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ABSTRACT 

 

 

 

With more and more attention surrounding healthcare, Industrial Engineers have championed the 

task to help hospitals and outpatient centers operate as efficiently as possible. Simulation is often 

used to analyze hospital performance measures.   

The University of Louisville Health Care Outpatient Center is a relatively new building 

occupying 169,000 ft
2
 and opened in October of 2008.  The clinic is experiencing uneven 

workloads, over scheduling of Medical Assistants, and highly variable patient waiting times.. 

The Arena Simulation package has been used to develop a model of the outpatient center’s 

current state. Using the data from July 2009 the model has been validated and verified.  The 

model uses actual patient arrival data and discrete probability distributions to describe the current 

patient processing scheme for 41 doctors who regularly operate out of the outpatient center.    

Utilization rates for doctors were generally very high, but great variability was also present.  

Room utilization rates were lower than the author expected, confirming that the clinic could 

potentially house more doctors.  Medical Assistants (MA) and doctors had almost equal numbers 

of patients waiting for them so it can be suggested that when deciding staffing levels MAs and 

doctors should be added at a one to one ratio.  Patient waiting times were also highly variable 

based on which doctor was being visited and it was suggested that the current doctors review 

their scheduled patient visit times to make sure they are scheduling for an accurate time.  Further 

research can be done to increase usability and add animation to the model. 
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NOMENCLATURE 

 

 

 

1.) Simulation Related Nomenclature: 
 

Entity-person or object moving through the simulation model that is being acted upon and 

utilizing resources 

Attributes-characteristics possessed by entities that describe them 

Resource Element-people or assets that an entity can use to move itself further though the 

simulation 

Queue-line where entities will wait for a resource if the resource is busy 

Sequence- list determining in what order entities will visit stations throughout the model 

Schedule Element-spreadsheet where resource availability or arrival schedule can be outlined 

Create Module-generates entities and releases them into the system based on schedule or time 

between arrivals 

Assign Module-used to assign new values to variables, entity attributes, and entity pictures 

Record Module-collects statistics throughout the model 

Route Block-transfers the entity to its next location (station) over a specified time 

Station Block-locations to which entities are routed based upon a specified sequence 

Process Module-area where entities are processed within a model, usually requiring resources to 

be seized.  Processes can be classified as value added, non-value added, wait, or transfer. 

Decide Module-point at which decisions are made based on conditions or probabilities in a 

model, used to bring logic into the simulation 
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Seize Module-allocates units of a resource to an entity 

Release Module- releases units of a resource previously assigned to an entity 

Dispose Block-removes entities from the simulation and counts them and being finished 

2.) Outpatient Center Related Nomenclature 

 

Medical Assistant-brings the patient back to the exam room and takes notes of their history and 

basic vital signs 

 

Physician- works directly with the patient to understand illness, diagnose problems, and 

prescribe medications or future visits 

 

Check-in nurse-checks the patient into the system and updates any new insurance or patient 

information 

 

Check-out nurse-sets up future visits and checks the patient out of the system 

 

Lab-area where blood can be taken and test can be initiated for patients 
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I. INTRODUCTION 
 

 
 
The University of Louisville’s Outpatient Center is a relatively new area for doctors to see 

patients outside the hospital.  It was opened in 2008, and is staffed by 11 medical assistants and 

45 doctors, 36 of whom see patients on a regular basis.  The doctors operating out of the 

outpatient clinic specialize in many varied fields of medicine including, cardiology, 

endocrinology, gastrointestinal diseases, infectious diseases, pulmonary problems, and 

rheumatology.  There are 24 exam rooms, 2 nurse stations, 4 doctor rooms, 2 labs, and a patient 

waiting room all within 169,000 ft
2
.  Figure 1 below shows the layout of the outpatient facility. 
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Figure 1: Layout of University of Louisville Outpatient Center  

  The office operates 2 half-day shifts, from 8:00 to 12:00 and from 12:30 to 4:30.  Typically 

each half-day will have 8 doctors scheduled, with Tuesday and Wednesday being the busiest 

days in the office.  Patients are scheduled mainly around the availability of the doctor at the 

specified clinic.  Appointment durations are usually set for either a shorter time or a longer time 

based upon doctor’s recommendations.  Some doctors use 20 minutes and 40 minutes, while 

some prefer to use 30 minutes and 1 hour.  Anywhere from 5 to 30 patients are seen within a 

given half-day.  Doctors can see anywhere between 2 and 20 patients in a half-day based on the 
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amount of time they spend with the patient.  Medical Assistants are assigned to specific doctors, 

usually 4-6 doctors per day.   

The remainder of this thesis is organized as follows.  In the next section the problem is described 

in greater detail, focusing on important performance metrics.  The review of related literature 

provides an in-depth survey of current uses of simulation in health care and simulations within 

outpatient clinics.  Following the literature review, patient flow is described throughout the entire 

outpatient system.  Data analysis techniques and necessary assumptions are detailed in the 

modeling procedures section. The simulation logic and model are discussed within the 

simulation model section.  The results section shows output from the Arena model and outpatient 

performance metrics are analyzed.  Finally, conclusions are presented with recommendations for 

the outpatient center and future research in the area. 

II. PROBLEM STATEMENT 

Although this is a newer facility, problems have surfaced over its year and half of operation.  As 

previously mentioned, Tuesdays and Wednesdays are the busiest days because doctors rarely 

want to work on Mondays or Fridays.  This creates much extra stress and work for the Medical 

Assistants (MAs) on those days.  Some doctors see many more patients on a given half-day than 

others, resulting in unequal workload assignments for the MAs.  The operating schedule 

typically is catered to the desires of the doctors, and efficiency is often the second item 

considered.  This clinic does not seem to record or focus on any particular performance measure. 

The outpatient clinic is currently in a state that can support day-to-day function, but does not 

lend any opportunities for data driven improvements.   The center is hesitant to make large 
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operational changes because they are often costly and there is no data analysis to predict a known 

outcome.  A system that provides analysis of current state operations and quantifies the value of 

potential changes is lacking from the clinic.  Utilization rates for doctors, Medical Assistants, 

and rooms are often unknown.  The absence of key operational metrics such as throughput, 

utilization, and patient waiting times makes it almost impossible for the center to make 

improvements.  For example, a common belief held by hospital management is that the center 

could have more doctors operate clinics within their facility than are currently scheduled.  

Without understanding room and MA utilization rates, the impact on patient waiting times and 

throughput could not be measured.  Understanding and using these measures will make resource 

planning and allocation much easier. 

This thesis will address the information problems through the simulation model.  Medical 

assistant, check-in, and check-out staff utilization rates will be provided through the simulation-

based model.  Patient waiting times, total time in system, and time spent waiting for resources 

will be observed for the simulated month.  These performance measures will be instrumental in 

driving decisions to improve the outpatient center’s daily operations. 

  



5 
 

III. LITERATURE REVIEW 

 

 

 

This literature review addresses two main topics; how simulation has been applied within the 

health care field and how simulation has been directly used within outpatient centers.  General 

uses for simulation in healthcare seeks to provide insight into types of simulation techniques, 

detail level in simulation, an Arena simulation of an emergency department, and a simulation 

incorporating human behavior. Simulation in outpatient centers will discuss trend of shifting care 

to outpatient clinics, early outpatient simulation, an outpatient center simulation using actual 

data, and an outpatient simulation using probability distributions.  The literature presented in this 

review should give a general overview of how simulation can benefit health care and various 

applications in outpatient clinics. 

A.) General Uses for Simulation in Healthcare 

For much time simulation has been a staple tool in the manufacturing and business arenas.  After 

years of success in other fields, the health care industry has started to adopt simulation for 

process analysis and more informed decision-making.  Simulation is a valuable asset to the 

health care industry because it not only allows the estimation of operational characteristics, but 

also estimates the consequences of making changes in planning or policies, therefore reducing 

financial risk (Jun et al., 1999).  According to Kuljis et al. (2007), performance metrics are being 

introduced to better understand change in heath care, but often progress in one area comes at the 

expense of other equally important metrics.   

The purpose of this simulation model is to give insight into all performance metrics surrounding 

the outpatient center and how they are impacted by systematic changes. Kuljis et al. (2007) 
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describe the six major techniques in simulation: discrete-event, continuous, system dynamics, 

Monte Carlo, agent-based simulation, and 3-D and virtual reality simulation, and how they have 

been used in manufacturing and how they could potentially be used in health care.  Most 

importantly the article discusses how discrete-event simulation has been used for increasing 

productivity, reducing waiting times, and job scheduling, all techniques that can be applied to 

health care simulation.  The simulation in this thesis uses discrete-event simulation (DES) due to 

its ability to model sequential events easily and the availability of DES software. 

Patient scheduling is of major importance when working in the health care field.  Well-planned 

patient scheduling can decrease waiting time while increasing utilization.  Bakker et al (2008), 

Dexter (1999), Liu (1998), and Takakuwa (2008) discuss patient appointment scheduling based 

around simulation modeling.  Both Arena and Excel simulation models were use to study current 

patient scheduling schemes and virtually implement new schemes.  The simulations that were 

studied in these articles used real data to describe patient arrivals and validate the models.  

Stochastic distributions were commonly used other places within the simulations.  When 

working with patient scheduling, it is common to develop more than one model and test out 

multiple ideas to see the potential impact to the system.  Simulation has made it much easier for 

modelers to change scheduling functions and selection rules to see if changes would help 

improve waiting times for patients. 

Determining the amount of detail and data to include in a model is an important step in deciding 

the logic behind a simulation model.  Miller et al. (2008) notes that adding more complexity to a 

simulation model does not necessarily add value to the final analysis.  They go on to state that 
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too much complexity is actually counterproductive because it requires much more time and 

effort to ensure the model is performing like the real system.  Figure 1 below shows that as 

complexity increases utility will increase.  This trend continues until utility reaches a maximum 

after which further complexity will only diminish utility. 

 

Figure 2: Utility Curve for Model Complexity (Miller et al., 2008) 

Model detail level is especially crucial for health care simulation models since available data is 

often less than desired and assumptions are often required to model reality.   

Industrial Engineers are always looking to improve efficiency by coming up with innovative 

ideas to provide a competitive edge in industry.  These innovations have spread into the health 

care field and hold much promise for reducing waste and increasing throughput and patient 

satisfaction.  A study based around an Emergency Department presented the new idea of 

Provider Directed Queuing (PDQ) that assigns an emergency room physician to a patient at 

triage, and based on the physician’s initial assessment will then assign the patient a traditional 

room or simply order treatments that may not necessarily require a room (DeFlitch, 2008).  

Although the Arena simulation model for the PDQ situation chose not to directly model human 

activities, research exists that supports simulation modeling for human behavior.  Brailsford et 
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al. (2006) completed a Discrete Event Simulation (DES) to aid health care managers in deciding 

whether or not to invest in potential treatments and technologies.  The model utilizes breast 

cancer data from the UK along with a survey given to 2058 random women in the UK to predict 

how certain women will react to certain potential treatments. 

B.) Simulation in Outpatient Centers 

According to Jun et al. (1999), the movement from delivering health care services in inpatient 

facilities to outpatient facilities has driven the expansion of many hospitals outpatient services.  

It goes on to state that due to the complexity of integrated systems such as an outpatient center 

and the large amount of data required to support a simulation based around such a facility, there 

are very few articles discussing the use of simulation for these complex integrated systems.  One 

of the first simulations of an outpatient clinic dates back to a study done by Fetter and Thompson 

in 1965 in which it was found that a 30% increase in doctor utilization rates could only be 

justified if the doctor’s time was worth ten times that of the patient (Jun et al., 1999).  

An article describing a simulation performed at the University Hospital and Medical Center at 

Stony Brook in New York’s outpatient clinics emphasizes the use of real data in simulation 

modeling and verification.  Real data was chosen over distribution functions and predetermined 

industry time standards because the staff was confident that the data was accurate and using real 

data helped to further staff confidence in the model (Barnes et al., 1997).  On the other hand, an 

article describing an Arena simulation of a new Pain Management Outpatient Procedure Center 

(OPC) within the Mayo Clinic used real data over a one year time period to create probability 

distribution estimates for each processes.  The Mayo Clinic simulation also presented the idea of 

applying a hedge, or adding extra time to mean processing times to account for variability 
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(Denton et al., 2008).  There are obviously two schools of thought based around how to use data 

within simulation models.  It should be noted that simulation modeling for outpatient clinics is 

not a common as simulation in other branches of health care, but there is literature available to 

support and document its uses. 
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IV. PATIENT FLOW PROCESS 

 

 

 

The patient flow process at the outpatient clinic is as follows.  Patients arrive based on 

appointment time to the 3
rd

 floor of the building in downtown Louisville.  Upon arrival, patients 

check in with a member of 2 or 3 person check-in team.  The patient’s information is updated 

within the IDX Web Framework information system to reflect any changes that may have 

occurred since the last visit.  If the patient is new they will fill out a health questionnaire.  The 

check-in team member will then tell them to wait in the waiting room until they are called back 

to an exam room. 

After the patient has signed in and the check-in staff has printed and updated the demographic 

and insurance information, they will take the chart to the nurses/MA station.  The MA assigned 

to the doctor seeing the patient will take the folder and call the patient back to an exam room 

assigned to that particular doctor.  Prior to being taken to an exam room, the patient may be 

taken to triage where their height, weight, temperature, blood pressure, and oxygen levels will be 

taken.  Once the patient is waiting in the room, the MA will write the patient’s name on the 

doctor’s board along with their room number and if they are a follow up or new patient.  The MA 

will put the folder in the box outside the door and move out a plastic tab signaling that the patient 

is ready to be seen. 

The doctor will work with the patient and decide if they need future visits or any medications.  

After the assessment, the doctor will give the MA a feed ticket and the chart.  The MA will then 

route the patient to the check-out station.  The feed ticket will state when the patient needs to 
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come back for a follow up visit and some doctors will simply tell the patient when to reschedule.  

Often patients will want to check their schedules before they make their next appointment and 

will call them in by phone.  Finally after all insurance info and billing questions are finished; the 

patient is released from the system. 
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V. MODELING PROCEDURES 

A. Data Analysis 

Good data is often difficult to find in some health care systems.  It must be noted that patient 

privacy is of extreme importance when dealing with data collection and analysis within the 

health care arena.  The outpatient facility’s IT staff was able to provide a year’s worth of very 

useful data to support this thesis.  This data included scheduled appointment date, appointment 

time, arrival time of patient, departure time, scheduled appointment duration, doctor associated 

with appointment, and whether the patient arrived, was bumped, canceled or was a no show. A 

sample output of this data can be seen in table I. 

TABLE I: SAMPLE DATA 
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This data will be used to develop an average month for the outpatient clinic.  Since some doctors 

do not hold clinics every week so a month time frame was chosen to incorporate all potential 

issues.  After studying the data, July appears to be a good representation of almost all the doctors 

and patient types.  July will shows unique situations where some doctors are seeing patients 

multiple days per week and some doctors only see patients one day per month.  The scheduled 

duration data will also be used to set up probability distributions for patient servicing time. 

B. Assumptions 

This simulation model, as with most, will make assumptions to allow for a close to reality as 

possible modeling situation.   

-Patients are serviced based on scheduled appointment duration. 

-Arrivals will occur based on a monthly schedule derived from historical data. 

-Only patient arrivals will be included in the system.  Patients who are bumped, do not show, or 

are cancelled will have no impact on this simulation model. 

-Patients will be assigned a MA and exam room randomly. 
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VI. SIMULATION MODEL 

A. Logic 

The logic behind this simulation model attempts to align itself as closely as possible to the actual 

patient flow chart in Appendix II.  This simulation model can be classified as a dynamic, discrete 

change, stochastic model.  Dynamic refers to the fact that time plays an important role 

throughout the model.  Discrete change or discrete event simulation, allows changes within the 

model to be driven by events and not continuous.  This model introduces stochastic elements 

when distribution functions are used to describe patient processing times and check in and out 

times. 

Patients arrive according to a schedule via a create module in Arena.  Time between arrivals is 

assumed to be an exponential distribution function.  A random variate generated from a Poisson 

distribution function is used to give the number of arrivals within a unit of time. Table II shows a 

sample monthly schedule for 1 doctor’s patient arrivals in the system. 
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TABLE II. PATIENT ARRIVAL SCHEDULE 

 

Once entities (patients) are created and enter into the system, they are assigned attributes that 

will describe them throughout the simulation.  Each patient is assigned with an attribute that will 

specify which entity type they represent and an attribute that changes their picture from a report 

to a person.  A record module is then used to count the numbers of patients that will move 

through the system.  Figure 3 shows the create, assign, and record modules for patient arrivals in 

Arena. 
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Figure 3: Arrival Section of Arena Module 

Patients are then routed to the check in station where they seize and are processed by one of the 3 

check in nurses.  The patient entities seize the check-in staff based on a cyclical system.  The 

check-in time is represented through a triangular distribution with a minimum of 4 minutes, 

mean of 8 minutes, and a maximum of 12 minutes.  Then a decide module will separate the 

patients by the doctor they will be seeing based upon the attribute value assigned to their entity 

type.  For example a patient with an attribute value of Coram Patient, will move enter the decide 

module and then exit on a path assigned to Dr. Coram.  Following the decide module, a route 

module moves each patient to the specific doctor’s station where they will seize the resources 

required to be serviced.  Figure 4 shows the check-in logic used in Arena. 
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Figure 4: Check-in, Patient Type Identification, and Routing Logic in Arena 

After being routed to the specific doctor’s station, the patients/entities will then seize resources 

necessary for processing by the doctor, a room, a Medical Assistant, and the necessary doctor.  

Once the doctor is finally seized they will be processed through a process module.  The 

processing times are defined through a probability distribution developed from a year’s worth of 

schedule appointment durations for each specified doctor.  Unless the doctor uses all one 

durations, discrete probability functions were created from the probability of an appointment 

lasting a specified duration.  A sample of the probability distributions of doctor processing times 

can be seen in Table III. 
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TABLE III. PROBABILITY DISTRIBUTIONS FOR DOCTORS 

 

A full list of patient servicing duration functions can be found in Appendix II. 

After the patients are finished being processed by the doctors, a release module is used to remove 

the room, medical assistant, and doctor from their seizure. Figure 5 shows doctor station, room 

seize module, MA seize module, doctor seize module, delay module for doctor processing and 

release module. 

 

Figure 5: Patient Routing, Seizure, Processing, and Release Modules in Arena 

The patients then exit the system and doctors, medical assistants, and exam rooms are freed to 

service other patients. Once the patients have moved from the exam room, check out team 
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members will schedule follow-up appointments and review payment and insurance information.  

This process time is represented via a Triangular distribution with a minimum of 3 minutes, an 

average of 5 and a maximum of 7 minutes. The patient will then exit the system and is disposed 

in Arena. 

 

Figure 6: Check Out and Dispose Module for Patient Exit 

Real time statistics were monitored throughout the simulation to understand how the process 

worked while events were happening.  Date and time were monitored to give the user 

information on what point in the model is being shown.  An expression totaling all current work 

in process patients for each doctor was used to calculate and then graph the total work in 

progress for the system’s doctors.  The level gives another visual representation of total work in 

progress.  The green and white boxes show how resources are being used at the current time.  

The first two boxes are check-in staff, next 11 are medical assistants, following 24 are rooms, 

and last 4 are check-out staff.  If the box is green then an entity has currently seized the 

resources, if it is white then the resource is free.   Another graph was created to monitor the total 
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number of entities created into the system at any given moment.  Figure 7 shows the visual 

metrics review portion of the Arena model. 

 

Figure 7. Real Time Model Statistics Section in Arena 

This complete simulation model provides representation of actual process within the clinic.  Its 

run length is 31 days at 9 hours per day.  Again the model runs with actual patient arrival data 

and uses distributions for patient processing times derived from scheduled patient appointment 

durations. 
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VII. RESULTS 

A. Verification and Validation  

A key step before accepting the results of the simulation model is to ensure the model has been 

validated.  Validation of a model ensures that the model is an accurate description of the real 

world system it is modeling.  Verification ensures that the model is correctly describing the 

modeler’s conceptual description of the system.  The model created for the outpatient center has 

been validated to make certain that it is correctly describing the process at hand. 

The model verification process for the outpatient clinic was fairly simple.  The process was 

studied through walk through analysis and observation in the facility.  Discussions with staff also 

aided in the modeler’s understand of how things worked in the system.  The modeler’s then 

described the process within the Arena software and made assumptions when it was impractical 

to model exact situations.  With the aforementioned assumptions, the developer is confident that 

the Arena model accurately represents the conceptual description of the system. 

The validation of this simulation was performed throughout its development.  Care was taken to 

ensure that actual data was used and only relevant information was included.  Patient arrival and 

doctor processing times were extracted directly from system data provided by the outpatient 

center.  Based on this data, the clinic was able to see 1441 patients in July of 2009.  The 

simulation model created and processed 1460 patients over the same simulated month.  This 

results in a 1.3% error between the actual and simulated results.  Figure 8 shows the expected 

patient output compared to the simulated patient output. 
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Figure 8. Expected vs. Created Patients for July 2009 

As it can be seen from above, the real world and simulation systems are operating very closely.  

With the confidence that the arena simulation is validated and verified, it can be now used to 

study the performance metrics within the outpatient center.   

B. Model Output 

The simulation model was run for 22 days to replicate the month of July 2009.  The model 

operated with 9 hour days, starting at 8:00 A.M. and concluding at 5:00 P.M. 41 different patient 

types were created throughout the model, with a total of 1460 patients being seen in the 

operating month.  Patient time was broken down into 3 categories, value added or processing 

time, wait time, and transfer time.  Work in Progress (WIP) average service time per entity, 

entity waiting time per resource, and utilization rates were also reported through the model. 

The value added time for a patient ranged from 23.5 minutes to 56.74 minutes with an average 

patient time of 38.69 minutes.  Average patient waiting times ranged from 3.63 minutes to 

133.37 minutes.  Overall 41 doctors, average patient waiting time was 47.11 minutes.  Waiting 

time to check in was 1.82 minutes and check out was 0.147 seconds.  It should be noted that 
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these waiting times are averages and are tied to the number of patient serviced.  For example, a 

certain doctor’s patient waiting time was over 2 hours, but that doctor saw only 6 patients all 

month.  

Seeing as transfer time for each patient was identical, total time in system will provide greatest 

value for analysis.  On average patients spent 89.91 minutes in the system.  This time includes 

check in time, routing time, waiting time, servicing time, and check out time.   The highest time 

spent in system was, on average, 176.45 minutes and the least was only 42.86 minutes in the 

system.  Throughout the month simulation there was an average WIP for the total system of 

12.23 patients.  Average instantaneous WIP for doctors was 0.298.  The highest WIP was 1.53 

patients and the lowest was .00508 patients.  Figure 9 shows simulated compated to actual time 

in system. 

Figure 9. Acutal vs. Simulated Time in System 
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Time per entity provides a measure of the average time an entity (patient) spends within certain 

processes.  These servicing times come from the distribution functions that were developed using 

the actual processing data.  On average processes within the outpatient center took 24.07 

minutes.  Check out was the shortest process with an average time of 4.99 minutes.   

Accumulated time represents the sum of time a resource spends processing entities throughout 

the simulated time.  For this simulation, we used 22 days a 9 hours per day for a total simulated 

time of 198 hours.  The average resource was busy for 20.5 hours throughout the model 

simulation.  It should be noted that doctors only work 1-3 half days per week and some only 

work one half day per month.   

Average time spent waiting in queue for a nurse is 22.12 minutes and no time was spent waiting 

in queue to secure a room.  On average there were 2.9912 patients waiting for a nurse at any time 

during the system.  4.1067 patients were waiting for doctors on average during the system.  This 

equates to about 0.10016 patients per doctor.  Some doctors never had patients waiting for them, 

but some doctors had as much as 15 patients waiting in queue during the simulation. 

Utilization for the check in staff was about 32% for the 3 available.  The check out staff 

utilization was about 15%.  MA utilization ranged from 60 to 69% for each of the 11 Medical 

Assistants.  Exam room utilization ranged from 23 to 34% with an average of 29.09%.   
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Looking at utilization rates based on day of week supports the initial theory that Tuesday and 

Wednesday are the busiest days in the office.  Figure 10 shows the daily utilization rates for the 

clinic. 

 

Figure 10. Resource Utilization Rates by Day of Week 

Due to the fact that doctors are only in the office when they have scheduled appointments, 

calculating doctor utilization is difficult.  In order to calculate utilization rates for doctors the 

author took accumulated hours busy from the Arena output and divided it by the accumulated 

hours the doctors were in the office.  It is assumed that doctors are in the office for the complete 

half day if they have patients scheduled within a half day.  A half-day is defined as 4 hours.  The 

doctor utilization rates range from 100% to 7.57% with an average of utilization of 54.46%. 
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VIII. DISCUSSION OF RESULTS 

From the above results, much can be learned about the operation of the outpatient center.  There 

are a few noticeable sources of variation present in the system.  Patient waiting times are highly 

variable based on which doctor a patient is seeing.  Related to patient waiting, doctor utilization 

rates are also highly variable.  Other parts of the clinic run very efficiently.  The check in and 

checkout processes are very smooth and add only slightly to overall patient experience time.  

Also room availability is high for the clinic potentially allowing for more work to be introduced 

into the clinic. 

On average patients spend about 89 minutes in the clinic, which seems very reasonable based 

upon the author’s time spent down at the center.  Due to the nature of outpatient clinics and the 

type of medicine being practiced number of patients scheduled and processed can vary greatly by 

doctor.  Upon further study of the clinic this becomes highly evident as a major source of 

variability in the system.  This variability paired with the lack of flexibility within the doctor’s 

schedules makes for a system that can run efficiently one day and be completely backed up 

another. 

Check in staff utilization was over double that of check out staff.  It may be necessary to let one 

of the check out staff work part of their day doing check in at peak hours.  Although MA 

utilization may not seem too high (60-69%), it must be considered that not all of their duties 

were simulated within this model.  Their chart preparation and paperwork handling activities 

were only a few of the duties that were not included in this model.  It is important to note that the 

average number of patients waiting for a nurse (2.9912) and the average number of patients 
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waiting for a doctor (4.1067) are relatively close.  If more clinics were held within the outpatient 

center, doctors and MAs could be added to the current staff at slightly lower rate.  Exam room 

utilization is also relatively low (29%) so more staff could easily be added without expensive 

infrastructure changes. 

Overall the simulated system operates very closely to that of the observed real life system.  Upon 

conclusion of a detailed performance metrics review, obvious areas for improvement became 

obvious.  Schedule smoothing and patient processing time evaluations could greatly impact the 

daily operations within the clinic.  Data from this simulation could be used to support future 

staffing level decisions.  The main take away from this detailed analysis should be a greater 

understanding of performance metrics and how they affect the operations within the University 

of Louisville Outpatient Center. 

  



28 
 

 

IX. CONCLUSIONS, RECOMMENDATIONS, and FUTURE RESEARCH 

 

A. CONCLUSIONS AND RECOMMENDATIONS 

The simulation model for the University of Louisville Outpatient Center provides valuable 

insight into the operational statistics that control the day-to-day function of the area.  The model 

used actual data from the month of July 2009 to drive patient arrivals and patient processing 

times.  Deterministic probability functions were used to describe patient processing time for each 

of the 40 doctors in the system.  The patient flow process was modeled using the Arena 

simulation software.  The finished model was validated and verified and then ran for 31, 9 hour 

days or 279 hours.  Finally the center’s performance metrics were studied to provide 

recommendations for the future operations of the system. 

Although the outpatient center was operating adequately under its current order, improvements 

could be made to improve efficiency.  Due to the relatively low utilization rates of the exam 

rooms, it seems that more doctors could hold clinics with the outpatient center.  If more doctors 

were to be added to the system it would make sense, based on the number of patients waiting for 

both doctor and MA, that MAs would be added an almost an equal rate as doctors are added.  

Since utilization for check out staff is almost double that of check in, a member of the check out 

team could potentially work part of their day at the check in counter to balance out workload.  

Finally, since patient total time is system is so highly variable based on the doctor, it would make 

sense for each doctor to look at the amount of time they are scheduling for appointments and see 

if those time slots are still valid based on actual patient processing. 
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B. FUTURE RESEARCH 

The current model works well for providing a current state analysis of the outpatient center’s 

performance measures.  Someone who has extensive Arena modeling knowledge can update it to 

provide a case-by-case analysis.  This would limit the population of persons who can make 

process changes and see potential outputs.  In order to facilitate utilization of the model by the 

outpatient center staff work needs to be done to increase usability.  Future work on this 

simulation model would allow users with very little Arena simulation knowledge to update 

patient arrivals via Excel spreadsheet.   

Animation provides a visual representation of the logic supporting the model.  The model has 

been set up with route and station blocks, which will aid in adding animation at a later time.  

Animation would need to be added to help those not familiar with Arena to understand the 

processes and start to put trust in the output from the model.  A fully animated model with excel 

based patient arrival inputs could be easily utilized and understood by almost all personnel 

within the outpatient center. 
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APPENDIX I. PATIENT FLOW CHART 
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APPENDIX II. PATIENT SERVICE TIME DISTRIBUTIONS 

Doctor 1 DISC(.8826, 20, 1.0, 40) 
Doctor 2 DISC(.8810, 15, 1.0, 30) 
Doctor 3 DISC(.6723, 20, 1.0, 40) 
Doctor 4 DISC(.7037, 20, 1.0, 40) 
Doctor 5 DISC(.7587, 20, 1.0, 40) 
Doctor 6 DISC(.7937, 30, 1.0, 60) 
Doctor 7 CONSTANT 15 
Doctor 8 DISC(.00813, 20, .85633, 40, .99453, 60, .99723, 120, 1.0, 240) 
Doctor 9 DISC(.8024, 20, 1.0, 40) 
Doctor 10 DISC(.08218, 30, .8296, 45, .9832, 60, 1.0, 90) 
Doctor 11 DISC(.6954, 20, 1.0, 40) 
Doctor 12 DISC(.7368, 20, 1.0, 40) 
Doctor 13 DISC(.5556, 40, 1.0, 20) 
Doctor 14 DISC(.8678, 15, 1.0, 30) 
Doctor 15 DISC(.5309, 30, .9877, 15, 1.0, 40) 
Doctor 16 DISC(.7577, 20, .7594, 40, 1.0, 60) 
Doctor 17 DISC(.6895, 20, 1.0, 40) 
Doctor 18 CONSTANT 15 
Doctor 19 DISC(.9128, 20, 1.0, 40) 
Doctor 20 DISC(.7688, 20, 1.0, 40) 
Doctor 21 DISC(.8925, 20, 1.0, 40) 
Doctor 22 DISC(.8929, 20, 1.0, 40) 
Doctor 23 DISC(.645, 20, 1.0, 40) 
Doctor 24 DISC(.3692, 15, .9934, 30, .9951, 40, .9984, 60, 1.0, 120) 
Doctor 25 DISC(.5515, 20, 1.0, 40) 
Doctor 26 DISC(.2436, 15, .9074, 30, .9971, 60, 1.0, 300) 
Doctor 27 DISC(.6085, 20, 1.0, 40) 

Doctor 28 
DISC(.3174, 15, .3281, 20, .3292, 25, .5081, 30, .5156, 35, .5167, 40, .5678, 45, .9820, 60, 
.9831, 75, .9852, 90, 1.0, 120) 

Doctor 29 DISC(.9524, 15, .9796, 30, 1.0, 60) 
Doctor 30 DISC(.6833, 20, 1.0, 40) 
Doctor 31 DISC(.6597, 20, 1.0, 40) 
Doctor 32 DISC(.9505, 20, 1.0, 40) 
Doctor 33 DISC(.6263, 20, 1.0, 40) 
Doctor 34 DISC(.7303, 20, .8880, 40, 1.0, 60) 
Doctor 35 DISC(.9390, 10, 1.0, 20) 
Doctor 36 DISC(.1887, 10, .9623, 30, 1.0, 40) 
Doctor 37 DISC(.8624, 20, 1.0, 60) 
Doctor 38 DISC(.7549, 20, 1.0, 60) 
Doctor 39 DISC(.7761, 10, 1.0, 20) 
Doctor 40 CONSTANT 20 
Doctor 41 DISC(.5837, 10, .8776, 15, 1.0, 30) 
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APPENDIX III. PATIENTS EXPECTED COMPARED TO ENTITIES CREATED 
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