University of Louisville

ThinkIR: The University of Louisville's Institutional Repository

Electronic Theses and Dissertations

5-2010

Preventive maintenance and replacement
scheduhng : models and algorit ms.

Kamran S. Moghaddam
University of Louisville

Follow this and additional works at: https://irlibrarylouisville.edu/etd

Recommended Citation

Moghaddam, Kamran S., "Preventive maintenance and replacement scheduling : models and algorithms." (2010). Electronic Theses and
Dissertations. Paper 994.
https://doi.org/10.18297/etd/994

This Doctoral Dissertation is brought to you for free and open access by ThinkIR: The University of Louisville's Institutional Repository. It has been
accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of ThinkIR: The University of Louisville's Institutional
Repository. This title appears here courtesy of the author, who has retained all other copyrights. For more information, please contact
thinkir@louisville.edu.


https://ir.library.louisville.edu?utm_source=ir.library.louisville.edu%2Fetd%2F994&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.library.louisville.edu/etd?utm_source=ir.library.louisville.edu%2Fetd%2F994&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.library.louisville.edu/etd?utm_source=ir.library.louisville.edu%2Fetd%2F994&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.18297/etd/994
mailto:thinkir@louisville.edu

PREVENTIVE MAINTENANCE AND REPLACEMENT SCHEDULING:

MODELS AND ALGORITHMS

Kamran S. Moghaddam
B.S., Applied Mathematics, University of Tehran, 2001
M.S., Industrial Engineering, Tehran Polytechnic, 2003

A Dissertation
Submitted to the Faculty of the
Graduate School of the University of Louisville
in Partial Fulfillment of the Requirements for the

Doctor of Philosophy

Department of Industrial Engineering
University of Louisville
Louisville, Kentucky, USA

May 2010



©Copyright 2010 by Kamran S. Moghaddam
All Rights Reserved




PREVENTIVE MAINTENANCE AND REPLACEMENT SCHEDULING:

MODELS AND ALGORITHMS

Kamran S. Moghaddam
B.S., Applied Mathematics, University of Tehran, 2001
M.S., Industrial Engineering, Tehran Polytechnic, 2003

A Dissertation Approved on

April 23, 2010

By the following Dissertation Committee

Dr. John S. Usher, Committee Chair

Dr. Gerald W. Evans

Dr. Sunderesh S. Heragu

Dr. Gail W. DePuy

Dr. Ali M. Shahhosseini

ii



DEDICATION

This dissertation is dedicated to my parents

Houshang and Afsaneh

My brothers
Shahram and Shaheen

And my beloved girlfriend
Anahita



ACKNOWLEDGMENTS

I would like to thank Dr. John S. Usher, without whose guidance this dissertation
would have been impossible. John has been generous and supportive, academically,
professionally, and personally, and is a true role model to me.

I want to express my gratitude to Dr. Sunderesh S. Heragu for giving me a post-
doctoral research opportunity. I would like to thank my dissertation committee, Dr.
Gerald W. Evans, Dr. Sunderesh S. Heragu, Dr. Gail W. DePuy, and Dr. AL M.
Shahhosseini, who have been of great help throughout my graduate career and job-
searching process. I appreciate the time that Dr. Gail W. DePuy took to read and
edit my job-searching documents. I especially want to thank Dr. Ali M. Shahhosseini
and his wife Dr. Samin Rezania for their help and support after my eye injury and
during the recovery period after eye surgeries.

I would like to thank my mother, Afsaneh, my departed father, Houshang, and
my brothers Shahram and Shaheen. This achievement is due in no small part to
their love, support, and generosity.

My advisors during my graduate years at Tehran Polytechnic, Dr. Abbas Seifi
and Dr. Jamshid Mousavi, were formative in my academic development, and I thank
them for helping me develop as a student and researcher. I also wish to thank the
rest of the faculty and my fellow graduate students in the Department of Industrial
Engineering at the University of Louisville for creating a productive environment of

intellectual growth and for supporting me as a student, instructor, and researcher.

v



Most especially, I want to thank my girlfriend, Anahita, an amazing friend and
partner from whom I have learned so much about generosity, dedication, and
forgiveness; and for her understanding and patience during those times when there
was no light at the end of anything. I hope I can repay some of the support,

encouragement, and love she has given me.



ABSTRACT

PREVENTIVE MAINTENANCE AND REPLACEMENT SCHEDULING:
MODELS AND ALGORITHMS

Kamran S. Moghaddam
April 23, 2010

Preventive maintenance is a broad term that encompasses a set of activities aimed
at improving the overall reliability and availability of a system. Preventive
maintenance involves a basic trade-off between the costs of conducting
maintenance/replacement activities and the cost savings achieved by reducing the
overall rate of occurrence of system failures. Designers of preventive maintenance
schedules must weigh these individual costs in an attempt to minimize the overall
cost of system operation. They may also be interested in maximizing the system
reliability, subject to some sort of budget constraint.

In this dissertation, we present a complete discussion about the problem
definition and review the literature. We develop new nonlinear mixed-integer
optimization models, solve them by standard nonlinear optimization algorithms, and
analyze their computational results. In addition, we extend the optimization models
by considering engineering economy features and reformulate them as a multi-
objective optimization model. We optimize this model by generational and steady
state genetic algorithms as well as by a simulated annealing algorithm and

demonstrate the computational results obtained by implementation of these

vi



algorithms. We perform a sensitivity analysis on the parameters of the optimization
models and present a comparison between exact and metaheuristic algorithms in
terms of computational efficiency and accuracy. Finally, we present a new
mathematical function to model age reduction and improvement factor parameter
used in optimization models. In addition, we develop a practical procedure to
estimate the effect of maintenance activity on failure rate and effective age of multi

component systems.
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CHAPTER 1

INTRODUCTION

1.1. Preventive Maintenance and Replacement Scheduling

Preventive maintenance is a broad term that encompasses a set of activities aimed
at improving the overall reliability and availability of a system. All types of systems,
from conveyors to cars to overhead cranes, have prescribed maintenance schedules
set forth by the manufacturer that aim to reduce the risk of system failure.
Preventive maintenance activities generally consist of inspection, cleaning,
lubrication, adjustment, alignment, and/or replacement of sub-components that
wear-out. Regardless of the specific system in question, preventive maintenance
activities can be categorized in one of two ways, component maintenance or
component replacement. An example of component maintenance would be
maintaining proper air pressure in the tires of an automobile. Note that this activity
changes the aging characteristics of the tires and, if done correctly, ultimately
decreases their rate of occurrence of failure. An example of component replacement
would be simply replacing one or more of the tires with new ones.

Obviously, preventive maintenance involves a basic trade-off between the costs of
conducting maintenance/replacement activities and the cost savings achieved by
reducing the overall rate of occurrence of system failures. Designers of preventive

maintenance schedules must weigh these individual costs in an attempt to minimize



the overall cost of system operation. They may also be interested in maximizing the
system reliability, subject to some sort of budget limitation. Other criteria such as
availability and demand satisfaction might be considered as the objective functions,
but they will not be studied in this dissertation. The main problem is to find the best
sequence of maintenance and replacement actions for each component in the system
in each period over a planning horizon such that total costs are minimized subject to
a constraint on reliability of the system or the overall reliability of the system is

maximized subject to a constraint on budget of the system.

1.2. Research Contributions

In this dissertation, new optimization models, designed to find the optimal
preventive maintenance and replacement schedules, are developed and solved via
exact, and heuristic algorithms. In addition, a new mathematical age reduction and
improvement factor model is developed. These models can be considered as the main
research contributions. In particular, the following contributions are made:

1. Two optimization models will be constructed based on extensions of previous
work in particular, by Usher et al (1998). The optimization models are solved
using a standard nonlinear mixed-integer programming algorithm. These
models also provide a general framework to achieve optimal preventive
maintenance and replacement policies and, with modifications, can be used as
basic closed-form models for any type of system.

2. A multi-objective optimization model is developed based on a set of basic

assumptions and engineering economy considerations. This model is optimized



via generational and steady state genetic algorithms as well as by a simulated
annealing algorithm, which provide Pareto optimal solutions.

3. A sensitivity analysis on parameters of optimization models is performed and
an extensive comparison of computational performance and accuracy of exact
and metaheuristics algorithms is presented.

4. A new mathematical model for estimating age reduction and the improvement
factor parameter used in optimization models is constructed and analyzed. In
addition, a practical procedure is developed to estimate age reduction and the

improvement factor parameter in maintainable and repairable systems.

1.3. Outline

The remainder of this dissertation is organized as follows. In Chapter 2, a
comprehensive literature review of models, algorithms and, applications of
preventive maintenance and replacement scheduling is presented. In Chapter 3,
system configuration and formulation of the optimization models are presented and
their computational results are analyzed. Chapter 4 includes an extension of the
Chapter 3 optimization models by introducing engineering economy parameters into
a multi-objective optimization model. This model has been optimized by multi-
objective generational and steady state genetic algorithms as well as by a multi-
objective simulated annealing algorithm, and the computational results obtained by
implementation of these algorithms are demonstrated.

Chapter 5 deals with a sensitivity analysis on the parameters of the optimization
models and also presents a comparison between of exact and heuristic algorithms in

terms of computational efficiency and accuracy. Chapter 6 reviews current age



reduction and improvement factor models and introduces a new mathematical
function and a practical procedure to estimate age reduction and the improvement
factor parameter. Finally, in Chapter 7, conclusions and potential directions for

future research are presented.



CHAPTER 2

LITERATURE REVIEW

2.1. Introduction

This chapter has three main sections. The first section presents a complete review of
various optimization models and algorithms related to preventive maintenance and
replacement scheduling. Section 2.3 presents a review of key work that utilizes
simulation models of preventive maintenance and replacement scheduling. In
Section 2.4, approaches that develop and use age reduction and improvement factor
models are presented. We also review the applications of preventive maintenance
and replacement models in a wide variety of systems such as in manufacturing and
production systems, service systems, and power systems. Finally, we discuss

potential research areas and summarize the reviewed papers.

2.2. Optimization Models

2.2.1. Analytical Methods

Analytical methods have been broadly used as a standard optimization approach to
achieve optimal maintenance and replacement schedules in engineering problems.
Canfield (1986) studies preventive maintenance optimization models by focusing on

different aspects of the failure function on systems reliability. He mentions that



preventive maintenance actions do not change or affect deteriorating behavior of
failure rate, so the assumed failure function is unchanged with maintenance actions.
He assumes an increasing failure rate based on the Weibull distribution function for
his study and determines an optimal cost of maintenance policies by defining the
average cost-rate of system operation and applying analytical method as the solution
approach. McClymonds and Winge (1987) present methods to achieve optimal
preventive maintenance schedules for nuclear power plants, though they have not
been applied successfully. They consider plant availability and reliability as the
objective functions and develop models based on assigning resources to preventive
and corrective maintenance activities.

Martin (1988) presents a preventive maintenance optimization model, which has
been developed, and implemented by Columbia Hospital in Milwaukee based on
plant technology and safety management standards. The hospital designed this
program in order to use the optimal preventive maintenance plan for its electrical
distribution equipment to improve safety, serviceability, reliability and total cost.
Hsu (1991) develops an optimization model in order to determine optimal preventive
maintenance schedules for a serial multi-station manufacturing system. He
mentions that most models use a simulation approach at that time but his model is
focused on a mathematical programming approach. The computational results of his
study show that the operating features of the stations are interrelated and one must
investigate the effect of preventive maintenance activities on all stations at the same
time.

Jayabalan and Chaudhuri (1992) present two different preventive maintenance
scheduling models for maintaining bus engines in a public transit network based on

minimization of total cost over a finite planning horizon. They construct the models



based on the concept of mean time to failure (MTTF) of the engines and assume an
upper bound for the failure rates. The first model is based on different Weibull
failure functions between preventive maintenance activities and the second model
assumes that the each preventive maintenance action reduces the effective age of
the system by a certain amount. The authors present computational results and
show the effectiveness of the models in a real case study. Westman and Hanson
(2000) develop a mathematical model to determine the mean time to failure (MTTF)
as a function of uptime for a workstation in a multi-stage manufacturing system.
The authors assume that the uptime of the workstation has an increasing rate and
is reduced if preventive maintenance actions are performed. They mention that this
methodology captures the flexibility and multi-stage properties of manufacturing
systems and can generate preventive maintenance policies.

Fard and Nukala (2004) study and review the application of different stochastic
process such as homogenous Poisson process (HPP), non-homogenous Poisson
process (NHPP), branching Poisson process (BPP), and superimposed renewal
process (SRP) in preventive maintenance scheduling problems. They present current
methods based on non-homogenous processes for modeling and optimization of single
and multi-component systems. They assume that maintenance actions do not affect
the failure rate of system; hence, they suggest that non-homogenous Poisson process
can be applied and used to model the failure rate of repairable service systems.

Ying et al. (2005) develop an integrated optimization model that simultaneously
considers preventive maintenance and production scheduling decision variables.
Their model minimizes total tardiness of jobs and makes a 30% reduction in
expected total tardiness of jobs. Pongpech et al. (2006) present an optimization

model that minimizes total maintenance costs and penalty costs for used equipment



under lease. They assume a Weibull distribution function for failure rate of
equipment, develop a 4-parameter model, and develop a 4-stage algorithm based on
an analytical approach to solve it. They apply their model to several numerical
examples with different contract assumptions and find optimal policy in each
situation.

Panagiotidou and Tagaras (2007) develop an optimization model that optimizes
preventive maintenance schedules in a manufacturing process. The authors consider
two different states for components, in-control or out-of-control, and before complete
failure. They treat the time to shift and the time to failure as random variables and
express them with Weibull and Gamma distribution functions. In addition, they
combine age-based and condition-based concepts into the optimization model with
the minimization of total cost and solve it by applying Karush-Kuhn-Tucker (KKT)
conditions of optimality to obtain an optimal preventive maintenance schedule.
Finally, they present several numerical examples to demonstrate the effectiveness of
their methodology.

Shirmohammadi et al. (2007) develop an age-based nonlinear optimization model
to determine an optimal preventive maintenance schedule for a single-component
system. They define two types of decision variables, time between preventive
replacements and cut-off age, and assume an expected cost of failures, maintenance,
replacement costs, and total cycle cost in the cost function and consider cost per unit
time as the objective function. In order to solve the optimization model and show the
effectiveness of the proposed approach, they utilize MAPLE and solve the model for
a numerical example by setting different values for an improvement factor, which is

assumed as a constant in the model.



2.2.2. Exact Algorithms

Westman et al. (2001) formulate a mathematical model to find an optimal production
schedule via a Gaussian Poisson function with state dependent Poisson process.
They consider the total cost of production and maintenance scheduling as the
objective function and use a stochastic dynamic programming approach, and
demonstrate application of the model in a numerical example.

Yao et al. (2001) present a two-layer hierarchical model that optimizes the
preventive maintenance schedules in semiconductor manufacturing operations.
They develop a Markov decision process and optimize this model via a mixed-integer
linear programming model. They define profit of cluster tools production as the
objective function to be maximized and consider a time window for preventive
maintenance activities and limitation of resources as nonlinear constraints. In order
to achieve a global optimum, they transform the nonlinear functions into linear
functions and use EasyModeler and OSL as the optimization software. In addition,
they utilize AutoSched AP as the simulation software in order to construct a
simulation model to evaluate the performance of the optimization model in a real
case study with 11 preventive maintenance tasks in a one-week planning horizon
and compare the obtained optimal results with the actual preventive maintenance
plan. Later Yao et al. (2004) extend their previous model to be more general, apply
this extended model to a production line of a semiconductor manufacturing system,
and show the application of it via numerical examples.

Han et al. (2004) develop a nonlinear optimization model to minimize the total
cost of maintenance and replacement actions under reliability constraints for

production machine in a production system. Their model considers the Weibull



distribution as the failure function of the machine and can be used as a decision
support system for job shop scheduling. Jayakumar and Asgarpoor (2004) present a
linear programming model in order to optimize the maintenance policy for a
component with deterioration and random failure rate. They determine optimal
mean times of minor and major preventive maintenance actions based on
maximizing the availability of the component. They utilize MAPLE and LINGO to
solve the linear programming model of their Markov decision process.

Zhao et al. (2005) present an age-based preventive maintenance optimization
model for a gas turbine power plant. They develop a model with profit instead of cost
as the objective function and considered power plant performance, reliability and
market dynamics. In order to determine the effects of economics on maintenance
costs and frequencies, they utilize a sequential approach and show its effectiveness
by using real data of based load combined cycle power plant with a gas turbine unit.
Canto (2006) presents an optimization model to schedule a preventive maintenance
of a real power plant over a long-term planning horizon. He considers the total cost
of various operations as the objective function and uses Bender’s decomposition to
solve a mixed-integer linear programming model.

Budai et al. (2006) present two mixed-integer linear programming models for
preventive maintenance scheduling problems. The authors assume the total cost
including possession costs, maintenance costs, and the penalty costs of early
consecutive maintenance activities as the objective function for both models. They
present and prove a theorem about the NP-hard structure of the preventive
maintenance scheduling problems and use GAMS software to implement the
optimization models. They use CPLEX as the optimization software to find an

optimal preventive maintenance schedule. They apply their model to a case study of

10



railway maintenance scheduling. In addition, they develop four heuristic
optimization algorithms, two for each model, and compare the computational results
obtained from exact algorithms in CPLEX with the results achieved from heuristic
algorithms and mention the advantages of each solution methodology.

Another excellent study in this area is by Tam et al. (2006), who develop three
nonlinear optimization models: one that minimizes total cost subject to satisfying a
required reliability, one that maximizes reliability at a given budget, and one that
minimizes the expected total cost including expected breakdown outages cost and
maintenance cost. They utilize MS-Excel Solver as the optimization software that
uses a generalized reduced gradient algorithm to solve the nonlinear optimization
models. Using these models, they determine optimal maintenance intervals for a
multi-component system but their models consider only maintenance actions for
components and do not consider replacement actions.

Robelin and Madanat (2006) develop a maintenance optimization model for
bridge decks via a Markov chain process. In this paper, they classify optimization
models into two categories, (1) physically based deterioration models with a limited
number of decision variables, and (2) simpler deterioration models with more and
sophisticated decision variables. They apply a Markov chain methodology with
states based on history of deterioration and maintenance actions and utilize
dynamic programming as the solution approach to solve a Markov decision process.
As a case study, they apply their approach to optimize the maintenance policy of
bridges.

Alardhi et al. (2007) present a binary integer linear programming model in order
to find the best preventive maintenance schedule in separated and linked

cogeneration plants. The researchers define the availability of the power and
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desalting equipments as the objective function to be maximized, and consider the
maintenance time window, maintenance completion duration, logical operational,
resource limitation, maintenance crew availability, efficiency measures, and demand
as the set of constraints. They apply their model in two co-generation plants with 7
units and 42 pieces of equipment in Kuwait, over a 52-week planning horizon, and
utilize LINGO as the optimization software to optimize the model. In addition, they
perform a sensitivity analysis on the model to assess the robustness and analyze the
effect of expanding the planning horizon, reducing the resources, and increasing the
demand on the maintenance strategies.

Kuo and Chang (2007) develop an integrated maintenance scheduling and
production planning optimization model for a single machine based on a cumulative
damage process and the effect of preventive maintenance strategies on production
schedules in order to minimize total tardiness. The authors express that in the
optimal strategy if jobs have a certain process time with different respective due
dates, the optimal production schedule sorts the jobs by earliest due date and if jobs
have certain due dates with different process time, it sorts them by shortest process
time. In addition, they mention that the optimal maintenance policy is a constraint
on the production schedule when the machine shuts down due to cumulative damage
failure process. The cc;mputational results achieved by dynamic programming show
that by increasing the number of jobs the effect of jobs due dates on the optimal

maintenance policy is decreased.

2.2.3. Heuristics and Meta-Heuristics Algorithms
Genetic algorithms, as a major optimization approach, have been presented in

several research papers. Usher et al. (1998) present an optimization maintenance
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and replacement model for a single-component system. They determine an optimal
preventive maintenance schedule for the system subject to deterioration by
considering the time value of money in all future costs, the cost of the increasing
rate of occurrence of failure over time and the use of an improvement factor to
provide for the case of imperfect maintenance actions. In addition, they provide a
comparison of computational results among random search, genetic algorithm, and
branch and bound algorithms.

One of the most notable studies in the area of reliability and maintenance
optimization for multi-state multi-component systems is found in Levitin and
Lisnianski (2000). They define a multi-state system in which all or some of the
components have different performance levels, from proper functioning to complete
failure and the reliability of the system as its ability of satisfying the demand levels.
They formulate an optimization model to determine preventive maintenance
schedules that affect the effective age of components. Their model is based on
minimization of cost subject to a required level of reliability. They apply a universal
generating function technique and use a genetic algorithm to determine the best
maintenance strategy. Levitin and Lisnianski (2000) present additional research in
which an optimization model was developed in order to find an optimal replacement
schedule in multi-state series-parallel systems. They consider an increasing failure
rate based on the expected number of failures during time intervals and define the
summation of maintenance activities cost along with cost of unsupplied demand due
to failures of components as the objective function. Finally, they utilize a universal
generating function approach and apply a genetic algorithm to find an optimal

maintenance policy.
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Wang and Handschin (2000) develop a new genetic algorithm by modifying the
basic operators, crossover and mutation operators of a standard genetic algorithm
based on the specific characteristics of a preventive maintenance scheduling problem
for power systems. They improve the computational complexity of their genetic
algorithm by considering a code-specific and constraint-transparent integrated
coding method to achieve faster convergence and to prevent production of infeasible
solutions. As the implementation methodology, an object oriented programming
approach is applied and the effectiveness of the new genetic algorithm shown via
theoretical analysis and simulation results to compare with a traditional genetic
algorithm.

Tsai et al. (2001) consider two activities, imperfect maintenance, and
replacement, in their preventive maintenance optimization model. They model
imperfect maintenance activities based on the concept of an improvement factor,
which is determined by a quantitative assessment procedure. They use a genetic
algorithm to find an optimal preventive maintenance schedule while the system
unit-cost life is considered as the objective function. As a case study, they test a
mechatronic system to show the effectiveness of their proposed model and algorithm.

Cavory et al. (2001) present an optimization model to schedule preventive
maintenance tasks of all machines in a single-product manufacturing production
line. They assume that each machine should be assigned to each operator and
considered the total throughput of the line as the objective function to be maximized.
At the first step, they formulate the optimization model and analyze it via an
analytical approach. Then, they used C++ as a programming environment and
applied a genetic algorithm in order to find the best combination of preventive

maintenance tasks. In addition, they construct an experimental design to set and
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analyze the parameters of the genetic algorithm. Then, they utilize the Taguchi
method and statistical analysis to validate the results. Finally, an application of the
proposed approach is performed in an actual production line of car engines.

Leou (2003) presents an optimization model to find an optimal preventive
maintenance schedule in a multi-component system. He considers the total cost of
operations and maintenance activities along with reliability as the main criteria of
the system and transfers them into the objective function by defining the degree of
violation from required reliability. In addition, he defines the maintenance crew and
duration of maintenance as the constraints of the system. He applies his
optimization model in a case study with six electric generators and utilizes a genetic
algorithm as the optimization methodology to determine the best preventive
maintenance schedule.

Han et al. (2003) consider the recursive nature of the failure rate between
preventive maintenance cycles and develop a nonlinear optimization model based on
repair cost, preventive maintenance cost, and production loss cost in a production
system. They apply a genetic algorithm as the optimization technique and mention
that their model can be considered in decision support systems for maintenance and
job shop scheduling. Bris et al. (2003) consider cost and availability as the systems
criteria in their research. They optimize a mathematical model including cost in the
objective function and availability as the constraint by using a genetic algorithm to
find the best preventive maintenance schedule. They use a time-dependent
Birnbaum importance factor to generate the ordered sequence of inspection times
and utilize MATLAB to calculate the system availability via a Monte Carlo

simulation approach.

15



Adzakpa et al. (2004) present an application of combined maintenance
scheduling and job assignment model of distribution systems. They develop an
optimization model that considers total cost of maintenance actions as the objective
function and availability in a given time-window and precedence among consecutive
standby jobs and their emergency as constraints of the model. They show that their
model is NP-hard to solve and because of that, they use a heuristic optimization
algorithm to solve the model. Li and Qian (2005) present a real time preventive
maintenance optimization model for cluster tools in a semiconductor manufacturing
system. They consider the standpoint of the system and used a genetic algorithm as
the solution procedure.

Samrout et al. (2005) use an ant colony algorithm to solve the problem that was
previously optimized via a genetic algorithm. They define maintenance and
inspection periods for series of components and use MATLAB as the programming
environment to solve their model and compare the computational results with the
results obtained by genetic algorithm. Sortrakul et al. (2005) present an
optimization model of integrated preventive maintenance scheduling and production
planning for a single machine. The authors mention that these problems have been
tackled separately in several papers but they have not been considered together in
real manufacturing systems. They consider the total weighted expected job
completion time as the objective function and optimize the combinatorial
optimization model via a genetic algorithm. As the result, they express the
advantages and effectiveness of their approach, which can be used to solve actual
manufacturing problems.

Cassady and Kutanoglu (2005) develop and present an integrated preventive

maintenance and production scheduling mathematical model for a single-machine.
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They consider total weighted expected completion time as the objective function that
should be minimized. Their model allows multiple maintenance activities and
explicitly captures the risk of not performing maintenance actions. They employ a
heuristic approach to solve the model and compare obtained computational results of
an integrated model with the results achieved from solving preventive maintenance
scheduling and job scheduling problems independently.

El-Ferik and Ben-Daya (2006) present an age-based hybrid model for imperfect
preventive maintenance scheduling problem. The authors review different policies
and the models developed by other researchers and propose a new sequential age-
based analytical model. They assume that the imperfect preventive maintenance
activities reduce the effective age of the system but increase the failure rate and
presented mathematical formulations to determine the adjustment factors for both
failure rate and age reduction coefficient. They construct an optimization model
based on their analytical models, consider the total cost as the objective function,
and solve the optimization model via a new heuristic algorithm in a numerical
example.

D\iarte et al. (2006) present a model and a heuristic algorithm for maintenance
scheduling of a system with a series of components. In this research, they assume
that all components have linearly increasing failure rates with a constant
improvement factor for imperfect maintenance. In addition, they consider the total
cost as the objective function and the total downtime as the main constraint. In
terms of maintenance activities, they define preventive and corrective maintenance
for each component. Finally, their algorithm optimizes the interval of time between

maintenance actions for each component over a planning horizon.
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Limbourg and Kochs (2006) propose several techniques to represent the decision
variables in preventive maintenance scheduling models that use heuristics and
meta-heuristics optimization algorithms. They test various non-standard approaches
and compare them to binary representations by a heuristic algorithm and the
computational results show the effectiveness of their approach. In addition, they
apply some modified crossover and mutation procedures in a genetic algorithm and
show the improvement in performance of the algorithm in terms of computational
time and accuracy.

Additional research on the application of genetic algorithms to maintenance
optimization has been done by Lapa et al. (2006). They consider flexible intervals
between maintenance actions and mention the advantage of this assumption over
the common methodologies of continuous fitting of the schedules. They develop a
mathematical model that includes preventive and corrective maintenance actions
and the associated cost with them, outage times, reliability of the system, and
probability of imperfect maintenance. Because their model is a nonlinear large-scale
optimization model, they utilize a genetic algorithm as the solution procedure. In
addition and as a case study, they apply their model to a high-pressure injection
system to measure the effectiveness of their methodology.

Shum and Gong (2007) recently present an application of a genetic algorithm to
optimize preventive maintenance schedules of a production machine. They consider
maintenance and replacement frequency along with purchasing strategy and the
size of the maintenance workforce as the decision variables and total cost as the
objective function. They examine the effect of these costs on the optimal
maintenance schedule in a numerical example. Other meta-heuristics have been

used as the combinatorial optimization techniques to solve maintenance scheduling
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problems. Zhou et al. (2007) demonstrate an age based preventive maintenance
scheduling model combined with production planning optimization model in order to
maximize availability of a production machine. The authors use a heuristic
algorithm to obtain an optimal schedule that minimizes the makespan. They also
apply a simulation approach to validate the heuristic algorithm and to show its
effectiveness in solving flow shop scheduling problems of integrated production

planning with preventive maintenance scheduling.

2.2.4. Hybrid Models and Algorithms

Kim et al. (1994) combine a genetic algorithm with a simulated annealing in order to
optimize a large-scale and long-term preventive maintenance and replacement
scheduling problem. In their research, the acceptance probability of a simulated
annealing method is considered as a measure for individual survival in the genetic
algorithm. By using this approach, they achieve a near optimal solution in a short
period of time compared to the computational time of a simple genetic algorithm. As
a case study, they optimize a long-term maintenance scheduling problem of a
thermal system and show the effectiveness of their model.

Tan and Kramer (1997) develop a general framework for preventive maintenance
optimization problems in chemical process operations. They assume a Weibull
distribution function for failure rate and consider different maintenance activities
that can be performed. They develop a methodology that combines a Monte Carlo
simulation with a genetic algorithm to solve opportunistic maintenance problems
with a non-deterministic objective function. They apply their approach to two case

studies to compare the results obtained from their proposed model with the results
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achieved from an analytic approach, and the Monte Carlo simulation with a neural
network. Finally, they mention the advantages of their approach over other
approaches.

Marseguerra et al. (2002) develop a condition-based maintenance scheduling
model for multi-component systems and use a Monte Carlo simulation model to
predict the degradation level in a continuously monitored system. They apply a
genetic algorithm to optimize the degradation level after maintenance actions in a
multi-objective optimization model with profit and availability as the objective
functions. In addition, they consider a simulation model to describe the dynamics of
a stress-dependent degradation process in load-sharing components. Based on the
computational results, they mention that the combination of a genetic algorithm
with Monte Carlo simulation is an effective approach to solve combinatorial
maintenance scheduling optimization models.

Charles et al. (2003) present a preventive maintenance optimization model in
order to minimize total maintenance costs in a production system. In this paper,
they consider productive maintenance, corrective maintenance and preventive
maintenance actions along with production operations as well as the related
associated costs. They assume a Weibull distribution function for failure rate and
utilize MELISSA C++ as discrete-event production-oriented simulation software to
evaluate different scenarios. As a case study, they analyze a prototype
semiconductor manufacturing workshop to demonstrate the proposed approach and
mention that this model has general structure that can be applied for other kind of
manufacturing systems.

Shalaby et al. (2004) develop an optimization model for preventive maintenance

scheduling of multi-component and multi-state systems. They define sequence of

20



preventive maintenance activities as decision variables and the summation of
preventive maintenance, minimal repair, and downtime costs as the objective
function. In addition, they consider system reliability, minimum intervals between
maintenance actions, and crew availabilit& as the constraints into the model.
Finally, a combination of genetic algorithm and simulation was utilized to optimize
the model. Allaoui and Artiba (2004) present a combination of simulation and
optimization models in order to solve the NP-hard hybrid flow shop scheduling
problem with maintenance constraints and multiple objective functions based on
flow time and due date. In addition, they consider setup times, cleaning times, and
transportation times in the model and mention that the performance of the
algorithm can be affected by the number of breakdown times. Finally, they prove
that the effectiveness of the simulated annealing algorithm is better than other
heuristic algorithms with the same conditions.

Suresh and Kumarappan (2006) develop an optimization model and use a genetic
algorithm combined with simulated annealing. The authors define customer
satisfaction at the objective function and apply their method to determine an
optimal preventive maintenance schedule in a power system. They mention that the
method could produce better solutions if some changes and modification were made
into the solution procedure. As a case study, they test the method on 62-unit state
electrical system of Victoria and show the advantages of the their proposed
approach. Samrout et al. (2006) present another paper about the combination of an
ant colony algorithm and a genetic algorithm to optimize a large-scale preventive
maintenance scheduling problem. They divide the objective function of their problem

into two sections and then utilize each algorithm to improve each section separately.
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They mention that using hybrid algorithm in a large-scale problem is more efficient
than using a simple algorithm.

din et al. (2006) develop a preventive maintenance optimization model for a
multi-component production process. They define a combination of mechanical
service, repair, and replacement activities for each component and use Markov
decision process to present the transition function of probability for maintenance
activities over the planning horizon. In addition, they consider required reliability of
the system as a constraint and total preventive maintenance cost as the objective
function of the model. As the solution procedure, a simulation approach was utilized
to find an optimal schedule. The authors describe that considering the combination
of preventive maintenance activities can reduce more cost in comparison with the
situation that different activities are considered separately.

Ruiz et al. (2007) present comprehensive research in the area of integrating
preventive maintenance scheduling and production planning. They define three
different policies for preventive maintenance schedules; preventive maintenance at
fixed predefined time intervals, preventive maintenance for maximizing equipment
availability, and maintaining a minimum reliability threshold over the planning
horizon. The minimization of the total manufacturing time of the sequence is
considered as the main criterion. The authors apply six different adaptations of
heuristic and meta-heuristic algorithms to evaluate the last two policies for two sets
of problems and mention that ant colony and genetic algorithm solve these problems
effectively. Finally, they conclude that integrated preventive maintenance
scheduling and production planning optimization problems along with meta-

heuristic algorithms can be successfully applied in flowshop problems. In addition,
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they suggest that one can define more criteria and consider the problem as a multi-

objective optimization model.

2.2.5. Multi-Objective Models and Algorithms

Multi-objective maintenance scheduling optimization models have been presented in
several papers. Kralj and Petrovic (1995) present a novel approach in preventive
maintenance scheduling of thermal generating systems. The authors develop a
large-scale multi-objective combinatorial optimization model with three objective
functions and a set of constraints. They consider minimization of total fuel costs,
maximization of reliability in terms of expected unserved energy, and minimization
of technological concerns as the objective functions. In addition, they define
maintenance duration, maintenance continuity, maintenance season, maintenance
sequence of thermal units of the same class, limitation on simultaneous
maintenance of thermal units, and limitation on total capacity on maintenance due
to labor and resources as the constraints of the model. They develop a multi-
objective preventive maintenance scheduling software based on a multi-objective
branch-and-bound algorithm implemented in FORTRAN. Finally, the researchers
apply their methodology to a real system of 8 power plants with 21 thermal units
with 11 maintenance classes over 31 weeks as the planning horizon.

Chareonsuk et al. (1997) develop a multi-criteria preventive maintenance
optimization model to find an optimal preventive maintenance interval of
components in a production system. In this study, the authors consider an age-based
failure rate for components by fitting a Weibull distribution function to data and

define expected total cost per unit time and the reliability of the production system
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as the main criteria. In following, they utilize a preference ranking organization
method for enrichment evaluations (PROMETHEE) as the solution approach and
define alternative decisions as the preventive maintenance intervals. By using this
approach, they can aggregate preferences of alternatives by combining the weighted
values of the preference functions of the complete set of criteria. As a case study,
they apply their methodology in a paper factory and used PROMCALC as the
optimization software. Finally, they mention the advantage of their approach in
which decision makers and managers can input various criteria into the model and
perform sensitivity analysis on the optimal solutions.

Leng et al. (2006) present an integrated preventive maintenance scheduling and
production planning multi-objective optimization model for a single machine. They
use a chaotic particle swarm optimization algorithm to solve the model and show its
application and effectiveness via numerical examples. Konak et al. (2006) present a
comprehensive study on multi-objective genetic algorithms and their applications in
reliability optimization problems. They review 55 research papers and demonstrate
the recent techniques and methodologies.

Quan et al. (2007) develop a novel multi-objective genetic algorithm in order to
optimize preventive maintenance scheduling problems. They define the problem as a
multi-objective optimization problem by considering the minimization of workforce
idle time and the minimization of maintenance time and mention that there is a
tradeoff between the objective functions. As the solution procedure, they use utility
theory instead of dominance-based Pareto search to determine the non-inferior
solutions and show the advantage of this method via a numerical example.

Verma and Ramesh (2007) integrate systems and sub-systems of a large

engineering plant into higher modular assemblies and apply a multi-objective
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preventive maintenance scheduling approach. They model this problem as a
constrained nonlinear multi-objective mathematical program with reliability, cost,
and non-concurrence of maintenance periods and maintenance start time into the
objective functions and use a genetic algorithm to optimize the model.

Taboada et al. (2008) present a recent study in this area. They develop a multi-
objective genetic algorithm in order to solve multi-state reliability design problems.
The authors utilize the universal moment generating function to measure the
reliability and availability criteria in the system. They apply their approach into two
examples; the first one is a system of five units connected in series in which each
component has two states, functioning properly, or failure and the second one is a
system of three units connected in series. In this system, each component has
multiple states with different levels of performance, which range from maximum
capacity to total failure. They utilize MATLAB as the programming environment,
and show the effectiveness of their approach in terms of computational times and

obtained non-inferior solutions.

2.3. Simulation Models

2.3.1. Monte Carlo Simulation

Bottazi et al. (1992) present the results of a systematic collection of actual failure
times and preventive and corrective maintenance activities of 900 buses over a
period of five years. They create an updatable database to estimate the failure
distribution functions and to evaluate the influence of systematic preventive and
corrective maintenance actions. They consider the total cost and availability as the

objective functions and apply a Monte Carlo simulation approach to evaluate the
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model. They compare different maintenance policies and present computational
results of their model.

Billinton and Pan (2000) also develop a simulation model, which is based on the
Monte Carlo simulation approach, to determine the total failure frequency and the
optimum maintenance interval for a parallel-redundant system. The authors
present a modified distribution function and assume an exponential distribution
function for component useful life and a Weibull distribution function for the wear
out period. The procedure includes construction of a mathematical model and
definition of the stopping rule in simulation for a parallel-redundant system. They
state that if the shape parameter of the Weibull distribution function increases, the
optimum maintenance interval decreéses. Finally, they show that a two-component
parallel-redundant system has a structure, which can be considered for minimal cut
set analysis that is used for evaluation of power systems reliability.

Zhou et al. (2005) present an approach for sequential preventive maintenance
scheduling based on the concept of age reduction due to imperfect maintenance
actions. They consider an assumption for the time of imperfect maintenance actions
based on required reliability of the system. They utilize a hybrid recursive method
based on an assumed constant improvement factor and increasing failure rate and
develop an optimization model with a maintenance cost rate in the life cycle of the
system as the objective function. Finally, they apply Mont;;e Carlo simulation and
describe how their computational results can be used in decision support systems of
maintenance scheduling problems.

Marquez et al. (2006) develop a simulation model to find the best preventive
maintenance strategy in semiconductor manufacturing plants. The authors model

the effective age of equipment, availability of equipment, maintenance activity
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backlog, and preventive maintenance policies and consider different wafer
production scenarios in a Monte Carlo continuous time simulation model. They
analyze and compare different maintenance strategies on the status of
manufacturing equipments and operating conditions of the wafer production flow.
Furthermore, they describe how the combination of the effective age concept with
availability-based models increases the throughput and provides better results than

the simple age-based models.

2.3.2. Discrete-Event and Continuous Simulation

Goel et al. (1973) present a simulation model and develop a statistical analysis that
qonsiders three different types of preventive maintenance activities by defining
stochastic and deterministic decision variables as well as unavailability and cost as
the main objectives. In addition, they make a 2-level sequential fractional factorial
design in order to facilitate their simulation model. By designing the simulation
model based on experimental design approach, their model finds the best set of
preventive maintenance schedules for ground electronics systems.

Burton et al. (1989) develop a simulation model to evaluate the performance of a
job shop. In this research, the effectiveness of the preventive maintenance
scheduling under different conditions such as shop load, job sequencing rule,
maintenance capacity, and strategy is determined and presented. Krishnan (1992)
develops a simulation model to evaluate maintenance schedules for an automated
production line in a steel rolling mill plant. He considers three different
maintenance policies as opportunistic, f;iilure, and block with the percent of

availability as the objective function. He shows that the existing maintenance policy
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only includes the failure and block maintenance actions. By using the historical data
of maintenance activities in the simulation model, an optimal preventive
maintenance schedule is obtained in the form of a checklist.

Mathew and Rajendran (1993) present a simulation model in order to determine
the frequency of the shutdown for periodic system overhaul, preventive and
corrective maintenance, and inspections in a sugar manufacturing plant. They
utilize a time-dependent simulation model to minimize the total cost including
maintenance costs and downtime losses. Paz et al. (1994) develop a two-stage
knowledge base for a maintenance supervisor assistant system. This knowledge base
interacts with maintenance managers on a periodic basis to select the proper
preventive maintenance plan for the next period. The first stage deals with an
object-oriented computer simulation model to monitor different preventive
maintenance schedules that include preventive maintenance polices, staffing
policies, downtime costs, simultaneous downtime practices, travel time impacts, and
blocking situations as the systems specifications. In addition, they consider overall
machine availability, critical machine availability, worker utilization, cost of
maintenance activities, and work order completion time as the systems criteria. At
the second stage, they make a knowledge engineering environment to use the
computational results obtained from a simulation model and send feedback to the
first stage.

Joe et al. (1997) develops a simulation model in order to evaluate different
preventive maintenance strategies for a fleet of vehicles in the St. Louis
metropolitan police department. He utilizes GPSS as the simulation software,
analyzes several strategies to improve the effectiveness and efficiency of operations,

and presents the best policy. Savsar (1997) develops a simulation model in order to
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investigate effect of different preventive maintenance strategies in a just-in-time
production system. He constructs a simulation model of a 5-station production
system and considers throughput rate, average equipment utilizations, and total
work-in-process as the performance measures of the production system. After
running the simulation model and analyzing the computational results, he mentions
that preventive and corrective maintenance policies have a high impact on the
performance measures in just-in-time production systems and by combining the
maintenance activities and just-in-time operations one can improve the effectiveness
of the this kind of systems.

Mohamed-Salah et al. (1999) develop a simulation model in order to achieve
opportunistic maintenance strategies in a multi-component production line. The
authors consider two different strategies and define total cost as the function of
preventive and corrective maintenance activities as well as fixed cost due to any stop
or failure in production line. The first strategy assumes that the maintenance
activities are allowed on all non-failed components if the difference between the
expected preventive time of non-failed components and the failure instant of failed
components is less than certain value. The second one considers that the
maintenance activities are allowed on all non-failed components if the difference
between the expected preventive time of non-failed components and the preventive
time or corrective instant of failed components is less than certain value. They
utilize PROMODEL and describe that the cost function has a unique optimum.
Finally, they express that the optimal interval of maintenance for the different
strategies is 5.5 and 3.5 days respectively.

Cassady et al. (1999) develop an integrated production control chart and

preventive maintenance scheduling model to reduce the total operating cost of
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manufacturing systems. The researchers formulate an economic model that includes
product inspection costs, process downtime costs and poor quality costs and analyze
it via a simulation model. In addition, they construct a simulation-optimization
model in order to evaluate and optimize the parameters of control chart and
preventive maintenance strategy. They demonstrate their approach in a numerical
example and show the feasibility and effectiveness of their methodology.

Greasley (2000) presents a simulation model to find an optimal maintenance
planning in train maintenance depot for an underground transportation facility in
the United Kingdom. He develops a simulation model based on two different
situations. The first situation assumes there is no random arrival and the second
one considers random arrivals and investigates the effect of the arrival on service
level performance measures. He utilizes ARENA as the simulation software and
shows the effectiveness of the maintenance policies obtained by the simulation
model. Chan (2001) presents a simulation model to analyze the effects of preventive
maintenance policies on buffer size, inventory sorting rules, and process
interruptions in a flow line of a push production system. He presents the
performance of the production system under different operational conditions and
preventive maintenance policies.

Duffuaa et al. (2001) present a generic conceptual simulation model for
maintenance scheduling systems. They define this simulation model by constructing
seven modules including an input module, maintenance load module, planning and
scheduling module, materials and spares module, tools and equipment module,
quality module, and finally, a performance measure module. The authors mention
that this model could be used to develop a discrete event simulation model using

commercial simulation software. In addition, they suggest that by applying this

30



model one can evaluate the need for contract maintenance and effect of availability
of spare parts on performance measures in the system.

Devulapalli et al. (2002) develop a simulation model in order to determine the
best preventive maintenance policies for bridge management systems. They utilize
STROBOSCOPE software and examine conditions of bridges under different
strategies. They apply their model to a set of bridges in Virginia and argue that the
model can be used to provide various maintenance policies for bridge management
systems. Alfares (2002) presents a simulation model to evaluate preventive
maintenance schedules of components in a detergent-packing line and considers two
different situations in his model. The first situation assumes a constant time
interval that is not affected by maintenance actions or unexpected failures. In the
second situation, the time interval is affected and restarted by maintenance actions
or unexpected failures. In order to minimize the total cost, he develops a simulation
model to determine the best maintenance schedule of components for each situation.

Houshyar et al. (2003) present a simulation model to evaluate the impact of
preventive maintenance scheduling on the production rate of a manufacturing
machine. They utilize PROMODEL software to develop a simulation model and
consider two different scenarios for the simulation run. They use statistical analysis
on the simulation outputs in order to determine the impact of recommended annual
preventive maintenance schedule on the production throughput of the machine.
Finally, they mention that the preventive maintenance policy does not affect the
production rate but can reduce annual maintenance costs of the system.

Sawhney et al. (2004) present a simulation model to determine maintenance
strategies of a manufacturing system. Their model is constructed to integrate

reactive and proactive maintenance schedules in order to increase productivity of
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operations in the lean manufacturing structure. Preventive maintenance
optimization is also used in semiconductor manufacturing. Rezg et al. (2004) present
an integrated preventive maintenance and inventory control simulation model in a
multi-component production line. The authors define preventive and corrective
maintenance activities along with inventory control variables and parameters to
develop approximate analytical models for the single machine under different
scenarios. In addition, they utilize PROMODEL software to construct an age-based
simulation model and apply a genetic algorithm to optimize the variables of the
simulation model and evaluate different production scenarios. Finally, they test
their methodology on three numerical examples of a production line and compare the
computational results with results obtained from analytical approaches. They
mention that applying combination of maintenance scheduling production planning
policies leads to a significant reduction of the total cost of the system.

Han et al. (2004) develop a finite time horizon model to achieve preventive
maintenance scheduling of manufacturing equipment based on setback based
residual factors and use simulation approach to evaluate the model. They mention
the consistency of computational results and show that simulation approach is a
useful and effective method to solve such models. Rezg et al. (2005) present another
paper in this area. He and his colleagues develop an integrated age-based preventive
maintenance and inventory control simulation model in a manufacturing system
with just-in-time configuration. They present two approaches; the first one is a
mathematical model to determine the average cost per unit time and the second one
is a combination of simulation model and experimental design methods. They use
MAPLE to solve the analytical model, utilize PROMODEL for simulation, and use

STATGRAPHICS to analyze the data for experimental design and regression
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analysis. The authors mention that both approaches could give approximately the
same results. The existing differences are attributed to approximation assumptions
considered in the analytical model that was eliminated in the simulation model.

Hagmark and Virtanen (2007) present one of the most recent studies on
application of simulation in preventive maintenance scheduling problems. They
develop a simulation model to determine the level of reliability, availability and
corrective and preventive maintenance at the early stage of design. Their method
considers repair time delays and effect of preventive maintenance on the system
failure observed by condition monitoring and diagnostic resources.

Yin et al. (2007) recently propose a simulation model in order to analyze dynamic
structure of maintenance scheduling in complex systems. The researchers (_:onsider
various subsystems such as preventive maintenance subsystem, defects subsystem,
condition-based subsystem, failure subsystem, corrective maintenance subsystem,
and performance subsystem and utilized SIMULINK environment to build up the
model. They analyze the structure of components and the relation of their
constraints in a maintenance system and present the advantages of the model over
classical stochastic process methods in a numerical example. In addition, they
mention that obtained simulation results express the dynamic nature of
maintenance systems.

L1 and Zuo (2007) recently develop a simulation model to determine and evaluate
the impact of preventive and corrective maintenance activities on the total cost of
inventories in a production system. They apply a simulation approach as the
solution methodology to find the optimal number of failures and the optimal level of

safety stock simultaneously and mention that combining preventive and corrective

33



maintenance scheduling with production planning can reduce the large amount of

total operating cost in the system.

2.4. Age Reduction and Improvement Factor Models

Nakagawa (1988) presents notable research for models that utilize an improvement
factor. His work has been referenced by many researchers. He develops two
analytical models in order to find an optimal preventive maintenance schedule based
on an assumption of increasing failure rate over time. The first model, called a
preventive maintenance hazard rate model, calculates the average failure cost of
minimal repairs along with costs of preventive maintenance and replacement
‘actions under the assumption that preventive maintenance actions reduce the next
effective age to zero. He also assumes the failure rate is increased by increasing the
frequency of preventive maintenance actions. Furthermore, this model assumes that
maintenance activities take place at fixed intervals between each predetermined
replacement. The second model, called an age reduction preventive maintenance
model, considers the average failure cost of minimal repairs as well as costs of
preventive maintenance and replacement actions by assuming that the effective age
of component is reduced by an improvement factor after performing minimal repairs.
In order to find an optimal schedule, both models are optimized by calculus methods.
He applies the models in a numerical example and describes that based on obtained
computational results the second model is more practical than the first.

Jayabalan and Chaudhuri (1992) propose another often-referenced work on age
reduction and improvement factors models. They develop an optimization model and

a branching algorithm that minimizes the total cost of preventive maintenance and
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replacement activities. They assume a constant improvement factor and define a
required failure rate. In addition, they assume a zero failure cost and do not consider
the time value of money for future costs. Their algorithm determines an optimal
schedule of maintenance actions before each replacement action in order to minimize
the total cost in a finite planning horizon. They utilize FORTRAN programming
environment to implement the algorithm and prove its effectiveness via several
numerical examples.

Dedopoulos and Smeers (1998) develop a nonlinear optimization model to find
the best preventive maintenance schedule by considering the degree of age reduction
as the variable in the model. The researchers assume a constant improvement factor
but a variable amount of age reduction, which depends on the schedule of preventive
maintenance actions. They define the amount of age reduction, time and duration of
preventive maintenance activities as the decision variables and consider fixed and
variable costs for maintenance actions. They present the variable cost as a function
of the amount of age reduction and duration of action and the effective age of the
component. Moreover, they present the failure rate in each period as a recursive
function of age reduction from a previous period and consider the net profit as the
objective function in the model. They implement the model in GAMS programming
environment and use GAMS/MINOS optimization software. Finally, the
effectiveness of the model is shown via three numerical examples.

Martorell et al. (1999) present an age-dependent preventive maintenance model
based on the surveillance parameters, improvement factor, and environmental and
operational conditions of the equipment in a nuclear power plant. They consider risk
and cost as the main criteria of the model based on the age of the system, and

perform a sensitivity analysis to show the effect of the parameters on the preventive
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maintenance policies. They discuss how the results obtained from their model are
different than those from other models that do not consider the improvement factor
parameter and working conditions.

Lin et al. (2001) combine the models developed by Nakagawa (1988) and present
hybrid models in which effects of each preventive maintenance action are considered
in two ways; one for its immediate effects and the other one for the lasting effects
when the equipment is put to use again. The authors construct two models that
reflect the concept of maintainable and non-maintainable failure modes. In the first
model, they assume that preventive maintenance and replacement time are
independent decision variables and consider the mean cost rate as the objective
function that should be minimized. In the second model, they assume that
preventive maintenance activities are performed whenever the failure rate of the
system exceeds the certain level and same as the first model, the mean cost rate is
considered as the objective function. Finally, they present numerical examples to
show the application of the developed models and mention that for a system with
Weibull failure rate optimal schedules can be achieved analytically, but for the
general case, it cannot be solved by analytic methods.

Cheng and Chen (2003) consider the improvement factor as a variable of total
number of preventive maintenance actions performed over the planning horizon, and
the cost ratio of preventive maintenance to replacement actions. They assume
different types of restoration effects based on the cost ratio of maintenance and
replacement actions and propose three different models. They consider total number
of preventive maintenance actions as the decision variable and develop an objective

function to minimize the total cost of the system. By using a numerical analysis
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method, they mention that the proposed improvement factor model provides a
variety of options to evaluate the restoration effect of a deteriorating system.

Xi et al. (2005) develop a sequential preventive maintenance optimization model
over a finite planning horizon. They define a recursive hybrid failure rate based on
the improvement factor concept and increasing failure rate in order to estimate the
systems reliability in each period of the planning horizon. In addition, they consider
the total cost of preventive maintenance activities and assume that the mean cost in
each period is a function of required reliability and the improvement factor
parameter. Finally, they utilize a simulation approach to optimize the model and
mention that the computational results can be used in a maintenance decision
support system for joi) shop scheduling problems.

Jaturonnatee et al. (2006) develop an analytical model in order to find an optimal
preventive maintenance schedule of leased equipment by minimizing the total cost
function. They define maintenance actions as preventive and corrective, each with
associated costs, and then consider the concept of reduction in failure intensity
function along with penalty costs due to violation of leased contact issues. They
present a numerical example for a system with Weibull failure rate, solve the model
analytically, and examine the effect of penalty terms on the optimal preventive
maintenance policies.

Bartholomew-Biggs et al. (2006) present several preventive maintenance
scheduling models that consider the effect of imperfect maintenance on effective age
of component. The researchers develop optimization models that minimize the total
cost of preventive maintenance and replacement activities. In this study, they
assume a known failure rate to express the expected failures as a function of age and

consider age reduction in the effective age, based on the concept of an improvement
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factor. They develop a new mathematical programming formulation to achieve
optimal maintenance schedules and utilize automatic differentiation as numerical
approach, instead of analytical approach, to compute the gradients and hessians in
the opt#mization procedure, which is a global minimization of non-smooth
performance function. Finally, the effectiveness of the proposed model and algorithm
is shown in several numerical examples.

One of the recent works on methods for estimating age reduction factor is
presented by Che-Hua (2007). In this research, he deté‘rmines an optimal preventive
maintenance plan for a deteriorating single-component system via minimizing the
expected cost over a finite planning horizon. He develops a mathematical model for
estimating improvement factor to measure the restoration of component under the
minimal repair. The proposed improvement factor is a function of effective age of
component, the number of preventive maintenance actions, and the cost ratio of
maintenance action to the replacement action. Finally, the researcher could obtain
an optimal preventive maintenance schedule for a case study with the Weibull
hazard function by applying a particle swarm optimization method.

Cheng et al. (2007) present a paper about models to estimate the degradation
rate of the age reduction factor. They present two optimization models, which
minimize the cost subject to required reliability. The first model has a periodic
preventive maintenance time interval for every replacement and the second one
contains the maintenance schedule where the time interval between the final
maintenance and replacement is not constant.

Lim and Park (2007) present three analytical preventive maintenance models
that consider the expected cost rate per unit time as the objective function. In this

research, they assume that each preventive maintenance activity reduces the
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starting effective age but does not change the failure rate. They consider the
improvement factor as the function of number of preventive maintenance activities.
They also assume that the failure function corresponds to a Weibull distribution
function and develop a mathematical formulation for three different situations;
preventive maintenance period is known, number of preventive maintenance is
known, and number and period of preventive maintenance is unknown. They obtain
an optimal preventive maintenance and replacement schedule by taking an
analytical approach and apply them to a numerical example to show an application

of their models.

2.5. Chapter Summary

In this chapter, recent work pertaining to methods and applications of preventive
maintenance and replacement scheduling were reviewed. They were categorized as
optimization models, simulation models, and age reduction and improvement factor

models. Table 2.1 shows the summary of the reviewed articles.

Table 2.1. Summary of reviewed articles

Author(s) Year Objective(s) Method(s)/Algorithm(s) Application(s) Section

Canfield 1986 Mi‘.‘ total Analytical method General system 2.2.1
maintenance cost

McClymonds Max availability .

and Winge 1987 and reliability Analytical method Nuclear power plants 221

. Min total cost and .

Martin 1988 Max reliability Analytical method Health-care 221

Hsu 1991 Mu.l total Analytical method Serial production system 221
maintenance cost

Jayabalan and Min total . Bus engines in a public

Chaudhuri 1992 maintenance cost Analytical method transit network 221

Westman and Determine optimal . Multi-stage

Hanson 2000 mean time to failure Analytical method manufacturing system 221

Fard and Min total . .

Nukala 2004 maintenance cost Analytical method Service systems 221
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Author(s) Year Objective(s) Method(s)/Algorithm(s) Application(s) Section
Ying et al. 2005 g’;‘j‘;;""’l tardiness ) . vtical method Production scheduling 221
Min total Maintenance strategies
Pongpech et al. 2006 maintenance and Analytical method for used equipment 2.2.1
penalty costs under lease
Panagiotidou Min total Karush-Kuhn-Tucker .
and Tagaras 2007 maintenance cost (KKT) method Manufacturing process 221
Shirmohamma Min total . Single-component
diet al. 2007 maintenance cost Analytical method system 221
Min total cost of
Westman et al. 2001 pro_ductlon and Stochastic _dynamlc Multi-stage ) 229
maintenance programming manufacturing system
scheduling
Yao et al. 2001 Max profit of_clust,er Mxxed-mte_ger linear Semlconduc!;or 222
tools production programming manufacturing
Max profits from Mixed-integer linear Semiconductor
Yao et al. 2004 tool availability programming manufacturing 222
Min total cost of
Han et al 2004 maintenance and Nonlinear programming Production machine 222
replacement
Jayakumar 2004  Max availability Linear programming and General system 2.2.2
and Asgarpoor Markov decision processes
Max power plant
Zhao et al. 2005 performance and A sequential approach Gas turbine power plant 222
reliability
:::ilntt‘jet:zlmce start- Mixed-integer linear
Canto 2006 P programming model by Power plant 222
up, and production X e
Benders’ decomposition
cost
Min total
Budai et al 2006  Possession, Mixed-Integer linear Railway Industry 222
maintenance and a programming
penalty costs
Robelin and 2006  Max facility level MarkoY chain and . Bridge maintenance 2.2.2
Madanat dynamic programming
Min total Nonlinear programming .
Tam et al. 2006 maintenance by generalized reduced g‘i:er:lez?:ns‘wm 2.22
cost/Max reliability gradient po 4
Alardhi et al. 2007 Max availability Binary lnu_ager linear Co-generation plants 222
programming
Kuo and Chang 2007 xl;:bt: tal tardiness Dynamic programming Prodcution machine 2.2.2
Min total . . Single-component
Usher et al. 1998 maintenance cost Genetic algorithm system 2.23
L?“Fm an;l 2000 M“.l total Genetic algorithm Gene'ral multi-state 223
Lisnianski maintenance cost multi-component
L(_evxt_;m aqd 2000 Mu_n total Genetic algorithm Gex.leral multi-state 2.2.3
Lisnianski maintenance cost series-parallel systems
Wang and Min maintenance . .
Handschin 2000 time interval Genetic algorithm Power systems 223
Tsai et al. 2001 Min total Genetic algorithm Mechatronic system 223

maintenance cost
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Author(s) Year Objective(s) Method(s)/Algorithm(s) Application(s) Section
Max total L
Cavory et al. 2001  throughput of the Genetic algorithm Proc}uctmn line of car 223
I engines
ne
Leou 2003 Mm total Genetic algorithm Series of electric 2.2.3
maintenance costs generators
Min total production Decision support
Han et al. 2003 and maintenance Genetic algorithm systems for maintenance 2.2.3
costs and job-shop scheduling
Bris et al. 2003 M“.l total Genetic algorithm General series-parallel 2.2.3
maintenance cost systems
Adzakpa et al. 2004 M“.l total Heuristic algorithm Distributed system 223
maintenance cost
. . Min system - . Semiconductor
Li and Qian 2005 standpoints Heuristic algorithm manufacturing 223
Samroutetal. 2005 Min total Ant colony algorithm General series-parallel 223
maintenance cost systems
Min total weighted Integrated preventive
Sortrakul et al. 2005  expected job Genetic algorithm ance schedu’ing 2.2.3
e and production planning
completion time ) . :
in a single machine
. . Integrated preventive
Cassadyand  yo0 o0 B SO uristic algorithm maintenance scheduling , , 3
Kutanoglu xpe P 80 and production planning o
time . . R
in a single machine
El-Ferik and 2006 M“.i total Heuristic algorithm General system 2.2.3
Ben-Daya maintenance cost
Duarte et al. 2006 Mn.‘ total Heuristic algorithm General series system of 223
maintenance cost components
Limbourg and Evaluate effect of Several evolutionary Representation Of.t he
2006 . . schedule to evolutionary 2.2.3
Kochs different methods algorithms .
algorithms
Lapa et al. 2006 M“? total Genetic algorithm high-pressure injection 223
maintenance cost system
Shum and 2007 Mu? total Genetic algorithm Production machine 223
Gong maintenance costs
. Integrated preventive
Zhou et al. 2007 Max availability Heuristic algorithm maintenance scheduling 2.2.3
and production planning
Min total operations . . .
Kim et al. 1994  and maintenance  Ucnetic algorithm with Thermal system 2.24
simulated annealing
costs
Tan and 1997 Min total Monte Carlo simulation Chemical process 294
Kramer maintenance cost with a genetic algorithm operations -
Marseguerra et Max profit and max  Monte Carlo simulation ,
al. 2002 availability with a genetic algorithm load-sharing components 2.24
Charles et al. 2003 M".l total Simulation-optimization Production system 224
maintenance cost
. . . . General multi-
Shalaby et al. 2004 M".l t:;tal cost :}i::lt:éi:lgonthm with component and multi- 2.24
maintenance n state systems
Allgoul and 2004 Ml_n total tardiness S_xmulatgd annealing with Flow shop scheduling 2924
Artiba of jobs simulation
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Author(s) Year Objective(s) Method(s)/Algorithm(s) Application(s) Section
Suresh and Max customer Genetic algorithm with
Kumarappan 2006 satisfaction simulated annealing Power system 224
Min total Ant colony algorithm and
Samrout et al. 2006 maintenance cost genetic algorithm Large-scale system 224
Jin et al. 2006 Mm total Simulation-optimization Multl-oqmponent 2.24
maintenance cost production process
. . Integrated preventive
Ruiz et al. 2007 Min total . . Ant cqlony algonthm and maintenance scheduling 224
manufacturing time  genetic algorithm . .
and production planning
Min fuel cost, Max
Kralj and 1995 reliability, Min Multi-objective branch- Thermal generating 2925
Petrovic technological and-bound algorithm systems o
concerns
Min total Preference ranking
z(:lh areonsuk et 1997 maintenance cost, organization method for General system 2.25
: Max reliability enrichment evaluations
Min total weighted . . Integrated preventive
Leng et al. 2006  expected completion Ch@t.lc P‘.“’“de swarm maintenance scheduling 225
. optimization algorithm . .
time and production planning
Konak et al. 2006 Review paper Multll-objectwe genetic Gex.\er.a.l rghablhty 2.2.5
algorithm optimization problems
Min workforce idle o .
Quan et al. 2007 time and Min Zlium.'ob’e ctive genetic General system 225
. . gorithm
maintenance time
Min total Lo .
KZ:‘:; nd 2007 maintenance cost, l:{“::li&b!f ctive genetic Large engineering plant 2.25
€ Max reliability &
Max reliability, Max  Multi-objective genetic Multi-state reliability
Taboada et al. 2008 availability algorithm design 2.2.5
Bottazi et al. 1992 Mm wtfﬂ. coet, Max Monte Carlo simulation Public Transit 2.3.1
availability
. Optimize
g:[l:nmn and 2000 maintenance Monte Carlo simulation Power systems 2.3.1
intervals
. Decision support
Zhou et al. 2005 Mm total Monte Carlo simulation systems for general 2.3.1
maintenance cost
systems
Marquez et al 2006 Max throughput Monte Carlo simulation Semiconductor 23.1
q . g manufacturing o
Min unavailability
Goel et al. 1973  and logistics support Experimental design Electronics systems 2.3.2
costs
Evaluate the
Burton et al. 1989 performance of a job  Simulation Job-shop Scheduling 2.32
shop
Automated production
Krishnan 1992  Max availability Simulation line in a steel rolling 232
mill plant
Min total .
Hathew and 1993 maintenanceand  Simulation f{:ﬁ‘ manufacturing 232
ajen downtime costs
Pazet al. 1994 Min total Simulation Production Line 232

maintenance cost
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Author(s) Year Objective(s) Method(s)/Algorithm(s) Application(s) Section
Max effectiveness Vehicle maintenance of
Joe et al. 1997  and efficiency of Simulation St. Louis metropolitan 2.3.2
facility operations police department
Evaluate effect of Justein-ti ducti
Savsar 1997 maintenance Simulation -in-time production 2.3.2
, system
strategies
Mohamed- Min total . . Multi-component
Salah et al. 1999 maintenance cost Simulation production line 2.3.2
E x:: (t:;tal operating Integrated preventive
Cassady et al. 1999 . Simulation-Optimization maintenance scheduling 23.2
manufacturing . .
and production planning
systems
Max service level
Greasley 2000 performance Simulation Train maintenance 2.3.2
measures
Evaluate effect of
Chan 2001  maintenance Simulation Production system 2.3.2
strategies
Evaluate effect of Generic conceptual
Duffuaa et al. 2001 maintenance . conceptua General system 2.3.2
. simulation model
strategies
. Evaluate effect of .
Devulapalli et 2002 maintenance Simulation Bridge management 2.3.2
al. . systems
strategies
Alfares 200z  Min total Simulation Detergent-packing 2.3.2
maintenance cost production line
Evaluate effect of .
Houshyar et al. 2003 maintenance Simulation Production l.'abe ofa . 2.3.2
. manufacturing machine
strategies
Min total operations Semiconductor
Sawhney et al. 2004 and maintenance Simulation . 2.3.2
manufacturing
costs
Evaluate effect of Integrated preventive
Rezg et al. 2004 maintenance Simulation-optimization maintenance scheduling 23.2
strategies and inventory control
Evaluate effect of
Han et al. 2004 maintenance Simulation Manufacturing system 2.3.2
strategies
Integrated preventive
Evaluate effect of . . N maintenance scheduling
i Simulation, optimization, ) .
Rezg et al. 2005 maintenance and experimental desi and inventory control in 2.3.2
strategies pe gn a JIT manufacturing
system :
Hagmark and Max reliability, Max . .
o 23.2
Virtanen 2007 availability Simulation General system
Evaluate effect of
Yin et al. 2007 maintenance Simulation General system 2.3.2
strategies
Optimize number of
Li and Zuo 2007  failures level of Simulation Production system 2.3.2
safety stock
Nakagawa 1988 Min total Analytical method General system 2.4

maintenance cost
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Author(s) Year Objective(s) Method(s)/Algorithm(s) Application(s) Section

Jayabalan and Min total . .

Chaudhuri 1992 maintenance cost Branching algorithm General system 24

Dedopoulos . .

and Smeers 1998  Max net profit Nonlinear programming General system 2.4
Evaluate effect of

Martorell et al. 1999 maintenance Sensitivity analysis Nuclear power plant 24
strategies

Lin et al. 2001 M".l total Analytical method General system 2.4
maintenance cost

Cheng and Min total .

Chen 2003 maintenance cost Analytical method General system 2.4

. Min total . . Decision support system

Xietal. 2005 maintenance cost Simulation for job shop scheduling 24

Jaturonnatee 2006 M".l total Analytical method General system 2.4

et al. maintenance cost

Bartholomew- Min total Differential equations

Biggs et al. 2006 maintenance cost method General system 24
Min total Particle swarm

Che-Hua 2007 maintenance cost optimization method General system 24

Cheng et al. 2007 M“.l total Analytical method General system 2.4
maintenance cost

Lim and Park 2007 Min expected cost Analytical method General system 24

rate per unit time

We found that most studies focus on single-component systems or on simple and
specific systems, which is not always applicable for real and general systems. These
studies provide solution methodologies and sophisticated algorithms but most
developed models can be applied only into specific systems such as production
systems or power plant systems. We also found that there is a lack of general
modeling approach in the literature that could be applied in a wide variety of
systems. In addition, not much work has been done in the area of age reduction and
improvement factor models and most researchers have assumed a constant
improvement factor or just presented simple models. Hence, the main contribution of
this research is to define a general configuration for multi-component systems,
design different maintenance actions, and develop mathematical formulation to

determine optimal preventive maintenance and replacement schedules. We consider



the realistic dependency between components that affects maintenance and
replacement decisions, and show how to develop time-based patterns of maintenance
and repair actions that minimizes the total cost of those actions including the cost of
unexpected failures and maximizes the overall reliability of the system. Because we
use the concept of age reduction and an improvement factor in these models, we also
develop a mathematical model to estimate the improvement factor for imperfect

maintenance activities.
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CHAPTER 3

OPTIMIZATION MODELS AND EXACT ALGORITHMS

3.1. Introduction

This chapter will present a new modeling approach to find optimal preventive
maintenance and replacement schedules for multi-component systems. We construct
new closed-form optimization models based on cost and reliability characteristics of
the system and solve them using a standard optimization procedures. These models
provide a general framework that can be applied and used in a wide variety of

systems. Computational results show the feasibility of the proposed approach.

3.2. System Configuration

Consider a new repairable and maintainable system of N components, each subject
to deterioration. Each component i is assumed to have an increasing rate of
occurrence of failure (ROCOF), v,(f), where ¢t denotes actual time, (£ >0). In this
research, we assume that component failures follow the well-known non-
homogeneous Poisson process (NHPP), with the increasing rate of occurrence of
failure given as:

v(O=4-B-1*" fori=1..,N (3.1)
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where A4 and [, are the scale and the shape parameters of component :

respectively. The non-homogeneous Poisson process is similar to the homogeneous
Poisson process (HPP) with the exception that the failure rate is a function of time.
For more on this well-known stochastic process see, Ascher and Feingold (1984).

We seek to establish a schedule of future maintenance and replacement actions
for each component over the period [0, 7). The interval [0, T] is segmented into J
discrete intervals, each of length 7T/J. At the end of period j, the system is either,
maintained, replaced, or no action is taken. We assume that maintenance or
replacement activities in period j reduce the “effective age” of the system and thus
the rate of occurrence of failure. For simplicity we also assume that these activities
are instantaneous, i.e., the time required to replace or maintain is negligible,
relative to the size of the interval, and thus is assumed to be zero, however, we do
impose a cost associated with repair or maintenance actions.

To account for the instantaneous changes in system age and system failure rate,

we introduce the following notation. Let X, ; denote the effective age of component i

at the start of period j, and X|, denotes the age of component i at the end of period

J. It is clear that:

' T . -
X, =X +7 for i=1,..,N;j=1..,T 3.2

3.2.1. Maintenance

Consider the case where component i i1s maintained in period j. For simplicity, we
assume that the maintenance activity occurs at the end of the period. The
maintenance action effectively reduces the age of component i at the start of the next

period. That is:
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X, a=a-X;, fori=l.,N;j=1..,Tand(0<e, <) (3.3)

The term ais an “improvement factor”, similar to that proposed by Malik (1979) and
dJayabalan and Chaudhuri (1992). This factor allows for a variable effect of
maintenance action on the aging of the system. When a =0, the effect of
maintenance action is to return the system to a state of “good-as-new”. When a =1,
maintenance action has no effect, and the system remains in a state of “bad-as-old”.
We will discuss more about age reduction and improvement factor models and
develop a new model in Chapter 6.

Note that the maintenance action at the end of period j results in an
instantaneous drop in the rate of occurrence of failure of component i, as shown in

Figure 3.1. Thus at the end of period j, the rate of occurrence of failure for

component i isv,(X[ ). At the start of period j+1 we find that the rate of occurrence

of failure drops to v,(X] ).

Fallure Rate

e

Figure 3.1. Effect of period-j maintenance on component ROCOF

|

Period j  Period j+l

3.2.2. Replacement

If component i is replaced at the end of period j, we find that:

X

i, j+1

=0 for i=1,..,N;j=1..T 3.49)



i.e., the system is returned to a state of “good-as-new”. The rate of occurrence of

failure of component iinstantaneously drops from v,(X],) to v,(0) as shown in

Figure 3.2.

Fellure Rate

A

Period j  Period j+l

Figure 3.2. Effect of period-j replacement on system ROCOF

3.2.3. Do Nothing
If no action is performed in period j, we see no effect on the rate of occurrence of

failure of component i, and we find that:

X,—',j =X,.’j +—§ for i=1,..,N;j=1..T 3.5)
X,.J.+l =X,',, for i=1,..,N;j=1..,T 3.6)
vi(X, ) =v(X],) for i=1..,N;j=1..,T 3.7

3.2.4. Cost of Preventive Maintenance and Replacements

For a new system, we seek to find cost associated with a given schedule of future
maintenance and replacement activities. The cost associated with all component-
level maintenance and replacement actions in period j, will be a function of the all

the actions taken during that period.
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3.2.4.1. Failure Cost

When we view the future periods of operation for a system, we must account for
inevitable costs due to unplanned component failures. From our vantage point, at
the start of period j, however, we do not know when such failures will occur.
However, we know that if the system carries a high rate of occurrence of failure
through a period, then we are at risk of experiencing high number, and hence, high
cost of unexpected failures. Conversely, a low rate of occurrence of failure in period j
should yield a low cost of failure. To account for this, we propose the computation of
the expected number of failures in each period for each component in the system.
(We depart here from the approach found in Usher et al. (1998) where an average
failure rate concept was used with a cost constant.) Here we compute the expected

number of failures of component i in period j, as:

X;;
N, = [vd for i=1..N;j=1...T (3:8)
X'J

Under the non-homogeneous Poisson process assumption, we find the expected

number of component i failures in period j to be:

X,
BN, |= [4- - ar=2(x Y -2(x, ) for i=1.,N;j=1..,T  (39)

XiJ
We assume that the cost of each failure is F, (in units of $/failure event), which in
turn allows us to compute, F;; the cost of failures attributable to component i in

period j as:

,=F-EN, ]=F-alx, ) -(x,)) for i=luuN;j=1..T (3.10)

L]
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Hence regardless of any maintenance or replacement actions (which are assumed to

occur at the end of the period) in period j, there is still a cost associated with the

possible failures that can occur during the period.

3.2.4.2, Maintenance Cost
If maintenance is performed on component iin period j, a maintenance cost constant

M. is incurred at the end of the period.

i

3.2.4.3. Replacement Cost

If component i is replaced in period j we assume that the replacement cost is the

initial purchase price of the component i, denoted R.

3.2.4.4. Fixed Cost

For a multi-component system, and the cost structure defined above, the problem
can be shown to reduce to a simple problem of finding an optimal sequence of
maintenance, replacement, or do-nothing actions for each component, independent of
all other components. That is, one could simply find the best sequence of actions for
component 1 regardless of the actions taken to component 2 and so on. This would
result in N independent optimization problems. In that case, a system of N
components over T time periods, has N x 3’ possible maintenance schedules.

Such a modeling approach seems unrealistic, as there should be some overall
system cost penalty when an action is taken on any component in the system. It
would seem that there should be some logical advantage to combining maintenance
and replacement actions. For example, while the system is shut down to replace one

component, it may make sense to go ahead and perform maintenance or replacement
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of some other components, even if they are not at their individual optimum point
where maintenance or replacement would ordinarily be performed. Under this
scenario, the optimal time to perform maintenance or replacement actions on
individual components is dependent upon the decision made for other components.
As such, we propose that a fixed cost of “downtime”, Z, be charged in period j if any
component (one or more) is maintained or replaced in that period. Consideration of
this fixed cost makes the problem much more interesting, and more difficult to solve,
as the optimal sequence of actions must be determined simultaneously for all

components in the system. It can be concluded that in this situation the scheduling

NxT

problem has 3" possible solutions.

3.2.4.5. Total Cost
From our vantage point at the start of the planning horizon, we wish to determine
the set of activities, i.e., maintenance, replacement, or do nothing, for each

component in each period such that total cost is minimized. In order to have X| ,
age of component i at the end of period j by using equation (3.2) first, we define m,
and r,; as binary variables of maintenance and replacement actions for component

i in period j as:

_ |1 if component i at period j is maintained 3.11)
“ 710 otherwise '
1 if tiat period j is replaced
.- i com?onen i at period j is replace 3.12)
7|0 otherwise

Then, we construct the following recursive function of X, ,, X}, m,, ,r, ;, @, with a

constraint:

52



Xi,j =(- mi,j—l)(l =4 )X+ m (a;- Xi',j—l)

i,j-1

3.13
x -x,+1 (3.19)
’. ». J

m,,+r, ;<1 (3.14)

In addition, we assume the initial age for each component at the start of the

planning horizon is equal to zero:

X, =0 for i=1,..,N (3.15)
If component replacement occurs in the previous period then ria=Lm,  =0,s0
X;,;=0.1f a component is maintained in the previous period then 7, =0, m, ,_, =1

so X, =a,-X;,, and finally if we do nothing, r,,, =0, m,,, =0, and X, =X]

21 i,j-1
which corresponds to our basic assumptions given in Section 3.1. From our

definitions of each type of cost, we can derive the following total cost function as:

N T

Total Cost =ZZ[F: vl,.((X,-',j)ﬂ' —(X,,,)ﬂ’ )+M, m;; +Ri.ri,j]+i|:z(l—IN](l_(mi,j +r,.J-)))]
=l j=1 j=1 i=1

] j (3.16)
This objective function computes the total cost as a summation of component costs in
each period based on any maintenance or replacement cost, the system “downtime”
cost, and the cost of the expected number of unexpected failures. It is certainly
possible to compute a more accurate economic measure of these costs, such as Net
Present Value (NPV), using a suitable interest rate. One could also include the
effects of inflation, by adding an inflation rate in the calculation of future costs.

While these may make the model more accurate, we have avoided those minor

refinements for the sake of notational simplicity.
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3.3. Optimization Models

3.3.1. Model 1 - Minimizing total cost subject to reliability constraint
In this model, we attempt to minimize the total cost subject to a constraint in which
some minimum level of system reliability over the planning horizon is achieved and
assume that components are arranged in series. It is important to note that other
system configurations (parallel, series-parallel, parallel-series, k-out-of-n, complex,
etc) can be modeled just by modifying and adapting the reliability function, which
reflect the configuration of the parallel, series-parallel, parallel-series, k-out-of-n, or
other complex systems, but for the sake of simplicity, we consider only series
systems in this research.

One may also be interested in determining the system reliability (probability of
operating without failure survival over the planning horizon). Based on the
assumption on a non-homogeneous Poisson process, we define the reliability of
component i in period j (the probability of surviving component i to the end of period

Jj given survival to the start of period j) as follows:

X;fi,.(:)m} (G, (v, |
R, =e{*w =e_[4,((x,‘,y ) for i=1,.,N;j=L..,T (3.17)

Therefore, the probability of the series system of components surviving the entire
planning horizon is:
N T A (Xl’,j)o'—(xl.;r‘
Reliability=HHe_[ ( ) (3.18)
i=l j=1
Then we formulate the following nonlinear mixed-integer programming model that

minimizes the total cost subject to a required reliability of the system:
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N T T N
Min TotaICost=ZZ|:E X, P -, P )+ M, -m,, +Ror, j]+z[z(1 ~T10=6n,, +r, ))H
i=l j=l =t i=l
st.:
X, =0 i=1,.,N
X, =(=-m  Y1-r, )X +m (@ -X],) i=l..,Nandj=2,..T
" T . .
X, =X, +-J- i=l..,Nandj=1..T
m,  +r,,; <1 i=lL.,Nandj=1..T
N T x
T RECH I I R,.
i=l jul
m, 1, =0orl i=l..,Nandj=1..,T
X, . X!, 20 i=l..,Nandj=1..T

(3.19)

3.3.2. Model 2 - Maximizing reliability subject to budgetary constraint
Here we modify the formulation and introduce a budgetary constraint. The objective
of this model is to maximize the overall reliability of the system, through our choice
of maintenance and replace decisions, such that we do not exceed the budgeted total

cost. This model can be formulated as:

Max Reliability = ﬁ 111 e_["' (v, px.,p )]

=l j=1
s.t..
X,=0 i=1,.,N
X, =0-m )1-r, )X, o +m (e X1 i=l.,Nand j=2,.,T
, T . .

X,.’j=X,.J+7 i=l.,Nand j=1,..,T
m, +r,, <1 i=1l..,Nand j=1..,T
N T T N

ZZ[F: "1:'(( :;)ﬂ - (Xi,j)ﬂ')"' M, m, + R,.-r,._j]+2[2(l _H(l - (mi.j + r:;)))] <B
=l =l J=l i=l

m, ;. r,;=0orl i=l.,Nand j=1..,T
X, X, 20 i=l.,Nand j=1..,T

(3.20)

55



3.4. Solution Approach

Based on the nonlinear and mixed-integer structure of the preventive maintenance
and replacement scheduling optimization models presented in Section 3.3, we apply
Integer programming approaches along with nonlinear optimization techniques to
solve the models. We utilize both Microsoft Excel Solver! and LINGO? software to
solve the nonlinear mixed-integer optimization models for each model.

The Microsoft Excel Solver tool uses the simplex method with bounds on the
variables, and the branch-and-bound (BB) method for linear and integer problems
and generalized reduced gradient algorithm (GRG) for nonlinear optimization.

For models with general and binary integer restrictions, LINGO includes an
integer solver that works in conjunction with the linear, nonlinear, and quadratic
solvers based on branch-and-bound algorithm. For linear models, the integer solver
includes preprocessing and dozens of constraint "cut" generation routines that can
greatly improve solution times on large classes of integer models. For nonlinear
programming models, the primary underlying technique used by LINGO's optional
nonlinear solver is based upon a generalized reduced gradient algorithm. However,
to help get to a good feasible solution quickly; LINGO also incorporates successive
linear programming. The nonlinear solver takes advantage of sparsity for improved
speed and more efficient mémory usage. Local search solvers are generally designed
to search only until they have identified a local optimum. If the model is non-convex,
other local optima may exist that yield significantly better solutions. Rather than
stopping after the first local optimum is found, the global solver will search until the

global optimum is confirmed. The global solver converts the original non-convex,

L http://office.microsoft.com
2 http://www lindo.com
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nonlinear problem into several convex, linear sub-problems. Then, it uses the
branch-and-bound technique to exhaustively search over these sub-problems for the

global solution.

3.5. Computational Results

In order to illustrate the models numerically, and the proposed solution procedure,
we develop a representative data set shown in Table 3.1. In addition, we assume Z =
$800 as the fixed cost, R = 50% as the required reliability for Model 1, B = $15000 as
the given budget for Model 2, and 36 months as the planning horizon. It is useful to
mention that for the example problem, the nonlinear mixed-integer optimization
models presented in section 3.3 have 1420 variables, 720 of which are binary and
1062 constraints, 352 of which are nonlinear. LINGO programs of nonlinear mixed-

integer optimization models are presented in Appendix A.

Table 3.1. Parameters of the numerical example

Component 1 B Failure Maintenance Replacement

Cost ($) Cost ($) Cost ($)
1 0.00022 2.20 0.62 250 35 200
2 0.00035 2.00 0.58 240 32 210
3 0.00038 2.05 0.55 270 65 245
4 0.00034 190 0.50 210 42 180
5 0.00032 1.75 0.48 220 50 205
6 0.00028 2.10 0.65 280 38 235
7 0.00015 2.25 0.75 200 45 175
8 0.00012 180 0.68 225 30 215
9 0.00025 1.85 0.52 215 48 210
10 0.00020 2.15 0.67 255 55 250

Excel Solver is able to solve smaller problems. For example, a test problem with 2
components and 12 months took only 17 minutes on a laptop computer (Intel/Core 2,
1.67 GHz and 2 GB RAM). However, the example problem described above, with 10

components and 36 periods could not be solved in reasonable time. Using LINGO, we
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were able to solve the example problem for both models in approximately 4.5 hours
and 1.5 hours respectively. The objective function value for the optimum solution in
the Model 1 is $13797.10 and the overall reliability of the system with this optimal
solution is 50.00% equal to required reliability of the model. For the second model,
the system reliability is maximized and found to be 49.92% and the total consumed
budget is equal to $14989.74. The optimal schedules for these two models are

presented in Tables 3.2 and 3.3 respectively.

Table 3.2. Optimal maintenance and replacement schedule that minimizes total cost
(Reliability=50.00% and Cost=$13797.10)

Month/ 23 456 78 910111213141516171819 20212223 24 2526272829 3031 32 33343536
Component
1 - - --R-- .- - R----- R--M---R- - - - . R------
2 - - - R----R--.--- R--M---R----- R------
3 -«---MR----M- .- ... R------ R----- R------
4 --+--MM..--R---.-. R--M---M-.--.. R-.----
5 - - - - - M----M- - ... R------ M- - --.. M. . .--.-
6 ----MM----R----- R--M---R----- R------
7 - - - - - R----R---.. R------ R----- R------
8§ - - - - - M- - - ... R------ M- ---- M- ..---
9 - - --M- - - .- M- - --- R--M---M- - - - - .-.-....
10 - - - - - R----R- -« .-...- R---M----. R------

Table 3.3. Optimal maintenance and replacement schedule that maximizes reliability
(Budget=$14989.74 and Reliability=49.92%)

Month/ 123456 78 910111213141516171819 2021 2223 24 25262728 293031 32 33343536
Component
1 -R- - - - - - - R----R---MR- - - - - R---------
2 -R- - -« - - R----R---MR- .- - - R---------:
3 -R- -« - R----R---MR---- - R----=-.--.-
4 -R - -« - - - - R----R---MR--- - - R---------
5 -R- - - - - R----M---RM- - - - - M- -------.
6 -R- - - - - - - - R----R---MR--- - - R----..4 .-
7 -R- - - - - - - - R----R----R----- R-------.-..
8 -M- - - - - M----M---R------ R-+---« - ..
9 -R- -« - -« R----R----R----- R----=-.----
10 -R- - - - - ... R - - -R----R----- R---«------:

Note that in both models most of maintenance and replacement actions tend to occur
in the same period, which reflects the effect of the fixed cost Z. As we can see that in

both models the reliability is around 50%, but the optimal total cost in the first
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model is 7% lower than consumed budget in the second model. It is also interesting
to note that once a repair action occurs, it is often followed by a period of inactivity.
Such observations can perhaps lead to the development of simple heuristic solution
procedures in following on work.

Another interesting aspect of this type of modeling is that one can analyze the
effective age of each component. Maintenance managers could use the model to track
the effective age of the components and then utilize the information to initiate
additional monitoring activities. For example, after a component reaches a certain
level of effective age, additional monitoring, tests or inspections might be warranted
to assist in the detection of imminent failure.

The minimum, maximum, and average effective age of each component are
shown in Tables 3.4 and 3.5. Notice that the minimum effective age of each
component is equal to zero at the beginning of planning horizon. Hence, minimum
effective ages of components are shown from the second month on. Note that most
components were replaced at some time during the planning horizon. The effective
age for the components ranges from roughly 0-15 months with an average age of

about 4 months.

Table 3.4. Effective age of components in Model 1

Minimum Maximum Average
Component Effective Age Effective Age Effective Age

(month) (month) (month)
1 0.0 6.0 2.9
2 0.0 6.0 2.9
3 0.0 8.8 34
4 0.0 8.8 35
5 0.0 10.5 54
6 0.0 7.8 32
7 0.0 7.0 3.0
8 0.0 15.1 7.1
9 0.0 149 6.0
10 0.0 9.0 3.6
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Table 3.5. Effective age of components in Model 2

Minimum Maximum Average
Component Effective Age Effective Age Effective Age

(month) {month) (month)
1 0.0 9.0 3.5
2 0.0 9.0 3.5
3 0.0 9.0 3.5
4 0.0 9.0 34
5 0.0 12.1 4.5
6 0.0 9.0 3.5
7 0.0 9.0 3.5
8 0.0 12.2 5.8
9 0.0 9.0 3.5
10 0.0 9.0 3.5

Figures 3.3.1 through 3.3.10 and Figures 3.4.1 through 3.4.10 show the effective
age of each component. As we can see, when a component is maintained the effective

age of that component drops based on the amount of improvement factor, o,

presented in Table 3.1. For example based on the effective age presented in Figure
3.3.1, component 1 does not receive any maintenance action for the first 4 months,
but it is replaced at the 5** month, maintained at the 10** month and so on. This
causes the effective age drops to zero and component 1 works as a new one at the
beginning of the next month.

Another important feature presented in Figures 3.3 and 3.4 is the effect of failure
rate on the number and frequency of maintenance and replacement actions of
components over a planning horizon. For example, compare the variations in the
effective age of components 7 and 9 in Figures 3.3.7 and 3.3.:‘). It can be seen that
component 7 is just replaced and there is no maintenance action is performed on this
component. On the other hand, component 9 is just maintained and it is replaced

once at month 17. This is related to values of A and S for each component. In Table

3.1, component 7 has 0.00015 and 2.25 and component 9 has 0.00025 and 1.85 for

parameters A and 3, which means that component 7 has a higher failure rate and
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greater probability to fail than component 9. Therefore, it is necessary that
component 7 receive more replacement actions than component 9 in order to satisfy
the required reliability or to maximize the system’s reliability.

Appendix B presents the detailed computational results of optimization models.
Tables B.1 and B.4 show the expected number of failures and Tables B.2 and B.5
present the reliability of components over the planning horizon. We can see that
expected number of failures for all components is too low and reliability of all
components is higher than 99%; this is due to the optimal preventive maintenance
and replacement schedule that keeps the components and the system in excellent

condition.
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Figure 3.3. Effective age of components in Model 1
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3.6. Chapter Summary

This chapter presented basic assumptions and framework for the formulation of
preventive maintenance and replacement scheduling problem in order to find the
best sequence of actions for each component in the system over a planning horizon
such that total costs are minimized or the overall reliability of the system is
maximized. Two nonlinear mixed-integer programming models were developed and
optimized by generalized reduced gradient and branch-and-bound algorithms using
LINGO software. The application and effectiveness of the optimization models to
find the best preventive maintenance and replacement schedule in multi-component
systems were presented via a numerical example. Furthermore, the computational
results of both models were analyzed and advantages of the proposed approach were

shown.
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CHAPTER 4

OPTIMIZATION MODELS AND
METAHEURISTIC ALGORITHMS

4.1. Introduction

In Chapter 3, we presented two nonlinear mixed-integer programming models that
were optimized wusing generalized reduced gradient and branch-and-bound
algorithms in LINGO software. Because of the computational complexity of
nonlinear mixed-integer programming models to solve real large-scale problems, we
intend to apply metaheuristic methods to tackle the problem. In this chapter, we
present a new multi-objective optimization model to find an non-dominated
preventive maintenance and replacement schedule of multifcomponent systems,
which is an extension of proposed models in Chapter 3. Two types of metaheuristic
algorithms are adapted and modified to solve the multi-objective optimization model.
Computational results show the feasibility and effectiveness of the proposed

approaches.

4.2. Engineering Economics Parameters

Based on the equations (3.9) and (3.10), we assume that the general effect of

inflation increases the cost of failures over time, at a rate of inffailure percent per
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period. Thus we find, F, , the cost of failures attributable to component i in period
J as:

F,=F-alx, Y -(x,, P i +ingaiturey  for i=1,...N; j=1,...T @.1)
In addition, we assume a separate inflation rates, infm, infr, and infz for

maintenance, replacement and fixed costs increases over time, and find that the

associated costs of maintenance activities of component 7/ in period j as follows:

M, =M/ +infm) for i=1.,N;j=1..,T @2

R,=R(+infry fori=L..,N;j=1.,T 4.3)
» N

z, =Z(1+infz)’(l-—n(l-—(mi, 4T, j))) for i=1,...,N;j=1,...,T (4.4)
i=1

Note that m, ;and 7, ; are binary variables of maintenance and replacement actions

for component i in period jand they cannot be equal to one simultaneously. The
equation (4.4) mentions that if a component is maintained or replaced in each
period, the defined fixed cost will be charged. From our definitions of each type of
cost and by using standard time value of money concepts and an interest rate inf,
we can find the total net present worth (NPW) of the failure, maintenance,

replacement, and fixed costs over the planning horizon with the length of T periods.

4.3. Multi-Objective Optimization Model

By considering engineering economics parameters, we can extend the objective
function of the total cost that should be minimized. Finally, the multi-objective
optimization model corresponds to the cost and reliability functions can be expressed

as:
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[ N l:F,. A ((X iy )’q - (X i )ﬂ" Xl + inffailure )’ ]
Min Total Cost =ZT: i |+ M, (I +infm) -m,; + R +infr) -r,, 1+ int)”

i za+ infz)j(1 B l_N[ (- n,, <7, )))

i=1

Max Reliability = ﬁ ]1[ e‘[’*("‘v"f)’ e, 1))

=l j=1

st.:.
X, =0 i=l,., N
X, =0=m, Xl=r, )X, +m (@ X)) i=l.,Nand j=2,.,17%5
T

X =X, + 5 i=l.,Nand j=1,..,T

m, +r <1 i=l.,Nand j=1,..,T

m, 1, =0orl i=l.,Nand j=1,..T

X,,, X!, 20 i=l.,Nand j=1,.T

In the above optimization model, m, ,and r,, are binary variables of maintenance

and replacement actions for component / in period j. The first set of constraints

shows that the initial age for each component is equal to zero. The second set

mentions that if a component is replaced in the previous period then

r,a=lLm =0, 80X, =0 and if a component is maintained in the previous
period then r, = 0,m =1 so X, =a,-X/ . Finally if we do nothing,
=0, m  =0,and X,, =X , . The other constraints correspond to our system

configuration presented in Chapter 3.

4.4. Genetic Algorithms

Genetic Algorithms (GAs) were developed and introduced by John Holland (1975).
Genetic algorithm is a search technique used in computing to find exact or

approximate solutions to optimization and search problems. Genetic algorithms are
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categorized as global search metaheuristics. They are a particular class of
evolutionary algorithms (EA) that use techniques inspired by evolutionary biology
such as inheritance, mutation, selection, and crossover. They have been designed as
general search strategies and optimization methods working on populations of
feasible solutions. Based on population search approach, genetic algorithms are able
to solve multi-objective optimization problems. A generic single-objective genetic
algorithm can be easily modified to search a new set of multiple non-dominated
solutions. The ability of genetic algorithm to simultaneously search different regions
of a solution space makes it possible to find a diverse set of solutions for difficult

problems with non-convex, discontinuous, and multi-modal solutions spaces.

4.4.1. Representation of Solutions

The first step in any genetic algorithm implementation is to develop an encoding of
the solution. In order to represent the solution of the proposed preventive
maintenance and replacement scheduling broblem with do nothing, maintenance
and replacement actions as a chromosome used by genetic algorithms, we define an
array with length of NxT for N components and T periods where each cell in that

array contains 0, 1 or 2 corresponds to three different actions.

4.4.2. Fitness Functions

A fitness function is a particular type of objective function that quantifies the
optimality of a solution (that is, a chromosome) in a genetic algorithm so that
particular solution may be ranked against all the other solutions. An ideal fitness

function correlates closely with the algorithm's goal, and yet may be computed
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quickly. Since the optimization model presented in (4.5) is a multi-objective
optimization model, we consider three different fitness functions in order to
represent the model as a single-objective optimization model and to evaluate and

compare different Pareto optimal fronts (also known as “trade off curve®).

Fitness, = w,(Total Cost/ Cost,, )+ w, (- Reliability) (4.6)
Fitness, = (- Reliability)+ 1/ Cost,,, )x IT otal Cost —Given budget| 4.7
Fitness, = (Total Cost/ Cost,, )+ |Re1iabi1ity — Required Reliability| 4.8)

Note that the above fitness functions are all subject to minimization. The first

fitness function, Fitness,, is based on the weighted summation of the normalized

total cost and reliability functions with the condition of w, +w, =1; for more
information see Cohon (1978). The weighted summation strategy converts the multi-
objective problem into a single-objective problem by constructing a weighted sum of
all the objectives. In order to normalize the total cost function, we defined 1/Cost,,,,
as the normalization coefficient. This coefficient is the maximum amount of total
cost that the system could incur when all components are replaced in each period
over the planning horizon. The second fitness function, Fitness,, considers
maximizing the reliability function and minimizing a penalty term of the total cost.
The penalty term is based on violated values of the total cost of maintenance and
replacement activities and the given budget in the system. Since the violated values
have larger amount in comparison with reliability values, we normalize the violated

values by using normalization coefficient. The third fitness function, Fitness,,

minimizes the total cost and absolute values of subtraction of overall reliability and

required reliability of the system. As before, we considered 1/Cost_ , as the
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normalization coefficient to normalize total cost term in order to make a same
magnitude for both parts.

The idea used in the second and third fitness functions is a special case of goal
programming method called goal attainment method developed by Gembicki (1974).
This involves expressing a set of design goals, which is associated with a set of
objectives. The problem formulation allows the objective functions to be under- or
overachieved and enables the designer to be relatively imprecise about initial design
goals. The relative degree of under- or overachievement of the goals is controlled by
a vector of weighting coefficients, and is expressed as a standard optimization
problem. The goal attainment method provides a convenient intuitive interpretation

of the design problem, which is a solvable using standard optimization procedure.

4.4.3. Crossover Procedures

The crossover procedures create a new solution as the offspring of pair of selected
solutions (parent solutions). The offspring should inherit some useful properties of
both parents in order to facilitate its propagation throughout the population. We
employed and tested several common crossover procedures, but we found that they
do not work very well and generate poor solutions that result to slow and premature
convergence of the genetic algorithm. Therefore, based on the especial structure of
the problem we designed two new crossover procedures to overcome ineffectiveness
of the tested crossover procedures as follow:
a) Two-Point Inverse Crossover: In this type crossover, first we generate two
random numbers between 1 and NxT, then make an offspring from

selected parents in which all elements outside the position of those random
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numbers are copied from the first parent but in an inverse order and inside
elements are copied from the second parents. If the chosen parents are
identical, this type of crossover makes a different offspring, which is not the
same to its parents.
b) NT-Point Crossover: In this type crossover, the even genes are copied from
the first parent and odd genes are copied from the second one.
Based on the structure of the obtained solutions in genetic algorithms iterations, we
designed that if two selected solutions are equal to each other, then the algorithm
uses Two-Point Inverse Crossover, and if the selected solutions are not same, the

algorithm uses NT-Point Crossover to produce new solutions.

4.4.4. Mutation Procedure

The mutation procedure is applied to the offspring solutions. It makes changes into
the solution encoding string by modifying some of the string elements.

Based on the especial structure of the proposed preventive maintenance and
replacement scheduling optimization model in which if even one maintenance or
replacement action is performed in a period, the whole system encounters a fixed
cost, we define a special type of mutation procedure. In this type of mutation, a
random number between 1 and N xT is generated, then the corresponding gene is
changed to 1 or 2 if it is equal to 0, or it is changed to 0 if it is equal to 1 or 2, and do
same procedure in the same period for other components. This kind of mutation
procedure produces schedules in which maintenance and replacement activities tend

to occur in the same periods across all components.
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4.4.5. Generational Genetic Algorithm

In the generational genetic algorithm (GGA), the entire population is replaced in
each generation. The generational genetic algorithm uses two populations at the
reproduction stage. One population contains the parents to be selected and the
second one is generated to hold their progeny. The generational genetic algorithm is
as follows, see Goldberg (1989) and Lisnianski and Levitin (2003):

Begin Generational Genetic Algorithm
g=0
Produce initial population P(g)
Determine the fitness values of members in P(g)
While GA termination condition is not satisfied, do
g=g+1
Select solutions from P(g-1) for P(g) based on their fitness value with the
probability of p_,, ... as the selected parents

Make an offspring from selected parents from P(g-1) with the probability of
pcrmmver
Mutate solutions from P(g-1) with the probability of p, ..o

Determine the fitness values of the new generated solutions in P(g)
End while
End Generational Genetic Algorithm

4.4.6. Steady State Genetic Algorithm

The steady state genetic algorithm (SSGA) uses the same population for both
parents and their progeny. When the generic operation on the parents is completed,
the new offspring takes the place of the members of the previous generation within
that population. The steady state genetic algorithm is as follows, see Whitley (1989)
and Lisnianski and Levitin (2003):
Begin Steady State Genetic Algorithm
Produce initial population P
Determine the fitness values of members in P

While GA termination condition is not satisfied, do
While genetic cycle termination condition is not satisfied, do

72



Make an offspring from selected parents

Mutate the produced offspring with the probability of p ..o,

Determine the fitness values of the new produced solution
Replace the new produced solution with the worst solution in P if its fitness
value is better than the fitness value of the worst solution

Discard identical solutions in P

End while

Update P with new produced solutions

End while
End Steady State Genetic Algorithm

4.5. Implementation of the Genetic Algorithms

In order to illustrate the optimization model numerically, and the proposed solution
procedure, we used data set presented in Table 3.1 and assume Z = $800 as the fixed
cost and a 36-month planning horizon. In addition, we set the genetic algorithm
parameters for both generational and steady state genetic algorithms as presented
in Table 4.1. Finally, we consider inflation rates for failure, maintenance,
replacement, and fixed éosts equal to 1%, 1.5%, 2%, and 1% respectively and 3% as
an interest rate for engineering economy parameters. We utilized MATLAB R2008a!
programming environment to develop the generational and steady state genetic
algorithm as well as to calculate the fitness functions. We investigated the
computational efficiency of the algorithms in terms of CPU time. The computational
time is about slightly less than 6 minutes for both algorithms on a laptop computer
(Intel/Core 2, 1.67 GHz and 2 GB RAM). Appendix C presents the MATLAB
programs of fitness functions, crossover and mutation procedures, and generational

and steady state genetic algorithms.

1 www.mathworks.com
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Table 4.1. Parameters of Genetic Algorithms

Generational GA Steady State GA
Number of Generations 500 | Number of Generations 1
Population Size 2000 Genetic Cycle 500
Probability of Selection  0.20 Number of Iterations 100
Probability of Crossover  0.40 Population Size 2000
Probability of Mutation  0.40 | Probability of Mutation .20

4.5.1. Computational Results of Fitness Function 1

We run both generational and steady state genetic algorithms with the first fitness
function for the set of weights for both objective functions and achieve Pareto
optimal solutions (also known as “non-dominated solutions’) shown in Table 4.2. We
achieved the extreme points as $37334.28 for the total cost and 91.03% as the
maximum reliability in a case of having only reliability function as the objective
function in the optimization model. We also found $454.85 as the minimum total
cost and 2.22% as the systems reliability in a case that system has only total cost as

the objective function.

Table 4.2. Pareto optimal solutions of fitness function 1 with GAs

Weights Generational GA Steady State GA
Wi w2 Cost Reliability Cost Reliability
0.0 1.0 $ 37,334.28 91.03% $37,334.28 91.03%
0.1 0.9 $37,334.28 91.03% $ 37,229.57 90.98%
0.2 0.8 $ 33,585.74 89.89% $ 32,586.72 90.08%
0.3 0.7 $ 28,004.50 88.63% $ 27,426.80 88.32%
0.4 0.6 $ 20,127.67 84.43% $21,414.99 85.48%
0.6 0.5 $ 14,602.70 80.23% $ 16,697.21 81.97%
0.6 0.4 $ 10,599.07 74.85% $12,694.47 77.29%
0.7 0.3 $ 9,080.44 71.71% $ 9,638.40 72.86%
0.8 0.2 $ 6,240.55 62.93% $ 6,979.54 65.36%
0.9 0.1 $ 3,581.16 48.79% $ 2,602.64 39.80%
1.0 0.0 $§ 45485 2.22% $ 454.85 2.22%

Figure 4.1 represents the Pareto optimal front of the first fitness function

obtained by generational and steady state genetic algorithms. Figures 4.2 and 4.3
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illustrate cost and reliability progress show the cost and reliability progress during
the iterations of the algorithms for w, =80%andw, =20%. As we can see, the
convergence of the steady state genetic algorithm is somewhat faster than the
convergence of the generational genetic algorithm but the quality of final solution

resulting from the generational genetic algorithm is slightly better than from the

steady state genetic algorithm.

Pareto Optimal Front of Fitness Function1
100%
80% /H—‘-*‘
Z 60%
=
]
& 40% 4
o
20% :
0% U T L] L}
$ $10,000 $20,000 $30,000 $40,000
| —e—Generational GA —m—Steady State GA Cost

Figure 4.1. Pareto optimal front of fitness function 1 with GAs

Cost Progress of Fitness Function 1
(w,=80% and w,=20%)
$25,000
$20,000
. 515,000 4%
n
S
$10,000
$5,000 -
S- T T T 1 L
0 100 200 300 400 500
% Generation/
| « Generational GA = Steady State GA Genetic Cycle

Figure 4.2. Cost progress of fitness function 1 with GAs
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Reliability Progress of Fitness Function1

100% {w,=80% and w,=20%)

80%
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| 40%
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« 20%
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Figure 4.3. Reliability progress of fitness function 1 with GAs

Tables 4.3 and 4.4 show an example of non-dominated preventive maintenance
and replacement schedules with fitness function 1 for 0.8 and 0.2 as the weights for
cost and reliability objective functions. With these weights, the values of objective
functions are $6240.55 and 62.93% obtained by the generational genetic algorithm
and are $6979.54 and 65.36% achieved by the steady state genetic algorithm. It
should be mentioned that all of replacement actions tend to occur in the same
month, which reflects the effect of the fixed cost Z. It is also interesting to note that

once a replacement action occurs, it is always followed by a period of inactivity.

Table 4.3. Non-dominated preventive maintenance and replacement schedule
Fitness function 1, GGA (w1=80% and w3=20%)

Month/ 123456 78 91011121314151617 18192021 2223 24 25 26 27 28 29 30 31 32 33 343536

Component
1 ---R---R--R----R--R----R----R-------
2 ---R---R--R----R--R----R----R-------
3 ---R---R--R----R--R----R----R--+------
4 --R---R--R----R--R----R-=---R--.--.-.-:-
5 --R---R--R----R--R----R----R-------
6 --R---R--R----R--R----R----R---.-.-.
7 -R---R--R----R--R----R----R-------
8 ---R---R--R----R--R----R----R---.---
9 ---R---R--R----R--R----R----R----..-+-
10 ---R---R--R----R--R----R----R--..---
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Table 4.4. Non-dominated preventive maintenance and replacement schedule
Fitness function 1, SSGA (w1=80% and w2=20%)

CMonthI 23456 78 910111213141516171819 2021 22 23 24 25 26 27 28 29 30 31 32 33 34 3536

omponent
1 -R--R---R---R---R---R--R----R--+---..
2 -R--R---R---R---R---R--R-+---R-=------
3 -R--R---R---R---R---R--R--+--R-=+=++--.
4 -R--R---R---R---R---R--R----R-=+-=++---
5 -R--R---R---R---R---R--R-=---R--+-.+--.
6 -R--R---R---R---R---R--R----R-=--+---
7 -R--R---R---R---R---R--R----R-=+--++«---
8 -R--R---R---R---R---R--R----R-=+-----.
9 -R--R---R---R---R---R--R-+«=+-R-=+- -+
10 -R--R---R---R---R---R--R---+-R--«««--

4.5.2. Computational Results of Fitness Function 2

We optimize the model (4.5) with fitness function 2 and by considering different
budget levels in the system and obtain Pareto optimal solutions presented in Table
4.5. Based on the extreme points, we considered different budget levels range from

$400 to $20000 in the system for the second fitness function.

Table 4.5. Pareto optimal solutions of fitness function 2 with GAs

Given Generational GA Steady State GA

Budget Cost Reliability Cost Reliability
$ 400.00 $ 454.85 2.22% $ 454.85 2.22%
$ 2,000.00 $ 2,000.61 14.94% $ 2,000.12 18.88%
$ 4,000.00 $ 4,000.23 42.14% $ 4,000.07 35.61%
$ 6,000.00 $ 6,000.13 58.00% $ 6,000.03 56.95%
$ 8,000.00 $ 7,999.97 64.98% $ 7,999.87 62.38%
$ 10,000.00 $ 9,999.96 69.07% $ 9,999.98 66.39%
$ 12,000.00 $ 11,998.88 75.24% $11,999.70 72.31%
$ 14,000.00 $ 14,000.02 77.98% $13,999.10 75.42%
$ 16,000.00 $ 15,999.56 80.23% $ 16,000.65 78.92%
$ 18,000.00 $ 17,999.98 83.56% $17,999.33 81.25%
$ 20,000.00 $ 20,000.40 85.12% $19,999.93 83.11%

Figure 4.4 shows the Pareto optimal front of fitness function 2 obtained by the
genetic algorithms. As it can be seen, both Pareto fronts are relatively similar to

each other. The cost and reliability progress in terms of number of generations and
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genetic cycles in the generational and steady state genetic algorithms are also shown
in Figures 4.5 and 4.6. It is clear that the convergence of the steady state genetic

algorithm is little bit faster than the convergence of generational genetic algorithm

at the beginning iterations.

Pareto Optimal Front of Fitness Function 2
100%
80%
Z oo%
£
&
T 40%
o
20%
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5 $5,000 $10,000 $15,000 $20,000
L —+=Generational GA —#=Steady State GA J Cost

Figure 4.4. Pareto optimal front of fitness function 2 with GAs
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Figure 4.5. Cost progress of fitness function 2 with GAs
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Reliability Progress of Fitness Function 2
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Figure 4.6. Reliability progress of fitness function 2 with GAs

Tables 4.6 and 4.7 show an example of non-dominated preventive maintenance and
replacement schedules with ﬁtnesé function 2 for a $5000 as given budget. With this
level of budget, the reliability of the system achieved by the generational and steady
state genetic algorithms is 54.07% and 51.88% respectively. As we can see, in this
situation, all of maintenance and replacement actions take place in the same period
which reflects the effect of fixed cost and once maintenance or replacement action

occurs, it is often followed by a period of inactivity.

Table 4.6. Non-dominated preventive maintenance and replacement schedule
Fitness function 2, GGA (Budget=$5000 and Reliability=54.07%)

Month/ 2 3456 78 91011121314156161718192021 2223 242526 27282930313233343536

Component
1 ----R--R---R----R----M---R----M-----
2 - - -R- -« - - R----R----M---R----M..---
3 ----R--R---R----R----M---R----M-----
4 - e «-«R- -« - - - R----R----M---R----M-----
51 - - -=-R-- - - R----R--.-M---R----M-.--.-.
6 --.--R--R---R---.-R----M---R----M-----
7 ----R--R---R----R----M---R----M-----
8 --=--R--M---R----R----M---R----M-..-..
9 ---«--R- - - - -- R----R----M.---R----M-----
10 - --.-R--R---R----R----M---R-.---M-..-.-
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Table 4.7. Non-dominated preventive maintenance and replacement schedule
Fitness function 2, SSGA (Budget=$5000 and Reliability=51.88%)

Month/

23456 78 91011121314151617181920 21 2223 24 25 26 27 28 29 30 31 32 33 34 3536
Component

1 ----R--RR--R-MR----R----R-+-+-++-+-.+...-
2 - e-2R---=R-=«-MR-+-=--R-vv-Rouooocouonuuenon.
3 ----R--RR--M-M- - . .. R----R------+«--.:
4 ««-+«R-+--R--R-MR----R=-=«+-R+-"n=«anu-eno-
5 ----R--RR--R-MM..--R----R-=+-+«.n-+..-..
6 - ---R--MR----MR-+---R-=v=v=-Roeuwouououncononon-.
7 ----R--RR--M-MM----R----R------.-.---
8 ----R--MR----MM----R-=-+«-R=-+- -+« .+« ..
9 ----R--RR--M-MM-.--R----R-=-++«--.+.-..
10 - ---R---R--R-MR----R----R-------..-.-

4.5.3. Computational Results of Fitness Function 3

Finally, Table 4.8 presents the Pareto optimal solutions of the fitness function 3 for

different required reliability range from 0 to 100%. Figure 4.7 presents the Pareto

optimal front obtained by the generational and steady state genetic algorithms with

fitness function 3. In this case, the Pareto fronts do not exactly coincide with each

other as it happened for the first and second fitness functions. Figures 4.8 and 4.9

represent the cost and reliability progress in both genetic algorithms. In this case,

the convergence of both algorithms is same but the generational genetic algorithm

- reduces the total cost better than steady state genetic algorithm does.

Table 4.8. Pareto optimal solutions of fitness function 3 with GAs

Required Generational GA Steady State GA
Reliability Cost Reliability Cost Reliability
0% $ 45485 2.22% $§ 45485 2.22%
10% $ 908.70 9.82% $ 1,253.96 10.00%
20% $ 154445 20.13% $ 1,84341 19.88%
30% $ 1,97191 30.02% $ 3,470.56 29.95%
40% $ 3,134.55 39.94% $ 4,407.27 39.98%
50% $ 4,109.02 50.00% $ 5,251.48 49.99%
60% $ 6,381.03 59.95% $ 7,754.48 59.94%
70% $ 8,956.37 70.04% $ 8,903.02 70.02%
80% $ 14,262.18 79.81% $ 14,455.02 79.57%
90% $ 14,286.09 80.25% $ 15,100.48 80.40%
100% $16,076.14 81.53% $ 15,103.18 80.67%
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Figure 4.7. Pareto optimal front of fitness function 3 with GAs
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Figure 4.8. Cost progress of fitness function 3 with GAs
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Figure 4.9. Reliability progress of fitness function 3 with GAs
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Tables 4.9 and 4.10 show an exampler of non-dominated preventive maintenance
and replacement schedules with fitness function 3 with 50% as the desired
reliability. With this level of required reliability, the total cost of the system is
$4109.02 and $5251.48 achieved by the generational and steady state genetic
algorithms respectively. As it can be seen, the structure of both schedules is same as

the structure found using previous fitness functions.

Table 4.9. Non-dominated preventive maintenance and replacement schedule
Fitness function 3, GGA (Reliability=50% and Cost=$4109.02)

Month/

12345678 9101112131415161718 192021 2223 24 25626 27 28 29 30 31 32 33 34 3536
Component :

NI DIHID N

=
ZRR2RERERRERR
EERREERRERRR

=

D 0010 O 0O
=-R--R--B--N--N--R--5--§--§--]

Table 4.10. Non-dominated preventive maintenance and replacement schedule
Fitness function 3, SSGA (Reliability=50% and Cost=$5251.48)

Month/ 23456 78 91011121314151617 1819 2021 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

Component
1 .-R- -R-M--M-M-R----R- -MM---M--- - ----
2 --R--R-M--M-M-R----R--MM---M---.....
3 .-R--R-M--M-M-R-=---R--MM=-+--M=- -+ - - ..
4 .-R--R-M--M-M-R----R--MM=- - -M=- -+ - - ..
5 --R--R-M--M-M-R----R--MM---M- - -...
6 .-R--R-M--M-M-R----R--MM- - -M- -+« .-
7 --R--R-M--M-M-R----R--MM---M----.-.-.--
8 --R--R-M--M-M-R----R--MM-.-M--- .- - ...
9 .-R--R-M--M-M-R----R--MM- - -M- -+ ...
10 --R--R-M--M-M-R----R--MM---M-.-.-.....

A comparison between Pareto optimal fronts of the three fitness functions with
the genetic algorithms is presented in Figure 4.10. We can conclude that the first
fitness function and the third fitness function with generational genetic algorithm

produce better Pareto optimal front when compared to the fitness function 2 and the

82



fitness function 3 with steady state genetic algorithm. These Pareto optimal fronts
can be used to plan any desired levels of both objective functions. Maintenance
engineers and managers can use these curves to design systems reliability in order

to meet systems requirements and objectives.

Pareto Optimal Front of all Fitness Functions
100%

S

S

X
N

Reliability

20% -

0%

$- $10,000 $20,000 $30,000 $40,000
—+=Fit 1 with Generational GA —a=—Fit 1 with Steady State GA Cost
== Fit 2 with Generational GA ====Fit 2 with Steady State GA
~=Fit 3 with Generational GA —#~Fit 3 with Steady State GA

Figure 4.10. Pareto optimal solutions of all fitness functions with GAs

4.6. Simulated Annealing Algorithm

Simulated annealing (SA) algorithm is a general probabilistic method for solving
combinatorial optimization problems. It involves random transitions among the
solutions of the problem. Unlike iterative progress algorithms, which improve the
objective value continuously, the simulated annealing algorithm may encounter
some adverse changes in objective value in the course of its progress. Such changes
are intended to lead to a global optimal solution instead of a local one. Annealing is a
physical process in which a solid is heated up to a high temperature and then

allowed to cool gradually. In this process, all of the particles arrange themselves
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gradually into a low energy level. The ultimate energy level depends on the level of
the high temperature and the rate of cooling. The annealing process can be described
as a stochastic procedure, such that at each temperature, the solid undergoes a large
number of random transitions among states of different energy levels until it attains
a thermal equilibrium in which the probability that the solid appears in a state with

an energy level E is given by:

(_
Pr(X =E)= %e Kal (4.9)

Where X denotes the random energy level of the solid, Z(¢) is a normalization factor,
and Kjis the Boltzmann constant. The above probability distribution is called the

Boltzmann distribution. As the temperature T decreases, equilibrium probabilities
associated with higher energy level states decreases. When the temperature
approaches to zero, only the states with the lowest energy level will have nonzero
probability. If the cooling is not sufficiently slow, thermal equilibrium will not bé
attained at any temperature and consequently the solid will finally have a meta-
stable condition.

There are several variations of simulated annealing, which arise to different
cooling schedules and stopping criteria. The following is a general description of
simulated annealing, see Kuo et al. (2001).

Begin Simulated Annealing

k=0
Select 7,y and T,y if the termination criterion involves T,

Randomly produce an initial solution x, from S
Determine the fitness value of the initial solution f, = C(x,)

While a sufficient number of times to ensure a near-equilibrium condition, do
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Randomly select a transition x, = yand computeAC =C(y)-C(x;). IfAC<0,
accept the transition. IfAC >0, accept the transition with probability
)
Pr,(AC)=e % and reject it with probability 1 - Pr, (AC)
If the transition is accepted, update x, = yand f, = C(y). (To accept or reject the

transition with AC >0, First generate a random number p from (0,1). If
p < Pr(AC), accept the transition; otherwise, reject it)

k=k+1. Find 7} from 7,_, ,based on the rule for decreasing the control parameter 7

X =Xp_ys fi = Saa
End while
End Simulated Annealing

Note that the transition x; = yis usually selected in such a way that y is in the

neighborhood of X .

4.7. Implementation of the Simulated Annealing Algorithm

We use the representative data set shown in Table 3.1 and assumed same fixed cost,
planning horizon and inflation and interests rates. In addition, we set the simulated
annealing parameters to initial temperature = 1000000, final temperature = 0.01 and
geometric decreasing rate = 0.98. We develop a computer program in MATLAB
R2008a! programming environment to construct the simulated annealing algorithm
and calculate the fitness functions. It is useful to mention that because of the
geometric decreasing rate the number of energy levels, algorithm iterations, is 912
and the computational time is observed as less than 2 seconds. Appendix D presents
the MATLAB programs of fitness functions, transition function, and simulated

annealing algorithm.

1 www.mathworks.com
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4.7.1. Computational Results of Fitness Function 1

We run the simulated annealing algorithm with fitness function 1 for the set of
weights for both objectives functions and achieve Pareto optimal solutions shown in
Table 4.11. Figure 4.11 represents the Pareto optimal front of fitness function 1
obtained by the simulated annealing algorithm. Figures 4.12 and 4.13 illustrate cost
and reliability progress during the iterations of algorithm. As we can see, the
convergence of the algorithm is not too consistent but it can give a near optimal
solutions.

Table 4.11. Pareto optimal solutions of fitness function 1 with SA

Weights Simulated Annealing
W1l W2 Cost Reliability
0.0 1.0 $ 37,334.28 91.03%
0.1 0.9 $ 36,632.37 90.10%
0.2 0.8 $ 33,585.74 88.89%
0.3 0.7 $ 26,915.20 84.75%
0.4 0.6 $ 18,569.88 80.22%
05 05 $ 13,451.70 74.78%

06 04 $ 9,723.55 68.17%
0.7 03 $ 8,841.34 65.32%

0.8 0.2 $ 6,572.84 57.78%
0.9 0.1 $ 4,761.10 46.51%
1.0 0.0 $ 45485 2.22%

Pareto Optimal Front of Fitness Function1

___..——-—"“""

100%

60%

Reliability
%

20%
0% V — Y T

$ $10,000 $20,000 $30,000 $40,000
[ ~—ir=Simulated Annealin;l Cost

Figure 4.11. Pareto optimal front of fitness function 1 with SA
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Figure 4.12. Cost progress of fitness function 1 with SA
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Figure 4.13. Reliability progress of fitness function 1 with SA

Table 4.12 shows a non-dominated preventive maintenance and replacement
schedule of fitness function 1 for 0.8 and 0.2 as the weights for cost and reliability
objective functions. With these weights, the values of objective functions are
$6572.84 and 57.78%, which are slightly worse than the results achieved by
generational and steady state genetic algorithms. It should be mentioned that all
maintenance and replacement actions tend to occur in the same month, which

reflects the effect of the fixed cost.
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Table 4.12. Non-dominated preventive maintenance and replacement schedule
Fitness function 1, SA (w1=80% and w:=20%)

Month/

3456 78 9101112131415161718192021 2223 24 25262728 29 30 31 3233 343536
Component

1 ----R-R---MM-M---R----M-R--.-.-- R----
2 ----R-R---MM-M---R----M-R- .- .--- R---.-
3 ----R-R---MM-M---R----M-R---.--. R----
4 ----R-R---MM-M---R----M-R- - - .- - R----
5 ----R-R---MM-M..--R----M-R---.-.. R----
6 ----R-R---MM-M---R----M-R- - - - .- R----
7 ----R-R---MM-M---R----M-R------ R----
8 ----R-R---MM-M---R----M-R------ R----
9 ----R-R---MM-M---R----M-R---.-- R----
10 - - - R-R---MM-M---R----M-R-.-..-.- R--.-

4.7.2. Computational Results of Fitness Function 2

We optimize the model (4.5) with fitness function 2 and by considering different
levels of budget in the system and the obtain Pareto optimal solutions presented in
Table 4.13. Figure 4.14 represents the Pareto optimal solutions obtained by
simulated annealing algorithm with fitness function 2. Figures 4.15 and 4.16 show
cost and reliability progress during the iterations of algorithm. It is clear that
despite of the convergence of the algorithm with fitness function 1, the convergence

in this case is completely consistent over the iterations.

Table 4.13. Pareto optimal solutions of fitness function 2 with SA

Given Simulated Annealing

Budget Cost Reliability
$ 400.00 $ 45485 2.22%
$ 2,000.00 $ 1,999.24 18.94%
$ 4,000.00 $ 3,999.99 37.23%
$ 6,000.00 $ 5,999.30 51.62%
$ 8,000.00 $ 7,998.99 60.77%
$ 10,000.00 $ 10,000.64 67.17%
$ 12,000.00 $11,999.10 72.39%
$ 14,000.00 $ 13,999.99 76.03%
$ 16,000.00 $ 16,000.23 78.55%
$ 18,000.00 $ 18,000.75 80.11%
$ 20,000.00 $ 19,999.83 81.45%
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Figure 4.14, Pareto optimal front of fitness function 2 with SA
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Figure 4.15. Cost progress of fitness function 2 with SA
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Figure 4.16. Reliability progress of fitness function 2 with SA
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Table 4.14 shows a non-dominated preventive maintenance and replacement
schedule with fitness function 2 for the given budget equal to $5000. With this
amount of budget, the reliability of the system is 48.88% and same as what was
mentioned in section 4.7.1 the result is not as good as what is achieved by

generational and steady genetic algorithms.

Table 4.14. Non-dominated preventive maintenance and replacement schedule
Fitness function 2, SA (Budget=$5000 and Reliability=48.88%)

Month/ 123456 7 8 9101112131415161718 192021 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
Component
1 - - e e e e e M---R-R--.-.-.. M-MM. - - - . R-----
2 - - - e e e M.--R-R- - - - -- M-MM- - . . - R-----
2 T T T R M---R-R--.-.-.- M-MM. - . - . R-----
4 - - - - - - - . M---R-R------ M-MM- - - - - R-----
5 - - - - - - - - M---R-R---.--- M-MM- - - - - R-----
6 - - - - - - - - M.--R-R.----- M-MM- - - - - R- - ---
R M---R-R- - - - - - M-MM- - . - - R--.---
8 - - - - - - M---R-R-----. M-MM- - - - - R-----
9 - - - - - - - - M---R-R---.--- M-MM- - - - . R--.--
10 - - - - - - - M---R-R----.-- M-MM- - - - - R----..

4.7.3. Computational Results of Fitness Function 3

Finally, Table 4.15 presents the Pareto optimal solutions of the model with fitness
function 3 for different required reliability values. Figure 4.17 represents the Pareto
optimal solutions obtained by simulated annealing algorithm for fitness function 3.
Figures 4.17 and 4.18 show cost and reliability progress during the iterations of
algorithm and as we can see the convergence of the algorithm with fitness function 3

is very consistent after half of the total iterations.
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Table 4.15. Pareto optimal solutions of fitness function 3 with SA

Required Simulated Annealing
Reliability Cost Reliability

0% $ 45485 2.22%
10% $ 1,120.35 9.97%
20% $ 1,82381 20.01%
30% $ 2,356.39 30.00%
40% $ 3,201.11 40.09%
50% $ 5,256.75 49.84%
60% $ 6,523.00 60.05%
70% $ 9,177.98 70.01%
80% $ 15,108.03 79.98%
90% $16,249.33 81.11%
100% $ 18,242.11 84.25%

Pareto Optimal Front of Fitness Function 3
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Figure 4.17. Pareto optimal front of fitness function 3 with SA
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Figure 4.18. Cost progress of fitness function 3 with SA
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Figure 4.19. Reliability progress of fitness function 3 with SA

Table 4.16 shows a non-dominated preventive maintenance and replacement
schedule of fitness function 3 with 50% as the required reliability. With this level of
reliability, the total cost of the system is $5256.75, which is almost same as the total
cost achieved by steady state genetic algorithm but it is not as good as the total cost

obtained by generational genetic algorithm with third fitness function.

Table 4.16. Non-dominated preventive maintenance and replacement schedule
Fitness function 3, SA (Reliability=50% and Cost=$5256.75)

Month/ 1 23 4566 7 8 9101112131415161718 19202122 23 24 2526 27 28 29 30 31 32 33 34 35 36

Component
1 --R---M-M-MR- - - . - - R------ R-----=--.-...:
2 --R---M-M-MR- - .- - - - R------ R-------...
3 --R---M-M-MR- .- - . - - R------ R-----«-.-.-
4 --R---M-M-MR- - - - - - R-----.-- R------=-.-.-
5 --R---M-M-MR. - .- .- R------ R-------...-
6 --R---M-M-MR=---.-- R------ R-----..-...-
7 --R---M-M-MR- - - - - - R------ R----------:
8 --R---M-M-MR- - - - - - R------ R----«--«<..-
9 --R---M-M-MR- - - - - - R------ R-----.---=4--
10 --R---M-M-MR- - - .- - R------: R----------:

An advantage of simulated annealing is its ability to search neighborhoods to
find global optimum solution instead of just finding local one. This can be observed

in.Figures 4.15, 4.16, 4.18, and 4.19 in points that the total cost drops or the
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reliability rises drastically. A comparison between Pareto optimal fronts of the
fitness functions using the simulated annealing algorithm is presented in Figure
4.20. We can observe and conclude that all fitness functions result to the same
Pareto optimal solutions but the first fitness function has a lack of convergence

consistency in the iterations of the algorithm.

Pareto Optimal Front of all Fitness Functions
100%
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~8-Fit1 with SA ~@—Fit2 withSA —e—Fit3 withSA | Cost

Figure 4.20. Pareto optimal front of all fitness functions with SA

4.8. Chapter Summary

In this chapter, an extension of the optimization models formulated in Chapter 3
was presented by considering engineering economy aspects. A new model multi-
objective optimization model was formulated. Generational and steady state genetic
algorithms as well as a simulated annealing algorithm were used to optimize the
model and new crossover and mutation procedures were developed based on the
special structure of the model. In addition, three different fitness functions were
developed and utilized to evaluate Pareto optimal solutions. By analyzing the
computational time and results of the algorithms, we showed the efficiency and

effectiveness of the solution methods. Finally, the convergence of the algorithms in
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terms of cost and reliability progress was demonstrated and analyzed. In the next
chapter, a complete comparison of the exact and metaheuristic algorithms along

with the sensitivity analysis of the optimization model parameters will be presented.
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CHAPTER 5

SENSITIVITY ANALYSIS AND
COMPARISON OF ALGORITHMS

5.1. Introduction

In Chapter 3, we developed two optimization models and solved them via an exact
solution approach. We extended the models to consider multiple objectives and
applied two types of genetic algorithms along with a simulated annealing to reach
non-dominated solutions. This chapter further refines the analysis and includes two
main parts. First, we examine the effect of the optimization model parameters on
the resulting structure of the optimal preventive maintenance and replacement
schedule of multi-component systems. Second, we compare the computational
efficiency and accuracy of the metaheuristic methods with the exact method and

show the advantages of each.

5.2. Sensitivity Analysis on Parameters

5.2.1. Experimental Design

The optimization models developed in Chapter 3 have two different types of
parameters; component reliability characteristics, and costs associated with
preventive maintenance and replacement activities. Component reliability

parameters include 4, and S, the characteristic life (scale) and the shape
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parameters of component, and ¢, the improvement factor for each component :.

Each component also has three different types of cost, failure cost, maintenance cost,
and replacement cost. In addition, the optimization models have constraints on the
overall reliability and the total cost, (required reliability and the given budget).
Finally, there is a fixed cost charged whenever a component is maintained or
replaced in a period.

We design two 23 factorial design experiments to find the effect of the
optimization model parameters on the structure of the optimal schedule. Based on
this consideration, each experiment has three factors, each with two levels. With one
replicate in each experiment, there are 8 different trials.

The first experiment, scenario 1, assumes that the reliability parameters of all
components are the same, but each component has two levels, low and high, for
failure, maintenance, and replacement costs; as shown in Table 5.1. The second
experiment, scenario 2, assumes that the failure, maintenance, and replacement
costs of all components are the same, but each component has two levels for the
reliability parameters; see Table 5.2. We consider each scenario and solve both
models with and without the fixed cost. Hence, we achieve four different optimal

preventive maintenance and replacement schedules for each scenario.
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Table 5.1. Parameters for the scenario 1

Failure Maintenance Replacement

Component A B Cost ($) Cost (§) Cost ($)
1 0.00025 2.20 0.50 100 100 100
2 0.00025 220 0.50 100 100 500
3 0.00025 220 0.50 100 500 100
4 0.00025 220 0.50 100 500 500
5 0.00025 2.20 0.50 500 100 100
6 0.00025 220 0.50 500 100 500
7 0.00025 2.20 0.50 500 500 100
8 0.00025 220 0.50 500 500 500

Table 5.2. Parameters for the scenario 2

Component 1 8 a Failure Maintenance Replacement
Cost ($) Cost ($) Cost ($)
1 0.00010 1.80 025 100 100 100
2 0.00010 180 0.75 100 100 100
3 0.00010 2,50 0.25 100 100 100
4 0.00010 250 0.75 100 100 100
5 0.00050 180 0.25 100 100 100
6 0.00050 1.80 0.75 100 100 100
7 0.00050 250 0.25 100 100 100
8 0.00050  2.50 0.75 100 100 100

5.2.2. Computational Results of the Scenario 1

We utilized LINGO?! software to solve the models to obtain an optimal solution. We
set the required reliability to 50% in the first model and the given budget to $8000
and $18000 for the models without and with the fixed cost respectively in the second
model. In addition, we considered the fixed cost equal to $1000 and 36 month as the
planning horizon.

Tables 5.3 through 5.6 present optimal schedules for the first scenario for both
models. At first glance, the effect of the fixed cost on optimal schedules is clearly
evident. As expected, the fixed cost forces maintenance and replacement activities to
occur in same periods, as shown in Tables 5.4 and 5.6. In section 3.2.4.4, it was
mentioned that an N-component model without fixed cost is similar to N single-

component models in which one could simply find the best sequence of actions for a

! http://'www.lindo.com
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component regardless of the actions taken to other components. Tables 5.3 and 5.5
show such a schedule.

Observing the structure of the optimal schedules, one can see that the failure
cost does not noticeably affect structure of the schedule and the frequency of actions.
It can be seen that there is no big difference between the schedule of first four
components with less failure cost and the last‘four components with more failure
cost.

We find that components 2 and 6 are only maintained, because the maintenance
cost for components 2 and 6 are one fifth of their replacement cost, however they
have different failure costs, as shown in Table 5.1. We can also see that components
1, 3, 4, 5, 7 and 8 are only replaced, except one maintenance action for component 5
in Tables 5.5 and 5.6 and a maintenance action for component 1 in Table 5.6. In the
above components, maintenance cost is greater or equal to replacemeht cost and it
seems that in this case the maintenance and replacement schedule contains
replacement actions instead of maintenance actions. Finally, we can observe that
components 4 and 8 are replaced less frequently than other components because of
their high maintenance and replacement costs.

By reviewing the maintenance and replacement costs presented in Table 5.1 and
the structure of the optimal schedules, we can conclude that if all components have
the same reliability parameters, structure and frequency of activities in the optimal
schedule is affected by just ratio of the maintenance and replacement costs. In
addition, we can say that the failure cost does not play a significant role in the

structure of maintenance and replacement schedule.
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Table 5.3. Scenario 1-Optimal schedule that minimizes total cost without fixed cost
(Reliability=50.00% and Cost=$8503.29)

Month/ 123456 78 9101112131415161718192021 22232425 262728 293031 3233 34 35 36

Component
1 ----R---R- .- - - .. R---R---R----R---R---
2 ----M--M-M-M--M-M--M--M-M-.- - - ... M- ...
3 --R---R---R- - ---R----R---R---R--- .-
4 - - e e e e e e e e - R------ R------- R-------:-
5 - - - - - R----R---R---R---R----R--R---..
6 ---M-M--M-M---M-MM---M.--M-M--MM- - - ..
7 ---R----R----R---R--R---R---R--R----.
| R---------- R------ R-----.--

Table 5.4. Scenario 1-Optimal schedule that minimizes total cost with fixed cost
(Reliability=50.00% and Cost=$18301.00)

CMonth/ 12345678 9101112131415161718192021 2223 2425 26272829 3031 3233 343536
omponent

1T - - - - R---R----R----R--R--R---R------

----- M---R----M----M--M--M---MM- - - - -

. R--«---- R----R--R--R---R-=+-+-..

4 - - .. R---+---- - R----R---..

5 - - - - - R---R----R----R--R--R---R-----.

6 - - - .- MM--M----M----R--M--M---MM- - - - .

7T .- - R---R----R-=---R----- R----R----.

8 - .- - - R--R- -« = =« =« -« R------ R- - - ---

Table 5.5. Scenario 1-Optimal schedule that maximizes reliability without fixed cost
(Budget=$8000 and Reliability=45.46%)

Month/ 123 456 78 9101112131415161718 192021 2223 24 2526 27 28 29 30 31 32 33 34 35 36

Component
1 ---R-R---... R---R----R-.---- R--R----
2 ----M--M--M--M-MM-.--M--M--M.--.....
3 ----R------ R--R----R------ R-.----- R - -
4 - - - - - - R---------.. R----«----- R-----
5 ---R- - R-R---R---R---R----R-M----R- -
6 - - - - - M--M---M-M----M-M--M--M--.-.....
7 - .. R--R----R----- R--R--R-R----- R-- -
8 - e e e e R-------- R----..-: R----««.<.-...

Table 5.6. Scenario 1-Optimal schedule that maximizes reliability with fixed cost
(Budget=$18000 and Reliability=46.90%)

Month/ 123456 78 9101112131415161718 192021 2223 2425262728 29 3031 32 33 3435 36
Component

1 ----R--R----R----R---R---M----- R----

----M--M--..-.R-----. M-M---M---M----..

3 ----R--R----R----R---R---R---R-R----

4 - - e - e e e e e e - R--------" R-------: R----..

5 -.---R--R----R----M-R- - - - - R---R---.-.-

6 ----M--M----M----R-M-M---M---M-M- - ..

7 ----R--R=- -+« - R-R----- R---R----..

8§ - - - - - - - R----R----R- - -« o--a--- R----..
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5.2.3. Computational Results of the Scenario 2

In this scenario, we considered 50% as the required reliability, $4000 and $12000 as
the given budgets, and $1000 as the fixed cost. LINGO was used to solve the
optimization models. Tables 5.7 to 5.10 present the optimal schedules for the second
scenario in both models. As in the first scenario, we can see that the fixed cost has
an effect on the maintenance and replacement activities occurrence at the same
period; see Tables 5.8 and 5.10.

We find that in this scenario all activities are replacement, except four
maintenance actions presented in Table 5.10. This indicates that for components
with the same failure, maintenance, and replacement costs, and different scale and
shape parameters, the value of the improvement factor does not affect structure of
the optimal schedule. For example, by comparing the schedule for the first two
components, it can be seen that a smaller improvement factor reduces the effective
age of the component more than a higher one and thus components with the lower
improvement factor are more likely to be maintained; see two maintenance actions
of component 7 in Table 5.10.

The scale and shape parameters play the most important role in the
configuration of the optimal schedules, especially the shape parameter. For example,
consider components 1 and 2 and components 3 and 4. Both pairs have the same
scale parameter but the latter have larger value of the shape parameter. This
results in more replacement activities for the second pair. The frequency of
replacement activities in first four components can be seen in Tables 5.7 to 5.10. On
the other hand, the scale parameter has an effect on the structure of the optimal

schedules, but not as much as the shape parameter does. For example, compare the
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pair of components 1 and 2 and the pair of components 5 and 6. Both pairs have the
same shape parameter but the second one has a greater scale parameter than the
first. Hence, we see more frequent replacement activities in the second pair. Finally,
we can say that less reliable components with higher deterioration rate are replaced
more frequently than the more reliable components with lower deterioration rate.
Compare the frequency of replacements in components 7 and 8 with great scale and
shape parameters (less reliable components with high deterioration rate) with
components 1 and 2 with small parameters values (more reliable components with

low deterioration rate).

Table 5.7. Scenario 2-Optimal schedule that minimizes total cost without fixed cost
(Reliability=50.00% and Cost=$3669.26)

Month/ 123456678 910111213141516171819 20212223 24 25 26 27 28 29 30 31 32 33 34 35 36

Component
) O R- - - - e e e e e e e e e e e e e
b L T TR SR R S R-- - -« =«
3 --R- - - R--.--- R----R---..- R----
4 @ - - - - - e - - R----R- - R----R----- R------
5 - - - - - R--------.-.. R------ R---+----.-..
6 - - - - - - - R--------- R---+«---... R-------
7 ---R--R--R--R--R--R--R----R--... R---
8 ----R--R--R-R---R---R--R--R---R---.--.

Table 5.8. Scenario 2-Optimal schedule that minimizes total cost with fixed cost
(Reliability=50.00% and Cost=$12668.80)

Month/ 123456 78 91011121314151617 18192021 2223 2425 26 27 28 29 30 31 32 33 34 35 36
Component
1 - - e e e e e e e e R« - - -« R---«---.-..
b L I S I R-- -« -
I T R---R----R--+--.-..- R----R-----
4 - - - - - - . R---R----R----- R------- R-----
L R-------- R-------- R---«--..-...
6 - - - - .- R-------- R--.-- R------- R-----
7 --R----R------ R---R---R--R----R-----
8 --R----R- -R--R---R---R--R----R--...
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Table 5.9. Scenario 2-Optimal schedule that maximizes reliability without fixed cost
(Budget=$4000 and Reliability=53.25%)

CMonth/ 1234656 78 91011121314151617 18 192021 2223 24 25 26 27 28 29 30 31 32 33 34 35 36

omponent
1 - - - - - - e R- - - « « & - & &« @ e e e e e e
S 2
: S R----- R----- R----R-+----- R-----
4 .- ... R----R----R-=---- R-----+«-- R-----
B e e e e e e e R-------. R----. R- -« oo eeenn
6 - - e e R------. R------
7 -R-R--R--R-R----R--R-R--R---R---R-..
8 --R---R---R---R--R--R--R--R--R--R---

Table 5.10. Scenario 2-Optimal schedule that maximizes reliability with fixed cost
(Budget=$12000 and Reliability=48.45%)

Colr:::)tnh;ntl 2 345678 9101112131415161718192021 2223 24 25262728 29 30 31 32 33 34 35 36
T - - - R--------:-+-------
2 e e e e e e e e e e e e e Romommommmm e e e e e e
3 - --R--R-=---- M-R----R----R-+-.- R-----
4 .. R----- R-R----M----R---Roe-vwo-oouw=woo
5 - e - - R------- ;S R----- R-----
6 - - R----- R------ R----Roevvouwouwonon..
7 ---R--R----- R-R----R----R---M-M- - - -
8 - - -R--R----_. R-R----R----R---R-R-----

5.3. Comparison of Exact and Metaheuristic Algorithms

5.3.1. Experimental Design

The optimization models developed and solved via generalized reduced gradient and
branch-and-bound algorithms in LINGO software were single objective models. We
considered engineering economy parameters, extended them to consider multiple
objectives, and solved using metaheuristic algorithms.

In order to analyze the efficiency and accuracy of the proposed metaheuristic
algorithms and compare them with the exact method, we present a comprehensive
experiment. We consider just the single objective models without engineering
economy parameters and optimized both models with 2 sets of data for series
systems with 5 and 10 components and 6, 12, 18, 24, 30, and 36 planning horizons.

The reliability and costs associated with components are same as in the original
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dataset; and for the 5-component system, we use the first 5 components. Finally, for
different planning horizons, we assume different required reliability values and
budget amounts for each problem. We utilized MATLAB R2008a! programming
environment to implement the models and optimize them via generational genetic
algorithm (GGA), steady state genetic algorithm (SSGA), and simulated annealing
(SA). The first 4 columns of Tables 5.11 and 5.12 present the structure of the

experiment.

5.3.2. Computational Results

Tables 5.11 and 5.12 show the computational results of the experiment. The results
include objective function values, total cost for the first model and reliability for the
second model, amount of the reliability and consumed budgetary constraints, the
gap of objective function achieved by metaheuristic algorithm in compare with what
is achieved by exact method and finally the computational time (CPU time) for each
problem and algorithm. We find that the value of objective functions achieved by the
generalized reduced gradient and branch-and-bound algorithms is always smaller
than values of objective function achieved by metaheuristic algorithms in the first
model and vice versa in the second one; as shown in fifth column of Tables 5.11 and
5.12 and Figures 5.1, 5.4, 5.7, and 5.10. The reason is that the metaheuristic
algorithms can reach near optimal solutions instead of exact optimal solutions. In
addition, we can see that the exact method does not violate the right hand side
values of the main constraint, required reliability for the first model and given

budget for the second one. In some cases, the metaheuristic algorithms violate the

1 www.mathworks.com
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constraints slightly; compare the values in the sixth column of the tables in some
rows.

We also calculate the objective function gaps for metaheuristic algorithms. As
seen in the first model the gap varies by about 2% for the generational and steady
state genetic algorithms and about 4-6% for the simulated annealing algorithm. The
interesting thing is that the gap is almost constant by increasing the problem size in
terms of number components and periods as shown in Figures 5.2 and 5.5. We can
conclude that the metaheuristic algorithms work well for large-scale problems using
Model 1. Such a gap consistency is not observed in the second model and the gap
changes too much even for small size problems; see the problems with 5 components
in Table 5.12 and also Figure 5.8. However, it can be seen that for large-scale
problems, the simulated annealing algorithm works well and its objective function
gap varies between 0.1-7%, which is almost constant, see Figure 5.11.

We analyzed the computational time of each algorithm; see the last column of
Tables 5.11 and 5.12. We find that the computational time of the exact method goes
up exponentially by increasing the size of the problems, especially for the problems
with more than 24 periods as the planning horizon as presented in Figures 5.3, 5.6,
5.9, and 5.12. It can be observed that for any problem size, the computational time of
all metaheuristic algorithms in both models is completely constant and less than 2
minutes. Based on the analysis of computational results, we can conclude that if it is
necessary to solve a preventive maintenance and replacement scheduling
optimization model once and use the optimal schedule for a long-term planning
horizon, one can use an exact method to optimize it, regardless of how long it takes.
On the other hand, if someone wants to solve a large-scale condition-based model

day by day, he or she can use metaheuristic algorithms to achieve a near optimal
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solution and be sure that this solution is good enough to use in other models, such as

in simulation models.

Table 5.11. Comparison of exact and metaheuristic algorithms in Model 1

Number Number . Computational
of of  peduited  pigorichm | . OV Reliability | OFV Time
Components | Periods y at bos ap (minute)

GRG with BB $ 4,503.79 98.00% 0
6 08% GGA $ 4,594.82 98.00% 2.02% 0
SSGA $ 4,606.85 98.00% 2.29% 0
SA $ 4,768.97 97.95% 5.89% 0
GRG withBB | $ 2,734.17 90.00% 0
12 90% GGA $ 2,794.43 89.98% 2.20% 0
SSGA $ 2,807.44 89.99% 2.68% 0
SA $ 2,875.49 90.01% 5.17% 0
GRG with BB $ 3,047.54 80.00% 2
18 80% GGA $ 3,128.25 80.01% 2.65% 1
SSGA $ 3,133.56 80.01% 2.82% 1
5 SA $ 3,192.17 80.00% 4.75% 0
GRG withBB | $ 4,030.26 70.00% 4
24 0% GGA $ 4,150.30 70.01% 2.98% 1
SSGA $ 4,122.05 70.03% 2.28% 1
SA $ 4,226.46 69.50% 4.87% 0

GRG with BB $ 5,050.93 60.00% 13
30 60% GGA $ 5,186.53 60.46% 2.68% 1
SSGA $ 5,192.92 60.02% 2.81% 1
SA $ 5,296.03 60.54% 4.85% 0

GRGwithBB | $§ 5,470.05 50.00% 33
36 50% GGA $ 5,605.33 50.06% 2.47% 1
SSGA $ 5,619.51 50.19% 2.73% 2
SA $ 5,730.54 49.67% 4.76% 0
GRGwithBB | § 7,390.29 97.00% 0
6 97% GGA $ 7,545.28 97.00% 2.10% 1
SSGA $ 7,582.29 97.00% 2.60% 1
SA $ 7,803.29 97.02% 5.59% 1
GRG with BB $ 9,915.48 90.00% 1
12 90% GGA $ 10,138.57 89.99% 2.25% 1
SSGA $ 10,154.58 90.10% 2.41% 1
SA $10,535.34 90.02% 6.25% 0

GRGwithBB | $11,784.30 80.00% 77
18 80% GGA $12,025.88 80.57% 2.05% 1
SSGA $12,019.87 80.02% 2.00% 1
SA $ 12,504.48 79.80% 6.11% 0

10 GRG with BB | $12,305.30  70.00% 91
2 70% GGA $12,561.42 70.00% 2.08% 2
SSGA $12,573.09 70.06% 2.18% 2
SA $ 13,092.47 69.64% 6.40% 0

GRG with BB | $12,886.00 60.00% 142
30 60% GGA $ 13,224.84 60.05% 2.63% 2
SSGA $ 13,243.45 59.99% 2.717% 2
SA $ 13,737.81 59.93% 6.61% 0

GRG withBB | $13,797.10 50.00% 273
36 50% GGA $14,170.91 49.86% 2.711% 2
SSGA $ 14,196.45 50.00% 2.89% 2
SA $ 14,723.57 49.00% 6.71% 0
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Table 5.12. Comparison of exact and metaheuristic algorithms in Model 2

Number Number . Computational
of of ]f:(‘;e:t Algorithm Rel?i‘ilm Total Cost ng Time
Components Periods g a y ap (minute)
GRG with BB 98.21% $ 5,000.00 0
.60? . 0.62% 0
6 $ 5,000 GGA 97.60% $ 4,999.88
SSGA 97.11% $ 5,000.05 | 1.12% 0
SA 97.09% $ 4,950.17 | 1.14% 0
GRG with BB 90.32% $ 3,000.00 0
GGA 85.80% $ 3,000.01 | 5.00% 0
12 § 3,000 SSGA 86.04% $ 299998 | 4.74% 0
SA 85.81% $ 2,901.17 | 4.99% 0
GRG with BB 81.24% $ 4,000.00 1
GGA 76.85% $ 4,000.06 | 5.40% 1
18 $ 4,000 SSGA 76.69% $ 3,998.88 | 5.60% 1
5 SA 71.36% $ 3,977.11 | 12.16% 0
GRG with BB 73.11% $ 5,000.00 2
GGA 61.71% $ 5,000.04 | 15.59% 1
24
$ 5,000 SSGA 64.48% $ 5,000.18 | 11.80% 1
SA 69.37% $ 5,00091 | 5.12% 0
GRG with BB 64.96% $ 6,000.00 14
GGA 58.36% $ 5,999.87 | 10.16% 1
30 $ 6,000 SSGA 56.39% $ 5,998.63 | 13.19% 1
SA 58.31% $ 6,067.34 | 10.24% 0
GRG with BB 55.42% $ 7,000.00 35
GGA 48.53% $ 6,999.26 | 12.43% 1
36 $ 7,000 SSGA 48.04% $ 7,000.01 | 13.32% 2
SA 46.96% $ 6,952.44 | 15.27% 0
GRG with BB 97.53% $ 10,000.00 0
GGA 96.32% $ 9,998.75 | 1.24% 1
6 $10,000 SSGA 96.46% $ 9,999.83 | 1.10% 1
SA 97.43% $10,020.74 | 0.10% 0
GRG with BB 85.06% $ 6,000.00 4
GGA 82.81% $ 6,000.02 | 2.65% 1
12 $ 6,000 SSGA 80.20% $ 6,000.03 | 5.71% 1
SA 84.71% $ 5,890.10 | 0.41% 0
GRG with BB 75.64% $ 8,000.00 5
GGA 70.79% $ 8,000.08 | 6.41% 1
18 $ 8,000 SSGA 72.24% $ 8,000.82 | 4.49% 1
10 SA 74.15% $ 7,986.14 | 1.97% 0
GRG with BB 63.49% $ 10,000.00 13
GGA 55.62% $10,000.10 | 12.40% 2
24 $ 10,000 SSGA 55.38% $ 9,999.97 | 12.77% 2
SA 58.93% $ 10,060.37 | 7.18% 0
GRG with BB 52.15% $12,000.00 | - 24
GGA 45.68% $ 12,000.20 | 12.41% 2
30 $ 12,000 SSGA 46.90% $12,000.06 | 10.07% 2
SA 50.47% $12,196.98 | 3.22% 0
GRG with BB 49.91% $ 15,000.00 92
GGA 44.98% $15,001.99 | 9.88% 2
36 $ 15,000 SSGA 43.86% $ 15,000.00 | 12.12% 2
SA 46.93% $15,158.15 | 5.97% 0
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Objective Function Values in Model 1 with 5 Components
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Figure 5.1. Objective function values in Model 1 with 5 components

Heuristics Gap in Model 1 with 5 Components
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Figure 5.2. Heuristics gap in Model 1 with 5 components

Computational Time in Model 1 with 5 Components
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Figure 5.3. Computational time in Model 1 with 5 components
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Objective Function Values in Model 1 with 10 Components
$16,000

$14,000

2,000
y 2
$10,000

$8,000

$6,000
6 12 18 24 30 36
Period

| mGRGwithBE mGGA ®=ssGA msA

Figure 5.4. Objective function values in Model 1 with 10 components

Heuristics Gap in Model 1 with 10 Components
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Figure 5.5. Heuristics gap in Model 1 with 10 components

Computational Time in Model 1 with 10 Components
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Figure 5.6. Computational time in Model 1 with 10 components
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Objective Function Values in Model 2 with 5 Components
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Figure 5.7. Objective function values in Model 2 with 5 components

Heuristics Gap in Model 2 with 5 Components
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Figure 5.8. Heuristics gap in Model 2 with 5 components

Computational Time in Model 2 with 5 Components
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Figure 5.9. Computational time in Model 2 with 5 components
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Objective Function Values in Model 2 with 10 Components
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Figure 5.10. Objective function values in Model 2 with 10 components

Heuristics Gap in Model 2 with 10 Components
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Figure 5.11. Heuristics gap in Model 2 with 10 components

Computational Time in Model 2 with 10 Components
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Figure 5.12. Computational time in Model 2 with 10 components
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5.4. Chapter Summary

In this chapter, we presented experimental results of a sensitivity analysis on
preventive maintenance and replacement scheduling optimization models. These
experiments investigate the effect of the parameters on the structure of optimal
schedules in multi-component systems. Two factorial design experiments based on
the cost associated with maintenance and replacement activities and reliability
characteristic parameters were constructed and analyzed. We also designed a
comprehensive experiment to analyze and compare the efficiency and accuracy of the

exact and metaheuristic algorithms and showed the advantages of each.
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CHAPTER 6

IMPROVEMENT FACTOR MODELS

6.1. Introduction

In previous chapters, we developed, extended, and analyzed optimization models to
determine an optimal preventive maintenance and replacement schedule in multi-
component systems. In this chapter, we prove a closed-form function to show the
effectiveness of maintenance actions in long-term planning horizons. As we
mentioned in 3.3.1, we review current age reduction and improvement factor models,
present a new mathematical function, and apply it into the optimization models. We

show the effectiveness of proposed function by comparing its computational results.

6.2. Formulation

In Chapter 3, we defined effective ages of a system at the start and end of each

period denoted by X, and X | respectively and presented an equation to relate them

to each other by the length of each period T/¢J as follow:
X' = T for j=1,...T
'=X, + forj= 1,..., (6.1)

In addition, we assumed the initial age of the system is equal to zero. We also
assume that the maintenance activity occurs at the end of the each period and

effectively reduces the age of the system at the start of the next period based on an
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“improvement factor” (aka “age reduction factor”). This kind of maintenance that
does not change failure characteristic of system but reduces its effective age is
known as “minimal repair”.

X, =a-X, for j=1,.,Tand (0<x <) (6.2)

Note that whena =0, the effect of maintenance is to return the system to a state
of “good-as-new” and it corresponds to replacement of the system. Whena =1,
maintenance has no effect, and the system remains in a state of “bad-as-old” which
corresponds to “do nothing”. Without lose of generality, we can always assume that
0<acx<l.

Suppose a system is maintained during its service life without any replacement.
We can calculate its effective age at the start and end of each period as a function of
length of each period, number of maintenance actions, and amount of improvement

factor based on the following equations:

X,=0,X,'=Xl+z=Z
J J
. T _, T T
X2=a-Xl=ax7,X2=X2+7=7(a+1)

<X3=oz-X; =—7J:(a2+a),X; =X3+§=§—(az+a+1)

X,=a X, =§(a’+a2+a),X; =X4+§=§(of+oz2 +a+l)

X, =a-X, =§(af" +a’ 7t +a’ +---+a),X; =X, +§=§(af" +a’ +a’” +---+a+l)

6.3)

(i a’) 6.4)
X = g(ﬁ (@ + 1)) 6.5)
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Now if we assume an unlimited service life for a system with a large number of
maintenance actions, we can measure a lower-bound for its effective age by taking a

limit of the effective ages when number of maintenance actions goes to infinity.

(Note that0<a <1)
infr)-inf {8 )55 oo
infr)-nf 5{ 8 +0])-5(5) o2

The equations (6.6) and (6.7) provide a useful perspective to figure out how
maintenance actions affect the effective ages of a system over a long-term planning
horizon. For example, suppose the length of each period is equal to one month, the
planning horizon is long enough and the system is maintained every month with an
improvement factor equal to 0.8, which means that each maintenance action reduces
the effective age by 20%. Under these assumptions, a lower-bound for the starting
and ending effective ages would be close to 4 and 5 months respectively. We can
interpret that by performing this kind of maintenance starting and ending effective
ages of the system will not be less than 4 and 5 months respectively. These values
can be considered as the minimum for starting and ending effective ages of the

system.

6.3. Mathematical Model

Many researchers assume a constant improvement factor and develop optimization
models to determine an optimal schedule of preventive maintenance actions; see

Jayabalan and Chaudhuri (1992), Martorell et al. (1996) and Martorell et al. (1999).
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Some assume a constant improvement factor but variable amount of age reduction,
which depends on when maintenance actions are performed; see Dedopoulos and
Smeers (1998). Nakagawa (1988) assumes a variable improvement factor as a
function of time intervals before any replacement and presents equations (6.8) and
(6.9) for hazard rate improvement factor and effective age improvement factor which

are also used by Lim and Park (2007).

2k +1
= fork=1,..., 6.8
a, P or n 6.8)
b __k fork=1,...n 6.9
k k +1 gsery .

Lin et al (2001) consider equations (6.10) and (6.11) for the same purpose, which are

also used by El-Ferik and Ben-Daya (2006) and Bartholomew-Biggs et al (2006).

a, =6k+l fork=1,...,n (6.10)
S5k+1

= fork =1,..., 6.11

E ok " ©.1D

We present a new improvement factor model as a function of maintenance and

replacement costs, and effective age of system at the end of previous period.

R—M X"...|
a.=¢(R,M,X'A_)=( J[ ——|, for j=1..,T (6.12)
g a R X +1

The first term is the constant coefficient based on the ratio of difference of
replacement and maintenance costs, which is always between zero and one. It is
designed so that if a costly maintenance action is performed on a system, the
effective age improves more than when an inexpensive maintenance is performed.
That is, more expensive maintenance results in a greater amount of age reduction.

For example, overhauling an engine results in more age reduction that does
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changing the oil. Note that if maintenance cost is equal to the replacement cost, the
numerator of the fraction becomes zero, and maintenance action will coincide with
replacement action. On the other hand, if the maintenance cost is equal to zero, the
ratio becomes one and it means that maintenance does not affect the effective age
and it can be considered as do nothing. The second term 1is a ratio of the effective age
at the end of previous period, which is always less than one. The minimum value is
obtained whenever the system 1s replaced at the previous period. It can be seen that
the ratio increases by increasing the effective age and the amount of age reduction

decreases as the system ages over the planning horizon.

6.4. Computational Results

In order to show the effectiveness of the proposed improvement factor model, we
apply it into the optimization models (3.19) and (3.20). We assume a system with

A =10.00025 and S =2.20 as the characteristic life (scale) and the shape parameters

of the system and consider failure, maintenance, and replacement costs equal to
$2500, $300, $1500 respectively. In addition, we assume R = 92% as the required
reliability for Model 1, B = $6000 as the given budget for Model 2, and 36 months as
the planning horizon.

We consider three improvement factor functions as follows:

R-M
Q= H(R,M)= (—R——) (6.13)
a,, =$,(X')= X , for j=1,..,T (6.14)
2T X+
R-M\ [ X,
a,.=¢(R,M,X'._)=( J[ L ] forj=1..,T (6.15)
B s R X', +1
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The first function calculates the improvement factor of system based on the ratio
of difference of replacement and maintenance costs, which is constant over the
planning horizon. The second function is a simple version of the original model that
uses only the ratio of effective age at the end of previous period and the last one is
the original proposed model. We employ the improvement factor functions into the
single-component version of the optimization models (3.19) and (3.20) developed in
Chapter 3. LINGO! programs of nonlinear mixed-integer optimization models with
different improvement factor functions are presented in Appendix E.

We optimized the models, and obtained optimal solutions. The optimal objective
function value for both models with different improvement factor functions is
presented in Table 6.1. As we can see that by applying a variable improvement
factor, equations (6.14) and (6.15), we can obtain lower optimal value in Model 1,
minimizing total cost subject to reliability constraint, and higher optimal value in
Model 2, maximizing overall reliability subject to budgetary constraint, than
considering constant improvement factor function; equation (6.13). It is clear that
variable improvement factor functions have an advantage over constant

improvement factor in terms of objective function value in optimal solution.

Table 6.1. Optimal objective function values

Improvement Model 1 Model 2
Factor Total Cost Reliability | Reliability Budget
Function 1 $ 8,002.54 92% 89.45% $ 6,000
Function 2 $17,707.74 92% 89.66% $ 6,000
Function 3 $ 6,506.86 92% 91.17% $ 6,000
! http://www .lindo.com
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Tables 6.2 and 6.3 illustrate optimal schedules based on different improvement
factor functions in both models. As it could be seen that by using a variable
improvement factor the optimal schedules contain more maintenance activities than
replacements activities. Especially by applying the third model, the optimal schedule
consists of only maintenance actions. We also ﬁlot the variation of improvement
factor functions over the planning horizon; detailed computational results presented
in Appendix F. Figures (6.1) and (6.2) show the variation of improvement factor
functions over the planning horizon. It can be seen that the constant coefficient
smoothes the second function and reduces its variability. We can state that equation
(6.15) which combines maintenance and replacement costs as a constant coefficient
along with effective age of the system as an independent variable can model the
improvement factor variations very well and results to better optimal solution than
the second function.

Finally, we can conclude that the proposed improvement factor model has an
advantage over the constant improvement factor and the variable improvement
factor function, which uses just the effective age variables without considering

maintenance and replacement cost.

Table 6.2. Optimal maintenance and replacement schedules in Model 1

Mont.h/ 123 45678 910111213141516171819 2021 2223 24 2526 27 28 29 30 31 32 33 34 3536
Function

Function1l - - . . . R---R----M--R------ R---R-.-.-....
Function2 - - - - - R-M- - - - - R----R-MMM.--.-.-R-M- .. ...
Function3 - -M - MMMM - - - - - - MMM -MMM- - - - . R-.--M----.-

Table 6.3. Optimal maintenance and replacement schedules in Model 2

Mont.hl 12345678 910111213141516171819 2021 2223 24 2526 27 28 29 30 31 32 33 34 36 36
Function

Functionl - - - -M- - - R - - - - - . R----MM---R----M--.-.
Function2 - M - - - - - - R-MMM- . - - - . R--+--+«.. R- - - - ... .
Function3 - - - M- M- MMM - MMM-M-MM-MM-MM-MMMM - - - - - -
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Improvement Factor Functions in Model 1
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Figure 6.1. Variation of improvement factor functions in Model 1
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Figure 6.2. Variation of improvement factor functions in Model 2

6.5. Practical Procedure

In most practical situations, it is almost impossible to estimate effect of maintenance
activities on service life of systems or even on service life of a single component. In
these situations, we suggest using the following procedure.

Suppose we have two new identical repairable and maintainable systems with an
increasing rate of occurrence of failure (ROCOF) over a finite planning horizon. We

leave the first system to perform its operation until the end of its service life. It is
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clear that because of increasing failure rate the expected number of failures increase
and the overall reliability of the system decreases over the planning horizon. We can
fit a non-homogeneous Poisson process (NHPP) to the observed data based on
increasing rate of occurrence of failure assumption; where x is the effective age of

the system as shown in Figure 6.3.

v (x)= 4B, -xA (6.16)

Failure Rate
S

Amount of
improvement
on failure rate

-
»

Time

Figure 6.3. Graphical illustration of practical procedure

At the mean time, we perform regular maintenance actions on the second
system. After performing each maintenance activity, failure rate of the system
decreases to an unknown certain level. At the end of the planning horizon, we can
compare the final failure rate of the first system in which no maintenance action
was taken with the final failure rate of the second system in which regular
maintenance activities were performed. We can also fit an appropriate non-
homogeneous Poisson process in which y is the effective age of the system as

illustrated in Figure 6.3.

v,()=4,-B, 'yﬁz_l 6.17)
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By comparing the of failure rates, we can calculate the effect of maintenance
activities and amount of improvement on failure rate of the system based on the

ratio of failure rates at the end of the planning horizon; See Figure 6.3.

A, =2ar) (6.18)

v, (x;)
Now, we can define amount of improvement factor for the effective age of the

systems as follows:

=2 (6.19)
X7
ay =Rt =(/12 B, ),(y_r)m =(_..‘2 -5y )-a{”“’" 6.20)
A By x; A B Xr 4B
o = 5os (/12 By J A, 6.21)
4B

Finally, we recommend the equation (6.22) as an estimation of improvement
factor for each single maintenance action during the service life of the system.

a =84 (%ﬁ:_} A, (6.22)

1

6.6. Chapter Summary

In this chapter, we reviewed current improvement factor function applied in
maintenance scheduling optimization models. We developed and proved
mathematical equations to determine a lower-bound for effective age of
maintainable and repairable system in a long-term planning horizon. A new
improvement factor model was presented and analyzed by the computational results

of optimization models and advantage of it over other models was shown.
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CHAPTER 7

CONCLUSION AND FUTURE RESEARCH

7.1. Conclusion of the Research

In this dissertation, we clearly defined a general preventive maintenance and
replacement scheduling problem. The aim of solving this problem is to improve the
overall reliability and availability of a system and to reduce total cost of its
maintenance. We addressed the problem using a multi-objective approach. We
reviewed and critiqued the recent literature and mentioned that most studies relied
on modeling and analysis of single-component single-objective systems. We defined
characteristics of a repairable and maintainable system and developed new
optimization models to find optimal preventive maintenance and replacement
schedules in multi-component systems. These models also provide a general
framework to achieve optimal preventive maintenance and replacement policies and,
with modifications, can be used as basic closed-form models for any type of system.
Our solution methodology to solve the nonlinear mixed integer programming models
allowed us to obtain optimal solutions.

As an extension, we considered engineering economy parameters and
constructed a multi-objective optimization model. Due to the including of multiple
objectives and its nonlinear structure of the model and the use of integer decision

variables, we decided to solve the model using multi-objective metaheuristic
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algorithms. We applied two types of genetic algorithms and a simulated annealing
algorithm, solved the problem, and achieved near optimal solutions to construct the
trade-off curves. We also performed sensitivity analysis on parameters of the
optimization models and compared computational performance and effectiveness of
exact and metaheuristic algorithms for set of problems.

In order to determine and calculate improvement factor parameter used in
optimization models, we presented and analyzed a new mathematical function to
model age reduction and improvement factor parameter for repairable and

maintainable components.

7.2. Direction for Future Research

We considered two main criteria in our models, total cost to be minimized and
overall reliability to be maximized. An extension of these models would be
considering other criteria such as system availability and demand satisfaction,
which make the models more practical but very complicated to solve.

All of our models are classified as NP-hard problems in which there is no
polynomial computational time for solving large-scale problems. We recommend
applying other heuristic and metaheuristic algorithms to find optimal or near
optimal solutions, especially for multi-objective models with more than two objective
functions.

We recommend using discrete-event and continuous simulation models and
integrating them into our optimization models in order to handle real situations, in
which unexpected failures occur between intervals. In this situation, one can re-

optimize the models and obtain a new optimal preventive maintenance and
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replacement schedule for the rest of the planning horizon. This approach combines
prescriptive nature of optimization models with descriptive nature of simulation
models and develop a complete feedback cycle of modeling in which optimization and
simulation models interact with each other.

We also intend to extend our models into specific applications, especially
production planning and scheduling which is introduced by some researchers.
Because of our proposed modeling approach, in which we define parameters, decision
variables, objective functions, and constraints of system, our models can be
integrated with production planning and inventory control models.

We recommend using Monte Carlo simulation to model age reduction and
improvement factor parameters into the optimization model. Finally, we would like
to encourage prospective researchers to develop more advanced procedures to
estimate age reduction and improvement factors for practical situations especially in

health care applications and medical operations.
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! Model l-Nonlinear mized integer optimization model that
minimizes total cost subject to a reliability constraint;

Model:
Data:

C = 10;
T = 36;
L=1;

Enddata

Sets:

Component/1..C/: Lambda, Beta, Alpha,

Period/1..T/;

LinkComPer (Component, Period): X, XP, M, R;
Endsets

PData:

Lambda = 0.00022 0.00035 0.00038 0.00034 0.00032 0.00028 0.00015
0.00012 0.00025 0.00020;

Beta = 2.20 2.00 2.05 1.90 1.75 2.10 2.25 1.80 1.85 2.15;

Alpha = 0.62 0.58 0.55 0.50 0.48 0.65 0.75 0.68 0.52 0.67;

Failure_Cost =
M _Cost = 35 32
R_Cost

i

250 240 270 210 220 280 200 225 215 255;
65 42 50 38 45 30 48 55;

200 210 245 180 205 235 175 215 210 250;

Fixed Cost = 800;
Given Reliability = 0.5;
Enddata

! Opiective Function, Minimizing the total cost;
Min = @Sum(LinkComPer(i,j): (Failure_ Cost (i) * Lambda (i)
((XP(i,j)"Beta(i)) - (X(i,j)"Beta(i)))) + M Cost{(i)

R_Cost (1)

* R(i,3)) + @Sum{Period(]j): Fixed Cost *

@Prod (Component (i): (1 - M{i,Jj) - R(i,3)))));

! Constraints;

! Recursive functions;

@For (Component (i) : X(i,1l) = 0);

@For (LinkComPer (i, j): XP(i,j) = X(i,3) + (L));

@For {LinkComPer (i,j) | j #GE# 2: X(i,j) = ((1-M(i,j-1)) *
1)) * (XP(i,Jj-1)) + M(i,j-1) * Alpha (i) * (XP(i,3-1)})));

End

! Basio constraints;

@For (LinkComPer(i,j): M(i,j) + R(i,j) <= 1);
@For (LinkComPer (i,j): @BIN(M));

@For (LinkComPer (i,j): @BIN(R));

I Reliability constraint for series system of components;

@Exp (@Sum (LinkComPer (i, Jj):

(X{i,3)"Beta(i)))))) >= Given_Reliability;
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! Model Z-Nonlinear mixed integer optimization model that
maximizes overall reliability subject to a budgetary constraint;

Model:
Data:
CcC = 10;
T = 36;
L=1;
Enddata

Sets:
Component/1..C/: Lambda, Beta, Alpha, Failure_Cost, M _Cost, R_Cost;
Period/1..T/;
LinkComPer (Component, Period): X, XP, M, R;

Endsets

Data:
Lambda = 0.00022 0.00035 0.00038 0.00034 0.00032 0.00028 0.00015
0.00012 0.00025 0.00020;
Beta = 2.20 2.00 2.05 1.90 1.75 2.10 2.25 1.80 1.85 2.15;
Alpha = 0.62 0.58 0.55 0.50 0.48 0.65 0.75 0.68 0.52 0.67;
Failure_Cost = 250 240 270 210 220 280 200 225 215 255;
M _Cost 35 32 65 42 50 38 45 30 48 55;
R_Cost 200 210 245 180 205 235 175 215 210 250;
Fixed Cost = 800;
Given Budget = 15000;
Enddata

W

P Obdective Funciion, Maximlizing the Reliability of series system of
components;
Max = QExp (@Sum(LinkComPer(i,j): (-Lambda(i) * ((XP(i,]j)"Beta(i)) -
(X(i,3)"Beta(i)))))) «

! Constraints;

! Recursive functions;

@For (Component (i): X(i,1) = 0);

@For (LinkComPer (i, j): XP(i,3) X{i,9) + (L));

@For (LinkComPer (i,j) | j #GE# 2: X(i,J) = ((1-M(i,j-1)) * (1-R(i,j-
1)) * (XP(i,j=1)) + M(i,j=1) * Alpha (i) * (XP(i,3j=1))));

n~

! Baslc constraints;

@For (LinkComPer (i,j): M(i,j) + R(i,]) <= 1);
@For (LinkComPer (i,j): @BIN(M));

@For {LinkComPer (i, j): @BIN(R));

! Budget constraint;
@Sum (LinkComPer (i, j): (Failure Cost(i) * Lambda(i) *
((XP(i,j)"Beta(i)) - (X(i,j)"Beta(i)))) + M_Cost(i) * M(i,]) +
R Cost (i) * R(i,Jj)) + @Sum(Period(j): Fixed Cost * (1 -
@Prod (Component (i): (1 - M{(i,j) - R(i,]j)))))<= Given_Budget ;
End

137



APPENDIX B

COMPUTATIONAL RESULTS OF NLMIP MODELS
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Table B.1. Expected number of failures of components in each period in Model 1

M,C) 1 2 3 4 5 6 7 8 9 10
1 0.00022 0.00035 0.00038 0.00034 0.00032 0.00028 0.00015 0.00012 0.00025 0.00020
2 0.00079 0.00105 0.00119 0.00093 0.00076 0.00092 0.00056 0.00030 0.00065 0.00069
3 0.00146 0.00175 0.00204 0.00147 0.00111 0.00161 0.00106 0.00045 0.00101 0.00123
4 0.00218 0.00245 0.002390 0.00199 0.00143 0.00233 0.00162 0.00059 0.00134 0.00182
5 0.00294 0.00315 0.00378 0.00250 0.00173 0.00308 0.00221 0.00072 0.00166 0.00243
6 0.00022 0.00385 0.00269 0.00174 0.00201 0.00252 0.00284 0.00084 0.00121 0.00305
7 0.00079 0.00035 0.00038 0.00134 0.00140 0.00216 0.00015 0.00073 0.00153 0.00020
8 0.00146 0.00105 0.00119 0.00187 0.00169 0.00290 0.00056 0.00085 0.00185 0.00069
9 0.00218 0.00175 0.00204 0.00238 0.00198 0.00365 0.00106 0.00097 0.00215 0.00123
10 0.00294 0.00245 0.00290 0.00287 0.00225 0.00442 0.00162 0.00109 0.00245 0.00182
11 0.00374 0.00315 0.00378 0.00336 0.00251 0.00521 0.00221 0.00121 0.00274 0.00243
12 0.00022 0.00035 0.00269 0.00034 0.00167 0.00028 0.00015 0.00132 0.00181 0.00020
13 0.00079 0.00105 0.00356 0.00093 0.00195 0.00092 0.00056 0.00143 0.00211 0.00069
14 0.00146 0.00175 0.00444 0.00147 0.00222 0.00161 0.00106 0.00153 0.00241 0.00123
15 0.00218 0.00245 0.00534 0.00199 0.00248 0.00233 0.00162 0.00164 0.00270 0.00182
16 0.00294 0.00315 0.00624 0.00250 0.00273 0.00308 0.00221 0.00174 0.00299 0.00243
17 0.00374 0.00385 0.00714 0.00300 0.00298 0.00384 0.00284 0.00184 0.00327 0.00305
18 0.00022 0.00035 0.00038 0.00034 0.00032 0.00028 0.00015 0.00012 0.00025 0.00370
19 0.00079 0.00105 0.00119 0.00093 0.00076 0.00092 0.00066 0.00030 0.00065 0.00436
20 0.00146 0.00175 0.00204 0.00147 0.00111 0.00161 0.00106 0.00045 0.00101 0.00504
21 0.00136 0.00157 0.00290 0.00120 0.00143 0.00158 0.00162 0.00053 0.00085 0.00020
22 0.00207 0.00227 0.00378 0.00174 0.00173 0.00230 0.00221 0.00072 0.00120 0.00069
23 0.00283 0.00297 0.00467 0.00225 0.00201 0.00304 0.00284 0.00084 0.00152 0.00123
24 0.00363 0.00367 0.00556 0.00275 0.00228 0.00380 0.00350 0.00097 0.00183 0.00182
25 0.00022 0.00035 0.00038 0.00187 0.00154 0.00028 0.00015 0.00081 0.00131 0.00163
26 0.00079 0.00105 0.00119 0.00238 0.00183 0.00092 0.00056 0.00094 0.00163 0.00223
27 0.00146 0.00175 0.00204 0.00287 0.00211 0.00161 0.00106 0.00105 0.00194 0.00285
28 0.00218 0.00245 0.00290 0.00336 0.00237 0.00233 0.00162 0.00117 0.00224 0.00349
29 0.00294 0.00315 0.00378 0.00384 0.00263 0.00308 0.00221 0.00128 0.00253 0.00415
30 0.00374 0.00385 0.00467 0.00432 0.00288 0.00384 0.00284 0.00139 0.00282 0.00482
31 0.00022 0.00035 0.00038 0.00034 0.00187 0.00028 0.00015 0.00112 0.00310 0.00020
32 0.00079 0.00105 0.00119 0.00093 0.00214 0.00092 0.00056 0.00123 0.00338 0.00069
33 0.00146 0.00175 0.00204 0.00147 0.00241 0.00161 0.00106 0.00134 0.00366 0.00123
34 0.00218 0.00245 0.00290 0.00199 0.00266 0.00233 0.00162 0.00145 0.00393 0.00182
36 0.00294 0.00315 0.00378 0.00250 0.00291 0.00308 0.00221 0.00156 0.00420 0.00243
36 0.00374 0.00385 0.00467 0.00300 0.00315 0.00384 0.00284 0.00166 0.00446 0.00305
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Table B.2. Reliability of components in each period in Model 1

M,C) 1 2 3 4 5 6 7 8 9 10 Reliability

1 99.98% 99.97% 99.96% 99.97% 99.97% 99.97% 99.99% 99.99% 99.98% 99.98% 99.74%

2 99.92% 99.90% 99.88% 99.91% 99.92% 99.91% 99.94% 99.97% 99.93% 99.93% 99.22%

3 99.85% 99.83% 99.80% 99.85% 99.89% 99.84% 99.89% ‘ 99.96% 99.90% 99.88% 98.69%

4 99.78% 99.76% 99.71% 99.80% 99.86% 99.77% 99.84% 99.94% 99.87% 99.82% 98.15%

5 99.71% 99.69% 99.62% 99.75% 99.83% 99.69% 99.78% 99.93% 99.83% 99.76% 97.61%
6 99.98% 99.62% 99.73% 99.83% 99.80% 99.75% 99.72% 99.92% 99.88% 99.69% 97.92%

7 99.92% 99.97% 99.96% 99.87% 99.86% 99.78% 99.99% 99.93% 99.85% 99.98% 99.10%
8 99.85% 99.90% 99.88% 99.81% 99.83% 99.71% 99.94% 99.91% 99.82% 99.93% 98.60%

9 99.78% 99.83% 99.80% 99.76% 99.80% 99.64% 99.89% 99.90% 99.79% 99.88% 98.08%
10 99.71% 99.76% 99.71% 99.71% 99.78% 99.56% 99.84% 99.89% 99.76% 99.82% 97.556%
11 99.63% 99.69% 99.62% 99.66% 99.75% 99.48% 99.78% 99.88% 99.73% 99.76% 97.01%
12 99.98% 99.97% 99.73% 99.97% 99.83% 99.97% 99.99% 99.87% 99.82% 99.98% 99.10%
13 99.92% 99.90% 99.64% 99.91% 99.81% 99.91% 99.94% 99.86% 99.79% 99.93% 98.61%
14 99.85% 99.83% 99.56% 99.85% 99.78% 99.84% 99.89% 99.85% 99.76% 99.88% 98.10%
16 99.78% 99.76% 99.47% 99.80% 99.75% 99.77% 99.84% 99.84% 99.73% 99.82% 97.58%
16 99.71% 99.69% 99.38% 99.75% 99.73% 99.69% 99.78% 99.83% 99.70% 99.76% 97.04%
17 99.63% 99.62% 99.29% 99.70% 99.70% 99.62% 99.72% 99.82% 99.67% 99.69% 96.51%
18 99.98% 99.97% 99.96% 99.97% 99.97% 99.97% 99.99% 99.99% 99.98% 99.63% 99.39%
19 99.92% 99.90% 99.88% 99.91% 99.92% 99.91% 99.94% 99.97% 99.93% 99.56% 98.85%
20 99.85% 99.83% 99.80% 99.85% 99.89% 99.84% 99.89% 99.96% 99.90% 99.50% 98.31%
21 99.86% 99.84% 99.71% 99.88% 99.86% 99.84% 99.84% 99.94% 99.91% 99.98% 98.68%
22 99.79% 99.77% 99.62% 99.83% 99.83% 99.77% 99.78% 99.93% 99.88% 99.93% 98.15%
23 99.72% 99.70% 99.53% 99.78% 99.80% 99.70% 99.72% 99.92% 99.85% 99.88% 97.61%
24 99.64% 99.63% 99.45% 99.73% 99.77% 99.62% 99.65% 99.90% 99.82% 99.82% 97.06%
25 99.98% 99.97% 99.96% 99.81% 99.85% 99.97% 99.99% 99.92% 99.87% 99.84% 99.15%
26 99.92% 99.90% 99.88% 99.76% 99.82% 9991% 99.94% 99.91% 99.84% 99.78% 98.66%
27 99.85% 99.83% 99.80% 99.71% 99.79% 99.84% 99.89% 99.89% 99.81% 99.72% 98.14%
28 99.78% 99.76% 99.71% 99.66% 99.76% 99.77% 99.84% 99.88% 99.78% 99.65% 97.62%
29 99.71% 99.69% 99.62% 99.62% 99.74% 99.69% 99.78% 99.87% 99.75% 99.39% 97.08%
30 99.63% 99.62% 99.53% 99.57% 99.71% 99.62% 99.72% 99.86% 99.72% 99.52% 96.54%
31 99.98% 99.97% 99.96% 99.97% 99.81% 99.97% 99.99% 99.89% 99.69% 99.98% 99.20%
32 99.92% 99.90% 99.88% 99.91% 99.79% 99.91% 99.94% 99.88% 99.66% 99.93% 98.72%
33 99.85% 99.83% 99.80% 99.85% 99.76% 99.84% 99.89% 99.87% 99.63% 99.88% 98.21%
34 99.78% 99.76% 99.71% 99.80% 99.73% 99.77% 99.84% 99.85% 99.61% 99.82% 97.69%
36 99.71% 99.69% 99.62% 99.75% 99.71% 99.69% 99.78% 99.84% 99.58% 99.76% 97.17%
36 99.63% 99.62% 99.53% 99.70% 99.69% 99.62% 99.72% 99.83% 99.556% 99.69% 96.63%

Overall Reliability = 50.00%
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Table B.3. Cost of components in each period in Model 1

M,0) 1 2 3 4 5 6 7 8 9 10 Fixed Cost
1 0.06 0.08 0.10 0.07 0.07 0.08 0.03 0.03 0.05 0.05 0.00
2 0.20 0.25 0.32 0.20 0.17 0.26 0.11 0.07 0.14 0.18 0.00
3 0.36 0.42 0.55 0.31 0.24 0.45 0.21 0.10 0.22 0.31 0.00
4 0.54 0.59 0.78 0.42 0.32 0.65 0.32 0.13 0.29 0.46 0.00
6 200.74 0.76 66.02 42.53 0.38 38.86 0.44 0.16 48.36 0.62 800.00
6 0.06 21092 245.73 42.36 50.44 38.70 175.57 30.19 0.26 250.78 800.00
7 0.20 0.08 0.10 0.28 0.31 0.60 0.03 0.16 0.33 0.05 0.00
8 0.36 0.25 0.32 0.39 0.37 0.81 0.11 0.19 0.40 0.18 0.00
9 0.54 0.42 0.55 0.50 0.44 1.02 0.21 0.22 0.46 0.31 0.00

10 0.74 0.59 0.78 0.60 0.49 1.24 0.32 0.25 0.53 0.46 0.00
11 200.94 210.76 66.02 180.71 50.55 236.46 175.44 0.27 48.59 250.62 800.00
12 0.06 0.08 0.73 0.07 0.37 0.08 0.03 0.30 0.39 0.05 0.00
13 0.20 0.25 0.96 0.20 0.43 0.26 0.11 0.32 0.45 0.18 0.00
14 0.36 0.42 1.20 0.31 0.49 0.45 0.21 0.34 0.52 0.31 0.00
15 0.54 0.59 1.44 0.42 0.55 0.65 0.32 0.37 0.58 0.46 0.00
16 0.74 0.76 1.68 0.53 0.60 0.86 0.44 0.39 0.64 0.62 0.00
17 200.94 21092 246.93 180.63 205.66 236.07 175.57 215.41 210.70 0.78 800.00
18 0.06 0.08 0.10 0.07 0.07 0.08 0.03 0.03 0.05 0.94 0.00
19 0.20 0.25 0.32 0.20 0.17 0.26 0.11 0.07 0.14 1.11 0.00
20 35.36 32.42 0.55 42.31 0.24 38.45 0.21 0.10 48.22 251.28 800.00
21 0.34 0.38 0.78 0.25 0.32 0.44 0.32 0.13 0.18 0.05 0.00
22 0.52 0.54 1.02 0.36 0.38 0.64 0.44 0.16 0.26 0.18 0.00
23 0.71 0.71 1.26 0.47 0.44 0.85 0.57 0.19 0.33 0.31 0.00
24 200.91 210.88 246.50 42.58 50.50 236.06 175.70 30.22 48.39 55.46 800.00
25 0.06 0.08 0.10 0.39 0.34 0.08 0.03 0.18 0.28 0.42 0.00
26 0.20 0.25 0.32 0.50 0.40 0.26 0.11 0.21 0.35 0.57 0.00
27 0.36 0.42 0.55 0.60 0.46 0.45 0.21 0.24 0.42 0.73 0.00
28 0.54 0.59 0.78 0.71 0.52 0.65 0.32 0.26 0.48 0.89 0.00
29 0.74 0.76 1.02 0.81 0.58 0.86 0.44 0.29 0.54 1.06 0.00
30 200.94 21092 246.26 18091 50.63 236.07 17557 30.31 0.61 251.23 800.00
31 0.06 0.08 0.10 0.07 0.41 0.08 0.03 0.25 0.67 0.05 0.00
32 0.20 0.25 0.32 0.20 0.47 0.26 0.11 0.28 0.73 0.18 0.00
33 0.36 0.42 0.55 0.31 0.53 0.45 0.21 0.30 0.79 0.31 0.00
34 0.54 0.59 0.78 0.42 0.59 0.65 0.32 0.33 0.84 0.46 0.00
35 0.74 0.76 1.02 0.53 0.64 0.86 0.44 0.35 0.90 0.62 0.00
36 0.94 0.92 1.26 0.63 0.69 1.07 0.57 0.37 0.96 0.78 0.00

Total Cost = $13,797.33
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Table B.4. Expected number of failures of components in each period in Model 2

M,0) 1 2 3 4 5 6 7 8 9 10
1 0.00022  0.00035 0.00038 0.00034 0.00032 0.00028 0.00015 0.00012 0.00025 0.00020
2 0.00079  0.00105 0.00119 0.00093 0.00076 0.00092 0.00056 0.00030 0.00065 0.00069
3 0.00022 0.00035 0.00038 0.00034 0.00032 0.00028 0.00015 0.00035 0.00025 0.00020
4 0.00079 0.00105 0.00119 0.00093 0.00076 0.00092 0.00056 0.00050 0.00065 0.00069
5 0.00146  0.00175 0.00204 0.00147 0.00111 0.00161 0.00106 0.00064 0.00101 0.00123
6 0.00218  0.00245 0.00290 0.00199 0.00143 0.00233 0.00162 0.00076 0.00134 0.00182
7 0.00294 0.00315 0.00378 0.00250 0.00173 0.00308 0.00221 0.00089 0.00166 0.00243
8 0.00374 0.00385 0.00467 0.00300 0.00201 0.00384 0.00284 0.00101 0.00197 0.00305
9 0.00458 0.00455 0.00556 0.00348 0.00228 0.00461 0.00350 0.00112 0.00227 0.00370
10 0.00543 0.00525 0.00646 0.00396 0.00254 0.00539 0.00419 0.00124 0.00256 0.00436
11 0.00631 0.00595 0.00737 0.00443 0.00279 0.00619 0.00490 0.00135 0.00285 0.00504
12 0.00022 0.00035 0.00038 0.00034 0.00032 0.00028 0.00015 0.00109 0.00025 0.00020
13 0.00079  0.00105 0.00119 0.00093 0.00076 0.00092 0.00056 0.00120 0.00065 0.00069
14 0.00146  0.00175 0.00204 0.00147 0.00111 0.00161 0.00106 0.00131 0.00101 0.00123
15 0.00218  0.00245 0.00290 0.00199 0.00143 0.00233 0.00162 0.00142 0.00134 0.00182
16 0.00294 0.00315 0.00378 0.00250 0.00173 0.00308 0.00221 0.00153 0.00166 0.00243
17 0.00022 0.00035 0.00038 0.00034 0.00124 0.00028 0.00015 0.00122 0.00025 0.00020
18 0.00079 0.00105 0.00119 0.00093 0.00135 0.00092 0.00056 0.00133 0.00065 0.00069
19 0.00146 0.00175 0.00204 0.00147 0.00184 0.00161 0.00106 0.00144 0.00101 0.00123
20 0.00218 0.00245 0.00290 0.00199 0.00212 0.00233 0.00162 0.00154 0.00134 0.00182
21 0.00180 0.00197 0.00221 0.00147 0.00032 0.00204 0.00221 0.00012 0.00166 0.00243
22 0.00022 0.00035 0.00038 0.00034 0.00055 0.00028 0.00015 0.00030 0.00025 0.00020
23 0.00079 0.00105 0.00119 0.00093 0.00093 0.00092 0.00056 0.00045 0.00065 0.00069
24 0.00146 0.00175 0.00204 0.00147 0.00127 0.00161 0.00106 0.00059 0.00101 0.00123
25 0.00218 0.00245 0.00290 0.00199 0.00158 0.00233 0.00162 0.00072 0.00134 0.00182
26 0.00294 0.00315 0.00378 0.00250 0.00187 0.00308 0.00221 0.00084 0.00166 0.00243
27 0.00374 0.00385 0.00467 0.00300 0.00214 0.00384 0.00284 0.00097 0.00197 0.00305
28 0.00022 0.00035 0.00038 0.00034 0.00147 0.00028 0.00015 0.00012 0.00025 0.00020
29 0.00079 0.00105 0.00119 0.00093 0.00176 0.00092 0.00056 0.00030 0.00065 0.00069
30 0.00146 0.00175 0.00204 0.00147 0.00204 0.00161 0.00106 0.00045 0.00101 0.00123
31 0.00218 0.00245 0.00290 0.00199 0.00231 0.00233 0.00162 0.00059 0.00134 0.00182
32 0.00294 0.00315 0.00378 0.00250 0.00257 0.00308 0.00221 0.00072 0.00166 0.00243
33 0.00374 0.00385 0.00467 0.00300 0.00281 0.00384 0.00284 0.00084 0.00197 0.00303
34 0.00458 0.00455 0.00556 0.00348 0.00306 0.00461 0.00350 0.00097 0.00227 0.00370
35 0.00543 0.00525 0.00646 0.00396 0.00329 0.00539 0.00419 0.00108 0.00256 0.00436
36 0.00631 0.00595 0.00737 0.00443 0.00352 0.00619 0.00490 0.00120 0.00285 0.00504
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Table B.5. Reliability of components in each period in Model 2

M,C) 1 2 3 4 5 6 7 8 9 10 Reliability
1 99.98% 99.97% 99.96% 99.97% 99.97% 99.97% 99.99% 99.99% 99.98% 99.98% 99.74%
2 99.92% 99.90% 99.88% 99.91% 99.92% 99.91% 99.94% 99.97% 99.93% 99.93% 99.22%
3 99.98% 99.97% 99.96% 99.97% 99.97% 99.97% 99.99% 99.96% 99.98% 99.98% 99.72%
4 99.92% 99.90% 99.88% 99.91% 99.92% 99.91% 99.94% 99.95% 99.93% 99.93% 99.20%
5 99.85% 99.83% 99.80% 99.85% 99.89% 99.84% 99.89% 99.94% 99.90% 99.88% 98.67%
6 99.78% 99.76% 99.71% 99.80% 99.86% 99.77% 99.84% 99.92% 99.87% 99.82% 98.13%
7 99.71% 99.69% 99.62% 99.75% 99.83% 99.69% 99.78% 99.91% 99.83% 99.76% 97.59%
8 99.63% 99.62% 99.53% 99.70% 99.80% 99.62% 99.72% 99.90% 99.80% 99.69% 97.05%
9 99.54% 99.55% 99.45% 99.66% 99.77% 99.54% 99.65% 99.89% 99.77% 99.63% 96.50%

10 99.46% 99.48% 99.36% 99.60% 99.75% 99.46% 99.58% 99.88% 99.74% 99.56% 95.95%
11 99.37% 99.41% 99.27% 99.56% 99.72% 99.38% 99.51% 99.87% 99.72% 99.50% 95.39%
12 99.98% 99.97% 99.96% 99.97% 99.97% 99.97% 99.99% 99.89% 99.98% 99.98% 99.64%
13 99.92% 99.90% 99.88% 99.91% 99.92% 99.91% 99.94% 99.88% 99.93% 99.93% 99.13%
14 99.85% 99.83% 99.80% 99.85% 99.89% 99.84% 99.89% 99.87% 99.90% 99.88% 98.60%
15 99.78% 99.76% 99.71% 99.80% 99.86% 99.77% 99.84% 99.86% 99.87% 99.82% 98.07%
16 99.71% 99.69% 99.62% 99.75% 99.83% 99.69% 99.78% 99.85% 99.83% 99.76% 97.53%
17 99.98% 99.97% 99.96% 99.97% 99.88% 99.97% 99.99% 99.88% 99.98% 99.98% 99.54%
18 99.92% 99.90% 99.88% 99.91% 99.84% 99.91% 99.94% 99.87% 99.93% 99.93% 99.04%
19 99.85% 99.83% 99.80% 99.85% 99.82% 99.84% 99.89% 99.86% 99.90% 99.88% 98.52%
20 99.78% 99.76% 99.71% 99.80% 99.79% 99.77% 99.84% 99.85% 99.87% 99.82% 97.99%
21 99.82% 99.80% 99.78% 99.85% 99.97% 99.80% 99.78% 99.99% 99.83% 99.76% 98.39%
22 99.98% 99.97% 99.96% 99.97% 99.95% 99.97% 99.99% 99.97% 99.98% 99.98% 99.70%
23 99.92% 99.90% 99.88% 99.91% 9991% 99.91% 99.94% 99.96% 99.93% 99.93% 99.19%
24 99.85% 99.83% 99.80% 99.85% 99.87% 99.84% 99.89% 99.94% 99.90% 99.88% 98.66%
25 99.78% 99.76% 99.71% 99.80% 99.84% 99.77% 99.84% 99.93% 99.87% 99.82% 98.12%
26 99.71% 99.69% 99.62% 99.75% 99.81% 99.69% 99.78% 99.92% 99.83% 99.76% 97.58%
27 99.63% 99.62% 99.53% 99.70% 99.79% 99.62% 99.72% 99.90% 99.80% 99.69% 97.04%
28 99.98% 99.97% 99.96% 99.97% 99.85% 99.97% 99.99% 99.99% 99.98% 99.98% 99.63%
29 99.92% 99.90% 99.88% 99.91% 99.82% 99.91% 99.94% 99.97% 99.93% 99.93% 99.12%
30 99.85% 99.83% 99.80% 99.85% 99.80% 99.84% 99.89% 99.96% 99.90% 99.88% 98.60%
31 99.78% 99.76% 99.71% 99.80% 99.77% 99.77% 99.84% 99.94% 99.87% 99.82% 98.07%
32 99.71% 99.69% 99.62% 99.75% 99.74% 99.69% 99.78% 99.93% 99.83% 99.76% 97.53%
33 99.63% 99.62% 99.53% 99.70% 99.72% 99.62% 99.72% 99.92% 99.80% 99.69% 96.98%
34 99.54% 99.55% 99.45% 99.65% 99.69% 99.54% 99.65% 99.90% 99.77% 99.63% 96.44%
35 99.46% 99.48% 99.36% 99.60% 99.67% 99.46% 99.58% 99.89% 99.74% 99.56% 95.89%
36 99.37% 99.41% 99.27% 99.56% 99.65% 99.38% 99.51% 99.88% 99.72% 99.50% 95.34%

Overall Reliability = 49.92%

143




Table B.6. Cost of components in each period in Model 2

(M,C) 1 2 3 4 5 6 7 8 9 10 Fixed Cost
1 0.06 0.08 0.10 0.07 0.07 0.08 0.03 0.03 0.05 0.05 0.00
2 200.20 210.25 24532 180.20 205.17 235.26 175.11 30.07 210.14 250.18 800.00
3 0.06 0.08 0.10 0.07 0.07 0.08 0.03 0.08 0.05 0.05 0.00
4 0.20 0.25 0.32 0.20 0.17 0.26 0.11 0.11 0.14 0.18 0.00
B 0.36 0.42 0.55 0.31 0.24 0.45 0.21 0.14 0.22 0.31 0.00
6 0.54 0.59 0.78 0.42 0.32 0.65 0.32 0.17 0.29 0.46 0.00
7 0.74 0.76 1.02 0.53 0.38 0.86 0.44 0.20 0.36 0.62 0.00
8 0.94 0.92 1.26 0.63 0.44 1.07 0.57 0.23 0.42 0.78 0.00
9 1.14 1.09 1.50 0.73 0.50 1.29 0.70 0.25 0.49 0.94 0.00

10 1.36 1.26 1.74 0.83 0.56 1.51 0.84 0.28 0.55 1.11 0.00
11 201.58 211.43 24699 180.93 205.61 236.73 17598 30.30 210.61 251.28 800.00
12 0.06 0.08 0.10 0.07 0.07 0.08 0.03 0.24 0.05 0.05 0.00
13 0.20 0.25 0.32 0.20 0.17 0.26 0.11 0.27 0.14 0.18 0.00
14 0.36 0.42 0.55 0.31 0.24 0.45 0.21 0.30 0.22 0.31 0.00
15 0.54 0.59 0.78 0.42 0.32 0.65 0.32 0.32 0.29 0.46 0.00
16 200.74 210.76 246.02 180.53 50.38 23586 175.44 30.34 210.36 250.62 800.00
17 0.06 0.08 0.10 0.07 0.27 0.08 0.03 0.27 0.05 0.05 0.00
18 0.20 0.25 0.32 0.20 0.34 0.26 0.11 0.30 0.14 0.18 0.00
19 0.36 0.42 0.55 0.31 0.41 0.45 0.21 0.32 0.22 0.31 0.00
20 35.54 32.59 65.78 4242 20547 38.65 0.32 215.35 0.29 0.46 800.00
21 200.45 210.47 245.60 180.31 50.07 23557 175.44 0.03 210.36 250.62 800.00
22 0.06 0.08 0.10 0.07 0.12 0.08 0.03 0.07 0.05 0.05 0.00
23 0.20 0.25 0.32 0.20 0.21 0.26 0.11 0.10 0.14 0.18 0.00
24 0.36 0.42 0.55 0.31 0.28 0.45 0.21 0.13 0.22 0.31 0.00
25 0.54 0.59 0.78 0.42 0.35 0.65 0.32 0.16 0.29 0.46 0.00
26 0.74 0.76 1.02 0.53 0.41 0.86 0.44 0.19 0.36 0.62 0.00
27 20094 210.92 246.26 180.63 50.47 236.07 175.57 215.22 210.42 250.78 800.00
28 0.06 0.08 0.10 0.07 0.32 0.08 0.03 0.03 0.05 0.05 0.00
29 0.20 0.25 0.32 0.20 0.39 0.26 0.11 0.07 0.14 0.18 0.00
30 0.36 0.42 0.55 0.31 0.45 0.45 0.21 0.10 0.22 0.31 0.00
31 0.54 0.59 0.78 0.42 0.51 0.65 0.32 0.13 0.29 0.46 0.00
32 0.74 0.76 1.02 0.53 0.56 0.86 0.44 0.16 0.36 0.62 0.00
33 0.94 0.92 1.26 0.63 0.62 1.07 0.57 0.19 0.42 0.78 0.00
34 1.14 1.09 1.50 0.73 0.67 1.29 0.70 0.22 0.49 0.94 0.00
35 1.36 1.26 1.74 0.83 0.72 1.51 0.84 0.24 0.55 111 0.00
36 1.58 1.43 1.99 0.93 0.77 1.73 0.98 0.27 0.61 1.28 0.00

Total Cost = 14,989.74
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% Data of the Multi-CObjective Optimization Mcdel

Number of components and periocds
= 10;

= 36;

= 36;

= T/J;

g3z e
|

Specification of the components

Parameters of the Failure function
Lambda = [0.00022 (0.00035 0.00038 0.00034 0.00032 0.00028 0.00015
0.00012 0.00025 0.00020];
Beta = [2.20 2.00 2.05 1.90 1.75 2.10 2.25 1.80 1.85
2.15];

[+

Imnprovement factor [(ARge reduction coefficient)

Alpha = [(0.62 0.58 0.55 0.50 0.48 0.65 0.75 0.68 0.52 0.67];
% Failure cost

Failure_Cost = [250 240 270 210 220 280 200 225 215 255];

% Maintenance cost

M Cost = [35 32 65 42 50 38 45 30 48 55];

% Replacement cost

R_Cost = [200 210 245 180 205 235 175 215 210 250];

% Fixed cost

Fixed Cost = 800;

Inflation rates of fallure cost, maintenance cost, replacement cost
and fized cost
Inf Failure = 0.01/12;
Inf M = 0.015/12;
Inf R = 0.02/12;
Inf Fix = 0.01/12;
Interest rate
Int_Rate = 0.03/12;

of the multi-objective
£ the objective functions 1
W2 = 1.0;

Wz = 0.9;
W2 = 0.8;
We = 0.7
W&
W2 =
W2

d, Wi+wz =1

7

obiective functions in goal attainment method

RR

0.50;
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% Fitness Functions of the Cost and Reliability Functicens

function [cost,reliability,fitl,fit2,fit3] = Fitness(a)

Data;
% This section changes a(l,N*T) to A(N,T)
A = zeros(N,T);
for i = 1:1:N

for j = 1:1:T

A(i,j) = al(l, (i-1)*T+3j);

end

end

+ This section calculates the x{starting effective age) and zpiending
@ ctive age) ;
X = zeros(N,T);
for i = 1:1:N
for j = 1:1:7T-1
if A{i,j) == 0

= x(i,]J)+L;
elseif A(i,]j) ==
x(i,j+1) = Alpha(i)*(x(i,]j)+L);

)

elseif A(i,]

x(i,3+1) 0;
end
end
end
Xp = x+L;
iz section calculates the cost and reliability functions for serie
n of components
0;
max_cost = 0;

XX = zeros(N,T);
XXp = Xx+L;

reliability = 1;
for 3 = 1:1:7T
counter = 0;

for i = 1:1:N
if A(i,J) == 0
cost = cost+((Failure Cost(i)*Lambda(i)* ((xp(i,]) "Beta(i))-
{(x(i,j)"Beta(i)))*(1+Inf_Failure)”j));
elseif A(i,]j) == 1
cost = cost+((Failure Cost(i)*Lambda (i)* ((xp(i,])"Beta(i))-
(x(i,3j)"Beta(i)))* (1+Inf Failure)”j)+ (M _Cost(i)* (1+Inf_M)"j));
elseif A(i,]j) ==
cost = cost+({Failure Cost(i)*Lambda (i)*((xp(i,j)"Beta(i))-
(x{(i,3)"Beta(i)))*(1+Inf Failure)”j)+(R_Cost(i)*(1l+Inf R)"j));
end
if A{i,j) == 1
counter = 1;
end
max_cost =
max_cost+((Failure_Cost(i)*Lambda(i)*((xxp(i,j)ABeta(i))-
(xx(i,3)"Beta(i)))*(1+Inf Failure)”j)+(R_Cost(i)*(1+Inf_R)"j))};
reliability = reliability*exp(-Lambda(i)* ({(xp(i,]j) " Beta(i))-
(x(i,3)"Beta(i))));
end

[l A{i,j) == 2
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if counter ==
cost = cost+(Fixed Cost* (1+Inf_Fix)*j);
end
cost = cost*(l+Int Rate)”(-3);
max_cost = max_cost+ (Fixed Cost* (1+Inf_Fix)"j);
max_cost = max_cost+(l+Int Rate)”(-j);
end

% The fitness functions,

fitl Wl*(cost/max_cost)+W2* (-reliability);
fit2 -reliability+(1/max_cost) *abs (GB-cost) ;
fit3 (cost/max_cost)+abs (RR-reliability);

% One point Crossover Function

function [offspring] = Onepointcrossover (parentl,parent?2)

Data;

crossoverpoint = fix (N*T*rand+1l);

offspring =

[parentl (:,l:crossoverpoint),parent2(:,crossoverpoint+1:N*T)];

£ Two point Crossover Functlion

function [offspring] = Twopointcrossover (parentl,parent?2)
Data;

crossoverpointl = fix(N*T*rand+1l);

crossoverpoint2 = fix(N*T*rand+l);

crossoverpointl = abs((crossoverpointl+crossoverpoint2)/2)-
abs ( (crossoverpointl-crossoverpoint2)/2);

crossoverpoint2 =

abs ( (crossoverpointl+crossoverpoint2)/2)+abs( (crossoverpointl-
crossoverpoint2)/2);

offspring =

[parentl (:,l:crossoverpointl),parent2(:,crossoverpointl+l:crossoverpoin
t2),parentl (:,crossoverpoint2+1:N*T)];

% N point Crossover Function
function [offspring] = Npointcrossover (parentl,parent2?)

Data;
for i = 1:1:£ix(N/2)
for j = 1:1:T

offspring(:, (2* (i-1))*T+j) = parentl(:, (2* (i-1))*T+]j);
offspring(:, (2*i-1)*T+j) = parent2(:, (2*i-1)*T+]j);
if mod(N,2) == 1
offspring(:, (N-1)*T+j) = parentl (:, (N=1)*T+]j);
end
end
end
% NT point Crossover Function
function [offspring] = NTpointcrossover (parentl,parent?2)
Data;
for i = 1:1:(N*T)/2
offspring(:,2*i-1) = parentl(:,2*i-1);
offspring(:,2*i) = parent2(:,2*i);
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end

% Two polint Inverse Crossovelr Function

function [offspring] = Ordercrossover (parentl,parent2)
Data;

crossoverpointl = fix (N*T*rand+1l);

crossoverpoint2 = fix(N*T*rand+l);

crossoverpointl = abs((crossoverpointl+crossoverpoint2)/2)-
abs ( (crossoverpointl-crossoverpoint2)/2);

crossoverpoint2 =

abs ( (crossoverpointl+crossoverpoint2)/2) +abs((crossoverpointl-
crossoverpoint2)/2);
for 1 = 1:1:N*T
parentl inv(:,N*T-i+l) = parentl(:,1i});
end
offspring =
[parentl _inv(:,l:crossoverpointl),parent2(:,crossoverpointl+l:crossover
point2) ,parentl inv(:,crossoverpoint2+1:N*T)j};

% Mutation Function
function [individual] = Mutation(individual)

Data;
mutation_point = fix (N*T*rand+1);
if individual (:,mutation_point) == 0
if (rand < 0.5)
for k = 1:1:N
if mod(mutation_point,T) ==

individual (:, (mod (mutation_point,T)+k*T)) = 1;
else
individual(:, (mod (mutation_ point,T)+{(k-1)*T))} = 1;
end
end
elseif (rand >= 0.5)
for k = 1:1:N
if mod(mutation_ point,T) == 0
individual (:, (mod{mutation_point,T)+k*T)) = 2;
else
individual (:, (mod (mutation_point,T)+(k-1)*T)) = 2;
end
end
end

elseif individual (:,mutation_point) == ||
individual (:,mutation_point) ==
for k = 1:1:N
if mod(mutation_point,T) ==

individual (:, {mod (mutation_point,T)+k*T)} = 0;
else )
individual (:, (mod{mutation_point,T)+(k-1)*T)} = 0;
end
end
end
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% Generational Gen Algoerithm

% ic algorithm parameters
% 500

% 2000

& Probability 0.20

& Probability 0.40

% Probability 0.40

clear;

generation_number = 500;
population_size = 2000;
p_selection = 0.20;
p_crossover = 0.40;
p_mutation = 0.40;

min = 0;

max = 2;

Data;

% Initial population
a = zeros(l,T*N);
initial population = zeros(population_size,T*N+5);
for i = l:1:population_size
for j = 1:1:T*N
a(j) = fix((max-min+1l)*rand+min);
end
[cost,reliability, fitl,fit2,fit3]
initial population(i,1:N*T) = a ;
initial population(i,N*T+1:N*T+5)
(cost,reliability,fitl,fit2,fit3];
end
population = initial_population;

Fitness(a);

for g = 1l:1l:generation_number
% Selection procedure
population sorted = sortrows(population,N*T+5);
population_selected =

population sorted(l:fix(p_selection*population_size),:);

ver procedures
for i l:1:p crossover*population_size
parentl = population(fix{(population_size)*rand+l),:);
parent2 = population(fix((population_size)*rand+l),:);
if parentl(:,N*T+5) ~= parent2(:,N*T+5)
. o . ssover
ntorossover (parentl,parent);

Crosson

e point

Twe point crosscover
toffspring = Twopointcrossover (parentl,parent2);

{ pein
soffspring crossover (parentl, parent);
% NT point crossover
offspring = NTpointcrossover (parentl,parent2);
elseif parentl(:,N*T+5) == parent2(:,N*T+5)
Two point inverse crossover
offspring = Ordercrossover (parentl,parent2);
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end
[cost,reliability,fitl,fit2,£fit3] = Fitness(offspring);
population_crossover (i,1:N*T) = offspring;
population_crossover (i,N*T+1:N*T+5) =
[cost,reliability, fitl,fit2,£fit3];
end

+ Mutation procedure
for i = 1:1:p mutation*population_size
individual = population(fix{(population_size)*rand+l),:);
individual _mutated = Mutation(individual);
[cost,reliability, fitl, fit2,£fit3] =
Fitness(individual mutated);
population mutation(i,1:N*T) = individual mutated(:,1:N*T);
population mutation (i, N*T+1:N*T+5)} =
[cost,reliability,fitl,fit2,£fit3];

end
This section generates a new population based on selection,
crossover and mutation procedures
population =

[population_selected;population_crossover;population mutation];
% This section sorts the scolutions in the current population based
on their fitness value and selects the best one in each generation

ss = sortrows (population,N*T+5);

solution_improvement(g,:) = ss(l:1,:);
end

258 values

and then changes the final sclution{l T) to PMR _Scheduls
last_population = sortrows(population,N*T+5);
final solution = last_population(l:1,:);
PMR_Schedule = zeros(N,T);
for i = 1:1:N
for j = 1:1:T
PMR_Schedule(i,j) = final _solution(l, (i-1)*T+j);
end
end
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% Steady State Genetic Algorithm

teady state genetic algorithm parameters

% Number of generation:

5

% Genetic le: 500
% Number of iterations: 100
% Population size: 2¢090

% Probabil
clear;
genetic_cycle = 500;
iteration_number = 100;
population_size = 2000;
p_mutation = 0.20;

cy of mutation: 0.2C

min = 0;

max = 2;

Data;

% Initial population

a = zeros(l,T*N);
initial_population = zeros(population_size, T*N+5);
for i = 1l:1:population_size
for j = 1:1:T*N
a(j) = fix({(max-min+1l)*rand+min);
end
[cost,reliability,fitl,fit2,£fit3] = Fitness(a);
initial population(i,1:N*T) = a ;
initial population (i,N*T+1:N*T+5)
[cost,reliability,fitl,fit2,£fit3]};
end
population = initial population;

for i = l:1:genetic_cycle
for j = l:1l:iteration_number
% Crossover Procedures
parentl = population(fix((population_size)*rand+l),:);
parent2 = population(fix((population_size)*rand+l),:);
if parentl(:,N*T+5) ~= parent2(:,N*T+5)
% Cne point crossover
toffspring = Onepointcroessover (parentl,parentZ);

% Two point crossover

fspring = Twopeolntcrossover (parentl,parent2);

Crossover
= Npolntcrossover {(parentl,parentl);

% NT point crossover

offspring = NTpointcrossover (parentl,parent2);
elseif parentl(:,N*T+5) == parent2(:,N*T+5)

% Two point inverse crossover

offspring = Ordercrossover (parentl,parent2);
end

. Mutation procedure

offspring mutated = Mutation({offspring);
[cost,reliability,fitl, fit2,fit3] = Fitness(offspring mutated);
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offspring _mutated(:,N*T+1:N*T+5) =
[cost,reliability,fitl, fit2,£fit3];
% This section replaces the new c¢ffsprings with the worst
gsolutions in the populatl f they are better than the worst solutions
population_sorted = sortrows(population,N*T+5);
if offspring mutated(:,N*T+5) <
population_sorted(population_size,N*T+5)
population_sorted(population_size,:) = offspring mutated;
population_sorted = sortrows(population_sorted);
end

population = population_sorted;

end
ss = sortrows (population,N*T+5);
solution_improvement (i,:) = ss(l:1,:);

end

he last population based on its fitness values
and then changes the final sclution(l,N*T) to PMR Schedule (N, T)
last_population = sortrows(population,N*T+5);
final_solution = last_population(l:1,:);
PMR_Schedule = zeros(N,T);
for i = 1:1:N

for j = 1:1:T

PMR_Schedule(i,j) = final_solution(l, (i-1)*T+j);

end
end
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% Data of the Multi-Objective Optimization Medel

% Number of components and pericds
N = 10;
T = 36;
J = 36;
L = T/J;

cification of the components

s of the Fallure fung: 11

Lambda = [0.00022 0.00035 0.00038 0.00034 0.00032 0.00028 0.00015

0.00012 0.00025 0.00020];

Beta = [2.20 2.00 2.05 1.90 1.75 2.10 2.25 1.80 1.85

2.15];

P Improvement factor {(Age reduction coefficient)

Alpha = [0.62 0.58 0.55 0.50 0.48 0.65 0.75 0.68 0.52 0.67];

d Fallure cost

Failure_Cost = [250 240 270 210 220 280 200 225 215 255];

% Maintenance cost

M Cost = [35 32 65 42 50 38 45 30 48 55];

% Replacement cost

R _Cost = [200 210 245 180 205 235 175 215 210 250};
Fixed cost

Fixed Cost = 800;

2ring economi
tion rates of fa
and fized cost

Inf Failure = 0.01/12;
Inf M = 0.015/12;
Inf R = 0.02/12;

Inf Fix = 0.01/12;

% Interest rate
Int_Rate = 0.03/12;

intenance cost, replacement cost

£ Wi+W2 = 1
W2
W2
Wz
W2 o=
Wz =
Wo =
W2
: 0.7; W2 = 0.3;
Wl = 0.8; W2 = 0.2;
0.9; W2 = 0.1;

% Glven budget
GB = 5000;
% Reqguired reliability

RR 0.50;
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% Fitness Funé¢tions of the Cost and Reliability Functions
function [cost,reliability,fitl,fit2,£fit3] = Fitness(a)

Data;
% This section changes a({l,N*T} to AN,T;
A = zeros(N,T);
for i = 1:1:N

for §J = 1:1:T

A(ilj) = a(l, (i-1)*T+3);

end

end

% This section calc
effective age)
X = zeros(N,T);
for i = 1:1:N
for j = 1:1:T7-1
if A(i,3) =
x(i,j+1) =
elseif A(i,])
X(ilj+1) =
elseif A(i,])
X(ilj+l) = 0; .
end
end
end
Xp = xX+L;

itates the x{starting effective age) and zpl{ending

=0

Alpha (i) *(x{i,3)+L);

iz section calculates the cost and relisbility functions for series
systen of components

cost = 0;

max_cost = 0;

xx = zeros(N,T);

XXp = xx+L;

reliability = 1;
for j = 1:1:T
counter = 0;

for i = 1:1:N
if A(i,J) == 0
cost = cost+((Failure Cost (i) *Lambda{i)* ((xp(i,j)"Beta(i))-
(x(i,j)"Beta(i)))*(1+Inf_ Failure)”"Jj));
elseif A(i,]j) ==
cost = cost+((Failure Cost (i)*Lambda (i)* ((xp(i,]j)"Beta(i))-
(x(i,j)"Beta(i)))*(1+Inf Failure)”j)+ (M Cost(i)* (1+Inf_M)"j));
elseif A(i,]) ==
cost = cost+((Failure Cost (i) *Lambda(i)*((xp(i,]j)"Beta(i))-
(x(i,j)"Beta(i)))* (1+Inf Failure)”j)+{R_Cost(i)*(1+Inf_R)"]));
end
if A(i,]) ==1
counter = 1;
end
max_cost =
max_cost+((Failure Cost(i)*Lambda (i)* ((xxp(i,]) "Beta(i))~-
(xx(i,j)"Beta(i)))*(1+Inf Failure)”j)+(R_Cost (i)*(1+Inf_R)"]j));
reliability = reliability*exp (-Lambda(i)* ((xp(i,])"Beta(i))~-
(x(i,j)"Beta(i))));
end

Il A(i,]) == 2
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if counter ==
cost = cost+(Fixed Cost* (1+Inf Fix)"j);
end
cost = cost*(l+Int Rate)”(=3);
max_cost = max_cost+ (Fixed_Cost* (1+Inf_Fix)"j);
max_cost = max_cost+(l+Int Rate)”(-j);
end

[

The fitness functicns,

fitl = Wl* (cost/max_cost)+W2* (-reliability);
fit2 = ~-reliability+(1/max_cost)*abs(GB-cost);
fit3 = (cost/max_cost)+abs(RR-reliability);

% Transitlon Function
function [x] = Transition (x)

Data;
transition_point = fix(N*T*rand+1);
if x(:,transition_point) ==
if (rand < 0.5)
for k = 1:1:N

if mod(transition_point,T) == 0
x(:, (mod(transition_point,T)+k*T)) = 1;
else
x(:, (mod(transition_point,T)+(k=-1)*T)) = 1;
end
end
elseif (rand >= 0.5)
for k = 1:1:N
if mod(transition point,T) == 0
x(:, (mod(transition_point,T)+k*T)) = 2;
else :
x(:, (mod(transition_point,T)+ (k=1)*T)) = 2;
end
end
end
elseif x(:,transition_point) == 1 || x(:,transition_point) ==

for k = 1:1:N
if mod(transition_point,T) ==

x(:, (mod(transition_point,T)+k*T))} = 0;
else
x({:, (mod(transition_point,T)+ (k-1)*T)) = 0;
end
end
end
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% Simulated Annealing Algorithm

thm parameters

tenperature: GCQO0
temperature: 0.01
ecreasing rate: .98

clear;
t_initial = 1000000;
t_final = 0.01;
t_rate = 0.98;
min = 0;
max = 2;
Data;
% Initial solution
a = zeros(l,T*N);
for 3 = 1:1:T*N

a(j) = fix{(max-min+l)*rand+min);
end
[cost,reliability, fitl,fit2,fit3] = Fitness(a);
initial_ solution(1,1:N*T) = a ;

initial solution(l,N*T+1:N*T+5) = [cost,reliability,fitl, fit2,£fit3];

x = initial_solution;

t_current = t_initial;
i=1;
while t_final <= t_current

% Transition procedure

y = Transition(x);

[cost,reliability, fitl,fit2,fit3} = Fitness(y):;
y(1,N*T+1:N*T+5) = [cost,reliability,fitl,fit2,£fit3];

% Acceptation procedure
if y(1,N*T+5) < x(1,N*T+5)
X = y;
elseif y(1,N*T+5) >= x(1,N*T+5)
if rand <= exp{-(y(1,N*T+5)-x(1,N*T+5))/t current)
X =Yy,
end
end
solution_improvement (i, 1:N*T+5) = x;
t_current = t_rate*t_current;
i = i+1;
end
% This section changes the final solution(l,N*T}
ss = sortrows(solution_improvement,N*T+5);
final solution = ss{l:1,:);
PMR_Schedule = zeros(N,T);
for i = 1:1:N
for j = 1:1:T
PMR Schedule(i,j) = final_solution(l, (i-1)*T+j);
end
end
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APPENDIX E

LINGO PROGRAMS OF
IMPROVEMENT FACTOR MODELS
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! Model 1.l-Nonlinear mixed integer optimization model that
minimizes total cost subject to a reliability constraint with
constant improvement factor

based on maintenance and replacement costs;

Model:

Data:
c=1;
T
L =1;

Enddata

it
W
[=)}
~

Sets:

Period/1..T/;

LinkComPer (Period): X, XP, M, R;
Endsets

Data:

Lambda = 0.00025;

Beta = 2.20;

Failure_Cost = 2500;

M _Cost = 300;

R _Cost = 1500;

Given Reliability = 0.92;
Enddata

! Objective Funcihion, Minimizing the total cost;
Min = @Sum(LinkComPer(j): (Failure Cost * Lambda * ((XP{j)"Beta) -
(X(j)"Beta))) + M_Cost * M(j) + R_Cost * R(]));

! Constrainis;
I Recursive functions;
X(1) = 0;
@For (LinkComPer (j): XP(j) = X(j) + L);
@For (LinkComPer (j) | j #GE# 2: X(j) = ((1-M(3j-1)) * (1-R(j-1)) *
(XP(j-1)) + M(j-1) * ((R_Cost-M Cost)/R _Cost) * (XP(j-1)})))};

! Basic constraints;

@For (LinkComPer (j): M(j) + R{(j) <= 1);
@For {LinkComPer (j): @BIN(M));

@For (LinkComPer (j): @BIN(R));

! Reliability constraint;
@Exp (@Sum (LinkComPer (j): {(-Lambda * ((XP(j)”"Beta) - (X(j)”Beta)))))
>= Given_Reliability;
End
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! Model 1.2-Nonlinear mixed integer optimization model that
minimizes total cost subject to a reliability constraint with
variable improvement factor based on effective age;

Model:

Data:
C=
T
L

Enddata

1;
36;

Sets:
Period/1..T/;
LinkComPer (Period) :
Endsets

Data:
Lambda 0.00025;
Beta 2.20;
Failure_ Cost
M Cost 300;
R_Cost 1500;
Given_Reliability

Enddata

2500;

0.92;

Minimiz

@Sum (LinkComPer (j) :

' Ovdective Function,
Min

X, XP,

M,

ing the total cost;
(Failure Cost * Lambda *

((XP(j)"~Beta)

(X(j)"Beta))) + M _Cost * M{j) + R_Cost * R(]));

traints;

Recursive
X(1) 0;
@For {LinkComPer (j): XP(j)

functicns;

@For (LinkComPer (j)| j #GE
(XP(j=-1)) + M(j-1) =
' Basic constraints;

@For {LinkComPer (j): M(J)
@For (LinkComPer (j) :
@For (LinkComPer (j): @BIN({
! Rellability constraint;
@Exp (@Sum (LinkComPer (j) :
>= Given_Reliability;
End

X(3) + L)
# 2: X(3) ((1-M(3-1))

((XP(3-1)/(XP(]-1)+1)))

*

@BIN(M));

+ R(j) <= 1);
R));
(-Lambda * ((XP(j)"Beta)
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! Model 1.3-Nonliinear mixed integer optimization model that
minimizes total cost subject to a reliability constraint with
variable improvement factor
based on maintenance and replacement costs and effective age;

Model:
Data:
Cc =1;
T = 36;
L =1;
Enddata

Sets:

Period/1..T/;

LinkComPer (Period): X, XP, M, R;
Endsets

Data:

Lambda = 0.00025;

Beta = 2.20;

Failure Cost = 2500;

M Cost = 300;

R Cost = 1500;

Given_Reliability = 0.92;
Enddata

! Opiective Functicn, Minimizing the total cost;

Min = @Sum(LinkComPer (j): (Failure Cost * Lambda * ((XP(j)“"Beta) -
(X(j)"Beta))) + M _Cost * M(j) + R_Cost * R(j));

rsive fﬁnctions;
0;
@For (LinkComPer (j): XP(j) = X(j) + L);
@For (LinkComPer (j) | j #GE# 2: X(j) = ((1-M(j-1)) * (1-R(j-1)) *
(XP(j-1)) + M(j-1) ~* (((R_Cost-M_Cost)/R_Cost) * (XP(3-
1)/ (XP(3-1)+1))) * (XP(3-1)})):
! Basio constraints;
@For (LinkComPer (j): M(j) + R(j) <= 1);
@For (LinkComPer (j): @BIN(M));
@For (LinkComPer (j): @BIN(R));
! Reliability constraint;
@Exp (@Sum (LinkComPer (j) : (~Lambda * ((XP(j)”Beta) - (X(j)"Beta)))))
>= Given_Reliability;
End
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! Model 2.1-Nonlinear mixed integer optimization model that

maximizes overall reliability subject to a budgetary constraint
with constant improvement factor
based on maintenance and replacement costs ;

Model:
Data:
c =1;
T = 36;
L =1;
Enddata

Sets:

Period/1..T/:;

LinkComPer (Period): X, XP, M, R;
Endsets

Data:
Lambda = 0.00025;
Beta = 2.20;

Failure_Cost = 2500;

M _Cost = 300;

R_Cost = 1500;

Given_Budget = 6000;
Enddata

! Okpjective Function, Maximizing reliability;
Max = QExp(@sum(LinkComPer (j): (-Lambda * ((XP(j)“Beta) -
(X(j)"Beta))))) ;
! Constraints;
I Recursive functionsg;
X(1) = 0; -
@For (LinkComPer (j): XP(j) = X(j) + (L))
@For (LinkComPer (j) | j #GE# 2: X(3j) = ((1-M(j-1)) * (1-R(3~-1)) *
(XP(j-1)) + M(j-1) * ((R _Cost-M Cost)/R_Cost) * (XP(j-1))));

! Basic constraints;

@For {LinkComPer (j): M(j) + R(j) <= 1);
@For (LinkComPer (j): @BIN(M));

@For (LinkComPer (j): @BIN(R));

! Budget constraint;
@Sum (LinkComPer (j): (Failure Cost * Lambda * ((XP(Jj)"Beta) -
(X(j)"Beta))) + M_Cost * M(j) + R_Cost * R(j)) <= Given_Budget;
End
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! Model 2.2-Nonlinear mixed integer optimization model that
maximizes overall reliability subject to a budgetary constraint
with variable improvement factor based on effective age;

Model:

Data:
c=1;
T 36;
L=1;

Enddata

Sets:

Period/1..T/:;

LinkComPer (Period): X, XP, M, R;
Endsets

Data:
Lambda = 0.00025;
Beta = 2.20;
Failure Cost = 2500;
M Cost = 300;
R_Cost = 1500;
Given_Budget = 6000;
Enddata

! Obiective Punction, Maximizing the reliability;
Max = QExp(@sum(LinkComPer(j): (-Lambda * ((XP(3j)"*Beta) =
(X(3)"Beta))))) ;

! Constraints;
I Recursive functions;
X(1l) = 0;
@For (LinkComPer (j): XP(j) = X(3j) + (L))
@For (LinkComPer (j) | j #GE# 2: X{(3j) = ((1-M(j-1)) * (1-R(3-1)) *
(XP(j-1)) + M(3-1) * ((XP(j-1)/(XP(j-1)+1))) * (XP(j-1))));

! Basic constraints;

@For (LinkComPer (j): M(j) + R{j) <= 1);
@For (LinkComPer (j): @BIN(M));

@For (LinkComPer (j): @BIN{(R));

! Budget constraint;
@Sum (LinkComPer (j): (Failure Cost * Lambda * ((XP(Jj)"Beta) -
(X(j)"*Beta))) + M _Cost * M(j) + R_Cost * R(j)} <= Given_Budget;
End
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! Model 2.3~Nonlinear mixed integer optimization model that
maximizes overall reliability subject to a budgetary constraint
with variable improvement factor
based on maintenance and replacement costs and effective age;

Model:
Data:
CcC = 1;
T = 36;
L =1;
Enddata

Sets:

Period/1..T/:;

LinkComPer (Period): X, XP, M, R;
Endsets

Data:
Lambda = 0.00025;
Beta = 2.20; :
Failure_ Cost = 2500;
M_Cost = 300;

R_Cost = 1500;
Given_Budget = 6000;
Enddata

! Obiective Funciion, Maximizing the reliability;
Max = Q@Exp (@sum(LinkComPer (j): (-Lambda * ((XP(j)"Beta) -
(X(j)"Beta))))) ;

I Constraints;
! Recursive functions;
X(1) = 0;
@For (LinkComPer{j): XP(j) = X(j) + (L))
@For (LinkComPer (j) | J #GE# 2: X{(j) = ((1-M(j-1)) * (1-R{j-1)) *
(XP(j-1)) + M(3-1) * (((R _Cost=-M Cost)/R_Cost) * (XP(j-
1)/ (XP(j-1)+1))) * (XP(j-1))));

I Basic constraints;

@For (LinkComPer (j): M(j) + R(j) <= 1);
@For {LinkComPer (j): @BIN(M));

@For (LinkComPer (j): @BIN(R));

! Budget constraint;
@Sum (LinkComPer (j): (Failure Cost * Lambda * ((XP(]j)"Beta) -
{(X(j)"Beta))) + M Cost * M(j) + R_Cost * R(j)) <= Given_Budget;
End
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APPENDIX F

COMPUTATIONAL RESULTS OF
IMPROVEMENT FACTOR MODELS
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Table F.1. Variation of improvement factors in each period

Model 1 Model 2
(M,F) | Function 1 Function 2 Function 3 Function 1 Function 2 Function 3

1 0.80000 0.50000 0.40000 0.80000 0.50000 0.40000

2 0.80000 0.66667 0.53333 0.80000 0.66667 0.53333

3 0.80000 0.75000 0.60000 0.80000 0.70000 0.60000

4 0.80000 0.80000 0.58947 0.80000 0.76923 0.64000

5 0.80000 0.83333 0.63333 0.80000 0.81250 0.62456

6 0.80000 0.85714 0.61846 0.80000 0.84211 0.65612

7 0.80000 0.50000 0.60520 0.80000 0.86364 0.63974

8 0.80000 0.66667 0.59383 0.80000 0.88000 0.66649

9 0.80000 0.70000 0.58439 0.80000 0.89286 0.64982
10 0.80000 0.76923 0.63016 0.80000 0.50000 0.63374
11 0.80000 0.81250 0.61559 0.80000 0.66667 0.61883
12 0.80000 0.84211 0.60271 0.80000 0.70000 0.65228
13 0.80000 0.86364 0.59173 0.80000 0.72477 0.63607
14 0.80000 0.88000 0.58268 0.80000 0.74415 0.62095
15 0.80000 0.50000 0.62911 0.80000 0.79627 0.60739
16 0.80000 0.66667 0.61464 0.80000 0.83075 0.64477
17 0.80000 0.75000 0.60189 0.80000 0.85525 0.62899
18 0.80000 0.80000 0.59105 0.80000 0.87355 0.65911
19 0.80000 0.83333 0.63432 0.80000 0.88775 0.64262
20 0.80000 0.50000 0.61935 0.80000 0.89908 0.62699
21 0.80000 0.66667 0.60599 0.80000 0.50000 0.65775
22 0.80000 0.70000 0.59449 0.80000 0.66667 0.64132
23 0.80000 0.72477 0.63649 0.80000 0.75000 0.62578
24 0.80000 0.74415 0.66424 0.80000 0.80000 0.65694
25 0.80000 0.79627 0.68394 0.80000 0.83333 0.64053
26 0.80000 0.83075 0.69864 0.80000 0.85714 0.62505
27 0.80000 0.85525 0.71004 0.80000 0.87500 0.65644
28 0.80000 0.87355 0.40000 0.80000 0.88889 0.64006
29 0.80000 0.50000 0.53333 0.80000 0.50000 0.62461
30 0.80000 0.66667 0.60000 0.80000 0.66667 0.61063
31 0.80000 0.70000 0.64000 0.80000 0.75000 0.59843
32 0.80000 0.76923 0.62456 0.80000 0.80000 0.63300
33 0.80000 0.81250 0.65612 0.80000 0.83333 0.66597
34 0.80000 0.84211 0.67805 0.80000 0.85714 0.68520
35 0.80000 0.86364 0.69418 0.80000 0.87500 0.69961
36 0.80000 0.88000 0.70654 0.80000 0.88889 0.71080
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