
EFFICIENT AND ROBUST AIRCRAFT LANDING TRAJECTORY

OPTIMIZATION

A Thesis
Presented to

The Academic Faculty

by

Yiming Zhao

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
Daniel Guggenheim School of Aerospace Engineering

Georgia Institute of Technology
May 2012

EFFICIENT AND ROBUST AIRCRAFT LANDING TRAJECTORY

OPTIMIZATION

Approved by:

Professor Panagiotis Tsiotras, Advisor
Daniel Guggenheim School of Aerospace
Engineering
Georgia Institute of Technology

Professor Magnus B. Egerstedt
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Professor Eric Feron
Daniel Guggenheim School of Aerospace
Engineering
Georgia Institute of Technology

Professor Ryan P. Russell
Daniel Guggenheim School of Aerospace
Engineering
Georgia Institute of Technology

Professor John-Paul Clarke
Daniel Guggenheim School of Aerospace
Engineering & H. Milton Stewart School
of Industrial and Systems Engineering
Georgia Institute of Technology

Professor Eric N. Johnson
Daniel Guggenheim School of Aerospace
Engineering
Georgia Institute of Technology

Date Approved: January. 2012

To my family

iii

ACKNOWLEDGEMENTS

It is my pleasure to thank so many people who made this thesis possible. First and foremost,

I would like to thank my supervisor, Dr. Tsiotras, for his valuable advice and constant

encouragement throughout the years of my Ph.D. study. His scholarly independent thinking

and the pursuit of theoretical rigor have greatly influenced my research. It has always been

an enjoyable experience to listen to his lectures and make discussions because of his excellent

style of explaining complicated things in a surprisingly clear and simple way. In particular,

I would like to thank him for his great support throughout my whole thesis-writing period,

which are very much appreciated. My gratitude to him could never be overstated.

I would like to thank the members of my committee Dr. Eric Johnson, Dr. Eric Feron,

Dr. Ryan Russell, Dr. John-Paul Clarke, and Dr. Magnus Egerstedt for their insightful

comments and suggestions. They provided valuable opinions on promising research direc-

tions, and have inspired me to explore deeper in some subjects of my research. I would also

like to thank Dr. Amy R. Pritchett for her guidance in cognitive engineering and air traffic

control while I worked in the Cognitive Engineering Center at Georgia Tech in the early

years of my graduate study.

I am indebt to those great teachers at Georgia Tech from whom I was fortunate enough

to take some of the finest classes, including Dr. Olivier Bauchau (Advanced Dynamics),

Dr. J.V.R. Prasad (Flight Dynamics), Dr. Wassim Haddad (Nonlinear System, and Robust

Control), Dr. Panagiotis Tsiotras (Robust Control, and Optimal Guidance and Control),

Dr. Magnus Egerstedt (Network Control), Dr. John-Paul Clarke (Air Traffic Control), and

Yorai Wardi (Linear System), just to name a few.

I wish to thank my fellow student colleagues who built up a lively and fun environment

during the lengthy process towards accomplishing this thesis. I have enjoyed my conversa-

tion and time with Dongwong Jung, Sachin Jain, Atri Dutta, Raghvendra Cowlagi, Stathis

Bakolas, Oktay Arslan, Dae-Min Cho, Yunpeng Pan, Daniel Kuheme, Imon Chakraborty,

iv

Nuno Filipe, Liang Du, Hancao Li, Tim Wang, Claus Christmann, Mehrdad Pakmehr,

Jenna Stahl, So Young Kim, Jean-Francois Castet, Keumjin Lee, etc. I am also grateful to

Qing Hui, Seung Man Lee, and Karen Feigh for their inspiration in different stages of my

Ph.D. study.

Last, but the most, thank my family, especially my wife, for always encouraging and

supporting me to pursue my interest. This thesis is devoted to them.

v

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . x

LIST OF FIGURES . xi

SUMMARY . xiv

I INTRODUCTION . 2

1.1 Motivation . 2

1.2 Problem Statement . 4

1.3 Review of Trajectory Optimization Techniques 8

1.3.1 Motion Planning . 8

1.3.2 Differential Flatness and Inverse Dynamics 10

1.3.3 Optimal Control and Mesh Refinement 12

1.3.4 The Hierarchical Approach: Path Smoothing and Optimal Path
Tracking . 16

1.4 Previous Research on Aircraft Trajectory Optimization 19

1.4.1 Fuel and Range Optimization . 19

1.4.2 Performance Optimization . 20

1.4.3 Emergency Landing Trajectory Planning 21

1.4.4 Other Aircraft Trajectory Optimization Problems 22

1.5 Thesis Outline and Statement of Contributions 23

II A MESH REFINEMENT METHOD USING DENSITY FUNCTIONS

FOR SOLVING NUMERICAL OPTIMAL CONTROL PROBLEMS 27

2.1 Introduction . 27

2.2 Problem Statement and Nonlinear Programming Formulation 29

2.2.1 Density Function and Mesh Generation 30

2.2.2 Selection of Density Function . 32

2.3 A Density Function with the Best Piecewise Linear Interpolative Approxi-
mation of Piece-wise Smooth Planar Curves 33

2.4 Costate Estimation . 43

vi

2.4.1 Discretized Optimal Control Problem 44

2.4.2 Costate Estimates . 45

2.4.3 Numerical Example . 47

2.5 Density Function-based Mesh Refinement Algorithm (DENMRA) 48

2.5.1 Major Steps of DENMRA . 49

2.5.2 Technical Details . 50

2.6 Numerical Examples . 52

2.6.1 Minimum Energy for Double Integrator 53

2.6.2 Hypersensitive Problem . 56

2.6.3 Optimal Aircraft Landing Trajectory with Limited Thrust 60

2.7 Summary . 62

III PATH SMOOTHING USING ITERATIVE QUADRATIC PROGRAM-

MING . 65

3.1 Background . 65

3.2 Curve Representation . 67

3.3 Path Variation . 70

3.4 Quadratic Programming Formulation for the Path Smoothing Problem . . 70

3.4.1 A Quadratic Cost Function . 71

3.4.2 Path Length Constraint . 74

3.4.3 Curvature Constraints . 76

3.4.4 Bounds on the Variation and Collision Avoidance 78

3.4.5 Initial and Final Condition . 80

3.4.6 Connection to Beam Theory . 81

3.5 Path Smoothing Algorithm . 81

3.5.1 Discrete Evolution and the Path Smoothing Algorithm 81

3.5.2 Reconciling Conflicts Between Variation Bounds and Constraints . 84

3.6 Numerical Examples . 85

3.6.1 Fixed Length Path Smoothing with Collision Avoidance 85

3.6.2 Path Smoothing with Localized Curvature Bounds 87

3.7 Conclusions . 87

vii

IV TIME-OPTIMAL PATH TRACKING OPERATION FOR FIXED-WING

AIRCRAFT . 89

4.1 Introduction . 89

4.2 Mathematical Preliminaries . 91

4.3 The Admissible Kinetic Energy Set . 97

4.3.1 Lift Coefficient Constraint . 98

4.3.2 Bank Angle Constraint . 99

4.3.3 Summary of Algebraic Constraints 101

4.3.4 Topological Properties of the Admissible Velocity Set 102

4.3.5 Thrust Constraint . 104

4.4 Optimal Control Formulation . 104

4.5 Two Numerical Algorithms for Finding the Optimal Control 111

4.5.1 Algorithm I . 114

4.5.2 Algorithm II . 116

4.6 Numerical Examples . 116

4.6.1 Landing Path with Two Turns . 117

4.6.2 Time Optimal Path . 121

4.7 Conclusions . 127

V ENERGY-OPTIMAL LANDING PATH TRACKING WITH FIXED

TIME OF ARRIVAL . 129

5.1 Introduction . 129

5.2 Aircraft Dynamics and Simplified Problem 132

5.3 Energy-Optimal Path Tracking with Fixed Time of Arrival 134

5.3.1 Fuel-Optimal and Energy-Optimal Problem Formulation 134

5.3.2 Optimality Conditions . 136

5.3.3 Optimality of the Singular Arcs . 139

5.3.4 Optimal Switching Structure Involving Singular Arcs 139

5.3.5 Optimal Switching Structure Involving State-Constrained Arcs . . 142

5.4 An Energy-Optimal Path-Tracking Algorithm 150

5.5 Numerical Examples . 152

5.6 Conclusions . 156

viii

VI INITIAL GUESS GENERATION FOR LANDING TRAJECTORY OP-

TIMIZATION . 158

6.1 Feasible Landing Trajectory Generation . 158

6.2 A Three Dimensional Landing Path Primitive Generation Method 163

6.2.1 The Minimal Length Curve Problem in the Horizontal Plane 164

6.2.2 Vertical Descent Profile Generation 165

6.3 Simulation Results . 168

VII CASE STUDIES IN EMERGENCY LANDING TRAJECTORY OPTI-

MIZATION . 174

7.0.1 The Case of Swissair Flight 111 . 175

7.0.2 The Case of US Airways Flight 1549 184

VIIICONCLUSIONS . 189

8.1 Summary . 189

8.2 Challenges for the Application of Onboard Flight Trajectory Optimization 192

8.3 Directions of Future Work . 193

8.3.1 Interaction Between Path Smoothing and Time Parameterization
Methods . 193

8.3.2 Path Tracking via Convex Optimization 194

8.3.3 Trajectory Generation in a Environment with Moving Obstacles . . 196

8.3.4 Three-Dimensional Collision-Free Path Primitive Generation 197

APPENDIX A — COMPUTATION OF MATRICES FOR PATH SMOOTH-

ING . 198

REFERENCES . 200

VITA . 210

ix

LIST OF TABLES

1 Comparison of precision and optimality. 55

2 Comparison of resolution. 56

3 Hypersensitive problem, robustness test. 59

4 Hypersensitive problem, optimality test. 59

5 Parameters for the DC9-30. 61

6 Runway layout table. 62

x

LIST OF FIGURES

1 Statistical summary of commercial jet airplane accidents. 2

2 NASA Resilient Aircraft Emergency Planning Architecture. 4

3 Density functions and corresponding distribution of grid points. 32

4 Approximation error in terms of the L1-norm, for a curve Γ of constant
curvature. 35

5 L1-norm of the approximation error on [si−1, si] for a C3-smooth curve. . . 41

6 Costate history: λx. 48

7 Costate history: λy. 48

8 Hamiltonian history. 49

9 Mesh refinement, SOCS, ℓ = 0.05. 54

10 Mesh refinement, DENMRA, ℓ = 0.05. 54

11 DENMRA solution, tf = 100, 000. 58

12 3D glider landing trajectories generated in DENMRA. 63

13 2D projection of glider landing trajectories generated in DENMRA. 64

14 Cubic spline interpolation. 68

15 Quadratic programming path smoothing. 83

16 Curvature evolution. 84

17 Path smoothing in the presence of obstacles. 85

18 Curvature profile comparison. 86

19 Optimal speed profile. 86

20 Smoothed path with local curvature constraint. 87

21 Decomposition of W when it is not simply connected. 103

22 Speed variation for the proof of Proposition 4.4.2. 109

23 Thrust variation for proof of Proposition 4.4.2. 110

24 Elements for the optimal E . 114

25 Algorithm comparison . 117

26 3D Geometric Trajectory. 118

27 X-Y plane projection of the geometric trajectory. 118

28 Optimal speed profile under path coordinate. 119

xi

29 Time history of optimal speed. 119

30 Optimal thrust. 120

31 The states and control histories of the time parameterized trajectory. 121

32 Comparison of the original geometric path(dots) and the path generated
using time parameterization and inverse dynamics(line). 122

33 the min-time trajectory. 123

34 X-Y plane projection of the min-time trajectory. 123

35 Optimal speed profile under path coordinate (DENMRA). 124

36 Time history of optimal speed (DENMRA). 124

37 Speed comparison. 125

38 Control comparison: CL. 125

39 Control comparison: φ. 126

40 Control comparison: throttle. 126

41 Optimal switching structures . 141

42 Non-optimal switching structures . 141

43 3D Geometric Trajectory. 152

44 X-Y plane projection of the geometric trajectory. 153

45 Energy-optimal speed profiles with different TOA, path coordinate domain. 154

46 Energy-optimal speed profiles with different TOA, time domain. 154

47 Energy-optimal control histories with tf = 800 s. 155

48 Energy-optimal control histories with tf = 1400 s. 155

49 Comparison of fuel-optimal and energy-optimal speed profiles, tf = 800 s and
tf = 1000 s. 156

50 Comparison of fuel-optimal and energy-optimal speed profiles, tf = 1200 s
and tf = 1400 s. 157

51 Hierarchical approach to feasible trajectory generation. 159

52 Schematic of landing trajectory optimization. 162

53 Vertical profile generation, Case 1. 166

54 Vertical profile generation, Case 2. 167

55 Vertical profile generation, Case 3. 168

56 Vertical profile generation, Case 4. 168

57 Trajectory comparison, case 1. 170

xii

58 Trajectory comparison, case 2. 170

59 Trajectory comparison, case 3. 170

60 Optimality comparison: time-optimal tracking trajectory v.s. numerical op-
timization with TP initial guess. 172

61 Optimality comparison: numerical optimization results, TP initial guesses
v.s. affine initial guesses. 173

62 Swissair flight 111 trajectory, a top view. 177

63 Swissair flight 111 trajectory, a bird view. 178

64 Minimum-time trajectories along the Swissair flight 111 trajectory, a top view.179

65 Minimum-time trajectories along the Swissair flight 111 trajectory, a bird view.179

66 Minimum-time speed profile, ts = 620. 180

67 Minimum-time path angle profile, ts = 620. 180

68 Minimum-time heading angle profile, ts = 620. 181

69 Minimum-time lift coefficient profile, ts = 620. 181

70 Minimum-time bank angle profile, ts = 620. 182

71 Minimum-time throttle profile, ts = 620. 182

72 The excessive time te v.s. the start time ts of optimal landing trajectories. . 183

73 US-1549 Hudson River landing trajectory, a top view. 186

74 US 1549 Runway-4 landing. 187

75 US 1549 Runway-31 landing . 187

76 US 1549 Runway-13 landing. 187

77 US 1549 Runway-22 landing. 188

xiii

SUMMARY

This thesis addresses the challenges in the efficient and robust generation and optimiza-
tion of three-dimensional landing trajectories for fixed-wing aircraft subject to prescribed
boundary conditions and constraints on maneuverability and collision avoidance. In partic-
ular, this thesis focuses on the airliner emergency landing scenario and the minimization of
landing time.

The main contribution of the thesis is two-fold. First, it provides a hierarchical scheme
for integrating the complementary strength of a variety of methods in path planning and
trajectory optimization for the improvement in efficiency and robustness of the overall
landing trajectory optimization algorithm. The second contribution is the development of
new techniques and results in mesh refinement for numerical optimal control, optimal path
tracking, and smooth path generation, which are integrated in the hierarchical scheme and
applied to the landing trajectory optimization problem.

A density function based grid generation method is developed for the mesh refinement
process during numerical optimal control. A numerical algorithm is developed based on this
technique for solving general optimal control problems, and is used for optimizing aircraft
landing trajectories. A path smoothing technique is proposed for recovering feasibility of
the path and improving the tracking performance by modifying the path geometry. The
optimal aircraft path tracking problem is studied and analytical results are presented for
both the minimum-time, and minimum-energy tracking with fixed time of arrival. The
path smoothing and optimal path tracking methods work together with the geometric path
planner to provide a set of feasible initial guess to the numerical optimal control algorithm.

The trajectory optimization algorithm in this thesis was tested by simulation experi-
ments using flight data from two previous airliner accidents under emergency landing sce-
narios. The real-time application of the landing trajectory optimization algorithm as part
of the aircraft on-board automation avionics system has the potential to provide effective
guidelines to the pilots for improving the fuel consumption during normal landing process,
and help enhancing flight safety under emergency landing scenarios. The proposed algo-
rithms can also help design optimal take-off and landing trajectories and procedures for
airports.

xiv

TABLE OF CONTENTS

1

CHAPTER I

INTRODUCTION

1.1 Motivation

According to statistical data of civil aviation (including commercial airline and general avi-

ation) in the United States in the year 2008, an average of 92 touch-downs happened in

each minute nationwide, which summed up to more than 48 million touch-downs through-

out the whole year [2]. Considering the large number of landing operations and the low

fuel efficiency in the current “stair case” descend phase, the implementation of optimal

landing trajectories is expected to substantially improve the operational efficiency and the

greenhouse gas footprint of current aviation systems.

12 11 8
4

9
4

10 12
19

3

703 663

548

1000

199

703
632

550

0

200

400

600

800

1000

1200

0

20

40

60

80

100

Taxi,load/unload

parked,tow

Take off Initial climb Climb Cruise Descent Initial approach Final approach Landing

Fatal accidents Onboard fatalities

Emergency Landing

9%

4%
10% 4%

11%

13%
21%

12%

13%

0%

14%

13%

11%
20% 4%

14%

13%
11%

45%

38%

0% 1% 1% 14% 57% 11% 12% 3% 1%

Exposure (time)

Fatal accidents

Onboard fatalities

Figure 1: Statistical summary of commercial jet airplane accidents.

In addition to the obvious economic and environmental benefits, another strong motiva-

tion for flying optimized aircraft trajectories is the potential for safety record improvement

in case of emergency landing. Figure 1 shows the distribution of fatal accidents and onboard

fatalities worldwide according to the phase of flight from 2000 to 2009 [7] (the exposure as

2

the percentage of flight time for different phases is estimated for an 1.5 hour flight). As

shown in the figure, about 38% of onboard fatalities happen during the approach and land-

ing phases, which is a considerable portion, especially considering the relatively short time

span spent in those phases. Furthermore, when an accident happens during other flight

phases such as during climb or cruise, an emergency landing procedure should also be initi-

ated shortly as long as the aircraft does not completely lose its maneuverability. Therefore,

effective automation aids for emergency landing process optimization can provide valuable

help such that the pilot can provide fast and proper response to accidents in all flight phases.

Reference [7] records a total of 89 fatal accidents between 2000 and 2009, with 58% of

those accidents categorized as loss-of-control in flight (including the engine thrust), con-

trolled flight into terrain, runway excursion, undershoot and overshoot, etc, which are re-

lated to inadequate or inappropriate control inputs to the aircraft. Some of these accidents

may not have been fatal should the pilots had been able to quickly plan and execute a safe

landing trajectory by implementing appropriate control inputs.

One of the fatal accidents that could possibly have been remedied by pursuing a timely

generated optimal landing trajectory is the case of Swissair flight 111, which was on a

scheduled flight from JFK, New York City to Geneva, Switzerland on September 2, 1998,

and crashed en route near Halifax after an infight fire accident. The pilots were not able to

plan and execute a proper landing trajectory during the very short time window in which

the initiation of an emergency descent could possibly have saved the aircraft.

A recent inspiring success story of an emergency landing is the US Airways 1549’s crash-

landing into Hudson River, on January 15, 2009. The Airbus A320 aircraft lost thrust in

both engines during its climbing phase after encountering and striking a flock of birds. The

captain, who happened to be an experienced glider pilot, successfully landed the aircraft

on the Hudson river without a single casualty.

As demonstrated by these incidents, the emergency landing scenario requires (but is not

limited to) the evaluation of the aircraft performance, the selection of a landing site, the fast

construction of a feasible (at least close to) optimal landing trajectory, and the execution of

such a trajectory. These tasks require intensive computations, comparison, and evaluation

3

of various alternative plans, and must be accomplished within a very limited time. Such

tasks can be processed effectively by automation tools with efficient and robust trajectory

optimization algorithms.

This thesis focuses on the problem of efficient and robust aircraft landing trajectory

planning having as the motivation of future onboard avionics implementation for more

efficient flight and safer landing (especially during emergencies). This work fits into NASA’s

resilient aircraft emergency planning architecture with integrated trajectory planning, as

shown in Fig. 2, and aims to function as a core component in the Intelligent Flight Planning

and Guidance module in the Flight Management System (FMS).

Vehicle

Testbeds

Adaptive Flight

Control

Adaptive

Guidance

Real-Time

System ID

Emergency

Planning

Pilot

IIFD

IVHM

Maneuvering

Envelope ID

Trajectory

Planning

Adaptive

Engine Control

Adaptive ASE

Augmentation

Aeroelastic, Static and

Dynamic Load

Constraints

Algorithm Validation and

Risk Assessment

AAD

Intelligent Flight Planning & Guidance

Damage

Modelling

Figure 2: NASA Resilient Aircraft Emergency Planning Architecture.

1.2 Problem Statement

In this section we will state the problems addressed in this dissertation. Before proceeding,

it is convenient to distinguish between the words curve/path and trajectory, which are used

throughout this thesis. A curve/path is a purely geometrical concept and consists of a one-

dimensional continuum of points. A trajectory is a curve/path along which the coordinates

are given as functions of the time [126].

In this thesis we consider the movement of an aircraft in a three dimensional geometric

space G ⊆ R
3. The set O ⊂ G represents the collection of obstacles. The full state x of the

aircraft, which completely describe the configuration and instantaneous movement of the

aircraft, belongs to a state space, which is denoted by X . Let xG denote the components of

4

x which belong to the geometric space G.

The time evolution of the state variable x(t) depends on the initial condition x(t0) =

x0 ∈ X at the start time t0 ∈ R, and is affected by the control input u ∈ U , as described by

a set of ordinary differential equations as follows

ẋ(t) = f(x(t), u(t)), (1)

where t ∈ [t0, tf] ⊆ R, U is the set of admissible controls, and f is a sufficiently smooth

vector-valued function, such that there is a unique solution to the previous set of differential

equations.

In is often required that the state x and control u must satisfy certain constraints rep-

resenting the flight envelop of the aircraft, such as load factor constraint, speed constraint,

etc. These constraints are typically enforced as algebraic, and pointwise-in-time constraints,

in the form

C(x(t), u(t)) ≤ 0, t ∈ [t0, tf]

where C is a real vector-valued function and the inequality is enforced component-wise.

Problem 1.2.1 (Feasible Trajectory Generation). Given the initial and final conditions x0,

xf ∈ X , the initial time t0 ∈ R, determine the final time tf , the control input u(t) ∈ U and

the corresponding state history x(t) for t ∈ [t0, tf] such that

1. x(t0) = x0 and x(tf) = xf , and

2. for all t ∈ [t0, tf],

ẋ(t) = f(x(t), u(t)), (2)

C(x(t), u(t)) ≤ 0, (3)

xG(t) ∈ G \ O. (4)

Sometimes it is desirable that the generated trajectory is not only feasible, but also has

good performance, which can be measured by a certain functional of the state and control

variables, denoted by

J(x, u) =

∫ tf

t0

L(x(t), u(t)) dt. (5)

5

Hence, we have the following trajectory optimization problem:

Problem 1.2.2 (Trajectory Optimization). Given the initial and final conditions x0, xf ∈

X , initial time t0 ∈ R, determine the final time tf , the control input u(t) ∈ U and the

corresponding state history x(t) for t ∈ [t0, tf] which minimize the cost function J(x(·), u(·))

and satisfy

1. x(t0) = x0 and x(tf) = xf , and

2. For any t ∈ [t0, tf],

ẋ(t) = f(x(t), u(t)),

C(x(t), u(t)) ≤ 0,

xG(t) ∈ G \ O.

Solving Problem 1.2.2 is not an easy task. More often than not, the required amout

of computations prohibit any attempt to solve Problem 1.2.2 in real-time. Thus, for real-

time applications it may be more practical to accept a reasonably suboptimal trajectory.

For many physical systems, the task of trajectory generation and optimization can be

decomposed into two layers: the geometric layer, and the dynamics layer. It is possible

to find a suboptimal solution to Problem 1.2.2 by solving Problem 1.2.1 on the geometric

layer and the dynamics layer separately with certain (possibly heuristic) consideration of

optimality on each layer. The planning result on each individual layer can help improve

the performance of the final trajectory. Such an approach can be classified as hierarchical

motion planning, which will be briefly discussed in the next section. Here we define two

optimization problems which can be applied to suboptimal trajectory generation using a

hierarchical approach.

For many non-holonomic systems such as car and aircraft, the path geometry has critical

influence on the feasibility and performance of path tracking. For example, a discontinuity

in the derivative of the path may correspond to a sudden change of the speed vector,

which would render the path infeasible (no admissible control inputs exist for following

such a path exactly). Besides, for two paths with the same length, and the same initial

6

and final positions, better tracking performance can usually be achieved with the smoother

path [41, 139]. One way of improving the smoothness of a path is to solve the following

variational problem, which regulates the curvature of the path:

Problem 1.2.3 (Path Smoothing). Let r(s) ∈ G \O be a collision-free path parameterized

by its path length s ∈ [s0, sf] ⊂ R. Consider a variation δr of r, and denote the new

perturbed path by r̃. Let κ̃(s) be the curvature of the perturbed path r̃ at s. Let w :

[s0, sf] 7→ R+ be a weight function. Find the variation δr such that

1. (Collision Avoidance) The perturbed path r̃(s) = r(s) + δr(s) ⊂ G \ O, for any

s ∈ [s0, sf],

2. (Boundary Conditions) r̃(s0) = r(s0), r̃(sf) = r(sf),

3. (Local Curvature Constraint) κmin(s) ≤ κ̃ ≤ κmax(s), where κmin(s) and κmax(s) are

specified bounds on curvature at s, and

4. The following integral is minimized

∫ sf

s0

w(s)κ̃2(s)ds (6)

Problem 1.2.3 is a purely geometric problem. The dynamics of the system is not ad-

dressed in the process of solving Problem 1.2.3, although it is expected that the minimization

of (6) will result in a reasonably good tracking performance, measured by (5).

The following optimization problem is on the dynamics layer with fixed path geometry:

Problem 1.2.4 (Optimal Time Parameterization/Tracking of a Geometric Path). Given

the initial and final conditions x0, xf ∈ X , initial time t0 ∈ R, let r(s) ∈ G\O be a geometric

path parameterized by its path length s ∈ [s0, sf] ⊂ R. Determine the final time tf , the

control input u(t) and the corresponding state history x(t) for all t ∈ [t0, tf] that minimize

the cost function J(x, u) and satisfy

1. (Boundary Conditions) x(t0) = x0 and x(tf) = xf , and

7

2. (Dynamics and Path Constraints) for any t ∈ [t0, tf],

ẋ(t) = f(x(t), u(t)),

C(x(t), u(t)) ≤ 0,

3. (Path Tracking) There exists a strictly monotone mapping ν : [s0, sf] 7→ [t0, tf] with

ν(s0) = t0 and ν(sf) = tf such that xG(ν(s)) = r(s), s ∈ [s0, sf].

1.3 Review of Trajectory Optimization Techniques

Problem 1.2.2 can be addressed either as an optimal control problem, or a motion plan-

ning problem. Roughly speaking, motion planning methods can easily deal with complex

geometric constraints, such as obstacles, but their capability for dealing with vehicle dy-

namics is less developed, as compared to the optimal control approach. Other techniques

such as differential flatness and hybrid/hieararchical methods can also be applied to trajec-

tory generation and optimization. Next, we go through a brief review of these trajectory

optimization techniques.

1.3.1 Motion Planning

Motion planning is a term commonly used in robotics and artificial intelligence, referring

frequently to the planning of the motion of a robot in a two or three dimensional space

containing obstacles [79]. Specifically, motion planning means the generation of a plan

for moving a system from one location to another location in the configuration space to

accomplish a task, while avoiding collisions with obstacles or other undesirable behaviors.

It may also be required that the plan makes efficient use of the available resources to achieve

the goal by optimizing a certain cost [50].

Early motion planners did not take dynamics into account. Instead, they only consid-

ered the geometry of the robot and the obstacles. A considerable amount of effort in motion

planning had thus been devoted to facilitating the representation of geometry such that the

enforcement of geometric constraints becomes relatively easy. The most well-known mo-

tion planning algorithms include cell decomposition methods, roadmap methods (visibility

graph [82], Voronoi diagrams [11]), and artificial potential field methods [16, 39]. It is also

8

noted that graph search is a common tool used in many motion planning methods developed

in robotics and artificial intelligence [79, 93].

Because the vehicle dynamics are not taken into account in these path planning methods

which consider only the geometric constraints, it is sometimes difficult, or even impossible, to

force the vehicle to follow the generated path. For example, visibility graph search produces

the shortest distance path connecting the starting and end points in an environment. Such a

path usually contains corners, which makes it impossible to be followed by, say, a fixed-wing

aircraft because the differential constraint stemming from the vehicle dynamics requires

however the path to be continuously differentiable at least to the second order. Even if

some smoothness technique is used to eliminate the corners, while preserving the collision

avoidance of the path, there is still no guarantee for the successful execution of the path

because the stall limit of the aircraft also imposes constraints on the curvature of the path.

A “forced” implementation of the path may lead to deviation from the reference path and

may even cause a collision with the obstacles or result in the stall of the aircraft.

Even if the path is feasible in terms of system dynamics, the performance could severely

deteriorate by following such a path. For example, a helicopter can follow any piecewise

linear path, but the frequent acceleration, deceleration and hovering associated with a zigzag

path would result in considerable waste of fuel and prolonged flight time, which may render

such a path practically undesirable.

Vehicle dynamics usually impose complicated constraints on the problem and may result

in extensive computations. To circumvent the computational complexity of deterministic

algorithms, randomized algorithms have been developed [79], including Probabilistic Road

Map (PRM) [72] and Rapidly-exploring Random Trees [80], etc. Because of the substantial

reduction of workload in randomized motion planning algorithms, it is possible to extract

dynamically feasible trajectory segments from the configuration space, while maintaining

collision avoidance. Those randomized algorithms, if converge, could provide dynamically

feasible trajectories.

Very few motion planning techniques have been directly applied to the trajectory op-

timization of aircraft because of the complicated nonlinear dynamics constraints required.

9

One work in this category is the motion planning for small autonomous helicopters in

[50, 51], where an RRT algorithm is used. The optimality of sampling algorithms is studied

in [69], which shows that the cost of the returned path converges to the best value almost

surely.

1.3.2 Differential Flatness and Inverse Dynamics

The concept of differential flatness was introduced in [47, 104]. Roughly speaking, a con-

trolled system with equations as in (1), t ∈ R+, X = R
n, U = R

m, is said to be differentially

flat if the following conditions are satisfied:

1. There exists a finite set y = (y1, . . . , ym) ∈ R
m of variables which are differentially

independent, i.e., are not related by any differential equations.

2. The yi (i = 1, . . . ,m), are differential functions of the system variables, i.e., are func-

tions of system variables (state x, control u) and a finite number of their derivatives.

3. Any system variable is a differential function of yi and a finite number of their deriva-

tives.

The output y = (y1, . . . , ym) is called a flat or linearizing output.

Similar concepts may be traced back to the invertibility of nonlinear systems [58], in

which a specific type of nonlinear system of the form (affine in control)

ẋ(t) = A(x(t)) +
m∑

i=1

ui(t)Bi(x(t)); x(0) = x0

y(t) = c (x(t), u(t)) ,

(7)

is considered, where t ∈ R+, x(t) ∈ R
n, x0 ∈ R

n, A : R
n → R

n, B : R
n → R

n, u(t) =

(u1(t), . . . , ul(t))
T ∈ R

l. Let y(t;u, x0) denote the output of system (7) with initial condition

x(0) = x0 and control input u. This nonlinear system is invertible at x0 if whenever u and

û are distinct controls, the corresponding outputs y(·;u, x0) 6= y(·; û, x0). Thus, given the

output y(·) for a system which is invertible at x0, the corresponding control can be uniquely

determined. In the context of differential flatness, the output y of system (7) is essentially

the flat output of the system, from which the state x and control u can be recovered.

10

If a system is differentially flat, then the problem of trajectory planning can be solved by

finding the history of the outputs satisfying the initial and final conditions and the state and

control constrains which are mapped into this flat output space. Once the desired output

history is found, the history of the state and control variables can be directly recovered

without solving the equations of motion. Therefore, the main difficulty with trajectory

planning for a differentially flat system is the identification of the output history which

satisfies the state and control constraints.

In practice, the flat output is usually chosen from a finite-dimensional functional space

spanned by a finite number of pre-determined basis functions Φj, as follows:

y (t) =

k∑

j=1

αjΦj (t) .

Usually polynomial functions are selected as the basis functions Φj for the ease of func-

tion evaluation and the computation of derivatives. Once the function basis for the desired

output is determined, the next step is to choose the coefficients αj such that all state and

control constraints are satisfied. Note that the state and control constraints need to be

satisfied for each t ∈ [t0, tf], which indicates that the trajectory planning problem for a

differentially flat system can be interpreted as a semi-infinite programming (SIP) problem,

i.e., one such that there exists a finite number of decision variables and an infinite number

of constraints. Some work on trajectory generation and optimization of differentially flat

system under semi-infinite programming formulation can be found in [92, 46, 57].

The work in [46] is especially interesting because of its idea to divide the task of tra-

jectory generation into two parts: an off-line part and an online part. The time-consuming

SIP problem is performed off-line by finding the maximum volume polytope which satisfies

all the constraints. Then the online part generates a feasible trajectory very fast using some

point inside this polytope. Although not studied in [46], it is naturally expected that this

pre-computation approach could speed up the online optimization to yield a suboptimal

solution. It needs to be noted that [46] bypassed the difficult problem of solving the SIP

involving the time as the parameter for the infinite-dimensional constraints by introducing

11

collocation, and solved only the SIP for the polytopic approximation of the nonlinear con-

straints, which involve only the algebraic constraints on the flat output and its derivatives.

How to identify a differentially flat dynamical system is still an open question. Currently,

a dynamical system is considered differentially flat only if a set of flat outputs are found

explicitly. Furthermore, even if a system is differentially flat, the trajectory planning of such

a system, as described before, also depends on the selection of the basis functions. This

could be difficult when the system dynamics and the constraints are complicated. Despite

these limitations, differential flatness is still an attractive approach for computationally

efficient trajectory generation, where a set of flat outputs is available.

The inverse dynamics technique is also frequently used for trajectory planning [133,

42, 43]. The dynamic systems considered in these references are essentially differential

flat systems with the position variables as the flat output space. As a result, dynamics,

state, and control constraints can be converted to nonlinear algebraic constraints on the

discretized position variables using the flatness property, and the trajectory generation

problem becomes a Nonlinear Programming problem with discretized position as decision

variables.

In this thesis the inverse dynamics technique is used to recover optimal control inputs

after the optimal speed of the aircraft dynamics is solved semi-analytically.

1.3.3 Optimal Control and Mesh Refinement

As mentioned previously, Problem 1.2.2 can be formulated as an optimal control problem.

As perhaps the most rigorous and general method for solving trajectory optimization prob-

lems, optimal control is historically rooted in the Calculus of Variations, which started in

the 17th century with two famous problems: Newton’s problem of Minimum Drag Revolu-

tion Surface in a Resisting Medium, and Bernoulli’s Brachistochrone problem [77]. Detailed

introduction on this subject can be found in [9, 75, 29]. Briefly speaking, the optimal control

input is obtained by minimizing the Hamiltonian, according to the Pontryagin’s Maximum

Principle (PMP).

Numerous trajectory planning problems have been solved using the optimal control

12

approach since the 60’s, such as [73, 35, 32, 37, 56, 113, 112, 71, 70, 83, 30, 31], just to name

a few. In an optimal control problem, the dynamics of the vehicle are explicitly formulated

as part of the problem, hence the optimal control solution is naturally feasible in terms of

dynamics, and optimality is also guaranteed, at least locally.

Solving an optimal control problem is often difficult. The optimal control formulation

of a trajectory optimization problem using PMP leads to a Two-point Boundary Value

Problem (TBVP), or a Multi-point Boundary Value Problem (MBVP) when the optimal

trajectory is composed of multiple phases. For general constrained and nonlinear systems,

TBVP and MBVP are very difficult to solve analytically, and numerical methods such as

shooting method and multiple shooting methods are applied for solving TBVP and MBVP.

Another approach equivalent to the PMP is Bellman’s Principal of Optimality, which is

also the fundamental theorem behind Dynamic Programming [19]. When applied to solv-

ing optimal control problems, Bellman’s Principal results in the Hamilton-Jacobi-Bellman

(HJB) equation, which is a partial differential equation. Analytic solutions to (HJB) are

also very difficult to obtain.

The difficulty associated with obtaining an analytic solution to general optimal control

problems, either via PMP or HJB, necessitates the development of numerical methods.

Numerical optimal control methods fall into two categories: indirect methods and direct

methods (numerical methods for solving the HJB partial differential equation are out of the

scope of this thesis). The major difference between direct and indirect methods is that the

former do not involve the costate variables and necessary conditions for optimality during

the optimization process. The shooting methods belong to the indirect methods. Although

shooting methods tend to be more accurate, their convergence is more sensitive to the

initial guess compared to direct methods [25]. One example of a numerical optimal control

software using an indirect method is BNDSCO, which implements the multiple shooting

method [94].

The main idea of direct methods is to discretize the original continuous-time optimal

control problem into a finite-dimensional nonlinear programming problem (NLP), and min-

imize directly a discrete version of the objective function of the original continuous-time

13

optimal control problem. The solution of this NLP, which consists of discrete variables,

is used to approximate the continuous control and state time histories. A recent survey

of numerical optimal control techniques for trajectory optimization can be found in [22].

Although the convergence of direct methods are not guaranteed because the problem itself

is not convex in general, in practice it has been found that many problems can be solved

using direct methods [86, 135].

Many numerical optimal control software packages have developed based on the direct

methods, with SOCS [23], RIOTS [110], DIDO [103], PSOPT [17], GPOPS [101] as a few

examples. The density function based mesh refinement algorithm (DENMRA) proposed in

this thesis, which is used for solving numerical optimal control problem, is also taking a

direct approach.

Differential Dynamic Programming (DDP) [64] is another approach that can be applied

to optimal motion planning. It is based on Bellman’s Principle of Optimality, and uses

successive backward quadratic expansions of the objective function. DDP has been applied

successfully to spacecraft trajectory planning for orbit transfer [78].

Direct methods rely on a certain grid for the discretization of the original control prob-

lem. It is well known that increasing the number of points in the grid can help improve

the accuracy of the solution. However, it has also been observed that the solution accu-

racy obtained using a uniform grid is often not acceptable even with a very large mesh

size. Such an observation has motivated recent research in mesh refinement algorithms for

solving optimal control problems [110, 26, 66, 55].

There are two general methods for mesh refinement: static and dynamic [99]. In static

refinements, after a solution of the discretized problem is computed, the same solution is

used to refine the current mesh, by adding and/or moving points around using a certain

strategy, so that the accuracy of the solution is improved in the next optimization step.

In dynamic mesh refinements, some (or all) of the grid points are included as decision

variables and allowed to move during optimization. Although dynamic mesh refinements

may capture control discontinuities early on, they may also hinder convergence. They

can also be less efficient than static mesh refinement strategies [110]. Several static mesh

14

refinement strategies are proposed in Ref. [110]. Reference [26] also introduced a static

mesh refinement method in which integer programming is used to minimize the maximum

integration error during the mesh refinement iterations. Reference [67] proposed a multi-

resolution trajectory optimization algorithm (MTOA) that refines a nonuniform mesh using

local diadic partitioning after each iteration based on the interpolation error.

The mesh refinement methods in Refs. [110, 26, 66] use the integration/interpolation

error to distribute/add the grid points, and are not the best choice for some problems. In

particular, they contain no mechanism for directly placing mesh points at or near locations

where control and/or trajectory constraints switch from being active to being inactive or

vice versa. These are precisely the locations where the solutions are likely to be least

accurate [110]. In these mesh refinement methods, extra mesh points near the location

where such a constraint switch is likely to occur as suggested by local integration error, but

this approach reduces the efficiency of optimization by introducing too many unnecessary

points into the mesh. Hence, for better accuracy, it is necessary to somehow estimate

the location of continuity irregularities and incorporate this information into the mesh

refinement process, rather than using just the integration/interpolation error alone. A

mesh refinement method following this philosophy has been proposed in [55]. It divides

the time interval at the points with maximum absolute value of the first derivative of the

control, but it does not capture higher order irregularities in the control.

Mesh generation and adaptation is a common problem in engineering and applied math-

ematics. As a result, similar concepts and methods have been developed in many areas.

For instance, monitor functions control mesh concentration based on the equidistribution of

their integral [18], and are used for the adaptive mesh generation for the numerical solution

of PDEs. The notion of mesh density function was first introduced in the Finite Element

Analysis field in Ref. [12], and further explored by Hagger [62]. The key idea is to represent

a mesh such that the total amount of density in each element of the mesh is the same.

Hence, in terms of mesh point allocation, mesh density functions and monitor functions are

inherently the same. The idea of monitor functions has actually been used for the initializa-

tion of direct methods for solving optimal control problems based on some reasonable initial

15

guesses [24]. As shown in the same reference, although different monitor functions can be

used for mesh generation, an appropriate choice of monitor function can generate a mesh

with better quality, thus improving the accuracy and speed of the algorithm. Hence, the

problem of mesh generation is converted to a problem of finding an appropriate monitor (or

density) function. The monitor function based mesh generation approach in [24] requires

the selection of a numerical integration scheme and a reasonable initial guess, both of which

are problem-dependent and require human interaction, hence, it is not suitable for fully

automatic mesh refinement.

1.3.4 The Hierarchical Approach: Path Smoothing and Optimal Path Tracking

Because solving Problem 1.2.2 directly is usually too difficult or computationally intractable,

especially for real-time applications, a hierarchical approach is sometimes adopted to find a

feasible solution to Problem 1.2.1, which is close to the optimal solution of Problem 1.2.2 [115,

20, 27]. Hierarchical motion planning methods are sometimes called hybrid methods in the

literature [50, 51, 98].

A typical hierarchical motion planning process decomposes the task of motion planning

into subproblems on several levels [20]. In the first level, the environment is analyzed and

represented usually in the form of a graph. The requirement of collision avoidance can be

accomplished by properly determining the connectedness of different vertices in the graph

that represents the environment. In the second level, a path is chosen from the graph which

connects the desired start and end points. Usually, certain criteria are used for choosing

such a path, such as shortest distance. In the last level, a trajectory is generated based on

the path in the previous level, and is used as a reference trajectory for the vehicle/robot’s

tracking controller such that the trajectory can be actually executed. More abstract layers

such as the strategic layer or the tactical layer may also be used on top of these three

levels to introduce certain degree of “intelligence” into the motion planner and facilitate

the planning process [50].

Reference [98] contains an example of a hierarchical motion planning algorithm. This

work presents a synergistic combination of layers of planning (SyCLoP) such that a discrete

16

searching process is performed on a high level while a sampling-based motion planning

routine runs on the lower level. The higher level discrete search provides important strategic

guidelines for the sampling-based motion planning algorithm, which also provides feedback

to the discrete search in return.

The path smoothing method and optimal time parameterization method proposed in this

thesis may work together in a hierarchical manner to produce feasible trajectories efficiently

with acceptable optimality. Specifically, the path smoothing method works on the geometric

layer, and the optimal time parameterization method, or, equivalently, the optimal path

tracking method, ensures feasibility and exploits the optimality on the dynamics layer.

Path Smoothing

A discontinuity in the curvature profile of the path to be followed implies an instantaneous

change of the steering wheel angle for a car-like vehicle or the bank angle/angle of attack for

a fixed-wing aircraft, both of which require (theoretically) infinite control force. Therefore,

the curvature of the path should be at least continuous for most practical applications.

For this reason clothoid arcs have been used for continuous-curvature path planning based

on the Dubins’ path prototype [108, 48, 15]. Reference [97] used analytical splines and

heuristics for smooth path generation. Reference [134] proposed a path planning algorithm

which generates a smooth path by smoothing out the corners of a linear path prototype

using Bézier curves based on analytic expressions. Although all these methods can generate

paths with continuous curvature, obstacle avoidance is not guaranteed by these methods

per se, and can only be done in an ad hoc manner.

One approach for smooth path planning in the presence of obstacles is to use a “channel”

or “corridor,” which is selected a priori, such that it does not intrude any of the obstacles. A

smooth path is then found within the channel such that it is collision-free. For instance, Ref.

[14] introduced a method for generating curvature-bounded paths in rectangular channels;

reference [21] proposed a method for constructing bounded curvature paths traversing a

constant width region in the plane, called corridors, and Ref. [68] introduced a method

for generating smooth two-dimensional paths within two-dimensional bounding envelops

17

using B-spline curves. A nonlinear optimization scheme is used to design collision-free and

curvature-continuous paths in [85]. Because the channels are fixed, the results of these

algorithms are limited by the collision-free channels which are chosen conservatively before

the planning.

In this thesis, the path smoothing problem is formulated as Problem 1.2.3. The smooth-

ness of the path is improved by minimizing the weighted L2 norm of the path’s curvature.

It will be shown later in the thesis that a smoothed path may provide better tracking

performance, such as tracking time, compared the original path.

Optimal Path Tracking

As one of the major problems considered in this thesis, Problem 1.2.4 seeks an optimal

solution for tracking a prescribed geometric path subject to dynamics, state, and control

constraints. Problem 1.2.4 shares the same cost function as the trajectory optimization

problem, hence provides a tracking scheme with the best tracking performance for the

given path geometry.

The optimal path tracking problem has been studied extensively in the literature. The

minimum-time robotic manipulator and car path tracking problems are studied in [28,

119, 96, 118, 116, 129] for shortest travel time along the path subject to control and state

constraints. The optimal solutions to these problems can help improve plant productiv-

ity [28, 119, 96, 118, 116], racing car performance [129], or faster aircraft landing as will be

shown later in this thesis. These solutions correspond to the point-wise maximization of

the speed along the path without any singular arcs1.

When the tracking time is not of prime concern, it is often desirable to minimize the

energy/fuel consumption of the system. Along this direction, the minimum work train

operation problem has been studied [8, 61, 74, 59]. Unlike minimum-time problems, the

minimum-work solutions usually contain singular arcs. When the travel time is free, the

singular arc can be determined analytically. In the more practical case of fixed travel time

1The “singular arcs” in [116] actually refer to segments of speed profile with active speed constraints,
which are different from the term’s traditional meaning used in optimal control.

18

for scheduled operations [8, 61, 74, 59], the singular arc cannot be determined directly, and

an iterative numerical procedure must be used to choose the appropriate singular arc with

which the desired travel time and boundary conditions can be satisfied. Because the cost

function for the minimum-work problem is not strictly convex, the optimal control approach

as in [8, 61, 74, 59] can provide more reliable and accurate information about the singular

arcs in the optimal solution than the numerical optimization approach as in [36, 25, 52, 130].

It is noted that, although originated from different physical systems, the path tracking

methods as in Refs [8, 61, 74, 59, 28, 119, 96, 118, 116, 117, 129] involve the same key steps by

which a scalar functional optimization problem is solved. Specifically, the point-mass train

model has only one degree of freedom along the rail, hence the corresponding path tracking

problem is naturally a speed optimization problem [8, 61, 74, 59]. Although the robot arm

and car dynamics involve more than one state variables, the time parameterization problems

for these systems can also be simplified to scalar functional optimization problems with state

bounds [28, 119, 96, 118, 116, 117, 129].

In this thesis, we will solve Problem 1.2.4 with the aircraft dynamics with two different

performance criteria: minimum-time, and minimum-energy with fixed Time Of Arrival

(TOA).

1.4 Previous Research on Aircraft Trajectory Optimization

Next, we briefly review previous research on the optimization of aircraft trajectory. Most

of those problems are formulated as optimal control problems and solved numerically.

1.4.1 Fuel and Range Optimization

Minimum-fuel optimization with fixed arrival time is studied in Ref. [32], where the author

characterized the conflicts between optimal fuel consumption and required arrival time.

Boeing aircraft including B737, B747 and B767 were considered. In Ref. [32], the aircraft

model is simplified by introducing the energy state. The same problem was also studied

in [56] for an F-4 type aircraft. Since the speed for maximum engine efficiency is usually

different from the speed for minimum drag, the optimal speed of the aircraft has an oscil-

latory profile such that more engine power can be applied when the speed is beneficial for

19

fuel efficiency. The problem is formulated as an optimal control problem using an aircraft

model in the vertical plane, and appropriate boundary conditions are applied to enforce the

periodicity of the solution. The corresponding boundary value problem is solved under the

assumption that there are two throttle switches in each period. The effect of decreasing

aircraft weight due to fuel consumption is also considered, and it was shown that such an

effect is practically negligible.

The scenario of maximum-range trajectories for fixed flight time plays an important role

in modern air combat scenarios. In [113, 112], Pontryagin’s maximum principle is applied to

determine range optimal trajectories for aircraft flying in the vertical plane. The considered

aircraft model treats the energy, altitude and flight path angle as state variables with the

load factor and throttle setting as the control variables. In addition, control limits and a

dynamic pressure limit are imposed along the trajectory.

1.4.2 Performance Optimization

Although a high fidelity model captures more accurately the performance of the aircraft,

it is difficult to use such a model directly for trajectory optimization. Noting that if an

aircraft trajectory is given, it is relatively easy to propagate the “motion” inversely to the

“control” using a high fidelity aircraft model even for complicated unconventional flight

maneuvers [71], high fidelity aircraft models are useful for checking the feasibility of the

trajectory during post-processing.

Reference [70] combined the inverse dynamics technique with optimal trajectory plan-

ning for a more robust near-optimal aircraft maneuver planning software. The trajectory

planning was first solved using direct multiple shooting for a 3-DOF aircraft model, which is

computationally tractable, yet sufficiently accurate for describing the translational dynam-

ics of the vehicle. After the initial trajectory was obtained, an inverse simulation using a

higher-fidelity 5-DOF aircraft model was employed to check the feasibility of the open-loop

optimal control path obtained using the 3-DOF model. The comparison between the opti-

mal and the inverse-simulated trajectories was performed visually, providing the information

for the adjustment of a set of parameters affecting the computation of the trajectory. If the

20

difference between the two trajectories remains within some specified tolerance, then the

inverse-simulated trajectory is considered to be near optimal. Otherwise, the parameters

affecting the optimization and inverse simulation are altered, and the same computations

are repeated to obtain a modified trajectory. The authors also developed a software package

in which the automatic solution of the near-optimal aircraft trajectory generation method

was implemented.

1.4.3 Emergency Landing Trajectory Planning

Despite its importance, as discussed at the beginning of the introduction, not too much

research has been done on the optimal landing problem. The abort landing problem in

the presence of windshear has been studied in [30, 31]. The same problem is also studied

in [90]. Note that in the physical space, the trajectory is occasionally represented as a

four-dimensional flight path, following the tradition of air traffic control [37], with time as

the fourth dimension in addition to the normally used three-dimensional representation of

a path.

Reference [124] considers the generation of feasible trajectories using segments of tra-

jectories corresponding to selected trim condition maneuvers (an equilibrium condition for

the aircraft with constant speed, angle of attach, side slip angle, and angular velocity). A

heuristic method is used to select a limited number of trim points covering a wide spectrum

of flight conditions. The final landing trajectory is generated by searching and connecting

the trim state trajectory segments such that the final position of the aircraft is close enough

to the desired landing site. Note that the final trajectory as given by Ref. [124] may not be

feasible at the junction points between different trajectory segments. A similar approach is

used in Ref. [127] to study the emergency flight path planning problem for aircraft with left

wing damage. LQR control has been used to generate the trajectory transiting the aircraft

from one trim state to the other, hence, the generated trajectory is indeed feasible as long as

the control constraints are not violated. The major problem with the approach in Ref. [124]

is that the search results are limited to those that can be generated by connecting trim state

trajectory segments with stable transitions. Because the unstable flight conditions are not

21

considered in the search, the algorithm cannot identify any feasible trajectory containing

unstable flight modes. Furthermore, the path length is used as the search criterion, which is

less appropriate when compared to flight time for emergency landing, or fuel consumption

for normal flight.

One of the common scenarios for emergency landing is the loss of thrust. Such a mal-

function fundamentally changes the dynamics of the aircraft by turning it into a glider. The

pilot not only needs to identify a reachable runway or landing site which meets the basic

landing requirements for the specific type of aircraft, but he/she also needs to accurately

steer and land the gliding aircraft to that runway or landing site. In this case, an onboard

automation tool that optimizes and display the landing trajectory with a glider’s dynamics

would provide immediate assistance to the pilots’ decision-making process [132].

Reference [10] studied the problem of emergency landing due to the loss-of-thrust using

a hybrid approach. A two-step landing-site selection/trajectory generation process was

adopted to generate safe emergency plans in real time under situations that require landing

at an alternate airport. In the trajectory generation routine, a heuristic path planner

was used to generate a three-dimensional trajectory connecting the current position of the

aircraft to the runway, which consists of straight lines and circular arcs. This method is fast

and simple. However, it has to stick to conservative aircraft maneuvers in order to reduce

the chance of obtaining an infeasible trajectory. As a result, the optimality of the generated

trajectory could be unacceptable for emergency landing, and further research is necessary

to reduce such a conservatism.

1.4.4 Other Aircraft Trajectory Optimization Problems

The minimum-time, three-dimensional aircraft trajectory optimization prolem was consid-

ered in [109] by approximating the aircraft dynamics using an energy state to reduce the

dimension of the problem for better convergence. This type of model reduction technique

is commonly used for aircraft trajectory optimization [5]. Not surprisingly, trajectory plan-

ning problems have also been studied in the context of air traffic management (ATM) and

automation. Reference [63] performed a sensitivity analysis of trajectory prediction for

22

ATM. The aircraft trajectory synthesis problem is studied in [120] to provide some basic

tools for air traffic automation.

The aircraft terrain-following (TF) problem is analyzed in [83]. The TF problem is

formulated as an optimal control problem that combines short flight time and path-following

objectives. The analysis in [83] revealed that the optimal thrust profile is bang-bang in

most cases. Inverse dynamics was employed to solve the problem numerically. Reference

[84] studied the effect of nonlinear engine dynamics on the existence of singular arcs for

a terrain-following aircraft. The result suggests that the usual practice of ignoring engine

dynamics in aircraft trajectory optimization work does not lead to incorrect conclusions.

Reference [121] considered the generation of wind-optimal trajectory for cruising aircraft

while avoiding the regions of airspace that facilitate persistent contrails formation. The

shooting method is employed for solving the associated optimal control problem minimizing

a weighted summation of flight time, fuel consumption, and a term penalizing the contrails

formation. The aircraft dynamics considered in this reference is a simple kinematic model

in the horizontal plane. The avoidance of the penalized region is achieved by tuning the

corresponding weight factor in the cost function. The airspace avoidance problem is also

considered in Ref. [65]. In this reference, the avoidance of restricted airspace is formulated

as non-convex constraints in the optimization problem, and it is claimed that with a feasible

starting guess, the efficiency of the optimization algorithm is not too degraded by the non-

convex airspace constraints.

1.5 Thesis Outline and Statement of Contributions

Since both the feasibility and the optimality of the trajectory are critical for the emergency

landing scenario, this thesis mainly takes the optimal control approach for landing trajectory

generation. Due to the complexity of the aircraft dynamics, the optimal control formulation

of Problem 1.2.2 cannot be solved analytically, therefore a numerical method is pursued to

compute the optimal aircraft landing trajectory. Because time is the most critical factor

in an emergency landing scenario [132], this thesis mainly focuses on the minimum-time

landing problem, although a fuel-efficiency related problem is also discussed later in the

23

thesis.

In this thesis, we also introduce several techniques which enable us to take a hierar-

chical trajectory generation approach to provide a set of high quality initial guess landing

trajectory to facilitate the convergence of the numerical optimal control algorithm. On the

other hand, because the trajectory generated using the hierarchical approach is mostly fea-

sible, and the performance is usually acceptable, such a trajectory can be used as a back-up

trajectory in case of the numerical optimal control algorithm failure, thus improving the

robustness of the overall landing trajectory optimization algorithm.

Chapter 2 introduces a new mesh refinement method that utilizes a mesh density func-

tion for discretizing optimal control problems. The proposed method avoids the numerical

integration step and the use of ODE solvers as in [24], and generates the mesh by the

equidistribution of the integral of the selected density function, which is computed using

the result of the previous iteration.

In Chapter 3 we introduce a path smoothing method that solves Problem 1.2.3 with

a specific type of discretization scheme which ensures the convexity of the corresponding

optimization problem.

In Chapter 4 we address the time-optimal path tracking problem for a fixed-wing aircraft.

In this section we provide a semi-analytic method for solving the minimum-time landing

problem along a prescribed geometric path. Numerical algorithms are also presented for

solving these problems efficiently.

In Chapter 5, the energy-optimal path tracking problem for fixed-wing aircraft is con-

sidered. It is shown that the minimum-energy solution provides an approximation of fuel-

optimal control during the landing process. The switching structure of the energy-optimal

control is analyzed, and a numerical algorithm is designed for computing the energy-optimal

solution.

In Chapter 6 we present a hierarchical scheme for integrating numerical optimal control,

path smoothing, optimal path tracking and a geometric path planning method for the

efficient and robust optimization of aircraft landing trajectory.

In Chapter 7, we analyze two emergency landing cases using the proposed landing

24

trajectory optimization algorithm, and finally, in Chapter 8, we conclude the thesis and

provide some ideas about future research directions in the area of aircraft emergency landing

trajectory generation.

The main contributions of the thesis are:

1. A density function based mesh generation method for the discretization of optimal con-

trol problems. With such a method the problem of mesh refinement is converted into a

problem of applying the appropriate density function. The density function provides a

simple, yet effective, way for implementing and testing different mesh refinement schemes

by choosing different density functions. It is shown that some of the previous mesh re-

finement schemes in the literature correspond to the choice of some particular density

functions. With the density function technique, it is possible to refine the solution of the

numerical optimal control problem iteratively without increasing the mesh size. A curva-

ture density function is also proposed for mesh generation. Some good properties of such

a density function are proved theoretically, and also verified by numerical simulations.

2. A reliable and computationally efficient new algorithm for the smoothing of a three-

dimensional geometric path subject to a variety of constraints including collision avoid-

ance, local curvature constraint, path length constraint, etc.

3. Original results on the time-optimal path tracking of fixed-wing aircraft. Theorems

regarding the optimal switching structure between different extremals are provided. Two

efficient numerical algorithms are developed for solving the time-optimal path tracking

problem.

4. New results on the energy-optimal path tracking problem for fixed-wing aircraft. It is

proved that the energy-optimal solution provides an approximation of the fuel-optimal

solution during landing. New theoretical results regarding the optimal switching struc-

ture of the energy-optimal path tracking solution are established. A partial relaxation

technique is introduced for identifying the state constrained arcs in the energy-optimal

kinetic energy solution. A novel method is proposed which computes the energy-optimal

25

solution based on the minimum-time and the maximum-time solutions. A numerically

efficient algorithm for solving the energy-optimal path tracking problems is proposed.

5. An efficient Dubins-like landing path planner, which produces near-optimal three-dimensional

smooth landing path with continuous heading and path angles, and bounded path deriva-

tives is proposed.

6. A robust and computationally efficient aircraft landing trajectory optimization approach,

which integrates a hierarchical trajectory generation scheme and a numerical optimal con-

trol algorithm is developed. This hierarchical scheme incorporates a variety of path/trajectory

planning tools including path smoothing, optimal path tracking, and various geometric

path planning techniques, and is used to generate high quality initial guesses for the

numerical optimal control algorithm to facilitate its convergence.

26

CHAPTER II

A MESH REFINEMENT METHOD USING DENSITY FUNCTIONS

FOR SOLVING NUMERICAL OPTIMAL CONTROL PROBLEMS

This chapter introduces a simple, yet efficient, mesh generation method for solving optimal

control problems. The method is based on density (or monitor) functions, which have been

used extensively for the numerical solution of partial differential equations and in finite

element methods [12, 18, 62]. Subsequently, the problem of mesh refinement is converted

to a problem of finding an appropriate density function. We show that an appropriate

choice of density function may help increase the accuracy of the solution and improve the

numerical robustness.

2.1 Introduction

The accuracy and efficiency of mesh refinement algorithms that are used for solving numeri-

cal optimal control problems, have motivated a recent research activity in this area. Several

mesh refinement methods are proposed in Ref. [110] demonstrating the advantage of such

algorithms. Reference [26] introduced a mesh refinement method in which integer program-

ming is used to minimize the maximum integration error during mesh refinement iterations.

Reference [67] proposed a multi-resolution trajectory optimization algorithm (MTOA) that

refines a nonuniform mesh using local dyadic subdivisions after each iteration. A common

strategy behind these mesh refinement methods is the redistribution of the mesh points

based on the local integration/interpolation error.

When the solution of the optimal control problem exhibits discontinuities in the control

or its higher order derivatives, a locally dense mesh is typically necessary to achieve better

resolution, and obtain more accurate estimation of the location of the discontinuity. Mesh

generation based on the local integration/interpolation error does not incorporate any spe-

cial treatment of the discontinuities, especially those appearing in higher order derivatives

of the control or the state variables.

27

For better accuracy, it is necessary to estimate the location of such irregularities (namely,

discontinuities in the control history and/or its higher order derivatives) and subsequently

incorporate this information into the mesh refinement process.

A mesh refinement method following this philosophy has been proposed in Ref. [55].

This method divides the time interval at the points with maximum absolute value of the

first derivative of the control, but it does not capture higher order discontinuities in the

control time history.

Mesh generation and adaptation is a common topic in many areas of engineering and

applied mathematics. The notion of mesh density function for mesh generation and refine-

ment has been used in the FEM field [12, 62]. The concept of density functions is similar

to monitor functions used for the numerical solution of PDEs [18]. However, despite their

popularity in other fields, mesh density/monitor functions have rarely been used for dis-

cretizing optimal control problems. The only exception appears to be Ref. [24]. Additional

studies are needed to understand how the density/monitor functions can be used in numer-

ical optimal control and how they can influence the accuracy and robustness of numerical

optimal control algorithms. Furthermore, the choice of “good” density/monitor functions

for mesh discretization of optimal control problems seems to be open.

In this chapter we attempt to provide a partial answer to the previous questions. We

introduce a method to distribute the mesh points efficiently using density/monitor func-

tions. Although different monitor functions can be used for mesh generation, an appropriate

choice of a monitor function can generate a better quality mesh, and can improve the ac-

curacy of the solution, along with the speed of convergence. Hence, the problem of mesh

generation can be treated as a problem of finding an appropriate density/monitor function.

We propose two density functions which are computed based on the discrete control/state

histories from the previous iteration during the mesh refinement process. The proposed

method avoids the numerical integration step and the use of ODE solvers for the system

dynamics as was done in [24]. Yet, it generates a mesh with a suitable level of adaptive

discretization that provides sharp resolution around the places where the control switches

or the trajectory meets/leaves state constraints, thus resulting in better accuracy of the

28

overall final solution. Numerical examples are presented to demonstrate the advantage of

the proposed method, and comparisons are provided against the industry standard Sparse

Optimal Control Software (SOCS).

2.2 Problem Statement and Nonlinear Programming Formulation

We consider an optimal control problem minimizing the following Bolza cost functional

J = Φ(x(t0), t0, x(tf),p, tf) +

∫ tf

t0

L(x(t), u(t),p, t)dt, (8)

where t ∈ [t0, tf] ⊆ R is the time, x : [t0, tf] → R
n is the vector of state variables, u :

[t0, tf] → R
m is the vector of control variables, and p = [p1, p2, . . . , pl] ∈ R

l the vector of

additional optimization parameters. The Mayer term Φ : R
n×[t0, tf]×R

n×R
l×[t0, tf]→ R,

and the Lagrangian term L : R
n × R

m × R
l × [t0, tf] → R are given functions of suitable

smoothness properties. Our objective is to minimize the cost (8) subject to the dynamic

constraints

ẋ(t) = f
(
x(t), u(t),p, t

)
, t0 ≤ t ≤ tf , (9)

the boundary conditions

Ψ
(
x(t0), t0, x(tf), tf ,p

)
= 0, (10)

and the path constraints

C
(
x(t), u(t),p, t

)
≤ 0, t0 ≤ t ≤ tf , (11)

where Ψ : R
n × [t0, tf]× R

n × [t0, tf]× R
l → R

NΨ and C : R
n ×R

m × R
l × [t0, tf]→ R

NC .

To solve this problem through nonlinear programming, the states and controls are dis-

cretized on a mesh {ti}Ni=0 for some positive integer N , with tN = tf and ti < ti+1 for

0 ≤ i ≤ N − 1. Let X be the vector of all decision variables, the corresponding discretiza-

tion of the continuous time optimal control problem (8)–(11) can be written as

min
X

J(X) (12)

subject to

|F (X)| ≤ ζd, (13)

29

|Ψ̃(X)| ≤ ζb, (14)

and

C̃
(
X
)
≤ ζC , (15)

where the absolute value | · | and the inequalities are enforced element-wise, J , F , Ψ̃ and

C̃ are appropriate discretizations of the cost function, dynamics constraint and path con-

straint of the original problem, respectively and ζd ∈ R
Nn, ζb ∈ R

NΨ and ζC ∈ R
(N+1)·NC

represent defect vectors, whose elements are small positive real numbers. In particular, for

the discretization of the differential constraint (9), the function J in (12) and F in (13) are

obtained using a class of R-K methods ensuring consistency, such that the solution of the

discrete problem converges to that of the continuous time problem[110]. For more details

the reader may refer to Refs. [110, 135, 26, 66].

2.2.1 Density Function and Mesh Generation

A mesh density function, or simply a density function, is a non-negative function f̄ : [a, b]→

R+, a, b ∈ R that satisfies
∫ b
a f̄(t) dt = 1, and is zero (at most) at countably many points.

Since any non-negative function f : [a, b]→ R+ that has only countably many zeros can be

normalized as

f̄ (t) =
f (t)

∫ b
a f (τ) dτ

, (16)

to obtain a mesh density function, from now on we may assume, without loss of generality,

that any function f applied to mesh refinement has been already normalized.

The corresponding cumulative distribution function F : [a, b]→ [0, 1] is defined by

F (t) ,

∫ t

a
f̄(τ) dτ. (17)

The value of F (t) corresponds to the area below the graph of f̄ between a and t. Clearly,

F (a) = 0 and F (b) = 1. In the sequel, and without loss of generality, we will assume that

[a, b] is the unit interval. Consider a mesh {ti}Ni=0 containing a total of N + 1 points with

t0 = 0 and tN = 1. Given a density function f , let F be the cumulative distribution function

determined by f as in (17). For i = 0, 1, . . . , N − 1, with the ith point at ti, the position of

30

the (i+ 1)th point can be decided by

F (ti+1)− F (ti) =
1

N
. (18)

A mesh can then be generated based on the density function f , such that the distribution

of grid points conforms to an equidistribution of F . Alternatively, the mesh is dense where

the value of f(t) is large.

The previous mesh point allocation strategy usually requires solving a nonlinear alge-

braic equation repeatedly N − 1 times, which can be a quite time-consuming task when

N is large. An alternative technique for achieving equidistribution requires the integration

of a system of ODEs, including the transformed dynamics and the inverse of the density

function [24]. The integration of dynamics requires intensive computations, especially when

the dimension of the problem is large. Besides, integration is also sensitive to the accuracy

of the boundary conditions (if not fixed) and the accuracy of the control history obtained

from the previous iteration.

To avoid the process of repeatedly solving nonlinear equations or integrating the system

dynamics, an interpolation method is used in this work to compute the points {ti}N−1
i=1 , by

taking advantage of the monotonicity of F . Specifically, given any density function f , select

a grid {tj}Nj

j=0 ∈ [0, 1], which contains Nj points. During the mesh refinement iterations,

{tj}Nj

j=0 could be chosen as the mesh used in the previous iteration. Now yj = F (tj) can

be easily calculated by yj =
∫ tj
0 f(τ) dτ . For any y ∈ [0, 1], define the inverse mapping

F−1(y) = {t|
∫ t
0 f(τ) dτ = y}. From the properties of f , and hence F , the inverse F−1 is

well defined and also continuous, with tj = F−1(yj). The set of pairs {(yj, tj)}Nj

j=0 is then a

discrete representation of the function F−1. Note that the first and the last grid points are

at t0 = 0 and tN = 1, respectively. For the allocation of the other grid points, the location ti

of the ith mesh point can be obtained by interpolating {(yj , tj)}Nj

j=1 using a spline function

at the position yi = (i− 1)/(N − 1) for 2 ≤ i ≤ N − 1. Using this method, as long as

the selected partition is dense enough, the location of all mesh points can be calculated

very fast and with high accuracy. Note that the mesh point distribution is unique once the

density function is given, but the converse is not true.

31

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

t

f
(t

)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

t

f
(t

)

0 0.2 0.4 0.6 0.8 1
t

0 0.2 0.4 0.6 0.8 1
t

Figure 3: Density functions and corresponding distribution of grid points.

Figure 3 shows the mesh point distribution obtained by two specific density functions

over the unit interval. The density function in the upper left of the figure is the linear

function f(t) = t. The resulting mesh is shown in the upper right of the figure. The lower

left plot shows the density function f(t) = e−50t2+20t−2 +e−50t2+80t−32, with its mesh shown

in the lower right of the figure. In both cases, the mesh contains a total of 20 grid points.

2.2.2 Selection of Density Function

By definition, a mesh density function needs only to be non-negative and integrable. This

generality provides a great deal of flexibility for achieving desired mesh point distributions

and for designing different mesh refinement schemes. The particular choice of the density

function can have a major impact on the numerical performance of the overall algorithm.

Certain density functions can be used to regulate the integration error. For exam-

ple, if the density function is chosen as a piecewise constant function whose value on each

subinterval equals the corresponding principal local truncation error function (PLTE) as

in Ref. [110], then the mesh point distribution process will be the static mesh refinement

Strategy 1 introduced in the same reference. This strategy tries to approximately equidis-

tribute the PLTE, and as a result, the mesh points would be denser where the PLTE was

large in the previous iteration.

32

Another strategy for designing a good density function is to provide better approxima-

tion to the state and/or control histories to improve the accuracy of the solution. This

approach places more emphasis on the geometric properties of the graph of the function to

be approximated. The arc length monitor function in Ref. [24], for example, equidistributes

the grid points along the graph of the state. As another example, the curvature-based den-

sity function proposed later provides the best piecewise linear interpolative approximation

of the function of interest in the L1 space. As it will be shown later, this density function

is capable of capturing higher order discontinuities of the function to be approximated.

For more general mesh refinement schemes, it may be desirable to add new points

only within certain specific time spans of the control and state histories, namely at those

places where the control or state histories exhibit discontinuities or smoothness irregularities

(e.g., very fast rate of change and/or discontinuities in higher order derivatives), while

keeping other points fixed. This objective can also be easily achieved by defining multiple

density functions on disjoint intervals; then the number of points assigned to each interval

is proportional to the integral of the corresponding density function. The points are then

distributed using the method introduced above. More details about this procedure are given

in Ref. [136].

Although the density function uniquely determines the mesh once the total number of

grid points is given, it does not provide any information what size of the mesh should be.

In the density function-based mesh refinement algorithm proposed later, the discretization

error estimation method in Ref. [26] is used to determine the size of the mesh in order to

ensure that the new mesh provides a better discretization compared with the the one from

the previous iteration.

2.3 A Density Function with the Best Piecewise Linear Interpolative
Approximation of Piece-wise Smooth Planar Curves

We propose a density function that achieves best (in terms of the L1-norm) piecewise linear

approximation of C3-smooth (at least piecewise C3) curve. The main benefit of using the

L1 metric for measuring the approximation error is that the measurement corresponds to

the area bounded by the curve and its approximation, which is invariant with respect to

33

rotation. Hence, such a measure avoids the influence of the choice of coordinate orientation,

and depends on the actual shape of the curve for its approximation.

Given an interval I = [ta, tb] ⊂ R, recall that a function Γ : I → R having piecewise

second derivative implies that its intrinsic curvature is piecewise continuous and hence

bounded. Recall that the curvature κ of Γ is given by:

κ(t) =
|Γ′′(t)|

(1 + Γ′2(t))3/2
,

where Γ′′ = d2Γ
dt2 and Γ′ = dΓ

dt . The natural coordinate s, defined by

s(t) =

∫ t

ta

[
1 + Γ′2(t)

]1
2 d t,

is a measure of the length of the curve defined by the graph of Γ. Let TI,N = {ti}1≤i≤N be

a partition of the interval I using N points, where ta = t1 < t2 < . . . < tN = tb.

The function Γ̄ : I → R defined by

Γ̄ (t) = Γ(ti) +
t− ti
ti+1 − ti

(Γ(ti+1)− Γ(ti)) , t ∈ [ti, ti+1),

where ti, ti+1 ∈ TI,N , (1 ≤ i ≤ N − 1), is a piecewise linear approximation of Γ on the

interval I over the partition TI,N .

With the density function ρΓ defined on I, for any N ≥ 2, the grid points denoted by

{(ti,Γ (ti))}Ni=1 are allocated on Γ such that t1 = ta, and

∫ ti

ta

ρΓ (τ) dτ =
i− 1

N − 1
. (19)

Proposition 2.3.1. The best piecewise linear approximation of a function Γ with nonzero

constant curvature κ using three points is obtained when the points are evenly distributed

along the arc Γ.

Proof. The graph of a function with constant nonzero curvature is a circular arc, as shown

in Fig. 4, with o denoting the center of the corresponding circle. The error in terms of the

L1-norm is exactly the shaded area shown in Fig. 4. The shaded area ξ1 is given by

ξ1(θ1) =
θ1
2
κ−2 − κ−1 sin

(
θ1
2

)
κ−1 cos

(
θ1
2

)
=
θ1
2
κ−2 − 1

2
κ−2 sin θ1 =

1

2
κ−2 (θ1 − sin θ1) .

34

Γ(t)

t

θ1
θ2

ξ2ξ1
Γ

t1 t2 t3

o

Figure 4: Approximation error in terms of the L1-norm, for a curve Γ of constant curvature.

Similarly, the shaded area ξ2 is given by:

ξ2(θ2) =
1

2
κ−2 (θ2 − sin θ2) .

Let s(t) be the path length of the graph of the function Γ between t1 = 0 and t. The

approximation error ξ of the piecewise linear approximation of Γ in terms of the L1-norm

is given by the sum of ξ1 and ξ2:

ξ = ξ1 + ξ2 =
1

2
κ−2(θ1 + θ2 − sin θ1 − sin θ2) =

1

2
κ−2

(
θ − sin θ1 − sin(θ − θ1)

)
,

where θ = θ1 + θ2 = s(t3)κ, which is constant for the given Γ. The first order derivative of

ξ with respect to θ1 is given by:

dξ

dθ1
= −1

2
κ−2

(
cos θ1 − cos(θ − θ1)

)
.

We assume that N is large enough such that the inequalities θ1 < π and θ2 < π hold.

The first order necessary condition for the minimization of ξ, dξ
dθ1

= 0, yields that θ1 = θ2.

This is indeed a minimum since

d2ξ

dθ2
1

=
1

2
κ−2(sin θ1 + sin θ2) > 0.

Hence the proposition is proved.

Lemma 2.3.1. The best piecewise linear interpolative approximation of a function Γ with

constant curvature κ on a bounded interval I yields a constant density ρκ along the curve.

35

Proof. First, notice that if κ = 0, the result follows trivially. Thus, without loss of generality,

assume that κ 6= 0. Assume now that the optimal piecewise linear approximation Γ̄ of Γ

corresponds to a distribution that is not equidistant. Owing to the one-one correspondence

between the points of Γ̄ (except the first one) and the angles θ1, θ2, . . . , θN−1 (see Fig. 4), the

result is equivalent to the assertion that the best piecewise linear approximation corresponds

to a distribution of angles θ∗ = (θ∗1, θ
∗
2, . . . , θ

∗
N−1), where θ∗i 6= θ∗i+1 for some 1 ≤ i ≤ N − 1.

By virtue of Proposition 4.4.1, we can reduce the error over the arclength θ∗i + θ∗i+1 by

moving the middle point such that the new angles are θ∗∗i = θ∗∗i+1 = (θ∗i + θ∗i+1)/2, thus

contradicting the minimality of the distribution θ∗. Hence θ∗ must be equally distributed

over the graph of Γ.

Theorem 2.3.1. Consider a function Γ consisting of two segments Γ1 and Γ2 defined on

contiguous, non-overlapping intervals, with constant curvature κ1 and κ2 of their respective

graphs. Let N be the total number of points allocated to Γ. Then as N →∞, the error of

the piecewise linear approximation of Γ is minimized by constant densities ρκ1 and ρκ2 on

Γ1 and Γ2, respectively, satisfying

ρκ1

ρκ2

=

(
κ1

κ2

) 1
3

. (20)

Proof. Let N1 be the number of points allocated to Γ1 and let N2 the number of points

allocated to Γ2 and let the corresponding angles over the arc lengths be θ1 > 0 and θ2 > 0,

respectively. It follows that θ1 = κ1S1, where S1 is the length of Γ1 and θ2 = κ2S2, where

S2 is the length of Γ2. With the best piecewise linear approximation of the function Γ1

using N1 points, the total approximation error ξ1(N1) in the L1-norm is given by:

ξ1(N1) =
1

2
κ−2

1

N1−1∑

1

(
θ1

(N1 − 1)
− sin

θ1
N1 − 1

)
=

1

2
κ−2

1

(
θ1 − (N1 − 1) sin

θ1
N1 − 1

)
. (21)

Similarly, with the best piecewise linear approximation of the function Γ2 usingN2 = N−N1

points, the total approximation error ξ2(N2) in the L1-norm is given by:

ξ2(N2) =
1

2
κ−2

2

(
θ2 − (N2 − 1) sin

θ2
N2 − 1

)
. (22)

Our objective is to minimize ξ1(N1) + ξ2(N2) subject to N1 + N2 = N as N → ∞. Note

that the last statement implies, in particular, that both N1, N2 →∞. (This is easy to see:

36

if both N1, N2 →∞ the approximation error goes to zero, whereas if either N1 or N2 6→ ∞

as N →∞ the approximation error will not be zero and hence the point distribution is not

optimal.)

To facilitate the proof, we consider the continuous version of this problem. To this end,

let x ∈ R+ and y ∈ R+ and consider the problem of minimizing

ξ(x, y) = ξ1(x) + ξ2(y) =
1

2
κ−2

1

(
θ1 − x sin

θ1
x

)
+

1

2
κ−2

2

(
θ2 − y sin

θ2
y

)
(23)

subject to x+ y = N and N →∞.

The first order necessary conditions for optimality for this problem lead to the expression

κ−2
2 sin

(
θ2
y

)
− κ−2

2

θ2
y

cos

(
θ2
y

)
− κ−2

1 sin

(
θ1
x

)
+ κ−2

1

θ1
x

cos

(
θ1
x

)
= 0. (24)

Using the power series expansion for the sine and cosine functions

sinx =
∞∑

n=0

(−1)n

(2n+ 1)!
x2n+1, cos x =

∞∑

n=0

(−1)n

(2n)!
x2n,

equation (24) can be rewritten in terms of infinite series as

κ−2
2

∞∑

n=0

(−1)n+1 2n

(2n+ 1)!

(
θ2
y

)2n+1

− κ−2
1

∞∑

n=0

(−1)n+1 2n

(2n+ 1)!

(
θ1
x

)2n+1

= 0. (25)

Since N →∞ we have that x, y →∞.

It follows that θ1/x ≪ 1 and θ2/y ≪ 1. As x, y → ∞, the higher order terms in (25)

vanishes, and one obtains

κ−2
2

(
θ2
y

)3

− κ−2
1

(
θ1
x

)3

= 0. (26)

The solution of (26) yields,

x

y
=
S1

S2

(
κ1

κ2

)1/3

, (27)

from which we have

ρκ1

ρκ2

= lim
N1,N2→∞

N1/S1

N2/S2
= lim

x,y→∞

x/S1

y/S2
=

(
κ1

κ2

)1/3

. (28)

The solution to (26) is indeed the optimal solution since the Hessian of ξ(x, y) for

x, y →∞, given by,

H(ξ) =

θ2
1

κ2
1x3 sin

(
θ1
x

)
0

0
θ2
2

κ2
2y3 sin

(
θ2
y

)

 (29)

is positive definite for x, y 6= 0.

37

Although Theorem (2.3.1) only gives an optimal density function for a 2D curve com-

posed of two pieces of circular arcs, by induction, this conclusion holds also for curves with

piecewise constant curvature profile, as described by the following Corollary:

Corolory 2.3.1. Let Γ be a planar curve with piecewise constant curvature κ. Let N be

the total number of grid points allocated to Γ. Then as N →∞, the error of the piecewise

linear approximation of Γ is minimized with the grid points distributed by the density

function κ1/3.

Before presenting the results regarding the best piecewise linear interpolative approxi-

mation of planar C3-smooth curves,

One way for applying Corollary 2.3.1 to more general functions such as C3-smooth func-

tions would be first approximating the C3-smooth function using a function with piecewise

constant curvature profile, then generate the partition according to Corollary 2.3.1. As a

result, it is necessary to estimate the approximation error of C3-smooth functions using

circular arc splines. Circular arc spline, or arc spline, is a curve comprising joined circular

arcs. Circular arc splines has been studied in computational geometry and computer graph-

ics, with Refs. [60, 88, 106] as a few examples. Note that a straight line is a circle with zero

curvature, the piecewise linear spline used in this Chapter can be viewed as a special type

of circular arc spline.

It is shown that C3-smooth curves can be approximated to arbitrary precision using a

specific type of circular arc splines which preserve the curve length of the original smooth

curve, and an upper bound of the approximation error can be established [105]. To address

the distribution of grid points, we consider a different type of arc splines which also preserve

the curve length, but this type is different from the one in Ref. [105] in the sense that, on

the interval between adjacent grid points, the curvature function of this type of arc splines

is constant instead of being piecewise constant with two constant values; Besides, it is not

required that the arc spline is tangent to the smooth curve at the grid points. Since the

tangent condition is relaxed, it is easily shown that the path length is preserved by choosing

appropriate curvature values for each arc.

38

Let a C3-smooth curve Γ in the two dimensional plane be given by a curvature function

κ(s), s ∈ [s0, sf]. Consider the case that Γ does not contain any circular arcs. By partition-

ing Γ into a finite number of segments and assign a local coordinate to each segment, we

may assume that κ is a strictly monotone function, and the angle α between the tangent of

Γ and the x-axis is between −π/6 and π/6 (π/6 is an arbitrary choice for the convenience

of proof). Let x(s), y(s) be the coordinate functions of Γ.

Given an arbitrary grid {si}N−1
i=0 containing N points with s0 < s1 < · · · < sN−1 = sf ,

define an arc spline Γ̂ for the approximation of Γ with the curvature function κ̂(s) = κi,

for s ∈ [si−1, si), i = 1, . . . , N − 2 and s ∈ [sN−2, sN−1), where κi is chosen such that

min{κ(si−1), κ(si)} < κi < max{κ(si−1), κ(si)}, and the length of Γ is preserved by Γ̂.

Besides, Γ̂(si) = Γ(si) for i = 1, . . . , N − 1. Let x̂, ŷ be the coordinate functions of the

circular spline approximation, and α̂ be the angle between the tangent of Γ̂ and the x-axis,

with −π/6α̂ < π/6. The grid {si}N−1
i=0 also corresponds to a grid {xi}N−1

i=0 on the x-axis,

which is well defined with x0 < x1 < · · · < xN−1.

The following theorem extend the result in Ref. [105] to the estimation of the L1 norm

of the approximation error. Because the arc spline considered here is different from that

in Ref. [105], we also include a sketch of the proof regarding the error estimation on the

deviation of the slope angel function α(s) − α̂(s). We also extends the result in Ref. [105]

and provide an estimation of the L1 norm of the approximation error.

Theorem 2.3.2 (Error estimation for circular arc spline approximation). There exist pos-

itive real numbers Mi, i = 1, . . . , N − 1, such that the deviation of the slope angle function

of the approximation from the corresponding function of the original curve satisfies

|α(s) − α̂(s)| ≤Mi(si − si−1)
2, s ∈ [si−1, si], i = 1, . . . , N,

Further more, the L1 norm of the approximation error y− ŷ on [xi−1, xi], which is given by

ηi =

∫ xi

xi−1

|y(x)− ŷ(x)|dx,

satisfies ηi ≤Mi max{(si − si−1)
4, (si − si−1)

7}.

39

Proof. consider the interval [si−1, si], and assume without loss of generality that κ(si−1) <

κ(si). Because κ(si−1) < κi < κ(si), and κ is monotone, there exists sp ∈ [si−1, si] such

that κ(sp) = κi, i.e., κ(sp)− κ̂(sp) = 0. Note that κ is Lipschitz since Γ is C3 smooth. As a

result, there exists a finite Lipschitz constant Mai
such that |κ(s)− κ̂(s)| < Mai

(si − si−1),

s ∈ [si−1, si].

The angles α and α̂ are given by

α(s) = α(si−1) +

∫ s

si−1

κ(s)ds,

α̂(s) = α̂(si−1) +

∫ s

si−1

κ̂(s)ds.

Obviously, α and α̂ are continuous functions.

Because Γ(si−1) = Γ̂(si−1) and Γ(si) = Γ̂(si), we must have

(α̂(si−1)− α(si−1)) (α̂(si)− α(si)) < 0.

Therefore, by the continuity of α and α̂, there exists sq ∈ [si−1, si] such that α̂(sq) =

α(sq).

Now rewritten the expressions of α and α̂ on [si−1, si] as

α(s) = α(sq) +

∫ s

sq

κ(s)ds,

α̂(s) = α̂(sq) +

∫ s

sq

κ̂(s)ds.

Subtracting one of the above expression from the other, we have

|α(s)− α̂(s)| =
∣∣∣∣∣

∫ s

sq

(κ(s)− κ̂(s)) ds

∣∣∣∣∣ ≤
∫ s

sq

|κ(s)− κ̂(s)|ds ≤Mai
(si+1 − si)

2.

Because the L1 norm of the approximation error equals to the area between two curves

Γ and Γ̂ on [xi−1, xi], we will compute the value of ηi using the polar coordinate, which is

illustrated in the Fig. 5.

δi(s) =

∫ s

si−1

tan(α(τ) − α̂(τ))dτ.

Because |α| < π/6 and |α̂| < π/6, we have |α− α̂| < π/3. Since the tangent function is

Lipschitz on [−π/3, π/3], there exists a constant Mti such that

| tan(α(τ) − α̂(τ))| ≤ Mti

Mai

|α(τ)− α̂(τ)|.

40

δi(s)

Γ

Γ̂
si−1

si

ds

R̂i

x

y

xi−1 xi

R(s)

o

Figure 5: L1-norm of the approximation error on [si−1, si] for a C3-smooth curve.

Then,

|δi(s)| ≤
∫ s

si−1

| tan(α(τ) − α̂(τ))|dτ

≤ Mti

Mai

∫ s

si−1

|α(τ)− α̂(τ)|dτ

≤ Mti

Mai

Mai

∫ s

si−1

(si+1 − si)
2dτ

= Mti(si − si−1)
2(s − si−1).

Hence,

ηi =

∫ s

si−1

∣∣R2
i −R2 (τ)

∣∣ |κi|dτ

=

∫ s

si−1

|κi| |(Ri +R (τ)) (Ri −R (τ))|dτ

=

∫ s

si−1

|κi| |(2Ri − δ (τ)) δ (τ)|dτ

≤ 2

∫ s

si−1

|δ (τ)|dτ + |κi|
∫ s

si−1

∣∣δ2 (τ)
∣∣dτ

≤Mti(si − si−1)
2

∫ si

si−1

(s− si−1)ds

+ |κi|Mti(si − si−1)
4

∫ si

si−1

(s− si−1)
2ds

=
Mti

2
(si − si−1)

4 +
Mti

3
(si − si−1)

7.

Let Mi = max{Mai
, 5Mti/6}, then the proof is complete.

The following result from Ref. [81] extends Corollary 2.3.1 to more general functions

41

and metrics.

Let Cr
∗ [0, 1] denote the set of the functions Γ(t) ∈ Cr+1[0, 1] such that Γ(r)(t) > 0,

0 ≤ t ≤ 1. Let ∆n = {t0 < t1 < · · · < tn} be an arbitrary partition of the closed interval

[t0, tn], and sn,r(t) be the function which is an algebraic polynomial of degree at most r−1,

(r = 1, 2, . . .) on each of the closed intervals [ti−1,n, ti,n] (i = 1, 2, . . . , n). Define

E (Γ;∆n)X = inf
sn,r

‖Γ(t)− sn,r(t)‖X[t0,tn]
,

and

En,r(Γ)X = inf
∆n

E (Γ;∆n)X ,

where X is the space Lp.

Theorem 2.3.3 (The best choice of nodes for approximation using splines in Lp space[81]).

Let Γ ∈ Cr
∗ [0, 1],

En,r(Γ)X =
Br,p

r!nr2(rp+1)/p

[∫ 1

0
(Γ(r)(t))p/(rp+1)dt

](rp+1)/p

+O(
1

nrp/(rp+1)+r
)

where

Br,p = min
ak

‖tr −
r−1∑

k=0

akt
k‖Lp[−1,1] (1 ≤ p <∞)

as n→∞. Moreover, the asymptotically best location of the nodes is determined from the

equations

∫ x∗

i,n

0

[
Γ(r)(t)

]p/(rp+1)
dt =

i

n

∫ 1

0

[
Γ(r)(t)

]p/(rp+1)
dt. (30)

Although it is assumed for Theorem 2.3.3 that Γ2 > 0, by partitioning Γ into segments

based on the sign of the curvature, and assign proper local coordinate to the segments with

negative curvature, this assumption can always be satisfied. Let

ρ∗(x) =

[
Γ(r)(t)

]p/(rp+1)

∫ 1
0

[
Γ(r)(t)

]p/(rp+1)
dt
,

The associated cumulative function is given by

F (x) =

∫ x

0
ρ∗(t)dt,

42

Then equation (30) is equivalent to

F (x∗i,n)− F (x∗i−1,n) =
1

n
,

Therefore ρ∗ is the optimal density function for the grid point distribution scheme described

by (30). When Γ is a C3-smooth curves, r = 2. Since L1 norm is considered in this thesis,

we have p = 1. The optimal density function is

ρ∗(x) =

[
Γ(2)(x)

]1/3

∫ 1
0

[
Γ(2)(t)

]1/3
dt

= c
[
Γ(2)(x)

]1/3
,

where c is a constant. Let s be the path coordinate. Noticing that ds =
√

1 + [Γ(1)(s)]2dt,

we have

ρ∗(s) = c
[
Γ(2)(s)

]1/3 (
1 + [Γ(1)(s)]2

)−1/2
,

= c

[
Γ(2)(s)

(
1 + [Γ(1)(s)]2

)3/2

] 1
3

= cκ1/3(s),

Which is the same as the optimal density function for the case when Γ is piecewise circular.

2.4 Costate Estimation

In direct collocation methods, which are implemented in the previously mentioned DEN-

sity function based mesh refinement algorithm (DENMRA), the decision variables include

the states and controls only, while the costates are related to the Lagrangian multipliers

associated with the NLP. The feasibility of the optimized solution can be checked easily by

integrating the system dynamics using the optimized controls and compare the integration

result with the optimized states. To check the optimality of the result, it is necessary to

recover the costates from the Lagrangian multipliers and compute the Hamiltonian. In this

section, we describe briefly the costate estimation technique from Ref. [114], which was

implemented in DENMRA.

Consider the following optimal control problem stated in Mayer form.

min
u∈PWC([t0,tf])

m
,t0,tf∈R

ϕ [x (tf) , tf]

43

subject to the conditions

ẋ = f (x (t) , u (t) , t)

ψ0 (x (t0) , t0) = 0

ψf (x (tf) , tf) = 0

ge (x (t) , u (t) , t) = 0

gi (x (t) , u (t) , t) ≤ 0

he (x (t) , t) = 0

hi (x (t) , t) ≤ 0

Here t ∈ R, x(t) ∈ R
n, u(t) ∈ R

m are time, state vector and control vector, respectively.

The functions

ϕ : R
n+1 → R f : R

n+m+1 → R
n

ψ0 : R
n+1 → R

k0 ψf : R
n+1 → R

kf

k0 6 n+ 1 kf 6 n

ge : R
n+m+1 → R

kge gi : R
n+m+1 → R

kgi

he : R
n+1 → R

khe hi : R
n+1 → R

khi

are sufficiently smooth with respect to their arguments. PWC ([t0, tf])m denotes the set of

piecewise continuous functions defined on interval [t0, tf].

2.4.1 Discretized Optimal Control Problem

By discretizing the above optimal control problem using collocation, both the states and

controls are discretized, and the dynamic and state constraints are enforced only at isolated

points. Using a trapezoidal rule to enforce the equations of motion at a single point between

neighboring nodes, the scheme leads to the following NLP problem:

min
x0,...,xN ,u1,...,uN ,t0,tN∈RnN+1+mN+2

ϕ (xN , tN)

44

subject to the conditions

˙̄xj − f (x̄j, uj , t̄j) = 0, j = 1, . . . , N,

ψ0 (x0, t0) = 0,

ψf (xf , tf) = 0,

g(x̄j , uj , t̄j) ≤ 0, , j = 1, . . . , N,

h(x̄j , uj , t̄j) ≤ 0, , j = 1, . . . , N,

where

t̄j =
tj+tj−1

2

x̄j =
xj+xj−1

2

˙̄xj =
xj−xj−1

tj−tj−1

j = 1, . . . , N.

The Lagrangian function associated with the discretized optimal control problem is given

by

L = ϕ (xN , tN) + πT
0 ψ0 (x0, t0) + πT

f ψf (xN , tN) +
N∑

j=1

λT
j [f (x̄j, uj , t̄j)− ˙̄xj]

+

N∑

j=1

σT
j g (x̄j, uj , t̄j)+

N∑

j=0

µT
j h (x̄j , t̄j).

2.4.2 Costate Estimates

It is well-known that the Lagrangian multipliers λj correspond to the sensitivity of the

optimal cost with respect to the perturbations in the state vector xj at time tj. However, in

order to provide a valid estimation of the costates in the original optimal control problem,

certain post processing of the Lagrangian multipliers is necessary.

When the state constraint is not active at initial time t0, the costate is given by

λ
(
t−0
)T

=
λT

1

2

∂f

∂x

∣∣∣∣
(x̄1,u1,t̄1)

+
λT

1

t1 − t0
+
σT

1

2

∂g

∂x

∣∣∣∣
(x̄1,u1,t̄1)

+
µT

0

2

∂h

∂x

∣∣∣∣
(x̄1,t̄1)

.

If the state constraint becomes active at t0, then the above expression actually gives

the value of the costate just before the state constraint is active, and the costate jump

introduced later should be used to compute the costate at t0.

At each individual node ti, supposing that the state constraint is not active at ti, the

value of the costate can be obtained by deleting the i leading nodes (i = 0, . . . , i − 1) and

45

consider ti as the initial time. Then the costate estimate would be

λ
(
t−i
)T

=
λT

i+1

2

∂f

∂x

∣∣∣∣
(x̄i+1,ui+1,t̄i+1)

+
λT

i+1

ti+1 − ti
+
σT

i+1

2

∂g

∂x

∣∣∣∣
(x̄i+1,ui+1,t̄i+1)

+
µT

i

2

∂h

∂x

∣∣∣∣
(x̄i,t̄i)

,

(31)

for i = 0, . . . , N −1. Again, if no state constraints are active at ti, then the costate function

λ(t) is continuous at ti, so λ
(
t−i
)T

can be replaced by λ (ti)
T , otherwise equation (31) is

only an estimate of the costate value before the jump at ti.

The costate value at the final node tf is computed by the expression below:

λ (tN)T =
∂ϕ

∂x

∣∣∣∣
(x̄N ,t̄N)

+ νT
f

∂ψf

∂x

∣∣∣∣
(x̄N ,t̄N)

,

where νf = −πf .

Suppose that the state constraints are active for a certain number of nodes, namely,

h (xj , tj) =

< 0, j = 0, . . . , ia−1,

= 0, j = ia, . . . , ib,

< 0, j = ib+1, . . . , N.

In the variational approach to the state-constrained optimal control problems, the active

state constraint h(x(t), t) = 0 on t ∈ [ta, tb] is transformed into an equivalent combination

of interior point constraint and a control constraint:

M (x (ta) , ta) =

h (x, t)|ta
dh (x, t)

dt

∣∣∣∣
ta

...

dq−1h (x, t)

dq−1t

∣∣∣∣
ta

= 0,

and
dqh (x, t)

dqt
= 0 for t ∈ [ta, tb], where q is the smallest integer for which the control

appears explicitly in the corresponding derivative.

Then the jump in the costate due to the activation of state constraint is given by

λ (ti)
T − λ

(
t−i
)T

= lT
∂M (x (ti) , ti)

∂x
,

where the components of l are given by lj =
ib∑

k=i

µk

j!
(tk − ti)j , j = 0, . . . , q − 1.

46

2.4.3 Numerical Example

Consider the Brachistochrone problem with state constraint as in Ref. [114]. In Meyer form,

the problem can be stated as follows:

min
u∈PWC[t0,tf]

tf

subject to the equations of motion

ẋ (t) = v (y) cos θ (t) ,

ẏ (t) = v (y) sin θ (t) ,

boundary contitions

x (0) = 0,

x (tf) = 1,

y (0) = 0,

y (tf) free,

and the state constraint

y (t)− x (t) tan γ − h0 6 0.

The quantities v0 = 1, g = 1, γ = 20deg, and h0 = 0.05 are constants. The angle θ is the

only control, v denotes the velocity, and can be computed by v =
√
v2
0 + 2gy. The state

inequality is of first order, and the optimal switching structure is free—constrained—free.

The costates computed using the Lagrangian multipliers are shown in Fig. 6 and Fig. 7.

The Hamiltonian is shown in Fig. 8. It can be seen that the Hamiltonian is constant at −1,

which suggests the local optimality of the solution and the validity of the costate estimation.

It needs to be pointed out that this costate estimation method is tailored for the trape-

zoidal discretization scheme [114], and does not hold for other schemes. New formulas

need to be derived if other discretization schemes are to be applied. Besides, as can be

seen in this example, a successful implemenation of the costate estimation technique also

requires the correct knowledge of the structure of the engagement of the state constraint.

Furthermore, the differentiation of the state constraint h(x(t), t) also needs to be derived

and implemented before the computation of the jump of the costate, the complexity of this

47

process could vary depending on the problem to be solved. For very complicated problems,

the implementation of this costate estimation method may not be very easy.

0 0.2 0.4 0.6 0.8 1
−0.815

−0.81

−0.805

−0.8

−0.795

−0.79

−0.785

−0.78

t

λ
1

Figure 6: Costate history: λx.

0 0.2 0.4 0.6 0.8 1
−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

t

λ
2

Figure 7: Costate history: λy.

2.5 Density Function-based Mesh Refinement Algorithm (DENMRA)

In this section we present the DENsity function-based Mesh Refinement Algorithm (DEN-

MRA), which is an iterative algorithm for solving optimal control problems, utilizing the

mesh generation method based on a mesh density function introduced previously.

48

0 0.2 0.4 0.6 0.8 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

t

H
am

ilt
on

ia
n

Figure 8: Hamiltonian history.

The use of a density function is one of the key components in DENMRA. General optimal

control problems involve ordinary differential equations in terms of the state variables, which

describe how the control changes the vector field of the states. For such problems, since the

states are continuous, irregularities in the smoothness in the states usually correspond to

fast (or discontinuous) changes in the control. Hence, typically, the control history is used

in DENMRA for computing the density function to capture smoothness irregularities in

both the state and the control histories, although this is not restrictive. The state histories

can be used as well, if needed.

2.5.1 Major Steps of DENMRA

When solving a general optimal control problem that minimizes the cost function J using

m control inputs, DENMRA goes through the following four major steps:

(1) Set j = 1. Choose a positive integer Nj and generate the initial uniform mesh T1 =

{ti}Nj

ti=1, where ti = (i−1)/(Nj−1), Generate an initial guess for the state and control

variables, and solve the discretized problem that minimizes J ;

(2) Calculate the density function f using the discretized control {(ti,ui)}Nj

i=1 of the pre-

vious solution, where ui ∈ R
m;

49

(3) Determine the mesh size increment ∆Nj by discretization error estimation which is

introduced in Ref. [26]. Let Nj+1 = Nj + ∆Nj, and generate the new mesh Tj+1 =

{ti}Nj+1

i=1 based on f . Set j = j + 1;

(4) Generate the initial guess based on the previous solution for mesh Tj , solve the prob-

lem, and go to Step (2), unless some stopping rule is met.

2.5.2 Technical Details

The details of these steps are given below.

Initial Guess

For simplicity, DENMRA may start from a constant initial guess for all control and

state variables, but – as typical with nonlinear optimization problems – any good initial

guess based on prior experience with the problem or good engineering judgment can improve

convergence.

Optimization

After the cost function and the dynamic, state, control and path constraints have been

discretized on the given grid, DENMRA calls a nonlinear programming (NLP) solver. In

this implementation, we have used the optimization software SNOPT [54] for solving the

corresponding nonlinear programming problem stemming from the discretized optimal con-

trol problem.

Density Function Computation

In DENMRA, when the density function based on the local curvature as described

in [136] is used, the discrete control {(ti,ui)}Nj

i=1 from the previous iteration is used to

estimate the curvature of the graph of the control history. This curvature based density

function provides the best piecewise linear interpolative approximation to the graph in an

asymptotic sense as the size of grid increases. For more details about the proof please refer

to the appendix. The calculation of the density function corresponding to the control u is

therefore computed as follows:

(1) Let ui,k be the kth component of the discrete control value ui at ti, u̇i,k be the first order

derivative of the kth component of control at time t′i = (ti+1 + ti)/2, and üi,k be the

50

second order derivative at time t′′i = (t′i+1 + t′i)/2. Then, for k = 1, . . . ,m, the values

{u̇i,k}Nj−1
i=1 and {üi,k}Nj−2

i=1 can be approximated by u̇i,k ≈ (ui+1,k − ui,k)/(ti+1 − ti)

and üi,k ≈ (u̇i+1,k − u̇i,k)/(t
′
i+1 − t′i), respectively. Interpolate {(t′i, u̇i,k)}Nj−1

i=1 using a

spline function at t′′i and obtain {(t′′i , u̇′i,k)}
Nj−2
i=1 .

(2) Compute density function as ρi,k = (κ
1/3
i,k + ǫ)

√
1 + u̇2

i,k = |üi,k|1/3 + ǫ
√

1 + u̇2
i,k,

where ǫ > 0. The actual curvature κ(t) is chosen as a piecewise constant function

with ρk(t) = (ρi,k + ρi+1,k)/2 for t ∈ [ti, ti+1]. Note that a small positive number ǫ

is added to the actual curvature density function. In practice, this means that a few

grid points are kept even on the parts of the control history that are straight lines

or segments with very small curvature. This is always a good idea since the control

history on Is may change in subsequent iterations, and it is thus advisable to keep

some points in the interior of the interval Is in order to capture possible changes of

the control histories.

(3) The overall (non-normalized) density function f is obtained by merging the density

functions for all controls. For instance,

f(t) =

(m∑

k=1

ρ2
k(t)

) 1
2

, (32)

and

f(t) = max
k

ρk(t) (33)

are two possible methods to generate the overall density function.

2.5.2.1 Mesh Generation

DENMRA typically starts with a coarse uniform mesh in order to capture the basic structure

of the control history. In subsequent iterations, the user can either let DENMRA decide the

mesh size based on the integration error, or adjust the final mesh size and the number of

iterations according to the desired or imposed speed and accuracy requirements depending

on the problem at hand. In the former case, at each mesh refinement iteration, cubic splines

are used to approximate the state and control histories, and the local discretization error of

the previous mesh is estimated. After the density function is computed based on the result

51

of the previous iteration, a temporary new mesh size Ñj is found by gradually increasing

Ñj from Nj until the maximum local discretization error of the new mesh generated using

the density function with Ñj points is smaller than that of the previous mesh. Let Nmax be

a limit on the final mesh size, then the actual mesh size increment after the jth iteration is

determined by ∆Nj = min{Ñj−Nj ,∆Nmax}, where ∆Nmax = Nmax−Nj . if ∆Nj = Ñj−Nj ,

then the last temporary mesh would be used for the next iteration. Otherwise a new mesh

would be generated with Nj + ∆Nmax points.

2.5.2.2 Stopping Rule

DENMRA stops either when the maximum number of mesh refinement iterations is reached,

or when the optimality of the problem cannot be further improved and the local integration

error is smaller than the specified tolerance.

2.6 Numerical Examples

In this section we report the results from two numerical examples, generated to illustrate the

good properties of the proposed mesh generation method. The first example is the double

integrator minimum energy problem [29]. Since this problem has an analytical solution, it

can be used to check the accuracy and optimality of the proposed method. It also includes

a state constraint, which is used to demonstrate that the proposed methods is able to

handle higher order state irregularities stemming from such state constraints. The second

example deals with a “hypersensitive” optimal control problem [102] and it is used to test

the robustness of the method when dealing with problems requiring highly concentrated grid

points at certain phases of the solution. For comparison, the same two problems are also

solved using SOCS [23], which is a widely used software for solving trajectory optimization

problems. Both algorithms start with trapezoidal integration, and switch to higher order

Hermite-Simpson integration later on to meet the desired accuracy/optimality. A feasibility

tolerance of 10−10 is used for both algorithms.

52

2.6.1 Minimum Energy for Double Integrator

The double integrator problem is given by:

v̇ = u, v(0) = −v(1) = 1,

ẋ = v, x(0) = x(1) = 0,

and the goal is to find u(t), where 0 ≤ t ≤ 1, to minimize

J =
1

2

∫ 1

0
u2 dt,

with the state constraint x(t) ≤ ℓ, where ℓ is a positive real number.

The solution of the optimal control u∗(t) can be obtained as follows [29]:

u∗(t) = −2, 0 ≤ t ≤ 1, for ℓ ≥ 1
4 ;

u∗(t) =

−8(1 − 3ℓ) + 24(1 − 4ℓ)t, 0 ≤ t ≤ 1
2 ,

−8(1 − 3ℓ) + 24(1 − 4ℓ)(1 − t), 1
2 < t ≤ 1,

for 1
6 ≤ ℓ < 1

4 ;

u∗(t) =

− 2
3ℓ(1− t

3ℓ), 0 ≤ t ≤ 3ℓ,

0, 3ℓ < t ≤ 1− 3ℓ,

− 2
3ℓ(1− 1−t

3ℓ), 1− 3ℓ < t ≤ 1,

for ℓ < 1
6 .

2.6.1.1 Comparison in Terms of Accuracy and Optimality

The curvature based-density function is used for mesh refinement in DENMRA for this

problem. This density function is given by ρκ(t) = κ(t)1/3, t ∈ [0, 1], where κ is the

curvature of the graph of the control function. As mentioned previously in Section 2.3,

this density function provides the best piecewise linear interpolative approximation of the

control. The same problem was also solved using the commercial numerical optimal control

code SOCS, which implements the mesh refinement strategy of [26]. Both algorithms were

tested on the same computer, and cold-started using the same linear initial guess.

Table 1 summarizes the results from DENMRA and SOCS for the double integrator

problem. In the table, N is the size of the final mesh, |J − J∗| is the optimality error, and

53

‖ui − u∗(ti)‖∞ = maxi |ui − u∗(ti)| is the norm of the error between the discretized control

{ui}Ni=1 and the exact solution u∗. Our numerical experiments showed that SOCS could not

achieve highly accurate solution for this problem even if the local integration error tolerance

has been set to 10−14. The optimality error of the SOCS solution was around 10−4 ∼ 10−6

with a maximum control error around 10−2 ∼ 10−3. DENMRA exhibited an optimality

error at the order 10−7 ∼ 10−13, and a maximum control error at the order of 10−5 ∼ 10−6.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

t

M
es

h
nu

m
be

r

Figure 9: Mesh refinement, SOCS, ℓ = 0.05.

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

t

M
es

h
nu

m
be

r

Figure 10: Mesh refinement, DENMRA, ℓ = 0.05.

54

The mesh refinement histories of the two algorithms for the case with ℓ = 0.05 are shown

in Figs. 9-10. In these figures, the vertical dotted lines indicate the points of discontinuities

in the analytical solution (at t = 0.15 and t = 0.85). As can be seen from Fig. 10, when

DENMRA is used to solve this problem, the grid points get denser around the two points

with discontinuities in the control derivative after each iteration, thus providing a better

resolution. The mesh refinement scheme in SOCS is based on the integration error, and

allocates more points on the two intervals [0, 0.15] and [0.85, 1] where the absolute value of

u̇∗ is large, but beyond this, the discontinuities in control did not receive any additional

special treatment. As a result of this mesh refinement procedure, SOCS always keeps

the points from the previous mesh, and hence tends to generate a larger mesh size. By

solving this problem with different values of ℓ, it was confirmed that, for this problem,

the mesh generated by DENMRA always provides better resolution around the points of

discontinuities.

Table 1: Comparison of precision and optimality.

ℓ Algorithm N |J − J∗| ‖ui − u∗(ti)‖∞
0.04

SOCS 99 7.5e-5 4.2e-3
DENMRA-ρκ 40 8.9e-7 4.4e-5

0.08
SOCS 99 6.9e-6 1.4e-3

DENMRA-ρκ 40 1.9e-8 4.8e-5

0.12
SOCS 50 9.6e-5 3.9e-3

DENMRA-ρκ 40 1.2e-9 1.0e-5

0.16
SOCS 50 7.2e-5 1.8e-2

DENMRA-ρκ 40 2.7e-13 5.8e-6

Comparison in Terms of Resolution

By “resolution” here we mean not only the ability of an algorithm to capture the dis-

continuities in the control history or its higher order derivatives using a locally denser grid,

but also the ability to distinguish adjacent points of discontinuity.

(1) When ℓ ≥ 1/6, the optimal control u∗(t) is either constant or smooth, both DENMRA

and SOCS converge to the theoretical solution.

(2) When ℓ < 1/6, the optimal control u∗(t) contains two corners. It is challenging to

55

distinguish these corners when ℓ tends to zero or 1/6: in the former case, the corners

are very close to the endpoints of the mesh, and the fast change of control between the

corner and the corresponding end point makes it more difficult to obtain an accurate

solution; in the second case, the two points of discontinuity tend to merge, which

makes them difficult to distinguish.

Table 2: Comparison of resolution.

Algorithm ℓ ID ∆t |J − J∗| ‖ui − u∗(ti)‖∞
SOCS

0.025 D1 0.075 8.2× 10−4 8.5× 10−3

0.153 D2 0.082 2.8× 10−5 8.5× 10−3

DENMRA-ρκ
0.014 D1 0.042 7.3× 10−9 1.7× 10−4

0.1662 D2 0.0028 1.9× 10−9 9.0× 10−4

D1: the smallest ℓ keeping‖ui − u∗(ti)‖∞ ≤ 10−2 without algorithm failure.

D2: the largest ℓ keeping ‖ui − u∗(ti)‖∞ ≤ 10−2 while separating the discontinuities

The resolution test results are listed in Table 2. Both algorithms were able to gradu-

ally decrease ℓ until ‖ui − u∗(ti)‖∞ ≤ 10−2 without inducing any algorithm failure. The

resolution is denoted by ∆t. When ℓ → 0, ∆t = 3ℓ, where ∆t is the distance between the

discontinuities and the nearby endpoints of the mesh. When ℓ → 1/6, ∆t = 1 − 6ℓ, which

is the distance between the two points of discontinuity. In both cases, a smaller ∆t means

a better resolution. For all test cases, DENMRA terminates with 40 points, SOCS starts

from 50 points, and the final mesh sizes have 83 points when ℓ = 0.025, and 50 points when

ℓ = 0.162. As shown in Table 2, DENMRA provides sharper resolution than SOCS while

preserving the accuracy of the solution.

2.6.2 Hypersensitive Problem

This problem minimizes the cost function

J =

∫ tf

0

(
x2(t) + u2(t)

)
dt,

subject to the differential constraint

ẋ = −x3 + u,

56

and endpoint state constraints x(0) = 1, x(tf) = 1.5. For large values of tf , the solution of

this hypersensitive problem has a three-segment structure with two boundary layers [102],

namely, a “take-off, cruise and landing” structure. The “cruise” phase is determined by the

cost function and the system dynamics,while the “take-off” and “landing” phases are de-

termined by the boundary conditions, cost function, system dynamics, and the requirement

to reach the cruise phase.

As pointed out in Ref. [102], the key to solving hypersensitive problems using direct

methods is to use a denser grid during the boundary layers—“take-off” and “landing”

phases— in which the state changes fast; a nonuniform mesh is imperative for the solution

of this problem with large values of tf . The hypersensitive problem with large tf is suitable

for testing the robustness of mesh refinement algorithms, because the length of the “cruise”

phase increases with respect to tf , which makes it more difficult to allocate enough grid

points to the two boundary layers. We solved this problem for various values of tf using

both SOCS and DENMRA. Observing that the boundary layer is characterized by a large

absolute value of the derivative of control, we used the density function f(t) = |u̇(t)| 12 to

capture these boundary layers during mesh generation in DENMRA.

SOCS was started from a mesh containing 150 points, and the maximum number of

mesh refinements was set at 15. DENMRA started from a uniform mesh containing 25

points, with a maximum number of 15 mesh refinement iterations and a maximum mesh

size of Nmax = 100. The problem was solved on the same computer as in the previous

example. The results are summarized below.

In our numerical experiments, when ρκ is used for mesh generation and refinement,

DENMRA failed to allocate enough points at both ends of the mesh, and did not converge

for large values of tf . In contrast, the use of the density finction f(t) = |u̇(t)| 12 captures

a larger region of the two boundary layers. Figure 11 shows the result of DENMRA using

the f density function for tf = 1× 105. As can be seen from the figure, the majority of the

grid points are successfully allocated inside the two boundary layers.

Both SOCS and DENMRA were challenged by solving this hypersensitive problem for

tf as large as possible. To estimate the maximum solvable value of tf , each algorithm was

57

0 5 10
0

0.5

1

x
(t

)

t(s)
9.999 9.9995 10

x 10
4

0

0.5

1

1.5

t(s)

0 5 10

−0.4

−0.2

0

t(s)

u
(t

)

9.9985 9.999 9.9995 10

x 10
4

0

2

4

6

8

t(s)

0 2 4 6 8 10

x 10
4

0

1

2

t(s)

F
in

al
 M

es
h

Figure 11: DENMRA solution, tf = 100, 000.

used to solve the hypersensitive problem for an increasing sequence of tf values starting

from tf = 100. Numerical results showed that the optimal value J∗ ≈ 6.724. If the

problem was successfully solved with the final objective value J < 7, then tf was updated

as tf = tf + ∆tf , where ∆tf = 10N if 10N ≤ tf < 10N+1, for some positive integer

N , and the problem was solved again with the new tf . This process was repeated until

J ≥ 7. The results are shown in Table 3. As shown in the table, DENMRA exhibited good

robustness by solving the hypersensitive problem for large values of tf , which is attributed

to its ability to redistribute the grid points to the boundary layers even with the presence

of very long “cruise” phases. As a matter of fact, DENMRA was able to provide a solution

up to a maximum value of tf = 2× 106, whereas SOCS was limited to a maximum value of

tf = 30, 000.

The optimality of SOCS and DENMRA is shown in Table 4. It was found that the

optimality of the results obtained by DENMRA deteriorates when tf is very large, while

58

the optimality of the SOCS solution is consistent within the range of tf values it can solve.

The mesh refinement histories of two algorithms are similar, except for the fact that the

mesh generated by SOCS contains many more grid points.

Table 3: Hypersensitive problem, robustness test.

Algorithm tf NIter Nf J

SOCS 30,000 15 475 6.7241

DENMRA-f 2× 106 15 100 6.8211

Table 4: Hypersensitive problem, optimality test.

Algorithm tf NIter Nf J

SOCS
2× 102 11 1020 6.7241
2× 103 14 1201 6.7241
2× 104 15 1014 6.7241

DENMRA-f
2× 102 13 100 6.7240
2× 103 13 100 6.7240
2× 104 15 100 6.7239

In Ref. [24], a density (monitor) function of the form

ϕ(x, u) =

(
α+

n∑

i=1

βigi(x, u)

)1/2

,

where gi(x, u) is the ith component of the system dynamics, and α and βi are constants

to be adjusted, was used to initialize SOCS for solving the hypersensitive problem. This

“arc length” monitor function was also tested for mesh refinement. It was found that when

DENMRA uses this arc length monitor function, the maximum solvable tf value is 10,000.

A density function providing an equidistribution along the arc length of the graph of the

system state is not therefore the best choice for mesh refinement for this specific problem.

59

2.6.3 Optimal Aircraft Landing Trajectory with Limited Thrust

In this example DENMRA was used to investigate several optimal landing scenarios for a

DC9-30 commercial aircraft. The equations of motion are as follows [45]:

ẋ = υ cos γ cosψ, (34)

ẏ = υ cos γ sinψ, (35)

ż = υ sin γ, (36)

υ̇ =
1

m
(T cosα−D(α, v, z))− g sin γ, (37)

γ̇ =
1

mυ
(T sinα+ L(α, v, z) cos φ)− g

υ
cos γ, (38)

ψ̇ = − 1

mυ cos γ
L(α, v, z) sin φ, (39)

where the variables are

m: mass, v: airspeed, ψ: heading angle, γ: path angle,

x: position(east), y: position(north), z: altitude, T : thrust,

φ: bank angle, L: lift force, D: drag force. α: angle of attack.

The lift and drag forces are functions of α and v, as described in the following equations:

D(α, v, z) = Q(v, z)SCD(α),

L(α, v, z) = Q(v, z)SCL(α),

where Q(v, z) is the dynamic pressure given by Q(v, z) = 1
2ρ(z)v

2, ρ(z) is the air density at

altitude z, and S is the wing surface area. The lift and drag coefficients CL(α) and CD(α)

can be calculated, as usual, by the following equations,

CL(α) = CL0 + CLαα,

CD(α) = CD0 +KC2
L(α),

where CL0 is the lift coefficient at zero angle of attack, and CLα is the lift coefficient

slope. The coefficient CD0 accounts for the drag of the whole aircraft, and the second term

in CD(α) accounts for the induced drag, specifically, K = 1/(0.95eπA), where e is the

efficiency factor, which is corrected by 0.95 for the assumed landing configuration. A is the

aspect ratio of the aircraft defined by A = b2/S, where b is the wing span. In the current

60

model, it is assumed that the mass of the aircraft m is constant. Since large civil aircraft

usually fly at a high altitude, a realistic atmospheric model is used for solving the optimal

landing problem [91]. The values of the parameters in the former equations are given in

Table 2.6.3, where Tmax is the maximum thrust.

Table 5: Parameters for the DC9-30.

m 49.940 kg g 9.8kgm/s2 ρ0 1.225kg/m3

S 112 m2 CLα 4.2 CL0 0.4225

Tmax 137.81kN K 0.0459 CD0 0.0197

Finding a good initial guess turns out to be challenging for this problem. Large civil

aircraft usually cruise at an altitude of around 10, 000 m, where the air density is about

0.4140 kg/m3 , which is only 33.8% of the value at sea level. Constantly changing air density

during the landing process makes it difficult for the NLP solver to converge, especially when

the initial guess is not good. Our numerical experiments have shown that an arbitrary

affine or constant initial guess of states and controls works satisfactorily for the constant air

density scenario, but it is difficult to find a converging initial guess for the altitude-varying

air density scenario. Experience may provide good intuition about the shape of the optimal

path but, in general, this is not so for the velocity profile and histories of controls to fly

along such a path. Besides, if the initial guess of the states and controls are not dynamically

consistent, then this initial guess may also lead to the failure of the solver for a sensitive

problem.

For the sensitive cases in which the landing problem with a realistic air density model

and constant initial guess failed to converge, the same problem with constant air density

was solved, and the result was subsequently used as an initial guess for solving the problem

with the altitude-varying air density model again. For all sensitive cases which have been

tested, this procedure led to convergent solutions.

When an aircraft looses thrust because of engine failure, fuel depletion, or any other

unforeseen problem, a reasonable option to guarantee the safety of the passengers is to land

the aircraft at a nearby airport as soon as possible. This can be treated as a minimum-time

61

optimal control problem with fixed boundary conditions. In this section we consider two

cases for the zero-thrust, minimum-time landing problem. For both cases the aircraft loses

power at an altitude of z = 10km, cruise speed v = 240m/s, and flight path angle γ = 0◦,

and needs to land at a nearby airport using only the angle of attack α and the bank angle

φ as control inputs. We considered four landing scenarios to demonstrate DENMRA’s

capability for solving the aircraft landing problem, with different run way position and

orientation. The runway layouts are listed in Table 6.

Table 6: Runway layout table.

xf (km) yf (km) zf (km) ψf (◦)

Runway No.1 60 50 0 350

Runway No.2 60 -30 0 30

Runway No.3 -60 -45 0 150

Runway No.4 -70 45 0 310

The zero-thrust emergency landing scenarios in Table 6 were solved by minimizing the

final arrival time tf in DENMRA. The corresponding landing trajectories are shown in

Fig. 12 and Fig. 13. The same landing problems were also formulated using an industrial-

strength numerical optimal control software—Sparse Optimal Control Software (SOCS),

however, no convergent solution was found.

2.7 Summary

A new mesh refinement method is proposed, which is based on a mesh density function

that determines the mesh point distribution. By using an appropriate density function,

the proposed DENsity function-based Mesh Refinement Algorithm (DENMRA) generates a

non-uniform mesh by suitably allocating the grid points over the whole time interval, putting

emphasis on the points of discontinuity of the control variables or on the non-smoothness

of the state variables. The grid point allocation process is completely automatic. Two

density functions are also introduced, one based on the local curvature of the graph of the

intermediate solution and the other based on the first derivative of the control variable. The

density function can also be chosen as the integration error, leading to the mesh refinement

62

Figure 12: 3D glider landing trajectories generated in DENMRA.

scheme proposed in Ref. [110]. Numerical results have shown that DENMRA automatically

maintains an appropriate local level of discretization over the whole control and state time

histories for different problems. The grid generation is very simple and easy to implement,

while still maintaining high numerical accuracy for the overall solution. The numerical

examples also demonstrated the importance of choosing an appropriate density function

that captures the smoothness irregularities in the intermediate solution for best accuracy,

optimality and robustness, especially when solving challenging problems.

Another attractive advantage of DENMRA is that it can be used to distribute a fixed

number of grid points so as to maximize the accuracy of the final solution. In terms of real-

time (or close to real-time) applications, this may be of greater interest, since the number of

decision variables and constraints of the resulting nonlinear optimization problem is related

to the number of grid points used. If the computational resources impose limitations on the

number of constraints that can be handled during each iteration, it makes sense to limit

the size of the optimization problem by keeping the number of grid points fixed. This can

be easily achieved using the proposed algorithm.

63

Figure 13: 2D projection of glider landing trajectories generated in DENMRA.

64

CHAPTER III

PATH SMOOTHING USING ITERATIVE QUADRATIC

PROGRAMMING

Path smoothness is a desirable property for the precise tracking of such a path by mechan-

ical systems. With a discontinuity in the first derivative, the path exhibits corner points,

at which points the system must stop completely for precise tracking. Some other systems

require even higher order smoothness of the path in order to be tracked exactly. However,

the paths generated by most geometric path planning methods often do not have the de-

sired smoothness characteristics, and need to be smoothed. In this chapter, we consider

the problem of smoothing a three-dimensional geometric path, which is proposed as Prob-

lem 1.2.3 in Chapter 1. The method introduced in this chapter works equally well as a

post-processing technique for various geometric path planning methods generating smooth

and collision-free paths.

3.1 Background

Let r(s) = {(x(s), y(s), z(s)) : 0 ≤ s ≤ sf} ∈ R
3 represent a parameterized path to be

followed by a vehicle, where s is the arc length coordinate. While obstacles pose constraints

on the image of r, vehicle dynamics place constraints on its higher order derivatives. The

challenge of smooth path planning lies in the coordination between these two different layers

of constraints.

The most commonly used high order path constraint is the curvature constraint. Al-

though Dubinsvehicle paths address curvature constraints, the result is optimal only for a

vehicle having constant speed [44]. For more realistic vehicles with acceleration/deceleration

capability, curvature has greater influence on both the optimality and feasibility of the path.

For example, the traveling time along a longer path with small maximum curvature can

be shorter than that along a shorter path with large maximum curvature [41]. Besides, a

path may be infeasible due to a “minor” violation of the curvature constraint, such that

65

the feasibility can be recovered by a small local variation of the path. Hence, smoothing

a path via local curvature regulation may lead to improvement in terms of feasibility and

optimality.

A discontinuity in the curvature profile implies an instantaneous change of the steering

wheel angle for a car-like vehicle or the bank angle/angle of attack for a fixed-wing aircraft,

both of which require (theoretically) infinite control force. Therefore, the curvature of the

path should be at least continuous for practical applications. For this reason, clothoid

arcs have been used for continuous-curvature path planning based on the Dubins’ path

prototype [108, 48, 15]. Reference [97] used analytical splines and heuristics for smooth path

generation. Reference [134] proposed a path planning algorithm which generates a smooth

path by smoothing out the corners of a linear path prototype using Bézier curves based

on analytic expressions. Although all these methods can generate paths with continuous

curvature, obstacle avoidance is not guaranteed by these methods per se, and can only be

done in an ad hoc manner.

One approach for smooth path planning in the presence of obstacles is to use a “channel”

or “corridor,” which is selected a priori, such that it does not intrude any of the obstacles.

A smooth path is then found within the channel such that it is collision-free. For instance,

[14] introduced a method for generating curvature-bounded paths in rectangular channels;

reference [21] proposed a method for constructing bounded curvature paths traversing a

constant width region in the plane, called corridors, and reference [68] introduced a method

for generating smooth two-dimensional paths within two-dimensional bounding envelops

using B-spline curves. A nonlinear optimization scheme is used to design collision-free and

curvature-continuous paths in [85].

Next, we will present an iterative method for smoothing a three-dimensional path sub-

ject to curvature and obstacle clearance constraints. The proposed method minimizes the

weighted L2 norm of the curvature along the path, which is analogous to the strain energy

stored in a deflected elastic beam. During the optimization process, a sequence of obstacle-

free perturbations are generated along the normal direction of the path. This idea is similar

to the perturbation technique in [53] for eliminating noise in GPS measurement data. When

66

combined with other geometric path planning algorithms that provide the initial collision-

free path prototype, the proposed method generates collision-free paths under length and

localized curvature constraints.

3.2 Curve Representation

Instead of dealing with a curve (path) in the infinite dimensional space, we reduce the

dimensionality of the problem by considering a finite number of characteristic nodes on the

curve, and represent the path using a cubic spline passing through those nodes.

To this end, suppose that the path is defined in parametric form as r(s) = [x(s), y(s), z(s)]T,

parameterized by its arc length s. The curve passes throughN characteristic nodes r1, r2, . . . ,

rN ∈ R
3 at s1, s2, . . . , sN , respectively, i.e., r(si) = ri = (xi, yi, zi), i = 1, 2, . . . , N , where

s1 = 0 and sN = sf . These characteristic nodes are chosen such that they are equally

spanned along the path length with s2 − s1 = s3 − s2 = · · · = sN − sN−1 = ∆s. We

introduce the notation r{k} to denote the kth component of r, i.e., ri{1} = xi, ri{2} = yi,

and ri{3} = zi for i = 1, . . . , N .

In the smoothing process, the first and the last nodes are fixed, and the smoothing of

the path is equivalent to the deployment of the other N − 2 characteristic nodes subject to

certain smoothness criteria.

Because we require that the path has continuous second derivative, cubic splines are

used for the interpolation between the nodes. Specifically, for every i = 2, . . . , N − 2, a

group of four adjacent nodes (the i− 1th, ith, i+1th, and i+2th nodes) is used to construct

a local cubic curve for the interpolation between the ith and the i+ 1th node, as shown in

Fig. 14. A local path length coordinate τ is assigned to each group of nodes such that τ = 0

for the i − 1th node, τ = 1/3 for the ith node, τ = 2/3 for the i+ 1th node, and τ = 1 for

the i+ 2th node.

With a slight abuse of notation, the coordinate x of the path between τ = 1/3 and

τ = 2/3 is given by a cubic interpolative spline passing through the x components of ri−1,

ri, ri+1, ri+2 as:

x(τ ; i) = axi
τ3 + bxi

τ2 + cxi
τ + dxi

67

r i−1

r i
r i+1 r i+2

τ

τ = 0

τ =
1

3 τ =
2

3 τ = 1

Figure 14: Cubic spline interpolation.

where axi
, bxi

, cxi
and dxi

are constants for which the following constraints must be satisfied:

xi−1 = x(0; i) = dxi
, (40)

xi = x(1
3 ; i) =

axi

27
+
bxi

9
+
cxi

3
+ dxi

, (41)

xi+1 = x(2
3 ; i) =

8axi

27
+

4bxi

9
+

2cxi

3
+ dxi

, (42)

xi+2 = x(1; i) = axi
+ bxi

+ cxi
+ dxi

, (43)

from which we have

axi

bxi

cxi

dxi

= G

xi−1

xi

xi+1

xi+2

,

where

G =

−9
2

27
2 −27

2
9
2

9 −45
2 18 −9

2

−11
2 9 −9

2 1

1 0 0 0

.

Therefore, we have the following expression

x(τ ; i) =

[
τ3 τ2 τ 1

]

axi

bxi

cxi

dxi

=

[
τ3 τ2 τ 1

]
G

xi−1

xi

xi+1

xi+2

. (44)

Similarly, the expressions for y(τ ; i) and z(τ ; i) can also be derived, allowing r(τ ; i) to

68

be given by the expression

r(τ ; i) =

[
τ3 τ2 τ 1

]
G

ri−1

ri

ri+1

ri+2

. (45)

By taking derivatives of (45), we have

dr(τ ; i)

dτ
=

[
3τ2 2τ 1 0

]
G

ri−1

ri

ri+1

ri+2

, (46)

and

d2r(τ ; i)

dτ2
=

[
6τ 2 0 0

]
G

ri−1

ri

ri+1

ri+2

. (47)

These derivatives are proportional to the derivatives of the path with respect to the path

coordinate s. Let r′ and r′′ denote, respectively, the first and second derivatives of the path

r with respect to s. Then it can be easily shown that for s ∈ [si, si+1], i = 2, . . . , N − 2,

r′(s) =
1

3∆s

dr(τ ; i)

dτ
, and r′′(s) =

1

9∆s2
d2r(τ ; i)

dτ2
,

where τ = (s− si)/3∆s.

At any point s ∈ [s0, sf], the tangent vector t(s) is given by r′′(s). The normal vector

n(s) is given by n(s) = r′′(s)/‖r′′(s)‖, and the binormal vector b(s) is given by b(s) = t×n,

where ‘×’ denotes the cross product.

We also define

Ri =

ri−1

ri

ri+1

ri+2

, Ri{k} =

ri−1{k}

ri{k}

ri+1{k}

ri+2{k}

, k = 1, 2, 3; i = 2, . . . , N − 2.

69

3.3 Path Variation

Consider a specific variation of the path r(s) by perturbing the path at the characteristic

nodes along the associated “normal directions” ni = n(si) and “binormal directions” bi =

b(si). Note that when r′′i = 0, then ni is not well-defined. In this case, an arbitrary unit

vector perpendicular to r′i is used as the normal vector.

Let δi denote the magnitude of variation along the direction of ni at the ith node ri, and

let λi denote the magnitude of variation along the bi direction. The nodes of the perturbed

path are given by

r̃i = ri + niδi + biλi = ri + (ni{1},ni{2},ni{3}) δi + (bi{1},bi{2},bi{3}) λi. (48)

LetX = [δ1, . . . , δN , λ1, . . . , λN]T, which is the collection of decision variables, and define

Xi = [δi−1, δi, δi+1, δi+2]
T, and Yi = [λi−1, λi, λi+1, λi+2]

T. Also define

Ni,{k} =

ni−1{k} 0 0 0

0 ni{k} 0 0

0 0 ni+1{k} 0

0 0 0 ni+2{k}

, k = 1, 2, 3.

Bi,{k} =

bi−1{k} 0 0 0

0 bi{k} 0 0

0 0 bi+1{k} 0

0 0 0 bi+2{k}

, k = 1, 2, 3.

Then we have

R̃i{k} = Ri{k}+ Ni,{k}Xi + Bi,{k}Yi, k = 1, 2, 3; i = 2, . . . , N − 2.

The perturbed path is obtained using a cubic curve interpolation at the perturbed

characteristic points r̃i, i = 1, . . . , N .

3.4 Quadratic Programming Formulation for the Path Smoothing Prob-
lem

In this section we formulate the path smoothing problem as a quadratic program, which

approximately minimizes the L2 norm of the curvature profile, while maintaining the path

70

length and local curvature constraints, boundary conditions and collision-avoidance.

Definition 3.4.1. The problem

min J(x), x ∈ D ⊆ R
n

is a linear-quadratic mathematical programming problem (or a quadratic program for short),

if J is a linear-quadratic function, that is,

J(x) =
1

2
xTHx+ FTx+ c, (49)

where H = HT ∈ R
n×n, F ∈ R

n, and c ∈ R, and P is a convex polyhedron, namely

P = {x ∈ R
n : Ax ≤ b}, where A ∈ R

m×n and b ∈ R
m.

Note that P is a convex set. A linear quadratic programming problem is a special case

of a convex optimization problem when H is a positive semi-definite matrix. Both can be

solved very efficiently using numerical methods.

3.4.1 A Quadratic Cost Function

The L2 norm of the signed curvature function of the perturbed path is defined by

‖κ̃‖2 ,

(∫ sf

s0

w(s)κ̃2(s)ds

) 1
2

, (50)

where w : [s0, sf]→ R+\{0} is a weight function. With the cubic spline curve representation

of the path, the integral in (50) can be computed analytically. Specifically, note that r(s)

as parameterized by its path length coordinate has a unit first derivative, and its curvature

is the magnitude of the acceleration, i.e.,

|κ(s)| = ‖r′′(s)‖.

To obtain an analytic expression of (50), we may assume that w(s) is a piecewise constant

function with w(s) = wi for s ∈ [si, si+1), i = 1, . . . , N − 1 and w(sf) = wN−1. Therefore,

‖κ̃‖22 =

∫ sf

s0

w(s)κ̃2(s)ds

=

∫ sf

s0

w(s)〈r̃′′(s), r̃′′(s)〉ds

= w1

∫ s2

s1

〈
r̃′′(s), r̃′′(s)

〉
ds+

N−2∑

i=2

wi

∫ si+1

si

〈
r̃′′(s), r̃′′(s)

〉
ds+ wN−1

∫ sN

sN−1

〈
r̃′′(s), r̃′′(s)

〉
ds

71

For i = 2, . . . , N − 2,

∫ si+1

si

〈
r̃′′(s), r̃′′(s)

〉
ds

=
1

81∆s4

∫ 2
3

1
3

[
6τ 2 0 0

]
GR̃iR̃

T
i GT

6τ

2

0

0

dτ

=
1

81∆s4

k=3∑

k=1

∫ 2
3

1
3

[
6τ 2 0 0

]
GR̃i{k}R̃T

i {k}GT

6τ

2

0

0

dτ

=
1

81∆s4

k=3∑

k=1

R̃T
i {k}GT

∫ 2
3

1
3

6τ

2

0

0

[
6τ 2 0 0

]
dτGR̃i{k}

=
1

81∆s4

k=3∑

k=1

R̃T
i {k}GT

28
9 2 0 0

2 4
3 0 0

0 0 0 0

0 0 0 0

GR̃i{k}

=
1

81∆s4

k=3∑

k=1

R̃T
i {k}MiR̃i{k},

where

Mi =

9 −27
2 0 9

2

−27
2 27 −27

2 0

0 −27
2 27 −27

2

9
2 0 −27

2 9

.

72

Similarly, we have

∫ s2

s1

〈
r̃′′(s), r̃′′(s)

〉
ds =

1

81∆s4

k=3∑

k=1

R̃T
2 {k}M1R̃2{k},

and ∫ sN

sN−1

〈
r̃′′(s), r̃′′(s)

〉
ds =

1

81∆s4

k=3∑

k=1

R̃T
N−2{k}MN−1R̃N−2{k},

where

M1 =

63 −297
2 108 −45

2

297
2 351 −513

2 54

108 −513
2 189 −81

2

−45
2 54 −81

2 9

,

and

MN−1 =

9 −81
2 54 −45

2

−81
2 189 −513

2 108

54 −513
2 351 −297

2

−45
2 108 −297

2 63

Hence, we have

‖κ̃‖22 =
1

81∆s4

N−1∑

i=1

k=3∑

k=1

R̃T
i {k}MiR̃i{k}

According to equation (48), we have

R̃T
i {k}MiR̃i{k} =

(
RT

i {k}+ (Ni,{k}Xi + Bi,{k}Yi)
T
)
Mi

(
Ri{k}+ Ni,{k}Xi + Bi,{k}Yi

)

= RT
i {k}MiRi{k} + 2RT

i {k}MiNi,{k}Xi + XT
i Ni,{k}MiNi,{k}Xi

+ 2RT
i {k}MiBi,{k}Yi + YT

i Bi,{k}MiBi,{k}Yi + 2YT
i Bi,{k}MiNi,{k}Xi.

Because the term RT
i {k}MiRi{k} in the above expression is a constant independent of the

variation Xi, it suffices to consider the other terms only in the optimization. As a result,

73

the minimization of (50) is equivalent to the minimization of the following cost function

J(X) =

N−2∑

i=2

wi

k=3∑

k=1

XT
i Ni,{k}MiNi,{k}Xi + 2

N−2∑

i=2

wi

k=3∑

k=1

RT
i {k}MiNi,{k}Xi

+ w1

k=3∑

k=1

XT
2 N2,{k}M1N2,{k}X2 + 2wN−1

k=3∑

k=1

RT
N−2{k}MN−1NN−2,{k}XN−2

+ wN−1

k=3∑

k=1

XT
N−2NN−2,{k}MN−1NN−2,{k}XN−2 + 2w1

k=3∑

k=1

RT
2 {k}M1N2,{k}X2

+

N−2∑

i=2

wi

k=3∑

k=1

YT
i Bi,{k}MiBi,{k}Yi + 2

N−2∑

i=2

wi

k=3∑

k=1

RT
i {k}MiBi,{k}Yi

+ w1

k=3∑

k=1

YT
2 B2,{k}M1B2,{k}Y2 + 2wN−1

k=3∑

k=1

RT
N−2{k}MN−1BN−2,{k}YN−2

+ wN−1

k=3∑

k=1

YT
N−2B2,{k}MN−1BN−2,{k}YN−1 + 2w1

k=3∑

k=1

RT
2 {k}M1B2,{k}Y2

+ 2

N−2∑

i=2

wi

k=3∑

k=1

XT
i Ni,{k}MiBi,{k}Yi,+2w1

k=3∑

k=1

XT
2 N2,{k}M1B2,{k}Y2

+ 2wN−1

k=3∑

k=1

XT
N−2NN−2,{k}MN−1BN−2,{k}YN−2.

which can be written in a more compact form as

J(X) =
1

2
XTHX + FX,

where H ∈ R
N×N and F ∈ R

1×N , X = [XT
n ,X

T
b]T, Xn,Xb ∈ R

N×1 are the vectors con-

taining the magnitude of variations at each node along the normal and binormal directions,

respectively. The details for the computation of matrices H and F are given in Appendix A.

3.4.2 Path Length Constraint

Because the length of the path affects the traveling time, it is desirable to have a constraint

on the total length of the path. When a path is perturbed at each node along the normal and

binormal directions, the total length of the path is not necessarily preserved—it could either

increase or decrease depending on the perturbation scenario. Therefore, it is necessary to

characterize the relationship between the perturbation and the change of the total length

of the curve, and implement certain bounds on the latter.

74

When the spacing between adjacent characteristic nodes is small enough, the total length

of the curve can be approximated by the total length of the line segments connecting each

pair of the adjacent nodes. Let Di denote the change of the length of the line segment

between nodes ri and ri+1 induced by the perturbation δ. The new positions of the nodes

after the perturbation are given by r̃i = ri+δini+λidi and r̃i+1 = ri+1+δi+1ni+1+λi+1bi+1.

For notational convenience, let piµi = δini + λidi, and pi+1µi+1 = δi+1ni+1 + λi+1di+1.

Then ‖r̃i+1− r̃i‖ is the length of the corresponding line segment of the perturbed path.

We assume that the variations δi, δi+1, λi, and λi+1 are small enough such that µi, µi+1 ≪

‖ri+1 − ri‖. The length of the line segment of the perturbed path between nodes si and

si+1 is

‖r̃i+1 − r̃i‖ = ‖ri+1 + µi+1pi+1 − ri − µipi‖

=

√
‖(ri+1 − ri) + (µi+1pi+1 − µipi)‖2.

By the polarization identity for the Euclidean inner product,

‖r̃i+1 − r̃i‖ =
(
‖ri+1 − ri‖2 + ‖µi+1pi+1 − µipi‖2

+ 2 〈µi+1pi+1 − µipi, ri+1 − ri〉
) 1

2 .

Then the segment length Di can be written as in (51).

Di = ‖r̃i+1 − r̃i‖ − ‖ri+1 − ri‖

= −‖ri+1 − ri‖+

√
‖ri+1 − ri‖2 + ‖µi+1pi+1 − µipi‖2 + 2 〈δi+1pi+1 − µipi, ri+1 − ri〉

=
1

‖ri+1 − ri‖
‖µi+1pi+1 − µipi‖2 + 2 〈µi+1pi+1 − µipi, ri+1 − ri〉

1 +

√
1 +
‖µi+1pi+1 − µipi‖
‖ri+1 − ri‖2

2

+ 2

〈
µi+1pi+1 − µipi

‖ri+1 − ri‖
,

ri+1 − ri

‖ri+1 − ri‖

〉 .

(51)

By the small variation assumption, and dropping the square terms, expression (51)

yields the following approximation for Di

Di ≈
〈

ri+1 − ri

‖ri+1 − ri‖
, µi+1pi+1

〉
−
〈

ri+1 − ri

‖ri+1 − ri‖
, µipi

〉

=

〈
ri+1 − ri

‖ri+1 − ri‖
, δi+1ni+1

〉
−
〈

ri+1 − ri

‖ri+1 − ri‖
, δini

〉
(52)

+

〈
ri+1 − ri

‖ri+1 − ri‖
, λi+1bi+1

〉
−
〈

ri+1 − ri

‖ri+1 − ri‖
, λibi

〉

75

Eδ =

−〈r2 − r1,n1〉 〈r2 − r1,n2〉 0

−〈r3 − r2,n2〉 〈r3 − r2,n3〉
. . .

. . .

0 −〈rN − rN−1,nN−1〉 〈rN − rN−1,nN 〉

(53)

Eλ =

−〈r2 − r1,b1〉 〈r2 − r1,b2〉 0

−〈r3 − r2,b2〉 〈r3 − r2,b3〉
. . .

. . .

0 −〈rN − rN−1,bN−1〉 〈rN − rN−1,bN 〉

(54)

In order to write equation (52) in a more compact form, let B = diag([1/‖r2 − r1‖, . . . ,

1/‖rN − rN−1‖]), and define matrices Eδ and Eλ as in (53) and (54). Also, let 1N−1

denote the N − 1 dimensional column vector with all elements equal to one. Let ∆L(X)

denote the change of the total length of the path induced by the variation X. Then ∆L

can be approximated by ∆L(X) ≈ 1T
N−1B[Eδ,Eλ]X, which is a linear function of X. The

constraint on the total length of the path is given by the following linear inequality constraint

on X:

Lmin − L ≤ ∆L(X) ≤ Lmax − L, (55)

where L is the length of the path before perturbation, and Lmax and Lmin are the upper

and lower bounds of the path length, respectively. These inequalities are enforced element-

wise. Alternatively, if the length of the path is fixed, then the linear equality constraint

∆L(X) = 0 is applied (Lmin = L = Lmax):

3.4.3 Curvature Constraints

Localized curvature constraints are important for practical path planning. For example, a

ground vehicle requires a larger turning radius when moving on a slippery surface compared

with the same operation on normal ground. Let Kmax,i and Kmin,i be the maximum and

76

minimum curvature constraints allowed in a neighborhood of ri (i = 1, 2, . . . , N) which are

determined by the vehicle dynamics and the local environment.

According to (47), for i = 2, . . . , N −1, the second derivative of the path at the ith node

is

r′′(si) =
1

9∆2
s

d2r(1
3)

dτ2

=
1

9∆2
s

[
2 2 0 0

]
G

ri−1

ri

ri+1

ri+2

=
1

∆2
s

[
1 −2 1 0

]

ri−1

ri

ri+1

ri+2

=
1

∆2
s

(ri−1 − 2ri + ri+1) .

Therefore the second derivative of the perturbed path r̃ at si is given by

r̃′′(si) =
1

∆2
s

(r̃i−1 − 2r̃i + r̃i+1) .

Neglecting the change of the normal direction caused by the variation and assume that

ñi = ni, b̃i = bi, i = 1, . . . , N , we have

κ̃i = 〈ñi, r̃
′′
i 〉

≈ 〈ni, r̃
′′
i 〉

=
1

∆2
s

(〈ni, r̃i−1〉 − 2〈ni, r̃i〉+ 〈ni, r̃i+1〉)

=
1

∆2
s

(〈ni, ri−1〉+ 〈ni,ni−1〉δi−1 + 〈ni,bi−1〉λi−1

− 2〈ni, ri〉 − 2〈ni,ni〉δi − 2〈ni,bi〉λi + 〈ni, ri+1〉+ 〈ni,ni+1〉δi+1 + 〈ni,bi+1〉λi+1)

= κi +
1

∆2
s

(〈ni,ni−1〉δi−1 − 2δi + 〈ni,ni+1〉δi+1) +
1

∆2
s

(〈ni,bi−1〉λi−1 + 〈ni,bi+1〉λi+1) .

Similarly, the curvature of the perturbed path at the first node can be estimated by

κ̃1 ≈ 〈n1, r̃
′′
1〉 = κ1 +

1

∆2
s

(−5〈n1,n2〉δ2 + 4〈n1,n3〉δ3 − 〈n1,n4〉δ4)

+
1

∆2
s

(−5〈n1,b2〉λ2 + 4〈n1,b3〉λ3 − 〈n1,b4〉λ4),

77

and

κ̃N ≈ 〈nN , r̃
′′
N 〉 = κN +

1

∆2
s

(−〈nN ,nN−3〉δN−3 + 4〈nN ,nN−2〉δN−2 − 5〈nN ,nN−1〉δN−1)

+
1

∆2
s

(−〈nN ,bN−3〉λN−3 + 4〈nN ,bN−2〉λN−2 − 5〈nN ,bN−1〉λN−1) .

Let K̃ = [κ̃1, . . . , κ̃N]T be the curvature of the perturbed path r̃ at the characteristic

nodes. Then the three expressions above can be written as K̃ = K + CX, where C ∈

R
N×N . The details for the computation of matrix C is given in Appendix A. Let Kmax =

[Kmax,1,Kmax,2, . . . ,Kmax,N]T and Kmin = [Kmin,1,Kmin,2, . . . ,Kmin,N]T. The curvature of

the perturbed path then need to satisfy the linear inequality constraint

Kmin −K ≤ CX ≤ Kmax −K. (56)

3.4.4 Bounds on the Variation and Collision Avoidance

In the computation of the L2 norm of the curvature, it is assumed that the path lengths

between adjacent nodes is preserved by the perturbation. Such an assumption is valid

only if the perturbation is small enough. Some constraints, such as (56), also require small

variation along the path. Hence, it is necessary to impose limits on the allowable magnitude

of variation. The small variation is also required by the approximation used in the path

length constraint. On the other hand, the magnitude of the variation should also be limited

for collision-avoidance, since a large variation of the path in a neighborhood of an obstacle

may lead to a collision.

By carefully choosing the bounds of variation, we can also ensure, at least approximately,

the collision-avoidance of the perturbed path. The whole path contains N−1 segments. For

the path segment between the i− 1th and ith nodes, consider the variations along the normal

and binormal directions separately. Specifically, for i = 2 : N−2, Let δ̄i,u = δmax, where δmax

is a predetermined small positive number, and keep other characteristic nodes unperturbed.

Consider a variation given by δri = δri+1 = niδ̄i,u, and δj = 0 for j = 2, . . . , N − 1, j 6= i,

j 6= i+1. If this segment is still collision-free after the variation, then δ̄i,u = δmax, otherwise

decrease δ̄i,u while keeping δi = δi−1 = δ̄i,u until the perturbed segment is collision-free.

Collision is checked along the perturbed path at the i − 1th and ith nodes, as well as at a

78

certain number of interpolating points between these two nodes. The locations of the these

points after perturbation can be computed using equation (45).

Similarly, the variation lower bound δ̄i,l of the same segment is determined by initially

choosing δ̄i,l = −δmax and δi−1 = δi = δ̄i,l. If collision occurs, gradually increase δ̄i,l while

keeping δi−1 = δi = δ̄i,l until the perturbed path is collision-free, and let lδi
= δi. In

the same way, the bounds λ̄il and λ̄iu on the variation λi, i = 2, . . . , N − 1 can also be

determined.

Let lδ1 , . . . , lδN
and uδ1 , . . . , uδN

be the lower and upper bounds of the variations δi,

and let lλ1 , . . . , lλN
and uλ1 , . . . , uλN

be the lower and upper bounds of the variations λi,

respectively. Because the path is required to pass through the start and target positions, the

variation must be zero at these two points, which can be achieved by setting the bounds as

lδ1 = uδ,1 = 0, lδN
= uδN

= 0, lλ1 = uλ,1 = 0, lλN
= uλN

= 0. The bounds of the variations

of the second and the N−1th nodes are given by lδ2 = δ̄2,l, uδ2 = δ̄2,u, lλ2 = λ̄2,l, uλ2 = λ̄2,u.

For i = 3, . . . , N − 2, the bounds on the variation are given by lδi
= max{δ̄i−1,l, δ̄i,l},

lλi
= max{λ̄i−1,l, λ̄i,l}, uδi

= min{δ̄i−1,u, δ̄i,u} uλi
= min{λ̄i−1,u, λ̄i,u}.

Let Xmin = {lδ1 , . . . , lδN
, lλ1 , . . . , lλN

} and Xmax = {uδ1 , . . . , uδN
, uλ1 , . . . , uλN

}. With

Xmin ≤ X ≤ Xmax as a constraint in the optimization, the collision avoidance requirement

is approximately satisfied. Simulation results show that the performance of such a simple

treatment is acceptable. More rigorous treatment for collision avoidance is also possible.

As an example, for the ith segment of the path r between the ith and the i + 1th nodes,

an obstacle-free convex polygon containing this segment can be find. By requiring that a

certain number of interpolating points along this segment of the perturbed path stay within

the polygon, collision avoidance is enforced along this segment. The collision avoidance

of the whole path is then guaranteed by finding N − 1 convex polygons for each segment

and requiring that each segment stays within the corresponding polygon. Such a laborious

treatment leads to a large number of linear inequality constraints on X.

79

3.4.5 Initial and Final Condition

Suppose that the perturbed path is required to satisfy tangent constraints at the first and

last nodes with

r′1 =
[
t1x , t1y , t1z

]
, r′N =

[
tNx , tNy , tNz

]
.

Let b1 and bN denote the binormal direction at the first and last nodes, which are given

by b1 = r′1 × n1, and bN = r′N × nN .

The tangent, or the path derivative of of r̃ at the first node is

r̃′(0) =
1

3∆s

dr(0; 2)

dτ

=
1

3∆s

[
0 0 1 0

]
G

r1 + n1δ1 + b1λ1

r2 + n2δ2 + b2λ2

r3 + n3δ3 + b3λ3

r4 + n4δ4 + b4λ4

=
1

3∆s

[
−5.5 9 −4.5 1

]

r1

r2 + n2δ2 + b2λ2

r3 + n3δ3 + b3λ3

r4 + n4δ4 + b4λ4

.

The constraint that r̃′(0) is parallel to r′1 is equivalent to the requirement that r̃′(0) is

perpendicular to both b1 and n1, i.e.,

−5.5〈r1,n1〉+ 9〈r2 + n2δ2,n1〉 − 4.5〈r3 + n3δ3,n1〉+ 〈r4 + n4δ4,n1〉

+ 9〈r2 + b2λ2,n1〉 − 4.5〈r3 + b3λ3,n1〉+ 〈r4 + b4λ4,n1〉 = 0, (57)

−5.5〈r1,b1〉+ 9〈r2 + n2δ2,b1〉 − 4.5〈r3 + n3δ3,b1〉+ 〈r4 + n4δ4,b1〉

+ 9〈r2 + b2λ2,b1〉 − 4.5〈r3 + b3λ3,b1〉+ 〈r4 + b4λ4,b1〉 = 0, (58)

which are linear constraints on δ2, δ3, and δ4. Similarly, the tangent constraint at the last

80

node can be enforced by

5.5〈rN ,nN 〉 − 9〈rN−1 + nN−1δN−1,nN 〉+ 4.5〈rN−2 + nN−2δN−2,nN 〉

− 〈rN−3 + nN−3δN−3,nN 〉 − 9〈rN−1 + bN−1λN−1,nN 〉 (59)

+ 4.5〈rN−2 + bN−2λN−2,nN 〉 − 〈rN−3 + bN−3λN−3,nN 〉 = 0,

5.5〈rN ,bN 〉 − 9〈rN−1 + nN−1δN−1,bN 〉+ 4.5〈rN−2 + nN−2δN−2,bN 〉

− 〈rN−3 + nN−3δN−3,bN 〉 − 9〈rN−1 + bN−1λN−1,bN 〉 (60)

+ 4.5〈rN−2 + bN−2λN−2,bN 〉 − 〈rN−3 + bN−3λN−3,bN 〉 = 0,

3.4.6 Connection to Beam Theory

Consider a classical beam subject to pure bending. The bending moment and the local

curvature satisfy

κ (s) =
M (s)

EI(s)
,

where κ(s) is the local curvature of the neutral surface of the beam, M(s) is the bending

moment at the cross section at s, and I(s) is the second moment of area of the cross section

about its neutral surface, and E is the Young’s modulus of the beam material. The product

EI(s) is often referred to as the flexural rigidity or the bending stiffness of the beam.

The total strain energy U of the bending beam can be written as:

U =

∫ sf

0

M2 (s)

2EI (s)
ds =

1

2

∫ sf

0
EI(s)κ2(s)ds,

which is exactly the square of the weighted L2 norm of the curvature function. Hence,

the result of the quadratic program essentially corresponds to a minimum bending energy

configuration in a neighborhood of the original path. It is also observed that the weight

function w(s) in (50) corresponds to the flexural rigidity EI(s).

3.5 Path Smoothing Algorithm

3.5.1 Discrete Evolution and the Path Smoothing Algorithm

Consider a family of smooth paths P(s, j), where s is the path coordinate parameterizing

the path and j is the index parameterizing the family. The path evolves among the family

81

P(s, j) at the representative nodes according to the evolution equation

P (si, j + 1) = P (si, j) +X∗
ni

n (si, j) +X∗
bi
b (si, j) , (61)

P (s, 0) = P(0) (s) ,

whereX∗
ni

and X∗
bi

are the ith component ofX∗
n andX∗

b , which compose the optimal solution

X∗ = [X∗T
n ,X∗T

b] to the quadratic program with initial path P(s, j).

The proposed path smoothing algorithm is designed based on the evolution equation (61),

and involves solving iteratively a series of Quadratic Programming problems:

1. Let j be the count of iterations, starting from j = 1,

2. Discretize the path with N nodes, say, s1 = 0, s2, s3, . . . , sN = sf .

3. Determine the bounds of variation, and solve the quadratic programming problem.

Interpolate the result with a cubic spline curve to generate the new path,

4. Compute the difference between the new and the old path by

ξj =

∫ sf

0
‖P(s, j) −P(s, j − 1)‖2 ds.

Stop the iteration if ξj is smaller than some predetermined threshold, or if j reaches

the maximum number of iterations. Otherwise increase j by one and go to Step 2).

The main difference between the above iterative Quadratic Programming method and

the standard Sequential Quadratic Programming is that for the later, the cost function and

constraints are pre-determined functions of the decision variables, and these functions do

not change in the optimization. In the iterative Quadratic Programming approach described

above, these functions are updated after each iteration, which means that a new problem is

formulated at the beginning of each iteration based on the solution of the previous iteration.

In order to test the smoothing efficiency of the proposed algorithm, we consider a pla-

nar path example, and compared the proposed algorithm with the curvature evolution

82

path-smoothing method with zero constant speed, which has the following evolution equa-

tion [111]:

∂P(s, t)

∂t
= κ(s, t)n(s, t), (62)

P (s, 0) = P(0) (s) .

Equation (62) can be solved numerically using forward difference

P(s, t+ ε) = P(s, t) + εκ(s)n(s, t), (63)

where ε is a small number.

Both methods were started from the same initial path P(s, 0) which in this case was the

graph of a sine function, and converge to a straight line at the end. The same stopping rule

was used for both methods. The fixed length requirement in the quadratic programming

method is relaxed to be comparable to the curvature method. For fast convergence speed

while ensuring numerical stability, we chose ε = 0.5 for the curvature evolution method

in (63). The quadratic programming method finishes the smoothing in 0.3 sec after 21

iterations, while the curvature method finishes the smoothing in 5.6 sec after 3528 iterations.

The results of the two methods are shown in Fig. 15 and Fig. 16.

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

si
n
(π
x
)

Figure 15: Quadratic programming path smoothing.

83

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

si
n
(π
x
)

Figure 16: Curvature evolution.

3.5.2 Reconciling Conflicts Between Variation Bounds and Constraints

Due to the bounds on the allowed variation, the domain of optimization in each step of the

proposed algorithm is relatively small, and sometimes the variation bounds are in conflict

with the boundary conditions and curvature constraints, in the sense that the prescribed

boundary conditions and curvature constraints cannot be satisfied by any variation within

the bounds during a single iteration.

To resolve such conflicts, the curvature constraints and boundary conditions are enforced

progressively during the iterations when necessary, rather than being enforced explicitly in

each iteration. For example, suppose the path needs to satisfy the curvature constraints

Kmin ≤ K ≤ Kmax. Then for each iteration j, the following relaxed curvature bounds are

used

Kmin − c1e−β1j ≤ Kj ≤ Kmax + c2e
−β2j,

where c1, c2, β1, β2 > 0. It is seen that the left and right hand sides in the above inequal-

ities initially provide relaxed curvature bounds when j = 0, yet approach the prescribed

bounds Kmin and Kmax asymptotically as j increases. A similar technique is applied for the

enforcement of the tangent directional constraints at the start and end points.

84

3.6 Numerical Examples

3.6.1 Fixed Length Path Smoothing with Collision Avoidance

In this example, a UAV flies from point A to point B. The obstacles are represented by the

polytopes in Fig. 17. The original three-dimensional landing path is shown as the red curve

in the Figure. This initial path is processed using the path smoothing algorithm introduced

in this chapter, and the smoothed path result is shown as the blue curve in Fig. 17. The

initial and final tangents of the path are fixed during the optimization, and the path length

is also fixed. The path smoothing algorithm finishes in 3.5 sec after 15 iterations. The

curvature profiles for the original and smoothed paths are compared in Fig. 18. The L2

norm of the curvature function with respect to the path coordinate decreased by 67% after

smoothing, while the L∞ norm was reduced by 61%. In Fig. 19, the optimal speed profiles of

the original and smoothed paths are compared. It is clear that the smoothed path provides

a shorter travel time. The optimal speed profiles are computed using the time-optimal

parameterization method introduced in [137] with free final speed at point B.

Figure 17: Path smoothing in the presence of obstacles.

85

0 20 40 60 80 100 120 140
−1.5

−1

−0.5

0

0.5

1

1.5

2
x 10

−4

s (km)

κ
(/

m
)

Original path
Smoothed path

Figure 18: Curvature profile comparison.

0 100 200 300 400 500 600 700 800
80

100

120

140

160

180

200

220

240

260

t (s)

V
(m

/s
)

Original path
Smoothed path

Figure 19: Optimal speed profile.

86

3.6.2 Path Smoothing with Localized Curvature Bounds

In this example, a ground vehicle starts from point A at one side of a frozen river, avoids

the obstacle, crosses the river while passing through point B, and finally reaches the target

at point C at the other side of the river. Due to the small coefficient of friction of the icy

river surface, it is required that the segment of the path on the ice surface must have zero

curvature (no turning allowed). The initial path consists of three line segments. During the

smoothing process, the constraint on the total length of the path is relaxed. Furthermore,

there exists no directional constraint at the start and the end of the path. In order to

ensure that the path passes through point B, a node is added to the path at point B, and

the variation at this node is set to be zero during the smoothing process. The result from

smoothing is shown in Fig. 20. It is clear that the ground vehicle does not need to perform

any turning maneuver on the ice surface.

A

B

C

wood

wood

ice

ice

x (km)

y
(k

m
)

−5 0 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

Figure 20: Smoothed path with local curvature constraint.

3.7 Conclusions

In this chapter, we considered the problem of three-dimensional path smoothing with ob-

stacles and local curvature constraints. The problem is formulated as a quadratic program,

which minimizes the weighted L2 norm of the curvature along the path. By incorporating

87

additional linear constraints into the quadratic programming problem, extra constraints on

the tangent of the path, path length, and local curvature can also be accommodated. The

proposed path smoothing algorithm has been applied to several examples, and its efficiency

and effectiveness have been validated.

88

CHAPTER IV

TIME-OPTIMAL PATH TRACKING OPERATION FOR

FIXED-WING AIRCRAFT

In this chapter, we propose a method for the minimum-time travel of a fixed-wing aircraft

along a prescribed geometric path. The method checks the feasibility of the path, namely,

whether it is possible for the aircraft to travel along the path without violating the state or

control constraints. If the path is feasible, the method subsequently finds a semi-analytical

solution of the speed profile that minimizes the travel time along the path. The optimal

speed profile is used to time-parameterize the path, and generate the state trajectory and

control histories via inverse dynamics. Two algorithms for the time-optimal parameteriza-

tion are proposed. Numerical examples are presented to demonstrate the validity, numerical

accuracy and optimality of the proposed method.

4.1 Introduction

Numerous methods including concatenations of Dubins’ path primitives, potential field

methods, optimal control, etc, have all received considerable attention in the literature for

the solution of path-planning problems[93, 123, 44, 39]. Besides trajectory optimization-

based methods, the previous approaches typically do not provide the control histories re-

quired for maneuvering the vehicle to follow the optimal path. Instead, they generate

obstacle-free, geometric paths in the environment. The actual implementation (i.e., path-

following) is left to a trajectory tracking controller (or human pilot) which generates the

required control commands to follow the path after a suitable time-parameterization along

the optimal path is imposed. However, because most of these path-planning methods are

at the kinematic level, and do not account for the dynamics of the aircraft, the feasibility of

the resulting trajectory is not guaranteed a priori, i.e., it is possible that no control exists

that allows the aircraft to follow the proposed path without violating the control or state

constraints.

89

An alternative approach for path-planning of aircraft, which considers more realistic

dynamics and incorporates the state and control constraints, is to formulate the flight path-

planning problem as an optimal control problem[90]. For the numerical solution of this

optimal control problem, the convergence of the solution depends heavily on the quality

of the initial guess of the time histories of both the state and control variables. A good

initial guess can help the solution converge much faster. A bad initial guess will hinder

convergence or lead to divergence of the overall numerical scheme. However, it is not easy

to obtain a set of state and control histories that are consistent with the aircraft dynamics

and satisfy the given constraints and boundary conditions.

In this chapter we propose a new method to generate time-optimal paramerizations along

a given path, which bypasses the solution of the complete time-optimal control problem. The

time parameterization is constructed by solving for a time-optimal speed profile such that

the state and control constraints are satisfied. The problem is similar to the time-optimal

control of robotic manipulators[28, 119, 96, 118, 116]. These references take advantage of

the Lagrangian form of the dynamics of a fully-actuated robotic manipulator, to compute

the required speed profile for the manipulator to move along a specified path in minimum

time. In this work we take a similar approach, and time-parameterize a given geometric path

for a fixed-wing aircraft in a way that results in minimum-time optimality, while satisfying

the dynamic and control constraints along the given path. The proposed method works

equally well as a post-processing tool for pure geometric/kinematic planners for checking

the feasibility of the generated path. This method can also be used to construct good initial

guesses for a complete trajectory optimization solver. Specifically, the approach may be

used as a bridge between geometric path-planning methods and numerical optimal control

methods to improve convergence of a Nonlinear Programming (NLP) solver. The geometric

path given by the geometric planner can be optimally time-parameterized to obtain the

corresponding state and control histories, which can then be passed to the NLP solver as

an initial guess.

In the rest of this chapter, we first show that the problem of optimal time-parameterization

90

of a geometric path for a fixed-wing aircraft can be converted to a constrained scalar func-

tional optimization problem by decoupling the controls. The analytical solution to this

problem is derived using Pontryagin’s Maximum Principle. We study the switching struc-

ture of the optimal control profile, and propose two algorithms that can be used to generate

the optimal speed profile and hence also the profile of the optimal thrust. Numerical exam-

ples are included to demonstrate the developed theory.

4.2 Mathematical Preliminaries

In this section, we review a few mathematical definitions that will be needed in the ensuing

analysis of the minimum-time travel problem. Since we will be dealing with finite-time

problems, we only need to consider functions defined over compact intervals of the real line.

Definition 4.2.1. Let f : [t0, tf] 7→ R. The left limit of f at t ∈ (t0, tf] is defined by

f(t−)
△
= lim

h↑0
f(t+ h)

if the limit exists. Similarly, the right limit of f at t ∈ [t0, tf) is defined by

f(t+)
△
= lim

h↓0
f(t+ h)

if the limit exists.

Note that, f(t−0) and f(t+f) do not exist.

Definition 4.2.2. Let f : [t0, tf] 7→ R. Then f is left continuous at t ∈ (t0, tf] if f(t−) =

f(t). The function f is right continuous at t ∈ [t0, tf) if f(t+) = f(t). The function f

is left continuous if f is left continuous at every point in (t0, tf]. The function f is right

continuous if f is right continuous at every point in [t0, tf).

We will need to consider functions that are continuous or differentiable everywhere on

an interval except possibly at a finite number of points.

Definition 4.2.3. Let f : [t0, tf] 7→ R. Then f is piecewise continuous if the following

conditions hold:

i) Both the limits f(t+0) and f(t−f) exist.

91

ii) There exists a finite set of points S = {t1, t2, . . . , tN} ⊂ (t0, tf) such that f is contin-

uous on (t0, tf)\S, and, for every t ∈ S, both f(t−) and f(t+) exist.

The function f is left piecewise continuous if f is piecewise continuous and left contin-

uous. It is right piecewise continuous if it is piecewise continuous and right continuous.

Note that, by definition, a piecewise continuous function is bounded. Note also that,

given a piecewise continuous functions, we can always redefine the value of the functions at

the (necessarily finite) points of discontinuities to make it left (or right) continuous.

Definition 4.2.4. Let f : [t0, tf] 7→ R. Then f is upper semi-continuous (respectively,

lower semi-continuous) at t ∈ [t0, tf] if

lim sup
τ→t

f(τ) ≤ f(t) (resp. lim inf
τ→t

f(τ) ≥ f(t)),

and, in addition, lim sup
τ↓t0

f(τ) ≤ f(t0) (resp. lim inf
τ↓t0

f(τ) ≥ f(t0)) and lim sup
τ↑tf

f(τ) ≤

f(tf) (resp. lim inf
τ↑tf

f(τ) ≥ f(tf)).

Note that if a function is right/left continuous at each point t ∈ [t0, tf], then upper

semi-continuity (respectively, lower semi-continuity) of f reduces to the conditions f(t) =

max{f(t−), f(t+)} (resp. f(t) = min{f(t−), f(t+)}) for all t ∈ (t0, tf) and f(t0) = f(t+0)

and f(tf) = f(t−f).

Definition 4.2.5. Let f : [t0, tf] 7→ R. Then f is piecewise continuously differentiable1 or

piecewise C1 if the following conditions hold:

i) f is piecewise continuous.

ii) Define D △
= {t ∈ [t0, tf] : f ′(t) exists and f ′ is continuous at t}. Then S △

= [t0, tf]\D

contains a finite number of points.

iii) For every t ∈ S ∩ (t0, tf), both f ′(t−) and f ′(t+) exist.

iv) The limits f ′(t+0) and f ′(t−f) exist.

1Note that our definition is somewhat different than the most common definition of the derivative of the
function being piecewise continuous (often called piecewise smoothness), which assumes that the function is
continuous. In particular, our definition of piecewise continuously differentiability allows for the function to
be only piecewise continuous.

92

Note that, by definition, a piecewise continuously differentiable function is bounded.

We can extend Definition 4.2.5 to functions that have derivatives of order k, except

possibly at a finite number of points, but at those points the directional left/right derivatives

of order k exist. We call these functions piecewise continuously differentiable of order k or

piecewise Ck. In this work we will work with piecewise Ck functions, where k = 1, 2, 3, . . . can

be arbitrarily large and, which, in addition, have the property that at those points where the

derivatives2 of any order exist, they have convergence power (i.e., Taylor) series expansions.

We will call such functions piecewise analytic (better, piecewise-defined analytic). Recall

that a function f : [t0, tf] 7→ R is (real) analytic at t ∈ [t0, tf] if its Taylor series converges

to f(t) in a neighborhood of t. These are, essentially, functions whose restriction on certain

open intervals are analytic. Specifically, we have the following definition.

Definition 4.2.6. Let f : [t0, tf] 7→ R. Then f is piecewise analytic if the following

conditions hold:

i) f is piecewise Ck, for all k ≥ 1.

ii) There exist t0 < t1 < · · · < tN < tf such that f is analytic on each of the open

intervals (t0, t1), (t1, t2), . . . , (tN , tf).

It is a straightforward exercise to show that piecewise analytic functions, according to

our definition, inherit most of the nice properties of real-analytic functions. In particular,

the summation, the subtraction, the multiplication, and the composition of piecewise ana-

lytic functions is piecewise analytic[76]. Note, however, that the quotient of two piecewise

analytic functions may not be piecewise analytic.

One of the key properties of real-analytic functions is that they cannot become zero at

infinitely many points in a compact set, unless they are identically zero[76]. As a result,

two distinct real-analytic functions f and g defined on a compact interval can intersect

only a finite number of times. It follows that max{f, g} and min{f, g} are real-analytic

functions. By restricting the analysis on the (necessarily finite) intervals where the functions

2At the boundary points of the interval [t0, tf] the higher order derivatives are to be interpreted in the
directional sense, from the right or the left, respectively.

93

are analytic it is not difficult to show that similar properties hold for piecewise analytic

functions.

Proposition 4.2.1. Let f : [t0, tf] 7→ R and g : [t0, tf] 7→ R be piecewise analytic functions,

such that f 6≡ g. Then the following hold:

i) The functions f and g are either identical over a union of compact intervals, or intersect

at a finite number of points, or both.

ii) The functions max{f, g} and min{f, g} are piecewise analytic.

Item i) of the previous proposition states, essentially, that two distinct piecewise analytic

functions cannot intersect at a countably infinite number of points.

Let a path in the three-dimensional space, parameterized by the path coordinate s,

be given as follows: x = x(s), y = y(s), z = z(s), where s ∈ [s0, sf]. The main

objective of this chapter is to find a time-parameterization along the path, i.e., a func-

tion s(t), where t ∈ [0, tf] such that the corresponding time-parameterized trajectory

(x(s(t)), y(s(t)), z(s(t))) minimizes the flight time tf . It is assumed that x(s), y(s) and

z(s) are continuously differentiable and piecewise analytic3.

Consider the following equations of motion for a point-mass model of a fixed-wing air-

craft [89]:

ẋ = v cos γ cosψ, (64)

ẏ = v cos γ sinψ, (65)

ż = v sin γ, (66)

v̇ =
1

m
[T − FD(CL, v, ρ)−mg sin γ] , (67)

γ̇ =
1

mv
[FL(CL, v, ρ) cos φ−mg cos γ] , (68)

ψ̇ = −FL(CL, v, ρ) sinφ

mv cos γ
, (69)

where x, y, z are the coordinates defining the position of the aircraft, v is the speed, ρ is the

air density (varying with altitude), γ is the flight path angle, ψ is the heading angle, and φ

3This is a weak assumption. Piecewise polynomial functions or spline functions, for example, satisfy these
conditions.

94

is the bank angle. The aerodynamic lift force FL(CL, v, ρ) and drag force FD(CL, v, ρ) are

given by:

FL (CL, v, ρ) =
1

2
ρv2SCL,

FD (CL, v, ρ) =
1

2
ρv2SCD =

1

2
ρv2S(CD0 +KC2

L),

where CD0 and K are constants determined by the aerodynamic properties of the aircraft,

and S is the main wing surface area. The effect of wind is not considered. In this model,

the lift coefficient CL, the bank angle φ, and the thrust T are the control inputs.

Because the given path is naturally parameterized using the path coordinate s instead

of time, the equations of motion can be rewritten with respect to s as follows (where prime

denotes differentiation with respect to s:

x′ = cos γ cosψ, (70)

y′ = cos γ sinψ, (71)

z′ = sin γ, (72)

v′ =
1

mv
[T − FD (CL, v, ρ)−mg sin γ] , (73)

γ′ =
1

mv2
[FL (CL, v, ρ) cosφ−mg cos γ] , (74)

ψ′ = −FL (CL, v, ρ) sinφ

mv2 cos γ
, (75)

where the following relations have been used for deriving (70)-(75):

dt =
ds

v
, (76)

ds =
√

d2x+ d2y + d2z, (77)

ψ = arctan
dy

dx
= arctan

y′

x′
, (78)

γ = arctan
dz√

dx2 + dy2
= arctan

z′√
x′2 + y′2

, (79)

ψ′ =
1

1 + (y′/x′)2
y′′x′ − y′x′′

x′2
=

x′2

x′2 + y′2
y′′x′ − y′x′′

x′2
=
y′′x′ − y′x′′
x′2 + y′2

, (80)

γ′ =
z′′x′2 + z′′y′2 − z′x′′x′ − z′y′′y′√

x′2 + y′2
. (81)

Note that the flight path angle γ and the heading angle ψ are purely geometric variables,

therefore, once a three-dimensional path (x(s), y(s), z(s)) is given, these variables and their

95

derivatives with respect to the path coordinate can be computed from (80) and (81). It is

clear from the previous expressions that the continuous differentiability of x, y, z implies the

continuity of x′, y′, and z′. We also assume that the fixed-wing aircraft flight-path angle

is always between −π/2 and π/2, a reasonable assumption for civil fix-wing aircraft, which

are the main focus of this work. Note that x′′, y′′, z′′, γ′, ψ′ and v′ may be discontinuous.

In order to time-parameterize an arbitrary path, it is sufficient to obtain the history

of the speed v(s) with respect to the path coordinate s. After the optimal speed profile

v∗(s) is obtained, the corresponding optimal time-parameterization of the trajectory can

be calculated by integrating (76). Specifically, let t∗ : [s0, sf] → [0, tf] be the bijective

mapping between the path coordinate and the corresponding time coordinate along the

optimal solution. Then t∗(s) denotes the time at which the aircraft arrives at the position

corresponding to the path coordinate s. Since dt∗ = ds/v∗(s), it follows that the optimal

time profile along the path is given by

t∗(s) =

∫ s

s0

dt∗ =

∫ s

s0

1/v∗(s) ds, s0 ≤ s ≤ sf .

The optimal time-parameterization of the geometric trajectory
(
x(s), y(s), z(s)

)
is then

given by

(
x∗(t), y∗(t), z∗(t)

)
=
(
x(t∗−1(t)), y(t∗−1(t)), z(t∗−1(t))

)
.

It will be shown in Section 4.4 that the optimal thrust profile T ∗(s) along the path

can be determined once v∗(s) is known. Subsequently, the other controls can be recovered

through inverse dynamics as follows:

C∗
L(s) =

2

ρv∗2(s)S

(
T ∗(s)−mv∗(s)v∗′(s)−mg sin γ(s)

)
,

φ∗(s) = − arctan

(
cos γ(s)ψ′(s)

γ′(s) + g cos γ(s)/v∗2(s)

)
.

Obviously, the key to the optimal time-parameterization along a geometric path is the

optimization of the speed profile along the given path. Next, we show how the state and

control constraints of the problem can be mapped to a set of admissible velocity profiles

in the s— v2/2 plane. Later on, we will solve a scalar functional optimization problem to

96

find the optimal speed profile. The solution of the latter problem will provide the optimal

time-parameterization along the given path.

4.3 The Admissible Kinetic Energy Set

It is required that the lift coefficient CL, the bank angle φ, and the thrust T must stay

within certain ranges during the whole flight, namely,

CL(s) ∈ [CLmin
(s), CLmax

(s)], φ(s) ∈ [φmin(s), φmax(s)], T (s) ∈ [Tmin(s), Tmax(s)], ∀s ∈ [s0, sf],

(82)

where CLmin
, CLmax , φmin, φmax, Tmin and Tmax are piecewise analytic functions of s.

These constraints account for limitations of the control inputs, which may depend on the

location along the path. It is also required that the aircraft speed satisfies the bounds v(s) ∈

[vmin(s), vmax(s)], where vmin and vmax are piecewise analytic functions with vmin(s) > 0 for

all s ∈ [s0, sf]. We will further assume that CLmin
(s) ≤ 0 ≤ CLmax(s), −π/2 < φmin(s) <

0 < φmax(s) < π/2, and 0 ≤ Tmin(s) < Tmax(s), for all s ∈ [s0, sf], and that the flight

path angle satisfies γ(s) ∈ (−π/2, π/2) for all s ∈ [s0, sf]. These are generic conditions

for a civil fixed-wing aircraft in normal flight conditions. When the aircraft is flying at

an abnormal condition (due to malfunction of the control surfaces/servo systems/engines,

structure-damage, etc.), some of these assumptions may no longer hold. Nonetheless, the

method introduced in this chapter may still be applied with minor modifications. In such

cases, the bounds on CL, φ and T in (137) have to be updated to account for the post-failure

characteristics of the airplane.

Let E
△
= v2/2 be the kinetic energy per unit mass of the aircraft. Also, let Emax(s) =

v2
max(s)/2 and Emin(s) = v2

min(s)/2. In the sequel the specific kinetic energy E will be used

in lieu of the aircraft speed v to simplify the ensuing analysis. The constraint on the speed

of the aircraft requires that Emin(s) ≤ E(s) ≤ Emax(s) for all s ∈ [s0, sf].

97

4.3.1 Lift Coefficient Constraint

From equations (74) and (75), we have

γ′ =
1

2m
ρSCL cosφ− g cos γ

v2
, (83)

ψ′ = −ρv
2SCL sinφ

2mv2 cos γ
= −ρSCL sinφ

2m cos γ
, (84)

which can be rewritten as:

CL cosφ =
2m

ρS

(
γ′ +

g cos γ

v2

)
, (85)

CL sinφ = −2mψ′ cos γ

ρS
. (86)

Eliminating φ from equation (85) and (86), and replacing v2 with 2E, one obtains

E = g1(CL; γ, γ′, ψ′)
△
=
mg cos γ

ρS

√

C2
L −

(
2mψ′ cos γ

ρS

)2

− 2mγ′

ρS

−1

. (87)

The other solution is omitted because it is always negative. Note that the constraint

0 < Emin(s) ≤ E(s) ≤ Emax(s) < ∞ for all s ∈ [s0, sf] implies that there exists CL(s) ∈

[CLmin
(s), CLmax(s)] such that

0 <

√

C2
L(s)−

(
2mψ′(s) cos γ(s)

ρ(s)S

)2

− 2mγ′(s)

ρ(s)S
<∞, ∀s ∈ [s0, sf]. (88)

This is equivalent to the condition

C̄L(s) > C̃L(s), ∀s ∈ [s0, sf], (89)

where

C̄L(s) = max{−CLmin
(s), CLmax(s)}, (90)

and

C̃L(s) =

2m

ρ(s)S
|ψ′(s)| cos γ(s), if γ′(s) < 0,

2m

ρ(s)S

√
γ′2(s) + ψ′2(s) cos2 γ(s), if γ′(s) ≥ 0.

(91)

98

The given path (x(s), y(s), z(s)) is infeasible if (89) is not satisfied, owing to insufficient

lift. When (89) holds, and because the right hand side of equation (87) is a monotonically

decreasing function with respect to C2
L, the limits on the lift coefficient impose a lower

bound on the kinetic energy E as follows

E(s) ≥ g
w1

(s)
△
= max{Emin(s), g1(C̄L(s); γ(s), γ′(s), ψ′(s))}. (92)

In other words, if the problem is feasible, (92) provides a lower bound on the allowable

speed, whereas the bounds CLmin
(s) ≤ CL(s) ≤ CLmax(s) on the lift coefficient do not

impose any constraint on the maximum value of E(s). Finally, note from (92) that if g
w1

(s)

is unbounded, then the path is not feasible. Feasibility implies, in particular, that g
w1

in

(92) is a (possibly discontinuous) piecewise analytic function of s.

4.3.2 Bank Angle Constraint

In order to consider the effect of the bank angle constraint on the specific kinetic energy

E, we need to eliminate CL from equations (85) and (86) and form an algebraic equation

involving φ and E. However, two special cases need to be considered before proceeding with

such an elimination: the case when CL(s) = 0, and the case when 2γ′(s)+g cos γ(s)/E(s) =

0, for some s ∈ [s0, sf].

If CL(s) = 0 for some s ∈ [s0, sf], then the lift is zero and the bank angle φ is inde-

terminate. In this case, the bounds φmin(s) ≤ φ(s) ≤ φmax(s) on the bank angle φ do not

constrain the specific kinetic energy at s. Similarly, note that 2γ′(s) + g cos γ(s)/E(s) = 0

may hold only if γ′(s) < 0. If 2γ′(s)+g cos γ(s)/E(s) = 0, then E(s) is uniquely determined,

regardless of the value of the bank angle at s, i.e., the bank angle has no effect on E. There-

fore, we only need to consider the cases with CL(s) 6= 0 and 2γ′(s) + g cos γ(s)/E(s) 6= 0

for some s ∈ [s0, sf] in order to eliminate CL from equations (85) and (86), thus obtaining

the following equation:

tanφ = − 2ψ′ cos γ

2γ′ + g cos γ/E
. (93)

Solving for E from equation (93) yields:

99

E = g2(φ; γ, γ′, ψ′)
△
= −1

2

g cos γ tanφ

γ′tanφ+ ψ′ cos γ
. (94)

The positivity of E(s) requires that g2(φ(s); γ(s), γ′(s), ψ′(s)) > 0 for all s ∈ [s0, sf], other-

wise the path is infeasible. If g2(φ; γ, γ′, ψ′) > 0 along the given path, the constraints on E

due to the bank angle bounds can be determined as follows:

(i) When ψ′(s) = 0, equation (93) implies that φ(s) = 0, and the bounds of φ impose no

constraints on E(s).

(ii) When ψ′(s) 6= 0, two cases need to be considered:

(iia) If γ′(s) = 0, and since γ ∈ (−π/2, π/2), it follows that cos γ 6= 0, and we have

E(s) = g2(φ(s); γ(s), γ′(s), ψ′(s)) = −g tanφ(s)

2ψ′(s)
.

The condition g2(φ(s); γ(s), γ′(s), ψ′(s)) > 0 requires that φ(s)ψ′(s) < 0. The

constraint on φ then leads to the following upper bound on the specific kinetic

energy E

E(s) ≤ µ0(s)
△
= max

{
g tan φmin(s)

2ψ′(s)
,
g tan φmax(s)

2ψ′(s)

}
. (95)

(iib) If γ′(s) 6= 0, rewrite (94) as follows:

γ′(s) tan φ(s) + ψ′(s) cos γ(s) = −g cos γ(s)

2E(s)
tanφ(s). (96)

The bank angle constraint φ(s) ∈ [φmin(s), φmax(s)] limits the admissible value of

E(s) via equation (96). A necessary and sufficient condition for the satisfaction

of this constraint is

g cos γ(s)

2E(s)
≤ µ1(s)

△
= min

{
h(s;φmin, γ, γ

′, ψ′), h(s;φmax, γ, γ
′, ψ′)

}
, (97)

or

g cos γ(s)

2E(s)
≥ µ2(s)

△
= max

{
−h(s;φmin, γ, γ

′, ψ′),−h(s;φmax, γ, γ
′, ψ′)

}
, (98)

100

where

h(s;φ, γ, γ′, ψ′)
△
= γ′(s) + ψ′(s) cos γ(s)/ tan φ(s). (99)

In order to characterize the constraint on E induced by the bank angle, three

subcases are analyzed, and the results are given below:

(iib.1) If µ1(s) ≤ 0 and µ2(s) ≤ 0, then equation (98) always holds as long as

E(s) > 0.

(iib.2) If µ1(s) ≤ 0 and µ2(s) > 0, then equation (97) does not hold, and equation

(98) must be satisfied, which is equivalent to the following constraint on E(s)

E(s) ≤ 1

2
g cos γ(s)/µ2(s). (100)

(iib.3) Finally, if µ1(s) > 0, then it is required that either (100) holds, or the

following inequality holds:

E(s) ≥ 1

2
g cos γ(s)/µ1(s). (101)

Equations (95), (100) and (101) define the admissible values of E(s) limited by the bank

angle.

4.3.3 Summary of Algebraic Constraints

In the previous two sections it has been shown that the lift coefficient and the bank angle

constraints can be reduced to a series of algebraic constraints on the value of the specific

kinetic energy E along the path. Summarizing these results, for feasibility, the specific

kinetic energy profile E must satisfy either one, or both, of the following two constraints.

The first constraint is defined according to the inequalities

g
w1

(s) ≤ E(s) ≤ gw1(s), s ∈ [s0, sf], (102)

where g
w1

(s) from (92) and gw1(s) from

gw1(s)
△
=

min {Emax(s), µ0(s)} , s ∈ Γ1,

min {Emax(s), g cos γ(s)/2µ2(s)} , s ∈ Γ2 ∪ Γ3,

Emax(s), otherwise,

101

where

Γ1 =
{
s|ψ′(s) 6= 0, γ′(s) = 0, s ∈ [s0, sf]

}
,

Γ2 =
{
s|ψ′(s) 6= 0, γ′(s) 6= 0, µ1(s) ≤ 0, µ2(s) > 0, s ∈ [s0, sf]

}
,

Γ3 =
{
s|ψ′(s) 6= 0, γ′(s) 6= 0, µ1(s) > 0, s ∈ [s0, sf]

}
,

The second constraint is defined according to the inequalities

g
w2

(s)
△
= max

{
g

w1
(s), g

w3
(s)
}
≤ E(s) ≤ ḡw2 (s) , s ∈ [s0, sf]. (103)

where,

g
w3

(s)
△
=

max {Emin(s), g cos γ(s)/2µ1(s)}, s ∈ Γ3,

Emin(s), s ∈ [s0, sf]/Γ3,
(104)

and

gw2(s)
△
=

Emax(s), s ∈ Γ3,

gw1(s), s ∈ [s0, sf]/Γ3.
(105)

and where µ0(s), µ1(s) and µ2(s) are given in (95), (97) and (98), respectively.

The collection of points (s,E(s)) satisfying either (102) or (103) correspond to the set

W =W1 ∪W2 in the s− E plane, where W1 and W2 are given by

W1 = {(s,E) | g
w1

(s) ≤ E ≤ gw1 (s) , s ∈ [s0, sf]}, (106)

W2 = {(s,E) | g
w2

(s) ≤ E(s) ≤ gw2 (s) , s ∈ [s0, sf]}, (107)

Consequently, the given geometric path is feasible only if there exists a continuous

function E, whose graph lies entirely in W, while connecting the initial and final boundary

conditions. We will thus always assume that (s0, E(s0)) ∈ W and (sf , E(sf)) ∈ W otherwise

the problem is clearly infeasible.

4.3.4 Topological Properties of the Admissible Velocity Set

Before proceeding with the determination of the optimal velocity profile inside the admis-

sible velocity set W, some observations regarding the topological properties of W and its

boundary are in order.

1. If W is not connected, then the given path is not feasible.

102

2. Even if the admissible velocity set W is connected, it may not be simply connected.

If W is simply connected, then exists two piecewise analytic unctions g
w

and gw such

that

W = {(s,E)|g
w
(s) ≤ E(s) ≤ gw (s) , s ∈ [s0, sf]}. (108)

For instance, one can simply take g
w

= min{g
w1
, g

w2
} and gw = max{gw1, gw2}.

3. In case W is not simply connected, then it cannot be characterized by inequalities

involving only two piecewise analytic functions as in (108). Such a situation will

occur if there exist points s ∈ [s0, sf] such that g
w1

(s) > gw2(s) or g
w2

(s) > gw1(s),

for instance. Nonetheless, owing to the piecewise analyticity of the functions involved

in (106) and (107), which represent the boundaries of W1 and W2 between s0 and

sf , respectively, these functions may intersect at only at a finite number of points in

[s0, sf] (see Proposition 4.2.1). Consequently, there can only be a finite number of

“holes” in W.

4. Suppose W is not simply connected, but it rather has m holes. In this (rather rare)

case,W can be decomposed as the union of 2m simply connected subsets, as illustrated

in Fig. 21 for the case whenm = 1. After such a decomposition, each subset is searched

for an optimal kinetic energy profile candidate using the approach described later on

in the chapter. Once all possible (at most 2m) candidates have been obtained, they

are compared to identify the unique optimal kinetic energy profile for the original set

W.

E

s

W

E

s

W1

= +

E

s

W2

g
w1

g
w2

g
w1

g
w2

Figure 21: Decomposition of W when it is not simply connected.

In this work, we focus on the simple—and most common—case when W is simply

connected and hence W is defined by algebraic constraints of the form g
w
(s) ≤ E(s) ≤

103

gw (s) , s ∈ [s0, sf], where g
w

and gw are appropriately defined piecewise analytic functions.

4.3.5 Thrust Constraint

From equations (73), (85) and (86) we have the following equation:

T = mvv′ +

(
1

2
CD0ρS +

2Km2γ′2

ρS
+
Km2 cos2 γψ′2

ρS

)
v2

+
2Km2g2 cos2 γ

ρS

1

v2
+

4Km2γ′g cos γ

ρS
+mg sin γ.

(109)

Note that vv′ = v
dv

ds
=

d

ds

(
v2

2

)
= E′ and the above equation can be rewritten as a

constraint on the derivative of E as follows

E′(s) =
T (s)

m
+ c1(s)E(s) +

c2(s)

E(s)
+ c3(s), (110)

where

c1(s)
△
= −CD0(s)ρ(s)S

m
− 4Kmγ′2(s)

ρ(s)S
− 2Km cos2 γ(s)ψ′2(s)

ρ(s)S
, (111)

c2(s)
△
= −Kmg

2 cos2 γ(s)

ρ(s)S
, (112)

c3(s)
△
= −4Kmγ′(s)g cos γ(s)

ρ(s)S
− g sin γ(s). (113)

Note that c1, c2 and c3 are piecewise analytic functions with respect to the path length

coordinate s.

4.4 Optimal Control Formulation

The extensive analysis of the previous section reveals that instead of working with the

original dynamical system described by (70) - (75), we only need to solve an optimal control

problem with a single state variable E and a single control input T . For the case of robotic

manipulators[118] it has been proved that the control is bang-bang when the speed limit is

not active. In this section we show a similar result for the thrust control of a fixed-wing

aircraft. Although the bang-bang form of the control for robotic manipulators has been

proved in Ref. [118], the switching structure between the upper and lower control bounds

has not been studied, despite the fact that the appropriate structure has been used implicitly

in the algorithms proposed in Refs. [28, 119, 96, 118, 116]. In this section we prove that for

104

the case of a fixed-wing aircraft, the thrust control switching structure is unique when the

speed constraint is not active.

The optimal thrust profile T ∗(s) and the corresponding optimal speed v∗(s) =
√

2E∗(s)

for the minimum-time travel of a fixed-wing aircraft are given by the solution to the following

optimal control problem:

Problem 4.4.1 (Minimum-Time Path-Tracking Problem). Consider the following

optimal control problem in Lagrange form:

min
T

J(s0, sf , E(s0), E(sf), T) = tf =

∫ sf

s0

ds√
2E(s)

(114a)

subject to E′(s) =
T (s)

m
+ c1(s)E(s) +

c2(s)

E(s)
+ c3(s), (114b)

g
w
(s) ≤ E(s) ≤ gw(s), (114c)

E(s0) = v2
0/2, (114d)

E(sf) = v2
f/2, (114e)

Tmin ≤ T (s) ≤ Tmax, (114f)

where v0 and vf are the required initial and final speed at s0 and sf , respectively, and gw

and g
w

are piecewise analytic functions, computed in Section 4.3.

Note that we can always redefine the value of gw and g
w

at their (necessarily finite)

points of discontinuities to make them either left or right continuous. In particular, and

without loss of generality, in this work we assume that at the point of discontinuity, the

value of gw is defined so that it is lower semi-continuous and the value of g
w

is defined so

that it is upper semi-continuous. The reasons for such an assumption will be explained

later in Section 4.5. The functions c1, c2 and c3 are also piecewise analytic, and are given

in equations (141), (142) and (143). They can be readily computed once the path is given.

Consider the case when the state constraint (114c) is not active. The Hamiltonian of

the optimal control problem is

H(E,λ, T, s) =
1√
2E

+ λ

(
T

m
+ c1E +

c2
E

+ c3

)

=
2λ

m
T + c1λE + c2

λ

E
+

1√
2E

+ c3λ,

105

The costate equation is

λ′ = −∂H
∂E

= −c1λ+ c2λE
−2 +

1

2
√

2
E−3/2. (115)

The optimal control consists of constrained (i.e., E(s) = g
w
(s) or E(s) = gw(s)) and

unconstrained (i.e., g
w
(s) < E(s) < gw(s)) arcs. Furthermore, the control T enters linearly

into the Hamiltonian, so a singular control may exist. The switching function is

∂H

∂T
=

2λ

m
. (116)

According to the Pontryagin’s Maximum Principle, depending on the sign of the switch-

ing function, the optimal control may switch between the two bounds Tmin, Tmax and the

singular control when the state constraints are not active. Correspondingly, in general, the

optimal control T ∗ of Problem 4.4.1 may contain bang-bang control, singular control, and

control arcs associated with active state constraints, as described by the following expression

T ∗(s) =

Tmin, for λ > 0, s ∈ [s0, sf] \ K,

singular control, for λ = 0, s ∈ [s0, sf] \ K,

Tmax, for λ < 0, s ∈ [s0, sf] \ K,

Tw(s), for s ∈ KU ,

Tw(s), for s ∈ KL.

(117)

where KU = {s|E∗(s) = gw(s), s ∈ [s0, sf]}, KL = {s|E∗(s) = g
w
(s), s ∈ [s0, sf]}, and

K = KU ∪ KL. At the points where the function gw (respectively, g
w
) is differentiable, the

value of the thrust Tw(s) (respectively, Tw) is computed by

Tw(s) = m
(
g′w(s)− c1(s)gw(s)− c3(s)− c2(s)/gw(s)

)
, (118)

and respectively,

Tw(s) = m(g′
w
(s)− c1(s)gw

(s)− c3(s)− c2(s)/gw
(s)). (119)

At the points where gw (respectively, g
w
) is discontinuous and/or non-differentiable, the

thrust is discontinuous, and can be computed by

Tw(s±) = m
(
g′w(s±)− c1(s)gw(s±)− c3(s)− c2(s)/gw(s±),

)
(120)

106

and

Tw(s±) = m(g′
w
(s±)− c1(s)gw

(s±)− c3(s)− c2(s)/gw
(s±)), (121)

for the two cases. Note that owing to the piecewise continuous differentiability of gw and

g
w

the limits g′w(s±), gw(s±) and g′
w
(s±), g

w
(s±) exist for all s ∈ [s0, sf]. Furthermore, the

number of points at which g′w(s+) 6= g′w(s−) or g′
w
(s+) 6= g′

w
(s−) or gw(s+) 6= gw(s−) or

g
w
(s+) 6= g

w
(s−) is finite.

Proposition 4.4.1. The optimal control solution of Problem 4.4.1 does not contain any

singular control.

Proof. We only need to show that there does not exist any sub-interval [sa, sb] ⊆ [s0, sf] on

which λ(s) ≡ 0 and g
w
(s) < E(s) < gw(s) (strict inequalities) for all s ∈ [sa, sb]. Suppose,

ad absurdum, that λ(s) ≡ λ′(s) ≡ 0 for all s ∈ [sa, sb], and the state constraints are not

active on [sa, sb]. It follows that on [sa, sb], equation (115) becomes

0 =
1

2
√

2
E−3/2 > 0,

which is impossible. Hence λ cannot remain constantly zero on any nontrivial interval, and

the proof is complete.

Proposition 4.4.2. The optimal control T ∗(s) is bang-bang, and does not contain any

switch from Tmin to Tmax on [s0, sf] \ K.

Proof. Since we have shown that a singular control does not exist, the control history must

be bang-bang on [s0, sf] \ K. We only need to prove that, when the constraint (114c) is

inactive, there does not exist a switching from Tmin to Tmax in the optimal control history.

To this end, suppose, on the contrary, that T ∗ contains a switching from Tmin to Tmax

at some sm ∈ (sa, sb] ⊂ ([s0, sf] \ K), such that

T ∗ =

Tmin, sa < s ≤ sm,

Tmax, sm < s ≤ sb.

For simplicity, and without loss of generality, we will assume that the functions c1, c2 and

c3 are continuous at sm.

107

Let η be a small positive scalar, and let E−
m(s; η) and E+

m(s; η) denote the trajectories

passing through (sm, E
∗(sm) + η), with control Tmin and Tmax, respectively. From the

definitions of E−
m(s; η) and E+

m(s; η), we have the following expressions

E−

m
′

(s; η)− E+
m

′

(s; 0) = (Tmin − Tmax)/m+ c1(s)
(
E−

m(s; η)− E+
m(s; 0)

)
+ c2(s)

(
1

E−

m(s; η)
− 1

E+
m(s; 0)

)

= (Tmin − Tmax)/m+

(
c1(s)−

c2(s)

E−

m(s; η)E+
m(s; 0)

)(
E−

m(s; η)− E+
m(s; 0)

)

≤ (Tmin − Tmax)/m+

∣∣∣∣c1(s)−
c2(s)

E−

m(s; η)E+
m(s; 0)

∣∣∣∣
∣∣E−

m(s; η)− E+
m(s; 0)

∣∣ .

(122)

and

E−

m
′

(s; 0)− E+
m

′

(s; η) = (Tmin − Tmax)/m+ c1(s)
(
E−

m(s; 0)− E+
m(s; η)

)
+ c2(s)

(
1

E−

m(s; 0)
− 1

E+
m(s; η)

)

= (Tmin − Tmax)/m+

(
c1(s)−

c2(s)

E−

m(s; 0)E+
m(s; η)

)(
E−

m(s; 0)− E+
m(s; η)

)

≤ (Tmin − Tmax)/m+

∣∣∣∣c1(s)−
c2(s)

E−

m(s; 0)E+
m(s; η)

∣∣∣∣
∣∣E−

m(s; 0)− E+
m(s; η)

∣∣ .

(123)

Note that E+
m(sm; η) = E−

m(sm; η) = E∗(sm) + η. We therefore have

∣∣E−

m(s; η)− E+
m(s; 0)

∣∣ =
∣∣E−

m(s; η)− E−

m(sm; η) + E+
m(sm; η)− E+

m(sm; 0) +E+
m(sm; 0)− E+

m(s; 0)
∣∣

≤ |E−

m(s; η)− E−

m(sm; η)|+ |E+
m(sm; η)− E+

m(sm; 0)|+ |E+
m(sm; 0)− E+

m(s; 0)|.

Since E−
m(s; η) and E+

m(s; 0) are continuous with respect to s, and E+
m(sm; η) is continuous

with respect to η, and since the coefficient multiplying |E−
m(s; η) − E+

m(s; 0)| in (122) is

bounded, it follows that E−
m

′
(s; η) − E+

m
′
(s; 0) ≤ (Tmin − Tmax)/m < 0 for η small enough

and for all s in a small enough neighborhood of sm. By the same token, we can also

show that E−
m

′
(s; 0) − E+

m
′
(s; η) ≤ (Tmin − Tmax)/m < 0 for η small enough and for all

s in a small enough neighborhood of sm. Choose now ǫ > 0 and η0 > 0 such that for

all η < η0 and all s ∈ (sm − ǫ, sm + ǫ) both the previous inequalities are satisfied and,

in particular, E−
m

′
(s; η) − E+

m
′
(s; 0) < (Tmin − Tmax)/2m < 0 and E−

m
′
(s; 0) − E+

m
′
(s; η) <

(Tmin − Tmax)/2m < 0 for all s ∈ (sm − ǫ, sm + ǫ) and 0 < η < η0.

Notice that in the interval (sm − ǫ, sm + ǫ), the optimal specific kinetic energy profile

108

can be written equivalently as:

E∗(s) =

E−
m(s; 0), sm − ǫ < s < sm,

E+
m(s; 0), sm < s < sm + ǫ.

Consider now the part of E+
m(s; η) with s < sm and the part of E−

m(s; η) with s > sm.

Since E∗(sm) < lim infs→sm gw(s), and since gw(s) is lower semi-continuous, there exists a

small positive real number η1 such that, for all η < η1, E
+
m(s; η) < gw(s) for all sm − ǫ <

s ≤ sm, and E−
m(s; η) < gw(s) for all sm < s ≤ sm + ǫ, that is, a sufficiently small change

of the initial condition at sm will not lead to the violation of the constraint gw(s).

Let η2 = −ǫ(Tmin−Tmax)/2m > 0, and let 0 < η < min{η0, η1, η2}. At the point sm, we

have E−
m(sm; η)−E∗(sm) = E−

m(sm; η)−E−
m(sm; 0) = E−

m(sm; η)−E+
m(sm; 0) = η > 0. Since

E−
m

′
(s; η) − E+

m
′
(s; 0) < (Tmin − Tmax)/2m for all s ∈ (sm, sm + ǫ), forward integration of

E−
m

′
(s; η)−E+

m
′
(s; 0) from sm results in E−

m(s; η)−E+
m(s; 0) < η+(Tmin−Tmax)(s−sm)/2m

for all s ∈ (sm, sm + ǫ). Specifically, there exists s+m ∈ (sm, sm + ǫ) such that E−
m(s+m; η) =

E+
m(s+m; 0) = E∗(s+m).

A similar argument shows that there exists s−m ∈ (sm − ǫ, sm) such that E+
m(s−m; η) =

E∗(s−m). See Fig. 22.

̃

sa s−m sbsm s+m s

 ∗

W

gw

g
w

 −

m(sm, 0)

 −

m(sm, η)

 +
m(sm, η)

 +
m(sm, 0)

 ∗

m(sm)

 ∗

m(sm) + η

s−m sm s+m sm + ǫsm − ǫ

Figure 22: Speed variation for the proof of Proposition 4.4.2.

109

Now consider the variation of T ∗ (see Fig. 23) given by

δT =

Tmax − Tmin, s−m < s ≤ sm,

Tmin − Tmax, sm < s ≤ s+m,

0, otherwise.

Then with the new control T̃ = T ∗ + δT , the new speed profile Ẽ is composed of segments

of E∗, E+
m(s; η) and E−

m(s; η), which is given below

Ẽ(s) =

E∗(s), sa < s ≤ s−m,

E+
m(s; η), s−m < s ≤ sm,

E−
m(s; η), sm < s ≤ s+m,

E∗(s), s+m < s ≤ sb.

The variation of speed is shown in Fig. 22. By construction of s−m and s+m, we have E∗(s) <

Ẽ(s) < gw(s) for s ∈ (s−m, s
+
m). Hence J(sa, sb, E(sa), E(sb), T

∗) > J(sb, sb, E(sa), E(sb), T̃),

which means that T ∗ cannot be optimal.

T

Tmax

Tmin

T̃

sa s−m sbsm s+
m s

T ∗

Figure 23: Thrust variation for proof of Proposition 4.4.2.

The next proposition shows that the lower bound g
w

is generically not part of the

optimal specific kinetic energy profile on a nontrivial interval.

110

Proposition 4.4.3. Assume gw(s) 6= g
w
(s) and T ∗(s) = Tw(s) < Tmax(s) for all s ∈

[s0, sf]. Let E∗(s) be the optimal kinetic energy solution to Problem 4.4.1. Then the set

KL does not contain any nontrivial interval.

Proof. (Sketch) Assume, on the contrary, that there exists (sa, sb) ∈ KL such that E∗(s) =

g
w
(s) for all s ∈ (sa, sb), where sa 6= sb. Then since gw(s) 6= g

w
(s) and Tw(s) < Tmax(s) on

(sa, sb), one can construct a variation of the thrust T in the interval (sa, sb) similar to the

proof of Proposition 4.4.2 that does not violate the thrust constraint, and which results in

better time optimality, hence leading to a contradiction. We leave the details of the proof

to the interested reader.

Corolory 4.4.1. The time optimal control T ∗ for Problem 4.4.1 can be constructed as a

combination of Tmax, Tmin and Tw.

Proof. Note that T ∗(s) is equal to Tmax, or Tmin, or Tw(s) on [s0, sf] \ KL. We only need

to consider the value of T ∗(s) on KL. If gw(s) = g
w
(s) on some nontrivial interval [sa, sb],

then clearly T ∗(s) = Tw(s) = Tw(s) for all s ∈ [sa, sb], and the corollary holds on [sa, sb].

If Tw(s) = Tmin(s) for some s ∈ [s0, sf], then the corollary trivially holds for such points.

If gw(s) = g
w
(s) only at isolated points, or if gw(s) 6= g

w
(s) and Tw(s) < Tmax(s) for all

s ∈ [s0, sf], then KL has an empty interior according to Proposition 4.4.3.

4.5 Two Numerical Algorithms for Finding the Optimal Control

Recall that the admissible kinetic energy set W is determined by the geometry of the given

path. Once the path is given, it is possible to find a semi-analytical solution of the optimal

control problem (114a) using the necessary conditions introduced in the previous section.

Assuming that the given path is feasible, then according to Proposition 4.4.3, the lower

bound g
w

cannot be part of the optimal kinetic energy profile, except for the trivial case

when g
w
(s) = gw(s) over some part of [s0, sf]. The optimal kinetic energy profile is thus

composed of three types of segments corresponding to maximum acceleration with T ∗ =

Tmax, maximum deceleration with T ∗ = Tmin, and T ∗ = Tw, the latter corresponding to

the saturation of the upper state constraint E(s) = gw(s). The most critical step of the

optimal synthesis problem is to characterize which parts of gw can possibly be saturated.

111

If gw is continuous at sd ∈ [s0, sf] and E∗(sd) = gw(sd), since E∗(s) cannot violate

the constraint gw, i.e., E∗(s) ≤ gw(s), there exists a control T ∗(s) ∈ [Tmin, Tmax] such that

E∗(s) satisfies the following inequality

E∗(sd + h)− E∗(sd)

h
≤ gw(sd + h)− gw(sd)

h
, (124)

where h is a small positive real number. By taking the limits of both sides of (124) with

h→ 0, the last expression leads to the existence of T ∗(s) ∈ [Tmin, Tmax] such that

E∗′(s+d) ≤ g′w(s+d). (125)

On the other hand, we have

E∗′(s+d) ∈
[
Tmin

m
+ c1(s

+
d)E∗(sd) +

c2(s
+
d)

E∗(sd)
+ c3(s

+
d),

Tmax

m
+ c1(s

+
d)E∗(sd) +

c2(s
+
d)

E∗(sd)
+ c3(s

+
d)

]
.

Therefore, (125) implies

g′w(s+d) ≥ Tmin

m
+ c1(s

+
d)E∗(sd) +

c2(s
+
d)

E∗(sd)
+ c3(s

+
d) =

Tmin

m
+ c1(s

+
d)gw(sd) +

c2(s
+
d)

gw(sd)
+ c3(s

+
d).

(126)

Similarly, the constraint E∗(s) ≤ gw(s) for s ∈ (sd − ǫ, sd] implies

g′w(s−d) ≤ Tmax

m
+ c1(s

−
d)E∗(sd) +

c2(s
−
d)

E∗(sd)
+ c3(s

−
d) =

Tmax

m
+ c1(s

−
d)gw(sd) +

c2(s
−
d)

gw(sd)
+ c3(s

−
d).

(127)

Therefore, E∗(sd) = gw(sd) is possible only if both (126) and (127) are satisfied. In par-

ticular, when gw is continuously differentiable at sd, then g′w(s−d) = g′w(s+d) = g′w(sd) and

hence, the inequalities (126) and (127) are reduced to

Tmin

m
+ c1(s

+
d)gw(sd) +

c2(s
+
d)

gw(sd)
+ c3(s

+
d) ≤ g′w(sd) ≤

Tmax

m
+ c1(s

−
d)gw(sd) +

c2(s
−
d)

gw(sd)
+ c3(s

−
d).

(128)

If gw is discontinuous at sd, then either gw(sd) = gw(s+d) or gw(sd) = gw(s−d). In this

case, the conditions E∗(sd) = gw(sd) and E∗(s) ≤ gw(s) in a neighborhood of sd can be

satisfied only if gw(s) is lower semi-continuous (which we assume it is) and, in addition,

(126) holds if gw(s+d) < gw(s−d), and (127) holds if gw(s+d) > gw(s−d).

112

Let W̃ be the graph of all points in the interval [s0, sf] such that gw is continuous, and,

in addition, (126) and (127) hold, that is,

W̃
△
= {(sd, gw(sd))|(126) and (127) hold, sd ∈ [s0, sf]} .

These are the points on the graph of gw(s) which could possibly be part of the optimal

kinetic energy profile E∗(s). Furthermore, let W̃d be the points on the graph of gw where

gw is discontinuous (but necessarily lower semi-continuous), and either (126) or (127) holds.

The points in W̃d are the points of discontinuity of gw which could be part of the optimal

E∗(s) profile.

Let W = W̃
⋃
W̃d and let W

c
= {(s, gw(s)), s ∈ [s0, sf]}\W . Generally, W is discon-

nected. Depending on the path, W may consist of multiple arcs and single points, as shown

in Fig. 24. By the piecewise analyticity assumption of the given path, all functions involved

in (126) and (127) are piecewise analytic, and it follows that the equality in (126) and (127)

can only hold for a finite number of points on [s0, sf]. Hence, W is composed of only a finite

union of disjoint components. That is, W =
⋃N−1

j=1 W j for some positive integer N , where

W j are connected, and with W i
⋂
W j = ∅ for i 6= j. Let (s−j , E

−
j) and (s+j , E

+
j) denote

the left and right end points of W j for each j = 1, . . . , N − 1, where E−
j = gw(s−j) and

E+
j = gw(s+j) correspond to the “trajectory sink” and the “trajectory source” in Ref. [96].

Also, define two points W 0 = (s0, E0) and WN = (sf , Ef). Note that, in general, W 0 6= W 1

and WN 6= WN−1. It is obvious that W 0 and WN must be part of the graph of the optimal

kinetic energy profile.

For each j = 1, . . . , N − 1, let S+
j denote the trajectory obtained by forward integration

with maximum thrust, starting from s+j with the initial value S+
j (s+j)

△
= E+

j , and similarly,

let S−j be the trajectory obtained by backward integration using minimum thrust, starting

from s−j with the initial value S−j (s−j)
△
= E−

j . Forward integration with Tmax and backward

integration with Tmin are also computed from the boundary points s0 and sf with initial

conditions E0 and Ef respectively, and the resulting trajectories are denoted with S+
0 and

S−N .

All current algorithms, including those in Refs. [28, 96, 118, 119], use a “search, integrate

113

E

sfs0

E0 Ef

W

f.w. integration

b.w. integration

˜W
˜Wd

B

A

Figure 24: Elements for the optimal E

and check” procedure, which gradually extends the optimal speed profile from the initial

point to the final point. Following this procedure, it is possible that during the search

process, part of the already constructed trajectory has to be discarded because it cannot

intersect W later on for any allowable thrust value.

In order to avoid such unnecessary computations, and to also improve the overall com-

putational efficiency of the numerical scheme, it is necessary to characterize the elements in

W which are part of E∗. Assuming feasibility of the problem, when the boundary conditions

cannot be satisfied by a bang-bang control with no more than one switch from Tmax to Tmin,

some elements in W corresponding to the smaller values of gw(s) must be active (at least at

a single point) in the optimal solution, since these correspond to the most stringent/binding

part of the constraint.

Following this observation, we introduce two new algorithms, which improve the numer-

ical efficiency of the procedure for searching the optimal speed profile. The first algorithm

is designed for parallel computation, while the second algorithm reduces the amount of

computations devoted to the “search, integrate and check” process.

4.5.1 Algorithm I

Step 1 Compute gw, g
w

as in Section 4.3.3 and check the feasibility of the geometric path.

Stop if the path is not feasible, otherwise proceed to the next step.

114

Step 2 Compute the feasible segments W j on the graph of gw following the procedure

outlined in the previous section.

Step 3 Calculate S+
j for j = 0, 1, 2, . . . , N − 1, with the integration terminated when

gw(s) = S+
j (s), or s = sf . Let I+

j denote the interval of integration associated with

S+
j . Also calculate S−j for j = 1, 2, . . . , N , with the integration terminated when

gw(s) = S−j (s), or s = s0 and denote by I−j the corresponding intervals of integration

of S−j .

Step 4 Let

S±(s) =

S±(s), s ∈ I±j ,

gw(s), s ∈ [s0, sf]\I±j ,
(129)

for all j = 0, 1, . . . , N , and let

E(s)
△
= min{S+

0 (s), S+
1 (s), . . . , S+

N−1(s), S
−
1 (s), S−

2 (s), . . . , S−
N (s)}. (130)

If E(0) = E0, E(sf) = Ef and E(s) ≥ g
w
(s) for all s ∈ [s0, sf], then the optimal

speed profile is given by (130). Otherwise the given path is not feasible.

The optimal speed profile is given by v∗(s) =
√

2E∗(s), and the corresponding optimal

thrust profile T ∗(s) can be computed by equation (109). By construction, the optimal thrust

profile T ∗(s) satisfies the necessary conditions given by Proposition 4.4.2 and Theorem 4.4.1.

The control T ∗ is indeed optimal because it maximizes point-wise the speed, and any further

increase in speed results in the violation of the speed constraint.

Note that the “search, integrate and check” process is avoided in this algorithm. This

algorithm can be implemented in parallel owing to the following reasons: (i) Step 1 and Step

4 can be performed point-wise for different s ∈ [s0, sf]; (ii) in Step 2 and 3 the computations

of S−j and S+
j are independent, hence they can be computed in parallel for different j at

the same time.

The following algorithm still preserves the “search, integrate and check” process, but

the repetition of the process is reduced to a minimum.

115

4.5.2 Algorithm II

Step 1 Compute gw, g
w
, and check the feasibility of the geometric path. Stop if the path

is not feasible, otherwise proceed to the next step.

Step 2 Compute S+
0 (s) and S−N (s) with stopping criteria S+

0 (s) = gw(s) and S−N (s) =

gw(s), or s = s0, or s = sf . Update gw(s) ← S+
0 (s) and gw(s) ← S−N (s) on the

corresponding domain of integration.

Step 3 Compute W and its segments W j on the graph of gw following the procedure

outlined previously. If gw is continuous and W
c

is empty, or if gw(s0) 6= E(s0), or if

gw(sf) 6= E(sf), then go to Step 5. Otherwise, go to the next step.

Step 4 Among those W j for which no integration has been performed at s+j and s−j , select

the one whose distance to the s axis is the smallest. Let its index be k. Compute

S−k (s) and S+
k (s) with the stopping criteria S−k (s) = gw(s) and S+

k (s) = gw(s), or

s = 0, or s = sf . Update gw(s) ← S−k (s) and gw(s) ← S+
k (s) on the corresponding

domain of integration, and go to Step 3.

Step 5 If gw(s0) 6= E(s0) or gw(sf) 6= E(sf), then the given path is infeasible. Otherwise,

the optimal speed profile is given by E∗ = gw.

The difference between Algorithm II and Algorithm I (as well as the other time-optimal

control algorithms in Refs. [28, 119, 96, 118]) is illustrated in Fig. 25. While Algorithm II

computes only the integrations which are involved in the construction of the optimal speed

profile, the algorithms in Refs. [28, 119, 96, 118] integrate the trajectory along arcs which

may be discarded later on, when extending the optimal speed profile to the final point.

Hence, they are in general less efficient when compared to Algorithm II.

4.6 Numerical Examples

In this section, two examples are used to test the feasibility and optimality of the proposed

approach. Both examples implement Algorithm I, for simplicity. The first example focuses

116

E

sfs0

E0

Ef

W

Necessary integration

Un-necessary integration

W

Figure 25: Algorithm comparison

on checking the feasibility of the algorithm, i.e., whether the controls given by the opti-

mal parameterization method satisfy the prescribed bounds, and whether the aircraft can

follow the path when using these control inputs. In the second example, the given path

is a minimum-time path with known time parameterization, and is used to examine the

optimality of the proposed method.

4.6.1 Landing Path with Two Turns

A three-dimensional path is used to test the feasibility of the trajectories obtained using the

proposed time parameterization method. The trajectory is shown in Fig. 43. The initial

position of the aircraft is (0, 0, 6) km, the aircraft flies with v0 = 220m/s, at γ(0) = 0◦

path angle and ψ(0) = 0◦ heading. The final position is (111.0,17.3,0) km, with final

speed v(sf) = 95m/s, path angle γ(sf) = 0◦ and heading ψ(sf) = −25◦. The horizontal

projection of the trajectory contains two constant rate turning maneuvers. The atmospheric

density data are taken from Ref. [91]. For simplicity, the change of gravity with altitude is

neglected.

The control bounds are given as follows: the lift coefficient CL ∈ [−0.067, 1.9], the

bank angle φ ∈ [−15◦, 15◦] and the thrust T ∈ [0, 1126.3] kN. The maximum speed limit is

0.8 Mach, while the minimum speed limit is vmin=60 m/s (134.2 mph). These data corre-

spond approximately to a typical civilian airliner. Using the optimal time parameterization

117

0

50

100

0

20

40

60
0

1000

2000

3000

4000

5000

6000

y (km)
x (km)

z
(m

)

Figure 26: 3D Geometric Trajectory.

0 20 40 60 80 100 120 140
0

10

20

30

40

50

60

70

x (km)

y
(k

m
)

Figure 27: X-Y plane projection of the geometric trajectory.

118

0 20 40 60 80 100 120 140 160
50

100

150

200

250

300

350

s (km)

v
(m

/s
)

W

optimal speed profile

Figure 28: Optimal speed profile under path coordinate.

0 100 200 300 400 500 600 700 800
50

100

150

200

250

300

350

t (s)

v
(m

/s
)

W

optimal speed profile

Figure 29: Time history of optimal speed.

119

0 100 200 300 400 500 600 700 800
−200

0

200

400

600

800

1000

1200

t (s)

T
(k

N
)

Optimal thrust profile

Figure 30: Optimal thrust.

method, the minimum-time speed profile v∗(s) is computed following the approach devel-

oped in this chapter and is shown in Fig. 28. The same profile in terms of time is shown in

Fig. 29. To arrive at the final position in minimum time, the aircraft should fly as fast as

possible, however, due to the limited acceleration and deceleration capability, the optimal

velocity profile cannot necessarily stay at vmax all the time. Within 0 ≤ s ≤ 25 km, the

upper limit of speed is higher than 270 m/s, but the aircraft cannot travel at the maximum

speed because it would not be able to decelerate sufficiently fast, thus violating the speed

upper limit within 25 ≤ s ≤ 33 km, which is induced by the first left turning maneuver.

Similar scenarios exist before the second turning maneuver and the final point. The total

length of the path is 152.9 km, and the aircraft finishes in 771 s using the optimal thrust

with an average speed of 170.4 m/s.

The state and control histories recovered from the optimally time-parameterized trajec-

tory are shown in Fig.31. The red dotted lines in the figures represent the control bounds.

As shown in the figure, the thrust and bank angle saturate during some phases of the flight.

The saturations of the bank angle are caused by the turning maneuvers. The saturation of

the thrust leads to maximum acceleration which improves optimality.

To check the validity of this result, inverse dynamics are used to recover the state and

120

0 200 400 600 800
−2.5

−2

−1.5

−1

−0.5

0

t (s)

γ
(◦

)
0 200 400 600 800

−40

−20

0

20

40

60

t (s)

ψ(
◦
)

0 200 400 600 800
0

0.5

1

1.5

t (s)

C
L

0 200 400 600 800
−15

−10

−5

0

5

10

15

t (s)

φ
(◦

)

Figure 31: The states and control histories of the time parameterized trajectory.

control histories from the optimal time-parameterized trajectory
(
x∗(t), y∗(t), z∗(t)

)
. For

the purpose of validation, after the control histories are calculated from inverse dynamics,

they are used as the control inputs to simulate the trajectory. Specifically, the ordinary

differential equations (131)-(136) are solved using the resulted control histories. The new

simulated trajectory (x̂, ŷ, ẑ) is compared with (x∗, y∗, z∗) in Fig. 32.

The discrepancy between the simulated trajectory and the original input trajectory is

estimated using the following relative error index

∆r = max
t

√√√√
(

x̂ (t)− x∗ (t)

max
t
x∗ (t)−min

t
x∗ (t)

)2

+

(
ŷ (t)− y∗ (t)

max
t
y∗ (t)−min

t
y∗ (t)

)2

+

(
ẑ (t)− z∗ (t)

max
t
z∗ (t)−min

t
z∗ (t)

)2

For this example, ∆r = 4.1× 10−4, which is quite acceptable.

4.6.2 Time Optimal Path

In order to validate the optimality of the time-parameterized trajectory, a minimum-time

landing path for a large civil aircraft is used to test the proposed method. The path is

generated using DENMRA, which is a numerical algorithm solving optimal control prob-

lems with an automatic multiresolution mesh refinement scheme [138]. The accuracy and

121

0
20

40
60

80
100

120 0

10

20

30

400

1000

2000

3000

4000

5000

6000

y (km)

(111,17.3,0)km

x (km)

(0,0,6)km

z(
m

)

Figure 32: Comparison of the original geometric path(dots) and the path generated using
time parameterization and inverse dynamics(line).

robustness of the DENMRA have been demonstrated in the same reference.

The aircraft starts at an initial position of (0, 0, 10)km, and lands at an airport with

position (110,-60,0) km. The initial conditions are: speed v(0) = 240m/s, heading angle

ψ(0) = 0◦ and the path angle γ(0) = 0◦; the final conditions are: speed v(sf) = 95m/s,

heading angle ψ(sf) = 80◦, and path angle γ(sf) = −3◦. The aircraft considered in this

example is a Boeing-747. During the whole flight, the following constraints need to be

satisfied: v ≤ 270 m/s, φ ∈ [−15, 15]◦, CL ∈ [−0.31, 1.52], and T ∈ [0, 1126.3] kN. The path

is shown in Figs. 33 and 34.

Because the state and control histories obtained from DENMRA are already time op-

timal, it is expected that the application of the time-parameterization method to the path

corresponding to the DENMRA solution should yield the same optimal solution as that of

DENMRA. This is indeed the case, as it is evident from Figs. 37-40.

The optimal parameterization method gives a total travel time of 534.1 s, which matches

very well with the final time of 533.8 s given by the DENMRA. The small discrepancy

observed is attributed to numerical issues with the solvers. The admissible speed set W in

terms of the path coordinate and time are shown in Figs. 35 and 36, respectively. The time

history of the speed and the controls are shown in Figs. 37-40. As mentioned before, the

122

0
2

4
6

8
10

12x 10
4

−8

−6

−4

−2

0

x 10
40

2000

4000

6000

8000

10000

y(m)

x (m)

z(
m

)

Figure 33: the min-time trajectory.

0 2 4 6 8 10 12

x 10
4

−7

−6

−5

−4

−3

−2

−1

0
x 10

4

x (m)

y
(m

)

Figure 34: X-Y plane projection of the min-time trajectory.

123

0 20 40 60 80 100 120 140
50

100

150

200

250

300

s (km)

v
(m

/s
)

W

optimal speed profile

Figure 35: Optimal speed profile under path coordinate (DENMRA).

0 100 200 300 400 500 600
50

100

150

200

250

300

t (s)

v
(m

/s
)

W

optimal speed profile

Figure 36: Time history of optimal speed (DENMRA).

124

0 100 200 300 400 500 600
80

100

120

140

160

180

200

220

240

260

280

t (s)

v
(m

/s
)

DENMRA
Proposed approach

Figure 37: Speed comparison.

0 100 200 300 400 500 600
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

t (s)

C
L

DENMRA
Proposed approach

Figure 38: Control comparison: CL.

125

0 100 200 300 400 500 600
−20

−15

−10

−5

0

5

10

15

20

t (s)

φ
(◦

)

DENMRA
Proposed approach

Figure 39: Control comparison: φ.

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

1.2

t (s)

th
ro

tt
le

(%
)

DENMRA
Proposed approach

Figure 40: Control comparison: throttle.

126

other two states—the path angle γ and the heading angle ψ—are pure geometric variables,

and are independent of parameterization, so they are not used for checking the optimality

of the proposed method. As shown in Figs. 37-40, the numerical optimization result agrees

very well with that of the time-parameterization method. This agreement validates the

optimality of the time-parameterization method and, to some extent, that of DENMRA as

well.

4.7 Conclusions

This chapter studies the problem of minimum-time-travel of a fixed-wing aircraft along a

specified path. It has been proved that in an interval where the speed constraint is not active,

there exists at most one switching, which is from maximum thrust to minimum thrust,

hence the switching structure for the time-optimal control problem is unique. Constrained

arcs riding on the upper bound of the admissible velocity are also part of the optimal

trajectory. The admissible specific kinetic energy set is introduced to characterize the

domain within which the optimal specific kinetic energy profile is searched. The main

control (thrust) optimal history is then immediately determined from the optimal specific

kinetic energy profile. The admissible specific kinetic energy set is generated by considering

the constraints involving the aircraft speed and the remaining two controls, namely the

lift coefficient and the bank angle. Hence, a search within the admissible specific kinetic

energy set naturally satisfies these constraints. Two algorithms are proposed to solve for

the thrust switching structure. The first algorithm can be implemented in parallel, which is

difficult for other algorithms involving a sequential “search, integrate and check” pattern.

The second algorithm is based on the “search, integrate and check” pattern, but improves

its numerical efficiency by eliminating unnecessary integrations. Both algorithms are very

efficient, and are thus amenable to real-time implementation.

It has been verified through numerical examples that the optimally time-parameterized

trajectory satisfies the specified control bounds, and is indeed flyable with control histories

obtained from the time-parameterized solution. The time-parameterization method, when

combined with other fast geometric path-planning methods, leads to feasible trajectories

127

with certain optimality characteristic, as opposed to just feasible paths.

128

CHAPTER V

ENERGY-OPTIMAL LANDING PATH TRACKING WITH FIXED

TIME OF ARRIVAL

In this chapter, we presents a method for the energy-optimal operation of a fixed-wing

aircraft tracking a prescribed landing path in the three-dimensional space with fixed Time

Of Arrival (TOA). Following the same approach in Chapter 4, such a problem is converted

to an optimal control problem with one state variable, subject to state and control input

constraints along the path. It is shown that the solution to this energy-optimal track-

ing problem provides a good approximation to the minimum-fuel problem. The switching

structure of the optimal solution is analyzed, and a semi-analytical method is proposed for

computing the optimal solution. Compared to standard numerical optimization methods,

the proposed method is guaranteed to converge to the optimal solution, and is computation-

ally much more efficient. Numerical examples are presented to demonstrate the validity of

the proposed method. As verified by these numerical results, the proposed energy-optimal

solution can help improve aircraft fuel efficiency during the landing phase.

5.1 Introduction

With climbing fuel cost, it is desirable to improve the fuel efficiency of current aircraft

operations subject to aircraft performance and scheduling constraints. Such a problem can

be naturally cast as an optimal motion planning problem, which is a common problem en-

countered in many industrial and transportation systems, including robotic arms[28, 119,

96, 118, 116, 117, 40, 25, 52, 130, 36], ground vehicles[8, 61, 74, 59, 129], aircraft[73, 83], etc.

Although optimal motion planning problems can be solved directly using numerical opti-

mization techniques[30, 31, 122, 36, 38, 70], the number of the required computations may

grow to impractical levels, especially for real-time applications. Hence, a hybrid approach is

commonly adopted in practice, according to which the motion planning task is decomposed

into multiple levels[50, 98]. At the higher level, only the geometric aspects of the path are

129

considered, while the lower (path-tracking) level deals with the system dynamics and the

state and control constraints, and generates the time-parameterization of the path provided

by the higher (geometric) level planner. This chapter focuses on the aircraft path tracking

problem at the lower level. Therefore, throughout the chapter, it is assumed that the path

to be followed is given by the geometric level path planner.

Given a path, the minimum-time path-tracking problem for robotic manipulators, ground

vehicles, and aircraft has been studied in [28, 119, 96, 118, 116, 129, 137]. The optimal so-

lution to these problems can help improve plant productivity[28, 119, 96, 118, 116], racing

car performance[129], or achieve faster aircraft landing in case of an emergency[137]. These

solutions maximize pointwise the speed along the path, and do not contain any singular

arcs 1. When tracking time is not of primary concern, it is often desirable to minimize

the energy or the fuel consumption of the system. Along this direction, the minimum-work

train operation problem has been studied in Refs. [8, 61, 74, 59]. Unlike the solution to

the minimum-time problem, minimum-work or minimum-energy solutions usually contain

singular control arcs, in addition to the bang-bang control arcs. As it is typically the

case for problems with singular arcs, it is difficult to determine the optimal sequence in

which these singular arcs appear–in combination with the bang-bang arcs–in the optimal

solution, as well as the corresponding optimal switching times. Numerical techniques are

usually required for solving optimal control problems involving both bang-bang and sin-

gular arcs. When the travel time is free, the explicit expression of a singular arc can be

solved analytically. In the case of fixed travel time, which is most important for scheduled

operations[8, 61, 74, 59], the singular arc(s) cannot be computed directly, and a numerical

procedure must be used to compute the singular arc(s) such that the desired travel time

and boundary conditions are satisfied.

When using numerical methods to solve singular optimal control problems, an approx-

imate solution is usually obtained at first, using standard numerical optimal control tech-

niques, and then a control switching structure is guessed based on the approximate solution

1The “singular arcs” in Ref. [116] actually refer to segments of the speed profile with active speed
constraints, which is different from the traditional term used in optimal control [29].

130

and the analytic expression of the singular control. Finally, the guessed switching struc-

ture is applied to solve the singular control problem[131]. These numerical methods are

time-consuming, and require extensive knowledge and experience from the part of the user

to obtain the actual optimal solution. On the other hand, an analytical optimal control

approach (such as in [8, 61, 74, 59]), although less general than purely numerical methods,

can provide more accurate information about the singular arcs and switching times in the

optimal solution, and thus it is more reliable and efficient.

The path-tracking methods in Refs. [8, 61, 74, 59, 28, 119, 96, 118, 116, 117, 129, 137]

share the same key steps of solving a scalar functional optimization problem. For train

operations, for instance[8, 61, 74, 59], the point-mass train model has a single degree of

freedom along the rail, hence the corresponding path-tracking problem is naturally a speed

optimization problem. Similarly, the path-following problem for robotic arms, ground vehi-

cles, and aircraft can also be simplified to a speed optimization problem along a prescribed

path[28, 119, 96, 118, 116, 117, 129, 137], which can be solved analytically.

In this chapter, we address the problem of minimum-energy path-tracking for fixed-wing

aircraft with fixed time of arrival (TOA). As in Ref. [137], a scalar functional optimization

problem is formulated and solved semi-analytically using optimal control theory. Because

fuel consumption is closely related to the engine’s mechanical work counteracting the ef-

fects of air drag and gravity, the issue of fuel efficiency can also be addressed (at least

approximately) by solving this minimum-energy problem. Compared to the somewhat sim-

ilar minimum-work problem for train operations[8, 61, 74, 59], in which the initial and

final speed are both zero and only the upper speed limit can be active in the middle of

the optimal solution, in the aircraft path-tracking problem considered in this chapter both

the initial and final values of the speed are non-zero, and both upper and lower non-zero

speed bounds exist, and can be active along the path. Hence, the aircraft minimum-energy

solution exhibits a more complicated switching structure than the one in Refs. [8, 61, 74, 59].

The rest of this chapter is organized as follows: We first formulate the aircraft minimum-

energy fixed TOA path-tracking problem as an optimal control problem in Section 5.2.

Then, in Section 5.3 we provide some new results, along with the corresponding proofs

131

regarding the optimal switching structure of the minimum-energy solution. We also present

a formula for computing the energy-optimal solution. A minimum-energy path tracking

algorithm is proposed in Section 5.4. The validity of the proposed method is tested using

numerical experiments, and the results are presented at the end of the chapter.

5.2 Aircraft Dynamics and Simplified Problem

A point-mass model of a fixed-wing aircraft is given by the following equations of motion:

ẋ = v cos γ cosψ, (131)

ẏ = v cos γ sinψ, (132)

ż = v sin γ, (133)

v̇ =
1

m
[T − FD(CL, v, z)−mg sin γ] , (134)

γ̇ =
1

mv
[FL(CL, v, z) cosφ−mg cos γ] , (135)

ψ̇ = −FL(CL, v, z) sin φ

mv cos γ
, (136)

where x and y denote the position of the aircraft in the horizontal plane, z is the altitude, v

is the aircraft speed, γ is the flight path angle, ψ is the heading angle, and φ is the aircraft

bank angle. The aerodynamic lift force FL(CL, v, z) and the drag force FD(CL, v, z) are

given by:

FL (CL, v, z) =
1

2
ρ(z)v2SCL,

FD (CL, v, z) =
1

2
ρ(z)v2SCD =

1

2
ρ(z)v2S(CD0 +KC2

L),

where ρ(z) is the air density given as a function of z, CD0 and K are constants describing

the aerodynamic properties of the aircraft, and S is the main wing surface area. The control

inputs in this model are the lift coefficient CL, the bank angle φ, and the thrust T . It is

required that the aircraft speed satisfies the bounds v(s) ∈ [vmin(z), vmax(z)], where vmin(z)

and vmax(z) are altitude-dependent minimum and maximum speeds, respectively, and

CL ∈ [CLmin
, CLmax], φ ∈ [φmin, φmax], T ∈ [Tmin, Tmax], (137)

where CLmin
, CLmax , φmin, φmax, Tmin and Tmax are (possibly, path-dependent) bounds on

the associated control inputs. It is assumed that CLmin
≤ 0 ≤ CLmax , −π/2 < φmin < 0 <

132

φmax < π/2, 0 ≤ Tmin < Tmax, and γ ∈ (−π/2, π/2). These conditions are generic for a civil

fixed-wing aircraft in normal/maneuverable flight.

Let now (x(s), y(s), z(s)) denote a three-dimensional geometric path, parameterized by

its natural path length coordinate s ∈ [s0, sf] ⊂ R+. The main objective of this chapter is to

find a time-parameterization of the path, or equivalently, a function s(t) with s(0) = s0 and

s(tf) = sf , where t ∈ [0, tf], and tf is the desired TOA, such that the corresponding time-

parameterized trajectory
(
x(s(t)), y(s(t)), z(s(t))

)
minimizes the total energy, or mechanical

work, while flying along the path, and without violating any state or control constraints.

Because the path coordinate s is related to the speed v as follows

s(t) =

∫ t

t0

v(τ) dτ,

the key step for solving this problem is the optimization of the speed profile v(s) along the

path. For convenience of notation, let E
△
= v2/2 denote the specific kinetic energy per unit

mass of the aircraft. It has been shown in Ref. [137] that the lift coefficient, the bank angle,

and the speed constraints can be reduced to lower and upper bounds on the specific kinetic

energy E as follows:

E(s)− gw(s) ≤ 0, (138)

g
w
(s)− E(s) ≤ 0, (139)

for all s ∈ [s0, sf], where gw(s) and g
w
(s) are path-dependant bounds on the specific kinetic

energy, which are determined from the path geometry, and the constraints on the speed,

the bank angle and the lift coefficient. The derivative of E satisfies the following ordinary

differential equation[137]:

E′(s) =
T (s)

m
+ c1(s)E(s) +

c2(s)

E(s)
+ c3(s), (140)

where the prime denotes the derivative with respect to s, and

c1(s)
△
= −CD0(s)ρ(s)S

m
− 4Kmγ′2(s)

ρ(s)S
− 2Km cos2 γ(s)ψ′2(s)

ρ(s)S
, (141)

c2(s)
△
= −Kmg

2 cos2 γ(s)

ρ(s)S
, (142)

c3(s)
△
= −4Kmγ′(s)g cos γ(s)

ρ(s)S
− g sin γ(s). (143)

133

Once the optimal specific kinetic energy E∗(s) is obtained, the optimal thrust profile

T ∗(s) along the path can be determined using equation (140). Subsequently, the other

optimal control inputs can also be computed using inverse dynamics as follows:

C∗
L(s) =

1

ρE∗(s)S

(
T ∗(s)−mE∗′(s)−mg sin γ(s)

)
, (144)

φ∗(s) = − arctan

(
2cos γ(s)ψ′(s)

2γ′(s) + g cos γ(s)/E∗(s)

)
. (145)

5.3 Energy-Optimal Path Tracking with Fixed Time of Arrival

In this section, we first introduce a formulation of the energy-optimal aircraft path-tracking

problem with fixed TOA. This problem provides an approximate solution to the minimum-

fuel problem. We then present a semi-analytic solution to the energy-optimal path-tracking

problem.

5.3.1 Fuel-Optimal and Energy-Optimal Problem Formulation

ost modern civil airliners are powered by high-bypass turbofan engines for better fuel econ-

omy. The fuel consumption rate for this type of engine is given by[87]

ḟ = −ηT, (146)

where f is the fuel weight, η is the installed thrust specific fuel consumption, which varies

with airspeed, altitude, type of engine, and throttle conditions, and it is given by

η = (a+ bMa)
√
η0/(1 + cM2

a), (147)

where Ma is the Mach number and a, b, c are constants depending on the engine type. In

(147), η0 = η0(z,Ma) varies with altitude and Mach number and can be determined from

look-up data tables[87]. The fuel consumption models for other types of jet engines are

similar to equations (146) and (147), but with different parameters.

With the above model, the fuel consumption during the landing phase can be estimated

by

Jf =

∫ tf

t0

−ḟ(t) dt =

∫ tf

t0

η(t)T (t) dt. (148)

134

From (148) it is clear that the minimum-fuel problem is equivalent to the minimization

of the weighted thrust history, where the weight η(t) is given in (147). The solution to this

problem requires the use of purely numerical techniques. To avoid this difficulty, here we

will minimize, instead, the total energy (mechanical work) required to fly along the path,

which is given by

Jw =

∫ tf

t0

v(t)T (t) dt =

∫ sf

s0

T (s) ds. (149)

As demonstrated in Ref [33], the optimal speed profile of the minimum-fuel optimization

problem contains singular arcs on which most of the fuel-saving is achieved. It was observed

in our numerical studies that the air speed changes slowly along these singular arcs, in

which case the singular arcs of the fuel-optimal problem can be approximated by those

of the energy-optimal problem. As a result, the minimization of the energy cost function

(149) is expected to provide a reasonably good approximation to the fuel optimization

problem (148). This is verified by numerical results in Section 5.5. Henceforth, we focus on

minimizing the energy for the landing path-tracking problem.

During the landing process, the change of mass due to fuel consumption is usually

negligible when compared to the total mass of the aircraft. Hence, we may neglect the

effect of mass change on the specific kinetic energy dynamics (140), and assume that m

is constant during the landing phase. The validity of such an assumption is justified in

Ref. [33], which reported that the mass change has little influence on the fuel-optimal

trajectory during the climb and descent phases. It needs to be noted however that this

assumption would be invalid during the long cruise phase [49].

To account for the fixed final time, the flight time t is treated as a state variable in an

augmented system with the additional differential equation

t′(s) =
1√

2E(s)
.

With the above assumptions, the minimum-energy aircraft path-tracking problem with

fixed TOA can be formulated as an optimal control problem involving two differential

135

equations, two algebraic constraints, two boundary conditions, and two control constraints,

as follows:

Problem 5.3.1 (Minimum-energy path-tracking problem with fixed TOA). Con-

sider the following optimal control problem in Lagrange form:

min
T

∫ sf

s0

T (s) ds, (150)

subject to E′(s) =
T (s)

m
+ c1(s)E(s) +

c2(s)

E(s)
+ c3(s), (151)

t′(s) =
1√

2E(s)
, (152)

E(s)− gw(s) ≤ 0, (153)

g
w
(s)− E(s) ≤ 0, (154)

E(s0) = v2
0/2, (155)

E(sf) = v2
f/2, (156)

Tmin(s) ≤ T (s) ≤ Tmax(s), (157)

t(sf) = tf . (158)

To solve this problem, we apply the necessary conditions for optimality to screen the

allowable thrust profile candidates. This is done next.

5.3.2 Optimality Conditions

First, consider the case when the state constraints (153) and (154) are not active. The

Hamiltonian for Problem 5.3.1 is given by

H = T + λE

(
T

m
+ c1E +

c2
E

+ c3

)
+

λt√
2E(s)

=

(
1 +

λE

m

)
T + λE

(
c1E +

c2
E

+ c3

)
+

λt√
2E(s)

,

where λE and λt are the costates corresponding to the dynamics for E and t, respectively.

The costate dynamics are given by:

λ′E = −∂H
∂E

= −c1λE + c2E
−2λE +

1

2
√

2
E−3/2λt, (159)

λ′t = −∂H
∂t

= 0. (160)

136

Therefore, the costate λt is constant. The switching function is given by

∂H

∂T
= 1 +

λE

m
. (161)

By Pontryagin’s Maximum Principal (PMP), the extremal control is given by

T =

Tmax, 1 + λE/m < 0,

T̃ , 1 + λE/m = 0,

Tmin, 1 + λE/m > 0,

(162)

where T̃ is the singular control. On singular arcs, the switching function (161) is identically

zero. Hence, the derivative of the switching function must also vanish on singular arcs,

which yields

d

ds

(
∂H

∂T

)
=
λ′E
m

=
1

m

(
−c1λE + c2E

−2λE +
1

2
√

2
E−3/2λt

)
= c1 − c2E−2 +

1

2
√

2m
E−3/2λt ≡ 0,

(163)

from which the singular specific kinetic energy profile can be computed. For notational

convenience, equation (163) is rewritten as

P (E(s), s) = λt, (164)

where

P (E(s), s) = −2
√

2m
(
c1(s)E

3/2(s)− c2(s)E−1/2(s)
)
. (165)

Let E∗(s) be the optimal specific kinetic energy profile for Problem 5.3.1 with the

corresponding optimal costate value λ∗t , and suppose that E∗(s) contains a singular arc on

a subinterval [sa, sb] ⊆ [s0, sf]. Because the switching function vanishes on singular arcs,

we must have P (E∗(s), s) = λ∗t for all s ∈ [sa, sb].

Henceforth, we assume that the optimal solution to Problem 5.3.1 is unique, and we will

focus on the energy-optimal path-tracking problem.

Proposition 5.3.1. Let E∗(s) be the optimal specific kinetic energy profile for Prob-

lem 5.3.1 with corresponding optimal costate value λ∗t . Let the function Ẽ : [s0, sf] → R+

be defined via the equation P (Ẽ(s), s) = λ∗t for all s ∈ [s0, sf]. Then, for all s ∈ [s0, sf], we

have that P (E∗(s), s) > λ∗t if and only if E∗(s) > Ẽ(s), and P (E∗(s), s) < λ∗t if and only if

E∗(s) < Ẽ(s).

137

Proof. Note that

P (E∗(s), s)− λ∗t = 2
√

2m
(
−c1(s)E∗3/2(s) + c2(s)E

∗−1/2(s)
)
− 2
√

2m
(
−c1(s)Ẽ3/2(s) + c2(s)Ẽ

−1/2(s)
)

= 2
√

2m
(
−c1(s)

(
E∗3/2(s)− Ẽ3/2(s)

)
+ c2(s)

(
E∗−1/2(s)− Ẽ−1/2(s)

))
.

Since c1(s) < 0 and c2(s) < 0 for all s ∈ [s0, sf], according to (141) and (142), the claim

of this proposition can be easily verified based on the monotonicity of the power functions

appearing in the right hand side of the above expression.

Remark 5.3.1. It is clear that if E∗(s) contains a singular arc on [sa, sb] ⊆ [s0, sf], then

the function Ẽ(s) defined in Proposition 5.3.1 satisfies Ẽ(s) = E∗(s) for all s ∈ [sa, sb].

With E∗(s), λ∗t and Ẽ(s) as in Proposition 5.3.1, the singular control T̃ can be obtained

by taking the derivative of equation P (Ẽ(s), s) = λ∗t , and replacing Ẽ′(s) with the right

hand side of equation (151), that is,

T̃ (s) =
2m
(
c′2(s)Ẽ(s)− c′1(s)Ẽ3(s)

)

3c1(s)Ẽ2(s) + c2(s)
− c1(s)Ẽ(s)m− c2(s)m

Ẽ(s)
− c3(s)m. (166)

Suppose there exists (sa, sb) ⊆ [s0, sf] such that E∗(s) = Ẽ(s) but T̃ (s) > Tmax or

T̃ (s) < Tmin. It follows that the corresponding optimal thrust profile cannot contain any

singular thrust subarc. Therefore, in the sequel we will assume that T̃ (s) ∈ [Tmin, Tmax]

for all s ∈ (sa, sb). This assumption is valid as long as the aircraft is in a normal flight

condition, and the path is smooth enough, in the sense that the path angle and the heading

angle change slowly along the path.

According to the PMP, when the state constraints (138) and (139) are not active, the

optimal control is composed of extremals Tmax, Tmin and T̃ . The singular specific kinetic

energy Ẽ and the corresponding thrust profile T̃ are not readily known since they depend

on the unknown parameter λ∗t , which further depends on the final time tf . Furthermore,

although there is only a finite number of extremal controls, the possible combinations of the

resulting extremals can be large. Hence, it is necessary to identify the switching structure

for the different extremals along with the associated switching times in order to obtain the

optimal solution.

138

5.3.3 Optimality of the Singular Arcs

An admissible singular control T̃ (s), in addition to the constraint Tmin ≤ T̃ (s) ≤ Tmax,

must satisfy the generalized Legendre-Clebsch condition[29]

∂

∂T

[
d2

ds2

(
∂H

∂T

)]
≤ 0. (167)

if it is to be part of the optimal trajectory. Differentiating (163) with respect to s, one

obtains

d2

ds2

(
∂H

∂T

)
= c′1(s)− c′2(s)Ẽ−2(s) + 2c2(s)Ẽ

−3(s)Ẽ′(s)− 3

4
√

2m
Ẽ− 5

2 (s)λ∗t Ẽ
′(s).

Using (151), it follows that

∂

∂T

[
d2

ds2

(
∂H

∂T

)]
=

1

m

(
2c2(s)Ẽ

−3(s)− 3

4
√

2m
Ẽ− 5

2 (s)λ∗t

)
. (168)

Since Ẽ(s) satisfies (163), it follows that

c1(s)− c2(s)Ẽ−2(s) +
1

2
√

2m
Ẽ−3/2(s)λ∗t = 0, (169)

By eliminating λ∗t from (168), and by using equation (163), equation (168) can be written

as:

∂

∂T

[
d2

ds2

(
∂H

∂T

)]
=

1

mE(s)

(
2c2(s)Ẽ

−2(s)− 3

4
√

2m
Ẽ− 3

2 (s)λ∗t

)
(170)

=
1

2mE(s)

(
3c1(s) + c2(s)Ẽ

−2(s)
)
, (171)

which is indeed negative because c1(s) < 0 and c2(s) < 0 according to (141) and (142).

Hence, along the singular arcs, the generalized Legendre-Clebsch condition is satisfied, and

hence these arcs can be part of the optimal trajectory.

5.3.4 Optimal Switching Structure Involving Singular Arcs

When solving an optimal control problem with singular arcs, and since the optimal switching

structure is not known in advance, it is a common practice to assume initially a certain fixed

switching structure according to which the switching times are computed. This approach,

although straightforward, may lead to a suboptimal solution. The switching structure of

139

the optimal solution to Problem 5.3.1 can be uniquely determined owing to the special

properties of this problem. The following theorem is key regarding the switching structure

of the solution of Problem 5.3.1.

Theorem 5.3.1. Let E∗(s) be the optimal specific kinetic energy profile for Problem 5.3.1

with the optimal costate value λ∗t , and let Ẽ : [s0, sf] → R+ be the function defined by

P (Ẽ(s), s) = λ∗t . Consider a subinterval (sa, sb) ⊂ [s0, sf] such that g
w
(s) < E∗(s) < gw(s)

for all s ∈ (sa, sb). If E∗(s) < Ẽ(s) (respectively, E∗(s) > Ẽ(s)) for all s ∈ (sa, sb) ⊂ [s0, sf],

then the corresponding optimal control T ∗(s) does not contain any switching from Tmin to

Tmax (respectively, Tmax to Tmin) on (sa, sb).

Proof. Assume that E∗(s) < Ẽ(s) for all s ∈ (sa, sb), and let T ∗(s) = Tmin on (sa, τ) , and

assume, ad absurdum, that T ∗(s) = Tmax on (τ, sb), where τ ∈ (sa, sb) is the switching point

from Tmin to Tmax. Because the state constraints are not saturated on (sa, sb), the optimal

costate λ∗E is continuous on (sa, sb). Since T ∗(s) = Tmin on (sa, τ) , and T ∗(s) = Tmax on

(τ, sb), we have 1 + λ∗E(s)/m > 0 on (sa, τ) and 1 + λ∗E(s)/m < 0 on (τ, sb) following (162).

By the continuity of λ∗E(s), it follows that λ∗E(τ) = −m.

According to equation (159), the derivative of the costate at τ is given by

λ∗E
′(τ) = − 1

2
√

2
(E∗)−3/2(τ)

([
−2
√

2m
(
c1(E

∗)3/2(τ)− c2(E∗)−1/2(τ)
)]
− λ∗t

)

= − 1

2
√

2
(E∗)−3/2(τ) (P (E∗(τ), τ) − λ∗t) > 0,

where the last inequality holds because P (E∗(τ), τ) < λ∗t when E∗(τ) < Ẽ(τ), following

Proposition 5.3.1. Because λ∗E
′ is continuous following the continuity of E∗, there exists

ǫ > 0 such that λ∗E
′(s) > 0 for all s ∈ (τ, τ + ǫ) ⊆ (τ, sb). It follows that, since λ∗E(τ) = −m,

we have 1 + λE(s)/m > 0 for all s ∈ (τ, ǫ), a contradiction. Therefore, if E∗(s) < Ẽ(s) on

(sa, sb), the optimal thrust contains no switch from Tmin to Tmax on (sa, sb). The proof for

the case E∗(s) > Ẽ(s) is similar, hence, is omitted.

Theorem 5.3.1 narrows down the possible switching combinations of the optimal control

T ∗ for Problem 5.3.1. The valid switching structures above and below Ẽ are illustrated in

Fig. 41. In contrast, the switching structures in Fig. 42 are not optimal.

140

E

s

Ẽ

T = Tmin

T = T̃

T = Tmax

Figure 41: Optimal switching structures

E

s

Ẽ

T = Tmin

T = T̃

T = Tmax

Figure 42: Non-optimal switching structures

141

Given the optimal costate value λ∗t , Ẽ(s) can be computed using the expression P (Ẽ(s), s) =

λ∗t for all s ∈ [s0, sf]. If the optimal specific kinetic energy E∗ contains a singular arc on

a subinterval, then it must be true that E∗ = Ẽ on this subinterval. Hence, the optimal

specific kinetic energy E∗ can be obtained by first identifying the segments of Ẽ, and then

choosing the optimal structure and the corresponding switching times.

5.3.5 Optimal Switching Structure Involving State-Constrained Arcs

The previous analysis is valid when the state constraints (138) and (139) are inactive. In this

section we analyze the case when the state either the constraints (138) or (139) are active

on part of the optimal trajectory. When the state constraint (138) or (139) is active along a

certain part of the optimal specific kinetic energy solution E∗, we call this part of E∗ a state

constrained arc. The corresponding control is referred to as a state constrained control. If

the upper state constraint is saturated, then T ∗ = Tw, which is the control corresponding

to E∗ = gw. Similarly, if the lower state constraint is saturated, then T ∗ = Tw, which is the

control corresponding to E∗ = g
w
. Clearly, it is required that Tw, Tw ∈ [Tmin, Tmax] on the

corresponding domain for feasibility. For an arbitrary geometric path, the optimal control

T ∗ for the minimum-energy path-following problem is composed of bang-bang control Tmin

and Tmax, singular control T̃ , and state constrained control Tw and Tw.

The minimum-time path-following problem has been solved in Ref. [137]. This method

can be modified to provide the maximum flight time along a given geometric path. The

maximum flight time scheme corresponds to the point-wise minimization of the specific

kinetic energy along the path. This is the opposite of the minimum-time problem, which

seeks to maximize pointwise the specific kinetic energy along the path. Note that, for any

given path, an upper bound of the flight time exists because the speed of a fixed-wing

aircraft must be higher than a certain value to avoid stall.

Lemma 5.3.1. Let E∗
U (s) be the minimum-time path-following specific kinetic energy pro-

file with flight time tmin, and let E∗
L(s) be the maximum-time path-following specific kinetic

energy profile with flight time tmax. Let E∗(s) be the optimal specific kinetic energy pro-

file for the minimum-energy path-following problem with fixed flight time tf . Then the

142

following inequalities hold

tmin ≤ tf ≤ tmax,

E∗
L(s) ≤ E∗(s) ≤ E∗

U (s), s ∈ [s0, sf].

Proof. The inequalities involving tmin and tmax are obvious. To show the other inequalities,

suppose, without loss of generality, that E∗(sa) > E∗
U (sa) for some sa ∈ [s0, sf]. Since

both E∗ and E∗
U are feasible specific kinetic energy profiles, Ē = max{E∗, E∗

U} is also a

feasible specific kinetic energy profile, i.e., Ē(s) satisfies the boundary conditions, and can be

tracked with the available control inputs. Then Ē ≥ E∗
U on [s0, sf], and Ē(s) > E∗

U (s) on at

least one interval containing sa following the continuity of E∗. Hence, for Ē the total flight

time would be smaller than tmin, which is a contradiction since tmin is the minimum-time

solution. The inequality E∗
L(s) ≤ E∗(s) can be proved similarly.

According to Lemma 5.3.1, the fixed-time energy-optimal specific kinetic energy E∗ is

bounded by the minimum-time solution E∗
U and the maximum-time solution E∗

L. Further-

more, based on Theorem 5.3.1, it can be shown that E∗(s) = E∗
U (s) or E∗(s) = E∗

L(s) on

certain subintervals. This property of E∗ is characterized by the following Lemma.

Lemma 5.3.2. Let E∗(s) be the optimal specific kinetic energy solution to Problem 5.3.1.

and let Ẽ be defined on [s0, sf] by P (Ẽ(s), s) = λ∗t where λ∗t is the corresponding optimal

costate value. Let E∗
U (s) and E∗

L(s) be the optimal specific kinetic energy solutions to

the minimum-time and maximum-time path-tracking problems, respectively. Let ΓU =

{s|E∗
U (s) < Ẽ(s), s ∈ [s0, sf]}, and ΓL = {s|E∗

L(s) > Ẽ(s), s ∈ [s0, sf]}. Suppose that

E∗(s) > g
w
(s) for all s ∈ [s0, sf] \ ΓL, and E∗(s) < gw(s) for all s ∈ [s0, sf] \ ΓU , then

E∗(s) = E∗
U (s) for all s ∈ ΓU , and E∗(s) = E∗

L(s) for all s ∈ ΓL.

Proof. We first show that E∗(s) = E∗
U (s) for all s ∈ ΓU . Let T ∗

U and T ∗ be the thrust control

associated with E∗
U and E∗, respectively. From Lemma 5.3.1, we have that E∗(s) ≤ E∗

U (s)

for all s ∈ [s0, sf]. Assume, ad absurdum, that there exists τ ∈ ΓU such that E∗(τ) < E∗
U (τ).

Then by the definition of ΓU , we also have E∗(τ) < Ẽ(τ).

Let q = inf{s|E∗(s) = E∗
U (s), s ∈ [τ, sf]}. Since E∗(sf) = E∗

U (sf), q is well-defined.

Similarly, let p = sup{s|E∗(s) = E∗
U (s), s ∈ [s0, τ]}. We have E∗(s) < E∗

U (s) for all

143

s ∈ (p, q) by the fact E∗(τ) < E∗
U (τ), the definitions of p, q, and the continuity of E∗ and

E∗
U . Since E∗(s) < E∗

U (s) ≤ gw(s) for all s ∈ (p, q), the state constraint E(s) ≤ gw(s) is

inactive along E∗ for s ∈ (p, q), hence, T ∗(s) can only take the values of Tmax, Tmin, T̃ (s),

or Tw(s) on (p, q). Because E∗(τ) < Ẽ(τ), we have E∗(τ) > g
w
(τ), and it follows that

either T ∗(τ) = Tmax or T ∗(τ) = Tmin.

First, consider the case T ∗(τ) = Tmin. Then we claim that E∗(s) < Ẽ(s) for all s ∈

(τ, q). To see this, assume that E∗(s) ≥ Ẽ(s) for some s ∈ (τ, q), then it follows from

the fact E∗(τ) < Ẽ(τ) and the continuity of E∗ and Ẽ that the equation E∗(γ) = Ẽ(γ)

has at least one solution on (τ, q). Let γ = inf{s|E∗(s) = Ẽ(s), s ∈ (τ, q)}, it follows that

E∗(γ) = Ẽ(γ), and E∗(s) < Ẽ(s) for all s ∈ (τ, γ). Therefore, (τ, γ) ⊆ [s0, sf] \ ΓL, and

we have E∗(s) > g
w
(s) for all s ∈ (τ, γ). It follows that on (τ, γ), T ∗(s) can only take the

values of Tmin and Tmax. Because E∗(s) < Ẽ(s) for all s ∈ (τ, γ), T ∗(s) can not switch

from Tmin to Tmax according to Theorem 5.3.1, and we have T ∗(s) = Tmin for all s ∈ (τ, γ).

With T ∗(s) = Tmin ≤ T̃ (s) for s ∈ (τ, γ), and the initial conditions satisfying E∗(τ) < Ẽ(τ),

it follows from forward integrations of E∗′ and Ẽ′ from τ to γ that E∗(γ) < Ẽ(γ), which

is a contradiction. Hence, the claim is true, i.e., E∗(s) < Ẽ(s) for all s ∈ (τ, q), and it

follows that T ∗(s) = Tmin for all s ∈ (τ, q) according to Theorem 5.3.1. Then, with the

initial conditions E∗(q) = E∗
U (q) and T ∗

U (s) ≥ Tmin = T ∗(s) for all s ∈ (τ, q), backward

integrations of E∗′ and E∗
U
′ from q to τ lead to E∗(τ) ≥ E∗

U (τ), which is a contradiction to

the assumption E∗(τ) < E∗
U (τ).

Similarly, if T ∗(τ) = Tmax, we can first prove that E∗(s) < Ẽ(s) for all s ∈ (p, τ).

Specifically, suppose this is not true, then E∗(γ) = Ẽ(γ) has at least one solution on (p, τ).

By defining γ = sup{s|E∗(s) = Ẽ(s), s ∈ [p, τ)}, then the backward integrations of E∗′ and

Ẽ′ lead to E∗(γ) < Ẽ(γ), which is a contradiction. Then it follows that E∗(τ) < E∗
U (τ) is

not possible, as in the proof for the case with T ∗(τ) = Tmin.

Hence, there does not exists any s ∈ ΓU such that E∗(s) < E∗
U (s), and we have E∗(s) =

E∗
U (s) on ΓU .

The proof for the other statement, E∗(s) = E∗
L(s) for all s ∈ ΓL, is similar, hence, is

omitted.

144

Since the unconstrained solution to an optimal control problem has the same, or better

optimality characteristics than a constrained one, a constraint is, in general, not active

unless it is violated by the optimal solution of the unconstrained problem 2. This property

is described by the lemma below.

Lemma 5.3.3. Consider the following two optimal control problems

Problem A Problem B

min
u

J(x, u)

s.t. ẋ(t) = f(x(t), u(t)),

g1(x(t), u(t)) 6 0,

g2(x(t), u(t)) 6 0, t ∈ [t0, tf],

x(t0) = x0, x(tf) = xf .

min
u

J(x, u)

s.t. ẋ(t) = f(x(t), u(t)),

g1(x(t), u(t)) 6 0, t ∈ [t0, tf].

x(t0) = x0, x(tf) = xf .

Let x∗A be the optimal solution and u∗A be the corresponding optimal control to Problem A,

and let x∗B and u∗B be the optimal solution and corresponding optimal control to Problem

B. Then the following statements are true:

1. If g2(x
∗
B(t), u∗B(t)) ≤ 0 for all t ∈ [t0, tf], then J(x∗B , u

∗
B) = J(x∗A, u

∗
A). Furthermore,

if either Problem A or Problem B has a unique solution, then x∗A = x∗B and u∗A = u∗B .

2. If Problem B has a unique solution and g2(x
∗
B(t), u∗B(t)) > 0 for some t ∈ [t0, tf], then

J(x∗A, u
∗
A) > J(x∗B , u

∗
B).

Proof. We start with the first statement. Since (x∗A, u
∗
A) is the optimal solution to Problem

A, and (x∗B , u
∗
B) is a feasible solution to Problem A, we have J(x∗A, u

∗
A) ≤ J(x∗B , u

∗
B) by

the optimality of (x∗A, u
∗
A). On the other hand, (x∗A, u

∗
A) satisfies all constraints in Problem

B, so (x∗A, u
∗
A) is a feasible solution to Problem B. Consequently, J(x∗A, u

∗
A) ≥ J(x∗B , u

∗
B)

by the optimality of (x∗B , u
∗
B) for Problem B. Therefore J(x∗B , u

∗
B) = J(x∗A, u

∗
A). It follows

that x∗A = x∗B and u∗A = u∗B, otherwise both Problem A and Problem B have non-unique

solutions.

2The only exception would be the case when along the unconstrained optimal solution certain constraints
are active but not violated, which is considered to be a trivial case.

145

We now prove the second statement. As in the previous proof, since (x∗A, u
∗
A) is a feasible

solution to Problem B, we have J(x∗A, u
∗
A) ≥ J(x∗B , u

∗
B) by the optimality of (x∗B , u

∗
B) for

Problem B. Since g2(x
∗
B(t), u∗B(t)) > 0 for some t ∈ [t0, tf], and g2(x

∗
A(t), u∗A(t)) ≤ 0 for all

t ∈ [t0, tf], it follows that (x∗B , u
∗
B) and (x∗A, u

∗
A) are not identical. By the uniqueness of

(x∗B , u
∗
B), it follows that J(x∗A, u

∗
A) > J(x∗B , u

∗
B).

In the following, Lemma 5.3.3 is used to characterize the state constrained arcs in the

optimal specific kinetic energy profile E∗(s). Specifically, given the state constraints, we

can first compute the optimal solution of a certain relaxed problem to identify the state

constrained arcs. Before introducing the relaxed problem, we need some additional notation.

For any subset ΓU ⊆ [s0, sf], define

gΓU
(s) =

gw(s), s ∈ ΓU ,

M, s ∈ [s0, sf] \ ΓU ,

where M > 0 is a number large enough such that E(s) < M is always satisfied on [s0, sf]

by any feasible specific kinetic energy profile E(s). By choosing a subset ΓU of interest

and enforcing the state constraint E(s) ≤ gΓU
(s) for all s ∈ [s0, sf], we can ensure that

the optimal solution E∗ satisfies E∗(s) ≤ gw(s) on ΓU , while remaining unconstrained on

[s0, sf] \ ΓU . Similarly, we also define

g
ΓL

(s) =

g
w
(s), s ∈ ΓL,

−M, s ∈ [s0, sf] \ ΓL.

By enforcing the constraint E(s) ≥ g
ΓL

(s) instead of the constraint E(s) ≥ g
w
(s), the later

constraint is relaxed on [s0, sf] \ ΓL. Next, we introduce the following relaxed problem

for Problem 5.3.1 by relaxing the original state constraints (153) and (154) on certain

subintervals.

Problem 5.3.2 (Relaxed minimum-energy path-tracking problem with fixed TOA).

Minimize the energy cost (150) while subject to constraints (151), (152), (155), (156), (157),

(158), and state bounds

E(s)− gΓ(s) ≤ 0, (172)

g
Γ
(s)− E(s) ≤ 0. (173)

146

for all s ∈ [s0, sf].

Similarly, one can also form the relaxed minimum-time and maximum-time path tracking

problems with state constraints (172) and (173) instead of (153) and (154). In general, the

minimum-time and maximum-time solutions of the relaxed problems are different from

the corresponding solutions of the original (non-relaxed) problem. However, as shown by

the following proposition, by choosing carefully where the constraints are relaxed, the the

minimum-time and maximum-time solutions do not change on certain subintervals.

Proposition 5.3.2. Consider a function Ẽ : [s0, sf] → R+, which is a solution to the

ordinary differential equation (151) with a certain control input T̃ (s) ∈ [Tmin, Tmax]. Let

ΓU = {s|E∗
U (s) < Ẽ(s), s ∈ [s0, sf]} and ΓL = {s|E∗

L(s) > Ẽ(s), s ∈ [s0, sf]}, where E∗
U (s)

and E∗
L(s) are the specific kinetic energy solutions to the minimum-time and maximum-

time path-tracking problems, respectively, with constraints (153) and (154). Let E∗
Ur

(s) and

E∗
Lr

(s) be the specific kinetic energy solutions to the minimum-time and maximum-time

path-tracking problems, respectively, with constraints E(s) ≤ gΓU
(s) and E(s) ≥ g

ΓL
(s)

instead of (153) and (154). Then we have E∗
U (s) = E∗

Ur
(s) for all s ∈ ΓU , and E∗

L(s) =

E∗
Lr

(s) for all s ∈ ΓL.

Proof. Define

E (s) =

min{max{E∗
Ur

(s), E∗
U (s)}, Ẽ(s)}, s ∈ ΓU ,

E∗
U (s), s ∈ [s0, sf] \ ΓU .

(174)

By the definition of E(s) and ΓU , E(s) ≥ E∗
U (s) on [s0, sf], and E(s) is continuous. Fur-

thermore, E(s0) = E∗
U (s0) = E0, E(sf) = E∗

U (sf) = Ef , and g
w
(s) ≤ E(s) ≤ gw(s) for all

s ∈ [s0, sf]. Hence, E(s) is a feasible solution to the minimum-time path-tracking problem

with constraints (153) and (154). If there exist τ ∈ ΓU such that E∗
Ur

(τ) > E∗
U (τ), then by

the definition of E(s), we have E(τ) > E∗
U (τ), and it follows from the continuity of E and

E∗
U that E(s) > E∗

U (s) in a neighborhood of τ . Hence, we have

∫ sf

s0

1√
2E(s)

ds >

∫ sf

s0

1√
2E∗

U (s)
ds,

which means that E(s) has a shorter final time than E∗
U (s), which is a contradiction since

E∗
U is the minimum-time solution.

147

Suppose there exist τ ∈ Γ such that E∗
U (τ) > E∗

Ur
(τ). Let E(s) = max{E∗

Ur
(s), E∗

U (s)}

for s ∈ [s0, sf]. Because E∗
Ur

(s) ≤ gΓU
(s) and E∗

U (s) ≤ gw(s) ≤ gΓU
(s) are always satisfied,

we have E(s) ≤ gΓU
(s) for all s ∈ [s0, sf], and E is a feasible solution to the minimum-time

problem with constraint E(s) ≤ gΓU
(s). Since E(τ) = E∗

U (τ) > E∗
Ur

(τ), by the continuity

of E and E∗
Ur

, we have E(s) > E∗
Ur

(s) in a neighborhood of τ . Therefore, following a

similar argument as in the proof above, E1 has a shorter final time than E∗
Ur

, which is a

contradiction. Hence, we must have E∗
U (s) = E∗

Ur
(s) for all s ∈ ΓU . Similarly, one can

prove that E∗
L(s) = E∗

Lr
(s) for all s ∈ ΓL. The proof is omitted for the sake of brevity.

The optimal solution to Problem 5.3.1 is given by the following theorem. Its proof is

based on the optimal solution of the relaxed Problem 5.3.2.

Theorem 5.3.2. Suppose there exists a real number λt and a function Ẽ given by P (Ẽ(s), s) =

λt for all s ∈ [s0, sf], such that the specific kinetic energy E∗ given by

E∗ (s) =

E∗
L (s), s ∈ ΓL,

Ẽ (s), s ∈ [s0, sf] \ (ΓU ∪ ΓL),

E∗
U (s), s ∈ ΓU

(175)

satisfies the desired TOA, where ΓU = {s|E∗
U (s) < Ẽ(s), s ∈ [s0, sf]}, and ΓL = {s|E∗

L(s) >

Ẽ(s), s ∈ [s0, sf]}. Then E∗ is the optimal solution to Problem 5.3.1,

Proof. Consider the relaxed Problem 5.3.1 with the constraints (153) and (154) replaced by

E(s) ≤ gΓU
(s) and E(s) ≥ g

ΓL
(s), respectively. Assume that the optimal specific kinetic

energy solution of Problem 5.3.1 is E∗
r . Let λ∗tr be the optimal costate value of the relaxed

problem, and let Ẽr be defined on [s0, sf] by P (Ẽr(s), s) = λ∗tr . Let T ∗
r (s) be the optimal

control associated with E∗
r (s).

Let ΓUr = {s|E∗
r (s) = gΓU

(s), s ∈ [s0, sf]}. By definition of gΓU
, it is clear that ΓUr ⊆

ΓU . According to Proposition 5.3.2, the time-optimal solution does not change on ΓU by

enforcing E(s) ≤ gΓU
(s) instead of E(s) ≤ gw(s). Hence, following Lemma 5.3.2, we have

E∗
r (s) = E∗(s) for all s ∈ ΓU ⊇ ΓUr . Similarly, let ΓLr = {s|E∗

r (s) = g
ΓL

(s), s ∈ [s0, sf]},

then we have E∗
r (s) = E∗(s) for all for s ∈ ΓL ⊇ ΓLr .

148

Next, we will show that E∗(s) = E∗
r (s) for all s ∈ [s0, sf]. Suppose, ad absurdum, that

E∗(s) 6= E∗
r (s) for some s ∈ [s0, sf]. Because E∗ and E∗

r have the same TOA, i.e.,

∫ sf

s0

1√
2E∗(s)

ds =

∫ sf

s0

1√
2E∗

r (s)
ds,

there must exist τ, γ ∈ [s0, sf] such that E∗
r (τ) < E∗(τ), and E∗

r (γ) > E∗(γ).

When λ∗tr ≥ λt. It follows from the definition of function P in (165) that Ẽr(s) ≥ Ẽ(s)

for all s ∈ [s0, sf]. Let q = inf{s|E∗
r (s) = E∗(s), s ∈ [τ, sf]}. Since E∗

r (sf) = E∗(sf), q is

well-defined. Similarly, let p = sup{s|E∗
r (s) = E∗(s), s ∈ [s0, τ]}. Clearly, τ ∈ (p, q) and

(p, q) ∩ (ΓUr ∪ ΓLr) = ∅ (since it has been shown that E∗
r (s) = E∗(s) on ΓUr ∪ ΓLr). It

follows that E(s) < gΓU
(s) and E(s) > g

ΓL
(s) on (p, q), and T ∗

r (s) may only take the values

of Tmax, Tmin or T̃ on (p, q). Furthermore, we have E∗
r (s) < E∗(s) for all s ∈ (p, q).

Note that E∗
r (s) = E∗(s) for s ∈ ΓL ∪ ΓU and E∗

r (s) < E∗(s) for all s ∈ (p, q). We have

(p, q) ⊆ [s0, sf] \ (ΓL ∪ ΓU). Since E∗(s) = Ẽ(s) on [s0, sf] \ (ΓL ∪ ΓU) by the definition

of E∗, we have E∗
r (s) < E∗(s) = Ẽ(s) ≤ Ẽr(s) for all s ∈ (p, q). Hence, T ∗

r (s) cannot be

singular on (p, q), and either T ∗
r (s) = Tmin or T ∗

r (s) = Tmax for s ∈ (p, q). Specifically,

at τ , either T ∗
r (τ) = Tmin or T ∗

r (τ) = Tmax. When T ∗
r (τ) = Tmin, with E∗

r (s) < Ẽr(s)

for all s ∈ (p, q), we have T ∗
r (s) = Tmin for all s ∈ (τ, q) since T ∗

r (s) can not switch from

Tmin to Tmax on (τ, q) according to Theorem 5.3.1. Note that T ∗(s) ≥ Tmin = T ∗
r (s) for all

s ∈ (p, q), by forward integration of E∗′ and E∗
r
′ from τ to q with initial conditions satisfying

E∗
r (τ) < E∗(τ), we have E∗

r (q) < E∗(q), which is a contradiction. Similarly, T ∗
r (τ) = Tmax

also leads to a contradiction after a backward integration from τ to p. Hence, we have

shown that E∗
r (s) = E∗(s) for all s ∈ [s0, sf] when λ∗tr ≥ λt.

Similarly, when λ∗tr < λt, by defining q = inf{s|E∗
r (s) = E∗(s), s ∈ [γ, sf]} and

p = sup{s|E∗
r (s) = E∗(s), s ∈ [s0, γ]}, we can also show that E∗

r (γ) > E∗(γ) leads to a

contradiction. Hence, we must have E∗
r (s) = E∗(s) for all s ∈ [s0, sf], i.e., E∗(s) is the

optimal solution to the relaxed problem.

Because E∗(s) = E∗
U (s) ≤ gw(s) for s ∈ ΓU , E∗(s) = E∗

L(s) ≥ g
w
(s) for s ∈ ΓL, and

g
w
(s) ≤ E∗

L(s) < E∗(s) = Ẽ(s) < E∗
U (s) ≤ gw(s) for s ∈ [s0, sf] \ (ΓU ∪ ΓL), it is clear

that g
w
(s) ≤ E∗(s) ≤ gw(s) for all s ∈ [s0, sf], and E∗(s) is feasible for Problem 5.3.1.

149

Hence, E∗ is also the optimal solution to Problem 5.3.1 by Lemma 5.3.3, and the proof is

complete.

5.4 An Energy-Optimal Path-Tracking Algorithm

Theorem 5.3.2 characterizes the switching structure of the optimal solution to the aircraft

energy-optimal path-tracking problem. Although E∗
U can be computed using the algorithm

in Ref. [137], and E∗
L can be computed in a similar manner, the optimal costate value λ∗t

is unknown. As a result, one is not readily able to choose the correct value of Ẽ(s) for

each s ∈ [s0, sf] in order to construct the optimal specific kinetic energy as in (175). In

this section a numerical algorithm is presented for solving Problem 5.3.1 by identifying the

optimal costate value λ∗t . This allows the computation of the associated function Ẽ(s) from

(164) and, subsequently, the optimal solution E∗(s) from (175). To identify the constant

λ∗t and the associated singular arcs for a specific TOA, we need to search among a family

of extremals associated with the prescribed geometric path for the correct value λ∗t .

The algorithm for identifying the minimum-energy path-tracking control is given as

follows:

Main Algorithm. Compute the optimal solution for aircraft minimum-energy path-tracking

operation with fixed TOA.

1. Compute the state bounds gw(s), g
w
(s), and the functions c1(s), c2(s), c3(s) in Prob-

lem 5.3.1 as in Ref. [137].

2. Compute and store the values of P (E(s), s) from equation (164) on a selected meshM

over the domain [s0, sf] × [Emin, Emax], where [Emin, Emax] covers the possible range

of the specific kinetic energy.

3. Compute the minimum-time solution E∗
U (s) and the maximum-time solution E∗

L(s)

using the algorithm in Ref. [137]. Let the corresponding minimum and maximum

TOA be tmin and tmax, respectively. Proceed to the next step if tmin < tf < tmax.

Otherwise, quit the algorithm since the desired TOA is not possible and the given

problem does not have a solution.

150

4. Apply a Newton-Raphson algorithm with adjusted bounds of the solution[100] to find

the optimal costate value λ∗t such that τf = tf , where τf is given by Algorithm 1

below with λ = λ∗t . Then the corresponding specific kinetic energy E∗(s) associated

with the costate value λ∗t , which is returned by Algorithm 1, is the optimal solution

with TOA equal to tf .

5. Compute the optimal controls thrust T ∗(s), bank angle φ∗(s), and lift coefficient C∗
L(s)

histories using equations (140), (144), and (145), respectively.

Next, we introduce an algorithm that computes the optimal speed solution and the TOA

for a specific extremal with costate value λ.

Algorithm 1 Compute the TOA τf and the corresponding optimal specific kinetic energy

profile E∗(s) for a given λ value

1. Solve P (Ẽλ(s), s) = λ for the function Ẽλ(s) by interpolating the pre-computed and

stored data of P (E(s), s) for the given path on the mesh M.

2. Compute the optimal specific kinetic energy E∗(s) for the given λ using formula (175)

along with the computed maximum-time specific kinetic energy E∗
L(s) and minimum-

time specific kinetic energy E∗
U (s).

3. Compute the TOA τf for E∗(s) using

τf =

∫ sf

s0

1√
2E∗(s)

ds.

4. Return τf and E∗(s).

According to the structure of the optimal specific energy profile in (175), it can be eas-

ily proved that the travel time τf of the energy-optimal solution decreases monotonically

with increasing λt, since Ẽ(s) increases monotonically with respect to λt for all s ∈ [s0, sf]

according to the definition of Ẽ as in (165). In the Newton-Raphson algorithm with ad-

justed bounds used in Step 4. of the Main Algorithm, a bisection step is taken whenever

Newton-Raphson would take the solution out of bounds. Since a bisection method alone

is guaranteed to converge given the monotonicity property of the problem, such a hybrid

151

method is also guaranteed to converge, and the Newton-Raphson steps can speed up the

convergence.

5.5 Numerical Examples

Next, we validate the proposed energy-optimal tracking algorithm using a three-dimensional

landing trajectory, as shown in Fig. 43. The initial position of the aircraft is (−111,−17.3, 6) km

and the final position is (0, 0, 0) km. The initial speed is v0=240 m/s, and the final speed is

vf=95 m/s. Both the initial and final path angles are 0◦. The initial heading angle is 0◦,

and the final heading angle is −25◦. The horizontal projection of the trajectory contains

two turning maneuvers, as shown in Fig. 44.

0

50

100

0

20

40

60
0

1000

2000

3000

4000

5000

6000

y (km)
x (km)

z
(m

)

Figure 43: 3D Geometric Trajectory.

The speed and control bounds considered during the time parameterization process are

Ma ≤ 0.9, where Ma is the Mach number, CLmin
= −0.47, CLmax = 1.73, φmin = −15◦,

φmax = 15◦, Tmin = 0, and Tmax = 1126.3 kN.

The path is processed using the algorithm introduced in the previous section with

different TOA requirements. Figures 45 and 46 show the optimal speed profiles for the

minimum-energy aircraft path-tracking for several TOA values. It can be seen from these

figures that with different TOA values tf , different parts of the minimum-time and/or the

152

0 20 40 60 80 100 120 140
0

10

20

30

40

50

60

70

x (km)

y
(k

m
)

Figure 44: X-Y plane projection of the geometric trajectory.

maximum-time speed profile can be involved in the minimum-energy solution, together with

the corresponding singular arcs. Figures 47 and 48 illustrate the minimum-energy control

histories for tf = 800 s and tf = 1400 s, respectively. In these figures, the throttle is the

ratio of the actual thrust to the maximum thrust Tmax. It is clear that all solutions satisfy

the speed and control constraints along the path.

To evaluate the fuel economy of the energy-optimal solution, a fuel-optimal control

problem was solved using a numerical optimal control approach with the fuel consumption

model (148) as the cost function. The constraints of the fuel-optimal control problem are

identical to those of Problem 5.3.1. The fuel-optimal control problem was converted into

a nonlinear programming problem via direct transcription[25], and solved using the sparse

nonlinear optimization software SNOPT[54]. The density function based mesh refinement

method in Ref. [138] was used to generate a mesh such that the state bounds (138) and

(139) can be approximated more accurately with a limited number of grid points. The

parameters for the computation of η0 in equation (147) were stored in a look-up table, and

were provided to the nonlinear optimization solver.

The same four cases shown in Fig. 45 (tf = 800 s, 1000 s, 1200 s, 1400 s) were solved

153

0 50 100 150 200
80

100

120

140

160

180

200

220

240

260

280

300

s (km)

v
(m

/s
)

min time
tf=800s
tf=1000s
tf=1200s
tf=1400s

Figure 45: Energy-optimal speed profiles with different TOA, path coordinate domain.

0 200 400 600 800 1000 1200 1400
80

100

120

140

160

180

200

220

240

260

280

300

t (s)

v
(m

/s
)

min time
tf=800s
tf=1000s
tf=1200s
tf=1400s

Figure 46: Energy-optimal speed profiles with different TOA, time domain.

154

0 100 200 300 400 500 600 700 800
0

0.5

1

1.5

C
L

0 100 200 300 400 500 600 700 800

−10

0

10
φ
(◦

)

0 100 200 300 400 500 600 700 800
0

0.5

1

t (s)

th
ro

tt
le

Figure 47: Energy-optimal control histories with tf = 800 s.

0 200 400 600 800 1000 1200 1400
0

0.5

1

1.5

C
L

0 200 400 600 800 1000 1200 1400

−10

0

10

φ
(◦

)

0 200 400 600 800 1000 1200 1400
0

0.5

1

t (s)

th
ro

tt
le

Figure 48: Energy-optimal control histories with tf = 1400 s.

155

using the numerical optimal control approach for minimum-fuel path-tracking, and the

optimization results were compared to those given by the energy-optimal path-tracking

algorithm. The results of the comparison are shown in Figs. 49 and 50. It is clear from

these figures that the energy-optimal solutions are very close to the minimum-fuel solutions.

Note that the singular arcs in the minimum-fuel problem cause numerical issues (oscillations

along the singular arcs in Figs. 49 and 50). This is a well-known phenomenon observed

when computing singular arcs using direct trajectory optimization methods. Furthermore,

the computation time of the numerical optimization approach is much longer than the

proposed energy-optimal path-tracking algorithm: a Matlab implementation of the energy-

optimal path-tracking control algorithm finds the optimal solution in 2-4 seconds, while

the Nonlinear Programming solver takes at least 5 minutes (for some cases, more than 20

minutes) to find a convergent fuel-optimal solution.

0 20 40 60 80 100 120 140 160
50

100

150

200

250

300

v
(m

/s
)

tf = 800s

Energy−optimal method
Fuel−optimal

0 20 40 60 80 100 120 140 160
50

100

150

200

250

v
(m

/s
)

s (km)

tf = 1000s

Energy−optimal method
Fuel−optimal

Figure 49: Comparison of fuel-optimal and energy-optimal speed profiles, tf = 800 s and
tf = 1000 s.

5.6 Conclusions

The method presented in this chapter computes an energy-optimal time-parameterization

for an aircraft to follow a given three-dimensional geometric path with fixed time-of-arrival

156

0 20 40 60 80 100 120 140 160
50

100

150

200

250

v
(m

/
s)

tf = 1200s

Energy−optimal method
Fuel−optimal

0 20 40 60 80 100 120 140 160
50

100

150

200

250

s (km)

v
(m

/s
)

tf = 1400s

Energy−optimal method
Fuel−optimal

Figure 50: Comparison of fuel-optimal and energy-optimal speed profiles, tf = 1200 s and
tf = 1400 s.

(TOA). The switching structure of the optimal solution is analyzed using optimal control

theory. The switching structure may vary depending on the given TOA. However, for a

given path and a fixed TOA, the structure is uniquely determined. It is proved that the

energy-optimal solution is a combination of the minimum-time solution, the maximum-time

solution, and energy-saving singular arcs. As verified by numerical optimization results, this

method is computationally efficient, and can be applied in real-time for improving the fuel

efficiency of airline scheduling and terminal phase operations.

157

CHAPTER VI

INITIAL GUESS GENERATION FOR LANDING TRAJECTORY

OPTIMIZATION

As discussed in Chapter 1, a landing trajectory obtained using a Nonlinear Programming

(NLP) based numerical optimal control approach via direct transcription provides both

feasibility and optimality, which are important for the emergency landing scenario. How-

ever, the application of such an approach is limited by the convergence of the optimization

algorithm (specifically, the NLP solver working jointly with the numerical optimal control

algorithm), which depends extensively on the quality of the initial guess, including the time

history of all state and control variables, as well as any unknown parameters. Thus, con-

vergence is not guaranteed, in general. In numerical optimal control algorithms, the initial

guess is usually automatically generated by setting the state and control variables to con-

stants, or as simple affine functions. The user may also try different initial guesses if he/she

has some insight into the specific problem. In this chapter, we introduce a new scheme for

automatic initial guess generation for aircraft landing trajectory optimization problems.

6.1 Feasible Landing Trajectory Generation

The quality of the commonly used affine initial guess is usually unreliable in the sense that

such a guess is rarely feasible, i.e., the time histories of the state and control variables of

the initial guess do not satisfy the differential equations governing the system dynamics.

Throughout this thesis, we say that the NLP solver fails if the result returned by the solver

does not satisfy either the feasibility tolerance 1×10−6 or the optimality tolerance 1×10−3.

Although NLP solvers may proceed to a feasible region by updating decision variables using

penalty methods [34], often the solver fails if the initial guess is far away from the feasible

region.

For the landing trajectory optimization problem, such failures are commonly observed

when affine or constant initial guesses are used. Therefore, to reduce the failure rate of

158

penalty methods for identifying feasible regions, as well as to improve the robustness of the

optimization scheme, it is desirable to provide feasible landing trajectory initial guess to

the NLP solver.

The generation of a feasible trajectory, as described in Problem 1.2.1 proposed in Chap-

ter 1, is not a trivial task in the case of landing trajectory generation due to complicated

aircraft dynamics. With a hierarchical approach as introduced in Chapter 1, the generation

of a feasible trajectory can be decomposed into two tasks involving the geometric layer and

the dynamics layer, respectively, as illustrated in Fig. 51. Such an approach generates first

a purely geometric collision-free path connecting the initial and final positions. After such

a path is obtained, in the second step, a certain time parameterization is assigned to the

path, which converts the path into a trajectory. It is required that the time parameter-

ization found in the second step must satisfy the dynamics and other state and control

constraints.

Figure 51: Hierarchical approach to feasible trajectory generation.

Although many efficient collision-free path planning methods are available for the first

step in the hierarchical trajectory generation approach, few of them can be directly applied

for the generation of aircraft landing trajectories because the generated paths are not smooth

enough to be followed by the aircraft. On the other hand, variations of Dubins’ paths,

although reasonably smooth, cannot meet the requirement for collision avoidance. The

159

path smoothing method introduced in Chapter 3 works as a post-processing technique on

the geometric layer for these non-smooth path planning methods. The resultant paths

obtained using this method are smooth enough for the aircraft dynamics, while retaining

the collision avoidance feature of the original non-smooth paths.

The time-optimal aircraft path tracking method introduced in Chapter 4 and the fixed

final time, energy-optimal aircraft path tracking method introduced in Chapter 5 fit into the

dynamics layer of the hierarchical approach. Both methods are able to generate a feasible

time-parameterization to the prescribed geometric path (if such a parameterization exists)

given by the geometric path planning methods employed in the first step of the hierarchical

approach. The energy-optimal method can help improve fuel efficiency in the landing phase

during normal scheduled flight. The time-optimal formulation provides the shortest landing

time, and is more suitable for emergency landing scenarios.

The hierarchical aircraft landing trajectory generation scheme considered in this thesis

includes a geometric path planner and a path smoothing method in the geometric layer,

and a time-optimal path tracking method in the dynamics layer. The main characteristics

of such a hierarchical scheme when compared to a NLP based numerical optimal control

approach are described below:

1. Robustness

The robustness of the hierarchical scheme is determined by the robustness of the algo-

rithms employed in the geometric and dynamics layers, and the interaction between

these methods. Unlike the NLP approach that often encounters convergence issues,

geometric path planning methods such as A∗, D∗, visibility graph, and Dubins’ paths

are much more reliable. Path smoothing updates the path in a neighborhood by solv-

ing a sequence of Quadratic Programming problems. For each problem, the solution is

guaranteed to converge. Hence, the generation of a geometric path in the hierarchical

scheme is highly reliable.

On the other hand, this hierarchical approach applies semi-analytic methods on the

dynamics layer for the time parameterization of the geometric path. As shown in

160

Chapter 4 and Chapter 5, these semi-analytic methods are guaranteed to find the

time parameterization if such a parameterization exists given the path.

Hence, the individual methods in this hierarchical approach do not cause any ro-

bustness issues, and the robustness of the hierarchical scheme, i.e., the feasibility of

the generated trajectory, depends on whether the geometric path planner can prop-

erly generate the geometric path for which a feasible time-parameterization exists.

As will be shown later in this chapter, by properly tuning the geometric path plan-

ner (mainly by avoiding aggressive turning maneuvers), the hierarchical scheme can

generate a feasible trajectory for the overwhelming majority of cases.

2. Optimality Although semi-analytical optimal path tracking methods in the dynam-

ics layer of the hierarchical scheme can compute the exact optimal solution for the

given path geometry, the geometric path planners usually do not generate paths with

optimal geometry, which depends on system dynamics. Instead, these geometric path

planners can only generate paths with reasonably good geometry. Therefore, the

landing trajectories generated by a hierarchical scheme are obviously sub-optimal,

in general, compared to convergent solutions from a NLP approach. This is espe-

cially true when conservatism is introduced in the geometric path planer to ensure

the feasibility of the solution.

3. Computation speed This is considered to be a major advantage of a hierarchical

scheme over a general NLP approach. Current geometric path generation methods are

highly efficient. Path smoothing based on Quadratic Programming can also be solved

efficiently. In the dynamics layer, optimal path tracking methods are based on semi-

analytic solutions, for which the majority of computations deal with the integration

of system dynamics, which can also be computed efficiently. Hence, although more

subproblems are solved in this hierarchical approach, the overall computation speed

is much faster than the NLP, which solves the numerical optimal control problem

directly.

Since the landing trajectories generated using the hierarchical scheme are mostly feasible,

161

and, in general, reasonably close to the optimal solution, they are good initial guesses to

a numerical optimal control solver. Even if such a hierarchical scheme fails to provide a

feasible trajectory, the generated trajectory is still not far away from the feasible region,

hence there is a good chance that the feasibility of the solution can be recovered by penalty

methods using generic NLP solvers, and thus the optimality can be further improved. The

schema of such an initial guess generation technique for numerical optimal control algorithms

is illustrated in Fig. 52.

Landing

Task

Geometric

Path Planner

Feasible?

Back-up

Trajectory

Numerical

Optimal Control

Optimal

Trajectory

No

Yes

Time

Parameterization

Path

Smoothing

Figure 52: Schematic of landing trajectory optimization.

As shown in Fig. 52, the time-optimal path tracking method first generates a trajectory

by assigning a time parameterization along the path given by the geometric path planner.

If the trajectory is feasible, then it is used as an initial guess for the numerical optimal

control solver. Meanwhile, such a feasible trajectory is also stored as a back-up plan in

case of the failure of the NLP solver. If the trajectory generated by the time-optimal

path tracking method is not feasible, then the path is revised using the path smoothing

method, and optimal path tracking is applied again to the smoothed path. Such a process

is repeated until either the trajectory is feasible, or the maximum number of iterations is

reached. If no feasible trajectory can be obtained after reaching the iteration limit, the

infeasible trajectory is passed to the numerical optimal control algorithm, which makes a

162

last attempt to produce a feasible trajectory. If this last attempt is not successful, then

either there does not exists a feasible trajectory to the problem, or both the hierarchical

scheme and the NLP solver have failed.

6.2 A Three Dimensional Landing Path Primitive Generation Method

Next, we introduce a landing path primitive generation method based on the suboptimal

solution of a three-dimensional variation of the classical Markov-Dubins problem [44], which

characterizes curvature constrained paths of minimum length in the plane. Specifically,

we consider the generation of a geometric path which connects the initial and terminal

configurations of the aircraft subject to the following requirements:

1. The projection of the three-dimensional curve onto the horizontal plane corresponds

to a Dubins-like path (that is, it is composed of concatenations of circular arcs and

line segments);

2. An aircraft traveling along the path is descending continuously until the final desti-

nation is reached.

Such an geometric problem can be formulated, equivalently, as an optimal control prob-

lem of a point mass particle of unit mass, with the kinematic model is described by the

following equations

x′ = cosψ cos γ, (176)

y′ = sinψ cos γ, (177)

z′ = sin γ, (178)

ψ′ =
u

Rmin(z)
, (179)

where (x, y, z) ∈ R
3 is the position vector, ψ ∈ [0, 2π) is the heading of the particle, Rmin

is a positive number, which may depend on the altitude z, γ is the flight path angle, which

is treated as an control input, and u is a control input that determines the rate of change

of the heading angle. Prime denotes differentiation with respect to the arc length s. It is

furthermore assumed that γ ∈ [γmin, γmax] ⊆ [−π/2, 0], and u ∈ [−δ, 1], where δ ∈ (0, 1]

(i.e., the steering constraints may be asymmetric [13]).

163

Problem 6.2.1. Find the controls u∗ and γ∗ that steer the system described by Eqs.(176)-

(179) from (x0, y0, z0, ψ0) (prescribed) to (xf , yf , zf , ψf) (prescribed) with zf < z0, such

that the total length of the ensuing path sf (free) is minimum.

In this section we are interested in finding a suboptimal solution to Problem 6.2.1 for

any prescribed pair of boundary configurations. A straightforward way to characterize

suboptimal solutions for Problem 6.2.1 is to decouple the path planning problem into a

steering problem in the x-y plane (or more precisely R
2×S

1), and another steering problem

in the vertical plane (one-dimensional problem).

6.2.1 The Minimal Length Curve Problem in the Horizontal Plane

First, we address a path-planning problem in the horizontal x-y plane, which will allow

us to address Problem 6.2.1. To this aim, it is assumed that the solution of the steering

problem in R
2 × S

1 follows the Dubins pattern, that is, the projection of a (suboptimal)

solution of Problem 6.2.1 on the x-y plane is a concatenation of two circular arcs of minimum

radius interconnected by either a straight line or another circular arc. Note that the radii of

different circular arcs of the projection of a path that solves Problem 6.2.1 on the x-y plane

may not be equal, as a result of the fact that the steering capacity of the aircraft depends

on the altitude.

In order to obtain a simple formula for computing the minimum turning radius of an

aircraft as a function of the altitude, we first observe that the rate of change of ψ of an

aircraft of mass m traveling with speed v at an altitude z is given by [45]

ψ′ = −L(CL, v, z) sin φ

mv2 cos γ
, (180)

where φ is the bank angle, L = L(CL, v, z) is the lift and CL is the lift coefficient. If we

assume that v = v(z), we can obtain a rough approximation of Rmin as follows

Rmin(z; γ) =
mv(z)2 cos γ

L(Cmax
L , v(z), z) sin φmax

, (181)

where φmax and Cmax
L denote, respectively, the upper bounds on the bank angle and the lift

coefficient.

164

Equation (181) implies that an aircraft is less maneuverable, in terms of performing

sharp turns, at higher altitudes than it is in lower altitudes. Let R0 , Rmin(z0; 0), Rm ,

Rmin(zm; 0), where zm = (z0 + zf)/2, and Rf , Rmin(zf ; 0). In addition, let us assume that

along the first and the last circular arc of the Dubins path the quantity Rmin in Eq. (179)

is constant and equal to R0 and Rf , respectively. Furthermore, if the Dubins path consists

of three circular arcs, then the quantity Rmin along the middle arc is constant and equal

to Rm. Note that R0 ≥ Rm ≥ Rf . In order to obtain more conservative estimates of the

Rmin, and thus reduce the risk of selecting a small value for the minimum turning radius

that can lead to dynamically infeasible paths for the aircraft, we multiply R0, Rm, and Rf

by a safety factor k0, km, and kf > 1, respectively.

Next, we formulate a minimum-length problem on the horizontal plane x-y plane.

Problem 6.2.2. Given two configurations (x0, y0, ψ0) and (xf , yf , ψf) in R
2 × S

1, find a

minimum-length curve that connects the two configurations and belongs necessarily to the

following family of paths

P , {C±(R0) ◦ C∓(Rm) ◦ C±(Rf), C±(R0) ◦ S ◦ C±(Rf), C±(R0) ◦ S ◦ C∓(Rf)}, (182)

where C−(Rℓ) (C+(Rℓ)) and S denote a circular arc of radius Rℓ, where ℓ ∈ {0,m, f},

traversed clockwise (counterclockwise) and a line segment, respectively, and ◦ denotes the

concatenation of two consecutive arcs.

6.2.2 Vertical Descent Profile Generation

In this section, we obtain a three dimensional landing path by generating a vertical profile

for the two dimensional Dubins’ path in the previous section. In the subsequent analysis,

it is assumed that the trigonometric sine function of the path angle, which is denoted by

χ(s) = sin(γ(s)), is a piecewise linear function with three segments along the path length

s of the Dubins’ path. It is also assumed that χ is constant along the second segment. We

will find a function χ with χ(0) = 0, χ(sf) = χf = sin(γf) < 0, and χ(s) ≤ 0, s ∈ [0, sf]

such that the boundary conditions for the vertical path planning problem, i.e., z(0) = z0

and z(sf) = zf are satisfied. We also require that for the first and the third segments,

165

|χ′| = a > 0. Let s1 denote the switching point between the first and second segment, and

let s2 denote the switching point between the second and the third segment. The descend

profile χ subject to these constraints is given by the following expression

χ(s) =

−as, s ∈ [s0, s1],

χm, s ∈ (s1, s2),

χe, s ∈ [s2, sf],

(183)

where χm is a negative number to be determined, and either χe(s) = χf + a(s − sf) or

χe(s) = χf − a(s − sf), depending on the desired boundary condition as will be discussed

shortly afterwards.

Note that

zf = z0 +

∫ sf

0
z′(s) ds = z0 +

∫ sf

0
sin(γ(s)) ds = z0 +

∫ sf

0
χ(s) ds, (184)

and we have that the signed area enclosed between the image of χ(s) and the s-axis, which

is the integral in the above expression, must equal to a constant zf − z0. Such a constraint

affects the choice of χm. We consider four cases for the choice of χm as shown below:

Case I: zf −z0 > −χ2
f/2a. In this case, the constraint |χ′(s)| = a for s ∈ [0, s1]∪ [s2, sf]

and the integral constraint (184) are not compatible, and we relax the previous constraint

by choosing a = χ2
f/2(z0 − zf). Also, then χ is given by (183) with s1 = 0, s2 = sf +χf/a,

χm = 0, and χe = χf +a(s− sf). The profile of χ for this case is shown in Fig. 53, in which

χ(s) is represented by the golden dotted curve.

s0 sf

χf

χmin

s1
s2 s

0

Figure 53: Vertical profile generation, Case 1.

Case II: sfχf − χ2
f/2a ≤ zf − z0 ≤ −χ2

f/2a. In this case, χm is given by the solution

166

to the following equation

(sf −∆1 −∆2)χm −
χ2

m

2a
+

∆2

2
(χm + χf) = zf − z1,

where ∆1 = −χm/a and ∆2 = (χm − χf)/a. The solution to the above equation is

χm =
(2a(zf − z0) + χ2

f)

2asf + 2χf
.

The switching points in (183) are given by s1 = ∆1, s2 = sf − ∆2. χe = χf − a(s − sf).

The profile of χ for this case is illustrated in Fig. 54

s0 sf

χf

χmin

s1 s2 s
0

Figure 54: Vertical profile generation, Case 2.

Case III: −χ2
f/2a + sfχmin + 3χ2

min/a− χfχmin/a ≤ zf − z0 < sfχf − χ2
f/2a. In this

case, χm must satisfy the following equation

3χ2
m + (asf − χf)χm − χ2

f/2− a(zf − z0) = 0.

The above equation has two solutions. The following solution is used for (183) since the

other solution is not feasible:

χm =
1

6

(
χf − asf −

√
(asf − χf)2 + 6χ2

f + 12a(zf − z0)
)
.

The switching points s1 and s2 in (183) are given by s1 = −χm/a, s2 = sf − (χf − χm)/a.

The third segment of χ(s) as in (183) is defined by χe = χf + a(s − sf). A representative

solution χ(s) for this case is shown as the golden dotted curve in Fig. 55.

Case IV: χ2
f/a+ sfχmin + χ2

min/2a − χfχmin/a > zf − z0. In this case, the downward

velocity is not sufficiently large to guarantee that an aircraft traversing a path whose pro-

jection on the x-y plane is a Dubins path can reach the desired final altitude at the end of its

course. In order to increase the length of the descent path without changing the structure

167

s0 sf

χf

χmin

s1 s2 s
0

Figure 55: Vertical profile generation, Case 3.

of the path in the x-y plane, we simply add one or more loops along the first helical arc. In

this way, the projection of the last arc on the x-y will remain the same but the length of

the ensuing path will be increased. Specifically, let sn denote the total length of a full loop

with radius R0, we find the minimum number of loops n ≥ 1 such that

χ2
f

a
+ (sf + nsn)χmin +

χ2
min

2a
− χfχmin

a
≤ zf − z0. (185)

The total path length is update by sf ← sf +nsn. Then one of the previous three cases can

be applied to compute the function χ for the new path including n additional loops at the

very beginning. The effect of including additional loops in the Dubins path is illustrated

by Fig. 56.

s0 sf

χf

χmin

s1 s2
0

sf + nsn

Figure 56: Vertical profile generation, Case 4.

After χ(s) is obtained for all s ∈ [0, sf], the vertical profile of the descent is given by

the following integral

z(s) = z0 +

∫ sf

0
χ(s) ds.

6.3 Simulation Results

In this section, we apply the hierarchical trajectory generation approach to obtain an initial

guess for the numerical optimal control software DENMRA for solving the minimum time

168

landing trajectory optimization problem. In particular, the three-dimensional landing path

generation method in Section 6.2 is used to generate a geometric path satisfying the bound-

ary conditions, which include the position, path angle, and heading angle at the start and

end points of the path. After a landing path is obtained, the time-optimal path tracking

method in Chapter 4 is applied to convert the geometric path into a trajectory by assigning

a time parameterization to the path and computing the state and control variables using

inverse dynamics. If the generated trajectory is feasible, then it is used to generate initial

guesses for DENMRA. If the trajectory is not feasible, then a maximum number of two path

smoothing iterations are applied, as described in Section 6.1, to modify the path geometry

until the trajectory is feasible. If no feasible trajectory can be generated, the trajectory

from the last iteration is used to generate initial guesses for DENMRA.

Numerical results show that the initial guess generated using this method usually cap-

tures the key features of a local optimal solution, as shown in Figs. 57 and 58. In these plots,

the red lines are the initial guess, and the blue lines with markers are the optimization re-

sult of DENMRA using the generated initial guess. The difference between the initial guess

and the optimal trajectory is observed for some landing cases when the horizontal range of

flight (horizontal distance between the aircraft’s initial position and the airport) is small,

as shown in Fig. 59. Simulation results indicate that the geometry of the optimal landing

trajectory is related to the ratio of the horizontal range to the altitude change. When this

ratio is large enough, the flight time is mainly determined by the aircraft’s movement in

the horizontal plane, and the projection of the optimal trajectory to the horizontal plane

resembles the typical circle-straight line-circle pattern of the Dubins’ path for shorter travel

time. When this ratio is small, the total fight time is more limited by the aircraft’s dynamics

for descent—the aircraft must fly over certain horizontal distance to lose altitude, in which

case the optimal landing trajectory tend to exhibit more complex geometry.

A series of numerical experiments were performed to test the effectiveness of the pro-

posed initial guess generation scheme for improving the convergence of the DENMRA for

solving the minimum time emergency landing problem. In all experiments, some boundary

conditions are fixed, including the initial speed v0 = 240m/s, the final speed vf = 95m/s,

169

−150
−100

−50
0

50

−100

−50

0
0

5000

10000

x (km)y (km)

z(
m

)

−120 −100 −80 −60 −40 −20 0 20 40
−80

−60

−40

−20

0

x (km)

y
(k

m
)

Figure 57: Trajectory comparison, case 1.

0

20

40

60

80

100

120 0

20

40

60

0

5000

10000

y (km)x (km)

z(
m

)

0 20 40 60 80 100 120
0

10

20

30

40

50

60

x (km)

y
(k

m
)

Figure 58: Trajectory comparison, case 2.

−40
−20

0
20

40 −40

−20

0

20

40

60

0

2000

4000

6000

8000

y (km)

x (km)

z(
m

)

−40 −20 0 20 40
−30

−20

−10

0

10

20

30

40

50

x (km)

y
(k

m
)

Figure 59: Trajectory comparison, case 3.

170

the initial path angle γ0 = 0deg, the final path angle γf = 0deg, the initial position

x0 = 0km, y0 = 0km, and the initial heading angle ψ0 = 0. The other boundary conditions

are generated randomly for each experiment. Specifically, the airport position is sampled

uniformly from a disc on the ground (zero altitude) with radius Rmax = 200 km, the runway

heading is uniformly distributed in [0, 2π], and the initial altitude is uniformly distributed

between 6 km and 10 km.

In each experiment, after the boundary conditions are determined, a three-dimensional

landing trajectory, which is referred to as the TP trajectory henceforth, is generated by

applying the time-optimal tracking method to the Dubins’ type landing path generator as

introduced in Section 6.1. The TP trajectory is interpolated to obtain the initial guesses

for DENMRA. In particular, the DENMRA performs a maximum of three iterations. The

DENMRA starts from 50 grid points, and five grid points are added for each additional

iteration. If the desired feasibility and optimality tolerance can not be satisfied by the

current iteration, then the mesh size is increased, and a subsequent iteration is performed

using an initial guess obtained by interpolating the TP trajectory on the new mesh. If the

desired tolerances, including the feasibility tolerance (1×10−6) and the optimality tolerance

(1× 10−2), are satisfied, then the DENMRA is terminated after the current iteration.

The key experimental data and results such as the boundary conditions, and whether

DENMRA converged, were recorded. As a comparison, in each experiment, affine initial

guesses interpolating the boundary conditions and constant control inputs were also used

to start the NLP solver, and the settings of DENMRA were identical to those when the TP

trajectory initial guesses are applied.

The details about the boundary condition used in the experiments are shown below:

x0 = 0, y0 = 0, zf = 0, ψ0 = 0,

γ0 = 0, γf = 0, v0 = 240, vf = 95,

z0 ← U([6, 10])km, ψf ← U([0, 2π]), θ ← U([0, 2π]), ̟ ← U([0, 1]),

R = Rmax
√
̟, xf = x0 +Rmax cos θ, yf = y0 +Rmax sin θ,

where U([a, b]), a, b ∈ R is a random number uniformly distributed on [a, b], Rmax is the

171

maximum cross range during the landing process, which is chosen to be Rmax = 200 km in

the experiments.

A total of 500 experimental cases were performed. DENMRA converged successfully for

68.0% of all cases when an affine initial guess was used. When the hierarchical trajectory

generation approach was used to generate initial guesses, the convergence rate shot up to

99.0%, which is a significant improvement compared to those affine initial guesses.

−50 0 50 100 150 200
0

5

10

15

20

25

30

35

40

ttp − tg(s)

N

Figure 60: Optimality comparison: time-optimal tracking trajectory v.s. numerical opti-
mization with TP initial guess.

Fig. 60 shows the final time differences of the TP trajectories (ttp) and the corresponding

DENMRA trajectories (tg) obtained using initial guesses interpolating the TP trajectories

for the 495 cases for which DENMRA converged. N represents the number of cases fitting

in the ttp − tg ranges corresponding to the blue bars. As expected, ttp > tg for all test

cases, since the DENMRA can improve both the landing path geometry and the time

parameterization of the path for better performance (smaller tg), while the TP trajectory is

time-optimal only for a fixed Dubins’ type geometric landing path generated in a heuristic

way (close to optimal, but not even suboptimal). In other words, DENMRA may further

improve the optimality of the initial guesses provided. The maximum value of ttp − tg is

168.2 s, and the mean value of ttp− tg is 80.6 s. Hence, in a real emergency landing scenario,

172

0 500 1000 1500 2000
0

20

40

60

80

100

120

140

160

180

tng − tg(s)

N

Figure 61: Optimality comparison: numerical optimization results, TP initial guesses v.s.
affine initial guesses.

it might be worthwhile to use numerical optimization algorithm to further improve the

optimality of the TP trajectory.

Fig. 61 compares the final times tg of DENMRA trajectories generated using TP trajec-

tory initial guesses and final times tng of DENMRA trajectories obtained using affine initial

guesses. Among the 339 cases that DENMRA converged with both types of initial guesses,

−0.71 ≤ tng− tg ≤ 1767.7. The mean value of tng− tg is 123.4 s. It was frequently observed

that the DENMRA converged to sub-optimal solutions with unacceptably long final times

when the affine initial guesses were used, as shown in Fig. 61, which suggests that a simple

affine function initial guess generation scheme is not applicable to trajectory generation for

real emergency landing scenario.

173

CHAPTER VII

CASE STUDIES IN EMERGENCY LANDING TRAJECTORY

OPTIMIZATION

This Chapter presents the study of two emergency landing cases, including the US Air-

ways flight 1549 case and the Swissair flight 111 case, using the aircraft landing trajectory

optimization algorithm introduced in Chapter 6. The purpose of this study is to evaluate

the effectiveness of the proposed algorithm for emergency landing, and to characterize the

critical factors which affect the success of landing. The aircraft maintains a certain amount

of maneuverability for both cases: in the first case, the aircraft maintained full maneuver-

ability for about 11 minutes after the onset of the emergency. In the second case, the thrust

of the aircraft was lost, but other controls of the aircraft were operational during the whole

flight. In an effort to identify valuable aircraft onboard decision aid tools for improving avi-

ation safety, it would be informative to evaluate the pilots’ decisions in terms of trajectory

planning in these cases, and how different the outcome of each emergency could have been

if a proper landing trajectory had be executed by the pilots.

For each of the two accidents, a flight trajectory is reconstructed based on recorded flight

data, which are referred to as the actual landing trajectories. Furthermore, a sequence of

points evenly distributed in the time domain were selected along each actual trajectory, and

the corresponding minimum-time trajectories were computed using the proposed algorithm.

Each of these minimum-time trajectories starts descending at a specific point on the actual

landing trajectory, and ends up at either the final approach fix point or the runway of a

nearby airport. The performance of the optimal trajectories were compared to those of the

actual trajectories.

The purpose of this chapter is limited to testing the previously proposed trajectory plan-

ning algorithms, and demonstrating the potential of such algorithms for providing decision

aid references to pilots and air traffic controllers. The current study is highly preliminary,

174

and the presented results do not lead to any implication on the accidents considered or the

previous investigation results. The assumptions and limitations of this study include, but

not limited to, the following

1. The effect of wind is not addressed.

2. The actual flight trajectory used in this study are extracted from references [6, 4] and

[95], which are different from the actual flight path.

3. The aerodynamics characteristics are assumed to be time-invariant, which is different

from the real case when the aerodynamic characteristics are changed by the change

of flap setting, elevator deflection, speed brake, and landing gear, etc.

4. It is assumed that the change of mass during the landing process is negligible.

5. For the Swissair 111 case, a maximum airspeed of 250 m/s is assumed. A maximum

airspeed of 150 m/s is assumed for the US Airways 1549 case.

6. The dynamics model itself may not be accurate enough. Besides, the model param-

eters, such as aircraft mass, zero lift drag, and control bounds etc., may be different

from those in the real scenario.

7.0.1 The Case of Swissair Flight 111

Swissair Flight 111 (SR-111) departed from John F. Kennedy International Airport in New

York City on September 2, 1998, on a scheduled flight to Cointrin International Airport in

Geneva, Switzerland. The aircraft type was a McDonnell Douglas MD-11. Due to a fire

accident on board, the aircraft crashed into the Atlantic ocean Southwest of the Halifax

International Airport.

The projection of the actual trajectory of flight SR-111 is shown in Fig. 62, which is

reconstructed using the data in [6, 4]. A three-dimensional plot of the same trajectory is

shown in Fig. 63. Because of unusual odor in the cockpit, the pilot declared a Pan Pan

emergency at point “A” and attempted to go to Boston. Pan Pan is an expression, spoken

three times in succession, used in the case of an urgency, which is a condition concerning

175

the safety of the aircraft, or of some person on board or within sight, but which does not

require immediate assistance. The pilot later took the advice of the air traffic controller and

started approaching the Halifax International Airport. At point “D”, which is about 55.6 km

away from the Halifax airport, the altitude of the aircraft was about 6620 m. Considering

the altitude to be too high to land in Halifax, the pilot requested and was permitted

to circle above the ocean to lose altitude and to dump excessive fuel. However, the fire

condition onboard deteriorated rapidly. The fire first affected cockpit avionic systems at

point “G” and caused autopilot disengagement, which was 590 seconds after the declaration

of the emergency. The pilot declared “Mayday”, a first class emergency, at point “H” and

requested immediate landing. However, the aircraft experienced a series of malfunctions

immediately afterwards, finally crashing into the Atlantic ocean. Point “I” is generated

from the last data received from the transponder of the aircraft. Note that the flight path

following point “I” is not shown in the figure. The flight time between the point “A” and

point “I” is 634 s.

A total of 11 points were selected along the actual SR-111 flight trajectory and used

as the initial point of descent for the minimum-time landing trajectories. These points

are evenly distributed temporally with 20 s between adjacent points. All time-optimal

trajectories share the same final point, which is the final approach fix point of runway-6 of

Halifax airport. This point is 5 nautical miles away from the runway. The initial speed,

path angle, and heading angle are interpolated using the reconstructed actual trajectory

data. The final speed at the approach fix point is 100 m/s, the final path angle is −3◦,

and the final heading angle is aligned with the runway direction. A maximum speed limit

of 250 m/s and a minimum flight path angle of −8◦ were assumed and enforced during

the optimization. It was also assumed that the average aircraft’ speed between the final

approach fix point and the runway touch down point is 80 m/s, which corresponds to a flight

time of about 116.8 s between these two points. The effect of wind was not considered. The

aircraft model used in this study is based on Ref. [3].

To help understand the benefits of using time-optimal trajectories for emergency landing,

we introduce two time variables ts and te for the analysis of the SR-111 flight case. The first

176

time variable ts is the time span between the start time of the time-optimal trajectory and

the time corresponding to point “I” in Fig. 62. For example, the ts value for point “A” would

be 634 s. Because the aircraft experienced a series of functional downgrades after point “G”,

an optimal trajectory is considered to be feasible if by flying such a trajectory the aircraft

arrives at the airport before the actual time corresponding to point “G”. The second time

variable te denotes the excessive amount of time, which is the time span between the touch

down of the aircraft and the first functional downgrade of the aircraft (point “G”). Hence,

a trajectory is considered viable if the associated te value is nonnegative, which means that

the functional downgrade happens after touchdown, hence it does not affect airplane safety.

Otherwise, the trajectory is considered to be nonviable.

−40 −20 0 20 40 60
−10

0

10

20

30

40

50

60

70

80

90

100

Halifax airport

DD

CC

EE

FF

BB

II

x(km)

GG

HH

AA

y(
km

)

Figure 62: Swissair flight 111 trajectory, a top view.

The landing trajectory optimization algorithm proposed in this thesis converged for all

11 descent start points along the actual flight trajectory, and generated the corresponding

time-optimal trajectories. The time-optimal landing trajectories connecting the actual flight

path and the airport are shown in Figs. 64 and 65. In these figures, viable trajectories are

plotted with green color, and nonviable trajectories are plotted with red color. According

177

−40
−20

0
20

40
60

0

20

40

60

80

100
0

5000
10000

CC

BB

DD

x(km)

EE

Halifax airport

FF

II
HH

AA

GG

y(km)

z(
m

)

Figure 63: Swissair flight 111 trajectory, a bird view.

to the optimization result, after passing point “C”, the aircraft had been unable to land at

the airport before the fire affected its maneuverability of the aircraft, even if a time-optimal

trajectory has been pursued. As an example, the minimum-time state and control histories

for the case with ts = 620 are shown in Figs. 66-71.

Admittedly, due to imprecise actual flight trajectory data and the discrepancy between

the true dynamics of the aircraft and the aircraft model used in the optimization, the

optimization results may not be accurate enough, and are surely is not conclusive. However,

these results suggest, at least, the possibility that the outcome of this fatal aviation accident

may had been reversed if a time-optimal flight trajectory was pursued early enough.

The excessive times te for different descent start times ts are shown in Fig. 72. Note

that, by definition, smaller ts means flying along the actual flight trajectory longer before

performing a time-optimal descend. If the actual flight trajectory and the aircraft dynamics

model are accurate enough, then te should decrease monotonically as ts decreases. To see

this, consider two time-optimal descend start times ts1 and ts2 with ts1 > ts2, and let te1

and te2 be the associated excessive times, respectively. If the aircraft starts an optimal

descent at ts2, then between ts1 and ts2, the aircraft tracks the actual flight trajectory,

which is not optimal and results in a longer flight time as compared to the time-optimal

178

−40 −20 0 20 40 60
−10

0

10

20

30

40

50

60

70

80

90

100

D

C

E

Halifax airport

F

B

I

x(km)

G

H

A

y(
km

)

Figure 64: Minimum-time trajectories along the Swissair flight 111 trajectory, a top view.

−40
−20

0
20

40
60

0

20

40

60

80

100

0
5000

10000

y(km)

Halifax airport

E

F

D
C

G

I

x(km)

H

BAz(
m

)

Figure 65: Minimum-time trajectories along the Swissair flight 111 trajectory, a bird view.

179

0 50 100 150 200 250 300 350 400 450
80

100

120

140

160

180

200

220

240

260

t (s)

v
(m

/
s)

Figure 66: Minimum-time speed profile, ts = 620.

0 50 100 150 200 250 300 350 400 450
−9

−8

−7

−6

−5

−4

−3

−2

−1

0

t (s)

γ
(◦

)

Figure 67: Minimum-time path angle profile, ts = 620.

180

0 50 100 150 200 250 300 350 400 450
0

10

20

30

40

50

60

t (s)

ψ
(◦

)

Figure 68: Minimum-time heading angle profile, ts = 620.

0 50 100 150 200 250 300 350 400 450
−4

−2

0

2

4

6

8

10

t (s)

C
L

Figure 69: Minimum-time lift coefficient profile, ts = 620.

181

0 50 100 150 200 250 300 350 400 450
−25

−20

−15

−10

−5

0

t (s)

φ
(◦

)

Figure 70: Minimum-time bank angle profile, ts = 620.

0 50 100 150 200 250 300 350 400 450
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t (s)

T
hr

ot
tle

Figure 71: Minimum-time throttle profile, ts = 620.

182

trajectory starting from ts1. Therefore, the excessive time te2 is smaller than ts1. As shown

in Fig. 72, such a monotonicity is not perfectly maintained, which can be caused by various

reasons such as position errors in the actual flight path data or imprecise model. However,

the overall trend of the ts − te curve is acceptable. It can be seen from this figure that te

decreases most rapidly around te = 600 s, which happened after the pilot declared a Pan

Pan emergency and initiated a right turn to go back to Boston. te decreased by about 50

seconds during this incomplete turning maneuver and became negative. Therefore, after

the first right turn around ts = 600s, the chance of a safe landing became very slim. The

earliest possible landing time is also estimated in [6], which corresponds to ts = 683 s and

te = 0. Such an estimation assumes direct tracking to the Halifax Golf beacon. As a

comparison, a time-optimal trajectory starting from the same point provides an excessive

time of te = 27.6 s, which suggests that about half a minute might be saved compared to

a conventional emergency descent procedure if a time-optimal descent is initiated at this

point.

450500550600650700
−40

−30

−20

−10

0

10

20

30

40

ts

t e

Figure 72: The excessive time te v.s. the start time ts of optimal landing trajectories.

The above analysis suggests that if real-time landing trajectory optimization technolo-

gies were available to pilots and air traffic controllers in the future in assistance of landing

site selection and landing trajectory generation, they may help reduce the probability of

adverse outcomes of emergencies scenarios and improve aviation safety. Landing trajectory

183

optimization algorithms, such as the hierarchical algorithm introduced in this thesis, may

provide the desired capabilities and help with the safe landing of aircraft under abnormal

conditions.

7.0.2 The Case of US Airways Flight 1549

US Airways Flight 1549 (US-1549) was a A320 aircraft on a domestic flight from New

York City’s La Guardia Airport (LGA) to Charlotte/Douglas (CLT), North Carolina, on

January 15, 2009. La Guardia Airport has two runways perpendicular to each other. The

length and width of these runways are almost the same. Two numbers are assigned to each

runway for different landing/take-off directions, hence there are four runway labels, which

are illustrated in Fig. 73. Flight US-1549 took off from runway-4 and headed Northwest.

About two minutes after take-off, the aircraft collided with birds and lost thrust on all

engines. The captain, who happened to be an experienced glider pilot, maintained control

of the aircraft and successfully performed a ditch landing on the Hudson river. The flight

path of the aircraft is also shown in Fig. 73 (the trajectory data is from [95]). The red circle

on the flight path corresponds to the point where the aircraft collided with birds and lost

thrust.

The US-1549 flight emergency landing case was also used to test the performance of the

proposed landing trajectory optimization algorithm. Similar to the SR-111 flight case, time-

optimal landing trajectories were computed for different start points along the actual flight

trajectory with different start times and corresponding initial positions along the trajectory.

Because the aircraft does not have any thrust, the normal landing procedures do not apply

to this case, and the final approach fix point is not used in the trajectory optimization. The

final condition of the aircraft is chosen such that the aircraft is aligned with the runway

with a touch-down speed between 70-85 m/s. Landing scenarios for the four runways were

considered separately, and the effect of wind was not taken into account. The aerodynamic

data of A320 aircraft in this study obtained using a min-square fitting of the aerodynamic

data table in Ref. [1].

If the nonlinear optimization solver converges and generates a trajectory satisfying the

184

specified feasibility (10−5) and optimality (10−4) tolerances, then the trajectory is consid-

ered to be optimal. The solver may not converge either because there does not exist a

glider landing trajectory given the specified boundary conditions and constraints, which is

very common for this zero-thrust landing trajectory optimization problems, or because of

numerical difficulties of the NLP solver itself. The feasibility of a landing path for a glider

is very sensitive to the path geometry due to the lack of thrust control. For this reason,

paths generated by the geometric path planner are often infeasible. As a result, the quality

of the initial guess to the numerical optimal control algorithm is not good enough, which

may affect the convergence of the NLP solver. In this study, if the NLP solver does not

converge for certain landing cases, then the geometric path planner is modified to adjust

the geometry of the initial guess. If no convergent solution can be found in this way, then

a zero-thrust landing would be considered impossible for this case.

The time-optimal trajectories for four different cases are shown in Figs. 74-77. In these

figures, the green circles represent the latest time and the corresponding position of the

aircraft such that the aircraft can still land on a particular runway by performing a time-

optimal landing starting from that point. For a runway-4 landing, the latest time for starting

time-optimal descent is 21 seconds after the bird-strike. For runway-13, runway-31, runway-

22, these values are 123 s, 65 s, and 73 s, respectively.

As shown in Figs. 74-77, the zero-thrust time-optimal emergency landing trajectories

are much more complicated than the actual flight trajectory. Therefore, even if all four

runways are available for landing, the pilot must choose a runway and respond fast enough

such that the time-optimal descent would start early enough before those green points

in these figures. Besides, the execution of such trajectories poses very high demands on

the skill and attention of the pilots, since any deviation from the optimal trajectory may

result in an accident. Hence, the pilot’s choice of the Hudson River as the landing site was

practically a much safer choice than other alternative plans such as landing at any runway

of LGA.

On the other hand, if the same emergency happened in an airport without a convenient

ditch landing site like the Hudson River, the outcome of the accident might be much severer.

185

As demonstrated by the optimization result, the choice of runway has a major influence on

the emergency landing process. Taking the runway layout of LGA and the US-1539 flight

trajectory as an example, a longer time span between the red and green circles in Figs. 74-77

would be favorable, in the sense that the pilot would have more time to plan an emergency

descent trajectory. Besides, the earlier the descent start time within this time span, the

better the chance of a successful landing. Hence, under the assumption that the LGA

runways are the only possible landing sites, it is clear that runway-31 was the best choice

for emergency landing in this case, as suggested by the trajectory planning results obtained

using the landing trajectory optimization algorithm proposed in this thesis.

−12000−10000 −8000 −6000 −4000 −2000 0 2000 4000
−2000

0

2000

4000

6000

8000

10000

12000

14000

4

13
22

31

x(m)

y(
m

)

Figure 73: US-1549 Hudson River landing trajectory, a top view.

186

−12000−10000 −8000 −6000 −4000 −2000 0 2000 4000

0

5000

10000

0
500

1000

Figure 74: US 1549 Runway-4 landing.

−12000
−10000

−8000
−6000

−4000
−2000

0
2000

4000

0

5000

10000

0
500

1000

Figure 75: US 1549 Runway-31 landing

−12000
−10000

−8000
−6000

−4000
−2000

0
2000

4000

0

5000

10000

0
500

1000

Figure 76: US 1549 Runway-13 landing.

187

−12000
−10000

−8000
−6000

−4000
−2000

0
2000

4000

0

5000

10000

0
500

1000

Figure 77: US 1549 Runway-22 landing.

188

CHAPTER VIII

CONCLUSIONS

In this thesis, we have addressed the aircraft landing trajectory optimization problem,

and have presented several computationally efficient and numerically robust techniques for

the landing trajectory generation and optimization problem for fixed-wing aircraft. We

also introduced a hierarchical scheme based on these techniques for generating good initial

guesses for numerical optimal control algorithms, thus, further improving the convergence

of the landing trajectory. Although presented in the context of aircraft landing trajectory

optimization, the techniques introduced in this thesis can be adapted to solve trajectory

optimization problems for other types of electro-mechanical systems, such as locomotive,

ground vehicle, elevator, multi-axis machinery, etc.

In this chapter, we will first summarize the techniques presented in this thesis for landing

trajectory optimization. Then we will discuss some directions for future research.

8.1 Summary

In Chapter 2, we focused on the problem of mesh refinement for generating a grid in the

time domain, on which a continuous time optimal control problem is discretized into a

Nonlinear Programming problem. A density function technique was proposed to automat-

ically allocate a fixed number of grid points with the appropriate local temporal resolution

to better capture the discontinuities and smoothness irregularities in the solution. It was

shown that the problem of mesh generation can be converted equivalently into choosing the

density function, and some of the previous mesh refinement methods correspond to certain

specific forms of density functions. We also presented a curvature density function for mesh

generation, which minimizes the L1 norm of the error in approximating two-dimensional C3

curves (or piecewise C3 curves) using piecewise linear interpolative spline curves. A density

function based mesh refinement algorithm was developed and tested using a number of chal-

lenging optimal control problems. Numerical results verified the improvement in solution

189

accuracy and optimality by using such a method when compared to existing mesh refine-

ment schemes. A major benefit of introducing the density function is that the improvement

of solution accuracy and optimality can be achieved without increasing the number of grid

points, hence keeping the size of the Nonlinear Programming problem invariant in the mesh

refinement iterations, which is a favorable feature for trajectory optimization applications

with limited computation resource.

In Chapter 3, we introduced an iterative Quadratic Programming algorithm for the

smoothing of a three-dimensional geometric path by minimizing a weighted L2 norm of the

path’s curvature. The path is represented by a number of characteristic nodes and a cubic

spline curve interpolation between the nodes. In each iteration, a smoother path is obtained

by perturbing the path from the previous iteration in its neighborhood along the normal

direction only. The path smoothing method can also address requirements for collision

avoidance, path length preservation, local bounds on curvature, etc., by incorporating cor-

responding constraints. It was demonstrated, using numerical examples, that a smoothed

path obtained using the introduced algorithm can provide a shorter tracking time for the

aircraft dynamics as compared to the original path. This algorithm is also computationally

efficient and reliable.

In Chapter 4, we considered the problem of time-optimal tracking of a prescribed geo-

metric path for fixed-wing aircraft, and a semi-analytic solution to this problem was pre-

sented. By transforming the aircraft dynamics, which is originally established in the time

domain, into the path coordinate domain and applying inverse dynamics, the constraints

on the bank angle and lift coefficient control inputs are converted into simple bounds on

the kinetic energy of the aircraft. As a result, the time-optimal path tracking problem is re-

duced to an equivalent scalar functional optimization problem subject to state constraints,

thrust control input constraint, and boundary conditions. The switching structure of the

optimal solution to the simplified problem was analyzed using optimal control theory. Two

algorithms were developed for computing the time-optimal kinetic energy and the corre-

sponding optimal state and control time histories. Two numerical examples verified the

proposed method.

190

In Chapter 5, we addressed the problem of the energy-optimal aircraft landing path

tracking with fixed time-of-arrival (TOA). A reduced problem was formulated in a similar

way as in Chapter 4. It was shown that the optimal solution to the energy-optimal problem

may contain singular arcs, which typically cause numerical issues for standard numerical

optimization approaches. Due to the existence of singular arcs, the energy-optimal solution

may exhibit more complicated switching structures than the time-optimal solution. Based

on optimal control theory, we analyzed the switching structure in the energy-optimal kinetic

energy solution. We also introduced a technique for characterizing state constrained arcs

in the optimal kinetic energy profile via a partial relaxation of the state constraints. It was

proved that the energy-optimal solution can be computed in a straightforward manner using

a combination of a singular arc, the minimum-time solution, and a maximum-time solution

(which is a variation of the time-optimal path tracking problem considered in Chapter 4

with maximum tracking time performance). A numerical algorithm was introduced for

computing the energy-optimal path tracking solution. As shown by both the theoretical

analysis and the numerical optimization results, the energy-optimal solution provides a good

approximation to the fuel-optimal solution during the landing process, but is much more

computationally efficient than the use of a direct numerical optimization approach.

In Chapter 6, we proposed a hierarchical scheme for the generation of good initial guesses

based on the techniques introduced in Chapters 3 and 4. We presented a Dubins-like three

dimensional path generation method, which is designed specifically for the hierarchical

initial guess generation scheme. Such a hierarchical scheme is integrated into an aircraft

landing trajectory optimization algorithm to provide the initial guess for the density function

based numerical optimal control routine. The robustness of the overall landing trajectory

algorithm was tested using numerical simulations. It was shown that with such a hierarchical

approach, the failure rate of the Nonlinear Programming solver was reduced from 51% to

less than 1%.

Finally, in Chapter 7, we applied the landing trajectory optimization algorithm to an-

alyze two real emergency landing cases including Swissair flight 111 and US Airways flight

191

1549. The analysis showed that human pilots may make sub-optimal or even faulty trajec-

tory planning decisions during an emergency, which can be addressed by automated landing

trajectory optimization algorithms.

8.2 Challenges for the Application of Onboard Flight Trajectory Opti-
mization

The application of automatic onboard trajectory optimization tools in commercial and gen-

eral aviation is inevitably a complex and difficult process that involves and affects multiple

organizations, agencies, companies, and individuals. Besides, the challenges go beyond the

technology aspect to administration, legislation, licensing, training, etc., which are out of

the scope of this thesis. In the following, we briefly discuss about the status of the technology

for such an application.

On the technology level, the development and application of onboard trajectory op-

timization techniques bring up numerous challenges in algorithm accuracy, efficiency and

reliability, software robustness, hardware development, human-machine interface, system

integration, system compatibility, flight testing, etc.

Despite these technical challenges and difficulties, preliminary research and flight tests

has been been performed, which leads to promising results. For example, Ref. [125] devel-

oped online flight trajectory optimization algorithms based on a combination of A∗ path

search algorithm with a random tabu search method. The optimized path is presented as

tunnel-in-the-sky image to the pilot for tracking. The algorithm was verified using flight

simulator and tested in real flight tests. The flight test results showed that the algorithm

can help reduce the flight time to reach the terminal point. The same research group also

proposed an online trajectory optimization algorithm by using a direct collocation method

for generating more smooth trajectories [107]. Because direct collocation method takes more

computation time, the total flight trajectory is divided into multiple segments and a reced-

ing horizon scheme is applied such that the optimization of each segment can be finished

before it is tracked. A Dubins’ type of landing trajectory is used as an initial guess for the

direct collocation method. Flight test results demonstrated that the optimized 4D landing

192

trajectories, which were generated off-line, can be tracked satisfactorily by the tracking con-

troller. Ref. [128] tested a trajectory optimization algorithm for ground noise abatement in

helicopter landing approach using simulation. The optimized trajectories were flied in flight

test, and the flight test results confirmed a reduction of mean noise level between 6-10dB.

Considering the progress of onboard landing trajectory optimization as reported in

Refs. [125, 107, 128], the main technical challenges to be addressed in the near future include

algorithm efficiency, algorithm reliability, human-machine interface, and the development of

trajectory tracking controller. The direct collocation method is used in Refs. [107] and [128]

in favor of its capability for dealing with more realistic aircraft dynamics. However, in these

references, the trajectories are optimized off-line, and tested by simulations before real flight

test. The online and realtime application of trajectory optimization algorithms impose very

high demand on computation speed and reliability. Because the optimal trajectories are in

general more complicated than traditional flight trajectories, proper human-machine inter-

face need to be developed such that the optimization result can be presented to the pilot

both efficiently and effectively. It would also be necessary to improve the accuracy and

tracking of tracking controllers for the automatic tracking of optimal 4D trajectories such

that the pilots can be relieved from exhaustive trajectory tracking and focus on higher level

tasks.

8.3 Directions of Future Work

In this section, we present some directions of future research as extensions to the results in

this thesis.

8.3.1 Interaction Between Path Smoothing and Time Parameterization Meth-

ods

In Chapter 6, we presented a hierarchical scheme for generating a feasible initial guess. In

this scheme, a geometric path primitive is converted to a trajectory using the path tracking

methods in Chapters 4 and 5. If the generated trajectory is not feasible, then the path

smoothing method in Chapter 3 is applied to update the path such that the new path is

more likely to be feasible. Although such an approach will typically work well in practice,

193

it does not provide the best path geometry for the given aircraft dynamics and boundary

conditions.

The time parameterization methods in Chapters 4 and 5 provide rich information about

the influence of the path geometry on tracking performance. For example, when a path is

infeasible for the prescribed dynamics and control constraints, based on the time param-

eterization result, we can tell which constraint is causing infeasibility, and what are the

geometric characteristics associated to the activation of these constraints. It was observed

in our numerical experiments that the infeasibility of a path primitive was frequently caused

by inappropriate geometry along a small part along the path. In this thesis, such problems

are addressed by manually tuning several geometry-related parameters in the Dubins-like

geometric path planning algorithm based on the time parameterization result. Such an

approach is not only inefficient, but also results in further loss of optimality due to the

conservative parameter setting.

The three-dimensional path smoothing method, on the other hand, is capable of reg-

ulating certain geometric properties of the path such as local curvature and path length.

However, these capabilities are not used in the current aircraft landing trajectory optimiza-

tion algorithm. Instead, the path smoothing algorithm minimizes the norm of the curvature

only, and is blind to the system dynamics. By converting the time parameterization result

into desirable geometric features for recovering feasibility or further improving the optimal-

ity of tracking result, the path smoothing method can address the system dynamics based

on feedback information from the time parameterization step, and thus produce paths with

“close to optimal” geometry.

8.3.2 Path Tracking via Convex Optimization

The path tracking methods in Chapter 4 and Chapter 5 are based on semi-analytic solutions.

The advantage of such an analytic approach is superior computation speed, accuracy, and

algorithm robustness, compared to the standard NLP approach. However, it is extremely

laborious to extend these methods to other types of dynamical systems, or to address new

cost functions.

194

Convex Programming (CP) problems can be solved much more efficiently and reliably

than general NLP problems, Hence, convex optimization techniques seem to be a good

choice for solving path tracking problems. Indeed, it has been used for the time-optimal

tracking control of robotic manipulators [130]. However, the application of CP imposes very

strict requirements on the problem to be solved, i.e., both the cost function and the feasible

region determined by all constraints must be convex. These are unrealistic assumptions for

most physical systems. Hence, in order to fit into the CP framework for its robustness and

efficiency, the problematic terms in the system dynamics, which cause the loss of convexity,

are neglected. For example, the friction term of the dynamics in the previous research on

time-optimal tracking control of robotic manipulators using CP have been omitted. Such

treatment on these terms causes the loss of optimality since the solution is obtained for a

different system.

To avoid such loss of optimality, iterative convex optimization can be applied by finding a

series of piecewise constant or piecewise linear approximations to the terms in the dynamics

which causes loss of convexity, and solve at each iteration a new CP problem, which is an

improved approximation to the original non-convex problem. The solution to the iterative

CP problem, if converges, is also the solution to the optimal solution (at least a locally) to

the original non-convex problem.

Furthermore, an alternating CP approach can be applied to trajectory optimization.

With such an approach, the solution to a non-convex problem is obtained by solving two or

more subproblems alternatively. Each subproblem, which is convex by formulation, updates

only a subset of the decision variables in the original non-convex problem, while keeping

the other variables constant. By alteratively solving all subproblems, all decision variables

to the non-convex problem are updated. Note that the landing trajectory optimization

problem can be decomposed into two planning tasks including the planning of path geom-

etry and the optimal tracking task. The path smoothing method in Chapter 3 solves a CP

(Quadratic Programming) problem at each step for the modification of the path geometry.

By formulating the path tracking task as a convex optimization problem, the overall trajec-

tory can be optimized by solving the path smoothing and tracking problems alternatively.

195

8.3.3 Trajectory Generation in a Environment with Moving Obstacles

When performing flight path and trajectory planning tasks, pilots and air traffic controllers

sometimes need to deal with moving obstacles such as other aerial vehicle or severe weather

patterns. Such tasks are more complicated than the usual trajectory planning for a sin-

gle airplane because more time-varying objects are involved in the decision making, and

the generation of collision-free trajectories in such a time-evolving environment requires

extensive projection and correction.

With valid mathematical models, computers can predict the evolution of dynamical

systems much more efficiently and accurately than human beings, and perform well on

tasks too complicated, and even impossible for human beings such as weather forecast.

Hence, it is expected that computers may also play an important role in flight path and

trajectory generation with moving obstacles, and here we propose one possible solution for

such an application for future exploration.

The mathematical formulation of the collision avoidance requirement is not convex in

general, which induces difficulty for the convergence of the NLP based numerical opti-

mal control approach. However, by updating the path and trajectory only locally (both

temporally and spatially), it is possible to enforce the collision avoidance requirement ap-

proximately using convex constraints, as in the path smoothing algorithm, therefore, the

NLP approach can still be applied. The key step would be the generation of a collision-free

feasible trajectory such that a repeated local update can be initiated from its neighborhood.

Reference [50] proposed trajectory planning algorithms dealing with moving obstacles and

simple vehicle dynamics, which can be used to generate an initial collision-free trajectory.

Next,hierarchical trajectory generation scheme based on the path smoothing method and

time-parameterization method in this thesis can be applied to refine such a trajectory using

more accurate aircraft dynamics. Finally, the NLP based numerical optimal control ap-

proach can be applied to further improve the optimality by updating the trajectory locally.

196

8.3.4 Three-Dimensional Collision-Free Path Primitive Generation

In Chapter 6, we introduced a three-dimensional landing path primitive generation algo-

rithm. Although this method is very efficient, and the result is close to optimal, it does

not address the problem of collision avoidance. In practice, collision-free paths are nec-

essary for bypassing severe weather conditions, obstacles, or traffic patterns. Hence, it is

necessary to consider the problem of collision-free path generation in the three-dimensional

space. Because the path-smoothing algorithm in Chapter 3 can be applied to smooth any

collision-free path primitive, while preserving the collision avoidance property, no smooth-

ness is required for the generation of collision-free path primitives, and the main focus would

be on the robustness and the speed of computation.

197

APPENDIX A

COMPUTATION OF MATRICES FOR PATH SMOOTHING

This appendix provides the pseudo code for the computation of matrices H, F and C used

in the path smoothing method introduced in Chapter 3.

Pseudo-code 1 Computation of matrices H and F

Hδ ← 0N×N , Hλ ← 0N×N , Hδλ ← 0N×N , Fδ ← 01×N , Fλ ← 01×N ;
for i = 1 to N − 1 do

Hδ,i ← 04×4, Hλ,i ← 04×4, Hδλ,i ← 04×4, Fi ← 01×4;
for k = 1 to 3 do

Hδ,i ← Hδ,i + Ni,{k}MiNi,{k}, Hλ,i ← Hλ,i + Bi,{k}MiBi,{k};
Hλδ,i ← Hλδ,i + Bi,{k}MiNi,{k};

Fi,δ ← Fi,δ + RT
i {k}MiNi,{k}, Fi,λ ← Fi,λ + RT

i {k}MiBi,{k};
k ← k + 1;

end for

Hδ(i− 1 : i+ 2, i− 1 : i+ 2)← Hδ(i− 1 : i+ 2) + wiHδ,i;
Hλ(i− 1 : i+ 2, i − 1 : i+ 2)← Hλ(i− 1 : i+ 2) + wiHλ,i;
Hδλ(i− 1 : i+ 2, i− 1 : i+ 2)← Hδλ(i− 1 : i+ 2) +wiHδλ,i;
Fδ(1, i − 1 : i+ 2)← Fδ(1, i− 1 : i+ 2) + wiFδ,i;
Fλ(1, i − 1 : i+ 2)← Fλ(1, i− 1 : i+ 2) + wiFλ,i;
i← i+ 1;

end for

Hδ(1 : 4, 1 : 4)← Hδ((1 : 4, 1 : 4) + w1
∑3

k=1 N2,{k}M1N2,{k};

Hλ(1 : 4, 1 : 4)← Hλ(1 : 4, 1 : 4) + w1
∑3

k=1 B2,{k}M1B2,{k};

Hδλ(1 : 4, 1 : 4)← Hδλ(1 : 4, 1 : 4) + w1
∑3

k=1 N2,{k}M1B2,{k};

Hδ(N − 3 : N,N − 3 : N) ← Hδ(N − 3 : N,N − 3 : N) + wN−1
∑3

k=1 RN−2,{k}MN−1

NN−2,{k};

Hλ(N − 3 : N,N − 3 : N) ← Hλ(N − 3 : N,N − 3 : N) + wN−1
∑3

k=1 RN−2,{k}MN−1

NN−2,{k};

Hδλ(N − 3 : N,N − 3 : N)← Hδλ(N − 3 : N,N − 3 : N) + wN−1
∑3

k=1 RN−2,{k}MN−1

NN−2,{k};

H =

[
Hδ Hδλ

HT
δλ Hλ

]
;

F = [Fδ,Fλ];
H = 2H;
F = 2F.

198

Pseudo-code 2 Computation of matrix C

C← 0N×2N , Cδ ← 0N×N , Cλ ← 0N×N ;
Cδ(1, :)← 1

∆2
s

[
0 −5〈n1,n2〉 4〈n1,n3〉 −〈n1,n4〉 0 . . . 0

]
;

Cλ(1, :)← 1
∆2

s

[
0 −5〈n1,b2〉 4〈n1,b3〉 −〈n1,b4〉 0 . . . 0

]
;

for i = 2 to N − 1 do

Cδ(i, i − 1)← 〈ni,ni−1〉/∆2
s, Cλ(i, i− 1)← 〈ni,bi−1〉/∆2

s;
Cδ(i, i)← −2/∆2

s;
Cδ(i, i + 1)← 〈ni,ni+1〉/∆2

s, Cλ(i, i+ 1)← 〈ni,bi+1〉/∆2
s;

i← i+ 1;
end for

Cδ(N, :)← 1
∆2

s

[
0 . . . 0 −〈nN ,nN−3〉 4〈nN ,nN−2〉 −〈nN ,nN−1〉 0

]
;

Cλ(N, :)← 1
∆2

s

[
0 . . . 0 −〈nN ,bN−3〉 4〈nN ,bN−2〉 −〈nN ,bN−1〉 0

]
;

C = [Cδ,Cλ].

199

REFERENCES

[1] “Airbus 320 aircraft model.” http://www.jsbsim.sourceforge.net. retrieved Aug.,
2011.

[2] “Airline data project.” http://web.mit.edu/airlinedata/www/default.html. re-
trieved Nov, 2010.

[3] “Mcdonnell Douglas MD-11 aircraft model.” http://www.flightgear.org. retrieved
Dec., 2011.

[4] “Swissair 111 flightpath map.” http://www.digistar.cl/SR111/srmv3o.html. re-
trieved Sep. 2011.

[5] Control and Dynamic Systems: Advances in Theory and Applications, ch. Aircraft
Maneuver Optimization of Reduced-order Approximation, pp. 131–178. Academic
Press, Inc., 1973.

[6] “SR-111 Investigation Report,” Tech. Rep., Transportation Safety Board of Canada,
2003.

[7] “Statistical summary of commercial jet airplane accidents worldwide operations 1959-
2009,” Tech. Rep., The Boeing Company, Seattle, WA, 2010.

[8] Asnis, I. A., Dmitruk, A. V., and Osmolovskii, N. P., “Solution of the problem of
the energetically optimal control of the motion of a train by the Maximum principle,”
Computational Mathematics and Mathematical Physics, vol. 25, no. 6, pp. 37–44,
1985.

[9] Athans, M. and Falb, P. L., Optimal Control : An Introduction to the Theory and
Its Applications. Lincoln Laboratory publications, McGraw-Hill, 1966.

[10] Atkins, E. M., Portillo, I. A., and Strube, M. J., “Emergency flight planning
applied to total loss of thrust,” Journal of Guidance, Control, and Dynamics, vol. 43,
no. 4, pp. 1205–1216, 2006.

[11] Aurenhammer, F., “Voronoi diagrams—a survey of a fundamental geometric data
structure,” ACM Computing Surveys, vol. 23, no. 3, pp. 345–405, 1991.

[12] Babuska, I. and Gui, W., “Basic principles of feedback and adaptive approaches in
the finite element method,” Computer Methods in Applied Mechanics and Engineer-
ing, vol. 55, pp. 27–42, Apr. 1986.

[13] Bakolas, E. and Tsiotras, P., “Optimal synthesis of the asymmetric sinis-
tral/dextral Markov-Dubins problem,” Journal of Optimization Theory and Appli-
cations, vol. 150, no. 2, pp. 233–250, 2011.

200

[14] Bakolas, E. and Tsiotras, P., “On-line, kinodynamic trajectory generation
through rectangular channels using path and motion primitives,” in 47th IEEE Con-
ference on Decision and Control, (Cancun, Mexico), pp. 3725–3730, 2008.

[15] Bakolas, E. and Tsiotras, P., “On the generation of nearly optimal, planar paths
of bounded curvature and bounded curvature gradient,” in Proceedings of the 2009
conference on American Control Conference, (St. Louis, MO), pp. 385–390, 2009.

[16] Barraquand, J., Langlois, B., and Latombe, J.-C., “Numerical potential field
techniques for robot path planning,” IEEE Transaction on Systems, Man, and Cy-
bernetics, vol. 22, no. 2, pp. 224–241, 1992.

[17] Becerra, V. M., PSOPT Optimal Control Solver User Manual, Jul. 2011.

[18] Beckett, G., Mackenzie, J. A., Ramage, A., and Sloan, D. M., “On the
numerical solution of one-dimensional pdes using adaptive methods based on equidis-
tribution,” Journal of Computational Physics, vol. 167, no. 2, pp. 372–392, 2001.

[19] Bellman, R. E., Dynamic Programming. Princeton, NJ: Princeton University Press,
1957.

[20] Belta, C., Bicchi, A., Egerstedt, M., Frazzoli, E., Klavins, E., and Pappas,

G., “Symbolic planning and control of robot motion,” IEEE Robotics Automation
Magazine, vol. 14, pp. 61–70, Mar. 2007.

[21] Bereg, S. and Kirkpatrick, D., “Curvature-bounded traversals of narrow corri-
dors,” in SCG ’05: Proceedings of the twenty-first annual symposium on Computa-
tional geometry, (Pisa, Italy), pp. 278–287, ACM, 2005.

[22] Betts, J. T., “Survey of numerical methods for trajectory optimization,” Journal
of Guidance, Control, and Dynamics, vol. 21, no. 2, pp. 193–207, 1998.

[23] Betts, J. T. and Huffman, W. P., “Sparse optimal control software SOCS,” Math-
ematics and Engineering Analysis Technical Document MEALR-085, Boeing Informa-
tion and Support Services, The Boeing Company, Seattle, WA, Jul 1997.

[24] Betts, J. T., Campbell, S. L., and Kalla, N. N., “Initialization of direct tran-
scription optimal control software,” in Proceedings of the 42nd IEEE Conference on
Decision and Control, (Maui, Hawaii), pp. 3802–3807, Dec. 2003.

[25] Betts, J. T., Practical Methods for Optimal Control using Nonlinear Programming.
PA: SIAM, 2001.

[26] Betts, J. T. and Huffman, W. P., “Mesh refinement in direct transcription meth-
ods for optimal control,” Optimal Control Applications and Methods, vol. 19, no. 1,
pp. 1–21, 1998.

[27] Bhat, P., Kuffner, J., Goldstein, S., and Srinivasa, S., “Hierarchical motion
planning for self-reconfigurable modular robots,” in 2006 IEEE/RSJ International
Conference on Intelligent Robots and Systems, (Beijing, China), pp. 886 –891, Oct.
2006.

201

[28] Bobrow, J. E., Dubowsky, S., and Gibson, J. S., “Time-optimal control of
robotic manipulators along specified paths,” The International Journal of Robotics
Research, vol. 4, no. 3, pp. 3–17, 1985.

[29] Bryson, A. E. and Ho, Y., Applied Optimal Control-Optimization, Estimation and
Control. Hemispere Publishing Corporation, Washington, 1975.

[30] Bulirsch, R., Montrone, F., and Pesch, H. J., “Abort landing in the presence
of windshear as a minimax optimal control problem, Part I: Necessary conditions,”
Journal of Optimization Theory and Applications, vol. 70, no. 1, pp. 1–23, 1991.

[31] Bulirsch, R., Montrone, F., and Pesch, H. J., “Abort landing in the presence
of windshear as a minimax optimal control problem, Part II: Multiple shooting and
homotopy,” Journal of Optimization Theory and Applications, vol. 70, no. 2, pp. 223–
254, 1991.

[32] Burrows, J. W., “Fuel-optimal aircraft trajectories with fixed arrival times,” Jour-
nal of Guidance, Control, and Dynamics, vol. 6, no. 1, pp. 14–19, 1983.

[33] Burrows, J. W., “Fuel-optimal aircraft trajectories with fixed arrival times,” Jour-
nal of Guidance, Control, and Dynamics, vol. 6, pp. 14–19, Jan.-Feb. 1983.

[34] Byrd, R. H., Curtis, F. E., and Nocedal, J., “Infeasibility detection and SQP
methods for nonlinear optimization,” SIAM Journal on Optimization, vol. 20, no. 5,
pp. 2281–2299, 2010.

[35] Calise, A. J., “Extended energy management methods for flight performance opti-
mization,” AIAA Journal, vol. 15, no. 3, pp. 314–321, 1977.

[36] Cao, B., Dodds, G. I., and Irwin, G. W., “Constrained time-efficient and smooth
cubic spline trajectory generation for industrial robots,” IEE Proceedings Control
Theory and Applications, vol. 144, no. 5, pp. 467–475, 1997.

[37] Chakravarty, A., “Four-dimensional fuel-optimal guidance in the presence of
winds,” Journal of Guidance, Control, and Dynamics, vol. 8, no. 1, pp. 16–22, 1985.

[38] Choset, H., Lynch, K., Hutchinson, S., Kantor, G., Burgard, W., Kavraki,

L., and Thrun, S., Principles of Robot Motion-Theory, Algorithms, and Implemen-
tation. Cambridge, MA: The MIT Press, Jun. 2005.

[39] Chuang, J. and Ahuja, N., “Path planning using Newtonian potential,” in IEEE
Conference on Robotics and Automation, (Sacramento, CA), pp. 558–563, 1991.

[40] Constantinescu, D. and Croft, E. A., “Smooth and time-optimal trajectory plan-
ning for industrial manipulators along specified paths,” Journal of Robotic Systems,
vol. 17, no. 5, pp. 233–249, 2000.

[41] Cowlagi, R. V. and Tsiotras, P., “Shortest distance problems in graphs using
history-dependent transition costs with application to kinodynamic path planning,”
in American Control Conference, (St. Louis, MO), pp. 414–419, 2000.

[42] Drury, R., Tsourdos, A., and Cooke, A., “Real-time trajectory generation: Im-
proving the optimality and speed of an inverse dynamics method,” in 2010 IEEE
Aerospace Conference, pp. 1–12, march 2010.

202

[43] Drury, R. G., “Performance of NLP algorithms with inverse dynamics for near-real
time trajectory generation,” in AIAA Guidance, Navigation, and Control Conference,
(Portland, OR), Aug. 2011.

[44] Dubins, L. E., “On curves of minimal length with a constraint on average curvature,
and with prescribed initial and terminal positions and tangents,” American Journal
of Mathematics, vol. 79, no. 3, pp. 497–516, 1957.

[45] Etkin, B., Dynamics of Atmospheric Flight. Dover Publications, 2005.

[46] Faiz, N., Agrawal, S. K., and Murray, R. M., “Trajectory planning of differ-
entially flat systems with dynamics and inequalities,” Journal of Guidance, Control,
and Dynamics, vol. 24, pp. 219–227, Mar.-Apr. 2001.

[47] Fliess, M., Lévine, J., Martin, P., and Rouchon, P., “On differentially flat non-
linear systems,” in Proceedings of IFAC-Symposium NOLCOS’92, (Bordeaux, France),
pp. 408–412, 1992.

[48] Fraichard, T. and Scheuer, A., “From Reeds and Shepp’s to continuous-curvature
paths,” IEEE Transaction on Robotics, vol. 20, no. 6, pp. 1025–1035, 2004.

[49] Franco, A., Rivas, D., and Valenzuela, A., “Minimum-fuel cruise at constant
altitude with fixed arrival time,” Journal of Guidance, Control, and Dynamics, vol. 33,
pp. 280–285, Jan.-Feb. 2010.

[50] Frazzoli, E., Robust Hybrid Control for Autonomous Vehicle Motion Planning. PhD
thesis, Massachusetts Institute of Technology, 2001.

[51] Frazzoli, E., Dahleh, M. A., and Feron, E., “Real-time motion planning for
agile autonomous vehicles,” Journal of Guidance, Control, and Dynamics, vol. 20,
no. 1, pp. 116–129, 2002.

[52] Gasparetto, A. and Zanotto, V., “A new method for smooth trajectory planning
of robot manipulators,” Mechanism and Machine Theory, vol. 42, pp. 455–471, Apr.
2007.

[53] Gilimyanov, R. F., Pesterev, A. V., and Rapoport, L. B., “Smoothing curva-
ture of trajectories constructed by noisy measurements in path planning problems for
wheeled robots,” Journal of Computer and Systems Sciences International, vol. 47,
no. 5, pp. 812–819, 2008.

[54] Gill, P. E., Murray, W., and Saunders, M. A., “SNOPT: An SQP algorithm
for large-scale constrained optimization,” numerical analysis report 97-2, University
of California, San Diego, La Jolla, CA, 1997.

[55] Gong, Q., Fahroo, F., and Ross, I. M., “Spectral algorithm for pseudospectral
methods in optimal control,” Journal of Guidance, Control, and Dynamics, vol. 31,
no. 3, pp. 460–471, 2008.

[56] Grimm, W., Well, K., and Oberle, H., “Periodic control for minimum-fuel aircraft
trajectories,” Journal of Guidance, Control, and Dynamics, vol. 9, no. 2, pp. 169–174,
1986.

203

[57] Guay, M., Kansal, S., and Forbes, J. F., “Trajectory optimization for flat
dynamic systems,” Industrial & Engineering Chemistry Research, vol. 40, no. 9,
pp. 2089–2012, 2001.

[58] Hirschorn, R. M., “Invertibility of multivariable nonlinear control systems,” IEEE
Transaction on Automatic Control, vol. 24, pp. 855–865, Dec. 1979.

[59] Holett, P. G., Pudney, P. J., and Vu, X., “Local energy minimization in optimal
train control,” Automatica, vol. 45, no. 11, pp. 2692–2698, 2009.

[60] Hoschek, J., “Circular splines,” Computer-Aided Design, vol. 2, no. 11, pp. 611–618,
1992.

[61] Howlett, P. G., Milroy, I. P., and Pudney, P. J., “Energy-efficient train con-
trol,” Control Engineering Practice, vol. 2, no. 2, pp. 193–200, 1994.

[62] Hugger, J., “The theory of density representation of finite element meshes. examples
of density operators with quadrilateral elements in the mapped domain,” Computer
Methods in Applied Mechanics and Engineering, vol. 109, no. 1-2, pp. 17–39, 1993.

[63] Jackson, M. R., Zhao, Y., and Slattery, R. A., “Sensitivity of trajectory predic-
tion in air traffic management,” Journal of Guidance, Control, and Dynamics, vol. 22,
no. 2, pp. 219–228, 1999.

[64] Jacobson, D. H., Differential dynamic programming. Elsevier Scientific, 1970.

[65] Jacobson, M. and Ringertz, U. T., “Airspace constraints in aircraft emission
trajectory optimization,” Journal of Aircraft, vol. 47, pp. 1256–1265, Jul.-Aug. 2010.

[66] Jain, S. and Tsiotras, P., “Trajectory optimization using multiresolution tech-
niques,” Journal of Guidance, Control, and Dynamics, vol. 31, no. 5, pp. 1424–1436,
2008.

[67] Jain, S., Multiresolution strategies for the numerical solution of optimal control prob-
lems. PhD thesis, Georgia Institute of Technology, Mar 2008.

[68] Jung, D. and Tsiotras, P., “On-line path generation for small unmanned aerial
vehicles using b-spline path templates,” in AIAA Guidance, Navigation, and Control
Conference, AIAA-2008-7135, (Honolulu, HI), 2008.

[69] Karaman, S. and Frazzoli, E., “Incremental sampling-based algorithms for opti-
mal motion planning,” in Robotics: Science and Systems, (Zaragoza, Spain), 2010.

[70] Karelahti, J., Virtanen, K., and Öström, J., “Automated generation of realis-
tic near-optimal aircraft trajectories,” Journal of Guidance, Control, and Dynamics,
vol. 31, no. 3, pp. 674–688, 2008.

[71] Kato, O. and Sugiura, I., “An interpretation of airplane general motion and control
as inverse problem,” Journal of Guidance, Control, and Dynamics, vol. 9, no. 2,
pp. 198–204, 1986.

[72] Kavraki, L. E., Kolountzakis, M. N., and Latombe, J.-C., “Analysis of prob-
abilistic roadmaps for path planning,” in Proceedings of the 1996 IEEE International
Conference on Robotics and Automation, (Minneapolis, MN), 1996.

204

[73] Kelley, H. J., “Flight path optimization with multiple time scales,” AIAA Journal
of Aircraft, vol. 8, no. 4, pp. 238–240, 1971.

[74] Khmelnitsky, E., “On an optimal control problem of train operation,” IEEE Trans-
action on Automatic Control, vol. 45, pp. 1257–1265, Jul. 2000.

[75] Kirk, D. E., Optimal Control Theory: An Introduction. Prentice Hall, 1970.

[76] Krantz, S. G. and Parks, H. R., A Primer of Real Analytic Functions. Birkhäuser
Boston, 2002.

[77] Kreyszig, E., “On the calculus of variations and its major influences on the mathe-
matics of the first half of our century. Part I.,” The American Mathematical Monthly,
vol. 101, pp. 674–678, Aug.-Sep. 1994.

[78] Lantoine, G. and Russell, R. P., “A hybrid differential dynamic programming al-
gorithm for robust low-thrust optimization,” in AAS/AIAA Astrodynamics Specialist
Conference and Exhibit, no. AIAA-2008-6615, (Honolulu, HI), 2008.

[79] LaValle, S. M., Planning Algorithms. Cambridge University Press, 2006.

[80] LaValle, S. M. and Kuffner, J. J., “Randomized kinodynamic planning,” in
Proceedings of the 1999 IEEE International Conference on Robotics and Automation,
(Detroit, MI), 1999.

[81] Ligun, A. A. and Storchai, V. F., “On the best choice of nodes for approximation
by splines in the metric of lp,” Mathematicheskie Zametki, vol. 20, pp. 611–618, Otc.
1976.

[82] Lozano-Pérez, T. and Wesley, M. A., “An algorithm for planning collision-free
paths among polyhedral obstacles,” Communications of the ACM, vol. 22, no. 10,
pp. 560–570, 1979.

[83] Lu, P. and Pierson, B. L., “Optimal aircraft terrain-following analysis and tra-
jectory generation,” Journal of Guidance, Control, and Dynamics, vol. 18, no. 3,
pp. 555–560, 1995.

[84] Lu, P. and Pierson, B. L., “Optimal aircraft terrain-following flight with nonlin-
ear engine dynamics,” Journal of Guidance, Control, and Dynamics, vol. 19, no. 1,
pp. 240–242, 1996.

[85] Maekawa, T., Noda, T., Tamura, S., Ozaki, T., and Machida, K., “Curvature
continuous path generation for autonomous vehicle using b-spline curves,” Computer-
Aided Design, vol. 42, no. 4, pp. 350–359, 2010.

[86] Margraves, C. and Paris, S., “Direct tracjectory optimization using nonlinear
programming and collocation,” AIAA Journal of Guidance, Control, and Dynamics,
vol. 10, no. 4, pp. 338–342, 1987.

[87] Mattingly, J. D., Heiser, W. H., and Pratt, D. T., Aircraft Engine Design.
AIAA, 1987.

[88] Meek, D. and Walton, D., “Approximating smooth planar curves by arc splines,”
Journal of Computational and Applied Mathematics, vol. 59, no. 2, pp. 221–231, 1995.

205

[89] Miele, A., Flight Mechanics, Vol. I: Theory of Flight Paths. Reading, MA: Addison-
Wesley, 1962.

[90] Miele, A., “Optimal trajectories and guidance trajectories for aircraft flight through
windshears,” in Proceedings of the 29th IEEE Conference on Decision and Control,
vol. 2, (Honolulu, HI), pp. 737–746, Dec 1990.

[91] NASA, “Earth atmosphere model.” http://www.grc.nasa.gov/WWW/

K-12/airplane/atmosmet.html. retrieved Aug, 2009.

[92] Nieuwstadt, M. J. V. and Murray, R. M., “Real-time trajectory generation for
differentially flat systems,” International Journal of Robust and Nonlinear Control,
vol. 8, no. 11, pp. 995–1020, 1998.

[93] Nilsson, N. J., Principles of Artificial Intelligence. San Francisco: Morgan Kauf-
mann, 1980.

[94] Oberle, H. and Grimm, W., BNDSCO: a Program for the Numerical Solution of
Optimal Control Problems. Hamburger Beiträge zur angewandten Mathematik / B:
Berichte, Inst. für Angewandte Mathematik, 2001.

[95] O’Callaghan, J., “Group chairman’s aircraft performance study,” Tech. Rep., Na-
tional Transportation Safety Board, Dec. 2009.

[96] Pfeiffer, F. and Johanni, R., “A concept for manipulator trajectory planning,”
IEEE Journal of Robotics and Automation, vol. RA-3, pp. 115–123, Apr. 1987.

[97] Piazzi, A., Bianco, C. G. L., and Romano, M., “η3-splines for the smooth path
generation of wheeled mobile robots,” IEEE Transaction on Robotics, vol. 23, no. 5,
pp. 1089–1095, 2007.

[98] Plaku, E., Kavraki, L. E., and Vardi, M. Y., “Motion planning with dynamics
by a synergistic combination of layers of planning,” IEEE Transactions on Robotics,
vol. 26, no. 3, pp. 469–482, 2010.

[99] Polak, E., Optimization: Algorithms and Consistent Approximations. Springer, New
York, 1997.

[100] Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P.,
Numerical Recipes: The Art of Scientific Computing. Cambridge University Press,
3 ed., Aug. 2007.

[101] Rao, A. V., Benson, D., and Huntington, G. T., User’s Manual for GPOPS
Version 4.x: A MATLAB Package for Software for Solving Multiple-Phase Optimal
Control Problems Using hp-Adaptive Pseudospectral Methods, 2011. http://gpops.

sourceforge.net.

[102] Rao, A. V. and Mease, K. D., “Eigenvector approximate dichotomic basis method
for solving hyper-sensitive optimal control problems,” Optimal Control Applications
and Methods, vol. 20, no. 2, pp. 59–77, 1999.

[103] Ross, I. M., “User’s manual for DIDO: A MATLAB application package for solving
optimal control problems,” NPS Tech. Rep. MAE03005, Naval Postgraduate School,
Monterey, CA, Sep. 2003.

206

[104] Rouchon, P., Fliess, M., Lévine, M., and Martin, P., “Flatness, motion plan-
ning, and trailer systems,” in Proceedings of IEEE Conference on Decision and Con-
trol, (San Antonio, TX), pp. 2700–2705, 1993.

[105] Sabitov, I. K. and Slovesnov, A. V., “Approximation of plane curves by circular
arcs,” Computational Mathematics and Mathematical Physics, vol. 50, no. 8, pp. 1279–
1288, 2010.

[106] Safonova, A. and Rossignac, J., “Compressed piecewise-circular approximations
of 3d curves,” Computer-Aided Design, vol. 35, no. 6, pp. 533–547, 2003.

[107] Sakai, Y., Suzuki, S., Miwa, M., and Tsuchiya, T., “Flight test evaluation of
non-linear dynamc inversion controller,” in 46th AIAA Aerospace Sciences Meeting
and Exhibit, AIAA 2008-209, (Reno, Nevada), Jan. 7-8 2008.

[108] Scheuer, A. and Fraichard, T., “Continuous-curvature path planning for car-
like vehicles,” in IEEE International Conference on Intelligent Robots and Systems,
pp. 997–1003, 1997.

[109] Schultz, R. L., “Three-dimensional trajectory optimization for aircraft,” Journal
of Guidance, Control, and Dynamics, vol. 13, no. 6, pp. 936–943, 1990.

[110] Schwartz, A., Theory and Implementation of Numerical Methods Based on Runge-
Kutta Integration for Solving Optimal Control Problems. Ph.D. thesis, Berkeley, Uni-
versity of California, 1996.

[111] Sethian, J. A., “Curavature and the evolution of fronts,” Communications in Math-
ematical Physics, vol. 101, no. 4, pp. 487–499, 1985.

[112] Seywald, H., “Long flight-time range-optimal aircraft trajectories,” Journal of Guid-
ance, Control, and Dynamics, vol. 19, no. 1, pp. 242–244, 1994.

[113] Seywald, H., Cliff, E. M., and Well, K. H., “Range optimal trajectories for an
aircraft flying in the vertical plane,” Journal of Guidance, Control, and Dynamics,
vol. 17, no. 2, pp. 389–398, 1994.

[114] Seywald, H. and Kumar, R. R., “Method for automatic costate calculation,” Jour-
nal of Guidance, Control, and Dynamics, vol. 19, no. 6, pp. 1252–1261, 1996.

[115] Shiller, Z. and Gwo, Y.-R., “Dynamic motion planning of autonomous vehicles,”
Robotics and Automation, IEEE Transactions on, vol. 7, pp. 241 –249, Apr. 1991.

[116] Shiller, Z., “On singular time-optimal control along specified paths,” IEEE Trans-
actions on Robotics and Automation, vol. 10, pp. 561–566, Aug. 1994.

[117] Shiller, Z., “Time-energy optmal control of articulated systems with geometric
path constraints,” in Proceeding of IEEE International Conference on Robotic and
Automation, (San Diego, CA), pp. 2680–2685, 1994.

[118] Shiller, Z. and Lu, H.-H., “Computation of path constrained time optimal motions
with dynamic singularities,” Journal of Dynamic Systems, Measurement, and Control,
vol. 114, pp. 34–40, Mar. 1992.

207

[119] Shin, K. G. and McKay, N. D., “Minimum-time control of robotic manipulators
with geometric path constraints,” IEEE Transactions on Automatic Control, vol. AC-
30, pp. 531–541, Jun. 1985.

[120] Slattery, R. and Zhao, Y., “Trajectory synthesis for air traffic automation,” Jour-
nal of Guidance, Control, and Dynamics, vol. 20, no. 2, pp. 232–238, 1997.

[121] Sridhar, B., Ng, H. K., and Chen, N. Y., “Aircraft trajectory optimization and
contrails avoidance in the presence of winds,” Journal of Guidance, Control, and
Dynamics, vol. 34, pp. 1577–1583, Oct. 2011.

[122] Steinbach, M. C., Bock, H. G., and Longman, R. W., “Time-optimal extension
and retraction of robots: Numerical analysis of the switching structure,” Journal of
Optimization Theory and Applications, vol. 84, pp. 589–616, Mar. 1995.

[123] Stentz, A., “Optimal and efficient path planning for partially-known environments,”
in IEEE International Conference on Robotics and Automation, 1994.

[124] Strube, M. J., Sanner, R. M., and Atkins, E. M., “Dynamic flight guidance
recalibration after actuator failure,” in AIAA 1st Intelligent Systems Technical Con-
ference, (Chicago, IL), Sep. 20-22 2004.

[125] Suzuki, S., Komatsu, Y., Yonezawa, S., Masui, K., and Tomita, H., “Online
four-dimensional flight trajectory search and its flight testing,” in AIAA Guidance,
Navigation and Control Conference and Exibit, AIAA-2005-6475, Aug. 15-18 2005.

[126] Synge, J. L., “On the geometry of dynamics,” Philosophical Transactions of the
Royal Society of London. Series A, vol. 226, pp. 31–106, 1927.

[127] Tang, Y., Atkins, E. M., and Sanner, R. M., “Emergency flight planning for a
generalized transport aircraft with left wing damage,” in AIAA Guidance, Navigation
and Control Conference, (Hilton Head, SC), Aug. 2007.

[128] Tsuchiya, T., Ishii, H., Uchida, J., Ikaida, H., Gomi, H., Matayoshi, N., and
Okuno, Y., “Flight tracjectory optimization to minimize ground noise in helicopter
landing approach,” Journal of Guidance, Control, and Dynamics, vol. 32, pp. 605–615,
Mar.-Apr. 2009.

[129] Velenis, E. and Tsiotras, P., “Minimum-time travel for a vehicle with acceler-
ation limits: Theoretical analysis and receding horizon implementation,” Journal of
Optimization Theory and Applications, vol. 138, no. 2, pp. 275–296, 2008.

[130] Verscheure, D., Demeulenaere, B., Swevers, J., Schutter, J. D., and
Diehl, M., “Time-optimal path tracking for robots: A convex optimization ap-
proach,” IEEE Transaction on Automatic Control, vol. 54, pp. 2318–2327, Oct. 2009.

[131] Vossen, G., Rehbock, V., and Siburian, A., “Numerical solution methods for
singular control with multiple state dependent forms,” Optimization Methods and
Software, vol. 22, no. 4, pp. 551–559, 2007.

[132] Watts, R., Tsiotras, P., and Johnson, E., “Pilot feedback for an automated
planning aid system in the cockpit,” in 28th Digital Avionics Systems Conference,
(Orlando, FL), Oct. 2009.

208

[133] Yakimenko, O. A., “Direct method for rapid prototyping of near-optimal aircraft
trajectories,” Journal of Guidance, Control, and Dynamics, vol. 23, pp. 865–875,
Sep.-Oct. 2000.

[134] Yang, K. and Sukkarieh, S., “An analytical continuous-curvature path-smoothing
algorithm,” IEEE Transactions on Robotics, vol. 26, pp. 561–568, Jun. 2010.

[135] Zhao., Y. J., “Optimal patterns of glider dynamic soaring,” Optimal Control Appli-
cations and Methods, vol. 24, no. 2, pp. 67–89, 2004.

[136] Zhao, Y. and Tsiotras, P., “A density-function based mesh refinement algorithm
for solving optimal control problems,” in Infotech@Aerospace Conference, Seattle,
WA, AIAA-2009-2019, 2009. AIAA-2009-2019.

[137] Zhao, Y. and Tsiotras, P., “Time-optimal parameterization of geometric path for
fixed-wing aircraft,” in Infotech@Aerospace Conference, AIAA-2010-3352, (Atlanta,
GA), 2010.

[138] Zhao, Y. and Tsiotras, P., “Density functions for mesh refinement in numerical
optimal control,” Journal of Guidance, Control, and Dynamics, vol. 34, pp. 271–277,
Jan.-Feb. 2011.

[139] Zhao, Y. and Tsiotras, P., “A quadratic programming approach to path smooth-
ing,” in 2011 American Control Conference, (San Francisco, CA, USA), pp. 5324–
5329, Jun. 29-Jul. 01 2011.

209

VITA

Yiming Zhao obtained his Bachelor’s (2003) and Master’s (2006) degrees from the School of

Aeronautic Science and Engineering at Beijing University of Aeronautics and Astronautics

(BUAA), Beijing, China. Yiming joined the Ph.D. program in the School of Aerospace Engi-

neering at Georgia Tech in August 2006. He also obtained a Master’s degree in Mathematics

from the School of Mathematics at Georgia Tech in 2010. His research interest include real-

time optimization and control, efficient trajectory optimization algorithms, energy-optimal

motion planning for dynamical systems, and aircraft trajectory optimization.

210

Efficient and Robust Aircraft Landing Trajectory Optimization

Yiming Zhao

211 Pages

Directed by Professor Panagiotis Tsiotras

This thesis addresses the challenges in the efficient and robust generation and

optimization of three-dimensional landing trajectories for fixed-wing aircraft subject to pre-

scribed boundary conditions and constraints on maneuverability and collision avoidance. In

particular, this thesis focuses on the airliner emergency landing scenario and the minimiza-

tion of landing time.

The main contribution of the thesis is two-fold. First, it provides a hierarchical scheme

for integrating the complementary strength of a variety of methods in path planning and

trajectory optimization for the improvement in efficiency and robustness of the overall

landing trajectory optimization algorithm. The second contribution is the development of

new techniques and results in mesh refinement for numerical optimal control, optimal path

tracking, and smooth path generation, which are all integrated in a hierarchical scheme and

applied to the landing trajectory optimization problem.

A density function based grid generation method is developed for the mesh refinement

process during numerical optimal control. A numerical algorithm is developed based on this

technique for solving general optimal control problems, and is used for optimizing aircraft

landing trajectories. A path smoothing technique is proposed for recovering feasibility of

the path and improving the tracking performance by modifying the path geometry. The

optimal aircraft path tracking problem is studied and analytical results are presented for

both the minimum-time, and minimum-energy tracking with fixed time of arrival. The

path smoothing and optimal path tracking methods work together with the geometric path

planner to provide a set of feasible initial guess to the numerical optimal control algorithm.

The trajectory optimization algorithm in this thesis was tested by simulation experi-

ments using flight data from two previous airliner accidents under emergency landing sce-

narios. The real-time application of the landing trajectory optimization algorithm as part

of the aircraft on-board automation avionics system has the potential to provide effective

guidelines to the pilots for improving the fuel consumption during normal landing process,

and help enhancing flight safety under emergency landing scenarios. The proposed algo-

rithms can also help design optimal take-off and landing trajectories and procedures for

airports.

211

