz, CDCl3) -101.7 (2F, s); δB (128 MHz, CDCl3) 29.7; HRMS (ASAP) m/z 

found [M+H]+ 254.1419, C13H1810BF2O2 requires M, 254.1404. Data for this compound 

were consistent with previous reports.81 
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66b: methyl 2',6'-difluoro-4'-methyl-[1,1'-biphenyl]-4-carboxylate 

 

General procedure B1 was applied to 66a (127.0 mg, 0.50 mmol, 1.00 equiv.), 

Pd(dppf)Cl2∙CH2Cl2 (10.2 mg, 2.5 mol%), K3PO4 (159.2 mg, 0.75 mmol, 1.5 equiv.) 

and methyl 4-iodobenzoate (131.0 mg, 0.50 mmol, 1.00 equiv.) at room temperature 

with a reaction time of 4 h. Flash column chromatography (25-30% chloroform in 

hexane) afforded the desired cross-coupled arene 66b as a white solid (143.7 mg, 0.27 

mmol, 55%). M.p. 98.7-99.3 ℃; vmax (ATR) 2994, 1726, 1644, 1439, 1424, 1115, 1040, 

894, 733, 705 cm-1; δH (700 MHz, CDCl3) 8.11 (2H, d, J = 8.6 Hz, 3-H), 7.53 (2H, d, J 

= 8.6 Hz, 2-H), 6.81 (2H, d, J = 8.3 Hz, 3’-H), 3.94 (3H, s, OCH3), 2.38 (3H, s, 4’-

CH3); δC (176 MHz, CDCl3) 166.9 (s, C=O), 159.8 (dd, J = 249, 8 Hz, C-2’), 141.0 (t, 

J = 10 Hz, C-4’), 134.4 (s, C-1), 130.5 (t, J = 2 Hz, C-2), 129.7 (s, C-4), 129.5 (s, C-3), 

114.6 (t, J = 19 Hz, C-1’), 112.5 (dd, J = 22, 4 Hz, C-3’), 52.3 (s, OCH3), 21.4 (s, 4’-

CH3); δF (376 MHz, CDCl3) -115.5 (2F, s); HRMS (ESI) m/z found [M+H]+ 263.0883, 

C15H13F2O2 requires M, 263.0884. 

 

66c: 2,6-difluoro-4'-methoxy-4-methyl-1,1'-biphenyl 
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General procedure B1 was applied to 66a (127.0 mg, 0.50 mmol, 1.00 equiv.), 

Pd(dppf)Cl2∙CH2Cl2 (10.2 mg, 2.5 mol%), K3PO4 (159.2 mg, 0.75 mmol, 1.5 equiv.) 

and 1-iodo-4-methoxybenzene (117.0 mg, 0.50 mmol, 1.00 equiv.) at room temperature 

with a reaction time of 4 h. Flash column chromatography (15-20% chloroform in 

hexane) afforded the desired cross-coupled arene 66c as a white solid (55.7 mg, 0.24 

mmol, 48%). M.p. 68.7-69.2 ℃; vmax (ATR) 2993, 2689, 2308, 1424, 1323, 1206, 1185, 

1040, 898, 732, 706 cm-1; δH (599 MHz, CDCl3) 7.40 (2H, d, J = 8.8 Hz, 2’-H), 6.99 

(2H, d, J = 8.8 Hz, 3’-H), 6.79 (2H, d, J = 8.2 Hz, 3-H), 3.85 (3H, s, OCH3), 2.37 (3H, 

s, 4-CH3); δC (151 MHz, CDCl3) 160.0 (dd, J = 246, 8 Hz, C-2), 159.4 (s, C-4’), 139.5 

(t, J = 10 Hz, C-4), 131.6 (s, C-2’), 121.7 (s, C-1’), 115.2 (t, J = 19 Hz, C-1), 113.9 (s, 

C-3’), 112.3 (dd, J = 21, 5 Hz, C-3), 55.4 (s, OCH3), 21.4 (s, 4-CH3); δF (376 MHz, 

CDCl3) -116.0 (2F, s); HRMS (ASAP) m/z found [M]+ 234.0860, C14H12F2O requires 

M, 234.0856. 

 

66d: 2,6-difluoro-4-methyl-4'-(trifluoromethyl)-1,1'-biphenyl 

 

General procedure B2 was applied to 66a (127.0 mg, 0.50 mmol, 1.00 equiv.), 

Pd(dppf)Cl2∙CH2Cl2 (10.2 mg, 2.5 mol%), K3PO4 (159.2 mg, 0.75 mmol, 1.5 equiv.) 

and 1-iodo-4-(trifluoromethyl)benzene (0.07 mL, 0.50 mmol, 1.00 equiv.) at room 
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temperature with a reaction time of 4 h. Flash column chromatography (0-5% 

chloroform in hexane) afforded the desired cross-coupled arene 66d as a white solid 

(84.0 mg, 0.31 mmol, 62%). M.p. 68.5-69.2 ℃; vmax (ATR) 2993, 2312, 1643, 1426, 

1327, 1204, 1173, 1073, 894, 846, 733, 706 cm-1; δH (599 MHz, CDCl3) 7.70 (2H, d, J 

= 8.2 Hz, 3’-H), 7.58 (2H, d, J = 8.0 Hz, 2’-H), 6.84 (2H, d, J = 8.4 Hz, 3-H), 2.40 (3H, 

s, 4-CH3); δC (151 MHz, CDCl3) 159.8 (dd, J = 249, 8 Hz, C-2), 141.2 (t, J = 10 Hz, C-

4), 133.4 (s, C-1’), 130.9 (t, J = 2 Hz, C-2’), 130.2 (q, J = 33 Hz, C-4’), 125.3 (q, J = 4 

Hz, C-3’), 124.3 (br q, J = 272 Hz, CF3), 114.2 (t, J = 19 Hz, C-1), 112.5 (dd, J = 21, 5 

Hz, C-3), 21.5 (s, CH3); δF (376 MHz, CDCl3) -62.7 (3F, s, CF3), -115.84 (2F, s, F-2); 

HRMS (ASAP) m/z found [M]+ 272.0626, C14H9F5 requires M, 272.0624. 

 

66e: 2,6-difluoro-4-methyl-1,1'-biphenyl 

 

General procedure B2 was applied to 66a (127.0 mg, 0.50 mmol, 1.00 equiv.), 

Pd(dppf)Cl2∙CH2Cl2 (10.2 mg, 2.5 mol%), K3PO4 (159.2 mg, 0.75 mmol, 1.5 equiv.) 

and iodobenzene (0.06 mL, 0.50 mmol, 1.00 equiv.) at room temperature with a 

reaction time of 4 h. Flash column chromatography (0-5% chloroform in hexane) 

afforded the desired cross-coupled arene 66e as a white solid (68.9 mg, 0.34 mmol, 

68%). M.p. 79.6-80.0 ℃; vmax (ATR) 2994, 2685, 2313, 1645, 1425, 1321, 1203, 1040, 

897, 732, 706 cm-1; δH (599 MHz, CDCl3) 7.50 ~ 7.37 (5H, m, 2’, 3’, 4’-H), 6.82 (2H, 
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d, J = 8.2 Hz, 3-H), 2.39 (3H, s, CH3); δC (151 MHz, CDCl3) 160.0 (dd, J = 248, 8 Hz, 

C-2), 140.0 (t, J = 10 Hz, C-4), 130.5 (t, J = 2 Hz, C-2’), 129.6 (s, C-1’), 128.3 (s, C-

4’), 128.1 (s, C-3’), 115.6 (t, J = 19 Hz, C-1), 112.3 (dd, J = 21, 5 Hz, C-3), 21.4 (s, 

CH3); δF (376 MHz, CDCl3) -115.8 (2F, s); HRMS (ASAP) m/z found [M]+ 204.0751, 

C13H10F2 requires M, 204.0751. 

 

67a: 4,4,5,5-tetramethyl-2-(2,4,6-trifluorophenyl)-1,3,2-dioxaborolane 

67b: 2,2'-(2,4,6-trifluoro-1,3-phenylene)bis(4,4,5,5-tetramethyl-1,3,2-

dioxaborolane) 

 

General procedure A was applied to 1, 3, 5-trifluorobenzene (0.10 mL, 1.00 mmol, 1.0 

equiv.) and B2pin2 (152.4 mg, 0.60 mmol, 0.6 equiv.) at room temperature	with a 

reaction time of 2 h. Flash column chromatography (0-20% MeOH in DCM) afforded 

a mixture of two borylated products (67a and 67b) as a colourless oil (128.8 mg, 0.50 

mmol, 50%, ratio by 19F NMR was 98 : 2). 67a: δH (599 MHz, CDCl3) 6.63 ~ 6.58 (2H, 

m, 3’-H), 1.37 (12H, s, 4-CH3); δC (151 MHz, CDCl3) 167.5 (dt, J = 252, 16 Hz, C-2’), 

165.3 (dt, J = 252, 16 Hz, C-4’), 100.5 ~ 100.0 (m, C-3’), 84.4 (s, C-4), 24.9 (s, CH3); 

δF (376 MHz, CDCl3) -97.2 (2F, dd, J = 9, 3 Hz), -103.9 (1F, t, J = 9 Hz); δB (128 MHz, 

CDCl3) 29.4; HRMS (ASAP) m/z found [M+H]+ 258.1144, C12H1510BF3O2 requires M, 
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258.1154. Data for this compound were consistent with previous reports.82 67b: δH (599 

MHz, CDCl3) 6.63 ~ 6.58 (1H, m, 5’-H), 1.35 (24H, s, 4-CH3); δC (151 MHz, CDCl3) 

100.5 ~ 100.0 (m, C-5’), 84.3 (s, C-4), 24.7 (s, CH3); δF (376 MHz, CDCl3) -86.4 (1F, 

t, J =7 Hz), -93.8 (2F, dd, J =7, 2 Hz); δB (128 MHz, CDCl3) 29.4; HRMS (ASAP) m/z 

found [M+H]+ 383.2067, C18H2610B2F3O4 requires M, 383.2042. 

 

68b: 2,2'-(perfluoro-1,4-phenylene)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) 

 

General procedure A was applied to 1, 2, 4, 5-tetrafluorobenzene (0.10 mL, 1.00 mmol, 

1.0 equiv.) and B2pin2 (304.7 mg, 1.20 mmol, 1.2 equiv.) at 60 ℃	with a reaction time 

of 3 h. Flash column chromatography (0-20% EtOAc in toluene) afforded the desired 

borylated product 68b as a white solid (335.0 mg, 0.83 mmol, 83%). M.p. 185.1-186.0 

℃; vmax (ATR) 2939, 1457, 1347, 1208, 1139, 963, 873, 845, 736, 720, 705 cm-1; δH 

(700 MHz, CDCl3) 1.37 (24H, s, 4-CH3); δC (176 MHz, CDCl3) 148.6 (dm, J = 254 Hz, 

C-2’), 111.0 (br s, C-1’), 85.0 (s, C-4), 24.8 (s, OCCH3); δF (376 MHz, CDCl3) -131.4 

(4F, s); δB (128 MHz, CDCl3) 29.1; HRMS (ASAP) m/z found [M]+ 400.1859, 

C18H2410B2F4O4 requires M, 400.1869. 
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69a: 4,4,5,5-tetramethyl-2-(2,3,4,5-tetrafluorophenyl)-1,3,2-dioxaborolane 

 

General procedure A was applied to 1, 2, 3, 4-tetrafluorobenzene (0.11 mL, 1.00 mmol, 

1.0 equiv.) and B2pin2 (304.7 mg, 1.20 mmol, 1.2 equiv.) at room temperature	with a 

reaction time of 30 min. Flash column chromatography (0-100% EtOAc in hexane) 

afforded the desired borylated product 69a as a white solid (115.7 mg, 0.42 mmol, 42%). 

M.p. 42.5-43.8 ℃; vmax (ATR) 2942, 1646, 1474, 1419, 1392, 1250, 1146, 1098, 1023, 

965, 894, 734, 703, 614 cm -1; δH (700 MHz, CDCl3) 7.32 ~ 7.28 (1H, m, 6’-H), 1.35 

(12H, s, 4-CH3); δC (176 MHz, CDCl3) 151.7 (dm, J = 250, Hz, C-2’), 147.1 (ddd, J = 

248, 10, 3 Hz, C-5’), 142.7 (dm, J = 257 Hz, C-4’), 140.7 (dm, J = 256 Hz, C-3’), 116.7 

(ddd, J = 18, 8, 4 Hz, C-6’), 112.4 (br s, C-1’), 84.8 (s, C-4), 24.9 (s, CH3); δF (376 

MHz, CDCl3) -129.0 (1F, ddd, J = 20, 15, 7 Hz, F-2’), -139.8 (1F, ddd, J = 20, 15, 2 

Hz, F-5’), -150.9 (1F, td, J = 20, 7 Hz, F-4’), -156.1 (1F, t, J = 20 Hz, F-3’); δB (128 

MHz, CDCl3) 29.4; HRMS (ESI) m/z found [M+H]+ 276.1048, C12H1410BF4O2 requires 

M, 276.1059.  
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69b: methyl 2',3',4',5'-tetrafluoro-[1,1'-biphenyl]-4-carboxylate 

 

General procedure A [1, 2, 3, 4-tetrafluorobenzene (0.11 mL, 1.00 mmol, 1.0 equiv.), 

B2pin2 (304.7 mg, 1.20 mmol, 1.2 equiv.), 98% conversion at 60 ℃ after 1 h] and B1 

[Pd(dppf)Cl2∙CH2Cl2 (20.4 mg, 2.5 mol%), K3PO4 (318.4 mg, 1.50 mmol, 1.5 equiv.) 

and methyl 4-iodobenzoate (262.0 mg, 1.00 mmol, 1.0 equiv.) at 80 ℃ for 2.5 h] were 

applied in a one-pot protocol. Flash column chromatography (0-5% Et2O in hexane) 

afforded the desired cross-coupled arene 69b as a white solid (101.2 mg, 0.36 mmol, 

36%). M.p. 124.8-125.6 ℃; vmax (ATR) 2941, 1425, 1346, 1189, 1004, 894, 733, 704 

cm-1; δH (700 MHz, CDCl3) 8.12 (2H, d, J = 8.6 Hz, 3-H), 7.55 (2H, dd, J = 8.6, 1.5 

Hz, 2-H), 7.11 ~ 7.06 (1H, m, 6’-H), 3.95 (3H, s, OCH3); δC (176 MHz, CDCl3) 166.6 

(s, C=O), 147.3 (dd, J = 248, 11 Hz, C-5’), 145.1 (ddd, J = 250, 11, 3 Hz, C-2’), 141.4 

(dddd, J = 254, 17, 12, 4 Hz, C-4’), 140.4 (dddd, J = 255, 16, 13, 3 Hz, C-3’), 137.6 (s, 

C-1), 130.5 (s, C-4), 130.2 (s, C-3), 129.0 (d, J = 3 Hz, C-2), 124.5 (ddd, J = 12, 7, 4 

C-1’), 111.5 (dt, J = 20, 3 Hz, C-6’), 52.4 (s, OCH3); δF (376 MHz, CDCl3) -138.9 (1F, 

ddd, J = 20, 13, 3, F-5’), -143.0 (1F, ddd, J = 20, 13, 3, F-2’), -154.5 (1F, t, J = 20 Hz, 

F-4’), -155.5 (1F, t, J = 20 Hz, F-3’); HRMS (ASAP) m/z found [M]+ 284.0466, 

C14H8F4O2 requires M, 284.0460. 
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70a: 4,4,5,5-tetramethyl-2-(perfluorophenyl)-1,3,2-dioxaborolane 

 

General procedure A was applied to 1, 2, 3, 4, 5-pentafluorobenzene (0.11 mL, 1.00 

mmol, 1.0 equiv.) and B2pin2 (304.7 mg, 1.20 mmol, 1.2 equiv.) at room 

temperature	with a reaction time of 2 h. Flash column chromatography (0-15% Et2O in 

hexane) afforded the desired borylated product 70a as a colourless oil (181.7 mg, 0.62 

mmol, 62%). vmax (ATR) 2892, 2309, 2258, 1656, 1491, 1357, 1142, 982, 911, 731, 

706 cm-1; δH (700 MHz, CDCl3) 1.36 (12H, s, 4-CH3); δC (176 MHz, CDCl3) 149.4 (dm, 

J = 250 Hz, C-2’), 143.1 (dm, J = 256 Hz, C-4’), 137.4 (dm, J = 251 Hz, C-3’), 102.9 

(br s, C-1’), 85.1 (s, C-4), 24.7 (s, OCCH3); δF (376 MHz, CDCl3) -129.4 ~ -129.6 (2F, 

m, F-2’), -149.8 (1F, t, J = 20 Hz, F-4’), -162.0 (2F, td, J = 21, 9 Hz, F-3’); δB (128 

MHz, CDCl3) 29.0; HRMS (ASAP) m/z found [M+H]+ 294.0969, C12H1310BF5O2 

requires M, 294.0965. Data for this compound were consistent with previous reports.83  

 

70b: 2,3,4,5,6-pentafluoro-1,1'-biphenyl 

 

General procedure A [1, 2, 3, 4, 5-pentafluorobenzene (0.11 mL, 1.00 mmol, 1.0 equiv.), 
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B2pin2 (304.7 mg, 1.20 mmol, 1.2 equiv.), 100% conversion at 60 ℃ after 2 h] and B3 

[Pd2(dba)3 (45.8 mg, 5 mol%), CsF (303.8 mg, 2.00 mmol, 2.0 equiv.), P(t-Bu)3∙HBF4 

(29.0 mg, 10 mol%), CuCl (198.0 mg, 2.00 mmol, 2.0 equiv.) and iodobenzene (0.11 

mL, 1.00 mmol, 1.0 equiv.) at 100 ℃ for 13 h] were applied in a one-pot protocol. 

Flash column chromatography (0-5% chloroform in hexane) afforded the desired cross-

coupled arene 70b as a white solid (90.5 mg, 0.37 mmol, 37%). M.p. 101.3-101.7 ℃; 

vmax (ATR) 1656, 1581, 1527, 1496, 1444, 1322, 1201, 1067, 983, 853, 798, 751, 723, 

695, 652, 495 cm-1; δH (700 MHz, CDCl3) 7.53 ~ 7.45 (3H, m, 3’, 4’-H), 7.45 ~ 7.40 

(2H, m, 2’-H); δC (176 MHz, CDCl3) 144.3 (dm, J = 248 Hz, C-2), 140.5 (dm, J = 254 

Hz, C-4), 138.0 (dm, J = 251 Hz, C-3), 130.3 (s, C-2’), 129.5 (s, C-4’), 128.9 (s, C-3’), 

126.6 (s, C-1’), 116.1 (td, J = 17, 4 Hz, C-1); δF (376 MHz, CDCl3) -143.3 (2F, dd, J = 

21, 8 Hz, F-2), -155.6 (1F, t, J = 21 Hz, F-4), -162.3 (2F, td, J = 21, 8 Hz, F-3); HRMS 

(ASAP) m/z found [M]+ 244.0314, C12H5F5 requires M, 244.0311. Data for this 

compound were consistent with previous reports.84 
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71d: methyl 2',3',4'-trifluoro-[1,1'-biphenyl]-4-carboxylate 

71e: methyl 3',4',5'-trifluoro-[1,1'-biphenyl]-4-carboxylate 

71f: dimethyl 4',5',6'-trifluoro-[1,1':3',1''-terphenyl]-4,4''-dicarboxylate 

     

General procedure A [1, 2, 3-trifluorobenzene (0.10 mL, 1.00 mmol, 1.0 equiv.), B2pin2 

(152.4 mg, 0.60 mmol, 0.6 equiv.), 86% conversion (71a : 71b : 71c = 1 : 2 : 1) at room 

temperature after 1 h] and B1 [Pd(dppf)Cl2∙CH2Cl2 (22.0 mg, 2.5 mol%), K3PO4 (343.9 

mg, 1.62 mmol, 1.6 equiv.) and methyl 4-iodobenzoate (283.0 mg, 1.08 mmol, 1.1 

equiv.) at 80 ℃  for 3 h] were applied in a one-pot protocol. Flash column 

chromatography (0-5% Et2O in hexane) afforded a mixture of two mono cross-coupled 

arenes (71d and 71e) as a white solid (124.5 mg, 0.47 mmol, 47%, ratio by 19F NMR 

was 32 : 68). And then (15-20% Et2O in hexane) afforded the bis cross-coupled arene 

71f as a white solid (74.6 mg, 0.19 mmol, 19%). 71d: δH (700 MHz, CDCl3) 8.13 ~ 

8.09 (2H, m, 3-H), 7.58 ~ 7.54 (2H, m, 2-H), 7.25 ~ 7.19 (2H, m, 2’-H), 3.94 (3H, s, 

OCH3); δC (176 MHz, CDCl3) 166.7 (s, C=O), 151.1 (ddd, J = 252, 10, 3 Hz, C-3’), 

142.5 (d, J = 2 Hz, C-1), 139.7 (dt, J = 253, 15 Hz, C-4’), 136.2 (td, J = 8, 5 Hz, C-1’), 

130.2 (s, C-4), 130.0 (s, C-3), 127.0 (s, C-2), 111.5 (dd, J = 17, 4 Hz, C-2’ ), 52.4 (s, 
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OCH3); δF (376 MHz, CDCl3) -134.2 (2F, dd, J = 21, 8 Hz, F-3’), -161.1 (1F, t, J = 21 

Hz, F-4’). 71e: δH (700 MHz, CDCl3) 8.13 ~ 8.09 (2H, m, 3-H), 7.58 ~ 7.54 (2H, m, 2-

H), 7.17 (1H, dddd, J = 9, 8, 6, 2 Hz, 6’-H), 7.10 ~ 7.02 (1H, m, 5’-H), 3.94 (3H, s, 

OCH3); δC (176 MHz, CDCl3) 166.8 (s, C=O), 151.7 (ddd, J = 250, 10, 4 Hz, C-2’), 

149.0 (ddd, J = 253, 11, 4 Hz, C-4’), 140.5 (dt, J = 252, 16 Hz, C-3’), 138.6 (s, C-1), 

130.5 (s, C-4), 130.0 (s, C-3), 129.0 (d, J =3 Hz, C-2), 125.9 (dd, J = 11, 4 Hz, C-1’), 

124.0 (dt, J = 8, 4 Hz C-6’), 112.5 (dd, J = 17, 4 Hz, C-5’), 52.4 (s, OCH3); δF (376 

MHz, CDCl3) -133.5 (1F, d, J = 21 Hz, F-2’), -138.1 (1F, dd, J = 21, 8 Hz, F-4’), -159.5 

(1F, t, J = 21 Hz, F-3’). 71f: M.p. 173.4-173.9 ℃; vmax (ATR) 2992, 1727, 1474, 1402, 

1119, 1029, 894, 733, 704 cm -1; δH (700 MHz, CDCl3) 8.14 (4H, d, J = 8.3 Hz, 3-H), 

7.62 (4H, d, J = 8.3 Hz, 2-H), 7.30 (1H, td, J = 7.7, 2.2 Hz, 2’-H), 3.95 (6H, s, OCH3); 

δC (176 MHz, CDCl3) 166.7 (s, C=O), 148.5 (ddd, J = 254, 11, 3 Hz, C-4’), 140.9 (dm, 

J = 251.1 Hz, C-5’), 138.4 (s, C-1), 130.3 (s, C-4), 130.2 (s, C-3), 129.0 (s, C-2), 125.8 

(dd, J = 10, 5 Hz, C-1’), 124.7 ~ 124.5 (m, C-2’), 52.4 (s, OCH3); δF (376 MHz, CDCl3) 

-137.8 (2F, d, J = 21 Hz, F-4’), -157.9 (1F, t, J = 21 Hz, F-5’); HRMS (ASAP) m/z 

found [M+H]+ 401.1013, C22H16F3O4 requires M, 401.1001. 
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73a: 2-(3,5-difluoro-4-methoxyphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 

73b: 2-(2,4-difluoro-3-methoxyphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 

73c: 2,2'-(4,6-difluoro-5-methoxy-1,3-phenylene)bis(4,4,5,5-tetramethyl-1,3,2-

dioxaborolane) 

 

General procedure A was applied to 1,3-difluoro-2-methoxybenzene (0.24 mL, 2.00 

mmol, 1.0 equiv.) and B2pin2 (304.7 mg, 1.20 mmol, 0.6 equiv.) at 60 ℃	with a reaction 

time of 4 h. Flash column chromatography (5-10% Et2O in hexane) afforded a mixture 

of three borylated products (73a, 73b and 73c) as a colourless oil (382.5 mg, 1.34 mmol, 

67%, ratio by 19F NMR was 34 : 54 : 2). 73a: δH (700 MHz, CDCl3) 7.31 ~ 7.25 (2H, 

m, 2’-H), 4.00 (3H, s, OCH3), 1.30 (12H, s, 4-CH3); δC (176 MHz, CDCl3) 155.2 (dd, 

J = 249, 5 Hz, C-3’), 139.03 (t, J = 14 Hz, C-4’), 123.6 (br s, C-1’), 118.1 (dd, J = 17, 

4 Hz, C-2’), 84.3 (s, C-4), 61.6 (t, J = 4 Hz, OCH3), 24.9 (s, OCCH3); δF (376 MHz, 

CDCl3) -129.9 (2F, s); δB (128 MHz, CDCl3) 30.0. Data for this compound were 

consistent with previous reports.85 73b: δH (700 MHz, CDCl3) 7.34 (1H, dt, J = 8.4, 6.2 

Hz, 6’-H), 6.85 (1H, ddd, J = 10.0, 8.4, 1.5 Hz, 5’-H), 3.94 (3H, s, OCH3), 1.33 (12H, 

s, 4-CH3); δC (176 MHz, CDCl3) 160.6 (dd, J = 253, 5 Hz, C-2’), 158.4 (dd, J = 252, 6 

Hz, C-4’), 136.4 (dd, J = 16, 13 Hz, C-3’), 130.1 (t, J = 10 Hz, C-6’), 113.2 (br s, C-
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1’), 112.1 (dd, J = 19, 3 Hz, C-5’), 84.1 (s, C-4), 61.9 (t, J = 3 Hz, OCH3), 24.8 (s, 

OCCH3); δF (376 MHz, CDCl3) -118.3 (1F, d, J = 13 Hz, F-4’), -124.0 (1F, d, J = 13 

Hz, F-2’); δB (128 MHz, CDCl3) 30.0. Data for this compound were consistent with 

previous reports.82 73c: δH (700 MHz, CDCl3) 7.77 (1H, t, J = 6.7 Hz, 6’-H), 3.96 (3H, 

s, OCH3), 1.34 (24H, s, 4-CH3); δC (176 MHz, CDCl3) 162.9 (dd, J = 259, 7 Hz, C-2’), 

137.6 (t, J = 10 Hz, C-6’), 136.2 (t, J = 15 Hz, C-3’), 84.1 (s, C-4), 62.0 (m, OCH3), 

24.9 (s, OCCH3); δF (376 MHz, CDCl3) -113.6 (2F, s); δB (128 MHz, CDCl3) 29.9; 

HRMS (ESI) m/z found [M+H]+ 395.2221, C19H2910B2F2O5 requires M, 395.2242. 

 

73d: 2-(3,5-difluoro-4-methoxyphenyl)thiophene 

73e: 2-(2,4-difluoro-3-methoxyphenyl)thiophene 

73f: 2,2'-(4,6-difluoro-5-methoxy-1,3-phenylene)dithiophene 

 

General procedure B4 was applied to a mixture (ratio by 19F NMR was 15 : 35 : 50) of 

73a (10.3 mg, 0.04 mmol), 73b (23.9 mg, 0.09 mmol) and 73c (50.3 mg, 0.13 mmol), 

Pd(dppf)Cl2 (27.9 mg, 10 mol%), TBAB (12.3 mg, 10 mol%), 2M aq. Na2CO3 (0.38 

mL), 2-iodothiophene (0.06 mL, 0.57 mmol, 1.5 equiv.) and toluene (1.9 mL) at 110 

℃	with a reaction time of 23 h. Flash column chromatography (petroleum ether) 

afforded a mixture of two mono cross-coupled arenes (73d and 73e) as a colourless oil 
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(24.4 mg, 0.11 mmol, 41%, ratio by 19F NMR was 27 : 73) and the bis cross-coupled 

arene 73f as yellow needle-like crystals (17.0 mg, 0.06 mmol, 22%). 73d: δH (599 MHz, 

CDCl3) 7.30 (1H, dd, J = 5.2, 1.2 Hz, 5-H), 7.28 ~ 7.21 (1H, m, 3-H), 7.17 ~ 7.09 (2H, 

m, 2’-H), 7.07 (1H, dd, J = 5.2, 3.6 Hz, 4-H), 4.02 (3H, s, OCH3); δC (151 MHz, CDCl3) 

156.0 (dd, J = 248, 7 Hz, C-3’), 142.0 (s, C-2), 136.3 (dd, J = 3, 1 Hz, C-4’), 129.8 (s, 

C-1’), 128.3 (s, C-4), 125.7 (s, C-5), 124.0 (s, C-3), 109.8 (dd, J = 19, 6 Hz, C-2’), 

62.1(s, OCH3); δF (376 MHz, CDCl3) -128.2 (2F, s). 73e: δH (599 MHz, CDCl3) 7.40 

(1H, dd, J = 3.4, 1.6 Hz, 5-H), 7.36 (1H, dd, J = 5.1, 1.6 Hz, 3-H), 7.28 ~ 7.21 (1H, m, 

6’-H), 7.17 ~ 7.09 (1H, m, 4-H), 6.92 (1H, ddd, J = 10.5, 8.9, 1.9 Hz, 5’-H), 4.04 (3H, 

s, OCH3); δC (151 MHz, CDCl3) 155.1 (dd, J = 252, 8 Hz, C-4’), 152.8 (dd, J = 252, 6 

Hz, C-2’), 137.3 (t, J = 14 Hz, C-3’), 135.8 (s, C-2), 127.8 (s, C-4), 126.4 (dd, J = 6, 1 

Hz, C-5), 125.9 (d, J = 4 Hz, C-3), 122.0 (dd, J = 9, 4 Hz, C-6’), 119.8 (dd, J = 12, 4 

Hz, C-1’), 112.3 (dd, J = 20, 4 Hz, C-5’), 62.2 (s, OCH3); δF (376 MHz, CDCl3) -129.3 

(1F, d, J = 9.2 Hz, F-4’), -129.4 (1F, d, J = 9.2 Hz, F-2’). 73f: M.p. 48.7-49.3 ℃; vmax 

(ATR) 2950, 2844, 1536, 1467, 1430, 1114, 998, 982, 832, 736, 698 cm -1; δH (599 

MHz, CDCl3) 7.52 (1H, t, J = 7.7 Hz, 6’-H), 7.44 (2H, dd, J = 3.6, 1.1 Hz, 5-H), 7.40 

(2H, dd, J = 5.2, 1.1 Hz, 3-H), 7.14 (2H, dd, J = 5.2, 3.6 Hz, 4-H), 4.08 (3H, s, OCH3); 

δC (151 MHz, CDCl3) 151.8 (dd, J = 254, 5 Hz, C-2’), 137.8 (t, J = 15 Hz, C-3’), 135.9 

(t, J = 2 Hz, C-2), 127.9 (s, C-4), 126.7 (t, J = 4 Hz, C-5), 126.2 (s, C-3), 121.3 (t, J = 

4 Hz, C-6’), 119.7 (dd, J = 11, 6 Hz, C-1’), 62.4 (s, OCH3); δF (376 MHz, CDCl3) -

130.1 (2F, s); HRMS (ASAP) m/z found [M]+ 308.0149, C15H10F2OS2 requires M, 

308.0141. 
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74a: 2-(3,5-difluoro-4-methylphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 

74b: 2-(2,4-difluoro-3-methylphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 

 

General procedure A was applied to 1,3-difluoro-2-methylbenzene (0.11 mL, 1.00 

mmol, 1.0 equiv.) and B2pin2 (152.4 mg, 0.60 mmol, 0.6 equiv.) at 60 ℃ with a 

reaction time of 2 h. Flash column chromatography (15-25% EtOAc in hexane) 

afforded the borylated product 74a as a colourless solid (53.4 mg, 0.21 mmol, 21%). A 

mixture of two mono borylated products (74a and 74b) was eluted afterward as a 

colourless oil (101.4 mg, 0.40 mmol, 40%, ratio by 19F NMR was 50 : 50). 74a: vmax 

(ATR) 2971, 1566, 1407, 1329, 1264, 1143, 1080, 964, 852, 736, 704, 690 cm-1; δH 

(700 MHz, CDCl3) 7.24 (2H, dd, J = 6.3, 1.5 Hz, 2’-H), 2.21 (3H, s, 4’-CH3), 1.33 (12H, 

s, 4-CH3); δC (176 MHz, CDCl3) 161.5 (dd, J = 247, 8 Hz, C-3’), 128.5 (br s, C-1’), 

116.6 (t, J = 21 Hz, C-4’), 116.4 (dd, J = 19, 5 Hz, C-2’), 84.4 (s, C-4), 25.0 (s, OCCH3), 

7.4 (t, J = 4 Hz, 4’-CH3); δF (376 MHz, CDCl3) -115.9 (2F, s); δB (128 MHz, CDCl3) 

30.2; HRMS (ASAP) m/z found [M+H]+ 254.1395, C13H1810BF2O2 requires M, 

254.1404. Data for this compound were consistent with previous reports.69 74b: δH (700 

MHz, CDCl3) 7.53 (1H, q, J = 7.3 Hz, 6’-H), 6.80 (1H, t, J = 8.5 Hz, 5’-H), 2.16 (3H, 

s, 3’-CH3), 1.34 (12H, s, 4-CH3); δC (176 MHz, CDCl3) 166.4 (dd, J = 252, 9 Hz, C-

2’), 164.2 (dd, J = 250, 9 Hz, C-4’), 134.4 (t, J = 11 Hz, C-6’), 113.0 (ddd, J = 23, 21, 
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1 Hz, C-3’), 111.4 (br s, C-1’), 110.7 (dd, J = 22, 3 Hz, C-5’), 84.0 (s, C-4), 24.9 (s, 

OCCH3), 6.9 (td, J = 4, 2 Hz, 3’-CH3); δF (376 MHz, CDCl3) -103.4 (1F, d, J = 12 Hz, 

F-4’), -109.8 (1F, d, J = 12 Hz, F-2’); δB (128 MHz, CDCl3) 30.2.  

 

74d: 2-(3,5-difluoro-4-methylphenyl)pyridine 

74e: 2-(2,4-difluoro-3-methylphenyl)pyridine 

 

General procedure B4 was applied to a mixture (ratio by 19F NMR was 68 : 32) of 74a 

(168.2 mg, 0.66 mmol) and 74b (79.1 mg, 0.31 mmol), Pd(dppf)Cl2 (71.2 mg, 10 

mol%), TBAB (31.4 mg, 10 mol%), 2M aq. Na2CO3 (0.97 mL), 2-iodopyridine (0.16 

mL, 1.46 mmol, 1.5 equiv.) and toluene (4.9 mL) at 110 ℃	with a reaction time of 19 

h. Flash column chromatography (0-5% chloroform in toluene) afforded the desired 

cross-coupled arenes 74d (20.9 mg, 0.10 mmol, 11%) and 74e (18.7 mg, 0.09 mmol, 

9%) both as a light yellow oil. 74d: vmax (ATR) 2939, 1587, 1569, 1442, 1412, 1336, 

1083, 735, 789, 704, 670 cm -1; δH (599 MHz, CDCl3) 8.68 (1H, d, J = 4.9 Hz, 6-H), 

7.76 (1H, td, J = 7.8, 1.8 Hz, 4-H), 7.66 (1H, d, J = 7.8 Hz, 3-H), 7.55 ~ 7.48 (2H, m, 

2’-H), 7.28 ~ 7.23 (1H, m, 5-H), 2.24 (3H, s, 4-CH3); δC (151 MHz, CDCl3) 162.1 (dd, 

J = 246, 10 Hz, C-3’), 155.2 (t, J = 3 Hz, C-2), 149.9 (s, C-6), 139.0 (t, J = 10 Hz, C-

1’), 137.1 (s, C-4), 123.0 (s, C-5), 120.3 (s, C-3), 114.1 (s, C-4’), 109.4 ~ 109.0 (m, C-
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2’), 7.3 (t, J = 4 Hz, 4’-CH3); δF (376 MHz, CDCl3) -114.5 (2F, s); HRMS (ASAP) m/z 

found [M+H]+ 206.0760, C12H10F2N requires M, 206.0781. 74e: vmax (ATR) 2987, 1602, 

1473, 1441, 1071, 786, 733, 679 cm -1; δH (599 MHz, CDCl3) 8.71 (1H, d, J = 4.8 Hz, 

6-H), 7.80 ~ 7.70 (3H, m, 3, 4, 6’-H), 7.27 ~ 7.23 (1H, m, 5-H), 6.97 (1H, td, J = 8.6, 

1.5 Hz, 5’-H), 2.27 (3H, s, 3’-CH3); δC (151 MHz, CDCl3) 161.8 (dd, J = 248, 9 Hz, C-

4’), 159.1 (dd, J = 250, 9 Hz, C-2’), 153.1 (s, C-1’), 149.6 (s, C-6), 136.5 (s, C-4), 128.4 

(dd, J = 10, 5 Hz, C-6’), 124.2 (d, J = 9 Hz, C-3), 123.3 (dd, J = 13, 4 Hz, C-2), 122.3 

(s, C-5), 114.1 ~ 112.8 (m, C-3’), 111.1 (dd, J = 23, 4 Hz, C-5’), 7.3 ~ 7.2 (m, 3’-CH3); 

δF (376 MHz, CDCl3) -113.5 (1F, d, J = 10 Hz, F-4’), -117.8 (1F, d, J = 10 Hz, F-2’); 

HRMS (ASAP) m/z found [M+H]+ 206.0781, C12H10F2N requires M, 206.0781. 

 

75a: methyl 2,6-difluoro-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzoate 

75b: methyl 2,6-difluoro-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzoate 

 

General procedure A was applied to methyl 2,6-difluorobenzoate (0.27 mL, 2.00 mmol, 

1.0 equiv.) and B2pin2 (304.7 mg, 1.20 mmol, 0.6 equiv.) at room temperature with a 

reaction time of 19 h. Flash column chromatography (0-15% EtOAc in hexane) 

afforded the borylated product 75a as a colourless solid (265.2 mg, 0.89 mmol, 45%). 
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A mixture of two mono borylated products (75a and 75b) was eluted afterward as a 

colourless oil (172.6 mg, 0.58 mmol, 30%, ratio by 19F NMR was 52 : 48). 75a: M.p. 

58.6-59.8 ℃; vmax (ATR) 2993, 1741, 1425, 1371, 1146, 1033, 963, 904, 851, 733, 706 

cm -1; δH (700 MHz, CDCl3) 7.33 (2H, s, 3-H), 3.93 (3H, s, OCH3), 1.33 (12H, s, 4’-

CH3); δC (176 MHz, CDCl3) 162.2 (s, C=O), 160.2 (dd, J = 258, 5 Hz, C-2), 135.2 (br 

s, C-4), 117.5 (dd, J = 20, 4 Hz, C-3), 113.1 (t, J = 18 Hz, C-1), 84.9 (s, C-4’), 52.9 (s, 

OCH3), 24.9 (s, OCCH3); δF (376 MHz, CDCl3) -111.6 (2F, s); δB (128 MHz, CDCl3) 

29.9; HRMS (ASAP) m/z found [M+H]+ 298.1317, C14H1810BF2O4 requires M, 

298.1303. Data for this compound were consistent with previous reports.86 75b: δH (700 

MHz, CDCl3) 7.76 ~ 7.70 (1H, m, 4-H), 6.86 (1H, t, J = 8.7 Hz, 5-H), 3.85 (3H, s, 

OCH3), 1.26 (12H, s, 4’-CH3); δC (176 MHz, CDCl3) 165.0 (dd, J = 261, 6 Hz, C-2), 

162.9 (dd, J = 261, 6 Hz, C-6), 162.2 (s, C=O), 140.0 (t, J = 11 Hz, C-4), 111.8 (dd, J 

= 21, 4 Hz, C-5), 110.99 (dd, J = 21, 18 Hz, C-1), 84.3 (s, C-4’), 52.8 ~ 52.7 (m, OCH3), 

24.9 (s, OCCH3); δF (376 MHz, CDCl3) -99.3 (1F, dd, J = 7, 3 Hz, F-2), -106.2 (1F, d, 

J = 7 Hz, F-6); δB (128 MHz, CDCl3) 29.8. 
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75d: methyl 2,6-difluoro-4-(pyridin-2-yl)benzoate 

75e: methyl 2,6-difluoro-3-(pyridin-2-yl)benzoate 

 

General procedure B4 was applied to a mixture (ratio by 19F NMR was 52 : 48) of 75a 

(86.3 mg, 0.29 mmol) and 75b (79.7 mg, 0.27 mmol), Pd(dppf)Cl2 (40.7 mg, 10 mol%), 

TBAB (18.0 mg, 10 mol%), 2M aq. Na2CO3 (0.56 mL), 2-iodopyridine (0.09 mL, 0.84 

mmol, 1.5 equiv.) and toluene (2.8 mL) at 110 ℃	with a reaction time of 3 h. Flash 

column chromatography (90-100% DCM in hexane) afforded the desired cross-coupled 

arene 75d as a white solid (33.6 mg, 0.14 mmol, 25%) and 75e as a light yellow solid 

(48.6 mg, 0.20 mmol, 36%). 75d: M.p. 78.2-78.6 ℃; vmax (ATR) 3078, 2960, 1736, 

1631, 1565, 1415, 1347, 1114, 1040, 779, 738, 537 cm -1; δH (599 MHz, CDCl3) 8.71 

(1H, ddd, J = 4.8, 1.8, 0.9 Hz, 6’-H), 7.81 (1H, td, J = 7.8, 1.8 Hz, 4’-H), 7.72 (1H, dt, 

J = 7.8, 1.1 Hz, 3’-H), 7.64 (2H, d, J = 9.2 Hz, 3-H), 7.33 (1H, ddd, J = 7.8, 4.8, 1.1 

Hz, 5’-H), 3.97 (3H, s, OCH3); δC (151 MHz, CDCl3) 162.1 (s, C=O), 161.3 (dd, J = 

256, 9 Hz, C-2), 153.7 (t, J = 3 Hz, C-2’), 150.1 (s, C-6’), 144.5 (t, J = 10 Hz, C-4), 

137.4 (s, C-4’), 124.0 (s, C-5’), 120.9 (s, C-3’), 110.7 (t, J = 18 Hz, C-1), 110.4 (dd, J 

= 23, 5 Hz, C-3), 52.93 (s, OCH3); δF (376 MHz, CDCl3) -109.4 (2F, s); HRMS (ASAP) 

m/z found [M+H]+ 250.0674, C13H10F2NO2 requires M, 250.0680. 75e: M.p. 90.8-91.4 
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℃; vmax (ATR) 3035, 2965, 1737, 1624, 1598, 1441, 1327, 1143, 1089, 996, 795, 746, 

571 cm -1; δH (599 MHz, CDCl3) 8.71 (1H, dt, J = 4.8, 1.4 Hz, 6’-H), 8.12 (1H, td, J = 

8.8, 6.4 Hz, 4-H), 7.78 ~7.74 (2H, m, 3’, 4’-H), 7.28 (1H, td, J = 4.8, 3.9 Hz, 5’-H), 

7.08 (1H, td, J = 8.8, 1.3 Hz, 5-H), 3.97 (3H, s, OCH3); δC (151 MHz, CDCl3) 162.2 (s, 

C=O), 160.7 (dd, J = 258, 6 Hz, C-6), 158.2 (dd, J = 260, 6 Hz, C-2), 151.8 (d, J = 2 

Hz, C-3), 150.0 (s, C-6’), 136.8 (s, C-4’), 134.3 (dd, J = 10, 5 Hz, C-4), 124.5 (d, J = 

10 Hz, C-2’), 124.4 (s, C-3’), 123.0 (s, C-5’), 112.6 (dd, J = 22, 4 Hz, C-5), 111.5 (dd, 

J = 20, 19 Hz, C-1), 53.0 (s, OCH3); δF (376 MHz, CDCl3) -109.6 (1F, d, J = 4 Hz, F-

6), -114.5 (1F, d, J = 4 Hz, F-2); HRMS (ASAP) m/z found [M]+ 249.0598, C13H9F2NO2 

requires M, 249.0601. 

 

76a: 2,6-difluoro-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridine 

76b: 2,6-difluoro-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridine 

 

General procedure A was applied to 6-fluoropyridin-2-amine (0.09 mL, 1.00 mmol, 1.0 

equiv.) and B2pin2 (152.4 mg, 0.60 mmol, 1.2 equiv.) at room temperature with a 

reaction time of 3 h. Flash column chromatography (0-10% EtOAc in hexane) afforded 

the borylated product 76a as colourless needlelike crystals (137.1 mg, 0.57 mmol, 57%). 

A mixture of two mono borylated products (76a and 76b) was eluted afterward as a 
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white solid (47.7 mg, 0.20 mmol, 20%, ratio by 19F NMR was 55 : 45). 76a: M.p. 57.2-

57.8 ℃; vmax (ATR) 3057, 2993, 1605, 1405, 1387, 1190, 1145,1022, 734, 705 cm -1; 

δH (599 MHz, CDCl3) 7.13 (2H, s, 3-H), 1.33 (12H, s, 4’-CH3); δC (151 MHz, CDCl3) 

161.6 (dd, J = 249, 14 Hz, C-2), 148.5 (s, C-4), 111.1 ~ 111.0 (m, C-3), 85.3 (s, C-4’), 

24.9 (s, OCCH3); δF (376 MHz, CDCl3) -69.4 (2F, s); δB (128 MHz, CDCl3) 29.5; 

HRMS (ASAP) m/z found [M+H]+ 241.1209, C11H1510BF2NO2 requires M, 241.1200. 

Data for this compound were consistent with previous reports.68 76b: δH (599 MHz, 

CDCl3) 8.24 (1H, q, J = 8.2 Hz, 4-H), 6.80 (1H, ddd, J = 7.9, 2.6, 1.3 Hz, 5-H), 1.34 

(12H, s, 4’-CH3); δC (151 MHz, CDCl3) 165.7 (dd, J = 264, 15 Hz, C-2), 164.0 (dd, J 

= 262, 15 Hz, C-6), 152.6 (t, J = 7.7 Hz, C-4), 105.9 (dd, J = 33, 6 Hz, C-5), 84.7 (s, C-

4’), 24.9 (s, OCCH3); δF (376 MHz, CDCl3) -57.2 (1F, d, J = 10 Hz, F-2), -63.8 (1F, d, 

J = 10 Hz, F-6); δB (128 MHz, CDCl3) 29.5. Data for this compound were consistent 

with previous reports.68 

 

76d: 2',6'-difluoro-2,4'-bipyridine 

 

General procedure B4 was applied to 76a (166.1 mg, 0.69 mmol), Pd(dppf)Cl2 (50.4 

mg, 10 mol%), TBAB (22.2 mg, 10 mol%), 2M aq. Na2CO3 (0.69 mL), 2-iodopyridine 

(0.11 mL, 1.03 mmol, 1.5 equiv.) and toluene (3.5 mL) at 110 ℃	with a reaction time 
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of 45 h. Flash column chromatography (5-15% EtOAc in hexane) afforded the desired 

cross-coupled arene 76d as a light yellow solid (54.6 mg, 0.29 mmol, 41%). M.p. 83.2-

84.6 ℃; vmax (ATR) 3121, 2939, 2858, 1635, 1566, 1406, 1366, 1160, 1031, 883, 785, 

679 cm-1; δH (599 MHz, CDCl3) 8.76 (1H, ddd, J = 4.8, 1.9, 1.0 Hz, 6-H), 7.89 ~ 7.83 

(1H, m, 4-H), 7.79 (1H, dd, J = 8.0, 1.0 Hz, 3-H), 7.46 (2H, d, J = 0.8 Hz, 3’-H), 7.41 

(1H, ddt, J = 6.7, 4.8, 1.0 Hz, 5-H); δC (151 MHz, CDCl3) 162.6 (dd, J = 246, 16 Hz, 

C-2’), 156.5 (t, J = 8 Hz, C-4’), 152.5 (t, J = 4 Hz, C-2), 150.4 (s, C-6), 137.5 (s, C-4), 

125.1(s, C-5), 121.3(s, C-3), 103.9 ~ 103.5 (m, C-3’); δF (376 MHz, CDCl3) -68.1 (2F, 

s); HRMS (ESI) m/z found [M+H]+ 193.0581, C10H7F2N2 requires M, 193.0577. 

 

80d: 2',3'-difluoro-2,4'-bipyridine 

80e: 5',6'-difluoro-2,3'-bipyridine 

 

General procedure A [2,3-difluoropyridine (0.09 mL, 1.00 mmol, 1.0 equiv.), B2pin2 

(152.4 mg, 0.60 mmol, 0.6 equiv.), 91% conversion (80a : 80b : 80c = 6 : 1 : 0.5) at 

room temperature after 11 h] and B4 [Pd(dppf)Cl2 (66.6 mg, 10 mol%), TBAB (29.3 

mg, 10 mol%), 2M aq. Na2CO3 (0.91 mL), 2-iodopyridine (0.15 mL, 1.37 mmol, 1.5 

equiv.) and toluene (4.6 mL) at 110 ℃	for 15 h] were applied in a one-pot protocol. 

Flash column chromatography (2-4% Et2O in DCM) afforded the desired cross-coupled 
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arenes 80d (22.5 mg, 0.12 mmol, 12%) and 80e (13.1 mg, 0.07 mmol, 7%) both as a 

white solid. 80d: M.p. 42.3-43.5 ℃; vmax (ATR) 2934, 2854, 1624, 1591, 1481, 1466, 

1451, 1430,1269, 1208, 1087, 918, 789, 734, 705 cm-1; δH (599 MHz, CDCl3) 8.78 (1H, 

dd, J = 4.7, 1.6 Hz, 6-H), 8.05 (1H, dd, J = 5.0, 1.3 Hz, 6’-H), 7.91 (1H, d, J = 7.9 Hz, 

3-H), 7.88 (1H, td, J = 5.0, 1.0 Hz, 5’-H), 7.85 (1H, tt, J = 7.9, 1.4 Hz, 4-H), 7.42 ~ 

7.36 (1H, m, 5-H); δC (151 MHz, CDCl3) 153.2 (dd, J = 238, 16 Hz, C-2’), 150.4 (s, C-

6), 145.0 (dd, J = 4, 3 Hz, C-2), 143.7 (dd, J = 264, 29 Hz, C-3’), 141.4 (dd, J = 14, 8 

Hz, C-6’), 138.0 (dd, J = 7, 3 Hz, C-4’), 137.1 (s, C-4), 125.3 (d, J = 10 Hz, C-3), 124.5 

(s, C-5), 122.5 (d, J = 4 Hz, C-5’); δF (376 MHz, CDCl3) -88.3 (1F, d, J = 27 Hz, F-2’), 

-146.0 (1F, d, J = 27 Hz, F-3’); HRMS (ASAP) m/z found [M+H]+ 193.0581, 

C10H7F2N2 requires M, 193.0577. 80e: M.p. 80.2-82.2 ℃; vmax (ATR) 2934, 2859, 1592, 

1494, 1468, 1446, 1411, 1171, 996, 786, 734, 709 cm-1; δH (599 MHz, CDCl3) 8.76 ~ 

8.67 (1H, m, 6-H), 8.54 (1H, s, 2’-H), 8.32 ~ 8.26 (1H, m, 4’-H), 7.81 (1H, td, J = 7.6, 

1.6 Hz, 4-H), 7.77 ~ 7.70 (1H, m, 3-H), 7.32 (1H, ddd, J = 7.6, 4.8, 1.1 Hz, 5-H); δC 

(151 MHz, CDCl3) 152.6 (d, J = 1Hz, C-2), 152.4 (dd, J = 242, 15 Hz, C-6’), 150.3 (s, 

C-6), 145.8 (dd, J = 261, 28 Hz, C-5’), 139.7 (dd, J = 13, 6 Hz, C-2’), 137.4 (s, C-4), 

135.2 (dd, J = 5, 1 Hz, C-3’), 125.4 (dd, J = 16, 4 Hz, C-4’), 123.5 (s, C-5), 120.6 (s, 

C-3); δF (376 MHz, CDCl3) -87.4 (1F, d, J = 27 Hz, F-6’), -139.8 (1F, d, J = 27 Hz, F-

5’); HRMS (ASAP) m/z found [M+H]+ 193.0583, C10H7F2N2 requires M, 193.0577. 
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81e: 2',5'-difluoro-2,4'-bipyridine 

81f: 2',5'-difluoro-2,3'-bipyridine 

 

General procedure A [2,3-difluoropyridine (0.28 mL, 2.00 mmol, 1.0 equiv.), B2pin2 

(304.7 mg, 1.20 mmol, 0.6 equiv.), 90% conversion (81a : 81b : 81c : 81d = 1.6 : 1 : 

0.1 : 0.1) at room temperature after 17 h] and B4 [Pd(dppf)Cl2 (130.2 mg, 10 mol%), 

TBAB (57.4 mg, 10 mol%), 2M aq. Na2CO3 (1.8 mL), 2-iodopyridine (0.28 mL, 2.67 

mmol, 1.5 equiv.) and toluene (8.9 mL) at 110 ℃	for 21 h] were applied in a one-pot 

protocol. Flash column chromatography (2-3% MeCN in chloroform) afforded a 

mixture of two mono cross-coupled arenes (81e and 81f) as a white solid (135.1 mg, 

0.70 mmol, 36%, ratio by 19F NMR was 75 : 25). 81e: δH (700 MHz, CDCl3) 8.69 (1H, 

ddd, J = 4.8, 1.8, 1.0 Hz, 6-H), 8.32 (1H, ddd, J = 8.2, 7.4, 3.1 Hz, 6’-H), 8.02 (1H, dd, 

J = 3.1, 2.0 Hz, 3’-H), 7.90 (1H, ddt, J = 7.8, 1.8, 1.0 Hz, 3-H), 7.77 (1H, td, J = 7.8, 

1.8 Hz, 4-H), 7.29 (1H, ddd, J = 7.8, 4.8, 1.8 Hz, 5-H); δC (176 MHz, CDCl3) 157.9 

(dd, J = 252, 4 Hz, C-2’), 156.2 (dd, J = 238, 1 Hz, C-5’), 150.2 (s, C-6), 149.9 (dd, J 

= 7, 1 Hz, C-2), 136.9 ~ 136.8 (m, C-4), 134.3 (dd, J = 28, 17 Hz, C-3’), 128.0 (dd, J = 

23, 5 Hz, C-6’), 124.0 (d, J = 12 Hz, C-3), 123.6 (s, C-5), 123.2 (dd, J = 30, 5 Hz, C-

4’); δF (376 MHz, CDCl3) -73.8 (1F, d, J = 29 Hz, F-2’), -131.8 (1F, d, J = 29 Hz, F-

5’). 81f: δH (700 MHz, CDCl3) 8.73 (1H, ddd, J = 4.8, 1.8, 1.0 Hz, 6-H), 8.11 (1H, dd, 
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J = 2.5, 1.9 Hz, 6’-H), 7.89 ~ 7.87 (1H, m, 3-H), 7.81 ~ 7.78 (1H, m, 4-H), 7.65 (1H, 

dd, J = 5.0, 1.9 Hz, 4’-H), 7.35 (1H, ddd, J = 7.6, 4.8, 1.1 Hz, 5-H); δC (176 MHz, 

CDCl3) 160.1 (dd, J = 236, 2 Hz, C-2’), 155.12 (dd, J = 253, 5 Hz, C-5’), 150.0 (s, C-

6), 149.5 (t, J = 3 Hz, C-2), 139.3 (dd, J = 12, 9 Hz, C-3’), 136.9 ~ 136.8 (m, C-4), 

135.7 (dd, J = 31, 16 Hz, C-6’), 124.7 (d, J = 11 Hz, C-3), 124.5 (s, C-5), 109.60 (dd, J 

= 43, 1 Hz, C-4’); δF (376 MHz, CDCl3) -72.7 (1F, d, J = 27 Hz, F-2’), -137.3 (1F, d, J 

= 27 Hz, F-5’). 

 

82a: 6-fluoro-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-2-amine 

82b: 6-fluoro-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-2-amine 

 

General procedure A was applied to 6-fluoropyridin-2-amine (112.1 mg, 1.00 mmol, 

1.0 equiv.) and B2pin2 (380.9 mg, 1.50 mmol, 1.5 equiv.) at room temperature with a 

reaction time of 23 h. Flash column chromatography (95-100% DCM in hexane) 

afforded the borylated product 82a as a yellow solid (87.2 mg, 0.37 mmol, 37%). A 

mixture of two mono borylated products (82a and 82b) was eluted afterward as a light 

yellow oily solid (30.6 mg, 0.13 mmol, 13%, ratio by 19F NMR was 54 : 46). 82a: vmax 

(ATR) 3057, 1626, 1387, 1134, 909, 851, 730, 705 cm -1; δH (599 MHz, CDCl3) 6.68 

(1H, d, J = 2.6 Hz, 3-H), 6.53 (1H, d, J = 2.1 Hz, 5-H), 4.36 (2H, s, NH2), 1.32 (12H, 
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s, 4’-CH3); δC (151 MHz, CDCl3) 163.2 (d, J = 239 Hz, C-6), 157.5 (d, J = 16 Hz, C-

2), 144.2 (br s, C-4), 110.3 (d, J = 4 Hz, C-3), 101.6 (d, J = 34 Hz, C-5), 84.7 (s, C-4’), 

24.9 (s, OCCH3); δF (376 MHz, CDCl3) -72.1 (1F, s); δB (128 MHz, CDCl3) 30.0; 

HRMS (ASAP) m/z found [M]+ 237.1322, C11H1610BFN2O2 requires M, 237.1325. 82b: 

δH (599 MHz, CDCl3) 7.86 (1H, t, J = 8.3 Hz, 4-H), 6.29 (1H, dd, J = 7.9, 2.6 Hz, 3-

H), 4.35 (2H, br s, NH2), 1.32 (12H, s, 4’-CH3); δC (151 MHz, CDCl3) 167.5 (d, J = 

244 Hz, C-6), 160.1 (d, J = 18 Hz, C-2), 149.3 (d, J = 8 Hz, C-4), 104.4 (d, J = 4 Hz, 

C-3), 83.8 (s, C-4’), 24.9 (s, OCCH3); δF (376 MHz, CDCl3) -59.4 (1F, s); δB (128 MHz, 

CDCl3) 30.0. Data for this compound were consistent with previous reports.87 
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6.0 Appendix — NMR spectra 

1H (700 MHz, CDCl3) –– 61a 

 
13C (176 MHz, CDCl3) –– 61a 
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19F (376 MHz, CDCl3) –– 61a 

 

 

1H (599 MHz, CDCl3) –– 61c 
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13C (151 MHz, CDCl3) –– 61c 

 

 

19F (376 MHz, CDCl3) –– 61c 
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1H (700 MHz, CDCl3) –– 62a 

 

 

13C (176 MHz, CDCl3) –– 62a 
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19F (376 MHz, CDCl3) –– 62a 

 

 

1H (700 MHz, CDCl3) –– 62b 
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13C (176 MHz, CDCl3) –– 62b 

 

 

19F (376 MHz, CDCl3) –– 62b 
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1H (700 MHz, CDCl3) –– 62c 

 

 

13C (176 MHz, CDCl3) –– 62c 
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19F (376 MHz, CDCl3) –– 62c 

 

 

1H (700 MHz, CDCl3) –– 64a 
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13C (176 MHz, CDCl3) –– 64a 

 

 

19F (376 MHz, CDCl3) –– 64a 
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1H (599 MHz, DMSO) –– 64b 

 

 

13C (151 MHz, DMSO) –– 64b 
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19F (376 MHz, DMSO) –– 64b 

 

 

1H (700 MHz, CDCl3) –– 66a 
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13C (176 MHz, CDCl3) –– 66a 

 

 

19F (376 MHz, CDCl3) –– 66a 
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1H (700 MHz, CDCl3) –– 66b 

 

 

13C (176 MHz, CDCl3) –– 66b 
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19F (376 MHz, CDCl3) –– 66b 

 

 

1H (599 MHz, CDCl3) –– 66c 
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13C (151 MHz, CDCl3) –– 66c 

 

 

19F (376 MHz, CDCl3) –– 66c 
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1H (599 MHz, CDCl3) –– 66d 

 

 

13C (151 MHz, CDCl3) –– 66d 
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19F (376 MHz, CDCl3) –– 66d 

 

 

1H (599 MHz, CDCl3) –– 66e 

 

-145-140-135-130-125-120-115-110-105-100-95-90-85-80-75-70-65-60-55-50-45
f1	(ppm)

-500

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

7000

7500

8000

-1
1
5
.8
3

-6
2
.6
8

F

F

F

F
F

-2-101234567891011121314
f1	(ppm)

0

10

20

30

40

50

60

70

80

90

100

3
.0
1

2
.0
0

5
.0
4

2
.3
9

6
.8
2

7
.3
7

7
.4
4

7
.5
0

F

F



 135 

13C (151 MHz, CDCl3) –– 66e 

 

 

19F (376 MHz, CDCl3) –– 66e 
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1H (599 MHz, CDCl3) –– mixture of 67a and 67b (98 : 2) 

 

 

13C (151 MHz, CDCl3) –– mixture of 67a and 67b (98 : 2) 
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19F (376 MHz, CDCl3) –– mixture of 67a and 67b (98 : 2) 

 

 

1H (700 MHz, CDCl3) –– 68b 
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13C (176 MHz, CDCl3) –– 68b 

 

 

19F (376 MHz, CDCl3) –– 68b 
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1H (700 MHz, CDCl3) –– 69a 

 

 

13C (176 MHz, CDCl3) –– 69a 
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19F (376 MHz, CDCl3) –– 69a 

 

 

1H (700 MHz, CDCl3) –– 69b 
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13C (176 MHz, CDCl3) –– 69b 

 

 

19F (376 MHz, CDCl3) –– 69b 
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1H (700 MHz, CDCl3) –– 70a 

 

 

13C (176 MHz, CDCl3) –– 70a 
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19F (376 MHz, CDCl3) –– 70a 

 

 

1H (700 MHz, CDCl3) –– 70b 
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13C (176 MHz, CDCl3) –– 70b 

 

 

19F (376 MHz, CDCl3) –– 70b 
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1H (700 MHz, CDCl3) –– mixture of 71d and 71e (32 : 68) 

 

 

13C (176 MHz, CDCl3) –– mixture of 71d and 71e (32 : 68) 
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19F (376 MHz, CDCl3) –– mixture of 71d and 71e (32 : 68) 

 

 

1H (700 MHz, CDCl3) –– 71f 
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13C (176 MHz, CDCl3) –– 71f 

 

 

19F (376 MHz, CDCl3) –– 71f 
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1H (700 MHz, CDCl3) –– mixture of 73a, 73b and 73c (34 : 54 : 2) 

 

 

13C (176 MHz, CDCl3) –– mixture of 73a, 73b and 73c (34 : 54 : 2) 
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19F (376 MHz, CDCl3) –– mixture of 73a, 73b and 73c (34 : 54 : 2) 

 

 

1H (599 MHz, CDCl3) –– mixture of 73d and 73e (27 : 73) 
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13C (151 MHz, CDCl3) –– mixture of 73d and 73e (27 : 73) 

 

 

19F (376 MHz, CDCl3) –– mixture of 73d and 73e (27 : 73) 
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1H (599 MHz, CDCl3) –– 73f 

 

 

13C (151 MHz, CDCl3) –– 73f 
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19F (376 MHz, CDCl3) –– 73f 

 

 

1H (700 MHz, CDCl3) –– 74a 
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13C (176 MHz, CDCl3) –– 74a 

 

 

19F (376 MHz, CDCl3) –– 74a 
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1H (700 MHz, CDCl3) –– mixture of 74a and 74b (50 : 50) 

 

 

13C (176 MHz, CDCl3) –– mixture of 74a and 74b (50 : 50) 
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19F (376 MHz, CDCl3) –– mixture of 74a and 74b (50 : 50) 

 

 

1H (599 MHz, CDCl3) –– 74d 
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13C (151 MHz, CDCl3) –– 74d 

 

 

19F (376 MHz, CDCl3) –– 74d 
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1H (599 MHz, CDCl3) –– 74e 

 

 

13C (151 MHz, CDCl3) –– 74e 
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19F (376 MHz, CDCl3) –– 74e 

 

 

1H (700 MHz, CDCl3) –– 75a 
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13C (176 MHz, CDCl3) –– 75a 

 

 

19F (376 MHz, CDCl3) –– 75a 
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1H (700 MHz, CDCl3) –– mixture of 75a and 75b (52 : 48) 

 

 

13C (176 MHz, CDCl3) –– mixture of 75a and 75b (52 : 48) 
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19F (376 MHz, CDCl3) –– mixture of 75a and 75b (52 : 48) 

 

 

1H (599 MHz, CDCl3) –– 75d 
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13C (151 MHz, CDCl3) –– 75d

 

 

19F (376 MHz, CDCl3) –– 75d 
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1H (599 MHz, CDCl3) –– 75e 

 

 

13C (151 MHz, CDCl3) –– 75e 
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19F (376 MHz, CDCl3) –– 75e 

 

 

1H (599 MHz, CDCl3) –– 76a 
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13C (151 MHz, CDCl3) –– 76a 

 

 

19F (376 MHz, CDCl3) –– 76a 
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1H (599 MHz, CDCl3) –– mixture of 76a and 76b (55 : 45) 

 

 

13C (151 MHz, CDCl3) –– mixture of 76a and 76b (55 : 45) 
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19F (376 MHz, CDCl3) –– mixture of 76a and 76b (55 : 45) 

 

 

1H (599 MHz, CDCl3) –– 76d 
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13C (151 MHz, CDCl3) –– 76d 

 

 

19F (376 MHz, CDCl3) –– 76d 
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1H (599 MHz, CDCl3) –– 80d 

 

 

13C (151 MHz, CDCl3) –– 80d 
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19F (376 MHz, CDCl3) –– 80d 

 

 

1H (599 MHz, CDCl3) –– 80e 
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13C (151 MHz, CDCl3) –– 80e 

 

 

19F (376 MHz, CDCl3) –– 80e 
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1H (700 MHz, CDCl3) –– mixture of 81e and 81f (75 : 25) 

 

 

13C (176 MHz, CDCl3) –– mixture of 81e and 81f (75 : 25) 
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19F (376 MHz, CDCl3) –– mixture of 81e and 81f (75 : 25) 
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13C (151 MHz, CDCl3) –– 82a 

 

 

19F (376 MHz, CDCl3) –– 82a 
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1H (599 MHz, CDCl3) –– mixture of 82a and 82b (54 : 46) 

 

 

13C (151 MHz, CDCl3) –– mixture of 82a and 82b (54 : 46) 
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19F (376 MHz, CDCl3) –– mixture of 82a and 82b (54 : 46) 
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