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Abstract

This thesis models analytically and numerically a moving boundary prob-

lem originating in a small particle accelerator known as a neutron tube when

a positive-ion plasma is exposed to a large accelerating electric field.

The coupled non-linear system of equations describing the flow of charge

within the acceleration region, and the consequent plasma boundary loca-

tion, are modelled in both one and two dimensions. The one-dimensional

study provides an analytic solution to the steady-state problem in planar

geometry that arises with given, steady boundary conditions, and goes on to

develop a successful numerical method for the determination of a numerical

solution to the same problem. The one-dimensional study continues with

an analytic analysis of the time-dependent system, concluding with the de-

velopment of numerical methods devised to analyse the full time-dependent

problem. The two-dimensional work builds on the successful one-dimensional

time-dependent numerical method, using space-charge limitation to aid in the

determination of boundary location techniques, thus developing a model for

the steady-state two-dimensional case. The method initially utilises a fixed

boundary, iterative method as a vehicle for calculating the initial location of

the boundary, and continues, having adjusted the boundary (and hence the

solution region), until a termination criterion is satisfied.
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Chapter 1

Introduction

1.1 Problem Background

Neutron generators have been used as exploratory tools for a number of years,

with the highly sensitive specific technique of Neutron Activation Analysis

(NAA) being used to determine the elemental content of materials to a high

degree of accuracy (See [39]). The method of NAA involves the illumination

of the required sample by a pulse (or pulses) of neutrons resulting in the

release of a characteristic signature from the sample, in the form of other

types of radiation.

During the neutron illumination process, the sample becomes activated

and subsequently emits secondary gamma radiation in two phases, as it de-

activates. The first phase is a rapid de-excitation of the activated nuclei via

gamma decay where the characteristic gamma frequencies are particular to

the element originally excited. The second phase is a radioactive decay pro-

cess from unstable isotopes formed from the neutron illumination process,

the decay rates being strongly dependent upon the isotopes formed (half

18



lives ranging from 10−3 to 107 years). It is usually this second phase that is

analysed to determine information about the sample constitution.

For many applications of NAA, the neutron source is a large, laboratory-

scale piece of apparatus. However, in some applications (such as oil well

logging), such a large scale piece of equipment cannot be used, and so the

neutron source must be taken to the location of the sample. In this case,

the neutron source is a much smaller device and is a neutron generator,

comprising a power supply and sealed neutron tube.

The problem analysed in this thesis originates within a neutron tube

that has an entirely different application, where it is used in nuclear weapon

initiation. Briefly, the short, very intense pulse of neutrons created by the

neutron tube is used to initiate a fission chain reaction within a nuclear

weapon1 [40].

1.1.1 Neutron Tubes

1.1.1.1 Fusion Reactions

In order to generate neutrons within a neutron tube, fusion2 reactions are

employed. By utilising fusion, the creation of neutrons can be precisely timed

1A more detailed description of this application cannot be given due to classification

issues.
2If fission reactions were to be used as a neutron source, a donor reactant would be

chosen whose spontaneous fission products would be introduced to another fissile material.

Subsequently, a further fission reaction would take place and one of the products of this

second fission reaction would include neutrons with a specific energy. Creating neutrons

by fission is less controllable by virtue of the spontaneous decay of the fission reactants,

and on the chemical mixing of such materials.
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and controlled by initiating the reaction only when required.

To create the fusion reaction within the tube, an ion beam consisting of

one of the fusion reactants is accelerated to a relatively high energy towards

a stationary target that is infused with the other reactant. The energy to

which the incident particles are accelerated is chosen depending upon the

fusion reaction cross-section, and is dependent upon the particular reaction

concerned. The reaction cross-section relates to nucleon - nucleon scattering,

and is a measure of the probability of a particular reaction taking place (see

[21], and Appendix A). It effectively gives an indication of the apparent size

of the target nucleon for a given reaction and given energy. The reaction

cross-section has the dimensions of area and is usually measured in barns

where 1 barn is 100fm2 or 10−28m2. Sometimes, the reaction cross-section

is given in a centre of mass frame of reference. In this reference frame, the

reaction probability is independent of the total momentum of the reacting

particles relative to the laboratory. The D-T cross-section referred to in this

thesis is measured in the laboratory frame of reference, where the target

particle is stationary relative to the laboratory. It is scaled from the generic

centre-of-mass frame of reference cross-section (for the two given reactants)

according to the reacting particle masses (Appendix A).

Most fusion reactions capable of creating neutrons have negligible reaction

cross-sections (i.e. they do not generate an appreciable number of neutrons

for a given energy) unless the incident ion is accelerated to such high energies

that the process is virtually impossible to achieve in a small neutron tube.

This is since the large electrostatic potential used to accelerate ions must

be held-off across a small distance of the order of mm. The term hold-off
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refers to the high voltage electrodes within the neutron tube being separated

by an insulating wall. The insulator used is usually a ceramic that not only

separates the electrodes and hence resists electrostatic breakdown (where the

potential energy of electrons at the cathode is so great that they are able to

jump the gap between the electrodes either directly across the vacuum gap,

or by skipping along the ceramic wall), but it also maintains a seal that

resists permeation from gases within the atmosphere, thereby maintaining

the vacuum within the sealed tube.

To utilise low cross-section reactions, not only would the device have to be

relatively large (scaled by, say, a factor of ten) and cumbersome, but the tube

power supply would need to generate the huge potential differences necessary

to drive the reaction; this is very difficult to achieve. Therefore, it is usual

for a neutron tube to utilise the deuterium-tritium fusion reaction (or D-T

reaction), whereby deuterium ions are accelerated on to a stationary (relative

to the laboratory) tritiated target. This reaction has a relatively high peak

cross-section, which occurs when the incident deuteron has a kinetic energy

of ∼110KeV. It is noted that the converse T-D (tritium-deuterium) reaction,

whereby tritium ions are accelerated onto a stationary deuterium target,

has a peak cross-section when the incident triton has a kinetic energy of

∼165KV (see Appendix A). The laboratory frame reaction cross-sections for

these reactions are shown in Figure A.1.

For the D-T fusion reaction to take place with the maximum probabil-

ity, deuterium ions must be accelerated to an energy of ∼ 110KV before

striking the tritium impregnated target. Upon striking the target, some of

the incident deuteron particles fuse with the tritium within the target (the
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proportion of fused incident ions being dependent upon the reaction cross-

section) consequently releasing neutrons with 14.1MeV in addition to 3.5MeV

alpha particles. Those deuterium ions that do not fuse with tritium lose en-

ergy as they penetrate the target, thereby losing some of their ability to fuse

(by effectively sliding down the cross-section curve) at the next interaction.

1.1.1.2 Tube Operation and Plasma Boundary Formation

Geometrically, the tube consists of a sealed envelope, across which the ∼

110KV electrostatic potential difference is held off by a ceramic wall. A source

of deuterium ions is situated at the anode end of the tube whilst the tritiated

target is at the cathode end (see Figure 1.1). Upon operation, a plasma of

deuterium ions expands into the acceleration gap acting as a conductive

‘gas’ which is generally impenetrable to the tube main accelerating field (due

to its conductivity). At about the same time, the ∼ 110KV accelerating

voltage is applied across the tube and ions begin streaming away from the

plasma-vacuum interface (the plasma boundary) formed by the expanding

plasma. Shaped electrodes within the tube act as ion lenses focussing the

ion beam onto the tritiated target where the fusion reaction takes place.

There are two distinct timescales that exist within the operation of the tube.

The timescale over which the source operates and the accelerating voltage is

applied, is generally several orders of magnitude greater than the timescale

over which the plasma boundary settles to a stable position for a given set of

conditions. The accelerating voltage is ramped up in a period of µs, whereas

for a given impulse, the boundary settling process occurs in a period of ns.

Since the tube operates in a dynamic manner, whereby the source and
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Figure 1.1: Neutron tube schematic.

accelerating voltage are switched on, reach relatively stable conditions and

are then switched off, then due to the relatively long time scales of the source

drive and acceleration voltage pulses (in comparison to the timescale of the

boundary settling process), it is believed that the boundary moves in accor-

dance with the applied acceleration voltage, eventually settling to a stable

location during the relatively stable phase of tube operation. The boundary

movement process takes place in the following way.

Ions reaching the plasma-vacuum boundary at a specific rate cause the

boundary to bulge into the vacuum (see Figures 1.2 and 1.3 where the ion
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Figure 1.2: Schematic showing ions reaching the plasma - vacuum boundary prior

to reaching the equilibrium state. In this state, the steady (relative to the timescale

of the settling process) current density, Jin(x,y), of ions reaching the boundary

from below is higher than the current density, Jout(x,y, t), of ions leaving the

boundary from above. The horizontal lines are simulated level curves of electric

scalar potential. Note that the region is symmetric about the vertical axis.

arrival rate and departure rates are represented by the current densities

Jin(x,y) and Jout(x,y, t) respectively), thereby concentrating the electric

field within the region (since the plasma acts as a Dirichlet boundary condi-

tion for the electric scalar potential within the tube main gap). The increased

electric field (as a consequence of the reduction in electrode separation) causes

ions to be accelerated away from the boundary more rapidly than they ar-

rive there, and consequently the boundary recedes until the electric field at

the boundary becomes zero [8] (see Figure 1.4). In this equilibrium state,

ions leave the boundary at the same rate as they arrive there, and the the
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Figure 1.3: Schematic showing ions reaching the plasma - vacuum boundary prior

to reaching the equilibrium state. In this state, the current density, Jin(x,y),

of ions reaching the boundary from below is now lower than the current density,

Jout(x,y, t), of the ions leaving the boundary from above, since the electric field

strength at the boundary has been increased by it bulging into the region, hence

causing ions to be extracted more rapidly. The plasma - vacuum boundary now

begins to recede. Simulated level curves of electric scalar potential are also shown.

plasma-vacuum boundary position has stabilised.

The determination of the position of the plasma-vacuum boundary during

the settling process is a moving boundary problem, in which the boundary

converges to an equilibrium position over a short period of time. On the

timescale of the overall tube operation, the determination of the plasma-

vacuum boundary position for a given source current density3 and accelera-

3The source current density profile is determined by the source metallurgy and geometry

in addition to currents and voltages applied to it.
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Figure 1.4: Schematic showing ions reaching the plasma - vacuum boundary at

the equilibrium state. In this state, the current density, Jin(x,y) of ions reaching

the boundary from below is equal to the (now stable) current density, Jout(x,y),

of ions leaving the boundary from above. Simulated level curves of electric scalar

potential are also shown.

tion potential difference is also a free boundary problem. It is the purpose

of this analysis to determine the free boundary positions for problems with

given steady state source current densities and acceleration voltages using

mathematical techniques tailored to the problem. In addition, the full time

dependent moving boundary problem occurring at the shorter timescale is

also explored.

1.1.2 Previous Work

The problem of determining the position of the plasma boundary within

an ion accelerator setup is one that has attracted a good deal of attention,
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particularly in the 1960s and 1970s. As a consequence, I have had to deal

selectively with the references in an attempt to develop a coherent account of

past work, without reviewing subject matter that does not directly influence

the current work (although some of this experimental work is mentioned in

passing). Here I present a general history of related work, but detail on some

of the more relevant works is given in Chapter 2.

Tonks and Langmuir [2] first theoretically analysed the behaviour of a

plasma expanding into a region with an applied electric field by investigating

low pressure plasma discharge within a discharge tube (a plasma is defined

as a neutral gas consisting of electrons and positive ions). In this work,

the ion number density distribution within such a plasma is determined by

approximating solutions to specific cases of what they called the ‘complete

plasma sheath equation’ (an integro-differential equation) in one dimension

for different geometries (more general solutions of this equation were also

considered by Self [7]).

The analysis of Tonks, Langmuir and Self detailed specifically the be-

haviour of an expanding plasma up to and including the plasma sheath4

(or the plasma boundary), but their analysis was unable to adequately de-

scribe the self-consistent electric field outside the plasma region (beyond the

sheath). This was primarily due to their representation of the ion number

density (the free charge density of ions divided by their charge) within the

plasma being no longer valid outside the plasma region. More recently, in an

independent work ([11]), a similar approach (to Tonks and Langmuir) was

adopted, but the ion number density within the plasma region was calculated

4The region where electrons within the plasma are repelled by the external electric

field.
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from the ion equations of motion instead of using the approach of Tonks and

Langmuir. This enabled the calculation of the correct potential distribution

outside the plasma region, whilst also determining the position of the plasma

sheath, although the ion number density within the plasma was not correct.

This is true because the representation of ion acceleration outside the plasma

region is correct, but inside the plasma region it is not correct. The discon-

nected nature of the plasma region and ion acceleration region enables this to

be the case. Electric scalar potential distributions for a specific application

were then calculated in one dimension. As a way of determining the plasma

sheath thickness and position a Maxwell-Boltzmann distribution ([18]) was

used to represent the electron number density within the plasma (as in pre-

vious works) and solutions were approximated by asymptotic methods.

Other work detailing the behaviour of an expanding plasma originate from

the experimental discovery by Tonks and Langmuir in 1929 ([1]) of plasma

oscillations (the ability of a neutral plasma to support wave motion and

potentially shock like behaviour). Previous models (such as those mentioned

above) of the plasma behaviour were unable to support such oscillations. The

inclusion of the Vlasov equations ([41], [32]) (a hyperbolic system describing

the behaviour of the ion number density in a plasma with a long range

charge interaction) as a description of the ion charge density would enable

such plasma oscillations to occur within the plasma model. Works such

as Whealton et al [12] and Whealton, Bell et al [22] solve the non-linear

Vlasov-Poisson system (a similar system to that originally proposed by Tonks

and Langmuir but where the ion number density is determined from the

Vlasov equation) and consequently trace ions through the plasma and into
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the electrostatic field in a Lagrangian manner.

Treating ions as particles and tracing them through calculated field so-

lutions is a method commonly used for the determination of the ion charge

density outside the plasma region in ion beam numerical methods (refer, for

example, to [28] and [31] in addition to references mentioned above). There

are several problems associated with this method of predicting the ion beam

location, the most notable being the number of ion beams that must be used

to accurately represent the charge density distribution within the solution

region. Not only is accurate ion beam tracing very computationally inten-

sive, but accurate methods of assigning the calculated space charge density

to the field solver mesh must be used as part of the computation procedure

([27]).

Most field solvers used in ion beam tracing codes have used static mesh

finite difference approximations to the field equations. However in 2004,

Humphries [37] proposed a free surface finite element approximation to the

plasma boundary problem, whilst maintaining the Lagrangian particle trac-

ing procedure. In this work, the free surface position is determined by main-

taining a constant ion current density at the surface (thereby placing the

required additional boundary condition there). Nodes along the emission

surface are iterated to a stable position by moving them at each iteration

with the distance moved being determined from how far away from the re-

quired constant current density the calculated emission current density is.

For a more in depth history of work in this area (until 1983) refer to Lejeune

[16] where a very comprehensive set of references is also listed.

Our interest essentially follows on from [11], but we are not interested
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in the plasma or plasma sheath per-se (as many previous works are). Con-

sequently we concentrate on the boundary value problem that the plasma

expanding into an electric field presents. Since we are not interested in the

plasma, but merely the plasma boundary position, we do not include the

electron number density in calculations and seek the plasma boundary po-

sition as a consequence of other conditions. The known (from experiment)

current density distribution at the plasma boundary is used (this is not nec-

essarily constant in position) in conjunction with a calculated ion charge

density (from the ion equation of motion), and extra Neumann boundary

conditions (see [8]) at the plasma boundary. We calculate the electric scalar

potential distribution in addition to the charge density and charged particle

velocity distributions, treating the particle velocity as a conservative field.

Also, the position of the plasma boundary position or the ion emission region

shape (treating this boundary as the edge of the solution region) is calcu-

lated both analytically and numerically in one dimension and numerically in

two-dimensional planar geometry.

We begin by discussing in detail, the formulations of Tonks and Langmuir

and of the internal work (these are most relevant to the model adopted in this

thesis), [11], in addition to some of the other work mentioned above. Subse-

quently, we formulate a mathematical description of the problem investigated

here, discussing methods employed to solve the problem. Our analysis be-

gins with a solution of the simpler one-dimensional steady state problem, and

follows with a full time dependent solution of the one-dimensional problem

with a moving boundary. Following on from this, using information acquired
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in the one-dimensional case, an approach to solving the more difficult two-

dimensional case is given whereby the time dependency in the field equations

is used in a pseudo manner as a device for obtaining convergence in the free

boundary case.
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Chapter 2

Mathematical Formulation

The situation outlined in Chapter 1 corresponds to a system of coupled prob-

lems describing the various phenomena occurring within a neutron tube dur-

ing normal operation. These phenomena, as previously indicated, can be

broken down into four main areas and are listed as follows.

1. Source Operation and Plasma Expansion

The tube ion source produces a plasma consisting of both positively

charged deuterium ions and electrons. After release from the ion source,

the plasma expands into a field free region (termed the plasma cup)

until it meets the high voltage accelerating field by passing through an

aperture.

2. Plasma - Vacuum boundary

As the neutral plasma reaches the high voltage accelerating field re-

gion of the neutron tube, a sheath forms at the boundary between the

neutral plasma and acceleration region. Within the sheath, the den-

sity of electrons gradually reduces with distance into the acceleration
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region until all electrons are repelled by the electric field. We define

this location as the plasma - vacuum boundary, and it corresponds to

a boundary shape whereby the flux of ions reaching it from the source

is matched by the flux of ions leaving it towards the target. It is also

defined by a zero field condition (see [8]) since if a non-zero electric

field were to exist on the acceleration field side of the boundary1, then

ions will be extracted from the boundary more rapidly than they arrive

there from the plasma side and the boundary would adjust until the

balance is restored. The shape of the boundary is dependent upon the

deuterium ion current density across it, the potential difference across

it, and the geometry of the acceleration region, in addition to the zero

field condition at the boundary.

3. Acceleration Region

Once ions reach the plasma boundary, they are extracted and acceler-

ated towards the target. The electric field within the acceleration region

is dependent upon the charge density within it, the potential difference

applied across it, and the shape of the plasma boundary formed at the

anode. The ion beam shape is also dependent upon the electric field

and hence its own charge density.

4. Target

After being accelerated across the neutron tube, the (now) high energy

ions strike the tritiated target undergoing fusion, and release 14.1 MeV

neutrons isotropically.

1A plasma by definition is a field free region.
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For reasons that will become more apparent in the following sections, it is

possible to decouple the behaviour of ions within the plasma from ions within

the acceleration region. Since we are not specifically concerned with the

modelling of the plasma itself, it is only the acceleration region and position

of the plasma boundary that is of concern in this thesis. However, two plasma

models that lead logically on to the boundary value problem considered here,

are now discussed.

2.1 Tonks and Langmuir

As mentioned previously in Section 1.1.2, Tonks and Langmuir ([2]) consid-

ered the ion density within an expanding plasma and formulated what they

termed the complete plasma sheath equation, for a one-dimensional plasma

expanding from the origin into a region with a potential difference applied

across it (see Figure 2.1). This equation was constructed from the Maxwell

continuity equation (or Gauss’ Law) relating the divergence of the displace-

ment current from a region to the charge density enclosed within that region.

In one dimension this can be written as

d2φ

dx2
= − q

ε0
(Ni −Ne) , (2.1)

where φ(x) is the voltage (electric scalar potential), q the electron charge, ε0

a scaling parameter called the permittivity of free space, and Ni and Ne the

ion and electron number densities within the plasma, respectively (here it is

assumed that ions are singly charged).

Equation (2.1) is written in this form (the charge density as the product

of particle charge and number density) to allow the use of the Maxwell-
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Figure 2.1: The region upon which the complete plasma sheath equation is solved.

The Dirichlet voltage conditions φ(0) = φ0 and φ(r) = φ1 are applied at the region

boundaries. Since ions are positively charged, φ0 > φ1.

Boltzmann distribution ([18]),

f(T, ε) = N0e
−ε
kT , (2.2)

to describe the electron number density within the plasma. The Maxwell-

Boltzmann distribution2 function f(T, ε) gives the mean number of particles

in a state of energy ε for a system of particles at absolute temperature T (k

2This distribution is applicable when the particles are completely distinguishable from

one another. This in the absence of quantum effects which become prevalent when the

particle density is such that the mean distance between the particles is of the order of

their De Broglie wavelength. When quantum effects become important, their number

distribution for a given energy depends upon whether the particles are bosons (Bose-

Einstein distribution with integer spin quanta) whose wave-functions can superpose, or

fermions (Fermi-Dirac distribution with half integer spin quanta) whose wave-functions

cannot superpose.
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being the Boltzmann constant). This is the most likely number of particles

with that energy and that temperature, and is determined by analysing the

number of ways of arranging particles in a particular state within the system,

and choosing the state with the greatest number of arrangements possible

(and hence the most likely state). Setting

Ne(T, ε) = f(T, ε(φ))

= N0e
qφ

kT (2.3)

from (2.2), where ε(φ) = −qφ, and where N0 is the total number of electrons

within the plasma, gives an expression for the electron number density as a

function of voltage in the Poisson equation (2.1).

If we assume that ions are created (atoms are ionised) throughout the

expanding plasma (an assumption that would be valid for a discharge ion

source), an expression for the total ion number density at a given position x

within the region can be determined from the ion number density per unit

length n(x) at that position. This is related to an ion generation rate per

unit volume G(x) at x by the relationship (in one dimension)

n(x) =
G(x)

v(x)
,

where v(x) is the ion speed at x. The total ion number density Ni(x) at x

can then be written

Ni(x) =

∫ x

0

G(z)

v(z)
dz, (2.4)

with the ion speed at z being determined by conserving energy from

1

2
mv(z)2 = q (φ(z) − φ(x)) , (2.5)
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where φ(z) is the voltage (potential energy per unit charge at z) and m is

the ion mass; rearranging (2.5) gives the ion speed

v(z) =

√

2q

m
(φ(z) − φ(x))

1
2 . (2.6)

Substituting (2.3), (2.4), and (2.6) into (2.1) gives the complete plasma

sheath equation

d2φ

dx2
= − q

ε0

{

(

m

2q

)
1
2
∫ x

0

G(z)

[φ(z) − φ(x)]
1
2

dz − n0e
qφ(x)

kT

}

. (2.7)

This equation describes the voltage profile, φ(x), within a plasma in addi-

tion to the ion and electron number densities as a consequence of the applied

electric field. The interface between the plasma and vacuum region (Figure

2.1) is determined as the location where the electron number density density,

(2.3), is less than some given parameter δ, where δ � N0. At this location,

effectively all electrons have been repelled by the external electric field (this

point is not distinct as the electron number density decays to zero exponen-

tially as the voltage decreases with the dependent variable x). Beyond the

plasma-vacuum interface, no further ions are generated and the integral in

(2.7) becomes

∫ x

0

G(z)

[φ(z) − φ(x)]
1
2

dz =

∫ s

0

G(z)

[φ(z) − φ(s)]
1
2

dz +

∫ x

s

G(z)

[φ(z) − φ(x)]
1
2

dz

=

∫ s

0

G(z)

[φ(z) − φ(s)]
1
2

dz

= C,

where C is a constant depending on the position s of the interface. Addi-

tionally, since the electron number density in the region beyond the interface
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is effectively zero (that is, less than δ), the incorrect implication is that the

ion charge density outside the plasma is constant. Furthermore, Tonks and

Langmuir sought to model a discharge ion source where ions are generated

throughout the plasma region. The ionisation region is localised in modern

neutron tube designs and so such a model is inappropriate. We therefore

conclude that (2.7) is not adequate for the problem at hand. To correctly

describe the ion beam behaviour after ions have been stripped away from the

plasma surface, a different model of the ion density in this region must be

employed, and this is most readily achieved using the equations of motion

for the ions as they are accelerated by the external electric field.

2.2 Internal Model

The internal model, [11], investigates the one-dimensional expansion of a

plasma within the region x ∈ (−∞, 0] with the applied Dirichlet conditions

φ(−∞) = 0 and φ(0) = φ0, where φ(x) is the voltage at x, as before. In

order to describe the voltage distribution within this region, the same form

of the Maxwell equation (2.1) used by Tonks and Langmuir is employed.

However, instead of modelling the generation of ions throughout the plasma,

it is assumed that ions are generated only at the left hand end of the region

(at x = −∞) and their number density is calculated from their speed at

x, v(x). It is noted here, that whilst φ(0) = φ0 and v(−∞) = v0 seems

contradictory, it is the notation used in the original paper.

Equating the ion kinetic and potential energy (from the applied electric
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field) at x we have

m

2
(v(x)2 − v2

0) = −q (φ(x) − φ(−∞))

= −qφ(x),

or

v(x) =

√

v2
0 −

2q

m
φ, (2.8)

where m, q and v(x) are as previously defined, and where v0 = v(−∞).

Denoting Ni(x) as the ion number density, as above, then the ion flux Γ(x)

at x is given by3

Γ(x) = Ni(x)v(x).

In a steady state of ion flow4

dΓ

dx
= 0,

which implies that Γ is independent of x, or that

Γ(x) = N0v0

= const, (2.9)

where N0 = Ni(−∞). This gives the expression

Ni(x) =
N0v0

v(x)
, (2.10)

from (2.8) and (2.9) for the ion number density. Since ions are created

by ionising neutral atoms, then by conserving charge we can also say that

Ne(−∞) = N0. By assuming the Maxwell-Boltzmann distribution (2.2) for

3The one-dimensional definition of flux density.
4From the continuity equation ∇ · Γ = − ∂Ni

∂t
, where the time derivative is zero.
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the electron number density (with Ne(T, φ) = f(T, ε(φ)) as previously de-

fined), the Poisson equation, (2.1), can be written

d2φ

dx2
=
N0q

ε0

{

e(
qφ

kT ) − v0

(

v2
0 −

2q

m
φ

)−
1
2

}

, (2.11)

from (2.2) and (2.10). Furthermore, by defining the dimensionless parameters

α =
mv2

0

2kT
,

ψ =
qφ

kT
,

and z =
x

λD
,

where

λD =

√

ε0kT

q2N0

is the Debye shielding length ([41], [32]), (2.11) can be re-written in the scale

invariant form

d2ψ

dz2
= eψ −

(

1 − ψ

α

)− 1
2

. (2.12)

Solutions to (2.12) were calculated for a typical neutron tube application.

These solutions gave a good indication of the location of the plasma boundary

based upon the electron number density and the calculated self-consistent

accelerating potential. Results from this model indicate that ions within the

plasma are shielded from the external accelerating field by the presence of

neutralising electrons. The shielding shows that within the plasma region,

ion trajectories are completely unaffected by the external field, and only

when the electron number density begins to drop within the thin plasma

sheath region do the ions begin to feel the external field. This leads to the

concept (as it was termed) of the plasma “freezing in” the ion trajectories
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due to its self-shielding effect, or that the plasma and acceleration regions

are effectively uncoupled except for the very thin plasma sheath region.

This model leads nicely on to the present work, where we assume that

the plasma and acceleration regions are uncoupled.

2.3 Current Model

A representative neutron tube acceleration region is shown in Figure 2.2,

with the ion source located at the bottom and the target at the top (both in

black). The plasma boundary (marked) is situated immediately above the

aperture in the ion source plasma cup. A representation of the ion beam is

shown by the two curved lines separating the zero charge density and non-

zero charge density regions, stretching from the ion source cup to the target.

The insulators provide resistance to gas permeation, in addition to holding

off the voltage between the source and target electrodes; they have a different

dielectric permittivity to the vacuum they enclose.

This schematic is representative of either a two-dimensional planar re-

gion, or as a cross-section through a three-dimensional axially symmetric

arrangement. In both cases, a vertical line of symmetry (marked) separates

identical parts of the region on either side of it. In the axially symmetric

case, the vertical line represents an axis of rotational symmetry thereby re-

ducing the dimension of the problem (since only axial and radial coordinates

need be represented); in the planar case, the vertical line mirrors the solution

on either side of it. With this in mind, if it is assumed that the tube insu-

lators are a sufficient distance away5, then depending upon the numerical

5By sufficient distance, we mean far enough away that they do not have any influence
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algorithm chosen, it is only the evacuated region (zero and non-zero charge

density) immediately above the plasma boundary that need be modelled in

order to fully determine the ion beam voltage and velocity distributions. The

ion beam profile and consequent boundaries forming the edge of the ion beam

should naturally emerge as part of the solution. By observing the vertical
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Figure 2.2: Tube schematic showing the ion beam (marked ’non-zero charge den-

sity region’), the charge free region (marked ’zero charge density region’), and the

plasma boundary situated directly above the source aperture.

line of symmetry at the centre of the ion beam, the region of interest shown

in Figure 2.2 can be represented as Figure 2.3 (this will be referred to in the

ensuing formulation), where the region boundary is split into seven distinct

sections; these are labelled {Si}.

on the electric fields in the vicinity of the ion beam.
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Figure 2.3: Region of interest, R. The curved line is a representation of the edge

of the ion beam, and separates the zero and non-zero charge density regions.

2.3.1 Field Equations

The following set of equations describe the ion beam and voltage profile in

the evacuated region shown in Figure 2.3. As described, due to the nature

of the problem, the system is dynamic with the flow of charged particles

being governed by the current density at the plasma boundary and by the

applied potential difference (the shape of the plasma boundary itself also

being dynamic); consequently, the electric field within the region is also dy-

namic. Therefore, the set of equations describing the problem is initially

time-dependent, later becoming time-independent upon settling to the equi-

librium state.
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2.3.1.1 Time-dependent, Unsteady Equations

The full set of equations describing the problem in the time-dependent regime

are

m

{

(v · ∇)v +
∂v

∂t

}

= q (E + v × B) , (2.13a)

∇ · (ρv) = −∂ρ
∂t
, (2.13b)

∇ · E =
ρ

ε0

, (2.13c)

∇ ·B = 0, (2.13d)

E = −∇φ− ∂A

∂t
, (2.13e)

and, B = ∇ × A. (2.13f)

Here the constants m and q are the ion mass and charge respectively (as in

Tonks and Langmuir [2], and in the internal model [11]), the vector v(x, t)

is the velocity vector field generated by the passage of particles across the

region under consideration (x represents the vector of linearly independent

coordinates appropriate for a given coordinate system), and the scalar field

φ(x, t) is the voltage within the region (as above). The quantity ρ(x, t) is

the scalar charge density field arising from the presence of charged particles

within the solution region, B(x, t) is the magnetic field within the region

(which can be applied directly or induced by the flow of charged particles),

and A(x, t) is the magnetic vector potential defined by (2.13f).

Equation (2.13a), termed the Lorentz force equation, is the balance of

particle inertia (on the left hand side) and particle accelerating force (on

the right hand side). The time-dependent velocity component arises from

44



Newton’s second law of motion, namely

F = ma = m
dv

dt
, (2.14)

(where F is force and a the particle acceleration due to that force) and since

dv/dt is the total derivative of the velocity field, we can write using the chain

rule

dv

dt
= (v · ∇)v +

∂v

∂t
, (2.15)

so that (2.14) and (2.15) give rise to (2.13a).

Equation (2.13b) represents conservation of charge and is a continuity

equation indicating that the rate of change of charge density within a region

is equal to the divergence of the current density from that region, where the

current density J(x, t) is defined by

J = ρv. (2.16)

Clearly if there is no net current density divergence from the region (no net

charge flow from the region), then the charge density will remain constant

within the region.

Equation (2.13c) is Gauss’ Law and is the equivalent of (2.1) expressed

in more than one dimension. It arises because sources of electrical charge

can be mono-polar, and therefore give rise to a diverging electric field from

a region enclosing them.

Equation (2.13d) arises from the fact that magnetic monopoles do not ex-

ist in nature, and hence there can be no net magnetic field divergence from

a region. Therefore the magnetic field cannot consist of a scalar potential

component, and can only be written in terms of the curl of a vector field as

given by (2.13f). The link between the electric and magnetic fields is present
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in the general electric field definition (2.13e).

All the variables within the equations (2.13) above are time-dependent, since

all fields and scalar quantities within the neutron tube acceleration region are

time-dependent until an equilibrium state is reached. If the system is allowed

to settle to such an equilibrium state (by applying constant drive conditions),

it is considered steady, where no fields or scalar quantities change with time

at any location within the region.

2.3.1.2 Magnetic Field Influence

At this point, the system of equations can be simplified by making the as-

sumption that magnetic field effects are negligible. External magnetic fields

are not applied to the neutron tube, and magnetic fields induced by the

charged particle flow are small in comparison to the applied electric field.

This is a known fact in the neutron generator community and is a conse-

quence of the relatively low ion currents within the neutron tube; it is born

out of extensive experimental experience and is justified to some extent,

mathematically, in Appendix B.
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2.3.1.3 Simplified Time-dependent and Steady-state Systems

By removing magnetic field effects, the full system of equations, (2.13), can

be restated as

m

{

(v · ∇)v +
∂v

∂t

}

= qE, (2.17a)

∇ · (ρv) = −∂ρ
∂t
, (2.17b)

∇ · ∇φ = − ρ

ε0
, (2.17c)

where in (2.17c), the electric field has been written as a conservative field

(from (B.16) in Appendix B) with the definition

E = −∇φ, (2.18)

for the electric scalar potential φ. This system of time-dependent equations

can be further reduced, in the steady-state case, by immediately setting the

time derivatives in (2.17a) and (2.17b) to zero, giving

m(v · ∇)v = −q∇φ, (2.19a)

∇ · (ρv) = 0, (2.19b)

∇ · ∇φ =
−ρ
ε0

. (2.19c)

In this case, the variables φ(x), ρ(x), and v(x) are now the time-independent

variables to be found.

From a physical point of view, when in a steady-state, the ion current

flowing across the tube acceleration region is constant, as are the consequent

charge density, velocity and electric fields (provided that the applied voltage

is constant). This leads to the immediate conclusion that the time derivatives

within (2.17a) and (2.17b) are zero when the system is in this equilibrium

state, hence (2.19), above.
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2.3.2 Solution Region and Boundary Conditions

Depending upon whether a time-dependent or steady-state solution to the

plasma boundary problem is required, solutions to the equations (2.17), or

(2.19) are sought on the region R, shown in Figure 2.3, with the following

boundary conditions applied

φ(x, t) = φS, t ≥ 0, x ∈ S1 ∪ S2 (2.20a)

φ(x, t) = φT , t ≥ 0, x ∈ S4 (2.20b)

∇φ(x, t) · n1 = 0, t > 0, x ∈ S1 (2.20c)

∇φ(x, t) · n5 = 0, t > 0, x ∈ S5 (2.20d)

ρ = ρs(x, t), t ≥ 0, x ∈ S1 (2.20e)

ρ = 0, t ≥ 0, x ∈ S2, (2.20f)

ρ = 0, t = 0, x ∈ R, x /∈ S1 ∪ S2, (2.20g)

∇ρ(x, t) · n5 = 0, t > 0, x ∈ S5 (2.20h)

v = vi(x)n1, t ≥ 0, x ∈ S1 (2.20i)

v = 0, t = 0, x ∈ R, x /∈ S1 (2.20j)

v · n5 = 0, t > 0, x ∈ S5 (2.20k)

where {Si} are the boundary segments enclosing R (shown in Figure 2.3).

The potentials φS and φT in (2.20a) and (2.20b) are the constant applied

source and target voltages, respectively. The condition (2.20c) states that the

electric field (given by (2.18)) normal to the plasma boundary (S1) is zero (n1

being the vector normal to S1), and furthermore, since (2.20a) applies there,

the electric field tangential to the boundary is also zero, or ∇φ(x, t) · s1 = 0

(where s1 is the vector tangential to S1); this implies that ∇φ = 0 on S1. The
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condition (2.20d) is applied to the line of symmetry, S5, and indicates that

there is no change in potential across this boundary, whilst the additional

condition (2.20c) on segment S1 is required to determine the position of the

plasma boundary, from which charged particles are emitted ([8]).

Conditions (2.20e) and (2.20i) refer to the known charge density distribu-

tion, ρs, of ions at the emission boundary and the known velocity magnitude,

vi, of the ions as they leave it (which is usually assumed to be constant in

time). Ions emerge from the plasma boundary with a known kinetic energy,

and it is assumed that they are emitted in a direction that is normal to the

boundary surface, hence the presence of the unit normal vector n1 in (2.20i).

The condition (2.20f) states that there is no charge on the top of the plasma

cup6, with (2.20g) and (2.20j) stating that the starting condition (for the

time dependent problem) is a region without charge or velocity anywhere,

except on those boundaries indicated.

The final two conditions, (2.20h) and (2.20k), are applied to the line of

symmetry, S5, and indicate that there is no change in charge density across,

or that there is no velocity into the boundary, S5. The remaining segment

does not have conditions applied.

2.3.2.1 Overriding Problems

The two overriding intrinsic problems with the model constructed here are

firstly that from both the unsteady and steady systems of equations, it is clear

the problem is non-linear in nature, and secondly that it is a moving (or free)

boundary problem (we do not know the region upon which the problem is

6In reality this is a fixed metal boundary held at the specific electric potential φS .
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to be solved in advance). Therefore, to understand the problem fully, the

one-dimensional steady-state and time-dependent solutions are thoroughly

studied, prior to examining a two-dimensional approach. As we shall see,

the one-dimensional steady-state solution in planar geometry is analytically

soluble, with the one-dimensional time-dependent case being at least par-

tially, analytically soluble. Furthermore, studying numerical methods in one

dimension allows us to check the validity and applicability of methods that

might be applied to the two-dimensional case.

50



Chapter 3

The One-dimensional

Time-independent Solution

The steady-state problem detailed in Chapter 2 can be restated in one di-

mension. We now explore the steady-state one-dimensional case thoroughly

with an view to gaining some insight into the one and two-dimensional time-

dependent cases. As mentioned in §2.3.2, and as we shall see, the one-

dimensional time-independent free boundary problem in planar geometry is

analytically soluble. The solution to this problem is first derived, and com-

pared with that given by a rapid numerical method before being restated in

radial geometry, giving rise to a non-linear ordinary differential equation for

which no closed solution appears to exist. The radial problem is then solved

by modifying the numerical method used in the planar case (taking account

of subtleties particular to the radial case), and solutions to this problem

explored.

In the following chapter, the full one-dimensional time-dependent solu-

tion is examined and two different numerical approaches to this problem
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described, along with numerical results.

3.1 One-Dimensional Planar Time-independent

Analytic Solution

The equations, (2.19), can be written in an equivalent one-dimensional planar

form as

mv
dv

dx
= −q dφ

dx
, (3.1a)

d

dx
(ρv) = 0, (3.1b)

d2φ

dx2
= − ρ

ε0
, (3.1c)

where (3.1a) is simply the x component of the vector equation (2.19a), and

m, q, and ε0 are constants (as before). Here, what is now, the x direction

was previously the vertical (y) direction.

Intuitively, the continuity equation (3.1b) must be satisfied, since in one

dimension, particles entering the solution region will always leave it (in more

than one dimension this is not necessarily true due to the possible presence

of magnetic fields causing vorticity within the charged particle beam). More

importantly, (3.1b) implies that the quantity ρv is constant at all points

within the one-dimensional region1. By integrating (3.1b) and setting the

constant of integration to be J0 (the known initial current density) we have

ρ(x) =
J0

v(x)
, (3.2)

1This must be so or pockets of local charge compression or rarefaction would un-

physically form within the region.
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or simply the one-dimensional equivalent definition of (2.16).

The plasma boundary problem detailed in §2.3 is therefore reduced to the

simultaneous solution for φ(x) (the one-dimensional electric scalar potential

or voltage) and v(x) (the scalar particle velocity) of (3.1a) and (3.1c), and

is considered on the domain x ∈ [s, xT ] (shown in Figure 3.1) subject to the

conditions

φ = φT , x = xT , (3.3a)

φ = φS, x = s, (3.3b)

dφ

dx
= 0, x = s, (3.3c)

v = vi, x = s, (3.3d)

where s is the location of the plasma free boundary. It should be pointed

out here, that to accelerate a positively charged particle (such as a deuteron)

away from the plasma boundary at s, then φS > φT .

To solve the system, (3.1), we begin by writing (3.1a) as

m

2

d

dx

(

v(x)2
)

= −q dφ
dx
,

which can be immediately integrated to give

v(x)2 = −2q

m
φ(x) + c1, (3.4)

where c1 is a constant of integration. When x = s, φ = φS and v(s) =

vi (the initial velocity of an emerging ion determined from the plasma ion

temperature) from (3.3b) and (3.3d), so that the constant c1 is given by

c1 = vi
2 +

2q

m
φS
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Figure 3.1: The one-dimensional planar solution region showing the passage of the

steady ion beam from the (settled) plasma boundary at x = s to the fixed target

location at x = xT . Plasma expands from some location to the left of the plasma

boundary and is accelerated away from the boundary by the electric field arising

from the applied potential difference. The lines x = s and x = xT correspond to

the boundaries S1 and S6, respectively, in Figure 2.3.

from (3.4).

The scalar particle velocity v(x) can then be written

v(x) =

√

2q

m
(φS − φ(x)) + vi2, (3.5)

since v(x) > 0 is consistent with particles travelling in the positive x direc-

tion, which follows as φS > φT . Upon substituting (3.5) (along with (3.2))

into (3.1c) we have the single ordinary differential equation

d2φ

dx2
= −J0

ε0

(

2q

m
(φS − φ(x)) + v2

i

)− 1
2

, (3.6)

holding for s < x < xT and subject to the boundary conditions (3.3a), (3.3b),
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and (3.3c). It is noted here that φ and dφ
dx

must be continuous on the interval

[s, xT ], whilst d2φ
dx2 must be continuous on the interval (s, xT ).

3.1.1 One-dimensional Planar Canonical Form

In order to expose the underlying features of the one-dimensional problem,

we now restate it in a simplified dimensionless canonical form, from which

integration to give an analytic solution is relatively simple.

Dividing the term in brackets on the right-hand side of (3.6) through by

v2
i gives

d2φ

dx2
= − J0

ε0vi

(

2q

mv2
i

(φS − φ(x)) + 1

)− 1
2

, (3.7)

so that the dimensionless variable

w(x) =
2q

mv2
i

(φS − φ(x)) + 1,

= v2(x)/v2
i

> 0, (3.8)

from (3.5), is the ratio of a particle’s kinetic energy at x to its initial kinetic

energy. It readily follows from (3.7) that w satisfies

d2w

dx2
= β2w−

1
2 , (3.9)

(here it is assumed that w
1
2 = +

√
w) where the constant,

β =

√

2qJ0

mε0v
3
i

,

must have units of length, L. By defining y = βx and determining the

necessary derivatives with respect to y, (3.9) can be further reduced to

d2ŵ

dy2
= ŵ− 1

2 , (3.10)
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which is the dimensionless canonical form of (3.6), where

ŵ(y) = w(y/β) = w(x).

At this point, from (3.10), it is clear that ŵ′′(y) > 0, since

w1/2(x) = v(x)/vi

> 0,

from (3.8), and since v(x) must be positive for particles to travel in the

correct direction.

3.1.1.1 Dimensionless Boundary Conditions

In order to solve the boundary value problem for (3.10), the original boundary

conditions (3.3a), (3.3b) and (3.3c) must also be restated in a dimensionless

form; this is done as follows. From the definition for ŵ (or w) and the

conditions (3.3a) and (3.3b), we can say

ŵ|y=yT
= w(φ(xT ))

=
2q

mv2
i

(φS − φT ) + 1

= k0, (3.11)

say, where yT = βxT . Clearly, k0 > 0 (since φS > φT ) and typically has a

numerical value of the order 103 for the deuterium ions accelerated in this

application.

Defining η = βs consistently with the transformation from x to y, the re-
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maining boundary conditions become

ŵ|y=η = w(φ(s))

= 1, (3.12)

from (3.3b) and (3.8), and

dŵ

dy

∣

∣

∣

∣

y=η

= β−1w′(s)

= −β−1 2q

mv2
i

φ′(s)

= 0, (3.13)

from (3.3c) and (3.8). Similarly, as in (3.6), ŵ and dŵ
dy

must be continuous

on the interval [yT , η], whilst d2ŵ
dy2

must be continuous on the interval (yT , η).

3.1.2 Integration of the Planar Canonical Form

The integration of (3.10) is easily performed by multiplying both sides of

(3.10) by 2dŵ
dy

giving

2
dŵ

dy

d2ŵ

dy2
= 2

dŵ

dy
ŵ− 1

2 ,

or

d

dy

(

dŵ

dy

)2

= 4
d

dy

(

ŵ
1
2

)

. (3.14)

Integrating (3.14) we have

dŵ

dy
= +

√

4ŵ
1
2 + c2, (3.15)

where c2 is a constant of integration. The positive square root is taken due to

the following argument. Since it has already been established that ŵ′′(y) > 0,

then ŵ′(y) is an increasing function of y for y > η. Moreover, since ŵ′(η) = 0,

from (3.13), we conclude that ŵ′(y) > 0 for y > η.
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Rearranging (3.15) at y = η and using the dimensionless conditions (3.12)

and (3.13), we see at once that c2 = −4 and therefore

dŵ

dy
= 2

√

ŵ
1
2 − 1. (3.16)

If we now set

w
2 = ŵ

1
2 − 1, (3.17)

then

dŵ

dw
= 4w

(

w
2 + 1

)

, (3.18)

and since

dŵ

dy
=
dŵ

dw

dw

dy
,

then

2
(

w
2 + 1

) dw

dy
= 1 (3.19)

from (3.16) and (3.18). Integrating both sides of (3.19) gives the complete

analytic solution of (3.10) subject to (3.11), (3.12) and (3.13) in terms of the

variables w and y in the implicit form

y = 2

(

1

3
w

3 + w + c3

)

, (3.20)

where c3 is given by

c3 =
1

2
yT − 1

3

(

k
1
2
0 − 1

)
3
2 −

(

k
1
2
0 − 1

)
1
2

(3.21)

from (3.11) and (3.17). Finally, (3.20) can be written in terms of the original

variables x and φ (from (3.8)) therefore giving the implicit one-dimensional

steady-state analytic solution of (3.6) subject to (3.3a), (3.3b) and (3.3c)

x(φ) =
2

β





1

3

(√

2q

mv2
i

(φS − φ) + 1 − 1

)
3
2

+

(√

2q

mv2
i

(φS − φ) + 1 − 1

)
1
2

− 1

3

(

k
1
2
0 − 1

)
3
2 −

(

k
1
2
0 − 1

)
1
2

]

+ xT . (3.22)
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An expression for the location of the plasma boundary s for a given set

of conditions can now be determined by setting x = s and consequently

φ(s) = φS, giving

s = xT − 2

β

[

1

3

(

k
1
2
0 − 1

)
3
2

+
(

k
1
2
0 − 1

)
1
2

]

=
2c3
β
, (3.23)

from (3.21) and (3.22).

3.1.3 Inversion of the One-dimensional Planar Solution

The implicit solution (3.22) can be written in the explicit form φ = φ(x) by

observing from (3.20) that, written in the transformed variables y = y(w), it

is the canonical cubic polynomial.

We can rewrite (3.20) as

w
3 + 3w + z = 0, (3.24)

where

w =
√

(ŵ
1
2 − 1), z = 3

(

c3 −
y

2

)

.

The discriminant D for (3.24), where

D = −108 − 27z2

< 0 ∀y,

indicates that (3.24) has one real and a pair of complex conjugate roots, and

since we are dealing with a physically real situation, we are concerned only

with the one real root. To solve (3.24), we proceed in a manner analagous

to Cardano’s method (circa 1545) and choose to detail the solution, instead
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of using a symbolic solver.

Equation (3.24) is similar to the identity

4 sinh3 u+ 3 sinhu = sinh 3u, (3.25)

and so writing w = 2 sinh u in (3.24) we obtain

2
(

4 sinh3 u+ 3 sinh u
)

+ z = 0,

or

2 sinh 3u+ z = 0,

from (3.25). Writing sinh 3u in exponential form we have

e3u − e−3u + z = 0,

or by multiplying through by e3u, the quadratic

(

e3u
)2

+ ze3u − 1 = 0.

Since the exponential function takes only positive values, the appropriate

solution to the quadratic is

2e3u = −z +
√

(z2 + 4), (3.26)

and by writing

λ = z +
√

(z2 + 4),

then

2e3uλ = (−z +
√

(z2 + 4))(z +
√

(z2 + 4))

= 4,
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therefore

λ = 2e−3u. (3.27)

From (3.26) and (3.27) we conclude

eu =

(−z +
√

(z2 + 4)

2

)
1
3

, e−u =

(

z +
√

(z2 + 4)

2

)
1
3

,

and that the inverted form of (3.24) is

w = eu − e−u =

(−z +
√

(z2 + 4)

2

)
1
3

−
(

z +
√

(z2 + 4)

2

)
1
3

.

This solution for w can be written in terms of the original variables x and

φ(x) as

(

2q

mv2
i

(φS − φ(x)) + 1

) 1
2

= 1 +
1

2
2
3













−3

(

c3 −
βx

2

)

+

√

9

(

c3 −
βx

2

)2

+ 4





1
3

−



3

(

c3 −
βx

2

)

+

√

9

(

c3 −
βx

2

)2

+ 4





1
3











2

,

which finally, upon squaring both sides and rearranging, gives the inverted

form of (3.22) as

φ(x) = φS −
mv2

i

2q







1

2
4
3













−3

(

c3 −
βx

2

)

+

√

9

(

c3 −
βx

2

)2

+ 4





1
3

−



3

(

c3 −
βx

2

)

+

√

9

(

c3 −
βx

2

)2

+ 4





1
3











4

+ 2
1
3













−3

(

c3 −
βx

2

)

+

√

9

(

c3 −
βx

2

)2

+ 4





1
3

−



3

(

c3 −
βx

2

)

+

√

9

(

c3 −
βx

2

)2

+ 4





1
3











2




, (3.28)
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where c3 is defined by (3.21).

3.2 One-dimensional Radially Symmetric Time-

independent Equation

We now consider the plasma boundary problem on the domain shown in

Figure 3.2. Here ions are accelerated radially outwards from the interface at

r = s towards the target at r = rT , and their radial speed v(r, θ), the scalar

potential distribution φ(r, θ) and the boundary location r = s are determined

by the boundary conditions

φ = φT , r = rT , (3.29a)

φ = φS, r = s, (3.29b)

dφ

dr
= 0, r = s, (3.29c)

v = vi, r = s. (3.29d)

As in the planar case, the potential φ(r) decreases with increasing r, or

φS > φT . Since the Dirichlet boundary value φT in (3.29a) is constant on the

boundary at r = rT , and φS and vi in (3.29b) and (3.29d) are also constant

on the boundary at r = s, then the scalar potential φ(r, θ), ion speed v(r, θ)

(and consequent charge and current densities) are independent of angular

position within the region and are therefore functions of radial location only

(the plasma interface shape is also independent of angular location). The

problem is therefore one-dimensional in r where r ∈ [s, rT ]. In the two-

dimensional polar coordinate system, the gradient operator is given by

∇ =
∂

∂r
p̂ +

1

r

∂

∂θ
q̂,
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Figure 3.2: One-dimensional radial solution region. The plasma is expanding

from the centre of the two concentric circles (only half of the region is shown) and

the plasma boundary (marked interface) forms some radial distance away from this

central point at r = s. The target is located at r = rT . Since the ions are positively

charged, φS > φT .

where p̂ and q̂ are the curvilinear unit vectors in the r and θ directions, the

Laplacian operator is given by

∇ · ∇ =
1

r

∂

∂r

(

r
∂

∂r

)

+
1

r2

∂2

∂θ2
,

and the divergence of a vector field F, say, is given by

∇ · F =
1

r

∂

∂r
(rFp) +

1

r

∂Fq
∂θ

,

where Fp and Fq are the field components in the r and θ directions, respec-

tively.
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One-dimensional radial equivalents to the system (2.19) are then found

to be

1

r

∂

∂r

(

r
∂φ

∂r

)

+
1

r2

∂2φ

∂θ2
=

1

r

∂

∂r

(

r
∂φ

∂r

)

= −ρ(r)
ε0

,

m(v · ∇)v = m

{(

vp
∂vp
∂r

+
vθ
r

∂vp
∂θ

)

p̂ +

(

vp
∂vq
∂r

+
vq
r

∂vq
∂θ

)

q̂

}

= mvp
∂vp
∂r

p̂

= −q ∂φ
∂r

p̂,

and

∇ · (ρv) =
1

r

∂

∂r
(rρvp) +

1

r

∂ρvq
∂θ

=
1

r

∂

∂r
(rρvp)

= 0,

since derivatives with respect to θ, and velocity components in the θ (or q̂)

direction are zero. To clarify, the one-dimensional radial equations for the

plasma free boundary problem are

mv
dv

dr
= −q dφ

dr
, (3.30a)

1

r

d

dr
(rρv) = 0, (3.30b)

1

r

d

dr

(

r
dφ

dr

)

= − ρ

ε0
, (3.30c)

where the subscript p, denoting the radial direction, has been dropped and

the partial derivatives replaced by ordinary derivatives. Here, v, φ, and ρ are

functions of r only. Manipulation of these equations can now proceed as in

the planar case.
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Integrating both sides of (3.30b) we have

rρv = c1,

where c1 is found to be

c1 = sρsvi

= sJ0,

ρs being the initial charge density (at the free boundary), and J0 the initial

current density (at the free boundary) from (2.16). We can then say

J(r) = ρ(r)v(r)

= J0
s

r
, (3.31)

where the reciprocal dependence of J on r is expected for a radially expanding

density.

The speed v at r of a charged particle emitted from the free boundary at

s can be determined from (3.30a) in a similar manner to the planar case (see

(3.5) in §3.1 above) giving

v(r) =

√

2q

m
(φS − φ(r)) + v2

i . (3.32)

Using (3.31) and (3.32), we can now rewrite (3.30c), (3.30a), and (3.30b) as

the single ordinary differential equation

d

dr

(

r
dφ

dr

)

= −sJ0

ε0

(

2q

m
(φS − φ(r)) + v2

i

)− 1
2

, (3.33)

where the unknown free boundary location s appears explicitly on the right-

hand side. The solution of (3.33) subject to the boundary conditions (3.29a),

(3.29b) and (3.29c) will result in a potential distribution as a function of ra-

dial distance (that is particular to the specific boundary conditions applied).
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3.2.1 One-dimensional Radial Canonical Form

As in the planar case (§3.1.1), the ordinary differential equation (3.33) can be

non-dimensionalised revealing a simple canonical form. Once again, dividing

the term in brackets on the right-hand side of (3.33) through by v2
i gives

d

dr

(

r
dφ

dr

)

= − sJ0

ε0vi

(

2q

mv2
i

(φS − φ(r)) + 1

)− 1
2

, (3.34)

so that the dimensionless variable

ω(r) =
2q

mv2
i

(φS − φ(r)) + 1,

=
v(r)2

v2
i

(3.35)

can be defined, from (3.32). Clearly, since particles must accelerate away

(in the sense of positive r) from the plasma boundary at r= s, then v(r) ≥

vi, r ≥ s indicating that ω(r)
1
2 ≥ 1, r ≥ s.

Derivatives of ω(r) are then given by

dω

dr
= − 2q

mv2
i

dφ

dr
(3.36)

and

d2ω

dr2
= − 2q

mv2
i

d2φ

dr2
,

so that (3.34) can be written

−mv
2
i

2q

(

r
d2ω

dr2
+
dω

dr

)

= − sJ0

ε0vi
ω− 1

2 ,

or

d

dr

(

r
dω

dr

)

= sβω− 1
2 , (3.37)

where

β =
2qJ0

mε0v3
i

,
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which has the dimensions of L−2. We now define the new dimensionless

variables Q and R by

ω(r) = β
1
3 s

2
3Q(r),

and

R = β
1
2 r, (3.38)

respectively. Substituting these into (3.37) gives

d

dR

(

R
dQ̂

dR

)

= Q̂−
1
2 , (3.39)

the dimensionless canonical form of (3.33), where Q(r) = Q(R/β
1
2 ) = Q̂(R).

3.2.1.1 Radial Dimensionless Boundary Conditions

As in the planar case, we must also restate the boundary conditions in a

dimensionless form. With reference to (3.35) and (3.36) we have

Q̂(RT ) = Q(rT )

= β− 1
3 s−

2
3

(

2q

mv2
i

(φS − φT ) + 1

)

= β− 1
3 s−

2
3k0, (3.40)

say, from (3.29a) and (3.11), where RT = β
1
2 rT ;

Q̂(Rs) = Q(s)

= β− 1
3 s−

2
3

from (3.29b), where Rs = β
1
2 s; and

dQ̂

dR

∣

∣

∣

∣

∣

R=Rs

=
dQ

dω

dω

dφ

dφ

dr

∣

∣

∣

∣

s

dr

dR

= 0, (3.41)

from (3.29c) and (3.38).
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3.3 Numerical Methods for the One-dimensional

Plasma Boundary Problem

There is no apparent analytic solution to (3.33) subject to the conditions

(3.29a), (3.29b) and (3.29c). However, a number of numerical methods can

be employed that utilise, for instance, moving mesh algorithms to iterate

towards the solution of both (3.6) and (3.33) (an example is given in [34]). It

is though, much more efficient to apply a relatively simple numerical method

for initial value problems to these equations, than to employ a relatively

complex moving mesh method. We now investigate the application of such

a method to the one-dimensional, steady-state, planar problem, comparing

numerical solutions to the analytic solution given in §3.1. This method is

then used to study the one-dimensional, steady-state, radial problem.

3.3.1 A Numerical Method for the One-dimensional Pla-

nar Problem

Since the one-dimensional planar equation (3.6) can be integrated analyti-

cally giving the explicit solution (3.28), it would seem appropriate to develop

a numerical method for this problem against which the analytic solution can

be compared, before applying the method to the equivalent radial problem

(3.33).

A simple and efficient way of numerically solving (3.6) can be developed

by splitting its canonical form, (3.10), into a coupled pair of first order ordi-

nary differential equations, integrating them in non-dimensional space, and

then returning the solution to physical space (where some physical inter-
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pretation of the solutions can be extracted). This is most easily done by

setting

dŵ

dy
= z, (3.42)

so that from (3.10)

dz

dy
= ŵ− 1

2 , (3.43)

and integrating forwards with respect to y from the (source) free boundary

position η = β
1
2 s (where s is selected in advance) with the initial conditions

(3.12) and (3.13). Integration proceeds until (3.11) is satisfied, and since

ŵ′(y) > 0 for y > η, the condition (3.11) can be satisfied only once over the

solution region and this is at the right hand end of the region (integration

proceeds with positive y from left to right). Therefore, the location of the

right hand end (the target end) of the solution region is given by the value

of y at the point where (3.11) is satisfied (where yT = β
1
2xT , say).

The differential equation (3.10) is invariant under a translation of domain

and this can be simply shown by shifting the dependent variable in (3.10)

by a constant, a, say. Upon doing this, derivatives in (3.10) are unchanged

yielding the similar one-dimensional equation

d2ŵm

dm2
= ŵ

−
1
2

m , (3.44)

where m = y + a, and ŵm = ŵ(m). Here, the domain shift has introduced

the second term on the left hand side of (3.45)

With this in mind, it is clear that an initial choice of free boundary

location η leads to a unique region size (yT − η). Once this size is known

(from the method described above), the fixed target location yT can be set,

with the free boundary location at the left hand end of the region now varying

with the applied boundary conditions.
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3.3.1.1 Comparison Between Numerical and Analytic Solution

To test the numerical method just described, solutions to the planar plasma

boundary problem were found for several different sets of boundary con-

ditions. The MATLAB function ODE45 was used to integrate (3.42) and

(3.43) with constant initial particle energy (50eV) and current density (J0 =

18800Am−2), typical of a neutron tube application, and with the target po-

tential, φT , set at zero; several different source potentials (40, 60, 80 and

100 kilovolts), that are typical of those seen in a neutron tube application,

were applied. It was expected that the solution region would reduce in size

as the applied potential difference was reduced (see Figures 1.2, 1.3 and

1.4 and the associated text in §1.1.1), and this behaviour is clearly seen in

Figure 3.3 which shows the numerical and the associated analytic solutions

(calculated from (3.28)). The location of the free plasma boundary with an

applied source potential of 100kV has been labelled as the nominal plasma

boundary location to illustrate the reduction in region width with reducing

source potential. The curve labelled Plasma boundary location as a function

of source-target potential difference is calculated from (3.23).

The ODE45 function was executed with a specified relative tolerance of

1×10−9. This causes the solver, at a particular point, to repeatedly generate

the solution with successively reduced integration step sizes. This step size

reduction process is repeated until the difference between two consecutive ap-

proximations of the solution, at that point, falls below the specified tolerance.

In the planar case, this process can be checked by calculating the analytic

potential solution, from (3.28), at the same integration locations as those

generated in the numerical approximation; consequently the absolute RMS
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difference (over the entire set of points) between the two solutions can be

calculated. For the curves in Figure 3.3, calculated absolute RMS differences

between numerical and analytic potential solutions range from ∼ 7.5 × 10−5

to ∼ 1.6 × 10−4. This gives confidence in the use of the ODE45 function

so that it can be used in a numerical method for the subtly different radial

problem, for which no analytic solution exists.

3.3.2 A Numerical Method for the One-dimensional Ra-

dial Problem

There are some fundamental differences between the basic physical situations

in the planar and radial cases that must be taken into consideration when

calculating solutions to the radial problem described in §3.2. In the planar

case, one of the initial specifications for the problem is the current density

J0 at the ion source, with variations in this value giving rise to variations

in the solution and solution domain size. The physically planar nature of

the problem implies that the emitted ion current from the ion source is lin-

early proportional to the emission ion current density, where the constant of

proportionality is the emission surface area, and which in the planar case, is

independent of domain location. This is manifested in the differential equa-

tion (3.10), by it being invariant under a translation of domain; see (3.44)

and associated text. Physically, this does not change the emitted ion current

as already noted.

The situation is different in the radial case where ions emitted with a

given current density from a boundary close to the origin, give rise to a lower

emitted ion current than those emitted from a boundary further away from
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Figure 3.3: Numerical and analytic solutions to the one-dimensional planar plasma

boundary problem at different applied source potentials (initial energy and current

density is the same in each case). The accumulation of points towards the left of

the calculated numerical solutions is caused by the error control procedure within

the solver (described above).

the origin. This is due to the emission boundary area, and hence emission

current for a given current density, being radially dependent and is manifested

in the differential equation (3.39), by it not being invariant under a shift of

domain. This can be simply shown in the same manner as in the planar case
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by shifting the dependent variable in (3.39) by a constant, a, say. Substituting

the new variable, n = R + a, into (3.39), we deduce

d

dn

(

n
dQ̂n

dn

)

− a
d2Q̂n

dn2
= Q̂

−
1
2

n , (3.45)

where the domain shift has introduced the curvature term on the left hand

side (not present in (3.39)), the effect on the solution of which, is clearly

dependent upon the size of the domain shift; here Q̂n = Q̂(n).

With this in mind, a particular domain location, size, and associated po-

tential solution for this equation with a given emission ion current and set of

initial conditions, is unique and cannot be translated (in order to fix the tar-

get location) as in the planar case, hence a slightly different solution method

must be employed and this is described as follows.

To solve the radial problem described in §3.2, as in the planar case, we

begin by splitting (3.39) in to a pair of first order equations by setting

dQ̂

dR
= ξ, (3.46)

so that expansion of the derivative on the left-hand side of (3.39) gives

dξ

dR
=

1

R

(

Q̂− 1
2 − ξ

)

. (3.47)

These can be used to calculate the single unique solution for a given set

of initial conditions, by utilising the fact that Q̂(R) and Q̂′(R) are strictly

increasing functions over the solution domain; this is shown in the following

section.
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3.3.2.1 Radial ‘Shooting’ Method

As already mentioned, the situation in the radial case is subtly different to

that of the planar case as a consequence of the plasma boundary location

appearing explicitly on the right hand side of the original radial equation,

(3.33). This is manifested in the dimensionless equation, (3.39), by it not

being invariant under a shift of domain (unlike the planar case). This means

that, in order to integrate forwards from the plasma boundary (as in the pla-

nar case), the location of that boundary must be known in advance. Since

this is not the case, a method for determining the boundary location, whilst

simultaneously determining the solution that satisfies the boundary condi-

tions, must be ascertained.

In other words, selecting the plasma boundary location in advance and

integrating forwards from it will not necessarily yield a solution whereby the

boundary condition, (3.40), is satisfied at the required, fixed target location.

Since integrating from the fixed target location is not feasible (there is no

gradient information known in advance at the target), we must develop a

method that iterates towards the correct plasma boundary location for a

given set of conditions, whereby integration towards the target from the

correct plasma boundary causes the boundary condition, (3.40), and the

correct target location to coincide. This is reminiscent of a shooting method,

commonly employed to solve ordinary differential equations (see [20], for

example).

To do this, we initially use a search method whereby we choose an initial

plasma boundary location, Rs0 say, and and integrate towards the target,

stopping when (3.40) is satisfied. If the integration stops before the required
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target location is reached, the initial plasma boundary location is incre-

mented by the small amount, ∆Rs, and the integration repeated. This proce-

dure stops at the ith initial plasma boundary location, Rsi
= Rs0+(i−1)∆Rs,

when the chosen target location, RT , falls within the range of calculated tar-

get locations resulting from solutions starting at Rsi−1
and Rsi

. Once a

plasma boundary location interval (containing the correct plasma boundary)

that gives rise to a set of solutions, including that solution that gives rise

to the correct target location for the given boundary conditions, is known,

a bisection-type method is applied at the plasma boundary, with the calcu-

lated target location being used at each step to inform the starting plasma

boundary location; it being adjusted accordingly.

This process is only possible if the dimensionless solution potential Q̂(R)

monotonically increases (in a concave, upwards manner) from the known

value at the plasma boundary to that at the target, or if both Q̂′(R) and

Q̂′′(R) are greater than zero over the domain R ∈ [Rs, RT ]. To show this, we

first make the transformation u = lnR (so that u ∈ [us, u0], with us = lnRs),

and Q̂(R) = Q̂(eu) = P̂ (u), so that (3.39) is reduced to

P̂ ′′(u) = euP̂− 1
2 . (3.48)

Now, since P̂ (u) = Q̂(R), and

Q̂(R) = Q(r)

= β− 1
3 s−

2
3ω(r)

> 0, R ∈ [Rs, RT ]
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(since β, s > 0), we can conclude that

P̂ ′′(u) = R
d

dR

(

R
dQ̂

dR

)

> 0, (3.49)

from (3.48). Additionally, by writing

P̂ ′(u) = RQ̂′(R)

=

∫

u

us

eζP̂−
1
2 (ζ) dζ + P̂ ′(us), (3.50)

we can also conclude from the mean value theorem for integrals that P̂ ′(u) >

0, since P̂ ′(us) = 0, from (3.41); this, in turn, implies that Q̂′(R) > 0, R ∈

[Rs, RT ], from (3.50).

It is now known that Q̂′(R) > 0 over the solution domain, from (3.50),

but it is not immediately obvious that Q̂′′(R) > 0, R ∈ [Rs, RT ]. It is clear

that the curve P̂ (u) is concave upwards, since P̂ ′′(u) > 0, from (3.49). Also,

by superimposing the R axis over the u axis (but with a different scale),

the graph of P̂ (u) read against the R axis is simply Q̂(R); this must also

be concave upwards as it is the same curve, merely being read against the

different, strictly increasing scale, R = eu. With this in mind, the curvature

must be the same sign for both P̂ (u) and Q̂(R), where for P̂ (u), it is given

by

%P =
P̂ ′′(u)

(

1 + (P̂ ′(u))2
)

3
2

,

> 0, u ∈ [us, u0]
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since P̂ ′′(u) > 0. The equivalent expression in Q̂ is then

%Q =
Q̂′′(R)

(

1 + (Q̂′(R))2
)

3
2

,

which has the same sign as %P , implying that Q̂′′(R) > 0 (since Q̂′(R) > 0).

Since it is the case that Q̂(R) curves upwards from R=Rs in a concave

manner, we expect that a change in initial plasma boundary location, for a

given set of initial conditions, will give rise to a corresponding change (in

the same direction) in calculated target location. This therefore enables the

refinement process, described above, to take place.

Radial Numerical Results

As in the planar case, the MATLAB function ODE45 was used (again, with a

specified relative tolerance of 1× 10−9) to solve the pair of equations, (3.46)

and (3.47), thereby generating a potential solution for each initial plasma

boundary location (as described above). The event trapping mechanism in

ODE45 was used to terminate the integration when the value of the calculated

(dimensionless) solution potential reached that given by (3.40). Dimension-

less solutions were then transformed back to physical space for display.

In each case, the initial search procedure starts the plasma boundary

location guesses with the physical location s0 = 0.001m, or dimensionless

location Rs0 = 2.621. The search procedure successively increments from

this starting location with an incremental step size of ∆s = 5 × 10−4m, or

∆Rs = 1.311. This continues until a plasma boundary interval is found,

in which the corresponding, calculated target interval contains the required

target location; the target was set at 0.02m in all cases. Once this interval
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is located, the bisection algorithm begins whereby the plasma boundary in-

terval is successively halved (with the calculated target interval being used

to inform the bisection method) until the calculated target location falls to

within 10−7m (or 2.6×10−4 dimensionless length units) of the required target

location.
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Figure 3.4: Numerical results from the radial shooting method. Curves show the

variation in potential with distance away from the inner plasma free boundary (to

the left) to the target (to the right). Solutions for a number of differing sets of

initial conditions are shown.
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Figure 3.4 shows results from two current (1 Amp and 10 Amps) régimes

calculated by the radial shooting method just described. As is expected, cal-

culated plasma boundaries within the device carrying the smaller 1 Amp ion

current are located nearer the origin than those within the device carrying

the larger 10 Amp ion current, for a given external electric field. This is due

to the larger ion flux in the 10 Amp case causing the boundary to bulge into

the accelerating region (and conversely for the smaller 1 Amp case) as de-

scribed previously in §1.1.1. The effect of radial location on the solution can

be clearly seen in the 1 Amp case, particularly for solutions with a (relatively)

high applied potential difference. The combination of a strong electric field

and relatively low ion flux causes the plasma boundary to be located near to

the origin, where the circular boundary begins to resemble a point source.

This is in contrast to the planar case and is manifested in the presence of s

on the right-hand side of (3.33), in addition to the more complex derivative

term on the left-hand side of (3.33). For certain sets of boundary conditions,

these terms cause the solution curvature to change sign (from negative to

positive) some distance away from the plasma boundary.

In the planar case (3.6), the electric field gradient (and hence curvature) is

always less than or equal to zero, irrespective of the location of the free plasma

boundary. However, in the radial case (3.33), the electric field gradient is

given by

d2φ

dr2
=

1

r

(

sJ0

ε0vi

(

2q

mv2
i

(φS − φ(r)) + 1

)− 1
2

+
dφ

dr

)

,

where, since dφ
dr
< 0, r ∈ (s, rT ] (from (3.35) and (3.36)), we conclude that

the solution curvature changes sign where
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sJ0

ε0vi

(

2q

mv2
i

(φS − φ(r)) + 1

)− 1
2

+
dφ

dr
= 0. (3.51)

Referring to the 100KV, 1 Amp case in Figure 3.4, the solution gradient

is roughly constant, taking a value of ∼ −6.25 × 105 Vm−1. In combination

with the constants

2q

mv2
i

=
1

IE

= 0.02 C J−1,

and,

sJ0

ε0vi
=

I0
πsε0vi

≈ 1.29 × 107 C2(Jm)−1,

where IE is the initial particle energy in electron-volts (IE = 50 eV in this

case), the current density J0 is calculated as the density over the circular area

of the emission boundary (J0 = I0/(πs
2) ' 210 Am−2), and s is the plasma

boundary location (∼ 0.04 m in this case); (3.51) indicates that the solution

curvature will change sign where

φS − φ(r) . 21500V. (3.52)

A simple visual inspection of the 100KV, 1 Amp trace in Figure 3.4 indicates

that the solution curvature changes from sign when the solution potential is

at ∼ 80000V (or where φS − φ(r) ∼ 20000V), corresponding to (3.52) to a

first approximation.

80



Chapter 4

The One-dimensional

Time-dependent Solution.

4.1 Introduction to the One-dimensional Time-

dependent Problem

As mentioned in §1.1.1, two distinct timescales exist during the operation

of the neutron tube, and the previous chapter described (in one dimension)

the stable steady state to which the system settles over the relatively long

timescale. In this chapter we examine (in one dimension) the relatively short

timescales involved with the passage of the charged particle beam across the

tube accelerating gap, and the consequent settling of the plasma-vacuum

boundary.

Prior to the creation of the deuterium plasma, a state exists within the

operation of the neutron tube, where no charged particle flow takes place. In

this state a stable electric field is generated by the application of the main
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acceleration voltage to the tube electrodes. As the deuterium plasma is re-

leased, ions begin to accelerate across the tube accelerating gap separating

the solution region into two states. In the part of the region ahead of the

advancing charge front there is clearly no charge (i.e. the charge density and

velocity fields are zero), but behind it the region is charge infused, where by

charge infused, we mean that this part of the region contains charged par-

ticles, with the charge density and velocity fields being non-zero. Since two

states exist within the solution region as the charge front is accelerated across

it, the solution of the time-dependent (short timescale) problem can be anal-

ysed differently in these two areas. The charge free region ahead of the charge

front can be analysed analytically, as we shall see, with it being effectively

separated from the charge infused region by a characteristic curve of the

problem. This “separation” characteristic is defined by the time-dependent

location of the charge front itself. A partial time-dependent analytic solution

can be also obtained for the charge infused region behind the charge front,

but to obtain a full time-dependent solution both behind and ahead of the

charge front, we appeal to a numerical method.

Two numerical approaches are proposed for determining the solution of

the time-dependent problem, where the first numerical method, that uses

a standard difference approach, required, in hindsight, a parameter to be

introduced to overcome stability issues that are inherent to the method and

that lead to its failure. A new, second numerical approach, was devised

to overcome the difficulties experienced with the first method, and this is

detailed in Section §4.3.3.
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4.1.1 Fields Pertinent to the Problem

Plasma
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Figure 4.1: One-dimensional planar solution region showing (in the short

timescale) the rapidly advancing charge wavefront. Plasma expands from some

location to the left of the time-dependent plasma boundary (at x = s(t)) and is

accelerated away from the boundary by the electric field arising from the applied

potential difference. The region to the left of the wavefront has non-zero charge

density, whilst that to the right has zero charge density. The target is fixed and

located at x = xT , as before.

At this point it is valuable to summarise the various vector and scalar

fields pertinent to the time-dependent problem before restating the solution

region and time-dependent system of equations in a one-dimensional form.

We assumed in §2.3.1 that magnetic field effects can be ignored and so the

relevant variables are as follows.
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The charge density scalar field is represented by ρ(x, t), and represents

the charge per unit volume within an enclosed region. It is related to both

the current density and velocity vector fields via the definition (2.16), where

the current density J(x, t) is the time-dependent rate of flow of charge per

unit cross sectional area at x and the velocity v(x, t) is the time-dependent

rate and direction of movement of charge at x. Finally, the electric field

E(x, t), defined by (2.18), is the time-dependent force acting on a unit of

charge at x.

In one dimension, all fields are spatially dependent upon only one vari-

able, x say, and Figure (4.1) shows the one-dimensional solution region with

the charge front (separating the two charge infused and charge free regions)

advancing in a positive x direction, from the plasma boundary on the left at

s(t), to the target on the right at xT .

4.1.2 The One-dimensional Time-dependent System

The time-dependent system, (2.17), in now restated in one spatial dimension

(the spatial independent variable being x) as

v
∂v

∂x
+
∂v

∂t
=

q

m
E, (4.1a)

∂(ρv)

∂x
= −∂ρ

∂t
, (4.1b)

∂2φ

∂x2
= − ρ

ε0
, (4.1c)

in addition to the one-dimensional conservative electric field definition,

E = −∂φ
∂x
. (4.1d)
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The required time-dependent solution is generated by solving these equations

on the region s(t) ≤ x ≤ xT and t ≥ 0, in conjunction with the conditions

φ(xT , t) = φT = const, t ≥ 0 (4.2a)

φ(s(t), t) = φS = const, t ≥ 0 (4.2b)

∂φ(s(t), t)

∂x
= 0, t > 0 (4.2c)

v(s(t), t) = vi = const, t ≥ 0 (4.2d)

v(x, 0) = 0, x ∈ (s0, xT ] (4.2e)

ρ(s(t), t) = ρs(t), t ≥ 0 (4.2f)

ρ(x, 0) = 0, x ∈ (s0, xT ]. (4.2g)

Here s(t) is the, as yet, undetermined time-dependent plasma boundary lo-

cation with s0 = s(0) = 0 (s0 is set to zero in this chapter, but need not be

so); φT , φS, and vi are known constants with φS > φT ; the function ρs(t) is

a known time-dependent function, which could take any physically realistic1

form, but is known from experiment to be a function ramping from zero to a

constant value over a relatively short period of time (being constant for the

majority of the neutron tube operation time).

The advancing charge density wavefront is represented by the coupled

hyperbolic equations (4.1a) and (4.1b), whilst the electric field in both charge

infused and charge free regions is coupled to these equations by the elliptic

equation (4.1c). The electric field, in the absence of time varying magnetic

fields is defined as (4.1d), the gradient of some scalar potential φ, as in (2.18).

1By physically realistic, we mean a function that can be driven by an experimental

procedure; one that is not discontinuous.
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4.2 Analytic Solution

By analysing the time-dependent system, (4.1), inroads can be made in to an

analytic time-dependent solution. Initially, we examine the solution ahead

of the advancing charge front, and follow with further analysis that gives rise

to the analytic form of one variable, within the full time-dependent prob-

lem, upon characteristic curves pertinent to the hyperbolic equations, (4.1a)

and (4.1b). This analysis reveals, by manipulating the original system of

equations, a second order Riccati equation that can be linearised and solved

yielding the explicit form of the variable ∂v/∂x upon characteristic curves

spanning the solution region behind the charge front.

4.2.1 Analytic Solution Ahead of the Advancing Charge

Front and Associated Separating Characteristic

As previously described, when charged particles are introduced into the ac-

celerating region, they propagate across it in a wavelike manner, effectively

partitioning the region into two areas that can be considered separately.

The part of the solution region ahead of the propagating charge front is

charge free, whilst that behind it is charge infused. Within the charge infused

part of the solution region, the electric field is inherently dependent upon the

charge density field as a consequence of Gauss’ Law, (4.1c), and is therefore

time-dependent, since the charge density is time-dependent as a consequence

of the conservation law (4.1b). However, ahead of the advancing wavefront

the electric field is considered to be constant as a consequence of the absence

of charged particles2. The electric field and consequently the charge density

2Strictly, as a consequence of the infinite range of the electromagnetic field and of its
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field are coupled to the velocity field via the Lorentz force equation, (4.1a).

At t = 0, no charge exists within the acceleration region as no particles

have been introduced at this time; this is formalised with condition (4.2g).

Clearly, due to the absence of charge across the acceleration region at t = 0,

(4.1b) is automatically satisfied. Furthermore, with ρ = 0, (4.1c) becomes

∂2φ

∂x2
= 0,

which upon integrating and applying the conditions (4.2a) and (4.2b) gives

the expression

φ(x, 0) =

(

φS − φT
xT − s0

)

(xT − x) + φT (4.3)

for the electric scalar potential within the acceleration region at t = 0. Also,

from the definition (4.1d) and (4.3), the electric field E(x, 0) must be the

constant

E(x, 0) = E0

= −
(

φS − φT
xT − s0

)

. (4.4)

An expression for the velocity of particles emitted from the t = 0 boundary

can now be obtained by firstly writing (4.1a) as the ordinary differential

equation

dv

dt
=

q

m
E, (4.5)

where the time, t, can be measured along characteristic curves in the (x, t)

plane.

speed of propagation, c (the speed of light), it is conceivable that the low density presence

of charge at the advancing wavefront could influence the electric field ahead of it, with

this influence decaying with distance from the charge front. Such an influence is believed

to be very small and is therefore assumed to be zero, with the electric field ahead of the

advancing front assumed to be constant.
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Integrating (4.5) we have

∫

dv

dt
dt =

q

m

∫

E dt,

or

v =
q

m
E0t+ c2, (4.6)

from (4.4), giving rise to the following expressions for the velocity field along

curves originating at t = 0. Applying the conditions (4.2d) and (4.2e) we

have

v =
q

m
E0t+ vi, (s0, 0), (4.7)

v =
q

m
E0t, (xp, 0), (4.8)

where (s0, 0) represents the origin of the curve at (x = s0, t = 0), and (xp, 0)

the origin of the curves at (x = xp, t = 0), and where xp ∈ (s0, xT ]. Ex-

pressions for the family of characteristic curves can now be determined by

writing (4.6) as

dx

dt
=

q

m
E0t + c2,

which, upon integration, gives rise to the curves

x =
q

2m
E0t

2 + vit + s0, (s0, 0), (4.9a)

x =
q

2m
E0t

2 + xp, (xp, 0), (4.9b)

from (4.7) and (4.8); here, as before, (s0, 0) and (xp, 0) represent the origins

of the curves.

Equations (4.7) and (4.9a) are simply the expected speed and position at

time t of a single particle (within the acceleration gap) with a charge-mass

ratio of (q/m) under a uniform acceleration of magnitude q
m
E0, emitted from
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the initial plasma boundary (located at s0). Additionally, whilst (4.9b) and

(4.8) represent the location and gradient (respectively) of characteristics in

the charge free part of the solution region, they also represent the expected

speeds and positions of single particles, if they were emitted from differing

locations (xp) between the initial plasma boundary (s0) and the fixed tar-

get (xT ). The characteristic curve (4.9a) also separates the charge free and

charge infused parts of the solution region, and represents the location of the

advancing particle wavefront. Figure 4.2 shows the curve (4.9a) and family

of traces (4.9b) for single deuterons within an acceleration region bounded

by a fixed target located 0.01m from the initial plasma boundary, and with

an applied potential difference of 120kV. The part of the solution region

enclosed by the separation characteristic, the lower t = 0 boundary, and the

right hand fixed target is charge free, with the electric field being constant

(E0) everywhere within it.

4.2.2 Analytic Solution Behind the Advancing Charge

Front

A further analysis of the time dependent system, (4.1), has been developed

and is now described. This new analytic approach to the problem, once

again, considers suitable characteristic curves giving rise to a partial analytic

solution to the full time-dependent problem; it yields the closed form of the

variable ∂v/∂x on characteristic curves behind the advancing charge front.

The analysis is as follows.
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Figure 4.2: Actual characteristic curves spanning the charge free part of the so-

lution region enclosed by the separation characteristic, the lower t = 0 boundary

and the right hand fixed target. An impression of the moving plasma boundary is

shown (marked s(t)).

By taking the derivative of (4.1a) with respect to x, we have

(

∂v

∂x

)2

+ v
∂

∂x

(

∂v

∂x

)

+
∂

∂x

(

∂v

∂t

)

=
q

m

∂E

∂x
. (4.10)

Once again, introducing a family of characteristics, where in this case it is

useful to introduce the coordinate σ, so that x = x(σ), t = t(σ), with σ being

measured along the characteristics and being defined by

dx

dσ
= v, (4.11)

dt

dσ
= 1, (4.12)
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allows (4.10) to be written on the characteristics as

d

dσ

(

∂v

∂x

)

=
q

mε0
ρ−

(

∂v

∂x

)2

(4.13)

from (4.1c); here it is assumed that

∂

∂x

(

∂v

∂t

)

=
∂

∂t

(

∂v

∂x

)

.

Defining the function

α(σ) = α(x(σ), t(σ))

=
∂v

∂x
,

and writing (4.13) in terms of α gives

dα

dσ
=

q

mε0
ρ− α2. (4.14)

Now expanding (4.1b) we have

v
∂ρ

∂x
+
∂ρ

∂t
= −ρ∂v

∂x
, (4.15)

and when similarly defining ρ(σ) = ρ(x(σ), t(σ)) on the characteristics we

have

dρ

dσ
= −ρα, (4.16)

for (4.15). Taking the derivative of (4.14) with respect to σ gives

d

dσ

(

dα

dσ
+ α2

)

=
q

mε0

dρ

dσ

= − q

mε0
ρα,

from (4.16), or,

1

α

d2α

dσ2
+ 2

dα

dσ
+

q

mε0
ρ = 0. (4.17)
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Substituting (4.14) into (4.17) gives the second order non-linear ordinary

differential equation for α(σ)

d2α

dσ2
+ 3α

dα

dσ
+ α3 = 0. (4.18)

on the characteristics.

4.2.2.1 Linearisation of the Riccati equation

The non-linear ordinary differential equation (4.18) is a Riccati equation of

order two3, and can be linearised by making the substitution ([25], [35], [43])

α(σ) =
1

z(σ)

dz(σ)

dσ
, (4.19)

whereby

dα

dσ
=

1

z

d2z

dσ2
− 1

z2

(

dz

dσ

)2

, (4.20)

and

d2α

dσ2
=

1

z

d3z

dσ3
− 3

z2

dz

dσ

d2z

dσ2
+

2

z3

(

dz

dσ

)3

. (4.21)

Substituting (4.19), (4.20) and (4.21) into (4.18) reduces it to the particularly

simple third order equation

d3z

dσ3
= 0,

which can be immediately integrated giving

z(σ) = Aσ2 +Bσ + C,

3It also known as a modified Emden-type equation, or modified Painlevé-Ince equation.
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where A, B, and C are integration constants. The variable α(σ) can now be

recovered giving

α(σ) =
∂v

∂x

∣

∣

∣

∣

σ

=
2Aσ +B

Aσ2 +Bσ + C

=
2σ +B1

σ2 +B1σ + C1
, (4.22)

from (4.19), where B1 = B/A and C1 = C/A. From (4.12), we see that

σ = t− t0, where t0 is a parameter representing the origin of that particular

characteristic on the s(t) boundary, so that α(σ) can be written

α̃(t) = α(σ(t))

=
∂v

∂x

∣

∣

∣

∣

t

=
2t +B2

t2 +B2t+ C2

, (4.23)

where B2 = B1 − 2t0, and C2 = C1 + t20 − B1t0, from (4.22).

4.2.2.2 Determination of ∂v/∂x at the plasma boundary.

Since v = vi at the plasma boundary (from (4.2d)), then its derivative (fol-

lowing the boundary) is zero there, or
[

s′(t)
∂v

∂x
+
∂v

∂t

]

x=s(t)

= 0. (4.24)

Additionally, we have from (4.1a)
[

vi
∂v

∂x
+
∂v

∂t

]

x=s(t)

= 0, (4.25)

since E(s(t), t) = 0 from (4.2c), and again noting v(s(t), t) = vi. Subtracting

(4.24) from (4.25),
[

(vi − s′(t))
∂v

∂x

]

x=s(t)

= 0,
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and since vi > s′(t) (or particles would never be able to leave the plasma

boundary), we conclude
[

∂v

∂x

]

x=s(t)

= 0. (4.26)

By defining the time ts to be the time when the plasma boundary is at the

location s(ts), then (s(ts), ts) is the origin of a particular characteristic on

the plasma boundary. It is possible to deduce that characteristics originating

at the plasma boundary monotonically increase without crossing each other,

so that t = ts once, and only once, on a particular characteristic. With this

in mind, we can apply the boundary condition (4.26) to (4.23), thereby de-

termining the constant B2 in terms of ts.

It is also possible that the constant C2 can be determined, although the

resulting equation for ∂v/∂x is likely to be very implicit.

4.3 Numerical Schemes for the Determination

of the Time-dependent Solution

Progression to a full analytic time-dependent solution appears difficult, and

so we now appeal to numerical algorithms for the determination of the full

time-dependent solution of the system, describing the two numerical ap-

proaches mentioned above.

Sets of results have been chosen to highlight features of the two methods,

which were both implemented in MATLAB.

The physical conditions generally applied to the problem are listed as fol-

94



lows:

• General Physical Conditions for the Problem

– Target potential φT = 100 kV;

– Source emission potential φS = 0 V ;

– Particle emission velocity vi = 69181.8 ms−1 (deuterons emitted

with an energy of 50eV);

– Source current density J0 = 1.88 × 104 Am−2;

– Initial region size L = 0.01 m.

4.3.1 Reduction of the Time-dependent System to Di-

mensionless Form

Before the numerical methods are developed, the system, (4.1), and associ-

ated boundary conditions, (4.2), are re-written in dimensionless form. To do

this, we can define the dimensionless variables

φ̃ =
φ

φm
, (4.27a)

ρ̃ =
ρ

ρm
, (4.27b)

ṽ =
v

vm
, (4.27c)

x̃ =
x

L
, (4.27d)

Ẽ =
E

E0
, (4.27e)

and, t̃ =
t

tm
, (4.27f)
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where φm = φS − φT is the potential difference across the region, ρm is the

maximum charge density (naturally located at the moving emission bound-

ary), vm is the maximum particle speed (located at the target boundary),

L = xT − s0 is the initial region size, E0 = φm/L is the constant initial

electric field magnitude, and tm the estimated time taken for a particle to

traverse the region. For the purposes of developing the dimensionless set

of equations, it is convenient to assume that particles are emitted from the

emission plasma boundary with no initial energy, even though this is not

true in reality. With this in mind, a particle reaching the target, having

undergone linear acceleration across the region from an initial speed of zero,

will have a final, maximum speed

vm =

√

2qφm
m

, (4.28)

where q is the particle charge and m its mass, as usual. At this speed, a

particle will then take the time

tm =
L

vm
(4.29)

to cross the initial region, and we shall use tm as the time scale.

Using these variables, the system, (4.1), can now be written in dimen-

sionless form. To do this, initially, the variables (4.27a), (4.27d), and (4.27e)

are substituted into the electric scalar potential definition, (4.1d), giving

Ẽ = − φm
LE0

∂φ̃

∂x̃

= −∂φ̃
∂x̃
. (4.30)
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Also, substituting the variables (4.27b), (4.27d) and (4.27e) into (4.1c) gives

∂Ẽ

∂x̃
=
Lρm
E0ε0

ρ̃

= −∂
2φ̃

∂x̃2
,

from (4.30), or

∂2φ̃

∂x̃2
= −α1ρ̃, (4.31)

where the dimensionless parameter,

α1 =
L2ρm
φmε0

, (4.32)

has a typical value of O(10).

Additionally, substituting (4.27c), (4.27d), (4.27e), and (4.27f) into (4.1a),

we have

∂ṽ

∂t̃
=
Ẽ

2
− ṽ

∂ṽ

∂x̃
, (4.33)

and finally, substituting (4.27b), (4.27c), (4.27d), and (4.27f) into (4.1b) we

have

∂ρ̃

∂t̃
= −vmtm

L

(

ρ̃
∂ṽ

∂x̃
+ ṽ

∂ρ̃

∂x̃

)

= −
(

ρ̃
∂ṽ

∂x̃
+ ṽ

∂ρ̃

∂x̃

)

. (4.34)

Grouping the derived dimensionless equations together, we have

∂2φ̃

∂x̃2
= −α1ρ̃, (4.35a)

∂ṽ

∂t̃
=
Ẽ

2
− ṽ

∂ṽ

∂x̃
, (4.35b)

∂ρ̃

∂t̃
= −

(

ρ̃
∂ṽ

∂x̃
+ ṽ

∂ρ̃

∂x̃

)

, (4.35c)
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which are to be solved on the region s̃(t̃) ≤ x̃ ≤ x̃T , where

s̃(t̃) =
s(t)

L

and, x̃T =
xT
L
.

The equations, (4.35), are to be solved in conjunction with the dimensionless

boundary conditions

φ̃(x̃T , t̃) =
φT
φm

= φ̃T = const, t̃ ≥ 0 (4.36a)

φ̃(s̃(t̃), t̃) =
φS
φm

= φ̃S = const, t̃ ≥ 0 (4.36b)

∂φ̃

∂x̃

∣

∣

∣

∣

∣

(s̃(t̃),t̃)

= 0, t̃ > 0 (4.36c)

ṽ(s̃(t̃), t̃) =
vi
vm

= ṽi = const, t̃ ≥ 0 (4.36d)

ṽ(x̃, 0) = 0, x̃ ∈ (s̃0, x̃T ] (4.36e)

ρ̃(s̃(t̃), t̃) =
ρs(t)

ρm

= ρ̃s(t̃), t̃ ≥ 0 (4.36f)

ρ̃(x̃, 0) = 0 x̃ ∈ (s̃0, x̃T ], (4.36g)

where s̃0 = s̃(0). It is noted that if φT = 0 (which is often the case in

experiment), then φ̃T = 0 and φ̃S = 1.
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4.3.2 Numerical Method 1 for the Determination of the

Time-dependent Solution

The three dimensionless, coupled equations, (4.35), can be used in a time

stepping algorithm to attempt to determine the time-dependent solution to

the plasma boundary problem in one dimension. The proposed algorithm is

broadly as follows:

1. The initial solution region is set with the initial plasma boundary lo-

cation being defined as s̃(0) = s̃0;

2. Set ρ̃(x̃, 0) = ṽ(x̃, 0) = 0, where x̃ ∈ (s̃, x̃T ];

3. Set ρ̃(s̃, t̃) = ρ̃s(t̃) and ṽ(s̃, t̃) = ṽi, from (4.36d) and (4.36f), where

ρ̃s(t̃) is the dimensionless time-dependent function representing the

time-dependent variation in current density at the plasma boundary

during tube operation, and ṽi the initial dimensionless particle velocity

(a constant in this case, although not necessarily so);

4. Calculate the potential field φ̃(x̃, t̃k) from (4.35a), using the conditions

(4.36a) and (4.36b), and the most recent value of the charge density

field (t̃k refers to the time at the kth time step with t̃0 being the initial

time step; this is detailed later);

5. Calculate the electric field Ẽ(x̃, t̃k) from the potential field φ̃(x̃, t̃k),

using (4.30);

6. Calculate the updated velocity field, ṽ(x̃, t̃k+1), from (4.35b), using

Ẽ(x̃, t̃k), and ṽ(x̃, t̃k);
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7. Calculate the updated charge density field, ρ̃(x̃, t̃k+1), from (4.35c),

using ρ̃(x̃, t̃k) and ṽ(x̃, t̃k+1) from Step 5;

8. Investigate the electric field magnitude Ẽ(s̃, t̃k+1) at the present loca-

tion of the emission boundary. If this is not zero, by calculating the

electric field gradient and curvature at this point, predict the location

of the boundary where it is likely to be zero and adjust the boundary

location accordingly;

9. Return to step (3) and repeat until the solutions in successive time

steps are identical to within a small assigned parameter.

4.3.2.1 Mapping from the Moving Physical Domain to a Fixed

Logical Domain

As a consequence of the moving plasma boundary, s̃(t), the solution region is

time-dependent. If the system of equations, (4.35), is to be discretised using

differences (as is proposed here), then nodal spacing in the spatial domain will

be time dependent, introducing a variation in accuracy at each time-step. In

order to avoid this, we can map the differential equations, (4.35), to a fixed,

logical region with a logical spatial independent variable ξ ∈ [0, 1], and logical

time variable τ ∈ [0,∞). By doing this, since the physical domain is time-

dependent, the mapped differential equations will change in form with time,

such that a different system is solved in logical space at each point in time.

However, since the logical region is fixed, equally spaced differences can be

used to solve the different differential equations arising as a consequence of

the mapping at each time step, with the physical solution being reconstructed

subsequently.
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To perform the mapping, the dimensionless physical independent vari-

ables are now written x̃ = x̃(ξ, τ), and t̃ = t̃(ξ, τ), and in order to introduce

a method of varying the physical spatial variable x̃ with the logical variable

in a non-linear, time-dependent way, we introduce the mapping function

M(ξ, τ). Here, we choose

M(ξ, τ) =
∂x̃

∂ξ

=
κs(τ)

√

1 + µ(f̂ξ)2

, (4.37)

where the function f̂(ξ, τ) = f̃(x̃(ξ, τ), t̃(ξ, τ)) is a chosen required physical

solution variable mapped to the logical region (the subscript variable de-

noting a partial derivative with respect to it and two subscripted variables

denoting the second partial derivative etc.); µ is a chosen parameter. The

mapping function, M(ξ, τ), is similar to monitor functions that are com-

monly employed in moving mesh methods (see [33], for example); a detailed

analysis of their use can be found in [42]. By using a mapping function of the

form (4.37), the spatial nodal density can be made to adapt to the solution

at the previous time step and so the use of (4.37) provides a mechanism for

adaptively controlling the spatial nodal density (also used in [30]).

The scaling parameter, κs(τ), is a time-dependent normalisation param-

eter used to define the physical region size (since the physical region size is

time-dependent); it must be extracted as part of the solution, to determine

the physical nodal density at a particular time. Clearly, where f̂(ξ, τ) varies

rapidly with ξ, then depending upon the magnitude of the parameter µ, the

mapping function M(ξ, τ) (and hence the rate of change of physical vari-

able with logical variable) is small (thus in a discrete scheme, nodes will be
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concentrated in this area). Where f̂(ξ, τ) varies very slowly (or not at all)

with ξ, the mapping function M(ξ, τ) is approximately constant in ξ, and

is equal to the scaling parameter κs(τ). The parameter µ can be chosen to

offer further control over the rate of change of physical variable with logical

variable.

Similarly, in addition to (4.37), and since we expect the plasma boundary

position and hence the solution region to be rapidly changing, we control the

rate of change physical time t̃ with logical time τ by introducing the time

step controlling function G(τ) given by

∂t̃

∂τ
= G(τ)

=
ct

√

1 + ν(ĝτ )2
, (4.38)

where ct and ν are chosen constants, and ĝ(τ) is a suitably chosen time-

dependent function, the derivative of which, ĝτ , is significant during times

where the region size is changing rapidly. When the region size and conse-

quently the function ĝ(τ) varies rapidly with time, the function G(τ), and

hence the rate of change of physical time with logical time, is small. Dur-

ing periods of time where the region size is not changing rapidly, the rate

of change of physical time with logical time will reduce to the constant ct.

Again, the parameter ν can be chosen to offer further control over the rate

of change of physical variable with logical variable.

We can now re-write the system of equations (4.1a) to (4.1d) in terms of

the logical variables ξ and τ , by firstly noting that we choose the physical

time variable t̃ to be independent of the logical spatial variable, ξ, or that

t̃ = t̃(τ) only. With this in mind, the derivatives within the system are trans-

formed as follows.
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Using the chain rule

∂

∂ξ
=
∂x̃

∂ξ

∂

∂x̃
+
∂t̃

∂ξ

∂

∂t̃

= M
∂

∂x̃
, (4.39)

from (4.37), noting that ∂t̃/∂ξ = 0, or

∂

∂x̃
=

1

M

∂

∂ξ
. (4.40)

Also

∂

∂τ
=

˙̃x

M

∂

∂ξ
+G

∂

∂t̃
,

from (4.38) and (4.39), or

∂

∂t̃
=

1

G

( ∂

∂τ
−

˙̃x

M

∂

∂ξ

)

. (4.41)

Furthermore

∂2

∂x̃2
=

1

M2

∂2

∂ξ2
− 1

M3

∂M

∂ξ

∂

∂ξ
, (4.42)

from (4.40). The system of equations can now be restated in the logical do-

main as follows.

Using the above transformations, the non-dimensional definition (4.30) can

be written as

Ẽ(x̃(ξ, τ), t̃(ξ, τ)) = Ê(ξ, τ)

= − 1

M

∂φ̂

∂ξ
, (4.43)
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from (4.40), whilst (4.35a) can be rewritten

∂2φ̃

∂x̃2
=

1

M2

∂2φ̂

∂ξ2
− 1

M3

∂M

∂ξ

∂φ̂

∂ξ

= −α1ρ̂, (4.44)

from (4.42), where φ̂(ξ, τ) = φ̃(x̃(ξ, τ), t̃(ξ, τ)).

Furthermore, using both (4.40) and (4.41), the time-dependent equations,

(4.35b) and (4.35c) can be similarly transformed giving

ṽ
∂ṽ

∂x̃
+
∂ṽ

∂t̃
=

1

M

(

v̂ −
˙̃x

G

)∂v̂

∂ξ
+

1

G

∂v̂

∂τ

=
Ê

2
, (4.45)

or

∂v̂

∂t̂
= G

{

Ê

2
+

1

M

( ˙̃x

G
− v̂
)∂v̂

∂ξ

}

, (4.46)

and

∂(ρ̃ṽ)

∂x̃
=

1

G

( ˙̃x

M

∂ρ̂

∂ξ
− ∂ρ̂

∂τ

)

, (4.47)

or, on expanding and rearranging

G

M

{

ρ̂
∂v̂

∂ξ
+
(

v̂ −
˙̃x

G

)∂ρ̂

∂ξ

}

= −∂ρ̂
∂τ
, (4.48)

where ṽ(x̃(ξ, τ), t̃(ξ, τ)) = v̂(ξ, τ).

Now that the system of equations has been rewritten in terms of the

logical variables ξ and τ , it can be solved on the fixed logical domain by

noting that the conditions at the boundaries of the non-dimensional physical

domain, (4.36a) to (4.36g), also apply at the boundaries of the logical domain.

This is because, for example,

φ̂(ξ, τ) = φ̃(x̃(ξ, τ), t̃(ξ, τ))

= φ̃(x̃, t̃), (4.49)
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and thus the potential condition (4.36a) on the target at x̃T is then

φ̃(x̃T , t̃) = φ̃(x̃(1), t̃)

= φ̂(1, τ)

= φ̃T = const.

It is noted that the derivative condition (4.36c), applied to the plasma bound-

ary in the physical region, is not explicitly applied in the logical region. This

condition is utilised in Step 8 of the algorithm above, where it is used to

determine the time-dependent location of the plasma boundary in the phys-

ical region. Since the plasma boundary location is adjusted in the physical

region at each point in time, the physical region size and hence the forms of

(4.43), (4.44), (4.47) and (4.48) are time-dependent, due to κs(τ) in (4.37)

(as previously mentioned).

4.3.2.2 Numerical Implementation of the Time-stepping Algorithm

Using Differences

In order to solve the system (4.43) to (4.48) on the logical solution domain us-

ing the algorithm above, we initially split the domain into n discrete, equally

spaced subregions, giving rise to the n + 1 nodes {ξj} ∈ [0, 1] separating

the subregions. Each logical subregion has the size ∆ξ = 1/n, so that the

jth node has the logical location ξj = (j − 1)∆ξ, where j ∈ [1, n + 1] and

j ∈ Z. Additionally, within the problem, the time τ must fall in the range

τ ∈ [0,∞), with τ = 0 indicating the point at which ions are first accelerated

away from the emission plasma boundary. Representing time in a similarly

discrete way, the kth time step (with k ∈ [1,∞) and k ∈ Z) can then be

written τ k, where {τ k} ∈ [0,∞). By choosing a fixed time step size ∆τ , the
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kth time step is then at the time τ k = (k − 1)∆τ . Using this notation, the

value ρ̂kj is the value of the charge density, say, within the logical region at

the location (j − 1)∆ξ and time (k − 1)∆τ .

To determine solutions to (4.43), (4.44), (4.46), and (4.48) on the logical

domain, we must first determine an expression for the time-dependent scaling

parameter κs(τ). This can be done by integrating (4.37) to give

x̃T = s̃(t̃) +

∫ 1

0

M(ξ, τ) dξ

= s̃(t̃) + κs(τ)

n
∑

j=1

∫ ξj+1

ξj

dξ
√

1 + µ(f̂ξ)2

(4.50)

for the n + 1 nodal points {ξj}, where s̃(t̃) is the time-dependent plasma

boundary location; x̃T is the fixed target location. Rearranging (4.50) gives

the required expression for κs(τ) as

κs(τ) =
(

x̃T − s̃(t̃)
)

.





n
∑

j=1

∫ ξj+1

ξj

dξ
√

1 + µ(f̂ξ)2





−1

. (4.51)

Physical node locations (and hence the solution in the physical domain) can

then be recovered from (4.50), with the pth nodal location being given by

x̃p = s̃(t̃) + κs(τ)

p
∑

j=1

∫ ξj+1

ξj

dξ
√

1 + µ(f̂ξ)2

, (4.52)

with κs(τ) being given by (4.51).

Similarly, discrete time points in the physical domain corresponding to

time steps in the logical domain, can be recovered from (4.38) by integrating

with respect to τ , with the qth physical time point being given by

t̃(τ q) = t̃(0) + ct

∫ τq

0

G(τ) dτ

= ct

q
∑

k=1

∫ τk+1

τk

dτ
√

1 + ν(ĝτ )2
, (4.53)
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where t̃(0) = 0 (time starts when particles are first emitted from the plasma

boundary).

Before numerically approximating the algorithm listed above by discretising

the logical solution domain as described (using finite differences to represent

derivatives), it is useful to list some standard derivative difference approxi-

mations.

• Second order difference approximations for the derivative ∂f kj /∂ξ,

at the nodal point (j∆ξ, k∆τ) for some function f(ξ, τ):

– Second order forward difference approximation

∂f kj
∂ξ

≈
−3f kj + 4f kj+1 − f kj+2

2∆ξ
+O(∆ξ2) (4.54a)

– Second order central difference approximation

∂f kj
∂ξ

≈
fkj+1 − f kj−1

2∆ξ
+O(∆ξ2) (4.54b)

– Second order backward difference approximation

∂f kj
∂ξ

≈
3f kj − 4f kj−1 + f kj−2

2∆ξ
+O(∆ξ2) (4.54c)

• Second order central difference approximation for the derivative

∂2fkj /∂ξ
2, at the nodal point (j∆ξ, k∆τ) for some function f(ξ, τ):

∂2fkj
∂ξ2

≈
fkj+1 − 2f kj + f kj−1

∆ξ2
+O(∆ξ2). (4.55)

4.3.2.3 Detailed Numerical Algorithm

We now list a more detailed description of the steps in the implementation

of the numerical time-stepping algorithm described above.
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Step 1

• Set the initial physical region size by defining the initial plasma bound-

ary location s1 = s(0) = s0 (noting that ŝ1 = 0) and the target location

xT .

• Set the scaling parameters φm, ρm, and L; consequently define the

scaling parameters vm, E0 and tm.

• Create the initial solution vectors {ρ̂1
j} = {v̂1

j} = {0}, where j ∈ (1, n+

1] and j ∈ Z.

Step 2

• Set {v̂k1} = ṽi, where k ∈ [1, m+1] and k ∈ Z (with m being the desired

number of time steps).

• Set {ρ̂k1} = ρ̃s(t̃
k), where k ∈ [1, m+1] and k ∈ Z, and where

ρ̃s(t̃) =
h

2

(

1 + tanh(b(tmt̃− c))
)

=
h

(1 + e2b(c−tm t̃))
, (4.56)

for a ramped (in time) charge density at the plasma boundary, from

(4.36f). In (4.56), the constants h, b, and c are parameters determining

the shape of the ramp (see figure 4.3); in this case, h = 1 so that

ρ̃s(t̃) ∈ (0, 1).

We choose a ramped (in time) charge density profile to represent the

real physical situation, where the charge density is switched on, having

a finite switch-on time (or ramp).
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Figure 4.3: Function used to represent time-dependent charge density ramp. The

parameters h, b, and c in (4.56) are indicated. The subscript n in the axis titles

indicates a non-dimensional variable.

Step 3

• Choose the form of f̂(ξ, τ) in (4.37).

• Choose the form of ĝ(τ) in (4.38).

• Select the parameters µ and ν in (4.37) and (4.38).

Step 4

• Determine {f̂kξj} as follows:

– When j = 1, calculate f̂kξj from (4.54a);

– When 1 < j < (n+ 1), calculatef̂kξj from (4.54b);

– When j = (n+ 1), calculatef̂kξj from (4.54c).
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• Determine ĝkτ as follows:

– If k = 1, set ĝkτ = 0;

– If k > 1, calculate ĝkτ using the first order difference approximation

ĝkτ ≈ ĝk − ĝk−1

∆τ
.

Step 5

• Using {f̂kξj} from Step 4, calculate κks (κs at the current time step)

from (4.51) making use of a simple trapezium rule approximation. For

example, for some function θ̂(ξ, τ), then

∫ ξj+1

ξj

θ̂(ξ, τ) dξ ≈ ∆ξ

2

(

θ̂kj+1 + θ̂kj

)

,

where θ̂kj = θ̂
(

(j−1)∆ξ, (k−1)∆τ
)

.

• From (4.37), and using the value κks just calculated with {f̂kξj} from

Step 4, determine the mapping function vector {M k
j } for the current

(kth) time step.

• From (4.38), and using ĝkτ from Step 4, determine the scalar time step

controlling function value Gk for the current (kth) time step.

Step 6

• Recover the dimensionless physical nodal locations {x̃j} from (4.52),

using {f̂kξj} and κks from Steps 4 and 5. The simple trapezium rule

approximation shown in Step 5 is used for evaluating the integral in

(4.52). The dimensional, physical nodal locations are determined from

{x̃j} by multiplying by the constant L, established in Step 1.
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• Calculate the vector of physical nodal speeds { ˙̃xkj} = ∂x̃/∂τ from the

current and previous physical nodal locations.

– If k = 1 then { ˙̃xkj} = {0}.

– If k > 1 then calculate nodal speeds using the first order difference

approximation

˙̃xkj ≈
x̃kj − x̃k−1

j

∆τ
.

• From (4.53), recover the current, dimensionless physical time t̃(τ k),

using the vector of previous time step controlling function values {Gq},

where q ∈ [1, k], q ∈ Z. The dimensional, physical time is determined

from t̃(τ k) by multiplying by the value tm, calculated in Step 1.

Step 7 Using {Mk
j } from Step 5, solve

1

M2

∂2φ̂k

∂ξ2
− 1

M3

∂M

∂ξ

∂φ̂k

∂ξ
= −α1ρ̂

k (4.57)

in logical space, where ρ̂k is the current charge density solution, and where

α1 is given by (4.32). To solve (4.57), we use the boundary conditions

φ̂k1 = φ̃T , and

φ̂kn+1 = φ̃S

for ∀k ∈ [1, m+1], where φ̃T and φ̃S are the given conditions (4.36a) and

(4.36b), noting (4.49). Since φ̂ is known at the boundaries of the logical

domain, we need only determine the solution to (4.57) at interior nodal points

(i.e. for 1 < j < (n + 1)). Thus we need only use the second order central

difference approximations (4.54b) and (4.55) for the derivatives in (4.57).

Using these approximations we arrive at the following system of equations

for φ̂kj .
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• When j = 2,

− 2

(Mk
2 )2∆ξ2

φ̂k2 +

{

1

(Mk
2 )2∆ξ2

−
Mk

2 ξ

2∆ξ(Mk
2 )3

}

φ̂k3

= −α1ρ̂
k
2 −

{

1

(Mk
2 )2∆ξ2

+
Mk

2 ξ

2∆ξ(Mk
2 )3

}

φT .

• When 2 < j < n,

{

1

(Mk
j )2∆ξ2

+
Mk

j ξ

2∆ξ(Mk
j )

3

}

φ̂kj−1 −
2

(Mk
j )2∆ξ2

φ̂kj

+

{

1

(Mk
j )2∆ξ2

−
Mk

j ξ

2∆ξ(Mk
j )

3

}

φ̂kj+1 = −α1ρ̂
k
j .

• When j = n,

{

1

(Mk
n)2∆ξ2

+
Mk

n ξ

2∆ξ(Mk
n)3

}

φ̂kn−1 −
2

(Mk
n)2∆ξ2

φ̂kn

= −α1ρ̂
k
n −

{

1

(Mk
n)2∆ξ2

−
Mk

n ξ

2∆ξ(Mk
n)3

}

φ̂1.

Step 8 Using {f̂kξj}, {Mk
j }, and κks from Steps 4 and 5, calculate the electric

field {Êk
j } in logical space from (4.1d) and (4.39), by determining

Êk
j = − 1

Mk
j

∂φ̂kj
∂ξ

. (4.58)

As in Step 4, the three cases

• When j = 1 calculate the derivative ∂φ̂kj/∂ξ using (4.54a).

• When 1 < j < n+ 1 calculate the derivative ∂φ̂kj /∂ξ using (4.54b).

• When j = n+ 1 calculate the derivative ∂φ̂kj /∂ξ using (4.54c).

apply for calculating the derivative in (4.58).
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Step 9 Calculate the updated velocity field {v̂k+1
j } at the next time step

from (4.46), using {v̂kj }, with { ˙̃xkj}, {Mk
j }, and Gk from Steps 5 and 6.

By rearranging (4.45), an expression for the updated velocity at the node

(j∆ξ, k∆τ) can be found using a forward difference approximation for the

time derivative; this gives rise to the following:

• Using a first order forward difference approximation for the time deriva-

tive in (4.46) we have

v̂k+1
j = v̂kj + ∆τGk

{

Êk
j

2
+

1

Mk
j

( ˙̃xkj
Gk

− v̂kj

)∂v̂kj
∂ξ

}

, (4.59)

for the updated velocity field {v̂k+1
j }, where ˙̃xkj is the speed of the jth

physical node at the kth time step, where

∂v̂kj
∂ξ

≈
v̂kj − v̂kj−1

∆ξ

for calculating the derivative in (4.59) also applies.

Step 10 Calculate the updated charge density field {ρ̂k+1
j } at the next time

step from (4.48), using the most recent velocity field, {v̂k+1
j } from Step 9, with

{Mk
j }, { ˙̃xkj} and Gk from Steps 5 and 6. Rearranging (4.48), an expression

for the updated charge density at the node (j∆ξ, (k + 1)∆τ) can be found,

again using a forward difference approximation for the time derivative; this

gives rise to the following:

• Using a first order forward difference approximation for the time deriva-

tive in (4.48) we have

ρ̂k+1
j = ρ̂kj −

Gk∆τ

Mk
j

(

(

v̂k+1
j −

˙̃xkj
Gk

)∂ρ̂kj
∂ξ

+ ρ̂kj
∂v̂k+1

j

∂ξ

)

(4.60)
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for the updated charge density field {ρ̂k+1
j }, where

∂ρ̂kj
∂ξ

≈
ρ̂kj − ρ̂kj−1

∆ξ

for calculating the derivative in (4.60) also applies.

Step 11

• Update the plasma boundary location by examining the electric field

at the boundary Ẽ(s̃k, t̃k) = Êk
1 from Step 8, where s̃k = s̃(t̃k); the

electric field gradient at the boundary

∂Ẽ(s̃k, t̃k)

∂x̃
= ρ̃s(t̃

k), (4.61)

from (4.1c) and Step 2, and the electric field curvature at the boundary

∂Ẽx̃(s̃
k, t̃k)

∂x̃
=

1

Mk
0

∂ρ̂k0
∂ξ

,

from (4.61) and (4.39), where the derivative ∂ρ̂k0/∂ξ is calculated using

the forward difference (4.54a).

An expression for the size of the boundary displacement at the time

t̃k can be found by determining a perturbation, ∆s̃(t̃k) = ∆s̃k, to the

boundary using the Taylor expansion

Ẽ(s̃k + ∆s̃k, t̃k) = Ẽ(s̃k, t̃k) + ∆s̃kẼx̃(s̃
k, t̃k)

+
(∆s̃k)2

2
Ẽx̃x̃(s̃

k, t̃k) +O(∆s̃3
k).

Truncating the expansion at the second order term, and making the as-

sumption that the perturbation ∆s̃k moves the boundary to its correct
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location (i.e. where Ẽ(s̃(t̃k) + ∆s̃k, t̃k) = 0 from the condition (4.2c)),

gives the expression

∆s̃k =
−Ẽx̃(s̃k, t̃k) ±

√

Ẽx̃(s̃k, t̃k)2 − 2Ẽ(s̃k, t̃k)Ẽx̃x̃(s̃k, t̃k)

Ẽx̃x̃(s̃k, t̃k)
(4.62)

for ∆s̃k. If the system is allowed to settle to an equilibrium state of

particle flow4, we would expect that as k → ∞ the plasma boundary

will converge to the constant location s̃(t̃∞) = s̃, and hence also expect

that ∆s̃k → 0 as k → ∞. Additionally, from the condition (4.2c), the

term 2Ẽ(s̃k, t̃k)Ẽx̃x̃(s̃
k, t̃k) → 0 as k → ∞ in (4.62), indicating that we

must take the positive square root (or ∆s̃k 9 0 as k → ∞).

– If (Ẽx̃(s̃
k, t̃k)2 − 2Ẽ(s̃k, t̃k)Ẽx̃x̃(s̃

k, t̃k)) < 0 then set ∆s̃k = 0.

Step 12

• Recover the dimensional solution variables from the dimensionless def-

initions (4.27a) to (4.27f).

• Increment k and return to Step 4.

The Boundary Perturbation Stabilisation Parameter. After imple-

menting the algorithm, it was observed that execution would proceed to

relatively long times only if the calculated boundary perturbation at each

time-step was small. Therefore, to prevent the algorithm failing and thus

obtain analysable results, an additional parameter, δ, was introduced, which

pre-multiplies the calculated boundary perturbation, thus reducing its mag-

nitude at each step; this allowed the numerical algorithm to proceed unhin-

4As in the time independent case.
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dered, but with the unwanted payoff of the predicted boundary movement

being un-physical.

To update the boundary location at each time-step, the calculated bound-

ary perturbation, ∆s̃k, (given by (4.62)) is multiplied by the small parameter

δ in that the updated boundary location at the (k+1)th time step is given by

s̃k+1 = s̃k + δ∆s̃k.

The introduction of δ in this way allows the boundary perturbation to be

reduced to a level that allows the numerical method to proceed without fail-

ure, although the calculated time-dependent boundary location is unlikely to

be representative of the true physical case.

The algorithm detailed above has been coded in MATLAB, and we now

present results from its operation on a test case chosen, in hindsight, to

not only represent experimental operation of a neutron tube, but to also of-

fer physically representative results within a reasonable computational time

frame. In this test case, the charge density at the plasma boundary is ramped

to a maximum over a period of tens of nanoseconds. However, prior to de-

tailing these results, we derive a CFL condition ([26], [24]) applicable to the

scheme employed; this ensures stable choices of logical spatial and time step

size.

4.3.2.4 CFL condition

Implementation of the algorithm developed in Section §4.3.1 required exper-

imentation, as one would expect. The logical spatial and temporal step size

must be chosen to avoid numerical instability caused by violation of the CFL
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condition ([26], p87) appropriate to the first order, upwinded difference ap-

proximations, (4.59) and (4.60). To determine the condition, and due to the

dynamic nature of nodal point locations in the moving physical region, an

explicit expression for it is now evaluated on the logical, fixed region, being

initially given by

v̂w ≤ ∆ξ

∆τ
, (4.63)

where ∆ξ is the logical nodal spacing and ∆τ is the logical time step. The

wave-speed v̂w is deemed to be the maximum speed of the initial particle

wavefront as it crosses the logical region, and can be determined by consid-

ering the maximum wavefront speed in the non-dimensional physical region,

as follows.

Particles initially released from the plasma boundary form a wavefront,

which undergoes uniform acceleration across the non-dimensional physical

region, caused by the initial charge free uniform electric field . Using the

familiar expression for the distance travelled by a particle under uniform

acceleration, the time t̃c taken for the wavefront to traverse this region is

found by determining the positive root of

1 = ṽit̃c +
1

2
ãt̃2c , (4.64)

where ṽi is the initial non-dimensional particle speed, and ã is the non-

dimensional uniform acceleration of the wavefront, with the 1 on the left

hand side of (4.64) being the region size. Thus

t̃c =
1

ã

(

−ṽi +
√

ṽ2
i + 2ã

)

. (4.65)

The maximum wavefront speed in the non-dimensional physical region is

117



therefore given by

ṽw = ãt̃c + ṽi

=
√

ṽ2
i + 2ã, (4.66)

from (4.65), where the non-dimensional acceleration ã can be determined

from (4.35b), since

dṽ

dt̃
= ṽ

∂ṽ

∂x̃
+
∂ṽ

∂t̃
= ã,

=
Ẽ

2
.

By applying the boundary conditions (4.36b) and (4.36c), the initial uniform

electric field strength formed within the charge free non-dimensional region

is

Ẽ0 = (φ̃S − φ̃T )/(x̃T − s̃(0))

= 1,

so that the maximum wave-speed (4.66) can be written

ṽw =
√

ṽ2
i + 1. (4.67)

The mapping of physical non-dimensional time t̃ to logical time τ , using the

controlling function (4.38), indicates that the maximum rate of change of t̃

with τ is given by

∂t̃

∂τ

∣

∣

∣

∣

max

= ct,

or by

t̃ = ctτ. (4.68)
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If the time taken for the wavefront to cross the non-dimensional region is

given by

t̃w =
1

ṽw
, (4.69)

then the minimum time taken for the wavefront to cross the logical region

will be

T̂w =
1

v̂w

=
1

ct
t̃w, (4.70)

from (4.68), so that the maximum wave-speed in the logical region is

v̂w = ct

√

ṽ2
i + 1 (4.71)

from (4.67), (4.69) and (4.70). Additionally,

ṽi =
vi
vm

=

√

m

2qφm
vi,

from (4.28) and (4.36d), and when combined with (4.71), this gives rise to

the condition

ct

√

m

2qφm
v2
i + 1 ≤ ∆ξ

∆τ
,

from (4.63); this is applied to the logical spatial and time step sizes.

4.3.2.5 Test Case

To test the algorithm, the initial conditions listed at the start of §4.3, above,

were applied. Here, the potential difference applied across the solution region

was held constant in time, with particles emerging with a constant initial

velocity (or energy); this was to represent an experimental setup, although
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numerically, these conditions could have been time-dependent. The initial

region size was adjusted in successive runs to accelerate convergence (towards

the steady state solution) as numerical experiments progressed. Additionally,

the maximum charge density (ρm = J0/vi) at the plasma boundary was

selected to represent a typical value within an actual device, and the functions

f̂(ξ, τ) = ρ̂(ξ, τ) (4.72a)

ĝ(τ) = s̃(t̃(τ)), (4.72b)

were chosen as the governing functions in the mapping function, (4.37), and

time step controlling function, (4.38), respectively.

Source Charge Density Ramp. In this case, as a representation of an

experimental increase in charge density at the plasma boundary, the applied

ramp is increased from zero to the constant value

ρs(t) = J0/vi

= ρm

= const (4.73)

with the increase occurring over a period of time of the order of tens of

nanoseconds5. Within the algorithm, this is effected using the function (4.56)

shown in Figure 4.3, where the non-dimensional charge density is increased

5In comparison with experiment, this is actually at the short end of the ramp time

frame, but was chosen this way after the necessary inclusion of the parameter, δ. The

inclusion of δ causes the numerical method to execute very slowly and so to be able to

examine the effects of a ramped increase in charge density reminiscent of any kind of

experiment, the shortest applicable ramp time frame was chosen.
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from zero to one over a period of non-dimensional time of maximum order

ten. In this case (by referring to (4.56) and Figure 4.3) the constants b, c,

and h are chosen to be

b = 1 × 108 s−1,

c =
3

b

= 3 × 10−8 s

h = ρm,

where ρm is given by (4.73). These parameters cause a ramp rise time of

∼ 6.88 non-dimensional units, or 20 ns; the value tm = 2.91 ns follows from

(4.28) and (4.29) (with L = 0.009m from table 4.1).

4.3.2.6 Results

Application of the physical conditions listed in §4.3 above, including the

short-timescale charge density ramp (detailed above) along with a logical

time-step size of 5.5 × 10−3 non-dimensional units (corresponding to ∼ 182

non-dimensional time steps per unit tm, or an initial physical time step of

1.6 × 10−11 s), yielded results with a number of differing features; some of

these are explained in the following paragraphs. Results are displayed in

physical space.

It is pointed out here, that in order to obtain a suitable set of results, a

number of numerical experiments were performed and these resulted in the

set of parameters listed in Table 4.1 that allowed the algorithm to execute for

≥ 20000 time steps. Here, the time step size shown was chosen for stability,

and allowed the procedure to proceed without failure to a final physical time
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Parameter Value Description

m 20000 Number of time steps.

n 60 Number of spatial steps.

dτ 5.42 × 10−3 units Logical time step size.

µ 0.015 Parameter to adjust adaptive phys-

ical nodal density (see (4.37)).

ν 1 × 10−6 Parameter to adjust adaptive phys-

ical time step size (see (4.38)).

ct 1.0 Parameter to adjust physical time

step size outside of adaptive regions

(see (4.38)).

δ 1 × 10−3 Parameter to adjust amount of

boundary movement at each time

step.

L 0.009 m Region start size - final run.

Table 4.1: Numerical parameters for the one-dimensional time-dependent numer-

ical method 1 test problem.

of 320 ns; at this time the applied source charge density ramp has stabilised.

Numerical experiments showed that the number of nodes chosen (n = 60)

was a compromise between speed and accuracy, with higher numbers of nodes

significantly increasing execution time and significantly fewer nodes (<30)

causing a violation of the CFL condition, (4.72), or other instability; these

results are not detailed here. The initial region size of L = 0.009 m is typical
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of a neutron tube source shield to target separation distance. The parameter

ct was set to a default value of 1. The parameters µ and ν in (4.37) and

(4.38) were adjusted to aid speed of execution with the particular set of

initial conditions used over a number of experiments. The resulting values

chosen caused the most efficient execution of the algorithm in conjunction

with the other parameters listed in Table 4.1.

The following Figures detail features from the calculated solution, and in-

clude comparisons between the time-dependent solution and known analytic

solutions.

Figure 4.4 shows the calculated surface ρ(x, t). The ramped increase in

charge density at the plasma boundary is visible, as is the adaptive time

stepping procedure, with widely spaced time steps to the left of the surface

being due to zero boundary movement over this region of time; this is caused

by the discriminant in (4.62) being negative, invoking the error trap condi-

tion detailed in Step 11 of the difference algorithm, above. Figure 4.5 shows

level curves of charge density over the first ∼ 93 ns. The plasma boundary

is identified by the solid black line to the left of the Figure, and the time at

which boundary movement begins (∼ 33ns) is clearly visible6. At this point,

the sudden, rapid boundary movement is propagated within ρ(x, t), and this

is likely to be due to sudden changes in the time step controlling function G

(which is dependent upon the rate of change of boundary position, (4.72b)

and (4.38)). A reduction in the logical time step size would reduce this effect.

The separation characteristic separating the charge free region (ahead of the

6It is pointed out that this time is largely a numerical artefact of the method employed

and not necessarily a reflection of the true, physical situation.
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Figure 4.4: The charge density surface ρ(x, t). Output is shown at every 200 time

steps.

advancing wavefront) from the charge infused region behind it, is superim-

posed. The entire solution region is charge infused within ∼ 6 ns, although

due to the ramped initial condition at the plasma boundary, the charge den-

sity within the region is relatively low at this time. To identify a level curve

close to the separation characteristic, a total of twenty logarithmically spaced

levels are displayed in the range 10−4.5 ≤ ρ(x, t) ≤ 10b, where

b = log

(

max
x,0≤t≤tmax

[ρ(x, t)]

)

,

and tmax = 93 ns. This is further demonstrated by examining the solution

up to the earlier time of ∼ 10 ns in more detail, shown in Figure 4.6. Again,
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similarly calculated level curves of charge density are displayed, where the

curve towards the base of the Figure follows the superimposed separation

characteristic closely. Figure 4.7, shows solutions extracted from the electric

ρ(x,t) Level Curves
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Figure 4.5: Logarithmically spaced level curves of constant charge density over

the first ∼ 93 ns.

scalar potential (voltage) surface φ(x, t) at different times. The progression

from the initial charge free voltage solution (at 0 ns) towards the curved

steady state solution is apparent, with the 93.08 ns curve appearing to be

very close to the analytic (black “dash-dot”) steady state solution. Finally,

Figure 4.8 shows the variation in plasma boundary location s(t) with time.

The red curve is the calculated plasma boundary location, whereas the green
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Figure 4.6: Logarithmically spaced level curves of constant charge density over

the first ∼ 10 ns.

“dash-dot” curve is the calculated plasma boundary perturbation ∆s(t); this

function has been multiplied by the reciprocal of the parameter δ to increase

its magnitude to enable display within the same graph as s(t). By setting the

initial region size to 0.09m, the numerical algorithm has taken ∼ 93ns for the

calculated boundary position to reach the analytic steady state location; the

algorithm was terminated at this point. Clearly, from the gradient of s(t) as it

reaches the steady-state boundary location, it is apparent that the calculated

plasma boundary does not settle at this location and will overshoot somewhat

as time progresses. By observing that after about ∼ 50 ns, the perturbation
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Figure 4.7: The variation of electric scalar potential (voltage) with distance across

the region at different solutions times. The analytic steady state solution and

steady boundary location are shown.

∆s(t) is approximately linear, an estimate of when the boundary will begin

to recede again can be made. Performing a linear regression on the linear

portion of the function ∆s(t) allows the point at which perturbations become

negative to be estimated; this is calculated to be ∼ 219.6 ns, as shown in

Figure 4.9. However, the increased electric field magnitude throughout the

region, caused by the boundary movement and consequent reduced region

size, may cause the boundary to begin to settle at an earlier time than this.

Having observed calculation times for differing numbers of time-steps (Figure
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Figure 4.8: Variation in plasma boundary location s(t), and plasma boundary

perturbation ∆s(t), with time.

4.10), it is estimated that to reach a physical solution time of ∼ 219.6 ns

using the algorithm (in its current form) on the fastest desktop computer

available, execution times will be ∼ 8 hours, taking ∼ 35000 time-steps

(Figure 4.11). Due to arrangements surrounding the use of the computer,

execution times of this size have not been possible. However, reaching this

point in the calculated solution is largely academic as a consequence of the

introduction of δ; the predicted boundary movement is unlikely to be an

accurate representation of the actual physical process.

128



Figure 4.9: Estimated time at which the boundary perturbation ∆s(t) becomes

negative.

Adaptive Nodal Density Procedure. To test the adaptive nodal den-

sity procedure, a number of runs were conducted for each case with differing

values of the parameter µ. If µ was set to be of order ten, or greater, prob-

lems in calculating derivatives at the plasma boundary were observed. An

example of this is shown in Figure 4.12, where the electric field (in physical

space), derived from the calculated potential field via (4.58), has an apparent

discontinuity at the plasma boundary. The failure is a consequence of the

mapping function Mk
j (from (4.37)) becoming relatively small at the bound-

ary and is caused by the gradient of the controlling function (4.72a) becoming

very large there.

However, the relatively gentle increase in charge density (and hence con-
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Figure 4.10: Estimated algorithm execution time to reach the point at which the

boundary perturbation ∆s(t) becomes negative. Points marked “observation” were

taken from the current Case.

trolling function) at the boundary allows the procedure to work without

failure, and setting µ = 10 causes the nodal density near the plasma bound-

ary, and hence the effect of the calculated derivative ρ̂ξ, to be high. This can

be seen in Figure 4.13, where the calculated physical potential, φ(x, t), across

the acceleration region is shown at three different solution times. Nodal loca-

tions are highlighted by markers situated along each curve, and at the later

time, these points coalesce towards the plasma boundary location to the left
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Figure 4.11: Estimated number of time-steps to reach the point at which the

boundary perturbation ∆s(t) becomes negative. Points marked “observation” were

taken from the current Case.

of the graph; this is a consequence of the spatial adaptive nodal density

procedure.

A further demonstration of the adaptive procedure can be seen in Figures

4.14 and 4.15. Here, the locations of the first fifteen nodes, in physical

space, are displayed as a function of time and the variation in physical nodal

separation is displayed at varying solution times. In both graphs, nodes are
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Figure 4.12: The electric field surface E(x, t), with adaptive parameter µ = 100

(region start size of L = 0.009 m). Output is shown at every 40 time steps.

initially equally spaced, seen to the left of Figure 4.14 and by the blue line in

Figure 4.15, but as time progresses they become rapidly concentrated towards

the plasma boundary location, again highlighting the adaptive nodal density

controlling. In Figure 4.15, this is manifested at later times by the nodal

separation rapidly decreasing towards node 1 at the left. Additionally, away

from the plasma boundary at the left, the nodal spacing remains constant

as a consequence of the function ρ̂2
ξ(ξ, τ), being effectively zero there (this

is f̂(ξ, τ) in (4.37)). The green (3.6ns) curve in Figure 4.15 shows some

instability, although this decreases with time and has disappeared after a

solution time of about 6ns.
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Figure 4.13: Variation in potential φ(x, t), with x at three specific times. Setting

the adaptive parameter, µ, to be equal to ten leads to increased nodal density

towards the left of the curves, as time increases.

4.3.2.7 Method 1 - Summary and Conclusion

Whilst the algorithm presented here offers an apparently viable solution, in

that the advancing wavefront follows the analytic separation characteristic

closely (See Figure 4.6, for example), in order to offer stability to the method

the small, multiplicative parameter, δ, must be introduced into the plasma

boundary calculation thus rendering the predicted boundary movement un-

physical. Without such a parameter, the boundary movement calculated by

(4.62) causes rapid failure of the numerical method, with this being due to

the presence of Ẽx̃x̃(s̃
k, t̃k) on the denominator of (4.62). Particularly at

early solution times, the calculated potential, φ̃(x̃), across the solution re-
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Figure 4.14: Variation in nodal location for the first fifteen nodes in physical space.

Nodes rapidly move from an equally spaced distribution to being concentrated near

the plasma boundary (where the charge density gradient is greatest).

gion has little curvature. Consequently, the term Ẽx̃x̃(s̃
k, t̃k), corresponding

to the third derivative of the solution potential at the plasma boundary, is

very small, in turn causing ∆s̃k to be large. Such large changes in boundary

location cause the solution region to become distended, with the consequent

effect being that the mapping function, M , becomes large rendering the di-

mensionless, logical version of Gauss’ law, (4.44), imbalanced at successive

time steps; this is manifested as a rapid onset of instability within the nu-

merical procedure, causing it to fail.

A further consequence of the necessity of δ is that the algorithm executes

very slowly. Indeed, in order to examine the effects of an applied source
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Figure 4.15: The variation in nodal separation with node number at different

solution times. The ordinate value at node 2, for instance, refers to the distance

xk2 − xk1 (for time-step k).

charge density ramp that can be replicated at all by experiment, a relatively

rapidly increasing ramp must be applied. Whilst this is (just about) experi-

mentally viable, it is not typical of a normal neutron tube operation.

In order to avoid the issues within the first method, a new approach is now

proposed, where an expression for the rate of change of boundary movement

is determined in an entirely different way. This new approach does not suffer

the same problems experienced here, and thus allows a more experimentally

representative charge density profile to be applied within the model.
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4.3.3 Numerical Method 2 for the Determination of the

Time-dependent Solution

As mentioned above, a new approach to the time dependent problem has been

developed to avoid the problems experienced in the original method; this is

now described along with an associated time-stepping algorithm. We begin

by first manipulating the original one-dimensional, dimensionless system of

equations, (4.35), to reduce their number by one and then further manipulate

the system to yield an analytic integral expression for the rate of change of

dimensionless plasma boundary location, s̃′(t). The approach is described as

follows, beginning by first recalling (4.30) and (4.35a), which are

Ẽ = −∂φ̃
∂x̃
,

and

∂2φ̃

∂x̃2
= −α1ρ̃,

respectively.

By noting (4.30), we can integrate (4.35a) to observe that

Ẽ(x̃, t̃) = α1

∫ x̃

s̃(t̃)

ρ̃(ξ, t̃) dξ, (4.74)

using the condition, (4.36c). Then, substitution of (4.74) into (4.35b) gives

rise to the coupled pair of equations,

∂ṽ

∂t̃
=
α1

2

∫ x̃

s̃(t̃)

ρ̃(ξ, t̃) dξ − ṽ
∂ṽ

∂x̃
, (4.75a)

∂ρ̃

∂t̃
= −∂(ρ̃ṽ)

∂x̃
, (4.75b)

for the dependent variables ρ̃(x̃, t̃) and ṽ(x̃, t̃), with the boundary condition,

(4.36c), being used in (4.74).
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An expression for the rate of change of plasma boundary location, s̃′(t̃),

can also be determined by initially integrating (4.74), over the solution do-

main, giving
∫ x̃T

s̃(t̃)

φ̃x̃ dx̃ = φ̃T − φ̃S

= −α1

∫ x̃T

s̃(t̃)

∫ x̃

s̃(t̃)

ρ̃(ξ, t̃) dξ dx̃

= −α1

∫ x̃T

s̃(t̃)

(x̃T − x̃)ρ̃(x̃, t̃) dx̃, (4.76)

by the replacement lemma ([38], p6).

Taking the time derivative of (4.76), we find

0 = −α1
∂

∂t̃

∫ x̃T

s̃(t̃)

(x̃T − x̃)ρ̃(x̃, t̃) dx̃

= −α1

{
∫ x̃T

s̃(t̃)

(x̃T − x̃)
∂ρ̃

∂t̃
dx̃− (x̃T − s̃(t))ρ̃ss̃

′(t̃)

}

, (4.77)

by Leibnitz Integral Rule ([36]), and since

−∂(ρ̃ṽ)
∂x̃

=
∂ρ̃

∂t̃
,

from (4.35c), the integral on the right hand side of (4.77) can be expanded,

giving
∫ x̃T

s̃(t̃)

(x̃T − x̃)
∂ρ̃

∂t̃
dx̃ = (x̃T − x̃)ρ̃ṽ

∣

∣

∣

x̃T

s̃(t̃)
−
∫ x̃T

s̃(t̃)

(ρ̃ṽ) dx̃

= (x̃T − s̃(t̃))ρ̃ss̃
′(t̃). (4.78)

Evaluating the boundary term on the right of (4.78), we arrive at the equation

s̃′(t̃) = ṽi −
1

ρ̃s(x̃T − s̃(t̃))

∫ x̃T

s̃(t̃)

(ρ̃ṽ) dx̃ (4.79)

for the rate of change of dimensionless plasma boundary location at t̃.
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4.3.3.1 Detailed Numerical Algorithm

The equations, (4.75), in addition to (4.79) can now be used in a time step-

ping algorithm for the determination of the solution of the time-dependent

plasma boundary problem in one dimension. The new proposed algorithm is

as follows:

Step 1 The initial solution region is set with the initial plasma boundary

location being defined as s̃(0) = s̃0;

Step 2 Set ρ̃(x̃, 0) = ṽ(x̃, 0) = 0, where x̃ ∈ (s̃, x̃T ];

Step 3 Set ρ̃(s̃, t̃) = ρ̃s(t̃) and ṽ(s̃, t̃) = ṽi, from (4.36d) and (4.36f), where

ρ̃s(t̃) is the dimensionless time-dependent function (in this case given by

the ramped function, (4.56)) representing the time-dependent variation in

current density at the plasma boundary during tube operation, and ṽi the

initial dimensionless particle velocity (a constant in this case, although not

necessarily so);

Step 4 Calculate the updated velocity field, ṽ(x̃, t̃k+1), from (4.75a), us-

ing the current velocity field, ṽ(x̃, t̃k), and the current charge density field,

ρ̃(x̃, t̃k). This is done by discretising (4.75a) as

ṽk+1
j = ṽkj + ∆t̃

{

α1

2

∫ x̃k
j

s̃k

ρ̃k dx̃− ṽkj

(

∂ṽkj
∂x̃

)}

,

where the integral is approximated by the trapezium rule,

∫ x̃k
j

s̃k

ρ̃k dx̃ ≈ ∆x̃k

2

{

(

ρ̃ks + ρ̃kj
)

+ 2

j−1
∑

i=2

ρ̃ki

}

,

138



with ∆x̃k being the nodal spacing at tk. Here, the spatial derivative ∂ṽkj /∂x̃

is approximated by the first order difference

∂ṽkj
∂x̃

≈
ṽkj − ṽkj−1

∆x̃k
.

Step 5 Calculate the updated charge density field, ρ̃(x̃, t̃k+1), from (4.75b),

using ρ̃(x̃, t̃k), and ṽ(x̃, t̃k+1) from Step 4. This is done by discretising (4.75b)

as

ρ̃k+1
j = ρ̃kj − ∆t̃

∂
(

ρ̃kj ṽ
k+1
j

)

∂x̃
.

Here, the spatial derivative ∂
(

ρ̃kj ṽ
k+1
j

)

/∂x̃ is approximated by the first order

difference
∂ρ̃kj ṽ

k
j

∂x̃
≈
ρ̃kj ṽ

k+1
j − ρ̃kj−1ṽ

k+1
j−1

∆x̃k
.

Step 6 Determine the rate of change of boundary movement at the current

time-step, tk. This is done by evaluating

ds̃k

dt
≈ ṽi −

∆x̃k
{

1
2

(

ρ̃ks ṽi + ρ̃kn+1ṽ
k+1
n+1

)

+
∑n

j=2 ρ̃
k
j ṽ

k+1
j

}

ρ̃ks(x̃T − s̃k)
, (4.80)

from (4.79), where s̃k = s̃(tk). Here, the integral on the right hand side of

(4.79) has been approximated in (4.80) by the trapezium rule, as in Step 4.

An approximation to the boundary location at the (k+1)th time step can

then be written

s̃k+1 ≈ s̃k + ∆t̃
ds̃k

dt
;

Step 7 Return to step (4) and repeat until the solutions in successive time

steps are identical to within a small tolerance.
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4.3.3.2 Test Case

To test the new method, the physical conditions listed at the start of §4.3,

above, were applied. As in the previous method the potential difference

applied across the solution region was held constant in time, with particles

emerging with a constant initial velocity (or energy). As a consequence of

a significant increase in computational speed, a source charge density ramp

that is more typical of experiment could be used and this is detailed as

follows.

Source Charge Density Ramp. Owing to long algorithm execution times,

in order to have any realistic representation of experiment the previous model

used a source charge density ramp whose rate of increase was rapid enough

that the effects of the ramp could be captured within a reasonable compu-

tational time frame. Such a rapidly increasing source charge density is at

the short end of the experimental time frame, and is not typical of neutron

tube operation. The new method presented here overcomes difficulties expe-

rienced in the previous case and so to test it, a more typically representative

charge density ramp is applied here. Again, referring to the function (4.56)

shown in Figure 4.3, the constants b, c, and h are chosen to be

b = 5.41 × 106 s−1,

c = 2 × 10−7 s

h = ρm,

where ρm is given by (4.73). These parameters cause a ramp rise time of

∼ 114.4 non-dimensional units, or 370 ns; the value tm = 3.232 ns follows

from (4.28) and (4.29) (with L = 0.01m from Table 4.2).
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4.3.3.3 Results

The application of the physical conditions, including the more representative,

longer timescale charge density ramp in addition to a logical time-step size of

4.64× 10−3 non-dimensional units (corresponding to ∼ 215 non-dimensional

time steps per unit tm, or an initial physical time step of 1.5 × 10−11 s) and

a total time of 900ns, yielded results with a number of differing features;

some of the more salient features are explained in the following paragraphs.

Other parameters used are listed in Table 4.2, below, where it is noted that

the adaptive features incorporated in method 1 are not implemented here.

The algorithm executed to completion within a time frame that was of the

order of minutes, rather than hours (as in the original algorithm). The pa-

Parameter Value Description

m 60000 Number of time steps.

n 75 Initial number of spatial steps.

dτ 4.64 × 10−3 units Logical time step size.

L 0.01 m Region start size - final run.

tend 900 × 10−9 s Calculation termination physical

time.

Table 4.2: Numerical parameters for the one-dimensional time-dependent numer-

ical method 2 test problem.

rameters chosen allow a solution showing convergence towards the analytic

steady-state solution to be generated, with the calculated location of the

plasma boundary clearly asymptoting towards the steady state location; the
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accuracy of the final solution increases with increasing numbers of spatial

nodes. The time step size was chosen to facilitate this for differing numbers

of spatial nodes without violating the CFL condition, (4.63) (which is also

applicable in this case). Initially, 75 spatial nodes were used, with this num-

ber increasing in steps of 25 to 150 nodes. At the final solution time of 0.9µs,

a typical neutron tube source will have undergone switch-on with the source

charge density being approximately constant at this time.

The following Figures detail features from the calculated solution, where

results are displayed in physical space.

Figure 4.16 shows the surface ρ(x, t), where the charge density ramp, in-

creasing from right to left, is clearly visible. There is no obvious instability.

Figure 4.17 shows level curves of charge density for the entire calculated

solution. The plasma boundary is identified by the solid black line to the

left of the Figure, where it can be seen that boundary movement begins

immediately. The entire solution region is charge infused within ∼ 7 ns.

Figure 4.18 shows the surface φ(x, t) (extracted from ρ̃(x̃, t) via (4.35a)

and re-dimensionalised). The change in plasma boundary location (at the

top of the surface) with time (increasing from left to right) is visible, as is

the gradual change in curvature of the potential across the solution region

from the initial, linear solution at t = 0 (to the left of the surface) to the

final curved solution at t = 900ns (at the right of the surface). To examine

the final solution, it is displayed in Figure 4.19 as the solid black line; it is

surrounded by red circular markers, which represent the analytic steady-state
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Figure 4.16: The charge density surface ρ(x, t). Output is shown at every 600

time steps.

solution (extracted from (3.28)). The two curves (black line and markers)

appear very close together, and so to further investigate the accuracy of

the final time-dependent solution, a number of calculations were performed

with differing numbers of nodes. For each calculation, the final calculated

time-dependent potential solution (at t = 900ns) was compared to the exact

steady-state solution calculated at the same nodal point locations (again

using (3.28)). The error in calculated final solution (as a percentage of the

maximum potential value, φm) for each of these calculations is shown in

Figure 4.20. Here, it can be seen that the calculated solution error decreases

with increasing numbers of nodes. It can also be seen that the largest error

in solution occurs towards the plasma boundary (to the left of the graph)
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Figure 4.17: Equally spaced level curves of constant charge density for the entire

solution (up to 0.9µs).

where the solution curvature is at its greatest; this is to be expected and

would be reduced if an adaptive scheme, such as that used in method 1, were

used here. As expected, the error in the calculated solution is zero at the

fixed target location to the right of Figure 4.20.

Finally, Figures 4.21 and 4.22 show the calculated boundary location and

perturbation as functions of time. Figure 4.21 clearly shows the time depen-

dent boundary, s(t), asymptoting to the analytic steady-state plasma bound-

ary location, with Figure 4.22 showing the boundary perturbation asymptot-

ing to zero with time.
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Figure 4.18: The potential surface ρ(x, t). Output is shown at every 600 time

steps.
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Figure 4.19: The analytic steady-state solution (red circles) with the calculated

potential solution φ(x, t) at t = 900ns (black solid line with 150 nodes).
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Figure 4.20: Error in final calculated solution potential as a function of distance.

The error is calculated as error% = 100×(φ(x,te)−φa(x))
φm

, where te is the final time

(900ns in this case) and φa(x) is the analytic steady-state solution.

4.3.3.4 Method 2 - Summary and Conclusion

The new approach detailed here, for the solution of the one-dimensional time-

dependent problem, avoids solving Gauss’ Law, (4.1c), numerically, which,

in combination with the method used for the determination of the plasma

boundary perturbation, is believed to be the source of the instability ob-

served in the original method. Furthermore, a more robust, analytically

based method for determining the plasma boundary location has been devel-

oped.

The new approach has been implemented as a numerical time-stepping

scheme using MATLAB, and has been tested by applying conditions typically

seen in a neutron tube application; this was barely possible with the original
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Figure 4.21: The variation in boundary location, s(t), with time. The calculated

boundary asymptotes to the analytic steady-state location as the source sharge

density ramp reaches its maximum value.
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Figure 4.22: The variation in boundary perturbation, ∆s(t), with time. The per-

turbation, calculated from (4.79), asymptotes to zero as the source charge density

ramp reaches its maximum value.
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method, as a consequence of slow execution times. Results clearly indicate

that, in this case, as the source charge density ramp settles to its peak height,

time dependent solutions converge towards the analytic steady-state solution,

as would be expected. The calculated plasma boundary location is seen to

clearly converge upon the steady state plasma boundary location.

4.4 Summary and Conclusion to the One-dimensional

Time-dependent Problem

Several attempts have been made at solving the one-dimensional system,

(4.1) (subject to the conditions, (4.2)), with varying degrees of success. The

problem was initially attacked analytically, yielding a solution that is valid

in the charge free region separated from the charge infused region by a par-

ticular characteristic curve. Further analysis has also yielded the form of an

analytic solution in the charge infused region, to within constants, although

the determination of the constants appears difficult.

A first numerical approach, whereby the system, (4.1), is transformed to

a fixed, logical grid (as a consequence of the physical solution region being

time-dependent), upon which it is discretised in a standard way using finite

differences, yielded an apparently viable solution. However, in order for

the method to proceed without instability, an unphysical scaling parameter

was introduced, dramatically reducing the the boundary movement at each

time-step and causing the method to proceed very slowly. It was concluded

that the unphysical nature of the calculated boundary movement was not

acceptable and so a new method was devised to circumvent the difficulties.
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The new method removed the observed source of difficulty by integrat-

ing Gauss’ Law (as in (4.74)), and incorporating it into the Lorentz force

equation, thus reducing the system of equations by one to the pair, (4.75).

A different method for determining the boundary movement was also deter-

mined, and this was done by again integrating Gauss’ Law. Manipulation of

this, whilst utilising the continuity equation, (4.75b), yields the expression,

(4.79), for the boundary velocity; the boundary movement at each time-step

is determined from this expression.

We now move on to the more difficult two-dimensional case, where a method

is proposed for the determination of the two-dimensional steady state solu-

tion. This method is based upon the more successful second one-dimensional

numerical method, and splits the Lorentz, vector equation, (2.17a), into its

two components, solving each one separately in alternating directions.

149



Chapter 5

A Planar Two-dimensional

Steady-state Solution

One of the key assumptions within the study of the one-dimensional problem

was that, within the acceleration region of a neutron tube, particle acceler-

ation due to magnetic fields can be disregarded. As a result of the study

of the one-dimensional time-dependent problem, an approach to the two-

dimensional steady-state problem is now proposed. The proposed solution

strategy has been implemented, giving results that are entirely plausible and

which show convergence, with a little further work being required to perfect

the method.

Within this chapter, we seek a two-dimensional steady-state solution to

the plasma boundary problem introduced in §2.3, by solving the system of

time-dependent equations, (2.17), on the region shown in Figure 2.3 (which

is reproduced here for convenience and labelled Figure 5.1), with time being

used in a pseudo manner (it not representing actual time) to advance an

iterative method.
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It is pointed out that the strategy adopted in this chapter calculates

the deuteron beam entirely within the solution region. This is in contrast

to the alternative approach of solving only within the beam itself, where

the edge of the beam (which would correspond to the edge of the domain)

would represent a free boundary. This discarded alternative is potentially

more difficult, because of the need to locate a second moving boundary that

represents the edge of the beam.
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Figure 5.1: Region of interest, R. The curved line is a representation of the edge

of the ion beam, and separates the zero and non-zero charge density regions.
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5.1 Two-dimensional Time-dependent System

In order to develop the two-dimensional steady-state solution to the plasma

boundary problem, we firstly restate the original simplified (neglecting mag-

netic effects) system of equations as

m

{

(v · ∇)v +
∂v

∂t

}

= qE, (5.1a)

∇ · (ρv) = −∂ρ
∂t
, (5.1b)

∇ · ∇φ = − ρ

ε0
, (5.1c)

and

E = −∇φ, (5.1d)

from (2.17) and (2.18), where t ≥ 0, say, and where the constants q, m, and

ε0, along with the dependent and independent variables, are as defined in

§2.1 and §2.3.1. We then write this system in a two-dimensional Cartesian

form, utilising the fact that the electric field can be written as an integral,

from (5.1d) and (5.1c), as in §4.3.3.

The time dependence within this system is to be used to iterate towards

a steady-state solution on the planar region shown in Figure 5.1 (which is

symmetric about the vertical axis). The system is solved in conjunction with

appropriate extensions to two dimensions of the conditions (2.20) given in

§2.3.2, namely

φ(x, t) = φS, t ≥ 0, x ∈ S1 ∪ S2 (5.2a)

φ(x, t) = φT , t ≥ 0, x ∈ S4 (5.2b)

∇φ(x, t) · n1 = 0, t > 0, x ∈ S1 (5.2c)

∇φ(x, t) · n5 = 0, t > 0, x ∈ S5 (5.2d)
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ρ = ρs(x), t ≥ 0, x ∈ S1 (5.2e)

ρ = 0, t ≥ 0, x ∈ S2, (5.2f)

ρ = 0, t = 0, x ∈ R, x /∈ S1 ∪ S2, (5.2g)

∇ρ(x, t) · n5 = 0, t > 0, x ∈ S5 (5.2h)

v = vi(x)n1, t ≥ 0, x ∈ S1 (5.2i)

v = 0, t = 0, x ∈ R, x /∈ S1 (5.2j)

v · n5 = 0, t > 0, x ∈ S5 (5.2k)

where {Si} are the boundary segments enclosing the region R, shown in

Figure 5.1. Here, S1 is the (moving) plasma boundary, S2 is the top of

the plasma cup (held at the same electric scalar potential as the plasma

boundary, (5.2a)), and S4 is the target (held at the constant electric scalar

potential (5.2b)). As explained in §2.3.2, the condition (5.2c) indicates that

the electric field normal to the plasma boundary is zero, which implies that

the electric field at the boundary is zero, since the electric field tangential to

the boundary surface must be zero as a consequence of (5.2a).

The condition (5.2i) indicates that particle release speed is a function of

spatial location only, and that particles are released in a direction normal to

the plasma boundary surface (§2.3.2), whilst the condition (5.2e) indicates

that the charge density at the plasma boundary surface is also a function

in spatial location only; it is zero, (5.2f), on the metal plasma cup. These

conditions are appropriate for the steady-state case. The conditions, (5.2j)

and (5.2g), indicate that the region is initially charge free, and the final

conditions, (5.2d), (5.2h) and (5.2k) state that there is no change in φ and

ρ across the line of symmetry, S5, in addition to there being no velocity into
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the boundary.

In this case, the vector x = {x, y} is the vector of independent variables,

where x ∈ [0, xR], and where y ∈ [0, yT ]. The right hand boundary segment

S3 is located at (xR, y), and the segment S4 is located at (x, yT ). Clearly

xR must be sufficiently far away from S1 that the beam, which is inclined

to expand as it traverses the domain as a consequence of mutual charge

repulsion within it, that it does not strike S3.

5.1.1 Two-dimensional Cartesian Form

To write the system of equations, (5.1), in a Cartesian form suitable for the

solution strategy proposed in this chapter, we initially select the y axis to be

parallel to the axis of symmetry in Figure 5.1, and then proceed to simplify

the Lorentz equation, (5.1a). A simplification can be achieved by setting

p = q = v in the vector identity

∇(p · q) = (p · ∇)q + (q · ∇)p + p × (∇ × q) + q × (∇ × p)

(see [29]), and writing (after rearranging)

(v · ∇)v =
1

2
∇(v · v) − v × (∇ × v)

=
1

2
∇ (v · v) , (5.3)

since the assumption has been made that there are no magnetic effects and

hence no vorticity exists within the particle flow (i.e. ∇ × v = 0). Substi-

tuting (5.1d) and (5.3) into (5.1a) gives

1

2
∇ (v · v) +

(

∂v

∂t

)

= − q

m
∇φ, (5.4)

154



where for an iterative scheme to determine the steady-state solution, we could

neglect the time dependence in velocity (using the time dependence in (5.1b)

to progress the scheme), thus allowing (5.4) to be integrated to give

1

2
|v|2 =

1

2

(

v2
x + v2

y

)

= − q

m
φ+ c1, (5.5)

where vx and vy are the x and y components of the velocity vector, v, re-

spectively. The constant c1 can be determined by noting that φ = φS when

|v| = vi (on S1), from (5.2a) and (5.2i). In practice, however, (5.5) proves

difficult to use, particularly at early stages within the calculation, since the

extraction of vx, say, from it often gives complex results. As such, it is

preferable to split (5.4) into its two Cartesian components,

vx
∂vx
∂x

+ vy
∂vy
∂x

+
∂vx
∂t

= − q

m

∂φ

∂x
,

and

vx
∂vx
∂y

+ vy
∂vy
∂y

+
∂vy
∂t

= − q

m

∂φ

∂y
.

At this point, we can determine integral expressions for the right hand sides

of (5.6) in a similar manner to the one-dimensional formulation given in

§4.3.3.

By considering (5.1c) in two-dimensional Cartesian form and rearranging,

we can write

φxx(x, y) = −
(

ρ(x, y)

ε0
+ φyy(x, y)

)

, (5.7)
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where, by integrating (5.7) for a given y0 location within the region, we can

either write

∫ x

sx

φxx(x, y0) dξ = φx(x, y0)

= −
∫ x

sx

(

ρ(x, y0)

ε0
+
∂2φ

∂y2

∣

∣

∣

∣

x,y0

)

dξ, 0 ≤ y0 ≤ sh,

where sx is the x location of the plasma boundary at y0, and where sh is the

maximum height of the plasma boundary above the source cup, or

∫ x

0

φxx(x, y0) dξ = φx(x, y0)

= −
∫ x

0

(

ρ(x, y0)

ε0
+
∂2φ

∂y2

∣

∣

∣

∣

x,y0

)

dξ, sh < y0 ≤ yT ,

where x = 0 corresponds to the symmetry line to the left of Figure 5.1, with

yT being the target height (the height of the boundary S4). Within both of

these expressions, the value of φx(x, y0), evaluated at the lower integration

limit, is zero. This is since E(sx) and hence φx(sx, y0) = 0 on the plasma

boundary itself and also φx(0, y0) = 0 on the symmetry line (S5) from (5.2d).

A pair of analogous expressions for integration in the y direction can also

be written down for a given x0 location, and these are

∫ y

sy

φyy(x0, y) dη = φy(x0, y)

= −
∫ y

sy

(

ρ(x0, y)

ε0
+
∂2φ

∂x2

∣

∣

∣

∣

x0,y

)

dη, 0 ≤ x0 ≤ sl,

where sy is the height of the plasma boundary above the source cup at x0,

and where sl is the maximum extent in x that the boundary extends into the
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region, and

∫ y

0

φyy(x0, y) dη = φy(x0, y)

= φy(x0, 0) −
∫ y

0

(

ρ(x0, y)

ε0
+
∂2φ

∂x2

∣

∣

∣

∣

x0,y

)

dη, sl < x0 ≤ xR,

(5.9a)

where xR is the location of the right hand boundary, S3. It is noted that the

term, φy(x0, 0) is present on the right hand side of (5.9a) because its value

is not known there.

A minor drawback with using these integral expressions (that was absent

in the one-dimensional case) is the presence of the second derivative terms,

φyy(x, y0) and φxx(x0, y), on the right hand sides of (5.8) and (5.9), respec-

tively. To successfully incorporate (5.7) and (5.9) into an iterative scheme,

we must determine values for these terms. This was avoided in the one-

dimensional formulation, but nevertheless does not present a problem in the

strategy proposed here.

The system of equations, (5.1), written in the required two-dimensional

Cartesian form can now grouped together as

vx
∂vx
∂x

+ vy
∂vy
∂x

+
∂vx
∂t

=
q

m

∫ x

a

(

ρ(x, y0)

ε0
+
∂2φ

∂y2

∣

∣

∣

∣

x,y0

)

dξ, (5.10a)

vx
∂vx
∂y

+ vy
∂vy
∂y

+
∂vy
∂t

=
q

m

[

∫ y

b

(

ρ(x0, y)

ε0
+
∂2φ

∂x2

∣

∣

∣

∣

x0,y

)

dη − ∂φ

∂y

∣

∣

∣

∣

x0,b

]

,

(5.10b)

∂(ρvx)

∂x
+
∂(ρvy)

∂y
= −∂ρ

∂t
, and, (5.10c)

∂2φ

∂x2
+
∂2φ

∂y2
= − ρ

ε0
, (5.10d)
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where a and b refer to the integration starting locations in x and y, respec-

tively. As described above, these are either sx or 0, or sy or 0 depending upon

where the integral is to be determined from; the term φy(x0, a) (in (5.10b))

is only present if b = 0. It is noted that the divergence terms in (5.1) have

been expanded (in a Cartesian manner) to give (5.10c) and (5.10d).

5.1.1.1 Dimensionless Cartesian Form

The system, (5.10), is now written in a dimensionless form, and to do this,

as in §4.3.1, we define the dimensionless variables

φ̃ =
φ

φm
, (5.11a)

ρ̃ =
ρ

ρm
, (5.11b)

ṽx =
vx
vm
, (5.11c)

ṽy =
vy
vm
, (5.11d)

x̃ =
x

L
, (5.11e)

ỹ =
y

L
, (5.11f)

and, t̃ =
t

tm
. (5.11g)

Here, L is the largest physical dimension (x̃ and ỹ are equally scaled) and

φm, ρm, vm and tm are as defined in §4.3.1. In particular, we restate vm and

tm as

vm =

√

2qφm
m

, (5.12)

tm =
L

vm
. (5.13)
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The Dimensionless Gauss’ Law Since the integral expressions on the

right hand side of (5.10a) and (5.10b) are determined from Gauss law, (5.10d),

we write its dimensionless form first. The dimensionless variables particular

to Gauss’ Law, as written above, are those used in §4.3.1, and so we simply

state its dimensionless form as

∂2φ̃

∂x̃2
+
∂2φ̃

∂ỹ2
= −α1ρ̃, (5.14)

where α1 is given by (4.32) and similarly takes a typical value O(10). The

integrals, (5.7) and (5.9) can therefore be written in dimensionless form as

∂φ̃

∂x̃

∣

∣

∣

∣

∣

x̃,ỹ0

= −
∫ x̃

ã



α1ρ̃(x̃, ỹ0) +
∂2φ̃

∂ỹ2

∣

∣

∣

∣

∣

x̃,ỹ0



 dξ, and

∂φ̃

∂ỹ

∣

∣

∣

∣

∣

x̃0,ỹ

= −
∫ ỹ

b̃



α1ρ̃(x̃0, ỹ) +
∂2φ̃

∂x̃2

∣

∣

∣

∣

∣

x̃0,ỹ



 dη +
∂φ̃

∂ỹ

∣

∣

∣

∣

∣

x̃0,b̃

,

where ã and b̃ are the dimensionless integration starting locations; these are

analogous to a and b in (5.10a) and (5.10b).

The Dimensionless Lorentz Equations By substituting (5.15), along

with the relevant dimensionless variables, into (5.10a) and (5.10b), we obtain

ṽx
∂ṽx
∂x̃

+ ṽy
∂ṽy
∂x̃

+
∂ṽx

∂t̃
= α2

∫ x̃

ã



α1ρ̃(x̃, ỹ0) +
∂2φ̃

∂ỹ2

∣

∣

∣

∣

∣

x̃,ỹ0



 dξ, (5.16a)

and

ṽx
∂ṽx
∂ỹ

+ ṽy
∂ṽy
∂ỹ

+
∂ṽy

∂t̃
= α2





∫ ỹ

b̃



α1ρ̃(x̃0, ỹ) +
∂2φ̃

∂x̃2

∣

∣

∣

∣

∣

x̃0,ỹ



 dη − ∂φ̃

∂ỹ

∣

∣

∣

∣

∣

x̃0,b̃



 ,

(5.16b)

where α2 is given by

α2 =
L

2φm
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from (5.12) and (5.13). The parameter α2 has a typical value of ∼ 10−8 and

will tend to remove the effects of the integrals on the right hand sides of

(5.16a) and (5.16b), unless the second derivative terms are significant. This

will tend to be true just away from the plasma boundary where the curvature

in φ is at its greatest.

The Dimensionless Continuity Equation Substituting the relevant di-

mensionless variables into (5.10c), we obtain

ρmvm
L

(

∂(ρ̃ṽx)

∂x̃
+
∂(ρ̃ṽy)

∂ỹ

)

= −ρm
tm

∂ρ̃

∂t̃
, (5.17)

and by noting that tm is given by (5.13), (5.17) can be written

∂(ρ̃ṽx)

∂x̃
+
∂(ρ̃ṽy)

∂ỹ
= −∂ρ̃

∂t̃
. (5.18)

Dimensionless Boundary Conditions To be consistent with the dimen-

sionless system, (5.14), (5.16) and (5.18), the boundary conditions, (5.2),

must also be restated in dimensionless form and these are

φ̃(x̃, t̃) =
φS
φm

= φ̃S, t̃ ≥ 0, x̃ ∈ S̃1 ∪ S̃2 (5.19a)

φ(x̃, t̃) =
φT
φm

= φ̃T , t̃ ≥ 0, x̃ ∈ S̃4 (5.19b)

∇̃φ̃(x̃, t̃) · ñ1 = 0, t̃ > 0, x̃ ∈ S̃1 (5.19c)

∂φ̃

∂x̃

∣

∣

∣

∣

∣

x̃,t̃

= 0, t̃ > 0, x̃ ∈ S̃5 (5.19d)

ρ̃(x̃) =
ρs(x̃)

ρm
, t̃ ≥ 0, x̃ ∈ S̃1 (5.19e)
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ρ̃ = 0, t̃ ≥ 0, x̃ ∈ S̃2, (5.19f)

ρ̃ = 0, t̃ = 0, x̃ ∈ R̃, x̃ /∈ S̃1 ∪ S̃2, (5.19g)

∂ρ̃

∂x̃

∣

∣

∣

∣

x̃,t̃

= 0, t̃ > 0, x̃ ∈ S̃5 (5.19h)

ṽ =
vi
vm

ñ1

= ṽi(x̃)ñ1, t̃ ≥ 0, x̃ ∈ S̃1 (5.19i)

ṽ = 0, t̃ = 0, x̃ ∈ R̃, x̃ /∈ S̃1 (5.19j)

ṽ · ñ5 = 0, t̃ > 0, x̃ ∈ S̃5. (5.19k)

Here, R̃ is the dimensionless region enclosed by the boundaries S̃1 to S̃5;

the vectors ñ1 and ñ5 are the unit normals to S̃1 and S̃5, respectively. The

dimensionless gradient operator, ∇̃, in (5.19c) has been written in Cartesian

form in (5.19d) and (5.19h), where it is clear that potential or charge density

do not change across the line of symmetry, at x̃ = 0. Typically, φ̃S = 1 and

φ̃T = 0, since φT = 0 and φm = φS.

5.2 Strategy for the Determination of the Two-

dimensional Steady-State Solution

In a vacuum tube, in which the emission boundary is fixed (such as a vacuum

tube diode), high emission current densities accompanied by low acceleration

voltages will give rise to a charge build-up immediately above the emission

surface. This occurs because the high charge flux from the emission surface

is not matched by the acceleration of charge away from the surface, as a

consequence of the relatively low acceleration potential. The effect of such
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a build-up of space charge is that a steady condition ensues in which charge

leaving the emission surface behind the space charge build-up is repelled by

it ([3], p191). This condition is known as space charge limitation and can be

modelled in one dimension by the Child-Langmuir relationship1 ([3], p171).

If the space charge limitation is severe, the electric field at the build-up

of charge will be neutralised, effectively indicating the location of the new

emission boundary ([3], p191). The numerical method presented in this chap-

ter exploits this property to determine the location of the plasma boundary.

It does this by calculating a fixed boundary solution, only terminating this

calculation when either a maximum in potential exists within the solution

region2, or when the numerical method begins to become unstable, as a con-

sequence of the space charge limitation. Instability is identified by examining

the mean of the relative root mean square change in solution, of all solution

variables (called MRMS in ensuing paragraphs), at each time-step. Generally

convergence is observed in that there is a rapid decrease in MRMS with time-

step, until space charge limitation becomes apparent when MRMS generally

begins to increase. This is a phenomenon also observed when using other,

off-the-shelf, fixed boundary ion beam codes (for example, OPERA2d), that

calculate the fixed boundary solution in a slightly different way by tracking

particles individually in a Lagrangian manner. When space charge limitation

occurs with these codes, fixed boundary solution convergence is usually not

1This relationship is effectively the fixed boundary equivalent solution to the planar

free-boundary solution developed in Chapter 3.
2At this point the charge entering the region is not being accelerated away fast enough

by the accelerating potential, resulting in space charge build-up and current limitation,

and a consequent maximum in electrostatic potential ([3]).
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achieved.

When either a potential maximum within the solution region or an in-

crease in MRMS (or both) has been identified, the solution is examined and

the new boundary location determined to be the location of the zero electric

field level curve (satisfying (5.19c)) near the existing fixed boundary. Further

iterations can then be performed, with the boundary location generated pre-

viously forming the new emission surface. This process can be repeated until

either the boundary does not move any further, or until there is no further

build-up of space charge immediately above the emission boundary; both

conditions should occur at the same time. At this point, the free-boundary

location has been determined.

This solution strategy has been implemented in Matlab (as with all pre-

vious models), and we now describe the solution algorithm, as implemented,

in more detail.

5.2.1 Solution Algorithm for the Two-dimensional Steady-

state Calculation

The method proposed in §5.2, as implemented, can be broken down into the

following procedure. The algorithm steps are as follows.

Step 1

• Set up the fixed solution region with nx equally spaced nodes in the x̃

direction, and ny equally spaced node in the ỹ directions; the spacing

in each direction is labelled ∆x̃ and ∆ỹ, respectively, where ∆x̃ =

x̃R/(nx − 1) and ∆ỹ = ỹT/(ny − 1). As in the one-dimensional time-
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dependent model, the subscripts i and j are used to represent ith node

in x̃ and the jth node in ỹ. Ensure the right hand edge (x̃E) of the fixed

emission region coincides with a nodal point.

• Set the time-step size ∆t̃. As in the one-dimensional time-dependent

model, the superscript k is used to represent a variable at the kth time-

step.

• The fixed emission boundary sits adjacent to the line of symmetry (S5

in Figure 5.1), along the x̃ axis; it is labelled s̃f = s̃f(x̃, 0) here, with

its right hand edge being located at (x̃s, 0).

Step 2

• Initialise the solution variable matrices for the variables φ̃, ρ̃, ṽx, and

ṽy. The solution is stored at each nodal point in matrices of dimension

(ny, nx), accounting for each nodal point within the region.

• Add any constant (in time) boundary conditions to these variables,

prior to beginning calculations, as follows.

– The charge density (at each time-step) is ramped, in space, along

the emission boundary to avoid a discontinuity at the right hand

edge; it takes the form

ρ̃(x̃) =

{

1 + exp

(

4
(Lx̃− cx)

wx

)}−1

,

where here, cx/L is the midpoint of the ramp transition and wx/L

is a measure of the ramp transition width (previously described

in §4.3.2.3). This gives rise to a curve similar to that shown in

Figure 5.2.
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Figure 5.2: Constant charge density profile along the emission boundary. The

region line of symmetry is located at x/L = 0, the midpoint of the ramp transition

is at cx/L (in this case at x/L = 0.16, shown by the black square marker) and a

measure of the transition width (the distance between the two red, circular markers)

is given by wx/L (wx/L = 0.0286 in this case).

– The velocity magnitude (at each time-step) along the boundary,

ṽi(x̃), has a similar ramp applied. In the fixed boundary case,

since ions are emitted normally away from the emission boundary,

only the component ṽy is affected.

– The conditions, (5.19a) and (5.19b), are applied to the potential

solution matrix.

Step 3

• As a starting point, calculate the equivalent one-dimensional steady-
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state potential solution for the boundary conditions applied, using the

analytic expression, (3.28); map this solution onto the line of symmetry

in both the potential and charge density solution variables (the charge

density being calculated from (4.1c).

• Using the one-dimensional solution along this boundary, in conjunction

with the other boundary conditions already applied, perform relaxation

on the potential and charge density solution variables. The relaxation

process applied is effectively the same as seeking the solution of the

Laplace equations,

∂2φ̃

∂x̃2
+
∂2φ̃

∂ỹ2
= 0 and

∂2ρ̃

∂x̃2
+
∂2ρ̃

∂ỹ2
= 0,

for the potential and charge density, respectively. It is done using a

five point nodal averaging procedure, where for a general point, φ̃i,j,

say, within the region, the (k + 1)th average would be given by

φ̃k+1
i,j = (φ̃ki−1,j + φ̃ki+1,j + φ̃ki,j+1 + φ̃ki,j−1)/4.

Since we are only seeking a steady-state solution, the initial solutions in φ̃

and ρ̃, generated by the relaxation procedure, are a suitable starting location

for the steady state calculation;

Begin iterations on the fixed region, proceeding in the following order.

Step 4

166



• Calculate φ̃ỹỹ from the most recent potential solution, using the second

order central difference, (4.55). Calculate the updated ṽx component,

ṽx|k+1
i,j = ṽx|ki,j + ∆t̃

{

α2

∫ x̃i

0

(

α1ρ̃
k
i,j + φ̃ỹỹ

∣

∣

∣

k

i,j

)

dξ

−
[

ṽx
∂ṽx
∂x̃

]k

i,j

−
[

ṽy
∂ṽy
∂x̃

]k

i,j

}

, (5.21)

from (5.16a), using upwinded differences (as in the one-dimensional

case) for the first order derivatives. The integral in (5.21) is calculated

using the trapezium rule.

Step 5

• Calculate φ̃x̃x̃ from the most recent potential solution, using the second

order central difference, (4.55). Calculate the updated ṽy component,

ṽy|k+1
i,j = ṽy|ki,j + ∆t̃

{

α2

∫ ỹi

0

(

α1ρ̃
k
i,j + φ̃x̃x̃

∣

∣

∣

k

i,j

)

dξ

−
[

ṽx
∂ṽx
∂ỹ

]k+1

i,j

−
[

ṽy
∂ṽy
∂ỹ

]k

i,j

}

, (5.22)

from (5.16b), using upwinded differences (as in the one-dimensional

case) for the first order derivatives, and using the ṽx component most re-

cently calculated. The integral in (5.22) is calculated using the trapez-

ium rule.

Step 6

• Calculate the updated charge density,

ρ̃k+1
i,j = ρ̃ki,j − ∆t̃

{

∂

∂x̃

(

ρ̃ki,j ṽx|k+1
i,j

)

+
∂

∂ỹ

(

ρ̃ki,j ṽy|k+1
i,j

)

}

(5.23)

167



from (5.18), using the most recently calculated values for ṽx and ṽy.

Derivatives in (5.23) are calculated using first order upwinded differ-

ences, as in the one-dimensional model.

Step 7

• Solve Gauss’ Law, (5.14), using the most recently calculated values for

ρ̃. This is done using a standard, second order five point difference

stencil (as described in [26], Chp 6). Examine the resulting solution

and if a potential maximum exists within the solution region (instead

of at the plasma boundary), terminate the fixed-boundary calculation

at the current time-step. The Matlab “find” command is a suitable tool

for performing the examination.

Step 8

• Generate the MRMS at the current time-step. This is done by calcu-

lating the RMS change in solution (between the current and previous

time-step) as a fraction of the RMS solution at the current time-step,

for each of the four solution variables, ṽx, ṽy, ρ̃, and φ̃. For ρ̃, for

example, the relative RMS change in solution is calculated as

RMS(ρ̃) =

√

1
nxny

∑

i

∑

j

(

ρ̃k+1
i,j − ρ̃ki,j

)2

√

1
nxny

∑

i

∑

j

(

ρ̃k+1
i,j

)2
,

where the product (nxny) is the total number of nodes. Once this is

known for all solution variables, the mean of all four (previously called

the MRMS) is calculated.
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Step 9

• Examine the rate of change of MRMS and if this has a positive mean

over, say, the previous ten time-steps, terminate the fixed boundary cal-

culation at the current time-step. If this condition is not true, continue

the iterations by returning to Step 4, above.

Step 10

• Once the initial fixed boundary calculation has been concluded, ex-

amine the potential solution and calculate the electric field magnitude

from

|Ẽ| =

√

√

√

√

(

∂φ̃

∂x̃

)2

+

(

∂φ̃

∂ỹ

)2

.

• Determine the level curve corresponding to an electric field magnitude

of zero. This is done using the Matlab “contourc” command, with a

requirement for a single contour at height zero.

• Identify those fixed nodes, within the solution domain, that are clos-

est to the zero electric field magnitude level curve. These nodes form

the location of the plasma boundary for the next stage of calculation.

An example of the result of this process is shown in Figure 5.3. The

most convenient tool for locating the nearest nodes is the Matlab “find”

command.

Step 11

• Calculate the gradient of the new boundary at each node along it; from

the gradient, calculate angle of the inward (into the region) directed
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Figure 5.3: The location of the level curve corresponding to zero electric field

magnitude, and nearest grid nodes. The blue line is the level curve, whilst the black,

square markers are the nodes identified as being nearest this curve. Information

is displayed in dimensional space, with the right hand edge of the flat emission

boundary (xE) being located at x = 0.01m. After the initial fixed boundary

solution, nodes below the blue line are considered to be outside of the region.

normal at those nodes. If the angle of the inward normal at the pth

node on the new plasma boundary is labelled θs(x̃p), then the velocity

boundary condition, (5.19i), as applied to the ṽx and ṽy velocity com-

ponent solution variables along this boundary, is given by the pair of

expressions

ṽx(x̃p) = ṽi cos(θs(x̃p)), and

ṽy(x̃p) = ṽi sin(θs(x̃p)).
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• Apply the charge density condition, (5.19e), along the new boundary.

Step 12

• Repeat the iterative process described above, but when necessary, in-

tegrate in the x̃ and ỹ directions from the expanding boundary (not

including the nodes behind it); remove the rows and columns, corre-

sponding to these nodes, from the matrix generated within the Gauss

Law Poisson solver, moving those values on the new boundary to the

source vector on the right hand side of the system of equations gen-

erated by the Poisson solver. Calculate MRMS at each time-step of

the iterative procedure. Halt the procedure if a maximum in potential

exists inside the region, or if MRMS begins to increase; re-examine the

solution.

5.2.2 Test Case

To test the method, a set of conditions that will cause plasma to expand

into the solution region, but not cause the emission region to become too

distended, are applied. Generally, the application of a relatively high current

density at the emission boundary for a normal operating voltage will cause

this to happen. Indeed, usual operating conditions, applied to a neutron

tube, should cause some bulging of the boundary into the solution region,

and so we choose to apply a source potential of 120kV, a source current

density of 18800Am−2, and an initial particle energy of 50eV. The applied

conditions detailed here are listed in Table 5.1, along with other numerical

parameters.
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Parameter Value Description

nx 56 Number of nodes in x direction.

∆x 1/1100 m Nodal spacing in x direction.

ny 112 Number of nodes in y direction.

∆y 1/11100 m Nodal spacing in y direction.

∆t 1 × 10−11 s Time step size.

L 0.05 m Region width (length scaling parameter).

yT 0.01 m Nominal source-target spacing.

xE 0.01 m Width of emission region.

φS 100 kV Source potential.

φT 0 kV Target potential.

J0 18800 Am−2 Source current density.

Ie 50 eV Initial particle energy.

Table 5.1: Numerical parameters for the two-dimensional steady-state test prob-

lem.

5.2.2.1 Results

Selected results are displayed for three stages of calculation, in which the

boundary is seen to advance from the initial fixed location.

Fixed boundary solution - stage 1 After exiting the initial calculation

stage, the calculated boundary location was found and this is shown in Fig-

ure 5.4. Here, because the new calculated boundary location is so close to

the initial, fixed emission region, the nodes within the region that are closest
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to the new boundary, are still located along the initial fixed boundary. The

calculated new boundary location is shown as the blue line, and the closest

nodes as the black, square markers. Figure 5.5 shows the modified boundary
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Figure 5.4: After the initial calculation stage, the new boundary location is cal-

culated to be the blue line. The nodes within the fixed grid that are closest to this

boundary are shown as the black, square markers. A small part of the underlying

computational grid is also shown.

conditions applied to the vx and vy variables, respectively, as a result of the

shape of the new boundary shown in Figure 5.4. Whilst, on the computa-

tional grid, the boundary isn’t changed for the next stage of the calculation

(since the nearest nodes are those on the existing fixed boundary), the vx

and vy components, along the boundary, are updated. It can be seen that

the y directed velocity component along the boundary is some one hundred

times the magnitude of the x directed component. This (the vx boundary

condition) will have very little effect on the next stage of the calculation.

The potential solution at this stage is shown in Figures 5.6 and 5.7, where
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Figure 5.5: The modified boundary conditions for vx and vy as a consequence of

the new boundary shown in Figure 5.4.

in Figure 5.6, the build-up of charge ahead of the fixed emission boundary

is causing, what is now, typical curvature in the potential solution there.

Figure 5.7 shows potential level curves (40 curves spaced 3kV apart), where

a "bulge" immediately above the emission region is apparent.

Figures 5.8 and 5.9 show the charge density solution at this stage. In

Figure 5.8, the ramped, constant charge density across the emission region

can be seen; it changes from a maximum of j0/vi = 0.2717 Cm−3 to zero

rapidly at 4/5 distance along (traversing from right to left in the upper right

hand part of the figure). Figure 5.9 shows the corresponding charge density

level curves (40 curves, equally spaced from 0 to 0.2717 Cm−3).

Figures 5.10 and 5.11 show the x component of velocity, vx. The sharp

ridge in Figure 5.10 indicates that particles, in this location, are being accel-
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Figure 5.6: The initial potential solution surface.
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Figure 5.7: Initial potential solution level curves. The calculated, new plasma

boundary is just visible and is shown as the blue line to the bottom left of the

figure.

erated outwards as they travel towards the target. Physically, this is caused

by mutual charge repulsion within the ion beam. A slight, overall beam
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Figure 5.8: The initial charge density solution surface. The ramp along the emis-

sion surface (to the upper right of the figure) is visible, where the charge density

at the emission surface decays rapidly from its maximum (j0/vi) to zero when at

4/5 distance along.
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Figure 5.9: Initial charge density level curves. The highest charge density is shown

in red, immediately above the emission region.
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Figure 5.10: x component of velocity. The sharp ridge is evidence of mutual

charge repulsion within the ion beam and shows evidence of lateral acceleration

caused by this.

splaying is visible in Figure 5.11; at this accelerating voltage, experimental

experience indicates that only a small degree of beam splaying would occur.

For completeness, Figure 5.12 shows the y component of velocity. The

curved shape of vy as a function of source-target distance was seen in the one-

dimensional model; for comparison, the expected one-dimensional velocity

of a deuteron under acceleration from the steady-state potential solution is

shown in Figure 5.13, along with the two-dimensional vy component, along

the y-axis (or line of symmetry). In both cases, the same ultimate speed at

the target is reached (indicating some consistency in calculation), but the

two-dimensional curve is distinctly more curved.
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Figure 5.11: x component of velocity level curves. A small degree of beam splaying

is evident.
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Figure 5.12: y component of velocity.

Figure 5.14 shows the MRMS (described above) for the 400 iterations of

this stage of calculation. There is a clear reduction in MRMS as the calcu-

lation proceeds, indicating that until the stage was terminated, the solution

was converging.
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Figure 5.13: Comparison between two-dimensional vy component (along the y-

axis line of symmetry) and the one-dimensional calculated velocity of a deuteron

under the acceleration caused by the calculated steady-state accelerating voltage.

It is noted that the one-dimensional curve does not reach the source boundary, as

a consequence of the steady-state reduced region size.
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Figure 5.14: MRMS with iteration number - stage 1.
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Modified boundary solution - stage 2 The next fixed boundary calcu-

lation stage proceeded for a further 375 iterations before termination. Whilst

the boundary calculated in stage 1 did not result in any change in the region

size, velocity components were modified as mentioned above. This, second

stage, resulted in more significant change in boundary location as shown in

Figure 5.15. Here, the new boundary is shown as the blue line, with the

underlying region nodes that are nearest, shown as the black, square mark-

ers. For comparison, the red line indicates the location of the boundary from

stage 1, above. Figure 5.16 shows the modified boundary conditions applied
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Figure 5.15: Calculated boundary location for stage 2. The blue line shows the

new boundary location and the black, square markers are the nodes nearest the

boundary on the underlying grid. The red line is the boundary location calculated

from the previous stage.

to the vx and vy variables, respectively, as a result of the shape of the new
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boundary shown in Figure 5.15. It can be seen that the y directed velocity

component along the boundary is some one hundred times the magnitude

of the x directed component. The peak x directed velocity component at

the boundary is now some twenty times smaller than the y directed velocity

component.
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Figure 5.16: The modified boundary conditions for vx and vy as a consequence of

the new boundary shown in Figure 5.15.

Figures 5.17 and 5.18 show the potential solution at stage 2. Within

Figure 5.17, nodes behind the new boundary have been removed to highlight

the new emission boundary (the missing nodes can just be seen at the upper

right of the figure) and will not contribute to the following calculation stage.

The calculated emission boundary is shown in Figure 5.18 and whilst the

potential solution does not look significantly different to that shown in stage

1 (Figures 5.6 and 5.7), examination of the level curves (40 curves spaced
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3 kV apart in both cases) near the emission boundary in both cases show that

there is some boundary advancement (i.e. the two curves nearest the emission

region are advancing from stage 1 to stage 2). This indicates advancement

of the plasma boundary.
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Figure 5.17: Stage 2 potential solution surface. Nodes behind the new emission

boundary have been removed to highlight their location (just visible to the upper

right) and do not contribute to the next stage.

As a way of determining the extent of the beam splaying at this stage, the

charge density solution was scaled (by the reciprocal of the particle charge)

in order to determine the particle number density across the region. Figure

5.19 shows the particle number density across the target (a logarithmic scale

is used on the ordinate axis), where it can be seen that after ∼ 0.015 m,

there is less than one particle per unit metre within the region. Therefore

we conclude that the very outer edge of the ion beam strikes the target at

the location x = 0.015 m. This indicates some degree of beam splaying,

considering that the majority of charge is emitted from a region between the
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Figure 5.18: Stage 2 potential solution level curves. There is advancement of the

curves nearest the boundary from stage 1. The new, calculated plasma boundary

is shown as the blue line to the bottom left of the figure.

y axis and x = 0.008 m.

Figure 5.20 shows MRMS for the combined stages one and two (775 iter-

ations). The discontinuity at iteration number 400 is likely to be caused by

the minor modifications introduced as a consequence of the boundary shape

in stage 1 (i.e. the velocity component modifications). Again, there is a clear

reduction in MRMS as the calculation proceeds, indicating that until the

stage was terminated, the solution was converging.

Modified boundary solution - stage 3 The final stage of calculation

proceeded for a further 350 iterations, where it was terminated. Figure 5.21

shows the boundary location at the end of this stage. As before, the new

boundary is shown as the blue line, with the underlying region nodes that

are nearest, shown as the black, square markers. For comparison, the green
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Figure 5.19: The particle number density across the target. The very outer edge

of the beam is considered to be when the number density falls below one particle

per cubic metre (in this case at 0.015 m).
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Figure 5.20: MRMS with iteration number - stages 1 and 2.

and red lines indicate the location of the boundary from stages 1 and 2, re-

spectively. For comparison, the location of the boundary calculated from the
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one-dimensional planar, analytic solution ((3.23)), for the given set of con-

ditions is shown. It is noted that part of the boundary (x > 0.0063 m) does
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Figure 5.21: Calculated boundary location for stage 3. As before, the blue line

shows the new boundary location and the black, square markers are the nodes

nearest the boundary on the underlying grid. The red and green lines are the

boundary locations from steps 2 and 1, respectively.

not penetrate into the body of the region. This is due to the applied source

charge density ramp decaying rapidly beyond this point. In this region, the

charge density is relatively low, and combined with the accelerating voltage,

will give rise to a recessed boundary. Figures 5.22 and 5.23 show the po-

tential solution at stage 3. As before, within Figure 5.17, nodes behind the

new boundary have been removed to highlight the new emission boundary.

The calculated emission boundary is shown in Figure 5.23, where the blue

line to the bottom left hand corner indicates the plasma boundary location.

The gap between the boundary and the first level curve is an indication that
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Figure 5.22: Stage 3 potential solution surface. Nodes behind the new emission

boundary have been removed to highlight their location.

the potential solution is not changing rapidly there ((5.2c)). Indeed Figure

5.24 shows the calculated electric field magnitude across the region, where it

can be clearly seen that the field magnitude is zero at the boundary surface

(shown as the blue line).

Figure 5.25 shows the particle number density across the target. Here,

the very outer edge of the beam, based on the previous definition, is found to

be at about 0.014 m, indicating that the beam has focussed inwards slightly

from the previous stage, this is slightly counter-intuitive, but the previous

stage was an interim stage of the calculation.

Finally, figure 5.26 shows MRMS for the combined stages one, two and

three (1125 iterations). The quite large discontinuity at iteration number

775 is most likely to have been caused by the boundary modifications intro-

duced as a consequence of the boundary shape in stage 2 (i.e. the velocity

186



x location (m)

y 
lo

ca
tio

n 
(m

)

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

Figure 5.23: Stage 2 potential solution level curves. The calculated plasma bound-

ary is shown as the blue line to the bottom left of the figure. The gap between the

boundary and the first curve indicates that the solution is not changing rapidly

there.

component modifications and the movement of the charge density conditions

to the distended boundary). However, once again there is a clear reduction

in MRMS as the calculation proceeds, indicating that until the calculation

was terminated, the solution was converging.

5.3 Summary and Conclusion to the Two-dimensional

Steady State Model

A strategy for a two-dimensional, planar steady-state solution to the plasma

boundary problem has been proposed, and this is based in part on the sec-

ond one-dimensional, time-dependent numerical method. The method uses
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Figure 5.24: The electric field magnitude across the region. The electric field

reaches zero at the plasma boundary, as required by (5.2c) (or the dimensionless

equivalent).

the notion of space-charge limitation, whereby charge builds up away from

a fixed boundary on the interior of an acceleration region, causing a poten-

tial maximum and drop in electric field. This happens as a consequence of

the fixed boundary being unable to move, and thus for a given region, ap-

plied electric field and source charge density combination, charge cannot be

accelerated away from the fixed boundary sufficiently quickly. In a moving

boundary case, this would result in the boundary moving to increase the

electric field near its surface, thus allowing charge to be accelerated away. In

the fixed boundary case, however, the build-up of charge effectively creates

a new boundary, whereby the electric field at its surface is zero. We detect

the location of this boundary, by looking for a potential maximum within

the region.
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Figure 5.25: The particle number density across the target. The very outer edge

of the beam is considered to be when the number density falls below one particle

per cubic metre (in this case at 0.014 m).
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Figure 5.26: MRMS with iteration number - stages 1, 2 and 3.

Within the numerical method proposed, this is done in a number of dis-

crete stages (three in the test problem shown here), where charge density

and velocity boundary conditions are moved from the previous boundary lo-
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cation, to the new boundary location, and iterations continued until a further

potential maximum is found within the region. This process continues until

the measure of solution variable change (MRMS) is deemed to be changing

sufficiently slowly that the solution has converged.

The test case here shows that the method is entirely plausible and whilst

not exhaustive, does indeed show the method converging (in three separate

stages), whereby the final resting place of the boundary is close to that of

the one-dimensional equivalent solution. The method, as implemented, does

not allow for recessed boundaries, and dealing with this is future work.
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Chapter 6

Summary, Conclusions and

Further Work

6.1 Summary and Conclusions

The problem of determining the plasma free boundary location within an ion

accelerator set-up has been considered for many different applications, and

is detailed in §1.1.2. The work presented in this thesis has concentrated not

only on determining the solution to the free boundary problem originating

in a neutron tube acceleration region, but also on the full time-dependent

moving boundary problem, of which the free-boundary problem is the steady

case.

The formulation of system of non-linear equations describing the moving

boundary problem is detailed in Chapter 2, with the full system of non-linear

equations describing the time-dependent problem being given by (2.13), and

the reduced system of non-linear equations describing the steady-state prob-

lem being given by (2.19).

191



6.1.1 One-Dimensional Steady-state Problem

The one-dimensional free boundary problem is considered in Chapter 3,

where the full steady-state system, (2.19), is reduced to one dimension, giv-

ing rise to the planar system, (3.1) (with the associated boundary conditions

(3.3)), and the radial system, (3.30) (with the associated boundary condi-

tions (3.29)). The full analytical one-dimensional solution to (3.1), subject

to (3.3) is developed and is eventually given by the rather unwieldy equation

(3.28). However, the similar radial problem, detailed in §3.2, does not appear

to be analytically soluble, and so a numerical method is developed that is

tested against the analytical planar solution. This is successfully extended to

the radial problem, where solution features that are particular to the radial

problem, are highlighted.

6.1.2 One-Dimensional Time-dependent Solution

In Chapter 4, a one-dimensional time-dependent solution to the the full sys-

tem of equations, (2.13), is sought. This is achieved by initially reducing

the complexity of the system by making the physically realistic assumption

that any magnetic field influence (either by that applied externally, or by

that induced as a consequence of the charged particle flow) can be neglected.

By doing this, the full one-dimensional time-dependent system can then be

written as (4.1), with the associated boundary conditions, (4.2).

The one-dimensional time-dependent system is analysed, giving rise to the

analytic expressions, (4.9), describing characteristic curves in the charge free

region ahead of the advancing wavefront. Additionally, manipulation of the
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time-dependent system allows it to be reduced to the parametric, ordinary,

Riccati differential equation, (4.18), in terms of the solution variable ∂v/∂x

(the rate of change of velocity with distance), as a function of the parametric

coordinate σ measured along characteristic curves defined within the solu-

tion region. The form of the solution to this equation can be relatively easily

determined to be (4.23), and is written in terms of ∂v/∂x as a function of

time (to within two constants). One of the resulting constants can be rel-

atively easily determined, and it is also believed that the other can also be

determined, although the resulting equation for ∂v/∂x is likely to be implicit.

This is something that will be considered in due course.

In order to develop a full time-dependent solution to the one-dimensional

time-dependent system, (4.1), it is first re-written as the dimensionless equa-

tions (4.31), (4.33) and (4.34), with the associated dimensionless conditions,

(4.36). Following this, two approaches to solving the system are proposed.

6.1.2.1 Numerical Method 1 for the One-dimensional Time-dependent

System

The first method proposed for solving the system, (4.31), (4.33) and (4.34)

(with associated boundary conditions), begins by mapping the system of

equations that are to be solved on a moving domain, to a logical, fixed do-

main, where standard finite differences can be used to represent the deriva-

tives within the now, logical, system. The mapping process incorporates a

solution dependent spatial mapping function which controls nodal spacing in

the physical region, and which also varies according to the changing physical
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region size. Additionally, the physical time-step is also adjusted by a solution

dependent time-step controlling function function, which allows non-constant

physical time stepping to be achieved. Once the time-dependent solution has

been determined at equally spaced nodes and at equal time-steps in the log-

ical region, it can be transposed onto the unequally spaced nodes and time-

steps in the dimensionless physical region, with the full dimensional solution

being determined accordingly. Included within the method is a mechanism

for determining the location of the moving boundary in dimensionless phys-

ical space.

A numerical algorithm for determining the solution of the one-dimensional

time-dependent problem in the logical domain is developed and listed in

detail; this has been implemented using Matlab. Numerical experimen-

tation indicated that whilst field solutions generated by this method look

viable, in order to calculate the boundary location using the mechanism

proposed, a small, multiplicative parameter must be introduced to reduce

calculated boundary movement at each time-step; without such a parameter,

the method rapidly fails. The use of this parameter renders the calculated,

time-dependent boundary movement unphysical, whilst additionally causing

the algorithm to execute very slowly. These things aside, calculation results

are presented for a particular test case in which the charge density applied

at the emission boundary is ramped with time1. Results show viable field

solutions, and indicate that the solution dependent spatial and temporal

mapping functions are operating as expected. However, as mentioned, the

1As a result of the slow execution times, to examine the effects of the source charge den-

sity switch-on, a rapid charge density ramp is applied; this is only just within experimental

range, and is not typical of normal tube operation.
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rate of boundary movement is entirely unphysical.

6.1.2.2 Numerical Method 2 for the One-dimensional Time-dependent

System

To avoid the problems experienced in the first numerical method, a new ap-

proach to the problem is proposed and developed. This new method reduces

the number of equations in the system by one, by integrating Gauss’ law,

(4.35a), and then incorporating it into the Lorentz equation, (4.35b), yield-

ing the coupled pair of equations, (4.75). Additionally, further manipulation

of Gauss’ law allows the integral equation, (4.79), to be written for the rate

of change of boundary location.

A numerical algorithm to implement the new approach is developed and

listed in detail. Owing to much improved execution speed, a test case, in

which a more experimentally realistic source charge density ramp, is exam-

ined. Results clearly show the solution converging to a steady state, indi-

cated by the fact that the calculated boundary location asymptotes to the

expected analytic boundary location. Furthermore, boundary perturbation

as a function of time, rapidly decays to zero as the calculation progresses.

Comparisons between the exact, analytic solution and the time-dependent so-

lution for differing numbers of nodes, show that as the nodal spacing across

the region decreases within the time-dependent solution, the error in solution

also decreases.
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6.1.3 Two-Dimensional Steady-state Problem

A strategy for solving the two-dimensional steady-state problem is proposed,

in which space-charge limitation, caused a high source current density at a

fixed emitter surface, causes the electric field at the location of the build-up

of charge to be neutralised; this effectively indicates the location of the new

plasma boundary.

The strategy proposed uses an integral representation of the electric

field (in a manner similar to that used in the second one-dimensional time-

dependent method) within the Lorentz equation, (5.1a). This equation, rep-

resenting the time dependence of the velocity field, is then split into its two

Cartesian vectorial components, yielding a pair of integro-differential equa-

tions for the x and y velocity components. These equations, in addition to

the Cartesian forms of the charge continuity equation, (5.10c), and Gauss’

Law, (5.10d), now represent the system to be solved for the two-dimensional

steady-state problem. But as in the one-dimensional time-dependent model,

they are initially written in dimensionless form.

The numerical method developed, solves the system, (5.14), (5.16a), (5.16b),

and (5.18), subject to the conditions, (5.19), on a fixed computational do-

main, using differences to represent derivatives. The initial solution, with a

flat, fixed emission boundary proceeds until a potential maximum is detected

within the interior of the solution domain. At this point, iterations are ter-

minated and the location of the zero electric field level curve determined; this

location (or the computational nodes nearest it) now represents the emission

boundary for the next stage of calculation. Velocity components along the

boundary are then updated as a consequence of its, now, curved shape. The
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charge density and potential boundary conditions are then applied to the

new boundary and iterations restarted, with any integration from the emis-

sion region starting at the new boundary; nodes behind the boundary are

removed from the calculation. This process is repeated a number of times,

until no further solution maximum is detected within the interior of the re-

gion, and the rate of change of MRMS (the mean root-mean-square change

in solution between iterations, of all four solution variables) falls below a

specified tolerance.

A test case, using typical conditions applied to a neutron tube (that it

is expected will not result in a largely distended boundary), is examined.

Results from the three stages of the calculation are displayed, where the

boundary is clearly seen to advance into the solution region as iterations and

stages progress. In stage 1, results show the advancement of charge into

the region, with particles attaining a lateral acceleration as they progress

towards the target. The MRMS at stage 1 clearly reduces with iteration

number, showing convergence of the method until it was terminated. Results

from the latter two calculation stages show the advancement of the boundary

towards its resting place, just below the expected one-dimensional boundary

location. An indication of the calculated beam splaying at the target is also

shown, whilst MRMS decreases within each of the calculation stages.

The method, whilst a little unrefined at this point, is clearly plausible,

offering a viable solution approach to the steady-state two-dimensional prob-

lem. Refinement of the method could include a better representation of the

boundary, instead of it being represented by the discrete nature of the un-

derlying computational grid. This could be done using a different numerical
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approach (finite elements), or by modifying the difference equations near the

boundary to accommodate its curved nature. Furthermore, as it stands, the

method is unable to calculate recessed boundaries; part of the boundary cal-

culated within the test case is likely to be recessed.

The methods and results detailed in this thesis offer not only an analytic ex-

pression for the planar one-dimensional steady-state plasma boundary prob-

lem for particles emitted with an initial energy from the plasma boundary,

but also an insight into the rapid, time-dependent charge flow and plasma

boundary movement that occurs over short periods of time immediately fol-

lowing neutron tube switch-on. These methods could be developed to model

other charged particle accelerators that incorporate similar plasma sources.

6.2 Further Work

Throughout this work, a number of areas have come to light that merit

further study; these are listed in their order of occurrence within the thesis.

1. A full study into analytical solution to the one-dimensional time-dependent

planar system of equations (presented in §4.2.2) is to be carried out,

with the aim of determining closed form analytic solutions on charac-

teristic curves throughout the charge infused solution region.

2. A more accurate boundary representation within the two-dimensional

steady-state model needs to be developed. This should accommodate

situations in which recessed boundaries occur.

3. Two-dimensional solutions are to be tested against an experimental
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set-up designed to give real physical information on the dimensions of

the charged ion beam, as it strikes the ion accelerator target. The ex-

perimental set-up to be used is shown in Figure 6.1, where the source

shield at the bottom left of the Figure is designed to represent planar

emission with the incorporation of an elongated emission slot (this is

labelled "Plasma Emission Region" in the accompanying schematic).

The set-up shown is encased in a large (relative to the acceleration re-

Gold Coating

Acceleration Gap

Source Shield

Plasma Emission
Region

Scintillator Target

f=f1

f=f0

Source Post

Figure 6.1: Experimental accelerator set-up. The components shown in the

schematic are encased in a sealed envelope, with the required potential difference

between the source shield and target scintillator applied with a large pulse forming

network.

gion shown) sealed envelope, with the required short pulse acceleration

199



potential difference, applied across the acceleration gap between the

source shield and scintillator target, by a large pulse forming network.

Ions released from the plasma emission region strike the scintillator tar-

get where they are absorbed, and their kinetic energy released in the

form of light that can be photographed by a high speed camera. Com-

parisons can then be made between the predicted ion beam width as

it strikes the target, and the recorded scintillation photographs. Com-

ponents for this experiment have already been designed and procured

for use in existing facilities.

This experimental study will determine the validity of the mathemati-

cal model used and perhaps indicate modifications that may be neces-

sary to capture the physics more effectively (such as tuning the charge

density ramp in both space and time at the plasma emission region).

Similar experimental studies, representing a cylindrically symmetric sit-

uation, say, will also be helpful in the longer term in further validating

the modelling methodology when used in associated problems.

4. The work presented here is potentially informative in the modelling of

other related problems, and the methodology for solving them. Indus-

try largely uses a Lagrangian approach to charged particle beam mod-

elling, but we have shown that the Eulerian framework is equally viable,

offering potential advantages not seen in the Lagrangian approach (for

example short timescale resolution of boundary movement). So there

is the prospect that a significant amount of research could follow from

the start made here.

200



Appendix A

D-T Fusion Reaction

Cross-Sections

For a fast moving particle incident upon a stationary target particle, the

total fusion reaction cross-section is the apparent target area, as seen by the

incident particle as it approaches the other. It is effectively a measure of

the probability that a reaction will take place between those particles and is

dependent upon the kinetic energy of the interaction.

For a fusion reaction between two ions, if the incident ion strikes the tar-

get ion with a low kinetic energy, it will be unable to penetrate the coulom-

bic barrier existing between the two particle nuclei, thus causing the reaction

probability (or the effective target area) to be low1. If the incident ion strikes

the target ion with a very high kinetic energy, whilst it will be able to pene-

trate the coulombic barrier existing between their two nuclei, the incident ion

1It is understood that the larger the target ion apparently is, the more likely the incident

ion is to hit that target.
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will be less likely to be captured by the target ion nucleus2, thus scattering

from it and again causing the reaction probability to be low. At a range

of energies specific to the given reacting ion species, the probability of the

incident ion nucleus being captured by the target ion nucleus is relatively

high; at these energies, fusion between the particles is more likely.

We now explain how, for a fast moving ion incident upon a target ion

that is stationary relative to the laboratory, the reaction cross-section in the

laboratory can be determined from that given in, what is known as, the

centre-of-mass (CM) frame of reference. The following analysis is taken, in

part, from [21].

A.1 Kinetic Energy in the CM Frame of Ref-

erence.

For a pair of reacting particles, the laboratory frame of reference (L) is that

frame which is stationary with respect to the laboratory; the CM frame of

reference is defined as the frame in which the total momentum of the reacting

particles is zero. To determine the relationship between the total kinetic

energy of such a pair of particles measured in the CM frame of reference,

and the kinetic energy for the same reaction measured in the laboratory, we

consider the deuterium-tritium fusion reaction

2
1D +3

1T →4
2He +1

0n

2To be captured, the incident ion must approach the target nucleus to within a radius

of 10−15m, and must not have so much energy that it can escape the nuclear strong force

existing at that radius.
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in L, where D and T are the reacting deuterium and tritium ions, respectively;

He and n are the helium nucleus and neutron, reaction products, respectively.

The superscripts refer to the particle mass number, and are given in atomic

mass units,3 whereas the subscripts refer to the particle atomic number, or

the number of protons in its nucleus. Here, the deuterium ion is accelerated

in a positive direction towards the stationary (relative to the laboratory) tri-

tium ion; upon interaction, the fusion reaction takes place.

In the L frame, the total momentum of the the reacting particles is given

by

p = mDvD,

with the total kinetic energy being

E =
1

2
mDv

2
D, (A.1)

where mD and vD are the deuterium mass and velocity measured in the L

frame. In the CM frame, the total momentum of the reacting particles is

correspondingly

p = mDvD +mTvT ,

= 0, (A.2)

with the total kinetic energy being

E =
1

2

(

mDv
2
D +mTv

2
T

)

, (A.3)

where mT is the mass of the tritium ion, and where the over-line denotes

quantities measured in the CM frame (vT is the velocity of the tritium ion

3An atomic mass unit is effectively the mass of a nucleon, or nuclear particle. Hence a

particle with a given mass of 3 say, effectively consists of 3 nucleons.
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in the CM frame, for example). Since the CM frame of reference moves in a

positive direction relative to the laboratory, we denote the velocity of it, as

measured in L, by vCM . Furthermore, since only the deuterium ion is moving

in L, then

vD = vD − vCM (A.4)

vT = −vCM , (A.5)

where upon substitution of (A.4) and (A.5) into (A.2), we deduce that

vCM =

(

mD

mD +mT

)

vD;

consequently

vD =

(

1 − mD

mD +mT

)

vD

=

(

mT

mD +mT

)

vD, (A.6)

from (A.4). The total kinetic energy E in the CM frame is then

E =

(

mT

mD +mT

)

1

2
mDv

2
D

=

(

mT

mD +mT

)

E (A.7)

from (A.1) and (A.3) - (A.6).

A.2 Reaction Cross-Section in the CM and L

Frames of Reference.

Given (A.7), if we know the function σ(E) representing the D-T reaction

cross-section over a range of kinetic energies in the CM frame of reference, we
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can scale this function’s dependent variable (E) by an appropriate parameter

λL, where

λL =
mD +mT

mT
,

to give the equivalent function expressed in the laboratory (i.e. σ(E) =

σ(λLE)). Figure A.1 shows the effect of scaling the CM generic D-T reaction

cross-section curve (in black) to give both the D-T reaction (in blue) in the

laboratory (where deuterium is incident upon tritium), and the T-D reaction

(in red) in the laboratory (where tritium is incident upon deuterium).

Figure A.1: Reaction cross-section as a function of energy for the D-T reaction

in the CM frame of reference (black), with the scaled cross-sections for both the

D-T (red) and T-D (blue) in the laboratory frame of reference also shown. The

cross-section peaks occur at E ∼ 66 KeV for the CM frame, E =∼ 110 KeV for

D-T in the laboratory frame and E =∼ 165 KeV for T-D in the laboratory frame.

The original CM curve was taken from [4] and [5].
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Appendix B

Magnetic Field Effects

In a neutron tube no external magnetic field is applied during its operation,

and so the only possible contribution to B, on the right hand side of (2.13a),

is the magnetic field induced by the current of charged particles themselves

as they flow across the region. Such a magnetic field is naturally induced by

the electric field advection, caused by this passage of charged particles, and

is a consequence of the continuity equation (2.13b) and of the electric field

divergence, (2.13c); it can be derived as follows.

• Magnetic field induction due to current flow

By equating the time derivative of (2.13c) to (2.13b), we have

∇ ·
{

ρv + ε0
∂E

∂t

}

= 0,

so that upon integration we obtain,

ρv + ε0
∂E

∂t
= g(t), (B.1)

where the vector function g(t) can be a function of time only. By

comparing (B.1) to the well known differential form of Ampére’s law
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(noting the definition (2.16)),

µ0

(

J + ε0
∂E

∂t

)

= ∇ × B (B.2)

(see [14], for example), we see that g(t) = 1
µ0

∇×B, with the implication

that ∇ × B must also be a function of time only; here, µ0 is a scaling

parameter known as the permeability of free space. Re-writing (B.2)

using (2.13c) we obtain

(

v∇ · E +
∂E

∂t

)

= c2∇ × B, (B.3)

where c =
√

1/µ0ε0 is the speed of light in vacuum, with the immediate

conclusion being that the flow of charged particles naturally introduces

electric field advection, which in turn introduces a magnetic field that

is perpendicular to the particle flow. The curl of this field is purely

time dependent and by writing f(t) = g(t)/ε0 = c2∇ × B, we can say

in two Cartesian dimensions that

f(t) = f1(t)ı̂ + f2(t)̂,

= c2∇ × B

= c2
[(

∂Bz

∂y
− ∂By

∂z

)

ı̂ −
(

∂Bz

∂x
− ∂Bx

∂z

)

̂

]

. (B.4)

In this thesis, we are only concerned with planar tube models in one

and two dimensions, with a planar, two-dimensional (in the indepen-

dent variables x and y) region being effectively the cross-section of a

prism extending infinitely into the z direction. Hence, in this frame-

work, partial derivatives in the z direction are zero, implying that the
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functions f1(t) and f2(t) are given by

f1(t) = c2
∂Bz

∂y
, (B.5a)

f2(t) = −c2∂Bz

∂x
, (B.5b)

since ∂By/∂z = ∂Bx/∂z = 0. We can then say that

c2Bz = yf1(t) + F1, (B.6)

from (B.5a), and

c2Bz = −xf2(t) + F2, (B.7)

from (B.5b), where F1 and F2 are arbitrary functions of (x, t) and

(y, t), respectively. By combining (B.6) and (B.7), the z component of

the self-induced magnetic field can be written

Bz =
1

c2

(

yf1(t) − xf2(t)
)

+ G (t), (B.8)

where G is an arbitrary function of time, clearly showing that the elec-

tric field advection induces the perpendicular magnetic field component

Bz = Bz(x, y). This component is small, indicated by the presence of

1/c2 on the right hand side of (B.8). Moreover, the presence of c2 on

the right hand side of (B.3) offsets the small magnitude of the self-

induced field B, making the vector function f(t) comparable to the

electric field advection, thus balancing (B.3). The implication here is

that both ∇ × B and Bz are small functions (the presence of c2 in

both cases clearly indicates this) relative to the electric field advection

propagated by the charged particle flow.

We now seek to futher show that the effects of the small self-induced

magnetic field on charged particle flow are also negligible in comparison

to the effects caused by the application of the external electric field.
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• Effect of self-induced magnetic field on particle acceleration

The component of accelerative force acting on the charged particle

beam as a consequence of any magnetic fields is given by

FB = qv × B, (B.9)

from (2.13a), or in this case, because the only magnetic field present is

that due to self-induction,

FB = q
[

(vyBz)ı̂ − (vxBz)̂
]

, (B.10)

since the self-induced magnetic field only has a component perpendic-

ular to the direction of particle motion (given by (B.8)), and where vx

and vy are the x and y components of the particle velocity, respectively.

One-dimensional case

In one dimension, acceleration in the ̂ direction can be ignored, and

additionally, there is no component of particle velocity in this direction.

This implies (from (B.10)) that in one dimension, acceleration due to

self-induced magnetic field can be ignored.

Two-dimensional case

From (B.10), it can be seen that in two dimensions, the magnitude

of the self-induced magnetic field can cause an accelerative force in

the x−y plane. However, as a consequence of the presence of 1/c2 in

(B.8), we know that the self-induced magnetic field component, Bz,

must be small in comparison to any electric field advection caused by

the charged particle flow, but we do not know the sizes of the functions

f1(t), f2(t) and G (t). Nonetheless, an estimate of the magnitude of the
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self-induced magnetic field can be determined from the Biot-Savart law

([14], p296) where its magnitude some distance r radially away from a

long, current-carrying conductor (such as a neutron tube acceleration

gap) carrying a current I, is given by

|B| =
µ0I

2πr
. (B.11)

From (B.9), the magnitude of the component of the force acting on the

beam of charged particles, due to the self-induced magnetic field at r

is then

|FB| = q|B||v|

=
qµ0I|v|

2πr
. (B.12)

Choosing r to be of the order of the ion beam radius (r ' 10−3 m), we

find that for a typical 1A ion current, with the mean ion velocity being

that of a particle with 50KeV energy (the typical mean energy of a

deuteron within a neutron tube acceleration region), the magnitude of

the force due to the self-induced magnetic field at one ion beam radius

is |FB| ' 7 × 10−17 N. In contrast, the magnitude of the component

of the force acting on the charged particles due to the applied electric

field,

|FE| = q|E|

(from (2.13a)), is some five orders of magnitude greater for a typical

acceleration potential difference of ∼ 100 kV and acceleration gap of

∼ 10−2 m. With this in mind, the contribution to particle acceleration

in (2.13a) (perpendicular to the direction of particle flow) due to the

210



self-induced magnetic field is deemed negligible and, in conjunction to

experimental experience, allows it to be disregarded in this study.

• Time varying magnetic field influence.

The link between the electric and magnetic fields via the time derivative

of the magnetic vector potential in (2.13e) implies that

∇ × E = −∂B
∂t
, (B.13)

from (2.13f). Consequently, in the presence of a time varying magnetic

field (as is the case with charged particle flow, shown in (B.8)), the

electric field defined by (2.13f) clearly has the non-zero curl, (B.13), and

cannot truly be considered a conservative field. However, by examining

(B.13), we can show that no matter how large the rate of change of

magnetic field at the wavefront is, it can be neglected, validating a

conservative field approximation. We do this by expanding the curl

term on the left hand side of (B.13), giving

∇ × E = ı̂

(

∂Ez
∂y

− ∂Ey
∂z

)

+ ̂

(

∂Ex
∂z

− ∂Ez
∂x

)

+ k̂

(

∂Ey
∂x

− ∂Ex
∂y

)

,

(B.14)

where Ex represents the component of E in the x direction etc. Given

that E(x, t) is, at most, a two-dimensional field (in this thesis), its z

component does not exist; moreover, derivatives in the z direction are

zero. With these things in mind, (B.14) can be reduced to

∇ × E = k̂

(

∂Ey
∂x

− ∂Ex
∂y

)

, (B.15)

showing that ∇×E, and consequently ∂B/∂t (consistently with (B.8))

only have a non-zero component pointing out of the x−y plane. There-
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fore, in the x−y plane we must conclude

∇ × E = 0,

from (B.15), implying that the electric field is conservative (with no

vorticity) and that

E = −∇φ (B.16)

must be true for some φ, from (2.13e). Hence, for the purposes of this

study, (2.18) is considered the definition the electric field E(x, t) for

the scalar potential φ(x, t).
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