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Abstract 

The detection of prohibited performance-enhancing drugs in sports is often carried out 

using urine samples. The reason for this is that urine samples can be collected under non-

sterile conditions and do not require the presence of a sanctioned medical officer. Improper 

storage of the urine samples from athletes can lead to microbial contamination, which can 

cause changes in the steroids profile, leading to false positive or false negative results for a 

particular athlete. To address this problem, a new analytical method was proposed that 

employs a fluorinated steroid as an internal standard and fluorine-19 nuclear magnetic 

resonance spectroscopy (19F-NMR) spectroscopy to identify both microbial and thermally-

induced changes in the urine samples.  

In Chapter 2, synthesis of fluorinated steroids was carried out using method that involve 

the reaction of Selectfluor® with enolates/enols of steroids. A range of fluorinated steroids 

was prepared (2 novel F-steroids) in moderate yields and varying diastereoselectivities. 

Several synthesised steroids were recrystallized and crystals suitable for X-ray were 

obtained. 

In Chapter 3, selected fluorinated steroids were incubated with microorganisms such as 

Escherichia coli, Bacillus subtilis, Bacillus megaterium and Streptomyces griseus. 

Fluorinated steroids were transformed to various oxidised metabolites upon incubation with 

Streptomyces griseus. Escherichia coli did not produce any metabolites due to lack of 

cytochrome P450 enzymes. Incubation of Bacillus subtilis and Bacillus megaterium was 

not successful and therefore metabolites were not detected. 

In Chapter 4, hydroxy steroids were reacted with pentafluoropyridine (PFP) to form 

perfluoropyridine ethers in good yield. Several novel steroids were synthesised and the 

structures of 4 perfluoropyridine ethers were confirmed for the first time by X-ray structure. 

It was found that the hydroxy steroid PFP adducts have very similar 19F NMR spectra 

however they can be distinguished using this technique. This novel derivatisation technique 

could be potentially used for identification of hydroxy steroids in biological material by 19F 

NMR. 
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Abbreviations 

 

Ac   Acetyl 

Boc   tert-Butoxycarbonyl 

b.p.   Boiling point 

Bu  Butyl 

cm-1   Wavenumbers 

COSY   Correlation spectroscopy 

d   Doublet (spectral) 

DAST   Diethylaminosulfurtrifluoride 

DCM   Dichloromethane  

dd   Doublet of doublets (spectral) 

ddd   Doublet of doublet of doublets (spectral) 

DIPEA   N,N-Diisopropylethylamine 

DMAP   4-Dimethylaminopyridine 

DMF   N,N-Dimethylformamide 

ds   Diastereoselectivity 

eq   Equivalent 

Et   Ethyl 

g   Gramme 

GC   Gas Chromatography 

GC-MS  Gas Chromatography / Mass Spectrometry 

h   Hour(s) 

Hz   Hertz 

IAAF   International Amateur Athletics Federation 

IOC   International Olympic Committee 

IR   Infrared 
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J   Coupling constant 

LDA   Lithium diisopropylamide 

lit.   Literature 

m   Multiplet (spectral) 

m/z   Mass-to-charge ratio 

Me   Methyl 

min   Minutes 

mmol   Millimole(s) 

m.p.   Melting point 

MS   Mass spectrometry 

MSTFA  N-Methyl-N-(trimethlysilyl)trifluoroacetamide 

NFOBS  o-Benzenedisulfonamide 

NMR   Nuclear magnetic resonance 

NOE   Nuclear Overhauser effect 

NOESY   Nuclear Overhauser effect spectroscopy 

NSFI   Fluorobenzenesulfonamide 

Nu   Nucleophile 

Ph   Phenyl 

PPHF   Olah’s reagent 

ppm   Part(s) per million 

q   Quartet (spectral) 

R   Alkyl 

RT   Room temperature 

s   Singlet (spectral) 

TBME   tert-Butyl methyl ether 

t-Bu   tert-Butyl 

temp   Temperature 
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THF   Tetrahydrofuran 

TLC   Thin layer chromatography 

TMS   Trimethylsilyl 

WADA   World Anti-Doping Agency 
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1 Introduction 

1.1 Doping in Sports 

The first recognition of performance-enhancing drugs in sport occurred in the early 1920s, 

when the International Amateur Athletics Federation (IAAF) prohibited the use of 

stimulants.1 However, with a lack of any effective means of testing for banned substances 

available the IAAF often had to rely solely on the word of the athlete in question. In 1966 

the Union Cycliste Internationale and the F´ed´eration Internationale de Football 

Association joined the IAAF in their fight against performance enhancing drugs when they 

introduced tests for the detection of doping substances into their World Championships.2 

The International Olympic Committee (IOC) formed a medical commission in 1967 to deal 

with doping in sports and in 1968 they introduced compulsory anti-doping testing for 

athletes at both the Summer and Winter Olympics. In the 1980s, the IOC recruited a number 

of laboratories worldwide to perform banned substance testing on a routine basis and at the 

1988 Olympic Games Ben Johnson became the first Olympic competitor to be sanctioned 

for doping.3 In 1999 an independent agency The World Anti-Doping Agency (WADA) was 

created to promote, coordinate, and monitor the fight against doping. In the subsequent 

years since formation, WADA has established detailed anti-doping guidelines together with 

a comprehensive and ever changing list of prohibited substances.4 Selected examples of 

prohibited substances, as determined by WADA, are given in Table 1.1. 
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Table 1.1 Overview of the 2016 Prohibited Drugs List compiled by WADA 

(1th January 2016). 

Entry Class Class name Selected examples 

1 S1.1a Exogenous steroids 1-androstenedio, 1-androstenedione, bolandiol, 

bolasterone, boldenone, boldione, calusterone; clostebol, 

danazol.  

2 S1.1.b Endogenous steroids androstenediol, androstenedione, dihydrotestosterone, 

dehydroepiandrosterone, testosterone. 

3 S1.2 Other Anabolic Agents Clenbuterol, selective androgen receptor modulators 

(SARMs), tibolone, zeranol, zilpaterol. 

4 S2.1 Peptide hormones, 

growth factors and 

related substances 

Erythropoiesis-Stimulating Agents [e.g. erythropoietin 

(EPO), darbepoetin (dEPO), hypoxia-inducible factor 

(HIF) stabilizers, methoxy polyethylene glycol-epoetin 

beta (CERA), peginesatide (Hematide)]. 

5 S3 Beta-2 agonists Salbutamol, formoterol 

6 S4.1 Hormone and 

metabolic modulators 

aminoglutethimide, anastrozole, androstatrienedione, 4-

androstene-3,6,17 trione (6-oxo), exemestane, 

formestane, letrozole, testolactone 

7 S5 Diuretics and other 

masking agents 

Acetazolamide, amiloride, bumetanide, canrenone, 

chlorthalidone, etacrynic acid, furosemide, indapamide, 

metolazone, spironolactone, thiazides 

Class description: 

• S0. Non-approved substances 

Any pharmacological substance which is not included in the subsequent sections of the List 

and with no current approval by any governmental regulatory health authority for human 

therapeutic use is prohibited at all times (e.g. drugs under pre-clinical or clinical 

development or discontinued, designer drugs, substances approved only for veterinary use). 

• S1. Anabolic agents 

Anabolic Androgenic Steroids (AAS): “exogenous” (refers to a substance which is not 

ordinarily produced by the body naturally) and “endogenous” (refers to a substance which 

is ordinarily produced by the body naturally). 

• S2. Peptide hormones, growth factors, related substances and mimetics 

The following substances, and other substances with similar chemical structure or similar 

biological effect(s), are prohibited: Erythropoiesis-Stimulating Agents (e.g. erythropoietin 

(EPO), darbepoetin (dEPO), hypoxia-inducible factor (HIF) stabilizers); Chorionic 

Gonadotrophin (CG) and Luteinizing Hormone (LH) and their releasing factors; 
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Corticotrophins and their releasing factors (e.g. corticorelin acetate); Growth Hormone 

(GH) and its releasing factors (e.g. hexarelin, alexamorelin); Insulin-like Growth Factor-1 

(IGF-1); Fibroblast Growth Factors (FGFs), Hepatocyte Growth Factor (HGF), Mechano 

Growth Factors (MGFs), Platelet-Derived Growth Factor (PDGF), Vascular-Endothelial 

Growth Factor (VEGF)  

• S3. Beta-2 agonists 

 All beta-2 agonists, including all optical isomers where relevant, are prohibited. 

Except: 

 Inhaled salbutamol (maximum 1600 g over 24 hours); 

 Inhaled formoterol (maximum delivered dose 54 g over 24 hours); 

 Inhaled salmeterol in accordance with the manufacturers’ recommended therapeutic 

regimen. 

• S4. Hormone and metabolic modulators 

Hormones - substances targeting wide range of organs to regulate physiology and 

behaviour. Metabolic modulators - modify the effects of hormones, accelerate or slow 

down specific enzyme reactions. 

• S5. Diuretics and masking agents 

Diuretics- any substance that increases production of urine. Masking agent- any substance 

that is used to hide or prevent detection of a banned substance. 

 

Figure 1.1 Anti-doping headlines in sports. 
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Athletes’ use of illicit substances continues to hit the headlines since the 1970s sometimes 

even with rumours of state-sponsored doping (Figure 1.1). In 2004 the British sprinter, 

Dwain Chambers was banned from competition for two years after being found guilty of 

taking the anabolic steroid THG.5 In January 2013, the retired American cyclist Lance 

Armstrong admitted to doping and accepted the punishment by the U.S. Anti-Doping 

Agency (USADA). He was stripped of his seven Tour de France wins and banned from 

sport for life. USADA’s allegations were based on testimony the agency took from 

eyewitnesses, members of Armstrongs’ USPS and Discovery Channel cycling teams who 

say they saw Armstrong taking the drugs or in possession of them. Some of the performance 

enhancers allegedly taken by Armstrong included: 

 Erythropoietin (EPO): is used by athletes to increase the number of red blood cells 

in their circulatory system, which are available to carry oxygen. Athletes 

implemented a number of means to avoid detection of EPO use, including: micro-

dosing (using smaller amounts of EPO to reduce the clearance time of the drug), 

intravenous injections (injecting the drug directly into the vein rather than 

subcutaneously to reduce clearance time), saline, plasma or glycerol infusions. 

 Blood transfusions (blood doping): this generally involve the extraction of an 

athlete’s own blood pre-competition and re-infusion of that blood shortly before or 

during competition (e.g. in the evening or on a rest day in a multistage race) to 

increase the athlete’s oxygen carrying red blood cells.  

 Testosterone: it is an anabolic agent and can increase muscle mass and strength. In 

smaller doses anabolic agents such as testosterone can promote muscle recovery 

from strenuous exercise and increase endurance.  

 Human Growth Hormone (hGH): it is used to increase strength and lean muscle 

mass, to assist in weight loss and promote recovery.  

 Corticosteroids (e.g. cortisone): reduce inflammation, assist in recovery and can 

provide a burst of energy and create a temporary feeling of increased energy and 

well-being.  

More recently in December 2014, a German TV documentary alleged as many as 99% of 

Russian athletes were guilty of doping, although the Russian Athletics Federation described 

the allegations as "lies". The World Anti-Doping Agency had recommended a blanket ban 

for all Russian athletes from the Olympic Games in Rio 2016. After numbers of appeals by 
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Russian athletes who live and train outside Russia. The court of Arbitration for Sport (CAS) 

has cleared a total of 271 from 389 Russian athletes to take part in the Rio Olympic Games. 

Since then, there have been numerous further allegations of doping in athletics.6 

1.2 Methods of Detection in Anti-Doping Screening 

Currently, anti-doping laboratories tend to rely mainly on mass spectrometric (MS) based 

analytical techniques in combination with gas and liquid chromatography to detect for 

example steroids that are on WADA’s list of prohibited substances. A typical MS procedure 

for the detection of anabolic steroids in an athlete’s urine sample is outlined in Figure 1.2. 

The initial step of the sample preparation involves enzymatic hydrolysis of any water 

soluble steroids to remove any sulphate or glucuronate modifications. The resulting non-

polar steroids are then extracted with t-butyl methyl ether (TBME) or n-pentane. 

Subsequently, recovered steroids are derivatized using a mixture of N-methyl-N-

(trimethlysilyl), trifluoroacetamide (MSTFA), ammonium iodide, and ethanethiol. The 

trimethyliodosilane (TMS) formed in this mixture traps enols of ketosteroids and forms 

trimethylsilyl derivatives of the steroids. Once the TMS steroid derivatives are prepared, 

the sample is analysed by capillary GC-MS. The results of each experiment are reviewed 

manually comparing retention times and mass fragments to those of a standard urine sample 

containing each metabolite. 
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Figure 1.2 Procedure for steroid extraction and detection in athlete urine samples. 

 

At the Unitéd’ Analyse du Dopage, an IOC-accredited laboratory in Lausanne 

(Switzerland), GC-MS is used in six out of the seven standard tests for dopant detection.7 

Identifying and confirming an illegal substance is sufficient in most GC-MS procedures. 

Quantification is only required for naturally occurring substances (e.g. testosterone) and 

other drugs with concentration limits such as caffeine. Interfering peaks and background 

noise can complicate GC-MS data reading because screening methods are designed to 

detect an entire classes of compounds and they are not optimized for individual compounds 

within the mixture. Furthermore, a single ion fragment may not be unique to a given 

compound (e.g. regio-isomers). These issues limit the use of automated software programs 

for GC-MS data reading and mean that even today the tests require that an experienced 

analysts evaluate all of the data collected. In contrast, LC-MS/MS and GC-MS/MS measure 

the relative abundance of precursor/product ion pairs (transitions). The likelihood of a 
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target compound and an interfering substance having the same precursor/product ion pairs 

is relatively small. The data usually are easier to interpret compared to GC-MS data and 

can be more easily evaluated by computer software. GC-MS is not suitable for every 

banned substance. Substances in low concentrations, volatiles or those which undergo 

thermal decomposition can be detected with alternative tests, such as immunoassays. 

HPLC is the most versatile of all chromatography methods but also the most complex. It is 

routinely used for quantitative analysis in biological samples such as blood, urine and other 

body fluids. HPLC can be coupled to various detectors such as UV, fluorescence or mass 

spectrometry (LC/MS and LC/MS/MS). For instance, accredited laboratories detect 

corticosteroids (a specific class of steroid hormones, which are known to increase motor 

activity) by using high-performance liquid chromatography (HPLC) in conjunction with 

MS or tandem mass spectrometry (MS/MS). HPLC-MS detection is effective here as it 

minimises the chance of corticosteroids being denaturated and hence an inaccurate test 

result (e.g. false negative) being recorded. Corticosteroids, cannot be reliably detected by 

GC-MS. This is because this class of compound is not stable when heated and they are 

slightly volatile.  

To perform testing for banned substances at concentrations that are too low for standard 

GC-MS/HPLC-MS detection, immunoassays are often employed.7 The hormone human 

chorionic gonadotropin (hCG) and human growth hormone (hGH) are examples of banned 

substances that must be detected using an immunoassay. To distinguish pituitary and 

human growth hormone (hGH) a method like the immune luminometric assay is used. This 

employs two antigen-specific monoclonal antibodies that recognize the antigen (hGH) at 

different domains. These antibodies are immobilized on the inner surface of a column 

together with a secondary antibody that is luminescence-labelled. Luminescence is detected 

by using an automatic luminometer. 

Blood and urine testing are capable of detecting many prohibited substances, but not blood 

transfusions. One method introduced to aid the detection of such transfusions is the 

biological passport. Brought in by WADA in 2009, an athlete’s biological passport aims to 

reveal the effects of doping rather than detect the substance or method itself.8 The passport 

is an electronic document that contains data about certain markers from throughout their 

career (e.g. testosterone level). If these change dramatically, it alerts officials that the 

athlete might be doping. Some scientists have questioned the passport's efficiency - 
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especially when complicating factors such as training at altitude are factored in - but also 

its sensitivity to micro-dosing, a little-but-often approach to doping.8 

Another important factor in antidoping testing is microbial contamination. Improper 

storage of the urine samples from athletes can cause changes in the steroids concentrations, 

leading to false positive or false negative results for a particular athlete. At the present time 

WADA does not provide a detailed standard protocol regarding storage or transportation 

of the urine samples collected.9,3 The occurrence of degraded urine samples vary depending 

of the season of the year, with a peak during hot months, as well as the duration of 

transportation and the storage time. Up to the current time, no preservative is added 

systematically to sport urine samples because it is reasoned that the introduction of a 

chemical substance into athletes’ samples after the collection procedure may lead to legal 

challenges.10 If it is not possible to analyse refrigerated samples in a short time, an effective 

method of preserving urine specimen is desirable. Up to the current time, both physical and 

chemical methods have been proposed to protect urine samples from degradation that can 

arise due to improper storage conditions.11  

The physical methods include: heating, ultrasonication, ultraviolet radiation, and 

membrane filtration. Heating is very efficient as a method but can be used only for 

thermostable products. Sterilization by UV radiation (~260 nm) is being used increasingly 

for heat-sensitive materials. It is quite lethal but does not penetrate glass, water, or other 

substances very effectively. Because of this, UV radiation is used as a sterilizing method 

in only a few particular situations. Pathogens and other microorganisms are destroyed when 

a thin layer of liquid is passed under the UV lamp.12 Membrane filtration is also used for 

the sterilization of thermally unstable material. Within the context of the WADA 

regulations, the athlete maintains control of the sample at all times until it is sealed. 

Therefore, the athlete would be the one responsible for performing the filtration. Membrane 

filtration of large-volume urine samples using a syringe-mounted filter was found to be 

impractical because the pores of the membrane were saturated after a while. The possibility 

of deactivating enzymes or destroying microorganisms by ultrasonic waves (UWs) has 

been widely explored for laboratory applications in microbiology, immunology, and 

enzymology. However, at ambient temperature and pressure, ultrasonication has little lethal 

effect on microorganisms. Different species of microorganisms may be more susceptible 

to ultrasound treatment than others. Gram-positive cells such as Staphylococcus aureus and 
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coccus-shaped cells are more resistant to ultrasound than gram-negative cells and rod-

shaped bacteria. 

Chemical methods employ various additives to preserve the urine samples (enzyme and 

protein synthesis inhibitors, inorganic salts and antimicrobial agents).13,14 A wide variety of 

chemicals currently used are bacteriostatic (inhibit growth) at low concentrations and 

bacteriocidal at high concentrations (kill the microorganisms but not necessarily their 

spores). Most common preservatives include: 

 NaN3 - It has been used in concentrations ranging from 0.1% to 1% (w/v) in doping 

control laboratories for preservation of the analytes. Its major disadvantage is the 

high toxicity, even though the exact mechanism of intoxication remains unknown. 

The use of azide as a urine preservative was rejected by the UK. 

 Boric acid - At concentrations between 10 and 20 g/L, boric acid is bacteriostatic 

or fungistatic for nearly all of the common urinary pathogens. If the concentration 

of borate exceeds 40 g/L and the exposure times are longer than 6 h, borate has 

bactericidal effects on various gram-negative species of urinary pathogens.  

 Penicillin–streptomycin–amphotericin - A commercial antibiotic and 

antimycotic liquid mixture has been used in the literature to maintain sterility. 

Penicillin acts by inhibiting bacterial cell wall synthesis. Streptomycin inhibits 

prokaryote protein synthesis by preventing the transition from initiation complex to 

chain-elongating ribosome and causes miscoding. Amphotericin B is used as an 

antifungal agent.  

 Chloramphenicol - Inhibits protein synthesis in prokaryotic cells and is widely 

used for suppressing bacterial growth in fungal media. It is primarily bacteriostatic, 

although it may be bacteriocidal to certain species.  

 Pepstatin - Is a low-molecular-weight, highly specific inhibitor of acid proteases. 

It has been shown to inhibit virtually all acid proteases and proteases of microbial 

origin. It is being routinely used in the EPO stability test. 

 Phenylmethylsulfonyl fluoride (PMSF) - Is an irreversible serine protease 

inhibitor that acts by sulfonating serine residues at the active site. It also inhibits 

cysteine proteases and mammalian acetylcholinesterase.  

 Pefabloc (AEBSF) [4-(2-aminoethyl) benzenesulfonyl fluoride] - Is an irreversible 

serine inhibitor. It reacts covalently with the serine residue at the catalytic centre.  
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 Protease inhibitor cocktails and EDTA - Various commercial protease inhibitor 

cocktails with broad specificity for the inhibition of serine, cysteine, and aspartic 

proteases as well as metalloproteases are available. Usually, they contain Pefabloc, 

E-64, bestatin, leupeptin, aprotinin, and sodium EDTA.  

Both physical and chemical methods are either impractical or very costly to implement. For 

instance, one approach proposes the addition of complex cocktail of antibiotics to the urine 

samples to inhibit any microbial growth. This approach is prohibitively expensive and in a 

wider context it could also contribute to the growing problem of antibacterial resistance. 

To address this problem from a fresh perspective we undertake a study to develop a 19F 

NMR protocol, a simple and robust analytical protocol that could be used to identify 

samples in which microbial growth has occurred in anti-doping samples. In order to do this 

a range of fluorinated steroids are required (Chapter 2). The metabolism of each 

fluorinated steroid prepared will be assessed by range of microorganisms.  

1.2 Selected Aspects of Organofluorine Chemistry 

1.2.1 Introduction 

Fluorine is a p-block element in group XVII and is the lightest halogen. It was isolated by 

Henri Moissan, a French chemist, in 1886 by electrolysis of a solution of hydrofluoric acid 

in potassium hydrogen fluoride. At standard conditions, fluorine forms diatomic molecules, 

which exist as a pale yellow gas. Fluorine is the 13th most abundant element in the earth’s 

crusts, although never occurs as a free element in nature. The most important fluorine 

minerals are fluorspar, fluorapatite, and cryolite. Only 13 naturally occurring organic 

fluorin-containing compounds are known reflecting the significant challenge in forming C-

F bond under natural aqueous conditions.15 Chapter 3 will provide a more in depth 

discussion regarding fluorinated natural products and the role of fluorine in nature. 

Synthetic fluorine containing compounds have found widespread use in a range of chemical 

products including; coolants, aerosol propellants, surfactants, polymers and drugs 

(Figure 1.3).16,17  
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Figure 1.3  Selected examples of important organofluorine compounds. 

 

1.2.2 Fluorine bond length and strength 

Fluorine is the most electronegative element, therefore formation of F- or a covalent bond 

is highly favourable. In comparison to all of the other halogens, fluorine forms strong bonds 

with many atoms and in particular, the silicon-fluorine bond is one of the strongest single 

bonds known (Table 1.2).18,19 

Table 1.2 Dissociation bond energies of halogen containing compounds. 

X X-X H-X B-X Al-X C-X Si-X 

F 159 574 645 582 459 808 

Cl 243 428 444 427 327 471 

Br 193 363 368 360 272 372 

I 151 294 272 285 239 293 

 

Due to the low F-F bond energy (159 kJ/mol) fluorine gas (F2) reacts readily with other 

elements or compounds often in an extremely exothermic manner making it very difficult 

to handle. Many of the reactions involving fluorine are driven by its tendency to gain an 

electron and form the neon core [(He)2s22p6]. Fluorine has a relatively small covalent 
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radius (64 pm)19; therefore, the bonds between fluorine and other atoms are, in general 

shorter that the equivalent bonds between other halogens and the corresponding atoms 

(Table 1.3).20 

Table 1.3 Common bond lengths for halogen atoms. 

X X-X H-X B-X C-X Si-X 

F 1.417 0.917 1.36 1.39 1.60 

Cl 2.009 1.274 1.74 1.78 2.05 

Br 2.283 1.408 2.01 0.27 0.31 

I 0.267 1.608 2.22 0.22 0.21 

 

1.2.3 19F NMR applications in biological systems 

Naturally occurring fluorine is monoisotopic, consisting solely of 19F and it has a sensitivity 

to NMR detection that is 83%  of the sensitivity of 1H nucleus. Nevertheless, there are 17 

stable radioisotopes with half-lives ranging from 109.771 minutes for the longest-lived 

radioisotope 18F to 4.1 x 10−22 seconds the least stable isotope 15F.  

Compounds containing the 18F radioisotope have found applications in positron emission 

tomography (PET). 18F containing compounds are routinely used as tracers to probe 

metabolic functions. One such species is 18F-fluorodeoxyglucose, commonly abbreviated 

18F-FDG, which can be used to assess glucose metabolism in brain tumours. The major 

challenge for application of PET as a cancer detection tool is the rapid and clean synthesis 

of bioactive, 18F-radiolabeled compounds.21 

In comparison to hydrogen, the fluorine nucleus is on average surrounded by nine electrons 

and therefore the range of fluorine chemical shifts is much wider extending typically from 

200 ppm to -200 ppm (Figure 1.4). A valuable aspect of 19F NMR is that the area under 

each peak is proportional to the number of fluorine atoms responsible for such signals. Due 

to the wide chemical shift range, there is no single fluorine-containing compound 

convenient for use as a universal standard in 19F NMR analysis and usually a reference 

similar to the compound under examination is used. The most commonly used internal 

standards for 19F NMR are trifluoroacetic acid (TFA), trichlorofluoromethane and 

hexafluorobenzene (Table 1.4).22 
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Figure 1.4 Examples of fluorine (19F) NMR chemical shifts.  

Table 1.4 Chemical shifts of common internal standards for 19F NMR 

19F NMR Reference Standards vs. CFCl
3 
δ(ppm) 

Trichlorofluoromethane 0.00 

Trifluoroacetic acid -76.55
 

Hexafluorobenzene -164.9
 

Fluorobenzene -113.15
 

Trifluorochloromethane -28.6
 

Elemental fluorine +422.92
 

Fluoroacetonitrile -251
 

Difluoro, tetrachloroethane -67.80 

Trifluorotoluene -63.72 

 

It is worth noting that fluorine chemical shifts are significantly more sensitive to their local 

environment within a molecule compared to proton chemical shifts.23 In particular in 

biological systems, the fluorine shifts changes that are observed upon protein binding or 

folding/unfolding can reach 8 ppm.22 This is in contrast to 1H NMR spectroscopy where 

shifts observed in similar processes  are usually < 0.3 ppm. For example, M.A. Danielson 

and J.J. Falke have found that addition of D-galactose or D-glucose to a sample of the 5-

fluoro-tryptophan labelled galactose-binding protein produces an adduct which could be 

observed by 19F NMR.23 In this particular case the chemical shift of the Trp183 position 

changed upon addition of D-galactose or D-glucose by ~3 ppm (Figure 1.5).22 

0 40 80 120 160 200 240 280 320-40-80-120-160-200-240-280-420-460

vinylic-F

Ar-F

alkyl-F C=CF2

C-CF2H

C-CF2-C

vinylic-CF3

CF3-C

Ar-CF3

C=N-F

C-F

O

=

XeF2FCl



 

22 
 

 

Figure 1.5 19F NMR shift changes of 5-fluoro-tryptofan induced by addition of D-
galactose and D-glucose.10 

 

Interestingly small shift changes could be also induced by a solvent isotope effect. For 

instance, Hansen, Detman and Sykes have investigated the binding of fluorinated aromatic 

compounds to cyclodextrins.24 In this study they have found that the fluorine signals from 

the water soluble aromatic compounds were de-shielded when the amount of H2O increased 

in the sample (Table 1.5). Variations of chemical shifts with pH were also observed for the 

compounds bearing ionisable group (e.g. m-fluorophenol -36.941 ppm at pH = 6.5; m-

fluorophenolate -38.315 ppm at pH = 10.9). 

 

Table 1.5 Shift changes with D2O/H2O ratio. 

%D2O m-Fluorobenzoic acid (ppm)* m-Fluorophenol (ppm)* 

100 -0.945 -0.373 

50 -0.883 -0.296 

25 -0.870 -0.251 

*δ=(δfully bound-δfree) 

 

Similarly to 1H NMR, the 19F NMR spectra of fluorinated compounds show signal splitting 

as a result of heteronuclear spin-spin coupling (Table 1.6).25,26  



 

23 
 

O

O

F

O

O

F

O O

F F

5b 5a 6b 6a  

Table 1.6 Coupling values of selected fluoro-steroids. 

Steroid 
 J(X*-19F) Hz 

4-H 6-H 3-H 2-C 3-C 4-C 5-C 6-C 7-C 8-C 10-C 

5β 5 50 - - <1 9.2 12 167 23 <1 2 

5α <1 49 - - <1 14.7 11 185 18.4 11 2.7 

6β   49.5 17.7 174.3 19.5 12.7 1.2 1.2 - - 

6α   48.4 20.4 166.3 21.6 <1 - - - - 

*X-proton (4-H, 6-H, 3-H) or carbon (2-C, 4-C, 5-C, 6-C, 7-C, 8-C, 10-C). 

The germinal and vicinal coupling constants observed in 19F NMR spectra H -19F are 

relatively large compared to H-H (e.g. 2JHF = 40-80Hz, 3JH,F = 1-45Hz). In 13C NMR spectra 

the typical coupling constants are of the order: 1JC,F = 160-175 Hz and 2JC,F = 13-30 Hz. 

13C NMR experiments also show long-rang C-F couplings which can be significant. 

Homonuclear coupling between fluorine atoms are relatively large compared with those 

between hydrogen atoms. Coupling between geminal fluorine atoms (2JF-F) give a large 

value of 250 to 300 Hz. Three bond coupling (3JF-F) in saturated aromatic hydrocarbons 

usually range from 0 Hz to 16 Hz. 

More recently, 19F NMR has been applied as a tool in medical diagnosis. Due to the 100% 

isotopic abundance of 19F this technique possesses excellent potential in detecting 

metabolic changes of therapeutic compounds. For example, it was shown that 4-fluoro-2-

nitrophenyl-beta-D-galactopyranoside is rapidly cleaved by the enzyme beta-

galactosidase27 an enzyme that is commonly used in molecular biology as a reporter marker 

to monitor gene expression. Enzymatic cleavage of galactopyranoside produces a new 19F 

NMR signal (-46.49 ppm) that is well separated from the chemical shift of the original 

parent compound (-42.75 ppm) and thus enzyme action can be easily and rapidly 

monitored.  
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1.3 Methods for preparing fluorinated steroids 

Many of the earliest examples of fluorination involved the use of elemental fluorine (F2) or 

electrolysis of an organic compound in a solution of hydrogen fluoride.28 However, given 

the unique properties of the F atom there are now several different alternative methods and 

reagents for the formation of C-F bonds, which avoid these original harsh conditions. The 

following sections briefly outline some of the most commonly encountered methods and 

reagents utilised in the preparation of fluorinated steroids.  

1.3.1 Electrophilic fluorination 

Electrophilic fluorination involves transfer of F+ to an electron rich centre. Elemental 

fluorine (F2) and reagents containing the F-O bond (e.g. CF3OF) can be used for this 

purpose, however there are now alternative reagents containing nitrogen-fluorine bonds 

which have proven to be safer and more stable to handle. 

1.3.2 Elemental Fluorine 

High reactivity and poor regio-selectivity often make it difficult to work with elemental 

fluorine (F2), therefore this reagent is usually diluted with an inert gas such as nitrogen (N2) 

or argon (Ar). Patrick et al. showed that fluorination of estronediacetate (7) with a 5-10% 

mixture of F2 in nitrogen leads to the formation of 16-fluoroestrone (8) in a good yield and 

with moderate regio-selectivity (56% yield, α:β = 10:1), Scheme 1.1.29 It is worth noting 

that a very high yield and good selectivity was observed in the fluorination of 7 with XeF2 

(99% yield, α:β=9:1). 

 

 

Scheme 1.1 Synthesis of 16-fluoroestrone (8) using elemental fluorine. 
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The preparation of 8 was performed by bubbling F2/N2 through a solution of the 3,17-

diacetylestrone in DCM but a more convenient and practical method for using F2 was 

developed by Chambers and Sandford at Durham University (Figure 1.6).30 They 

constructed a micro-channel reactor which enables efficient mixing of a gas and liquid 

phase in controlled and safe manner. Yields obtained using this flow reactor set-up have 

been shown to be in most cases as high as for fluorination reactions carried out using 

standard equipment and elemental fluorine. 

 

 

Figure 1.6 Micro-channel reactor developed for fluorination reactions with F2. 

 

1.3.3 Organofluoroxy Reagents 

The first electrophilic fluorinating reagent, fluoroxytrifluoromethane (CF3OF), was 

discovered in 1968 by Barton and co-workers.31 This reagent effectively and rapidly reacts 

with activated olefins and can be used with complex substrates in the presence of keto-, 

alkoxy, and acyloxy-groups.31,32 For example, treatment of oestrone methyl ether or 

oestrone acetate (9) with a small excess of CF3OF selectively produces 10β-fluoro-19-

norandrosta-1,4-dien-3,17-dione (10) (Scheme 1.2). The utility of CF3OF in the 

fluorination of steroid enol-esters was also demonstrated in the reaction of cholestanone 

(11). The fluorination of 11 gave exclusively 2α-fluorocholestanone (12) in a good yield 

(Scheme 1.2).32 The fluorination reactions with trifluoromethyl hypofluorite (CF3OF) are 

usually carried out in trichlorofluoromethane (CFCl3) however tetrachloromethane (CCI4), 

chloroform (CHCI3) or dichloromethane (CH2Cl2) can be used to improve the solubility of 

the substrate. 

Flow controller
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Scheme 1.2 Examples of fluorination with fluoroxytrifluoromethane (CF3OF). 

 

Although, fluoroxytrifluoromethane, tends to be more selective for mono-fluorination than 

N-F reagents32 Barton has showed that small quantities of bis-fluorinated products can be 

sometimes observed (Scheme 1.3).33 For instance, fluorination of bicycle testosterone (13) 

(R = OAc) gave a mixture of 6α- and 6β-testosterone (14) with a small amount of the bis-

fluorinated product 16 also being obtained. The mixture of α/β testosterone (14) can be 

equilibrated to give predominately the 6α-fluorotestosterone (16) isomer under acidic 

conditions.33 Interestingly, the regio-selectivity of CF3OF can be changed from position 6 

to 4 on the steroid by using the imine of testosterone which reacts gives 4-fluorotestosterone 

(15) in a 35% yield.33 
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Scheme 1.3 Synthesis of fluorinated testosterone derivatives using 
fluoroxytrifluoromethane (CF3OF). 

 

The formation of a bis-fluorinated product (16) can be explained by the fluoride ion 

attacking intermediate 17 (Scheme 1.4). Formation of the carbonyl difluoride means that 

the hydroxyl and N-H groups present in a substrate may be acylated to a small extent. This 

can be avoided through the addition of methanol to the reaction mixture or by subsequent 

hydrolysis of the acetate during the reaction work-up. 

 

 

Scheme 1.4 Potential mechanism for the formation bis-fluorinated product (16). 
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1.3.4 N-F Reagents 

Due to the reactivity and toxicity associated with elemental fluorine (F2) and hydrogen 

fluoride (HF), the introduction of fluorine into organic molecules still presents a difficult 

challenge to synthetic organic chemists. Major progress in the field of electrophilic 

fluorinating agents came with the discovery of reagents containing nitrogen-fluorine (N-F) 

bond. These N-F reagents have largely replaced the organofluoroxy reagents due to their 

enhanced stability and ease of handling. A range of N-fluorinated amines, quaternary salts, 

amides and sulphonamides were synthesised for selective electrophilic fluorination under 

mild conditions (Figure 1.7).34 In comparison to the previous reagents discussed, the N-F 

reagents are less expensive to produce and conventional glass equipment is often suitable 

for their use. 

 

Figure 1.7 Selected examples of N-F fluorinating reagents.  

 

1.3.5 N-Fluoropyridiniumtriflates 

In 1986 Umemoto and co-workers reported the first stable N-fluoropyridinium salts, which 

had good activities and were suitable for commercial production.35 They observed that the 

non-nucleophilic counter anions were essential to their stability, reactivity and selectivity 

(e.g. OTf, BF4, SbF6, ClO4). The fluorinating power of these N-F salts can be controlled by 

varying the ring substituents and increasing electron density on the N-F site leads to the 

formation of a less reactive reagent. The structures and relative reactivity of common N-F 

salts that have been developed are presented in Figure 1.8. 



 

29 
 

 

Figure 1.8 Reactivity of selected N-fluoropyridinium triflate reagents. 

 

The less reactive reagent 25 is ideal for fluorinating reactive or easily oxidized compounds, 

such as enamines, carbanions and sulphides.35 The most potent reagents (e.g. 28 and 29) 

are suitable for fluorinating alkenes and aromatic rings. Compounds like the salt 18 which 

have moderate reactivity are suitable for fluorinating electron-rich substrates, such as enol 

alkyl ethers, enolsilyl ethers, and activated vinyl acetates. Compound 26 reacts with 

activated aromatic compounds at elevated temperature.35 All of the N-F salts in Figure 1.8 

can be prepared by bubbling F2/N2 (1:9) mixture through a solution of the relevant 

pyridine/pyridine derivative and sodium triflate in acetonitrile (Scheme 1.5).  

 

Scheme 1.5 Synthesis of N-fluoropyridiniumtriflates. 

Umemoto and others have also demonstrated that N-fluoropyridinium salts can be used in 

a synthesis of fluoro-steroids.36 For example, fluorination of the steroid enamine 31 using 

N-F salt 25 in DCM/MeCN gave 4-fluorotestosterone (32) in 54% yield (Scheme 1.6). 

 

Scheme 1.6 Use of N-fluoropyridinium salts to synthesise fluoro-steroids. 
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N-Fluoropyridinium triflate (25) also shows high regioselectivity with steroids having two 

reactive sites. During fluorination of 33, N-fluoropyridinium triflate reacted selectively 

with the conjugated vinyl acetate in the presence of an enol acetate, whereas during the 

fluorination of steroid 35 it reacts preferentially with the silylenol ether moiety in the 

presence of a conjugated vinyl acetate. The reaction of N-fluoropyridinium triflate with 

estrone 37 gives selectively 16α-fluoro-estrone (38) in the presence of an activated aromatic 

ring (Scheme 1.7, Reaction A).36 

It has also been reported that the steric bulk of the substituents on the aromatic ring of the 

pyridinium salt can play a very important role in directing the stereoselectivity of the 

fluorination.18For example, the fluorination of 17β-diacetoxy-3,5-androstadiene (33), with 

N-fluoropyridinium triflate gave a 1 : 2 mixture of the 6α/6β-fluoro steroid 34 (Scheme 

1.7, Reaction B), while the bulkier salt N-fluoro-2,4,6-trimethylpyridinium triflate affords 

a 1:8.5 mixture of 6α/6β-fluoro-steroid (35) in 55% yield (Scheme 1.7, Reaction C). 
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Scheme 1.7 Selectivity of fluorination with N-Fluoropyridinium triflate. 
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Remarkable regio-selectivity was obtained during the fluorination of the silyl enol ether 

steroid 39 by Umemoto et al. (Scheme 1.8).37 Here they used 1.0 equivalent of N-

fluoropyridinium triflate and 9-α-fluoro steroid (40) was produced in a 51% yield. The 

outcome of this reaction suggested that the pyridinium salt reacts almost exclusively with 

the tri-substituted enol ether moiety. 

 

Scheme 1.8 Synthesis of 9α-fluoro-steroid (40). 

1.3.6 Selectfluor® and derivatives 

Selectfluor® is an exceptionally stable fluorinating reagent developed by Banks and co-

workers.38 It is soluble in polar solvents such as acetonitrile (MeCN), dimethylformamide 

(DMF) and water. Recently, ionic liquids have also been successfully used as solvents for 

fluorination reactions involving Selectfluor®.39 The fluorination power of this reagent can 

be increased or decreased by replacing the CH2Cl group on the N-fluoroquinuclidine ring 

(Figure 1.8). Derivatives synthesised vary from simple methyl derivative 41 (R = Me) to 

the highly reactive trifluoroethyl reagent 41 (R = CF3CH2).40 

 

Figure 1.8 Examples of fluorinating agents derived from DABCO (42). 

 

The synthesis of Selectfluor® is very simple which has allowed it to be produced on a 

multiple ton per year scale (Scheme 1.9).41,42 The procedure involves alkylation of 1,4-

diazabicyclo[2.2.2]octane (DABCO) 42 with DCM, counter ion exchange with sodium 

tetrafluoroborate and subsequent fluorination with elemental fluorine in acetonitrile. 
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Scheme 1.9 The synthesis of Selectfluor® (20). 

 

It was shown by Lal et al. that Selectfluor® can be used in a synthesis of fluorinated steroids 

(Scheme 1.10).43 The fluorination reaction of the enol ester 45 and the silylenol ether 46 

gave the 16α-fluoro steroid 48 in very good yield and stereoselectivity. 

 

Scheme 1.10 Synthesis of fluorinated steroids with Selectfluor®. 

 

Herrinton and co-workers reported the reaction of Selectfluor® with a conjugated enol ester 

13 (Table 1.7).44 The fluorination reaction with Selectfluor® and N-fluoropyridinium salts 

gave the target product with similar yield and stereo-selectivity. The reaction performed 

with N-Fluorodibenzenesulfonimide (NFSI) gave the product with lower yield but 

produced mainly β isomer of 14. 

 

Table 1.7 Stereo-selectivity of selected fluorinating agents in the formation of 14.  
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Entry Reagent Solvent Conditions Yield [%] 14 (α:β) 

145 Selectfluor® MeCN 3 h, 0oC 95 1:1.4 

246 NFSI THF 24 h, 40oC 60 5:95 

347 NFPy MeCN 2 days, 40oC 96 50:50 

 

Widdowson and co-workers showed that fluorination with Selectfluor® can be carried out 

with steroid derivatives containing a vinyl stannane group.48 For example, when 

testosterone derivative (48) was treated with Selectfluor® 4-fluoro testosterone (49) was 

obtained in a 50% yield (Scheme 1.11). 

 

Scheme 1.11 Fluorination of steroid 48. 

 

1.3.7 Sulfonyl derivatives 

The first application of N-alkyl-N-fluorosulfonamides in electrophilic fluorinations was 

described by Barnette and co-workers in 1984.49 N-alkyl-N-fluorosulfonamides can be 

easily prepared by treatment of the appropriate amide with a mixture of elemental fluorine 

(F2) and nitrogen. For example, fluorination of sulphonamide 50 in CFCl3/ CHCl3 gave the 

fluorosulphonamide (51) in 59% after purification by flash column chromatography 

(Scheme 1.12).49 

 

Scheme 1.12 Formation of fluorosulphonamide (52). 

 

In comparison to the N-fluoropyridinium salts the N-alkyl-N-fluorosulfonamides reagents 

are neutral and are therefore less electrophilic. It was shown by Barnette, that they react 
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with various carbanions such as malonates, ketones, acids, amide enolates, alkyl and aryl 

organometallics.49 A typical fluorination procedure involves anion generation with strong 

base followed by addition of N-fluorosulfonamide (Scheme 1.13). 

 

Scheme 1.13 Ortho lithiation followed by fluorination with N-fluorosulfonamide. 

 

After Barnette’s discovery, Des-Marteau reported the synthesis of 

perfluoroalkylsulfonamides.50 These compounds are among the most powerful 

electrophilic fluorinating reagents known. For instance, fluorination of toluene with 

(CF3SO2)2NF occurred at room temperature to give predominantly 2-fluorotoluene (56) 

(Scheme 1.14). 

 

Scheme 1.14 Fluorination of toluene (55) using (CF3SO2)2NF. 

 

Although, the perfluoroalkylsulfonamides are very powerful fluorinating reagents their 

preparation requires the use of neat elemental fluorine (F2). Consequently, less reactive 

sulphonamides such as N-fluorobenzenesulfonamide (NSFI (21)) and o-

benzenedisulfonamide (NFOBS (23)) have become more popular. These reagents are more 

reactive than N-alkyl-N-fluorosulfonamides and they are commercially available. Recently 

NSFI (21), was successfully used by Hamashima in an enantioselective fluorination of 

oxindoles (Scheme 1.15).51 The high enantioselectivity obtained in this reaction can be 

explained by the formation of an intermediate chiral palladium enolate which undergoes 

subsequent fluorination. 



 

35 
 

 

Scheme 1.15 Enantioselective fluorination of oxindole (59). 

 

1.3.8 Nucleophilic fluorination 

Another approach to the preparation of fluoro-organic compounds relies on employment of 

nucleophilic fluorination (F-) reagents. Some of the most commonly used methods of 

nucleophilic fluorination are briefly discussed in the following sections, and, where 

possible relevant examples of their application in the preparation of fluorinated steroids 

have been included. 

 

1.3.9 Fluoride Ion 

Fluoride ion (F-) is a very poor nucleophile in protic solvents as it is heavily solvated and 

it forms tight ion pairs in aprotic media. Given this dipolar aprotic solvents, such as DMF 

or MeCN, tend to give the best results in combination with soluble tetraalkylammonium 

fluorides (e.g. tetra-n-butylammonium fluoride (TBAF)). Alternatively, metal fluorides can 

be used in conjugation with a crown ether to increase solubility. For example, cholenic 

methyl ester 61 was fluorinated at the α-position using potassium fluoride (KF) and 18-

crown-6 in DMF (Scheme 1.16).52 

 

Scheme 1.16 Nucleophilic fluorination with potassium fluoride (KF). 
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Nucleophilic fluorination is often use for the labelling of compounds with the 18F isotope. 

Changing synthesised 18F-acetylcyclopfoxy 64 to study opiate receptors employing PET-

scanning technique.53 The synthesis involved displacement of the triflate group with 

fluoride using tetraethyl ammonium fluoride (Scheme 1.17). 

 

Scheme 1.17 18F isotope labelling. 

 

1.3.10 DAST and its derivatives 

Diethylaminosulfurtrifluoride (DAST (66)), a reagent derived from SF4, was first prepared 

by Middleton in 1975 and is now one of the most widely used and commercially available 

fluorinating agents.54 DAST (66) can be used to transform alcohols directly to the 

corresponding alkyl fluorides as well as aldehydes and ketones to the corresponding 

geminal difluorides. Upon heating, DAST decomposes rapidly to produce the highly 

explosive (Et2N)2SF2, therefore fluorination reactions that use this reagent are usually 

carried out below 50oC, typically rt. In 1990 Lal et al addressed the issue of the thermal 

instability by preparing the DAST related bismethoxyethyl derivative (Deoxofluor (71)). 

Deoxofluor is more stable due to coordination of the methoxy group to sulphur centre. For 

example, Bombrun et al recently used DAST (66) to obtain the fluorinated analogue of 3,6-

dibromocarbazole piperazine derivative 65 (Scheme 1.18).55 It was found that this 

compound is a potent modulator of the Cytochrome c release via Bax Channel Modulation. 
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Scheme 1.18 DAST (66) fluorination of 3,6-dibromocarbazole piperazine 
derivative (65). 

DAST and related fluorinating agents proceed via a fluorodeoxygenation mechanism. 

Fluorodeoxygenation relies on the transformation of the hydroxyl group into a good leaving 

group (e.g. intermediate 69, Scheme 1.19)56 and this is subsequently displaced by fluoride 

ion (Scheme 1.19). The fact that the reaction proceeds with inversion of stereochemistry 

allows introduction of the fluorine with stereochemical control. 

 

Scheme 1.19 The mechanism of DAST (66) fluorodeoxygenation. 

 

DAST type fluorinating reagents can also be used to convert carbonyl and thiocarbonyl 

compounds to appropriate germinal difluoro derivatives. This and related nucleophilic 

reactions were used by Lal and co-workers to prepare various organofluoro compounds.57,58 

For example, α-phenoxy carbonyl compound 72 was fluorinated in a very good yield to 

provide difluoro derivative 73 (Scheme 1.20). Similarly, thioester 74 was converted to 

difluoro compound 75 in an excellent yield. More recently, Rozen achieved this type of 

transformation using BrF3.59 
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Scheme 1.20 Bis-fluorination of carbonyl compounds with Deoxofluor (71). 

 

1.3.11 HF Reagents 

The wide spread use of HF as a fluorinating reagent is limited for various reasons. Firstly, 

HF is very volatile, highly toxic and corrosive to glass equipment. In addition, HF is a 

relatively weak acid (pKa = 3.17) providing only low concentrations of fluoride ions in 

solutions. Consequently, other HF equivalent reagents have been developed over the years. 

In these alternative reagents the corrosive and reactive nature of HF was modulated by 

using it in combination with various amines. Reagents of this class tend to be more 

nucleophilic than HF on its own, making them valuable reagents for nucleophilic 

fluorination reactions. The most common reagent in this class is Olah’s reagent, (full name, 

PPHF) which consists of a mixture of 70% hydrogen fluoride and 30% pyridine. 

Applications of Olah’s reagent include reactions with alcohols and alkenes to give alkyl 

fluorides, acyl chlorides or anhydrides to give acyl fluorides.60 Olah’s reagent, can also be 

used to ring open epoxides, a strategy that was utilised in the preparation of the fluorinated 

derivative of shikimic acid (76) (Scheme 1.21).61 

 

 

Scheme 1.21 Epoxide opening with Olah’s reagent (PPHF). 
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Kanie employed PPHF to introduce three fluorine atoms into a steroid core (78).62 This was 

achieved by activating the substrate with N-Iodosuscinamide (NSI) to facilitate the attack 

by fluoride (Scheme 1.22). 

 

 

Scheme 1.22 Introduction of a trifluoromethylether group using Olah’s reagent (PPHF). 

 

1.3.12 Electrochemical fluorination 

Electrochemical fluorination was introduced by J. H. Simons in the 1940’s and today it is 

called the Simons Process.63 This technique employs anhydrous hydrogen fluoride (HF) as 

a solvent and some process variations inorganic fluorides.64 By this route, it is possible to 

produce a range of perfluorinated amines, ethers, carboxylic acids, and sulfonic acids. 

A major breakthrough in the field of electrochemical fluorination came in 1970 when 

triethylamine-3HF dissolved in acetonitrile gave mono fluorinated naphthalene.65 Since 

then, selective fluorinations of a variety of aliphatic and aromatic substrates have been 

reported in the literature.66 For example, Morita and co-workers have showed that 

electrolytic fluorination of toluene in the presence of Et4NF·4HF gave exclusively 

benzylfluoride (80) in 75% yield. Further fluorination afforded mainly 

difluoromethylbenzene (81), along with small amounts of ring-fluorinated side products 82 

and 83 (Scheme 1.23).66 

 

Scheme 1.23 Electrochemical fluorination. 
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1.4 Aims of the project 

The detection of prohibited performance-enhancing drugs in sports is often carried out 

using urine samples. The reason for this is that urine sample can be collected under non-

sterile conditions and do not require the presence of a WADA sanctioned medical officer. 

Once the urine sample has been collected the sample is divided into two and preserved 

within sealed containers. If first sample has revealed the presence of a prohibited substance 

second sample will be analysed. Although these measurements help to eliminate errors 

during analysis at the present time WADA does not provide the national anti-doping 

organizations with a detailed standard protocol regarding storage or transportation of the 

urine samples collected. Consequently, improper storage of the urine samples from athletes 

can lead to microbial contamination, which can cause changes in the testosterone 

concentrations, leading to false positive results for a particular athlete. This is highlighted 

in the case of the British athlete Diana Modhal. Modhal was banned from competing on to 

have the ban overturned when it was found that microbial contamination was responsible 

for the positive results obtained. To overcome any potential problems with microbial 

contamination both physical and chemical methods have been developed to protect urine 

samples from degradation that can arise due to improper storage conditions.67,68 However, 

many of these methods are either impractical or very costly to implement. For instance, one 

approach proposes the addition of complex cocktail of antibiotics to the urine samples that 

will function to inhibit any microbial growth. This approach is prohibitively expensive and 

in a wider context it could also contribute to the growing problem of antibacterial 

resistance.  

To address the problem from a fresh perspective we undertake a study to develop a simple 

and robust analytical protocol that could be used to identify samples in which microbial 

growth has occurred in anti-doping samples. The key technique that will be employed to 

do this is 19F NMR. To enable this critical aspect of the early work on the project will 

involve the preparation of fluorine containing steroids (examples-Figure 1.10). As 

discussed earlier, there are several different synthetic procedures available in literature that 

have been successfully utilised to introduce a fluorine atom into steroid structures. These 

methods will be employed when appropriate and new synthetic strategies will be 

investigated when required. Of particular interest is to try and expand the work that has 
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been carried out to create fluorinated steroids using both Selectfluor® and elemental 

fluorination. 

 

Figure 1.10 Examples of fluorine containing steroids. 

 

The metabolism of each fluorinated steroid prepared will be assessed by a range of 

microorganisms such as Pseudomonas aeruginosa, Staphylococcus epidermidis, E. coli, 

Enterococcus faecalis and Candida albicans. These microorganisms are representative of 

species commonly encounter in human microbial flora, urinary tract infections and indoor 

air. The biotransformations will be monitored by 19F NMR and the metabolites produced 

analysed by HPLC, ESI-MS and GC-MS. This work will be carried out in collaboration 

with the group of Dr Cormac Murphy at University College Dublin. 

Each fluorinated steroid prepared will also be incubated under a range of conditions 

(temperature, exposure to air, etc.) and the chemical changes or degradation arising will be 

investigated. 
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2 The Synthesis of Fluorinated Steroids 

2.1 Introduction 

In order to evaluate 19F NMR as a tool for detecting bacterial contamination in antidoping 

samples we want to look at the metabolism of a range of fluorinated steroids in several 

different micro-organisms. To carry out this work a range of fluorine containing steroids 

presented in Figure 2.1 were synthesised. In order to access the fluorinated steroids a range 

of different synthetic methods have been employed where appropriate and new synthetic 

strategies have also been investigated. Initially the reactivity of a series of protected steroids 

towards the fluorinating agents Selectfluor® and NSFI were examined. The fluorinated 

steroids produced were then incubated with a range of microorganisms; Streptomyces 

griseus, Escherichia coli, Bacillus subtilis and Bacillus megaterium and the resulting 

metabolites were examined by 19F NMR, LC-MS and GC-MS (Chapter 3). In addition to 

the studies carried out in bacteria the chemical stabilities of the fluorinated steroids were 

also examined (Chapter 3).  

 

Figure 2.1 Structures of the fluorinated steroids prepared in this study. 
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2.2 Synthesis of Fluorinated Steroids 

2.2.1 Synthesis of 6αβ-fluoro-testosterone 

The synthesis of 6-fluoro-testosterone (84) could be carried out from commercially 

available testosterone (91). However, as dehydroepiandrosterone (DHEA) (89) was already 

available in the Cobb group an alternative approach was initially investigated, in which 

testosterone (91) was prepared prior to fluorination. The synthesis of testosterone (91) was 

attempted using the sequence of reactions shown in Scheme 2.1.  

 

Scheme 2.1 Synthesis of testosterone (91) from DHEA (89). 

The known steroid alcohol (90) was prepared according to a literature procedure which 

involved the reduction of DHEA (89) in ethanol with sodium borohydride (Scheme 2.1).1 

This reaction was successful and gave the desired alcohol (90) in an excellent yield (91%). 

The product structure was confirmed by analysis of the IR spectrum, which showed a broad 

signal at 3441 cm-1 corresponding to the hydroxyl group, and the 1H NMR spectrum which 

contained a characteristic peak at δH = 3.64 ppm corresponding to the proton on 17-C. 

With the alcohol (90) in hand, attention turned to the subsequent oxidation reaction. A 

search of literature revealed that the particular reaction required had previously been 

described by Kuwada et al.2 In this early work, the 3-dihydroxyandrost-5-ene (90) 

was oxidised and isomerised to the α/β unsaturated compound using aluminium 

isopropoxide and acetone as a very mild oxidising agent. The subtle difference between 3-

C and 17-C hydroxyl group reactivity allowed regioselective oxidation to produce 

thermodynamic product in 40% yield. 

Following the protocol developed by Kuwada, the alcohol (90) in toluene was treated with 

aluminium isopropoxide and acetone. The resulting crude reaction mixture was then 

concentrated under vacuum, and purified by flash column chromatography (silica gel) to 

give by 1H NMR low purity testosterone (91) in 35% crude yield. Disappointingly, the 
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synthesised testosterone was not sufficiently pure for the further investigation therefore the 

commercial material was used for the synthesis of fluorinated analogues. 

In order to prepare fluorinated testosterone derivatives, the synthesis of a range of protected 

steroids needed to be carried out first. The synthesis of the di-protected testosterone (94) 

began with the formation of ethylene glycol acetal (93) followed by acetylation with acetic 

anhydride (Scheme 2.2). The reaction proceeded as expected and gave the desired product 

(93) in an excellent yield. Acetylation of testosterone was carried out in a similar manner 

to produce 92 in a 93% yield. Some minor problems were encountered during the formation 

of the bis-acetylated steroid 13. Initially the reaction was carried out according to a 

literature procedure.3 This involved treatment of testosterone (94) with acetyl chloride and 

acetic anhydride in pyridine. The reaction was heated at reflux and reaction progress was 

monitored by 1H NMR. It was found that the product showed some degree of instability 

under these reaction conditions. In addition, the conjugated enol ester 13 reacts with water 

at temperature > 25oC and decomposes slowly on silica. To circumvent these problems, the 

original literature procedure was modified. Specifically, it was found that the reaction could 

be more effectively carried out using DMF instead of pyridine as a solvent. This change in 

solvent improved the handling of the reaction mixture (in pyridine the reaction initially 

solidifies) and it simplifies the work-up procedure (multiple aqueous washes were required 

to remove the large excess of pyridine). Furthermore, it was found that when the reaction 

was quenched at 0oC it gives a much cleaner product, which could be simply purified by 

trituration with ethanol. 
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Scheme 2.2 Protection of testosterone (91). 

 

Products 92 and 93 were obtained as crystalline solids and their structures were confirmed 

by X-ray diffraction (Figure 2.2). Key evidence to confirm the formation of 94 was also 

obtained from the 1H NMR spectra. The 1H NMR spectrum showed the expected 

characteristic signal at δH = 3.80-3.92 ppm corresponding to the glycol group. The 

formation of steroid 13 could easily be confirmed from the presence of a pair of singlets in 

the 1H NMR at δH = 2.05 ppm and δH = 2.13 ppm, corresponding to the acetyl group 

protons. 
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Figure 2.2 X-ray structures of protected testosterones 92 and 93. 

The resulting protected steroids (13, 92, 93, 94) were subsequently used to generate their 

fluorinated analogues. Initially fluorination with F2 gas was carried out with steroids 92, 93 

and 94. A solution of the appropriate steroid in MeCN was sparged with a mixture of F2/N2 

at 0-5oC for 1h. The reaction mixture was concentrated and analysed by 1H and 19F NMR. 

It was found that the reactions gave a mixture of fluorinated steroids with the main 

component being unreacted starting material (> 90%). Unfortunately, any attempts to 

obtain pure single species from the crude reaction mixtures by flash column 

chromatography were unsuccessful and the experiments could not be repeated due to 

limited access to the specialized F2, fluorination equipment.  

Attention then turned to the reaction of the protected steroids with the known electrophilic 

fluorinating agent, Selectfluor®. To a solution of the steroid (100 mg) in MeCN was added 

the fluorinating reagent (1.2 eq) under argon at RT. The reaction mixtures were stirred at 

RT for 8h. After that time, TLC analysis showed only the presence of starting material for 

all of the reactions carried out. Given this the temperature of the reaction was increased to 

reflux and the mixtures were allowed to stir overnight. The crude reaction mixtures were 

then analysed by 19F NMR and GC-MS. The results obtained are presented in Table 2.1.  

93 92 
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Table 2.1. Fluorination of protected steroids using Selectfluor®. 

Entry Starting material Products observed  
1 

 

 
Fluorinated products present by 19F NMR 

Main product: de-protected steroid (MW 288) and 
fluorinated products (MW 392) 

2 

 

 
Fluorinated products present by 19F NMR 

Main product: de-protected steroid (MW 288) and 
fluorinated products (MW 350) 

Minor products: de-protected/fluorinated product 
(MW 306) 

3 

 

 
Fluorinated products present by 19F NMR 

Mainly starting material 
Trace of fluorinated product (MW 348) and de-

protected starting material 

 

When steroid 92 and 93 were treated with Selectfluor® fluorinated products were detected 

by GC-MS (Table 2.1, Entry 1-3). The reaction of Selectfluor® with 93 gave the most 

fluorinated products by 19F NMR, therefore an attempt was made to purify the crude 

reaction mixture by flash column chromatography (on silica gel). The fractions containing 

the fluorinated products were combined based on 19F NMR. Unfortunately, the 

identification of a major product was not possible. Nevertheless, it is speculated that the 

most nucleophilic position 6-C would have been preferentially fluorinated under the 

electrophilic fluorination conditions used.  

 

The reactivity of 13 towards Selectfluor® and then N-fluorobenzenesulfonimide (NFSI) 

was investigated. The testosterone derivative 13 is more nucleophilic than steroids 92, 93 

and 94 previously investigated and, therefore, it was anticipated that fluorination will 

proceed selectively at 6-C. 13 was stirred under argon for up to 48 h in the presence of 1.1 

eq of the aforementioned fluorinating agents and Table 2.2 summarises the products 

obtained.  
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OAcOAc

OAcO
F

13

6 -isomer

OAc

O

F

14a

6 -isomer

14b  
Table 2.2 Attempted fluorination of protected testosterone (13). 

Entry Reagent Solvent Temp. 
(oC) 

Time 
(h) 

Isolated yield (%) α/β 

1 Selectfluor® DMF RT 48 98 40/60 
2 Selectfluor® MeCN RT 24 Starting material only - 
3 Selectfluor® DMF 0oC 24 47 40/60 
4 Selectfluor® DMA RT 24 not isolated 50/50 
5 NFSI DMF RT 48 not isolated 25/75 

 

With the exception of the reaction in acetonitrile (Table 2.2, Entry 2), which gave only 

unreacted starting material (13), all of the reaction conditions investigated led to the 

formation of 6-fluoro-testosterone (14) (as determined by 19F NMR). The reaction in 

DMF at RT produced a 40:60 mixture of α/β-diastereoisomers (14a and 14b) in very good 

yield (Table 2.2, Entry 1). Speculating that diastereoselectivity of the fluorination could be 

improved; additional experiments were performed and reaction temperature, solvent and 

fluorinating agent were varied. From these experiments it was found that both solvent and 

temperature did not affect the selectivity of the reaction to any great extent. In addition, it 

was found that the reaction performed with NFSI gives initially the β-isomer, although this 

appears to be thermodynamically unstable and gradually isomerise to the α-isomer finally 

giving a 25:75 (α:β) mixture after 48h (Table 2.2, Entry 5). 

Formation of the fluorinated mixture of  steroids (14a and 14b) was confirmed by 

examination of the 19F NMR spectrum, which revealed new signals at δFβ = -165.53 ppm 

and δFα = -183.23 ppm corresponding to the CH2F. The configuration of the 

diastereoisomers was assigned on the basis of 2D correlation NMR experiments 

(Figure 2.3). In the α isomer 10-C-CH3 group showed correlation between proton 6C-H 

and 8C-H. The 1H NOESY spectrum of the isomer 14b showed correlation between 4C-H, 

6C-H and 7C-H indicating that the fluorine is placed in the axial position. 
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Figure 2.3 Nuclear Overhauser Effect (NOE) interactions identified in compound 14. 

 

With the acyl protected 6-fluoro-testosterone acetate (14) in hand, the next stage was to 

attempt the deprotection reaction. In theory, the removal of an acyl protecting group can be 

achieved by either treatment with acid or base, and a range of reaction conditions was 

examined (Table 2.3). The progress of the reactions was monitored by 1H NMR and TLC.  

 

Table 2.3 Deprotection of 14 under various conditions. 

Entry Solvent Time (h) Temp. Reagent Results 
1 THF 24 RT 0.5M NaOH trace of product 
2 MeOH 36 RT 0.2M NaOH Decomposition 
3 MeOH/H2O 36 RT K2CO3 Decomposition 
4 MeOH/H2O 1.5 Reflux K2CO3 trace of product 
5 MeOH/H2O 24 30oC K2CO3 trace of product 
6 MeOH/H2O 36 RT Cs2CO3 Decomposition 
7 THF 48 40oC 2M HCl Product 

 

From the data presented in Table 2.3 it can be seen that the product is not stable under 

basic conditions (Table 2.3, Entry 1-6). It was observed by 1H NMR that the starting 

material could easily undergo an elimination reaction to form de-fluorinated product (95) 

which showed new signals at δH = 6.12 ppm, 6.05 ppm, 5.75 ppm (no fluorine was observed 

by 19F NMR). The starting material was also converted to methanol adduct (96) based on 

1H NMR which showed characteristic signal at δH = 3.42 ppm (3H) corresponding to OCH3 

protons 
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OAc

O

OAc

O

OMe

95 96  

Figure 2.4 Side products generated during the de-protection of the acyl protected 
6-fluoro-testosterone acetate (14). 

 

The best conversion achieved under basic reaction conditions was when the reaction was 

carried out at reflux for 1.5 h (Table 2.3, Entry 4). However, after flash column 

chromatography (silica gel) the product was isolated in a low yield (35%) and the purity as 

determined by 1H NMR was found also found to be low (e.g. contained methanol adducts). 

These unsuccessful attempts led us to investigate acetyl hydrolysis under acidic conditions. 

A solution of the starting material 14 in THF was treated with 2M HCl. Subsequent 

purification of the crude reaction mixture afforded the desired compound 84 (58% yield) 

as confirmed by analysis of the 1H NMR spectrum, which showed disappearance of a signal 

at δH = 2.05 ppm arising from loss of the OAc protons. 

 

 

 

Figure 2.5 X-ray structure of 6-fluoro-testosterone (84). 
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2.2.2 Synthesis of Fluorinated Androsterone 

The first step in the preparation of fluorinated androsterone requires protection of the 

androsterone hydroxyl group at 3-C. This was achieved using acetic anhydride under basic 

conditions in DCM (Scheme 2.3.). The reaction gave the desired product 98 in very good 

yield (98%) and purity after purification on a silica pad. The carbonyl group was then 

protected with ethylene glycol and a catalytic amount of p-toluenesulfonic acid (PTSA). 

Triethyl-orthoformate was used to remove water from the reaction mixture. An excellent 

yield was obtained for both the non-acylated (99) (86%) and acylated androsterone (100) 

(99%). 

 

Scheme 2.3  Protection of androsterone (97). 

 

The formation of 98 was supported by mass spectrometry showing a molecular ion of m/z = 

332 [M+H]+. In addition, the 1H NMR spectrum showed a signal attributed to the acetyl 

group at δH = 0.85 ppm (3H). Key evidence for the formation of glycol protected 

compounds was found in the 1H NMR spectrum where signal corresponding to the glycol 

group were observed at around δH = 3.80-3.97 ppm for 99 and at around 

δH = 3.80 - 3.96 ppm for 100.  
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It was speculated that the presence of a TMS group would make the molecule more reactive 

towards electrophilic fluorination. This was based on the fact that this type of protecting 

group  had been employed in the preparation of α-fluoro-carbonyls (e.g. 102) by 

Umemoto.4 For example, Umemoto found that N-fluoropyridinium triflate can be used in 

the fluorination of ether 101, to give 2-fluorocyclohexanone 102 in an excellent yield 

(87%). 

 

Scheme 2.4 Fluorination of a silylenolether (101)4. 

 

The synthesis of the TMS protected androsterone (103) was carried out under 

thermodynamic conditions using triethylamine to generate the enol and trimethylsilyl 

chloride (TMS-Cl) as a trapping agent. The reaction mixture was stirred at reflux and 

monitored by 1H NMR. After 24h at reflux, a mixture of the starting material and the 

product was detected. No further changes were observed after an additional 24h, therefore 

the reaction mixture was worked-up and the product was purified by flash column 

chromatography. Unfortunately, the purification was unsuccessful due to instability of the 

product on silica gel. It was later found that the desired fluoro-steroid (87) could be 

synthesised by generating the androsterone enol under acidic conditions (catalytic amount 

of H2SO4), so no further attempts to synthesise the di-TMS protected steroid were carried 

out. 

 

Scheme 2.5 Attempted synthesis of TMS protected androsterone (103). 
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The resulting protected steroids (98, 99 and 100) were then subsequently reacted with F2 

gas. A solution of the appropriate steroid in MeCN was sparged with a mixture of F2/N2 at 

0-5oC for 1h. The reaction mixture was concentrated and analysed by 1H and 19F NMR. It 

was found that the reaction gave a mixture of fluorinated steroids with the main component 

being the unreacted starting material. Unfortunately, any attempts to purify out a single 

product from the crude reaction mixture was unsuccessful.  

Attention then turned to the reactions of the protected steroids with Selectfluor®. The 

reactions were carried out on 100 mg scale and used similar conditions using 

(e.g. Selectfluor® (1.1eq) in MeCN) to those used previously Table 2.4. The reaction 

mixtures were stirred at RT for 8h then refluxed overnight. The reaction mixtures were 

analysed by NMR and GC-MS. The results obtained are summarised in Table 2.4. 

Table 2.4 Fluorination of protected steroids using Selectfluor®. 
 

Entry Starting material Products  

1 

 

No fluorinated product 
Mainly starting material 

Trace of de-protected starting material (MW 290)  

2 

 

No fluorinated product 
Mainly starting material and de-protection/oxidation 

product (MW 288) 
Minor products: de-protected steroid and oxidation 

product (MW332 possibly 3-keto steroid) 

3 

 

No fluorinated product 
Mainly Starting material 

Trace of de-protected/oxidised product (MW332) 

 

Compounds 98, 99 and 100 (Table 2.4, Entry 1-3) did not appear to be sufficiently 

nucleophilic to be fluorinated with Selectfluor® given that the major product recovered was 

unreacted starting material. Trace amounts of the corresponding de-protected and oxidised 

products were also detected by GC-MS but no fluorinated product was formed (as indicated 

by 19F NMR).  

The α-fluorination of carbonyl compounds could be achieved by electrophilic fluorination 

of enol ethers derivatives. Methods for direct α-fluorination of carbonyl compounds have 
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been extensively studied by the Batey group.5 They found that the presence of a catalytic 

amount of sulphuric acid in the reaction mixture is sufficient to generate enol which reacts 

with Selectfluor® to give α-fluorinated product. For example, fluorination of tetralone (104) 

gave the product in 93% yield after flash column chromatography (Scheme 2.6). 

 

Scheme 2.6 Fluorination of tetralone (104). 

Following the protocol developed in Batey’s group, androsterone was treated with 

Selectfluor® and sulphuric acid in methanol. The reaction was successful however extended 

stirring times were necessary to achieve good conversion (Scheme 2.7). The formation of 

product 87 was supported by 19F NMR spectroscopy indicated the presence of a fluorine 

atom at δF = -183.45 ppm, δF = -192.58 ppm (α/β mixture). 

 

 

Scheme 2.7 Fluorination of androsterone (97) using Selectfluor® under acidic 
conditions. 

The synthesis of 16-Fluoro-3,17-dihydroxyandrostane (105) was carried out by 

reducing 16-fluoro-androsterone (87) with sodium borohydride in a mixture of DCM 

and MeOH overnight at RT. This gave the desired product in 90% yield as a mixture of 
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four diastereoisomers. The formation of 105 was confirmed by the 19F NMR spectrum, 

which showed peaks at δF = - 179.82 ppm, - 185.28 ppm, - 191.93 ppm, - 196.35 ppm 

corresponding to the four 16-fluoro-isomers. 1H NMR revealed formation of the 

corresponding alcohol δH = 350-3.62 ppm (0.5H, m), and δH = 3.76-3.77 ppm (0.4H, m). 

 

2.2.3 Synthesis of Fluorinated Androstenedione 

Androstenedione (106) (called andro) is banned by the WADA but it is currently available 

without a prescription and marketed primarily to athletes and bodybuilders. The number of 

people regularly using androstenedione is not known. It was found by Leder that when 

given in dosages of 300 mg/day, this increases serum testosterone and estradiol 

concentrations in some healthy men.6 There was marked variability in individual responses 

for all of the measured sex steroids. 

It was envisaged that the target 6/-fluoro-androstenedione (5) could be potentially 

generated in three steps following the procedure presented below in Scheme 2.8. The first 

step in the synthesis involves an Oppenauer Oxidation reaction of commercially available 

dehydroepiandrosterone (DHEA (89)). 

 

Scheme 2.8 Attempted synthesis of 6/-fluoro-androstenedione (5). 
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Following the protocol outlined by Almeida et all.7 the synthesis of androstenedione (106) 

was carried out in toluene with aluminium isopropoxide (5.65 eq) and cyclohexaneone (21 

eq). After 16h at reflux, the formation of the product was confirmed by 1H NMR analysis. 

The reaction was worked-up and the product was purified by re-crystallisation from hexane 

(31% yield). A substantial amount of the product was detected in the mother liquors; 

however, attempts to purify further product from the mother liquor by flash column 

chromatography were unsuccessful. In addition, it was also found that low purity 

androstenedione product did not give the desired product (107) at the next stage. 

In order to improve the reaction yield and product purity, various modifications to the 

original procedure were carried out. It was found that the reaction yield could be improved 

by using freshly distilled toluene and by distilling off the excess cyclohexanone before 

carrying out the work-up (yield was increased to 60%). It was also found, that a very good 

reaction profile could be achieved for the reaction performed according to the procedure 

published by Pavlovic et all.8 The reaction was carried out in a similar fashion however the 

charge of aluminium isopropoxide was significantly reduced (0.6 eq) and the reagent was 

added very slowly. The work-up procedure was modified based on the previous 

observations and the product was isolated by re-crystallisation from hexane in a very good 

yield (93%) and purity. Evidence for the formation of diketone 106 was ascertained from 

the 13C NMR spectrum which contained two signals corresponding to the carbonyl groups 

at δC = 200 ppm (conjugated) and at δC = 220 ppm. 

The synthesis of acetyl androstenedione (107) was performed following the procedure 

developed for the synthesis of 6-fluoro-testosterone (84). A solution of androstenedione 

(106) in DMF was treated with pyridine, acetylchloride and acetic anhydride and the 

resultant solution was heated at reflux for 5h. This gave the acetyl androstenedione as 

expected, however minor problems were encountered during the isolation of the product. 

It was found that the product decomposes on silica during purification if the reaction is 

quenched with water at RT. The first problem was addressed by quenching the reaction 

slowly at 0oC. This gave the acetyl androstenedione (107) with a good crude yield. 

Purification on deactivated silica (pre-washed with Et3N) and alumina were not successful 

with the product obtained of lower purity that the input material. A pure product was 

obtained by trituration of the crude material with Et2O and subsequent slurry in methanol. 

As previously, evidence confirming the formation of 107 was obtained from the 1H NMR 

spectrum which showed the appearance of the double bond protons (δH = 5.70 ppm and δH 
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= 5.41 ppm) and the acyl signal (δH = 2.13 ppm) respectively. The product appears to be 

unstable and slowly decompose upon storage. 

 

Figure 2.6 X-ray structure of 3-acetoxyandrost-3,5-diene-17-one (107). 

The final stage of the synthesis was performed according to the previously developed 

protocol (Section 2.2.1, 6-fluoro-testosterone (84)). To a solution of the acetyl 

androstenedione (107) in DMF was added Selectfluor® and the reaction mixture was stirred 

at RT. After 24h, NMR indicated complete consumption of the starting material and the 

formation of a complex mixture of fluorinated products (16 signals were observed by 19F 

NMR). Purification by flash column chromatography (silica gel) was not successful; 

therefore, in order to improve the yield and selectivity of the fluorination reaction, several 

experiments were carried out in which the reaction time, solvents and temperature were all 

varied. Unfortunately, all attempts to efficiently generate 6-fluoro-androstenedione (5) 

were unsuccessful. Therefore, attention turned to the use of the previously prepared 6-

fluoro-testosterone (84) as an alternative precursor in the preparation of 6/-fluoro-

androstenedione (5). 

It was suggested that under mild conditions oxidation of 6/-fluoro-testosterone (84) 

could be achieved without defluorination of the starting material/product occurring. There 

are many examples in the literature reporting the oxidation of steroids. Of these, a reaction 

carried out Langer and co-workers appeared to be the most relevant.9 Here, a mixture of 

108, tetrapropylammonium perruthenate (TPAP) and 4-methylmorpholine N-oxide (NMO) 

was stirred at RT for 24 h, to afford steroid 109 in 55% yield (Scheme 2.9). 



 

61 
 

OH O

TPAP
NMO

108 109

HO O

 

Scheme 2.9 Oxidation of steroids with TPAP and NMO.9 

 

Following the procedure developed by Langer, to a solution of 6-fluoro-testosterone 

(84) in dry MeCN, TPAP (0.05 eq) and NMO (1.5 eq) were added (Scheme 2.9). The 

reaction mixture was stirred at RT and, following work-up, product was obtained in a very 

good yield (61%). 
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Scheme 2.10 Synthesis of 6-fluoro-androstenedione (5) via oxidation. 

 

 

 

Figure 2.7 X-ray structures of 6-fluoro-androstenedione (5). 

 

The spectroscopic data were as expected similar to those reported for 6-fluoro-

testosterone (84) providing indirect evidence for the formation of the desired fluorinated 



 

62 
 

product 5. Compound 5 also showed the characteristic signals corresponding to the two 

carbonyl groups at δC = 219.4 ppm and δC = 198.3 ppm and also signals attributed to the 

fluorine at δF = - 183.61 ppm (α isomer) and δF = - 165.66 ppm (β isomer). 

 

2.2.4 Synthesis of 6αβ-Fluoro-3β,17β-dihydroxyandrost-4-ene (110) 

We envisaged that the synthesis of 6-Fluoro-3,17-dihydroxyandrost-4-ene (110) 

could be carried out by reducing the already available 6-fluoro-testosterone (84). It was 

found that this could indeed be achieved using sodium borohydride in a mixture of DCM 

and MeOH. After 3h at RT, the reaction was quenched with HClaq, the product was filtered 

off and dried in a vacuum oven. This gave the product desired product in a 71% yield and 

as a mixture of two diastereoisomers. 

 

Scheme 2.11 Synthesis of 6-fluoro-3,17-dihydroxyandrost-4-ene (110). 

 

The formation of 110 was confirmed by analysis of the 19F NMR spectrum, which showed 

peaks at δF = - 161.41 ppm, δF = - 184.19 ppm, corresponding to the two 6-fluoro-isomers. 

The configuration of the two main products could be deduced from 2D correlation NMR 

experiments (Figure 2.8). The stereochemistry of the  isomer was elucidated through 

1H NOESY experiments, and provided evidence that the proton 3-H was located axial to 

the proton 8-H. The 1H NOESY spectrum of the  isomer showed correlation between the 

proton 6-H and 7-H indicating a close proximity. Unfortunately, it was not possible to fully 

separate the isomers by flash column chromatography. 
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Figure 2.8 6α/β-Fluoro-3,17-dihydroxyandrost-4-ene (110) isomers. 

2.2.5 Synthesis of 6αβ-Fluoro-Nortestosterone 

Following the procedure developed for the synthesis of 6-fluoro-testosterone (84), a 

solution of nortestosterone (111) in pyridine was treated with acetyl chloride and acetyl 

anhydride to give the protected intermediate (112) (Scheme 2.12).  

 

Scheme 2.12 Attempted synthesis of 6-fluoro-nortestosterone (86). 

 

Evidence confirming the formation of 112 was obtained from the 1H NMR spectrum which 

showed the appearance of the double bond protons (δH = 5.47 ppm and δH = 5.76 ppm) and 

the acetyl signals (δH = 2.07 ppm and δH = 2.15 ppm) respectively. The next stage was to 

attempt the formation of the corresponding acetyl protected 6-fluoro-nortestosterone 

(113). A solution of 112 in DMF was treated with Selectfluor®. The reaction mixture was 

heated to 40oC overnight to give the product in 77% yield after purification by flash column 

chromatography. Fluorination of the acetyl protected nortestosterone (113) was confirmed 

by analysis of the 19F NMR spectrum, which showed signal at δF = -181 ppm for the α 

isomer and signal at δF = - 170 ppm for the β isomer. Finally, hydrolysis of the acyl group 

was attempted. As for the previous synthesis of 6/-fluoro-testosterone (84) this was 

carried out under both basic and acidic conditions and the results are summarised in Table 

2.5. Disappointingly, all of the reaction conditions investigated led to the formation of an 

intractable mixture of products. 
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Table 2.5 Attempted hydrolyses of the acetyl group in 113. 

Entry Solvent Reagent Temp (oC) Time Outcome (1H NMR) 

1 MeOH 2M HCl 40 3 days starting material only 

2 MeOH/H2O K2CO3 40 3 days trace of product 

3 MeOH/H2O 0.5M NaOH 40 3 days 
trace of product/ 
decomposition 

4 THF 2M HCl Reflux 3 days 
trace of product/ 
decomposition 

5 THF 2M HCl 40 3 days starting material only 

 

The failure of the above synthesis prompted investigations into an alternative method for 

the preparation of the 6-fluoro-nortestosterone (86). This involved the synthesis of 

TBDMS protected alcohol, acylation, fluorination and TBDMS deprotection 

(Scheme 2.13). Unlike the acyl protected alcohol, this could be deprotected under milder 

conditions with a fluoride source (e.g. TBAF). It is worth noting that this strategy precedes 

via Selectfluor® fluorination, which could potentially cleave the TBDMS group (as seen by 

Rogers et al.).10  

 

 

Scheme 2.13 Attempted synthesis of 6-fluoro-nortestosterone (86). 

 

With this in mind, nortestosterone (111) was reacted with TBDMSOTf to give silyl ether 

(114) in a 65% yield (Scheme 2.13). It was found that the reaction could be carried out in 
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the presence of either TBDMSOTf or TBDMSCl, however significantly better conversion 

was achieved for the reaction with triflate (TBDMSOTf 65%, TBDMSCl 50%). Evidence 

for the formation of the silyl ether (114) was confirmed by analysis of the 1H NMR and the 

MS data. The 1H NMR spectrum showed peaks at δH = 0.88 ppm and δH = 0.00 ppm, which 

can be attributed to the t-butyl and methyl groups respectively. 

The next step involved the reaction of the silyl protected nortestosterone (115) with acyl 

chloride and acetic anhydride in pyridine. This reaction was performed at 80oC overnight. 

Unfortunately, the reaction was not successful and it was found that the TBDMS group was 

not stable under the reaction conditions used. 

Given the lack of success in the employment of TBDMS group in the synthesis of 6- fluoro-

nortestosterone (86), attention turned to the use of a trifluoroacetate protecting group. It 

was speculated that the presence of an electron-withdrawing substituent on the acetate 

would encourage the final ester hydrolysis. Consequently, nortestosterone (111) was 

reacted with trifluoroacetic anhydride (TFAA) in DMF to give the trifluoroacetate (117) 

(Scheme 2.14). The presence of the desired compound in the crude product was established 

by NMR spectroscopy, where comparison of the 1H NMR spectrum of the starting material 

(111) and the product (117) showed the disappearance of the OH signal. Additional 

evidence for the formation of product 117 was found in the 19F NMR spectrum where a 

signal corresponding to the CF3 group was observed at δF = -75 ppm. Subsequently, it was 

found that this reaction could be carried out in one pot with the acylation reaction. The 

synthesis began with the reaction of nortestosterone (111) with TFAA to afford 

intermediate trifluoroacetate (117) which after 15 min at RT was treated with acetyl 

chloride to give the acylated nortestosterone (118). Evidence for the formation of the 

acylated nortestosterone was provided by the 1H NMR spectrum, in which a characteristic 

signals corresponding to the conjugated double bonds at δH = 5.84 ppm and δH = 5.77 ppm 

were observed. Unfortunately, all attempts to purify and fully characterise this compound 

were unsuccessful and led to decomposition. Unsaturated enol ester (118) was then treated 

with Selectfluor® to give the corresponding fluoro steroid (119). The formation of this 

product was confirmed by analysis of the 19F NMR spectrum, which showed peaks at δF = 

- 170 ppm and δF = - 181 ppm for the α and β isomers respectively. Following the procedure 

used previously to hydrolyse the acyltestosterone, the trifluoroacylnortestosterone was 

treated with dilute sulphuric acid. The hydrolysis proceeded as expected and gave the 

desired alcohol (86) in 55% yield.  



 

66 
 

OO

OH O

O

F

Selectfluor

O

OH

F

DMF

AcO

O

AcCl

Pyridine

TFAA

CF3

O

CF3

O

H2SO4

MeOH

111 117 118

11986
55%

O CF3

O

 

Scheme 2.14 Synthesis of 6-fluoro-nortestosterone (86). 

 

 

Figure 2.9 X-ray structure of 6-fluoro--nortestosterone (86). 

 

2.2.6 Attempted Synthesis of Fluorinated Norandrostenedione 

It was expected that the synthesis of 6-fluoro-norandrostenedione (120) could be carried 

out by oxidation of 6-fluoro-nortestosterone (86) using condition outlined previously 

for the synthesis of 6-fluoro-androstenedione. The oxidation of 6-fluoro-

nortestosterone (86) was carried out with TPAP (0.05 eq) and NMO (1.5 eq) in MeCN 

(Scheme 2.15). The reaction mixture was stirred at RT overnight. After that time, no 

product was detected and therefore another portion of TPAP (0.05 eq) and NMO (1.5 eq) 

were added. 6-fluoro-nortestosterone (86) was not oxidized under these conditions and 
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only the starting material was recovered. Subsequently, a Swern oxidation 6-fluoro-

nortestosterone (86) was attempted. To a solution of DMSO and oxalyl chloride in DCM 

was added 6-fluoro-nortestosterone (86) at -78oC. After 30 min at -78oC, Et3N was 

added and the reaction mixture was allowed to warm-up to RT. Analysis of the reaction 

mixture by 19F NMR showed a complex mixture of products. No product was detected by 

GC-MS. It is speculated that the different conformation of the 6-fluoro-nortestosterone 

(86) in comparison to 6-fluoro-testosterone (84) was the reason for the unsuccessful 

oxidation. 

 

Scheme 2.15 Attempted synthesis of 6-fluoro-norandrostenedione (120). 

 

2.2.7 Synthesis of Fluorinated Norandrostenediol 

The synthesis of 6-fluoro-norandrostenediol (85) was carried out by reducing 6-fluoro-

nortestosterone (86). It was found that this could be achieved with sodium borohydride in 

a mixture of DCM and MeOH. After 3h at RT, the reaction was complete; the product was 

filtered off and dried in a vacuum oven. This gave the product 85 in a 62% yield and as a 

mixture of two isomers.  

 

Scheme 2.16. Synthesis of 6-fluoro-norandrostenediole (85). 

 

The formation of 85 was confirmed by analysis of the 19F NMR spectrum, which showed 

peaks at δF = - 167.12 ppm, δF = - 181.84 ppm, for the 6-fluoro isomers. Analysis of 1H 
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NMR revealed formation of the corresponding allylic alcohol δH = 4.10-4.27 ppm. Based 

on NOE experiments and available literature for similar steroids the reduction gave 3β 

alcohol.11 Unfortunately, it was not possible to separate the isomers by flash column 

chromatography on silica. 

2.2.8 Synthesis of Fluorinated Estrone  

Initially, an attempt was made to introduce a fluorine into the 16-C position of the steroid 

framework under acidic conditions. Following the procedure previously developed for the 

preparation of 16-fluoro-androsterone (88), a solution of estrone (121) in MeOH was 

treated with H2SO4 and Selectfluor® as shown on Scheme 2.17. The reaction mixture was 

then stirred at RT for 1 day. After this time, 19F NMR analysis suggested the formation of 

a mixture of fluorinated products. Unfortunately, all attempts to purify the fluorinated 

products by flash column chromatography (silica gel) were unsuccessful. 

Literature precedent suggested that the 16-C position could be fluorinated via the initial 

formation of enol ester or displacement of a good leaving group from the α position.12 These 

strategies, however, were not explored. 

 

Scheme 2.17 Attempted synthesis of 16-fluoroestrone (122). 

 

Based on a literature search estrone could also be fluorinated at the 10-C position (Scheme 

2.18). Following the protocol outlined by Stavber, 13 the synthesis of 10β-fluoro-3,17-

dihydroxy-1,4-androstene (10) was carried out in acetonitrile with Selectfluor® (1.2 eq). 

After 4 h at 50oC, the fluorination of estrone was confirmed by 19F NMR analysis, which 

showed peak at δF= -165.32 ppm. Analysis of 1H NMR and MS data of the isolated product 

showed formation of the ketone product (10) (10β-fluoro-3,17-dihydroxy-1,4-androstene). 

The fluorination gave the ketone product in 83% yield.  
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Scheme 2.18 Synthesis of 10β-fluoro-3,17-dihydroxy-1,4-androstene (10). 

 

The synthesis of 10β-fluoro-3,17-dihydroxy-1,4-androstene (10) was then carried out by 

reducing the corresponding diketone (Scheme 2.19). It was found that this could be 

achieved with sodium borohydride in a mixture of DCM and MeOH. After 3h at RT, the 

reaction was worked-up to give the product in 62% yield as a mixture of four isomers based 

on 19F NMR.  

 

Scheme 2.19 Synthesis of 10α/β-fluoro-3,17-dihydroxy-1,4-androstene (123). 

 

The formation of the alcohol product was confirmed by the 1H NMR spectrum, which 

showed new signals at δH = 2.79-2.83 ppm and δH = 3.73 ppm corresponding to CHOH 

protons, and MS data, which showed the appearance of ions at m/z 292. The 19F NMR 

spectrum, showed peaks at δF = -144.58 ppm, δF = -145.75, δF = -157.25 and δF = -157.89 

ppm, for the fluoro diastereoisomers. Unfortunately, it was not possible to separate the 

isomers by flash column chromatography. 

We also speculated that estrone (121) could be converted to the 3-fluoro-androstenedione 

derivative (127). In an effort to achieve this, methylation of estrone was carried out using 

t-BuOK/MeI in THF. The reaction proceeded as expected and gave the desired product 

(124) in a good yield. Evidence for the formation of the 124 was obtained from the 1H 

NMR spectrum. Compound 124 shows characteristic signals corresponding to the OMe 

protons at δH = 3.78 ppm. The methylated steroid was reduced under Birch conditions using 

lithium in liquid ammonia. After 20 h, the 1H NMR completion check indicated almost 

complete consumption of the starting material and a mixture of two major products 
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(Scheme 2.21). A comparison of the 1H NMR spectrum of the starting material and the 

product showed the appearance of the triplet at δH = 3.73 ppm suggesting reduction of the 

carbonyl group. The presence of the methyl estradiol was also confirmed by GC-MS which 

showed mass at m/z 286. The methyl estradiol was probably further reduced to form 

compound at m/z 274. It was not possible to obtain a pure sample of this material by flash 

column chromatography, but based on 1H NMR analysis of one of the cleanest column 

fraction the structure of this product was presented in Scheme 2.21.  

 

Scheme 2.20 Attempted synthesis of 3-fluoro-androstenedione (127). 
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Scheme 2.21 Reduction of methylestrone (124). 
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At this stage it was hypothesised that the reduction profile could be improved by protecting 

the carbonyl group. This was carried out in a similar fashion to the previously synthesised 

protected androsterone using ethylene glycol and PTSA. The reaction was successful and 

gave the product 125 in a 95% yield. The formation of the protected product was confirmed 

by analysis of the 1H NMR spectrum, which showed peak at δH = 3.88-3.98 (4H) for the 

protecting group. The protected steroid was then reduced under Birch conditions using 

lithium in liquid ammonia. Based on the 1H NMR and GC-MS completion check after 20h 

and a mixture of products was obtained (Scheme 2.22). The expected product 131 (m/z 

330), based on the literature procedure, was not detected by 1H NMR. This molecule 

probably isomerised to the more stable conjugated enol ethers (e.g. 132 and 133). The crude 

product was triturated with hexane, acetone and purified on silica this gave a mixture of 

two products based on GC-MS analysis m/z 330 and m/z 316. Analysis of 1H NMR 

suggested a mixture of three major components 132, 133 and 134 (which has a mass of m/z 

330). Compound 132 appears to be the major component of this mixture and gives three 

signals for the enol ether system δH = 3.57 ppm (OCH3), δH = 5.21 ppm (2C-H) and δH = 

5.32 ppm (1C-H). Compound 133 gives two signals for the enol ether system δH = 3.48 

ppm (OCH3) and δH = 5.83 ppm (4C-H). Compound 134 appears to be a minor component 

of this mixture and gives four signals for the steroidal A ring δH = 3.24 ppm (OCH3), δH = 

6.17 ppm (4C-H), δH = 6.63 ppm (2C-H) and δH = 7.14 ppm (1C-H). Compound 135 could 

be another component of this mixture detected by GC-MS (m/z 316). This molecule does 

not give any signal in the aromatic/double bond region.  
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Scheme 2.22 Suggested structures of the products arising from the Birch reduction 
based on GC-MS and 1H NMR data.  

 

The mixture of products obtained from the Birch reduction was taken through the next stage 

of the synthesis. It was hoped that after the fluorination reaction the main product could be 

separated from the mixture. The reaction was carried out in DMF and Selectfluor® at RT 

for 48 h (Scheme 2.23). After that time 1H NMR and GC-MS indicated formation of a 

mixture of products with two major components 140 (m/z 254) and 124 (m/z 284). In 

addition, 1H NMR suggested that all products lost the glycol protecting group and that the 

majority of products contain an aromatic ring. The aromatisation reaction probably 

occurred in a stepwise manner via fluorination of the starting material and elimination of 

HF. Small quantities of fluorinated products were also detected. These were probably 

formed through the fluorination of methylestrone 124 and estrone 121. 
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Scheme 2.23  Potential products (38, 10, 116, 134) obtained after fluorination of a 
mixture obtained from Birch reduction (132, 133, 134). 

 

2.2.9 Synthesis of Fluorinated Progesterone 

Following the protocol developed previously for the fluorination of testosterone the 

synthesis of 6/-fluoro-progesterone (144) was carried out in two steps (Scheme 2.24). 

During the first stage progesterone (142) was treated with AcCl and pyridine in DMF. The 

reaction proceeded as expected and the conjugated enol ester was obtained in 72% yield. 

Evidence for the formation of the acylated progeserone (143) was provided by the 1H NMR 

spectrum, in which a characteristic signals corresponding to the conjugated double bonds 

at δH = 5.39 ppm and δH = 5.69 ppm were observed. Additional evidence for the formation 

of 143 was found in the GC-MS spectrum where the signal corresponding to the correct 



 

74 
 

mass was detected (m/z = 356). Acyl protected progesterone (143) was then treated with 

Selectfluor® to give the corresponding 6-fluoro-steroid 144 in a 95% yield. The formation 

of this product was confirmed by analysis of the 19F NMR spectrum, which showed peaks 

at δF = -161.41 ppm and δF -184.19 ppm for the α and β isomer respectively. Structures of 

143 and 144 were confirmed by X-ray crystallography (Figure 2.10 and Figure 2.11) 

AcOO

Ac2O

AcCl

Pyridine

DMF

72%

O

F

Selectfluor

O
O

O

142 143 144

DMF
95%

 
Scheme 2.24 Synthesis of 6/-fluoro-progesterone (144). 

 
Figure 2.10 X-ray structure of acyl protected progesterone (143). 

 

 
 

6-fluoro-progesterone 6-fluoro-progesterone 

Figure 2.11 X-ray structures of isomers 6-fluoro-progesterone and  
6-fluoro-progesterone (144). 

2.3 Conclusions 

The work described in this chapter was focused on the synthesis of fluorinated steroids 

using methods that involve electrophilic fluorination. Selectfluor® was chosen as the 

optimum reagent, and a process was developed using that reagent. This was based on the 

experience within the group and the literature precedents. It was reported that N-
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fluoropyridinium salts requires high temperatures or long reaction times for complete 

reaction and usually low yields are observed for steroids 3,5-dienol acetates.14 On the other 

hand, the neutral N-fluorosulfonimides gives usually high β-fluoro selectivity and moderate 

yields for these steroids.14 This could be explained by stereoselective elimination of HF 

from the α-fluoro steroid isomer. The elimination process is much slower for Selectfluor®. 

In comparison to gaseous F2, the key benefit of this electrophilic fluorination agent is the 

ability to provide facile access to fluorinated steroids without the need to use specialised 

equipment for F2 manipulation. The optimised, standard protocol for the synthesis of 

fluorinated steroids involved the preparation of the reaction of steroid with Selectfluor® in 

DMF or MeCN at RT. Fluorinted-testosterone (84), fluorinated-androstenedione (5), 

fluorinated-androstenediol (110), fluorinated-notestosterone (86), fluorinated-

norandrostenediol (85), fluorinated-progesterone (144) and, fluorinated-estrone (10) 

derivative were synthesised using this method in good yield (83%) and moderated 

diastereoselestivity. Fluorinated-androsterone (87) was synthesised using Selectfluor® 

under acidic conditions in methanol at 50oC (93%). 

In addition, several novel X-ray structures of fluorinated steroids were obtained (e.g: 6-

fluoro-testosterone Figure 2.12). Experiments with gaseous fluorine were also carried out, 

however, due to limited access to the fluorination equipment fluorination of steroids with 

F2 was not fully explored.  

With a range of fluorinated steroids in hand, attention then turned to their metabolism by 

microorganisms (Chapter 3). 

 

 

Figure 2.12 X-ray structures of 6-fluoro-testosterone (84). 
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3 Biotransformations of Steroids 

3.1 Introduction 

Organofluorine compounds are virtually absent in nature and to date, only a handful of 

naturally occurring fluorinated metabolites have been identified in plants or 

microorganisms (Figure 3.1).1,2 In addition, there are currently no reports of the 

biosynthesis of fluorine containing molecules in animals. The first organofluorine 

compound reported in the literature was fluoroacetate 145, which was isolated by Marais 

in 1943, from the shrub Dichapetalum cymosum.1,2 It was found that this plant is toxic to 

animals due to the high level of 145 that accumulates in its leaves. 

 

Figure 3.1 Fluorinated metabolites isolated from natural sources. 

It is believed that fluoroacetate 145 is a building block of ω-fluorooleic acid 147 isolated 

by Peters et al. from the shrub Dichapetalum toxicarium.3 More recent studies on this plant, 

by Hamilton et al. have resulted in the discovery of other ω-substituted fluoro acids.4 

The identification of fluorine containing metabolites from microorganisms is equally rare. 

The bacterium Streptomyces calvus was the first reported microorganism found to be 

capable of biosynthesising a fluoroorganic natural product. The research on this bacterium 

carried out by Thomas et al. resulted in the isolation of nucleocidin 149 in 1957.5 

Interestingly the structure of nucleocidin (149) was not fully elucidated until 1969 when 

the first total synthesis was completed.6 For over 20 years attempts to repeat biosynthesis 

of nucleocidin 149 have been unsuccessful. However, recently it has been shown by 
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O’Hagan group that publicly deposited strain has lost the ability to produce the 149. It has 

been reported that a mutation of the bldA gene is responsible for the loss of ability to form 

C-F bond by S.calvus.7 O’Hagan group used an in-house strain of S.calvus T-3018 held by 

Pfizer. The strain T-3018 does not have the mutation and is able to produce nucleocidin 

149. 

Currently, Streptomyces catteleya, Streptomyces sp. MA37, Streptomyces xinghaiensis are 

the only reported microorganisms known to produce secondary metabolites that contain a 

C-F bond.8,9 The initial research on this Streptomyces spp. was carried out by Sanada and 

co-workers in 1986.10 They discovered that in a fluoride containing environment (KF) S. 

cattleya produces the metabolites fluoroacetate 145 and 4-fluorothreonine 146. Subsequent 

detailed studies performed by the O’Hagan group have identified not only the first ever 

fluorination enzyme, the fluorinase, but also all of the intermediates on the biosynthetic 

pathway from inorganic fluoride (KF) to the secondary metabolites fluoroacetate 145 and 

4-fluorothreonine 148 (Scheme 3.1).11,12 
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Scheme 3.1 The biosynthetic pathway to fluoroacetate 145 and 4-fluorothreonine 148 
from inorganic fluoride (KF). 

A wide range of fluorinated amino acids can be prepared using micro-organisms. This 

approach was used to synthesise a fluorinated lipase by Markel et al.13 ME5355 strain of 

E. coli was incubated in a medium containing three different fluorinated amino acids. This 

led to incorporation of these amino acids at 24 positions of the lipase enzyme in a single 

experiment. Interestingly this modification did not abolish the lipase enzyme activity. 

One could also achieve incorporation of fluorinated amino acids into proteins by having 

the amino acid present in the diet of an organism. For example, Gerig carried out 19F NMR 

study on cyanomethemoglobin prepared from haemoglobin isolated from rabbits fed with 

D,L-4-fluorophenylalanine.14 In this experiment, the amino acid was inserted randomly in 

all phenylalanine positions of α- and β-globin chains.  
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Unfortunately, the above methods for the preparation of fluorinated proteins have a 

disadvantage. During the biosynthesis, fluorinated amino acids are inserted at all locations 

in the sequence occupied by residues of a given kind of amino acid. Therefore, if the 

synthesis of a protein with a single position in the sequence occupied by a fluorinated amino 

acid is required, chemical synthesis has to be carried out. 

Despite the fact that only a few naturally occurring fluorinated metabolites have been 

identified in plants or microorganisms, over 30% of currently available and commercially 

valuable pharmaceuticals contain a fluorine atom. Indeed, a common strategy for 

modifying drug stability, lipophilicity and increasing the half-life of a drug in vivo is to 

introduce a fluorine atom.15,16,17,18 An example of how dramatic this approach can be seen 

in the development of the cholesterol uptake inhibitor drug Ezetimibe (153) (Figure 3.2). 

Fluorination of the phenyl ring, prevents oxidation to the corresponding phenol derivative 

and substitution of a methoxy group with fluorine prevents demethylation. These changes 

led to significantly reduced metabolic degradation and a 400-fold increase in activity.19,20 

 

Figure 3.2 An example of commercial pharmaceutical Ezetimibe (153) containing 
fluorine. 

3.2 Drug metabolism 

Before a drug can be approved for use in humans, extensive screening has to be performed 

to establish its safety. One of the important factors in this evaluation process is the 

knowledge of a drug’s metabolism. Drug metabolism studies are generally based on the use 

of tissue culture (in vitro) or small animal models (in vivo). Traditionally, in vivo studies 

have involved administration of the drug to laboratory animals and subsequent examination 

of its fluids and tissues for the presence of the parent drug and its metabolites. In many 

cases this is very challenging as metabolites are usually present in only very small 
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quantities making them difficult to isolate and identify. Once the metabolite is isolated, 

identification is usually accomplished using sensitive spectroscopic techniques such as GC-

MS, LC-MS, 1H NMR. It was shown by Smith and Rosazza45 that these studies are 

expensive and in many cases could be replaced by the use of microbial systems. 

Information gained from drug metabolism studies is usually used to increase efficiency of 

the drug, selectivity, duration of action or decreasing its toxic side effect. However, 

information gathered via studies of this kind information could be also used to identify 

banned substances taken by an athlete.  

3.2.1 Metabolism studies in mammalian system 

Most drugs entering the mammalian system are altered biochemically. Metabolic 

transformations are usually classified as either Phase I or Phase II. Phase I includes 

oxidation, reduction and hydrolysis reactions, while Phase II involves conjugation reactions 

(e.g. glucuronidation, acetylation, glutathione conjugation, glycine conjugation). These 

reactions generally convert drugs into more polar substances which can be readily excreted 

from the organism. Metabolites are usually less active than the parent drug; however 

enhancement of the biological activity is also possible (Figure 3.3).45,21 Some complex 

molecules usually have tens of metabolites which were formed by sequential or parallel 

biotransformations. These significantly complicate metabolic studies.22 
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Figure 3.3 Example of metabolites more active than the parent drug - enhancement of 
the biological activity.45 

An important reaction in the biotransformation process is the oxidation reaction. To 

understand the basic mechanism of this reaction numerous studies have been conducted 

since 1962. New classes of enzymes participating in the oxidation process have been 

discovered, including cytochrome P-450 enzyme systems, flavoprotein oxygenases, and α-

ketoglutarate-requiring oxygenases. Majority of oxidation reaction are catalysed by 

cytochrome P-450, which is located mainly in the liver of mammals but also in the kidneys, 

lungs, small intestine, spleen, testes, ovary and placenta (Table 3.1).23 It is believed that 

cytochrome P-450 catalyses hydroxylation, oxidation, dealkylation and deamination 

reactions. In most cases, this results in the formation of unstable intermediates that 

spontaneously decompose to the stable metabolites. All of the oxidative reactions, except 

oxidative deamination, that occur in mammalian tissue can be duplicated in vitro with 

microsomal fractions.24 Microsomal fractions are form as microglobular bodies during 

disruption of the endoplasmic reticulum of cells. Enzymes associated with oxidation of 

substances appear to show a low degree of substrate specificity. However, within certain 

classes of compounds oxidation could be selective. This could be difficult to interpret 
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because a compound could be oxidised by different enzymes or different amounts of 

enzyme.  

Table 3.1 Examples of reactions catalysed by cytochrome P-450. 

No. Reaction name Substrate Intermediate Product 

1 Hydroxylation Alkanes 

Aromatic compounds 

- 

Epoxide 

Alcohols 

Phenols 

2 N-Dealkylation Secondary and tertiary 
amines 

α-Hydroxyamine Aldehyde and 
primary or 

secondary amine 

3 O-Dealkylation Ethers α-Hydroxyether Aldehyde and 
alcohol 

4 S-Dealkylation Sulfide α-Hydroxysulfide Aldehyde and thiol 

5 S-Oxidation Sulfide 

Sulfoxide 

- 

- 

Sulfoxide 

Sulfone 

6 N-Oxidation Primary and secondary 
Amines 

Primary and secondary 
Amide 

Tertiary amine 

- 

 

- 

- 

Hydroxyamine 

 

Hydroxyamide 

N-oxide 

7 Deamination Primary and secondary 
Amines 

α-Hydroxyamine Aldehyde and 
ammonia or 

primary amine 

8 Dehydrogenation Primary alcohol 

Secondary alcohol 

Aldehyde 

trans-Dihydrodiol 

- 

- 

- 

- 

Aldehyde 

Ketone 

Carboxylic acid 

Catechol 

 

Studies on Pseudomonas putida showed that the active site of cytochrome P-450 contains 

an iron hem with two axial ligands (Figure 3.4). The first axial ligand is a thiolate group 

that is attached to the nearby protein, while the second axial ligand varies depending on the 

enzymatic cycle.25 The second ligand is displaced by oxygen during the catalytic cycle.  
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Figure 3.4 Active site of cytochrome P-450. 24 

 

Based on the mammalian and microbial studies, the catalytic cycle of cytochrome P-450 

was deduced (Scheme 3.2).26 In the first step, substrate binds to the apoprotein, which is in 

close proximity to the cofactor. This induces a change in the conformation of the active 

site, often displacing a water molecule and changing the state of the heme iron (Fe+3) from 

low-spin to high-spin. Depending on the source of cytochrome P-450, a flavin nucleotide, 

iron/sulphur proteins and/or cytochrome b5 are providing two equivalents of the reducing 

agent to the cofactor from NADPH. The resulting complex undergoes rapid reduction via 

cytochrome P-450 reductase followed by formation of a reduced cytochrome-substrate-

oxygen complex. Subsequently the oxygen is reduced by cytochrome iron, and the resulting 

complex undergoes further reduction and disproportionation with the transfer of one 

oxygen to bound substrate and protonation of the second oxygen. Finally, the complex 

breaks down to water, oxidised drug and oxidised cytochrome P-450.  
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Scheme 3.2 The catalytic cycle of cytochrome P-450. 

Given the huge diversity of P-450 systems generated from mammalian and microbial 

origin, a nomenclature system has been developed to categorize individual CYPs. The 

system was developed by Dr. David Nelson and it is based upon sequence identity where 

P-450s are grouped into families (1, 2, 3...), subfamilies (A, B, C...) and a number for each 

individual P-450 (1, 2, 3 ...), e.g. CYP105A1.27 Currently there are > 10 thousand CYP 

gene sequences in genomic data bases, and of these sequences > 30% are of microbial 

origin. P-450s can be also divided into four classes depending on how electrons from 

NAD(P)H are delivered to the catalytic cycle: 

 Class I proteins needs FAD containing reductase and an iron sulphur redoxin 

 Class II proteins require FAD/FMN containing P-450 reductase for transfer of 

electrons 

 Class III enzymes do not require an electron donor 

 Class IV electrons are obtained directly from NAD(P)H 
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Humans have 57 genes and more than 59 pseudogenes divided among 18 families of 

cytochrome P-450 genes and 43 subfamilies. However, only 7 known isoforms are 

responsible for more than 90% of the metabolism of all pharmaceuticals currently in use.28 

For example CYP1 CYP2 and CYP3 are responsible for drug and steroid metabolism. 

CYP11, CYP17, CYP19, CYP21 are involved in the biosynthesis of steroids. 

Aromatic compounds are often oxidated to phenols in mammalian systems. This reaction 

is similar to electrophilic aromatic substitution. Activated electron rich aromatic rings are 

easily hydroxylated; whereas rings bearing electron withdrawing groups are hydroxylated 

slowly or not at all. Furthermore, it was observed that the hydroxyl group is introduced in 

ortho and para positions to the activating group, while deactivated rings are hydroxylated 

in the meta position.29,30,31 Aromatic hydroxylation involves formation of an intermediate 

epoxide (154) which then can decompose to the corresponding phenol via non enzymatic 

rearrangement. Alternatively the epoxide can be transformed to the catechol (155) through 

epoxide hydrase and dehydrogenase (Scheme 3.3).32,33,34 More stable epoxides such as 

naphthalene-1,2-oxide may participate in an alkylation reaction with cellular components. 

This process is responsible for toxicity of certain aromatic compounds.35,36 

 

Scheme 3.3 Biotransformation of aromatic compounds.37  

In bacteria, the oxidation reaction is catalysed mainly by dioxygenase (Scheme 3.4).38 In 

contrast to mammalian systems the oxidation process proceeds through cis-dihydrodiol 

intermediate (157). This was isolated by Jerina and characterised by NMR spectroscopy.39 

The catechol (155) is further deprotonated to carbon dioxide and water in bacteria. Some 

microorganisms such as Pseudomonas species,40 Claviceps purpurea41 and yeasts42 oxidise 

aromatic compounds via an epoxide intermediate (159).  
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Scheme 3.4 Oxidation of naphthalene (156) in bacterial and mammalian systems. 

The microbial systems demonstrated substantial capacity to hydroxylate simple aromatic 

compounds. It was shown by Smith and Rosanzza that in general, a good correlation could 

be obtained between the mammalian and microbial systems (Table 3.2).43,44,45 

Nitrobenzene was the only substrate which did not yield a hydroxylated product in 

microbial systems.45 This compound gave 2-, 3-, and 4-hydroxylated product in mammalian 

systems. The relative reactivities of simple aromatic compounds toward microbial 

hydroxylases follow the order NH2>OMe, CH3>H, Cl, NHCOCH3>NO2.46 Interestingly, it 

was found that comparison between in vivo and in vitro metabolic systems is not always 

valid for simple aromatic compounds. 
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Table 3.2 The hydroxylation of simple aromatic compounds by microbial and 
mammal an metabolites systems. 

No Substrate Microbial metabolite1 Mammalian metabolites 

In vitro In vivo 

1 Acetanilide 2-Hydroxyacetanilide, 
Aniline (a, c, d, h) 

2- and 4-
Hydroxyacetanilide, 

Aniline 

4-Hydroxyacetanilide, 
Aniline 

2 Acronycine 9-, 11-, 9- and 11-
hydroxyacronycines (b, h, 

i) 

N/A 9-, 11-, 9-and 11-
hydroxyacronycines 

3 Aniline Acetanilide; 2-
Hydroxyacetanilide, 4-
Hydroxyaniline (b, c, i) 

4-Hydroxyaniline Acetanilide; 2-, 3- and 4-
Hydroxyanilines 

4 Anisole 2- and 4- Hydroxyanisoles, 
Phenol (a, b, c, d, e, f, i) 

2- and 4- Hydroxyanisoles, 
Phenol 

2- and 4- Hydroxyanisoles,  

5 Benzene Phenol (a, b, d, e, i) Phenol Phenol 

6 Benzoic acid 2- and 4-Hydroxybenzoic 
acids, 3,4-

dihydroxybenzoic acid (c, 
g, i) 

3-Hydroxybenzoic acid 2-, 3- and 4-
Hydroxybenzoic acids 

7 Biphenyl 2- and 4-
Hydroxybiphenyls, 4,4-

dihydroxybiphenyl (b, e, g, 
i) 

2- and 4-Hydroxybiphenyls  4-Hydroxy-, 3,4-
dihydroxy-, 4,4’-

dihydroxybiphenyls 

8 Chlorobenzene 2- and 4-
Hydroxychlorobenzenes (c, 

d, e, f, i) 

2-, 3- and 4-
Hydroxychlorobenzenes 

2-, 3- and 4-
Hydroxychlorobenzenes 

9 Coumarin 7-Hydroxycoumarin (d, e, 
i) 

7-Hydroxycoumarin 3-, 4-, 5-, 6-, 7- and 8-
Hydroxycoumarins 

10 Naphthalene 1- and 2- 
Hydroxynaphthalenes (b, c, 

e, f, i) 

1- and 2- 
Hydroxynaphthalenes 

1- and 2- 
Hydroxynaphthalenes 

11 Nitrobenzene - 4-Hydroxynitrobenzene 2-, 3- and 4-
Hydroxynitrobenzenes; 2-

, 3- and 4-
Hydroxyanilines 

12 trans-Stilbene trans-4-Hydroxy- and 
trans-4,4’-

dihydroxystilbenes (b, c, 
e, f, i) 

trans-4-Hydroxy- and 
trans-4,4’-

dihydroxystilbenes 

trans-4-Hydroxy-, trans-
3,4-dihydroxy- and trans-
4,4’-dihydroxystilbenes 

13 Toluene 2- and 4- 
Hydroxytoluenes (a, c, e, 

f, i, h) 

2- and 4- 
Hydroxytoluenes; benzyl 

alcohol 

Benzoic acid and its 
conjugates 

1Microorganisms used: a) Penicillium chrysogenum, b) Cunninghamella blakesleeana, c) Aspergillus ochraceous, 
d) Gliocladium deliquescens, e) Streptomyces species, f) Rhizopus stolonifer, g) Curvularia lunata, h) Streptomyces 
rimosus, i) Cunninghamella bainieri. 
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Hydroxylation of sp3 carbons next to nitrogen, oxygen or sulphur generally leads to 

dealkylation due to the instability of the hydroxyl intermediate. Tertiary amines substituted 

with two methyl groups are often quickly dealkylated to the corresponding secondary 

amines, which subsequently are dealkylated to the primary amines much more slowly.47 N-

demethylation rate is proportional to lipid solubility and inversely proportional to pka 

value.48 An n-tert-butyl group is cleaved by a sequence of oxidations reactions beginning 

with hydroxylation of methyl group.49 This type of the oxidation becomes probably more 

important as the size of the N-alkyl function increases. In a similar fashion O-alkyl groups 

can be removed during drug metabolism. It was shown by Axelrod that aromatic para- 

substituted ethers are more easily cleaved than their corresponding ortho- and meta- 

analogs.50 Some substituted ethers such as the dimethylaminoethyl ether appears to be more 

resistant to oxidation and are often incorporated into drug molecules (e.g. 

diphenhydramine).51 S-Dealkylation has not been extensively investigated, because 

thioethers are not widely incorporated into drug molecules. However it has been suggested 

that this process proceeds via similar mechanism to N- and O-dealkylation.52 It was also 

found that sulfides in heterocyclic systems are more prone to S-oxidation than S-

dealkylation.  

 

3.2.2 Metabolism studies in microbial systems 

During metabolism studies, several practical problems are usually encountered: 

development of a suitable analytical method to detect drug/metabolites in a biological 

matrix; comparison of results from metabolic studies between different species; isolation 

of sufficient amounts of metabolites for characterisation. The last problem could be 

addressed through preparative synthesis, although this is usually expensive and time 

consuming. An alternative solution was proposed by Smith and Rosazza who suggested 

that it is often possible to find microbial systems which mimic biotransformations observed 

in humans.45 These systems are called “microbial models of mammalian metabolism”. It is 

important to realise that it is very unlikely that a single microorganism can perform the 

same transformations as the mammalian system. However, if common metabolites are 

detected in mammalian and microbial system, the microbial system could be used to obtain 

gram quantities of metabolites via routine fermentation scale-up techniques.  
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Many bacterial species have been identified with a few species now having their complete 

genomes sequenced. Most actinobacteria, particularly streptomyces and mycobacteria, 

encode usually large numbers of CYP genes (e.g. Streptomyces avermitilis 33, 

Streptomyces scabies 25, Mycobacteriumvanbaalenii 51).53 A substantial number of 

actinobacterial CYPs are associated with pathways encoding compounds which have been 

applied in human medicine. For instance, Streptomyces cytochrome P-450 enzyme systems 

catalyse many transformations of xenobiotics. These oxidative transformations have been 

studied with alkaloids,54 coumarins55 and other molecules. The most significant of these 

biotransformations are aliphatic and aromatic hydroxylations, N-oxidation and O- and N-

dealkylations (N-oxidation, O- and N-dealkylations are usually an effect of α 

hydroxylation). These have been exploited by industry in the synthesis of pravastatin,56 16-

hydroxylation of steroids57 and in the preparation of metabolites for toxicological studies. 

In spite of the relatively widespread application of microbial hydroxylation, it is only in 

recent years that the mechanism of this reaction has been understood to some extent. The 

majority of work on the hydroxylation reactions has been performed using growing or 

resting cultures of fungi. This is attributed to the fact that isolation of enzymes might be 

difficult due to their instability. From the available data, it was suggested that all 

hydroxylating enzymes contains cytochrome P-450 species. These enzymes are classified 

as monooxogenases because there are capable of incorporation of one molecule of 

molecular oxygen. In addition to that, they are widely distributed among almost all forms 

of life and based on available data they function by a similar mechanism. Hydroxylating 

enzymes which are able to oxidise different substrates in regio- and stereospecific manners 

are dependent on cofactors. The cofactors are responsible for the binding of oxygen, its 

activation and delivery to the substrate which is bound (if necessary activated) to the apo-

enzyme. The apo-enzyme therefore is responsible for the regio- and stereospecificity of the 

reaction. It was observed that the overall catalytic cycle of cytochrome P-450 is 

independent of the origin of the enzyme.  

It has been suggested that there is a specific relationship between substitution of the 

substrate and the site of hydroxylation.58,59 This has been explored by using steroids that 

were substituted with oxygens at different positions.60 Varying these locations in a 

systematic manner, a relationship was established for several microorganisms. For 

instance, the fungus Calonectria decora transformed androstenone substrates into 

dihydroxy analogs in a specific manner (Figure 3.5). This relationship is valid for several 
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steroids.61 No specific activation of the C-H bond is provided by the enzyme, but rather the 

position of hydroxylation is controlled by the shape of the active site. However, not all C-

H bonds are equally reactive and therefore this could also play a role in determining the 

position of hydroxylation. 
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Figure 3.5 That relationship between substitution of the substrate and the site of 
hydroxylation. 

From the work with bis-substituted steroids and Calonectria decora a few additional 

relationships were observed (Figure 3.6).61 It appears that the presence of the carbonyl or 

hydroxyl group in the ring A or D have the major directing effect on hydroxylation and 

substituents in the B or C ring do not show a strong directing influence. In addition both 

carbonyl and hydroxyl group exhibit similar directing effects at a given location. 

 

Figure 3.6 The presence of the carbonyl or hydroxyl group in the ring A or D have 
the major directing effect on hydroxylation. 

Based on the studies performed on Calonectria decora, substituents such as enol ethers and 

acetals could also have directing effects but, usually with reduced specificity and yield. 
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Hydroxylation of monoketohalosteroids is controlled by the carbonyl group.62 If a halogen 

is present at a preferred site of hydroxylation the reaction in general occur at a different 

place (with R. nigricans (stolonifer), however, sometimes hydroxylation may also occur at 

the preferred site irrespective of the presence of halogen).63 It is worth noting that many 

microorganisms do not show triangular tendency of hydroxylation (e.g. Rhizopus 

circinnans, Absidia regnieri, Syncephalastrum racemosum).64 On the other hand, 

Aspergillus ochraceus hydroxylate a wide range of substances (androstanes, pregnanes) at 

C-11α irrespective of the location of substituents.65,66 
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Figure 3.7 Hydroxylation of monoketohalosteroids. 

 

For microbial studies a large number of microorganisms are selected based on a number of 

factors including literature and researcher experience. A typical procedure usually involves 

a two-stage fermentation. The first stage involves submerging selected organisms in an 

Erlenmeyer flask containing a medium that supports growth of the cultures (e.g. a soybean 

meal-glucose medium, a peptone-glucose medium).67,68,69 These cultures are incubated 

with shaking for 1-2 days depending on growth rate of the organisms. After this period, the 

cultures are transferred to fresh medium containing the drug substrate usually dissolved in 

solvents such as water, DMF, EtOH or DMSO (Stage 2 fermentation). Drug substrates are 

usually added at a concentration of 500 µg/ml although any charge can be used which is 

non-toxic to the organism. Subsequently, the cultures are incubated for a certain period of 

time which greatly depends on used microorganisms (1-14 days). During the incubation 

period the culture broth is usually sampled and analysed for the presence of the drug and 

its metabolites by LC or GC. Because of the simplicity of the fermentation procedure a 

large number of the microorganisms can be screened simultaneously for their ability to 

metabolise the drug. In addition, the process is usually straightforward and can be 

performed by technicians and students. The majority of work in the microbial metabolism 
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field has been dedicated to steroids, drugs and antibiotics. For example, initial studies on 

spironolactone (173) indicated that a key intermediate in its mammalian metabolism was 

the methylsulfide (174) (Scheme 3.5). The work on humans resulted in the identification 

of its three analogs hydroxysulfoxide 175, dienone 176 and sulfoxide 177. To assess action 

of these compounds on the human body larger quantities of these metabolites were 

required. Marsheck and Karim found that the fungus Chaetomium cochloides converted the 

intermediate methylsulfide 174 to the sulfoxide metabolites 175 and 177.70,71 In addition, 

C. cochloides converted the methylsulfide 174 to the hydroxyl metabolite 178 which was 

postulated as an intermediate in the human metabolites of spironolactone to 175 and 177. 

 

Scheme 3.5 Example of initial metabolism studies by Chaetomium cochloides on 
spironolactone (173).71 
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Steroids are widely used as anti-inflammatory, diuretic, anabolic, contraceptive, 

antiandrogenic and anticancer agents.72 Given the complex structure of the steroid molecule 

the total chemical synthesis might be complicated. Because of that numerous bioconversion 

of steroids have been reported and some of them could be applied for the production of 

pharmaceutical ingredients and their precursors.73,74,75 The first commercialised microbial 

process was in the production of 11α-hydrohyprogesterone, a compound with 

antiandrogenic and blood pressure regulating activity. This fermentation was performed 

with Mucor racemosus.76  

Most of the publications in the field of microbial metabolism are focused on hydroxylation 

and dehydrogenation. It was observed that in the hydroxylation process the stereochemistry 

of the carbon atom which is hydroxylated is always preserved. The newly formed hydroxyl 

group has the same configuration as had the hydrogen atom which occupied the same site 

prior to reaction. Theoretically, it is possible to hydroxylate steroid in different position by 

using different microorganism and/or directing groups (hydroxylation at following 

positions has been reported: 1, 2, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16 and 17).77 Products of 

fermentation are usually obtained in moderate yields and often as a mixture of products. 

For example, Colletotrichum lini ST-1 hydroxylated androst-4-ene-3,17-dione (106), 

testosterone (91), canrenone (182), 16α,17α-epoxyprogesterone (185) and progesterone 

(142) in 15α/ and 11α position in ≤ 64% yield (Table 3.3).78 
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Table 3.3 Example of initial metabolism studies by Colletotrichum lini ST-1 
on steroids. 

No Substrate recovered (%) Product yield (%) 

1 

 

O

O

179
O

O

180

OH OH

HO

5% 64%  

2 

 
 

3 

 

O
183 22%

O

O

O
184 47%

O

O

OH OH

HO

 

4 

  

5 

  

 

Another important fungus was studied by Ferris, because of its metabolic similarities to 

mammalian systems. Ferris et al found that Cunninghamella bainieri fungi, found in soil 

and plant material, metabolise a wide range of drugs in a similar manner to mammalian 
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systems.79 It was shown that naphthalene (156) was converted into a trans-dihydrodiol 

(158), demonstrating the presence of an epoxide hydrase. Anisole was hydroxylated at the 

2 and 4 position as well as O-dealkylated. These metabolites were also detected in 

mammalian systems, although in different ratios. More recently, it was found that 

Cunninghamella species possess cytochrome P-450 monooxygenase systems analogous to 

those in mammals and phase II drug metabolism enzymes.80 Given this, members of this 

genus are often used to investigate the metabolism of drugs. For example, Smith 

investigated metabolism of oxandrolone (189) which is used by athletes because it does not 

aromatise and nor affect the production of testosterone (91) in the body when used in low 

dose (Scheme 3.6).81 Fermentation of this anabolic steroid with Cunninghamella 

blakesleeana and Macrophomina phaseolina afforded six new metabolites which might be 

useful in the investigation of the mammalian drug metabolism. 

 

 

Scheme 3.6 Metabolism of oxandrolone (189) by Cunninghamella blakesleeana and 
Macrophomina phaseolina. 
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3.3 Biological studies objectives 

3.3.1 Introduction 

In order to use 19F NMR as an analytical tool to study the microbial metabolism of steroids 

a range of fluorine containing steroids were prepared as described in Chapter 2. A fluorine 

atom is comparable in size to a hydrogen atom and does little to alter the overall structure 

of a molecule. Therefore, if the fluorinated analogue of a naturally occurring metabolite is 

prepared then it will act as a substrate for the same enzymes as the natural product and both 

molecules will be metabolised via the same pathways (Figure 3.8).5,6 Initially, it was 

necessary to identify microorganisms that would allow the biotransformation of fluorinated 

steroids. Selection of fluorinated steroids were incubated under a range of conditions 

(temperature, exposure to air, etc.) and the resulting chemical changes were investigated. 

 

Figure3.8 Proposed method of detecting metabolic changes by 19F NMR 
spectroscopy. 

 

3.3.2 Metabolic changes of fluorinated steroids in pure bacterial cultures 

Biological studies to identify biotransformation products of fluorinated steroids in pure 

bacterial cultures using 19F-NMR were carried out in DurhamUniversity departments of 

Chemistry, and Pharmacy and at University College Dublin (UCD). At Durham University 

all experiments were carried out with the bacteria Streptomyces griseus. It was found that 

this bacterium has the ability to transform 6-fluoro-progesterone (144) to various 

metabolites. The experiments performed in Stockton were performed with Escherichia coli, 

Bacillus subtilis and Bacillus megaterium. Finally, the studies carried out at University 

College Dublin were focused on the metabolism of fluoro-steroid by Streptomyces griseus. 
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3.3.3 General culture conditions and metabolite extraction procedures used in 

Durham and Dublin 

Bacteria were inoculated from a plate into Erlenmeyer flasks containing soya bean meal 

media and the pH was adjusted to 7. The medium consists of: soya bean meal (5 g/L), 

Glycerol (20 g/L), Yeast extract (5 g/L), K2HPO4 (5g/L). Cultures were incubated with 

rotary agitation at 27oC for 72 h. After that time, following solutions in Erlenmeyer flasks 

were prepared:  

  medium + starting culture bacteria 

  medium + starting culture bacteria + with addition of fluorinated steroid after 72h 

  medium + after 72 h fluorinated steroid was added (negative probe) 

The Erlenmeyer flasks were incubated with rotary agitation at 27oC for 6 days. The cultures 

were sonicated and centrifuged. The supernatant and pellet fractionns were then extracted 

(Figure 3.3). 

Sample
Centrifugation

Supernatant
Extraction

Pellet
Sonication
Extraction

Organic fraction Organic fractionAqueous fraction Aqueous fraction

 

Figure 3.9 Extraction procedure for metabolic identification.  
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3.3.4 Feeding experiments with fluorinated steroids and S. griseus 

S. griseus is a Gram positive, aerobic, filamentous bacteria commonly found in soil. It helps 

to naturally decompose organic matter contributing in part to the earthy odour of soil and 

decaying leaves, and to the fertility of soil. It forms a threadlike net called a mycelium that 

bears chains of spores at maturity. Their branching strands are 0.5 to 1.0 micrometre in 

diameter and the optimal temperature for S. griseus growth is at 25-35oC. S. griseus 

contains cytochrome P-450 that mimic oxidation processes. It is very commonly used in 

the production of antibiotics along with most other Streptomycetes. Antibiotics specifically 

made from S. griseus include: Streptomycin, Cycloheximide, Candicidin B and Grisein. 

S. griseusis is well known for its ability to transform xenobiotics and it has also previously 

been shown to transform fluorinated compounds such as Flurbiprofen.82 S. griseus has 27 

putative P-450 genes in its genome.83 It was shown by Makino that one of the three CYP154 

enzymes (CYP154C3) catalyzed regio and stereospecific hydroxylation of various steroids 

at the 16 position of the D ring.84 Thus it was expected that fluorinated steroids will be 

transformed to various hydroxylated metabolites upon incubation with S .griseus. The 

studies presented in this Chapter have utilised the fluorinated steroids synthesised in 

Chapter 2 (Figure 3.10).  
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Figure 3.10 Fluorinated steroids used in the microbial feeding experiments. 

3.3.5 Feeding experiments with 6β-fluoro-progesterone 

The first experiment involved incubation of S. griseus in soya bean meal with 6β-fluoro-

progesterone (144). Upon completion of the incubation period the cultures were sonicated 

and centrifuged. The supernatants and pellets were then extracted with ethyl acetate (as 

Figure 3.9). 19F NMR and GC-MS analysis of the extracts indicated formation of various 

metabolites (Figures 3.11 and 3.12). Analysis revealed that all the steroid metabolites were 

located in the supernatant organic extracts. The aqueous phase of the supernatant did not 

contain any fluorinated compounds. The extraction of the pellet yielded an organic phase 

which contained mainly 6-fluoro-progesterone (144) with a small amount of fluorinated 

metabolites detected previously in the supernatant organic extract. Analysis of the aqueous 

extract of the pellet using 19F NMR revealed that it did not contain any fluorinated steroids 

(the signal observed at -122.11 ppm is characteristic of inorganic fluoride). Observed strong 
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peaks in pallet fractions are coming from large amount of starting material used in the 

experiments. 

A – 19F NMR spectral analysis of the Pellet (organic fraction) 

 

B - 19F NMR spectral analysis of the Supernatant (organic fraction) 

 

Figure 3.11  19F NMR analysis of 6-fluoro-progesterone (144) incubated with S. 
griseus. A- 19F NMR of pellet organic fraction in d-chloroform. B- 19F NMR of supernatant 
organic fraction in d-chloroform. The other fractions (pellet and supernatant aqueous 
fraction in D2O) showed no peaks during 19F NMR analysis. 
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Figure 3.12 Transformation of 6-fluoro-progesterone (144) by S.griseus observed by 
GC-MS (organic extract of the pellet). 

Interestingly a small variation in the metabolic profile was observed when the experiment 

was repeated in a baffled flask. This was most likely related to better air-medium 

mixing (Figure 3.13). 

 

Figure 3.13 Spectra A incubation in normal erlenmeyer flask. Spectrum B incubation 
in baffled flask.  

 

Identification of the metabolites base on crude 19F NMR and GC-MS could be challenging; 

therefore, the compounds present in the supernatant organic extract were partially separated 

using preparative TLC. The plate was run using an 80% DCM/EtOAc solvent system. As 
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shown in the figure below, nine fractions were identified (Figure 3.14). The silica from the 

TLC plate was removed and extracted and these extracts were analysed using 19F NMR / 

GC-MS and presented in Figure 3.12 and Figure 3.15. 

 

 

 

 

Figure 3.14 TLC plate presented with crude mixture. Transformation of 6-
fluoro- progesterone (144) by S. griseus. 

  

6-fluoro-

progesterone (144) 

6-fluoro-

testosterone (84) 

Fraction 9 
Fraction 8 
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Fraction 6 
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Fraction 3 
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Fraction 1 

starting material 

(6-fluoro-

progesterone (144)) 

co-spot crude mixture 6-fluoro-

testosterone (84) 
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Fraction 1 Fraction 2 

 
Fraction 3 Fraction 4 

Fraction 5 Fraction 6 

 
Fraction 7 Fraction 8 

 
Fraction 9  

 

 

 
Figure 3.15 19F NMR of the fractions collected after separation of the crude mixture by 

preparative TLC technique in 80% DCM/EtOAc solvent system.  
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The 19F NMR data presented in Figure 3.15 is summarised in Table 3.4. It appears from 

the data obtained that some of the metabolites were not stable on silica gel and decomposed 

or formed new products. It is possible that some of the metabolites (e.g. 19F NMR signals 

at -185.05 ppm, -188.31 ppm, -192.56 ppm) were conjugates with sugars or unstable 

hydroxy compounds that underwent hydrolysis or elimination under the acidic conditions 

during the TLC separation. In addition, the data suggests that two major products were 

formed on the TLC plate which gave 19F NMR signal at -168 ppm (fraction 1: -168.35 ppm; 

fraction 4: -168.32 ppm; fraction 8: -168.24 ppm) and -187 ppm (fraction 2: -187.98 ppm; 

fraction 3: -187.88 ppm; fraction 6: -187.83 ppm; fraction 7: -187.83 ppm). It is also 

possible that these peaks correspond to new products with similar 19F NMR signals. 

 
Table 3.4 Summarised data of the 19F NMR of each fraction collected. 

Experiment 19F NMR signals (ppm) 

Original metabolites New signals after 
TLC 

Crude -165.44, -166.38, -175.28, -185.05, -185.66, -
188.31, -190.77, -192.56 

- 

Fraction 1 -166.46, -175.36, -185.63 - 

Fraction 2 -165.57, -166.49, -175.37, -185.62, -190.76 -168.35, -168.67-
187.07, -187.98, -

189.35 

Fraction 3 -165.57, -166.46, -175.27, -190.76 -187.88, 

Fraction 4 - -168.32 

Fraction 5 -165.62, -166.38 -168.53 

Fraction 6 -166.38 -187.83 

Fraction 7 -165.44 -187.83 

Fraction 8 -165.51, -190.63 -168.24 

Fraction 9 - - 

 

Comparison of GC-MS analysis for fraction 1 and 6-fluoro-progesterone (144) indicated 

similarities in the fragmentation pattern (Figure 3.12 and 3.16). Characteristic 

fragmentation behaviour of 6-fluoro-progesterone (144) was the elimination of HF (m/z 

312 (72), (195)). A concomitant loss of carbonyl group (C-20, (196)) gave rise to an 
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abundant fragment ion at m/z 43 (70) (198). Fragmentation of D ring generated the product 

ion at m/z 227 (100) (197). 

 

Figure 3.16 GC-MS spectrum of 6-fluoro-progesterone (144). 
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[M+]-HF
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m/z 227m/z 43  

 

Scheme 3.7 Proposed fragmentation pathway of 6-fluoro-progesterone (144). 
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Abundant fragment ions at m/z 333 ([M+1]) and m/z 313 ([M+1]-HF) could indicate the 

presence of 6-fluoro-progesterone (144) in fraction 1 but other characteristic fragments of 

6-fluoro-progesterone (144) such as m/z 269 and m/z 227 were not detected. The ion at 

m/z 313 could also be the molecular ion of de-fluorinated 6-fluoro-progesterone (144), 

which could form during the feeding experiment and/or on silica. Given that fraction 1 does 

not contain 6-fluoro-progesterone (144) based on TLC, the ion at m/z 333 was most likely 

generated during a fragmentation process in MS. 

 

Figure 3.17 GC-MS spectrum for the transformation of 6-fluoro-progesterone (144) 
by S. griseus for fraction 1. 

 

The presence of ion at m/z 315 in fraction 1 could be attributed to 3-hydroxy-4,6-pregnen-

20-one ([M+1], (199)). The ion mass spectrum of fraction 1 includes the most abundant ion 

at m/z 297 (200). Its generation is initiated from protonated molecule 199 by loss of water 

shown in Scheme 3.8. The dissociation of the carbonyl group from 17-C gave rise to the 

product ion at m/z 253 (201). Fragmentation of the D-ring yielded a charged fragment ion 

at m/z 211 (202). 
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Scheme 3.8 Proposed GC-MS fragmentation pathway of 3-hydroxy-4,6-pregnen-20-
one potentially detected in fraction 1. 

 

The formation of 3-hydroxy-4,6-pregnen-20-one (199) could be attributed to the microbial 

reduction of the carbonyl group. The reduction of α,β-unsaturated carbonyl group is usually 

highly stereospecific and has been described for numerous substances.85 The elimination 

of HF from 6-fluoro-progesterone (144) could potentially occur via microbial 

transformation and/or due to instability of the fluorinated metabolite during isolation step 

or purification on silica. 

The ion detected at m/z 367 detection in fraction 1, is proposed to originate from 6-fluoro-

3,12,16-trihydroxy-4-pregnen-20-one [M+1] (204) (Scheme 3.9). Postulated 

fragmentation routes of this molecule giving rise to ion at m/z 351 (203), which was formed 

through dissociation of a CH3 group from molecule (most likely 21-C). The product ion 

mass spectrum of fraction 1 includes an abundant product ion at m/z 295 (207). Its 

generation is initiated from the dihydroxylated 4-pregnen-20-one through the elimination 

of water (presumably from 16-C and 12-C), HF and a methyl group. Elimination of another 

methyl group leads to the formation of ion at m/z 279 (208). 
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Scheme 3.9 Proposed GC-MS fragmentation pathway of 6-fluoro-3,12,16-trihydroxy-
4-pregnen-20-one potentially detected in fraction 1. 

 

Alternatively, it is also plausible that the ion at m/z 351 (209) originates from the 

monohydroxylated-4-pregnen-20-one derivative (209) (Scheme 3.10). The proposed 

fragmentation pathway of this molecule involves elimination of water to produce ions at 

m/z 333 (210) and m/z 315 (211), elimination of HF to produce ion at m/z 295, 

fragmentation of the carbonyl group (m/z 279 (213) and m/z 251 (214)) and fragmentation 

of the metabolite D ring (m/z 211 (202)). 

 

Scheme 3.10 Proposed GC-MS fragmentation pathway of monohydroxylated-4-
pregnen-20-one potentially detected in fraction 1. 
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Given the aforementioned analysis a summary of the proposed metabolites contained in 

fraction 1 are tabulated below (Table 3.5). 

Table 3.5 Summary of metabolites produced via the biotransformation of 6-fluoro-
progesterone (144) by S. griseus. (Detected GC-MS ions in fraction 1). 

Entry m/z Proposed Metabolite 

1 315 [M+1], 297 [M+1]-H2O, 253, 211 3-Hydroxy-4,6-pregnen-20-one (199) 

2 367 [M+1], 351 [M+]-CH3, 295, 279 6-Fluoro-3,11,16-trihydroxy-4-pregnen-
20-one (204) 

3 351 [M+1], 333 [M+1]-H2O, 315, 
295, 279, 211 

6-Fluoro-11-hydroxy-4-pregnen-20-one 
(209) 

4 313 [M+1] 4,6-pregnen-3,20-dione (195)  

 

The presence of dihydroxylated 4-pregnen-20-one (209) as a metabolite is supported by 

existing literature. Hydroxylation of various steroids at the 16α position by S. griseus 

cytochrome P-450 CYP154C3 was studied by Makino.86 Here they reported stereospecific 

hydroxylation of testosterone (91), progesterone (142), androstene-3,17-dione (106), 

androsterone (97), 1,4-androstadiene-3,17-dione, dehydroepiandrosterone, 4-pregnane-

3,11,20-trione and deoxycorticosterone. There are no reports in the literature of S. griseus 

11-C hydroxylation. The typical microorganisms that are used for 11-C α hydroxylation 

are Rhizopusnigricans and Aspergillus niger, whereas strains of Cunninghamella 

blackesleena and Curvularia lunata are used for 11C-β hydroxylation.   
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The GC-MS spectrum of fraction 2 is presented below (Figure 3.18). This fraction showed 

many similarities in the fragmentation pattern to fraction 1; however, a few additional ions 

were detected at m/z 362, 282, 264 and 246. The origin of these ions is currently unknown. 

Assuming that ion at m/z 362 or 282 is the molecular ion [M+1], the molecule would have 

an odd molecular weight. This indicates that an odd number of nitrogen atoms are present 

in the molecule (nitrogen rule). Ions at m/z 264 and 246 are most likely to be the fragments 

generated from ion at m/z 282 through the loss of water.  

 

Figure 3.18 GC-MS spectrum for the transformation of 6-fluoro-progesterone (144) 
by S. griseus for fraction 2. 

 

Table 3.6 Summary of metabolites produced via the biotransformation of 6-fluoro-
progesterone (144) by S. griseus. (Detected GC-MS ions in fraction 2.) 

Entry m/z Proposed Metabolite 

1 297 [M+1]-H2O, 253, 
211 

2,4,6-pregnen-20-one (200) or 3-Hydroxy-4,6-pregnen-20-
one (if water was eliminated during analysis) (199) 

2 367 [M+1], 351 
[M+]-CH3 

6-Fluoro-3,11,16-trihydroxy-4-pregnen-20-one (204) 

3 351 [M+1], 333, 313 
[M+1]-H2O, 211 

6-Fluoro-3,16-dihydroxy-4-pregnen-20-one (209) 

4 313 [M+1] 4,6-pregnen-3,20-dione (195) 
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When comparing fraction 3 to fraction 2, there were two additional ions at m/z 335 and m/z 

315. The ion at m/z 335 is proposed to originate from 6-fluoro-3-hydroxy-4-pregnen-20-

one (215) [M+1] (Scheme 3.11). The fragment ion of 6-fluoro-3-hydroxy-4-pregnen-20-

one (199) at m/z 315 is proposed to originate from loss of HF. Elimination of water from 

m/z 315 produced ion at m/z 297 (200) and subsequent fragmentation of the ketone led to 

the formation of ion at m/z 253 (201). Alternatively, ions at m/z 315 and 297 could be the 

molecular ions if elimination of water and HF occurred during feeding experiment, 

isolation or purification of metabolites. 

 

Figure 3.19 GC-MS spectrum for the transformation of 6-fluoro-progesterone (144) 
by S. griseus for fraction 3. 

Table 3.7 Summary of metabolites produced via the biotransformation of 6-fluoro-
progesterone (144) by S. griseus. (Detected GC-MS ions in fraction 3.) 

Entry m/z Proposed Metabolite 

1 315 [M+1], 297 [M+1]-H2O, 
253 

3-Hydroxy-4,6-pregnen-20-one (199) 

2 367 [M+1], 351 [M+]-CH3 6-Fluoro-3,11,16-trihydroxy-4-pregnen-20-one 
(204) 

3 351 [M+1] 6-Fluoro-3,16-dihydroxy-4-pregnen-20-one 
(209) 

4 335 [M+1], 297, 253 6-Fluoro-3-hydroxy-4-pregnen-20-one (215) 
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Scheme 3.11 Proposed GC-MS fragmentation pathway of 6-fluoro-3-hydroxy-4-
pregnen-20-one potentially detected in fraction 3. 

 

Fraction 4 contained 6-fluoro-3,16-dihydroxy-4-pregnen-20-one (209) (m/z 351 [M+1], 

m/z 333 [M+1]-H2O, 313 [M+1]-H2O-HF) and 4,6-pregnen-3,20-dione (195) (m/z 313 

[M+1]). These compounds were also detected in the previous fractions. The ion at m/z 333 

could indicate presence of 6-fluoro-progesterone (144) [M+1], however, 19F NMR did not 

confirm that this compound was present. A new ion at m/z 349 could be potentially 

attributed to 6-fluoro-16-hydroxy-4-pregnen-3,20-one (216). A proposed mechanism of 

fragmentation of m/z 349 ([M+1]) is depicted below in Scheme 3.12. This mechanism 

involves elimination of a methyl group, water, and fragmentation of the A ring as this could 

explain the formation of ions at m/z 273 (220), 257 (222) and 237 (223). Ions at m/z 331 

[M+1]-H2O (217), 299 (219) and 257 (222) included in Scheme 3.12 were detected in the 

next 5th fraction were m/z 349 (216) was the major component. It is worth noting that a 

similar fragmentation pattern of the A ring was observed by Thevis for androst-4,9-diene-

17β-ol-3-one.87 Fraction 4 also contained the abundant ion at m/z 292. The nitrogen rule 

suggested that this molecular ion [M+1]/fragment contained an odd number of nitrogen 

atoms. The origin of this ion is currently unknown. 
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Figure 3.20 GC-MS spectrum for the transformation of 6-fluoro-progesterone (144) by 
S. griseus for fraction 4. 

 
Table 3.8 Summary of metabolites produced via the biotransformation of 6-fluoro-

progesterone (144) by S. griseus. (Detected GC-MS ions in fraction 4.) 

Entry m/z Proposed Metabolite 

1 351 [M+1], 333 [M+1]-H2O, 313 [M+1]-H2O-
HF 

6-fluoro-3,16-dihydroxy-4-pregnen-
20-one (209) 

2 349 [M+1], 273, 257, 237 6-Fluoro-16-hydroxy-4-pregnen-3,20-
one (216) 

O
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O
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m/z 312
[M+]-HF

m/z 332
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m/z 269

m/z 227m/z 43  
Scheme 3.12 Proposed GC-MS fragmentation pattern for 6-fluoro-16-hydroxy-4-pregnen-

3,20-one in fraction 4.  
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Figure 3.21 GC-MS spectrum for the transformation of 6-fluoro-progesterone (144) 
by S. griseus for fraction 5. 

 
Table 3.9 Summary of metabolites produced via the biotransformation of 6-fluoro-

progesterone (144) by S. griseus. (Detected GC-MS ions in fraction 5.) 

Entry m/z Proposed Metabolite 

1 349 [M+1], 331, 299, 257 6-Fluoro-16-hydroxy-4-pregnen-
3,20-one (216) 

 
As mentioned earlier, fraction 5 showed an abundant ion at m/z 349 which could be 

attributed to 6-fluoro-16-hydroxy-4-pregnen-3,20-one (216). Formation of this compound 

was further supported by the presence of ions at m/z 331 [M+1]-H2O (217), 299 (219) and 

257 (222) (Scheme 3.12). 

 

Fraction 6 contained two fluorinated compounds based on 19F NMR analysis. GC-MS 

suggested presence of 6-fluoro-3,16-dihydroxy-4-pregnen-20-one (209) (m/z 351 [M+1], 

minor component) and 6-fluoro-3-hydroxy-4-pregnen-20-one (215) (m/z 335 [M+1]). 

Fragmentation of 6-fluoro-3-hydroxy-4-pregnen-20-one (215) was described earlier in 

Scheme 3.11 (fraction 3), showing fragments at m/z 315 [M+1]-HF (199), 297 [M+1]-HF–

H2O (200) and m/z 253 (201). However, a different fragmentation pattern was observed for 

fraction 6 suggesting that both compounds present in fraction 6 and 3 are diastereoisomers 

(possibly at 3-C) or structural isomers (e.g. reduction of 3-C vs 20-C by bacteria). 

Fragmentation of the compound observed in fraction 6 is shown in Scheme 3.13. The 

protonated molecule is the starting point of the proposed dissociation pathway that leads to 
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cleavages of the bonds between 20-C and 21-C as well as 17-C and 20-C accompanied by 

the elimination of HF. 

 

Figure 3.22 GC-MS spectrum for the transformation of 6-fluoro-progesterone (144) 
by S. griseus for fraction 6. 

Table 3.10 Summary of metabolites produced via the biotransformation of 6-fluoro-
progesterone (144) by S. griseus. (Detected GC-MS ions in fraction 6.) 

Entry m/z Proposed Metabolite 

1 351 [M+1] 6-fluoro-3,16-dihydroxy-4-
pregnen-20-one (209) 

2 335 [M+1], 319, 299, 275, 255 6-fluoro-3-hydroxy-4-pregnen-20-
one (215) 

 
 

HO

F
215 m/z 335

O

H

224   m/z 319

O

HO

F
225 m/z 299

O

HO

226   m/z 275

HO

F
227 m/z 255

HO

 
Scheme 3.13 The ion mass of most abundant ion and proposal of mechanism for fraction 6. 
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The most abundant ion of fraction 7 appeared at m/z 351. This ion was described previously 

and was assigned to 6-fluoro-3,16-dihydroxy-4-pregnen-20-one (209) ([M+1]). The 

fragmentation pathway of ion at m/z 351 in fraction 7 differs to that described earlier in 

fraction (351 [M+1], 333 [M+1]-H2O, 315, 295, 279, 211; Scheme 3.10). The ions at m/z 

315, 295, 279 and 211 are not observed, instead the ion at m/z 333 [M+1]-H2O (210) loses 

water and the methyl group 21-C to produce ion at m/z 299 (228). It is highly possible that 

both fractions contained the diastereoisomer of 6-fluoro-3,16-dihydroxy-4-pregnen-20-one 

(209) (3-C and/or 16-C). Alternatively, 6-fluoro-progesterone (144) may have been 

hydroxylated at a position other than 16-C- (most likely alternatives are 11-C or 12-C). 

 
Figure 2.23 GC-MS spectrum for the transformation of 6-fluoro-progesterone (144) 

by S. griseus for fraction 7. 

 
Table 3.11 Summary of metabolites produced via the biotransformation of 6-fluoro-

progesterone (144) by S. griseus. (Detected GC-MS ions in fraction 7.) 

Entry m/z Proposed Metabolite 

1 351 [M+1], 333, 299 6-fluoro-3,16-dihydroxy-4-
pregnen-20-one (209) 

 

 
Scheme 3.14 The ion mass of most abundant ion and proposal of mechanism for fraction 

7. 
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Fraction 8 mainly contained 6-fluoro-progesterone (144) based on the evidence from the 

GC-MS analysis and TLC. The molecular ion [M+1] at m/z 333 (144) fragments by losing 

HF to produce ion at m/z 313 (312). The minor component of fraction 8 is the streptomycin 

(m/z 581, [M+] (229); Scheme 3.15) antibiotic produce by this bacteria. This molecule 

fragments by losing the methyl group and the aldehyde group to produce ions at m/z 566 

(230) and 552 (231) respectively. 

 

 

Figure 3.24 GC-MS spectrum for the transformation of 6-fluoro-progesterone (144) 
by S. griseus for fraction 8. 

 
 

Table 3.12 Summary of metabolites produced via the biotransformation of 6-fluoro-
progesterone (144) by S. griseus. (Detected GC-MS ions in fraction 8.) 

Entry m/z Proposed Metabolite 

1 333 [M+1], 313 [M+1]-HF 6-fluoro--progesterone (144) 

2 581 [M+1], 566, 552 Streptomycin (229) 
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Scheme 3.15 Proposed minor metabolites for 6-fluoro-progesterone (144) for fraction 
8 and 9 is streptomycin antibiotic produce by S. griseus. 

 
 

Fraction 9 does not contain steroids or fluorinated compounds and the major compound of 

this fraction is Streptomycin (229) (m/z 581, [M]+˙) produced by the bacteria. 

 

 

 

Figure 3.25 GC-MS spectrum for the transformation of 6-fluoro-progesterone (144) 
by S. griseus for fraction 9. 
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Table 3.13 Summary of metabolites produced via the biotransformation of 6-fluoro-
progesterone (144) by S. griseus. (Detected GC-MS ions in fraction 9.) 

Entry m/z Proposed Metabolite 

1 581 [M]+˙, 566, 552 Streptomycin (229) 

 
In summary, seven different metabolites are proposed (Scheme 3.11). It is highly probable 

that some of the steroids such as 3-hydroxy-4,6-pregnen-20-one (199), 2,4,6-pregnen-20-

one (200) or 4,6-pregnen-3,20-dione (195) were formed during the isolation or purification 

stages via elimination of water or/and HF. Two metabolites were formed by reduction of 

3-C carbonyl group (215) and hydroxylation at 16-C carbon (216) (16α-hydroxylation). 

These reactions are known and were reported in the literature for different steroids. As the 

ion at m/z 351 [M+1] was detected in 6 different fractions, it is highly probable that different 

diastereoisomers of 6-fluoro-3,16-dihydroxy-4-pregnen-20-one (209) were formed 

(alternatively fluoro-progesterone was hydroxylated at a different position). 
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Scheme 3.16  Summary of the compounds detected by GC-MS after the 
biotransformation of 6-fluoro-progesterone (144) by S. griseus. 
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3.3.6 Feeding experiments with 6α/β-fluoro-testosterone (84) 

 

The biological experiments with S. griseus and 6-fluoro-testosterone (84) ware carried 

out according to the general procedure described in paragraph 3.3.1. The organic and 

aqueous extracts were analysed using GC-MS/LC-MS and 19F NMR. From 19F NMR 

analysis it could be seen that only a few metabolites were generated by the bacteria (Table 

3.14). Unfortunately, the concentration of these metabolites was very low and therefore 

only one metabolite was identified by GC-MS. This metabolite gave an ion at m/z 304 and 

it is most likely the product of the oxidation of 6-fluoro-testosterone (84) 

(Scheme 3.17). 

A- 19F NMR spectral analysis of control (organic fraction) 

 

B - 19F NMR spectral analysis of Pellet (organic fraction) 

 

Figure 3.26 19F NMR analysis of 6-fluoro-testosterone (84) incubated with S. 
griseus. A- 19F NMR of control organic fraction in d-chloroform. B- 19F NMR of the pellet 
organic fraction in d-chloroform. The other fractions (pellet and supernatant aqueous  
fraction in D2O) show no peaks during 19F NMR analysis.  
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Table 3.14 New metabolites shown by 19F NMR analysis of 6-fluoro-testosterone 
(84) incubated with S. griseus. 

Experiment 19F NMR analysis 

Supernatant 
(aqueous) 

No fluorinated metabolites detected.  

Pellet (organic) 

-95.74, -108.70, -123.4, -130.10, -148.50, -149.93, 

  -151.74, -165.75, -180.50, -180.82, -184.35, -188.22 

 

Pellet (aqueous) No metabolites detected.  

 

 

Sheme 3.17  Detected GC-MS ions in transformation of 6-fluoro-testosterone (84) 
by S. griseus and structure of proposed metabolites. 

 

3.3.7 Feeding experiments with 6α/β-fluoro-androstenedione (5) 

 

In a similar fashion S. griseus was fed with a mixture of 6/-fluoro-androstenedione (5) 

(sample contained a trace amount of 6-fluoro-testosterone (84) which was used to make 

this starting material, signal at 19F NMR signal at -183.45 ppm). The supernatants and 

pellets were extracted and analysed by 19F NMR and GC-MS (Figure 3.27). All steroid 

metabolites were located in the pellet organic extracts. The aqueous phase of the 

supernatant and pellet did not contain any fluorinated compounds. The extraction of the 

supernatant gave only a trace amount of the starting material 6/-fluoro-

androstenedione (5). 
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A – 19F NMR spectral analysis of the Control (organic fraction) 

 
B – 19F NMR spectral analysis of the Pellet (organic fraction) 

 
C - 19F NMR spectral analysis of the Supernatant (organic fraction) 

 
Figure 3.27 19F NMR analysis of 6/-fluoro-androstenedione (5) incubated with 
S. griseus. A- 19F NMR of control organic fraction in d-chloroform. B- 19F NMR of the 
pellet organic fraction in d-chloroform. C- 19F NMR of supernatant organic fraction in d-
chloroform. The other fractions (pellet and supernatant aqueous fraction in D2O) showed 
no peaks in the 19F NMR analysis. 

 

Based on 19F NMR analysis two metabolites could be detected (Table 3.15). Unfortunately, 

the concentration of these two compounds was very low and therefore identification by 

GC-MS was not possible (GC-MS showed the starting material and de-fluorinated 

compound only). 

 

Table 3.15 New metabolites detected by 19F NMR analysis of 6/-fluoro-
androstenedione (5) incubated with S. griseus. 

Experiment 19F NMR Metabolites 

Pellet 

(organic) 

-122.56, -156.18, -172.96 (detected in control 

sample), -190.27 (detected in control sample) 
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3.3.8 Feeding experiments with labelled 6-fluoro-3dihydroxyandrost-4-

ene (110) 

 

S. griseus was fed with a mixture of 6-fluoro-3dihydroxyandrost-4-ene (110). 

The aqueous extracts contained only the starting material and the organic phases were free 

from any fluorinated steroids. The 19F NMR and GC-MS results are presented below 

(Figure 3.28). 

A – 19F NMR (decoupled) spectral analysis of the Control (organic fraction) 

 

B – 19F NMR (decoupled) spectral analysis of the Pellet (organic fraction) 
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C – 19F NMR (decoupled) spectral analysis of the Supernatant (organic fraction) 

 

 

D – 19F NMR (decoupled) spectral analysis of the Supernatant (aqueous fraction) 

 

 

E – 19F NMR (decoupled) spectral analysis of the Pellet (aqueous fraction) 

 

Figure 3.28 19F NMR (decoupled) analysis of 6-fluoro-3dihydroxyandrost-4-
ene (110) incubated with S. griseus. A- 19F NMR of control organic fraction in d-
chloroform. B- 19F NMR of pellet organic fraction in d-chloroform. C- 19F NMR of 
supernatant organic fraction in d-chloroform. D- 19F NMR of supernatant aqueous fraction 
in D2O. E- 19F NMR of pellet aqueous fraction in D2O. The other fractions (pellet and 
supernatant aqueous fraction in D2O) show no peaks during 19F NMR analysis. 
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Table 3.16 New metabolites detected by 19F NMR analysis of 6-fluoro-
3dihydroxyandrost-4-ene (110) incubated with S. griseus. 

Experiment 19F NMR Signals (ppm) 

Supernatant 
(organic) 

No fluorinated metabolites detected. 

Supernatant 
(aqueous) 

- 150.68, -121.84 

Pellet (organic) -180.61, -180.75, -183.00, -184.21, -188.22 

Pellet (aqueous) - 150.68, -121.84 

 

The organic phase of the supernatant contained ions in the GC-MS analysis that suggested 

the presence of steroids: m/z 239, m/z 310, m/z 324, m/z 338. The proposed structures for 

these ions are presented below (Figure 3.29). From the analysis of the GC-MS data, it 

appears that S. griseus hydroxylated the starting material (as discussed previously 

hydroxylation is most likely to occur at C-16, dihydroxylation at C-11/C-12) and reduced 

the double bond. Formation of the ion at m/z 239 (232) was generated through the 

elimination/fragmentation reaction which probably occurred during analysis. The organic 

extracts of the pellet contained one major compound by GC-MS. This compound gave ions 

at m/z 301 (M+) and m/z 286 (M+-CH3). The structure of this potential metabolite is not 

easy to predict because an odd molecular weight suggests presence of an odd numbers of 

nitrogen atoms. Based on the 19F NMR data, the organic extracts of the pellet contained 

mainly the starting material (peaks at -161.41 ppm and -184.19 ppm) what suggest that 

both compounds give similar fluorine spectrum. In addition to that, 19F NMR analysis 

suggests formation of a few metabolites in small quantities. 

 

 

Figure 3.29 Proposed metabolites arising from 6-fluoro-3dihydroxyandrost-
4-ene (110) incubation with S. griseus. 
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3.3.9 Feeding experiment with labelled 6-fluoro-nortestosterone (86) 

 

When S. griseus was fed with a mixture of 6-fluoro-nortestosterone (86) few 

metabolites were generated. All of the steroids metabolites were found to be located in the 

pellet and supernatant organic extracts. The aqueous phase of the pellet contained F- ions 

(-122.2 ppm). The results are summarised in the table below. 

 

A – 19F NMR spectral analysis of the Control (organic fraction) 

 

 

B – 19F NMR spectral analysis of the Pellet (organic fraction) 
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C – 19F NMR spectral analysis of the Supernatant (organic fraction) 

 

Figure 3.30 19F NMR analysis of 6-fluoro-nortestosterone (86) incubated with 
S. griseus. A- 19F NMR of the control organic fraction in d-chloroform. B- 19F NMR of the 
pellet organic fraction in d-chloroform. C- 19F NMR of the supernatant organic fraction in 
d-chloroform. The other fractions (pellet and supernatant aqueous fraction in D2O) showed 
no peaks during 19F NMR analysis. 

Table 3.17  New matabolites detected by 19F NMR analysis of 6α/β-fluoro-19-
nortestosterone (106) incubated with S. griseus. 

Experiment 19F NMR Signal (ppm)  

Supernatant 
(organic) 

-173.62, -175.65, -176.66, -179.64, -180.49, -181.12, -
181.81, -182.25, -182.61, -184.17, -185.01 

Supernatant 
(aqueous) 

No fluorinated metabolites detected.  

Pellet (organic) 

-164.33, -169.88, -173.96, -175.46, -177.18, -180.56, -
181.01, -182.17, -182.66, -185.39, -190.52, -193.37, -

194.78, -195.15 

 

Pellet (aqueous) No metabolites detected. 

 

In comparison to 6-fluoro-testosterone (84), 6-fluoro-nortestosterone (86) 

underwent more extensive metabolism in S. griseus. The organic phase of the supernatant 

contained ions suggesting presence of 5 different metabolites: m/z 308, m/z 306, m/z 304, 

m/z 290 and m/z 272. The proposed structures for these ions are presented in Scheme 3.18. 

One of the major metabolites appears to be the hydroxylated starting material (probably 

hydroxylation at 16-C). This compound could be then transformed into three different 

metabolites. Ions at m/z 306 (237) and m/z 304 (238) suggest oxidation of the hydroxylated 

starting material to di- and tri-carbonyl compound respectively. The hydroxylated starting 

material could be also reduced. This was supported by the presence of ions at m/z 310 in 

the pellet organic fraction (240, 243). Presence of ion at m/z 290 (85) was an effect of 
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oxidation of the starting material. Elimination of HF from the starting material led to the 

formation of ion at m/z 272 (244). The pellet (organic fraction) contained products most 

likely generated through reduction (m/z 310) and elimination reactions (m/z 290, m/z 272, 

m/z 274). The ion in the GC-MS at m/z 310 could be generated through the reduction of the 

mono hydroxylated metabolite (m/z 308). Elimination of HF and water from the reduced 

metabolite led to the formation of ions at m/z 290 and m/z 272 respectively. Ions at m/z 274 

suggested elimination of water from 6-fluoro-nortestosterone (86). 
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Scheme 3.18 Proposed metabolites arising from the incubation of 6α/β-fluoro-
nortestosterone (86) in S. griseus.  
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3.3.10 Feeding experiments with 6-fluoro-norandrostenediole (85) 

 

When S. griseus was fed with a mixture of 6-fluoro-norandrostenediole (85) it was 

found to generate several metabolites. All of fluorinated steroid metabolites were located 

in the pellet and supernatant organic extracts. The aqueous phase of the pellet contained 

F- ions (19F NMR peak at -122.2 ppm) and possibly a non-steroidal compound (-150.5 

ppm). The results obtained are summarised in Table 3.18. 

A – 19F NMR spectral analysis of the Control (organic fraction) 

 

 

B – 19F NMR spectral analysis of the Pellet (organic fraction) 
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C – 19F NMR spectral analysis of the Supernatant (organic fraction) 

 

D – 19F NMR (decoupled) spectral analysis of the Pellet (aqueous fraction) 

 

Figure 3.31 19F NMR analysis of 6-fluoro-norandrostenediole (85) incubated with 
S. griseus. A- 19F NMR of control organic fraction in d-chloroform. B- 19F NMR of pellet 
organic fraction in d-chloroform. C- 19F NMR of supernatant organic fraction in d-
chloroform. D- 19F NMR (decoupled) of pellet aqueous fraction in D2O. The other fractions 
(pellet and supernatant aqueous fraction in D2O) show no peaks during 19F NMR analysis. 

Table 3.18 New metabolites detected by19F NMR analysis of 6-fluoro-
norandrostenediole (85) incubated with S. griseus. 

Experiment 19F NMR signals (ppm)  

Supernatant 
(organic) 

-170.43 

Supernatant 
(aqueous) 

No fluorinated metabolites detected 

Pellet (organic) 
-167.18, -178.86, -181.59, -187.91 

 

Pellet (aqueous) 
No fluorinated steroid metabolites (-122.24 fluorine- 

ions, -150.52 non steroid molecule) 

 

Analysis of the GC-MS data suggested formation of three compounds presented in 

Figure 3.32. Interestingly the starting material was not detected during this analysis. This 

suggests that elimination of HF could occur during incubation/isolation or on the GC 
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column and therefore ion at m/z 274 was detected. Ion at m/z 256 suggests elimination of 

water and HF from the starting material. This ion could also be formed during GC-MS 

analysis. Ion at m/z 284 corresponds to the oxidised starting material. It is possible that 

S. griseus first hydroxylated the starting material at position C-16 and then oxidised the 

hydroxyl groups (HF elimination could occurred during GC-MS analysis). Unfortunately, 

no corresponding intermediates to support this theory were detected. The main component 

of the supernatant organic fraction is a compound with a molecular ion m/z 248 [M+] (249) 

and fragmentation ion at m/z 233 [M+-CH3]. This steroid probably originated from complex 

metabolic transformations (oxidation/reduction/elimination) and therefore its structure is 

difficult to predict. The figure below presents just an example of compound with m/z 248 

(249), which could potentially be formed via oxidation of 17-C, hydroxylation at 12-C and 

16-C, elimination of hydroxyl groups and aromatization. Ions at m/z 290 [M+] (89) and m/z 

270 [M+-HF] (245) were also detected suggesting oxidation of two hydroxyl groups. 

HO

246 m/z 274

OH

247 m/z 256

OH

O

248 m/z 284

O

O

249 m/z 248

O

O

245 m/z 270

O

O
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O
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Figure 3.32 Proposed metabolites for 6-fluoro-norandrostenediole (85)  
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3.3.11 Feeding experiments with 16/-fluoro-androsterone (87) 

 

The following feeding experiment was carried out with 16/-fluoro-androsterone (87) 

and S. griseus. Upon completion of the experiment the mixture was worked-up and the 

extracts were analysed using 19F NMR and GC-MS (Figure 3.33).  

A – 19F NMR spectral analysis of the Control (organic fraction) 

 

 
B – 19F NMR spectral analysis of the Pellet (organic fraction) 
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C – 19F NMR spectral analysis of the Supernatant (organic fraction) 

 
Figure 3.33 19F NMR analysis of 16/-fluoro-androsterone (87) incubated with S. 
griseus. A- 19F NMR of control organic fraction in d-chloroform. B- 19F NMR of pellet 
organic fraction in d-chloroform. C- 19F NMR of supernatant organic fraction in d-
chloroform. The other fractions (pellet and supernatant aqueous fraction in D2O) showed 
no peaks during 19F NMR analysis. 
 

Table 3.19 New metabolites detected by 19F NMR analysis of 16/-Fluoro-
androsterone (87) incubated with S. griseus. 

Experiment 19F NMR signals (ppm) 

Supernatant 
(organic) 

-172.35, -175.49, -178.29, -179.45 

Supernatant 
(aqueous) 

No fluorinated metabolites detected. 

Pellet (organic) -175.79, -178.48, -179.96, -185.29, -192.89 

Pellet (aqueous) No fluorinated metabolites detected. 

 

Based on 19F NMR analysis 5 potential metabolites were detected in the pellet organic 

fraction and 4 potential metabolites in the supernatant. GC-MS analysis of the pellet 

organic fraction detected the starting material (87) (m/z 308, m/z 290 [M+-H2O]) and one 

potential metabolite at m/z 354 (254) presented in Scheme 3.19. In theory this metabolite 

could be formed by oxidation of hydroxyl group at 3-C and triple hydroxylation. However, 

intermediate metabolites were not detected (e.g. dihydroxylated molecule), therefore 

formation of a triple hydroxylated molecule would be unlikely. Ion at m/z 306 (88) was not 

present in the GC-MS spectra of the starting material and the control sample and 

corresponds to the major metabolite 16-fluoro-5-androstanedione (88). This molecule 

is then oxidised to the hydroxylated derivative (252) (m/z 322), reduced to unsaturated 
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ketone (253) (m/z 304) or transformed into non fluorinated steroid (255) (m/z 286). Ion at 

m/z 288 (250) and m/z 290 (251) was formed by elimination of HF and water respectively 

from the starting material. A less probable explanation for the formation of ion at m/z 290 

(97) is de-fluorination of the starting material.  

 

 

Scheme 3.19 Proposed metabolites for 16/-Fluoro-androsterone (87).  
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3.3.12 Feeding experiments with 16-fluoro-5-androstanedione (88) 

 

The experiment below was carried out with 16α/β-fluoro-androstenedione (88). As before 

S. griseus was fed with the steroid and upon completion of the experiment the bacteria were 

centrifuged and extraction was carried out. Analysis of the 19F NMR and GC-MS data 

revealed formation of a few metabolites (Figure 3.33).  

A – 19F NMR spectral analysis of the Control (organic fraction) 

 

B – 19F NMR spectral analysis of the Pellet (organic fraction) 
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C – 19F NMR spectral analysis of the Supernatant (organic fraction) 

Figure 3.33 19F NMR analysis of 16α/β-fluoro-androstenedione (88) incubated with 
S. griseus.A- 19F NMR of control organic fraction in d-chloroform. B- 19F NMR of pellet 
organic fraction in d-chloroform. C- 19F NMR of supernatant organic fraction in d-
chloroform. The other fractions (pellet and supernatant aqueous fraction in D2O) show no 
peaks during 19F NMR analysis. 

Table 3.20 New metabolites shown by19F NMR analysis of 16α/β-fluoro-
androstenedione (88) incubated with S. griseus. 

Experiment 19F NMR Metabolites 

Supernatant 
(organic) 

-187.90, -192.06, -192.61 

Supernatant 
(aqueous) 

No fluorinated metabolites detected. 

Pellet (organic) -185.08, -191.77, -192.45 

Pellet (aqueous) No fluorinated metabolites detected. 

 

Based on 19F NMR analysis 3 potential metabolites were detected in the pellet organic 

fraction and 3 potential metabolites in the supernatant organic. Analysis of the GC-MS data 

suggested the formation of the compounds presented in Scheme 3.20. Interestingly 

different metabolic profiles were detected for samples obtained from extraction of the 

supernatant and pellet (organic fractions). This suggests that some of the metabolites were 

formed exclusively inside the cells (pellet organic) and the others were formed on the 

surface of the cells or were excreted to supernatant. Pellet organic extracts contained three 

metabolites (ions at m/z 310, 270 and 272). Ion at m/z 310 (171) suggested reduction of the 

starting material to 16α/β-fluoro-5-androstenedione (88). This was supported by 

observation of ion at m/z 290 (259) which was generated from m/z 310 through the 

elimination of HF. Elimination of water from ion at m/z 290 led to the formation of ion at 
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m/z 272 (258). Ion at m/z 270 (256) could be generated from the metabolite formed through 

the reduction and elimination of HF/water from the starting material. Ions at m/z 310 and 

270 were also detected in the supernatant along with other metabolites (m/z 338, 324 and 

290). Ions at m/z 338 (260) and 324 (257) suggest formation of mono and bis hydroxylated 

metabolites. 
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Sheme 3.20 Proposed metabolites for 6α/β-fluoro-5α-androstan-3,17-one (88). 
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3.3.13 Feeding experiments with 10β-fluoro-3,17-dihydroxy-1,4-androstene (10) 

 

The experiment below was carried out with 10β-fluoro-3,17-dihydroxy-1,4-androstene 

(10). As before S. griseus was fed with the steroid and upon completion of the experiment 

the bacteria were centrifuged and extraction was carried out. Analysis of the 19F NMR and 

GC-MS data revealed formation of a few metabolites (Figure 3.34). 

B – 19F NMR (decoupled) spectral analysis of the Pellet (organic fraction) 

 

C – 19F NMR (decoupled) spectral analysis of the Supernatant (organic fraction) 
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D – 19F NMR (decoupled) spectral analysis of the Supernatant (aqueous fraction) 

 

E – 19F NMR (decoupled) spectral analysis of the Pellet (aqueous fraction) 

 

Figure 3.34 19F NMR (decoupled) analysis of 10β-fluoro-3,17-dihydroxy-1,4-
androstene (10) incubated with S. griseus. A- 19F NMR of control organic fraction in d-
chloroform. B- 19F NMR of the pellet organic fraction in d-chloroform. C- 19F NMR of 
supernatant organic fraction in d-chloroform. D- 19F NMR of supernatant aqueous fraction 
in D2O. E- 19F NMR of pellet aqueous fraction in D2O. The other fractions (pellet and 
supernatant aqueous fraction in D2O) show no peaks during 19F NMR analysis. 

 

Table 3.21 New metabolites detected by19F NMR analysis of 10β-fluoro-3,17-
dihydroxy-1,4-androstene (10) incubated with S. griseus. 

Experiment 19F NMR Metabolites 

Supernatant 
(organic) 

-152.42, -155.22, -158.50, -159 90, -161.07, 
-163.58, -169.82, -170.23, -171.65, -174.45, 
-175.43, -185.48, -186.22, -189.10, -190.66 

Supernatant 
(aqueous) 

-150.62 

Pellet (organic) 

-126.93, -138.02, -139.59, -142.71, -144.43, -145.64, 

  -146.33, -152.41, -156.40, -158.49, -163.65, -166.00, 

-185.46, -186.26 

Pellet (aqueous) -150.58, -150.52 
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Scheme 3.21 Proposed metabolites for 10β-fluoro-3,17-dihydroxy-1,4-androstene (10). 

The organic phase of the supernatant contained ions suggesting presence of 4 metabolites: 

261 m/z 312, 264 m/z 294, 267 m/z 310, 10/272 m/z 288 as shown at Scheme 3.21. The 

proposed structures for these ions are presented in Scheme 3.21. From the analysis of the 

GC-MS data, it appears that S. griseus reduced the starting material to form compound with 
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264 m/z 294. This compound was also hydroxylated most likely at 16-C to form the 

metabolite at m/z 310 (267). Formation ion at m/z 312 (261) was an effect of reduction and 

hydroxylation reactions. In addition, ion at m/z 288 (272/ 10) was detected suggesting 

formation of the oxidised starting material or hydroxylated product with no fluorine. This 

ion (m/z 288) was also detected in the organic pellet phase alongside three other ions 

(Scheme 3.22, m/z 270, m/z 268 and m/z 276). Ion at m/z 270 is a fragmentation ion formed 

from m/z 288 by elimination of water. Ion at m/z 268 could be formed from a different ion 

at m/z 288 by elimination of HF. Reduction of the double bonds, carbonyl group and 

elimination of HF would lead to the formation of ion at m/z 276. The proposed metabolites 

arising from this data are presented below in Scheme 3.22.  

 

Scheme 3.22 Proposed metabolites from 10β-fluoro-3,17-dihydroxy-1,4-androstene 
(10). 

 

19F NMR analysis of the pellet aqueous phase revealed 2 metabolites at -150.58 ppm and -

150.52 ppm. Unfortunately, these metabolites decomposed during preparative LC based on 

19F NMR. The LC-MS trace of crude sample showed ion with 100% abundance at m/z 703, 

suggesting presence of cell debris. The aqueous phase of the supernatant did not contain 

any fluorinated metabolites. 
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3.3.14 Stockton experiments using Escherichia coli MG1655, Bacillus subtilis and 

Bacillus megaterium 14581 

The experiments performed in Stockton were performed with Escherichia coli, Bacillus 

subtilis and Bacillus megaterium. Escherichia coli consist of a diverse group of bacteria 

that normally live in the intestines of people and animals. They are harmless and actually 

play important roles in healthy animal intestinal tracts. Bacillus subtilis is an extremely 

common bacterium. It is found in soil, water, air, decomposing plant matter and the 

gastrointestinal tract of ruminants and humans. Bacillus megaterium is ubiquitous in the 

human environment. It is found in soil, various foods and on a variety of surfaces. The 

studies presented below have focused on the selected fluorinated steroids synthesised in 

Chapter 2 (Figure 3.35).  

 

 

Figure 3.35 Steroids used in Stockton biological feeding experiments. 

 

3.3.15 Incubation experiments 

The first experiment involved incubation of 6β-fluoro-progesterone (144), 6-fluoro-

testosterone (84), 6-fluoro-nortestosterone (86) and 6α/β-fluoro-3,17-

dihydroxyandrost-4-ene (110) with Escherichia coli MG1655, Bacillus subtilis and 
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Bacillus megaterium 14581 (bacteria available in-house). Bacteria were inoculated from 

plate into Erlenmeyer flasks containing soya bean meal media and the pH was adjusted to 

7. Cultures were incubated with rotary agitation at 27oC for 72 h. After that time, the 

following solutions in Erlenmeyer flasks were prepared:  

  medium + starting culture bacteria 

  medium + starting culture bacteria + after 72 h fluorinated steroid was added 

  medium + after 72 h fluorinated steroid was added (negative probe) 

The Erlenmeyer flasks were incubated with rotary agitation at 27oC for 6 days. After that 

time, minimal microbial growth was observed. The cultures were sonicated and 

centrifuged. The supernatants and pellets were then extracted with ethyl acetate. 19F NMR 

and GC-MS analysis of the extracts indicated that bacteria did not transform 6β-fluoro-

progesterone (144), 6-fluoro-testosterone (84), 6-fluoro-nortestosterone (86) and 

6α/β-fluoro-3,17-dihydroxyandrost-4-ene (110). 

It was suggested that the experiment was not successful due to the incubation protocol. 

Consequently, different conditions were explored to promote bacterial growth: 

- Media: 

 LB (Lysogeny broth) medium: 10 g tryptone, 5 g yeast extract, 10 g NaCl 

 NB (Nutrient broth) medium: 10 g, peptone, 10 g beef extract, 5 g NaCl 

 868 medium 88: 10 g pepton, 10 g yeast extract, 20 g glucose (This medium was 

described for the growth of B. subtilisin the literature: bacterial cells were grown 

for 48 h at 30°C with shaking (130 rpm) in 868 medium) 

-  Temperature: (30, 37oC) 

-  Agitation: (150, 200 rpm) 

-  Volumes (5, 10, 25, 50 ml) 

-  Incubation time with steroid (24, 48 h) 

As before, the incubation experiments involved 6β-fluoro-progesterone (144), 6-fluoro-

testosterone (84), 6-fluoro-nortestosterone (86) and 6α/β-fluoro-3,17-

dihydroxyandrost-4-ene (110). Escherichia coli MG1655, Bacillus subtilis and Bacillus 



 

147 
 

megaterium 14581 were grown in 50 ml falcon tubes/Erlenmeyer flasks in various medium 

(LB, NB, 868). Volumes of medium were varied from 5 to 50 ml, agitation was set to 200 

rpm and the temperature was maintained at 30oC or 37oC. The conditions are summarised 

in the table below (Table 3.22). 

Table 3.22 Conditions used for the incubation of selected fluorinated-steroids with 
Escherichia coli MG1655, Bacillus subtilis and Bacillus megaterium 14581. 

Bacteria Steroid Media 
Volume of 
media (ml) 

Volume of 
bacteria 

Compound 
(g) 

ToC 

B. subtilis 

6-fluoro-
progesterone 

(144) 

 

-fluoro-
testosterone (84) 

 

6-fluoro-
nortestosterone 

(86) 

 

6α/β-fluoro-3,17-
dihydroxyandrost-

4-ene (110) 

LB, NB, 
868 

5 100 µl 
0.00548 (LB) 

0.00528 (NB) 
30, 37 

10 200 µl 
0.00548 (LB) 

0.00510 (NB) 
30, 37 

25 0.5 ml 
0.00576 (LB) 

0.00516 (NB) 
30, 37 

50 1 ml 
0.01140 (LB) 

0.01088 (NB) 
30, 37 

B. megaterium 
14581 

LB, NB, 
868 

10 200 µl 
0.00543 (LB) 

0.00548 (NB) 
30, 37 

E. coli 
MG1655 

LB, 868 10 200 µl 0.00529 30, 37 

 

Unfortunately, it was not possible to achieve good bacterial growth by varying the 

conditions listed above. Based on in house expertise, modified buffered conditions were 

proposed for Bacillus subtilis. This involved adding a buffer to 100 ml of NB medium:  

 0.5 ml Metal Mix (14 ml 1 M Ca-chloride; 10 ml 0.1 M Mn chloride; 20 ml 1 M 

Mg chloride; 56 ml water), sterile-filtered or made from pre-sterilized stock 

solutions 

 0.05 ml Fe-solution (32.4 mg Fe(III)-chloride; 1 ml 1 M HCl in 100 ml water), 

sterile-filtered 

 5 ml Phosphate buffer (95 g K2HPO4 x 3 H2O, 124 g KH2PO4, ad 1l water), 

autoclaved 

Disappointingly, all attempts to promote bacterial growth were unsuccessful. It was 

therefore suggested that problems encountered with the bacterial growth are associated with 
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the laboratory environment. Due to lack of the success with the feeding experiments it was 

decided to try subcloning technique. This was done for positive-testing cells, if there was 

more than one clone in the original plate, it diluted the population to one or a few cells and 

regrow. This technique was used to achieve a purely monoclonal culture. Subcloning was 

repeated several times to ensure a completely monoclonal colony. 

After successful subcloning, the feeding experiments were carried out with selected 

fluorinated-steroids and bacteria (Escherichia coli MG1655, Bacillus subtilis and Bacillus 

megaterium 14581) as presented in Table 3.22. Although the growth of all bacteria was 

achieved the transformation of the fluorinated steroids was not detected. Therefore, no 

further feeding experiments were carried out in Stockton. 

3.4 Stability experiments 

3.4.1 Introduction 

Stability tests are widely carried out to identify the likely degradation of chemicals and 

biological samples over time. The nature of the stress testing will depend on the individual 

drug substance and the type of drug products involved. The experiments are usually carried 

out on a single batch of tested substance. It usually includes the effect of temperature (in 

10oC increments), humidity, oxidation, photostability.89 Where appropriate, the testing 

should also evaluate the susceptibility of the substance to hydrolysis across a wide range 

of pH values. Studying the products of degradation is useful in establishing degradation 

pathways, altering substance structure to improve stability, modifying storage conditions 

and developing suitable analytical procedures. In addition to long term stability studies, 

accelerated testing is performed. These studies use exaggerated storage conditions to 

increase the rate of chemical degradation or physical change of a substance. However, 

results from accelerated testing studies are not always predictive of physical changes. All 

these studies help to establish the date of a substance designating the time prior to which a 

batch of the product is expected to remain within the approved shelf life specification if 

stored under defined conditions. 

3.4.2 Biological fluids 

Storing and transporting biological fluids for doping analysis is carried out by the 

organisations associated with the World Anti-Doping Agency (WADA). Currently, there 
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are no specific protocols for the transport of biological samples to anti-doping laboratories. 

As a result, microbial and thermal degradation of chemical substances in the samples may 

occur, which could lead to false negative or false positive results. Given the social 

consequences of positive tests, the storage and transport of the biological samples should 

be strictly regulated. This is supported by numerous publications dealing with biological 

fluids. For example, Konings has stressed in his research that cooling of a urine sample 

during transport is essential (≤ 5oC).90 In principle, urine in the bladder is sterile, however, 

can be contaminated when it leaves the urinary tract and is collected in non-sterile 

containers. As urine is a rich source of nutrient, it can support bacterial growth. At 

temperatures between 5oC - 40oC and pH 4.5 - 8.5 microorganisms can multiply at very 

high rates with generation times as 30 min. As a result, a single bacterium can produce 109 

cells in 15h and this could completely change the chemical profile of a urine sample.  

The importance of urine storage conditions was also highlighted by Zaitsu.91 In their 

research the long term stability of various drugs in urine was examined along with 

preventive measurements against their decomposition. The urine samples were collected 

under sterile and non-sterile conditions and spiked (500 ng/ml) with methampletamine, 

amphetamine, nitrazepam, estazolam, 7-aminoflunitrazepam, cocaine and 6-

acetylmorphine. The samples were then stored for 150 days at 25oC, 4oC and -20oC and the 

results obtained by Zaitsu are summarised in Table 3.23. 

 
Table 3.23 Stability of selected drugs in urine.91 

Drug 
Filtration 

25 oC 
NaN3 
25oC 

Non 
sterile 
25oC 

Filtration 
4oC 

NaN3 4oC 
Non 

sterile 
4oC 

Methamophetamine no change no change 
loss of 

~150ng/ml 
no change no change no change 

Amphetamine no change no change 
loss of 

~200ng/ml 
no change no change no change 

Nitrazepam no change no change 
full 

decomp. 
no change no change no change 

Estazolam no change no change no change no change no change no change 
7-

Aminoflunitrazepam 
loss of 

~450ng/ml 
loss of 

~200ng/ml 
loss of 

~310ng/ml 
loss of 

~450ng/ml 
loss of 

~100ng/ml 
loss of 

~450ng/ml 

Cocaine 
loss of 

~100ng/ml 
full 

decomp. 
full 

decomp. 
no change no change no change 

6-Acethylmorphine no change 
loss of 

~200ng/ml 
full 

decomp. 
no change no change no change 

 

In all cases samples were stored at -20oC were preserved. It was found that samples 

contaminated with microorganisms contained significantly reduced level of 7-
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aminoflunitrazepam, nitrazepam, cocaine and 6-acetylmorphine after 150 days of storage. 

Degradation of the drugs investigated was significantly inhibited in samples filtered using 

aseptic urine collection kit. In addition, it was also observed that common food preservative 

NaN3 can in some cases accelerate the hydrolysis of a drug (cocaine, 6-acetylmorphine). 

The work of Zaitsu correlates well with studies performed by Jimenez.92 Jimenez with his 

co-workers investigated the stability of ephedrine derivatives (ephedrine, norephedrine, 

methylephedrine, pseudoephedrine, norpseudoephedrine) and amphetamine derivatives 

(amphetamine, methamphetamine, 3,4-methylenedioxyamphetamine, 3,4-

methylenedioxymethamphetamine). Sterile and non-sterile urine samples were spiked with 

the appropriate drug and then stored at 4oC or -20oC for 24 months (non-sterile 6 months). 

No significant loss of the drugs under study was observed at any of the investigated 

conditions.  

3.4.3 Results from stability tests 

Once the metabolism of fluorinated steroids under in vitro microbial growth conditions had 

been confirmed we looked to determine the ability of fluorinated steroids to act as an 

internal standard to assay for chemical or thermal degradation. This work was carried out 

as the chemical stability is the key to the application of a fluorinated steroid as in internal 

standard in anti-doping controls. The purpose of this stability testing was to investigate how 

the quality of fluoro-steroids varies with time under the influence of variety of 

environmental factors such as temperature and medium. The choice of test conditions 

defined in these studies was based on an analysis of the effects of storage conditions on the 

chemical profile of urine samples.  

To perform the stability tests, three steroids were selected (6-fluoro-testosterone (84), 

6-fluoro-progesterone (144), 6-fluoro-androsterone (87)). A sample of an appropriate 

steroid was dissolved in DMSO and then the solution was diluted with water. Some samples 

were treated with additives such as sodium chloride or buffer and then the samples were 

stored at 5oC, room temperature and 36oC for 10 months. The samples were prepared in 

duplicates to eliminate any potential errors. The results from these experiments are 

presented below (Table 3.24-3.32). All tested steroids were found to be stable under the 

investigated conditions for at least 1 year. 
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Figure 3.36 Reference 19F NMR spectra of the fluorinated steroids used for stability 

experiments in d-chloroform.  



 

152 
 

Table 3.24 Stability of 6-fluoro-testosterone (84) at 22-25oC as determinated by 
19F NMR. 

No. 
Mass 
(mg) 

d6-DMSO 
(ml) 

Buffer 
(D2O) 

D2O 
(ml) 

NaCl 
(mg) 

Temp. 

(oC) 
1 month 1 year 

1 2 200 - 500 - 22-25     
1 control 2 200 - 500 - 22-25     

2 2 200 - 500 2 22-25     
2 control 2 200 - 500 2 22-25     

3 2 200 LB 500 - 22-25     
3 control 2 200 LB 500 - 22-25     

4 2 100 - 600 - 22-25     
4 control 2 100 - 600 - 22-25     
control 2 700 - 0 - 22-25     

 

 

Table 3.25 Stability of 6-fluoro-progesterone (144) at 22-25oC as determinated by 
19F NMR. 

No. 
Mass 
(mg) 

d6-DMSO 
(ml) 

Buffer 
(D2O) 

D2O 
(ml) 

NaCl 
(mg) 

Temp. 

(oC) 
1 month 1 year 

5 2 200 - 500 - 22-25     
5 control 2 200 - 500 - 22-25     

6 2 200 - 500 2 22-25     
6 control 2 200 - 500 2 22-25     

7 2 200 LB 500 - 22-25     
7 control 2 200 LB 500 - 22-25     

8 2 100 - 600 - 22-25     
8 control 2 100 - 600 - 22-25     
control 2 700 - 0 - 22-25     

 

 

Table 3.26 Stability of 6-fluoro-androsterone (87) at 22-25oC as determinated by 
19F NMR. 

No. 
Mass 
(mg) 

d6-DMSO 
(ml) 

Buffer 
(D2O) 

D2O 
(ml) 

NaCl 
(mg) 

Temp. 
(oC) 1 month 1 year 

9 2 200 - 500 - 22-25     
9 control 2 200 - 500 - 22-25     

10 2 200 - 500 2 22-25     
10 control 2 200 - 500 2 22-25     

11 2 200 LB 500 - 22-25     
11 control 2 200 LB 500 - 22-25     

12 2 100 - 600 - 22-25     
12 control 2 100 - 600 - 22-25     

control 2 700 - 0 - 22-25     
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Table 3.27 Stability of 6-fluoro-testosterone (84) at 5oC as determinated by 19F 
NMR. 

No. 
Mass 
(mg) 

d6-DMSO 
(ml) 

Buffer 
(D2O) 

D2O(
ml) 

NaCl 
(mg) 

Temp. 
(oC) 1 month 1 year 

13 2 200 - 500 - 5     
13 control 2 200 - 500 - 5     

14 2 200 - 500 2 5     
14 control 2 200 - 500 2 5     

15 2 200 LB 500 - 5     
15 control 2 200 LB 500 - 5     

16 2 100 - 600 - 5     
16 control 2 100 - 600 - 5     

control 2 700 - 0 - 5     
 

 

Table 3.28 Stability of 6-fluoro-progesterone (144) at 5oC as determinated by 19F 
NMR. 

No. 
Mass 
(mg) 

d6-DMSO 
(ml) 

Buffer 
(D2O) 

D2O 
(ml) 

NaCl 
(mg) 

Temp. 

(oC) 
1 month 1 year 

17 2 200 - 500 - 5     
17 control 2 200 - 500 - 5     

18 2 200 - 500 2 5     
18 control 2 200 - 500 2 5     

19 2 200 LB 500 - 5     
19 control 2 200 LB 500 - 5     

20 2 100 - 600 - 5     
20 control 2 100 - 600 - 5     

control 2 700 - 0 - 5     

 

 

Table 3.29 Stability of 6-fluoro-androsterone (87) at 5oC as determinated by 
19F NMR. 

No. 
Mass 
(mg) 

d6-DMSO 
(ml) 

Buffer 
(D2O) 

D2O(
ml) 

NaCl 
(mg) 

Temp. 

(oC) 
1 month 1 year 

21 2 200 - 500 - 5     
21 control 2 200 - 500 - 5     

22 2 200 - 500 2 5     
22 control 2 200 - 500 2 5     

23 2 200 LB 500 - 5     
23 control 2 200 LB 500 - 5     

24 2 100 - 600 - 5     
24 control 2 100 - 600 - 5     

control 2 700 - 0 - 5     
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Table 3.30 Stability of 6-fluoro-testosterone (84) at 37oC as determinated by 
19F NMR. 

No. 
Mass 
(mg) 

d6-DMSO 
(ml) 

Buffer 
(D2O) 

D2O(
ml) 

NaCl 
(mg) 

Temp. 

(oC) 
1 month 1 year 

25 2 200 - 500 - 37     
25 control 2 200 - 500 - 37     

26 2 200 - 500 2 37     
26 control 2 200 - 500 2 37     

27 2 200 LB 500 - 37     
27 control 2 200 LB 500 - 37     

28 2 100 - 600 - 37     
28 control 2 100 - 600 - 37     

control 2 700 - 0 - 37     

 

 

Table 3.31 Stability of 6-fluoro-progesterone (144) at 37oC as determinated by 
19F NMR. 

No. 
Mass 
(mg) 

d6-DMSO 
(ml) 

Buffer 
(D2O) 

D2O 
(ml) 

NaCl 
(mg) 

Temp. 

(oC) 
1 month 1 year 

29 2 200 - 500 - 37     
29 control 2 200 - 500 - 37     

30 2 200 - 500 2 37     
30 control 2 200 - 500 2 37     

31 2 200 LB 500 - 37     
31 control 2 200 LB 500 - 37     

32 2 100 - 600 - 37     
32 control 2 100 - 600 - 37     

control 2 700 - 0 - 37     

 

 

Table 3.32 Stability of 6-fluoro-androsterone (87) at 37oC as determinated by 
19F NMR. 

No. 
Mass 
(mg) 

d6-DMSO 
(ml) 

Buffer 
(D2O) 

D2O 
(ml) 

NaCl 
(mg) 

Temp. 

(oC) 
1 month 1 year 

33 2 200 - 500 - 37     
33 control 2 200 - 500 - 37     

34 2 200 - 500 2 37     
34 control 2 200 - 500 2 37     

35 2 200 LB 500 - 37     
35 control 2 200 LB 500 - 37     

36 2 100 - 600 - 37     
36 control 2 100 - 600 - 37     

control 2 700 - 0 - 37     
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3.5 Conclusions 

Recent literature reports have shown that under certain conditions microorganisms 

cytochrome P-450 enzyme systems can facilitate the transformation of endogenous steroids 

such as androsterone into banned substances such as the 19-norsteroids in urine samples.93 

It is believed that cytochrome P-450 catalyses various reactions such as hydroxylation, 

oxidation, dealkylation and deamination reactions. In most cases, this results in the 

formation of unstable intermediates that spontaneously decompose to the stable 

metabolites. This is potentially problematic in that the concentrations of banned steroids 

that were detected could approach threshold levels giving rise to a false positive. At the 

present time the role of microbial growth cannot be completely ruled out and this is an issue 

that we are addressing in Chapter 3. The synthetic fluorinated steroids were assessed for 

their biotransformation by a range of microorganisms (pure cultures). The studies were 

carried out at Durham University in Chemistry Department, Stockton department of 

Pharmacy and at University College Dublin (UCD). At Durham University and at 

University College Dublin experiments were carried out with the bacteria Streptomyces 

griseus. The experiments in Stockton were employed Escherichia coli, Bacillus subtilis and 

Bacillus megaterium. The strains were cultured in standard media (e.g. tryptone soya broth, 

LB, NB, 868) for 24 h and the fluorinated steroids added to the cultures. After further 

incubation (24-48h) the biotransformation products were extracted and analysed by 19F 

NMR. The degradation of several fluorinated steroids could be easily detected using 19F 

NMR. A new metabolite formed by bacteria was represented by a new signal in 19F NMR. 

For example, 6-fluoro-nortestosterone (86) was transformed by Streptomyces griseus into 

several different fluorinated molecules as could be observed by 19F NMR (Figure 3.37). 

A – 19F NMR analysis of the Control (organic fraction) for 6-fluoro-nortestosterone (86) 

 

B – 19F NMR analysis of the Pellet (organic fraction) 6-fluoro-nortestosterone (86) 
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In an attempt to characterise these metabolites and establish the metabolic pathways the 

purification of the crude extracts by preparative TLC and HPLC was carried when possible. 

Subsequently identification via GC-MS and LC-MS was attempted. As reported in section 

3.2.3, metabolism of steroids by microorganisms involves enzymes P-450 which is 

responsible for oxidation. This reaction is usually highly regio selective and involves a few 

positions (C-1, C-6, C-11, C-12, C-15, C-16) depends on steroid substitution pattern and 

microorganism involved (Figure 3.38). The oxidation of fluorinated steroids was 

confirmed by MS, however due to time constrains the structures of metabolites were not 

confirmed. Based on LC-MS and GC-MS de-fluorinated products were also detected. 

These could be potentially formed in microorganisms, during isolation/purification of 

biological samples and/or during analysis. No reports on the investigated fluoro-

steroids/microorganisms combinations were found in the literature. 

 

Figure 3.38 Positions presented for regio-selective oxidation reaction.  

The key milestone of the project was accomplished by showing that the fluorinated steroids 

can be bio-transformed by common bacteria found in human environment. In addition, it 

was confirmed that 19F NMR can be used as a tool to monitor steroid 

metabolism/degradation by bacteria. This work supports the hypothesis that bacterial 

contamination of urine samples could lead to false positive or false negative results. It has 

to be emphasised that work in this area remains incomplete due to time constrain and further 
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studies are needed to fully/characterise the fluorinated metabolites generated in the feeding 

experiments. 

Once the metabolism of the fluorinated steroids under in vitro microbial growth conditions 

had been confirmed we investigated the ability of the fluorinated steroids to act as internal 

standards to assay for steroid chemical and thermal degradation. To perform the stability 

tests, three steroids were selected: 6-fluoro-testosterone (84), 6-fluoro-androsterone 

(87) and 6-fluoro-progesterone (144). A solution of an appropriate steroid in DMSO was 

diluted with water and treated with additives such as sodium chloride or buffer. The 

samples were prepared in duplicates and then stored at 5oC, room temperature and 36oC. 

Short-term (>30 days) and long-term (>12 months) stability of selected fluoro-steroids was 

investigated. All tested steroids appear to be stable to chemical breakdown under the 

investigated conditions for at least 1 year. Further experiments are required to investigate 

a wider range of conditions (e.g. different pH, different buffers, temperatures: 4, 25oC and 

37oC) to build a more complete picture of fluoro-steroid’s stability. In addition, long term 

stability studies need to be carried out with fake urine samples (imitate real human urine 

and it is used in drug testing labs to calibrate their urine screening equipment) and samples 

from healthy volunteers for selected fluorinated steroids. 
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4 A New Method for Steroid Derivatisation  

4.1 Steroids derivatisation with pentafluoropyridine (285) as a method 

of analysis in anti-doping  

Jarman studied synthesis and cleavage of various perfluoroaryl ethers for the selective 

protection of alcohols.1 He found that estradiol treated with pentafluoropyridine under 

Schotten-Baumann conditions gave bis-PFP estradiol adduct in a 92% yield. This adduct 

was subsequently deprotected with MeONa and estradiol was recovered in 65% yield. 

 

Scheme 4.1 Steroid derivatisation with pentafluoropyridine (283). 

As a part of the studies concerning the detection of anabolics in an athlete’s urine sample, 

the reactivity of pentafluoropyridine (PFP (285)) with steroids was explored. It was 

expected that PFP could react cleanly with a range of steroids and give adducts that would 

be easily detected by 19F NMR. Our hypothesis proposed that PFP could be used as a novel 

derivatisation technique which allows identification of hydroxy steroids in biological 

material by 19F NMR (Figure 4.1).  
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Figure 4.1  19F NMR as a novel method of detecting steroid in a mixture. 
This could be potentially used as an easy tool in detecting and identifying various steroids. 

Initial studies focused on the synthesis of derivatized steroids presented below (Figure 4.2).  

 

Figure 4.2 Target structures of pentafluoropyridine steroid adducts. 
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4.2 Current application of pentafluoropyridine 

Previous studies in the Cobb group have focused on exploring the chemistry of PFP (285) 

to provide a novel strategy for tagging and protecting amino acids. For example, Webster 

et al. showed that 285 reacts with protected amino acids to generate novel peptide building 

blocks, which could be elaborated into dehydroalanine derivatives (Scheme 4.2).2 A range 

of novel dehydrobutyrines, potentially useful in peptide chemistry, were generated and 

showed that pentafluoropyridine can successfully react with a variety of nucleophiles to 

afford 4-substituted tetrafluoropyridine. The regioselectivity of nucleophilic substitution in 

this process may be explained by high nucleophilicity of oxygen and the activating 

influence of pyridine ring nitrogen that significantly activates the para position. 

 

Scheme 4.2 Synthesis of dehydroalanine derivatives using PFP (285).  

The chemistry of PFP (285) has been also explored by Prof. G. Sandford (Durham 

University) who has shown that PFP can be used to generate novel pyridine derivatives 

bearing five functional groups.2 For example, polyfunctional tetrahydropyrido[3,4-

b]pyrazine scaffolds have been synthesized easily by a one-pot annulation reaction of PFP 

(285) with various diamines (Scheme 4.3).3 This general approach has special relevance to 

the development of new fluorinated drug small molecules, which are playing an 

increasingly important role in the pharmaceutical industry. 

 

Scheme 4.3 Functionalization of PFP (285). 
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4.2.1 Synthesis of PFP tagged steroids  

In order to find appropriate conditions for the synthesis of pentafluoropyridine steroid 

adducts, several different conditions were explored using dehydroepiandrosterone (DHEA 

(89)) (Table 4.1). To a solution of the steroid (100 mg) in an appropriate solvent, base (1.2 

eq. compared to starting steroid) and pentafluoropyridine (2 eq. compared to starting 

steroid) were added under argon at room temperature. The reaction mixtures were stirred 

at room temperature or at 50oC and monitored by 19F/1H NMR. The results are summarised 

in the table below (Table 4.1). 

 

Sheme 4.4 Synthesis of a DHEA-PFP adduct. 

 

Table 4.1 Attempted synthesis of DHEA pentafluoropyridine adducts under various 
reaction conditions. 

Entry  Base Solvent 
Temp. 

(oC) 
Time 

(h) 
Conversion (%) 

(base on 1H NMR) 

1 K2CO3 DCM RT 72 
No product/ side 

products 

2 K2CO3 DMF RT 48 14 

3 K2CO3 DMF 50 4 55 

4 K2CO3 MeCN RT 48 No product 

5 Et3N DMF RT 72 16 

6 Et3N DMF 50 4 86 

7 Et3N DCM RT 72 
No product/ side 

products 

8 Et3N MeCN RT 72 
No product/ side 

products 

9 1M NaOH DCM RT 24 
No product/ side 

products 

 



 

165 
 

From the initial experiments highlighted above, it appeared that the nucleophilic 

substitution does not progress at room temperature (DCM, MeCN) or it progress as very 

slowly (DMF). At higher temperature the reaction was accelerated with the fastest rate 

achieved for the reaction carried out in DMF with Et3N (Table 4.1, Entry 6). This reaction 

was worked-up after 4h at 50oC and gave the product 280 in a 86% yield. Formation of the 

fluorinated product was confirmed by examination of the 19F NMR spectrum, which 

revealed new signals at δFo = - 90.80 ppm and δFm = - 158.14 ppm corresponding to the 

fluorine atoms in ortho and meta positions. 

From the initial results, it appeared that the PFP-steroid adduct could be easily synthesised 

using Et3N in DMF. Following this protocol, Et3N (1.2 eq. compared to the starting steroid) 

and PFP (2.2 eq) were added to a solution of the appropriate steroid (0.1 g) in DMF (1 ml). 

The reaction mixture was then stirred for 3 days at 50oC. After that time, 1H NMR analysis 

indicated reaction completion with some starting material remained unreacted. The results 

are summarized in the table below (Table 4.2). 

 

Table 4.2  Synthesis of PFP – steroid abducts. 

Entry Starting material Product 19F NMR 

Isolated 

Yield 

(%) 

1 

 

-90.80; 

-158.14 
86  

2 

 

-91.00; 

 -158.11 
76  
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3 

 
 

-88.89;  

-154.41 
60  

4 

 
 

-90.87;  

-158.14 
67  

5 

 

-90.74;  

-158.12 
52  

6 

 

-90.68;  

-158.12 
68  

7 

  

-88.85;  

-90.77;  

-154.46;  

-158.11 

70  
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The formation of the products in Table 4.2 were confirmed by 19F NMR, GC-MS/ASAP 

experiments. The 19F NMR spectrum showed two characteristic signals corresponding to 

the ortho and meta fluorine atoms. In addition, re-crystallisation of the products from 

CHCl3 gave crystals suitable for X-ray diffraction (Figure 4.3).  

 

  

 

 



 

168 
 

 

 

Figure 4.3 X-ray crystal structures for selected PFP derivatives for steroids. 
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4.2.2 19F NMR studies of PFP-tagged steroids  

It was hypothesised that various steroids could be derivatised with PFP (185) to give 

adducts easily detectable by 19F NMR. This could be potentially used as an easy tool in 

detecting and identifying various steroids in complex mixtures. In order to prove this, a 

simple experiment was designed employing PFP. A mixture of several steroids in equal 

portions (DHEA (89), testosterone (91), estrone (121), androsterone (97)) were dissolved 

in DMF and treated with PFP (185). Upon reaction completion the reaction mixture was 

worked-up and the crude reaction mixture was analysed by 19F NMR. Based on these 

preliminary results it appears that this technique could be used to identify a range of 

steroids. However, due to a different reactivity of the hydroxylated steroids, quantitative 

measurements may not be possible. To circumvent this problem, the reaction conditions 

should be modified to provide steroid derivative in quantitative yield. 
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Figure 4.4 19F NMR of steroids mixture: A – estrone-PFP, B – testosterone-PFP, C -
DHEA-PFP, D – androsterone-PFP. 
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4.3 Metabolism experiments 

4.3.1 3,17-Bistetrafluoropyridine-estradiol (277) 

 

S. griseus was fed with 3,17-bistetrafluoropyridine-estradiol (277) following the general 

protocol described earlier (Chapter 3, Section 3.3.1). The bacteria were centrifuged and 

extraction of the pallet and supernatant was carried out. The extracts were analysed by 19F 

NMR and GC-MS (Figure 4.4). 

A – 19F NMR spectral analysis of the Control (organic fraction) 

 

B – 19F NMR spectral analysis of the Pellet (organic fraction) 
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C – 19F NMR spectral analysis of the Supernatant (organic fraction) 

 

 

E – 19F NMR (decoupled) spectral analysis of the Pellet (aqueous fraction) 

 

 

Figure 4.4  19F NMR analysis of 3,17-bistetrafluoropyridine-estradiol (277) incubated 
with S. griseus. A- 19F NMR of control organic fraction in d-chloroform. B- 19F NMR of 
pellet organic fraction in d-chloroform. C- 19F NMR of supernatant organic fraction in d-
chloroform. E- 19F NMR (decoupled) of pellet aqueous fraction in D2O. The other fractions 
(pellet and supernatant aqueous fraction in D2O) showed no peaks during 19F NMR 
analysis. 
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Table 4.3  New metabolites detected by19F NMR analysis of 3,17-
bistetrafluoropyridine-estradiol (277) incubated with S. griseus. 

Experiment 19F NMR signal (ppm) 

Supernatant 

(organic) 
- 153.85, -154.12, -155.15, -163.13 

Supernatant 

(aqueous) 
No fluorinated metabolites 

Pellet (organic) 

 

- 132.78, - 136.60, - 138.98, -135.84, - 154.10, -154.81, -

155.17, - 158.60, -160.06, - 162.44, - 166.34, - 170.46 

Pellet aqueous No fluorinated metabolites 

 

GC-MS analysis of the pellet organic fraction and the supernatant organic fraction detected 

a few potential metabolites presented in Scheme 4.5. An ion at m/z 421 was not present in 

the GC-MS spectra of the starting material and the control sample and corresponds to the 

estradiol with one fluoropyridine group (286). This molecule is then oxidised to the estrone 

derivative (278, m/z 419) or cleaved to estradiol (276, m/z 272). The product at m/z 270 

(117, estrone) could be created by cleavage of the pyridine units and oxidation of 17-C 

hydroxyl group (alternatively by oxidation of estradiol). The ion at m/z 270 could also 

correspond to the unsaturated estradiol which could be formed by cleavage of the pyridine 

units (290), oxidation at 16-C and subsequent elimination of water (289, the intermediate 

triol at m/z 288 was not detected). The ion at m/z 276 corresponds to the reduced estradiol 

(288). 
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Scheme 4.5  Proposed metabolites produced after 3,17-bistetrafluoropyridine-estradiol 

(277) incubation with S. griseus.  
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4.4 Conclusions and Future Work 

Pentafluoropyridine has special relevance to the development of new fluorinated drug small 

molecules.1 In addition, it could be also used for the selective protection of alcohols.4 As a 

part of the studies concerning the detection of anabolics in an athlete’s urine sample, the 

reactivity of pentafluoropyridine with hydroxy steroids was explored. An easy and fast 

method of preparing fluorine derivatised hydroxyl steroids has been developed. This 

involved reaction of steroid with pentafluoropyridine, triethylamine in DMF. A range of 

PFP steroid adducts were synthesised in moderate to excellent yields (52-86%). Several 

novel hydroxy steroid-PFP adducts were synthesised and the structures of 4 steroid PFP 

derivatives were confirmed by X-ray analisis.  

In the second phase of the work the analytical potential of the hydroxy steroid-PFP adducts 

was examined. It was found that each of the steroid-PFP adducts have characteristic 19F 

NMR spectra which could be used for their detection or confirmation in mixed samples. 

For example, a mixture of four steroids (DHEA (89), testosterone (91), estrone (121), 

androsterone (97)) when treated with pentafluoropyridine formed a mixture of the 

corresponding adducts easily detectable by 19F NMR.  

The future work should investigate the scope of this new derivatisation method. This will 

involve a synthesis of various hydroxy steroid-PFP adducts to generate a library of the 

reference compounds. Subsequently biological samples could be spiked with steroid 

mixtures and, after derivatisation, 19F NMR analysis could be carried out to investigate the 

detection limits of this technique. 
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5 Conclusions and Future work 

5.1 Conclusion 

 

The use of performance-enhancing drugs in sport was prohibited in the early 1920s, 

however, no effective testing methods for banned substances were available at that time. 

To address this problem, in 1999 an independent agency The World Anti-Doping Agency 

(WADA) was created to promote, coordinate, and monitor the fight against doping in 

sports. This led to formation of detailed anti-doping guidelines together with a 

comprehensive and ever changing list of banned substances. WADA’s approved anti-

doping laboratories tend to rely mainly on GC-MS and LC-MS techniques to detect 

prohibited substances. In sport the detection of the use of banned substances is routinely 

carried out using urine samples as, unlike blood samples, these do not require medical 

sampling officers for collection. The collected urine sample is divided into two and 

preserved within sealed containers. A second sample will be only analysed if a positive 

result was obtained for the first sample. Unfortunately, anti-doping organizations do not 

have a detailed standard protocol regarding storage or transportation of the urine samples. 

The endogenous steroid profile could be altered due to microbial growth in the urine as a 

result of factors such as variability in temperature during transport.  

This thesis deals with the development of a novel method that utilizes 19F NMR 

spectroscopy which could be used either as a standalone procedure or as an additional 

protocol alongside existing methods to identify urine samples that could generate false 

positives or false negatives as a result of microbial growth. It was hypothesised that a urine 

sample could be spiked with a reference fluorinated steroid and its chemical degradation or 

metabolism caused by microorganisms could be observed by 19F NMR. The work described 

in Chapter 2 was focused on the synthesis of fluorinated steroids using a method that 

involve the reaction of Selectfluor® (a convenient source of electrophilic fluorine) with 

enolates/enols of varius steroids. In comparison to gaseous F2, the key benefit of this 

electrophilic fluorination agent is the ability to provide facile access to fluorinated steroids 

without the need to use specialised equipment for F2 manipulation. Modification of the 

existing fluorination protocol with Selectfluor® (a novel ‘one pot’ approach) provided 

access to 11 fluorinated steroids and 3 novel fluoro-steroids, as presented in Figure 5.1. 

Those molecules were synthesised in moderate yields and varying diastereoselectivity. 
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Several synthesised steroids were re-crystallised and crystals suitable for X-ray were 

obtained. The first ever X-ray crystal structures for several fluorinated steroids have been 

obtained: e.g. 6-fluoro-testosterone (84), (Figure 5.2).  
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Figure 5.1 Synthesised novel fluoro-steroids. 

 

 

Figure 5.2 X-ray structures of 6-fluoro-testosterone (84). 

 

It is known that under certain conditions microorganisms’ cytochrome P-450 enzyme 

systems can facilitate various reactions such as hydroxylation, oxidation, dealkylation and 

deamination reactions. In most cases, this result in the formation of unstable intermediates 

that spontaneously decompose to the stable metabolites. One of the key aims of this project 

was to assess fluorinated steroids for their biotransformation by a range of microorganisms 

(pure cultures). The biological experiments were carried out in the laboratories of 

University of Durham, Stockton department of Pharmacy and University College Dublin 

(UCD). The work performed at Durham University and UCD focused on the bacteria 

Streptomyces griseus. The experiments in Stockton employed Escherichia coli, Bacillus 

subtilis and Bacillus megaterium. The strains were cultured in standard media (e.g. tryptone 

soy broth,) for 24 h and the fluorinated steroids added to the cultures. After further 

incubation (24-48h), the cultured strains were sonicated, the biotransformation products 

were extracted and analysed by 19F NMR. The degradation of fluorinated steroids by 
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microorganisms could easily detected using 19F NMR. The most significant transformation 

was observed with 6-fluoro-progesterone (144) (Figure 5.3) and 6-fluoro-nortestosterone 

(86). Other steroids were metabolised to the lesser extent. In an attempt to characterise the 

products, purification was carried out by preparative TLC and HPLC. Each fraction was 

analysed (GC-MS/LC-MS and 19F NMR) and metabolic pathways were proposed. As 

reported in the literature, metabolism of steroids by microorganisms involves enzymes P-

450 which is responsible for oxidation and this was shown by MS, however due to time 

constrains the structures of metabolites were not confirmed. This showed that steroids can 

be bio-transformed by common bacteria in human environment. A summary of the 

transformations achieved for 6β-fluoro- progesterone (144) with S. griseus is presented on 

Scheme 5.1.  

 

Figure 5.3 19F NMR analysis of 6-fluoro-progesterone (144) incubated with S. 
griseus. 

 

For 6-fluoro-progesterone (144), seven different metabolites were proposed (Scheme 

5.1). Certain steroids such as 3-hydroxy-4,6-pregnen-20-one (199), 2,4,6-pregnen-20-one 

or 3-Hydroxy-4,6-pregnen-20-one (200) and (195) could be formed during the isolation or 

purification stages via elimination of water or/and HF. Two metabolites were formed by 

reduction of C-3 carbonyl group and hydroxylation at C-16 carbon (16α-hydroxylation). 

These reactions are known and were reported in the literature for different steroids. Because 

ion at m/z 351 [M+1] was detected in 6 different fractions, it is highly probable that different 

diastereoisomers of 6-fluoro-3,16-dihydroxy-4-pregnen-20-one (209) were formed. 
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Through this work we confirmed the hypothesis that 19F NMR can be used to detect 

microbial contamination that could lead to false positive or false negative results during 

anti-doping tests. 
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Scheme 5.1 Summary of the compounds potentially detected after the 
biotransformation of 6-fluoro-progesterone (144) by S. griseus. 

Escherichia coli do not contain cytochrome P450 enzymes that mimic oxidation processes 

in vivo and therefore no metabolites were detected. The experiments carried out with 

Bacillus subtilis and Bacillus megaterium did not produce any metabolites it could be due 
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to problems with the growth of the microorganisms. Finally, as a part of the studies 

concerning the detection of anabolics in a urine sample, reactivity of pentafluoropyridine 

with hydroxyl steroids was explored. It was hypothesised that pentafluoropyridine would 

react cleanly with a range of hydroxyl steroids and give corresponding ethers easily 

detectable by 19F NMR. It was shown in Chapter 4 that hydroxy steroids treated with Et3N 

and pentafluoropyridine in DMF form perfluoropyridine ethers in good yield. Several novel 

hydroxy steroid-PFP adducts (Figure 5.3) were synthesised and the structures of 4 steroid 

PFP derivatives were confirmed for the first time by X-ray structure (Figure 5.4). An easy 

and fast method of preparing fluorine tagged steroids was developed. 

 

Figure 5.4 Structures of pentafluoropyridine steroid adducts prepared. 
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It was proposed that this reaction could be used as a novel derivatisation technique which 

allows identification of hydroxy steroids in biological material by 19F NMR (Scheme 5.2). 

It was found that the investigated hydroxy steroid-PFP adducts have very similar 19F NMR 

spectra however they can be distinguished using this technique. 
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Scheme 5.2 19F NMR as a novel method of detecting steroid in a mixture 
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5.2 Future work 

 
To address the problem of microbial contamination of urine samples in sports we initiated 

a study to develop a new protocol that will utilize fluorine-19 nuclear magnetic resonance 

spectroscopy (19F NMR). This protocol employs fluorinated steroid as an internal standard 

which should act as a substrate for the same enzymes as the natural steroid and both 

molecules should be metabolised via the same pathways. The protocol allows detection of 

microbial growth by 19F NMR, which could lead to false positive or false negative results 

in anti-doping samples. Future work in this area should focus on exploring the metabolism 

of fluorinated steroids by common bacteria and fungi found in human environment. This 

will involve the synthesis of new fluorinated steroids for feeding experiments to produce 

more detailed information about microbial degradation of fluorinated-steroids. In addition, 

the biological experiments should be scaled-up to isolate sufficient amount of the 

metabolites for their characterisations. If necessary, the synthesis of the isolated metabolites 

should be carried out to confirm structure. Future work should also focus on the 

investigation of the stability of fluorine labelled steroids in fake urine and subsequently in 

urine samples from healthy volunteers. The microorganisms in the urine responsible for 

steroids transformation could be isolated by initially streaking loopfuls of the urine onto 

agar plates containing some fluorine labelled steroid. The colonies that are most apparent 

should be further examined by re-culturing in liquid media containing the fluorinated 

steroid, and the supernatants should be examined for the presence of fluoro-metabolites by 

19F-NMR. Additionally, to determine if the microbial community is altered by the presence 

of the fluorinated steroid, restriction fragment length polymorphism analysis could be 

conducted on spiked and non-spiked samples. 

 

In the second phase of the work the analytical potential of the hydroxysteroid-PFP adducts 

was examined. It was found that these adducts are easily synthesised by reacting 

pentafluoropyridine with steroids under basic conditions in DMF. The steroid-PFP adducts 

have characteristic 19F NMR spectra which could be used for their detection or confirmation 

in biological samples. The future work should investigate the scope of this new 

derivatisation method. This will involve a synthesis of various hydroxy steroid-PFP adducts 

to generate a range of the reference compounds. Subsequently biological samples could be 
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spiked with steroid mixtures and after derivatisation 19F NMR analysis could be carried out 

to investigate detection limits of this technique. 
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6. Experimental 

6.1 General Experimental  

All air- and/or moisture-sensitive reactions were carried out under an argon atmosphere in 

oven-dried glassware. 

Chromatography 

Thin layer chromatography (TLC) was performed using commercially available 

aluminium-backed plates coated with silica gel 60 F254 (UV254) or neutral aluminium oxide 

60 F254 (UV254), and visualised under ultra-violet light (at 254 nm), or through staining with 

ethanolic phosphomolybdic acid followed by heating. Flash column chromatography was 

carried out using 200-400 mesh silica gel 40-63 μm or neutral alumina 

Gas chromatography 

Gas Chromatography was carried out on a Hewlett-Packard 5890 series II gas 

chromatograph fitted with a 25 cm column and connected to a flame ionisation detector. 

Infrared spectroscopy 

Infrared spectra were recorded using a Diamond ATR (attenuated total reflection) 

accessory (Golden Gate) or as a solution in chloroform via transmission IR cells on a 

Perkin-Elmer FT-IR 1600 spectrometer. 

NMR spectroscopy 

1H, 13C, and 19F NMR spectra were recorded in CDCl3 (unless otherwise stated) on, Varian 

Mercury-400 (1H, 13C, 19F), Bruker Avance-400 (1H, 13C), Varian Inova-500 (1H, 13C) or 

Varian VNMRS-700 (1H, 13C) spectrometers and reported as follows: chemical shift δ 

(ppm) (number of protons, multiplicity, coupling constant J (Hz), assignment). The 

chemical shifts are reported using the residual signal of CHCl3 as the internal reference (δH 

= 7.26 ppm; δC = 77.0 ppm). All chemical shifts are quoted in parts per million relative to 

tetramethylsilane (H= 0.00 ppm) and coupling constants are given in Hertz to the nearest 

0.5 Hz. Assignment of spectra was carried out using COSY, NOESY, HSQC, and HMBC 

experiments. 

 



 

186 
 

Mass spectrometry 

Gas-chromatography mass spectra (EI) were taken using a Thermo-Finnigan Trace with a 

25 cm column connected to a VG Mass Lab Trio 1000. Electrospray mass spectra (ES) 

were obtained on a Micromass LCT Mass Spectrometer. High resolution mass spectra 

were obtained using a Thermo-Finnigan LTQFT mass spectrometer or XevoQToF mass 

spectrometer (Waters UK, Ltd) by Durham University Mass Spectrometry service. 
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6.2  Synthesis of fluorinated steroids  

3-Acetoxyandrostan-17-one (98) 1 

 

To a solution of androsterone (97) (0.60 g, 2.1 mmol) in dry DCM (50 ml) was added acetic 

anhydride (0.42 ml, 4.4 mmol) and DMAP (0.84 g, 6.9 mmol) under argon. The reaction 

mixture was stirred at RT for 4 h. After that time, the reaction mixture was poured into 

water and neutralized with saturated aqueous solution of NaHCO3 (50 ml) The layers were 

separated and the aqueous layers extracted with DCM (3×20 ml). The combined organic 

extracts were dried over MgSO4, filtered and concentrated under reduced pressure. The 

crude product was purified by filtration through a plug of silica (eluting with hexane / ethyl 

acetate 5:1) to give 98 as a white solid (0.67 g, 98%). 

1H NMR (400 MHz, CDCl3) δ; 0.68-0.73 (1H, m, 9-CH), 0.85 (3H, s, 18-CH3), 0.86 (3H, 

s, 19-CH3), 0.94-1.06 (3H, m, 7-CH), 1.16-1.40 (7H, m, 4-CH, 5-CH, 6-CH, 11-CH, 12-

CH, 14-CH), 1.46-1.67 (5H, m, 2-CH, 8-CH, 15-CH), 1.71-1.84 (2H, m, 4-CH, 11-CH), 

1.89-1.95 (2H, m, 1-CH, 2-CH, 7-CH, 12-CH), 2.02 (3H, s, 3-OCOCH3), 2.03 (1H, m, 16-

CH), 2.43 (1H, dd, J = 19.5 Hz , J = 9.0 Hz, 16-CH), 4.68 (1H, m, 3-CH); 13C NMR (175 

MHz, CDCl3) δ; 12.3 (19-C), 13.7 (18-C), 20.3 (11-C), 21.4 (21- CH3C=O), 21.7 (15-C), 

27.3 (2-C), 28.1 (6-C), 30.6 (7-C), 31.4 (12-C), 33.8 (4-C), 34.9 (8-C), 35.5 (10-C), 35.8 

(16-C), 36.7 (1-C), 44.7 (5-C), 47.6 (13-C), 51.2 (14-C), 54.2 (9-C), 73.4 (3-C), 170.6 (20-

CH3C=O), 221.1 (17-C); IR (neat) 2921, 1730, 1233, 1019, 606 cm-1; MS m/z (relative 

intensity, %); 332 ([M]+˙, 19), 272 (100), 257 (46), 218 (39), 201 (58), 107 (96), 105 (55), 

92 (67), 90 (53), 80 (40), 78 (57), 66 (56), 54 (47), 42 (73), 40 (33). Spectra and physical 

data matched that previously published.2  
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3-Hydroxy-5-androstan-17-one (99) 

 

To a solution of androsterone (97) (1.00 g, 3.4 mmol) in dry toluene (40 ml), ethylene 

glycol (7.70 ml, 137.7 mmol) was added followed by triethyl orthoformate (1.72 ml, 10.3 

mmol) and PTSA (0.06 g, 0.3 mmol) under argon at RT. The reaction mixture was stirred 

aqueous at RT overnight. The reaction mixture was quenched with saturated solution of 

NaHCO3 (20 ml) and diluted with ethyl acetate. The layer was separated and the aqueous 

layer was extracted with ethyl acetate (3×20 ml). The combined organic extracts were dried 

over MgSO4, filtered and concentrated in vacuo. Purification of the product by flash column 

chromatography on silica gel (hexane / ethyl acetate 8:2) to afforded 99 as a white solid 

(0.98 g, 86%). 

H1 NMR (400 MHz, CDCl3) δ; 0.66-0.73 (1H, m, 9-CH), 0.83 (5H, s, 18-CH, 19-CH), 

0.85-0.97 (2H, m), 0.98-1.07 (1H, m), 1.13-1.32 (6H, m), 1.33-1.46 (4H, m), 1.47-1.72 

(6H, m), 1.73-1.87 (3H, m), 1.91-2.00 (1H, m), 3.81-3.94 (4H, m, 20/21-CH2CH2), 4.77-

4.85 (1H, m, OH);13C NMR (100 MHz, CDCl3) δ; 12.2 (19-C), 14.4 (18-C), 20.6 (11-C), 

22.6 (14-C), 27.4, 28.4, 30.6, 31.2, 33.9, 34.7, 35.5, 35.7, 36.7, 44.6, 45.9, 50.2 (14-C), 

54.0 (9-C), 64.5 (21-C), 65.1 (22-C), 71.6 (3-C), 119.4 (17-C). 

 

Spectra and physical data matched that previously published. 3   
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3-Acetoxy-5-androstan-17-ethyleneketal (100) 

 

To a solution of steroid 99 (1.14 g, 3.4 mmol) in dry DCM (100 ml) was added acetic 

anhydride (0.80 ml, 8.5 mmol) and DMAP (1.60 g, 13.1 mmol) under argon at RT. The 

reaction mixture was stirred at RT for 4 h. After that time, the reaction mixture was poured 

into water and neutralized with saturated aqueous solution of NaHCO3 (50 ml). The layers 

were separated and the aqueous layer was extracted with DCM (3×20 ml). The combined 

organic extracts were dried over MgSO4, filtered and concentrated under reduced pressure. 

The crude product was purified by filtration through a plug of silica (eluting with hexane / 

ethyl acetate 6:1) to give the title compound as a white solid (1.26 g, 99%). 

1H NMR (400 MHz, CDCl3) δ; 0.65-0.73 (1H, m, 9-CH), 0.82 (3H, s, 18-CH3), 0.83 (3H, 

s, 19-CH3), 0.84-1.06 (2H, m, 7-CH ), 1.15-1.41 (7H, m, 4-CH, 5-CH, 6-CH), 1.42-1.84 

(5H, m), 1.92-1.98 (1H, m), 2.01 (3H, s, 21-CH), 3.80-396 (4H, m, 22/23-CH2CH2), 4.62-

4.72 (1H, m, 3-CH); 13C NMR (100 MHz, CDCl3) δ; 12.3 (19-C), 17.7 (18-C), 20.4 (11-

C), 21.7 (21-C) 22.6 (15-C), 27.4 (2-C), 28.4 (6-C), 31.2 (12-C), 31.5 (4-C), 34.0, 35.0, 

35.6, 35.8, 36.7, 36.8, 45.9, 51.3 (14-C), 54.3 (9-C), 63.7 (3-C), 64.5 (22-C), 65.1 (23-C), 

119.4 (17-C), 170.6 (20-C); MS m/z (relative intensity, %); 376 ([M]+˙, 71), 99 (100), 86 

(41), 78 (22), 54 (27), 42 (39), 40 (15). 

Spectra and physical data matched that previously published.4   
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16/-Fluoro-androsterone (87) 

 

To a solution of androsterone (97) (2.00 g, 6.9 mmol) and Selectfluor® (3.00 g, 8.5 mmol) 

in MeOH (34 ml) was added H2SO4 (18M, 40μl, 0.7 mmol). The reaction mixture was 

stirred under N2 at 50 °C overnight. After that time, water (200 ml) was added and the 

solids ware filtered off. The product was dried at 50oC overnight. This gave the product 87 

as a white solid (2.08 g, 98%). 

1H NMR (400 MHz, CDCl3) δ; 0.68-0.73 (1H, m, 9-CH), 0.85(3H, s, 18-CH3), 0.86 (3H, 

s, 19-CH3), 0.94-1.06 (2H, m, 7-CH), 1.16-1.40 (7H, m, 4-CH, 5-CH, 6-CH, 11-CH, 12-

CH, 14-CH), 1.46-1.67 (3H, m, 2-CH, 8-CH, 15-CH), 1.71-1.84 (2H, m, 4-CH, 11-CH), 

1.89-1.95 (4H, m, 1-CH, 2-CH, 7-CH, 12-CH), 2.02-2.09 (3H, m), 3.51-3.64 (1H, m, 3-

CH), 4.58-4.77 (0.30H, m, α, β, isomers, 16-CH), 5.49-5.15 (1H, m, α, β, isomers, 16-CH); 

13C NMR (150 MHz, CDCl3) δ; 12.2 (18-C), 14.3 (19-C), 20.0 (11-C), 28.2, 29.6 (15-C), 

29.8, 29.8, 30.5, 31.2, 34.8, 35.6, 37.9, 44.7, 47.7, 48.3, 54.2 (9-C), 71.0 (3-C), 81.7 (3-C) 

89.5 (16-C), 90.7, (16-C), 213.1 (17-C), 213.2 (17-C); 19F NMR (564 MHz, CDCl3) 

δ; -183.45 (dt, J = 47.9, J = 26.5 Hz); -192.58 (dt, J = 51.9 Hz, J = 28.2Hz), IR (neat) 3498, 

2930, 1748, 1444, 1046 cm-1; GC-MS m/z (relative intensity, %); 309 ([M]+˙, 2), 288 (11), 

234 (34), 216 (27), 108 (100), 107 (74), 90 (68). 

 

Spectra and physical data matched that previously published.5  
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17-Hydroxy-androst-5-ene 3-ethylene ketal (93) 

 

To a solution of testosterone (91) (1.00 g, 3.5 mmol) in dry toluene (40 ml) at RT ethylene 

glycol (7.70 ml, 13.8 mmol) was added followed by triethyl orthoformate (1.72 ml, 10.3 

mmol) and PTSA (0.07 g, 0.34 mmol) under argon. The reaction mixture was stirred at RT 

overnight. The reaction mixture was quenched with saturated aqueous solution of NaHCO3 

(40 ml) and diluted with ethyl acetate (20 ml). The layers were separated and the aqueous 

layer was extracted with ethyl acetate (3×20 ml). The combined organic extracts were dried 

over MgSO4, filtered and concentrated in vacuo. Purification of the product by flash column 

chromatography on silica (ethyl acetate / hexane 6:4) afforded the product as a white solid 

(0.78 g, 64%). 

1H NMR (400 MHz, CDCl3) δ; 0.76 (3H, s, 18-CH3), 0.90-1.00 (1H, m, 9-CH), 1.03 (3H, 

s, 19-CH3), 1.04-1.14 (1H, m), 1.18-1.37 (3H, m), 1.38-1.53 (3H, m), 1.54-1.70 (3H, m), 

1.72-1.86 (3H, m), 1.93-2.15 (3H, m), 2.52-2.60 (3H, m, 17-CH), 3.58-3.68 (1H, m, OH), 

3.87-4.02 (4H, m, 20/21-CH2CH2), 5.32-5.37 (1H, m, 6-CH). 

 

Spectra and physical data matched that previously published.6 
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Testosterone acetate (92) 

 

To a solution of testosterone (91) (0.50 g, 1.7 mmol) in dry DCM (30 ml) was added acetic 

anhydride (0.40 ml, 4.4 mmol) and DMAP (0.70 g, 5.7 mmol) under argon. The reaction 

mixture was stirred at RT for 4 h. After that time the reaction mixture was poured into water 

and neutralized with saturated aqueous solution of NaHCO3 (30 ml). The layers were 

separated and the aqueous layer was extracted with DCM (3×20 ml). The combined organic 

extracts were dried over MgSO4, filtered and concentrated under reduced pressure. The 

crude product was purified by filtration through a plug of silica (eluting with hexane / ethyl 

acetate 4:2) to give 92 as a white solid (0.52 g, 93%). 

1H NMR (400 MHz, CDCl3) δ; 0.83 (3H, s, 18-CH3), 0.86-1.10 (3H, m) 1.18 (3H, s, 19-

CH3), 1.23-1.43 (4H, m), 1.44-1.88 (8H, m), 2.04 (3H, s, 20-CH), 2.12-2.33 (2H, m), 2.33-

2.47 (2H, m, 2-CH), 4.59 (1H, t, J = 8.4 Hz, 17-CH), 5.73 (1H, s, 4-CH); 13C NMR (100 

MHz, CDCl3) δ; 11.0 (18-C), 16.3 (19-C), 19.5 (11-C), 20.1 (20-C), 22.4 (15-C), 26.4 (16-

C), 30.4 (7-C), 31.7 (6-C), 32.9 (2-C), 34.4, 34.6 (1-C), 35.6 (12-C), 37.6 (10-C), 41.44 

(13-C), 49.2 (14-C), 52.6 (9-C), 81.4 (17-C), 122.9 (4-C),168.1 (5-C) 170.1 (21-C), 198.3 

(3-C), MS m/z (relative intensity, %); 330 ([M]+˙, 12), 288 (13), 228 (15), 185 (18), 147 

(41), 146 (38), 131 (17), 124 (68), 104 (35), 90 (37), 78 (40), 66 (25), 54 (33), 43 (100). 

Spectra and physical data matched that previously published. 7 
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17-Acetoxyandrost-5-ene-3-ethylene ketal (94)  

 

To a solution of 17-Hydroxy-androst-5-ene 3-ethylene ketal (93) (0.12 g, 0.4 mmol) in 

dry DCM (10 ml) was added acetic anhydride (0.10 ml, 1.0 mmol) and DMAP (0.17 g, 1.4 

mmol) under argon. The reaction mixture was stirred at RT for 4 h. After that time, the 

reaction mixture was poured into water and neutralized with saturated aqueous solution of 

NaHCO3, (10 ml). The layers were separated and the aqueous layer was extracted with 

DCM (3×20 ml). The combined organic extracts were dried over MgSO4, filtered and 

concentrated under reduced pressure. The crude product was purified by filtration through 

a plug of silica (eluting with hexane / ethyl acetate 5:1) to give 94 as a white solid (0.67 g, 

98%). 

1H NMR (400 MHz, CDCl3) δ; 0.73 (3H, s, 18-CH3), 0.95 (3H, s, 19-CH3), 0.97-1.63 (12H, 

m), 1.63-1.77 (3H, m), 1.96 (3H, s, 17COCOCH3), 1.99-2.14 (2H, m), 2.44-2.52 (1H, m), 

3.80-3.92 (4H, m, 3-COCH2CH2O), 4.52 (1H, t, J = 8.4 Hz, 17-CH), 5.24-5.29 (1H, m, 4-

CH); 13C NMR (100 MHz, CDCl3) δ; 11.9 (18-C), 18.9 (19-C), 20.54 (11–C), 21.19 (20-

C), 23.5 (15-C), 27.5 (16-C), 31.0, 31.3, 36.3, 36.6, 36.7, 51.0 (9-C), 64.4 (23-C), 64.2 

(22-C), 82.7 (17-C), 106.5, 109.5 (3-C), 121.7 (4-C), 140.2 (5-C), 149.3 (5-C), 171.3 (21-

C); GC-MS m/z (relative intensity, %); 374 ([M]+˙, 10), 99 (100), 91 (19), 54 (35), 41 (10). 

Spectra and physical data matched that previously published.4  
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3-Dihydroxyandrost-5-ene (90) 

 

To a solution of DHEA (89) (10.00 g, 34.7 mmol) in ethanol (200 ml) was added NaBH4 

(0.66 g, 17.4 mmol). The reaction mixture was stirred at RT in open flask for 3 h. After that 

time the mixture was neutralised with 1M HClaq (3 ml) and diluted with water (150 ml). 

The reaction mixture was filtered and the filter cake was washed with water (50 ml). The 

filter cake was dried at 50oC to give the product as a white solid (9.18 g, 91%). 

1H NMR (400 MHz, CDCl3) δ; 0.76 (3H, s, 18-CH3), 0.91-1.00 (1H, m, 9-CH), 1.02 (3H, 

s, 19-CH3 ), 1.03-1.14 (2H, m), 1.15-1.34 (3H, m), 1.15-1.34 (2H, m), 1.36-1.67 (6H, m), 

1.73-1.90 (3H, m), 1.93-2.12 (2H, m, 7-CH), 2.18-2.33 (2H, m, 4-CH), 3.48-3.56 (1H, m, 

17-CH), 3.61-3.67 (1H, m, 3-CH), 5.33-5.36 (1H, m, 6-CH); 13C NMR (100 MHz, CDCl3) 

δ; 10.9 (18-C), 19.4 (19-C), 20.6 (11–C), 23.4 (15-C), 30.5 (16-C), 31.5 (2-C), 31.6 (8-C), 

31.9 (7-C), 36.6 (12-C), 37.3 (1-C), 42.3 (4-C), 42.7 (13-C), 50.2 (9-C), 51.3 (14-C, C), 

71.7 (3-C), 81.9 (17-C), 121.4 (6-C), 140.8 (5-C); GC-MS m/z (relative intensity, %); 290 

([M]+˙, 30), 257 (58), 118 (100), 116 (56), 66 (93). Structure was also confirmed by X-ray 

diffraction analysis. 

Spectra and physical data matched that previously published.8
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3-Diacetoxyandrost-4,5-diene (13) 

 

To testosterone (91) (0.50 g, 1.7 mmol) was added acetic anhydride (0.43 ml, 4.5 mmol), 

pyridine (0.11 ml, 1.4 mmol) and acethyl chloride (0.95 ml, 13.3 mmol) dropwise under 

argon at 25oC. The reaction mixture was refluxed for 5 h and then was stirred overnight at 

RT. The mixture was concentrated under reduced pressure and the residue was triturated 

with ethanol. The resulting material was dried at 50oC to give 13 as a white solid (0.44 g, 

69%). 

1H NMR (400 MHz, CDCl3) δ; 0.83 (3H, s, 18-CH3), 1.01 (3H, s, 19-CH3), 1.14-1.26 (2H, 

m), 1.27-1.73 (8H, m), 1.73-1.81 (2H, m), 2.05 (3H, s, 17-OCOCH3), 2.07-2.12 (1H, m), 

2.13 (3H, s, 3-OCOCH3), 2.14-2.24 (3H, m), 2.38-2.51 (1H, m), 4.61 (1H, dd, J = 8.0 Hz, 

J = 7.6 Hz, 17-CH), 5.38-5.40 (1H, m, 6-CH), 5.69 (1H, d, J = 2.4 Hz, 4-CH); 13C NMR 

(175 MHz, CDCl3) δ; 11.9 (18-C), 18.8 (19-C), 21.0 (23-C), 21.1 (21-C), 23.2, 26.2 (2-C), 

27.4, 27.21, 27.9 (16-C), 30.8 (1-C), 36.5 (10-C), 36.6 (12-C), 40.56, 42.6 (13-C), 43.5 (9-

C), 51.1 (14-C), 82.7 (17-C), 117.5 (4-C), 123.6 (6-C), 134.5 (5-C), 148.6 (3-C) 171.1 

(22-C), 169.2 (20-C); GC-MS m/z (relative intensity, %); 372 ([M]+˙, 5), 330 (100), 133 

(12), 91 (12), 43 (62). 

Spectra and physical data matched that previously published. 9 
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6/-Fluorotestosterone acetate (14) 

 

To a solution of 3-diacetoxyandrost-4,5-diene (13) (0.97 g, 2.6 mmol) in DMF (10 ml) 

was added Selectfluor® (1.02 g, 2.9 mmol) under argon at RT. The reaction mixture was 

stirred for 2 days at RT. After that time, water (10 ml) was added and the resulting 

precipitate was filtered off. The filter cake was dried at 50oC overnight to give 14 as a white 

solid (0.90 g, 99%). 

1H NMR (400 MHz, CDCl3) δ; 0.85 (3H, s, 18-CH3), 0.93-1.01 (1H, m, 9-CH), 1.05-1.13 

(1H, m, 14-CH), 1.14-1.18 (1H, m), 1.12-1.29 (3H, m), 1.31 (3H, s, 19- CH3), 1.34-1.87 

(5H, m), 1.91-1.99 (1H, m), 2.05 (3H, 20-CH), 2.11-2.30 (2H, m), 2.34-2.47 (1H, m), 2.50-

2.59 (1H, m), 4.61 (1H, t, J= 8.3, 17-CH), 4.92 (0.41H, t, α-isomers, J = 2.4 Hz, 6-CH), 

5.00-5.06 (0.49H, m, α/β-isomers, 6-CH), 5.12-5.18 (0.12H, m, α-isomer, 6-CH), 5.87 

(0.78H, d, β-isomer, J = 4.8 Hz, 4-CH), 6.08 (0.19H, s, α-isomer, 4-CH); 13C NMR (175 

MHz, CDCl3) δ; 12.2 (18-C), 20.4 (19-C), 21.3 (11–C), 23.3 (20-C), 27.4 (16-C), 29.7 (8-

C), 34.3 (2-C), 36.2 (1-C), 36.3 (12-C), 36.4 (7-C), 36.7 (10-C), 42.5 (13-C), 50.2 (14-C), 

53.2 (9-C), 82.3 (17-C), 87.5 (α6-C), 92.8 (β6-C), 119.6 (α4-C), 128.3 (β4-C), 163.4 (5-

C), 170.3 (21-C), 199.7 (3-C); 19F NMR (379 MHz, CDCl3) δ; -165.53 (β, dt, J = 47.9 Hz, 

J = 10.1Hz), -183.45 (α, d, J = 47.9 Hz); MS m/z (relative intensity, %); 348 ([M]+˙, 29), 

306 (46), 288 (59), 273 (16), 246 (38), 231 (19), 203 (24), 148 (17), 145 (29), 133 (41), 97 

(35), 93 (50), 91 (61), 55 (50), 43 (100), 41 (33). 

Spectra and physical data matched that previously published.10  
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6/-Fluoro-testosterone (84) 

 

To a solution of 6/-fluorotestosterone acetate (14) (0.10 g, 0.3 mmol) in THF (2 ml) was 

added 2M HCl (2 ml). The reaction mixture was stirred at RT for 48 h. After that time, the 

reaction mixture was neutralized with saturated aqueous solution of NaHCO3 and 

concentrated under reduced pressure. The residue was dissolved in DCM (10 ml), washed 

with water (2×20 ml), dried over MgSO4, filtered and concentrated in vacuo. Purification 

by flash column chromatography on silica gel (ethyl acetate / DCM 1:5) gave the product 

(84) as white solid (0.05 g, 58%).  

1H NMR (400 MHz, CDCl3) δ; 0.81 (3H, s, 18-CH3), 0.89-1.14 (3H, m), 1.15-1.27 (1H, 

m), 1.31 (3H, s, 19- CH3), 1.34-1.56 (4H, m), 1.57-1.80 (3H, m), 1.80-2.01 (2H, m), 2.02-

2.33 (3H, m), 2.34-2.61 (2H, m), 3.62-3.70 (1H, m, 17-CH), 4.92 (0.41H, t, α-isomers, J = 

2.4 Hz, 6-CH), 5.00-5.06 (0.49H, m, α/β-isomers, 6-CH), 5.12-5.18 (0.12H, m, α-isomer, 

6-CH), 5.87 (0.78H, d, 4-CH, β-isomer, J = 4.8 Hz), 6.08 (0.19H, s, -isomer, 4-CH); 13C 

NMR (175 MHz, CDCl3) δ; 12.2 (18-C), 20.4 (19-C), 21.3 (11–C), 23.3, 27.4 (16-C), 29.7 

(8-C), 34.3 (2-C), 36.2 (1-C), 36.3 (12-C), 36.4 (7-C), 36.7 (10-C), 42.5 (13-C), 50.2 (14-

C), 53.2 (9-C), 82.3 (17-C), 87.5 (α6-C), 92.8 (β6-C), 119.6 (α4-C), 128.3 (β4-C), 163.4 

(5-C), 171.0 (20-C), 199.7 (3-C); 19F NMR (564 MHz, CDCl3) δ; -165.53 (β, dt, J = 47.9 

Hz, J = 10.1Hz), -183.45 (α, d, J = 47.9 Hz); MS m/z (relative intensity, %); 306 ([M]+˙, 

12), 287 (17), 184 (23), 150 (24), 146 (38), 141 (36), 121 (24), 108 (46), 104 (53), 97 (50), 

90 (100), 78 (97), 66 (78), 54 (94), 40 (67).  

Spectra and physical data matched that previously published. 11  
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16-Fluoro-5-androstanedione (88) 

 

To a solution of 16-fluoro-androsterone (87) (1.00 g, 3.2 mmol) in dry MeCN (10 ml) 

was added TPAP (0.06 g, 0.16 mmol), NMO (0.66 g, 4.9 mmol) and Ao4 molecular sieves 

(~0.50 g). The reaction mixture was stirred at RT overnight then the mixture was filtered 

and the solvent was evaporated. The residue was diluted with water (10 ml) and 1 M HCl 

was added to achieve pH 6-7. The resulting suspension was stirred at RT for 10 min. The 

solid were filtered off, washed with H2O (10 ml) and dried at 40oC overnight. This gave 

the product 88 as an off white solid (0.85 g, 88%). 

1H NMR (600MHz, CDCl3) δ; 0.79-0.87 (3H, m), 0.92 (3H, s, 18-CH3), 0.95-1.05 (11H, 

m), 1.15-1.20 (1H, m), 1.21-1.23 (3H, m), 1.27-1.47 (10H, m), 1.50-1.67 (6H, m),1.68-1.73 

(3H, m), 1.75-1.85 (3H, m),1.87-1.98 (2H, m), 1.99-2.03 (2H, m), 2.05-2.13(3H, m), 2.21-

2.32 (4H, m), 2.33-2.40 (2H, m), 2.44-2.49 (1H, m), 4.64 (0.4H, t, 16-CH, J = 8.3 Hz), 

4.72 (0.4H, t, 16-CH, J = 8.3 Hz), 5.03 (0.5H, d,16-CH, J = 7.1 Hz), 5.11 (0.5H, 

d,16-CH, J = 7.1 Hz); 13C NMR (150MHz, CDCl3) δ; 11.4 (18-C), 14.0, 14.5, 20.2, 

28.4, 30.1, 31.1, 34.7, 35.7, 37.9, 38.2, 44.4, 46.3, 48.1, 53.6,89.4, 90.6, 92.1, 211.2, 212.7; 

19F NMR (379 MHz, CDCl3) δ; 179.9 , -196.7; IR (neat) 2937, 1752, 1709, 1443, 1039, 

730 cm-1; GC-MS m/z (relative intensity, %); 306 ([M]+˙, 37), 232 (91), 217 (100); 

Spectra and physical data matched that previously published.12  
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16-Fluoro-3,17-dihydroxyandrostane (105)  

 

To a solution of 16-fluoro-androsterone (87) (2.00 g, 6.4 mmol) in DCM / MeOH (1:1, 

40 ml) in 0oC was added NaBH4 (0.77 g, 20.0 mmol). The reaction mixture was stirred at 

RT in open flask overnight. The solvent was evaporated, water (40 ml) was added and pH 

was adjusted to 6-7 with 1M HCl. The solid was filtered off washed with H2O, dried at 

40oC overnight. This gave the product as a white solid (5.40 g, 90%). 

1H NMR (600 MHz, CDCl3) δ; 0.66 (3H, s, 18-CH3), 0.69-0.75 (1H, m), 0.80 (3H, s, 19-

CH3), 0.93-1.01 (2H, m), 1.08-1.15 (2H, m), 1.21-1.35 (4H, m), 1.36-1.43 (2H, m), 1.44-

1.49 (1H, m), 1.53-1.66 (4H, m), 1.68-1.75 (2H, m), 1.76-1.88 (4H, m), 2.14-2.19 (0.4H, 

m), 3.50-3.62 (0.5H, m), 3.76-3.77 (0.4, m), 5.15-5.19 (0.2H, m), 5.25-5.5.28 (0.2H, m); 

13C NMR (150MHz, CDCl3) δ; 12.4 (18-C), 17.2 (19-C), 20.1, 28.6, 31.0, 32.3, 32.7, 35.3, 

37.0, 38.2, 44.9, 45.4, 47.2, 54.0, 71.3 (3-C), 78.1, 94.1 (17-C), 95.3 (16-C); IR (neat) 

3359, 2930, 1371, 1033, 606 cm-1; 19F NMR (189 MHz, CDCl3) δ; -179.82, -185.28, -

191,93 and -196.35 (mixture of 4 isomers); MS m/z (relative intensity, %); 310 ([M]+˙, 31), 

290 (81), 272 (22), 248 (39), 233 (55), 215 (100).   
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3-Acetoxyandrost-3,5-diene-17-one (107) 

 

To androst-4-ene-3,17-dione (106) (2.00 g, 6.9 mmol) was added acetic anhydride 

(0.88 ml, 18.1 mmol), pyridine (0.55 ml, 6.9 mmol) and acethyl chloride (1.92 ml, 

54.4 mmol) dropwise under argon. The reaction mixture was refluxed for 7 h and then 

stirred overnight at RT. The mixture was concentrated under reduced pressure and the 

residue was triturated with ethanol. The mother liquor was concentrated and purified by 

column chromatography on silica gel (hexane / EtOAc 95/5%) This gave the product 107 

as white solid (1.78 g, 79%) 

1H NMR (400 MHz, CDCl3) δ; 0.91 (3H, s, 18-CH3), 1.02 (3H, s, 19-CH3), 1.04-1.12 (1H, 

m), 1.28-1.38 (3H, m), 1.40-1.50 (1H, m), 1.51-1.60 (1H, m), 1.67-1.77 (2H, m), 1.79-1.89 

(3H, m), 1.91-1.99 (1H, m), 2.04-2.12 (1H, m), 2.13 (3H, s, 21-CH), 2.24-2.33 (1H, m), 

2.40-2.51 (2H, m), 5.40-5.42 (1H, m, 6-CH), 5.70 (1H, d, 4-CH, J = 2.4 Hz); 13C NMR 

(175 MHz, CDCl3) δ; 13.6 (18-C), 18.8 (19-C), 20.5 (11–C), 21.1 (21-C), 21.8 (15-C), 

24.7 (2-C), 30.75 (16-C), 31.4 (8-C), 33.7 (1-C), 35.0 (10-C), 35.8 (12-C), 47.7 (13-C), 

48.1 (9-C), 51.8 (14-C), 116.8 (6-C), 123.4 (4-C), 139.5 (5-C), 147.1 (3-C), 169.3 (20-C), 

218.7 (17-C); IR (neat) 2944, 1733, 1670, 1641, 888 cm-1; MS m/z (relative intensity, %); 

328 ([M]+˙, 8), 287 (21), 286 (100), 271 (7), 137 (6). 

Spectra and physical data matched that previously published. 9  
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10β-Fluoro-3,17-dihydroxy-1,4-androstene (10) 

 

To a solution of estrone (121) (10.00 g, 37.0 mmol) and Selectfluor® (15.80 g, 44.6 mmol) 

in MeCN (70 ml). The reaction mixture was stirred under N2 at 50°C overnight. The solvent 

was evaporated. The reaction mixture was diluted with DCM (70 ml) and the layers were 

separated. The organic layer was dried over MgSO4 filtered and concentrated to give the 

crude product as a brown oil. The crude product was purified by flash column 

chromatography on silica (DCM / EtOAc 85/15%). This gave the product 10 as a white 

solid (7.25 g, 83%).  

1H NMR (700 MHz, CDCl3) δ; 0.69 (3H, s, 18-CH3), 1.15-1.21 (1H, m), 1.24-1.33 (3H, 

m), 1.58-1.65 (1H, m), 1.84-1.91 (2H, m), 1.93-1.99 (2H, m), 2.03-2.12 (3H, m), 2.46-2.50 

(2H, m), 6.04 (1H, s, 4-CH), 6.24 (1H, d, 1-CH, J = 6.9 Hz), 7.06 (1H, d, 2-CH, J =6.9 

Hz); 13C NMR (175 MHz, CDCl3) δ; 13.6 (18-C), 21.9, 22.1, 30.9, 31.5, 31.7, 35.3, 35.5, 

47.6, 49.9, 54.0, 54.1, 123.8 (4-C), 129.6 (2-C), 144.9 (1-C), 159.6 (5-C), 184.8 (3-C), 

219.6 (17-C); 19F NMR (379 MHz, CDCl3) δ; -165.32 (d, J = 37.9 Hz).; IR (neat) 2944, 

1733, 1670, 1641, 888 cm-1; GC-MS m/z (relative intensity, %); 288 ([M]+˙, 47), 247 (19), 

163 (26), 150 (75), 149 (46), 145 (29), 126 (100), 107 (34), 93 (34), 79 (25). 

Spectra and physical data matched that previously published.13  
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3,17-Bistetrafluoropyridine-estradiol (277) 

 

To a suspension of estradiol (276) (1.22 g, 4.5 mmol) in dry DMF (3 ml) was added 

triethylamine (0.75 ml, 5.4 mmol) and PFP (1.1 ml, 10 mmol). The reaction mixture was 

stirred for 2 days at 50oC. After that time, water (10 ml) was added and the mixture was 

stirred for 20 min. The solids were filtered off. The crude product was dried at 40oC 

overnight then purified by flash column chromatography on silica (DCM / EtOAc 85/15%). 

This gave the product 277 as a white solid (1.79 g, 70%). 

1H NMR (700 MHz, CDCl3) δ; 1.00 (3H,s, 18-CH3), 1.25-1.43 (4H, m),1.49-1.58 (3H, m), 

1.79-1.93 (3H, m), 1.96-2.00 (1H, m),2.21-2.33 (3H, m), 2.82-2.91 (2H, m), 4.66-4.68 (1H, 

t, 17-CH, J = 9.0 Hz), 6.77-6.76 (1H, m, 4-CH), 6.82-6.84 (1H, m, 2-CH), 7.26-7.27 (1H, 

m, 1-CH);13C NMR (175 MHz, CDCl3) δ; 11.4 (18-C), 23.1 (15-C), 25.9 (14–C), 26.81, 

28.0 (9-C), 29.4 (6-C), 36.6, 38.1, 43.7, 44.2, 49.3 (15-C), 93.0 (17-C), 113.8 (2-C), 116.5 

(4-C),126.6 (C), 134.5-134.7 (C, m), 135.3-135.5 (C, m), 136.0-136.2 (C, m) 136.8 (C), 

126.8-137.0 (C, m), 138.8 (C), 143.3-143.5 (C, m), 144.5-144.7 (C, m), 144.7-144.9 (C, 

m), 147.5-147.6 (C, m), 153.8 (C, m); 19F NMR (376 MHz, CDCl3) δ; -88.85 (ortho 

positions), -90.77 (ortho positions), -154.46 (meta positions), -158.11 (meta positions); IR 

(neat) 2939, 1642, 1474, 1019, 975 cm-1; ASAP-MS m/z (relative intensity, %); 

571([M+1]+˙, 94), 503 (11), 429 (13), 405 (41), 404 (100), 355 (12), 308 (16).  
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Androst-5ene-17-one 3-(2,3,5,6-tetrafluoropyridine)ether (DHEA-PFP) (280) 

 

To a suspension of DHEA (89) (0.10 g, 6.9 mmol) in dry DMF (1 ml) was added 

triethylamine (0.11 ml, 8.3 mmol) and PFP (1.70 ml, 1.5 mmol). The reaction mixture was 

stirred for 2 days at 50oC. After that time, water (10 ml) was added and the mixture was 

stirred for 20 min. The solids were filtered off. The crude product was dried at 40oC 

overnight then purified by flash column chromatography on silica (DCM / EtOAc 85/15%). 

This gave the product 280 as a white solid (0.25 g, 86%). 

 

1H NMR (600 MHz, CDCl3) δ; 0.99 (3H, s, 18-CH3), 1.01-1.06 (1H, m), 1.09 (3H, s, 19-

CH3), 1.14-1.19 (1H, m), 1.25-1.32 (1H, m), 1.47-1.59 (3H, m), 1.64-1.72 (3H, m), 1.78-

1.87 (2H, m), 1.94-1.98 (2H, m), 2.04-2.17 (3H, m), 2.45-2.59 (3H, m), 4.50-4.57 (1H, m, 

3-CH), 5.46 (1H, s, 6-CH); 13C NMR (150 MHz, CDCl3) δ; 13.7 (18-C), 19.5 (19-C), 20.5, 

22.0, 28.8 29.4,30.9, 31.5, 35.9, 36.8, 39.2, 47.6, 50.2, 51.8, 84.2 (3-C), 122.9 (6-C), 134.0-

134.4 (C, m), 136.6-136.9 (C), 139.2 (C), 142.9 (C, t, J = 17 Hz), 145.4 (C, t, J = 15 Hz), 

146.2-146.6 (C, m); 19F NMR (376 MHz, CDCl3) δ; -90.80 (ortho positions), -158.14 (meta 

positions); IR (neat) 2994, 1702, 1492, 1119, 975 cm-1; ASAP-MS m/z (relative intensity, 

%); 438 ([M+1]+˙ (100), 429 (29), 355 (28), 271 (19). 
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Estron 3-(2,3,5,6-tetrafluoropyridine)ether (estrone-PFP) (278) 

  

To a suspension of estrone (121) (0.10 g, 3.7 mmol) in dry DMF (1 ml) was added 

triethylamine (0.06 ml, 4.4 mmol) and PFP (0.09 ml, 8.1 mmol). The reaction mixture was 

stirred for 2 days at 50oC. After that time, water (10 ml) was added and the mixture was 

stirred for 20 min. The solids were filtered off. The crude product was dried at 40oC 

overnight then purified by flash column chromatography on silica (DCM / EtOAc 85/15%). 

This gave the product 278 as a white solid (0.093 g, 60%). 

 

1H NMR (600 MHz, CDCl3) δ; 0.95 (3H, s, 18-CH3), 1.43-1.67 (7H, m), 1.96-199 (1H, m), 

2.00-2.09 (2H, m), 2.12-2.18 (1H, m), 2.26-2.32 (1H, m), 2.38-2.43 (1H, m), 2.49-2.55 

(1H, m), 2.89-2.92 (2H, m), 6.77 (1H, s, 4-CH), 6.83 (1H, d, 1-CH, J = 5.9 Hz), 7.28 (1H, 

d, 2-CH, J=5.9 Hz); 13C NMR (150 MHz, CDCl3) δ; 13.7 (18-C), 21.5, 25.7, 26.21, 29.4, 

31.4, 35.7, 37.9, 43.9, 47.8, 50.3, 113.8, 116.4, 126.8,134.7-1351 (C, m), 136.7, 137.3-

137.7 (C, m), 138.7, 142.9 (C, t, J = 17 Hz), 144.4-144.7 (C, m), 145.3 (C, t, J = 14 Hz), 

153.8 (3-C), 220.5 (17-C); 19F NMR (376 MHz, CDCl3) δ; -88.89 (ortho positions), -154.41 

(meta positions); IR (neat) 2927, 1702, 1464, 1043, 965 cm-1; ASAP-MS m/z (relative 

intensity, %); 420 ([M+1]+˙ 100), 402 (95), 355 (41), 299 (12).   
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Nortestosterone 17-(2,3,5,6-tetrafluoropyridine)ether (nortestosterone-PFP) (281) 

 

To a suspension of nortestosterone (111) (0.10 g, 3.6 mmol) in dry DMF (1 ml) was added 

triethylamine (0.04 ml, 4.4 mmol) and PFP (0.09 ml, 8.1 mmol). The reaction mixture was 

stirred for 2 days at 50oC. After that time, water (10 ml) was added and the mixture was 

stirred for 20 min. The solids were filtered off. The crude product was dried at 40oC 

overnight then purified by flash column chromatography on silica (DCM / EtOAc 85/15%). 

This gave the product 281 as a white solid (0.105 g, 68%).  

 

1H NMR (600 MHz, CDCl3) δ; 1.00 (3H, s, 18-CH3), 1.25-1.43 (4H, m), 1.49-1.58 (3H, 

m), 1.79-1.93 (3H, m), 1.96-2.00 (1H, m), 2.21-2.33 (3H, m), 2.82-2.91 (2H, m), 4.66-4.68 

(1H, t, 17-CH, J = 6.0 Hz), 6.77-6.76 (1H, m, 4-CH), 6.82-6.84 (1H, m, 2-CH), 7.26-7.27 

(1H, m, 1-CH);13C NMR (150 MHz, CDCl3) δ; 11.6 (18-C), 23.3, 26.0, 26.7, 28.1, 30.6, 

35.4, 36.5, 40.2, 42.5, 44.1, 49.2, 49.4 (9-C), 93.1 (17-C), 124.9 (4-C), 166.2 (5-C), 200.0 

(3-C), PFP carbons not detected; 19F NMR (376 MHz, CDCl3) δ; –90.68 (ortho positions), 

-158.12 (meta positions); IR (neat) 2933, 1474, 1093, 726 cm-1; ASAP-MS m/z (relative 

intensity, %); 424 ([M+1]+˙, 100), 356 (18), 355 (40), 257 (19).   
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Testosterone 17-(2,3,5,6-tetrafluoropyridine)ether (testosterone-PFP) (282) 

 

To a suspension of testosterone (91) (0.10 g, 3.5 mmol) in dry DMF (1 ml) was added 

triethylamine (0.06 ml, 4.1 mmol) and PFP (0.09 ml, 8.1 mmol). The reaction mixture was 

stirred for 2 days at 50oC. After that time, water (10 ml) was added and the mixture was 

stirred for 20 min. The solids were filtered off. The crude product was dried at 40oC 

overnight then purified by flash column chromatography on silica (DCM / EtOAc 85/15%). 

This gave the product 282 as a white solid (0.079 g, 52%). 

1H NMR (600 MHz, CDCl3) δ; 0.94 (1H, m), 0.99 (3H, s, 19-CH3), 1.02-1.10 (2H, m), 1.27 

(3H, s, 18-CH3), 1.42-1.49 (2H, m), 1.57-1.62 (3H, m), 1.69-1.75 (3H, m), 1.80-1.85 (2H, 

m), 1.86-1.89 (1H, m), 2.01-2.04 (1H, m), 2.20-2.34 (3H, m), 2.35-2.46 (3H, m), 4.57 (1H, 

t, 17-CH, J = 5.9 Hz), 5.73 (1H, s, 4-CH);13C NMR (150 MHz, CDCl3) δ; 11.8 (19-C), 

17.7 (18-C), 20.8, 23.7, 28.4, 31.7, 33.0, 34.2, 35.7, 36.1, 36.8, 38.9, 44.2, 50.2, 54.0, 92.9, 

93.3 (17-C), 124.4 (4-C), 170.8 (5-C), 199.7 (3-C), PFP carbons not detected; 19F NMR 

(376 MHz, CDCl3) δ; -90,74 (ortho positions), -158.12 (meta positions); IR (neat) 2942, 

1660, 1505, 1471, 1091, 980 cm-1; ASAP-MS m/z (relative intensity, %); 438 ([M+1]+˙ 

(100), 429 (29), 355 (28), 271 (19).  
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Androstan-17-one 3-(2,3,5,6-tetrafluoropyridine)ether (androsterone-PFP) (279) 

 

To a suspension of androsterone (97) (0.20 g, 0.5 mmol) in dry DMF (1 ml) was added 

triethylamine (0.06 ml, 4.1 mmol) and PFP (0.18 ml, 0.6 mmol). The reaction mixture was 

stirred for 2 days at 50oC. After that time, water (10 ml) was added and the mixture was 

stirred for 20 min. The solids were filtered off. The crude product was dried at 40oC 

overnight then purified by flash column chromatography on silica (DCM / EtOAc 85/15%). 

This gave the product 279 as a white solid (0.23 g, 76%).  

1H NMR (700 MHz, CDCl3) δ; 0.68-0.72 (1H, m), 0.84 (3H, s, 18-CH3), 0.87 (3H, s, 19-

CH3), 0.93-1.00 (2H, m), 1.02-1.06 (1H, m), 1.15-1.29 (3H, m), 1.30-1.35 (3H, m), 1.44-

1.50 (1H, m), 1.52-156 (1H, m), 1.57-1.59 (1H, m), 1.61-1.67 (1H, m), 1.68-1.77 (2H, m), 

1.78-1.82 (2H, m), 1.88-1.93 (1H, m), 1.97-2.06 (2H, m), 2.41 (1H, dd, J = 10.4 Hz, J = 

10.4 Hz) 4.57-4.62 (1H, m, 3-CH); 13C NMR (175MHz, CDCl3) δ; 12.2 (18-C), 13.7 (19-

C), 20.4, 21.6, 28.2, 28.3, 30.7, 31.4, 34.7, 34.9, 35.6, 35.7, 36.5, 44.5, 47.6, 51.2, 54.1, 

84.0, 134.5-134.6 (C, m), 134.7-134.8 (C, m), 136.2-136.5 (C, m), 143.2-143.4 (C, m), 

144.8-145.0 (C, m), 220.8 (17-C); IR (neat) 2937, 1738, 1642, 1502, 1473, 1109, 985 cm-

1; 19F NMR (376 MHz, CDCl3) δ; -91.00 (ortho positions), -158.11 (meta positions); ASAP-

MS m/z (relative intensity, %); 440 ([M+1]+˙ (13), 423 (42), 422 (100), 273 (24), 255 (46). 
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17-Hydroxyandrost-5-ene 3-(2,3,5,6-tetrafluoropyridine)ether (283) 

 

To a suspension of 90 (2.00 g, 6.9 mmol) in dry DMF (15 ml) was added triethyloamine 

(0.84 ml, 8.3 mmol) and PFP (5.13 ml, 30.3 mmol). The reaction mixture was stirred for 2 

days at 50oC. After 48 h, water (40 ml) was added and the mixture was stirred for 20 min. 

The solids were filtered off. The crude product was dried at 40oC overnight. To give the 

product 283 as a white solid (2.02 g, 67%). 

1H NMR (400 MHz, CDCl3) δ; 0. 0.96 (3H, s, 18-CH3), 0.98-1.01 (2H, m), 1.08 (3H, s, 19-

CH3), 1.09-1.15 (1H, m), 1.16-1.30 (2H, m), 1.33-1.61 (8H, m), 1.66-1.73 (1H, m), 1.77-

1.87 (4H, m), 1.91-1.97 (1H, m), 1.99-2.08 (3H, m), 2.17-2.30 (2H, m), 2.44-2.57 (2H, m), 

1.78-1.82 (2H, m), 1.88-1.93 (1H, m), 4.46-4.46 (2H, m), 5.34 (0.34H, m), 5.41 (1H, s, -

CH), 5.41 (1H, m, 6-CH); 13C NMR (150 MHz, CDCl3) δ; 11.52 (18-C), 19.4 (19-C), 20.6, 

23.6, 28.2, 31.4, 31.8, 36.6, 36.7, 36.9, 39.2, 43.9, 49.6, 50.7, 71.8, 82.0, 84.3, 93.3, 121.2, 

123.1, 134.0-134.5 (C, m), 136.6-137.1 (C, m), 139.1 (C), 142.9-143.2 (C, m), 145.3-145.6 

(C, m), 146.5-146.8 (C, m), 147.7-147.9 (C, m); 19F NMR (376 MHz, CDCl3) δ; -90.87 

(ortho positions), -158.14 (meta positions); IR (neat) 3273, 2944, 1641, 1471, 1093, 753 

cm-1; MS m/z (relative intensity, %); 290 (M – PFP, 100), 272 (56), 257 (38), 218 (48), 201 

(26), 107 (30),   
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3-Acetoxypregh-3,5-diene-20one 143 

 

To progesterone (142) (0.50 g, 1.6 mmol) was added acetic anhydride (0.40 ml, 4.2 mmol), 

pyridine (0.12 ml, 1.4 mmol) and acetyl chloride (1.00 ml, 14.1 mmol) under argon. The 

reaction mixture was refluxed for 3 h and then was stirred overnight at RT. The mixture 

was concentrated under reduced pressure and the residue was triturated with acetonitrile. 

The resulting material was dried at 50oC to give 143 as a white solid (0.41 g, 72%). 

1H NMR (700 MHz, CDCl3) δ; 0.65 (3H, s, 18-CH3), 0.99 (3H, s, 19-CH3), 1.05-1.10 (1H, 

m), 1.16-1.29 (3H, m), 1.31-1.37 (1H, m), 1.42-1.50 (2H, m, 12-CH), 1.62-1.73 (6H, m), 

1.84-1.87 (1H, m, 8-CH), 2.03-2.09 (2H, m, 11-CH), 2.12 (6H, s, 21/23-CH3) 2.14-2.23 

(3H, m), 2.37-2.41 (1H, m, 7-CH), 2.50-2.57 (1H, m, 17-CH), 5.38 (1H, s, 6-CH), 5.68 

(1H, s, 4-CH); 13C NMR (175 MHz, CDCl3) δ; 13.4 (18-C), 18.9 (19-C), 21.2 (11–C), 

22.9, 24.3, 24.9 (23-COCH3), 31.8 (21-COCH3), 33.9 (6-C), 35.0 (9-C), 38.9, 44.2 (12-C), 

48.0, 57.13, 63.8 (17-C), 98.45 (6-C) 117.0 (4-C), 123.7 (4-C), 139.4 (5-C), 147.1 (3-C), 

169.4. (20-C), 209.0 (22-C); IR (neat) 2939, 1748, 1703, 1365, 1218, 1119 cm-1; GC-MS 

m/z (relative intensity, %); 356 ([M]+˙, 8), 315 (23) 314 (100), 43 (12).  

Spectra and physical data matched that previously published.14  
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6-Fluoro-progesterone (144) 

 

To 3-acetoxypregh-3,5-diene-20one (143) (7.70 g, 2.2 mmol) in dry DMF (80 ml) was 

added Selectfluor® (9.60 g, 2.7 mmol), at 0oC under argon. The reaction mixture was stirred 

at RT overnight. After that time, water (150 ml) was added and the solids were filtered off. 

The product was purified by flash column chromatography on silica. This gave the product 

144 as a white solid (6.87 g, 92%). 

1H NMR (700 MHz, CDCl3) δ; 0.70 (3H, s, 19-CH3), 1.00 (1H, m, 9-CH), 1.16-1.28 

(2H,m), 1.30 (3H, s, 18-CH3), 1.32-1.34 (1H, m), 1.42-1.46 (1H, m, 11-CH), 1.49-1.55 

(1H, m, 8-CH), 1.63-1.77 (4H,m), 1.90-1.95 (1H, m), 2.06-2.11 (2H, m) 2.13 (3H, s, 21-

CH), 2.18-2.24 (2H, m, 16-CH), 2.39-2.43 (1H, m, 17-CH), 2.52-2.58 (2H, m, 2-CH), 4.96 

(0.51H, t, -isomers, J = 2.4 Hz, 6-CH), 5.03 (0.49H, t, β-isomers, J = 2.4 Hz, 6-CH), 5.88 

(1H, d, β-isomer, J = 2.4 Hz, 4-CH); 13C NMR (175 MHz, CDCl3) δ; 13.2 (19-C), 18.3 

(18-C), 20.8 (11–C), 22.8 (16-C), 24.2 (15-C), 29.9, 31.4 (21 -COCH3), 34.1 (2-C, 17-C), 

36.8, 37.26 (1-C, 8-C, 7-C), 37.8 (10-C), 38.4 (12-C), 43.9 (13-C), 53.0 (9-C), 55.8 (14-

C), 63.3(2-C, 17-C), 92.7 (6-C), 93.6. (6-C), 128.4 (4-C), 161.5 (5-C), 199.7 (20-C), 209.0 

(3-C); 19F NMR (376 MHz, CDCl3) δ; -161.412 (β, t, J= 56.4 Hz), -184.19 (, d, J= 48.5 

Hz); IR (neat) 1680, 1696, 2932, cm-1; GC-MS m/z (relative intensity, %); 332 ([M]+˙, 92), 

312 (72), 270 (84), 227 (100), 142 (73). 

Spectra and physical data matched that previously published.14   
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Esterone 3-methyl ether (124) 

 

To a suspension of potassium tert-butoxide (10.00 g, 8.8 mmol) in dry THF (200 ml) was 

added estrone (121) (20.00 g, 7.4 mmol) at 5oC. The reaction mixture was stirred for 1h. 

After that time, MeI (5.07 ml, 8.1 mmol) was added, reaction mixture was warmed up to 

RT and stirred for 3h. The solvent was evaporated and DCM (200 ml) water (100 ml) was 

added. The layers were separated and the aqueous layer was extracted with DCM (3 x 50 

ml). The organic layers ware combined, dried over MgSO4, filtered and concentrated to 

give the product as a white solid (20.30 g, 97%). 

1H NMR (600 MHz, CDCl3) δ; 0.91 (3H, s, 18-CH3), 1.41-1.66 (3H, m), 1.67-1.76 (3H, 

m), 1.93-1.98 (2H, m, 6-CH), 1.99-2.08 (1H, m), 2.11-2.18 (1H, m), 2.23-2.29 (1H, m), 

2.36-2.43 (1H, m, 8-CH), 2.48-2.53 (1H, m) 2.88-2.93 (2H, m), 3.78 (3H, s, 19-CH), 6.65 

(1H, s, 4-CH), 6.73 (1H, d, J = 5.99 Hz), 7.21 (1H, d, J = 5.99 Hz); 13C NMR (150 MHz, 

CDCl3) δ; 14.0 (18-C), 21.7, 26.0 (8–C), 26.7, 29.8 (16-C), 31.7 (6-C), 36.0, 38.5, 44.1 (9-

C), 48.1, 50.5, 55.3 (19-C), 111.7 (2-C), 114.0 (4-C), 126.4 (1-C), 132.1 (10-C), 137.8 (5-

C), 157.7 (3-C), 221.0 (17-C); IR (neat) 2915, 1736, 1504, 1237, 1036 cm-1; GC - MS m/z 

(relative intensity, %); 284 ([M], 100), 285 ([M]+˙, 23), 199 (39), 160 (27). 

Spectra and physical data matched that previously published 15  
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3-Methoxy-1,3,5(10)-estratrien 17-ethylene ketal (125) 

 

To a solution of steroid 124 (20.30 g, 7.1 mmol) in toluene (100 ml) was added ethylene 

glycol (353.00 ml, 285.5 mmol), triethyl orthoformate (2.48 ml, 21.4 mmol), and PTSA 

(1.23 g, 0.7 mmol) under argon. The reaction mixture was stirred overnight at RT. After 

that time, the mixture was quenched with saturated aqueous solution Na2CO3 and diluted 

with ethylacetate (100 ml). The organic phase was wash with water (3 x 30 ml), brine (30 

ml), dried over MgSO4, and filtered. The solvent was removed under reduced pressure to 

give the product as an off white solid 125 (15.35 g, 95%).  

1H NMR (600 MHz, MeOD) δ; 0.88 (3H, s, 18-CH3), 1.31-1.50 (4H, m), 1.52-1.55 (1H, 

m), 1.61-1.66 (1H, m), 1.74-1.80 (2H, m), 1.82-1.91(2H, m), 2.00-2.05 (1H, m), 2.20-2.27 

(1H, m), 2.29-2.34 (1H, m), 2.81-2.89 (2H, m), 3.77 (3H, s,19-CH), 3.87-3.98 (4H, m, 

20/21-CH2CH2), 6.62 (1H, s, 4-CH), 6.71 (1H, d, = 10.4 Hz, 1-CH), 7.21 (1H, d, J = 9.7 

Hz, 2-CH); 13C NMR (150 MHz, MeOD) δ; 14.4 (18-C), 22.5, 26.0, 26.3, 27.1, 29.9, 30.8, 

34.3, 39.2, 43.7, 46.3, 49.5, 55.3, 64.7 (20-C), 65.3 (21-C), 111.6, 113.9, 119.5, 126.4 (1-

C), 132.8 (10-C), 138.1 (5-C), 157.5 (3-C), 221.0 (17-C); GC-MS m/z (relative intensity, 

%); 329 ([M+1]+˙, 10), 328 ([M]+˙, 42), 283 (12), 267 (30), 266 (100), 227 (14), 99 (96); IR 

(neat) 2932, 1737, 1498, 1037, 729 cm-1. 

Spectra and physical data matched that previously published.16  
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Estradiol (276) 

 

To a solution of estrone (121) (5.35 g, 2.0 mmol) in DCM / MeOH (50% / 50%, 80 ml) 

was added NaBH4 (37.83 g, 1.0 mmol). The reaction mixture was stirred at RT overnight. 

The solvent was evaporated, water was added (100 ml), and pH was adjusted to 6-7 with 1 

M HCl. The solid was filtered off, washed with H2O, and dried at 40oC overnight. This 

gave the product 276 as a white solid (5.30 g, 98%). 

1H NMR (400 MHz, CDCl3) δ; 0.78 (3H, s, 18-CH3), 1.15-1.22 (2H, m), 1.27-1.50 (6H, 

m),1.66-1.75 (1H, m), 1.83-1.90 (1H, m), 1.92-1.97 (1H, m), 2.08-2.16 (1H, m), 2.16-2.20 

(1H, m), 2.27-2.33 (1H, m), 2.80-2.85 (2H, m), 3.73 (1H, t, 17-CH, J = 8.4 Hz), 6.56 (1H, 

s, 4-CH), 6.62 (1H, d, 1-CH, J = 8.4 Hz), 7.15 (1H, d, 2-CH, J = 8.0 Hz); 13C NMR (100 

MHz, CDCl3) δ; 11.0 (18-C), 23.1, 26.3, 27.1, 29.6, 30.6, 36.7, 38.8, 43.2, 43.9, 50.0, 81.9 

(17-C), 112.6. (2-C), 115.2 (4-C), 126.5 (1-C), 132.7 (10-C), 138.3 (5-C), 153.2 (3-C); IR 

(neat) 2915, 1452, 1232, 1054 cm-1; GC-MS m/z (relative intensity, %); 273 ([M+1]+˙, 19), 

272 ([M]+˙, 100), 213 (18), 172 (13), 160 (13), 146 (13).  

Spectra and physical data matched that previously published.17  
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6-Fluoro-3dihydroxyandrost-4-ene (110) 

 

To a solution of 6/-fluoro-testosterone (84) (1.00 g, 0.3 mmol) in DCM / MeOH (50 / 

50% 12 ml) in 0oC was added NaBH4 (0.30 g, 0.8 mmol). The reaction mixture was stirred 

at RT in open flask overnight. The solvent was evaporated and water was added (10 ml) 

and pH was adjusted to 6-7 with 1 M HCl. The solid was filtered off washed with H2O, and 

dried at 40oC overnight. To give the product 110 as a white solid (0.70 g, 71%). 

1H NMR (400 MHz, CDCl3) δ; 0.74-0.76 (1H, m, 9-CH), 0.78 (3H, s, 18-CH3), 0.89-0.99 

(1H, m), 1.00-1.15 (3H, m), 1.18 (1H, s, 19-CH3), 1.25-1.37 (3H, m), 1.39-1.50 (3H, m), 

1.51-1.64 (3H, m), 1.66-1.70 (1H, m), 1.71-1.76 (1H, m), 1.80-1.91 (2H, m), 1.97-2.16 

(3H, m), 3.63 (1H, t, 17-CH, J = 8.4Hz), 4.09-4.23 (1H, m, 3-CH), 4.80 (0.45H, t, β, 

isomers, J = 2.8Hz), 4.87-4.91 (0.09H, m, α, isomers, 4-CH), 4.92 (0.46H, t, β, isomers, J 

= 2.8Hz, 4-CH), 5.00-5.04 (0.12H, m, α, isomers, 4-CH), 5.66 (1H, s, 6-CH); 13C NMR 

(100 MHz, CDCl3) δ; 11.0 (18-C), 20.4 (19-C), 23.2 (11–C), 29.1, 30.4 (8-C), 30.5 , 36.4, 

36.6, 37.4, 37.6, 42.9, 50.7 (14-C), 53.9. (9-C), 67.8, 81.7 (17-C), 93.7 (6-C), 95.3(6-

C), 131.9 (4-C), 142.7 (3-C); 19F NMR (376 MHz, CDCl3) δ; -161.41 (β, t, J = 56.4 Hz), -

184.19 (, d, J = 48.5 Hz). 
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6-Fluoroandrost-4-ene-3,17-dione 5 

 

To a solution of 6/-fluorotestosterone (84) (1.00 g, 3.3 mmol) in dry MeCN (10 ml) was 

added TPAP (0.06 g, 0.2 mmol), NMO (0.66g, 4.9 mmol) and Ao4 molecular sieves (~0.50 

g). The reaction mixture was stirred at RT overnight. The solvent was evaporated, water 

was added (10 ml) and pH was adjusted to 6-7 with 1 M HCl. The solids were filtered off, 

washed with H2O and dried at 40oC overnight. This gave the product 5 as an off white solid 

(0.56 g, 56%). 

1H NMR (600 MHz, CDCl3) δ; 0.90 (3H, s, 18-CH3), 0.99-1.03 (1H, m), 1.20 (3H, s, 19-

CH3), 1.23-1.45 (7H, m), 1.57-1.63 (2H, m), 1.66-1.71 (2H, m), 1.73-1.82 (3H, m), 1.86-

1.89 (2H, m), 1.96-2.04 (2H, m), 2.05-2.07 (2H, m), 2.08-2.15 (2H, m) 2.34-2.51 (5H, m), 

5.05-5.10 (0.63H, m, α, isomers), 5.17-5.22 (0.55H, m, α, isomers), 6.10 (1H, s, 4-CH);13C 

NMR (150 MHz, CDCl3) δ; 13.6 (18-C), 18.0 (19-C), 20.1 (11–C), 21.6 (15-C), 31.0 (12-

C), 33.0, 33.59, 35.5 (16-C), 36.2, 37.2, 39.0 (10-C), 47.4 (13-C), 50.4. (14-C), 53.5 (9-

C), 87.3 (6-C), 88.4 (6-C), 119.8 (4-C), 165.1 (5-C), 198.3 (3-C), 219.4 (17-C); 19F 

NMR (376 MHz, CDCl3) δ; -165,66 (β, t, J = 50.3 Hz), and -183.61 (, d, J = 54.8 Hz); IR 

(neat) 2938, 1733, 1662,1056 cm-1; GC-MS m/z (relative intensity, %); 304 ([M]+˙, 100), 

260 (31), 142 (33). 

Spectra and physical data matched that previously published.18  
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Androstenedio (106) 

 
To a solution of DHEA (89) (5.00 g, 1.7 mmol) in dry freshly distillated toluene (60 ml) 

was added cyclohexanone (42 ml, 39.9 mmol) under argon. The reaction mixture was 

heated at reflux employing Dean-Stark (10 ml of toluene was removed). Al(OiPr)3 (2.3 g, 

1.1 mmol) in toluene (80 ml) was added at reflux dropwise Al(OiPr)3 at the rate which 

corresponded to the rate of solvent distillation. The mixture was then refluxed for 2h. The 

reaction mixture was diluted with toluene (100 ml) and saturated solution of sodium 

potassium tartarete (100 ml). The layers were separated, the organic was layer dried over 

MgSO4, filtered and concentrated. This gave the crude product as an yellow oil. The crude 

product was treated with hexane (60 ml) and stirred at RT for 30 min. The solids were 

filtered off and dried at 40oC overnight. This gave the product as a white solid (4.61 g, 

93%). 

1H NMR (600 MHz, CDCl3) δ; 0.92 (3H, s, 18-CH3), 0.97-1.01 (1H, m), 1.08-1.15 (1H, 

m), 1.21 (3H, s, 19CH3), 1.25-1.32 (2H, m), 1.42-1.49 (2H, m), 1.53-1.60 (2H, m), 1.67-

1.76 (4H, m), 1.85-1.88 (1H, m), 1.95-2.00 (2H, m), 2.02-2.06 (1H, m), 2.07-2.14 (1H, m), 

2.31-2.37 (2H, m), 2.39-2.44 (1H, m), 2.44-2.50 (2H, m) 5.75 (1H, s, 4-CH); 13C NMR 

(150 MHz, CDCl3) δ; 13.6 (18-C), 17.3 (19-C), 20.2 (11–C), 21.6 (15-C), 30.7 (7-C), 31.2 

(1-C), 32.5 (12-C), 33.8 (2-C), 35.1 (8-C), 35.6 (16-C), 35.7, 38.5 (10-C), 47.4 (13-C), 

50.8 (14-C), 53.8 (9-C), 124.1 (4-C), 170.2 (5-C), 199.2 (3-C), 220.3 (17-C); IR (neat) 

2919, 1730, 1659 cm-1; GC-MS m/z (relative intensity, %); 286 ([M]+˙, 100), 244 (48), 148 

(44), 124 (66), 79 (36). 

Spectra and physical data matched that previously published.19  
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6/-Fluoro-nortestosterone (86) 

 

To a solution of nortestosterone (111) (2.42 g, 8.8 mmol) in dry DMF (36 ml) was added 

pyridine (4.26 ml, 52.9 mmol) and TFAA (1.64 ml, 9.3 mmol). The mixture was heated at 

40oC and stirred for 15 min. After that time AcCl (2.50 ml, 35.3 mmol) was added and the 

reaction was heated at 70oC. The mixture was stirred overnight. The reaction mixture was 

cooled down to -10oC, diluted with EtOAc (30 ml) and water (30 ml). The layers were 

separated, the aqueous layer was extracted with EtOAc (3 x 30 ml). The combined organic 

layers were washed with brine (30 ml) dried over MgSO4, filtered and concentrated. The 

crude product (117) was used without purification at the next stage. 

To the crude product in dry DMF (25 ml) was added Selectfluor® (4.06 g, 1.1 mmol). The 

reaction mixture was stirred at RT for 48 h. After that time 1H/19F NMR show complete 

consumption of the starting material. The reaction was diluted with 2M HCl (25 ml) and 

THF (25 ml). The reaction mixture was stirred at RT for 24 h. The reaction mixture was 

neutralized with saturated solution of NaHCO3 and concentrated under reduced pressure. 

The residue was dissolved in DCM (10 ml), washed with water (2×20 ml), dried over 

MgSO4, filtered and concentrated in vacuo. Purification by flash column chromatography 

on silica gel (ethyl acetate/DCM 1:5) gave the product 86 as an off white solid (1.42 g, 

55%). 

1H NMR (700 MHz, CDCl3) δ; 0.82 (3H, s, 18-CH3), 0.86-0.91 (1H, m), 0.99-1.03 (1H, m, 

14-CH), 1.09-1.13 (1H, m), 1.20-1.29 (2H, m), 1.30-1.37 (2H, m), 1.45-1.50 (2H, m, 16-
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CH), 1.58-1.67 (2H, m, 15-CH), 1.79-1.88 (3H, m), 2.06-2.11 (1H, m), 2.18-2.22 (1H, m), 

2.29-2.33 (1H, m), 2.35-2.37 (1H, m), 2.41-2.50 (2H, m), 3.66 (1H, t, 17-CH, J = 15.3 Hz), 

5.00 (0.54H, s, -isomers, 6-CH), 5.07 (0.51H, s, β-isomers, 6-CH), 4.93-4.96 (0.14H, m, 

-isomer, 6-CH), 5.03-5.04 (0.07H, s, -isomer, 6-CH), 5.94 (1H, s, 6-CH); 13C NMR (175 

MHz, CDCl3) δ; 11.2 (18-C), 23.1 (15-C), 26.0, 26.3, 30.5 (16–C), 26.4, 38.6, 43.6, 49.7 

(14-C), 81.7 (17-C), 91.6 (6-C), 92.6 (β6-C), 127.7 (4-C), 200.0 (3-C); 19F NMR (376 

MHz, CDCl3) δ; -171.10 (β, t, J = 49.5 Hz), -181,49 (α, d, J = 54.5 Hz); IR (neat) 3431, 

2948, 1666 cm-1; GC-MS m/z (relative intensity, %); 292 ([M]+˙, (49), 274 [M+- F] (22.3), 

272 (88), 254, 213 (100), 128 (57). 

Spectra and physical data matched that previously published.14   
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6-Fluoro-norandrostenediole (85) 

 

To a solution of 6/-fluoro-nortestosterone (86) (1.00 g, 0.3 mmol) in DCM / MeOH 

(50% / 50% 12 ml) in 0oC was added NaBH4 (0.30 g, 7.9 mmol). The reaction mixture was 

stirred at RT in open flask overnight. The solvent was evaporated, water (10 ml) was added 

(ml) and pH was adjusted to 6-7 with 1 M HCl. The solids were filtered off, washed with 

H2O and dried at 40oC overnight. This gave the product 85 as a white solid (0.71 g, 71%).1H 

NMR (400 MHz, CDCl3) δ; 0.56-0.68 (1H, m), 0.70-0.80 (3H, m, 18-CH3), 0.82-1.00 (2H, 

m), 1.02-1.21 (6H, m), 1.22-1.34 (4H, m),1.34-1.50 (6H, m), 1.53-1.64 (1H, m), 1.65-1.85 

(6H, m), 2.02-2.18 (7H, m), 3.60-3.69 (1H, m, 3- CH), 4.11-4.27 (1H, m, 17 - CH), 4.73-

4.80 (0.32H, m, α-isomers, 6-CH), 4.82-4.92 (0.83H, m, α/β-isomers, 6-CH), 4.96-4.99 

(0.45H, m, α-isomer, 6-CH), 5.75 (1H, s, 4-CH); 13C NMR (175 MHz, CDCl3); δ 12.2 (18-

C), 21.4, 21.2, 23.6, 26.6, 27.5, 27.8, 28.3, 31.2, 36.9, 40.9, 42.9, 43.8, 50.6, 83.1 (17-C), 

117.9 (4-C),124.0 (6-C), 134.9 (21-C), 149.0 (23-C), 169.5 (22-C), 171.5 (20-C); 19F NMR 

(376 MHz, CDCl3); δ= -167.12 (β, t, J = 48.8 Hz), -181.84 (α, d, J = 56.4 Hz);  
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-Diacetoxynorandrost-3,5-diene (112) 

 

To nortestosterone (111) (0.50 g, 1.8 mmol) were added acetic anhydride (0.45 ml, 

4.7 mmol), pyridine (0.33 ml, 1.8 mmol) and acetyl chloride (1.12 ml, 14.0 mmol) under 

argon. The reaction mixture was refluxed for 6 h and was then stirred overnight at RT. The 

mixture was concentrated under reduced pressure and the residue was triturated with 

ethanol. The solids were filtered off, dried at 40oC to give pure product. The mother liquors 

ware concentrated and purified by flash column chromatography on silica gel (hexane 95 / 

EtOAc 5%) This gave the product as off white solid (0.42 g, 64%). 

1H NMR (700 MHz, CDdCl3) δ; 0.82 (3H, s, 18-CH3), 0.91-0.97 (1H, m), 1.08-1.13 (1H, 

m), 1.16-1.28 (2H, m), 1.30-1.36 (1H, m), 1.42-147 (1H, m), 1.48-1.53 (2H, m), 1.61-1.72 

(2H, m), 1.75-1.79 (1H, m), 1.86-1.93 (2H, m), 2.04 (3H, s, 21-CH), 2.09-2.12 (1H, m), 

2.13 (3H, s, 23-CH), 2.14-2.20 (3H, m), 2.41 (1H, m), 4.62 (1H, t, 17-CH, J = 8.38 Hz), 

5.47 (1H, s, 6-CH), 5.76 (1H, s, 4-CH); 13C NMR (175 MHz, CDCl3) δ; 12.1 (18-C), 21.2 

(20-C), 21.3 (22-C), 23.4, 26.4, 27.4, 27.6, 28.1, 31.0, 36.7, 36.8, 40.7, 42.9, 43.8, 50.6 

(14-C), 83.1 (17-C), 117.9 (4-C), 124.0 (6-C), 134.9 (3-C), 149.0 (5-C), 169.5 (21-C), 

171.5 (19-C); IR (neat) 2984, 1757, 1684, 1267 cm-1; MS m/z (relative intensity, %); 358 

([M]+˙, 10), 316 (100),  

Spectra and physical data matched that previously published.20 
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17-Acetoxy- fluoronortestosterone (113) 

 

To a solution of steroid 112 (0.30 g, 8.4 mmol) in DMF (3 ml) was added Selectfluor® 

(0.32 g, 0.9 mmol) under argon at RT. The reaction mixture was stirred for 2 days at RT. 

After that time, water (10 ml) was added and the resulting precipitate was filtered off. The 

filter cake was dried at 40oC overnight to give the product 113 as a white solid (0.28 g, 

77%). 

1H NMR (400 MHz, CDCl3) δ; 0.87 (3H, s, 18-CH3), 1.05-1.13 (1H, m, 9-CH), 1.17-1.26 

(2H, m), 1.29-1.43 (3H, m), 1.49-1.59 (1H, m), 1.60-1.72 (2H, m), 1.77-1.88 (3H, m), 2.04 

(3H, 20-CH), 2.14-2.23 (1H, m), 2.26-2.37 (3H, m), 2.38-2.40 (1H, m), 2. 41-2.50 (1H, m), 

4.59-4.65 (1H, m, 17-CH), 4.89-4.95 (0.29H, m, α-isomers, 6-CH), 4.98 (0.50H, s, β-

isomers, 6-CH), 5.01-5.07 (0.28H, m, α-isomer, 6-CH), 5.11 (0.52H, s, β-isomers, 6-CH), 

5.87 (0.73H, s, β-isomer, 4-CH), 6.07 (0.32H, s, α-isomer, 4-CH); 13C NMR (175 MHz, 

CDCl3) δ; 12.2 (18-C), 20.4 (20-C), 21.3, 23.3, 27.4, 29.7, 34.3, 36.2, 36.7, 42.5, 50.2, 53.2 

(9-C), 82.3 (17-C), 87.5 (α6-C), 92.8 (β6-C), 119.6 (α4-C), 127.6 (β4-C), 158.6 (5-C), 

171.0 (19-C), 199.8 (3-C); 19F NMR (376 MHz, CDCl3) δ; -170.67 (β, t, J = 52.6 Hz), -

181.18 (α, d, J = 56.4 Hz); GC-MS m/z (relative intensity, %); 334 ([M]+˙, 26), 314 (32), 

292 (45), 277 (34), 274 (80), 256 (25), 207 (40), 147 (43), 128 (41), 105 (27), 91 (25), 77 

(28), 55 (23), 44 (45), 43 (100), 41 (34). 

Spectra and physical data matched that previously published.14  
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TBDMS-nortestosterone (114) 

 

To a solution of nortestosterone (111) (0.50 g, 0.2 mmol) in dry DMF (5 ml) was added 

TBDMSCl (0.66 g, 0.4 mmol) and imidazole (0.15 g, 0.2 mmol) under argon at 0oC. The 

reaction was stirred in 45-50oC overnight. TBDMS (0.66 g, 0.4 mmol) imidazole (0.15 g) 

were added the mixture was stirred at 45-50oC for 6h. The reaction mixture was diluted 

with DCM (30 ml) and water (20 ml). The organic layer was separated and washed with 

water (6 x 20 ml). The organic layer was dried over MgSO4 filtered and concentrated to 

give the crude product. The crude product was purified by flash column chromatography 

on silica (hexane 80% / DCM 20%). This gave the product 114 as an off white solid (0.34 

g, 47%). 

1H NMR (700 MHz, CDCl3) δ; 0.00 (6H, d, Si-CH3), 0.75 (3H, s, 18-CH3), 0.76-0.82 (1H, 

m), 0.86 (9H, s, Si-CH3), 0.89-0.96 (2H, m), 0.97-1.03 (2H, m), 1.20-1.34 (2H, m), 1.40-

1.47 (1H, m, 16-CH), 1.49-1.58 (2H, m), 1.74-1.78 (1H, m), 1.79-1.84 (2H, m), 1.85-1.90 

(1H, m, 16-CH), 2.04-2.09 (1H, m) 2.21-2.28 (3H, m, 10/6-CH), 2.36-2.40 (1H, m, 2-CH), 

2.42-2.47 (1H, m, 2-CH), 3.55 (1H, t, 17-CH, J = 8.3 Hz), 5.80 (1H, s, 4-CH); 13C NMR 

(175 MHz, CDCl3) δ; -4.8 (Si-CH3), -4.5 (Si-CH3), 11.3 (18–C), 18.0 (Si-(CH3)3), 23.3, 

25.6, 25.8, 26.2, 26.5, 30.7, 30.8, 35.5, 36.5, 36.8, 40.5, 42.6, 43.3, 49.3, 49.7, 81.5 (17-C), 

124.4 (4-C), 166.8 (5-C), 199.8 (3-C); MS m/z (relative intensity, %); 373 (1), 332 (28), 

331 (100), 255 (11), 75 (31); IR (cm-1); 2928, 1664, 830. 

Spectra and physical data matched that previously published.21 
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6.3 Experimental for biological experiments 

Synthesised fluorinated steroids were used in the biological experiments. Soya meal 

medium was send from our collaborator Dr Cormac Murphy from UCD Dublin. Medium 

LB (Lysogeny broth) was purchased from Sigma Aldrich. Streptomyces griseus 

ATCC13273 was obtained from LGC Standards UK, Escherichia coli MG1655, Bacillus 

subtilis and Bacillus megaterium 14581 bacteria were available in house. 

General culture condition 

S. griseus was cultured in 250-ml Erlenmeyer flasks containing 50 ml soya bean meal 

media as described previously (Murphy 2010). Cultures were incubated with rotary 

agitation 200 rpm at 27oC for 6 days. After first 72 h, labelled steroids were added (3-5 

mg). At the end of the incubation period, cells were harvested by centrifugation, separated 

from supernatant and washed with water. The cells in water were disrupted by sonication 

(5 min in total, bursts of 1 s with 1-s interval) using an ice bath to prevent overheating. 

Supernatant and cells in water were extracted with ethyl acetate.  

Control experiments were conducted in which the microorganism was incubated in the 

absence of fluorinated-steroids compound and the compounds were incubated in the 

absence of microorganism. 

Media 

The following media were used:  

 LB (Lysogeny broth) medium: 10 g tryptone, 5 g yeast extract, 10 g NaCl 

 NB (Nutrient broth) medium: 10 g, peptone, 10 g beef extract, 5 g NaCl 

 868 medium22: 10 g pepton, 10 g yeast extract, 20 g glucose. 

 Soya bean meal (5 g/L), Glycerol (20 g/L), Yeast extract (5 g/L), K2HPO4 (5g/L).  

Final pH for all media were adjusted to 7. 
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