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Limited fossil fuel resources and climate impacts due to carbon dioxide emissions have

made it critical that we use renewable, carbon-neutral fuels. Biomass, in the form of crop

waste or the inedible portion of plants, has the potential to be a renewable and economical

source of energy. Recent developments in the conversion of lignocellulosic biomass have

sparked an interest in the production of biofuels and valuable platform chemicals, synthesizing

molecules such as alkylated furans, furanic ethers, and various lactones. Early studies indicate

that many of these potential furanic and lactonic fuels have similar properties to gasoline or

diesel, however, little is known about their pyrolytic and combustion behavior.

In order to establish a molecular picture of the first thermal products formed from the

pyrolysis and oxidation of furanic biofuels, a microtubular flow reactor was used to thermally

decompose furan, 2-methoxyfuran, and select lactones. Dilute samples of these molecules

were entrained in He or Ar and thermally cracked in a heated silicon carbide microreactor.

Products, including radicals and metastables formed at early pyrolysis times (50−200 µs),

were detected by 118.2 nm (10.487 eV) photoionization mass spectrometry (PIMS), tunable

synchrotron vacuum ultraviolet PIMS and Ar matrix infrared spectroscopy. As most initiation

rates need to be calculated because they are too difficult to measure, the experimental results

presented in this thesis demonstrate progress towards validating these calculations, aiding in

the development of accurate initiation chemistry for kinetic mechanisms.

The published mechanism for pyrolysis of furan (C4H4O), the parent compound of

the more complicated furans described above, involves decomposition via a pair of carbenes.

The product branching ratio of this reaction was measured over a range of temperatures

and compared to predictions of three published furan kinetic mechanisms. A higher-energy
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radical channel that produces propargyl radical (HCCCH2) and H-atom was also detected

and quantified.

The unimolecular and low-pressure bimolecular decomposition mechanisms of the

simplest furanic ether, 2-methoxyfuran, were also studied. Recent electronic structure

calculations indicate this substituted furan has an unusually weak O−CH3 bond, which

results in bond scission and the production of CH3 and 2-furanyloxy radicals. The final

products detected from the ring opening of 2-furanyloxy radical include 2 CO, HCCH and H.

Secondary products resulting from H or CH3 addition to the parent and radical reactions with

2-furanyloxy were also detected and include CH2=CH-CHO, CH3-CH=CH-CHO, CH3-CO-

CH=CH2 and furanones. In addition to detection and quantification of the primary pyrolysis

products, this work also includes the first experimental characterization of 2-furanyloxy radical

by the assignment of several vibrational bands in an Ar matrix and a low-resolution estimate

of the ionization threshold of this allylic lactone. Finally, the pyrolysis products of the

lactones 2(5H)-furanone, 2(3H)-furanone and α-angelica lactone (5-methyl-2(3H)-furanone)

were identified by 118.2 nm PIMS and Ar matrix IR spectroscopy as these species were also

shown to be relevant to the decomposition of 2-methoxyfuran.

Furans and lactones are among a variety of molecules derived from non-edible biomass

that offer a renewable path to biofuels. Since the pyrolytic behavior of these oxygenated

fuels are not well-known this work contributes to the field by identifying the first thermal

products, helping to elucidate possible chemical mechanisms for emission formation from

these biofuels.
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Chapter 1

Introduction

1.1 The Importance of Renewable Fuels

Meeting our society’s increased demands for transportation accounts for a large portion

of world energy consumption. According to the Energy Information Agency, the U.S. alone

consumed just over 6.7 billion barrels of petroleum in 2012, accounting for about 21% of

world consumption [134]. High energy-density batteries or hydrogen fuel cells may still be

the way of the future for transportation, but hydrocarbon-based fuels will remain important

in the short term. However, limited fossil resources and climate impacts due to carbon

dioxide emissions have made it critical that we find ways to produce and use renewable,

carbon-neutral fuels.

Biomass is abundant and has the potential to be a renewable source of energy, but is

primarily in the form of non-volatile carbohydrates and thus conversion to remove excess

oxygen is necessary. The first generation of biofuels converted sugars and starch to ethanol;

however, ethanol as a stand-alone transportation fuel is not ideal because its energy density is

only 70% that of gasoline [109] and with blends greater than 10−15% it is corrosive in most

standard combustion engines. In addition, due to its polar molecular structure ethanol is

hygroscopic and forms an azeotrope with water, thus requiring an energy intensive distillation

process to remove dissolved water. Finally, fuels derived from sugar and starch are disruptive

to the food chain and are not sustainable with an ever-growing world population. Recent

developments in the conversion of lignocellulosic biomass have sparked a renewed interest in
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biofuels, with the goal to produce valuable fuels derived from the inedible portion of plants,

such as less valuable crop waste or dedicated crops not part of the food system [130].

1.2 Composition of Biomass

In order to utilize the energy stored in the carbon-hydrogen bonds of biomass it is

important to understand the chemical structure of the plant itself. Biomass primarily consists

of three biopolymers: cellulose and hemicellulose, both polysaccharides, and lignin.

Cellulose is the most abundant organic compound on the planet [100], making its use

very desirable. This biopolymer is formed entirely of glucose monomers, linked together by

β-1,4 glycosidic linkages as shown in Fig. 1.1. The individual strands of cellulose arrange

themselves into bundles, with a high-degree of hydrogen bonding between the individual

strands [44], providing structural support to the plant cell walls and creating a rigid structure

that is difficult to depolymerize.

Figure 1.1: Cellulose is a long (10,000+ monomer units), linear biopolymer of glucose with a
high-degree of hydrogen bonding between the linear strands.
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Hemicellulose is also a polysaccharide, accounting for an average of 20−50% of the plant

mass [21]. In contrast to the linear, homogeneous nature of cellulose, hemicellulose contains

long, heterogeneous branched chains of both five-carbon sugars, such as xylose [74], and

six-carbon sugars. Strands of hemicellulose are interwoven into the cell wall, forming a “hairy

coat” around the cellulose bundles [44], adding flexibility while simultaneously increasing the

strength of the cell wall. The third major component of lignocellulosic material is lignin, a

complex biopolymer of phenolic ethers that forms a protective, rigid layer within the cell wall

creating a resistance to enzymatic attack.

Together these three biopolymers are referred to as lignocellulosic biomass and include

crop waste materials such corn stover and sawdust or specifically dedicated crops such as

switchgrass [21]. Converting lignocellulosic material to high-valued end-products allows

dedicated non-food crops to be cultivated on marginal land and can also enable the use of

local agricultural resources. However, to utilize a variety of feedstocks also requires that the

conversion methods are flexible, because every plant species has a different composition of

these three biopolymers.

1.3 Conversion of Lignocellulosic Biomass

In recent years there have been numerous studies documenting the challenges of

converting these low-value waste materials to potential valuable fuels and platform chemi-

cals [44, 52, 70, 86]. Three common techniques for converting lignocellulosic biomass to useful

end-products include thermochemical, biochemical and non-enzymatic chemical conversion.

1.3.1 Thermochemical and Biochemical Conversion

Two common methods for upgrading lignocellulosic biomass to fuels or platform chemi-

cals are thermochemical and biochemical processing. Thermochemical processing involves

gasification, pyrolysis or combustion of the whole feedstock. In order to make liquid fuels the

raw material is mechanically processed and is introduced into a reactor of varying oxygen
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concentration where it undergoes pyrolysis (no oxygen) or gasification (some oxygen) to make

intermediates which can then be reformed into desirable end-products. If implemented on a

large scale, thermochemical processing has the potential to be one of the most time-efficient

conversion processes [88], however it requires large capital and transportation costs to handle

the quantities of feedstock needed for operations.

Another technique for converting lignocellulosic biomass to valuable fuels is biochemical

processing, which converts the feedstock directly into sugars (saccharification) followed by

either fermentation to make alcohols (ethanol, butanol) or chemical conversion schemes with

catalysts to make a number of potential fuel molecules. Biochemical conversion schemes are

considered suitable for operations on a smaller scale compared to thermochemical process-

ing [44], reducing transportation and capital costs; in addition such facilities can be designed

around regional feedstocks and local economies.

1.3.2 Non-Enzymatic Chemical Conversion

The first generation of biofuels in the United States were produced by biochemical

conversion techniques, first using acids to catalyze the hydrolysis of starches found in corn,

followed by fermentation of the released sugars to ethanol. This process, though extremely

well understood and optimized, is time-consuming (on the order of hours to days) and requires

an energy intensive distillation to separate trace amounts of water from the desired fuel.

Enzymatic pathways to convert lignocellulosic biomass to bio-ethanol are also available [103],

but the scalability and selectivity of the necessary enzymes is daunting. Ethanol as a stand-

alone transportation fuel is also not ideal, as discussed in Section 1.1. It is desirable that any

new fuels have physical properties that allow them to be efficiently distributed and stored

utilizing the existing infrastructure and also burned in existing engines; thus any potential

biofuel should ideally offer similar properties to gasoline or diesel.

There are hundreds of different molecules that can be synthesized from lignocellulosic

biomass and potentially used as fuels; two such classes of molecules are furanic [13, 48, 71]
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and lactonic [3, 55, 70] based fuels and chemicals, including but not limited to alkylated

furans, furanic ethers and lactones, examples of which are shown in Fig. 1.2.

Figure 1.2: Examples of potential furanic and lactonic biofuels: alkylated furans (2,5-
dimethylfuran), furanic ethers (ethyl furfuryl ether), and lactones (γ-valerolactone)

In the past several years these potentially useful molecules have been efficiently synthe-

sized from biomass-derived carbohydrates such as fructose [106]. More recently pathways to

non-enzymatically convert untreated lignocellulosic material has been demonstrated [12, 13].

As an example, the work of Binder and Raines [13] have demonstrated a process that con-

verts the cellulose in untreated lignocellulosic biomass to 2,5-dimethylfuran (DMF) with 9%

efficiency (based on an estimate of the cellulose content of the starting material) as shown in

Fig. 1.3. They use ionic liquids to assist in the fast initial breakdown, or “decrystalization” of

the biomass [14], eliminating the use of other time-consuming pretreatment processes. The

ionic liquids also act as solvents in mild (< 250◦C), yet fast hydrolysis of the glycosidic bonds

in the polymers of cellulose and hemicellulose [115] to obtain the desirable sugar precursors.

Catalysts then convert these sugars to the platform chemical 5-hydroxymethylfurfural (HMF),

a hexose (six-carbon) dehydration product that is a gateway molecule to other useful indus-

trial chemicals and potential fuels. Hydrogenolysis of HMF over a Cu catalyst removes two

more oxygen atoms from the ring, yielding DMF. In contrast to the fermentation of sugars

to ethanol, where for every molecule of glucose (6 carbon atoms) only two-thirds of those

carbon atoms are actually converted into potential useful energy (C6H12O6 → 2 CH3CH2OH

+ 2 CO2) and the remainder lost to CO2, in the production of DMF all of the carbon atoms

in the original starting material are retained.

Analogous to the conversion of cellulose to HMF, is the conversion of the pentoses in
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Figure 1.3: A demonstrated non-enzymatic chemical conversion scheme of untreated lignocel-
lulosic biomass to 2,5-dimethylfuran, a potential biofuel (adapted from [13])

hemicellulose to furfural. Similar to HMF, furfural is also considered a platform chemical

because it is an important intermediate for synthesizing other useful chemicals and fuels [11].

Converting hemicellulose to furfural is not a new processes, as furfural has been a common

industrial chemical derived from lignocellulosic biomass for decades. It was first discovered at

the Quaker Oats Company [22] where they produced it by acid-hydrolysis and dehydration

of xylan, a polymer of xylose, found in the hemicellulose of the feedstock. The process to

achieve high yields of furfural from xylose and hemicellulose has been optimized in recent

recent years through use of solid-acid catalysts [37, 50, 151]. Additional processing of

furfural can yield 2-methylfuran through direct hydrogenation [151] or other furfural-based

oligomers can be synthesized to high-quality high-molecular weight diesel fuels [74]. The

biofuel platform to produce furanic ethers first hydrogenates furfural to furfuryl alcohol [71],
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followed by conversion to the ethers in the presence of solid acid catalysts and low molecular

weight alcohols (methanol or ethanol), as shown in Fig. 1.4. Conversion schemes to lactones

proceed through the platform chemical levulinic acid (CH3-CO-CH2CH2-COOH) instead of

furfural [42].
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Figure 1.4: A chemical conversion scheme of the xylose found in hemicellulose to furfural,
upgraded to potential furanic fuels such as ethyl furfuryl ether.

1.4 Beyond Bioethanol

It is likely the fuel of the future will not necessarily be a single molecular component, but

rather will include a blend of any number of molecules. Which blends can be produced quickly

and cost effectively has yet to be determined. There are numerous factors to consider when

attempting to create renewable and cost-competitive bio-based fuels, one such consideration

is the energy content of the fuel relative to its cost. As a first generation biofuel the lower

heating value (LHV) of ethanol is 70% that of gasoline (LHVEtOH = 21.3 MJ L−1, LHVgas

= 31.9 MJ L−1) [139], therefore more fuel volume is required per mile traveled. On the other

hand the energy content of some proposed substituted furans more closely match that of

gasoline (LHVDMF = 29.3 MJ L−1, LHVEFE ≈ 28.3 MJ L−1 [33]). These oxygenated fuels

also have low solubility in water, possess a high research octane number [26] and have a

similar laminar burning velocity to that of gasoline [147], all factors which are compatible

with existing infrastructure and engines.

On the production side, one must also consider the cost and CO2 intensity of producing

the fuel in addition to any potential environmental consequences associated with producing

or distributing the fuels. As an example, Lange et al. [71] discuss the footprint of upgrading
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furfural to several potential fuels, including furanic ethers. Their findings show that the CO2

intensity of producing ethyl furfuryl ether (EFE) from furfural is a factor of 2 to 4 lower than

that of other fuel upgrades under present consideration, in part due to the fact that fewer

hydrogenation steps with H2 are required. In order to be a truly renewable fuel and address

impacts of climate change, the CO2 emissions from soil to tailpipe must be neutral.

Finally, if these molecules are to be burned in our vehicle engines, it is important to

understand both the pyrolytic and combustion behavior of the potential fuels [66, 120]. The

combustion processes of these complex, oxygen-containing species is of current interest [147,

148] and only recently have some of them been subjected to engine studies [33, 139, 146].

To date there have been several experimental and theoretical gas-phase pyrolytic studies of

the alkylated furans, 2-methylfuran and 2,5-dimethylfuran, [78, 79, 118, 121] however, very

few studies have been performed on the furanic ethers or lactones shown in Figure 1.2. It

is important to have a complete understanding of the elementary reaction steps of these

potential fuels and to identify important reaction intermediates. Understanding these initial

processes can help elucidate possible chemical mechanisms for emission formation.

1.5 Experimental Motivations and Thesis Outline

In order to establish a complete molecular picture of the first thermal products formed

from the pyrolysis and oxidation of furanic and lactonic biofuels, a microtubular flow reactor

was used to thermally decompose furan, 2-methoxyfuran and the select lactones shown in

Fig. 1.5. The experimental methods allow the identification of the initiation reactions that

can produce radicals and other reactive intermediates. As most initiation rates need to be

calculated because they are too difficult to measure, the experimental results presented in

this thesis demonstrate progress towards validating these types of calculations, aiding in the

development of accurate initiation chemistry for reaction mechanisms.

Chapter 2 describes the microreactors used for these studies and the complementary

diagnostic techniques photoionization mass spectrometry and matrix isolation infrared spec-
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Figure 1.5: The furans and lactones pyrolyzed in a microreactor

troscopy. Chapter 3 describes the nature of the pyrolysis of furan, the first molecule in

Fig. 1.5 and the parent compound of the furanic fuels. In addition to spectroscopic detection

of the pyrolysis species, this study also includes quantification of the two primary product

channels and quantifies the radical product channel. Chapter 4 documents the pyrolysis of

the smallest furanic ether, 2-methoxyfuran, along with identification and quantification of an

allylic lactone, 2-furanyloxy radical. Chapter 5 delves more deeply into some of the lactones

that were also shown to be relevant to the decomposition of 2-methoxyfuran. Included for

reference in Appendix A is the calibration procedure for quantitative analysis of the chemical

reactions in the continuous flow microreactor, including mass discrimination factors and an

experimental determination of the chemical temperature in the reactor. Appendix B includes

a procedure for quantifying uncertainty in the experimental measurements and presents the

supplementary results for the furan measurement uncertainties. Finally, Appendix C is an

extra resource for the methoxyfuran and lactone experimental results, including assigned

vibrational frequencies and additional spectra.



Chapter 2

Experimental Methods

A molecular picture of the first thermal products formed from the pyrolysis of furanic

biofuels is investigated by thermally decomposing furan, 2-methoxyfuran, and select lactones

in a microtubular (µtubular) flow reactor, as described in Chapter 1.5. The microreactor is

an adapted version of Peter Chen’s hyperthermal nozzle [65], which was originally designed

as a source to produce radicals and other reactive intermediates [59, 105, 158]. In recent

years the Chen nozzle has been modified to study the thermal decomposition mechanisms of

molecules relevant to biomass pyrolysis [58, 111–113, 136–138] and those proposed as potential

biofuels [62]. The microreactor offers a short residence time (approximately 50-200 µs) coupled

with sensitive diagnostics. The short residence time eliminates most, if not all, bimolecular

chemistry, allowing for the identification of isolated unimolecular reaction schemes, and is

short enough to detect radicals and other reactive intermediates. Upon exiting the reactor

the molecules expand supersonically into a high-vacuum which rapidly cools the temperature

in the molecular beam, quenching further reactions. The products, including radicals and

metastables, are identified with two complementary diagnostic techniques: photoionization

time-of-flight mass spectrometry to determine the mass of the species and matrix isolation

infrared spectroscopy to determine the molecular structure. This chapter describes the

reactors, diagnostic techniques, and analytical procedures used to identify and quantify the

pyrolysis products.
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2.1 Microtubular Reactor

The microreactor is a unique type of flow reactor; if operated under dilute conditions it

can isolate unimolecular reaction schemes and allows one to examine thermal products formed

at the earliest time scales (approximately 100 µs). However, from a fluid dynamics and heat

transfer perspective, the experiments conducted in the µtubular reactor also come in three

distinct forms: pulsed flow in helium or argon and continuous flow in helium. The experiments

performed with a pulsed flow include fixed-frequency photoionization time-of-flight mass

spectrometry (PIMS) using He carrier gas and matrix isolation Fourier transform infrared

(FT-IR) spectroscopy with Ar carrier gas. Another set of PIMS experiments are performed

at Lawrence Berkeley National Laboratory’s Chemical Dynamics Beamline (9.0.2) at the

Advanced Light Source (ALS) with a reactor operated with a continuous flow of helium.

2.1.1 Pulsed Reactors

One version of the pulsed flow reactor assembly is shown in Fig. 2.1. The reactor

consists of a resistively heated silicon carbide (SiC) tube (2.5 to 3.8 cm in length, 1 mm i.d.,

2 mm o.d.). The reactor is heated using fitted carbon disks attached to molybdenum clips,

passing up to 5 A through the reactor to heat to 1600 K. The heated length is about half

to two-thirds the length of the reactor with the temperature of the outer wall monitored by

a tungsten/rhenium Type C thermocouple (Omega, wire pairs W/5% Re and W/26% Re,

diameter 0.005 in). Upstream of the reactor is a pulsed valve (Parker General Valve, series

9, 0.25 mm orifice). The valve is controlled with an Iota One pulsed valve controller (open

time of the valve is on the order of hundreds of µs [158]), set to operate at 10 Hz for pulsed

He and 20 Hz for pulsed Ar experiments. The temperature of the pulsed valve is monitored

with a Type-K thermocouple (Omega, chromel-alumel, 0.01 in diameter) and can also be

controlled (Love Controls, series 16A) with a flexible heater (0.75 in by 2 in, Minco). A 1 cm

i.d. alumina cylinder surrounds the SiC reactor to reduce radiative heat losses.
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Figure 2.1: Inner pyrolyzer assembly with pulsed valve

The reactant mixtures for the pulsed experiments range from 0.03%−0.1% in He or Ar

carrier gas. Liquid precursors with adequate vapor pressure to prepare gaseous mixtures are

degassed using a freeze-pump-thaw cycle and used without purification from the manufacturer,

unless otherwise indicated. The total backing pressure to the pulsed valve is about 1500 Torr

He for PIMS experiments and 800 Torr Ar for IR experiments. The pressure at the reactor

exit for both experiments is maintained at approximately 1−10 µTorr. Reactants with vapor

pressures less than about 1 Torr at 300 K are placed in a small quartz sample tube (1.5 mm

i.d., 15 mm long) and are gently heated to at most 60◦C with a sample probe placed directly

behind the pulsed valve in order to entrain the vapor in a stream of helium or argon before

entering the reactor. The reactant concentrations for these experiments are more uncertain

due to lack of accurate vapor pressure measurements for many of these molecular species.

The flow at the reactor exit chokes (reaches the local sonic velocity) and undergoes a

supersonic expansion. It is estimated that the free-jet expansion rapidly cools the molecules

in the beam to about 40 K (rotationally) [158] within a tube diameter, eliminating any
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additional reactions. The degree of vibrational cooling in the molecular beam is unknown at

this time and can affect interpretation of the photoionization experiments.

2.1.2 Continuous Flow Reactor

2.1.2.1 Experimental

The continuous flow microreactor, illustrated in Fig. 2.2, is a SiC tube (0.66 mm i.d,

2 mm o.d., 2.5 cm long), mounted to a standard stainless steel Swagelok fitting (1/8” to

3/8” reducing union) and secured with a graphite ferrule (Restek, 1/8” tube, inner diameter

drilled out to fit reactor).

Figure 2.2: Schematic of the continuous flow reactor for experiments performed at the
Advanced Light Source

Approximately 1.5 cm of the SiC is resistively heated and the temperature of the

outer wall of the SiC reactor is measured with a Type-C or Type-K thermocouple and

also monitored with an infrared thermometer (Omega iR2P temperature controller, range

600◦C−1600◦C). Dilute gaseous reactant mixtures are prepared in stainless steel cylinders

with concentrations between 0.0025%−0.15% reactant in helium (final tank pressure between
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2000−5000 Torr). Less volatile reactants are heated to at most 60◦C with a sample probe to

entrain the vapor in a stream of helium before entering the reactor. The mass flow rate is

held constant at 280 sccm He with a commercial mass flow controller (MKS P4B 0-200 sccm

N2). The pressure upstream of the reactor is monitored with a MKS Baratron capacitance

manometer and increases approximately linearly with the operating temperature. At room

temperature the upstream pressure is about 100 Torr and with a reactor temperature of 1600

K the upstream pressure is about 290 Torr; the pressure at the reactor exit is measured with

a Micro-Ion gauge (Granville-Phillips) and remains constant at about 10 µTorr.

2.1.2.2 Reactor Modeling

To understand the chemical reactions in these microreactors requires that the flow

field within the reactor be understood. However, since the reactor is very small (a few

centimeters in length and 0.6−1 mm in inner diameter) it is not possible to either insert

sampling probes or readily gain optical access, as would be the case for a larger scale reactor

or shock tube. While the reactor is a large aspect ratio straight tube of constant diameter,

the flow within it cannot be described as simple Poiseuille flow. The tube is resistively heated

to high temperatures using attached electrodes and through simulation [49] and experimental

observation it was shown that the portion of the tube that is outside the span of the electrodes

is at a lower temperature due to convective and radiative cooling. Therefore there is a strong

axial gradient in the wall temperature, usually starting at the inlet, and this complicates the

flow field. The heating also accelerates the flow, and if the mass flow rate is high enough the

local Mach number will increase rapidly and the flow will choke near the exit. It was also

found computationally [49] that because the chamber pressure downstream of the tube exit

is so low it is possible for the local Knudsen number within the tube to increase to the point

where the continuum Navier-Stokes equations no longer exactly apply. When this occurs,

one must account for “slip” both in momentum and thermal energy at the walls, as this

affects the radial profiles of velocity and temperature. Taking the above into account, it
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Figure 2.3: Simulated centerline pressure (left) and temperature (right) profiles for a 280
sccm continuous flow of helium along the length of a 2.5 cm reactor (0.66 mm i.d.) as a
function of wall temperature (Tw) [49]. The electrodes for resistive heating are placed at 1
cm and 2.4 cm.

was found that accounting for slip permits simulation of the flow using computational fluid

dynamics (CFD) such that the measured pressure boundary conditions and mass flow rate

can consistently be reconciled, lending considerable confidence that the simulations [49] are

accurate.

The CFD simulations predict that the pressure profile inside the reactor rapidly decreases

along the length of the reactor as shown in Fig. 2.3. The contributor to this decrease in

pressure is an accelerating flow, as shown in Fig. 2.4. The simulations also show that the

temperature of the gas along the centerline of the reactor is relatively constant between

the electrodes (placed at 1 cm and 2.4 cm along the reactor). Most recent reactive CFD

simulations [49] indicate that most of the interesting chemistry occurs between 0.5 to 2 cm of

the reactor length, where both the temperature and pressure are elevated. The reaction rates
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Figure 2.4: Simulated centerline velocity profile for a 280 sccm continuous flow of He along
the length of a 2.5 cm reactor (0.66 mm i.d.) at Tw = 1500 K [49]. The electrodes for resistive
heating are placed at 1 cm and 2.4 cm.

rapidly fall off when approaching the reactor exit (in the last 0.5 cm), due to the reduced

pressure.

Another important operating factor to consider is the residence time in the heated

portion of the reactor. The longer the residence time, the more possibilities there are for

radical-radical reactions and radical addition or abstraction reactions with the precursors

under investigation. These types of reactions greatly complicate the analysis of the desired

unimolecular processes. One way to assess the possibility of bimolecular reactions is based

on collisions. Considering the single particle collisional frequency, zii:

zii =
Ni

V
σ
√

2
(

8kT
πmi

)1/2
=

P

kT
σ
√

2
(

8kT
πmi

)1/2
(collisions s-1) (2.1)

with an intermediate temperature (T ) and pressure (P ) of 1200 K and 200 Torr assumed

(see Fig. 2.3), the collisional frequency in the reactor (zii) is on the order of 100 collisions
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µs-1 (assuming a collisional cross-section (σ) of 0.4 nm2 and a molecular weight (mi) of 40

amu, values between He and CO2; k is the Boltzmann constant with a value of 1.38(10-23) J

K-1). Incorporating a dilution of 0.01% (a partial pressure of 0.02 Torr) and a fixed residence

time of 100 µs, a rough estimate of the collisions between potentially reactive species is on

the order of 10 collisions. Reactions that occur at the gas kinetic rate could be influential at

these conditions, but most rates will be at least an order of magnitude lower and therefore

won’t be significant compared to the unimolecular reaction scheme of interest. Decreasing

the residence time in the reactor is not a viable way to avoid bimolecular reactions because it

is essentially a fixed experimental parameter due to limited pumping capabilities, so instead

this task is accomplished through dilution.

A discussion of the use of chemical thermometers coupled with CFD to simulate the

fluid dynamics in the continuous flow microreactor is also included in Appendix A. These

early experimental results, performed in a longer SiC reactor and at a reduced mass flow

rate of 25 sccm He, indicate that the external wall temperature measurements for these

experiments are about 150 K higher than an effective “chemical temperature” in the reactor.

However, more recent CFD simulations of 280 sccm He flow suggest that the temperature

difference between the wall and the internal gases may be closer to 25−50 K [49]. Ongoing

characterizations of the thermodynamic conditions within and outside the reactor using both

computational fluid dynamics (CFD) and spectroscopic techniques are underway.

At this time only the continuous flow reactor has been characterized by CFD. The

transient nature of the pulsed experiments, while excellent for gaining qualitative information

of the products, is very complicated to model.

2.2 Diagnostics

Molecules exiting the µtubular reactor are probed with two different diagnostic tech-

niques: photoionization time-of-flight mass spectrometry or matrix isolation FT-IR absorption

spectroscopy. In Boulder the masses of the thermal cracking products are identified by fixed-
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frequency vacuum ultraviolet photons of the 9th harmonic of an Nd:YAG laser. A second

set of experiments performed at the Advanced Light Source (ALS) in Berkeley, CA utilize

tunable VUV synchrotron radiation to identify products emerging from the microreactor.

2.2.1 Photoionization Time-of-Flight Mass Spectrometry (PIMS)

A schematic of the reactor combined with the photoionization mass spectrometer

in Boulder is shown in Fig. 2.5. This technique is considered “soft” ionization because it

ionizes a molecule close to its ionization threshold, reducing or even eliminating the severe

fragmentation of ions observed with electron impact ionization [4, 20].

Figure 2.5: Reflectron photoionization time-of-flight mass spectrometer in Boulder with fixed
frequency photons at 118.2 nm.

A Spectra Physics Quanta-Ray Pro 10 Hz pulsed neodymium-doped yttrium aluminum

garnet (Nd:YAG) laser (fundamental wavelength 1064 nm) is tripled twice to generate vacuum

ultraviolet (VUV) photons at 118.2 nm (10.487 eV), the 9th harmonic of the Nd:YAG. The

118.2 nm light is generated by first tripling the 1064 nm fundamental to 355 nm in a harmonic
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generator with KD*P (potassium dideuterium phosphate) crystals. The 355 nm light is then

focused into a xenon:argon gas cell with a fused silica lens, where a small fraction of the

incoming light is tripled again to 118.2 nm (estimated at 10 µJ per pulse at 10 Hz [158]).

The tripling cell is 30 cm long and has a total cell pressure of about 130 Torr (Xe:Ar ratio

1:10 [68, 69]). A schematic of the laser alignment and time-of-flight operations is shown in

Fig. 2.6.

Figure 2.6: Generation of 118.2 nm photons (10.487 eV) and ion flight path in the reflectron
time-of-flight mass spectrometer

Molecules in the molecular beam with ionization thresholds less than 10.487 eV are

ionized and separated for detection in a 100 cm Jordan (Jordan TOF Products, Inc.) reflectron

time-of-flight mass spectrometer. The ions are accelerated from the source region by a repeller

plate behind the packet of ionized molecules (VA1 = 1597 V) and then drawn through an

extraction grid (VA2 = 953 V). Ion optics (VXY = 38 V) guide the ion packet into a field-free

region of the flight tube where separation occurs based on the mass-to-charge ratio (m/z).
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The ions are reflected at the opposite end of the flight tube, reversing their direction of travel

(VR1 = 1058 V, VR2 = 1748 V). Assuming all ions created by the 118.2 nm light have a

charge of +1, the lighter molecules will travel faster than the heavier molecules and reach

the detector first. Ions are detected with a microchannel plate (MCP) detector (dual plate,

chevron-type, VD = -1850 to -1900 V), creating an avalanche of electrons. For every ion that

hits the detector approximately 106 electrons are ejected from the plates, thus amplifying the

signal [145]. The MCP signal for the fixed-frequency experiments in Boulder is reported as

an analog voltage.

The mass resolution in the spectrometer is limited by the temporal width of the ion

packet (which is determined by the pulse width of the ionization source) and the velocity

distribution of the ions, determined by where they were formed spatially with respect to the

extractor plates (VA1, VA2). The reflectron-type separation of the ions reduces the kinetic

energy distribution of an individual mass within the ion packet, thus improving the resolution

of the spectrometer. The mass resolution (m/∆m) in the Jordan reflectron in Boulder is

about 800 amu.

A second set of PIMS experiments use tunable synchrotron radiation at the Advanced

Light Source (ALS) to ionize the products emerging from the microreactor. A portion of

the flow exiting the reactor passes through a 2 mm skimmer approximately 1 cm from the

reactor exit and enters the ionization region, where the molecular beam is interrogated by

synchrotron radiation about 12 cm downstream. The Chemical Dynamics Beamline (9.0.2)

at the ALS produces tunable VUV radiation (7.3 eV−30 eV) at a rate of 500 MHz tuned by

a Czerny-Turner grating monochromator. The sampling rate of mass spectra is limited only

by the gating electronics on the spectrometer, set to 10−17 kHz, depending on the desired

mass sampling range. The optimum pulse sequence of the ion optics is determined daily,

with a typical voltage sequence of: VD = -4000 V, VA1 = 1200 V, VA2 = 1193 V, VXY =

71 V, focus = 0.4, pulser = 0.25 kW (4.7 mA), VR1 = 1057 V, VR2 = 2010 V. The ions

are detected by a microchannel plate and the signal recorded as ion counts. A similar 100
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cm Jordan reflectron time-of-flight spectrometer is used at the ALS and it also has a mass

resolution of about 800 amu.

Photoionization efficiency (PIE) curves for a given mass-to-charge ratio (m/z) are

obtained by plotting the summation of the ion signal versus the selected photon energy range,

normalized by the photon flux measured by a photodiode with a calibrated energy dependent

efficiency. These curves serve as an additional identification tool beyond the mass of the

molecular species.

2.2.2 Matrix Isolation Infrared Spectroscopy

As a complement to the PIMS, infrared spectroscopy in an argon matrix provides

structural information for the pyrolysis products, differentiating thermal products of identical

mass. The molecular beam formed at the reactor exit impinges on a cold window. The

products, now trapped in frozen argon, are detected by FT-IR spectroscopy, as shown in

Fig. 2.7.

Figure 2.7: Pyrolysis products entrained in Ar exit the µtubular reactor and become trapped
on a cryogenic window.

A 100 mm i.d. diffusion pump (Edwards Vacuum Systems), backed by a mechanical

pump (Edwards Vacuum Systems), produces the high-vacuum conditions (10-6 Torr) necessary

for matrix isolation spectroscopy. The flow reactor assembly is mounted to the vacuum shroud
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of a two-stage closed-cycle helium cryostat (APD Cryogenics, model DE-202, 60 Hz and 2.5

W cooling capacity at 20 K; compressor model HC-2D) which cools an infrared transparent

cesium iodide (CsI) window to 10 K. Figure 2.8 shows a detailed cross-sectional view of the

matrix assembly and the positions for deposition and collection of the FT-IR spectrum. The

CsI window is mounted in a metallic holder, which is screwed into the cold finger of the

He-cryostat expansion unit. Thermal contact between the finger and the window holder is

enhanced by a thin layer of indium. Molecules exiting the reactor are aimed at the cold, IR

transparent window (approximately 3 cm away), and a matrix is formed by the deposition

of many thin layers of the pulsed reactant gas mixture. A pair of CsI windows on opposing

sides of the cryostat shroud allow an infrared beam to pass for spectroscopic detection.

Figure 2.8: After deposition on the cold (10 K) window, the outer shroud is rotated 90◦ for
spectroscopic analysis of molecules frozen in Ar.

Gaseous reactant mixtures were prepared in a glass 1.2 L reservoir upstream of the

reactor in concentrations of 0.04−0.1% in approximately 800 Torr Ar. In order to achieve

resolved IR spectra typical deposition rates through a pulsed valve were 0.8 to 1 Torr min-1

from the reservoir (equivalent to 3−3.6 mmol hr-1), depositing between 3 to 6.5 mmol total
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onto the cold window. Considering the concentration of the reactants in Ar, this is equivalent

to about 1013 radicals per pulse [158]. The vibrational spectra are measured using a Nicolet

6700 infrared spectrometer equipped with a liquid N2 cooled mercury/cadmium/telluride

detector (MCT/A, 4,000−650 cm-1). The spectrometer is purged with purified dry air and

the spectra are collected with the OMNIC software package on a Windows operating system.

A background scan was taken approximately 1 to 2 hours prior to the sample scan; all spectra

averaged 500 scans at 0.25 cm-1 resolution.

2.3 Analysis

2.3.1 Measurement of Product Ratios via Photoionization

The composition of a gas mixture has the potential to be quantified by photoionization

spectroscopy. Ionization of a neutral target produces an ion signal which is proportional to

the target concentration in the area sampled by the photon source. Beer’s law can be applied

to photoionization by VUV radiation, where the radiation (in photons s-1) of frequency ν

traversing a gas sample of distance z varies as

I(ν) = I0(ν) exp(−nσ(ν)z) (2.2)

where n is the density of the target gas and σ(ν) is the ionization cross-section. Since the

VUV radiation is ionizing the gas, the resultant ion current j+ is proportional to the difference

between the incident I0(ν) and transmitted radiation I(ν):

j+ ∝ [I0(ν)− I(ν)] = I0(ν)[1− exp(−nσ(ν)z)] (2.3)

Finally, since it can be assumed that (−nσ(ν)z) is a small value, by a Taylor’s series

approximation the photoion current j+ is proportional to the product I0nσ(ν)z.

Converting this expression from a formulation of Beer’s law to photoionization, the

ion signal is a function of the number of molecules in the interaction region, the VUV

photon flux through the volume, and the photoionization cross-section. However, neither the
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absolute value of the volume nor the incident photon flux is known. The volume could be

estimated with some uncertainty; however, it can be gathered into an empirical constant

which is ultimately obtained by calibration or can factor out when taking ratios. The value

of the photon flux is a power measurement using a calibrated energy-dependent photodiode.

Therefore, to a first approximation the photoionization signal S+
i due to species i exiting the

microreactor can be written as:

S+
i = CniΦ(E)σi(E) (2.4)

where ni is the number density of a particular species in the interaction volume, Φ(E) the

photon flux at a given photon energy, and σi(E) is the molecule’s photoionization cross-section

at the given photon energy. Here the signal S+
i refers to the total ion counts summed over the

desired mass peak and normalized on the sampling time or number of scans. Expression (2.4)

ignores the fact that, because of differential diffusion, mass differences and other factors,

molecules of differing mass and collision cross-sections will be detected with different efficiency.

This effect is taken into account by defining a mass discrimination factor Di that is empirically

determined by calibration [29]. Incorporating the mass discrimination factor and evaluating

for the number density of the neutral target, one finds:

ni =
S+

i

CDiΦ(E)σi(E)
(2.5)

where the constant C contains all the geometry dependent factors that remain unchanged

with differing mass; this value could be obtained by absolute calibration.

However, while it will be difficult to use Eq. (2.5) to measure the absolute concentration

of a species, it should be straightforward to measure the ratio of two different species, i and j:

ni

nj
=
S+

i

S+
j

DjΦjσj

DiΦiσi
(2.6)

To measure the ratios via (2.6) requires knowledge of the photoionization cross-sections

σ(E), the measured photon flux Φ(E), and an estimate of the the mass discrimination factors
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Di. Under our operating conditions it was found using a calibrated gas mixture containing

known quantities of H2, Ar, Kr, and Xe in He that Di is roughly proportional to
√

mi/z. A

similar approach to estimating mass discrimination factors was reported earlier [28].



Chapter 3

Pyrolysis of Furan in a Microreactor

The furans described in the previous chapters are the first of several possible new propel-

lants proposed as second-generation biofuels, and the combustion and pyrolysis mechanisms

of these complex, oxygen-containing species are of current interest [119, 121, 147, 148]. The

goal of this thesis is to develop a complete molecular picture of the elementary decomposition

steps of these molecules and this chapter will focus on the pyrolysis of furan, the parent

compound of these substituted furans.

In earlier studies, the thermal decomposition of furan was studied in flow tubes [23, 47],

shock tubes [39, 77, 99] and by IR homogeneous pyrolysis [54]. These studies were conducted

over a wide range of pressure (0.001−15,000 Torr) and temperature (500−3000 K). The

consensus from these experiments was that the initial step in pyrolysis of furan is ring opening

to a diradical, `-C4H4O. Subsequent fragmentation of `-C4H4O led to the production of

alkynes and ketene as the important primary products: furan (+M) → `-C4H4O → [CO +

CH3C≡CH] or [HC≡CH + CH2=C=O]. Two independent computational studies [80, 116]

predicted that furan pyrolysis followed two separate paths to a pair of carbenes, collectively

representing the “`-C4H4O” species above. The α-carbene was computed to decompose to

HC≡CH + CH2=C=O while the β-carbene was predicted to isomerize to allenyl-aldehyde,

CH2=C=CH-CHO, which fragments to CH3C≡CH + CO or breaks apart to radicals, H +

CO + HCCCH2. Calculations indicate formation of the carbene intermediate has a lower

activation barrier than formation of a biradical [81, 116].
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We have recently utilized a pulsed SiC µtubular reactor [137] to study the decomposition

of furan. The pyrolysis experiments were carried out by passing a dilute mixture of furan

(roughly 0.1%) entrained in a stream of a buffer gas (either He or Ar) through a 2−3 cm

long and 1 mm in diameter pulsed SiC reactor. The wall temperature was in the range

1200−1700 K and the characteristic residence times in the reactor were estimated to be

100−200 µsec. Products formed at early pyrolysis times in the reactor were identified by

fixed frequency (118.2 nm or 10.487 eV) photoionization mass spectrometry (PIMS) as well as

matrix-isolated infrared spectroscopy. In addition to [CO, HC≡CH, CH3C≡CH, CH2=C=O],

clear evidence for the production of propargyl radical (HCCCH2) was found. Based on these

experiments [137], the predicted mechanism [81, 116] for the pyrolysis of furan was verified

and is outlined in Scheme 3.1.

Scheme 3.1: Furan pyrolysis mechanism

The pyrolysis of furan-d0 and furan-d4 was re-studied in the heated continuous flow

µtubular reactor described in Chapter 2.1.2. The goals of this study were to use tunable PIMS
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to confirm the furan pyrolysis mechanism in Scheme 3.1 and also to measure the ratios of the

different sets of products. Scheme 3.1 predicts that the observed furan pyrolysis products

result from a sequence of unimolecular fragmentations involving carbene intermediates:

Furan(+M) 
 [α− carbene]→ HC≡CH + CH2=C=O

Furan(+M) 
 [β − carbene]→ CH3C≡CH + CO (3.1)

Furan(+M) 
 [β − carbene]→ H + HCCCH2 + CO

Two goals of this work are to measure the branching ratio of the pyrolysis products in

Eq. 3.2 as a function of reactor temperature,

α− carbene
β − carbene =

[HCCH]

[CO]
=

[HCCH]

[CH3CCH] + [HCCCH2]
=

[CH2CO]

[CH3CCH] + [HCCCH2]
(3.2)

in addition to the temperature-dependence of the ratio of propargyl radicals to methylacety-

lene.

As described in Chapter 2.3.1 it will be difficult to measure the absolute concentration

of a species, however it should be straightforward to measure concentration ratios, specifically

α− carbene
β − carbene =

[HCCH]

[CO]
=
S+

26
S+

28

[
DCOΦCOσCO

DHCCHΦHCCHσHCCH

]
(3.3)

where the photon flux terms Φ(E) cancel if the same photon energy is used to measure both

species.

Similarly, the ratio of propargyl radicals to methylacetylene becomes:

HCCCH2
CH3CCH =

S+
39
S+

40

[
DCH3CCHΦCH3CCHσCH3CCH
DHCCCH2ΦHCCCH2σHCCCH2

]
(3.4)

with the same caveat regarding the ratio of photon fluxes. The ionization energies of carbon

monoxide [38], acetylene [73], propargyl radical [41], methylacetylene [152], ketene [96], and

furan [144] are known and to measure the ratios via (3.3) and (3.4) requires knowledge

of the photoionization cross-sections of these species [27, 29, 107, 110, 156]. The mass

discrimination factors Di must also be estimated by calibration. As described in Chapter 2.3.1
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and Appendix A.1, Di is proportional to the square root of the mass,
√

mi/z. A careful

measurement of the ratios (3.2) and (3.4) is an important first step to quantify the initial

pyrolysis steps of furan in the microreactor.

3.1 Experimental and Reactor Modeling

3.1.1 Experimental

Experiments were performed at Lawrence Berkeley National Laboratory’s Advanced

Light Source (ALS) using a continuous flow µtubular reactor and time-of-flight photoionization

mass spectrometry (PIMS) to identify the mass-to-charge ratio (m/z) of the molecular species

at the reactor exit. For the experiments presented in this chapter, the reactor is a silicon

carbide (SiC) tube (0.66 mm i.d., 2 mm o.d., 2.5 cm long), mounted to a standard stainless

steel Swagelok fitting (1/8 in to 3/8 in reducing union) and secured with a graphite ferrule

(Restek, 1/8 in tube, inner diameter drilled out to fit reactor securely). For all experiments

the mass flow rate was held constant at 280 sccm He with a commercial mass flow controller

(MKS P4B 0-200 sccm N2).

The pressure upstream of the reactor was measured with a capacitance manometer.

With a constant mass flow rate the upstream pressure increased as the SiC wall temperature

was increased due to larger frictional effects in the flow. Since the fluid is a gas, the increasing

temperature results in increased viscosity (for He, µ approximately proportional to T 0.7);

in addition, the density of the fluid is reduced as the temperature is increased, causing

the velocity of the fluid to increase, resulting in more shear stress at the boundary. At

room temperature the upstream pressure was about 100 Torr and with a measured SiC wall

temperature of 1600 K the pressure increased to about 300 Torr. Approximately 1.5 cm of

the SiC is resistively heated and the temperature of the outer wall is measured with a Type

C thermocouple and also monitored with an infrared thermometer (Omega iR2P temperature

controller, range 600-1600◦C).
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Reactant mixtures were prepared in stainless steel cylinders with concentrations between

0.0075% and 0.15% furan (furan-d0: Aldrich, ≥ 99%, furan-d4: Aldrich, ≥ 98 atom-% D) in

helium. For a 0.01% mixture, furan was degassed through a freeze-pump-thaw cycle, and 0.5

Torr furan vapor collected and diluted with helium to a final cylinder pressure of 5000 Torr.

The molecular beam exiting the reactor is interrogated by synchrotron radiation about

12 cm downstream from the skimmer. The ions were detected using a microchannel plate

and the signal recorded by ion counting. Most experiments reported here involved 100,000

mass spectra collected at each photon energy. Photoionization efficiency (PIE) curves for a

given mass were obtained by plotting the summation of the background corrected ion signal

in an appropriate mass range versus the selected photon energy, normalized by the photon

flux measured by a photodiode with a calibrated energy-dependent efficiency.

3.1.2 Reactor Modeling

As described in Chapter 2.1.2.2, in order to understand the chemical reactions in these

microreactors requires knowledge of the flow field within the reactor. However, since it is

not possible to either insert sampling probes or gain optical access, as would be the case

for a larger scale reactor or shock tube, the flow field within the reactor must be simulated

using computational fluid dynamics (CFD) [49]. Since the tube is resistively heated to

high temperatures using attached electrodes, there is also a strong axial gradient in the

wall temperature, starting at the inlet, complicating the flow field. The heating method

accelerates the flow, which results in decreasing pressure along the length of the tube. Both

of these effects are shown in the calculated centerline pressure and temperature profiles

along the length of the reactor in Fig. 2.3. Chemkin simulations [102] comparing the furan

mechanisms of Tian [126], Sendt [116] and Wei [143] were performed to validate the pyrolysis

results reported here. The µtubular reactor was simulated as a plug-flow reactor using the

gas temperatures and pressures shown in Fig. 2.3 [49].

The “Tian” mechanism refers to a comprehensive mechanism of furan oxidation that
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includes 206 species and 1368 elementary reactions. The secondary rate information for

most species with six-carbons or less was included in the Chemkin simulations reported here,

reducing the number of species to 127 and the number of reactions to 890. Larger species

were excluded from the mechanism because they were not observed experimentally. Estimates

of the pressure-dependence of furan dissociation [39] indicates that throughout most of the

microreactor a high-pressure rate limiting expression should be valid, and therefore to a first

approximation the high-pressure limiting rate constants of Tian et al. [126] have been used.

Table 3.1 summarizes the important initiation rate constants, where FA is the abbreviation

for the formyl allene intermediate of the β-carbene channel, CH2=C=CH-CHO.

Table 3.1: Summary of initiation rate constants in the Tian [126] and Sendt [116] furan
reaction mechanisms

Tian et al.: k = ATn exp(−Ea/RT )

Reaction A (s-1) n Ea (kJ mol-1)

1. Furan 
 FA 2.3 x 1012 0.414 296.6
2. FA 
 HCO + C3H3 7.9 x 1014 0.0 292.4
3. FA 
 CO + CH3CCH 6.8 x 1011 0.419 185.1
4. Furan 
 C2H2 + CH2CO 1.8 x 1014 0.534 362.3

Sendt et al.: k = A exp(−Ea/RT )

Reaction A (s-1) Ea (kJ mol-1)
5. Furan 
 FA(1) 5.9 x 1013 292.9
6. FA(1) 
 FA(2) 2.2 x 1012 23.6
7. FA(1) 
 HCO + C3H3 1.4 x 1015 289.1
8. FA(2) 
 HCO + C3H3 7.9 x 1014 292.5
9. FA(2) 
 CO + CH3CCH 1.7 x 1013 167.8
10. Furan 
 C2H2 + CH2CO 9.0 x 1014 344.3

The “Sendt” mechanism refers to the initiation rate constants in the Tian mechanism

replaced with the rate information reported in Sendt et al. [116]. All secondary reaction rates

and thermochemistry included in the model are those from the Tian mechanism. In contrast

to Tian, the Sendt mechanism includes two rotamers of formyl allene, FA(1) and FA(2); the

corresponding rate constants are presented in Table 3.1, reactions (5)−(10).
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In general, both reaction mechanisms include the same initiation paths; however, the

rate of conversion to the β-carbene in the Sendt mechanism is faster than in the Tian

mechanism in the temperature range of these experiments. A recent ignition delay study by

Wei et al. suggests a new rate for the conversion of furan to FA. This update is referred to as

the “Wei” mechanism and includes a doubling of the A-factor of reaction (1) in Table 3.1

3.2 Confirmation of Furan Pyrolysis Mechanism

The mechanism for furan pyrolysis in Scheme 3.1 resulted from a previous set of

experiments by Vasiliou et al. [137] with a SiC µtubular reactor operated with pulsed flow and

fixed frequency PIMS and IR detection. Figure. 3.1 includes mass spectra that result from the

thermal decomposition of furan in helium in a SiC reactor operated with continuous flow and

tunable VUV ionizing radiation. In order to minimize bimolecular reactions, characterized

here by the formation of methyl radical, shown in the left-panel of Fig. 3.1, a concentration

of 0.01% furan in He is used. At this dilution methyl radical and other species (m/z 50,

52, and 78) due to bimolecular reactions become negligible.1 Accordingly a Chemkin

simulation using the Tian furan mechanism [126] predicts negligible (< 0.001% of furan

decomposition) formation of C6H6 at all temperatures and only trace amounts of CH3 (<

0.01% of furan decomposition) as products formed by the exit of the reactor. Simulating the

reactor conditions and including the secondary chemistry in the Tian mechanism indicates

that all observed chemistry is unimolecular.

At 11.7 eV, the right-hand panel of Fig. 3.1 clearly demonstrates that pyrolysis of furan

diluted to 0.01% in He follows the predictions of Scheme 3.1. Pyrolysis of furan-d0 at 1600 K

produces HCCH+ (m/z 26), HCCCH+
2 (m/z 39), CH3CCH+ (m/z 40), CH2=C=O+ (m/z

42) and the parent species furan (m/z 68) is almost completely consumed.

The pyrolysis of furan as a function of reactor temperature recorded at 10.4 eV ionizing
1 One possible source of CH3 could be reaction of H-atoms, produced by Scheme 3.1, with methylacetylene

to give methyl radicals and allene: H + CH3CCH → [CH3CH=CH]∗ → CH3 + HCCH and [CH3C=CH2]∗
→ H + CH2=C=CH2
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Figure 3.1: Elimination of bimolecular chemistry as shown by the disappearance of m/z 15
(CH3), left panel. The PIMS at 11.7 eV (right-hand panel) shows primary products from
furan decomposition at 1600 K in a continuous flow of helium: HCCH+ (m/z 26), CH3CCH+

(m/z 40), CH2CO+ (m/z 42), in addition to propargyl radical, HCCCH2+ (m/z 39). The
PIMS for the dilution study at 11.0 eV sampled 5,000,000 mass spectra, compared to 100,000
for the PIMS at 11.7 eV.

radiation is shown in Fig. 3.2. With the reactor at 300 K, only signals for furan (m/z 68) and

the 13C isotope peak (m/z 69) are observed. As the reactor is heated between 1200 K and

1300 K, furan decomposition begins. Signals for CH3CCH (m/z 40) and CH2CO (m/z 42) are

identified by PIMS and corresponding PIE curves. Heating the reactor to 1500 K leads to the

production of propargyl radical at m/z 39. In addition, at 1500 K and above a small amount

of allene (CH2=C=CH2) is identified by the PIE curve at m/z 40; this molecule is likely

formed [126] by isomerization of CH3CCH and not produced by unimolecular dissociation of

furan [116].
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Figure 3.2: Product mass spectra at 10.4 eV as a function of SiC wall temperature. Pressure
of the gas mixture at the reactor inlet (Pi) was measured as a function of wall temperature
(Tw): (Tw = 1600 K, Pi = 288 Torr ); (Tw = 1500 K, Pi = 274 Torr); (Tw = 1400 K, Pi =
256 Torr); (Tw = 1300 K, Pi = 244 Torr); (Tw = 1200 K, Pi = 225 Torr); and (Tw = 300 K,
Pi = 101 Torr)

Figure 3.3 is a set of PIE curves at m/z 39 that unambiguously identifies propargyl

radical as a thermal cracking product of furan. When the reactor temperature is 1400 K no

signal at m/z 39 is observed. Upon heating to 1600 K, the known ionization threshold for

propargyl radical [41] is observed at 8.7 eV and the photoionization cross-section of propargyl

radical [110] matches the PIE(m/z 39) resulting from furan pyrolysis until about 10 eV. Above

this photon energy vibrationally hot CH3CCH+ and CH2=C=CH+
2 in the molecular beam

can dissociatively ionize to C3H+
3 , causing the signal at m/z 39 to increase. The increasing

signal could also in part be due to an improperly calibrated photodiode.
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Figure 3.3: Photoionization efficiency curves of furan/He mixtures at m/z 39 compared
with the measured photoionization cross-section. Curve at 1600 K grows in at 8.7 eV [41]
and exhibits similar sharp features to those observed by Savee et al. [110] indicative of
autoionization states in propargyl radical.

In addition to furan-d0, a 0.01% mixture in He of its isotopomer, furan-d4, was also

pyrolyzed. PIE curves and PIMS at 11.7 eV detects the expected species: DCCD+ (m/z

28), DCCCD+
2 (m/z 42), CD3CCD (m/z 44), and CD2=C=O+ (m/z 44). In addition, a

furan-d3 impurity (m/z 71) of approximately 4-5% is observed and produced ions at m/z

41 (propargyl-d2) and m/z 43 (methylacetylene-d3). When a cross-over experiment of a

0.01% 1:1 mixture of [furan-d0:furan-d4] is pyrolyzed, the primary products include: [HCCH+

(m/z 26), HCCCH+
2 (m/z 39), CH3CCH+ (m/z 40), and CH2=C=O+ (m/z 42)] as well

as [DCCD+ (m/z 28), DCCCD+
2 (m/z 42), CD3CCD+ (m/z 44), and CD2=C=O+ (m/z

44)]. As shown in Fig. 3.4, the observed signals at m/z 41 and 43 include the 13C isotope of
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Figure 3.4: Mass spectra of a furan-d0/furan-d4 cross-over experiment at 10.4 eV as a function
of reactor wall temperature.

CH3CCH and [CH2=C=O + DCCCD2], respectively. In addition propargyl-d2 (m/z 41) and

methylacetylene-d3 or ketene-d1 (m/z 43) are observed from the furan-d3 impurity in the fully

deuterated furan sample. Considering the expected signal from the 13C isotopes and from the

furan-d3 impurity, the observed signals at m/z 41 and 43 are within the limit of uncertainty,

suggesting that only unimolecular decomposition is observed at this concentration of furan.

Figures 3.1−3.4 confirm the predictions of Scheme 3.1. PIMS below 12 eV detects

HCCH (m/z 26), HCCCH2 (m/z 39), CH3CCH (m/z 40), CH2CO (m/z 42), and furan (m/z

68), but not H atoms [90] or carbon monoxide [38]. The pyrolysis of furan in a hot, continuous

flow SiC microreactor is in agreement with interpretations based on the earlier shock tube

measurements [39, 77] and the pulsed reactor findings [137]; moreover, the present results are
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consistent with the theoretical predictions [116, 126].

3.3 Measurement of the Ketene to Acetylene Ratio

The mechanism in Scheme 3.1 predicts that the ratio of ketene to acetylene will be

unity. Application of Eq. (2.6) to measure the ketene/acetylene ratio yields expression (3.5):

CH2CO
HCCH =

S+
42
S+

26

[ √
26 ΦHCCH σHCCH√

42 ΦCH2CO σCH2CO

]
(3.5)

When photoionization measurements of CH2CO+ and HCCH+are carried out at a common

energy, the photon flux Φ(E) terms cancels in Eq. (3.5).

Figure 3.5: The literature photoionization cross-sections used for analysis in this work; carbon
monoxide [107], acetylene [29], propargyl radical [110], methylacetylene [27], ketene [156],
and furan [156].

Figure 3.5 includes the measured photoionization cross sections for carbon monox-

ide [107], acetylene [29], propargyl radical [110], methylacetylene [27], ketene [156], and
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furan [156]. The cross sections for ketene and acetylene overlap in a small window, 11.4−11.7

eV. However, at these energies the parent furan dissociatively ionizes to produce CH2CO+

and other daughter ions,

Furan∗ + h̄ω11.7eV → (Furan∗)+ → CH2CO+ (3.6)

which greatly complicates the effort to estimate the ratio of acetylene to ketene produced by

the pyrolysis. Consequently, two different photon energies were chosen to make this estimate

over the entire temperature range: 10.4 or 10.5 eV for ketene, and 11.7 eV for acetylene. The

results of the calculations shown in Fig 3.6 indicate an approximate temperature independence;

however as a group they fall significantly below the expected ratio of unity. These calculations,

however, require knowledge of the photon fluxes Φ(10.4 eV), Φ(10.5 eV) and Φ(11.7 eV),

which are based on current measured with a photodiode and a manufacturer’s calibration.

We have found empirically that photon fluxes at energies above approximately 10−11 eV are

considerably underestimated by the diode measurement. In addition to the previously noted

qualitative difference between the propargyl PIE curve above 10 eV a similar discrepancy

was found for the PIE curve of room temperature furan. Whether this is a problem with

the photodiode calibration or an unknown instrumental issue, it seems logical to attribute

the “low” ketene to acetylene ratios determined above to this effect. This finding of “excess”

HC≡CH is consistent with the observed differences between PIEs measured in this work,

indicating that quantitative measurements of this sort must be done at the same, or very

similar, photon energies to be reliable.

Fortunately, the problems above can be circumvented at the highest temperature 1600

K, where the destruction of the furan precursor is nearly complete and the ketene ions

produced by dissociative ionization of furan are minimal. Using 11.6 or 11.7 eV to photoionize

both acetylene and ketene, the photon flux contributions in Eq. (3.5) cancel, and the results

obtained are shown in Fig. 3.6. With the common photon energy measurements the ratio is

effectively unity, as expected from the chemical mechanism in Scheme 3.1 and predicted by
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Figure 3.6: The ketene to acetylene ratio as measured from a 0.01% furan/He mixture by
PIMS at 11.6 eV and 11.7 eV is unity. The ratio as measured by CH2CO+ signal at lower
photon energies compared to HCCH+ is offset from unity but consistent over the temperature
range.

simulations. However, in the other measurements where different photon energies were used,

the errors due to the photon flux measurement are constant and presumably independent of

temperature, so that the corresponding data in Fig. 3.6 should deviate from the actual ratios

by a simple scaling factor.

The uncertainties for the ketene to acetylene measurement at common photon energies

in Fig. 3.6 are determined by propagating the uncertainty associated with each molecule’s

photoionization cross-section, the measured signal and the mass discrimination factor. The

uncertainty associated with the photoionization cross-section of ketene [156] at 11.6 and 11.7
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eV is estimated to be 0.8 Mb and 0.5 Mb, respectively, while the uncertainty for acetylene [29]

is about 1 Mb at these energies. Since only ratios are considered for this work and not absolute

number densities, the level of uncertainty with respect to the mass discrimination factor is

reduced for similar masses. A detailed table of uncertainties is included in Appendix B.

3.4 Measurement of the α-Carbene to β-Carbene Ratio

The temperature-dependent PIMS in Fig. 3.2 demonstrates that thermal decomposi-

tion of furan begins with the appearance of CH3C≡CH (m/z 40) from the β-carbene and

CH2=C=O (m/z 42) from the α-carbene and suggests that the branching ratio of products

resulting from these two channels changes as the reactor is heated. From Scheme 3.1 it is

predicted that the [α/β]T ratio can be measured in a variety of ways as indicated in Eq.

(3.2). Taking the ionization potentials and cross-sections (see Fig. 3.5) into account, the

following approaches have been used to estimate this ratio experimentally:

[CH2CO @ 10.4eV]

[CH3CCH @ 10.4eV] + [HCCCH2 @ 10.4eV]
(3.7)

[CH2CO @ 10.5eV]

[CH3CCH @ 10.5eV] + [HCCCH2 @ 10.5eV]
(3.8)

[HCCH @ 11.7eV]

[CH3CCH @ 10.4eV] + [HCCCH2 @ 10.4eV]
(3.9)

[HCCH @ 13.6eV]

[CO @ 14.0eV]
=
S+

26
S+

28

√
28√
26

[
Φ(14.0eV) σCO

Φ(13.6eV) σHCCH

]
(3.10)

however, only relationship (3.7) has been used in the construction of Fig. 3.7. Calculation of

the ratio based on Eq. (3.8) gives comparable results while the latter two estimates require

detailed considerations discussed below. Also included for comparison is the curve fit from

Fulle et al. [39] who measured the ratio of HCCH to CO in a shock tube, quantifying these

species using electron impact, time-of-flight mass spectrometry. Chemkin-calculated profiles

of the ratio of total ketene at the reactor exit to the sum of methylacetylene, propargyl and

allene using the furan mechanisms of Sendt [116], Tian [126] and Wei [143] are also included.

As shown in Fig. 3.7, the α-carbene to β-carbene ratio determined from Eq. (3.7)
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Figure 3.7: Ratio of products measured at 10.4 eV from the α-carbene (CH2CO+) relative
to the β-carbene (CH3CCH+ and HCCCH+

2 ) as a function of temperature. Also included
are results of a shock tube study by Fulle et al. [39], and Chemkin simulations using
the wall and centerline pressure/temperature conditions with three different furan kinetic
mechanisms [116, 126, 143].

exhibits a smooth behavior as a function of reciprocal temperature, increasing from about

10% at 1300 K to 20% at 1600 K. The results of the shock-tube study by Fulle et al. [39]

are qualitatively consistent with our experimental results; however they observe more flux

through the α-carbene, likely because the non-uniform temperature in the microreactor

results in temperatures below the measured wall temperature. For this reason, the Chemkin

simulations used the pressure/temperature profiles (Fig. 2.3) at three radial locations in

the reactor: centerline, along the wall and halfway between centerline and the wall [49].

As shown in Fig. 3.7, the temperature-dependence of the branching ratio as measured in
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this work is consistent with the predictions of Sendt et al. [116], and lower than results

with the Tian [126] and Wei [143] mechanisms. The upper limits on all three curves are

calculated based on conditions along the reactor wall, while the lower limit is determined

from centerline profiles. The origin of the discrepancy between experimental and theoretical

results could be twofold. One possibility is that the initiation chemistry in the Tian and Wei

mechanisms simply underestimates the rate of formation of formyl allene (CH2=C=CH-CHO)

from furan (or overestimates unimolecular formation of ketene and acetylene). A second

possibility could be related to the pressure dependence of their reaction rates. Based on

estimates of Fulle et al. [39], it is likely that the high-pressure limiting rate constants of Tian

are valid at the entrance of the tubular reactor where the pressure is between 200 and 300

Torr. But as shown in Fig. 2.3, the pressure rapidly decreases along the length of the reactor,

requiring rate constants valid in the fall-off region in order to make an accurate comparison

between our experimental results and the simulations. Unfortunately, no pressure-dependent

rate constants for the initiation reactions are provided in the Tian mechanism. Fulle et al.

employed a formulation of furan disappearance in the fall-off region; however, this expression

cannot be applied to the branching ratio of the two channels.

Table 3.2 compares the extent of furan consumption as a function of temperature

to that of predictions. The fraction of furan consumed was determined by measurement

of the photoionization signal at three different temperatures compared to the observed

signal in a room temperature sample of the same mixture. At the upper wall temperature

about 90% of the furan decomposed to products; the corresponding models predict between

35−70% conversion over the temperature extremes, demonstrating the sensitivity of this

decomposition to temperature. An effort to create a fully reactive CFD model including the

radial temperature and pressure profiles is in progress [49].

The ratios that require measurements at different photon energies are those in Eq. (3.9)

and (3.10). In order to determine ratio (3.9) an expedient workaround is to use the same

photon energies used to estimate the HCCH to CH2CO ratio (10.4 or 10.5 eV vs. 11.7 eV) in
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Table 3.2: Extent of furan conversion (%) as a function of wall temperature with a mixture
of 0.01% furan-d4/He monitored by 10.4 eV VUV PIMS compared to predictions from
Sendt [116], Tian [126] and Wei [143] mechanisms

%-Conversion
T (K) Exp. Sendt∗ Tian∗ Wei∗

1400 1.3 ± 0.8 1.7−1.9 1.3−1.5 2.0−2.4
1500 49 ± 3 10−14 8.7−12 13−18
1600 92 ± 6 34−50 35−53 46−66
∗Limits of %-conversion as calculated using (T , P ) at
centerline (lower limit) and along-wall (upper limit)

Section 3.3. However, this introduces the same systematic error into the determination of

ratio (3.9) as in the determination in Eq. (3.5). Consequently, the HCCH to (HCCCH2 +

CH3CCH) ratio in Table 3.3 has been corrected for the average observed shift in the ratio, as

shown in Fig. 3.6. When this empirical correction is applied, the curves are similar to those

taken at the same photon energy.

Table 3.3: Ratio of the α-carbene relative to the β-carbene (expressed as %) as a function of
reactor wall temperature using the ratios in Eqs. (3.7) through (3.10)

Wall Temperature (K)
Eq. eV 1300 1400 1500 1600
3.7 10.4 10.9 ± 3.7 12.9 ± 4.4 16.5 ± 5.0 20.7 ± 5.4
3.8 10.5 11.6 ± 1.9 14.0 ± 1.4 17.3 ± 3.0 20.6 ± 3.6
3.9 10.4, 11.7 11.2 ± 1.7 13.5 ± 1.2 14.7 ± 2.5 21.6 ± 3.7
3.10∗ 13.6, 14.0 4.5 11.4 15.6 17.0
∗less an estimate of the temperature-dependent background level of CO

Determination based on Eq. (3.10) uses a smaller difference in photon energies than

that in Eq. (3.9), however it requires other considerations. Specifically, we know there are

interfering signals at m/z 28 due to N+
2 that results from photoionization of background

air in the chamber by residual, higher VUV harmonics that are not filtered out from the

synchrotron. In addition, at these high temperatures, CO is produced from wall reactions of

the SiC µtubular reactor by oxygen impurities, and production of CO by other mechanisms

(dissociative photoionization) at such high photon energies is another possibility. Taken
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together, it is then perhaps not surprising that the HCCH to CO ratio estimated from

Eq. (3.10) and documented in Table 3.3 does not display a smooth downward trend as a

function of reciprocal temperature. Nevertheless, the ratio determined here is low, as might

be expected because of both the extra sources of CO mentioned above and the higher photon

energy used to measure it, but not entirely incongruent with the preferred determinations by

Eqs. (3.7) and (3.8).

3.5 Measurement of the Propargyl Radical to Methylacetylene Ratio

Scheme 3.1 predicts that both CH3CCH and HCCCH2 result from the favored β-carbene

fragmentation mechanism. A radical channel to form HCCCH2, CO, and H is observed at the

higher temperatures in Fig. 3.2. The propargyl radical to methylacetylene ratio is measured

at a common photon energy, simplifying Eq. (3.4) simplifies to:

HCCCH2
CH3CCH =

S+
39
S+

40

[√
40 σCH3CCH√
39 σHCCCH2

]
(3.11)

Figure 3.5 indicates that the overlap of σHCCCH2(E) and σCH3CCH(E) is the small

energy window of 10.4−10.5 eV. Unfortunately in this energy range, m/z 39 is observed in

the photoionization of rotationally/vibrationally excited methylacetylene, which is most likely

due to dissociative photoionization of (CH3CCH*)+. An adjustment for methylacetylene

dissociative ionization was approximated by heating CH3CCH over a temperature range of

1300 K−1600 K and measuring the m/z 39 ion signal relative to that of m/z 40. It is estimated

that 6% of observed CH3CCH+ will dissociatively ionize to give m/z 39 at 1600 K and 3% at

1500 K. It should also be considered in the evaluation of Eq. (3.11) that the photoionization

cross-sections of both molecules in their ground state, σ(CH3CCH) and σ(HCCCH2), may be

quite different than those for the rotationally/vibrationally excited species, σ(CH3CCH*) or

σ(HCCCH2*). For example, ionization of CH3C≡CH is a decidedly non-vertical process [10]

and the dependence of the cross-section on photon energy will consequently be sensitive to

vibrational excitation.
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Figure 3.8: PIMS of a 0.01% mixture of furan/He were used to measure the ratio of propargyl
to methylacetylene as a function of reactor temperature; here these values are compared to
predictions of propargyl formation from the Sendt [116] and Tian [126] kinetic mechanisms.

Figure 3.8 includes the propargyl to methylacetylene ratio over the range of 1300 K−1600

K. The ratio was computed from Eq. (3.11) using the measured photoionization cross-sections

for propargyl radical [110] and methylacetylene [27] and adjusted for the observations of

dissociative ionization discussed above. At the lower temperatures, 1300 K−1400 K, there are

no propargyl radicals present and only CH3CCH is detected from the β-carbene channel. As

the reactor is heated, the fraction of propargyl radical to methylacetylene rises from roughly

2% (1500 K) to about 10% (1600 K).

The furan mechanisms of Sendt [116] and Tian [126] predict much less HCCCH2 radical

than what is observed experimentally. A rate of production analysis shows that the Sendt



46

mechanism predicts that nearly all HCCCH2 formed is the result of CH3C≡CH → H +

HCCCH2. The Tian mechanism on the other hand predicts that most propargyl is formed

from unimolecular dissociation of formyl allene.

The uncertainty limits included in Fig. 3.8 have been determined by propagating the

uncertainty associated with each of the components required for calculating the ratios consid-

ering the photoionization cross-sections σi(E) and the measured ion signal S+i . As indicated

above, there is a large uncertainty associated with dissociative ionization of methylacetylene

to m/z 39, CH3C≡CH + h̄ω0 → (CH3CCH*)+ → H + HCCCH+
2 . In order to make an

accurate estimate of the radical channel to the closed shell channel the signal of m/z 39

should be analyzed at a lower energy, around 9 eV, and methylacetylene at 10.4 eV. However

when analyzing over this large energy range we encounter the problems associated with

uncertainty in the photocurrent measured by the photodiode. The ratio of HCCCH2 at 9.1

eV to CH3CCH at 10.4 eV could be as low as 4% at 1600 K and this uncertainty is indicated

in the lower limits of the error bars in Fig. 3.8.

3.6 Conclusions on Furan Pyrolysis

Figures 3.1−3.3 effectively summarize the results of furan pyrolysis experiments per-

formed in a continuous flow SiC µtubular reactor. These findings confirm the earlier re-

sults [137] for furan pyrolysis in a pulsed SiC reactor that used both He and Ar buffer gases.

The initial steps in the pyrolysis are shown in Scheme 3.1, which provides a general chemical

mechanism for this important process.

The branching ratio of the α-carbene relative to that of the β-carbene in Scheme 3.1

is an important measurement for proper characterization of this reaction. At the lowest

temperature studied (1200 K), there are clearly products from both channels and roughly 80%

of the reaction goes through the β-carbene intermediate. A weak temperature dependence

is observed, which is qualitatively consistent with that found by a shock-tube study fifteen

years ago [39] under slightly different reaction conditions. While the shock-tube findings of
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Fulle et al. predict that more reactive flux goes through the α-carbene, both studies agree

that the β-carbene channel is favored.

Figure 3.8 shows that as reaction proceeds through the β-carbene channel, the formyl

allene intermediate, CH2=C=CH-CHO, mostly rearranges to CH3CCH + CO and very little

decomposes to H + CO + HCCCH2. Indeed, below 1500 K, there are no HCCCH2 radicals

detected. As the reactor temperature approaches 1600 K at most 10% of the products

resulting from CH2=C=CH-CHO decomposition are H + CO + HCCCH2. The remaining

90% of products from formyl allene are carbon monoxide and methylacetylene.

This study shows the degree to which the µtubular reactor can by used to study

high-temperature pyrolysis. In addition to the valuable qualitative speciation information

provided in these studies, the present work has shown that quantitative information such

as branching ratios can be measured with synchrotron radiation PIMS. Although practical

problems with dissociative photoionization and cross-section dependence on temperature

remain with such analysis, a major issue at present is the ability to use the CFD results of

the thermodynamic conditions within the reactor coupled with the fluid dynamics of the

supersonic expansion. With accurate simulations of this effect it should be possible to make

quantitative measurements of reaction rates using the microreactor [49].



Chapter 4

Pyrolysis of 2-Methoxyfuran

Alkylated furans and furanic ethers are among a variety of molecules derived from

non-edible biomass that offer a renewable path to biofuels and other platform chemicals [71].

However, the combustion and pyrolytic behavior of many of these oxygenated species are

not well-known and in order utilize them as fuels it is important to understand how they

break apart thermally. The goal of this work is to identify the nascent pyrolysis products of

2-methoxyfuran, the simplest furanic ether.

Scheme 4.1: The simplest furanic ether, 2-methoxyfuran, and the numbering scheme used
throughout the text

Methoxyfuran was included in a study of several aromatic compounds relevant to

coal-combustion by Bruinsma et al. [23]. The disappearance of methoxyfuran as a function

of temperature was measured in a coiled quartz flow reactor operated at 0.125 MPa (938

Torr), a residence time of 5 s and a sample concentration of at most 500 ppm in argon. The

primary products detected by gas chromatography at 10% conversion included CO, CO2 and

trace amounts of other species. The authors also noted that this molecule was extremely

unstable with respect to other substituted heterocycles; the observed onset for decomposition

was about 300 K lower than for other molecules included in the study. Beyond these initial
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experiments of this reactive molecule, it appears no additional pyrolysis or combustion studies

have been performed.

More recently, electronic structure calculations predict that 2-methoxyfuran has an

unusually weak O−CH3 bond, about 190 kJ mol-1, which is about 200 kJ mol-1 weaker

than the C−H bonds in 2-methoxyfuran and is in fact one of the weakest known C−O

bonds1 [119]. This work documents a series of experiments to identify the products from the

unimolecular and low-pressure bimolecular decomposition mechanisms of the simplest furanic

ether, 2-methoxyfuran.

4.1 Experimental Methods

The microreactors described in Chapter 2.1 were used to study the thermal decom-

position mechanism of 2-methoxyfuran. The microreactor offers a short residence time

(approximately 50−200 µs) coupled with the sensitive diagnostics of photoionization time-

of-flight mass spectrometry (PIMS) and matrix isolation infrared absorption spectroscopy.

The short residence time allows for rapid heating and identification of the first pyrolysis

products, eliminating most, if not all, secondary reactions. Since the only previous pyrolysis

experiments of methoxyfuran [23] were recorded at long reaction time scales, no detection of

the organic radicals or other reactive intermediates were possible; the use of the µtubular

reactor in the present study will enable identification of these elementary reaction steps.

4.1.1 Microreactor and Sample Preparation

The microreactor used for this study consists of a resistively heated silicon carbide

(SiC) tube, 2.5−3.8 cm in length, 0.66−1 mm i.d. and 2 mm o.d. A more detailed description

of the reactor assembly is included in Chapter 2.1 and also in [138, 158]. Due to the reactive

nature of the molecule being studied the temperature range was limited to 300−1300 K. The

heated length is about half to two-thirds the full length of the reactor, with the temperature
1 ex. DH298(CH3O−CH3) = 349 ± 3 kJ mol-1 and DH298(C6H5O−CH3) = 258 ± 1.3 kJ mol-1
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of the outer wall measured by a tungsten/rhenium Type C or a chromel-alumel Type K

thermocouple. The flow through the reactor is either controlled with a pulsed valve (Parker

General Valve, series 9) or a commercial mass flow controller (MKS P4B 0-200 sccm N2).

Dissolved water was removed from the methoxyfuran sample (Aldrich, ≥ 97%) with

MgSO4 and the dried sample was degassed using the freeze-pump-thaw method prior to

preparing gaseous mixtures in helium or argon. The reactant mixtures for the pulsed

experiments range from 0.03%−0.1% in He or Ar carrier gas. The total backing pressure to

the pulsed valve is about 1500 Torr for He PIMS and 800 Torr for experiments in Ar. The

pressure at the reactor exit for both experiments is maintained at approximately 1−10 µTorr.

The reactant mixtures prepared for the experiments in a continuous flow reactor are

between 0.0025−0.01% methoxyfuran in helium, about an order of magnitude lower than

those for pulsed experiments, due to a longer residence time in this style reactor. As discussed

in Chapter 2.1 the residence time is essentially a fixed experimental parameter due to limited

pumping capabilities so the task of eliminating secondary chemistry is accomplished through

dilution. The product distributions may differ slightly between the different carrier gases

and flow conditions because of variations in the pressure/temperature time-history; however,

the products themselves remain consistent. The inlet pressure to the continuous flow reactor

varies linearly depending on the operating temperature of the reactor. The inlet pressure to a

300 K reactor is about 100 Torr and increases linearly to 200 Torr with a reactor temperature

of 1200 K.

4.1.2 Photoionization Time-of-Flight Mass Spectrometry

There are two types of photoionization mass spectrometry (PIMS) experiments reported

here. One set of experiments was operated with pulsed flow through a heated SiC reactor

and pyrolysis products ionized by fixed wavelength 118.2 nm (10.487 eV) vacuum ultraviolet

(VUV). Another set of PIMS spectra were collected at the Chemical Dynamics Beamline

(9.0.2) at Lawrence Berkeley National Laboratory’s Advanced Light Source (ALS) using a



51

reactor operated with continuous flow and pyrolysis products ionized by tunable VUV in the

range of 7.85 to 15.5 eV.

Pyrolysis products approximately 18 cm downstream from the exit of the pulsed reactor

are ionized by 118.2 nm (10.487 eV) photons produced by the 9th harmonic of an Nd:YAG

laser (Spectra Physics) and identified by reflectron time-of-flight mass spectrometry (Jordan).

The ions are detected with a microchannel plate and the spectra collected with a digital

oscilloscope, averaging 1000 scans per spectra. A more detailed description of the PIMS

experiment is provided in Chapter 2.2 and [138].

The molecular beam exiting the continuous flow reactor at the ALS is interrogated by

synchrotron radiation about 12 cm downstream from the skimmer. The ions were detected

using a microchannel plate and the signal recorded by ion counting. Most experiments

collected 100,000 to 500,000 individual mass spectra at each photon energy. Photoionization

efficiency (PIE) curves for a given mass were obtained by plotting the summation of the

background corrected ion signal in an appropriate mass range versus the selected photon

energy, normalized by the photon flux measured by a photodiode with a calibrated energy-

dependent efficiency. The on-site photodiode measurements collected for this study were

unreliable so instead the PIE curves reported in this chapter were corrected using photodiode

measurements from a set of experiments on the same beamline recorded about a month prior.

In addition, a thicker Type-K thermocouple (Omega, chromel-alumel, diameter 0.01 in) was

used for one set of continuous flow experiments at the ALS. The potential impacts of these

measurements are addressed in the text.

4.1.3 Matrix Isolation Infrared Absorption Spectroscopy

As a complement to the PIMS, infrared spectroscopy in an argon matrix provides

structural information for the pyrolysis products, differentiating thermal products of identical

mass. The molecular beam formed at the reactor exit is aimed at a cold infrared transparent

window and the products, now trapped in frozen argon, are detected by FT-IR spectroscopy.



52

A two-stage closed-cycle helium cryostat (APD Cryogenics, 60 Hz and 2.5 W cooling

capacity at 20 K) cools a CsI window to 10 K. Reactant mixtures were prepared in a glass

1.2 L reservoir upstream of the reactor in concentrations of 0.04−0.1% 2-methoxyfuran in

Ar. Typical deposition rates through the pulsed valve operated at 20 Hz were 0.8 to 1 Torr

min-1 from the reservoir (equivalent to 3−3.6 mmol hr-1), depositing between 3 to 6.5 mmol

total onto the cold window. A slow deposition rate is critical to achieve resolved IR spectra.

The vibrational spectra were measured using a Nicolet 6700 infrared spectrometer equipped

with a liquid N2 cooled mercury/cadmium/telluride detector (MCT/A, 4,000−650 cm-1). A

background scan was taken approximately 1 to 2 hours prior to the sample scan; all spectra

averaged 500 scans at 0.25 cm-1 resolution.

4.2 Unimolecular Decomposition Mechanism

Recent CBS-QB3 electronic structure calculations [119] suggest that 2-methoxyfuran

has an unusually weak O−CH3 bond, about 190 kJ mol-1, and predict the dominant pathway

for thermal decomposition is loss of CH3 to produce the allylic lactone 2-furanyloxy radical

(γ-butryolactonyl radical, m/z 83) as shown in Scheme 4.2. The structure and thermochemical

properties of 2-methoxyfuran and the radicals formed by loss of hydrogen atoms have also

been examined computationally by Hudzik et al. [56].

Scheme 4.2: Primary unimolecular decomposition pathway of 2-methoxyfuran, including the
lowest calculated reaction barriers [119]

To date there is no experimental evidence for 2-furanyloxy radical, however the structure

and stability of this allylic lactone have been discussed in several computational studies. The
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2-furanyloxy radical is predicted to be an intermediate in the oxidation of 2-furanyl radical [6]

and also a minor, high-energy channel intermediate in the oxidation of phenyl radical [127].

Prior to these studies, Yamamoto et al. [155] calculated the cyclization of the open-chain

radical dione (4-oxo-but-3-enal-2-yl) in Scheme 4.2 to 2-furanyloxy.

This work includes the first experimental characterization of 2-furanyloxy radical

by assignment of several intense infrared vibrational bands in an Ar matrix and a low-

resolution estimate of the ion energetics of this molecule, including the ionization threshold,

photoionization efficiency curve and an estimate of the photoionization cross-section at 10.0

eV. These assignments are supported by calculations of the harmonic vibrational frequencies

and ion properties from Simmie et al. [119, 133].

As depicted in Scheme 4.2, the furanyloxy radical is predicted [119] to ring open via

a β-scission of the ring O1−C2 bond to the dione radical 4-oxo-but-3-enal-2-yl (refer to

Scheme 4.1 for the numbering system used throughout). From here, the dione intermediate

can eliminate CO to give a formyl vinyl radical, prop-1-ene-1-yl-3-one. The fate of the formyl

vinyl radical, shown in Scheme 4.3, is either a β-scission to acetylene (HC≡CH) and formyl

radical (HCO) or a 1,3-H-shift to acryloyl (1-oxo-2-propen-1-yl or O=C-CH=CH2). The

acryloyl radical will then dissociate to CO and vinyl radical (CH2=CH) [72, 133]. Both

decomposition pathways will result in formation of two molecules of CO, one H-atom, and

one HC≡CH from the ring opening of the furanyloxy radical intermediate.

Scheme 4.3: Fate of formyl vinyl radical, m/z 55, including reaction barriers [119]

The unimolecular decomposition products of 2-methoxyfuran in helium detected by

118.2 nm (10.487 eV) photoionization mass spectrometry (PIMS) are shown in Fig. 4.1. With
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Figure 4.1: Mass spectra identify the unimolecular products from the pyrolysis of 2-
methoxyfuran in helium in a pulsed flow heated SiC reactor. Products are ionized with
118.2 nm VUV photons (10.487 eV); temperatures indicated are the measured reactor wall
temperature.

the SiC reactor held at 400 K, only the parent ion and the 13C isotope are observed at m/z

98 and 99, respectively. Heating the reactor to 850 K triggers thermal decomposition and the

observed ions are assigned as CH3+ (m/z 15), C2H+
3 (m/z 27), HCO+ (m/z 29), C3H3O+

(m/z 55), and 2-furanyloxy radical (m/z 83). However, as will be described later, only m/z

15 and 83 are assigned as thermal products; the ions observed at 27, 29 and 55 are assigned

to dissociative ionization of either the parent or 2-furanyloxy. By 1100 K, all 2-methoxyfuran

(m/z 98) is consumed.

Since ionization energies of carbon monoxide [38] and acetylene [10] are beyond the

range of the laser at 10.487 eV (see Table 4.1), the presence of acetylene from pyrolysis
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of a 0.04% mixture of 2-methoxyfuran in argon is demonstrated by detection of the IR

fundamentals ν3(HC≡CH) at 3287 cm-1 and its associated Darling-Dennison resonance at

3301 cm-1 in an Ar matrix, as shown in Fig. 4.2. In addition ν5(HC≡CH) at 737 cm-1

and an absorbance feature associated with an interaction between HCCH and N2 in an Ar

matrix [61] appears when compared to a scan of 0.1% methoxyfuran in Ar deposited through

a reactor held at 300 K. Carbon monoxide is difficult to detect because there is always a

small background when the SiC reactor is heated (due to reaction with trace amounts of O2),

however the the main absorption at 2139 cm-1 and growth of 13CO isotope at 2091 cm-1 are

detected [1]; these spectra are included in Fig. C.1 of Appendix C.

Figure 4.2: Infrared spectra identify acetylene (ν3, ν5) in Ar as a pyrolysis product of 2-
methoxyfuran. Shown for comparison are reference scans with only argon passed through an
1100 K SiC reactor and the reactant mixture through a 300 K reactor.

The mass spectra in Fig. 4.3 show the major pyrolysis products from a 0.01% mixture

of 2-methoxyfuran in helium through a continuous flow reactor at LBNL’s Advanced Light
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Figure 4.3: Dual photon energy mass spectra from experiments in a continuous flow reactor
distinguish ions resulting from dissociative ionization from those formed thermally. Mass
spectra at 950 K sampled 500,000; 300 K sampled 100,000 scans.

Source (ALS). The ionization energy of 2-methoxyfuran has not been measured experimentally,

but ab initio electronic structure calculations predict the ionization energies of the cis and

trans conformers to be 7.93 eV and 7.79 eV, respectively [133] (the lowest energy conformer of

2-methoxyfuran is the methyl group cis to the carbon-carbon double bond in the ring [9, 56]).

Likewise the IE(2-furanyloxy radical, m/z 83) is calculated to be 8.23 eV [133]. A summary

of important measured or calculated ionization energies is shown in Table 4.1.

The left-hand panel of Fig. 4.3 demonstrates that pyrolysis of 2-methoxyfuran at 950 K

generates m/z 83 when 8.5 eV is used to photoionize. If the energy of the VUV is increased

to 10.1 eV (right-hand panel), the CH3 radical (m/z 15) is detected and new ions appear at

m/z 27, 29, 55, and 70 (the feature at m/z 58 is not a thermal product but instead is an
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Table 4.1: Chemical formulas, common names and mass of species referred to in the kinetic
mechanism and throughout the text. Also included are the measured or calculated ionization
potentials.

m/z Formula Species IE (eV) Ref.
1 H hydrogen atom 13.59844 ± 0.00001 [76]
15 CH3 methyl radical 9.8380 ± 0.0004 [17]
16 CH4 methane 12.618 ± 0.004 [117]
26 HC−−−CH acetylene 11.40081 ± 0.0001 [101]
27 CH2=CH vinyl radical 8.468 ± 0.029 [73]
28 CO carbon monoxide 14.0136 ± 0.0005 [38]
29 HCO formyl radical 8.15022 ± 0.00006 [85]
30 CH2=O formaldehyde 10.8850 ± 0.0002 [114]
55 CH=CH-CHO formyl vinyl radical 8.51 [133]
55 O=C-CH=CH2 acryloyl radical 6.93 (trans) [133]
56 CH2=CH-CHO acrolein 10.11 ± 0.01 [84, 135]
68 C4H4O furan 8.88 ± 0.01 [144]
68 CH2=CH-CH=C=O vinylketene 8.45 [87]
70 CH3-CH=CH-CHO crotonaldehyde 9.73 ± 0.01 [135, 142]
70 CH3-CO-CH=CH2 methyl vinyl ketone 9.65 ± 0.02 [91, 124]
70 CH2=C(CH3)-CHO methacrolein 9.92 [84]
83 C4H3O2 2-furanyloxy radical 8.23 [133]
83 O=C=CH-CH-CHO 4-oxo-but-3-enal-2-yl∗ 7.79 (trans-cis) [133]

7.66 (cis-trans)
7.70 (trans-trans)

84 C4H4O2 2(3H)-furanone 9.31 [150]
9.67 [140]

84 C4H4O2 2(5H)-furanone 10.22 [150]
10.65 ± 0.1 [159]

96 C4H3O-CHO furfural 9.22 ± 0.01 [63]
98 C4H3O(OCH3) 2-methoxyfuran 7.93 (trans) [133]

7.79 (cis)
98 C5H6O2 3-methyl-2(3H)-furanone 9.17 [150]
98 C5H6O2 5-methyl-2(5H)-furanone 10.06 [150]

10.12 ± 0.05 [125]
98 C5H6O2 5-methyl-2(3H)-furanone 8.91 [150]

8.97 ± 0.05 [30]
∗dihedrals O=C-C-C and CCCC

acetone impurity due to an inadequate purge with He after cleaning between experiments at

the ALS). We believe that the ions C2H+
3 (m/z 27), HCO+ (m/z 29) and C3H3O+ (m/z 55)

result from dissociative ionization of either 2-furanyloxy radical (m/z 83) or a vibrationally
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Figure 4.4: Photoionization efficiency curves of m/z 55 observed at several reactor tempera-
tures. The lifetime of the proposed formyl vinyl radical intermediate (IE = 8.51 eV [133]) is
too short to be observed at the reactor exit; instead only signals due to dissociative ionization
of other species are observed above 10 eV.

excited methoxyfuran. None of these ions appear in the 10.1 eV PIMS of 2-methoxyfuran at

300 K and indeed, if they were thermal products, both m/z 29 and 55 should be observed in

the PIMS at 8.5 eV. The ion at m/z 70 is a secondary pyrolysis product of 2-methoxyfuran

and its origin will be discussed in Sections 4.3.1 and 4.3.2.

A set of photoionization efficiency (PIE) curves at m/z 55 are shown in Fig. 4.4. No

ion signal at mass 55 is observed until above 10 eV at elevated temperatures, indicating the

formyl vinyl or acryloyl radicals shown in Scheme 4.3 are not stable intermediates and their

lifetimes are too short to be detected under the conditions in the reactor. Based on their

predicted ionization energies shown in Table 4.1, if they were stable at the reactor exit they
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Figure 4.5: PIE curves and ionization energies [17, 101, 133] of 2-methoxyfuran (m/z 98) and
the primary unimolecular products 2-furanyloxy radical (m/z 83), methyl radical (m/z 15)
and acetylene (m/z 26). Shown for comparison as solid lines are the absolute photoionization
cross-sections of CH3 [123] and HCCH [29].

should ionize well below 10 eV.

Figure 4.5 includes a set of PIE curves that identify the primary unimolecular products

in the thermal decomposition of 2-methoxyfuran as furanyloxy radical (m/z 83), CH3 radical

(m/z 15), and HC≡CH (m/z 26); ions from carbon monoxide also appears at 14 eV but are

not included in this plot. The measured absolute photoionization cross-sections of methyl

radical [123] and acetylene [29], plotted as solid lines, are shown for comparison. The

observed ionization thresholds of PIE(m/z 83) and PIE(m/z 98) are consistent with the

calculated values of 8.23 eV and 7.79/7.93 eV for 2-furanyloxy radical and 2-methoxyfuran,

respectively [133]. The ion signal at m/z 83 begins to grow in at 8.1 eV, although 0.1 eV
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lower than predicted [133], it is about 0.4 eV above the predicted ionization threshold for any

of the radical dione, O=C=CH-CH-CHO, conformations (see Table 4.1). This evidence also

suggests that the lifetime of the intermediate formed by ring-opening of furanyloxy is too

short to be detected at the conditions in the microreactor.

Figure 4.6: Select vibrational assignments of 2-furanyloxy radical in an Ar matrix compared
to scans of only Ar through a heated reactor and methoxyfuran in Ar through a room
temperature reactor. Intense feature at 705 cm-1 is ν28 of 2-methoxyfuran; features marked
(?) are tentatively assigned to ν8 of 2-furanyloxy.

The presence of 2-furanyloxy radical as a stable intermediate was also identified by

IR spectroscopy in an Ar matrix, as shown in Fig. 4.6. From the electronic structure

calculations [119], the intense feature at 1732.8 cm-1 is assigned as ν4(C=O stretch of 2-

furanyloxy radical). The location of the carbonyl sretch is consistent given the structure of

this allylic lactone. The C−O bond in furanyloxy has been calculated to be shorter than

a typical C−O single bond and closer to a typical C=O bond [6, 119]. Other vibrational
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assignments in Fig. 4.6 include ν8, ν13, and ν18 of this allylic lactone. There are also features

at 1709 cm-1 and 1749 cm-1 (see Fig. 4.9 on page 66) that are also tentatively assigned to

ν4 of 2-furanyloxy. An IR study of 2(5H)-furanone in an Ar matrix [19] reports that the

carbonyl stretch is very anharmonic, exhibiting several satellite peaks in the IR, possibly due

to Fermi-resonance type bands. Since the furanyloxy radical has a very similar structure to

2(5H)-furanone (see Scheme 4.4), it may behave similarly in an argon cage. The questionable

features at 1169.7 cm-1 and 1177.1 cm-1 could also be satellite features of ν8-furanyloxy or

interaction bands in Ar. A full analysis of the infrared spectra and a tabulated summary of

vibrational frequencies are presented in Table C.1 of Appendix C.

It should be noted that some of the bands in the IR could be associated with the radical

dione (O=C=CH-CH-CHO) or the formyl vinyl (CH=CH-CHO) intermediates instead of

features or fundamentals of 2-furanyloxy in an Ar matrix. However, there are no intense

features in an Ar matrix to indicate that there is a ketene-type stretch for the radical dione.

The calculated harmonic frequencies of this intermediate in Scheme 4.2 indicate that an

intense ν4 stretch should appear in the 2170 to 2130 cm-1 region in Ar. In this region of the

spectrum there are only absorption features due to CO (2139 cm-1) and CO-H2O interaction

(2149 cm-1) [1] as shown in Fig. C.1 in Appendix C. Of course since it is unknown where

precisely this molecule will absorb in the IR it is possible that the signal is completely masked

by CO. However the lack of evidence for both of these species by examining their PIE curves

at m/z 55 and 83 (Figs. 4.4 and 4.5) suggests they are not stable enough intermediates to be

detected.

4.3 H/CH3 Addition and Abstraction Reactions

Even though pyrolysis experiments are operated at very dilute conditions, the products

resulting from reactions of the H atoms and CH3 radicals produced in Scheme 4.2 with

2-methoxyfuran must also be considered. Scheme 4.2 predicts that for every molecule of

2-methoxyfuran that decomposes, one H-atom and one CH3 radical are produced. Both of



62

these radicals are very reactive and it is possible that they might abstract a hydrogen or add

to the ring of unreacted methoxyfuran [119].

Figure 4.7: Calculated rate constants of H/CH3 addition reactions to 2-methoxyfuran and
hydrogen abstraction by CH3 at C7 [119, 133].

Calculated [119, 133] bimolecular rate constants for addition and abstraction reactions,

shown in Fig. 4.7, have been used to determine plausible bimolecular routes. The rates

were calculated from 300 to 2000 K in increments of 100 or 200 K and fitted to a modified

Arrhenius expression; a summary of the rate constants are also included in Table 4.2 located

on page 77. A few important aspects to note about these rate constants: at 1000 K H-atom

addition reactions are two orders of magnitude faster than the fastest CH3 addition reaction

at C5 on the methoxyfuran ring (see Scheme 4.1). Also, the rate constant for methyl addition

at C3 or C4 is another order of magnitude lower than addition at C5.

As discussed for the furan dilution studies in Fig. 3.1 of Chapter 3.2, under similar
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operating conditions hydrogen-atom radical addition reactions could be avoided at a dilution

of 0.01% in He [131]. However when thermally cracking methoxyfuran, H-atoms and CH3

radicals are formed at lower temperatures and at faster time scales within the reactor, so it

was found that a dilution of about 0.0025% in He was required to eliminate the products

resulting from secondary reactions in a reactor operated with continuous flow. As discussed in

Chapter 2.1.2, the residence time in the reactor is essentially a fixed experimental parameter

and decreasing the time spent in the reactor is not a viable option for reducing bimolecular

reactions; instead this task must be accomplished through dilution.

Figure 4.8: Several observed species assigned to bimolecular chemistry. Dissociative ionization
of 2-methoxyfuran to m/z 83 is observed at 300 K in the 10.35 eV PIMS. The feature extending
over mass 86 to 88 is also the result of dissociative ionization and an artifact of the reflectron
time-of-flight operation. Scan at 950 K is scaled by 0.25 in the mass region 80 to 100. Elevated
temperatures sampled 500,000 scans; 300 K sampled 100,000 scans.
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In addition to the primary unimolecular products observed at 0.0025% in He, there

are several species that grow in as the reactant concentration is increased. Figure 4.8 is an

expanded view of the mass spectra from Fig. 4.3, including two more elevated temperatures.

These spectra show that new ions at m/z 56, 68, 70 and 84 appear and persist even after all

methoxyfuran has been consumed.

4.3.1 Addition Reactions

An assortment of possible products resulting from H or CH3 additions to unreacted

methoxyfuran are shown in Schemes 4.4 and 4.5, respectively. In addition to the predicted rate

constants of these reactions, the combination of infrared spectroscopy and photoionization

efficiency curves aid in the identification of the relevant reaction schemes.

Scheme 4.4: Hydrogen-atom addition reactions to 2-methoxyfuran and possible resulting
products. Barrier heights for select decomposition routes are indicated [133].
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Scheme 4.5: CH3 radical addition reactions to 2-methoxyfuran and possible resulting products.
Barrier heights for select decomposition routes are indicated [133].

Figure 4.9 is a trace of the carbonyl region of the IR spectra, comparing a dilute mixture

(0.04%) of methoxyfuran in Ar, thin black line, to a more concentrated mixture (0.1%), red

line. Products detected from the 0.1% mixture at 1100 K include CH2=O, methyl vinyl ketone

(MVK or CH3CO-CH=CH2), and the unsaturated aldehydes acrolein (CH2=CH-CHO) and

crotonaldehyde (CH3CH=CH-CHO), while only formaldehyde and acrolein are detected as

secondary products for the dilute mixture at 1000 K. Figure 4.10 expands on the 1100 K

spectrum in the region 1720−1695 cm-1, identifying MVK, acrolein and crotonaldehyde by

comparison to authentic samples in an Ar matrix. The reactor was heated during part of the

acrolein/Ar deposition in order to induce isomerization to the less thermodynamically stable

cis conformation (similar to the approach used by Blom et al. [16]). The growth of split peaks
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Figure 4.9: FT-IR product spectra of the carbonyl region for a concentrated mixture of
methoxyfuran in Ar compared to a dilute mixture. Shown for comparison are scans of only
Ar through a heated reactor and methoxyfuran in Ar through a room temperature reactor.
Uncertain bands (?) at 1749 and 1709 cm-1 could belong to 2-furanyloxy (ν4).

at 1714.3 and 1714.9 cm-1 are assigned to cis-CH2=CH-CHO [60], while trans-CH2=CH-CHO

absorbs at 1708.3 and 1707.8 cm-1. The lone unlabeled feature in Fig. 4.10 at 1709 cm-1

is likely the satellite peak of the furanyloxy radical (ν4), as it is present in both the dilute

and more concentrated product spectra. A tabulated summary of vibrational frequencies is

presented in Tables C.1 through C.3 of Appendix C.

When compared to the concentrated mixture in Fig. 4.9, the only species detected in the

dilute mixture are trans-CH2=CH-CHO and CH2=O. Both of these species can result from

H-atom addition reactions to the ring, as shown in Schemes 4.4.1 and 4.4.5 for formaldehyde

and Schemes 4.4.2 through 4.4.4 for acrolein. As shown in the PIMS spectra in Fig. 4.8, a trace
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Figure 4.10: Authentic FT-IR spectra of acrolein, crotonaldehyde and methyl vinyl ketone
in an Ar matrix, compared to product spectrum of a 0.1% mixture of methoxyfuran in
argon heated to 1100 K (6.4 mmol deposited). Each authentic spectrum scaled relative to
product spectrum as indicated; molecule(%-mixture/Ar, mmol Ar deposited, scaling factor):
CH3-CO-CH=CH2 (0.09%, 6.4, 1:30); CH3-CH=CH-CHO (0.06%, 4.0, 1:13); CH2=CH-CHO
(0.05%, 5.8, 1:13).

of m/z 68 is also observed. There are two possible identities for m/z 68 in Scheme 4.4: either

H-atom addition to C2 (Scheme 4.4.1) to produce furan, or ring-opening of the C5 radical

addition intermediate in Scheme 4.4.5, eliminating methoxy radical, to give vinylketene. The

ion signal is observed to grow in near the ionization threshold of furan (IE = 8.88 eV) [144]

but the signal is barely above the noise level. This indicates that formation of m/z 68 by

hydrogen atom addition reactions in Schemes 4.4.1 and 4.4.5 are less likely than formation of

acrolein, which could result from H-addition at all other positions.
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Photoionization efficiency scans further confirm the presence of acrolein and croton-

aldehyde at 950 K, 1100 K, and 1300 K for different reactant mixture concentrations in a

continuous flow of helium. Figure 4.11 demonstrates that the ion signal begins to grow in

at 10.1 eV, the ionization threshold of acrolein [84, 135] and the PIE(m/z 56) curve closely

resembles the known photoionization cross-section for CH2=CH-CHO [46].

Figure 4.11: Photoionization efficiency curves of m/z 56. Absolute photoionization cross-
section and ionization potential of acrolein (CH2=CH-CHO) are included [46, 84, 135].

PIE curves also indicate the presence of crotonaldehyde as a thermal product. Fig-

ure 4.12 shows the PIE(m/z 70) curves that result from pyrolysis of 2-methoxyfuran in helium

through a reactor with continuous flow. The solid lines are the measured photoionization

cross-sections of methyl vinyl ketone, crotonaldehyde and methacrolein, possible product

species with a mass of 70 amu. The PIE(m/z 70) curve appears to most closely resemble
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the CH3-CH=CH-CHO cross-section curve. Crotonaldehyde ionizes at 9.73 eV [135, 142]

and the IE(methyl vinyl ketone) and IE(methacrolein) are 9.65 eV [91, 124] and 9.92 eV [84],

respectively. The PIE(m/z 70) trace rises at about 9.75 eV and follows the general trend

of the crotonaldehyde curve. However, based on the shape of this curve we cannot rule out

trace amounts of methyl vinyl ketone or methacrolein; the earlier rise in photon energy of

the data points at 1100 K and 1300 K indicate there could be trace amounts of MVK in

the molecular beam. The infrared product spectra are consistent with this conclusion: the

dominant secondary product at m/z 70 is crotonaldehyde but with trace amounts of methyl

vinyl ketone.

Figure 4.12: Photoionization efficiency curves of m/z 70. Absolute photoionization cross-
sections and measured ionization potentials are included: CH3-CH=CH-CHO [135, 142, 156],
CH3-CO-CH=CH2 [91, 124, 156] and CH2=C(CH3)-CHO [45, 84].
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A scan of PIE(m/z 84) is unable to definitively identify which species in Scheme 4.4

are intermediates of hydrogen atom addition reactions due to interfering signals of the 13C

isotope from mass 83. A PIE(m/z 84) scan at 1300 K when all m/z 83 is consumed does show

that trace amounts of m/z 84 grow in between 9.5−10 eV, which could indicate the possibility

of both 2(3H)-furanone (IE = 9.3−9.7 eV) [140, 150] and 2(5H)-furanone (IE = 10.2−10.65

eV) [140, 150]. The experimentally reported ionization energy [140] of 2(5H)-furanone of

10.65 eV is likely too high; samples of 2(5H)-furanone seeded in He were pyrolyzed in the SiC

microreactor and ions were observed with photons at 10.487 eV. For more details of these

experimental results refer to Chapter 5.

Figure 4.13: Photoionization efficiency curves of m/z 98. Mass 98 that appears at 1100 K
from pyrolysis of a 0.01% mixture could be 5-methyl-2(5H)-furanone from CH3 addition at
C5 on 2-methoxyfuran (see Scheme 4.5).
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Examination of the PIE(m/z 98) in Fig. 4.13 is also insightful into identifying which

intermediate species in Scheme 4.5 is formed at the conditions in the microreactor. Samples of

2-methoxyfuran at 300 K and 950 K in a continuous flow helium reactor show an appearance

energy of 7.9 eV which is compatible with the IE(2-methoxyfuran). Heating a very dilute

sample (0.0025%) of 2-methoxyfuran to 1100 K produces no ions at m/z 98, indicating all

methoxyfuran is consumed and no species associated with bimolecular reactions are observed.

However a more concentrated mixture, 0.01%, now leads to an ion signal at m/z 98 that

rises well above 7.9 eV. The CH3 radical addition reactions in Scheme 4.5 could lead to an

intermediate at m/z 98. Based on estimates of the ionization energies of these intermediate

species, shown in Table 4.1, 5-methyl-2(5H)-furanone could be formed by addition of CH3

at C5 on methoxyfuran and has an ionization threshold just above 10 eV [150]. If the

intermediate was the result of CH3 addition at C3 the predicted ionization threshold for these

methylated 2(3H) furanones are 1 eV lower in energy.

The methyl vinyl ketone that appears in trace amounts in the IR spectrum of Fig. 4.10

is likely due to decomposition of a methylated furanone. The PIE(m/z 98) of a concentrated

sample clearly indicates there is a stable intermediate that is not methoxyfuran, which, as

mentioned above, could be 5-methyl-2(5H)-furanone. There are a few possible decomposition

routes for this methylated furanone that could result in the formation of methyl vinyl ketone.

Recent electronic structure calculations indicate [149] that the lowest-energy decomposi-

tion route for 5-methyl-2(5H)-furanone is ring opening to 1-pentene-1,4-dione, as shown in

Scheme 4.5.5. The furanone could also decompose through an addition-elimination reaction

with H-atom, converting the 2(5H) intermediate to 5-methyl-2(3H)-furanone (or α-angelica

lactone), which has been shown to eliminate CO and produce MVK either through a con-

certed reaction or through an open-chain pentene-dione intermediate. For a more complete

discussion on the decomposition patterns of the furanones and methylated furanones, see

Chapter 5.

Finally, the absence of PIMS signals at m/z 82 excludes CH3 addition to 2-methoxyfuran
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at the C2 position. Indeed the rate constant for this reaction at 1000 K is two times slower

than methyl addition at C5 [133]. Exclusion of reaction at the C2 position therefore excludes

reactions at C3 or C4 as they are predicted to be another order of magnitude slower.

4.3.2 Radical-Radical Reactions

Both the PIE(m/z 83) and the vibrational bands in the IR demonstrate that 2-furanyloxy

radical (m/z 83) is a persistent radical. Consequently, products resulting from reactions of

H-atoms or CH3 radicals with this species must also be considered. The possible chemical

outcomes of these reactions are shown in Scheme 4.6.

Scheme 4.6: Possible products resulting from reaction of H and CH3 with 2-furanyloxy radical,
including calculated reaction barriers [150] (see Chapter 5 for more details)

Concerted elimination of 3-methyl-2(3H)-furanone to crotonaldehyde and CO in Scheme 4.6.1,

with a barrier of 210−220 kJ mol-1 [150], would be thermodynamically feasible at the temper-
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ature and pressure conditions in the reactor. Schemes 4.5.2 and 4.5.3 also predict formation

of crotonaldehyde by CH3 addition at C3 or C4 on 2-methoxyfuran. However, the calculated

rate constants in Fig. 4.7 indicate CH3 addition at C3 of methoxyfuran is slower than addition

at C2; since no methylfuran at m/z 82 is observed in Fig. 4.8 resulting from a C2 addition,

we conclude reactions slower than this should be excluded. Therefore it is likely CH3 radical

reactions with 2-furanyloxy in Scheme 4.6.1 are the source of crotonaldehyde observed in

both the infrared (Fig. 4.10) and photoionization efficiency of m/z 70 (Fig. 4.12).

The products resulting from reactions of H-atom with furanyloxy are indistinguishable

from hydrogen addition reactions to the parent. Reaction rates of H addition are very fast so

knowledge of the pressure-dependence is necessary in order to draw any conclusions on the

exact mechanistic path for the formation of acrolein at m/z 56.

4.3.3 Abstraction Reactions

The most thermodynamically favorable position for hydrogen atom abstraction by

methyl or H-atom is the methyl group (or C7 as shown in Scheme 4.1). The kinetics of

H-atom abstraction by methyl at the substituent group is over an order of magnitude more

favorable than at any ring hydrogen [119].

Scheme 4.7: Abstraction reaction scheme and calculated [133] reaction barriers.

Scheme 4.7 suggests that the resultant aryloxy(methyl) radical [24, 56], m/z 97, can

isomerize via a Mulcahy rearrangement [92, 93] to furfural, m/z 96. PIMS spectra in Fig. 4.8

shows no signals at m/z 96 or 97 for methoxyfuran diluted in He, but PIE curves compared to

the known photoionization cross-section of CH4 [141] identify trace amounts of methane (IE
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= 12.618 ± 0.004 eV [117]). In addition, trace absorbance features at 1306.2/1305.5 cm-1 are

observed in an Ar matrix, indicative of CH4 (ν4) splitting in Ar [98]. There are also features

in the IR at 1688.4 cm-1 and 758.9 cm-1 which could be assigned to anti-C4H3O-CHO (ν5)

and (ν23), respectively [89]. However, the other intense bands of furfural are not clearly

distinguishable: syn-C4H3O-CHO (ν5) which should appear at 1710.8 cm-1 overlaps with the

more dominant bimolecular product crotonaldehyde (as shown in Fig. 4.10) while the other

intense bands at 1469 and 747 cm-1 are obscured by unreacted methoxyfuran. In general,

the amount of CH4 that grows in is more proportional to the temperature of the reactor

(and concentration of CH3) than it is to features that correspond to furfural (see Fig. C.2 in

Appendix C).

There is the possibility that methyl radicals could abstract a hydrogen from impurities

on the surface of the SiC reactor, creating small amounts of CH4 while there is no evidence for

furfural. A description of wall reactions and potential wall-inducing chemistry within the SiC

reactor was discussed at length in Vasiliou et al. [138]. This study found that fully deuterated

samples of acetaldehyde (CD3-CDO) produced only CD3 radicals and no partially-deuterated

methyl radicals were detected to indicate exchange with impurities on the hot reactor walls.

However, in the case of methoxyfuran, there is an excess of methyl radicals flowing through

the reactor at much earlier time-scales because they are produced by breaking a 190 kJ mol-1

bond versus DH298(CH3−CHO) = 354.8 ± 0.8 kJ mol-1 [138]. This additional time in the

reactor allows more collisions of radicals with the hot reactor walls, thus more opportunities

to abstract from any impurities.

Based on the minimal evidence for furfural and only trace levels of CH4 detected we

conclude that abstraction reactions from methoxyfuran are not occurring under the operating

conditions in the microreactor. Calculated reaction rates of hydrogen abstraction by methyl

are consistent with these results indicating that abstraction reactions only become competitive

with CH3 addition reactions at much higher temperatures [119] than those reported here.
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4.4 Kinetics of Methoxyfuran Decomposition

Similar to the conversion measurements of Bruinsma et al. [23], the conversion of

2-methoxyfuran in a continuous flow of He at several reactor wall temperatures and reactant

concentrations was measured and is summarized in Fig 4.14. A kinetic mechanism of 24

species and 22 reactions, shown in Table 4.2, was developed including several unimolecular and

bimolecular rate constants calculated by Simmie et al. [119, 133]. Eight reactions describe the

unimolecular dissociation of methoxyfuran and its intermediates; the remaining 14 reactions

are secondary reactions (H/CH3 addition, abstraction and radical-radical reactions). The

notations for addition reactions are the intermediates formed when CH3 or H adds to the

methoxyfuran ring at the specified position (i.e. CH3-C5 is the intermediate formed when

CH3 adds to methoxyfuran at the C5 position, as shown in Scheme 4.5). At this time, no

rate constants for the conversion of these bimolecular intermediates to final products are

included in the mechanism.

4.4.1 Consumption of 2-Methoxyfuran

The Excel-based solver program Kintecus [57] was used to solve the system of equations

at several gas temperatures and reactant concentrations. All rate constants included in the

mechanism are high-pressure limiting (k∞) and assumed irreversible. A constant temperature

profile and constant volume was also assumed for a residence time up to 200 µs. Calculations

of the flow field in the reactor indicate that the temperature in the heated region is relatively

constant between the approximately 1.5 cm between the electrodes (as shown in Fig. 2.3

on page 15). For these simulations the gas temperature was assumed to be the same as the

reactor wall temperature.

Figure 4.14 compares the extent of methoxyfuran consumption by measurement of the

photoion signal at four reactor wall temperatures compared to the observed ion signal in a

room temperature scan of the same mixture. The dashed lines represent the predicted limits of
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Figure 4.14: Percent conversion of 2-methoxyfuran; experimental measurements and esti-
mated measurement uncertainties versus predictions of the first 50−200 µs using the kinetic
mechanism in Table 4.2.

methoxyfuran conversion assuming a residence time between 50−200 µs and a concentration

of 0.0025% in helium; increasing the reactant concentration increases the percent conversion

at a given temperature by at most an additional 2%. The vertical uncertainty limits applied

to all data points indicated in Fig. 4.14 were determined from the 2σ standard deviation of a

PIE scan at m/z 98 collected at 950 K from 8.0 to 9.0 eV, averaging the observed conversion

from 11 data points. The large uncertainty can in part be attributed to fluctuations of the

reactor temperature throughout the length of the scan, approximately 10 minutes. The

horizontal uncertainty limits are ± 25 K of the measured reactor wall temperature; this level

of uncertainty may be generous, as the gas inside the reactor will be less meaning that the

recorded temperature could be closer to ± 50 K from the actual gas temperature.
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Table 4.2: Reaction mechanism with rate constant parameters. Notations for CH3 or H
addition reactions are the intermediates formed when CH3 or H adds to the methoxyfuran
ring at the specified position.

# Reaction A n Ea Ref.

Unimolecular Reactions
1 C4H3O(OCH3) → C4H3O2 + CH3 5.00E+13 0.00 1.84E+05 [119]
2 C4H3O2 → O=C=CH-CH-CHO 2.145E+15 0.00 1.61E+05 [119]
3 O=C=CH-CH-CHO → CO + CH=CH-CHO 2.294E+15 0.00 1.37E+05 [119]
4 CH=CH-CHO → HCO + HC≡CH 1.008E+13 0.00 1.21E+05 [119]
5 CH=CH-CHO → O=C-CH=CH2 4.56E+08 0.00 9.44E+04 [119]
6 O=C-CH=CH2 → CO + CH2=CH 3.194E+15 0.00 1.08E+05 [119]
7 HCO → H + CO 3.61E+13 0.00 6.42E+04 [67]
8 CH2=CH → H + HC≡CH 2.00E+14 0.00 1.66E+05 [8]

CH3 and H Addition/Abstraction Reactions
9 CH3 + C4H3O(OCH3) → CH4 + C5H5O2 2.80E+00 3.65 3.42E+04 [119]
10 CH3 + C4H3O(OCH3) → CH3-C2 1.15E+04 2.47 2.49E+04 [119]
11 CH3 + C4H3O(OCH3) → CH3-C3 4.06E+04 2.31 4.12E+04 [119]
12 CH3 + C4H3O(OCH3) → CH3-C4 3.04E+04 2.33 4.27E+04 [119]
13 CH3 + C4H3O(OCH3) → CH3-C5 3.38E+04 2.32 2.02E+04 [119]
14 H + C4H3O(OCH3) → H-C2 3.55E+06 1.908 5.99E+03 [133]
15 H + C4H3O(OCH3) → H-C3 8.55E+06 1.844 8.01E+03 [133]
16 H + C4H3O(OCH3) → H-C4 4.92E+06 1.947 1.03E+04 [133]
17 H + C4H3O(OCH3) → H-C5 7.18E+06 1.858 5.41E+03 [133]

Radical-Radical Reactions∗

18 C4H3O2 + CH3 → 3-CH3-2(3H)Furanone 1.64E+13 -0.32 -5.50E+02 [133]
19 C4H3O2 + CH3 → 5-CH3-2(5H)Furanone 1.64E+13 -0.32 -5.50E+02 [133]
20 C4H3O2 + H → 2(5H)-Furanone 1.59E+14 0.18 -5.20E+02 [133]
21 C4H3O2 + H → 2(3H)-Furanone 1.59E+14 0.18 -5.20E+02 [133]
22 HCO + H → H2 + CO 9.00E+13 0.00 0.00E+00 [8]

Units: cm3 mol s J K; k = ATn exp (−Ea/RT ); all rates k∞
∗Recombination rate constants

As shown in Fig. 4.14 most experimental data points lie within or very close to the

estimated residence time limits; however, recent CFD simulations [49] indicate that the

residence time in the continuous flow reactor is likely in the range of 50−100 µs so an upper
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limit of 200 µs might be excessive. One major issue that needs to be addressed with this

type of measurement is accurately quantifying the ion signal when comparing over a range of

temperatures. As the temperature of the fluid increases both the radial and axial velocity

components of the molecular beam also increase. It is possible that some signal is lost due to

a higher radial velocity component at elevated temperatures, and therefore the conversion

would be overestimated when compared to the ion signal of a room temperature scan. This

could explain why most of the experimental points in Fig. 4.14 lie closer to the upper estimate

of the residence time, because in fact the conversion at that temperature is less than the

measurement suggests. Preliminary results on this effect are discussed in Appendix A.1,

indicating that a careful calibration or use of an appropriate internal standard is required for

measurements of this sort in the future.

The scatter in the data in Fig. 4.14 also point to a need for tighter controls on the

temperature measurement. The recorded wall temperature is likely an estimate of the wall

temperature, and may not be exactly the temperature of the thermocouple readout. The

temperature control has historically been monitored manually, by adjusting the current

output on a power supply; however, this dataset suggests that an electronically controlled

temperature measurement will be necessary for sensitive kinetic measurements in the future.

In addition, temperature measurement with a 0.01 in diameter Type K thermocouple was used

for these measurements in place of the standard 0.005 in diameter Type C thermocouple. Use

of the larger diameter wire likely reduced the amount of contact between the thermocouple

junction and the reactor wall, making the temperature measurement less reliable.

Although there is considerable scatter in the conversion data presented in Fig. 4.14,

overall we can conclude that the high-pressure limiting rate constants for consumption of

methoxyfuran seem appropriate to model the disappearance of methoxyfuran at the conditions

in the microreactor.
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4.4.2 Quantification of 2-Furanyloxy Radical

As shown in Scheme 4.2 the thermal decomposition of 2-methoxyfuran is initiated by

cleavage of the O−CH3 bond to form CH3 and 2-furanyloxy radicals. Evidence in the IR

and PIE(m/z 83) demonstrates the lifetime of 2-furanyloxy is long enough to survive the hot

reactor and therefore it would be valuable to quantify the amount of this unreacted radical

present at a given temperature. This information will be useful to interpret the likelihood of

the radical-radical reactions presented in Section 4.3.2 and can also provide an estimate of

the photoionization cross-section of this allylic lactone.

Since there is little evidence for the open-chain dione (O=C=CH-CH-CHO) and formyl

vinyl (CH=CH-CHO) radicals, here we will assume all 2-furanyloxy decomposes to form

the stable products CO and HCCH in addition to H-atom. With this assumption in mind,

one way quantify the radical pool of 2-furanyloxy is to measure the loss of methoxyfuran

compared to a room temperature scan while also monitoring the formation of the closed-shell

products (HCCH or CO), as shown in Scheme 4.2:

[2-furanyloxy] = [2-methoxyfuran]300K − [2-methoxyfuran]T − [HCCH or CO]T (4.1)

However, as described in Chapter 2.3.1, it is difficult to measure the absolute concentra-

tion of a species, and it is more straightforward to measure the number density ratios of two

molecular species using a formulation of Beer’s law for photoionization. This method was also

previously implemented in the measurement of product ratios for the thermal decomposition

of furan in Chapter 3. A similar method can be applied to methoxyfuran decomposition

in an effort to quantify how much of the furanyloxy radical intermediate is present at a

given temperature. Since the photoionization cross-section of this radical has not yet been

measured, quantifying the observed ion signal must be accomplished in an indirect manner;

one method is to measure the ratio of HCCH to CH3:

[2-furanyloxy]
[CH3]

= 1− [HCCH]

[CH3]
(4.2)
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and then assume, with some obvious uncertainty due to possible secondary chemistry, that

the remaining fraction is in the form of 2-furanyloxy. In order to cancel the photon-flux term,

both measurements were made at the same photon energy, using Eq. (4.3) to estimate the

ratio of acetylene to methyl radical:

[HCCH]

[CH3]
=
S+

26
S+

15

√
15√
26

σCH3(E)
σHCCH(E)

(4.3)

where σi(E) is the reported photoionization cross-section, S+
i is the observed ion signal at a

given photon energy and √mi is the mass discrimination factor as discussed in Chapter 2.3.1.

The resulting measured ratio of HCCH to CH3 for a 0.005% mixture of methoxyfuran in helium

at 950 K is 0.88 ± 0.27 as summarized in Table 4.3. At 11.0 eV the absolute photoionization

cross-section of methyl radical was reported to be σCH3 (11.0 eV) = 6 ± 1.8 Mb [123]. The

large uncertainty in the methyl cross-section (a relative uncertainty of 30% at 11 eV) is the

dominant contributor to the uncertainty limits for the individual measurements of the methyl

radical to acetylene ratio. Another measurement of the photoionization cross-section of

methyl radical by Gans et al. [40] reports similar values and uncertainties to those measured

by Taatjes et al. [123].

Table 4.3: Measured ratio of HCCH to CH3; observed ion signals for 0.005% methoxyfuran
in He at 950 K and photoionization cross-sections (Mb) of CH3 [123] and HC≡CH [29].

eV† m/z 15 (counts)∗ σ(CH3) m/z 26 (counts)∗ σ(HCCH) Ratio 26/15
11.40 4027 5.9 11840 15.3 0.86 ± 0.26
11.45 3906 6.8 14500 18.1 1.06 ± 0.32
11.50 3589 4.4 14630 18.3 0.74 ± 0.23
11.95 3944 5.5 24570 28.0 0.93 ± 0.28
12.00 4362 5.3 26490 28.1 0.87 ± 0.27
12.05 4642 5.8 26960 28.5 0.90 ± 0.28

Average = 0.88 ± 0.27
†No values of σ(CH3) reported between 11.5 and 11.95 eV
∗Raw counts, baseline corrected only

The remaining fraction of 12% at 950 K is then assumed to be in the form of the radical

intermediate 2-furanyloxy. An estimate of the photoionization cross-section for 2-furanyloxy
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radical can be determined based on the relative fraction of furanyloxy to methyl radical:

[2-furanyloxy]
[CH3]

=
S+

83
S+

15

√
15√
83

σCH3(E)
σ2-furanyloxy(E)

= 0.12± 0.27 (4.4)

Since the cross-section of methyl radical also overlaps the PIE(m/z 83) curve, as shown in

Fig. 4.5, the small overlap in the range 9.9−10.1 eV can be used to estimate the photoionization

cross-section of furanyloxy radical at these photon energies. Photon energies above 10.1 eV

might be subject to dissociative ionization of unreacted methoxyfuran to m/z 83 (see Fig. C.3

in Appendix C for PIE(m/z 83) in a room temperature scan of methoxyfuran). Rearranging

Eq. (4.4) and evaluating for the cross-section:

σ2-furanyloxy(10.0 eV) =
4.6Mb
0.12

(
2509
3151

√
15√
83

)
= 13 ± 29 Mb (4.5)

results in a photoionization cross-section measurement of 13 Mb at 10.0 eV, or about three

times that of methyl radical. The large uncertainty limits are the result of uncertainty

propagation in the measurement of the acetylene to methyl radical ratio (Table 4.3), which

is dominated by the accuracy of the photoionization cross-section measurement of methyl

radical. To the best of our knowledge the only unsaturated lactone that has an absolute

photoionization cross-section measurement is α-angelica lactone (5-methyl-2(3H)-furanone,

molecular structure shown in Scheme 4.5.4) [30] with a photoionization cross-section at 10.0

eV of about 18 Mb (at most ± 2.7 Mb based on an upper limit of 15% uncertainty estimated

by [30]).

It should be noted that use of the high-pressure limiting rate constants shown in

Table 4.2 predict only 0.1−0.7% furanyloxy concentration relative to methyl radical for a

0.005% reactant mixture at 950 K (residence time 50−200 µs), which is over a magnitude

lower than the experimental measurement. However, use of the high-pressure limiting rate

constant for Reaction 2 in Table 4.2 is likely not valid for the conditions in the microreactor

and this difference could be accounted for if its pressure-dependence was known. When the

A-factor of k2 is arbitrarily reduced by a factor of 50 the predicted ratio of 2-furanyloxy to

methyl radical is an average of 12% within the residence time limits.
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4.4.3 Quantification of Bimolecular Products

Another valuable measurement to quantify and compare to predictions is the amount of

bimolecular chemistry observed at different experimental conditions. The two most abundant

secondary products detected by both PIMS and infrared spectroscopy are acrolein (CH2=CH-

CHO) and crotonaldehyde (CH3-CH=CH-CHO), as described in detail in Sections 4.3.1

and 4.3.2. A summary of the measured ratio of these species relative to methyl radical are

summarized in Table 4.4 and compared to predictions.

Table 4.4: Quantification of the bimolecular species acrolein (CH2=CH-CHO) and croton-
aldehyde (CH3-CH=CH-CHO) relative to methyl radical. Experimental results compared to
predictions using high-pressure rate constants and a reduced rate constant for ring opening
of 2-furanyloxy (Reaction 2 in Table 4.2).

Ratio of CH2=CH-CHO to CH3

Methoxyfuran/He T (K) Exp. Model (k∞) Model (k2/50)

0.005% 950 1.3 ± 0.3% 1−5% 10−16%
0.01% 950 1.5 ± 0.7% 3−9% 14−22%
0.01% 1100 1.8 ± 0.4% − −

Ratio of CH3-CH=CH-CHO to CH3

Methoxyfuran/He T (K) Exp. Model (k∞) Model (k2/50)

0.005% 950 0.7 ± 0.3% <0.01% 0.1−0.3%
0.01% 950 1.9 ± 0.7% 0.01−0.02% 0.2−0.4%
0.01% 1100 1.5 ± 0.3% − −

The experimental ratios were measured in the same manner as described above for

the ratio of acetylene to methyl radical in Eq. (4.3). In general, the formation of secondary

products observed at these conditions is small: the ratio of acrolein (m/z 56) to methyl

radical is about 1−2% at both temperatures and reactant concentrations. For the purpose of

this calculation the ion signal at m/z 70 is assumed to be entirely crotonaldehyde and the

ratios calculated using the appropriate photoionization cross-section of both species [29, 156].

Observations of crotonaldehyde relative to methyl are also about 1−2% at both temperatures

and reactant concentrations. A comparison to CH3 was chosen so that measurements could
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be made at a common photon energy. The cross-section for acrolein is not reported above

11.0 eV, so comparison with acetylene, a stable closed-shell species, is not straightforward.

The photoionization cross-section of crotonaldehyde [156] has been measured up to 11.75 eV,

so a comparison can be made between the signal of crotonaldehyde relative to acetylene at

the same photon energy. For a 0.01% mixture at 1100 K (when all 2-furanyloxy has been

consumed) the ratio of CH3-CH=CH-CHO to HCCH is 0.7 ± 0.1%, within a factor of two of

the measurement of CH3-CH=CH-CHO to CH3 (shown in Table 4.4) at the same conditions

but measured at lower photon energies.

The experimental measurements are compared to kinetic predictions using the mech-

anism in Table 4.2. The first model column in Table 4.4 assumes the high-pressure rate

constants for all reactions from Table 4.2 while the second model column reduces the A-factor

of Reaction 2 (furanyloxy → O=C=CH-CH-CHO) by a factor of 50 to account for the

pressure-dependence of the ring-opening, as described in Section 4.4.2. The model predictions

of acrolein formation also assume that all intermediates formed in the residence time range

of 50−200 µs from Reactions 15, 16, and 21 in Table 4.2 are converted to acrolein as final

product. This is clearly an overestimation, as the conversion will not be 100% and will likely

have significant pressure-dependencies. It is also assumed that all intermediates formed from

Reactions 11, 12 and 18 in Table 4.2 result in the formation of crotonaldehyde.

In general, the formation of secondary products observed at these conditions is small,

accounting for less than 4% of total methoxyfuran decomposition. The remainder of de-

composition follows the unimolecular reaction in Scheme 4.2. Predictions using the kinetic

model are not fully complete at this time, but they do confirm the formation of intermediates

from CH3 or H addition reactions and reactions with 2-furanyloxy at the temperatures and

residence times in the microreactor. Moreover, they offer a valid explanation for the species

observed that are not included in the unimolecular reaction scheme.
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4.5 Methoxyfuran Conclusions

The unimolecular thermal decomposition scheme of 2-methoxyfuran predicted compu-

tationally by Simmie et al. [119] is confirmed experimentally in a microreactor operated at

300−1300 K, pressures up to 200 Torr and a residence time of 50−200 µs. The primary prod-

ucts detected by photoionization time-of-flight mass spectrometry and FT-IR spectroscopy

in an Ar matrix include CH3, 2-furanyloxy, CO and HC≡CH. Secondary products resulting

from H or CH3 addition to 2-methoxyfuran and radical-radical reactions with 2-furanyloxy

have also been detected and include CH2=CH-CHO, CH3-CH=CH-CHO, CH3-CO-CH=CH2

and furanones; quantification of the ion signal of these species indicates secondary reactions

contribute to at most 4% of total methoxyfuran decomposition depending on the temperature

and reactant concentration.

The 2-furanyloxy radical was also characterized by PIMS and IR spectroscopy. The

carbonyl stretch (ν4) and several other intense infrared vibrational bands of this allylic lactone

were assigned in an Ar matrix in addition to the ionization threshold and photoionization

efficiency curve. There is no evidence for the other radical intermediates involved in the

thermal decomposition of 2-methoxyfuran, indicating their lifetimes are too short to be

detected under the operating conditions in the microreactor.

Results of calculations with a kinetic mechanism indicate that the high-pressure limiting

rate constant for Reaction 1 in Table 4.2 (2-methoxyfuran → CH3 + 2-furanyloxy) is valid in

the pressure regimes of the microreactor (inlet pressure 100−200 Torr). Although there is

scatter in the measurements of methoxyfuran conversion as a function of reactor temperature,

the experimental measurements are in general agreement with the predictions.



Chapter 5

Thermal Decomposition Mechanisms of the Lactones 2(5H)-Furanone,
2(3H)-Furanone and α-Angelica Lactone

Lactones, among other furanic compounds, are found in bio-oil formed from a dehy-

dration reaction of the cellulose/hemicelluose in wood and agricultural residues during fast

pyrolysis [34, 75]. Liaw et al. specifically report approximately 1% of the dry condensable

organic matter from fast pyrolysis of these residues is in the form 2(5H)-furanone. α-Angelica

lactone is a naturally occurring substance commonly used by the food industry as an aroma

and flavoring additive [160]; it is also a potential oxidation product of other biofuel candi-

dates [30, 157]. In addition, all three of the title compounds were conjectured intermediates

of radical addition reactions in the thermal decomposition of 2-methoxyfuran presented in

Chapter 4. For these reasons, the pyrolysis behavior of the lactones shown in Fig. 5.1 were

studied experimentally in the microreactor.

Figure 5.1: Structures of the lactones investigated; numbering begins at the ether oxygen
and proceeds clockwise around the ring.

The liquid-phase interconversion of furanones has been reported [35], but there have

been limited studies performed on the gas-phase behavior of these molecules. The thermal
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decomposition of several furanones and their methylated derivatives was studied by Xu

et al. [154] in a low-pressure quartz flow reactor (45 cm by 1.2 cm i.d.). The sample

was introduced into the reactor with approximately 0.6−1 mbar (4.5−7.5 Torr) of neat

reactant [25] and no estimate of the residence time was provided. The primary products

detected from the decomposition of both 2(3H)-furanone and 2(5H)-furanone by photoelectron

spectroscopy were CO and acrolein (CH2=CH-CHO). During the pyrolysis of one isomer they

also reported the appearance of the other isomer, suggesting a gas-phase interconversion of the

two furanones. They concluded that 2(3H)-furanone eliminates CO by a concerted reaction,

as shown in Scheme 5.1.1, to produce acrolein. They also postulated that 2(5H)-furanone

does not produce acrolein directly, but rather isomerizes to 2(3H)-furanone by two consecutive

1,2-hydrogen shifts, as shown in Scheme 5.1.2, proceeding through a biradical intermediate.

Scheme 5.1: Xu et al. [154] postulated that decomposition of 2(3H)-furanone proceeds through
a concerted reaction to form carbon monoxide and acrolein. Their results also suggest that
consecutive 1,2-hydrogen shifts interconvert the furanones.

In a similar manner to the decomposition of 2(3H)-furanone, Xu et al. [154] also observed

that the methylated analog 5-methyl-2(3H)-furanone (or α-angelica lactone) decomposes

via a concerted reaction, producing CO and methyl vinyl ketone (CH3-CO-CH=CH2), as

shown in Scheme 5.2. Isomerization of 5-methyl-2(3H)-furanone to 5-methyl-2(5H)-furanone

was also observed in the Xu study [154], but to a lesser extent than for the un-substituted

furanones.

More recently, electronic structure calculations of the furanones by Würmel and Sim-
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Scheme 5.2: α-Angelica lactone (5-methyl-2(3H)-furanone) was proposed by Xu et al. [154]
to decarbonylate in a similar manner to 2(3H)-furanone.

mie [149, 150] indicate that the hydrogen-atom migration route in Scheme 5.1.2 is not the

only plausible route to inverconvert the furanones. Their calculations predict that for 2(3H)-

furanone the first 1→2 shift requires 240 kJ mol-1, while the concerted elimination of CO

from 2(3H)-furanone is more energetically favorable at 220 kJ mol-1. Therefore, isomerization

to 2(5H)-furanone from 2(3H)-furanone via this route seems unlikely given the experimental

conditions tested by Xu et al. [154]. Instead, the computational studies [149, 150] suggest

that a more likely routes to interconvert 2(3H)-furanone to 2(5H)-furanone is either a series

of catalytic hydrogen atom addition/elimination reactions, as shown in Scheme 5.3.1, or

through a hydrogen-shift followed by ring opening to 4-oxo-3-butenal, shown in Scheme 5.3.2.

Würmel and Simmie [149] also proposed other possible decomposition routes for the lactones

in Fig. 5.1, some of which will be discussed in more detail in proceeding sections.

Scheme 5.3: Routes for interconversion of the furanones as proposed by Würmel and Sim-
mie [149, 150]. Catalytic interconversion by H-atom addition has a small barrier to reaction
(approximately 20 kJ mol-1).

With the discrepancy between the interpretation of previous experimental results
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and recent electronic structure calculations of these lactones, the goal of this work is to

experimentally identify the decomposition mechanisms of these molecules relevant to furanic

biofuels.

5.1 Experimental

2(3H)-furanone was synthesized using the procedure of Näsman and Pensar [94]; the

sodium disulfite (Na2S2O5) addition was not performed so unreacted furfural remains (the

integrated intensities of a nuclear magnetic resonance (NMR) spectrum shows the fraction of

furfural relative to 2(3H)-furanone is about 1:6). The Näsman synthesis also reports a 4:1

ratio of 2(3H)-furanone to 2(5H)-furanone after vacuum distillation; the integrated intensities

in the NMR spectrum show the fraction achieved for this synthesis was closer to 3:1. The

2(5H)-furanone and α-angelica lactone samples (Aldrich, 98%) were used as received. An

NMR spectrum of 2(5H)-furanone shows that less than 0.5% of the sample is in the form

2(3H)-furanone.

The most stable form of the angelica lactones is α-angelica lactone (α-AL, 5-methyl-

2(3H)-furanone), however in the liquid-phase it can be found in equilibrium with two other

isomers, β-AL (5-methyl-2(5H)-furanone) and γ-AL (5-methylene-dihydro-2(3H)-furanone or

γ-methylene-γ-butyrolactone), as shown in Fig. 5.2 [160]. An NMR scan of the α-AL sample

in CDCl3 show that approximately 1.2% is in the form β-AL [5] and approximately 0.8% in

the form γ-AL [2].

Figure 5.2: Structure of α-angelica lactone and the less stable isomers β- and γ-angelica
lactone.
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The microreactor used for this study consists of a resistively heated silicon carbide

(SiC) tube, 2.5−3.8 cm in length, 1 mm i.d. and 2 mm o.d. with the flow through the

reactor is controlled by a pulsed valve (Parker General Valve, series 9). The residence time is

approximately 50−200 µs, with experiments in He on the lower end of this estimate and those

in Ar towards the upper end. Products exiting the reactor are detected with fixed-frequency

(118.2 nm or 10.487 eV) photoionization time-of-flight mass spectrometry (PIMS) and infrared

spectroscopy in a cryogenic matrix. A more detailed description of the reactor assembly and

diagnostics is included in Chapter 2.1 and also in [138, 158].

All reactants had low vapor pressures (less than 1 Torr at 300 K), so entraining the

sample in a stream of helium or argon before entering the reactor required heating a few

drops of a liquid sample in a small quartz sample tube (1.5 mm i.d., 15 mm long) to at most

60◦C with a sample probe placed directly behind the pulsed valve. The reactant mixtures

are estimated to be about 0.1% in He or Ar carrier gas, however it is quite possible that the

concentration could be upwards of 0.2% in He or Ar, increasing the likelihood of secondary

reactions. The reactant concentrations for these experiments are more uncertain due to lack

of accurate vapor pressure measurements for many of these molecular species. In addition,

due to the enclosed geometry and sample times required for the pulsed Ar experiments,

the liquid sample behind the pulsed valve is in an elevated temperature environment for

longer periods of time than for He experiments (on the order of minutes for PIMS scans

versus 1-2 hour deposition for IR spectra). In the liquid phase 2(5H)-furanone is more stable

than 2(3H)-furanone; while conducting the decomposition experiments of 2(3H)-furanone the

freshly prepared sample may have interconverted to 2(5H)-furanone in the liquid phase prior

to entering the heated reactor. In addition, the other angelica lactone isomers in Fig. 5.2

could be in higher concentrations at the elevated temperatures than estimated by NMR.
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5.2 Pyrolysis of 2(3H)-Furanone and 2(5H)-Furanone

The primary thermal decomposition products detected by photoionization mass spec-

trometry (PIMS) and infrared spectroscopy for both 2(3H)- and 2(5)-furanone are acrolein

(CH2=CH-CHO) and carbon monoxide.

A recent computational study [149] predicts several decomposition routes to these final

products; included in Schemes 5.4 and 5.5 are the lowest-energy decomposition pathways they

reported that are potentially relevant to experimentally observed products. The energetics

of the fate of the butenedial in Scheme 5.4.2 has not been evaluated, but if formed in the

microreactor we postulate it could further fragment to acetylene, carbon monoxide and

hydrogen atoms. In addition, the lowest-energy decomposition pathway of the aldehydic

ketene (4-oxo-3-butenal) in Scheme 5.5.1 was calculated to be direct elimination of CO to

give acrolein [149].

Scheme 5.4: Predicted lowest-energy decomposition pathways of 2(3H)-furanone as calculated
by Würmel and Simmie [149]; select bond dissociation energies (BDE) or reaction barriers
included.
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Scheme 5.5: Predicted lowest-energy decomposition pathways of 2(5H)-furanone as calculated
by Würmel and Simmie [149]; select bond dissociation energies (BDE) or reaction barriers
included.

Figure 5.3 shows the photoionization mass spectra (PIMS) recorded at several reactor

temperatures for 0.1% mixtures 2(3H)-furanone (left) and 2(5H)-furanone (right) in helium.

With the reactor held at 400 K, only the parent ion and the 13C isotope are observed at m/z

84 and 85, respectively. The onset for decomposition of 2(3H)-furanone is observed at about

1000 K with the appearance of m/z 56, assigned to acrolein (CH2=CH-CHO), as predicted

in Scheme 5.4.1. The mass spectra from the decomposition of 2(5H)-furanone show that m/z

56 also appears when the reactor is between 1100−1200 K, about 150−200 K higher than for

2(3H)-furanone. The intense feature at m/z 55 in the right-panel of Fig. 5.3 is assigned to

dissociative photoionization1 of either the furanone or the possible open-chain intermediate at

m/z 84, and is not a thermal product. The ions at m/z 28 could arise from one two possible

channels, neither of which is a unimolecular thermal product: (1) ethylene (CH2=CH2) could

be the result of secondary reactions that are accessible at elevated temperatures, or (2) m/z

28 could be an artifact of the ionization of acrolein (see Section 5.4.1 for a more thorough

discussion on this species). The feature at m/z 40 is assigned to CH3C≡CH and can be

produced unimolecularly by decarboxylation, as in Scheme 5.5.3, or could also be the result
1 C4H4O2 + 118.2nm → [C4H4O+

2 ]∗ → C3H3O+ + HCO
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Figure 5.3: Product mass spectra of 2(3H)-furanone (left) and 2(5H)-furanone (right) in a
pulsed reactor at several reactor temperatures. Concentration of reactant approximately
0.1% in He. The ionization energies of the two species are calculated values by Würmel et
al. [150].

of secondary reactions.

The identity of acrolein (CH2=CH-CHO) as a thermal product of both furanones is

confirmed by infrared spectroscopy in an Ar matrix, as shown in Figs. 5.4 and 5.5. Assignment

of both cis and trans conformers of acrolein were accomplished by a combination of previous

studies in an Ar matrix [16, 60] and by authentic samples; Table C.2 in Appendix C includes

a summary of these assignments. The IR also confirms that interconversion occurs, with the

growth of the concomitant isomer (see Fig. C.4 in Appendix C): absorption features show

that 2(3H)-furanone grows in as 2(5H)-furanone is heated, and vice versa.
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Figure 5.4: IR spectra identify acrolein (CH2=CH-CHO) as a thermal product in the pyrolysis
of 0.1% 2(3H)-furanone at 1100 K (3.5 mmol Ar deposited). Shown for comparison are
reference scans with only Ar passed through a 1100 K reactor (3.5 mmol deposited) and
2(3H)-furanone through a 350 K reactor (2.6 mmol Ar deposited). Trace amounts of furfural
from synthesis identified; unassigned absorption features (?) could result from impurities in
the reactant sample or products formed from a minor reaction pathway.

In order to interconvert the furanones by the addition/elimination reactions proposed

by Würmel et al. [150], a source of hydrogen atoms is necessary. In the pyrolysis of 2(5H)-

furanone, one possible hydrogen atom source is rupture of the weakest C−H bond in 2(5H)-

furanone, C5−H, at 333 kJ mol-1 [150], as shown in Scheme 5.5.2. Loss of the hydrogen atom

from this position produces 2-furanyloxy radical, an allylic radical discussed in Chapter 4.

Further decomposition of 2-furanyloxy was shown to produce acetylene, carbon monoxide

and hydrogen atom (see Chapter 4.2). As shown in the PIMS spectra of Fig. 5.3 there is no

signal observed at m/z 83 to suggest evidence for 2-furanyloxy radical. However, as shown
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Figure 5.5: IR spectra also identifies acrolein (CH2=CH-CHO) as a thermal product in the
pyrolysis of approximately 0.1% 2(5H)-furanone at 1100 K (5.1 mmol Ar deposited). Shown
for comparison are reference scans with only Ar passed through a 1100 K SiC reactor (3.5
mmol deposited) and 2(5H)-furanone through at 350 K reactor (3.2 mmol Ar deposited).

in the IR spectra in the right-panel of Fig. 5.6, a feature at 1732.8 cm-1 is observed and is

assigned to the carbonyl stretch (ν4) of 2-furanyloxy radical in Ar (see Fig. 4.6 in Chapter 4.2

and Table C.1 in Appendix C). The lifetime of 2-furanyloxy is likely to be much shorter in

the decomposition of 2(5H)-furanone than in the decomposition of 2-methoxyfuran because

in the case of the furanone, 2-furanyloxy radical is formed at much higher temperatures. The

bond energy to form the allylic radical from 2(5H)-furanone is 333 kJ mol-1 [150] versus the

190 kJ mol-1 O−CH3 bond in 2-methoxyfuran [119].

Another predicted low-energy [149] decomposition pathway of 2(5H)-furanone is by

a H-shift from C5 to C4 followed by simultaneous cleavage of the C2−O1 bond to yield
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Figure 5.6: Minor decomposition products identified by IR. Thin red trace in far-right
spectrum is the observed trace from pyrolysis of 0.04% 2-methoxyfuran in Ar, showing C=O
stretch of 2-furanyloxy radical. In addition to identification of CO (center-panel), a ketene-like
vibrational mode observed in an Ar matrix, assigned to 4-oxo-3-butenal (O=C=CH-CH2-
CHO). Spectra in far left and far right panels are scaled similarly.

an aldehydic ketene, 4-oxo-3-butenal (O=C=CH-CH2-CHO), also with a mass of 84, as

shown in Scheme 5.5.1. The only experimental evidence for the possibility of this species is a

doublet at 2129.8 and 2131.8 cm-1 in the IR which is assigned to O=C=CH-CH2-CHO(ν4)

based on calculations of the harmonic frequencies of this species [149]; authentic samples

of this intermediate are needed to confirm this assignment. As shown in Scheme 5.5.1, a

1,4-hydrogen shift followed by elimination of CO can also form acrolein.

Although the reaction barrier for ring opening of the furanone to O=C=CH-CH2-CHO

(Scheme 5.5.1) was calculated [149] to be about 125 kJ mol-1 lower than the cleavage of the

C5−H bond, the mass spectra show that signals at m/z 84 (and the associated dissociative
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ionization peak at m/z 55) persist at higher temperatures for 2(5H)-furanone than for 2(3H)-

furanone. The persistence of m/z 55 and 84 demonstrate the stability of either 2(5H)-furanone

or the butenal compared to 2(3H)-furanone. The butenal could also be semi-stable and result

in re-formation to the ring form, as depicted in Scheme 5.3.2.

The pyrolysis experiments of 2(3H)-furanone are somewhat complicated by the remain-

ing fraction of 2(5H)-furanone (ratio of 2(3H)-furanone to 2(5H)-furanone approximately

3:1), however, the results of experiments indicate the primary mode for decomposition of

2(3H)-furanone is through Scheme 5.4.1: the formation of acrolein and carbon monoxide.

The source of furanyloxy radical in the pyrolysis of 2(3H)-furanone, as observed in Fig. 5.6

could be from decomposition of the 2(5H) impurity, as in Scheme 5.5.3, or could be formed

from 2(3H)-furanone as in Schemes 5.4.3 and 5.4.4. There is no evidence for the 2-butendial

intermediate in Scheme 5.4.2.

Finally, because there is evidence for the production of hydrogen atoms in the flow tube,

it is possible some of the features observed in both the mass and IR spectra can be assigned

to additional bimolecular reactions beyond the hydrogen atom addition/elimination reactions

that interconvert the furanones. As previously mentioned, at least some of the observed ion

signal at m/z 28 can be assigned to ethylene and further confirmation of this assignment is

the intense feature at 948.4 cm-1 in Fig. 5.4 and to a lesser extent in Fig. 5.5, assigned to

CH2=CH2(ν7) in Ar. Several pyrolysis studies have observed ethylene from heating acrolein

to high temperatures [25]; one route to formation is by catalytic reaction [64] with H-atoms.2

A more thorough discussion of acrolein decomposition is presented in Section 5.4.1.

The ions at m/z 40 in the right-panel of Fig. 5.3 at 1300 K are assigned to methy-

lacetylene (CH3C≡CH) at low temperatures and to allene (CH2=C=CH2) at even higher

temperatures; however the source of these species remains a bit more elusive. The assignment

of methylacetylene is confirmed by infrared spectroscopy at 1100 K, as shown in the left-hand

panel of Fig. 5.6; allene is not detected until the reactor is at 1300 K (not shown). Direct
2 CH2=CH-CHO + H → [CH2CH2-CHO]∗ → CH2=CH2 + HCO → CH2=CH2 + H + CO
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decarboxylation of 2(5H)-furanone to produce methylacetylene unimolecularly (Scheme 5.5.4

was calculated [149] to have a barrier to reaction of about 400 kJ mol-1; assuming this barrier

is accurate to within 20 kJ mol-1, this route seems energetically prohibitive for the conditions

studied here. A more energetically accessible channel could be H-atom addition to the

starting material or to the open-chain form (4-oxo-3-butenal); the loss of CO2 would produce

allyl radical (CH2=CH-CH2), followed by loss of hydrogen atom to give [CH2=C=CH2 


CH3C≡CH].

Experimental evidence for the thermal decomposition mechanism of 2(3H)-furanone

clearly favors the concerted reaction in Scheme 5.4.1, as previously reported by Xu et al. [154]

and confirms predictions of more recent electronic structure calculations [149, 150]. Analogous

to the liquid-phase stability, 2(5H)-furanone was shown to be more stable in the gas-phase

than 2(3H)-furanone. Experimental evidence indicates that consumption of 2(5H)-furanone

proceeds through two primary routes: through interconversion to 2(3H)-furanone by H-atom

addition/elimination reactions, or ring opening to 4-oxo-3-butenal (O=C=CH-CH2-CHO),

and also in small part due to H−C bond-scission to form 2-furanyloxy radical.

5.3 Pyrolysis of α-Angelica Lactone (5-methyl-2(3H)-Furanone)

The primary thermal decomposition products from α-angelica lactone (α-AL) detected

by photoionization mass spectrometry (PIMS) and infrared spectroscopy are methyl vinyl

ketone (MVK, CH3-CO-CH=CH2) and carbon monoxide; analogous to that reported by Xu

et al. [154]. Figure 5.7 shows the resulting photoionization mass spectra (PIMS) observed

at several reactor temperatures for a mixture of approximately 0.1% α-AL in helium. With

the reactor held at 350 K, only the parent ion and the 13C isotope are observed at m/z 98

and 99, respectively. The onset for decomposition is observed at about 1000 K with the

appearance of m/z 70, assigned to methyl vinyl ketone. The small features at m/z 43 and 55

in the spectrum at 1000 K are assigned to dissociative photoionization of m/z 98 or MVK3



98

Figure 5.7: Product mass spectra of α-angelica lactone in a pulsed reactor at several reactor
wall temperatures. Experimentally reported ionization energy by Czekner et al. [30]

(see Fig. 5.11 in Section 5.4.2).

By 1300 K, methyl vinyl ketone becomes thermally unstable and begins to decompose,

breaking the weakest bond (CH3−C(O)CHCH2), producing CH3 (m/z 15) and acryloyl (O=C-

CH=CH2) radicals.4 Acryloyl radical further fragments to CO, H and HC≡CH within the hot

reactor (see Chapter 4.2). Other possible decomposition routes for MVK are described in more

detail in Section 5.4.2; in general, there are several observed products in the mass spectrum

at 1400 K for α-AL that are consistent with the observed products in the decomposition of

MVK up to 1500 K (see Fig. 5.11).
3 ex. C5H6O2 + 118.2nm → [C5H6O+

2 ]∗ → (C3H3O+ + CH3CO) and (C3H3O + CH3CO+)
4 DH298(CH3−C(O)CHCH2) = ∆f H298(CH3) + ∆f H298(OCCHCH2) − ∆f H298(MVK) ≈ 360 kJ mol-1
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Recent electronic structure calculations of α-angelica lactone [149] report another

plausible decomposition route is a hydrogen-shift from C3 to C2 followed by ring opening to

2-pentene-1,4-dione, as shown in Scheme 5.6.2.

Scheme 5.6: Predicted lowest-energy decomposition pathways of α-angelica lactone (5-methyl-
2(3H)-furanone) as calculated by Würmel and Simmie [149]; select reaction barriers included.

The evidence in the IR overwhelmingly points to methyl vinyl ketone as the dominant

thermal product, as shown in Figs 5.8 and 5.9, and also Figs. C.5 through C.7 in Appendix C.

Assignment of the infrared bands of the syn-periplanar and anti-periplanar conformers of

MVK are based on a previous study in an Ar matrix [108]; a comparative table of frequencies

are included in Table C.3 in Appendix C. Based on authentic samples of MVK in Ar, several

combination bands and other features were also identified and are indicated in the spectra

throughout. There is no evidence to suggest the pentene-dione intermediates in Schemes 5.6.2

and 5.6.3; they are either unable to survive the heated reactor, potentially decomposing as

indicated, or this reaction pathway is not thermodynamically favorable at the conditions in

the microreactor and instead most of the reaction proceeds through the concerted process

in Scheme 5.6.1. It is possible α-AL could also interconvert to 5-methyl-2(5H)-furanone

through this open-chain intermediate, similar to the interconversion mechanism proposed [149]

between the unsubstituted compounds, as indicated in Scheme 5.7. Elimination of CO from
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Figure 5.8: Infrared product spectrum of α-angelica lactone (α-AL) compared with α-AL
deposited through reactor at 350 K. Methyl vinyl ketone (MVK) identified in an Ar matrix;
features marked with (*) are not fundamentals of MVK, but are observed from authentic
samples. Approximately 0.1% α-AL in Ar (3.5 mmol Ar deposited).

this species could also be a source of MVK.

Aside from methyl vinyl ketone, there are several features between 1785 and 1850 cm-1,

as shown in Fig. 5.8, which can be attributed to either the anharmonicity of α-AL (ν5), similar

to that observed for 2(5H)-furanone [19], or the other isomers of α-AL found in solution (as

described in the experimental section). The ν(C=O) frequency for β-AL will likely less than

α-AL [97], while ν(C=O) for γ-AL will be larger [53]; suggested assignments of these features

are indicated in Fig. 5.8. Calculated harmonic frequencies [150] and vibrational assignments

of α-angelica lactone in an argon matrix are included in Table C.6 of Appendix C.
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Scheme 5.7: Interconversion to β-angelica lactone (5-methyl-2(5H)-furanone) observed in Xu
study [154]; this isomer could also be a potential source of methyl vinyl ketone [149].

Figure 5.9: Infrared product spectrum of α-angelica lactone (α-AL); MVK identified in an
Ar matrix; features marked with (*) are not fundamentals of MVK, but are observed from
authentic samples. Approximately 0.1% α-AL in Ar.
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5.4 Supporting Mechanisms

5.4.1 Pyrolysis of Acrolein (CH2=CH-CHO) in the Microreactor

As described in Section 5.2, acrolein (2-propenal) is a dominant product in the py-

rolysis of the furanones; for this reason, heating authentic samples of this species in the

microreactor is important to identify any possible thermal products. Acrolein, the simplest

α,β-unsaturated carbonyl, has also been detected in the atmosphere as a product of incom-

plete combustion [129]; one demonstrated method to its formation is CH radical reaction

with acetaldehyde (CH3-CHO) [46].

Scheme 5.8: Acrolein (CH2=CH-CHO) has two possible conformers: s-trans and s-cis; the
s-trans conformer is the most stable. Possible unimolecular and bimolecular decomposition
pathways of acrolein.

Acrolein exists in two forms: s-trans or s-cis, as shown in Scheme 5.8, with the s-trans

conformer being the most stable [16]. The weakest bond in acrolein is the aldehyde H−C bond;

this was estimated by the bond homolysis reaction,5 calculating the difference in enthalpies

of formation between the product and reactants [15, 43]. Most kinetic mechanisms that

include reactions of acrolein (for example [122] and [126]) do not include any unimolecular
5 DH298(H−C(O)CHCH2) = ∆f H298(H) + ∆f H298(OCCHCH2) − ∆f H298(acrolein) ≈ 380 kJ mol-1
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Figure 5.10: Reference mass spectra of dilute samples of acrolein in helium heated in the
pulsed flow reactor up to 1300 K. Ions at m/z 28 and 55 assigned to ion fragments and are
not thermal products.

decomposition schemes, simply because they will not be competitive reactions; instead they

include radical addition or abstraction reactions of this species.

Since the weakest bond in acrolein is very large, at approximately 380 kJ mol-1, one

would guess the PIMS would show very little decomposition until much higher reactor

temperatures. However, the mass spectra in Fig. 5.10 show that acrolein produces an ions at

m/z 28 and m/z 556 at a very low temperature, approximately 900 K. Thermal formation

of ethylene (m/z 28) at such a low temperature does not seem likely. It is possible that a

C2H+
4 cation is formed by dissociative photoionization of acrolein (similar to formation of

m/z 55), however this is also not intuitive given the ionizing photons are 0.023 eV below the

ionization threshold for ethylene (10.487 eV for 9th harmonic of Nd:YAG vs. IE(CH2CH2)
6 C2H3-CHO + 118.2nm → [C2H3-CHO+]∗ → C3H3O+ + H
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= 10.51 eV [153]). One possibility for the formation of m/z 28 from vibrationally excited

acrolein is a multi-photon process of the photoionization event. Acrolein readily absorbs in

the 240−400 nm region [83] and absorption of a photon at 355 nm (3.5 eV) could excite

acrolein to one of three low-lying excited-states [104]. Two-photon absorption processes are

normally assumed to be rare contributors to the distribution of observed product ions in our

photoionization mass spectrometer, however for acrolein this assumption may not be valid.

Improved separation in the ionization region of the spectrometer of the 355 nm fundamental

from the resulting 118.2 nm light may reduce these effects [82].

In addition to the possibility of dissociative ionization forming a cation at m/z 28,

another potential source of ethylene is from reaction of acrolein with H-atoms, as shown in

Scheme 5.8.2. Hydrogen atoms can add to the double bond of the precursor [64], forming an

adduct which can then eliminate CO to give ethylene. Ethylene has been detected in other

pyrolysis studies [25, 64] of acrolein, possibly due to hydrogen atom addition reactions.

When a 0.05% mixture of acrolein in argon was heated and deposited for IR detection,

with the exception of several features in the IR that belong to the s-cis conformer of acrolein

(see Table C.2 in Appendix C.3), little else grows in at temperatures up to 1300 K, indicating

that the ions at m/z 28 do not correspond to a thermal source of ethylene, but rather are

an artifact of the experiment. However, if acrolein is formed in the presence of a thermal

source of hydrogen atoms (as in the decomposition of 2(3H)-furanone in Fig. 5.4), ethylene is

observed in the IR.

5.4.2 Thermal Decomposition of Methyl Vinyl Ketone

Since methyl vinyl ketone (MVK, CH3-CO-CH=CH2) is the dominant product observed

in the thermal cracking of α-angelica lactone, understanding the possible decomposition

pathways of this species is necessary to interpret the high-temperature spectra. Cleavage of the

CH3−CO bond in MVK produces CH3 and acryloyl (O=C-CH=CH2) radicals; the lifetime of

the acryloyl radical is too short to be detected, and by the reactor exit this species fragments
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Scheme 5.9: Possible observed unimolecular decomposition pathways of methyl vinyl ketone.

to acetylene, hydrogen atom and carbon monoxide, as shown in Scheme 5.9.1. Another

possible decomposition route of MVK is tautomerization to the enol, 2-hydroxybutadiene, as

shown in Scheme 5.9.2. Tautomerization could produce acetylene, ketene and hydrogen atom.

Product mass spectra of a heated 0.06% mixture of methyl vinyl ketone in helium, Fig. 5.11,

show that the first sign of methyl radical (m/z 15) and ketene (m/z 42) is at about 1300 K.

Ions at m/z 27, 43 and 55 are assigned to dissociative ionization of MVK and are not the

result of thermal processes.

Decomposition through both channels produce H-atoms, which can then react with

the starting material and produce additional species, as shown in Scheme 5.10. Infrared

spectroscopy in an Ar matrix confirms the identity of m/z 52 as vinylacetylene (CH2=CH-

C≡CH), m/z 56 as a combination of acrolein and methylketene and m/z 40 as combination

of methylacetylene and allene. Analogous to the pyrolysis experiments of α-angelica lactone,

the source of m/z 40 as both methylacetylene and allene is not straightforward. A potential

source is methyl radical addition to vinylacetylene, with loss of vinyl radical, producing a

species at m/z 40.

In general, the pyrolysis products for methyl vinyl ketone observed at high temperatures

are consistent with those observed in the high-temperature (> 1300 K ) pyrolysis of α-angelica

lactone.
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Figure 5.11: Product mass spectra of methyl vinyl ketone in a pulsed reactor at several
reactor temperatures.

Scheme 5.10: Possible hydrogen-atom addition reactions to methyl vinyl ketone.
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Appendix A

Appendix A - Calibration of the Continuous Flow Microreactor

A.1 Measurement of the Mass Discrimination Factors

An estimate of the mass discrimination factors have been determined for flow through

a room temperature reactor, as shown in Fig. A.1. Under operating conditions of 100 sccm

it was found using a calibrated gas mixture containing known quantities of H2, Ar, Kr,

and Xe that Di is roughly proportional to
√

mi/z. A similar approach to estimating mass

discrimination factors was reported earlier [28].

The calibration mixture sampled by 19.0 eV PIMS was a mixture of rare gases and

hydrogen: 9.92% H2 + 0.505% Ar + 0.1014% Kr + 0.1012% Xe in He prepared by Matheson

TRIGAS. The measured ratios in Figs. A.1 and A.2 have also been corrected for the natural

abundance of each isotope: 40Ar = 99.6%, 84Kr = 57.0% and 132Xe = 26.9%. The 1σ

uncertainty limits in the exponent is primarily due to the measurement of H2 at m/z 2. If

another species was included in the calibration mix with a mass between 2 and 40 this would

improve the fit. As shown in Fig. A.1, the experimental data points between 40 and 132 lie

within 10% of the curve fit.

The temperature of the reactant gases will also affect the molecular motion of the

supersonic expansion, impacting the mass discrimination factors. The calibrant mixture was

sampled at five elevated reactor temperatures the the ratios calculated assuming a constant

number density of each species, as shown in Fig. A.2. As the temperature increases this

number density will change, however one would expect this to be constant throughout all
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Figure A.1: Calibrated gas mixture of H2, Ar, Kr and Xe in He sampled by 19.0 eV PIMS.
Flow rate 100 sccm through a 1 mm i.d. by 3.8 cm long reactor at 300 K.

Figure A.2: The same calibrated gas mixture and the ratio measured at five elevated
temperatures.
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mass species. The decrease in the ratio at higher masses and elevated temperatures in Fig. A.2

indicates there may be something more complicated going on in the expansion requiring a

careful calibration or use of an appropriate internal standard for measurements taken over a

range of temperatures.

A.2 Pyrolysis of Cyclohexene as a Chemical Thermometer

Cyclohexene was pyrolyzed as a chemical thermometer to characterize the thermody-

namic conditions and to validate simulations of the fluid dynamics in the µtubular reactor.

The reaction kinetics of the retro-Diels-Alder fragmentation of cyclohexene to ethylene and

1,3-butadiene, shown below, has been used for calibration purposes in shock tube studies [128]:

k(T,P)

m/z 82

H2C CH2
m/z 28

H2C CH CH CH2
m/z 54

For this set of experiments cyclohexene was decomposed in a heated 1 mm x 3.8 cm

silicon carbide (SiC) reactor under continuous flow conditions at 25 sccm He with a reactor

wall temperature between 300−1500 K. A 1:1 gas mixture of cyclohexene:xenon in helium

emerges from the reactor as a skimmed molecular beam at a pressure of approximately 1

µTorr. Tunable VUV photoionization mass spectrometry with synchrotron radiation is used

to detect cyclohexene and its decomposition products relative to the internal standard, Xe.

Fig. A.3 shows thermal decomposition products at 11.0 eV, in addition to products resulting

from dissociative ionization of both reactant and product molecules.

Due to the complications associated with dissociative ionization, only ethylene (m/z 28)

was used to determine the extent of reaction. Dissociative ionization of cyclohexene to m/z

67 and 54 makes it difficult to distinguish between butadiene (m/z 54) produced via reaction

and dissociative ionization of the reactant. Butadiene is also known to fragment to ethylene
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Figure A.3: Mass spectra at 11.0 eV show that cyclohexene thermally decomposes to ethylene
(m/z 28) and 1,3-butadiene (m/z 54) in addition to products resulting from dissociative
ionization. Reactant mixture 0.65% cyclohexene + 0.65% Xe in helium.

(m/z 28) [32] at higher photon energies, and this dissociation was enhanced with increasing

reactor temperature. The level of dissociative ionization as a function of reactor temperature

was estimated in a calibration of only 1,3-butadiene and xenon in He, as shown in Fig. A.4.

Fig. A.5 shows the results of ethylene produced from the thermal decomposition of

cyclohexene in the µtubular reactor at several measured wall temperatures. The raw data

(�) shows that ethylene grows in with increasing temperature. The raw data has also been

corrected (•) for the level of dissociative ionization to ethylene observed in the butadiene/Xe

calibration. However, the 1,3-butadiene produced by thermal dissociation of cyclohexene at a

given temperature is likely to be more vibrationally excited than a molecule of butadiene

in the calibration gas mixture heated to the same temperature, and thus the amount of
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Figure A.4: Dissociative ionization of 1,3-butadiene to ethylene at 11 eV. Signal recorded
as ethylene produced relative to the internal standard, Xe. Calibration mixture of 0.49%
1,3-butadiene + 0.49% Xe in helium.

Figure A.5: Formation of ethylene with respect to Xe from 900−1500 K, including uncorrected
data (�), data corrected for additional ethylene due to dissociative ionization of product
1,3-butadiene (•), and normalized data (•). Reactant mixture was 0.65% cyclohexene and
0.65% Xe in helium.
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dissociative ionization of product butadiene to ethylene is likely to be greater than in the

calibration, as indicated by observed ratio greater than 1 at the upper temperatures. For this

reason, the data plotted as (•) is normalized to 1 at upper temperatures when all reactant

cyclohexene has been consumed.

Figure A.6: Centerline pressure and velocity distribution estimates within the µtubular reactor
as determined by CFD [49]. The centerline residence time was determined by calculating an
average velocity at each segment of the mesh and summing the individual residence times for
each grid point along the length of the reactor.

Computational fluid dynamics (CFD) was used to simulate the flow conditions in the

SiC reactor because we are unable to directly measure the conditions [49]. The measured

inlet pressure to the reactor was 20 Torr and an estimate of the centerline pressure and

velocity distribution along the length of the reactor is shown in Fig. A.6. The information

obtained by CFD provides an estimate of the residence time along the centerline under these

operating conditions of 0.8 to 1.0 ms, which is about a factor of 10 longer than operation of
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the reactor with a flow of 280 sccm He, as is presently done [49].

MultiWell [7] (an RRKM program) was used to calculate k(T ,P ) for the cyclohexene

reaction in the fall-off region, as shown in Fig. A.7. Quantification of the thermal dissociation is

determined by the ethylene signal (C2H4) relative to the starting concentration of cyclohexene,

resulting in a value for the rate constant, k of:

k = −1
τ

ln
(
[C6H10]t
[C6H10]0

)
= −1

τ
ln
(

1− [C2H4]t
[C6H10]0

)
(A.1)

Based on the simulation of the residence time and pressure in the reactor, it is possible to

extrapolate an effective temperature based on the estimated rate constant at these conditions,

calculated as:

k(T,P) = − 1
0.001s ln

(1− 0.89
1

)
≈ 2, 200s−1 (A.2)

From the temperature and pressure dependence of the rate constant, the effective

chemical temperature in the µtubular reactor can be deduced, as shown in Fig A.7. These

experimental results show that the chemical temperature of the molecules along the centerline

in the reactor is about 150 K lower than the measure wall temperature [132].

These early experimental results are promising, however the uncertainties associated

with the simplification of this preliminary analysis are large and there is a need to improve

these estimates. Recent simulations of the flow through the microreactor show that the

low flow rate used for this set of characterization experiments resulted in non-continuum

flow conditions where use of the Navier-Stokes equations do not apply. At these low flow

rate conditions, the flow transitions from continuum to rarefied flow within the reactor,

significantly increasing the difficulty to create an accurate model. For this reason the flow

rate for subsequent experiments has been increased to ensure a large enough pressure-drop

is achieved to choke the flow at the reactor exit and that the fluid can be modeled in the

continuum region throughout the length of the reactor.

Additional studies with chemical thermometers (cyclohexene, norbornene, etc.) using

GC with FID to quantify products are planned in order to reduce the uncertainty associated
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Figure A.7: A sample of MultiWell [7] calculations of k(T ,P ) under relevant thermodynamic
conditions

with using PIMS as a diagnostic technique. The ultimate goal is to integrate the variable flow

conditions in the reactor with a temperature and pressure dependent rate constant k(T ,P )

to create a fully reactive CFD simulation.
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Appendix B - Uncertainty Analysis

There is some level of uncertainty in every laboratory measurement due to a combination

of systematic and statistical errors. It is important to have a grasp on the level of uncertainty

associated with a particular measurement and how that uncertainty propagates when a

reported value is not a single measurement, but rather a function of several variables. The

limits of uncertainty discussed in the dynamics of furan pyrolysis (Chapter 3) is further

detailed here. In general, the combined relative standard uncertainty associated with the

calculated number density ratio of two species can be estimated based on the relative

uncertainty associated with each component in the calculation [31, 95].

Consider an equation of the form

y = Axa
1x

b
2...xp

n (B.1)

where y is calculated as the product of A (a constant) and any number of variables xp
n. The

combined relative standard uncertainty can then be written as:

ur(y) =
√
u2

r(x1) + u2
r(x2) + · · ·+ u2

r(xn) =

√√√√ n∑
i=1

ur(xi) =

√√√√ n∑
i=1

(
u(xi)

|xi|

)
(B.2)

where ur(xi) = u(xi)/|xi| is the relative uncertainty associated with each component xi in

Eq. (B.1).

Considering the number density for a given species ni is of the form

ni =
S+

i

CDiΦ(E)σi(E)
(B.3)
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and only ratios of two species i and j are considered

ni

nj
=
S+

i

S+
j

DjΦjσj

DiΦiσi
(B.4)

it is the relative uncertainty associated with Eq. (B.4) that must be determined.

Since the term in Eq. B.2 is squared, it becomes irrelevant to the uncertainty propagation

if a term is in the numerator or denominator and therefore the combined relative uncertainty

of the calculated ni/nj ratio, assuming the same value of Φ(E) was used, becomes

ur(ni/nj) =
√
u2

r(σi) + u2
r(σj) + u2

r(S
+
i ) + u2

r(S
+
j ) + u2

r(Dj/Di) (B.5)

Uncertainty estimates for the photoionization cross-section σi(E) are available in literature

for each species with a reported cross-section. The measured signal S+
i is calculated by a

summation of the ion counts over a selected mass range. This summation of counts follows

a Poisson process resulting in random variations in the signal. The relative uncertainty

associated with this random variation is estimated as
√
Si/Si, where Si is the observed ion

signal. The larger the signal-to-noise ratio for a given ion peak, the less uncertainty there is

with the signal as measured.

As described in Section 2.3.1, the fit for the mass discrimination factors Di has been

approximated as the
√

mi/z, however the curve fit of the data reported the value of Di =

(mi/z)0.51±0.11. The value of u2
r(Dj/Di) is determined by expanding the limits of the exponent

to its upper and lower limits and calculating how this exponent affects the ratio with different

masses. When comparing similar masses the relative uncertainty of this correction is minimal,

as shown by the values of the relative uncertainty of Di/Dj in Tables B.1 through B.4.

The uncertainty in the responsivity of the photodiode (measured in A W-1) is reported

by the manufacturer (IRD-inc.) to be ± 2% at wavelengths relevant to this work. Although

as described in length in Chapter 3.3, there is an unknown systematic uncertainty with the

photodiode measurements that will require further studies to quantify.

The following tables document the uncertainty in the measurement of the ratios
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indicated for the furan pyrolysis experiments. Note that the temperature in these tables is

reported as the measured wall temperature of the SiC reactor.

Table B.1: Uncertainty in the α-carbene channel measurement: ketene to acetylene ratio
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Table B.2: Uncertainty in the α-carbene to β-carbene channel measurements: low ionization
energies

Table B.3: Uncertainty in the α-carbene to β-carbene channel measurement: acetylene to
carbon monoxide

Table B.4: Uncertainty in the radical to closed-shell channel measurements



Appendix C

Appendix C - Additional Spectra and Tables

C.1 Supplemental Spectra for 2-Methoxyfuran

Figure C.1: FT-IR product spectrum of the CO region produced from heated methoxyfuran
in Ar. Shown for comparison are scans of only Ar through a heated reactor and methoxyfuran
in Ar through a room temperature reactor.
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Figure C.2: FT-IR product spectra show trace absorbance features of methane and the
possibility of furfural due to hydrogen abstraction reactions.

Figure C.3: Photoionization efficiency curves of m/z 83 at 300 K and 950 K deomonstrate
m/z from dissociative ionization of 2-methoxyfuran. Dilute mixture pyroylzed at 950 K (solid
black) also shows rise in signal at 10.2 eV, indicating unreacted methoxyfuran is present.
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C.2 Supplemental Infrared Spectra for Lactones

The following several pages include supporting infrared spectra for the furanone and

angelica lactone pyrolysis experiments.

Figure C.4: Infrared spectra of the carbonyl region of both 2(3H)- and 2(5H)-furanone through
a 350 K or 1100 K reactor (approximately 0.1% reactant in Ar). Assignments of 2(5H)-furanone
from Breda et al. [19]; 2(3H)-furanone assignments guided by the harmonic frequencies of
Würmel et al. [150]; (*) indicates possible satellite features due to the anharmonicity of the
C=O stretch (see Tables C.4 and C.5 in Appendix C).
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Figure C.5: Infrared product spectrum of α-angelica lactone (α-AL); MVK identified in an
Ar matrix. Features marked with (*) are not fundamentals of MVK, but are observed from
authentic samples. Approximately 0.1% α-AL in Ar.
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Figure C.6: Infrared product spectrum of α-angelica lactone (α-AL); MVK identified in an
Ar matrix. Features marked with (*) are not fundamentals of MVK, but are observed from
authentic samples. Approximately 0.1% α-AL in Ar.
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Figure C.7: Infrared product spectrum of α-angelica lactone shows acetylene (HC≡CH)
and trace amounts of methylacetylene (CH3CC≡H) and vinylacetylene (CH2=CH-C≡H).
Approximately 0.1% α-AL in Ar; assignment of vinylacetylene determined by authentic
samples [113].

C.3 Tables of Infrared Frequencies

Included in this section are tables of vibration frequencies for 2-furanyloxy radical,

acrolein, methyl vinyl ketone, 2(5H)-furanone, 2(3H)-furanone and α-angelical lactone (5-

methyl-2(3H)-furanone). The column header ‘IR Ar (Urness)’ refers to observations from

this work.

The tables of frequencies are not included for crotonaldehyde because there are no

strong absorption features observed beyond the carbonyl stretch at 1709.4 cm-1
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Table C.1: Calculated harmonic frequencies of 2-furanyloxy radical [119] and assignments in
Ar.

Calculations: Simmie, Somers, Yasunaga, Curran. 
International Journal of Chemical Kinetics, 45, pp 531-541, 2013

Methoxyfuran/Ar
@ 1000 K

Sym. 
Species

Mode B3LYP 
(Simmie)*

Intensity 
(Simmie)

IR Ar          
(Urness)

a' ν1 3183.2 0
ν2 3171.6 2
ν3 3155.9 0
ν4 1731.6 257 1732.8

1749, 1709**
ν5 1455.8 17 1462.2
ν6 1385.3 27
ν7 1313.1 18 1314

1171, 1169.8**
ν8 1173.8 49 1167.6
ν9 1081.7 3
ν10 1044.4 16
ν11 1019.1 19
ν12 849.5 10
ν13 718.1 30 714.3
ν14 665.8 8
ν15 477.7 1

a'' ν16 875.7 2
ν17 770.6 19 773.0
ν18 718.9 48 714.3
ν19 661.3 7
ν20 512.6 13
ν21 250.4 0

* frequencies scaled by 0.975
** additional bands 

Symmetry: Cs Frequencies in cm-1

HC

HC CH

C
O O

•
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Table C.2: Vibrational frequencies of acrolein in the gas phase [51] and Ar [16, 18, 60].

Sources: Tabulated: Bock, Panchenko, Krasnoshchiokov.  Chem Phys, 125(1), pp 63-75, 1998.
Gas Phase IR: Hamada, Nishimura, Tsuboi.  Chem Phys, 100, pp 365-375, 1985
Ar Matrix IR: Blom, Müller, Günthard.  Chem Phys Letters, 73(3), pp 483-486, 1980.
Ar Matrix IR: Johnstone, Sodeau.  J Chem Soc Faraday Trans, 88(3), pp 409-415, 1992

Sym. 
Species Mode

Approximate 
Assignment

IR Gas 
(Hamada)

IR Ar* 
(Blom)

IR Ar 
(Urness)

IR Gas 
(Hamada)

IR Ar** 
(Blom)

IR Ar 
(Johnstone)

IR Ar 
(Urness)

a' ν1 ν(=CH2) asym. 3103
ν2 ν(C-H) vinyl 3069
ν3 ν(=CH2) sym. 2998
ν4 ν(C-H) formyl 2800 2838
ν5 ν(C=O) 1724 1706 1708.3 1709 1715.7 1714.9

1707.7 1714.3 1714.3
ν6 ν(C=C) 1625 1612 1616.9
ν7 δ(CH2) sc. 1420 1418 1418.9 1402 1405.3
ν8 δ(C-H) formyl 1360 1362 1361.5 1397.7

1359.5
ν9 δ(C-H) vinyl 1275 1276.1 1276.1 1288 1285 1286.7
ν10 ν(C-C) 1158 1157.2 1157.3 919 935 914.8 914.3?

916.6 917.6?
ν11 ρ(=CH2) 912 910.3 1056 1052.4

908.8
ν12 δ(O=C-C) 564 669 672.4
ν13 δ(C=C-C) 324 284

a'' ν14 γ(C-H) vinyl 993 1001 999.6 990 985.4 984.3
ν15 γ(C-H) formyl 972 989 - 1005.9
ν16 γ(=CH2) 959 965 957.7 968 978 970.0 968.2
ν17 τ(=CH2) 593 542 550 546.3
ν18 τ(C-C) 158

ν = stretching γ = wag *read from Fig 1 of Blom and inferred from text
δ = bending/deformation ** tabulated values in Bock
ρ = rocking τ = torsion

trans-CH2=CH-CHO / cm-1 cis-CH2=CH-CHO / cm-1Symmetry: Cs
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Table C.3: Vibrational frequencies of methyl vinyl ketone in the gas phase [36] and in Ar [108].
Conformers: ap = antiperiplanar, sp = synperiplanar
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Table C.4: Calculated harmonic frequencies of 2(5H)-furanone [150] and assignments in
Ar [19].

Sources:
Ar Matrix: Breda, Reva, Fausto. Journal of Molecular Structure 887 (2008) 75-86

Calculations:  Würmel, Simmie. J Phys Chem A 118 (2014) 4172-4183

Sym. 
Species Mode

IR Ar     
(Breda)

Intensity 
(Breda)

B3LYP 
(Simmie)*

Intensity 
(Simmie)

IR Ar 
(Urness)

a' ν1 - 3216 0 -
ν2 - 3178 2 -
ν3 2877.9 7.9 2998 23 2877.9
ν4 1796.8, 1793.5 479.2 1844 448 1796.9, 1793.5
** 1925.5, 1827.2 11.2, 3.7 1925.5, 1827.3
** 1823.0, 1805.5 6.8, 11.8 1823.0, 1805.7
** 1780.3, 1751.2 33.6, 36.7 1780.5, 1751.3
** 1726.7 12.4 1726.6
ν5 1610.8 3.1 1643 7 1610.8
ν6 1454.4 15.2 1476 7 1454.6

1362.6 4.8 1362.6
ν7 1343.6 18.1 1352 7 1343.6
ν8 1330.3 8 1335 11 1330.3
ν9 1142.2 103.3 1130 61 1142.3
ν10 1097.6 73.4 1098 80 1097.9
ν11 1043.1 70.3 1046 51 1043.1
ν12 938.4 4.3 936 1 938.3

881.6 1.9 881.8
ν13 866.5 49.2 862 43 866.5

813 2.5 812.9
ν14 783.2 3.7 785 2 783.2
ν15 687.2 3.7 689 3 687.3
ν16 - 490 3 -

a" ν17 2935.1 5.5 3029 15 2935.3
ν18 1164.9, 1159.0 11.2 1192 0 1164.8, 1159.3
ν19 1008.3 6.8 1018 8 1008.2
ν20 938.4 4.3 960 4 938.3
ν21 804.9 51 810 47 805.0
ν22 660.4 6.8 668 6 660.6
ν23 - 346 6 -
ν24 - 204 0 -

* frequencies scaled by 0.99
** satellite bands of ν4

Symmetry: Cs Frequencies in cm-1

H2C

HC CH

C
O O
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Table C.5: Calculated harmonic frequencies of 2(3H)-furanone [150] and assignments in Ar.

Calculations: 
 Würmel, Simmie. J Phys Chem A 118(23) (2014) 4172-4183

Sym. 
Species Mode

B3LYP 
(Simmie)*

Intensity 
(Simmie)

IR Ar 
(Urness)

a' ν1 3229 4 -
ν2 3205 0 -
ν3 3014 6 -
ν4 1874 379 1818.2
** 1764.8, 1767.1
** 1800.6, 1821.9
** 1866.7
ν5 1656 27 1618.1
ν6 1427 11 1403.5
ν7 1352 5 1345.5
ν8 1269 21 1256.3

1245.4
ν9 1160 61 1150.2
ν10 1086 91 1093.2
ν11 1040 138 1039.1
ν12 975 25 982.9

979.3, 975
ν13 833 29 831.0
ν14 800 23 803.5
ν15 669 8 669.9
ν16 487 2 -

a" ν17 3042 3 -
ν18 1152 4 1149.4 (sh)
ν19 954 0 -
ν20 912 2 -
ν21 721 23 708.0
ν22 565 18 -
ν23 438 13 -
ν24 172 2 -

* frequencies scaled by 0.99
** satellite bands of ν4

Symmetry: Cs Frequencies in cm-1

HC

HC CH2

C
O O
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Table C.6: Calculated harmonic frequencies of α-angelica lactone [150] and assignments in
Ar.

Calculations: 
 Würmel, Simmie. J Phys Chem A 118(23) (2014) 4172-4183

Sym. 
Species Mode

B3LYP 
(Simmie)*

Intensity 
(Simmie)

IR Ar       
(Urness)

a' ν1 3205 3 -
ν2 3094 13 -
ν3 3009 11 2940.7
ν4 3002 14 2935.2
ν5 1871 396 1822.1

1842.1
ν6 1714 40 1687.4

1690.7
ν7 1473 7 1447.3
ν8 1431 8 1406.6
ν9 1408 13 1387.9
ν10 1307 31 1296, 1292
ν11 1276 38 1265.3
ν12 1189 56 1187.8
ν13 1089 153 1093.3

1103.5, 1100.1
ν14 1022 4 1015.1
ν15 974 31 974.3
ν16 937 110 939.8
ν17 824 28 826.4
ν18 693 6 695
ν19 597 5 599.8
ν20 512 4 -
ν21 294 0 -

a" ν22 3053 11 -
ν23 3035 4 2975.8
ν24 1456 9 1433.6
ν25 1150 2 1144.2, 1130.5
ν26 1062 3 1044, 1043
ν27 955 0 -
ν28 749 30 732.6
ν29 594 4 -
ν30 517 2 -
ν31 233 8 -
ν32 183 3 -
ν33 147 0 -

* frequencies scaled by 0.99

Symmetry: Cs Frequencies in cm-1

C

HC CH2

C
O OH3C
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