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Abstract

This thesis presents a time–conservative finite–volume method based on a modern

flow simulation technique developed by the author. Its applicability to technically

relevant aeroacoustic applications is demonstrated. The time–conservative finite–

volume method has unique features and advantages in comparison to traditional

methods. The main objectives of this study are to develop an advanced, high–

resolution, low dissipation second–order scheme and to simulate the near acoustic

field with similar accuracy as higher–order (e.g., 4th–order, 6th–order, etc.) numerical

schemes. Other aims are to use a large–eddy simulation (LES) technique to directly

predict the near–field aerodynamic noise and to simulate the turbulent flow field

with high–fidelity.

A three–dimensional parallel LES solver is developed in order to investigate

the near acoustic field. Several cases with wide ranges of flow regimes have been

computed to validate and verify the accuracy of the method as well as to demon-

strate its effectiveness. The time–conservative finite–volume method is efficient and

yields high–resolution results with low dissipation similar to higher–order conven-

tional schemes. The time–conservative finite–volume approach offers an accurate

way to compute the most relevant frequencies and acoustic modes for aeroacoustic

calculations. Its accuracy was checked by solving demonstrative test cases including

the prediction of narrowband and broadband cavity acoustics as well as the screech

tones and the broadband shock–associated noise of a planar supersonic jet.

The second–order time–conservative finite–volume method can solve practically

relevant aeroacoustic problems with high–fidelity which is an exception to the con-

ventional second–order schemes commonly regarded as inadequate for computational

aeroacoustic (CAA) applications.
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Chapter 1

Introduction

1.1 Background

Sound can be described as pressure fluctuations which travel through a medium

(i.e, solid, liquid or gas) from its point of origin and reach our ears as longitudinal

waves. Sound generation and propagation by a vibrating plate (see Fig. 1.1) can be

explained as follows. Consider that the plate is moving in the positive x–direction.

The molecules are squashed or compressed together due to the movement of the

air molecules, causing an increase in the pressure of the air. Since the pressure in

the compression region is greater than in the undisturbed zone, the air molecules

tend to move rightward into this region and transmit the pressure impulse to the

adjacent layer and so on. On the other hand, when the vibrating plate is moving

in reverse direction (i.e., in the negative x–direction), the opposite effect occurs.

The molecules are pulled apart, which decreases the pressure to a value below that

of the undisturbed zone. Hence, the air molecules tend to move leftward in the

negative x–direction and a rarefaction occurs (Raichel, 2006). Consequently, sound

will be generated by the vibration of the air molecules and propagate due to the

compression and rarefaction impulses.

In Fig. 1.1, the compression and rarefaction of air molecules are depicted with the

fundamental components of sound waves (i.e., amplitude and wavelength). Sound

travels in different media at different rates based on a characteristic speed of the

medium. Sound is generated due to the movement of molecules, without movement

1
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there could be no sound. Therefore, acoustic signals cannot travel through a vacuum.

Sound velocities are greater in solids than in liquids. However, sound travels more

slowly in gases than it does in liquids. Sound waves contain energy and this energy

can be changed into other forms of energy, e.g., electrical energy. The vibrating

molecules are merely moved back and forth without changing their positions under

the influence of the transmitted waves. The distances of these particles move about

their respective equilibrium positions are referred to as displacement amplitudes

(see Fig. 1.1). The strength of an acoustic signal directly relates to the magnitudes

of the displacement amplitudes as well as variations in the density and velocity of

the fluid. Small displacement of the amplitude produces quiet sounds, whereas large

displacements produce loud ones. The distance between two successive compressions

is called the wavelength and the rate of oscillation is described as the frequency. An

acoustic signal may or may not be audible to the human ear, based on its frequency

content and intensity. The human ear can detect an acoustic signal in the frequency

range of approximately between 20 Hz and 20 kHz.

Wavelength

Amplitude
x

Vibrating
plate

p

Compression Rarefaction

Figure 1.1: Schematic view of compression and rarefaction of air molecules

Noise conveys the definition of unwanted sound and it can be considered as a

form of environmental pollution. There is no doubt that noise has negative effects

on human beings, both physiologically and psychologically. Excessive levels of sound

is a major issue for the urban communities due to increasing air and road traffic.

Therefore, significant noise reduction in airplanes, trains, and cars is mandatory.
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Table 1.1: Sound pressure levels chart and corresponding pressures of various sound

sources

Common sound source SPL (dB) p (Pa)

Rocket launching pad 180 20,000

Turbojet engine 160 2,000

Jet engine at 30 m 140 200

Aircraft taking off 120 20

Subway train, Chain saw 100 2.0

Factory noise 80 0.2

Normal conversation 60 2 × 10−2

Library 40 2 × 10−3

Whisper at 1 m 20 2 × 10−4

Threshold of hearing 0 2 × 10−5

Table 1.1 illustrates the range of sound pressure level of common sound sources. For

human beings, the range of hearing starts at 0 dB and is considered safe up to 70

dB (Wagner et al., 2007). Long–term exposure above that level is hazardous and

can cause permanent hearing loss.

Airplane, train and car manufacturers are forced to develop and build quieter

products in order to fulfill current noise regulations as well as to operate in or near

cities (Ihme and Breuer, 2002). Understanding of sound generation and sound prop-

agation are a matter of particular interest. Prediction and reduction of noise have

become important design criteria for the aviation and the vehicle industries. Be-

sides pollution of the environment by the radiated sound, intense sound tones can

also lead to high dynamic loads on parts of the aircraft causing structural damage.

Therefore, these industrial sectors are investing in resources which employing dif-

ferent strategies (e.g., theoretical, experimental and numerical) in order to reduce

the sound pressure level (i.e., noise) and investigate sound generation as well as

propagation mechanisms.
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1.2 Motivation

For a long time, prediction of flow–induced sound was mostly based on ana-

lytical and experimental studies. In the last few decades, the world has seen a

revolution in technological achievement brought about by computers. Numerical

study of flow–induced noise and the role of Computational Fluid Dynamics (CFD)

in engineering applications has become more essential (Tam, 2004; Anderson, 1995)

and feasible owing to the strongly increased computer performance. The use of

numerical simulation techniques to better understand aerodynamic noise is known

as Computational Aero–Acoustics (CAA). CAA is a numerical tool that combines

the classical approaches of flow field with acoustics. CAA could be a useful design

tool and has become very important not only for the aviation industry but also in

many other fields such as the automotive industry, computer manufacturing indus-

try or the energy industry. Moreover, CAA methods became capable of analyzing

more complex engineering problems where no simple analytical or classical numer-

ical solutions exists. CAA could help to quantify important flow–generated noise

phenomena including the following: jet noise, high bypass–ratio ducted fans, noise

of open rotors, airframe noise of aircrafts (e.g., landing gear, high lift devices and

weapon bays) which are some examples from the aviation industry. Car sunroof,

wind noise and climate system noise are the most common examples from the ground

vehicle industry. In the future, due to the noise regulations CAA will be a stan-

dard analysis tool for industry in the design process just like CFD. One should be

aware of the fact that today there is no unique methodology existing to simulate all

kinds of acoustic problems with adequate resolution and accuracy (Kurbatskii and

Mankbadi, 2004). More sophisticated methods must be developed and investigated

to predict sound generation and propagation reliably.

There are a number of major challenges posed by the computation of flow–

induced noise relative to general CFD (Tam, 2004). CAA methodology must be ro-

bust, cost–effective and consistent with the limitations of computing capacity. CAA

focuses primarily on the time–accurate numerical simulations of flow–generated

sound and the propagation of acoustic waves. Aeroacoustic problems are time–

dependent problems. In other words, unsteady flow processes are at the core of
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predicting flow–induced sound. These problems typically cover a wide range of fre-

quencies and amplitudes that spread over a bandwidth (Loh et al., 2001a). A large

length–scale disparity between sound and flow is another salient feature of aeroa-

coustics. The length–scale of the acoustic source is very different than the acoustic

wave length (Wang et al., 2006). Simulation methods must be designed to deal with

problems with greatly different length scales in different parts of the computational

domain (Tam, 2001). A high fidelity modeling of the acoustic problems for industrial

applications is very difficult due to the complex geometries as well as the physics

of the noise generation. Separated regions, instabilities and turbulent flows are all

important contributors to the sound field (Marvin, 1976). Pressure fluctuations

which are radiated as sound, tend to increase in shear layers, shock cell structures

and in the vicinity of sharp edges. Even loud flows radiate a small fraction of their

total energy as sound (Colonius, 2004). The acoustic signals are typically much

smaller than those of the mean flow variables. The sound intensity is five to six

orders smaller (Tam, 2001). Moreover, small errors in the unsteady flow can ruin

predictions of the noise radiation. Hence, the modeling requirements of aeroacous-

tic problems are substantially different from traditional fluid dynamics problems. A

numerical scheme must have low dispersion and numerical dissipation to compute

sound waves accurately. Consequently, many computational issues, which are essen-

tial for the CAA problem, are not so important for fluid dynamics problems. Due

to these reasons, CAA has largely been developed somewhat independent of CFD.

In principle, there are two approaches to obtain accurate results for CAA prob-

lems. The first one employs standard CFD finite–volume or finite–difference meth-

ods typically of a second–order accuracy in space with much finer grid resolution.

The second one employs high–order numerical schemes for direct or hybrid compu-

tation of flow–generated sound. Details of the direct and hybrid computations of

flow–induced noise can be found in Section 2.2.

According to Wagner et al. (2007) the standard second–order CFD schemes (e.g.

central schemes, upwind schemes) work surprisingly well for transonic problems

in which the differences between aerodynamics and aeroacoustics are negligible.

However, they are generally susceptible to high numerical dissipation and dispersion
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errors which may result in low–quality aeroacoustic simulations (Kurbatskii and

Mankbadi, 2004). The basic requirements of CFD and CAA methodologies are

different from each other. To be able to compute or simulate aeroacoustic problems

accurately and efficiently, standard CFD schemes are generally not adequate (Tam,

2001).

The numerical schemes should resolve acoustic waves with low dissipation and

dispersion errors in order to obtain accurate predictions of sound generation and

sound propagation processes. Thus, high–order numerical schemes developed by Tam

and Webb (1993) as well as Lele (1992) have been widely used to investigate the

aeroacoustic problems. However, they tend to have difficulties in simulating regions

with high gradients or discontinuities, e.g., shock waves. The major drawbacks of

high–order schemes are the lack of a shock–capturing property and the difficulty to

deal with complex geometries. Spurious oscillations are frequently observed in the

steep regions of the shock (Tam and Webb, 1993). An adaptive shock–capturing

methodology based on selective filtering was proposed by Kim and Lee (2001) in

order to remove grid–to–grid oscillations. These non–physical oscillations of the

flow variables can be dampened by employing low–order numerical smoothing in

the vicinity of large gradients. However, the smoothing complicates and prevents

the numerical scheme from being general. Furthermore, the smoothing results in

loss of accuracy (Envia et al., 2004). Another difficult aspect of high–order schemes

is the application of boundary conditions. The order of the schemes tends to be

reduced at the boundaries which results in more complicated boundary condition

treatments and again a reduction of accuracy. For large–scale stencils associated

with high–order numerical schemes, the communication at block interfaces becomes

problematic, difficult and costly for parallel computing. Therefore, there is a strong

need to address the issues between standard second–order and high–order schemes

as carried out in the present thesis.

Engineering flows are by their nature mostly turbulent which are irregular,

chaotic and fluctuating fluid motions. These motions are very complex and always

three–dimensional and also affect the distribution of velocity, temperature, noise

production or propagation, mixing process as well as heat and mass transfer (Rodi,
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Table 1.2: Effects of turbulent flows in engineering applications

Disadvantages Advantages

Increased skin friction Increased heat and mass transfer

Noise production and emission Mixing

Large energy losses Dissipation of energy

2006). In table 1.2, negative effects of turbulent flows and advantages in certain en-

gineering applications are summarized (Breuer, 2007). Turbulent flows with a high

Reynolds number contain a broad range of spatial and temporal scales (Colonius,

2004). The interaction of the flow with the geometrical singularities produces tur-

bulent flows resulting in turbulence noise radiation. For instance, turbulent energy

is converted into acoustic energy mostly in the vicinity of sharp edges (e.g., trailing

edge of airfoil) (Wagner et al., 2007). The simulation of turbulent flow still contin-

ues to present a significant problem for scientists and engineers. There is no single

turbulence model which can reliably simulate all kinds of turbulent flows (Blazek,

2005). Different techniques are available to simulate turbulent flows and their effect

on the aerodynamic noise generation and propagation. Each of the models has its

individual advantages and disadvantages.

The Reynolds–Averaged Navier–Stokes (RANS) equations closed by statistical

turbulence models are the most widely used approaches to predict the mean flow field

of turbulent flows at moderate cost and engineering accuracy. Steady–state RANS

calculations can provide turbulence time and length scales coupled with acoustic cor-

relations (derived from Lighthill’s analogy) (Mendonc.a et al., 2002). However, these

steady models can only assist qualitatively by computing the location and strength

of the main sound sources. Aeroacoustic problems are highly time–dependent and

they often generate very complex flow fields. The sound–generating flow is inherently

unsteady, which renders steady RANS models unsuitable and unsteady RANS meth-

ods generally insufficient except when the flow–induced noise is dominated by simple

large–scale oscillations. It is therefore difficult to simulate the noise–generating flows
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and to predict broadband noise generation as well as propagation based on RANS

models alone (Wang et al., 2006).

Direct Numerical Simulation (DNS) is conceptually the simplest approach for

predicting broadband noise as all details of turbulence can be obtained by solving

the three–dimensional, time–dependent Navier–Stokes equations without introduc-

ing any turbulence model. However, it is computationally very expensive as all

length and time scales have to be resolved numerically by a grid which has to be ex-

tremely fine. For high Reynolds number turbulent flows, the ratio of the energy con-

taining large scales to the dissipative small scales characterized by the Kolmogorov

scale (Colonius, 2004) increases with the Reynolds number so that the computing

time required grows rapidly with the third power of the Reynolds number (Fröhlich

and Rodi, 2002). Therefore, the application of this technique is limited to flows

with a low–to–moderate Reynolds number (Pope, 2000). DNS is not a method for

everyday engineering applications, since most technically relevant flows are charac-

terized by a high Reynolds number. However, it is a very useful tool to study the

details of turbulent flows and aerodynamic sound phenomena as well as to provide

benchmarking results for validating lower order approximations (Rodi, 2006).

Using the Large–Eddy Simulation (LES) technique, only the contributions of the

large and energy–carrying scales can be resolved on a given grid and the more homo-

geneous, isotropic and universal characteristics of the small scales should be modeled.

Although LES requires a higher grid resolution compared to RANS models, it yields

more accurate results than the RANS methods for unsteady turbulent phenomena.

Furthermore, the LES technique is considerably cheaper than DNS (Blazek, 2005).

Consequently, RANS models, DNS and LES techniques were developed and ex-

tensive research is still ongoing to predict turbulent flows reliably. Between these

approaches, LES is the perfectly suited method to directly compute the large–scale

fluctuations which are known to contribute most to the noise generation in near–field

problems (Wagner et al., 2007). Hence, the LES technique can be used as a noise

prediction tool in order to investigate practical aeroacoustic problems in near-field.
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1.3 Objectives of the Present Study

Different aeroacoustic problems often exhibit totally different characteristics and

behaviour. Due to the lack of commercial software, many companies and research

institutes have developed various strategies for solving CAA problems using their

specialized in–house codes with second or high–order accuracy, each with its individ-

ual strengths and weaknesses. Standard low–order methods are generally produc-

ing low–quality aeroacoustic simulations due to excessive dissipation whereas using

high–order accurate schemes for industrial applications is a challenge due to their

computational cost and complexity. The main question arising concerning these

strategies is: Is there any numerical methodology which can address the issues (see

Section 1.2) associated with standard second–order and high–order accurate schemes

in order to simulate aeroacoustics problems with high–resolution and accuracy? The

numerical methodology should be able to resolve the acoustic waves without intro-

ducing too much numerical dissipation and dispersion error. It should be able to

capture shocks, or other non–linear phenomena, accurately without using an ad hoc

method. The application of boundary conditions including the non–reflecting ones

should not be complicated by using the proposed methodology as in the traditional

approaches, and the limitations of computing capacity should not be a constraint in

order to utilize the present CAA methodology as a noise prediction tool.

The approach taken here is to develop an advanced high–resolution, low dissi-

pation second–order scheme, relying on a novel numerical methodology, namely, a

time–conservative finite–volume method, as well as to simulate flow features simi-

lar to high–order (e.g., 4th–order, 6th–order, etc.) schemes. The time–conservative

method can resolve strong shocks and acoustic waves simultaneously without using

any kind of ad hoc techniques. The objectives of LES technique implementation

were twofold: to directly predict the sound generation process and to simulate the

turbulent flow field features with high–fidelity.
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1.3.1 Development and Validation of a 3–D Navier–Stokes

Solver Based on a Novel Numerical Methodology

A second–order accurate in both space and time, high–resolution, 3–D parallel

LES solver based on the time–conservative finite–volume approach has been devel-

oped, aiming at the solution of complex unsteady aerodynamic and aeroacoustic

problems with high accuracy.

The method is based on the space–time conservation element and solution ele-

ment (CE/SE) method originally proposed by Chang (1995) at NASA Glenn Re-

search Centre. The conservation element (CE) is equivalent to a finite control volume

(i.e., cell) and the solution element (SE) can be considered as the cell interface. The

original CE/SE method was extended for structured grids by Zhang, Z.C. et al.

(2002). The time–conservative finite–volume method employed in the present study

relies on a new definition of control volume and cell interface. Here, the methodol-

ogy is based on the hexahedral mesh. The proposed scheme can be considered as

an improved version of the numerical scheme given by Zhang, Z.C. et al. (2002) (see

Section 4.1). To the best knowledge of the author, the time–conservative scheme

was discretized for the first time in three–dimension including the addition of the

viscous terms based on the new definitions of cell interface and control volume in

the present study.

The time–conservative finite–volume method has unique features and advantages

with respect to already mentioned traditional methods and high–order schemes in

Section 1.2. For the present scheme no knowledge about the waves or the direction of

wave propagation is required. A space–time staggered mesh allows for evaluation of

fluxes at the cell interfaces (i.e., the face of the control volume) without solving the

Riemann problem. The conservation of space–time fluxes is enforced over the surface

of the control volume. In the present method, spatial and temporal discretizations

are coupled to calculate the flux conservation. On the other hand, traditional meth-

ods use a separate discretization in space and time. Another unique feature of

the present scheme is that it allows the use of a simple but effective non–reflecting

boundary condition due to the flux–based nature of the method (see Section 4.4.1).
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In contrast to that, the implementation of the non–reflecting boundary condition for

traditional methods, based on the characteristic theory, can be numerically expen-

sive. Furthermore, the time–conservative finite–volume method is a two time–level

explicit scheme (see Section 4.1). The maximum permissible time step is restricted

by the smallest grid cell due to stability limitations. In order to reduce the run–

time requirement of the simulations and to apply on complicated geometries, the

flow solver is parallelized by domain decomposition with explicit message passing

via MPI. For that purpose, it is useful that the method is based on a multiblock

structured grid. For simplicity, the number of grid points is taken as equal at both

sides of a block interface. Hence, exchanging the physical quantities between the

blocks becomes straightforward. The solver can be easily adapted for calculations

in several applications with complicated geometries. The time–conservative method

has been validated by calculating inviscid, viscous laminar and turbulent flows in

the field of CFD. Particularly for viscous flows and highly stretched grid cells, time–

step limitation results in slow convergence. In order to accelerate the convergence

of the Navier–Stokes solver, the direct flux–based multigrid method is implemented

(see Section 4.5.1). Several cases with a wide range of flow conditions have been

computed to verify the accuracy of the method and to demonstrate its effective-

ness (Aybay and He, 2007, 2008a,b). The present flow solver also has the capability

to compute laminar viscous flows by replacing all filtered variables with their unfil-

tered forms and setting the subgrid–scale stress tensor and the subgrid–scale heat

flux terms to zero (see Section 5.2). Furthermore, inviscid Euler computations are

carried out by setting the viscous stress tensor to zero (see Section 5.1).

1.3.2 Implementation of Large–Eddy Simulation Technique

for Direct Noise Simulation

The second aim of the present project is to use the LES technique, since it is well

suited to directly predict the near–field aerodynamic noise as well as to simulate

the turbulent flow field. In LES, all flow variables are decomposed into resolved

and subgrid–scales. Most of the momentum and energy transport contributions

are emerging from the large–scale fluctuations. In contrast, the small scales are
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much weaker and also more homogeneous and isotropic. Hence, it is reasonable to

directly compute the large energy–carrying structures which are contributing most

to the noise generation and to model the effects of the small structures.

The subgrid–scale turbulent fluctuations are approximated by the Smagorinsky

subgrid–scale (SGS) model (Smagorinsky, 1963). In this SGS model, the eddy–

viscosity quantity is evaluated from algebraic relations based on equilibrium as-

sumption (see Section 3.3.2) in order to reduce computing time. The growth of the

small scales in the immediate vicinity of walls is reduced by employing Van Driest

damping (Van Driest, 1956).

In order to predict the near–field aerodynamic noise, implementation of the LES

technique based on the new definitions of cell interface and control volume was

carried out for the first time in the present study. In order to investigate the near

acoustic field three–dimensional numerical simulations of compressible flows over

open cavity and a planar underexpanded jet are carried out by the 3–D parallel LES

solver. (see Section 6) (Aybay et al., 2009a,b).

1.4 Overview of the Thesis

The work carried out during this thesis is presented as follows. Chapter 2 reviews

different numerical approaches (already briefly introduced in the present chapter)

used for the simulations of turbulent flows. Existing methods to predict flow–induced

noise and the underlying theories are also provided in this chapter. Furthermore, a

new methodology is presented, namely the time–conservative finite–volume method,

based on a novel numerical framework. This chapter is concluded with the descrip-

tion and review of cavity noise and supersonic jet noise. Details of the governing

equations and the implementation of the LES technique including the subgrid–scale

modeling are explained in Chapter 3. The following chapter provides the details of

the computational techniques including the discretization of the conservative vari-

ables, the convective fluxes and the diffusive fluxes as well as the space–time flux

evaluation based on the new definitions of cell interfaces and control volume. The

stability criterion for the time–conservative scheme is also given here. Chapter 4
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ends with the description of the boundary conditions as well as the basic imple-

mentation issues of the direct–flux based multigrid method for steady state flows

and the parallel computing technique. In Chapter 5, several two–dimensional test

cases with a wide range of flow conditions including inviscid, viscous laminar and

viscous turbulent flows, are investigated in order to verify the accuracy and illus-

trate the capabilities of the method. In the subsequent sections the geometry and

the flow configuration are defined including the details of the grids and bound-

ary conditions used. The near–field cavity aeroacoustics and shock–included noise

by a planar underexpanded jet are of practical engineering relevance and include

complex flow phenomena, as shown in Chapter 6. These flows are simulated using

the three–dimensional parallel LES solver in order to demonstrate the validity and

effectiveness of the developed methodology for the investigation of near–field aeroa-

coustics. Finally, Chapter 7 includes conclusions together with recommendations

for future work.



Chapter 2

Literature Review

This chapter reviews the simulation techniques for turbulent flows as well as

computational techniques to predict flow–induced noise. The emphasis is given to

a time–conservative finite–volume method including the reasons for choosing LES

in the present study and description of two challenging test cases, namely, near–

field cavity aeroacoustics and shock–induced noise by a planar underexpanded jet.

The chapter is organized as follows. First, different numerical approaches, namely,

DNS, LES, RANS and hybrid LES–RANS methods are reviewed in Section 2.1

including the required number of mesh points and grid resolution for an attached

boundary layer flow. Then, computational methods for aeroacoustics problems and

the underlying theories are given briefly in Section 2.2. Section 2.3 provides an

overview of the time–conservative finite–volume method and describes unique as

well as non–traditional features of this modern flow simulation technique. The

review ends with the description of cavity flow noise and supersonic jet noise which

are explained in Sections 2.4 and 2.5, respectively.

2.1 Simulation of Turbulent Flows

A significant part of technically relevant fluid flows are turbulent. Turbulent

flows are three–dimensional, irregular, random and chaotic (see Fig. 2.1). Turbulence

consists of chaotic motion at a range of scales (i.e., eddy sizes) that increases rapidly

with a Reynolds number (Rogallo and Moin, 1984). The large eddies interact with

14
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Figure 2.1: Picture of vortical structures in jet turbulence at Re ≈ 2300, taken by Di-

motakis, Lye and Papantoniou (1981) (Van Dyke, 1982)

the mean flow and extract energy from it. Furthermore, they are in the order

of the flow geometry (e.g., boundary layer thickness, jet width, etc.), whereas the

smallest eddies are characterized by the Kolmogorov scales (a scale of velocity, length

and time), where dissipation occurs due to viscous effects. Not all of the length

and time scales can be resolved with the computer capacity of today. Hence, in

order to simulate turbulent flows and compute their effect on the flow–induced noise

generation and propagation, different techniques (e.g., DNS, LES, RANS and hybrid

LES–RANS methods) are available.

2.1.1 Direct Numerical Simulation (DNS) of Flow–Induced

Noise

In order to investigate physical mechanisms of sound generation and sound propa-

gation processes in detail, direct noise computation can be conducted using the DNS

technique. The compressible Navier–Stokes equations need to be solved in order to

obtain both aerodynamic and acoustic variables, without restricting hypothesis and

without introducing any kind of modeling (Bogey et al., 2000b). In other words,

direct simulation eliminates the need for ad hoc models (Rogallo and Moin, 1984).

Both the energy containing large scales and the dissipative small scales need to be

resolved in DNS (see Fig. 2.2). In addition, the time–step must be smaller than
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the smallest turbulent time–scale. Nevertheless, the computational cost of such

direct computations is large due to a very fine grid resolution and large memory

requirements.

In the DNS, no turbulence model or empirical closure assumptions are required.

It relies purely on the solution of the three–dimensional, instantaneous Navier–

Stokes equations. Hence, it can be considered as the most accurate method for the

simulations of turbulent flows. However, the computational effort for DNS is very

high even at a moderately high Reynolds number. The ratio of the characteristic

length scales of the largest (L) to the smallest (lk) eddies can be estimated as in

eq. (2.1) (Blazek, 2005; Rodi, 2006; Breuer, 2007)

L

lk
∼ Re3/4 (2.1)

The computational cost for the DNS prediction of turbulent flows can be evaluated

in a simple manner. Since turbulence is always a three–dimensional phenomenon,

the number of grid points required to resolve all relevant scales (lk ≤ l ≤ L) can be

estimated as follows (
L

lk

)3

∼
(
Re3/4

)3
= Re9/4 (2.2)

Equation (2.2) clearly demonstrates how, with an increasing Reynolds number, the

number of grid points strongly increases. In DNS, over 99% of the effort is devoted

to the dissipation range (see Fig. 2.2) and this effort increases with the Reynolds

number (Pope, 2000). With the current computational capacity DNS is only feasible

for turbulent flows in simple geometries at a relatively low Reynolds number.

The first direct computation of flow–induced sound using the DNS technique

was a study of the far–field sound generated by compressible co–rotating vortices

on a computational domain that extends to two acoustic wavelengths in all direc-

tions (Mitchell et al., 1995). In this study, very good agreement is observed between

the computed far–field sound and the predictions of the acoustic analogy proposed

by Lighthill (1952), Powell (1964) and Möhring (1979).

DNS of the temporally evolving mixing layer and plane wake have been studied

by Rogers and Moser (1994). Not surprisingly, it is found that the specification of

appropriate initial conditions and inflow conditions are crucial. The initial condi-
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tions are found to have a first–order effect on the evolution. Colonius et al. (1997)

have investigated direct sound generation of a two–dimensional mixing layer using

DNS. Flow field was forced at its most unstable frequency and with the first three

subharmonics. The resulting flow field character was found to be regular and nearly

periodic in time. Two vortex pairings, which were the main sources of the acoustic

radiation, are observed at fixed streamwise locations (Bogey et al., 2000b).

The first DNS of the sound generation and propagation from a perfectly ex-

panded supersonic jet was reported by Freund et al. (2000). The Reynolds and the

Mach numbers were 2,000 and 1.92, respectively. The radiation of a Mach wave

from supersonic jets was investigated. Moreover, the computed sound pressure lev-

els were compared with experimental data and very good agreement was found.

Later on, Freund (2001) simulated the first DNS of a subsonic (M = 0.9) turbu-

lent jet using 25.6 million grid points, which matched the experimental conditions

of Stromberg et al. (1980) and showed very good agreement with experimental data

for both mean flow field and radiated sound.

The flow over an open cavity has significant industrial applications including

weapon bays, landing gear wheel wells and car sun-roofs. Recently, the DNS tech-

nique has been used to analyse the two– and three–dimensional compressible flows

over open cavities by Brés and Colonius (2007a,b, 2008). Simulations were per-

formed for several different cavity configurations and flow conditions. The transient

three–dimensional instabilities were found to have a frequency of about an order of

magnitude lower than the two–dimensional Rossiter instabilities (Rossiter, 1964).

More details can be found in Section 2.4.

Under certain operating conditions supersonic jets can form quasi periodic shock

cell structures in the jet plume and have discrete frequencies, referred to as screech

tones. Manning and Lele (2000) and Suzuki and Lele (2003) employed DNS in order

to investigate the physical processes responsible for generating shock–associated

noise. Further discussion on shock–induced noise generated by supersonic jets can

be found in Section 2.5.
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2.1.2 Large–Eddy Simulation (LES)

The large–eddy simulation technique is a highly promising approach. In LES, all

flow variables are decomposed into resolved (large) scales and subgrid (small) scales.

The large–scales are responsible for most of the momentum and energy transport. In

contrast, the small scales are much weaker and also have a much more homogeneous

and isotropic structure (Breuer, 2007). Hence, it is reasonable to directly compute

the energy–carrying large–scales and to model the dissipative small scales.

Dissipation

DNS resolves

LES models

RANS models
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Figure 2.2: Schematic views of energy spectrum E(k) of a locally homogeneous isotropic,

fully developed turbulent flow (Breuer, 2007) including resolved and modeled

turbulent scales by DNS, LES and RANS (Mihǎescu, 2005)

Considering Fig. 2.2, in LES the desired statistics can be obtained directly from

the computed scales (Rogallo and Moin, 1984) in the production range, as well as

from the ones which are entering into the inertial subrange where the energy cascade

takes place (Breuer, 2007). On the other hand, unclosed subgrid–scale (SGS) stress

terms (corresponding energy spectrum of small–scale structures is shown in Fig. 2.2

as LES models) has to be approximated by a model. LES is expected to be more

robust than RANS predictions which model all turbulent scales (Wang et al., 2006).

RANS methods often have difficulties when applied to complex flows with large–

scale separation and reattachment or vortex shedding (Fröhlich and Rodi, 2002). In

contrast to the RANS methods, the modeling in LES is restricted to a small part

of the energy spectrum of turbulent scales (see Fig. 2.2). The small–scale motions
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have a more homogeneous, isotropic and universal character than the large–scale

ones. Hence, the description of the small scales are much easier than the large

ones (Breuer, 2007).

Much of the pioneering work on LES was motivated by meteorological applica-

tions (Smagorinsky, 1963; Lilly, 1967). In 1970, the first engineering application of

LES was presented by Deardorff (1970). In the following years Schumann (1975) ex-

tended and improved Deardorff’s method. During the 1980’s, some important work

was carried out by Bardina et al. (1980) (i.e., the scale similarity model) and Moin

and Kim (1982). Numerous studies have been undertaken over the past few years.

LES is increasingly applied to flows in complex geometries that occur in engineering

applications including aeroacoustic problems. Examples of such problems are the

sound generation by vortex pairing in plane and axisymmetric mixing layers (Bo-

gey et al., 1999, 2000b), far–field jet aeroacoustics (Bodony and Lele, 2003, 2004;

Bogey et al., 2000b; Bogey and Bailly, 2006; Uzun et al., 2002; Uzun, 2003), cavity

noise (Larchevêque et al., 2003; Bertier et al., 2004; Lai and Luo, 2007; Aybay et al.,

2009a,b), aeroelastic noise (i.e., aerovibroacoustics) (Vergne et al., 2002), trailing–

edge noise (Howe, 2000; Ewert et al., 2003; Ewert and Schröder, 2004), blunt–body

simulations (e.g., LES around the Ahmed body) (Howard and Pourquie, 2002; Hin-

terberger et al., 2003) and internal flows (e.g., ducted flows) (Lafon et al., 2003). The

interest in LES highly increased at the beginning of the year 2000. This trend was

certainly supported by the availability of low–cost and powerful computers (Blazek,

2005).

LES requires a finer grid resolution with respect to RANS calculations. However,

it is considerably cheaper than DNS calculations (Kobayashi, 2006). The number

of grid points required to resolve the outer layer is proportional to Re0.4. The

resolution has to be increased to Re1.8 in the viscous sublayer. Therefore compared

to Re9/4 required by DNS, LES can be applied at Reynolds numbers at least one

order of magnitude higher and yields more accurate results than the RANS methods

for steady and unsteady flows (Blazek, 2005). These features make the use of LES

methodology very attractive especially for the detailed analysis of noise prediction

at high Reynolds numbers. Consequently, the LES technique is used in the present
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study since it is a good compromise between RANS and DNS.

In most LES of compressible flows, the flow variables are Favre averaged or

density–weighted (Moin et al., 1991; Erlebacher et al., 1992). In principle, there are

two approaches to obtaining filtered Navier–Stokes equations. The first one employs

the Favre averaging and applies one of the standard LES filtering techniques and the

second one employs the LES averaging without using density weighting (Boersma

and Lele, 1999). Although the non–density weighted filtering offers some numerical

advantages when high–order numerical schemes are used for discretization (Colo-

nius, 2004), their computational cost and complexity may prevent the utilization of

high–order accurate schemes for industrial applications (Garnier et al., 1999). More-

over, the non–density weighted equations are more complicated than the density–

weighted equations due to the appearance of an additional unsteady term in the

momentum equations (Boersma and Lele, 1999). Thus, in the present study, the

density–weighted sets of equations are preferred and these filtered equations are ob-

tained by using the Favre averaging with the standard LES filtering technique (see

Section 3.3.1).

The resulting LES equations (3.30) to (3.33) describe the evolution of the large

eddies and contain the unresolved SGS stress tensor in the momentum (3.31) and

energy (3.32) equations. The dissipative effects of the SGS stress terms can be

taken into account by the SGS models. Several modeling approaches for the small

scales have been proposed. The first subgrid–scale model based on an eddy–viscosity

concept is proposed by Smagorinsky (1963). The eddy–viscosity describes the pro-

portionality between the subgrid–scales and the large–scale strain rate tensor. The

determination of the eddy–viscosity is purely based on an algebraic relation. Fur-

thermore, the value of the eddy–viscosity can vary both in space and time depending

on the structure of turbulence. The classical Smagorinsky model is equivalent to

Prandtl’s mixing length theory (Schlichting, 1979; Breuer, 2007) in the RANS ap-

proach. Nevertheless, the fundamental difference is the determination of the char-

acteristic length scale. If the LES methodology is based on the Smagorinsky model

then the characteristic length scales can be evaluated by the Smagorinsky constant

and the filter width, whereas velocity scales can be estimated from the smallest re-
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solved scales (Rogallo and Moin, 1984). On the other hand, for the Prandtl’s mixing

length theory, it is problematic and depends on the flow problem (Breuer, 2007).

In order to take into account the reduction of the subgrid–scale length in the

vicinity of a wall (Breuer, 1998), SGS eddy–viscosity is usually adjusted with a

damping function proposed by Van Driest (1956) (see Section 3.3.2). Despite the

Smagorinsky model being extremely simple, it has several disadvantages. First of

all, the value for the Smagorinsky constant is not uniquely defined. Another disad-

vantage of the model is that the process of energy backscattering is not modeled.

Due to these shortcomings, a dynamic procedure for computing the model coeffi-

cient is proposed by Germano et al. (1991) and Moin et al. (1991). The dynamic

SGS models use the same relation as the Smagorinsky model. The difference is

that the Smagorinsky constant is replaced by a parameter, which evolves dynami-

cally in space and time. The detailed formulation of the model can be found else-

where (Germano et al., 1991; Pope, 2000; Sagaut, 2006). Improved dynamic SGS

models were proposed by (Ghosal et al., 1995; Carati, 1995; Piomelli and Liu, 1995).

Dynamical computation of the Smagorinsky coefficient requires approximately 50%

more CPU–time in contrast to the constant–coefficient SGS model (Uzun, 2003).

A more modern SGS model (i.e., Wall–Adapting Local–Eddy Viscosity (WALE)

SGS model), that uses a novel form of the velocity gradient tensor was proposed

by Nicoud and Ducros (1999). The main advantage of the WALE SGS model is

that it does not require any form of near–wall damping. The WALE model is based

on the square of the velocity gradient tensor and accounts for the effects of both

the strain and the rotation rate of the smallest resolved turbulent fluctuations. This

model also produces the correct scaling in the vicinity of the wall without using the

local wall distance (Nicoud and Ducros, 1999; Li et al., 2007). Therefore, it is more

suited to wall bounded turbulent flows. In the present LES simulations, the classical

Smagorinsky model (Smagorinsky, 1963) is used, as the model is numerically cheap

and easy to implement (Blazek, 2005). The model constants and approximations

for the subgrid–scale stress terms are given in Section 3.3.2.
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In order to improve the robustness and accuracy of LES, other approaches are

also proposed including the structure function model which is an eddy–viscosity

model in spectral space developed by Chollet and Lesieur (1981) and the approxi-

mate deconvolution model (ADM) was suggested by Stolz and Adams (1999). The

principle of this model is based on an inverse filtering operation called deconvolu-

tion. All these SGS models belong to the class of explicit SGS models. Kuwahara

and Komurasaki (2000) proposed an implicit SGS approach, in which no extra term

is introduced into the governing equations and the truncation error of the numerical

methods responsible for the withdrawal of energy in the smallest scales (Sagaut,

2006; Breuer, 2007). Boris et al. (1992) as well as Fureby and Grinstein (1999) con-

sidered the same fundamental concept based on a much more systematic level. They

proposed Monotonically Integrated Large–Eddy Simulation (MILES). Comparative

studies between MILES approach and conventional LES predictions were carried

out by Fureby and Grinstein (1999, 2000). The results achieved by the MILES

concept in general are not worse than those obtained by LES using standard SGS

models. However, detailed investigations on the influence of the choice of the dis-

cretization scheme are missing and the grid dependency has to be checked in more

detail (Sagaut, 2006).

2.1.3 Reynolds–Averaged Navier–Stokes (RANS) and Hy-

brid LES–RANS Methods

The RANS approach is based on a statistical description of turbulent flows,

whereas the instantaneous flow quantities are represented by the sum of mean and

fluctuating values (Wilcox, 1994). In order to evaluate the mean flow field of turbu-

lent flows, a time–averaged rate of momentum transfer (i.e., Reynolds stress tensor)

needs to be described. In other words the entire spectrum of turbulent length scales

in the flow has to be modeled. However, no statistical turbulence model exists,

which represents the best choice for all kinds of flows (Breuer, 2007).

The simulation of complex aeroacoustics problems at high Reynolds numbers

encountered in practical applications is still a challenge, particularly those with

solid boundaries. Aeroacoustic applications are in most cases wall–bounded flows,
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Table 2.1: Grid resolution requirements for an attached boundary layer flow using DNS

and wall–resolved LES (Breuer, 2007)

DNS Wall–resolved LES

Streamwise ∆x+ 10–15 50–150

Spanwise ∆z+ 5 10–40

Wall–normal ∆y+ 1 1

Number of points 0 < y+ < 10 3–5 3–5

whereby LES requires a number of grid points comparable to DNS due to the near–

wall grid resolution requirements (Piomelli and Balaras, 2002). At high Reynolds

numbers, the size of the eddies near the wall become very small and the grid res-

olution requirements become very strict. Extremely large velocity gradients are

found in the near–wall region, which are responsible for the production of turbulent

kinetic energy. In order to resolve these velocity gradients adequately a very fine

grid is required, not only in the wall–normal direction, but also in all spatial di-

rections (Breuer, 2007). The resolution in the streamwise (∆x+) and the spanwise

(∆z+) directions are important parameters for the quality of the simulation. High

resolution LES can be obtained for ∆x+ ≤ 50 and ∆z+ ≤ 12. On the other hand,

for ∆x+ ≥ 100 and ∆z+ ≥ 30 the resolution is considered as poor. Hence, in many

attached boundary layer flows, it is not feasible for wall–resolved LES to resolve the

turbulent eddies due to a DNS–like resolution requirement. In Table 2.1, grid reso-

lution requirements in terms of wall units are displayed for DNS and wall–resolved

LES predictions (Breuer, 2007).

In order to avoid these resolution requirements and to reduce the high com-

putational cost, the coupling of LES with statistical turbulence (RANS) or more

specifically with unsteady Reynolds–averaged Navier–Stokes (URANS) models has

recently been actively pursued. The main objective of hybrid methods is to combine

the advantages of both approaches. In this method, the small eddies near the wall are

modeled using a RANS–type model, whereas LES is performed outside the near–wall

region, where large unsteady vortical structures are resolved directly (Breuer et al.,
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2009). The location where the switch is made from URANS to LES is called the

interface (see Fig. 2.3). An overall hybrid approach dramatically reduces the near–

wall resolution requirements with the exception of the wall–normal direction (Nikitin

et al., 2000).

URANS region

LES region

URANS region

Interface

wall

wall

x

y

Figure 2.3: Schematic views of URANS and LES regions with interface position

The most widely known hybrid method is the detached–eddy simulation (DES)

proposed by Spalart et al. (1997). DES can be easily obtained from an existing

RANS code with a small modification of the turbulence model (Wang et al., 2006).

The aim of the DES technique was to simulate unsteady turbulent flows with large

separation regions for which RANS methods do not work properly. The DES has

been employed not only to address the challenge of high–Reynolds number flows

but also to predict the noise in such fields as aerospace and ground transporta-

tion, as well as in atmospheric studies (Spalart, 2009). The noise radiation from

a generic airliner landing–gear truck was calculated by Hedges et al. (2002) using

DES. The computed results were compared with those from unsteady RANS cal-

culations. Transient flow fields were found to be very dissimilar. However, there

was no unsteady experimental data available for a quantitative assessment of the

unsteady simulation behaviour. Furthermore, DES appeared more promising for

noise prediction up to some frequency limits (Hedges et al., 2002).

One main disadvantage of DES is that the LES–RANS interface position (i.e.,

switching) is not determined by the physics of the flow but instead controlled by

the local grid spacing relative to the wall (Breuer et al., 2009). Therefore, the

interface position should be predefined by the user. In this case the grid design is
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crucial in order to obtain accurate simulation results. DES is not especially adapted

to the challenges of modeling the near–wall region appropriately, which is another

drawback of the model. A new version of DES, denoted as delayed DES (DDES),

is proposed by Spalart et al. (2006) to overcome the inaccurate behaviour of DES

observed for thick boundary layers. DDES is basically based on a new length scale

which detects boundary layers and prolongs the full RANS model. This new length

scale depends on the eddy viscosity, so that the interface position now depends on

the solution. DDES results show an improvement compared to DES (Menter and

Kuntz, 2002).

Lately, new kinds of hybrid methodologies have been developed, which com-

bine the main features of both LES and RANS simulations to overcome the above–

mentioned difficulties (Davidson and Peng, 2003; Hamba, 2003; Temmerman et al.,

2005). The basic idea of these approaches is to avoid too expensive computa-

tional effort for the near–wall region and to achieve an automatic switching cri-

terion which is based on physical quantities not on numerical ones such as the grid

resolution (Breuer et al., 2008). A new hybrid LES–RANS methodology was pro-

posed by Jaffrézic and Breuer (2008). The underlying idea of this new approach

is based on the coupling of a near–wall explicit algebraic Reynolds stress model

(EARSM) (Wallin and Johansson, 2000) with LES for the outer flow. In this method

a gradual transition between URANS and LES regions is assured in order to avoid

the predefinition of LES and URANS regions. The attention is particularly devoted

to the interface treatment which relies on the instantaneous distribution of the mod-

eled turbulent kinetic energy and the wall distance. The instantaneous interface

position based on these physical quantities varies in space and time depending on

the flow field in the vicinity of the wall. The turbulent kinetic energy is evaluated by

the solution of one additional transport equation. Furthermore, synthetic or recon-

structed turbulence at the interface is avoided by this dynamic interface criterion

in order to assess the method in its simplest form. Further details of this hybrid

approach can be found in (Jaffrézic and Breuer, 2008; Breuer et al., 2008, 2009).

Well–developed hybrid methods offer an attractive alternative for the simulation of

aeroacoustic problems at a high Reynolds number.
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2.2 Computational Methods for Aeroacoustic Prob-

lems

The characteristics of acoustic waves and computational issues in the application

of aeroacoustic theories have already been discussed in Section 1.2. Here, two main

computational techniques, namely, hybrid methods and the direct computation of

flow–generated sound, will be reviewed briefly. In the present study, the latter

technique is employed.

In a hybrid approach, the computation of flow is decoupled from the computation

of sound. The noise prediction step can be carried out in a post–processing step

based on an aeroacoustic theory. Time–accurate turbulence simulation tools such

as DNS, LES, and unsteady RANS methods can be used to compute unsteady flow

fields, from which acoustic (sound) sources are extracted. The acoustic far–field is

obtained by integral or numerical solutions of the acoustic analogy equations using

the sound sources field data.

The first overall aeroacoustics theory was proposed by Sir James Lighthill, the

first part of his publications was based on aerodynamically generated sound (Lighthill,

1952). The second publication (Lighthill, 1953) was focused on aerodynamic sound

generation by turbulent flows. The motivation for his work was the investigation of

jet noise and he introduced an aeroacoustic analogy.

The basic idea of Lighthill’s acoustic analogy was to find the sources of sound

in turbulent flows. The sound sources are generated either by the free fluid motion

(e.g., turbulent jets and mixing layers) or by fluid–solid interaction (e.g., propellers).

Monopoles, dipoles and quadrupoles are the fundamental sound source types. A

monopole acoustic sound source is associated with the displacement of the fluid

due to the acceleration of the moving surface. The sound waves generated by the

monopole are spreading out spherically. Pulsating spheres, sirens and propellers are

practical examples of monopole sources. The sound generated by dipoles represent

force (a rotating dipole) or pressure fluctuations on a surface. The dipole acoustic

source consists of two monopoles of equal source strength with opposite phases, sep-

arated by a small distance. Blowers used for air handling subsystem applications,
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propellers and fans are examples of the dipoles. Quadrupole sources are generated

from the fluctuations of velocity for specified volumes. The quadrupole source con-

sists of two identical dipoles which are opposite in phase. The quadrupole sources

can be categorized as the lateral and the longitudinal quadrupole sources based on

the position of the dipole axes. The lateral and the longitudinal quadrupoles are

associated with the shear stresses and the normal stresses, respectively. The lateral

quadrupole can be found in all turbulent flows.

Lighthill derived an inhomogeneous wave equation from the conservation of mass

and momentum equations for compressible flows in order to separate the linear

wave operator for the density fluctuations from all nonlinear effects acting as sound

sources (Kurbatskii and Mankbadi, 2004).

Lighthill’s equation (Lighthill, 1952) can be expressed as;

∂2ρ′

∂t2
− c2 ∂2ρ′

∂xi∂xi
=

∂2Tij

∂xi∂xj
(2.3)

where ρ′ and c are the acoustic density fluctuations and the ambient speed of sound,

respectively. Tij is the Lighthill’s stress tensor and given as

Tij = ρuiuj + (p − c2ρ)δij (2.4)

where ρ, ui, p and δij are the density, velocity, pressure and Kronecker delta, respec-

tively. The summation convention is used in eqs. (2.3) and (2.4).

On the right–hand side of the inhomogeneous wave equation, Lighthill’s stress

tensor comprises of all acoustic sources in the turbulent flow. It is also assumed

that sound propagation takes place in an infinite homogeneous medium at rest. The

effects of refraction due to shear and convection are therefore neglected. More-

over, the explicit knowledge of the Green’s function is needed (Bogey et al., 2000b).

Thus Lighthill’s acoustic analogy can only be applied for simple geometries without

considering the effects of solid surfaces on sound generation.

A fundamental assumption for acoustic analogy–based prediction is the one–way

coupling of flow and sound, i.e., the unsteady flow generates sound and modifies

its propagation, but the sound waves do not affect the flow in any significant way.

Lighthill’s acoustic analogy was extended in order to take into account the effect of

solid boundaries on sound generation and radiation by the subsequent works of Curle
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(1955). Curle’s theory was later extended to include surfaces in arbitrary motion of

aerodynamic surfaces by Ffowcs Williams and Hawkings (1969).

At low Mach numbers, incompressible flow solutions can be adequate for ap-

proximating acoustic source terms. Due to the high computational cost of the time–

accurate simulation, there have been efforts to use a combination of k–ε turbulence

model (i.e., steady RANS) calculations to generate acoustic source terms in con-

junction with the acoustic analogy. In this method, only the mean turbulent flow

field is calculated. Statistical source representations is combined with a turbulence

closure and then they are used to predict the radiated acoustic far–field of complex

turbulent flows (Bailly et al, 1997).

In contrast to hybrid methods, the direct approaches can compute both the

unsteady flow and the radiated sound field by solving the compressible Navier–

Stokes equations. For the direct computation of sound, high–fidelity methods such

as DNS and LES can be employed. The simulation domain must be sufficiently

large to include the noise–producing flow region and at least part of the acoustic

near–field associated with the flow. In addition, the unsteady flow field and the

sound generation process should be well represented by the selected computational

mesh. In other words, care must be taken in designing the computational mesh to

ensure that sufficient grid resolution is provided in order to resolve sound within

some error threshold.

Different methods are available to investigate the far–field sound propagation.

The simplest numerical approach is the domain extension. In the extended domain a

uniform mesh can be used and a simpler set of governing equations can be employed,

for example linearized Euler equations (Freund et al., 2000). Analytical methods

such as Kirchhoff (Freund et al., 1996; Lyrintzis, 2003) and Ffowcs Williams and

Hawkings integration (Ffowcs Williams and Hawkings, 1969) can also be utilized.

The quality of the predicted far–field sound is directly related to the quality of near–

field acoustic data (Colonius, 2004). In the present study, only the near acoustic

field is investigated.

Implementation of the accurate boundary conditions is another essential require-

ment for the direct sound computation. Boundary conditions should be able to ab-
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sorb flow disturbances whilst they are leaving the computational domain without

causing excessive acoustic reflections (Wang et al., 2006). The time–conservative

method allows the use of simple but effective non–reflecting boundary conditions

due to the flux–based nature of the method (see Section 4.4.1).

2.3 Time–Conservative Finite–Volume Method

A novel numerical framework, named time–conservative finite–volume method,

has several attractive features. The most important ones are already mentioned

briefly in Section 1.3.1. This high–resolution and multi–dimensional numerical

methodology has been built in order to solve conservation laws and was originally

proposed by Chang (1995). This method can be categorized as a finite–volume

method, where the conservation element (CE) refers to a finite control volume and

the solution element (SE) is equivalent to the cell interface. Chang introduced

solution elements, which are subdomains in the space–time coordinates. Within

each solution element, any flux vector can be approximated in terms of a simple

smooth function (see Section 4.1). The computational domain is divided into non–

overlapping conservation elements (i.e., control volumes) where the space–time flux

conservation is enforced. The fundamental idea of this method is treating space and

time as one entity whilst calculating the flux balance. This idea is the key difference

between the time–conservative method and traditional numerical methods. In this

method, the first–order spatial derivatives of flow variables are introduced as solv-

ing variables. Independent flow variables and their spatial derivatives are solved at

each grid point simultaneously. For flows in multiple spatial dimensions, no direc-

tional splitting is employed. One and multi–dimensional problems are treated in the

same manner. It is substantially different in both its concept and approach from

well–established methods (Chang et al., 1999).

The time–conservative scheme is second–order accurate in space and time. It uses

a space–time staggered stencil structure. Due to this staggered arrangement, fluxes

at the cell interface can be evaluated in a simple and consistent manner without

using any interpolation or extrapolation procedure, which enables shock capturing
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without using Riemann solvers (Chang, 2007). The time–conservative scheme can

resolve strong shocks and small disturbances (e.g., acoustic pressure fluctuations)

simultaneously (Loh et al., 2001a). The flux–based nature of the method leads to

the use of flux–based boundary conditions. The implementation of a flux–based

boundary condition (e.g., a non–reflecting boundary condition) is extremely simple

as each control volume allows flux and the flow information to propagate into future

(see Section 4.4.1).

The original time–conservative scheme was extended for solving the two and

three–dimensional unsteady Euler equations using quadrilateral and hexahedral

meshes by Zhang, Z.C. et al. (2002). In order to demonstrate the capability of

the method, Zhang presented numerical results for several benchmark problems in-

cluding oblique shock reflection, supersonic flow over a wedge, and a 3–D detonation

flow. Zhang, M. et al. (2004) then proposed to solve unsteady Navier–Stokes equa-

tions in two dimensions including the details of viscous fluxes evaluation. Zhang,

M. et al. (2004) showed that the first derivatives of the velocity components and

the components of the viscous stress tensor can be written as a function of the flow

variables and the spatial derivatives of the flow variables (see eqs. (3.19) and (3.22)).

Therefore, the flow variables and their spatial derivatives are the only independent

discrete variables to be solved for each grid point. In order to validate the proposed

methodology Zhang, M. et al. (2004) solved a shock wave boundary layer interaction

and a driven cavity flow problem and numerical results were predicted accurately.

This extended method has been used in the present study to evaluate the effect of

viscous fluxes (see Section 3.2).

The time–conservative method has been successfully adapted to model several

different applications in unsteady flow solutions with Mach numbers from 0.0028

to 10, travelling and interacting shocks, detonation waves, cavitation, etc. (Chang,

1995; Chang et al., 1999; Chang, 2007; Zhang, Z.C. and Yu, 1999; Zhang, Z.C. et al.,

2002; Zhang, M. et al., 2004; Venkatachari et al., 2008).

The scheme is capable of computing flows over a wide range of flow regimes

including discontinuities and very low Mach number flows. It has very little or almost

no numerical dissipation making it an ideal candidate among the many available
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numerical schemes for problems involving flow instability. The time–conservative

finite–volume method is robust enough to cover the complete spectrum of inviscid

and viscous flow from linear acoustic waves up to high–speed flows with shocks,

as well as being stable for long run times. This method has been used to analyze

several CAA problems (Loh et al., 1996, 2000a,b,c; Loh, 2001; Loh et al., 2001a,b,c;

Jorgenson and Loh, 2002; Loh, 2003a, 2005; Loh and Hultgren, 2005).

Due to the above–mentioned remarkable features, time–conversation method

is a good candidate for practical aeroacoustic applications. Second–order time–

conservative finite–volume method can solve aeroacoustic problems with high–fidelity

which is an exception to the conventional second–order schemes commonly regarded

as inadequate for solving CAA problems.

2.4 Cavity Flow Noise

Strong flow field instabilities associated with acoustic resonance have been ob-

served in many engineering applications. Compressible flows over open cavities have

significant industrial applications, such as aircraft weapon bay, landing gear wheel

well and car sunroof where noise reduction and sonic fatigue are of prime concern.

Unsteady and turbulent flows are the central theme of the cavity aeroacoustics. The

flow over cavities is naturally unsteady. Although geometrically simple, cavity flows

have very complex flow fields, involving the shear layer instabilities, turbulence and

flow induced low–frequency resonance.

Pressure
waves

Cavity
length

Cavity
depth

Acoustic waves

Shear layer

Flow direction

Figure 2.4: Schematic view of feedback mechanism of an open cavity
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There are several different mechanisms for generating cavity flow noise. The

shear layer instability and the shedding of vortices at the cavity leading edge are

the main noise sources due to the interaction of the vortex shedding with the

flow (Caraeni et al., 2009). Open cavity flows are governed by a feedback mechanism

and this phenomenon is depicted in Fig. 2.4. First of all, vortices are generated in

the free shear layer and convected from the cavity leading edge to the cavity rear

wall along the shear layer. Due to the interaction between the vortices and the

back wall of the cavity, strong pressure variations and acoustic waves are generated

in the vicinity of the cavity rear wall. Part of the acoustic waves radiate into the

far–field and the other part (i.e., pressure waves) propagate inside the cavity in the

upstream direction. When the pressure waves reach the cavity leading edge they

further excite vortical disturbances in the shear layer and cause the shedding of

new vortices. Since these vortical structures are convected again in the streamwise

direction along the shear layer, a feedback loop results. The spacing between the

vortices in the shear layer and the frequency of the feedback mechanism are deter-

mined by the pressure waves. Self–sustained oscillations inside the cavity generate

intense density and pressure fluctuations that may lead to strong vibrations up to

structural damage as well as aerodynamic and vibroacoustic problems.

Initial investigations to understand the physics of the flow over rectangular cav-

ities were conducted by Rossiter (1964) in 1964. A well–known semi–empirical re-

lation to predict the frequency of the cavity tones was first proposed by him. From

a structural design viewpoint, in order to minimise structural damage, it is vital to

avoid the possibility of a structural–acoustic mode coinciding with a high–energy

Rossiter mode. It is more desirable to design weapon bay structures to have modal

frequencies outside the expected frequency range of Rossiter modes (Mendonc.a et al.,

2003). The cavity geometry with a length–to–depth (L/D) ratio of 5 and a width–

to–depth (W/D) ratio of 1 at Mach number 0.85 is taken from the M219 cavity con-

figurations (Peshkin, 2002). The specific case was provided by AGARD (Henshaw,

2000) as a benchmark problem and experiments were carried out by QinetiQ as part

of the project on Turbulence Modeling for Military Application Challenges (Peshkin,

2002).
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Earlier computational studies of cavity flows were generally two–dimensional and

often employed RANS models to represent turbulence effects (Zhang, X. et al, 1998;

Shieh and Morris, 1999). Some successful URANS applications (Henderson et al.,

2000; Inagaki et al., 2002) have been reported for modeling the narrowband Rossiter

mode components of the acoustic spectra (Rossiter, 1964). According to Mendonc.a

et al. (2003) it is widely accepted that URANS methods are currently unable to

predict the broadband contribution to the acoustic spectra. This was attributed to

excessive turbulent dissipation in the used turbulence models. DES of cavity flows

based on Spalart–Allmaras, k–ε and SST k–ω models were performed to resolve

dominant narrowband flow excitations by Allen and Mendonc.a (2004); Mendonc.a

et al. (2003). In these studies, good Rossiter mode shape predictions were observed

with slightly over–predicting RMS pressure and sound pressure levels. Larchevêque

et al. (2003) provided appealing results using LES for a flow over a deep cavity.

Larchevêque’s work was extended by Bertier et al. (2004) using several unstruc-

tured and hybrid meshes demonstrating good results whilst reducing the number of

cells. Lai and Luo (2007) proposed to use hybrid LES Ffowcs Williams and Hawkings

(FWH) acoustic analogy to predict open cavity noise, as well as to highlight the dif-

ferent nature of 2–D and 3–D wave propagation. More recently, Brés and Colonius

(2007a,b, 2008) performed DNS of three–dimensional cavity flows which provided

fundamental insights into fluid motions and instabilities in cavities at relatively low

Reynolds numbers.

In the present study, 2–D and 3–D numerical calculations are performed on

the M219 swallow cavity at Mach number 0.85 (see Sections 5.3.2 and 6.1, re-

spectively) (Aybay et al., 2009a,b). In these sections, the geometry and the flow

configuration are defined including details of the grids and boundary conditions

used. The resonance frequencies and acoustic modes are calculated by using the

present method. LES results of the present scheme are compared with the results

of high–order numerical schemes (Chen et al., 2007; Nayyar et al., 2005) as well as

experimental data (Peshkin, 2002; Henshaw, 2000) for the flow over a rectangular

cavity.
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2.5 Supersonic Jet Noise

Supersonic jet noise is a challenging topic in computational aeroacoustics due to

a high disparity of length and velocity scales. The noise characteristics of supersonic

jets are quite complex and very different from those of subsonic jets (Tam, 1995).

For imperfectly expanded supersonic jets, a quasi–periodic shock–cell structure is

formed inside the jet plume. Screech noise is produced by the interaction of turbulent

mixing layer and this shock–cell structure under certain operating conditions. A

schematic view of the shock–vortex interaction with shock–induced noise radiation

is depicted in Fig. 2.5. The supersonic jet noise simulation requirements may be

divided into two categories. On the one hand, the numerical methodology is required

to resolve the acoustic waves without introducing too much numerical dissipation

and dispersion error. On the other hand, it is required to capture shocks, or other

non–linear phenomena, near or in the jet plume. Jet screech noise is of importance

in aeronautics (e.g., military aircraft) where very high dynamic loads associated

with the intense screech tone are capable of causing structural damage and fatigue

failure of aircraft components (Panda et al., 1997; Panda, 1998, 1999). The correct

prediction of the acoustic field and the development of control strategies to suppress

screech noise while maintaining jet thrust performance are of prime concern.

Acoustic waves

Nozzle lip

Shock−associated noise

Shear layer

Shock cell structures
M > 1

M = 0

p > p0

p = p0

Figure 2.5: Schematic views of the interaction of shear layer and shock–cell structure

with noise radiation
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The noise of a supersonic jet comprises of three basic components. One has

discrete frequencies, which are commonly referred to as the screech tones. The

other components are the broadband shock–associated noise and the turbulent mix-

ing noise. The dominant part of the turbulent mixing noise is generated by the

large–scale turbulence structures, whilst the fine–scale turbulence structures are re-

sponsible for the background noise. The mixing noise is related to instability waves

in the shear layer. Discrete frequencies (i.e., screech tones) and the broadband

shock–associated noise are generated only when a quasi–periodic shock–cell struc-

ture is present in the jet plume. Oblique shocks and expansion fans generated at

the nozzle lip, where there is a mismatch of the pressure inside and outside of the

jet, are responsible for the formation of the shock–cell structure. The characteris-

tics of both the screech tone frequency and the broadband shock noise rely on the

quasi–periodicity of the shock–cells (Tam, 1988, 1995). According to Tam (1995)

the turbulent mixing noise is the most dominant noise source in the downstream

direction of the jet. On the other hand, the broadband shock–associated noise is

more intense in the upstream direction. Therefore the relative intensity of noise is

a strong function of the direction of observation.

In the early 1950s jet engine noise became a new research branch. Accord-

ing to Powell (1953) the screech tones of supersonic jets are generated by a feed-

back mechanism. The characteristics of this self–sustained loop were first observed

by Powell (1953) and the screech tone frequencies of rectangular supersonic jets were

measured by him. Physically, flow instabilities originate from the nozzle lip and are

convected in the downstream direction. As the instabilities propagate downstream

they extract energy from the mean flow and rapidly grow in amplitude. Due to the

interaction of these instability waves in the shear layer and the shock waves of the

quasi–periodic shock–cell structure, shock–induced acoustic waves are generated.

The shock–vortex interaction emanates a broadband noise component. Part of the

acoustic waves propagate in the upstream direction (see Fig. 2.5). Upon reaching

the nozzle lip these acoustic (i.e., sound) waves excite the shear layer and regenerate

the instability waves at the nozzle lip or in the vicinity of the nozzle lip and thus

complete the resonant loop (Tam, 1988; Berland et al, 2007).
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Since Powell’s first observations, several experimental, analytical and numeri-

cal studies have been carried out on the self–sustained loop characteristics. The

screech noise generation process from supersonic underexpanded jets at fully ex-

panded Mach numbers of 1.19 and 1.42 was investigated experimentally by Panda

et al. (1997); Panda (1998, 1999). Panda provided in his work detailed measure-

ments of the shock structure, near–field pressure fluctuations and the properties of

the coherent turbulent structure in the shear layer. Shen and Tam (2002) solved

the fully three–dimensional jet screech modes using dispersion–relation-preserving

scheme. The unsteady Reynolds averaged Navier–Stokes equations (RANS) with

the k–ε turbulence model was used to calculate the jet flow. Hence, a limited band-

width of the turbulence spectra was simulated. Rona and Zhang (2004) solved the

time–dependent RANS equations using a two–equation k–ω turbulence model to re-

produce the screech tones of a circular jet at Mach number 2. It was found that the

time–averaged axial velocity decayed at a faster rate than in the experiments. The

interaction between shock–cell modulated instability waves and the shock–expansion

system which generates screech noise were found in agreement with experimental

data. Computation of a shock containing planar underexpanded jet and its screech

tones using LES was performed by Berland et al (2007). The computational do-

main was discretized by a Cartesian grid of approximately 16 million points. It

was found that the upstream acoustic fields exhibit harmonic tones that compare

correctly to screech tones observed on rectangular jets in terms of frequency and

amplitude. Furthermore, the shock-cell spacing and the shock strength for the first

three–shock–cells were compared with experimental data provided by Raman and

Rice (1994). Computation of the shock–cell spacing was found to be smaller than

expected and the shock strengths were overestimated particularly for the second

and the third shocks. Computation of an underexpanded three–dimensional rectan-

gular jet using an unstructured three–dimensional space–time conservation element

and solution element (CE/SE) Euler solver was investigated by Loh et al. (2001c).

Although the strong momentum exchange in the shear layer was not taken into ac-

count a feedback loop was likely formed in the computation. In order to achieve

a more physically relevant simulation a Navier–Stokes CE/SE solver with LES or
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turbulence modeling capability was required. Loh and Hultgren (2005) simulated a

fully expanded supersonic circular jet of Mach number 1.4 using a three–dimensional

CE/SE Navier–Stokes solver with a LES technique. It was found that time–averaged

results, such as the streamwise velocity and radial density profiles agree well with

the experimental data. Near–field spectral results were also in good agreement with

the experiments in the expected range of lower Strouhal numbers. One may refer

to the computation of 2–D axisymmetric and 3–D screech noise for circular jets

by Loh et al. (2000a,b, 2001b); Loh and Hultgren (2002); Loh (2005) for further

details. In order to obtain the full range of turbulence scales in the jet flow and to

study the details of shock–induced noise generation, a direct numerical simulation

of a supersonic jet and its acoustic field was carried out recently by Schulze et al.

(2009). The computational grid contained approximately 300 million grid points

with a Reynolds number of 30,000 based on the height of the jet. A finite difference

compact scheme of sixth order and a spectral like method in the periodic direction

were used to capture the sound generation and propagation processes. An adaptive

shock–capturing filtering is implemented in order to remove grid–to–grid oscillations

in the vicinity of large gradients 1020 CPU’s with 0.5 TB of main memory and 15

TB of output data were used to perform the DNS of supersonic jet. The compu-

tational requirements for the direct noise computation of supersonic jets using the

DNS technique are very high. Hence, in the present study, LES is used to reproduce

the essential flow dynamics in the early stages of the jet plume development and to

investigate the screech tone frequencies of rectangular supersonic jets. The shock–

vortex interaction is also investigated without implementing any kind of ad hoc

filtering method (e.g., an adaptive shock–capturing filtering (Kim and Lee, 2001)).

The time–conservative finite–volume method can resolve strong shocks and acoustic

waves simultaneously. In Section 6.2, the details of the flow configuration and the

geometry are defined, including details on the grids and boundary conditions used.

The screech tone frequency, subharmonic tones and the shock–cell spacing at Mach

number 1.55 are calculated. The results of the present scheme are compared with

the results of the high–order numerical scheme computed by Berland et al (2007)

and the experimental data (Raman and Rice, 1994; Panda et al., 1997).
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Flow Governing Equations

The flow governing equations are presented in this chapter. The full set of

three–dimensional time–accurate compressible Navier–Stokes equations is defined

in Section 3.1. Details about modified form of the Navier–Stokes equations are

given in Section 3.2. Section 3.3 provides the details of the large–eddy simulation

method used for the present study including the filtered Navier–Stokes equations

and the subgrid–scale modeling for compressible turbulent flows.

3.1 3–D Compressible Navier–Stokes Equations

The Navier–Stokes equations describe the exchange (flux) of mass, momentum

and energy through the boundary of a control volume (Blazek, 2005). The three–

dimensional Navier–Stokes equations with respect to a fixed coordinate system, with

no body force or volumetric heating can be expressed in an integral form as

∂

∂t

∫

Ω

UdΩ +

∮

∂Ω

(Wc −Wv) · ds = 0 (3.1)

where U represents the vector of conservative variables, Ω is the finite–volume

bounded by the surface s. The vector of convective fluxes, Wc, is related to the

convective transport of quantities in the fluid. Wv is the vector of viscous fluxes,

contains the viscous stresses and the heat diffusion. Variation of the conservative

variables depends solely on the flux across the boundary of the control volume since

the integral formulation of the conservation law has no volume sources (Blazek, 2005;

38
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Hirsch, 2007). The components of the convective and diffusive (viscous) fluxes can

be expressed in Cartesian coordinates as follows

(Wc − Wv) = (Fi + Gj + Hk) − (F
v
i + G

v
j + H

v
k) (3.2)

where U is the vector of the conservative variables, F, G and H are the convective

flux vectors and F
v
, G

v
and H

v
are the diffusive flux vectors.

The vector of the conservative variables consists of the following five components

in three dimensions

U =




ρ

ρu

ρv

ρw

e




(3.3)

The vectors of the convective fluxes are defined as

F =




ρu

ρu2 + p

ρuv

ρuw

(e + p) u




(3.4)

G =




ρv

ρuv

ρv2 + p

ρvw

(e + p) v




(3.5)

H =




ρw

ρuw

ρvw

ρw2 + p

(e + p) w




(3.6)
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and one can obtain the following components for the vectors of the diffusive fluxes

in Cartesian coordinates

F
v

=




0

σxx

τxy

τxz

uσxx + vτxy + wτxz − qx




(3.7)

G
v

=




0

τyx

σyy

τyz

uτyx + vσyy + wτyz − qy




(3.8)

H
v

=




0

τzx

τzy

σzz

uτzx + vτzy + wσzz − qz




(3.9)

where ρ, p, u, v and w are the density, pressure and velocity components in the x,

y and z directions, respectively.

The total energy per unit volume e is defined by

e =
p

(γ − 1)
+

ρ (u2 + v2 + w2)

2
(3.10)

where γ is the specific heat ratio.

Assuming Newtonian fluids, the normal stress tensor and the shear stress tensor

have the following Cartesian components (Hirsch, 2007)

σxx =
2

3
µ

(
2
∂u

∂x
− ∂v

∂y
− ∂w

∂z

)
,

σyy =
2

3
µ

(
2
∂v

∂y
− ∂u

∂x
− ∂w

∂z

)
,

σzz =
2

3
µ

(
2
∂w

∂z
− ∂u

∂x
− ∂v

∂y

)
,
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τxy = τyx = µ

(
∂u

∂y
+

∂v

∂x

)
,

τxz = τzx = µ

(
∂u

∂z
+

∂w

∂x

)
,

τyz = τzy = µ

(
∂v

∂z
+

∂w

∂y

)
. (3.11)

where µ is the coefficient of the dynamic viscosity.

The components of the diffusive thermal fluxes read

qx = −k
∂T

∂x
, qy = −k

∂T

∂y
, and qz = −k

∂T

∂z
. (3.12)

where k stands for the thermal conductivity coefficient and T is the temperature.

qx, qy and qz are terms describing the work of the heat conduction on the fluid.

The ideal gas relation is given by

p = ρRT (3.13)

Sutherland’s law is used to determine the dynamic viscosity as a function of tem-

perature

µ = µref

(
T

Tref

)
Tref + S

T + S
(3.14)

where R, Tref and µref are the ideal gas constant, reference temperature and refer-

ence viscosity, respectively. S is chosen as 110K (Uzun, 2003).

3.2 Modified Form of the Navier–Stokes Equa-

tions

The components of the conservative variables, convective and diffusive fluxes

including the viscous stress tensor and the thermal flux components can be written

in a modified form to construct flux conservation in both space and time. Thus the

only independent discrete solution variables associated with each grid point can be

written in terms of the conservative variables (Um) and the spatial derivatives of the

conservative variables (i.e., gradients) (Um,x, Um,y, Um,z) where m = 1, 2, . . . , 5. With

known values of (Um, Um,x, Um,y, Um,z) the distribution of the conservative variables

vector (U), the convective fluxes (F, G and H), as well as the diffusive fluxes
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(F
v
, G

v
and H

v
) can be fully specified for the control volume. Consequently, the

modified form of Navier–Stokes equations will be depended solely on the conservative

variables and the spatial derivatives of them.

The components of the conservative variables in three dimensions are defined as

U1 = ρ, U2 = ρu,

U3 = ρv, U4 = ρw,

U5 =
p

γ − 1
+ ρ

(u2 + v2 + w2)

2
. (3.15)

The components of the convective fluxes in the x–direction can be written in the

following modified form

F1 = U2,

F2 = (γ − 1)U5 +
[(3 − γ) U2

2 − (γ − 1) (U2
3 + U2

4 )]

2U1

,

F3 =
U2U3

U1

, F4 =
U2U4

U1

,

F5 = γ
U2U5

U1

− (γ − 1)
U2 [U2

2 + U2
3 + U2

4 ]

2U2
1

. (3.16)

Similarly, the components of the convective fluxes in the y–direction can be expressed

as

G1 = U3, G2 =
U2U3

U1
,

G3 = (γ − 1)U5 +
[(3 − γ) U2

3 − (γ − 1) (U2
2 + U2

4 )]

2U1
,

G4 =
U3U4

U1
,

G5 = γ
U3U5

U1
− (γ − 1)

U3 [U2
2 + U2

3 + U2
4 ]

2U2
1

. (3.17)

Lastly, the components of the convective fluxes in the z–direction are defined as

H1 = U4, H2 =
U2U4

U1

, H3 =
U3U4

U1

,

H4 = (γ − 1)U5 +
[(3 − γ) U2

4 − (γ − 1) (U2
2 + U2

3 )]

2U1
,

H5 = γ
U4U5

U1
− (γ − 1)

U4 [U2
2 + U2

3 + U2
4 ]

2U2
1

. (3.18)
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The estimation of the viscous and thermal fluxes requires the calculation of the

velocity and temperature gradients (Hirsch, 2007). In order to express the viscous

stress tensor components as well as the diffusive thermal fluxes in terms of the

conservative variables (Um) and the spatial derivatives of the conservative variables

(Um,x, Um,y, Um,z), the first derivatives of the velocity components in eq. (3.11) are

defined as follows (Zhang, M. et al., 2004)

∂u

∂x
=

1

ρ

∂ (ρu)

∂x
− ρu

ρ2

∂ρ

∂x
=

U2,x

U1
− U2U1,x

U2
1

,

∂u

∂y
=

1

ρ

∂ (ρu)

∂y
− ρu

ρ2

∂ρ

∂y
=

U2,y

U1
− U2U1,y

U2
1

,

∂u

∂z
=

1

ρ

∂ (ρu)

∂z
− ρu

ρ2

∂ρ

∂z
=

U2,z

U1
− U2U1,z

U2
1

. (3.19)

Similar expressions can be obtained for the spatial derivatives of the wall–normal

(v) velocity
∂v

∂x
=

1

ρ

∂ (ρv)

∂x
− ρv

ρ2

∂ρ

∂x
=

U3,x

U1
− U3U1,x

U2
1

,

∂v

∂y
=

1

ρ

∂ (ρv)

∂y
− ρv

ρ2

∂ρ

∂y
=

U3,y

U1
− U3U1,y

U2
1

,

∂v

∂z
=

1

ρ

∂ (ρv)

∂z
− ρv

ρ2

∂ρ

∂z
=

U3,z

U1
− U3U1,z

U2
1

. (3.20)

The spatial derivatives of the spanwise (w) velocity can be defined as

∂w

∂x
=

1

ρ

∂ (ρw)

∂x
− ρw

ρ2

∂ρ

∂x
=

U4,x

U1
− U4U1,x

U2
1

,

∂w

∂y
=

1

ρ

∂ (ρw)

∂y
− ρw

ρ2

∂ρ

∂y
=

U4,y

U1
− U4U1,y

U2
1

,

∂w

∂z
=

1

ρ

∂ (ρw)

∂z
− ρw

ρ2

∂ρ

∂z
=

U4,z

U1
− U4U1,z

U2
1

. (3.21)

Then the components of the viscous stress tensor can also be written in terms of

(Um, Um,x, Um,y, Um,z) by using eq. (3.19) in the following modified form

τxy = µ

(
U2,y

U1
− U2U1,y

U2
1

+
U3,x

U1
− U3U1,x

U2
1

)
,

τxz = µ

(
U2,z

U1

− U2U1,z

U2
1

+
U4,x

U1

− U4U1,x

U2
1

)
,

τyz = µ

(
U3,z

U1
− U3U1,z

U2
1

+
U4,y

U1
− U4U1,y

U2
1

)
,
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σxx =
2

3
µ

(
2
U2,x

U1

− 2
U2U1,x

U2
1

− U3,y

U1

+
U3U1,y

U2
1

− U4,z

U1

+
U4U1,z

U2
1

)
,

σyy =
2

3
µ

(
2
U3,y

U1
− 2

U3U1,y

U2
1

− U2,x

U1
+

U2U1,x

U2
1

− U4,z

U1
+

U4U1,z

U2
1

)
,

σzz =
2

3
µ

(
2
U4,z

U1
− 2

U4U1,z

U2
1

− U2,x

U1
+

U2U1,x

U2
1

− U3,y

U1
+

U3U1,y

U2
1

)
. (3.22)

Symmetry of the viscous stress tensor provides the following three equations

τyx = τxy, τzx = τxz, and τzy = τyz . (3.23)

Similar expressions can also be obtained for the thermal fluxes

qx = γ
µ

Pr

[
U5,x

U1
− U5U1,x

U2
1

+
U2

2 + U2
3 + U2

4

U3
1

U1,x

]

− γ
µ

Pr

[
U2U2,x + U3U3,x + U4U4,x

U2
1

]
(3.24)

qy = γ
µ

Pr

[
U5,y

U1
− U5U1,y

U2
1

+
U2

2 + U2
3 + U2

4

U3
1

U1,y

]

− γ
µ

Pr

[
U2U2,y + U3U3,y + U4U4,y

U2
1

]
(3.25)

qz = γ
µ

Pr

[
U5,z

U1
− U5U1,z

U2
1

+
U2

2 + U2
3 + U2

4

U3
1

U1,z

]

− γ
µ

Pr

[
U2U2,z + U3U3,z + U4U4,z

U2
1

]
(3.26)

The derivation of the diffusive thermal fluxes in terms of (Um, Um,x, Um,y, Um,z) may

be found in Appendix A. Furthermore, the full set of the diffusive fluxes (F
v
, G

v

and H
v
) is given in Appendix B.

The components of the convective (F, G and H) and diffusive fluxes (F
v
, G

v

and H
v
) depend solely on the conservative variables and the spatial derivatives of

the conservative variables. Consequently, the only independent discrete variables

for each grid points are (Um, Um,x, Um,y and Um,z) where m = 1, 2, . . . , 5.

3.3 Large–Eddy Simulation and Filtering

The simulation of turbulent flows may be performed using three different ap-

proaches, i.e., Reynolds–Averaged Navier–Stokes equations (RANS), direct numer-

ical simulation (DNS) and large–eddy simulation (LES). In the present study, the
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LES is employed to simulate the turbulent flow field features with high–fidelity, since

the LES concept is well suited to detailed studies of complex unsteady flows and

flow–induced noise.

3.3.1 Filtered Navier–Stokes Equations

Large–eddy simulations are three–dimensional, time–dependent and expensive

but much less costly than DNS of the same flow (Ferziger and Perić, 2002). The

primary difference between DNS and LES is the filtering approach. This approach

was originally suggested by Leonard (1974). Any flow quantity generally given by

the variable f(x, t) being a function of space x and time t can be decomposed into

the resolved–scale or a large–scale part f(x, t) and the subgrid–scale or a small–scale

part f ′(x, t). The decomposition of the flow variables is defined by

f(x, t) = f(x, t) + f ′(x, t) (3.27)

The filtered variable f(x, t) is obtained by filtering the entire domain using a grid

filter function G as follows

f(x, t) =

∫

D

G(x,x′, ∆)f(x′, t)dV (x′) (3.28)

where D is the entire domain and ∆ describes a characteristic filter width.

Filter functions which have been applied in LES include a Gaussian, a top–hat

filter and a cut–off. For compressible turbulent flows the use of a Favre averaging

together with one of the spatial filter functions is a common approach, since it does

not alter the conservative form of the unfiltered governing equations (Moin et al.,

1991; Erlebacher et al., 1992). Otherwise, using any other filtering approach would

introduce more complicated subgrid–scale terms in the governing equations due to

additional correlations involving density fluctuations. The filtered Navier–Stokes

equations would contain products between density and other variables like velocity

or temperature (Blazek, 2005). The Favre–filtered variable is given by

f̃ =
ρf

ρ
(3.29)

where f̃ represents the large–scale component written in terms of a Favre–filtered.
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In the time–conservative finite–volume method, the Favre averaging is combined

with a top–hat filter kernel where the filter width (∆) is chosen equal to the grid size

(h), i.e., ∆ = h. Thus an explicit filtering operation of the velocity distribution as-

sumed to be cell–wise constant leads to the initial distribution again. Consequently,

the application of an explicit filtering operation can be omitted completely (Breuer,

2007). Instead, the filtering operation is implicitly given by the numerical method

used (i.e., the grid as well as the discretization errors are assumed to define the

filter G) (Blazek, 2005). The effectiveness of the implicit filtering operation was

demonstrated by Rogallo and Moin (1984); De Stefano and Vasilyev (2004). The

explicit filtering usually poses new difficulties for general non–equidistant grids with

non–constant filter widths. One may refer to the review of Lund (1997) for further

details about the weak points of the explicit filtering. The advantages of explicit

filtering method in practice remain unclear. Due to the extra filtering operations,

the explicit filtering approach is computationally more expensive than its implicit

counterpart (Gullbrand and Chow, 2003). The implicit filtering approach is popular

and in most LES methods filtering is performed implicitly, especially for practically

relevant turbulent flows in complex geometries (Loh and Hultgren, 2005; Breuer,

2007; Li et al., 2007). The resulting equations have the same structure as the un-

steady RANS equations with additional terms called subgrid–scale (SGS) stresses.

When the Navier–Stokes equations with constant density (incompressible flow) are

filtered, one obtains a set of equations very similar to the RANS equations (Ferziger

and Perić, 2002).

The filtering operation (eq. (3.28)) is applied to the three–dimensional time–

dependent Navier–Stokes equations in order to remove the small turbulent scales

of the total flow field and to obtain the filtered conservation equations to conduct

large–eddy simulations. The resulting equations describe the evolution of the re-

solved field and contain the subgrid–scale parts which represent the effects of the

instantaneous small–scale fluctuations on the resolved field. The resulting governing

equations are then solved directly for the resolved–scales whilst the subgrid–scales

are computed using a subgrid–scale model. The Favre–filtered compressible Navier–
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Stokes equations (Uzun et al., 2002; Uzun, 2003):

∂ρ

∂t
+

∂ρũi

∂xi
= 0 (3.30)

∂ρũi

∂t
+

∂ρũiũj

∂xj

+
∂p

∂xi

=
∂

∂xj

(τ̂ij − τSGS
ij ) (3.31)

∂et

∂t
+

∂ũi(et + p)

∂xi

=
∂

∂xj

ũi(τ̂ij − τSGS
ij ) − ∂

∂xi

(q̂i + qSGS
i ) (3.32)

where the total energy is defined as

et =
1

2
ρũiũi +

p

(γ − 1)
(3.33)

τ̂ij is the resolved stress tensor and q̂i describes the resolved heat flux. Furthermore,

τSGS
ij and qSGS

i are the subgrid–scale stress tensor and the subgrid–scale heat flux,

respectively. The summation convention is used in the eqs. (3.30) to (3.33). The

filtered governing equations may be rearranged into a form that looks identical to

URANS equations.

3.3.2 Subgrid–Scale Modeling for Compressible Turbulent

Flows

In order to simulate the momentum and energy transfer between large and small

eddies, the resolvable large eddies can be solved directly by the filtered conservation

equations (3.30)–(3.33) whereas the subgrid–scales have to be modeled. In addition

to assumptions of homogeneity and isotropy of the small scales, the assumption

of equilibrium (i.e., the small scales with lower energy content have shorter time

scales than the large ones since the energy contained in large eddies is transferred to

the smaller ones and eventually all are dissipated into heat at the level of smallest

eddies due to the molecular viscosity) is also imposed for most of the applications.

Although, most of the energy transfer takes place from the large–scale structure to

the small–scale structure, the reverse can also occur (e.g. backscatter), which is not

taken into account by the equilibrium assumption. Consequently, the main purpose

of the subgrid–scale model is to provide dissipation of energy.

The resolved viscous stress tensor is defined as

τ̂ij = 2µ̃(S̃ij −
1

3
S̃kkδij) (3.34)
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where δij stands for the Kronecker delta and S̃ij describes the Favre–filtered strain

rate tensor

S̃ij =
1

2

(
∂ũi

∂xj
+

∂ũj

∂xi

)
(3.35)

In the present study the classical Smagorinsky subgrid–scale (SGS) model (Smagorin-

sky, 1963) is employed due to its simplicity. The subgrid–scale stress tensor is given

by

τSGS
ij = ρ (ũiuj − ũiũj) (3.36)

and modeled as (Uzun, 2003; Blazek, 2005)

τSGS
ij = −µt(2S̃ij −

2

3
S̃kkδij) +

2

3
ρkSGSδij (3.37)

where µt is the subgrid–scale eddy–viscosity term defined as

µt = CRρ∆2|S̃M | (3.38)

and kSGS is the subgrid–scale kinetic energy and estimated as follows

kSGS = CI∆
2|S̃M |2 (3.39)

where |S̃M | is the magnitude of the strain–rate tensor computed from the resolved

velocity field and given by

|S̃M | = (2S̃ijS̃ij)
1/2 (3.40)

CR and CI are free parameters called the Smagorinsky model constants. All compu-

tations in this study were carried out with Smagorinsky constants of CR = 0.0324

and CI = 0.00575 based on previous studies (Uzun, 2003). The filter width ∆ is the

characteristic length scale of the smallest resolved eddies (Rogallo and Moin, 1984)

and given by (∆x · ∆y · ∆z)1/3 where ∆x, ∆y and ∆z are the sizes of the control

volume.

The first term appearing on the right–hand side of eq. (3.37) is the incompress-

ible term in Smagorinsky’s model (Smagorinsky, 1963) and the second term is the

compressibility correction known as Yoshizawa’s expression (Yoshizawa, 1986).

In order to account for the reduction of the subgrid length in the near–wall

regions the value of the eddy–viscosity (µt) has to be reduced. Thus, the eddy–

viscosity is modified based on a Van Driest damping function (Van Driest, 1956)
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as

µt = CRρ∆2
[(

1 − e−y+/25
)γ1
]γ2

|S̃M | (3.41)

The alternative values for the exponents γ1 = 3 and γ2 = 0.5 given by Piomelli

et al. (1988) are used. However, the application of the damping function remains

problematic for complex geometries (Breuer, 2007). The dimensionless wall distance

is defined as

y+ =
u∗y

ν
(3.42)

where u∗ is the friction velocity computed from the instantaneous wall shear stress

at the wall and ν is the kinematic viscosity.

The resolved heat flux reads:

q̂i = −cp
µ

Pr

∂T̃

∂xi
(3.43)

where cp, Pr and µ are the specific heat capacity at constant pressure, the Prandtl

number and the dynamic viscosity, respectively.

The subgrid–scale heat flux is given by

qSGS
i = −cpρ

(
ũiT − ũiT̃

)
(3.44)

and it is modeled by using a temperature gradient approach (Uzun, 2003)

qSGS
i = −cp

µt

Prt

∂T̃

∂xi
(3.45)

where µt is the quantity of the eddy–viscosity and given by eq. (3.38). Prt is the

turbulent Prandtl number and set to a value of 0.9 (Uzun, 2003).

In order to close the system of equations, the perfect gas relation (eq. (3.13))

and Sutherland’s law (eq. (3.14)) are used.

The Navier–Stokes computations without turbulence terms can be carried out

by replacing all filtered variables with their unfiltered forms and setting the subgrid–

scale stress tensor and the subgrid–scale heat flux terms to zero. Furthermore, for the

inviscid Euler computations the viscous stress tensor should be set to zero (Aybay

and He, 2007).



Chapter 4

Numerical Methodology

This chapter is organized as follows. First, Section 4.1 provides details about the

coupled spatial and temporal discretizations of the flow variables and the evaluation

of fluxes. In Section 4.2 the solution procedure is discussed for the evaluation of

the flow variables and the spatial derivatives of the flow variables. Section 4.3

provides details of the stability criterion for the explicit time–conservative scheme.

Then, implementation of the non–reflecting boundary condition, inlet and outlet

boundary conditions, the solid wall boundary condition for inviscid and viscous

flows as well as the periodic boundary condition is explained in Section 4.4. Finally,

the basic implementation issues of the direct–flux based multigrid technique and

parallel computing are given in Section 4.5.1 and Section 4.5.2, respectively.

4.1 Coupled Spatial and Temporal Discretizations

The conservation form of the three–dimensional unsteady Navier–Stokes equa-

tions with respect to a stationary reference frame, with no external body force and

heat generation can be expressed as follows

∂U

∂t
+

∂F

∂x
+

∂G

∂y
+

∂H

∂z
=

∂F
v

∂x
+

∂G
v

∂y
+

∂H
v

∂z
(4.1)

where U is the vector of conservative variables, F, G and H are the convective flux

vectors and F
v
, G

v
and H

v
are the viscous flux vectors in the x, y and z directions,

respectively.

50
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Let x1 = x, x2 = y, x3 = z and x4 = t be the coordinates of a four–dimensional

Euclidean space E4. Using Gauss’ divergence theorem the integral form of eq. (4.1)

in the space–time domain E4 can be expressed as follows (Zhang, Z.C. et al., 2002)

∮

S(V )

h · ds = 0 (4.2)

where h = (F−Fv,G−Gv,H−Hv,U) are the flux vectors in space–time of mass,

x–momentum, y–momentum, z–momentum, energy and the vector of conservative

variables. S(V ) is the surface of an arbitrary space–time region V in E4 and ds =

ndσ where n is the outward unit normal vector and dσ is the area of a surface

element on S(V ). The time–conservative finite–volume method integrates eq. (4.2)

in the four–dimensional Euclidean space to evaluate the flow variables. The equation

states that the total space–time flux h, vanishes through the surface of the arbitrary

space–time region (Zhang, Z.C. et al., 2002; Loh et al., 2001a; Chang, 1995).

The time–conservative finite–volume method employed in the present study is

based on a multiblock structured grid in three–dimensional space. The method was

extended from the numerical scheme given by Zhang, Z.C. et al. (2002) and used

here with some modifications (Aybay and He, 2007, 2008a). The discretization type

given by Zhang, Z.C. et al. (2002) is depicted in Fig. 4.1. This method will be

described first. Later on an improved discretization which is used in this study will

be explained.

Figure 4.1: 2–D discretization type given by Zhang, Z.C. et al. (2002)

The computational domain is divided into non–overlapping convex quadrilaterals

defined by B1B2B3B4, as shown in Fig. 4.1. Any two neighboring quadrilaterals



4.1. Coupled Spatial and Temporal Discretizations 52

share a common side. The centroid of each grid cell is denoted by a square symbol

and the vertices of the quadrilaterals are marked by circles. Point Q is the centroid

of the quadrilateral B1B2B3B4, whereas A1, A2, A3 and A4 are the centroids of the

neighboring quadrilaterals. Furthermore, Q∗ (marked by a cross) is the centroid

of the polygon A1B1A2B2A3B3A4B4 and stands for the solution point associated

with the point Q. In general, the point Q∗ does not coincide with point Q for a

non–uniform grid distribution. Note that A∗

1, A∗

2, A∗

3 and A∗

4 are the solution points

associated with the points A1, A2, A3 and A4, respectively. All flow variables and

their spatial derivatives are solved and stored at the solution points, i.e., Q∗, A∗

1,

A∗

2, A∗

3 and A∗

4 (see Fig. 4.1).

Figure 4.2: 2–D grid distribution in space and time given by Zhang, Z.C. et al. (2002)

Considering Fig. 4.2, the grid points Q, Q′ and Q′′ denote the points on the (n)th,

the
(
n − 1

2

)th
and the

(
n + 1

2

)th
time levels, respectively. The control volume is rep-

resented by the hexahedron A1A2A3A4A
′

1A
′

2A
′

3A
′

4 and considered for time marching

from t = n− 1
2

to t = n. First of all, the flow variables and their spatial derivatives

are assumed to be known at the centroid of each grid cell (i.e., A′

1, A′

2, A′

3 and A′

4) at
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time level t = n− 1
2
. Then, the conservation of space–time flux is enforced over the

surface of the control volume (A1A2A3A4A
′

1A
′

2A
′

3A
′

4) to evaluate the flow variables

at the solution point Q∗ associated with the centre of the grid cell (i.e. Q) at time

level t = n (see Fig. 4.1). Finally, the corresponding spatial derivatives at the same

time level are calculated based on a weighted finite–difference approach (details are

provided in Section 4.2.2). The same procedure is repeated for the advancement of

the simulation from time level t = n to t = n + 1
2
.

The discretization type given by Zhang, Z.C. et al. (2002) requires the generation

of dummy cells (ghost cells) that lie on the other side of the boundary in order to

maintain the order of numerical accuracy as well as to ensure the flux conservation

in the vicinity of the boundaries. The main disadvantage of using this approach is

that the domain decomposition based on a multiblock structured grid becomes com-

plicated for complex geometries. An improved discretization is depicted in Fig. 4.3

which relies on a new definition of cell interfaces and a new definition of control vol-

ume is displayed in Fig. 4.4. In order to prevent or deal efficiently with the problem

as mentioned above these new definitions are used. Thus, the evaluation of fluxes

along the boundaries is simplified and the flux conservation is ensured. To the best

knowledge of the author, the numerical scheme based on these new definitions is

discretized for the first time in 3D in the present study including the addition of

the viscous terms and the implementation of the LES technique. The objectives of

the new definitions of control volume and cell interface in comparison to Zhang’s

method were twofold; on the one hand, to avoid the generation of the dummy cells

outside the computational domain to ensure the flux conservation in the vicinity of

the boundaries; on the other hand, to generate non–overlapping subdomains during

the decomposition of the computational domain in order to simplify the multiblock

grid generation (see Section 4.5.2).

Time–marching for the proposed numerical scheme can be explained as follows.

First of all, grid points are shown in a two–dimensional plane (i.e., the x–y plane) for

the sake of simplicity. Considering Fig. 4.3, similar to Zhang’s discretization (Zhang,

Z.C. et al., 2002) the computational domain is divided into non–overlapping convex

quadrilateral grid cells defined by A1A2A3A4 and any two neighboring grid cells
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share a common side. The four vertices of a quadrilateral (A1, A2, A3 and A4) are

marked by circles which are also the grid points at t = n − 1
2
. Spatial projection

of the grid points (Q1, Q2, Q3 and Q4) and the corresponding solution points (Q∗

1,

Q∗

2, Q∗

3 and Q∗

4) at t = n are shown by square symbols in Fig. 4.3. Lastly, Q∗

1

is the centroid of the polygon (i.e., control volume) A1A2A3A4 and stands for the

solution point associated with the grid point Q1. Similarly, Q∗

2, Q∗

3 and Q∗

4 are the

centroids of neighboring polygons (control volumes)and the corresponding solution

points associated with the grid points Q2, Q3 and Q4, respectively. For both, a

uniform grid and a non–uniform grid, the solution points (i.e., Q∗

1, Q∗

2, Q∗

3 and Q∗

4)

coincides with the grid points (i.e., Q1, Q2, Q3 and Q4) at t = n. Hence all flow

variables and their spatial derivatives are solved and stored at the solution points

(Q∗

1, Q∗

2, Q∗

3 and Q∗

4) for time–marching from t = n − 1
2

to t = n.

A1

A2

A3

A4

Q1 Q2

Q3Q4

Q∗

1 Q∗

2

Q∗

3Q∗

4

Figure 4.3: Grid points (A1, A2, A3 and A4) at t = n − 1
2 , spatial projection of grid

points (Q1, Q2, Q3 and Q4) and the corresponding solution points (Q∗

1, Q∗

2,

Q∗

3 and Q∗

4) at t = n in the x-y plane (without time axis)

In Fig. 4.4, the control volume represented by the hexahedron A1A2A3A4A
′

1A
′

2

A′

3A
′

4 shows the grid arrangement in the space–time domain. The points Q1 and

Q′

1 denote the grid points on the
(
n − 1

2

)th
and the (n)th time levels, respectively.

Furthermore, Q∗

1
′ lies on the (n)th time level and it is the space–time solution point

associated with point Q′

1. In Fig. 4.4, the spatial projections of the solution point

Q∗

1
′ and the grid point Q′

1 are shown as Q∗

1 and Q1, respectively in Fig. 4.3. In

the present scheme, the solution point Q∗

1
′ and the grid point Q′

1 coincide for any
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kind of grid distribution (e.g., uniform or non–uniform) for the time–marching from

t = n − 1
2

to t = n. This is one of the distinctive features from the discretization

given by Zhang, Z.C. et al. (2002). In order to advance the simulation in time,

initially the flow variables and their spatial derivatives are assumed to be known

at the vertex of each grid cell (i.e., A1, A2, A3 and A4) at time level t = n − 1
2
.

Then, the conservation of space–time flux is enforced over the surface of the control

volume in order to calculate the flow variables at the solution point Q∗

1
′ at the time

level t = n. Finally, the corresponding spatial derivatives for this same time level

(n) are evaluated by using a weighted finite–difference approach (see Section 4.2.2).

A1

A2

A3

A4

A′

1

A′

2

A′

3

A′

4

Q1

Q′

1

Q∗

1
′

∆t/2

t = n

t = n − 1
2

x

y
t

Figure 4.4: Control volume for time–marching from t = n − 1
2 to t = n

The same procedure is repeated for the time–marching from t = n to t = n + 1
2
.

In Fig. 4.5, the grid points (Q′

1, Q′

2, Q′

3 and Q′

4) at t = n are marked by squares.

Spatial projections of the grid points (A′

1, A′

2, A′

3 and A′

4) and the corresponding

solution points (A∗

1
′, A∗

2
′, A∗

3
′ A∗

4
′) at t = n+ 1

2
are shown by circles and cross symbols,

respectively. Considering Fig. 4.5, A∗

3
′ is the space–time solution point associated

with the grid point A′

3 and the centroid of the polygon (control volume) defined as

Q′

1Q
′

2Q
′

3Q
′

4. Similarly, A∗

1
′, A∗

2
′ and A∗

4
′ are the centroids of neighboring polygons
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(control volumes) and the corresponding solution points associated with the grid

points A′

1, A′

2 and A′

4, respectively.

X

X

X

X

A′

1

A′

2

A′

3

A′

4

Q′

1 Q′

2

Q′

3Q′

4

A∗

1
′

A∗

2
′

A∗

3
′

A∗

4
′

Figure 4.5: Grid points (Q′

1, Q′

2, Q′

3 and Q′

4) at t = n, spatial projection of grid points

(A′

1, A′

2, A′

3 and A′

4) and the corresponding solution points (A∗

1
′, A∗

2
′, A∗

3
′

A∗

4
′) at t = n + 1

2 in the x-y plane (without time axis)

In Fig. 4.6, the control volume for the time–marching from t = n to t = n + 1
2

is shown and described by Q′

1Q
′

2Q
′

3Q
′

4Q
′′

1Q
′′

2Q
′′

3Q
′′

4. The points A′

3 and A′′

3 denote

the grid points on the (n)th and
(
n + 1

2

)th
time levels, respectively. In order to

complete the two–level explicit time–marching, the values of the flow variables and

the gradients from the previous time step (at Q′

1, Q′

2, Q′

3 and Q′

4) are used to

enforce the conservation of space–time flux over the surface of the control volume.

Hence the flow variables are evaluated at the space–time solution point A∗

3
′′. Spatial

projections of the solution point A∗

3
′′ and the grid point A′′

3 are shown as A∗

3
′ and A′

3,

respectively in Fig. 4.5. One should note that the solution point A∗

3
′ and the grid

point A′

3 do not coincide for a non–uniform grid distribution. Hence, when the flow

variables and the gradients are evaluated at the solution points, the corresponding

values should be transferred from the solution points (A∗

1
′, A∗

2
′, A∗

3
′ and A∗

4
′) to the

vertices of each grid cell (A′

1, A′

2, A′

3 and A′

4) by using a first–order Taylor series

expansion. The numerical scheme alternates between the cell–vertices and the cell–

centres of the grid cells. As a conclusion, by using this proposed discretization the

flux conservation was ensured in the vicinity of the boundaries, parallelization of the

flow solver based on domain decomposition was simplified (see Section 4.5.2) and
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exchanging the physical quantities between the blocks became straightforward.

X

Q′

1

Q′

2

Q′

3

Q′

4

A′

3

Q′′

1

Q′′

2

Q′′

3

Q′′

4

A′′

3

A∗

3
′′

∆t/2

t = n + 1
2

t = n

x

y
t

Figure 4.6: Control volume for time–marching from t = n to t = n + 1
2

Note that the control volumes and the grid arrangement in the space–time do-

main are shown in 2D up to this point, for the sake of clarity. The discretization of

the conservative variables, the convective fluxes, the diffusive fluxes and the space–

time flux evaluation for 3D is described here. The discretized conservative variables

and the convective fluxes are assumed to be continuous and linearly distributed over

the surface of control volume (CV) and they are approximated by the first–order

Taylor series expansion, whereas the viscous fluxes are assumed to be constant (see

eqs. (4.3) to (4.9)). For any space–time solution points Um (x, y, z, t), Fm (x, y, z, t),

Gm (x, y, z, t), Hm (x, y, z, t), Fvm (x, y, z, t), Gvm (x, y, z, t) and Hvm (x, y, z, t) are

approximated with the help of Um
∗, Fm

∗, Gm
∗, Hm

∗, F ∗

vm, G∗

vm and H∗

vm, respec-

tively.

The conservative variables (Um) are approximated by the first–order Taylor series

expansion as follows

Um
∗ (x, y, z, t) = (Um)Q∗ + (Um,x)Q∗ (x − xQ∗) + (Um,y)Q∗ (y − yQ∗)

+ (Um,z)Q∗ (z − zQ∗) + (Um,t)Q∗

(
tn − tn−

1
2

)
(4.3)
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Similarly, using the first–order Taylor series expansion the approximated convective

fluxes (F, G, H) can be expressed as

Fm
∗ (x, y, z, t) = (Fm)Q∗ + (Fm,x)Q∗ (x − xQ∗) + (Fm,y)Q∗ (y − yQ∗)

+ (Fm,z)Q∗ (z − zQ∗) + (Fm,t)Q∗

(
tn − tn−

1
2

)
(4.4)

Gm
∗ (x, y, z, t) = (Gm)Q∗ + (Gm,x)Q∗ (x − xQ∗) + (Gm,y)Q∗ (y − yQ∗)

+ (Gm,z)Q∗ (z − zQ∗) + (Gm,t)Q∗

(
tn − tn−

1
2

)
(4.5)

Hm
∗ (x, y, z, t) = (Hm)Q∗ + (Hm,x)Q∗ (x − xQ∗) + (Hm,y)Q∗ (y − yQ∗)

+ (Hm,z)Q∗ (z − zQ∗) + (Hm,t)Q∗

(
tn − tn−

1
2

)
(4.6)

where (xQ∗ , yQ∗, zQ∗, tn) shows the coordinates of the space–time solution point Q∗.

Then, the diffusive fluxes (Fvm, Gvm, Hvm) are assumed to be constant over the

surface of the control volume and defined as

F ∗

vm (x, y, z, t) = (Fvm)Q∗ (4.7)

G∗

vm (x, y, z, t) = (Gvm)Q∗ (4.8)

H∗

vm (x, y, z, t) = (Hvm)Q∗ (4.9)

Lastly, the vector of conservative variables and the flux vectors h = (F − Fv,G −
Gv,H − Hv,U) in space–time of mass, x, y, z–momentum and energy can be ap-

proximated as

h∗ = h (4.10)

(Um)Q∗, (Um,x)Q∗
, (Um,y)Q∗

, (Um,z)Q∗
and (Um,t)Q∗

, are the coefficients of the

Taylor series expansion in eq. (4.3) and they are the numerical analogues of the

values of Um, ∂Um/∂x, ∂Um/∂y, ∂Um/∂z and ∂Um/∂t at point Q∗, respectively.

Similarly, (Fm)Q∗ , (Fm,x)Q∗ , (Fm,y)Q∗ , (Fm,z)Q∗ , (Fm,t)Q∗ , (Gm)Q∗ , (Gm,x)Q∗ ,

(Gm,y)Q∗ , (Gm,z)Q∗ , (Gm,t)Q∗, (Hm)Q∗, (Hm,x)Q∗ , (Hm,y)Q∗ , (Hm,z)Q∗ and (Hm,t)Q∗

are the Taylor series expansion coefficients in the equations (4.4) to (4.6). These coef-

ficients are the numerical analogues of the values of Fm, ∂Fm/∂x, ∂Fm/∂y, ∂Fm/∂z,
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∂Fm/∂t, Gm, ∂Gm/∂x, ∂Gm/∂y, ∂Gm/∂z, ∂Gm/∂t, Hm, ∂Hm/∂x, ∂Hm/∂y, ∂Hm/∂z

and ∂Hm/∂t at point Q∗, respectively (Zhang, Z.C. et al., 2002; Chang, 1995; Zhang,

M. et al., 2004).

Let (Fm,l)Q∗, (Gm,l)Q∗ and (Hm,l)Q∗ be the components of the Jacobian matrices

of F, G and H associated with the solution point Q∗, respectively. The Jacobian

matrices are described in Appendix C and their components can be defined as

(Fm,l)Q∗ =
∂Fm

∂Ul

, (Gm,l)Q∗ =
∂Gm

∂Ul

, and (Hm,l)Q∗ =
∂Hm

∂Ul

. (4.11)

for m = 1, 2, . . . , 5 and l = 1, 2, . . . , 5.

The spatial derivatives of F, G and H can be expressed by using the chain rule

as follows

(Fm,x)Q∗ =
5∑

l=1

(Fm,l)Q∗ (Ul,x)Q∗ , (Gm,x)Q∗ =
5∑

l=1

(Gm,l)Q∗ (Ul,x)Q∗ ,

(Hm,x)Q∗ =
5∑

l=1

(Hm,l)Q∗ (Ul,x)Q∗ . (4.12)

(Fm,y)Q∗ =

5∑

l=1

(Fm,l)Q∗ (Ul,y)Q∗ , (Gm,y)Q∗ =

5∑

l=1

(Gm,l)Q∗ (Ul,y)Q∗ ,

(Hm,y)Q∗ =

5∑

l=1

(Hm,l)Q∗ (Ul,y)Q∗ . (4.13)

(Fm,z)Q∗ =
5∑

l=1

(Fm,l)Q∗ (Ul,z)Q∗ , (Gm,z)Q∗ =
5∑

l=1

(Gm,l)Q∗ (Ul,z)Q∗ ,

(Hm,z)Q∗ =
5∑

l=1

(Hm,l)Q∗ (Ul,z)Q∗ . (4.14)

Note that, by their definitions eqs. (4.12) to (4.14) are functions of Um, Um,x, Um,y

and Um,z.

In order to define the temporal coefficients of the Taylor series expansion [(Um,t)Q∗ ,

(Fm,t)Q∗ , (Gm,t)Q∗ and (Hm,t)Q∗] in the equations (4.3) to (4.6). Equation (4.1) can

be considered without viscous flux vectors and the following expression can be ob-

tained

(Um,t)Q∗ = − (Fm,x)Q∗ − (Gm,y)Q∗ − (Hm,z)Q∗ (4.15)
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Using equations (4.12), (4.13) and (4.14), eq. (4.15) can be written as

(Um,t)Q∗ = −
5∑

l=1

[
(Fm,l)Q∗ (Ul,x)Q∗ + (Gm,l)Q∗ (Ul,y)Q∗ + (Hm,l)Q∗ (Ul,z)Q∗

]
(4.16)

Similarly, the temporal derivatives of the convective fluxes (F, G and H) can be

described as follows

(Fm,t)Q∗
=

5∑

l=1

(Fm,l)Q∗
(Um,t)Q∗

(4.17)

(Gm,t)Q∗ =

5∑

l=1

(Gm,l)Q∗ (Um,t)Q∗ (4.18)

(Hm,t)Q∗ =
5∑

l=1

(Hm,l)Q∗ (Um,t)Q∗ (4.19)

The viscous terms have no influence on the distribution of (Um,t)Q∗ over each CV

surface. However, the viscous terms ((Fvm)Q∗ , (Gvm)Q∗ and (Hvm)Q∗) will have

their contributions on the integral equation (see eq. (4.22)). The viscous fluxes are

assumed to be constant within the cell interface (i.e., the surface of control volume).

Due to the dissipative nature of the viscous terms, they are obtained from flow

variables at the centroid of each cell interface. The viscous fluxes can be evaluated

as functions of Um, Um,x, Um,y and Um,z using equations (3.22) to (3.26).

Consequently, the only independent discrete variables to be solved simultane-

ously at each grid point are the components of the conservative variables (Um) and

their spatial gradients (Um,x, Um,y and Um,z). Although the convective fluxes and

the diffusive fluxes can be completely determined on the surface of CV as func-

tions of the conservative variables (Um) and their gradients (Um,x, Um,y and Um,z),

one should note that the temporal coefficients (Fm,t)Q∗ , (Gm,t)Q∗ and (Hm,t)Q∗ of

the Taylor series expansions in the equations (4.4) to (4.6), will appear with addi-

tional time terms to evaluate the total space–time flux over the surface of CV (see

eq. (4.22)).

The conservation of the space–time fluxes is enforced over the surface of CV. In

the present method, spatial and temporal discretizations are coupled to calculate
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flux conservation. Hence the flux conservation is not only enforced in space but

also in time. Contrarily, traditional methods focus only on the conservation of the

spatial fluxes and employ a separate discretization in time.

4.2 Solution Procedure

When values of (Um)Q∗ , (Um,x)Q∗ , (Um,y)Q∗ , (Um,z)Q∗ and (Um,t)Q∗ are known,

the distribution of the flow variables as well as the inviscid and viscous fluxes can be

fully specified over the surface of CV. Unknown flow variables at the solution point

can be solved by using the flux conservation equation (see eq. (4.2)).

4.2.1 Evaluation of the Flow Variables

The flux leaving each surface of the CV is equal to the scalar product between

the vector of conservative variables and the flux vectors in space–time of mass, x–

momentum, y–momentum, z–momentum and energy [h∗ = (F∗−F∗

v,G
∗−G∗

v,H
∗−

H∗

v,U
∗)], evaluated at the centroid of the surface and the surface vector s.

Considering Fig. 4.7, for the hexahedron defined by A1A2A3A4A5A6A7A8, its

surface vector is sA1A2A3A4A5A6A7A8 and composed of eight sub–hexahedrons.

A8

A1 A2

A3
A4

A5 A6

A7

B1

B4

C1 C2

C8

D1

Q

Q∗

x

y

z

Figure 4.7: 3–D control volume without time axis

Here the flux evaluation is only shown for one of the sub–hexahedron for the

time–marching from t = n to t = n + 1
2

for the other sub–hexahedrons the flux
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evaluation can be performed in a similar way. In Fig. 4.7, the sub–hexahedron

defined by A1B1D1B4C1C2QC8 is depicted and the surface vector is defined by

sA1B1D1B4C1C2QC8. The coordinates of its centroid are (xq∗1
, yq∗1

, zq∗1
, tn). Therefore,

the flux leaving the surface of the sub–hexahedron (A1B1D1B4C1C2QC8) can be

expressed as

(FLUXm)A1B1D1B4C1C2QC8 = −V ∗

1 [(Um)n
A∗

1
+ (xq∗1

− xA∗

1
)(Um,x)

n
A∗

1

+ (yq∗1
− yA∗

1
)(Um,y)

n
A∗

1

+ (zq∗1
− zA∗

1
)(Um,z)

n
A∗

1
] (4.20)

where m = 1, 2, . . . , 5 and V ∗

1 is the volume of the sub–hexahedron defined by

A1B1D1B4C1C2QC8.

A1 A2

A3
A4

A5 A6

A7A8

B1

B4

C1 C2

C8

D1

Q

Q∗

x

y

z

Figure 4.8: Flux evaluation on the quadrilateral defined by A1B4C8C1

In Fig. 4.8, the quadrilateral defined by A1B4C8C1 is shown. Its surface vector

is defined as

sA1B4C8C1 =
∆t

2
((yC1 − yB4)(zC8 − zA1) − (zC1 − zB4)(yC8 − yA1),

(zC1 − zB4)(xC8 − xA1) − (xC1 − xB4)(zC8 − zA1),

(xC1 − xB4)(yC8 − yA1) − (yC1 − yB4)(xC8 − xA1), 0) (4.21)

and the coordinates of its centroid are (Cx1, Cy1, Cz1, t
n + ∆t

4
).
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The flux leaving the surface A1B4C8C1 is described as follows

(FLUXm)A1B4C8C1 =
∆t

2
[(yC1 − yB4)(zC8 − zA1) − (zC1 − zB4)(yC8 − yA1)]

[(Fm)n
A∗

1
+ (Cx1 − xA∗

1
)(Fm,x)

n
A∗

1
+ (Cy1 − yA∗

1
)(Fm,y)

n
A∗

1

+ (Cz1 − zA∗

1
)(Fm,z)

n
A∗

1

+
∆t

4
(Fm,t)

n
A∗

1
− F A1B4C8C1

vm ]

+
∆t

2
[(zC1 − zB4)(xC8 − xA1) − (xC1 − xB4)(zC8 − zA1)]

[(Gm)n
A∗

1
+ (Cx1 − xA∗

1
)(Gm,x)

n
A∗

1
+ (Cy1 − yA∗

1
)(Gm,y)

n
A∗

1

+ (Cz1 − zA∗

1
)(Gm,z)

n
A∗

1

+
∆t

4
(Gm,t)

n
A∗

1
− GA1B4C8C1

vm ]

+
∆t

2
[(xC1 − xB4)(yC8 − yA1) − (yC1 − yB4)(xC8 − xA1)]

[(Hm)n
A∗

1
+ (Cx1 − xA∗

1
)(Hm,x)

n
A∗

1
+ (Cy1 − yA∗

1
)(Hm,y)

n
A∗

1

+ (Cz1 − zA∗

1
)(Hm,z)

n
A∗

1

+
∆t

4
(Hm,t)

n
A∗

1
− HA1B4C8C1

vm ] (4.22)

where m = 1, 2, . . . , 5, the viscous fluxes F A1B4C8C1
vm , GA1B4C8C1

vm and HA1B4C8C1
vm are

obtained from the flow variables at the centroids of the surface A1B4C8C1 as well as

(Um,x)
n
A∗

1
, (Um,y)

n
A∗

1
and (Um,z)

n
A∗

1
. Here the descriptions of a surface vector and the

flux leaving a surface are provided only for the quadrilateral defined by A1B4C8C1.

The flux evaluation on the quadrilateral defined by A1B1C2C1 and A1B1D1B4 with

their surface vectors can be found in Appendix D.

The total flux leaving three surfaces of the sub–hexahedron defined by A1B1D1B4

C1C2QC8 can be written as follows

(fluxm)n
1 = (FLUXm)A1B1D1B4C1C2QC8 + (FLUXm)A1B4C8C1

+ (FLUXm)A1B1C2C1 + (FLUXm)A1B1D1B4 (4.23)

where m = 1, 2, . . . , 5.

Similarly, the fluxes leaving the surfaces of other seven sub–hexahedrons (e.g.,

A2B2D1B1 C3C4QC2) can be expressed in a similar way.

Using the fundamental principle of the time–conservative finite–volume scheme,

the total space–time flux leaving a CV through the surfaces of the CV vanishes (see



4.2. Solution Procedure 64

eq. (4.2)). As a result, the space–time flux conservation over the CV surface can be

written as

(FLUXm)A1A2A3A4A5A6A7A8 = −[(fluxm)n
1 + (fluxm)n

2 + (fluxm)n
3

+ (fluxm)n
4 + (fluxm)n

5 + (fluxm)n
6

+ (fluxm)n
7 + (fluxm)n

8 ] (4.24)

where m = 1, 2, . . . , 5, l = 1, 2, . . . , 8 and n is the time level, (fluxm)n
l stands for

the evaluation of flux for each sub–hexahedron.

Consequently, sorting now all the above contributions and terms, the flow vari-

ables (Um)
n+ 1

2
Q∗ at point Q∗ is updated as follows

(Um)
n+ 1

2
Q∗ =

(fluxm)n
1 + (fluxm)n

2 + . . . + (fluxm)n
7 + (fluxm)n

8

V ∗

1 + V ∗

2 + . . . + V ∗

7 + V ∗

8

(4.25)

where m = 1, 2, . . . , 5, V ∗

l represents the volume of each sub–hexahedron (l =

1, 2, . . . , 8).

4.2.2 Evaluation of the Gradients of the Flow Variables

A weighted finite–difference approach is employed to calculate the spatial deriva-

tives (i.e., gradients) of the flow variables, e.g., (Um,x)Q∗, (Um,y)Q∗ and (Um,z)Q∗ .

Initially, for the sake of clarity, this approach is described for the two–dimensional

discretization. Then the same procedure is adapted for the three–dimensional dis-

cretization. As discussed in Section 4.1, the solution point (Q∗) and the grid point

(Q) coincide for any kind of grid distribution for the time–marching from t = n− 1
2

to t = n (see Fig. 4.3). On the other hand, considering Fig. 4.5, these points do

not coincide for a non–uniform grid distribution for the time–marching from t = n

to t = n + 1
2
. Hence, evaluation of the spatial derivatives is explained here only for

the time–marching from t = n to t = n + 1
2
. Note that the same procedure can be

used for evaluation of the spatial gradients for the time–marching from t = n− 1
2

to

t = n.

In Fig. 4.5, the flow variables at A∗

3
′ (marked by a cross symbol) are obtained

from eq. (4.25) at t = n + 1
2
. In order to employ the weighting procedure, the flow

variables at four neighboring points Q′

1, Q′

2, Q′

3 and Q′

4 are obtained by using the
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first–order Taylor series expansion along the time axis from the time level t = n as

follows

(Um)
n+ 1

2

Q′

l
= (Um)n

Q′

l
+

∆t

2
(Um,t)

n
Q′

l
(4.26)

where m = 1, 2, . . . , 4 and l = 1, 2, . . . , 4 denoting the points Q′

1, Q′

2, Q′

3 and Q′

4,

respectively.

As a result, the spatial gradients of the flow variables can be obtained by four

sets of (Um,x)A∗

3
′ and (Um,y)A∗

3
′ associated with the neighboring points (Q′

1, Q′

2, Q′

3

and Q′

4).

The first set of (Um,x)A∗

3
′ and (Um,y)A∗

3
′ associated with the points Q′

1 and Q′

2

(see Fig. 4.5) can be evaluated as follows

(
u(1)

m,x

)
A∗

3
′
=

∆x

∆
and

(
u(1)

m,y

)
A∗

3
′
=

∆y

∆
(∆ 6= 0) (4.27)

where

∆ =

∣∣∣∣∣∣
xQ′

1
− xA∗

3
′ yQ′

1
− yA∗

3
′

xQ′

2
− xA∗

3
′ yQ′

2
− yA∗

3
′

∣∣∣∣∣∣
(4.28)

∆x =

∣∣∣∣∣∣
(Um)

n+ 1
2

Q′

1
− (Um)

n+ 1
2

A∗

3
′ yQ′

1
− yA∗

3
′

(Um)
n+ 1

2

Q′

2
− (Um)

n+ 1
2

A∗

3
′ yQ′

2
− yA∗

3
′

∣∣∣∣∣∣
(4.29)

and

∆y =

∣∣∣∣∣∣
xQ′

1
− xA∗

3
′ (Um)

n+ 1
2

Q′

1
− (Um)

n+ 1
2

A∗

3
′

xQ′

2
− xA∗

3
′ (Um)

n+ 1
2

Q′

2
− (Um)

n+ 1
2

A∗

3
′

∣∣∣∣∣∣
(4.30)

The rest of the pairs (u
(2)
m,x)A∗

3
′–(u

(2)
m,y)A∗

3
′ , (u

(3)
m,x)A∗

3
′–(u

(3)
m,y)A∗

3
′ and (u

(4)
m,x)A∗

3
′–(u

(4)
m,y)A∗

3
′

associated with the points Q′

2–Q
′

3, Q′

3–Q
′

4 and Q′

4–Q
′

1, respectively, can be obtained

in a similar way. Consequently, in Fig. 4.5 the flow gradients at the solution point

(A∗

3
′) can be obtained by

(Um,x)A∗

3
′ =

1

4

4∑

k=1

(
u(k)

m,x

)
A∗

3
′

(4.31)

(Um,y)A∗

3
′ =

1

4

4∑

k=1

(
u(k)

m,y

)
A∗

3
′

(4.32)

For flows with discontinuities the weighting procedure can be applied as follows

(Um,x)Q∗ =





0, if θmk = 0, k = 1, 2, . . . , 4

∑4
k=1

“

W
(k)
m

”α“

u
(k)
m,x

”

Q∗

“

W
(k)
m

”α , otherwise
(4.33)
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and

(Um,y)Q∗ =





0, if θmk = 0, k = 1, 2, . . . , 4

∑4
k=1

“

W
(k)
m

”α“

u
(k)
m,y

”

Q∗

“

W
(k)
m

”α , otherwise
(4.34)

where α ≥ 0 is an adjustable constant (usually α = 1 or α = 2),

θmk =

√[(
u

(k)
m,x

)
Q∗

]2

+

[(
u

(k)
m,y

)
Q∗

]2

(4.35)

and a similar definition for each k, W
(k)
m is the product of θm1, θm2, . . . , θm4 excluding

θmk.

The procedure explained above to evaluate the flow gradients at the solution

points can be adapted for the three–dimensional discretization in a similar way.

Considering Fig. 4.7, the solution point Q∗ (marked by a cross symbol) and the

grid point Q (marked by a circle symbol) do not coincide for a non–uniform grid

distribution for the time–marching from t = n to t = n + 1
2

(see Section 4.1). In

Fig. 4.7, flow variables at Q∗ (marked by a cross symbol) are obtained from eq. (4.25)

at t = n+ 1
2
. Similarly, the flow variables at eight neighboring points A1, A2, . . . , A8

can be obtained by using the Taylor series expansion along the time axis from the

time level t = n to use the weighting procedure.

(Um)
n+ 1

2
Al

= (Um)n
Al

+
∆t

2
(Um,t)

n
Al

(4.36)

where m = 1, 2, . . . , 5 and l = 1, 2, . . . , 8 denoting points A1, A2, . . . , A8, respectively.

Consequently, the flow gradients can be obtained by eight sets of (Um,x)Q∗ ,

(Um,y)Q∗ and (Um,z)Q∗ associated with the neighboring points (A1, A2, . . . , A8).

Let,

δul
m = (Um)

n+ 1
2

Al
− (Um)Q∗ (4.37)

and

δxl = xAl
− xQ∗ , δyl = yAl

− yQ∗ and δzl = zAl
− zQ∗ (4.38)

can be defined for m = 1, 2, . . . , 5 and l = 1, 2, . . . , 8.

The first set of (Um,x)Q∗ , (Um,y)Q∗ and (Um,z)Q∗ associated with the vertex A1

(see Fig. 4.7) can be evaluated as follows

(
u(1)

m,x

)
Q∗

=
∆x

∆
,

(
u(1)

m,y

)
Q∗

=
∆y

∆
and

(
u(1)

m,z

)
Q∗

=
∆z

∆
(∆ 6= 0) (4.39)
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where

∆ =

∣∣∣∣∣∣∣∣∣

δx1 δy1 δz1

δx2 δy2 δz2

δx3 δy3 δz3

∣∣∣∣∣∣∣∣∣
(4.40)

∆x =

∣∣∣∣∣∣∣∣∣

δu1
m δy1 δz1

δu2
m δy2 δz2

δu3
m δy3 δz3

∣∣∣∣∣∣∣∣∣
(4.41)

∆y =

∣∣∣∣∣∣∣∣∣

δx1 δu1
m δz1

δx2 δu2
m δz2

δx3 δu3
m δz3

∣∣∣∣∣∣∣∣∣
(4.42)

and

∆z =

∣∣∣∣∣∣∣∣∣

δx1 δy1 δu1
m

δx2 δy2 δu2
m

δx3 δy3 δu3
m

∣∣∣∣∣∣∣∣∣
(4.43)

Similarly for each k = 2, 3, . . . , 8, (u
(k)
m,x)Q∗ , (u

(k)
m,y)Q∗ and (u

(k)
m,z)Q∗ are defined by the

procedure defined above except that the vertex A1 is replaced by Ak.

Consequently, (Um,x)Q∗, (Um,y)Q∗ and (Um,z)Q∗ for each m = 1, 2, . . . , 5 can be

evaluated by

(Um,x)Q∗ =
1

8

8∑

k=1

(
u(k)

m,x

)
Q∗

(4.44)

(Um,y)Q∗ =
1

8

8∑

k=1

(
u(k)

m,y

)
Q∗

(4.45)

(Um,z)Q∗ =
1

8

8∑

k=1

(
u(k)

m,z

)
Q∗

(4.46)

For flows with discontinuities or steep gradients, the averages in eqs. (4.44) to (4.46)

can be replaced by weighted averages, i.e.,

(Um,x)Q∗ =





0, if θmk = 0, k = 1, 2, . . . , 8

∑8
k=1

“

W
(k)
m

”α“

u
(k)
m,x

”

Q∗

“

W
(k)
m

”α , otherwise
(4.47)

(Um,y)Q∗ =





0, if θmk = 0, k = 1, 2, . . . , 8

∑8
k=1

“

W
(k)
m

”α“

u
(k)
m,y

”

Q∗

“

W
(k)
m

”α , otherwise
(4.48)
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and

(Um,z)Q∗ =





0, if θmk = 0, k = 1, 2, . . . , 8

∑8
k=1

“

W
(k)
m

”α“

u
(k)
m,z

”

Q∗

“

W
(k)
m

”α , otherwise
(4.49)

where α ≥ 0 is an adjustable constant (usually α = 1 or α = 2),

θmk =

√[(
u

(k)
m,x

)
Q∗

]2

+

[(
u

(k)
m,y

)
Q∗

]2

+

[(
u

(k)
m,z

)
Q∗

]2

(4.50)

and a similar definition for each k, W
(k)
m is the product of θm1, θm2, . . . , θm8 excluding

θmk. In order to avoid dividing by zero, a small positive number (10−60) is added to

the denominators that appear in eqs. (4.33), (4.34), (4.47), (4.48) and (4.49).

4.3 Stability Criterion

In the solution for explicit numerical schemes, the time step size is a critical

choice to obtain a consistent and stable solution. The fundamental stability condi-

tion for explicit numerical schemes is given by the Courant–Friedrichs–Lewy (CFL)

condition. This condition is common to all explicit numerical methods due to the

highly non–linear governing equations (Anderson, 1995; Tannehill et al., 1997). For

1–D advection–diffusion problems by using a von Neumann’s stability analysis, the

CFL condition can be expressed as follows;

CFL = a
∆t

∆x
< 1 (4.51)

where a is a maximum propagation velocity, ∆t is the size of a time step and ∆x

is the grid spacing. The maximum propagation velocity is the sum of convective

velocity and the speed of sound. After eq. (4.51) is rearranged, the allowable time

step is obtained as

∆t <
∆x

a
(4.52)

The physical interpretation of this condition is that ∆t must be less than the time

it takes any information is carried with the maximum propagation speed from one

grid point to the next.
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For the present 3–D flow, an analogous stability condition is constructed as

follows;

∆t <
min(∆x, ∆y, ∆z)

a
(4.53)

where ∆x, ∆y and ∆z are the grid spacing and ∆t is the size of the time step.

By introducing the CFL number, the constraint on the time step size can be

expressed as follows;

∆t = CFL
min(∆x, ∆y, ∆z)

a
(4.54)

The CFL number must stay below value of 1 for each cell in the computational

domain for the stability of the present two–time level explicit scheme. Furthermore,

for a steady flow solution, local time–stepping approach is used to increase the rate of

convergence. In this approach, each individual grid point has its own local time step

calculated based on the above equation. The flow variables at each grid point are

advanced in time according to their own pace towards the steady state conditions.

Steady state calculations are carried out with a CFL number of 0.8 and unsteady

ones are performed with a CFL number of 0.6.

4.4 Boundary Conditions

Only a part of the real physical domain can be considered for any numerical sim-

ulation. The truncation of the domain leads to artificial boundaries where certain

physical quantities (i.e., flow variables) have to be prescribed (Blazek, 2005). Im-

plementation of the accurate boundary conditions is an essential requirement and it

needs a particular care for the direct noise computation. Additionally, the technique

used in implementing the boundary conditions can have a major effect on the stabil-

ity and convergence speed of the numerical solution. Boundary conditions should be

able to absorb flow disturbances when they are leaving the computational domain

without causing excessive reflections. An improper implementation can result in

an inaccurate simulation. In the present study, unlike conventional finite–volume

schemes, boundary conditions are defined not only for the conservative variables

(Um) but also for their spatial derivatives (Um,x, Um,y, Um,z) where m = 1, 2, . . . , 5.

The flux–based nature of the time–conservative finite–volume method results in use
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of the flux–based boundary condition. Implementation of the flux–based boundary

conditions particularly for the non–reflecting boundary condition is extremely sim-

ple since each control volume allows flux and the flow information to propagate into

future. Boundary conditions have to be compatible with both physical and numeri-

cal properties of the problem to be solved. In the present study, different boundary

conditions are used including the non–reflecting boundary condition, the subsonic

and supersonic inlet as well as outlet boundary conditions, the inviscid and viscous

wall boundary conditions and the periodic boundary condition. In the subsequent

sections, implementation of these boundary conditions is provided.

4.4.1 Non–Reflecting Boundary Condition

Numerical treatment to achieve a non–reflecting boundary condition is a critical

issue for unsteady flow calculations and practical aeroacoustics applications. Re-

flected signals from the boundaries may contaminate the flow field without an effec-

tive non–reflecting boundary condition. The non–reflecting boundary condition for

the time–conservative finite–volume scheme is indeed very simple and robust such

that they are applicable to subsonic, transonic and supersonic flows even in the

presence of discontinuities. Various implementations of the non–reflecting boundary

condition are proposed by Chang et al. (2003). The non–reflecting boundary con-

dition treatment is based on flux conservation near the domain boundary through

flux balance over the surfaces of a control volume. It was demonstrated by Chang

et al. (2003); Loh (2003b); Loh and Jorgenson (2005) that only negligible reflection

occurs even when a shock passes through a boundary with this type of flux–based

condition (Loh et al., 2001a). The non–reflecting boundary conditions described

here have been successfully applied to different aeroacoustics problems by Loh et al.

(2001a,b,c); Loh (2003a, 2005); Loh and Hultgren (2005); Aybay et al. (2009a,b).

The following non–reflecting boundary conditions are adapted from Loh et al.

(2001a) and employed in the present study. For a grid node (i, j, k, n) lying at the

physical domain boundary where (i, j, k) is the index of the node and n stands for

the time level, the non–reflecting boundary condition (Type–I) requires that

(Um,x)
n
(i,j,k) = (Um,y)

n
(i,j,k) = (Um,z)

n
(i,j,k) = 0 (4.55)
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whereas (Um)n
(i,j,k) is kept fixed at the initially given steady boundary value.

(Type–II) is used if there are substantial gradients in, for example, the y and

z–directions. The non–reflecting boundary condition (Type–II) requires that

(Um,x)
n
(i,j,k) = 0 (4.56)

whereas (Um)n
(i,j,k), (Um,y)

n
(i,j,k) and (Um,z)

n
(i,j,k) are defined by simple extrapolation

from the closest interior node and previous time step, denoted by (i′, j′, k′, n − 1),

using the following relations

(Um)n
(i,j,k) = (Um)n−1

(i′,j′,k′), (Um,y)
n
(i,j,k) = (Um,y)

n−1
(i′,j′,k′),

(Um,z)
n
(i,j,k) = (Um,z)

n−1
(i′,j′,k′). (4.57)

The proposed non–reflecting boundary conditions are remarkable for their simplicity

and robust enough to allow a near–field computation without disturbing or distorting

the flow acoustic fields. No characteristic theory is employed in their construction.

These conditions allow even shock waves to leave the computational domain with

no noticeable reflection at the boundary (Loh et al., 2001a; Chang et al., 2003).

4.4.2 Inlet and Outlet Boundary Conditions

For hyperbolic problems the number of boundary conditions required can be de-

termined by an evaluation of the direction that information is carried by the flow

characteristics. These characteristics are related to the entropy, vorticity and acous-

tic disturbances. The number of boundary conditions to be specified should be equal

to the number of characteristics that are directed from the exterior of the region to-

ward the physical domain. For instance, in the case of subsonic inflow there are four

incoming flow characteristics (in 3D) and one outgoing flow characteristic running

across the boundary. Therefore, in the present flow solver, four flow characteris-

tics are prescribed based on the stagnation pressure, the stagnation temperature

and flow angles (i.e., free stream values). One characteristic variable is extrapo-

lated from the interior of the computational domain, then the specified quantities

together with the isentropic relation are used to determine other flow variables at

the inlet boundary. The situation reverses for subsonic outflow. The four outgoing
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characteristic variables have to be extrapolated from the interior of the domain and

the remaining incoming characteristic variable needs to be specified.

All conservative variables at the inlet boundary are determined by free stream

values for the supersonic inflow boundary condition. On the other hand, the super-

sonic outflow boundary requires that all the flow variables be extrapolated from the

interior of the domain. The supersonic inflow and the supersonic outflow bound-

ary conditions have some similarities with the non–reflecting boundary conditions

given in Section 4.4.1. The difference between the supersonic inflow boundary con-

dition and the (Type–I) non–reflecting boundary condition is the definition of the

gradients on the boundary. For the supersonic outflow case the difference is not

only the flow gradients definition on the outlet boundary but also the extrapolation.

The flow variables are extrapolated from the previous time level for the (Type–II)

non–reflecting boundary condition (see eq. (4.57)). Therefore, in the present study,

only the subsonic inflow and outflow boundary conditions are imposed to solve one

problem, namely, shock capturing case for a convergent–divergent nozzle given in

Section 5.1.2. The rest of the calculations are carried out as a combination of the

non–reflecting boundary conditions, the solid wall boundary condition and the pe-

riodic boundary condition.

4.4.3 Solid Wall Boundary Condition

The fluid slips over the solid body for an inviscid flow case. The velocity vector

must be tangent to the wall since there is no friction force. In the present flow solver

no flow normal to the wall is permitted. Pressure gradients normal to the wall are

assumed to be zero (pn = 0). Tangential velocity components and pressures are

determined by extrapolation from the interior to the boundary in the present study.

For viscous flow, the relative velocity between the wall and the fluid directly

at the surface is set to zero. The Cartesian velocity components become zero (i.e.,

no–slip boundary condition), namely,

u = v = w = 0 at a stationary wall surface (4.58)

If the wall is adiabatic (i.e., no heat flux through the wall), then the following
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condition for temperature is imposed

Tn = 0 (4.59)

The pressure in the convective fluxes is obtained in the same way as described above

for the inviscid flow.

4.4.4 Periodic Boundary Condition

In the present study, the periodic boundary condition is employed only for

the three–dimensional LES applications in the spanwise direction (see Sections 6.1

and 6.2). This boundary condition is the simplest to be implemented among the

other types of boundary conditions given in the previous sections. A schematic view

is shown in Fig. 4.9 to illustrate the periodic boundary condition. The configuration

is assumed to be periodic between the points ab and cd. The periodic boundary is

implemented for the present flow solver by setting the flow variables and the spatial

derivatives of the flow variables. For example,

(Um)1 = (Um)1′ , (Um,x)1 = (Um,x)1′,

(Um,y)1 = (Um,y)1′ and (Um,z)1 = (Um,z)1′ . (4.60)

(Um)2 = (Um)2′ , (Um,x)2 = (Um,x)2′,

(Um,y)2 = (Um,y)2′ and (Um,z)2 = (Um,z)2′ . (4.61)

a

b

c

d

1 21′2′

Figure 4.9: Schematic view for the illustration of periodic boundary condition
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4.5 Acceleration Techniques

4.5.1 Direct–Flux Based Multigrid Method

In viscous flows, to resolve thin viscous layers properly highly stretched grid cells

are required in the near–wall regions. This requirement leads to employing grid cells

with high aspect ratios in many flow cases. A numerical scheme produces larger

truncation error when the aspect ratio of the grid cells becomes large (Tannehill

et al., 1997). The run–time requirement of the simulation might be very long due

the time step which is limited by the smallest grid cell. The multigrid methodology

can be used in order to accelerate the solution of the Navier–Stokes equations and

improve the convergence rate of viscous calculations. This technique was originally

developed by Brandt (1981) and later this acceleration method was applied to the

Euler equations by Jameson (1983). The fundamental idea of the multigrid method

is to employ coarse grids in order to drive the solution on the finest grid faster to

steady state (Blazek, 2005).

In the present study, the direct–flux based multigrid method is implemented as

an acceleration technique. This multigrid method at two–level was proposed by He

and Denton (1994). In this method a fine mesh is defined as the one on which the

flow variables and fluxes are evaluated. On the other hand a coarse mesh is defined

in a way that it can be directly obtained from those of the fine meshes. According

to He and Denton (1994) the temporal integration should be formulated for the

direct–flux based multigrid technique as following first the solution should march on

the fine mesh up to its stability limit then on the coarse mesh using a larger time

step owing to a larger control volume.

For one–level grid (i.e., single–grid), a temporal change of the flow variables on

the fine mesh is defined as

(Un+1
m − Un

m)f = ∆tf
Rf

∆Vf
(4.62)

where the subscript f denotes the fine mesh, ∆tf is the permissible time step and

Rf is the net flux for the finite–volume on the fine mesh.

For the two–level time integration method (two–grid) the solution is first marched
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on the fine grid and then on the coarse grid. Therefore, the overall time step is

much larger than the one–level temporal change and the accuracy of the solution is

controlled by the fine grid (He and Denton, 1994). The temporal change of the flow

variables in the fine mesh is given by

(Un+1
m − Un

m)f = ∆tf
Rf

∆Vf

+ ∆tc
Rc

∆Vc

(4.63)

where the subscript c denotes the coarse mesh, ∆tc is the permissible time step and

Rc is the net flux for the finite–volume on the coarse mesh. A detailed discussion of

the two–level multigrid method for unsteady flows can be found in (He and Denton,

1994). Implementation of the direct–flux based multigrid method is much easier

and numerically cheaper than the conventional one. To the best knowledge of the

author, in order to increase the convergence rate of the viscous flow calculations, im-

plementation of the direct–flux based multigrid technique for the time–conservative

finite–volume method was carried out for the first time in the present study. The

steady state calculations are performed using the two–level multigrid method for

viscous laminar flows. Influence of this multigrid method on the convergence speed

of the solution scheme is presented in Sections 5.2.1 and 5.2.2.

4.5.2 Interface Between Multiblocks and Parallel Comput-

ing

The multiblock technique has been widely used for structured grid flow solvers to

deal with complex geometries. In this method, the physical domain is divided into a

certain number of subdomains (i.e., blocks). By doing this, a complex geometry can

be divided into a sequence of simple geometries. The physical solution in a particular

block will depend on the flow in neighbouring blocks (Blazek, 2005). Therefore, an

exchange of information between blocks is required. The most common approaches

rely on interpolation formulas that can produce artificial discontinuities in the flow

variables across the boundaries (Lockard, 1999).

In the present study, a simple multiblock method is used where the grid lines

match at the block interface, as shown in Fig. 4.10. Exchange of flow variables in 2D

is depicted also in Fig. 4.10. The procedure consists of three steps. First of all, the
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A

B

C

D

E

F
p

r

s

t

Block1 Block2Interface

Figure 4.10: Schematic view for exchange of flow variables in 2D

flow variables at grid points s and t are transferred from Block2 to Block1. Then, in

Block1 using the flow variables at grid points p, r, s and t flux evaluation is carried

out in order to obtain the flow variables at grid point D. In the last step, the flow

variables information at grid point D transferred from Block1 to Block2. The same

flux evaluation method is used here as inside the physical domain along the block

interfaces in order to prevent any artificial discontinuities across the boundaries.

The multiblock approach is performed first for the Euler solver and used for the

supersonic flow over a forward–facing step problem (see Section 5.1.3).

The multiblock technique was the basis for splitting up the computational do-

main for a parallel computation. The cost of performing the practical acoustic

calculations is still very high. Hence, in order to reduce the run–time requirement

of the simulations the Navier–Stokes flow solver is parallelized by domain decompo-

sition with explicit message passing via MPI. The parallel Navier–Stokes solver is

first used for a 2–D mixing layer problem where the computational domain is decom-

posed into 16 subdomains (see Section 5.3.1). 3–D direct noise computations using

large–eddy simulation technique are also performed with the parallel flow solver (see

Section 6.1 and 6.2). All parallel computations are carried out on an AMD Opteron

based Linux Cluster (Hamilton) provided by the ITS High Performance Computing

service at Durham University.



Chapter 5

Validation of the

Time–Conservative Finite–Volume

Method

In this chapter validation studies for the two–dimensional inviscid (Section 5.1),

viscous laminar (Section 5.2) and viscous turbulent (Section 5.3) flows are carried

out on different test cases with a wide range of flow regimes. The aim of this

validation study was to verify the accuracy and illustrate the capabilities of the

time–conservative finite–volume method as function of discretization options and

grid density.

5.1 Inviscid Flows

Inviscid flows are modeled by the system of Euler equations and these equations

describe flows where the influence of viscous shear stresses and heat conduction ef-

fects can be neglected (Hirsch, 2007). The Euler equations are obtained by dropping

both the viscous and the heat–transfer terms from the Navier–Stokes equations (see

eq. (4.1)). In two–dimensional Cartesian coordinates, the system of time–dependent

Euler equations can be written as

∂U

∂t
+

∂F

∂x
+

∂G

∂y
= 0 (5.1)

77
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where U is the vector of the conservative variables, F and G are the convective flux

vectors. The Euler equations given by eq. (5.1) are always hyperbolic in space and

time, independent of flow regime.

The Euler equations form the basis for the Navier–Stokes solutions. Therefore,

the observed properties of these equations will be of critical importance when the

same discretization of the convective terms is applied to viscous laminar and viscous

turbulent flows. In order to investigate the accuracy and the shock–capturing capa-

bilities of the method, numerical solutions are provided for three different inviscid

test cases in the subsequent sections. Mach numbers for the test cases are higher

than 0.2. Therefore compressibility effects can not be neglected. The developed

method is a density–based solver (i.e., the density is based on the velocities of the

previous iteration) in order to take into account the influence of compressibility.

5.1.1 Shock Reflection on a Flat Plate

The steady–state oblique shock reflection on a flat plate was proposed by Yee

et al. (1983). This test case was considered by Chang et al. (1999); Zhang, Z.C.

and Yu (1999); Zhang, Z.C. et al. (2002) also. Here, the accuracy and the shock–

capturing capabilities of the proposed scheme based on the new definitions of cell

interface and control volume (see Section 4.1) are investigated for the shock reflection

on a flat plate problem.

The computational domain and the exact shock locations are depicted in Fig. 5.1.

The computational domain is rectangular extending from 0 ≤ x ≤ 4 and 0 ≤ y ≤ 1.

The inflow boundary condition is imposed on the left boundary as a supersonic flow

with a Mach number of 2.9. The inflow and the upper boundary conditions at t = 0

are as follows (Zhang, Z.C. et al., 2002)

(u, v, ρ, p) =





(2.9, 0.0, 1.0, 0.71428) inflow boundary condition

(2.6193,−0.50632, 1.7, 1.5282) upper boundary condition

where u, v, ρ and p are the non–dimensional streamwise velocity, wall–normal ve-

locity, density and pressure parameters, respectively. The lower boundary is a solid

reflecting wall. The flow variables and the spatial derivatives of the flow variables
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are defined by simple extrapolation from the interior at the outflow boundary (right–

hand).

x

y

29◦

23.279◦

0 1

1

2 3 4

Figure 5.1: Computational domain and the shock locations of a steady–state oblique

shock problem

A quadrilateral mesh is constructed using 121 nodes in the streamwise and 41

nodes in the wall–normal directions with equal grid spacing (see Fig. 5.2). The

numerical simulation is carried out for a finer mesh also. The fine mesh consists of

241 × 81 grid points in the streamwise and wall–normal directions, respectively.

0 1 2 3 4
0

0.5

1

x

y

Figure 5.2: Coarse mesh used for the shock reflection on a flat plate problem

Due to the presence of shocks, the time–conservative finite–volume method needs

to have certain numerical dissipation. Thus, this dissipation is introduced using the

weighting procedure given by eqs. (4.33) and (4.34). The development of incident

and reflected shocks for the distribution of computed pressure on the fine mesh can

be seen in Figs. 5.3 and 5.4, respectively.
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Figure 5.3: Development of incident shock for the distribution of computed pressure on

the fine mesh at t = 0.025, 0.05, 0.075, 0.1 and 0.125 from (upper) to (lower)
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Figure 5.4: Development of reflected shock for the distribution of computed pressure on

the fine mesh at t = 0.15, 0.175, 0.2, 0.225 and 0.25 from (upper) to (lower)
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A comparison of the resulting steady–state pressure and Mach number contours

with isolines on the coarse and fine meshes is depicted in Figs. 5.5 and 5.6, respec-

tively. The improvement in shock resolution by using a finer mesh (241 × 81) can

be seen in these figures. The distribution of the pressure coefficient (Cp) along the

mid–section of the computational domain (y = 0) is defined by

Cp =
2

γM2
∞

(
P

P∞

− 1

)
(5.2)

where γ = 1.4, M∞ = 2.9 and P∞ = 0.71428.

In Fig. 5.7, the computed values of the pressure coefficient distribution on the

coarse and fine meshes are compared with the exact solution. The computed Cp

values agree very well with the exact solution. A reduction in grid spacing shows

an improvement in flow resolution as expected. The numerical resolution of the

reflected shock is identical to that of the incident shock. No numerical oscillations

are detected near either the incident or the reflected shocks.

Figure 5.5: Distribution of pressure and isolines, as computed on the coarse (upper) and

fine (lower) meshes
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Figure 5.6: Distribution of computed Mach number and isolines, on the coarse (upper)

and fine (lower) meshes
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Figure 5.7: Pressure coefficient distribution along the mid–section of the computational

domain (y = 0.5)
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5.1.2 Shock Capturing Case for a Convergent–Divergent Noz-

zle

Steady flow with formation of a normal shock wave in the divergent section of a

convergent–divergent nozzle is considered here. The flow at the inlet to the nozzle

comes from a reservoir where the stagnation pressure and temperature are p0 and

T0, respectively. The flow is subsonic in the convergent portion of the nozzle, sonic

at the throat and supersonic at the divergent section, as shown in Fig. 5.8. A

normal shock wave may form in the divergent section of the nozzle depending on

the pressure at the outlet (see Fig. 5.8) (Anderson, 1995).

Normal shock wave

Throat

Divergent sectionConvergent section

M < 1M < 1 M > 1M = 1

p0

T0
pe

Inlet Outlet

Wall

Wall

0 5 10

Figure 5.8: Schematic view of the convergent–divergent nozzle with a normal shock wave

in the divergent section

The Mach number distribution through the nozzle is governed by the area–Mach

number relation. This relation is given by (Anderson, 1995)

(
A

A∗

)2

=
1

M2

[
2

γ + 1

(
1 +

γ − 1

2
M2

)] (γ+1)
(γ−1)

(5.3)

where γ is the ratio of specific heats, A is the cross–sectional area and A∗ is the area

of the sonic throat.

The variation of pressure, density and temperature as a function of Mach number
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is given by

p

p0
=

(
1 +

γ − 1

2
M2

) −γ
γ−1

(5.4)

ρ

ρ0
=

(
1 +

γ − 1

2
M2

) −1
γ−1

(5.5)

T

T0
=

(
1 +

γ − 1

2
M2

)
−1

(5.6)

where γ = 1.4 and p0 is the stagnation pressure.

The dimensions of the computational domain are: 10 m (streamwise)× 1.5 m

(wall–normal). The area ratio between the inlet and the sonic throat is 1.5. The

throat of the nozzle is at x = 5.0 m. The convergent section occurs x < 5.0 m

and the divergent section occurs for x > 5.0 m (see Fig. 5.8). The mesh consists of

151× 25 grid points in the streamwise and wall–normal directions, respectively (see

Fig. 5.9).
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1

1.5

x(m)

y(m)

Figure 5.9: (151 × 25) mesh for the convergent–divergent nozzle problem

The stagnation pressure and temperature are set to 105 Pa and 300 K, respec-

tively. These flow conditions are imposed as inflow boundary condition. The slip

boundary condition is implemented at the upper and lower walls. The spatial deriva-

tives of the flow variables are set to zero at the inlet and outlet boundaries. On the

other hand, the gradients at the walls were evaluated from an interior node closest

to this boundary. Exit pressure, pe, is set to 80,000 Pa. The convergent–divergent

nozzle becomes choked at this pressure value. A normal shock wave will form some-

where in the divergent section of the nozzle. The flow becomes subsonic immediately

behind the normal shock. The area–Mach number expression, eq. (5.3), is only valid

for isentropic flow. The flow properties between the inlet and ahead of the shock can
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be determined by the area–Mach number and isentropic relations given by eqs. (5.4)

to (5.6). The total pressure is constant between the inlet and the normal shock

wave due to constant entropy (i.e., an isentropic flow). However, the total pressure

decreases across the shock due to entropy increase. Therefore, the expression for

the area–Mach number given by eq. (5.3) can not be used across the normal shock

wave (Anderson, 1995). In order to evaluate the flow properties behind the shock

wave, the normal shock relations need to be used. The exact location of the normal

shock wave is calculated at x = 7.61 m using these relations. The Mach number

in front of the shock and the Mach number immediately behind the shock wave are

calculated as 1.49 and 0.705, respectively.

Figure 5.10: Mach number contours with isolines on the (151 × 25) mesh
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Figure 5.11: Distribution of Mach number along the mid–section of the convergent–

divergent nozzle
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The distribution of computed Mach numbers and pressure with isobars are de-

picted in Fig. 5.10 and Fig. 5.12, respectively. The subsonic flow behind the normal

shock wave and increase in pressure can be observed from these figures. Compari-

son of Mach number and pressure distribution against the exact solution along the

mid–section of the nozzle are shown in Fig. 5.11 and Fig. 5.13, respectively. The

simulation results are agree very well with the exact solution. The shock is resolved

with a few grid points and no numerical oscillations are detected in the vicinity

of the normal shock wave. The steady–state flow field in the convergent–divergent

nozzle and the location of the shock were predicted accurately by the present two–

dimensional Euler solver.

Figure 5.12: Pressure contours with isolines on the (151 × 25) mesh
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Figure 5.13: Distribution of pressure along the mid–section of the convergent–divergent

nozzle
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5.1.3 Supersonic Flow Over a Forward–Facing Step

Accurate simulation of flows with strong shocks is a challenging topic. A two–

dimensional simulation of supersonic flow over a forward–facing step is carried out,

which is a standard benchmark problem in literature. This benchmark case was used

by Woodward and Colella (1984); Giannakouros and Karniadakis (1994) to compare

the accuracy of different numerical methods. This problem was also considered

by Chang et al. (1999); Zhang, Z.C. and Yu (1999).

M = 3.0

p0 = 105Pa

T0 = 300K

0.0m

0.0m
0.2m

0.6m

1.0m

3.0m

Inlet Outlet

Wall

Wall

Figure 5.14: Computational domain and boundary conditions of a supersonic flow over

a forward–facing step

Fig. 5.14 shows the computational domain and the boundary conditions of the

supersonic flow over a forward–facing step problem. The domain extends from x = 0

to x = 3.0 m and from y = 0 to y = 1.0 m. The free stream Mach number is 3.0, the

stagnation pressure is 105 Pa and the stagnation temperature is 300 K. These flow

conditions are imposed on the left–hand boundary as supersonic inlet boundary

condition. The reflecting boundary condition is applied to the walls. The outlet

boundary condition has no influence on the flow, since the exit velocity is always

supersonic. The condition at the outlet is extrapolated from an interior node closest

to this boundary. The domain is decomposed into 2 subdomains and the mesh used

for this problem can be seen in Fig. 5.15. A quadrilateral mesh is used with 0.0125

m and 0.01 m grid spacing in the x and y–directions, respectively. The multiblock

flow solver is used first for this benchmark case (Aybay and He, 2007).

The corner of the step is the centre of a rarefaction fan and hence is a singular

point of the flow (Woodward and Colella, 1984; Chang et al., 1999). According
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Figure 5.15: Quadrilateral mesh used for the supersonic flow over a forward–facing step

problem with equal grid spacing

to Woodward and Colella (1984), without applying special numerical treatment at

the singular point the flow is seriously affected by large numerical errors in the

vicinity of this singular point. In order to reduce the numerical errors, an additional

boundary condition near the step corner was imposed by Woodward and Colella

(1984). Chang et al. (1999); Zhang, Z.C. and Yu (1999) did not apply any special

numerical treatment at the step corner and presented very good results. However,

they tried to avoid placing a grid point at this singular point. In the present study,

the calculations are carried out without employing any special treatment at the cor-

ner of the step and due to the new definitions of the control volume (see Section 4.1)

a grid point is used at the upper corner of the step. According to Woodward and

Colella (1984), the density distribution is the most difficult to compute for this prob-

lem due to the weak contact discontinuity caused by the Mach reflection of the bow

shock at the upper wall. Here, the simulation is carried out with a Courant number

of 0.8. Formation of the expansion fan at the step corner, the Mach stem on the

lower wall and the interaction between the reflected shock with rarefaction waves

are depicted using the density distribution in Fig. 5.16. The step corner shock on

the upper wall is formed with a right length as presented by Woodward and Colella

(1984) when the reflected shock passes exactly through the upper corner at the

outlet boundary of the computational domain (see Fig. 5.16 (lower)).

The density distribution (with 30 contours) at t = 4×10−2 s is shown in Fig. 5.17.

The agreement is excellent with the high–resolution results of Woodward and Colella

(1984); Chang et al. (1999). In conclusion, flow field features of the forward–facing
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Figure 5.16: Density contours of the supersonic flow over a forward–facing step problem

at t = 1 × 10−2 s, 1.5 × 10−2 s, 2 × 10−2 s and 2.5 × 10−2 s from (upper)

to (lower)
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step problem are predicted accurately with high–fidelity by the time–conservative

finite–volume method without using any special numerical treatment at the upper

corner of the step. The multiblock methodology is validated here also. Then, this

methodology is used for the implementation of the flow solver on a parallel computer

by means of domain decomposition.

Figure 5.17: Distribution of computed density with 30 contours at t = 4 × 10−2 s

5.2 Viscous Laminar Flows

The Navier–Stokes equations consist of the Euler equations, the viscous shear

stresses and the heat conduction effects. The Navier–Stokes solver is an extension of

the Euler solver. The viscous and heat flux terms are added to the Euler solver. The

only change that the inviscid solver is required to discretize the additional viscous

and heat flux terms. These terms are represented by second order derivatives and

both being diffusion type terms (Hirsch, 2007). Details about discretization of the

viscous fluxes can be found in Section 4.2. The compressible Navier–Stokes equations

in Cartesian coordinates, in absence of external forces and heat addition is already

provided in Section 3.1 using eq. (4.1). One of the major differences that occurs

when solving the Navier–Stokes equations, compared to the Euler equations, is the

solid wall boundary condition, where all the velocity components have to vanish.

For this reason the velocity and temperature profiles can vary rapidly over a short

distance in the near–wall regions (Hirsch, 2007). In order to properly resolve thin

viscous layers in the near–wall regions high density grids with large aspect ratio
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are required. In many cases this requirement will lead to a substantial amount

of computing time including data storage issues. When the aspect ratio of grid

cells becomes larger, numerical schemes typically produce larger truncation error

resulting in slower convergence (Tannehill et al., 1997). The number of iterations

can be reduced by the addition of the multigrid technique. In order to accelerate the

convergence of the Navier–Stokes solver, the direct–flux based multigrid method (see

Section 4.5.1) is implemented. Influence of this multigrid method on the convergence

speed of the solution scheme is represented in Sections 5.2.1 and 5.2.2.

5.2.1 Laminar Flow Over a Flat Plate

The laminar boundary layer development along a flat plate is one of the funda-

mental applications of laminar viscous flows. Laminar flow over a flat plate is often

used as a standard validation case for a Navier-Stokes solver. Despite its simple

geometry, the main advantage of this case is the availability of an exact solution,

obtained by solving the Blasius equation. A detailed description of the Blasius

solution can be found in Schlichting (1979).

The computational domain is selected between the leading edge and the trailing

edge of the flat plate. Although this selection might create a nonrealistic flow field

near the leading edge of the flat plate, it is used here for its simplicity. A nonuniform

quadrilateral mesh used for the laminar viscous flow over a flat plate case is depicted

in Fig. 5.18. The mesh consists of (101 × 61) grid points in the streamwise (x) and

wall–normal (y) directions. The thickness of the first grid cell in the wall–normal

direction is about 0.00156 times the plate length and this results in more than 10

grid cells in the boundary layer. The boundary in the far–field (i.e., upper boundary)

is located at a distance of half the flat plate length. Far from the flat plate the flow

is almost uniform and allows coarser grid cells. The maximum grid spacing around

the far–field boundary is about 50 times the thickness of the first grid cell. The

grid spacing in the streamwise direction is kept constant, whereas an exponential

stretching is applied in the wall–normal direction.
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Figure 5.18: Mesh used for the laminar viscous flow over a flat plate case

A free stream Mach number of 0.3 and a Reynolds number of 2,000, based on

the free stream velocity and the flat plate length, are used at the inlet. The inlet

stagnation pressure and stagnation temperature are fixed to 105 Pa and 300 K,

respectively. These flow conditions are imposed at the inlet boundary with a uniform

flow assumption. The outflow boundary is applied on the right–hand boundary

using the (Type–II) non–reflecting boundary condition. The lower boundary is a

viscous wall, where a no–slip boundary condition is imposed. The upper boundary

is represented by a far–field boundary condition, where the flow variables are set to

free stream values and the spatial derivatives of the flow variables are extrapolated

from the interior.

Figure 5.19: Distribution of computed Mach number with velocity vectors
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In Fig. 5.19, the distribution of computed Mach number with velocity vectors is

represented. The laminar boundary layer development with velocity vectors along

the flat plate can be seen also in Fig. 5.19. No deterioration of the boundary layer

is observed along the flat plate. The laminar boundary layer profile seems to be

as expected. Influence of the computational domain selection using a uniform flow

assumption at the inlet boundary can be seen by the velocity vectors near the leading

edge of flat plate.

Computed streamwise (i.e., axial) velocity profiles are displayed in Fig. 5.20 in-

cluding computation for the two–level multigrid method. The distribution of com-

puted streamwise velocity profiles at 40 %, 50 %, 60 % and 70 % of the flat plate

are compared with the analytical solution of Blasius (Hirsch, 2007) using

η =
y

x

√
Re and Re =

ρV L

µ
. (5.7)

where η is a non–dimensional coordinate normal to the flat plate and L is a character-

istic length. It appears that, with a sufficient number of grid cells in the boundary

layer the Navier–Stokes solver is able to reproduce the analytical distribution of

streamwise velocities at 40 %, 50 %, 60 % and 70 % of the flat plate. Computed

streamwise velocity profiles are in very good agreement with the analytical solution

not only for the single–grid results but also for the two–level multigrid results (see

Fig. 5.20 (right)).

The variation of computed friction coefficient (Cf) along the flat plate is depicted

in Fig. 5.21. Comparison of the friction coefficient distribution with the analytical

solution (Cf = 0.664/
√

Re (Hirsch, 2007)) is carried out using the single–grid and

two–level multigrid technique. The local friction coefficient is defined by

Cf =
τw

0.5ρ∞U2
∞

and τw = µ
∂u

∂y
|y=0 . (5.8)

Similarly, for the distribution of computed friction coefficient along the plate, a very

good agreement is observed between the analytical solution and computed results

(see Fig. 5.21).

The convergence history of the x–momentum equation is provided in Fig. 5.22.

The x–momentum residual is decreased by about 5 orders of magnitude. The

two–level multigrid method is associated to a more rapid convergence, as shown
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Figure 5.20: Axial velocity distribution at 40 %, 50 %, 60 % and 70 % of the flat plate

including computation for the two–level multigrid technique (right)
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Figure 5.21: Distribution of friction coefficient along the flat plate

in Fig. 5.22, due to the use of the larger time step. An improvement by employ-

ing multigrid acceleration technique with respect to a single–grid calculation can

be seen clearly. The number of iterations is considerably reduced by the addition

of multigrid technique and the steady state flow condition can be quickly reached

without losing any significant accuracy. These results validate the accuracy of the

Navier–Stokes solver including the implementation of the direct–flux based multigrid

method.
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Figure 5.22: Convergence history of the x–momentum residual

5.2.2 Lid Driven Cavity Flow

The lid driven cavity flow in a square cavity is used as a second validation case

for the Navier–Stokes solver. The direct flux–based multigrid method is employed

here again at two–level in order to reduce the run–time requirement of the simu-

lation. Ghia et al. (1982) and Schreiber and Keller (1983) were among the first to

publish data on the lid driven flow in a square cavity case. These classical papers

are frequently referenced by the other researchers in order to validate their Navier–

Stokes solver or to test the performance of multigrid technique. In the present

study, all computed results were validated against the results published by Ghia

et al. (1982). This benchmark problem was considered by Guo et al. (2004); Zhang,

M. et al. (2004); Venkatachari et al. (2008) to validate their two–dimensional Navier–

Stokes solver based on the space–time conservation element and solution element

(CE/SE) method. Although the cavity geometry is simple, the driven cavity flow

exhibits a number of interesting physical features and several complex flow phe-

nomena, such as flow separation from the stationary wall, the existence of viscous

corner eddies in the rigid 90◦ corners, primary (longitudinal) vortices and interaction

between vortices depending on the Reynolds number.
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A nonuniform quadrilateral mesh consists of (129×129) grid points in the x and

y–directions. An exponential grid stretching is applied from the boundaries of the

cavity until the cavity centre (see Fig. 5.23). Therefore a packed grid topology is

obtained in order to resolve the corner eddies accurately. The flow conditions are

Mach number of 0.1 and a Reynolds number of 400 based on the speed of the upper

(i.e., moving) boundary and the height of the cavity. The stagnation pressure and

stagnation temperature are fixed to 105 Pa and 300 K, respectively. These flow

conditions are imposed at the upper boundary of the cavity as a moving boundary

condition. The other boundaries are stationary (i.e. viscous) walls where a no-slip

boundary condition is imposed.
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Figure 5.23: A nonuniform quadrilateral mesh used for the lid driven cavity problem

Two–dimensional compressible Navier–Stokes equations are solved to demon-

strate the capability of the viscous flow solver and to test the performance of the

direct–flux based multigrid technique. In Fig. 5.24, the distribution of computed u–

velocity along the vertical line through the cavity centre (left) and the distribution of

computed v–velocity along the horizontal line through the cavity centre (right) are

represented for the single–grid and two–level multigrid method. The computed re-

sults are compared with those obtained by Ghia et al. (1982) for the same Reynolds

number. A primary vortex inside the cavity and two smaller reverse–rotating vor-

tices at both corners of the lower wall can be seen including the distribution of
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computed Mach number and the streamlines, as shown in Fig. 5.25. The lower left–

hand corner secondary vortex is resolved slightly different by the multigrid method

(see Fig. 5.25 (right)) with respect to the single–grid computation. In general, the

results obtained through the developed solver based on the time–conservative finite–

volume method are in close agreement with the available numerical results.
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Figure 5.24: Distribution of the u–velocity along the vertical line through the cavity

centre (left) and distribution of the v–velocity along the horizontal line

through the cavity centre (right) at Re = 400

Figure 5.25: Distribution of computed Mach number and streamlines for single–grid

(left) and two–level multigrid (right) at Re = 400
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Figure 5.26: Convergence history of the x–momentum residual for the lid driven cavity

problem at Re = 400

In Fig. 5.26, the convergence history of the x–momentum equation for the lid

driven cavity flow is displayed. The x–momentum residual is decreased by about 6

orders of magnitude. A more rapid convergence rate is obtained by the two–level

multigrid technique due to the use of the larger time step. The number of iterations

are too high for this benchmark problem due to the low subsonic Mach number

regime. The computation time is reduced by the implementation of the multigrid

technique without a significant reduction in accuracy. Influence of the multigrid

method becomes more visible after the x–momentum residual is decreased by about

4 orders of magnitude. The lid driven cavity flow is investigated at different Reynolds

numbers using the same mesh and boundary conditions. In Figs. 5.27 to 5.32, the

computed results are in a very good agreement with those obtained by Ghia et al.

(1982). An upstream eddy in the upper left–hand corner begins to grow in size and

strength as the Reynolds number increases. The flow field at different Reynolds

numbers is calculated accurately by the present flow solver.

In general, it can be concluded that from these validation studies, the accuracy

of the present Navier–Stokes solver based on the new definitions of cell interface and

control volume (see Section 4.1) including the discretization of the viscous fluxes as

well as the implementation of multigrid method are validated successfully.
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Figure 5.27: Distribution of the u–velocity along the vertical line through the cavity

centre (left) and distribution of the v–velocity along the horizontal line

through the cavity centre (right) at Re = 1000

Figure 5.28: Distribution of computed Mach number (left) and streamlines (right) at

Re = 1000
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Figure 5.29: Distribution of the u–velocity along the vertical line through the cavity

centre (left) and distribution of the v–velocity along the horizontal line

through the cavity centre (right) at Re = 3200

Figure 5.30: Distribution of computed Mach number (left) and streamlines (right) at

Re = 3200
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Figure 5.31: Distribution of the u–velocity along the vertical line through the cavity

centre (left) and distribution of the v–velocity along the horizontal line

through the cavity centre (right) at Re = 5000

Figure 5.32: Distribution of computed Mach number (left) and streamlines (right) at

Re = 5000
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5.3 Viscous Turbulent Flows

Aeroacoustic problems are highly time dependent. All technically relevant aeroa-

coustic problems are governed by turbulent flows. An overview of different tech-

niques, namely, DNS, LES, RANS as well as hybrid LES–RANS methods to simu-

late turbulent flows and compute their effect on the aerodynamic noise generation

and propagation are already mentioned briefly in Section 2.1. In the present study,

the large–eddy simulation technique is used in order to simulate the turbulent flow

field features with high–fidelity as well as to predict the near–field aerodynamic

noise directly. Details of the subgrid–scale modeling for the compressible filtered

Navier–Stokes equations with the Smagorinsky model constants can be found in

Section 3.3.1. The implemented LES technique is tested by solving three different

two–dimensional problems, before carrying out full three–dimensional aeroacoustic

simulations. The geometry and the flow configuration of the problems are defined in

the subsequent sections including the details of the grids and boundary conditions.

5.3.1 Large–Eddy Simulation of a Mixing Layer

Planar shear layers and sound generation mechanisms by vortex pairing have

been studied numerically by Rogers and Moser (1994), Colonius et al. (1997), Bogey

et al. (1999), Bogey (2000a), Bogey et al. (2000b), Uzun (2003) and Ribault (2005).

Here, a two–dimensional spatially evolving mixing layer problem is solved. This test

case is the same as the one studied by Bogey (2000a) and Uzun (2003).

The hyperbolic tangent inflow profile for the mean streamwise velocity is defined

by

U(y) =
U1 + U2

2
+

U2 + U1

2
tanh

(
2y

δw0

)
(5.9)

where U1 = 50 m/s and U2 = 100 m/s are the low–speed and high–speed streams,

respectively. δw0 is the initial vorticity thickness that is defined as (Uzun, 2003)

δw0 =
U2 − U1

|∂U
∂y
|
max

(5.10)

The mean transverse velocity (V (y)) is set to zero. According to Uzun (2003), to

simulate a naturally developing shear layer, a random perturbation may be used at
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the inflow boundary. The random perturbation is given as

v′(y) = ǫα

(
U1 + U2

2

)
exp

(−y2

∆y2
0

)
(5.11)

where α = 0.0045, ∆y0 is the minimum grid spacing in the y–direction and ǫ is a

random number between -1 and 1. Similar random perturbation approach was used

by Bogey (2000a) also.

The convective Mach number which measures the intrinsic compressibility of a

mixing layer is defined by (Ribault, 2005)

Mc =
U2 + U1

2c∞
= 0.074 (5.12)

where c∞ is the speed of sound in the free stream. The Reynolds number based on

the initial vorticity thickness (δw0) and velocity difference across the shear layer is

Rew =
δw0(U2 − U1)

ν
= 5333 (5.13)

In Fig. 5.33, the mesh used for the spatially evolving mixing layer problem is de-

picted. The mesh consists of 625×301 grid points in the x and y–directions, respec-

tively. The computational domain lies between 0 ≤ x ≤ 250δw0 and −100δw0 ≤ y ≤
100δw0. The mesh is uniform in the streamwise direction whereas in the transverse

direction an exponential grid stretching is applied. The minimum grid spacing is

about 0.16δw0 at y = 0 and the maximum grid spacing around the lower and upper

boundaries is 3δw0. The physical domain is decomposed into 16 subdomains for

parallel computing. The results are compared with those obtained by using the 6th–

order tri–diagonal compact scheme (Uzun, 2003). For comparison, the grid of Uzun

(2003) consists of 720 × 576 grid points in the x and y–directions, respectively. He

also applied grid stretching toward the upper and lower boundaries using the same

exponential grid stretching. His domain extends up to 400δw0 in the streamwise

direction and from y = −300δw0 to y = 300δw0 in the transverse direction. In order

to diminish the reflecting effect from the outlet boundary he used a sponge region

in his simulation, the physical region was extended up to x = 250δw0. The first 625

grid points in the x–direction were used in the physical region and the remaining 95

grid points formed the sponge region.
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Figure 5.33: (625 × 301) mesh used for the mixing layer problem

In the present study, a smaller computational domain in both streamwise and

transverse directions is used with no sponge zone due to the effective non–reflecting

boundary condition. The hyperbolic tangent profile (eq. 5.9) with the random per-

turbation (eq. 5.11) is used as the inflow boundary. The non–reflecting boundary

condition (Type–II) is imposed at the upper, lower and outlet boundaries.

In Fig. 5.34, an instantaneous snapshot of vorticity magnitude is displayed. The

vortex pairing at various locations in the domain can be observed clearly in the same

figure.

Figure 5.34: Instantaneous snapshot of vorticity magnitude
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In Fig. 5.35, an instantaneous snapshot of streamwise velocity (left) and the dis-

tribution (right) of mean streamwise velocity are shown. Near the pairing locations,

increase in the shear layer thickness can be seen from the mean streamwise contours

in Fig. 5.35 (right). The statistical data and the mean flow variables are obtained

by time–averaging the flow field variables after passing the initial transient period.

Figure 5.35: Instantaneous snapshot of streamwise velocity (left) and distribution of

mean streamwise velocity (right)

The vorticity thickness evaluation is shown in Fig. 5.36. After the initial tran-

sients, the vorticity thickness grows linearly. The spreading rate parameter is given

by (Pope, 2000)

S =
0.5(U1 + U2)

U2 + U1

∂δw(x)

∂x
= 0.09 (5.14)

The range of reported experimental results for the parameter S is changing from

0.06 to 0.11. The parameter S predicted by the present 2–D LES solver is within

the range of experimental values.

The normalized Reynolds stresses are defined as

σxx =
〈u′u′〉

(U2 − U1)
2 and σyy =

〈v′v′〉
(U2 − U1)

2 . (5.15)

where 〈〉 denotes time–averaging. In Fig. 5.37, the turbulence intensities are com-

pared with the normalized Reynolds stress distribution obtained by Uzun (2003).

For comparison the transversal direction is non–dimensionalized by the vorticity

thickness δw(x). In conclusion, although a smaller computational domain is used
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with no sponge zone for the present computation, the 2–D simulation of the mixing

layer problem is capable of obtaining the vorticity thickness growth fairly. The com-

puted turbulence intensities are in reasonably good agreement with those using the

6th–order tri–diagonal compact scheme of Uzun (2003) whereas the present scheme

is just 2nd–order accurate in space and time.
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Figure 5.36: Vorticity thickness growth in the mixing layer
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Figure 5.37: Normalized Reynolds normal stress σxx (left) and σyy (right) profiles
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5.3.2 2–D Cavity Flow Noise

The flow field generated by a two–dimensional open cavity in a transonic flow

is investigated here. The present 2–D LES solver is used to perform numerical

simulation on a rectangular cavity at a Mach number of 0.85. Physical description

of different mechanisms for generating cavity flow noise and a review of previous

studies are already provided in Section 2.4. The 2–D cavity case computed here is

the same as the one studied by Chen et al. (2007). Two–dimensional LES results of

the present scheme are compared with those of high–order numerical scheme (Chen

et al., 2007) as well as experimental data (Peshkin, 2002; Henshaw, 2000) for the

flow over a rectangular cavity.

The cavity geometry with a length–to–depth (L/D) ratio of 5 exhibiting flow in

shear layer mode, so called because the separated shear layer at the cavity leading

edge does not attach to the cavity floor. This geometry is adapted here to carry out

a 2–D simulation from the M219 cavity configurations given by Peshkin (2002). Its

length L and the depth D are equal to 508 mm and 101.6 mm, respectively. The

dimensions of the computational domain are: 11D (streamwise) ×4D (wall–normal)

as shown in Fig. 5.38. In the present study, the size of computational domain and

the grid configuration are same as the one given by Chen et al. (2007). The grid

consists of 400 × 130 ≈ 5.2 × 104 CVs above the cavity and 250 × 80 ≈ 2.0 × 104

CVs inside the cavity. Total grid consists of 72,000 CVs. The physical domain

is decomposed into 16 subdomains for parallel computations. Each subdomain is

represented by red line boundary, as shown in Fig. 5.38.

Figure 5.38: Mesh and subdomains used for the two–dimensional open cavity problem
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The flow conditions correspond to a free–stream Mach number of 0.85, a Reynolds

number of 1.36 million based on the cavity depth, the stagnation pressure of 99,600

Pa and the stagnation temperature of 305 K are imposed as inflow boundary con-

dition and the spatial derivatives of the flow variables are taken as zero. The inflow

boundary is set to 2 times the cavity depth upstream of the cavity whereas the

outflow (right–hand) boundary is set to 4 times the cavity depth downstream of the

cavity. In order to achieve an unsteady turbulent boundary at the leading edge of

the cavity a steady turbulent boundary layer profile is implemented at the inflow.

Hence the boundary layer thickness at the leading edge of the cavity is found to

be similar to the experimental value of 10.16 mm (Nayyar et al., 2005). In order

to trigger cavity flow oscillations, small perturbations are added. When the self–

sustained oscillations inside the cavity started, the perturbations are turned off to

prevent the spectral analysis from numerical artifacts. Similar random perturbation

approach was used by Chen et al. (2007) also. The periodic boundary condition in

spanwise and the no–slip boundary condition at the walls of the cavity are imposed.

The non–reflecting boundary condition (Type–II) are applied to the outflow (right–

hand) and far–field (upper section of the domain) boundaries. The schematic view

of the open cavity dimensions and the imposed boundary conditions are displayed

in Fig. 5.39.

Acoustic waves

Shear layer

Inflow

D = 101.6 mm

L = 508 mm

Wall

Non−reflecting

Pressure

Non−reflecting

waves

Figure 5.39: Schematic view of the open cavity dimensions and boundary conditions

Fig. 5.40 (left) represents the history of pressure fluctuations for a time interval

of 0.2 s at x/L = 0.95 and y/L = 0. The simulation is carried out with a time

step of 7.0×10−7 s and the pressure signals are numerically sampled every 238 time
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steps corresponding to a sampling rate of ≈ 6 kHz which is in accordance with the

experimentally used value. The simulation is performed for 0.25 s and the first 0.05

s of the pressure signals are truncated to discard the initial transient. The sound

pressure level (SPL) of pressure fluctuations is compared with the experimental data,

as shown in Fig. 5.40 (right). The SPLs are related to the energy carried by the

sound wave, defined by

SPL(dB) = 20 log10

Prms

Pref
(5.16)

where the Prms is the root–mean–square values of the pressure fluctuations and

Pref = 2.0 × 10−5 Pa.
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Figure 5.40: History of pressure fluctuations (left) and SPL spectrum (right) close to

the cavity rare wall, at x/L = 0.95 and y/L = 0

An instantaneous snapshot of vorticity magnitude is displayed Fig. 5.41. Com-

parison of the root–mean–square (RMS) values of the pressure fluctuations along

the cavity floor with the experimental data and the numerical solution obtained

by Chen et al. (2007) is depicted in Fig. 5.42. As a result, the deviations to the

measurements are clearly visible in Fig. 5.40 (right), the computed SPL spectrum

is not in good agreement with the measurements. In Fig. 5.42, the discrepancy be-

tween the computed RMS values of pressure fluctuations and the experimental one is

significant due to the 3–D nature of the problem. On the other hand, the computed

RMS values from the present 2nd–order accurate scheme are in close agreement with

the 4th–order central finite–difference scheme given by Chen et al. (2007). The 2–D
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LES results are incapable of successfully capturing the near–field flow behavior of

the open cavity problem. However, similar behaviour is observed also by Chen et al.

(2007) using the high–order numerical scheme. Therefore, a 3–D simulation for the

open cavity case at Mach number of 0.85 is required to clarify the above–mentioned

points (see Section 6.1).

Figure 5.41: Instantaneous snapshot of vorticity magnitude
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Figure 5.42: Comparison of RMS values of the pressure fluctuations along the cavity

floor (4th–order scheme (Chen et al., 2007))
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5.3.3 2–D Screech Noise

The generation of screech tones in an underexpanded jet and shock–induced

acoustic waves owing to the interaction of flow instabilities originate from the noz-

zle lip with the quasi–periodic shock–cell structure are investigated in 2D here. The

present 2–D parallel LES solver is used for numerical simulation of rectangular un-

derexpanded jet problem. The jet operates at a fully expanded Mach number of

1.55. Description of the three basic components of the supersonic jet noise, namely,

discrete frequencies, the broadband shock–associated noise and the turbulent mixing

noise, as well as a review of previous experimental, theoretical and numerical studies

can be found in Section 2.5. The 2–D screech generation in a planar supersonic jet

problem studied here is adapted from the one computed by Berland et al (2007) for

a 2–D simulation. Two–dimensional LES results of the present time–conservative

finite–volume scheme are compared with the experimental data (Raman and Rice,

1994; Panda et al., 1997) and the analytical solution of (Tam, 1988) for the rectan-

gular supersonic jets.

h

h/4

25.6h

0.6h

16h

Figure 5.43: Schematic view of the computational domain for the two–dimensional

screech noise problem

In Fig 5.43, the schematic of the computational domain is displayed. The jet

height is 3 mm and the nozzle lip thickness is hl = h/4 similar to that used

in the experiments of Raman and Rice (1994). The dimensions of the computa-

tional domain are: 25.6h (streamwise) ×16h (wall–normal), with a nozzle extending
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over 0.6h inside the domain, as shown in Fig. 5.43. A Cartesian grid consists of

520 × 260 ≈ 1.35 × 105 CVs. The smallest mesh size ∆m = h/40 allows to use

40 grid points within the jet height and approximately ten grid nodes inside the

boundary layer. The physical domain is decomposed into 64 subdomains to perform

parallel computing. Each subdomain is represented by red line boundary, as shown

in Fig. 5.44.

Figure 5.44: Mesh and subdomains used for the 2–D planar underexpanded jet problem

The jet assumed to be supplied by a convergent nozzle whose designed Mach

number Md is equal to 1. The ambient region surrounding the flow is at rest.

An ambient pressure (P∞) and density (ρ∞) are set to 105 Pa and 1.22 kg/m3,

respectively. Temperature of reservoir Tr is set to 288 K and an elevated pressure

pe/p∞ = 2.09 is imposed inside the nozzle so that the jet operates at underexpanded

conditions. The fully expanded jet Mach number Mj is defined by (Berland et al,

2007)

Mj =

{
2

γ − 1

[(
1 +

γ − 1

2
M2

d

)(
pe

p∞

)(γ−1)/γ

− 1

]}1/2

= 1.55 (5.17)

Flow variables are uniform inside the nozzle except in the near–wall regions, where

a no–slip boundary condition is required. Therefore, boundary layer profiles are

imposed in the vicinity of the solid surfaces (i.e., between nozzle lips) using an

approximation of the laminar Blasius solution, expressed as (Berland et al, 2007)

u

Ue
=





η(2 − 2η2 + η3), if η < 1

1, if η ≥ 1
(5.18)
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where η is the distance to the wall normalized by the boundary layer thickness δ,

and the designed nozzle velocity, Ue, is set to 310 m/s.

The inflow density profile is provided by using the Crocco–Busemann relation

as (Berland et al, 2007)

ρ =

[
1

ρw

−
(

1

ρw

− 1

ρe

)
u

Ue

− γ − 1

2
M2

d

(
u

Ue

− 1

)
u

Ue

]
(5.19)

where the density on the walls, ρw, can be evaluated by using the ideal gas relation

given by eq. (3.13). A Reynolds number of 6 × 104 based on the jet height and

velocity, where Uj = Mjcj and cj = 278 m/s, is used here. The no–slip wall bound-

ary condition is imposed only at the inner section of nozzle lips. The non–reflecting

boundary condition (Type–I) is applied to the far–field (left–hand, upper and lower

boundaries) and the non–reflecting boundary condition (Type–II) is imposed at the

outlet owing to the substantial gradients in the y–directions. The schematic view

of the 2–D planar underexpanded jet dimensions and the boundary conditions are

shown in Fig. 5.45.
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Figure 5.45: Schematic view of the 2–D planar underexpanded jet dimensions and

boundary conditions

An instantaneous snapshot of the streamwise velocity (upper) and the distribu-

tion of mean streamwise velocity (lower) in the whole computational domain are

represented in Fig. 5.46. Two shock–cell structures are apparent in the jet plume

for x/h < 6 then these shock–cells are breaking down, as shown in Fig. 5.46 (upper),

and releasing energy. Owing to this energy release the resolved turbulent kinetic
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energy increases in the downstream direction for x/h > 6 (see Fig. 5.47). On the

other hand, in Fig. 5.46 (lower), four shock–cell structures exhibiting the distinc-

tive bow–shaped structure are clearly visible in the jet plume (x/h < 10) for the

computed mean streamwise velocity due to the overpressure at the nozzle exit. The

streamwise velocity decreases and a weakening of the shock strength in the down-

stream direction can be observed in Fig. 5.46. Similar flow field features are observed

by Berland et al (2007) also. A snapshot of the numerical Schlieren (density gradient

modulus) (upper) and the distribution of computed mean density gradient (lower)

are depicted in Fig. 5.48. The shock–cell structures in the jet plume are clearly

demonstrated in these figures.

Figure 5.46: Instantaneous streamwise velocity (upper) and distribution of mean stream-

wise velocity (lower) for the 2–D planar underexpanded jet
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Figure 5.47: Distribution of resolved turbulent kinetic energy for the 2–D planar under-

expanded jet

Figure 5.48: Instantaneous numerical Schlieren (upper) and distribution of time–

averaged numerical Schlieren (lower)
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Figure 5.49: Distribution of mean streamwise velocity present study (upper) and Berland

et al (2007) (lower)

In Fig. 5.49, the normalized mean streamwise velocity is compared with the 3–D

LES result obtained by Berland et al (2007) (lower). Though the present results are

2–D, the shock–cell spacing (Ls/h) is in a very good agreement with the experimental

data and the analytical solution of Tam (1988), as shown in Fig. 5.50. The pressure

signals are numerically sampled at the upstream location (0.2h, 0.85h) and (0.2h,

-0.85h) represented by points P+ and P− in Fig. 5.45, respectively. The 2–D LES

is performed for 0.07 s with a time step of 2.0 × 10−7s. The time evolution of the

pressure signals close to the nozzle lip and SPLs of pressure fluctuations as a function

of Strouhal number are depicted in Figs. 5.51 and 5.52, respectively. Though the

shock–cell spacing is predicted very well by the 2–D LES solver, SPLs of pressure

perturbations clearly show that the dominant screech tone and its subharmonics are

not captured by the flow solver. The 2–D LES solver is incapable of predicting the

three basic components of a supersonic jet, namely, the turbulent mixing noise, the
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screech tones and the broadband shock–associated noise. It will be shown later from

the 3–D simulation of underexpanded jet (see Section 6.2) these supersonic jet noise

components can be predicted reliably by the 3–D LES solver.
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Figure 5.50: Shock–cell spacing (Ls/h) based on the fully expanded jet Mach number

(Mj). 4th–order scheme (Berland et al, 2007), analytical solution (Tam,

1988), experimental data–1 (Panda et al., 1997), experimental data–2 (Ra-

man and Rice, 1994)
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Figure 5.51: History of pressure fluctuations at P+ (0.2h, 0.85h) (left) and P− (0.2h,

-0.85h) (right)
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Figure 5.52: SPLs of pressure fluctuations as a function of Strouhal number at P+ (0.2h,

0.85h) (upper) and P− (0.2h, -0.85h) (lower)



Chapter 6

Applications and Results of the

3–D LES for Aeroacoustics

The two–dimensional Euler, Navier–Stokes and LES solvers are validated in the

previous chapter. The present three–dimensional parallel LES solver is developed

from its two–dimensional counterpart. In order to investigate its suitability to prac-

tically relevant acoustic problems, two challenging acoustic problems are considered

here, namely, near–field cavity aeroacoustics (Section 6.1) and shock–induced noise

by a planar underexpanded jet (Section 6.2). Their two–dimensional counterparts

(the open cavity flow and the screech noise problem) are already investigated in

Sections 5.3.2 and 5.3.3, respectively.

6.1 Near–Field Cavity Aeroacoustics

The 3–D parallel LES solver is used in order to predict narrowband and broad-

band flow noise in a rectangular cavity. Numerical investigations into the flow

physics of the M219 cavity at Mach number of 0.85 were performed also by Mendonc.a

et al. (2003), Allen and Mendonc.a (2004), Nayyar et al. (2005), Chen et al. (2007)

and Caraeni et al. (2009). In Section 2.4, physical description of different mech-

anisms for generating cavity flow noise and a review of previous studies can be

found. The results are compared with the LES results of high–order numerical

schemes (Chen et al., 2007; Nayyar et al., 2005) and the experimental data (Peshkin,

120
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2002; Henshaw, 2000) for the flow over the M219 cavity. The method proposed here

provides the acoustic–resonance frequencies and the acoustic (natural) modes. This

specific case was provided by AGARD (Henshaw, 2000) as a benchmark problem

and experiments were carried out by QinetiQ as part of the project on Turbulence

Modeling for Military Application Challenges (Peshkin, 2002). In Fig. 6.1, the test

rig dimensions and the location of the Kulite transducers are displayed.

Figure 6.1: Test rig and dimensions including position of the pressure transducers (di-

mensions are in inches) (Henshaw, 2000)

The cavity geometry with a length–to–depth (L/D) ratio of 5 and a width–

to–depth (W/D) ratio of 1 exhibiting flow in shear layer mode so called, since

the separated shear layer at the cavity leading edge does not attach to the cavity

floor. This geometry is taken from the M219 cavity configurations (Peshkin, 2002).

Its length L is 508 mm, the width W and the depth D are equal to 101.6 mm.

The dimensions of the computational domain are: 11D (streamwise) ×4D (wall–

normal) ×2D (spanwise). The domain is decomposed into 64 subdomains for parallel

computations, as shown in Fig. 6.2. The grid consists of 415×130×60 ≈ 3.24×106

CVs above the cavity and 260 × 80 × 30 ≈ 0.625 × 106 CVs inside the cavity. The

distribution of mesh in the x–y (left) and y–z (right) planes are illustrated in Fig. 6.3.
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Figure 6.2: Decomposition of the M219 cavity domain into 64 subdomains

Figure 6.3: Mesh distribution in the x–y (left) and y–z (right) planes

A free–stream Mach number of 0.85, a Reynolds number of 1.36 million based on

the cavity depth, the stagnation pressure of 99,600 Pa and the stagnation tempera-

ture of 305 K are imposed as inflow boundary condition and the spatial derivatives

of the flow variables are taken as zero similar to the 2–D open cavity case (see Sec-

tion 5.3.2). The inflow boundary is set to 2 times the cavity depth upstream of

the cavity whereas the outflow (right–hand) boundary is set to 4 times the cavity

depth downstream of the cavity. A steady turbulent boundary layer profile is im-

plemented at the inflow to achieve an unsteady turbulent boundary at the leading

edge of the cavity. Hence the boundary layer thickness at the leading edge of the

cavity is 10.16 mm. In order to trigger cavity flow oscillations, unsteady 3–D dis-

turbances are added. When the self–sustained oscillations inside the cavity started,
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the perturbations are turned off again to prevent spectral analysis from unwanted

numerical artifacts. The periodic boundary condition in spanwise and the no–slip

boundary condition at the walls are imposed. The non–reflecting boundary condi-

tion (Type–II) is applied to the outflow (right) and far–field (upper) boundaries.

The summary of the M219 cavity dimensions and the boundary conditions in 3D

are shown in Fig. 6.4.

Pressure
waves
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Shear layer

Outflow

Inflow Outflow

Outflow

Periodic

D = 101.6 mm

L = 508 mm
101.6 mm

Wall

2W

D

W

=
Figure 6.4: Schematic view of the M219 cavity dimensions and boundary conditions

Computed results are compared with those obtained by using a 4th–order central

finite–difference scheme (Chen et al., 2007) and the numerical method based on a

cell–centered finite–volume method where MUSCL interpolation is used to provide

3rd–order accuracy (Nayyar et al., 2005). For comparison, a wider computational

domain, 15D (streamwise) ×7D (wall–normal) ×2D (spanwise), was used by Chen

et al. (2007). The grid consists of 450× 150× 72 ≈ 4.86× 106 CVs above the cavity

and 250 × 80 × 4 ≈ 0.88 × 106 CVs inside the cavity (Chen et al., 2007) and finer

grid consists of ≈ 8.4 × 106 CVs was used by Nayyar et al. (2005) for the LES of

the M219 cavity.

In the present study, the simulation is carried out with a time step of 5.0 ×
10−7s and the pressure signals are sampled every 330 time steps corresponding to

a sampling rate of ≈ 6 kHz. The experimental signal is sampled at 6 kHz so the

numerical results are sampled at the same rate for proper comparison. After the

initial transients exited the computational domain, the simulation is carried out for
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0.25s and the first 0.05s of the pressure signals are truncated in order to discard

the initial transient and to prevent the spectral analysis from unwanted numerical

artifacts.

Fig. 6.5 represents a snapshot of the magnitude of the vorticity on the central

plane of the domain (upper). After the development of the shear layer, vortices

break down before the middle of the cavity and grow larger in size whereas they

propagate in the streamwise direction. This phenomenon can be observed also from

the instantaneous iso–surfaces of the vorticity magnitude in Fig. 6.5 (lower). Instan-

taneous magnitude of the vorticity contours at different positions in the streamwise

and spanwise directions are displayed in Figs. 6.6 to 6.7.

Figure 6.5: Instantaneous snapshot of the magnitude of the vorticity at z/W = 0.5

(upper) and iso–surfaces of the vorticity magnitude (lower)

Fig. 6.8 (left) represents the history of pressure fluctuations for a time interval

of 0.2 s at the K29 position. The noise spectrum of cavity contains both tonal noise

due to the feedback loop and broadband noise, introduced by the turbulence in the

shear layer. The computed pressure spectrum decomposed into Rossiter modes (low

frequency tones) and broadband noise which are depicted in Fig. 6.8 (right).

A comparison of modal frequencies, i.e. low frequency tones, at the Kulite lo-

cation K29 is given in Table 6.1. The computed 1st mode frequency is slightly
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Figure 6.6: Instantaneous snapshot of vorticity contours at z/W = 0.2 (upper left),

z/W = 0.4 (upper right), z/W = 0.6 (lower left) and z/W = 0.8 (lower

right) in the spanwise direction

Figure 6.7: Instantaneous snapshot of vorticity contours at x/L = 2 (upper left), x/L =

3 (upper right), x/L = 4 (lower left) and x/L = 4.9 (lower right) in the

streamwise direction
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Figure 6.8: History of pressure fluctuations (left) and SPL spectrum (right) at K29

Table 6.1: Comparison of modal frequencies at K29

Mode I II III IV

Rossiter’s Formula 159 Hz 371 Hz 582 Hz 794 Hz

Experiment (Peshkin, 2002) 151 Hz 370 Hz 605 Hz 773 Hz

4th–order Scheme (Chen et al., 2007) 131 Hz 332 Hz 553 Hz 794 Hz

Present 2nd–order Scheme 154 Hz 367 Hz 580 Hz 823 Hz

over–predicted compared to the experimental data with an error of about +2%

whereas the 2nd and 3rd mode frequencies are under–predicted by about −1% and

−4%, respectively. Lastly, the 4th mode frequency is over–predicted with an error of

about +6.5%. Consequently, all modal frequencies are well predicted and within 7%

error in comparison to the experimental data. Rossiter’s semi–empirical predictions

of the modal frequencies (Rossiter, 1964) defined by

fn =
U∞

L

n − γ

M∞ + 1
κ

(6.1)

where U∞ and M∞ are the free–stream velocity and Mach number, respectively. L

is the length of the cavity and n is the mode number. κ = 0.57 and γ = 0.25 are

empirical constants corresponding to the average convection speed of the vortical

perturbations in the shear layer and a phase delay, respectively.

In Fig. 6.9, the intensity of the noise generation inside the cavity can be seen

from the comparison of SPL spectrum along the cavity floor with the measurements



6.1. Near–Field Cavity Aeroacoustics 127

x/L

S
P

L
(d

B
)

0 0.2 0.4 0.6 0.8 1
152

154

156

158

160

162

164

166

168

170
Present 2 nd-order scheme
3rd-order scheme
4th-order scheme
Experimental Data

Figure 6.9: Comparison of SPL spectrum along the cavity floor (3rd–order scheme (Nay-

yar et al., 2005), 4th–order scheme (Chen et al., 2007))

as well as results of other numerical schemes available in the literature (Nayyar

et al., 2005; Chen et al., 2007). Fig. 6.9 clearly shows that the SPL curve increases

in streamwise direction in the cavity due to the spreading of the energy from the

shear layer after it breaks down. The rear wall region experiences the most intensive

pressure fluctuations due to the the frequent flow impingement. The computed SPLs

by the present time–conservative scheme along the cavity floor are in very good

agreement with the experimental data (Henshaw, 2000; Peshkin, 2002). Compared

to other numerical results using either an LES technique on a finer grid (≈ 8.4×106

CVs) (Nayyar et al., 2005) or the fourth–order accurate scheme (Chen et al., 2007)

the deviations to the measurements are much smaller.

A significant discrepancy between 2–D LES results and the experimental data

for the RMS values of pressure fluctuations are shown in Fig. 5.42. The prediction

of 3–D LES solver is more accurate than its 2–D counterpart as shown in Fig. 6.10.

The prediction of the RMS values of the pressure fluctuations along the cavity floor

are in a very good agreement with the measurements.

In Figs. 6.11 to 6.19, the computed history of pressure fluctuations (upper–left)

and the measurements (upper–right) are depicted for different Kulite locations K20

to K28 including the SPL spectrum (lower–left) as well as power spectral density

against the Strouhal number (lower–right).
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Figure 6.11: History of pressure fluctuations (upper) and spectral analysis (lower) at

K20
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Figure 6.12: History of pressure fluctuations (upper) and spectral analysis (lower) at

K21
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Figure 6.13: History of pressure fluctuations (upper) and spectral analysis (lower) at

K22
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Figure 6.14: History of pressure fluctuations (upper) and spectral analysis (lower) at

K23
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Figure 6.15: History of pressure fluctuations (upper) and spectral analysis (lower) at

K24
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Figure 6.16: History of pressure fluctuations (upper) and spectral analysis (lower) at

K25
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Figure 6.17: History of pressure fluctuations (upper) and spectral analysis (lower) at

K26
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Figure 6.18: History of pressure fluctuations (upper) and spectral analysis (lower) at

K27
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Figure 6.19: History of pressure fluctuations (upper) and spectral analysis (lower) at

K28
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Fig. 6.20 shows band–limited RMS pressures along the cavity floor. Band–limited

RMS pressures reveal the contribution from each Rossiter mode to cavity noise in

more detail. Each modal band is calculated by processing the PSD data. The LES

solver captures all mode shapes very well, particularly the dominant second Rossiter

mode, but over–predicts the weakest fourth mode.

In conclusion, the 3–D simulation of the open cavity flow is essential for the

correct prediction of near acoustic field. The 3–D parallel LES solver is capable

of successfully capturing the near–field flow features of the open cavity flow with

high–accuracy.
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Figure 6.20: Band–limited RMS pressures along the cavity floor
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6.2 Shock–Induced Noise by a Planar Underex-

panded Jet

Shock–induced noise by a 3–D rectangular underexpanded jet is investigated

using the present 3–D parallel LES solver and its 2–D counterpart is computed

in Section 5.3.3. The streamwise growing instability waves naturally occurring in

the jet shear layer interact with this shock–cell structure then generate broadband

shock–associated noise and under certain operating conditions screech tones develop

through a feedback loop. Details of the characteristics of this feedback loop and a

review of previous studies are provided in Section 2.5. Numerical investigations of

the screech noise at fully expanded Mach number were performed by Loh et al.

(2000a), Loh et al. (2000b), Loh et al. (2001c) Loh and Hultgren (2002), Shen

and Tam (2002), Rona and Zhang (2004), Berland et al (2007) and, Schulze et al.

(2009). The 3–D screech generation in a planar supersonic jet problem studied here

is similar to the one computed by Berland et al (2007). Three–dimensional LES

results of the present scheme are compared with the results of high–order numerical

scheme (Berland et al, 2007) and the experimental data (Raman and Rice, 1994;

Panda et al., 1997) as well as the analytical solution of (Tam, 1988).

h

h/4

25.6h

0.6h

16h

4h

Figure 6.21: Schematic view of the computational domain for the three–dimensional

screech noise problem
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In Fig 6.21, the schematic of the computational domain is displayed. The jet

height (h) is 3 mm and the nozzle lip thickness is hl = h/4 similar to that used in

the experiments of Raman and Rice (1994). The dimensions of the computational

domain are: 25.6h (streamwise) ×16h (wall–normal) ×4h (spanwise), with a nozzle

extending over 0.6 h inside the domain, as shown in Fig. 6.21. A Cartesian grid

consists of 520 × 260 × 50 ≈ 6.76 × 106 CVs. The smallest mesh size ∆m = h/40

allows to use 40 grid points within the jet height and approximately ten grid nodes

inside the boundary layer (same as the 2-D case). The distribution of mesh in the

x–y and y–z planes are illustrated in Fig. 6.22. The physical domain is decomposed

into 124 subdomains for parallel computations, as shown in Fig. 6.23.

Figure 6.22: Mesh distribution in the x–y (left) and y–z (right) planes

Figure 6.23: 124 subdomains used for the 3–D rectangular underexpanded jet problem
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Figure 6.24: Schematic view of the 3–D planar underexpanded jet dimensions and

boundary conditions

Boundary layer profiles based on the laminar Blasius solution, eq. (5.18), and the

inflow density profile using the Crocco–Busemann relation, eq. (5.19), are already

provided in Section 5.3.3. These conditions are imposed at the inlet between the

nozzle lips. A Reynolds number of 6 × 104 based on the jet height and velocity.

The no–slip wall boundary condition is imposed only at the inner section of nozzle

lips. The periodic boundary condition is used in spanwise. The non–reflecting

boundary condition (Type–I) is applied to the far–field (left–hand, upper and lower

boundaries) and the non–reflecting boundary condition (Type–II) is imposed at the

outlet owing to the substantial gradients in the y and z–directions. The schematic

view of the 3–D planar underexpanded jet dimensions and the boundary conditions

are shown in Fig. 6.24.

The present simulation results are compared with those obtained by using the

4th–order finite–difference scheme (Berland et al, 2007). For comparison, a compu-

tational domain, 25.6h (streamwise) ×16h (wall–normal) ×5h (spanwise), was used

by Berland et al (2007). The grid consists of 525 × 257 × 121 ≈ 16.3 × 106 points.

An instantaneous snapshot of the streamwise velocity (upper) and the distribu-

tion of mean streamwise velocity (lower) in the whole computational domain are

displayed in Fig. 6.25. In the jet plume, four shock–cell structures are apparent for

x/h < 10 then these shock–cells are breaking down, as shown in Fig. 6.25 (upper). In

Fig. 6.25 (lower), five shock–cell structures exhibiting the distinctive bow–shaped

structure are clearly visible in the jet plume (x/h < 12) for the computed mean

streamwise velocity due to the overpressure at the nozzle exit. The streamwise
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velocity decreases and a weakening of the shock strength in the downstream direc-

tion can be observed in Fig. 6.25 as well. Similar flow field features are observed

by Berland et al (2007) and the 2–D counterpart of this simulation. A snapshot

of the numerical Schlieren (density gradient modulus) (left) and the distribution of

computed mean density gradient (right) are depicted in Fig. 6.26. The shock–cell

structures in the jet plume can be seen clearly in these figures also. Instantaneous

snapshots of the vorticity magnitude at different locations in the spanwise direction

are shown in Fig. 6.27. Similarly, snapshots of spanwise vorticity iso–surfaces at

different time steps are depicted in Figs. 6.28 to 6.30. A large range of turbulence

scales can be observed in these figures.

Comparison of the normalized mean streamwise velocity with the 3–D LES re-

sult obtained by Berland et al (2007) using ≈ 16.3 million grid points (lower) is

displayed in Fig. 6.31. The shock–cell spacing (Ls/h) is in a very good agreement

with the experimental data and the analytical solution of Tam (1988), as shown in

Fig. 6.32. The pressure signals are sampled at the upstream location (0.2h, 0.85h,

2h) and (0.2h, -0.85h, 2h) represented by points P + and P− in Fig. 6.24, respec-

tively. The 3–D LES is performed for 0.0275 s with a time step of 5.0× 10−8s. The

first 0.0075 s of the pressure signals are truncated to prevent the spectral analysis

from unwanted numerical artifacts. The time evolution of the pressure fluctuations

close to the nozzle lip and SPLs of pressure perturbations as a function of Strouhal

number are shown in Figs. 6.33 and 6.34, respectively. The dominant screech tone

is observed at St = 0.138 and subharmonics of the screech tone are predicted also

(see Fig. 6.34). The Strouhal number of the screech tone as a function of the fully

expanded jet Mach number is displayed in Fig. 6.35. The computed Strouhal num-

ber of the fundamental discrete frequency is slightly over–predicted in comparison

to experimental and analytical results. As a result, three basic components of a

supersonic jet, namely, the turbulent mixing noise, the screech tones and the broad-

band shock–associated noise are predicted very well. The 3–D parallel LES solver

is capable of successfully capturing the upstream acoustic field of underexpanded

rectangular jet and the shock–cell structure in the jet plume with high–fidelity.
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Figure 6.25: Instantaneous snapshot of streamwise velocity and mean streamwise veloc-

ity contours

Figure 6.26: Instantaneous snaphot of density gradient and mean density gradient
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Figure 6.27: Instantaneous snapshots of vorticity magnitude at z/h = −2 (upper left),

z/h = −1 (upper right), z/h = 0 (middle), z/h = 1 (lower left), z/h = 2

(lower right)
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Figure 6.28: Iso–surfaces of spanwise vorticity colored by Mach number at t = 0.01s

Figure 6.29: Iso–surfaces of spanwise vorticity colored by Mach number at t = 0.02s
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Figure 6.30: Iso–surfaces of spanwise vorticity colored by Mach number at t = 0.0275s

Figure 6.31: Distribution of mean streamwise velocity present study (upper) and Berland

et al (2007) (lower)
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Figure 6.33: History of pressure fluctuations at P+ (0.2h, 0.85h, 2h) (left) and P− (0.2h,

-0.85h, 2h) (right)



6.2. Shock–Induced Noise by a Planar Underexpanded Jet 143

St = fh/U j

S
P

L
(d

B
)

20

40

60

80

100

120

140

160

3-D LES

0.010.01 0.1 1 3

turbulent mixing noise

screech tone

broadband
shock noise

St = fh/U j

S
P

L
(d

B
)

20

40

60

80

100

120

140

160

3-D LES

0.010.01 0.1 1 3

turbulent mixing noise

screech tone

broadband
shock noise

Figure 6.34: SPLs of pressure fluctuations as a function of Strouhal number at P+ (0.2h,

0.85h, 2h) (left) and P− (0.2h, -0.85h, 2h) (right)

M j

S
t=

fh
/U

j

1 1.2 1.4 1.6 1.8
0

0.1

0.2

0.3

0.4

Present 2 nd-order scheme, 3-D
4th-order scheme, 3-D
Analytical solution
Experimental data

Figure 6.35: Strouhal number of the screech tone against the fully expanded jet Mach

number. 4th–order scheme (Berland et al, 2007), analytical solution (Tam,

1988), experimental data (Panda et al., 1997)



Chapter 7

Conclusions and

Recommendations for Future

Work

7.1 Conclusions

The main research objectives have been successfully accomplished. One is the

successful development of the advanced, high–resolution and low dissipation second–

order numerical scheme based on the time–conservative finite–volume approach.

Other aims are the implementation of the large–eddy simulation technique to directly

predict the near acoustic field and to simulate the turbulent flows with high–fidelity

as well as similar accuracy as higher–order schemes.

The 3–D parallel LES solver is developed from scratch by the author. The

present solver is used to carry out near–field acoustic simulations and to investigate

technically relevant aeroacoustic problems. The two–dimensional Euler solver is

developed first, based on the new definitions of cell interface and control volume.

The objectives of these new definitions were twofold: to ensure the flux conservation

in the vicinity of the domain boundaries and to simplify the implementation of the

multiblock technique in order to deal with complex geometries and to split up the

computational domain by means of domain decomposition for parallel computing.

The evaluation of fluxes along the boundaries is simplified and the flux conservation

144
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is ensured by the new definitions of control volume and cell interface, which is the

first of the kind in literature, to the best knowledge of the author.

Three inviscid flow cases are solved to validate and to verify the accuracy of the

Euler solver. The first case is the shock reflection on a flat plate. Here, the accuracy

and the shock–capturing capabilities of the solver are illustrated. The results are

found to be in a very good agreement with the analytical solution. The resolution

of the reflected shock is found to be identical to that of the incident shock with no

oscillation near the shocks. The second inviscid flow case is the shock capturing case

for a convergent–divergent nozzle. A normal shock wave is formed somewhere in the

divergent section of the nozzle due to a certain exit pressure value. The location of

the normal shock in the divergent section of the nozzle and the steady–state flow

field features along the convergent–divergent nozzle are predicted accurately. The

last case is attempted to demonstrate the ultimate shock–capturing capability of the

time–conservative finite–volume scheme. The computation of a supersonic flow over

a forward–facing step is carried out without using any kind of ad hoc techniques

(i.e., special numerical treatment) particularly at the corner of the step. Formation

of the expansion fan at the step corner and the Mach stem on the lower wall as well

as the interaction between the reflected shock with rarefaction waves are presented

with an excellent agreement in comparison to high–resolution results.

In order to perform viscous laminar flow simulations, the Navier–Stokes solver

is developed by extending the Euler solver. The standard validation cases for a

Navier–Stokes solver are carried out. The laminar boundary layer development

along a flat plate is considered first, due to its simple geometry and the availability

of an analytical solution, obtained by solving the Blasius equation. The lid driven

cavity flow is used as a second validation benchmark case for the Navier–Stokes

solver. In order to accelerate the convergence rate of the Navier–Stokes solver, the

direct–flux based multigrid method is implemented. To the best knowledge of the

author, the implementation of this flux based multigrid technique into the time–

conservative finite–volume method is carried out for the first time in the present

study. The accuracy of the Navier–Stokes solver including the discretization of the

viscous fluxes as well as the implementation of the multigrid method are validated
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successfully by solving these benchmark problems.

The large–eddy simulation (LES) technique is implemented in order to sim-

ulate the turbulent flow field features and to predict the near–field aerodynamic

noise. The subgrid–scale turbulent fluctuations approximated by the Smagorinsky

subgrid–scale (SGS) model. The growth of the small scales in the near–wall regions

is reduced by using Van Driest damping function. A two–dimensional spatially

evolving mixing layer problem, an open cavity flow and the generation of screech

tones in an underexpanded jet are investigated by using the 2–D parallel LES solver.

The results are found in reasonably good agreement with the other well–established

results. On the other hand, large deviations are observed compared to the available

experimental data due to the three–dimensional nature of these problems. The 2–D

parallel LES solver is incapable of successfully capturing the near–field flow fea-

tures. Therefore, 3–D simulations of the open cavity flow and the screech tones in

an underexpanded jet are carried out using the 3–D parallel LES solver. In order to

reduce the cost of the practical acoustic calculations, the 3–D LES solver as well as

the 2–D counterpart are parallelized by domain decomposition with explicit message

passing via MPI.

The prediction of narrowband and broadband flow noise in a rectangular cavity

is performed by using the 3–D parallel LES solver. The results are compared with

those obtained by high–order numerical schemes as well as with the experimental

data. The computed Rossiter modes, i.e. low frequency tones, and broadband

noise results are found to be in very good agreement with the measurements. In

comparison to other numerical results obtained by using the high–order schemes,

the deviations to the experimental data are much smaller in the present study.

The generation of screech tones in an underexpanded jet due to the interaction of

flow instabilities originate from the nozzle lip with the quasi–periodic shock–cell

structure in the jet plume are investigated in order to demonstrate the capability

of the time–conservative finite–volume approach resolving strong shocks and small

disturbances (e.g., acoustic pressure fluctuations) simultaneously. The turbulent

mixing noise, the screech noise with subharmonic tones and the broadband shock–

associated noise with a set of closely related frequencies are accurately predicted by
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using the 3–D parallel LES solver. The shock–cell structures in the jet plume are

demonstrated with high–resolution and the results are found to be in a very good

agreement in comparison to those obtained by the high–order numerical scheme and

the available experimental data as well as the analytical solution.

The present method is efficient and yields high–resolution, low dissipation results

similar to those of high–order numerical schemes. The time–conservative finite–

volume method offers an accurate way to compute the most relevant frequencies

and acoustic modes for aeroacoustic calculations. The proposed time–conservative

method can meet future engineering simulation challenges reliably with its unique

and non–traditional features. The second–order time–conservative finite–volume

method can accurately solve practically relevant aeroacoustic problems with high–

fidelity which is an exception to the conventional second–order schemes commonly

regarded as inadequate for computational aeroacoustic (CAA) applications.

7.2 Recommendations for Future Work

In this research work, the 3–D parallel LES solver based on the time–conservative

finite–volume method is used to investigate only the near acoustic field. Though the

flow solver can accurately produce near–field results with high–fidelity, it is unable

to investigate sound propagation mechanisms for far–field. The time–accurate LES

near–field data can be coupled with an integral formulation for far–field sound cal-

culations. Hence, it is worthwhile to investigate the possibility of coupling the LES

solver with an acoustic analogy (e.g., the Lighthill’s acoustic analogy (Lighthill,

1952), Ffowcs Williams and Hawkings (FWH) acoustic analogy (Ffowcs Williams

and Hawkings, 1969) or Kirchhoff integral method (Freund et al., 1996)) to predict

sound propagation into the far–field. Therefore, the coupling of the LES solver with

one of the acoustic analogy will make the present CAA methodology a powerful

tool not only for identification of noise mechanisms but also for noise reduction and

control.
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In LES implementation, the subgrid–scale turbulent fluctuations are approxi-

mated by the Smagorinsky subgrid–scale (SGS) model. Despite the Smagorinsky

subgrid–scale model being very simple, it has several disadvantages. One main dis-

advantage of the Smagorinsky SGS model is that the SGS eddy–viscosity is usually

adjusted with a damping function to take into account the reduction of the subgrid–

scale length in the immediate vicinity of walls. This makes the application of the

present SGS model to complex geometries very difficult. This drawback can be re-

lieved by using a Wall–Adapting Local–Eddy Viscosity (WALE) SGS model. The

WALE SGS model was proposed by Nicoud and Ducros (1999) and uses a novel

form of the velocity gradient tensor. The main advantage of the WALE SGS model

is that it does not require any form of near–wall damping. This model also produces

the correct scaling in the vicinity of the wall without using the local wall distance.

There is still room for improvement of the SGS model. Therefore, the coupling of

the present methodology with a future SGS model can improve the quality of the

near acoustic field results.

The specification of realistic inlet boundary condition can have a strong influ-

ence not only in the vicinity of the inlet boundary but also for the entire flow

development in large–eddy simulations of spatially developing flows. The synthetic–

eddy–method (SEM) to generate inflow conditions for large–eddy simulations was

proposed by Jarrin et al. (2006). The SEM method retains the conceptual basis of

the vortex method. According to Jarrin, the implementation of the SEM method

is easy and the model performs well on any kind of geometry for any flow regimes.

This method can be implemented into the flow solver to generate the instantaneous

velocity field required at inflow boundaries by LES computations and then new sim-

ulations can be carried out in order to investigate the influence of inflow boundary

conditions for the prediction of sound.



Appendix A

Derivation of Diffusive Thermal

Fluxes

The thermal fluxes are defined as

qx = −k
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∂x
, qy = −k
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using ideal gas relation
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using eq. (3.15) the diffusive thermal fluxes can be written in the following modified

form
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Therefore the x component of the heat flux can be written as functions of (Um, Um,x,

Um,y, Um,z)
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Other components of the heat flux can be derived similarly (see eqs. (3.25) and (3.26))
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Space–Time Flux Evaluation
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Figure D.1: Flux evaluation on the quadrilateral defined by A1B1C2C1

The quadrilateral defined by A1B1C2C1 is depicted Fig. D.1, its surface vector

is sA1B1C2C1 = ∆t
2

((yC2 − yA1)(zC1 − zB1)− (zC2 − zA1)(yC1 − yB1), (zC2 − zA1)(xC1 −
xB1) − (xC2 − xA1)(zC1 − zB1), (xC2 − xA!

)(yC1 − yB1) − (yC2 − yA1)(xC1 − xB1), 0)

and the coordinates of its centroid are (Cx2, Cy2 , Cz2, t
n + ∆t

4
). The flux leaving the

156
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surface A1B1C2C1 is

(FLUXm)A1B1C2C1 =
∆t

2
[(yC2 − yA1)(zC1 − zB1) − (zC2 − zA1)(yC1 − yB1)]

[(Fm)n
A∗

1
+ (Cx2 − xA∗

1
)(Fm,x)

n
A∗

1
+ (Cy2 − yA∗

1
)(Fm,y)

n
A∗

1

+ (Cz2 − zA∗

1
)(Fm,z)

n
A∗

1

+
∆t

4
(Fm,t)

n
A∗

1
− F A1B1C2C1

vm ]

+
∆t

2
[(zC2 − zA1)(xC1 − xB1) − (xC2 − xA1)(zC1 − zB1)]

[(Gm)n
A∗

1
+ (Cx2 − xA∗

1
)(Gm,x)

n
A∗

1
+ (Cy2 − yA∗

1
)(Gm,y)

n
A∗

1

+ (Cz2 − zA∗

1
)(Gm,z)

n
A∗

1

+
∆t

4
(Gm,t)

n
A∗

1
− GA1B1C2C1

vm ]

+
∆t

2
[(xC2 − xA!

)(yC1 − yB1) − (yC2 − yA1)(xC1 − xB1)]

[(Hm)n
A∗

1
+ (Cx2 − xA∗

1
)(Hm,x)

n
A∗

1
+ (Cy2 − yA∗

1
)(Hm,y)

n
A∗

1

+ (Cz2 − zA∗

1
)(Hm,z)

n
A∗

1

+
∆t

4
(Hm,t)

n
A∗

1
− HA1B1C2C1

vm ] (D.1)

where the viscous fluxes F A1B1C1
vm , GA1B1C2C1

vm and HA1B1C2C1
vm are obtained from the

flow variables at the centroid of surface A1B1C2C1 as well as (Um,x)
n
A∗

1
, (Um,y)

n
A∗

1
and

(Um,z)
n
A∗

1
.
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Figure D.2: Flux evaluation on the quadrilateral defined by A1B1D1B4

The quadrilateral defined by A1B1D1B4 is given Fig. D.2, its surface vector is

sA1B1D1B4 = ∆t
2

((yA1 − yD1)(zB4 − zB1) − (zA1 − zD1)(yB4 − yB1), (zA1 − zD1)(xB4 −
xB1) − (xA1 − xD1)(zB4 − zB1), (xA1 − xD1)(yB4 − yB1) − (yA1 − yD1)(xB4 − xB1), 0)
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and the coordinates of its centroid are (Cx3, Cy3 , Cz3, t
n + ∆t

4
). The flux leaving the

surface A1B1D1B4 is

(FLUXm)A1B4C8C1 =
∆t

2
[(yA1 − yD1)(zB4 − zB1) − (zA1 − zD1)(yB4 − yB1)]

[(Fm)n
A∗

1
+ (Cx3 − xA∗

1
)(Fm,x)

n
A∗

1
+ (Cy3 − yA∗

1
)(Fm,y)

n
A∗

1

+ (Cz3 − zA∗

1
)(Fm,z)

n
A∗

1

+
∆t

4
(Fm,t)

n
A∗

1
− F A1B1D1B4

vm ]

+
∆t

2
[(zA1 − zD1)(xB4 − xB1) − (xA1 − xD1)(zB4 − zB1)]

[(Gm)n
A∗

1
+ (Cx3 − xA∗

1
)(Gm,x)

n
A∗

1
+ (Cy3 − yA∗

1
)(Gm,y)

n
A∗

1

+ (Cz3 − zA∗

1
)(Gm,z)

n
A∗

1

+
∆t

4
(Gm,t)

n
A∗

1
− GA1B1D1B4

vm ]

+
∆t

2
[(xA1 − xD1)(yB4 − yB1) − (yA1 − yD1)(xB4 − xB1)]

[(Hm)n
A∗

1
+ (Cx3 − xA∗

1
)(Hm,x)

n
A∗

1
+ (Cy3 − yA∗

1
)(Hm,y)

n
A∗

1

+ (Cz3 − zA∗

1
)(Hm,z)

n
A∗

1

+
∆t

4
(Hm,t)

n
A∗

1
− HA1B1D1B4

vm ] (D.2)

where the viscous fluxes F A1B1D1B4
vm , GA1B1D1B4

vm and HA1B1D1B4
vm are obtained from

the flow variables at the centroid of surface A1B1D1B4 as well as (Um,x)
n
A∗

1
, (Um,y)

n
A∗

1

and (Um,z)
n
A∗

1
.

(fluxm)n
2 = (FLUXm)A2B2D1B1C3C4QC2 + (FLUXm)A2B2C4C3

+ (FLUXm)A2C3C2B1 + (FLUXm)A2B2D1B1 (D.3)

(fluxm)n
3 = (FLUXm)A3B3D1B2C5C6QC4 + (FLUXm)A3C5C4B2

+ (FLUXm)A3B3C6C5 + (FLUXm)A3B3D1B2 (D.4)

(fluxm)n
4 = (FLUXm)A4B4D1B3C7C8QC6 + (FLUXm)A4B3C6C7

+ (FLUXm)A4B4C8C7 + (FLUXm)A4B4D1B3 (D.5)

(fluxm)n
5 = (FLUXm)A5B5D2B8C1C2QC8 + (FLUXm)A5B5C2C1

+ (FLUXm)A5B8C8C1 + (FLUXm)A5B5D2B8 (D.6)
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(fluxm)n
6 = (FLUXm)A6B6D2B5C3C4QC2 + (FLUXm)A6C3C4B6

+ (FLUXm)A6B5C2C3 + (FLUXm)A6B6D2B5 (D.7)

(fluxm)n
7 = (FLUXm)A7B7D2B6C5C6QC4 + (FLUXm)A7B7C6C5

+ (FLUXm)A7B6C4C5 + (FLUXm)A7B7D2B6 (D.8)

(fluxm)n
8 = (FLUXm)A8B8D2B7C7C8QC6 + (FLUXm)A8B8C8C7

+ (FLUXm)A8B7C6C7 + (FLUXm)A8B8D2B7 (D.9)
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Möhring, W. (1979) Modeling Low Mach Number Noise, Mechanics of Sound Gen-

eration in Flows, (ed.) Müller, E.-A., Springer, Berlin.

Moin, P. and Kim, J. (1982) Numerical Investigation of Turbulent Channel Flow,

Journal of Fluid Mechanics, 118, pp. 341–377.

Moin, P., Squires, K., Cabot, W. and Lee, S. (1991) A Dynamic Subgrid–Scale

Model for Compressible Turbulence and Scalar Transport, Physics of Fluids A,

3(11), pp. 2746–2757.

Nayyar, P., Barakos, G.N. and Badcock, K.J. (2005) Analysis and Control of Weapon

Bay Flows, RTO–MP–AVT–123, NATO–RTO.

Nicoud, F. and Ducros, F. (1999) Subgrid–Scale Stress Modeling Based on the

Square of the Velocity Gradient Tensor, Journal of Flow, Turbulence and Com-

bustion, 62, pp. 183–200.



BIBLIOGRAPHY 172

Nikitin, N.V., Nicoud, F., Wasistho, B., Squires, K.D. and Spalart, P.R. (2000) An

Approach to Wall Modeling in Large–Eddy Simulations, Physics of Fluids, 12(7),

pp. 1629–1632.

Panda, J., Raman, G. and Zaman, K.B.M.Q (1997) Underexpanded Screeching Jets

from Circular, Rectangular and Elliptic Nozzles, AIAA Paper, 1997–1623.

Panda, J. (1998) Shock Oscillation in Underexpanded Screeching Jets, Journal of

Fluid Mechanics, 363, pp. 173–198.

Panda, J. (1999) An Experimental Investigation of Screech Noise Generation, Jour-

nal of Fluid Mechanics, 378, pp. 71–96.

Peshkin, D.A. (2002) TurMMAC Application Challenge Test Case Specification:

M219 Cavity, QINETIQ/FST/CAT/WP020905.

Piomelli, U., Moin, P. and Ferziger, J.H. (1988) Model Consistency in Large–Eddy

Simulation of Turbulent Channel Flows, Physics of Fluids, 31(7), pp. 1884–1891.

Piomelli, U. and Liu, J. (1995) Large–Eddy Simulation of Rotating Channels Flows

Using a Localized Dynamic Model, Physics of Fluids, 7, pp. 839–848.

Piomelli, U. and Balaras, E. (2002) Wall–Layer Models for Large–Eddy Simulations,

Annual Review of Fluid Mechanics, 34, pp. 349–374.

Pope, S.B. (2000) Turbulent Flows, Cambridge University Press, New York, USA.

Powell, A. (1953) On the Mechanism of Choked Jet Noise, Proceedings of the Physical

Society Section B, 66, pp. 1039–1056.

Powell, A. (1964) Theory of Vortex Sound, Journal of Acoust. Soc. Am., 36(1), pp.

177–195.

Raichel, D.R. (2006) The Science and Applications of Acoustics, 2nd ed. Springer.

Raman, G. and Rice, E.J. (1994) Instability Modes Excited by Natural Screech

Tones in a Supersonic Rectangular Jet, Physics of Fluids, 6, pp. 3999–4008.



BIBLIOGRAPHY 173

Ribault, C. Le (2005) Large–Eddy Simulation of Compressible Mixing Layers, Int.

Journal of Computational Fluid Dynamics, 1(1), pp. 87–111.

Rodi, W. (2006) DNS and LES of Some Engineering Flows, Fluid Dynamics Re-

search, 38, pp. 145–173.

Rogallo, R.S. and Moin P. (1984) Numerical Simulation of Turbulent Flows, Annual

Review of Fluid Mechanics, 16, pp. 99–137.

Rona, A. and Zhang X. (2004) Time Accurate Numerical Study of Turbulent Su-

personic Jets, Journal of Sound and Vibration, 270, pp. 297–321.

Rogers, M.M. and Moser R.D. (1994) Direct Simulation of a Self–Similar Turbulent

Mixing Layer, Physics of Fluids, 6, pp. 903–923.

Rossiter, J.E. (1964) Wind Tunnel Experiments on the Flow Over Rectangular Cav-

ities at Subsonic and Transonic Speeds, Reports and Memoranda, 3438, Aeronau-

tical Research Council.

Sagaut, P. (2006) Large–Eddy Simulation for Incompressible Flows, 3rd ed. Springer.

Schlichting, H. (1979) Boundary–Layer Theory, McGraw–Hill, New York.

Schreiber, R. and Keller H.B. (1983) Driven Cavity Flows by Efficient Numerical

Techniques, Journal of Computational Physics, 49, pp. 310–333.

Schulze, J., Sesterhenn, J., Schmid, P., Bogey, C., Cacqueray, N., Berland, J. and

Bailly, C. (2009) Numerical Simulation of Supersonic Jet Noise, Notes on Numer-

ical Fluid Mechanics and Multidisciplinary Design, 104, pp. 29–46.

Schumann, U. (1975) Subgrid–Scale Model for Finite–Difference Simulations of Tur-

bulent Flows in Plane Channels and Annuli, Journal of Computational Physics,

18, pp. 376–404.

Shen, H. and Tam, C.K.W. (2002) Three–Dimensional Numerical Simulation of the

Jet Screech Phenomenon, AIAA Journal, 40(1), pp. 33–41.



BIBLIOGRAPHY 174

Shieh, C.M. and Morris, P.J. (1999) Parallel Numerical Simulation of Subsonic Cav-

ity Noise, AIAA Paper, 1999–1891.

Smagorinsky, J.S. (1963) General Circulation Experiments with the Primitive Equa-

tions, Monthly Weather Review, 91(3), pp. 99–165.

Spalart, P.R., Jou, W.-H., Strelets, M. and Allmaras, S.R. (1997) Comments on the

Feasibility of LES for Wings, and on a Hybrid RANS/LES Approach, Advances in

DNS/LES, (eds.) Liu, C. and Liu, Z., Proc. 1st AFOSR Int. Conf. on DNS/LES,

Aug. 4–8, Greyden Press, Columbus, OH.

Spalart, P.R., Deck, S., Shur, M.L., Squires, K.D., Strelets, M. and Travin, A.

(2006) A New Version of Detached–Eddy Simulation Resistant to Ambiguous

Grid Densities, Journal of Theoretical and Computational Fluid Dynamics, 20,

pp. 181–195.

Spalart, P.R. (2009) Detached–Eddy Simulation, Annual Review of Fluid Mechanics,

41, pp. 181–202.

Stolz, S. and Adams, N.A. (1980) An Approximate Deconvolution Procedure for

Large–Eddy Simulation, Physics of Fluids A, 11(7), pp. 1699–1701.

Stromberg, J.L., McLaughlin D.K. and Troutt, T.R. (1980) Flow Field and Acoustic

Properties of a Mach Number 0.9 Jet at a Low Reynolds Number, Journal of

Sound and Vibration, 72(2), pp. 159–176.

Suzuki, T. and Lele, S.K. (2003) Shock Leakage Through an Unsteady Vortex–Laden

Mixing Layer: Application to Jet Screech, Journal of Fluid Mechanics, 490, pp.

139–167.

Tam, C.K.W. (1988) The Shock–Cell Structures and Screech Tone Frequencies of

Rectangular and Non–Axisymmetric Supersonic Jets, Journal of Sound and Vi-

bration, 121(1), pp. 135–147.

Tam, C.K.W. and Webb, J.C. (1993) Dispersion–Relation–Preserving Finite Differ-

ence Schemes for Computational Acoustics, Journal of Computational Physics,

107, pp. 262–282.



BIBLIOGRAPHY 175

Tam, C.K.W. (1995) Supersonic Jet Noise, Annual Review of Fluid Mechanics, 27,

pp. 17–43.

Tam, C.K.W. (2001) Computational Aeroacoustics:An Overview, Aging Mecha-

nisms and Control: Part A– Developments in Computational Aero– and Hydro–

Acoustics, Manchester, Oct. 8–11, UK.

Tam, C.K.W. (2004) Computational Aeroacoustics: An Overview of Computational

Challenges and Applications, Journal of Computational Fluid Dynamics, 18(6),

pp. 547–567.

Tannehill, J.C., Anderson, D.A. and Pletcher, R.H. (1997) Computational Fluid

Mechanics and Heat Transfer, 2nd ed. Taylor and Francis.

Temmerman, L., Hadziadbic, M., Leschziner, M. and Hanjalić, K. (2005) A Hybrid
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