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Abstract

Conceptual aircraft structural design concerns the generation of an airframe that will provide sufficient
strength under the loads encountered during the operation of the aircraft. In providing such strength, the
airframe greatly contributes to the mass of the vehicle, where an excessively heavy design can penalise the
performance and cost of the aircraft. Structural mass optimisation aims to minimise the airframe weight
whilst maintaining adequate resistance to load. The traditional approach to such optimisation applies
a single optimisation technique within a static process, which prevents adaptation of the optimisation
process to react to changes in the problem. Hyper-heuristic optimisation is an evolving field of research
wherein the optimisation process is evaluated and modified in an attempt to improve its performance,
and thus the quality of solutions generated. Due to its relative infancy, hyper-heuristics have not been
applied to the problem of aircraft structural design optimisation. It is the thesis of this research that
hyper-heuristics can be employed within a framework to improve the quality of airframe designs generated
without incurring additional computational cost.

A framework has been developed to perform hyper-heuristic structural optimisation of a conceptual
aircraft design. Four aspects of hyper-heuristics are included within the framework to promote improved
process performance and subsequent solution quality. These aspects select multiple optimisation tech-
niques to apply to the problem, analyse the solution space neighbouring good designs and adapt the
process based on its performance. The framework has been evaluated through its implementation as a
purpose-built computational tool called AStrO. The results of this evaluation have shown that signifi-
cantly lighter airframe designs can be generated using hyper-heuristics than are obtainable by traditional
optimisation approaches. Moreover, this is possible without penalising airframe strength or necessarily
increasing computational costs. Furthermore, improvements are possible over the existing aircraft designs

currently in production and operation.




— i1 —



Declaration

The work in this document is based on research carried out in the Computational Mechanics Group of
the School of Engineering and Computing Sciences at Durham University. No part of this document has
been submitted for any other degree or qualification and the content represents the work of the author
unless referenced to the contrary. The following publications were written by the author for presentation

of this research to an audience of peers within the field of engineering design optimisation:

I. Allen, J. G., Coates, G., and Trevelyan, J., A Theoretical Framework for the Optimisation of the
Structural Layout of an Aircraft using Deterministic and Stochastic Optimisation Techniques, Pro-
ceedings of the 8th ASMO-UK/ISSMO Conference on Engineering Design Optimization Product and
Process Improvement, London, England, pp. 19-25, 2010;

II. Allen, J. G., Coates, G., and Trevelyan, J., Hyper-Heuristic Optimisation for Application to Aircraft
Structural Design, Proceedings of the 9th ASMO-UK/ISSMO Conference on Engineering Design
Optimization Product and Process Improvement, Cork, Republic of Ireland, pp. 1-6, 2012a;

III. Allen, J. G., Coates, G., and Trevelyan, J., Hyper-Heuristic Structural Optimisation of Concep-
tual Aircraft Designs, 14th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference,
Indianapolis, IN, USA, ATAA 2012-5527, 2012b;

IV. Allen, J. G., Coates, G., and Trevelyan, J., Approaches to Parameter Control for the Optimisation of
Conceptual Aircraft Structural Designs, Royal Aeronautical Society 3rd Aircraft Structural Design
Conference, Delft, The Netherlands, 2012c;

V. Allen, J. G., Coates, G., and Trevelyan, J., A Hyper-Heuristic Approach to Aircraft Structural
Design Optimization, Structural and Multidisciplinary Optimization, 48(4), pp. 807-819, 2013;

VI. Allen, J. G., Coates, G., and Trevelyan, J., Dynamically-Controlled Variable-Fidelity Modelling for
Aircraft Structural Design Optimisation, Proceedings of the Institution of Mechanical Engineers,
Part G: Journal of Aerospace Engineering, 228(8), pp. 1434-1449, 2014.

—1ii —



—iv—



Acknowledgements

The author would like to extend his sincere thanks to Dr Graham Coates and Prof Jon Trevelyan for
their supervision and support throughout the duration of this research project. Their advice, experienced
insight and enthusiasm for the project were invaluable in gaining an understanding of the research problem
and for the progression of the initial problem to a viable and well-understood solution. The author thanks
his colleagues at Durham University for their input during the project and the School of Engineering and
Computing Sciences for financial support of the project.

The author would also like to thank the engineers at BAE Systems, Warton and (formerly) Chad-
derton, for their input and feedback throughout the project to better bridge the gap between academic
research and industrial application of the framework. The depth of their knowledge was of great use in
order to better understand and appreciate the theory and application of aircraft structural design within
a leading aerospace design and manufacturing company. In addition, the author thanks the academics
and industry experts who provided advice on the shaping of the project and framework during reviews
of publications and discussions at conference events and other meetings.

Finally, extensive thanks is overdue from the author to his family for their unwavering guidance,
encouragement and support not only during this project but also throughout the formative years. Their
influence has been instrumental in promoting self-belief and a pursuit for greater knowledge, as well as
installing a keen interest in aerospace engineering. Last but not least, the author thanks his newlywed

wife for her patience during this project and uses these words to promise to finally take her on honeymoon!

Jonathan Allen
August 2014




—vi-—



Contents

Abstract

Declaration

Acknowledgements

Table of Contents

List of Figures

List of Tables

Glossary

Nomenclature

1 Introduction

1.1
1.2
1.3
14
1.5

The Aircraft . . . . . . . L
The Design Process . . . . . . . . . . e
Research Aims and Objectives . . . . . . . . . . . . L
Research Methodology . . . . . . . . . . . . .

Structure of Document . . . . . . . . . .

2 Aircraft Design Optimisation

2.1
2.2
2.3
24
2.5
2.6

Optimisation of Aircraft Designs . . . . . . . . . . ... oo
Traditional Solution Process . . . . . . . . . . ...
Optimisation Techniques . . . . . . . . . . . .
Constraint Handling . . . . . . . . ... .
Comparison of Existing Approaches . . . . . . . . .. .. ... ...

SUMMATY . . o o oo o e e e e

3 Hyper-Heuristic Optimisation

3.1
3.2
3.3
3.4
3.5
3.6
3.7

Principles of Hyper-Heuristic Optimisation . . . . . . . . . ... ... ... ... ....
Heuristic Selection . . . . . . . . . . .
Population Distribution . . . . . . . . ..
Perturbation Analysis . . . . . . . . . . ..
Parameter Control . . . . . . . . ...
Applications of Hyper-Heuristic Optimisation . . . . . . . . .. ... ... ... .....

SUMmMAary . . . . . oo e e e

iii

vii

xi

xiii

XV

xvii

© ot NN =

10

13
13
16
20
27
32
42




4 Requirements and Opportunities

4.1
4.2
4.3
4.4

Traditional Requirements . . . . . . . . . . ... L L
Research Opportunities . . . . . . . . . . . .
Terminology . . . . . . . . L e

SUMMATY . . . o o oot e e e e

5 Framework for Hyper-Heuristic Aircraft Structural Optimisation

5.1 Aircraft Design Procedure . . . . . . . . . L Lo
5.2 Structural Analysis . . . . . . . . L
5.3 Airframe Design Optimisation . . . . . . . . . .. ... L o
5.4 Summary . ... e e e e
6 AStrO
6.1 Implementation of Optimisation Framework . . . . . . . . . .. ... ... ... .....
6.2 Summary . ... e e
7 Preliminary Investigations
7.1 Structural Analysis . . . . . . . .
7.2 Optimisation Verification . . . . . . . . . . . . L L
7.3 Optimisation Set-Up . . . . . . . . . . .
7.4 Hyper-Heuristic Approach . . . . . . . . . . .. .
7.5 SUMMATY . . . o o o ot e e e e e
8 Case Studies
8.1 Airbus A340-300 . . . . ..o
8.2 AStrO-1 . . . o
8.3 Embraer E-195 . . . . . . Lo
8.4 Boeing C-17A Globemaster IIT . . . . . . . .. .. ... .
8.5 Summary . ... e e
9 Discussion and Conclusions
9.1 Structural Analysis . . . . . . . .
9.2 Optimisation Techniques . . . . . . . . . .. . .
9.3 Hyper-Heuristic Approach . . . . . . . . . . . .
9.4 Aircraft Designs . . . . . . .
9.5 Research Aims and Objectives . . . . . . . . . . . . . ... .
9.6 Future Research . . . . . . . . . .
9.7 Concluding Remarks . . . . . . . .. .. e
References

A Aircraft Design Theory

A1l
A2
A3
A4
Ab
A6

Initialisation . . . . . . . .. L
Mass Estimation . . . . . . . . . e
Aircraft Profile Generation . . . . . . . . ... L L
Aircraft Loads . . . . . . . . L
Sectional Properties . . . . . . . . ..

Stress Analysis . . . . . . L.

58
58
60
62
63

64
66
79
89
103

105
105
111

112
112
121
123
128
132

133
133
140
150
157
163

164
164
167
168
171
172
174
175

177




B Finite Element Analysis

B.1
B.2
B.3
B.4

Problem Formulation . . . . . . . .. ..
Boundary Conditions . . . . . . ... L
System Excitation . . . . . . .. L

System Response . . . . . . . . .

C Benchmark Functions

C.1
C.2
C.3
C4
C.5
C.6
C.7
C.8
C.9
C.10
C.11
C.12
C.13
C.14
C.15

De Jong Sphere . . . . . . L
Axis-Parallel Hyper-Ellipsoid . . . . . . . . . . . . . .
Schwefel Double Sum . . . . . . . Lo
Rastrigin . . . . . . . e
Griewank . . . . ..
Schwefel . . . . . . . e e
Six-Hump Camel Back . . . . . . . ... 0
Rosenbrock Valley . . . . . . . . .

Branin . . . . . . . e

Ackley Path . . . . . . . . e
Drop Wave . . . . . . e
Step . . o e
Goldberg . . . . . e
Whitley . . . . . e

D Experimental Results

D.1
D.2
D.3
D4
D.5
D.6
D.7
D.8

Optimisation Verification . . . . . . . . .. ... .
Parameter Evaluation . . . . . . . .. .. L
Penalty Function . . . . . . . . . . L
Technique Evaluation . . . . . . . . . . . . e
Heuristic Selection . . . . . . . . . L
Population Distribution . . . . . . .. ..o
Perturbation Analysis . . . . . . . . . Lo

Parameter Control . . . . . . . . . .

229
229
238
239
239

245
245
246
246
247
247
248
248
249
249
250
250
251
251
252
252

—ixX —






List of Figures

1.1 The aircraft . . . . . . . e 2
1.2 Typical airframe structure . . . . . . . . . . . .. 4
1.3 Design process flowchart . . . . . . . .. oL oL 5
14 Planning and design process. . . . . . . ... 6
1.5 Knowledge, flexibility and cost allocation during design process . . . . . . . . ... ... 8
1.6 Level of detail during design process . . . . . . . . . . . ... 8
1.7 Research methodology . . . . . . . . . . . . L 10
3.1 Domains of hyper-heuristic optimisation . . . . . . . . . .. .. ... ... ... ..... 44
5.1 Framework for hyper-heuristic optimisation of conceptual aircraft structural designs . . 65
5.2 Sample of mission profiles . . . . . . . ... 69
5.3 Surface area of aerofoil . . . . . . . . ..o 70
5.4 Historical data for large civil aircraft turbofan powerplants . . . . . . . ... ... ... 72
5.5 Load cases within the flight envelope . . . . . . .. .. ... . 0 . 74
5.6 Lift distribution over lifting surface . . . . . . . .. .. . o o 75
5.7 Airframe member structural geometry . . . . . . ... Lo L 78
5.8 Linear beam element shape and DoFs . . . . . .. ... .. .. ... . 80
5.9 Example of member grouping within FE model . . . . . . ... ... .. 0. 81
5.10 Example of aircraft FE model . . . . . . . .. ... oo oo 83
5.11 Node numbering order . . . . . . . . . .. L e 84
5.12  Concentration of pressure load at a point . . . . . . .. ... ... ... ... ...... 85
5.13  I-section stress analysis evaluation points . . . . . . . .. ... . ... ... ... 88
6.1 Example of AStrO class structure using UML notation . . . . . . ... ... ... .... 106
6.2 AStrO main user interface toolbar . . . . . . .. ... L 107
6.3 AStrO input data user interface . . . . . .. ... L Lo 107
6.4 AStrO run program user interface . . . . . . . ... L oL o 108
6.5 Parallel structural analysis of population set within framework . . . .. .. ... .. .. 110
6.6 Sample of results as displayed in Microsoft Excel following output from AStrO . . . . . 111
7.1 Plan of preliminary investigations . . . . . . . ... . ... L o 113
7.2 FE models of simple and detailed cantilever beams during FEA verification . . . . . . . 114
7.3 Dynamic response of cantilever tip . . . . . . . . ... L 116
7.4 FE model of arbitrary airframe design during FEA verification . . . . ... ... .. .. 117
7.5 Variations in number of DoFs and computation time with increasing model fidelity . . . 120
7.6 FE models of an Embraer E-195 design at a sample of model fidelity levels . . . . . .. 120
8.1 History of best solution objective value during Airbus A340-300 case study . . . .. .. 137

—xi—



8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11
8.12

9.1

Al
A2
A3
A4
A5
A6
AT
A8

B.1

C.1
C.2
C.3
C4
C.5
C.6
C.7
C.8
C.9
C.10
C.11
C.12
C.13

History of best solution and population during Airbus A340-300 case study . . . . . ..
Evolution of overall best solution for Airbus A340-300 airframe design . . . . . ... ..
History of best solution objective value during AStrO-1 case study . . . . . ... .. ..
History of variable strand lengths during AStrO-1 case study experiment 7 . . . . . . .
Best solutions of each experiment during AStrO-1 case study . . . . .. . ... ... ..
History of model fidelity during the Embraer E-195 case study . . . ... ... ... ..
History of structural mass during the Embraer E-195 case study . . . . . ... ... ..
Mean structural mass and computation time during the Embraer E-195 case study . . .
Evolution of overall best solution for Embraer E-195 airframe design . . . . . . ... ..
Best solutions of each experiment during Boeing C-17A Globemaster III case study

Critical loads cases for Boeing C-17A Globemaster III airframe during experiment 1 . .
Summary of research contributions . . . . . . . .. ...

Balanced field length . . . . . . . ... oL
Manoeuvre envelope . . . . . . . oL e e e
One minus cosine type discrete gust . . . . . . . ... Lo
Gust envelope . . . . . . . L
Finite lifting body with horseshoe vortices . . . . . . . . . ... .. ... ... ... .
Schrenk approximation of spanwise load distribution . . . . . . . . ... ... ... ...
Two-dimensional panel distribution . . . . . .. . ... .. ... .. ... ...,

Stress components of parallelepiped . . . . . . . .. ..o 0oL
Examples of boundary conditions . . . . . . . . ... ...

De Jong sphere function . . . . . . . . . ...
Axis-parallel hyper-ellipsoid function . . . . . . . . . . ... ... .. ... . ... ...
Schwefel double sum function . . . . . . . . ...
Rastrigin function . . . . . . . . oL L
Griewank function . . . . . . ...
Schwefel function . . . . . . . . .. L
Six-hump camel back function . . . . . .. ... L
Rosenbrock valley function . . . . .. .. ... L oL
Branin function . . . . . ..o
Easom function . . . . . . . .. L
Ackley path function . . . . . . ... oL
Drop Wave function . . . . . . . . . . . e

Step function . . . . . ..

— xii —



List of Tables

2.1

5.1
5.2
5.3
5.4

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11
8.12
8.13
8.14
8.15
8.16
8.17
8.18
8.19

Al

Focus of aircraft design optimisation by other researchers . . . . . . .. ... ... ... 34
Framework modules . . . . . . . . .. L 64
Initialisation of design process . . . . . . . . . ... 67
Structural design parameters . . . . . . . . ..o 68
Controlled dynamic process parameters . . . . . . . . . . . . .. ... 68
Cantilever beam preliminary investigation set-up . . . . . . . . ... ... ... ..... 115
Selected properties of Embraer-195 aircraft . . . . . ... ... ... ... ... 118
Variation in number of DoFs and design constraint values with model fidelity . . . . . . 119
Benchmark functions during preliminary investigation . . . . . ... ... .. ... ... 122
Benchmark functions preliminary investigation optimisation set-up . . . . . . . . .. .. 122
Comparison of benchmark function preliminary investigation success rate . . . . . . .. 123
Selected properties of Boeing 777-200 aircraft . . . . . . . . ... ..o oL 123
Optimisation set-up preliminary investigations design variables . . . . . . .. ... ... 124

Optimisation set-up preliminary investigations constraints on inactive design variables . 124

Selected properties of Airbus A340-300 aircraft . . . . . . .. .. ... .. ... ..... 134
Airbus A340-300 aircraft case study dynamic process parameters . . . . . . . .. . ... 134
Airbus A340-300 aircraft case study set-up of experiments . . . . . . .. ... ... ... 135
Airbus A340-300 case study solution of minimal mass and average results . . . . .. .. 136
Selected properties of AStrO-1 aircraft . . . . . .. .. .. 0oL 141
AStrO-1 aircraft case study dynamic process parameters . . . . . . . . .. .. ... ... 141
AStrO-1 case study design variables . . . . . . . ... . o o 142
AStrO-1 aircraft case study set-up of experiments . . . . . ... ... ... ... .... 143
AStrO-1 case study solution of minimal mass and average results . . . . . . . ... ... 144
Best designs generated during AStrO-1 case study . . . . . .. ... . ... ... .... 148
Embraer E-195 case study parameter control set-up . . . . . . . ... ... .. ... .. 151
Embraer E-195 case study design variables . . . . . .. .. .. ... ... ... .. 152
Embraer E-195 case study constraints on inactive design variables . . . ... ... ... 152
Best designs generated during Embraer E-195 case study . . . . . ... ... ... ... 153
Variation in worst values with respect to the design constraints with model fidelity . . . 155
Selected properties of Boeing C-17A Globemaster IIT aircraft . . . . . . . ... ... .. 158
Boeing C-17A Globemaster III case study applied load cases . . . . . . ... ... ... 158
Boeing C-17A Globemaster III case study design variables . . . . . . .. ... ... ... 159
Best designs generated during Boeing C-17A Globemaster III case study . . . . . . . . . 160
Aircraft design input data . . . . . ... 193




A2
A3
A4
A5
A6
AT
A8
A9
A.10
A1l
A12
A3
A4
A.15
A16
A7
A.18
A.19

C.1
C.2

D.1
D.2
D.3
D.4
D.5
D.6
D.7
D.8
D.9
D.10
D.11
D.12
D.13
D.14
D.15
D.16
D.17
D.18
D.19
D.20
D.21
D.22

Aircraft mission input data . . . . . . ... ..
Load case database . . . . . . . . . ..
Structural analysis settings . . . . . . . . ... L L
Optimisation process settings . . . . . . . . . . . L o
Heuristic sets database . . . . . . . . . . ..
Mission stage fuel mass fractions . . . . . . . .. . oL oL oo
Breguet equation coefficients . . . . . . .. ... L
Empty aircraft mass regression coefficients . . . . . . ... ... ... L.
Aircraft section positions with respect to origins . . . . .. ... L oL
Manoeuvring load factor limits . . . . . . . ... .o oo oL
Design gust velocity limits . . . . . . . . . . . . L
Landing load vertical velocity limits . . . . . . . . .. ... ... ... ... .......
Landing load case components . . . . . . . . . ... Lo
Undercarriage load factors under braking . . . . . ... ... ... .. ... ...
Surface unevenness load components . . . . . . . ... oL oL oo
Cabin altitude . . . . . . . ...
Properties of common member cross-sections . . . . . . . .. ... .. .

Stress tensor components at points on I-section . . . . . . . ... ... L.

Goldberg function variable values . . . . . . . . . ...

Whitley function variable values . . . . . . . . .. ... ... ...

Optimisation verification preliminary investigation results . . . . . . . ... .. ... ..
Parameter evaluation preliminary investigation set-up . . . . . .. ... ... ... ...
Parameter evaluation preliminary investigation solution of minimal mass results
Parameter evaluation preliminary investigation average results . . . . . . ... ... ..
Penalty function preliminary investigation set-up . . . . . . . . . . . .. ... ... ...
Penalty function preliminary investigation solution of minimal mass results . . . . . . .
Penalty function preliminary investigation average results . . . . . . . .. ... .. ...
Technique evaluation preliminary investigation set-up . . . . . .. ... ... ... ...
Technique evaluation preliminary investigation solution of minimal mass results . . . . .
Technique evaluation preliminary investigation average results . . . . .. ... ... ..
Heuristic selection preliminary investigation set-up . . . . . . . . .. ... .. ... ...
Heuristic selection preliminary investigation solution of minimal mass results . . . . . .
Heuristic selection preliminary investigation average results . . . . . . .. ... .. ...
Population distribution preliminary investigation set-up . . . . . . . . .. .. ... ...
Population distribution preliminary investigation solution of minimal mass results
Population distribution preliminary investigation average results . . . . . ... ... ..
Perturbation analysis preliminary investigation set-up . . . . . . . . ... .. ... ...
Perturbation analysis preliminary investigation solution of minimal mass results
Perturbation analysis preliminary investigation average results . . . . . ... ... ...
Parameter control preliminary investigation set-up . . . . . . .. ... ...
Parameter control preliminary investigation solution of minimal mass results . . . . . .

Parameter control preliminary investigation average results . . . . .. .. .. ... ...

- xiv —



Glossary

AM
AoA
AStrO

BP
BSA
BWB

CAD
CAE
CFD
CoG
CPU
Csv

DE
DoE
DoF

EA
EAS
EMC
EMCQ
EoM

FD
FE
FEA
FoS

GA
GR
GUI

HC
HHA
HPC

all moves
angle-of-attack

Aircraft Structural Optimiser

breeder pool
bit-string affinity
blended-wing body

computer-aided design
computer-aided engineering
computational fluid dynamics
centre of gravity

central processing unit

comma-separated values

differential evolution
design of experiments

degree of freedom

evolutionary algorithm

equivalent airspeed

exponential Monte Carlo

exponential Monte Carlo with counter

equation of motion

finite difference
finite element
finite element analysis

factor of safety

genetic algorithm
greedy

graphical user interface

hill climbing
hyper-heuristic approach

high-performance computing

— XV —



ID
IE

KQ

LLH
LMC
LS

MA
MC
MDO
MFC
Mol
MPI

Ol
OOP
OpenGL

PD
PE
PK
PSO

RC
RD
RI
RW

SA
SD
SI
SQP
SR

TAS
TO
TS

UAV
UML

VB

XCS

identification

improving and equal

killer queen

low-level heuristic
linear Monte Carlo

local search

memetic algorithm

Monte Carlo
multidisciplinary optimisation
Mircrosoft foundation class
measure of improvement

message-passing interface

only improving
object-orientated programming

Open Graphics Library

permutation descent
permutation
peckish

particle swarm optimisation

radioactive contamination
random descent
random immigration

roulette wheel

simulated annealing

steepest descent

swarm intelligence

sequential quadratic programming

simple random
true airspeed
tournament selection

tabu search

unmanned aerial vehicle

unified modelling language

Visual Basic

learning classifier system

— xvi —



Nomenclature

This nomenclature applies throughout the main body of this document and in Appendices C and D. The

notations used in Appendices A and B are presented at the end of each appendix. Notation is defined on

first usage within the text and takes the units listed below unless stated otherwise.

C1,PSO
C2
C2,PSO
Cr

Ct

dwt
d$7 dy7 dz

E

F

F

Fpe

f

Jis fau f3
Jos fys [2

G

affinity, %
cross-sectional area, m?

hyper-heuristic objective function normalising coefficient

spar root breadth, m

spar tip breadth, m

design constraint ID

chord length, m

design constraint value

design constraint on minimum FoS under yield
PSO cognitive parameter

design constraint on wingtip deflection, m
PSO social parameter

root chord length, m

tip chord length, m

engine nacelle diameter, m
spar root depth, m

spar tip depth, m

wingtip deflection, m

displacement parallel to x, y, z-axis, m

elastic modulus, Pa

model fidelity level

solution fitness

DE weight

unpenalised design objective value

first, second, third choice function components

force parallel to x, y, z-axis, N

shear modulus, Pa
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g value with respect to inequality design constraint

h low-level heuristic
h value with respect to equality design constraint
Iyy, I.. second moment of area about minor y, major z-axis, m*
1 individual
J torsion constant, m?
J design constraint
k generation
ky Boltzmann’s constant
L1,...,11 load case ID
l last instance of LLH selection
l length, m
le engine nacelle length, m
mass, kg
m number of design constraints
Me engine mass, kg
Metr structural mass, kg
N generation of best solution discovery
N node number
n normal acceleration load factor
n number of objects created by class
np FoS against yield under beam bending stress
g number of bits
Ne number of crossover points
NDoF number of DoF's
ng FoS against critical Euler buckling stress
Nk maximum number of generations
Nk A adaptive penalty parameter generation period
NLLH number of LLHs
ny number of times LLH selected
Nmem number of mission stages
Nmin minimum FoS within structure
npg number of LLHs for selection by PK hyper-heuristic
Ny number of parameters
Nep number of slave processors
nrs tabu list length
nvMm FoS against yield with respect to von Mises criterion
Ny number of design variables
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o1 design objective ID

P1,...,18 dynamic parameter 1D

P probability

Pe,DE DE crossover probability
De,GA GA crossover probability

Pm mutation probability

Dneg negative move probability

Qni consecutive generations without improvement
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Chapter 1

Introduction

The optimisation of an aircraft design is of increasing importance throughout the aerospace industry as
competing airline operators look to reduce costs and militaries demand vehicles of superior performance
on the battlefield. These demands are all the more important during difficult economic times and have
led to the requirement for designs to maximise performance efficiency to ensure that the cost to the
operator is at a minimum as well as the cost to the manufacturer in producing such aircraft. Therefore,
there exists a necessity for effective tools to aid the engineer during the design process in developing near-
optimal aircraft designs such that the resulting vehicles will be able to perform their required missions
as efficiently as possible. The structural design of the aircraft is of critical importance in defining the
strength of the airframe under load and contributes greatly to the mass of the aircraft. The latter in turn
provides a key contribution to the vehicle manufacturing and operating costs through material costs, fuel

consumption and subsequent performance such as reduced lift requirements and COs emissions.

The process of aircraft design optimisation requires the consideration of numerous parameters due
to the complicated nature of aircraft designs. Optimisation is performed using three types of design
parameters: variables, constraints and objectives. Design variables are numerical representations of
the properties of a design, e.g. the dimensions of the aircraft, the values of which uniquely define each
individual design. These values are modified through optimisation in order to discover a combination
of variables that produces a near-optimal solution to the presented design problem. Design constraints
impose limits on the design, and thus the solution space, to ensure the final solution satisfies specific
requirements such as those of aircraft performance, e.g. structural strength under load. Finally, design
objectives represent the aims of the optimisation process, i.e. the measure of solution quality. A common
objective of structural optimisation is an aircraft of minimal structural mass. Consequently, aircraft
structural optimisation is conventionally performed by varying the design of the airframe for a solution
of minimal mass whilst providing necessary resistance to loads likely to be encountered during operation,

i.e. the aircraft mission.

Hyper-heuristic optimisation is a newly evolving field of research wherein the process of finding a
solution to an optimisation problem is monitored and modified to further improve the quality of the
solution and performance of the optimisation process. A hyper-heuristic approach (HHA) performs such
monitoring and modification, typically through the selection and set up of the optimisation techniques
employed and the analysis of the solution space surrounding sampled designs. This is contrary to the
traditional static process where optimisation is performed with constant settings throughout its duration.
The relative infancy of hyper-heuristics has resulted in limited application to aerospace design optimi-
sation. Therefore, an opportunity exists to apply hyper-heuristics to the problem of aircraft structural
design optimisation in order to improve the quality of solutions generated and the process by which this

is accomplished.
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A framework has been developed for the optimisation of the structural design of an aircraft at a concep-
tual level through the application of an HHA. The framework encourages the generation of near-optimal
aircraft designs of various classes subject to the simulation of multiple loading conditions. Improved
solution quality is promoted over traditional optimisation approaches through the use of the HHA, which
discourages premature convergence and promotes learning of the solution space neighbouring good de-
signs. This document describes the thesis for this framework, including a review of existing approaches,
a description of the framework and its subsequent implementation, and an evaluation of the framework
through a number of case studies. The framework is presented as a series of modules to perform the
necessary tasks of aircraft design and hyper-heuristic optimisation. A software tool developed as a com-
putational implementation of the framework called AStrO, an acronym of ‘Aircraft Structural Optimiser’,
is described and employed for experimental evaluation of the framework. The results of the case studies
indicate improved solution quality and feasibility over that obtainable by traditional methods, as well as
indicating the influences of different load cases on specific areas of the airframe.

This chapter serves as an introduction to this research project and is structured as follows. A descrip-
tion of the aircraft and related terminology is provided in §1.1 followed by a description of the design
process in §1.2 focussing on the conceptual design stage and optimisation during engineering design. The
research aims and objectives are provided in §1.3, which includes a description of the thesis of this project.
The methodology of this research project is then provided in §1.4 prior to a description of the structure

of this document in §1.5.

1.1 The Aircraft

Within this document, an aircraft describes a fixed-wing heavier-than-air vehicle propelled through the
atmosphere of Earth by mounted powerplant units with flight achieved through the generation of dynamic
lift, i.e. an aerodyne. It can be assumed herein that an aircraft is piloted by a flight crew unless specified

as an unmanned aerial vehicle (UAV). An example of a generic light civil aircraft is shown in Fig. 1.1.

Horizontal tail

Wing

Aileron

Cockpit

Powerplant

Leading edge

Figure 1.1: The aircraft




1.1. The Aircraft

The conventional aircraft consists of three main sections: wing, empennage and fuselage. The wing is
the main lifting surface of the aircraft with the primary requirement to generate sufficient lift to enable
flight. Secondary purposes of the wing include carrying fuel and supporting the main undercarriage,
powerplants and detachable ordnance such as external fuel tanks and stores, e.g. weapons. The wing
typically includes flight controls such as the ailerons, to control roll about the aircraft longitudinal axis,
and high-lift devices such as flaps to facilitate flight at a high angle-of-attack (AoA) without stall. High-
lift devices are used principally during take-off and landing. The empennage is formed of the auxiliary
lifting surfaces, i.e. horizontal and vertical tails, the designs of which are similar to that of the wing. These
tails balance the aircraft to provide stability during flight as well as control of pitch about the lateral axis
and yaw about the vertical axis by the elevators and rudder respectively. The fuselage is the main body
of the aircraft containing the cockpit, main payload, nose undercarriage and additional fuel tanks and
powerplants. The payload often refers to a mass of items or number of passengers to be transported. The
undercarriage units, or landing gear, support the aircraft on the ground and provide manoeuvrability
as well as absorbing landing loads. Powerplants, or engines, are usually installed within one or both
of the fuselage and wing to provide the propulsion required to achieve flight and for manoeuvrability
in the air and on the ground. Powerplants are internal combustion engines that function either as a
propeller-driving piston engine or turbine, the latter of which includes turboprop and turbojet engines.
Each lifting surface has a leading and trailing edge at the fore and aft-most points on the cross-section
respectively. Similarly, the root and tip of each surface indicate respectively the positions closest to and

furthest from the aircraft centreline along the lifting surface span.

The aircraft illustrated in Fig. 1.1 is typical of a light civil aircraft. The majority of past and present
aircraft of different classes, e.g. large civil transport or military aircraft, possess similar sections within
their design. The lack of significant innovation in this layout of an aircraft is most notable in the civil
aviation market, where the success of a design is largely dependent on its acceptance by the passengers who
are to fly in it. Nevertheless, future designs of aircraft have led to the proposal of novel configurations
including twin-fuselage and blended-wing body (BWB) designs. The employment of remotely-piloted
UAVs is increasing both in civil and military arenas. This significantly influences the requirements of
the design by reducing dependencies on human responses and capabilities. Consequently, UAVs are
designed based on operational demands, e.g. required endurance and manoeuvring capabilities, without
the requirement to provide space and support for a human payload or flight crew, i.e. replacing a cockpit
with remotely-operated flight equipment. Furthermore, this has created the possibility for autonomous
aircraft no longer requiring any human input during operation, although many technological, legal and
moral barriers currently prevent the operation of such a vehicle. Advances in material technologies
have led to the increased use of composite materials within designs whilst manufacturing developments
have created new possibilities in the production of aircraft components. Despite such advances creating
excitement within the field for significant developments in aircraft design, there still exists a need to
improve conventional designs. This is especially true given that the civil aircraft industry is dependent
on its customers, i.e. the general public, who are notoriously cautious about flying in aircraft that appear

to be drastically different from conventional designs.

1.1.1 Role of the Airframe

The design of an aircraft principally considers the following engineering disciplines:

e aerodynamics: design of external profile to provide appropriate airflow for flight manoeuvres;
e propulsion: design of engines with sufficient thrust for manoeuvrability in-flight and on the ground;
e systems: design of control, navigation, hydraulic, electrical and pneumatic systems;

e structures: design of the airframe to provide structural strength under load.
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The aerodynamics of the aircraft are determined by the geometry of its external profile, leading to the
determination of the amount of lift and drag generated by the aircraft and the geometric boundary
within which the internal structural design is constrained. Propulsion determines the design of the
engines, including the level of thrust available to the aircraft and the mass of the powerplant units. The
design of the systems includes many different aspects of aircraft operation, most notably flying control
surfaces such as ailerons, elevators, rudder, spoilers, flaps and other devices. The design of the structure,
otherwise referred to as the airframe, provides the aircraft strength under applied loads such as those
resulting from in-flight and ground manoeuvres. Additional loads include the effects of inertia, engine
thrust and cabin pressurisation. There has been little fundamental change in the structural design of
aircraft since the pioneering flying machines were developed at the start of the twentieth century. This is
surprising given the substantial advances in engineering and technological capabilities over the period and
the clear visible differences in leading designs across the age of flight, e.g. the Wright Flyer, Supermarine
Spitfire, de Havilland Comet, Hawker Siddeley Harrier Jump Jet, Airbus A350 etc. In spite of this, upon
inspection beyond the outer skin the structures of such aircraft are remarkably similar. Figure 1.2 shows

the typical structures of a lifting surface and fuselage containing the following structural members:

e lifting surface: o fuselage:
— ribs; — frames;
— spars; — floor beams;
— stringers; — stringers.

. Frame
Skin

Stringer
Skin

Rib

Stringer

Spar Floor

Floor Beam
\ E

(a) Lifting surface (b) Fuselage

Figure 1.2: Typical airframe structure

Ribs are chordwise members that reinforce the skin to maintain the cross-sectional shape required to
generate lift for flight. Ribs also provide resistance against shear and buckling, as well as transmitting
local loads to the spars. Spars are spanwise members that withstand these transmitted local loads as
well as bending and torsional loads. Spars are often shaped as I-sections through their formation of spar
caps and webs. Stringers are similarly spanwise members that resist bending loads as well as axial loads.
Stringers also divide the skin into smaller sections for improved resistance against buckling. Stringers are
considerably smaller in cross-section than spars and are often shaped as C, T or Z-sections. The structural
members within the fuselage perform similar functions to those within the lifting surfaces. Frames provide
the equivalent support to the skin as ribs to maintain the cross-sectional shape of the fuselage and divide

the skin into small panels for improved resistance against buckling, especially under pressure loads. Floor
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beams provide support to the floor of the aircraft under load whilst stringers perform the same function
as those within the lifting surfaces. Commonly longerons are included within the fuselage structure as
larger members of the same nature as stringers. Due to the similarity in design, the terms longerons
and stringers are often interchangeable within the fuselage. In addition to these members, skin over the
aircraft exterior and the floor within the fuselage provide structural support to the airframe by acting in

conjunction with the structural members to withstand bending, shear and torsion.

1.2 The Design Process

The design process aims to solve a given problem through the generation of new or improved designs
to satisfy specific objectives. Blumrich (1970) states “design establishes and defines solutions to and
pertinent structures for problems not solved before, or new solutions to problems which have previously been
solved in a different way”. The problem concerned can take various forms depending on the disciplines
involved and objectives to be satisfied. A good understanding of the problem is necessary such that an
appropriate strategy is employed during the design process to increase the likelihood of satisfying the
objectives. This includes the selection of achievable objectives and appropriate variables and constraints
to represent the problem. The timescale over which the problem is to be solved also requires consideration,

as greater problem complexity and detail can significantly lengthen the process.

Recognise the problem

Solution
required?

general Yes
criteria

Define the problem <

v

Exploration of problem

specific v
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Predict outcomes

v

Test for feasible
alternatives

Feasible
solutions?

Re-evaluate requirements —

Evaluate feasible
alternatives

A

Superior

solution? Compromise solutions

Specify solution > Implement solution

Figure 1.3: Design process flowchart (Lewis and Samuel, 1989, Fig. 1.6 p. 12)
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1.2. The Design Process

Flowcharts, such as in Fig. 1.3 (Lewis and Samuel, 1989) and Fig. 1.4 (Pahl et al., 2007), illustrate the
design process by showing the key tasks and decisions involved as well as the iterative nature of obtaining

a solution. The stages of the design process shown in Fig. 1.3 may be grouped into the following stages:

1. problem recognition: the stimulus of engineering design is the identification of an engineering

problem that requires addressing;

2. problem definition: a description of the problem, including the establishment of objectives, resources

and constraints, such that quantitative information is possessed on the specifications of the problem;

3. problem exploration: a hypothesis of possible solutions and determination of a detailed strategy to

be employed to solve the problem;
4. problem solution: investigation and development of possible solutions to the problem;

5. problem evaluation: analysis of the obtained solutions against the problem objectives to determine

suitability of designs, specification of the solution and implementation of the design.

The alternative representation of the design process in Fig. 1.4 shows the flow of information between
different process stages. This representation describes the tasks involved with greater precision and also
indicates that the design process is conventionally divided into four phases: planning and task clarification,

conceptual design, embodiment design and detail design.

1.2.1 Planning and Task Clarification

Planning and task clarification requires the design problem to be recognised and defined, leading to
the collection of information to enable the proceeding stages of the process to be planned and executed
appropriately. Such information includes the design requirements and the methods to be employed for
design, manufacture and production. A hypothesis of the solution is also predicted and consequently a
suitable design strategy created. The execution of the conceptual, embodiment and detail design stages
are then based on this strategy. Continual updating of the plan and subsequent design requirements is

performed throughout the design process as informed by experience gained during the process.

1.2.2 Conceptual Design

The conceptual phase of the design process begins following the completion of planning and task clar-
ification. It is this phase of the design process that is the focus of this research project. The aim of
conceptual design is to evaluate the requirements of the design before the later phases of the design
process further explore and evaluate these potential design problem solutions. While several concepts
may be taken forward to the next phase of the design process it is preferable to obtain a favoured concept
that outperforms the other good concepts under consideration.

The generation of good concepts is critical to the design process, placing the greatest demands on a
designer by providing the greatest opportunities for significant improvements to be made in the design.
The knowledge required to make critical decisions is not always available at the start of the process;
however, the flexibility for change of the design diminishes as such knowledge is obtained and applied due
to increased commitment towards the developed design. Hence, it is important to evaluate the suitability
of designs as early as possible during the design process such that informed decisions may be made in order
to direct the development of suitable high-quality designs. This is illustrated in Fig. 1.5(a). Examples
of such decisions during aircraft design concern the aircraft configuration, performance and size; thus
defining the vehicle geometry, layout and attachment locations such as powerplant and undercarriage
mountings. Other consequences of decisions made during the design process are the commitments of the
cost of the design both at the current process phase and in the future, as indicated in Fig. 1.5(b).

The duration of conceptual design varies greatly depending on the design requirements, available
resources and experience possessed. Computer-aided engineering (CAE) tools such as computer-aided

design (CAD) are commonly employed during modern design, however such tools must be sufficiently
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Figure 1.5: Knowledge, flexibility and cost allocation during design process

fluid for use with rapidly evolving solutions. Therefore, these tools are often replaced by simpler methods
such as stick or panel models to allow greater flexibility of design evolution whilst retaining the capacity
for analysis at an appropriate level of detail. Detail levels during conceptual design are typically kept
to a minimum to enable rapid modelling, analysis and evolution of numerous designs to permit the
opportunity to explore a variety of problem solutions. Model fidelity describes the level of detail within
a model and its subsequent precision with respect to reality. The level of model fidelity is typically
increased during embodiment and detail design in order to obtain greater knowledge of the intricacies
of a design. Figure 1.6 exemplifies increasing the fidelity used to model an I-beam with holes to enable

greater precision in the analysis of the beam during the later phases of the design process.

(a) Conceptual design (b) Embodiment design (c) Detail design

Figure 1.6: Level of detail during design process

1.2.3 Embodiment Design

Embodiment design, also referred to as preliminary design, begins after most major design decisions have
been made and a concept has been selected. Embodiment design aims to mature this concept through
its evolution into a design of higher definition by more detailed problem exploration and evaluation. This
provides increased understanding of the design and increases the reliability on discipline-led design by
offering greater control of specialist areas of the design to specific engineering departments, e.g. structures.
The concept is subsequently developed into a design of higher definition and with greater understanding

than was possible during the conceptual design phase.

1.2.4 Detail Design

The final phase of the design process concerns the detailed design of all aspects of the aircraft, including
many intricate parts, to ensure the design will fulfill its potential and meet its requirements. During this
phase, design is conducted at the highest degree of detail with respect to both computational models
and manufactured prototypes. It is even possible for large manufacturers to develop flight simulators
to evaluate the performance of aircraft designs. During the detailed design of an aircraft, it is common

to consider each part of the aircraft independently, from the structural members in the airframe to the
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fasteners attaching the skin. Much higher fidelity models are used than in the previous stages of the
design process, resulting in a greatly increased demand on design time. It is for this reason that the
preceding stages of the design process carry so much importance: to ensure the aircraft is designed
suitably before attributing such a large quantity of resources upon the design of the details. Following
the selection of a suitable solution to the problem, this design is specified for subsequent implementation

through manufacture and operation.

1.2.5 Optimisation in Engineering Design

The optimisation of a solution to a problem is not a new area of study. Mathematicians in Ancient
Greece were known to solve optimisation problems, such as Euclid (¢. 300 BC) proving that a square
provides the greatest area to be enclosed of all possible rectangles with same total length of sides. Another
example is of Heron (c. 100 BC) finding that the shortest distance travelled by a path of light reflected
by a mirror occurs when the angles of incidence and reflection are equal. In the subsequent ages, further
problems were solved using optimisation and techniques were established for solving such problems. For
example, Sir Issac Newton (1687 AD) determined that a symmetrical revolution provided the optimal
body shape for minimal resistance to motion in a fluid, which led to the derivation of the resistance law
of the body; a problem independently suggested earlier by Galileo Galilei (1638 AD). More recently, and
with the advent of the computing age, many variations of optimisation techniques have been developed
and applied to more complex problems. As the problems encountered during engineering became more
complicated due to greater complexities and demands of design problems, the use of optimisation has
become a critical aspect of the design process in many fields. This is indicated in Fig. 1.4 by the need to
optimise the principle, layout and production of the design; hereby requiring an element of optimisation
at all periods of the planning and design process.

Optimisation in engineering design aims to improve the quality of a solution to a problem through
the modification of characteristics of the design. The quality of a design is measured with respect to
a predetermined objective typically formed as a minimisation or maximisation function. A design is
defined by the variables representing the design properties available for modification. Consequently, the
best solution to a problem is found by the combination of design variable values that generates the
minimum or maximum value as required to the corresponding objective function. The value of this
objective function can include the consideration of the feasibility of a design with respect to imposed
constraints. This consideration is often made through the use of a penalising strategy; as such, a solution
that originally appears to be the best may not remain so should it violate a design constraint. The set-up
of the optimisation process dictates the nature of the search for a suitable design solution. This process
may be static, wherein the initial set-up remains constant throughout the search, or dynamic such that

modifications can be made to the process to improve its performance and subsequent solution quality.

1.3 Research Aims and Objectives

The structural design of an aircraft drives the strength of the airframe under load and contributes greatly
to its overall mass, which in turn influences the vehicle performance and cost. Given the importance of
conceptual design in establishing suitable designs for further development, the generation of a high-quality,
i.e. light, airframe concept is critical to the quality of the final aircraft design. Structural optimisation of
the airframe for minimal mass provides the capability to generate such high-quality concepts. Further-
more, a dynamic optimisation process can lead to improved solution quality and process performance,
e.g. computation speed, through the modification of the process during execution.

This research aims to develop a framework for the structural optimisation of an aircraft concept for
minimal mass under load. An HHA is embedded within the framework to improve the operation of

the optimisation process such that solution quality and computational expense can be improved and
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reduced respectively. It is the thesis of this research that the use of hyper-heuristic optimisation within
the framework can improve solution quality over that possible by traditional methods without incurring

computational costs. The following objectives have been satisfied in conducting this research:

e a review of aircraft design optimisation to determine the requirements of the framework;
e areview of hyper-heuristic optimisation to encourage improved solution quality with the framework;
e the development and implementation of the framework for subsequent evaluation;

e evaluation of the framework against existing approaches to aircraft design optimisation.

The novelty of the framework lies principally in the application of hyper-heuristics to airframe design
optimisation. This application aims to improve solution quality through the use of a dynamic optimisation
process. Little research into the optimisation process was found in the review of literature concerning
aircraft design optimisation, with no application of hyper-heuristics apparent to aircraft structural design.
Hence, this framework is an original application of an HHA to aircraft structural design optimisation.
The HHA modifies the optimisation process based on its performance as measured by an online learning
mechanism. The HHA controls the optimisation process through four aspects: selection of optimisation
techniques, distribution of solutions between multiple techniques, analysis of perturbations in the local
solution space and modification of process parameters. Such a combination of four different aspects of
hyper-heuristics within a single HHA was not discovered during the review of hyper-heuristic optimisation,
where traditional approaches focus on a single aspect. Further capabilities of the framework that were
not found in the majority of literary sources include a capability to consider various aircraft classes, the
simulation of multiple load cases and the ability to generate a complete aircraft configuration rather than

solely a single aircraft section, e.g. the wing.

1.4 Research Methodology

Figure 1.7 (Duffy and O’Donnell, 1998) illustrates the research methodology followed during this project.
The design problem is identified through analysis of relevant literature and design practice. A hypothesis
is formulated, from which the research problem is developed leading to the generation of a solution. This
solution is then evaluated through common design practice. The problem and solution are subsequently

documented such that the findings may themselves form part of the literature for future investigations.

Literature > Design problem [« Design practice

v

Hypothesis

v

Research problem

v

Solution

v

Formal evaluation

v

Document

A 4

A 4

A 4

A

Figure 1.7: Research methodology (Duffy and O’Donnell, 1998, Fig. 7 p. 6)
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1.5 Structure of Document

This document concerns the research, development and evaluation of the thesis described in §1.3. The

work that is reported in this document is structured as follows:

Part I introduces the design problem, existing approaches to the problem and the research hypothesis:

Chapter 1 introduces the research including its motivation. This includes an overview of the
design process and the use of optimisation in engineering followed by the aims, objectives and

methodology of the research.

Chapter 2 reviews existing approaches to the aerospace design optimisation problem, principally
focussing on the structural optimisation of conceptual aircraft designs. Common practices
within this field are described and compared. This includes a detailed review of the existing

approaches to aircraft design optimisation that are most pertinent to this project.

Chapter 3 provides an introduction to hyper-heuristic optimisation followed by a review of pre-
vious applications of hyper-heuristics. This includes a description of different aspects and

techniques commonly included within an HHA.

Chapter 4 uses the findings of Chapters 2 and 3 to identify the requirements of a framework
for aircraft structural design optimisation and research opportunities within this area, thus
providing the research hypothesis. Key terminology is also defined for reference during Parts IT
and IIT of this document.

Part IT describes the framework hypothesised as a solution to the research problem:

Chapter 5 describes the framework for hyper-heuristic aircraft structural optimisation created
to investigate the hypothesis presented in Chapter 4. This framework is presented in three
stages: aircraft design, structural analysis and airframe design optimisation. Aircraft design
includes framework initialisation, mission definition, computation of load cases and generation
of the aircraft design. Structural analysis concerns the generation and subsequent finite element
analysis (FEA) of an airframe model followed by analysis of the stress field within the airframe.
Airframe design optimisation includes the application of a penalising strategy, calculation of
solution fitness and subsequent optimisation of the designs. This stage includes an embedded
HHA that encourages improved solution quality and computational speed as well as improved

feasibilities of designs and convergence on a high-quality solution.
Part ITI evaluates the framework as a solution to the research problem:

Chapter 6 introduces AStrO as a computational implementation of the framework. This tool is
subsequently used to evaluate the framework through a series of investigations and case studies

in Chapters 7 and 8 respectively.

Chapter 7 describes preliminary investigations into appropriate set-ups of AStrO for use during
the case studies presented in Chapter 8. This includes FEA and optimisation verification

followed by investigations into the optimisation process set-up, chiefly that of the HHA.

Chapter 8 presents the case studies used to evaluate the performance of the framework using
AStrO for a selection of design problems. These studies investigate the effects of the HHA
on the results of the optimisation process, as well as methods of controlling the optimisation
process and the influences of different load cases on the aircraft design. Both novel and existing
variants of a selection of civil and military aircraft are used for these studies.

Chapter 9 evaluates the framework against the requirements and opportunities in Chapter 4
through the discussion of the case study results presented in Chapter 8 and research thesis

before providing suggestions for future work and concluding remarks concerning the thesis.
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Four chapters are appended to this document as follows:

Appendix A provides the supporting theory for the aircraft design process within the framework.
Appendix B describes the theory behind FEA as employed by the framework for structural analysis.
Appendix C describes the numerical benchmark functions used during preliminary investigations.

Appendix D tabulates the set-ups and results of the preliminary investigations.
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Chapter 2

Aircraft Design Optimisation

Many researchers have addressed the problem of aircraft structural optimisation in an attempt to ob-
tain a solution of minimal mass whilst maintaining the necessary strength required under load. Such
optimisation has often been combined with other disciplines, such as aerodynamics, leading to multi-
disciplinary optimisation (MDQO). Whilst the focus of this research is the structural optimisation of a
conceptual aircraft design, consideration is made of previous research into other engineering disciplines
and alternative stages of the design process. This chapter reviews such existing approaches to aircraft
design optimisation through the following sections. An overview of different problems addressed within
the domain of aircraft design optimisation is presented in §2.1. The traditional solution process is then
described in §2.2 followed by popularly-applied optimisation techniques in §2.3. Methods of constraint
handling are discussed in §2.4 due to the importance of obtaining a feasible airframe design that possesses
sufficient structural integrity under load. A comparison of pertinent existing approaches to aircraft design

optimisation is subsequently presented in §2.5 before the chapter is summarised in §2.6.

2.1 Optimisation of Aircraft Designs

The optimisation of an aircraft for structural performance, i.e. minimum mass whilst maintaining struc-
tural integrity under load, has been the subject of much research. Great variation exists in the classes of
aircraft considered, where research has ranged from optimising the design of new or existing aircraft within
the civil light, large or military classes as well as unmanned aerial vehicles (UAVs). Conventional aircraft,
i.e. consisting of a fuselage, wing and empennage, are commonly subjected to optimisation, although re-
cent studies increasingly explore novel designs such as a blended-wing body (BWB) aircraft (Lovell et al.,
2004). The conceptual stage of the design process is an area of considerable interest as optimisation can
present significant gains in solution quality at reduced cost due to the flexibility available in the design
(Mavris and DeLaurentis, 2000). MDO is often performed within aerospace design due to the coupled
properties between design disciplines (Cramer et al., 1994). This commonly, although not necessarily,
results in optimisation of the structure for minimum mass in combination with optimisation of the aero-
dynamic profile for minimum drag, i.e. multi-objective optimisation (Sobieszczanski-Sobieski and Haftka,
1997). However, many studies consider a single design discipline such as the structure in order to focus on
a specific design aspect or reduce interdisciplinary uncertainty during early stages of the design process
(Daskilewicz et al., 2011; Ma and Ma, 2009). Often only a single section of the aircraft, commonly the
wing, is considered rather than the entire aircraft. This permits greater design detail but fails to generate
a complete configuration of the aircraft or take into account the interactions of different aircraft sections
(Chacksfield, 1997; Sobieszczanski-Sobieski and Haftka, 1997).

Schuhmacher et al. (2002) investigated the MDO of the wingbox within a family of regional civil air-

craft. The limitations of historical methods were investigated as well as obstacles to the use of MDO
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compared to the traditional approach within an engineering company of individual design departments
for each discipline. Finite element analysis (FEA) was employed to analyse the response of the wingbox
to numerous loads leading to structural optimisation considering aeroelastic and structural constraints.
A similar piece of research conducted was by Kesseler and Vankan (2006) into the optimisation of an
aircraft wing to operate under loading conditions due to flight manoeuvres. The efficiency of the method
was evaluated and the effects of the different flight conditions on the wing were described. The internal
structure of the wing was optimised during this investigation, focussing mostly on component topology.
Maute and Allen (2004) conducted similar research into the topology of the internal structure of the wing,
where the structure was optimised for a given external profile through simulating the structural response.
The results predicted a high dependency of the wing design on the aerodynamic loads experienced, and
thus indicated a dependency between the aerodynamic and structural design for realistic application of
flight loads to the airframe. The research of Mavris and DeLaurentis (2000) focused on the feasibility of
the design of a supersonic transport aircraft, whilst Gantois and Morris (2004) investigated the optimi-
sation for minimum weight, drag and cost of a large civil aircraft wing. In the latter, optimisation was
performed during the preliminary design phase to find the design with the minimum direct operating
costs through the minimisation of structural weight and drag. An MDO problem was also addressed
by Cavus (2009) for the optimisation of a UAV, a problem that was similarly tackled by Hu and Yu
(2009) and Zhang et al. (2009), whilst Martins et al. (2002) performed aero-structural optimisation of
a supersonic business jet for minimal drag and weight using variables controlling aircraft geometry and
the thicknesses of structural members within the airframe. Ayele et al. (2013) applied MDO to two op-
timisation problems for a solar-powered UAV, with vehicle geometry and mission components optimised
for minimal mass and maximal flight level in the first problem and maximal payload mass with minimal
total vehicle mass in the second problem. Eves et al. (2009) similarly investigated the optimisation of a
UAV concept. Topology optimisation was performed of the material distribution and member thickness

of a BWB aircraft for a solution of minimal mass under deflection and buckling constraints.

The structural design of an aircraft wing was the subject of much research by Rao at various stages
of a mission. This included the structural optimisation of the wing when subjected to loads resulting
from landing (Rao, 1984), gusts (Rao, 1985) and taxi (Rao, 1987). A summary of the former two studies
were also included in Rao (1986). The mathematics behind the structural optimisation problems were
presented in these papers, as well as detailed reviews of previous work in the field. Another paper of
Rao et al. (1979) researched minimising the weight of a wing structure whilst satisfying strength, stability
and frequency requirements during more general flight conditions. Rinku et al. (2008) investigated the
topology optimisation of three key structural components: a stub-wing spar, bracket for the nose un-
dercarriage and wing attachment bulkhead, whilst Tong and Lin (2011) performed similar research. The
former study was able to significantly reduce the mass of the components through optimisation whilst
the latter obtained dramatic reductions in strain energy through similar optimisation of the component
topology. Sofla et al. (2010) performed a review of recent activity in research into the morphing of the
shape of a wing, including the use of smart materials and shape memory alloys. It was found that the use
of such materials reduced the weight penalty of an actuation system through the ability of the structure
to carry larger aerodynamic loads. Rothwell (1991) investigated the use of shell components for better
distribution of stringer material within a wingbox, with optimisation performed for a design of minimum

weight whilst maintaining adequate strength.

Arrieta and Striz (2005) performed structural mass optimisation of a military combat aircraft includ-
ing damage tolerance analysis. The thicknesses of skin sections were optimised over the aircraft subject
to stress and fatigue constraints. The optimisation of skin-stringer panels within the wingbox under
compressive loads was investigated by Chintapalli et al. (2010). The results of the study indicated a

significant saving in structural mass through the minimisation of member thickness whilst maintaining
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structural integrity under the applied loads. Kaufmann et al. (2010) performed similar optimisation of
skin-stringer panels under compressive loads to minimise the cost and mass of the structural members.
The cost of members was approximated using empirical estimation models. Design variables included the
thicknesses of composite skin plies as well as stringer pitch and geometry. A weight penalty was applied to
high cost designs such that a single objective function was obtained; however, difficulty was encountered
in incorporating this penalty into the optimisation problem due to uncertainty associated with defining
the penalty to be applied. Pant and Fielding (1999) performed cost optimisation of a twin-turboprop
short-haul commuter aircraft to minimise the generalised cost of travel including access cost, flight cost,
time cost and airport cost. Wing geometry and position, component masses and flight configurations
were optimised. This resulted in the generation of a solution that balanced reduced overall cost through

an increase in passengers with greater required flight time and airport cost.

Sensmeier and Samareh (2004) examined the variations in the structural layouts of popular aircraft
since World War II by studying cutaway drawings of the aircraft. The results of these findings were only
approximate due to the inaccuracy of the drawings. Nevertheless, trends were able to be determined of
how the layouts have changed over time. Limited variation was discovered in the design of the wings
for commercial aircraft, but the spacing of the frames at the fore and aft-most ends the fuselage showed
variations between the layouts adopted by different manufacturers. Also of interest was a large variation
in the airframe designs of combat aircraft, most notably when comparing designs developed by different
countries. Anhalt et al. (2003) considered a wing design with optimal aerodynamic efficiency during
cruise to investigate the detrimental effects of wing structural deformation on performance. The research
focused on the aeroelastic behaviour of the wing of a large civil aircraft, finding that both the lift and

drag of the wing increased with tip deflection.

The optimisation of the use of composite materials within aircraft structures is a rapidly growing area
of interest. Liu et al. (2011) investigated the optimisation of composite blending, including the effects
of varying the stacking sequence of composite panels at predefined angles of orientation. Gasbarri et al.
(2009) performed multi-level aeroelastic optimisation to firstly generate a high level design of an aircraft
wing prior to further optimisation at a more detailed level. The objective of the optimisation was to
maximise the flutter speed of the wing. The materials and thicknesses of the plies were optimised in the
first level prior to the determination of the optimal ply orientations corresponding to these materials and
thicknesses in the second level. Guo et al. (2003) researched methods of maximising the flutter speed and
minimising the weight of a composite wing structure without penalising the strength of the structure.
This was completed in two stages: the effects of bending and torsion on the flutter speed were firstly
analysed before assessing the effects of the mass and strength of the laminates on the structure. Torsional
rigidity was found to dominate the design whilst coupling rigidity significantly affected the flutter speed.
Flutter speed was increased and mass reduced through the use of a thin-walled composite wingbox. Guo
(2007) conducted further detailed research into flutter by focussing on the optimisation of a wing design
for minimal weight whilst also investigating the subsequent effects on aeroelasticity. An investigation
was conducted into methods of tailoring the wing of an aerobatic aircraft, whereby the wing was initially
optimised for minimum weight before being tailored aeroelastically to achieve the maximum flutter speed.
Significant mass savings and an increase in flutter speed were obtained through the optimisation of the

fibre orientation of skin and spar web laminates.

Outside the domain of structural optimisation, Crawford and Simm (1999) investigated the MDO
of a military fighter aircraft at the conceptual level of design with the aim of obtaining a design with
a low infrared signature. In another study, Alonso et al. (2009) performed research in order to reduce
the sonic boom of an aircraft travelling at supersonic speeds. Xia and Gao (2002) presented an MDO
methodology for decomposition of a system, leading to a weighted objective function for aerodynamic

and stealth optimisation of a wing design. The weights applied were adjusted depending on the rate of
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improvement in the objective function. Koch et al. (1999) investigated MDO techniques when applied
to a high-speed civil transport aircraft wing. It was found that increasing the problem size led to a
large number of variables and necessary responses to be considered. This resulted in multiple objectives,
uncertainty and a very computationally expensive process. Design of experiments (DoE) and statistical
approximation techniques were applied to reduce the number of variables and responses and thus the
computational expense. Li and Hu (2002) presented subspace approximation optimisation as a method
of system decomposition for distributing the required computation in order to rapidly converge upon a
robust optimum. Derivative-based optimisation methods were deemed to be too inaccurate and response
surface methods too inefficient; thus leading to the development of a new method to optimise design
objects within a system before passing the resulting objects into a parent system for further optimisation
at the parent level. Different constraints were imposed at the differing system levels.

Ledermann et al. (2005) developed new methods to improve the accuracy, efficiency and flexibility of
aircraft structure data prediction. This was performed using modular, knowledge-based computer-aided
engineering (CAE) modules to permit easier modelling of complex aircraft structures so that FEA could
be used to analyse the design. Decomposition was performed before organising the process into two
sections: the organisational structure of components and the level of detail required. A new principle of
using dynamic objects was applied to improve the optimisation methods. This involved objects being
able to be varied through the design based on a predefined template, e.g. a series of frames defined by
a pattern based upon a set template for a frame. The use of computer-aided design (CAD) software
to model the design was found to be too time consuming to program as every possible event required
programming, e.g. the addition and removal of a specific structural member. Therefore, an opportunity
for a more efficient modelling tool was suggested to speed up the design process. Ledermann et al. (2006)
performed further research into developing CAD models for use during preliminary design optimisation
of a large civil aircraft without such expensive computational requirements. Aerodynamic optimisation
was performed to establish the aircraft external profile prior to structural optimisation of the airframe.
Improvements were made in the computational time but the program speed remained slow due to the
complex requirements of the CAD system.

Amadori (2008) described a framework for the optimisation of conceptual aircraft designs. This
framework performed MDO of an aircraft using existing software to subject each design to aerodynamic
and structural analysis for a measure of feasibility against the design constraints. CAD was employed to
perform parametric modelling of the airframe structural members within a BWB design. A framework
for multi-level optimisation of a tiltrotor aircraft was presented by Kim et al. (2013). The upper layer
of this multi-level framework optimised the mechanical properties of the aircraft wing before the lower
level optimised the number and orientation of composite plies. This approach was deemed to be more
appropriate to the aeroelastic requirements of a tiltrotor aircraft than a single-level framework. Raymer
(2002) presented a tool to perform MDO of conceptual aircraft designs of various classes including a light
civil aircraft, large civil transport aircraft, military fighter and UAV. The external aerodynamic profile
of each aircraft was optimised for minimum cost for the military fighter and minimum mass for the other
aircraft classes. The choice of optimisation technique was found to greatly affect the convergence rate of

the process but not final solution quality.

2.2 Traditional Solution Process

The aircraft structural design process has been developed over many years, leading to the use of common
methods and tools throughout the field (Pready, 2013). Consequently, a consistent process is followed
within existing approaches to optimise the structural design of an aircraft (Amadori, 2008). Initialisa-
tion of the process is firstly performed, wherein input data are provided to define the requirements of

the aircraft design and optimisation problem, i.e. specification of limiting values for design parameters

16



2.2. Traditional Solution Process

(Bartholomew, 1998). The aircraft mission is subsequently defined such that mass estimation may be
performed to establish the aerodynamic requirements of the aircraft for flight (Raymer, 2006). Mass
estimation is often empirical during conceptual design given lack of knowledge of the design, includ-
ing contributions from items considered during later stages of the design process, e.g. fixtures, fittings,
electronics and other systems (Allen, 2010b). The external profile of the aircraft is then generated
using the accumulated data, empirical formulae and results of aerodynamic optimisation if performed
(Kesseler and Vankan, 2006). The structural layout of the aircraft is subsequently modelled within the
geometric boundary imposed by the external profile (Amadori et al., 2007a). This typically includes
the number, position, size and topology of airframe structural members as defined by design variables
(Schuhmacher et al., 2002). During structural optimisation, each individual design solution represents
an independent airframe design defined by values of the design variables (Anhalt et al., 2003). The fea-
sibility of each airframe design is determined through structural analysis of its performance under load
with respect to the design constraints (Ledermann et al., 2006). Optimisation is performed of the air-
frame designs to search for an improved solution in terms of the design objective, typically minimum
mass for structural optimisation (Sobieszczanski-Sobieski and Haftka, 1997). This process of generating
designs for subsequent analysis and optimisation is repeated until a convergence criterion is satisfied, e.g.
maximum number of optimisation generations or minimum population variance (Raymer, 2002).

A common strategy employed within existing approaches is to decompose the aircraft into smaller,
simpler systems which in turn can be discretised further into smaller subsystems (Xia and Gao, 2002).
This process is typically conducted until each individual component of the design is a separate entity
(Ledermann et al., 2005). Consequently, this involves the aircraft being treated as a global system which is
then decomposed into the wing, empennage and fuselage sections which can be considered much simpler
than when combined as a complete aircraft configuration (Gantois and Morris, 2004). To study the
internal structure of the aircraft, the aircraft sections are in turn decomposed into the individual structural
members, e.g. ribs, spars and stringers, each of which is then considered as an independent entity and
designed accordingly (Rinku et al., 2008). This lends itself to the use of patterns and parametric design
when modelling similar components (Amadori et al., 2008). The interactions of entities within a system
level, e.g. those between wing structural members under load, are then considered at the level above
in the system hierarchy, in this case the wing section, when analysing the performance of this system
(Amadori et al., 2007b). Such decomposition can be performed during the analysis or optimisation of the
airframe, the latter of which is dependent on the problem design parameters. However, this can greatly

increase the size of the optimisation problem and the effort required to find a high-quality solution.

2.2.1 Design Parameters

Design parameters constitute the variables, constraints and objectives of the optimisation process. Design
variables are numerical representations of design properties, the values of which define the characteristics
of the design. Design constraints impose limits on the solution space populated by the various design
permutations created by different variable values. These limits require that the properties of a design
satisfy the values of the constraints for the design to be deemed feasible. The design objective is the
property of the design that is to be improved by searching the solution space for different design variants
and measuring their quality as a function of this objective. Due to the conventional configuration of
aircraft that has developed over time the parameters used by different researchers tend to be similar,
although vary slightly depending on the purpose of the aircraft, i.e. aircraft class and mission.

Design variables within aircraft design optimisation typically define the aircraft geometry and occa-
sionally its mission profile (MacMillin et al., 1997). Structural optimisation typically includes variables
to define the numbers and positions of different structural member types (Ledermann et al., 2005). The
size and shape of these members are also often considered as design variables (Eves et al., 2009), as is

the material of the members (Ali and Behdinan, 2002). When a composite material is used within the
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airframe, variables also include the number, order, thickness and orientation of the plies (Guo, 2007).
MDO incorporating aerodynamic optimisation expands the problem and therefore the number and nature
of variables used to define the aircraft (Raymer, 2002). This results in the aircraft external profile being
defined by design variables (Amadori et al., 2007a). The wing is often the sole aircraft section consid-
ered during the optimisation process, therefore wing geometry is commonly defined by design variables
(Koch et al., 1999). The fuselage, powerplant and, less frequently, empennage are optimised by design
variables when the complete aircraft is considered (Raymer, 2002).

Design constraints are typically imposed to ensure satisfactory performance of the aircraft during op-
eration, traditionally by calculating the response of the airframe to applied load cases when performing
structural optimisation (Petersson et al., 2010). Structural analysis is consequently performed to deter-
mine the displacement and stress fields over the airframe for comparison against corresponding design
constraints (Neufeld et al., 2010). These constraints are typically enforced as a maximum buckling, prin-
cipal or von Mises stress, or alternatively as the minimum factor of safety (FoS) corresponding to these
stresses (Schuhmacher et al., 2002). Wingtip deflection is also often used as a constraint to prevent exces-
sive bending of the wing under load (Park et al., 2009). Additional constraints are imposed during MDO
such as geometric limits on the aircraft size for feasible operation at a specific aerodrome (Raymer, 2002).
Alternatively, powerplant and mission characteristics can form constraints (MacMillin et al., 1997), as
can torsional rigidity and twist angle; although these are not considered herein.

The most common design objective of structural optimisation is minimum structural mass, result-
ing in an optimisation problem to generate a solution represented by design variables of minimal mass
whilst satisfying the design constraints (Hu and Yu, 2009). Additional objectives are often included
within MDO, such as minimal aerodynamic drag (Schuhmacher et al., 2002), minimal stealth profile
(Crawford and Simm, 1999), minimal cost (Kaufmann et al., 2010), minimal emissions (Bower and Kroo,
2008) and minimal sonic boom (Alonso et al., 2009). Alternatively, MDO can be performed to consider
multiple disciplines but with a single multi-objective function or through the isolation of the disciplines
into independent single-objective problems (Hu and Yu, 2009). This approach can reduce the interdisci-
plinary dependencies and subsequent uncertainty in a multidisciplinary objective function as well as the

computational requirements for modelling and analysis over multiple disciplines (Cramer et al., 1994).

2.2.2 Modelling and Analysis of the Aircraft

The aircraft is modelled such that analysis can be performed to determine the feasibility of each de-
sign solution with respect to the design constraints (Ali and Behdinan, 2002). The process of design
optimisation is inherently iterative, requiring the generation of many aircraft models due to the large
number of possible solutions resulting from variations in the design variables (Amadori et al., 2007b).
Each design solution requires analysis by selected tools before repeating the process via optimisation
to determine whether a better solution can be found within the solution space (Raymer, 2002). CAD
is a popular tool for modelling the aircraft (Lovell et al., 2004), whilst computational fluid dynamics
(CFD) is often used for aerodynamic analysis (Jameson and Ou, 2011) and FEA for structural analysis
(Schuhmacher et al., 2002). FEA has been applied over many years for the analysis of various structural
problems with great success (Toropov, 1989). Panel codes are alternatively employed for aerodynamic
analysis, sacrificing precision for superior computational speed compared with CFD (Amadori et al.,
2008). Established engineering software tools are often employed to perform these tasks such as CA-
TIA for CAD (Ledermann et al., 2005) and Nastran for FEA (Hansen and Horst, 2008). MATLAB is
commonly used as an orchestrating tool to link the various modules within the optimisation process
(Ayele et al., 2013), whilst a user interface can be provided through software such as Microsoft Excel
(Amadori, 2008). The optimisation task itself can be performed using existing software, e.g. OptiStruct
(Eves et al., 2009) or Isight (Zhang et al., 2009). Alternatively, self-contained tools can be created to

perform these tasks and thus remove any reliance on existing software and the computational penalties
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inherent in linking packages (Azamatov et al., 2011).

The structural integrity of each airframe design is calculated in order to establish design feasibility.
However, solving the analysis problem can become prohibitively expensive in terms of computation time
when many solution evaluations are required (Amadori, 2010; Viana and Steffen Jr, 2009). As a result,
attempts are often made to reduce the time required to perform such analysis (Koch et al., 1999). For
example, structural members are commonly represented by simple shapes, with many members of the
same type being approximated by bodies with similar features and idealised boundaries (Pready, 2013).
Further, the size of an FEA problem can be reduced by using one or two-dimensional elements to model
the airframe rather than three-dimensional elements (Arrieta and Striz, 2005). This reduces the number
of model degrees of freedom (DoF's) and subsequent computational effort required to solve the problem, al-
though at a cost to precision (Gonzdlez et al., 2004). Alternatively, a surrogate model can be employed in
lieu of full analysis by approximating the performance of the aircraft based on a sample of analysis results
(Hu and Yu, 2009). This reduces the computational expense of structural analysis by removing the need
to perform FEA on every design solution (Shan and Wang, 2010). DoE is typically employed to suitably
sample the solution space (Montgomery, 1997). This leads to the creation of a response surface of the
approximation upon which optimisation is performed (Park et al., 2009). However, uncertainty and noise
in a surrogate model approximation can penalise the reliability of results (Neufeld et al., 2010). Another
approach is to reduce the model fidelity, i.e. modelling precision with respect to reality, to enable analysis
with a reduced number of DoF's and thus smaller analysis problem size (Zadeh et al., 2009). A low-fidelity
model possesses fewer DoFs than a more precise high-fidelity model, thus requires less computational effort
to solve the problem (Viana and Steffen Jr, 2009), but once again can diminish the precision of analysis
results (Martins et al., 2002). Problem detail can be varied during the optimisation process in an attempt
to reduce the computational time taken without adversely penalising the search, typically through the
refinement of the model approximation employed (Toropov, 2001). For example, an FEA problem can be
approximated rapidly using a one or two-dimensional low-fidelity model prior to more detailed analysis
of the solutions obtained using a three-dimensional high-fidelity model (Markine and Toropov, 2002).
Such variable-fidelity modelling, also referred to as multi-fidelity modelling, employs multiple predefined
levels of fidelity concurrently or at specific points during the optimisation process (Giunta, 1997). One
approach is to employ a low-fidelity model for the majority of analysis with periodic use of a high-fidelity
model to verify results (Alexandrov and Lewis, 2000). This approach requires additional computation to
ensure correlation between the low and high-fidelity model results (Marduel et al., 2006). Alternatively,
multiple model fidelity levels are specified to be employed over predetermined periods of the optimisation
process, typically beginning with a low level of fidelity in order to rapidly obtain good design solutions
prior to more detailed analysis at a higher level of fidelity towards the end of the process (Minisci et al.,
2011). Variable-fidelity modelling has been combined with surrogate modelling such that a high-fidelity
model is used to generate a reliable approximation for the surrogate model that is subsequently employed
alongside analysis at low fidelity (Nguyen et al., 2013). Nevertheless, the use of such a high-fidelity model
to obtain an accurate approximation can still be prohibitively expensive, especially with a large number
of design variables (Zadeh and Toropov, 2002), therefore a low-fidelity model is often used to rapidly
sample the solution space (Han et al., 2013). Different fidelity levels can be employed for the different
design disciplines when performing MDO (MacMillin et al., 1997). Parallel programming can also be
employed to reduce the computational cost of modelling and analysis (Alonso et al., 2004; Oktay et al.,
2011). Each individual design solution within a population is independent of all others within the popula-
tion and as such is modelled and analysed separately from the other individuals (Raymer, 2002). Parallel
programming permits multiple individuals to be processed concurrently rather than sequential modelling
and analysis of a population (Aguilar Maderia et al., 2005).

The loads applied to the model during analysis are of great importance as they drive the structural
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integrity of the aircraft design. Structural analysis determines the feasibility of a design solution with
respect to the design constraints when subjected to loads, which are typically applied as isolated load
cases. Load cases incorporate a series of point and pressure loads along with corresponding boundary
conditions (Laban, 2011). Pressure loads are commonly applied to low-fidelity models as point loads
by considering the load distribution over the model (Venter and Sobieszczanski-Sobieski, 2004). Loads
are typically taken from the extreme points within the flight envelope dictated by the airworthiness
requirements, e.g. CS-23 and CS-25 for civil light and large aircraft respectively and Def.Stan.00-970 for
military aircraft. Loads taken from such extreme points represent the greatest magnitude of loads the
aircraft must withstand during operation. A +2.5g symmetric pull-up manoeuvre is popularly applied to
large civil aircraft (Kesseler and Vankan, 2006). The same manoeuvre is typically applied to aircraft of
other classes but of differing magnitude, e.g. +3.0g for a light civil aircraft (Amadori et al., 2008), +3.5g
for a UAV (Eves et al., 2009), +1.5¢ for a micro air vehicle (Li and Hu, 2002) and +9.0¢g for a military
fighter (Arrieta and Striz, 2005). Multiple flight load cases are sometimes applied to include various
symmetric and asymmetric manoeuvres (Schuhmacher et al., 2002). Alternatively, gust loads are used
to simulate turbulence during flight (Petersson et al., 2010) and ground loads to simulate the loading
of the airframe during landing and manoeuvres such as braking and taxiing (Rao, 1986). These loads
are typically simulated as dynamic loads, thus requiring the calculation of the dynamic response of the
aircraft to the loads over time, or pseudo-static loads (Howe, 2004). A mission simulation may include
multiple load cases applied at specific periods during the defined mission, e.g. taxi, take-off, climb, cruise,
descent and landing, although such analysis becomes computational expensive as analysis is required of

numerous scenarios (Ledermann, 2010).

2.3 Optimisation Techniques

Many different methods of optimisation have been applied for aircraft design optimisation. These have
included both stochastic and deterministic methods, of which both population-based and single-solution
techniques have been employed. Stochastic optimisation techniques are inherently random, thus different
solutions to a problem are likely to be obtained over a number of experiments even with the same
initial conditions. Deterministic methods do not include randomness, hence produce identical results to
a problem when given the same initial conditions. Population-based optimisation techniques consider a
number of design solutions at any one time period. The ‘population’ refers to a set of ‘individual’” design
solutions that populate the solution space explored by an optimisation technique. A single-solution
technique only considers one solution at a time and is commonly a step-based approach to solution space
exploration. The optimisation techniques discussed herein generate a solution which is then evaluated
with respect to the design objective function and constraints. For each generation using a population-
based technique, the best solution in the population is identified and stored as the current best solution
if it provides an improvement in the objective function over the previous best solution. Similarly, with a
single-solution technique the current solution is stored as the current best solution if it outperforms those

generated during previous steps, otherwise the step is rejected.

2.3.1 Monte Carlo

Monte Carlo (MC) simulation is a stochastic population-based optimisation technique wherein a pop-
ulation contains randomly generated individuals from across the solution space. At each optimisation
generation the population is created randomly, resulting in a diverse search across the solution space until
a termination criterion is satisfied (Mavris and Bandte, 1997). The advantage of such a population-based
optimisation technique is the ability to explore a larger proportion of the solution space than using a
single-solution technique. However, a limitation is that it is unlikely that the global optimum, i.e. the

best solution overall within the solution space, will be found due to the random nature of the search.
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Furthermore, it is also unlikely that the scheme will converge at a local optimum, i.e. the best solution
within a solution space neighbourhood, if the size of the population is too large (Raymer, 2002). These
characteristics are true of all population-based techniques described herein. Moreover, the disadvantage
of MC is that it lacks intuition in generating new populations, therefore the population does not evolve
over generations and the chance of improving the best solution is random. Nevertheless, MC is often ap-
plied to large solution spaces containing many randomly-distributed solutions due its ability to maintain
diversity throughout the search and thus avoid premature convergence of a population on a sub-optimal
solution (Yang, 2010). The MC technique can be extended by allowing a sample of the previous popula-
tion to be preserved for the next generation as the indigenous population. The remaining population is

generated randomly, resulting in the technique being labelled random immigration (RI).

2.3.2 Evolutionary Algorithm

An evolutionary algorithm (EA) is a population-based optimisation technique that evolves a population
of individual solutions over a period of generations in an attempt to improve their quality with respect
to the objective function. Each generation involves the analysis of the population and calculation of
their fitness, typically as a function of the design objective. The optimisation technique then evolves
the population for another generation typically with bias towards the fittest individuals; thus employing
Darwinian evolution for survival of the fittest (Julstrom, 1999).

The killer queen (KQ) is an EA that generates a new population through the mutation of the fittest
individual within a population (Raymer, 2002). Mutation is performed by randomly altering the values
of design variables, the method of which depends whether real or binary number representation of the
solution is employed. Real number representation uses real numbers within a genome to represent the

design within the optimisation problem. For example, a design can be represented by a genome
Vi v2 ... |vn,

where n, denotes the number of design variables, V. Binary representation replaces the genome with a
binary chromosome containing bits of value 0 or 1 to represent the real number values of the design vari-
ables. Each design variable is represented by a strand within the chromosome, the length and resolution
of which determines the precision of the binary representation (Raymer, 2002).

Mutation within an EA is performed to stochastically modify randomly-selected design variables or
bits. Typical mutation techniques include random, Gaussian and non-uniform for real numbers and bit-
flip mutation for binary chromosomes (Deb, 2001). Random mutation generates a random value for a
mutated variable. Gaussian mutation superimposes a Gaussian distribution over a variable to mutate
its value using noise (Hinterding et al., 1996). Non-uniform mutation perturbs the value of a variable,
the scale of which reduces over time to promote convergence (Michalewicz, 1996). Bit-flip mutation is
performed to a variable strand bit by inverting its value (Gen and Cheng, 1997). The random nature of
the mutation operator and selection of variable for mutation increase search diversity, with a mutation
probability typically included to prevent excessive mutation resulting in a random search similar to MC.
This probability can be static or dynamic, with the latter typically leading to a reducing probability
over the search duration to promote convergence (Zhang et al., 2007). KQ requires a high mutation
probability to prevent convergence on the current best solution as only this solution is used to generate
the next population. KQ is deemed elitist as the number of individuals used to generate a new population
is restricted to solely the fittest individual. This can saturate the search with an inappropriate mutation

probability and lead to premature convergence upon a sub-optimal design (Raymer, 2002).
2.3.2.1 Differential Evolution

Differential evolution (DE) is an EA where population solutions evolve over generations based on the

influences of other individuals, referred to as ‘agents’, within the population (Storn and Price, 1997). For
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the evolution of a population individual, each design variable within the genome is subjected to mutation
and crossover (Zaharie, 2002). For each individual, a ‘trial vector’ is constructed through the probabilistic
crossover over the genome with a ‘mutation vector’. The mutation vector is built using values obtained
for each design variable through the combination of corresponding variable values from three randomly-
selected agents within the population: «a;, s and as. These agents cannot be the individual currently
being evolved. For the ith individual within the population, the DE algorithm calculates the following
value for the vth variable value of the trial vector for generation k + 1 (Pedersen, 2010)

zghv + Fpe (x’;w) — xgs,u) ifr€[0,1] < pe.pr or v ="y € [0, ny)

gl = (2.1)

7,V

Ty otherwise

where Fpg differential weight

De,pDE  Crossover probability

T random number
xf,v value for vth variable of ith individual at kth generation
ifjl trial vector value for vth variable of ith individual for generation k + 1

The first solution to Eqn. (2.1) represents the vth variable value of the mutation vector, formed using the
corresponding variable values of the three agents. The mutation vector is guaranteed to be accepted for
at least one randomly-selected variable, 7, to prevent search stagnation (Storn and Price, 1997). The
algorithm parameters are restricted to 0 < Fpg < 2 and 0 < p. pr < 1. The solution represented by
the trial vector is analysed in the next generation, i.e. kK + 1 in Eqn. (2.1). If the objective value of
this solution is an improvement over the original individual, the trial vector is accepted and replaces the
original individual within the population for subsequent optimisation (Zaharie, 2002). Investigation of
DE has found the technique to provide efficient exploration and convergence upon a high-quality solution

with appropriately selected parameters (Pedersen, 2010).
2.3.2.2 Genetic Algorithm

A genetic algorithm (GA) is a class of EA wherein a population of design solutions is evolved over
a number of generations through mating, also known as crossover (Goldberg, 1989a). A GA selects
parent solutions from a population to crossover and generate offspring solutions to form the population
of the next generation (Deb, 2001). Mutation can then be applied to the offspring for further population
diversification; however, this is not always beneficial as a mutation can penalise the quality of the evolved
solution (Ali and Behdinan, 2002). The ability of a GA to efficiently search the solution space through
effective population evolution has made it a popular technique within aircraft design and other fields of
optimisation (Raymer, 2010).

The individuals within a population represent designs within the solution space. The crossover of
solutions results in the inheritance of their design characteristics by the offspring, leading to the evolution
of the population (Davis, 1987). Consequently, a GA aims to select parents that will generate fitter
offspring to improve the quality of the population, and thus the solutions to the problem, through the
inheritance of good design characteristics and rejection of poor characteristics (Goldberg, 2002). GA
operation is thus dependent on the method of selection employed to choose the parents and the crossover
technique. Three selection methods that have been employed for aircraft design optimisation are: roulette
wheel (RW), tournament selection (TO) and breeder pool (BP) (Raymer, 2002).

RW selection is based upon a roulette wheel within a casino, where a ball spins around the wheel
and lands randomly in one of its sectors. Within a GA, each parent individual within a population is
represented by a wheel sector, the size of which is calculated as the fitness of the individual as a proportion

of the total population fitness (Xia and Gao, 2002). The sizes of individual sectors are calculated by
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firstly determining the cumulative total fitness of the population. Individuals are then ranked in order
of fitness and scaled using the cumulative population fitness, resulting in individuals of higher fitness
possessing larger sectors than those of lower fitness such that fitter parent solutions are more likely to
be selected. A random value is generated within the bounds of the wheel and the parent lying within
the corresponding sector is selected (Raymer, 2002). An alternative approach to selection is TO, wherein
candidate individuals compete to be the parents selected for crossover. The competition is formed by
randomly selecting a minimum of two candidates from the population, the fittest of which wins the
competition and becomes a parent. Therefore, four candidates are chosen from which two parents are
selected (Michalewicz, 1996). All competitors are usually replaced back into the population following
competition and crossover for future selection. BP selection is an elitist approach wherein only the fittest
individuals within the population are permitted to be selected as parents for crossover. These individuals
are placed within the breeder pool such that pairs of parents can be randomly selected from the pool
(Guo et al., 2006). Replacement can be employed such that parents are returned to the pool following
crossover and thus may be selected for future crossover. Alternatively, parents are not replaced to prevent

repeated selection of the same parents which can lead to search stagnation (Raymer, 2002).

Crossover involves the combination of strands within the genomes, or chromosomes, of the parent so-
lutions to generate a new offspring solution (Michalewicz, 1996). Typically methods of crossover include
one-point, two-point and uniform crossover. One or two-point crossover results in parent genomes inter-
secting at the respective number of points randomly located along the length of the genome. For example,
for one-point crossover the offspring inherits the design variables of one parent up to the crossover point
from which it inherits those of the other parent (Goldberg, 1989a). The number of crossover points can
alternatively be greater than two or be chosen randomly for each crossover event, i.e. random crossover.
Uniform crossover randomly selects a parent for each design variable to pass its variable value to the off-
spring (Raymer, 2002). The function of a GA is based on ‘building block theory’ and thus typically uses
a binary representation with crossover points occurring between the chromosome bits (Holland, 1975).
Further, this enables crossover at points within the strand of each design variable, i.e. not restricted to
the intersections between variables. Such crossover within a variable can be achieved with a real number
representation using blend crossover to merge the variable values (Herrera et al., 2003). Alternatively,
parameterwise crossover may be performed by choosing crossover points only at the intersections between
design variables. Selection typically results in two parents being chosen for crossover, although a single
parent can be chosen and subjected to mutation. Furthermore, one or two children can be generated

depending on the method of crossover employed (Deb, 2001).

2.3.3 Particle Swarm Optimisation

Particle swarm optimisation (PSO) is an example of a swarm intelligence (SI) optimisation technique. SI
methods are population-based and consider the knowledge passed between individuals of the population
to direct the search within the solution space. Conventionally, the terms ‘particle’ and ‘swarm’ are used
in place of ‘individual’ and ‘population’ when discussing PSO. Therefore, PSO encompasses a solution
space search by a swarm of particles in an attempt to find global maximum or minimum corresponding
to the objective function. The best solution discovered by all particle is stored and the swarm is made
aware of this solution. The shared knowledge of good locations within the solution space reduces the
likelihood of premature convergence upon a local sub-optimal solution and encourages global convergence
upon the best solution found by the swarm (Hassan et al., 2005). The velocity and position of the ith
particle at generation k 4 1 are given respectively by PSO as

L k+1 -k ~_ 1=k ~_ 1=k
{z}; =wpsofz}; +cipsoripso <{$}i - {iﬂ}f> + ¢2,Ps0T2,PSO ({w}Hu - {x}?> (2:2a)
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! = fa)h 4 {2y (2.2D)

where c¢1,pso cognitive parameter
€2,PSO social parameter
ri,pso  cognitive random number, 1 pgo € [0, 1]

ro.pso  social random number, r2 pso € [0, 1]

{%}j_)k best position of ith particle for generations 1 to k
{:Ar}izi best position of all y particles for generations 1 to k
I population size

wpso inertia weight

The particle position represents its values of the design variables. The initial positions and velocities
of particles are generated randomly (Venter and Sobieszczanski-Sobieski, 2004). The values of iner-
tia weight and the cognitive and social parameters control the exploration and convergence tenden-
cies of the swarm, i.e. high inertia weight promotes exploration, high cognitive bias promotes search
around the particle best solution and high social bias promotes convergence on the swarm best solution
(van den Bergh and Engelbrecht, 2006). A constriction constant can be used to apply velocity clamp-
ing to prevent excessively high swarm velocity resulting in an unstable algorithm, e.g. search explosion
(Clerc and Kennedy, 2002). PSO is a popular optimisation technique and can provide a superior solution

to EAs at reduced computational cost with the appropriate set-up of parameters (Hassan et al., 2005).

2.3.4 Local Search

Local search (LS) methods are single-solution techniques that explore the solution space in a series of
steps. An LS technique evaluates the solution space surrounding its current position such that it may move
to a nearby improved solution. These techniques can differ from each other in the method of stepping
from the current solution space position or the acceptance criteria for a new position. The step definition
can be random or based on the measurement of the surrounding solution space, whilst acceptance criteria
control the permission or prevention of moves that return to previously-explored solution space regions
or result in reduced solution quality, i.e. a negative move (Pant and Fielding, 1999). The step size of
LS can be varied to encourage either more detailed local exploration, e.g. if nearing a turning point in
the solution space, or increased global exploration, e.g. if deemed close to a plateau (Rohn, 1993). Step-
based approaches are more likely than population-based techniques to converge upon the closest peak or
trough as they to move towards local optima. However, this can lead to convergence on a local optimum
of poorer quality than the global optimum, whereas population-based methods are less likely to do so

through greater solution space exploration (Raymer, 2002).

2.3.4.1 Hill Climbing

Hill climbing (HC) represents the basic LS method wherein the optimisation process explores the solution
space through a series of steps. Steps are determined as random vectors from the current solution,
resulting in random solution space exploration; as such this approach is also referred to as a ‘random
walk’ (Yang, 2010). A step is performed from the current position, leading to analysis of the solution
at the new position. This new solution is accepted if it represents an improvement over the current
solution. The next step is then made from this new position. Alternatively, the step is rejected if the new
solution does not outperform the current position in terms of the objective function, in which case the
next step is taken from the current position (Rao, 1996). The random nature of this technique decreases
the likelihood of premature convergence on a local optimum rather than the global optimum through
increased search diversification but reduces the probability that the search will converge on the best

nearby solution (Raymer, 2002).
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2.3.4.2 Steepest Descent

A more intuitive LS search method than a purely-random walk is the steepest descent (SD) method.
This deterministic technique measures the gradient of the local solution space surrounding the current
position and makes a step in the direction of greatest gradient (Polak, 1997). A step is accepted if the
new position represents an improvement in solution quality over the current position. The step size
is varied to encourage more detailed analysis close to a minimum as determined by the solution space
gradient history (Rohn, 1993). SD assumes the search is performed against a minimisation objective
function, e.g. minimal structural mass. This approach can alternatively be employed for a maximisation
function and is then termed the ‘steepest ascent’ method (Raymer, 2002). Measurement of solution space
gradients increases the probability of obtaining a good solution over HC, but can be computationally
expensive for problems with large numbers of design variables due to the number of necessary gradient
measurements (Guo, 2007). Moreover, the deterministic nature of the technique means the same solution

will be obtained if the optimisation process is repeated under the same conditions (Polak, 1997).

2.3.4.3 Simulated Annealing

Simulated annealing (SA) develops the HC technique for stochastic solution space exploration but with
the possibility of accepting a negative move, i.e. a move that does not offer an improvement on the current
solution. This reduces the likelihood of the optimisation search becoming trapped in a solution space
region and thus converging on a local optimum (Pant and Fielding, 1999). The method was inspired by
the process of annealing metals, whereby the metal temperature during the cooling process is occasionally
raised before being reduced once more to allow crystalline structures within the material to settle before
solidification (Davis, 1987). In simulation of this procedure, SA probabilistically permits the acceptance
of an optimisation step to a worse solution than the current solution, the probability of which is defined
at the kth step as (Kirkpatrick et al., 1983)

. A

_ 2.3
pneg kagA ( )

where ky Boltzmann’s constant
T§ 4 initial simulated annealing temperature at kth step

A®*  change in objective value at kth step

The current SA temperature determines this probability of accepting a negative move. A cooling sched-
ule reduces this temperature over time, i.e. the optimisation process duration, through quenching. This
decreases the probability of accepting a negative move towards the end of the search, thus permitting
early exploration of the solution space but encouraging convergence on the best solution towards the
end of the process (van Laarhoven and Aarts, 1987). The cooling schedule of an SA technique is com-
monly exponential or linear, resulting in the following expression for the temperature at the kth step
(Nourani and Andresen, 1998)

i ok 19, for exponential cooling
(1 —agak)Td,  for linear cooling

where ag 4 denotes the simulated annealing cooling rate. The cooling rate controls quenching of temper-
ature and is typically set to reduce to zero by the end of the process, whilst the initial temperature is

commonly set below one so that a negative move is never guaranteed (Nourani and Andresen, 1998).
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2.3.4.4 Tabu Search

Tabu search (TS) is an LS method that possesses a short-term memory of the solution space regions
previously explored (Glover and Laguna, 1997). This prevents repeated exploration of solution space
regions that are known to contain worse solutions and can therefore prevent trapping of the optimisation
search in a sub-optimal region. The short-term memory uses a tabu list to record recently explored
solution space regions or steps, leading to a check at each step that the new position or step is not on the
list, i.e. it is not tabu (Qiu and Zhang, 2010). The length of the tabu list defines the tabu memory such
that entries are removed from the list after a predefined period to allow such moves later in the search,

thus preventing saturation of the search (Glover and Laguna, 1997).

2.3.5 Hybrid Methods

Hybrid methods combine population-based and single-solution optimisation techniques such that the
former stochastically explores the solution space to determine the most promising neighbourhood before
allowing a step-based method, usually a deterministic technique, to locate the nearest local optimum
(Bos, 1996). Typically a GA is employed to search the solution space and discover a promising region
before a LS technique promotes convergence on the closest optimum (Sahab et al., 2005). Thus, a hybrid
method aims to overcome the limitations of population-based and step-based techniques, i.e. lack of
guaranteed convergence for the former and inadequate exploration leading to premature convergence for
the latter (Qiu and Zhang, 2010). The principal limitation of a hybrid method is determining the point
at which to change from the population-based technique to the single-solution technique and thus prevent
excessive time spent on exploration whilst also ensuring the deterministic method starts from the most
suitable region of the design space. Further, establishing an appropriate resolution of the deterministic
method is also a challenge, i.e. the ranges of design variables and number of chromosome strand bits per
variable if using a binary representation (Raymer, 2010). Typically, population convergence is measured
over a period of generations such that the change from population-based to LS technique is made upon
satisfactory convergence of the population (Hansen and Horst, 2008). An alternative method developed
for use with binary chromosomes is bit-string affinity (BSA), where the similarity of population individuals
is measured to enable termination of the search when the affinity exceeds a preset limit (Raymer, 2002).
Affinity measures the difference between bits within a binary chromosome, with convergence recorded

when the average affinity over all bits exceeds a threshold value.

2.3.6 Surrogate Modelling

Surrogate modelling has been applied during aircraft design optimisation in an attempt to reduce the
number of solution evaluations by computationally expensive tools (Hu and Yu, 2009). A response sur-
face is created through sampling of the solution space and performing analysis of the sample. DoE is
commonly used to sample the solution space, within which a Latin hypercube is often used to select
the sampling points (Toropov et al., 2005). The response surface is typically created using a series of
second-order approximations (Park et al., 2009), leading to its evaluation by mathematical methods, e.g.
finite difference (FD) or kriging (Forrester et al., 2007), or exploration using meta-heuristics, e.g. MC
(Mavris and Bandte, 1997). As discussed in §2.2.2, the precision of the model, and thus the response
surface, limits this method as the optimisation techniques are reliant on the quality of this approximation
and the influence of noise (Raymer, 2002).

The mathematical methods used to solve the response surface problem have also been employed to
solve optimisation problems themselves as a series of equations, e.g. FD (Rao et al., 1979) and sequential
quadratic programming (SQP) (Rothwell, 1991). Such methods determine relationships between design
parameters for the generation of system equations that are solved for the satisfaction of the objective

function (Barthelemy and Haftka, 1993). These methods are not as popularly applied for modern optimi-
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sation problems due to the increasing capabilities of computational tools and the increasing complexity,
i.e. number and interaction of design parameters, of optimisation problems (Raymer, 2002). Therefore,

such methods are now mostly coupled with surrogate modelling (Hu and Yu, 2009).

2.4 Constraint Handling

Solution feasibility is of critical concern during aircraft design optimisation to ensure the final design
obtained is suitable for manufacture and operation. Feasibility is conventionally measured with respect
to design constraints to create a constrained optimisation problem. Solutions that fail to satisfy a design
constraint are infeasible and are said to violate the constraint. As a result, design constraints form the

boundaries of the feasible and infeasible regions of the solution space. Design constraints are formed as
9i5(X*) < ¢ (2.5a)
hi}j (Xk) =Cy (25b)

where ¢; jth design constraint
gi,j(Xk) value of ith individual with respect to jth inequality constraint at kth generation
h; j(X*)  value of ith individual with respect to jth equality constraint at kth generation

X population set of size p individuals

Equation (2.5a) represents the required value for a feasible solution with respect to an inequality design
constraint whilst Eqn. (2.5b) states the required value for an equality constraint. Note that the inequality
constraint can alternatively be written to require a value greater than or equal to a specific value.
Moreover, the symbols g and h are also often used to denote the magnitude of constraint violation, i.e.
such that gi,j(Xk) < 0 indicates no violation of an inequality constraint whilst gi,j(X’“) > 0 expresses
the magnitude by which the ith individual has violated the jth constraint. It is in this manner by which
the symbols are used throughout the remainder of this document. During aircraft structural design
optimisation, inequality constraints are most typically applied, e.g. to limit deflection or stress. Various

strategies exist for dealing with constraint violations, three of which are (Gen and Cheng, 1997):

e rejection strategy;
e repairing strategy;

e penalising strategy.

2.4.1 Rejection Strategy

A rejection strategy discards all infeasible solutions regardless of the degree of constraint violation
(Kramer, 2010). This strategy ensures a feasible solution will be obtained but can restrict the opti-
misation search by preventing the propagation of good design properties possessed by infeasible designs,
most notably when applying an evolutionary optimisation technique (Michalewicz and Schoenauer, 1996).
Further, such strategies perform poorly for highly constrained problems, are prone to premature conver-
gence upon local optima for problems possessing multiple feasible regions of the solution space and do
not consider the distance of infeasible solutions from the feasible regions (Yeniay, 2005). Moreover, the
optimisation search requires a feasible initial population to prevent stagnation of the search, therefore
rejection strategies are often used for convex optimisation problems where the feasible region constitutes

a large proportion of the solution space (Coello Coello, 2002).

2.4.2 Repairing Strategy

A repairing strategy modifies the characteristics of an infeasible solution using a deterministic procedure

to improve its feasibility (Kramer, 2010). Convergence within the infeasible solution space region is

27



Chapter 2. Aircraft Design Optimisation

typically discouraged by including no more than 15% of the repaired solutions in the next population
(Michalewicz, 1996). The determination of the repair procedure can become difficult with a large number
of variables and complicated dependencies, as well as being computationally expensive to assess. Further,
repair operators can introduce strong search bias, penalising the effectiveness of evolutionary optimisation
(Coello Coello, 2002). Finally, the repairing strategy is problem-dependent, thus requires considerable

research to ensure a suitable procedure is followed (Gen and Cheng, 1997).

2.4.3 Penalising Strategy

A penalising strategy employs a penalty function to penalise the objective value of a solution based on
its feasibility (Kramer, 2010). As a result, the constrained optimisation problem is replaced by a set of m
unconstrained problems for m design constraints (Coello Coello, 2002). Penalty functions were originally
presented in Courant (1943) and subsequently developed by Fiacco and McCormick (1968) leading to
many types of functions. A penalty function results in a ‘penalised’ objective value which is obtained by
combining the unpenalised objective value with the value of the penalty function. Most penalty functions

are formed as one of the following:

e death penalty;
e interior penalty;

e exterior penalty.
2.4.3.1 Death Penalty

The death penalty applies an infinite penalty to an infeasible solution (Coello Coello, 2002). As such,
this penalty function bears the same characteristics as the rejection strategy described in §2.4.1. For an
inequality constraint, the resulting objective value of the ith individual within a population set X at the

kth generation may be expressed as

5 i3 g0y (XF) >0
o, (XF) = j=1 (2.6)

fi(X*)  otherwise

where f;(X*) unpenalised objective value of ith individual in population set X at kth generation

®;(X*) penalised objective value of ith individual in population set X at kth generation

2.4.3.2 Interior Penalty

The interior penalty function penalises solutions as they approach a constraint boundary. Far from the
constraint boundaries, the magnitude of penalty is small whereas the applied penalty tends to infinity at a
boundary. As a result, a feasible solution is highly likely providing that the initial solution lies within the
feasible region (Coello Coello, 2002). This requires an initial population to be entirely feasible to ensure
a feasible solution. Furthermore, the interior penalty function cannot be used with equality constraints

(Homaifar et al., 1994). The objective value resulting from an interior penalty function is expressed as

1

90, (X)) 27

©;(X") = fi(X") +A2mj

where A represents a penalty coefficient to define the severity of penalisation. The magnitude of penalty
applied considers only the distance between the solution and the constraint boundary and not whether the
solution lies in the feasible or infeasible region (Rao, 1996). Consequently, the interior penalty function
is often combined with the death penalty to form a barrier function to apply an infinite penalty to all
infeasible solutions (Carroll, 1961; Nocedal and Wright, 1999).
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2.4.3.3 Exterior Penalty

The exterior penalty function penalises only infeasible solutions by a magnitude proportional to the
degree of constraint violation (Rao, 1996). Hence, unlike the interior penalty function exploration of
the feasible solution space is possible without any penalisation. Solutions are penalised after crossing a
boundary into an infeasible region of the solution space to promote feasible convergence (Coello Coello,

2002). An exterior penalty function for an inequality constraint generates the following objective value

0;(X¥) = £,(X*) + 1) " max [0, g;;(XF)]" (2.8)

j=1

where « denotes the penalty parameter used to define the dimensionality of the penalty function, i.e.

linear, quadratic etc. An alternative to this additive function is a multiplicative function (Yeniay, 2005)

®;(XF) = f;(xXM {1 —|—)\imax [0, 95,5 (XF)]* (2.9)

j=1

A study by Richardson et al. (1989) indicated that a penalty function that considers the degree of con-
straint violation would outperform one that only considers the number of violated constraints. Moreover,
the latter would be unlikely to generate a feasible solution if the problem contains few constraints and
feasible solutions. Consequently, the death penalty can be considered as the least suitable penalty func-
tion. Further, the exterior penalty function has been more generally applied than the interior function

due to the removed requirement for a feasible starting point (Coello Coello, 2002).
2.4.3.4 Penalty Function Set-Up

A penalisation strategy is sensitive to the set-up of the penalty function employed due to the influence of
its parameters on the severity of penalisation of solutions (Deb, 2000). The minimum penalty rule requires
that the magnitude of penalty should be as small as possible so that infeasible solutions possess objective
values marginally worse than those that are feasible (Coello Coello, 2002). Failure to follow this rule
results in an ill-conditioned problem generating significantly worse objective values for penalised solutions,
leading to a low probability that characteristics of these solutions will be included in the next generation.
However, the penalty should be sufficiently great to promote convergence on a feasible solution. As a
result, it can be difficult to ascertain the required magnitude of penalty to be applied for a problem
with complex constraints (Coello Coello, 2002). The severity of penalty is controlled by the penalty
coeflicient and penalty parameter that encourage either informative preservation or selective pressure.
Informative preservation attempts to ensure a sufficient number of infeasible solutions are considered
to permit their beneficial characteristics to be preserved. Conversely, selective pressure encourages the
rejection of infeasibility to promote a feasible solution. Additionally, the severity of penalty may be
weighted to assign priority to feasibility with respect to specific constraints (Coello Coello, 2002).

The penalty parameter is typically maintained at a static value such that a simple penalty function is
employed to ensure robust optimisation, with a quadratic function suggested as that of highest complexity
(Beyer and Sendhoff, 2007). Furthermore, a quadratic function is often employed due to its early use
with calculus-based optimisation techniques (Crossley and Williams, 1997). Alternatively, the penalty
coefficient can be varied to create a dynamic function, commonly based on the generation number, i.e.
time (Joines and Houck, 1994). This leads to lower penalties being applied to solutions during early
generations to permit informative preservation prior to greater penalties towards the end of the search to
apply selective pressure towards a feasible solution. However, such a generation-based function can lead
to premature convergence due to the increasing restriction on the search (Michalewicz, 1996).

An alternative approach to the standard single-level penalty function was presented by Homaifar et al.
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(1994), where multiple violation levels were defined such that the penalty parameter was greater for
higher violation levels. However, this approach required m (21 + 1) parameters for [ violation levels; thus
needing a large number of parameters to define each problem (Yeniay, 2005). Gen and Cheng (1997)
presented a different function that scaled the magnitude of penalty by the greatest violation within the
current population. This encouraged population diversity to be maintained and resulted in the non-

parameterisation of the design constraints. The exterior penalty function was given by

max [0, g; ;(X¥)] “
P, S(XE) 14+ A J 2.10
X = 155 L1+ z {max Lol (2.10)
where ¢ is a small positive value to prevent division by zero. Bean and Hadj-Alouane (1992) developed
an adaptive penalty function that modified the penalty coefficient depending on the feasibility of the best

solution generated over the previous ny ) generations

Akfl
3 if best solution always feasible over previous ny » generations
1
k _
AT = AE=18, if best solution never feasible over previous n ) generations (2.11)
el otherwise

Constants 31,2 determined the rate at which the penalty coefficient was increased or decreased as dictated
by population feasibility, where 8; 2 > 1, 51 > 2 and 31 # (2 to avoid cycling. The difficulty inherent
with this function was the determination of a suitable value for ny » and the quantity of best solutions
to be monitored (Coello Coello, 2002). Another adaptive penalty function was presented by Rasheed
(1998) that monitored the individual solutions within the population set that corresponded to the least
number of constraint violations and the maximum fitness. These individuals were compared after a
predefined period of generations, leading to the increase of penalty parameter if they possessed different
fitnesses. The penalty parameter was also reduced if the population was entirely feasible. The limitation
of this function was the difficulty in selecting an initial penalty parameter and the period over which
the individuals are monitored. Nanakorn and Messomklin (2001) developed a similar function that used
a ratio between the average population fitness and that of the best infeasible solution to control the
magnitude of penalty applied. This function was evaluated for the optimisation of three truss and frame
structures with promising results that indicated high robustness of the function. However, the success of
the method was also dependent on its initial set-up, i.e. the magnitude of scaling to be performed.

Crossley and Williams (1997) performed a study of different adaptive penalty functions coupled with
a GA. The penalty parameter was adapted based on the standard deviation and variance of the popula-
tion fitness and compared against a generation-based dynamic penalty function of varying gradient. TO
and uniform crossover were employed with a crossover probability of 50% and with criteria for process
termination after a maximum of 100 optimisation generations or a failure to improve the best solution
over five successive generations. The problems solved included one and two-dimensional mathematical
benchmark functions as well as the mass minimisation of a stiffened composite panel. The results indi-
cated improved solutions with an adaptive or dynamic penalty function over a static function, with the
generation-based control of the penalty parameter outperforming control by population fitness.

A self-adaptive penalty function was introduced by Coello Coello (2000) that considered the penalty
as two independent parts: the number of constraints violated and the degrees of violation. This function
was subsequently used for the coevolution of two populations, one of which was tasked with optimising
the solutions to the problem whilst the second evolved the weights applied to the two penalty function
parts. This function was found to be sensitive to the values of parameters input, leading to an extensive

number of solution evaluations if not appropriately set up (Yeniay, 2005). An alternative approach was

30



2.4. Constraint Handling

presented by Deb (2000) that removed the penalty coeflicient and parameter from the exterior penalty
function. Instead the objective value of an infeasible solution was calculated as the sum of the worst
feasible solution objective value and the constraint violations by the solution. This function assumed
that any feasible solution was preferable over an infeasible solution. Although promising results were

obtained, difficulty was observed in maintaining population diversity (Coello Coello, 2002).

2.4.4 Constraint Handling during Aircraft Design Optimisation

Aircraft design optimisation often requires a solution to be found close to the constraint boundary to
avoid excessive cost in the design through unnecessarily high feasibility. Further, exploration beyond
the constraint boundaries can be beneficial to allow good design characteristics of infeasible designs to
propagate to those within the feasible solution space, thus improve the quality of feasible designs. As
a result, penalty functions are typically employed for aircraft design optimisation. An interior penalty
function was employed by Rao et al. (1979) and Rao (1984, 1985, 1986, 1987) to the problem of aircraft
wing structural optimisation. This required the initial solution to be feasible and, as such, a feasible
design was likely during optimisation. This research did not employ population-based optimisation,
therefore the computational effort required to ensure a feasible initial solution was less than would have
been necessary for an entirely feasible initial population of designs.

More recent investigations into aircraft design optimisation have applied an exterior penalty function,
most notably when coupled with population-based optimisation. Furthermore, the lack of penalty applied
to feasible solutions by an exterior penalty function permits greater opportunity for discovery of an
optimum solution in close proximity to the constraint boundaries. For example, Rafique et al. (2011)
employed an exterior penalty function using a penalty parameter o = 1, whilst Amadori (2008) also used
this penalty function with varying values of penalty parameter and coefficient. Raymer (2002) employed a
dynamic exterior penalty function with a linear increase in the penalty parameter over time to encourage
convergence on a feasible solution due to increasing penalty severity. This function was chosen having
discovered limitations of applying a rejection strategy to the problem, i.e. too severe an environment was
created for successful optimisation. Ali and Behdinan (2002) applied a scaled exterior penalty function
to non-parameterise the function. The penalty parameter was increased during the optimisation process
from 1 < a < 3 to similarly raise penalty severity over time.

Ponterosso and Fox (1999) employed an exterior penalty function with constraints on the maxi-
mum stress and displacement of each member within a two-dimensional truss structure. The degree
of constraint violation was measured as the sum of the constraint violations of each structural member.
Empirically-defined weights were also applied to the design constraints to differentiate between the impor-
tance of the two constraints. Pant and Fielding (1999) similarly weighted constraint violations by their
importance on the design, as well as permitting constraints to be statically disabled prior to optimisation
if deemed unnecessary for the current problem. Weighting was applied differently by Olvander et al.
(2009) to weight the different design objectives of the MDO problem. An exterior penalty function was
employed, with constraint violations computed with respect to all design constraints across all disciplines.
No weighting was applied to the resulting penalties, however the weighting applied to the objective func-
tion provided predetermined importance to each discipline. Qiu and Zhang (2010) used a fuzzy exterior
penalty function to calculate the penalties to be applied to each design given the magnitude of constraint
violations. This resulted in a set of static penalty values to be added to the objective value, the value of
which was dependent on the magnitude of constraint violations.

Many publications within the field of aircraft design optimisation do not provide details of the nature
of penalty function applied. For example, Reuther et al. (1999) described the use of a penalty function to
avoid unreasonable design geometry, possibly suggesting the use of an interior penalty function to prevent
the geometry from approaching the boundaries of a feasible solution. Similarly, a penalty function was

employed by Majumder and Rao (2009) but not explicitly defined.
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2.5 Comparison of Existing Approaches

Existing studies into aircraft design optimisation have varied in the focus of the research and the method
employed to optimise a design. Despite this, similarities have been observed in the approaches employed
to tackle this problem. Table 2.1 presents the results of the literature review into existing approaches to
aircraft design optimisation. The results presented for each researcher include the publications of greatest
significance to this research. These results are grouped into fields of research focus, aircraft class and
section, static or variable model fidelity, load cases simulated during analysis, optimisation techniques and
penalty functions employed, and design parameters considered. Table 2.1 provides the most frequently
observed values within each field, with ‘miscellaneous’ capturing alternate or not clearly defined values.

The focusses of most of the approaches reviewed can be categorised by the descriptions given in
the corresponding publications as either on the aerodynamics or structure of the aircraft. The former
typically indicated an objective of minimal aerodynamic drag through the optimisation of the aircraft
external profile whilst the latter led to optimisation of the airframe for minimal mass in most cases, as
shown in Table 2.1. A selection of studies had an additional miscellaneous focal point, such as improving
the computational efficiency of the optimisation process rather than focussing principally on improving
the designs obtained. Alternatively, a miscellaneous focus can indicate a different aspect of engineering
design under consideration, for example the research by Antoine et al. (2004) was focussed on improving
the environmental impact of an aircraft. Nevertheless, the majority of the literature indicated research
focussing on either the aircraft aerodynamics, structure or both. Within the specified area of focus,
publications were concerned with either the development and evaluation of a framework for application
to aircraft design optimisation or the improvement of aircraft designs using existing tools.

The class of aircraft most commonly studied in the literature was a large civil aircraft. The ability
to consider a single class of aircraft, as was the case in most studies, limits the use of a framework
or tool to that class alone. This prevents the use of a framework for other classes even though the
design considerations are similar, and thus can be defined by similar design variables (Raymer, 2002),
but with several key differences. These include the load cases to be applied to the aircraft, as these are
dependent on aircraft class, as well as design variations, i.e. significant geometrical differences or mission-
related features, e.g. payload. A similarly limiting factor included in many existing approaches was the
consideration of only the aircraft wing. This permits greater detail in the design, modelling, analysis and
optimisation of the wing without increasing the computational cost compared to modelling the entire
aircraft. However, by considering only the wing it is not possible to generate a complete aircraft design
for output to the next stage of the design process. The lack of a complete aircraft conceptual design is a
disadvantage given the importance of generating a number of suitable concepts at the early stage of the
design process for further detailed development into the final aircraft design, as was discussed in §1.2. In
fact, such detailed design, modelling and optimisation of an aircraft section is better performed at later
stages of the design process, i.e. embodiment or detail design, where the computational time required to
perform such tasks is of less importance than the precision and quality of the design obtained (Raymer,
2006). For example, Chintapalli et al. (2010) investigated the optimisation of skin-stringer panels in the
aircraft wingbox, but focussed their research on the embodiment stage of the design process.

Table 2.1 confirms that existing approaches predominantly employed static model fidelity. In ap-
proaches where variable-fidelity modelling was employed, this was typically achieved through surrogate
modelling such as by Hu and Yu (2009). Variable-fidelity modelling is used in such cases to allow many
analyses to be performed at low levels of fidelity before performing a small number of analyses high-
fidelity models to account for the error in the low-fidelity models due to approximations. This introduces
a reliability on the quality of approximation made of the solution space whereas variable-fidelity mod-
elling without the use of a surrogate model, i.e. through simply changing the precision of computational

model, removes this risk. Minisci et al. (2011) employed variable-fidelity modelling through discrete in-

32



2.5. Comparison of Existing Approaches

creases in fidelity over the duration of the optimisation process. This permitted an approximation to be
made of a good solution with a low-fidelity model prior to further improvement of the design at higher
fidelity. However, this approach did not allow for a reduction in model fidelity if desired. For example,
if a dramatic change was made in the best solution leading to relocation of the search to a new region of
the solution space it may have been beneficial to explore this region with a low-fidelity model for rapid
approximation of the solutions in the region. This was not possible with this variable-fidelity approach

that only permitted increases in model fidelity.

A single load case was applied in the majority of studies, most commonly a symmetric pull-up manoeu-
vre of the greatest magnitude within the flight envelope. Rao et al. (1979, 1984, 1985, 1986 and 1987)
included the optimisation of an aircraft wing for a variety of loading conditions including gust, landing
and taxi loads. A single load case was applied during the experimentation of Kesseler and Vankan (2006),
who acknowledged that all load cases required by the airworthiness requirements should be applied to
the aircraft during the design process in order to certify the design. Raymer (2006) indicated that it can
be acceptable to assess a design against a selection of critical load cases during the early stages of the
design process, i.e. conceptual design. Nonetheless, applying a larger selection of load cases improves the

likelihood that a realistic design solution will be obtained.

A number of different optimisation techniques have been employed for aircraft design optimisation.
Most recently, GAs have found popularity within this domain, such as by Amadori et al. (2007a, 2007,
2008), Ali and Behdinan (2002), Guo et al. (2006) and Raymer (2002), although other EAs and tech-
niques such as MC, PSO and SA have also been applied. Surrogate modelling is a common method of
reducing the effort required for analysis of a solution. Conversely, many frameworks within the literature
preferred not to use surrogate modelling such that each design solution is analysed in similar conditions.
An exterior penalty function is most often employed to encourage solution feasibility. As discussed in
§2.4.4, this function is usually a static quadratic function, although deterministically-controlled dynamic
functions were employed by Ali and Behdinan (2002) and Raymer (2002).

The similar requirements and configurations of aircraft designs over recent years have resulted in
common design variables, constraints and objectives for existing approaches. Studies focussing on the
aerodynamics of the aircraft tended to employ variables to define the geometry of the aircraft sections
considered, i.e. wing, fuselage or empennage, as indicated in Table 2.1. The wing and empennage are com-
monly optimised using similar variables due to the similarity in their designs (Raymer, 2002). However,
the wing is often optimised to greater detail with a larger number of variables than the empennage due to
its importance as the primary lifting surface of a conventional fixed-wing aerodyne. These variables define
the chordwise and spanwise profiles of a lifting surface, as well as its position and orientation relative to
the fuselage. For example, typical design variables are those used by Venter and Sobieszczanski-Sobieski
(2004) that included the chord length, thickness-to-chord ratio, surface area, aspect ratio, taper ratio and
sweep angle. The fuselage is typically optimised through variation of its length and principal cross-section,
as well as aspects of nose and tail geometry. The powerplant is occasionally optimised in coordination
with the aircraft with respect to the number of engines and the vehicle thrust-to-weight ratio. Similarly,
aircraft stability is employed as a design variable in the form of the static stability of the vehicle, al-
though this factor is often used as a constraint instead. Alternatively, properties of the aircraft mission,
e.g. cruise altitude and range, are included as design variables, commonly during the optimisation of the

aircraft noise, emissions or cost performance.

Design variables concerning the structural layout of the airframe typically defined the number, posi-
tion, size and material of airframe structural members. The number of members concerns the quantity
of each type of member within each aircraft section, e.g. wing ribs. The positions of these members
are defined either using formulae to determine their distribution within the aircraft section or through

individual variables to set the positions of each member of the type. Similarly, the sizes of the structural
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members are typically determined by variables defining the cross-sectional shape of the member as well
as its breadth and depth (Chintapalli et al., 2010). Materials can be varied either by using a database
of common aerospace materials or through the optimisation of mechanical properties of the members.
These variables are applied either for all structural members of a specific type within the airframe or
for each member individually. The independent application of variables to individual members greatly
increases the size of the optimisation problem, therefore is less commonly performed. Optimisation of
the airframe using composite materials introduces new variables to define the number, orientation and
thickness of plies of the composite materials (Kim et al., 2013). The inclusion of composites also leads
to the requirement to consider new constraints on the design such as the joining of composite layers and
manufacturing restrictions not inherent with metallic materials. Topology optimisation, such as that
conducted by Oktay et al. (2011), is typically performed by discretising a member to permit the removal
or addition of material from the member in order to optimise its design whilst maintaining satisfactory
performance. Such optimisation is typically performed when considering isolated aircraft sections rather

than the entire aircraft due to the level of detail employed during optimisation.

The design constraints can be grouped as either design or performance-based constraints. For ex-
ample, design-based constraints restrict the geometry and design characteristics of the aircraft such as
the wingspan, fuselage length and powerplant requirements (Raymer, 2002). These are typically used to
ensure a reasonable aircraft design is obtained for manufacture and operation within existing aerodrome
restrictions. Conversely, performance-based constraints determine the requirements of a design during its
analysis, such as the structural integrity of the airframe as measured using FEA. Such structural integrity
is typically established as using the minimum FoS under yield within the airframe structural members and
the deflection of the structure under load. These constraints are defined by the airworthiness requirements
or the aircraft geometry, e.g. constraining wingtip deflection against ground-strike based on the distance
between the ground and tip at rest. Schuhmacher et al. (2002), however, included additional structural
constraints including maximum values of stress components and buckling loads as well as step sizes in
the geometry of adjacent members and a limiting flutter speed. Other common constraints include the
twisting of lifting surfaces and the amount of lift required to be generated. Mission characteristics are
also employed as constraints to ensure the design will be fit for operation, e.g. a minimum range of a large
civil aircraft to ensure the vehicle can operate on a desired route. Generally, constraints on the structural
integrity of the airframe are most common during structural optimisation and also most appropriate to

ensure the optimisation process produces a reasonable design for manufacture and operation.

The most common design objective during structural optimisation was for an aircraft of minimal mass.
This is to encourage improved operational performance of the aircraft leading to reduced fuel consumption,
emissions, noise and cost as a result of the aircraft possessing a lighter airframe to propel through the
air. Further, a lighter airframe can also lead to reduced manufacturing costs, although reducing mass
through the use of new materials can conversely add cost to the design. The use of this objective function
is typically coupled with variables to control the structural layout of the aircraft and, in some cases,
the external geometry as well. Existing studies that include aerodynamic optimisation most commonly
employ an objective function to minimise aerodynamic drag. Common alternative objective functions of
existing approaches include minimal sonic boom (Alonso et al., 2009), emissions (Bower and Kroo, 2008)
and cost (Kaufmann et al., 2010). These objectives are often used in combination with others for minimal

mass, drag or both, typically through MDO.

The number of design parameters, i.e. variables, constraints and objectives, employed during studies
differed greatly, typically numbering between four and 70 parameters. The consideration of a single
section of the aircraft, such as the wing, provides the opportunity to reduce the number of parameters
employed and, therefore, the size of the optimisation problem. Alternatively, the symmetry of the aircraft

and similarity of external and internal geometry can enable a reduction in the number of variables by
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geometric assumptions such as symmetric wing-mounted ordnance positions or identical cross-sectional
geometry of airframe members of the same type, e.g. ribs. Increasing the number of variables greatly
increases the number of design variations populating the solution space, therefore reducing the number
of variables is beneficial to improve optimisation process convergence and prevent an excessively long
solution process. Raymer (2002) listed the most critical design parameters during aircraft conceptual
design optimisation, albeit without employing structural variables, and stated that five key variables
were the minimum required for aircraft MDO assuming a fixed engine design: wing loading coeflicient,

aspect ratio, taper ratio, sweep and aerofoil thickness-to-chord ratio.

A common theme amongst existing approaches to the aircraft design optimisation problem is to employ
a pre-determined solution process with limited ability to modify this process to improve its operation.
The possibility of such adaptation would be beneficial in order to encourage improved search behaviour,
e.g. solution space exploration to prevent premature convergence by an LS technique or convergence
upon the neighbouring local optimum by a population-based optimisation technique. Such a dynamic
optimisation problem would thus be more likely to generate a high-quality solution than a static pre-
determined process. Furthermore, the majority of publications presented solely the process of finding
solution to a particular problem of aircraft design optimisation. Notwithstanding this, a number of
studies presented a framework for the optimisation of an aircraft. As a result, these studies provide the
closest similarities to the aim of this research. Kesseler and Vankan (2006) presented a framework for the
MDO of a wing design considering multiple performance objectives of minimum mass, maximum range
and maximum fuel efficiency. This framework included the generation of aircraft geometry, engine sizing,
load computation, aerodynamic and mission analysis, and structural optimisation. The framework only
considered the design of the wing and applied a single isolated load case of a +2.5¢g symmetric pull-up
manoeuvre. This load case was selected to apply the greatest bending moments on the wing structure,
with the software tool Nastran employed to perform FEA with a design constraint imposed on the
maximum von Mises stress within the airframe. The design variables were not defined explicitly, i.e. it
was stated that they control the sizes of structural members for mass optimisation whilst wing geometric
properties were varied for the optimisation of range and fuel efficiency. The results of the investigation
achieved significant improvements in the final design over the initial solution using the MDO framework.
However, no comparison was performed of the designs against other approaches. Moreover, the results
of the solution process were dependent on the geometry of the solution space resulting from the use of a

Pareto frontier to measure the multiple design objectives.

Amadori (2008) presented a thesis that included a framework to connect analytical tools employed
during the aircraft design optimisation process. This thesis was formed following a number of earlier
publications (Amadori et al. 2007a, 2007b, 2008). The framework was designed to improve the efficiency
of the MDO process using existing software tools. For example, Microsoft Excel was used for user
input and subsequent process initialisation as well as aircraft sizing using Visual Basic (VB). CATIA
was employed for modelling the aircraft and MATLAB used to simulate an aircraft mission, including
the application of an isolated load case. This load case was a +3.0¢g pull-up manoeuvre, which was
chosen as the bounding load case to drive the aircraft size (Amadori, 2010). Aerodynamic analysis was
performed using PANAIR, a panel code that was preferred over CFD due to the significant reduction in
computational time required. OptiQuest was the tool employed to optimise the design solution. This tool
included a library of optimisation techniques that were operated using the settings input in Microsoft
Excel. The software tools were connected using the orchestrating tool Modelith. The design components
were modelled using CAD, with parameterisation employed to establish a relationship between the design
variables defining aircraft geometry and the subsequent CAD model. The use of CAD increased the
flexibility of the optimisation through improved design precision compared to other methods. Nonetheless,

the CAD model required a high degree of flexibility in order to robustly represent the wide variety of
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design possibilities. A penalty on computational time also resulted from the use of such detailed modelling,
leading to later development of the framework to employ simple beam models for more rapid modelling
analysis if preferred over analysis precision (Amadori, 2010). A general structural element was used
to model airframe members, with design variables controlling the number and positions of structural
member types, e.g. ribs, frames etc., and the individual thickness of each member. Through scaling and
design symmetry it was possible to reduce the number of variables, thus increasing process efficiency.
For example, the number and positions of ribs in each wing were assumed to be the same given aircraft
symmetry about the longitudinal axis, thus requiring half as many variables compared to an asymmetric
design. It was also emphasised that over-constraining the solution could compromise the design process

such that good attributes of infeasible designs are not considered.

Schuhmacher et al. (2002) introduced a framework for the MDO of a civil aircraft wingbox. The
purpose of this publication was to demonstrate the benefits of a framework combining multiple groups of
engineering design disciplines over the historic aircraft design process of individual design groups. The
reasoning for this approach highlighted the interdependencies of the different disciplines, most notably
aeroelastics and structures. Furthermore, more detailed modelling and analysis tools were included than
common of the historic aircraft design process. For example, it was stated that a typical airframe model
was constructed using beam elements to estimate the distribution of stiffness and mass over the airframe
at a level appropriate for the detail required during conceptual design. The MDO framework replaced
this model with a more detailed finite element (FE) model employing design variables to define the size
of structural members. Nastran was employed to perform FEA whilst the Sol200 module of Nastran
optimised the wingbox design. The use of this more detailed FE model with associated design variables
resulted in a large number of variables to define each design. A total of 2,515 design variables were
employed to define the design of the spars, stringers and skin, noting that the designs of the ribs were not
considered. 805,402 design constraints imposed limits on the stresses in the airframe as well as limiting
buckling criteria, geometric properties and the flutter speed when subjected to 96 different load cases.
This level of detail was much greater than that usually employed during conceptual design, a result of

the framework encompassing the entire aircraft design process.

Hansen and Horst (2008) presented a multi-level optimisation framework for application to aircraft
structural design. This multi-level framework consisted of two tiers, the first of which concerned the
optimisation of the airframe topology using an EA whilst the second employed a gradient-based LS
optimisation technique to optimise the thicknesses and cross-sections of aircraft members. This framework
was similar to a hybrid optimisation technique; however, the use of different variables within the two tiers
created two variations of the optimisation problem and as such was not strictly a hybrid optimisation
technique. The change from first to second framework tier was made based on the convergence of the
population within the first tier. This enabled an approximation to be made of a suitable design in the
first tier prior to more focussed deterministic optimisation of this design in the second tier. Structural
analysis and optimisation were performed using Patran and Nastran Sol 200 respectively to search for a
design of minimal mass. T'wo case studies were presented, the first of a cantilever truss structure under a
tip load and the second the fuselage structure of a BWB under a pressurisation load. In the first problem,
the design variables were nodal coordinates and element cross-sectional areas in the first and second tiers
respectively. Two experiments were performed: optimisation with both tiers and optimisation with only
the EA in the first tier. The objective value was lower using the two-tier framework than when using
only the first tier, with fewer FEA evaluations required. The design variables of the second study were
the topology and sizes of composite skin panels in the first and second tiers respectively. The mechanical
properties of the materials remained constant throughout the optimisation, with constraints imposed
on the buckling eigenvalues, von Mises stresses and failure indices in the structure. A total of 2,500

individual solutions were modelled and analysed in the first optimisation tier and a maximum of 35 steps
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made in the second deterministic tier. Although a good design was obtained, no comparison was made in
the second study between the presented framework and single-tier approaches. It was concluded that the
computation time required was a limitation of the framework, with a consequential need for automated
mesh generators. This indicated a reliability of the framework on the software tools employed and an

inefficiency in the computation inherent with the framework.

Raymer (2002) performed MDO of conceptual aircraft designs of various classes including a civil light
aircraft, a large civil transport aircraft, a military fighter and a UAV. The external aerodynamic profile of
each aircraft was optimised for either minimum cost, in the case of the military fighter, or minimum mass,
for the other aircraft classes. Various deterministic and stochastic optimisation techniques were employed,
these included HC, SD, MC, GAs using RW, TO and BP selection, and KQ which was developed by
the author. The results of experiments indicated that the GAs were able to rapidly identify a solution
close to their final solution in a much shorter period of time than the considered LS techniques. The
qualities of the solutions generated by all techniques were comparable, however the solutions obtained
using LS techniques were the best. This was due to the ability of these techniques to locate the local
minimum in their neighbouring solution space, although the time taken to solve the problem was much
greater than for the population-based techniques due to poorer exploration capabilities. Ultimately, such

improvement in solution quality was deemed not worth the additional required computational time.

Hu and Yu (2009) studied the MDO of a UAV flying wing for minimal aerodynamic drag and struc-
tural mass whilst constraining the aerodynamic and structural design requirements, payload internal
volume and the radar cross-section to ensure a stealthy design. Surrogate modelling was employed to
reduce the computational requirements of design analysis as well as disciplinary discretisation in order
to perform independent analysis within each discipline. The highest system level performed MDO of
global configuration variables over a number of generations. Below this level, a subsystem performed
aerodynamic and stealth analysis of the aircraft external profile whilst a second subsystem performed
similar analysis of the aircraft structure. These subsystems also included aerodynamic and structural
optimisation of the aircraft by a GA. The subsystem solution spaces were sampled using Latin hypercubes
to reduce the necessary analysis to those designs within each subsystem sample. FEA was conducted
using Nastran on a low-fidelity model consisting of rods to model spars and web stiffeners and plates
to model skin and the webs of spars, ribs and frames. Structural design variables controlled the areas
and thicknesses of the spar caps, ribs and frames as well as the thickness of the wing skin and stiffener
areas of webs. The constraints imposed on the structure were the maximum axial stress in rods, shear
stress in plates and wingtip deflection. The results of subsystem analysis were used to form the response
surface of the surrogate model at the highest system level. MDO was subsequently performed with six
variables defining the aircraft external shape. Iterations of random sampling of the solution space were
performed to validate the accuracy of the surrogate model through additional analysis. A cost of this
approach was the need to double the subsystem sample size if the accuracy of the surrogate model was
insufficient. Specifically, the initial Latin hypercube sample size was set at 100 points but was required
to increase to 200 points if the surrogate model validation indicated inadequate precision. Also, a three-
dimensional CAD model was built for the aerodynamic and stealth analysis in CATTA, which increased

the computational cost of FEA, thus reducing the benefits of employing surrogate modelling.

Ali and Behdinan (2002) performed MDO of a large civil aircraft, the Boeing 717 aircraft, at a concep-
tual design level within a framework controlled by MATLAB. A binary GA was employed, with selection
performed using either RW or TO by one-point, two-point or uniform crossover and bit-flip mutation.
The population size was fixed at 80 individuals with the process terminated after 200 generations. Each
experiment was performed five times to account for results variability. The 21 design variables defined
the aircraft geometry, such as aspect and taper ratios, tail configurations, cabin layout and powerplant

thrust. The scaled exterior penalty function of Eqn. (2.10) was employed with design constraints to
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restrict the stability of the aircraft. The aircraft was optimised over a single cruise mission without
the application of specific loading conditions typically encountered during flight, e.g. manoeuvre or gust
loads. This approach to the optimisation problem was static with the exception of penalty function
scaling based on the fitness of each population. The optimisation objective was for minimal aircraft
mass; however, the design variables did not provide opportunities for optimisation of the airframe, nor
did the design constraints consider the integrity of the airframe. The use of a single GA restricted the
ability of the optimisation search to converge upon the local minimum closest to the best solution, with
the authors stating a preference to obtain several near-optimal solutions that could be combined into a
better solution. Poor convergence was observed by the GA, reducing the confidence that the solutions
obtained were near-optimal. It was determined that RW selection led to the domination of elite designs
until a late stage in the process by which point the population had mostly converged; this issue was
not observed using TO selection. In spite of this, the best designs were generated using RW selection
with uniform crossover. The static optimisation process employed prevented adaptation of the search to
improve convergence having found promising design solutions. In fact, the authors posed the question
of how to improve the set-up of the optimisation process to encourage better convergence, e.g. different

population size as well as crossover and mutation rates.

2.6 Summary

Aircraft design optimisation has been the subject of much research in an attempt to improve the quality of
aircraft designs output for manufacture and operation. The conceptual design stage of the design process
has seen significant research given its importance in determining suitable concepts for further development
into a final aircraft design. Structural mass optimisation is often performed during this stage in order to
reduce the weight of the airframe whilst maintaining the required strength under load. The traditional
existing approach involves a common process of initialisation, mission definition, mass estimation and
external geometry definition prior to the design and optimisation of the airframe. The airworthiness
requirements provide the loading conditions under which the aircraft must operate, typically leading to
the simulation of the worst loads on the airframe during structural analysis. Such analysis is performed
to determine the feasibility of an airframe design, leading to the optimisation of each design based on its
objective value. Many different techniques have been employed for this optimisation with no indication
of a dominant technique over all others. The optimisation process itself is not typically subject to much
research, such that a static process is traditionally applied without the possibility to improve optimisation
process performance and, as a result, further improve solution quality. This presents an opportunity for
further research such that a dynamic optimisation process may be employed in an attempt to further

improve the quality of aircraft designs generated and process by which this is achieved.
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Hyper-Heuristic Optimisation

Hyper-heuristic optimisation is an emerging area of research wherein the optimisation process followed to
obtain a near-optimal solution to a problem is itself modified during execution in an attempt to improve
its performance. A hyper-heuristic approach (HHA) is employed to promote such improvements in process
performance in order to increase the likelihood that better problem solutions will be discovered. This
is often coupled with the encouragement for improvements in other areas of process performance, e.g.
computation time. The purpose of this chapter is to introduce and review the use of hyper-heuristic
optimisation within the literature. The principles of hyper-heuristic optimisation are firstly introduced
in §3.1 followed by descriptions of the four aspects of an HHA pertinent to this research in §3.2, §3.3, §3.4
and §3.5. Traditional applications of hyper-heuristics within the literature are subsequently presented in

§3.6 before §3.7 summarises the chapter.

3.1 Principles of Hyper-Heuristic Optimisation

The optimisation of a solution to a problem is highly dependent on the process followed, including the
choice and set-up of the optimisation technique employed ((")zcan et al., 2008). This is notably true for a
complex problem such as aerospace design where numerous design variables with contrasting influences
on the solution require optimisation to satisfy a given objective function subject to strict constraints
(Fukunaga et al., 1997). Wolpert and Macready (1997) stated a “no free lunch theorem” that one opti-
misation technique cannot be superior to all others across all classes of problems. Many state-of-the-art
optimisation techniques are too problem-specific or knowledge-intensive for general application to a va-
riety of problems (Burke et al., 2003a). Furthermore, the development and tuning of a high-quality
technique for general application to different problems can be difficult and requires extensive investi-
gation and validation, most notably when considering unpredictable domains with unknown solutions
(Chakhlevitch and Cowling, 2008). Thus, optimisation techniques generally employed to solve a problem
do so with an inherent penalty to performance and subsequent solution quality (Burke et al., 2003a).
Hyper-heuristic optimisation automates the design of optimisation processes for solving hard com-
putational search problems (Burke et al., 2010b). The general aim of hyper-heuristic optimisation is to
obtain a solution to a problem of comparable or better quality to those generated by traditional optimisa-
tion but at reduced cost (Kendall et al., 2002). It should be noted that within this document ‘traditional
optimisation’ refers to optimisation performed without the use of hyper-heuristics. Hyper-heuristics raise
the generality at which optimisation techniques can be applied, leading to the transformation of a prob-
lem by employing various techniques during the search (Burke et al., 2003a). The term ‘hyper-heuristic’
was coined by Denzinger et al. (1997) as a protocol for selecting and combining multiple methods of
artificial intelligence. The term was subsequently independently introduced by Cowling et al. (2000) as

“an approach that operates at a higher level of abstraction than current meta-heuristic approaches”. This
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latter definition provides the basis for the application of hyper-heuristic optimisation across the two

independent domains shown in Fig. 3.1: the problem and hyper-heuristic domains (Cowling et al., 2000).

Hyper-heuristic set —>»| Hyper-heuristic approach
Hyper-heuristic domain
T l Domain barrier
Problem domain
Optimisation problem <« Low-level heuristic set

Figure 3.1: Domains of hyper-heuristic optimisation

Within the problem domain, a heuristic searches for a near-optimal solution to a given problem such as
aircraft structural design optimisation. These heuristics are called low-level heuristics (LLHs), where it
should be noted that the term ‘heuristic’ may refer to either a heuristic or meta-heuristic when discussing
hyper-heuristic optimisation (Ross, 2004). Heuristics are techniques that attempt to solve an optimisation
problem through the possession of problem knowledge whereas meta-heuristics similarly search for a
problem solution but without such knowledge (Blum and Roli, 2003). Hyper-heuristics are applied in the
higher-level domain to improve the performance of the optimisation process within the problem domain
in order to satisfy a hyper-heuristic objective function, and thus encourage further solution improvement
(Burke et al., 2010b). The hyper-heuristic objective function is similar in purpose to the optimisation
problem objective function but is applied within the hyper-heuristic domain. A barrier restricts data
flow between the domains to allow the passage of solely information that informs suitable actions of the
hyper-heuristic (Chakhlevitch and Cowling, 2008). This information is independent of the problem to be
solved, e.g. computation time or a change in objective value or fitness (Ozcan et al., 2006).
Hyper-heuristic actions are dependent on the HHA employed, where each approach is defined by
specific aspects in which the optimisation process is controlled and modified. These HHA aspects tradi-
tionally encompass the selection or generation of LLHs, distribution of a population between numerous
LLHs, analysis of the solution space by perturbing individual solutions, and the control of optimisation
process parameters (Burke et al., 2010b; Rafique et al., 2011). In essence, an HHA is formed of one or

more of the following aspects:

e heuristic selection or generation;

e population distribution;

perturbation analysis;

e parameter control.

An HHA employs a learning mechanism to gain knowledge of the optimisation process performance and
inform the hyper-heuristic actions to be performed within each HHA aspect. This can increase the
likelihood that such actions will be beneficial to the optimisation process (Oann et al., 2010). Learning
can be performed prior to the main optimisation process through a series of trials to determine the effects
of changes in the process, i.e. offline learning, or during the execution of the process, i.e. online learning
(Burke et al., 2009a). Reinforcement learning is popularly employed as online learning to assign a score
to hyper-heuristic operations based on their effect on the optimisation process (Burke et al., 2010b).
Positive reinforcement is most commonly used, wherein scores are based on the improvements made
in the process, whereas negative reinforcement penalises operations that result in poorer performance

(Kaelbling et al., 1996). Alternatively, learning may be excluded from the HHA such that random hyper-
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heuristic operations are performed that do take into account the problem state or optimisation process

performance. This increases the diversity of the hyper-heuristic search (Rafique et al., 2011).

3.2 Heuristic Selection

Heuristic selection is the aspect of hyper-heuristic optimisation that has been investigated to the greatest
extent within the field (Burke et al., 2010b). Heuristic selection chooses the most appropriate LLH for
application in the problem domain from a set of candidate heuristics, leading to an alternative description
of hyper-heuristics as “heuristics to choose heuristics” (Burke et al., 2010b). LLHs may be constructive
or perturbative, wherein the former creates a solution incrementally from an empty initial solution whilst
the latter evolves a complete initial solution over a period of generations (Burke et al., 2010b). With
constructive heuristics, an HHA is provided with a set of problem-specific LLHs for application to the
problem with the aim of identifying the best LLH to be applied given a current problem state (Burke et al.,
2009a). The process is performed until a solution is constructed having evaluated the finite number of LLH
permutations, the quantity of which is defined by the size of the combinatorial problem (Burke et al.,
2010b). Conversely, perturbative LLHs are selected to improve the quality of an initial solution over
a period of generations. Perturbative heuristic selection is more popularly applied than constructive
heuristic selection due to removal of the requirement to evaluate the potentially large number of LLH
permutations (Burke et al., 2009b). Perturbative heuristic selection is performed by iteratively choosing
an LLH to optimise solutions within the problem domain (Burke et al., 2010b). This process is two-fold:
selection of a perturbative LLH by a hyper-heuristic followed by move acceptance to determine whether
to approve or reject the use of the LLH within the problem domain (Ozcan et al., 2008).

Heuristic generation is another aspect of hyper-heuristic optimisation similar to heuristic selection,
although it is less popularly applied (Hyde, 2010). Heuristic generation aims to create a new LLH, rather
than select an existing one from a heuristic set, for either a single application to a specific problem or
for general use with similar problems (Burke et al., 2009a). The freedom to create a new optimisation
technique results in a rich hyper-heuristic solution space, however implementation of heuristic generation
is difficult due to the required decomposition of existing LLHs in order to generate a new LLH from
their components (Burke et al., 2010b). Furthermore, implementation of heuristic generation requires
additional computational effort over heuristic selection due to the need to evaluate numerous permutations
of LLH components (Burke et al., 2010Db).

3.2.1 Hyper-Heuristics

A heuristic selection hyper-heuristic employed by an HHA chooses a new LLH for application within
the problem domain based on the rules embedded within the hyper-heuristic. The frequency of calling
a hyper-heuristic to perform heuristic selection can be predetermined, i.e. each LLH is applied in the
problem domain for a specific number of generations, or based on the success of an LLH in improving
the problem solution. Cowling et al. (2000) introduced the simple random (SR), random descent (RD)
and permutation descent (PD) hyper-heuristics. SR randomly selects an LLH to apply to the problem
on each occasion the hyper-heuristic is called. RD similarly selects an LLH at random, but repeatedly
applies the chosen technique to the problem until no further improvement is made in the solution, at
which point another LLH is selected. PD is performed by initially generating a list of LLHs to establish
the order in which they are to be applied to the problem. The order of this list is typically random.
The hyper-heuristic selects the first LLH on the list and applies it repeatedly until no improvement is
made. The next LLH on the list is then selected and the process repeated. The list is progressed through
cyclically until termination of the optimisation process. The permutation (PE) hyper-heuristic is an
alternative form of PD, wherein the operation is the same except each LLH is applied once before the
next LLH from the list is selected (Bilgin et al., 2007). Cowling et al. (2000) also introduced the greedy
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(GR) hyper-heuristic which applies the best-performing LLH to the problem. Initially all LLHs within
the heuristic set are applied to the problem in order to establish which LLH yields the best solution. This
LLH is subsequently employed over the following generations until no further improvement is made in
solution quality, at which point all LLHs are re-evaluated for reselection. Peckish (PK) was introduced as
a similar hyper-heuristic by Cowling and Chakhlevitch (2003) wherein an LLH is chosen from a candidate
list of heuristics populated either randomly or by the best-performing LLHs. The latter consists of the
LLHs that either generate the best solutions or provide the greatest improvement in solution quality.
This hyper-heuristic has been found to be preferable over GR with a densely populated heuristic set by
improving the likelihood of selecting an LLH that will improve a solution rather than allowing a small
number of LLHs to dominate the process (Chakhlevitch and Cowling, 2008).

Alternatively, hyper-heuristics can be adapted from LLHs in the problem domain for use in the hyper-
heuristic domain. For example, local search (LS) techniques have been employed as perturbative heuristics
in the hyper-heuristic domain (Ross, 2004). Storer et al. (1995) employed a basic hill climbing (HC)
technique to perturb the combinations of LLHs applied to a problem and indicated suitable alternatives
such as genetic algorithm (GA) selection, simulated annealing (SA) and tabu search (TS). Cowling et al.
(2000) used roulette wheel (RW) selection in a similar manner to within a GA to select an LLH based on
past performance within the problem domain, whilst Drake et al. (2011) employed tournament selection
(TO) for the same purpose. A TS hyper-heuristic was introduced by Burke and Soubeiga (2003) using
reinforcement learning to assign a score to each LLH based on its performance. Scores are initialised at
zero and updated after each use of an LLH. LLH scores are incremented if the LLH improves the solution
and decremented otherwise. Subsequently, the LLH with the highest score is selected for application to

the problem. In the event of multiple best LLHs, a random LLH is chosen from those concerned.

3.2.2 Move Acceptance

Perturbative hyper-heuristics employ move acceptance as rules to approve or reject the selection of an
LLH. These rules are employed after employing an LLH within the problem domain to determine whether
to continue to apply the current technique or to select a new LLH for application to the problem. Move
acceptance rules are coupled with the rules of the hyper-heuristic employed for heuristic selection such
that both the rules of the hyper-heuristic and move acceptance must be satisfied for the application of an
LLH to continue (Ozcan et al., 2008). Common rules of move acceptance include all moves (AM), only
improving (OI), improving and equal (IE) and Monte Carlo (MC) methods (Ozcan et al., 2008). AM
permits heuristic selection regardless of performance. OI only permits selection of an LLH that improves
the measured process performance, i.e. a positive move. IE permits the acceptance of a selected LLH
if process performance is at least equal to previous performance, i.e. not a negative move. Simulated
annealing (SA) can be used for move acceptance such that all positive moves are accepted as well as
negative moves with decreasing probability over time (Bai and Kendall, 2005). MC methods were intro-
duced by Ayob and Kendall (2003) to accept positive moves and randomly permit negative moves with
linearly or exponentially decreasing probability. These rules were labelled linear Monte Carlo (LMC) and
exponential Monte Carlo (EMC) respectively and are similar in formulation to the annealing schedule of
SA. Exponential Monte Carlo with counter (EMCQ) move acceptance was also introduced to include a
counter of iterations since last improvement within EMC to prevent convergence on local optima. The

probability of accepting a negative move at the kth generation is defined as

M — AFpax(X)1F for LMC

p]:Leg —{ exp (—AFnax(X)F) for EMC (3.1)

exp (— (USm> AFmaX(X)l_”“> for EMCQ
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where  AFpax(X)'7F = Floax(X)17F — Flia(X)F
Frax(X)'7*  maximum fitness in population set X for generations 1 to k

Qni counter of consecutive generations without improvement

Ayob and Kendall (2003) found by experiment that the best values of constants M and v were M = 5 and
v = 1from possible ranges of 0 < M < 100 and 0 < v < 1. A positive reinforcement learning mechanism
is popularly employed to assign a score to the different LLHs based on their ability to generate a positive
move (Ozcan et al., 2010). This score is then used by the hyper-heuristic within heuristic selection when
choosing the next LLH for application in the problem domain (Burke and Soubeiga, 2003). Alternatively,
a learning mechanism may not include a scoring system and may simply rank LLHs based on the measure
of process performance used to define a positive move (Chakhlevitch and Cowling, 2008). This measure
of improvement (Mol) in process performance is often the problem objective function, i.e. a positive move
results when an LLH discovers an improved solution to the optimisation problem (Ozcan et al., 2008).
When employed in this manner, the Mol is equivalent to the hyper-heuristic objective function. This Mol
was assumed during the descriptions of hyper-heuristics in §3.2.1 as this is the typical measure employed;
however, a different Mol criterion can be employed. Cowling et al. (2000) defined an alternative Mol
criterion called a ‘choice function’, comprised of three components of performance for each LLH within

the heuristic set:

e recent effectiveness of the LLH;
e recent effectiveness of consecutive pairs of LLHs;

e time since the LLH was selected.

The first component measures, at the kth generation, the change in problem objective value made by the

hth LLH respective of the time taken for the n; previous instances for which the heuristic was employed

ni,h

_ AP
fﬁh = Zal 1T7lh (32)
=1 h

where T,ll time taken [th previous time hth LLH was selected
« first choice function component weighting

A®!  change in objective value Ith previous time hth LLH was selected

This component encourages repeated selection of an LLH if it performed well recently. The second
component measures dependencies between pairs of LLHs when the hoth heuristic immediately follows
the hqth heuristic
ni,h l
AP
f2k,h1,h2 :Zﬁl ' l - (33)
=1 hi,ho
where T,llhhz time taken [th previous time h;th LLH followed hoth LLH
B8 second choice function component weighting

A@ﬁlhhz’ change in objective value Ith previous time h;th LLH followed hoth LLH

The second component biases selection following the application of the hith heuristic towards the hoth
heuristic if this combination performed well recently. The third component measures the time since the
last use of the LLH, where 7, denotes the time elapsed since the Ath LLH was last selected

f?]f,h =Th (3.4)

While the first two components intensify the search by choosing LLHs that have performed well, the

third component provides diversification by encouraging the selection of LLHs that have not been used

47



Chapter 3. Hyper-Heuristic Optimisation

recently. The choice function is formed at the kth generation using these three components as

where qglfb = —aflk,h - ﬁf2k,h1.hz + 5f?l,€,h
1 NLLH ~
= - max (0, ko E)
Q 10n,rgy hgl ( Ph

The component weights are set to prioritise different function components, where 0 < «,3,6 < 1.
Constants € and p increase heuristic selection diversification by ensuring LLHs that result in negative
moves maintain a small non-zero probability of selection, with values of ¢ = 1 and p = 1.5 used by
Cowling et al. (2000). The parameter ) is used to prevent search stagnation by promoting diversification
if the recently-used LLHs have failed to improve the solution. The choice function was subsequently
employed to measure process performance coupled with GR, PK and RW hyper-heuristics. Drake et al.

(2012) modified the choice function to include additional component weighting
oy = '72f{€,h + 751f2k,h1,h2 + 5£Lf:>’f,h (3.6)

In this function, ! denotes the number of times since the hth heuristic last made an improvement in the
solution. The weights v and 0 are updated by magnitudes determined by whether an improvement is made
in the objective value or not. This results in increased search intensification and reduced diversification
whenever an improvement is made in order to exploit a well-performing LLH, whilst promoting the

opposite if the search fails to improve the solution, thus removing the need for parameter @ in Eqn. (3.5)

0.99 if an improvement is made
N = (3.7a)
max (75;1 —0.01, 0.01) if no improvement is made

3.3 Population Distribution

Population distribution divides a set of solutions between multiple LLHs for each generation of the
optimisation process. This can be seen as an extension of heuristic selection as the operation of both HHA
aspects encompass the choosing of LLHs to be applied to the problem. With population distribution, each
selected LLH possesses a sub-population of individuals such that the LLH optimises solely the solutions
within its sub-population. When a single-solution LLH is selected, each sub-population individual is
optimised independently one step per population generation. Population distribution is either performed
equally, randomly or based on the performances of the LLHs. The latter leads to the distribution of a
greater number of individuals, i.e. larger sub-population sizes, to better-performing LLHs.

Population distribution aims to overcome limitations of individual heuristics through the availability
of alternatives (Rafique et al., 2011). Sub-populations must be adequately sized to allow sufficient op-
portunity for improvement by each LLH. A dynamic population size can enable sub-populations to be
resized such that improvement opportunities exist whilst avoiding an excessively-large population. For
example, Arabas et al. (1994) presented a method for a dynamic population size where individuals are
assigned a lifetime to permit the rejection of individuals at the end of their life. This lifetime is calculated
using the fitness of the individuals such that poor solutions possess shorter lifetimes. As a result, fitter

individuals remain in the population for a greater number of generations, thus promoting improvement of
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solution quality whilst rejecting poorer solutions. However, this approach is more elitist than a dynamic
population where individuals are rejected randomly through the bias towards fitter solutions. Sahab et al.
(2005) introduced another method wherein the population size is reduced as the population converges
by removing all-but-one of individuals possessing identical fitnesses. A lower limit is imposed on the

population set size to prevent eliminating too many individuals, and thus hindering the search.

3.4 Perturbation Analysis

Perturbation analysis encourages learning of the local solution space surrounding an individual using
a memetic algorithm (MA) (Moscato and Cotta, 2003). An MA performs population-based optimisa-
tion coupled with local searches of the solution space neighbouring individuals. The analysis of the
local solution space is performed through the perturbation, and subsequent analysis, of a sample of
individuals using an LS technique (Ong et al., 2006). As such, MAs are often viewed as hybrid GAs
(Krasnogor and Smith, 2000). The criteria for operating an MA include (Krasnogor and Smith, 2005):

e when to perform perturbation analysis;

e how to sample the population;

e the duration of perturbation analysis;

e which LS optimisation technique to employ;

e which evolutionary principle to employ.

The frequency of performing perturbation analysis is commonly either at each optimisation generation
or on each occasion at which an improvement is made in the best solution (Krasnogor and Smith, 2005).
Higher frequencies of perturbation analysis require greater numbers of solution evaluations, which can
lead to greater computational costs. The sample size is typically a proportion of the population, sampled
either randomly or selected from the best population individuals (Hart, 1994). Perturbation analysis is
then performed either for a predefined number of iterations or until no further improvement is made in
the quality of each sampled solution (Nguyen et al., 2009). Hill climbing (HC), simulated annealing (SA)
and tabu search (TS) are commonly employed as LLHs to perturb and subsequently optimise the sampled
individuals using a selected evolutionary principle (Krasnogor and Smith, 2000). This evolutionary prin-
ciple is either Lamarckian or Baldwinian evolution. The theory of Lamarckian evolution was presented by
Lamarck (1809), stating that the characteristics acquired by a parent during its lifetime may be inherited
by its offspring. Alternatively, the Baldwin effect was proposed by Baldwin (1896) as a mechanism of
the evolutionary learning of offspring based on the knowledge obtained by their parents during earlier
generations. Perturbation analysis using Lamarckian evolution results in the design variable values of a
perturbed solution being stored within the individual for use during the generation of the next population
of solutions, i.e. the perturbed individual replaces the unperturbed solution within the population. Bald-
winian evolution during perturbation analysis results in solely the objective value of an individual being
stored, i.e. the unperturbed individual remains in the population but is assigned the objective value of
the corresponding perturbed solution. Thus, evolutionary optimisation without perturbation analysis is
based on Darwinian evolution (Julstrom, 1999). Adaptive MAs can be employed to adapt these criteria
based on the effectiveness of perturbation analysis (Krasnogor, 2002). For example, heuristic selection
can be performed to choose the LS technique employed (Burke et al., 2010b). Perturbation analysis is
similar to the hybrid optimisation techniques discussed in §2.3.5, however differs by not restricting the

use of the LS to after a specified point during the optimisation process or to a single solution.

3.5 Parameter Control

The values of parameters used during optimisation are critical to the success of the process. These values

determine the behaviour of the search for a solution to a problem. Parameter tuning may be performed
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pre-optimisation through a series of trials in order to establish appropriate values of parameters for use in
solving a problem. Such tuning for specific problems can be difficult, especially in unpredictable and large
domains without known solutions. This tuning problem can be exacerbated by numerous permutations of
values for independent parameters. As such, an extensive period of investigation and validation may be
required to ensure that the resulting process set-up is appropriate to the problem and possesses sufficient
robustness to account for any problem variation during the solution process (Eiben et al., 2007).

Parameter control modifies the values of parameters during the optimisation process. This reduces the
need for parameter tuning pre-optimisation by providing the capability for real-time adjustment of the
optimisation process based on the state of the problem (Eiben et al., 2007). Such changes may be made
either through perturbation of existing values or selection of the better-performing settings; the latter
is referred to as operator selection (Maturana et al., 2010). An evaluation period is included to allow
changes to parameters to take effect. Investigation of mechanisms for such automated control of process
parameters has seen been subject to limited research, in part due to the highly nonlinear interactions
between parameters of the process (Coello Coello, 2009). Approaches to parameter control employed to
aid the process of solving an optimisation problem possess three principal characteristics to describe their
operation (Smith and Fogarty, 1997):

e what parameter is being changed;
e the scope of the parameter change;

e the basis for the change of a parameter.

The first characteristic concerns the choice of process parameters to be controlled. This is important to
ensure that control of the parameters will enable effective changes in the process. Such parameters include
operators, e.g. GA crossover and mutation probability, as well as the representation of the problem, e.g.
the number of variables of the problem or length of genomes of solutions. The scope of change can be
defined at three levels: population, individual and component. Population-level changes are applied to
all individuals within the population set. At an individual-level, values are updated for each member
of the population independently. Component-level changes are applied to each component of a solution
individually. It should be noted that population-level and individual-level control are equivalent when
employing a single-solution optimisation technique. Finally, the basis for change defines the reason for and
method of parameter modification. Reasons are usually based on the position in time of the process, i.e.
optimisation generation, or process performance, e.g. solution quality or population diversity, as informed
by a feedback loop. Empirical rules classically dictate changes made to values (Smith and Fogarty, 1997).
These three characteristics are defined by the parameter control approach applied within the optimisation
process. Four such approaches are: deterministic, adaptive, self-adaptive and hyper-heuristic parameter
control. These approaches contrast with static optimisation wherein the set-up of the optimisation process

is not modified during optimisation, i.e. the initial values of parameters remain constant.

3.5.1 Deterministic Control

Deterministic parameter control uses predetermined rules to modify the optimisation process. These
modifications are typically made using time-based rules, therefore process performance does not affect
modification (Eiben et al., 2007). Examples include the annealing schedule of SA and decaying mutation
probability of an evolutionary algorithm (EA) to promote convergence towards the end of the process
(van Laarhoven and Aarts, 1987; Zhang et al., 2007). The scope of the changes is usually on a population-

level as rules do not usually consider differences between individuals or components.

3.5.2 Adaptive Control

An adaptive approach employs a feedback loop to inform a learning mechanism of the current perfor-

mance of the optimisation process. Changes are then made to parameters based on performance data us-
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ing empirical rules with predetermined performance limits included to trigger such changes (Eiben et al.,
2007). An example of such adaptive optimisation is the population-level adaptive penalty parameter of
Eqn. (2.11) introduced by Bean and Hadj-Alouane (1992). Other examples are the individual-level adap-
tive GA crossover and mutation probabilities defined by Srinivas and Patnaik (1994), which encourage
the crossover and mutation of poorer individuals whilst maintaining the best solutions, and the adaptive
range GA proposed by Arakawa and Hagiwara (1998), which directs a population towards promising re-
gions of the solution space by continuously updating its boundaries. Adaptation may be performed at

any level of scope depending on the parameter under control (Smith and Fogarty, 1997).

3.5.3 Self-Adaptive Control

Self-adaptive parameter control is so named because the optimisation technique applied to solve the prob-
lem also controls the adjustment of values of parameters that it itself uses. This is accomplished through
the encoding of the parameters within the genome of solutions subjected to optimisation, leading to the
coevolution of the parameters of the process and solutions to the problem (Meyer-Nieberg and Beyer,

2007). For example, considering the following design genome containing n, design variables
vi|ve|...|vn,
n, process parameters are appended to the genome as

Vi v2 ... |vn,

P1|P2|...|Pn,

The scope of control is at an individual-level, where each population member possesses a personal value
of each controlled process parameter (Eiben et al., 2007). For each optimisation generation, the values of
parameters of an individual solution are stored and used to optimise the individual. As these parameters
are within the genome of the individual, their values are also included within the optimisation operations,
e.g. crossover and mutation. Thus, the values that generate the better solutions within the population
propagate through the process, leading to the convergence of the population not only on a near-optimal

solution, but also upon near-optimal values of parameters (Meyer-Nieberg and Beyer, 2007).

3.5.4 Hyper-Heuristic Control

Hyper-heuristic control is similar to adaptive control except that a hyper-heuristic is employed to perturb
parameters or select new values from those that previously performed well (Burke et al., 2010b). Popular
hyper-heuristics include local search (LS), simulated annealing (SA) and tabu search (TS) to perturb
parameters and simple random (SR), greedy (GR), peckish (PK) and GA selection techniques to select
parameter values (Burke et al., 2010b; Chakhlevitch and Cowling, 2008). These hyper-heuristics operate
as described in §3.2.1 for heuristic selection, albeit by considering process parameters as variables instead
of LLHs. Reinforcement learning is popularly employed to reward beneficial changes to the optimisation
process or penalise detrimental changes (Burke et al., 2010b). Process parameters may be controlled at

any level of scope by the hyper-heuristic.

3.6 Applications of Hyper-Heuristic Optimisation

Heuristic selection has been subject to the greatest amount of research within the field of hyper-heuristic
optimisation and has historically been employed to solve problems such as timetabling, scheduling, bin-
packing and vehicle routing; as well as for comparative studies of different hyper-heuristics, move accep-
tance rules and HHAs in solving mathematical benchmark functions (Burke et al., 2010b). Bilgin et al.
(2007) conducted a comparative study of hyper-heuristics for heuristic selection. The hyper-heuristics
evaluated included permutation (PE), permutation descent (PD), random descent (RD), SR, GR and
TS as well as the choice function as a selection method wherein the best LLH measured by the function

was selected. All moves (AM), only improving (OI), improving and equal (IE) and Monte Carlo (MC)
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were amongst the rules of move acceptance considered. Different hyper-heuristics performed well on
different benchmark functions, most notably the choice function, whilst IE outperformed the other move
acceptance rules. These approaches to heuristic selection were then evaluated for an exam timetabling
problem, where the choice function combined with MC move acceptance performed better than all other
set-ups. Another study was performed by Ozcan et al. (2008) for the same hyper-heuristics and similar
benchmark functions, finding that IE and exponential Monte Carlo with counter (EMCQ) move accep-
tance performed well. SR also performed well, as did optimisation using the choice function to measure
process performance. A set of four frameworks were also presented that employed different combinations
of population-based and LS techniques to the problem. The study indicated that the best framework

included perturbation analysis after each generation.

Ross et al. (2002) performed heuristic selection of problem-specific LLHs for bin-packing problems
using a learning classifier system (XCS) mechanism. An XCS measures process performance against an
expected payoff such that the optimisation process learns a set of rules associated with different problem-
specific states (Wilson, 1995). The bin-packing problem was tackled by considering different problem
state instances and searching for a rule to define the most appropriate LLH for each instance. The XCS
subsequently evolved these rules based on the performance of each LLH application to a problem state.
As a result, chromosomes of problem states and corresponding LLHs were generated for crossover and
mutation in order to find the optimal combination of problem instances and LLHs. These problem states
and LLHs were represented by identification numbers within chromosomes. The XCS learning mechanism
required numerous iterations of the problem for satisfactory learning in order to evolve these rules and
find a solution. This problem was similarly investigated by Ross et al. (2003) using a GA hyper-heuristic
to evolve a sequence in which to apply the different LLHs. The HHA aimed to learn which LLHs were
best to apply to the problem given its current state. Results of these studies indicated that the HHA
generated substantially better solutions than any of the LLHs when applied in isolation for traditional
optimisation. Similarly promising results were obtained during the investigations of Schulenburg et al.
(2002), Marin-Bldzquez and Schulenburg (2007) and Terashima-Marin et al. (2010) that extended the

XCS mechanism for application to the bin-packing problem.

Ross et al. (2004) and Ross and Marin-Bldzquez (2005) applied the GA hyper-heuristic of Ross et al.
(2003) to the timetabling problem, whilst Ochoa et al. (2009) also applied a GA hyper-heuristic to this
problem. The latter research included an analysis of the hyper-heuristic solution space to study the nature
of the domain. The study indicated a globally convex solution space, albeit with a large number of local
optima and plateaux. Moreover, bias towards the LLHs employed during initial optimisation generations
indicated a critical influence of these techniques on solution quality. The performance of EA hyper-
heuristics at tackling the examination timetabling problem was investigated by Pillay (2009) following
an earlier study by Pillay and Banzhaf (2007). The earlier study employed the EA to evolve an LLH
sequence from five problem-specific heuristics. The later study investigated different representations of
lists of LLHs, i.e. LLH chromosomes. These representations differed in the chromosome structure, namely
using static, deterministic and adaptive chromosome lengths to represent the LLH lists. The static length

was found to perform worst whilst the performance of the remaining structures was problem-dependent.

A GA hyper-heuristic was proposed by Garrido and Riff (2007) to solve packing problems through the
evolution of the application sequence of four LLHs. A variable length sequence was considered, with the
results of the study using the HHA outperforming those of problem-specific techniques when applied to
the packing problem and a set of benchmark functions. Crossover of LLHs chromosomes during heuristic
selection was investigated by Drake et al. (2011) for a knapsack problem using the best hyper-heuristic
framework presented by Ozcan et al. (2008). Onme-point, two-point and uniform crossover of the LLHs
chromosomes was performed by selecting an LLH by tournament selection (TO) from a list populated

either randomly or by the best LLHs. This selection was performed for both the hyper-heuristic and
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problem domain, i.e. for selection of hyper-heuristics as well as LLHs. Results indicated that move

acceptance had a greater influence on hyper-heuristic performance than the selection mechanism.

An HHA was developed by Burke et al. (2007) to solve the timetabling problem using a TS hyper-
heuristic to improve the order of application of five problem-specific LLHs through heuristic selection.
Every LLH sequence generated by the hyper-heuristic was evaluated through the construction and anal-
ysis of a timetable, leading to online learning of process performance in an attempt to improve this
performance. This work was extended by Qu and Burke (2009) to include a comparison of the applica-
tion of different hyper-heuristics to the problem including LS and variable neighbourhood search. The
investigations indicated that these techniques were more effective for exploring the hyper-heuristic so-
lution space than the original TS hyper-heuristic. The solution space was therefore hypothesised to be
smooth with large plateaux such that solutions of similar quality would be generated from similar LLH
sequences. Combination of this HHA with problem domain perturbation analysis was found to further

improve the process to a similar quality to state-of-the-art approaches.

Vazquez-Rodriguez et al. (2007) optimised the application order of dispatching rules for production
scheduling using a GA hyper-heuristic. The study showed that the HHA was superior to the employment
of a single dispatching rule for the entire scheduling process due to the ability of the former to learn
effective combinations of rules. The generality of the HHA was proven through experimentation with
various objective functions. A multi-objective job shop scheduling problem was subsequently addressed
by Vézquez-Rodriguez and Petrovic (2010) using a development of this HHA which outperformed the
original HHA and the traditional application of a GA to the problem. Ochoa et al. (2009) analysed the
hyper-heuristic solution space for dispatching scheduling problems whilst Ochoa et al. (2009) performed
similar analysis for timetabling problems. The findings indicated that the hyper-heuristics investigated
were equally suitable for application to timetabling or scheduling problems. A GA hyper-heuristic was
employed by Hart and Ross (1998) and Hart et al. (1998) to evolve a sequence of application of LLHs
to a scheduling problem. This problem was also the subject of investigations by Crowston et al. (1963),
Dorndorf and Pesch (1995), Fisher and Thompson (1963) and Storer et al. (1995) prior to the definition
of a hyper-heuristic. The principles underpinning hyper-heuristic optimisation can be traced back to the
hypotheses of Crowston et al. (1963) and Fisher and Thompson (1963) for combining job shop production
scheduling rules. These investigations employed a stochastic LS to schedule rule sequences, finding that
an unbiased random combination of rules determined in this manner was superior to the independent
use of the individual rules. Storer et al. (1995) stated the problem of designing a suitable combination
of problem-specific optimisation techniques to satisfactorily solve an optimisation problem and proposed
the perturbation of LLH combinations by an LS technique. These hypotheses led to the development of
heuristic selection and generation methods (Burke et al., 2010b).

Cowling et al. (2000) tackled the scheduling problem using a hyper-heuristic to perform heuristic
selection of ten problem-specific LLHs. The choice function was found to yield better solutions with
roulette wheel (RW) selection than other approaches, including GR, SR, RD and PE hyper-heuristics.
Cowling et al. (2001) further investigated this problem with the added capability of parameter control.
Similar results were found to the previous study, notably that AM move acceptance outperformed OI. This
HHA was further applied by Cowling et al. (2002b) to the nurse rostering problem and by Cowling et al.
(2002c¢) to a scheduling problem. The latter included a comparison against a new choice function consist-
ing of objective function-dependent components; however, the original choice function was found to be
superior. Timetabling of a training schedule was addressed by Cowling et al. (2002a) using a GA hyper-
heuristic to evolve the order of application of the problem-specific LLHs. These LLHs were concerned
with adding or removing tasks from the schedule, such that the chromosomes of the hyper-heuristic con-
tained integers to identity each LLH. Two measures of hyper-heuristic objective value were employed: the

problem objective value and objective value over central processing unit (CPU) time. These functions
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were coupled with adaptive crossover and mutation probabilities, leading to four different hyper-heuristic
objective functions. The adaptive parameter control prevented premature convergence but better so-
lutions were obtained with static parameter values tuned to the problem. This work was extended by
Han et al. (2002) to enable adaptation of the chromosome length and by Han and Kendall (2003) to in-
clude a tabu tenure to prevent the selection of poorly-performing LLHs for a number of iterations. This
tenure value assigned a negative score to an LLH if it did not improve the hyper-heuristic objective func-
tion. The tenure value denoted the number of subsequent heuristic selection events for which the LLH
could not be selected to prevent the technique from hindering the optimisation process. The adaptive
chromosome length penalised long chromosomes due to the extended computation time required to solve
the problem with a greater number of LLHs, thus promoting a rapid optimisation process employing the
minimum number of LLHs. These adaptive approaches were found to be superior to those presented by
Cowling et al. (2002a) and Cowling et al. (2002c). Drake et al. (2012) applied a modified choice function
to a variety of problems including bin-packing and personnel scheduling, including a comparison against
eight different hyper-heuristics. The results of the investigation found improved performance over the
original choice function of Cowling et al. (2000); nevertheless, better results still were obtained using
a selection of hyper-heuristics without the choice function. Kendall et al. (2002) tackled the personnel
scheduling problem to compare the use of an SR hyper-heuristic against the choice function selecting the
best-performing LLH from the heuristic set. AM and OI move acceptance were used with both hyper-
heuristics. The investigation showed that the choice function outperformed SR and was also superior to
a modified SR hyper-heuristic that incorporated the choice function to rank LLHs in order to calculate
the probabilities of selecting each LLH. The choice function was found to be powerful in tailoring the

probabilities of selecting a suitable well-performing LLH.

MC-based move acceptance criteria were used during heuristic selection by Ayob and Kendall (2003)
to optimise the component placement sequence during the manufacture of printed circuit boards. The
optimisation problem was to minimise assembly time through the minimisation of the distance travelled
by the robotic device employed to place components. Six problem-specific LLHs were developed to swap
the pickup sequence, placement sequence, pickup nozzle, placement nozzle, circuit board point and tour
order of the robot arm. The new move acceptance rules were compared against AM and OI with and
without the use of the choice function. The choice function performed poorly in combination with the
SR hyper-heuristic due to this unrepresentative performance of LLHs in pairs when using the purely
random hyper-heuristic. Conversely, linear Monte Carlo (LMC), exponential Monte Carlo (EMC) and
EMCQ performed well, the latter of which was found to provide speed and robustness to the heuristic
selection procedure. Heuristic selection was similarly performed by Cobos et al. (2011) to choose the
best LLHs for the clustering of web documents. SR and RW heuristic selection was performed for a
heuristic set including a GA and particle swarm optimisation (PSO). The HHA produced promising re-
sults, however no comparison was given between the different methods of heuristic selection. A simulated
annealing (SA)-based hyper-heuristic was employed by Downsland et al. (2007) for the optimisation of
shipping container sizes by incorporating an annealing schedule into the TS hyper-heuristic developed by
Burke et al. (2003b). Experiments were performed using different numbers of LLHs within the heuristic
set with no significant difference being found in the convergence time. Moreover, the solutions obtained
were of lower quality than data provided by a retail company, although good solutions were generated at

a reasonable cost in computation time.

An SA hyper-heuristic was employed by Bai and Kendall (2005) to optimise the assignment of shelf
space within a retail store. The objective was to maximise the overall profit by ensuring stock was
appropriately distributed over the available shelf space, i.e. a multi-knapsack problem. SA was employed
for heuristic selection and subsequent move acceptance. The LLHs within the heuristic set added, deleted,

swapped or interchanged items from the shelves. The SA hyper-heuristic was compared against GR and
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SR hyper-heuristics with AM and OI move acceptance and was found to generate solutions of higher
quality than using other hyper-heuristics or the traditional application of SA. This hyper-heuristic was
subsequently included within a framework in Bai et al. (2007) and applied with similar success to nurse
rostering, university course timetabling and bin-packing problems. The LLHs within the heuristic set
typically performed swap operations between two candidate nurses based on their availability within
the roster. Burke et al. (2008) analysed the results of Bai et al. (2007) and Ozcan et al. (2008) to find
that SA move acceptance outperformed EMCQ for exam scheduling and, subsequently, that SR selection
without any learning yielded even better results. The nurse rostering problem was also tackled by
Burke and Soubeiga (2003) using a TS hyper-heuristic and Bilgin et al. (2010) using SR heuristic selection
and SA move acceptance. In the latter, a GR shuffle hyper-heuristic was also employed to further improve

solution quality by swapping sections of different solutions.

Burke et al. (2010a) presented an HHA to perform heuristic selection of LLHs for a selection of
problems: one-dimensional bin-packing, job timetabling and personnel scheduling. Crossover, mutational
and LS LLHs were among those included within the heuristic set and selected using either SR or TS with
reinforcement learning. This HHA was compared against an iterated LS method wherein all LLHs were
applied to each solution in a predetermined order. The HHA performed worse than iterated LS, indicating
a need to improve the HHA for these problems. An investigation was performed by Ozcan and Kheiri
(2012) into applying a multi-stage HHA to the same problems as Burke et al. (2010a). This HHA firstly
applied a GR hyper-heuristic to evaluate all LLHs and generate a list of available LLHs for application
to the problem. This stage can be viewed as the opposite to TS by creating a list of permitted moves
rather than a list of prohibited moves. The second stage then employed RD to apply an LLH from the
list until no further improvement was made. Experimental results indicated that this HHA was more

generally applicable than the methods of Burke et al. (2010a) and provided improved solution quality.

Grobler et al. (2010) performed heuristic selection from a set of perturbative LLHs including variations
of a GA, particle swarm optimisation (PSO) and differential evolution (DE). Real number representations
of design variables were employed rather than binary representations to facilitate the use of these LLHs,
with heuristic selection performed every 25 generations using an SR, RW or TS hyper-heuristic with
AM or SA move acceptance rules. LLH parameter values were controlled deterministically such that
each parameter varied linearly between preset initial and final values. The HHA was evaluated over a
series of benchmark functions to find that RW and TS heuristic selection performed best whilst SA move
acceptance outperformed AM, although it was concluded that AM could provide faster convergence for
simpler problems. A TS hyper-heuristic was employed for heuristic selection by Domingos and Platt
(2013) during the optimisation of the design of a nuclear reactor core. The LLH set included differential
evolution (DE), PSO, SA and hill climbing (HC), with the hyper-heuristic obtaining comparable results to
the traditional application of GAs, DE and PSO in minimising the average power peak factor in reduced

computation time, in fact outperforming the latter two techniques.

An HC hyper-heuristic was employed by Garrido and Castro (2009) to solve the vehicle routing prob-
lem. Constructive and perturbative LLHs were employed in pairs to solve the problem. An investigation
of the HHA performance against well-established methods generated good quality results for a series of
benchmark problems. Garrido and Riff (2010) extended this work through the addition of noisy LLHs
to the heuristic set. A dynamic vehicle routing problem was solved during this study, with high-quality
results indicating that the HHA was apt at adapting to the dynamic nature of the problem. Variable and
value ordering of the constraint satisfaction problem was addressed by Bittle and Fox (2009), requiring
the determination of all possible permutations of design variables that satisfy all design constraints. The
problem was solved by firstly choosing a variable for instantiation prior to the selection of a value for
the variable from a set of possible values. Constraints were then checked to ensure solution feasibility.

Hyper-heuristics are employed to solve map colouring and job shop scheduling problems by choosing
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LLHs that select variables based on the variable characteristics, e.g. number of linked constraints. Cog-
nitive architecture underpinned the learning mechanism such that the order in which variables and their
values were selected was improved. This problem was similarly addressed by Ortiz-Bayliss et al. (2011),
leading to the generation of hyper-heuristics of comparable quality to the LLHs traditionally employed.
Terashima-Marin et al. (2008) similarly considered the use of hyper-heuristics to solve the variable or-
dering problem. A training period was conducted for learning of the problem prior to the solving the

optimisation problem. Promising results were obtained against multiple benchmark functions.

A memetic approach to the nurse rostering problem was investigated by Burke et al. (2001), wherein
TO-based GA optimisation of a population was performed followed by perturbation analysis using TS
until no improvement was made in the solution over two consecutive iterations. The better-performing
individuals subsequently possessed a higher probability of selection by the GA. Greatly improved solution
quality was observed using this HHA over a traditional TS algorithm, however this was at the expense of an
increase in computation time due to the steepest descent (SD)-based stepping employed by TS. A memetic
algorithm (MA) was similarly presented by Ozcan and Bagaran (2009) for application to the knapsack
problem. Random and gradient-based LS methods were applied with Lamarckian evolution to improve the
solutions generated by a GA with success, although without any indication of possible computation time
effects of employing the MA. Krasnogor and Smith (2000) applied an MA for perturbation analysis during
the optimisation of the travelling salesman problem. The study found that the SA-based MA coupled
with a GA outperformed traditional use of the GA. Ong et al. (2006) employed static, adaptive and self-
adaptive MAs to numerical benchmark problems at both the problem and hyper-heuristic level, where
the latter performed perturbation analysis of heuristic selection using SR, RW and TS hyper-heuristics.
The adaptive MA performed best during this study, whilst perturbation analysis at a hyper-heuristic level
was able to appropriately control the frequency and duration of perturbation analysis through the use
of a suitably-designed hyper-heuristic objective function as the Mol. Noman and Iba (2008) performed
perturbation analysis with a similarly adaptive MA coupled with DE to numerical benchmark functions,

finding improved solution quality and convergence with such analysis over algorithms in the literature.

Julstrom (1999) performed a comparative study of Darwinian, Lamarckian and Baldwinian evolution
during the perturbation analysis of a population of solutions generated by a GA. Perturbation analysis
using Lamarckian evolution performed considerably better than the other approaches, although Dar-
winian evolution was also effective at solving the problem. The use of Baldwinian evolution was found to
deteriorate the performance of the GA, resulting in the worst solutions. Lamarckian evolution was also
found to generate the best solutions with an MA by Ozcan et al. (2008). Conversely, Kheng et al. (2010)
found that Baldwinian evolution outperformed Lamarckian evolution when used to solve noisy mathe-
matical benchmark functions, although the study did indicate that Lamarckian evolution was better at
solving such problems without the presence of noise. A study by Whitley et al. (1994) obtained similar
results; however Baldwinian evolution required a longer search duration in order to converge on a better

solution than using Lamarckian evolution.

Parameter control was investigated by Brest et al. (2006) during DE optimisation of numerical bench-
mark functions. Self-adaptive control was performed of the technique operators, leading to comparable
or better solutions than with a static tuned DE algorithm. A further investigation by Brest et al. (2007)
compared the performance of a DE algorithm with adaptive and self-adaptive parameter control. The
results of this study indicated better results using self-adaptive control through the coevolution of a so-
lution and suitable algorithm parameter values. Deterministic, adaptive and self-adaptive control of a
GA were investigated by Fernandez-Prieto et al. (2012) for optimising computer network traffic patterns.
The dynamic optimisation processes generated better results than a static process with the exception
of individual-level adaptive control which performed poorly. This indicated the importance of appropri-

ate design of parameter control rules. Srinivas and Patnaik (1994) presented a GA with individual-level
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adaptive crossover and mutation probabilities to prevent premature convergence on local optima and
improve search diversity. The use of such an adaptive optimisation process enabled fitter individuals
to be maintained within the population whilst poorer solutions were rejected in favour of exploration.
An adaptive penalty function was presented by Bean and Hadj-Alouane (1992) wherein the penalty pa-
rameter was adapted to encourage a feasible solution whilst discouraging search far from the constraint
boundaries. Nanakorn and Messomklin (2001) similarly introduced an adaptive penalty function to a
structural design optimisation problem, finding improved robustness using this function and a lack of
dependency of solution quality on predetermined values of function parameters. Both of these adaptive
penalty functions were applied with a scope of population-level adaptation.

Hyper-heuristic optimisation has seen limited application within the domain of aerospace design.
Fukunaga et al. (1997) investigated the automation of the optimisation process in spacecraft design. This
research was conducted prior to the definition of a hyper-heuristic, therefore the method was not described
as employing hyper-heuristic optimisation. Nevertheless, optimisation techniques were selected from a set
of LLHs including a GA and SA to solve particular instances of the problem based on past performance. A
multi-objective MA was employed by Song (2009) to minimise the drag of an aerofoil at four different flight
conditions. The LS technique optimised the solutions on the Pareto front formed by the multi-objective
function following population optimisation by a GA. Although a comparison was not performed with
existing methods, the approach was found to be robust in generating solutions of high quality. Hyper-
heuristic optimisation was also performed for aerospace design by Rafique et al. (2011), where population
distribution was conducted between three LLHs during the multidisciplinary optimisation (MDO) of a
satellite launch vehicle for minimum gross launch mass. The disciplines addressed during optimisation
included the vehicle configuration, propulsion unit, aerodynamics and mission. Population distribution
was performed randomly using a non-learning function between a GA, PSO and SA LLHs. Parameter
control was also performed using an SR hyper-heuristic, therefore no learning was included within the
HHA. The HHA was applied within an outer loop whilst optimisation of the solutions was performed
within an inner loop. The inner loop was executed over 120 generations for each outer loop iteration,
itself limited to 50 iterations. Therefore, population distribution and parameter control was performed for
each outer loop generation, i.e. at a frequency of 120 optimisation generations. The process was limited
to 100,000 function evaluations. The HHA was found to outperform the individual LLHs when applied
to a set of benchmark functions. Moreover, the satellite launch vehicle optimisation problem was solved

with greater success using the HHA than by traditional optimisation using each LLH independently.

3.7 Summary

Hyper-heuristic optimisation is an emerging area of research wherein the optimisation process is mod-
ified during execution to promote further improvement in its performance, most commonly measured
by solution quality. As a result, optimisation is performed across two domains: the hyper-heuristic and
problem domain. Hyper-heuristics select LLHs for application in the problem domain and control the
values of optimisation process parameters. Furthermore, multiple LLHs may be employed through pop-
ulation distribution and local solution space learning may be encouraged through perturbation analysis.
Consequently, hyper-heuristic optimisation provides opportunities to improve the optimisation process
performance and quality of solutions generated over that possible by traditional optimisation. However,
this can result in a computational cost due to additional analysis of solutions or to allow opportunities
for changes in the process to take effect. Although hyper-heuristic optimisation has seen considerable
research in its relatively short life, little research has been performed within the domain of aerospace
design. Most notably, hyper-heuristic optimisation has not yet been applied within the field of aircraft
structural design optimisation. This presents the opportunity to apply an HHA within this domain in

an attempt to improve the process followed during the optimisation of an airframe design.
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Chapter 4

Requirements and Opportunities

Reviews conducted of existing approaches to aircraft design optimisation and hyper-heuristic optimisation
have been presented in Chapters 2 and 3. These reviews identified a number of traditional requirements
of a framework in order to generate, analyse and optimise a conceptual aircraft design and employ hyper-
heuristics to improve a problem solution. This chapter expands on the requirements in §4.1 to define
the bounds within which the framework proposed by this research must be developed. These literature
reviews have also led to the identification of a number of research opportunities for improvement of
the traditional aircraft design optimisation solution process and the traditional use of a hyper-heuristic
approach (HHA). These opportunities are discussed in §4.2 in order to present the ways in which the
framework may be designed to provide an improvement over existing approaches to the aircraft design
optimisation problem. This chapter also includes a section, in §4.3, to define key terminology used in

describing the framework in subsequent chapters. The chapter is summarised in §4.4.

4.1 Traditional Requirements

The reviews of aircraft design optimisation and hyper-heuristic optimisation identified a number of tradi-
tional requirements for the optimisation of an aircraft design and employment of an HHA. The framework
proposed by this research must incorporate these requirements in order to facilitate the generation and

optimisation of an airframe design using an HHA and thus satisfy the research aim in §1.3.

4.1.1 Aircraft Design Optimisation

The review of aircraft design optimisation in Chapter 2 discovered a common procedure that is followed
in order to solve the presented optimisation problem. This procedure, described in §2.2, is inherently
iterative given the traditional evolution of an initial baseline design into a near-optimal solution. In order

to follow this procedure, the framework requires the following stages within the solution process:

e initialisation of the optimisation problem and process;

definition of an aircraft mission;

e estimation of aircraft mass;

e generation of the external profile;

e iterative generation, analysis and optimisation of the airframe;

e termination of the process.
The solution process begins with its initialisation, including the input of design and process requirements.
It is essential that these data are provided otherwise the optimisation problem will not be defined nor

process set up to enable a solution to be found. The aircraft mission is then defined, using data input

during initialisation, including the selection of load cases to be applied to the aircraft during analysis.
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4.1. Traditional Requirements

Most approaches discussed in §2.1 and §2.5 applied isolated load cases to the aircraft, however the inclusion
of a mission is preferred in order to simulate realistic loading conditions likely to be encountered by the
aircraft during operation. Moreover, a mission is necessary in order to perform the next tasks of the
process. Empirical mass estimation is performed during conceptual design optimisation to establish the
necessary size of the aircraft for flight based on its mission, i.e. lifting surfaces geometry required to
generate sufficient lift to sustain flight given the estimated vehicle mass. Empirical formulae can be
used as a result of the similarities in previous and current aircraft designs. Further, mass has to be
estimated rather than calculated precisely due to the lack of information about the design at this stage
of the process. Having established the geometric requirements for flight, the aircraft external profile is
determined using either data input during initialisation, empirical relationships or both. It is necessary
to perform this task such that the geometric boundary within which the airframe is to exist is defined.
During conceptual design, use of such empirical formulae for aircraft profile generation is appropriate a
given lack of design knowledge and the reduced precision typically used during this design process phase.

Structural optimisation is performed within the boundary of the external profile through the iterative
generation, analysis and optimisation of airframe design solutions. This is conducted using either a
single or population of design variants depending on the optimisation technique employed. As stated in
§2.3, no one specific optimisation technique is employed consistently throughout the existing approaches,
however evolutionary algorithms (EAs) are the most popular during recent studies. This indicates a
lack of consensus as to the best techniques to be applied to the problem. Dominant optimisation design
variables include the quantity, position, size and material of structural members commonly employed,
whilst the minimum factor of safety (FoS) and wingtip deflection under load are typical design constraints.
Structural analysis is performed of airframe designs under the selected load cases and at a defined model
fidelity level, leading to the employment of a penalty function to calculate a penalisation value due to
design infeasibility with respect to the design constraints. The value of the design objective function,
typically minimum structural mass, is subsequently calculated and penalised where appropriate by the
penalty function. The exterior penalty function, as described in §2.4, is the most popular penalty function
as it permits the consideration with decreasing probability of infeasibilities. Use of such a function is
necessary to promote feasibility in the solution, otherwise the resulting design may be of little value
for manufacture and operation. The optimisation technique is applied to generate a new population of
designs for analysis and subsequent optimisation. The optimisation process continues until a termination
criterion is satisfied, at which point a design solution is output. The set-up of structural analysis,
commonly performed using finite element analysis (FEA), determines the precision and computational
effort of assessing the feasibility of design solutions. Similarly, the settings of optimisation process dictate
process behaviour and thus influence the quality of solution generated.

Variation from this traditional solution process is not appropriate for the framework in order to in-
vestigate the application of hyper-heuristics to the problem. A research objective stated in §1.3 was to
evaluate the framework developed by this research against existing approaches to aircraft design optimi-
sation in order to assess the thesis. Consequently, the principal variation between existing approaches
and the framework is required to be the inclusion of an HHA to improve the optimisation process, and
thus solution quality. Therefore, it is appropriate that the framework follows the traditional solution

process of aircraft design optimisation, except in the inclusion of an HHA.

4.1.2 Hyper-Heuristic Optimisation

The review of hyper-heuristic optimisation in Chapter 3 introduced an HHA as an approach employed to
improve the value of a hyper-heuristic objective function, which in turn encourages improvement in the

performance of the optimisation process. The requirements of an HHA are:

e the aspects of the optimisation process to be controlled;
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Chapter 4. Requirements and Opportunities

e a hyper-heuristic objective function;
e a learning mechanism;

e the hyper-heuristic optimisation set-up.

An HHA can control the optimisation process through a number of aspects, the selection of which is
required in order to apply the HHA. The most commonly-applied aspects were described in §3.2, §3.3,
§3.4 and §3.5. Within these HHA aspects, a hyper-heuristic objective function is required in order to
measure the performance of the optimisation process. This function is similar to the objective function
of the optimisation problem but focuses on improving process performance rather than the quality of
solutions generated to the optimisation problem. Notwithstanding this, solution quality may be used as
a component of the hyper-heuristic objective function to measure process performance if desired. This
objective function should be carefully designed to ensure the most appropriate process characteristics
are considered and weighted appropriately to encourage the desired behaviour at suitable points during
the process. Measures of performance used within existing studies include improvements in the problem
objective value and the computation time taken. A learning mechanism is then required to monitor such
process performance and instruct the HHA of actions to perform in an attempt to improve the hyper-
heuristic objective value. As discussed in §3.1, independence must be maintained between the problem
domain and hyper-heuristic domain by ensuring that any data passed across the domain barrier are prob-
lem independent. The hyper-heuristic objective function and learning mechanism must be implemented
in such a way that domain independence is maintained. Hence, the hyper-heuristic objective function is
traditionally based on the dimensionless fitness of solutions, whilst reinforcement learning is commonly
used to assign a score to the performance of the process that does not use problem-specific data. The
set-up of the HHA includes the selection of hyper-heuristics for application within the hyper-heuristic
domain. Similarly, a low-level heuristic (LLH) set requires populating when employing heuristic selection
or population distribution to define which optimisation techniques may be employed within the problem
domain. Many different hyper-heuristics and LLHs have been employed for hyper-heuristic optimisation,
as discussed in §3.6, with no consensus on the best techniques for specific problems, and few applications

of such optimisation to aerospace design.

The framework is required to include an HHA in order to apply hyper-heuristic optimisation to the
problem of conceptual aircraft structural design and hence investigate the thesis of this research. This
HHA must be designed within the traditional bounds in order to show the effect of applying hyper-
heuristics to the problem and thus satisfy the research aim. The inclusion of various HHA aspects within
the framework may enable a detailed comparison to be performed of conceptual aircraft structural design

using traditional optimisation and different methods of hyper-heuristic optimisation.

4.2 Research Opportunities

To satisfy the aim of this research presented in §1.3, the framework must incorporate the traditional
requirements of airframe design optimisation as well as those of hyper-heuristic optimisation identified in
84.1. As hyper-heuristic optimisation has not been performed within the field of aircraft structural design,
this presents an opportunity to investigate the effects of an HHA on such problems. Further opportunities
have been identified during the reviews in Chapters 2 and 3 to improve the aircraft design optimisation

process and the traditional implementation of an HHA. The identified research opportunities are:

e apply hyper-heuristics to aircraft structural optimisation;
e develop a novel HHA for the aircraft design optimisation problem:;
e include multiple hyper-heuristic aspects within the HHA;

e create a versatile framework for a variety of aircraft structural optimisation problems.
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4.2. Research Opportunities

The principal research opportunity is to apply hyper-heuristic optimisation to the problem of conceptual
aircraft structural design optimisation within the framework. The review of existing hyper-heuristic

applications identified three applications of an HHA in the domain of aerospace engineering;:

e Fukunaga et al. (1997): spacecraft design optimisation with heuristic selection;
e Song (2009): aerofoil profile optimisation with perturbation analysis;

e Rafique et al. (2011): satellite launch vehicle optimisation with population distribution and param-

eter control.

None of these problems considered optimisation of the vehicle structure, presenting the opportunity to
investigate the application of an HHA to aircraft structural design optimisation. The application of
hyper-heuristics to this problem can be beneficial by improving the quality of solutions generated as well
as the performance of the optimisation process, e.g. time taken to find a high-quality solution. Hyper-
heuristic optimisation is well-suited to aircraft design optimisation due to the complexity of the problem.
More specifically, an arbitrary optimisation technique can experience difficulty in reliably locating a near-
optimal solution to a problem when there are a large number of design variables or when the solution
space is unpredictable. Furthermore, the tuning of such techniques to improve its performance for a
particular problem can be prohibitively expensive and may only be appropriate to one instance of the
problem. In contrast, hyper-heuristics enable optimisation techniques to solve a problem through more
general application without requiring extensive tuning for the problem instance. The lack of consensus
regarding a dominant optimisation technique and set-up that was discovered during the aircraft design
optimisation review in Chapter 2 implies that the use of hyper-heuristics to control the selection and set

up of the techniques applied to the problem would be desirable.

Given the lack of application of hyper-heuristic optimisation to the aircraft structural design problem,
an opportunity exists to develop a novel HHA to provide benefits specifically to the process of solving
this problem. For example, existing uses of heuristic selection have often included problem-specific LLHs
whereas more general optimisation techniques are employed for aerospace design optimisation. Therefore,
the HHA can be designed to perform heuristic selection of general LLHs including both population-based
and single-solution techniques. The optimisation of an aircraft design is typically performed through
the iterative evolution of a baseline design. This requires the generation and subsequent optimisation of
many aircraft designs due to the large number of possible solutions resulting from variations in the design
variables. As a result, the problem is more suited to perturbative hyper-heuristics than constructive
heuristics as the former evolves a baseline solution whereas the latter constructs a solution from an
empty initial solution given the problem state and a set of appropriate rules. Moreover, the optimisation
techniques historically employed for aerospace design optimisation are, by this classification, perturbative.
The use of heuristic selection is further supported by variety of different optimisation techniques used
for aircraft design optimisation without a clear indication of a dominant technique. Furthermore, by
including population distribution in the HHA it is possible to simultaneously employ multiple LLHs to
evolve a population of solutions. This can provide greater opportunities for solution space exploration by
not limiting the search to the capabilities of a single technique in current use. This search can be further
enhanced through the inclusion of perturbation analysis to provide opportunities to learn the nature of
the solution space which is often complex and unknown before the search has begun. Additionally, by
employing a dynamic optimisation process through parameter control it is possible for the process to be
modified online to improve the optimisation search process as well as solution quality. For example, a
dynamic process can vary the step size of local search (LS) technique to avoid premature convergence or
the crossover and mutation rates of a genetic algorithm (GA) to encourage population convergence on
a good solution. Further, parameter control can be applied to other aspects of the optimisation process

such as penalty function severity to promote the discovery of a feasible airframe design solution. Finally,

61



Chapter 4. Requirements and Opportunities

the hyper-heuristic parameter control of variable-fidelity modelling during structural analysis can be
investigated in an attempt to encourage appropriate analysis precision and computational speed during
the optimisation process.

The reviews of different HHAs presented in §3.6 indicated that a single aspect of hyper-heuristic
optimisation is traditionally applied to each problem, i.e. most applications of hyper-heuristics involved
performing only heuristic selection for a problem without population distribution, perturbation analysis
or parameter control. A selection of studies did include a second aspect of hyper-heuristic optimisation,
i.e. either heuristic selection coupled with perturbation analysis or parameter control, but none were
identified that incorporated the four hyper-heuristic aspects of heuristic selection, population distribution,
perturbation analysis and parameter control. Consequently, a research opportunity exists to investigate
the concurrent application to a problem of these aspects of hyper-heuristic optimisation within a single
HHA. This can provide further improvement in solution quality and process performance due to the
similar aims of the HHA aspects, e.g. heuristic selection in combination with population distribution to
provide performance-based selection of multiple LLHs.

An additional research opportunity is for the framework to be sufficiently flexible to consider a variety
of aircraft classes and designs as well as numerous loading conditions of varying nature. It was identified
in §2.5 that the majority of existing approaches considered a single aircraft class or design, thus limiting
the potential use of the corresponding frameworks to solely that aircraft class or design. Similarly, many
studies applied a single isolated load case to the aircraft during analysis. This approach leads to an
unrealistic assessment of the structure by neglecting to consider the effects of different load cases that
may drive the strength of the airframe in particular regions. For example, the maximum positive flight
manoeuvre was identified as being most popularly applied in existing approaches, however a landing load
case may be more severe at the local attachment points of the undercarriage to the airframe structure.
By developing a framework that possesses sufficient versatility to consider different loading conditions
and aircraft classes, opportunities are presented to perform studies of the effects of different load cases
on an aircraft design as well as the effects of applying an HHA to the optimisation of various aircraft
designs. Furthermore, by ensuring the entire aircraft design can be modelled and analysed rather than
solely a single section, the framework will provide greater value to the conceptual design process through

the output of a complete aircraft configuration.

4.3 Terminology

Various terminology is defined in this section prior to description of the framework in Chapter 5 for
clarification of misleading or similar terms used within the different fields pertinent to this research,
i.e. aircraft design, structural analysis and hyper-heuristic optimisation. This is principally required to
maintain consistency during the description of the framework in light of variations in the conventional
terms used to describe different optimisation techniques. Furthermore, key equations are introduced
here for reference during the description of the framework. This is to promote the understanding of the
objectives of using the framework for hyper-heuristic aircraft design optimisation.

The framework is described as being employed to solve a single optimisation problem for a near-
optimal airframe design. References to the ‘engineer’ concern the individual or team implementing the
framework for this purpose. Optimisation is described for a population set of individual solutions, i.e.
aircraft structural designs, over a number of generations. This terminology is used throughout the
framework description for ease of comparison of different optimisation techniques. The terms ‘individual’
and ‘population’ respectively replace the more commonly used terms ‘particle’ and ‘swarm’ for particle
swarm optimisation (PSO) due to their commonality when describing other population-based techniques.
Similarly, the term ‘generation’ is used in place of ‘step’ or ‘iteration’ when describing LS techniques for

consistency whilst ‘individual’ replaces ‘agent’ in describing differential evolution (DE).
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4.4. Summary

The framework optimises the design of an airframe over nj generations in an attempt to satisfy the

following objective function for a solution of minimum structural mass
min (@(Xk)) for k=1,2,...,ng (4.1)

The feasibility of an individual design solution is determined by comparing the results of structural
analysis against two hard design constraints. The limiting values for these constraints are input during

initialisation such that a feasible solution satisfies the following expression
gi1(X") > e (4.2a)
|95,2(XM)| < Jea (4.2b)

where c¢; design constraint on minimum FoS under yield

co  design constraint on maximum magnitude of wingtip deflection, m

An HHA within the framework aims to improve the optimisation process performance by satisfying a

hyper-heuristic objective function measuring process performance
k _
max(d) ) for k=1,2,...,ng (4.3)

These expressions are explained further in Chapter 5 during the description of the framework, including
the definitions of the components of the hyper-heuristic objective function that measure the performance

of the optimisation process.

4.4 Summary

The review of existing approaches to aircraft design optimisation and hyper-heuristic optimisation identi-
fied that the framework presented by this research must incorporate a number of traditional requirements
to perform its function. Additionally, a number of research opportunities have been identified for ex-
ploitation in order to improve the process by which the optimisation problem is solved and by which an
HHA is employed. The principal opportunity identified is the chance to apply hyper-heuristic optimi-
sation to aircraft structural design through the development of a framework with an embedded HHA.
Additional opportunities include the possibility to develop a novel HHA for airframe optimisation, em-
ploy four hyper-heuristic aspects in the HHA and develop a versatile framework for a variety of aircraft
structural design optimisation problems. This has led to the development of a framework to perform
such hyper-heuristic optimisation of a conceptual aircraft design in order to obtain a solution of minimal

mass under load.
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Chapter 5

Framework for Hyper-Heuristic

Aircraft Structural Optimisation

A framework is presented for the hyper-heuristic structural optimisation of a conceptual aircraft design.
The framework defines the process by which an airframe design is optimised to minimise its structural
mass in accordance with the requirements and opportunities identified in Chapter 4. This framework
differs from existing approaches to aircraft design optimisation through the inclusion of a hyper-heuristic
approach (HHA) to improve solution quality and the performance of the optimisation process. The HHA
includes heuristic selection, population distribution, perturbation analysis and parameter control. The
framework may be used for aircraft of various classes, layouts and missions through the simulation of
multiple static or dynamic load cases. Furthermore, the aircraft designs generated by the framework are
complete configurations, i.e. not solely a single aircraft section such as the wing, fuselage or empennage.
The feasibility of designs is measured using finite element analysis (FEA) with respect to specified design
constraints. This chapter provides an overview of the framework followed by its description in detail.

The framework is formed of three principal stages:

1. aircraft design procedure: input of design requirements and aircraft design generation;
2. structural analysis: airframe modelling, evaluation of its response to loads and stress analysis;

3. airframe design optimisation: mass optimisation of the airframe using the HHA.

The framework stages are constructed using the modules listed in Table 5.1. Each module is comprised of
a number of tasks to be performed. This results in a framework hierarchy in descending order of stages,
modules and tasks. The framework is formed through the connection of modules as illustrated in Fig. 5.1,
where the labelling of modules corresponds to that within Table 5.1. All tasks are performed within the
framework modules without the need for external modules, e.g. for FEA or optimisation, to eliminate

any reliance on such independent sources.

Table 5.1: Framework modules

Aircraft design procedure Structural analysis Airframe design optimisation
1.1 Initialisation 2.1 Sectional properties 3.1 Population feasibility

1.2 Mission definition 2.2 Structural mass 3.2 Population fitness

1.3 Mass estimation 2.3 Airframe model 3.3 Termination criteria

1.4 Aircraft profile generation 2.4 Finite element analysis 3.4 Hyper-heuristic approach
1.5 Aircraft loads 2.5 Stress analysis 3.5 Design optimisation

1.6 Structural layout generation 3.6 Data output
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65



Chapter 5. Framework for Hyper-Heuristic Aircraft Structural Optimisation

The key tasks performed within each module are shown in Fig. 5.1, e.g. the first task within the ‘Initialisa-
tion’ module is the ‘Design requirements’ task. The description of the framework that follows is consistent
with this labelling of framework stages, modules and tasks. The identification numbers of modules and
tasks are included in this description in parentheses to correspond with Table 5.1 and Fig. 5.1.

This chapter describes the methodology of the framework as follows. The aircraft design procedure
stage is described in §5.1. This includes descriptions of the modules that perform the initialisation of
the framework in §5.1.1, definition of an aircraft mission in §5.1.2, empirical mass estimation in §5.1.3
and generation of the aircraft external profile in §5.1.4. The calculation of load cases is discussed in
§5.1.5 before the description of the generation of an airframe design based on the values of the design
variables in §5.1.6. The structural analysis stage is then described in §5.2. This section details modules
performing the calculation of structural member sectional properties in §5.2.1 and airframe structural
mass in §5.2.2. The procedure followed to model the airframe is then described in §5.2.3 prior to the
process of analysing this model by FEA in §5.2.4 and subsequent stress analysis using the results of FEA
in §5.2.5. The airframe design optimisation stage is then described in §5.3. The modules within this
stage are described, beginning with the calculation of solution feasibility in §5.3.1 and fitness in §5.3.2.
The definitions of the termination criteria are then provided in §5.3.3 followed by a description of the
HHA embedded within the framework in §5.3.4. The optimisation techniques employed to optimise the
airframe are then described in §5.3.5 before discussion of the data output from the framework to record

results in §5.3.6. Finally, a summary of the chapter is provided in §5.4.

5.1 Aircraft Design Procedure

The aircraft design procedure is the first stage of the framework. This encompasses the modules and tasks
required to generate an aircraft design given input requirements. This involves the initialisation of the
framework, definition of an aircraft mission, estimation of vehicle mass, generation of the aircraft external
profile, calculation of load cases and the generation of the airframe as defined by design variables. All
modules within this stage are performed once within the framework, except structural layout generation
which is performed once for each individual design solution during optimisation. Additional information,

supporting theory and relevant airworthiness requirements are provided in Appendix A.

5.1.1 Initialisation

The initialisation module, a process requirement identified in §4.1.1, encompasses the input of the opti-
misation problem and process set-up. These include the requirements of the aircraft design (task 1.1a
in Fig. 5.1 denoted by ‘[1.1a]” herein) and mission [1.1b], selection of load cases [1.1c], input of design
parameters [1.1d], set up of structural analysis [1.1e] and the optimisation process [1.1f], and input of
process parameters [1.1g]. Table 5.2 lists these tasks, including references to the uses of the input data
within the framework and tables listing the input parameters in more detail within Appendix A.1.
Initialisation of the design requirements includes the decision to concentrate on the structural op-
timisation of either an existing aircraft design variant or a novel concept. The tasks within the mass
estimation and aircraft profile generation modules are reduced if an existing aircraft design variant is to

be generated. The aircraft class is also selected during the input of design requirements from the following:

e civil light: e military:
— normal; — trainer;
— aerobatic; — interceptor;
— utility; — ground attack;
— commuter; — bomber;
e civil large; — transport.
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5.1. Aircraft Design Procedure

Table 5.2: Initialisation of design process

Task Description Relevant section Listing

1.1a Design requirements  Aircraft geometry, materials §5.1.2, §5.1.3, §5.1.4 Table A.1
Powerplants, undercarriage, ordnance
Alternative selection of existing aircraft

1.1b Mission requirements Class, stall speed, payload, aerodromes §5.1.2, §5.1.3, §5.1.4 Table A.2
Specification of mission stages

1.1c Load case selection Selection of load cases to apply 85.1.5 Table A.3
1.1d Design parameters Design variables and constraints ranges §5.1.6 Table 5.3
1.1e Structural analysis Model fidelity level 85.2.3, §5.2.4 Table A.4

Dynamic load solution method
Direct integration scheme and set-up

1.1f Optimisation set-up Static optimisation parameters §5.3.4, §5.3.5 Table A.5
Termination criteria

1.1g Process parameters Dynamic parameters ranges 85.3.4 Table 5.4
Selection of LLHs and hyper-heuristics  §5.3.4, §5.3.5 Table A.6

These aircraft classes are those commonly used within airworthiness requirements and literature such as
Howe (2004). Properties of the aircraft mission are input for use during mission definition. The load
cases for application during structural analysis are selected and the permitted ranges of design variables
and constraints input. The parameters of the structural analysis and airframe design optimisation are

also input and are discussed further during the descriptions of these stages §5.2 and §5.3 respectively.

Table 5.3 lists the design parameters, i.e. design variables, constraints and objective, employed within
the framework. These design parameters correspond with those commonly employed within the existing
approaches reviewed in Chapter 2. The optimisation process aims to improve the value of the design
objective, O1, through modification of the values of the design variables, V1 to V50, whilst satisfying the
design constraints, C1 and C2. The number and geometry of structural members define the airframe size,
thus driving the mass of the structure, where the quantities of member types are defined by variables
V1 to V11. Member positions are defined by the spacing and distribution of members, V12 to V18,
to define the distribution of structural strength about the aircraft. The member cross-sections, V21
to V25, determine the strength of individual members to loads in various orientations. Variables V19,
V20 and V26 to V47 control member geometry by defining the breadth and depth of either the member
sections, i.e. flanges and webs, or the entire member, the choice of which is dependent on the member
cross-sectional profile. The materials of members performing the similar structural roles described in
§1.1.1 are defined by variables V48 to V50. The minimum factor of safety (FoS) under yield, C1, is a
critical design constraint in establishing whether the structural members within each design solution will
fail under the applied load cases. The maximum wingtip deflection, C2, is also an important constraint
to prevent excessive bending or wing ground-strike. Finally, the design objective of minimum structural
mass, O1, promotes the generation of a structural design of minimum mass, thus intending to provide

improved aircraft performance and potentially reduced manufacturing and operating costs.

Parameter control within the HHA encourages the adaptation of specific process parameters for the
improvement of a hyper-heuristic objective function. The initialisation of the optimisation process in-
cludes the input of the ranges permitted for these dynamic process parameters. The controlled parameters
included within the framework are listed in Table 5.4. Model fidelity, P1, controls the precision of the
finite element (FE) model and subsequent computation time required to perform structural analysis of
each design solution. The penalty coefficient, P2, determines the severity of penalisation made by the
penalty function. The binary chromosome strand length, P3, enables the adaptation of variable strand

lengths to encourage the optimisation process to focus on variables failing to converge. The remaining
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parameters, P4 to P18, determine the behaviour of low-level heuristics (LLHs) when employed within
the problem domain, variations of which promote solution space exploration or population convergence.

The use and control of these parameters are discussed further where appropriate in §5.1.6, §5.2 and §5.3.

Table 5.3: Structural design parameters

Design variable

V1 Number of fuselage frames V26 Fuselage frames breadth

V2  Number of fuselage stringers V27 Fuselage frames depth

V3  Number of horizontal tail ribs V28 Fuselage frames thickness

V4  Number of horizontal tail spars V29 Fuselage floor beams flange breadth
V5  Number of horizontal tail stringers V30 Fuselage floor beams flange depth
V6  Number of vertical tail ribs V31 Fuselage floor beams web breadth
V7  Number of vertical tail spars V32 Fuselage floor beams web depth
V8  Number of vertical tail stringers V33 Fuselage stringers breadth

V9  Number of wing ribs V34 Fuselage stringers depth

V10 Number of wing spars V35 Fuselage stringers thickness

V11 Number of wing stringers V36 Lifting surface ribs flange breadth
V12 Horizontal tail rib spacing exponent V37 Lifting surface ribs flange depth
V13 Vertical tail rib spacing exponent V38 Lifting surface ribs web breadth
V14 Wing rib spacing exponent V39 Lifting surface spars flange breadth
V15 Distribution of frames to nose V40 Lifting surface spars flange depth
V16 Distribution of frames to wingbox V41 Lifting surface spars web breadth
V17 Distribution of frames to tail V42 Lifting surface spars cap thickness
V18 Front wing spar chordwise root position V43 Lifting surface stringers breadth
V19 Spar root breadth scaling factor V44  Lifting surface stringers depth

V20 Spar root depth scaling factor V45  Lifting surface stringers thickness
V21 Fuselage frames section V46  Skin thickness

V22 Fuselage stringers section V47  Floor thickness

V23 Horizontal tail stringers section V48  Frames, floor beams, ribs and floor material
V24 Vertical tail stringers section V49 Spars material

V25 Wing stringers section V50 Stringers and skin material

Design constraint Design objective

Cl  Factor of safety under yield, Eqn. (4.2a) O1  Minimum structural mass, Eqn. (4.1)
C2  Wingtip deflection, Eqn. (4.2b)

Table 5.4: Controlled dynamic process parameters

Dynamic parameter

P1 FE model fidelity P10 BP breeder pool intake

P2 Penalty coefficient P11 RC contaminated population
P3 Strand length P12 PSO inertia weight

P4 RI indigenous population P13  PSO cognitive parameter

P5 DE crossover probability P14 PSO social parameter

P6 DE differential weight P15 PSO constriction constant
P7  GA crossover points P16 LS step size

P8 GA crossover probability P17 SA cooling rate

P9  GA mutation probability P18 TS tabu list length

5.1.2 Mission Definition

The aircraft mission profile is defined using the mission requirements that were input during initialisation

[1.2a]. Definition of an appropriate mission is critical to ensuring the design generated is suitable to the

68



5.1. Aircraft Design Procedure

requirements of an operator, and was identified as a framework requirement in §4.1.1. To achieve this,
the following information is input during initialisation:

e airspeeds: suitable stall, manoeuvring, cruise and diving airspeeds;

e payload: including cargo, passengers, ordnance, and other disposable items;

e field length: distance during take-off and landing to clear aerodrome screen;

e range: distance of travel required by aircraft;

e cruising altitude: desired flight level during mission cruise.
Requirements and experience inform the aircraft design speeds, payload and aerodromes input during
initialisation. The field lengths of the latter dictates the necessary powerplant performance. The mission
profile is subsequently generated using input ranges, airspeeds and altitudes for a series of mission stages.
This profile describes the manoeuvres to be performed by the aircraft during operation. Depending on

the aircraft class, these mission stages may include take-off, climb, cruise, aerobatics, combat, payload

drop, descent, loiter and landing. Figure 5.2 shows a sample of typical mission profiles.

Diversion Cruise

Descent

and loiter

Landing, taxi
and shutdown

Descent
and loiter Cruise
Landing, taxi
and shutdown

Landing, taxi

Cruise and shutdown

Descent Cruise

and loiter

Climb Climb

Climb

Engine startup,
taxi and take-off

Engine startup,
taxi and take-off

Engine startup,
taxi and take-off

(a) Single cruise (b) Cruise with diversion (c) Military combat

Figure 5.2: Sample of mission profiles

The mission shown in Fig. 5.2(a) is typical of a large civil aircraft. After startup, taxi and take-off,
the aircraft climbs to cruise for a given range before descending to land at the destination aerodrome
followed by taxi to the ramp and shutdown. A loiter of set duration can be included to allow for the
aircraft being held in the aerodrome holding pattern prior to landing. This profile may be extended to a
mission with multiple cruises including transitions between flight levels via climbing or descending stages.
For example, Fig. 5.2(b) demonstrates a mission with a diversion to an alternative aerodrome as may be
required after an aborted landing. An example of a military combat mission is shown in Fig. 5.2(c) with
a combat period midway through the cruise. Combat can represent air-to-air combat, a high or low-level
strike, surveillance, humanitarian drop, air-to-air refuelling or an aerobatic display. This stage lasts for

a predetermined duration rather than a range due to the unpredictable nature of military operations.

5.1.3 Mass Estimation

The aircraft mass is estimated using empirical data developed by Roskam (1986) and Raymer (2006) to
establish the mass of the vehicle over the mission. It is necessary to use empirical data due to the lack
of information about the aircraft prior to its conceptual design. These empirical methods consider the
aircraft mass as the sum of the following components:

e disposable mass;

e fuel mass;

e trapped fuel and oil mass;

e empty aircraft mass.

Disposable mass encompasses items that are removed from the aircraft between missions, e.g. the mission

payload input during initialisation [1.3a]. An estimate of the aircraft ramp mass is made based on the
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aircraft class and mission using empirical data [1.3b]. The empirical methods developed by Roskam
(1986) and Raymer (2006) are employed to iteratively estimate a more precise value of ramp mass as
described in Appendix A.2 [1.3c]. This iterative process is performed until the error between the input
and output masses reduces to less than 1 x 107 [1.3d]. The mass of the empty aircraft is subsequently

found [1.3e] and thus the aircraft mass during each mission stage is calculated [1.3f].

The need to perform empirical mass estimation is discussed in §2.2 and §4.1.1. The method of Roskam
(1986) is more established within the field of aircraft design but the method of Raymer (2006) is more
recent, thus taking into account newer aircraft designs and materials. Both methods are used by the
framework such that the more-established formulae of Roskam (1986) are employed to estimate mission
fuel mass whilst the more recent data of Raymer (2006) are used to estimate ramp mass to take account of
newer data. Therefore, the framework exploits the reliability of the former well-established method and
the more recent data employed by the latter method. Empirical data are unavailable for mission stages
such as combat and aerobatic manoeuvres. Therefore, the estimation of these stages are substituted for
periods of loiter as they are defined over a duration of time and are fuel intensive. The module outputs
the aircraft mass during each mission stage, as required to generate the aircraft external profile and

calculate mass-dependent load cases, i.e. those during specific mission stages.

5.1.4 Aircraft Profile Generation

The aircraft external profile establishes the geometric boundary within which the airframe structure is de-
signed, analysed and optimised. As discussed in §4.1.1, the aircraft profile requires definition to establish
the boundary within which the structure is designed. Geometric and empirical formulae determine the
aircraft size required for flight [1.4a] and carry the mission fuel [1.4b] as well as the powerplant specifica-
tions required for take-off and landing [1.4c] and establish the aircraft stability [1.4d]. Appendix A.3 lists
the principle formulae used within this module. These tasks are not performed for existing aircraft design
variants as such aircraft geometry and properties are input during initialisation. The external design of
the aircraft is checked by the engineer to ensure the baseline solution is suitable before commencing the

design, analysis and optimisation of the airframe within this external profile [1.4e].

The wing external profile is firstly designed to ensure sufficient main lifting surface area to generate
lift for flight. Aircraft flight mass is at its greatest during take-off; thus requires the maximum lift loading
coeflicient, i.e. force applied to the wing per unit area, to achieve flight. Consequently, the take-off mass
output from mass estimation is used to calculate the wing loading coefficient, from which the wing profile
is generated. The geometry of this profile is constrained by values input during initialisation as listed
in Table A.1 within Appendix A.1. The selected aerofoil provides the coordinates to define the wing
cross-section and the coefficients of lift and drag. The internal volume available to contain the mission
fuel is found by approximating the wing cross-sectional area at a series of spanwise location using the

trapezium rule and aerofoil coordinates as shown in Fig. 5.3 (Maltbaek, 1961).

7 1+1

—

G

Figure 5.3: Surface area of aerofoil
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(5.1)

where A  aerofoil cross-sectional area
¢; ith segment chord length

t; ith segment thickness

The necessary fuel tank volume within the wing is estimated empirically given the fuel mass output from
mass estimation and fuel density specified during initialisation. If the wing tank is of insufficient volume
to hold the fuel, the wingspan is increased and loading coefficient recalculated. Sizing of the empennage
follows a similar procedure to the wing due to the similarity in external profiles and operations, albeit
without the need to carry mission fuel. The fuselage size is dominated by the accommodation of the nose,
flight deck, cabin or payload compartment, and tapered tail. The tail design assumes equal tapering of
the fuselage sides, as is common of most aircraft, and tapering of the fuselage base to avoid ground-strike
with the runway on take-off rotation.

The powerplant properties of a new concept design are estimated empirically such that the aircraft
possess sufficient thrust to satisfy the balanced field length of the aerodromes selected during mission
definition for take-off and landing. Engine thrust is determined through the calculation of the required
aircraft thrust-to-weight ratio given the estimated masses during take-off and landing. Solution of the
balanced field length is a well-established iterative process that determines the powerplant thrust neces-
sary to satisfy three field length cases for an engine-out take-off, emergency stop on take-off and landing.
The latter is not considered for aircraft without reverse thrust as the powerplants are assumed to be
idling throughout the landing. The aircraft decision speed during take-off is estimated iteratively, from
which the other airspeeds during the take-off runs are found by the airworthiness requirements (CS-23,
CS-25, Def.Stan.00-970), until the error in the field length calculated for the three cases is reduced to
less than 1 x 1075, This solution process is described in Appendix A.3.1. The engine maximum thrust is
then found given the estimated take-off mass and thrust-to-weight ratio required to satisfy the balanced
field length. The powerplant properties of an engine possessing such peak thrust are estimated using
data compiled for existing powerplant designs (Jackson, 2009; Meier, 2005). For example, the mass and
geometry of a turbofan powerplant for a large civil transport aircraft are found using Fig. 5.4.

The positions of attachments, i.e. undercarriage, powerplant and ordnance, input during initialisation
are updated if the external profile contradicts the input values, e.g. if the spanwise position of a wing-
mounted ordnance unit exceeds the wingspan then the unit is positioned at the wingtip. The longitudinal
stability of the aircraft is found by calculating the static margin given the external profile and powerplant
characteristics. Empirical formulae are used to estimate the centre of gravity (CoG) positions of the
aircraft sections and their subsequent moments about the aircraft CoG. The aircraft CoG position is
then estimated, from which the position of neutral stability is calculated. The static margin is calculated
as the difference between these positions, where positive longitudinal stability is indicated by a CoG
forward of the neutral point. The empirical formulae used to calculate the CoG positions and static
margin are provided in Appendix A.3.2.

The aircraft external design, powerplant properties and static margin are output to the engineer to
check that a suitable, stable aircraft design has been generated. If this is not the case, the design require-
ments are modified by repeating the previous framework modules, i.e. initialisation, mission definition,
mass estimation and aircraft profile generation, until a suitable external design has been created. This is
the only interaction the engineer has with the framework after initialisation. Following acceptance of the
design, the aircraft external profile is fixed for the remainder of framework operation as the design, anal-
ysis and structural optimisation of the airframe do not provide any inputs to this module. Consequently,

structural optimisation is performed within the constraints of the external profile.
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Figure 5.4: Historical data for large civil aircraft turbofan powerplants (Jackson, 2009; Meier, 2005)
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5.1.5 Aircraft Loads

Loads to be applied to the airframe during structural analysis are selected during initialisation from
the database in Table A.3 within Appendix A.1. The magnitudes of these loads are computed prior to
starting the optimisation process such that the loads can then be applied at precise locations to each
airframe design. The loads within the database are categorised as flight loads due to airborne manoeuvres
and gust conditions [1.5a], ground loads resulting from operations during landing and taxiing [1.5b] and
miscellaneous loads [1.5¢]. The distribution of load over the aircraft exterior is also established given
the design output from the previous module [1.5d]. Load cases are calculated with reference to the

airworthiness requirements for European civil aircraft and military aircraft of the United Kingdom:

e civil light aircraft: CS-23;
e civil large aircraft: CS-25;
e military aircraft: Def.Stan.00-970.

The calculation of the loads as defined by the airworthiness requirements is described in Appendix A.4.

More specifically, the load case calculations are presented as follows based on their classification:

e flight loads: Appendix A.4.1;
e ground loads: Appendix A.4.2;

e miscellaneous loads: Appendix A.4.3.

The flight loads are computed through the consideration of the flight envelope, which is formed through
the superposition of the manoeuvre and gust envelopes. The constructions of the manoeuvre and gust
envelopes are described in Appendices A.4.1.1 and A.4.1.2 respectively. Figure 5.5 illustrates the flight
envelope with the annotated positions of the flight loads contained within the framework load case
database. Manoeuvre loads include the maximum positive and negative manoeuvre loads, denoted by L1
and L2 respectively as in Table A.3, as these represent the extreme load factors within the manoeuvre
envelope and are therefore the greatest manoeuvre loads the aircraft is required to withstand. Discrete
gusting conditions are applied at the maximum gust velocity and during the mission cruise, L3 and L4
respectively. Manoeuvre loads are static loads whilst gust loads require dynamic analysis of the aircraft
as it travels through the gust. The magnitudes of these loads are determined by the aircraft class as

defined in the corresponding airworthiness requirements.

Ground loads include loads during landing and ground manoeuvre operations, the calculations of
which are provided in Appendices A.4.2.1 and A.4.2.2 respectively. Landing loads are typically of greater
magnitude than flight loads but are less frequently encountered by the aircraft during a mission, i.e.
only during taxi, take-off and landing. These loads are applied to localised areas of the airframe as
transmitted through the undercarriage units. These include the nose undercarriage mounted in the
fuselage nose and the main undercarriage units mounted in the wing or fuselage. The main units are
assumed to be symmetrical about the fuselage centreline. Such undercarriage configurations are typical
through the field of aircraft design (Howe, 2004). The positions of the undercarriage units are output from

the airframe profile generation module, the landing loads on which consider the following configurations:

e two-point landing, L5: initial touchdown on main units shortly followed by nose unit touchdown;

e three-point landing, L6: simultaneous touchdown on all three units.

These are the most likely landing configurations required for consideration by the airworthiness require-
ments. Ground loads due to surface unevenness and dynamic braking, L7 and L8 respectively, are
calculated for take-off and taxi, with the greater magnitude applied to the airframe. These loads ensure

the undercarriage supporting structure can withstand sudden loads during ground operations.
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Figure 5.5: Load cases within the flight envelope

Miscellaneous loads include cabin pressurisation, powerplant thrust and gravity, as denoted by L9, L10
and L11 respectively. The greatest pressure differential as a result of fuselage cabin pressurisation is
determined given the mission altitudes to ensure sufficient airframe strength under pressurisation. Loads
on the airframe as a result of powerplant thrust are also considered to similarly ensure sufficient structural
integrity. The magnitudes of the cabin pressurisation and powerplant thrust loads vary depending on
the mission stage given their respective dependency on altitude and engine thrust setting. Aircraft self-
weight is also applied to ensure the aircraft can withstand the loads imposed on itself by its design. This
encompasses the calculation of the weight of aircraft attachments, e.g. powerplants and ordnance, which
are added to the masses of individual structural members following the generation of aircraft structural
designs during the optimisation process. The miscellaneous loads are applied concurrently with the flight
or ground load as the aircraft is always subjected to such loads.

Appropriate distribution of pressure loads over the lifting surfaces is necessary to ensure the realistic
application of loads, and thus reliable structural analysis results, given the effects of an aerofoil on the

surrounding airflow. The lift generation by an aerofoil-shaped lifting surface considers:

e chordwise distribution: effects of the aerofoil cross-section;

e spanwise distribution: effects of the aerofoil across the lifting surface finite span.

The chordwise distribution is defined by the geometry and angle-of-attack (AoA) of the aerofoil at specific
spanwise positions, dictating the torque of the lifting surface and local shear and bending within ribs.
The spanwise distribution is determined by the lifting surface planform geometry and dictates the global
shear and bending moments across the span of the surface. Figure 5.6 illustrates the theoretical pressure
distributions in the chordwise and spanwise directions over an aircraft lifting surface. In reality, the

amount of lift reduces close to the root due to the interference of the fuselage with the airflow.
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Figure 5.6: Lift distribution over lifting surface

The flight loads within the database in Table A.3 are distributed between the wing and horizontal tail
proportionally based on the surface areas of the lifting surfaces. These loads are distributed over each
lifting surface by initially calculating the pressure load distribution over lifting surface span before then
calculating the chordwise distribution at spanwise locations. The pressure distributions are independent
of the structural design, i.e. are based on the lifting surface profiles, hence are computed prior to beginning
the optimisation process and stored for subsequent application to the airframe during structural analysis.
The spanwise pressure distribution is determined using the Schrenk approximation (Schrenk, 1940) whilst
the chordwise pressure distribution is determined using a two-dimensional vortex panel code. These
methods are based on lifting line theory, the theory of which is provided in Appendix A.4.4. The theory
of the Schrenk approximation is similarly presented in Appendix A.4.5 and for the vortex panel method
in Appendix A.4.6. Joints between panels in the latter are defined by the coordinates of the lifting
surface aerofoil selected during initialisation. Alternative approaches of calculating the lifting surface
pressure distribution include thin aerofoil theory, three-dimensional panel codes and computational fluid
dynamics (CFD). However, the precision of thin aerofoil theory is restricted to aerofoils with a thickness-
to-chord ratio of no greater than 12% at small AoAs whilst three-dimensional panel codes or CFD are more
complicated and computationally-intensive, as such not suitable for repeated use during conceptual design
optimisation (Anderson Jr, 1991). Ground loads are applied as concentrated loads to the undercarriage
units for transmission to the supporting structure. Powerplant thrust loads are also applied as point loads
at their attachment positions whilst cabin pressurisation is applied as a pressure load to the fuselage skin
and floor. The self-weight of each structural member is applied to the member, as well as appropriate

point load masses for attachments and pressure loads due to fuel and payload weight.

5.1.6 Structural Layout Generation

Optimisation of the airframe is performed through the generation of a population of structural designs
within the previously established external profile. This is a requirement of the solution process, as identi-

fied in §4.1.1. Optimisation is performed over nj generations for a population set containing y individual
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airframe design solutions. Each design solution is independent of the remainder of the population, as
a result structural layout generation and subsequent analysis is performed separately for each popula-
tion individual, as indicated in Fig. 5.1. Consequently, the following descriptions of structural layout
generation and analysis concern the generation of a single airframe design.

The generation of an individual airframe design solution is based on the values of the design variables
within Table 5.3 [1.6a]. The positions of airframe attachments, i.e. undercarriage, powerplant and ord-
nance, are then considered to ensure structural members are positioned appropriately to support these
attachment units [1.6b]. The airframe represented by this design solution is subsequently created for
structural analysis [1.6¢] under the loads calculated in the previous module.

The values of design variables listed in Table 5.3 principally determine the structural design repre-
sented by an individual. The variables determine the number, position, geometry and material of airframe
structural members. These variables have been selected in accordance with those commonly employed
within the literature to define the airframe, as discussed in §2.2.1 and §2.5. The values of variables for
each individual solution in the initial population are either generated randomly or seeded during initialisa-
tion as specific values to provide greater control over the optimisation problem initial conditions. Design
variable values of individuals in subsequent populations are generated by the LLH during optimisation.
This is discussed further in §5.3. The number of fuselage frames is determined by design variable V1.

Frames are firstly positioned at the following critical locations:

e forward-most fuselage location; e empennage spar root connections;
e nose undercarriage connection; e nose-flight deck intersection;

e main undercarriage connections (if fuselage-mounted); e flight deck-cabin intersection;

e powerplant connections (if fuselage-mounted); e cabin-tail taper intersection;

e wing spar root connections; e aft-most fuselage location.

Variables V15, V16 and V17 define the number of remaining frames distributed within the fuselage
nose, wingbox and tail respectively to provide additional support against transmitted lifting surface and
undercarriage loads. The nose is defined as forward of the cabin, the wingbox as between the front
and rear wing spars, and the tail as aft of the forward-most empennage spar. Frames are distributed
evenly within each of these sections, as are the remaining frames throughout the rest of the fuselage. The
quantity of fuselage floor beams is defined by the number of frames within the cabin. One horizontal floor
beams lies across the fuselage width at each cabin frame position. Three vertical beams connect the floor
to a cabin frame at the fuselage centreline and at half the floor width on either side. Three longitudinal
floor beams support the floor along the length of the cabin at the same lateral positions as the vertical
beams. Design variable V2 determines the number of stringers within the fuselage. These members are
distributed at equal intervals around the fuselage circumference.

The aircraft is assumed to be symmetrical along the fuselage centreline, therefore design variables are
used to define the layout of a single lifting surface which is then mirrored to create the second surface, i.e.
port and starboard wings and tails. Variables V3, V6 and V9 define the number of ribs in each horizontal
tail, vertical tail and wing lifting surface respectively. The spanwise position of the ith rib is defined by
these variables and V12, V13 and V14 for the horizontal tail, vertical tail and wing respectively

JOR
x; = o (¢ — ) + y (5.2)
where ngp V3, V6, V9 as required
ar V12, V13, V14 as required
xz,  lifting surface root spanwise position

x;  lifting surface tip spanwise position
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These variables permit increased concentration of ribs towards the lifting surface root for additional
support against bending loads. A rib is fixed at the root and tip of each lifting surface, as well as two
wing ribs at the corresponding floor beam lateral locations within the fuselage, i.e. fuselage centreline
and half floor width. Further, ribs are positioned at locations of wing-mounted attachments. Ribs are

aligned parallel to the aircraft longitudinal axis, i.e. flight direction.

Variables V4, V7 and V10 determine the number of spars in the horizontal tail, vertical tail and
wing respectively. Variable V18 defines the chordwise root position of the front wing spar to control the
structural response to torsion resulting from the applied flight loads. The rear wing spar and empennage

spar root positions are defined empirically based on the data in Sensmeier and Samareh (2004)

Kps,c. + 2LE at root
2pg = r " ' (5.3a)
Krpsici + zpg,r at tip

Kgrse, + zrg at root
ZRS = " " . (5.3b)
Krscy + zrps  at tip

V18 for wing
where Kpg, =

0.25 for horizontal, vertical tail

1.15 V18 for wing

Krs: =
0.3 for horizontal, vertical tail
18 — 1 min .
3.2 — 1.1{\/8A\>/188} for wing
Krs -9y 04 for horizontal tail
0.45 for vertical tail

zrE,r leading edge root position, m

Intermediate spars are distributed evenly between the front and rear spars. Variables V19 and V20 define
linear scaling of spar breadth and depth at the root relative to the tip to provide greater resistance to

bending and shear at the fuselage connection
b, = V19b; (5.4a)
d, = V20d; (5.4b)

where b,; root, tip spar breadth, m

dr; roOt, tip spar depth, m

The numbers of stringers on each of the upper and lower surfaces of the horizontal tail, vertical tail and
wing are defined by variables V5, V8 and V11 respectively. Stringers are distributed evenly across the

lifting surface chord between the front and rear spars.

Design variables V21 to V25 define the cross-section of frames and stringers whilst variables V26 to
V45 determine the cross-sectional geometry of the airframe structural members. Frames and stringers
may be either C, I, T or Z-sections, whilst floor beams, ribs and spars are always I-sections - these
cross-sections are used as they are common for these member types (Howe, 2004). Design variable V21
defines the cross-section and V26 to V28 the cross-sectional geometry of fuselage frames. Variables V29
to V32 determine the geometry of the floor beams. The cross-sections of fuselage stringers are defined

by variable V22 and the geometry by variables V33 to V35. The geometry of ribs is defined by variables
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V36 to V38 whilst variables V39 to V42 define the geometry of spars. Design variables V23, V24 and
V25 determine the cross-sections of horizontal tail, vertical tail and wing stringers respectively, whilst
variables V43 to V45 determine their breadth, depth and thickness. The geometric control of structural
member cross-sections is illustrated in Fig. 5.7. Spar caps provide additional reinforcement to the spars
as shown in Fig. 5.7(b) by dashed lines. Variable V42 defines the breadth of the spar caps, from which
the spar cap depth is calculated given the web thickness such that the spar caps are square across the
member cross-section. The depths of ribs and spars are dictated by the chordwise and spanwise position

of the member within the lifting surface.

V26, V33, V43 V29, V36, V39
| T | 1 V30,
: 4 V37, V40
V28, V31,
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V35, V45 var, V35, V45 vz,
) P— V34, — — V34,
V44 V44
(¢) T-section (d) Z-section

Figure 5.7: Airframe member structural geometry

Skin thickness over the aircraft is defined by variable V46 whilst cabin floor thickness is determined by
V47. Skin thickness is not normally constant across the entire aircraft, but is assumed so in this instance.
This is acceptable given the early stage of the design process and obviates unnecessarily increasing the
number of design variables. Design variables V48 to V50 define the materials from which the airframe
member types are constructed. Variable V48 determines the material of ribs, frames, floor beams and
floor, V49 defines spar material and V50 specifies the material of stringers and skin. Frames and ribs
perform similar roles to strengthen the airframe whilst floor beams reinforce the floor and react pressuri-
sation loads in conjunction with frames. Spars are typically formed of stronger material, i.e. of greater
yield stress, due to their critical role in reacting applied loads, therefore their material is determined
independently of other member types. Stringers reinforce the skin hence are formed of the same material.
The grouping of member types by material reduces the number of design variables and thus the size of the
optimisation problem. Similarly, members of the same type possess identical cross-sectional geometry to

reduce the size of the optimisation problem. Such approximations are appropriate, and common, during
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the conceptual design phase (Pready, 2013; Raymer, 2006). Traditional airframe metallic materials, e.g.
grades of aluminium, are considered rather than composite materials to reduce the number of design

variables required, i.e. not requiring optimisation of the ply numbers, orientations and orders.

5.2 Structural Analysis

The structural analysis stage determines the feasibility of each airframe design generated in §5.1.6 with
respect to the design constraints stated in Table 5.3 of minimum FoS under yield and maximum wingtip
deflection. As stated in §4.1.1, this is critical to promote the generation of a feasible design during
optimisation that does not violate either of the design constraints and thus will be suitable for further
design and subsequent manufacture and operation. It is also useful to perform structural analysis for an
understanding of the influences of different loads on the airframe strength. The description that follows of
the structural analysis module is formed with respect to the analysis of a single airframe design solution.
Supporting theory for this stage is provided in Appendices A and B.

5.2.1 Sectional Properties

The cross-sectional properties of each airframe structural member are calculated based on their cross-
sectional profile shape and geometry as defined by the design variables V21 to V45 [2.1a]. These properties
are required in order to calculate the mass of the airframe and define the mechanical properties of the
FE model. The sectional properties defined at this stage include the cross-sectional surface area, centroid
location, second moments of area and torsion constant. The formulae used to calculate these properties

are provided in Appendix A.5.

5.2.2 Structural Mass

The mass of the airframe is calculated as the sum of the masses of individual structural members within
the airframe [2.2a]. The aircraft structural mass represents the unpenalised objective value of the design
solution of the optimisation problem. The masses of structural members also determine the self-weight
load of the member to be applied for load case L11. The airframe structural mass is calculated as the

cumulative mass of the n,,e,, airframe members as follows

Nmem

Mgty = Z M (5.5)
s=1

where mg = psAgls
ps  sth structural member material density, kg/m3
A,  sth structural member cross-sectional area, m?

ls sth structural member length, m

The mass of the sth member with constant cross-section, i.e. fuselage members and stringers, is calculated
as given in Eqn. (5.5) for ms. The masses of members without constant cross-section are approximated
based on the cross-sectional variation of the members over their length. Specifically, spar mass is approx-
imated by the mean surface area of the linearly tapered members whereas rib mass is found as the sum of
the flange and web masses over the breadth of the member using formulae presented by Maltbaek (1961).
Floor mass is calculated as the cumulative mass of sections between floor beam positions and skin mass is
similarly found as the cumulative mass of sections between stringers. The approximation of the airframe
mass in this manner does not consider details of the design such as lightening holes and fittings. However,
such design details are not considered during the early design process phase of conceptual design (Allen,

2010a), therefore Eqn. (5.5) provides a reasonable approximation of the aircraft structural mass.
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5.2.3 Airframe Model

The airframe design is represented by an FE model such that FEA may be performed to establish the
response of the structure to the applied load cases. This model approximates the airframe as a finite
number of interconnecting elements of defined geometry, sectional properties and material joined by
nodes at nodal points. The computation time required for solution analysis is of great concern during
conceptual design optimisation when considering numerous design solutions. This computational expense
is dependent on the sizes of the global FEA matrices, which are defined by the number of system degrees of
freedom (DoFs). The DoF's define the system mechanics and indicate the configurations in which a system
may be excited or displaced. The number of DoF's is determined by the FE model precision and influences
the accuracy of the FEA approximation. Model fidelity defines the accuracy of the model in representing
reality, with a balance required between model, and thus analysis, precision and computational expense.

Model precision is dependent on the dimensionality, type and number of elements used. One-
dimensional linear beam elements model the aircraft with two nodes per element and up to six DoFs
per node. This reduces the number of DoFs compared to other types of elements, e.g. quadratic beam
elements or elements of higher dimensionality, thus reducing the computational effort required to form
the problem, i.e. generate the model and system matrices, and conduct analysis of the model. However,
such elements provide sufficient precision for analysis during an early stage of the design process provided
that an adequate number of elements are used and are positioned appropriately (Amadori, 2010). The
shape of a linear beam element, with nodes N7 and N, and its DoF's for displacement, d, and rotation,

0, are illustrated in Fig. 5.8 in the element local xyz Cartesian coordinate system used herein.

(a) Element Shape (b) E]emen‘ degrees Of freedom

Figure 5.8: Linear beam element shape and DoFs

The following types of beam elements are used to model the airframe structural members:

e pin-jointed truss: three DoF's per node for translational but not rotational freedom in all axes;

e fix-ended space frame: six DoF's per node for translational and rotational freedom in all axes.

With the exception of ribs, all structural members are modelled as space frame elements to permit
displacement and rotation in all DoF's. Truss elements possess no rotation stiffness; hence are used to
model the ribs to prevent their loading with bending moments that could be unrealistic in the event
of exaggerated twisting of the lifting surface. Such excessive twisting is possible as a result of the
approximation of the load distribution described in §5.1.5 creating an unrealistic load imbalance over
the lifting surface. More precise calculation of the load distribution, e.g. using CFD, could reduce the

likelihood of this occurring; however, this would incur a significant penalty in terms of the time required
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to perform these calculations.

The generation of the FE model contains two principal tasks. Firstly, the airframe structural members
are grouped by type to reduce the number of DoF's within the model, and thus the computational effort
required to model and solve the FEA problem [2.3a]. The degree of this grouping is defined by the model
fidelity level. Secondly, the FE model is constructed based on the number of elements required following

the completion of member grouping [2.3b].

5.2.3.1 Structural Member Grouping

Similar structural members, e.g. wing ribs, are grouped together within elements to reduce the number of
system DoF's and computational effort required to solve the FEA problem. Critical members are exempt
from such grouping, e.g. lifting surface spars and members with attachments, due to the importance of
local loads on these members in defining airframe integrity under load. Additionally, skin is lumped
within stringers and floor within floor beams due to the purpose of these members to stiffen the skin and
floor respectively against applied loads. Lifting surface stringers are in turn lumped within spars as both

provide resistance against bending. Member grouping is performed using the following criteria:

1. geometry;
2. sectional properties;

3. material properties.

An example of member grouping is shown in Fig. 5.9 where six structural members are grouped within
two FE model elements. The element centroid is positioned at the location corresponding to that of the
central member within the element when grouping an odd number of members or at the mean of the two
central members if an even number of members are grouped, i.e. in Fig. 5.9 the element centroids are at

NN
TIRRRTO

Figure 5.9: Example of member grouping within FE model

81



Chapter 5. Framework for Hyper-Heuristic Aircraft Structural Optimisation

Rectangular beam elements idealise the geometry of members of different cross-section, i.e. C, I, T and
Z-sections, to permit members of varying cross-sections to be grouped together. The cross-sectional area

of the eth element is calculated as the cumulative area of the n¢ structural members within the element

mem

mem

A, = Zl A; (5.6)

The expressions described in Appendix A.5 for the sectional properties of a structural member are em-
ployed to calculate the corresponding element properties. Specifically, Eqns. (A.80a), (A.80b) and (A.80c¢)
are used to determine the element breadth and depth given the centroid location and cross-sectional area.
The parallel axis theorem, Eqn. (A.81), calculates the second moment of area of each member relative to
the element centroid. The rotations of structural members relative to the element are accounted for by
Eqn. (A.84). The second moment of area of an element is calculated as the sum of the second moments of
area of the element members. The element product second moment of area and polar second moment of
area are determined respectively using Eqns. (A.79c) and (A.83) whilst the torsion constant is found for
the rectangular element by Eqn. (A.82). The length of an element is calculated as the difference between
the element nodal point coordinates.

Members of the same type are grouped together given that they are constructed of the same material,
as defined by design variables V48, V49 and V50, and thus possess consistent material properties, e.g.
elastic section modulus, Poisson’s ratio, density and yield strength. Specifically, multiple ribs are grouped
into a smaller number of rib elements. Similarly, multiple fuselage frames, floor beams and stringers are
grouped respectively into fewer frame, floor beam and stringer elements. Lifting surface stringers are
grouped within the nearest spar element, however these member types may be constructed of dissimilar
materials given they are defined by different variables, i.e. V49 and V50. The material properties of spar-
stringer elements are subsequently approximated as the surface area-weighted average of the member

properties, e.g. for the eth element elastic section modulus

e
Mmem

> EiA;
B, ==L (5.7)

e
Timem

> A

i=1
Model fidelity determines the precision of the FE model by defining the extent to which grouping is
performed, and thus the level of smearing of element properties due to such grouping. The fidelity level
takes a value between 0.1 < F' < 1.0 to denote the approximate number of elements per member type.
For example, a design with 100 members modelled at F' = 1.0 would model each member explicitly,
whereas modelling at F' = 0.1 would model one in ten members as elements. In the latter, each model
element would nominally include the grouping of the nine members closest to the element. The fidelity
level of the grouping shown in Fig. 5.9 is F' = 0.33. Powerplant, undercarriage and ordnance attachments
to the airframe are made at the corresponding nodal points of frames or rib-spar junctions. Therefore,
the corresponding members are modelled in isolation due to their critical role in supporting these attach-
ments. Elements are always positioned at lifting surface roots and tips as well as the fuselage ends and

intermediate transition points between the nose, flight deck, cabin and tail taper to bound the FE model.
5.2.3.2 Finite Element Model Generation

Linear beam elements are used to construct the FE model of an airframe design solution following the
grouping of similar structural members. Each group of frames is modelled as a series of circumferential
elements joining at nodal points defined by the positions of floor beam and stringer nodes. Grouped floor

beams are constructed using horizontal, vertical and longitudinal elements, with the floor lumped within
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these members. Longitudinal stringer elements connect the frame and floor beam nodes along the length of
the fuselage and include the lumped skin properties. Chordwise rib elements are constructed within lifting
surfaces and subsequently connected by spanwise elements representing spars with grouped stringers and
lumped skin. The sizes of members are assumed to be the same throughout the aircraft to reduce the
size of the optimisation problem by eliminating the need to represent each member within the conceptual
design with an individual set of design variables. Furthermore, this eliminates the need to consider
members close to the lifting surface roots as independent of the remaining fuselage members. However,
the typical size of these members is inadequate to withstand the large lifting surface loads transmitted
to the fuselage. As a result, the nodes between fuselage and lifting surface members are independently
connected to the respective section elements, thus lifting surface loads are not transmitted into the
fuselage. This approximation of the joints between the fuselage and lifting surfaces is representative of
the carrythrough structure within most existing large civil or military aircraft (Raymer, 2006). This
structure also enables the wingbox to continue through the fuselage width such that the two sides of the
lifting surface are not independent, i.e. spars continue from the starboard to port lifting surface tips. The
use of fixings to connect the lifting surfaces and fuselage will lead to the transmission of loads between
these aircraft sections. However, these details are beyond the scope of conceptual design and thus require
consideration during later design phases, i.e. embodiment or detail design.

Figure 5.10(a) shows the model of an arbitrary aircraft design to indicate the layout of the structural
members within the airframe. The corresponding FE model of the aircraft is illustrated in Fig. 5.10(b)
including the model global coordinate system used during FEA within the framework. The global xzyz
Cartesian coordinate system used for airframe modelling and analysis is shown in Fig. 5.10(b) such that
the x, y and z-axes are parallel with the aircraft spanwise, vertical and longitudinal axes respectively.
Grouping of multiple airframe members within elements can be seen in Fig. 5.10(b) by the reduced
number of elements to represent the structure. For example, the two lifting surfaces spars and stringers
in Fig. 5.10(a) are modelled in combination as pairs of spanwise elements in Fig. 5.10(b) consisting of

each spar and the stringers closest to the spar.

—— Ribs, frames —— Spars, floor beams —— Stringers e Nodes —— Elements

(a) Airframe model (b) FE model

Figure 5.10: Example of aircraft FE model

The nodal point locations within the FE model depend on the structural layout of the aircraft and the
element positions resulting from member grouping. Nodes are assigned global numbers that determine the
location of the element properties within the global FEA matrices, as is discussed further in §5.2.4. The
FE model is created by progressing from the fuselage nose to tail, and then for each lifting surface from

root to tip. Nodes are numbered in ascending order as elements are created such that interconnecting
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elements possess nodal numbers within similar ranges. This numbering order maintains a low bandwidth
of the FEA matrices to assist in reducing the computation time required for analysis. Figure 5.11

illustrates the node numbering order within the fuselage and for a lifting surface with three spars.

® Node = Frame element ® Node = Ribelement
<> Symmetric reflection e= Floor beam element <> Symmetric reflection e=  Spar-stringer element
— Stringer element

(a) Fuselage (b) Lifting surface

Figure 5.11: Node numbering order

The FE model is created as a half-model, as shown in Figs. 5.10(b) and 5.11, to exploit the possibility
to reduce model size given that all applied load cases are symmetric about the fuselage centreline. This
reduction in model size reduces the number of nodes and elements within the FE model, and thus the
sizes of the FEA matrices and corresponding computational effort required to perform FEA. The response
of the aircraft port side is established by mirroring the response of the modelled starboard side in the

global yz-plane of symmetry, thus the response of the entire aircraft is obtained.

5.2.4 Finite Element Analysis

FEA is performed of an airframe FE model to establish the displacement and rotational response of the
structure when subjected to the selected load cases. This is achieved through firstly forming the problem
through approximation of the airframe mechanics, boundary conditions and excitation, i.e. applied load
cases, [2.4a] followed by the calculation of the problem solution in the displacement field [2.4b].

The theory underpinning FEA as performed within the framework is described in Appendix B. FEA
approximates the airframe response to the selected load cases through substitution of the structure
as a matrix system formed using the properties of the FE model. The versatility of FEA permits
the consideration of arbitrary geometry, constraints and loads to rapidly find a reasonable approximate

solution to a complicated problem given appropriate modelling and loading. FEA is performed as follows:
e formulation of the problem using the FE model properties;
e application of boundary conditions and the selected load cases;
e determination of the system response in the displacement field.

The FEA problem is formed through the creation of the global system matrices using the properties

of the FE model. These matrices describe the stiffness, mass and damping properties of the system.

The stiffness and mass matrices are determined by firstly calculating the corresponding matrices for
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each individual element. This results in pairs of matrices within the local coordinate systems of the
corresponding elements. These matrices are transformed into the global coordinate system of the FE
model and positioned within the global stiffness and mass matrices. The damping matrix is approximated
for the global system using Rayleigh damping, which includes the requirement to solve the eigenvalue
problem to find the Rayleigh damping coefficients. The theory supporting the creation of these system
matrices is provided in Appendix B.1.

Boundary conditions are applied to the model by fixing the lifting surface spar roots in all DoF's, the
theory behind which is contained in Appendix B.2. The nodes of floor beam elements connected to lifting
surface spars are fixed to prevent the transmission of lifting surface loads into fuselage not strengthened
to withstand such loads. These boundary conditions simulate the carrythrough structure of the lifting
surfaces discussed in §5.2.3.2. Symmetric boundary conditions are applied to all nodes on the plane of
symmetry to implement the symmetry of the half-model representation of the aircraft.

The magnitude, direction and distribution of the applied excitation is defined by the load cases selected
during initialisation. Loads are simulated as either static, pseudo-static or linear transient dynamic loads
as chosen during initialisation. Point loads are applied directly to the nodal DoFs, as described in
Appendix B.3, whereas the nodal load resulting from a pressure load is established through consideration
of the surface area surrounding the node at which the pressure is applied, as illustrated in Fig. 5.12. The
coverage area of each node is calculated by considering the area surrounding the node, the size of which
is determined by the connecting elements. For example, in Fig. 5.12 the pressure load applied to the
central node is sum of the loads in each of the four quadrants surrounding the node, A; ;.. 4. The load on
each element is distributed between the two element nodes, hence the quadrants are sized such that they
extend along half of the length of each element, i.e. 0.5(; ; where 7 is the node number and j the connected
element number. Consequently, the load on the central node comprises of the pressure loads within the
four surrounding quadrants. A similar process is followed in determining the distribution of self-weight
across the aircraft, wherein the mass of the element is distributed equally between its two nodes. The
directions of loads are determined through consideration of the load origin. For example, flight manoeuvre
loads are applied perpendicularly to the lifting surface chord line whereas cabin pressurisation loads are
applied normal to the fuselage skin. Ground loads are applied in the global coordinate system as the load

components defined in the airworthiness requirements, as discussed in Appendix A.4.

Figure 5.12: Concentration of pressure load at a point
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The solution procedure for determining the system response in the displacement field to an applied
static, pseudo-static or dynamic load is described in Appendix B.4. The system response to a static load
is found using Gaussian elimination with back-substitution to avoid the computationally-intensive task
of inverting the stiffness matrix. The transient response to a dynamic load case is approximated over the
number of time steps input during initialisation using direct numerical integration by either the central
difference, Houbolt, Wilson-6 or Newmark-5 method; the choice of which is made during initialisation.
The critical time step for finding the dynamic response is calculated during problem formulation, as such
the time step size input during initialisation may be reduced if required for stability. The displacements of
nodes at the wingtip are stored such that the greatest vertical displacement may be compared against the
design constraint for maximum wingtip deflection, C2, as a measure of design feasibility. The responses
of individual elements are extrapolated from the global system response through the discretisation of
the global system vectors into element vectors. The forces and moments within each element are then
calculated using the corresponding equation of motion (EoM). These values are used as inputs to the
stress analysis module to establish the minimum FoS within each structural member for comparison

against design constraint C1.

5.2.5 Stress Analysis

Analysis of the airframe stress field is performed given the forces and moments output from FEA to find
the minimum FoS of each airframe structural member [2.5a]. The minimum FoS is calculated through
consideration of the von Mises stress, Euler buckling load and maximum bending stress within a structural
member. Prior to this calculation, the forces and moments within each member are recovered from the
corresponding values for the FE model elements following the lumping of members within elements during

model generation. Established theory supporting this stress analysis is provided in Appendix A.6.

5.2.5.1 Recovery of Member Response

The generation of the FE model in §5.2.3 grouped structural members together within elements leading to
smeared mechanical properties. Therefore, the forces and moments within each member lumped within
an element must be recovered from the element results prior to stress analysis of the members. This is
accomplished individually for each DoF of the member excitation whilst assuming equal behaviours of
grouped members. Specifically, the axial force of members grouped within an element is recovered by
assuming equal extension of all members in the element. Similarly, the bending moments are recovered
by assuming equal slope, the shear forces by assuming equal angles of shear, and torsion by assuming
equal twist of all element members. Consequently, the force in the jth DoF of the ith member within
e
;= nfne{z%l (5.8)

k
k=1 7

the eth element is determined as

where ”y;- denotes the ith element member distribution factor in the jth DoF. The element member
distribution factor represents assumptions made of the proportional response of members within an
element. These factors are derived by considering the mechanics of the assumptions made by the coupled
responses of element members in terms of displacement and rotation within each DoF (Young et al.,
2012). For example, the axial force of the element equates to the cumulative axial force of all members

grouped within the element

fe=>fr (5.9)
k=1

Given Hooke’s law and by assuming equal axial extension, df, of all members contained within the
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element, the axial force in the element can be written as

e gk Ak
fi=2 —d (5.10)
k=1

where d¢ =df for k =1,2,...

€
i nmem

The member distribution factor is substituted into Eqns. (5.9) and (5.10) to lead to the following expres-

sion for the first element member, i.e. ¢ = 1, by denoting this DoF as j =1

1 1 1
pe=dred Mg g (5.11)
TN e
lk
where ~F = BEAR for k=2,3,...,n% .
Equation (5.8) is subsequently obtained by simplifying and rearranging Eqn. (5.11). Similar expressions
are derived for shear, torsion and bending to permit the forces and moments within a structural member

to be recovered from the corresponding values for an element, i.e. for the ith element member

li

for axial force, f, (j = 1), assuming equal extension

EiAt
li

A for shear force, f, (j = 2), assuming equal shear angle
li

A for shear force, f, (j = 3), assuming equal shear angle

Y= . (5.12)
for torsional moment, m, (j = 4), assuming equal twist

GiJ?
li

o If)y for bending moment, m, (j = 5), assuming equal slope
I

il for bending moment, m, (j = 6), assuming equal slope

5.2.5.2 Factor of Safety

Stress analysis establishes the stress field in each airframe structural member given the forces and moments
recovered during the previous task. This leads to the calculation of the minimum FoS against three

potential causes of failure commonly considered during airframe design (Howe, 2004):

e violation of the von Mises yield criterion;
e exceeding critical Euler buckling stress;

e yield of slender members due to bending.

Violation of the von Mises criterion is considered by calculating the principal stresses within a member,
as found using the stress tensor. This is performed at the various points on the member cross-section that
generate the greatest values of the stress components. For example, the evaluation points on an I-section
member are shown in Fig. 5.13 as these generate the greatest normal and shear stresses in the local x,
y and z-directions. The normal tensile or compressive stress is constant across the cross-section, whilst
bending stresses are greatest at the extreme fibres of the section. The torsional shear stress is dependent
on the enclosed section area at the evaluation point, whilst the transverse shear stresses are greatest at
the section neutral axes. The calculation of these stresses is performed using well-established formulae,
as described in Appendix A.6.1. Analysis is performed of the stress tensor against the von Mises yield

criterion to determine the point on the cross-section at which the lowest FoS against yield exists.
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@ Evaluation point
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Figure 5.13: I-section stress analysis evaluation points

The second failure cause considered is the buckling of thin members under applied or transmitted com-
pressive loads. Stringers, frames and floor beams, including horizontal, vertical and longitudinal beams,
are scrutinised due to their roles in supporting the skin or floor against such failure under pressure loads.
This failure cause is analysed by comparing the compressive loads within each member against the critical
Euler buckling load at the onset of the first buckling mode. The established theory behind this calcula-
tion is provided in Appendix A.6.2. The Euler buckling load is determined by considering the member
as a simply-supported pin-ended strut constrained against lateral translation under compression. This
is a pessimistic assumption as these members possess freedom for translation, but is required for such
analysis. The critical buckling load and stress are subsequently calculated, leading to the determination
of the member FoS against buckling through consideration of the axial compressive load on the member.
It should be noted that the Euler buckling formula is only applicable to struts with high slenderness ra-
tios, i.e. members with lengths much greater than their cross-sections. Stringers, frames and floor beams
possess such slenderness, hence the formula is applicable; however, each member is assessed between its
intersections with other members, e.g. stringers crossing ribs, where in reality there will be attachments.
As a consequence, the assumption of a pinned joint at these intersections may not be realistic, but it is
an appropriate idealisation given that such attachments are not always completely rigid and assuming
a pin-ended joint rather than a fixed joint is conservative. Spars do not principally provide resistance
against buckling, therefore are not subjected to such scrutiny. Ribs are not suitable for such analysis due
to their non-uniform cross-section; however, compression of these members is included during consider-
ation of the first failure cause. Further, buckling of the skin is not considered in isolation; although the

analysis of the stringers does include the lumped skin properties within the members.

The final failure cause that is assessed is the potential for stringers and floor beams to fail under
bending. This is scrutinise the roles of these slender members in supporting the skin and floor against
pressure loads. The maximum normal stress due to bending is calculated by representing members
as simply-supported beams under pressure loads applied due to flight loads, cabin pressurisation and
payload mass. This end condition is appropriate as it permits longitudinal translation and rotation of
the member ends, whilst transverse translation is not considered during this analysis. The maximum
bending stress for the simply-supported beam is then compared against the member material yield stress

and the resulting FoS calculated, as is described in Appendix A.6.3.
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The stress analysis module outputs the minimum FoS within each structural member, and the airframe
as a whole, in order to record the most onerous loads on the structure and calculate the feasibility of the
design solution. This value is calculated as the minimum value of FoS from the three considered potential

causes of structural member failure

Nmin = Min (nyvas, ng, np) (5.13)
where ny FoS against yield under beam bending stress, n, = oo if rib, spar or frame
ng FoS against critical Euler buckling stress, ngp = oo if rib or spar

nyy  FoS against yield with respect to von Mises criterion

5.3 Airframe Design Optimisation

The aircraft structural designs are optimised for a solution of minimal structural mass. This is performed
subject to the design constraints to ensure adequate structural performance. Each design is optimised
using an LLH chosen from the heuristic set by the embedded HHA. The HHA performs heuristic selection
and population distribution to increase the likelihood that well-performing LLHs are employed to optimise
solutions. Perturbation analysis is additionally performed by the HHA to evaluate the solution space
surrounding improved designs. Parameter control is also incorporated within the HHA to control the
set-up of the optimisation process and model fidelity, such that solution quality, optimisation process
performance, and computation speed may be improved. Termination criteria are included to enable

cessation of the optimisation process and the output of data for post-processing outside of the framework.

5.3.1 Population Feasibility

A penalty function is employed to discourage convergence on a design that lies outside the feasible region
of the solution space by penalising the objective values of infeasible solutions in proportion to the degree
of constraint violation [3.1a]. A penalising strategy is chosen over a rejection or repairing strategy due
to the former not considering potentially beneficial characteristics of infeasible solutions and the latter
relying on an appropriately designed repair procedure, as discussed in §2.4. The feasibility of each
individual structural design solution is determined by comparing the minimum FoS within the airframe
and maximum wingtip deflection calculated during structural analysis against the corresponding design

constraints. Recalling the optimisation problem objective function in Eqn. (4.1)
min (@(X’“)) for k=1,2,...,ng

This objective value is initially calculated for the ith structural design as the unpenalised objective value

of the aircraft structural mass, as recalled from Eqn. (5.5)

i mem

fz(Xk) = My, str = Z ms
s=1

The penalised objective value is obtained by applying a penalty function to the unpenalised objective

function. Specifically, the penalised objective value is calculated as follows by recalling Eqn. (2.9)
O;(XF) = £;(XF) 1+ XD max [0, g; ;(XF)]
j=1

The magnitude of penalty is dependent on the feasibility of each design as measured against the design

constraints, as was discussed in §2.4. The feasibility of an airframe design is determined by calculating
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the magnitudes of the violations of constraint C1 by all structural members within the design, in addition
to the magnitude of violation of C2 as a result of the wingtip deflection under load. The feasibility of the
i1th individual with respect to the jth design constraint is calculated as follows, where 75 min denotes the

minimum FoS within the sth structural member and d represents the maximum wingtip vertical

%, Ymax,wt

deflection by the ith individual design

N mem
. > MNsmin —¢;j  for the minimum FoS within the airframe members, j =1
gi,j (X ) = s=1 (514)

|di,ymax,wt| — lej for the maximum magnitude of wingtip deflection, j = 2

The framework employs either the death, interior or exterior penalty function as selected and set up
during initialisation, i.e. Eqns. (2.6), (2.7) or (2.9) respectively. These penalty functions are selected as
they are commonly applied to similar optimisation problems, as reported in §2.4.4. Additionally, the
penalty function chosen may be employed as a scaled penalty function, i.e. as in Eqn. (2.10), or as an
adaptive penalty function, i.e. as given by Eqn. (2.11), to vary the penalty coefficient over time, i.e. as \.
However, the adaptive function within the framework is a development of that of Bean and Hadj-Alouane
(1992) by placing greater consideration on population feasibility rather than the feasibility of solely the
best solution. This encourages the convergence on a highly-feasible population of design solutions through
relaxation of the penalty for such populations, thus permitting greater exploration within the feasible
solution space, but discourages highly-infeasible populations though applying pressure to such populations
to reject infeasible solutions. The adaptive penalty coefficient is given as follows, where 3(X*) denotes

feasible percentage of the population set at kth generation

Akfl
3 if B(X*~1) > 80%
1
k _
AT AL BXEY) < 20% (5.15)
k=1 otherwise

The thresholds for changing the penalty coefficient of 20% and 80% are selected such that the penalty
coefficient is most likely to remain constant during early generations prior to convergence. Thus, the
adaptive penalty coefficient is only intended to affect the search during convergence if the population is
highly feasible or infeasible. This avoids excessive interference with the optimisation search, but provides
incentives towards exploration closer to the constraint boundaries if the population is converging to be

highly-feasible or within the feasible solution space if the population is highly-infeasible.

5.3.2 Population Fitness

The fitness of structural design solutions is calculated for use by genetic algorithms (GAs) if selected
for employment as LLHs within the problem domain [3.2a]. Fitness is commonly measured by ranking
the population in order of objective value before assigning a fitness value to each rank (Fan et al., 2004;
Sadjadi, 2004). The population set is sorted in descending order of objective value before calculating the
proportional rank of each individual solution. Thus, high ranks are assigned to better solutions, i.e. the
individual of lowest mass is assigned the first rank whereas the individual of highest mass is assigned the
rank . Thus, the ith individual fitness is calculated as follows, where 7(®;(X*)) represents the objective

value ranking of the ith individual at kth generation
p—7(®i(X¥) +1

Fl(Xk) = W
5 7(,(X5)

(5.16)
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m i for best solution in population set X
2. T(®;(XF))

where Fl(Xk) = J=1 1
m for worst solution in population set X
> 7(®;(XH))

<
Il
a

This rank-based fitness function is chosen as it is problem-independent, and thus does not unduly influence
the characteristics of the optimisation search. This latter decision was made to ensure the HHA possesses
control of the optimisation process. Furthermore, search diversity is maintained by using the rank of

individuals rather than objective function value.

5.3.3 Termination Criteria

Termination criteria are checked prior to optimisation to permit the cessation of the optimisation process if
a further improvement in the best solution is unlikely [3.3a]. These criteria are defined during initialisation

and consist of the following:

e maximum number of generations;
e maximum number of consecutive generations without improvement of the best solution;

e maximum population affinity.

The limit on the maximum number of optimisation generations, ny, prevents the process from running
indefinitely. This value is input during initialisation by considering the population size, to ensure an
adequate number of individual solutions are considered, and the time available to solve the optimisation
problem. Termination as a result of exceeding the maximum number of successive generations without
improvement in the best solution prevents the search from continuing excessively when it is unlikely a
better solution will be found, i.e. following search stagnation. The maximum limit on population affinity
enables the process to terminate if the population has converged. Termination at this point is beneficial
to save computational effort as the converged population is unlikely to improve the solution. Population
affinity is based on bit-string affinity (BSA) presented in Raymer (2002), as described in §2.3.5, and is

measured as the mean affinity of design variables across the population

A = 13 4,00" (5.17)

where A,(X)* denotes the affinity, as a percentage, of the vth variable over population set at the kth
generation. The affinity of each design variable is calculated by comparing the value of the variable pos-
sessed by one individual within the population set against the corresponding values of all other individuals
within the population. The total number of matching values is then recorded for the individual. For a
discrete variable, a match is recorded if the values for the two individuals are identical. For a continuous
variable, a match is identified if the variable values possessed by the two individuals are within 2% of
the variable range, AV. This value is selected in accordance with the design of BSA in Raymer (2002),
wherein a population of binary chromosomes was deemed to have converged if the population affinity
exceeded 98%. The affinity of the vth variable at the kth generation is expressed as

p—1 1 Iz

AX) = —— > A (5.18)

- P S
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1 if w;, = 7, and vth variable discrete
(@i — )0
AV,

0  otherwise

where A,;; =<¢ 1 if < 2% and vth variable continuous

The affinity of categorical variables, i.e. V21 to V25 and V48 to V50 defining member cross-sections and
materials, is measured by assigning each discrete possible value of the variable a numeric value. For

example, the variables representing structural member cross-sections are assigned the following values:

1. C-section;
2. I-section;
3. T-section;
4. Z-section.

Materials are similarly assigned a discrete numeric value, the values of which depend on the number of
materials input to the materials database during initialisation. This permits the affinities of the variables
to be measured and thus contribute to the overall population affinity. If no termination criterion is

satisfied, the optimisation process continues for another generation.

5.3.4 Hyper-Heuristic Approach

A hyper-heuristic approach (HHA) is embedded within the framework to encourage improved solution
quality and process performance over traditional optimisation. The HHA includes the following four

aspects of hyper-heuristic optimisation:

1. heuristic selection: employment of appropriate LLH for use in the problem domain;

2. population distribution: allocation of population individuals to multiple LLHs;

3. perturbation analysis: local solution space learning around a sample of design solutions;
4

. parameter control: adaptation of process parameters to promote improved optimisation.

The HHA operates for each optimisation generation as follows. Improvements in the quality of the current
best solution are identified [3.4a] leading to perturbation analysis through the sampling of the solution
space [3.4b]. Heuristic selection chooses the local search (LS) hyper-heuristics to perturb the sampled
solutions [3.4c] before the sampled population is distributed between the chosen heuristics [3.4d]. This
leads to optimisation and repeated analysis of the perturbed solutions. When no improvement is made in
solution quality or perturbation analysis has been completed, the performance of the optimisation process
is measured using an online reinforcement learning mechanism [3.4e]. A decision is subsequently made
whether to adapt the optimisation process based on the output of this learning mechanism [3.4f], with
parameter control performed if it is deemed necessary to adapt the process [3.4g]. Heuristic selection
and population distribution are then performed to select and assign the LLHs for optimisation of the
population during the next generation, i.e. [3.4c| and [3.4d] once more. The decision made by the learning
mechanism as to whether to modify the optimisation process is based on the rules of the hyper-heuristics
employed and the evaluation period set during initialisation to allow sufficient generations for changes in
the optimisation process to take effect within the problem domain.

Heuristic generation is not included within the HHA because, as discussed in §3.2, this aspect consists
of the creation of a new LLH for application to a specific problem or for general use with similar problems.
The new LLH is formed of components of existing LLHs, requiring the decomposition and evaluation of
the different LLH components. This is computationally expensive, whilst the appropriate decomposi-
tion and generation of LLHs can be difficult when needing to be applied to various configurations of
complex optimisation problems such as aerospace design. Furthermore, heuristic selection includes only

perturbative heuristics, and not constructive heuristics, as these are representative of the optimisation
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techniques traditionally employed for aerospace design optimisation. Such heuristics evolve an initial so-
lution through the perturbation of variables towards a final solution. Conversely, constructive heuristics
create a solution from an empty initial solution by applying problem-specific LLHs to the problem to
evaluate the best technique for different problem states. Such problem-specific LLHs were not employed
within the existing approaches discussed in §2.3. Moreover, an objective of using the framework for this
research project is to evaluate whether employing hyper-heuristics can improve solution quality compared
to traditional optimisation. Therefore, it is appropriate to use the same LLHs within the framework as
those employed traditionally, thus rendering the use of heuristic generation and constructive heuristics
within the HHA as inappropriate for such an evaluation.

As operation of the HHA precedes optimisation of the population, references are made to the LLHs
before they are described. These descriptions of individual LLHs are presented in §5.3.5, including the
introduction of a novel GA selection method within the framework: radioactive contamination (RC).
Furthermore, the descriptions of heuristic selection and population distribution are presented prior to
perturbation analysis, although they follow this HHA aspect within Fig. 5.1, as these aspects are used

during perturbation analysis to select the memetic algorithms (MAs) for application.

5.3.4.1 Heuristic Selection

Heuristic selection enables the different LLHs, listed in Table A.6, to be employed during the optimisation
process to reduce the likelihood that limitations of individual techniques will hinder the search for a near-
optimal solution. For example, a convergence-encouraging LLH such as an LS technique could promote
convergence prematurely during the search, but would be desired to encourage such convergence towards
the end of the process. A hyper-heuristic is employed to select an LLH from the heuristic set. Heuristic
selection is performed whenever perturbation analysis is conducted to choose the hyper-heuristic to
optimise the sampled population. Heuristic selection is also performed every Ak generations during the
optimisation process, where Ak denotes the period over which attempted improvements in optimisation
process performance are monitored by the learning mechanism. This period is referred to as the hyper-

heuristic evaluation period. The heuristic selection hyper-heuristics listed in Table A.6 include:

e simple random (SR): random LLH selection;

e random descent (RD): SR selection with LLH application until no further improvement made;

e permutation (PE): selection of LLH from randomly-ordered list;

e permutation descent (PD): PE selection with LLH application until no further improvement made;
e greedy (GR): selection of best-performing LLH;

e peckish (PK): random LLH selection from best npy LLHs;

e roulette wheel (RW): selection of LLH using a roulette wheel;

o tournament selection (TO): selection of LLH following a competition of fitness.

The operation of these hyper-heuristics is described in §3.2.1. The LLH selected by the hyper-heuristic
optimises the population over the hyper-heuristic evaluation period of generations. Move acceptance rules
are applied mid-way through this period to determine whether the LLH should continue for the rest of
the period or be rejected. Rejection leads to repeated heuristic selection for a replacement LLH. Move

acceptance is performed using one of the following rules:

e all moves (AM): permit positive and negative moves;
e improving and equal (IE): permit non-negative moves only;
e simulated annealing (SA): permit positive moves and probabilistically permit negative moves;

e exponential Monte Carlo with counter (EMCQ): permit positive and probabilistically permit neg-

ative moves.
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These rules of move acceptance are selected in accordance with the results of studies into the performances
of the rules by Bilgin et al. (2007), Cowling et al. (2001), Drake et al. (2012) and Ozcan et al. (2008)
discussed in §3.6. Descriptions of these move acceptance rules are provided in §3.2.2, where the HHA
uses the same values for the EMCQ constants as those evaluated as providing best performance during
the experimental studies of Ayob and Kendall (2003).

The learning mechanism determines whether an improvement has been made using a newly-selected
LLH through the measure of improvement (Mol) criterion. The Mol criterion employed by the HHA
within the framework is the hyper-heuristic objective function given by Eqn. (4.3). Each LLH possess an
individual value of the hyper-heuristic objective function, the value of which determines the likelihood of
selection by the hyper-heuristic. Consequently, the hyper-heuristic objective function in Eqn. (4.3) may
be rewritten as follows for the hth LLH

max (qSZ) for k=1,2,...,n4 (5.19)

The value of this function is defined in §5.3.4.4 with reference to the manner in which this function
encourages such process behaviour during parameter control. A tabu tenure may be incorporated within
heuristic selection to prevent the reselection of a poorly-performing LLH. The tabu tenure, based on that
developed by Han and Kendall (2003), counts the number of successive generations over which a selected
LLH fails to improve the Mol criterion compared to the criterion value at the generation preceding
the selection of the LLH. The tenure is reset to zero whenever the LLH generates an improvement in
the criterion. This enables the HHA to learn as to which techniques are improving the process and
further reduce the likelihood that a poorly-performing LLH will be selected. The tabu tenure approach

is employed using one of the following methods chosen during initialisation:

e tabu list assistance;

e Mol penalisation.

Tabu list assistance prevents the selection of an LLH for a pre-determined number of heuristic selection
occurrences if it fails to improve the Mol criterion, i.e the LLH is added to a tabu list, as was performed
by Han and Kendall (2003). Mol penalisation uses the tabu tenure to apply a penalty to the Mol in a
similar manner to an exterior penalty function within the problem domain. Consequently, the penalised

hyper-heuristic objective value associated with the hth LLH is calculated as

(bAk — LZ (5.20)
" Qhoni ’
The tabu tenure, Qp n; for the hth LLH, is decremented over each generation for which the LLH is
not employed to discourage immediate use of poorly-performing LLHs but permit the techniques to be
employed at later generations once the tabu tenure has reduced to zero. In the event that all LLHs in
the heuristic set possess a non-zero tabu tenure, i.e. no techniques improved the Mol criterion when last
applied, the tenures of all heuristics are decremented until at least one LLH possess no tabu tenure.
When using the GR, PK, RW or TO hyper-heuristics, all LLHs are applied during early generations
such that a measure of performance may been obtained for each before beginning Mol-based selection.
Heuristic selection is also employed in conjunction with population distribution and perturbation analysis.
The former involves the selection of numerous LLHs to be employed during each generation, whilst the

latter encompasses the selection of an LS hyper-heuristic to perturb individual solutions.
5.3.4.2 Population Distribution

Population distribution permits multiple LLHs to be employed concurrently during the optimisation

of the population in order to overcome the limitations of individual techniques and better explore the
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solution space. During a given generation, each LLH optimises the solutions contained within the LLH
sub-population. A sub-population is optimised in isolation from all other sub-populations, leading to
the independent search by LLHs in the periods between population distribution. This period between
distributions is the same as that for heuristic selection described in §5.3.4.1, i.e. Ak. When a single-
solution LLH is employed, i.e. an LS technique, sub-population individuals are optimised independently
of all others to maintain the characteristic of the technique. The distribution of a population may be

performed using one of two methods, the choice of which is made during initialisation:

e even: the population set is distributed evenly between all LLHs;

e heuristic: heuristic selection is used to choose an LLH to optimise each individual.

Even distribution ensures all LLLHs are allocated the same number of individuals to permit each LLH an
equal opportunity to improve the population. If the population size is not divisible by the number of
LLHs, each remaining individual is allocated to a random LLH with the condition that each LLH may
only receive one additional individual. This ensures the population is distributed as evenly as possible.
Heuristic distribution couples population distribution with heuristic selection, resulting in the selection
of an individual LLH for each population individual. The individuals assigned with the same LLH form
the sub-population for that LLH. This increases the probability that better-performing LLHs receive a
larger proportion of the population for sub-population optimisation, thus increasing the likelihood of
an improvement in the current solution. Such heuristic population distribution reduces to a random
distribution if the SR hyper-heuristic is employed. The initial population is always evenly-distributed
between the available LLHs unless the SR hyper-heuristic is employed. Sub-population sizes are adjusted

if required to ensure that a sufficient number of individuals are present for the LLH to function

4 for TO: four candidates for tournament
4 for DE: three agents plus evolving individual
2
——  for BP: two parents from breeder pool for crossover
Hsub > ABP (521)
2 for RW, RC: two parents for crossover
1
— for RI: one individual from indigenous population
QRI
1 otherwise

The maximum number of different LLHs to be employed during each generation is set during initialisation
to prevent too many LLHs being employed with inadequately small sub-populations for effective optimisa-
tion. A dynamic population size, similar to that of Arabas et al. (1994), can be chosen during initialisation
such that the sizes of sub-populations are limited to prevent LLH domination. Within the framework,
sub-populations exceeding this limit are reduced through the random rejection of individuals. If pop-
ulation distribution then leads to all sub-population sizes falling below the limit, randomly-generated
individuals are injected into the population until either all sub-populations or the total population set
reaches their respective maximum limits. Random rejection and insertion of individuals preserves pop-
ulation diversity and prevents search bias, e.g. if the poorest solutions were rejected and good solutions

replicated for insertion.
5.3.4.3 Perturbation Analysis

Perturbation analysis is performed to encourage learning of the solution space neighbouring a sample of
individuals, thus encouraging the optimisation search to be better directed towards promising regions. An
LS technique perturbs selected individuals in an attempt to make further improvements in their objective
value. This occurs at every generation at which a better design is obtained in the population set than the

current best solution, i.e. the best design found during preceding generations. This analysis frequency
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is chosen over analysis after each generation to avoid substantially increasing the computational cost of
such analysis. Avoidance of incurring such computational costs through the use of hyper-heuristics is
key to supporting the thesis discussed in §1.3. The population set is sampled either randomly or based
on fitness, the method and sample size of which is chosen during initialisation. Each individual selected
for perturbation analysis has a random number of variables perturbed by the LS hyper-heuristic, leading
to the structural analysis of the perturbed solution. Acceptance or rejection of the perturbed solution is
based on the rules of the hyper-heuristic employed. Hill climbing (HC), simulated annealing (SA) and
tabu search (TS) are the hyper-heuristics used to perform the MA local search, the selection of which is
made by heuristic selection and population distribution over the sampled population. As is described in

§3.4, perturbation analysis includes the following criteria which are defined during initialisation:

e evolution: Lamarckian or Baldwinian;
e sample size, upa: single solution or proportion of population set;

e perturbation scale, Ax, pa: size of step made by hyper-heuristic.

Acceptance of a perturbed solution through Lamarckian evolution leads to the replacement of the un-
perturbed individual with the perturbed design, whereas Baldwinian evolution keeps the unperturbed
solution but replaces its objective value with that of the perturbed individual. Population individuals are
either sampled randomly or from the best pp4 individuals within the population set. A larger sample
size increases the probability of improving the population through perturbation analysis. However, this
also increases the number of individuals requiring structural analysis, which will lead to an increase in
computation time. The perturbation scale determines the size of step taken in the solution space when
perturbing an individual. This step size should be smaller than that used by the LS techniques as LLHs
during principal design optimisation to maintain the nature of this analysis as only perturbing solutions,
not exploring larger areas of the solution space. No set-up of perturbation analysis was discovered during
the review presented in §3.6 that outperformed all others, hence flexibility is permitted in the settings
of perturbation analysis within the framework. The perturbation analysis of each individual continues

through repeated perturbations until no further improvement is made in the solution quality.
5.3.4.4 Parameter Control

Parameter control modifies the values of the process parameters to encourage specific behaviour within

the optimisation search. Such behaviour includes:

e solution space exploration to prevent premature convergence on local optima;
e improved convergence on the best solution obtained;

e avoidance of convergence on an infeasible solution;

e focus on critical variables failing to converge;

e reduction of computation expense.

Table 5.4 lists the parameters controlled by the HHA to encourage such process behaviour. Parameter P1
defines the level of FE model fidelity employed during structural analysis. This parameter is controlled
to promote the use of a low-fidelity model during early optimisation generations prior to a higher-fidelity
model towards the end of the process. This enables early designs to be analysed rapidly before more
detailed analysis of designs neighbouring the best solution obtained. Early generations of optimisation
prior to population convergence are more likely to include greater population diversity. This is likely to
lead to designs possessing many structural members, and thus many DoF's, as the population will not have
converged on a solution of low mass, i.e. one likely to possess fewer members. The required computational
time for FEA of such designs is reduced by using a low-fidelity model. More detailed analysis is then
encouraged of lighter designs, i.e. those likely to possess fewer DoF's, as the search converges upon the best

solution. This can lead to further design improvements and the output of more detailed FEA results for
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post-processing. Parameter P2 is the penalty function coefficient which is modified by the HHA as defined
in Eqn. (5.15). This increases the penalty applied to populations possessing many infeasible solutions and
relaxes the penalisation of populations that are highly-feasible, i.e. containing many feasible solutions.
This control of parameter P2 is different from that of all other dynamically-controlled parameters due to

the existence of this specific rule to control the parameter, i.e. Eqn. (5.15).

Parameters P3 to P18 are operators of the LLHs within the heuristic set that are defined to encourage
either solution space exploration or convergence upon the current best solution. The effects of this
control are established through consideration of the design of these optimisation techniques, as described
in §2.3 and §5.3.5. Binary chromosome strand length, P3, is defined independently for each design
variable to enable the shortening of converged variable strands and lengthening of variables failing to
converge. The RI indigenous population size, P4, is reduced to encourage exploration by increasing the
population diversity or increased to encourage convergence through the reduction of such diversity. The
DE crossover probability and differential weight, P5 and P6 respectively, are increased to provide greater
influences of agents on individuals, and thus encourage exploration, or reduced to promote the opposite.
The number of GA points and GA crossover and mutation probabilities, P7, P8 and P9 respectively, are
increased for greater population diversity and subsequent exploration or reduced to promote convergence.
The BP intake, P10, is increased for greater exploration by considering more parent candidates or,
conversely, reduced for convergence. Similarly, the RC contaminated population, P11, is increased or
greater population diversity and subsequent exploration by encouraging mutation of the population, but
is reduced for population convergence through reduced mutation. This novel LLH is described in detail
in §5.3.5.3. The PSO parameters, P12 to P15, are modified to encourage exploration by increasing the
inertia weight and cognitive parameter and decreasing the social parameter and constriction constant.
Convergence is encouraged by adapting these parameters in the opposite manner. Parameter P16 defines
the step size made by LS LLHs, where increases in its value leads to larger steps to prevent search
stagnation due to plateaux or by being restricted to a small area of the solution space. Conversely, the
parameter is reduced for smaller steps to promote convergence. A high value of P17, the SA cooling
rate, reduces the probability of accepting a negative move and thus promotes convergence, whereas a low
value encourages the opposite. Finally, the tabu list length, P18, is extended to promote convergence by

limiting moves away from the local solution space, whilst the reverse is performed for exploration.

All parameters except P3, the binary chromosome strand length of design variables, are optimised by
the hyper-heuristic without bias in the step direction. The direction of the step made in parameter P3
for each variable is determined based on the affinity of the variable. This parameter enables the HHA to
refine the resolution at which each design variable may be optimised. This encourages the strand lengths
to be increased for variables failing to converge, thus permitting greater resolution in the optimisation
of these variables, and reduced for variables that are converging to allow the optimisation process to
focus on the variables yet to converge. The step direction of P3 is biased to encourage this behaviour
based on the affinity of the variable measured across the population set using Eqn. (5.18). The hyper-
heuristic makes a step to shorten the strand length of converging variables with affinities greater than
the population affinity measured in Eqn. (5.17), i.e. the mean for all variables, whilst making a step to
lengthen the strand length of variables with affinities less than average. Reducing the strand length of
converging variables can prevent optimisation at greater resolution of these variables, which in turn could
prevent improvements being made through these variables. However, such improvements are likely to be
small given that the variables have almost converged based on their high affinities. The strand lengths
of the eight categorical variables, i.e. V21 to V25 and V48 to V50 defining member cross-sections and
materials, remain constant throughout the process and are not affected by P3. This is because increments
or decrements in the values of these variables can cause dramatic changes in solution quality through their

effect on the design mechanical properties, e.g. abrupt changes in material grades. Consequently, there
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are n, — 8 values of P3 to define the strand lengths of the n, — 8 controlled numerical design variables.

The perturbed values of parameters are accepted if an improvement is measured by a hyper-heuristic
objective function or if the hyper-heuristic employed permits a negative move, e.g. when using the SA

hyper-heuristic. The hyper-heuristic objective function considers the five following criteria:

objective value of best solution;
mean objective value;
mean population affinity;

mean convergence rate;

DAl o

computation time.

These criteria are selected to encourage process behaviour that is likely to result in a higher quality
solution without incurring computational cost, i.e. as hypothesised in §1.3. The first two components
aim to improve the quality of the best solution and the average quality of the population. The next two
components aim to prevent premature convergence by encouraging early solution space exploration prior
to the opposite towards the end of the process. The final component aims to minimise the computation
time required by the process. These criteria are selected such that the hyper-heuristic objective function
is similarly-designed to the choice function of Drake et al. (2012), given in Eqn. (3.6), which was found
to perform well during the studies reviewed in §3.6. However, the hyper-heuristic objective function
presented herein gives greater consideration to aspects of process performance other than solution quality
and computation time. Moreover, this function is employed for parameter control as well as heuristic
selection, whereas the choice function was employed solely for heuristic selection. The choice function
of Drake et al. (2012) was chosen over the original function of Cowling et al. (2000) as the basis for this
function herein given that the former was found outperform the latter within the literature. Furthermore,
the modified choice function employs component weights that adapt dynamically during the search based

on the performance of the HHA rather that static weights that require tuning pre-optimisation.

The hyper-heuristic objective function utilises positive reinforcement learning to reward changes to
the process that improve its performance as measured by the five criteria of the function. The objective
values are measured using Eqn. (4.1), leading to the determination of the best solution objective value
and the mean value across the population. Population affinity is measured using Eqn. (5.17). The popu-
lation convergence rate represents the magnitude of change in objective value, i.e. without distinguishing

between a gain or lack of improvement in solution quality, to determine whether the search is stagnating

§(X)F = |e(X)F — e(X)" | (5.22)

The hyper-heuristic objective function is defined at the kth generation by recalling Eqn. (4.3)

max(qﬁk) for k=1,2,...,ng
The value of this hyper-heuristic objective function is defined at the kth generation as
5
=3 dbo (5.2
f=1

where a’} fth normalising coefficient at the kth generation

qS’]? fth hyper-heuristic objective function component at the kth generation
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The five aforementioned criteria of optimisation process performance are measured using the five compo-

nents of the hyper-heuristic objective function, as follows at the kth generation

1
k _

o1 = min B(X)5F (5.24a)

oh— L (5.24D)

2 B (X)Ak '

Pk = EA(X)Ak (5.24c)

Bk = k6(X)Ak (5.24d)

95 = (1 - :) Ak (5.24e)

k

where 72% denotes the computation time taken over the HHA evaluation period of Ak generations. Com-
ponents ¢¥ and ¢%5 promote improvement in the quality of the best solution and population throughout
the process. Components ¢& and ¢§ are weighted to discourage affinity, i.e. population similarity, and
convergence during early generations for solution space exploration before promoting these character-
istics during later generations. This weighting is based on the position in time, i.e. generation, of the
optimisation process to distinguish between early and later generations. Finally, component (b’g promotes
rapid optimisation during early generations by attempting to reduce the computation time taken before
encouraging more thorough analysis during later generations. This final component is included prin-
cipally to control the level of FE model fidelity employed to avoid spending too much time assessing
potentially poor solutions at high-fidelity whilst allowing high-fidelity analysis of the better solutions as
the population converges on the final solution. The other components are included to principally control
the optimisation process parameters. However, due to domain independence, changes in the process pa-
rameters are able to influence the other function components in an attempt to improve the overall value
of Eqn. (5.23), i.e. changes in optimisation parameters that improve the final component or changes in

model fidelity that improve the other four components.

No weighting is applied to the function components other than the generation-based weighting of
components @5, % and ¢%. This is to provide equal importance of all process characteristics considered
within the hyper-heuristic objective function. However, a normalising coeflicient, a’;“ is calculated for the
fth component of Eqn. (5.23) at the kth generation to restrict its value to the range

0<aheh < (5.25)

ot =

1
5 max (¢’;, qsf:“)

where a’; =

The use of such normalisation coefficients enables the values of Eqn. (5.23) to be similarly bound for
successive evaluation periods, i.e. ending at generations k and k — Ak, and thus ensure homogeneity

between the hyper-heuristic objective values
0<oh,¢" 2 <1 (5.26)

This permits the values of the hyper-heuristic objective function over successive evaluation periods to be

compared in order to determine whether an improvement has been made in the process performance, i.e.
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if o > ¢*~A* The new parameter values are accepted if such an improvement is recorded. The previous
values of parameters are restored if an improvement is not made by rejecting the modified values, unless

the hyper-heuristic used permits a negative move, e.g. SA.

5.3.5 Design Optimisation

Optimisation of each generation of the population set within the problem domain is performed by the
selected LLHs to improve the performance of solutions with respect to the objective function of Eqn. (4.1)
[3.5a]. This is accomplished through the modification of the values of design variables of individuals within
the population set. These individuals are represented by the design genome in either real or binary form
as selected during initialisation. The latter employs a binary chromosome to represent each individual
solution, which is divided such that each strand of the chromosome represents a design variable. The
number of bits in each strand, np, is controlled dynamically by the HHA as an individual value of
parameter P3 for the variable. The resolution between each strand bit for the vth variable is calculated

as follows by considering the number of permutations available within the variable range

AV,
Opp = o — 1 (5.27)
Subsequently, the real number value of the vth design variable represented by the strand is
Nny,v
Ty = Vv,min + 6b,1} Z L27lb'/v_b—‘ By, (528)

b=1

where By, denotes the binary chromosome value for bth bit, i.e. 0 or 1. Discrete variables have a finite
number of permutations; therefore, if the number of bit permutations available for the vth variable exceeds
than the number of discrete variable permutations, the strand length is reduced to the minimum required

to represent all discrete permutations

(5.29)

)

log AV,
A [ log 2 W
The optimisation techniques are selected from the LLH set listed in Table A.6 by the HHA. Multiple
techniques may be selected for population distribution, in which case each LLH optimises a sub-population
of individuals, whilst the values of the LLH operators are determined by the parameter control HHA
aspect. The optimisation techniques employed by the framework as LLHs are those commonly employed

within the field of aerospace design, as identified in §2.3, and may be categorised as follows:

e random generation;

e cvolutionary algorithm (EA);

genetic algorithm (GA);
e swarm intelligence (SI);

local search (LS).

The following discussion of optimisation by the different LLHs is formed as if a single technique is being
applied to a population for ease of understanding. These descriptions are equally applicable when pop-
ulation distribution is performed; however, the LLH is applied to a sub-population only, thus discussion

of the ‘population’ strictly refers only to the corresponding ‘sub-population’ in this situation.
5.3.5.1 Random Generation

These techniques randomly generate new values for design variables; consequently, individual solutions
do not evolve over optimisation generations. Such techniques enable diversity to be maintained within
the population set but are less likely to converge on good solutions. The random search does not consider

the quality of previous solutions, therefore it is less likely that a high-quality solution will be obtained
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than when employing the other categories of LLHs. The random techniques within the heuristic set are
Monte Carlo (MC) and random immigration (RI), and are described in §2.3.1. For RI, parameter P4

defines the indigenous population proportion, agy, such that the size of the indigenous population is
URI = ORI (530)

5.3.5.2 Evolutionary Algorithm

An EA operates by evolving individuals within the population set over the generations of the optimisa-
tion process. This involves the use of the existing individual solutions to determine the values of design
variables for the next generation of solutions. Hence, the optimisation process is better guided than for
random generation. The EAs included within the heuristic set are killer queen (KQ) and differential evo-
lution (DE), which are described in §2.3.2. For KQ, a mutation probability is used to enable preservation
of a sample of individuals and thus increase the likelihood of convergence, i.e. unlike when introduced
in Raymer (2002) when mutation was a certainty. For DE, the probability of crossover and differential

weight are controlled by parameters P5 and P6 respectively for dynamic operation of the LLH.
5.3.5.3 Genetic Algorithm

A GA performs similar evolution of the population set as by an EA, however parents are selected from
the current population and mated through crossover to generate an offspring solution. Mutation can then
be applied as appropriate. GAs were introduced in §2.3.2.2, including descriptions of the roulette wheel
(RW), tournament selection (TO) and breeder pool (BP) selection methods. GAs are included within
the heuristic set using each of these selection methods, as such these LLHs are referred to as RW, TO
and BP herein. Within BP, parameter P10 defines the proportion of the population within the breeder

pool, agp, such the breeder pool size is given by
UBP = aBpl (531)

In addition to the three aforementioned well-established GAs, a novel algorithm that has been developed
as part of this research is included within the heuristic set: radioactive contamination (RC). This selection
method considers the population as two groups: uncontaminated and contaminated individuals. The idea
behind this GA selection method is that in the event of a radioactive outbreak, the fittest individuals are
most likely to escape contamination. These individuals are therefore less likely to be mutated than those
that are contaminated. The contaminated proportion of the population set is defined by parameter P11,

agc, such that the size of the contaminated population is calculated as

URC = QRCH (5.32)

Two parents are randomly selected from the entire population set for crossover. Mutation is then applied

with the following probability for the ith offspring individual at the kth generation

pk  if both parents contaminated

k
Pm

p’fn,i = if one parent contaminated (5.33)

0 otherwise

Therefore, the offspring of weak, contaminated parents are more likely to be mutated to enable solution
space exploration whilst the offspring of strong, uncontaminated parents evolve without mutation. This
preserves the characteristics of good individuals in the population whilst allowing poorer individuals to

explore the solution space. The RC selection method does not introduce bias into the selection of parents,
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as with RW and TO, nor permit only a sample of individuals to be parents, as with BP, thus maintaining
search diversity. An LLH formed as a GA with RC selection is referred to simply as RC herein.

The crossover techniques used by the GAs are selected during initialisation from uniform, point and
blend, where the latter is performed only if a real representation is used. These techniques are described
in §2.3.2.2. The probability of crossover is defined by parameter P8 whilst the number of crossover points
during point crossover is defined by parameter P7. Offspring mutation is applied following crossover,
the probability of which is defined by dynamic process parameter P9. Elitist selection, where a sample
of individuals from the parent population are retained within the next population without crossover or
mutation, is not permitted in order to maintain population diversity and allow the parameter control

aspect of the HHA to control the generation of populations.
5.3.5.4 Swarm Intelligence

SI techniques explore the solution space over a period of generations based on the feedback of infor-
mation from the population individuals during their independent exploration of the solutions space.
Consequently, solution space learning is shared amongst the population set. This leads to coordinated
searching of the solution space for good designs before convergence upon the best solution. Such shared
learning reduces the likelihood of premature convergence on local optima whilst improving the global
convergence on the minimum closest to the best solution. Particle swarm optimisation (PSO), as de-
scribed in §2.3.3, is included in the LLH set as an SI technique. The search behaviour of the population
individuals is dependent on the values of technique parameters which are initialised randomly between
limits set during initialisation for parameters P12 to P15. The initial velocities of individuals for each
variable are also initialised randomly. The velocity clamping of Clerc and Kennedy (2002) is applied by
the constriction constant, P15, to reduce the likelihood of explosion and thus improve the stability of the
LLH. This results in the modification of Eqn. (2.2) as

k+1

. . A~ 1ok ~ 1=k
{z}, =x {iso{Jv}ic + C1,PSOT1,PSO ({30}21 - {w}f) + C2,PSOT2,PSO ({x}iﬁu,v - {az}f)} (5.34a)

{a}F = {2} 1 o)) (5.34b)

2KPSO ifp>4
where x = p—2++/p*—4p
VEKPSO otherwise

p = C1,PSOT1,PSO + C2,PSOT2,PSO

The constriction constant is constrained between 0 < kpgso < 1. Setting the constriction constant
to its maximum bound restricts the velocities of individuals as they search the solution space, thus
allowing greater exploration of neighbouring regions and reducing search instability. Conversely, setting
the parameter to zero reduces Eqn. (5.34) to the original form of the PSO algorithm given in Eqn. (2.2),
i.e. unconstricted search without any velocity clamping. By permitting the HHA to control the value
of the constriction constant as P15, the degree of velocity clamping may vary during the process to

encourage, or discourage, search constriction.

5.3.5.5 Local Search

LS techniques optimise a single individual design solution rather than a population of individuals. There-
fore, individuals within the population set are optimised independently when an LS LLH is selected by
the HHA. Such single-solution techniques perform trajectory-based optimisation to make steps across the
solution space to explore new designs, but are prone to premature convergence on local optima. However,

such convergence tendencies increase the likelihood that the local optimum is found closest to a known
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good solution, which overcomes the corresponding limitation with population-based techniques. Hill
climbing (HC), simulated annealing (SA) and tabu search (TS) are LS methods included in the LLH set.
These optimisation techniques are described in more detail in §2.3.4. Given that the framework considers
50 design variables, the steepest descent (SD) LS technique is not included due to the large number of
gradient evaluations required with many design variables in order to identify the path of steepest descent.

The LS techniques step in a random direction across the solution space. The sizes of these steps are
defined by dynamic process parameter P16. SA is performed using either linear or exponential cooling, as
input during initialisation, with a cooling rate defined by parameter P17. The initial temperature is also
input during initialisation. Finally, parameter P18 defines the tabu list length used by the TS technique,

thus determining the memory of forbidden moves.

5.3.6 Data Output

The history of the best aircraft design solution is output following termination of the optimisation process
[3.6a]. The history of optimisation process performance is also output [3.6b]. It is therefore possible to
analyse these data and determine any further action, e.g. continuation to embodiment design or repetition

of framework operation with updated input data. The data output by the framework include:

e best aircraft structural design solution;
e history of best design solution during process;
e FEA report for running best solution;

e history of optimisation process performance, including changes made by HHA.

The history of the running best design solution includes the values of design variables, worst values with
respect to the design constraints and design objective value for the running best solution after each
optimisation generation. FEA reports corresponding to the analysis of these designs are also output.
These reports describe the FE model of the airframe design, the model response to each applied load
case, including the boundary conditions applied, and the subsequent results of stress analysis. These data
are included such that the solutions may be analysed using a post-processing tool. These reports may be
output for all airframe designs if requested during initialisation. A history of population feasibility and
affinity is also output as an indication of optimisation process performance. As a result, these data may
be analysed for use in determining the next stage of the design process, or used to repeat the process

with an updated set-up for analysis of a different aircraft design variation.

5.4 Summary

The framework presented in this chapter performs structural optimisation of an aircraft structural design
subject to feasibility under load as measured using FEA. An HHA is embedded within the framework
to further improve solution quality and the performance of the optimisation process as measured by a
hyper-heuristic objective function. This framework includes three stages within the solution process:
aircraft design procedure, structural analysis and airframe design optimisation.

The aircraft design procedure generates the external profile of the aircraft using the data input during
initialisation and outputs of mission definition and mass estimation. Structural designs are generated
within this profile given the values of design variables. The loads to be applied to each airframe design
during structural analysis are also computed. This procedure avoids repeated computation of these tasks
for each individual structural design, with the exception of structural layout generation.

Structural analysis determines the objective value and feasibility of each aircraft design, the latter of
which is performed using FEA having generated an FE model of the airframe with multiple structural
members grouped within elements for improved computation speed. The response of the structure to

the selected load cases is computed for either static or dynamic loads. This response is measured in
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the displacement field, leading to the calculation of the wingtip deflection for comparison against the
corresponding design constraint. The forces and moments within the airframe members are subsequently
obtained, permitting analysis of the stress field within each member. Consequently, the minimum FoS
under yield of each member is calculated for comparison against the corresponding design constraint.

Airframe designs are optimised to minimise structural mass following the application of a penalty
function to encourage feasibility. Population fitness is calculated using the ranks of individuals. Each
structural design is optimised using an LLH chosen from the heuristic set by heuristic selection within
the HHA. This can be coupled with population distribution for concurrent employment of multiple
LLHs. Perturbation analysis is performed to further improve the quality of a sample of solutions, whilst
parameter control is conducted in an attempt to improve process performance as measured by a hyper-
heuristic objective function. Termination criteria are checked at the end of each generation to determine
if the process should cease or continue for another generation. Data are output upon termination to
enable post-processing such that embodiment and detail design of the aircraft may be performed.

This framework differs from those currently employed for conceptual aircraft structural design op-
timisation through the inclusion of the HHA for improved process performance and solution quality.
Furthermore, the novel HHA varies from those traditionally employed for hyper-heuristic optimisation
by including four HHA aspects: heuristic selection, population distribution, perturbation analysis and
parameter control. Additionally, the framework is sufficiently versatile to be able to consider a variety of
new and existing aircraft design variants of various classes, whilst possessing the ability to apply a num-
ber of load cases to the airframe. These characteristics are not common amongst frameworks currently

employed within the field of aerospace design optimisation.
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Chapter 6

AStrO

The framework described in Chapter 5 has been implemented as a computational tool called AStrO,
an acronym of ‘Aircraft Structural Optimiser’, for its evaluation in Chapters 7 and 8. AStrO is a
purpose-built stand-alone software tool for use on multiple operating systems. It includes a graphical
user interface (GUI) for interaction with the engineer and implements parallel programming through the
message-passing interface (MPI) library. This chapter introduces AStrO by providing an overview of its
design and operation. The implementation of the framework is discussed in §6.1, including the GUI, use

of parallel programming and post-processing procedure. A summary to the chapter is provided in §6.2.

6.1 Implementation of Optimisation Framework

The implementation of the framework as the computational tool AStrO is consistent with the modular
description provided in Table 5.1. These modules are linked through a central orchestrating module to
control the execution of tasks within the framework indicated in Fig. 5.1. Within the framework stages,
all module tasks are performed explicitly within AStrO, i.e. without the use of any external software tools.
Therefore, AStrO contains the necessary empirical formulae to generate an aircraft design, purpose-built
structural analysis modules including finite element (FE) model generation and finite element analysis
(FEA), and a programmed implementation of the embedded hyper-heuristic approach (HHA) to improve
process performance and solution quality. Libraries store key mathematical functions, unit conversion
tables and databases of existing aircraft, powerplants, ordnance, materials and aerodromes. Further,
numerical recipes are employed to perform common operations such as the matrix computations required
for FEA. The use of these libraries and recipes improves the computational efficiency of the tool and
provides accessible data for use during initialisation, e.g. lists of common aerospace materials.

AStrO is programmed in C++ due to the support offered by the language for object-orientated
programming (OOP). In OOP, a program is represented as a set of intellectual objects, i.e. classes, that

pass data between each other to execute the program. The fundamental features of OOP include:

e abstraction: represent data by semantics without specific details;

e encapsulation: creation of self-contained, isolated classes;

e inheritance: passing of data structures through hierarchy;

e polymorphism: consider an object in multiple forms.
Abstraction standardises the code by reducing the dependency on complicated data, and thus permits the
substitution of similar objects through polymorphism. Encapsulation enables different classes to function
independently without requiring any knowledge of program operations outside the class. For example,

the calculation of member sectional properties is performed independently for all structural members

without relying on any information other than input data and coded formulae. Class structures are
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inherited through a hierarchy leading to the generation of sub-classes, e.g. the class defining the airframe
passes information to a set of sub-classes that each define member positions and sizes, the properties of
which are dependent on design variable values and encoded formulae.

An example of the class structure used throughout AStrO is shown in Fig. 6.1 using unified modelling
language (UML) notation (Miles and Hamilton, 2006). This diagram illustrates the hierarchy of classes
that perform the airframe generation task within the structural layout generation module, i.e. task 1.6¢
in Fig. 5.1. The aircraft generation task comprises of a class that polymorphically creates n structural
member objects from another class based on the values of the design variables. The profile and material
of each member is defined by sub-classes using common operations, thus maintaining abstraction. The
member position is inherited following its calculation in another class based on the pre-determined aircraft

external profile and attachment positions read in to the main class of the airframe generation task.

AirframeGeneration Key:

+ externalProfile: Real
+ attachments: Real

# designVariables: Real Attribute Class
Operation ()

Class Name

+ readExternalProfile (Real externalProfile): void
+ readAttachments (Real attachments): void

# interpretVariables (Real designVariables): void <———  Composition

- createMember {): void < Aggregation
! <—— Association
n
MemberPosition StructuralMember
+ externalProfile: Real # designVariables: Real
+ attachments: Real - member: Integer
# designVariables: Real - type: Integer
- member: Integer - profile: Integer
- position: Real - material: Integer
- setPosition (Real designVariables): Real - setType (Integer type): void

\

MemberProfile MemberMaterial

- profile: Integer + materialDatabase: array
- breadth: ProfileDimension - material: Integer
- depth: ProfileDimension - elasticMadulus: MaterialProperty
- thickness: ProfileDimension - shearModulus: MaterialProperty
- generateProfile (Integer profile): void - s::::“s':‘a;:: ::t::::;@ertv
- applyDimensions (ProfileDimension th, depth, thickness): Real - Y rarr

pplyDimensions {ProfileDi ion breadth, depth, thickness) al o RS D SR

*

- readMaterial (array materialDatabase, Integer material): void

1 *

ProfileDimension N

- dimension: Real MaterialProperty
# setValue (Real dimension}): void

- property: Real

# storeValue (Real property): void

Figure 6.1: Example of AStrO class structure using UML notation

Ease of programming and maintenance are important advantages of C++ with respect to the creation
of AStrO by ensuring efficient implementation of the framework, thus improving the reliability of ex-
perimental results, as well as the vast quantity of resources for programming in C4++. Microsoft Visual
Studio 2005 is used for programming AStrO, including the use of Mircrosoft foundation class (MFC)
libraries. These libraries enable the design of familiarly-structured GUI for ease of operation. Addition-
ally, the message-passing capabilities of MFC programming are beneficial for the rapid modification and
subsequent update of data within the program following the input of data. This improves the real-time
behaviour of AStrO, such as for updates of the GUI during execution. The portability of C4++ increases
the versatility of AStrO by removing restrictions of operating systems. AStrO is designed for use on
three operating systems: Microsoft Windows, Linux and Unix. The GUI is programmed to be employed
on Microsoft Windows due to the popular worldwide use of this operating system. Operating of AStrO

from the Linux and Unix-based systems requires the use of a command line version of AStrO due to
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incompatibility of the GUI. However, these operating systems are chosen principally such that AStrO
may be used on high-performance computing (HPC) resources to enable more rapid execution, for which

a GUI is not necessary when supplied with appropriate comma-separated values (CSV) input files.

6.1.1 Graphical User Interface

When run on a Microsoft Windows operating system, AStrO is controlled through a GUI to input data,
monitor execution and perform post-processing. The GUI includes three principal windows:

e main: control the program and launch the following GUI windows;

e input data: implement the initialisation module of the framework;

e run program: execute and monitor the optimisation process.
Figure 6.2 shows the toolbar of the main program window. This toolbar is used to create, open, save or
close a project file, edit the view settings for the current aircraft model, launch the input data or run

program windows, or output results for analysis in the form of spreadsheets. The buttons corresponding
to the latter three tasks are labelled in Fig. 6.2.

Project] - AStrO.
Ble Edt Yew Execute Hel

D@HE e & Ec0k| P

Input data/ \ Analyse results
Run program

Figure 6.2: AStrO main user interface toolbar

The input data window in Fig. 6.3 is launched upon selecting ‘Input data’ from the main window. Ra-

dio buttons select the category for which data are to be input. Figure 6.3 shows the input data for the
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Figure 6.3: AStrO input data user interface
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‘Aircraft geometry’ category to define properties of the aircraft external profile, powerplants and mission.
A summary of the aircraft design represented by the input data is included alongside an image of the
external or internal design in either two or three-dimensions using the Open Graphics Library (OpenGL).

Figure 6.4 shows the AStrO window during the execution of the optimisation process to inform the
engineer of process progress. This window is launched upon commencing execution of the framework by
selecting ‘Run Program’ from the main toolbar. An image of the current best design solution is shown

alongside the history of the running best solution and process in tabular and graphical form.
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Figure 6.4: AStrO run program user interface

The image of the current best solution shows the corresponding airframe design in a view selected by the

engineer. This view can show either:

e all structural members, i.e. as in Fig. 6.4;
e only structural members that have changed compared to the previous best solution;
e the minimum factor of safety (FoS) within each member;

e the critical load case for each member.

The latter concerns the load case resulting in the lowest FoS within each member, thus providing the
ability to assess the airframe integrity to determine which loads are most onerous for different structural
members. The GUI buttons permit the process to be paused or terminated if necessary. This may
occur if the engineer is not satisfied with the search direction, e.g. the design solution is unsuitable, or
if the problem is to be redefined. The optimisation log tabulates the running best solutions during the
process, including their design variable values, limiting values with respect to the design constraints and
objective value. These instances of improvements in the best solution are also illustrated by a plot of
solution history at the bottom-left of the window in Fig. 6.4, alongside a plot of process performance in

the bottom-right. The keys within the two plots shown in Fig. 6.4 indicate:

e ‘Current Optimum’: objective value of the best solution found thus far;

e ‘Generation Optimum’: objective value of the best solution in each generation;
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e ‘Violations’: percentage of structural members in best solution violating a constraint;

e ‘Satisfy Performance’: feasible percentage of population at current generation.

The post-processing of results is performed upon selection of ‘Analyse Data’ following the termination
of the optimisation process, i.e. after the end of the process described by the framework in Fig. 5.1. As
this process is outside the scope of the framework, an external software tool is used to perform this data

analysis task, further discussion of which is included in §6.1.3.

6.1.2 Parallel Programming

All modules of the aircraft design procedure except structural layout generation, i.e. modules 1.1 to 1.5
in Table 5.1 and Fig. 5.1, are employed once for each execution of AStrO. Similarly, the airframe design
optimisation modules, i.e. modules 3.1 to 3.6, are employed once for each generation of the optimisation
process during program execution. Conversely, structural layout generation and structural analysis,
i.e. modules 1.6 and 2.1 to 2.5, are executed once for each individual airframe design solution within
a population generation due to the requirement to perform analysis of each airframe design solution.
Assuming a constant population size, these modules are executed png times for a population set of size
1 individuals over nj generations. This generates the greatest computational demands on the solution
process, in part due to the computational costs inherent of performing FEA discussed in §2.2.2.

The tasks within the structural layout generation and analysis modules are identical for each individ-
ual solution and do not depend on any information concerning other individuals within the population
set. Therefore, parallel programming is incorporated within AStrO to execute modules 1.6 to 2.5 si-
multaneously for batches of population set individuals. This is achieved using the MPI library to pass
messages between a master processor and a number of slave processors such that each processor performs
these module tasks in isolation. This avoids the need for serial population analysis on a single processor,
thus significantly reducing the computation time required for the solution process. MPI possesses the

following properties that are beneficial to this application:

e high performance in handling tasks and operating numerous processors;
e versatility for use on various computer processors with fast or slow connections;
e explicit definition of message passing for ease of debugging;

e suitability for parallel execution of tasks of potentially imbalanced durations.

This final property is critical as concurrent analysis of multiple individuals is unlikely to take the same
length of time for each individual, i.e. the durations of FE modelling and analysis are dependent on the
number of degrees of freedom (DoFs) within each individual model. Parallel tasks are performed by
firstly broadcasting the set-up of each optimisation generation from the master processor to the slaves
to ensure all processors possess the current settings. Each processor is then assigned an individual from
the population set by sending the design variable values of the individual from the master processor to
the slave. Isolated structural analysis of the individual is then performed, the results of which are passed
back from the slave processor to the master before the next batch of individuals is analysed. When
all individuals within the population have been assessed, the master processor optimises the population
before the next generation is analysed in parallel by repeating the process. Consequently, the structural
layout generation module and structural analysis stage of the framework shown in Fig. 5.1 may be
rearranged as shown within Fig. 6.5 to indicate the parallel analysis of a batch of population set individuals
rather than serial analysis of the entire population.

Parallel structural analysis is performed over ng, 4+ 1 processors, i.e. ng, slave processors and one
master processor. Hence, the population is analysed in batches of n,, + 1 individuals, i.e. one individual
per processor, repeatedly until the entire population set has been modelled and analysed. The final batch

of each generation is limited to the number of solutions yet to be assessed if this number is less than the

109



Chapter 6. AStrO

number of processors. The master processor performs the serial tasks of the aircraft design procedure,
i.e. modules 1.1 to 1.5, and airframe design optimisation, i.e. modules 3.1 to 3.6. Perturbation analysis
similarly exploits parallel programming to analyse the sampled population individuals and thus reduce

the additional computational expense of this aspect of the HHA.

MASTER SLAVE 1 SLAVE ny,
Individual i Individual i + 1 Individual 7 + n,, ,

1.6 STRUCTURAL LAYOUT GENERATION I 1.6 STRUCTURAL LAYOUT GENERATION I 1.6 STRUCTURAL LAYOUT GENERATION I

2.1 SECTIONAL PROPERTIES 2.1 SECTIONAL PROPERTIES 2.1 SECTIONAL PROPERTIES

2.2 STRUCTURAL MASS 2.2 STRUCTURAL MASS 2.2 STRUCTURAL MASS
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| | . |
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2.4 FINITE ELEMENT ANALYSIS 2.4 FINITE ELEMENT ANALYSIS 2.4 FINITE ELEMENT ANALYSIS

2.5 STRESS ANALYSIS 2.5 STRESS ANALYSIS 2.5 STRESS ANALYSIS

No

i=i+ng,+1

Yes l

Figure 6.5: Parallel structural analysis of population set within framework

6.1.3 Post-Processing

The post-processing of results is performed externally from AStrO following selection of ‘Data Analysis’
from the main window of AStrO shown in Fig. 6.2. AStrO generates a number of CSV files to capture
the data listed in §5.3.6. These files provide input data to Microsoft Excel for the post-processing of
the results. Upon selection of ‘Data Analysis’ within AStrO, a Microsoft Excel workbook template is
launched and a Visual Basic (VB) script within this workbook is executed automatically to import the
data within the CSV files into the workbook. Consequently, a series of tables and figures are plotted to
provide a visual representation of the optimisation process results. A sampl