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ABSTRACT 

PREVENTIVE MAINTENANCE AND REPLACEMENT SCHEDULING: 

MODELS AND ALGORITHMS 

Kamran S. Moghaddam 

April 23, 2010 

Preventive maintenance is a broad term that encompasses a set of activities aimed 

at improving the overall reliability and availability of a system. Preventive 

maintenance involves a basic trade-off between the costs of conducting 

maintenance/replacement activities and the cost savings achieved by reducing the 

overall rate of occurrence of system failures. Designers of preventive maintenance 

schedules must weigh these individual costs in an attempt to minimize the overall 

cost of system operation. They may also be interested in maximizing the system 

reliability, subject to some sort of budget constraint. 

In this dissertation, we present a complete discussion about the problem 

definition and review the literature. We develop new nonlinear mixed-integer 

optimization models, solve them by standard nonlinear optimization algorithms, and 

analyze their computational results. In addition, we extend the optimization models 

by considering engineering economy features and reformulate them as a multi

objective optimization model. We optimize this model by generational and steady 

state genetic algorithms as well as by a simulated annealing algorithm and 

demonstrate the computational results. obtained by implementation of these 
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algorithms. We perform a sensitivity analysis on the parameters of the optimization 

models and present a comparison between exact and metaheuristic algorithms in 

terms of computational efficiency and accuracy. Finally, we present a new 

mathematical function to model age reduction and improvement factor parameter 

used in optimization models. In addition, we develop a practical procedure to 

estimate the effect of maintenance activity on failure rate and effective age of multi 

component systems. 
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CHAPTER 1 

INTRODUCTION 

1.1. Preventive Maintenance and Replacement Scheduling 

Preventive maintenance is a broad term that encompasses a set of activities aimed 

at improving the overall reliability and availability of a system. All types of systems, 

from conveyors to cars to overhead cranes, have prescribed maintenance schedules 

set forth by the manufacturer that aim to reduce the risk of system failure. 

Preventive maintenance activities generally consist of inspection, cleaning, 

lubrication, adjustment, alignment, and/or replacement of sub-components that 

wear-out. Regardless of the specific system in question, preventive maintenance 

activities can be categorized in one of two ways, component maintenance or 

component replacement. An example of component maintenance would be 

maintaining proper air pressure in the tires of an automobile. Note that this activity 

changes the aging characteristics of the tires and, if done correctly, ultimately 

decreases their rate of occurrence of failure. An example of component replacement 

would be simply replacing one or more of the tires with new ones. 

Obviously, preventive maintenance involves a basic trade-off between the costs of 

conducting maintenance/replacement activities and the cost savings achieved by 

reducing the overall rate of occurrence of system failures. Designers of preventive 

maintenance schedules must weigh these individual costs in an attempt to minimize 
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the overall cost of system operation. They may also be interested in maximizing the 

system reliability, subject to some sort of budget limitation. Other criteria such as 

availability and demand satisfaction might be considered as the objective functions, 

but they will not be studied in this dissertation. The main problem is to find the best 

sequence of maintenance and replacement actions for each component in the system 

in each period over a planning horizon such that total costs are minimized subject to 

a constraint on reliability of the system or the overall reliability of the system is 

maximized subject to a constraint on budget of the system. 

1.2. Research Contributions 

In this dissertation, new optimization models, designed to find the optimal 

preventive maintenance and replacement schedules, are developed and solved via 

exact, and heuristic algorithms. In addition, a new mathematical age reduction and 

improvement factor model is developed. These models can be considered as the main 

research contributions. In particular, the following contributions are made: 

1. Two optimization models will be constructed based on extensions of previous 

work in particular, by Usher et al (1998). The optimization models are solved 

using a standard nonlinear mixed-integer programming algorithm. These 

models also provide a general framework to achieve optimal preventive 

maintenance and replacement policies and, with modifications, can be used as 

basic closed-form models for any type of system. 

2. A multi-objective optimization model is developed based on a set of basic 

assumptions and engineering economy considerations. This model is optimized 
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via generational and steady state genetic algorithms as well as by a simulated 

annealing algorithm, which provide Pareto optimal solutions. 

3. A sensitivity analysis on parameters of optimization models is performed and 

an extensive comparison of computational performance and accuracy of exact 

and metaheuristics algorithms is presented. 

4. A new mathematical model for estimating age reduction and the improvement 

factor parameter used in optimization models is constructed and analyzed. In 

addition, a practical procedure is developed to estimate age reduction and the 

improvement factor parameter in maintainable and repairable systems. 

1.3. Outline 

The remainder of this dissertation is organized as follows. In Chapter 2, a 

comprehensive literature review of models, algorithms and, applications of 

preventive maintenance and replacement scheduling is presented. In Chapter 3, 

system configuration and formulation of the optimization models are presented and 

their computational results are analyzed. Chapter 4 includes an extension of the 

Chapter 3 optimization models by introducing engineering economy parameters into 

a multi-objective optimization model. This model has been optimized by multi

objective generational and steady state genetic algorithms as well as by a multi

objective simulated annealing algorithm, and the computational results obtained by 

implementation of these algorithms are demonstrated. 

Chapter 5 deals with a sensitivity analysis on the parameters of the optimization 

models and also presents a comparison between of exact and heuristic algorithms in 

terms of computational efficiency and accuracy. Chapter 6 reviews current age 
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reduction and improvement factor models and introduces a new mathematical 

function and a practical procedure to estimate age reduction and the improvement 

factor parameter. Finally, in Chapter 7, conclusions and potential directions for 

future research are presented. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1. Introduction 

This chapter has three main sections. The first section presents a complete review of 

various optimization models and algorithms related to preventive maintenance and 

replacement scheduling. Section 2.3 presents a review of key work that utilizes 

simulation models of preventive maintenance and replacement scheduling. In 

Section 2.4, approaches that develop and use age reduction and improvement factor 

models are presented. We also review the applications of preventive maintenance 

and replacement models in a wide variety of systems such as in manufacturing and 

production systems, service systems, and power systems. Finally, we discuss 

potential research areas and summarize the reviewed papers. 

2.2. Optimization Models 

2.2.1. Analytical Methods 

Analytical methods have been broadly used as a standard optimization approach to 

achieve optimal maintenance and replacement schedules in engineering problems. 

Canfield (1986) studies preventive maintenance optimization models by focusing on 

different aspects of the failure function on systems reliability. He mentions that 
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preventive maintenance actions do not change or affect deteriorating behavior of 

failure rate, so the assumed failure function is unchanged with maintenance actions. 

He assumes an increasing failure rate based on the Weibull distribution function for 

his study and determines an optimal cost of maintenance policies by defining the 

average cost-rate of system operation and applying analytical method as the solution 

approach. McClymonds and Winge (1987) present methods to achieve optimal 

preventive maintenance schedules for nuclear power plants, though they have not 

been applied successfully. They consider plant availability and reliability as the 

objective functions and develop models based on assigning resources to preventive 

and corrective maintenance activities. 

Martin (1988) presents a preventive maintenance optimization model, which has 

been developed, and implemented by Columbia Hospital in Milwaukee based on 

plant technology and safety management standards. The hospital designed this 

program in order to use the optimal preventive maintenance plan for its electrical 

distribution equipment to improve safety, serviceability, reliability and total cost. 

Hsu (1991) develops an optimization model in order to determine optimal preventive 

maintenance schedules for a serial multi-station manufacturing system. He 

mentions that most models use a simulation approach at that time but his model is 

focused on a mathematical programming approach. The computational results of his 

study show that the operating features of the stations are interrelated and one must 

investigate the effect of preventive maintenance activities on all stations at the same 

time. 

Jayabalan and Chaudhuri (1992) present two different preventive maintenance 

scheduling models for maintaining bus engines in a public transit network based on 

minimization of total cost over a finite planning horizon. They construct the models 
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based on the concept of mean time to failure (MTTF) of the engines and assume an 

upper bound for the failure rates. The first model is based on different Weibull 

failure functions between preventive maintenance activities and the second model 

assumes that the each preventive maintenance action reduces the effective age of 

the system by a certain amount. The authors present computational results and 

show the effectiveness of the models in a real case study. Westman and Hanson 

(2000) develop a mathematical model to determine the mean time to failure (MTTF) 

as a function of uptime for a workstation in a multi-stage manufacturing system. 

The authors assume that the uptime of the workstation has an increasing rate and 

is reduced if preventive maintenance actions are performed. They mention that this 

methodology captures the flexibility and multi-stage properties of manufacturing 

systems and can generate preventive maintenance policies. 

Fard and Nukala (2004) study and review the application of different stochastic 

process such as homogenous Poisson process (HPP), non-homogenous Poisson 

process (NHPP) , branching Poisson process (BPP) , and superimposed renewal 

process (SRP) in preventive maintenance scheduling problems. They present current 

methods based on non-homogenous processes for modeling and optimization of single 

and multi-component systems. They assume that maintenance actions do not affect 

the failure rate of system; hence, they suggest that non-homogenous Poisson process 

can be applied and used to model the failure rate of repairable service systems. 

Ying et aZ. (2005) develop an integrated optimization model that simultaneously 

considers preventive maintenance and production scheduling decision variables. 

Their model minimizes total tardiness of jobs and makes a 30% reduction in 

expected total tardiness of jobs. Pongpech et aZ. (2006) present an optimization 

model that minimizes total maintenance costs and penalty costs for used equipment 
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under lease. They assume a Weibull distribution function for failure rate of 

equipment, develop a 4-parameter model, and develop a 4-stage algorithm based on 

an analytical approach to solve it. They apply their model to several numerical 

examples with different contract assumptions and find optimal policy in each 

situation. 

Panagiotidou and Tagaras (2007) develop an optimization model that optimizes 

preventive maintenance schedules in a manufacturing process. The authors consider 

two different states for components, in-control or out-of-control, and before complete 

failure. They treat the time to shift and the time to failure as random variables and 

express them with Weibull and Gamma distribution functions. In addition, they 

combine age-based and condition-based concepts into the optimization model with 

the minimization of total cost and solve it by applying Karush-Kuhn-Tucker (KKT) 

conditions of optimality to obtain an optimal preventive maintenance schedule. 

Finally, they present several numerical examples to demonstrate the effectiveness of 

their methodology. 

Shirmohammadi et al. (2007) develop an age-based nonlinear optimization model 

to determine an optimal preventive maintenance schedule for a single-component 

system. They define two types of decision variables, time between preventive 

replacements and cut-off age, and assume an expected cost of failures, maintenance, 

replacement costs, and total cycle cost in the cost function and consider cost per unit 

time as the objective function. In order to solve the optimization model and show the 

effectiveness of the proposed approach, they utilize MAPLE and solve the model for 

a numerical example by setting different values for an improvement factor, which is 

assumed as a constant in the model. 
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2.2.2. Exact Algorithms 

Westman et aZ. (2001) formulate a mathematical model to find an optimal production 

schedule via a Gaussian Poisson function with state dependent Poisson process. 

They consider the total cost of production and maintenance scheduling as the 

objective function and use a stochastic dynamic programming approach, and 

demonstrate application of the model in a numerical example. 

Yao et aZ. (2001) present a two-layer hierarchical model that optimizes the 

preventive maintenance schedules in semiconductor manufacturing operations. 

They develop a Markov decision process and optimize this model via a mixed-integer 

linear programming model. They define profit of cluster tools production as the 

objective function to be maximized and consider a time window for preventive 

maintenance activities and limitation of resources as nonlinear constraints. In order 

to achieve a global optimum, they transform the nonlinear functions into linear 

functions and use EasyModeler and OSL as the optimization software. In addition, 

they utilize AutoSched AP as the simulation software in order to construct a 

simulation model to evaluate the performance of the optimization model in a real 

case study with 11 preventive maintenance tasks in a one-week planning horizon 

and compare the obtained optimal results with the actual preventive maintenance 

plan. Later Yao et aZ. (2004) extend their previous model to be more general, apply 

this extended model to a production line of a semiconductor manufacturing system, 

and show the application of it via numerical examples. 

Han et aZ. (2004) develop a nonlinear optimization model to minimize the total 

cost of maintenance and replacement actions under reliability constraints for 

production machine in a production system. Their model considers the Weibull 
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distribution as the failure function of the machine and can be used as a decision 

support system for job shop scheduling. Jayakumar and Asgarpoor (2004) present a 

linear programming model in order to optimize the maintenance policy for a 

component with deterioration and random failure rate. They determine optimal 

mean times of minor and major preventive maintenance actions based on 

maximizing the availability of the component. They utilize MAPLE and UNGO to 

solve the linear programming model of their Markov decision process. 

Zhao et aZ. (2005) present an age-based preventive maintenance optimization 

model for a gas turbine power plant. They develop a model with profit instead of cost 

as the objective function and considered power plant performance, reliability and 

market dynamics. In order to determine the effects of economics on maintenance 

costs and frequencies, they utilize a sequential approach and show its effectiveness 

by using real data of based load combined cycle power plant with a gas turbine unit. 

Canto (2006) presents an optimization model to schedule a preventive maintenance 

of a real power plant over a long-term planning horizon. He considers the total cost 

of various operations as the objective function and uses Bender's decomposition to 

solve a mixed-integer linear programming model. 

Budai et aZ. (2006) present two mixed-integer linear programming models for 

preventive maintenance scheduling problems. The authors assume the total cost 

including possession costs, maintenance costs, and the penalty costs of early 

consecutive maintenance activities as the objective function for both models. They 

present and prove a theorem about the NP-hard structure of the preventive 

maintenance scheduling problems and use GAMS software to implement the 

optimization models. They use CPLEX as the optimization software to find an 

optimal preventive maintenance schedule. They apply their model to a case study of 
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railway maintenance scheduling. In addition, they develop four heuristic 

optimization algorithms, two for each model, and compare the computational results 

obtained from exact algorithms in CPLEX with the results achieved from heuristic 

algorithms and mention the advantages of each solution methodology. 

Another excellent study in this area is by Tam et oZ. (2006), who develop three 

nonlinear optimization models: one that minimizes total cost subject to satisfying a 

required reliability, one that maximizes reliability at a given budget, and one that 

minimizes the expected total cost including expected breakdown outages cost and 

maintenance cost. They utilize MS-Excel Solver as the optimization software that 

uses a generalized reduced gradient algorithm to solve the nonlinear optimization 

models. Using these models, they determine optimal maintenance intervals for a 

multi-component system but their models consider only mai~tenance actions for 

components and do not consider replacement actions. 

Robelin and Madanat (2006) develop a maintenance optimization model for 

bridge decks via a Markov chain process. In this paper, they classify optimization 

models into two categories, (1) physically based deterioration models with a limited 

number of decision variables, and (2) simpler deterioration models with more and 

sophisticated decision variables. They apply a Markov chain methodology with 

states based on history of deterioration and maintenance actions and utilize 

dynamic programming as the solution approach to solve a Markov decision process. 

As a case study, they apply their approach to optimize the maintenance policy of 

bridges. 

Alardhi et oZ. (2007) present a binary integer linear programming model in order 

to find the best preventive maintenance schedule in separated and linked 

cogeneration plants. The researchers define the availability of the power and 
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desalting equipments as the objective function to be maximized, and consider the 

maintenance time window, maintenance completion duration, logical operational, 

resource limitation, maintenance crew availability, efficiency measures, and demand 

as the set of constraints. They apply their model in two co-generation plants with 7 

units and 42 pieces of equipment in Kuwait, over a 52-week planning horizon, and 

utilize LINGO as the optimization software to optimize the model. In addition, they 

perform a sensitivity analysis on the model to assess the robustness and analyze the 

effect of expanding the planning horizon, reducing the resources, and increasing the 

demand on the maintenance strategies. 

Kuo and Chang (2007) develop an integrated maintenance scheduling and 

production planning optimization model for a single machine based on a cumulative 

damage process and the effect of preventive maintenance strategies on production 

schedules in order to minimize total tardiness. The authors express that in the 

optimal strategy if jobs have a certain process time with different respective due 

dates, the optimal production schedule sorts the jobs by earliest due date and if jobs 

have certain due dates with different process time, it sorts them by shortest process 

time. In addition, they mention that the optimal maintenance policy is a constraint 

on the production schedule when the machine shuts down due to cumulative damage 

failure process. The computational results achieved by dynamic programming show 

that by increasing the number of jobs the effect of jobs due dates on the optimal 

maintenance policy is decreased. 

2.2.3. Heuristics and Meta-Heuristics Algorithms 

Genetic algorithms, as a major optimization approach, have been presented in 

several research papers. Usher et aZ. (1998) present an optimization maintenance 
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and replacement model for a single-component system. They determine an optimal 

preventive maintenance schedule for the system subject to deterioration by 

considering the time value of money in all future costs, the cost of the increasing 

rate of occurrence of failure over time and the use of an improvement factor to 

provide for the case of imperfect maintenance actions. In addition, they provide a 

comparison of computational results among random search, genetic algorithm, and 

branch and bound algorithms. 

One of the most notable studies m the area of reliability and maintenance 

optimization for multi-state multi-component systems is found in Levitin and 

Lisnianski (2000). They define a multi-state system in which all or some of the 

components have different performance levels, from proper functioning to complete 

failure and the reliability of the system as its ability of satisfying the demand levels. 

They formulate an optimization model to determine preventive maintenance 

schedules that affect the effective age of components. Their model is based on 

minimization of cost subject to a required level of reliability. They apply a universal 

generating function technique and use a genetic algorithm to determine the best 

maintenance strategy. Levitin and Lisnianski (2000) present additional research in 

which an optimization model was developed in order to find an optimal replacement 

schedule in multi-state series-parallel systems. They consider an increasing failure 

rate based on the expected number of failures during time intervals and define the 

summation of maintenance activities cost along with cost of unsupplied demand due 

to failures of components as the objective function. Finally, they utilize a universal 

generating function approach and apply a genetic algorithm to find an optimal 

maintenance policy. 
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Wang and Handschin (2000) develop a new genetic algorithm by modifying the 

basic operators, crossover and mutation operators of a standard genetic algorithm 

based on the specific characteristics of a preventive maintenance scheduling problem 

for power systems. They improve the computational complexity of their genetic 

algorithm by considering a code-specific and constraint-transparent integrated 

coding method to achieve faster convergence and to prevent production of infeasible 

solutions. As the implementation methodology, an object oriented programming 

approach is applied and the effectiveness of the new genetic algorithm shown via 

theoretical analysis and simulation results to compare with a traditional genetic 

algorithm. 

Tsai et aZ. (2001) consider two activities, imperfect maintenance, and 

replacement, in their preventive maintenance optimization model. They model 

imperfect maintenance activities based on the concept of an improvement factor, 

which is determined by a quantitative assessment procedure. They use a genetic 

algorithm to find an optimal preventive maintenance schedule while the system 

unit-cost life is considered as the objective function. As a case study, they test a 

mechatronic system to show the effectiveness of their proposed model and algorithm. 

Cavory et aZ. (2001) present an optimization model to schedule preventive 

maintenance tasks of all machines in a single-product manufacturing production 

line. They assume that each machine should be assigned to each operator and 

considered the total throughput of the line as the objective function to be maximized. 

At the first step, they formulate the optimization model and analyze it via an 

analytical approach. Then, they used C++ as a programming environment and 

applied a genetic algorithm in order to find the best combination of preventive 

maintenance tasks. In addition, they construct an experimental design to set and 
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analyze the parameters of the genetic algorithm. Then, they utilize the Taguchi 

method and statistical analysis to validate the results. Finally, an application of the 

proposed approach is performed in an actual production line of car engines. 

Leou (2003) presents an optimization model to find an optimal preventive 

maintenance schedule in a multi-component system. He considers the total cost of 

operations and maintenance activities along with reliability as the main criteria of 

the system and transfers them into the objective function by defining the degree of 

violation from required reliability. In addition, he defines the maintenance crew and 

duration of maintenance as the constraints of the system. He applies his 

optimization model in a case study with six electric generators and utilizes a genetic 

algorithm as the optimization methodology to determine the best preventive 

maintenance schedule. 

Han et al. (2003) consider the recurSIve nature of the failure rate between 

preventive maintenance cycles and develop a nonlinear optimization model based on 

repair cost, preventive maintenance cost, and production loss cost in a production 

system. They apply a genetic algorithm as the optimization technique and mention 

that their model can be considered in decision support systems for maintenance and 

job shop scheduling. Bris et al. (2003) consider cost and availability as the systems 

criteria in their research. They optimize a mathematical model including cost in the 

objective function and availability as the constraint by using a genetic algorithm to 

find the best preventive maintenance schedule. They use a time-dependent 

Birnbaum importance factor to generate the ordered sequence of inspection times 

and utilize MATLAB to calculate the system availability via a Monte Carlo 

simulation approach. 
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Adzakpa et al. (2004) present an application of combined maintenance 

scheduling and job assignment model of distribution systems. They develop an 

optimization model that considers total cost of maintenance actions as the objective 

function and availability in a given time-window and precedence among consecutive 

standby jobs and their emergency as constraints of the model. They show that their 

model is NP-hard to solve and because of that, they use a heuristic optimization 

algorithm to solve the model. Li and Qian (2005) present a real time preventive 

maintenance optimization model for cluster tools in a semiconductor manufacturing 

system. They consider the standpoint of the system and used a genetic algorithm as 

the solution procedure. 

Samrout et al. (2005) use an ant colony algorithm to solve the problem that was 

previously optimized via a genetic algorithm. They define maintenance and 

inspection periods for series of components and use MATLAB as the programming 

environment to solve their model and compare the computational results with the 

results obtained by genetic algorithm. Sortrakul et al. (2005) present an 

optimization model of integrated preventive maintenance scheduling and production 

planning for a single machine. The authors mention that these problems have been 

tackled separately in several papers but they have not been considered together in 

real manufacturing systems. They consider the total weighted expected job 

completion time as the objective function and optimize the combinatorial 

optimization model via a genetic algorithm. As the result, they express the 

advantages and effectiveness of their approach, which can be used to solve actual 

manufacturing problems. 

Cassady and Kutanoglu (2005) develop and present an integrated preventive 

maintenance and production scheduling mathematical model for a single-machine. 
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They consider total weighted expected completion time as the objective function that 

should be minimized. Their model allows multiple maintenance activities and 

explicitly captures the risk of not performing maintenance actions. They employ a 

heuristic approach to solve the model and compare obtained computational results of 

an integrated model with the results achieved from solving preventive maintenance 

scheduling and job scheduling problems independently. 

EI-Ferik and Ben-Daya (2006) present an age-based hybrid model for imperfect 

preventive maintenance scheduling problem. The authors review different policies 

and the models developed by other researchers and propose a new sequential age

based analytical model. They assume that the imperfect preventive maintenance 

activities reduce the effective age of the system but increase the failure rate and 

presented mathematical formulations to determine the adjustment factors for both 

failure rate and age reduction coefficient. They construct an optimization model 

based on their analytical models, consider the total cost as the objective function, 

and solve the optimization model via a new heuristic algorithm in a numerical 

example. 

Duarte et al. (2006) present a model and a heuristic algorithm for maintenance 

scheduling of a system with a series of components. In this research, they assume 

that all components have linearly increasing failure rates with a constant 

improvement factor for imperfect maintenance. In addition, they consider the total 

cost as the objective function and the total downtime as the main constraint. In 

terms of maintenance activities, they define preventive and corrective maintenance 

for each component. Finally, their algorithm optimizes the interval of time between 

maintenance actions for each component over a planning horizon. 
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Limbourg and Kochs (2006) propose several techniques to represent the decision 

variables in preventive maintenance scheduling models that use heuristics and 

meta-heuristics optimization algorithms. They test various non-standard approaches 

and compare them to binary representations by a heuristic algorithm and the 

computational results show the effectiveness of their approach. In addition, they 

apply some modified crossover and mutation procedures in a genetic algorithm and 

show the improvement in performance of the algorithm in terms of computational 

time and accuracy. 

Additional research on the application of genetic algorithms to maintenance 

optimization has been done by Lapa et al. (2006). They consider flexible intervals 

between maintenance actions and mention the advantage of this assumption over 

the common methodologies of continuous fitting of the schedules. They develop a 

mathematical model that includes preventive and corrective maintenance actions 

and the associated cost with them, outage times, reliability of the system, and 

probability of imperfect maintenance. Because their model is a nonlinear large-scale 

optimization model, they utilize a genetic algorithm as the solution procedure. In 

addition and as a case study, they apply their model to a high-pressure injection 

system to measure the effectiveness oftheir methodology. 

Shum and Gong (2007) recently present an application of a genetic algorithm to 

optimize preventive maintenance schedules of a production machine. They consider 

maintenance and replacement frequency along with purchasing strategy and the 

size of the maintenance workforce as the decision variables and total cost as the 

objective function. They examine the effect of these costs on the optimal 

maintenance schedule in a numerical example. Other meta-heuristics have been 

used as the combinatorial optimization techniques to solve maintenance scheduling 

18 



problems. Zhou et al. (2007) demonstrate an age based preventive maintenance 

scheduling model combined with production planning optimization model in order to 

maximize availability of a production machine. The authors use a heuristic 

algorithm to obtain an optimal schedule that minimizes the makespan. They also 

apply a simulation approach to validate the heuristic algorithm and to show its 

effectiveness in solving flow shop scheduling problems of integrated production 

planning with preventive maintenance scheduling. 

2.2.4. Hybrid Models and Algorithms 

Kim et al. (1994) combine a genetic algorithm with a simulated annealing in order to 

optimize a large-scale and long-term preventive maintenance and replacement 

scheduling problem. In their research, the acceptance probability of a simulated 

annealing method is considered as a measure for individual survival in the genetic 

algorithm. By using this approach, they achieve a near optimal solution in a short 

period of time compared to the computational time of a simple genetic algorithm. As 

a case study, they optimize a long-term maintenance scheduling problem of a 

thermal system and show the effectiveness of their model. 

Tan and Kramer (1997) develop a general framework for preventive maintenance 

optimization problems in chemical process operations. They assume a Weibull 

distribution function for failure rate and consider different maintenance activities 

that can be performed. They develop a methodology that combines a Monte Carlo 

simulation with a genetic algorithm to solve opportunistic maintenance problems 

with a non-deterministic objective function. They apply their approach to two case 

studies to compare the results obtained from their proposed model with the results 
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achieved from an analytic approach, and the Monte Carlo simulation with a neural 

network. Finally, they mention the advantages of their approach over other 

approaches. 

Marseguerra et aZ. (2002) develop a condition-based maintenance scheduling 

model for multi-component systems and use a Monte Carlo simulation model to 

predict the degradation level in a continuously monitored system. They apply a 

genetic algorithm to optimize the degradation level after maintenance actions in a 

multi-objective optimization model with profit and availability as the objective 

functions. In addition, they consider a simulation model to describe the dynamics of 

a stress-dependent degradation process in load-sharing components. Based on the 

computational results, they mention that the combination of a genetic algorithm 

with Monte Carlo simulation is an effective approach to solve combinatorial 

maintenance scheduling optimization models. 

Charles et aZ. (2003) present a preventive maintenance optimization model in 

order to minimize total maintenance costs in a production system. In this paper, 

they consider productive maintenance, corrective maintenance and preventive 

maintenance actions along with production operations as well as the related 

associated costs. They assume a Weibull distribution function for failure rate and 

utilize MELISSA C++ as discrete-event production-oriented simulation software to 

evaluate different scenarios. As a case study, they analyze a prototype 

semiconductor manufacturing workshop to demonstrate the proposed approach and 

mention that this model has general structure that can be applied for other kind of 

manufacturing systems. 

Shalaby et aZ. (2004) develop an optimization model for preventive maintenance 

scheduling of multi-component and multi-state systems. They define sequence of 
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preventive maintenance activities as decision variables and the summation of 

preventive maintenance, minimal repair, and downtime costs as the objective 

function. In addition, they consider system reliability, minimum intervals between 

maintenance actions, and crew availability as the constraints into the model. 

Finally, a combination of genetic algorithm and simulation was utilized to optimize 

the model. Allaoui and Artiba (2004) present a combination of simulation and 

optimization models in order to solve the NP-hard hybrid flow shop scheduling 

problem with maintenance constraints and multiple objective functions based on 

flow time and due date. In addition, they consider setup times, cleaning times, and 

transportation times in the model and mention that the performance of the 

algorithm can be affected by the number of breakdown times. Finally, they prove 

that the effectiveness of the simulated annealing algorithm is better than other 

heuristic algorithms with the same conditions. 

Suresh and Kumarappan (2006) develop an optimization model and use a genetic 

algorithm combined with simulated annealing. The authors define customer 

satisfaction at the objective function and apply their method to determine an 

optimal preventive maintenance schedule in a power system. They mention that the 

method could produce better solutions if some changes and modification were made 

into the solution procedure. As a case study, they test the method on 62-unit state 

electrical system of Victoria and show the advantages of the their proposed 

approach. Samrout et oZ. (2006) present another paper about the combination of an 

ant colony algorithm and a genetic algorithm to optimize a large-scale preventive 

maintenance scheduling problem. They divide the objective function of their problem 

into two sections and then utilize each algorithm to improve each section separately. 
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They mention that using hybrid algorithm in a large-scale problem is more efficient 

than using a simple algorithm. 

Jin et aZ. (2006) develop a preventive maintenance optimization model for a 

multi-component production process. They define a combination of mechanical 

service, repair, and replacement activities for each component and use Markov 

decision process to present the transition function of probability for maintenance 

activities over the planning horizon. In addition, they consider required reliability of 

the system as a constraint and total preventive maintenance cost as the objective 

function of the model. As the solution procedure, a simulation approach was utilized 

to find an optimal schedule. The authors describe that considering the combination 

of preventive maintenance activities can reduce more cost in comparison with the 

situation that different activities are considered separately. 

Ruiz et aZ. (2007) present comprehensive research in the area of integrating 

preventive maintenance scheduling and production planning. They define three 

different policies for preventive maintenance schedules; preventive maintenance at 

fixed predefined time intervals, preventive maintenance for maximizing equipment 

availability, and maintaining a minimum reliability threshold over the planning 

horizon. The minimization of the total manufacturing time of the sequence 18 

considered as the main criterion. The authors apply six different adaptations of 

heuristic and meta-heuristic algorithms to evaluate the last two policies for two sets 

of problems and mention that ant colony and genetic algorithm solve these problems 

effectively. Finally, they conclude that integrated preventive maintenance 

scheduling and production planning optimization problems along with meta

heuristic algorithms can be successfully applied in flowshop problems. In addition, 
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they suggest that one can define more criteria and consider the problem as a multi

objective optimization model. 

2.2.5. Multi-Objective Models and Algorithms 

Multi-objective maintenance scheduling optimization models have been presented in 

several papers. Kralj and Petrovic (1995) present a novel approach in preventive 

maintenance scheduling of thermal generating systems. The authors develop a 

large-scale multi-objective combinatorial optimization model with three objective 

functions and a set of constraints. They consider minimization of total fuel costs, 

maximization of reliability in terms of expected unserved energy, and minimization 

of technological concerns as the objective functions. In addition, they define 

maintenance duration, maintenance continuity, maintenance season, maintenance 

sequence of thermal units of the same class, limitation on simultaneous 

maintenance of thermal units, and limitation on total capacity on maintenance due 

to labor and resources as the constraints of the model. They develop a multi

objective preventive maintenance scheduling software based on a multi-objective 

branch-and-bound algorithm implemented in FORTRAN. Finally, the researchers 

apply their methodology to a real system of 8 power plants with 21 thermal units 

with 11 maintenance classes over 31 weeks as the planning horizon. 

Chareonsuk et al. (1997) develop a multi-criteria preventive maintenance 

optimization model to find an optimal preventive maintenance interval of 

components in a production system. In this study, the authors consider an age-based 

failure rate for components by fitting a Weibull distribution function to data and 

define expected total cost per unit time and the reliability of the production system 
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as the main criteria. In following, they utilize a preference ranking organization 

method for enrichment evaluations (PROMETHEE) as the solution approach and 

define alternative decisions as the preventive maintenance intervals. By using this 

approach, they can aggregate preferences of alternatives by combining the weighted 

values of the preference functions of the complete set of criteria. As a case study, 

they apply their methodology in a paper factory and used PROMCALC as the 

optimization software. Finally, they mention the advantage of their approach in 

which decision makers and managers can input various criteria into the model and 

perform sensitivity analysis on the optimal solutions. 

Leng et aZ. (2006) present an integrated preventive maintenance scheduling and 

production planning multi-objective optimization model for a single machine. They 

use a chaotic particle swarm optimization algorithm to solve the model and show its 

application and effectiveness via numerical examples. Konak et aZ. (2006) present a 

comprehensive study on multi-objective genetic algorithms and their applications in 

reliability optimization problems. They review 55 research papers and demonstrate 

the recent techniques and methodologies. 

Quan et aZ. (2007) develop a novel multi-objective genetic algorithm in order to 

optimize preventive maintenance scheduling problems. They define the problem as a 

multi-objective optimization problem by considering the minimization of workforce 

idle time and the minimization of maintenance time and mention that there is a 

tradeoff between the objective functions. As the solution procedure, they use utility 

theory instead of dominance-based Pareto search to determine the non-inferior 

solutions and show the advantage of this method via a numerical example. 

Verma and Ramesh (2007) integrate systems and sub-systems of a large 

engineering plant into higher modular assemblies and apply a multi-objective 
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preventive maintenance scheduling approach. They model this problem as a 

constrained nonlinear multi-objective mathematical program with reliability, cost, 

and non-concurrence of maintenance periods and maintenance start time into the 

objective functions and use a genetic algorithm to optimize the model. 

Taboada et aZ. (2008) present a recent study in this area. They develop a multi

objective genetic algorithm in order to solve multi-state reliability design problems. 

The authors utilize the universal moment generating function to measure the 

reliability and availability criteria in the system. They apply their approach into two 

examples; the first one is a system of five units connected in series in which each 

component has two states, functioning properly, or failure and the second one is a 

system of three units connected in series. In this system, each component has 

multiple states with different levels of performance, which range from maximum 

capacity to total failure. They utilize MATLAB as the programming environment, 

and show the effectiveness of their approach in terms of computational times and 

obtained non-inferior solutions. 

2.3. Simulation Models 

2.3.1. Monte Carlo Simulation 

Bottazi et aZ. (1992) present the results of a systematic collection of actual failure 

times and preventive and corrective maintenance activities of 900 buses over a 

period of five years. They create an updatable database to estimate the failure 

distribution functions and to evaluate the influence of systematic preventive and 

corrective maintenance actions. They consider the total cost and availability as the 

objective functions and apply a Monte Carlo simulation approach to evaluate the 
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model. They compare different maintenance policies and present computational 

results of their model. 

Billinton and Pan (2000) also develop a simulation model, which is based on the 

Monte Carlo simulation approach, to determine the total failure frequency and the 

optimum maintenance interval for a parallel-redundant system. The authors 

present a modified distribution function and assume an exponential distribution 

function for component useful life and a Weibull distribution function for the wear 

out period. The procedure includes construction of a mathematical model and 

definition of the stopping rule in simulation for a parallel-redundant system. They 

state that if the shape parameter of the Weibull distribution function increases, the 

optimum maintenance interval decreases. Finally, they show that a two-component 

parallel-redundant system has a structure, which can be considered for minimal cut 

set analysis that is used for evaluation of power systems reliability. 

Zhou et aZ. (2005) present an approach for sequential preventive maintenance 

scheduling based on the concept of age reduction due to imperfect maintenance 

actions. They consider an assumption for the time of imperfect maintenance actions 

based on required reliability of the system. They utilize a hybrid recursive method 

based on an assumed constant improvement factor and increasing failure rate and 

develop an optimization model with a maintenance cost rate in the life cycle of the 

system as the objective function. Finally, they apply Monte Carlo simulation and 

describe how their computational results can be used in decision support systems of 

maintenance scheduling problems. 

Marquez et aZ. (2006) develop a simulation model to find the best preventive 

maintenance strategy in semiconductor manufacturing plants. The authors model 

the effective age of equipment, availability of equipment, maintenance activity 

26 



backlog, and preventive maintenance policies and consider different wafer 

production scenarios in a Monte Carlo continuous time simulation model. They 

analyze and compare different maintenance strategies on the status of 

manufacturing equipments and operating conditions of the wafer production flow. 

Furthermore, they describe how the combination of the effective age concept with 

availability-based models increases the throughput and provides better results than 

the simple age-based models. 

2.3.2. Discrete-Event and Continuous Simulation 

Goel et al. (1973) present a simulation model and develop a statistical analysis that 

considers three different types of preventive maintenance activities by defining 

stochastic and deterministic decision variables as well as unavailability and cost as 

the main objectives. In addition, they make a 2-level sequential fractional factorial 

design in order to facilitate their simulation model. By designing the simulation 

model based on experimental design approach, their model finds the best set of 

preventive maintenance schedules for ground electronics systems. 

Burton et al. (1989) develop a simulation model to evaluate the performance of a 

job shop. In this research, the effectiveness of the preventive maintenance 

scheduling under different conditions such as shop load, job sequencing rule, 

maintenance capacity, and strategy is determined and presented. Krishnan (1992) 

develops a simulation model to evaluate maintenance schedules for an automated 

production line in a steel rolling mill plant. He considers three different 

maintenance policies as opportunistic, failure, and block with the percent of 

availability as the objective function. He shows that the existing maintenance policy 
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only includes the failure and block maintenance actions. By using the historical data 

of maintenance activities in the simulation model, an optimal preventive 

maintenance schedule is obtained in the form of a checklist. 

Mathew and Rajendran (1993) present a simulation model in order to determine 

the frequency of the shutdown for periodic system overhaul, preventive and 

corrective maintenance, and inspections in a sugar manufacturing plant. They 

utilize a time-dependent simulation model to minimize the total cost including 

maintenance costs and downtime losses. Paz et al. (1994) develop a two-stage 

knowledge base for a maintenance supervisor assistant system. This knowledge base 

interacts with maintenance managers on a periodic basis to select the proper 

preventive maintenance plan for the next period. The first stage deals with an 

object-oriented computer simulation model to monitor different preventive 

maintenance schedules that include preventive maintenance polices, staffing 

policies, downtime costs, simultaneous downtime practices, travel time impacts, and 

blocking situations as the systems specifications. In addition, they consider overall 

machine availability, critical machine availability, worker utilization, cost of 

maintenance activities, and work order completion time as the systems criteria. At 

the second stage, they make a knowledge engineering environment to use the 

computational results obtained from a simulation model and send feedback to the 

first stage. 

Joe et al. (1997) develops a simulation model in order to evaluate different 

preventive maintenance strategies for a fleet of vehicles in the St. Louis 

metropolitan police department. He utilizes GPSS as the simulation software, 

analyzes several strategies to improve the effectiveness and efficiency of operations, 

and presents the best policy. Savsar (1997) develops a simulation model in order to 
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investigate effect of different preventive maintenance strategies in a just-in-time 

production system. He constructs a simulation model of a 5-station production 

system and considers throughput rate, average equipment utilizations, and total 

work-in-process as the performance measures of the production system. After 

running the simulation model and analyzing the computational results, he mentions 

that preventive and corrective maintenance policies have a high impact on the 

performance measures in just-in-time production systems and by combining the 

maintenance activities and just-in-time operations one can improve the effectiveness 

of the this kind of systems. 

Mohamed-Salah et al. (1999) develop a simulation model in order to achieve 

opportunistic maintenance strategies in a multi-component production line. The 

authors consider two different strategies and define total cost as the function of 

preventive and corrective maintenance activities as well as fixed cost due to any stop 

or failure in production line. The first strategy assumes that the maintenance 

activities are allowed on all non-failed components if the difference between the 

expected preventive time of non-failed components and the failure instant of failed 

components is less than certain value. The second one considers that the 

maintenance activities are allowed on all non-failed components if the difference 

between the expected preventive time of non-failed components and the preventive 

time or corrective instant of failed components is less than certain value. They 

utilize PROMODEL and describe that the cost function has a unique optimum. 

Finally, they express that the optimal interval of maintenance for the different 

strategies is 5.5 and 3.5 days respectively. 

Cassady et al. (1999) develop an integrated production control chart and 

preventive maintenance scheduling model to reduce the total operating cost of 
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manufacturing systems. The researchers formulate an economic model that includes 

product inspection costs, process downtime costs and poor quality costs and analyze 

it via a simulation model. In addition, they construct a simulation-optimization 

model in order to evaluate and optimize the parameters of control chart and 

preventive maintenance strategy. They demonstrate their approach in a numerical 

example and show the feasibility and effectiveness of their methodology. 

Greasley (2000) presents a simulation model to find an optimal maintenance 

planning in train maintenance depot for an underground transportation facility in 

the United Kingdom. He develops a simulation model based on two different 

situations. The first situation assumes there is no random arrival and the second 

one considers random arrivals and investigates the effect of the arrival on service 

level performance measures. He utilizes ARENA as the simulation software and 

shows the effectiveness of the maintenance policies obtained by the simulation 

model. Chan (2001) presents a simulation model to analyze the effects of preventive 

maintenance policies on buffer size, inventory sorting rules, and process 

interruptions in a flow line of a push production system. He presents the 

performance of the production system under different operational conditions and 

preventive maintenance policies. 

Duffuaa et aZ. (2001) present a generIc conceptual simulation model for 

maintenance scheduling systems. They define this simulation model by constructing 

seven modules including an input module, maintenance load module, planning and 

scheduling module, materials and spares module, tools and equipment module, 

quality module, and finally, a performance measure module. The authors mention 

that this model could be used to develop a discrete event simulation model using 

commercial simulation software. In addition, they suggest that by applying this 
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model one can evaluate the need for contract maintenance and effect of availability 

of spare parts on performance measures in the system. 

Devulapalli et oZ. (2002) develop a simulation model in order to determine the 

best preventive maintenance policies for bridge management systems. They utilize 

STROBOSCOPE software and examine conditions of bridges under different 

strategies. They apply their model to a set of bridges in Virginia and argue that the 

model can be used to provide various maintenance policies for bridge management 

systems. Alfares (2002) presents a simulation model to evaluate preventive 

maintenance schedules of components in a detergent-packing line and considers two 

different situations in his model. The first situation assumes a constant time 

interval that is not affected by maintenance actions or unexpected failures. In the 

second situation, the time interval is affected and restarted by maintenance actions 

or unexpected failures. In order to minimize the total cost, he develops a simulation 

model to determine the best maintenance schedule of components for each situation. 

Houshyar et oZ. (2003) present a simulation model to evaluate the impact of 

preventive maintenance scheduling on the production rate of a manufacturing 

machine. They utilize PROMO DEL software to develop a simulation model and 

consider two different scenarios for the simulation run. They use statistical analysis 

on the simulation outputs in order to determine the impact of recommended annual 

preventive maintenance schedule on the production throughput of the machine. 

Finally, they mention that the preventive maintenance policy does not affect the 

production rate but can reduce annual maintenance costs of the system. 

Sawhney et oZ. (2004) present a simulation model to determine maintenance 

strategies of a manufacturing system. Their model is constructed to integrate 

reactive and proactive maintenance schedules in order to increase productivity of 
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operations m the lean manufacturing structure. Preventive maintenance 

optimization is also used in semiconductor manufacturing. Rezg et al. (2004) present 

an integrated preventive maintenance and inventory control simulation model in a 

multi-component production line. The authors define preventive and corrective 

maintenance activities along with inventory control variables and parameters to 

develop approximate analytical models for the single machine under different 

scenarios. In addition, they utilize PROMODEL software to construct an age-based 

simulation model and apply a genetic algorithm to optimize the variables of the 

simulation model and evaluate different production scenarios. Finally, they test 

their methodology on three numerical examples of a production line and compare the 

computational results with results obtained from analytical approaches. They 

mention that applying combination of maintenance scheduling production planning 

policies leads to a significant reduction ofthe total cost ofthe system. 

Han et al. (2004) develop a finite time horizon model to achieve preventive 

maintenance scheduling of manufacturing equipment based on setback based 

residual factors and use simulation approach to evaluate the model. They mention 

the consistency of computational results and show that simulation approach is a 

useful and effective method to solve such models. Rezg et aZ. (2005) present another 

paper in this area. He and his colleagues develop an integrated age-based preventive 

maintenance and inventory control simulation model in a manufacturing system 

with just-in-time configuration. They present two approaches; the first one is a 

mathematical model to determine the average cost per unit time and the second one 

is a combination of simulation model and experimental design methods. They use 

MAPLE to solve the analytical model, utilize PROMODEL for simulation, and use 

STATGRAPHICS to analyze the data for experimental design and regression 
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analysis. The authors mention that both approaches could give approximately the 

same results. The existing differences are attributed to approximation assumptions 

considered in the analytical model that was eliminated in the simulation model. 

Hagmark and Virtanen (2007) present one of the most recent studies on 

application of simulation in preventive maintenance scheduling problems. They 

develop a simulation model to determine the level of reliability, availability and 

corrective and preventive maintenance at the early stage of design. Their method 

considers repair time delays and effect of preventive maintenance on the system 

failure observed by condition monitoring and diagnostic resources. 

Yin et aZ. (2007) recently propose a simulation model in order to analyze dynamic 

structure of maintenance scheduling in complex systems. The researchers consider 

various subsystems such as preventive maintenance subsystem, defects subsystem, 

condition-based subsystem, failure subsystem, corrective maintenance subsystem, 

and performance subsystem and utilized SIMULINK environment to build up the 

model. They analyze the structure of components and the relation of their 

constraints in a maintenance system and present the advantages of the model over 

classical stochastic process methods in a numerical example. In addition, they 

mention that obtained simulation results express the dynamic nature of 

maintenance systems. 

Li and Zuo (2007) recently develop a simulation model to determine and evaluate 

the impact of preventive and corrective maintenance activities on the total cost of 

inventories in a production system. They apply a simulation approach as the 

solution methodology to find the optimal number of failures and the optimal level of 

safety stock simultaneously and mention that combining preventive and corrective 
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maintenance scheduling with production planning can reduce the large amount of 

total operating cost in the system. 

2.4. Age Reduction and Improvement Factor Models 

Nakagawa (1988) presents notable research for models that utilize an improvement 

factor. His work has been referenced by many researchers. He develops two 

analytical models in order to find an optimal preventive maintenance schedule based 

on an assumption of increasing failure rate over time. The first model, called a 

preventive maintenance hazard rate model, calculates the average failure cost of 

minimal repairs along with costs of preventive maintenance and replacement 

actions under the assumption that preventive maintenance actions reduce the next 

effective age to zero. He also assumes the failure rate is increased by increasing the 

frequency of preventive maintenance actions. Furthermore, this model assumes that 

maintenance activities take place at fixed intervals between each predetermined 

replacement. The second model, called an age reduction preventive maintenance 

model, considers the average failure cost of minimal repairs as well as costs of 

preventive maintenance and replacement actions by assuming that the effective age 

of component is reduced by an improvement factor after performing minimal repairs. 

In order to find an optimal schedule, both models are optimized by calculus methods. 

He applies the models in a numerical example and describes that based on obtained 

computational results the second model is more practical than the first. 

Jayabalan and Chaudhuri (1992) propose another often-referenced work on age 

reduction and improvement factors models. They develop an optimization model and 

a branching algorithm that minimizes the total cost of preventive maintenance and 
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replacement activities. They assume a constant improvement factor and define a 

required failure rate. In addition, they assume a zero failure cost and do not consider 

the time value of money for future costs. Their algorithm determines an optimal 

schedule of maintenance actions before each replacement action in order to minimize 

the total cost in a finite planning horizon. They utilize FORTRAN programming 

environment to implement the algorithm and prove its effectiveness via several 

numerical examples. 

Dedopoulos and Smeers (1998) develop a nonlinear optimization model to find 

the best preventive maintenance schedule by considering the degree of age reduction 

as the variable in the model. The researchers assume a constant improvement factor 

but a variable amount of age reduction, which depends on the schedule of preventive 

maintenance actions. They define the amount of age reduction, time and duration of 

preventive maintenance activities as the decision variables and consider fixed and 

variable costs for maintenance actions. They present the variable cost as a function 

of the amount of age reduction and duration of action and the effective age of the 

component. Moreover, they present the failure rate in each period as a recursive 

function of age reduction from a previous period and consider the net profit as the 

objective function in the model. They implement the model in GAMS programming 

environment and use GAMSIMINOS optimization software. Finally, the 

effectiveness of the model is shown via three numerical examples. 

Martorell et aZ. (1999) present an age-dependent preventive maintenance model 

based on the surveillance parameters, improvement factor, and environmental and 

operational conditions of the equipment in a nuclear power plant. They consider risk 

and cost as the main criteria of the model based on the age of the system, and 

perform a sensitivity analysis to show the effect of the parameters on the preventive 

35 



maintenance policies. They discuss how the results obtained from their model are 

different than those from other models that do not consider the improvement factor 

parameter and working conditions. 

Lin et al. (2001) combine the models developed by Nakagawa (1988) and present 

hybrid models in which effects of each preventive maintenance action are considered 

in two ways; one for its immediate effects and the other one for the lasting effects 

when the equipment is put to use again. The authors construct two models that 

reflect the concept of maintainable and non-maintainable failure modes. In the first 

model, they assume that preventive maintenance and replacement time are 

independent decision variables and consider the mean cost rate as the objective 

function that should be minimized. In the second model, they assume that 

preventive maintenance activities are performed whenever the failure rate of the 

system exceeds the certain level and same as the first model, the mean cost rate is 

considered as the objective function. Finally, they present numerical examples to 

show the application of the developed models and mention that for a system with 

Weibull failure rate optimal schedules can be achieved analytically, but for the 

general case, it cannot be solved by analytic methods. 

Cheng and Chen (2003) consider the improvement factor as a variable of total 

number of preventive maintenance actions performed over the planning horizon, and 

the cost ratio of preventive maintenance to replacement actions. They assume 

different types of restoration effects based on the cost ratio of maintenance and 

replacement actions and propose three different models. They consider total number 

of preventive maintenance actions as the decision variable and develop an objective 

function to minimize the total cost of the system. By using a numerical analysis 
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method, they mention that the proposed improvement factor model provides a 

variety of options to evaluate the restoration effect of a deteriorating system. 

Xi et al. (2005) develop a sequential preventive maintenance optimization model 

over a finite planning horizon. They define a recursive hybrid failure rate based on 

the improvement factor concept and increasing failure rate in order to estimate the 

systems reliability in each period of the planning horizon. In addition, they consider 

the total cost of preventive maintenance activities and assume that the mean cost in 

each period is a function of required reliability and the improvement factor 

parameter. Finally, they utilize a simulation approach to optimize the model and 

mention that the computational results can be used in a maintenance decision 

support system for job shop scheduling problems. 

Jaturonnatee et al. (2006) develop an analytical model in order to find an optimal 

preventive maintenance schedule of leased equipment by minimizing the total cost 

function. They define maintenance actions as preventive and corrective, each with 

associated costs, and then consider the concept of reduction in failure intensity 

function along with penalty costs due to violation of leased contact issues. They 

present a numerical example for a system with Weibull failure rate, solve the model 

analytically, and examine the effect of penalty terms on the optimal preventive 

maintenance policies. 

Bartholomew-Biggs et aZ. (2006) present several preventive maintenance 

scheduling models that consider the effect of imperfect maintenance on effective age 

of component. The researchers develop optimization models that minimize the total 

cost of preventive maintenance and replacement activities. In this study, they 

assume a known failure rate to express the expected failures as a function of age and 

consider age reduction in the effective age, based on the concept of an improvement 
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factor. They develop a new mathematical programming formulation to achieve 

optimal maintenance schedules and utilize automatic differentiation as numerical 

approach, instead of analytical approach, to compute the gradients and hessians in 

the opt~mization procedure, which is a global minimization of non-smooth 

performance function. Finally, the effectiveness of the proposed model and algorithm 

is shown in several numerical examples. 

One of the recent works on methods for estimating age reduction factor is 

presented by Che-Hua (2007). In this research, he determines an optimal preventive 

maintenance plan for a deteriorating single-component system via minimizing the 

expected cost over a finite planning horizon. He develops a mathematical model for 

estimating improvement factor to measure the restoration of component under the 

minimal repair. The proposed improvement factor is a function of effective age of 

component, the number of preventive maintenance actions, and the cost ratio of 

maintenance action to the replacement action. Finally, the researcher could obtain 

an optimal preventive maintenance schedule for a case study with the Weibull 

hazard function by applying a particle swarm optimization method. 

Cheng et aZ. (2007) present a paper about models to estimate the degradation 

rate of the age reduction factor. They present two optimization models, which 

minimize the cost subject to required reliability. The first model has a periodic 

preventive maintenance time interval for every replacement and the second one 

contains the maintenance schedule where the time interval between the final 

maintenance and replacement is not constant. 

Lim and Park (2007) present three analytical preventive maintenance models 

that consider the expected cost rate per unit time as the objective function. In this 

research, they assume that each preventive maintenance activity reduces the 
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starting effective age but does not change the failure rate. They consider the 

improvement factor as the function of number of preventive maintenance activities. 

They also assume that the failure function corresponds to a Weibull distribution 

function and develop a mathematical formulation for three different situations; 

preventive maintenance period is known, number of preventive maintenance is 

known, and number and period of preventive maintenance is unknown. They obtain 

an optimal preventive maintenance and replacement schedule by taking an 

analytical approach and apply them to a numerical example to show an application 

of their models. 

2.5. Chapter Summary 

In this chapter, recent work pertaining to methods and applications of preventive 

maintenance and replacement scheduling were reviewed. They were categorized as 

optimization models, simulation models, and age reduction and improvement factor 

models. Table 2.1 shows the summary of the reviewed articles. 

Table 2.1. Summary of reviewed articles 

Author(s) Year Objective(s) Method(s)lAlgorithm(s) Application(s) Section 

Canfield 1986 
Min total Analytical method General system 2.2.1 
maintenance cost 

McClymonds 
1987 

Max availability Analytical method Nuclear power plants 2.2.1 
and Winge and reliability 

Martin 1988 
Min total cost and Analytical method Health-care 2.2.1 
Max reliability 

Hsu 1991 
Min total Analytical method Serial production system 2.2.1 
maintenance cost 

Jayabalan and 
1992 

Min total Analytical method 
Bus engines in a public 

2.2.1 
Chaudhuri maintenance cost transit network 

Westman and 
2000 

Determine optimal Analytical method Multi'stage 2.2.1 
Hanson mean time to failure manufacturing system 

Fard and 
2004 

Min total Analytical method Service systems 2.2.1 
Nukala maintenance cost 
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Author(s) Year Objective(s) Method(s)lAlgorithm(s) Application(s) Section 

Ying et ai. 2005 Min total tardiness 
Analytical method Production scheduling 2.2.1 

of jobs 

Min total Maintenance strategies 
Pongpech et a1. 2006 maintenance and Analytical method for used equipment 2.2.1 

penalty costs under lease 

Panagiotidou 
2007 

Min total Karush-Kuhn-Tucker 
Manufacturing process 2.2.1 and Tagaras maintenance cost (KKT) method 

Shirmohamma 
2007 Min total 

Analytical method 
Single-component 

2.2.1 di et a1. maintenance cost system 

Min total cost of 

Westman et a1. 2001 production and Stochastic dynamic Multi-stage 
2.2.2 

maintenance programming manufacturing system 
scheduling 

Yao et a1. 2001 
Max profit of cluster Mixed-integer linear Semiconductor 

2.2.2 tools production programming manufacturing 

Yao et a1. 2004 
Max profits from Mixed-integer linear Semiconductor 

2.2.2 tool availability programming manufacturing 

Min total cost of 
Hanet al 2004 maintenance and Nonlinear programming Production machine 2.2.2 

replacement 

Jayakumar 
2004 Max availability 

Linear programming and General system 2.2.2 and Asgarpoor Markov decision processes 

Max power plant 
Zhao eta1. 2005 performance and A sequential approach Gas turbine power plant 2.2.2 

reliability 

Min total 
Mixed-integer linear 

Canto 2006 
maintenance, start- programming model by Power plant 2.2.2 
up, and production Benders' decomposition 
cost 

Min total 

Budai et al 2006 possession, Mixed-Integer linear Railway Industry 2.2.2 
maintenance and a programming 
penalty costs 

Robelin and 2006 Max facility level 
Markov chain and Bridge maintenance 2.2.2 

Madanat dynamic programming 

Min total Nonlinear programming 
General multi-

Tam eta1. 2006 maintenance by generalized reduced component system 2.2.2 
costiMax reliability gradient 

Alardhi et a1. 2007 Max availability 
Binary integer linear Co-generation plants 2.2.2 
programming 

Kuo and Chang 2007 
Min total tardiness Dynamic programming Prodcution machine 2.2.2 
of jobs 

Usheretal. 1998 
Min total Genetic algorithm 

Single-component 
2.2.3 

maintenance cost system 

Levitin and 
2000 

Min total Genetic algorithm 
General multi-state 2.2.3 

Lisnianski maintenance cost multi-component 

Levitin and 2000 Min total Genetic algorithm 
General multi-state 2.2.3 

Lisnianski maintenance cost series-parallel systems 

Wang and 
2000 

Min maintenance 
Genetic algorithm Power systems 2.2.3 

Handschin time interval 

Tsai et a1. 2001 
Min total Genetic algorithm Mechatronic system 2.2.3 
maintenance cost 
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Author(s) Year Objective(s) Method(s)lAlgorithm(s) Application(s) Section 
Max total 

Production line of car Cavory et al. 2001 throughput ofthe Genetic algorithm engines 2.2.3 
line 

Leou 2003 
Min total 

Genetic algorithm Series of electric 
2.2.3 maintenance costs generators 

Min total production Decision support 
Han et a1. 2003 and maintenance Genetic algorithm systems for maintenance 2.2.3 

costs and job-shop scheduling 

Bris et a1. 2003 
Min total 

Genetic algorithm 
General series-parallel 

2.2.3 
maintenance cost systems 

Adzakpa et a1. 2004 Min total Heuristic algorithm Distributed system 2.2.3 
maintenance cost 

Li and Qian 2005 
Min system 

Heuristic algorithm 
Semiconductor 

2.2.3 
standpoints manufacturing 

Samrout et al. 2005 Min total Ant colony algorithm General series-parallel 2.2.3 
maintenance cost systems 

Min total weighted 
Integrated preventive 

Sortrakul et a1. 2005 expected job Genetic algorithm maintenance scheduling 
2.2.3 and production planning 

completion time in a single machine 

Min total weighted 
Integrated preventive 

Cassady and 
2005 expected completion Heuristic algorithm 

maintenance scheduling 
2.2.3 

Kutanoglu and production planning 
time in a single machine 

EI-Ferik and 2006 Min total Heuristic algorithm General system 2.2.3 
Ben-Daya maintenance cost 

Duarte et a1. 2006 
Min total Heuristic algorithm 

General series system of 
2.2.3 

maintenance cost components 

Limbourg and Evaluate effect of Several evolutionary 
Representation of the 

2006 schedule to evolutionary 2.2.3 
Kochs different methods algorithms algorithms 

Lapa eta1. 2006 
Min total Genetic algorithm 

high-pressure injection 
2.2.3 

maintenance cost system 

Shumand 
2007 

Min total Genetic algorithm Production machine 2.2.3 
Gong maintenance costs 

Integrated preventive 
Zhou et a1. 2007 Max availability Heuristic algorithm maintenance scheduling 2.2.3 

and production planning 

Min total operations Genetic algorithm with 
Kim etal. 1994 and maintenance simulated annealing 

Thermal system 2.2.4 
costs 

Tan and 
1997 

Min total Monte Carlo simulation Chemical process 
2.2.4 

Kramer maintenance cost with a genetic algorithm operations 

Marseguerra et 2002 
Max profit and max Monte Carlo simulation load-sharing components 2.2.4 

a1. availability with a genetic algorithm 

Charles et a1. 2003 
Min total Simulation-optimization Production system 2.2.4 
maintenance cost 

Min total Genetic algorithm with 
General multi-

Shalaby et al. 2004 component and multi- 2.2.4 
maintenance cost simulation state systems 

Allaoui and 
2004 

Min total tardiness Simulated annealing with Flow shop scheduling 2.2.4 
Artiba of jobs simulation 
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Author(s) Year Objective(s) Method(s)lAlgorithm(s) Application(s) Section 
Suresh and 

2006 Max customer Genetic algorithm with Power system Kumarappan satisfaction simulated annealing 2.2.4 

Samrout et aI. 2006 Min total Ant colony algorithm and 
Large-scale system 2.2.4 

maintenance cost genetic algorithm 

Jin et aI. 2006 Min total 
Simulation-optimization 

Multi-component 
2.2.4 

maintenance cost production process 

Min total Ant colony algorithm and 
Integrated preventive 

Ruiz et a1. 2007 
manufacturing time genetic algorithm 

maintenance scheduling 2.2.4 
and production planning 

Min fuel cost, Max 
Kralj and 

1995 
reliability, Min Multi-objective branch- Thermal generating 

2.2.5 
Petrovic technological and-bound algorithm systems 

concerns 

Chareonsuk et 
Min total Preference ranking 

a1. 
1997 maintenance cost, organization method for General system 2.2.5 

Max reliability enrichment evaluations 

Min total weighted 
Chaoticparticieswarm 

Integrated preventive 
Lenget a1. 2006 expected completion maintenance scheduling 2.2.5 

time 
optimization algorithm and production planning 

Konaket a1. 2006 Review paper 
Multi-objective genetic General reliability 

2.2.5 
algorithm optimization problems 

Min workforce idle 
Multi-objective genetic 

Quan etal. 2007 time and Min General system 2.2.5 
maintenance time 

algorithm 

Verma and 
Min total Multi-objective genetic 

2007 maintenance cost, Large engineering plant 2.2.5 
Ramesh Max reliability 

algorithm 

Taboada et a1. 2008 
Max reliability, Max Multi-objective genetic Multi-state reliability 2.2.5 
availability algorithm design 

Bottazi et a1. 1992 
Min total cost, Max Monte Carlo simulation Public Transit 2.3.1 
availability 

Billinton and 
Optimize 

Pan 
2000 maintenance Monte Carlo simulation Power systems 2.3.1 

intervals 

Min total 
Decision support 

Zhou et aI. 2005 
maintenance cost 

Monte Carlo simulation systems for general 2.3.1 
systems 

Marquez et a1. 2006 Max throughput Monte Carlo simulation 
Semiconductor 2.3.1 
manufacturing 

Min unavailability 
Goel et al. 1973 and logistics support Experimental design Electronics systems 2.3.2 

costs 

Evaluate the 
Burton et aI. 1989 performance of a job Simulation Job-shop Scheduling 2.3.2 

shop 

Automated production 
Krishnan 1992 Max availability Simulation line in a steel rolling 2.3.2 

mill plant 

Mathew and 
Min total Sugar manufacturing 

1993 maintenance and Simulation 2.3.2 
Rajendran downtime costs 

plant 

Paz et aI. 1994 Min total 
maintenance cost 

Simulation Production Line 2.3.2 
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Author(s) Year Objective(s) Method(s)/Algorithm(s) Application(s) Section 

Max effectiveness Vehicle maintenance of 
Joe et al. 1997 and efficiency of Simulation St. Louis metropolitan 2.3.2 

facility operations police department 

Evaluate effect of 
Just-in-time production Savsar 1997 maintenance Simulation 2.3.2 

strategies 
system 

Mohamed-
1999 

Min total 
Simulation 

Multi-component 
2.3.2 Salah et al. maintenance cost production line 

Min total operating 
Integrated preventive 

cost of 
Cassady et al. 1999 

manufacturing 
Simulation-Optimization maintenance scheduling 2.3.2 

systems 
and production planning 

Max service level 
Greasley 2000 performance Simulation Train maintenance 2.3.2 

measures 

Evaluate effect of 
Chan 2001 maintenance Simulation Production system 2.3.2 

strategies 

Evaluate effect of 
Generic conceptual 

Duffuaa et al. 2001 maintenance General system 2.3.2 
strategies 

simulation model 

Devulapalli et 
Evaluate effect of Bridge management 

2002 maintenance Simulation 2.3.2 
al. strategies 

systems 

Alfares 2002 
Min total Simulation 

Detergent-packing 2.3.2 
maintenance cost production line 

Evaluate effect of Production rate of a 
Houshyar et al. 2003 maintenance Simulation manufacturing machine 

2.3.2 
strategies 

Min total operations Semiconductor 
Sawhney et al. 2004 and maintenance Simulation manufacturing 

2.3.2 
costs 

Evaluate effect of Integrated preventive 
Rezg et a1. 2004 maintenance Simulation-optimization maintenance scheduling 2.3.2 

strategies and inventory control 

Evaluate effect of 
Han et al. 2004 maintenance Simulation Manufacturing system 2.3.2 

strategies 

Integrated preventive 
Evaluate effect of Simulation, optimization, 

maintenance scheduling 
Rezg et al. 2005 maintenance and inventory control in 2.3.2 

strategies 
and experimental design a JIT manufacturing 

system 

Hagmark and 
2007 

Max reliability, Max Simulation General system 2.3.2 
Virtanen availability 

Evaluate effect of 
Yin et al. 2007 maintenance Simulation General system 2.3.2 

strategies 

Optimize number of 
Li and Zuo 2007 failures level of Simulation Production system 2.3.2 

safety stock 

Nakagawa 1988 
Min total 
maintenance cost 

Analytical method General system 2.4 
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Author(s) Year Objective(s) Method(s)/Alcorithm(s) Application(s) Section 
Jayabalan and 

1992 Min total 
Branching algorithm General system 2.4 

Chaudhuri maintenance cost 

Dedopoulos 
1998 Max net profit Nonlinear programming General system 2.4 

and Smeers 

Evaluate effect of 
Martorell et a1. 1999 maintenance Sensitivity analysis Nuclear power plant 2.4 

strategies 

Lin et a1. 2001 Min total Analytical method General system 2.4 
maintenance cost 

Cheng and 2003 Min total Analytical method General system 2.4 
Chen maintenance cost 

Xi et a1. 2005 Min total 
Simulation 

Decision support system 
2.4 maintenance cost for job shop scheduling 

Jaturonnatee 2006 Min total Analytical method General system 2.4 
et a1. maintenance cost 

Bartholomew- 2006 Min total Differential equations 
General system 2.4 Biggs et a1. maintenance cost method 

Che-Hua 2007 Min total Particle swarm General system 2.4 
maintenance cost optimization method 

Chenget al. 2007 Min total Analytical method General system 2.4 
maintenance cost 

Lim and Park 2007 Min expected cost Analytical method General system 2.4 
rate per unit time 

We found that most studies focus on single-component systems or on simple and 

specific systems, which is not always applicable for real and general systems. These 

studies provide solution methodologies and sophisticated algorithms but most 

developed models can be applied only into specific systems such as production 

systems or power plant systems. We also found that there is a lack of general 

modeling approach in the literature that could be applied in a wide variety of 

systems. In addition, not much work has been done in the area of age reduction and 

improvement factor models and most researchers have assumed a constant 

improvement factor or just presented simple models. Hence, the main contribution of 

this research is to define a general configuration for multi-component systems, 

design different maintenance actions, and develop mathematical formulation to 

determine optimal preventive maintenance and replacement schedules. We consider 
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the realistic dependency between components that affects maintenance and 

replacement decisions, and show how to develop time-based patterns of maintenance 

and repair actions that minimizes the total cost of those actions including the cost of 

unexpected failures and maximizes the overall reliability of the system. Because we 

use the concept of age reduction and an improvement factor in these models, we also 

develop a mathematical model to estimate the improvement factor for imperfect 

maintenance activities. 

45 



CHAPTER 3 

OPTIMIZATION MODELS AND EXACT ALGORITHMS 

3.1. Introduction 

This chapter will present a new modeling approach to find optimal preventive 

maintenance and replacement schedules for multi-component systems. We construct 

new closed-form optimization models based on cost and reliability characteristics of 

the system and solve them using a standard optimization procedures. These models 

provide a general framework that can be applied and used in a wide variety of 

systems. Computational results show the feasibility of the proposed approach. 

3.2. System Configuration 

Consider a new repairable and maintainable system of N components, each subject 

to deterioration. Each component i is assumed to have an increasing rate of 

occurrence of failure (ROCOF), Vi (I), where t denotes actual time, (I > 0). In this 

research, we assume that component failures follow the well-known non

homogeneous Poisson process (NHPP), with the increasing rate of occurrence of 

failure given as: 

(3.1) 
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where Ai and f3i are the scale and the shape parameters of component i 

respectively. The non-homogeneous Poisson process is similar to the homogeneous 

Poisson process (HPP) with the exception that the failure rate is a function of time. 

For more on this well-known stochastic process see, Ascher and Feingold (1984). 

We seek to establish a schedule of future maintenance and replacement actions 

for each component over the period [0, TJ. The interval [0, TJ is segmented into J 

discrete intervals, each of length T/J. At the end of period j, the system is either, 

maintained, replaced, or no action is taken. We assume that maintenance or 

replacement activities in period j reduce the "effective age" of the system and thus 

the rate of occurrence of failure. For simplicity we also assume that these activities 

are instantaneous, i.e., the time required to replace or maintain is negligible, 

relative to the size of the interval, and thus is assumed to be zero, however, we do 

impose a cost associated with repair or maintenance actions. 

To account for the instantaneous changes in system age and system failure rate, 

we introduce the following notation. Let Xi,J denote the effective age of component i 

at the start of period j, and X:,J denotes the age of component i at the end of period 

j. It is clear that: 

X'. =X. + T for i=l, ... ,N;j=l, ... ,T 
',J ',J J (3.2) 

3.2.1. Maintenance 

Consider the case where component i is maintained in period j. For simplicity, we 

assume that the maintenance activity occurs at the end of the period. The 

maintenance action effectively reduces the age of component i at the start of the next 

period. That is: 
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Xi,}+( = a i . X;,} for i = 1, ... , N; j = 1, ... ,T and (0 ~ a i ~ 1) (3.3) 

The term ais an "improvement factor", similar to that proposed by Malik (1979) and 

Jayabalan and Chaudhuri (1992). This factor allows for a variable effect of 

maintenance action on the aging of the system. When a = 0, the effect of 

maintenance action is to return the system to a state of "good-as-new". When a = 1, 

maintenance action has no effect, and the system remains in a state of ''bad-as-old''. 

We will discuss more about age reduction and improvement factor models and 

develop a new model in Chapter 6. 

Note that the maintenance action at the end of period j results in an 

instantaneous drop in the rate of occurrence of failure of component i, as shown in 

Figure 3.1. Thus at the end of period j, the rate of occurrence of failure for 

component i is Vi (X; .) . At the start of period j + 1 we find that the rate of occurrence 
,J 

offailure drops to Vi (X;.}) . 

i 
j 

Figure 3.1. Effect of period-j maintenance on component ROCOF 

3.2.2. Replacement 

If component i is replaced at the end of period j, we find that: 

Xi.}+1 = 0 for i = 1, ... , N; j = 1, ... , T (3.4) 
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--------- ------------------------------------------

i.e., the system is returned to a state of "good-as-new". The rate of occurrence of 

failure of component i instantaneously drops from Vi (X;,j) to Vi (0) as shown in 

Figure 3.2. 

Period j Period j+l 

Figure 3.2. Effect of period-j replacement on system ROCOF 

3.2.3. Do Nothing 

If no action is performed in period j, we see no effect on the rate of occurrence of 

failure of component i, and we find that: 

X:
j
" = Xi j" + T for i = 1, ... ,N; j = 1, ... ,T . , J (3.5) 

X i•j+1 = X;,j for i = 1, ... ,N; j = 1, ... ,T (3.6) 

(3.7) 

3.2.4. Cost of Preventive Maintenance and Replacements 

For a new system, we seek to find cost associated with a given schedule of future 

maintenance and replacement activities. The cost associated with all component-

level maintenance and replacement actions in period j, will be a function of the all 

the actions taken during that period. 
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3.2.4.1. Failure Cost 

When we view the future periods of operation for a system, we must account for 

inevitable costs due to unplanned component failures. From our vantage point, at 

the start of period j, however, we do not know when such failures will occur. 

However, we know that if the system carries a high rate of occurrence of failure 

through a period, then we are at risk of experiencing high number, and hence, high 

cost of unexpected failures. Conversely, a low rate of occurrence of failure in period j 

should yield a low cost of failure. To account for this, we propose the computation of 

the expected number of failures in each period for each component in the system. 

(We depart here from the approach found in Usher et al. (1998) where an average 

failure rate concept was used with a cost constant.) Here we compute the expected 

number of failures of component j in period j , as: 

x;,) 

E[Ni.J= Jvi(t)dt for i=1, ... ,N;j=1, ... ,T (3.8) 

XL} 

Under the non-homogeneous Poisson process assumption, we find the expected 

number of component j failures in period j to be: 

X;,j 

E[N] = J A . /3. .. t Pi-1 dt =l (X' \Pi - l. (X \Pi for i = 1, ... , N; J' = 1, ... , T (3.9) I,) 1 I 1 I,) J . 1 I,) J . 
X;,j 

We assume that the cost of each failure is F; (in units of $/failure event), which in 

turn allows us to compute, F;,J the cost of failures attributable to component i in 

period j as: 

F. =F .E[N]=F .l(I(X'.~ -(x \8,) for i=1, ... ,N;j=1, ... ,T 
I,) 1 I,) 1 I ~ I,) J . I,) J . (3.10) 
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Hence regardless of any maintenance or replacement actions (which are assumed to 

occur at the end of the period) in period} , there is still a cost associated with the 

possible failures that can occur during the period. 

3.2.4.2. Maintenance Cost 

If maintenance is performed on component i in period j, a maintenance cost constant 

M; is incurred at the end of the period. 

3.2.4.3. Replacement Cost 

If component i is replaced in period} we assume that the replacement cost is the 

initial purchase price of the component i , denoted ~. 

3.2.4.4. Fixed Cost 

For a multi-component system, and the cost structure defined above, the problem 

can be shown to reduce to a simple problem of finding an optimal sequence of 

maintenance, replacement, or do-nothing actions for each component, independent of 

all other components. That is, one could simply find the best sequence of actions for 

component 1 regardless of the actions taken to component 2 and so on. This would 

result in N independent optimization problems. In that case, a system of N 

components over T time periods, has N x 3 T possible maintenance schedules. 

Such a modeling approach seems unrealistic, as there should be some overall 

system cost penalty when an action is taken on any component in the system. It 

would seem that there should be some logical advantage to combining maintenance 

and replacement actions. For example, while the system is shut down to replace one 

component, it may make sense to go ahead and perform maintenance or replacement 
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of some other components, even if they are not at their individual optimum point 

where maintenance or replacement would ordinarily be performed. Under this 

scenario, the optimal time to perform maintenance or replacement actions on 

individual components is dependent upon the decision made for other components. 

As such, we propose that a fixed cost of "downtime", Z, be charged in period j if any 

component (one or more) is maintained or replaced in that period. Consideration of 

this fixed cost makes the problem much more interesting, and more difficult to solve, 

as the optimal sequence of actions must be determined simultaneously for all 

components in the system. It can be concluded that in this situation the scheduling 

problem has 3NxT possible solutions. 

3.2.4.5. Total Cost 

From our vantage point at the start of the planning horizon, we wish to determine 

the set of activities, i.e., maintenance, replacement, or do nothing, for each 

component in each period such that total cost is minimized. In order to have X;.j' 

age of component i at the end of period j by using equation (3.2) first, we define mi•j 

and ri•j as binary variables of maintenance and replacement actions for _component 

i in period j as: 

m . . = {I if component i at period j is maintained 
'.] 0 otherwise 

(3.11) 

r . = {I if component i at period j is replaced 
'.] 0 otherwise 

(3.12) 

Then, we construct the following recursive function of Xi,j' X;,j ,mi,j ,ri,j' a i with a 

constraint: 
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{

X;,j = (1- m;,j_1 )(1-'1,j-1 )X:,j_1 + m;,j_1 (a; . X:,j_l) 

X'. =X .+T I,j I,j J 

m . +r . < 1 I,j ',j-

(3.13) 

(3.14) 

In addition, we assume the initial age for each component at the start of the 

planning horizon is equal to zero: 

X;,I = 0 for i = 1, ... ,N (3.15) 

If component replacement occurs in the previous period then '1,j-1 = 1, m;,j_1 = 0, so 

X;,j = 0 . If a component is maintained in the previous period then '1,j-1 = 0, m;,j_1 = 1 

so X;,j = a; . X:,j_1 and finally if we do nothing, r;,j_1 = 0, m;,j_1 = 0, and X;,j = X:,j_1 

which corresponds to our basic assumptions given in Section 3.1. From our 

definitions of each type of cost, we can derive the following total cost function as: 

Total Cost = t.t[F, . A; ((X;,jY -(X;,jY )+M; 'm;,j +R;'r;,j]+ t[ Z(1- Q(1-(m;,j +r;,J))] 
(3.16) 

This objective function computes the total cost as a summation of component costs in 

each period based on any maintenance or replacement cost, the system "downtime" 

cost, and the cost of the expected number of unexpected failures. It is certainly 

possible to compute a more accurate economic measure of these costs, such as Net 

Present Value (NPV), using a suitable interest rate. One could also include the 

effects of inflation, by adding an inflation rate in the calculation of future costs. 

While these may make the model more accurate, we have avoided those minor 

refinements for the sake of notational simplicity. 
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3.3. Optimization Models 

3.3.1. Model 1- Minimizing total cost subject to reliability constraint 

In this model, we attempt to minimize the total cost subject to a constraint in which 

some minimum level of system reliability over the planning horizon is achieved and 

assume that components are arranged in series. It is important to note that other 

system configurations (parallel, series-parallel, parallel-series, k-out-of-n, complex, 

etc) can be modeled just by modifying and adapting the reliability function, which 

reflect the configuration of the parallel, series-parallel, parallel-series, k-out-of-n, or 

other complex systems, but for the sake of simplicity, we consider only series 

systems in this research. 

One may also be interested in determining the system reliability (probability of 

operating without failure survival over the planning horizon). Based on the 

assumption on a non-homogeneous Poisson process, we define the reliability of 

component i in period j (the probability of surviving component i to the end of period 

j given survival to the start of period j) as follows: 

1:i~i(l)dl] {-\((X:.J<i_(X, Ji)] 
R . = e ,1 = e for i = 1, ... , N; J' = 1, ... , T I,J 

(3.17) 

Therefore, the probability of the series system of components surviving the entire 

planning horizon is: 

N T {-\((x'r,-(x t,)] 
Reliability = nne '.1 '1 (3.18) 

;=1 j=1 

Then we formulate the following nonlinear mixed-integer programming model that 

minimizes the total cost subject to a required reliability of the system: 
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Min Tota/Cost= f±[F; 'l;((X;,}}4 -(Xi,}}4 )+Mi ·mi,) +~.ri,}J+ ±[J1_ fI(I-(mi,} +ri,}))I] 
,_I }=I }-I L.l '31 ) 

s1.: 

Xi,l =0 

X . =(I-m . I)(I-r ·I)X' I +m . . I(a ·X'. I) I,} I,}- I,}- ',}- I.}- I I,}-

X'. =X .+T 
'.} I.} J 

mi,} + ri,} ~ 1 

fIn e ~A;((X:.j Y" -(x'.J Y" )1 ~ Rscries 

m.,r . =Oorl 
'.) I.} 

X x , 0 
i,}' i,} ~ 

i=I, ... ,N 

i = 1, .. . ,N and j = 2, ... ,T 

i = I, ... ,N andj = I, ... ,T 

i = 1, ... ,N andj = I, ... ,T 

i = I, ... ,N andj = I, ... ,T 

i = 1, ... ,N andj = I, ... ,T 

(3.19) 

3.3.2. Model 2 - Maximizing reliability subject to budgetary constraint 

Here we modify the formulation and introduce a budgetary constraint. The objective 

of this model is to maximize the overall reliability of the system, through our choice 

of maintenance and replace decisions, such that we do not exceed the budgeted total 

cost. This model can be formulated as: 

s.t. : 

i=1 }=I 

Xi,l =0 i = I, ... , N 

X .. = (I-m I)(I-r. I)X' I +m. I(a ·X'. I) '.} '.}- I,}- I.}- I,}- I I,}- i = I, ... , Nand j = 2, ... , T 

X'. =X .+T ',} '.} J i = I, ... , N and j = I, ... , T 

m.+r.<1 
I,} I,}-

i = I, ... , N and j = 1, ... , T 

f ± [F; . Ai ((X;,) Y. - (Xi,) Y. )+ Mi . mi,} + Ri· ri,} ] + ± [Z(I - fI (1- (mi.) + ri.) )))] ~ B 
1=1 }=I }=I I-I 

m, r . = 0 or 1 
',} I,} 

X"}' X:,} ~ 0 
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i = I, ... , N and j = I, ... , T 

i = I, ... , Nand j = 1, ... , T 

(3.20) 



3.4. Solution Approach 

Based on the nonlinear and mixed-integer structure of the preventive maintenance 

and replacement scheduling optimization models presented in Section 3.3, we apply 

integer programming approaches along with nonlinear optimization techniques to 

solve the models. We utilize both Microsoft Excel Solverl and UNG02 software to 

solve the nonlinear mixed-integer optimization models for each model. 

The Microsoft Excel Solver tool uses the simplex method with bounds on the 

variables, and the branch-and-bound (BB) method for linear and integer problems 

and generalized reduced gradient algorithm (GRG) for nonlinear optimization. 

For models with general and binary integer restrictions, UNGO includes an 

integer solver that works in conjunction with the linear, nonlinear, and quadratic 

solvers based on branch-and-bound algorithm. For linear models, the integer solver 

includes preprocessing and dozens of constraint "cut" generation routines that can 

greatly improve solution times on large classes of integer models. For nonlinear 

programming models, the primary underlying technique used by UNGO's optional 

nonlinear solver is based upon a generalized reduced gradient algorithm. However, 

to help get to a good feasible solution quickly; UNGO also incorporates successive 

linear programming. The nonlinear solver takes advantage of sparsity for improved 

speed and more efficient memory usage. Local search solvers are generally designed 

to search only until they have identified a local optimum. If the model is non-convex, 

other local optima may exist that yield significantly better solutions. Rather than 

stopping after the first local optimum is found, the global solver will search until the 

global optimum is confirmed. The global solver converts the original non-convex, 

1 http://office.micro8oft.com 
2 http://www.lindo.com 
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nonlinear problem into several convex, linear sub-problems. Then, it uses the 

branch-and-bound technique to exhaustively search over these sub-problems for the 

global solution. 

3.5. Computational Results 

In order to illustrate the models numerically, and the proposed solution procedure, 

we develop a representative data set shown in Table 3.1. In addition, we assume Z = 

$800 as the fixed cost, R = 50% as the required reliability for Modell, B = $15000 as 

the given budget for Model 2, and 36 months as the planning horizon. It is useful to 

mention that for the example problem, the nonlinear mixed-integer optimization 

models presented in section 3.3 have 1420 variables, 720 of which are binary and 

1062 constraints, 352 of which are nonlinear. LINGO programs of nonlinear mixed-

integer optimization models are presented in Appendix A. 

Table 3.1. ParaDleters of the numerical eXaDlple 

Component A p Failure Maintenance Replacement 
a 

Costm Cost il} Cost il} 
1 0.00022 2.20 0.62 250 35 200 
2 0.00035 2.00 0.58 240 32 210 
3 0.00038 2.05 0.55 270 65 245 
4 0.00034 1.90 0.50 210 42 180 
5 0.00032 1.75 0.48 220 50 205 
6 0.00028 2.10 0.65 280 38 235 
7 0.00015 2.25 0.75 200 45 175 
8 0.00012 1.80 0.68 225 30 215 
9 0.00025 1.85 0.52 215 48 210 
10 0.00020 2.15 0.67 255 55 250 

Excel Solver is able to solve smaller problems. For example, a test problem with 2 

components and 12 months took only 17 minutes on a laptop computer (Intel/Core 2, 

1.67 GHz and 2 GB RAM). However, the example problem described above, with 10 

components and 36 periods could not be solved in reasonable time. Using LINGO, we 
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were able to solve the example problem for both models in approximately 4.5 hours 

and 1.5 hours respectively. The objective function value for the optimum solution in 

the Modell is $13797.10 and the overall reliability of the system with this optimal 

solution is 50.00% equal to required reliability of the model. For the second model, 

the system reliability is maximized and found to be 49.92% and the total consumed 

budget is equal to $14989.74. The optimal schedules for these two models are 

presented in Tables 3.2 and 3.3 respectively. 

Table 3.2. Optimal maintenance and replacement schedule that minimizes total cost 
(Reliability=50.00% and Cost=$13797.10) 

Monthl 
1 2 3 4 5 6 7 8 9 101112131415161718192021222324 25 26 27 28 29 30 313233343536 

Component 

1 - - R - - - - - R - - - R - - M - - - R - - - R - - - - - -
2 - - - R - - - - R - - - - - R - - M - - - R - - R - - - - - -
3 - - MR - - - - M - - - R - - - - - - R - - - R -
4 - - MM - - - - R - - R - - M - - - M - - - R - - - - - -
5 - - - M - - - - M - - - R - - - - - - M - - - - - M - - - - - -
6 - - MM - - - - R - - - R - - M - - - R - - - - - R - - - - - -
7 - - - R - - - - R - - - R - - - - - - R - - - - - R - - - - - -
8 - - M - - - - - - R - - - - - - M - - - M - -
9 - - - - M - - M - - - R - - M - - - M - - - - - - - - - -

10 - - - R - - R - - - R - - - M - - - - - R - - - - - -

Table 3.3. Optimal maintenance and replacement schedule that maximizes reliability 
(Budget=$14989.74 and Reliability=49.92%) 

Monthl 
1 2 3 4 5 6 7 8 9 101112 13 14 15 16 17 18 19 20 21 222324 25 26 27 28 29 30 31 3233343536 

Component 

1 - R - - - - - - R - - R - - - MR - - - R -
2 - R - - - - - R - - - - R - - - MR - - - R -
3 - R - - - R - - - - R - - - MR - - - R - -
4 - R - - - - - R - - R - - - MR - - - R -
5 - R - - - - R - - - - M - - - RM - - - - - M - -
6 - R - - - - - - R - - - - R - - - MR - - - - - R - - - - -
7 - R - - - - R - - - - R - - - - R - - - - - R - - - - - -
8 - M - - - - - - M - - - - M - - - R - - - - - - R - - - - - -
9 - R - - - - - - R - - R - - R - R - - - - - - -

10 - R - - - - - - R - - - - R - - - - R - - - - - R - - - - - -

Note that in both models most of maintenance and replacement actions tend to occur 

in the same period, which reflects the effect of the fIxed cost Z. As we can see that in 

both models the reliability is around 50%, but the optimal total cost in the mst 
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model is 7% lower than consumed budget in the second model. It is also interesting 

to note that once a repair action occurs, it is often followed by a period of inactivity. 

Such observations can perhaps lead to the development of simple heuristic solution 

procedures in following on work. 

Another interesting aspect of this type of modeling is that one can analyze the 

effective age of each component. Maintenance managers could use the model to track 

the effective age of the components and then utilize the information to initiate 

additional monitoring activities. For example, after a component reaches a certain 

level of effective age, additional monitoring, tests or inspections might be warranted 

to assist in the detection of imminent failure. 

The minimum, maximum, and average effective age of each component are 

shown in Tables 3.4 and 3.5. Notice that the minimum effective age of each 

component is equal to zero at the beginning of planning horizon. Hence, minimum 

effective ages of components are shown from the second month on. Note that most 

components were replaced at some time during the planning horizon. The effective 

age for the components ranges from roughly 0-15 months with an average age of 

about 4 months. 

Table 3.4. Effective age of components in Modell 

Minimum Maximum Average 
Component Effective Age Effective Age Effective Age 

(month~ (month~ (month~ 

1 0.0 6.0 2.9 
2 0.0 6.0 2.9 
3 0.0 8.8 3.4 
4 0.0 8.8 3.5 
5 0.0 10.5 5.4 
6 0.0 7.8 3.2 
7 0.0 7.0 3.0 
8 0.0 15.1 7.1 
9 0.0 14.9 6.0 

10 0.0 9.0 3.6 
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Table 3.5. Effective age of components in Model 2 

Minimum Maximum Average 
Component Effective Age Effective Age Effective Age 

{month) {month) (month) 
1 0.0 9.0 3.5 
2 0.0 9.0 3.5 
3 0.0 9.0 3.5 
4 0.0 9.0 3.4 
5 0.0 12.1 4.5 
6 0.0 9.0 3.5 
7 0.0 9.0 3.5 
8 0.0 12.2 5.8 
9 0.0 9.0 3.5 
10 0.0 9.0 3.5 

Figures 3.3.1 through 3.3.10 and Figures 3.4.1 through 3.4.10 show the effective 

age of each component. As we can see, when a component is maintained the effective 

age of that component drops based on the amount of improvement factor, a;, 

presented in Table 3.1. For example based on the effective age presented in Figure 

3.3.1, component 1 does not receive any maintenance action for the first 4 months, 

but it is replaced at the 5th month, maintained at the 10th month and so on. This 

causes the effective age drops to zero and component 1 works as a new one at the 

beginning of the next month. 

Another important feature presented in Figures 3.3 and 3.4 is the effect offailure 

rate on the number and frequency of maintenance and replacement actions of 

components over a planning horizon. For example, compare the variations in the 

effective age of components 7 and 9 in Figures 3.3.7 and 3.3.9. It can be seen that 

component 7 is just replaced and there is no maintenance action is performed on this 

component. On the other hand, component 9 is just maintained and it is replaced 

once at month 17. This is related to values of A and f3 for each component. In Table 

3.1, component 7 has 0.00015 and 2.25 and component 9 has 0.00025 and 1.85 for 

parameters A andf3, which means that component 7 has a higher failure rate and 
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greater probability to fail than component 9. Therefore, it is necessary that 

component 7 receive more replacement actions than component 9 in order to satisfy 

the required reliability or to maximize the system's reliability. 

Appendix B presents the detailed computational results of optimization models. 

Tables B.1 and B.4 show the expected number of failures and Tables B.2 and B.5 

present the reliability of components over the planning horizon. We can see that 

expected number of failures for all components is too low and reliability of all 

components is higher than 99%; this is due to the optimal preventive maintenance 

and replacement schedule that keeps the components and the system in excellent 

condition. 
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3.6. Chapter Summary 

This chapter presented basic assumptions and framework for the formulation of 

preventive maintenance and replacement scheduling problem in order to find the 

best sequence of actions for each component in the system over a planning horizon 

such that total costs are minimized or the overall reliability of the system is 

maximized. Two nonlinear mixed-integer programming models were developed and 

optimized by generalized reduced gradient and branch-and-bound algorithms using 

UNGO software. The application and effectiveness of the optimization models to 

find the best preventive maintenance and replacement schedule in multi-component 

systems were presented via a numerical example. Furthermore, the computational 

results of both models were analyzed and advantages of the proposed approach were 

shown. 
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CHAPTER 4 

OPTIMIZATION MODELS AND 
METAHEURISTIC ALGORITHMS 

4.1. Introduction 

In Chapter 3, we presented two nonlinear mixed-integer programming models that 

were optimized using generalized reduced gradient and branch-and-bound 

algorithms in LINGO software. Because of the computational complexity of 

nonlinear mixed-integer programming models to solve real large-scale problems, we 

intend to apply metaheuristic methods to tackle the problem. In this chapter, we 

present a new multi-objective optimization model to find an non-dominated 

preventive maintenance and replacement schedule of multi-component systems, 

which is an extension of proposed models in Chapter 3. Two types of metaheuristic 

algorithms are adapted and modified to solve the multi-objective optimization model. 

Computational results show the feasibility and effectiveness of the proposed 

approaches. 

4.2. Engineering Economics Parameters 

Based on the equations (3.9) and (3.10), we assume that the general effect of 

inflation increases the cost of failures over time, at a rate of i1iffailure percent per 
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period. Thus we find, F;,}, the cost of failures attributable to component i in period 

} as: 

F,,} =F, ·;d(x:,}Y -(Xi,}Y X1+ it@'ailure)} for i=I, ... ,N;}=l, ... ,T (4.1) 

In addition, we assume a separate inflation rates, irifm, infr, and inft for 

maintenance, replacement and fixed costs increases over time, and find that the 

associated costs of maintenance activities of component i in period } as follows: 

M i ,} = M i (1 + irifmY for i = 1, ... ,N;} = 1, ... ,T 

Ri ,} = Ri (1 + infr Y for i = 1, ... , N;} = I, ... ,T 

Z} = Z(1 + inft Y(I-U(I- (mi,) + 'i,} ))) for i = 1, ... ,N;} = I, ... ,T 

(4.2) 

(4.3) 

(4.4) 

Note that mi ,} and ri ,} are binary variables of maintenance and replacement actions 

for component i in period} and they cannot be equal to one simultaneously. The 

equation (4.4) mentions that if a component is maintained or replaced in each 

period, the defined fixed cost will be charged. From our definitions of each type of 

cost and by using standard time value of money concepts and an interest rate int, 

we can find the total net present worth (NPW) of the failure, maintenance, 

replacement, and fixed costs over the planning horizon with the length of T periods. 

4.3. Multi-Objective Optimization Model 

By considering engineering economics parameters, we can extend the objective 

function of the total cost that should be minimized. Finally, the multi-objective 

optimization model corresponds to the cost and reliability functions can be expressed 

as: 
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T 

Min Total Cost = L [
i: [F; . A; ((X:,) Y. - (X;,))Pi Xl + infJailure ))]J 
;=1 + M; (1 + infin)J . m;,) + R; (1 + infr)J . r;,) (1 + int t) 

)=1 

+ Z(1 + info ))(1-D (1- (m;,) + r;,J)) 
N T -[.!;( (X~)"i -(x f')] 

Max Reliabilit y = TI TI e >,J >,J 

s.t. : 
;=1 )=1 

X;,I =0 

X;,) = (1- m;,J-I )(1- ri,j_1 )X:,)_I + m;,J-I (a; . X:,}_I) 

X'. =X .. + T 
',J ',J J 

m;,} + r;,} :s; 1 

m;,}' r;,} = 0 or 1 

X,X'.~O I,J ',J 

i = 1, ... , N 

i = 1, ... , N and j = 2, ... , T (4.5) 

i = 1, ... , N and j = 1, ... , T 

; = 1, ... , N and j = 1, ... , T 

; = 1, ... , Nand j = 1, ... , T 

; = 1, ... , N and j = 1, ... , T 

In the above optimization model, m;,J and r;,} are binary variables of maintenance 

and replacement actions for component i in period j . The first set of constraints 

shows that the initial age for each component is equal to zero. The second set 

mentions that if a component is replaced in the previous period then 

r;,)_1 = 1, m;,)_1 = 0, so X;,} = 0 and. if a component is maintained III the previous 

period then r;,)_1 = 0, m;,)_1 = 1 so X. = a ' X' . I' Finally if we do nothing, I,J 1 I,J-

r;,J-I = 0, m;,J-I = 0, and X;,J = X;,J-I ' The other constraints correspond to our system 

configuration presented in Chapter 3. 

4.4. Genetic Algorithms 

Genetic Algorithms (GAs) were developed and introduced by John Holland (1975), 

Genetic algorithm is a search technique used in computing to find exact or 

approximate solutions to optimization and search problems. Genetic algorithms are 
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categorized as global search metaheuristics. They are a particular class of 

evolutionary algorithms (EA) that use techniques inspired by evolutionary biology 

such as inheritance, mutation, selection, and crossover. They have been designed as 

general search strategies and optimization methods working on populations of 

feasible solutions. Based on population search approach, genetic algorithms are able 

to solve multi-objective optimization problems. A generic single-objective genetic 

algorithm can be easily modified to search a new set of multiple non-dominated 

solutions. The ability of genetic algorithm to simultaneously search different regions 

of a solution space makes it possible to find a diverse set of solutions for difficult 

problems with non-convex, discontinuous, and multi-modal solutions spaces. 

4.4.1. Representation of Solutions 

The first step in any genetic algorithm implementation is to develop an encoding of 

the solution. In order to represent the solution of the proposed preventive 

maintenance and replacement scheduling problem with do nothing, maintenance 

and replacement actions as a chromosome used by genetic algorithms, we define an 

array with length of N x T for N components and T periods where each cell in that 

array contains 0, 1 or 2 corresponds to three different actions. 

4.4.2. Fitness Functions 

A fitness function is a particular type of objective function that quantifies the 

optimality of a solution (that is, a chromosome) in a genetic algorithm so that 

particular solution may be ranked against all the other solutions. An ideal fitness 

function correlates closely with the algorithm's goal, and yet may be computed 

68 



quickly. Since the optimization model presented in (4.5) is a multi-objective 

optimization model, we consider three different fitness functions in order to 

represent the model as a single-objective optimization model and to evaluate and 

compare different Pareto optimal fronts (also known as "trade off curve'). 

Fitness l = WI (Total Cost / Costmax )+ W2 (- Reliability) (4.6) 

Fitness2 = (- Reliability) + (1/ Costma,.}X ITotal Cost - Given budgetl (4.7) 

Fitness3 = (Total Cost / Costmax )+ IReliability - Required Reliabilityl (4.8) 

Note that the above fitness functions are all subject to minimization. The first 

fitness function, Fitness I' is based on the weighted summation of the normalized 

total cost and reliability functions with the condition of WI + w2 = 1; for more 

information see Cohon (1978). The weighted summation strategy converts the multi

objective problem into a single-objective problem by constructing a weighted sum of 

all the objectives. In order to normalize the total cost function, we defined 1/ Costmax 

as the normalization coefficient. This coefficient is the maximum amount of total 

cost that the system could incur when all components are replaced in each period 

over the planning horizon. The second fitness function, Fitness 2' considers 

maximizing the reliability function and minimizing a penalty term of the total cost. 

The penalty term is based on violated values of the total cost of maintenance and 

replacement activities and the given budget in the system. Since the violated values 

have larger amount in comparison with reliability values, we normalize the violated 

values by using normalization coefficient. The third fitness function, Fitness3 , 

minimizes the total cost and absolute values of subtraction of overall reliability and 

required reliability of the system. As before, we considered 1/ CostRW( as the 
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normalization coefficient to normalize total cost term III order to make a same 

magnitude for both parts. 

The idea used in the second and third fitness functions is a special case of goal 

programming method called goal attainment method developed by Gembicki (1974). 

This involves expressing a set of design goals, which is associated with a set of 

objectives. The problem formulation allows the objective functions to be under- or 

overachieved and enables the designer to be relatively imprecise about initial design 

goals. The relative degree of under- or overachievement of the goals is controlled by 

a vector of weighting coefficients, and is expressed as a standard optimization 

problem. The goal attainment method provides a convenient intuitive interpretation 

of the design problem, which is a solvable using standard optimization procedure. 

4.4.3. Crossover Procedures 

The crossover procedures create a new solution as the offspring of pair of selected 

solutions (parent solutions). The offspring should inherit some useful properties of 

both parents in order to facilitate its propagation throughout the population. We 

employed and tested several common crossover procedures, but we found that they 

do not work very well and generate poor solutions that result to slow and premature 

convergence of the genetic algorithm. Therefore, based on the especial structure of 

the problem we designed two new crossover procedures to overcome ineffectiveness 

of the tested crossover procedures as follow: 

a) Two-Point Inverse Crossover: In this type crossover, first we generate two 

random numbers between 1 and N x T, then make an offspring from 

selected parents in which all elements outside the position of those random 
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numbers are copied from the first parent but in an inverse order and inside 

elements are copied from the second parents. If the chosen parents are 

identical, this type of crossover makes a different offspring, which is not the 

same to its parents. 

b) NT-Point Crossover: In this type crossover, the even genes are copied from 

the first parent and odd genes are copied from the second one. 

Based on the structure of the obtained solutions in genetic algorithms iterations, we 

designed that if two selected solutions are equal to each other, then the algorithm 

uses Two-Point Inverse Crossover, and if the selected solutions are not same, the 

algorithm uses NT-Point Crossover to produce new solutions. 

4.4.4. Mutation Procedure 

The mutation procedure is applied to the offspring solutions. It makes changes into 

the solution encoding string by modifying some of the string elements. 

Based on the especial structure of the proposed preventive maintenance and 

replacement scheduling optimization model in which if even one maintenance or 

replacement action is performed in a period, the whole system encounters a fixed 

cost, we define a special type of mutation procedure. In this type of mutation, a 

random number between 1 and N x T is generated, then the corresponding gene is 

changed to 1 or 2 if it is equal to 0, or it is changed to 0 if it is equal to 1 or 2, and do 

same procedure in the same period for other components. This kind of mutation 

procedure produces schedules in which maintenance and replacement activities tend 

to occur in the same periods across all components. 
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4.4.5. Generational Genetic Algorithm 

In the generational genetic algorithm (GGA), the entire population is replaced in 

each generation. The generational genetic algorithm uses two populations at the 

reproduction stage. One population contains the parents to be selected and the 

second one is generated to hold their progeny. The generational genetic algorithm is 

as follows, see Goldberg (1989) and Lisnianski and Levitin (2003): 

Begin Generational Genetic Algorithm 
g=O 
Produce initial population P(g) 
Determine the fitness values of members in P(g) 
While GA termination condition is not satisfied, do 

g=g+l 
Select solutions from P(g-l) for P(g) based on their fitness value with the 

probability of P selection as the selected parents 

Make an offspring from selected parents from P(g-l) with the probability of 

Pcrrusover 

Mutate solutions from P(g-l) with the probability of Pmutation 

Determine the fitness values of the new generated solutions in P(g) 
End while 

End Generational Genetic Algorithm 

4.4.6. Steady State Genetic Algorithm 

The steady state genetic algorithm (SSGA) uses the same population for both 

parents and their progeny. When the generic operation on the parents is completed, 

the new offspring takes the place of the members of the previous generation within 

that population. The steady state genetic algorithm is as follows, see Whitley (1989) 

and Lisnianski and Levitin (2003): 

Begin Steady State Genetic Algorithm 
Produce initial population P 
Determine the fitness values of members in P 
While GA termination condition is not satisfied, do 

While genetic cycle termination condition is not satisfied, do 
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Make an offspring from selected parents 

Mutate the produced offspring with the probability of Pmu/a/ion 

Determine the fitness values of the new produced solution 
Replace the new produced solution with the worst solution in P if its fitness 

value is better than the fitness value of the worst solution 
Discard identical solutions in P 

End while 
Update P with new produced solutions 

End while 
End Steady State Genetic Algorithm 

4.5. Implementation of the Genetic Algorithms 

In order to illustrate the optimization model numerically, and the proposed solution 

procedure, we used data set presented in Table 3.1 and assume Z = $800 as the fixed 

cost and a 36-month planning horizon. In addition, we set the genetic algorithm 

parameters for both generational and steady state genetic algorithms as presented 

in Table 4.1. Finally, we consider inflation rates for failure, maintenance, 

replacement, and fixed costs equal to 1%, 1.5%, 2%, and 1% respectively and 3% as 

an interest rate for engineering economy parameters. We utilized MATLAB R2008a1 

programmmg environment to develop the generational and steady state genetic 

algorithm as well as to calculate the fitness functions. We investigated the 

computational efficiency of the algorithms in terms of CPU time. The computational 

time is about slightly less than 6 minutes for both algorithms on a laptop computer 

(Intel/Core 2, 1.67 GHz and 2 GB RAM). Appendix C presents the MATLAB 

programs of fitness functions, crossover and mutation procedures, and generational 

and steady state genetic algorithms. 

1 www.mathworks.com 
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Table 4.1. Parameters of Genetic Algorithms 

Generational GA Stead State GA 
Number of Generations 500 Number of Generations 1 

Population Size 2000 Genetic Cycle 500 

Probability of Selection 0.20 Number oflterations 100 

Probability of Crossover 0.40 Population Size 2000 

Probability of Mutation 0.40 Probability of Mutation 0.20 

4.5.1. Computational Results of Fitness Function 1 

We run both generational and steady state genetic algorithms with the first fitness 

function for the set of weights for both objective functions and achieve Pareto 

optimal solutions (also known as "non-dominated solutions") shown in Table 4.2. We 

achieved the extreme points as $37334.28 for the total cost and 91.03% as the 

maximum reliability in a case of having only reliability function as the objective 

function in the optimization model. We also found $454.85 as the minimum total 

cost and 2.22% as the systems reliability in a case that system has only total cost as 

the objective function. 

Table 4.2. Pareto optimal solutions of fitness function 1 with GAs 

Weights Generational GA Steady State GA 
WI W2 Cost Reliability Cost Reliability 

0.0 1.0 $ 37,334.28 91.03% $ 37,334.28 91.03% 

0.1 0.9 $ 37,334.28 91.03% $ 37,229.57 90.98% 

0.2 0.8 $ 33,585.74 89.89% $ 32,586.72 90.08% 

0.3 0.7 $ 28,004.50 88.63% $ 27,426.80 88.32% 

0.4 0.6 $ 20,127.67 84.43% $ 21,414.99 85.48% 

0.5 0.5 $ 14,602.70 80.23% $ 16,697.21 81.97% 

0.6 0.4 $ 10,599.07 74.85% $ 12,694.47 77.29% 

0.7 0.3 $ 9,080.44 71.71% $ 9,638.40 72.86% 

0.8 0.2 $ 6,240.55 62.93% $ 6,979.54 65.36% 

0.9 0.1 $ 3,581.16 48.79% $ 2,602.64 39.80% 

1.0 0.0 $ 454.85 2.22% $ 454.85 2.22% 

Figure 4.1 represents the Pareto optimal front of the first fitness function 

obtained by generational and steady state genetic algorithms. Figures 4.2 and 4.3 
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illustrate cost and reliability progress show the cost and reliability progress during 

the iterations of the algorithms for WI = 80010 and WI = 20010. As we can see, the 

convergence of the steady state genetic algorithm is somewhat faster than the 

convergence of the generational genetic algorithm but the quality of final solution 

resulting from the generational genetic algorithm is slightly better than from the 

steady state genetic algorithm. 
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Figure 4.1. Pareto optimal front of fitness function 1 with GAs 
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Figure 4.2. Cost progress of fitness function 1 with GAs 
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Reliability Procress of Fitness Function 1 
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Figure 4.3. Reliability progress of fitness function 1 with GAs 

Tables 4.3 and 4.4 show an example of non-dominated preventive maintenance 

and replacement schedules with fitness function 1 for 0.8 and 0.2 as the weights for 

cost and reliability objective functions. With these weights, the values of objective 

functions are $6240.55 and 62.93% obtained by the generational genetic algorithm 

and are $6979.54 and 65.36% achieved by the steady state genetic algorithm. It 

should be mentioned that all of replacement actions tend to occur in the same 

month, which reflects the effect of the fixed cost Z. It is also interesting to note that 

once a replacement action occurs, it is always followed by a period of inactivity. 

Table 4.3. Non-dominated preventive maintenance and replacement schedule 
Fitness function 1, GGA (wl=80% and wz=20%) 

Monthl 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1617 18 19 20 21 22232426262728293031 3233343636 
Component 

1 - - - R - - - R - - R - - R - - R - - R - - - - R - - - - -
2 - - - R - - - R - - R - - R - - R - - R - - - - R - - - - -
3 - R - - - R - - R - - - - R - - R - - - - R - - - - R - - - - - - -
4 - R - - - R - - R - - - - R - - R - - - - R - - - - R - - - - -
5 - R - - - R - - R - - - - R - - R - - R - - - - R -
6 - R - R - - R - - R - - R - - R - - - - R - - - - -
7 - R - R - - R - - - - R - - R - - R - - - - R - - - - -
8 - R - - - R - - R - - - - R - - R - - R - - - - R -
9 - R - - - R - - R - - - - R - - R - - R - - R - - - - -
10 - R - - - R - - R - - - - R - - R - - - - R - - R - - - - -
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Table 4.4. Non-dominated preventive maintenance and replacement schedule 
Fitness function 1, SSGA (wl=80% and wz=20%) 

Montbl 1 2 3 4 6 6 7 8 9 10 11 12 13 14 16 16 17 18 19 20 21 22 23 24 26 26 27 28 29 30 31 3233343636 
Component 

1 - R- - R - - - R - - - R - - - R - - - R - - R - - - - R -
2 - R- - R - - - R - - - R - - - R - - - R - - R - - - - R - -
3 - R- - R - - - R - - - R - - - R - - - R - - R - - - - R - -
4 - R- - R - - - R - - - R - - - R - - - R - - R - - - - R - -
5 - R- - R - - - R - - - R - - - R - - - R - - R - - - - R - -
6 - R- - R - - - R - R - - - R - - - R - - R - - - - R - -
7 - R- - R - - - R - - - R - - - R - - - R - - R - - R - - -
8 - R- - R - - - R - - - R - - - R - - - R - - R - - R -
9 - R - - R - - - R - - - R - - - R - - - R - - R - - R - -
10 - R- - R - - - R - - - R - - - R - - - R - - R - - - - R - -

4.5.2. Computational Results of Fitness Function 2 

We optimize the model (4.5) with fitness function 2 and by considering different 

budget levels in the system and obtain Pareto optimal solutions presented in Table 

4.5. Based on the extreme points, we considered different budget levels range from 

$400 to $20000 in the system for the second fitness function. 

Table 4.5. Pareto optimal solutions of fitness function 2 with GAs 

Given Generational GA Steady State GA 
Budget Cost Reliability Cost Reliabilitv 

$ 400.00 $ 454.85 2.22% $ 454.85 2.22% 

$ 2,000.00 $ 2,000.61 14.94% $ 2,000.12 18.88% 

$ 4,000.00 $ 4,000.23 42.14% $ 4,000.07 35.61% 

$ 6,000.00 $ 6,000.13 58.00% $ 6,000.03 56.95% 

$ 8,000.00 $ 7,999.97 64.98% $ 7,999.87 62.38% 

$ 10,000.00 $ 9,999.96 69.07% $ 9,999.98 66.39% 

$ 12,000.00 $ 11,998.88 75.24% $11,999.70 72.31% 

$ 14,000.00 $ 14,000.02 77.98% $ 13,999.10 75.42% 

$ 16,000.00 $ 15,999.56 80.23% $16,000.65 78.92% 

$ 18,000.00 $ 17,999.98 83.56% $ 17,999.33 81.25% 

$ 20,000.00 $ 20,000.40 85.12% $19,999.93 83.11% 

Figure 4.4 shows the Pareto optimal front of fitness function 2 obtained by the 

genetic algorithms. As it can be seen, both Pareto fronts are relatively similar to 

each other. The cost and reliability progress in terms of number of generations and 
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genetic cycles in the generational and steady state genetic algorithms are also shown 

in Figures 4.5 and 4.6. It is clear that the convergence of the steady state genetic 

algorithm is little bit faster than the convergence of generational genetic algorithm 

at the beginning iterations. 
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Figure 4.4. Pareto optimal front of fitness function 2 with GAs 
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Figure 4.5. Cost progress of fitness function 2 with GAs 
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Figure 4.6. Reliability progress of fitness function 2 with GAs 

Tables 4.6 and 4.7 show an example of non-dominated preventive maintenance and 

replacement schedules with fitness function 2 for a $5000 as given budget. With this 

level of budget, the reliability of the system achieved by the generational and steady 

state genetic algorithms is 54.07% and 51.88% respectively. As we can see, in this 

situation, all of maintenance and replacement actions take place in the same period 

which reflects the effect of fixed cost and once maintenance or replacement action 

occurs, it is often followed by a period of inactivity. 

Table 4.6. Non-dominated preventive maintenance and replacement schedule 
Fitness function 2, GGA (Budget=$5000 and Reliability=54.07%) 

Month! 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 
Component 

1 - - R - - R - - - R - - - - R - - M - - - R - - - - M -
2 - - - - R - - R - - - - R - - M - - - R - - - - M -
3 - - - - R - - R - - - R - - - - R - - M - - - R - - - - M -
4 - R - R - - - - R - - - - M - - - R - - M -
5 - - - - R - - . - - - R - - - - R - . M - - - R - - - - M -
6 - - - - R - - R - R - . R - - - - M . - - R - - - - M -
7 - - - - R - - R - - - R . - R - ·M - - - R - - - - M -
8 - - - - R - - M - - . R . - - - R - - - - M . - - R · - - - M • . - . . 
9 - - - - R - - - - - - R - - - - R - • M • . . R · . . • M -

10 R - . R - - - R - - - - R - - - - M - . - R · . . . M . 
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Table 4.7. Non-dominated preventive maintenance and replacement schedule 
Fitness function 2, SSGA (Budget=$5000 and Reliability=:51.88%) 

Month! 1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 192021 22232425262728293031 32 33 34 3536 
Component 

1 - R - - RR - - R - MR - - - - R - - - - R - - - - - - - - - - -
2 - R - - - R - - - - MR - - - - R - - - - R - - - - - - - - -
3 - R - - RR - - M - M - - - - - R - - - - R -
4 - - - - R - - - R - - R - MR - - R - - R - - - - - - - - -
5 - - - - R - - RR - - R - MM - - - - R - - R - - - - -
6 - - R - - MR - - - - MR - - - - R - - - - R - -
7 - - R - - RR - - M - MM - - - - R - - - - R - - - - - - -
8 - R - - MR - - - - MM - - - - R - - R - - - - - - - - - - -
9 - R - - RR - - M - MM - - - - R - - - - R - - - - -
10 - R - - - R - - R - MR - - - - R - - - - R - - - - -

4.5.3. Computational Results of Fitness Function 3 

Finally, Table 4.8 presents the Pareto optimal solutions of the fitness function 3 for 

different required reliability range from 0 to 100%. Figure 4.7 presents the Pareto 

optimal front obtained by the generational and steady state genetic algorithms with 

fitness function 3. In this case, the Pareto fronts do not exactly coincide with each 

other as it happened for the first and second fitness functions. Figures 4.8 and 4.9 

represent the cost and reliability progress in both genetic algorithms. In this case, 

the convergence of both algorithms is same but the generational genetic algorithm 

reduces the total cost better than steady state genetic algorithm does. 

Table 4.8. Pareto optimal solutions of fitness function 3 with GAs 

Required Generational GA Steady State GA 
Reliability Cost Reliability Cost Reliability 

0% $ 454.85 2.22% $ 454.85 2.22% 

10% $ 908.70 9.82% $ 1,253.96 10.00% 

20% $ 1,544.45 20.13% $ 1,843.41 19.88% 

30% $ 1,971.91 30.02% $ 3,470.56 29.95% 

40% $ 3,134.55 39.94% $ 4,407.27 39.98% 

50% $ 4,109.02 50.00% $ 5,251.48 49.99% 

60% $ 6,381.03 59.95% $ 7,754.48 59.94% 

70% $ 8,956.37 70.04% $ 8,903.02 70.02% 

80% $ 14,262.18 79.81% $ 14,455.02 79.57% 

90% $14,286.09 80.25% $ 15,100.48 80.40% 

100% $ 16,076.14 81.53% $ 15,103.18 80.67% 
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Pareto Optimal Front of Fitness Function 3 
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Figure 4.7. Pareto optimal front of fitness function 3 with GAs 
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Figure 4.8. Cost progress of fitness function 3 with GAs 
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Figure 4.9. Reliability progress of fitness function 3 with GAs 
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Tables 4.9 and 4.10 show an example of non-dominated preventive maintenance 

and replacement schedules with fitness function 3 with 50% as the desired 

reliability. With this level of required reliability, the total cost of the system is 

$4109.02 and $5251.48 achieved by the generational and steady state genetic 

algorithms respectively. As it can be seen, the structure of both schedules is same as 

the structure found using previous fitness functions. 

Table 4.9. Non-dominated preventive maintenance and replacement schedule 
Fitness function 3, GGA (Reliability=50% and Cost=$4109.02) 

Montbl 1 2 3 4 5 6 7 8 9 101112 13 1415161718192021222324 25 26 27 28 29 30 31 3233343536 
Component 

1 0 0 0 0 R 0 0 . 0 R · 0 0 . R 0 0 0 Mo 0 M 0 0 0 R 0 

2 0 0 0 0 R 0 0 0 0 R · 0 0 . R . 0 oM 0 0 M 0 0 0 R 0 0 0 0 0 

3 0 0 R 0 0 0 0 R 0 0 0 0 R 0 0 0 M 0 0 M 0 . . R 0 0 . . . 0 0 0 0 

4 0 0 0 0 R 0 . 0 . R · 0 0 0 R 0 0 oM 0 0 M 0 0 0 R 0 0 0 0 0 0 

5 0 0 R 0 0 0 0 R 0 0 R 0 0 oM 0 0 M 0 0 . R . . 0 . 0 . 
6 0 0 0 0 R 0 0 0 0 R 0 0 R 0 0 oM 0 0 M 0 0 0 R 0 0 0 0 0 0 

7 0 0 R 0 0 R 0 . 0 0 R 0 0 oM 0 0 M 0 0 0 R 0 0 0 0 0 0 

8 0 0 0 0 R 0 0 0 0 R 0 0 R 0 0 0 Mo 0 M 0 0 0 R 0 

9 0 0 R 0 0 0 0 R 0 0 0 0 R 0 0 0 M 0 0 M 0 0 0 R 0 

10 0 0 0 0 R 0 0 0 0 R 0 0 0 0 R 0 0 0 M 0 0 M 0 0 0 R 0 0 0 0 0 0 0 

Table 4.10. Non-dominated preventive maintenance and replacement schedule 
Fitness function 3, SSGA (Reliability=50% and Cost=$5251.48) 

0 

0 

0 

. 
0 

0 

0 

Montbl 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 192021 222324 25 26 27 28 29 30 31 3233343536 
Component 

1 0 0 R 0 0 R 0 M 0 0 M 0 M 0 R 0 0 R 0 0 MM 0 0 0 M 0 0 0 0 0 

2 0 0 R 0 0 R 0 M 0 0 M 0 M 0 R 0 0 0 0 R 0 0 MM 0 0 0 M 0 0 0 0 0 

3 0 0 R 0 0 R 0 M 0 oM 0 M 0 R 0 0 R 0 0 MM 0 0 0 M 0 0 0 0 0 

4 0 0 R 0 0 R 0 M 0 0 M 0 M 0 R 0 0 0 0 R 0 0 MM 0 0 0 M 0 0 0 0 0 

5 0 0 R 0 0 R 0 M 0 0 M 0 M 0 R 0 0 R 0 0 MM 0 0 0 M 0 0 0 0 0 

6 0 0 R 0 0 R 0 M 0 0 M 0 M 0 R 0 0 R 0 0 MM 0 0 0 M 0 

7 0 0 R 0 0 R 0 M 0 0 M 0 M 0 R 0 0 0 0 R 0 0 MM 0 0 0 M 0 

8 0 0 R 0 0 R 0 M 0 oM 0 M 0 R 0 0 0 0 R 0 0 MM 0 0 0 M 0 0 0 0 0 

9 0 0 R 0 0 R 0 M 0 oM 0 M 0 R 0 0 0 0 R 0 0 MM 0 0 0 M 0 0 0 0 0 

10 0 0 R 0 0 R 0 M 0 0 M 0 M 0 R 0 0 0 0 R 0 0 MM 0 0 oM 0 

A comparison between Pareto optimal fronts of the three fitness functions with 

the genetic algorithms is presented in Figure 4.10. We can conclude that the first 

fitness function and the third fitness function with generational genetic algorithm 

produce better Pareto optimal front when compared to the fitness function 2 and the 

82 



fitness function 3 with steady state genetic algorithm. These Pareto optimal fronts 

can be used to plan any desired levels of both objective functions. Maintenance 

engineers and managers can use these curves to design systems reliability in order 

to meet systems requirements and objectives. 

Pareto Optimal Front of all Fitness Functions 

100% 

80% 

~ 60% 
:c 
.~ 
Qj 
a:: 

40% 

20% 

0% 

$- $10,000 $20, 000 $30,000 $40,000 

__ Fit 1 with Generational GA _Fit 1 with Steady State GA Cost 

__ Fit 2 with Generational GA -,t-Flt 2 with Steady State GA 

....... Fit 3 with Generational GA ...... Fit 3 with Steady State GA 

Figure 4.10. Pareto optimal solutions of all fitness functions with GAs 

4.6. Simulated Annealing Algorithm 

Simulated annealing (SA) algorithm is a general probabilistic method for solving 

combinatorial optimization problems. It involves random transitions among the 

solutions of the problem. Unlike iterative progress algorithms, which improve the 

objective value continuously, the simulated annealing algorithm may encounter 

some adverse changes in objective value in the course of its progress. Such changes 

are intended to lead to a global optimal solution instead of a local one. Annealing is a 

physical process in which a solid is heated up to a high temperature and then 

allowed to cool gradually. In this process, all of the particles arrange themselves 
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gradually into a low energy level. The ultimate energy level depends on the level of 

the high temperature and the rate of cooling. The annealing process can be described 

as a stochastic procedure, such that at each temperature, the solid undergoes a large 

number of random transitions among states of different energy levels until it attains 

a thermal equilibrium in which the probability that the solid appears in a state with 

an energy level E is given by: 

( -E ) 

Pr(X = E) = _l_e K8T 

Z(t) 
(4.9) 

Where X denotes the random energy level of the solid, Z(t) is a normalization factor, 

and K B is the Boltzmann constant. The above probability distribution is called the 

Boltzmann distribution. As the temperature T decreases, equilibrium probabilities 

associated with higher energy level states decreases. When the temperature 

approaches to zero, only the states with the lowest energy level will have nonzero 

probability. If the cooling is not sufficiently slow, thermal equilibrium will not be 

attained at any temperature and consequently the solid will finally have a meta-

stable condition. 

There are several variations of simulated annealing, which arise to different 

cooling schedules and stopping criteria. The following is a general description of 

simulated annealing, see Kuo et al. (2001). 

Begin Simulated Annealing 
k=O 
Select Tinilial and Tfinal if the termination criterion involves Tfinal 

Randomly produce an initial solution Xo from S 

Determine the fitness value of the initial solution 10 = C(xo) 

While a sufficient number of times to ensure a near-equilibrium condition, do 
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Randomly select a transition Xl = yand compute IlC = C(y) - C(Xl ). If IlC :s; 0 , 

accept the transition. If IlC > 0, accept the transition with probability 

(-M') 

Prk (dC) = e T. ,and reject it with probability 1- Prk (IlC) 

If the transition is accepted, update Xt = Y and It = C(y). (To accept or reject the 

transition with IlC > 0, First generate a random number p from (0,1). If 
p:s; Prk(IlC), accept the transition; otherwise, reject it) 

k=k+ 1. Find Tk from Tk- 1 ,based on the rule for decreasing the control parameter T 

Xt = Xk-l, Ik = Ik-l 

End while 
End Simulated Annealing 

Note that the transition xk = Y is usually selected in such a way that y is in the 

neighborhood ofxk. 

4.7. Implementation of the Simulated Annealing Algorithm 

We use the representative data set shown in Table 3.1 and assumed same fixed cost, 

planning horizon and inflation and interests rates. In addition, we set the simulated 

annealing parameters to initial temperature = 1000000, final temperature = 0.01 and 

geometric decreasing rate = 0.9S. We develop a computer program in MATLAB 

R200Sa 1 programming environment to construct the simulated annealing algorithm 

and calculate the fitness functions. It is useful to mention that because of the 

geometric decreasing rate the number of energy levels, algorithm iterations, is 912 

and the computational time is observed as less than 2 seconds. Appendix D presents 

the MATLAB programs of fitness functions, transition function, and simulated 

annealing algorithm. 

1 www.mathworks.com 
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4.7.1. Computational Results of Fitness Function 1 

We run the simulated annealing algorithm with fitness function 1 for the set of 

weights for both objectives functions and achieve Pareto optimal solutions shown in 

Table 4.11. Figure 4.11 represents the Pareto optimal front of fitness function 1 

obtained by the simulated annealing algorithm. Figures 4.12 and 4.13 illustrate cost 

and reliability progress during the iterations of algorithm. As we can see, the 

convergence of the algorithm is not too consistent but it can give a near optimal 

solutions. 

Table 4.11. Pareto optimal solutions of fitness function 1 with SA 

Weights Simulated Annealing 

WI W2 Cost Reliability 

0.0 1.0 $ 37,334.28 91.03% 

0.1 0.9 $ 36,632.37 90.10% 

0.2 0.8 $ 33,585.74 88.89% 

0.3 0.7 $ 26,915.20 84.75% 

0.4 0.6 $18,569.88 80.22% 

0.5 0.5 $ 13,451.70 74.78% 

0.6 0.4 $ 9,723.55 68.17% 

0.7 0.3 $ 8,841.34 65.32% 

0.8 0.2 $ 6,572.84 57.78% 

0.9 0.1 $ 4,761.10 46.51% 

1.0 0.0 $ 454.85 2.22% 

Pareto Optimal Front of Fitness Function 1 

100% ~-----------------------------------, 

80% 

~60% 
:c 
.!!! 
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0:: 

20% 

0% ~-------'---------r--------~------~ 
$- $10,000 $20,000 $30,000 

I ..... SimulatedAnnealing I 
$40,000 

Cost 

Figure 4.11. Pareto optimal front of fitness function 1 with SA 
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Figure 4.12. Cost progress of fitness function 1 with SA 
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Figure 4.13. Reliability progress of fitness function 1 with SA 

Table 4.12 shows a non-dominated preventive maintenance and replacement 

schedule of fitness function 1 for 0.8 and 0.2 as the weights for cost and reliability 

objective functions. With these weights, the values of objective functions are 

$6572.84 and 57.78%, which are slightly worse than the results achieved by 

generational and steady state genetic algorithms. It should be mentioned that all 

maintenance and replacement actions tend to occur in the same month, which 

reflects the effect of the fixed cost. 
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Table 4.12. Non-dominated preventive maintenance and replacement schedule 
Fitness function 1, SA (wl=80% and WJ=20%) 

Montbl 12 3 4 6 6 7 8 9101112131416161718192021222324262627282930313233343636 
Component 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

- - R • R • - - MM - M - - - R - - M - R 0 o 0 0 - - R 
- • R • R • - - MM - M - - - R - - M 0 R 0 

- - - - R - R - - - MM • M· - - R - - - -M-R-
- - - - R - R - - - MM - M - - - Roo o 0 M 0 R 0 

- - - - R - R - - - MM • Moo - R - - --M-R--
- 0 0 oR-R- - -MM-M-- - Roo o 0 M 0 R 0 -

- - R - R - - - MM - M - - oRo - M - R -
- 0 R 0 R 0 - - MM - M - - - R - -MoR- -

- - - - R - R - - - MM - M - - - R - - - -MoRo 
- - - - R - R - - 0 MM - M - - R - - - - M - R 0 

4.7.2. Computational Results of Fitness Function 2 

- - R 
o R 

- - - R 
- - 0 0 R 0 

----R-
- - - R 0 

----R-
- - R 

R -

We optimize the model (4.5) with fitness function 2 and by considering different 

levels of budget in the system and the obtain Pareto optimal solutions presented in 

Table 4.13. Figure 4.14 represents the Pareto optimal solutions obtained by 

simulated annealing algorithm with fitness function 2. Figures 4.15 and 4.16 show 

cost and reliability progress during the iterations of algorithm. It is clear that 

despite of the convergence of the algorithm with fitness function 1, the convergence 

in this case is completely consistent over the iterations. 

Table 4.13. Pareto optimal solutions of fitness function 2 with SA 

Given Simulated Annealing 
Budget Cost Reliability 

$ 400.00 $ 454.85 2.22% 

$ 2,000.00 $ 1,999.24 18.94% 

$ 4,000.00 $ 3,999.99 37.23% 

$ 6,000.00 $ 5,999.30 51.62% 

$ 8,000.00 $ 7,998.99 60.77% 

$10,000.00 $ 10,000.64 67.17% 

$12,000.00 $ 11,999.10 72.39% 

$14,000.00 $ 13,999.99 76.03% 

$16,000.00 $ 16,000.23 78.55% 

$18,000.00 $ 18,000.75 80.11% 

$ 20,000.00 $19,999.83 81.45% 
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Figure 4.14. Pareto optimal front of fitness function 2 with SA 
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Figure 4.15. Cost progress of fitness function 2 with SA 
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Figure 4.16. Reliability progress of fitness function 2 with SA 
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Table 4.14 shows a non-dominated preventive maintenance and replacement 

schedule with fitness function 2 for the given budget equal to $5000. With this 

amount of budget, the reliability of the system is 48.88% and same as what was 

mentioned in section 4.7.1 the result is not as good as what is achieved by 

generational and steady genetic algorithms. 

Table 4.14. Non-dominated preventive maintenance and replacement schedule 
Fitness function 2, SA (Budget=$5000 and Reliability=48.88%) 

Montbl 1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930313233343536 
Component 

1 - - - - - - M - - - R - R - - - - M - MM - - - R -
2 - - - - - - - M - - - R - R - - - - M - MM - - - - - R - - - - -
3 - - - - - - - - M - - - R - R - - - - - - M - MM - - - - - R -
4 - - - - - - M - - - R - R - - - - M - MM - - - R -
5 - - - - - - - - M - - - R - R - - M - MM - - - - - R -
6 - - M - - - R - R - - - - - - M - MM - - - - - R -
7 - - - - - - M - - - R - R - - - - M - MM - - - R -
8 - - - - - - - - M - - - R - R - - - - M - MM - - - R -
9 - - M - - - R - R - - - - - - M - MM - - - - - R -
10 - - - - - - - - M - - - R - R - - - - M - MM - - - R -

4.7.3. Computational Results of Fitness Function 3 

Finally, Table 4.15 presents the Pareto optimal solutions of the model with fitness 

function 3 for different required reliability values. Figure 4.17 represents the Pareto 

optimal solutions obtained by simulated annealing algorithm for fitness function 3. 

Figures 4.17 and 4.18 show cost and reliability progress during the iterations of 

algorithm and as we can see the convergence of the algorithm with fitness function 3 

is very consistent after half of the total iterations. 
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Table 4.15. Pareto optimal solutions of fitness function 3 with SA 

100% 

80% 

.~ 60% 

:is 
.~ 40% "ii 
a:: 

20% 

0% 

$-

Required Simulated Annealing 
Reliabilit Cost Reliabilit 

0% $ 454.85 2.22% 

10% $ 1,120.35 9.97% 

20% $ 1,823.81 20.01% 

30% $ 2,356.39 30.00% 

40% $ 3,201.11 40.09% 

50% $ 5,256.75 49.84% 

60% $ 6,523.00 60.05% 

70% $ 9,177.98 70.01% 

80% $ 15,108.03 79.98% 

90% $ 16,249.33 81.11% 

100% $ 18,242.11 84.25% 
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Figure 4.17. Pareto optimal front of fitness function 3 with SA 
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Figure 4.18. Cost progress of fitness function 3 with SA 
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Figure 4.19. Reliability progress of tit ness function 3 with SA 

Table 4.16 shows a non-dominated preventive maintenance and replacement 

schedule of fitness function 3 with 50% as the required reliability. With this level of 

reliability, the total cost of the system is $5256.75, which is almost same as the total 

cost achieved by steady state genetic algorithm but it is not as good as the total cost 

obtained by generational genetic algorithm with third fitness function. 

Table 4.16. Non-dominated preventive maintenance and replacement schedule 
Fitness function 3, SA (Reliability=50% and Cost=$5256.75) 

Month! 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 
Component 

1 - - R - - - M . M - MR - - - R - R - - - - - -
2 - - R - - - M - M - MR - - - - R - - R - - - - - - - - - -
3 - - R - - - M - M - MR - - - R - R - - - - - - - - - -
4 - - R - - - M - M - MR - - - R - - R - - - - - -
5 - - R - - - M - M - MR - - - - R - - - R - - - - - - - - - -
6 - - R - - - M - M - MR - - - R - - - R - -
7 - - R - - - M - M - MR - - - - R . - - R - - - - - - -
8 - - R - - - M - M - MR - - - - - - R - - R - - - - - -
9 - - R - - - M - M . MR - - - - R - - - R - - - - - - - - - -
10 R - - - M - M - MR - - - R - - R - - - - -

An advantage of simulated annealing is its ability to search neighborhoods to 

find global optimum solution instead of just finding local one. This can be observed 

in Figures 4.15, 4.16, 4.18, and 4.19 in points that the total cost drops or the 
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reliability rises drastically. A comparIson between Pareto optimal fronts of the 

fitness functions using the simulated annealing algorithm is presented in Figure 

4.20. We can observe and conclude that all fitness functions result to the same 

Pareto optimal solutions but the first fitness function has a lack of convergence 

consistency in the iterations of the algorithm. 

Pareto Optimal Front of all Fitness Functions 
100% ..,---------------------, 

80% 

~ 00% +-----~~---------------------------1 

:0 
,!!! 40% 
e; 
..: 

20% 

0% ~---~~----_r-----~-------1 

$- $10,000 $20,000 $30,000 $40,000 '1-___ --F-it-l-W-it-h-SA--..... --F-It-2-Wl-'t-h-SA--....... --Fi-t-3-W-It-h-SA---'I Cost 

Figure 4.20. Pareto optimal front of all fitness functions with SA 

4.8. Chapter Summary 

In this chapter, an extension of the optimization models formulated in Chapter 3 

was presented by considering engineering economy aspects. A new model multi-

objective optimization model was formulated. Generational and steady state genetic 

algorithms as well as a simulated annealing algorithm were used to optimize the 

model and new crossover and mutation procedures were developed based on the 

special structure of the model. In addition, three different fitness functions were 

developed and utilized to evaluate Pareto optimal solutions. By analyzing the 

computational time and results of the algorithms, we showed the efficiency and 

effectiveness of the solution methods. Finally, the convergence of the algorithms in 
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terms of cost and reliability progress was demonstrated and analyzed. In the next 

chapter, a complete comparison of the exact and metaheuristic algorithms along 

with the sensitivity analysis of the optimization model parameters will be presented. 
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CHAPTER 5 

SENSITMTY ANALYSIS AND 
COMPARISON OF ALGORITHMS 

5.1. Introduction 

In Chapter 3, we developed two optimization models and solved them via an exact 

solution approach. We extended the models to consider multiple objectives and 

applied two types of genetic algorithms along with a simulated annealing to reach 

non-dominated solutions. This chapter further refines the analysis and includes two 

main parts. First, we examine the effect of the optimization model parameters on 

the resulting structure of the optimal preventive maintenance and replacement 

schedule of multi-component systems. Second, we compare the computational 

efficiency and accuracy of the metaheuristic methods with the exact method and 

show the advantages of each. 

5.2. Sensitivity Analysis on Parameters 

5.2.1. Experimental Design 

The optimization models developed in Chapter 3 have two different types of 

parameters; component reliability characteristics, and costs associated with 

preventive maintenance and replacement activities. Component reliability 

parameters include Ai and Pi' the characteristic life (scale) and the shape 
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parameters of component, and a j , the improvement factor for each component i. 

Each component also has three different types of cost, failure cost, maintenance cost, 

and replacement cost. In addition, the optimization models have constraints on the 

overall reliability and the total cost, (required reliability and the given budget). 

Finally, there is a fixed cost charged whenever a component is maintained or 

replaced in a period. 

We design two 23 factorial design experiments to find the effect of the 

optimization model parameters on the structure of the optimal schedule. Based on 

this consideration, each experiment has three factors, each with two levels. With one 

replicate in each experiment, there are 8 different trials. 

The first experiment, scenario 1, assumes that the reliability parameters of all 

components are the same, but each component has two levels, low and high, for 

failure, maintenance, and replacement costs; as shown in Table 5.1. The second 

experiment, scenario 2, assumes that the failure, maintenance, and replacement 

costs of all components are the same, but each component has two levels for the 

reliability parameters; see Table 5.2. We consider each scenario and solve both 

models with and without the fixed cost. Hence, we achieve four different optimal 

preventive maintenance and replacement schedules for each scenario. 
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Table 5.1. Parameters for the scenario 1 

CompoQeQt A p Failure Maintenance Replacement a 
Cost ($) Cost ($) Cost ($) 

1 0.00025 2.20 0.50 100 100 100 
2 0.00025 2.20 0.50 100 100 500 
3 0.00025 2.20 0.50 100 500 100 
4 0.00025 2.20 0.50 100 500 500 
5 0.00025 2.20 0.50 500 100 100 
6 0.00025 2.20 0.50 500 100 500 
7 0.00025 2.20 0.50 500 500 100 
8 0.00025 2.20 0.50 500 500 500 

Table 5.2. Parameters for the scenario 2 

Component A p Failure Maintenance Replacement a 
Costm Cost m Cost ~I} 

1 0.00010 1.80 0.25 100 100 100 
2 0.00010 1.80 0.75 100 100 100 
3 0.00010 2.50 0.25 100 100 100 
4 0.00010 2.50 0.75 100 100 100 
5 0.00050 1.80 0.25 100 100 100 
6 0.00050 1.80 0.75 100 100 100 
7 0.00050 2.50 0.25 100 100 100 
8 0.00050 2.50 0.75 100 100 100 

5.2.2. Computational Results of the Scenario 1 

We utilized LINGOl software to solve the models to obtain an optimal solution. We 

set the required reliability to 50% in the first model and the given budget to $8000 

and $18000 for the models without and with the fixed cost respectively in the second 

model. In addition, we considered the fixed cost equal to $1000 and 36 month as the 

planning horizon. 

Tables 5.3 through 5.6 present optimal schedules for the first scenario for both 

models. At first glance, the effect of the fixed cost on optimal schedules is clearly 

evident. As expected, the fixed cost forces maintenance and replacement activities to 

occur in same periods, as shown in Tables 5.4 and 5.6. In section 3.2.4.4, it was 

mentioned that an N-component model without fixed cost is similar to N single-

component models in which one could simply find the best sequence of actions for a 

1 http://www.lindo.com 
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component regardless of the actions taken to other components. Tables 5.3 and 5.5 

show such a schedule. 

Observing the structure of the optimal schedules, one can see that the failure 

cost does not noticeably affect structure of the schedule and the frequency of actions. 

It can be seen that there is no big difference between the schedule of first four 

components with less failure cost and the last four components with more failure 

cost. 

We find that components 2 and 6 are only maintained, because the maintenance 

cost for components 2 and 6 are one fifth of their replacement cost, however they 

have different failure costs, as shown in Table 5.1. We can also see that components 

1, 3,4, 5, 7 and 8 are only replaced, except one maintenance action for component 5 

in Tables 5.5 and 5.6 and a maintenance action for component 1 in Table 5.6. In the 

above components, maintenance cost is greater or equal to replacement cost and it 

seems that in this case the maintenance and replacement schedule contains 

replacement actions instead of maintenance actions. Finally, we can observe that 

components 4 and 8 are replaced less frequently than other components because of 

their high maintenance and replacement costs. 

By reviewing the maintenance and replacement costs presented in Table 5.1 and 

the structure of the optimal schedules, we can conclude that if all components have 

the same reliability parameters, structure and frequency of activities in the optimal 

schedule is affected by just ratio of the maintenance and replacement costs. In 

addition, we can say that the failure cost does not play a significant role in the 

structure of maintenance and replacement schedule. 
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Table 5.3. Scenario l-Optimal schedule that minimizes total cost without fixed cost 
(Reliability=50.00% and Cost=$8503.29) 

Monthl 1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 192021222324252627282930313233343536 
Component 

1 ----R---R------R---R---R----R---R-
2 - -M- -M-M-M- -M-M- -M- -M-M- - - - - -M-
3 --R---R -R--R---R----R---R---R-----
4 ------------R------R- -R-
5 -----R----R---R---R---R -R--R-
6 - - - M - M - - M - M - - - M - MM - - - M - - M - M - - MM -
7 R- R----R---R--R---R---R--R-
8 ----------R----------R------R-------

Table 5.4. Scenario I-Optimal schedule that minimizes total cost with fixed cost 
(Reliability=50.00% and Cost=$18301.00) 

Monthl 
1 2 3 4 5 6 7 8 9 10 1112 13 14 15 16 17 18 1920 21 2223 24 25 26 27 28 29 30 31 32 33 34 35 36 

Component 

1 - - - - - R - - - R - - - - R - - - - R - - R - - R - - - R - - - - - -
2 - - M - - - R - - - - M - - M - - M - - M - - - MM -
3 - - - - R - - - R - - - - R - - R - - R - R - - - - - -
4 - - - - - - R - - - R - - - - - - - R - - - - R - - - - -
5 - - - - - R - - - R - - - - R - - - - R - - R - - R - - - R - - - - - -
6 - - - - - MM - - M - - - - M - - - - R - - M - - M - - - MM - - - - -
7 - - - - - R - - - R - - - - R - - - - R - - - R - - - - R - - - - -
8 - - - - R - - R - - - - - - - - - - - - R - - - R - - - - - -

Table 5.5. Scenario I-Optimal schedule that maximizes reliability without fixed cost 
(Budget=$8000 and Reliability=45.46%) 

Monthl 12 3 4 5 6 7 8 9101112131H5161718192021222324252627282930313233343536 
Component 

1 
2 
3 
4 
5 
6 
7 
8 

---R-R ---R---R----R-
- - - - M - - M - - M - - M - MM - - - - M -
----R- R--R----R-

---R-- ----- -R---
-R- - -R-R- - -R- - -R- - -R-

- -M- -M- - -M-M- - - -M-M-
----R--R----R- --R--R-
-------R-- -----R------

--R--R-
-M--M- ----
---R -R--

- R -
R - M - - -

-M- -M-
- R - -

- R - R - - R -
-R----

Table 5.6. Scenario I-Optimal schedule that maximizes reliability with fixed cost 
(Budget=$18000 and Reliability=46.90%) 

Monthl 1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 1718 19 20 2122 23 24 25 26 27 28 29 30 31 32 33 34 35 36 
Component 

1 - - - - R - - R - - - - R - - - - R - - - R - - - M - - R -
2 - - - - M - - M - - R - - - - - - M - M - - - M - - - M - - - - - -
3 - - - - R - - R - - - - R - - - - R - R - - - R - - - R - R 
4 - - - - - - - - - - R - - - - - - R - - - - R - - - - - -
5 - R - - R - - R - - - - M - R - - - - - R - - - R - - - - - -
6 - - - - M - - M - - - - M - - - - R - M - M - - - M - - - M - M -
7 - - - - R - - R - - - - R - R - - - R - R - - - - - -
8 - - - - - - - R - - - - R - - R - - - - - - - - R - - - -
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5.2.3. Computational Results of the Scenario 2 

In this scenario, we considered 50% as the required reliability, $4000 and $12000 as 

the given budgets, and $1000 as the fixed cost. LINGO was used to solve the 

optimization models. Tables 5.7 to 5.10 present the optimal schedules for the second 

scenario in both models. As in the first scenario, we can see that the fixed cost has 

an effect on the maintenance and replacement activities occurrence at the same 

period; see Tables 5.8 and 5.10. 

We find that in this scenario all activities are replacement, except four 

maintenance actions presented in Table 5.10. This indicates that for components 

with the same failure, maintenance, and replacement costs, and different scale and 

shape parameters, the value of the improvement factor does not affect structure of 

the optimal schedule. For example, by comparing the schedule for the first two 

components, it can be seen that a smaller improvement factor reduces the effective 

age of the component more than a higher one and thus components with the lower 

improvement factor are more likely to be maintained; see two maintenance actions 

of component 7 in Table 5.10. 

The scale and shape parameters play the most important role in the 

configuration ofthe optimal schedules, especially the shape parameter. For example, 

consider components 1 and 2 and components 3 and 4. Both pairs have the same 

scale parameter but the latter have larger value of the shape parameter. This 

results in more replacement activities for the second pair. The frequency of 

replacement activities in first four components can be seen in Tables 5.7 to 5.10. On 

the other hand, the scale parameter has an effect on the structure of the optimal 

schedules, but not as much as the shape parameter does. For example, compare the 
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pair of components 1 and 2 and the pair of components 5 and 6. Both pairs have the 

same shape parameter but the second one has a greater scale parameter than the 

first. Hence, we see more frequent replacement activities in the second pair. Finally, 

we can say that less reliable components with higher deterioration rate are replaced 

more frequently than the more reliable components with lower deterioration rate. 

Compare the frequency of replacements in components 7 and 8 with great scale and 

shape parameters (less reliable components with high deterioration rate) with 

components 1 and 2 with small parameters values (more reliable components with 

low deterioration rate). 

Table 5.7. Scenario 2-Optimalschedule that minimizes total cost without fixed cost 
(Reliability=50.00% and Cost=$3669.26) 

Monthl 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1920 21 2223 24 25 26 27 28 29 30 31 32 33 S4 35 36 
Component 

1 
2 
3 
4 
5 
6 
7 
8 

- - R -
------------- R--

--R------ -R- --R- -R------R-
-R-- R-- R-- --R-----R------

-R------ --R- ---R- ----
-----R- ------R-- R -
-R- -R- -R- -R- -R- -R- -R- -R- - R -
- -R- -R- -R-R- - -R- - -R- -R- -R- R -

Table 5.8. Scenario 2-0ptimal schedule that mininnzes total cost with fixed cost 
(Reliability=50.00% and Cost=$12668.80) 

Monthl 1 2 3 4 5 6 7 8 9 10111213 14 15 16 17 18 192021222324252627 28 29 30 31 32 33 34 35 36 
Component 

1 - - R - - - - - - - - - - R - - - - -
2 - - - - - - - - - - R - - - - - -
3 - - - - - R - - - R - - - - R - - - - - - - - R - - R - - - - -
4 - - - - - R - - - R - - R - - R - - - R - - - - -
5 - - - - - - - R - - - - - - - - R - - - - R - - - - - - - -
6 - R - - - - - - - - R - - - R - - R - - - - -
7 - - R - - R - - - - R - - - R - - - R - - R R - - - - -
8 - - R - - - - R - - R - - R - R - - - R - - R - - - - R - - - - -
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Table 5.9. Scenario 2-0ptimal schedule that maximizes reliability without fixed cost 
(Budget=$4000 and Reliability=53.25%) 

Monthl 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 192021 22 23 2425 26 27 28 29 30 31 32 33 34 35 36 
Component 

1 
2 
3 
4 
5 
6 
7 
8 

- R -
- - - R -

------R-- R-----R- -R-- --R-----
-----R----R----R-- -R-- --R-----

------R-- ---R- -R----------
R-------R-- ---R------

-R-R- -R- -R-R- - - -R- -R-R- -R- - -R- - -R-
- -R- - -R- - -R- - -R- -R- -R- -R- -R- -R- -R-

Table 5.10. Scenario 2-0ptimal schedule that maximizes reliability with fixed cost 
(Budget=$12000 and Reliability=48.45%) 

Co!~::nt 1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 1718 19 20 2122 23 24 25 26 27 28 29 30 31 32 33 34 35 36 

1 
2 
3 
4 
5 
6 
7 
8 

---------------R- ----
---- ---------R- ----

-R- -R- - - - -M-R- - - -R- -R- - -R-
- - - - - - R - - - - - R - R - - - -M- - - - R - - - R - --
------R-- R- -R-----R-

-R-- -R- --R----R-------
- - - R - - R - - - - - R - R - - - - R - - - - R - - -M-M-
- - -R- -R- - R-R- - - -R- - - -R- - -R-R-

5.3. Comparison of Exact and Metaheuristic Algorithms 

5.3.1. Experimental Design 

The optimization models developed and solved via generalized reduced gradient and 

branch-and-bound algorithms in LINGO software were single objective models. We 

considered engineering economy parameters, extended them to consider multiple 

objectives, and solved using metaheuristic algorithms. 

In order to analyze the efficiency and accuracy of the proposed metaheuristic 

algorithms and compare them with the exact method, we present a comprehensive 

experiment. We consider just the single objective models without engineering 

economy parameters and optimized both models with 2 sets of data for series 

systems with 5 and 10 components and 6, 12, 18, 24, 30, and 36 planning horizons. 

The reliability and costs associated with components are same as in the original 
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dataset; and for the 5-component system, we use the first 5 components. Finally, for 

different planning horizons, we assume different required reliability values and 

budget amounts for each problem. We utilized MATLAB R2008a1 programming 

environment to implement the models and optimize them via generational genetic 

algorithm (GGA), steady state genetic algorithm (SSGA), and simulated annealing 

(SA). The first 4 columns of Tables 5.11 and 5.12 present the structure of the 

experiment. 

5.3.2. Computational Results 

Tables 5.11 and 5.12 show the computational results ofthe experiment. The results 

include objective function values, total cost for the first model and reliability for the 

second model, amount of the reliability and consumed budgetary constraints, the 

gap of objective function achieved by metaheuristic algorithm in compare with what 

is achieved by exact method and finally the computational time (CPU time) for each 

problem and algorithm. We find that the value of objective functions achieved by the 

generalized reduced gradient and branch-and-bound algorithms is always smaller 

than values of objective function achieved by metaheuristic algorithms in the first 

model and vice versa in the second one; as shown in fifth column of Tables 5.11 and 

5.12 and Figures 5.1, 5.4, 5.7, and 5.10. The reason is that the metaheuristic 

algorithms can reach near optimal solutions instead of exact optimal solutions. In 

addition, we can see that the exact method does not violate the right hand side 

values of the main constraint, required reliability for the first model and given 

budget for the second one. In some cases, the metaheuristic algorithms violate the 

1 www.mathworks.com 
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constraints slightly; compare the values in the sixth column of the tables in some 

rows. 

We also calculate the objective function gaps for metaheuristic algorithms. As 

seen in the first model the gap varies by about 2% for the generational and steady 

state genetic algorithms and about 4-6% for the simulated annealing algorithm. The 

interesting thing is that the gap is almost constant by increasing the problem size in 

terms of number components and periods as shown in Figures 5.2 and 5.5. We can 

conclude that the metaheuristic algorithms work well for large-scale problems using 

Modell. Such a gap consistency is not observed in the second model and the gap 

changes too much even for small size problems; see the problems with 5 components 

in Table 5.12 and also Figure 5.S. However, it can be seen that for large-scale 

problems, the simulated annealing algorithm works well and its objective function 

gap varies between 0.1-7%, which is almost constant, see Figure 5.11. 

We analyzed the computational time of each algorithm; see the last column of 

Tables 5.11 and 5.12. We find that the computational time of the exact method goes 

up exponentially by increasing the size of the problems, especially for the problems 

with more than 24 periods as the planning horizon as presented in Figures 5.3, 5.6, 

5.9, and 5.12. It can be observed that for any problem size, the computational time of 

all metaheuristic algorithms in both models is completely constant and less than 2 

minutes. Based on the analysis of computational results, we can conclude that if it is 

necessary to solve a preventive maintenance and replacement scheduling 

optimization model once and use the optimal schedule for a long-term planning 

horizon, one can use an exact method to optimize it, regardless of how long it takes. 

On the other hand, if someone wants to solve a large-scale condition-based model 

day by day, he or she can use metaheuristic algorithms to achieve a near optimal 
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solution and be sure that this solution is good enough to use in other models, such as 

in simulation models. 

Table 5.11. Comparison of exact and metaheuristic algorithms in Model 1 

Number Number Required OFV OFV Computational 
of of AI,orithm Reliability Time 

Components Periods Reliability Total Cost Gap (minute) 
GRGwithBB $ 4,503.79 98.00% 0 

98% 
GGA $ 4,594.82 98.00% 2.02% 0 

6 
SSGA $ 4,606.85 98.00% 2.29% 0 

SA $ 4,768.97 97.95% 5.89% 0 
GRGwithBB $ 2,734.17 90.00% 0 

12 90% 
GGA $ 2,794.43 89.98% 2.20% 0 

SSGA $ 2,807.44 89.99% 2.68% 0 
SA $ 2,875.49 90.01% 5.17% 0 

GRGwithBB $ 3,047.54 80.00% 2 

18 
GGA $ 3,128.25 80.01% 2.65% 1 

80% 
SSGA $ 3,133.56 80.01% 2.82% 1 

SA $ 3,192.17 80.00% 4.75% 0 
5 

GRGwithBB $ 4,030.26 70.00% 4 
GGA $ 4,150.30 70.01% 2.98% 1 

24 70% 
SSGA $ 4,122.05 70.03% 2.28% 1 

SA $ 4,226.46 69.50% 4.87% 0 
GRGwithBB $ 5,050.93 60.00% 13 

GGA $ 5,186.53 60.46% 2.68% 1 
30 60% 

SSGA $ 5,192.92 60.02% 2.81% 1 
SA $ 5,296.03 60.54% 4.85% 0 

GRG with BB $ 5,470.05 50.00% 33 

GGA $ 5,605.33 50.06% 2.47% 1 
36 50% 

SSGA $ 5,619.51 50. ISO'" 2.73% 2 

SA $ 5,730.54 49.67% 4.76% 0 
GRG withBB $ 7,390.29 97.00% 0 

GGA $ 7,545.28 97.00% 2.10",(, 1 
6 97% 

SSGA $ 7,582.29 97.00% 2.60% 1 

SA $ 7,803.29 97.02% 5.59% 1 

GRGwithBB $ 9,915.48 90.00% 1 

GGA $ 10,138.57 89.99% 2.25% 1 
12 90% 

SSGA $ 10,154.58 90.10% 2.41% 1 

SA $ 10,535.34 90.02% 6.25% 0 
GRG with BB $ 11,784.30 80.00% 77 

GGA $12,025.88 80.57% 2.05% 1 
18 80% 

SSGA $ 12,019.87 80.02% 2.00% 1 

SA $ 12,504.48 79.80% 6.11% 0 
10 

GRGwithBB $12,305.30 70.00% 91 

GGA $ 12,561.42 70.00% 2.08% 2 
24 70% 

SSGA $ 12,573.09 70.06% 2.18% 2 

SA $ 13,092.47 69.64% 6.40% 0 

GRG with BB $ 12,886.00 60.00% 142 

GGA $ 13,224.84 60.05% 2.63% 2 
30 60% 

SSGA $ 13,243.45 59.99% 2.77% 2 

SA $ 13,737.81 59.93% 6.61% 0 

GRGwithBB $ 13,797.10 50.00% 273 

GGA $ 14,170.91 49.86% 2.71% 2 
36 50% 

SSGA $ 14,196.45 50.00% 2.89% 2 

SA $ 14,723.57 49.00% 6.71% 0 
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Table 5.12. Comparison of exact and metaheuristic algorithms in Model 2 

Number Number Given OFV OFV Computational 
of of Budget Algorithm 

Reliability Total Cost Gap Time 
Components Periods (minute) 

GRGwithBB 98.21% $ 5,000.00 0 

GGA 97.60% $ 4,999.88 0.62% 0 
6 $ 5,000 

SSGA 97.11% $ 5,000.05 1.12% 0 

SA 97.09% $ 4,950.17 1.14% 0 

GRGwithBB 90.32% $ 3,000.00 0 

GGA 85.80% $ 3,000.01 5.00% 0 
12 $ 3,000 

SSGA 86.04% $ 2,999.98 4.74% 0 

SA 85.81% $ 2,901.17 4.99% 0 

GRGwithBB 81.24% $ 4,000,00 1 

GGA 76.85% $ 4,000.06 5.40% 1 
18 $ 4,000 

SSGA 76.69% $ 3,998.88 5.60% 1 

SA 71.36% $ 3,977.11 12.16% 0 
5 

GRGwithBB $ 2 73.11% 5,000.00 
GGA 61.71% $ 5,000.04 15.59% 1 

24 $ 5,000 
SSGA 64.48% $ 5,000.18 11.80" ... 1 

SA 69.37% $ 5,000.91 5.12% 0 

GRG with BB 64.96% $ 6,000.00 14 

GGA 58.36% $ 5,999.87 10.16% 1 
30 $ 6,000 

SSGA 56.39% $ 5,998.63 13.19% 1 

SA 58.31% $ 6,067.34 10.24% 0 

GRGwithBB 55.42% $ 7,000.00 35 

GGA 48.53% $ 6,999.26 12.43% 1 
36 $ 7,000 

SSGA 48.04% $ 7,000.01 13.32% 2 

SA 46.96% $ 6,952.44 15.27% 0 

GRGwithBB 97.53% $ 10,000.00 0 

GGA 96.32% $ 9,998.75 1.24% 1 
6 $10,000 

SSGA $ 9,999.83 1.10% 1 96.46% 
SA 97.43% $ 10,020.74 0.10% 0 

GRGwithBB 85.06% $ 6,000.00 4 

GGA 82.81% $ 6,000.02 2.65% 1 
12 $ 6,000 

SSGA 80.20% $ 6,000.03 5.71% 1 

SA 84.71% $ 5,890.10 0.41% 0 

GRGwithBB 75.64% $ 8,000.00 5 

GGA 70.79% $ 8,000.08 6.41% 1 
18 $ 8,000 

SSGA 72.24% $ 8,000.82 4.49% 1 

SA 74.15% $ 7,986.14 1.97% 0 
10 

GRGwithBB 63.49% $10,000.00 13 

GGA 55.62% $10,000.10 12.40" ... 2 
24 $ 10,000 

SSGA 55.38% $ 9,999.97 12.77% 2 

SA 58.93% $ 10,060.37 7.18% 0 

GRG with BB 52.15% $ 12,000.00 24 

GGA 45.68% $12,000.20 12.41% 2 
30 $ 12,000 

SSGA 46.90% $ 12,000.06 10.07% 2 

SA 50.47% $12,196.98 3.22% 0 

GRGwithBB 49.91% $ 15,000.00 92 

GGA 44.98% $ 15,001.99 9.88% 2 
36 $15,000 

SSGA 43.86% $15,000.00 12.12% 2 

SA 46.93% $ 15,158.15 5.97% 0 
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Figure 5.1. Objective function values in Modell with 5 components 

10% 

8% 

6% 
0-
ro 
~ 

4% 

2% 

0% 

Heuristics G.p in Modell with 5 Components 

6 12 13 24 30 

• GGA . SSGA . SA I 
36 

Period 

Figure 5.2. Heuristics gap in Model 1 with 5 components 
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Figure 5.3. Computational time in Model 1 with 5 components 
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Figure 5.4. Objective function values in Modell with 10 components 
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Figure 5.5. Heuristics gap in Modell with 10 components 
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Figure 5.6. Computational time in Modell with 10 components 
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Figure 5.7. Objective function values in Model 2 with 5 components 
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Figure 5.8. Heuristics gap in Model 2 with 5 components 
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Figure 5.9. Computational time in Model 2 with 5 components 
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Figure 5.10. Objective function values in Model 2 with 10 components 
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Figure 5.11. Heuristics gap in Model 2 with 10 components 
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Figure 5.12. Computational time in Model 2 with 10 components 
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5.4. Chapter Summary 

In this chapter, we presented experimental results of a sensitivity analysis on 

preventive maintenance and replacement scheduling optimization models. These 

experiments investigate the effect of the parameters on the structure of optimal 

schedules in multi-component systems. Two factorial design experiments based on 

the cost associated with maintenance and replacement activities and reliability 

characteristic parameters were constructed and analyzed. We also designed a 

comprehensive experiment to analyze and compare the efficiency and accuracy of the 

exact and metaheuristic algorithms and showed the advantages of each. 
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CHAPTER 6 

IMPROVEMENT FACTOR MODELS 

6.1. Introduction 

In previous chapters, we developed, extended, and analyzed optimization models to 

determine an optimal preventive maintenance and replacement schedule in multi-

component systems. In this chapter, we prove a closed-form function to show the 

effectiveness of maintenance actions in long-term planning horizons. As we 

mentioned in 3.3.1, we review current age reduction and improvement factor models, 

present a new mathematical function, and apply it into the optimization models. We 

show the effectiveness of proposed function by comparing its computational results. 

6.2. Formulation 

In Chapter 3, we defined effective ages of a system at the start and end of each 

period denoted by X j and X~ respectively and presented an equation to relate them 

to each other by the length of each period T / J as follow: 

X~ = Xj + r for j = 1, ... ,r 
J 

(6.1) 

In addition, we assumed the initial age of the system is equal to zero. We also 

assume that the maintenance activity occurs at the end of the each period and 

effectively reduces the age of the system at the start of the next period based on an 
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"improvement factor" (aka "age reduction factor"). This kind of maintenance that 

does not change failure characteristic of system but reduces its effective age is 

known as "minimal repair". 

X j +1 = a· X~ for j = 1, ... ,T and (0 ~ a ~ 1) (6.2) 

Note that when a = 0, the effect of maintenance is to return the system to a state 

of "good-as-new" and it corresponds to replacement of the system. Whena = 1, 

maintenance has no effect, and the system remains in a state of ''bad-as-old'' which 

corresponds to "do nothing". Without lose of generality, we can always assume that 

O~a~l. 

Suppose a system is maintained during its service life without any replacement. 

We can calculate its effective age at the start and end of each period as a function of 

length of each period, number of maintenance actions, and amount of improvement 

factor based on the following equations: 

X. =a·X' = T (a j - I +a j - 2 +aj -
3 + ... +a) X' =X + T = T (a j -

I +aj
-

2 +a j
-

3 + ... +a+l) ) ) J~ , ] ) J J~ 

(6.3) 

(6.4) 

(6.5) 
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Now if we assume an unlimited service life for a system with a large number of 

maintenance actions, we can measure a lower-bound for its effective age by taking a 

limit of the effective ages when number of maintenance actions goes to infInity. 

(Note thatO < a < 1) 

lim(XJ= lim(T(fa r
)] = T(~) 

]-'>«> ]-'>«> J r=1 J 1-a 
(6.6) 

lim(X:)=lim(T(f(a r +1))]= T(_1 ) 
]-'>«> ]-'>«> J r=1 J 1-a 

(6.7) 

The equations (6.6) and (6.7) provide a useful perspective to fIgure out how 

maintenance actions affect the effective ages of a system over a long-term planning 

horizon. For example, suppose the length of each period is equal to one month, the 

planning horizon is long enough and the system is maintained every month with an 

improvement factor equal to 0.8, which means that each maintenance action reduces 

the effective age by 20%. Under these assumptions, a lower-bound for the starting 

and ending effective ages would be close to 4 and 5 months respectively. We can 

interpret that by performing this kind of maintenance starting and ending effective 

ages of the system will not be less than 4 and 5 months respectively. These values 

can be considered as the minimum for starting and ending effective ages of the 

system. 

6.3. Mathematical Model 

Many researchers assume a constant improvement factor and develop optimization 

models to determine an optimal schedule of preventive maintenance actions; see 

Jayabalan and Chaudhuri (1992), Martorell et al. (1996) and Martorell et al. (1999). 
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Some assume a constant improvement factor but variable amount of age reduction, 

which depends on when maintenance actions are performed; see Dedopoulos and 

Smeers (1998). Nakagawa (1988) assumes a variable improvement factor as a 

function of time intervals before any replacement and presents equations (6.8) and 

(6.9) for hazard rate improvement factor and effective age improvement factor which 

are also used by Lim and Park (2007). 

2k+l 
ak = -- for k = l, ... ,n 

k+l 

k 
hk = -- for k = l, ... ,n 

k+ 1 

(6.8) 

(6.9) 

Lin et al (2001) consider equations (6.10) and (6.11) for the same purpose, which are 

also used by EI-Ferik and Ben-Daya (2006) and Bartholomew-Biggs et al (2006). 

6k+l 
ak =-- fork=l, ... ,n 

Sk+l 

k 
hk = -- for k = t, ... ,n 

2k+l 

(6.10) 

(6.11) 

We present a new improvement factor model as a function of maintenance and 

replacement costs, and effective age of system at the end of previous period. 

aj=¢(R,M,X;_I)=(R-M).( ~;-l ), forj=l, ... ,T 
R X

j
_1 + t 

(6.12) 

The first term is the constant coefficient based on the ratio of difference of 

replacement and maintenance costs, which is always between zero and one. It is 

designed so that if a costly maintenance action is performed on a system, the 

effective age improves more than when an inexpensive maintenance is performed. 

That is, more expensive maintenance results in a greater amount of age reduction. 

For example, overhauling an engine results in more age reduction that does 
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changing the oil. Note that if maintenance cost is equal to the replacement cost, the 

numerator of the fraction becomes zero, and maintenance action will coincide with 

replacement action. On the other hand, if the maintenance cost is equal to zero, the 

ratio becomes one and it means that maintenance does not affect the effective age 

and it can be considered as do nothing. The second term is a ratio of the effective age 

at the end of previous period, which is always less than one. The minimum value is 

obtained whenever the system is replaced at the previous period. It can be seen that 

the ratio increases by increasing the effective age and the amount of age reduction 

decreases as the system ages over the planning horizon. 

6.4. Computational Results 

In order to show the effectiveness of the proposed improvement factor model, we 

apply it into the optimization models (3.19) and (3.20). We assume a system with 

A. = 0.00025 and f3 = 2.20 as the characteristic life (scale) and the shape parameters 

of the system and consider failure, maintenance, and replacement costs equal to 

$2500, $300, $1500 respectively. In addition, we assume R = 92% as the required 

reliability for Modell, B = $6000 as the given budget for Model 2, and 36 months as 

the planning horizon. 

We consider three improvement factor functions as follows: 

(
R-M) 

a\.l = ¢I(R,M) = R (6.13) 

a 2j. =¢2(Xj'_I)=( X~_I ), for j=I, ... ,T 
. X' +1 

j-I 

(6.14) 

(6.15) 
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The first function calculates the improvement factor of system based on the ratio 

of difference of replacement and maintenance costs, which is constant over the 

planning horizon. The second function is a simple version of the original model that 

uses only the ratio of effective age at the end of previous period and the last one is 

the original proposed model. We employ the improvement factor functions into the 

single-component version of the optimization models (3.19) and (3.20) developed in 

Chapter 3. LINGO! programs of nonlinear mixed-integer optimization models with 

different improvement factor functions are presented in Appendix E. 

We optimized the models, and obtained optimal solutions. The optimal objective 

function value for both models with different improvement factor functions is 

presented in Table 6.1. As we can see that by applying a variable improvement 

factor, equations (6.14) and (6.15), we can obtain lower optimal value in Modell, 

minimizing total cost subject to reliability constraint, and higher optimal value in 

Model 2, maximizing overall reliability subject to budgetary constraint, than 

considering constant improvement factor function; equation (6.13). It is clear that 

variable improvement factor functions have an advantage over constant 

improvement factor in terms of objective function value in optimal solution. 

Table 6.1. Optimal objective function values 

Improvement Modell Model 2 
Factor Total Cost Reliability Reliability Budget 

Function I $ 8,002.54 92% 89.45% $ 6,000 

Function 2 $ 7,707.74 92% 89.66% $ 6,000 
Function 3 $ 6 506.86 92% 91.17% $6000 

1 http://www.lindo.com 
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Tables 6.2 and 6.3 illustrate optimal schedules based on different improvement 

factor functions in both models. As it could be seen that by using a variable 

improvement factor the optimal schedules contain more maintenance activities than 

replacements activities. Especially by applying the third model, the optimal schedule 

consists of only maintenance actions. We also plot the variation of improvement 

factor functions over the planning horizon; detailed computational results presented 

in Appendix F. Figures (6.1) and (6.2) show the variation of improvement factor 

functions over the planning horizon. It can be seen that the constant coefficient 

smoothes the second function and reduces its variability. We can state that equation 

(6.15) which combines maintenance and replacement costs as a constant coefficient 

along with effective age of the system as an independent variable can model the 

improvement factor variations very well and results to better optimal solution than 

the second function. 

Finally, we can conclude that the proposed improvement factor model has an 

advantage over the constant improvement factor and the variable improvement 

factor function, which uses just the effective age variables without considering 

maintenance and replacement cost. 

Table 6.2. Optimal maintenance and replacement schedules in Model 1 

Monthl 
Function 1 2 3 • 6 6 7 8 9 10 11 12 13 a 15 16 17 18 19 20 21 22 23 24 26 26 27 28 29 30 31 32 33 34 3636 

Function 1 - - R - - - R - - - - M - - R - - - - - - R - - - R - - - -
Function 2 - - R - M - - - - - R - - - - R - M M M - - - - R - M - -
Function 3 - - M - M M M M - - - - M M M - M M M - - - - - R - - - M - -

Table 6.3. Optimal maintenance and replacement schedules in Model 2 

Monthl 
Function 1 2 3 • 6 6 7 8 9 1011 12 13 IH6 16 1718 192021 22232.26262728293031 32 33 U 36 36 

Function 1 - M· - - R . - - • • • R • • • • MM· . • R • • • • M . 
Function 2 • M • - - R - M MM· • - • . • R - • • • • • • R • • • • 
Function 3 • . • M • M . M MM· M MM· M • MM· MM· MM· M M MM· . 
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Figure 6.1. Variation of improvement factor functions in Modell 
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Figure 6.2. Variation of improvement factor functions in Model 2 

6.5. Practical Procedure 

In most practical situations, it is almost impossible to estimate effect of maintenance 

activities on service life of systems or even on service life of a single component. In 

these situations, we suggest using the following procedure. 

Suppose we have two new identical repairable and maintainable systems with an 

increasing rate of occurrence of failure (ROCOF) over a finite planning horizon. We 

leave the first system to perform its operation until the end of its service life. It is 
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clear that because of increasing failure rate the expected number of failures increase 

and the overall reliability of the system decreases over the planning horizon. We can 

fit a non-homogeneous Poisson process (NHPP) to the observed data based on 

increasing rate of occurrence of failure assumption; where x is the effective age of 

the system as shown in Figure 6.3. 

(6.16) 

Failure Rate 

...... 1} 
....... ~ Amount of 

V X •••••• _ ~ improvement 
1( )......... ~ on failure rate 

••••• V2(Y) i ..... 
., ....................... . 

... "" ; ...... . 

Time 

Figure 6.3. Graphical illustration of practical procedure 

At the mean time, we perform regular maintenance actions on the second 

system. After performing each maintenance activity, failure rate of the system 

decreases to an unknown certain level. At the end of the planning horizon, we can 

compare the final failure rate of the first system in which no maintenance action 

was taken with the final failure rate of the second system in which regular 

maintenance activities were performed. We can also fit an appropriate non-

homogeneous Poisson process in which y is the effective age of the system as 

illustrated in Figure 6.3. 

(6.17) 
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By comparing the of failure rates, we can calculate the effect of maintenance 

activities and amount of improvement on failure rate of the system based on the 

ratio of failure rates at the end of the planning horizon; See Figure 6.3. 

(6.18) 

Now, we can define amount of improvement factor for the effective age of the 

systems as follows: 

(6.19) 

(6.20) 

(6.21) 

Finally, we recommend the equation (6.22) as an estimation of improvement 

factor for each single maintenance action during the service life of the system. 

(6.22) 

6.6. Chapter Summary 

In this chapter, we reviewed current improvement factor function applied in 

maintenance scheduling optimization models. We developed and proved 

mathematical equations to determine a lower-bound for effective age of 

maintainable and repairable system in a long-term planning horizon. A new 

improvement factor model was presented and analyzed by the computational results 

of optimization models and advantage of it over other models was shown. 
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CHAPTER 7 

CONCLUSION AND FUTURE RESEARCH 

7.1. Conclusion of the Research 

In this dissertation, we clearly defined a general preventive maintenance and 

replacement scheduling problem. The aim of solving this problem is to improve the 

overall reliability and availability of a system and to reduce total cost of its 

maintenance. We addressed the problem using a multi-objective approach. We 

reviewed and critiqued the recent literature and mentioned that most studies relied 

on modeling and analysis of single-component single-objective systems. We defined 

characteristics of a repairable and maintainable system and developed new 

optimization models to find optimal preventive maintenance and replacement 

schedules in multi-component systems. These models also provide a general 

framework to achieve optimal preventive maintenance and replacement policies and, 

with modifications, can be used as basic closed-form models for any type of system. 

Our solution methodology to solve the nonlinear mixed integer programming models 

allowed us to obtain optimal solutions. 

As an extension, we considered engineering economy parameters and 

constructed a multi-objective optimization model. Due to the including of multiple 

objectives and its nonlinear structure of the model and the use of integer decision 

variables, we decided to solve the model using multi-objective metaheuristic 
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algorithms. We applied two types of genetic algorithms and a simulated annealing 

algorithm, solved the problem, and achieved near optimal solutions to construct the 

trade-off curves. We also performed sensitivity analysis on parameters of the 

optimization models and compared computational performance and effectiveness of 

exact and metaheuristic algorithms for set of problems. 

In order to determine and calculate improvement factor parameter used in 

optimization models, we presented and analyzed a new mathematical function to 

model age reduction and improvement factor parameter for repairable and 

maintainable components. 

7.2. Direction for Future Research 

We considered two main criteria in our models, total cost to be minimized and 

overall reliability to be maximized. An extension of these models would be 

considering other criteria such as system availability and demand satisfaction, 

which make the models more practical but very complicated to solve. 

All of our models are classified as NP-hard problems in which there is no 

polynomial computational time for solving large-scale problems. We recommend 

applying other heuristic and metaheuristic algorithms to find optimal or near 

optimal solutions, especially for multi-objective models with more than two objective 

functions. 

We recommend usmg discrete-event and continuous simulation models and 

integrating them into our optimization models in order to handle real situations, in 

which unexpected failures occur between intervals. In this situation, one can re

optimize the models and obtain a new optimal preventive maintenance and 
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replacement schedule for the rest of the planning horizon. This approach combines 

prescriptive nature of optimization models with descriptive nature of simulation 

models and develop a complete feedback cycle of modeling in which optimization and 

simulation models interact with each other. 

We also intend to extend our models into specific applications, especially 

production planning and scheduling which is introduced by some researchers. 

Because of our proposed modeling approach, in which we define parameters, decision 

variables, objective functions, and constraints of system, our models can be 

integrated with production planning and inventory control models. 

We recommend using Monte Carlo simulation to model age reduction and 

improvement factor parameters into the optimization model. Finally, we would like 

to encourage prospective researchers to develop more advanced procedures to 

estimate age reduction and improvement factors for practical situations especially in 

health care applications and medical operations. 
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! Model I-Nonlinear mixed integer optimization model that 
minimizes total cost subject to a reliability constraint; 

Model: 
Data: 

C 10; 
T 36 ; 
L 1; 

Enddata 

Sets: 
Component/1 .. C/: Lambda, Beta, Alpha, Failure_Cost, M_Cost, R_Cost; 
Period/1 .. T/; 
LinkComPer(Component, Period): X, XP, M, R; 

Endsets 

Data: 
Lambda = 0.00022 0.00035 0.00038 0.00034 0.00032 0.00028 0.00015 

0.00012 0.00025 0.00020; 
Beta = 2.20 2.00 2.05 1.90 1.75 2.10 2.25 1.80 1.85 2.15; 
Alpha = 0.62 0.58 0.55 0.50 0.48 0.65 0.75 0.68 0.52 0.67; 
Failure Cost = 250 240 270 210 220 280 200 225 215 255; 
M Cost = 35 32 65 42 50 38 45 30 48 55; 
R Cost = 200 210 245 180 205 235 175 215 210 250; 
Fixed_Cost = 800; 
Given_Reliability = 0.5; 

Enddata 

Objective Function, Minimizing the total cost; 
Min = @Sum(LinkComPer(i,j): (Failure_Cost (i) * Lambda (i) * 

((XP(i,j)"Beta(i)) - (X(i,j)"Beta(i)))) + M_Cost(i) * M(i,j) + 
R_Cost(i) * R(i,j)) + @Sum(Period(j): Fixed_Cost * (1 -
@Prod(Component(i): (1 - M(i,j) - R(i,j))))); 

Con.straints; 

End 

I Recursive functions; 
@For(Component(i): X(i,l) = 0); 
@For(LinkComPer(i,j): XP(i,j) = X(i,j) + (L)); 
@For(LinkComPer(i,j) I j #GE# 2: X(i,j) = ((1-M(i,j-1)) * (l-R(i,j-

1)) * (XP(i,j-1)) + M(i,j-1) * Alpha (i) * (XP(i,j-1)))); 

! Basic constraints; 
@For(LinkComPer(i,j): M(i,j) + R(i,j) <= 1); 
@For(LinkComPer(i,j): @BIN(M)); 
@For(LinkComPer(i,j): @BIN(R)); 

! Reliabilit~y constraint:: f':lr series -system ':l[ ce,mponent:s; 
@Exp(@Sum(LinkComPer(i,j): (-Lambda (i) * ((XP(i,j)"Beta(i)) -

(X(i,j)"Beta(i)))))) >= Given_Reliability; 
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I Model 2-Nonlinear mixed integer optimization model that 
maximizes overall reliability subject to a budgetary constraint; 

Model: 
Data: 

C 10; 
T 36; 
L 1 ; 

Enddata 

Sets: 
Component/1 .. C/: Lambda, Beta, Alpha, Failure_Cost, M_Cost, R_Cost; 
Period/l .. T /; 
LinkComPer(Component, Period): X, XP, M, R; 

Endsets 

Data: 
Lambda = 0.00022 0.00035 0.00038 0.00034 0.00032 0.00028 0.00015 

0.00012 0.00025 0.00020; 
Beta = 2.20 2.00 2.05 1.90 1.75 2.10 2.25 1.80 1.85 2.15; 
Alpha = 0.62 0.58 0.55 0.50 0.48 0.65 0.75 0.68 0.52 0.67; 
Failure Cost = 250 240 270 210 220 280 200 225 215 255; 
M Cost = 35 32 65 42 50 38 45 30 48 55; 
R Cost = 200 210 245 180 205 235 175 215 210 250; 
Fixed Cost = 800; 
Given_Budget = 15000; 

Enddata 

I Objective Function, Maximizing the Reliability at series system of 

Max = @Exp(@Sum(LinkComPer(i,j): (-Lambda (i) * ((XP(i,j)ABeta(i)) -
(X(i,j)"Beta(i))))) ) 

C'cnst.raints; 

End 

I Recursive functions; 
@For(Component(i): X(i,l) = 0); 
@For(LinkComPer(i,j): XP(i,j) = X(i,j) + (L)); 
@For(LinkComPer(i,j) I j ltGE# 2: X(i,j) = ((1-M(i,j-1)) * (l-R(i,j-

1)) * (XP(i,j-1)) + M(i,j-1) * Alpha (i) * (XP(i,j-1)))); 

! Basic constraints; 
@For(LinkComPer(i,j): M(i,j) + R(i,j) <= 1); 
@For(LinkComPer(i,j): @BIN(M)); 
@For(LinkComPer(i,j): @BIN(R)); 

! Budget constLaint; 
@Sum(LinkComPer(i,j): (Failure_Cost (i) * Lambda (i) * 

((XP(i,j)ABeta(i)) - (X(i,j)ABeta(i)))) + M_Cost(i) * M(i,j) + 
R_Cost(i) * R(i,j)) + @Sum(Period(j): Fixed_Cost * (1 -
@Prod(Component(i): (1 - M(i,j) - R(i,j)))))<= Given_Budget 
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Table B.l. Expected number of failures of components in each period in Modell 
(M,e) 1 2 3 4 5 6 7 8 9 10 

1 0.00022 0.00035 0.00038 0.00034 0.00032 0.00028 0.00015 0.00012 0.00025 0.00020 

2 0.00079 0.00105 0.00119 0.00093 0.00076 0.00092 0.00056 0.00030 0.00065 0.00069 

3 0.00146 0.00175 0.00204 0.00147 0.00111 0.00161 0.00106 0.00045 0.00101 0.00123 

4 0.00218 0.00245 0.00290 0.00199 0.00143 0.00233 0.00162 0.00059 0.00134 0.00182 

5 0.00294 0.00315 0.00378 0.00250 0.00173 0.00308 0.00221 0.00072 0.00166 0.00243 

6 0.00022 0.00385 0.00269 0.00174 0.00201 0.00252 0.00284 0.00084 0.00121 0.00305 

7 0.00079 0.00035 0.00038 0.00134 0.00140 0.00216 0.00015 0.00073 0.00153 0.00020 

8 0.00146 0.00105 0.00119 0.00187 0.00169 0.00290 0.00056 0.00085 0.00185 0.00069 

9 0.00218 0.00175 0.00204 0.00238 0.00198 0.00365 0.00106 0.00097 0.00211) 0.00123 

10 0.00294 0.00245 0.00290 0.00287 0.00225 0.00442 0.00162 0.00109 0.00245 0.00182 

11 0.00374 0.00315 0.00378 0.00336 0.00251 0.00521 0.00221 0.00121 0.00274 0.00243 

12 0.00022 0.00035 0.00269 0.00034 0.00167 0.00028 0.00015 0.00132 0.00181 0.00020 

13 0.00079 0.00105 0.00356 0.00093 0.00195 0.00092 0.00056 0.00143 0.00211 0.00069 

14 0.00146 0.00175 0.00444 0.00147 0.00222 0.00161 0.00106 0.00153 0.00241 0.00123 

15 0.00218 0.00245 0.00534 0.00199 0.00248 0.00233 0.00162 0.00164 0.00270 0.00182 

16 0.00294 0.00315 0.00624 0.00250 0.00273 0.00308 0.00221 0.00174 0.00299 0.00243 

17 0.00374 0.00385 0.00714 0.00300 0.00298 0.00384 0.00284 0.00184 0.00327 0.00305 

18 0.00022 0.00035 0.00038 0.00034 0.00032 0.00028 0.00015 0.00012 0.00025 0.00370 

19 0.00079 0.00105 0.00119 0.00093 0.00076 0.00092 0.00056 0.00030 0.00065 0.00436 

20 0.00146 0.00175 0.00204 0.00147 0.00111 0.00161 0.00106 0.00045 0.00101 0.00504 

21 0.00136 0.00157 0.00290 0.00120 0.00143 0.00158 0.00162 0.00059 0.00085 0.00020 

22 0.00207 0.00227 0.00378 0.00174 0.00173 0.00230 0.00221 0.00072 0.00120 0.00069 

23 0.00283 0.00297 0.00467 0.00225 0.00201 0.00304 0.00284 0.00084 0.00152 0.00123 

24 0.00363 0.00367 0.00556 0.00275 0.00228 0.00380 0.00350 0.00097 0.00183 0.00182 

25 0.00022 0.00035 0.00038 0.00187 0.00154 0.00028 0.00015 0.00081 0.00131 0.00163 

26 0.00079 0.00105 0.00119 0.00238 0.00183 0.00092 0.00056 0.00094 0.00163 0.00223 

27 0.00146 0.00175 0.00204 0.00287 0.00211 0.00161 0.00106 0.00105 0.00194 0.00285 

28 0.00218 0.00245 0.00290 0.00336 0.00237 0.00233 0.00162 0.00117 0.00224 0.00349 

29 0.00294 0.00315 0.00378 0.00384 0.00263 0.00308 0.00221 0.00128 0.00253 0.00415 

30 0.00374 0.00385 0.00467 0.00432 0.00288 0.00384 0.00284 0.00139 0.00282 0.00482 

31 0.00022 0.00035 0.00038 0.00034 0.00187 0.00028 0.00015 0.00112 0.00310 0.00020 

32 0.00079 0.00105 0.00119 0.00093 0.00214 0.00092 0.00056 0.00123 0.00338 0.00069 

33 0.00146 0.00175 0.00204 0.00147 0.00241 0.00161 0.00106 0.00134 0.00366 0.00123 

34 0.00218 0.00245 0.00290 0.00199 0.00266 0.00233 0.00162 0.00145 0.00393 0.00182 

35 0.00294 0.00315 0.00378 0.00250 0.00291 0.00308 0.00221 0.00156 0.00420 0.00243 

36 0.00374 0.00385 0.00467 0.00300 0.00315 0.00384 0.00284 0.00166 0.00446 0.00305 
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Table B.2. Reliability of components in each period in Modell 
1 2 3 4 5 6 7 8 9 10 

99.98% 99.97% 99.96% 99.97% 99.97% 99.97% 99.99% 99.99% 99.98% 99.98% 

99.92% 99.90% 99.88% 99.91% 99.92% 99.91% 99.94% 99.97% 99.93% 99.93% 

99.85% 99.83% 99.80% 99.85% 99.89% 99.84% 99.89% 99.96% 99.90% 99.88% 

99.78% 99.76% 99.71% 99.80% 99.86% 99.77% 99.84% 99.94% 99.87% 99.82% 

99.71% 99.69% 99.62% 99.75% 99.83% 99.69% 99.78% 99.93% 99.83% 99.76% 

99.98% 99.62% 99.73% 99.83% 99.80% 99.75% 99.72% 99.92% 99.88% 99.69% 

99.92% 99.97% 99.96% 99.87% 99.86% 99.78% 99.99% 99.93% 99.85% 99.98% 

99.85% 99.90% 99.88% 99.81% 99.83% 99.71% 99.94% 99.91% 99.82% 99.93% 

99.78% 99.83% 99.80% 99.76% 99.80% 99.64% 99.89% 99.90% 99.79% 99.88% 

99.71% 99.76% 99.71% 99.71% 99.78% 99.56% 99.84% 99.89% 99.76% 99.82% 

99.63% 99.69% 99.62% 99.66% 99.75% 99.48% 99.78% 99.88% 99.73% 99.76% 

99.98% 99.97% 99.73% 99.97% 99.83% 99.97% 99.99% 99.87% 99.82% 99.98% 

99.92% 99.90% 99.64% 99.91% 99.81% 99.91% 99.94% 99.86% 99.79% 99.93% 

99.85% 99.83% 99.56% 99.85% 99.78% 99.84% 99.89% 99.85% 99.76% 99.88% 

99.78% 99.76% 99.47% 99.80% 99.75% 99.77% 99.84% 99.84% 99.73% 99.82% 

99.71% 99.69% 99.38% 99.75% 99.73% 99.69% 99.78% 99.83% 99.70% 99.76% 

99.63% 99.62% 99.29% 99.70% 99.70% 99.62% 99.72% 99.82% 99.67% 99.69% 

99.98% 99.97% 99.96% 99.97% 99.97% 99.97% 99.99% 99.99% 99.98% 99.63% 

99.92% 99.90% 99.88% 99.91% 99.92% 99.91% 99.94% 99.97% 99.93% 99.56% 

99.85% 99.83% 99.80% 99.85% 99.89% 99.84% 99.89% 99.96% 99.90% 99.50% 

99.86% 99.84% 99.71% 99.88% 99.86% 99.84% 99.84% 99.94% 99.91% 99.98% 

99.79% 99.77% 99.62% 99.83% 99.83% 99.77% 99.78% 99.93% 99.88% 99.93% 

99.72% 99.70% 99.53% 99.78% 99.80% 99.70% 99.72% 99.92% 99.85% 99.88% 

99.64% 99.63% 99.45% 99.73% 99.77% 99.62% 99.65% 99.90% 99.82% 99.82% 

99.98% 99.97% 99.96% 99.81% 99.85% 99.97% 99.99% 99.92% 99.87% 99.84% 

99.92% 99.90% 99.88% 99.76% 99.82% 99.91% 99.94% 99.91% 99.84% 99.78% 

99.85% 99.83% 99.80% 99.71% 99.79% 99.84% 99.89% 99.89% 99.81% 99.72% 

99.78% 99.76% 99.71% 99.66% 99.76% 99.77% 99.84% 99.88% 99.78% 99.65% 

99.71% 99.69% 99.62% 99.62% 99.74% 99.69% 99.78% 99.87% 99.75% 99.59% 

99.63% 99.62% 99.53% 99.57% 99.71% 99.62% 99.72% 99.86% 99.72% 99.52% 

99.98% 99.97% 99.96% 99.97% 99.81% 99.97% 99.99% 99.89% 99.69% 99.98% 

99.92% 99.90% 99.88% 99.91% 99.79% 99.91% 99.94% 99.88% 99.66% 99.93% 

99.85% 99.83% 99.80% 99.85% 99.76% 99.84% 99.89% 99.87% 99.63% 99.88% 

99.78% 99.76% 99.71% 99.80% 99.73% 99.77% 99.84% 99.85% 99.61% 99.82% 

99.71% 99.69% 99.62% 99.75% 99.71% 99.69% 99.78% 99.84% 99.58% 99.76% 

99.63% 99.62% 99.53% 99.70% 99.69% 99.62% 99.72% 99.83% 99.55% 99.69% 

Overall Reliability = 50.00% 
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Reliability 

99.74% 

99.22% 

98.69% 

98.15% 

97.61% 

97.92% 

99.10% 

98.60% 

98.08% 

97.55% 

97.01% 

99.10% 

98.61% 

98.10% 

97.58% 

97.04% 

96.51% 

99.39% 

98.85% 

98.31% 

98.68% 

98.15% 

97.61% 

97.06% 

99.15% 

98.66% 

98.14% 

97.62% 

97.08% 

96.54% 

99.20% 

98.72% 

98.21% 

97.69% 

97.17% 

96.63% 



Table B.3. Cost of components in each period in Model 1 
(M,C) 1 2 3 4 5 6 7 8 9 10 

1 0.06 0.08 0.10 0.07 0.07 0.08 0.03 0.03 0.05 0.05 

2 0.20 0.25 0.32 0.20 0.17 0.26 0.11 0.07 0.14 0.18 

3 0.36 0.42 0.55 0.31 0.24 0.45 0.21 0.10 0.22 0.31 

4 0.54 0.59 0.78 0.42 0.32 0.65 0.32 0.13 0.29 0.46 

5 200.74 0.76 66.02 42.53 0.38 38.86 0.44 0.16 48.36 0.62 

6 0.06 210.92 245.73 42.36 50.44 38.70 175.57 30.19 0.26 250.78 

7 0.20 0.08 0.10 0.28 0.31 0.60 0.03 0.16 0.33 0.05 

8 0.36 0.25 0.32 0.39 0.37 0.81 0.11 0.19 0.40 0.18 

9 0.54 0.42 0.55 0.50 0.44 1.02 0.21 0.22 0.46 0.31 

10 0.74 0.59 0.78 0.60 0.49 1.24 0.32 0.25 0.53 0.46 

11 200.94 210.76 66.02 180.71 50.55 236.46 175.44 0.27 48.59 250.62 

12 0.06 0.08 0.73 0.07 0.37 0.08 0.03 0.30 0.39 0.05 

13 0.20 0.25 0.96 0.20 0.43 0.26 0.11 0.32 0.45 0.18 

14 0.36 0.42 1.20 0.31 0.49 0.45 0.21 0.34 0.52 0.31 

15 0.54 0.59 1.44 0.42 0.55 0.65 0.32 0.37 0.58 0.46 

16 0.74 0.76 1.68 0.53 0.60 0.86 0.44 0.39 0.64 0.62 

17 200.94 210.92 246.93 180.63 205.66 236.07 175.57 215.41 210.70 0.78 

18 0.06 0.08 0.10 0.07 0.07 0.08 0.03 0.03 0.05 0.94 

19 0.20 0.25 0.32 0.20 0.17 0.26 0.11 0.07 0.14 1.11 

20 35.36 32.42 0.55 42.31 0.24 38.45 0.21 0.10 48.22 251.28 

21 0.34 0.38 0.78 0.25 0.32 0.44 0.32 0.13 0.18 0.05 

22 0.52 0.54 1.02 0.36 0.38 0.64 0.44 0.16 0.26 0.18 

23 0.71 0.71 1.26 0.47 0.44 0.85 0.57 0.19 0.33 0.31 

24 200.91 210.88 246.50 42.58 50.50 236.06 175.70 30.22 48.39 55.46 

25 0.06 0.08 0.10 0.39 0.34 0.08 0.03 0.18 0.28 0.42 

26 0.20 0.25 0.32 0.50 0.40 0.26 0.11 0.21 0.35 0.57 

27 0.36 0.42 0.55 0.60 0.46 0.45 0.21 0.24 0.42 0.73 

28 0.54 0.59 0.78 0.71 0.52 0.65 0.32 0.26 0.48 0.89 

29 0.74 0.76 1.02 0.81 0.58 0.86 0.44 0.29 0.54 1.06 

30 200.94 210.92 246.26 180.91 50.63 236.07 175.57 30.31 0.61 251.23 

31 0.06 0.08 0.10 0.07 0.41 0.08 0.03 0.25 0.67 0.05 

32 0.20 0.25 0.32 0.20 0.47 0.26 0.11 0.28 0.73 0.18 

33 0.36 0.42 0.55 0.31 0.53 0.45 0.21 0.30 0.79 0.31 

34 0.54 0.59 0.78 0.42 0.59 0.65 0.32 0.33 0.84 0.46 

35 0.74 0.76 1.02 0.53 0.64 0.86 0.44 0.35 0.90 0.62 

36 0.94 0.92 1.26 0.63 0.69 1.07 0.57 0.37 0.96 0.78 

Total Cost = $13,797.33 
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Fixed Cost 

0.00 

0.00 

0.00 

0.00 

800.00 

800.00 

0.00 

0.00 

0.00 

0.00 

800.00 

0.00 

0.00 

0.00 

0.00 

0.00 

800.00 

0.00 

0.00 

800.00 

0.00 

0.00 

0.00 

800.00 

0.00 

0.00 

0.00 

0.00 

0.00 

800.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 



Table B.4. Expected number of failures of components in each period in Model 2 
(M,e) 1 2 3 4 5 6 7 8 9 10 

1 0.00022 0.00035 0.00038 0.00034 0.00032 0.00028 0.00015 0.00012 0.00025 0.00020 

2 0.00079 0.00105 0.00119 0.00093 0.00076 0.00092 0.00056 0.00030 0.00065 0.00069 

3 0.00022 0.00035 0.00038 0.00034 0.00032 0.00028 0.00015 0.00035 0.00025 0.00020 

4 0.00079 0.00105 0.00119 0.00093 0.00076 0.00092 0.00056 0.00050 0.00065 0.00069 

5 0.00146 0.00175 0.00204 0.00147 0.00111 0.00161 0.00106 0.00064 0.00101 0.00123 

6 0.00218 0.00245 0.00290 0.00199 0.00143 0.00233 0.00162 0.00076 0.00134 0.00182 

7 0.00294 0.00315 0.00378 0.00250 0.00173 0.00308 0.00221 0.00089 0.00166 0.00243 

8 0.00374 0.00385 0.00467 0.00300 0.00201 0.00384 0.00284 0.00101 0.00197 0.00305 

9 0.00458 0.00455 0.00556 0.00348 0.00228 0.00461 0.00350 0.00112 0.00227 0.00370 

10 0.00543 0.00525 0.00646 0.00396 0.00254 0.00539 0.00419 0.00124 0.00256 0.00436 

11 0.00631 0.00595 0.00737 0.00443 0.00279 0.00619 0.00490 0.00135 0.00285 0.00504 

12 0.00022 0.00035 0.00038 0.00034 0.00032 0.00028 0.00015 0.00109 0.00025 0.00020 

13 0.00079 0.00105 0.00119 0.00093 0.00076 0.00092 0.00056 0.00120 0.00065 0.00069 

14 0.00146 0.00175 0.00204 0.00147 0.00111 0.00161 0.00106 0.00131 0.00101 0.00123 

15 0.00218 0.00245 0.00290 0.00199 0.00143 0.00233 0.00162 0.00142 0.00134 0.00182 

16 0.00294 0.00315 0.00378 0.00250 0.00173 0.00308 0.00221 0.00153 0.00166 0.00243 

17 0.00022 0.00035 0.00038 0.00034 0.00124 0.00028 0.00015 0.00122 0.00025 0.00020 

18 0.00079 0.00105 0.00119 0.00093 0.00155 0.00092 0.00056 0.00133 0.00065 0.00069 

19 0.00146 0.00175 0.00204 0.00147 0.00184 0.00161 0.00106 0.00144 0.00101 0.00123 

20 0.00218 0.00245 0.00290 0.00199 0.00212 0.00233 0.00162 0.00154 0.00134 0.00182 

21 0.00180 0.00197 0.00221 0.00147 0.00032 0.00204 0.00221 0.00012 0.00166 0.00243 

22 0.00022 0.00035 0.00038 0.00034 0.00055 0.00028 0.00015 0.00030 0.00025 0.00020 

23 0.00079 0.00105 0.00119 0.00093 0.00093 0.00092 0.00056 0.00045 0.00065 0.00069 

24 0.00146 0.00175 0.00204 0.00147 0.00127 0.00161 0.00106 0.00059 0.00101 0.00123 

25 0.00218 0.00245 0.00290 0.00199 0.00158 0.00233 0.00162 0.00072 0.00134 0.00182 

26 0.00294 0.00315 0.00378 0.00250 0.00187 0.00308 0.00221 0.00084 0.00166 0.00243 

27 0.00374 0.00385 0.00467 0.00300 0.00214 0.00384 0.00284 0.00097 0.00197 0.00305 

28 0.00022 0.00035 0.00038 0.00034 0.00147 0.00028 0.00015 0.00012 0.00025 0.00020 

29 0.00079 0.00105 0.00119 0.00093 0.00176 0.00092 0.00056 0.00030 0.00065 0.00069 

30 0.00146 0.00175 0.00204 0.00147 0.00204 0.00161 0.00106 0.00045 0.00101 0.00123 

31 0.00218 0.00245 0.00290 0.00199 0.00231 0.00233 0.00162 0.00059 0.00134 0.00182 

32 0.00294 0.00315 0.00378 0.00250 0.00257 0.00308 0.00221 0.00072 0.00166 0.00243 

33 0.00374 0.00385 0.00467 0.00300 0.00281 0.00384 0.00284 0.00084 0.00197 0.00305 

34 0.00458 0.00455 0.00556 0.00348 0.00306 0.00461 0.00350 0.00097 0.00227 0.00370 

35 0.00543 0.00525 0.00646 0.00396 0.00329 0.00539 0.00419 0.00108 0.00256 0.00436 

36 0.00631 0.00595 0.00737 0.00443 0.00352 0.00619 0.00490 0.00120 0.00285 0.00504 
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(M,e) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

Table B.5. Reliability of components in each period in Model 2 
1 2 3 4 5 6 7 8 9 10 

99.98% 99.97% 99.96% 99.97% 

99.92% 99.90% 99.88% 99.91% 

99.98% 99.97% 99.96% 99.97% 

99.92% 99.90% 99.88% 99.91% 

99.85% 99.83% 99.80% 99.85% 

99.78% 99.76% 99.71% 99.80% 

99.71% 99.69% 99.62% 99.75% 

99.63% 99.62% 99.53% 99.70% 

99.54% 99.55% 99.45% 99.65% 

99.46% 99.48% 99.36% 99.60% 

99.37% 99.41% 99.27% 99.56% 

99.98% 99.97% 99.96% 99.97% 

99.92% 99.90% 99.88% 99.91% 

99.85% 99.83% 99.80% 99.85% 

99.78% 99.76% 99.71% 99.80% 

99.71% 99.69% 99.62% 99.75% 

99.98% 99.97% 99.96% 99.97% 

99.92% 99.90% 99.88% 99.91% 

99.85% 99.83% 99.80% 99.85% 

99.78% 99.76% 99.71% 99.80% 

99.82% 99.80% 99.78% 99.85% 

99.98% 99.97% 99.96% 99.97% 

99.92% 99.90% 99.88% 99.91% 

99.85% 99.83% 99.80% 99.85% 

99.78% 99.76% 99.71% 99.80% 

99.71% 99.69% 99.62% 99.75% 

99.63% 99.62% 99.53% 99.70% 

99.98% 99.97% 99.96% 99.97% 

99.92% 99.90% 99.88% 99.91% 

99.85% 99.83% 99.80% 99.85% 

99.78% 99.76% 99.71% 99.80% 

99.71% 99.69% 99.62% 99.75% 

99.97% 99.97% 

99.92% 99.91% 

99.97% 99.97% 

99.92% 99.91% 

99.89% 99.84% 

99.86% 99.77% 

99.83% 99.69% 

99.80% 99.62% 

99.77% 99.54% 

99.75% 99.46% 

99.72% 99.38% 

99.97% 99.97% 

99.92% 99.91% 

99.89% 99.84% 

99.86% 99.77% 

99.83% 99.69% 

99.88% 99.97% 

99.84% 99.91% 

99.82% 99.84% 

99.79% 99.77% 

99.97% 99.80% 

99.95% 99.97% 

99.91% 99.91% 

99.87% 99.84% 

99.84% 99.77% 

99.81% 99.69% 

99.79% 99.62% 

99.85% 99.97% 

99.82% 99.91% 

99.80% 99.84% 

99.77% 99.77% 

99.74% 99.69% 

99.99% 

99.94% 

99.99% 

99.94% 

99.89% 

99.84% 

99.78% 

99.72% 

99.65% 

99.58% 

99.51% 

99.99% 

99.94% 

99.89% 

99.84% 

99.78% 

99.99% 

99.94% 

99.89% 

99.84% 

99.78% 

99.99% 

99.94% 

99.89% 

99.84% 

99.78% 

99.72% 

99.99% 

99.94% 

99.89% 

99.84% 

99.78% 

99.99% 99.98% 

99.97% 99.93% 

99.96% 99.98% 

99.95% 99.93% 

99.94% 99.90% 

99.92% 99.87% 

99.91% 99.83% 

99.90% 99.80% 

99.89% 99.77% 

99.88% 99.74% 

99.87% 99.72% 

99.89% 99.98% 

99.88% 99.93% 

99.87% 99.90% 

99.86% 99.87% 

99.85% 99.83% 

99.88% 99.98% 

99.87% 99.93% 

99.86% 99.90% 

99.85% 99.87% 

99.99% 99.83% 

99.97% 99.98% 

99.96% 99.93% 

99.94% 99.90% 

99.93% 99.87% 

99.92% 99.83% 

99.90% 99.80% 

99.99% 99.98% 

99.97% 99.93% 

99.96% 99.90% 

99.94% 99.87% 

99.93% 99.83% 

99.63% 99.62% 

99.54% 99.55% 

99.46% 99.48% 

99.37% 99.41 % 

99.53% 99.70% 99.72% 99.62% 99.72% 99.92% 

99.45% 99.65% 99.69% 99.54% 99.65% 99.90% 

99.36% 99.60% 99.67% 99.46% 99.58% 99.89% 

99.27% 99.56% 99.65% 99.38% 99.51% 99.88% 

99.80"4. 

99.77% 

99.74% 

99.72% 

Overall Reliability = 49.92% 
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99.98% 

99.93% 

99.98% 

99.93% 

99.88% 

99.82% 

99.76% 

99.69% 

99.63% 

99.56% 

99.50% 

99.98% 

99.93% 

99.88% 

99.82% 

99.76% 

99.98% 

99.93% 

99.88% 

99.82% 

99.76% 

99.98% 

99.93% 

99.88% 

99.82% 

99.76% 

99.69% 

99.98% 

99.93% 

99.88% 

99.82% 

99.76% 

99.69% 

99.63% 

99.56% 

99.50% 

Reliability 

99.74% 

99.22% 

99.72% 

99.20% 

98.67% 

98.13% 

97.59% 

97.05% 

96.50% 

95.95% 

95.39% 

99.64% 

99.13% 

98.60% 

98.07% 

97.53% 

99.54% 

99.04% 

98.52% 

97.99% 

98.39% 

99.70% 

99.19% 

98.66% 

98.12% 

97.58% 

97.04% 

99.63% 

99.12% 

98.60% 

98.07% 

97.53% 

96.98% 

96.44% 

95.89% 

95.34% 



(M,C) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

Table B.6. Cost of components in each period in Model 2 
1 2 3 4 5 6 7 8 9 10 

0.06 0.08 0.10 

200.20 210.25 245.32 

0.06 0.08 0.10 

0.20 0.25 0.32 

0.36 0.42 0.55 

0.54 0.59 0.78 

0.74 0.76 1.02 

0.94 0.92 1.26 

1.14 1.09 1.50 

1.36 1.26 1. 74 

201.58 211.43 246.99 

0.06 0.08 0.10 

0.20 0.25 0.32 

0.36 0.42 0.55 

0.54 0.59 0.78 

200.74 210.76 246.02 

0.06 0.08 0.10 

0.20 0.25 0.32 

0.36 0.42 0.55 

35.54 32.59 65.78 

200.45 210.47 245.60 

0.06 0.08 0.10 

0.20 

0.36 

0.54 

0.74 

200.94 

0.06 

0.20 

0.36 

0.54 

0.74 

0.94 

1.14 

1.36 

1.58 

0.25 0.32 

0.42 0.55 

0.59 0.78 

0.76 1.02 

210.92 246.26 

0.08 

0.25 

0.42 

0.59 

0.76 

0.92 

1.09 

1.26 

1.43 

0.10 

0.32 

0.55 

0.78 

1.02 

1.26 

1.50 

1.74 

1.99 

0.07 0.07 0.08 

lBO.20 205.17 235.26 

0.07 0.07 0.08 

0.20 0.17 0.26 

0.31 0.24 0.45 

0.42 0.32 0.65 

0.53 0.38 0.86 

0.63 0.44 1.07 

0.73 0.50 1.29 

0.83 0.56 1.51 

lBO.93 205.61 236.73 

0.07 0.07 0.08 

0.20 0.17 0.26 

0.31 0.24 0.45 

0.42 0.32 0.65 

lBO.53 50.38 235.86 

0.07 0.27 0.08 

0.20 0.34 0.26 

0.31 0.41 0.45 

42.42 205.4 7 38.65 

lBO.31 50.07 235.57 

0.07 0.12 0.08 

0.20 

0.31 

0.42 

0.53 

180.63 

0.07 

0.20 

0.31 

0.42 

0.53 

0.63 

0.73 

0.83 

0.21 

0.28 

0.35 

0.41 

50.47 

0.32 

0.39 

0.45 

0.51 

0.56 

0.62 

0.67 

0.72 

0.26 

0.45 

0.65 

0.86 

236.07 

0.08 

0.26 

0.45 

0.65 

0.86 

1.07 

1.29 

1.51 

0.03 0.03 0.05 0.05 

175.11 30.07 210.14 250.18 

0.03 0.08 0.05 0.05 

0.11 0.11 0.14 0.18 

0.21 0.14 0.22 0.31 

0.32 0.17 0.29 0.46 

0.44 0.20 0.36 0.62 

0.57 0.23 0.42 0.78 

0.70 0.25 0.49 0.94 

0.84 0.28 0.55 1.11 

175.98 30.30 210.61 251.28 

0.03 0.24 0.05 0.05 

0.11 0.27 0.14 0.18 

0.21 0.30 0.22 0.31 

0.32 0.32 0.29 0.46 

175.44 30.34 210.36 250.62 

0.03 0.27 0.05 0.05 

0.11 0.30 0.14 0.18 

0.21 0.32 0.22 0.31 

0.32 215.35 0.29 0.46 

175.44 0.03 210.36 250.62 

0.03 0.07 0.05 0.05 

0.11 0.10 

0.21 0.13 

0.32 0.16 

0.44 0.19 

175.57 215.22 

0.03 

0.11 

0.21 

0.32 

0.44 

0.57 

0.70 

0.84 

0.14 

0.22 

0.29 

0.36 

0.18 

0.31 

0.46 

0.62 

0.93 0.77 1. 73 0.98 

0.03 

0.07 

0.10 

0.13 

0.16 

0.19 

0.22 

0.24 

0.27 

210.42 

0.05 

0.14 

0.22 

0.29 

0.36 

0.42 

0.49 

0.55 

0.61 

250.78 

0.05 

0.18 

0.31 

0.46 

0.62 

0.78 

0.94 

1.11 

1.28 

Total Cost = 14,989.74 
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Fixed Cost 

0.00 

800.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

800.00 

0.00 

0.00 

0.00 

0.00 

800.00 

0.00 

0.00 

0.00 

800.00 

800.00 

0.00 

0.00 

0.00 

0.00 

0.00 

800.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 
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~ Data of the Multi-Objective Optimi~atian Model 

i; Number of components and peric:..ds 
N 10; 
T 36; 
J 36; 
L T/J; 

'" Spec.i.f..ic,:,tion of the COIIl.ponents 
~ Parameters of the Failure function 
Lambda = [0.00022 0.00035 
0.00012 0.00025 0.00020]; 
Beta = [2.20 2.00 2.05 
2.15] ; 

0.00038 0.00034 0.00032 0.00028 0.00015 

1. 90 1. 75 2.10 2.25 1. 80 1. 85 

~~ Improvernent fact·,)r {llge reduction coefficient) 
Alpha = [0.62 0.58 0.55 0.50 0.48 0.65 0.75 0.68 0.52 0.67] ; 
" Fi";lil 1J r·~ cost 
Failure Cost = [250 240 270 210 220 280 200 225 215 255] ; 
to, tvjaint~nd.nce cost 
M Cost = [35 32 65 42 50 38 45 30 48 55] ; -
:f:; Repl.ac(~ment cost 
R Cost = [200 210 245 180 205 235 175 215 210 250] ; -
:~~ Fixed cost 
Fixed_Cost = 800; 

Engineering economics parameters 
Inflation rates of failure cost, maintenance cost, replacement cost 

and fized cost 
Inf_Failure = 0.01/12; 
Inf M = 0.015/12; 
Inf R = 0.02/12; 
Inf_Fix = 0.01/12; 
'i; Interest rate 
Int_Rate = 0.03/12; 

~ Parameters of the multi-objective optimi=ation model 
~ Weights of the objective functions in weighted method, WI+W2 1 
~Wl 0.0; W2 1.0; 
~Wl 0.1; W2 0.9; 
tWI 0.2; W2 0.8; 
,~~ vJ 1 
'~~ vJ:l. 
'i;\'Jl 

-=:,\1J 1 

() . 3 i ~·J2 

0.4; IV;'. 
O. S; W=: 
0.6; W~ 

\) a 7; W2 

o ~ "} ; 
0.6; 
o.s; 
0.4; 
CJ • :'i; 

W1 = 0.8; W2 = 0.2; 
C,' Ion = (i. 'j ; itl2 = (I.. 1 ; 
~Wl 1.0; W2 0.0; 
~ Design goals for the 
i~ Giv<:?f1 budq-=:t 
GB = 5000; 
t Required reliability 
RR = 0.50; 

ective functions in goal attainment method 
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~ Fitness E~ncticn5 of the Cost and Reliability Functions 
function [cost,reliability,fit1,fit2,fit3) = Fitness(a) 

Data; 
~ This section changes a(l,N*TI to AIN,T) 
A = zeros(N,T); 
for i = 1:1:N 

for j = 1:1:T 
A(i,j) = a(1,(i-1)*T+j); 

end 
end 

~ This section calculates the x(starting effective age) and xp(ending 
etf0cttve aqe) 
x = zeros(N,T); 
for i = 1:1:N 

for j = 1:1:T-1 

x(i,j)+L; 
== 1 

if A ( i , j) == 0 
x(i,j+1) = 

elseif A(i,j) 
x(i,j+1) = 

elseif A(i,j) 
x(i,j+1) 

end 

Alpha(i)*(x(i,j)+L); 
2 

0; 

end 
end 
xp = x+L; 

~ This section calculates the cost and reliability functions for series 
syst.em of components 
cost = 0; 
max_cost = 0; 
xx = zeros(N,T); 
xxp = xx+L; 
reliability = 1; 
for j = 1:1:T 

counter = 0; 
for i = 1:1:N 

if A(i,j) == 0 
cost = cost+((Failure_Cost(i)*Larnbda(i)*((xp(i,j)ABeta(i))

(x(i,j)ABeta(i)))*(1+Inf_Failure)Aj)); 
else if A(i,j) == 1 

cost = cost+((Failure_Cost(i)*Larnbda(i)*((xp(i,j)ABeta(i))
(x(i,j)ABeta(i)))*(1+Inf_Failure)Aj)+(M_Cost(i)*(1+Inf_M)Aj)); 

elseif A(i,j) == 2 
cost = cost+((Failure_Cost(i)*Larnbda(i)*((xp(i,j)ABeta(i))

(x(i,j)ABeta(i)))*(1+Inf_Failure)Aj)+(R_Cost(i)*(1+Inf_R)Aj)); 
end 
if A ( i , j) == 1 I I A ( i , j) == 2 

counter 1; 
end 
max cost = 

max_cost+( (Failure Cost(i)*Larnbda(i)*((xxp(i,j)ABeta(i))
(xx(i,j)ABeta(i)))*(1+Inf_Failure)Aj)+(R_Cost(i)*(1+Inf_R)Aj)); 

reliability = reliability*exp(-Larnbda(i)*((xp(i,j)ABeta(i))
(x (i, j) ABeta (i)))); 

end 
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if counter == 1 
cost = cost+(Fixed_Cost*(I+Inf Fix)Aj); 

end 
cost = cost*(I+Int_Rate)A(-j); 
max cost max_cost+(Fixed_Cost*(I+Inf_Fix)Aj); 
max cost max_cost+(I+Int Rate)A(-j); 

end 

~ The fitness functions, 
fitl Wl*(cost/max_cost)+W2*(-reliability); 
fit2 -reliability+(I/max_cost)*abs(GB-cost); 
fit3 (cost/max_cost)+abs(RR-reliability); 

i (me point Crossover function 
function [offspring] = Onepointcrossover(parentl,parent2) 

Data; 
crossoverpoint = fix(N*T*rand+l); 
offspring = 

[parentl(:,I:crossoverpoint),parent2(:,crossoverpoint+I:N*T)]; 

t Two point Crossover Function 
function [offspring] = Twopointcrossover(parentl,parent2) 

Data; 
crossoverpointl fix(N*T*rand+l); 
crossoverpoint2 fix(N*T*rand+l); 
crossoverpointl abs((crossoverpointl+crossoverpoint2)/2)
abs( (crossoverpointl-crossoverpoint2)/2); 
crossoverpoint2 = 

abs((crossoverpointl+crossoverpoint2)/2)+abs((crossoverpointl
crossoverpoint2)/2); 
offspring = 

[parentI (:,I:crossoverpointl),parent2(:,crossoverpoint 1+I:crossoverpoin 
t2),parentl(:,crossoverpoint2+1:N*T)]; 

~ N point Crossover Function 
function [offspring] = Npointcrossover(parentl,parent2) 

Data; 
for i 

for 

end 
end 

1:I:fix(N/2) 
j = 1:I:T 
offspring (:, (2* (i-I)) *T+j) = parent! (:, (2* (i-I)) *T+j); 
offspring(:, (2*i-l)*T+j) = parent2(:, (2*i-l)*T+j); 
if mod(N,2) == 1 

offspring (: , (N-l) *T+j) = parent! ( : , (N-1) *T+j) ; 
end 

i NT point Crossover function 
function [offspring] = NTpointcrossover(parent1,parent2) 

Data; 
for i = 1:1: (N*T)/2 

offspring(:,2*i-1) = parent1(:,2*i-1); 
offspring(:,2*i) = parent2(:,2*i); 
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end 

~ Two point Inverse Crossover function 
function [offspring] = Ordercrossover(parent1,parent2) 

Data; 
crossoverpoint1 fix(N*T*rand+1); 
crossoverpoint2 fix(N*T*rand+1); 
crossoverpoint1 abs((crossoverpoint1+crossoverpoint2)/2)
abs((crossoverpoint1-crossoverpoint2)/2); 
crossoverpoint2 = 

abs((crossoverpoint1+crossoverpoint2)/2)+abs((crossoverpoint1-
crossoverpoint2)/2); 
for i = l:l:N*T 

parent1 inv(:,N*T-i+1) parent1(:,i); 
end 
offspring = 

[parent1_inv(:,1:crossoverpoint1),parent2(:,crossoverpoint1+1:crossover 
point2),parent1_inv(:,crossoverpoint2+1:N*T)]; 

~ Mutation Function 
function [individual] Mutation (individual) 

Data; 
mutation_point = fix(N*T*rand+1); 
if individual (:,mutation_point) 0 

if (rand < 0.5) 
for k = l:l:N 

if mod (mutation point,T) == 0 
individual(:, (mod(mutation_point,T)+k*T)) = 1; 

else 
individual(:, (mod(mutation_point,T)+(k-1)*T)) 1; 

end 
end 

elseif (rand >= 0.5) 
for k = l:l:N 

if mod(mutation_point,T) == 0 
individual(:, (mod(mutation_point,T)+k*T)) = 2; 

else 
individual(:, (mod(mutation_point,T)+(k-1)*T)) 2; 

end 
end 

end 
elseif individual (:,mutation_point) 1 I I 
individual (:,mutation_point) == 2 

end 

for k = l:l:N 

end 

if mod(mutation_point,T) 0 
individual(:, (mod(mutation_point,T)+k*T)) = 0; 

else 
individual(:, (mod(mutation_point,T)+(k-1)*T)) 0; 

end 
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~ Generational Genetic Algorithm 

i Generational genetic algorithm parameters 
t Number of generations: 500 
~ Population ~i=e: 2000 
~ Probability of selection: 0.20 
~ Probability of crossover: 0.40 
~ Probability of mutation: 
clear; 
generation_number = 500; 
population_size = 2000; 
p_selection = 0.20; 
p_crossover = 0.40; 
p_mutation = 0.40; 
min = 0; 
max = 2; 
Data; 

~ Initial population 
a = zeros(l,T*N); 

0.40 

initial_population = zeros (population size,T*N+5); 
for i = l:l:population_size 

for j = l:l:T*N 
a(j) = fix((max-min+l)*rand+min); 

end 
[cost,reliability,fitl,fit2,fit3] 
initial_population(i,l:N*T) = a ; 
initial_population (i,N*T+l:N*T+5) 

[cost,reliability,fitl,fit2,fit3]; 
end 
population = initial_population; 

for g = l:l:generation_number 
~ Selection procedure 

Fitness(a); 

population_sorted = sortrows(population,N*T+5); 
population_selected = 

population_sorted(l:fix(p_selection*population_size),:); 

~ Cross~ver proce&lres 
for i = l:l:p_crossover*population_size 

parentl = population(fix((population_size)*rand+l), :); 
parent2 = population(fix((population_size)*rand+l), :); 
if parentl(:,N*T+5) -= parent2(:,N*T+5) 

t One point crossover 
Eoffspring = Onepointcrossover!parentl,parent2); 

S Two point crossover 
aoffspring Twopointcrossover(parentl,parent2); 

Y N point crossover 
Yoffspring = Npointclossover(parentl,parent~J; 

E NT point crossover 
offspring = NTpointcrossover(parentl,parent2); 

elseif parentl(:,N*T+5) == parent2(:,N*T+5) 
Two point inverse crossover 

offspring = Ordercrossover(parentl,parent2); 
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end 
[cost,reliability,fit1,fit2,fit3) = Fitness(offspring); 
population_crossover (i,l:N*T) = offspring; 
population_crossover (i,N*T+1:N*T+5) 

[cost,reliability,fit1,fit2,fit3); 
end 

t Mutation procedure 
for i = l:l:p_mutation*population_size 

individual = population(fix((population_size)*rand+1),:); 
individual_mutated = Mutation(individual); 
[cost,reliability,fit1,fit2,fit3) = 

Fitness(individual_mutated); 
population_mutation(i,l:N*T) = individual_mutated(:,l:N*T); 
population_mutation (i,N*T+1:N*T+5) 

[cost,reliability,fit1,fit2,fit3); 
end 

~ This section generates a new population based on selection, 
crossover and mutation procedures 

population = 

[population_selected;population_crossover;population_mutation); 
~ This section sorts the solutions in the current population based 

on their fitness value and selects the best one in each generation 
55 = sortrows(population,N*T+5); 
solution_improvement(g,:) = 55(1:1, :); 

end 

~ This section sorts the lasL populaLian based an its fitness values 
and then changes the final solution(l,N*T) to PMB_Schedule(N,Tl 
last-population = sortrows(population,N*T+5); 
final_solution = last_population(l:l,:); 
PMR_Schedule = zeros(N,T); 
for i = l:l:N 

for j = l:l:T 
PMR_Schedule(i,j) final solution(l, (i-1)*T+j); 

end 
end 
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~ Steady State Genetic Algorithm 

~ Steady state genetic algorithm parameters 
'i; Numbe.r of qent:-ration: 1. 

~ Genetic cycle: 500 
\" Number ·)f iterations: 100 
\' Population size: 2000 

Probability of mutation: 0.20 
clear; 
genetic_cycle = SOO; 
iteration_number = 100; 
population_size = 2000; 
p_mutation = 0.20; 
min = 0; 
max = 2; 
Data; 

~ Initial population 
a = zeros(l,T*N); 
initial_population = zeros(population_size,T*N+S); 
for i = l:l:population_size 

for j = l:l:T*N 
a(j) = fix((max-min+1)*rand+min); 

end 
[cost,reliability,fit1,fit2,fit3] 
initial_population(i,l:N*T) = a ; 
initial_population (i,N*T+1:N*T+S) 

[cost,reliability,fit1,fit2,fit3]; 
end 
population = initial_population; 

for i = l:l:genetic_cycle 
for j = l:l:iteration_nurnber 

% Crossover Procedures 

Fitness (a) ; 

parentI = population(fix((population size)*rand+1),:); 
parent2 = population(fix((population_size)*rand+1),:); 
if parent1(:,N*T+S) -= parent2(:,N*T+S) 

One point crossover 
~offspring Onepointcrossover(parentl,parent2); 

% Two point crossover 
%offspring = Twopointcrossover(parentl,parent2); 

~ N point crossover 
50ffspring = Npointcrossoverlparentl,parent2); 

% NT point crossover 
offspring = NTpointcrossover(parent1,parent2); 

elseif parent1(:,N*T+S) == parent2(:,N*T+S) 
% Two point inverse crossover 
offspring = Ordercrossover(parent1,parent2); 

end 

,C [1;\1t3tion proceci1Jre 
offspring mutated = Mutation(offspring); 
[cost,rellability,fit1,fit2,fit3] = Fitness(offspring_mutated); 
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offspring_mutated(:,N*T+1:N*T+5) = 

[cost,reliability,fit1,fit2,fit3]; 
~ This section replac~s the n~w offsprings with the worst 

solutions in the population if they are better than the worst solutions 
population_sorted = sortrows(population,N*T+5); 
if offspring_mutated(:,N*T+5) < 

population sorted (population_size,N*T+5) 
population_sorted(population_size,:) = offspring_mutated; 
population_sorted sortrows(population_sorted); 

end 

end 

population = population_sorted; 
end 
55 = sortrows(population,N*T+5); 
solution_improvement(i,:) = 55(1:1, :); 

~ This section sorts the last population based on its fitness values 
and then changes tbe final solution(l,N*T) to PI'1R_Schedule(N,T) 
last_population = sortrows(population,N*T+5); 
final_solution = last_population(1:1,:); 
PMR_Schedule = zeros(N,T); 
for i = 1:1:N 

for j = 1:1:T 
PMR_Schedule(i,j) final solution(1, (i-1)*T+j); 

end 
end 
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MATLAB PROGRAMS OF SIMULATED ANNEALING 
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~ DaLa of the Multi-Objective Optimi=ation Model 

"~ Number of c:omponent.$ ",na peri,:-ds 
N 10; 
T 36; 
J 36; 
L T/J; 

.~ .. Sr;ec.i.fica.t.1.on of the cornp0Lents 

~ Parameters of the Failure function 
Lambda = [0.00022 0.00035 0.00038 0.00034 0.00032 0.00028 0.00015 
0.00012 0.00025 0.00020]; 
Beta = [2.20 2.00 2.05 1.90 1.75 2.10 2.25 1.80 1.85 
2.15] ; 
':. Improvement facL!)r (Age reduction cDefficient) 
Alpha = [0.62 0.58 0.55 0.50 0.48 0.65 0.75 0.68 0.52 0.67]; 

FaillJr~?! cost 
Failure Cost = [250 240 270 210 220 280 200 225 215 255] ; 
1- L"la in t:. 8IldrlCe cost 
M Cost = [35 32 65 42 50 38 45 30 48 55] ; -
:t; Replac(,ment. cost 
R Cost = [200 210 245 180 205 235 175 215 210 250] ; -
:;~ Fixed cost 
Fixed Cost = 800; -

Engineering economics parameters 
Inflation rates of failure cost, maintenance cost, replacement cost 

dnd fiz8C cost 
Inf Failure = 0.01/12; 
Inf_M = 0.015/12; 
Inf_R = 0.02/12; 
Inf Fix = 0.01/12; 
'i; Interest rate 
Int_Rate = 0.03/12; 

Parameters of the mUlti-objective optimi=ation model 
~ Weights of the objective functions in weighted method, Wl+W2 1 
~~\~l 0.0; l'iL 1.0; 
~Wl 0.1; W2 0.9; 
tWl 0.8; CJ 

, 
; \"12 ..<:. 

i; \<1 1 
·i;vE 
~vJl 

() 

I) 

0 
0 
0 

) -', 
4 ; 
5 ; 
6; 
7 ; 

\"12 
\v2 
~~~ 

W.=: 
\'12 

o. ""1 ; 

[) _ 6; 

o .. 5; 
0.4; 
o .. 3 i 

W1 = 0.8; W2 = 0.2; 
£~ .. ~~l = O.'::J; itJ2 = CJ.I; 

1.C; \"12 (} _ 0; 
~ Design goals for the objective functions in goal attainment meLhod 
;~~ Gi.ven budq~t 
GB = 5000; 
i Required reliability 
RR = 0.50; 
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~ Fitness FunttionE of the Cost and Reliability F~nctions 
function (cost,reliability,fitl,fit2,fit3] = Fitness (a) 

Data; 
~ ThiE section changes a(l,N~TI LO AIN,T] 
A = zeros(N,T); 
for i = 1:I:N 

for j = 1:I:T 
A{i,j) = a{I,{i-l)*T+j); 

end 
end 

% This section calculates the xlstarting effective age) and xp(ending 
effecti.ve aqc) 
x = zeros(N,T); 
for i = 1:I:N 

for j = 1:I:T-l 

x(i,j)+L; 
== 1 

if A(i,j) == 0 
x(i,j+l) = 

elseif A{i,j) 
x(i,j+l) = 

elseif A(i,j) 
x(i,j+l) 

end 

Alpha(i)*(x(i,j)+L); 
2 

0; 

end 
end 
xp = x+L; 

~ This section calculates the cost and reliability functions for series 
syst.·"2m or componr:::nts 
cost = 0; 
max_cost = 0; 
xx = zeros(N,T); 
xxp = xx+L; 
reliability = 1; 
for j = 1:I:T 

counter = 0; 
for i = 1:I:N 

if A(i,j) == 0 
cost = cost+{{Failure_Cost{i)*Lambda{i)*{{xp{i,j)ABeta(i))

(x(i,j)ABeta(i)))*(I+Inf_Failure)Aj)); 
elseif A(i,j) == 1 

cost = cost+{(Failure_Cost(i)*Lambda{i)*( (xp{i,j)ABeta(i))
(x(i,j)ABeta(i)))*{I+Inf_Failure)Aj)+(M_Cost(i)*{I+Inf_M)Aj)); 

elseif A(i,j) == 2 
cost = cost+((Failure_Cost(i)*Lambda(i)*((xp{i,j)ABeta{i))

(x{i,j)ABeta(i)))*(I+Inf Failure)Aj)+(R_Cost(i)*(I+Inf_R)Aj)); 
end 
if A ( i , j) == 1 I I A ( i , j) == 2 

counter 1; 
end 
max cost = 

max cost+( (Failure Cost(i)*Lambda{i)*({xxp(i,j)ABeta(i))
(xx(i,j)ABeta(i)))*{I+Inf_Failure)Aj)+(R_Cost(i)*(I+Inf_R)Aj)); 

reliability = reliability*exp(-Lambda{i)*({xp(i,j)ABeta(i))
{x (i, j) ABeta (i)))); 

end 
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end 

if counter == 1 
cost = cost+(Fixed_Cost*(I+Inf_Fix)Aj); 

end 
cost = cost*(I+Int_Rate)A(-j); 
max cost max_cost+(Fixed_Cost*(I+Inf_Fix)Aj); 
max cost max_cost+(I+Int_Rate)A(-j); 

~ The fitness functions, 
fitl Wl* (cost/max_cost)+W2* (-reliability); 
fit2 -reliability+(I/max_cost)*abs(GB-cost); 
fit3 (cost/max_cost)+abs(RR-reliability); 

t Transition Function 
function [xl = Transition(x) 

Data; 
transition_point = fix(N*T*rand+l); 
if x(:,transition_point) == 0 

if (rand < 0.5) 
for k = 1:I:N 

end 

if mod(transition_point,T) == 0 
x(:, (mod(transition_point,T)+k*T)) = 1; 

else 
x(:, (mod(transition_point,T)+(k-l)*T)) 1; 

end 

elseif (rand >= 0.5) 
for k = 1:I:N 

end 
end 

if mod(transition_point,T) == 0 
x(:, (mod(transition_point,T)+k*T)) = 2; 

else 
x (:, (mod (transition_point, T) + (k-l) *T) ) 2; 

end 

elseif x(:,transition_point) == 1 I I x(:,transition-point) 2 

end 

for k = 1:I:N 

end 

if mod(transition_point,T) 0 
x (:, (mod (transition_point, T) +k*T)) = 0; 

else 
x (: , (mod (transi tion_point, T) + (k-l) *T) ) 0; 

end 
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~t, ~.) irnula ted Annea.l inl;:j Algor i tJUfL 

~ Simulated annealing algorithm parameters 
'I; Ini.U .. al temperature: lOOO(lUO 
~ Final temperature: 0.01 
~ Decreasi.ng rate: 
clear; 
t_initial = 1000000; 
t final = 0.01; 
t rate = 0.98; 
min = 0; 
max = 2; 
Data; 

" Initial scluti<:>n 
a = zeros(l,T*N); 
for j = l:l:T*N 

a(j) = fix((max-min+1)*rand+min); 
end 
[cost,reliability,fit1,fit2,fit3] = Fitness(a); 
initial_solution(l,l:N*T) = a ; 
initial_solution(1,N*T+1:N*T+5) [cost,reliability,fit1,fit2,fit3]; 
x = initial solution; 

t_current = t initial; 
i = 1; 
while t final <= t current 

end 

~ Transition procedure 
y = Transition(x); 
[cost,reliability,fit1,fit2,fit3] = Fitness(y); 
y(1,N*T+1:N*T+5) = [cost,reliability,fit1,fit2,fit3]; 

~ Acceptation procedure 
if y(1,N*T+5) < x(1,N*T+5) 

x = y; 
elseif y(1,N*T+5) >= x(1,N*T+5) 

end 

if rand <= exp(-(y(1,N*T+5)-x(1,N*T+5))/t_current) 
x = y; 

end 

solution improvement(i,1:N*T+5) x; 
t current t rate*t_current; 
i = i+1; 

~ This section changes the final solution(l,N"T) to PMR SchedulelN,TI 
ss = sortrows(solution_improvement,N*T+5); 
final solution = ss(l:l,:); 
PMR_Schedule = zeros(N,T); 
for i = 1:1:N 

for j = 1:1:T 
PMR_Schedule(i,j) final solution(l, (i-1)*T+j); 

end 
end 
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LINGO PROGRAMS OF 
IMPROVEMENT FACTOR MODELS 
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! Model l.l-Nonlinear mixed integer optimization model that 
minimizes total cost subject to a reliability constraint with 

constant improvement factor 
based on maintenance and replacement costs; 

Model: 
Data: 

C 1; 
T 36; 
L 1; 

Enddata 

Sets: 
Period/l .. T /; 
LinkComPer(Period): X, XP, M, R; 

Endsets 

Data: 
Lambda = 0.00025; 
Beta = 2.20; 
Failure Cost = 2500; 
M_Cost = 300; 
R_Cost = 1500; 
Given_Reliability 0.92; 

Enddata 

Objective Function, Minimizing the total cost; 
Min = @Sum(LinkComPer(j): (Failure_Cost * Lambda * ((XP(j)"Beta) -

(X(j)"Beta))) + M Cost * M(j) + R Cost * R(j)); 

C'cnf.;t.raints; 

End 

! Recursive functions; 
X(I) = 0; 
@For(LinkComPer(j): XP(j) = X(j) + L); 
@For(LinkComPer(j) I j #GE# 2: X(j) = ((I-M(j-l)) * (I-R(j-l)) * 

(XP(j-l)) + M(j-l) * ((R_Cost-M_Cost)/R_Cost) * (XP(j-l)))); 

! Basic constraints; 
@For(LinkComPer(j): M(j) + R(j) <= 1); 
@For(LinkComPer(j): @BIN(M)); 
@For(LinkComPer(j): @BIN(R)); 

I Reliability constraint; 
@Exp(@Sum(LinkComPer(j): (-Lambda * ((XP(j)"Beta) - (X(j)"Beta))))) 

>= Given_Reliability; 
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! Model 1.2-Nonlinear mixed integer optimization model that 
minimizes total cost subject to a reliability constraint with 

variable improvement factor based on effective age; 

Model: 
Data: 

C 1; 
T 36; 
L 1; 

Enddata 

Sets: 
Period/l .. T /; 
LinkComPer(Period): X, XP, M, R; 

Endsets 

Data: 
Lambda = 0.00025; 
Beta = 2.20; 
Failure Cost = 2500; 
M_Cost = 300; 
R_Cost = 1500; 
Given_Reliability 

Enddata 
0.92; 

Objectiv~ Function, Minimi=ing the Lotal cost; 
Min = @Sum(LinkComPer (j): (Failure_Cost * Lambda * ((XP (j) "Beta) -

(X(j)"Beta))) + M Cost * M(j) + R Cost * R(j)); 

Cc~nstraint.3; 

End 

! Recursiv~ functions; 
X(l) = 0; 
@For(LinkComPer(j): XP(j) = X(j) + L); 
@For(LinkComPer(j) I j #GE# 2: X(j) = ((I-M(j-l)) * (l-R(j-l)) * 

(XP(j-l)) + M(j-l) * ((XP(j-l)/(XP(j-l)+I))) * (XP(j-l)))); 

! Basic constraints; 
@For(LinkComPer(j): M(j) + R(j) <= 1); 
@For(LinkComPer(j): @BIN(M)); 
@For(LinkComPer(j): @BIN(R)); 

! ReliabiliLy constraint; 
@Exp(@Sum(LinkComPer(j): (-Lambda * ((XP(j)"Beta) - (X(j)"Beta))))) 

>= Given_Reliability; 
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! Model 1.3-Nonlinear mixed integer optimization model that 
minimizes total cost subject to a reliability constraint with 

variable improvement factor 
based on maintenance and replacement costs and effective age; 

Model: 
Data: 

C l; 
T 36; 
L 1; 

Enddata 

Sets: 
Period/l. .T/; 
LinkComPer(Period): X, XP, M, R; 

Endsets 

Data: 
Lambda = 0.00025; 
Beta = 2.20; 
Failure Cost = 2500; 
M_Cost = 300; 

Given_Reliability 
Enddata 

0.92; 

Objective Function, Minimizing the total cost; 
Min = @Sum(LinkComPer(j): (Failure_Cost * Lambda * ((XP(j)ABeta) -

(X(j)ABeta))) + M Cost * M(j) + R Cost * R(j)); 

(,'c)ns t: ra in t.s; 

End 

! Recursive functions; 
X(l) = 0; 
@For(LinkComPer(j): XP(j) = X(j) + L); 
@For(LinkComPer(j)1 j #GE# 2: X(j) = ((l-M(j-l)) * (l-R(j-l)) * 

(XP(j-l)) + M(j-l) * (((R_Cost-M_Cost)/R_Cost) * (XP(j
l)/(XP(j-l)+l))) * (XP(j-l)))); 

! Basic constraints; 
@For(LinkComPer(j): M(j) + R(j) <= 1); 
@For(LinkComPer(j): @BIN(M)); 
@For(LinkComPer(j): @BIN(R)); 

! Reliability constraint; 
@Exp(@Sum(LinkComPer(j): (-Lambda * ((XP(j)ABeta) - (X(j)ABeta))))) 

>= Given_Reliability; 
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! Model 2.l-Nonlinear mixed integer optimization model that 
maximizes overall reliability subject to a budgetary constraint 

with constant improvement factor 
based on maintenance and replacement costs 

Model: 
Data: 

C 1; 
T 36; 
L 1; 

Enddata 

Sets: 
Period/l .. T/:; 
LinkComPer(Period): X, XP, M, R; 

Endsets 

Data: 
Lambda = 0.00025; 
Beta = 2.20; 
Failure Cost = 2500; 
M_Cost = 300; 
R_Cost = 1500; 
Given_Budget 

Enddata 
6000; 

Objective Function, Maximizing reliability; 
Max = @Exp(@sum(LinkComPer(j): (-Lambda * ((XP(j)ABeta) -

(X (j) ABeta))))) 

C'c)nst.ra i.nt.s; 

End 

! Recursive functions; 
X(l) = 0; 
@For(LinkComPer(j): XP(j) = X(j) + (L)); 
@For(LinkComPer(j)1 j #GE# 2: X(j) = ((l-M(j-l)) * (l-R(j-l)) * 

(XP(j-l)) + M(j-l) * ((R_Cost-M_Cost)/R_Cost) * (XP(j-l)))); 

Basic constraints; 
@For(LinkComPer(j): M(j) + R(j) <= 1); 
@For(LinkComPer(j): @BIN(M)); 
@For(LinkComPer(j): @BIN(R)); 

! Budget constraint; 
@Sum(LinkComPer(j): (Failure Cost * Lambda * ((XP(j)ABeta) -

(X(j)ABeta))) + M Cost * M(j) + R Cost * R(j)) <= Given_Budget; 
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! Model 2.2-Nonlinear mixed integer optimization model that 
maximizes overall reliability subject to a budgetary constraint 

with variable improvement factor based on effective age; 

Model: 
Data: 

C 1; 
T 36; 
L 1; 

Enddata 

Sets: 
Period/1. . T /: ; 
LinkComPer(Period): X, XP, M, R; 

Endsets 

Data: 
Lambda = 0.00025; 
Beta = 2.20; 
Failure Cost = 2500; 
M_Cost = 300; 
R_Cost = 1500; 
Given_Budget 

Enddata 
6000; 

Objective Function, Maximi=ing the reliability; 
Max = @Exp(@sum(LinkComPer(j): (-Lambda * ((XP(j)ABeta) -

(X(j) ABeta))))) 

Ccnst.r"aint.s; 

End 

! Recursive functions; 
X(I) = 0; 
@For(LinkComPer(j): XP(j) = X(j) + (L)); 
@For(LinkComPer(j)1 j jlGEjI 2: X(j) = ((I-M(j-l)) * (I-R(j-l)) * 

(XP(j-l)) + M(j-l) * ((XP(j-l)/(XP(j-l)+I))) * (XP(j-l)))); 

Basic constraints; 
@For(LinkComPer(j): M(j) + R(j) <= 1); 
@For(LinkComPer(j): @BIN(M)); 
@For(LinkComPer(j): @BIN(R)); 

! Budget constraint; 
@Sum(LinkComPer(j): (Failure Cost * Lambda * ((XP(j)ABeta) -

(X(j)ABeta))) + M Cost * M(j) + R Cost * R(j)) <= Given_Budget; 
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! Model 2.3-Nonlinear mixed integer optimization model that 
maximizes overall reliability subject to a budgetary constraint 

with variable improvement factor 
based on maintenance and replacement costs and effective age; 

Model: 
Data: 

C 1; 
T 36; 
L 1; 

Enddata 

Sets: 
Period/l .. T /: ; 
LinkComPer(Period): X, XP, M, R; 

Endsets 

Data: 
Lambda = 0.00025; 
Beta = 2.20; 
Failure Cost = 2500; 
M_Cost = 300; 
R_Cost = 1500; 
Given_Budget 

Enddata 
6000; 

Objective Function, Maximizing the reliability; 
Max = @Exp(@sum(LinkComPer(j): (-Lambda * ((XP(j)"Beta) -

(X (j ) "Beta) ) ) ) ) 

Constraints; 

End 

! Recursive functions; 
X(I) = 0; 
@For(LinkComPer(j): XP(j) = X(j) + (L)); 
@For(LinkComPer(j) I j #GE# 2: X(j) = ((I-M(j-l)) * (I-R(j-l)) * 

(XP(j-l)) + M(j-l) * (((R_Cost-M_Cost)/R_Cost) * (XP(j-
1)/(XP(j-l)+I))) * (XP(j-l)))); 

Basic constraints; 
@For(LinkComPer(j): M(j) + R(j) <= 1); 
@For(LinkComPer(j): @BIN(M)); 
@For(LinkComPer(j): @BIN(R)); 

! Budget constraint; 
@Sum(LinkComPer(j): (Failure Cost * Lambda * ((XP(j)"Beta) -

(X(j)"Beta))) + M Cost * M(j) + R Cost * R(j)) <= Given_Budget; 
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COMPUTATIONAL RESULTS OF 
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Table F.1. Variation of improvement factors in each period 

Function 1 

0.80000 

0.80000 

0.80000 

0.80000 

0.80000 

0.80000 

0.80000 

0.80000 

0.80000 

0.80000 

0.80000 

0.80000 

0.80000 

0.80000 

0.80000 

0.80000 

0.80000 

0.80000 

0.80000 

0.80000 

0.80000 

0.80000 

0.80000 

0.80000 

0.80000 

0.80000 

0.80000 

0.80000 

0.80000 

0.80000 

0.80000 

0.80000 

0.80000 

0.80000 

0.80000 

0.80000 

Modell 
Function 2 

0.50000 

0.66667 

0.75000 

0.80000 

0.83333 

0.85714 

0.50000 

0.66667 

0.70000 

0.76923 

0.81250 

0.84211 

0.86364 

0.88000 

0.50000 

0.66667 

0.75000 

0.80000 

0.83333 

0.50000 

0.66667 

0.70000 

0.72477 

0.74415 

0.79627 

0.83075 

0.85525 

0.87355 

0.50000 

0.66667 

0.70000 

0.76923 

0.81250 

0.84211 

0.86364 

0.88000 

Function 3 

0.40000 

0.53333 

0.60000 

0.58947 

0.63333 

0.61846 

0.60520 

0.59383 

0.58439 

0.63016 

0.61559 

0.60271 

0.59173 

0.58268 

0.62911 

0.61464 

0.60189 

0.59105 

0.63432 

0.61935 

0.60599 

0.59449 

0.63649 

0.66424 

0.68394 

0.69864 

0.71004 

0.40000 

0.53333 

0.60000 

0.64000 

0.62456 

0.65612 

0.67805 

0.69418 

0.70654 
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Function 1 

0.80000 

0.80000 

0.80000 

0.80000 

0.80000 

0.80000 

0.80000 

0.80000 

0.80000 

0.80000 

0.80000 

0.80000 

0.80000 

0.80000 

0.80000 

0.80000 

0.80000 

0.80000 

0.80000 

0.80000 

0.80000 

0.80000 

0.80000 

0.80000 

0.80000 

0.80000 

0.80000 

0.80000 

0.80000 

0.80000 

0.80000 

0.80000 

0.80000 

0.80000 

0.80000 

0.80000 

Model 2 
Function 2 

0.50000 

0.66667 

0.70000 

0.76923 

0.81250 

0.84211 

0.86364 

0.88000 

0.89286 

0.50000 

0.66667 

0.70000 

0.72477 

0.74415 

0.79627 

0.83075 

0.85525 

0.87355 

0.88775 

0.89908 

0.50000 

0.66667 

0.75000 

0.80000 

0.83333 

0.85714 

0.87500 

0.88889 

0.50000 

0.66667 

0.75000 

0.80000 

0.83333 

0.85714 

0.87500 

0.88889 

Function 3 

0.40000 

0.53333 

0.60000 

0.64000 

0.62456 

0.65612 

0.63974 

0.66649 

0.64982 

0.63374 

0.61883 

0.65228 

0.63607 

0.62095 

0.60739 

0.64477 

0.62899 

0.65911 

0.64262 

0.62699 

0.65775 

0.64132 

0.62578 

0.65694 

0.64053 

0.62505 

0.65644 

0.64006 

0.62461 

0.61063 

0.59843 

0.63900 

0.66597 

0.68520 

0.69961 

0.71080 
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